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SYNOPSIS

Although signals of physics beyond the standard model (SM) give the first phase run
of the Large Hadron Collider (LHC) a miss, the hope to discover the same is still very
much alive. Supersymmetry (SUSY) and compactified extra dimensions are the two most
popular frameworks for going beyond the SM. However, even within these two broad
scenarios, many possibilities are still open for closer studies. Therefore, at a time when
the LHC is widening its search strategies to look for new physics signals, physicists are
trying to exhaust various phenomenological possibilities which have not yet been stud-
ied in detail.

In the present thesis, we consider the TeV-scale extra dimensions. A particular variant
of this scenario is the so-called Universal Extra Dimensions (UED) in which one extra,
flat spatial dimension is introduced beyond the usual 1 + 3 dimensions. This extra spa-
tial dimension is compactified on a circle (S1) of radius R. The use of S1/Z2 orbifolding
makes the circle an interval. All the SM particles have universal (equal) access to the
extra dimensional bulk. One of the important features of the compactified extra dimen-
sional models is the presence of infinite towers of Kaluza-Klein (KK) states. In a given
tower, states are labelled by the KK number (n). In UED, KK number is conserved in any
given interaction at tree-level which is a consequence of momentum conservation along
the extra dimension. However, the presence of boundary usually breaks KK number con-
servation. A discrete symmetry, called the KK parity

(
(−1)n

)
, still remains a conserved

quantity. The minimal version of a UED scenario (the mUED) is a simple extension of the
SM built on the same gauge group. The particle content is also the same except for the
presence of additional KK states. Since mUED is a gauge theory in more than 4 dimen-
sions, it is non-renormalizable. Therefore, it is expected to remain valid up to a certain
scale Λ. The mUED scenario has three input parameters – the inverse radius of compact-
ification (R−1), the cut-off scale (Λ) and the Higgs mass (mH).

The non-minimal Universal Extra Dimension (nmUED), as the name suggests, con-
tains some new free parameters. Along with the bulk terms like in mUED, we include
terms localized at the boundaries of the compactified extra dimension and call these as
boundary (or, brane) localized terms (BLTs). These operators are of mass dimension 4
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(i.e., renormalizable) and are consistent with all the symmetries of the SM. Thus, one ex-
pects that such terms must be present in any consistent version of the theory. In mUED,
these terms are implicitly assumed to be small (or zero) at the cut-off scale. However, this
need not be the case. In fact, it can be shown by explicit calculations that these terms will
eventually be generated when one considers higher order corrections. One has to add ap-
propriate counter terms at the boundaries in order to cancel the divergences that appear
in mUED 1-loop calculation in 5D. Thus, a more general set-up demands the inclusion of
boundary-localized terms at the low scale. Therefore, it seems legitimate to include these
terms from the beginning. In this thesis, we are interested in such an extension of the
mUED scenario at the tree-level.

We discuss the theoretical structure (namely the action) of this particular model in de-
tail. The bulk fields can be decomposed in terms of Fourier basis (KK mode functions)
as a functions of the extra dimensional coordinate. Integration of the KK mode functions
over the extra dimension gives 4D effective theory. We call each of this integral an “over-
lap integral”. In our first work, we consider the boundary-localized kinetic terms (BLKT)
and the Yukawa terms (BLYT) for the strongly interacting sector. Later, when we talk
about the phenomenology of the top quark sector, the Higgs BLKTs will automatically
come into the picture. The BLTs are free parameters of this scenario. We consider equal
boundary terms at both the boundaries to preserve KK parity. Our first observation is
that the boundary terms change the mass spectrum in a non-trivial fashion. Unlike in
mUED, the mass of a KK excitation is obtained by numerically solving a transcendental
equation. In our first work, we provide a quantitative description of the masses of the
level-1 KK quarks and the KK gluons with respect to appropriate brane-local parameters.
Further, the presence of BLYT for quarks invokes mixing among the various chiral states
at a particular KK level. The mixing is proportional to the mass of the corresponding SM
quark. Hence, this kind of chiral mixing is rather interesting for the top quark due to its
large mass. Apart from the chiral mixing between the SU(2) doublet and singlet states,
there can be characteristic mixing of the top quarks from different KK levels of similar
parity. Such level mixings are primarily triggered by non-vanishing overlap integrals aris-
ing from the Yukawa sector. In a different work, we investigate the effect of such mixing
among the level-0 (SM) and level-2 (KK) top quarks. This kind of mixing can potentially
alter the masses to a great extent. This opens up the possibility to bring down the KK top
quark masses significantly thus making them accessible at the LHC. We provide quanti-
tative estimates of the masses of the level-1 and level-2 KK top quarks and discuss their
phenomenological implications.

2
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One of the most striking features of nmUED is that both the mass spectrum and cou-
plings vary simultaneously with the input parameters. Effective couplings can depart
from the corresponding SM values and, in particular, may become quite large due to the
overlap integrals. This fact makes the scenario rather interesting for the LHC where the
production and decay rates of various KK excitations would get directly affected by such
modifications. The most relevant one is the interaction vertex involving a SM quark, a
level-1 KK quark (Q(1)) and a level-1 KK gluon (G(1)). This vertex plays a major role in the
production processes like Q(1)Q̄(1), G(1)G(1) and Q(1)G(1). We work out the analytical form
of this coupling deviation factor. Further, we also probe the correlations of KK masses
and deviations in this coupling as a function of brane-local parameters. This coupling is
equally important for the top quark sector. However, tree-level couplings of level-2 KK
top quark with a pair of SM states have greater implications for the LHC. This interac-
tion violates KK number and is not present in mUED at tree-level. Now, a level-2 KK top
quark (t(2)) can directly decay to much lighter SM particles. These would then be heavily
boosted and may serve as a “smoking gun” signal at the LHC. We also discuss the de-
viation in couplings with the Higgs boson which may become dominant in case of top
quark.

Next, we discuss the phenomenology of level-1 KK gluon and level-1 KK quarks from
the first two generations at the 8 TeV and the 14 TeV runs of the LHC. Variations of cross
sections of different production processes have been discussed in detail with varying pa-
rameters. We try to understand the role of simultaneous variations of the couplings and
masses on various production rates. One important aspect of this work is our attempt to
understand how nmUED can fake a popular scenario like, SUSY (MSSM) or mUED in a
suitable set-up. We compare the cross sections for all the three scenarios. Since in nmUED,
we can tune both the masses and the couplings at the same time, we have greater freedom
at our disposal. We come to the conclusion that the difference in production cross sections
of various final states of mUED and nmUED are not large enough to clearly distinguish
one of the models. Even, in many different regions of the parameter space, nmUED cross
sections could yield the corresponding SUSY numbers. We also take up an ATLAS anal-
ysis for the jets + Emiss

T final state at
√
s = 7 TeV and translate the ATLAS bound into an

approximate constraint on the nmUED scenario. It is found thatR−1 = 1 TeV can be ruled
out under some reasonable assumptions. We select three benchmark points which satisfy
the relevant experimental constraints. We study some important production processes
(i.e., pair production, single production, associated production) involving KK top quarks
for the selected benchmark points. Particularly, the production modes of t(2)t̄, t(2)b̄, t(2)t̄H

3
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(and their charge-conjugate modes) are found to be of special importance.
The possibility of enhanced couplings and the presence of KK-number violating inter-

actions at the tree-level could result in large decay widths
(

(Γ/M )� 10%
)

for some KK
excitations in the nmUED scenario. In this context, the level-2 KK gauge boson resonances
are of immediate interest. The narrow-width approximation (NWA) usually adopted in
collider studies becomes inadequate for such “fat” resonances. On top of that, even the
Breit-Wigner form of the resonant propagator is bound to get distorted under the circum-
stances. These compels us to consider the related effects in the Drell-Yan type process and
study their implications for current and future runs of the LHC. This is the subject matter
of the third work which is in preparation.

The thesis is primarily intended to present an alternative scenario in the form of
nmUED which could have rich phenomenology at the colliders. Working out the the-
oretical framework of the model lays down a platform for such analyses. The scenario
has been implemented in MadGraph-5, an event generator, with the help of FeynRules
which is a Mathematica-based package for implementing various particle physics mod-
els.

4
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Chapter 1

Standard Model and beyond

1.1 General features

The Standard Model (SM) of particle physics [1] is a field theory which describes the
interaction among elementary particles. In quantum field theory, elementary particles
are described by fields, local in space-time, with definite transformation properties un-
der some particular symmetries of nature. Symmetries have long been powerful guiding
principles of particle physics. SM is also based on some symmetries and resulting conser-
vation laws borne out of experiments over several decades. These are :

1) Poincaré symmetry is a symmetry of space-time which states that laws of nature
are independent of rotation, translation or boost. Fields transform in a particular way
under the Poincaré transformation. The Lagrangian of the theory must be Poincaré in-
variant.

2) Gauge symmetry is one that requires invariance under certain "continuous local
transformations" i.e. transformation parameters depend on space-time points.

Apart from these, there are three discrete symmetries : charge conjugation (C), par-
ity transformation (P ), and time reversal (T ) which shape the structure of the SM. Par-
ity transformation flips left-handed fields to right-handed ones and vice-versa. Simi-
larly, charge conjugation replaces particles with its own anti-particles. Experiments have
shown that the electromagnetic and the strong interaction respect C and P (hence their
product operation CP ). But this is not necessarily true for the weak force which violates
C, P as well as CP . The fact that parity is violated is an important one since it determines
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Figure 1.1: Particle content of the Standard Model.

the form of the weak interaction. Moreover, unitarity (conservation of probability) and
stability of the vacuum ( the lowest energy state) are also assumed in the formulation of
the SM.

The requirement of renormalizability, although not a fundamental one, is another con-
dition imposed on SM. In a renormalizable theory, the ultra-violet (short distance) di-
vergences are absorbed through careful redefinition of bare fields and parameters of the
Lagrangian. By treating SM as a renormalizable theory, one assumes that no unknown
physics is required to explain discovered experimental evidences.

1.2 Particle content of the SM and their properties

The observable universe is primarily made of matter which is described by fermions of
spin-1

2
. It consists of quantum fields of six flavours of quarks, three flavours of charged

leptons and the associated neutrinos. Interactions between matter fields are mediated by
spin-1 bosons.

In a more compact notation, the continuous, local (gauge) symmetry can be conve-
niently described in the language of group theory. We focus on the continuous symmetry
group called Lie group which is specified by some Hermitian operators known as the
generators of the group. Any symmetry is labeled as a good symmetry if the Hamilto-
nian of the theory commutes with the symmetry transformation. An element g of the
group can be written as g = exp (iεaT

a) with T a as the generators. Associated with
each of the generator, there is a vector field (also called gauge boson). They are a con-
sequence of local gauge symmetry. SM is invariant under the unitary product group
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Figure 1.2: Standard Model interactions.

SU(3)C ⊗ SU(2)L ⊗ U(1)Y . These three different gauge groups describe the three fun-
damental forces of nature. SU(3)C gauge group describes strong interaction where ‘C’
stands for the colour charge. According to Noether’s theorem, a symmetry transforma-
tion results in a conserved quantity called Noether charge. All the fields which transform
under the symmetry group carry this charge. The conserved charge of the SU(3)C trans-
formation is called the colour charge. Quarks are the only matter fields which take part
in strong interaction. Eight massless gluon fields corresponding to eight generators of
SU(3)C group mediate strong interaction among quarks. Similarly, SU(2)L group gov-
erns weak forces where ‘L’ signifies that only left-handed fermions transform under this
group operation. U(1)Y group is related to electromagnetic interaction and ‘Y ’ denotes
hypercharge. All quarks and leptons respond to the weak force whereas the electromag-
netic force is felt only by electrically charged fields. Three massive gauge bosons (W±

and Z) are the carriers of weak interaction. Finally a massless photon is responsible for
carrying the electromagnetic force among the quarks and charged leptons.

The SM fields must be assigned a representation of the respective gauge groups under
which they transform so that invariance under gauge transformation becomes manifest.
The quark fields transform as fundamental (or, triplet) under SU(3)C group,

u =

 ured

ugreen

ublue


where red, green and blue are the three colour quantum numbers associated with the
group. SM is a chiral theory. Hence, its left-handed fields transform differently from the
right-handed one under SU(2)L gauge transformation. The left-handed fermions are in
the fundamental (or, doublet) representation of SU(2)L while the right-handed particles
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are SU(2)L singlet. The representation of the quark and lepton fields under SU(2)L and
U(1)Y groups are given as follows :

Quark Doublets :

(
u
d
′

)
L

,

(
c
s′

)
L

,

(
t

b
′

)
L

(3, 2,
1
6

)

Lepton Doublets :

(
νe

e′

)
L

,

(
νµ

µ
′

)
L

,

(
ντ

τ
′

)
L

(1, 2,−1
2

)

Quark Singlets :
uR,

d
′

R,

cR,

s′R,
tR,

b
′

R

(3, 1, 2
3)

(3, 1,−1
3)

Lepton Singlets : eR, µR, τR, (1, 1,−1)

Here, inside the brackets, the first number stands for the SU(3)C representation, the sec-
ond number indicates the SU(2)L representation while the last number denotes the weak
hypercharge quantum number. The electric charge Q of a field is defined in terms of
hypercharge quantum number (Y ) and third component of the SU(2)L charge (T3) as
Q = T3 + Y . Note that the U(1)Y group does not represent the group for electromagnetic
interaction directly and the corresponding quantum number is a derived quantity. We
shall come to this point again in section 1.3.

The primed fields are actually in the mass-bases and are orthogonal combinations of
the gauge (flavour) eigenstates i.e.,

d
′

i =
∑
j

Vijdj

where di, i = 1, 2, 3, represent three down-type quarks dL, sL and bL respectively. The
matrix V is unitary (assuming universal weak coupling). It could have been formulated
in the up-type quark sector as well. Such mixing arises for performing the field rotations
for the up and down-type quarks in order to diagonalize the masses. Note that no such
mixing occurs in the leptonic sector of the SM. This is because the neutrinos are massless
in the SM and hence, no difference can be made between the flavour eigenstates and the
mass eigenstates 1.

1However, after the discovery of neutrino mass, there happens to be similar mixing in the leptonic sector
as well.
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The massless fermion fields are described by the Dirac Lagrangian

Lfermion = i ψ̄γµ∂µψ, (1.1)

where ψ denotes any general spin-1
2

fermion field which responds to all three gauge in-
teractions and γµ are a set of four 4×4 matrices satisfying the following anticommutation
relations

{γµ, γν} = γµγν + γνγµ = 2gµν × 14×4

However, this term is not invariant under the local gauge transformations of the field ψ :

ψ(x) −→ ψ
′
(x) = e(ig3αa

1(x)λa/2) e(ig2αa
2(x)σa/2) e(ig1α3(x)Y/2)ψ(x)

where λ’s are eight Gell-mann matrices (generators of SU(3)C group), σ’s are three Pauli
matrices (generators of SU(2)L group). gi’s (i = 1, 2, 3) are the three coupling constants
of the three gauge groups while αi’s (i = 1, 2, 3) are the transformation parameters which
are space-time dependent.

Note that we could not write a gauge invariant Lagrangian involving derivatives of ψ
due to the presence of space-time dependent parameters. This leads to the idea of intro-
ducing gauge fields for each of the invariant gauge group generators for all the symme-
try groups. Now, gauge invariance can be made manifest by promoting ordinary partial
derivative to covariant derivative:

∂µ −→ Dµ = ∂µ − ig3
λa

2
Ga
µ − ig2

σa

2
W a
µ − ig1

Y

2
Bµ

where Ga
µ’s (a = 1, 2, ..8) are the eight gluon fields of the SU(3)C gauge group. Similarly,

W a
µ (a = 1, 2, 3) are the three weak gauge bosons corresponding to the SU(2)L group and

Bµ is the one for the U(1)Y group. The fermion-gauge boson interaction vertex can be
derived from Lfermion.

Gauge fields transform like adjoint representation of the corresponding gauge groups.
The kinetic terms of the gauge fields are given as follows,

Lgauge = − 1

4
Ga
µνG

aµν − 1

4
W a
µνW

aµν − 1

4
BµνB

µν (1.2)

where Ga
µν , W a

µν and Bµν are the field strength tensors for SU(3)C , SU(2)L and U(1)Y

gauge fields respectively. They have the following forms

Ga
µν = ∂µG

a
ν − ∂νGa

µ + g3f
abcGb

µG
c
ν (1.3)

W a
µν = ∂µW

a
ν − ∂νW a

µ + g2ε
abcW b

µW
c
ν (1.4)
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Bµν = ∂µBν − ∂νBµ (1.5)

fabc and εabc being the structure constants of SU(3)C and SU(2)L groups respectively. Bµν

being linear in the Bµ, there appears no term more than quadratic order in field. On the
other hand, W a

µν and Ga
µν are both quadratic in fields. This is an artifact of non-Abelian

gauge theory. Hence, for W a
µ and Ga

µ gauge fields, one finds triple and quartic gauge
boson interaction vertices. This is an important difference between Abelian and non-
Abelian theory.

The weak charged-current interaction for the quarks can be written as,

Lcc =
g2

2
(ū c̄ t̄)iγµ

(
VuV

†
d

)
ij

 d

s

b


j

The 3×3 unitary matrix V = VuV
†
d is known as the Cabibbo-Kobayashi-Maskawa 2 (CKM)

matrix [2]. It contains three real parameters and one complex phase factor. The presence
of complex phase is important since it provides the only source of CP violation within
the SM. There are many ways to parameterize the CKM matrix. Currently, the best-fit
values of the various entries of the CKM matrix obtained from experiments are [3], |Vud| = 0.974 |Vus| = 0.225 |Vub| = 0.0035

|Vcd| = 0.225 |Vcs| = 0.973 |Vcb| = 0.041

|Vtd| = 0.00867 |Vts| = 0.0404 |Vtb| = 0.999


The interesting observation is that the diagonal elements are close to unity. Since the CKM
matrix describes the probability of a transition from one quark flavour ‘i’ to another quark
‘j’, the most probable transition takes place only within a given generation.

Gauge symmetry prohibits mass terms for the gauge fields. However, various experi-
ments have confirmed that mediators of the weak force (W±, Z) are massive. Moreover,
mass terms for fermions have not been included in eqn 1.1. The mass term in a Lagrangian
consists of both the left and right chiral fields (m(ψLψR + h.c.)). Hence, we cannot simply
write a gauge invariant mass term for fermions as well.

Thus, generating masses for the weak bosons as well as the fermion fields were a long
standing problem. One of the major triumph of modern day physics is the concept of

2The corresponding mixing matrix in the leptonic sector is known as the Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) matrix.
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spontaneous symmetry breaking (SSB) which solves the problem of mass generation. In
SSB, there could be a situation where the Lagrangian is still symmetric under the gauge
group, but the choice of non-vanishing value at the minimum energy state (called vac-
uum) breaks the symmetry. This is achieved by introducing a weakly coupled spin-0
complex scalar field, called the Higgs field, which is a doublet under SU(2)L transforma-
tion. A single Higgs field is sufficient to generate masses for both the electroweak gauge
bosons and the fermions in the SM. The formalism is known as the Brout-Englert-Higgs
(BEH) mechanism which we discuss in the next section.

1.3 Brout-Englert-Higgs mechanism

It has been already mentioned that in quantum field theory one could be in a situa-
tion where the Lagrangian of a theory is invariant under a symmetry but the vacuum
is not. The mechanism is known as the spontaneous symmetry breaking (SSB). The idea
of SSB [4] was first proposed by Nambu in the context of superconductivity. Nambu and
Jona-Lasinio then went on to suggest that masses of elementary particles might arise in
a similar way [5]. Goldstone, on the other hand, provided a general theorem (known as
Goldstone theorem) on existence of a massless particle in a spontaneously broken the-
ory [6]. In the context of an explicitly relativistic theory, a general proof was provided by
Goldstone, Salam and Weinberg [7].

It was the work of Higgs which exhibited in a very simple manner to generate mass
in a relativistically invariant theory [8]. Higgs’ treatment was purely classical. At the
same time, Englert and Brout suggested the same idea in a quantum mechanical way [9].
They also pointed out that the same mechanism could work in non-Abelian models as
well. Guralnik, Hagen and Kibble, on the other hand, showed how to evade Goldstone
theorem using a different formalism [10].

The idea was brought into particle physics to provide masses to the gauge bosons for
the first time by Weinberg and Salam. Finally, a very important step was the proof of
renormalizability of such a spontaneously broken gauge theory was given by ’t Hooft
[11]. Thus, based on Glashow’s idea [12] of extending the gauge group from SU(2)L

to SU(2)L × U(1)Y (thus providing unified description of the electromagnetic and weak
interactions), the work of Weinberg and Salam completed the Standard Model of particle
physics [13] (also known as Glashow-Weinberg-Salam model) where masses of the gauge
bosons and fermions are generated via the BEH mechanism.

SSB is achieved with a spin-0 complex scalar field which carries both SU(2)L andU(1)Y
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charge. The field Φ is in doublet representation under SU(2)L group.

Φ =

(
φ+

φ0

)
(1, 2,

1
2

)

Lagrangian of this field is given by,

LHiggs =
1

2
(DµΦ)†(DµΦ) − V (Φ) (1.6)

where the scalar potential has the form V (Φ) = 1
2
µ2Φ†Φ − 1

4
λ(Φ†Φ)2. µ2 can be positive

or negative, however, the potential is dominated by the quartic interaction Φ4 for large Φ.
Consequently, it is bounded from below (for positive λ) irrespective of the magnitude or
sign of the mass term. The minimum of the potential lies at ∂V

∂Φ
= 0. There can be two

situations :
(a) For µ2 > 0, the minimum of the scalar potential remains at zero.

〈0|φ0|0〉 = 0 (1.7)

This situation cannot give masses to the gauge bosons.

(b) However, if µ2 < 0, then

〈0|φ0|0〉 = ±
√
−µ2

2λ
≡ ± v√

2
(1.8)

v =
√
−µ2
λ

is called the vacuum expectation value (vev). Thus, the vacuum state becomes
degenerate and the choice of a particular solution breaks both SU(2)L and U(1)Y gauge
symmetries. The corresponding gauge bosons now become massive. However, if the vac-
uum is still left invariant by some subgroup of the original gauge transformations, then
the gauge bosons associated with this subgroup remain massless. In this case, the La-
grangian remains invariant under the unbroken subgroup U(1)EM with a single generator
Q = T3 + Y . This is called the electromagnetic charge. The corresponding gauge boson
(photon) remains massless. Thus, it is said that, SU(2)L ⊗ U(1)Y symmetry is sponta-
neously broken down to U(1)EM. In the unitary gauge,

Φ =
1√
2

(
0

v +H(x)

)
where H(x) is the physical Higgs field which is basically a perturbation about the vac-
uum.
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1.3.1 Masses of the gauge bosons

The kinetic term of the Higgs field is the following,

DµΦ =

(
∂µ − ig2

σa

2
W a
µ − ig1

Y

2
Bµ

)
Φ

Expanding the equation 1.6 after putting the expression of Φ,∣∣∣∣∣
(

g2W
3
µ + g1Bµ g2(W 1

µ − iW 2
µ)

g2(W 1
µ + iW 2

µ) − g2W
3
µ + g1Bµ

)(
0
v√
2

)∣∣∣∣∣
2

This term provides all the gauge boson-Higgs interaction vertices. The physical gauge
fields are defined as the following linear combinations

W±
µ =

1√
2

(W 1
µ ∓ iW 2

µ)

Zµ =
g2W

3
µ − g1Bµ√
g2

1 + g2
2

Aµ =
g2W

3
µ + g1Bµ√
g2

1 + g2
2

Hence, we realize that W 3
µ and Bµ fields are not the physical states, but their orthogo-

nal combinations provide the physical fields. We define weak mixing angle θW which
quantifies the mixing between them. Thus, the physical states can be written as,(

Zµ

Aµ

)
=

(
cos θW − sin θW

sin θW cos θW

)(
W 3
µ

Bµ

)
It is now easy to verify that the SU(2)L and U(1)Y coupling constants are also related to
each other with the same mixing angle as

cos θW =
g2√
g2

1 + g2
2

, sin θW =
g1√
g2

1 + g2
2

.

On properly identifying the mass terms as
(
M2

WW
+
µ W

−µ + 1
2
M2

ZZµZ
µ + 1

2
M2

AAµA
µ
)

one
obtains,

MW =
1

2
g2v

MZ =
1

2
v
√
g2

1 + g2
2

and the photon is massless. The potential term provides the mass term for the Higgs itself
: MH = 2v2λ. It also predicts cubic and quartic self couplings of the Higgs boson.
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1.3.2 Masses of the fermions

We introduce a new interaction known as the Yukawa interaction between the fermions
and Higgs boson.

LYukawa = −λeL̄ΦER − λdQ̄LΦDR − λuQ̄LΦ̃UR + h.c. (1.9)

where Φ̃ = iσ2Φ∗. λe, λd, λu are the Yukawa couplings of the down-type leptons, down-
type quarks and up-type quarks respectively. Once Φ gets vev, one obtains mass terms
for the fermions with mf = λfv/2. The Yukawa couplings are free parameters in the SM
as they are fixed by the masses of the fermions.

1.4 Experimental verification of the SM

Now that we have a renormalizable gauge theory, it is important to look for its experi-
mental verifications. Investigation of electroweak theory began long back in the muon
decay process where measurement of the Fermi constant (GF ) had been made. As higher
energies become achievable for the collider experiments, direct evidence of weak gauge
bosons becomes apparent. Charged current interaction was first observed at CERN SPS
pp̄ collider with center-of-mass energy of 540 GeV. Mass and width of W± bosons were
measured. The SM predictions were very close to the experimental values. Next, at the
large electron-positron collider (LEP) neutral Z boson was discovered. Various observ-
ables were measured precisely which were in close agreement with the SM predictions.
Beyond the tree level, LEP precision measurements even provided a good verification of
SM as a renormalizable field theory. Later on, top quark has been discovered at Tevatron.
Recently, the last missing piece of the SM, the Higgs boson, has also been discovered at
the Large Hadron collider (LHC). Thus, the SM is a tremendously successful as a theory
of elementary particles and it has been able to explain almost all the phenomena observed
at various experiments so far. Fig 1.3 shows production cross sections of various SM pro-
cesses where the numbers closely agree, within the uncertainties, with values expected
from the SM.
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Figure 1.3: Summary of total production cross sections of several SM processes from the ATLAS collabo-
ration compared to the corresponding theoretical expectations [14].

1.5 Need to go beyond the SM: Motivations

The discovery of the Higgs boson at the LHC completes the particle spectrum of the
SM. It is very successful in explaining all, but one, experimental observations made till
date. The existence of neutrino mass, as evident from neutrino oscillation experiments
is a major issue confronting the SM. There is no right-handed neutrino in SM and hence,
no conventional mass term can be written for the neutrinos. Also, the neutrino mixing
pattern uncovered by various experiments is quite different from that of the mixing in
the quark sector. All these facts demand proper explanation which lead us towards new
physics beyond SM.

Astrophysical (and cosmological) observations provide indirect confirmation of exis-
tence of another kind of matter which cannot be explained in terms of the particle spec-
trum available in the SM. Nature and composition of such matter, called dark matter, are
not yet known. The important fact is that this new type of (non-baryonic) matter consti-
tute 23% of the universe. In 1933, F. Zwicky first observed from galaxy rotation curves
that there should be more matter than just the visible matter in the universe [15]. Later
on, gravitational lensing studies of the Bullet Cluster are claimed to provide the best evi-
dence for the existence of dark matter [16,17]. From the SM, only the neutrinos can be the
candidate for non-baryonic dark matter. However, study shows that neutrinos with ex-
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tremely small mass could jeopardize large scale structure formation. Hence dark matter
needs to be some new kind of particles and is believed to be one of the major hint of new
physics. In addition, the universe contains more matter than anti-matter, a fact known as
baryon asymmetry. SM has no appropriate mechanism to explain such observation.

Apart from these observational evidences, there are other compelling theoretical ques-
tions that confront SM as the ultimate theory. Stability of Higgs mass against large ra-
diative correction is regarded as a very serious concern for a long time. The unitarity
argument requires the Higgs boson mass below 1 TeV. But the correction to Higgs mass
squared due to top Yukawa coupling (λt) is found to be quadratic in the cut-off scale Λ,

δm2
H = − λ2

t

8π2
Λ2 + ..

If SM remains valid upto a very high scale, then the mass corrections really becomes larger
than the Higgs mass itself. The only way to retrieve physical Higgs mass∼O(1 )TeV, is to
have some ‘unnatural’ cancellation between the bare mass and its large correction. This
is known as the Naturalness problem (often termed as ‘fine tuning’ problem because of
the extreme accuracy required for such cancellations to take place).

Conversely, one can assume the cut-off Λ to a lower value. In that case, the theory
ceases to exist above that scale. The only other scale known is the Grand Unified scale
(∼ 1016 GeV) or the Planck scale (∼ 1019 GeV). Hence, there is a huge terrain in the energy
scale which lies empty between the weak scale (O(TeV)) and the GUT (or Planck) scale.
This large hierarchy in energy scales is termed as “hierarchy problem”. This is one of the
most aesthetic reasons to believe in the existence of new physics above the TeV scale.

Further, the masses of all the fermions, although derived from the same SSB mecha-
nism, are hugely different from each other. The ratio melectron

mtop
∼ 10−6 points towards large

mass hierarchy in fermion sector in the SM. There is no natural understanding of such
differences (even, present within the quark and lepton sectors separately). Moreover, the
SM provides no explanation of the existence of three families each for the quark as well as
the lepton sector. Therefore, the SM, in many ways, is unlikely to be the ultimate theory.
All these motivate one to go beyond the SM.

The thesis tries to capture one such scenario beyond the SM (BSM) which incorporates
extra spatial dimensions. This thesis consists of the following chapters. In chapter 2, we
discuss general theoretical aspects of the known extra dimensional scenarios. We intro-
duce minimal universal extra dimension (mUED) model in a brief but self-contained man-
ner. Later, we move on to non-minimal version of universal extra dimensional (nmUED)
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scenario and discuss its theoretical setup. Chapter 3 contains the study of boundary lo-
calized kinetic terms (BLKTs) and the Yukawa terms (BLYTs) for the strongly interacting
sector comprising of KK gluon and KK quarks and discuss their phenomenology at the
LHC. In chapter 4, we discuss the basic phenomenology of the KK top quarks at the LHC
by outlining their production and decay patterns for certain benchmark points. In chap-
ter 5 we discuss broad resonance case at the LHC which is a characteristic of nmUED
scenario. Finally, in chapter 6 we make a statement regarding the overall achievement of
this thesis and conclude.
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Chapter 2

Non-Minimal Universal Extra
Dimension

2.1 Introduction

The idea of having an extra compactified spatial dimension was first proposed by Kaluza
and Klein in order to unify Maxwell’s theory of electro-magnetism and Einstein’s theory
of gravity [18–20]. Much later, in string theory we also find extra space dimensions to
play crucial role in order to explain the quantum nature of gravity. The size of the extra
dimensions is known to play crucial roles in scenarios with extra dimensions. Of course, if
such extra dimensions exist at all, they must be smaller than the smallest distance probed
by the experiments till date 1. These suggest that the length of the extra dimensions can
only be less than few hundreds of microns (10−6 m).

During early 90s, Antoniadis considered extra dimensional scenarios in relation to su-
persymmetry breaking [22]. Many theoretical ideas emerged in string theory in the con-
text of extra dimension during this period. Hierarchy problem continues to be a serious
concern in theoretical physics. This is related to the radiative corrections received by the
squared Higgs mass in the SM (see section-1.5) which is quadratic in the cut-off scale. If
the Planck scale (Mpl ∼ 1019 GeV) is the only energy scale next to the electroweak scale
(∼ 102 GeV), then the corrections to the Higgs mass becomes enormously large compared
to the bare Higgs mass itself. This is a consequence of huge separation of these two energy
scales and is referred to as the hierarchy problem. The electromagnetic, weak and strong
forces are all predominant at the electroweak scale. On the other hand, the existence of
gravity can only be felt at/near the Planck scale. Note that the gravitational force has

1For reviews on extra dimensional theory, see refs. [21]
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been measured only at large distance. One can pose the question the other way round:
why the gravitational interaction is so weak compared to other forces of the SM at the
electroweak scale. Extra dimensions as an answer to this question was first proposed by
Arkani-Hamed, Dimopoulous and Dvali (ADD) [23, 24]. They showed that if there exists
at least two millimeter-sized (large) extra dimensions in which only gravity can propa-
gate, then the weakness of gravitational force can be explained. The large volume of the
extra dimensions dilutes the strength of the gravity as we see in ordinary 4D. In this
model, the extra dimension is assumed to be flat. This model requires the SM particles
to remain confined to usual four dimensions. Some further important issues of this sce-
nario, such as proton stability, gauge coupling unification and supersymmetry breaking
have been discussed in ref. [25]. The carrier of gravitational force is a spin-2 field, called
graviton. In four dimensions, the effect of a compactified extra dimension appears as in-
finite number of Fourier modes (called Kaluza-Klein (KK) tower) of the particles which
propagate into the extra dimensional space. The KK gravitons can be directly produced at
the collider experiments, like LHC. KK Gravitons interacts with SM fields gravitationally.
Since gravity is very weak, they escape detection at the collider thus leading to missing
transverse energy, Emiss

T . The virtual exchange of KK graviton can also be possible in
certain processes. However, results from LHC put very stringent bound on this model.
ATLAS analysis in jets + Emiss

T channel has ruled out (4 + n)-dimensional Planck scale
upto 4.3 TeV in ADD scenario with n = 2 [26].

Another variant of extra dimensional theory is proposed by Randall and Sundrum
(RS) [27, 28]. The compact extra dimension, in this case, has two boundaries which are
4 dimensional slices of the 5D bulk. They are like surfaces enclosing the higher dimen-
sional space-time and are called branes. In RS model, gravity resides in one of the branes,
called the Planck brane, whereas our world (the SM) is stuck in another brane (the weak
brane). To explain the weakness of gravity at the electroweak scale, Randall and Sun-
drum suggest the bulk to be extremely curved (warped). The curvature is introduced
as a warp factor (parameterized by κ/Mpl) in the metric. As a result, the graviton wave
function becomes extremely large at the Planck brane and it drops exponentially towards
the weak brane. Thus the gravity is localized only at the Planck brane. In this case, the
extra dimension need not be large to dilute gravity as in the case of the ADD model. In-
teresting signature of RS scenario includes a virtual graviton decaying into two photons
which provides a clean signal at the LHC. A limit of around 2.6 TeV on graviton mass has
been placed from the study of the dilepton final state (Drell-Yan production via graviton)
by the ATLAS experiment for κ/Mpl = 0.1 [29].
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These are some well-motivated extra dimensional scenarios for looking beyond the
SM. In the above models, only gravity2 can propagate into the extra dimensional bulk.
There is yet another alternative framework, known as Universal Extra Dimensions (UED)
[33], where the SM is embedded in any number of extra dimensions and in which all the
SM fields have universal access to the extra dimensions. The minimal version of such a
scenario is UED with only one extra spatial dimension compactified on S1/Z2 orbifold
and with a minimal set of input parameters. This is called the minimal universal extra
dimension (mUED). In this thesis, we consider an extended version of such a scenario,
called the non-minimal Universal Extra Dimension (nmUED). As the name suggests, the
model contains more numbers of free parameters. Before going into the theoretical details
of the non-minimal model, we first give an overview of minimal version of universal extra
dimension.

2.2 Minimal Universal Extra Dimension: A brief review

Universal extra dimension allows all the SM particles to propagate into the flat five 3 di-
mensional bulk which is compactified on S1/Z2 with an extra Z2 symmetry called Kaluza-
Klein (KK) parity. We will explain the meaning of the jargons in proper context. Although,
UED does not have the virtue of solving the hierarchy problem, still the motivations for
studying this particular scenario are many.

Unification of gauge couplings can take place in the presence of extra dimension ac-
cessible to the SM fields [40, 41]. Various models of neutrino mass generation can be fit
into such scenarios [42]. Such a scenario could provide mechanism for supersymmetry
breaking [22]. Extra dimensional models provide explanation for mass hierarchy in the
fermion sector [40, 43, 44]. Moreover, scenarios with dynamical electroweak symmetry
breaking have been studied for extra dimensional theories [45]. If the SM fields are al-
lowed to propagate in TeV-scale extra dimensions, then a tightly bound composite state
of top quarks can be found which has the same quantum numbers as the SM Higgs dou-
blet [46]. This composite Higgs can then trigger electroweak symmetry breaking and no
fundamental Yukawa interaction is needed. A very important aspect of the UED scenario
is that it can provide a viable dark matter candidate [47–53]. The relic density calculated
in such a framework agrees with its estimated value from various cosmological experi-

2Although this is not necessary in all the warped models [30–32].
3UED with two extra spatial dimensions (6D UED) is also another interesting possibility and its phe-

nomenology has been studied in refs. [34–39]
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ments [54,55]. The UED excitations (higher KK modes) contribute to various electroweak
observables which have been measured accurately at LEP and other experiments, only at
loop level [56–59]. Its contributions to the electroweak precision variables are thus well
suppressed and hence, the bounds on this model are only moderate. The scenario has a
rich phenomenology at the collider. The UED excitations can be directly produced at the
colliders. Recent collider experiments have already become sensitive to their production
and hence its predictions can be tested at the ongoing collider experiments.

In UED, the gauge structure and the particle content of the SM have been kept intact.
The extra dimension is compactified on a circle (S1) of radius R. The 5D gauge couplings
have negative mass dimensions. Such a theory is fundamentally non-remormalizable
from a naive dimensional argument. Therefore, the theory is expected to remain valid
only up to a certain scale Λ. In the minimal version of UED (mUED) scenario, there are
only three input parameters: the compactification radius (R), the cut-off scale (Λ) and the
Higgs mass (mH) .

We label the coordinates as xM = (xµ, x5 = y) where M = 0, 1, 2, 3, 5 and µ runs over
0, 1, 2, 3. x5 = y is the coordinate of the extra dimension. The flat metric in 5D is given
by gMN = (+ − − − −). As the extra dimensional coordinate is compactified on a circle,
any point y is identified with (y + 2πR). Hence, the fields are periodic in y-direction.
To illustrate, we consider a scalar field Φ(x, y). It satisfies periodic boundary condition:
Φ(x, y) = Φ(x, y+ 2πR). This results in the expansion of 5D fields into an infinite series of
Fourier modes:

Φ(x, y) =
1√
2πR

∑
n

φ(n)(x) einy/R. (2.1)

φ(n)s are called nth Kaluza-Klein (KK) modes and the zero mode (φ(0)) is identified with
the corresponding SM particle. Such tower of infinite KK states appear for each SM par-
ticles in 4D. They carry exactly same quantum numbers as the corresponding SM fields.
The mode (level) number n is also known as KK number. In mUED KK number is con-
served in any given interaction at tree-level which is a consequence of momentum con-
servation along the extra dimension.

The 5D action of a massive scalar field is given by,

S5D =
1

2

∫
d4x

∫
dy
[
(∂MΦ)(∂MΦ)−m2

0Φ2
]

(2.2)

where m0 is the mass originating from the conventional electroweak symmetry breaking
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mechanism. By plugging in the expansion of Φ in 2.1 into eqn. 2.2 and integrating over
the extra dimensional coordinate y, we obtain the 4D effective action,

S4D =
1

2

∫
d4x

∑
n

[(
∂µφ

(n)(x)
)(
∂µφ(n)(x)

)
−
(
m2

0 +
n2

R2

)
φ(n)(x)φ(n)(x)

]
(2.3)

Thus, the nth KK mode φ(n) has a tree-level mass m2
n = m2

0 + n2

R2 . For large R−1, m2
0 � n2

R2

and all the KK masses at a given level n are almost degenerate. However, masses of the
KK states receive radiative corrections which can cause significant shift in the spectrum
[60]. The total one loop correction includes both bulk and boundary contributions. But
in mUED, boundary corrections are generally considered to be small or zero. One loop
mass renormalization by the bulk interaction removes the mass degeneracy. The radiative
corrections for KK gluon is the largest simply because of its large coupling strength and
multiplicative colour factor. Corrections to KK quark masses are greater than KK leptons
for similar reasons. Level-1 KK photon remains the lightest KK particle (LKP).

Generalized γ5(= iγ0γ1γ2γ3) matrix in any odd dimensions does not anticommute
with rest of the γ matrices as required by Clifford algebra. Hence, chiral projection op-
erators cannot be defined in odd space-time dimensions. But the KK modes are 4 di-
mensional objects. Therefore, we can assign chirality to the KK states. KK modes of SM
fermions are vector-like in nature. Vector-like fermions are those for which both chiral
components have same transformation properties under the electroweak gauge group
SU(2) × U(1). But this is not the case in SM where an SU(2)L doublet field is purely left
handed and a SU(2)L singlet field (carries only hypercharge quantum number) is purely
right handed. One has to retrieve the SM chiral fermions in 4D, i.e., extra components of

Figure 2.1: Orbifolding the circle to an interval (taken from the first reference in [21].)

the zero mode fields must be removed. This is achieved by a technique called “orbifold-
ing” which is described as follows. Over the compactified extra dimension, we impose a
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Z2 symmetry in which two points on each half of the circle (as shown in the fig.2.1) are
identified. This is essentially a discrete parity transformation (y − πR)→ −(y − πR). We
realize that the action 2.2 remains invariant if a generic scalar field Φ transforms in the
following manner

Φ(x, y − πR)→ ±Φ(x,−(y − πR)) (2.4)

This is called S1/Z2 orbifolding. Information of one half of the circle is sufficient to know
the details of the other half thus making one half redundant. This essentially makes the
circle an interval of length πR. y = 0 and y = πR are the two orbifold fixed points
– the boundaries where the brane and the bulk meet. The fields transforming like
Φ(x,−y′) = +Φ(x, y

′
) are called ‘even’ and Φ(x,−y′) = −Φ(x, y

′
) are termed ‘odd’ under

Z2 symmetry where y′ = (y − πR). We denote even and odd fields by Φ+ and Φ− respec-
tively. The fields obey different boundary conditions at the two orbifold fixed points. Φ+

obeys Neumann boundary condition ∂yΦ+(x)
∣∣∣
y=0,πR

= 0 . Φ− obeys Dirichlet boundary

condition Φ−(x)
∣∣∣
y=0,πR

= 0. The KK expansions are also quite different for the two types

of fields as shown below.

Φ+(x, y) =
1√
πR

φ
(0)
− (x) +

2√
πR

∑
n

φ
(n)
+ (x) cos

ny

R
(2.5)

Φ−(x, y) =
2√
πR

∑
n

φ
(n)
− (x) sin

ny

R
(2.6)

The KK decomposition of a vector field can be done in a similar manner. A vector
field V M in 5D has 5 components. We realize that V µ are even while V y is odd under Z2

transformation mentioned above. Similar boundary conditions are also imposed for the
even and odd type of vector fields: ∂yV µ(x)

∣∣∣
y=0,πR

= 0 and V y(x)
∣∣∣
y=0,πR

= 0. As a result,

the KK expansion of a vector field can be written in a way so that there remains no zero
mode of the 5th component:

V µ(x, y) =
1√
πR

V µ(0)(x) +
2√
πR

∑
n

V µ(n)(x) cos
ny

R
(2.7)

V y(x, y) =
2√
πR

∑
n

V y(n)(x) sin
ny

R
(2.8)

As for fermions, SU(2) singlet field (ψ(x, y)) requires to satisfy the following boundary
conditions: ψL(x)

∣∣∣
y=0,πR

= 0 and ∂5ψR(x)
∣∣∣
y=0,πR

= 0. These boundary conditions set the
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following mode expansion:

ψR(x, y) =
1√
πR

ψ
(0)
R (x) +

2√
πR

∑
n

ψ
(n)
R (x) cos

ny

R
(2.9)

ψL(x, y) =
2√
πR

∑
n

ψ
(n)
L (x) sin

ny

R
(2.10)

The boundary conditions are just opposite for a SU(2) doublet field Ψ(x, y). Since, in
this case, we have to get rid of right handed zero mode, we set: ΨR(x)

∣∣∣
y=0,πR

= 0 and

∂5ΨL(x)
∣∣∣
y=0,πR

= 0. The KK expansions are,

ΨL(x, y) =
1√
πR

Ψ
(0)
L (x) +

2√
πR

∑
n

Ψ
(n)
L (x) cos

ny

R
(2.11)

ΨR(x, y) =
2√
πR

∑
n

Ψ
(n)
R (x) sin

ny

R
(2.12)

The important point is that after demanding the fields to be even/odd under the dis-
crete parity transformation, suitable boundary conditions remove the unwanted fields.
However, the higher fermionic KK modes are necessarily vector-like. The Z2 parity is
known as KK parity which is defined as (−1)n where n stands for the KK level. In any
mUED interaction, KK parity is assumed to be always conserved. Hence, any odd level
KK partners must be produced in pair at the collider experiments. Conservation of KK
parity also leaves the lightest KK particle (LKP) stable and provides a good dark matter
candidate [47, 48, 52]. The LKP is the level-1 KK photon in the mUED scenario.

We now introduce the notations for various fields following reference [61]. For the 5D

gauge fields we continue to use the similar notations as we did for the corresponding SM
fields in chapter-1: BM , W a

M and Ga
M for the 5D gauge fields of U(1), SU(2) and SU(3)C

groups respectively. The fermionic sector of the scenario is presented in table 2.1.
Now we are in a position to describe the action of the theory of minimal universal

extra dimension (mUED). The various components of the action are as follows,

Sgauge =

∫
d4x

∫ πR

0

dy
(
− 1

4
BMNB

MN − 1

4
W a
MNW

aMN − 1

4
Ga
MNG

aMN
)
, (2.13)

Sgf =

∫
d4x

∫ πR

0

dy
(
− 1

2ξ
(∂µBµ − ξ∂5B5)2 − 1

2ξ
(∂µW a

µ − ξ∂5W
a
5 )2

4Note that we have dropped the subscript ‘L’ for SU(2) which we kept in chapter-1. ‘L’ stands for left
handed, whereas a KK level SU(2) doublet field has both left and right handed components.
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SU(2) representations 4 SM mode KK modes

Quark doublet QL(x) =

(
UL(x)

DL(x)

)
Q

(n)
L (x) =

(
U

(n)
L (x)

D
(n)
L (x)

)
, Q(n)

R (x) =

(
U

(n)
R (x)

D
(n)
R (x)

)

Lepton doublet LL(x) =

(
νL(x)

EL(x)

)
L
(n)
L (x) =

(
ν
(n)
L (x)

E
(n)
L (x)

)
, L(n)

R (x) =

(
ν
(n)
R (x)

E
(n)
R (x)

)
Quark Singlet uR(x) u

(n)
R (x), u(n)L (x)

Quark Singlet dR(x) d
(n)
R (x), d(n)L (x)

Lepton Singlet eR(x) e
(n)
R (x), e(n)L (x)

Table 2.1: Fermion content of the minimal UED model. SU(2)-doublets (SU(2)-singlets) are denoted with
capital (lowercase) letters. KK modes carry a KK index n. We omit the index “0” for the SM fields to match
the notations in chapter-1.

− 1

2ξ
(∂µGa

µ − ξ∂5G
a
5)2
)
, (2.14)

Sleptons =

∫
d4x

∫ πR

0

dy
∑
j

(
iLjΓ

MDMLj + iEjΓ
MDMEj

)
, (2.15)

Squarks =

∫
d4x

∫ πR

0

dy
∑
j

(
iQjΓ

MDMQj + iUjΓ
MDMUj + iD̄jΓ

MDMDj

)
, (2.16)

SYukawa =

∫
d4x

∫ πR

0

dy
∑
j

(
Y u
ijQiΦ̃Uj + Y d

ijQiΦDj + Y l
ijL̄iΦEj

)
, (2.17)

SHiggs =

∫
d4x

∫ πR

0

dy
(

(DMΦ)†(DMΦ) + µ2Φ†Φ− λ(Φ†Φ)2
)
. (2.18)

Here, we describe some more notations: ΓM = γµ and iγ5; Y u
ij , Y d

ij and Y l
ij are 5D up, down

and lepton Yukawa couplings respectively and Φ̃ = iσ2Φ∗ with the Pauli matrix σ2. The
gauge field strength tensors in 5D are given by,

BMN = ∂MBN − ∂NBM

W a
MN = ∂MW

a
N − ∂NW a

M + g
(5)
2 εabcW b

MW
c
N

Ga
MN = ∂MG

a
N − ∂NGa

M + g
(5)
3 fabcGb

MG
c
N

where g(5)
i s are the 5 dimensional gauge coupling constants of U(1), SU(2) and SU(3)C

groups respectively. The interactions between a gauge field and the fermions are set up
by fermion kinetic term with partial derivative (∂M ) properly replaced by a covariant
derivative (DM ) as shown in chapter-1. For example, the general form of the covariant
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derivative for the quark fields which interact with all three gauge fields is given by,

DM = ∂M − ig(5)
3

λa

2
Ga
M − ig

(5)
2

σa

2
W a
M − ig

(5)
1

Y

2
BM (2.19)

λas (a = 1 − 8) are eight Gell-mann matrices, σa (a = 1 − 3) are the three Pauli matrices
and Y is the hypercharge quantum number. Hypercharge numbers assigned to different
fermions are exactly the same as in SM: YQ = 1

6
, Yu = 2

3
, Yd = −1

3
, YL = −1

2
and Ye = −1.

The covariant derivatives corresponding to other fermion fields will be of similar form
but only differ by the gauge interaction they respond to.

We now discuss briefly some guiding principles for deriving the interactions among
various KK modes of different particles. 5D gauge coupling constants are dimensionful
parameters. We must recover the exact SM coupling starting from the 5D Lagrangian.
From the action given in eqns. 1.13-1.18, we first pick up an interaction term and write all
the fields in terms of their respective KK expansions (with general mode numbers). For
example, an interaction between a gauge boson(Vµ) a pair of fermions (Ψ) in 4D can be
obtained from the fermion kinetic term in eqn. 1.17,

iΨ̄(x, y)ΓMDMΨ(x, y) −→ iΨ̄(x, y)γµDµΨ(x, y)

We consider a simple covariant derivative with one gauge interaction with cou-
pling constant g(5): Dµ = ∂µ − ig(5)Vµ. The interaction term turns out to be
g(5)Ψ̄(x, y)γµVµ(x, y)Ψ(x, y). We now plug in the KK decomposition of the fields from
equations 2.8, 2.12 in this expression to obtain

g(5)

∫
d4x

∫
dy
∑
k,l,m

(
1√
πR

Ψ̄(0)(x) +
2√
πR

∑
n

Ψ̄(k)(x) cos
ky

R

)
×(

1√
πR

V µ(0)(x) +
2√
πR

V µ(l)(x) cos
ly

R

)
×(

1√
πR

Ψ(0)(x) +
2√
πR

Ψ(m)(x) cos
my

R

)
The SM interaction involving all the zero mode excitations can be reproduced as,

g(5)(√
πR
) 3

2

∫
d4x Ψ̄(0)(x)V µ(0)(x)Ψ(0)(x)

∫ πR

0

dy

−→ g(5)

√
πR

∫
d4x Ψ̄(0)(x)V µ(0)(x)Ψ(0)(x),
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where g(5)√
πR

must be equal to the SM coupling: g(4) = g(5)√
πR

. Note that the proper normaliza-
tion of the fields are essential to match the 5D gauge coupling with the exact SM coupling.
As for the interaction involving KK level is concerned, we are allowed to pick only those
mode numbers which satisfy a general selection rule fixed by the conservation of KK
number. In the previous example, the next allowed interactions are k = 1, l = 1, m = 0

and all their permutations. One of the combination yields a level-0 gauge boson interact-
ing with two level-1 fermions. This is a new vertex not present in SM and it is essential
for the production of level-1 fermions at the LHC.

g(5)(√
πR
) 3

2

∫
d4x Ψ̄(1)(x)V µ(0)(x)Ψ(1)(x)

∫ πR

0

dy cos2 y

R

−→ g(5)

√
πR

∫
d4x Ψ̄(1)(x)V µ(0)(x)Ψ(1)(x)

Using the integrals of various trigonometric functions (generally called orthonormal rela-
tions), one can easily derive the vertices. Note that the effective coupling again comes out
to be the same as the SM coupling. In fact, all mUED vertices will appear exactly equal
to the corresponding SM interaction vertices. Another important interaction could be a
level-2 gauge boson interacting with two SM fermions. This vertex is particularly impor-
tant for the resonance production of a level-2 gauge boson at the LHC. Note that such an
interaction is prohibited at the tree level in mUED because of KK number conservation.
There, it can only occur at one loop order and thus suppressed.

2.3 Phenomenology of mUED at the LHC

Phenomenology of the mUED scenario is primarily governed by the following factors

• mass spectrum

• conservation of KK number and KK parity

As we have already seen, mUED spectrum is highly compressed. The mass splittings es-
sentially appear due to radiative corrections [60]. Besides, momentum conservation along
the extra dimension gives rise to conservation of KK number at each interaction vertex.
Hence, there is no tree level coupling with a level-2 gauge boson with SM fermions. Z2

symmetry described as the KK parity (−1)n for a particle at level-n also remains con-
served in any mUED interaction. As a result, level-1 KK particles are always produced
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Figure 2.2: The level-1 KK mass spectrum of the mUED model at tree level (left) and at one loop (right)
for R−1 = 1500 GeV, mH = 120 GeV and ΛR = 20 [62].

in pair at the collider experiments. Conservation of KK parity ensures stability of the
lightest KK particle (LKP). If, in addition, the LKP is a weakly interacting neutral particle,
then it could serve a good candidate for cold dark matter (or a weakly interacting massive
particle known as WIMP).

The level-1 coloured particles (KK quarks or KK gluons) can be copiously produced at
the LHC. The KK quarks/gluons can, undergo then, cascade decays into a number of jets
or leptons (or both) and LKP which escapes the detector. A cascade results in a generic
signal comprising n jets + m leptons + Emiss

T . But as masses of the KK particles lie close,
the jets as well as the leptons are usually very soft and it is difficult to distinguish them
from the SM background. Still, many search channels have been efficiently looked into
by LHC experiments.

Supersymmetry (SUSY) is one of the most promising and extensively studied BSM
scenario. However, there are many instances where mUED can fake possible SUSY sig-
nals [63–65]. R-parity conserving SUSY also provides a viable dark matter candidate.
Although, it is true that SUSY (particularly, minimal supersymmetric standard model)
provides a plethora of possibilities giving a variety of signatures at the colliders. How-
ever, there are two basic discriminators between mUED and SUSY scenarios. A typical
feature of the UED scenario is the existence of towers of KK particles for each of the
SM excitation. On the other hand, there is only one supersymmetric particle (known
as sparticle) corresponding to each SM particle. Therefore, discovery of higher multiple
massive states with similar quantum number may prove UED as a more viable BSM the-
ory than SUSY. Another fundamental difference between such theories is the spin of the
new excitations (sparticles or KK particles). SUSY predicts a spin-0 partner for every SM
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fermion and a spin-1
2

fermion for every gauge boson. In contrast, KK particles are of same
spin as their SM counterpart. Thus, spin correlation of the daughter particles in the de-
cay chains can help distinguish the two competing scenarios. However, deciphering the
spins of such new excitations is not an easy task. Thus, in the absence of any other hint,
it is understood to be daunting task at the LHC to distinguish between a SUSY and an
UED scenario once a signal is observed. We can also employ various angular asymmetry
observables. Therefore, collider phenomenology becomes more complicated and needs
careful consideration of many subtle points.

2.4 Experimental Constraints on mUED scenario

Several experimental observations put constraints on the mUED parameter space. The
most severe constraints come from the electroweak precision variables which have been
precisely measured at the LEP. Any new physics model may also contribute to these vari-
ables. But we expect their contribution to be small. S, T, U parameters are the corrections
to the electroweak gauge boson propagators. They put stringent bounds on the mUED
parameter space. One loop contributions from KK top quarks and KK Higgs states to
these variables are significant. The bound has been set at R−1 & 680 GeV [66].

Results from the Tevatron and LHC put limits on extra dimensional models. Bounds
on UED scenarios are derived from the latest LHC analyses and other experiments search-
ing for dark matter. These can be found in references [62, 67, 68]. The recent Higgs data
also constrain UED models since the contributions from KK towers of various particles
in loop affect both Higgs production and decay rates [69]. The constraints mainly come
from gg → h → γγ, WW ∗, ZZ∗ channels. However, the most stringent bound comes
from WW ∗ channel from both the ATLAS [70] and the CMS experiments [71]. The cur-
rent ATLAS Higgs data combined for center-of-mass energies 7 TeV and 8 TeV at 25 fb−1

luminosity provides a constraint of R−1 & 460 GeV. On the other hand, using CMS data,
much stricter bound of R−1 & 1300 GeV [72] can be put. The reason behind such dif-
ference is mainly the large difference in signal strengths (µ value) registered by the two
experiments. However, one should be aware of the fact that bounds coming from such
Higgs data are indirect in nature. The direct limit comes from trilepton signature at the
LHC where the region R−1 . 1200 GeV has been excluded at the 95% C.L. for a large
range of the cut-off scale Λ [62].

We have already mentioned that level-2 KK gauge bosons in mUED do not have tree
level couplings with SM (level-0) fermions because these violate KK number. However,
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an effective interaction among these particles occurs at 1-loop level that respect KK parity.
This is of particular importance since it allows for the resonance production of level-2
gauge bosons at the LHC. Many new physics models with higher symmetry group predict
additional gauge bosons (Z ′ or W ′). LHC usually searches for such spin-1 extra gauge
bosons as massive resonance decaying into much cleaner leptonic final state. Results
from such Z ′ or W ′-like signal can be reinterpreted in terms of specific scenarios. Level-2
electroweak gauge bosons in mUED (γ(2), Z(2) orW (2)±) can be thought of such additional
gauge boson candidates. Thus, absence of such signals, can lead to bounds on level-2
KK gauge bosons. CMS search for resonant Z ′ in the dilepton channel has resulted in a
constraint of R−1 & 715 GeV for mUED [73].

We have already mentioned that the LKP can be a prospective WIMP dark matter. The
level-1 KK photon turns out to be the LKP and hence the dark matter candidate. The relic
density is the amount of dark matter present in today’s universe. The current value of
relic abundance from recent Planck data is ΩDMh

2 ∼ 0.1189 [54]. For an mUED scenario
with a cut-off scale of Λ = 20R−1, the value of R−1 which gives correct relic density is
around 1300 GeV [74]. The relic density estimation for level-1 KK photon as the dark
matter excludes large region of mUED parameter space. If the LKP is too massive, then
it becomes too abundant and hence ruled out. The actual bound may vary depending
on the nature of the dark matter and the mass splitting with other particles. But one can
avoid the bounds in many possible ways. For example, constraints are less severe for
a Z(1) WIMP or for a multi-component dark matter scenario. Of course, the constraints
depend on various assumptions and in actual situation may be less restrictive. But one
should keep the above information in mind while studying the mUED scenario.

With this overview on mUED, we now move on to extend this scenario. This would
give us access to a variety of circumstances which may have rich phenomenology at
the LHC. In the next section, we discuss the non-minimal universal extra dimension
(nmUED) scenario .

2.5 From mUED to nmUED

The mUED model is minimal in the sense that it is based on a minimal set of parameters.
In the non-minimal version, we add some more free parameters. In general, scenarios
with less number of input parameters are more predictive and easy to rule out at ex-
periments. But such models may not create much diverse possibilities which could be
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equally valid new physics scenarios. For example, minimal supergravity (MSUGRA) is a
well motivated scenario with only five input parameters. However, it is already heavily
constrained by LHC results. On the other hand, nineteen parameter pMSSM gives rise to
more varied possibilities.

Orbifold fixed point is the boundary of the brane and the bulk. Field theories on the
orbifold have important consequences and are capable of altering the phenomenology at
the low energy scale. Along with the bulk terms like in mUED, we include terms local-
ized at the boundaries of the compactified extra dimension and call these as boundary
(or, brane) localized terms (BLTs). In fact, it has been shown that these terms are unavoid-
able in certain circumstances. In an extra dimensional theory compactified over S1/Z2,
translational symmetry is broken by the presence of orbifold fixed points. While calcu-
lating one loop radiative corrections to KK masses, additional divergences appear to be
localized only at those fixed points. Hence, appropriate counterterms are to be placed at
those boundaries in order to cancel the divergences [60]. In this sense such terms should
necessarily be present. The coefficients of the boundary terms evolve with the renormal-
ization group equations starting from the cut-off scale down to the weak scale. In case
of mUED, all such boundary localized terms are assumed to be zero or negligibly small
at the cut-off. But there is no reason to expect them to be small at the cut-off scale itself.
Large boundary localized terms contribute significantly to the masses and mixings of the
KK modes. Hence, it is logical to keep these terms from the beginning. BLTs are also
consistent with the Lorentz symmetry and gauge symmetries of the theory. Therefore,
inclusion of such terms definitely makes the theory more general. We must mention that
such boundary term is not new in the literature and has been already mentioned in the
refs. [75–81]. But detail phenomenological studies with BLTs keeping LHC in mind is still
scarce. In this thesis, we want to explore such a scenario and investigate carefully the
collider implications of such boundary localized terms. We introduce boundary localized
kinetic terms (BLKT) for the fermions and the gauge bosons. We also include boundary
localized Yukawa (BLYT) interactions. From now on, we interchangeably use the phrase
‘brane-local’ or ‘boundary-local’ for such terms. The coefficients of the boundary terms
are the new parameters in this scenario. The scenario presented here is one version of
a non-minimal universal extra dimension (nmUED). In the next section, we discuss the
theoretical set up of the nmUED model in detail.
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2.6 Theoretical Framework

2.6.1 The QCD sector

We consider QCD in 5D with brane-localized kinetic terms for quark and gluon fields at
the orbifold fixed points. Under S1/Z2 orbifolding, there appear two fixed points which
we consider atL = ±πR/2, for simplicity. We write down the complete QCD action where
Sgluon (quark) is the action for the gluon (quark) fields including the gauge-fixing term [82].

SnmQCD = Sgluon + Sgluon,gf + Squark, (2.20)

Sgluon =

∫
d4x

∫ L

−L
dy

{
− 1

4
Ga
MNG

aMN +
(
δ(y − L) + δ(y + L)

)[
− rG

4
Ga
µνG

aµν
]}

,

(2.21)

Sgluon,gf =

∫
d4x

∫ L

−L
dy

{
− 1

2ξG
(∂µG

aµ − ξG∂yGa
y)

2 − 1

2ξG,b

[
(∂µG

aµ + ξG,bG
a
y)

2δ(y − L)

+ (∂µG
aµ − ξG,bGa

y)
2δ(y + L)

]}
, (2.22)

Squark =

∫
d4x

∫ L

−L
dy

3∑
i=1

{
iU iΓ

MDMUi + rQ

(
δ(y − L) + δ(y + L)

)[
iU iγ

µDµPLUi
]

+ iDiΓ
MDMDi + rQ

(
δ(y − L) + δ(y + L)

)[
iDiγ

µDµPLDi

]
+ iuiΓ

MDMui + rQ

(
δ(y − L) + δ(y + L)

)[
iuiγ

µDµPRui
]

+ idiΓ
MDMdi + rQ

(
δ(y − L) + δ(y + L)

)[
idiγ

µDµPRdi
]}

.

(2.23)

The descriptions of the fields are same as we mentioned earlier. ξG and ξG,b are the
bulk and the boundary gauge fixing parameters respectively. rG, rQ are the coefficients of
BLKTs for the gluon and quark fields, respectively. We consider equal boundary param-
eter at the fixed points which ensures the conservation of KK parity.

The forms of the bulk equations of motion and the boundary conditions at the two
orbifold fixed points are determined using the variational principle. In this thesis we use
the unitary gauge with ξG, ξG,b → ∞ which sets Ga

y → 0 where Ga
y is the 5th component
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of the gluon field. Here, Ui, Di (ui, di) represents the ‘up’ and ‘down’-type SU(2) doublet
(singlet) quark fields. i = 1, 2, 3 stands for the three generations of quarks.

In the unitary gauge, the 5D fields of Ga
µ, QL,R, uL,R and dL,R are KK decomposed as

follows:

Ga
µ(x, y) =

∞∑
n=0

Ga(n)
µ (x)fG(n)(y), (2.24)

QL(x, y) = Q
(0)
L (x)f

Q
(0)
L

(y) +
∑

n>0:even

Q
(n)
L (x)f

Q
(n)
L

(y) +
∑

n>0:odd

Q
(n)
L (x)f

Q
(n)
L

(y), (2.25)

QR(x, y) =
∑

n>0:even

Q
(n)
R (x)f

Q
(n)
R

(y) +
∑

n>0:odd

Q
(n)
R (x)f

Q
(n)
R

(y), (2.26)

uR(x, y) = u
(0)
R (x)f

u
(0)
R

(y) +
∑

n>0:even

u
(n)
R (x)f

u
(n)
R

(y) +
∑

n>0:odd

u
(n)
R (x)f

u
(n)
R

(y), (2.27)

uL(x, y) =
∑

n>0:even

u
(n)
L (x)f

u
(n)
L

(y) +
∑

n>0:odd

u
(n)
L (x)f

u
(n)
L

(y), (2.28)

dR(x, y) = d
(0)
R (x)f

d
(0)
R

(y) +
∑

n>0:even

d
(n)
R (x)f

d
(n)
R

(y) +
∑

n>0:odd

d
(n)
R (x)f

d
(n)
R

(y), (2.29)

dL(x, y) =
∑

n>0:even

d
(n)
L (x)f

d
(n)
L

(y) +
∑

n>0:odd

d
(n)
L (x)f

d
(n)
L

(y), (2.30)

where the mode functions of level-n can be categorized as

fG(n)(y) = NG(n) ×


cos(MG(n)y)

CG(n)

for n even

−sin(MG(n)y)

SG(n)

for n odd
, (2.31)

fQ(n) ≡ f
Q

(n)
iL

= f
u
(n)
iR

= f
d
(n)
iR

= NQ(n) ×


cos(MQ(n)y)

CQ(n)

for n even

−
sin(MQ(n)y)

SQ(n)

for n odd
, (2.32)

gQ(n) ≡ f
Q

(n)
iR

= −f
u
(n)
iL

= −f
d
(n)
iL

= NQ(n) ×


sin(MQ(n)y)

CQ(n)

for n even

cos(MQ(n)y)

SQ(n)

for n odd
, (2.33)
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with the normalization factors NG(n) , NQ(n) . Hereafter, we will use the following short-
hand notations,

CX(n) = cos

(
MX(n)πR

2

)
, SX(n) = sin

(
MX(n)πR

2

)
, TX(n) = tan

(
MX(n)πR

2

)
, (2.34)

where X stands for G (gluon) and Q (quark) 5 and MX(n) is the corresponding KK mass at
the n-th level determined through the transcendental equations

rXMX(n) =

{
−TX(n) for n even
1/TX(n) for n odd

. (2.35)

The generalized orthonormal conditions for {fQ(n)} and {gQ(n)} take the forms

∫ L

−L
dy
[
1 + rX (δ(y − L) + δ(y + L))

]
fX(m)fX(n) = δm,n,∫ L

−L
dygQ(m)gQ(n) = δm,n,

(2.36)

respectively, while the expressions for NX(n) turn out to be as follows:

N−2
X(n) =


2rX +

1

C2
X(n)

[
πR

2
+

1

2MX(n)

sin(MX(n)πR)

]
for n even

2rX +
1

S2
X(n)

[
πR

2
− 1

2MX(n)

sin(MX(n)πR)

]
for n odd

. (2.37)

Note that, in the presence of BLTs, these normalization factors NX(n) have rather non-
trivial forms when compared to the simple forms like 1√

πR
or 1√

2πR
as in the case of mUED.

Especially, the profile for the zero mode is normalized as

NX(0) =
1√

2rX + πR
, (2.38)

which results in the following theoretical lower bound on rX in order to circumvent a
tachyonic zero mode:

rX > −πR
2
. (2.39)

5Here Q means all type of quarks in general.

45



CHAPTER 2. NON-MINIMAL UNIVERSAL EXTRA DIMENSION

2.6.2 The electroweak gauge boson and the Higgs sectors

The gauge boson and the Higgs sectors of the nmUED scenario have been discussed in
ref. [83]. We consider the following 5D action describing the electroweak gauge boson
and the Higgs sectors of the nmUED scenario under study:

S =

∫
d4x

∫ L

−L
dy

{
− 1

4
W a
MNW

aMN − 1

4
BMNB

MN + (DMΦ)†(DMΦ)+

µ̂2Φ†Φ− λ̂

4
(Φ†Φ)2 +

(
δ(y − L) + δ(y + L)

)[
− rW

4
W a
µνW

aµν

− rB
4
BµνB

µν + rH(DµΦ)†(DµΦ) + µ2
bΦ
†Φ− λb

4
(Φ†Φ)2

]}
.

(2.40)

WMN and BMN are the 5D field strength tensors of the SU(2) and U(1)Y gauge groups
with the corresponding gauge bosons: WM and BM . The 5D Higgs doublet Φ is repre-
sented as,

Φ =

(
φ+

1√
2

(v̂(y) +H + iχ)

)
(2.41)

where φ+ is the charged component, H and χ are the neutral components and v̂(y) is
the 5D bulk Higgs vacuum expectation value (vev). DM stands for the 5D covariant
derivatives and µ̂ and λ̂ represent the 5D bulk Higgs mass and the Higgs self-coupling,
respectively.

We take Z2 eigenvalues for the fields W a
µ , Bµ, H, χ, φ

+ to be even at both the fixed
points to realize the zero modes (i.e., the SM fields) have vanishing KK-masses from com-
pactification. This automatically renders the eigenvalues of W a

y , By to be odd because of
5D gauge symmetry for which there are no corresponding zero modes.

As can be seen in equation 2.40, the BLTs (proportional to the δ-functions) are intro-
duced at the orbifold fixed points for both the gauge and the Higgs sectors. rW , rB, rH
are coefficients of the brane-local terms corresponding to the WM , BM and Φ fields. µb
is the brane-local mass term (BLMT) parameter and λb is the brane-local self-coupling
parameter for the Higgs field.

We again remind that KK parity (y → −y symmetry) is preserved. It ensures the
existence of a stable dark matter which is the lightest KK particle (LKP) obtained on com-
pactification. This is particularly relevant for the electroweak sector since the dark matter,
in most cases, is an electroweak gauge boson.
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In this work, for simplicity, we focus on the following situation:√
4µ̂2

λ̂
=

√
4µb2

λb
and rW = rB ≡ rEW. (2.42)

The first condition ensures a constant profile of the Higgs VEV over the whole space, i.e.,

v̂(y)→

√
4µ̂2

λ̂
=

√
4µb2

λb
≡ v̂, (2.43)

while with the second condition we can continue to relate the 5D W , Z and the photon
(γ) states (at tree level) via the usual Weinberg angle θW at all KK levels, i.e.,

W±
M =

W 1
M ∓ iW 2

M√
2

,

(
ZM

γM

)
=

(
cos θW sin θW

− sin θW cos θW

)(
W 3
M

BM

)
. (2.44)

The gauge-fixing conditions along with their consequences are discussed briefly in ap-
pendix B.1. We choose the unitary gauge. For the fields W+

µ , Zµ, H, χ, φ
+ and for the

ones like ∂yW+
y , ∂yZy, the mode functions for KK decomposition and the conditions that

determine their KK-masses are summarized below.

fF(n)
(y) = NF(n)

×


cos(MF(n)

y)

CF(n)

for even n,

−
sin(MF(n)

y)

SF(n)

for odd n,

(2.45)

m2
F(n)

= m2
F +M2

F(n)
, (2.46)

(rFm
2
F(n)
−m2

F,b)

MF(n)

=

{
−TF(n)

for even n,
+1/TF(n)

for odd n
(2.47)

with the following short-hand notations:

CF (n) = cos

(
MF (n)πR

2

)
, SF (n) = sin

(
MF (n)πR

2

)
, TF (n) = tan

(
MF (n)πR

2

)
. (2.48)

The normalization factors NF (n) for the mode functions fF (n)(y) are given by

N−2
F (n) =


2rF +

1

C2
F (n)

[
πR

2
+

1

2MF (n)

sin(MF (n)πR)

]
for even n,

2rF +
1

S2
F (n)

[
πR

2
− 1

2MF (n)

sin(MF (n)πR)

]
for odd n.

(2.49)
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Here mF (n) , mF , MF (n) , rF and mF,b stand for the physical mass, the bulk mass, the KK
mass, the coefficient of the corresponding brane-local kinetic term (BLKT) and brane
mass term of the field F , respectively. Inputs for the mass-determining conditions for
all these fields are presented in appendix B.1. Further, following conditions must hold to
ensure the zero-mode (SM) profiles to be flat which help evade severe constraints from
electroweak observables like the Z boson mass, sin2 θW etc.

rEW = rH for W+
µ , Zµ,

rH(2µ̂2) = 2µ2
b for H. (2.50)

Non-compliance of the above relations could result in unacceptable modifications in the
level-0 (SM) Lagrangian [83].

Also, with the above two conditions, equation 3.2 reduces to the following simple
form:

rFMF (n) =

{
−TF (n) for n even,
1/TF (n) for n odd

(2.51)

where MF (0) = 0 (thus ensuring vanishing KK masses for the level-0 (SM) fields). A theo-
retical lower bound of rF > −πR

2
must hold to circumvent tachyonic zero modes. On the

other hand, vanishing KK masses at level-0 are always realized for φ+ and χ which are
eventually “eaten up” by the massless level-0 W+

µ , Zµ states respectively as they become
massive. However, no zero mode appears for W+

y , Zy since they are projected out by the
Z2-odd condition. The mode functions for the fields W+

y , Zy are given by

fF (n)(y) = NF (n) ×


sin(MF (n)y)

CF (n)

for even n,

cos(MF (n)y)

SF (n)

for odd n
(2.52)

with the mass-determination condition as given in equation 3.2. Use of equation B.4
allows one to eliminate χ in favor of Zy and φ+ in favor of W+

y . Correct normalization
of the kinetic terms requires Zy and W+

y to be renormalized in the following way:

Z(n)
y →

(
1 +

M2
Zy(n)

M2
Z

)−1/2

Z(n)
y , W (n)+

y →

(
1 +

M2
Wy(n)

M2
W

)−1/2

W (n)+
y . (2.53)

Note that Z(n)
y is the pseudoscalar Higgs state and W (n)+

y is the charged Higgs boson from
the n-th KK level which has no level-0 counterpart. Thus, up to KK level-1, the Higgs
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spectrum consists of the following five Higgs bosons: the SM (level-0) Higgs boson (H)
and four Higgs states from level-1, i.e., the neutral CP -even Higgs boson (H(1)0) which is
the level-1 excitation of the SM Higgs boson, the neutral CP -odd Higgs boson (A(1)0) and
the two charged Higgs bosons H(1)± .

2.6.3 The Yukawa sector and the quark mass matrix

We now incorporate the brane-local Yukawa terms (BLYTs) in the nmuED scenario. The
action in the Yukawa sector with BLYT is given by

SYukawa =

∫
d4x

∫ L

−L
dy

3∑
i,j=1

{
−
(

1 + rY δ(y − L) + δ(y + L)
)[
Y u
ijQiujΦ̃ + Y d

ijQidjΦ + h.c.
]}

(2.54)

where rY is the corresponding brane-local Yukawa parameter. On EWSB via the ordinary
Higgs mechanism, the Higgs doublet Φ acquires the vev 〈Φ〉 = (0, v/

√
2)T with v = 246

GeV. We assume that the brane-localized Yukawa terms are flavour-blind thereby allow-
ing us to diagonalize the Yukawa matrices Yuij and Ydij in a way similar to that for the SM
and which can be expressed as

∫
d4x

∫ L

−L
dy

{
−
(

1 + rY (δ(y − L) + δ(y + L))
) 3∑
i=1

[(
Yuii

v√
2

)
U iui +

(
Ydii

v√
2

)
Didi + h.c.

]}
.

(2.55)

Using the KK mode expansions of quarks in eqn. 2.30 and mode functions 2.32 and
2.33, we obtain

−
(
Yqii

v√
2

)∫
d4x

{
RQ00q

(0)
iL q

(0)
iR + rQ11Q

(1)

iL q
(1)
iR −RQ11q

(1)
iLQ

(1)
iR + h.c.

}
, (2.56)

where we make a redefinition of u(0)
iL = U

(0)
iL . RQ00, rQ11, RQ11 result from the overlap

integrals and are given by

RQ00 =

∫ L

−L
dy
(

1 + rY

(
δ(y − L) + δ(y + L)

))
f 2
Q(0) =

2rY + πR

2rQ + πR
, (2.57)

rQ11 =

∫ L

−L
dy
(

1 + rY

(
δ(y − L) + δ(y + L)

))
f 2
Q(1)

=

2rY + 1
S2

Q(1)

[
πR
2
− 1

2M
Q(1)

sin(MQ(1)πR)

]
2rQ + 1

S2

Q(1)

[
πR
2
− 1

2M
Q(1)

sin(MQ(1)πR)

] , (2.58)
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RQ11 =

∫ L

−L
dy
(

1 + rY

(
δ(y − L) + δ(y + L)

))
g2
Q(1)

=

2rY (CQ(1)/SQ(1))2 + 1
S2

Q(1)

[
πR
2

+ 1
2M

Q(1)
sin(MQ(1)πR)

]
1

S2

Q(1)

[
πR
2

+ 1
2M

Q(1)
sin(MQ(1)πR)

] . (2.59)

The zero mode masses (i.e., the masses of the SM quarks) get fixed as

mqi =
(
Yqii

v√
2

)
RQ00. (2.60)

It is noted that when rY = −πR/2, the value of RQ00 becomes zero and the SM quarks
become massless. Obviously, this limit is meaningless in phenomenology and we should
ignore this possibility. On the other hand, in the limit rQ = rY , values of both RQ00 and
rQ11 become 1 whileRQ11 is still away from 1. This implies that deviations from the mUED
case may still be present in the physical mass spectrum of the level-1 KK quarks. The
mUED limit is recovered with rG = rQ = 0 when all of RQ00, rQ11, RQ11 become equal to 1.
This, in turn, implies that non-vanishing rY may play some role in determining even the
spectrum of the KK quarks that correspond to the lighter flavours of the SM. The effect is
generally miniscule for their mass-eigenvalues since equation (2.56) has an overall factor
which amounts to the mass of the SM quark of i-th light flavour. However, as we will find
later, the Yukawa sector has an important implication for the mixing between the weak
eigenstates of the KK quarks of lighter SM flavours.

There is another interesting phenomenon known as level-mixing that can take place
between similar states from two different KK levels. This explicitly violates KK number.
This is theoretically possible since the translational invariance in 5D is broken by the
orbifold fixed points. However, to conserve KK-parity, the mixings would be limited to
those between even or odd states only. The phenomenological implications of such level-
mixing is found to be negligible for the first two generations but is not always so for the
top quark. We will discuss this topic in the next chapter. In the case of mUED, such
effects can only be induced at a higher order. However, presence of BLTs ensures overlap
integrals of the following form:

−mqi

∫
d4x

{
q

(0)
iL q

(0)
iR + r′Q11Q

(1)

iL q
(1)
iR −R

′
Q11q

(1)
iLQ

(1)
iR + h.c.

}
, (2.61)

where r′Q11, R
′
Q11 are defined as

r′Q11 =
rQ11

RQ00

, R′Q11 =
RQ11

RQ00

. (2.62)
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Now we can obtain the mass matrix for the level-1 KK quarks as

−
∫
d4x

{[
Q

(1)

i , q
(1)
i

]
L

[
MQ(1) r′Q11mqi

−R′Q11mqi MQ(1)

]
︸ ︷︷ ︸

≡M(1)
qi

[
Q

(1)
i

q
(1)
i

]
R

+ h.c.

}
. (2.63)

By choosing same mass for the diagonal entries we implicitly assume that the BLKTs for
the quarks are blind to SU(2) quantum numbers (singlet or doublet) they possess. By use
of the following bi-unitary transformations[

Q
(1)
i

q
(1)
i

]
L

= V
(1)
qiL

[
Q(1)
i2

Q(1)
i1

]
L

,

[
Q

(1)
i

q
(1)
i

]
R

= V
(1)
qiR

[
Q(1)
i2

Q(1)
i1

]
R

, (2.64)

we can diagonalize equation (2.63) as follows:

−
∫
d4x

[
Q(1)

i2 , Q
(1)

i1

] [m(1)
qi2

m
(1)
qi1

][
Q(1)
i2

Q(1)
i1

]
, (2.65)

where Q(1)
i1 ,Q

(1)
i2 are the mass eigenstates of level-1 KK quarks. The set of eigenvalues,(

m
(1)
qi1

)2

,
(
m

(1)
qi2

)2

, of the mass matrix squaredM(1)
qi M

(1)†
qi are assumed with m

(1)
qi2

> m
(1)
qi1

.

The forms of the matrices V (1)
qiL
, V

(1)
qiR

are fixed by the eigenvectors ofM(1)
qi M

(1)†
qi simultane-

ously.

To conclude this chapter, we like to point out that the effects of brane local terms are
manifested via altered form of the KK mode functions and their normalizations. KK
Mass determining condition is drastically modified and non-trivial mixing effects are in-
troduced. We expect that this may have implications at the LHC. In the following chapters
we are going to address such issues systematically.

51



CHAPTER 2. NON-MINIMAL UNIVERSAL EXTRA DIMENSION

52



Chapter 3

The strongly interacting sector of the
nmUED scenario

3.1 Introduction

In this chapter, we concentrate on the effects of the boundary localized kinetic terms
(BLKTs) and the Yukawa terms (BLYTs) on the strongly interacting sector comprising of
KK gluon and KK quarks and their basic phenomenology at the LHC. We confine our-
selves only to the first KK level except for the top quark sector for which we briefly dis-
cuss some interesting aspects involving the second KK level. We also restrict our analysis
to a common BLT term at the two orbifold fixed points for both gluon and the quarks thus
preserving the KK-parity. The BLTs for these two sectors are expressed in terms of two
(three, including BLYT which is important for the top quark sector) mutually indepen-
dent parameters that serve as the only two (three) additional ones when compared to the
mUED case. Our goal is to study the strong production of these KK excitations quanti-
tatively, followed by a parton-level study of the final states with jets+leptons+/ET arising
from cascade decays. For this, we incorporate an electroweak sector which is mUED-like.

In order to carry out a parton-level study of the final states with jets+leptons+ /ET we
incorporate an electroweak sector which is mUED-like.

Further, we do not consider the effect of radiative corrections to the KK masses thus
leaving out Λ as a parameter. As we would see later in this chapter, BLTs can indeed
generate much larger splitting among gluon and quarks at the first KK level than what
radiative corrections could inflict in mUED, for a given value of R−1. In that sense and in
the spirit of ref. [83], this analysis has a complementary aspect to that in mUED. Hence,
the scenario we work in has three relevant parameters: R−1, rG and rQ, the latter two
being the BLT parameters for the KK gluon and the quarks respectively (along with the
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mass of the Higgs boson).

We observe that BLTs can indeed inflict major distortions in the mUED spectrum be-
yond recognition [64, 65]. On top of that, some of the crucial couplings involving the KK
quarks, gluons and the electroweak gauge bosons are modified in a nontrivial way. This
can not only alter the (mUED) expectations at the LHC in a characteristic way, but also
could open up new possibilities. Thus, such a framework would provide a rather relaxed
framework which can make the confusion among mUED, nmUED, and SUSY (and also
possibly, T -parity conserving little Higgs models (see refs. [84,85] and references therein)
get more complete.

The chapter is organized as follows. In section 3.2 we derive the mass spectrum and
the couplings and highlight their features by contrasting them with those in the mUED
framework. The resulting phenomenology at the LHC is taken up in section 3.3 where we
discuss in detail the production rates of the level-1 KK gluon and quarks and the decay
branching fractions of the KK particles involved in the cascades as functions of the fun-
damental parameters of the framework. Situations in nmUED are studied with concrete
examples to demonstrate the possibility of a near-complete faking from mUED and SUSY
scenarios. Some characteristic discriminators that could partially alleviate the confusion
under favourable conditions are also discussed with reference to various different final
states at the LHC. In section 3.4 we conclude.

3.2 Mass spectrum and couplings

In this section we discuss the variations of the masses of the level-1 KK quarks and the KK
gluon and the dependence of the strength of the interaction between them as a function
of R−1 and parameters like rG, rQ and rY . For convenience, the latter three dimensionful
parameters are rescaled in terms of R as shown below.

r′G = rGR
−1, r′Q = rQR

−1, r′Y = rYR
−1, (3.1)

It is to be noted that, with this redefinition, the variables C, S and T in equations (2.34)
now become functions of scaled mass parameters M ′

G(n) (M ′
Q(n)) instead of MG(n) (MQ(n)),

respectively. We define and use these modified mass parameters in the subsections to
follow.
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3.2.1 Masses of level-1 KK gluon and quarks

From equations (2.35) one finds that KK masses of both level-1 gluon and quarks (from the
first two generations) are governed by identical set of transcendental equations involving
r′G (for the KK gluon) and r′Q (for the KK quarks). However, this statement is true only at
the lowest order. Radiative corrections to various masses would be different but we will
not consider such corrections in this thesis. The transcendental equations for the odd ‘n’
(for level-1 KK-gluon and quark) from expressions (2.35) and can be rewritten in terms of
the scaled variables r′G (r′Q) and M ′

G(1) (M ′
Q(1)) as follows

r′XM
′
X(1) = 1/TX(1) , (3.2)

where M ′
X(1) = MX(1)/R−1 and X stands for G (gluon) and Q (quark). These transcen-

dental equations are solved numerically for the KK masses of the level-1 KK gluon and
quarks. The variations of the masses are plotted in figure 3.1 as a function of r′X .

2 4 6 8 10
rX '

0.5

1.0

1.5

M 'XH 1 L

2 4 6 8 10
rX '
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1000

1500

2000

2500

MXH 1 L H GeV L

R -1
=1500 H GeVL

R -1
=1000 H GeVL

R -1
= 500 H GeVL

Figure 3.1: Ratio of actual KK mass of level-1 KK gluon/quark andR−1 (left panel) and the corresponding
actual masses (right panel; for different values of R−1) plotted against the parameter r′X characterizing the
brane-localized term. The trivial case of M ′

X(1) = 1 (left panel) or MX(1) = R−1 (right panel) is retrieved
when r′X = 0.

By virtue of equation (3.2), this dependence is blind to R−1. It is interesting to note
that for r′X < 0, M ′

X(1) > 1 signifying the actual KK mass to be larger than R−1. The
reverse is true for r′X > 0. As we can see from this panel that the variation flattens up
quickly with increasing r′X . In the right panel of figure 3.1 we show the actual variations
of KK masses (i.e., of MX(1)) for level-1 KK gluon/quark for three given values of R−1.
This plot readily follows from the one in the left panel using the relation between MX(1)

and M ′
X(1) as indicated above. This also reveals that a particular mass-value for the KK

gluon (quark) could arise from different combinations of R−1 and r′G (r′Q) which is further

55



CHAPTER 3. THE STRONGLY INTERACTING SECTOR OF THE NMUED SCENARIO

Figure 3.2: IsoKKmass (in GeV) contours for level-1 KK gluon/quark in the R−1 − r′X plane.

illustrated in figure 3.2 for a continuous range of R−1. This leads us to explore the isomass
contours in the R−1− r′X plane as illustrated in figure 3.2. This shows clearly how similar
values of KK masses can be obtained for different combinations of R−1 and r′X . Note that
the straight line represented by r′G, r

′
Q = 0 (parallel to theR−1-axis) cuts the mass contours

at values of R−1 equal to the mass-value of the contour. This is in conformity with figure
3.1.

We give a quantitative summary for the KK masses of level-1 KK gluon/quark in ta-
ble 3.1 by providing some concrete numbers. M ′

X(1) represents the solutions of equation
(3.2) for reference input values of r′X which are independent of R−1 (as discussed earlier
in this subsection). The actual KK masses are simple products of M ′

X(1) and R−1. One
such set of actual masses is shown for R−1 = 1000 GeV in table 3.1. In the above discus-
sion we have taken a simplistic approach as far as the masses of the level-1 KK quarks
are concerned. It should be kept in mind that the mass-eigenvalues of the KK quarks
would be evaluated fromM(1)

qi M
(1)†
qi in equation (2.63). In general, the two eigenvalues

are not degenerate because of the presence of non-vanishing overlap integrals like r′Q11,
R′Q11 etc. which are by themselves dimensionless and are also governed by dimensionless
parameters like r′Q, r′Y , M ′

Q(1) etc. When contrasted with mUED, this is a clear new feature
appearing in the framework of UED with brane-localized terms. However, as can be seen
from equation (2.63), the mass-splitting is proportional to the value of the corresponding
zero-mode quark mass and thus negligible for the level-1 KK quarks from the first two
generations. In this limit, the mass eigenvalues (m(1)

qi(1,2)) becomes identical to the KK mass
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(MQ(1)). On the contrary, MG(1) corresponds to the physical mass of G(1).

r′X M ′
X(1) M

X(1)
(GeV)

(for R−1 = 1000 GeV)

-1.5 1.771 1771
-1.0 1.654 1654
-0.5 1.386 1386
0.0 1.000 1000
0.5 0.767 767
1.0 0.638 638
2.0 0.500 500
5.0 0.339 339

10.0 0.246 246

Table 3.1: KK masses for level-1 KK gluon/quarks for varying r′X and for R−1 = 1000 GeV.

The phenomenon is not quite unexpected though since the effect under consideration
originates in the Yukawa sector of the theory. Thus, such an effect will be appreciable for
only the KK top quarks and to a far lesser extent for the KK bottom quarks. In the left
plot of figure 3.3 we illustrate the effect for the lighter top quark with the help of isomass
contours that show significant, nontrivial dependence of the mass on r′Y in addition to
that on r′Q for a given value of R−1 (= 1000 GeV). The right panel of figure 3.3 is for
the case of lighter level-1 KK bottom quark. This one clearly reveals that for level-1 KK
quarks corresponding to the lighter SM quarks, the dependence of their masses on r′Y is
small. Thus, these two plots collectively help one estimate the quantitative role of r′Y in
the phenomenon.

As discussed in the beginning of section 2.6.3, at around r′Y = −π/2 the values of
r′Q11, R

′
Q11 rise sharply and get divergent. In both plots of figure 3.3, this results in a thin

strip of region about this value of r′Y over which there is no physical solution. Further, as
mentioned at the end of section 2.6.3, because of the extremal situation it can lead to, r′Y
close to its limiting value of −π/2 can have non-trivial bearing even on the properties of
the KK quarks of light flavours, at least, in principle.

Further, the possibility of level-mixing between similar KK-parity states driven by the
brane-localized Yukawa term emerges as an interesting feature of the top quark sector
whose phenomenology could be rather rich in such a scenario. Our preliminary inves-
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Figure 3.3: Isomass contours for the light level-1 top quark (left) and the light level-1 bottom quark (right)
for R−1 = 1000 GeV in the r′Q − r′Y plane.

tigation into the subject reveals that mixing between level-0 and level-2 top quarks can
be a priori significant. Such a mixing could potentially trigger an appreciable shift in the
mass of the level-2 top quark and make the same phenomenologically interesting at the
LHC. Moreover, as could be expected, the SM top mass receives contribution from such
a mixing. Thus, refined experimental estimates of the mass of the SM top quark from
Tevatron [86] and the LHC [87] would inevitably constrain the parameters of the nmUED
scenario we are considering here. We will study the KK top quark sector including the
role of level mixing in the next chapter 4.

3.2.2 Interactions involving level-1 KK gluons and quarks

In this subsection we discuss the other important aspect of the framework, viz., the cou-
plings involving the KK gluon and KK quarks. Here again, we limit ourselves only to the
first KK level.

4D QCD coupling g4s is defined as

g4s ≡ NG(0)
g5s =

g5s√
2rG + πR

. (3.3)

Quartic interaction involving four level-1 KK gluons is somewhat non-trivial and gets
modified by the presence of brane-localized terms. However, it is rather inconsequential
for LHC phenomenology and hence we do not discuss this any further. All other self-
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coupling terms involving level-1 KK gluon and SM gluon (both 3-point and 4-point ones)
remain the same as in mUED.

Next, we turn to the case of the interaction involving a level-1 KK gluon and a level-
1 KK quark along with an (level-0) SM quark. Here we comment on the forms of the
bi-unitary matrices V (1)

qiL
and V

(1)
qiR

that diagonalize the mass matrix for level-1 KK quarks
where ‘i’ refers to the quark-flavour. For (almost) mass-degenerate KK quarks (in the
limit of r′Q = r′Y which we adopt for studying the KK quarks corresponding to lighter
SM flavours), V (1)

qiL
and V

(1)
qiR

can be shown, to a very good approximation, to have the
following form that reflects maximal mixing:

V
(1)
qiL

= V
(1)
qiR
≈

[
−sgn(r′Q) cos

(
π
4

)
sin
(
π
4

)
−sgn(r′Q) sin

(
π
4

)
− cos

(
π
4

)] , (3.4)

except for the case of r′Q = 0.1 In the case of conventional UED scenarios without brane-
localized terms, one finds the mass-eigenvalues to be exactly degenerate (before radiative
correction to the masses) and these matrices look like:

V
(1)
qiL
|mUED =

[
cos(θ

(1)
qi ) sin(θ

(1)
qi )

− sin(θ
(1)
qi ) cos(θ

(1)
qi )

]
, V

(1)
qiR
|mUED =

[
cos(θ

(1)
qi ) − sin(θ

(1)
qi )

sin(θ
(1)
qi ) cos(θ

(1)
qi )

]
, (3.5)

which include chiral rotation and the mixing angle θ(1)
qi is fixed by

sin(2θ(1)
qi

) =
mqi√

M2
Q(1)

+m2
qi

, cos(2θ(1)
qi

) =
MQ(1)√

M2
Q(1)

+m2
qi

, (3.6)

wheremqi is the mass of the ‘i’ th flavour SM quark. The difference in form of the matrices
presented in equations (3.4) and (3.5) owes its origin to the difference between ‘approxi-
mate degeneracy’ and ‘exact degeneracy’ of the mass-eigenvalues of the quarks. Further,
it may be noted that for the five light flavours, MQ(1) � mqi . Thus, use of equation (3.6)
reduces equation (3.5) to the following trivial form:

V
(1)
qiL
|mUED = V

(1)
qiR
|mUED =

[
1 0

0 1

]
(i.e., θ(1)

qi
= 0), (3.7)

whose form is different from that of equation (3.4).

1This general form of the matrix is used in our subsequent analysis. It should be noted that this expres-
sion is qualitatively different from its mUED counterpart for which it is an unit matrix (see equation (3.7))
and this cannot be seen as a limiting case (i.e., r′G = r′Q = 0) of the former.
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Using equation (2.23), the 4D effective action depicting the quark-gluon interaction up
to the first KK level can be written down as follows:

Squark|int =

∫
d4x

∑
i

{
g4sT

a

[
Ga(0)
µ

(
q

(0)
i γµq

(0)
i +Q(1)

i1 γ
µQ(1)

i1 +Q(1)

i2 γ
µQ(1)

i2

)
+Ga(1)

µ (g′G1Q1Q0
)

(
q

(0)
i γµ

(
v

(1)
qiR(21)PR + v

(1)
qiL(11)PL

)
Q(1)
i2 + q

(0)
i γµ

(
v

(1)
qiR(22)PR + v

(1)
qiL(12)PL

)
Q(1)
i1

+Q(1)

i2 γ
µ
(
v

(1)
qiR(21)PR + v

(1)
qiL(11)PL

)
q

(0)
i +Q(1)

i1 γ
µ
(
v

(1)
qiR(22)PR + v

(1)
qiL(12)PL

)
q

(0)
i

)]}
,

(3.8)

where the superscripts 0, 1 in parenthesis indicate the KK level. Q1,2 represent the quark
mass-eigenstates at the first KK level, i is the generic flavour-index and vq-s are the ele-
ments of the Vq matrices in equations (2.64), (3.4). The latter can now be rewritten in the
following general form:

V
(1)
qiL

=

[
v

(1)
qiL(11) v

(1)
qiL(12)

v
(1)
qiL(21) v

(1)
qiL(22)

]
, V

(1)
qiR

=

[
v

(1)
qiR(11) v

(1)
qiR(12)

v
(1)
qiR(21) v

(1)
qiR(22)

]
. (3.9)

The first term in equation (3.8) gives the usual interaction of the SM gluon with a pair of
SM quarks. The next two terms give the interactions of the SM gluon with two different
pairs of mass-eigenstates of level-1 KK quarks and these are identical to their mUED
counterparts. This is because they are governed by the overlap integral∫ L

−L
dy
(

1 + rQ (δ(y − L) + δ(y + L))
)
fG(0)fQ(1)fQ(1) , (3.10)

which reduces to fG(0)(= NG(0) , the normalization factor in equation (3.3)) by virtue of the
manifest identity in equation (2.36). The only deviation that occurs is in the case of an SM
quark interacting with a level-1 KK quark and a level-1 KK gluon. The concrete form of
the deviation (with respect to the mUED case) can be shown to be as in equation (3.11).

g′G1Q1Q0
≡ 1

NG(0)

∫ L

−L
dy
(

1 + rQ (δ(y − L) + δ(y + L))
)
fG(1)fQ(1)fQ(0)

=
NQ(0)

NG(0)

NG(1)NQ(1)

SG(1)SQ(1)

[
2rQSG(1)SQ(1) −

sin((MQ(1) +MG(1))πR2 )

MQ(1) +MG(1)

+
sin((MQ(1) −MG(1))πR2 )

MQ(1) −MG(1)

]
.

(3.11)

The factor g′G1Q1Q0
is dimensionless and hence does not depend upon R−1 which is a

dimensionful parameter. In fact, g′G1Q1Q0
is implicitly governed by the dimensionless pa-

rameters r′G and r′Q through the variables appearing in equation (3.11). This is a rather
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complicated dependence and its concrete profile has a rich structure as shown in fig-
ure 3.4. In the limit rG = rQ, it can be shown that g′G1Q1Q0

= 1 which is the mUED.

Figure 3.4: Contours of deviation in G1Q1Q0 coupling in nmUED with respect to the mUED case: over
larger ranges of values for r′G and r′Q (left) and a zoomed up view over ranges of negative values for both
(right) with interesting variations. Note that r′Gmin

= r′Qmin
= −1.5 for these plots. This is somewhat above

the theoretical minimum of −π2 for both the parameters for which the scenario becomes unphysical (see
text for details).

In figure 3.4 we present the contours of the deviation factor g′G1Q1Q0
presented in equa-

tion (3.11) in the r′G−r′Q plane. The figure on left illustrates the contours over larger ranges
of values for r′G and r′Q. It is to be noted that along its diagonal (r′G = r′Q) the deviation
is exactly equal to 1 implying the coupling to be equal to that in the mUED.2 The cou-
pling has a much richer structure at very low values of r′G and r′Q close to the origin of the
figure (indicated by blots in red and yellow) as both parameters approach their limiting
value of −π

2
(' −1.56). This is perhaps best understood if we just look at the form

N
Q(0)

N
G(0)

in equation (3.11) for which both NQ(0) and NG(0) blow up at the said value. A closer look
into this region is offered by a zoomed-up view in the right frame of figure 3.4.

To probe further into the generic aspects of correlated variations of the KK masses and
the deviations in coupling from the mUED value, it would be useful to follow up with
a study showing their mutual variation. This is pertinent since, as indicated above, the
masses of the KK-quark and KK-gluon (we restrict ourselves to level-1 KK excitations
only) are also functions of r′G and r′Q as does the deviation-factor. The only difference is

2The scenarios residing on the diagonal thus have degenerate KK masses which are different from those
expected in a UED scenario without BLT (loosely indicated as mUED in the plot) for any given value of
R−1. We already assumed that in general, BLTs contribute dominantly to the KK masses when compared to
the radiative corrections. The mUED scenario is defined only with the latter ones. Hence, on the diagonal,
the scenarios are “mUED-like”.
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that while the masses do vary with R−1, the deviation-factor does not.
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Figure 3.5: Contours of the coupling deviation-factor g′G1Q1Q0
in the MG(1) −MQ(1) (KK) mass-plane for

R−1 = 1 TeV (top, left), R−1 = 2 TeV (top, right), R−1 = 3 TeV (bottom, left) and R−1 = 5 TeV (bottom,
right).

Thus, analogous to figure 3.4, contours of fixed deviations in the couplings can be
drawn but this time in the MG(1) −MQ(1) plane with R−1 as a parameter. Such variations
are shown in figure 3.5. In the top panel of figure 3.5, from left to right, we present the case
of R−1 = 1 TeV and 2 TeV while in the bottom panel the corresponding ones illustrate the
cases for R−1 = 3 TeV and 5 TeV, respectively. In order to facilitate the correspondences
between the brane parameters and the masses of the respective excitations for different
values of R−1, the ranges of r′G (along the abscissa) and r′Q (along the ordinate) are indi-
cated on the top and the right of each of these plots. In both cases, the diagonal represents
the contour for g′G1Q1Q0

= 1. Under the hood, the geometrical origin of the diagonal has a
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common thread to that in the left panel of figure 3.4, i.e., for r′G = r′Q, although the ranges
considered for them are different from the earlier case. The small region in yellow and red
close to the top-right corner of the top-left plot in figure 3.5 corresponds to the bottom-left
corner of the left plot in figure 3.4.

For figure 3.5, the criteria for choosing the mass-ranges for the level-1 gluon and
quarks are, in turn, primarily based on the tentative reach of LHC (∼ 3 TeV) running
at the center of mass energy of 14 TeV and then, choosing not too large values of r′G and
r′Q for different values of R−1 considered for these plots. Recall that, in this scenario,
equal values of MG(1) and MQ(1) , for a given R−1 result from equal values of r′G and r′Q,
respectively. Thus, as is clearly seen from figure 3.5, degenerate masses occur along the
diagonal. As pointed out in the context of figure 3.4, here also, by the same token, mUED-
like scenarios live close along the diagonals.

Figure 3.5 tells us that different combinations of masses for level-1 gluon and level-1
quarks would correspond to very specific values of the deviation-factor for the modified
coupling. The deviation can go either way, i.e., g′G1Q1Q0

≷ 1. However, the correspondence
between masses and the deviation in coupling is specific to the value of R−1, as can be
understood by comparing the plots presented in figure 3.5. We like to emphasize that this
correspondence, in principle, could be exploited at the LHC to extract information on the
parameters of the scenario. For example, if the masses in context can be known and the
relevant cross sections can be estimated from the data, these could be used to determine
the deviation in coupling.3 Since this deviation, when combined, with the information
on the masses, has a unique relationship to R−1 in the current scenario, the latter can
also be determined subsequently. The information thus obtained on R−1, in turn, can be
employed to determine the values of r′G and r′Q since these determine the masses which
are, by now, known.

To be convinced that such an approach would work, one has to demonstrate quanti-
tatively that the value of R−1 can be estimated reasonably correctly. There are prima facie
evidence that such an estimate would be unambiguous. This follows from the observa-
tion that neither the g′G1Q1Q0

contours in figure 3.4 nor the same in figure 3.5 intersect each

3Extracting a somewhat precise information about the deviation in coupling could be a challenging task
at a hadron collider. This is because any attempt to understand this from a total yield (where all production
processes contribute) would inevitably involve the decay-patterns of the originally produced new-physics
excitations. Extracting some concrete information from within such a milieu requires further assumptions
over the scenario and thus, the exercise may become heavily ‘model-dependent’. However, the situation is
expected to be much under control in an extremely constrained scenario like the mUED where the produc-
tion cross sections could very well be related to the decay-patterns of the produced particles. This is the
case with us since we are trying to measure a deviation of the coupling from its mUED value.
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other.

g′G1Q1Q0
R−1 (TeV) MG(1)

(GeV) MQ(1)
(GeV)

2 835.1 2724.3
0.85 3 840.9 2407.6

5 1246.1 2819.1

2 1820.0 500.0
1.1 3 2019.5 1036.0

5 2121.7 989.6

Table 3.2: (KK)-mass-values for level-1 KK gluon/quark in nmUED for varying two representative values
of g′G1Q1Q0

and for varying R−1. The choice of values for g′G1Q1Q0
is motivated by figure 3.5.

In table 3.2 we demonstrate the situation with some actual numbers for two different
values of g′G1Q1Q0

which one might be able to extract from experiments. The number pre-
sented in the table are picked up directly from the contour-plots in figure 3.5. Note that
the values 0.85 and 1.1 that are chosen for g′G1Q1Q0

in table 3.2 could result in ∼ 50% devi-
ations from the nominal values of the cross sections (which go as g′4G1Q1Q0

) for the strong
production modes at the LHC. This kind of a departure can be expected to be measured
efficiently enough and thus can be used for further inferences. It is then informative to
find from table 3.2 that for an experimentally estimated value of g′G1Q1Q0

and for a known
set of masses for the KK gluon and KK quarks, the value of R−1 is pretty distinct and thus
can be estimated unambiguously.

3.3 Phenomenology at the LHC

In this section we discuss the cross sections of the level-1 KK gluon (G(1)) and quarks (Q(1))
of the nmUED scenario produced via strong interaction at the LHC. Hereafter, we use
simplified notations, mG1 and mQ1 , to denote the physical masses of the level-1 KK gluon
and quarks, respectively. The patterns are explained by relating them to the features of
the scenario as discussed in detail in sections 3.2.1 and 3.2.2. We then proceed to contrast
the production-rates with the corresponding ones from mUED and SUSY. We also discuss
at length the overall implications of such an nmUED scenario whose signals can be faked
by the latter two.
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3.3.1 Production cross sections for level-1 KK gluon and quarks

In figures 3.6 and 3.7 we present the cross sections for different final states for the 8 TeV
and 14 TeV runs of the LHC, respectively, in the r′G − r′Q plane. Results for generic final
states likeG1G1, G1Q1 andQ1Q1 are laid out in separate columns (from left to right) while
separate rows are used to present the results for R−1 = 1 TeV, 3 TeV and 5 TeV (from the
top to the bottom). The final state indicated by G1Q1 includes contributions from both
G1Q1 and G1Q̄1 while under Q1Q1 we combine the rates from Q1Q1, Q1Q̄1 and Q̄1Q̄1. The
rates include contributions from five flavours of level-1 KK quarks that correspond to five
light SM quarks. For these states, as pointed out in sections 3.2.1 and 3.2.2, the role of r′Y is
not significant except for some extremal cases, e.g., when r′Y � 1, for smaller R−1. Hence,
we adopt a simplifying scheme where we set r′Q = r′Y while analyzing these excitations
at the LHC. Also, the contributions from both SU(2)-doublet and SU(2)-singlet varieties
of KK quarks are included.

The cross sections are calculated using MadGraph-5 [88] in which the strongly interact-
ing sector of the scenario is implemented through FeynRules [89] via its UFO (Universal
FeynRules Output) [90, 91] interface. The mUED implementation [61] of CalcHEP [92]
has been used for cross checks in appropriate limits and for some actual computation of
cross sections in mUED. We used CTEQ6L [93] parametrization for the parton distribu-
tion function. The factorization/renormalization scale is fixed at the sum of the masses of
the final-state particles. In the remaining part of this chapter, we refer only to the physical
masses mQ1 . These are the degenerate mass-eigenvalues obtained by diagonalizing the
KK quark mass-matrix in the presence of brane-localized Yukawa terms and practically
same as the KK masses for the light quark flavours.

Some features common to both figures 3.6 and 3.7 are as follows:

• the maximum value of the mass for the level-1 KK gluon and quarks considered
for
√
s = 8 TeV (14 TeV) run of the LHC is 2 TeV (3 TeV) which happens to be the

tentative (perhaps, optimistic) reach of LHC running at this center of mass energy.
The conservative lower limit of the masses that has gone into the analysis is 500
GeV,

• for given values of R−1, the various ranges of r′G and r′Q in different rows ensure
mG1 and mQ1 in the above-mentioned ranges,

• to capture cross-sections varying over orders of magnitude, the contours are drawn
after taking the logarithm (to base 10) of the cross sections. We, thus, encounter
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negative-valued contours in these figures,

• for final states containing one or more level-1 KK quark (the second and the third
columns), the contour values, (i.e., the cross sections) rise along the diagonal con-
necting the bottom-left and the top-right corners of the plots. This can be under-
stood in terms of decreasing mG1 and mQ1 as both r′G and r′Q increase in that direc-
tion,

• the variation in the G1G1 production (the first column) has a curious trend when
compared with the final-states having Q1. The parallel, vertical stripes (except in
some region with r′G, r

′
Q < 0 only for low R−1 (∼ 1 TeV)) imply that the cross-

sections almost do not vary with r′Q. This means they are insensitive to variations in
mQ1 . This is because the event rate for this final state is dominated by the s-channel
(gluon-fusion) subprocess where Q1 plays no role unlike in the t-channel where the
latter can appear as a propagator. Hence, we see a gradual, steady increase in rates
only with increasing r′G, i.e., with decreasing mG1 which is quite expected.

• the local dependence of the G1G1 rate on r′Q, for r′G, r
′
Q < 0 and R−1 ∼ 1 TeV, shows

a different trend. In this region (from the deep blue to the white passing through the
light blue region), the rate grows in a direction of increasingmQ1 which is somewhat
not so intuitive. It is instructive to observe that for such a region, mG1 also turns out
to be relatively heavy (since, r′G < 0). Our probe into the phenomenon revealed
that over this region the t-channel contribution becomes important4 and the relative
values of mG1 and mQ1 are such that a perceptible destructive interference takes
place between s and t channels. Note also that with g′G1Q1Q0

getting extremally large
over this region (see figure 3.4) of the parameter space, the overall situation gets
further compounded,

• the explanation holds for any final state that receives significant contributions from
subprocesses initiated by gluon(s). Thus, it is not unexpected that rates for G1Q1

final state show a similar behaviour in the said region of the parameter space while
the same for the level-1 quark-pair final state, dominated by Q1Q1 (which is not
gluon-induced), though rich in feature, do not show such a trend very clearly,

• for the Q1-pair final state, one finds that in the region of low r′Q (< 0) the contours
of larger cross sections reappear as one goes further down in r′Q. This seems to

4Presumably, this happens since a larger mG1 requires a larger
√
ŝ, in turn resulting in a lower partonic

flux for the gluon in the protons that ultimately results in a suppressed contribution from the s-channel.
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be a result of extremally large value of g′G1Q1Q0
which can be understood from the

region shaded in red in the right plot of figure 3.4. Closer inspection reveals that the
small, yellow contour at the bottom of these plots exactly correspond to the region
of parameter space shaded in red in figure 3.4. In this region, naively, the boost in
cross section can be up to a factor g′4G1Q1Q0

which turns out to be ≈ 30,

• as we go from G1G1 production to Q1Q1 production passing through G1Q1 produc-
tion the contours get flattened up in an anti-clockwise direction. This is easy to
understand in terms of an increased dependence of the rates on mQ1 and hence, on
r′Q,

• it may be noted that in the top panel of both figures 3.6 and 3.7 (with R−1 = 1 TeV)
the cross sections are not actually defined along the straight line with r′Q = 0. This
is because some elements of the matrix in equation (3.4) which enter the involved
couplings for these final states are not defined at r′Q = 0,

• negative values of r′G and r′Q are not considered for R−1=3 TeV and 5 TeV cases
since these take mG1 and mQ1 far above the LHC reach. Thus, as we do not enter
the “exotic” part of the parameter space (with both r′G, r

′
Q < 0), we do not see any

special variation in the contour-patterns at lower values of r′G and r′Q.

The only major difference of a generic nature that we see between the results presented
in figures 3.6 (

√
s = 8 TeV) and 3.7 (

√
s = 14 TeV) is that for similar values of r′G and r′Q,

i.e., for similar values of mG1 and mQ1 for a given R−1, the rates are higher for the 14 TeV
run, as expected.
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mUED Parameters R−1 = 1000 GeV, ΛR = 10

mUED/SUSY Mass (in GeV) mG1/g̃= 1220 mQD
1 ,q̃L

= 1154 mQS
1 ,q̃R

= 1133

Cross sections (in pb)

Final states G1G1 G1Q1 G1Q̄1 Q1Q1 Q̄1Q̄1 Q1Q̄1

mUED 0.216 1.250 0.082 1.132 0.009 0.403

R−1=700 GeV

r′G =-1.34

r′Q = r′Y =-0.90 0.178 0.503 0.032 0.177 0.001 0.173

g′G1Q1Q0
=0.627

R−1=1000 GeV

r′G =-0.30

r′Q = r′Y =-0.19 0.172 1.349 0.085 1.277 0.009 0.432

g′G1Q1Q0
=1.035

R−1=1500 GeV

nmUED r′G=0.37

r′Q = r′Y =0.54 0.173 1.364 0.086 1.303 0.010 0.438

g′G1Q1Q0
=1.033

R−1=2000 GeV

r′G=1.15

r′Q = r′Y =1.43 0.171 1.336 0.084 1.262 0.009 0.427

g′G1Q1Q0
=1.026

R−1=2500 GeV

r′G=2.13

r′Q=r′Y =2.56 0.172 1.326 0.083 1.233 0.009 0.421

g′G1Q1Q0
=1.019

SUSY (MSSM) 0.019 0.181 0.012 0.153 0.001 0.054

Table 3.3: Comparison of the cross sections in mUED, nmUED and SUSY (MSSM) scenarios for similar
spectra at the LHC with

√
s = 14 TeV. In mUED the spectrum is generated for a given R−1 (1 TeV). In

nmUED matching spectra are generated by varyingR−1 and tuning the values of r′G and r′Q simultaneously
while keeping r′Y = r′Q. For SUSY, the masses of the corresponding excitations (indicated clearly against the
mass variables) are tuned to similar values by varying the soft SUSY breaking parameters appropriately.
CTEQ6L parton distribution functions are used and the renormalization/factorization scale is set at the
sum of two final state masses.
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3.3.2 mUED vs nmUED vs SUSY

In this subsection we take up the interesting possibility of mUED and nmUED faking
each other and faking SUSY as well. This is reminiscent of the possibility of UED faking
SUSY [94] where one talks about a situation in which the final state masses happen to
be consistent with a mUED-like spectrum [65, 95]. There, SUSY being a less constrained
scenario, this is the natural set up to study its faking by mUED. Thus, with more free
parameters in the scenario, nmUED may enjoy a more direct parallel to SUSY when being
compared with mUED.5

In table 3.3 we compare the cross sections for the production of level-1 KK gluon and
quarks for the

√
s = 14 TeV LHC run in the mUED and nmUED scenarios. Assuming that

the ballpark values of the masses of these excitations could be anticipated once a positive
signal is found at the LHC, we fix these masses to carry out the analysis.

The reference values for the masses employed in table 3.3 are mG1 = 1220 GeV, mQD
1

=

1154 GeV and mQS
1

= 1133 GeV. These are obtained in the mUED scenario by setting
R−1 = 1000 GeV and ΛR = 10. For the nmUED scenario, we require the level-1 gluon
mass to be the same as in the case of mUED while for the doublet and singlet KK quarks
we take a common value which is almost equal to the singlet one in mUED. Note that,
in the absence of radiative corrections, the masses of the doublet and singlet KK quarks
are the same in the nmUED scenario under consideration and both are determined by the
brane-localized parameter r′Q. Such an nmUED spectrum is generated for different R−1

by suitably tuning the brane-localized parameters r′G and r′Q.
A priori, a comparison of cross sections from the two scenarios having similar spectrum

assumes a special significance since the brane-localized parameters, r′G and r′Q, not only
control the KK masses but also affect their couplings. These are discussed in sections 3.2.1
and 3.2.2 with illustrations (see figures 3.4 and 3.5). It can be gleaned from table 3.3 that
except for the case where R−1

mUED > R−1
nmUED with R−1

nmUED = 700 GeV and leaving out the
G1-pair final state, the cross sections for the rest are within ∼ 10% of the corresponding
mUED values. For these cases, the reason of such a closeness in cross sections can be
understood in terms of the small deviation of the strong coupling from the mUED case
which is quantified by g′G1Q1Q0

and indicated in column 2. The smallness of the deviation

5 Going one step further, it may be said that faking between UED and SUSY tend to get more com-
plete [64,65] with an nmUED-type scenario for which the masses of the KK excitations may take almost any
arbitrary values. In this sense, it may be interesting to note the apparent contrast in the naming schemes
for scenarios in SUSY and those involving a UED framework. In the case of SUSY, the minimal version is
the least constrained one (with too many free parameters) while the same for UED is the one which is its
most constrained incarnation with only two (three, with level-0 Higgs mass parameter) parameters.
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in g′G1Q1Q0
is ensured by the requirement of near-identical values of r′G and r′Q in nmUED

that reproduce the characteristic splitting between the masses of the KK gluon and the
quarks in mUED.

Figure 3.6: Log-valued (to base 10) cross section (in pb) contours for different final states at the LHC for√
s = 8 TeV in the r′G − r′Q plane with R−1 as a parameter. R−1 varies across the rows while each column

specifies a particular final state. CTEQ6L parametrization is used for the parton distribution function. The
factorization/renormalization scale is fixed at the sum of the masses of the two final-state particles. To find
the conventions adopted in clubbing individual final states into generic ones, please refer to the text.
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Figure 3.7: Same as in figure 3.6 but for
√
s = 14 TeV.

On the other hand, the case for the G1-pair production is somewhat interesting. There,
the cross sections are insensitive to variation in g′G1Q1Q0

in contrast to what we see in case
of other final states as we move on from R−1 = 700 GeV. This may be attributed to the
fact that the modified coupling given by g′G1Q1Q0

only appears in the t-channel while the
process pp → G1G1 gets dominant contribution from the s-channel. Moreover, unlike
the previous cases, here, a marked difference is noticed between the cross sections for
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the mUED and the nmUED scenarios with the nmUED cross section (∼ 0.17 pb) being
∼ 20% smaller than the corresponding mUED value (∼ 0.22 pb). The reason for this can
be traced back to the particular chiral structure of the interaction vertex originating from
the action in equation (3.8) that contains the elements v-s of the V matrices (see equations
(3.4), (3.7) and (3.9)).

The differences in the cross sections, as we see from table 3.3, for the mUED and the
nmUED scenarios, are not big enough for the LHC to signal a clear departure from one or
the other of the two competing scenarios. Thus, it turns out that if a spectrum is compat-
ible with the mUED scenario, it would not be easy to rule out a non-minimal version of
the UED solely based on such a study. Of course, it may happen that other simultaneous
studies involving the electroweak sector could help distinguish between the two.

The last line in table 3.3 shows the corresponding cross sections in a SUSY scenario
(based on Minimal Supersymmetric Standard Model (MSSM)). The level-1 KK excita-
tions of the UED scenarios are substituted by their counterparts in SUSY: the KK gluon
by the gluino, the SU(2)-doublet quark by the left handed squark and the SU(2)-singlet
quark by the right handed squark. It is well known that, for identical mass spectra, UED
production cross sections are generically larger than that for the analogous SUSY pro-
cesses (by roughly a factor between 7 and 10). This is partly related to the structure of
the UED matrix elements and the extra helicity states that UED excitations possess when
compared to an analogous final state in SUSY. Even then, it is interesting to find that for
g′G1Q1Q0

< 1 (the first entry for the nmUED case in table 3.3), cross sections in some of the
final states could approach the SUSY values. Thus, the total rate for strongly produced
particles ceases to be a good enough indicator for the underlying scenario. This brings the
alleged faking to an almost complete level. Note that this kind of a possibility does not
arise in mUED. This again highlights how the correlation between masses and the cou-
plings of the KK excitations in the nmUED scenario could shape the phenomenological
situation in an interesting and involved way.

3.3.3 Decays of level-1 KK gluon, quarks and electroweak gauge
bosons

In this section we discuss in brief the decay patterns of the level-1 KK gluon and quarks.
When the KK gluon is heavier than the KK quarks (mutually degenerate for the lighter
generation of the quarks), it decays to qQ1 final state with 100% branching fraction. Thus,
cascades are governed by the decay of the level-1 KK quarks which, in turn, decay to
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Figure 3.8: Branching fractions of level-1 up (left) and down (right) type KK quarks as functions of r′Q for
R−1 = 1 TeV. The level-1 gluon mass is taken to be 1.52 TeV which corresponds to r′G = −0.7.

level-1 electroweak (EW) gauge bosons, W±
1 , Z1 and B1 in two-body modes. On the other

hand, formQ1 > mG1 , level-1 KK quark undergoes 2-body decays to KK gluon andW±
1 , Z1

and B1. The KK gluon, in turn, decays to SM quarks and the above set of electroweak KK
gauge bosons via 3-body modes.

We work with an electroweak sector at the first KK level (comprising of the gauge
bosons, the charged leptons and the neutrinos) which is reminiscent of mUED with cor-
rected masses [60], that are essentially determined by R−1. This can be seen as a limit of
an electroweak sector in nmUED with vanishings BLTs. This is in line with the main goal
of the present chapter as we focus on the role of BLKTs in the strongly interacting sector
only. The resulting framework could thus be considered as a suitable benchmark (with
only two BLKT parameters, r′G and r′Q) for initiating a phenomenological analysis of the
nmUED at the LHC. The interaction vertex qQ′1V1 (V1 being the level-1 electroweak gauge
boson) that takes part in electroweak decays of the level-1 KK quarks gets modified and
follows from equation (3.11) with r′G → 0. Of course, more involved studies in scenarios
having BLTs for the electroweak sector are highly warranted since such scenarios could
emerge as perfect imposters of their popular SUSY counterparts.

With this assumption, W±
1 and Z1 always decay to leptonic modes, i.e., W±

1 → `1ν/ν1`

and Z1 → `1`, ν1ν. B1 is the lightest KK particle (LKP) and is stable. The only requirement
to ensure these in nmUED is to set r′G and r′Q in a way such that mG1 and mQ1 do not
become lighter than these electroweak bosons. This necessarily constrains the ranges of
r′G and r′Q that such a framework can take.

In figure 3.8 we present the branching fractions of the up and down type KK quarks
as functions of r′Q and for fixed values of R−1 (1 TeV) and r′G (-0.7). Each plot covers a
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range in r′Q for which both hierarchies between mG1 and mQ1 are realized. Note that the
decay widths (and the branching fractions) of the two mass eigenstates for each type of
KK quark are very similar since they result from nearly maximal mixings of the weak
eigenstates (see equation 3.4). It is clear that for mu1/d1 > mG1 , the KK quarks may domi-
nantly decay into KK gluon with branching fractions reaching up to 50% before dropping
quickly as quark mass increases. For a reverse hierarchy, the KK quarks only have 2-body
electroweak decays. Among these, decays to Cabibbo-enhanced W±

1 dominate followed
by decays to Z1, B1 and Cabibbo-suppressed W±

1 modes. The difference between elec-
troweak branching fractions of the u and the d-type KK quarks stems solely from the
difference in their hypercharges which only affects their decay widths to B1. It can be
seen from figure 3.8 that the peak branching fraction to W±

1 could be between 50% and
60% for the u and the d-type KK quarks, respectively. The average branching fraction
to Z1 is found to be between 20% and 30% in the range of r′Q where electroweak decays
dominate for the two species of quarks. Branching to B1 tends to remain at around 20%
(10%) or less for the u-type (d-type) quark before it shoots up as the quarks become lighter
(from left to right) and the splitting between them and W±

1 and Z1 become smaller. How-
ever, since the EW gauge boson masses are solely determined by R−1, all three EW decay
modes remain healthy over entire range of r′Q.

Note that the branching fractions of the KK quarks to the stable LKP (B1) is on the
lower side and they hardly dominate (except in extreme corners of the parameter space).
This is in stark contrast to mUED (or, for that matter, SUSY scenarios) where the right
chiral level-1 KK quarks (right chiral squarks) decay almost 100% of the time to B1 LKP
(bino-like LSP) when their strong decays to level-1 KK gluon (gluino) are closed. Later,
we will see that this can have major implications for the relative rates in different final
states when compared to contending scenarios.

As mentioned earlier, for mG1 < mQ1 , KK gluon decays to level-1 EW gauge bosons
(W±

1 , Z1 and B1) in three-body modes via off-shell KK quarks. The variations of these
branching fractions with respect to r′Q (or r′G) are expected to be flat. This is because r′Q
(r′G) appears in the primary vertex of these decays and in the propagator (through the
KK quark mass) and these two affect all three body decay modes in a similar way. The
branching ratios are governed by the secondary vertex and thus follow the same pattern
as in the decay of KK quarks, i.e., branching to W±

1 dominates over the other two while
the same to B1 is the least favoured.6

6However, there may be a situation in nmUED when splitting betweenmG1 andmW±1 /Z1
drops critically

resulting in an enhanced branching to B1.
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3.3.4 Exclusion limits

It is instructive to have a look at the current LHC data and understand to what extent
they may constrain an nmUED scenario of the present kind. In absence of a complete
implementation of the scenario in an event generator, we limit ourselves to a parton level
analysis which would, for example, give a ballpark estimate of the exclusion limit for R−1

under a reasonable set of assumptions 7. In principle, constraints can be derived on any
subspace of the 3-dimensional space spanning over R−1 − r′G − r′Q.

Here, we take up a recent ATLAS analysis [96] of the final state with jets plus missing
energy (with vetoed leptons) at

√
s = 7 TeV and integrated luminosity of 4.7 fb−1. We

refer to the exclusion they report for equal mass gluino and squarks in the CMSSM sce-
nario which is 1360 GeV. It must be pointed out that a straight-forward comparison with
the experimental data ultimately requires a thorough simulation (including the detector
effects) of the nmUED scenario under consideration which should wait for a full imple-
mentation of the same in an event generator like MadEvent and/or others. Nonetheless,
using the information we gathered in the last subsection, we can reasonably attempt to
translate the above ATLAS bound to ballpark constraints on the nmUED scenario.

Towards this we find the value of cross section times branching fraction (before cuts)
for mq̃ = mg̃ = 1360 GeV using the similar set of CMSSM parameters as in the ATLAS
study. In the absence of a complete simulation (where one would be able to employ
kinematic cuts), we rely on this number and treat the same as the upper bound on the
cross section times branching fraction. The task is then to find the bound on the masses
and/or the parameters of the nmUED scenario that satisfies this constraint.

To carry out the analysis, we break the same up in three distinct regions in the nmUED
parameter space having mQ1 > mG1 , mQ1 = mG1 and mQ1 < mG1 . Since we are not in a
position to use kinematic cuts employed in the ATLAS analysis, the minimum require-
ment for being able to compare the nmUED results with the ATLAS study is to ensure
the the kind of nmUED-spectra that result in hard enough jets and missing energy so that
the ATLAS acceptances/efficiencies would hold safely 8. Thus, the constraints we obtain
for the nmUED scenario could only be conservative and can be improved with help of a
dedicated simulation. It is found that R−1 < 950 GeV could be ruled out for mQ1 < mG1

7Note that thorough simulation-studies for even the mUED scenario are not yet existing in the literature.
8The spectra for this analysis are so chosen that for unequal masses for Q1 and G1, the mutual splitting

between them as well as the splitting between the lighter one betweenQ1 andG1 and the LKP is around 200
GeV. This would ensure (in absence of a full-fledged simulation with detector effects) jets from both primary
and secondary cascades and the missing transverse energy to be hard enough to pass strong ATLAS cuts.
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while, for mG1 < mQ1 , the exclusion could at best be up to 900 GeV 9. For mG1 ' mQ1 ,
the lower bound can be as high as 1.1 TeV. However, in that case, sensitivity would be
higher in the signal region with not too many hard jets since strong 2-body decays are
phase-space suppressed.

In any case, we find that the bounds are degraded for nmUED when compared to
CMSSM. This is not unexpected because of lower yield in jets+ /ET channel for nmUED.
On the other hand, similar constraints on CMSSM are expected to be weaker from the
analysis of leptonic final states while the same for nmUED would yield a more stringent
bound.

3.3.5 The case for 14 TeV LHC

In this subsection we discuss in brief the pattern of yields in various multi-jet, multi-
lepton final states accompanied by large amount of missing transverse energy. The refer-
ence values chosen for this discussion are R−1 = 1 TeV and r′G = −0.7 which are the same
as in section 3.3.3. In table 3.4 we present the expected uncut yields (in fb) for

these final states as r′Q varies. For the second and the third columns, mQ1 < mG1 while
for the fifth and the sixth columns, mQ1 > mG1 . For the fourth column r′Q = r′G and
hence mQ1 = mG1 . To highlight the contrast, in the last three column we present the
corresponding numbers for the mUED cases where the scenarios are solely determined
by R−1, for all practical purposes.

It is seen from table 3.4 that yields for all the final states decrease as r′Q decreases ex-
cept for r′Q = −1.5 when the same increases suddenly. The latter can be understood in
terms of an abrupt increase (up to three-fold) in the modified strong coupling close to the
boundary of the theoretically allowed nmUED parameter space (see figure 3.4). The in-
crease in the coupling strength, in fact, (over-)compensates for the lowering of the strong
production cross sections as mQ1 increases with decreasing r′Q. The drop in the yields
over the range −0.1 > r′Q > −1 is attributed to the increase in mQ1 when the increase in
strong coupling strength is limited to around 20%. Note also the sharp variation of the
yields for all the final states when going from r′Q = −0.1 to r′Q = −0.5. This is mainly
due to a sharper rise in mQ1 (by 300 GeV) when compared to the columns to follow (for

9Note that these bounds onR−1 are insensitive to the values of r′Q and r′G as long as the spectral splittings
demanded are satisfied. Qualitatively, this can be termed as the most stringent constraint that could be
put on the three-dimension nmUED parameter space considered here. One may like to take note of the
anomalous region of a terminally large negative r′Q with large mQ1

for which the couplings become very
strong and could over-compensate for the suppression in the cross section due to large mQ1

. In this region,
perhaps, a larger value of R−1 could be ruled out.
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Scenario nmUED mUED (ΛR = 10)
R−1 = 1 TeV R−1/spectrum in TeV

r′Q -0.1 -0.5 -0.7 -1.0 -1.5 R−1=1.0 1.4 1.6

mQ1 (TeV) 1.07 1.39 1.52 1.65 1.77
mG1 ≈ 1.15 ≈ 1.60 ≈ 1.83
mQ1 ≈ 1.09 ≈ 1.53 ≈ 1.75

jets+ /ET 466 27 15 10 83 1396 158 50
jets+ 1`+ /ET 332 68 39 26 215 804 88 31
jets+ 2`+ /ET 143 62 35 22 205 371 42 15

Table 3.4: Parton level yields (in fb) for different final states for varying r′Q with r′G = −0.7 and R−1 = 1
TeV (leading to mG1

= 1.52 TeV) at 14 TeV LHC. Also indicated are the corresponding numbers for mUED.
Jets (inclusive) are comprised of four light flavours while the charged leptons contain only electrons and
muons. QCD renormalization and factorization scales are set to the sum of the masses of the final state
particles (level-1 KK quarks and/or gluon) produced in the strong scattering.

which the rises are by 125-135 GeV). On a closer look, the most drastic drop occurs for
the jets + /ET final state. This is explained by referring to figure 3.8 where one finds that
the decay branching fraction for Q1 → qB1 that contributes actively to the said final state
suffers by a huge margin when r′Q goes from -0.1 to -0.5. Another feature that emerges
from table 3.4 is that the yields in the leptonic modes are more pronounced than that in
the leptonically quiet mode. This can be understood from the fact that the branching frac-
tions of the KK quarks and the gluon to W±

1 and Z1 are much larger than that to B1 and
that W±

1 and Z1 decay entirely into leptons and missing particles.

For the mUED part of figure 3.4 the chosen values of R−1 take care of the range of
masses for KK quark/KK gluon that were used in the nmUED case. Note that the nmUED
yields are computed for a fixed mG1 while mQ1 varies. For mG1 (1.52 TeV) that we employ
in nmUED, a similar R−1 in the two cases (1 TeV) gives larger yields for the mUED case.
The reason is simple and as follows. The mUED spectrum is dominantly determined
by R−1 and R−1=1 TeV gives a much lighter (∼ 1.15 TeV) KK gluon in comparison to
the nmUED case in hand. Table 3.4 reveals that the masses are comparable in the two
scenarios when r′Q = −0.7 in nmUED and R−1 = 1.4 TeV in mUED. There also one finds
that the rates are appreciably smaller for the nmUED case the most drastic difference
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being in the jets + /ET final state. The reason behind this has been discussed earlier. On
the other hand, the closest possible faking in rates occur in some of the leptonic modes
for r′Q = −0.7 and r′Q = −1.0 with R−1 = 1.0 TeV in nmUED and R−1 = 1.6 TeV in mUED.
However, it is crucial to note that the rates in the all jets final state can be used as a robust
discriminator between nmUED and mUED scenarios.

Thus, the pattern that exists among the yields in different final states could already
disfavour mUED. When aided by a more thorough knowledge of their yields over the
nmUED parameter space gathered through realistic simulations, such a study would con-
strain the nmUED parameter space as well. Further, crucial improvements, either in the
form of exclusion or in pinning down the region of the parameter space is possible if some
of the masses involved can be known, even if roughly. Under such a circumstance, the
data can be simultaneously confronted by SUSY scenarios and the so-called SUSY-UED
confusion could be addressed rather closely.

3.4 Conclusions and Outlook

In this chapter we discuss the role of non-vanishing BLTs (kinetic and Yukawa) in the
strongly interacting sector of a scenario with one flat universal extra dimension and their
impacts on the current and future runs at the LHC.

We solve for the resulting transcendental equations for masses numerically and dis-
cuss in detail the resulting spectra as functions of R−1 and the (scaled) brane-localized
parameters, r′G and r′Q. Unlike in mUED where the mass spectrum is essentially dictated
only byR−1, r′G and r′Q play major roles (in conjunction withR−1) in determining the same
in the nmUED scenario. This opens up the possibility that much larger (smaller) values
of R−1 (which, still could result in lighter (heavier) KK spectra) can remain relevant at the
LHC when compared to mUED. Nontrivial deviations from the mUED are noted in the
strong and electroweak interaction vertices involving the level-1 quarks. The deviations
are found to be functions of r′G and r′Q only. Arguably, the most nontrivial implication of
the presence of non-vanishing brane-localized terms is that both masses and couplings of
the KK excitations are simultaneously controlled by these free parameters and thus, these
become correlated. We demonstrate the same and discuss its possible implications at the
LHC and contemplated on the role it may play in extracting the fundamental parameters
of such a scenario.

We then study the basic cross sections for production of level-1 KK gluon and KK
quarks as functions of the free parameters of the scenario at two different center-of-mass
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energies namely, 8 TeV and 14 TeV. It is noted that, when compared to the same in mUED,
for a givenR−1, wildly varying yields are possible. This is because the final state KK gluon
and quarks can now have masses freely varying over wide ranges.

It is pointed out that even if the level-1 KK gluon and the quarks happen to have
masses compatible with mUED, they could actually result from an nmUED-type scenario
with a value of R−1 different from that in the mUED case. Although the presence of
a coupling (g′G1Q1Q0

) with modified strength can signal an nmUED-like scenario, such
departures are expected to be miniscule. This is since for a given R−1, an mUED-like
spectrum is obtained only with r′G ' r′Q for which deviations in the said coupling remain
negligible.

Further, an nmUED-type scenario where the masses of the KK excitations are much
less constrained, can fake SUSY more completely than a conventional mUED scenario.
Theoretically, one well-known approach to discriminate between these scenarios, is to
compare the cross sections; the expectation being the same to be larger for UED for a
given set of masses in the final state (noting that both scenarios have the respective cou-
plings of equal strengths). However, it is unlikely that a SUSY-like spectrum (unless it is
degenerate) could emerge from an nmUED scenario of the present type without making
the deviation in coupling large from the corresponding SUSY values (which are identical
to the corresponding SM or the mUED values). Thus, if g′G1Q1Q0

< 1, this may bring down
an otherwise large nmUED cross section close to the SUSY value.

To get an idea of the actual rates for different final states (comprised of jets, leptons
and missing energy) we computed the branching fraction of different excitations that ap-
pear in the cascades. For this we bring in an EW sector (with gauge bosons and leptons
and neutrinos) which resembles mUED. Some contrasting features with respect to mUED
and SUSY are noted in the form of inverted branching probabilities to jets and leptons.
This would result in an enhanced (depleted) lepton-rich (jet-rich) events at the LHC in an
nmUED-type scenario. The feature can be exploited for partial amelioration of the infa-
mous SUSY-UED confusion. It was also demonstrated that the latest LHC data can rule
out (conservatively) R−1 up to around 1 TeV under some reasonable set of assumptions.
Collider simulation and detector effects are certainly lacking in this analysis. A complete
study would require the inclusion of boundary terms for the electroweak sector as well.
In this context of comparison between SUSY and UED frameworks, it is noteworthy that
the presence of higher KK levels in the latter can serve as a rather distinctive feature. In
particular, level-2 KK excitations can be resonantly produced at LHC energies. This leads
to a pair of SM states in the form of dijets or dileptons [64,97] which can be reconstructed
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as peaks in the corresponding invariant mass distributions. Recently reference [73] has
constrained UED models with the help of dilepton data from the LHC. We shall discuss
such level-2 resonances, but in a different context in chapter 5.

It should be kept in mind that the nmUED scenario considered in this chapter is of
a rather prototype variety with some generic features governed by three to four basic
parameters. This is a modest number for a new physics scenario. Hence, such a scenario is
much more tractable than many of its SUSY counterparts. Nonetheless, this already offers
a host of rich, new effects that can be studied at the LHC. Note that the brane-localized
parameters we consider are all blind to flavours, the SU(2) gauge quantum numbers
and independent of the locations of the orbifold fixed-points they appear at. Moreover,
wherever appropriate, we assumed some of them (rQ = rY or r′Q = r′Y , for that matter) are
equal. Deviations from any of these assumptions would have important consequences.
On the other hand, in the nmUED scenario, radiative corrections to the KK-spectrum can
be expected to be somewhat significant just as they are in the case of conventional mUED.
However, unlike in mUED where these corrections are the sole source of mass-splittings
among an otherwise degenerate set of KK excitations, the nmUED spectrum may already
come with a considerable splitting at a given KK-level even at the tree level, thus diluting
the role of radiative corrections.
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Chapter 4

The top quark sector of the nmUED
scenario

4.1 Introduction

The top quark is altogether a different kind of a fermion in the realm of the Standard
Model (SM) sheerly because of its large mass or equivalently, its large (Yukawa) coupling
to the Higgs boson. Many new physics scenarios beyond the SM (BSM), which have
extended top quark sectors offering top quark partners, derive theoretically nontrivial
and phenomenologically rich attributes from this aspect. At colliders, they warrant ded-
icated searches which generically result in weaker bounds on them when compared to
their peers from the first two generations. Moreover, the importance of top quark has
become apparent after the discovery of the Higgs boson because of its large coupling
with the Higgs. Many BSM scenarios (specially SUSY) provide interesting phenomenol-
ogy at the colliders involving the top quark and its partners. Scenarios with universal
extra dimensions (UED) are no exceptions in this regard. There has been a reasonable
amount of activity involving comparatively light KK top quarks of the UED scenarios in
the past [39,98–102] and also from recent times post Higgs-discovery [66,69,103,104]. The
latter set of works have constrained the respective scenarios discussed to varying degrees
by analyzing the Higgs results. In this chapter, we study the structure of the top quark
sector of the non-minimal universal extra dimensions (nmUED), the nontrivial features it
is endowed with and their implications for the LHC [105].

We will work on the setup introduced in section section 2.6. We have already dis-
cussed the crucial features of the nmUED scenario: the boundary-localized terms (BLTs)
modify the masses of the KK modes and alter their wavefunctions thus affecting their
physical couplings in four dimensions [82]. The BLTs are taken to be the same at both the
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boundaries, hence the scenario we consider conserves KK parity 1.

The KK top quarks of the mUED scenario has earlier been studied at the LHC in
ref. [108]. These are ‘vector-like’ states and can be lighter than the KK quarks from the
first two generations from the same KK level. This is exactly the reason behind the current
surge in studies on ‘top-partners’ at the LHC [109–116]. The characteristic feature of the
top quark sector in the nmUED scenario is the mixing of top quarks from same KK levels
of similar parities (even or odd). Such level-mixings are triggered by BLTs [77, 79] due to
non-vanishing overlap integrals and arise from the Yukawa sector. Hence, such effects
depend on the corresponding brane-local parameter. Such a level-mixing does exist for
other light quarks also. However, this is dominant only for the third generation quarks
(particularly for top quark) because of their large Yukawa couplings. In the context of the
LHC, the only relevant mixings are going to be those involving the SM (level-0) and the
level-2 KK top quarks.

In the nmUED scenario, the general setup for the quark sector involves BLTs of both
kinetic and Yukawa type. This has already been discussed in the previous chapter 3. In
this chapter, we extend the scheme to include the level-2 excitations as well with partic-
ular emphasis on the top quark. It is demonstrated how presence of level mixing may
potentially open up interesting phenomenological possibilities at the LHC in the form
of new modes of their production and decay some of which would necessarily involve
KK excitations of the gauge and the Higgs bosons in crucial ways. This would no doubt
have significant phenomenological implications at the LHC and could provide us with an
understanding of how the same can be contrasted against other scenarios having similar
signatures and/or can be deciphered from experimental data.

The chapter is organized as follows. In section 4.2 we briefly introduce some necessary
details of the third generation quark sector in the nmUED scenario. The resulting mass
spectra and the form of the relevant couplings are discussed in section 4.3. In section
4.4 we discuss in some details the experimental constraints that potentially restrict the
parameter space of the scenario under consideration. A few benchmark points, which
satisfy all these constraints, are also chosen for further studies. Section 4.5 is devoted to
the basic phenomenology of the KK top quarks at the LHC by outlining their production
and decay patterns. Finally, we conclude in section 4.6.

1Phenomenology of KK parity violating BLTs are discussed in [106, 107].
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4.2 The top quark sector

The action involving the top quark is the same as discussed in chapter 2. We introduce
brane local kinetic and Yukawa terms for the top quark (see equations 2.23 and 2.54). The
Higgs sector comes into the picture inevitably for the discussion on top quark since it
shares largest Yukawa coupling with the Higgs boson. Due to the presence of BLKT for
the electroweak sector (see equation 2.41), the 5D vev of Φ is given by

〈Φ〉 =

(
0
v̂√
2

)
=

(
0

v√
2

1√
πR+2rEW

)
(4.1)

where v = 246 GeV is the usual 4D Higgs vev associated with the breaking of electroweak
symmetry. rEW is the brane local parameter for the electroweak sector. The 5D Yukawa
couplings Ŷ u

ij , Ŷ
d
ij are related to their 4D counterparts Y u

ij , Y
d
ij as

Y
u/d
ij =

Ŷ
u/d
ij√

πR + 2rEW
. (4.2)

Using that we can KK-expand the mass terms in SYukawa as follows:

−
∫
d4x

3∑
i,j=1

v√
2

{
Y u
ijF

u,(0,0)
ij u

′(0)
iL u

′(0)
jR + Y d

ijF
d,(0,0)
ij d

′(0)
iL d

′(0)
jR + h.c.

}
, (4.3)

where, for simplicity, we only present the zero-mode part with fields redefined (to make
them appear more conventional) as u′(0)

iL ≡ U
′(0)
iL , d′(0)

iL ≡ D
′(0)
iL . The fermionic mode

functions for KK decomposition are described in an appropriate context in section 4.3.
The concrete forms of the factors F u/d,(0,0)

ij (which arise from the mode functions of the L,
R type fields participating in equation 4.3) are

F
u,(0,0)
ij =

2rY + πR√
2rUi

+ πR
√

2rui + πR
, F

d,(0,0)
ij =

2rY + πR√
2rDi

+ πR
√

2rdi + πR
. (4.4)

The 3 × 3 matrices Y u
ijF

u,(0,0)
ij and Y d

ijF
d,(0,0)
ij are diagonalized by the following bi-unitary

transformations

q
′(0)
iR = (UqR)ijq

(0)
jR , q

′(0)
iL = (UqL)ijq

(0)
jL (for q = u, d), (4.5)
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as follows:

−
∫
d4x

3∑
i=1

v√
2

{
Yuiiu

(0)
iL u

(0)
iR + Ydiid

(0)
iL d

(0)
iR + h.c. (+ KK excitations)

}
, (4.6)

where Yuii and Ydii are the diagonalized Yukawa couplings for up and down quarks, re-
spectively. We discuss later in this paper that the diagonalized values do not directly
correspond to those in the SM due to level mixing effects. Also, from now on, we would
consider universal values of the BLKT parameters rQ for the quarks from the first two
generations and rT for those from the third generation. We will see later, this provides us
with a separate handle (modulo some constraints from experiments) on the top quark sec-
tor of the nmUED scenario under consideration. Further, this simplifies the expressions
in equation 4.4.

4.3 Mixings, masses and effective couplings in the top
quark sector

Mixings in the fermion sector, quite generically, could have interesting implications as
these affect both couplings and the spectra of the concerned excitations. Fermions with a
certain flavour from a given KK level and belonging to SU(2) doublet and singlet repre-
sentations always mix once the electroweak symmetry is broken. Presence of BLTs affects
such a mixing at every KK level. On top of this, the dynamics driven by the BLTs allows
for mixing of fermions from different KK levels that have the same KK-parity. Both kinds
of mixings are proportional to the Yukawa mass of the fermion in reference and thus, are
pronounced for the top quark sector.

As pointed out in the introduction, since level-mixing among the even KK-parity top
quarks involves the SM top quark (from level-0), this naturally evokes a reasonable cu-
riosity about its consequences and it is indeed found to give rise to interesting phe-
nomenological possibilities. However, the phenomenon draws significant constraints
from experiments which we will discuss in some detail. We restrict ourselves to the mix-
ing of level-0-level-2 KK top quarks ignoring all higher even KK states the effects of which
would be suppressed by their increasing masses. Also, we do not consider the effects of
level-mixings among KK states from levels with n > 0, including say, those among the
excitations from levels with odd KK-parity. Generally, these could be appreciable. How-
ever, in contrast to the case where SM excitations mix with higher KK levels, these would
only entail details within a sector yet to be discovered.
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4.3.1 Mixing in level-1 top quark sector

We first briefly recount the mixing of the top quarks at KK level-1. This is similar to the
mixing in the quarks of first two generations as described in ref. [82]. In presence of BLTs,
the Yukawa part of the action embodying the mass-matrix is of the form

−
∫
d4x

{[
T

(1)
, t

(1)
]
L

[
MT(1) r′T11m

in
t

−R′T11m
in
t MT(1)

][
T (1)

t(1)

]
R

+ h.c.

}
, (4.7)

with “input" top mass min
t (which is an additional free parameter in our scenario) and

r′T11 =
1

RT00

∫ L

−L
dy
(

1 + rY (δ(y − L) + δ(y + L))
)
f 2
T (1)

=
2rT + πR

2rY + πR
×

2rY + 1
S2

T (1)

[
πR
2
− 1

2M
T (1)

sin(MT (1)πR)
]

2rT + 1
S2

T (1)

[
πR
2
− 1

2M
T (1)

sin(MT (1)πR)
] , (4.8)

R′T11 =
1

RT00

∫ L

−L
dy
(

1 + rY (δ(y − L) + δ(y + L))
)
g2
T (1)

=
2rT + πR

2rY + πR
×

2rY (CT (1)/ST (1))2 + 1
S2

T (1)

[
πR
2

+ 1
2M

T (1)
sin(MT (1)πR)

]
1

S2

T (1)

[
πR
2

+ 1
2M

T (1)
sin(MT (1)πR)

] (4.9)

where RT00 is given by

RT00 =

∫ L

−L
dy
(

1 + rY (δ(y − L) + δ(y + L))
)
f 2
T (0) =

2rY + πR

2rT + πR
. (4.10)

fT (n) and g
T (n)

represent the mode functions for n-th KK level and are given by [82]:

fT (n) ≡ f
T

(n)
L

= f
t
(n)
R

= NT (n) ×


cos(MT (n)y)

CT (n)

for n even,

− sin(MT(n)
y)

ST (n)

for n odd,
(4.11)

g
T (n)
≡ f

T
(n)
R

= −f
t
(n)
L

= NT (n) ×


sin(MT (n)y)

CT (n)

for n even,

cos(MT (n)y)

ST (n)

for n odd
(4.12)

with

CT (n) = cos

(
MT (n)πR

2

)
, ST (n) = sin

(
MT (n)πR

2

)
(4.13)
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and the normalization factors NT (n) for the mode functions are given by

N−2
T (n) =


2rT +

1

C2
T (n)

[
πR

2
+

1

2MT (n)

sin(MT (n)πR)

]
for n even,

2rT +
1

S2
T (n)

[
πR

2
− 1

2MT (n)

sin(MT (n)πR)

]
for n odd.

(4.14)

The KK mass MT (n) for the n-th level top quark excitation follows from equation 2.51
where chiral zero modes occur 2. Note that the off-diagonal terms are asymmetric and
pick up nontrivial multiplicative factors. This is because two different mode functions,
fT (n) and g

T (n)
(associated with the specific states with particular chiralities and gauge

quantum numbers), contribute to them. On the other hand, the diagonal KK mass terms
are now solutions of the appropriate transcendental equations. When expanded, the di-
agonal entries of the mixing matrix involve the L and R components of the same gauge
multiplet (T from SU(2) doublet or t from SU(2) singlet). In contrast, the off-diagonal
entries are of Yukawa-origin (signaled by the presence of min

t ) and involve both rT and
rY . These terms represent the conventional Dirac mass-terms as they connect the L and
the R components belonging to two different multiplets. It may be noted that even when
either rT or rY vanishes, the mixing remains nontrivial. Only the case with rT = rY = 0

trivially reduces to the (tree-level) mUED.
The mass matrix of equation 2.63 can be diagonalized by bi-unitary transformation

with the matrices V (1)
tL and V

(1)
tR where[

T (1)

t(1)

]
L

= V
(1)
tL

[
t
(1)
l

t
(1)
h

]
L

,

[
T (1)

t(1)

]
R

= V
(1)
tR

[
t
(1)
l

t
(1)
h

]
R

. (4.15)

Then, equation 2.63 takes the diagonal form

−
∫
d4x

[
t
(1)
l , t

(1)
h

]mt
(1)
l

m
t
(1)
h

[t(1)
l

t
(1)
h

]
(4.16)

where t(1)
l , t

(1)
h are the level-1 top quark mass eigenstates and (m

t
(1)
l

)2 and (m
t
(1)
l

)2 are the
mass-eigenvalues of the squared mass-matrix with m

t
(1)
h

> m
t
(1)
l

. Note that, for clarity
and convenience, we have modified the notations and the ordering of the states in the
presentations above from what appear in ref. [82].

2Here, we consider a situation where the fields T (1)
L,R and t

(1)
L,R are rotated by the same matrices UqR

and UqL (of equation 4.5) from the basis used in equations 2.23 and 2.54. We ignore the diagonal and
non-diagonal modifications in the boundary conditions. In our scenario, these modifications are Cabibbo-
suppressed (see equation C.4 in the appendix) and hence such a treatment is justified.
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4.3.2 Mixing among level-0 and level-2 top quark states

The formulation described above can be extended in a straight-forward manner for the
level-2 KK top quarks when this sector is augmented by the level-0 (SM) top quark. Thus,
the mass-matrix for the even KK parity top quark sector (keeping only level-0 and level-2
KK excitations) takes the following form:

−
∫
d4x

{[
t(0), T

(2)
, t

(2)
]
L

 min
t 0 min

t R
′
T02

min
t R
′
T02 MT (2) min

t r
′
T22

0 −min
t R
′
T22 MT (2)


 t

(0)

T (2)

t(2)


R

+ h.c.

}
(4.17)

where r′T22, R′T22, R′T02 are defined as follows, in a way similar to the case for level-1 top
quarks:

r′T22 =
1

RT00

∫ L

−L
dy
(

1 + rY (δ(y − L) + δ(y + L))
)
f 2
T (2)

=
2rT + πR

2rY + πR
×

2rY + 1
C2

T (2)

[
πR
2

+ 1
2M

T (2)
sin(MT (2)πR)

]
2rT + 1

C2

T (2)

[
πR
2

+ 1
2M

T (2)
sin(MT (2)πR)

] , (4.18)

R′T22 =
1

RT00

∫ L

−L
dy
(

1 + rY (δ(y − L) + δ(y + L))
)
g2
T (2)

=
2rT + πR

2rY + πR
×

2rY (ST (2)/CT (2))2 + 1
C2

T (2)

[
πR
2
− 1

2M
T (2)

sin(MT (2)πR)
]

1
C2

T (2)

[
πR
2
− 1

2M
T (2)

sin(MT (2)πR)
] , (4.19)

R′T02 =
1

RT00

∫ L

−L
dy
(

1 + rY (δ(y − L) + δ(y + L))
)
fT (0)fT (2)

=
2rT + πR

2rY + πR
×

2rY + 2(ST (2)/MT(2)CT (2))

√
2rT + πR

√
2rT + 1

C2

T (2)

[
πR
2

+ 1
2M

T (2)
sin(MT (2)πR)

] , (4.20)

with RT00 given by equation 4.10. The lower 2 × 2 block of the mass-matrix in equation
4.17 is reminiscent of the level-1 top quark mass-matrix of equation 2.63. Beyond this, the
mass-matrix contains as the first diagonal element the ‘input’ top quark mass, min

t and
two other non-vanishing off-diagonal elements as the 13 and 21 elements. Obviously,
the latter two play direct roles in the mixings of the level-0 and level-2 top quarks. Note
that all the off-diagonal terms of the mass-matrix are proportional to min

t which is clearly
indicative of their origins in the Yukawa sector. The zeros in turn reflect SU(2) invariance.

Diagonalization of this 3 × 3 mass-matrix yields the physical states (3 of them) along
with their mass-eigenvalues. Thus, the level-0 top quark (i.e., the SM top quark) ceases
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Figure 4.1: Masses of level-1 and level-2 KK top quarks as functions of r′T for given r′Y and R−1 with
min
t = 173 GeV.

to be a physical state and mixes with the level-2 top states. Given the rather involved
structure of the mass-matrix, neither is it possible to express the eigenvalues analytically
in a compact way nor they would be much illuminating theoretically. We, thus, diago-
nalize the mass-matrix numerically. Similar to the case of the level-1 states, we adopt the
following conventions: t

(0)

T (2)

t(2)


L

= V
(2)
tL

 t

t
(2)
l

t
(2)
h


L

,

 t
(0)

T (2)

t(2)


R

= V
(2)
tR

 t

t
(2)
l

t
(2)
h


R

(4.21)

with the physical massesmphys
t ,m

t
(2)
l

andm
t
(2)
h

and with the orderingmphys
t < m

t
(2)
l
< m

t
(2)
h

.

4.3.3 Quantitative estimates

As can be seen from the equations above, the free parameters of the top-quark sector in
the nmUED scenario under consideration are R, rT and rY . For the latter two, we use the
dimensionless quantities r′T and r′Y where r′T = rTR

−1 and r′Y = rYR
−1. In addition, min

t

serves as an extra free parameter from the SM sector.

Top quark masses

In figure 4.1 we illustrate the variations of the masses, as functions of r′T , of the two KK
top quark eigenstates from level-1 and the two heavier mass eigenstates that result from
the mixing of level-0 and level-2. The plot in the middle, when compared to the one in
the left, demonstrates how the spectrum changes as r′Y varies with R−1 held fixed. We
set the input top mass min

t to 173 GeV in all the plots of figure 4.1. In turn, the effect of
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changingR−1 can be seen as one goes from the plot in the middle (R−1 = 1 TeV) to the one
on the right (R−1 = 2 TeV). An interesting feature common to all these plots is that there
is a cross-over of the curves for m

t
(1)
h

and m
t
(2)
l

, i.e., as a function of r′T , at some point, the
lighter of the mixed level-2 state top quark eigenstates becomes less massive compared to
the heavier of the level-1 KK top quark eigenstate. The cross-overs take place at smaller
values of r′T when r′Y is increased for a given R−1 and at larger values of r′T when R−1

is increased with r′Y held fixed. Accordingly, the mass-values at those flipping points
also go down or up, respectively. Here, the dominant role is being played by the ‘chiral
mixing’ while level-mixing is unlikely to have much bearing. These plots also reveal that
achieving a ‘flipped-spectrum’ (in the above sense) is difficult if one requires the light
level-1 KK top quark to be heavier than about 400 GeV. Nonetheless, the overall trend
could provide easier reach for a KK top quark from level-2 at the LHC. Thus, it may be
possible for up to three excited top quark states (m

t
(1)
l
, m

t
(1)
h
, m

t
(2)
l

) to pop up at the LHC.

Top quark mixings

Now, we take a quantitative look at the mixings in the top quark sector from the first KK
level discussed earlier in section 4.3.1. The mixing is known to be near-maximal in the
case of quarks (fermions) from the lighter generations [82]. Deviations from such maximal
mixings occur in the top quark sector due to its nontrivial structure3. Such mixings are
expected to follow similar trends at level-2 (and higher) KK levels and hence we do not
present them separately. However, some deviations are expected in the presence of level-
mixings which can at best be modest for the case of t(0)−t(2) system that we discuss briefly
in this chapter.

The elements of the V -matrices in equation 4.15 give the admixtures of different partic-
ipating states in the KK top quark eigenstates. To be precise, V (1)

tL(1,1)
and V

(1)
tL(2,2)

represent

the admixture of T (1)
L in t

(1)
lL and t

(1)
L in t

(1)
hL respectively while V (1)

tL(1,2)
and V

(1)
tL(2,1)

indicate

the same for t(1)
L in t(1)

lL and T
(1)
L in t(1)

hL in that order. Similar descriptions hold for the V (1)
R

matrix. In figures 4.2 and 4.3 we illustrate the deviations from maximal mixing in the
level-1 top quark sector in terms of these components of the V matrices as functions of r′T .
Each figure contains multiples curves which present situations for different combinations
of R−1 and r′Y (see the captions for details). Note that the abrupt changes in sign of the
mixings that happen between −1 < r′T < 2 can be understood in terms of the trends of

3This is in direct contrast with competing SUSY scenarios where mixings in the light sfermion sector are
always negligible while for top squark sector it could attain the maximal value.
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and r′Y = 1 and dashed blue for R−1 = 2 TeV and r′Y = 10.
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tL (left) and

V
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tL (right). The respective (2,1) elements can be obtained from the orthogonality of these matrices.

the red and blue curves in figure 4.1 (the blue curves smoothly evolve to the red ones and
vice-versa).

The flat, broken magenta lines indicate maximal mixing (|V (1)
tL(1,1)

| = |V (1)
tL(1,2)

| = 1/
√

2). It
is clear from these figures that there can be appreciable deviations from maximal mixing
in all these cases. As can be seen, the effects are bigger for larger values of r′T and smaller
R−1. Some dependence on r′Y is observed for smaller values of r′T . However, it is to be
kept in mind that the effective deviations arise from the interplay of these elements which
is again neither easy to present nor much illuminating.

4.3.4 Effective couplings

As mentioned earlier, not only masses undergo modifications in the presence of BLTs but
also the wavefunctions get distorted. The latter affects the couplings through the overlap
integrals. These are integrals over the extra dimension of a product of mode functions of
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the states that appear at a given interaction vertex. In this section we briefly discuss the
generic properties of some of these overlap integrals which play roles in the present study.
Assuming the wavefunctions to be real, the general form of the multiplicative factor that
scales the corresponding SM coupling strengths is given by

g
f
(l)
i f

(m)
j f

(n)
k

= Nijk
∫ L

−L
dy
[
1 + r

(l,m,n)
ijk (δ(y − L) + δ(y + L))

]
f

(l)
i (y)f

(m)
j (y)f

(n)
k (y) (4.22)

where i, j, k represent different interacting fields and f
(l)
i , f

(m)
j , f

(n)
k are the corresponding

mode functions with the KK indices l,m, n, respectively, as defined in sections 2.6.2, 4.3.1
and 4.3.2. The factor r(l,m,n)

ijk stands for relevant BLT parameter(s) while the normalization
factor Nijk is suitably chosen to recover the SM vertices when l=m=n=0 (except for the
Yukawa sector of the nmUED scenario under consideration).

The key to understand the general structure is the flatness of the zero-mode (n = 0)
profiles in our minimal configuration. For these, the factor takes the following form:

g
f
(l)
i f

(m)
j f

(0)
k

= Nijkf (0)
k

∫ L

−L
dy
[
1 + r

(l,m,0)
ijk (δ(y − L) + δ(y + L))

]
f

(l)
i (y)f

(m)
j (y), (4.23)

where we see the zero-mode field has been taken out of the integral in equation 4.22.
For i = j, the overlap integral reduces to Kronecker’s delta function, δl,m and the overall
strength turns out to be identically equal to 1. Orthonormality of the involved states con-
strains the possibilities. In table 4.1 we collect some of these interactions and group them
in terms of their effective strengths (given by equation 4.23). This list, in particular, the
set of couplings in the third column, is not exhaustive and presented for demonstrative
purposes only.

In addition to these, mixings in the top quark sector in the form of both chiral mixing
and level-mixing play roles in determining the effective couplings. In this subsection we
briefly discuss such effects on some of the important interaction-vertices involving the
top quarks, the gauge and the Higgs bosons from different KK levels. As in section 4.3.3,
we further introduce the dimensionless parameters r′EW (= R−1rEW), r′Q (= R−1rQ) and
r′G (= R−1rG) replacing rEW (= rH), rQ and rG, the BLKT parameters for the electroweak
gauge boson and Higgs sectors, the first two generation quark sector and the gluon sector,
respectively. In addition, we also introduce a corresponding universal parameter rL for
the lepton sector which we will use in section 4.4.3. Later, in section 4.5, we will refer back
to this discussion in the context of phenomenological analyses of the scenario.
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Q
(1)
R/L − V (1) −Q(0)

R/L

V (2) − V (2) − V (0) q
(1)
R/L − V (1) − q(0)

R/L

V (1) − V (1) − V (0) Q
(0)
R/L − V (2) −Q(0)

R/L

Q
(1)
R/L − V (0) −Q(1)

R/L Q
(1)
L −H(0) − q(1)

R

Q
(2)
R/L − V (0) −Q(0)

R/L q
(1)
R/L − V (0) − q(1)

R/L Q
(2)
L −H(0) − q(0)

R

q
(2)
R/L − V (0) − q(0)

R/L Q
(2)
R/L − V (0) −Q(2)

R/L Q
(0)
L −H(2) − q(0)

R

V (2) − V (0) − V (0) q
(2)
R/L − V (0) − q(2)

R/L Q
(0)
L −H(0) − q(2)

R

0 1 non-zero

Table 4.1: Classes of different effective (tree level) couplings (given by equation 4.23) involving the gauge
boson (V ), Higgs (H) and the left- and right-handed, SU(2) doublet (Q) and singlet (q) quark excitations
and their relative strengths (shown in the last row) compared to the corresponding SM cases.

Effective couplings involving the gauge bosons

The set of couplings that we briefly discuss here are those that would appear in the pro-
duction of the KK top quarks at the LHC and their decays. In figure 4.4 we illustrate
the coupling-deviation (a multiplicative factor of the corresponding SM value at the tree
level) g(2)-q(0)-q(0) (left) and g(2)-q(2)-q(0) (right) in the generic r′V − r′Q/T/L plane. In both
of these plots, the mUED case is realized along the diagonals over which r′G = r′Q. In the
first case, the mUED value is known to be vanishing at the tree level since KK number
is violated. Hence, the diagonal appears with the contour-value of zero. For vertices in-
volving the top quarks, r′T replaces r′Q. For a process like pp→ t̄

(2)
l t + h.c., the former kind

of coupling appears at the parton-fusion (initial state) vertex while the latter shows up at
the production vertex. The combined strength of these two couplings controls the pro-
duction rate for the mentioned process. Further, the situation is not much different for the
level-2 electroweak gauge bosons except for some modifications due to mixings present
in the electroweak sector. In general, it can be seen from the first plot of figure 4.4 that
the coupling g(2)-q(0)-q(0) picks up a negative sign for r′G > r′Q. This could have nontrivial
phenomenological implications for processes in which interfering Feynman diagrams are
present. On the other hand, g(2)-q(2)-q(0) remains always positive as is clear from the sec-
ond plot of figure 4.4. Note that the three-point vertex V (0)-V (0)-V (2) and the generic ones
of the form V (0)-f (0)-f (2) are absent because the corresponding overlap integrals vanish
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Figure 4.4: Contours of deviation for the generic couplings V (2)-F (0)-F (0) (or V (2)-f (0)-f (0)) (left) and
V (2)-F (2)-F (0) (or V (2)-f (2)-f (0)) (right) from the corresponding SM values in the r′V − r′Q/T/L plane. V ,
F and f stand for generic gauge boson, SU(2) doublet and singlet fermion fields (with corresponding
chiralities), respectively. Note that when V is the (KK) W boson, types of the two fermions involved at a
given vertex are different.

due to orthogonality of the involved mode functions.

In figure 4.5 we present the corresponding contours of similar deviations in the cou-
plings involving the level-2 KK gauge bosons and the level-1 KK quarks. The plot on left
shows the situation for the left- (right-) chiral component of the SU(2) doublet (singlet)
quarks while the plot on right illustrates the case for left- (right-) chiral component of the
SU(2) singlet (doublet) quarks. These are in conformity with the mode functions for these
individual components of the level-1 KK quarks. However, it should be noted that the KK
quarks being vector-like states, each of the SU(2) doublet and singlet partners have both
left- and right-chiral components. Thus, the effective couplings are obtained only by suit-
ably combining (with appropriate weights) the strengths as given by the two plots. In
the case of KK top quarks, the situation would be further complicated because of signif-
icant mixing between the two gauge eigenstates. For brevity, a list of relevant couplings
is presented in table 4.1 with mentions of the kind of modifications they undergo in the
nmUED scenario. It is clear from these figures that these (component) couplings involv-
ing level-2 KK states are in general suppressed compared to the relevant SM couplings
except over a small region with r′Q/T/L < 0.
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Effective couplings involving the Higgs bosons

The association of the Higgs sector with the third SM family is rather intricate and has
deep implications which unfold themselves in many scenarios beyond the SM. SUSY
scenarios provide very good examples of this, some analyses have been done in the
mUED [117] and the nmUED scenario is also no exception. The couplings among the
Higgs bosons and the KK top quarks of the nmUED scenario can deviate significantly
from the corresponding SM Yukawa coupling. However, the zero-mode (SM) Higgs
Yukawa couplings do not depend upon r′H (= r′EW). In the left panel of figure 4.6 we
illustrate the possible deviation in the SM Yukawa coupling itself in the r′T − r′Y plane.
Along the diagonal of this figure (with r′T = r′Y ) the SM value of the Yukawa coupling is
preserved. Note that the latest LHC data still allows for significant deviations in the H-t-t
coupling [118–121].

In the right panel we show deviations of the generic H-t(2)-t which appears at the tree
level in nmUED. Unlike in the case of the interaction vertex V (0)-f (2)-f (0) (where V (0) is a
massive SM gauge boson) where the involved coupling vanishes in the absence of level-
mixing between f (2) and f (0), the analogous Higgs vertex remains non-vanishing even in
the absence of level-mixing between the fermions. However, in this case, for r′T = r′Y the
coupling vanishes. This implies that the more the Yukawa coupling involving the level-0
fields appears to agree with the SM expectation (from future experimental analyses), the
weaker the coupling H-t(2)-t in such a scenario would get to be. In both cases, however,
we find that the coupling strengths get enhanced for smaller values of r′T with r′T < r′Y .
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L -t(2)R compared to the corresponding SM cases.

All these indicate that production of the SM Higgs boson via gluon-fusion and its decay to
di-photon final state can receive non-trivial contributions from such couplings and thus
might get constrained from the LHC data.

4.4 Experimental constraints and benchmark scenarios

Several different experimental observations put constraints of varying degrees on the pa-
rameters (like R−1, r′T , r′Q, r′Y and the input top quark mass (min

t )) that control the KK top
quark sector. First and foremost, R−1 is expected to be constrained from the searches for
level-1 KK quarks and KK gluon at the LHC. In the absence of any such dedicated search,
a rough estimate of R−1 > 1 TeV has been derived in ref. [82] by appropriate recast of the
LHC constraints obtained for the squarks and the gluino in SUSY scenarios.

As discussed in the previous subsection, observed mass of the top quark restricts
the parameter space in a nontrivial way. Also, important constraints come from the ex-
perimental bounds on flavour changing neutral currents (FCNC), electroweak precision
bounds in terms of the Peskin–Takeuchi parameters (S, T and U ) and bounds on effective
four-fermion interactions. In this section we discuss these constraints briefly and choose
a few benchmark scenarios that satisfy them and are phenomenologically interesting.
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Figure 4.7: Regions (in green) in the r′T − r′Y plane for three R−1 values of (1.5, 2 and 3 TeV, varying along
the rows) and for different suitable values of min

t (indicated on top of each plot) that are consistent with
physical (SM-like) top quark mass (mphys

t ) being within the range mphys
t = 173± 2 GeV.

4.4.1 Constraints from the observed mass of the SM-like top quark

In figure 4.7 we show the allowed regions in the r′T − r′Y plane that result in top quark
pole mass within the range 171-175 GeV [122] (which is argued to be a more appropriate
range than what the experiments actually quote [123]) for given values of R−1 and input
top quark masses.

Some general observations are that the physical top quark mass (mphys
t ) rarely becomes

larger than the input top quark mass (min
t ). This means, to have mphys

t at least of 171 GeV,
min
t has to be larger than 171 GeV. Further, increasing min

t beyond around 175 GeV, as we
go over to the second row of figure 4.7, opens up disjoint sets of allowed islands in the
r′T − r′Y plane with increasing region allowed for negative r′Y (and extending to larger r′T
values) at the expense of the same with positive r′Y . Increasing min

t further (beyond say,
180 GeV) results in allowed regions diminishing to an insignificant level. These features
remain more or less unaltered as R−1 is increased, as we go from left to right along a
horizontal panel. A palpable direct effect that can be attributed to increasing R−1 is in the
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c
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Figure 4.8: Feynman diagram showing the induced FCNC vertex.

moderate increase of the region in the r′T − r′Y plane consistent with m
phys
t , in particular,

for negative r′Y values and when min
t is not terminally large (i.e., below 190 GeV, say)

for the purpose. Although a moderate range of input top quark mass 171 < min
t . 190

is consistent with 171 < m
phys
t < 175 GeV in the space of R−1 − r′T − r′Y , the allowed

region there is rather sensitive to the variation in min
t . Thus, the allowed range of the

m
phys
t restricts the nmUED parameter space in a significant way which, in turn, influences

the masses and the couplings of the KK top quarks. An important point is to be noted
here. The level-1 top quark sector, though does not talk to either level-0 or level-2 sector
directly (because of conserved KK-parity), is influenced by these constraints since r′T , r′Y
and R−1 also govern the same.

4.4.2 Flavour constraints

The BLKTs (r′Q) and the BLYTs (r′Y ) are matrices in the flavour space. Hence, their generic
choices may induce large FCNCs at the tree level. It is possible to choose a basis in
which the BLKT matrix is diagonal. This ensures no mixing among fermions of differ-
ent flavours or from different KK levels arising from the gauge kinetic terms. However,
with the Yukawa sector included, off-diagonal terms (mixings) appear in the gauge sector
on rotating the gauge kinetic terms into a basis where the quark mass matrices are diag-
onal. These terms could induce unacceptable FCNCs at the tree levels and thus, would
be constrained by experiments. In figure 4.8 we present the tree level diagram that could
give rise to unwanted FCNC effects. A rather high compactification scale (R−1 ∼ O(105)

GeV; the so-called decoupling mechanism) or a near-perfect mass-degeneracy among the
KK quarks at a given level ( ∆m

m(1) . 10−6; across all three generations) could suppress the
FCNCs to the desired level [124]. While the first option immediately renders all the KK
particles rather too massive, the second one makes the KK top quarks as heavy as the KK
quarks from the first two generations thus making them quite difficult to be accessed at
the LHC. A third option in the form of “alignment” (of the rotation matrices) [124] can
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Figure 4.9: Regions in the r′T − r′Q (for fixed r′G; the left-most plot) and r′T − r′G (for fixed r′Q; the middle
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first two figures, thin strip(s) of the disallowed regions (in red) are highlighted for better visibility.

make way for significant lifting of degeneracy thus allowing for light enough quarks from
the third generation that are within the reach of the LHC. In such a setup, FCNC occurs in
the up-type doublet sector. Hence, the strongest of the bounds in terms of the relevant Wil-
son coefficient (C1

D) comes from the recent observation of D0 −D0 mixing [125] (and not
from the K or the B meson systems) and the requirement is |C1

D| < 7.2×10−7 TeV−2 [126],
attributed solely to the gluonic current which is by far the dominant contribution. The
essential contents of the setup are summarized in appendix C.1.

In the left-most panel of figure 4.9 we demonstrate the allowed/disallowed region in
the r′T − r′Q plane for r′G = 1 with R = 1 TeV. The panel in the middle demonstrates the
corresponding regions in the r′T − r′G plane for r′Q = +1. It is seen that some region with
r′T < 0 is disallowed when r′G is large, i.e., when the level-2 KK gluon is relatively light.
The right-most panel illustrates the region allowed in the same plane but for r′Q = −1.
The bearing of the FCNC constraint is most pronounced in this case.

It can be noted that the smaller the value of r′G is, the heavier is the mass of the level-2
gluon and hence, the stronger is the suppression of the dangerous FCNC contribution.
Such a suppression could then allow r′T to be significantly different from r′Q but still sat-
isfying the FCNC bounds. This feature is apparent from the rightmost panel of figure 4.9.
Note that a rather minimal value for R−1 (=1 TeV) is chosen for this demonstration. A
larger R−1 results in a more efficient suppression of FCNC effects and hence, leads to a
larger allowed region. In summary, it appears that FCNC constraints do not seriously
restrict the third generation sector as yet.
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4.4.3 Precision constraints

It is well known that the Peskin–Takeuchi parameters S, T and U that parametrize the
so-called oblique corrections to the electroweak gauge boson propagators [127, 128] put
rather strong constraints on the mUED scenario. These observables are affected by the
modification in the Fermi constantGF (determined experimentally by studying muon de-
cay) due to induced effective 4-fermion vertices originating from exchange of electroweak
gauge bosons from even KK levels. These were first calculated in refs. [66, 129–132] as-
suming mUED tree-level spectrum while ref. [133] expressed them in terms of the actual
(corrected) masses of the KK modes.

As discussed in refs. [30, 58, 134–136], the correction to GF can be incorporated in the
electroweak fit via the modifications it induces in the Peskin–Takeuchi parameters and
contrasting them with the experimentally determined values of the latter. Note that in the
nmUED scenario we consider, level-2 electroweak gauge bosons have tree-level couplings
to the SM fermions and these modify the effective 4-fermion couplings. These effects
are over and above what mUED induces4 where such KK number violating couplings
appear only at higher orders. It is thus natural to expect that usual oblique corrections
to S, T and U induced at one-loop level would be sub-dominant when compared to the
above nmUED tree-level contributions. Thus, in our present analysis, we neglect the one-
loop contributions but otherwise follow the approach originally adopted in ref. [136] and
which was later used in ref. [133].The nmUED effects are thus parametrized as:

SnmUED = 0, TnmUED = − 1

α

δGF

GF

, UnmUED =
4 sin2 θW

α

δGF

GF

(4.24)

where α is the electromagnetic coupling strength, θW is the MS Weinberg angle, both
given at the scale MZ and GF is given by

GF = G0
F + δGF (4.25)

with G0
F (δGF ) originating from the s-channel SM (even KK) W± boson exchange. The

concrete forms of these effects are calculated in our model following ref. [136]. Using our
notations, these are given by:

4To be precise, in general, the mUED type higher-order contributions (usual one-loop-induced oblique
corrections) would not be exactly the same as that from the actual mUED scenario. However, as pointed
out in ref. [136], in the “minimal” case of rW = rB = rH along with the requirements on the relations
involving µ-s and λ-s as given in equations 2.42 and 2.50, exact mUED limits for the couplings are restored
while departures in the KK masses (from the corresponding mUED values) still remain.
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Figure 4.10: Regions (in green) in the r′EW−R−1 plane allowed by electroweak precision data at 95% C.L.
The black asterisks represent the global minimum in each one of them: χ2

min = 8.8 × 10−9 at (r′EW, R
−1) =

(6.11 × 10−3, 1229 GeV) when r′L = 0, χ2
min = 3.9 × 10−9 at (r′EW, R

−1) = (0.505, 1029 GeV) when r′L = 0.5,
χ2

min = 1.5× 10−8 at (r′EW, R
−1) = (2.02, 1306 GeV) when r′L = 2.

GF = G0
F + δGF (4.26)

with G0
F (δGF ) originating from the s-channel SM (even KK) W± boson exchange. The

concrete forms of these effects are calculated in our model following ref. [136]. Using our
notations, these are given by:

G0
F =

g2
2

4
√

2

1

M2
W

, δGF =
∑

n≥2:even

g2
2

4
√

2

1

m2
W(n)

(
g
L(0)W(n)L(0)

)2

, (4.27)

g
L(0)W(n)L(0)

∣∣∣
n:even

≡ 1

fW (0)

∫ L

−L
dy (1 + rEW [δ(y − L) + δ(y + L)]) fL(0)

fW(n)
fL(0)

=
2
√

4rEW + 2πR
(
MW(n)

rL + tan
(
MW(n)

πR

2

))
MW(n)

(2rL + πR)

√
4rEW + πR sec2

(
MW(n)

πR

2

)
+ 2 tan

(
MW(n)

πR

2

)
/MW(n)

(4.28)

where MW (n) is determined by equation 2.51. Even though the KK leptons do not ap-
pear in the process, the BLKT parameter rL in the lepton sector (to be precise, the one
for the 5D muon doublet) inevitably influences the coupling-strength given in equation
4.28. We, however, assume a flavour-universal BLKT parameter rL (just like what we
do in the quark sector when we take rQ = rT ) which help trivially circumvent tree-level
contributions to lepton-flavour-violating processes.

We perform a χ2 fit of the parameters SnmUED, TnmUED and UnmUED (with δGF evaluated
for n = 2 only) for three fixed values of r′L (r′L = rLR

−1 = 0, 0.5 and 2) to the experi-
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mentally fitted values of the allowed new physics (NP) components in these respective
observables as reported by the GFitter group [137] which are given by

SNP = 0.03± 0.10, TNP = 0.05± 0.12, UNP = 0.03± 0.10,

the correlation coefficients being

ρST = +0.89, ρSU = −0.54, ρTU = −0.83,

and the reference input masses of the SM top quark and the Higgs boson being mt = 173

GeV and mH = 126 GeV, respectively.
In figure 4.10 we show the 95% C.L. allowed region in the r′EW − R−1 plane as a result

of the fit performed. As can be expected, the bound refers to r′EW as the only brane-local
parameter which, unlike in ref. [133], can be different from the corresponding parameters
governing other sectors of the theory. Such a constraint is going to restrict the mass-
spectrum and the couplings in the electroweak sector which is relevant for our present
study. It is not unexpected that for larger values of rEW which result in decreasing masses
for the electroweak gauge bosons, only larger values of R−1 (which compensates for the
former effect) remain allowed thus rendering these excitations (appearing in the prop-
agators) massive enough to evade the precision bounds. Interestingly, it is possible to
relax the bounds by introducing a positive r′L as shown in figure 4.10, a feature that can
be taken advantage of as we explore the nmUED parameter space further. This is since
the coupling involved g

L(0)W(n)L(0)
gets reduced in the process (see the left plot in figure

4.4).

4.4.4 Benchmark scenarios

For our present analysis, we now choose some benchmark scenarios which satisfy the
constraints discussed in the previous subsection. The parameter space of these scenarios
mainly spans over r′T , r

′
Y , R

−1 and, as a minimal choice, r′EW = r′H
5. We also include r′G,

r′Q and r′L which are the BLKT parameters for the KK gluon, the KK quark and the KK
lepton sectors, respectively. r′G has some non-trivial implications for the couplings of the
KK top quarks to the gluonic excitations as discussed in section 4.3.4. The parameter r′Q,
though enters our discussion primarily through FCNC considerations (see section 4.4.2
and appendix C.1), governs the couplings V (2)-q(0)-q(0) (as shown in figure 4.4) that control

5Departure from this assumption makes the gauge boson zero modes non-flat and hence correct val-
ues (within experimental errors) of the SM parameters like αem, Gf ,mW ,mZ can only be reproduced in a
constrained region of r′EW − r′H parameter space [83].
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KK top quark production processes. Both r′G and r′Q serve as key handles on the masses
of the KK gluon and the KK quarks from the first two generations, respectively. Similar
is the status of r′L which enters through the oblique parameters and controls the masses
and couplings in the lepton sector.

In search for suitable benchmark scenarios, we require the following conditions to be
satisfied. We require the approximate lower bound on R−1 to hover around 1 TeV which
is obtained by recasting the LHC bounds on squarks (from the first two generations) and
the gluino in terms of level-1 KK quarks and KK gluons in the nmUED scenario [82].
Further, the lighter of the level-1 KK top quark (t(1)

l ) is required to be at least about 500
GeV. This safely evades current LHC-bounds on similar excitations while lower values
may still be allowed given that these bounds result from model-dependent assumptions.

The above requirements together calls for a non-minimal sector for the electroweak
gauge bosons (r′EW 6= 0) such that the lightest KK gauge boson, the KK photon (γ(1)) is
the lightest KK particle (LKP, a possible dark matter candidate)6. Incorporation of a non-
minimal gauge sector affects the couplings of the gauge bosons which, as we will see,
could be phenomenologically non-trivial. The choice r′EW = r′H renders the KK excitations
of the gauge and the Higgs boson very close in mass thus allowing them to take part in
the phenomenology of the KK top quarks. In the present scenario, other BLT parameters
in the Higgs sector, µb and λb, are constrained by equations 2.42 and 2.50 in addition to
the measured Higgs mass as an input. Therefore, these are not independent degrees of
freedom.

In table 4.2 we present the spectra for three such benchmark scenarios: two of them
with R−1 = 1 TeV and the other with R−1 = 1.5 TeV. The BLKT parameters r′G and r′Q are
so chosen such that the masses of the level-1 KK gluon are in the range 1.6-1.7 TeV (i.e.,
somewhat above the current LHC lower bounds on similar (SUSY) excitations) while the
KK quarks from the first two generations are heavier7. Note that in both cases we are
having negative r′G and r′Q. In the top quark sector, the BLKT parameter r′T are fixed at
values for which both light and heavy level-1 KK top quarks have sub-TeV masses and
hence expected to be within the LHC reach. Also, r′Y , the BLT parameter for the Yukawa
sector, has been tuned in the process to end up with such spectra. Note that the choices
of values for r′T and r′Y are consistent with the constraints from the physical top quark

6This is a possible choice for the dark matter candidate in the nmUED scenario. Ref. [83] explores other
possible candidates in such a scenario.

7Such a hierarchy of masses opens up the possibility of level-1 KK top quarks being produced in the
cascade decays of the KK gluon and the KK quarks.
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mass as discussed in section 4.4.1 and the flavour constraints discussed in section 4.4.2.
Larger values ofR−1 would tend to make the level-2 KK top quark a little too heavy (. 1.5

TeV) to be explored at the LHC while if one requires the lighter level-1 KK top quark not
too light (. 300 GeV) which can be quickly ruled out by the LHC experiments even in
an nmUED scenario which we consider. Nonetheless, the lighter of the level-2 top quark
may anyway be heavy and only the level-1 top quarks remain to be relevant at the LHC.
In that case, larger values of R−1 also remain relevant.

Values of r′EW are so chosen as to have γ(1) as the LKP with masses around half a
TeV. This renders the level-2 electroweak gauge bosons to have masses around 1.5 TeV
thus making them possibly sensitive to searches for gauge boson resonances at the LHC
[138, 139]8.

In table 4.2 we also indicate the masses of the level-2 KK excitations. It is to be noted
that the lighter of the level-2 KK top quark may not be that heavy (. 1.5 TeV). Level-2
gluon, for our choices of parameters, is pushed to around 3 TeV and hence, unless their
couplings to quarks (SM ones or from level-1) are enhanced, LHC may be barely sensitive
to their presence. This is a rather involved issue which again warrants dedicated studies
and is beyond the scope of the present work.

For the first benchmark point (BM1) with R−1 = 1 TeV, the mass-splitting between
the two level-1 top quark states is much smaller (∼ 100 GeV) with a somewhat heavier
t
(1)
l when compared to the second case (BM2) for which R−1 = 1.5 TeV. We will see in

section 4.5 that such mass-splittings and the absolute masses themselves for the KK top
quarks have interesting bearing on their phenomenology at the LHC. Further, the relevant
couplings do change (see figures 4.4, 4.5 and 4.6) in going from one point to the other. The
third benchmark point BM3 is just BM1 but with different r′Y and min

t . BM3 demonstrates
a situation with enhanced Higgs-sector couplings and its ramifications at the LHC. It is
found that for all the three benchmark points, the coupling V (2)-f (0)-f (0) get enhanced
when level-2 W or Z boson is involved.

Note that the KK bottom quark masses are also governed by r′T and r′Y for a given
R−1. However, since the splitting between the two physical states at a given KK level is
proportional to the SM bottom quark mass, the KK bottom quarks at each given level are
almost degenerate (just as it is for the KK quark flavours from the first two generations) in

8The caveats are that these level-2 gauge bosons could have very large decay widths (exceptionally fat)
due to enhanced V (2)-f (0)-f (0) couplings as opposed to narrow-width approximation for the resonances
assumed in the experimental analysis [139] and hence need dedicated studies for them at the LHC [140].
Further, the involved assumption of a 100% branching fraction for the resonance decaying to quarks may
also not hold. These two issues would invariably relax the mentioned bounds on level-2 gauge bosons.
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mass unlike their top quark counterparts. Thus, some of the KK bottom quarks can have
masses comparable to those of the corresponding KK top quark states and hence would
eventually enter a collider study otherwise dedicated for the latter.
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BM1 R−1 = 1 TeV, r′G = −1, r′Q = −1.2, r′T = 1, r′Y = 0.5, r′EW = 1.5, r′L = 0.4, min
t = 173 GeV

Gauge mγ(1) = 556.9, mZ(1) = mA(1)0 = 564.4, mW (1)± = mH(1)± = 562.7, mg(1) = 1653.8

bosons mγ(2) = 1301.4, mZ(2) = mA(2)0 = 1304.6, mW (2)± = mH(2)± = 1303.9, mg(2) = 2780.2

& Higgs mH(1)0 = 570.8,mH(2)0 = 1307.4

mq(1) = 1711.5, mq(2) = 2816.9

Quarks m
phys
t = 172.6, m

t
(1)
l

= 620.4, m
t
(1)
h

= 714.5

& m
t
(2)
l

= 1359.6, m
t
(2)
h

= 1471.7

Leptons mb(1) = 638.3, mb(2) = 1395.8

ml(1) = 802.3, ml(2) = 1631.8

BM2 R−1 = 1.5 TeV, r′G = −0.1, r′Q = −1.1, r′T = 4, r′Y = 8, r′EW = 5.5, r′L = 2, min
t = 173 GeV

Gauge mγ(1) = 487.3, mZ(1) = mA(1)0 = 495.7, mW (1)± = mH(1)± = 493.9, mg(1) = 1601.6

bosons mγ(2) = 1655.9, mZ(2) = mA(2)0 = 1658.4, mW (2)± = mH(2)± = 1657.8, mg(2) = 3200.8

& Higgs mH(1)0 = 503.0,mH(2)0 = 1660.6

mq(1) = 2527.5, mq(2) = 4200.2

Quarks m
phys
t = 172.4, m

t
(1)
l

= 504.2, m
t
(1)
h

= 813.3

& m
t
(2)
l

= 1366.3, m
t
(2)
h

= 2220.2

Leptons mb(1) = 561.9, mb(2) = 1706.6

ml(1) = 750.0, ml(2) = 1865.1

BM3 Input values same as in BM1 except for r′Y = 5 and min
t = 176 GeV

Gauge
bosons Masses same as in BM1

& Higgs

Quarks Masses same as in BM1 except for mphys
t = 173.4 and

& m
t
(1)
l

= 626.3, m
t
(1)
h

= 710.5

Leptons m
t
(2)
l

= 1350.7, m
t
(2)
h

= 1488.6

Table 4.2: Masses (in GeV) of different KK excitations in three benchmark scenarios. With r′H = r′EW, the
level-1 Higgs boson masses are very much similar to the masses of the level-1 electroweak gauge bosons.
Choices of the input parameters satisfy the experimental bounds discussed earlier.
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4.5 Phenomenology at the LHC

Given the nontrivial structure of the top quark sector of the nmUED it is expected that the
same would have a rich phenomenology at the LHC. A good understanding of the same
requires a thorough study of the decay patterns of the KK top quarks and their production
rates. In this section we discuss these issues at the lowest order in perturbation theory.

Towards this we implement the scenario in MadGraph 5 [88] using Feynrules ver-
sion 1 [89] via its UFO (Univeral Feynrules Output) [90, 91] interface. This now contains
the KK gluons, quarks (including the top and the bottom quarks), leptons9 and the elec-
troweak gauge bosons up to KK level-2. Level-1 and level-2 KK Higgs bosons are also in-
corporated. The mixings in the quark sector, including ‘level-mixing’ between KK level-2
and level-0, have now been incorporated in a generic way. In this section we discuss these
with the help of the benchmark scenarios discussed in section 4.4.4. We then consolidate
the information to summarize the important issues in the search for such excitations at
the LHC.

4.5.1 Decays of the KK top quarks

Decays of the KK top quarks are mainly governed by the two input parameters, r′T and
r′EW, for a given value of R−1 10. The dependence is rather involved since these two pa-
rameters not only determine the spectra of the KK top quarks and the KK electroweak
gauge bosons but also the involved couplings. The latter, in turn, are complicated func-
tions of the input parameters as given by equation 4.23 and as illustrated in figures 4.4,
4.5 and 4.6. In the following, we briefly discuss the possible decay modes of the KK top
quarks and the significance of some of them at the LHC. In table 4.3 we list the branching
fractions for the three benchmark points presented earlier in table 4.2. For our choices of
input parameters, two decay modes are possible for t(1)

l : t(1)
l → bW (1)+ and t

(1)
l → bH(1)+ .

Decays to tZ(1)/tγ(1)/tH(1)0/tA(1)0 are also possible when the mass-splitting between t
(1)
l

and Z(1)/γ(1)/H(1)0/A(1)0 is larger than the mass of the SM-like top quark. In our sce-
nario, its decays to b

(1)
l and b

(1)
h are prohibited on kinematic grounds. Unlike in some

competing scenarios (like the MSSM) where channels like, say, t̃1 → bχ+
1 and t̃1 → tχ0

1)
could attain a 100% branching fraction, the spectra of the involved KK excitations in our
scenario would not allow t

(1)
l decaying exclusively to either bW (1)± or tγ(1). The reason

9 The KK leptons would eventually get into the cascades of the KK gauge bosons.
10In the present analysis, the level-1 KK gluon is taken to be heavier than all three KK top quark states

that are relevant for our present work, i.e., the two level-1 and the lighter level-2 KK top quarks.
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behind this is that W (1)± and γ(1) are rather close in mass and hence if decays to tγ(1) is
allowed, the same to bW (1)+ is also kinematically possible. Further, even the latter mode
has to compete with t

(1)
l → bH(1)+ as mW (1)± ≈ mH(1)± . Translating constraints on such

KK top quarks from those obtained in the LHC-studies of, say, the top squarks is not at
all straight-forward since the latter explicitly assume either t̃1 → bχ+

1 = 100% [141, 142]
or t̃1 → tχ0

1 = 100% [142]. Further, W (1)± (and also Z(1)), being among the lighter most
ones of all the level-1 KK excitations, would only undergo three-body decays to LKP (γ(1))
accompanied by leptons or jets that would be rather soft because of the near-degeneracy
of the masses of the level-1 KK gauge bosons. This would lead to loss of experimental
sensitivity for final states with more number of hard leptons and jets [141].

The situation with t(1)
h is not qualitatively much different as long as decay modes sim-

ilar to t(1)
l are the dominant ones. This is the case with BM1. Under such circumstances,

they could turn out to be reasonable backgrounds to each other (if their production rates
are comparable) and dedicated studies would be required to disentangle them. In any
case (even in the absence of good discriminators), simultaneous productions of both t

(1)
l

and t
(1)
h would enhance the new-physics signal. On the other hand, in a situation like

BM2, more decay modes may be available to t(1)
h although decays to level-1 bottom and

top quarks along with SM W± and Z are the dominant ones. The ensuing cascades of
these states would inevitably make the analysis challenging. However, under favorable
circumstances, reconstructions of the W± and/or Z bosons along with b- and/or top-
tagging could help disentangle the signals. Thus, it appears that search for level-1 KK top
quarks involves complicated issues (some of which are common to top squark searches
in SUSY scenarios) and a multi-channel analysis could turn out to be very effective.

We now turn to the case of level-2 top KK top quarks. The lighter of the two states,
t
(2)
l can have substantial rates at the LHC which is discussed in some detail in section

4.5.2. This motivates us to study the decay patterns of t(2)
l . In the last column of table 4.3

we present the decay branching fractions of t(2)
l . As can be seen, the decay modes that

are usually enhanced involve a pair of level-1 KK excitations which would cascade to
the LKP. We, however, strive to understand to what extent t(2)

l , being an even KK-parity
state, could decay directly to a pair of comparatively light (level-0) particles (and hence,
boosted) comprising of an SM fermion and an SM gauge/Higgs boson11. Thus, in the
one hand, these decay products are unlikely to be missed in an experiment while on the
other hand, new techniques to reconstruct (like the study of jet substructure [143, 144]

11These may be contrasted with the popular SUSY scenarios (sparticles carrying odd R-parity) where
such possibilities are absent.
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BM1 t
(1)
l → bW (1)+ = 0.597 t

(1)
h → bW (1)+ = 0.615 t

(2)
l → b

(1)
h W (1)+ = 0.351

bH(1)+ = 0.403 bH(1)+ = 0.370 t
(1)
h A(1)0 = 0.177

t
(1)
l Z = 0.016 bW+ = 0.062

tH = 0.062

b
(1)
h H(1)+ = 0.057

b
(1)
l H(1)+ = 0.055

tZ = 0.031

BM2 t
(1)
l → bH(1)+ = 0.842 t

(1)
h → b

(1)
h W+ = 0.305 t

(2)
l → t

(1)
h A(1)0 = 0.377

bW (1)+ = 0.158 t
(1)
l Z = 0.180 b

(1)
h H(1)+ = 0.208

b
(1)
l W+ = 0.141 b

(1)
l H(1)+ = 0.200

tA(1)0 = 0.130 t
(1)
l H(1)0 = 0.109

t
(1)
l H = 0.126 t

(1)
l A(1)0 = 0.055

bH(1)+ = 0.069 tH = 0.014

bW (1)+ = 0.020 bW+ = 0.0022

tH(1)0 = 0.015 tZ = 0.00058

BM3 t
(1)
l → bH(1)+ = 0.946 t

(1)
h → bH(1)+ = 0.941 t

(2)
l → tH = 0.448

bW (1)+ = 0.054 bW (1)+ = 0.060 t
(1)
l A(1)0 = 0.102

t
(1)
h A(1)0 = 0.092

t
(1)
l H(1)0 = 0.082

t
(1)
h H(1)0 = 0.063

bW+ = 0.046

tZ = 0.022

Table 4.3: Decay branching fractions of different KK top quarks for the three benchmark points presented
in table 4.2. Modes having branching fractions less than about a percent are not presented except for the
ones with a pair of SM particles in the final state. Tree level decays of t(2)l to SM states are shown in bold in
the right-most column.

etc.) some of them have to be employed.

In scenario BM1, the total decay branching fraction to SM states (shown in bold) is
just about 15% while in scenario BM2 such decays are practically absent. Given the large
phase space available, such small (or non-existent) decay rates to SM particles can only
be justified in terms of rather feeble (effective) couplings among the involved states. The
couplings of t(2)

l to the SM gauge bosons and an SM fermion would have vanished (due
to the orthogonality of the mode functions involved) had t

(2)
l been a pure level-2 state.

The smallness of these couplings thus readily follows from the tiny admixture of the SM
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Figure 4.11: Region in r′T − r′EW plane where the decays t(2)l → t
(1)
l γ(1), t

(1)
l Z(1), b

(1)
l W (1)+ are kinemat-

ically prohibited (in yellow), γ(1) is the LKP with mγ(1) > 400 GeV (in red) and m
t
(2)
l

< 1.5 TeV (in blue).
The entire region shown is compatible with the acceptable range of the mass of the top quark and other
precision constraints.

top quark in the physical t(2)
l state and thus, results in its small branching fractions to SM

gauge bosons. The same argument does not hold for the corresponding coupling t(2)
l -t-H

that controls the other SM decay mode of t(2)
l , i.e., t(2)

l → tH . However, it is clear from
figure 4.6 that this coupling is going to be small for both the benchmark points BM1 and
BM2.

Since direct decays of t(2)
l to SM states could provide the ‘smoking guns’ at the LHC

in the form of rather boosted objects (top and bottom quarks, Z, W± and Higgs boson)
that could eventually be reconstructed to their parent, this motivates us to study if such
decays can ever become appreciable. We find that the coupling t(2)

l -t-H gets significantly
enhanced with a slight modification in the parameters of BM1 (called BM3 in table 4.2)
by setting r′Y = 5 (see figure 4.6) and min

t = 176 GeV while keeping other parameters
untouched and still satisfying all the experimental constraints that we discussed. As we
can see, the branching fraction to tH final state could attain a level of 50% which should
be healthy for the purpose. Efficient tagging of boosted top quarks [145–148] and boosted
Higgs bosons [149] would hold the key in such a situation. Some such techniques have
already been proposed in recent literature [112], in particular, in the context of vector-like
top quarks or more generally, in the study of ‘top-partners’.

On the other hand, since the t(2)
l -t-Z and t

(2)
l -b-W± are dynamically constrained, these

could only get enhanced if the competing modes (decays to a pair of level-1 KK states)
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g(2)

q/g

q/g

t
(2)
l,h

t(0)

g(2)

q/g

q/g

t
(1)
l

t
(1)
h

�(2), Z(2)(Z), �(2), Z(2)

Figure 4.12: Feynman diagrams for the associated t(2)l − t(0) (left) and t(1)l − t
(1)
h productions at the LHC.

The gluon-initiated processes are only mediated by g(2) while the quark-initiated processes are mediated
by both g(2) and other electroweak gauge bosons from level-0 (Z) and level-2 (γ(2), Z(2)).

face closure. As the couplings involved in the latter cases are generically of SM strength,
these could only be effectively suppressed by having them kinematically forbidden. From
figure 4.11 we find that, by itself, this is not very difficult to achieve (in yellow shade) over
the nmUED parameter space. However, rather conspicuously, the simultaneous demands
for the KK photon to be the LKP with mγ(1) > 400 GeV (the red-shaded region) and that
of m

t
(2)
l
< 1.5 TeV (in blue shade) leave no overlapping region in the nmUED parameter

space. It may appear that one simple way to find some overlap is by moving down
in r′T . However, this implies t(2)

l becomes more massive thus loosing in its production
cross section in the first place. Although the interplay of events that leads to this kind
of a situation is not an easy thing to follow, the issue that is broadly conspiring is the
similarity in the basic evolution-pattern of the masses of the KK excitations as functions
of the BLKT parameters (see figure 4.1 and ref. [82]).

4.5.2 Production processes

In this section we discuss different production modes of the KK top quarks at the 14 TeV
(the design energy) LHC with reference to the nmUED parameter space. These are of
following four broad types (in line with top squark phenomenology in SUSY scenarios):

• the generic mode with two top quark excitations in the final state that receives con-
tributions from processes involving both strong and electroweak interactions,

• exclusively electroweak processes leading to a single top quark excitation

• the associated production of a pair of KK top quarks and the (SM) Higgs boson and

• production from the cascades of KK gluons and KK quarks.
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Figure 4.13: Cross sections (in picobarns, at tree level) for different production processes involving the
KK top quarks as functions of r′T at the 14 TeV LHC for R−1 = 1.5 TeV (left) and R−1 = 2 TeV (right),
r′Y = 3, r′G = 0.5 and the other parameters are chosen as in the BM2. CTEQ6L1 parton distributions [150]
are used and the factorization/renormalization scale is set at the sum of the masses in the final state.

Final states with a pair of top quark excitations

These are the processes where two similar or different kind of top quark excitations are
produced in the final state. The interesting modes in this category are pair-production
of t(1)

l and t
(1)
h along with the associated productions of t(1)

l t
(1)
h and t

(2)
l t. The latter two

processes are possible in an nmUED scenario and the corresponding Feynman diagrams
are presented in figure 4.12. Note that the requirement of current conservation does not
allow the massless SM gauge bosons (gluon and photon) to mediate these processes while
the pair-productions receive contributions from all possible mediations. Also, these two
associated production modes have no counter-parts in a competing SUSY scenario like
the MSSM. In figure 4.13 we illustrate the variations of the rates for these processes with
r′T for R−1=1 TeV (left) and 2 TeV (right). As can be seen, pair production of t(1)

l , has by
far the largest cross section for r′T & 3 reaching up to 10 (1) pb for R−1 = 1.5 (2) TeV. This
is not unexpected since t(1)

l is the lightest of the KK top quarks. In this regime, the yields
for t(1)

h -pair and t(1)
l t

(1)
h associated productions are very similar touching 1 (0.1) pb for R−1

= 1.5 (2) TeV. The corresponding rates for t(2)
l t associated production do not lag much

notching 0.5 (0.05) pb, respectively. Further, the t(2)
l -pair has a trend similar to that of the

t
(1)
l -pair in this respect but, rate-wise, falls out of the competition.

Note that with increasing r′T masses of all the KK states decrease. Interestingly enough,
this effect is reflected in a straight-forward manner only in the case of t(1)

l -pair for which
the rates increase with growing r′T . For other competing processes mentioned above, the
curves flatten out. This behavior signals non-trivial interplays of the intricate couplings
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Benchmark t
(1)
l t̄

(1)
l t

(1)
l t̄

(1)
h t

(1)
h t̄

(1)
h tt̄

(2)
l

(pb) (pb) (pb) (pb)

BM1 0.63 0.10 0.35 0.07

BM2 2.24 0.35 0.76 0.21

BM3 0.76 0.11 0.30 0.07

Table 4.4: Production cross sections (in picobarns, at tree level) for different pairs of KK top quarks
for the benchmark points. Contributions from the Hermitian conjugate processes are taken into account
wherever applicable. The choices for the parton distribution and the scheme for determining the factoriza-
tion/renormalization scale are the same as in figure 4.13.

involved. These have much to do with when all these rates become comparable for r′T . 3
12. In the process, the rate for usual tt̄ pair production also gets affected to some extent.
However, our estimates are all being at the tree level, these do not pose any immediate
concern while facing the measured tt̄ cross section which is much larger and agrees with
its estimation at higher orders in perturbation theory. Also, in table 4.4 we present the
cross sections for the three benchmark points. The bottom-line is that the production rates
of three different KK top quark excitations remain moderately healthy over favorable
region of the nmUED parameter space at a future LHC run. With the knowledge of their
decay patterns (see table 4.3) and the associated features discussed in section 4.5.1 it is
required to chalk out a strategy to reach out to these excitations.

Single production processes

We consider two broad categories of single production of KK top quarks which are closely
analogous to single top production in the SM once the issue of KK-parity conservation is
taken into account. In the first case, a level-1 KK top quark is produced in association with
level W (1)± or b(1) quark. The second one involves the lighter of the level-2 KK top quarks
along with an SM W± boson or an SM bottom quark. The generic, tree-level Feynman
diagrams that contribute to the processes are presented in figure 4.14.

Single production of level-1 top quarks: Single production of level-1 top quarks along
with a level-1W± boson proceeds via gb fusion in s-channel and gb scattering in t-channel.

12It may be noted in this context that an effective SU(3) coupling involving a set of KK excitations is
not necessarily stronger than the effective electroweak coupling among them and these might even have
relative signs between them (see figures 4.4, 4.5 and 4.6). Thus, contributions from different mediating
processes heavily depend on the nmUED parameters.
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Figure 4.14: Generic Feynman diagrams for the single production of a KK top quark along with KK
excitations of W± boson (upper panel) and KK bottom quark (lower panel) at the LHC. Superscripts m and
n standing for the KK levels can be different (like ‘0’ and ‘2’) but should ensure KK-parity conservation.

Benchmark t
(1)
l W (1)− t

(1)
l b̄

(1)
l t

(2)
l b t

(1)
l t̄

(1)
l H t

(1)
l t̄

(1)
h H t

(1)
h t̄

(1)
h H tt̄

(2)
l H tt̄H

(pb) (pb) (pb) (pb) (pb) (pb) (pb) (pb)

BM1 0.01 0.11 0.11 ∼ 10−5 ∼ 10−4 ∼ 10−3 0.03 0.24

BM2 0.04 0.21 0.13 0.73 5.39 0.17 0.11 1.25

BM3 ∼ 10−3 0.23 0.11 ∼ 10−4 ∼ 10−3 0.01 0.04 2.21

Table 4.5: Cross sections (in picobarns, at tree level) for single and (SM) Higgs-associated KK top quark
productions for the benchmark points. The mass of the SM Higgs boson is taken to be 125 GeV. Contri-
butions from the Hermitian conjugate processes are taken into account wherever applicable. The choices
for the parton distribution and the scheme for determining the factorization/renormalization scale are the
same as in figure 4.13.

The rates are at best a few tens of femtobarns as can be seen from table 4.5. On the other
hand, the mode in which a level-1 bottom quark is produced in association proceeds
through s-channel fusion of light quarks and propagated by W± and W (2)± bosons. The
cross sections are found to be rather healthy ranging from 110 fb to 230 fb. The observed
rates for t(1)

l W (1)± production appear to be consistently lower than that for t(1)
l b

(1)
l produc-

tion. This can be traced back to the presence of enhanced q-q′-W (2)± coupling. Moreover,
cross sections for other combinations involving heavier states of t(1) and b(1) in the final
state could have comparable strengths because of such enhanced couplings.
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Figure 4.15: Generic Feynman diagrams for the associated (SM) Higgs production along with a pair of
KK excitations of the top quark. Superscripts k, m and n can be different (like 0 and 2) but should ensure
KK-parity conservation.

Single production of level-2 top quark: The associated t(2)
l W− production involves the

vertex t(2)
l -W±-b which, as we discussed earlier (see sections 4.3.4 and 4.5.1), vanishes but

for a small admixture of level-0 top in the physical state t(2). Hence, the rates in this mode
turn out to be insignificant. Further, theW±-mediated diagram in the associated t(2)

l b pro-
duction also has the same vertex and thus contributes negligibly. The only contribution
here comes from the diagram mediated by W (2)± which is somewhat massive. Thus, the
prospect of having healthy rates for the single production of t(2) depends entirely on the
coupling strength t

(2)
l -W (2)±-b and W (2)±-q-q (see figure 4.4). Fortunately, this is the case

here and the cross sections for all three benchmark points, as can be seen from table 4.5,
are above and around 100 fb.

We also looked into the production of t(2)
l along with light quark jets which is analo-

gous to, by far the most dominant, ‘t-channel’ single top production process (the so-called
W -gluon fusion process) in the SM. However, in our scenario, such a process with some-
what heavy t(2)

l yields a few tens of a femtobarn for all the three benchmark points.

For both the categories mentioned above, the new-physics contributions to the corre-
sponding SM processes are systematically small. This is since these contain the couplings
that involve level-mixing effect in the top-quark sector which is not large.

Associated production of KK top quarks with the SM Higgs boson

The associated Higgs production processes we consider involve both light and heavy
level-1 top quarks in pairs and the level-2 lighter top quark along with the SM top quark.
The generic tree level Feynman diagrams are presented in figure 4.15. Given that the
study of the SM tt̄H production is by itself complicated enough, it is only natural to
expect that the same with its KK counterparts would not be any simpler. Cross sections
for such processes are listed in table 4.5 for the benchmark points we consider. To have
a feel about the their phenomenological prospects, these can be compared with similar
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processes in the SM and a SUSY scenario like the MSSM. In the MSSM, the lowest order
cross section is around a few tens of a fb for the process t̃1t̃∗1H with mt̃1 ≈ 300 GeV and
for the most favorable values of the involved couplings [151, 152] while for the SM the
corresponding rate is about 430 fb [153, 154]. It is encouraging to find that the yield for
tt

(2)
l H is either comparable (for BM1 and BM3) or larger (BM2) than what can at best be

expected in MSSM. Note that the level-1 lighter KK top quark is somewhat heavier (with
mass around or above 500 GeV) for our benchmark points when compared to the mass of
the top squark as indicated above. For other processes, BM2 consistently leads to larger
cross sections. The interplay of different Feynman diagrams (see figure 4.15) along with
the modified strengths of the participating gauge and Yukawa interactions play roles in
some such enhancements.

In the last column of table 4.5 we indicate the lowest order cross sections for the SM
process tt̄H which now gets affected in an nmUED scenario. Note that for BM1 the cross
section is smaller than the SM value of≈ 430 fb while for BM2 and BM3 the same is about
3 and 5 times as large, respectively. Such deviations can be expected if we refer back to
the left panel of figure 4.6 that illustrates how the t-t̄-H coupling gets modified over the
nmUED parameter space. Note that, non-observation of such a process at the LHC, till
recently, could only restrict the rate up to around five times the SM rate [118–120]. Thus,
benchmark point BM3, as such, can be considered as a borderline case. But given that
tt̄H cross section depends on other nmUED parameters like r′G, r′Q etc., one could easily
circumvent this restriction without requiring a compromise with the parameters like r′T
and r′Y that define the essential feature of BM3, i.e., the enhanced couplings among the
top quark excitations and the SM Higgs boson. It is interesting to find that in favorable
regions of parameter space, the cross section for Higgs production in association with
a pair of rather heavy KK top quarks could compare with or even exceed the tt̄H cross
section. Note that in the MSSM, such enhancement only happens for large mixing in
the stop sector and when mt̃1 < mt [152]. Further, once the level-1 KK Higgs bosons
are taken up for studies, the associated production of a charged KK Higgs boson (from
level-1) in the final state bt(1)

l H(1)± would become rather relevant and may turn out to
be interesting as the total mass involved in this final state can be comparatively much
lower. The prospect there depends crucially on the strength of the involved 3-point vertex
though.
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Production of KK top quarks under cascades

KK gluon(s) and quarks, once produced, can cascade to KK top quarks. This would result
in multiple top quarks (upto four of them) in the final state at the LHC. In our benchmark
scenarios where mg(1) < mq(1) , KK gluons would directly decay to KK top quarks while
KK quarks from the first two generations would undergo a two-step decay via KK gluon
to yield a KK top quark. The latter one has thus suppressed contribution. We find that
the branching fraction for g(1) → t(1)t is around 50% for all three benchmark points (the
rest 50% is to level-1 bottom quark states). With strong production rates for the g(1)-pair,
g(1)q(1) and q(1)-pair ranging between 0.01 pb to 2.6 pb (in increasing order), the yield of a
single level-1 KK top final state could be anywhere between 10 fb to a few pb. These seem
quite healthy. However, one has to cope with backgrounds which now have enhanced
level of jet activity.

4.6 Conclusions and outlook

We discuss the structure and the phenomenology of the top quark sector in a scenario
with one flat extra spatial dimension orbifolded on S1/Z2 and containing non-vanishing
BLTs. The discussion inevitably draws reference to the gauge and the Higgs sectors. The
scenario, by construct, preserves KK-parity.

The main purpose of the present work is to organize and work out the necessary de-
tails in the involved sectors and explore the salient features with their broad phenomeno-
logical implications in terms of a few benchmark scenarios. This lay down the basis for
future, detailed studies of such a top quark sector at the LHC.

The masses and the couplings of the Kaluza-Klein excitations are estimated at the low-
est order in perturbation theory as functions of R−1 and the BLT parameters. For the KK
top quarks, the extended mixing scheme (originating in the Yukawa sector) is thoroughly
worked out by incorporating level-mixing among the level-0 and the level-2 KK top quark
states, a phenomenon that is not present in the popular mUED scenario. In addition, un-
like in the mUED, tree-level couplings that violate KK-number (but conserve KK-parity)
are possible. We demonstrate how all these new effects, together, attract constraints from
different precision experiments and shape the phenomenology of such a scenario.

The nmUED scenario we consider has eight free parameters: R−1 and the scaled (by
R−1) BLT coefficients r′Q, r′L, r′T , r′Y , r′G, r′EW (= r′W = r′B = r′H) and min

t . However, in the
present study, the most direct roles are played by r′T , r′Y and r′EW (= r′H) in conjunction
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with R−1. r′Q and r′G play roles in the production processes by determining some relevant
gauge-fermion couplings beside controlling the KK quark and gluon masses, respectively.
On the other hand, r′L and min

t only play some indirect roles through their influence on
the experimentally measured effects that determine the allowed region of the parameter
space.

The scenario has been thoroughly implemented in MadGraph 5. Three benchmark
scenarios that satisfy all the relevant experimental constraints are chosen for our study.
These give conservatively light KK spectra with sub-TeV masses for both level-1 elec-
troweak KK gauge bosons (with γ(1) as the LKP) and the KK top quarks while having the
lighter level-2 top quark below 1.5 TeV thus making them all relevant at the LHC. Level-1
KK quarks from the first two generations and the KK gluon are taken to be heavier than
1.6 TeV.

Near mass-degeneracy of the electroweak KK gauge bosons and the KK Higgs bosons
(at a given KK level) is a feature. This influences the decays of the KK top quarks. The
lighter of the level-1 KK top quark can never decay 100% of the time to a top quark and
the LKP photon. This is in sharp contrast to a similar possibility in a SUSY scenario like
the MSSM when a top squark can decay 100% of the time to a top quark and the LSP neu-
tralino, an assumption that is frequently made by the LHC collaborations. Instead, such a
KK top quark has significant branching fractions to both charged KK Higgs boson and to
KK W bosons at the same time. Further, split between the KK top quark and the KK elec-
troweak gauge bosons that is attainable in the nmUED scenario would generically lead to
hard primary jets in the decays of the former. This is again in clear contrast to the mUED
scenario. However, near mass-degeneracy prevailing in the gauge and the Higgs sector
would still result in rather soft leptons/secondary jets. Limited mass-splitting among the
KK gauge and Higgs bosons is a possibility that has non-trivial ramifications and hence
needs closer scrutiny.

The level-2 KK top quark we consider can decay directly to much lighter SM particles
like the W , the Z, the Higgs boson and the top quark. These would then be boosted
and hence may serve as ‘smoking guns’. Recent studies of the vector-like top partners
[155–157] are in context. However, these studies mainly bank on their pair-production
and decays that comprise only of pairs of SM particles like bW± and/or tZ and/or tH . In
the nmUED model that we consider, these are always accompanied by other modes that
may be dominant as well. The level-2 top quark decaying to a pair of level-1 KK states is
one such example.

Thus, phenomenology of the KK top quarks could turn out to be rather rich (and com-
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plex) at the LHC. Clearly, strategies tailor-made for searches of similar excitations under
different scenarios could at best be of very limited use. Even recasting the analyses for
some of them to the nmUED scenario is not at all straight-forward. This calls for a dedi-
cated strategy that incorporates optimal triggers and employs advanced techniques like
analysis of jet-substructures etc. to tag the boosted objects in the final states.

In any case, viability of a dedicated hunt depends crucially on optimal production
rates. We study these for the 14 TeV run of the LHC. For all the possible modes in which
KK top quarks can be produced (like the pair-production, the single production and the
associated production with the SM Higgs boson), the rates are found to be rather encour-
aging and may even exceed the corresponding MSSM processes, a yard-stick that can
perhaps be used safely (with a broad brush, though) for the purpose.

The LHC experiments are either already sensitive or will be achieving the same soon in
the next run for all the generic processes discussed in this work. Given that the nmUED
provides several top quark KK excitations with different characteristic decays and pro-
duction rates, the sensitivity to them can only be increased if multi-channel searches are
carried out. It is thus possible that the LHC, running at its design energy of 14 TeV (or
even a little less), finds some of these states. However, concrete studies with rigorous
detector-level simulations are prerequisites to chalking out a robust strategy.

Last but not the least, the intimate connection between the top quark and the Higgs
sectors raises genuine curiosity in the phenomenology for the KK Higgs bosons as well.
The nmUED Higgs sector holds good promise for a rather rich phenomenology at the
LHC which has become further relevant after the discovery of the ‘SM-like’ Higgs boson
and hence can turn out to be a fertile area to embark upon.
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Chapter 5

Broad resonances at the LHC and the
nmUED

5.1 Introduction

Appearance of new, heavy vector bosons is common in extensions of the SM [158, 159].
These can be associated with a new gauge group which is spontaneously broken as in
the case of Grand Unified theories or extensions of the SM at the weak scale with, say,
an additional U(1) gauge group. New vector bosons also appear in theories with extra
dimensions like the Randall-Sundrum (RS) or the UED scenarios and models based on
Little Higgs mechanism where these are the partners of the SM Z and W± bosons and
the photon. From both phenomenological and experimental point of view, these exotic
particles are exciting enough as they can be produced as resonances which decay to a pair
of SM leptons or quarks. Accordingly, they are expected to show up through the bumps
in the spectra of dilepton and/or dijet invariant mass similar to the cases of the Z or
W± boson of the SM. Out of these, the Drell-Yan type dilepton final state is exceptionally
clean even at the hadron colliders. Thus, search for such new heavy vector bosons has
remained to be an integral part of the ‘new physics’ programme at the colliders. The LHC
is not an exception and constraints on such sectors have already started arriving from it.

One major area of research involves new resonances that are weakly interacting. Stud-
ies of Z ′ boson associated with an extra U(1) gauge group is a concrete example. Nat-
urally, such an excitation has a small decay width (i.e., a narrow resonance). As is well
known, this simplifies the situation from both theoretical and experimental point of view.
On the one hand, the so-called “Narrow Width Approximation” (NWA) can be applied in
the theoretical analysis of its production and subsequent decays thus simplifying the cal-
culation and the computation/simulation. On the other hand, in experiments one expects
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a narrow but a sharp peak to be searched for. Such a setup has become so standard that
deviation from this has not attracted due attention until very recently. Attempts are now
being made to understand possible ramifications of broad resonances for phenomenolog-
ical analyses and experimental programmes.

“Narrow-” or “broad-”ness of a resonance is understood in terms of the ratio of its
total (decay) width to mass (Γ/M ). As can be appreciated, the basis of such an attribute
is not sharp. For example, various popular Z ′ scenarios discussed in the literature and
frequently been taken up by the experimental collaborations to put bounds on have Γ/M

ratios ranging between 0.5% to 3% [160]. The latter number corresponds to the Z ′ boson
of the so-called sequential standard model (SSM) for which the involved Z ′ couplings are
identical to that of the SM Z boson. Clearly, the SSM Z ′ has the largest Γ/M ratio (the Γ/M

ratio for the SM Z boson is in the same ballpark, as can be expected) and considered to
be reasonably narrow. Thus, for a long time there had been hardly any popular scenario
which genuinely represents the “broad" width case. This is the situation on the ground
although couplings ranging from extremely weak to strong are theoretically possible for
such Z ′-like states [160].

Over the last few years, it is realized how “broad” resonances could naturally emerge
in scenarios like the RS [140] and very recently, in the so-called non-minimal UED
(nmUED) scenario [82]. These immediately highlighted the practical limitations of the
NWA on both theoretical and experimental grounds and shed light on possible new is-
sues and phenomena which need to be addressed for the case of such “broad” resonances.
Our ongoing study involving “broad” resonances draws motivation from the nmUED
scenario which offers multiple such resonances at KK level-2. However, to present the
related issues we choose the SSM Z ′ as a starting point and turn it to a suitably “fat” state
by altering its coupling to SM fermions. This approach is convenient on two counts: first,
one can have a neat control over the width as the coupling is varied and then, it is pos-
sible to use a popular event generator like Pythia with some minimal modification in its
existing implementation of the scenario.

The rest of this chapter is organized as follows. In section 5.2 we briefly outline our
setup based on an analysis of a Z ′-like state whose couplings can be tuned to modify its
decay width thus eventually obtaining a broad enough Z ′ state suitable for our study.
Such a broad excitation immediately calls for improvement of the scheme of analytical
calculation which we discuss briefly. In section 5.3 we present the focus of our study
given current experimental bounds. We then present some preliminary results. In section
5.4 we collect some important observations and present the outlook of this continuing
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study in reference to the level ‘2’ gauge bosons of the nmUED scenario. We like to point
out at this stage that the current chapter presents an ongoing work and the results are
preliminary in nature.

5.2 The setup

We demonstrate the basic issues pertaining to a broad Z ′ resonance in the following min-
imal setup:

• Z ′ couples to the SM fermions only; no coupling with the gauge bosons or the Higgs
boson is included.

• The Lorentz structure of the coupling to SM fermions is exactly that is present in the
SM, i.e., ieγµ(vi − aiγ5)

• Deviations from the SM is obtained by simple scaling: vi → αivi and ai → βiai, for
the ‘i’-th generation.

The total decay width of a resonance like Z ′ (ΓZ′) controls its phenomenology in sev-
eral ways through the Breit-Wigner (BW) type propagator. The resonant (2 → 1) cross
section at a hadron collider is given by

σ =

∫ ∫
dτ

τ
dy x1f1(x1, Q

2)x2f2(x2, Q
2) σ̂(ŝ)

where σ̂(ŝ) is the parton-level cross section convoluted with the parton densities f1(x1, Q
2)

and f2(x2, Q
2) to yield the total cross section σ(s), x1 and x2 being the momenta-fraction

carried by the colliding partons, τ = ŝ
s

= x1x2, y = 1
2

ln x1
x2

and Q2 = ŝ. ŝ is the partonic
center-of-mass energy. In the zero-width approximation, σ̂(ŝ) ∝ δ(ŝ − m2

R), where mR

is the mass of the resonance. Using a scaled mass τR = m2
R/s the modified δ-function

becomes δ(τ − τR). Usually, this δ-function is replaced by the appropriate Breit-Wigner
shape and for a constant resonance width ΓR, this is obtained by

δ(τ − τR)→ s

π

mRΓR

(sτ −m2
R)

2
+m2

RΓ2
R

.

However, as we know, the total width (ΓR) is not a Lorentz invariant quantity and thus
would vary with ŝ. Implementing an ŝ-dependent width would provide an improved de-
scription of the resonance shape. In an event generator like Pythia, such an ŝ-dependence
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of ΓR is introduced via a quantity HR(ŝ) and the the modified Breit-Wigner is written
as [161]

δ(τ − τR)→ s

π

HR(sτ)

(sτ −m2
R)

2
+H2

R(sτ)

where HR is obtained by summing over all possible final-state channels.
For large widths (Γ/M > 10− 15%) that are envisaged, a more precise estimate should

involve renormalization of the two-point vertex function at one loop. This has been car-
ried out by including wave-function renormalization in the on-shell scheme and assum-
ing only SM fermions running in the loops. The improved propagator has the following
form:

1

(1−Re [Π′T (m2
R)]) (ŝ−m2

R) + ΠT (ŝ)−Re [ΠT (m2
R)]

where ΠT (ŝ) relates to the running decay width of the resonance and corresponds to the
last term in the denominator of the earlier equation above. Terms indicated as the real
parts of some self-energies are the direct outcomes of wave-function renormalization (in
the on-shell scheme). We consider only the transverse part as the longitudinal part is
negligible with lighter fermions in the initial state. We have incorporated this form of the
propagator in Pythia 6. Later in this chapter, we would demonstrate how the treatments
of the propagator in going from the simple on-shell Breit-Wigner scheme to Pythia’s in-
built energy-dependent one and then finally to the fully renormalized two-point function
affect the quantitative estimates when the resonance is broad.

5.3 The focus of the study

The ongoing study focusses on the phenomenology of s-channel gauge boson resonances
from the electroweak sector that have comparatively large total widths and for which
NWA fails. Large widths could affect the phenomenology in various ways. It would re-
sult in broadened mass peaks thus affecting the sensitivity of kinematic selection criteria
originally tailored for narrow resonances. The overall rates are also altered. Further, as
has been recently stressed in ref. [162], contribution to new physics is, in general, depen-
dent on known physics, i.e., there may be significant interference between the two, even
when the respective widths of the resonances are small. Interfering Z ′ and SM Z medi-
ated diagrams for a dilepton/dijet final state is a concrete example. The nature and the
amount of interference can indeed be governed by the size of the total width. We will il-
lustrate this issue in the next section. Moreover, the amount of interference depend on the
proximity of the resonances. In our toy example, the interference effect demonstrated is
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between an SM Z-mediated diagram and a diagram with a possibly fat and much heav-
ier Z ′ (thus far away from the Z-pole). However, there are possible scenarios like the
nmUED where there could be two neighbouring resonances, with moderate to large de-
cay widths, that take part in the interference. This clearly presents a rather complicated
situation on every possible count: starting from the involved dynamics to the resultant
kinematic profile that these intricate issues could lead to.

In the present study, we focus on the Drell-Yan process of the type pp → Z,Z ′ →
µ+µ−. The electron final state is left out as it derives very strong constraints from LEP
(by referring to contact interactions) when the couplings of a Z ′-like state to electrons
get enhanced. In essence, our study is on the same footing as ref. [140] in this respect
and implicitly assumes family non-universal couplings in the leptonic sector. We take
careful note of the current bounds on such resonances from the LHC experiments [29,
163] run at 7 and 8 TeV. Note that these bounds are obtained by categorically assuming
narrow resonances and departure from that, under certain circumstances, could make the
interpretation for moderate to large-width resonances not so straight forward. Reasons
for this include the possibility of loss of sensitivity due to broadened peak(s), presence of
nontrivial interference effects that lower the rates and any combination of such issues. In
the next section, we present some preliminary results on the expectations at the 13 TeV run
of the LHC.

5.4 Simulation for the 13 TeV LHC

In the first part of the simulation study we take up the toy example of Z ′ boson to have
a general understanding of how a large width for it affects issues at the LHC. We then
follow it up by a preliminary study on the level-2 gauge bosons of the nmUED scenario.

5.4.1 The simulation setup

We use Pythia 6.4 [161] for simulation purpose. The default Pythia modules for study-
ing Z ′ physics are suitably modified to incorporate varying Z ′ couplings to SM fermions
as discussed in section 5.2. This in turn directly affects the width of the Z ′ boson. We
also incorporated Breit-Wigner propagators with fixed ΓR and the one resulted from fully
renormalized (at one loop order) propagator that includes wave-function renormaliza-
tion in the on-shell scheme as described in section 5.2. We retain the original Pythia
Breit-Wigner form which incorporates energy-dependent width. These help us draw a
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Figure 5.1: Dimuon invariant mass distribution for a Z ′ scenario of mass 3.0 TeV with coupling factor
3.0 times the SM Z coupling to fermions. Enhancement of cross section can be seen using our improved
propagator over the BW or Pythia propagators. The SM background is shown in black curve and can be
easily neglected. This is normalized to 100 fb−1 luminosity.

quantitative comparison among various propagator-forms for resonances with moderate
to large widths.

We use CTEQ6L parton distribution function. The factorization/renormalization scale
is set at M ′

Z . The following kinematic cuts are imposed:

• pµT > 30 GeV

• |η| < 2.5

• Mµ+µ− > 2 TeV: although for a broad resonance, setting such a flat cut on the invari-
ant mass on the muon-pair may not be optimal.

• To estimate the reach, we adopt a rather strict set of criteria: we demand a minimum
of 5 events with a significance equal to or larger than 5σ. We use the following
Poisson significance estimator formula

S =

√
2
(

(s+ b) log
(

1 +
s

b

)
− s
)

where ‘b’ stands for the number of expected background events while ‘s’ denotes
number of background-subtracted signal events.

5.4.2 General findings using a toy Z ′

With our toy Z ′ implementation in Pythia we are able to vary the couplings of the Z ′

boson to SM fermions freely. We thus have a direct control on its total width Γ′Z whose
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enhanced value plays a central role in the phenomenology of such resonances. We ob-
served that up to a coupling scale factor of 2, the Breit-Wigner (BW) form implemented
in Pythia gives reliable results. However, for couplings larger than that, the effect of the
improved propagator implemented by us becomes noticeable. Use of this may lead to a
10-20% enhancement in the production cross sections. Also, it is important to note that
the resonance peaks shift further to the side of the small invariant mass. The overall res-
onance shape gets tilted with an enhanced low-mass tail at the cost of the same in the
high-mass region. This is illustrated in figure 5.1 where three different implementations
of the propagator are compared.

As has been recently highlighted by authors of ref. [162] we also take up a closer study
of how such modifications of the propagator could influence possible interference when
compared to the standard situation. It is observed that a destructive interference effect
up to 10% is possible at the tail of the invariant mass distribution. It is also noted that
the usual approach of focusing on an invariant mass window around the resonant peak
proves in general more efficient and promises a better discovery reach rather than adopt-
ing an one-sided (a lower cut on Mµ+µ−) cut.

Pattern (constructive or destructive) of the interference effects can also be influenced
by the relative sign appearing in the couplings at the two vertices of a scattering diagram.
For example, in a process like pp → Z ′ → µ+µ−, one vertex involves Z ′ coupling to
a pair of quarks while the other one involves a pair of muons. In general, in a new
physics scenario, these vertices can have any relative sign between them. Furthermore, in
a scenario like nmUED the relative sign between these couplings can well be dependent
on the input parameters. Thus, we exploit the toy scenario with Z ′ implemented in Pythia
to study this possibility as well.

As an illustrative example, in the left panel of figure 5.2 we present the target luminos-
ity at the 13 TeV LHC for accessing a 3 TeV Z ′ as a function of the coupling scaling factor
(with respect to the SM coupling; thus, the scale factor of 1 represents the SM situation).
The right panel of this figure presents the variation of the ratio of the target luminosities
obtained with Pythia’s (blue) and BW (green) original implementation of the Z ′ propaga-
tor and the improved one by us, as a function of the scaled coupling. As can be seen, BW
propagator works really good upto scale factor 2.0. For large coupling it starts to deviate
and Pythia’s propagator treatment gives better and sensible result. For this figure, we
choose an universal scale factor not only for the vector and the axial-vector couplings but
also across the quark and the lepton sectors.

In figure 5.3 we present a more general situation where we differentiate between Z ′
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Figure 5.2: Left: Discovery reach for a Z
′

of mass 3 TeV at 13 TeV LHC run for µ+µ− final state with the
scaled coupling factor. Right: Ratio of luminosities with Pythia propagator and full 1-loop implemented
propagator (blue dots). The green dots correspond to same ratio with BW propagator and the full 1-loop
propagator. In both the above cases, we use Mµµ > 2 TeV for the signal, to reduce the background.

couplings to the quarks and the leptons and hence they are varied independently. The
target luminosities for the discovery of a 3 TeV Z ′ at the 13 TeV LHC run are presented
as contours in the plane of scaling factors for the quarks and the leptons. The left plot is
with the same sign for the quark and lepton couplings while the panel on the right is with
a relative sign between them. The effect of destructive interference can be obvious when
we compare the contours in the two panels at given values of αquark.

5.4.3 Case with two neighbouring resonances

We now move on to the case of a scenario where there are two neighbouring resonances.
This is a possibility in some well-motivated realistic scenarios that include nmUED, the
phenomenology of which is the subject matter of the present thesis. As discussed earlier
in this chapter, presence of such multiple close-by resonances could genuinely affect the
phenomenology of each of them. Beyond a critical point, there may even be a situation
when it could be a rather challenging task to decipher their individual presence and col-
lectively they may start behaving more like a single, even-broader, resonance. Clearly,
possibility of such a situation would affect the credibility of an interpretation in terms of
one or the other scenario.

In figure 5.4 we illustrate the situation with a toy scenario that contains a pair of Z ′-
like excitations (say, Z ′ and Z ′′) that are suitably close in mass (differs by 150 GeV with
the lighter state having a mass of 4 TeV) that may be representative of a scenario like the
nmUED. To demonstrate some interesting effects it is required that these states have mod-
erately large values of total decay widths which is again possible in the nmUED scenario.
Here we plot the ratio of the target luminosities, without and with the interference effects,
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Figure 5.3: Reach plots for the non-universal scaled coupling in the quark and the lepton sector for a Z
′

of mass 3 TeV at 13 TeV LHC. The left plot is with same-sign of scale factor for both quarks and leptons.
The right plot contains negative scaling factor for leptons as compared to quarks. This results in destructive
interference with the SM background.

that would yield a combined excess (from two such nearby states) necessary (following
the criteria as laid down earlier) to confirm their presence as a function of the scaled cou-
pling. The downward turn of the curve for a value of the scale factor between 2 and
3 indicates a reversal of the nature of the interference between the closely lying states.
Clearly, such a reversal takes place at a moderately large value of the coupling which is
not quite unexpected. This is because, with increasing couplings, the widths of the exci-
tations increase and hence the two states become more and more in the active influence
of each other thus enhancing the interference effects. Furthermore, since the shape of the
individual invariant-mass distributions for the two excitations undergo substantial alter-
ation as the couplings change, the nature of interference could pick up nontrivial effects
from that. Together, these may reverse the effect of interference in the kinematic region of
our interest. For this figure, we used our improved propagator and an one-sided cut of
Mµ+µ− > 2 TeV.

In figure 5.5 we demonstrate how the total cross section (left panel) and the target
luminosity for a 5σ (collective) excess vary in the plane of scaled vector (α) and axial-
vector (β) couplings. Contribution of nontrivial interference effects as demonstrated in
the last figure is also included
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Figure 5.4: Z ′ of mass 4 TeV and Z ′′ of mass 4.15 TeV are considered in standard SSM scenario with
coupling scaled as before. The figure shows the ratio of required reach estimation for the 13 TeV LHC
with various circumstances. The blue dots are the ratios of luminosity for discovery calculated with Pythia
propagator and full 1-loop propagator. The pink dots are the same with full 1-loop propagator without
interference and with interference. The cyan dots are the similar ratios with Pythia propagator without
interference and full 1-loop propagator with interference. The figure (pink curve) shows the implication of
non-trivial constructive interference pattern. α, β, α′ and β′ are the scale factors for Z ′ and Z ′′ respectively.

For the nmUED part, we consider closely-spaced resonances as the brane local param-
eter for the electroweak sector is common for the SU(2) and U(1) gauge fields. Therefore,
we expect them to be degenerate. However, radiative corrections can lift such degen-
eracy. We consider mUED-like mass splitting between Z(2) (level-2 Z boson) and B(2)

(level-2 photon). Note that the effective Weinberg angle of such level-2 gauge bosons is
assumed to be zero to a very good approximation [60]. Hence, Z(2) is a purely SU(2)

and similarly, B(2) is purely a U(1) gauge bosons. As we have already mentioned, level-2
gauge bosons have tree level couplings with the SM particles. Hence, the couplings are
different than the usual Z ′ scenario considered above. We calculate the cross sections for
various brane local parameters (which is equivalent to different scale factors). We assume
same brane local parameters for the quarks (r′Q) and leptons r′L with r

′
Q = r

′
L. Table 5.1

shows the discovery reach for dimuon process for both standard Breit-Wigner form of the
propagator and full propagator. Interference effects are also taken into account. In fact,
one can easily notice that how the required luminosity for discovery decreases as one
take interference of the two resonances. This is clearly the case of constructive interfer-
ence. For nmUED such interference is much more complicated. According to the choice
of quark and lepton boundary localized parameters, there may appear relative sign in the
quark-gauge boson coupling and lepton-gauge boson coupling.
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Figure 5.5: Discovery luminosity (left panel) and cross section (right panel) plots for a dibump scenario
as mentioned above. Scaled couplings are made to vary for both the gauge bosons. Interference has been
taken into account.

r
′
Q, r′L (scale factor) full, w int BW, w int full, wo int BW wo int Width (GeV)

-1.0 (-3.5) 0.352 0.411 0.368 0.43 826
1805

-0.5 (-1.46) 5.32 5.46 6.22 6.38 154
397

0.0 (-0.72) 108 109.5 109.7 115.7 47
173

0.5 (-0.34) 8516 8601 8611 8785 20
116

Table 5.1: Luminosity required for the discovery of level-2 electroweak gauge bosons estimated for both
the BW propagator and full 1-loop implemented propagator form. ‘w int’ stands for “with interference”
and ‘wo int’ means “without interference”. Luminosity numbers are in the unit of fb−1.
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5.5 Conclusion

This work is in preparation. The results presented here are thus preliminary in nature.
The main focus of this study is the resonances with large widths. In such cases, simple
narrow-width-approximation fails. One of our main goals is to study how to improve
upon the Breit-Wigner type of propagator in order to capture the effects of large width. In
addition, we also try to work on how to implement such improvements in a well-known
event generators, like Pythia.

We set the stage by studying massive Z ′ associated with an extra U(1) gauge group.
We start with sequential SM (SSM) where the extraZ ′ has exactly the same coupling as the
SM Z boson. We then obtain large coupling by simple scaling of the SSM-like coupling
and achieve really large widths. We restrict ourselves to resonance production of a Z ′

decaying into leptons i.e.,a Drell-Yan type process, pp → Z ′ → µ+µ−. Scaled coupling
enhances the production cross section. We provide estimate on required luminosity for
13 TeV LHC for discovering such a excitation. Interference effect (with the SM Z boson)
turns out to be non-trivial.

Next we discuss the “dibump” scenario where we consider two such closely-spaced
masses. nmUED may provide a natural example for such a scenario. We discuss the
phenomenology of such close-by resonances with large couplings and large widths. A
relative sign in gauge boson quark coupling and gauge boson lepton coupling may ap-
pear for some values of brane local parameters (r′Q and r

′
L). This is very characteristic

since the pattern of interference may change thus altering the phenomenology. Another
interesting aspect is that close-by resonances with large width(s) may get merged and
look like a single bump. Invariant mass distribution may not be sufficient to handle such
a situation. One can check various asymmetry variables to extract information about un-
derlying physics of invariant mass peaks. We must mention that our observations are
based on parton-level analysis and no detail detector simulations have been performed.
Inclusion of those details may reduce some of the effects, but overall results will still re-
main valid.
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Chapter 6

Conclusion

In this thesis, we discuss the role of non-vanishing boundary localized (kinetic and
Yukawa) terms for the strongly interacting sector in minimal universal extra dimension
framework and their impact on the current and future runs at the LHC. We know that the
introduction of boundary terms changes the mass spectrum of the conventional mUED
scenario. The KK masses are no longer the partial derivative of the extra dimensional
coordinate acting on the KK mode functions. Rather, we solve for the transcendental
equations numerically to determine the KK masses. We discuss the resulting spectra of
the QCD sector as functions R−1 and the scaled brane local parameters for gluon (r′G) and
quarks (r′Q). Smaller R−1 (which would, otherwise (in mUED), have been ruled out by
recent experiments) are still relevant at the LHC. Thus, a much wider range of spectrum
is available for studies at the LHC.

One interesting feature of the nmUED scenario is the change in the coupling strength
as found in mUED due to the overlap integrals of the involved fields. The deviations from
the corresponding mUED coupling are found to be functions of the brane local parame-
ters. Thus, the introduction the brane local terms affect both the masses and couplings of
the KK excitations simultaneously. We shed light on such correlated variations and their
possible ramifications for the LHC.

Another interesting aspect of the nmUED scenario is the chiral mixing among KK
quark states of a particular level. The origin of such mixing is the Yuwaka interaction.
The amount of mixing is proportional to the quark mass. Hence, the mixing is negligible
for 1st two generations of quarks. However, for the top quark, the mixing is somewhat
significant, although not large enough to see such effects in the experiments. After di-
agonalization of the mass matrix, the mixing factors appear in the interactions involving
gauge eigenstates. In addition there arise a new kind of mixing in the nmUED scenario,
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called level mixing. This also originates from the Yukawa sector and hence, predominant
for the top quark only. Theoretically, the flavour eigenbases of all the KK levels with simi-
lar parity should mix to give the mass eigenstates. However, only the lighter KK levels are
relevant for the LHC phenomenology. We thoroughly work out the level mixing among
the level-0 (SM) and the level-2 KK top quarks.

We would like to stress that the entire scenario has been implemented for the event
generator Madgraph with the help of FeynRules. This tedious attempt involves writing
down the model in an appropriate way that works in the FeynRules environment which
in turn, provides the output in a suitable format usable in Madgraph. We then study
the cross sections for the production of level-1 KK gluon and KK quarks of the 1st two
generations for LHC energies of 8 and 14 TeV. It is noted that wildly varying yields are
possible compared to mUED scenario. This is simply because the KK gluon and quarks
have masses varying over wide ranges. It is pointed out that an nmUED scenario can fake
a SUSY signal raising confusion over the underlying nature of the new physics scenario.
One way to distinguish between them is to compare the cross sections. mUED cross
sections are known to be larger (for a similar mass spectrum) than the corresponding
SUSY numbers. However, the nmUED scenario can imitate SUSY cross sections with
smaller couplings. For example, with gG1Q1Q0 < 1, one can have reduced cross section
values for the production of G(1)G(1), G(1)Q(1) and Q(1)Q̄(1) at the LHC for comparable
masses in the two competing scenarios. Thus, it may, in general, become difficult to
pin down the new physics scenario at work from a small number of observables. More
detailed studies are thus required in this aspect.

Given the unique stature of the top quark, we consider separate brane local parameter
r
′
T for this sector which is different from r

′
Q that is used for the 1st two generations. We

incorporate the brane local parameters (r′EW ) for the electroweak sector as well. Therefore,
the scenario we consider here has eight free parameters: R−1, r′T , r′Q, r′G, r′L, r′Y , r′EW
and min

t over the mUED parameters. However, for the phenomenology of the top quark
sector, only r′T , r′Y and r

′
EW play crucial role. We consider three benchmark points which

satisfy all the relevant experimental constraints. These give considerably light spectra for
the level-1 KK top quark. We choose the mass of level-2 KK top quark to be around 1.5
TeV so that this also can be accessed at the LHC. The level-2 KK top quark can directly
decay to much lighter SM particles. These would then be heavily boosted and hence may
serve as the “smoking gun” signal. We also point out the associated production rate of
level-2 KK top quark along with a SM top/bottom quarks. This kind of a process has a
highly suppressed rate in mUED.
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Another striking observation in nmUED scenario is that some KK states may become
“fat” with a large width to mass ratio (Γ/M ) � 10%. In such case, the usually adopted
scheme of narrow-width approximation (NWA) becomes inadequate for studying reso-
nances. We work out discovery reach for sequential Z ′ scenario with large width at the
LHC. The situation becomes much more complicated in nmUED due to its closely ly-
ing masses of level-2 electroweak gauge bosons. We derive fully resummed 1-particle
irreducible diagrams and implement the energy dependent form of the propagator. We
provide simple reach estimation for 13 TeV LHC run for such a scenario.

In the mUED scenario, the conservation of KK parity makes the lightest KK particle
(LKP) stable. Moreover, if the LKP is electromagnetically neutral and weakly interacting,
it may serve as a WIMP dark matter. Level-1 KK photon (γ(1)) is always the LKP in such
a scenario. Interestingly, in the non-minimal extension of UED model with brane local
terms, γ(1) is not always the LKP. Rather, W 3(1)

µ (level-1 KK Z boson) or H(1) (level-1 KK
Higgs boson) or ν(1) (level-1 KK neutrino) [83, 164] are also eligible dark matter candi-
dates depending on the choice of brane local parameters. Thus, the scenario resembles
supersymmetric models where a variety of particles (neutralino, gravitino, sneutrino) can
be WIMP dark matter. However, in this thesis, we mainly focus on LHC phenomenology
of the strongly interacting sector of the nmUED scenario. Hence a detail discussion on
dark matter and the related phenomenology is beyond the scope of the present thesis.
Interested readers may refer to references [68,165] where DM issues have been discussed.

Varieties of non-minimal UED scenarios although known for some time, have not been
studied particularly in reference to the LHC. This thesis focusses on such a scenario keep-
ing the LHC in mind. Clearly, strongly interacting sector is the most promising one for
the discovery at the LHC because of the large production rates. Just like the squark and
gluino searches in supersymmetric scenario, KK quarks and KK gluons can be either
discovered or ruled out up to certain masses at the LHC. In this context, it is worth men-
tioning that one of the attractive features of mUED from exclusion point of view is that
its mass scale (or, equivalently R−1) is bounded from below by the LHC data and, at the
same time, it is bounded from above by the relic density constraint. Interestingly, this is
not the case with nmUED which can survive future runs of LHC and also DM constraints
which could rule out many other similar models. At a time when the LHC is widen-
ing its search strategies to look for new physics signals, physicists are trying to exhaust
various phenomenological possibilities which have not yet been studied in detail. This
thesis is a step in that direction. Prospects of this scenario have been discussed many a
times in earlier chapters. We would also like to point out that many other possibilities are
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not explored in this thesis including studies with detector simulation. Phenomenology
of the electroweak sector including KK Higgs bosons is a fertile area to work on. Stud-
ies on dark matter and the explanation various related experimental results in terms of
nmUED model are still largely missing in the literature. The scenario extended with suit-
able mechanism of generating neutrino mass might be of interest as well. Although the
studies included in this thesis refer to the experimental situations existing at that time, the
stage is already set to take them forward taking into account new results as they become
available.

As the LHC is gearing up for the next phase of run with full strength, we must get
ready with the knowledge of diverse theoretical possibilities. The new energy regime
may open the door for new physics. Therefore, new areas must be explored and old ideas
need to be refined before we can fully utilize the discovery potential of both the ongoing
and future experiments. This thesis is an attempt to contribute to some aspects of this
challenge.
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Appendix A

A.1 Universal Extra Dimension with boundary localized
terms for a generic scalar field

In this appendix we show the formulation of the nmUED with brane local (kinetic) terms.
We provide the calculations of bulk and boundary equation of motions (EoM) and the
orthonormal conditions emerging from it.

We consider a massive real scalar field Φ in five dimensional framework compactified
on S1/Z2. The bulk action is given by,

Sbulk =
1

2

∫
d4x

∫
dy
(
∂MΦ(x, y)∂MΦ(x, y)−m2Φ2(x, y)

)
(A.1)

where m is the mass of the scalar field. The Lorentz index M = 0, 1, 2, 3, y. Now, in
addition to this, we have the following brane localized kinetic term (BLKT) for the scalar
field at the two orbifold fixed points,

SBLKT =
1

2

∫
d4x

∫
dy rΦ ∂

µΦ(x, y)∂µΦ(x, y) [δ(y − L) + δ(y + L)] (A.2)

where rΦ is the brane local parameter at both the boundaries (±L). Using the variational
principle δS = δSbulk + δSBLKT = 0 we obtain the bulk equation of motion,(

2− ∂2
y +m2

)
Φ(x, y) = 0. (A.3)

The non-zero boundary term appearing from integration by parts provides the modified
boundary conditions in the following form,

−
∫
d4x
(
∂yΦ(x, y) + rΦ 2Φ(x, y)

)
δΦ(x, y)

∣∣∣
y=L

= 0, (A.4)∫
d4x
(
∂yΦ(x, y)− rΦ 2Φ(x, y)

)
δΦ(x, y)

∣∣∣
y=−L

= 0 (A.5)
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Therefore, for arbitrary δΦ(x, y) the boundary conditions modified by the introduction of
the BLKT are, (

∂yΦ(x, y) + rΦ 2Φ(x, y)
)∣∣∣

y=L
= 0, (A.6)(

∂yΦ(x, y)− rΦ 2Φ(x, y)
)∣∣∣

y=−L
= 0 (A.7)

Using the separation of variables we decompose Φ into infinite numbers of Fourier modes

Φ(x, y) =
∑
n

Φ(n)(x)fn(y) (A.8)

Plugging the above expansion into the five dimensional EoM in A.3 we obtain,

2Φ(n)(x) = −m2
nΦ(n)(x), (A.9)

∂2
yfn(y) = −

(
m2
n −m2

)
fn(y) ≡M2

nfn(y) (A.10)

Note that the mass m we wrote the action is known as the bulk mass. Mn and mn are the
KK mass and the actual physical mass at level-n respectively. Hence, the physical mass at
level-n can be written as, m2

n = M2
n + m2. It is easy to see that fn(y) are harmonic func-

tions. The solutions are either odd or even under the Z2 symmetry. Setting the boundary
at L = πR/2 (following our convention) we obtain the so-called mode functions,

fn(y) = Nn ×


cos(Mny)

cos(MnπR/2)
for n even

− sin(Mny)

sin(MnπR/2)
for n odd

(A.11)

Now, we replace the KK mode functions as obtained in A.11 in the boundary EoM A.7
to get the KK mass determining conditions as,

rΦ m
2
n =


−Mn tan

(
MnπR

2

)
for n even

Mn cot
(
MnπR

2

)
for n odd

(A.12)

Solving these transcendental equations we determine the KK masses of the field Φ. The
mode functions of A.11 obey pairwise orthonormal relation as,∫ L

−L
dy
[
1 + rΦ (δ(y − L) + δ(y + L))

]
fm(y)fn(y) = δmn (A.13)
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A.1. UNIVERSAL EXTRA DIMENSION WITH BOUNDARY LOCALIZED TERMS FOR A
GENERIC SCALAR FIELD

Carrying out this integral for m = n and for even and odd mode functions separately, we
determine the normalization constants Nn,

N−2
n =


2rΦ +

1

cos2 (MnπR/2)

[
πR

2
+

1

2Mn

sin(MnπR)

]
for n even

2rΦ +
1

cos2 (MnπR/2)

[
πR

2
− 1

2Mn

sin(MnπR)

]
for n odd

. (A.14)

This is a general formulation shown for a scalar field. However, this can be carried out for
any field (fermions or gauge bosons) and one can arrive at the similar mass determining
conditions and orthonormal relations.
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Appendix B

B.1 The gauge and the Higgs sector of the nmUED: some
relevant details

In this appendix we briefly supplement our discussion in section 2.6.2 with some neces-
sary details pertaining to the gauge fixing conditions, the inputs that go into the mass-
determining conditions.

B.1.1 Gauge fixing conditions

We introduce the gauge-fixing terms in the bulk and at the boundaries in the following
way to obtain the physical states:

Sgf =

∫
d4x

∫ L

−L
dy

{
− 1

2ξA
[∂µA

µ − ξA∂yAy]2 −
1

ξW

∣∣∂µW+µ − ξW
(
∂yW

+
y + iMWφ

+
)∣∣2

− 1

2ξZ
[∂µZ

µ − ξZ (∂yZy +MZχ)]2 − 1

2ξG

[
∂µG

aµ − ξG∂yGa
y

]2
− 1

2ξA,b

{
[∂µA

µ + ξA,bAy]
2 δ(y − L) + [∂µA

µ − ξA,bAy]2 δ(y + L)
}

− 1

ξW,b

{ ∣∣∂µW+µ + ξW,b
(
W+
y − irHMWφ

+
)∣∣2 δ(y − L) +

∣∣∂µW+µ − ξW,b
(
W+
y + irHMWφ

+
)∣∣2 δ(y + L)

}
− 1

2ξZ,b

{
[∂µZ

µ + ξZ,b (Zy − rHMZχ)]2 δ(y − L) + [∂µZ
µ − ξZ,b (Zy + rHMZχ)]2 δ(y + L)

}
− 1

2ξG,b

{ [
∂µG

aµ + ξG,bG
a
y

]2
δ(y − L) +

[
∂µG

aµ − ξG,bGa
y

]2
δ(y + L)

}}
(B.1)
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Type m2
F m2

F,b rF

W+
µ M2

W rHM
2
W rEW

Zµ M2
Z rHM

2
Z rEW

H (
√

2µ̂)2 (
√

2µb)
2 rH

φ+, ∂yW
+
y M2

W rHM
2
W rH

χ, ∂yZy M2
Z rHM

2
Z rH

Table B.1: Input parameters that determine the masses of the KK gauge and the Higgs bosons. See
section 2.6.2 for notations and conventions.

where the eight gauge-fixing parameters are ξA, ξW , ξZ , ξG (in the bulk), ξA,b, ξW,b, ξZ,b, ξG,b
(at the boundary) and MW , MZ are the masses of the W and Z bosons1.

Imposing the unitary gauge in both the bulk and at the boundaries by setting

ξA, ξW , ξZ , ξG, ξA,b, ξW,b, ξZ,b, ξG,b →∞ (B.2)

we obtain the following relations:

Ay = 0, Zy ∓ rHMZχ = 0,

W+
y ∓ irHMWφ

+ = 0, Ga
y = 0, at y = ±L, (B.3)

∂yAy = 0, ∂yW
+
y + iMWφ

+ = 0,

∂yZy +MZχ = 0, ∂yG
a
y = 0, in the bulk. (B.4)

As we see, Ay and Ga
y are totally gauged away from the theory as would-be Nambu-

Goldstone bosons. The two mixed boundary conditions in equation B.3 can be cast into a
set containing the individual fields with the help of equation B.4 as

χ± rH∂yχ = 0, φ+ ± rH∂yφ+ = 0,

Zy ± rH∂yZy = 0, W+
y ± rH∂yW+

y = 0, at y = ±L. (B.5)

1This part of the action is also symmetric under the reflection y → −y.
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Appendix C

C.1 Tree-level FCNCs and constraints fromD0−D0 mixing

It has been demonstrated in ref. [124] that an appropriate short-distance description for a
∆F=2 FCNC process like D0 −D0 can be found in processes involving only the even KK
modes (starting at level-2) of the gauge bosons and the ‘0’ mode fermions. In an effective
Hamiltonian approach, such a process would reduce to a four-Fermi interaction whose
strength is suppressed by the mass of the exchanged KK gauge boson. The effective
FCNC Hamiltonian can be expressed in terms of suitable fermionic operators and their
associated Wilson coefficients. The latter involve the overlap matrices in the gauge kinetic
terms (by now, suitably rotated to the basis where the quark mass matrix is diagonal)
which are functions of the BLKT parameter, r′Q and r′T . Thus, any constraint on the Wilson
coefficients can be translated into constraints in the r′Q-r′T plane.

The gauge interactions in the diagonalized basis involving the level-0 quarks and the
KK gluons g(k), with the KK index k being even and k ≥ 2, are given by:

gs

3∑
i,j,l=1

(
q

(0)
iL γ

µT a
[
(U †qL)ilF

Q,[k]
g,ll (UqL)lj

]
q

(0)
jL + q

(0)
iR γ

µT a
[
(U †qR)ilF

q,[k]
g,ll (UqR)lj

]
q

(0)
jR

)
g(k)
µ , (C.1)

where the 4D and the 5D (the ‘hatted’ one) gauge couplings are related by gs ≡
ĝs/
√

2rG + πR. T a represents the SU(3) generators, a being the color index. Uq(L,R) are
the matrices that diagonalize the qL,R fields in the Yukawa sector. FQ,[k]

g,ll and F
q,[k]
g,ll are the

diagonal overlap matrices (in the original bases)

F
Q,[k]
g,ll =

1

fg(0)

∫ L

−L
dy (1 + rQl

[δ(y − L) + δ(y + L)]) f
Q

(0)
l
fg(k)fQ(0)

l
, (C.2)

F
q,[k]
g,ll =

1

fg(0)

∫ L

−L
dy (1 + rql [δ(y − L) + δ(y + L)]) f

q
(0)
l
fg(k)fq(0)l

(C.3)
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while the explicit form is shown in equation 4.28. Similar FCNC processes are also in-
duced by the KK photons and the KK Z bosons. However, because of weaker couplings
their contributions are only sub-leading and henceforth neglected in the present work.

The so-called “aligned" scenario in which the rotation matrices for the left- and the
right-handed quark fields are tuned to avoid as many flavor constraints as possible can
be summarized as

UuR = UdR = UdL = 13, UuL = V †CKM (C.4)

along with universal BLKT parameters r′Q and r′T , for the first two and the third quark
generations respectively, irrespective of their chiralities. In such a scenario, by construct,
dominant tree-level FCNC is induced via KK gluon exchange and only through the dou-
blet up-quark sector. Note that no FCNC appears at the up-quark singlet part and the
down-quark sector. The latter helps evade severe bounds from the K and B meson sec-
tors. The forms of the 4D Yukawa couplings, before diagonalization, are determined
simultaneously as:

Y u
ij =

3∑
l=1

(
V †CKM

)
il
Yulj

F
d,(0,0)
ij

, Y d
ij =


Ydii

F
d,(0,0)
ii

for i = j,

0 for i 6= j.

(C.5)

In this configuration, the structure of the vertex u(0)
iL −d

(0)
jL −W

+(0)
µ is reduced to that of the

SM. The overlap matrices in the gauge kinetic sector receive bi-unitary transformations
when these terms are rotated to a basis where the quark mass matrices in the Yukawa
sector are diagonal. These rotated overlap matrices are given by

3∑
l=1

(U †uL)ilF
U,[k]
g,ll (UuL)lj =

F
U,[k]
g,11 13 + VCKM


0

0

F
U,[k]
g,33 − F

U,[k]
g,11︸ ︷︷ ︸

=:∆F
U,[k]
g

V †CKM


ij

'

FU,[k]
g,11 13 + ∆FU,[k]

g

 A2λ6 −A2λ5 Aλ3

−A2λ5 A2λ4 −Aλ2

Aλ3 −Aλ2 1



ij

(C.6)

where A(= 0.814) and λ(= 0.23) are the usual Wolfenstein parameters and we use the
relation FU,[k]

g,11 = F
U,[k]
g,22 . Clearly, the difference of the two overlap matrices in that diagonal

term governs the FCNC contribution and thus, in turn, relative values of the correspond-
ing BLKT parameters, r′Q and r′T that shape the overlap matrices, get constrained.
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C.1. TREE-LEVEL FCNCS AND CONSTRAINTS FROM D0 −D0 MIXING

To exploit the model independent constraints provided by the UTfit collaboration
[126], the effective Hamiltonian for the t-channel KK gluon exchange process (that de-
scribes the D0 − D0 mixing effect) needs to be written down in terms of the following
quark operators and the associated Wilson coefficient:

∆H∆C=2
eff = C1

D(uaLγµc
a
L)(ubLγ

µcbL) (C.7)

where a and b are the color indices and we use SU(3) algebra and appropriate Fierz trans-
formation to obtain

C1
D =

∑
k≥2:even

g2
s(µD)

6

1

m2
g(2)

(−A2λ5∆FU,[k]
g )2 ' 2παs(µD)

3m2
g(2)

A4λ10(∆FU,[k]
g )2. (C.8)

As it appears, the value of C1
D is highly Cabibbo-suppressed. Heavier KK gluons (except

the one from level ‘2’) effectively decouples. The QCD coupling at the D0-meson scale
(µD ' 2.8 GeV) is estimated by the relation,

α−1
s (µD) = α−1

s (MZ)− 1

6π

(
23 ln

MZ

mb

+ 25 ln
mb

µD

)
' 1/0.240 (C.9)

with αs(MZ) = 0.1184 [?]. One would now be able to put bounds on the parameter space
by use of the result by the UTfit collaboration [126],

|C1
D| < 7.2× 10−7 TeV−2 (C.10)

which, for a given set of values forR−1 and r′G, actually exploits the dependence of ∆F
U,[k]
g

(appearing in equation (B.6)) on the BLKT parameters r′Q and r′T .
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