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Synopsis
Atomic clusters are aggregates of atoms consisting of a few to a few hundred atoms.

Because of the wide range of their possible sizes, compositions and charge states,

atomic clusters constitute virtually a new ‘phase’ of matter with properties distinct

from those of an atom and the corresponding bulk. Difference in properties with

respect to the bulk arises primarily because of two reasons: first, unlike bulk, the

number of atoms on the surface of a cluster is a substantial fraction of the total

number of atoms; second, the arrangement of atoms in a cluster is generally very

different from that in the corresponding bulk. The most extraordinary feature of

atomic clusters is an extreme size-dependence of their structural, electronic, mag-

netic, chemical, and optical properties. Addition or removal of even one atom or an

electron can substantially alter their physical and chemical properties [1].

For an ease of analysis and understanding, atomic clusters can be classified in

various ways. Clusters can be classified as small, medium-sized and large depending

on the number of constituent atoms. Another convenient classification is based on

the types of the constituent atoms and the nature of bonding between them. One

talks about (i) semiconductor clusters such as GeN , SiN , (ii) ionic clusters, such as

[NaNClM ](N−M)+, (iii) rare gas clusters, e.g., ArN , (iv) metal clusters with metallic

bonding such as NaN and AuN , (v) molecular clusters, e.g., (CO)N .

During the last three decades, metal clusters have been the most extensively

explored class of clusters by experimental and theoretical means. Metal clusters can

be further subdivided into simple metal, noble metal, transition metal (TM), and

mixed or alloy clusters. We term clusters composed of group-IA (alkali), group-II

and group-IIIA metal elements as simple metal clusters [1–3]. Clusters of group-IB

elements are termed noble metal clusters. Although they share many properties of

the simple metal clusters, there can be significant differences also, most notably in

case of Au clusters. A characteristic feature of simple metal clusters is a greater

stability of clusters having certain specific number of valence electrons compared

to their neighbors. In 1984, Knight et al measured the mass abundance spectrum

of NaN clusters which showed strongly size-dependent abundance [4]. Particularly

sharp drops in intensity were observed just after N = 8, 20, 40, 58 and 92. In the

mass abundance spectrum of gas phase clusters peaks of higher intensity indicate

higher stability of these clusters with respect to their neighbors. Thus NaN clusters

at N = 8, 20, 40, 58 and 92 were more stable. These clusters are termed magic

clusters. Magic clusters were also observed in other experiments on various simple

metal and noble metal clusters [1]. In order to explain the enhanced stability of

v



metal clusters of specific sizes, several simple quantum mechanical models have been

invoked. These models are known as shell models [1,5]. The underlying assumption

of all these models is that the valence electrons of all the metal atoms are confined

within a finite region of space defined by the ‘volume’ of the cluster. Using spherically

symmetric confining potentials, such as the 3D harmonic oscillator potential, one

obtains the following sequence of one electron orbitals 1S2, 1P6, (1D10 2S2), (1F14

2P6), (1G18 2D10 3S2), (1H22 2F14 3P6) . . . . One-electron orbitals within parentheses

are degenerate in energy. Completely filled electronic shells will result when there

are 2, 8, 20, 40, 70, 112 . . . electrons in the cluster. If the confining potential is

of hard-wall form, magic clusters occur for valence electron counts of 18, 34, 58,

68, 92 etc. in addition to 2, 8, 20, 40 and 70 [1]. We know that atoms with filled

electronic shells exhibit enhanced stability. Similarly, it was argued that stability of

magic clusters is due to their closed electronic shells. Experiments were performed to

measure other properties directly related to the electronic structure, e.g., ionization

potential, electron affinity and polarizability. Sharp drops in the ionization potential

have been observed at sizes just after the magic sizes. Also, low values of electron

affinity were seen at the magic sizes. All these experimental observations indicate

that stability of magic clusters is an electronic feature [1, 6].

The existence of the electronic shells in simple metal clusters and their dominat-

ing role in governing stability provides a very exciting possibility that clusters may

exhibit electronic and chemical features similar to elemental atoms. Leuchtner et al

studied reactivity of Al−n clusters with oxygen [7]. All the anionic clusters reacted

with O2 except for Al−13, Al−23 and Al−37. With three valence electrons per Al atom,

Al−13, Al−23 and Al−37 have 40, 70 and 112 valence electrons respectively. Therefore

their non-reactive behavior can be understood in terms of closed electronic shells.

This experiment demonstrated that the electronic shell structure plays a decisive

role in determining the reactivity of simple metal clusters. Since non-reactive be-

haviour is also well known for inert gas atoms due to their closed shells, Al−13 can

be regarded as an analogue of those atoms. This led to the idea of ‘superatoms’.

The most recent definition of superatoms as given by the proponents Castleman and

Khanna is as follows. A superatom is a cluster not only mimicking some properties

of an elemental atom but a motif that is stable in chemical assembly and may also

demonstrate new chemical features beyond the analogue atom [8]. Various com-

bined theoretical and experimental studies revealed that Al13 and Al14 behave as a

halogen and an alkaline earth element respectively [9–12]. Al−7 was shown to be-

have as a multi valence superatom in a way similar to a C atom [13]. Thus, simple
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quantum mechanical shell models provide us with an elegant electron counting rule

through which we can understand the electronic and chemical properties of simple

metal clusters. Electronic properties of noble metal clusters, particularly Cu and

Ag, are also understood within shell models [6]. Recently, it has been shown that

the conventional shell sequence in spherical metal clusters as discussed so far can be

modified by structural distortions which can lead to species with enhanced stability

at unconventional electron counts. For example, CuAl−22 with 68 valence electrons

was shown to have reduced reactivity against O2 [14]. In the spherical shell model,

68 electrons correspond to a closed 2D10 shell, with an empty 3S2. However, the

origin of the enhanced stability of CuAl−22 was shown to be due to splitting of the

2D10 shell because of a structural distortion of the cluster. This deformation can be

understood in terms of a crystal field like splitting of degenerate shells into subshells.

Recently, the idea of superatoms has been extended to ‘magnetic superatoms’.

VCs8 is the first example of a magnetic superatom in which atomic d electrons

localized on the V atom provide a moment of 5 µB whereas delocalized electrons

from the s-valence states of the Cs and V atoms form a filled shell of 1S21P6. This

provides stability to the cluster [15]. It has been shown that two and three units of

VCs8 do not coalesce when they are brought in contact. They are found to retain

their structural identity, magnetic moment and form a stable dimers and trimers.

Despite having great success, there are cases where shell models cannot explain

the properties of all-metal clusters as observed in various experimental and theoret-

ical studies [16,17]. There are other simple electron counting rules in chemistry like

the Hückel rule and Wade-Mingos rules which account for stability of electronic sys-

tems. According to the Hückel rule, planar and cyclic hydrocarbons having (4n+2)π

electrons have enhanced stability. These hydrocarbons are known as aromatic com-

pounds. Benzene, i.e., C6H6 is one of the classic examples. Recently, Li et al [16]

have shown that the concept of aromaticity can be used in explaining the enhanced

stability of bimetallic LiAl−4 , NaAl−4 , and CuAl−4 clusters. After that, numerous stud-

ies have been devoted to finding stable cluster motifs using aromaticity as a guiding

principle. Although aromaticity is a widely used term, a precise quantitative and

well-accepted definition of this quantity is still missing. For quantitative estimation

of aromaticity, different criteria have been proposed by different authors [17]. These

can be based on structural, energetic, reactivity, electronic or magnetic properties.

The most popular criterion used to identify an aromatic cluster is perhaps the nu-

cleus independent chemical shift (NICS), a magnetic measure. Clusters with negative

values of NICS are classified as aromatic. while clusters with positive values of NICS
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are classified as anti-aromatic [18,19].

Motivated by the interesting concept of superatom, a major part of my thesis is

devoted to identifying stable clusters which behave as magnetic superatoms. The

detailed study of structural, electronic and magnetic properties of a single 3d TM

doped alkaline earth and aluminum clusters using first-principles approach based on

density functional theory forms a major part of this thesis. In addition, I have studied

V doped silver clusters using first-principle calculations. This work is motivated by

recent experiments performed by Janssens et al on these clusters [20]. This thesis is

organized as follows.

Chapter 1 This chapter is an introduction to the topic of atomic clusters and

superatoms. In this I review the literatures on atomic clusters, various shell models,

and shell effects in simple metal and noble metal clusters. In addition, the con-

cepts of superatom, magnetic superatom, cluster assembled materials (CAM’s), and

aromaticity in all-metal clusters are reviewed.

Chapter 2 is about the underlying theory and techniques of calculations used in

this thesis. Density functional theory is reviewed. Techniques for solving the Kohn-

Sham equations using both localized and plane wave basis sets, and the concept

of pseudopotential are discussed. An evolutionary algorithm for finding the global

minima of clusters is also discussed.

Chapter 3 In this chapter the electronic and magnetic properties of 3d TM

doped calcium clusters are presented. We have found TiCa8 and FeCa8 to have

enhanced stability as indicated by large gaps between the highest occupied and lowest

unoccupied molecular orbitals (HL gap), hardness (η) and adiabatic spin excitation

energy (∆Espin). In addition, FeCa8 is found to have a magnetic moment of 4 µB.

The stability of TiCa8 is understood from the fact that it has 20 valence electrons,

a magic number. Most striking feature of this chapter is the stability of FeCa8 at an

unconventional electron count of 24. We have shown that the origin of this stability

is an interplay between crystal field effect and Hund’s coupling. FeCa8 is identified

as a magnetic superatom in the same spirit as VCs8 [21].

Chapter 4 extends our search for magnetic superatoms by investigating the

electronic and magnetic properties of the TMSr8 clusters. TiSr8 and CoSr8 are found

to have enhanced stability within the TMSr8 clusters. The enhanced stability of

TiSr8 is understood in a way similar to TiCa8. Because of the low magnetic moment
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of 1 µB, CoSr8 is not found to be an attractive candidate for magnetic superatom.

Most strikingly, FeSr8 does not emerge as a cluster with enhanced stability. We have

discussed the reasons behind this. Furthermore, we have shown that the ground

state electronic configuration of a TMSr8 cluster is also determined by the combined

effect of Hund’s coupling and crystal field effect [22].

Chapter 5 explores the possibility of finding clusters with enhanced stability and

finite magnetic moment within the CrSrN and MnSrN (N=4-12) series. Motivation

for studying these clusters originated from the study of TMSr8 clusters. We found

that CrSr9 and MnSr10 have enhanced stability as indicated by their hardness, second

order energy difference (∆2(N)) and ∆Espin. CrSr9 and MnSr10 are found to have

magnetic moments of 4µB and 5µB respectively. Again, the origin of stability and

magnetic moment in CrSr9 and MnSr10 clusters is the combined effect of crystal

field and Hund’s coupling. CrSr9 and MnSr10 are also found to behave as magnetic

superatoms [22].

Chapter 6 focuses on the electronic and magnetic properties of a single Cr, Mn,

Fe, Co and Ni doped Al clusters in search of magnetic superatoms. While we have

not been able to identify any possible candidates for magnetic superatoms in these

series, we have found some very interesting properties in them. We have found that

FeAl4, and CoAl3 clusters have enhanced stability as indicated by their second order

energy difference, hardness and adiabatic spin excitation energy. However, they have

no net magnetic moment. Most importantly we found that spherical shell models

cannot describe the electronic structure of TM doped aluminum clusters, in contrast

to binary TM doped alkali and alkaline earth clusters. In fact we have shown that

stability of FeAl4, and CoAl3 can be associated with their aromatic behaviour as

revealed by their negative NICS values [23].

Chapter 7 investigates the evolution in the atomic structure, bonding char-

acteristics, stability, and the spin magnetic moment of neutral and cationic VAgN

clusters. This work is motivated by the experimental study of the VAg+
N clusters

in which VAg+
5 and VAg+

7 were found to be stable [20]. We found that VAg+
5 and

VAg+
7 have enhanced stability in agreement with the experiments, indicated by their

large HL gap and ∆2(N). In addition we show that the stability of VAg+
5 and VAg+

7

can be explained in terms of exchange splitting within the 1D shell orbitals of these

clusters [24].
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CHAPTER1
Introduction

1.1 Atomic clusters

Atomic clusters are aggregates of atoms consisting of a few to a few hundred atoms.

Because of the wide range of their possible sizes, compositions and charge states,

atomic clusters constitute virtually a new ‘phase’ of matter with properties distinct

from those of an atom and the corresponding bulk. Difference in properties with

respect to the bulk arises primarily because of two reasons: first, unlike bulk, the

number of atoms on the surface of a cluster is a substantial fraction of the total num-

ber of atoms; second, the arrangement of atoms in a cluster is generally very different

from that in the corresponding bulk. Clusters are also distinct from molecules. For

instance, molecules are typically formed by either covalent or ionic bonds between the

atoms, while bonding within clusters could be metallic, covalent, van der Waals or

ionic. Molecules are very stable against coalescing, whereas clusters are metastable

objects. The most striking feature of atomic clusters is an extreme size-dependence

of electronic, magnetic, chemical and optical properties. Addition or removal of even

one atom or one electron can induce dramatic changes in these properties [1].

For an ease of analysis and understanding, atomic clusters can be classified in

various ways. One convenient classification is based on the types of the constituent

atoms and the nature of bonding between them. One talks about (i) semiconductor

clusters such as GeN , SiN , (ii) ionic clusters, such as (NaCl)N (iii) rare gas clusters,

such as ArN , (iv) metal clusters with metallic bonding such as NaN and AuN . In

this thesis we will focus only on the metal clusters.
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1.2 Metal clusters

During the last three decades, metal clusters have been the most extensively explored

class of clusters by experimental and theoretical means. Clusters formed by atoms

that form metallic systems in the bulk are termed metal clusters. Metal clusters can

be further subdivided into simple metal, noble metal, transition metal (TM), and

mixed or alloy clusters.

1.2.1 Simple metal clusters

We term clusters composed of group-IA (alkali), group-II, and group-IIIA metal

elements as simple metal clusters. Bonding between the atoms in these clusters is

largely through the delocalized outermost s and p orbitals. A characteristic feature of

simple metal clusters is a greater stability of clusters having certain specific number

of valence electrons compared to their neighbors [1, 3, 4]. This stability has been

explained in terms of simple quantum mechanical models which are known as shell

models.

1.2.2 Noble metal clusters

Clusters of group-IB elements (Cu, Ag and Au) are termed noble metal clusters.

Because of ns1 electronic configuration of these atoms, they also share many prop-

erties of the alkali clusters [25]. However due to the presence of (n− 1)d10 electrons,

structural evolution of noble metal clusters is found to be different from that of

alkali clusters. For example, CuN clusters having more than 3 atoms assume 3D

structures [26, 27], while alkali metal clusters adopt 3D structures when they have

more than 6 atoms [2].

1.2.3 Transition metal clusters

TM elements of 3d, 4d, and 5d series form TM clusters. In contrast to simple metal

and noble metal clusters, presence of partially filled d orbitals leads to completely

different and irregular variation in the electronic and geometric properties as the

cluster size increases. Generally, instead of having electronic shells (discussed in

next subsection), TM clusters form compact atomic arrangements like icosahedral

or cuboctahderal structures. The most exciting feature of these clusters is the size

evolution of magnetic properties. For example, FeN and CoN clusters have higher

magnetic moments compared to the corresponding ferromagnetic bulk [28].
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1.2.4 Mixed clusters

Mixed or heteroatomic metal clusters can be thought of miniature versions of metal-

lic alloys [10, 29]. An interesting class of mixed clusters is TM doped simple and

noble metal clusters which are suitable candidates to understand the effects of non-

magnetic environment on the localized magnetic moment of a TM atom. Apart from

that, one can study how the geometric and electronic evolution of pure metal clusters

are affected by an impurity atom [6].

1.3 Electronic shell structure and shell models

In 1984, Knight et al [4] measured the mass abundance spectrum of NaN clusters

which showed a non-monotonic behaviour with respect to the size (N) of the clusters.

Particularly sharp drops in the intensity were observed just after N=8, 20, 40, and

58 as shown in Figure 1.1. In the mass abundance spectrum of gas phase clusters,

peaks of higher intensity indicate greater stability of those clusters with respect to

their neighbors. Thus NaN clusters at N=8, 20, 40, 58 are more stable. These

Figure 1.1: Mass abundance spectrum of NaN clusters [4].

clusters are termed magic clusters. Magic clusters were also observed in experiments

on various other simple metal and noble metal clusters [1].

Origin of this enhanced stability at certian sizes can be understood in terms of

simple quantum mechanical models. The common assumption of all these models is

that the valence electrons of all the metal atoms move freely within a finite region

of space defined by the ‘volume’ of the cluster. Depending on the symmetry of the

confining potential, quantum confinement leads to discrete electronic energy levels

with degeneracies. These simple quantum mechanical shell models provide us with
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an elegant electron counting rule through which we can understand the electronic

and chemical properties of simple metal clusters. Electronic properties of noble metal

clusters, particularly CuN and AgN , are also understood within shell models [1]. I

now briefly describe different shell models proposed and used in the literature.

1.3.1 Spherical Shell Models

In the spherical shell models, as the name suggests, the potential confining the

valence electrons is assumed to be spherically symmetric. The radius of the confining

sphere R0 is taken as

R0 = xN1/3rs (1.1)

where rs is the Wigner-Seitz radius in the corresponding bulk and x is the valence

of the metal atom. In the simplest of these models, the valence electrons experience

a potential V (~r) which is given by

V (~r) = 0 ; r < R0

= ∞ ; r ≥ R0 (1.2)

Since the valence electrons feel an infinite potential at the boundary, this model can

be termed as the ‘hard sphere’ model. By solving the Schrödinger’s equation, one

can obtain the one-electron energy levels Enl of this model :

Enl =
}2β2

nl

2mR2
0

(1.3)

where βnl is the nth order zero of the spherical Bessel function jl. Since the potential

has spherical symmetry, energy eigenstates are also angular momentum eigenstates

and possess 2(2l+ 1) fold degeneracies. These energy eigenstates form the electronic

shells (n, l) which are arranged in increasing energy as 1S2,1P6,1D10,2S2,1F14,2P6,1G18

. . . as shown in Figure 1.2(c). Thus electronic shells will be completely filled when

there are 2, 8, 18, 20, 34, 40, 58, . . . electrons in the cluster. As filled electronic shells

lead to greater stability in atoms, filled shell clusters are expected to be more stable.

Therefore NaN clusters with N=8, 20, 40, 58, . . . electrons will be more stable. Note

that this model also predicts stable clusters at N=18, 34, and 68 which were not

found with high intensity in the spectrum (see Figure 1.1).

One may choose softer boundaries for the confining potential. One such widely
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Figure 1.2: Energy level occupation for (a) spherical three dimensional harmonic,
(b) intermediate (Woods-Saxon), and (c) square-well potentials [1].

used model is the spherical harmonic potential V (~r) = 1
2
mω2

0r
2. ω0 is the harmonic

oscillator frequency. Energy eigenvalues for this potential are well known and are

given by

En = }ω0(n+ 3/2) (1.4)

where n is quantum number given by (2ν+l−2) with ν=1, 2, 3 . . ., and l is the angular

momentum quantum number. Figure 1.2(a) shows that energy eigenstates having

the same value of (2ν + l − 2) are degenerate. Hence energy eigenstates are in the

following order-1S, 1P, (1D,2S), (1F,2P), (1G,2D,3S), (1H,2F,3P), . . .. Eigenstates

within parentheses are degenerate in energy. Completely filled electronic shells will

result when there are 2, 8, 20, 40, 70, 112 . . . electrons in the cluster.

Figure 1.2(b) shows energy states for the Woods-Saxon potential given by

V (~r) = − U0

e(r−R0)/λ + 1
(1.5)

where U0 is taken equal to the sum of the Fermi energy and the work function of

the bulk [4]. λ controls the variation of the potential near the boundary. Since

the potential is spherically symmetric, the energy eigenstates are again 2(2l+1)-fold

degenerate. We can see from Figure 1.2(b) that magic clusters again occur for valence

electron counts of 18, 34, 58, 68, 92 etc. in addition to 2, 8, 20, 40 and 70. One
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may notice that the shell model with harmonic potential does not predict the magic

numbers 58 and 92 at which stable clusters were found in the Figure 1.1.

1.3.2 Clemenger-Nilsson shell model

Though the shell models discussed in the previous section were quite successful in

explaining the relative stability of magic clusters, they were not able to capture the

fine structure of the mass abundance spectrum. This is a consequence of the assumed

spherical shape of the clusters. Indeed shape of an open shell cluster does not need

to be spherical. To explain the fine structure of the mass spectrum, Clemenger [5]

proposed a model based on the ideas of Nilsson model. This model is known as

Clemenger-Nilsson shell model. The basic idea is to introduce spheroidal deforma-

tions in a 3D harmonic oscillator confining potential. In spheroidal deformations,

two semi-axes (Rx) and (Ry) were taken equal and the third (Rz) could be differ-

ent, with the constraint that the volume of the cluster remains unchanged. This

constraint is imposed through the condition

RxRyRz = R3
0 (1.6)

The distortion parameter for a spheroidal deformation was defined as

η = 2
Rz −Rx

Rz +Rx

(1.7)

Based on the whether Rz is greater or smaller in comparison to Rx, clusters will

have prolate or oblate shape respectively. Figure 1.3 shows the optimal values of

the distortion parameter η that minimize the total energy of the cluster at different

numbers of valence electrons. The basic idea in this model is that for a given number

of electrons, the cluster’s shape adjusts itself keeping the volume constant to minimize

the total electronic energy. We can see that closed shell clusters, i.e., clusters with

2, 8, 20 electrons are spherical (η=0), while open shell clusters are either prolate

or oblate spheroids. For instance, η has positive values for clusters with 3 and 4

electrons, thus they have prolate shapes. Clusters with 5, 6, and 7 electrons are

oblate as indicated by the negative values of η. Also one should notice that in the

spheroidal model, clusters with 18 and 34 electrons turn out to be non-spherical.

To see the stability of a cluster with N atoms with respect to adjacent clus-

ters, Knight et al [4] and Clemenger [5] calculated the second order energy differ-

ences (∆2(N)) for NaN clusters with total energies (E) obtained from spherical and
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Figure 1.3: Total electronic energy curves as functions of η for the 3D harmonic
potential. Open circles denote the optimal values for the valence electron counts
given next to the circles [1, 5].

spheroidal shell models respectively. ∆2(N) is defined as

∆2(N) = E(N + 1) + E(N − 1)− 2E(N)

=
[
E(N + 1)− E(N)

]
+
[
E(N − 1)− E(N)

]
= ∆(N + 1)−∆(N) (1.8)

where ∆(N) is the first order energy difference and given by ∆(N) = E(N)-E(N−1).

∆2(N) represents the relative stability of a cluster with N atoms with respect to

clusters with N + 1 and N − 1 atoms. Peaks in ∆2(N) vs N will occur whenever an

electronic energy level is exactly filled at specific N and next higher energy orbital

is occupied for a cluster with N + 1 atoms. Results of ∆2(N) obtained by Knight

et al and Clemenger [5] for the Woods-Saxon and deformable harmonic oscillator

potentials are shown in the panels (A) and (B) of Figure 1.4 respectively. We can

see from the Figure 1.4(B) that the spheroidal model not only captures the stability

of the closed shell clusters but also produces the observed fine structure at N=6, 12,

14, 18, 26, 30, 34, 50, 54, etc. On the other hand, only stability of the closed shell

clusters appeared in the Figure 1.4(A).
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Figure 1.4: (A) Change in the electronic energy difference, ∆(N +1)-∆(N) vs N . [4]
(B) Second order energy difference for NaN clusters using harmonic oscillator poten-
tial with spheroidal distortions [5].

1.3.3 Jellium model

Jellium model is a more realistic model compared to shell models discussed so far

as it includes the Coulomb interaction between the valence electrons. However, the

discrete nature of the ionic cores are neglected and the entire positive charge is

uniformly distributed over the spherical shape of a cluster of radius R0 as a static

background having density n+(~r). Positive charge density n+(~r) is given by

n+(~r) = n0
+θ(R0 − r) (1.9)

while θ(R0 − r) is the step function, and has value 1 for r ≤ R0 and 0 for r > R0.

The radius of the cluster is given by Eqn. 1.1. Uniform positive charge density of

the background yields an attractive potential for valence electrons

V (~r) = −
∫

n+(~r ′)

|~r − ~r ′|
d3~r ′ (1.10)

Chou et al [30] used density functional theory (DFT) within the local density approx-

imation (LDA) to calculate the ground state of interacting electrons subject to this

potential. They obtained closed electronic shell for the Na40 cluster with electronic

configuration 1S21P61D102S21F142P6 as obtained in the shell models. Similar to shell

models, jellium model is very successful in explaining the magic numbers of simple

metal clusters, but it does not explain the fine structure of the mass abundance spec-

trum. However, one can relax the constraint of spherical shape of the background

charge distribution and allow deformations as done in the Clemenger-Nilsson model.

Then the fine structure in the mass abundance spectrum is captured [31,32].
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1.4 Monovalent (group-IA and-IB) clusters

We have seen that electronic shell structures control the stability of the NaN clusters.

Other alkali metal (KN , CsN) clusters were also found to have enhanced stability

at N=2, 8, 20, 40 [33, 34]. Similarly, mass abundance spectrum of Ag+
N , Au+

N , and

Cu+
N clusters showed large peaks at N=3, 9, 21, 35, 41, 59, 93, 139. Spherical shell

models easily explain the stability of these clusters [25]. We know that ionization

potential (IP) and electron affinity (EA) reveal the electronic shell effects in atoms.

For example, alkali atoms are known to have low IP’s because they have only a single

valence electron in the outermost shells, while halogens possess high EA’s as they

are just one electron short of filled shell configuration. Thus it is expected that IP’s

and EA’s of these metal clusters will provide a glimpse of their underlying electronic

shell structures.

1.4.1 IP’s and shell effects

Ionization potential of a cluster is defined as

IP = E+
N − EN (1.11)

It is the energy required for extracting an electron from the neutral cluster. The cor-

responding quantity for the bulk is known as the work function. IP’s are measured

in photo-ionization experiment in which clusters are ionized by a laser of tunable fre-

quency. In photo-ionization experiment cluster ions (cations) relax into their ground

state structures which are generally different from those of the corresponding neutral

clusters. However, according to Frank-Condon principle, structural transitions are

much slower than electronic transitions. Therefore removal of an electron leaves the

ionized cluster with instantaneously negligible structural changes. Consequently one

can define two ionization potentials, the vertical ionization potential (VIP), and the

adiabatic ionization potential (AIP). VIP is defined as the energy difference between

the neutral and cation clusters, both at the structure of the neutral. The AIP is the

difference in the ground state energies of the neutral and the cation clusters. Gener-

ally, difference between the AIP and VIP is large for small clusters where structural

changes are large, while for large size clusters, this difference is small. Left panel in

the Figure 1.5 shows the IP’s of NaN and KN clusters measured in photo-ionization

experiments. In addition to odd-even oscillations, there are sharp drops in IP’s at

N=9, 19, 21, 41, 59, and 93 for NaN clusters. Similar features are also observed
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Figure 1.5: (Left) Ionization potentials of sodium and potassium clusters as function
of their size [1]. (Right) Theoretical results derived from the Clemenger-Nilsson
ellipsoidal model. Open squares show experimental IP’s [35].

in the KN clusters. Sharp drops in IP’s just after N=8, 18, 20, 40 can be easily

understood from the fact that the energy required to remove the single electron in

the outermost shells is much lower compared to the energy required to remove an

electron from a filled shell. Yannouleas et al [35] calculated the IP’s for NaN clus-

ters using the Clemenger-Nilsson ellipsoidal model as shown in the right panel of

Figure 1.5. This model not only shows high IP’s for magic clusters, but also pro-

duces the odd-even effect. This critical observation demonstrates the applicability

of the ellipsoidal shell model for monovalent clusters. Similar shell effects were ob-

served in the experimental measured IP’s of LiN [36] and noble metal clusters (CuN ,

AgN) [37, 38].

1.4.1.1 EA’s and shell effects

Just like a halogen atom which has a high EA in order to complete its electronic shell,

clusters with one electron short of closed electron shells are expected to have high

EA’s. The electron affinity of a cluster is defined as the energy difference between

the neutral and anionic cluster.

EA = EN − E−N (1.12)

Experimentally it is extracted from photoelectron spectroscopy (PES) in which an

anionic cluster is irradiated with a photon of fixed frequency. The kinetic energy of

the ejected photoelectron is measured subsequently. The kinetic energy (KE) of the
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Figure 1.6: Open squares show experimentally measured EA’s of KN=5−22 clus-
ters [40], Top panel : The spherical model compared to experimental data. Middle
panel : The spheroidal model compared to experimental data. Lower panel : The
ellipsoidal model compared to experimental data [35].

emitted electron is given by

KE = hν − EBE (1.13)

where ν is photon frequency and EBE is the electron binding energy of the photo-

emitted electron in the cluster. It is the EBE of an electron in the highest molecular

orbital (HOMO) of the anion cluster which gives the EA of the corresponding neutral

cluster within Koopmans’ theorem [39]. One can define adiabatic electron affinity

(AEA) and vertical detachment energy (VDE) in a way similar to IP’s. AEA is de-

fined as the energy difference between the ground states of the anion and the neutral

clusters, and VDE of a given anion cluster is the energy difference between the anion

and the neutral both at the anion geometry. AEA is also equivalent to adiabatic

detachment energy (ADE) of the anion clusters. Top, middle and lower panels of

Figure 1.6 demonstrate the applicability of spherical, spheroidal and ellipsoidal shell

models by comparing the theoretically calculated EA’s of KN , N=5-22 with mea-

sured EA’s [40]. We can easily see that high EA’s are indicated by peaks at N=7,

17, 19 while low EA’s are associated with the magic clusters in all three models.

However with the spheroidal and ellipsoidal models, a significantly better agreement

(odd-even oscillations) between the theory and experiment was achieved. Similarly,
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drops in EA’s after N=7, 17, 19, 33, and 39 of CuN and AgN clusters were measured

by Pettiette et al [41] and Ganteför et al [42, 43].

Apart from the EA’s, anion PES also provides the energy gap between the high-

est occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital

(LUMO)of the neutral cluster. This gap is knows as HOMO-LUMO (HL) gap. A

large HL gap is an indicator of its chemical stability as clusters will resist both do-

nating and accepting electrons. If HOMO of the neutral cluster is fully occupied,

then it is the EBE difference of the first two peaks in the low binding energy end of

PES of its anion which provides the HL gap of the neutral cluster.

1.5 Shell effects in other metal clusters

1.5.1 Divalent (group-IIA) metal clusters (MgN , CaN , SrN)

Since shell models account for the electronic shell closure of the monovalent clusters

at ne=2, 8, 18, 20, 34, 40, 58, 68, 90, 92, etc., where ne is the number of valence

electrons, divalent clusters with enhanced stability are expected to appear at N =

ne/2. In this section we will particularly focus on the applicability of shell models

to MgN , CaN , and SrN clusters. Apart from the validity of shell models, the most

interesting feature of these clusters is the nature of bonding between the atoms which

evolves as the cluster size increases. Because of the closed electronic (ns2) shells of

these atoms, the dimers are bound by van der Waals forces, while in the bulk they

have metallic characteristics due to complete overlap of the s and p bands which

originate from the s and p atomic orbitals. To study the emergence of metallic

behaviour in these clusters, one can monitor the gap between the s and p bands

with respect to size N. In general this s-p band gap tends to decrease as the cluster

size increases and eventually both bands merge at a critical size. Therefore many

studies have been dedicated to finding the critical size at which ‘insulator to metal

transition’ (IMT) occurs.

1.5.1.1 MgN clusters

Diederich et al [44] obtained the mass abundance spectrum of bare MgN clusters upto

N=80 by the pickup of atoms in helium nanodroplets. By examining the spectrum,

stable clusters were observed at N=5, 10, 15, 18, 20, 25, 26, 28, 30, 35, 40, 46, 47, 56,

59, 62, 69, and 74. Also exceptionally pronounced minima were found at N=22, 37,

57, and 71. Assuming each Mg atom gives 2 valence electrons, stability of the clusters
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at N=10, 15, 20, 25, 35, and 46 can be easily interpreted in terms of the spheroidal

model (Figure 1.4B). To explain the stability of clusters at N=26, 30, 40, 56, 59, 62,

69, and 74 Diederich et al introduced an energy level crossing mechanism between

the high angular-momentum (l) and low angular-momentum quantum states within

the spherical shell model. However, stability of clusters at N=5, 18, and 47 was not

clear. Also, there were no signs of shell-closing at N=4 and 9 in the spectrum.

Thomas et al [45] measured the mass abundance spectrum of Mg−N=3−30 clusters

in which intense peaks were seen at N=4, 9, 19, 34, 46, 55, and 69. These authors

explained the stability of Mg−9 , Mg−19, Mg−34 via closed electronic shells. For example,

these clusters are just one electron short of having closed electronic shells with 20,

40, and 70 electrons respectively. However continuing this argument, stability of

Mg−4 was not clear. Furthermore, by examining PES of Mg−N=3−30, Thomas et al

observed a gradual decrease in the sp band gap with local peaks at N=4, 10, and

20. These local peaks could be attributed to closed electronic shell with 8, 20, and

40 valence electrons.

Authors Element Charge Range Methods Properties studied

Lee et al [46] Mg n ≤ 4 QC BE and Freq
Klopper et al [47] Mg n ≤ 4 QC BE
Bauschlicher et al [48] Mg n 4 QC AE
Reuse et al [49] Mg n, a, c ≤ 6 DFT EA
Reuse et al [50] Mg n, a, c ≤ 7 DFT AE, IMT, FE, and EA
Acioli et al [51] Mg a 2-22 DFT BE, HL gap, IMT
Jellinek et al [52] Mg n,a 2-22 DFT BE, HL gap, ∆2(N), and VIP
Kumar et al [53] Mg n 2-13 MD ∆2(N), HL gap, and IMT
Delaly et al [54] Mg n ≤ 20 DFT BE
Akola et al [55] Mg n ≤ 13 DFT ∆2(N), HL gap, and IMT
Serra et al [56] Mg n ≤ 50 DFT
Köhn et al [57] Mg n 2-22 DFT BE and ∆2(N)
Lyalin et al [58] Mg n,c 2-21 DFT BE, ∆2(N), IP, and HL gap

Table 1.1: List of works reported for MgN clusters. Abbreviations : n=Neutral,
a=Anion, c=Cation, QC=Quantum chemistry methods, Freq=Frequency,
BE=Binding energy, FE=Fragmentation energy, and AE=Atomization energy.

Table 1.1 gives a summary of theoretical studies of Mg
0/+/−
N clusters reported in

the literature. The equilibrium geometries and electronic properties of MgN clusters

having less than 7 atoms were explored with ab-initio and DFT methods [46–50].

Acioli et al [51] and Jellinek et al [52] provided theoretical support to the observations

made in Ref [45] by performing density functional calculations of the neutral and

anion MgN (N=2-22) clusters. Local peaks in the HL gap and ∆2(N) were observed

at N=4, 7, 10, 15, and 20. Greater stability of these clusters was understood via
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the spheroidal shell model. Similar findings were obtained by Kumar et al [53] in

the density functional molecular dynamics simulations for MgN=2−13 clusters. The

peaks in ∆2(N) showed stability for Mg4, Mg7, Mg9, and Mg10 clusters. Recently,

Lyalin et al [58] has reported extensive density functional calculations for neutral

and cation MgN=2−21 clusters. These authors found stable clusters at N=4, 7, 10,

13, 15, 17, and 20 as indicated by the ∆2(N) and HL gap. Again these stabilities

were explained in terms of the spheroidal shell model.

1.5.1.2 CaN clusters

Unfortunately there are no mass abundance spectra available for CaN clusters focus-

ing on the small sizes. But mass abundance spectrum for CaN (N=1-5000) clusters

was reported by Martin et al [59, 60]. Because of the poor resolution of mass abun-

dance spectrum, any feature of the electronic shell structure within the size range

N=1-100 was not resolved. Nevertheless these studies revealed the fact that growth

sequence of the clusters was determined by the closed geometric shells rather than

closed electronic shells.

Table 1.2 shows a short summary of various theoretical studies which were dedi-

cated to investigating the electronic and geometric properties of CaN clusters.

Authors Element Charge Range Methods Properties studied.

Hearn et al [61] Ca,Sr n ≤ 20 GO BE and ∆2(N)
Mirick et al [62] Ca n 3-13 DFT IMT and HL

Freq and ∆2(N)
Dai et al [63] Ca n, a 2-19 DFT EA and Freq
Pacchioni et al [64] Ca n ≤ 5 QC(CI) IMT, IP
Dong et al [65] Ca n, c 6-13, 32-84 TB Freq, HL, and ∆2(N)
Blaisten-Barojas et al [66] Ca c ≤ 8 DFT Frag.

Table 1.2: Summary of theoretical works on CaN clusters. Abbrevia-
tions : GO=Global optimization, CI=Configuration interaction, TB=Tight binding
model. Rest of the abbreviations are given in Table 1.1.

Hearn et al [61] optimized structures of CaN clusters with the empirical potential

of Murrell and Mottram (MM) which has two- and three-body interactions. In their

study icosahedral growth was preferred over the truncated decahedral, cuboctahe-

dral, and rhombic dodecahedral growth. ∆2(N) was shown with local peaks at N=4,

7, 13, and 19. The stability of clusters at N=4, 7, 13, and 19 can be described by the

spheroidal shell model. Local maxima at N=13 and 19 can be interpreted in terms

of close packing structures which act as building blocks for icosahedral growth [1].
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On the contrary, first-principles studies by Mirick et al [62] and Dai et al [63] showed

peaks in ∆2(N) for Ca10 alongwith Ca4, Ca7 [62, 63], Ca13, and Ca17 [63]. The HL

gap was shown to decrease as the cluster size increases but there were local peaks at

N=4, 7, and 10 [62]. Again the spheroidal shell model was invoked to explain the

peaks in ∆2(N) and HL gap for Ca4, Ca7, and Ca10. Dai et al [63] calculated the

EA’s of the neutral clusters which show a sharp dip at N=10. This sharp dip in EA

was understood in terms of the closed electronic shell with 20 valence electrons.

1.5.1.3 SrN clusters

Unlike CaN clusters, strontium clusters have been explored in more detail, specifically

at lower sizes. Dugourd et al [67] observed Sr3 and Sr4 clusters with prominent peaks

in the mass abundance spectrum. The measured IP (4.73 eV) of Sr2 was in excellent

agreement with the classical conducting sphere model [1]. Therefore these authors

argued that small SrN clusters can be approximated by a metallic sphere. Bréchignac

et al [68] measured the mass abundance spectrum of photoionized singly charged Sr+N
clusters. Local peaks were found at N=11, 19, 23, 34, 43, 52, 61, and 81. While

the stability at N=34 can be understood in terms of the spheroidal model, observed

sequence of the peaks was found to be different from that observed in other alkaline

earth metal clusters [69]. In particular, peaks at N=13 and 55 characterizing the

icosahedral compact structure were absent.

Authors Element Charge Range Methods Properties studied.

Wang et al [70] Sr n ≤ 63 DFT, GO Freq and ∆2(N)
Kumar et al [71] Sr n 2-35 MD HL and ∆2(N)

55 & 147
Wang et al [72] Sr n 2-13 QC IP, EA, HL, and Freq
Lyalin et al [73] Sr n, c 2-14 DFT HL and ∆2(N)

Table 1.3: Summary of theoretical works on SrN clusters.

Wang et al [70] measured the fine mass abundance spectrum for SrN clusters

containing up to 96 atoms. Intense mass peaks were observed at N=34 and 61. Even

though Sr34 and Sr61 have 68 and 112 valence electrons corresponding to closing of

electronic shells, their stability was argued in terms of their compact structures.

Similar to CaN , structures and stability of SrN up to 20 atoms had been investi-

gated with the empirical potential of MM [61]. Local maxima in ∆2(N) were found

at the same sizes as for CaN [61]. The evolution of electronic states and multi-shell

relaxation in SrN , N=2-35, 55, and 147 was studied by ab-inito molecular dynamics
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with plane wave basis and ultra-soft pseudopotential [71]. The HL gap was shown

to have local maxima at N=4, 7, 13, 19, 23, 26, 29, and 33. The spheroidal shell

model can explain the stability of these clusters except for N=26. Recently, density

functional calculations of SrN (N=2-14) clusters have been carried out by Lyalin et

al [73]. An interplay between the electronic and geometric shell closure was shown

to control the size evolution of their electronic and structural properties. Also HL

gap and ∆2(N) were found to have local maxima at N=4, 7, 10, and 13 in agree-

ment with the spheroidal shell model [73]. Table 1.3 summarizes various theoretical

studies of SrN clusters.

In summary, there are differences (local peaks at different sizes) in the mass

abundance spectrum of group-IIA metal clusters. There are also common electronic

shell features, specially at N= 4, 7, 10, and 20 for MgN , CaN , and SrN clusters. In

addition, geometric effects also play an important part in stabilities of these clusters

at large sizes.

1.5.2 Trivalent metal clusters (AlN clusters)

Aluminium clusters are one of the most extensively studied class of clusters. In the

bulk, Al ([Ne]3s23p1) shows the characteristics of a metal because of a complete

hybridization of the 3s and 3p bands originating from the atomic 3s and 3p orbitals.

Therefore electronic shell effects, a common feature of the alkali and noble metal

clusters were expected for AlN clusters. Table 1.4 shows the possible electronic shell

closings for the neutral and singly charged AlN clusters by assuming that each Al

atom provides three valence electrons.

Schriver et al [74] measured the IP’s of AlN clusters as shown in the Figure 1.7.

IP’s show a sharp rise up to N=4 (in fact higher than atomic IP 5.98 eV), and drops

Figure 1.7: Experimentally measured ionization potentials of AlN clusters [74].
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Table 1.4: Expected electronic shell closings and the corresponding closed shell neu-
tral, anionic and cationic clusters of trivalent Al.

Orbital Number of valence electrons Al
0/−,+
N

3F14 234 Al78
2H22 220 Al−73
1J30 198 Al66
4S2 168 Al56
3D10 166 Al−55
2G18 156 Al52
1I26 138 Al46
3P6 112 Al−37
2F14 106 Al−35
1H22 92
3S2 70 Al−23
2D10 68
1G18 58 Al−19
2P6 40 Al−13
1F14 34 Al−11
2S2 20 Al+7
1D10 18 Al6
1P6 8
1S2 2

at N=7, 14, 17, 23, 29, 37, 39, 43, 47, 55, and 67. Drops in IP’s at N=7 and 14 can

be understood from shell closings for 20 and 40 valence electrons. However, expected

drops after Al−19, Al−23, and Al−37 were not seen. Upton calculated the IP’s of the AlN

clusters by incorporating the effect of atomic nuclei as a perturbation in the jellium

model and found a similar rise in IP’s upto N=4, and a low value of IP at N=5 [75].

Usually, IP’s of metal clusters are found to decrease as the cluster size increases.

This can be understood within a classical conducting sphere model [1]. Therefore

the initial rise in the IP’s of the AlN clusters was rather surprising. A qualitative

argument for this initial rise in IP’s was given by Upton [75]. In an Al atom 3s and 3p

orbitals are separated by 3.6 eV [76]. As the cluster size increases, 3s and 3p orbitals

on different atoms hybridize and form their own 3s and 3p bonding and anti-bonding

states respectively. These 3p occupied bonding states are deeper in energy compared

to the atomic 3p state, and therefore it requires more energy to ionize the clusters

than an Al atom. Also due to the lack of 3s and 3p hybridization, an Al atom
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behaves effectively as a monovalent atom and it was believed that electronic shell

structures will not emerge until Al behaves as a trivalent atom within the cluster.

The transition from monovalent to trivalent character is thus associated with the

overlap of 3s and 3p derived states.

Schriver et al [74] identified the onset of s-p hybridization with the abrupt leveling

of IP’s of the AlN clusters near N=5. In other works, 3s and 3p derived bands were

claimed to overlap at N=8 by analyzing the evolution of the photoelectron spectra

(PES) of Al−N clusters [77, 78]. PES study of Al−N (N=1-162) clusters was reported

by Li et al [79]. These authors observed the onset of the s-p hybridization at N=9.

Assuming 3 valence electrons per Al atom, Li et al identified the closure of electronic

shells for Al−11, Al−13, Al−19, Al−23, Al−35, Al−37, Al46 etc. From the above experimental

findings, it is clear that different experiments have different answers regarding s-p

hybridization. Furthermore, Leuchtner et al studied reactivity of Al−N clusters with

oxygen [7]. All the anionic clusters reacted with O2 except for Al−13, Al−23 and Al−37.

With 3 valence electrons per Al atom, Al−13, Al−23 and Al−37 have 40, 70 and 112 valence

electrons respectively. Therefore their non-reactive behavior can be understood in

terms of closed electronic shells.

Table 1.5 represents a short summary of the theoretical works on Al clusters which

have been reported. Rao et al [80] performed density functional calculations for the

neutral and ionized AlN (N=1-15) clusters. Al+7 , Al−11, and Al−13 were identified with

greater stability as indicated by their HL gap and binding energies. Their stability

was explained in terms of closed electronic shells. To monitor s-p hybridization these

Authors Element Charge Range Methods Properties studied.

T. H. Upton [75] Al n 2-6 s-p hybridization, IP
Rao et al. [80] Al n,a,c ≤ 13 DFT s-p hybridization,HL,

IP,EA
Akola et al. [81] Al n 2-23 DFT s-phybridization,IP
Melko et al. [82] Al a 3-6 APES + DFT s-p hybridization

Table 1.5: List of theoretical works on AlN clusters. Abbreviation : APES= Angle
resolved PES.

authors calculated the s and p orbital contributions in the HOMO’s of the clusters

and found s-p hybridization in the range 5 6 N 6 7. This result was consistent with

the interpretations of the experimental findings [77, 78]. A density functional study

for AlN (N=2-23) was reported by Akola et al [81]. Their calculated AIP’s were
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found to be in excellent agreement with the experimentally measured IP’s, especially

high IP’s at N=6 and 13 [74]. By projecting each occupied molecular orbital (MO)

of Al4 onto spherical harmonics, these authors found that 3s and 3p orbitals overlap

substantially in most of the MO’s. This result was clearly in contradiction with

the experimental observation of Li et al [77–79]. In a recent work, Melko et al [82]

performed angle-resolved PES (subsection 1.6) and ab-initio study for Al−N , (N=3-6)

clusters. These authors have argued that s-p hybridization is present in clusters as

small as Al3, calling into question interpretations of earlier PES experiments. Most

importantly, they have shown that s-p hybridization does not suddenly appear at a

critical cluster size, but exhibits an oscillatory behavior as Al atoms are added one

by one.

From the above discussion, it is fair to say that there are some inconsistencies

between the experimental and theoretical works regarding s-p hybridization. How-

ever one can see some evidence of shell feature in Al−N (e.g., at N=11, 13, and 19)

and in Al+7 with the assumption that Al acts as a trivalent atom.

1.6 Experimental status of shell model : Angle re-

solved PES

We have seen that shell models are very successful in explaining many properties

of metal clusters such as their relative stability, IP’s, EA’s etc. However one may

ask whether the electrons really occupy discrete shells with 2(2l+1)-fold degeneracy,

and whether these states can be identified to have an angular momentum quantum

number l. Answers to these questions are partly obtained from the anion PES of

experiments. Typically in PES, electronic shells are broadened into band of sub-

shells [1]. Broadening of energy shells into sub-shells is caused by the interaction of

valence electrons with the ionic background which is completely ignored in the shell

models. Thus strictly speaking l will not remain a good quantum number. Recently,

the angular momentum character of the valence orbitals of Na−N clusters has been

investigated by angle-resolved PES [83]. In angle-resolved PES, one obtains the an-

gular distribution (I(θ)) of the photo-detached electrons (PAD). I(θ) is given by the

expression

I(θ) ∝ 1 + β
(3

2
cos2θ − 1

)
(1.14)
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where θ is the electron emission angle with respect to the electric field vector of the

linearly polarized laser light and β is the so-called anisotropy parameter given by

β =
l(l − 1)R2

− + (l + 1)(l + 2)R2
+ − 6l(l + 1)R+R−cos(δ)

(2l + 1)(lR2
− + (l + 1)R2

+)
(1.15)

Here

R± =

∫
ψ±f (r)ψi(r)r

3dr (1.16)

are the radial dipole matrix elements between the final state ψ±f (r) with angular

momenta l± 1 and initial state ψi(r) of the electron that has an angular momentum

l. δ = δ+ − δ− is the difference of the Coulomb phase shifts of the final state wave

functions ψ±f (r). Using Eqn. 1.15, β takes values between −1 and 2 corresponding

to perpendicular and parallel distributions respectively as shown in the Figure 1.8.

For spherical systems bound and continuum states have well-defined angular mo-

Figure 1.8: Schematic angle-resolved spectrum of three hypothetical electronic
states exhibiting perpendicular, isotropic, and parallel distributions (β parameters
−1, 0, and +2 respectively). The angular distributions are visualized as three-
dimensional polar plots above [83].

mentum l, and for linearly polarized light the transition selection rules are given

by ∆l = ±1 and ∆m = 0. If the incident photon causes emission of an electron

from the s orbital (l = 0), then according to selection rule it will result in an out-

going wave with l ′ = 1 and m = 0, and β = 2. In all other cases, it gives rise to

20



two partial waves with l ′ = l ± 1 corresponding to two peaks in the direction of

the light polarization. Also interference of these two outgoing waves may give any

value of β between −1 and 2. Most importantly it is the angular momentum (l) of

the initial state of photoemitted electron which determines its angular distribution.

This fact was shown by Bethe [84] and Cooper et al [85] for one- and many-electron

systems respectively. In Figure 1.9, the top panel shows the photoelectrons spec-

Figure 1.9: Angle-resolved photoelectron spectrum of Na−40, measured at threshold
photon energy of 500 nm. In the upper panel, the angle-integrated spectrum is
shown, in the lower panel, the spectra are plotted as a function of the emission angle
with respect to the light polarization [83].

trum of Na−40 cluster with the identification of shell model quantum numbers, while

the lower panel shows corresponding PAD. Na−40 has the following electronic config-

uration 1S21P61D102S21F142P61G1. Given the photon energy, top panel shows the

spectrum of three uppermost electronic shells: 1F, 2P, and 1G. These shells have

broadened due to the interaction with the ionic background. For example, 2P shell

has a width of 0.2 eV. However the corresponding PAD in the lower panel shows

a simple picture for the Na−40 cluster. PAD for electrons emitted from subshells of

2P shell has parallel distribution (β = +2), isotropic for 1G shell (β = 0) and per-

pendicular for 1F shell (β = −1). Therefore all the subshells of a given shell show

similar behvaiour in the PAD, whereas different shells demonstrate different PAD’s.

In conclusion, the ionic background was shown to lift the degeneracies of the shells,

but not enough to destroy the angular character of those shells. More details are

given in Ref [83].
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1.7 Superatoms

We have seen that stability of magic clusters was argued in terms of their closed

electronic shells. Experiments were performed to measure other properties directly

related to the electronic structure, e.g., IP’s and EA’s. Sharp drops in the IP’s have

been observed at sizes just after the magic sizes. Also, low values of EA’s were

seen at the magic sizes. All these experimental observations indicate that stability

of magic clusters is an electronic feature. The existence of the electronic shells in

simple metal clusters and their dominating role in governing stability provides a very

exciting possibility that clusters may exhibit electronic and chemical features similar

to elemental atoms.

In section 1.5, reduced reactivity of Al−13, Al−23 and Al−37 against oxygen was men-

tioned, which was explained in terms of the electronic shell closures with 40, 70, and

112 electrons [7]. This experiment demonstrated that the electronic shell structure

plays a decisive role in determining the reactivity of simple metal clusters. Since

non-reactive behaviour is also well known for inert gas atoms due to their closed

shells, Al−13 can be regarded as an analogue of those atoms. This led to the idea of

‘superatoms’. The most recent definition of superatoms as given by the proponents

Castleman and Khanna is as follows. A superatom is a cluster not only mimicking

some properties of an elemental atom but a motif that is stable in chemical assembly

and may also demonstrate new chemical features beyond the analogue atom [8]. For

example, Al13 is one electron short of a closed electronic shell, and it was expected to

behave similar to a halogen atom. In fact density functional calculations performed

by Khanna et al [9] showed that EA of 3.7 eV of Al13 is comparable to that of a Cl

atom (3.6 eV).

Figure 1.10: Charge density map of the HOMO for Al13I
− [11]. Blue spheres are

Al atoms while the red sphere represents an I atom.

Experimental evidence for this was also seen [11,12,79]. By analyzing the anion

PES of Al−N=1−162 clusters, Li et al [79] showed that EA (3.62 eV) of Al13 was close
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to that of a Cl atom. Bergeron et al [11] investigated the reaction of Al−N clusters

with HI gas in which a stable species Al13I
− was identified. The VDE and AEA

values of Al13 obtained from DFT calculations were found to be 3.56 eV and 3.34 eV

respectively which are higher than the EA (3.05 eV) of an I atom. This indicates

that Al13 has more halogen character than iodine. It was justified by the charge

density map of the HOMO of Al13I
− as shown in Figure 1.10. An extra electron

was found to be localized on the vertex of Al13 opposite to an I atom. These results

suggested that Al13 has characteristics analogous to a halogen atom and hence it was

termed ‘superhalogen’

Later on, Bergeron et al [12] provided more insight into the halogen characteristic

of Al13. These authors studied the reactivity of the Al−N clusters with I2. Mass

spectrum was shown to consist of two series of stable clusters Al13I
−
x=2,4,6,..., and

Al14I
−
x=3,5,7,.... In particular, stability of Al13I

−
2 revealed the well known polyhalide

nature of the halogens such as BrI2 or ClI2. Also Bergeron et al shown that Al13

retains its icosahedral structure in the reaction with I2. On the other hand, stability

of Al14I
−
3 was quite interesting. A careful analysis of the ground state geometry and

Mulliken charges in Al14I
−
3 in their DFT calculations showed that Al+2

14 (ne=40) core

was energetically stabilized in the presence of three I atoms and results first stable

product Al14I
−
3 of the series. Thus Al14 can be thought of as a cluster that mimics

an alkaline earth metal. This also demonstrates that adding just one more atom to

previous size of the cluster can change the chemical behaviour completely.

In periodic table many elements are known to have multiple valence. For exam-

ple, a C atom exhibits both divalent and tetravalent character and strongly binds

with O and Si atoms to form CO and SiC. The idea of superatoms was put on a

firmer ground when it was shown that some clusters behave as ‘multiple valence

superatoms’. Reveles et al measured the mass abundance spectrum of AlNC−x clus-

ters [13]. Intense peaks were found at Al7C
− along with Al−13. Their DFT calculations

identified Al7C
− as a stable cluster after examining the variation in HL gap and en-

ergy gain by adding one Al atom at a time. Al7C
− also emerged with greater stability

against the formation of AlO2, AlO−2 , and Al2O2 in the presence of O2 molecules [13].

Reveles et al found that Al−7 binds more strongly to tetravalent atoms, e.g., C and

divalent atoms, e.g., O compared to trivalent atoms as shown in the left panel of Fig-

ure 1.11. Also, calculated HL gaps of the Al7M
− clusters were shown to have local

peaks whenever M was a divalent or a tetravalent atom (right panel of Figure 1.11).

These findings were rationalized in terms of the spherical shell model. Since Al−7 is

a 22 electron system with an electronic configuration 1S21P61D102S21F2, it would
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Figure 1.11: (Left )BE of Al7M
−, (Right) HL gap of Al7M

− clusters, M is an atom
of the second, third, and fourth row of the periodic table [13].

like to bind more strongly to atoms that need 2 or 4 electrons to fill their outermost

shells. This also means that Al−7 tends to have electronic shell closure of 18 or 20

electrons. Thus experiments combined with theoretical calculations showed that Al−7

behaves as multiple valence superatom.

In summary, while the Al13 and Al14 were the first superatoms which showed

an analogy between the elemental atoms and superatoms, Al−7 showed multiple va-

lence feature. Most importantly, their electronic and chemical properties can be

rationalized in terms of the shell models.

1.7.1 Cluster assembled materials (CAM)

We have seen that AlN clusters with specific size and charge mimic electronic and

chemical properties of elemental atoms. Since atoms are the fundamental building

blocks of materials, it is natural to ask whether it is possible to build solids by

assembling these clusters. Various theoretical studies explored this exciting possibil-

ity [86–92]. Such materials are known as cluster assembled materials (CAM).

Al12C and Al13K were identified as suitable motifs for CAM in theoretical calcu-

lations [9, 93, 94]. These clusters were found to have binding energy (BE) per atom

comparable to Al−13. For example, BE of Al−13 was found to be 3.11 eV per atom,

while it was 3.16 eV and 3.04 eV per atom for Al12C and Al13K respectively. It is

interesting to note that even though both clusters have the same number of valence

electrons, i.e., 40 electrons, the origins of their stability are of completely different

nature. While the stability of Al13K is due to ionic bonding between Al13 and the
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K atom, Al12C attains its stability due to closure of both electronic and geometric

shells. To find the nature of hypothetical fcc solid based on Al12C, band structure

calculations were carried out by Manninen et al [86]. Particularly, the energy-band

structure of the CAM at a lattice constant of 11.64 Å showed that fermi energy

lies between the 2p and 1g bands derived from the 2P and 1G orbitals (of Al12C)

respectively. The magnitude of the band gap was found to be 0.5 eV that showed a

semiconductor nature of the proposed CAM. However, the lattice constant was not

optimized in these calculations. Liu et al reported first-principles calculations for

the crystalline phase of KAl13 [87]. Ionic molecules are known to form ionic solids

having either face centered (e.g., NaCl) or body centered cubic (bcc) lattice (e.g.,

CsCl). Therefore these authors considered both lattice structures for the CAM in

their calculations. By optimizing the total energy with respect to lattice constant,

the bcc structure was found to be more stable. By examining the density of states

(DOS), Liu et al found metallic nature of the CAM as shown in Figure 1.12.

Figure 1.12: Density of states of CAM based on Al13K clusters. Fermi energy level
was set to zero [87].

Recently, Castleman et al [89] have introduced a protocol in which one can synthe-

size cluster assemblies by finding suitable candidates. This approach involves three

steps : (i) identification of the potential building blocks through experiments on size

selected clusters in the gas phase, (ii) investigation of the energetics and chemical

stability of the cluster motifs via first principles calculations, (iii) synthetic chemical

approaches designed to assemble desired motifs using the information obtained in

steps (i) and (ii).

Following this protocol, these authors found As7K3, and As11K3 as suitable motifs

for CAM after analyzing the mass abundance spectrum of AsNK
+
M and the variation

of HL gap, fragmentation energy (FE) of the clusters [89]. In particular, Castleman et

al claimed that As7K3 can be regarded as As−37 units bonded by three K+ ions. Since
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Figure 1.13: Geometrical structure of various cluster assembled materials made of
As7 combined with K, Cs. or cryptated K atoms. The calculated band gaps of the
resulting solids are also marked. Adoped from ref [90].

then a number of CAM’s have been synthesized using As−37 units in combination with

different bare and cryptated alkali atoms1 which act as linkers between the cluster

units [89]. Most importantly, theoretical calculations showed that the band gap of

the assembled material can be tuned by changing the cation linkers (Figure 1.13).

Also, cluster assemblies with As−37 and As−311 motifs have been synthesized in one and

two dimensions [91,92].

1.8 Shell effects in bimetallic clusters

In previous sections, we have seen that many properties of simple metal clusters

reveal electronic shell effects. These are not the only clusters where size evolution of

the properties is governed by shell effects. There are numerous studies on bimetallic

clusters which showed that electronic shell models are good guiding tools to under-

stand their properties. In particular, we discuss in TM doped noble metal (AuN ,

AgN), and simple metal (NaN , CsN , MgN , and AlN) clusters.

1.8.1 TM doped noble metal clusters

Neukermans et al [95] studied the mass abundance spectrum of photo-fragmented 3d

TM doped Au+
N clusters (TM=Sc, Ti, V, Cr, Mn, Fe, Co, and Ni). They rationalized

the stability of the doped clusters in terms of shell models. Table 1.6 shows the

1Cryptated alkali atom has a lower IP than bare alkali atom.
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observed shell features in these clusters. For example, clusters with greater stability

in AuNSc+ series were found at N=6, 16, and 32. A Sc atom has 3d14s2 electronic

configuration. Assuming all the 3 electrons of Sc are delocalized, these clusters will

have 8, 18, and 34 valence electrons respectively. Therefore enhanced stability of

these clusters can be understood in terms of the shell models. Similar features were

also observed for Ti doped Au clusters. Au+
N clusters doped with Cr, Mn, Fe, and

Co emerged with greater stability at N=1, 5, 7, 17, 19, and 33. By considering only

the 2 electrons from the 4s orbitals of TM atoms as itinerant electrons, the origin

of their stability were explained via closure of the electronic shells with ne=2, 6, 8,

18, 20, and 34 number of valence electrons. Enhanced stabilities of Au5V
+, Au5Cr+,

Table 1.6: Observed Shell features in AuNX
+. nv is the number of delocalized

electrons coming from the TM and ne is the total number of delocalized electrons
corresponding to closed electronic shells [95].

X Valence Enhanced stability nv ne
at (N)

Sc 3d14s2 6, 16, 32 3 8, 18, 34
Ti 3d24s2 5, 15, (27) 4 8, 18, 30
V 3d34s2 5, 7 2 6, 8
Cr 3d54s1 1, 5, 7, 17, (19) 33 2 2, 6, 8, 18, (20), 34
Mn 3d54s2 1, 5, 7, 17, (19) 33 2 2, 6, 8, 18, (20), 34
Fe 3d64s2 1, 5, 7, 17, (19) 33 2 2, 6, 8, 18, (20), 34
Co 3d74s2 1, 5, 7, 17, (19) 33 2 2, 6, 8, 18, (20), 34
Ni 3d84s2 2, 8, 18 1 2, 8, 18

Au5Mn+, and Au5Co+ were of particular interest. All these clusters have 6 electrons

that lead to a closed electronic shell configuration 1S21P4 in the two dimensional

shell model [96]. Later on density functional calculations for Au5X
+ (X= Sc, Ti, Cr,

and Fe) clusters were reported by Janssens et al [97]. Local magnetic moments on

the TM elements within these clusters were shown to be reduced in comparison to

their bare atomic magnetic moments.

Li et al [98] presented PES study combined with density functional calculations

for MAu−6 (M=Ti, V, and Cr) clusters. These authors found that TM atoms re-

tain their bare atomic magnetic moments within these clusters. Torres et al [99]

reported first-principles study of AuN≤9M
+ (M = Sc, Ti, V, Cr, Mn, and Fe) clus-

ters. Based on ∆2(N), HL gap, and fragmentation energies, these authors identified

stable clusters at N=6 for Sc, N=5 for Ti, and N=5,7 for V, Cr, Mn and Fe. A
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noteworthy result of this work was odd-even oscillations of the magnetic moments of

TM atoms as a function of cluster size. In addition, moments of the dopant atoms

were found to decrease as the cluster size increases. A combined theoretical (DFT)

and photo-fragmentation study of MAg+
N≤30 (M=Sc, Ti, V, Fe, Co, and Ni) clusters

was reported by Janssens et al [20]. These authors observed pronounced peaks for

Ag16Sc+, Ag15Ti+, Ag14V
+, Ag11Fe+, Ag10Co+, and Ag9Ni+ in the mass abundance

spectrum. Assuming TM impurities provide all the 3d and 4s electrons, stabilities

of these clusters were attributed to a closed electronic shell with 18 electrons. Their

DFT calculations for Ag10Co+ also verified the above assumption. In addition, due

to closed electronic shell, these clusters do not have any net magnetic moment.

1.8.2 TM doped alkali metal clusters : Magnetic superatom

1.8.2.1 Theoretical proposals

Pradhan et al [100] studied electronic, magnetic and structural properties of Sc, Ti,

and V doped NaN (N=4-6) clusters. Oscillations in the magnetic moments of these

clusters were observed as the cluster size increases. Particularly, VNa4, VNa5, and

VNa6 were shown to have magnetic moments of 6µB, 5µB, and 6µB respectively,

while moments of TiNa5 and TiNa6 were found to be 3µB, and 4µB respectively.

Interestingly, magnetic moments of these clusters are higher than those of bare V

and Ti atoms. These observations are different from the results obtained in Ref [99]

where the magnetic moment of TM atoms decreased as the cluster size increased. By

examining the MO’s of these clusters, these authors claimed transfer of 3s electrons

of Na to the partially filled 3d atomic orbitals of TM atoms in the α channel2 due to

smaller (Pauling) electronegativity of Na compared to the TM atoms. Therefore one

obtains higher than atomic moments in these clusters. Later on, Pradhan et al [101]

reported first-principles calculations of late TM doped NaN (N=4-7) clusters, where

TM=Cr-Ni. Interestingly, Mulliken atomic spins within Cr, Mn, Fe and Co doped

NaN clusters showed ferro or anti-ferro magnetic coupling between the local moments

of the TM atoms and those of Na host atoms that cause odd-even oscillations in the

magnetic moments. However, no odd-even oscillations were observed for Ni doped

clusters over the size range studied. Also HL gaps of these clusters were shown to

have size-dependent behaviour.

A detailed density functional study of V doped NaN and CsN (N=1-12) clusters

was carried out by Reveles et al [15]. These authors identified VNa8 and VCs8 as

2Majority and minority spin channels are called up (α) and down (β).
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stable clusters (with a magnetic moment of 5µB) indicated by large alkali addition

energy (∆EN
3) and adiabatic spin excitation energy (∆Espin). Adiabatic spin ex-

citation energy (∆Espin) of a cluster is defined as the energy difference between its

ground state and the next higher energy spin multiplicity in their respective lowest

energy structures. It indicates the stability of the ground state of a cluster against

spin excitation. Counting all 3d and 4s electrons of V atom (3d34s2), VNa8 and

Figure 1.14: One-electron energy levels and molecular orbital isosurfaces for VNa8

(left) and VCs8 (right). Majority and minority levels are shown. Continuous lines
correspond to the filled levels and the dotted lines correspond to the unfilled states.
For each level, the degeneracy is marked. Upper-case letters stand for delocalized 1S
and 1P shells, and lower-case letters for localized 3d atomic orbitals [15].

VCs8 have 13 electrons that do not correspond to any magic number. Therefore

their stability was quite surprising. To explain this intriguing phenomenon, Rev-

eles et al showed that 8 electrons out of 13 occupy the delocalized 1S21P6 shell

orbitals and spread over the entire cluster as shown in the left panel of Figure 1.14.

The remaining five electrons are localized. These localized orbitals were found to

have d angular character with major contributions from V 3d orbitals. Therefore

both clusters acquire enhanced stability due to a filled shell configuration (1S21P6),

and atomic d electrons localized on the V atom provide a moment of 5µB. VNa8

and VCs8 resemble the electronic configuration of a Mn atom having a half filled

3d and filled 4s states. However, according to the definition of a superatom, these

clusters should retain their structural identity and associated magnetic properties

when assembled to form molecules or larger clusters. To test this two units of these

3∆EN = E(A) + E(VAN−1)− E(VAN ) ; A is Na or Cs
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Figure 1.15: Lowest-energy structures of (a) V2Na16 and (b) (VCs8)2 dimer starting
from free clusters. The arrows indicate the direction of the vanadium local spin
moments. The superscripts indicate spin multiplicity [15].

clusters were brought close to each other from different directions and orientations.

Figure 1.15(a) shows that two units of VNa8 coalesce together rather than making

a (VNa8)2 dimer. However, VCs8 prefers to make (VCs8)2 dimer as shown in Fig-

ure 1.15(b). Also V spins in (VCs8)2 dimer were found to be aligned parallel to each

other providing a high magnetic moment of 12 µB. Anti-ferromagnetic coupled state

in a (VCs8)2 dimer was found to be ∼0.1 eV higher in energy relative to its ground

state. Therefore Reveles et al concluded that VNa8 does not satisfy the necessary

criteria of being a superatom, while VCs8 can be regarded as a superatom with a

magnetic moment of 5µB. It was termed a “magnetic superatom”.

Inspired by the proposal of magnetic superatoms, various theoretical studies

have been carried out to identify possible candidates for magnetic superatoms [102,

103]. Reveles et al performed density functional calculations for neutral and anionic

TiNaN(N=1-13) clusters [102]. By examining the variation of HL gap and ∆ENa,
4

TiNa5, TiNa7, and TiNa9 were identified as stable clusters with magnetic moments of

3µB, 3µB, and 5µB respectively. Treating all 3d and 4s electrons of Ti (3d24s2) atom

as delocalized electrons, TiNa5 has 9 valence electrons. It was shown that stability of

TiNa5 was because of a closed electronic shell (1S21P4) within the two dimensional

shell model. Remaining 3 electrons were found to be localized on Ti in the majority

spin channel providing a magnetic moment of 3µB. For TiNa7 and TiNa9, enhanced

stability was attributed to a closed shell configuration 1S21P6. Particularly, TiNa9

was the first candidate in which all five 3d orbitals on Ti in the majority spin channel

were filled in a way similar to VCs8. Thus TiNa9 was identified as a possible can-

didate for magnetic superatom. In addition, TiNa12 was also found with enhanced

4∆ENa = E(Na) + E(TiNaN−1)− E(TiNaN )
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stability indicated by ∆ENa. This is because of its highly symmetric and compact

icosahedral ground state structure.

Later on, first-principles calculations of ScNaN (N=1-12) clusters were carried

out by Pradhan et al [103]. By analyzing ∆ENa and ∆Espin, ScNa12 was found to have

enhanced stability with a magnetic moment of 3µB. Its stability was attributed to its

compact icosahedral structure. By examining the molecular orbital isosurface plots,

it was shown that change of the alkali atoms provides the control over the relative

position of 1S, 1P, and 3d states which could lead to larger magnetic moments. ScK12

and ScCs12 were found to have magnetic moments of 5µB in which the 3d orbitals

of Sc adopt a half-filled configuration, while the clusters were stabilized by a filled

1S21P62S2 configuration. Therefore these authors argued that ScK12 and ScCs12 with

magnetic moment of 5 µB could be possible candidates for magnetic superatoms.

In summary, the idea of superatom is extended to a new class of superatoms,

i.e., magnetic superatoms which not only have enhanced stability but also possess

finite magnetic moments. VCs8 was the first example of a magnetic superatom.

TiNa9, ScK12 and ScCs12 were possible members of the magnetic superatom family.

However, the questions whether they retain their structural identity and associated

magnetic properties while making assemblies were not addressed.

1.8.2.2 Experimental status of magnetic superatoms

In last section, we saw that various theoretical studies have put forward the inter-

esting idea of magnetic superatoms. Experimental evidence for these came recently.

Zhang et al [104] measured the mass abundance spectrum of V1,2Na−N clusters. Par-

ticularly intense peaks were observed for VNa−N at N=6, 7, 8, and 9. Subsequently,

these authors performed anion PES for the VNa−N (N=6, 7, 8, and 9) clusters. Since

anion PES involves the transition from the ground state of the anion to the ground

and excited states of the neutral, shape of PES corresponds to the absorption spectra

of the neutral clusters. Thus these authors have calculated theoretical absorption

spectra of VNa−N (N=6, 7, 8, and 9) clusters using time dependent DFT to obtain

more insight into photoelectron spectra.

Figure 1.16 shows the experimental PES of VNa−7 and VNa−8 and the correspond-

ing theoretical absorption spectra. AEA is marked as the onset of the first peak in

the PES, while VDE is identified by the position of first peak. First two peaks of

both experimental and theoretical spectra were in excellent agreement with each

other as shown in Figure 1.16. For example, theoretically calculated first and second

VDE of VNa−7 with a magnetic moment of 5 µB were 1.00 eV and 1.23 eV respec-

31



Figure 1.16: Photoelectron spectra at 355 nm for VNa−N clusters (N = 7, 8). The
calculated absorption spectra of neutral VNa8 is marked in red. The calculated
vertical detachment energies are marked with blue lines [104].

tively, consistent with the corresponding experimental values of 0.9 eV and 1.23 eV.

Similar agreement was observed for VNa−8 . The AEA (0.81 eV) of VNa8 was also

found to be the lowest, consistent with a closed shell 1S21P6 configuration. Peak at

VNa−7 in the mass abundance spectrum can be understood from the fact that VNa−7

is isoelectronic to VNa8. In fact, VNa−7 was shown to have an electronic configu-

ration 1S21P63d5α similar to VNa8 [15]. Therefore, by comparing the experimental

photoelectron spectrum with theoretical transitions, these authors concluded that

VNa−7 possess electronic and magnetic properties similar to VNa8.

1.8.3 TM doped Mg clusters

Recently, Medel et al [105] carried out density functional calculations for 3d TM

doped MgN (N=1-12) clusters. FeMg8 with a magnetic moment of 4µB was found

to have enhanced stability as indicated by its large HL gap, Mg addition energy

(∆EMg), and ∆Espin. Treating all 3d and 4s electrons of the Fe atom (3d64s2) as

valence electrons, FeMg8 has 24 valence electrons which do not correspond to any

shell closing. Thus enhanced stability of FeMg8 at the unconventional electron count

of 24 was quite intriguing. These authors showed that the origin of this stability
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Figure 1.17: One electron energy levels and orbital wavefunction isosurfaces in the
FeMg8 cluster [105].

is related to the interplay between crystal field effect and Hund’s coupling. It has

been shown that clusters can open large gaps via a crystal field like splitting of the

shells due to the arrangement of ionic cores [14]. Therefore the conventional shell

sequence in spherical metal clusters can be changed by the structural distortion which

may lead to species with enhanced stability at unconventional electron counts. This

deformation can be considered in a way similar to crystal field splitting of atomic d

states due to the electrostatic fields of surrounding ions in solids. FeMg8 was found

to have 1S21P61D102S22D4
α electronic configuration as shown in Figure 1.17. Medel

et al showed that a crystal field due to oblate structure of FeMg8 lifts the degeneracy

of the 2D orbitals in the α channel and pushes the 2Dz2 orbital to a higher energy

relative to the other 2D orbitals. Moreover, due to a large exchange splitting in the

2D orbitals of the FeMg8 cluster, crystal field split 2D shell orbitals in the α channel

were occupied by 4 electrons giving a magnetic moment of 4µB. They showed that

exchange splitting in the 2D shell orbitals was due to the presence of Fe 3d states.

Furthermore, these authors showed that FeMg8 behaves as a magnetic superatom in

the same spirit as VCs8.
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1.8.4 TM doped aluminium clusters

So far we have seen that electronic and magnetic features of a single TM doped noble

metal, alkali metal, and Mg clusters can be explained in terms of shell models. Here

we will briefly review the literature for a single TM doped Al clusters. Even though

various studies are available for non-transition metal (e.g., Mg, Na, Li, K, and Cu)

doped AlN clusters [106–116], very few studies have been done for TM doped AlN

clusters. Harms et al [117] studied the reactivity of NbAl−N and VAl−N clusters with

oxygen. Particularly, NbAl−4 and VAl−6 were found to have reduced reactivity. They

argued that closure of electronic shells within shell models can account for their

reduced reactivity. Treating all the 4d and 5s electrons of Nb (4d45s1) as valence

electrons, NbAl−4 has 18 valence electrons, a magic number. On the other hand if

every valence electron of V (3d34s2) is counted, VAl−6 will have 24 electrons which

is not a predicted shell closing. However, Harms et al suggested that if one of the

4s electrons of V atom is promoted to the partially filled 3d atomic orbitals, then V

will provide only one free 4s electron. Therefore VAl−6 becomes a 20 electron magic

cluster. However, there is no theoretical justification of this from first-principles

calculations.

Using laser photoionization mass spectroscopy, Menezes et al [118] measured IP’s

of AlNCoM (N=0-35, M=0-7) clusters. Within the AlNCo series, local minima in

IP’s were seen at N=7, and 14, consistent with new shell openings at ne=22 and

43. These authors argued for the closing of an electronic shell by 40 electrons for

Al13Co with the assumption that Co contributes only one 4s electron. Pramann et

al [119] obtained ADE’s of the CoAl−N (N=8-17) clusters. Particularly, a significant

drop in ADE’s at N=12 was observed. With 3 valence electrons per Al atom and an

oxidation state of +3 of Co atom (3d74s2), Pramann et al claimed that Al12Co− has

40 electrons leading to a closed electronic shell. Therefore Al12Co− was expected to

show a minimum in ADE. Recently, Lang et al [120] reported structural information

of V, Cr and Ti doped Al+N (N=5-35) clusters using Ar physisorption experiments.

These authors concluded that Al+16 is the smallest cage that can enclose V and Cr

atoms, while Ti atom is encapsulated between N=19 and 21.

On the theoretical side, Gong et al [121] carried out density functional calcula-

tions to investigate the relative stabilities of TMAl12 clusters. These authors consid-

ered only the icosahedral structure for this series, where the TM was encapsulated

in an Al12 cage. They identified CrAl12 and MnAl12 as stable clusters by examining

their binding energies. Recently, density functional study for TMAlN (TM=Cr, Mn,

Fe, Co, Ni ; N=1-7,12) clusters have been reported by Wang et al [122]. Based on

34



∆2(N) and fragmentation energy, all TMAl3 clusters were claimed to have enhanced

stability. In addition, calculated HL gap also showed local peaks for all the TMAl3

clusters except FeAl3. The magnetic moments of the TMAl3 and TMAl4 clusters

were found to be 3, 2, 1, 0, 1 µB, and 0, 1, 2, 1, 2 µB respectively. To explain mag-

netic moments of these clusters Wang et al invoked the shell models. For example,

treating all 3d and 4s electrons of Co and Cr atoms as itinerant electrons, CoAl3

and CrAl4 have 18 and 20 electrons respectively that lead to closed electronic shells.

Thus CoAl3 and CrAl4 were found to be non-magnetic.

In summary, above studies claimed the existence of electronic shell effects which

govern the electronic and magnetic properties of TM doped Al clusters.

1.9 Aromaticity and all-metal clusters

Despite having great successes, there are cases where shell models cannot explain the

properties of all-metal clusters as observed in various experimental and theoretical

studies [16,17,123]. There are other simple electron counting rules in chemistry like

the Hückel rule and the Wade-Mingos rules [124, 125] which account for stability of

electronic systems. According to the Hückel rule, planar and cyclic hydrocarbons

having (4n+2) π-electrons have enhanced stability. These hydrocarbons are known as

aromatic compounds. Benzene, i.e, C6H6 is the prototypical example of an aromatic

compound having 6 π-electrons, and satisfies the Hückel rule. On the other hand,

systems having 4n π-electrons are known as anti-aromatic compounds.

Recently, the idea of aromaticity has been extended to all-metal clusters. In this

section we will briefly discuss aromaticity in Al-based bimetallic clusters only. A

combined experimental (anion PES), and theoretical study reported by Li et al [16]

showed the crucial role of aromaticity in stabilizing the MAl−4 (M = Li, Na, and Cu)

clusters. These authors showed a doubly degenerate HOMO of MAl−4 occupied by

two delocalized π electrons that is consistent with the Hückel rule for n=0. Later on,

it was argued that aromaticity in the MAl−4 clusters originated due to σ electrons

rather than π electrons [126]. Xi et al [127] reported experimental and theoretical

studies for mixed valence MAl−3 (M=Si, Ge, Sn, or Pb) aromatic clusters which were

iso-electronic to Al−24 . After that, numerous studies have been devoted to finding

stable cluster motifs using aromaticity as a guiding principle [128,129].

Although aromaticity is a widely used term, a precise, quantitative and well-

accepted definition of this quantity is still missing. For quantitative estimation of

aromaticity, different criteria have been proposed by different authors [17]. These can

35



be based on structural, energetic, reactivity, electronic or magnetic properties. The

most popular criterion used to identify an aromatic cluster is perhaps the nucleus

independent chemical shift (NICS), a magnetic measure. The NICS value is the

negative of the trace of the nuclear magnetic shielding tensor at the nucleus of an

inert probe atom. Clusters with negative values of NICS are classified as aromatic,

while clusters with positive values of NICS are classified as anti-aromatic [18,19].

A joint experimental and theoretical study of anionic and neutral AlNBi− (N=1-

5) clusters was done by Jones et al [128]. Al3Bi and Al5Bi were identified with greater

stability as shown by their large values of IP’s and HL gaps. Interestingly, the origins

of their enhanced stability turned out to be very different. Jones et al argued that

Al3Bi was an aromatic cluster because of the presence of 6 π-electrons, consistent

with the Hückel rule for n=1. A negative value of NICS (-32.19 ppm5) also verified its

aromatic character. While assuming 3 electrons per Al atom, the stability of Al5Bi

was attributed to closing of an electronic shell with 20 electrons. Therefore this work

presents an interesting scenario in which stability of the clusters can be explained

with two different rules as the number of atoms and valence change. Melko et al [129]

reported anion PES and first-principles calculations for AlNX (N=1-6 ; X=As and

Sb) clusters. By inspecting the variation of HL gaps, these authors found Al3X

and Al5X clusters with enhanced stability. Enhanced stabilities of Al3As and Al3Sb

were explained in terms of aromaticity as indicated by the negative values of their

NICS. On the other hand, a closed electronic shell configuration (1S21P61D102S2)

accounted for the enhanced stability of Al5As and Al5Sb. Besides these works, there

are numerous studies on aromaticity in all-metal clusters. A review of these are given

in ref. [123,130–132].

1.10 Goals of this thesis

Motivated by the interesting concept of superatom, a major part of my thesis is

devoted to identifying stable clusters which behave as magnetic superatoms. Detailed

study of structural, electronic and magnetic properties of a single 3d TM doped

alkaline earth and aluminum clusters is performed using first-principles approach

based on density functional theory. It forms a major part of this thesis. In addition,

I have studied V doped silver clusters using first-principle calculations. This work

is motivated by the experiments performed by Janssens et al on these clusters [20].

The remaining chapters of this thesis are organized as follows.

5Unit of NICS is given in terms of parts per million (ppm).
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Chapter 2 is about the underlying theory and techniques of calculations used in

this thesis. Density functional theory is reviewed. Techniques for solving the Kohn-

Sham equations using both localized and plane wave basis sets, and the concept of

effective core potentials, Mulliken population analysis are discussed. An evolutionary

algorithm for finding the global minima of clusters is also discussed.

Chapter 3 In this chapter the electronic and magnetic properties of 3d TM

doped calcium clusters are presented. We have found TiCa8 and FeCa8 to have

enhanced stability as indicated by large HL gaps, hardness (η) and adiabatic spin

excitation energy (∆Espin). In addition, FeCa8 is found to have a magnetic moment

of 4 µB. The stability of TiCa8 is understood from the fact that it has 20 valence

electrons, a magic number. FeCa8 is identified as a magnetic superatom in the same

spirit as VCs8 [21].

Chapter 4 extends our search for magnetic superatoms by investigating the

electronic and magnetic properties of the TMSr8 clusters. TiSr8 and CoSr8 are

found to have enhanced stability within the TMSr8 clusters. The enhanced stability

of TiSr8 is understood in a way similar to TiCa8. Most strikingly, FeSr8 does not

emerge as a cluster with enhanced stability. We have discussed the reasons behind

this. Furthermore, we have shown that the ground state electronic configuration of

a TMSr8 cluster is also determined by the combined effect of Hund’s coupling and

crystal field effect [22].

Chapter 5 explores the possibility of finding clusters with enhanced stability and

finite magnetic moment within the CrSrN and MnSrN (N=4-12) series. Motivation

for studying these clusters originated from the study of TMSr8 clusters. We found

that CrSr9 and MnSr10 have enhanced stability as indicated by their hardness, second

order energy difference (∆2(N)) and ∆Espin. CrSr9 and MnSr10 are found to have

magnetic moments of 4µB and 5µB respectively. Again, the origin of stability and

magnetic moment in CrSr9 and MnSr10 clusters is the combined effect of crystal

field and Hund’s coupling. CrSr9 and MnSr10 are also found to behave as magnetic

superatoms [22].

Chapter 6 focuses on the electronic and magnetic properties of a single Cr, Mn,

Fe, Co and Ni doped Al clusters in search of magnetic superatoms. While we have not

been able to identify any possible candidates for magnetic superatoms in these series,

we have found some very interesting properties in them. We have found that FeAl4,
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and CoAl3 clusters have enhanced stability as indicated by their ∆2(N), hardness

and ∆Espin. However, they have no net magnetic moment. Most importantly we

found that spherical shell models cannot describe the electronic structure of TM

doped aluminum clusters, in contrast to binary TM doped alkali and alkaline earth

clusters. In fact we have shown that stability of FeAl4, and CoAl3 can be associated

with their aromatic behaviour [23].

Chapter 7 investigates the evolution in the atomic structure, bonding char-

acteristics, stability, and the spin magnetic moment of neutral and cationic VAgN

clusters. This work is motivated by the experimental study on the VAg+
N clusters

in which VAg+
5 and VAg+

7 were found to be stable [20]. We found that VAg+
5 and

VAg+
7 have enhanced stability in agreement with the experiments, indicated by their

large HL gap and ∆2(N). We showed that the energy gap between the occupied

and unoccupied 3d orbitals of a bare V atom leads to greater stability of VAg+
5 . An

effective exchange splitting in 1D orbitals can be account for enhanced stability of

VAg+
7 [24].

Chapter 8 briefly discusses the scope of various further works based on our

studies.
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CHAPTER2
Methodology

2.1 Introduction

In the Born-Oppenheimer approximation, Schrödinger equation 1 for an N -electron

atomic system is given by

[ N∑
i=1

−∇2
i

2
+

N∑
i=1

V̂ext(ri) +
N∑
i=1

N∑
j>i

V̂ee(ri, rj)
]
Ψ = EΨ (2.1)

where the first term in the bracket is the kinetic energy operator. Second and

third terms are the nucleus-electron interaction potential and the repulsive electron-

electron interaction potential operators respectively. Ψ represents the N -electron

wavefunction. One can solve Eqn. 2.1 within the Hartee-Fock (HF) approximation in

which the N -electron wavefunction is approximated by a Slater determinant. Density

functional theory (DFT) provides an alternative approach to solve this N -electron

problem. In this chapter we will discuss the basic ideas of DFT. Tools for solving

the so-called Kohn-Sham equations using localized and plane wave basis sets will

be briefly discussed. The concept of effective core potentials (ECP’s), Mulliken

population analysis and an evolutionary algorithm for finding the global minima of

clusters are also discussed.

2.1.1 Density functional theory

Two theorems given by Hohenberg and Kohn [133] form the foundation of the density

functional theory.

1Hartee atomic units is taken in which ~=me=c=1.
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2.1.1.1 First Hohenberg-Kohn theorem

First theorem states that the ground state electron density ρ(~r) of an electronic

system uniquely determines the external potential acting on the electrons up to an

additive constant.

Proof : We first assume opposite of the theorem to be true. It means the

existence of two external potentials Vext and V ′ext differing by more than an additive

constant for a given ρ(~r) of an N -electron system. Two different external potentials

Vext and V ′ext lead to two different Hamiltonians Ĥ and Ĥ ′ respectively. Let the

ground state wavefunctions of Ĥ and Ĥ ′ be Ψ and Ψ ′ having energies E and E ′

respectively. Note that Ĥ − Ĥ ′ is equivalent to V̂ext− V̂ ′ext. Hence using variational

principle, we will have

〈Ψ ′|Ĥ|Ψ ′〉 > E

〈Ψ ′|Ĥ ′ + (Ĥ − Ĥ ′)|Ψ ′〉 > E

E ′ +

∫
(Vext − V ′ext)ρ(~r)d~r > E. (2.2)

Similarly, 〈Ψ|Ĥ ′|Ψ〉 > E ′ will lead to

E +

∫
(V ′ext − Vext)ρ(~r)d~r > E ′. (2.3)

From the Eqn. 2.2 and Eqn. 2.3, we obtain E+E ′ > E + E ′ which is a contra-

diction. Therefore we conclude that the same ground state electron density cannot

correspond to two different external potentials. This theorem establishes a one to

one correspondence between the ground state electron density and the external po-

tential. The ground state electron density determines the total number of electrons

N through ∫
ρ(~r)d~r = N. (2.4)

Hence ρ(~r) uniquely determines the Hamiltonian via N and Vext.

2.1.1.2 Second Hohenberg-Kohn theorem

Once the Hamiltonian is known, in principle, one can obtain the wavefunction of any

state by solving the Schrödinger equation. Consequently, the ground state wavefunc-

tion and all the ground state properties such as kinetic and potential energies are
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uniquely determined by the ground state electron density ρ(~r). Thus for a given Vext,

the total energy becomes a functional of ρ(~r) as follows :

E[ρ] = T [ρ] + Vee[ρ] +

∫
ρ(~r)Vextd~r

= FHK [ρ] +

∫
ρ(~r)Vextd~r (2.5)

where FHK [ρ]=T [ρ] + Vee[ρ] is called the Hohenberg-Kohn functional and is defined

for the ground state of an N -electron system. Also, it is independent of the exter-

nal potential Vext and is a universal functional of ρ(~r). T [ρ] is the kinetic energy

functional.

The second Hohenberg-Kohn theorem provides a variational principle for E[ρ]

with ρ(~r) as the basic variable. It says that for a given trial density ρ ′(~r) with

constraints
∫
ρ ′(~r)d~r = N and ρ ′(~r) ≥ 0, total energy functional (Eqn 2.5) will be

given by

E[ρ ′] ≥ E[ρ]. (2.6)

Proof : From the first Hohenberg-Kohn theorem, we know that the trial density

ρ ′(~r) uniquely determines its Hamiltonian Ĥ ′ and hence its own ground state wave-

function Ψ ′. Using Ψ ′ as a trial wavefunction for the Hamiltonian Ĥ corresponding

to the problem of interest :

〈Ψ ′|Ĥ|Ψ ′〉 =

∫
ρ ′(~r)Vext(~r)d~r + FHK [ρ ′] ≥ 〈Ψ|Ĥ|Ψ〉.

Using Eqn 2.5 we obtain E[ρ ′] ≥ E[ρ] which proves the theorem.

The electron density which minimizes E[ρ] is obtained via stationary principle :

δ
[
E[ρ]− µ

{∫
ρ(~r)d~r −N

}]
= 0 (2.7)

where µ is the Lagrange multiplier for the constraint
∫
ρ(~r)d~r = N . Eqn. 2.7 yields

the value of µ at the minimum for a constrained minimization

µ = Vext +
δFHK [ρ]

δρ(~r)
. (2.8)

µ is known as the chemical potential of the N -electron system.
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2.1.2 The Kohn-Sham method

From the Hohenberg-Kohn theorems, we learn about the possibility of calculating

ground state properties by knowing the ground state electron density. However, they

do not provide any computational scheme to calculate ρ(~r) because the functional

form of FHK is unknown. The Kohn-Sham formalism provides a set of equations

known as the Kohn-Sham equations. These equations are solved self-consistently to

obtain ρ(~r) that minimizes E[ρ] [134].

For a given N -electron interacting system, Kohn and Sham assumed the existence

of a non-interacting reference system. The only constraint is that the fictitious

reference system should have same electron density ρ(~r) in the ground state as the

interacting system of interest [134]. For such a non-interacting N -electron system,

we can write the Hamiltonian as follows

Ĥ = −
N∑
i=1

∇2
i

2
+

N∑
i=1

υs(~ri)

=
N∑
i=1

ĥi (2.9)

where ĥi is single-electron Hamiltonian and υs(~ri) is single-electron potential which is

unknown. For this system, the ground state wave function will be given by a Slater

determinant of the N lowest energy states. Its kinetic energy can be calculated

exactly and is given by

TKS[ρ] = −〈Ψs|
N∑
i=1

∇2
i

2
|Ψs〉

= −
N∑
i=1

〈ψi|
∇2

2
|ψi〉 (2.10)

where ψi’s represent the single electron orbitals and are the eigenstates of one-electron

Hamiltonian ĥi.

The idea behind the proposal of a non-interacting system is as follows. As

electron-electron interactions are absent, the kinetic energy functional (TKS[ρ]) of

the reference system is not equal to T [ρ] of the interacting system. Kohn and Sham

wrote E[ρ] in the following form :

E[ρ] = TKS[ρ] + J [ρ] + Exc[ρ] +

∫
ρ(~r)Vextd~r (2.11)

42



Here J [ρ]=1
2

∫ ∫
ρ(~r1)

1
r12
ρ(~r2)d~r1d~r2 is the classical electron-electron repulsion energy

and Exc[ρ] is given by,

Exc[ρ] = T [ρ]− TKS[ρ] + Vee[ρ]− J [ρ]. (2.12)

Difference of the two kinetic energies, i.e., T [ρ]−TKS[ρ] along with non-classical part

of Vee[ρ] is clubbed into a functional known as the exchange-correlation functional

Exc[ρ].

Using stationary principle (Eqn. 2.7), a condition on ρ(~r) that minimizes E[ρ] is

given by

µ = Vext +
δJ [ρ]

δρ(r)
+
δExc[ρ]

δρ(r)
+
δTKS[ρ]

δρ(~r)
(2.13)

Now comparison of Eqn 2.13 with the chemical potential of the reference system,

i.e., µ = υs + δTKS [ρ]
δρ(~r)

provides,

υs = Vext +
δJ [ρ]

δρ(r)
+
δExc[ρ]

δρ(r)

= Vext +

∫
ρ(~r ′)

|~r − ~r ′|
d~r ′ + Vxc . (2.14)

where we have defined the exchange-correlation potential as follows :

Vxc[ρ] =
δExc[ρ]

δρ(~r)
. (2.15)

Thus we can see that problem of interacting N -electron system under Vext is mapped

into a problem of non-interacting electrons moving under an effective potential

Veff (~r)=υs(~r). Thus set of the N single-electron equations is given by,

[−∇2
i

2
+ V̂eff (~ri)

]
ψi = εiψi . (2.16)

These N single-electron equations are knowns as Kohn-Sham equations. The ground

state electron density and single-electron or Kohn-Sham orbitals, i.e., ψi’s are related

as follows:

ρ(~r) =
N∑
i=1

|ψi(~r)|2 (2.17)
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Now Eqn. 2.16 and Eqn. 2.14 are solved self-consistently to obtain the Kohn-Sham

orbitals ψi’s under the constraint Eqn. 2.17. Within the Kohn-Sham formalism, total

energy can be rewritten as

E[ρ] =
N∑
i=1

〈ψi|
−∇2

2
|ψi〉+

∫
ρ(~r1)ρ(~r2)

|~r1 − ~r2|
d~r1d~r2 + Exc[ρ] +

∫
ρ(~r)Vextd~r

Or

=
N∑
i=1

εi −
1

2

∫
ρ(~r1)ρ(~r2)

|~r1 − ~r2|
d~r1d~r2 + Exc[ρ]−

∫
ρ(~r)Vxcd~r (2.18)

where
N∑
i=1

εi=
N∑
i=1

〈ψi|−∇
2
i

2
+ V̂eff (~ri)|ψi〉.

The meaning of self-consistency in practice is as follows. In order to solve the

single electron coupled equations, i.e., Eqn. 2.16, one must know Veff , thereby ρ(~r).

It means that we should know the occupied set of the Kohn-Sham orbitals ψi’s. We

start with some trial charge density and generate Veff . Then we solve the Kohn-

Sham equations to get ψi’s and calculate ρ(~r). This process is repeated till the

output charge density is the same as the input charge density, or equivalently the

energy of the system does not change any more.

2.1.3 Exchange-correlation functional

The key difference between the HF and DFT is that DFT contains no approximation

as we can see from its formalism. All we need to know is a functional expression for

Exc. Unfortunately, an explicit form of Exc is unknown. Various approximations for

Exc have been suggested which are discussed briefly below.

2.1.3.1 The Local density Approximation (LDA)

The simplest approximation for Exc is given by the so-called local density approxi-

mation (LDA). In LDA [134], one writes

ELDA
xc [ρ] =

∫
ρ(~r)εxc(ρ(~r))d~r (2.19)

where εxc(ρ) denotes the exchange-correlation energy per particle of a uniform elec-

tron gas of density ρ. Further, εxc(ρ) can be divided into exchange and correlation
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contributions

εxc(ρ) = εx(ρ) + εc(ρ). (2.20)

The exchange energy per particle for a uniform electron gas is provided by Dirac’s

expression

εx(ρ) = −3

4

( 3

π

)1/3
ρ(~r)1/3. (2.21)

Unfortunately, there is no such explicit expression for εc(ρ). However, accurate

numerical results for the homogeneous electron gas were given by Ceperly et al [135]

using quantum Monte-Carlo. Based on these results, various authors have presented

analytical expressions of εc(ρ) using interpolation schemes. The most widely used

representations of εc(ρ) are the ones developed by Vosko et al [136] and Perdew et

al [137].

The extension of LDA for spin-polarized system is provided by local spin den-

sity approximation (LSDA). In LSDA, the exchange energy is provided by following

expression :

ELSDA
x = −3

2

( 3

4π

)1/3 ∫ [
ρ↑(~r)

4/3 + ρ↓(~r)
4/3
]
d~r. (2.22)

Here we have used two spin density ρ↑(~r) and ρ↓(~r) corresponding to up-spin (↑) and

down-spin (↓) electrons respectively. Total electron density is given by

ρ↑(~r) + ρ↓(~r) = ρ(~r). (2.23)

The general form of the correlation part is given by

ELSDA
c [ρ↑, ρ↓] =

∫
ρ(~r)εc(ρ↑(~r), ρ↓(~r))d~r (2.24)

where εc(ρ↑(~r), ρ↓(~r)) is the correlation energy per electron in a homogeneous elec-

tron gas. LDA has been reasonably successful in reproducing various properties for

example structural properties of materials [138].

2.1.3.2 Generalized gradient approximation (GGA)

Along with remarkable successes of LDA, there are some well-known drawbacks.

For example, overestimation of binding energies, underestimating band gaps are the
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failure of this approximation. Also it does not properly describe strongly correlated

systems, such as transition-metal oxides [139]. An obvious logical step to improve

upon LDA is to include, in addition to the ρ(~r), its spatial variations in order to

account for the non-homogeneity of the electron density. This provides a new class

of functionals, known as generalized gradient approximations (GGA’s). Most general

form of the GGA functionals is given by

EGGA
xc [ρ↑, ρ↓] =

∫
f
(
ρ↑(~r), ρ↓(~r),∇ρ↑(~r),∇ρ↓(~r)

)
d~r (2.25)

There are a large number of distinct GGA functionals depending on the form of

the function f . Two of the most widely used functionals in the literature are the

Perdew-Wang functional (PW91) [140] and the Perdew-Burke-Ernzerhof functional

(PBE) [141]. An excellent review of the exchange-correlation functionals is given by

Kohn [142].

2.2 Kohn-Sham equations: Introduction of basis

sets

2.2.1 Kohn-Sham equations in localized basis

In the previous section, we have obtained a set of N single-particle Kohn-Sham

equations. In order to solve these equations, Kohn-Sham orbitals are expressed in

terms of a linear combination of Gaussian-type orbitals (LCGTO) as follows :

ψi(~r) =
∑
µ

Cµiµ(~r) (2.26)

where µ(~r) is an atom centered basis function. From Eqn 2.26, the problem of finding

the Kohn-Sham orbitals reduces to the problem of calculating the set of expansion

coefficients Cµi’s that minimizes energy. These basis functions are further a linear

combination of a fixed set of primitive cartesian Gaussian functions,

µ(~r) =
M∑
p=1

dpφ
GF
p (x, y, z; ξp, i, j, k) (2.27)

where M is the contraction length, dp’s are the contraction coefficients. ξp’s are the

orbital exponents which are always positive. The contraction length (M), contraction
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coefficients (dp’s) and ξp’s are optimized to mimic the Slater-type orbitals (STO’s).

In cartesian coordinates, φGFp ’s are given in the following form:

φp(x, y, z; ξp, i, j, k) =
(2ξp
π

) 3
4
[(8ξp)

i+j+ki!j!k!

(2i!)(2j!)(2k!)

] 1
2
xiyjzke−ξp(x

2+y2+z2) (2.28)

where (i,j,k) are non-negative integers. Their sum determines the angular character

of a basis function. For example, when all three indices are zero, the GTO is an

s-type orbital. A p-type GTO is obtained when one of the indices is equal to one.

When the sum of the indices is equal to two, the orbital will be a d-type GTO.

However, there can be six cartesian d-type functions x2, y2, z2, xy, xz, yz. Sometimes

these are transformed into five spherical d orbitals and one additional s-type orbital

(x2+y2+z2). There are various kind of basis sets available. For example, minimal

basis sets such as STO-3G and spilt valence basis sets such as 4-31G (double zeta

basis), 6-31G etc. Details about localized basis sets are given in the books by Szabo

and Ostlund [143], and Cramer [144].

Using Eqn. 2.26, ρ(~r) is given by

ρ(~r) =
N∑
i=1

|ψi(~r)|2

=
∑
µν

Pµνµ(~r)ν(~r) (2.29)

where the sum is over the occupied Kohn-Sham orbitals and P is a matrix whose

matrix elements are

Pµν =
N∑
i=1

CµiCνi . (2.30)

P is called the density matrix. With the help of Eqn. 2.29, the total energy E

(Eqn 2.11) can be rewritten as follows :

E =
∑
µν

PµνHµν +
1

2

∑
µν

∑
στ

PµνPστ 〈µν||στ〉+ Exc[ρ] (2.31)

where the symbol || represents the 1
|~r1−~r2| operator and

Hµν = 〈µ|−∇
2

2
|ν〉+

∑
A

〈µ| −ZA
|~r − ~RA|

ν〉 (2.32)
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are defined as the elements of core Hamiltonian matrix. Here ZA is the nuclear charge

of an atom A and ~RA represents its position vector. Computational cost of Hµν is of

the order of N2
b , where Nb is the number of basis functions. The Coulomb term in

Eqn. 2.31 has a formal N4
b scaling. Computation of Exc[ρ] given in Eqn. 2.19 requires

a 3D numerical integration which scales as N2
b times g, where g denotes the number

of grid points in the numerical integration. Therefore Coulomb repulsion energy

is the computationally most expensive part. To reduce the computational time,

variational approximation of Coulomb potential has been suggested [145,146]. This

approximation reduces its scaling from N4
b to N2

b times M , where M is the number

of auxiliary functions in terms of which the electronic density is approximated by,

ρ(~r) ≈ ρ̃(~r) =
∑
k̃

xk̃(~r)k̃(~r) (2.33)

where xk̃ are auxiliary expansion coefficients, and k̃(~r)’s are the primitive Hermite

Gaussian auxiliary functions centered on an atom and are given by

k̃(~r) =
( ∂

∂Rx

)k̃x( ∂

∂Ry

)k̃y( ∂

∂Rz

)k̃z
×e−ζk̃(~r−~R)2 (2.34)

where (k̃x, k̃y, k̃z) determines the angular character of Hermite functions. Ri(i=x,y,z)

represent the components of ~R of an atom. We have used deMon2k code for first-

principles calculations in which variational approximation of the Coulomb potential

is based on the minimization of error in the classical electron-electron interaction

term with respect to auxiliary expansion coefficient. The error is given by

ε2 =
1

2

∫ ∫
[ρ(~r)− ρ̃(~r)][ρ(~r ′)− ρ̃(~r ′)]

|~r − ~r ′|
d~rd~r ′ (2.35)

and it is positive, i.e.,

ε2 ≥ 0 . (2.36)

Using ρ(~r) and its auxiliary version (ρ̃(~r)), Eqn. 2.35 will take following form :

ε2 =
1

2

∑
µν

∑
στ

PµνPστ 〈µν||στ〉 −
∑
µν

∑
k̃

Pµν〈µν||k̃〉xk̃

+
1

2

∑
k̃l̃

xk̃xl̃〈k̃||l̃〉 (2.37)
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where 〈k̃||l̃〉 =
∫ ∫ k̃(~r)l̃(~r ′)

|~r−~r ′| d~rd~r
′ and 〈µν||k̃〉 =

∫ ∫ µ(~r)ν(~r ′)k̃(~r ′)
|~r−~r ′| d~rd~r ′ . The expansion

coefficients of ρ̃(~r) which minimize ε2 are given by ∂ε2
∂xm̃

= 0. It leads to following set

of equations :

∑
k̃

xk̃〈k̃||m̃〉 =
∑
µν

Pµν〈µν||m̃〉 ∀ m̃ (2.38)

Finally total energy (Eqn. 2.31) is approximated with the help of Eqn 2.36 and 2.37,

E =
∑
µν

∑
i

CµiCνiHµν +
∑
k̃

∑
µν

∑
i

CµiCνi〈µν||k̃〉xk̃

−1

2

∑
k̃l̃

xk̃xl̃〈k̃||l̃〉+ Exc[ρ] . (2.39)

We demand that Kohn-Sham orbitals should be orthonormal, i.e.,

〈ψi|ψj〉 = δij∑
µν

CµνCνjSµν = δij (2.40)

where Sµν=〈µ|ν〉 are the elements of overlap matrix S. Now minimization of E with

respect to Cµi i.e., ∂E
∂Cµi

=0 gives

KµνCνi =
∑
ν

∑
j

SµνCνjεij ∀ µ, i (2.41)

where Kµν represent the elements of the Kohn-Sham matrix K and are given by

Kµν = Hµν +
∑
k̃

〈µν||k̃〉xk̃ + 〈µ|Vxc[ρ]|ν〉. (2.42)

εij are the undetermined Lagrange multipliers corresponding to Eqn 2.40. With the

help of unitary transformations of the occupied ψi’s, one obtains canonical Kohn-

Sham equations :

KC = εSC (2.43)

where C is the molecular orbital coefficient matrix, and ε forms the diagonal matrix

of the Lagrange multipliers, i.e., the Kohn-Sham orbital energies. Note that S is not
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a unit matrix due to non-orthogonal basis set. Therefore Eqn 2.43 is not in the form

of usual matrix eigenvalue equation. In order to obtain matrix eigenvalue equation,

one can introduce a new coefficient matrix C ′ such that

C ′ = X−1C (2.44)

where X is a matrix which transforms S into a unit matrix, i.e., X−1SX = 1.

Substituting C = XC ′ into Eqn 2.43 leads to a matrix eigenvalue equation,

K ′C ′ = εC ′ (2.45)

where K ′ = X†KX represents the transformed Kohn-Sham matrix. This equation

is solved for C ′ by diagonalizing K ′.

This method can be summarized as follows. Starting from the given trial den-

sity, the expansion coefficients of approximated density ρ̃(~r) are obtained by solving

the Eqn 2.38. Subsequently, Kohn-Sham matrix K ′ is constructed with the help

of Eqn. 2.42. Then a new set of molecular orbital coefficients are obtained by the

diagonalization of the Kohn-Sham matrix. This new set of molecular orbital coeffi-

cients is used in the construction of density matrix, i.e., Eqn 2.30 and subsequently

in a new ρ̃(~r). This self consistent (SCF) cycle is continued until self-consistency in

energy is achieved. Further details are given in the Ref. [147,148].

2.2.1.1 Effective Core Potentials

Core states of atoms are known to change very little when atoms aggregate to form

either molecules or solids. They are highly localized and not involved in the chemi-

cal bonding. Hence core states play a minor role in determining the electronic and

chemical properties. On the other hand, valence states are extended and are respon-

sible for chemical bonding between the atoms. To reduce the computational cost,

it will be of great help if we do not treat the core electrons explicitly and replace

their effect by an effective core potential (ECP) or pseudopotential (PP’s) to which

valence electrons respond. By introducing ECP’s and PP’s, true valence orbitals

are replaced by pseudo orbitals that match the true valence orbitals outside a core

region. Inside the core region, pseudo orbitals are smooth and nodeless. Another

important criterion is that true valence and pseudo orbitals inside the core region

should have same norm so that one have the correct charge density outside the core

region. This condition is called norm-conserving condition [149,150].
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Furthermore, it is known that relativistic effects are very important for core elec-

trons in heavy atoms. One way to include relativistic effects is to generate the

relativistic ECP (RECP). The generation of RECP’s involves the numerical valence

orbitals obtained from the self-consistent relativistic Hartee-Fock (HF) calculations.

Then numerical ECP’s are derived from these numerical pseudo orbitals and are fit

to an analytic form with Gaussian functions. The numerical valence orbitals are

also fit to Gaussian functions to obtain the corresponding basis sets. This approach

has been used by Hay et al [151] to obtain RECP’s. Lee et al generate the rel-

ativistic ECP’s using two-component atomic Dirac-HF wave functions [152]. Such

relativistic ECP’s are usually known as quasi-relativistic ECP’s (QECP’s). We have

used Stuttgart-Dresden QECP’s in some of our first-principles calculations. For in-

stance, (QECP19|SD) for Ag atom is taken where 19 specifies the number of valence

electrons.

Since the rapid oscillations of true valence orbitals near nuclei are not taken in

pseudopotential calculations, one can use a different method known as projector

augmented wave (PAW) method to obtain all electron properties. In this method

true valence orbitals with all nodes are obtained while ion-electron interactions are

described by PAW pseudopotentials. This approach is used in solving Kohn-Sham

equations within the plane wave formalism [153,154].

2.2.1.2 Mulliken population analysis

Study of charge distribution within molecules allows us to understand the chemical

behaviour of constituent atoms. By knowing the charges on atoms, a qualitative

information about the nature of bonding between them is obtained. Population

analysis methods provide effective charges on the atoms within molecules. These

methods use the atomic basis functions to estimate the total number of electrons

associated with an atom. There are two methods available, namely Mulliken and

Loẅdin population analysis. Here we will briefly discuss Mulliken population ap-

proach.

Total number of electrons N in the system is obtained by integrating the electrons
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density given in Eqn 2.29,

N =

∫
ρ(~r)d~r =

∫ ∑
µν

Pµνµ(~r)ν(~r)d~r

=
∑
µν

PµνSνµ

= Tr[PS]. (2.46)

In Mulliken population analysis (PS)µµ is defined as the number of electrons asso-

ciated with the atomic orbital µ. Now total electrons associated with an atom A

is obtained by summing up the contributions from all the atomic basis functions

centered on the atom A,

qA =
∑
µ∈A

(PS)µµ. (2.47)

Mulliken charge on atom A is given by the sum of the nuclear and electronic contri-

butions,

QA = ZA − qA. (2.48)

One can also defined density matrices for ↑ and ↓ spin electrons separately in a

manner similar to Eqn 2.30. For example, density matrix P ↑µν for ↑ spin electrons

(N↑) is given by

P ↑µν =

N↑∑
i=1

C↑µiC
↑
νi. (2.49)

Thus using Eqn’s 2.47, 2.48 and 2.49, one can get Q↑A and Q↓A. Their sum and

difference provide the net Mulliken charge and spin respectively.

2.2.2 Kohn-Sham equations in plane wave basis

For a periodic solid, a convenient expansion of the Kohn-Sham orbitals is given in

terms of plane waves as follows :

ψn,~k(~r) =
∞∑
~G

Cn,~k+ ~Ge
i(~k+ ~G).~r . (2.50)
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where ~k and ~G are the wave and reciprocal lattice vectors respectively. The Fourier

components are given by Cn,~k+ ~G, where n reperesnts the band index. These wave

functions are known as Bloch wave functions. A disadvantage of using plane waves is

that fast oscillations of wave functions near the nuclei require a large number of plane

waves. However, plane waves are used in conjunction with PP’s which reduce the

number of plane waves significantly as the pseduo-valence functions are smooth in

the core region. One can use the plane waves as basis sets even for finite systems such

as atoms, molecules and clusters. Desired finite system is placed inside a large cubic

unit cell. This introduces enough empty space between the periodic images of the

finite system so that the interactions between them are negligible. The Kohn-Sham

equations in the real space is given by

[
− ∇

2

2
+ V̂eff (~r)

]
ψn,~k(~r) = εn,~kψn,~k(~r) (2.51)

where

V̂eff (~r) =
∑
~R,i

V̂ ps
i (~r − ~R− ~ti) +

∫
ρ(~r ′)

|~r − ~r ′|
d~r ′ + V̂xc(~r) (2.52)

Using the pseudopotential approximation, the external potential is the sum of the

pseudopotentials of all the atoms in the system. Vectors ~R are the Bravais-lattice

vectors, while the position of an atom within the unit cell is given by ~ti. εn,~k’s denote

the Kohn-Sham band energies. ~k values are restricted to within the first Brillouin

Zone (BZ) of the reciprocal space. With the help of Eqn. 2.50, the Fourier transform

of Eqn. 2.51 will yield a set of linear equations for the Fourier components Cn,~k+ ~G,

∑
~G ′

[
|~k + ~G|2δ ~G~G ′ + Veff (~k + ~G,~k + ~G ′)

]
Cn,~k+ ~G ′ = εn,~kCn,~k+ ~G

(2.53)

where Veff (~k+ ~G,~k+ ~G ′) =
∫
e−i(

~k+ ~G)~rV̂eff (~r)e
i(~k+ ~G ′)~rd~r and has the following three

contributions,

Veff (~k + ~G,~k + ~G ′) = V ps(~k + ~G,~k + ~G ′) + Vee(~G− ~G ′)

+Vxc(~G− ~G ′). (2.54)

Three terms are the Fourier transforms of the pseudopotential, classical electron-

electron, and exchange-correlation potential respectively. Eqn 2.53 can be viewed as
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matrix eigenvalue equation and is diagonalized to obtain the Cn,~k+ ~G’s. One major

advantage of using plane wave is that fast Fourier transform (FFT) technique can

be invoked to evaluate matrix elements.

In principle, an exact solution (Eqn. 2.50) of the Kohn-Sham equations requires

an infinite number of ~G. However, in practice, the contribution from higher Fourier

coefficients decreases with increasing |~k + ~G|. Therefore we truncate the expansion

at some value of |~k+ ~G|. To do this, only the plane waves with kinetic energy lower

than the chosen energy cutoff Ecut are included in Eqn. 2.50 :

1

2
|~k + ~G|2 ≤ Ecut. (2.55)

Total energy will be a sum of E and inter-nuclei interaction energy EII .

Etotal = E + EII (2.56)

where E can be given by Eqn 2.18 with εi’s replaced by εn,~k and summation is taken

over ~k for all occupied bands and EII =
∑
i

∑
j>i

ZiZj

|~Ri−~Rj |
. EII is evaluated within peri-

odic boundary conditions using Ewald summation techniques [155]. We have used in

our calculations are PAW pseudopotentials in our calculations. These pseudopoten-

tials are constructed within PAW method. In this method a linear transformation

of pseudo valence orbitals leads to true valence orbitals with the help of projector

functions. PAW transformation modifies the pseudo orbitals to have all the nodes

only within the atom-centered augmentation sphere. As a result true valence orbital

decomposes into a smoother orbital outside the augmentation sphere and a contri-

bution coming from the augmentation sphere. A detail discussion of DFT in plane

wave formalism is given in ref [156].

This method can be summarized as follows: An initial guess for trial electron

density and trial set of occupied ψn,~k(~r) is taken. Now we calculate the V ps, Vee, and

Vxc potentials in the Fourier space. Subsequently, we diagonalize Eqn 2.53 to obtain

the Kohn-Sham energy eigenstates which generate different electron density. Then

again new Vee and Vxc potentials are constructed which are used in diagonalizing

Eqn 2.53. This process is repeated until the self-consistency in density or total

energy is achieved. Once the self-consistency is obtained, one can calculate forces

on atoms etc. These forces can be used in local structure optimization of a given

atomic system.

54



2.2.3 Forces and local structure optimization

In order to find a local minima on a potential energy surface2, one needs to know

the forces on the constituent atoms (ions) of the given system. These forces can

be easily calculated using Hellmann-Feynman theorem [157]. The ions are moved

in the direction of the forces until the calculated forces are smaller than a pre-set

cutoff value. For a given ionic configuration, Hamiltonian Ĥ is a function of ~R =

(~R1, ~R2, ~R3 . . .), where ~Ri=1,2,3... are the position vectors of the ions. The Hellman-

Feynman force on an ion A is given by

~FA = −dEtotal
d~RA

= − d

~RA

(E + EII)

= − d

d~RA

[
〈Ψs(~R)|Ĥ(~R)|Ψs(~R)〉+ EII(~R)

]
= −〈Ψs(~R)|∂Ĥ(~R)

∂ ~RA

|Ψs(~R)〉 − 〈∂Ψs(~R)

∂ ~RA

|Ĥ(~R)|Ψs(~R)〉 − 〈Ψs(~R)|Ĥ(~R)|∂Ψs(~R)

∂ ~RA

〉

−∂EII(
~R)

∂ ~RA

(2.57)

where ~RA is the position of an ion A. When the self consistency is achieved as

discussed previously, |Ψs〉 will be the ground state eigenfunction of Hamiltonian Ĥ,

i.e., Ĥ|Ψs〉 = E|Ψs〉. Then Eqn 2.57 will take the following form :

~FA = −〈Ψs(~R)|∂Ĥ(~R)

∂ ~RA

|Ψs(~R)〉 − E∂〈Ψs|Ψs〉
∂ ~RA

− ∂EII(~R)

∂ ~RA

(2.58)

Using 〈Ψs|Ψs〉 = 1, we will have

~FA = −〈Ψs(~R)|∂Ĥ(~R)

∂ ~RA

|Ψs(~R)〉 − ∂EII(~R)

∂ ~RA

(2.59)

where we have used 〈Ψs|Ψs〉 = 1. When a localized basis set is used to expand |Ψs〉,
then middle term in Eqn 2.58 will contribute a finite contributions known as Pulay

forces. However when one use plane wave basis sets which are independent of the

atomic position, Pulay force will be zero. Clusters can be relaxed to the nearest local

minima of the potential energy surface using the Hellmann-Feynman forces and an

optimization technique such as conjugate gradient.

2Within the Born-Oppenheimer approximation, the potential energy surface represents a surface
in 3N -6 configurational space.

55



2.3 Evolutionary algorithm

Predicting the lowest energy structure, i.e., global minimum of a given cluster re-

quires a large number of total energy calculations performed at various cluster ge-

ometries. To find the global minimum, one can use intuition to guess various initial

structures that are chemically reasonable. However, the number of local minima

on the potential energy surface increases exponentially as the cluster size increases.

Therefore finding the lowest energy structure of a given cluster is one of the most

challenging tasks. Here we have used an evolutionary algorithm which involves ge-

netic algorithm to obtain the global minimum and a number of metastable structures

for a given cluster [158,159]. Figure 2.1 shows a working flowchart of the evolution-

ary algorithm. The fundamental idea of the algorithm is to start with a set of initial

structures and evolve them using heredity and mutation operators. Here we will

provide a short summary of the evolutionary algorithm.

2.3.1 Initialization

The evolutionary algorithm starts with providing an initial population. Here it is

generated by applying possible point group symmetries for a given size to randomly

produced atomic coordinates. After that these initial structures of the cluster are

relaxed to their nearest local minimum using a conjugate gradient method. Ener-

gies of these structures are calculated using the plane wave PAW method within

DFT [153,154]. The PBE exchange correlation functional is used [141].

2.3.2 Variation operators

The population in the next generation is produced by variational operators which

are basically the heredity, soft-mutation and mutation operators. By applying hered-

ity operators, a child structure is created from two or more parents. Particularly,

randomly chosen parts of the parent structures are combined into a single child

structure. On the other hand, a child structure is obtained from a single parent by

applying the mutation operator. In soft-mutation operator, atoms are moved along

the eigenvectors of the softest normal mode of vibrations. These low frequency modes

are associated with the low curvature of potential energy surface. Consequently, new

structures are obtained after crossing such small energy barriers. A child structure is

also generated by an atom permutation operator. By an atom permutation operator,

chemically different atoms are swapped in randomly selected pairs that may give a
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Figure 2.1: Flowchart of a typical evolutionary algorithm [158].

new structure.

2.3.3 Halting criteria

The fitness criterion used for these calculations is the total energy. The calculations

are carried out up to a maximum number of generations with the halting criterion

that if the energy of the best structure does not change for a certain number of

generations then the calculations are stopped.
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CHAPTER3
TM doped calcium clusters

3.1 Introduction

The electronic orbitals in metal clusters, while resembling those in real atoms in

shape, do spread over multiple atoms. Generally, filling of electronic shells in these

clusters do not follow the Hund’s rule of maximizing the spin. Absence of Hund’s rule

in metal clusters is associated with Jahn-Teller effect. According to Jahn-Teller ef-

fect, a cluster with partially filled degenerate electronic shells will undergo geometric

distortion and stabilize in a low spin state [160]. Within the shell model framework,

it has been proposed that magnetic superatoms with spin moments could be stabi-

lized by inducing exchange splitting within the shell orbitals [105]. The purpose of

this chapter is to identify clusters that exhibit magnetic ground states and can possi-

bly behave as magnetic superatoms. We will demonstrate our findings by examining

the stability of transition metal doped calcium TMCan clusters containing various

3d TM atoms and 5-12 Ca atoms. We identify FeCa8 with 24 valence electrons as a

highly stable cluster that has a closed shell of 20 paired electrons and four un-paired

electrons occupying the 2Dxy, 2Dyz, 2Dxz, 2Dx2−y2 levels, while the 2Dz2 level is

separated by a large energy gap. We show that an interplay of crystal field splitting

and Hund’s coupling stabilizes this magnetic species. FeCa8 is also identified as a

magnetic superatom.

3.2 Computational details

All our first principles electronic structure calculations are performed within the

density functional theory (DFT). Molecular orbitals (MO) are expressed as linear
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combinations of Gaussian type orbitals centered on the atomic nuclei. deMon2k

code is used for these calculations [161]. Calculation of four-center integrals are

avoided by a variational fitting of the Coulomb potential as discussed in chapter 2.

The exchange-correlation effects are taken into account using the generalized gra-

dient approximation (GGA) functional proposed by Perdew, Burke and Ernzerhof

(PBE) [162]. All electrons on the 3d TM atoms and Ca are treated explicitly using

the double-ζ valence plus polarization basis sets optimized for GGA functionals by

Calaminici et al. (DZVP-GGA) [163]. The auxiliary density was expanded in prim-

itive Hermite Gaussians using the GEN-A2 auxiliary function set. By using above

basis sets and exchange-correlation functional, first and second ionization potentials

of Ca are found to be 6.06 eV and 11.98 eV respectively. These potentials are in

excellent agreement with experimental values of 6.11 and 11.87 eV respectively [164].

To find the ground state structure of a cluster we have used two approaches. In

the first approach, a large number of initial structures are taken for each cluster.

These are generated as follows. For TMCaN cluster, stable isomers of alkali and

alkaline earth clusters for size N+1 are taken from earlier works and the literature,

and different metal atoms are replaced by a TM atom of interest. In addition,

possible Ca cage structures encapsulating the TM atom are also taken. Furthermore,

we have taken various stable isomers of TMAN clusters, where A represents an alkali

element. For a given TM atom, the alkali atoms of TMAN are replaced by Ca

atoms. We have also taken the structures of TMMgN reported in Ref [105] and

replaced the Mg atoms by Ca. All possible spin states are considered for each initial

structure, and all these clusters are fully optimized using a quasi-Newton method

in the internal coordinates [165] without any symmetry constraints. We will call

this the educated guess approach. To ensure that the optimized structures are local

minima, harmonic frequencies are calculated for each one of them. If any structure

turns out to have imaginary frequencies, it is re-optimized by distorting it along the

unstable vibrational modes.

In the second approach, we perform a direct global search for the minimum energy

structure of these clusters based on an evolutionary algorithm. A brief summary of

our global structure search is given in chapter 2 of this thesis. Whenever we find

a minimum of structure in global search that is different from the lowest energy

structure obtained in the educated guess approach, we further relax it in deMon2K

and compare the energies of the two structures.
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3.3 Study of TMCa8 clusters

3.3.1 Motivation

The motivation for studying TMCa8 clusters is the recent study of TMMgn clusters

[105]. Medel et al showed FeMg8 cluster as a magnetic superatom. Since Ca also

belongs to the group of alkaline earth elements, a natural choice for finding new

members of magnetic superatom family is to study the electronic and magnetic

properties of TMCa8 clusters.

3.3.2 Ground state structures

2ScCa8
rSc-Ca=3.40 Å

rCa-Ca=4.13 Å

1TiCa8
rTi-Ca=3.29 Å

rCa-Ca=3.94 Å

4VCa8
rV-Ca=3.32 Å

rCa-Ca=4.12 Å

5CrCa8
rCr-Ca=3.33 Å

rCa-Ca=4.05 Å

6MnCa8
rMn-Ca=3.31 Å
rCa-Ca=4.07 Å

5FeCa8
rFe-Ca=3.24 Å
rCa-Ca=3.97 Å

4CoCa8
rCo-Ca=3.23 Å
rCa-Ca=3.92 Å

1NiCa8
rNi-Ca=2.93 Å
rCa-Ca=4.19 Å

Figure 3.1: Ground state structure and multiplicity (M=2S + 1)of TMCa8 clusters.
Point group symmetry of TMCa8 are also given. rTM-Ca and rCa-Ca are average TM-
Ca and Ca-Ca bond lengths in Å.

Figure 3.1 shows the optimized ground state structures and spin multiplicities

of all the TMCa8 clusters. The ground state structures are found to be square

antiprism arrangements of eight Ca atoms with an endohedral TM atom, similar to

those previously reported for the TMMg8 species [105], with the exception of NiCa8.

NiCa8 is a singlet with a bi-capped octahedron geometry. We find an isomer nearly

degenerate (0.03 eV higher) with the square antiprism structure and a spin magnetic

moment of 2µB for NiCa8. The average Ca-Ca bond length ranges from 4.05 to 4.19
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Å, while the average TM-Ca bond length ranges from 2.93 to 3.40 Å in the TMCa8

series. The next higher energy isomers of all the TMCa8 clusters are given in the

Appendix A.1.

3.3.3 Relative Stabilities

Our primary goal is to identify stable magnetic clusters. Therefore we first proceed

to examine (1) the HOMO-LUMO (HL) gap, (2) the adiabatic spin excitation energy

(∆Espin), (3) the magnetic moment of the TMCa8 clusters. The orbitals of a cluster

which participate in bonding with other chemical species are the frontier orbitals.

The lower the HOMO, larger is the amount of energy required to take out an electron

from the cluster. On the other hand, it is the LUMO of a cluster that accommodates

an additional electron. If the energy of the LUMO is high, then occupation of this

extra electron is energetically unfavorable. Therefore a cluster with a large HL gap

resists both accepting or donating electron and will be chemically more stable [166].

For example, Al−13 cluster which has a HL gap of 1.87 eV is found to be non-reactive

towards O2. A measure of the chemical stability is also given by hardness (η).

According to the principle of maximum hardness, a molecule tries to maximize its

hardness [166,167]. In conceptual DFT, η is defined as

η =
1

2

( ∂µ
∂ne

)
ν

=
1

2

(∂2E
∂n2

e

)
ν

(3.1)

where µ is the chemical potential, E is the total energy and ne is the number of

electrons in the cluster. All the derivatives are to be taken at a constant external

potential ν. In the finite difference approximation, the hardness can be written as

η ≈ IP-EA

2
(3.2)

The IP and EA values can be calculated using Koopmans’ theorem. According to

Koopmans’ theorem, IP and EA are simply equal to the negative of the energies of

the HOMO and LUMO respectively. Then Eqn 3.2 becomes

η =
LUMO-HOMO

2
(3.3)
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Thus hardness becomes half of the HL gap. Consequently, large HL gap of a cluster

leads to a large hardness and indicates its chemical stability. A more accurate ap-

praoch for calculating η is the ∆SCF method. Within this appraoch, the vertical IP

and EA values are obtained by doing self consistent calculations for the cation and

the anion cluster respectively at the geometry of the neutral. These values are used

in Eqn 3.2 to find η.
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Figure 3.2: Variation of η and ∆Espin with respect to TM atom.

Figure 3.2 shows the variation of η calculated via ∆SCF method and ∆Espin for

different TM atoms in the TMCa8 series. A peak in η indicates enhanced chemical

stability of FeCa8. Also FeCa8 shows greater stability against adiabatic spin exci-

tation. In addition, a second maximum in η is observed for TiCa8 indicating its

enhanced chemical stability. Table 3.1 summarizes the values of the HL gap, η and

∆Espin of all the TMCa8 clusters. TiCa8 has the largest HL gap of 0.77 eV within

the TMCa8 series.

Cluster HL(eV) η(eV) ∆Espin(eV)
2ScCa8 0.41 1.40 0.73
1TiCa8 0.77 1.46 0.23
4VCa8 0.26 1.31 0.03
5CrCa8 0.15 1.33 0.12
6MnCa8 0.42 1.40 0.07
5FeCa8 0.63 1.49 0.25
4CoCa8 0.45 1.29 0.11
1NiCa8 0.34 1.36 0.03

Table 3.1: HL gap, hardness (η) and ∆Espin of the TMCa8 clusters.

Figure 3.3 shows the energies of molecular orbitals (MOs) and their isosurfaces
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for ScCa8 and TiCa8. We have identified the angular momentum character of the

orbitals by inspection of their global shape and nodes in analogy with the atomic

orbitals. We refer to such plots as the MO isosurface plots in this thesis. Majority

(up) and minority (down) spin channels will be referred to as α and β respectively. If

we count both 3d and 4s electrons of Ti (3d24s2) as valence electrons, then TiCa8 has

20 electrons, a shell closing number within conventional shell models. As expected,

Figure 3.3: Molecular orbital energy levels and orbital wave-function isosurfaces of
(a) ScCa8 and (b) TiCa8. Continuous lines correspond to the filled levels while the
dotted lines correspond to the unfilled states. Degeneracies are also marked.

TiCa8 is a singlet with an electronic configuration 1S21P61D102S2 (Figure 3.3(b)).

Usually, a cluster having a large HL gap due to closed electronic shell is accompanied

by a large ∆Espin [168]. Surprisingly, the spin excitation energy of TiCa8 (0.23 eV) is

smaller than that of ScCa8 (0.73 eV). Why ScCa8, a 19 electron open shell system, has

a larger ∆Espin requires an explanation. Figure 3.3(a) shows that ScCa8 is a doublet

in the ground state with a 1S21P61D92S2 configuration. The next higher energy spin

state is a quartet. To excite this cluster to a quartet spin state, an electron has to be

promoted from the highest occupied orbital, i.e., 2S orbital in the β channel to the

LUMO in α channel. Let us assume that there are no reorganizations of the MO’s

during this transition. We will call this the ‘frozen orbital’ approximation. Within
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this approximation the energy required for this process is 1.10 eV. On the other

hand, to excite TiCa8 to a triplet state one has to excite one of the electrons from the

HOMO to the LUMO. The required energy within the frozen orbital approximation

is 0.77 eV only, equal to its HL gap . This argument qualitatively explains why ScCa8

has a larger ∆Espin. However, the actual ∆Espin values obtained after self-consistent

calculations of the spin-excited states are slightly different from these numbers.

The most significant finding of this study is the intriguing stability of FeCa8

indicated by its large HL gap and ∆Espin values. FeCa8 contains 24 valence electrons

if all the six 3d and two 4s electrons of the Fe atom (3d64s2) are treated as valence

electrons. From the conventional shell model we know that 24 electrons do not

correspond to any shell closure. Hence stability at this non-conventional electron

count is rather unexpected. Or is it that only the 4s electrons act as valence electrons

leading to an 18 electron filled shell configuration? Figure 3.4 shows the variation
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Figure 3.4: Variation of the magnetic moments (µB) with the TM atom and the
nature of frontier orbitals.

of magnetic moment and nature of the frontier orbitals in the TMCa8 series. FeCa8

has a configuration of 1S21P61D102S22D4
α and a spin magnetic moment of 4 µB.

Thus FeCa8 is a unique cluster that has a relatively large hardness (1.49 eV), a large

spin excitation energy (0.23 eV), and a spin magnetic moment of 4 µB. Hence it

emerges as a likely candidate for magnetic superatom. Another interesting point

is related to the ordering of energy levels in the TMCa8 clusters. We know that

energy ordering of the orbitals in the spherical shell model is 1S|1P|1D|2S|1F|2P|. . . .

However, Figure 3.4 shows the occupation of the 2D shell orbitals instead of the 1F

or 2P orbitals from VCa8 onwards. We shell discuss this point in the context of the

FeCa8 cluster.
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3.3.4 Stability of FeCa8 cluster

To understand the microscopic mechanism underlying its stability and stabilization

of the 2D orbitals, we have analyzed the MO plot of FeCa8 in Figure 3.5(a). The

Figure 3.5: (a) Molecular orbital energy levels and orbital wave-function isosurfaces
of FeCa8. Red and green arrows showing the exchange splitting of the 1D and 2D
orbitals respectively. (b) One electron energy levels and atomic orbitals of Fe atom.
Blue arrow shows the exchange splitting of d orbitals of Fe atom.

lowest energy orbitals in both α and β channels have 1S character. The next higher

energy orbitals above 1S are of 1D angular character in the α channel, while in the

β channel they are of 1P character. In the optimized structure of FeCa8, distance

between the two planes of the antiprism is 3.39 Å, while Ca-Ca distance within a

plane is 3.92 Å. Thus the Ca8 cage in FeCa8 represents an oblate distortion in the

z-direction. This oblate shape produces a crystal field that breaks the degeneracy of

the 1D orbitals in α channel and pushes the 1Dz2 orbital to a higher energy (0.19 eV)

with respect to the other 1D orbitals. Similarly 1Pz is split off to higher energy in

both spin channels. The next set of higher energy orbitals in the α and β channels are
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of 1P and 1D angular character respectively. After that the 2S orbitals are occupied

in both the spin channels. In this way 1S, 1P, 1D and 2S orbitals in the two spin

channels accommodate 20 electrons giving a 1S21P61D102S2 configuration. The next

higher energy orbitals above 2S in the α channel are four degenerate 2D orbitals

occupied by the remaining four electrons. These 2D orbitals form the HOMO of the

FeCa8 cluster. Due to crystal field effect, the 2Dz2 orbital is 0.95 eV higher in energy

relative to HOMO. The LUMO of FeCa8 is found to be in the β channel and is of

2D angular character. The calculated HL gap (0.68 eV) is higher than the HL gap

of all TMCa8 clusters except TiCa8.

According to Hund’s first rule, all the electrons in singly occupied degenerate

atomic orbitals have parallel spins in order to maximize the total spin. However,

electrons are not found to follow Hund’s rule in the atomic-like shell orbitals of

simple metal clusters. Hence simple metal clusters are non-magnetic. In fact, Stern-

Gerlach experiments performed by Douglass et al could not detect any magnetism

in simple metal clusters [169]. Therefore, filling of the degenerate 2D shell orbitals

with four electrons in the FeCa8 cluster is interesting. This clearly demonstrates that

electrons follow Hund’s rule in order to maximize the total spin. We will now try to

understand the origin of Hund’s coupling in the 2D orbitals in TMCa8 clusters.

Figure 3.5(b) shows the exchange splitting in the atomic 3d orbitals of a bare Fe

atom. Here exchange splitting is defined as the energy difference between the lowest

energy atomic orbitals of a given angular momentum (‘l’) in the α and β channels.

In our calculations, exchange splitting in the 3d orbitals of Fe is found to be 3.70 eV.

Let us recall that the ground state structure of FeCa8 is an antiprism in which the

Fe atom occupies the central site. Fe atomic 3d orbitals are expected to hybridize

with D- shell orbitals but not with P- and F- shell orbtials. Indeed, our calculations

show that the 1P shell orbitals in both spin channels do not have any contribution

from the Fe 3d states. 1D orbitals have ∼71% contribution from the Fe 3d orbitals,

while 2D orbital orbitals have ∼11% contribution from the Fe 3d orbitals. Because

of this contribution from the Fe 3d orbitals, the 2D orbitals are stabilized more in

comparison to the 1F and 2P shell orbitals. In addition, a part of the large exchange

splitting in the atomic 3d orbitals get transmitted to the D orbitals in the cluster.

Figure 3.5(a) shows an exchange splitting of 1.70 eV in the 1D orbitals and 0.68 eV

in the 2D orbitals. Thus degenerate 2Dα orbitals are lower in energy than the 2D

orbitals in the β channel. Consequently, the 2Dα orbitals accommodate 4 electrons

according to Hund’s rule.

In summary, FeCa8 cluster emerges as a stable and magnetic species. The origin
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of its enhanced stability is associated with the combined role of crystal field effect

and exchange splitting. Crystal field breaks the degeneracy of the 2D orbitals and

splits them into a group of four degenerate 2D orbitals and a 2Dz2 orbital. At the

same time, presence of the Fe 3d orbitals induces an exchange splitting in the 2D

orbitals. As a result, degenerate 2D orbitals are filled with four electrons via Hund’s

coupling and give a magnetic moment of 4 µB.

3.3.5 Local moments on TM dopants

It has been known that local moment on a 3d TM element is very sensitive to its

environment. For example, early TM atoms (Sc-V) in the TMNan clusters are shown

to attain spin moments that are higher than their atomic values [100], while late TM

atoms (Cr-Ni) are found to retain their atomic moments [101]. Therefore it will be

interesting to see the behaviour of local spin moments on the TM dopants in the

TMCa8 clusters. Table 3.2 shows the spin moments on the atoms in TMCa8 clusters

obtained by carrying out a Mulliken population analysis. Most of the moment in

2ScCa8 atomic spins 4VCa8 atomic spins 5CrCa8 atomic spins
Sc 0.9860 V 3.9310 Cr 4.6989
Ca -0.0002 Ca 0.0097 Ca -0.0786
Ca 0.0045 Ca -0.1764 Ca -0.0997
Ca 0.0024 Ca -0.0470 Ca -0.0907
Ca -0.0005 Ca -0.2473 Ca -0.0983
Ca 0.0016 Ca 0.0140 Ca -0.0810
Ca 0.0009 Ca -0.1618 Ca -0.0874
Ca 0.0026 Ca -0.2545 Ca -0.0804
Ca 0.0028 Ca -0.0678 Ca -0.0828

6MnCa8 atomic spins 5FeCa8 atomic spins 4CoCa8 atomic spins
Mn 3.955 Fe 2.5144 Co 1.4279
Ca 0.1301 Ca 0.1840 Ca 0.1702
Ca 0.1301 Ca 0.1857 Ca 0.1284
Ca 0.1307 Ca 0.1855 Ca 0.1952
Ca 0.1298 Ca 0.1847 Ca 0.2307
Ca 0.1310 Ca 0.1852 Ca 0.1246
Ca 0.1294 Ca 0.1865 Ca 0.2400
Ca 0.1317 Ca 0.1880 Ca 0.2006
Ca 0.1313 Ca 0.1859 Ca 0.2823

Table 3.2: Atomic spins in TMCa8 (TM=Sc, V, Cr, Mn, Fe and Co) clusters using
Mulliken population analysis.

the TMCa8 clusters is on the TM elements. In every case, the presence of a TM

polarizes the host, i.e, Ca atoms. In ScCa8, moments on the Sc atom is 0.98 µB,

while moments on most of the Ca atoms are very small. Interestingly, moment
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on V is 3.93 µB in the VCa8 cluster, higher than that of a bare V atom. The

moments on host atoms except two Ca atoms are polarized in direction opposite to

the moment of V. The moment on Cr is found to be 4.69 µB in the CrCa8 cluster.

Anti-ferromagnetic coupling between the moments of Cr and host atoms provides a

total magnetic moment of 4 µB. The Mn, Fe and Co doped Ca8 clusters present a

different situation. Moments on the host atoms are aligned parallel to the moments

of TM elements. This ferromagnetic coupling provides moments of 5 µB, 4 µB and

3 µB respectively for the MnCa8, FeCa8 and CoCa8 clusters. Thus all TM elements

except Ti and Ni polarize the host atoms in Ca8 cages.

3.4 Study of FeCaN (N=5-12) clusters

In the previous section, we examined the relative stability of TMCa8 clusters across

the 3d series. We also would like to investigate whether FeCa8 is the most stable

cluster if we change the number of Ca atoms. Therefore we have performed density

functional calculations of FeCaN cluster in the size range N=5-12.

3.4.1 Ground state structures

3FeCa5
rFe-Ca= 3.12 Å

rCa-Ca= 4.06 Å

3FeCa6
rFe-Ca= 2.99 Å

rCa-Ca= 4.21 Å

3FeCa7
rFe-Ca= 3.21 Å

rCa-Ca= 3.37 Å

5FeCa8
rFe-Ca= 3.24 Å

rCa-Ca= 3.97 Å

5FeCa9
rFe-Ca= 3.23 Å
rCa-Ca= 3.87 Å

3FeCa10
rFe-Ca= 3.21 Å
rCa-Ca= 4.53 Å

5FeCa11
rFe-Ca= 3.22 Å
rCa-Ca= 4.33 Å

5FeCa12
rFe-Ca= 3.42 Å
rCa-Ca= 4.10 Å

Figure 3.6: Ground state structure and multiplicity (2S+1) of FeCaN clusters. rFe-Ca

and rCa-Ca are average Fe-Ca and Ca-Ca bond lengths.

Figure 3.6 presents the optimized ground state structures of FeCaN clusters.
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FeCa6 is the first cluster with an endohedral Fe atom at the center of a Ca6 octahe-

dron. FeCa7 is found to have a pentagonal bi-pyramid structure in its ground state

with Fe at the center. FeCa9 and FeCa10 are respectively formed by capping one

and two square faces of the FeCa8 cluster. Further addition of Ca on the triangular

faces of FeCa10 gives the ground state structures of FeCa11 and FeCa12. The average

Ca-Ca bond lengths range from 3.84 to 4.56 Å, while the average Fe-Ca bond lengths

range from 2.99 to 3.42 Å in the FeCan clusters. A few higher energy isomers of the

FeCan clusters are given in the Appendix A.2

3.4.2 Relative stabilities
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Figure 3.7: Energetic and magnetic trends of FeCaN (N=5-12) clusters. (a) Vari-
ation of η and ∆Espin vs the number of Ca atoms, (b) variation of the second order
energy difference (∆2(N)) for FeCaN series.

In order to probe their chemical and magnetic stability, we have monitored the

variations of η calculated via ∆SCF approach and ∆Espin as a function of the number

of Ca atoms in the FeCaN series. Figure 3.7(a) shows distinct maxima in the hardness

and ∆Espin for FeCa8. Furthermore, we have calculated the second order energy

difference (∆2(N)) for this series. Figure 3.7(b) also shows a maximum in ∆2(N)

for FeCa8 indicating its thermodynamic stability. Values of the HL gap, η, ∆Espin,

and ∆2(N) of the FeCaN clusters are given in the Table 3.3.

3.4.3 Magnetic properties

A bare Fe atom has a moment of 4 µB due to its 3d64s2 configuration. It will be

interesting to understand the evolution of spin magnetic moment as Ca atoms are

successively added. Figure 3.8 shows the variation of the spin magnetic moment.

Initially, addition of Ca atoms partially quenches the magnetic moment of the Fe
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Cluster HL Gap η ∆Espin ∆2(N)
3FeCa5 0.39 1.49 0.05
3FeCa6 0.14 1.29 0.06 -0.06
3FeCa7 0.22 1.35 0.05 -0.29
5FeCa8 0.63 1.49 0.24 0.39
5FeCa9 0.39 1.33 0.12 0.13
3FeCa10 0.41 1.36 0.01 0.17
5FeCa11 0.30 1.24 0.02 -0.27
5FeCa12 0.36 1.25 0.01

Table 3.3: HL gap, adiabatic spin excitation (∆Espin), hardness (η) and ∆2(N) of
FeCaN clusters. All the values are given in eV.
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Figure 3.8: Evolution of magnetic moment as a function of the number of Ca atoms
in the FeCaN clusters.

atom. FeCaN clusters having 5 to 7 Ca atoms show a spin magnetic moment of 2µB.

After that, addition of successive Ca atoms leads to high spin magnetic moment

of 4µB for FeCa8 and FeCa9. FeCa10 cluster again has a magnetic moment of 2µB

only. To obtain more insight, we have examined the nature of the electronic orbitals

in the size range N=6-10. Figure 3.9 shows the MO plots of FeCa6 and FeCa7.

FeCa6 is a triplet with a 1S21P61D102S12D1
α configuration. Surprisingly, though

FeCa6 is a 20 electron cluster, it does not show a closed electronic shell. This is

due to the exchange splitting of 0.51 eV in the 2S orbitals because of the presence

of Fe 3d states. Thus one of the 2Dα orbitals becomes the HOMO, and we have

an open shell configuration for FeCa6. It should be noticed from Figure 3.9(a) that

the two lowest unoccupied MO’s in the α and β channels are very close in energy

(0.09 eV separation). Two valence electrons provided by the additional Ca atom in

FeCa7 go to these levels as shown in Figure 3.9(b), and give it a 1S21P21D102S22D2
α

configuration. Total spin magnetic moment of 2 µB of FeCa7 originates from the two
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Figure 3.9: Molecular orbital energy levels and orbital wave-function isosurfaces of
(a) FeCa6 and (b) FeCa7.

unpaired electrons in the 2Dα orbitals. Addition of each successive Ca atom gives two

electrons. In FeCa8 cluster, these electrons occupy the 2Dα orbitals. Thus we obtain

a magnetic moment of 4 µB in this case. Spin magnetic moment remains the same

for FeCa9 as two additional electrons occupy the 2D orbitals, one each in the α and β

channels. This distribution of 26 valence electrons leads to a 1S21P21D102S22D5
α2D1

β

configuration as shown in the Figure 3.10(a). Reduced magnetic moment of 2 µB for

FeCa10 is caused by the occupation of 2Pz orbital in the β channel. Figure 3.10(b)

shows a 1S21P21D102S12D5
α2D2

β2P1
β configuration of FeCa10. Underlying origin of

stabilization of the 2Pz orbital is again crystal field effect. In FeCa8 we have seen
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Figure 3.10: Molecular orbital energy levels and orbital wave-function isosurfaces
of (a) FeCa9 and (b) FeCa10.

that the crystal field produced by an oblate shape pushes the 1Pz orbitals to a

higher energies with respect to the 1Px and 1Py orbitals. The ground state structure

of FeCa10 cluster is obtained by the addition two Ca atoms on the square faces

of FeCa8. The distance between the two capping Ca atoms is 8.38 Å. Thus the

Ca10 cage can be viewed to have a prolate shape. Hence it is expected that 1Pz

orbitals will be more stabilized than the 1Px and 1Py orbitals. We can see from

the Figure 3.10 that 1Px and 1Py orbitals in both α and β channels are higher in

energy than the 1Pz orbitals. Same effect is also seen in the 2P orbitals leading to

stabilization of the 2Pz orbital in the β channel. Further addition of successive Ca

atoms leads to less symmetric structures for FeCa11 and FeCa12 clusters. This leads

to a poor resemblance of some of their MOs to the shell orbitals. For example, the
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HOMO-7 and LUMO-3 MO’s of FeCa11 do not resemble shell orbitals of any definite

angular momentum character as shown in the Appendix A.3. Similarly, the angular

character of the fourth MO just above the 1S orbital in the α channel is not clear.

Such orbitals are marked with ‘?’. Therefore we do not attempt to explain their

electronic structure and magnetic moment in terms of shell models.

Cluster Fe Ca1 Ca2 Ca3 Ca4 Ca5 Ca6 Ca7 Ca8 Ca9 Ca10 Ca11 Ca12
3FeCa5 2.98 -0.16 -0.02 -0.31 -0.30 -0.18
3FeCa6 2.30 0.20 -0.49 0.20 -0.49 0.14 0.14
3FeCa7 2.31 -0.54 -0.54 0.15 0.15 0.15 0.15 0.15
5FeCa8 2.51 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
5FeCa9 2.67 0.18 0.18 0.16 0.02 0.11 0.15 0.13 0.17 0.17
3FeCa10 2.71 0.05 -0.006 -0.39 0.04 -0.002 -0.01 -0.08 0.02 -0.33 -0.004
5FeCa11 2.76 0.11 -0.04 0.24 0.06 0.34 0.18 0.12 0.11 -0.04 0.06 0.07
5FeCa12 2.75 0.19 0.14 0.14 0.03 0.03 0.13 0.02 0.32 0.19 0.07 -0.02 -0.02

Table 3.4: Atomic spins in FeCaN clusters using Mulliken population analysis.

Table 3.4 shows the spin moments on the atoms in the FeCaN clusters obtained

via Mulliken population analysis. In each cluster, magnetic moment of Fe is always

lower than the magnetic moment of a bare Fe atom. However, the presence of a

Fe atom polarizes the host atoms significantly. In FeCa8 and FeCa9, total effective

moments on the host atoms are found to be 1.49 µB and 1.33 µB respectively, and

are oriented in parallel to the Fe moment. Hence, one gets a total moment of 4 µB

in these clusters. Similar behaviour of local moments are found in the FeCa11 and

FeCa12 clusters. In FeCa5, the spin magnetic moment of Fe is 2.98 µB, while local

moments on all the Ca atoms are oriented opposite to the Fe moment. Hence, a

magnetic moment of 2 µB is obtained for FeCa5. In FeCa6 and FeCa7, mutual anti-

parallel alignments of moments of Ca atoms provide the moment of 0.3 µB which is

oriented opposite to the Fe moment, giving a total moment of 2 µB.

3.5 FeCa8 as a magnetic superatom

We have established the stability of FeCa8 cluster among the TMCa8 and FeCaN

clusters. Also it has a large spin magnetic moment of 4 µB. A natural question to

ask is whether it behaves as a magnetic superatom. According to the definition of

superatoms, a stable and magnetic cluster will be magnetic superatom if it retains

its structural identity and associated magnetic properties in assemblies. To test

this, we brought two units of FeCa8 close to each other from different directions

and in different orientations. Figure 3.11 shows the ground state of a (FeCa8)2

dimer indicated by ‘G.S’ along with its higher energy spin isomers. In our deMon2k
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Figure 3.11: Relative energy (eV) of (FeCa8)2 as a function of magnetic moment.

calculations, two units of FeCa8 retain their identity in the ground state of (FeCa8)2

and have a total spin magnetic moment of 6 µB. Mulliken population analysis shows

that spin magnetic moment on the two Fe atoms in the dimer are 2.65 µB and 2.70

µB. Therefore Fe spins in the ground state of the dimer are aligned parallel to each

other and provide 5.35 µB to the total moment. Remaining 0.65 µB comes from the

Ca atoms which are polarized by the presence of the Fe atoms. Also, binding energy

of the dimer in its ground state relative to two isolated FeCa8 clusters is found to

be 2.44 eV. Next higher energy spin isomer (e) with magnetic moment of 8 µB is

only 0.02 eV less stable with respect to the ground state. Again a ferromagnetic

coupling between moments of Fe atoms (5.48 µB) and polarized Ca (2.52 µB) gives

the total spin magnetic moment of 8 µB. Next isomer (c) with magnetic moment

of 4 µB is 0.18 eV higher in energy with respect to ground state of (FeCa8)2 dimer.

A spin moment of 5.36 µB is provided by parallel alignment of the Fe spins. A

moment of 1.35 µB on the Ca atoms is oriented opposite to the Fe moment which

leads to a total moment of 4 µB. The triplet spin state of (FeCa8)2, i.e isomer (b) is

0.15 eV higher in energy with respect to the ground state. Interestingly, it presents

a different situation in which moments on the Fe atoms are found to be of equal

magnitude but anti-parallel to each other. Therefore total spin magnetic moment of
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2µB of (FeCa8)2 is given by the moments on the Ca atoms.

These results are only indications that FeCa8 clusters may form assemblies in

which each cluster unit retains its identity. The structure and magnetic state of a

large number of them are still open an question. It is difficult to address these in a

purely first-principles approach.

3.6 Role of Hund’s coupling and Crystal field ef-

fect

Though Ca atom belongs to the group of alkaline earth elements, change of the

host atoms from Mg to Ca introduces interesting effects in the TM-Ca clusters.

Figure 3.12 shows the variation of the spin magnetic moments in FeMgN and FeCaN

clusters in their respective ground states. Specifically, in the size range N=5-7, the

magnetic moments of FeCaN clusters are found to be lower than those of FeMgN

clusters. FeCa11 has a magnetic moment of 4 µB, higher than that of FeMg11.

We have already shown that an interplay between crystal field effect and Hund’s

coupling determines the ground state spin configurations of the FeCaN clusters. In

this section, we will discuss and compare the ground state spin configurations of

TMCa8 clusters with respect to those of TMMg8 clusters. Results for the TMMg8

clusters are taken from Ref [105].

Since the atomic radius of a Ca atom is substantially larger than that of a Mg

atom, the size of a Ca8 cage enclosing the TM will be larger than that of a Mg8

cage. Also we know that exchange splitting originates from the hybridization be-

tween the shell orbitals and TM 3d orbitals. Consequently, there will be different

relative strengths of crystal field effect and exchange splittings in the TMCa8 and

TMMg8 clusters. Table 3.5 summaries the electronic configurations of TM(AE)8

(AE=Mg,Ca) clusters. TM-AE is the distance between the TM atom and the AE

cage atom. rh represents the average distance between the AE atoms within a hori-

zontal plane of the antiprism, while distance between the two planes is given by rv.

From Table 3.5, it is evident that all the TM(AE)8 clusters have oblate shapes (rh >

rv). Because of this particular geometric arrangement of the AE atoms, 1Pz orbital

is higher in energy relative to 1Px and 1Py. Similarly 1Dz2 orbital is pushed to higher

energy with respect to the remaining four 1D orbitals as shown in Figure 3.3. Since

1S21P6 is common in the electronic configuration of all the clusters, for brevity we

will omit this from now on. ScMg8 cluster has a doublet ground state with a 1D102S1
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Figure 3.12: Evolution of the magnetic moments in the FeCaN and FeMgN clus-
ters [105].

Cluster TM-AE(Å) rh (Å) rv (Å) Electronic configuration
2ScMg8 2.79 3.31 3.08 1S21P61D102S1

2ScCa8 3.40 4.14 3.54 1S21P61D92S2

1TiMg8 2.70 3.22 2.92 1S21P61D102S2

1TiCa8 3.28 3.94 3.52 1S21P61D102S2

2VMg8 2.66 3.23 2.75 1S21P61D102S22D1
α

4VCa8 3.32 4.12 3.42 1S21P61D92S22D2
α

5CrMg8 2.64 3.13 3.01 1S21P61D102S12D3
α

5CrCa8 3.33 4.05 3.46 1S21P61D92S22D3
α

6MnMg8 2.65 3.20 2.82 1S21P61D102S12D4
α

6MnCa8 3.31 4.07 3.30 1S21P61D92S22D4
α

5FeMg8 2.61 3.17 2.71 1S21P61D102S22D4
α

5FeCa8 3.24 3.92 3.39 1S21P61D102S22D4
α

4CoMg8 2.61 3.22 2.58 1S21P21D102S22D4
α2D1

β
4CoCa8 3.24 3.97 3.34 1S21P21D102S22D4

α2D1
β

Table 3.5: TM-AE, rh and rv bond lengths and ground state electronic configurations
of TMAE8 clusters. All the bond lengths are given in Å.

electronic configuration. The ground state of ScCa8 also turns out to be doublet but

with a 1D92S2 configuration. To understand this difference, let us have a close look

at the interatomic distances in ScMg8 and ScCa8. The Sc-Mg and Sc-Ca distances

are 2.79 Å, 3.40 Å respectively. The rh in Mg8 and Ca8 cages are 3.31 Å and 4.14

Å respectively, while rv are 3.08 Å and 3.54 Å. Thus the size of the cage enclosing

the Sc atom increases substantially when the host atoms change from Mg to Ca. A

larger size of the Ca8 cage makes the 2S orbitals to delocalize over a larger volume

reducing their energies compared to 1Dz2 and gives ScCa8 a 1D92S2 configuration.
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Ti(AE)8 clusters being 20 electron systems prefer to have a closed electronic shell

configuration 1S21P61D102S2. Small exchange splitting of 2.30 eV in the 3d orbitals

of Ti as compared to Fe is not strong enough to induce an exchange splitting in the

1D orbital of the TiCa8 cluster which gives a non-zero magnetic moment.

Figure 3.13: Molecular orbital energy levels and orbital wave-function isosurfaces
of (a) VCa8 and (b) CrCa8.

When the TM changes from Ti to V, Cr and Mn, the situation again turns out to

be similar to the case of ScMg8 and ScCa8 clusters. Electronic configurations in the

ground state of VMg8, CrMg8 and MnMg8 clusters were found to be 1D102S22D1
α,

1D102S12D3
α, and 1D102S12D4

α respectively [105]. From Table 3.5, we again observe

stabilization of the 2S orbital with respect to one of the 1D orbitals for V-Mn doped

Ca8 clusters. So the VCa8, CrCa8, and MnCa8 clusters have 1D92S22D2
α, 1D92S22D3

α,

and 1D92S22D4
α configurations respectively. These can also be understood from the

fact that Ca8 cages in these clusters are larger than Mg8 cages. MO energy level
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diagrams of V-Mn doped Ca8 clusters are given in the Figures 3.13 and 3.14. Both

FeMg8 and FeCa8 have a 1D102S22D4
α configuration. For the first time, the 2S or-

bital and the 1Dz2 orbital are completely occupied. Therefore change of host atoms

from Mg to Ca, does not lead to any difference in the electronic configuration. From

Figure 3.5(a), we have seen that the HOMO is a four-fold degenerate state of 2D sym-

metry in the α channel and Hund’s coupling leads to occupation of these degenerate

Figure 3.14: Molecular orbital energy levels and orbital wave-function isosurfaces
of MnCa8.

states by 4 electrons. In fact, it is the Hund’s coupling in the 2D orbitals of VCa8,

CrCa8, and MnCa8 that causes partially filled 2D2
α, 2D3

α, and 2D4
α states respectively.

Co doped Ca8 cluster is found to be a quartet with 1D102S22D4
α2D1

β configuration

as shown in the Figure 3.15(a). This is also the configuration for CoMg8. Again, an

interplay of Hund’s coupling and crystal field effect can be observed. The 2Dz2 levels

are split off to higher energies due to crystal field effect. Once four 2D levels are filled
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Figure 3.15: (a)Molecular orbital energy levels and orbital wave-function isosurfaces
of CoCa8 and (b) NiCa8.

in the α channel in Fe(AE)8, the next electron occupies a 2D level in the β channel in

Co(AE)8. Finally we look at the NiMg8 and NiCa8 clusters. Both these clusters are

singlets in their ground state structure and have 1S21P21D102S22D6 configurations.

Ground state structure of NiCa8 is found to be a bi-capped octahedron, while NiMg8

has an antiprism structure. Figure 3.15(b) shows the MO plot of NiCa8. Similar to

TiCa8, small exchange splitting of 1.12 eV in Ni 3d atomic orbitals is not sufficient

to induces the exchange splitting in the 1D and 2D orbitals of the NiCa8 cluster.

Hence NiCa8 does not have any magnetic moment.
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3.7 Conclusions

We have investigated the structural, electronic and magnetic properties of TMCa8

clusters and FeCaN (N=5-12) clusters. We have identified TiCa8 and FeCa8 with

enhanced stability. As shown by the analysis of the one electron levels and the

associated electronic orbitals, TiCa8 with 20 valence electrons has a closed shell

1S21P61D102S2 electronic configuration. Replacing Ti by Fe adds four valence elec-

trons and ordinarily should not be a stable species. However, the Fe atom enhances

exchange splitting in the 2Dα orbitals leading to a stable FeCa8 cluster where the

filling of 2Dα orbitals results in a spin magnetic moment of 4 µB. In addition, crystal

field effect breaks the degeneracy of the 2Dα orbitals leading to a HL gap of 0.63 eV.

Calculations of the (FeCa8)2 dimer, starting from two motifs, indicate that the indi-

vidual clusters do retain their identity and have a ferromagnetic (FM) configuration

with a spin magnetic moment of 6 µB as the lowest energy state.
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CHAPTER4
TM doped strontium clusters

4.1 Introduction

In this chapter, we will extend our search for possible candidates for magnetic su-

peratoms by studying structural, electronic and magnetic properties of the TM-Sr

clusters. Interestingly, we do not find FeSr8 cluster as a magnetic superatom. The

underlying reasons will be discussed in this chapter. We will also compare the mag-

netic properties of the TMSr8 clusters with those of TMCa8 clusters.

4.2 Computational details

All our first-principles electronic structure calculations are performed within the

same formalism as described in the previous chapter. For the Sr atom, a quasi-

relativistic effective core potential (ECP) (with 28 electrons in the core) and basis

set combination from Stuttgart-Dresden (QECP10|SD) distributed with deMon2K

is used. This produces the first and second ionization potentials of 5.71 eV and 11.10

eV for a Sr atom, which are in excellent agreement with the experimental values of

5.70 eV and 11.03 eV respectively [170].

4.3 Ground State Structures of TMSr8

We start our investigations with a single 3d TM doped Sr8 clusters. One of the

reasons behind this choice is our earlier finding that FeCa8 is a stable cluster that

behaves as a magnetic superatom. Figure 4.1 shows the ground state structures, spin

multiplicities (2S+1), and bond lengths for all the TMSr8 clusters. The optimized
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2ScSr8
rSc-Sr=3.46 Å

rSr-Sr=4.21 Å

1TiSr8
rTi-Sr=3.33 Å

rSr-Sr=4.00 Å

2VSr8
rV-Sr=3.37 Å

rSr-Sr=3.83 Å

3CrSr8
rCr-Sr=3.31 Å

rSr-Sr=3.92 Å

4MnSr8
rMn-Sr=3.30 Å
rSr-Sr=3.95 Å

3FeSr8
rFe-Sr=2.92 Å
rSr-Sr=4.14 Å

2CoSr8
rCo-Sr=2.86 Å
rSr-Sr=4.01 Å

3NiSr8
rNi-Sr=2.90 Å
rSr-Sr=4.03 Å

Figure 4.1: Ground state structures and spin multiplicities of TMSr8 clusters. rTM-Sr

and rSr-Sr are the average TM-Sr and Sr-Sr bond lengths.

structures of the TMSr8 clusters form two families : first, square anti-prism structures

for the TMSr8 (Sc-Mn) clusters ; second, bi-capped octahedron structures of FeSr8,

CoSr8 and NiSr8 as obtained for NiCa8. Although the Sr8 cage is found to be distorted

in the case of VSr8, its structure still can be viewed as a distorted antiprism. In the

first family, the average Sr-Sr bond lengths range from 3.92 to 4.21 Å, while the

average TM-Sr bond lengths range from 3.83 to 4.21 Å. The Fe, Co, and Ni doped

Sr8 clusters prefer to have bi-capped octahedron structures presumably because of

the smaller atomic radii of the late TM atoms compared to the early TM atoms.

For example, Fe has an atomic radius of 1.26 Å, while the atomic radius of Ti is

1.47 Å. In the second family, the average Sr-Sr bond lengths range from 4.01 to 4.14

Å, while the average TM-Sr bond lengths range from 2.86 to 2.90 Å. A few higher

energy isomers of the TMSr8 clusters are given in Appendix B.1.

4.3.1 Relative stabilities

In order to identify clusters with enhanced stability, η and ∆Espin of all the TMSr8

clusters are plotted in Figure 4.2. Values of η are obtained by using ∆SCF method.
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Figure 4.2: The hardness (η) and adiabatic spin excitation energies of all the TMSr8
clusters.

We have also given the HL gap, η and ∆Espin values of all the TMSr8 clusters in

Table 4.1. Being a 20 electron system, TiSr8 has the highest HL gap and hardness

among all the TMSr8 clusters. This is not surprising because it has a closed shell

configuration 1S21P61D102S2 similar to TiCa8. After showing maximum for TiSr8,

Cluster HL(eV) ∆Espin(eV) η(eV)
2ScSr8 0.40 0.72 1.35
1TiSr8 0.76 0.33 1.45
2VSr8 0.33 0.17 1.36
3CrSr8 0.32 0.15 1.26
4MnSr8 0.25 0.20 1.23
3FeSr8 0.10 0.02 1.20
2CoSr8 0.28 0.17 1.26
3NiSr8 0.17 0.015 1.20

Table 4.1: The HL gap, ∆Espin and hardness (η) of TMSr8 clusters.

hardness drops continuously across the 3d series up to FeSr8. CoSr8 is found to be

a doublet in its ground state and has higher η (1.26 eV) and HL gap (0.28 eV) than

those of Fe and Ni doped Sr8 clusters. In fact, FeSr8 has the lowest HL gap of 0.10 eV

among all the TMSr8 clusters. After TiSr8, Sc, V, and Cr doped Sr8 clusters are

found to have next highest HL gaps.

∆Espin also decreases across the 3d series except for Mn and Co. FeSr8 has

the lowest ∆Espin of 0.02 eV within the TMSr8 series. Again ScSr8 has a ∆Espin

(0.72 eV) larger than that of TiSr8 (0.33 eV). This can be explained via ‘frozen

orbital’ approximation (discussed later). Though ScSr8 has the second highest HL

gap (0.40 eV) and the largest ∆Espin, it is not considered as a possible candidate of

magnetic superatom because of low magnetic moment (1 µB). Similar is the case for
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Figure 4.3: Molecular orbital energy levels and orbital wave-function isosurfaces of
(a) ScSr8 (b) TiSr8.

V, Cr, and Co doped Sr8 clusters which have low magnetic moments. FeSr8, MnSr8

and NiSr8 are also not identified as potential candidates for magnetic superatoms

because of small values of HL gaps and η, though MnSr8 has a higher value of ∆Espin

(0.20 eV) than its neighbors.

Figure 4.3 shows the MO plots of ScSr8 and TiSr8. ScSr8 is a doublet with

1S21P61D92S2 configuration. In order to excite it to the next higher energy quartet

state, an electron from the highest occupied degenerate 1D orbitals in the β channel

to the LUMO in the α spin channel. Amount of energy required for this process is

1 eV within frozen orbital approximation. In order to excite TiSr8 to a triplet state,

one has to excite an electron from the HOMO to the LUMO. The required energy is

equal to its HL gap (0.76 eV). Needless to say, these energies will change when we
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do self consistent calculations for these spin excited states of the clusters. But the

qualitative argument still holds.

Figure 4.4: MO energy level diagrams and isosurface plots for the (a) 3FeSr8 and (b)
5FeSr8. MO’s that cannot be identified to have definite angular momentum character
are marked with ‘?’.

Now let us have a close look at the FeSr8 cluster. FeSr8 is a triple with a bi-

capped octahedron as the ground state structure. Figure 4.4(a) shows the MO plot

of 3FeSr8. Because of less symmetric and non-compact structure of 3FeSr8 compared

to an antiprism, interpretation of its MO’s in terms of the spherical shell model turns

out to be difficult. Some of the frontier MO’s of 3FeSr8 do not resemble shell orbitals

of any definite angular momentum character. For example, the angular momentum

characters of the HOMO-1 in the α channel and the LUMO in the β channel are

not clear. Similarly, the angular momentum character of orbital just below the three

1P orbitals in the α channel is not clear. These orbitals are marked with ‘?’. Our
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calculations show that the next spin-excited state is 0.02 eV less stable with respect

to the ground state of 3FeSr8. Interestingly, this higher energy spin isomer is a

quintet with a square anti-prism structure. Figure 4.4(b) shows the MO plot of the
5FeSr8 cluster. Because it has a compact and symmetric structure, its MO’s show a

better resemblance to the shell orbitals. In fact, electronic configuration of 5FeSr8 is

similar to that of 5FeCa8. Also the HL gap of 5FeSr8 is found to be 0.60 eV due to a

crystal field splitting of the 2D shell orbitals, higher than that of 3FeSr8 (0.10 eV).

CoSr8 and NiSr8 have the same ground state structures as FeSr8. Again lack of

compact structures leads to poor resemblance of their MO’s to shell orbitals. MO

plots of CoSr8 and NiSr8 are given in the Appendix B.2.

4.3.2 Local moments on TM dopants

In the previous chapter, we have seen that the TM elements polarize the Ca atoms

in the TMCa8 clusters. Therefore it will be interesting to see the behaviour of local

spin moments on the TM dopants in the TMSr8 clusters. Table 4.2 shows the spin

moment on the atoms obtained through Mulliken population analysis.

Most of the total moment is on the TM atoms in the Sc, V, Cr, Mn and Fe

doped clusters. The magnetic moments on Sc and V in these clusters are found

to be 1.27 µB and 3.48 µB respectively. These values are higher than their atomic

magnetic moments of 1 µB and 3 µB respectively. In the case of Sc-Mn doped Sr8

clusters, TM elements polarize the host atoms. Moments on the host atoms have

orientation in opposite direction with respect to TM spin. Total magnetic moment

on the Sr atoms is 2.48 µB in VSr8, oriented opposite to the moment of V. In CrSr8,

the moment on the Cr atom is 3.9 µB, while each Sr atom has 0.24 µB. In MnSr8,

the Mn atom has a moment of 3.46 µB, while the total moment on the Sr atoms

is 0.46 µB, oriented opposite to the Mn moment. FeSr8 represents an interesting

case in which moment on Fe is 2.0 µB. Here the presence of Fe also polarizes the Sr

atoms, but the moments are effectively cancelled due to their mutual anti-parallel

alignment. CoSr8 and NiSr8 clusters present a different picture. Most of the moment

in these clusters is on the Sr atoms. In CoSr8, the moment on the Co atom is only

0.08 µB, while four of the Sr atoms have 0.17 µB each. In NiSr8 also, the Ni atom

has a very small moment of 0.009 µB, and almost the entire moment is on the Sr

atoms. The highest moment on the Sr atoms is 0.32 µB. Thus all the TM atoms

(except Ti) polarize the electron gas spread over the Sr cage in these clusters.
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2ScSr8 atomic spins 2VSr8 atomic spins 3CrSr8 atomic spins
Sc 1.2709 V 3.4809 Cr 3.9472
Sr -0.0323 Sr -0.3853 Sr -0.2497
Sr -0.0376 Sr -0.3716 Sr -0.2433
Sr -0.0360 Sr -0.2430 Sr -0.2392
Sr -0.0338 Sr -0.2404 Sr -0.2429
Sr -0.0345 Sr -0.3806 Sr -0.2386
Sr -0.0285 Sr -0.2414 Sr -0.2428
Sr -0.0360 Sr -0.3767 Sr -0.2467
Sr -0.0322 Sr -0.2419 Sr -0.2440

4MnSr8 atomic spins 3FeSr8 atomic spins 2CoSr8 atomic spins
Mn 3.4680 Fe 2.0421 Co 0.00770
Sr -0.0610 Sr 0.0325 Sr 0.0636
Sr -0.0594 Sr 0.0276 Sr 0.0659
Sr -0.0575 Sr -0.0515 Sr 0.0624
Sr -0.0588 Sr -0.0536 Sr 0.0599
Sr -0.0579 Sr -0.1413 Sr 0.1634
Sr -0.0581 Sr -0.1423 Sr 0.1701
Sr -0.0577 Sr 0.1436 Sr 0.1652
Sr -0.0575 Sr 0.1430 Sr 0.1726

3NiSr8 atomic spins
Ni -0.0093
Sr 0.2956
Sr 0.2937
Sr 0.3225
Sr 0.3210
Sr 0.0896
Sr 0.0898
Sr 0.2985
Sr 0.2986

Table 4.2: Atomic spins in TMSr8 clusters obtained by Mulliken population analysis.

4.3.3 Interplay of Crystal field effect and Hund’s coupling

Electronic, magnetic and structural properties of several TMSr8 clusters are found

to be different from those of the corresponding TMCa8 clusters. For example, we

find that the ground state structures of FeSr8 and CoSr8 are bi-capped octahedra

rather than antiprism. Also FeSr8 does not show any signs of enhanced stability. In

addition, magnetic moments of the Cr and Mn doped Sr8 clusters are found to be 2 µB

and 3 µB respectively which are lower than the magnetic moments (4 µB and 5 µB)

of the CrCa8 and MnCa8 clusters. In the study of TMCa8 clusters, we have seen that

the ground state electronic configuration of a cluster is determined by the combined
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role of Hund’s coupling and crystal field effect. Therefore, it will be interesting to

see how relative strengths of these two effects determine the magnetic state of the

TMSr8 clusters. Table 4.3 shows TM-AE, rh and rv distances in the ground state of

Cluster TM-AE(Å) rh (Å) rv (Å) Electronic configuration
2ScCa8 3.40 4.13 3.54 1S21P61D92S2

2ScSr8 3.46 4.21 3.64 1S21P61D92S2

1TiCa8 3.28 3.94 3.52 1S21P61D102S2

1TiSr8 3.33 4.00, 3.67 1S21P61D102S2

4VCa8 3.22 4.12 3.42 1S21P61D92S22D2
α

2VSr8 3.37 3.83 4.38 1S21P61D102S22D1
α

5CrCa8 3.33 4.05 3.46 1S21P61D92S22D3
α

3CrSr8 3.33 3.95 3.61 1S21P61D102S22D2
α

6MnCa8 3.31 4.07 3.30 1S21P61D92S22D4
α

4MnSr8 3.30 3.95 3.53 1S21P61D102S22D3
α

Table 4.3: The average TM-AE (AE=Ca,Sr), rh bond lengths and the ground state
electronic configurations of TM(AE)8 clusters. Here AE are Ca and Sr. rh is distance
between AE-AE atoms within a plane, while distance between the two planes is given
by rv. All the bond lengths are given in Å.

the TMCa8 and TMSr8 clusters along with their electronic configurations. Sc and

Ti doped Sr8 clusters have the same ground state and electronic configurations as

observed in the ScCa8 and TiCa8 clusters. However, all the interatomic distances in

the ScSr8 and TiSr8 clusters are larger than those in the ScCa8 and TiCa8 clusters.

As a result, size of the TM encapsulating Sr8 cage is larger in comparison to the

Ca8 cage. This leads to a greater stabilization of the 2S orbitals in ScSr8 and TiSr8

clusters. This fact is shown in Figure 4.3.

The most interesting are the V, Cr, and Mn doped clusters. VCa8 is a quartet

with a 1D92S22D2
α configuration. A change of the host atoms from Ca to Sr leads

to a doublet spin state for VSr8 with a 1D102S22D1
α configuration. To understand

the underlying mechanism, we have examined the MO plots of the VCa8 and VSr8

clusters that are given in the Figure 4.5. The HOMO in the α channel of VCa8

is doubly degenerate and is of 2D symmetry, while the LUMO in the β channel

has 1Dz2 angular character. Changing the host from Ca to Sr leads to a distorted

antiprism as the ground state of VSr8 that lifts the degeneracy of the 2Dα orbitals.

One of the 2Dα orbitals goes higher in energy relative to all the 1D orbitals in the β

channel. Therefore only one 2Dα orbital is occupied in VSr8 and it has a 1D102S22D1
α

configuration.

CrCa8 is in a quintet spin state with a 1D92S22D3
α configuration, while CrSr8 is
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Figure 4.5: MO energy level diagrams and isosurface plots for the (a) VCa8 and (b)
VSr8.

found to have a 1D102S22D2
α configuration. Both clusters have antiprism structures

in their ground states. Hund’s coupling is also at play in the 2D states of CrCa8 and

CrSr8 to give partially filled 2D3
α and 2D2

α orbitals respectively. However, the reason

behind a lower magnetic moment in CrSr8 is the crystal field effect. The distance

between the Sr atoms in the square plane of CrSr8 turns out to be 3.95 Å, while the

distance between the planes is 3.61 Å. Thus CrSr8 still has an oblate shape when

host atoms change from Ca to Sr. An oblate shape pushes the 1Dz2 and 1Pz orbitals

in the two spin channels to higher energies as shown in Figure 4.6(b). However, if

we compare rh and rv distances of CrCa8 and CrSr8 clusters from the Table 4.3, we

find a shrink in the lateral extent for the CrSr8 cluster. From the Figure 4.6(a), we

notice that HOMO in the α channel of CrCa8 is of 2D angular character and has a

3-fold degeneracy. The LUMO is in the β channel and has 1Dz2 angular character.

The lateral shrink in the Sr8 cage lifts this 3-fold degeneracy and leads to a 2-fold

degenerate 2Dα orbitals at lower energy and a single 2Dα orbital with a higher energy.
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Figure 4.6: MO energy level diagrams and isosurface plots for the (a) CrCa8 and
(b) CrSr8.

This split-off 2Dα orbital is higher in energy with respect to the 1Dz2 orbital in the

β channel, leading to a triplet state with a 1D102S22D2
α configuration.

Figure 4.7 shows the MO plots of the MnCa8 and MnSr8 clusters. MnSr8 is a

quartet with a 1D102S22D3
α configuration, while 1D92S22D4

α is the configuration for
6MnCa8. Reason behind the lower magnetic moment of MnSr8 can also be under-

stood by tracing the interatomic distances in the MnSr8 and MnCa8. The rh and

rv distances in these clusters from Table 4.3 again reveal a lateral shrink in MnSr8

when host atoms change from Ca to Sr. We find that the HOMO of MnCa8 is 4-fold

degenerate. This lateral shrink splits the 4-fold degenerate 2Dα in MnSr8 into three

occupied degenerate 2Dα orbitals and one unoccupied 2Dα orbital. The split-off 2Dα

orbital being higher in energy than the 1Dz2 orbital in the β channel, a 1D102S22D4
α

configuration is achieved for MnSr8.

Since MO plots of Fe, Co and Ni doped Sr8 clusters show poor resemblance of

their MO’s to shell orbitals, any explanation of the magnetic states of these clusters
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Figure 4.7: MO energy level diagrams and isosurface plots for the (a) MnCa8 and
(b) MnSr8.

within the spherical shell models is not attempted.

4.3.4 Conclusions

We have performed a detailed study of TMSr8 clusters in order to understand their

electronic and magnetic properties. By examining the HL gap, η, and ∆Espin of the

TMSr8 clusters, we found TiSr8 with greater stability. We have not identified any

possible candidate for magnetic superatoms either because of low magnetic moments

or due to small values of HL gaps, η, and ∆Espin. Due to non-compact and less

symmetric ground state structure of Fe, Co, and Ni doped Sr8 clusters, angular

character of the frontier MO’s is not identified with any shell orbital of definite

angular momentum character. Moreover FeSr8, an analog of FeCa8 and FeMg8, is

not found to have enhanced stability. Also we have compared the magnetic states

of the TMCa8 and TMSr8 clusters for TM=Sc-Mn. The relative strengths of the
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crystal field effect and Hund’s coupling play a significant role in determining the

ground state spin configurations of TMSr8 clusters. Specifically V, Cr, Mn doped

clusters offer a unique opportunity to understand these effects.
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CHAPTER5
Cr and Mn doped strontium clusters

5.1 Introduction

In the study of the TMSr8 clusters, we have not found any suitable candidate for

magnetic superatom. Therefore we ask if there are TM-Sr clusters at other sizes

that have enhanced stability and large magnetic moment, and whether they can be

candidates for magnetic superatoms. We will particularly focus on Cr and Mn doped

Sr clusters. The motivation for studying these clusters comes from Figure 5.1. It
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Figure 5.1: Variation of the magnetic moments (µB) with the TM atom and the
nature of frontier orbitals upto TM=Sc-Mn.

shows the variation of magnetic moments and the nature of the frontier orbitals of

the TMSr8 clusters. Across the TMSr8 series, total spin magnetic moment increases

continuously up to 3 µB from Ti to Mn, and then it drops to 1 µB. Here CrSr8

and MnSr8 offer very interesting possibilities. CrSr8 is a 22-electron system and has
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a 1S21P61D102S22D2
α configuration. Figure 4.6(b) shows that the LUMO of CrSr8

is a pair of 2Dα orbitals. This suggests that if another Sr atom is added, the two

valence electrons coming from it are most likely to go to these two 2Dα orbitals.

This 24-electron cluster may then have a high stability in a way similar to FeCa8.

On the other hand, MnSr8 is a quartet with 1S21P61D102S22D3
α configuration. The

occupation of 2Dα shell oribtals by two more electrons would lead to a half filled

configuration, i.e., 2D5
α for MnSr9. An atom with a half-filled d-shell is known to be

more stable due to maximum exchange energy. Therefore MnSr9 with a half-filled 2D

electronic configuration is expected to acquire greater stability. However, whether

these exciting possibilities turn out to be true, can be answered only after doing

first-principles calculations. With this motivation we have studied the CrSrN and

MnSrN (N=4-12) clusters.

5.2 Computational details

All our first-principles electronic structure calculations are performed within the

same formalism as described in the previous chapter. To check whether stable clus-

ters will behave as magnetic superatoms, VASP code is used [153]. In these calcu-

lations, plane wave basis set with an energy cutoff of 350 eV within spin polarized

DFT is taken. The PBE-GGA functional is used for the exchange-correlation energy.

Brillouin zone integrations are performed using the Γ point only. Ionic potential is

represented by Projector Augmented Wave (PAW) potential [154]. The clusters and

their dimers are put in periodic boxes of such dimensions that the minimum distance

between an atom in the calculation cell and the periodic image of any other atom

is 10 Å. All the atoms are completely relaxed till all the force components are less

than 0.01 eV/Å.

5.3 Study of CrSrN (N=4-12) clusters

5.3.1 Ground state structures

Figure 5.2 shows the evolution of the ground state structures of the CrSrN (N=4-

12) clusters. Ground state spin multiplicities and average bond lengths in all these

clusters are also given. The Cr atom is completely encapsulated in the Sr6 cage.

CrSr6 has an octahedral structure. CrSr7 is found to have a pentagonal bi-pyramid

structure. CrSr9 and CrSr10 clusters are capped and bi-capped square antiprisms.
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5CrSr4
rCr-Sr= 3.46 Å

rSr-Sr= 4.21 Å

5CrSr5
rCr-Sr= 3.33 Å

rSr-Sr= 4.00 Å

3CrSr6
rCr-Sr= 3.20 Å

rSr-Sr= 3.83 Å

3CrSr7
rCr-Sr= 3.31 Å

rSr-Sr= 3.92 Å

5CrSr9
rCr-Sr= 3.42 Å
rSr-Sr= 4.17 Å

rz= 6.36 Å

5CrSr10
rCr-Sr= 3.39 Å
rSr-Sr= 4.10 Å

3CrSr11
rCr-Sr= 3.30 Å
rSr-Sr= 3.98 Å

5CrSr12
rCr-Sr= 3.42 Å
rSr-Sr= 4.17 Å

Figure 5.2: Ground state structure and multiplicity of CrSrN clusters. rCr-Sr and
rSr-Sr are the average Cr-Sr and Sr-Sr bond lengths. rz is the extent of the cluster
perpendicular to the square planes.

Capping of three triangular faces of CrSr8 cluster provides the ground state structure

of CrSr11. CrSr12 has a structure which is obtained by decorating two triangular faces

of the CrSr10 motif. The next higher energy isomers of CrSrN clusters are given in

the Appendix C.1.

5.3.2 Relative stabilities

Hardness (η) calculated using ∆SCF method, and ∆2(N) for the CrSrN clusters are

plotted in the Figure 5.3. η is maximum at N=4 in the size range studied here.

After that η decreases continuously up to N=7. ∆2(N) shows a large peak at N=6

indicating its thermodynamic stability, though there is no peak in the hardness at

this size. Clusters having local peaks in ∆2(N) and atom addition energy (∆EN)

without accompanying peaks in the HL gaps are claimed to have greater stability

due to their structures [102,103]. Therefore the likely origin of enhanced stability of

CrSr6 is its compact octahedron geometry. Most importantly, ∆2 and η both show
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Figure 5.3: (a) Hardness (η), ∆Espin and (b) the second order energy difference
(∆2(N)) for the CrSrN as a function of the number of Sr atoms N .

local peaks at N=9 which indicate thermodynamic and chemical stability. Therefore

the origin of greater stability of CrSr9 is related to electronic effects. In addition,

magnetic moment of the CrSr9 cluster is found to be 4 µB. ∆Espin is found to be

maximum at N=4 and shows a sharp peak at N=6. However, CrSr9 has a slightly

lower value of ∆Espin (0.11 eV) compared to its neighbors (Table 5.1). A second

maximum in η occurs at N=11, however ∆2(N) drops continuously from N=9-11.

Cluster HL Gap η ∆Espin ∆2(N)
5CrSr4 0.41 1.50 0.79
5CrSr5 0.30 1.41 0.10 -0.42
3CrSr6 0.10 1.26 0.40 0.38
3CrSr7 0.09 1.21 0.30 -0.15
3CrSr8 0.32 1.26 0.15 0.04
5CrSr9 0.46 1.30 0.11 0.15
5CrSr10 0.22 1.18 0.14 0.08
3CrSr11 0.46 1.27 0.013 -0.10
5CrSr12 0.39 1.19 0.012

Table 5.1: The HL gap, η, ∆Espin, and ∆2(N) of CrSrN clusters. All the values are
given in eV.

5.3.3 Stability of CrSr9

We saw that CrSr9 turns out to be a unique cluster with enhanced stability as

indicated by HL gap, ∆2(N), and η. Also it has a magnetic moment of 4 µB.

Therefore we will now focus on CrSr9 which is the most suitable candidate for a
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magnetic superatom. To obtain more insights into the enhanced stability of CrSr9,

we examine its MO plot shown in Figure 5.4. Interestingly, our anticipation that the

two additional electrons from a Sr atom will go into the 2D orbitals in the α channel

turns out to be true. CrSr9 has an electronic configuration 1S21P61D102S22D4
α, same

as that of FeCa8. Total magnetic moment of 4 µB comes from the nearly degenerate

2D4
α orbitals via Hund’s coupling. The remaining 2D orbital, i.e., LUMO in the α

channel is split-off to a higher energy and gives a HL gap of 0.42 eV. The reason

Figure 5.4: MO energy level diagrams and isosurface plots for the 5CrSr9.

behind the splitting of the 2Dα orbitals is again crystal field effect. The addition of

one Sr atom to the antiprism structure of CrSr8 gives a capped antiprism structure

for CrSr9. It can be described as extension along the z direction and like a prolate

structure (rz=6.36 Å) because rz is greater than the in-plane Sr-Sr distance. As a
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consequence, 1Dz2 , 1Pz, and 2Dz2 orbitals are relatively more stabilized. In addition,

crystal field effect also stabilizes the 2Pz orbital compared to the other 2P orbitals.

We can see from the Figure 5.4 that LUMO+1 in the α channel and LUMO in the β

channel are of 2Pz character. Note that 2Dβ orbital is the LUMO of FeCa8 cluster.

However we do not find any 2D orbital close to 2Pz in the β channel. This fact can

be understood in terms of the exchange splitting of the 2D orbitals. Our calculations

show that 2D orbitals have ∼13% contribution from Cr 3d orbitals. Consequently, an

exchange splitting of 3.55 eV in the 3d atomic orbitals of a bare Cr atom1 induces a

large exchange splitting in the 2D orbitals. The lowest 2Dβ orbital is 0.99 eV higher

in energy relative to the lowest 2Dα orbital.

In summary, CrSr9 cluster turns out to be a stable and magnetic species. En-

hanced stability is due to splitting in the 2D shell orbitals caused by the crystal field

effect. A total magnetic moment of 4 µB arises from the unpaired electrons in the

2Dα orbitals.

5.3.4 Magnetic properties of CrSrN clusters

We will now focus on the magnetic properties of the CrSrn clusters. Among all the 3d

TM elements, Cr has a maximum spin magnetic moment of 6 µB due to its 3d54s1

configuration. Figure 5.5 shows the evolution of magnetic moments of the CrSrN

clusters. For N=4 and 5, magnetic moment of the clusters turns out to be 4 µB.

4 5 6 7 8 9 10 11 12
Number of Sr atoms

0

1

2

3

4

5

6

µ
(µ

B
)

Figure 5.5: Variation of the magnetic moment of CrSrN clusters.

Further addition of successive Sr atoms up to N=8 leads to further quenching in the

magnetic moment. CrSrN (N=6-8) clusters are found to have magnetic moment of

2 µB. Most interestingly, the magnetic moment increases up to 4 µB again for N=9

and 10.

1One electron energy levels and atomic orbitals of Cr is given in the Appendix C.2.
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To obtain more insight, we have analyzed the MO plots of the CrSrN (N=6 and

7) clusters given in the Appendix C.3. If we count all the 3d and 4s electrons of a

bare Cr atom, CrSr6 and CrSr7 will have 18 and 20 electrons which are shell filling

numbers in the spherical shell models. Therefore these clusters are expected to have

closed shell configurations. However, we found 1S21P61D92S1 and 1S21P61D92S22D1
α

configurations for the CrSr6 and CrSr7 clusters respectively. Also one of the 1D

orbitals in the β channel of both clusters is not occupied. Therefore origin of the

open shell configurations of these clusters is inherently related to exchange splitting

between the 1D orbitals. The 1D orbitals of the CrSr6 and CrSr7 clusters are found

to have ∼70% and ∼85% contributions from the Cr 3d orbitals respectively. This

leads to an exchange splitting of 0.87 eV and 1.12 eV in the 1D orbitals of these

clusters. In CrSr6, two unpaired electrons (1D and 1S orbitals) give a magnetic

moment of 2 µB. For CrSr7, magnetic moment of 2 µB is provided by two unpaired

electrons, each coming from the 1D and 2D orbitals of the α channel.

Addition of one Sr atom will give two more electrons which are accommodated in

the 2Dα orbitals of the CrSr8 cluster. The electronic configuration of CrSr8 is shown

to be 1S21P61D102S22D2
α in Figure 4.6(b). Here 1D orbitals in the two spin channels

are completely occupied. Note that Hund’s coupling leads to partially filled 2D2
α

state and gives a magnetic moment of 2 µB. The MO plot of CrSr9 in Figure 5.4

shows a 1S21P61D102S22D4
α configuration. Total magnetic moment of 4 µB is given

by the partially occupied 2Dα orbitals. The ground state structure of CrSr10 is a bi-

capped antiprism. Further elongation of structure should lead to more stabilization

of 2Pz orbitals in a way similar to FeCa10. The electronic configuration of CrSr10

turns out to be 1S21P61D102S22D4
α2P1

α2P1
β and retains the magnetic moment of 4 µB

(Appendix C.4). Non-compact structures of the CrSr11 and CrSr12 clusters lead to

poor resemblance of their MO’s to the shell orbitals. Therefore we do not attempt

to explain their electronic structure and magnetic moments in terms of shell model.

Let us now have a close look at the local moments of the TM elements in the

CrSrN clusters. Table 5.2 shows the atomic spins on the Cr and Sr atoms of the

CrSrN (N=4-10) clusters obtained via Mulliken population method. Spin magnetic

moment on the Cr atom within the size range studied here varies from 2.14 µB to

5.20 µB and is always less than that of a bare Cr atom. In addition, the presence of a

Cr atom polarizes the host atoms in a way similar to the FeCaN and TMSr8 clusters.

Net effective moment on Sr atoms is always oriented in the opposite direction to

the Cr moment. In CrSr9, the spin magnetic moment of Cr is found to be 4.34 µB.

Mutual anti-parallel alignments of Sr moments give a total moment of 0.34 µB which
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Cluster Cr Sr1 Sr2 Sr3 Sr4 Sr5 Sr6 Sr7 Sr8 Sr9 Sr10 Sr11 Sr12
5CrSr4 5.08 -0.33 -0.21 -0.20 -0.33
5CrSr5 5.20 -0.27 -0.22 -0.22 -0.23 -0.23
3CrSr6 2.14 0.11 0.08 -0.26 -0.26 0.08 0.11
3CrSr7 3.23 0.36 0.36 -0.39 -0.39 -0.39 -0.39 -0.39
5CrSr8 3.93 -0.24 -0.24 -0.23 -0.24 -0.23 -0.24 -0.24 -0.24
5CrSr9 4.34 0.06 -0.10 -0.11 -0.08 -0.09 0.11 0.09 -0.10 -0.11
3CrSr10 4.59 -0.12 -0.12 -0.11 0.10 -0.09 -0.12 -0.12 0.22 -0.12 -0.09
3CrSr11 4.12 0.01 0.01 0.01 -0.32 -0.18 -0.22 -0.33 -0.33 -0.22 -0.33 -0.18
5CrSr12 4.64 -0.04 0.03 -0.17 -0.07 -0.17 0.01 0.01 0.15 -0.01 -0.07 -0.14 -0.14

Table 5.2: Atomic spins in the CrSrN clusters using Mulliken population analysis.

is oriented opposite to the Cr moment. Hence, one gets a total moment of 4 µB for

the CrSr9 cluster. Similar is the case for CrSr10 cluster. In case of CrSr11 and CrSr12

clusters, coupling between the moments of Cr impurity and Sr atoms is found to be

antiferro and ferro-magnetic respectively. This leads to the magnetic moments of 2

µB and 4 µB for these clusters.

100



5.4 Study of MnSrN (N=4-12) clusters

5.4.1 Ground state structures

4MnSr4
rMn-Sr= 3.18 Å

rSr-Sr= 3.97 Å

4MnSr5
rMn-Sr= 3.08 Å

rSr-Sr= 4.13 Å

2MnSr6
rMn-Sr= 2.89 Å

rSr-Sr= 4.08 Å

2MnSr7
rMn-Sr= 3.06 Å

rSr-Sr= 4.01 Å

6MnSr9
rMn-Sr= 3.36 Å
rSr-Sr= 4.10 Å

rz= 6.19 Å

6MnSr10
rMn-Sr= 3.38 Å
rSr-Sr= 4.13 Å

rz= 9.09 Å

4MnSr11
rMn-Sr= 3.29 Å
rSr-Sr= 4.09 Å

4MnSr12
rMn-Sr= 3.40 Å
rSr-Sr= 4.15 Å

Figure 5.6: Ground state structures and spin multiplicities of MnSrN clusters.
rMn-Sr and rSr-Sr are the average Mn-Sr and Sr-Sr bond lengths. rz is the extent of
the cluster perpendicular to the square planes.

The optimized ground state structures and spin multiplicities of the MnSrN (N=4-

12) clusters are shown in Figure 5.6. All the ground state structures of MnSrN clus-

ters are very similar to the structures obtained for CrSrN series, except for MnSr12.

The ground state structure of MnSr12 is obtained by the capping of four triangular

faces of the MnSr8 motif. A few higher energy isomers of MnSrN clusters are given

in the Appendix C.5.

5.4.2 Relative stabilities

Figure 5.7 shows the results of hardness, ∆Espin and ∆2(N) values for the MnSrN

clusters. These clusters show features similar to those of CrSrN . For example, a

continuous drop in hardness from N=4 to N=7 and a sharp peak in ∆2 at N=6

indicating the thermodynamic stability of MnSr6. Surprisingly, MnSr9 does not

emerge as the most stable cluster. Rather, local maxima are found at N=10 in η
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and ∆2 which indicate chemical and thermodynamic stability of MnSr10. Also ∆Espin

shows a local maximum for MnSr10. In addition, MnSr10 has a total spin magnetic

moment of 5 µB. Table 5.3 summarizes the HL gap, η, ∆Espin and ∆2(N) values of
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Figure 5.7: (a) Hardness, ∆Espin (b) second order energy difference (∆2(N)) for the
MnSrN clusters as a function of the number of Sr atoms N .

Cluster HL Gap η ∆Espin ∆2(N)
4MnSr4 0.20 1.52 0.61
4MnSr5 0.38 1.43 0.14 -0.59
2MnSr6 0.12 1.36 0.22 1.08
2MnSr7 0.20 1.34 0.18 -0.26
4MnSr8 0.25 1.23 0.20 -0.06
6MnSr9 0.32 1.25 0.06 0.07
6MnSr10 0.45 1.34 0.17 0.16
4MnSr11 0.23 1.10 0.08 -0.22
4MnSr12 0.22 1.10 0.16

Table 5.3: The HL gap, adiabatic spin excitation (∆Espin), hardness (η) and ∆2(N)
of MnSrN clusters. All the values are given in eV.

the MnSrN clusters.

5.4.3 Stability of MnSr10

To understand the enhanced stability of MnSr10, we examine the MO plots of MnSr9

and MnSr10 which are given in Figure 5.8. MnSr9 is a capped square anti-prism

structure. It is found to have a 1S21P61D102S22D5
α configuration. Though, it has

half filled 2D orbitals, HL gap is 0.32 eV only. Similar to case of CrSr9, prolate

shape (rz=6.19 Å) of MnSr9 forces the 2Pz orbitals to be lower in energy. In fact,

the LUMO in both the spin channels are of 2Pz character. However, the LUMO in

the β channel is slightly lower in energy (0.12 eV) with respect to the LUMO in the
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α channel. As a consequence, the overall gap is 0.32 eV, smaller than the gap in

the α channel (0.51 eV). Addition of one more Sr atom to MnSr9 motif leads to a

bi-capped antiprism structure for MnSr10. The distance between the two capping Sr

atoms is found to be 9.09 Å. Due to further elongation of the structure along the z

direction, 2Pz orbitals get more stabilized.

6.19Å 9.09Å

Figure 5.8: MO energy level diagrams and isosurface plots for the (a) 6MnSr9 and
(b) 6MnSr10 clusters.

Figure 5.8(b) shows the occupied 2Pz orbitals in the α and β channels. In the α

channel, 2Pz orbital becomes degenerate with the highest occupied 2D orbital and

form the HOMO. Stabilization of the 2Pz orbitals leads to sub-shell filling at this size

leading to a large HL gap (0.45 eV) and enhanced stability of MnSr10. In addition,

a magnetic moment of 5 µB in both MnSr9 and MnSr10 clusters arises due to half

filled 2Dα orbitals.
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5.4.4 Magnetic properties of MnSrN clusters
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Figure 5.9: Variation of magnetic moment of MnSrN clusters.

Figure 5.9 shows the variation of the magnetic moments as a function of N in the

MnSrN clusters. It reveals new interesting features. The magnetic moments for size

N=4 and 5 are found to be 3 µB, while MnSr6 and MnSr7 have magnetic moment of

1 µB only. Further addition of successive Sr atoms increases the magnetic moment.

MnSr9 and MnSr10 are found to have magnetic moment of 5 µB. For MnSr11, the

magnetic moment is again found to be 3 µB. Since 3d TM elements are shown to

polarize the host atoms in the study of TMSr8 and CrSrN clusters, we will have a close

look at the local moments within the MnSrN clusters also. Mulliken atomic spins for

MnSrN (N=4-10) clusters are given in the Table 5.4. In all the clusters, spin magnetic

Cluster Mn Sr1 Sr2 Sr3 Sr4 Sr5 Sr6 Sr7 Sr8 Sr9 Sr10 Sr11 Sr12
4MnSr4 4.26 -0.22 -0.40 -0.41 -0.22
4MnSr5 4.27 -0.26 -0.25 -0.25 -0.24 -0.25
2MnSr6 2.64 -0.25 -0.36 -0.19 -0.19 -0.36 -0.25
2MnSr7 3.07 -0.38 -0.06 -0.06 -0.38 -0.38 -0.39 -0.39
4MnSr8 3.46 -0.06 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.5
6MnSr9 3.74 0.05 0.14 0.05 0.14 0.15 0.43 0.05 0.14 0.05
6MnSr10 3.95 0.12 0.07 0.05 0.26 0.05 0.11 0.05 0.05 0.11 0.11
4MnSr11 3.66 0.15 -0.07 0.08 -0.21 -0.19 -0.07 -0.05 -0.17 -0.09 -0.18 0.16
4MnSr12 3.76 -0.08 0.15 -0.16 -0.16 -0.08 -0.23 0.10 0.10 -0.15 0.15 -0.23 -0.15

Table 5.4: Atomic spins in the MnSrN clusters obtained by Mulliken population
analysis.

moment on Mn is always lower than its atomic value of 5 µB. Interestingly, moments

on the Sr atoms are aligned anti-parallel to the Mn moment in all the clusters except

for MnSr9 and MnSr10. Therefore, it is the anti-ferromagnetic coupling between the

moments on Mn and Sr atoms which leads to lower values of magnetic moments of

MnSrN clusters (N=4-8). The local spin moment on Mn atom in MnSr9 and MnSr10
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is found to be 3.74 and 3.95 µB respectively. From Table 5.4, it is clear that moments

on the Sr atoms in these clusters are aligned parallel to the Mn spin. This gives a

total magnetic moment of 5 µB for these clusters. In case of MnSr11 and MnSr12,

again anti-ferromagnetic coupling between the moments of Mn and Sr atoms leads

to a lower magnetic moment of 3 µB.

5.4.5 CrSr9 and MnSr10 clusters as magnetic superatoms

After a detailed study of the TMSr8, CrSrN and MnSrN clusters, we have identified

two clusters which are most likely candidates as magnetic superatoms. These are

CrSr9 and MnSr10 which have been shown with enhanced stability and magnetic

moment of 4 µB and 5 µB respectively. To check if these clusters behave as magnetic

superatoms, two cluster units are brought close from different directions and in

different orientations. Both parallel and anti-parallel alignments of the TM spins are

taken in all structures of the dimer studied here. Figure 5.10 shows the optimized

structure of the (CrSr9)2 dimer. Each unit of CrSr9 cluster retains its structural

Figure 5.10: Optimized structures for dimers of CrSr9 with parallel (FM) and anti-
parallel (AFM) alignments of the TM spins. ∆E is the energy difference between
the two situations.

identity in the ground state of the dimer. Total magnetic moment of the dimer in

the ground state is found to be 8 µB. Binding energy of the dimer is 2.54 eV relative

to two isolated units. An anti-parallel alignment of the Cr spins in the two units is

found to be 0.37 eV less stable with respect to the ground state.

Figure 5.11 shows the results for the (MnSr10)2 dimer. In the ground state of

(MnSr10)2, each unit of MnSr10 retains its structural identity. Again, a parallel

arrangement of the spins on the two clusters turns out to be lower in energy with
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Figure 5.11: Optimized structures for dimer of MnSr10 with parallel (FM) and
anti-parallel (AFM) alignments of the TM spins.

respect to a dimer with anti-parallel alignment of the Mn spins. The energy difference

between these two states is 0.34 eV. The magnetic moment of (MnSr10)2 dimer in

the ground state of is found to be 6 µB. In addition, binding energy of (MnSr10)2

dimer is 2.51 eV against two MnSr10 units. Thus both CrSr9 and MnSr10 behave as

magnetic superatoms.

5.4.6 Conclusions

We have performed a detailed study of the electronic, magnetic and structural prop-

erties of the CrSrN and MnSrN clusters. CrSr9 and MnSr10 are found to be stable

clusters indicated by their HL gaps, η and ∆2(N). Also CrSr9 and MnSr10 have

magnetic moment of 4 µB and 5 µB respectively. We have shown that it is the inter-

play between crystal field effect and Hund’s coupling which stabilizes these clusters.

Furthermore two units of stable clusters were found to retain their structural identity

when they were brought close to each other from different directions and orienta-

tions. Therefore we classified CrSr9 and MnSr10 as magnetic superatoms. Spins of

the two cluster units were aligned parallel to each other in the ground state of the

dimers providing high magnetic moment.

.
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CHAPTER6
TM doped aluminium clusters

6.1 Introduction

In the previous chapters, we have shown that an interplay of crystal-field effect and

Hund’s coupling may lead to sub-shell fillings at unconventional electron counts.

FeCa8, CrSr9 and MnSr10 with enhanced stability are examples of such an interplay.

First two clusters have 24 valence electrons, while MnSr10 has 27 valence electrons.

Also these clusters have large magnetic moments and are shown to be attractive

candidates for magnetic superatoms. It has been observed that crystal-field effects

are more pronounced in the Al clusters compared to group-I and II metal clusters

because of large effective nuclear charge (ZA=3) [74, 75]. Recently, non-reactive be-

haviour of CuAl−22 towards O2 has been explained by the splitting of the 2D shell

orbitals due to crystal field effect [14]. Therefore it is interesting to explore whether

such interplay between crystal-field effect and Hund’s coupling leads to clusters with

enhanced stability among TM-Al clusters. Since stable clusters can occur at uncon-

ventional electron counts, one has to perform first-principles calculations on a series

of clusters to identify them. With this motivation, we have studied the structural,

electronic and magnetic properties of Cr, Fe and Mn doped Al clusters. Though

we have not been able to identify any possible candidates for magnetic superatoms

in these series, FeAl4 emerges with enhanced stability. Inspired by this finding, we

have studied Co and Ni doped Al clusters over a limited size range. We found CoAl3

to have enhanced stability among the CoAlN (N=2-6) clusters. We will discuss the

origin of their stability in terms of electronic and geometric structures. Most im-

portantly, we will show that spherical shell models are not appropriate descriptions

for the electronic structures of TM doped aluminum clusters. In fact, we will show
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that stability of FeAl4, and CoAl3 can be associated with their aromatic behaviour,

revealed by their negative NICS values.

6.2 Computational details

We have used the same formalism for all our first-principles calculations described in

the previous chapters. All electrons on the 3d TM atoms and Al are treated explicitly

using the double-ζ valence plus polarization basis sets optimized for GGA function-

als by Calaminici et al. (DZVP-GGA) [163]. The exchange-correlation effects are

taken into account using the generalized gradient approximation (GGA) functional

proposed by Perdew, Burke and Ernzerhof (PBE) [162]. By using these basis sets

and exchange-correlation functional, first and second ionization potentials of Al are

found to be 6.05 eV and 18.73 eV respectively. These potentials are in excellent

agreement with the experimental values of 5.98 and 18.82 eV respectively [164].

6.3 Study of TM-Al clusters (TM=Cr, Mn and

Fe)

6.3.1 Ground state structures

Figure 6.1 shows the optimized ground state structures and spin multiplicities of

all the TMAlN (TM=Cr, Mn, Fe ; N=2-12) clusters. From N=3 onwards, all the

clusters adopt three dimensional structures. In CrAlN and MnAlN clusters, Cr and

Mn occupy the exterior positions at all sizes. Fe atom starts to get encapsulated

in the Al10 cage. This can be understood from the fact that early 3d TM atoms

have atomic radii larger than Fe. For example, the atomic radius of Cr and Mn

atoms are 1.30 Å and 1.35 Å respectively, while Fe has an atomic radius of 1.26 Å.

Our results are also consistent with the recent experiments of Lang et al on Cr-Al

clusters [120]. The smallest size at which Cr is encapsulated by an Al cage in the

CrAl+N series is at N=16. A few higher energy isomers of these clusters are given in

the Appendix [D.1, D.2, D.3].

6.3.2 Relative stabilities

We will now discuss the chemical and thermodynamic stability of TM-Al (TM=Cr,

Mn and Fe) clusters.
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Figure 6.1: Ground state structures and spin multiplicities of Cr-, Mn- and FeAlN
clusters for N=2-12.

6.3.2.1 CrAlN clusters

Figure 6.2(a) shows the evolution of the HL gap and ∆Espin with the number of Al

atoms for CrAlN clusters. In the size range studied here, the HL gap varies from

0.24 eV to 0.92 eV. Two local maxima are observed at N=4 and 7 in the HL gap,

indicating their chemical stability. However, CrAl4 and CrAl7 relatively are less

stable against the adiabatic spin excitation. In addition, Figure 6.2(b) shows no
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Figure 6.2: (a) HL gap and and ∆Espin (b) second order energy difference (∆2(N))
of CrAlN clusters as a function of number of Al atoms.

distinct peaks at N=4 and 7 in ∆2(N). A small and local maximum in ∆2(N) is

observed at N=9, but there is no corresponding peak in the HL gap. The HL gap,

∆Espin, η and ∆2
n values for the CrAln clusters are given in Table 6.1. η values are

calculated using the ∆SCF method.

Cluster HL Gap ∆Espin η ∆2(N)
5CrAl2 0.45 0.80 1.03 -0.39
4CrAl3 0.43 0.24 2.35 0.20
3CrAl4 0.92 0.01 2.45 0.09
4CrAl5 0.67 0.04 2.25 -0.91
5CrAl6 0.25 0.35 2.03 0.38
4CrAl7 0.53 0.04 2.03 0.40
5CrAl8 0.33 0.13 2.00 -0.36
6CrAl9 0.24 0.15 1.81 0.22
5CrAl10 0.40 0.45 1.87 -0.32
4CrAl11 0.54 0.22 1.80 -0.51
5CrAl12 0.52 0.25 1.73

Table 6.1: HL gap, adiabatic spin excitation (∆Espin), hardness (η) and ∆2(N) of
CrAlN clusters.

6.3.2.2 MnAlN clusters

Figure 6.3(a) shows the variation of the HL gap and ∆Espin as a function of N

for MnAlN clusters. Local peaks at N=3, 5, 9 and 11 are observed in the HL

gap. In fact, MnAl5 has the highest HL gap of 1.18 eV among all the MnAlN

clusters (Table 6.2). This can be understood from the fact that MnAl5 is a singlet.

However, ∆2(N) and ∆Espin do not show local peak at N=5. Second highest HL
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Figure 6.3: (a) HL gap and and ∆Espin (b) second order energy difference (∆2(N))
of MnAlN clusters as a function of number of Al atoms.

Cluster HL Gap ∆Espin η ∆2(N)
6MnAl2 0.28 0.67 2.26 -0.71
3MnAl3 0.91 0.36 2.52 0.55
6MnAl4 0.57 0.17 2.25 -0.10
1MnAl5 1.18 0.20 2.38 -1.07
6MnAl6 1.04 0.56 2.50 1.07
3MnAl7 0.56 0.04 2.03 -0.04
4MnAl8 0.40 0.06 1.91 -0.43
5MnAl9 0.72 0.27 1.98 0.16
6MnAl10 0.39 0.21 1.95 -0.27
3MnAl11 0.56 0.14 1.79 -0.38
6MnAl12 0.47 0.44 1.81

Table 6.2: HL gap, adiabatic spin excitation (∆Espin), hardness (η) and ∆2(N) of
MnAlN clusters.

gap is found to be 1.04 eV for MnAl6. ∆2(N) shows maxima at N=3, 6 and 9 in

Figure 6.3(b), indicating enhanced thermodynamic stability at these sizes. Therefore

MnAl3 and MnAl9 are found to have both enhanced chemical and thermodynamic

stability. However, MnAl3 is less stable against adiabatic spin excitation compared

to MnAl2 as shown in Figure 6.3(a). ∆Espin shows local peaks at N=6 and 9 only.

Magnetic moment of MnAl3 and MnAl9 are found to be 2 µB and 4 µB respectively.

Because of small value of magnetic moment, we have not consider MnAl3 as a suitable

candidate for magnetic superatom. In magnetic superatoms, we have seen that a TM

is encapsulated inside the cage formed by alkaline earth elements, e.g., FeCa8 and

CrSr9. Consequently, their magnetic properties remain intact while making dimers.

Al6 and Al9 cages are not able to encapsulate a Mn atom. Therefore, it is unlikely

that MnAl6 and MnAl9 would behave as magnetic superatoms.
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6.3.2.3 FeAlN clusters
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Figure 6.4: (a) HL gap and and ∆Espin (b) second order energy difference (∆2(N))
of FeAlN clusters as a function of number of Al atoms.

Cluster HL Gap ∆Espin η ∆2(N)
3FeAl2 0.83 0.29 2.85 -0.39
2FeAl3 0.73 0.33 2.40 0.09
1FeAl4 1.47 0.40 2.60 0.66
2FeAl5 0.47 0.25 2.11 -1.03
5FeAl6 0.54 0.13 2.20 0.06
2FeAl7 0.72 0.20 2.16 0.66
3FeAl8 0.61 0.03 1.96 -0.50
4FeAl9 0.66 0.23 1.98 0.11
1FeAl10 0.56 0.03 1.89 -0.44
2FeAl11 0.40 0.34 1.79 -0.07
3FeAl12 0.46 0.29 1.73

Table 6.3: The HL gap, adiabatic spin excitation energy (∆Espin), hardness (η) and
∆2(N) of FeAlN clusters.

The HL gap and ∆Espin values of FeAlN clusters are plotted in Figure 6.4(a).

FeAl4 is a singlet in its ground state and has highest HL gap of 1.47 eV among all

the FeAlN clusters. The HL gap of FeAl4 can be compared to the HL gap (1.87 eV)

of Al−13 in our calculations. Al−13 is known to be a very stable cluster which is resistant

to etching by O2. FeAl4 also has a local peak in ∆2(N) as shown in Figure 6.4(b). In

addition, ∆2(N) and HL gap show maxima at N=7 and 9, though FeAl7 and FeCa9

have small HL gap compared to FeAl4 (Table 6.3). ∆Espin also reveals the enhanced

stability of FeAl4, FeAl7 and FeAl9. Because of small magnetic moment (1 µB), FeAl7

does not qualified for a suitable candidate of magnetic superatom. Although FeAl9

has a magnetic moment of 3 µB, it is not considered as an appropriate candidate for
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magnetic superatom because Fe atom is not encapsulated by Al9 cage in way similar

to MnAl9.

6.4 Study of TMAl4 and TMAl3 (TM=Cr-Ni) clus-

ters

While discussing the relative stabilities of the clusters in three series of doped clus-

ters, we find stable clusters with finite magnetic moments, e.g, 5MnAl9 and 4FeAl9.

However, these clusters are not considered as possible candidates for magnetic super-

atoms due to lack of the compact structures. FeAl4 is found to be a singlet and has

relatively greater stability as indicated by various stability descriptors. We will now

investigate whether FeAl4 retains its enhanced stability when TM changes within

TMAl4 clusters. To answer this question, we have performed first-principles calcula-

3CrAl4
6MnAl4

1FeAl4
2CoAl4

3NiAl4

Figure 6.5: Ground state structures and spin multiplicities of TMAl4 clusters.

tions for TMAl4 (TM=Cr-Ni) clusters. Figure 6.5 shows the optimized ground state

structures and spin multiplicities of the TMAl4 clusters. MnAl4, CoAl4 and NiAl4

have similar ground state structures in which the TM atoms occupy the square face

of the Al4 unit, while CrAl4 and FeAl4 have slightly different structures. To study

relative stabilities of the TMAl4 clusters, we have plotted their HL gap and ∆Espin

values in Figure 6.6. Amazingly, both stability descriptors show FeAl4 as the most

stable cluster among the TMAl4 clusters. Also FeAl4 has the maximum hardness of

2.60 eV as shown in Table 6.4.

A bare Mn atom has a 3d54s2 electronic configuration, i.e., five unfilled d orbitals

in the β channel and MnAl5 emerges as a singlet in its ground state structure, though

it does not show an enhanced stability. A close inspection of the geometry of MnAl5

reveals that the Mn atom is bonded to five Al atoms (Figure 6.1). Maximum Mn-Al

distance is found to be 2.23 Å. A bare Fe atom has four unfilled d orbitals and four Al
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Figure 6.6: The HL gap and ∆Espin of
TMAl4 clusters.

Cluster HL η ∆Espin
3CrAl4 0.92 2.45 0.01
6MnAl4 0.57 2.25 0.17
1FeAl4 1.47 2.60 0.40
2CoAl4 0.21 2.11 0.33
3NiAl4 0.57 2.26 0.41

Table 6.4: The HL gap,
hardness (η) and ∆Espin of
TMAl4 clusters. All values
are given in eV.

atoms are bonded with Fe atom in the ground state structure of FeAl4. Furthermore,

FeAl4 turns out to be a singlet in its ground state and has enhanced chemical and

thermodynamic stability. Therefore one obvious question is whether CoAl3 will also

be a singlet in its ground state and have enhanced stability since a Co atom has only

three unfilled d orbitals. Similarly, NiAl2 may show enhanced stability. However,

this argument does not apply to CrAl6, though Cr has six unfilled orbitals (five 3d

and one 4s). The reason is related to its ground state geometry. Out of six Al atoms,

only four Al atoms (in square plane) are bonded to Cr atom as shown in Figure 6.1.

The distance between the Cr and four Al atoms is ∼2.67 Å, while distance of the Cr

to other two Al atoms is 4.36 Å. As a result, CrAl6 does not emerge as a singlet in the

ground state structure. However, the questions whether CoAl3 and NiAl2 will have

enhanced stability can be answered only after doing first-principles calculations.

We will first address the question of enhanced stability of CoAl3. For this we per-

formed the first-principles calculations for CoAlN clusters over a limited size range

(N=2-6). Figure 6.7 shows the optimized ground state structures and spin multiplic-

2CoAl2
1CoAl3

2CoAl4
1CoAl5

4CoAl6

Figure 6.7: Ground state structures and spin multiplicities of CoAlN (N=2-6)
clusters.
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ities of all the CoAlN clusters. Structural evolution of these clusters is very similar

to that of the MnAlN clusters. As we anticipated, CoAl3 turns out to be a singlet in

its ground state structure. Also the Co atom is bonded to all three Al atoms in the

ground state geometry. To see its relative stability, we plot the HL gap and ∆2(N)

of the CoAlN clusters in Figure 6.8(a). Interestingly, both stability descriptors show
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Figure 6.8: (a) The HL gap, ∆2(N) and (b) spin excitation energy (∆Espin) of
CoAlN clusters.

clear peaks for CoAl3. In fact, the HL gap of CoAl3 is found to be 1.64 eV, even

higher than that of FeAl4. Also CoAl3 has a large spin excitation energy of 0.78 eV

in Figure 6.8(b). Table 6.5 summarizes values of the HL gaps, η, ∆Espin and ∆2(N)

of the CoAlN clusters. CoAl3 is also found to have maximum hardness in the size

range N=2-6.

Cluster HL Gap ∆Espin η ∆2(N)
2CoAl2 1.21 0.50 2.77 -0.57
1CoAl3 1.64 0.78 2.86 1.17
2CoAl4 0.21 0.33 2.11 -0.28
1CoAl5 0.76 0.08 2.28 -0.76
4CoAl6 0.44 0.10 2.11

Table 6.5: The HL gap, adiabatic spin excitation (∆Espin), hardness (η) and ∆2(N)
of CoAlN clusters. All values are given in eV.

Enhanced stability of CoAl3 is also observed in the study of the TMAl3 clusters.

Figure 6.9 shows the optimized ground state structures and spin multiplicities of all

the TMAl3 (TM=Cr-Ni) clusters. All the 3d TM elements are found to cap the Al3

triangle. Figure 6.10 shows the HL gap and ∆Espin of the TMAl3 clusters. CoAl3

is found to have the highest HL gap. We have given the HL gap, η, and ∆Espin

values in Table 6.6. Though, CoAl3 has the highest HL gap and hardness, its ∆Espin
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Figure 6.9: Ground state structures and spin multiplicities of TMAl3 clusters.

value is smaller than that of NiAl3 which is a doublet. This is surprising but can

be understood qualitatively in terms of frozen orbital approximation. This issue is

discussed below.
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Figure 6.10: The HL gap and ∆Espin of
TMAl3 clusters.

Cluster HL η ∆Espin
4CrAl3 0.43 2.35 0.24
3MnAl3 0.91 2.52 0.36
2FeAl3 0.73 2.41 0.33
1CoAl3 1.64 2.86 0.78
2NiAl3 0.57 2.38 1.33

Table 6.6: The HL gap, hard-
ness (η) and ∆Espin of TMAl3
clusters. All values are given
in eV.

Motivated by the enhanced stability of FeAl4 and CoAl3, we have studied the

NiAlN (N=1-6) clusters via first-principles calculations. Amazingly, NiAl2 also turns

out to be a singlet in its ground state structure. Being a singlet, it has relatively

a large HL gap of 1.16 eV. However, it is thermodynamically less stable compared

to NiAl3. This can be understood from the fact that NiAl3 has a more compact

structure than NiAl2. Ground state structures of NiAlN are given in Appendix D.4.

Their HL gaps, ∆2(N) and ∆Espin are plotted in Appendix D.5, while values are

given in Table D.1.
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6.5 Shell model and electronic structure of TM-Al

clusters

6.5.1 Stability of FeAl4 and CoAl3 clusters and shell models

We have shown the FeAl4 and CoAl3 are the most stable clusters. Their stability

is reflected in various stability descriptors, i.e., ∆2(N), η, and the HL gap. If we

treat all the 3d and 4s electrons of Fe as valence electrons and assume that Al acts

as a trivalent atom within cluster, there will be 20 valence electrons in FeAl4. By a

similar argument, CoAl3 will have 18 electrons. According to shell models, clusters

with 20 and 18 valence electrons have closed electronic shells. It is then natural to ask

Figure 6.11: MO energy level diagrams and isosurface plots for (a) 1FeAl4 and (b)
1CoAl3.

whether the stability of FeAl4 and CoAl3 is due to filled electronic shells within the

spherical shell models. If shell model is the underlying mechanism of their stability,

electronic configurations of FeAl4 and CoAl3 should come out as 1S21P61D102S2 and
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1S21P61D10 respectively. We check this by examining their MO plots in Figure 6.11.

Evidently, most of the MO’s in the FeAl4 and CoAl3 clusters cannot be identified

with shell orbitals. For example, HOMO and HOMO-1 in FeAl4 do not show corre-

spondence with any shell orbitals of definite angular momentum character. Similar

is the case with third orbital above the 1S orbital. In CoAl3, the HOMO, one of

the HOMO-1, and HOMO-2 orbitals do not bear any resemblance to shell orbitals.

Therefore we conclude that the stability of these clusters cannot be explained in

terms of shell filling within shell models.

Figure 6.12: MO energy level diagrams and isosurface plots of 2NiAl3.

Coming to the question of smaller value of ∆Espin for CoAl3 in TMAl3 series,

let us have a close look at the MO plot of NiAl3 in Figure 6.12. NiAl3 is a doublet

in its ground state structure. The next higher spin isomer of NiAl3 is a quartet.

Within frozen orbital approximation, energy required to excite an electron from the

HOMO in the β channel to the LUMO in the α channel is 2.10 eV. On the other

hand, energy required to obtain the triplet state of CoAl3 is equal to its HL gap,

i.e., 1.64 eV within frozen orbital approximation. As discussed in previous chapters,
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these values will change after doing self consistent calculations of the spin excited

states of the clusters, but NiAl3 still has a larger ∆Espin.

6.5.2 Applicability of shell models at larger sizes

(a)

1S21P61D102S21F142P6

(b)

Figure 6.13: MO energy level diagrams and isosurface plots of (a) 1Al−13 and (b)
5MnAl11.

It is well known that spherical shell models very nicely explain the electronic

properties of the Al13, Al−13 and Al14 clusters [8]. For example, Al−13 behaves as an

inert gas atom and has a filled shell 1S21P61D102S21F142P6 configuration as shown in

Figure 6.13(a). This raises the question whether TMAlN clusters at larger sizes follow

shell models. If shell model emerges at large sizes then we may expect enhanced

stability of MnAl11 as it has 40 electrons. However, this is not the case as indicated by

the HL gap and ∆2
n (Figure 6.3). MnAl11 is found to be a quintet in its ground state.

To illustrate the point more clearly, MO plot of MnAl11 is given in Figure 6.13(b).

Though deep lying orbitals can be identified with 1S, 1P, 1D and 2S orbitals, frontier
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orbitals do not bear any resemblance to shell orbitals. Clearly, even at larger sizes

electronic structure of the TMAlN clusters cannot be described by the spherical shell

models unlike pure Al, TM-alkali and TM-alkaline earth clusters.

6.5.3 s-p hybridization

In section 1.5, we have given a brief summary of the early studies of pure Al clusters.

Many studies reported the absence of features of shell models at smaller sizes in the

Al clusters. The underlying reason was claimed to be a lack of s-p hybridization.

Now we ask whether the absence of shell picture in the TMAlN clusters is related to a

lack of the s-p hybridization. We have analyzed the MO’s of the TMAl3 and TMAl4

clusters. Table 6.7 shows the contributions of TM elements and sp atomic orbitals of

Al atoms to the frontier MO’s of the TMAl3 clusters. Almost all the frontier orbitals

HOMO LUMO
Cluster TM(%) TMd(%) Al(%) Als(%) Alp(%) TM(%) TMd(%) Al(%) Als(%) Alp(%)
4CrAl3 22 85 78 9 89 34 80 66 14 84
3MnAl3 43 94 57 15 80 30 33 70 43 54
2FeAl3 49 98 51 20 77 66 98 34 10 90
1CoAl3 35 71 65 44 51 43 63 57 40 58
2NiAl3 31 71 69 39 58 35 69 65 41 57

Table 6.7: Contribution of the TM and Al atomic orbitals to the frontier orbitals in
the TMAl3 clusters. Also contributions of the d orbitals of the TM atoms and sp
atomic orbitals of Al atoms are given.

have contributions from Al sp and TM d orbitals. For example, the HOMO of CoAl3

consists of 35% Co and 65% Al orbitals. Out of the Co contribution, 71% comes

from the Co d orbitals. Of the Al contribution, 44% is s and 51% is p. Similarly,

the HOMO in FeAl4 has 63% contribution from Fe and 37% contribution from the

Al s and p orbitals. Out of the Al contribution, 39% is s and 56% is p as shown in

Table 6.8. Thus s-p hybridization is present in small TMAl clusters just as in pure

HOMO LUMO
Cluster TM(%) TMd (%) Al(%) Als(%) Alp(%) TM(%) TMd (%) Al(%) Als(%) Alp(%)
3CrAl4 41 88 59 22 77 22 85 78 10 89
6MnAl4 28 45 72 46 54 50 92 50 19 77
1FeAl4 63 62 37 39 56 42 75 58 38 59
2CoAl4 76 70 59 24 74 40 82 60 24 74
3NiAl4 59 81 77 41 58 35 70 65 40 59

Table 6.8: Contribution of the TM and Al atomic orbitals to the frontier orbitals in
the TMAl4 clusters. Also contributions of the d orbitals of the TM atoms and sp
atomic orbitals of Al atoms are given.
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Al clusters. With these results we conclude that overlap of these sp hybrids with the

TM d orbitals gives rise to bonding between the AlN unit and the TM elements.

6.6 Origin of stability: Aromaticity

So far we have demonstrated the enhanced stability of FeAl4 and CoAl3, and have

also argued that this cannot be explained in terms of shell models. We will now try

to understand the origin of FeAl4 and CoAl3. In section 1.9, we reported a summary

of recent works on Al based binary clusters in which stability was explained in terms

of aromaticity. Therefore we ask whether aromaticity plays a role in the stability of

FeAl4 and CoAl3 also. Originally, the concept of aromaticity was introduced in the

context of planar molecules. Now this idea has been extended to include non-planar

molecules and clusters. The most widely used measure of aromaticity is the nucleus

TMAl3 TMAl4
TM M NICS(ppm) M NICS(ppm)
Cr 4 -17.77 3 -41.11
Mn 3 -10.23 6 -29.66
Fe 2 -41.80 1 -99.36
Co 1 -126.28 2 -12.88
Ni 2 -65.36 3 -22.03

Table 6.9: Multiplicity (M=2S+1) and NICS values for TMAl3 and TMAl4 clusters.

independent chemical shift (NICS). Since it is a position dependent quantity, for

planar molecules or clusters this quantity is usually calculated at the center of the

plane (NICS(0)) or at a certain distance (typically 1 or 2 Å) away from the center

of the plane (NICS(1) or NICS(2)). On the other hand, aromaticity for non-planner

clusters has been calculated at the unweighted geometric center of structures [172].

Following the same procedure, we have calculated NICS values1 for some of the

FeAlN and CoAlN clusters. NICS values at the center of TMAl3 and TMAl4 clusters

are given in Table 6.9. While all the values turn out to be negative, CoAl3 and FeAl4

turn out to have the most negative values that indicate their aromatic character.

NICS values for FeAlN and CoAlN clusters are given in Table 6.10. Again, FeAl4

has a large negative NICS. FeAl5 has a positive NICS indicating its anti-aromatic

character. Among the CoAlN clusters studied, only CoAl3 and CoAl4 have negative

1We have calculated NICS values using Gaussian03 code. We have used same basis sets and
exchange-correlation functional which are taken for structure optimization and self-consistent elec-
tronic structure calculations in deMon2k.
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Cluster M NICS(ppm) Cluster M NICS(ppm)
FeAl3 2 -41.8 CoAl2 2 36.37
FeAl4 1 -99.36 CoAl3 1 -126.28
FeAl5 2 9.06 CoAl4 2 -12.88
FeAl6 5 -65.19 CoAl5 1 31.54
FeAl7 2 -51.11 CoAl6 4 -36.62

Table 6.10: Multiplicity (M=2S+1) and NICS values for FeAlN and CoAlN clusters.

NICS values. CoAl2 and CoAl5 have positive NICS indicating that these clusters

are anti-aromatic. Thus we conclude that FeAl4 and CoAl3 are the most aromatic

clusters in the size range studied here.

Figure 6.14: Bond lengths in Å of the CoAl3 and FeAl4 clusters.

One of the characteristics of aromatic clusters is that they tend to have equal

bond lengths [17]. We found that bond lengths are equalized in the FeAl4 and CoAl3

clusters. In FeAl4, all of the Al-Al bond lengths are 2.84 Å as shown in Figure 6.14.

Two of the Fe-Al bond lengths are 2.35 Å (to two Al atoms on opposite sides), and

the other two are 2.23 Å. In CoAl3, while the Co-Al bond lengths are all 2.24 Å, all

of the Al-Al bond lengths are 2.74 Å. The reactivity measure of aromaticity includes

chemical hardness. We have already shown that FeAl4 and CoAl3 have the largest

chemical hardness.

6.6.1 Conclusions

We have presented a detailed study of TM-doped Al clusters. The stable clusters

are identified within the CrAlN , MnAlN , FeAlN series. We do find stable clusters

(MnAl6, MnAl9, and FeAl9) with large spin moments among these series. How-

ever, we have not identified these as suitable candidates for magnetic superatoms

because Mn and Fe are not encapsulated by Al cages. We have also studied CoAlN ,

NiAlN , TMAl3 and TMAl4 clusters. FeAl4 and CoAl3 are the most stable clusters
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as indicated by their large HL gap, ∆2(N), and η. The most important result of

these studies is that electronic structure of these clusters cannot be described by the

shell models. Even at large sizes, electronic structures of the TM-Al clusters do not

follow shell models. FeAl4 and CoAl3 possess enhanced stability originating from

aromaticity. This shows up in NICS values and large chemical hardness.
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CHAPTER7
V doped silver clusters

7.1 Introduction

Studies of V doped Ag clusters are motivated by the photo-fragmentation experi-

ments performed on VAgN clusters by Janssens et al [20]. VAgN clusters were first

produced by a dual-laser vaporization source. In the photo-fragmentation experi-

ments, intense laser light was used to irradiate and highly excite the produced neu-

tral clusters. This resulted in ionization and fragmentation of the clusters. Resulting

mass abundance spectrum of the cation clusters showed peaks at VAg+
5 , VAg+

7 , and

VAg+
14. Sharp drops in the intensity of mass-spectrum are observed just after these

sizes. In order to explain the relative abundance of VAg+
7 and VAg+

14, Janssens et

al proposed that V has valence of 2 and 5 in these clusters. Then VAg+
7 and VAg+

14

respectively will have 8 and 18 valence electrons. These are magic numbers at which

closing of the electronic shells occur within spherical shell models. However, there

is no theoretical justification of Janssens et al ’s proposal from first-principles calcu-

lations. Furthermore, origin of the greater stability of VAg+
5 is not clear. Hence we

have performed first-principles calculations for VAg
+/0
N (N=3-10) in order to under-

stand the microscopic mechanism which accounts the stability of VAg+
5 and VAg+

7 .

7.2 Computational details

Previously described formalism of first-principles electronic structure calculations is

adopted for the study of V doped Ag clusters. For the Ag atom, a quasi-relativistic

effective core potential (ECP) (with 19 electrons in the core) and basis set combina-

tion from Stuttgart-Dresden (QECP19|SD) distributed with deMon2K is used. This
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produces the first and second ionization potentials of 8.05 eV and 21.54 eV for a Ag

atom, which are in good agreement with experimental values of 7.57 eV and 21.47

eV respectively [164].

7.3 Ground State structures

Figure 7.1 shows the evolution of ground state structures of the VAg+
N and VAgN

(N=3-10) clusters. From N=3 to 5, Ag atoms form a planar framework in both series

of clusters. VAg+
6 has a pentagonal bi-pyramid structure with the V atom occupying

an apex position. VAg6 has a slightly different structure. One Ag atom is removed

(a)

4VAg+3
5VAg+4

4VAg+5
5VAg+6

4VAg+7
5VAg+8

4VAg+9
3VAg+10

(b)

5VAg3
4VAg4

5VAg5V
4VAg6

5VAg7
4VAg8

3VAg9
2VAg10

Figure 7.1: Ground state structures and spin multiplicities of (a) VAg+
N and

(b)VAgN clusters.

from pentagonal frame of Ag5 and attached to a triangular face comprised of V

and two Ag atoms. Structures of VAg+
8 , VAg+

9 , and VAg+
10 are obtained by capping

the Ag atom at triangular faces of VAg+
6 motif. In the ground state structure of
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VAg+
7 , the V atom is above at the center of square frame of Ag atoms. Two out

of remaining three Ag atoms are attached to the edges of the Ag4 unit while the

last one is attached to the square face. Ground state structures of the VAg8, VAg9

and VAg10 clusters are similar to corresponding cation clusters. A few high energy

isomers in both the series are given in the Appendix[ E.1,E.2].

7.4 Relative stabilities

Experiments performed by Janssens et al revealed the enhanced stability of VAg+
5

and VAg+
7 . Therefore it will be interesting to see their energetic stability via various

stability descriptors. In this regard, we have first calculated the HL gap and ∆2(N).

Figure 7.2 shows the HL gap and ∆2(N) of both neutral and cationic series. VAg+
5
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Figure 7.2: (a) The HL gap and (b) ∆2(N) of VAg
+/0
N clusters.

and VAg+
7 are found to have the two largest HL gaps within the size range studied

here. Also ∆2(N) shows maxima at N=5 and 7 in the cation series as shown in

Figure 7.2(b). Therefore VAg+
5 and VAg+

7 have enhanced chemical and thermody-

namic stability relative to their neighbors. For VAgN clusters, small peaks occur at

N=6 and 8 in the HL gap, while accompanying peaks are not observed in ∆2(N).

Interestingly, VAg4 shows a clear indication of its thermodynamic stability, though

it has a HL gap of only 0.51 eV, smaller than most other neutral clusters (Table 7.1).

Another stability descriptor is Ag addition energy, i.e., ∆EAg which is defined as

∆EAg = E(VAg
+/0
N−1) + EAg − E(VAg

+/0
N ) (7.1)

where E is the total energy of the indicated species. Figure 7.3 shows the variation of

∆EAg as a function of size for both series. As we can see VAg+
5 and VAg+

7 show max-

imum energy gain in forming the clusters from the preceding sizes and a decrease in
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Cluster HL Gap ∆2(N) Cluster HL Gap ∆2(N)
4VAg+

3 0.47 -0.05 5VAg3 0.42 -0.03
5VAg+

4 0.81 -0.38 4VAg4 0.51 0.19
4VAg+

5 1.02 0.17 5VAg5 0.69 -0.24
5VAg+

6 0.63 -0.17 4VAg6 0.85 -0.03
4VAg+

7 0.93 0.12 5VAg7 0.76 -0.01
5VAg+

8 0.57 0.008 4VAg8 0.86 -0.06
4VAg+

9 0.20 0.07 3VAg9 0.58 0.15
3VAg+

10 0.29 2VAg10 0.60

Table 7.1: The HL gap and ∆2(N) values of VAg+
N and VAgN clusters. All the values

are given in eV.
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Figure 7.3: ∆EAg, i.e., Ag addition energy

of VAg
+/0
N clusters.

Cluster ∆EAg Cluster ∆EAg
4VAg+3 1.88 5VAg3 2.06
5VAg+4 1.93 4VAg4 2.10
4VAg+5 2.31 5VAg5 1.90
5VAg+6 2.14 4VAg6 2.15
4VAg+7 2.31 5VAg7 2.19
5VAg+8 2.19 4VAg8 2.20
4VAg+9 2.18 3VAg9 2.26
3VAg+10 2.10 2VAg10 2.11

Table 7.2: ∆EAg values of VAg+
N

and VAgN clusters. All the values
are given in eV.

the energy gain when going to the next size. This is consistent with the experimental

observations where drops in the intensity are observed just after N=5 and 7. Two

local maxima in ∆EAg at N=4 and 9 are found for VAgN clusters. It is important

to understand the relevance of the two stability descriptors ∆EAg and ∆2(N) to the

experiments. Which of these is more relevant for describing stability depends on the

experimental conditions. When clusters are produced at their evaporation tempera-

tures and the final step leading to stabilization is evaporation of one or more atoms,

∆2(N) will be more relevant to defining stability, for example in a seeded supersonic

nozzle source. On the other hand, for cold clusters produced in a gas-aggregation

cluster or laser vaporization source, where cluster growth involves single-atom addi-

tion at a time, Ag addition energy will be more relevant [1]. Since mass abundance

spectrum of the VAg+
N clusters was obtained after fragmenting the neutral clusters

(produced using a dual-laser vaporization source) by an intense laser light, their sta-

bilities cannot be entirely governed by either ∆2(N) or ∆EAg. However, enhanced
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stability of VAg+
5 and VAg+

7 is captured by both ∆2(N) and ∆EAg.

Furthermore, to obtain a qualitative idea about the relative abundance of cation

clusters, one can calculate the AIP and VIP of the VAgN clusters. If the energy of

laser is equal to or higher than the IP of a neutral cluster in the photofragmentation

experiments, the intensity of produced cation clusters depends upon not only on

photon flux but also on the absorption cross section. However, in a simple approach

we can assume that a lower IP of a neutral cluster will lead to more abundance

of the corresponding cation cluster. Variations of the calculated AIP and VIP as

a function of size are shown in Figure 7.4. Sharp drops in both AIP and VIP are

observed from N=4 to 5, and 6 to 7. Lower IP values of VAg5 and VAg7 possibly

3 4 5 6 7 8 9 10
Number of Ag atoms

5.8

5.9

6

6.1

6.2

6.3

6.4

6.5

eV

AIP
VIP

Figure 7.4: Variation of AIP and VIP of
VAgN clusters as a function of number of
Ag atoms.

Cluster AIP VIP
5VAg3 6.16 6.17
4VAg4 6.34 6.43
5VAg5 5.93 5.95
4VAg6 5.94 6.48
5VAg7 5.82 5.83
4VAg8 5.83 5.87
3VAg9 5.91 5.95
2VAg10 5.91 5.97

Table 7.3: Adiabatic
and vertical ionization
potential of VAgN clus-
ters.

lead to large abundance of VAg+
5 and VAg+

7 . There is a large difference between the

AIP and VIP of VAg6. This is because of the fact that the ground state structure

of VAg+
6 is substantially different from that of VAg6.

In the photo-fragmentation experiments, large size clusters break up into smaller

sizes which are stable against further fragmentation. However, the actual fragmenta-

tion paths in these experiments are unknown. There could be various possible initial

sizes and fragmentation pathways leading to VAg+
5 and VAg+

7 as stable clusters. Cal-

culating such processes are difficult, but we can more easily confirm the stability of

VAg+
5 and VAg+

7 with respect to further fragmentation. For this we have considered

only two fragmentation channels of the VAg+
N clusters. One channel corresponds to

fragmentation of VAg+
N into V+ and AgN , and the second is fragmentation into V

and Ag+
N . The fragmentation energy (FE) of VAg+

N for the two channels are given
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by

FEV+

= E(V+) + E(AgN)− E(VAg+
N) (7.2)

Or

FEV = E(V) + E(Ag+
N)− E(VAg+

N) (7.3)

Figure 7.5 shows the fragmentation energy as a function of size for VAg+
N . If we

consider the first fragmentation channel, there are jumps from N=4 to 5 and 6 to 7.

Considering this we can rationalize the relative stability of VAg+
5 and VAg+

7 in the

experiments. However, considering the second fragmentation channel we do not find

these features.
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Figure 7.5: Variation of the fragmentation
energy of VAg+

N clusters.

Cluster FEV+

FEV

4VAg+3 3.77 2.75
5VAg+4 3.72 3.43
4VAg+5 4.35 3.51
5VAg+6 4.18 4.16
4VAg+7 4.92 3.85
5VAg+8 4.85 4.31
4VAg+9 5.70 4.04

Table 7.4: Fragmentation
energies of VAg+

N clus-
ters. All values are given
in eV.

7.5 Origin of the stability of VAg+
5 and VAg+

7

Having demonstrated the enhanced stability of VAg+
5 and VAg+

7 , we will now discuss

the origin of their stability. For this, we examine the MO plots of VAg+
5 and VAg+

7

given in Figure 7.6. VAg+
5 has 9 valence electrons and is a quartet in its ground state

structure. VAg+
5 comprises of the V atom capping a quasi planar frame of Ag5 atoms

in its ground state structure (Figure 7.1(a)). Because of a non-compact structure,

interpretation of its electronic structure in terms of shell models become difficult. The

lowest energy MOs shown in Figure 7.1(a), i.e., α1 and β1 are of 1S character. The

orbital α2 is approximately of d character. MO’s α3-α8 all look similar in character,

and not all of them can be assigned 1P character. In fact, a closer inspection of these

orbitals reveals that all of them have substantial contribution from V 3d orbitals.
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Figure 7.6: MO energy level diagrams and isosurface plot of (a) VAg+
5 (b) VAg+

7

clusters. Blue arrow shows exchange splitting in 1D orbitals.

α3-α6 have contributions from the occupied V 3d orbitals, while α7 and α8 have

major contributions from the unoccupied V 3d orbitals in the α channel. The large

gap between the occupied and unoccupied 3d orbitals in the α channel in the bare

V atom results in the large HL gap in VAg+
5 leading to its chemical stability.

V atom has the electronic configuration 3d34s2. In the α channel, three occu-

pied atomic orbitals (3dxy, 3dyz, and 3dxz) are degenerate in energy 1. Next set of

orbitals consists of unoccupied degenerate 3dx2−y2 and 3dz2 orbitals. The energy

separation between occupied and unoccupied 3d orbitals is found to be 1.69 eV. In

our calculations, contribution of the V atom to α1 and β1 MO’s is only 10%, while

90% contribution is from the Ag atoms. Next two MO’s in the β channel, i.e., β2

and β3 have ∼88% contribution from the Ag atoms. The α2 MO has almost 85%

1one electron energy levels and atomic orbitals of a V atom is given in the Appendix E.3
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contribution from the V 3d states. α3 and α4 MO’s have ∼44% from the V 3d states

and 56% contribution from the Ag atoms, while the α5 and α6 MO’s have nearly

44% from the Ag atoms and 56% contribution from the V 3d states. Interestingly,

unoccupied α7 and α8 MO’s are found to have significant contributions from the un-

ocuupied 3dx2−y2 and 3dz2 orbitals of V atom respectively. For example, the α7 MO

has ∼77% contribution from V and 23% from the Ag atoms. Of the V contribution,

nearly 60% comes from V 3dx2−y2 orbital. Similarly, V 3dz2 orbital gives 47% of the

V contribution (∼70%) to the α8 MO. We believe contributions from unoccupied V

atom pushes the LUMO to higher energy with respect to the HOMO, leading to a

HL gap of 1.02 eV. Addition of one more Ag atom to VAg+
5 leads to a pentagonal

bi-pyramid structure for VAg+
6 as shown in Figure 7.1(a). The environment of the

V atom does not change compared to VAg5+, as it is still bonded to five Ag atoms

in the shape of a pentagon. This leads to only minor changes in the structure of

the frontier orbitals that have significant contributions from the V atom. Thus the s

electron from the sixth Ag atom is accommodated in one of the degenerate orbitals

(α7, α8) leading to a small HL gap.

Interestingly, the origin of greater stability of VAg+
7 is found to be different.

VAg+
7 has 11 valence electrons and is a quartet in its ground state structure. Ag7

cage attempts to enclose the V atom, leading to a more compact structure than

VAg+
5 . As a consequence, correspondence to shell picture is more clearer than VAg+

5

as shown in Figure 7.6(b). It shows a 1S21P6 closed shell configuration. We found

that these shell orbitals have maximum contributions from Ag atoms. The remaining

three electrons are accommodated in MO’s that have major contributions from V

3d states. The states marked 1D have 73% and 67% contribution from the V atom,

while α7 has 35% contribution from V. LUMO (α8) has 42% contribution from V. The

LUMO in the β channel again is of 1D character and has significant contribution

from V. Thus the exchange splitting (3.00 eV) in the V atom gets transferred to

VAg7+ resulting in a large HL gap of 0.93 eV. As the Ag atoms successively are

added to form large size clusters, shell model picture emerges even more evidently.

For example, VAg+
9 is found to be a quartet with a 1S21P61D4

α1D1
β configuration as

shown in the Appendix E.4. This is the first time when 1D orbital in the β channel

starts to fill.
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7.6 Conclusions

VAg
+/0
N (N=3-10) clusters are studied via first-principles calculations. Enhanced

stability of VAg+
5 and VAg+

7 is shown by their large HL gap, ∆2(N) and ∆EAg

values. By examining their MO plot, we demonstrate different origin of the enhanced

stability of VAg+
5 and VAg+

7 . Due to non-compact structure of VAg+
5 , its enhanced

stability cannot be explained in terms of shell models. We showed that the energy

gap between the occupied and unoccupied 3d orbitals of a bare V atom leads to its

greater stability. A closed shell configuration of 1S21P6 is observed VAg+
7 . However,

a closed shell configuration does not account the enhanced stability of VAg+
7 . We

have shown that an effective exchange splitting in 1D orbitals plays a very important

role in determining its enhanced stability.
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CHAPTER8
Future prospects

8.1 Introduction

So far, we have studied the singly 3d-TM doped Ca, Sr, and Al clusters, in which

possibilities of new magnetic superatoms are discussed. We have explained their

electronic and magnetic properties in terms of the shell models. We have also shown

the potentials of magnetic superatoms to form CAM’s. Furthermore, incapabilities

of shell models to explain the properties of TM doped Al and V doped Ag clusters

is also shown. In this chapter, we present the possible future works which can be of

great importance to enhance our understanding of these clusters.

8.2 Reactivity with Oxygen

One issue regarding the designing CAM’s based on magnetic superatoms is their

stability against O2. Therefore it would be of great interest to examine the sta-

bility of magnetic superatoms when exposed to O2. It has been shown that large

HL gap, hardness as well as large spin excitation energy of a cluster also plays a

decisive role in its reactivity towards oxygen. For example, pure and hydrogenated

Al−n having unpaired spins or small singlet-triplet ∆Espin are readily etched away

by oxygen, while those having large spin excitation energies are not reactive [168].

Clusters having unpaired spins or small spin excitation energy can easily transfer

electrons to the anti-bonding LUMO in the β channel of the O2 molecule facilitating

its dissociation. Clusters that were etched away easily by oxygen were also found to

dissociate O2 without a barrier in DFT calculations. In order to check the stability

of magnetic superatoms (FeCa8, CrSr9, and MnSr10), one can optimize their ground
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state structures with the O2 approaching the cluster from different orientations and

directions. Since magnetic superatoms have unpaired spins, it will also be interesting

to see if they also dissociate O2 without a barrier.

While studying the reactivity of these superatoms against O2, one also has to

take care of ‘delocalization error’ [173]. Delocalization error occurs because of non

cancellation of self-interaction via exchange part of functional. It has been shown

that stability of charge-transfer complex is overestimated due to delocalization error.

If charge-transfer complex occurs as a transition state (TS) during a reaction be-

tween the reactants, then it leads to an underestimation of the reaction barrier [173].

However, delocalization error was shown to be minimize when one use the hybrid

functionals such as hybrid B3LYP and BhandHLYP which incorporate 22% and 50%

of HF exchange functional respectively. Therefore one can also study the effect of

hybrid B3LYP and BhandHLYP on the reactivity of magnetic superatoms.

8.3 Magnetic superatoms at finite temperature

We have shown that FeCa8, CrSr9 and MnSr10 are the clusters with greater stability

and have finite magnetic moments. Also these clusters demonstrate magnetic super-

atom characteristics. However, these observations obtained within conventional DFT

are valid at zero temperature. Therefore it would be of immense interest to explore

the effect of finite temperature on structural, electronic and magnetic properties

of these magnetic superatoms. This can be done via ab-initio molecular dynamics

simulations.

8.4 Magnetic superatoms on substrates

We have studied assemblies, i.e., dimers of magnetic superatoms in the gas phase.

However, it is desirable to have CAM’s either supported on a substrate or in a zeolite

cage for practical purpose. Therefore one can study electronic and magnetic prop-

erties of magnetic superatoms supported on a substrate. While making the CAM’s,

the most challenging task is to find the right substrate because of the following ques-

tions:

(i): While depositing magnetic superatoms on substrate, superatom-substrate inter-

actions should be such that superatoms retain their structural identity.

(ii): Superatom-substrate interactions should be such that magnetic moments of iso-

lated superatoms remain intact while they keep their structural identities.
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(iii): When two or more superatoms deposited on the substrate, intra-cluster inter-

action should be such that each superatom units maintain their structural identities

and magnetic moments.

8.5 Applicability of shell models

In chapter 6, one of the important conclusions is that electronic and magnetic prop-

erties of TM doped aluminium clusters cannot be explained in terms of shell models.

This observation is particularly interesting because understanding of electronic and

magnetic properties of TM doped Al clusters in many studies has been attempted

through shell models. For example, Harms et al [117] studied the reduced reactiv-

ity of NbAl−4 and VAl−6 clusters against oxygen. They have argued that closure of

electronic shells within shell models can account for their reduced reactivity.

Therefore it is natural to ask whether non-reactive behaviour of NbAl−4 is really

due to closure of an electronic shell with 20 electrons, and why VAl−6 having 24

electrons is non-reactive. Is there any inherent role of crystal field effect which may

provide a sub-shell closing as in FeCa8, CrSr9 and MnSr10? Most importantly, we

have explained the unusual stability of CoAl3 and FeAl4 in terms of their aromatic

behaviour. Hence one can ask whether the enhanced stability of NbAl−4 and VAl−6

can be understood via aromaticity. To answer these interesting questions, one can

do first-principles calculations to study the structural and electronic properties of

these clusters.
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APPENDIXA
TM doped calcium clusters

2ScCa8(GS) 4ScCa8(0.73eV) 4ScCa8(0.86eV) 4ScCa8(1.38eV) 2ScCa8(1.53eV)

1TiCa8(GS) 3TiCa8(0.23eV) 5TiCa8(0.67eV) 5TiCa8(1.02eV) 3TiCa8(1.55eV)

4VCa8(GS) 2VCa8(0.02eV) 6VCa8(0.19eV) 4VCa8(0.75eV) 4VCa8(1.21eV)

5CrCa8(GS) 3CrCa8(0.11eV) 5CrCa8(0.47eV) 3CrCa8(0.68eV) 5CrCa8(0.90eV)

6MnCa8(GS) 4MnCa8(0.07eV) 4MnCa8(0.40eV)4MnCa8(0.74eV) 6MnCa8(1.46eV)

5FeCa8(GS) 3FeCa8(0.25eV) 5FeCa8(0.64eV) 5FeCa8(0.75eV) 3FeCa8(1.34eV)

4CoCa8(GS) 2CoCa8(0.11eV) 2CoCa8(0.36eV) 4CoCa8(0.42eV) 4CoCa8(0.47eV)

1NiCa8(GS) 3NiCa8(0.03eV) 1NiCa8(0.14eV) 1NiCa8(0.16eV) 1NiCa8(0.25eV)

Figure A.1: Higher energy isomers of TMCa8 clusters.
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3FeCa5(GS) 5FeCa5(0.05eV) 5FeCa5(0.08eV) 5FeCa5(0.42eV) 3FeCa5(0.54eV)

3FeCa6(GS) 5FeCa6(0.06eV) 3FeCa6(0.08eV) 5FeCa6(0.083eV) 5FeCa6(0.29eV)

3FeCa7(GS) 5FeCa7(0.05eV) 5FeCa7(0.05eV) 3FeCa7(0.20eV) 5FeCa7(0.34eV)

5FeCa9(GS) 3FeCa9(0.12eV) 5FeCa9(0.32eV) 3FeCa9(0.36eV) 3FeCa9(1.37eV)

3FeCa10(GS) 5FeCa10(0.01eV) 3FeCa10(0.11eV) 5FeCa10(0.23eV) 3FeCa10(0.39eV)

5FeCa11(GS) 3FeCa11(0.02eV) 3FeCa11(0.41eV) 5FeCa11(0.50eV) 5FeCa11(1.09eV)

5FeCa12(GS) 3FeCa12(0.01eV) 5FeCa12(0.11eV) 3FeCa12(0.17eV) 5FeCa12(0.45)

Figure A.2: Higher energy isomers of FeCaN (N=5-12) clusters.
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Figure A.3: MO energy level diagrams and isosurface plot of (a) 5FeCa11 and (b)
5FeCa12.
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APPENDIXB
TM doped strontium clusters

2ScSr8(GS) 4ScSr8(0.72eV) 4ScSr8(0.77eV) 2ScSr8(1.18eV) 2ScSr8(1.53eV)

1TiSr8(GS) 3TiSr8(0.33eV) 5TiSr8(0.91eV) 5TiSr8(1.25eV) 3TiSr8(1.64eV)

2VSr8(GS) 4VSr8(0.17eV) 6VSr8(0.61eV) 6VSr8(0.74eV) 2VSr8(1.36eV)

3CrSr8(GS) 5CrSr8(0.15eV) 3CrSr8(0.45eV) 5CrSr8(0.57eV) 3CrSr8(0.86eV)

4MnSr8(GS) 6MnSr8(0.21eV) 4MnSr8(0.34eV) 6MnSr8(0.70eV) 4MnSr8(1.16eV)

3FeSr8(GS) 5FeSr8(0.02eV) 3FeSr8(0.13eV) 5FeSr8(0.17eV) 3FeSr8(0.18eV)

2CoSr8(GS) 4CoSr8(0.17eV) 2CoSr8(0.46eV) 4CoSr8(0.66eV) 2CoSr8(0.75eV)

3NiSr8(GS) 1NiSr8(0.017eV) 1NiSr8(0.66eV) 3NiSr8(0.70eV) 3NiSr8(0.83eV)

Figure B.1: Higher energy isomers of TMSr8 clusters.
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(a) (b)

Figure B.2: MO energy level diagrams and isosurface plot of (a) 2CoSr8 and (b)
3NiSr8.
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APPENDIXC
Cr and Mn doped strontium clusters

5CrSr4(GS) 5CrSr4(0.23eV) 3CrSr4(0.79eV) 5CrSr4(0.89eV) 5CrSr5(GS)

5CrSr5(0.10eV) 5CrSr5(0.48eV) 3CrSr5(0.88eV) 3CrSr6(GS) 3CrSr6(0.35eV)

5CrSr6(0.40eV) 3CrSr6(0.47eV) 3CrSr6(1.13eV) 3CrSr7(GS) 3CrSr7(0.30eV)

5CrSr7(0.34eV) 3CrSr7(0.79eV) 3CrSr7(0.93eV) 3CrSr8(GS) 5CrSr8(0.15eV)

3CrSr8(0.45eV) 3CrSr8(0.87eV) 5CrSr9(GS) 3CrSr9(0.11eV) 5CrSr9(0.39eV)

5CrSr9(0.80eV) 5CrSr10(GS) 3CrSr10(0.14eV) 5CrSr10(0.16eV) 3CrSr10(0.22eV)

3CrSr11(GS) 5CrSr11(0.013eV) 3CrSr11(0.17eV) 3CrSr11(0.31eV) 5CrSr12(GS)

3CrSr12(0.012eV) 5CrSr12(0.02eV) 5CrSr12(0.21eV) 3CrSr12(0.25eV)

Figure C.1: Higher energy isomers of CrSrN(N=4-12) clusters.
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Figure C.2: One electron energy levels and atomic orbitals of Cr atom. Arrow
shows the exchange splitting in 3d orbitals of Cr atom.
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Figure C.3: MO energy level diagrams and isosurface plot of (a) 3CrSr6 (b) 3CrSr7.
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Figure C.4: MO energy level diagrams and isosurface plot of 5CrSr10.
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4MnSr4(GS) 4MnSr4(0.44eV) 2MnSr4(0.61eV) 2MnSr4(1.03eV) 4MnSr5(GS)

4MnSr5(GS) 6MnSr5(0.14eV) 2MnSr5(0.15eV) 4MnSr5(0.90eV) 2MnSr6(GS)

4MnSr6(0.22eV) 6MnSr6(0.49eV) 2MnSr6(0.78eV) 2MnSr6(0.93eV) 2MnSr7(GS)

2MnSr7(0.16eV) 4MnSr7(0.18eV) 2MnSr7(1.22eV) 4MnSr8(GS) 4MnSr8(0.003eV)

6MnSr8(0.22eV) 4MnSr8(0.34eV) 6MnSr9(GS) 4MnSr9(0.062eV) 6MnSr9(0.47eV)

6MnSr9(0.93eV) 6MnSr9(1.00eV) 6MnSr10(GS) 4MnSr10(0.17eV) 6MnSr10(0.27eV)

6MnSr10(0.43eV) 4MnSr11(GS) 4MnSr11(0.04eV) 6MnSr11(0.08eV) 4MnSr11(0.26eV)

4MnSr11(0.29eV) 4MnSr12(GS) 6MnSr12(0.16eV) 2MnSr12(0.17eV) 4MnSr12(0.20eV)

4MnSr12(0.45eV)

Figure C.5: Higher energy isomers of MnSrN(N=4-12) clusters.
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APPENDIXD
TM doped aluminium clusters
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Figure D.1: Higher energy isomers of CrAlN (N=2=12) clusters.
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Figure D.2: Higher energy isomers of MnAlN (N=2=12) clusters.
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Figure D.3: Higher energy isomers of FeAlN (N=2=12) clusters.

4NiAl2
3NiAl3

4NiAl4
5NiAl5

4NiAl6

Figure D.4: Higher energy isomers of Co-, and Ni- doped AlN clusters.
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Figure D.5: (a) HL gap, ∆Espin and (b) ∆2(N) for NiAlN clusters.

Cluster HL Gap ∆Espin η ∆2(N)
5NiAl 0.49 1.22 3.31
4NiAl2 1.16 0.71 2.94 0.12
3NiAl3 0.57 1.33 2.38 0.69
4NiAl4 0.57 0.41 2.26 -0.15
5NiAl5 0.33 0.20 2.20 -0.86
4NiAl6 0.50 0.04 2.07

Table D.1: HL gap, Adiabatic spin excitation (∆Espin), Hardness (η) and ∆2(N) of
NiAlN clusters.
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APPENDIXE
V doped silver clusters

4VAg+
3 (GS) 4VAg+

3 (0.03eV) 6VAg+
3 (0.38eV) 2VAg+

3 (0.86eV) 5VAg+
5 (GS)

5VAg+
4 (0.05eV) 5VAg+

4 (0.16eV) 3VAg+
4 (0.24eV) 4VAg+

5 (GS) 4VAg+
5 (0.03eV)

4VAg+
5 (0.22eV) 6VAg+

5 (0.54eV) 5VAg+
6 (GS) 5VAg+

6 (0.07eV) 3VAg+
6 (0.46eV)

4VAg+
7 (GS) 4VAg+

7 (0.01eV) 6VAg+
7 (0.49eV) 4VAg+

7 (0.54eV) 5VAg+
8 (GS)

5VAg+
8 (0.13eV) 3VAg+

8 (0.16eV) 3VAg+
8 (0.63eV) 4VAg+

9 (GS) 4VAg+
9 (0.17eV)

6VAg+
9 (0.42eV) 6VAg+

9 (0.72eV) 3VAg+
10(GS) 5VAg+

10(0.09eV) 3VAg+
10(0.17eV)

3VAg+
10(0.43eV)

Figure E.1: Higher energy isomers of VAg+
N(N=3-10) clusters.
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3VAg3(GS) 5VAg3(0.16eV) 3VAg3(0.35eV) 5VAg3(0.60eV) 4VAg4(GS)

4VAg4(0.29eV) 6VAg4(0.58eV) 6VAg4(0.62eV) 5VAg5(GS) 3VAg5(0.17eV)

5VAg5(0.18eV) 3VAg5(0.40eV) 4VAg6(GS) 4VAg6(0.06eV) 4VAg6(0.22eV)

5VAg7(GS) 5VAg7(0.07eV) 5VAg7(0.08eV) 5VAg7(0.49eV) 4VAg8(GS)

4VAg8(0.35eV) 6VAg8(0.49eV) 6VAg8(0.77eV) 3VAg9(GS) 3VAg9(0.11eV)

3VAg9(0.41eV) 5VAg9(0.51eV) 5VAg9(0.91eV) 2VAg10(GS) 2VAg10(0.10eV)

2VAg+
10(0.18eV) 4VAg+

10(0.22eV) 4VAg+
10(0.27eV)

Figure E.2: Higher energy isomers of VAgN(N=3-10) clusters.
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Figure E.3: One electron energy level and atomic orbital plots of V.
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Figure E.4: MO energy level diagrams and isosurface plot of 4VAg+
9 .
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