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SYNOPSIS

The Mott metal-insulator transition (MIT), driven by electron-electron interac-

tion, is a fundamental problem in correlated electron physics. It requires a framework

that can describe the dual character of the electron - simultaneously itinerant and

localized. The two limits of fully itinerant and strongly localized behaviour are well

understood but the transition region poses a problem due to the absence of any

obvious small parameter controlling the theory.

Geometric frustration, in the magnetic context, arises when the arrangement

of spins on a lattice cannot minimise all interactions simultaneously. Geometrically

frustrated magnets are di↵erent from both unfrustrated and disordered magnets (spin

glasses). They typically have a huge number of degenerate minima in their classical

energy landscape, leading to a macroscopic ground state degeneracy. Sometimes

thermal e↵ects lead to ordering via an entropic ‘order-by-disorder’ e↵ect. In some

frustrated geometries, with triangular motifs, the ratio, ↵, of the Curie constant to

Tc is large but finite. There are lattices, however, the pyrochlore being a notable

example, where no ordering is observed at any temperature, and ↵ ! 1. These

define the strong frustration limit.

How are the two phenomena above related? Correlated systems involve metals

with itinerant electrons, while traditional frustrated systems are insulating magnets

with localised electrons. These two ends are connected by varying interaction strength

in a Hubbard like model, and via pressure variation in real materials. The following

is a sampling of the new physics that arises as the frustrated magnet in the deep

Mott regime is driven towards the insulator-metal transition (IMT):

• The ‘virtual hopping’ of the electrons mediate long range and multispin cou-

pling, and

• The magnitude of the local moments weaken as the system is pushed towards

the IMT.

The first e↵ect can lift the degeneracy of the short range model and promote an

ordered state while the second tends to destroy the magnetic state altogether. The

outcome of this interplay is lattice specific, of relevance to several real life materials,

and requires tools beyond those usually applied in frustrated magnetism.
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We address the interplay of correlation e↵ects and geometric frustration in py-

rochlore based lattices in this thesis. The thesis consists of six chapters as detailed

below.

Chapter 1: Introduction - We provide a quick review of the experimental

observation of Mott transition in real life pyrochlores, the rare earth molybdates and

iridates, and a summary of the theory situation. In the pyrochlore oxides R2Mo2O7

and R2Ir2O7, where R is a rare earth or Y, the Mo and Ir ions live on a pyrochlore

lattice while the R inhabit an interpenetrating pyrochlore structure. These materials

allow variation of the correlation strength via application of pressure, or change

of ionic radius, or an applied magnetic field, driving an insulator-metal transition

(IMT).

The molybdates exhibit an IMT with increasing rare earth ionic radius rA [1–3].

Materials with larger rA are ferromagnetic (FM) metals, those with small rA are

spin glass (SG) insulators, and there is a SG metal phase near the MIT [4]. Pressure

and magnetic field can drive an IMT in materials like Gd2Mo2O7 which is weakly

insulating [5]. An anomalous Hall e↵ect (AHE) has been observed [6,7] in Nd2Mo2O7

and is ascribed to non vanishing spin chirality.

The iridates also show an IMT with increasing rA, but in this case the transition is

accompanied by a magnetic transition from a paramagnetic to an antiferromagnetic

‘all-in-all-out’ (AIAO) ordering [8,9]. While the magnetic character di↵ers distinctly

from molybdates, iridates also show a pressure driven insulator-metal transitions, via

unusally resistive ground states [10, 11], and spin chirality driven AHE in materials

like Pr2Ir2O7 [12, 13].

In contrast to 3d electron based systems which are dominated by the Hubbard U ,

the molybdates involve 4d electrons - where the Hund’s coupling JH is also important,

while the iridates involve 5d electrons - with spin-orbit coupling playing a vital role.

This chapter discusses the phenomenology of these materials and the basic theory

results in the field.

Chapter 2: Theoretical tools - We study the single band Hubbard model,

with nearest neighbour hopping, on the pyrochlore lattice:

H =

X

ij,�

(tij � µ�ij)c
†
i�cj� + U

X

i

ni"ni# (1)

where tij = �t for nearest neighbour hopping on the pyrochlore lattice and U > 0

is the Hubbard repulsion. We will set t = 1. The chemical potential µ is varied to
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maintain the density at n = 1 as the interaction and temperature T are varied.

We use a Hubbard-Stratonovich (HS) transformation that introduces a vector

field mi(⌧) and a scalar field �i(⌧) at each site to decouple the interaction [14]. This

decomposition retains the rotation invariance of the Hubbard model, and hence the

correct low energy excitations, and reproduces unrestricted Hartree-Fock theory at

T = 0.

We treat the mi and �i as classical fields, i.e, neglect their time dependence, but

completely retain the thermal fluctuations in mi. �i is treated at the saddle point

level, i.e, �i ! h�ii = (U/2)hhniii = U/2 at half-filling, since charge fluctuations

would be penalised at temperatures T ⌧ U . Retaining the spatial fluctuations of mi

allows us to estimate Tc scales, and access the crucial thermal e↵ects on transport. In

the literature the overall scheme is known as the ‘static path approximation’ (SPA)

to the functional integral for the partition function. Within this approach the half-

filled Hubbard problem is mapped on to electrons coupled to the field mi, which

itself follows a distribution function P{mi}.

Heff =

X

ij,�

(tij � µ�ij)c
†
i�cj� �

U

2

X

i

mi.~�i +
U

4

X

i

m2
i

P{mi} / Trcc†e
��H

eff

(2)

where the chemical potential µ is replaced by µ̃ = µ � U
2 . Heff can be seen as

comprising of an electronic Hamiltonian, Hel (the first three terms) and the classical

‘sti↵ness’ Hcl =
U
4

P
i m

2
i . In an exact calculation, where the dynamics of mi and

�i are retained, Heff would be replaced by an e↵ective action while P would be

replaced by a fermion determinant in the {m,�} background. Within SPA Heff and

P{mi} define a coupled fermion-local moment problem.

The method of choice in these situations is a combination of Monte Carlo (MC)

for updating the mi with exact diagonalisation (ED) of the fermion Hamiltonian for

computing the Metropolis update cost. To access large sizes within limited time,

we use a cluster algorithm for estimating the update cost [15]. The energy cost of

updating the variable mi is computed by diagonalizing a cluster (of size Nc, say)

constructed around the site Ri.

Chapter 3: Mott transition on the pyrochlore lattice - The pyrochlore

lattice involves corner sharing tetrahedra and the resulting geometric frustration is

believed to suppress any antiferromagnetic order for Mott insulators on this struc-

ture [16–18]. There are nevertheless short range correlations which could be vital
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near the Mott-Hubbard insulator-metal transition. We use a static auxiliary field

based Monte Carlo to study this problem in real space on reasonably large lattices.

The method reduces to unrestricted Hartree-Fock at zero temperature but captures

the key magnetic fluctuations at finite temperature. Our results reveal that increas-

ing interaction drives the non magnetic (semi) metal to a ‘spin disordered’ metal

with small local moments, at some critical coupling, and then, through a small

pseudogap window, to a large moment, gapped, Mott insulating phase at a larger

coupling. The spin disordered metal has a finite residual resistivity which grows with

interaction strength, diverging at the upper coupling. We present the resistivity, op-

tical conductivity, and density of states across the metal-insulator transition and for

varying temperature. These results set the stage for the more complex cases of Mott

transition in the pyrochlore iridates and molybdates.

Chapter 4: Mott transition on the checkerboard lattice - The checker-

board lattice, with alternating ‘crossed’ plaquettes, serves as the two dimensional

analog of the pyrochlore lattice. The corner sharing plaquette structure leads to

a hugely degenerate ground state, and no magnetic order, for classical spins with

short range antiferromagnetic interaction. For the half-filled Hubbard model on this

structure, however, we find that the Mott insulating phase involves virtual electronic

processes that generate longer range and multispin couplings. These couplings lift

the degeneracy, selecting a ‘flux like’ state in the Mott insulator. Increasing temper-

ature leads, strangely, to a sharp crossover from this state to a ‘120 degree’ correlated

state and then a paramagnet. Decrease in the Hubbard repulsion drives the system

towards an insulator-metal transition - the moments reduce, and a spin disordered

state wins over the flux state. Near the insulator-metal transition the electron system

displays a pseudogap extending over a large temperature window.

Chapter 5: Mott physics in the molybdates - The rare earth based py-

rochlore molybdates involve orbitally degenerate electrons Hund’s coupled to local

moments. The large Hund’s coupling promotes ferromagnetism, the superexchange

between the local moments prefers antiferromagnetism, and Hubbard repulsion tries

to open a Mott gap. The phase competition is tuned by the rare earth ionic radius,

decreasing which leads to change from a ferromagnetic metal to a spin disordered

highly resistive ground state, and ultimately an ‘Anderson-Mott’ insulator. We at-

tempt a quantitative theory of the molybdates by studying their minimal model [19]

on a pyrochlore geometry, using a static auxiliary field based Monte Carlo. We es-

tablish a thermal phase diagram that closely corresponds to the experiments, predict
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the hitherto unexplored orbital correlations, quantify and explain the origin of the

anomalous resistivity, and present dynamical properties across the metal-insulator

transition.

Chapter 6: Mott physics in the iridates - The iridate (R2Ir2O7) structure

consists of two interpenetrating pyrochlore lattices, one formed by Ir cations and

the other by R. We ignore the orbitals on R and oxygen, focusing instead on the

orbitals on Ir. The Ir atom has octahedral oxygen coordination, resulting a crystal

field environment which splits the tenfold degenerate (considering both orbital and

spin degeneracy) Ir 5d states into fourfold degenerate eg and sixfold degenerate t2g

manifolds. Strong spin-orbit coupling (SOC) of Ir splits the t2g levels further into an

e↵ective total angular momentum Jeff = 1/2 doublet and Jeff = 3/2 quartet levels.

The Ir cation is nominally tetravalent (Ir

4+
) and has five electrons on average. The

deeper Jeff = 3/2 quartet levels get one electron each, and the single electron in

the Jeff = 1/2 doublet levels is the ‘itinerant’ degree of freedom [20]. The eg states

remains unoccupied. Thus the iridates have one itinerant electron in two degenerate

Jeff = 1/2 levels, making it an e↵ectively half-filled Jeff = 1/2 single band system.

Hubbard repulsion on this narrow bands opens a Mott gap, making it a Jeff = 1/2

Mott insulator.

To study the Mott transition in the iridates, we use the one band Hubbard model

with a spin-orbit coupling as the minimal model. This model is studied via a Monte-

Carlo sampling. We discover that

• the low temperature state is a paramagnetic metal at weak interaction, but a

Mott insulator with all-in-all-out order at intermediate and strong interaction.

• there is a narrow pseudogap window near the insulator-metal boundary.

We make qualitative comparisons of our transport results with that of the iridates.

We have established the overall phase diagram in terms of correlation strength, SOC

and temperature. We delineate the metal, semi-metal, and insulator phases, their

topological character, the nature of magnetic order and the finite temperature charge

dynamics.
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CHAPTER1
INTRODUCTION

In any solid the spin, charge, and the lattice degrees of freedom are all coupled

together. However there are situations where the low energy physics is primarily

governed by only one of the degrees of freedom. For example in a magnetic insulator,

where the charge gap is su�ciently large, the low energy physics is primarily governed

by the excitations of magnetic nature. Such systems can safely be investigated using

an e↵ective ‘spin-only’ description. In these problems the lattice geometry plays an

important role, with several interesting e↵ects arising purely due to the geometry.

1.1 Geometric frustration

1.1.1 General overview

The study of geometrically frustrated antiferromagnets is mainly concerned with

what happens when lattice geometry inhibits the formation of an ordered low-

temperature magnetic configuration [21–24]. These systems present greater experi-

mental and theoretical challenges than those posed by simple antiferromagnets. The

origin of the complex behaviour in such a magnet can simply be illustrated by con-

sidering just three antiferromagnetically coupled Ising spins on a triangular structure

(Fig.1.1). Once two of the spins on the triangle are aligned antiparallel to satisfy

their antiferromagnetic interaction, the third one can no longer point in a direction

opposite to both of them. On the triangle not all interactions can be minimised

simultaneously.

Now consider lattices with this kind of ‘frustrating’ motifs. The existence of an

unique ground state for a lattice, with all pairwise antiferromagnetic interactions

satisfied, is possible only when the lattice sites can be divided into two sub-lattices.
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Figure 1.1: Demonstration of possible antiparallel spin arrangements for three

spins on an elementary triangle. Each configuration has two bonds with antiparallel

arrangement satisfied (denoted by a grey line) and one bond unsatisfied (denoted by

a blue line).

This is the case of a bipartite lattice resulting in the antiferromagnetic Neel state. It

can occur, for example, on a square lattice (Fig.1.2(a)), and a simple cubic lattice.

However, for the triangular lattice (Fig.1.2(b)), such a division of the lattice into two

sub-lattices, does not work. This lattice is non-bipartite. Other lattices belonging to

this class are the face centered cubic (FCC) lattice (Fig.1.2(c)) and the pyrochlore

lattice (Fig.1.2(d)). On such a lattice it is geometrically impossible to satisfy all

the pairwise interactions simultaneously, i.e., to have a Neel state. These are frus-

trated antiferromagnets. Based on this nomenclature, antiferromagnets with square

or simple cubic lattice geometries are referred as unfrustrated antiferromagnets. One

reason for studying frustrated antiferromagnets is that they escape Neel order, and

the resulting correlated low temperature state would have novel features.

Though evading Neel order is a characteristic of geometrically frustrated antifer-

romagnets, there exists situations where Neel order can be avoided even on a bipartite

lattice due to the presence of competing interactions which make contributions to

the energy that cannot be minimised simultaneously. As an example, consider the

(a) (b)

Figure 1.2: (a) The square lattice is bipartite as we can divide it into two sub-

lattices, say blue and green, where neighbours of blue are only green (and vice

versa). (b) In the triangular lattice such division is not possible. The same is true

for the FCC and the pyrochlore lattices ((c) and (d)).
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(a)

J1

J2

(b)

J1

J2

Figure 1.3: The antiferromagnetic J1 � J2 model on a square lattice geometry,

showing ground state spin configurations for : (a) J1 > 2J2, (b) J1 < 2J2.

antiferromagnetic J1 � J2 model (both J1 > 0 and J2 > 0) on the square lattice [25]

(Fig. 1.3). The classical ground state of this model depends on the ratio of near-

est neighbour and further neighbour interaction, J1/J2. For J1 > 2J2, all nearest

neighbour spins are antiparallel. This enforces ferromagnetic arrangements of sec-

ond neighbours and results in the frustration of the J2 interaction. In the regime,

J1 < 2J2, second neighbours are antiferromagnetically aligned. This occurs at the

expense of frustration of half of the J1 interactions. At J1 = 2J2, these classical

states are degenerate. While this model provides an attractive point for theoreti-

cal work, such models are di�cult to realise experimentally (due to the fine-tuning

of interaction required). From this perspective, the existence of frustrated magnets

which destabilise Neel order, with only nearest neighbour interactions and solely due

to the geometry of the underlying lattice is very important.

1.1.2 Experimental relevance

The spinel AB2O4 with the A site occupied by a nonmagnetic ion (such as Zn or

Cd or Hg), and the B site occupied by Cr

3+
ions with spin S = 3/2 on a pyrochlore

lattice (see figure 1.4) is a prototypical frustrated system. In table 1.1, we have listed

out some of the characteristic quantities of the frustrated spinel materials. The pres-

ence of strong frustration is clear from the temperature dependence of the magnetic

susceptibility �(T ), and magnetic specific heat Cm(T ) [26, 27]. There is no signal

of any magnetic transition for T ⇠ |⇥CW |, where the Curie-Weiss constant, ⇥CW ,

characterises the sign (negative for an antiferromagnet) and strength of interactions.

ZnCr2O4 which has a Curie-Weiss scale of 390 K, does not show any evidence of

magnetic ordering until it’s cooled down to 12.5 K. Similarly CdCr2O4 and HgCr2O4
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Compound S ⇥CW (K) TN(K) f References

ZnCr2O4 3/2 -390.0 12.5 31.2 [26–28]

CdCr2O4 3/2 -70.0 7.8 9.0 [26, 29]

HgCr2O4 3/2 -32.0 5.8 5.5 [26, 30]

Table 1.1: Some characteristic quantities of the frustrated spinel materials. S
denotes the spin quantum number, TN is the Neel ordering temperature, ⇥CW is the

Curie-Weiss scale (negative for antiferromagnetism) extracted from susceptibility

measurements, and f denotes the degree of frustration, computed as f =

|⇥
CW

|
T
N

.

show no sign of magnetic ordering until T ⇠ 10 K, despite the Curie-Weiss scales

being 70K and 32K respectively. The phase in the regime TN < T < |⇥CW | is a

spin-liquid. In this regime, a large magnetic entropy Sm(T ) is associated with the

system, indicating the presence of high density of low energy spin excitations. Inelas-

tic neutron scattering measurements of ZnCr2O4 at low energy transfer show a strong

signal above TN = 12.5 K (see figure 1.4.(e)) over a broad wave number window [28].

This temperature window corresponds to the cooperative paramagnetic regime. For

T < TN , the low energy spectral weight concentrates into a constant energy mode.

The frustrated pyrochlore lattice structure of the Cr sublattice is mainly attributed

to these behaviours in the spinels.

Another spinel compound, Na4Ir3O8, has a hyper-kagome lattice structure [31].

The B sites of this spinel are occupied by S = 1/2 Ir

4+
and nonmagnetic Na

+

ions, such that each tetrahedron has three Ir

4+
ions and one Na

+
ion. The Ir

4+

ions form corner-sharing triangles, with little twisting, and the structure is known

as “hyper-kagome” lattice. Magnetic susceptibility measurements have estimated

⇥CW ⇠ �650K. Despite this large Curie-Weiss scale, no signature of magnetic order

has so far been observed in the magnetic susceptibility or the specific heat, or neutron

di↵raction studies down to 2K [31]. Thus, geometrical frustration seems to be very

strong in this system. It is believed that the ground state of this three-dimensional

S = 1/2 hyper-kagome system is a quantum spin liquid [31].

The following general inferences can be made based on the behaviour of the above

mentioned frustrated magnets.

(i) The characteristic signature of a frustrated magnet is the dependence of its

magnetic susceptibility on temperature T . At high temperature, the inverse suscep-

tibility has the linear form ��1 / T � ⇥CW . In unfrustrated systems, a magnetic

order, signalled by a cusp in �, appears at the Neel temperature TN , which is a
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Figure 1.4: (Taken from [26–28]) (a) The spinel structure, with the two basic

structural units of AO4 tetrahedra and BO6 octahedra. (b) The B sublattice of the

spinels, forming a pyrochlore lattice. (c) Behaviour of inverse magnetic susceptibility

1/� with temperature. (d) Variation of magnetic specific heat Cm(T ) and magnetic

entropy Sm(T ) with temperature for ZnCr2O4. (e) Contour plot of magnetic neu-

tron scattering intensity in the plane of energy transfer ~! and wave number Q for

ZnCr2O4 for indicated temperatures.

fraction of the Curie-Weiss scale. In geometrically frustrated systems nothing sharp

is observed at the temperature scale T ⇠ |⇥CW |; instead, the paramagnetic phase

extends to temperatures T ⌧ ⇥CW and in some cases to zero temperature. At a

lower temperature, Tc, spin freezing or a frustration-relieving structural transition

might appear. This behaviour is illustrated schematically in figure 1.6. A simple

measure of the degree of frustration was introduced by Ramirez [21], as the ratio

f ⌘ |⇥
CW

|
T
c

. The state of the system in the temperature range Tc < T ⌧ ⇥CW ,

where spins are highly correlated and strongly fluctuating, was termed by Villain, a

cooperative paramagnet [32]. This is also identified as a classical spin liquid state.

(ii) Another important feature of frustrated magnets is their finite residual en-

tropy for T ⌧ |⇥CW |. At very high temperature, the entropy per spin of a S = 1/2

system is S = kBln2. With decreasing temperature, correlations develop between
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Figure 1.5: (Taken from [31]) (a) Crystal structure of Na4Ir3O8 showing the NaO6

and IrO6 octahedra. (b) Two types of Ir3Na sublattice with di↵erent chirality.

The Ir ions form a hyper-kagome lattice. (c) Inverse magnetic susceptibility 1/�,
magnetic specific heat Cm(T ), and magnetic entropy Sm(T ) for the hyper-kagome

system Na4Ir3O8.

the spins. An unfrustrated system will order below a critical temperature, having

zero entropy. However, a frustrated system may not order owing to finite entropy

even for T ⌧ |⇥CW |. This finite residual entropy of the frustrated magnets are

attributed to the existence of large ground state degeneracy.

(iii) Detailed information on the low temperature behaviour of geometrically

frustrated magnets is provided by magnetic neutron scattering. The structure factor

S(Q) shows a broad peak at finite wavevector Q (see Fig. 1.6). This suggests

that the spin correlations are predominantly short-ranged. The width of this peak

indicates a correlation length of the order of the lattice spacing, while the small value

of the elastic scattering cross-section forQ ! 0 shows that correlations suppress long

wavelength fluctuations in magnetisation density. This is in contrast both to that in

unfrustrated antiferromagnets, where Neel order leads to magnetic Bragg peaks, and

to that in systems with short-range ferromagnetic correlations, where the structure

factor is peaked at Q = 0.
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Figure 1.6: Characteristic behaviour of a geometrically frustrated antiferromagnet.

(Left) Sketch of ��1
vs T . (Right) Sketch of S(Q) vs Q.

1.1.3 Theoretical understanding

1.1.3.1 Ground state degeneracy

An essential feature of any highly frustrated system is the existence of extensive

classical ground state degeneracy. This degeneracy suggests that within the ground

state manifold there are local fluctuations which take place independently in di↵erent

parts of a large system. However, the counting of the classical ground state degener-

acy depends on whether we treat the spin variables as discrete variables (e.g. Ising

spins) or continuous variables (e.g. classical Heisenberg spins). Some of the most im-

portant lattices for the study of geometrically frustrated magnets can be constructed

as corner-sharing arrangements of their frustrated units (plaquettes). For such lat-

tices constructed out of corner-sharing arrangements of frustrated plaquettes, with

local magnetic moments at the vertices of each plaquette and exchange interactions

of equal strength J between all moments in each plaquette, the Hamiltonian has the

form

H = J
X

hiji

Si · Sj ⌘ J

2

X

p

|Sp|2 + c (1.1)

where Sp =

P
i2p Si. The ground state has spin configurations such that the total

spin on each plaquette is zero.

Let us count the ground state degeneracy for the pyrochlore lattice. We begin by

examining a single tetrahedral plaquette of four spins, with the Hamiltonian Hp =

J
2 |Sp|2+c̃, where Sp = S1+S2+S3+S4. We see that the ground states are those with

Sp = 0. For the discrete Ising spins, in a single plaquette, out of a total of 2

4
= 16

states, 6 states form the ground state manifold. In a pyrochlore lattice, made up of

Np plaquettes (tetrahedra), we have in total Ns = 2Np spins (each spin is corner-

shared between two tetrahedra) and a total of 2

2N
p

states. The number of ground
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Figure 1.7: A ground state configuration for a frustrated plaquette of four classical

Heisenberg spins

states for the Ising spins on the pyrochlore lattice (assuming that the restrictions to

ground states are independent on each tetrahedron) is estimated as � 2

2N
p⇥(

6
16)

N
p

=

(

3
2)

N
p

= (

3
2)

N
s

/2
, which is an extensive quantity. The residual entropy per spin, S =

1/2 ln(3/2), calculated this way turns out to be very close to the measured entropies

in some of the spin-ice compounds [33]. For the classical Heisenberg spins (continuous

spin degrees of freedom), the ground states on a plaquette have two internal degrees

of freedom � the angles ✓ and � (see Fig. 1.7), in addition to the degeneracies under

global rotations which are expected from the symmetry of Hp.

To understand how this accidental ground state degeneracy extends from a single

plaquette to a periodic lattice the Maxwellian counting argument has been used [34].

This counting principle compares F , the number of degrees of freedom in the system

withK,the number of constraints that must be satisfied in ground states. The central

point is that if all constraints are independent, then the number of ground state

degrees of freedom is given by D = F �K. For a system of Ns classical Heisenberg

spins, F = 2Ns, since two angles are required to specify the orientation of each spin.

In a system with the Hamiltonian consisting of Np plaquettes, K = 3Np, since in

ground states all three components of Sp must be zero for every plaquette p (Under

the assumptions that all constraints can be satisfied simultaneously, and that they

are all linearly independent, we arrive at an estimate for D, the number of ground-

state degrees of freedom: D = F �K. Taking the example of the pyrochlore lattice,

we have Ns = 2Np (though four spins are associated with each tetrahedron, every

spin is shared between two tetrahedra) and hence D = Nc, an extensive quantity.

This suggests that the ensemble of states satisfying the plaquette constraint has

macroscopic entropy. Thus there are local degrees of freedom which can fluctuate

independently without the system leaving its ground state manifold. This also imply

that macroscopic degeneracy may prevent long range order at the temperature scale

set by interaction strength, ⇥CW .

21



Lattices Magnetic entropy Ground state

Triangle S ⇡ 0.34kBN Disordered

Checkerboard S ⇡ 0.216kBN Disordered

Kagome S ⇡ 0.502kBN Disordered

FCC S ⇠ kBN1/3
Disordered

Pyrochlore S ⇡ 0.203kBN Disordered

Table 1.2: Comparison of the ground state magnetic entropy (S) and phases for

Ising spins on di↵erent lattices. N is the system size (number of spins on the lattice).

For any magnetic ordered state, the residual magnetic entropy in the ground state

is zero. However, on frustrated lattices the residual magnetic entropy in the ground

state may not vanish, rather the residual magnetic entropy dictates the ground state

magnetic state in these systems. In table 1.2, we show the residual magnetic entropy

in the ground state for Ising spins on various frustrated lattices.

Real materials with more complicated corner-sharing arrangements of frustrated

plaquettes are also possible. The results of the Maxwellian counting argument do

not depend on the details of the lattice under consideration, but rather on the size of

the corner-sharing plaquettes. The Maxwellian counting argument has two possible

limitations.

• The counting argument rests on an assumption that all ground state constraints

are linearly independent. If this is not the case, we underestimate D. This

occurs in the kagome lattice Heisenberg antiferromagnet. In this case the

Maxwellian counting yieldsD = 0 since, the kagome lattice is built from corner-

sharing triangles, Ns =

3N
p

2 . But by explicit construction, one finds sets of

states with special spin arrangements for which D =

N
s

9 . Such an arrangement

is illustrated in figure 1.8. But for the pyrochlore Heisenberg antiferromagnet,

it is known that corrections to the estimate forD are at most sub-extensive [34].

• There can be frustrated lattices, where no spin configuration satisfy the pla-

quette constraint condition Sp = 0 for all plaquettes p [34].

The phase space of a classical geometrically frustrated Heisenberg antiferromag-

nets is given in figure 1.9. In the (high-dimensional) phase space for the system as a

whole, the ground states form a manifold with a dimension that is much smaller but

nevertheless extensive. At temperatures small compared to the Curie-Weiss constant
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Figure 1.8: Illustration of the ground state degrees of freedom of the Heisenberg

spins on the kagome lattice: spins on the central hexagon may be rotated together

through any angle about the axis defined by the outer spins, without leaving the

ground state.

(kBT ⌧ JS2
), the system is confined to a region of phase space that forms a thin

layer around the ground state manifold. Quantum e↵ects can be neglected provided

JS ⌧ kBT , and a strongly correlated, classical window, JS ⌧ kBT ⌧ JS2
, opens

up for S � 1.

1.1.3.2 Order by disorder

The extensive ground state degeneracy in the frustrated lattices is not a consequence

of the symmetry of the Hamiltonian. So it is expected that the spectrum of fluctu-

ations around each ground state is di↵erent. This accidental extensive degeneracy

has interesting consequences in the presence of thermal or quantum fluctuations.

One possibility is that the ground states with the lowest excitation frequencies are

selected out, because the associated entropy at finite temperature is largest resulting

in the lowest free energy. On the other hand at zero temperature, these excitations

are associated with the lowest zero-point energy. This paradoxical mechanism, by

which fluctuations enhance order instead of suppressing it, is termed ‘order by dis-

order’. Order by disorder in the frustrated magnet can be the result of thermal or

quantum fluctuations about a classical ground state.

E↵ects of thermal fluctuations : To understand the e↵ects of thermal fluctuation

on lifting the ground state degeneracy, first consider a plaquette of four spins. Two

ground states with fluctuations of contrasting types are illustrated in figure 1.10. For

the configuration shown on the left, the total spin of the plaquette has a magnitude

|Sp| that varies with the departure �✓ from the ground state as |Sp| / �✓. Since the

23



Figure 1.9: (Taken from the chapter-1 of [24]) Schematic view of phase space for a

geometrically frustrated magnet.

Figure 1.10: (Taken from the chapter-1 of [24]) Fluctuations away from ground

state configurations for a plaquette of four spins. Left: a conventional fluctuation;

right: a soft mode

excitation energy is proportional to |Sp|2, it has a conventional, quadratic dependence
on �✓. By contrast, for the excitation from a collinear ground state shown on the

right, |Sp| / (�✓)2. This later mode is therefore soft, with an energy proportional

to (�✓)4. The presence of this soft mode prefers almost collinear configurations

at low temperature. Through rigorous analytic calculations its shown that on the

pyrochlore lattice, order by disorder is absent for Heisenberg spins, but present for

XY spins [32].

The case for the lattice can be argued in a similar spirit. In most cases, the

ground states with soft modes (see Fig 1.11) are selected by thermal fluctuations.

One can explore this aspect by studying the system numerically via Monte Carlo

simulations. Such calculations have shown that for the Heisenberg antiferromagnet

on the kagome lattice there is coplanar spin ordering at T ⇠ 10

�3J [35], while on

the pyrochlore lattice there is no order by disorder.
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Figure 1.11: (Taken from the chapter-1 of [24]) Schematic view of phase space. The

full curve represents the ground state manifold. Coordinates x and y are respectively

parallel and perpendicular to it. The bulge region represents the points on the ground

state manifold at which there are soft modes.

E↵ects of quantum fluctuations : Like thermal fluctuations, quantum fluctuations

can also select out a ground state from the extensively degenerate classical ground

state manifold. Using harmonic spin wave theory, the excitations around any point x

on the ground state manifold can be studied. Excitations involving the coordinates y

locally orthogonal to the ground state manifold are conventional modes with non-zero

frequencies !l(x). By contrast, fluctuations involving the coordinates x are, within

a harmonic approximation, zero modes. The zero-point energy of the conventional,

finite-frequency mode provides an e↵ective Hamiltonian for these remaining degrees

of freedom, the classical ground state coordinates. This Hamiltonian takes the form

Heff (x) =
1

2

X

l

~!l(x) (1.2)

The ground state is the set of points x at which Heff (x) is minimised, i.e. the

ground state wave function, for large S, is peaked at the set of points x = xG. In

the Heisenberg antiferromagnet model with large S, quantum fluctuations select out

coplanar spin configurations on the kagome lattice [36] and collinear spin configura-

tions on the pyrochlore lattice [37].

Di↵erence between the e↵ects of thermal and quantum fluctuations : In the limit

T ⌧ J , order by disorder may arise due to thermal fluctuations depending on the

nature of the ground state distribution. But in this limit, order by disorder arises

due to quantum fluctuations for S � 1. This is because, for S � 1, quantum

fluctuations around the minimum of Heff (x) =

1
2

P
l ~!l(x) are arbitrarily small.

Nevertheless, order by disorder may not occur due to quantum fluctuations if S is

su�ciently small (say, for S = 1/2), and one may end up having a spin liquid state.
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Lattices Ising Heisenberg (classical) Heisenberg (S = 1/2)
Triangle Disordered [38] Ordered 120-degree [39] Ordered 120-degree [40]

Checkerboard Disordered [41] Classical spin liquid [18] Valence bond solid [42]

Kagome Disordered [43] Coplanar

p
3⇥p

3 [44] Quantum spin liquid [45]

FCC Disordered [46] Collinear AF [47] Collinear AF [48]

Pyrochlore Disordered [41] Classical spin liquid [18] Quantum spin liquid [49]

Table 1.3: The magnetic ground states for di↵erent classes of spins on several

frustrated lattices.

In table 1.3, we compare the ground state magnetic phases of Ising spins with

those of Heisenberg spins (classical and quantum).

1.2 Correlated electron systems

1.2.1 General overview

The basic classification of solids in terms of their electronic properties is based on

band theory � a theory of the non interacting electrons on a lattice. Band theory

predicts that (i) a completely filled or empty band results in insulating behaviour, (ii)

partially filled bands lead to a metallic behaviour. This holds true mainly because the

Pauli exclusion principle severely limits the phase space for electron collisions [50].

However, it was found that some compounds (e.g., NiO) at half-filling behave as

insulators, contradicting the predictions of the band theory [51]. This requires us to

widen the conditions under which solids exist as metals or insulators.

Electrons in a solid interact with each other while they move from site to site

to gain kinetic energy. In the narrow band solids a tight binding description is

reasonable. This is augmented by the inclusion of short range Coulomb repulsion

between electrons. This electron electron interaction plays crucial role in determining

electronic properties, and producing magnetic moments.

Slater suggested that an insulating state could arise as a result of long-range

antiferromagnetic ordering (due to Fermi surface instability), which leads to a lattice

period doubling (reduction of the brillouin zone), and opening of a gap at the Fermi

level [52]. Later, it was shown by Mott that strong electron-electron interaction could

prevent electron delocalisation (leading to an insulating state) if the bandwidth of

the material falls below a critical value [53]. Thus, by tuning the electron-electron
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22 ELECTRICAL PROPERTIES OF THE (Vi „Cr~)203 SYSTEM 2627

the writers' laboratory must be included in this
grouping. These papers are cited in the Appendix,
along with appropriate corrections.
The experimental work cited below represents

a more thorough study than hitherto available of
the electrical properties of pure and Cr-doped
V,O, . In addition, new information is presented
on the thermoelectric and thermodynamic proper-
ties of this system. This study forms part of a
continuing series of investigations on the proper-
ties of V,O, and its alloys with other sesquioxides.

( Vi-xCrx)a 0
Cooling Curves

Cr~0~ content (mole %)
(I) io
(2)
3) 24} l.79
( 5) l.77
(6) i 5
(7) i2
(8)

II. EXPERIMENTAL
A. Sample preparation

(V] Cl )$03 single crystals with 0 - x - 0.1 were
prepared by first reducing V,O, to V,O, in a H,
atmosphere at 1000'C, then mixing the V20, with
appropriate amounts of Cr,O„and finally arc-
melting these mixtures under gettered argon; de-
tails of the procedure have been specified else-
where. 2 ' The total impurity concentration in
the crystals did not exceed 70 to 100 ppm by
weight. Analyses for Cr content were carried out
by atomic absorption spectroscopy, and the vana-
dium assay, by a wet chemical titration technique.
It was found that the actual Cr content. in the
samples corresponded very closely to the nominal
Cr composition.
The single crystals formed single-phase solid

solutions, as established by x-ray powder diffrac-
tion techniques as well as by optical and electron
microscopic examination. X-ray microanaiysis
has established that the Cr distribution is micro-
scopically homogeneous in the alloys.

B. Physical measurements

The dc resistivity measurements were carried
out as a function of temperature from 100 to 800 K
under gettered helium using the standard four-
probe technique in conjunction with an x-y recor-
der. The direction of current flow parallel to the
hexagonal c axis was reversed periodically to
permit the averaging out of any spurious thermo-
electric signals.
A bridge technique described by Testardi and

McConnell ' ' was used to perform thermoelec-
tric measurements; the experimental details are
provided in a publication by Shin and coworkers. "
Heat-capacity measurements were carried out on
a commercial scanning calorimeter, employing a
heating or cooling rate of one degree per minute.

C. Results

The resistivity characteristics of thirteen
(V, „Cr„),Q, samples on cooling are shown in Fig.
1. More than five runs were carried out on dif-

oO-
O

-2-

I I

3 4 5 6
IOOO/ T (K )

FIG. 1. Resistivity as a function of reciprocal temper-
ature for (p~ „Cr„)~03during a cooling cycle.

ferent specimens for each of the nominal com-
positions shown. Resistivity measurements for
heating cycles are not displayed; they are largely
concordant with cooling curves, except for large
hysteresis effects at the transitions which are
described below.
Perusal of Fig. 1 shows that three regimes may

be distinguished: (1) The composition range 0~ x
& 0.005: Here the electrical properties of the
system closely mimic those of pure V20, . Below
T =160 K the material is an antiferromagnetic in-
sulator (AFI); between 160 and 350 K the material
is a high-resistivity metal (M); finally, an in-
crease by a factor of three to five occurs in the
resistivity with rising temperature between 350
and 600 K, after which the resistivity is nearly
constant. (2) The composition range 0.005 &x
& 0.0178: Below 160-184 K, depending on x, one
encounters the AFI phd, se; at intermediate temper-
atures, the alloys display metallic characteristics
(M) with extraordinarily high resistivities; above
200-380 K, depending on x, the system is an in-
sulator (I) which once more reverts to a quasi-
metallic regime (~') above 600 K. This class of
materials thus displays two relatively sharp and
one gradual transition with rising temperature.
(3) The composition range 0.0178&x&0.1: These

Figure 1.12: (Taken from [64,65]) (Left) Phase diagram of V2O3 showing the Mott

transition as a function of alloying with Cr and Ti. (Right) Variation of resistivity

of (V1�xCrx)2O3 with inverse temperature for Cr doping.

interaction a half-filled band metallic system can be turned into a Mott-insulator.

This scenario is known as the Mott transition.

Detailed theoretical understanding of the Mott transition can be achieved by

using the celebrated Hubbard model. The Hubbard model [54–57] describes electron

delocalisation in the presence of local repulsion. Originally introduced to address

itinerant ferromagnetism [55] in transition metals, its usefulness now extends to

describing metal-insulator transitions, antiferromagnetic order, and possibly d-wave

superconductivity. In several papers [58–62] Hubbard had worked out various limits

of this model, giving an approximate description of the Mott transition. We will

discuss the theory approaches in a later section.

1.2.2 Experimental relevance

In strongly correlated electron systems the strength of electron-electron interactions

is comparable to or larger than the kinetic energy. The main motivations for the

study of these systems arise from experiments on transition metal oxides. These

show a wide variety of physical phenomena ranging from the Mott metal-insulator

transition, high temperature superconductivity in the doped cuprates, itinerant fer-

romagnetism, and the ‘colossal’ magnetoresistance in the manganites.

Vanadium sesquioxide (V2O3) is considered the prototype material for illustrat-

ing the Mott transition [63,64]. Doping Cr or Ti for V only changes the one-electron

bandwidth via a slight modification of the lattice. This is analogous to applying
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Figure 1.13: (Taken from [69] and [70]) (Left) Phase diagram of the electron and

hole doped cuprates as a function of carrier concentration showing superconducting

(SC), antiferromagnetic (AF), pseudogap, and normal metal regions. doping = 0

corresponds to the half-filled Mott insulating phase. This phase diagram shows the

accessible regions for the di↵erent compounds of the cuprates family. (Right) Tem-

perature dependence of the in-plane resistivity, ⇢ab, of the hole doped La2�xSrxCuO4

for doping concentrations 0.0 < x  0.15 (for single and poly crystals samples).

physical pressure and depends only on the size of the dopant ion. As the size of Ti

3+

is larger than V

3+
, alloying Ti for V in V2O3 can be thought of as applying a posi-

tive chemical pressure. The size of Cr

3+
is smaller than V

3+
. Alloying Cr for V in

V2O3 is like applying a negative chemical pressure. The temperature versus alloying

phase diagram shows the presence of three main phases: antiferromagnetic insulator

(AFI), paramagnetic insulator (PI), and paramagnetic metal (PM). The PI phase is

accessed via Cr alloying of V2O3 at temperatures higher than the Neel temperature.

The high temperature phase above the critical point is a crossover regime between

the paramagnetic insulator and paramagnetic metal. In figure 1.12(right panel), we

show the resistivity of (V1�xCrx)2O3 for 0 < x < 0.1 [65]. The resistivity shows a

metal-insulator transition (characterised by the sign change of d⇢/dT ) at T ⇠ 150K

for 0 < x < 0.005. This temperature scale coincides with the onset of antiferro-

magnetic ordering. For 0.005 < x < 0.018 the resistivity shows insulating behaviour

at low temperature, metallic behaviour at intermediate temperatures, and again an

insulating behaviour at higher temperature. For 0.018 < x < 0.1 the resistivity

shows insulating behaviour at low and intermediate temperatures, but metallic at

high temperatures.

In the cuprates, the undoped parent compound is a Mott insulator with antifer-

romagnetic order (see figure 1.13). Upon doping this Mott insulator, antiferromag-

netism is destroyed, and above a critical doping superconductivity shows up with
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dx2�y2 pairing symmetry [66–68]. Figure 1.13 shows the accessible regions for the

di↵erent compounds of the cuprates family and the temperature dependence of resis-

tivity of hole doped cuprate, La2�xSrxCu04, with doping. For 0.0 < x  0.05, we see

a resistivity upturn as T ! 0, indicating an insulating state. For 0.05 < x  0.15, the

resistivity vanishes as T ! 0, signalling the occurrence of superconductivity. Also a

linear-T behaviour of the in-plane resistivity, ⇢ab over a wide temperature window is

seen. This is a characteristic feature of the charge dynamics of the cupratres [70].

1.2.3 Theoretical understanding

Theoretical progress in the field of correlated electron systems has been impeded by

the di�culty in dealing with even the simplest model Hamiltonians appropriate for

these systems. The one-dimensional Hubbard model can be studied systematically.

However there are no exact methods or controlled approximations to study the two

and three-dimensional cases. This is mainly due to the non-perturbative nature of

the problem, and reflects the presence of several competing physical mechanisms for

even the simplest model.

Numerous approximate schemes have been employed to overcome these di�cul-

ties. In some cases an extreme limit of the model is considered where the problem

simplifies and can be solved in a controlled manner. It is often easier to identify

which of the physical aspects of the problem will be addressed by a specific limit,

and thus to choose that specific limit best adapted to the physical phenomenon un-

der consideration. In favourable cases, the physical ingredients that have been left

out can be reintroduced by expanding around the starting point.

In recent times, with the dramatic increase in computational power a direct

numerical solution of these models using exact diagonalisation and quantum Monte

Carlo methods is possible. However, the exact diagonalisation technique is limited

by the exponential growth of computation time with system size, while the quantum

Monte Carlo method is often restricted to rather high temperatures by the sign

problem.

In order to study the Mott transition and associated phenomena in real materials,

one needs methods to solve the Hubbard model and its extended versions. Those

models include parameters that are to be determined so as to reproduce experimen-

tally measured physical properties of real systems as closely as possible. In order

to check the validity of theoretical ideas through comparison with experiments, it is

often desirable not only to adjust the model parameters but also to have indepen-

dent estimates of those parameters a priori. Once we know the parameter values,
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especially how they change when the chemical composition of materials is changed,

we are able to predict to some extent the physical properties of those materials using

the parameter values as an input to theoretical calculations. The development of

powerful tools like dynamical mean field theory (DMFT) and its combination with

ab initio methods has greatly served this purpose and have clarified many aspects of

correlation physics over the last two decades [71].

One of the most drastic simplification in the Hubbard model is to consider only

electrons in a single band. In contrast, the experimental systems � transition-

metal compounds (d-electron systems) have large orbital degeneracy, which is an

important source of complicated behaviour. In addition strong spin fluctuations,

e↵ects of orbital fluctuations and orbital symmetry breaking play important roles in

many d-electron systems. The orbital correlations are frequently strongly coupled

with spin correlations through the usual relativistic spin-orbit coupling as well as

through orbital-dependent exchange interactions (e.g. manganites).

1.2.3.1 Basic features of the Mott transition

Correlated electronic systems [66, 71–73] involve strong short-range repulsion. At

integer filling, the primary e↵ect of correlation is the emergence of an insulating

state where band theory predicts a metal. This insulating state is very di↵erent

from the band insulator and involves non trivial magnetic correlations.

The physics of Mott transition can be studied by the single band Hubbard model.

H =

X

ij,�

h
tijc

†
i�cj� + h.c.

i
+ U

X

i

ni"ni# (1.3)

The first term in equation (1.3) denotes the kinetic energy involving the hopping

amplitudes tij. On a given lattice the choices of tij define the density of states

and bandwidth of the non-interacting systems. The second term in equation (1.3)

represents the interaction between electrons on the same site. Whether the model has

a metallic or insulating ground state depends on the relative strength of interaction

U/t, the electron density, and the nature of the lattice.

The Mott transition can manifest itself in the following two ways (see Fig. 1.14),

• Staying at large, fixed, U/t but tuning the electron density across half-filling

(n = 1), which is know as the filling controlled Mott transition.

• Staying at half-filling (n = 1), but tuning the strength of interaction U/t, which

is known as the bandwidth controlled Mott transition

30



Figure 1.14: (Taken from [73]) Schematic picture of the Mott metal insulator tran-

sition, showing the filling controlled (FC) transition and the bandwidth controlled

(BC) transition. We will focus on the BC scenario in this thesis.

While it is the strength of electron-electron interaction U/t that is responsible

for the Mott transition, the detailed physics depends crucially on the symmetry

of the underlying lattice, and the hopping parameters tij. This is because weak

coupling magnetic instabilities depend on nesting features of the Fermi surface, and

the magnetism in the Mott phase depends on the lattice geometry.

On bipartite lattices the Mott transition is well understood in terms of magnetic

ordering and transport properties. However, this is not the case for a frustrated

lattice, due the presence of triangular or tetrahedral motifs in the lattice, which

disfavour long range antiferromagnetic order and promote complex electronic states

with non-trivial magnetic character [23, 24]. Their nature and impact on the Mott

transition remain outstanding problems.

1.3 Interplay of frustration and correlation

The presence of geometric frustration disfavours long-range antiferromagnetic order

and promotes a complex magnetic state in insulating magnets with short-range in-

teraction [21–24]. Two complications arise in magnetic insulators close to a Mott

insulator-metal transition (IMT): (i) the ‘virtual hopping’ of the electrons mediate

long-range and multi-spin coupling, and (ii) the magnitude of the local moments

weaken as the system is pushed towards the IMT. The first e↵ect can lift the degen-

eracy of the short range model and promote an ordered state while the second tends
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to destroy the magnetic state altogether. The outcome of this interplay is lattice

specific, of relevance to several real life materials, and requires tools beyond those

usually applied in frustrated magnetism.

The pyrochlore lattice is a fascinating structure (see figure 1.2(d)) to explore the

interplay of electron itinerancy and geometric frustration. In the deep Mott state

on a pyrochlore lattice, where one expects only nearest neighbour antiferromagnetic

coupling, the e↵ective model can be written as a sum, over the tetrahedra, of squares

of the total moment in each tetrahedron [34, 74]. The minimum of this is infinitely

degenerate since the four spins at the vertices of each tetrahedron just need to satisfy

a zero vector sum. The appearance of longer range couplings as the electron-electron

Hubbard repulsion is reduced (or the bandwidth is increased) can, potentially, lift

the degeneracy and promote some ordered state. Whether it does so is not known.

In the tight binding limit, the pyrochlore lattice has two dispersive and two flat

bands. At half-filling, which corresponds to the full occupation of the two dispersive

bands, a sharply suppressed density of states at the Fermi level is observed. This is

the semi-metallic state.

The transport and spectral character between the spin liquid Mott insulator and

the band semimetal is also not known. The possibilities in charge transport are

also interesting. While the large moment, gapped, Mott phase is insulating, the

strong suppression of the moment near the IMT, and possible orientational random-

ness due to frustration, can generate a ‘bad metal’ state on the disordered magnetic

background. Such a state can involve a pseudogap, an unusually large low temper-

ature resistivity, and, possibly, an anomalous Hall response if the moments organise

in a non coplanar manner.

1.3.1 General overview

Traditional Mott materials involve a strong on-site Coulomb interaction that, be-

yond a critical value, and at integer filling, inhibits electron motion [53]. This, in a

clean material, leads to an abrupt change in the zero temperature state from per-

fectly conducting to non conducting. The non conducting state typically has strong

antiferromagnetic (AF) correlations, if not long range order, since that lowers the

kinetic energy.

The most commonly studied Mott problem involves the single band Hubbard

model on a bipartite lattice [72]. In such a model, typically, nesting features drive

a transition to an antiferromagnetic insulating state at arbitrarily weak interaction

� masking the ‘Mott’ e↵ect. One can certainly study frustrated lattices, which
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Figure 1.15: (Taken from [4]) Interpenetrating pyrochlore lattice structures of R

3+

and Mo

4+
ions in the molybdates. The iridates have a similar structure of R

3+
and

Ir

4+
ions.

suppress magnetic order. There is much work on the triangular lattice [75–80],

the Kagome [81, 82] in two dimensions (2D) and the FCC [83, 84] and pyrochlore

lattices [85–87] in three dimensions (3D). These are all harder problems than the

square (or cubic) lattice since there is no longer any obvious magnetic order to

simplify the correlated problem. Overall, these lattices provide interesting variation

from the bipartite case because,

• the MIT could occur in the background of short-range magnetic correlation,

• the deep Mott insulating state itself could be a spin liquid.

1.3.2 Experimental relevance

It would be vital to have experimental realisations to test out the predictions of the

frustrated Mott studies. While there is significant e↵ort in analysing the quasi 2D -

BEDT organics [88–91] in terms of the triangular lattice, 3D realisations of ‘Hubbard

physics’ on a frustrated structure are rare. Materials like the manganites [92,93] do

involve strong correlation e↵ects (and much else) but are on a bipartite structure -

with relatively simple magnetic order. In this situation the discovery of the rare-

earth (R) based pyrochlores � the molybdates [1, 2, 94–96] with chemical formula

R2Mo2O7, and the iridates [8–10, 97] with chemical formula R2Ir2O7, provided a

breakthrough.

The molybadate/iridate family of compounds are composed of two pyrochlore

sublattices of R site and Mo/Ir site. The O atoms form an octahedron cage around

the R and the Mo/Ir sites. These sublattices are structurally identical, but are dis-

placed by half a lattice constant from each other (see figure 1.15). Both these fam-
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Figure 1.16: (Taken from [98]) The R

3+
, Mo

4+
and O

2�
ions are represented by

dark, green and red spheres respectively. (Left) The larger R

3+
pushes the O

2�
closer

to the Mo

4+
ions, thereby increasing the Mo�O�Mo bond angle and the hopping

amplitude. (Right) When R

3+
is smaller, the pushing of the O

2�
towards the Mo

4+

ions becomes less e↵ective. As a result the Mo�O�Mo bond angle and the hopping

amplitude decrease.

ilies show a metal-insulator transition as the rare-earth ionic radius, rR, is changed

[8, 9, 95, 96]. The rare-earth samples with larger rR, are more metallic in nature. A

qualitative understanding of this can be argued in a simple way [98] (see figure 1.16).

Consider a scenario with a larger rR in the molybdates. The larger R

3+
pushes the

O

2�
closer to the Mo

4+
ions, thereby increasing the Mo� O �Mo bond angle and

the hopping amplitude. As a result the bandwidth of the system increases and it

behaves as a metallic system. Considering the other scenario, where the rR is small,

the pushing of the O

2�
towards the Mo

4+
ions becomes less e↵ective. This leads to

lower hopping amplitude and reduced bandwidth, and the system behaving as less

metallic. A similar argument for the iridates also holds true.

The pyrochlore molybdates and iridates have become the hot spots of current

research in the electron correlation driven metal insulator transition. In these com-

pounds both the rare-earth and the Mo/Ir sublattice have the pyrochlore structure,

but it is the electrons of Mo/Ir atoms that are mainly responsible for exhibiting

the Mott phenomena. However, the role of the electrons of the rare-earth atom can

not be completely ignored, especially regarding the studies of anomalous Hall e↵ect.

Though these two families exhibit several similarities, a closer look reveals di↵erences

too. Some key di↵erences are in terms of

• degrees of freedom and couplings (with respect to the Hubbard model)

• the magnetic state that emerges

We will now briefly highlight the important features of the Mott transition in the

molybdates and iridates.
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1.3.2.1 Mott transition in the pyrochlore molybdates
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Figure 1.17: (Adapted from [4] and [102]) Left: Phase diagram of the pyrochlore

molybdate family (R2Mo2O7) showing the Mott transition with changing ionic radius

of the rare-earth atom. The di↵erent phases are ferromagnetic metal (FM), spin-glass

metal (SGM), spin-glass insulator (SGI), paramagnetic metal (PM) and a paramag-

netic insulator (PI). Middle: Variation of the d.c. resistivity of the R2Mo2O7 family

with temperature. Right: Optical conductivity spectra of the molybdate family at

T = 10K.

Rare-earth pyrochlore molybdates (R2Mo2O7) undergo a Mott transition by chang-

ing the rare-earth atom. Some noteworthy features of the Mott transition in the this

family are,

• Metal-insulator transition: MIT is governed by changing the rare-earth atom

(R). Nd and Sm based molybdates with relatively larger ionic radius, rR, are

ferromagnetic metals (FM) in the ground state, where as Ho, Dy, Tb and

Gd based molybdates with relatively smaller ionic radius are spin-glass Mott

insulators (SGI) [95, 96].

• Magnetic phases: The Mott insulating phase has a disordered spin-glass phase

below the antiferromagnetic (AF) spin-glass freezing temperature. Magnetic

properties of spin-glass phase have been investigated by neutron-scattering

study [1, 99, 100] as well as muon spin rotation studies [101]. The magnetic

ground state is controlled by the competition between double-exchange driven

ferromagnetic metal and superexchange mediated antiferromagnetic correla-

tions.

• Simultaneity of the magnetic and metal-insulator transition: The SG-FM tran-

sition does not coincide with the MIT. Ferromagnetism survives in the insulat-
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ing phase beyond the MIT phase boundary, as in the case of Gd2Mo2O7 [102].

Thus, it can be said that ferromagnetism and metallicity are not so strongly

coupled in pyrochlore molybdates.

• Resistivity: Measurements of d.c. resistivity shows that Ho, Dy, and Gd based

molybdates are insulators with decreasing charge gap in that order, whereas Sm

and Nd based molybdates exhibit bad metallic behaviour [102]. The residual

resistivity ⇢(T = 0) of the metallic molybdates are very close to the Io↵e-

Regel limit (⇢IR ⇡ 0.5m⌦cm) corresponding to one conduction electron per

Mo site. Irrespective of the ground-state behaviour, the resistivity curves tend

to converge towards high temperature. This suggest that at high-temperature

the screening of the Coulomb interaction become ine↵ective.

• Optics: Optical conductivity measurements show that the charge gap of Gd2Mo2O7

is very small (�/U ⇠ 0.03). The linear dependence of low temperature optical

gap, �(T = 10K) with rR=Gd � rR shows that the charge gap closes contin-

uously. From this, it has been inferred that Gd2Mo2O7 lies very close to the

MIT boundary. On this basis, it has been concluded that the molybdates show

a second-order MIT [103].

• E↵ect of an external magnetic field: Gd2Mo2O7 which lies in the vicinity of the

MIT, shows the Anderson-Mott transition with the application of an external

magnetic field [5]. In the absence of any magnetic field, it is a Mott insulator

with a disordered SG phase. The magnetic field controls directly the magnitude

of the random potential in this disordered phase and thereby leads to the

insulator-metal transition. Such a phenomenon with huge magnetoresistance

in moderate magnetic field is very rare in solid state materials.

• Anomalous Hall response: The anomalous Hall coe�cient in ferromagnetic

pyrochlores is finite at low temperatures [6, 7]. This behaviour is reported

to be due to finite spin chirality of the ground state, which originates from

geometric frustration of the pyrochlore lattice.

• Degrees of freedom: The magnetic and transport properties arise from the

electrons populating the t2g subspace of Mo 4d levels as is pointed out by

photoemission experiments [104]. The relevant degrees of freedom are two

orbitals per site and a S = 1/2 moment.
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1.3.2.2 Mott transition in the pyrochlore iridates
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Figure 1.18: (Adapted from [105], [9] and [109]) Left: Phase diagram of the py-

rochlore iridate family showing the Mott transition with changing ionic radius of the

rare-earth atom. The distinguished phases are a metal and a Mott insulating phase.

The Mott insulating phase has AIAO magnetic ordering below the antiferromagnetic

transition temperature. Middle: Variation of the d.c. resistivity of the iridate fam-

ily with temperature. Right: Optical conductivity spectra of the R2Ir2O7 family at

T = 10K.

Rare-earth pyrochlore iridates (R2Ir2O7) too undergo a Mott transition by chang-

ing the rare-earth atom. Some noteworthy features of this Mott transition are,

• Metal-insulator transition: MIT is governed by changing the rare-earth atom

(R). Pr based iridate with relatively larger ionic radius, rR, is a paramagnetic

metal (PM) in the ground state, whereas Nd, Eu, Gd, Dy and Ho based iridates

with relatively smaller ionic radius are antiferromagnetic Mott insulators [8,9].

• Magnetic phases: Magnetic properties of these compounds have been investi-

gated by neutron-scattering study [106] and muon spin rotation studies [107,

108]. It has been observed that the Mott insulating phase has a non collinear

all-in-all-out (AIAO) ordered phase below the antiferromagnetic (AF) Neel

temperature. However Pr2Ir2O7 doesn’t show any magnetic ordering down to

the lowest measured temperature [13]. The magnetic ground state is controlled

by not only the superexchange interaction dependent on the kinetic energy and

Coulomb repulsion, but also on the Dzyaloshinskii-Moriya interaction depen-

dent on the kinetic energy and the strength of SOC.

• Simultaneity of magnetic and metal-insulator transition: The paramagnetic

to AIAO AF transition coincides with the MIT [8, 9]. Thus, it can be said
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that antiferromagnetism and Mott insulating phases are strongly coupled in

pyrochlore iridates.

• Resistivity: d.c. resistivity measurements show Ho, Dy, Gd, Eu and Nd based

iridates are insulators with decreasing charge gap in that order, whereas Pr

based iridate exhibiting bad metallic behaviour [8, 9]. The residual resistivity

⇢(T = 0) of Pr iridate is very close to the Io↵e-Regel limit (⇢IR ⇡ 0.5m⌦cm)

corresponding to one conduction electron per Ir site [109]. Irrespective of

the ground-state behaviour, the resistivity curves tend to converge towards

high temperature. This suggest that at high-temperature the screening of the

Coulomb interaction become ine↵ective.

• Optics: Optical conductivity measurements show that the charge gap of Nd2Ir2O7

is very small [11]. In the iridates, the antiferromagnetic AIAO order gives

rise to a dramatic suppression of low-energy optical conductivity, leading to a

gapped spectrum [109]. It is observed that this magnetic order promotes the

metal-insulator transition in the iridates.

• E↵ect of an external magnetic field: Magnetic field driven metal-insulator tran-

sitions for (Nd1�xPrx)2Ir2O7 has been observed [110]. It is expected that this

MIT is accompanied by a change in the magnetic ordering due to the applied

magnetic field. By applying a 10 Tesla magnetic field, it has been observed

that Nd2Ir2O7 undergoes a transition from a magnetic insulator to a metallic

phase [111].

• Anomalous Hall response: Though Pr2Ir2O7 doesn’t show any magnetic order-

ing down to the lowest measured temperature, it displays a large anomalous

Hall e↵ect even in zero field [12].

• Degrees of freedom: The magnetic and transport properties arise from the

electrons populating the t2g subspace of Ir 5d levels. Spin-orbit coupling (SOC)

plays a very significant role in these family of materials. The relevant degrees

of freedom includes e↵ectively one orbital per site.

1.3.3 Theoretical understanding

At the outset the behaviour of the pyrochlore molybdates and iridates may seem

complicated, involving several orbitals and multiple interactions (spin-orbit coupling,

Hund’s coupling, superexchange interaction, etc.) determining the low temperature
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behaviour. However, first principle studies have provided crucial inputs in this mat-

ter. The magnetic and transport properties of these family of materials can be

studied with e↵ective single band Hubbard models with minimal additional interac-

tion terms. We will quickly discuss the findings of the first principle studies, and

then briefly review the model based studies.

1.3.3.1 Pyrochlore molybdates

Following points have been discovered.

• A first-principle based band structure calculation has suggested that the t2g

electrons of the Mo play an important role [112]. Further a trigonal lattice

distortion along the [111] direction splits the t2g levels to a higher energy e
0
g

doublet and a lower energy a1g state. Strong on-site Coulomb interaction leads

to one localised electron (spin) at the a1g level and another at the e
0
g levels.

The electron at the e
0
g levels behaves as localised or itinerant depending on

the strength of electron correlation. The interaction between the neighbouring

Mo spins (a1g electrons) is antiferromagnetic (AF) due to superexchange (SE)

interaction. The interaction between the e
0
g electrons on a given site is ferro-

magnetic (FM) due to strong Hund’s coupling and mediated via the double-

exchange (DE) mechanism. The ferromagnetic metallic phase is stabilised by

the DE interaction, while the transition to spin-glass insulator is governed by

the Coulomb repulsion between the Mo 4d electrons [112]. The resulting FM

or SG phase in the R2Mo2O7 family is determined by this competition.

• The competition between DE and SE has been investigated with a Monte Carlo

study [113] arriving at a phase diagram 1.19. Further bringing the Coulomb

repulsion into account it has been predicted that there are competitions be-

tween the spin, orbital and electronic phases in the molybdate family [19] (see

figure 1.19).

Though the magnetic phase competition between the various interactions in the

molybdates have been explored, following aspects are still unsettled.

• There are few attempts at addressing the impact of the magnetic phase com-

petition on the electronic properties (like transport and optics).

• There is no clear understanding if the magnetic and the metal-insulator tran-

sitions should be necessarily simultaneous.
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Figure 1.19: (Taken from [113] and [19]) Left: Phase diagram highlighting the

competition between DE and SE on the pyrochlore lattice at quarter filling. Right:

Illustration of the ground state phase diagram with competition between DE, SE

and Coulomb repulsion (represented by

˜U). The dotted and dashed arrows in the

figure indicate the tuning of relevant parameters which mimic the changing of the

physical and chemical pressure respectively, in the pyrochlore molybdates.

• No detailed understanding of the huge magnetoresistance due to an external

applied field.

• The origin of the anomalous Hall response.

1.3.3.2 Pyrochlore iridates

The physics of the pyrochlore iridates is mainly dictated by the 5d electrons of

Ir, which has strong spin-orbit coupling (SOC) and moderate Hubbard repulsion

U (due to large spatial extent of 5d orbitals). The Ir atom has octahedral oxygen

coordination (IrO6), and the resulting crystal field splits the fivefold degenerate Ir 5d

states into doubly degenerate eg and triply degenerate t2g manifolds. As a result, the

L = 2 orbital angular momentum of the d orbitals is projected down to an e↵ective

angular momentum l = 1 (with a minus sign) in the t2g manifold. SOC splits the

t2g orbitals with spin into a j = 1/2 doublet and j = 3/2 quadruplet. Strong

SOC, thus, not only lifts the orbital degeneracy of 5d electrons, but also reduces

the bandwidth. In the iridates, SOC leads to an e↵ective single band description in

terms of pseudo-spin jeff = 1/2 states. The jeff = 1/2 states are given by

|Jeff = 1/2,+1/2i =

1p
3

(|xy, "i+ |yz, #i+ i|zx, #i)

|Jeff = 1/2,�1/2i =

1p
3

(|xy, #i � |yz, "i � i|zx, "i)
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There have been attempts to understand the behaviour of the iridates within a

single band Hubbard model. Following details have been established.

• In the absence of interaction, the ground state is a semimetal or topologi-

cal insulator depending on the ratio of spin-orbit coupling and the hopping

amplitude [114]. This picture remains roughly unchanged for weak electron in-

teraction, but for strong interactions, the system becomes an AIAO magnetic

insulator [114].

• Hartree-Fock mean-field theory (MFT) calculation shows that near the mag-

netic transition, a topological Weyl semimetal phase shows up [115].

• A cluster dynamical mean-field theory (CDMFT) calculation confirms this sce-

nario, and in addition finds an axion-insulator phase near the MIT point [116].

A more elaborate LDA+CDMFT study shows a first order MIT from a param-

agnetic metal to an antiferromagnetic AIAO ordered insulating phase by taking

into consideration a three-band description of the Iridates [117].

Despite some success, there are important features of the iridate Mott transition

that are yet to be understood. We list those out here.

• While the MFT captures the correct AIAO ordering, its prediction that TN

would keep increasing with U at all interaction window is clearly opposite to

what has been observed in the experiments.

• The LDA+CDMFT study has captured this physics correctly. However, due

to ignoring the long-range spatial fluctuations, the maximum TN scale it gives

is roughly 3-times that of the experimentally observed TN values. Thus, an

approach retaining the spatial fluctuations seems more appealing.

• Also there are very limited attempts to study the transport and optical be-

haviour systematically for these family of compounds. While experiments have

provided a wealth of data, the above mentioned techniques are not able to un-

cover the detailed transport, optics and spectral features.

• Further it would be interesting to study the magnetic field driven MIT and the

anomalous Hall e↵ect in the iridates.
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Figure 1.20: (Taken from [115] and [117]) Left: U � T mean-field phase diagram

the pyrochlore Hubbard model with small next nearest-neighbour hopping. The

out-of-plane fibres along the T-axis represent the antiferromagnetic (AF) TN for the

continuous transition at which this magnetic order melts. The two shaded regions

correspond to AF phases: either the all-in-all-out (shown as AIO here) or AIO

0
phase,

a type related to the AIO by a ⇡/2 rotations. The solid/dashed lines denote second-

and first-order quantum phase transitions, whereas, the dotted lines in the AIO

phase denotes a gap closing signalling a Lifshitz transition out of the topological

Weyl semimetal (TWS) or metallic AF (mAF). Right: U � T phase diagram of

the pyrochlore Hubbard model at half filling studied with a LDA+CDMFT scheme

with appropriate parameter choices for the iridates. There is a first-order transition

between the all-in-all-out magnetic insulator and the paramagnetic metal at low

T and small U. The blue shaded region denotes the hysteresis region associated

with this transition. The error bars reflect the uncertainty caused by the finite

number of parameter values considered. The metal-insulator crossover in the high-T

paramagnetic phase is shown by a broken line. The hashed region represents the first-

order Mott transition and its hysteresis region in paramagnetic DMFT calculations.

1.4 Agenda of the thesis

As shown by the various experiments, the pyrochlore molybdates and iridates show

unusual magnetic ordering. These magnetic states would lead to distinct transport,

optical and spectral features. Our aim is to explore the possible magnetic ground

state on these family of materials, their impact on the electronic properties of the

materials and to uncover the e↵ect of thermal fluctuations with increased tempera-

ture.

We would follow a real space approach which captures the spatial fluctuations,

describes a fully disordered phase, and e↵ect of temperature. This approach can be

thought of as a complementary approach to the dynamical mean-field theory (and

its cluster versions). Within this approach, we would provide a detailed study of the

Mott transition in the pyrochlore molybdates and iridates.
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We first focus on the role of the Hubbard interaction on the half filled pyrochlore

lattice and the checkerboard lattice. Next we study the more realistic but complex

models capturing the details of the Mott transition in the pyrochlore molybdates

and iridates.

We address the following broad questions:

• What is the nature of the magnetic state as one moves towards weaker inter-

action in the Mott insulator?

• What are the magnetic correlations near the Mott transition boundary?

• What is the impact of these magnetic correlations on electron physics (resis-

tivity, optics, spectral features) near the IMT?
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CHAPTER2
THEORETICAL TOOLS

We study our Mott transition problems within the framework of the Hubbard model

[53]. In this chapter we first discuss the approximations we use to set up a tractable

computational approach to the Hubbard model. We then discuss the implementation

of the numerical scheme and the benchmarks against which we have tested our

results.

2.1 The Hubbard model

The Hubbard model minimally accounts for both the quantum mechanical motion of

electrons and the short range repulsion between them. While too simple to capture

all materials details it is often a useful starting point. In spite of its rather sim-

ple look the model exhibits various phenomena including metal-insulator transition,

antiferromagnetism, ferromagnetism, and superconductivity.

The Hubbard model is defined as:

H = Hhop +Hint =

X

hiji�

tij
h
c†i�cj� + h.c.

i
+ U

X

i

n̂i"n̂i# (2.1)

where Hhop describes the quantum mechanical hopping of electrons, and Hint de-

scribes the short ranged repulsive (Coulomb) interaction U between the electrons

at the same site [118]. tij is the hopping amplitude between states localised [54]

at positions

~Ri and
~Rj. The eigenstates of Hhop are ‘wave like’, while Hint would

prefer localised, ‘particle like’, behaviour to minimise interaction between electrons.

Though Hhop and Hint individually do not have any ordering tendency their sum can

generate ordering.
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The parameters of the model are the ratio U/t (where t is the nearest neighbour

hopping), the density n (or chemical potential µ), and the temperature T . The

degree of magnetic frustration which is controlled by the lattice structure and the

hoppings tij also implicitly a↵ects the physics.

The solution of the Hubbard model has been a central problem in condensed

matter physics. No exact solution exists in more than one dimensions [119]. The

limit of ‘infinite dimensionality’ yields a computationally tractable problem. In this

limit [120] one redefines the hopping matrix elements as tij = (1/
p
d)|i�j|

, with |i�j|
the minimum number of links that one has to traverse on the lattice in order to

connect the sites i and j, as d ! 1. In this limit the kinetic energy (not individual

hopping) and the interaction energy per site are still of the same order and the

problem remains physically non trivial.

The simplest approach to the Hubbard model is mean-field theory. Numerically

exact approaches include quantum Monte Carlo (QMC) and exact diagonalisation

(ED). Approximate schemes like dynamical mean-field theory (DMFT) [71] also ul-

timately resort to QMC or ED. Despite the enormous increase in computing power

over the last two decades the QMC and ED methods are still seriously size limited.

We use a new approach, discussed in the next section, which focuses on spatial

order and its fluctuations, and allows us to access large lattice sizes. It is approximate

in nature, and maps the Hubbard problem at half filling to an e↵ective Kondo lattice

like problem.

2.2 The static path approximation

In what follows we discuss the most general single band Hubbard model, written in

terms of the pseudo-spins variables - ↵, � as

H =

X

hiji,↵�

t↵�ij c
†
i↵cj� + U

X

i,↵ 6=�

ni↵ni� � µ
X

i

ni (2.2)

where ↵, � could be spin, orbital, or mixed spin-orbital variables. µ is the chemical

potential to maintain the electron density at half-filling (n = 1) as the interaction

and temperature are varied. We handle the problem in real space as follows:

• The partition function is originally a functional integral over Grassmann fields

 i↵(⌧) and ¯ i↵(⌧):

Z =

Z
D D ¯ e�

R
�

0 d⌧L(⌧)
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L(⌧) =

X

hiji,↵�

{ ¯ i↵((@⌧ � µ)�ij�↵� + t↵�ij ) j�}+ U
X

i,↵ 6=�

¯ i↵ i↵
¯ i� i�

• We use a Hubbard-Stratonovich (HS) transformation [14,121,122] that decou-

ples Uni↵ni� in terms of an auxiliary variable �i(⌧), coupling to the electronic

‘local moment’ Oi =

P
µ⌫ c

†
iµ~�µ⌫ci⌫ , and a scalar field �i(⌧) coupling to the

electronic density ni at each site. i, ⌧ refer to spatial coordinate and imaginary

time, respectively. The Fourier transformed, Matsubara frequency, versions of

these fields are �i,n and �i,n, where ⌦n = 2⇡nT is a bosonic frequency (T is

the temperature). The interaction term takes the form:

eU  ̄i↵

 
i↵

 ̄
i�

 
i�

=

Z
d�id�i

4⇡2U
e(i�i

n
i

��
i

.O
i

+
�2
i

U

+
�2
i

U

)

• This leads to:

Z =

Z
D D ¯ 

Y

i

d�id�i

4⇡2U
e�

R
�

0 d⌧L(⌧)

L(⌧) = L0(⌧) + Lint(⌧) + Lcl(⌧)

L0(⌧) =

X

hiji,↵�

{ ¯ i↵((@⌧ � µ)�ij�↵� + t↵�ij ) j⌫}

Lint(⌧) =

X

i,↵�

{i�i
¯ i↵ i��↵� � �i. ¯ i↵~�i i�}

Lcl(⌧) =

X

i

{�
2
i

U
+

�2
i

U
}

• Since the fermions are now quadratic, the

R D D ¯ integrals can be formally

performed to generate the e↵ective action for the background fields:

Z =

Z
D�D�e�S

eff

{�,�}

Seff = log Det[G�1{�,�}] +
Z �

0

d⌧Lcl(⌧)

In the expression above G is the electron Green’s function in a {�,�} back-

ground.
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Now there are various options.

• QuantumMonte Carlo would proceed by using Seff as the ‘weight’ for the back-

ground configurations, and compute electron properties on these after equilib-

riation.

• Mean field theory would assume the fields to be time independent, replace

them by their mean values, and minimise the free energy.

• A static path approximation (SPA) to Z again assumes the fields to be time

independent, but samples over spatial fluctuations.

We adopt the last option as our preferred method. This is computationally simpler

than QMC, but much more sophisticated than MFT at finite temperature. So we

• neglect the imaginary time dependence of �i and �i, i.e, retain only the zero

Matsubara frequency modes of these fields, and

• replace �i by its saddle point value, �i ! h�ii = (U/2)hnii = U/2, since the

important low energy fluctuations arise from the �i.

Within this scheme the electron is subject to static background fields {�,�}.
The �i is frozen and the �i follow an e↵ective ‘Hamiltonian’

Heff{�i} = � 1

�
logTre��Hel

+

1

U

X

i

�2
i

Hel =

↵�X

ij

t↵�ij c
†
i↵cj� � µ̃

X

i

ni �
X

i

�i.Oi

with µ̃ = µ � U/2. For convenience we redefine �i ! U
2�i, so that the �i is

dimensionless. This leads to:

Hel =

↵�X

ij

t↵�ij c
†
i↵cj� � µ̃

X

i

ni � U

2

X

i

�i.Oi

and

Heff{�i} = � 1

�
logTre��Hel

+

U

4

X

i

�2
i

The localised moment configurations follow the distribution

P{�i} / Trcc†e
��H

eff

47



Within SPA Heff and P{�i} define a coupled fermion-local moment problem.

If the moments are large and random the electronic problem requires numerical

diagonalisation. Similarly, the P{�i} cannot be written down in closed form since

the fermion free-energy is not known for arbitrary {�i} background. The method of

choice in these situations is a combination of Monte Carlo (MC) for updating the �i

with exact diagonalisation of the quadratic fermion Hamiltonian for computing the

Metropolis update cost. This overall approach has been used in the nuclear many

body problem [123,124], superconductivity [125,126], etc, and by us in other studies

of the Mott problem [87,127,128].

There are regimes where some analytic progress can be made, as we discuss later,

but most of our results are based on a numerical solution of the Hubbard model. For

the Hubbard model our approximate scheme allows:

• Access to non trivial magnetic states and captures their Tc scales accurately.

• Access to spectral and transport properties without any need for analytic con-

tinuation.

• Description of electronic phases without any long range order.

2.3 Numerical methods

We obtain a solution of the Hubbard model via a Monte Carlo by generating the

equilibrium configuration for the {�i} through iterative diagonalisation of Heff . We

start with reasonable high temperature, T ⇠ t, higher than any transition tempera-

ture in the problem, and reduce it to T ⇠ 10

�3t to access ground state properties. At

T = 0 our method reduces to unrestricted Hartree-Fock. Traditionally, Hartree-Fock

calculations impose a certain pattern on the order parameter and minimise with re-

spect to the amplitude. On a frustrated geometry it is not clear what pattern to

impose so our approach samples the entire space of {�i} via thermal annealing.

2.3.1 Real space Monte Carlo

We set up the electronic Hamiltonian in real space basis for a given lattice size, for an

initial configuration of the auxiliary fields and attempt to ‘update’ this configuration.

The energy cost of this update is computed through the free energy change of the

system. The transition probability between configurations is / exp (��(F 0 � F )),
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Figure 2.1: Visualisation of the our cluster based update scheme. Local moments

of the cluster (size 8 ⇥ 8) are drawn as blue vectors, whereas the local moments of

the lattice (size 24 ⇥ 24) are drawn as red vectors. The energy cost of updating

the variable �i (local moment drawn in red within the cluster) is computed by

diagonalising the cluster of size 8 ⇥ 8, constructed around that site rather than

diagonalising Hel for the full lattice of size 24 ⇥ 24. Such update attempts at each

site of the lattice (on average) would constitute one MC sweep.

where F 0
and F are free energy in the attempted and initial configuration respec-

tively. Computing F 0 � F requires diagonalising Hel. This involves an O(N3
) com-

putational cost per update, i.e, the cost per MC sweep would be N4
. This limits the

accessible lattice size to N ⇠ 100.

To access larger sizes within reasonable time we use a cluster algorithm (TCA)

[15] for estimating the update cost. According to this scheme, the energy cost of

updating the variable �i is computed by diagonalising a cluster (of size Nc, say)

constructed around the site ri, rather than diagonalising Hel for the full lattice. This

scheme has been extensively benchmarked [15] and works reasonably unless we are

attempting to recover states with a large spatial period. A cartoon of the cluster

scheme is shown in figure 2.1. With this choice of MC update, the computational

cost now scales as NN3
c , which is linear in lattice size N . This lets us access large

lattice sizes N ⇠ 1000.

Once equilibrium is attained within the Monte Carlo scheme at a given tem-

perature, we use the MC configurations to calculate various physical observables of

interest. Below we list some of the key observables that we track in our calculation.
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We start with high temperature, ⇠ t, higher than any transition temperature in

the problem, and reduce it to T = 0.001t in 30-50 steps of temperature to access the

ground state properties. Our typical MC run lengths are 10

4
steps per temperature.

Our studies on the three dimensional (3D) pyrochlore lattice are done with system

sizes of 6 ⇥ 6 ⇥ 6 unit cells ⇠ 800 atoms (the pyrochlore has 4 atoms per unit cell)

and 8⇥ 8⇥ 8 unit cells ⇠ 2000 atoms with the choice of a 3⇥ 3⇥ 3 unit cells cluster.

For two dimensional (2D) lattice calculation, we choose 24⇥ 24 and 32⇥ 32 systems

sizes with a 8⇥ 8 cluster.

2.3.2 Variational calculation at T = 0

When the Monte Carlo suggests that the system is heading towards a state with

periodic spatial behaviour, a simple way to access the possible ground state is to try

a family of variational configurations. For simple enough configurations (discussed

further on) the electronic model may be analytically solvable. Even when that is

not possible, the numerical cost of diagonalising a system of size N for Ntrial con-

figurations is ⇠ NtrialN3
, compared to the NtemprNsweepN4

cost involved in the MC.

Ntempr is the number of temperature points and Nsweep is the number of MC sweeps

per temperature.

Taking our representation of the e↵ective Hamiltonian Heff and assuming a set

of periodic configurations �i defined as

�i = �
�
cosq · xi, sinq · xi, 0

�
(2.3)

we have

Hel =

X

x,~�,�

t~�

h
c†x,�cx+~�,� + h.c.

i
� U�

2

X

x

⇣
e�iq·xc†x"cx# + eiq·xc†x#cx"

⌘
(2.4)

This can be simplified by doing Fourier transformation to

H =

X

k

⇣
c†k," c†k�q,#

⌘ ✏k �U�
2

�U�
2 ✏k�q

! 
ck,"

ck�q,#

!
(2.5)

Where ✏k is the tight binding dispersion for the lattice. The eigenvalues can be

readily obtained, and one gets

✏±,k =

1

2


✏k + ✏k�q ±

q
(✏k � ✏k�q)

2
+ U2

�

2

�
(2.6)
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Once we get the dispersion, the total energy is

E(�,q) =
X

k,↵=±

✓(µ� ✏↵,k)✏↵,k +
U

4

N�2
(2.7)

To get the ground state, we minimise the total energy E(�,q) with respect to the

magnitude ‘�’ and vector q. On a two dimensional L ⇥ L lattice, q can take L2

values, as q =

2⇡
L
(qx, qy), where qx, qy are integers ranging from 0 to L � 1. We

discretise � between [0, 1] into ⇠ 100 intervals. As we will see in the solution of the

checkerboard Hubbard model this provides some intuition into the nature of possible

magnetic ordering.

2.4 Equilibrium properties

From the equilibrium configurations obtained at the end of annealing we calculate

the following auxiliary field and electronic properties. The angular brackets represent

thermal average over MC configurations.

2.4.1 Auxiliary field correlations

• The average magnitude of the auxiliary fields �avg is computed as

�avg =
1

N

X

i

h|�i|i

The sum is over all the lattice sites.

• The size distribution of the auxiliary fields P (�) is computed as

P (�) =

1

N

X

i

h�(�� |�i|)i

• The angular correlation is accessed via the structure factor S(q) computed as

S(q) =
1

N2

X

ij

h�i · �jieiq·(ri�r
j

)

The onset of rapid growth in S(q) at some q = Q, say, indicates a magnetic

transition.
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2.4.2 Electronic correlation functions

• The electronic density of states (DOS) is,

N(!) =
1

N

X

n

h�(! � ✏n)i

where ✏n are single particle eigenvalues in an equilibrium configuration.

• The optical conductivity is calculated by using the Kubo formula as:

�xx(!) =

�0
N

h
X

n,m

f(✏n)� f(✏m)

✏m � ✏n
|Jnm

x |2�(! � Emn)i

where Jnm
x is hn|Jx|mi and the current operator is given by

Jx = �i
X

i,↵�

h
(t↵�i,i+x̂c

†
i,↵ci+x̂,� � hc)

i

Emn = ✏m � ✏n, f(✏n) is the Fermi function, ✏n and |ni are the single particle

eigenvalues and eigenstates of Hel respectively. The conductivity is in units of

�0 = e2/(~a0), where a0 is the lattice constant.

• The d.c. conductivity is obtained as a low frequency average of the optical

conductivity over a window ⌦ = 0.05t.

�dc =
1

⌦

Z ⌦

0

d!�xx(!)

and the resistivity ⇢ = 1/�dc.

2.5 Methodological issues

In this section we discuss some methodological issues and selected computational

checks for our results obtained with Monte Carlo. We specifically choose to show the

results of our two-orbital Hubbard model with additional Hund’s and superexchange

interactions (relevant for the molybdates).

2.5.1 The static approximation

In principle both spatial and temporal fluctuations of the auxiliary field could be im-

portant near the Mott transition. However, fully handling the temporal fluctuations
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of the �i and �i fields requires a quantum Monte Carlo scheme. The absence of such

results is probably due to the sign problem for fermions in the frustrated geometry.

We have retained only the zero Matsubara frequency, ⌦n = 0, mode of the auxiliary

fields, exactly.

The neglect of quantum dynamics of the auxiliary fields results in the missing

of the correlation e↵ects in the ground state of the metal, overestimating its energy

and underestimating the critical U/t for metal-insulator transition. It is possible,

but non trivial, to set up a Gaussian expansion for the finite ⌦n modes of �i and �i,

while retaining and treating the ⌦n = 0 mode exactly as we have. This is a project

for the future. In the absence of such a calculation we can only make the following

conjectures.

• Local moments would remain well defined in the insulating phase, due to the

Mott gap. The magnetic state might get a↵ected by quantum fluctuations.

However, on strongly frustrated lattices, which does not allow any magnetic

order, at any U or temperature, we do not expect additional quantum fluctu-

ations to qualitatively modify the magnetic state.

• A possible qualitative consequence of quantum fluctuations could be making

the metallic state perfectly conducting at T = 0. However, we believe that

above a small coherence temperature, one would see the signature of a highly

resistive metal for the strongly frustrated systems.

2.5.2 System size dependence

In order to check the finite size e↵ects on the Monte Carlo results, we have compared

our 6⇥6⇥6 lattice (864 sites) calculation with that on a 8⇥8⇥8 lattice (2048 sites).

In Fig.2.2 we compare the ground state magnetisation, average orbital moment and

the ferromagnetic critical temperature for these two sizes. The results indicate that

by the time N ⇠ 1000 the finite size e↵ect on thermodynamic properties is negligible.

2.5.3 Annealing time dependence

We compare results obtained for two di↵erent Monte Carlo ‘annealing time’ in

Fig.2.3. We show results on the ground state magnetisation, average orbital mo-

ment and temperature dependence of the q = (0, 0, 0) magnetic structure factor for

a 2500 MC sweeps/temperature run and a 5000 MC sweeps/temperature run. The

temperature discretisation is 0.005t. The 5000 MCS run takes about 10 days. Our
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Figure 2.2: Comparison of (a) T = 0 magnetisation, (b) ferromagnetic critical

temperature, and (c) and average orbital, calculated on 6 ⇥ 6 ⇥ 6 and 8 ⇥ 8 ⇥ 8

pyrochlore lattices. The overall system volumes di↵er by about 3, but the di↵erence

in physical properties is negligible.

results show that annealing time doesn’t alter the results significantly once the run

time is & 10

3
MCS/temperature.

The checks above will allow us to focus on the physics that emerges from our

calculation without having to check for finite size artefacts frequently.

2.5.4 Cluster based update

Our Metropolis update involves a small cluster rather than diagonalisation of the

full Hamiltonian. This is well controlled in the large U/t limit when the ‘range’

of electron excursion is limited but less reliable near the Mott transition. For that

purpose we use variational calculation results, that use the Monte Carlo result as an

ansatz and checks the stability of such a state on large system size (up to 10

3 ⇥ 4

lattices) for the ground state. We show one such result, (see figure 2.4) for the
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Figure 2.3: Annealing time dependence. (a) T = 0 magnetisation, (b) average

orbital moment, and (c)-(d) temperature dependence of Smag(q = (0, 0, 0)). Run-

times 2500 and 5000 MC sweeps per temperature, with temperature discretisation

�T = 0.005t. Size 6⇥ 6⇥ 6.
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Figure 2.4: Comparison of the average local moment value obtained via Monte

Carlo with a cluster based update as T ! 0 with that obtained via a variational

minimisation calculation.

pyrochlore Hubbard model - which highlights that the cluster based MC results are

consistent with variational calculation results.
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CHAPTER3
MOTT TRANSITION ON THE

PYROCHLORE LATTICE

3.1 Introduction

In frustrated magnets the temperature of transition to long range order is strongly

suppressed (if finite at all) compared to expectations from mean field theory. This

gives rise to a wide cooperative paramagnetic, or ‘spin liquid’, regime extending from

the Curie scale, ⇥CW , down to the transition temperature, Tc. For some frustrated

systems the Tc could be zero, as in the pyrochlore Ising antiferromagnet, already

argued in 1956 [41].

The pyrochlore lattice, Fig.3.1, is a fascinating structure to explore the inter-

play of electron itinerancy and geometric frustration. In the deep Mott state on

a pyrochlore lattice one expects only nearest neighbour antiferromagnetic coupling

between localised electrons. The e↵ective model can be written as a sum, over the

tetrahedra, of squares of the total moment in each tetrahedron [34, 74] (if we treat

the spins as classical to start with). The minimum of this is infinitely degenerate

since the four spins at the vertices of each tetrahedron just need to satisfy a zero

vector sum. The appearance of longer range couplings as the Hubbard repulsion re-

duces (or the bandwidth increases) can, potentially, lift the degeneracy and promote

some ordered state. Whether it does so is not known. The transport and spectral

character between the spin liquid Mott insulator and the weak correlation regime is

also not known.

In this chapter, we focus on the role of the Hubbard interaction on the half filled

pyrochlore lattice. We address two broad questions: (i) What is the nature of the
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Figure 3.1: The pyrochlore lattice constructed out of corner shared tetrahedra. The

interplay of the frustration of the tetrahedral unit cell with the weak connectivity

(corner sharing) of the tetrahedra leads to the strongly frustrated nature of this

lattice.

magnetic state as one moves towards weaker interaction in the Mott insulator, in

particular what are the magnetic correlations near the insulator-metal transition

(IMT)? (ii) What is the impact of these magnetic correlations on electron physics

(resistivity, optics, spectral features) near the IMT?

The chapter is organized as follows. In the next section we provide a summary

of existing results on the pyrochlore structure - in particular the Heisenberg and

Hubbard models. This is followed by our results on the phase diagram, density of

states, transport, and optics, across the IMT. The final section dwells on e↵ective

models that one can derive in limiting cases.

3.2 Previous work

The pyrochlore Heisenberg antiferromagnet, which describes the deep Mott limit, has

been well studied in the classical limit. While the Hubbard model at half-filling and

large interaction maps on to the S = 1/2 Heisenberg antiferromagnet, we provide a

discussion of the more general model below.
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3.2.1 Pyrochlore Heisenberg model

The nearest-neighbour classical Heisenberg antiferromagnet on the pyrochlore lattice

can be written as

H = J
X

hiji

Si.Sj = (J/2)
X

↵

P2
↵ � JN (3.1)

where J > 0 is the antiferromagnetic exchange interaction. The sum on hiji runs

over all neighbouring pairs of bonds of the lattice and the sum on ↵ runs over the

number of tetrahedra making up the lattice. P↵ =

P4
i=1 Si, where the Si’s are spins

on the tetrahedron ↵, with |Si| = 1. N is the total number of sites of the pyrochlore

lattice.

The ground state needs to satisfy the constraint P↵ = 0 for all ↵. This results

in an infinitely degenerate manifold of possible configurations {Si}. The pyrochlore

lattice does not show any magnetic order at zero temperature [34, 74]. Numerical

studies based on Monte Carlo simulations suggest that there are no internal energy

barriers between the degenerate minima at T = 0, and no free-energy barriers at

finite T , precluding a freezing transition [34]. However, the absence of long-range

order does not mean the physics is trivial at low temperature as the accessible states

have nontrivial local constraints on them, leading to a correlated spin structure

(cooperative paramagnet). The ‘disordered’ but long-range correlated state generates

characteristic features in the magnetic structure factor (see figure 3.2), appearing as

“bow-ties” [129] or “pinch-points” [130], indicative of power-law correlations [130,

131].

Figure 3.2: Magnetic structure factor of classical Heisenberg spins in the [hhl] plane

showing the bow-tie structure with pinch points at their center. The dark-blue

regions indicate weak spin correlations, whereas the red regions highlight strong

spin correlations. The pinch-points are the locations of discontinuities, rather than

divergences.
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In the semiclassical, 2S � 1, case the classical degeneracy is partially lifted by

the zero-point energy of quantum fluctuations at harmonic order, but there remains

[132] an infinite manifold of degenerate collinear ground states. Further quantum

fluctuations at anharmonic order break the degeneracy between the various harmonic

ground states, yet they leave out a massive but nonextensive degeneracy (smaller

than the harmonic ground state) [133].

The ground state for S = 1/2 is argued to be a quantum spin liquid [49,134,135].

This spin-singlet ground state has a finite energy gap for triplet excitations. The

spin-spin correlation function decays exponentially with a correlation length shorter

than the lattice spacing [49].

3.2.2 Pyrochlore Hubbard model

Heisenberg interactions beyond nearest neighbour induce transitions to various or-

dered phases (e.g., collinear, nematic and multiple-q order) [136–138]. Also, easy

axis anisotropy, long-rage dipolar interaction, etc., lead to multiple-q ordered phases

[139]. It has been argued that beyond the Heisenberg limit the half-filled Hubbard

model on the pyrochlore lattice can be expressed as a highly frustrated intratetra-

hedral spin model with weak intertetrahedral perturbations [135]. This model has

an exactly solvable Klein point, about which the ground state is a three-dimensional

quantum spin liquid over an extended parameter region. This spin-liquid state hosts

massive spinon excitations, which are deconfined and move in all three dimensions

within the lattice [135]. For the Hubbard model on the pyrochlore lattice, the only

work on the Mott transition, that we know of, suggests a transition from a semimetal

to a spin liquid Mott insulator [140]. However, detailed properties near the IMT

are not available. A more complicated iridate model has been studied via cluster-

dynamic mean field theory [116,117], and will be discussed in a later chapter 6.

To explore interplay of itinerancy, correlation, and geometric frustration on the

pyrochlore lattice, we study the single band Hubbard model with nearest neighbour

hopping. We followed the approach mentioned in chapter 2 and present the results

here.
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Figure 3.3: (a) Tight binding density of states for the pyrochlore lattice. (b)-(d)

Results at T = 0 for: (b) variation of the average local moment mavg, (c) the density

of states, N(0), at the Fermi level, and (d) the resistivity ⇢(T = 0).

3.3 Results of our study

3.3.1 The ground state

As T ! 0 our MC mainly samples configurations that maximise P{mi}, or, alter-
nately, minimise the energy, i.e., �

�m
i

hHeffi = 0, This is the same as unrestricted

Hartree-Fock in the magnetic channel.

Upto a critical coupling, Uc1 ⇠ 3.5t, the minimisation yields mi = |mi| = 0 at all

sites. As a result upto Uc1 the electronic ground state is essentially tight binding,

the density of states for which is shown in Fig.3.3.(a). There is a sharply suppressed

DOS at Fermi level characteristic of the pyrochlore band structure, and a flat band

right above the Fermi level. For U < Uc1 the system is a semimetal.

For Uc1 < U < UPG where UPG ⇡ 5t we observe a small moment, orientationally

disordered, magnetic state. The average moment size is shown in Fig.3.3.(b), and

the full distribution later in the chapter. With the disorder caused by these moments

breaking the translation invariance of the pyrochlore lattice, the DOS around the

Fermi level, N(0) = (

1
2⌦)
R ⌦

�⌦ N(!)d!, where ⌦ = 0.05t, gains weight (Fig.3.3.(c)).

In a narrow region around UPG there is rapid increase in the mean magnitude of

the moments and, as a result, the DOS at Fermi level gets depressed again. The

detailed behaviour of the low energy DOS is shown later. At Uc2 ⇠ 5.2t the DOS
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Figure 3.4: Phase diagram (left) and the density of states at the Fermi level (right)

for varying U and T . Local moments appear at Uc1 but the state remains metallic,

turning insulating at Uc2. PG refers to a pseudogap state and the metal-insulator

transition line separates regions with opposite signs of d⇢/dT . The right panel high-
lights the ‘re-entrant’ feature in the low energy DOS with increasing temperature.

To avoid clutter we have not marked the UPG scale in the ground state in the left

figure.

at the Fermi level vanishes as a Mott gap opens. For U > Uc2 the moments are

large, and saturate to their atomic value, |mi| = 1, as U/t ! 1. The coupling of

the electrons to the local moments leads to weak scattering and a small resistivity

for Uc1 < U < UPG, a rapid growth in resistivity for UPG < U < Uc2, and zero d.c

conductivity for U > Uc2. This is shown in Fig.3.3.(d). We will discuss the resistivity

in much greater detail later, and just wanted to highlight the e↵ect within the T = 0

mean-field state here.

A comment about the magnetic state. Since there was no reason to expect

that the moments would have any obvious periodic pattern the only way to do the

‘minimisation’ was via simulated annealing employing Monte Carlo. In the U/t ! 1
limit the half filled Hubbard model leads to a Heisenberg model for the mi (classical,

in our SPA approximation) and for the pyrochlore Heisenberg antiferromagnet the

moments are known to be disordered [34, 74], albeit power law correlated [130, 131].

Our MC minimisation reproduces this state. At lower U/t, both in the Mott phase

and the ‘metal’, there are no simple results known - but our results suggest that

a ‘disordered’ state persists and correlations reminiscent of a classical spin liquid

phase [130] survive down to U/t ⇠ 8.
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3.3.2 Thermal phase diagram

Fig.3.4 (left panel) shows the U � T phase diagram in terms of the magnetic, trans-

port, and spectral properties that we observe. The following features emerge:

At finite T thermal fluctuations of local moments on the weak-coupling side

(U < UPG) lead to a quick low T increase in the low energy DOS, and then a

gradual decrease with further increase in T . On the strong-coupling side (U > Uc2)

the angular fluctuations of the local moments result in a slight smearing of the

Mott-gap with temperature and an increase in the low energy DOS. However in

the Mott-transition neighbourhood, the Mott gap quickly converts to a PG with

increasing T , leading to the widening of the PG region shown in Fig.3.4 (left panel).

We demarcate the finite T metal-insulator boundary in terms of the temperature

derivative d⇢/dT . A state is metallic if d⇢/dT > 0 and insulating if d⇢/dT < 0. The

spectral features and resistivity are discussed in detail further on.

Fig.3.4 (right panel) shows the DOS at the Fermi level varying with U and T .

On the Mott insulating side (U � Uc2) we observe the DOS slowly increasing with

temperature, which can be understood as the filling of the Mott gap. On the metal-

lic side (Uc1 < U < Uc2) we see a non monotonic behaviour. The DOS quickly

grows with temperature in the low temperature regime. It then reduces with further

increase in temperature, the weight getting transferred to high energy.

3.3.3 Density of states

Fig.3.5 shows the thermal evolution of the DOS in three of the four broad interaction

regimes of our phase-diagram.

(i) For U < Uc1 the ground state is characterized by mi = |mi| = 0. The electron

model reduces to the usual tight-binding pyrochlore lattice. This is characterised by

two flat-bands at the upper band edge and vanishing DOS at the Fermi energy. At

finite T , small ‘randomly’ oriented local moments appear in the system broadening

the flat bands and leading to a small DOS at the Fermi level. (ii) For Uc1 < U < UPG,

the ground state has small disordered local moments. The DOS is gapless and the

weight at the Fermi level is nonmonotonic with T , increasing initially and then

decreasing as a weak PG forms (see Fig.3.5.(a)). (iii) For UPG < U < Uc2 the

DOS has a PG at T = 0. This fills up initially with increasing T , Fig.3.5.(b), but

deepens again above a temperature scale that is visible in Fig.3.4 right panel. (iv)

For U � Uc2 the ground state has a hard gap. With increase in temperature, the

angular fluctuations of the local moments result in a slight smearing of the Mott-
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Figure 3.5: Density of states varying with temperature at three representative

regimes of our calculation. (a) U = 0.85Uc2 lies in the gapless metallic side,

(b) U = 0.98Uc2 corresponds to the pseudo-gap (PG) regime with a pronounced

dip in the DOS at the Fermi-level. and (c) U = 1.5Uc2 lies in the gapped Mott-

insulating side. Tlow = 0.01t in panel (a), where as Tlow = 0.0 for panels (b) and (c).

In panel (a) the low energy DOS reduces with increasing T , in panel (b) it increases

and then reduces with T , and in panel (c) it monotonically increases with T .

gap, and an increase in the low energy DOS Fig.3.5.(c). However, there exists a clear

Mott-gap until very high temperature, T ⇠ mavg(T )U .

3.3.4 Transport and optics

Fig.3.6 shows the d.c. resistivity ⇢(T ) for di↵erent U/t. We consider the following

regimes. (i) For U < Uc1 the T = 0 phase is a semimetal. Since this lies well below

the Mott transition we do not show the T dependence here. (ii) For Uc1 < U < UPG

the residual resistivity ⇢(0) is finite with d⇢/dT > 0 over the entire T range. The

resistivity can be understood in terms of a disorder induced density of states and

the scattering of electrons from the small disordered moments. This is the metallic

regime. (iii) For U � Uc2 the system has a clear Mott gap at T = 0 with ⇢(0) ! 1.

In this regime d⇢/dT < 0 over the entire temperature window. This is the Mott-

insulating regime. (iv) In the neighbourhood of Uc2, i.e, |U�Uc2| ⌧ Uc2, ⇢(T ) shows

a non-monotonic behaviour. We observe d⇢/dT < 0 in the low temperature limit,

crossing over to d⇢/dT > 0 with increasing T . The temperature at which d⇢/dT

changes its sign is indicated as the TMIT .

We observe TMIT increasing with U as seen in Fig.3.4. This behaviour can be

understood as the scattering of electrons from the background fluctuating local mo-

ments. As U increases, the average local moment magnitude mavg(U) also increases,
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Figure 3.6: Temperature dependence of the resistivity for di↵erent U/t near the

Mott insulator-metal transition. The normalising scale is ⇢0 = (~a0)/e2, where a0 is

the lattice spacing.

resulting in the increased scattering of the electrons and a depleting DOS at the

Fermi level.

Fig.3.7 shows the optical conductivity from our calculation as we cross the Mott

transition. The important points are as follows: (i) �(!) for U < Uc1 is a semimetal

at T = 0 and does not have a Drude peak. (ii) For Uc1 < U < UPG, �(!) shows

a response with the peak at a small finite frequency that slowly shifts to higher

values with increasing T . (iii) For U > Uc2 the system has a clear gap �(T ) in

the DOS. Thus �(!) = 0 for ! < !c ⇠ �(T ). With increasing temperature the

gap �(T ) reduces, resulting in small, but increasing low frequency weight of �(!)

and the peak position shifts to higher frequency. This Mott-insulating regime of the

pyrochlore lattice may have finite spectral weight at ! = 0 in the optical conductivity

�(!) at high temperatures. (iv) For UPG < U < Uc2 we have a pseudogap in the

DOS. �(! = 0) ! 0 in this regime. However with increasing temperature the zero

frequency weight increases initially and then decreases in accord with the behaviour

of the DOS in this regime.
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Figure 3.7: Optical conductivity at U/Uc2 =0.85, 0.98 and 1.5 with varying tem-

peratures. U = 0.85Uc2 shows a non-Drude like behaviour with peak at small and

finite frequency. With increasing U the peak moves to higher frequency and the

zero frequency weight decreases continuously and eventually there appears a gap for

U � Uc2.

3.4 Discussion

3.4.1 Overall scenario

Within our picture, the interaction e↵ects are encoded in the presence of the ‘local

moments’ mi. The size mi of this moment dictates the on site splitting at the site

Ri, and leads to a Mott gap in the overall DOS when Umavg � t. The spatial

correlations of mi decide whether the electron spin ~�i will display any long range

order.

Let us correlate the electron physics across the Mott transition to the behaviour

of the mi, we will then take up the e↵ective models for the mi themselves. (i) In

the metallic regime, U & Uc1, the mi’s are small and the orientations are random.

The scattering from these moments leads to a finite broadening, ⌧�1
k , of the mo-

mentum eigenstates. This generates a finite DOS at ! = 0, a non-Drude optical

response, and resistivity increasing with temperature (unlike in a semimetal). (ii) In

the Mott-insulating regime, U > Uc2, the mi’s are large and show short-range mag-

netic correlation (discussed next). The large mi’s lead to a Mott gap in the DOS

and optical conductivity, and a diverging resistivity as T ! 0. (iii) In the pseudogap

regime, the mi’s are moderately large and orientationally disordered. This results in

a strong suppression in the DOS at Fermi energy, but no gap, a large finite residual

resistivity and a non-Drude optical response.

We have shown mavg for varying U at T = 0 (Fig.3.3(b)). In the next section we

discuss the limiting models that dictate the behaviour of mi, and in the section after,
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we show detailed results on the size distribution of mi, and its spatial correlations.

3.4.2 E↵ective models in limiting cases

We have shown only a formal expression for the e↵ective magnetic Hamiltonian. To

get a feel for the magnetic states that arise it is useful to provide the approximate

analytic structure in limiting cases. These are (a) weak coupling, when U . t, and

(b) strong coupling, when U � t.

3.4.2.1 Weak coupling

Our e↵ective interaction looks like a ‘Hund’s coupling’, with the electron spin coupled

to a background moment through the coupling U . Given the formal similarity with

the Hund’s problem we can borrow the form of the weak coupling result [141] from

the literature:

Heff{mi} ⇠ �U2

4

X

ij

(�ij � 1

U
�ij)mi.mj +

U4

16

klX

ij

f(mi,mj,mk,ml) + ..

The structure of f(mi, ...ml) is complicated, involving two-spin terms such asmi.mj,

(mi.mj)
2
, three-spin terms such as (mi.mj)(mi.mk), and four-spin terms such as

(mi.mj)(mk.ml). The i, j, k, l can be separated by long distance in the weak-coupling

limit.

In contrast to the Hund’s problem, where there were predefined local moments,

in our case the moments have to arise from an instability in the electron system.

The leading instability involves the vanishing of coe�cient of the quadratic term,

i.e., 1 � U�0(q) = 0. This generates the moment and, if there is a prominent peak

at some q = Q in �0 the moments order with that wavevector. In such a situation

the fourth order term can be expanded about Q. The quartic term decides the

magnitude of the order at Q.

We have computed the �0(q) (see figure 3.8) for the half-filled pyrochlore band,

having tested the scheme for the quarter-filled band for which results are available

[142]. The �0(q) at half-filling is featureless, suggesting that there is no particular

wavevector that would be picked out. In that case the quartic term, whose detailed

structure we do not know at half filling, decides not only the magnitude but also the

spatial character of the order parameter field. It seems that the nonlinearity creates

a bimodal distribution for the mi, discussed further on, but without any significant

spatial correlation.
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Figure 3.8: �0(q) on the pyrochlore lattice. qx, qy and qz are in the units of ⇡. (Left)
For quarter-filling, �0(q) has dominant weight at eight q points in the Brillouin zone.

(Right) At half-filling, however, �0(q) has no dominant weight at any q, and seems

featureless.
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3.4.2.2 Strong coupling

For U � t, one can write an e↵ective magnetic Hamiltonian on the pyrochlore lattice

by tracing out fermions order by order in t/U . This gives us

Heff{m} = Htetr{m}+Hcoup{m}

Htetr{m} ⇠
X

↵

(J0 + J2P
2
↵ + J4P

4
↵ + ...)

Hcoup{m} ⇠ J 0
4

X

i2↵,j2�

mi.mj + J 00
4

k2↵\�X

i2↵,j2�

(mi.mk)(mj.mk)...

where P↵ =

P4
i=1 m

↵
i is the total spin on the tetrahedron ↵, Htetr describes interac-

tions between spins in a tetrahedron while Hcoup includes the intertetrahedron terms

with a common corner shared site. J0 = �8t2

U
(1� 4t2

U2 ), J2 =
t2

2U (1� 24t2

U2 ), J4 =
5t4

8U3

and J 0
4, J

00
4 ⇠ O(

t4

U3 ).

Deep in the Mott phase, one would drop the J4, J 0
4 and J 00

4 terms and obtain a

classical Heisenberg model, which does not show any long-range order or freezing,

but power-law correlations at low temperature [130, 131]. The correlations of the

electron spins, ~�i, can be computed in response to this. As U ! Uc2 the J4, J 0
4

and J 00
4 terms become important. These multi-spin exchange interactions modify the

magnetic ground state, but some of the Heisenberg limit features [130] are observable

(see next) in the structure factor down to U ⇠ 8t. The expansion in t/U ceases to

be useful once the gap closes.

3.4.3 Detailed magnetic structure

Fig.3.9 shows the the amplitude distribution of the magnetic moment P (m) for

di↵erent temperature and interaction regimes.

Fig.3.9(a) shows P (m) for U = 0.85Uc2. In the ground state there is a two peak

structure, highlighting the presence of amplitude inhomogeneity. We have checked

that there is no significant density inhomogeneity, or charge ordering, in the system.

With rise in temperature, P (m) shows a broad single peak behaviour with the peak

shifting towards large m. This behaviour is seen in the Uc1 < U < Uc2 regime.

Fig.3.9(b) shows P (m) for U ⇠ Uc2, just in the Mott insulating side. The ground

state has a narrow single peak feature indicating an amplitude homogeneous Mott

state. With rise in temperature this narrow peak broadens, the peak position moves

towards higher m. Fig.3.9(c) shows P (m) for U = 1.5Uc2, well in the Mott regime.
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Figure 3.9: Temperature dependence of P (m) for U = 0.85Uc2, Uc2 and 1.5Uc2 for

indicated temperatures.

P (m) has a single peak feature which broadens with temperature and shifts to higher

m. The fluctuations about the mean are weaker in the insulator than in the metallic

state.

Fig.3.10 shows the q dependence of the magnetic structure factor for varying

T and U . We observe that even at T = 0, S(q) has no ordering peak at any

q’s. The magnetic ground state is disordered. Nevertheless for both U ⇠ Uc2 and

U = 1.5Uc2 the weight distribution is not completely homogeneous in q and have

some prominent features. This signature survives to T ⇠ 0.03t. Examination of

the classical Heisenberg model has revealed that there are ‘pinch point’ features in

scattering, arising from the constrained ground state, that survive [143] to T ⇠ 0.1J ,

where J is the exchange scale (in our case J = t2/U). Obtaining such a result,

indicative of power law correlations, requires larger system size (& 10

3
), much longer

annealing (& 10

8
) MC weeps), and a more sophisticated algorithm instead of single

spin update. Due to our computational cost and size limitations we only get a hint

of this spin liquid state. By the time T ⇠ 0.05t, which is ⇠ J/2 at U = 1.5Uc2, the

q dependence is completely featureless.

3.4.4 Variational check

Since MC hints that the magnetic ground state involves disordered local moments

for U > Uc1, we tried a simple variational check. We set up trial configurations

{mi} with random orientation, but uniform magnitude m0, with m0 as a variational

parameter. This di↵ers from the real situation where the mi’s have some amplitude

inhomogeneity and also orientational correlation. Energy minimisation confirms the

presence of a small moment phase, beyond some Ulow, with an initial slow growth

of m0(U) and then a rapid crossover to large values at some Uhigh (see Fig.3.11).
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Figure 3.10: The full magnetic structure factor S(q) for U = 0.85Uc2, Uc2, 1.5Uc2

(along column) and T = 0.0, 0.02t and 0.05t (along row). We use the notation

q =

2⇡
L
(nx, ny, nz), n’s are integers. The size of a dot signifies relative weight at a

given q while its color represents the actual magnitude of S(q).

The Ulow and Uhigh are about 10% higher than MC estimates and may get reduced

if spatial correlations are included.

3.5 Conclusion

We have studied the Mott transition in the half-filled Hubbard model on a pyrochlore

lattice. The geometric frustration and the corresponding large magnetic degeneracy

prevents the occurrence of any magnetic order in the deep Mott state. This continues
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Figure 3.11: Comparison of the variationally obtained average moment value with

result from the Monte Carlo as T ! 0.

all the way to the insulator-metal transition. Beyond the insulator-metal transition

there is a window with a pseudogap in the density of states, disordered local mo-

ments, and a large residual resistivity. At even weaker interaction one recovers the

non magnetic band semimetal. Thermal fluctuations destroy the ‘spin-liquid’ corre-

lations in the insulating state, converting the system to an uncorrelated paramagnet.

The low energy electronic density of states and the resistivity show a monotonic tem-

perature dependence deep in the metallic and insulating phases, but a non monotonic

character near the insulator-metal transition.

Our main results, are the following: (i) Increasing interaction in the ground state

leads successively to a small-moment metal, then a narrow insulating pseudogap

window, and finally to the gapped Mott insulator. (ii) The resistivity and the low

energy density of states have a strongly non monotonic temperature dependence near

the metal-insulator transition (MIT). (iii) The finite moment phases, from near the

MIT to the deep Mott regime, are all disordered. Well in the Mott phase they display

what seems (within the limits of our system size) to be power law spatial correlations

that survive to a small finite temperature.

Though it is expected that additional quantum fluctuations modify qualitatively

the underlying magnetic state at low temperature, we don’t expect the local moments

to vanish in the insulating phase, due to the presence of finite Mott gap. One

possibility is that quantum fluctuations may restore the translation invariance in the

‘small-moment’ metallic phase, making it perfectly conducting at T = 0.
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CHAPTER4
MOTT TRANSITION ON THE

CHECKERBOARD LATTICE

In chapter 1 we qualitatively described the emergence of a Mott insulating state due

to increasing interaction in the half-filled Hubbard model. This chapter discusses

the Mott transition on the checkerboard lattice, the two dimensional analog of the

pyrochlore lattice. The lattice is shown in the Fig.4.1. In terms of electron hopping

it is equivalent to a square lattice with nearest neighbour (NN) hopping t, and next

nearest neighbour (NNN) hopping also of amplitude t on alternate plaquettes.

4.1 Introduction

Frustrated magnets arise due to the coupling between electrons localised on non-

bipartite lattices [144–146]. The localisation stems from electron correlation, a con-

crete example being the Mott insulating phase of the half filled Hubbard model. The

U/t � 1 limit in such cases involve virtual hopping of the electrons, and induces

antiferromagnetic exchange. With weakening U/t, the electrons ‘delocalise’ over

progressively longer distance and mediate longer range couplings [147, 148]. These

additional couplings are crucial in deciding the physics when the U/t � 1 Heisenberg

limit involves a macroscopically degenerate ground state. The checkerboard lattice

is in this category [18].

Two complications arise with decreasing U/t: (a) the size of the moments dimin-

ish as the system heads towards the Mott transition, and (b) the range of electron

hops increase and the exchange processes get harder to quantify. Near the insulator-

metal transition (IMT) the magnetic correlations, and their impact on electronic
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Figure 4.1: The checkerboard lattice with alternating ‘empty’ and crossed plaque-

ttes. All hopping amplitudes (diagonal and axial) are equal. The structural unit

cell contains two atoms. Each crossed plaquette, in isolation, can be viewed as a

tetrahedron.

properties, have to be worked out self-consistently.

This has indeed been attempted for various frustrated lattices, e.g, the edge-

shared triangular [75–80] and FCC [83, 84, 149] lattices, the corner shared kagome

[81, 82] and pyrochlore [85, 87] lattices. Surprisingly, very little attention has been

given on this direction to the checkerboard lattice. The checkerboard lattice shares

similarity with the pyrochlore lattice in having corner shared tetrahedra, but the

connectivity is di↵erent (all bonds in the pyrochlore tetrahedron are equal, which

is not for the case for the checkerboard tetrahedron). So it would be interesting

to check if this lowering of the symmetry of the checkerboard lattice allows any

magnetic order at low temperature arising due to ‘order by disorder’. In such a case,

its impact on the electronic phases would also be worth investigating.

For the checkerboard lattice the Heisenberg antiferromagnet is well understood

[18,42,150–158]. Like the pyrochlore lattice, the classical ground state on the checker-

board lattice is macroscopically degenerate [18] and there is no order at any temper-

ature. The quantum, S = 1/2, case is argued to be a plaquette valence-bond crystal

state [42, 150–158] - the product of singlets on the uncrossed plaquettes.

There is limited work on the checkerboard Hubbard model, focused mainly on the

ground state. One study [159] suggested that increasing U/t leads to a transition from

the semi-metallic band state to a charge-ordered insulator, and then to a magnetically

disordered Mott insulator, while another reports a first order transition from the

semi-metal to an insulating state with plaquette magnetic order [160].

The varying results, based on di↵erent methods [159, 160], leave some questions

unanswered:
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• What magnetic ground state emerges within a Hartree-Fock (HF) scheme?

• What are the e↵ects of thermal fluctuation on this magnetic state?

• What is the impact of the magnetic order, and fluctuations, on the electronic

properties near the IMT?

We address these questions using our approach with a single band Hubbard model

on the checkerboard lattice. Our approach, as discussed before, is a combination of

Hartree-Fock theory for the ground state and an auxiliary-field-based Monte Carlo

to handle thermal fluctuations. We use two approaches to study Heff . (i) At finite T

we use a Monte Carlo (MC) approach, using the traveling cluster scheme to generate

equilibrium configurations of the ~mi. We typically use a N = 24 ⇥ 24 lattice with

8⇥ 8 update clusters. We anneal down from T = 0.1t (since we see no correlations

above that temperature) and use 10

4
MC sweeps per temperature, going down to

T = 10

�4t. Physical properties are averaged over ⇠ 100 configurations at each

T . (ii) At T = 0 we use a variational scheme, trying out a family of periodic ~mi

configurations (both planar and non-planar) and cross check our results with the

Monte Carlo based annealing of the ~mi.

To characterise the magnetic state we calculate the following indicators with the

equilibrium MC configurations.

S(~q) =

1

N2

X

ij

h ~mi. ~mjiei~q·( ~Ri

� ~R
j

)

⌧avg =

1

N

X

i

Z t
max

0

dt0h ~mi(0). ~mi(t
0
)i

P (m) =

1

N

X

i

h�(m� |~mi|)i

In the expressions above N is the system size and the angular brackets stand for

thermal average. In sequence, (i) S(~q) is the thermally averaged magnetic structure

factor. The onset of rapid growth in S(~q) at some wavevector

~Q indicates magnetic

ordering. In the thermodynamic limit, there would be no ‘true’ long-range magnetic

ordering at finite temperature in two dimensions (2D). Our ‘magnetic order’ refers

to magnetic correlation length growing to system size. We have checked the size

dependence of the various temperature scales associated with these crossovers within

the MC. Our MC runs on 16 ⇥ 16, 24 ⇥ 24 and 32 ⇥ 32 lattices show that the

characteristic temperature scales reduce very slowly with increasing size. (ii) To

consider the possibility of freezing without long range order we compute a MC based
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‘relaxation time’ [161] ⌧avg where tmax ⇠ 10

4
steps and t0 is the MC ‘time’. If on

lowering the temperature, the system undergoes a magnetic ordering transition, then

there is a rapid growth in ⌧avg accompanied by a growth in the structure-factor at

the wavevector

~Q. The case where one observes a rapid growth in ⌧avg but not in the

structure-factor at any

~Q, suggests a glass transition [161]. (iii) The distribution of

the magnitude of the auxiliary moments is given by P (m). Since the presence of a

gap in the electronic density of states depends on the typical size of the ~mi, P (m) is

an important input in inferring transport. The mean moment mavg =
R
mP (m)dm.

In the next section we present our results, followed by a detailed discussion on

the magnetic behaviour and its impact on the electronic properties.

4.2 Results of our study

4.2.1 Ground state

Let us focus on the low temperature result, at T ⇠ 10

�4t, obtained via a MC on

lowering T . We label this as T = 0 in the lowest row in Fig.4.2, which shows

the structure factor versus qx and qy. The leftmost panel, typical of the window

3t < U < 5.3t, show no prominent features in the structure factor. It is suggestive

of local moments with weak and short range correlations. We will need to look at

the local moment magnitudes to fully characterise this window. For U � 5.3t the

structure factor shows distinct peaks at

~QF1 = (⇡,0) and ~QF2 = (0,⇡) with the weight

at peak position increasing initially with U/t and saturating for U/t � 10. We call

this the ‘flux’ phase. The real space arrangement of the spins in the ‘flux’ phase is

shown in the lower panel in Fig.4.3.

In our MC runs, we obtain the ‘flux’ state at the lowest temperature only in a

small window of interaction strength, U = [5.3t, 5.7t], near the IMT. The system

encounters a ‘120 degree’ spin arrangement when cooled from high temperature, and

does not manage to transit to the flux state, despite the flux state having the lowest

ground state energy for all U/t � 5.3. On heating up from the flux state the order

survives to a low finite T and then the system enters the 120 degree phase. We

will discuss the results of the variational approach and its consistency with the MC

results further on.
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Figure 4.2: Magnetic structure factor S(~q) over qx, qy 2 [0, 2⇡] for di↵erent temper-

ature and interaction strengths. The value of S(~q) follows the colour code. The left

column, at U = 5t has no prominent peaks at any temperature, indicating a short

range correlated state. The middle and right columns have distinct peaks at T = 0,

at locations corresponding to flux-like state, but the peak location shifts to that of

a 120 degree correlated state at a small finite temperature.

4.2.2 Finite temperature correlations

There are four broad coupling regimes in terms of temperature e↵ects. The data in

Fig.4.2 is for the two central regimes, but we discuss all the four regimes below.

(i) At very weak coupling, U < 3t, there are no local moments in the ground

state. Increasing temperature generates small moments but there are no significant

spatial correlations between them. Since this state is fairly obvious we have not

included the result for this regime in Fig.4.2.

(ii) At somewhat larger couplings, 3t < U < 5.3t, there are disordered moments

in the ground state. These moments seem to be frozen on the basis of ⌧avg estimates

and the frozen state survives to a ‘spin-glass temperature’ TSG. The left column in

Fig.4.2 shows the T dependence of magnetic structure factor S(~q) in this coupling

window. It is clearly seen that S(~q) is featureless in this regime.
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Figure 4.3: Top: The phase diagram of the checkerboard Hubbard model at half-

filling. The ground state is a paramagnetic metal (PM) for U  3t, a spin glass

metal (SGM) for 3t < U < 5.3t, and an insulator with ‘flux’ like correlations (I-F)

for U � 5.3t. With increase in temperature, the ‘flux’ correlated phase transforms

to a 120 degree correlated state (I-120

o
) and then to the paramagnet (PI). The

120 degree phase is gapped, except for 5.3t  U  6.5t, near the insulator-metal

transition, where it shows a pseudogap (PG). The di↵erent temperature scales shown

in this panel correspond to magnetic correlation length growing beyond system size.

These temperature scales are crossover scales from one magnetic phase to another.

TSG represents a crossover from a PM to a SGM phase, Tflux represents a crossover

from flux phase to 120 degree phase and T120o refers to a crossover from 120 degree

state to a paramagnet. Bottom: A schematic of the ‘flux’ phase (left) and the 120

degree phase (right) on the checkerboard lattice.

(iii) For larger interaction strength, U ⇠ [5.3t, 8t], S(~q) shows peaks at wavevec-

tors

~QF1 = (⇡, 0) and ~QF2 = (0, ⇡) in the ground state. We call this the ‘flux’ phase.

The amplitude at these wavevectors decrease with increasing T and beyond a scale

T = Tflux new peaks appear at

~QT1 = (⇡/3, 2⇡/3) and

~QT2 = (2⇡/3, ⇡/3). These

peaks correspond to a 120 degree arrangement of the moments. This is visible in the

middle and right columns in Fig.4.2. The weights at the

~QT increase quickly with

temperature, reach a maximum, and then decrease - vanishing at T = T120o . For

T > T120o there is no peak in S(~q) for any ~q, indicating the paramagnetic regime. In

this U/t window T120o increases with increasing U .
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Figure 4.4: Variation of structure factor peak amplitude at the flux wavevector

~QF1 = (⇡, 0) and the triangular arrangement wavevector

~QT1 = (⇡/3, 2⇡/3) with

temperature.

(iv) In the asymptotically large coupling regime, U & 8t, the same sequence of

flux and 120 degree correlations are obtained with increasing temperature, but the

characteristic T scales fall with increasing U/t.

The top panel in Fig.4.3 shows the phase diagram based on the S(~q). Fig.4.4

shows the T dependence of the structure factor peak, highlighting the multiple ther-

mal crossovers observed within our MC. Here S( ~QF1) corresponds to the structure

factor for flux like order, whereas S( ~QT1) corresponds to the structure factor for ‘120

degree’ like order.

4.2.3 Local moment distribution

Fig.4.5(a) shows the behaviour of the mean local moment magnitude mavg with

interaction strength. In the ground state, there is no local-moment for U  Uc1 ⇠ 3t.

There is a small average moment for Uc1  U < Uc2 ⇠ 5.3t. The average moment

increases with interaction strength in the [Uc1, Uc2] window but for U = Uc2 there is

a jump in the average moment value. The average moment again increases slowly

for U > Uc2 and saturates to mavg = 1.0 as U/t ! 1.

With increase in temperature there are both orientational and magnitude fluc-

tuations in the moments. Though the average moment remains unchanged in the

strong interaction side, it shows significant changes in the weak interaction side due

to the small amplitude sti↵ness.

Fig.4.5(b) shows the P (m) for the ground state. This evolves from a broad

distribution in the spin glass window to essentially a delta function in the Mott

phase. To get a feel for the thermal fluctuations at di↵erent interaction strengths
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Figure 4.5: (a) Temperature dependence of average local moment mavg with U/t.
(b) P (m) in the ground state for varying U/t. (c)-(e) Temperature dependence of

P (m) for U/t = 5.0, 6.0, 7.0.

we have plotted the P (m) vs m/mavg for U = 5t, 6t, 7t and di↵erent temperatures

(Fig.4.5(c)-(e)). At U = 5t the distribution is already broad at T = 0 due to

the amplitude inhomogeneity in the glassy state. The low T for which the data

is shown does not lead to significant change. At U = 6t, 7t the T = 0 result is

essentially a delta function and it broadens slightly on raising temperature. On the

strong coupling, Mott, side the dominant fluctuations are in the orientation of the

moments, not their magnitude.

4.2.4 Insulator-metal transition

The first guess about the metallic or insulating behaviour of the electrons can be

made from the single particle density of states N(!). Fig.4.6 shows the density of

states for di↵erent U/t and temperatures. For U/t = 5.0 the ground state has small

mavg, ⇡ 0.1, and spatially disordered local moments. These local-moments are not

large enough to open a gap at the Fermi energy. They broaden the flat tight-binding

band, generating finite DOS at the Fermi energy. The system would be metallic in

this regime. For U/t = 6.0 the local-moments are sizable, mavg ⇡ 0.7, large enough

to open a gap in the DOS. Thus the system is insulating in this regime. With further

increase in U/t, mavg increase monotonically saturating to mavg ⇡ 1.0.
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Figure 4.6: Electronic density of states (DOS) for U/t = 5.0, 6.0, 7.0 and varying

temperature. The upper row shows the DOS over a wide frequency window to

emphasize its global features while the lower row shows the DOS over a much smaller

frequency window centred on the Fermi level.

With increase in temperature the local moments fluctuate, both in amplitude and

orientation. At weak coupling, U < Uc2, the small fluctuating moments broaden the

DOS feature around ! = 0 maintaining the metallic nature. In the strong coupling

side, U/t > 7.0, the sizable moments maintain a gap in the DOS despite strong

angular fluctuations. At intermediate coupling, 5.0 < U/t < 6.4, the DOS shows a

dip at ! = 0 without any clear gap. We call this ‘pseudogap’ (PG) phase. The PG

feature survives upto very large temperature.

The metallic or insulating character should actually be inferred from a conduc-

tivity calculation. At large U/t the presence of a gap is enough to ensure that the

system would be insulating, without having to compute the conductivity. On the

small U/t side however, the situation is more complicated since we have a disordered

situation in 2D. Since the disorder is weak and of a magnetic nature (rather than a

scalar potential) we guess that spin flip scattering would sustain a metallic state.
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Figure 4.7: (a) Ground state energies of variational Neel, stripe, flux, the 120 de-

gree state, and the state obtained from Monte-carlo cooling. Energy of the Neel state

is taken as the reference energy. (b) Energy due to the quartic hopping processes

(leading t4/U3
corrections). The energy change of the Neel, 120 degree state, and dis-

ordered zero-plaquette-spin configurations (planar and non-planar) are higher than

the flux phase (they all have the same energy in the Heisenberg limit). (c)-(d) Free

energy due to low-lying excitations on the variational Neel, flux, 120 degree triangle

states at two values of U/t. The methodology is explained in the text. Notice that

the free energy of the 120 degree state falls below that of the flux phase at a tem-

perature that reduces with increasing U/t. Np is the number of plaquettes on the

lattice.

4.3 Discussion

4.3.1 Origin of the magnetic phases

Let us describe the variational scheme that we have used to complement the Monte

Carlo and then move on to the analysis of the magnetic phases observed in Fig.4.2.

We set up trial states using spiral spin configurations, ~mi = m0(cos( ~Q. ~Ri), sin( ~Q. ~Ri), 0),

with uniform magnitude m0 and wave-vector

~Q as variational parameters, and min-

imised the energy of Heff at half-filling. This di↵ers slightly from the real situation

where the ~mi’s have some amplitude inhomogeneity. We also included several ‘non

spiral’ configurations, notably the flux, that satisfy the local constraint of vanishing

plaquette spin.
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Comparing the minimum energy obtained via variational calculation with that

from the MC cooling run, see Fig.4.7(a), confirms that the flux state is the ground

state for U � Uc2. However the inhomogeneous small moment ‘spin glass’ phase

obtained by our Monte-Carlo cooling indeed turns out to be the lowest energy state

for Uc1 < U < Uc2, lower than the trial periodic configurations.

How do we understand the magnetic phases? It is helpful to consider three

separate regimes: (i) The U/t � 1 window where only the leading exchange term

J2 ⇠ t2/U is relevant, and the moment size mavg ⇠ 1. (ii) Intermediate U/t, down to

U ⇠ Uc2, where the moment size is still large but higher order spin-spin couplings,

in particular J4 / t4/U3
, is significant. Finally (iii) the ‘weak coupling’ end, U ⇠ 3t,

where the moment is small and it is more appropriate to expand about the band limit

rather than the Mott state. Let us consider the ground state and thermal e↵ects in

succession.

4.3.1.1 Ground state

In the strong coupling limit, we can write an e↵ective magnetic Hamiltonian on this

lattice by tracing out the fermions order by order in t/U (see appendix A ). This

gives us

Heff{m} = E(2){m}+ E(4){m}+ ...

E(2){m} = J2
X

⇥

X

hi,ji

(mi.mj � 1)

E(4){m} = E(4)
⇥ {m}+ E(4)

coup{m}

E(4)
⇥ {m} = J4

X

⇥
[

X

hi,ji

{5
2

(mi.mj)
2 � 13mi.mj � 1}

+

X

hi,j,ki

{5(mi.mj)(mj.mk)}

+

X

hi,j,k,li

{5(mi.mj)(mk.ml) + 5(mi.ml)(mj.mk) + 5(mi.mk)(mj.ml)}]

E(4)
coup{m} ⇠ J 0

4

X

i2⇥1,j2⇥2

mi.mj + J 00
4

k2⇥1\⇥2X

i2⇥1,j2⇥2

(mi.mk)(mj.mk)...

where ⇥ represents the crossed plaquette. E(2){m} corresponds to the second order

perturbation energy with J2 = t2/U , and E(4){m} corresponds to the fourth order

perturbation energy. E(4)
⇥ describes the 4th order terms within a crossed-plaquette,
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while E(4)
coup describes the interplaquette terms with a common corner shared site.

We have found J4 =
t4

U3 and J 0
4, J

00
4 ⇠ O(

t4

U3 ).

In regime (i), one would drop the E(4){m} term and obtain a classical Heisenberg

model. On the checkerboard lattice the Heisenberg interaction can be written as the

sum of squares of the total spin on each plaquette,

~SP =

P
i ~mi, where the sum

is over spins in individual crossed plaquettes. This feature arises due to the ‘fully

connected’ nature of the crossed plaquettes, which are essentially tetrahedra, and is

true of the pyrochlore lattice as well. The minimum energy corresponds to all

~SP = 0

but there is a macroscopic degeneracy in the number of ways this can be satisfied. In

such degenerate situations thermal fluctuations sometime select out collinear ordered

configurations, due to the entropy gain [32]. For the checkerboard lattice it seems

that free energy barriers are small and the thermal ‘order-by-disorder’ mechanism

does not select out an ordered state. The classical Heisenberg limit, U/t ! 1,

is disordered at all temperatures as in the pyrochlore lattice [?]. For the Hubbard

model the actual spins are S = 1/2 and not classical, and a 1/S expansion about

the classical limit suggests that a ‘quantum order by disorder’ mechanism selects a

valence bond solid (VBS) ground state [162–164].

In regime (ii) the contribution of E(4){m} becomes important. This can be

seen as follows. Various configurations satisfying the local constraint,

P
i2⇥ mi = 0

have equal E(2){m}. However the Hubbard energy for these di↵erent configura-

tions are found to be di↵erent. Thus the crucial di↵erence to the Hubbard energy

is dominated by the E(4){m} contribution. We believe these multi-spin exchange

interactions are responsible in modifying the magnetic ground state away from the

Heisenberg limit. In figure 4.7.(b), we show this contribution as (E�E(2){m})/J2 ⇡
(t/U)

2f(mi,mj,mk,ml) with the expected quadratic behaviour as t/U ! 0 (or

U/t ! 1). Its also seen that the flux state has the largest lowering of energy to

O(t4/U3
). This trend persists down to U ⇠ Uc2. The strong coupling expansion in

t/U ceases to be useful once the Mott gap closes.

(iii) At weaker coupling, U ⇠ [3t, 5.3t], the system is gapless and the moments

are small. The state as U ! 3t is better understood as an instability in the tight

binding band, controlled by the susceptibility �0(~q). In non frustrated lattices this

usually has a prominent peak at some ~q =

~Q, and the condition 1 � U�0(
~Q) = 0,

defines the onset of ordering at Uc. We have shown �0(~q) for the checkerboard lattice

(see figure 4.8). We observe that �0(q) has dominant weight over wide regions of

q space, rather that at specific a wavevector or few q points. This suggests that

as local moments are formed, they encounter competing interactions in real space
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Figure 4.8: �0(q) on the checkerboard lattice at half-filling. It has dominant weight

over di↵erent regions of q space (seen as dark-red), indicating an instability towards

a disordered magnetic state.

resulting in a disordered phase. This, within our scheme, appears to be a spin frozen

state.

4.3.1.2 Finite temperature

The finite temperature state is dictated by the free-energy of the possible low energy

ordered configurations. While the entropy di↵erence around di↵erent ordered con-

figurations is not large enough to stabilise long range order in the Heisenberg limit,

we wanted to check how the situation is modified in the Hubbard model. We tried

a rather crude free energy estimate to gain some insight since the explicit ~mi based

model is not available at intermediate coupling.

We considered a homogeneous ordered state and chose a reference site

~R0. We

create a single spin ‘fluctuation’ on the ordered state by giving angular twists to ~mR0

without disturbing the other ~mi’s. We calculate the energy cost for these fluctuations

with respect to the ordered state by using the Hubbard model. This process was

repeated for random twists distributed uniformly on the surface of a sphere and for

di↵erent temperatures. An averaging over the reference site also had been taken into

account. The density of states of these single spin excitation energies allows us to

roughly estimate the free-energy. It is expected that the states with a high density

of low energy excitations would be preferred since they have the largest entropy.

Our results Fig.4.7(c),(d) show that at intermediate temperature the checker-

board Hubbard model prefers a 120 degree correlated state (which does not satisfy

the plaquette constraint) due to entropic reasons. The 120 degree state, however,

has a higher internal energy than the flux state and loses out to it at a lower T .
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We would like to point out the di↵erences of our results in the present study,

from the earlier studies [160] of the Mott transition on the checkerboard lattice. We

address it in terms of the validity of our approximation in the U �T plane based on

T = 0 and finite T results.

• At T = 0, three features are noteworthy. (a) The Uc for the Mott transition:

we obtain Uc ⇠ 5.3t, the only other value we know in the literature is Uc ⇠ 6.7t.

These are in the same ballpark. (b) The large U state: we obtain a flux like

state while another study [160] uses a more sophisticated approach to obtain

a plaquette singlet state. Within our approach we believe the singlet state

can be accessed only if we include quantum fluctuations of the mi’s. Both

the plaquette singlet and the flux state lift the classical degeneracy of the

Heisenberg limit but through di↵erent mechanisms. (c) The low U metallic

spin glass would be susceptible to quantum fluctuations, since it is a gapless

state, and the Hartree-Fock result is likely to be modified in a full theory.

• Finite T : While our T = 0 results have the limitation of being Hartree-Fock,

increasing T brings into play the fluctuations that were suppressed at T = 0. In

fact as T grows these classical fluctuations dominate over the quantum fluctu-

ations and dictate the magnetic correlations and the electronic properties. To

our knowledge, this aspect of checkerboard Mott physics has not been explored

before.

4.3.2 Magnetic impact on electrons

Within our framework the electronic properties are dictated by the behaviour of the

local moments, which in turn is decided by the electrons. We wish to establish a

more quantitative connection between the magnetic order and the electronic DOS in

some limiting cases.

For T = 0 and U  Uc1 there are no local moments and the system is described

by the tight-binding model. On the checkerboard structure this leads to a flat band

at the upper band edge. For Uc1  U < Uc2 small moments show up, modifying the

tight-binding DOS by broadening the flat band. For U � Uc2 the moments are sizable

and they open a gap in the DOS. The ‘flux’ like order has a unique 4-peak structure

in the DOS with a wide gap around the Fermi level. The 120 degree ‘triangle’ phase

shows pseudogap in the intermediate interaction window and has a gapped phase at

strong interaction side. The specific behaviour of the DOS in these magnetic ordered

states can be understood as follows.
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Figure 4.9: Electronic DOS in the ideal flux and 120 degree spin configurations.

For the same U/t the 120 degree state has a smaller gap than the flux phase.

In the ‘flux’ phase, the local-moment at any lattice site

~Ri can be parametrized

as ~mi = (mix,miy, 0) where

mix =

m

2

(ei
~Q
F1 .

~R
i

+ ei
~Q
F2 .

~R
i

)

miy =

m

2

(ei
~Q
F2 .

~R
i � ei

~Q
F1 .

~R
i

)

This magnetic ordering leads to two distinct energy levels at ±U
2 , each with a

two-fold degeneracy. As electrons move on this magnetic background, they further

split to bands ±(U/2) ± t
p

2 + cos2kx + cos2ky. Thus the electron motion in the

‘flux’ phase gives rise to the unique 4-peak structure in the DOS. The minimum gap

in the DOS for this state is U � 4t.

In the ‘120 degree’ phase, the local-moment at any lattice site

~Ri can be parametrized

as ~mi = (mix,miy, 0) where mix = mcos(2 ~QT1 . ~Ri), miy = msin(2 ~QT1 . ~Ri). This

phase also has two-fold degenerate energy levels at ±U
2 . Itinerant electrons on this

magnetic background lift the degeneracy by t[�g(kx, ky)± h(kx, ky)]/4 where

g(kx, ky) = [4cos(kx � ky) + cos(kx + ky) +
p
3sin(kx + ky)]

h2
(kx, ky) = [26 + 8cos(2kx + 2ky)� cos(2kx � 2ky)� 8cos(2kx)

�8cos(2ky)� 8cos(kx + ky) + 16cos(kx � ky)

+

p
3sin(2kx � 2ky)� 8

p
3sin(kx + ky)� 8

p
3sin(2kx)]

Thus the motion of electrons in the ‘120 degree’ phase retains the upper and lower

Hubbard band features without undergoing any further splitting of bands (unlike the

‘flux’ phase). The minimum gap in the DOS for this state is U � t[(h+ g)max +(h�
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g)max]/4. We observe that in the Brillouin zone [(h+g)max+(h�g)max] > 16. Thus

the gap for the ideal ‘flux’ phase is always larger than the ideal ‘120 degree’ phase

for same interaction strength Fig.4.9.

4.4 Conclusion

We have studied the single band Hubbard model at half-filling on the checkerboard

lattice. The Hartree-Fock ground state is non magnetic upto an interaction strength

Uc1, then a small moment spin glass upto Uc2, and a ‘flux’ ordered state beyond. The

Mott transition, associated with a gap opening in the density of states, occurs at Uc2.

The presence of order di↵erentiates this lattice of corner shared ‘tetrahedra’ from its

three dimensional counterpart, the pyrochlore lattice, which remains disordered at

all interaction strengths. A static auxiliary field based Monte Carlo provides an

estimate of the temperature window over which the magnetic correlations survive.

Strikingly, we observe that the flux order is replaced by a ‘120 degree’ correlated

spin arrangement at intermediate temperature before all order is lost. We provide

an entropic argument for this e↵ect.

Our results reveal a wide variety of magnetic and spectral regimes on this lattice,

summarised below.

• Strong coupling: Deep in the Mott phase the Hubbard model selects out a flux

like state from the infinitely degenerate manifold of the checkerboard Heisen-

berg model. This persists as the low temperature state down to U ⇠ 5.3t.

Increasing temperature promotes a 120 degree spin arrangement, before the

final loss of order.

• Weak coupling: Small disordered moments persist below the insulator-metal

transition (at U ⇠ 5.3t) down to U ⇠ 3t.

• Electronic state: The electrons are gapped in the flux phase, but the crossover

to the 120 degree state leads to a reduction of the gap. As U/t reduces, the

120 degree phase becomes pseudogapped.
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CHAPTER5
MOTT PHYSICS IN THE PYROCHLORE

MOLYBDATES

5.1 Introduction

As we have seen in earlier chapters, the metal-insulator transition on a frustrated

lattice occurs in the background of short-range magnetic correlation and the deep

Mott insulating state is often a spin-liquid. It would be vital to have experimental

realisations to test out the predictions of theory. While there is significant e↵ort in

analysing the quasi 2D -BEDT organics [88–91] in terms of the triangular lattice,

3D realisations of ‘Hubbard physics’ on a frustrated structure are rare. Materials

like the manganites [93] do involve strong correlation e↵ects (and much else) but are

on a bipartite structure - with relatively simple magnetic order. In this situation the

discovery of the rare-earth (R) based pyrochlores, the molybdates [1, 2, 86, 94–96],

and the iridates [8–10,97], provide a breakthrough.

Both the molybdates and iridates show a metal-insulator transition as the rare-

earth ionic radius, rR, is reduced [8,9,95,96]. There are, however, key di↵erences in

terms of (i) the degrees of freedom and couplings, and (ii) the magnetic state that

emerges in these two families. This chapter focuses on the molybdates, the next one

discusses the iridates.

The active degrees of freedom in the molybdates, R2Mo2O7, include one electron

per Mo in a twofold degenerate orbital, Hund’s coupled to a S = 1/2 moment on

the same ion. The electrons have onsite Hubbard repulsion (U) between them while

the local moments have a nearest neighbour antiferromagnetic coupling, JAF . The

Hund’s coupling drives double exchange (DE) ferromagnetism, opposed by AF su-
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perexchange, while Hubbard repulsion promotes a Mott insulating state. Reducing

rR reduces the hopping - weakening DE and also enhancing the e↵ect of Hubbard

repulsion, while increasing pressure is supposed to (mainly) a↵ect the antiferromag-

netic coupling [96]. There are several major questions left unresolved by existing

theoretical work:

• At ambient pressure the metal-insulator and magnetic ‘transition’ are simulta-

neous, is that true with increasing pressure as well?

• Is there an ‘universal’ quantity that dictates the MIT trajectory over a large

pressure window?

• What is the fate of the coupled spin-orbital state for changing pressure and

rare earth radius?

• What is the low energy spectral behaviour in the vicinity of the MIT as the

pressure is varied?

• What is the quasiparticle character close to the Mott transition?

• Can we obtain realistic thermal scales for the magnetic transitions?

We employ our real space approach, equivalent to unrestricted Hartree-Fock at zero

temperature, using a static auxiliary orbital field to handle the Hubbard interaction.

We solve the resulting ‘electron - local moment - orbital moment’ problem via Monte

Carlo based simulated annealing.

In next section we describe the model and di↵erent observables used for this

study. Then we explore the parameter space of the model problem, probing the

ground state and thermal properties over a wide parameter window. In the last

section we choose parameters suggested by first-principle studies on the molybdate

family and compare our results in quantitative detail to experiments.

5.2 Model for the molybdates

The rare earth based pyrochlore molybdates (R2Mo2O7) structure consists of two

interpenetrating pyrochlore lattices, one formed by Mo cations and the other by R.

For our studies, we ignore the orbitals on R and oxygen, focusing instead on the

orbitals on Mo. The Mo atom has octahedral oxygen coordination (MoO6), and

the resulting crystal field splits the fivefold degenerate Mo 4d states into doubly
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The electron-correlation driven metal-insulator (Mott) transition in pyrocholore-type R2Mo2O7(R be-

ing rare-earth-metal ions) is accompanied by the change of the magnetic state from ferromagnetic to spin

glass due to the competing double-exchange and superexchange interactions on the frustrated lattice. By

application of high pressures on the compounds with Mott criticality, however, a new unique paramagnetic

metal phase is observed to show up with nearly temperature-independent high resistivity close to the Ioffe-

Regel limit. A possible non-Fermi-liquid character of this anomalously diffuse metallic state is argued in

terms of the extended double-exchange model with the magnetically frustrated local S ¼ 1
2 spins.

DOI: 10.1103/PhysRevLett.102.136407 PACS numbers: 71.30.+h, 71.10.Hf

The magnetic frustration on the geometrically frustrated
lattice occasionally suppresses the long-range order of
spins, resulting in the spin-liquid or spin-glass ground
state. When the system undergoes the insulator-metal
(Mott) transition or when the conduction electrons couple
with such frustrated local spins, there emerge interesting
properties of charge dynamics, such as heavy electron [1],
spin-chirality metal [2], superconductivity [3], etc. One
such example is the electronic system in the pyrochlore
R2M2O7 (R and M being rare-earth-metal and transition-
metal elements, respectively) with the two sublattices
which are composed, respectively, of the corner-linked R
and M tetragons and displaced from each other by half a
unit cell [see Fig. 1(a)]. The interacting Ising spins (termed
spin ice) on the pyrochlore lattice are known to produce the
classical spin liquid forming the local two-in–two-out spin
configuration within each R-tetragon [4,5]. When the con-
duction electron interacts with such two-in–two-out (or
magnetic-field induced three-in/one-out) moments, the
scalar spin chirality, as defined by the solid angle sub-
tended by three neighboring spins, shows up to produce
the spontaneous (anomalous) Hall current, as typically
observed for the Nd2Mo2O7 [2] (NMO) and Pr2Ir2O7 [6].
On the other hand, the antiferromagnetic interaction of
Heisenberg spins placed on the Mott-insulating
M-sublattice forms the spin-glass state due to the inherent
geometrical frustration, as typically observed for
Y2Mo2O7ðYMOÞ [7]. When the compound undergoes the
Mott transition at ambient pressure, however, this magnetic
frustration is totally lifted by realizing the ferromagnetic-
metallic (FM) ground state [8]. The purpose of the present
Letter is to report on a new outcome of the spin-charge
coupling in the pyrochlore compounds R2Mo2O7ðRMOÞ
which are located on the verge of the Mott transition: The

anomalously diffuse, perhaps non-Fermi–liquid-like, me-
tallic state with no magnetic order is realized as the result
of the competition between the ferromagnetic-metallic and
magnetically frustrated Mott-insulating states. This new
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FIG. 1 (color online). (a) Mo and rare-earth-metal ion (R3þ)
sites in the pyrochlore lattice structure. (b) Octahedron ofMoO6.
Two arrows show the compressive trigonal distortion of the
octahedron along the [111] direction. (c) The t2g level manifold
(a1g and doubly-degenerate e0g) and electronic configuration of
Mo4þ in the trigonal crystal field of the pyrochlore lattice.
(d) The electronic phase diagram for RMO with variation of
R-site ionic radius. FM, SGI, and SGM stand for the ferromag-
netic metal, the spin-glass (Mott) insulator, and the spin-glass
(cluster glass) like metal phase, respectively. Two solid lines and
a dashed line represent the magnetic phase boundary and the
metal-insulator one, respectively.
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Figure 5.1: ((a)-(b) taken from [4]) (a) Rare earth molybdates with interpenetrating

pyrochlore sublattices. (b) The MoO6 octahedron with trigonal distortion along the

[111] direction. (c) Mo 4d level splitting under crystal field e↵ect (represent by CFS)

and trigonal distortion(TD) in the molybdates. (see text for details)

degenerate eg and triply degenerate t2g manifolds. A compressive trigonal distortion

of the octahedron along the [111] direction splits the t2g further into a nondegenerate

a1g and a doubly degenerate e0g. The hopping matrix elements between Mo orbitals

at di↵erent sites is dictated by the intervening oxygen. The Mo cation is nominally

tetravalent and has two electrons on an average. The deeper a1g state behaves like a

local moment, and the single electron in the two e0g orbitals is the ‘itinerant’ degree

of freedom [112]. The eg state remains unoccupied.

There are additional small scales, related to bond distortions, etc, that are re-

sponsible for the spin freezing phenomena [165, 166]. We ignore them for the time

being. Also, the moments on R can be relevant when studying e↵ects like spin chiral-

ity induced anomalous Hall e↵ect [6, 7, 168–170]. We do not include these moments

in our model in the present study. Based on the degrees of freedom of the Mo in the

molybdates, an appropriate model [19] is given by
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Figure 5.2: Schematic of relevant interactions and hopping processes in the molyb-

dates.

H =

X

hiji,↵�,�

t↵�ij c
†
i↵�cj�� � JH

X

i,↵

Si · c†i↵�~���0ci↵�0

+ JAF

X

hiji

Si.Sj +

�,�0X

i,↵�↵0�0

U↵
0
�
0

↵� c†i↵�c
†
i��0ci��0ci↵�

The first term is the kinetic energy, involving nearest neighbour intra and inter-

orbital e0g hopping. The second term is the Hund’s coupling between the a1g local

moment Si and the e0g electrons, JAF is the AF superexchange coupling between local

moments at neighbouring sites on the pyrochlore lattice, and the U represent onsite

e0g Coulomb matrix elements.

To simplify the computational problem we treat the localised spins Si as classical

unit vectors, absorbing the size S in the magnetic couplings. We will comment on

the limitations of this approximation later. Also, to reduce the size of the Hilbert

space we assume that JH/t � 1, where t is the typical hopping scale, so that only

the locally ‘spin aligned’ fermion state is retained. In this local basis the hopping

matrix elements are dictated by the orientation of the Si on neighbouring sites. This

leads to the simpler model:

H =

X

hiji,↵�

˜t↵�ij c̃
†
i↵c̃j� + JAF

X

hiji

Si.Sj + U
↵ 6=�X

i

ni↵ni�

where the fermions are now ‘spinless’. U > 0 is the inter-orbital Hubbard repulsion.

The e↵ective hopping is determined by the orientation of the localised spins Si =
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(sin✓icos�i, sin✓isin�i, cos✓i), as ˜t↵�ij = [cos ✓i2 cos
✓
j

2 + sin ✓i2 sin
✓
j

2 e
�i(�

i

��
j

)
]t↵�, with

t11 = t22 = t and t12 = t21 = t0. We set t0 = 1.5t as is appropriate for these kinds of

orbitals [112].

The first two terms represent fermions in a classical spin background and the

resulting magnetic phase competition has been studied on a pyrochlore [113]. While

these results are interesting they miss out on the large correlation scale, U , that

drives the Mott transition. One option is to treat the model within dynamical mean

field theory (DMFT) [71], but then the spatial character crucial to the pyrochlore

lattice is lost. To explore the Mott transition in a non trivial spatial background

we will follow the SPA approach. This will not only capture the ground state but

also the behaviour at finite temperature. Below we describe the simulated annealing

scheme for arriving at the ground state.

5.2.1 Method

We handle the model in real space as follows: We use a Hubbard-Stratonovich (HS)

transformation that decouples Uni↵ni� in terms of an auxiliary orbital variable �i(⌧),

coupling to the electronic orbital momentOi =
P

µ⌫ c
†
iµ~�µ⌫ci⌫ , and a scalar field �i(⌧)

coupling to the electronic density ni at each site.

Following the static path approximation (SPA), described in chapter.2, we have,

Heff{�i,Si} = � 1

�
logTre��Hel

+HAF +

U

4

X

i

�2
i

Hel =

↵�X

ij

˜t↵�ij c
†
i↵cj� � µ̃

X

i

ni � U

2

X

i

�i.Oi

with µ̃ = µ � U/2 and HAF the Heisenberg term. The localised spin and orbital

moment configurations follow the distribution

P{Si,�i} / Trcc†e
��H

eff

We obtain a solution of this model numerically via a Monte Carlo by generating

the equilibrium configuration for the {Si,�i} through iterative diagonalisation of

Hel. We start with reasonable high temperature, T ⇠ t, higher than any transition

temperature in the problem, and reduce it to T ⇠ 0 to access ground state properties.
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5.2.2 Observables

From the equilibrium configurations obtained at the end of annealing we calculate

the following averaged quantities (angular brackets represent thermal average over

MC configurations): (i) Magnetic and orbital structure factors are:

Smag(q) =

1

N2

X

ij

hSi.Sjieiq·(ri�r
j

)

Sorb(q) =

1

N2

X

ij

h�i.�jieiq·(ri�r
j

)

(ii) The size distribution of the orbital field is computed as

P (�) =

1

N

X

i

h�(�� |�i|)i

(iii) The optical conductivity is:

�xx(!) =

�0
N

h
X

n,m

f(✏n)� f(✏m)

✏m � ✏n
|Jnm

x |2�(! � Emn)i

where Jnm
x is hn|Jx|mi and the current operator is given by

Jx = �i
X

i,↵�

h
(

˜t↵�i,i+x̂c
†
i,↵ci+x̂,� � hc)

i

Emn = ✏m�✏n, f(✏n) is the Fermi function, ✏n and |ni are the single particle eigenval-
ues and eigenstates of Hel respectively. The conductivity is in units of �0 = e2/(~a0),
where a0 is the lattice constant. (iv) The d.c. conductivity is obtained as a low fre-

quency average of the optical conductivity over a window ⌦ = 0.05t.

�dc =
1

⌦

Z ⌦

0

d!�xx(!)

and the resistivity ⇢ = 1/�dc.
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Figure 5.3: (a) Ground state phase diagram showing the metal-insulator transition

(MIT) boundary in the t/U , and JAF/t plane. We label the various magnetic phases

as spin-ferromagnet (S-F) and spin liquid (S-L). The two orbital phases are labeled

as orbital-ferromagnet (O-F) and orbital liquid (O-L). The detailed chacterization

of these phases is mentioned in the text. Panel (b) shows the density of states at

the Fermi level, N(0), for varying t/U and JAF/t. The vanishing N(0) corresponds

to the MIT (cross checked also with transport).

5.3 Model Hamiltonian study

5.3.1 Ground state results

5.3.1.1 Phase diagram

Fig.5.3(a) shows the ground state phase diagram of the model for varying U/t and

JAF/t, while Fig.5.3(b) shows the density of states at the Fermi level, N(0), over the

same parameter space.

Notation: We characterise phases in terms of their spin and orbital character,

S-L is spin-liquid and S-F is a spin ferromagnet. Similarly, O-L is orbital-liquid,

etc. These phases also need to be specified in terms of their transport character.

To avoid a cluttered picture we have simply shown the insulator-metal boundary

in the t/U � JAF/t plane, the metal/insulator aspect can be inferred from it. The

metal-insulator transition can be located from the vanishing of N(0), and also from

a calculation of the d.c conductivity.

When JAF = 0 there is a metal-insulator transition at Uc ⇠ 11t from a ferro-

magnetic metal to a ferromagnetic insulator. When the superexchange is moderate,

JAF ⇠ 0.2t, there is strong competition between ferromagnetism (S-F, mediated by

double-exchange) and antiferromagnetic tendency. As a result there is a crossover

from S-F to spin disordered (S-L) behaviour with increasing U/t roughly around
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Figure 5.4: The e↵ective ferromagnetic exchange, D, at T = 0 for varying t/U and

JAF/t. The calculation and significance of this quantity is explained in the text.

The MIT boundary is shown by dotted lines and coincides with change from large

to small values of D.

the MIT, although weak ferromagnetism survives in the insulator. For strong su-

perexchange, JAF & 0.5t, the antiferromagnetic tendency suppresses ferromagnetism

completely and, as we will show, there is no magnetisation at any U/t. We have a

spin liquid state at all U/t. In this large JAF limit, a relatively weak Hubbard

repulsion, U ⇠ 5t, is enough to drive the metal-insulator transition.

To get a feel for the changing magnetic state and the shifting MI transition point,

it is useful to examine an approximate e↵ective ‘spin only’ model. Consider the elec-

tronic kinetic energy, on the ij bond, in a spin configuration {Si}. It is the product of
an electronic average and a modulated hopping both of which depend on {Si}. The
dependence of the spin overlap factor is explicit, it is simply:

p
(1 + Si.Sj)/2. The

electronic average does not have an obvious expression in terms of the spins but, as

a starting approximation, we can replace hc†i↵cj�i by its thermal average [171]. The

thermal average, please note, is not a spin configuration dependent quantity.

Under this assumption for the kinetic energy the total energy involving the mag-

netic variables can be written as

Heff{S} ⇡
X

ij

Dij

q
(1 + Si.Sj)/2 + JAF

X

hiji

Si.Sj

Dij =

X

↵�

t↵�ij hc†i↵cj� + h.ci

The role of the Hubbard interaction, acting through the orbital moment, is im-

plicit in the model above. The Dij are supposed to be computed in backgrounds

that include the �i as well as the AF coupling. Since the dependence of Dij on
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Figure 5.5: Magnetisation (M) and average orbital moment (�avg) in the ground

state. (a) U/t dependence of M for several JAF . At JAF = 0 the system has M = 1

at all U , irrespective of metal/insulator character. For JAF & 0.5t, M ⇠ 0 for

the entire U window probed. At intermediate JAF the magnetisation has a rapid

crossover around a scale Umag(JAF ) that is close to but not quite the metal-insulator

transition point Uc(JAF ). (b) Shows the system averaged magnitude of the orbital

moment �avg = 1/N
P

i |�i|. For U/t ! 1, the orbital moment ! 1, as one expects

in the atomic limit. The approach to this asymptote is faster at larger JAF . The

U ! 0 behaviour is dictated by the bandstructure, and change in the magnetic state

with JAF . (c)-(d) Overall variation of M and �avg in the JAF/t and t/U plane. The

dashed line is the MIT boundary separating the metallic and insulating regimes.

the magnetic and orbital state is not known the model above does not have much

predictive value. However, the thermally (and system) averaged Dij, which we call

just D, can serve to identify the origin of the changing magnetic character. It can

also be related to direct measurables, e.g, (i) the spin sti↵ness (spin wave velocity),

since the D and JAF dictate this quantity, and (ii) the integrated optical weight, via

the f�sum rule

X

ij

Dij

q
(1 + Si.Sj)/2 /

Z 1

0

�(!)d! ⌘ neff

where neff , the integrated optical weight, is related to the e↵ective carrier density.

This can be roughly simplified to D
p
1 +m2 / neff , where we have approximated

the spin average bym2
. The physics content of this is simple - reducing magnetisation

reduces the hopping (D) and the combination determines neff .

The metal-insulator transition line: The role of JAF is to generate magnetic

phase competition and reduce the ferromagnetic tendency by suppressing the kinetic

energy. To set a convenient reference, the e↵ective bond resolved kinetic energy, D,

at JAF = 0 and U ! 0 is ⇠ �t. That allows us to set up three regimes.

(a). When JAF ⌧ D, we essentially have a weakly renormalised FM ground state

and Uc is only modestly suppressed with respect to the JAF = 0 value. For us this
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happens when JAF . 0.1t. (b). In the interval 0.1t < JAF < 0.4t the Uc changes

quickly, at JAF = 0.4t it is roughly half the value at JAF = 0. (c). For JAF & 0.4t

the Uc does not reduce any further since the magnetic ground state is completely

disordered and the magnetisation cannot be suppressed any further. This shows up

as the vertical asymptote of the MIT line in Fig. 5.3.

The ferromagnet to ‘spin liquid’ transition: The ferromagnet to spin liquid ‘tran-

sition’ occurs along a line that we call Umag(JAF ). There is some ambiguity in

locating this line since within our parameter space the magnetisation is always fi-

nite, if small. We set M = 0.05 as the S-F to S-L transition. Just as Uc is dictated

roughly by the competition between U and D, Umag is decided by the competition

between JAF and D.

Orbital character: The various orbital (O) phases obtained in our study are based

on the orbital structure factor Sorb(q) calculation. For the orbital-ferromagnet phase

Sorb(q) shows a peak at q = (0, 0, 0) while for the orbital liquid phase it doesn’t show

any peak at any q.

5.3.1.2 The magnetic state

A detailed understanding of the magnetic state is provided by the magnetic structure

factor Smag(q) computed in the equilibrium state. It highlights not only long range

order, in terms of prominent peaks in q space, but also possible correlations in the

disordered state when there is no long range order.

Fig.5.6 shows Smag(q) for three di↵erent superexchange couplings and for three

U ’s in each case. The U ’s are chosen so that they capture the metal, insulator, and

crossover regime for all three values of JAF .

For JAF = 0 there is no magnetic phase competition. At U = 4t, Smag(q) has

dominant weight at q = (0, 0, 0) describing the ferromagnetic order promoted by

double-exchange. The magnetisation is & 0.95 (limited by our annealing process)

and the structure factor peak is ⇠ 0.9 ⇠ M2
. As the row shows, this result does

not depend on U , suggesting that even deep in the Mott insulator one would ob-

tain a saturated ferromagnetic state. The Tc’s would of course di↵er, as we discuss

later, since the sti↵ness of the FM state depends on the kinetic energy - which is U

dependent.

For JAF = 0.2t, Smag(q) has a large weight at q = (0, 0, 0) at U = 4t, as in the

first row, but at U = 7t the peak, although still at (0, 0, 0), has diminished weight,

⇠ 0.6. The metal-insulator transition occurs around U ⇠ 8t and by the time U = 10t

(last row) Smag does not have any prominent peaks at any q. The superexchange
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Figure 5.6: Spin structure factor Smag(q) at T = 0 for U/t =4, 8 and 12.5 for

each of JAF/t =0 (left column), 0.2 (middle column) and 0.6 (right column). We

use the notation q =

2⇡
L
(nx, ny, nz), where ni’s are integers and 0  ni < L. In

our calculation L = 6. The size of a dot signifies relative weight at a given q while

its colour represents the actual magnitude of Smag(q). The presence of dominant

weight at some q, in these cases q = (0, 0, 0) indicates magnetic order phase, while

the ‘random’ but correlated patterns indicate a spin liquid.

coupling overcomes the kinetic energy gain from DE but the pyrochlore structure

prevents AF ordering.

For JAF = 0.6t, Smag(q) the weight is spread over all q but in a correlated

manner, indicative of a spin liquid phase.

5.3.1.3 The orbital state

To have an idea of the underlying orbital state, we calculate the orbital structure

factor Sorb(q). Fig.5.8 shows the structure factor for the three superexchange cou-

plings. For JAF = 0 we see Sorb(q) has dominant weight at q = (0, 0, 0) describing
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Figure 5.7: Ground state size distribution of the orbital field P (�) for JAF = 0, 0.2t

and 0.6t for indicated U values.

Figure 5.8: Orbital structure factor at T = 0 for U/t =4, 8 and 12.5 for each

of JAF/t = 0 (left column), 0.2 (middle column) and 0.6 (right column). We use

the same convention as described in Fig. 5.6 . The size of a dot signifies relative

weight at a given q while its colour represents the actual magnitude of Sorb(q). The
presence of dominant weight at some q, indicates an orbital ordered phase, otherwise

a disordered phase.
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Figure 5.9: (a)-(c) Density of states for JAF/t = 0, 0.2, 0.3, 0.6 for di↵er-

ent U/Uc(JAF ). (d)-(f) Density of states for varying JAF at three fixed values of

U/Uc(JAF ). This is to probe if the DOS has an ‘universal’ character near the MIT,

depending only on U/Uc, or depends explicitly on JAF as well. The frequency scale

is normalised by the respective Uc.

the ferro-orbital (O-F) ordering. For JAF = 0.2t, Sorb(q) has dominant weight at

q = (0, 0, 0) for U = 4t and 7t (O-F ordering), and an orbital liquid state for U = 10t.

For JAF = 0.6t, Sorb(q) has weight spread over all q indicating an orbital liquid state.

5.3.1.4 Density of states

Fig.5.9 shows the ground state density of states (DOS) for various interaction strengths

for the three regimes of superexchange interaction of our phase-diagram. We can see

that for U < Uc, the DOS has a finite weight at the Fermi energy, and for U � Uc,

the DOS has a gap in the spectrum. As U ! Uc, the DOS develops a prominent dip

at the Fermi energy, a signature of the pseudogap (PG) phase. We can understand

this in the following way. The band (U = 0) limit of this model is a metal, with finite

DOS and a peak at the Fermi level. Inclusion of the inter-orbital interaction (U)

leads to the emergence of orbital moments �i, with its size determined by U . For

U < Uc, we have |�i| ⌧ �sat = 1. The presence of these orbital moments reduce the

DOS at the Fermi level. As U ! Uc, |�i| increases monotonically and for U � Uc

it saturates to the atomic value |�i| = 1. The presence of large orbital moments for

U � Uc leads to the opening of a gap in the DOS. From our calculation, we estimate
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Figure 5.10: (a)-(c) Ground state optical conductivity for JAF = 0, 0.2t and 0.6t

for di↵erent U/Uc. (d)-(f) Ground state optical conductivity for U/Uc = 0.95, 1.0

and 1.05, on a normalised frequency scale, for the indicated JAF values.

that for JAF = 0, Uc = 11.0t, for JAF = 0.2t, Uc = 7.6t and for JAF = 0.6t, Uc = 5.0t.

The superexchange interaction favours the Mott-insulating phase.

The lower set of panels in Fig.5.9 show the DOS near the MIT for fixed ratios of

U/Uc(JAF ). Within each panel the JAF is varied to probe if the spectral behaviour

changes with changing AF coupling, after factoring out the e↵ect of Uc change by

normalising the frequency axis by Uc. Our primary observation is that increasing

JAF leads to enhanced low energy DOS for a fixed ratio U/Uc. We attribute this to

the increased spin and orbital disorder in the larger JAF situation - leading to an

increasing ‘Anderson-Mott’ character of the metal-insulator transition.

5.3.1.5 Optics and transport

Fig.5.10 shows the optical conductivity, �(!), in the ground state for various interac-

tion strengths and three regimes of superexchange interaction of our phase-diagram.

The band (U = 0) limit of the model has finite DOS at the Fermi level. As

a result �(!) shows a Drude peak in this limit. Inter-orbital interaction (U) leads

to the emergence of orbital moments �i. For U < Uc, we have |�i| ⌧ �sat = 1.

Increasing size of these orbital moments leads to a suppressed Drude response, and

�(!) peak shifts to finite frequency.
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Figure 5.11: (a) Variation of optical gap (�/t) with U/t for di↵erent JAF/t values.
Panel (b) shows the variation of residual resistivity ⇢(T = 0) with U/t for di↵erent
JAF/t values. The normalising scale is ⇢0 = ~/e2. (Right panel) Ground state d.c.

conductivity, �dc, for varying t/U and JAF/t. The normalising scale is �0 = e2/~.
The MIT boundary can be thought of as the vanishing of �dc, with increasing U/t
values.

|�i| increases monotonically with increasing U and for U � Uc it saturates to

the atomic value |�i| = 1. Beyond Uc there is an optical gap in �(!). From our

calculation, we find that the Uc’s for di↵erent superexchange scales are consistent

with those obtained from the DOS results.

The lower set of panels in Fig.5.10 show the optical conductivity near the MIT

for fixed ratios of U/Uc(JAF ). Within each panel the JAF is varied to probe if �(!)

changes with changing AF coupling, after factoring out the e↵ect of Uc change by

normalising the frequency axis by Uc. Our primary observation is the increase in the

low frequency spectral weight at a fixed U/Uc as JAF , and the associated background

disorder, increases.

We show the optical gap � in Fig.5.11(a). It is clearly seen that � = 0 for U < Uc

and it increases monotonically for U � Uc. Fig.5.11(b) shows the variation of residual

dc resistivity, ⇢(T = 0) with U/t for di↵erent superexchange values. The finite ⇢(0)

for U < Uc can be understood by the scattering of electrons from the (small) orbital

moments. For U � Uc, the (large) orbital moments lead to an opening of a Mott-gap

which manifests as ⇢(0) ! 1. These behaviours are seen in figure 5.11.

Fig.5.11(right panel) shows the dc conductivity �dc from our calculation for var-

ious interaction strengths and superexchange values of our phase-diagram. We ob-

serve �dc vanishing as U � Uc. This also allows us to roughly estimate the MIT

boundary.
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Figure 5.12: (a)-(c) Variation in DOS and IPR with increasing superexchange

strength for fixed U/t = 12.5. (d) Comparison of the optical gap (obtained from

the zero temperature optical conductivity) with the spectral gap (obtained from the

DOS) with changing superexchange values for fixed U/t = 12.5.

5.3.1.6 Discussion

Our DOS and optics results indicate an increasing ‘Anderson-Mott’ character of the

metal-insulator transition with increasing superexchange. To understand it further

we have computed the inverse participation ratio(IPR) as,

IPR =

X

i

| i|4

where  i is the amplitude of the normalised wave function. When the electron is

fully localised at a given site, we have IPR = 1 and when its completely delocalised,

IPR = 0. However, on a finite size lattice, a fully delocalised state has IPR = 1/V ,

where V is the system size (volume in 3D). Therefore any localised state on a finite

lattice has IPR > 1/V .

Following this procedure, we calculate the total number of localised states at

JAF/t = 0, 0.2 and 0.6. For this we consider a state as localised if its IPR > 1
4L3

(V = 4L3
for a pyrochlore lattice). We also calculate the fraction of localised states,

which is the ratio of the number of localised states and the total number of states.

We now discuss the variation of IPR as JAF/t changes.

Fig.5.12 shows the DOS and IPR at fixed U/t = 12.5 for di↵erent SE scales. It

can be seen that the optical and spectral gaps are not equal. From the IPR results,

we establish that in the ground state, the fraction of localised states is 0.17 for

JAF = 0, 0.24 for JAF = 0.2t, and 0.29 for JAF = 0.6t. This clearly indicate that the

fraction of localised states (at the band edges) increase with the SE strength. Our

results show increasing localisation as the strength of superexchange is enhanced.
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Figure 5.13: (a)-(c) Variation in DOS and IPR with increasing SE for fixed U/Uc =

1.1. (d) Comparison of the rescaled optical and spectral gap (�/Uc) with changing

SE values for U/Uc = 1.1.

To explore further if the localisation e↵ects change with changing SE, after fac-

toring out the e↵ects of Uc, we calculate the DOS and IPR for fixed U/Uc(JAF ) = 1.1

and di↵erent SE scales (see figure 5.13). We also show the rescaled optical and spec-

tral gaps which show increasing behaviour with increasing SE. Our IPR results also

indicate that in the ground state, for U/Uc(JAF ) = 1.1, the fraction of localised

states is 0.17 for JAF = 0, 0.21 for JAF = 0.2t, and 0.26 for JAF = 0.6t. Based

on these results we believe that with increasing the strength of superexchange, the

localisation e↵ects are enhanced.

The ‘Anderson’ aspect of molybdate metal-insulator transition is associated with

the di↵erence one observes between the DOS gap and the optical gap and its in-

terpretation in terms of ‘localised’ single particle states. The key e↵ect is that the

single particle states are localised due to self generated disorder, despite the absence

of any extrinsic disorder. Note that interaction e↵ects are crucial in our problem

in driving the metal-insulator transition. We cannot have a purely non interacting

‘Anderson transition’ without extrinsic disorder.

In the presence of quantum fluctuations the single particle states here would face

dephasing and it is not clear whether the ‘localisation’ aspect at T = 0 will survive.

However at high temperature, this might still be an useful way to think about the

problem and describe the di↵erence between the single particle and optical spectra.

5.3.2 Finite temperature results

5.3.2.1 Overall thermal phase diagram

Fig.5.14 shows the overall thermal phase diagram of our calculation for varying Hub-

bard repulsion (U/t), superexchange interaction (JAF/t), and temperature (T/t).
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Figure 5.14: Overall thermal phase diagram of the two orbital Hubbard model with

competing double exchange and superexchange interactions in the t/U , JAF/t and
T/t parameter space. Here we focus on the fate of the ferromagnetic phase in the

shown parameter space.

The fate of the ferromagnetic window in this parameter space can be clearly seen

in the figure. We note the following features � In the absence of superexchange

(JAF/t = 0), the underlying magnetic state is ferromagnetic at all U/t values

below the critical temperature. The presence of finite superexchange interaction

(JAF/t = 0.2) leads to a competition between the double exchange dominated ferro-

magnetic state and superexchange promoted spin-liquid on the pyrochlore geometry,

in addition to the finite temperature paramagnet. The competition results in the

shrinking of the ferromagnet window in the parameter space. As superexchange

interaction dominates further (JAF/t > 0.3), we observe that the underlying mag-

netic state is no more ferromagnetic, rather a spin-liquid at low temperature, and a

paramagnet at high temperature.

At low temperature and with increased superexchange, the ferromagnetic state

looses out to a disordered phase. This disordered phase, however, has some promi-

nent features in the magnetic structure factor (visible as inhomogeneities of the

structure factor weight distribution as opposed to a fully homogeneous distribution

for a paramagnet). We identify the temperature scale, which separates this spin-

liquid and paramagnet as TSL. Our ‘spin’ structure factor calculations have shown
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that with increasing superexchange, the scale TSL increases noticeably. However, the

variation of TSL with U/t is rather small.

Apart from the magnetic behaviour, it is also important to note that with in-

creasing superexchange interaction strength, the metallic window also gets narrowed,

and the Mott-insulating regime shows up in an extended regime of the parameter

space.

The crucial ingredients of the minimal model for the rare earth molybdates are

Hubbard repulsion, double exchange, and superexchange on the pyrochlore lattice.

To describe the finite temperature physics of this model, we proceed as follows. We

divide the whole parameter regime based on the the strength of the superexchange

interaction. We first describe the regime without superexchange (JAF = 0), followed

by moderate (JAF = 0.2t), and then strong (JAF = 0.6t) superexchange scales. We

will now discuss the results in detail for each of these regimes.

5.3.2.2 Double exchange and Hubbard repulsion

Fig.5.15(a) shows the phase diagram for varying t/U and T/t in terms of the mag-

netic, transport, and spectral properties that emerge from our calculation when

JAF = 0. We observe the following features �

• The ground state is a ferromagnet promoted by double exchange interaction

at all U/t. With increasing temperature, the ferromagnetic state loses out to

a paramagnetic phase governed by thermal fluctuations.

• With increasing U , the average local orbital moment increases. This reduces

the average kinetic energy and as a result the system shows Mott insulating

behaviour.

• The weak-coupling side (U < Uc) is a metal with finite density of states (DOS)

at the Fermi-level. The strong-coupling side (U > Uc) has a Mott-gap in the

DOS. In the Mott-transition neighbourhood, the Mott gap quickly converts to

a pseudogap (PG) with increasing T , leading to the widening of the PG region

(not shown in figure).

Fig.5.15(b) shows the average magnetisation M for varying t/U and T/t. At

T = 0 the system has M = Msat = 1 at all U values, irrespective of metallic or

insulating character. With increasing T the magnetisation reduces due to angular

fluctuation of the moments and we can infer a Tc.
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Figure 5.15: JAF = 0 (a) Phase diagram for varying t/U and T/t. The solid line

corresponds to the ferromagnetic to paramagnetic phase transition and the dotted

line corresponds to the metal to Mott-insulator transition (MIT). The various phases

shown in the phase diagram are, ferromagnetic metal (FM), ferromagnetic insulator

(FI), paramagnetic metal (PM) and paramagnetic insulator (PI). The detailed chac-

terization of these phases is mentioned in the text. Panel (b) and (c) show average

magnetisation M and average orbital moment �avg for varying t/U and T/t. Panel

(d) shows the density of states at the Fermi level, N(0), for varying t/U and T/t.
The vanishing N(0) corresponds to the MIT.

Fig.5.15(c) shows the average magnitude of the orbital moment �avg for varying

t/U and T/t. At T = 0, as U/t ! 1, �avg ! 1, as one expects in the atomic

limit. �avg reduces with decreasing U such that �avg ! 0 as U/t ! 0. For T/t > 0,

thermal fluctuations lead to quick growth of �avg in the metallic side.

Fig.5.15(d) shows the DOS at the Fermi level, N(0), for varying t/U and T/t.

On the metallic side (U < Uc), we see the DOS reducing gradually with increasing

temperature. This can be ascribed to the increase of �avg due to thermal fluctuations,

pushing weight away from the Fermi level. On the insulating side (U � Uc), the Mott

gap persists till the highest probed temperature. This is because, in the insulating

side, all sites have a large �i. In the MIT neighbourhood we observe a non monotonic

behaviour. The non monotonicity is mainly due to the presence of a wide pseudogap

window, the appearance of which can be attributed to the emergence of thermally

induced orbital moments. These moments, are not large enough to open up a gap in

the spectrum. However, these are sizable enough to deplete the DOS at Fermi level.

Further with the hopping mediated ‘self-generated’ short-range correlations, these

moments develop a dip at the Fermi level - signature of the pseudogap window.

The magnetic state: For a detailed understanding of the magnetic state, we calcu-

late the magnetic structure factor, Smag(q), computed in the optimised background.

It highlights not only long range order, in terms of prominent peaks in q space, but

also possible correlations in the disordered state when there is no long range order.

Fig.5.16 shows Smag(q) for three di↵erent U values in our phase diagram, for three
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Figure 5.16: Spin structure factor Smag(q) at T = 0 for U/t =4, 8 and 12.5 for T =

0 (left column), 0.2t (middle column) and 0.4t (right column). We use the notation

q =

2⇡
L
(nx, ny, nz). The size of a dot signifies relative weight at a given q while

its colour represents the actual magnitude of Smag(q). The presence of dominant

weight at some q, (in these cases q = (0, 0, 0)) indicates presence of a magnetic

ordered phase, while the ‘random’ but correlated patterns indicate a spin liquid.

representative temperature regimes in each case. We observe that at T = 0, Smag(q)

has a peak (dominant weight) at q = (0, 0, 0) at all U values. This corresponds to

a ferromagnetic ground state. With increase in temperature, thermal fluctuations

randomise the spin orientations. As a result the Smag(q) weight at q = (0, 0, 0)

reduces. With further rise in temperature, the ferromagnetic phase looses out to a

paramagnetic state. This can be seen in the Smag(q) in the form that the Smag(q)

weight gets distributed homogeneously among the q’s. The ferromagnetic critical

temperature, Tc, is estimated by tracking Smag(0, 0, 0) weight with temperature.

The orbital state: Fig.5.17 shows the the amplitude distribution of the orbital

moments, P (�) for di↵erent temperature and interaction values. Panel (a) shows

P (�) for U/t = 4. P (�) shows a single narrow peak structure, highlighting an
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Figure 5.17: Size distribution of the orbital field P (�) for indicated U/t and T/t
values.

Figure 5.18: Orbital structure factor for U/t =4, 8 and 12.5 at T = 0 (left

column), 0.2t (middle column) and 0.4t (right column). We use the notation

q =

2⇡
L
(nx, ny, nz). The size of a dot signifies relative weight at a given q while

its colour represents the actual magnitude of Sorb(q). The presence of dominant

weight at some q, indicates an orbital ordered phase, otherwise a disordered phase.

amplitude homogeneous state. With rise in temperature, the single peak feature

of P (�) retained. However the narrow peak becomes broad and the peak position
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Figure 5.19: (a)-(c) Variation of density of states (DOS) for U/t = 4, 8 and 12.5

for indicated temperatures. (d)-(f) Variation of optical conductivity for U/t = 4, 8

and 12.5 for indicated temperatures.

shifts towards large � values. Panel (b) and (c) show P (�) for U/t = 8 and 12.5.

We observe similar behaviour as in panel (a), but with important di↵erence that

the peaks are more narrow with increasing U/t values. This can be understood by

the fact that the fluctuations of �avg about the mean, are weaker in the insulating

regime than in the metallic regime.

To understand the orbital state further, we calculate the orbital structure fac-

tor, Sorb(q) in the optimised background. Fig.5.18 shows the q dependence of the

orbital structure factor Sorb(q) for varying T/t and U/t values. We observe that

at T = 0, Sorb(q) has a peak (dominant weight) at q = (0, 0, 0) at all U values.

This corresponds to a ferromagnetic ground state. However it can be seen that the

Sorb(0, 0, 0) weight increases initially with increasing U and after reaching a max-

imum (for U/t = 10), it decreases with further increasing U/t. With increase in

temperature, thermal fluctuations lead to the orientational randomness of the or-

bital moments. As a result the Sorb(q) weight at q = (0, 0, 0) reduces. With further

rise in temperature, we find that the weight in Sorb(q) gets distributed homoge-

neously among the q’s. This can be understood as that the ferromagnet transiting

to a paramagnet.
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Density of states: Fig.5.19. (top row) shows the thermal evolution of the density

of states (DOS) in three interaction regimes of our phase-diagram. We observe

following features � (i) For U < Uc the ground state has small orbital moments.

The DOS is gapless and the weight at the Fermi level decreases monotonically with

increasing T (see Fig.5.19.(a)). (ii) For U � Uc the ground state has a hard gap

in the DOS. With increase in temperature, the angular fluctuations of the orbital

moments result in a slight reduction of the Mott-gap, and an increase in the low

energy DOS (see Fig.5.19.(c)). The Mott-gap survives till very high temperature,

T ⇠ �avgU . (iii) In the neighbourhood of MIT boundary, for U ⇠ Uc, the DOS

shows a sharp dip, a characteristic of a pseudogap (PG) phase. This dip fills up

initially with increasing T , but deepens further with increasing temperature (see

Fig.5.19.(b)).

Optics and transport: Fig.5.19.(bottom row) shows the optical conductivity from

our calculation as we cross the Mott transition. The important points are as follows:

(i) �(!) for U < Uc is a metal. It shows a Drude peak at T = 0, and the Drude

weight reduces with increasing temperature (see Fig.5.19.(d)). (ii) For U > Uc the

system has a clear Mott gap �(T ) in the DOS. Thus, �(!) = 0 for ! < !c ⇠ �(T ).

With increasing temperature the gap �(T ) reduces, resulting in small, but increasing

low frequency weight of �(!) and the �(!) peak position shifts to higher frequency

(see Fig.5.19.(f)). (iii) For U  Uc, �(!) shows finite Drude weight, a response

with the �(!) peak at a small finite frequency. The Drude weight reduces, while the

�(!) peak slowly shifts to higher frequency with increasing T (see Fig.5.19.(e)). We

would like to mention that as U ! Uc, �(! = 0) ! 0. However, with increasing

temperature the low frequency weight in �(!) increases initially and then decreases

in accord with the behaviour of the DOS in this regime.

Fig.5.20 shows the d.c. resistivity ⇢(T ) for di↵erent U/t. Following features

are noteworthy. (i) For U < Uc, the residual resistivity ⇢(0) colour is finite with

d⇢/dT > 0 over the entire T range. The resistivity can be understood in terms of the

scattering of electrons from the small orbital moments. This is the metallic regime.

(ii) For U � Uc the system has a clear Mott gap at T = 0 with ⇢(0) ! 1. In this

regime d⇢/dT < 0 over the entire temperature window we have explored. This is the

Mott-insulating regime. (iii) In the neighbourhood of Uc, i.e, |U � Uc| ⌧ Uc, ⇢(T )

shows a non-monotonic behaviour. We observe d⇢/dT > 0 in the low temperature

limit, crossing over to d⇢/dT < 0 with increasing T . The temperature at which

d⇢/dT changes its sign is indicated as the TMIT .

We observe TMIT decreasing with increasing U (see Fig.5.15.(a)). This behaviour
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Figure 5.20: Variation of resistivity ⇢(T ) with temperature for di↵erent U/t values.
The normalising scale is ⇢0 = (~a0)/e2, where a0 is the lattice spacing.

can be understood as the scattering of electrons from the background fluctuating

orbital moments. As U increases, �avg(U) also increases, resulting in the increased

scattering of the electrons and a depleting DOS at the Fermi level.

The key features of this regime are. (i) The ground state is always a spin-

ferromagnet due to the absence of the competing superexchange. (ii) The Mott

transition is the result of stronger Hubbard repulsion, and manifests in the form of

large orbital moments at each site of the lattice. These moments essentially dictate

the spectral and transport properties.

5.3.2.3 Double exchange, superexchange and Hubbard repulsion

Fig.5.21(a) shows the phase diagram for varying t/U and T/t from our calculation

for JAF/t = 0.2. This is the most interesting regime, and is believed to be relevant

for describing the Mott physics of the rare earth molybdates [112]. We observe the

following features �

• The ground state is decided by the competition between double exchange and

superexchange interactions. It is a ferromagnet when double exchange domi-

nates. With increasing U , the kinetic energy and hence the double exchange

reduces. When the antiferromagnetic superexchange prevails over the double

exchange, the resulting ground state turns out to be a spin-liquid due to the

frustrated pyrochlore geometry.
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• With increasing temperature, the ferromagnetic or spin-liquid states loose out

to the paramagnetic phase dominated by thermal fluctuations. With increas-

ing U , the average local orbital moment’s magnitude increases. This reduces

the average kinetic energy and as a result, the system shows Mott insulating

behaviour.

• The weak-coupling side (U < Uc) is a metal with finite density of states (DOS)

at the Fermi-level. The strong-coupling side (U > Uc) has a Mott-gap in the

DOS. In the Mott-transition neighbourhood, the Mott gap quickly converts to

a pseudogap (PG) with increasing T , leading to the widening of the PG region

(not shown in figure).

Fig.5.21(b) shows the average magnetisation M for varying t/U and T/t values.

At T = 0 the system has M = 1 for U < Uc. With increasing U , the e↵ect of

double exchange reduces and superexchange takes over. This leads to reduction of

M values. For T/t > 0, thermal fluctuations reduce M further, resulting in M < 0.1

for T > Tc.

Fig.5.21(c) shows the average magnitude of the orbital moment �avg for varying

t/U and T/t. At T = 0, as U/t ! 1, �avg ! 1, as one expects in the atomic

limit. �avg reduces with decreasing U such that �avg ! 0 as U/t ! 0. For T/t > 0,

thermal fluctuations lead to quick growth of �avg in the metallic side.

Fig.5.21(d) shows the DOS at the Fermi level, N(0), for varying t/U and T/t.

On the metallic side (U < Uc), we see the DOS reducing gradually with increasing

temperature. This can be ascribed to the increase of �avg due to thermal fluctuations.

On the Mott insulating side (U � Uc), we observe, the DOS slowly increasing with

temperature, which can be understood as the gradual filling of the Mott gap. In the

MIT neighbourhood we observe a non monotonic behaviour.

The magnetic state: Fig.5.22 shows Smag(q) for di↵erent U values in our phase

diagram, for three representative temperature regimes in each case. We observe that

at T = 0, Smag(q) has a peak (dominant weight) at q = (0, 0, 0) for U/t < 10.

This corresponds to a ferromagnetic ground state. For U/t � 10, Smag(q) doesn’t

show a peak (dominant weight) at a given q, rather, the dominant Smag(q) weight

is distributed among several q’s, suggesting that the underlying state is a spin-

liquid. Increased temperature leads to further randomness in the spin orientation

and disordered behaviour. As a result the Smag(q) weight at q = (0, 0, 0) reduces.

With further rise in temperature, the ferromagnet and spin-liquid phases loose out to

a paramagnetic state. This can be seen in the Smag(q) in the form that the Smag(q)
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Figure 5.21: JAF = 0.2t (a) Phase diagram for varying t/U and T/t. The various

phases shown in the phase diagram are, ferromagnetic metal (FM), ferromagnetic

insulator (FI), paramagnetic metal (PM), spin-liquid insulator (SLI) and paramag-

netic insulator (PI). The detailed characterisation of these phases is mentioned in

the text. The TMI line corresponds to the metal to Mott-insulator transition and

the Tc line corresponds to a transition from the ferromagnetic ordered state to a

paramagnetic phase. As can be seen, a small window of ferromagnetic phase sur-

vives also in the insulating side. The disordered phase in the insulating side is a

spin-liquid with short-range correlations at low temperature (see figure 5.22). The

TSL line corresponds to a thermal transition from spin-liquid state to paramagnetic

phase. Panel (b) and (c) show average magnetisation M and average orbital moment

�avg for varying t/U and T/t. Panel (d) shows the density of states at the Fermi

level, N(0), for varying t/U and T/t. The vanishing N(0) corresponds to the MIT.

weight gets distributed homogeneously among the q’s. The ferromagnetic critical

temperature, Tc, is estimated by tracking Smag(0, 0, 0) weight with temperature.

The orbital state: Fig.5.23 shows the the amplitude distribution of the orbital

moments, P (�) for di↵erent temperature and interaction regimes. Panel (a) shows

P (�) for U/t = 4. P (�) shows a single narrow peak structure, highlighting an

amplitude homogeneous state. With rise in temperature, the single peak feature

of P (�) retained. However the narrow peak becomes broad and the peak position

shifts towards large � values. Panel (b) and (c) show P (�) for U/t = 8 and 12.5.

We observe similar behaviour as in panel (a), but with important di↵erence that

the peaks are more narrow with increasing U/t values. This can be understood by

the fact that the fluctuations of �avg about the mean, are weaker on the insulating

regime than on the metallic regime.

Fig.5.24 shows the q dependence of the orbital structure factor Sorb(q) for varying

T and U . We observe that at T = 0, Sorb(q) has a peak (dominant weight) at

q = (0, 0, 0) for U/t < 10. This corresponds to a ferromagnetic ground state. For

U/t � 10, Sorb(q) shows dominant weight is distributed among several q’s, suggesting

that the underlying orbital state is a spin-liquid. The Sorb(0, 0, 0) weight decreases
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Figure 5.22: Spin structure factor Smag(q) at T = 0 for U/t =4, 8 and 12.5 for T =

0 (left column), 0.1t (middle column) and 0.2t (right column). We use the notation

q =

2⇡
L
(nx, ny, nz). The size of a dot signifies relative weight at a given q while

its colour represents the actual magnitude of Smag(q). The presence of dominant

weight at some q, (q = (0, 0, 0) in this case) indicates magnetic order phase, while

the ‘random’ but correlated patterns indicate a spin liquid.

with increasing U . With increase in temperature, thermal fluctuations promote

further disordered behaviour. As a result the Sorb(q) weight at q = (0, 0, 0) reduces.

With further rise in temperature, we observe that the Sorb(q) weight gets distributed

homogeneously among the q’s. This can be understood as that the ferromagnetic

phase loosing out to a paramagnetic phase.

Density of states: Fig.5.25.(top row) shows the thermal evolution of the density of

states (DOS) in three interaction regimes of our phase-diagram. We observe following

features � (i) For U < Uc the ground state has small orbital moments. The DOS

is gapless and the weight at the Fermi level decreases monotonically with increasing

T (see Fig.5.25.(a)). (ii) For U � Uc the ground state has a hard gap in the DOS.

With increase in temperature, the angular fluctuations of the orbital moments result
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Figure 5.23: Size distribution of the orbital field P (�) for indicated U/t and T/t
values.

Figure 5.24: Orbital structure factor for U/t =4, 8 and 12.5 at T = 0 (left

column), 0.1t (middle column) and 0.2t (right column). We use the notation

q =

2⇡
L
(nx, ny, nz). The size of a dot signifies relative weight at a given q while

its colour represents the actual magnitude of Sorb(q). The presence of dominant

weight at some q, indicates an orbital ordered phase, otherwise a disordered phase.

in a slight reduction of the Mott-gap, and an increase in the low energy DOS (see

Fig.5.25.(c)). The Mott-gap survives till very high temperature, T ⇠ �avgU . (iii)
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Figure 5.25: (a)-(c) Variation of density of states (DOS) for U/t = 4, 8 and 12.5

for indicated temperatures. (d)-(f) Variation of optical conductivity for U/t = 4, 8

and 12.5 for indicated temperatures.

In the neighbourhood of MIT boundary, for U ⇠ Uc, the DOS shows a sharp dip, a

characteristic of a pseudogap (PG) phase. This dip fills up initially with increasing

T , but deepens further with increasing temperature (see Fig.5.25.(b)).

Optics and transport: Fig.5.25.(bottom row) shows the optical conductivity from

our calculation as we cross the Mott transition. The important points are as follows:

(i) �(!) for U < Uc is a metal. It shows a Drude peak at T = 0, and the Drude

weight reduces with increasing temperature (see Fig.5.25.(d)). (ii) For U > Uc the

system has a clear Mott gap �(T ) in the DOS. Thus, �(!) = 0 for ! < !c ⇠ �(T ).

With increasing temperature the gap �(T ) reduces, resulting in small, but increasing

low frequency weight of �(!) and the �(!) peak position shifts to higher frequency

(see Fig.5.25.(f)). (iii) For U  Uc, �(!) shows finite Drude weight, a response

with the �(!) peak at a small finite frequency. The Drude weight reduces, while the

�(!) peak slowly shifts to higher frequency with increasing T (see Fig.5.25.(e)). We

would like to mention that as U ! Uc, �(! = 0) ! 0. However, with increasing

temperature the zero frequency �(!) weight increases initially and then decreases in

accord with the behaviour of the DOS in this regime.
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Figure 5.26: Variation of resistivity ⇢(T ) with temperature for di↵erent U/t values.
The normalising scale is ⇢0 = ~/e2.

Fig.5.26 shows the d.c. resistivity ⇢(T ) for di↵erent U/t. Following features are

noteworthy. (i) For U < Uc, the residual resistivity ⇢(0) is finite with d⇢/dT > 0

over the entire T range. The resistivity can be understood in terms of the scattering

of electrons from the small orbital moments. This is the metallic regime. (ii) For

U � Uc the system has a clear Mott gap at T = 0 with ⇢(0) ! 1. In this regime

d⇢/dT < 0 over the entire temperature window we have explored. This is the Mott-

insulating regime. (iii) In the neighbourhood of Uc, i.e, |U � Uc| ⌧ Uc, ⇢(T )

shows a non-monotonic behaviour. We observe d⇢/dT > 0 in the low temperature

limit, crossing over to d⇢/dT < 0 with increasing T . The temperature at which

d⇢/dT changes its sign is indicated as the TMIT . We observe TMIT decreasing with

increasing U (see Fig.5.21.(a)). This behaviour can be understood as the scattering of

electrons from the background fluctuating orbital moments. As U increases, �avg(U)

also increases, resulting in the increased scattering of the electrons and a depleting

DOS at the Fermi level.

The key features of this regime are. (i) A competition between double exchange

and superexchange decides the underlying magnetic state. (ii) Though metal insula-

tor transition occurs due to stronger Hubbard repulsion in this regime, the presence

of finite superexchange, which, if dominates over the double exchange, leads to an

‘Anderson’ (disorder) aspect to this MIT. (iii) Metal-insulator transition and the

magnetic transitions are not simultaneous.
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5.3.2.4 Strong superexchange and Hubbard repulsion

Fig.5.27(a) shows the phase diagram for varying t/U and T/t at JAF/t = 0.6, in terms

of the magnetic, transport, and spectral properties that emerge from our calculation.

We observe the following features �

• The ground state is a spin-liquid promoted by the antiferromagnetic superex-

change interaction on the frustrated pyrochlore lattice. Spin structure factor

calculation indicates that this phase has short-range correlations. With in-

creasing temperature, this state looses out to a paramagnetic phase governed

by thermal fluctuations.

• With increasing U/t, the average local orbital moment’s magnitude increases.

This reduces the average kinetic energy and as a result, the system shows Mott

insulating behaviour.

• The weak-coupling side (U < Uc) is a metal with finite density of states (DOS)

at the Fermi-level. The strong-coupling side (U > Uc) has a Mott-gap in the

DOS. In the Mott-transition neighbourhood, the Mott gap quickly converts

to a pseudogap (PG) with increasing T/t, leading to the widening of the PG

region (not shown in figure).

Fig.5.27(b) shows the average magnetisation M for varying t/U and T/t values.

We find that the system has M ⌧ Msat = 1 even at T = 0 at all U values. At

finite temperature, we observe that thermal fluctuations tend to enhance M further.

However, in this strong superexchange regime M ⌧ Msat at all temperature values.

Fig.5.27(c) shows the average magnitude of the orbital moment �avg for varying

t/U and T/t. At T = 0, as U/t ! 1, �avg ! 1, as one expects in the atomic

limit. �avg reduces with decreasing U such that �avg ! 0 as U/t ! 0. At finite

temperature, thermal fluctuations lead to quick growth of �avg in the metallic regime.

Fig.5.27(d) shows the DOS at the Fermi level, N(0), for varying t/U and T/t.

On the metallic side (U < Uc), we see the DOS reducing gradually with increasing

temperature. This can be ascribed to the increase of �avg due to thermal fluctuations.

On the Mott insulating side (U � Uc), we observe, the DOS slowly increasing with

temperature, which can be understood as the gradual filling of the Mott gap.

The magnetic state: Fig.5.28 shows Smag(q) for three di↵erent U values in our

phase diagram, for three representative temperature regimes in each case. We observe

that at T = 0, Smag(q) has no dominant weight at any given q values, rather its

distributed among several q’s for all U/t values. This shows that the ground state
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Figure 5.27: JAF = 0.6t (a) Phase diagram for varying t/U and T/t. The vari-

ous phases shown in the phase diagram are, spin-liquid metal (SLM), paramagnetic

metal (PM), spin-liquid insulator (SLI) and paramagnetic insulator (PI). The de-

tailed characterisation of these phases is mentioned in the text. The TMI line corre-

sponds to the metal to Mott-insulator transition (MIT) and the TSL line corresponds

to the thermal transition from spin-liquid state to paramagnetic phase. The scale,

TSL, separates the disordered phase with short-range correlations (spin-liquid phase)

from the randomly disordered paramagnet. This di↵erence can be seen in Fig.5.28.

Panel (b) and (c) show average magnetisation M and average orbital moment �avg

for varying t/U and T/t. Panel (d) shows the density of states at the Fermi level,

N(0), for varying t/U and T/t. The vanishing N(0) corresponds to the MIT.

is a spin-liquid. With increasing temperature, thermal fluctuations randomise the

magnetic phase further. As a result the Smag(q) weight gets distributed uniformly

among the q values, a signature of a paramagnetic phase. Our calculation shows

this spin-liquid to paramagnet thermal transition is independent of the metallic or

insulating behaviour and occurs for T/t > 0.1.

The orbital state: Fig.5.29 shows the amplitude distribution of the orbital mo-

ments, P (�) for di↵erent temperature and interaction regimes. Panel (a) shows

P (�) for U/t = 4. P (�) shows a single narrow peak structure, highlighting an am-

plitude homogeneous state. With rise in temperature, the single peak feature of P (�)

retained. However the narrow peak becomes broad and the peak position shifts to-

wards large � values. Panel (b) and (c) show P (�) for U/t = 8 and 12.5. We observe

similar behaviour as in panel (a), but with important di↵erence that the peaks are

more narrow with increasing U/t values. This can be understood by the fact that

the fluctuations of �avg about the mean, are weaker on the insulating regime than

on the metallic regime.

Fig.5.30 shows the q dependence of the orbital structure factor Sorb(q) for varying

T/t and U/t values. We observe that at T = 0, Sorb(q) has no peak (dominant weight)

at any given q values, rather it is distributed among several q’s, suggesting that the

ground state is an orbital spin-liquid. Thermal fluctuations play detrimental role

120



Figure 5.28: Spin structure factor Smag(q) at T = 0 for U/t =4, 8 and 12.5 for T =

0 (left column), 0.1t (middle column) and 0.2t (right column). We use the notation

q =

2⇡
L
(nx, ny, nz). The size of a dot signifies relative weight at a given q while its

colour represents the actual magnitude of Smag(q). The presence of dominant weight

at some q, indicates magnetic ordering, while a ‘random’ but correlated patterns

indicate the presence of a spin-liquid phase.

in further randomising this behaviour with increasing temperature. As a result an

orbital paramagnetic phase shows up. This can be seen as the Sorb(q) weights get

distributed uniformly among the q values.

Density of states: Fig.5.31.(top row) shows the thermal evolution of the density

of states (DOS) in three interaction regimes of our phase-diagram. We observe

following features � (i) For U ⌧ Uc the ground state has small orbital moments.

The DOS is gapless and the weight at the Fermi level decreases monotonically with

increasing T . As U ! Uc we see a sharp dip in the DOS, highlighting the presence

of a pseudogap phase. This dip fills up initially with increasing T , but deepens

further with increasing temperature (see Fig.5.31.(a)). (ii) For U � Uc, the DOS

shows a Mott-gap in the spectrum at T = 0. With increasing temperature, thermal
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Figure 5.29: Size distribution of the orbital field P (�) for indicated U/t and T/t
values.

Figure 5.30: Orbital structure factor for U/t =4, 8 and 12.5 at T = 0 (left

column), 0.1t (middle column) and 0.2t (right column). We use the notation

q =

2⇡
L
(nx, ny, nz). The size of a dot signifies relative weight at a given q while

its colour represents the actual magnitude of Sorb(q). The absence of dominant

weight at some q values, indicates an orbital disordered phase.

fluctuations manifest as amplitude fluctuations of the orbital moments. As a result,

the Mott-gap reduces, and at high enough temperature it turns into a pseudogap
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Figure 5.31: (a)-(c) Variation of density of states (DOS) for U/t = 4, 8 and 12.5

for indicated temperatures. (d)-(f) Variation of optical conductivity for U/t = 4, 8

and 12.5 for indicated temperatures.

phase (see Fig.5.31.(b)). (iii) For U � Uc the ground state has a hard gap in the

DOS. With increase in temperature, the angular fluctuations of the orbital moments

result in a slight reduction of the Mott-gap (see Fig.5.31.(c)). However, the Mott-gap

survives till very high temperature, T ⇠ �avgU .

Optics and transport: Fig.5.31.(bottom row) shows the optical conductivity from

our calculation as we cross the Mott transition. The important points are as follows:

(i) �(!) for U ⌧ Uc shows a Drude peak at T = 0, suggesting metallic behaviour.

The Drude weight reduces with increasing temperature. As U ! Uc, �(!) shows

finite Drude weight, with the �(!) peak at a small finite frequency. With increasing

T , the Drude weight reduces further, and the �(!) peak slowly shifts to higher

frequency (see Fig.5.31.(d)). (ii) For U � Uc, �(!) shows a small, but finite optical

gap. However, with increasing temperature, the optical gap reduces gradually, and

the low frequency optical weight increases monotonically (see Fig.5.31.(e)). (iii) For

U � Uc the system has a clear Mott gap �(T ) in the DOS. Thus, �(!) = 0 for

! < !c ⇠ �(T ). With increasing temperature the gap �(T ) reduces, resulting in

small, but increasing low frequency weight of �(!) and the �(!) peak position shifts

to higher frequency (see Fig.5.31.(f)).
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Figure 5.32: Variation of resistivity ⇢(T ) with temperature for di↵erent U/t values.
The normalising scale is ⇢0 = ~/e2.

Fig.5.32 shows the d.c. resistivity ⇢(T ) for di↵erent U/t. Following features are

noteworthy. (i) For U < Uc, the residual resistivity ⇢(0) is finite with d⇢/dT > 0

over the entire T range. The resistivity in this regime is a result of the scattering

of electrons from the small orbital moments. This is the metallic regime. (ii) For

U > Uc the system has a clear Mott gap at T = 0 with ⇢(0) ! 1. In this regime

d⇢/dT < 0 over the entire temperature window we have explored. This is the Mott-

insulating regime. (iii) In the neighbourhood of Uc, i.e, |U � Uc| ⌧ Uc, ⇢(T )

shows a non-monotonic behaviour. We observe d⇢/dT < 0 in the low temperature

limit, crossing over to d⇢/dT > 0 with increasing T . The temperature at which

d⇢/dT changes its sign is indicated as the TMIT . We observe TMIT increasing with

increasing U/t (see Fig.5.27.(a)).

The key features of this regime are. (i) The underlying magnetic state is al-

ways a spin-liquid due to the dominance of superexchange interaction. (ii) Strong

superexchange and Hubbard repulsion lead to the metal-insulator transition.

5.3.3 Summary of the model study

In the previous sections we have studied the two orbital Hubbard model with the

electrons additionally strongly coupled to a background local moment - and the mo-

ments interacting antiferromagnetically amongst themselves. This Hubbard-double

exchange-superexchange scenario, on the pyrochlore lattice, is the minimal model

for the rare earth molybdates. We mapped out the ground state phase diagram via
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Physical properties DE dominated Phase competing SE domi-

nated

Magnetic ground

state

Ferromagnetic FM for U < Umag, spin-

liquid for U > Umag

Spin-liquid

Ferromagnetic Tc Large Moderate for U < Umag,

zero for U > Umag

Zero

Residual resistivity Small Small Large

Localisation e↵ect Weak Moderate Strong

Table 5.1: Changing physical properties, as one moves from DE dominated to phase

competing to the SE dominated regimes.

a simulated annealing based unrestricted Hartree-Fock calculation and established

the metal-insulator and ferromagnet-spin liquid transition boundaries.

In Table.5.1, we summarise the results of our study in terms of changing phys-

ical properties, as one moves from DE dominated to phase competing to the SE

dominated regimes.
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5.4 Comparing to molybdate experiments

The rare earth molybdate family R2Mo2O7 exhibits ground states that vary from

a ferromagnetic metal (FM) to a spin glass metal (SG-M) and then a spin glass

insulator (SG-I) as the rare earth radius rR is reduced [172]. Materials with R = Nd

and Sm are metallic, R = Tb, Dy, Ho, Er, and Y are insulating, and R=Gd is on

the verge of the metal-insulator transition (MIT) [102, 103, 173, 174]. The unusual

features in transport include very large residual resistivity, ⇠ 10 m⌦cm close to the

metal-insulator transition [102], prominent anomalous Hall e↵ect in metallic samples,

e.g, Nd2Mo2O7 [6,7,168–170], and magnetic field driven metallisation in the weakly

insulating samples, e.g, Gd2Mo2O7 [5].

The molybdates involve orbitally degenerate electrons Hund’s coupled to local

moments. The large Hund’s coupling promotes ferromagnetism, the superexchange

between the local moments prefers antiferromagnetism, and Hubbard repulsion tries

to open a Mott gap. The phase competition is tuned by the rare earth ionic radius,

decreasing which leads to change from a ferromagnetic metal to a spin disordered

highly resistive ground state, and ultimately an ‘Anderson-Mott’ insulator.

The molybdates o↵er additional twists to the Mott problem: (i) the Mott tran-

sition in these materials occur in the background of overall ferromagnetic correla-

tion [86,173,174], and (ii) the zero temperature resistivity seems to grow continuously

with the control parameter [102] rather than have an abrupt zero to infinity transi-

tion.

These features owe their origin to the additional degrees of freedom, and cou-

plings, involved in these materials. Here, we attempt a quantitative theory of the

molybdates by studying their minimal model on the pyrochlore geometry. We estab-

lish a thermal phase diagram that closely corresponds to the experiments, predict

the hitherto unexplored orbital correlations, quantify and explain the origin of the

anomalous resistivity, and present dynamical properties across the MIT.

5.4.1 Parameter calibration

Following ab initio estimates [112,175], we use parameters appropriate to the molyb-

dates, as t = 0.1 eV and JAF = 0.02 eV. The calibration of U/t in terms of rR is

based on the optical gap (see Fig.5.33). For T ⇠ 0, the optical gap � is determined

by linearly extrapolating the decreasing edge of the optical conductivity spectra in

the low energy regime. Fig.5.33.(a) shows the comparison of experimental gap [103]

�expt = �(rR) and theoretical gap �th = �(U/t) (see Fig.5.33.(b)) at low tempera-
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Figure 5.33: Optical gap (�) extracted from the low temperature optical con-

ductivity: (a) experiment [103] �expt = �(rR) and (b) theory �th = �(U/t).
(c) �(rR) ⇠ �(U/t) gives us the values of U/t appropriate for the molybdates.

ture. We ‘calibrate’ the U/t of our model in terms of rR based on �(rR) ⇠ �(U/t)

in the insulating regime (finite optical gap). We try a linear fitting of this data and

extrapolate it to lower U/t values, to have an estimate of the U/t in terms of rR

in the metallic regime (zero optical gap). Our calibration (see Fig.5.33.(c)) suggests

that for the rare-earth molybdates the appropriate U/t value varies from ⇠ 5� 9 as

R varies from Nd to Ho.

We discuss our results for the chosen t, JAF , and U/t, using absolute scales, and

compare with available experimental data [102,167].

5.4.2 Results

Phase diagram: Fig.5.34.(a) shows the experimental phase diagram. At large rR,

where the U/t ratio is relatively small, the ground state is a ferromagnetic metal with

a moment ⇠ 1.4µB per Mo [7, 167]. The magnetisation seems to diminish slowly as

rR reduces (panel 5.34.(c)), and then rapidly around the metal-insulator transition,

rcR ⇠ 1.06˚A, but a small value survives into the weak insulating regime [167]. The

FM Tc is ⇠ 80K for large rR and drops sharply near rcR. The state for rR . rcR is a

spin glass, with TSG ⇠ 20K.

Panel 5.34.(b) shows our result over the window U/t ⇠ 5�10. For our parameter

calibration the metal-insulator transition (MIT) at T = 0 occurs at Uc ⇠ 7.6t, and

we present our results in terms of Uc/U . At the right end, where U ⇠ 0.7Uc, the

ground state is metallic, double exchange (DE) dominated, and an almost saturated

ferromagnet. This is also a weakly ‘ferro orbital’ state. With increasing U the orbital

moment grows and leads to a splitting of the e0g band.
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Figure 5.34: (a)-(b) Phase diagram of the molybadates- experiment [6, 172] and

theory. The experimental ground state changes from ferromagnetic metal (FM) to

spin-glass metal (SGM) and then spin-glass insulator (SGI) with reducing rR. Within

theory the FM transforms to a ‘spin liquid’ rather than a spin-glass. (c)-(d) Show

the ferromagnetic moment at low T as the system is taken through the MIT. Within

both experiment [167], (c), and theory, (d), a small moment survives in the insulator.

In (b) we have cut o↵ Tc at the point where the T = 0 magnetisation drops below

10%.

Temperature scales: We have used a model with Hund’s coupling JH � t for

convenience, and obtain Tc ⇠ 160K for Nd. In reality JH ⇠ 5t [112], and as earlier

results show [176] this would reduce Tc by ⇠ 50% to about 80K (see Discussion),

close to the actual value for Nd. Within our scheme we do not find any spin freezing,

so no TSG. Our magnetic state for U & Uc is a spin liquid (SL), rather than a

spin glass, with weak ferromagnetism. We comment on the spin freezing issue later.

Panels 5.34.(c) and 5.34.(d) show the low T magnetisation in the molybdates and

in our scheme. The dependence is very similar and a small magnetisation survives

beyond the MIT.

Resistivity: We demarcate the finite T metal-insulator boundary based on the

temperature derivative of resistivity d⇢/dT : ‘metal’ if d⇢/dT > 0, ‘insulator’ if

d⇢/dT < 0. We compute ⇢(T ) via the low-energy limit of the optical conductiv-

ity. Fig.5.35.(a) shows experimental resistivity [102] while 5.35.(b) shows the theory

result for parameter values set by the calibration.
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Figure 5.35: (a) Resistivity of the molybdates for varying rare earth [102]. (b) Re-

sistivity computed within our scheme. The coloured plots are counterparts of the

experimental data, while the dotted lines predict possible behaviour if intermediate

compositions were to be synthesised. Inset to (b) shows the growth of the ‘residual’

resistivity, ⇢(0). (c)-(d) Show theory results for ⇢(T ) � ⇢(0) on a linear scale, to

highlight the temperature driven metal to insulator crossover.

Even the limited R variation in the experiments can be thought to represent three

‘regimes’. (i) For R=Nd, the ‘high Tc’ FM, ⇢(T ) has traditional metallic behaviour,

⇢(0) < 1 m⌦cm and d⇢/dT > 0 all the way to 400K. (ii) For R=Gd, Dy, Ho, the

system is insulating at all T , with ⇢(0) ! 1. The behaviour is clearly activated for

Dy and Ho while Gd seems to be weakly insulating. (iii) R=Sm (and Eu, not shown)

represents the most interesting case, with ⇢(0) ⇠ 3 m⌦cm and a non monotonic T

dependence [102, 103]. Any theory would have to capture the obvious regimes (i)

and (ii) and also the peculiar large ⇢(0) and non monotonicity in (iii).

Our results, panel 5.35.(b), show the following: (i) For U ⌧ Uc, the itinerant

e0g electrons see a DE dominated ferromagnetic background, as well as an orbital-

ferro state. The T = 0 state is ideally clean, and finite T resistivity from spin and

orbital fluctuations generate an approximate linear T behaviour (see 5.35.(c)). (ii)

For U � Uc, there is a distinct gap � with ⇢(T ) ⇠ ⇢0e�/T
as T ! 0 and d⇢/dT < 0

over the entire temperature range. (iii) For U . Uc, the residual resistivity ⇢(0) is

finite. This arises from a combination of depleting DOS at the Fermi level (due to

129



Figure 5.36: (a)-(c) Low energy optical spectral weight, neff / R ⌦

0 �(!)d!. (a) Ex-
perimental result for ⌦ = 0.5 eV [102], (b) theory result for ⌦ = 0.3 eV, (c) theory

result for ⌦ = 0.5 eV. (d) The d.c conductivity within theory.

the increasing orbital moment), and the magnetic disorder due to weakening DE.

The behaviour of ⇢(0) is shown in the inset to panel 5.35.(b). Increasing T does lead

to a linear behaviour, with a large slope, but the resistivity peaks at a scale Tpeak(U)

and falls thereafter. Panels 5.35.(c)-(d) highlight this trend. As U ! Uc, Tpeak ! 0,

finally merging with the insulating behaviour in (ii).

Optical spectral weight: Fig.5.36.(a) shows the experimentally estimated optical

spectral weight neff (⌦) = (2m0/⇡e2)
R ⌦

0 �(!)d! for di↵erent R and varying temper-

ature at ⌦ = 0.5 eV [102]. It shows the expected trend of neff growing with T in the

insulating, low rR, side as the Mott gap is slowly filled, and reducing on the metallic

side as weight gets transferred to high energy as coherence is lost.

We calculated the same quantity for di↵erent cuto↵ frequencies, ⌦, as neff (⌦) =R ⌦

0 �(!)d!. Fig.5.36.(b)-(c) show our result for ⌦ = 0.3 eV and 0.5 eV respectively.

Panel 5.36.(d) shows just �dc to contrast the features in optical weight to the non

monotonicity of the d.c conductivity itself.

Our result at ⌦ = 0.3 eV, roughly 2/3 the experimental cuto↵, has the same

features as the experimental data. At ⌦ = 0.5 eV, however, our data reveal a weak

non monotonicity in the T dependence when U & Uc. This arises because �(!) gains

weight at low frequency, as in panel (b), but loses more around ! ⇠ 0.5 eV. The

success in capturing the d.c resistivity, Fig.5.35, does not translate to similar success
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Figure 5.37: (a)-(b) Variation of DOS with U at T = 0K and 300K. (c) Integrated

DOS, over ! = ±0.15eV, for varying U and T . (d)-(f) Temperature dependence of

DOS at U = 0.65Uc, 0.9Uc and 1.1Uc, respectively. (d) is a gapless metal, (e) shows

a pseudogapped state, while (f) shows the T dependence in a gapped Mott insulator.

in the capturing the high energy optical conductivity. It is possible that some of the

simplifying assumptions regarding band-structure and coupling constants, i.e JH ,

a↵ect this result.

The non monotonicity in our ⌦ = 0.5 eV spectral weight (Fig.5.36.(c)) is dis-

tinct from the d.c conductivity behaviour shown in Fig.5.36.(d). Fig.5.35.(b) shows

that bad T = 0 metals, for U . Uc, become more resistive with increasing T and

beyond a Tpeak become less resistive again. We suggest that a detailed conductivity

map, on materials like Gd2�xSmxMo2O7 or Gd2�xEuxMo2O7 could reveal this non

monotonicity.

Density of states: We computed the single particle density of states (DOS),

N(!), for the interaction and temperature window studied. Fig.5.37.(a) shows the

dependence of N(!) on U/Uc as the system is driven across the Mott transition

at T = 0. The DOS has its tight binding form upto U ⇠ 0.7Uc beyond which

the presence of the orbital moment shows a visible depletion in the DOS around

! = 0. This dip becomes a gap for U � Uc, which grows in the insulating phase.

At T = 300K, Fig.5.37.(b), the systems with U < Uc lose weight near ! = 0, while

those with U > Uc gain weight. Panel 5.37.(c) quantifies these trends by calculating

R ⌦0

�⌦0 N(!)d!, where ⌦0
= 0.15 eV (to make a comparison with Fig.5.36.(b)). We

suggest that the optical behaviour observed experimentally has an analog in the

single particle spectral weight transfer as well.
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Figure 5.38: Variation of the ferromagnetic Tc with Hund’s coupling JH [176]. This

result on the single orbital model indicates that the Tc reduces to about half when

JH is lowered to ⇠ 5t from infinity.

Panels 5.37.(d)-(f) show the thermal evolution of the DOS at three representative

U/Uc. (i) In 5.37.(d) U ⇠ 0.6Uc, the ground state is a nearly saturated ferromagnet

with a small orbital moments �i’s and has finite DOS at ! = 0. Thermal growth and

fluctuations of the �i’s decrease the DOS at ! = 0 resulting in a small dip at high

temperature. (ii) For U = 1.1Uc, panel 5.37.(f), there is significant spin disorder in

the ground state (the ferromagnetic moment is ⇠ 0.1) and the �i’s are large, ⇠ 1,

at all sites. A remnant of the atomic gap ⇠ U |�|, survives despite the presence of

hopping. The DOS shows a Mott gap. With increase in temperature, the angular

fluctuations of the �i’s result in a slight smearing of the gap edge and increase in

‘low energy’ weight. (iii) For U = 0.9Uc, panel 5.37.(e), the magnetic state has

magnetisation, M ⇠ 0.5 and the �i’s are moderately large. As a result there is only

a loss in weight around ! = 0 but no hard gap. This is a pseudogap state.

5.4.3 Discussion

(1). E↵ect of finite Hund’s coupling: To simplify the study of our starting model, we

have considered the Hund’s coupling (JH) as infinite. This allows us to retain only

one spin species of electrons in the two orbitals at a site. In reality, however, JH is

finite for all materials. As we decrease JH from infinite, we observe the lowering of

the ferromagnetic Tc. We show the dependence of Tc with JH in Fig.5.38.

(2) Mechanism behind the molybdate metal-insulator transition: (i) Increasing U

increases the splitting � ⇠ |�|U between the electronic levels on Mo. This becom-

ing comparable to the bandwidth would lead to a Mott transition (the correlation

aspect). (ii) With increasing U , the growing orbital moment suppresses the electron
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kinetic energy. This weakens DE. The competing AF superexchange reduces the

magnetisation and increases the extent of spin disorder in the ground state. We

call this the ‘Anderson’ (disorder) aspect of the problem. It depends crucially on

the presence of JAF . Uc is determined by a combination of the Mott and Anderson

e↵ects opening a gap in the electronic spectrum. Since magnetic disorder plays a

role in the MIT, one can a↵ect the transition by applying a magnetic field [5].

5.4.4 Conclusion

We discussed a quantitative approach to the Mott transition in the pyrochlore molyb-

dates using a real space framework, retaining the double exchange, superexchange

and correlation e↵ects. We showed the results for the chosen t, JAF , and U/t, us-

ing absolute scales, and compared with available experimental data [102,167]. After

making parameter choices suggested by ab initio estimates [112,175] our main results

are as follows.

(i) We obtain a phase diagram with ferromagnetic metal and spin disordered

metal and insulator phases. However, our disordered state is a ‘spin liquid’ in con-

trast to the experimental spin glass. (ii) The FM Tc is in the experimental ballpark

if we make room for a simple renormalisation of the Hund’s coupling. (iii) Our trans-

port results bears almost quantitative correspondence with experiments [102, 103],

explain the high residual resistivity in terms of spin and orbital disorder scattering,

and predict a highly non monotonic temperature dependence for samples of the form

Gd2�xSmxMo2O7. (iv) The temperature and correlation dependence of our interme-

diate frequency optical spectral weight is very similar to the experiments [102, 103]

but changing the cuto↵ frequency reveals peculiarities, also reflected in the single

particle weight.

There are several molybdate e↵ects that we have not touched upon in this chapter,

but they can also be readily explored. These include (i) the experimental P � rR

phase diagram, (ii) the field driven IMT in Gd2Mo2O7 [5], (iii) anomalous Hall e↵ect

(AHE) observed in Nd2Mo2O7 [6, 7, 168–170], and (iv) spin glass freezing, which

requires some degree of quenched disorder [165] (or bond distortions [166,177–179]).
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CHAPTER6
MOTT PHYSICS IN THE PYROCHLORE

IRIDATES

6.1 Introduction

The rare-earth pyrochlore iridates R2Ir2O7 involve an interplay of Coulomb interac-

tion and spin-orbit coupling on a frustrated geometry. Despite the pyrochlore struc-

ture these materials show non-trivial magnetic ordering. A detailed understanding

of the properties of these compounds, particularly at finite temperature, remains

wanting. This chapter describes our work on the iridate Mott transition using the

SPA as a tool. To start with we review the experimental situation, and the existing

theory, on these compounds.

Experiment: The iridates show a metal-isulator transition (MIT) [180, 181] with

reduction of the rare-earth ionic radius (rR). The Pr based iridate shows metallic

behaviour down to the lowest observed temperature without any magnetic order

[182]. Other iridates, with smaller rR, show a magnetically ordered insulating phase

at low temperature, and a non-magnetic insulating state at high temperature [183].

The low temperature magnetic phase is speculated to be an antiferromagnet with

‘all-in-all-out’ (AIAO) ordering [184,185].

The rR driven low temperature MIT is accompanied by a magnetic transition

from a paramagnetic metal to an antiferromagnetic AIAO insulator (see figure 1.18).

Iridates also show MIT on applying pressure [186–188] and an external magnetic

field [189] showing unusually resistive ground states. As shown in figure 6.1, with

applying pressure the resistivity decreases significantly. Similarly, with increasing

field strength, the resistivity is strongly suppressed (see figure 6.2) giving rise to a
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II. EXPERIMENT

Eu2Ir2O7 single crystals were grown at the Institute
for Solid State Physics using the potassium fluoride-flux
method.11 We pressurized samples measuring approximately
150 × 100 × 30 µm3 in a moissanite anvil cell12 and measured
resistivity as a function of temperature at several pressures
in the range of P = 2–12 GPa using a four-terminal ac
method. The pressure medium was 7373 Daphne oil, and
pressure was monitored by ruby fluorescence spectroscopy
at room temperature. A 1-K dipping probe was used in the
temperature range of T = 300 to 2 K. Resistivity below 2 K
and magnetoresistance (MR) at 10.01 GPa were measured in
a dilution refrigerator.

III. RESULTS

Our resistivity data, from 300 to 2 K at nine different
pressures from 2.06 to 12.15 GPa, are presented in Fig. 1.
The quantitative effects of increasing the pressure from 2 to
12 GPa are dramatic: The room-temperature resistivity falls
by a factor of 60, whereas, the 2-K resistivity falls by a factor
of 500. Qualitatively, the slope of the resistivity ∂ρ(T )/∂T
for T > 100 K changes from negative (nonmetallic) at low
pressure to positive (metallic) at 10 and 12 GPa. At lower
temperatures, in contrast, the slope of the resistivity is negative
at all pressures, but it is nearly 1000 times larger at 2.06 GPa
than at 12.15 GPa. We elaborate on the low-temperature
resistivity in the Discussion and show that the low-pressure
curves have a temperature-dependent gap that closes between
6 and 8 GPa.

The metal-insulator transition, which occurs at 120 K
at ambient pressure, does not show up clearly in the raw
resistivity. This is also the case at ambient pressure.8 However,
Fig. 2 shows that, for low pressures, the slope of ln[ρ(T )] vs T
changes near 100 K. This change appears to be quite abrupt in
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FIG. 1. (Color online) Resistivity as a function of temperature
from P = 2.06 to 12.15 GPa. The left-hand panel contains all of
our results, showing that the resistivity is strongly suppressed by
increasing pressure. The right-hand panel focuses on the intermediate-
pressure data. Red arrows indicate the metal-insulator transition (see
Fig. 2 and the text); blue arrows indicate the minimum in ρ(T ).
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FIG. 2. (Color online) Locating the metal-insulator transition TMI.
The color coding is the same as in Fig. 1. The transition does not have
a strong signature in ρ(T ), however, panel (a) shows that there is a
marked change in slope of ln(ρ) vs T near 100 K at all pressures,
while panel (b) shows that the onset of this behavior can be found,
for all pressures below 7.88 GPa, in a sharp downturn in ∂ρ/∂T . As
a guide to the eye, we have shown plausible extrapolations of the
high-temperature slope and the slope immediately below 100 K. At
each pressure, we have placed TMI at the midpoint between the onset of
the downturn and the temperature at which these extrapolations meet;
whereas, the error bars (see Fig. 4) extend to these two temperatures.
The inset of (b) zooms in on ∂ρ/∂T near 100 K for 3.49 GPa. In (a),
some curves are offset vertically for clarity.

the 3.49-GPa and the 4.61-GPa curves, both in Fig. 2(a) and in
the raw data [Fig. 1(b)]. This change in slope is more clearly
seen in plots of ∂ρ/∂T vs T [Fig. 2(b)]: For all pressures below
7.88 GPa, ∂ρ/∂T begins to decrease rapidly, with a sharp
well-defined onset, near 100 K. We have used this to identify
TMI: Down to TMI, the slope of ∂ρ/∂T is roughly constant,
then at TMI, it begins to fall rapidly. The inset of Fig. 2(b)
shows a clear example at 3.49 GPa. The red arrows in the
first two figures correspond to TMI, assigned to the midpoint
between where the slope first starts to turn downward and the
point where the extrapolated high- and low-temperature slopes
meet. Error bars on our phase diagram, discussed below, extend
to these two temperatures. The lowest pressure ∂ρ/∂T curves
are rather noisy, perhaps because the contact resistances, which
improve as the pressure increases, are rather large, but even in
these cases, a sharp change can be identified quite accurately.

At 6.06 GPa and above, there is a minimum in ρ(T ), and
like TMI, it is close to 100 K. The way this minimum develops
is shown in Fig. 3. In the lower-pressure curves, the resistivity
has a negative slope at all temperatures, but in the 6.06- and
7.88-GPa curves, an intermediate region of ∂ρ/∂T > 0 devel-
ops below a local maximum at T ∗ and a local minimum at
Tmin. At higher pressures, the maximum has apparently moved
above room temperature, so ρ(T ) has a positive metallic slope
from Tmin to 293 K. The T ∗ crossover occurs at 180 and 270 K
on the P = 6.06- and 7.88-GPa curves, respectively.

We have used the qualitatively different resistivity behav-
iors to construct the phase diagram shown in Fig. 4. The
phase diagram can be viewed as four quadrants, correspond-
ing to four distinct regimes of electronic transport. In the

205104-2

Figure 6.1: (Taken from [187]) Temperature dependence of resistivity under appli-

cation of pressure in Eu2Ir2O7. With increasing the pressure, the insulator become

a metal by undergoing a metal-insulator transition.

large magnetoresistance. This field driven metallisation is possibly due to a change

in the underlying magnetic behaviour with the application of the external magnetic

field. There are reports of spin chirality driven anomalous Hall e↵ect (AHE) in

Pr2Ir2O7 [182,190].
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FIG. 4. (Color online) Temperature dependence of resistivity un-
der several magnetic fields for (a) x = 0, 0.2 and (b) x = 0.5, 0.6 in
(Nd1−xPrx)2Ir2O7. (c) Contour plots of resistivity on the R ionic radius
vs temperature plane with the use of a color bar for several magnetic
fields (from left to right: 0, 5, 8, and 14 T). The dots connected
with dashed lines common to all the figures in (c) represent the
metal-insulator phase boundary at zero field.

Figures 4(a) and 4(b) show the T dependence of resistivity
under applied magnetic fields for several compositions. For
Nd-rich compositions (x = 0,0.2) in Fig. 4(a), the magne-
toresistance is rather small, even in the field of 14 T. On
the other hand, for x = 0.5 or 0.6 in Fig. 4(b), the resistivity
significantly decreases with increasing field and the anomaly at
TN completely disappears in a sufficiently large field. The large
magnetoresistance is presumably attributed to the MIT with a
change in the magnetic configuration, as previously shown for
a single crystal of Nd2Ir2O7 (x = 0) [35]. Figure 4(c) displays
the contour plots of resistivity in the range of x = 0.4–1.0
for several magnetic fields. The AFI phase is gradually
suppressed and turns into a metallic one with increasing
magnetic field for x > 0.4, whereas the resistivity remains
rather insulating for x < 0.3, as shown in Fig. 4(a). According
to the predicted phase diagram for the magnetic structural
change from AIAO to the two-in two-out state, as derived
by mean-field theory [35], the compositions for x > 0.4
can access the metallic state with a large density of states

(DOS) at the Fermi level (EF) by applying a magnetic field,
whereas others remain in the barely insulating or semimetallic
state with vanishingly small DOS at EF. Interestingly, the
calculation demonstrates that there should be a number of
different electronic and magnetic phases such as the Weyl
metal and nodal semimetal below the critical correlation
strength [35], which corresponds to x ∼ 0.4 in the present
system. The observed insulator-to-metal transition in the range
from x = 0.4 to 0.7 may be a consequence of such phase
changes. We note that the present magnetotransport properties
are observed in polycrystals composed of microcrystalline
grains of ∼5 µm in size in which the bulk nature with a
well-stoichiometric composition (i.e., half filling) is preserved
but the crystalline axes are randomized with respect to the
magnetic field directions; therefore, the transport properties
are affected by mixed contributions from the three-in one-out
and two-in two-out states, each of which may induce a Weyl
(semi)metal and nodal semimetal, respectively [35]. Further
studies on the anisotropic magnetotransport are required to
elucidate the electronic ground state separately for each
magnetic configuration.

In conclusion, we have investigated the charge trans-
port properties related to the metal-insulator transitions for
(SmyNd1−y)2Ir2O7 and (Nd1−xPrx)2Ir2O7 polycrystals where
the effective electron correlation is finely controlled. We have
uncovered that the fine tuning of such parameters gives rise
to various states on the verge of a metal-insulator transi-
tion. The paramagnetic metal-insulator crossover shows up
around y = 0.8, accompanying the insulator-metal-insulator
reentrant transition. Around there, the electronic state on the
magnetic domain walls turns from metal to insulator. Large
magnetoresistance is observed for (Nd1−xPrx)2Ir2O7 with
0.4 < x < 0.7 near the zero-field phase boundary between the
antiferromagnetic insulator and the paramagnetic semimetal,
pointing to a magnetic field-induced metal-insulator transition,
in the course of which interesting topological quantum states
are expected to emerge.
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Figure 6.2: (Taken from [189]) Variation of resistivity as a function of temperature

under the application of an external magnetic field. By increasing the field strength,

the insulator begins to metallise.

Theory: The iridates have been studied theoretically using various tools:

• An ab initio calculation using a combination of local density approximation

(LDA) and Hubbard U predicted the existence of a Weyl semimetal and an

aniferromagnetic AIAO phase [191] (see figure 6.3).

• Model studies of the single band Hubbard model with spin-orbit coupling

(SOC) reveal the following (see figure 1.20): (i) In the absence of U the ground
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it was shown that the insulating ground states evolve from a
high-temperature metallic phase via a magnetic transition.9,10

The magnetism was shown to arise from the Ir sites, since it
also occurs in A = Y, Lu, where the A sites are nonmagnetic.
While its precise nature remains unknown, ferromagnetic
ordering is considered unlikely, since magnetic hysteresis is
not observed.

We show that electronic structure calculations can naturally
account for this evolution and point to a novel ground state.
First, we find that magnetic moments order on the Ir sites
in a noncollinear pattern with moment on a tetrahedron
pointing all in or all out from the center. This structure retains
inversion symmetry, a fact that greatly aids the electronic
structure analysis. While the magnetic pattern remains fixed,
the electronic properties evolve with correlation strength. For
weak correlations, or in the absence of magnetic order, a
metal is obtained, in contrast to the interesting topological
insulator scenario of Ref. 8. With strong correlations we find
a Mott insulator with all-in/all-out magnetic order. However,
for the case of intermediate correlations, relevant to Y2Ir2O7,
the electronic ground state is found to be a Weyl semimetal,
with linearly dispersing Dirac nodes at the chemical potential
and other properties described above.

We also mention the possibility of an exotic insulating
phase emerging when the Weyl points annihilate in pairs
as the correlations are reduced; we call it the θ = π axion
insulator. Although our LSDA + U + SO calculations find
that a metallic phase intervenes before this possibility is
realized, we note that local-density approximation (LDA)
systematically underestimates gaps, so this scenario could well
occur in reality. Finally, we mention that modest magnetic
fields could induce a reorientation of the magnetic moments,
leading to a metallic phase. Previous studies include Ref. 18, an
ab initio study which considered ferromagnetism. In Ref. 19,
the tight-binding model of Ref. 8 was extended to include
tetragonal crystal fields, but in the absence of magnetism. The
topological Dirac metal and axion insulator discussed here do
not appear in those works, largely due to the difference of
magnetic order from our study.

We begin by giving a brief overview of the theoretical
ideas that will be invoked in this work, before turning to our
LSDA + U calculations of magnetic and electronic structure
of the pyrochlore iridates. We then discuss the special surface
states that arise in the Weyl semimetal phase and close with
a comparison to existing experiments and conclusions. Our
results are summarized in the phase diagram Fig. 1.

I. WEYL SEMIMETALS AND INVERSION-SYMMETRIC
INSULATORS

Weyl points are points where the valence band and
conduction band touch. The excitations near each Weyl point
k0 are described by an effective Hamiltonian:

HD = E01 + v0 · q1 +
3∑

i=1

vi · qσi . (1)

Energy is measured from the chemical potential, q = k − k0
and (1, σi) are the identity matrix and three Pauli matrices,
respectively. This Hamiltonian is obtained by expanding the

FIG. 1. (Color online) Sketch of the predicted phase diagram
for pyrochlore iridiates. The horizontal axis corresponds to the
increasing interaction among Ir 5d electrons while the vertical axis
corresponds to external magnetic field, which can trigger a transition
out of the noncollinear “all-in/all-out” ground state, which has several
electronic phases.

full Hamiltonian to linear order. No assumptions are needed
beyond the requirement that the two eigenvalues become
degenerate at k0. The velocity vectors vi are generically
nonvanishing and linearly independent. The energy dispersion

is conelike, $E = v0 · q ±
√∑3

i=1(vi · q)2. One can assign a
chirality (or chiral charge) c = ±1 to the fermions defined as
c = sgn(v1 · v2 × v3). Note that, since the 2 × 2 Pauli matrices
appear, our Weyl particles are two-component fermions. In
contrast to regular four component Dirac fermions, it is not
possible to introduce a mass gap. The only way for these modes
to disappear is if they meet with another two-component Weyl
fermion in the Brillouin zone, but with opposite chiral charge.
Thus, they are topological objects. By inversion symmetry, the
band touchings come in pairs, at k0 and −k0, and these have
opposite chiralities (since the velocity vectors are reversed).

This semimetallic behavior would not occur (generically)
in a system without magnetic order. In materials such as
bismuth, with both time reversal and inversion symmetry,
Dirac fermions always contain both left- and right-handed
components and are thus typically gapped.20

When the compound has stoichiometric composition, and
all the Weyl points are related by symmetry, the Fermi energy
can generically line up with the energy of the touching points.
Under these circumstances, the density of states is equal to
zero and the behavior of the Weyl fermions controls the
low-temperature physics of the solid. For example, the ac
conductivity should have a particular frequency dependence,
and novel types of surface states should occur, as discussed
below. Because of the symmetry relating the Weyl points,
their energies E0 must coincide. Then, the Fermi energy is
fixed at the touching points because of the Kohn-Luttinger
theorem: At stoichiometry, there are an integer number of
electrons per unit cell. Hence, the Kohn-Luttinger theorem
implies that the volume of particlelike minus holelike Fermi
surfaces must be a multiple of the volume of the Brillouin
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extent of the 5d atomic orbitals (compared with 3d), the
energy scales associated with spin-orbit coupling and local
repulsion are comparable. This sets the stage for the inter-
play between band topology and Mott physics. A micro-
scopically tailored model that captures this interplay is the
following Hubbard Hamiltonian for the 5d electrons hop-
ping on the iridium pyrochlore lattice with on site Coulomb
repulsion [15]:

H ¼
X

hRi;R0i0i;!!0
ð½Toxy$ii

0
!!0 þ ½Td$ii

0
!!0ÞcyRi!cR0i0!0

'"
X

Ri;!

cyRi!cRi! þU
X

Ri

nRi"nRi#; (1)

where cRi! annihilates an electron with pseudospin ! at
the ith basis site of the Bravais lattice vectorR. The index i
runs from 1 to 4 and labels the corners of a tetrahedron. The
hopping matrix Toxy arises from oxygen-mediated hopping
between the Ir atoms [12] with amplitude t, while Td arises
from the Ir-Ir hopping due to the direct overlap between the
extended 5d orbitals. The latter depends on two energy
scales, t! and t#, arising from the ! and # bonding
between the orbitals, respectively. The chemical potential,
", is such that each Ir atom contributes a single
pseudospin-1=2 electron. The pseudospin arises from the
combined effect of crystal fields and spin-orbit coupling
[18]. Finally, the Hubbard repulsion U generates correla-
tions by penalizing double occupation and thus drives the
system away from simple single-particle physics. (We shall
use the oxygen-mediated hopping amplitude, t, as our
comparison scale.)

The phase diagram of the above Hamiltonian was pre-
viously analyzed by treating the on site repulsion within a
mean-field Hartree-Fock (HF) approach [15], which allows
for a single-particle description. It was found that, for small
U=t, one obtains a topological insulator and metallic
phases, depending on the ratios t!=t and t#=t. At suffi-
ciently large U, the systems become magnetic. Near the
magnetic transitions, it was found that topological Weyl
semimetals (TWS) arise. Here, we shall focus on a repre-
sentative set of hopping parameters: t!=t ¼ 1, with the
ratio t#=t! ¼ '2=3 fixed. In that case, the HF mean-field
theory predicts that the system undergoes successive tran-
sitions from a TI to a TWS, and to an antiferromagnetic
insulator (AFI) as one increases U. It is worth noting that
the same succession of phases can be found within the HF
framework for t!=t <'1:67, and we thus expect that the
results we present below can be applied there as well. A
detailed study of the full phase diagram is left for future
work.

We use the above model to examine the fate of these
phases and transitions within CDMFT. This method has
been widely used to investigate correlated microscopic
models [7] but only recently was it applied to topological
phases [19], specializing to two dimensions. We emphasize

that CDMFT fully incorporates the quantum many-body
effects within a cluster (unit cell here).
The phase diagram together with the magnetization and

topological index are shown in Fig. 1. After the magneti-
zation jumps, a topological Weyl semimetal emerges, as
we establish from the spectral properties of the surface
(Fig. 2) and bulk (Fig. 3) states. The Z2 index, !, deter-
mines the presence of a quantized magnetoelectric re-
sponse. Specifically, ! ¼ 1 implies that an applied
electric field E will induce a magnetization in a properly
prepared system: M ¼ $E, where $ ¼ e2=2h depends
only on universal constants [4]. In the presence of TRS,
this topological response can be used as a defining property
of a correlated TI. The associated Z2 topological index can
be computed from the full interacting Green’s function by a
Wess-Zumino-Witten-like integral [5]. It has been shown
recently that, in the special case where inversion symmetry
is present, as is the case in this work, one can use a
simplified criterion [20]:

ð'1Þ! ¼
Y

R-zero
%1=2
$ ; (2)

where %$ ¼ (1 is a parity eigenvalue corresponding to a
vector j$i, an eigenstate of the interacting Green’s function
evaluated at one of eight special momenta, !i. These are
the time-reversal invariant momenta satisfying '!i ¼ !i,
up to a reciprocal lattice vector. Equation (2) is in contrast
with the analogous Fu-Kane formula which can only be
used for noninteracting systems. More details about !,
such as the definition of ‘‘R-zero’’ (which reduces to that
of an occupied band in the noninteracting limit), can be
found in the Supplemental Material [21] and in Ref. [20].
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FIG. 1 (color online). Magnetization (m) and topological index
(!) versus interaction strength. An interaction-driven topologi-
cal transition accompanies an abrupt change of the magnetiza-
tion. In the intermediate region, a topologically nontrivial
insulator with a finite magnetization indicates the realization
of an interacting axion insulator (AI). As the interaction strength
increases, a TWS appears after the magnetization jump. At large
U, the system is a topologically trivial AFI. The magnetic
structure is illustrated in the inset.
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Figure 6.3: (Obtained from [191] and [116]) (Left) Sketch of the predicted phase

diagram for pyrochlore iridiates based on a first principle ‘LDA+U’ study [191].

(Right) Phase diagram based on the variation of magnetization (m) and topological

index (�) with U [116]. An interaction-driven topological transition accompanies

an abrupt change in m. At intermediate U , a topologically nontrivial insulator

with a finite m indicates an axion insulator (AI). As U increases, a topological

Weyl semimetal appears after the magnetisation jump. At large U , the system is a

topologically trivial AIAO insulator.

state is a semimetal or topological insulator depending on the ratio of spin-

orbit coupling and hopping amplitude [114], the picture remaining unchanged

for weak U . (ii) For strong interactions, the system becomes an AIAO magnetic

insulator [114]. Hartree-Fock mean-field theory (MFT) shows that a topologi-

cal Weyl semimetal (TWS) phase shows up [115] near the magnetic transition.

• A cluster dynamical mean-field theory (CDMFT) calculation confirms the sce-

nario above, and in addition finds an axion-insulator phase near the MIT

point [116] (see figure 6.3).

• A more elaborate LDA+CDMFT study shows a first order MIT from a para-

magnetic metal to an antiferromagnetic AIAO ordered insulating phase by

taking into consideration a three-band description of the iridates [117] (see

figure 1.20).

Despite the progress achieved, some issues remain unresolved.

• The AIAO phase is obtained by neglecting all other ordering (or disordered)

possibilities. For a frustrated lattice one should try an unconstrained optimi-

sation without biasing towards any order.

• An estimate of the TN for the AIAO phase within Hartree-Fock theory yields a
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scale that increases with increasing U/t. In reality TN increases with reducing

rR, reaches a maximum for R = Y and then falls on further reducing rR. This

non monotonicity is not captured by Hartree-Fock theory.

• LDA+CDMFT captures the correct qualitative feature but the neglect of spa-

tial fluctuations leads to a TN that is ⇠ 3-times the experimental value.

A better theory would be (i) unbiased in the magnetic optimisation, (ii) work all

the way from weak to strong coupling, and (iii) retain the crucial low energy modes

in the problem. In order to address these issues we study the single band Hubbard

model with SOC, at half filling, on a pyrochlore lattice using the real space SPA

based Monte Carlo. We present results on the phase diagram, detailed magnetic

correlations, and the single particle and optical spectral features.

6.2 Model for the iridates

In the iridate R2Ir2O7 the R (rare-earth or Y) and Ir ions live on two interpenetrating

pyrochlore lattices. The physics is mainly dictated by the 5d electrons of Ir, which

have strong spin-orbit coupling and moderate Hubbard repulsion (due to the large

spatial extent of the 5d orbitals). The Ir atom has octahedral oxygen coordination

(IrO6), and the resulting crystal field splits the fivefold degenerate Ir 5d states into

doubly degenerate eg and triply degenerate t2g manifolds (see figure 6.4). As a

result, the L = 2 orbital angular momentum of the d orbitals is projected down to

an e↵ective angular momentum l = 1 (with a minus sign) in the t2g manifold. SOC

splits the t2g orbitals with spin into a j = 1/2 doublet and j = 3/2 quadruplet.

Figure 6.4: 5d level splitting in the pyrochlore iridates. CFS refers to the crystal

field splitting due to octahedral oxygen coordination (see text for details).
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Figure 6.5: (Taken from [192]) Schematics of the Mott transition in the iridates. In

the absence of SOC and U , the system would behave as a metal, as represented in

(a). SOC leads to a band splitting, but still a metallic system, as represented in (b).

The presence of moderate Hubbard U in addition to the SOC could lead to a Mott

insulating state, represented in (c).

Strong SOC, thus, not only lifts the orbital degeneracy of 5d electrons, but also

reduces the bandwidth.

The SOC leads to an e↵ective single band description in terms of pseudo-spin

jeff = 1/2 states. These states are given by

|Jeff = 1/2,+1/2i =

1p
3

(|xy, "i+ |yz, #i+ i|zx, #i)

|Jeff = 1/2,�1/2i =

1p
3

(|xy, #i � |yz, "i � i|zx, "i)

Fig.6.5 demonstrates how the e↵ect of SOC and electron-electron interaction

results in the Mott-insulating state in the iridates. Thus, it is expected that by tuning

SOC and electron-electron interaction (Hubbard U) the Mott transition physics can

be understood in the pyrochlore iridate family.

We study the single band Hubbard model, in the Jeff = 1/2 pseudospin space,

with nearest neighbour hopping, on the pyrochlore lattice:

H = H0 + U
X

i

ni"ni# � µ
X

i

ni

H0 =

X

ij,�

tijc
†
i�cj� � �

X

hiji��0

c†i�idij · ~�cj�0

Here, U > 0 is the Hubbard repulsion and � is the SOC. The chemical potential µ

is varied to maintain the density at n = 1 as the interaction and temperature T are

varied. The tij = �t for nearest neighbour hopping on the pyrochlore lattice and we
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Figure 6.6: (Taken from [114, 115]) Calculation of the nearest-neighbour

Dzyaloshinski-Moriya vectors on the pyrochlore lattice.

will set t = 1. The vectors dij are parallel to the nearest neighbour Dzyaloshinski-

Moriya (DM) vectors on the pyrochlore lattice. We calculate them as dij = 2aij⇥bij

where aij =
1
2(bi + bj) � xc and bij = bj � bi with b1 = (0, 0, 0), b2 = (0, 1, 1),

b3 = (1, 0, 1), b4 = (1, 1, 0) and xc =
1
2(1, 1, 1).

6.2.1 Method

We use a Hubbard-Stratonovich (HS) transformation [14] that introduces a three

dimensional vector field mi(⌧) and a scalar field �i(⌧) at each site to decouple the

interaction. Following the static path approximation (SPA), described in chapter 2,

we have,

Heff{mi} = � 1

�
logTre��Hel

+

U

4

X

i

m2
i

Hel = H0 � µ̃
X

i

ni � U

2

X

i

mi.~�i

where µ̃ = µ� U
2 . Heff can be seen as comprising of an electronic Hamiltonian,

Hel and the classical ‘sti↵ness’ Hcl =
U
4

P
i m

2
i . Within this approach the problem

is mapped on to electrons coupled to the field mi, which itself follows a distribution

function P{mi}.

P{mi} / Trcc†e
��H

eff

(6.1)

Within SPA, Heff and P{mi} define a coupled fermion-local moment problem. We

obtain a solution of this model numerically via a Monte Carlo by generating the
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equilibrium configuration for the {mi} through iterative diagonalisation of Hel. We

begin the Monte Carlo with reasonable high temperature, T ⇠ t, higher than any

transition temperature in the problem, and reduce it in discrete steps to reach T ⇠ 0,

thereby accessing the ground state properties. Results of this study are conducted

for pyrochlore lattices of size 6

3 ⇥ 4 atoms and using a cluster with 3

3 ⇥ 4 atoms.

6.2.2 Observables

Electronic properties are calculated by diagonalisingHel on the full lattice for equilib-

rium {mi} configurations. From the equilibrium configurations obtained at the end

of Monte Carlo annealing, we calculate the following averaged quantities (angular

brackets represent thermal average over 100 Monte Carlo configurations): (i) Mag-

netic structure factor:

S(q) =

1

N2

X

ij

hmi.mjieiq·(ri�r
j

)

(ii) The size distribution of the moment is computed as

P (m) =

1

N

X

i

h�(m� |mi|)i

(iii) The optical conductivity is:

�xx(!) =

�0
N

h
X

n,m

f(✏n)� f(✏m)

✏m � ✏n
|Jnm

x |2�(! � Emn)i

where Jnm
x is hn|Jx|mi and the current operator is given by

Jx = �i
X

i,��0

h
(t��

0

i,i+x̂c
†
i,�ci+x̂,�0 � hc)

i

Emn = ✏m�✏n, f(✏n) is the Fermi function, ✏n and |ni are the single particle eigenval-
ues and eigenstates of Hel respectively. The conductivity is in units of �0 = e2/(~a0),
where a0 is the lattice constant. (iv) The d.c. conductivity is obtained as a low fre-

quency average of the optical conductivity over a window ⌦ = 0.05t.

�dc =
1

⌦

Z ⌦

0

d!�xx(!)

and the resistivity ⇢ = 1/�dc.
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6.3 Model Hamiltonian study

6.3.1 Ground state results

In the absence of electron-electron interaction, H0 corresponds to a generic time-

reversal invariant hopping hamiltonian with a single Kramer’s doublet at each site

of the pyrochlore lattice. In this limit H0 can be diagonalised in momentum space,

yielding:

H0 =

X

a,b,~k

c†
a~k
Hab(

~k)cb~k

Hab(
~k) = �2(t+ i� ~dab · ~�)cos(~k · ~bab)

The indices a,b are the sublattice indices of the pyrochlore tetrahedron. At the �

point, the eigenspectrum has a 2-4-2 degeneracy with ✏1 = �2t�8� (degeneracy=2),

✏2 = �2t + 4� (degeneracy=4), and ✏3 = 6t (degeneracy=2). At half-filling only 4

levels get filled in the tetrahedron. In the regime �2  �/t  0, it can be seen that

there are states available at the Fermi-energy for half-filling. Outside this regime the

Fermi-energy lies in the gap for half-filling.

Further detailed calculation of band-structure and topological index [193] shows

that the variation of SOC (�/t) leads to a phase transition from a semi-metal to a

strong topological insulator (STI), as shown in Fig.6.7.

Figure 6.7: Phase diagram of the tight binding model (appropriate for the iridates)

in the non-interacting limit. By tuning �/t we see a phase transition between a semi-

metal (SM) and a strong topological insulator (STI). The � = t point corresponds
to gap closing in the spectrum.

In the presence of interaction, the ground state phase diagram shows semimetal,

metal and Mott insulating phases. In Fig.6.8, we plot the average spin-orbital mo-

ment value mavg and the gap (�/t) in the spectrum, to identify these phases.
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Figure 6.8: Behaviour of mavg (left) and �/t (right) for varying U/t and �/t.

6.3.2 Finite temperature

6.3.2.1 Thermal phase diagram

For our study, we choose � = �1.5t as suggested by a density functional theory

calculation [196]. Fig.6.9 shows the U � T phase diagram in terms of the magnetic,

transport, and spectral properties we have observed.

The following features emerge: The ground state is a tight-binding semi-metal

for U < 9t, a paramagnetic metal for 9t < U < Uc ⇠ 10.5t, and an insulating all-in-

all-out (AIAO) ordered state for U � Uc. With increasing temperature, we observe

a transition from the AIAO ordered phase to the paramagnetic phase at a critical

temperature Tc. This Tc increase with U/t, reaches a maximum at U ⇠ 14t, and

then decreases again on further increasing U/t.

At finite T , thermal fluctuations of local moments on the weak-coupling side

(U < Uc) gives rise to finite density of states (DOS) and a metallic phase. On

the strong-coupling side (U > Uc) the angular fluctuations of the local moments

result in a slight reduction of the Mott-gap with temperature. In the vicinity of the

Mott-transition the Mott gap quickly converts to a PG with increasing T , leading

to the widening of the PG region shown in Fig.6.9. We demarcate the finite T

metal-insulator boundary in terms of the temperature derivative d⇢/dT . A state is

metallic if d⇢/dT > 0 and insulating if d⇢/dT < 0. The detailed spectral features

and resistivity are discussed later.

We can broadly classify our phase diagram into following three di↵erent regimes:

U < Uc, U > Uc, and U ⇠ Uc. In the following, we show the magnetic, spectral, and

transport behaviour of our study in these three regimes.

142



Figure 6.9: Phase diagram for varying U/t and T/t. � = �1.5t. The ground

state is a semi-metal for U < 5t, and becomes a metal at finite temperature due to

the emergence of thermally generated weak, random moments. At low temperature

we obtain a paramagnetic metal (PM) and an insulator with ‘all-in-all-out’ order

(AIAO-I) for U � Uc. With increase in temperature we see a transition from the

AIAO-I to a paramagnetic insulator (PI). PG refers to a pseudogap state. The

metal-insulator transition line separates regions with opposite signs of d⇢/dT .

6.3.2.2 Magnetic order

Fig.6.10 shows the q dependence of the magnetic structure factor at di↵erent T

values, for the representative interaction regimes of our phase diagram. (i) The top

panel refers to U = 9t ( generic for U < Uc, regime-I of our model). We observe

that at T = 0, S(q) has no ordering peak at any q’s. The magnetic ground state

is disordered in this regime due to the frustrated pyrochlore lattice structure. With

increasing temperature the disordered phase shows a crossover to a fully random

paramagnetic phase. (ii) The middle panel refers to U = 11t (generic for U ⇠ Uc,

regime-II of our model). We see that at T = 0, S(q) has dominant weight at

q = (⇡, ⇡, 0), (⇡, 0, ⇡) and (0, ⇡, ⇡). The orientation of the moments in the pyrochlore

tetrahedral geometry in real space shows this ordering to be the all-in-all-out ordering

on the pyrochlore lattice. With increasing T we see S(q) showing no ordering peak

at any q’s for T � 0.1t. This can be understood as the magnetic transition to a

paramagnetic phase. (iii) The lower panel refers to U = 15t ( generic for U � Uc,

regime-III of our model). We see that at T = 0, S(q) has dominant weight at

q = (⇡, ⇡, 0), (⇡, 0, ⇡) and (0, ⇡, ⇡). corresponding to the all-in-all-out order on the

pyrochlore lattice. With increasing T we see the S(q) at these wavevectors reducing

and for T ⇠ 0.2t the AIAO transits to a paramagnet.
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Figure 6.10: The full ‘magnetic’ structure factor S(q) for U = 9t, 11t, and 15t
(along column) and T = 0, 0.1t, 0.2t (along row). � = �1.5t. We use the notation

q =

2⇡
L
(nx, ny, nz), n’s are integers. The size of a dot signifies relative weight at a

given q while its colour represents the actual magnitude of S(q).

For a detailed understanding of the thermal magnetic phase transition, we look

into the T dependence of the structure factor peak at q = (⇡, ⇡, 0), (⇡, 0, ⇡) and

(0, ⇡, ⇡). Fig.6.11(a) shows this behaviour for q = (⇡, ⇡, 0). We can see that S(q)

shows a rapid growth with decreasing temperature for U � Uc indicating the onset

of the AIAO magnetic order. It is important to note that the thermal transition

is discontinuous (first order) for Uc  U < 12.5t, whereas it is continuous (second

order) for U � 12.5t.

6.3.2.3 Local moment distribution

Fig.6.11(b) shows mavg for varying U/t and T/t in our calculation. At T = 0,

as U/t ! 1, mavg ! 1, as one expects in the atomic limit. mavg reduces with
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Figure 6.11: � = �1.5t. (a) Variation of the structure factor peak at q = (⇡, ⇡, 0)
with U/t and temperature. (b) Behaviour of mavg in the U/t and T/t plane. (c)-

(e) Temperature dependence of P (m) for U = 9t, 11t and 15t.

decreasing U/t such that mavg ! 0 as U ⌧ Uc. For T/t > 0, thermal fluctuations

lead to quick growth of mavg in the metallic side, where as mavg increase slowly in

the Mott insulating side.

Fig.6.11(c)-(e) show the P (m) for di↵erent temperature and interaction values

of our study. Panel (c) shows P (m) for U = 9t. P (m) shows a single narrow peak

structure, highlighting an amplitude homogeneous state. With rise in temperature,

the single peak feature of P (m) retained. However, the narrow peak becomes broad

and the peak position shifts towards large m values. Panel (d) and (e) show P (m) for

U = 11t and 15t. We observe similar behaviour as in panel (c), but with important

di↵erence that the peaks are more narrower with increasing U/t values. This happens

because fluctuations ofmavg about the mean are weaker in the insulating regime than

in the metallic regime.

6.3.2.4 Transport and optics

Fig.6.12 shows the d.c. resistivity ⇢(T ) for di↵erent U/t. Following are the notewor-

thy features. (i) For U < Uc, the residual resistivity ⇢(0) is finite with d⇢/dT > 0 over
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Figure 6.12: Temperature dependence of the resistivity for di↵erent U/t values near
the Mott transition. The normalising scale is ⇢0 = (~a0)/e2.

the entire T range. This resistivity can be understood in terms of the scattering of

electrons from the background small disordered local moments. This is the metallic

regime. (ii) For U � Uc the system has a clear Mott gap at T = 0 with ⇢(0) ! 1.

In this regime d⇢/dT < 0 over the entire temperature window we have explored.

This is the Mott-insulating regime. (iii) In the regime U � Uc, but |U � Uc| ⌧ Uc,

we have ⇢(T ) showing non-monotonic behaviour. We observe d⇢/dT > 0 in the high

temperature limit, crossing over to d⇢/dT < 0 with decreasing T . The temperature

at which d⇢/dT changes its sign is indicated as TMIT in our phase diagram 6.9.

Fig.6.13(a)-(c) show the optical conductivity from our calculation as we cross the

Mott transition. The relevant features are: (i) �(!) at T = 0 for U < Uc shows finite

Drude weight, but with a peak at finite frequency. With increasing temperature, the

peak location shifts slowly to higher frequency (see Fig.6.13(a)). (ii) For U � Uc

the system has a clear optical gap �(T ) such that �(!) = 0 for ! < !c ⇠ �(T ).

With increasing temperature the gap �(T ) reduces, resulting in small, but increasing

low frequency weight of �(!) and the �(!) peak position shifts to higher frequency

(see Fig.6.13(c)). (iii) For U ⇠ Uc, �(!) shows no Drude weight at T = 0. With

increasing T , there is quick increase of Drude weight initially, which then reduces

gradually, and the �(!) peak slowly moving to higher frequency (see Fig.6.13(b)).
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Figure 6.13: (a)-(c) Optical conductivity for U = 9t, 11t and 15t for indicated

temperatures. (d)-(f) Behaviour of DOS at di↵erent temperatures for U = 9t, 11t
and 15t.

6.3.2.5 Density of states

Fig.6.13(d)-(f) show the thermal evolution of density of states (DOS) at di↵erent

interaction regimes of our study. We observe following features � (i) For U < Uc

the ground state has small local moments. The DOS is gapless and the weight at

the Fermi level decreases monotonically with increasing T (see Fig.6.13(d)). (ii) For

U � Uc the ground state has a finite gap in the DOS. With increase in temperature,

the angular fluctuations of the local moments result in a slight reduction of the Mott-

gap, and an increase in the low energy DOS as can be seen in Fig.6.13(f). The Mott-

gap survives till very high temperature, T ⇠ mavgU . (iii) In the neighbourhood

of MIT boundary, for U ⇠ Uc, the DOS shows a sharp dip, a characteristic of a

pseudogap (PG) phase. This dip fills up quickly with increasing T , but deepens

further with increasing temperature (see Fig.6.13(e)).
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Figure 6.14: The e↵ect of SOC on the phase diagram and transport properties. With

increasing SOC, the Uc increases, resulting in a wider metallic window. However,

the maximum Tc scale of the AIAO phase decreases with increasing SOC.

6.3.3 Discussion

6.3.3.1 E↵ective magnetic model

The origin of the AIAO magnetic ordering can be understood by working out the ef-

fective magnetic Hamiltonian by tracing out the fermions deep in the strong coupling

limit (see appendix A). In the limit U � �, t, we have:

Heff{m} =

X

ij

[J(mi ·mj � 1) +Dij · (mi ⇥mj) +m↵
i �

↵�
ij m

�
j ] (6.2)

where, J =

t2+2�2

U
,

~Dij =

2�t
U
~dij, and �

↵�
ij =

2�2

U
(d↵ijd

�
ij � �↵�| ~dij|2). It has been

shown [194] for �/t < 0,

~Dij / ~dji, leading to a direct DM interaction and the

AIAO magnetic ordering. Its this DM interaction which is responsible for selecting

out the AIAO state from the infinitely degenerate pyrochlore Heisenberg ground

state manifold.
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6.3.4 Conclusion

Based on our study of the Hubbard model with SOC on the pyrochlore lattice, we

conclude that (i) The low temperature state is a paramagnetic metal at weak inter-

action, but a Mott insulator with all-in-all-out order at intermediate and strong

interaction. (ii) There is a narrow pseudogap window near the insulator-metal

boundary. (iii) The resistivity and low energy density of states show non mono-

tonic temperature dependence near the MIT. The pyrochlore lattice in the absence

of SOC, doesn’t show any magnetic order, as described in detail in chapter 3. With

inclusion of SOC, we find that Uc reduces as � ⇠ 0.5t, and giving rise to an AIAO

ordered phase. Further increasing the SOC increases the Uc.

6.4 Comparing to iridate experiments

The real iridates are a complex material. The hybridization between the jeff =

1/2 and the jeff = 3/2 manifolds is not negligible, thus requiring a multiband

model. Also next nearest neighbour hoppings may be relevant. The low temperature

magnetic behaviour could depend on the magnetic character of the rare-earth atom.

However, as a starting approximation, we attempted a comparison of our single band

study with experimental results.

For the iridates the typical t2g band width in the LDA band structure is ⇠ 2

eV [195] and the typical values of U for Ir

4+
is ⇠ 2.7 eV [196]. With the choice of

NN hopping scale, t ⇠ 0.25 eV [196], and for the choice of SOC � ⇠ 0.375 eV, we have

Uc ⇠ 2.65 eV in close agreement with a previous study [117]. Within our calculation,

the maximum of Tc ⇠ 375 K corresponds to U ⇠ 3.5 eV. We have explored the

physics of this model for other SOC values. Our results suggest increasing the SOC

parameter would lead to an increase of Uc, but would suppress the maximum Tc

further.

However, if we take into account only the jeff = 1/2 bandwidth ⇠ 1 eV (appro-

priate for our study), then we have a reasonable choice of t ⇠ 0.125 eV [117]. As

a results, our max Tc ⇠ 200 K, pretty close to the real iridates, and also a great

improvement compared to the CDMFT study. Below we discuss our results for the

chosen t = 125 meV, � = �1.5t, and U/t, using absolute scales, and compare with

available experimental data [9, 105].
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Figure 6.15: Comparison of the phase diagrams between experiment [105] (left)

and our results (right). Similarities: Both phase diagrams show a Mott insulating

phase with long-range antiferromagnetic order and a paramagnetic metallic phase.

The magnetic transition coincides with the MIT. Near the MIT boundary, the insu-

lating phase becomes a metal with increased temperature, by losing magnetic order.

In the Mott insulating regime, the critical temperature, Tc, of the antiferromag-

netic order initially increases with interaction scale (or decreasing ionic radius in the

experiment), reaches a maximum and then decreases with further increasing with

interaction scale (or decreasing ionic radius in the experiment). Di↵erences: The

maximum Tc scale observed in the experiments is ⇡ 150K, whereas our theory shows

a maximum Tc scale to be ⇡ 225 K. A change by a small fraction in the ionic radius

describes the various iridate phases in the experiment. However, to obtain these

phases, we require a large fractional change in the coulomb interaction in our theory

study.

Phase diagram: Fig.6.15.(a) shows the experimental phase diagram. At large rR

(R3+
ionic radius), the ground state is a paramagnetic metal. With reducing rR

the system undergoes a magnetic transition, to an antiferromagnetic all-in-all-out

(AIAO) phase, (confirmed via other experimental measurements). The AIAO or-

dered phase shows an insulating behaviour. Thus the magnetic transition coincides

with the metal-insulator transition. Also as shown in the figure, the antiferromag-

netic transition temperature first increases with reducing rR, reaches a maximum

(Tmax
N ⇡ 150 K) for R = Y (rR ⇡ 102 pm), and then decreases with further reducing

the rR.

A careful comparison of experiment with theory requires calibration of U/t and

�/t in terms of rR. Though this is a task we would pursue in future, here we assume

an appropriate interaction regime and make an attempt to explain the behaviour

of the iridate phase diagram. Panel 6.15.(b) shows our theory phase diagram over

the window U ⇠ 0.5 � 2.5 eV. We believe this interaction range correctly describes
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Figure 6.16: Comparison of the resistivity in the iridates. Left: experiment (taken

from [9]), Right: theory.

the metal-insulator transition as observed in the iridates. Our calculation shows

Uc ⇡ 1.3 eV.

Temperature scales: Our structure factor calculations suggest the insulating state

below the antiferromagnetic transition temperature is a long-ranged AIAO phase. It

correctly captures the trend in the variation of the TN with increasing U/t. The

LDA+CDMFT study [117] has captured this physics correctly. However, due to

ignoring the long-range spatial fluctuations, the maximum TN scale it gives is roughly

3-times that of the experimentally observed maximum TN values [105]. However, in

our study, we retain the crucial low temperature thermal and spatial fluctuations.

As a result, the maximum TN scale (Tmax
N ⇡ 225 K) we obtain by following the

SPA approach is roughly 1.5-times that of the experimentally observed maximum

TN values.

Resistivity: We demarcate the finite T metal-insulator boundary based on the

temperature derivative of resistivity d⇢/dT : ‘metal’ if d⇢/dT > 0, ‘insulator’ if

d⇢/dT < 0. We compute ⇢(T ) via the low-energy limit of the optical conductivity.

Fig.6.16.(a) shows experimental resistivity [9] while 6.16.(b) shows the theory results.

Experiments show that the rare-earth variation in the iridates represent follow-

ing three ‘regimes’ (see Fig.6.16.(a)). (i) For R=Pr, ⇢(T ) has traditional metal-

lic behaviour, ⇢(0) < 1 m⌦cm and d⇢/dT > 0 all the way to 300K. (ii) For

R=Sm, Eu Gd, Tb, Ho, Dy, the system is insulating at all T , with ⇢(0) ! 1
as T ! 0. The behaviour is clearly activated for Tb, Ho and Dy, while Sm, Eu and

Gd seems to be weakly insulating. In all these insulating samples, d⇢/dT changes its
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value (without changing sign) as temperature passes through T = TN . (iii) R=Nd

represents the most interesting case, with d⇢/dT > 0 for T > TN and d⇢/dT < 0

for T < TN . This signals the finite temperature metal-insulator transition in the Nd

iridate.

Any theory would have to capture the obvious regimes (i) and (ii) and also the

non monotonic behaviour as in (iii). Our results, panel 6.16.(b), show the following

behaviour: (i) For U < Uc, the itinerant Jeff = 1/2 electrons see a paramagnetic

background, with small spin-orbital moments. The finite T resistivity arises due to

the scattering from the thermal fluctuations of local spin-orbital moments, giving an

approximate linear T behaviour. (ii) For U � Uc, the Jeff = 1/2 electrons see a

long-range AIAO ordered background for T < TN . This magnetic order leads to a

distinct gap � in the spectrum, such that ⇢(T ) ⇠ ⇢0e�/T
as T ! 0 and d⇢/dT < 0.

Though magnetic order disappears for T > TN , thermal fluctuations of the local

spin-orbital moments are sizable in this regime. The scattering of electrons from

these fluctuating moments manifest as d⇢/dT < 0 over the entire temperature range.

(iii) For U & Uc, the T < TN insulating behaviour is due to the long-range AIAO

magnetic ordering. However, the T > TN metallic behaviour can be the result of

a net increasing density of states at the Fermi level (arising from the competition

between an increasing spin-orbital moment and randomness in the magnetic degrees

of freedom).
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Concluding Remarks

In this thesis, we address the interplay of electron correlation and geometric

frustration in the context of the Mott transition in pyrochlore based lattices. We

formulate the single band Hubbard model on these lattices in terms of electrons

coupled to auxiliary local magnetic moments, and treat the resulting ‘fermion-spin’

problem through a real-space Monte Carlo technique. While the ground states we

obtain are equivalent to unrestricted Hartree-Fock, the presence of the crucial low

energy fluctuations in our approach, and their coupling to the electrons, allows us to

establish the temperature dependence of transport and spectral features across the

Mott transition.

We not only focus on model problems, but also on real life pyrochlore materials

(the rare earth molybdates and iridates) by appropriately choosing the parameters

of the theory. The main findings (chapter-wise) of the thesis are �

Chapter-3 of this thesis studies the Mott transition in the half-filled Hubbard

model on a pyrochlore lattice. The geometric frustration and the corresponding

large magnetic degeneracy prevents the occurrence of any magnetic order in the deep

Mott state. This continues all the way to the insulator-metal transition. Beyond

the insulator-metal transition there is a window with a pseudogap in the density of

states, disordered local moments, and a large residual resistivity. At even weaker

interaction one recovers the non magnetic band semimetal. Thermal fluctuations

destroy the ‘spin liquid’ correlations in the insulating state, converting the system

to an uncorrelated paramagnet. The low energy electronic density of states and

the resistivity show a monotonic temperature dependence deep in the metallic and

insulating phases, but a non monotonic character near the insulator-metal transition.

Chapter-4 of the thesis describes the single band Hubbard model at half-filling

on the checkerboard lattice. The Hartree-Fock ground state is non magnetic upto

an interaction strength Uc1, then a small moment spin glass upto Uc2, and a ‘flux’

ordered state beyond. The Mott transition, associated with a gap opening in the

density of states, occurs at Uc2. The presence of order di↵erentiates this lattice of

corner shared ‘tetrahedra’ from its three dimensional counterpart, the pyrochlore

lattice, which remains disordered at all interaction strengths. We observe that the

flux order is replaced by a ‘120 degree’ correlated spin arrangement at intermediate

temperature before all order is lost.
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Chapter-5 of the thesis discusses the two orbital Hubbard model with the elec-

trons additionally strongly coupled to a background local moment and the mo-

ments interacting antiferromagnetically amongst themselves. This Hubbard-double

exchange-superexchange scenario, on the pyrochlore lattice, is the minimal model

for the rare earth molybdates. We mapped out the ground state phase diagram via

a simulated annealing based unrestricted Hartree-Fock calculation and established

the metal-insulator and ferromagnet-spin liquid transition boundaries.

Chapter-6 of this thesis focuses on the model appropriate for the pyrochlore iri-

dates. This model has spin-orbit coupling (SOC) as a crucial ingredient in addition to

the electron correlation. Weak SOC lowers the Uc, thereby favouring the Mott state

and gives rise to the all-in-all-out (AIAO) ordered phase; a moderate SOC increases

the Uc, and reducing the Tc. Strong SOC results in large anisotropic interactions

and may suppress the AIAO phase altogether.

Questions that need to be tackled in future work.

• What is the e↵ect of quantum fluctuations on the underlying magnetic state

at low temperatures on the pyrochlore lattice?

• A detailed analysis of the magnetic correlations on the pyrochlore lattice near

the MIT is required.

• Detailed study of anomalous Hall e↵ect, field-driven MIT etc. in the pyrochlore

molybdates and iridates is highly desired.
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APPENDIXA
EFFECTIVE SPIN MODELS VIA

PERTURBATION EXPANSION

Here we describe how to obtain the e↵ective spin hamiltonians by setting up a

perturbation calculation at some limit of the coupled ‘spin-fermion’ problem.

As described in chapter 2, we have,

Z =

Z
D�e�S

eff

{�}

Seff{�} = ln Det[G�1{�}] +
X

i

Z �

0

d⌧
�2

i (⌧)

U

where G is the electron Green’s function in a {�} background.

We can write,

G�1{�} ⇠ @⌧ + T � V

where T =

P↵�
ij t↵�ij c

†
i↵cj� is the hopping term and V =

P
i �i.�i is the coupling term.

Rewriting �i(⌧) in terms of its Matsubara Fourier modes, �i(i!n), we have

{�}Seff = �Tr ln[�i!n + T � V ] +

X

i,n

�i(i!n)�i(�i!n)

U
(A.1)
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A.1 Weak coupling

In this limit U ⌧ t. The hopping term is the reference point in this limit and the

coupling term is treated as a perturbation. Going to the momentum space, we have

T =

X

k

✏kc
†
kck

V =

X

k,k0

c†k↵(�k�k0 .�↵�)ck0� = Vk,k0

We can write equation (A.1) as,

Seff{�} = �Tr ln[(�i!n + ✏k)�k,k0 � Vk,k0 ] +

X

k,n

|�k(i!n)|2
U

= �Tr ln[(�i!n + ✏k)(1 + (i!n � ✏k)
�1Vk,k0 ] +

X

k,n

|�k(i!n)|2
U

The free fermion Green’s function is G0(k) = (i!n � ✏k)�1
. Thus we can write,

Seff{�} = �Tr ln[G�1
0 (k)(1 +G0(k)Vk,k

0
)] +

X

k,n

|�k(i!n)|2
U

= �Tr ln[G�1
0 (k)]� Tr ln[1 +G0(k)Vk,k0 ] +

X

k,n

|�k(i!n)|2
U

= F0 +�F +

X

k,n

|�k(i!n)|2
U

(A.2)

In equation (A.2), F0 represents the free energy of the non-interacting fermions

and �F is the change in the free energy of the fermions due to the background

bosonic field {�}. �F can be further simplified as

�F = �Tr ln[1 +G0V ]

= �Tr[�G0V � 1

2

(G0V )

2 � 1

3

(G0V )

3
+ ...] (A.3)

Equation (A.3) can be understood as the change in the free energy of the fermions

due to repeated scattering from the background {�} field. The total change in the

free energy can be identified as �F = �F (1)
+�F (2)

+�F (3)
+ ... where
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�F (1)
= �Tr[�G0V ]

�F (2)
= �Tr[�1

2

(G0V )

2
]

�F (3)
= �Tr[�1

3

(G0V )

3
]

...

�F (n)
= �Tr[� 1

n
(G0V )

n
]

A.2 Strong coupling

In this limit U � t. The coupling term is the reference point in this limit and the

hopping term is treated as a perturbation. We retain only the zero Matsubara mode

of the {�} field. This leads a Hamiltonian formulation of the problem. The coupling

term can be diagonalised in a local basis as

V = �

X

i

(�†i,��i,� � �†i,���i,��)

In this basis, the hopping term can be rewritten as

T =

↵�X

ij

˜t↵�ij �
†
i↵�j� =

˜Tij

We can write equation (A.1) as,

Seff{�} = �Tr ln[(�i!n + �)�i,j + ˜Tij] +

X

i

|�i(0)|2
U

= �Tr ln[(�i!n + �)(1 + (i!n � �)�1
˜Tij] +

X

i

|�i(0)|2
U

The local Green’s function is Gii
0 = (i!n � �)�1

. Thus we can write,

Seff{�} = �Tr ln[(Gii
0 )

�1
(1 +Gii

0
˜Tij)] +

X

i

|�i(0)|2
U

= �Tr ln[(Gii
0 )

�1
]� Tr ln[1 +Gii

0
˜Tij] +

X

i

|�i(0)|2
U
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= F0 +�F +

X

i

|�i(0)|2
U

(A.4)

In equation (A.4), F0 represents the free energy of local problem, and �F is the

change in the free energy of the local background due to the motion of fermions on

this background. �F can be further simplified as

�F = �Tr ln[1 +G0
˜T ]

= �Tr[�G0
˜T � 1

2

(G0
˜T )2 � 1

3

(G0
˜T )3 + ...] (A.5)

The total change in the free energy is �F = �F (1)
+�F (2)

+�F (3)
+ ... where

�F (1)
= �Tr[�G0

˜T ]

�F (2)
= �Tr[�1

2

(G0
˜T )2]

�F (3)
= �Tr[�1

3

(G0
˜T )3]

...

�F (n)
= �Tr[� 1

n
(G0

˜T )n]

A.2.1 Some Results

We choose V = �U
2

P
i �i.� and T = �t

P
hiji,� c

†
i�cj�.

1. Two sites :

  

a
1g

S
i

S
jJ

AF

i j j ki

Case - I Case - II

Case - I Case - II

i j k l
i

i

i

j

j

j

k

k

kl

l

�F (1)
= �Tr[�G0

˜T ] = 0

�F (2)
= �Tr[�1

2

(G0
˜T )2] =

t2

U
(�i.�j � 1)

�F (3)
= �Tr[�1

3

(G0
˜T )3] = 0

�F (4)
= �Tr[�1

4

(G0
˜T )4] =

1

4

t4

U3
[10(�i.�j)

2 � 4�i.�j � 6]
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2. Three sites :

  

a
1g

S
i

S
jJ

AF

i j j ki

Case - I Case - II

Case - I Case - II

i j k l
i

i

i

j

j

j

k

k

kl

l(a) Case-I

�F (1)
= �Tr[�G0

˜T ] = 0

�F (2)
= �Tr[�1

2

(G0
˜T )2] =

t2

U
[(�i.�j � 1) + (�j.�k � 1)]

�F (3)
= �Tr[�1

3

(G0
˜T )3] = 0

(b) Case-II

�F (1)
= �Tr[�G0

˜T ] = 0

�F (2)
= �Tr[�1

2

(G0
˜T )2] =

t2

U
[(�i.�j � 1) + (�j.�k � 1) + (�k.�i � 1)]

�F (3)
= �Tr[�1

3

(G0
˜T )3] = 0

3. Four sites :

  

a
1g

S
i

S
jJ

AF

i j j ki

Case - I Case - II

Case - I Case - II

i j k l
i

i

i

j

j

j

k

k

kl

l

(a) Case-I

�F (1)
= �Tr[�G0

˜T ] = 0

�F (2)
= �Tr[�1

2

(G0
˜T )2] =

t2

U
[(�i.�j � 1) + (�j.�k � 1) + (�k.�l � 1)]

�F (3)
= �Tr[�1

3

(G0
˜T )3] = 0
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�F (4)
= �Tr[�1

4

(G0
˜T )4]

=

1

4

t4

U3
[ 10(�i.�j)

2 � 4�i.�j � 6

+ 10(�j.�k)
2 � 4�j.�k � 6

+ 10(�k.�l)
2 � 4�k.�l � 6

+ 20(�i.�j)(�j.�k)� 12(�i.�k)

+ 20(�j.�k)(�k.�l)� 12(�j.�l)]

(b) Case-II

�F (1)
= �Tr[�G0

˜T ] = 0

�F (2)
= �Tr[�1

2

(G0
˜T )2] =

t2

U

X

hi,ji

[(�i.�j � 1)]

�F (3)
= �Tr[�1

3

(G0
˜T )3] = 0

�F (4)
= �Tr[�1

4

(G0
˜T )4]

=

1

4

t4

U3
[ 10(�i.�j)

2 � 4�i.�j � 6

+ 10(�j.�k)
2 � 4�j.�k � 6

+ 10(�k.�l)
2 � 4�k.�l � 6

+ 10(�l.�i)
2 � 4�l.�i � 6

+ 20(�i.�j)(�j.�k)� 12(�i.�k)

+ 20(�j.�k)(�k.�l)� 12(�j.�l)

+ 20(�k.�l)(�l.�i)� 12(�k.�i)

+ 20(�l.�i)(�i.�j)� 12(�l.�j)

+ 20(�i.�j)(�k.�l) + 20(�i.�l)(�j.�k)� 20(�i.�k)(�j.�l)]

=

1

4

t4

U3
[

X

hi,ji

{10(�i.�j)
2 � 4�i.�j � 6}

+

X

hi,j,ki

{20(�i.�j)(�j.�k)� 12(�i.�k)}

+

X

hi,j,k,li

{20(�i.�j)(�k.�l) + 20(�i.�l)(�j.�k)� 20(�i.�k)(�j.�l)}]
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4. Single tetrahedron :

  

a
1g

S
i

S
jJ

AF

i j j ki

Case - I Case - II

Case - I Case - II

i j k l
i

i

i

j

j

j

k

k

kl

l

�F (2)
= �Tr[�1

2

(G0
˜T )2] =

t2

U

X

hi,ji

[(�i.�j � 1)]

�F (4)
= �Tr[�1

4

(G0
˜T )4]

=

1

4

t4

U3
[ 10(�i.�j)

2 � 56�i.�j � 4

+ 10(�j.�k)
2 � 56�j.�k � 4

+ 10(�k.�l)
2 � 56�k.�l � 4

+ 10(�l.�i)
2 � 56�l.�i � 4

+ 10(�i.�k)
2 � 56�i.�k � 4

+ 10(�j.�l)
2 � 56�j.�l � 4

+ 20(�i.�j)(�j.�k) + 20(�i.�j)(�j.�l) + 20(�k.�j)(�j.�l)

+ 20(�j.�k)(�k.�l) + 20(�j.�k)(�k.�i) + 20(�i.�k)(�k.�l)

+ 20(�k.�l)(�l.�i) + 20(�k.�l)(�l.�j) + 20(�j.�l)(�l.�i)

+ 20(�l.�i)(�i.�j) + 20(�l.�i)(�i.�k) + 20(�j.�i)(�i.�k)

+ 20(�i.�j)(�k.�l) + 20(�i.�l)(�j.�k) + 20(�i.�k)(�j.�l)]

=

1

4

t4

U3
[

X

hi,ji

{10(�i.�j)
2 � 56�i.�j � 4}

+

X

hi,j,ki

{20(�i.�j)(�j.�k)}

+

X

hi,j,k,li

{20(�i.�j)(�k.�l) + 20(�i.�l)(�j.�k) + 20(�i.�k)(�j.�l)}]

Let P = �i + �j + �k + �l. Then we have on a tetrahedron,

�F (2)
=

t2

U

X

hi,ji

[(�i.�j � 1)] =

1

2

|P|2 � 8

�F (4)
=

1

4

t4

U3
[

5

2

|P|4 � 48|P|2 + 128 ]
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A.2.2 E↵ective spin model for the pyrochlore molybdates

For the molybdates, we have, JH/t � 1.

V = �U

2

X

i

�i.�

and

T =

X

hiji,↵�

t↵�ij c
†
i↵cj�

t↵�ij is determined by the orientation of the localised spins Si = (sin✓icos�i, sin✓isin�i, cos✓i),

as t↵�ij = [cos ✓i2 cos
✓
j

2 + sin ✓i2 sin
✓
j

2 e
�i(�

i

��
j

)
]t↵�,

In the limit U � t, following the strong coupling approach, we have,

Heff{S,�} = JAF

X

hiji

Si.Sj +�F (2)

= JAF

X

hiji

Si.Sj +

X

hi,ji

(1 + Si.Sj)

2

[

t2↵↵
U

(�i.�j � 1) +

t2↵�
U

(�ix�jx � �iy�jy � �iz�jz � 1)]

A.2.3 E↵ective spin model for the pyrochlore iridates

For the iridates, we have,

V = �U

2

X

i

mi.�

and

T = �t
X

ij,�

c†i�cj� � �
X

hiji��0

c†i�idij · ~�cj�0

where the vectors dij are parallel to the nearest neighbour Dzyaloshinski-Moriya

(DM) vectors on the pyrochlore lattice. We calculate them as dij = 2aij ⇥ bij where

aij =
1
2(bi+bj)�xc and bij = bj�bi with b1 = (0, 0, 0), b2 = (0, 1, 1), b3 = (1, 0, 1),

b4 = (1, 1, 0) and xc =
1
2(1, 1, 1).

In the limit U � t,�, following the same approach, we have,

�F (2)
= �Tr[�1

2

(G0
˜T )2]

=

X

hi,ji

[

t2 + 2�2

U
(mi.mj � 1) +

2�t

U
dij.(mi ⇥mj) +m↵

i �
↵�
ij m

�
j ]

where �

↵�
ij =

2�2

U
(d↵ijd

�
ij � �↵�|dij|2)
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