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I

Synopsis
The quantum states of multiparticle systems contain correlations between the subsys-

tems of the composite system. These correlations are not only of theoretical interest,

but also they have been proved to be useful in various quantum information processing

and computation tasks. Thus, characterizing and quantifying these correlations are very

important for the development of quantum information theory as this can have potential

applications in diverse areas of physics.

These correlations can be classified in two different categories called the classical cor-

relations and the quantum correlations. Given a quantum state one tries to capture the

total amount of correlation comprising of the classical correlation and quantum correla-

tions. Of the total correlations, the quantum correlations can account for many counter-

intuitive features in general [1, 19]. In particular, entanglement is a type of quantum

correlation that has been successfully employed to interpret many different phenomena

which cannot be accounted for by the laws of classical physics [1]. Not only this, the

triumph of entanglement lies in the fact that it can be used as an useful resource for per-

forming various quantum information tasks which cannot be performed by the classical

correlations alone. It has also been identified as the basic ingredient for different quan-

tum communication protocols like super-dense coding [2] and quantum teleportation

[4]. However, even with such advancement in understanding the entanglement, one is

far away from total characterization of entanglement and therefore its utilization in dif-

ferent quantum information tasks. One such difficulty lies in the fact that entanglement

is hard to calculate for mixed states with increasing dimensions, and number of parties

and for most cases a closed formula for an entanglement measure for mixed states of

arbitrary dimensions, parties and ranks is still missing.

Efforts have been made to quantify the total correlations in the form of the quantum mu-

tual information and the entanglement of purification [34]. Though the quantum mutual

information [68] is a well explored measure of total correlation, the entanglement of pu-

rification is not understood in great detail. In terms of the importances in various quan-

tum information tasks, the regularized entanglement of purification has been shown to

give the optimal visible compression rate for mixed states [73]. One remarkable prop-

erty of it is the monogamy inequality it shares with the quantum advantage of dense

coding [41]. Thus the findings on the entanglement of purification gets translated to

the quantum advantage of dense coding as well. However, despite its importance many

important characteristic properties of entanglement of purification remains unknown
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owing to the absence of a closed analytical formula for it. In particular finding the exact

values, lower bounds for the entanglement of purification and its monogamy and addi-

tivity (or non-additivity) properties need to be explored extensively since they have the

capability of further enhancing the understanding for the entanglement of purification.

Bipartite entanglement is not the only type of entanglement that makes the arena of

quantum physics rich and interesting, but the presence of genuine multipartite entangle-

ment is another fascinating area which baffles quantum physicists even today [1]. The

criteria of detection and quantization of genuine multipartite entanglement is an area

of vibrant research. One of the measure is generalized geometric measure [52]. With

increasing dimensions, number of parties and ranks of the quantum states, the evalua-

tion of the measure of genuine multipartite entanglement becomes extremely arduous.

However, with the use of some symmetry [61] this calculation can be simplified for

some important classes of states.

In view of the above development, necessity and interest we formulate related questions

that we address in the thesis. Thus, we state here the main results obtained in the

proposed thesis.

• We study various important aspects of the total correlation captured by the entan-

glement of purification. In this respect, we have explored some of the most im-

portant properties of entanglement of purification which include its exact values,

better lower bounds, monogamy and polygamy properties as well as the question

of additivity of entanglement of purification. We also discuss its implications on

the quantum advantage of dense coding.

• We explore the exact values of the measure of genuine multiparty correlation

called the generalized geometric measure by exploiting symmetry properties of

the quantum states, for different mixed states of varying dimensions, ranks and

number of parties.

In the first part of the thesis, we study the various important aspects of the total corre-

lation captured by the entanglement of purification [96]. For bipartite pure and mixed

quantum states, in addition to the quantum mutual information, there is another mea-

sure of total correlation, namely, the entanglement of purification. The definition of

entanglement of purification is motivated operationally, trying to see how many singlets

are required to construct a quantum state with vanishing amount of communication

asymptotically [34]. Unlike the quantum mutual information, the characteristics of this
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measure of total correlation remains unexplored owing to absence of a closed analytical

formula and the arduous optimization that needs to be performed in higher dimensional

Hilbert space. Thus, bringing out the properties of this measure is a step forward to un-

derstanding of this measure, which finds its usefulness in various quantum information

tasks. Among various important properties, we study the monogamy, polygamy, exact

values, better lower bounds and additivity properties of the entanglement of purification

for pure and mixed states [96]. In this paper, we show that, in contrast to the quantum

mutual information which is strictly monogamous for any tripartite pure states, the en-

tanglement of purification can be polygamous for the same. This shows that there can

be genuinely two types of total correlation across any bipartite cross in a pure tripartite

state. Also, we find better lower bounds and actual values of the entanglement of purifi-

cation for different classes of bipartite, higher dimensional bipartite and tripartite mixed

states. In regard to the additivity property, we show that if entanglement of purification

is not additive on tensor product states, it is actually subadditive. Using the above re-

sults that we obtain, we identify some new classes of states which are additive on tensor

products for entanglement of purification. By virtue of the monogamy relation of the

entanglement of purification with the quantum advantage of dense coding, we translate

the results mentioned as above to the quantum advantage of dense coding. Specifically,

we show that for tripartite pure states, the quantum advantage of dense coding is strictly

monogamous. Also we find the exact values and upper bounds for the quantum advan-

tage of dense coding and thereafter we show that if it is nonadditive, then it must be

superadditive on tensor product states.

The theory of quantum entanglement is one of the most promising field of research in

quantum information science. It has found application in numerous quantum informa-

tion processing tasks such as the quantum teleportation, remote state preparation, su-

perdense coding and the prime factorization to name a few [1]. Proper characterization

and manipulation of quantum entanglement holds reserves for implications in quantum

technology. The study of entanglement has been many-fold and also along many direc-

tions. First, it characterizes the quantum correlation of physical systems. Secondly, it

has been used to characterize the total correlation of a quantum system in the form of

entanglement of purification [34]. Thirdly, efforts have been made to understand and

capture the quantitative aspects of genuine multiparty entanglement, which is different

from the bipartite entanglement. In this respect a measure of genuine multipartite en-

tanglement called the generalized geometric measure has been proposed [52], which

has been shown to be of importance in detecting quantum phase transitions and other

quantum information tasks [52].
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In the second part of the thesis, we explore the genuine multipartite entanglement cap-

tured by the generalized geometric measure (GGM) [97]. The GGM of pure states has

already been computed efficiently in several systems for arbitrary number of parties.

In this work [97], we define the GGM for mixed states via the convex roof. However,

computing genuine multipartite entanglement of an arbitrary multipartite mixed state

is in general not an easy task as it usually involves complex optimization. Here we

show that exploiting symmetries of different paradigmatic classes mixed states [61, 97],

we can compute the generalized geometric measure for such classes of mixed states.

The chosen states have different ranks and consist of an arbitrary number of parties.

To deal with the obstacle of evaluating the convex roof extension, we use symmetry

properties of certain multiparty quantum states and simplify the evaluation of GGM for

these classes of mixed states. In particular, we first present the exact value of GGM for

certain classes of rank 2 and rank 3 mixed states with arbitrary number of qubits. We

then compute the GGM for a specific class of states which is a mixture of Greenberger-

Horne-Zeilinger (GHZ) and all the Dicke states, having a variety of ranks. The common

property that all these classes possesses is that they remain invariant under the action

of same symmetric local unitary operators on each qubit. Moreover, we find the GGM

of a class of tripartite states of rank 4 which remains unaltered under different local

unitaries on each party. Finally, we show that such symmetry properties can lead to an

exact expression of GGM for a class of multiqudit states having varied ranks [97].
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Chapter 1

Introduction

Characterization and quantification of quantum entanglement [1] lies at the heart of

quantum information theory, since its early recognition as spooky action at a distance[2]

in the Einstein-Podolsky-Rosen article [3]. In quantum world there exists correlations

between the subsystems of the multiparticle quantum states, which are of classical and

quantum origin. Proper characterization of these correlations is one of the many daunt-

ing challenges facing the development of the theory of quantum information and com-

putation. Given a bipartite or multipartite state one tries to characterize the amount

of classical correlation, quantum correlation and quantum entanglement contained in

the composite quantum system. Different correlations can arise depending on the state

preparation procedure, measurements and quantum operations performed on the sys-

tem. These correlations can account for many counter-intuitive features of the quantum

world. In particular, entanglement is a property that has been successfully employed to

interpret several physical phenomena which cannot be understood using only the laws

of classical physics [1]. It has also been identified as an useful resource for performing

different quantum communication protocols like super-dense coding [2], quantum tele-

portation [4], quantum cryptography [5], remote-state preparation [6, 7] and quantum

computational tasks such as the one-way quantum computer [8]. Moreover, entangle-

ment has been shown to be a necessary ingredient in studying quantum state tomography

[9], quantum metrology [10], cooperative quantum phenomena in many-body systems

like quantum phase transitions [11], etc.

There are myriad challenges facing the growth and development of quantum infor-

mation science, in particular the theory of the correlations in the composite quantum

states. Among many interesting and desirable properties that the correlation measures

1
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are expected to follow, a few are particularly interesting and intriguing. This is cur-

rently an active field of research and in the past several measures of entanglement with

different motivation and interpretations have been proposed over the course of time.

In this respect many measures have been defined in mainly two different realms, one

is the entanglement- separability paradigm and the other is the information theoretic

paradigm. Different correlations have been proposed comprising of the quantum as well

as total correlation that belong to these two different paradigm. Of this, the entangle-

ment measures belong to the entanglement -separability paradigm, while the measures

like quantum discord and quantum work deficit are quantum correlations measures de-

fined in the information theoretic paradigm. Similarly, in the case of total correlation

measure, the entanglement of purification is defined in the entanglement- separability

paradigm. In this thesis we focus on two such measures namely the generalized ge-

ometric measure and the entanglement of purification respectively. These correlation

measures have several important and striking properties, which we discuss briefly as

follows.

One fundamental property of quantum correlations in multiparty quantum states is that

it can be monogamous [12]. To state this in a qualitative way, if a correlation measure

is monogamous, then this says that in a composite quantum state, if two subsystems are

more correlated with each other, then they will share a less amount of correlation with

the other subsystems with respect to that measure of correlation. In other words, it puts

a restriction on the share-ability of correlation between the different parties of a com-

posite quantum state. The monogamy of quantum correlations thus dictates that if the

two subsystems are maximally quantum correlated with each other, then they cannot get

quantum correlated to any other subsystem at the same time. The measures of classical

correlation are never monogamous and therefore are considered to be freely shareable.

But, not all measures of quantum correlation satisfy monogamy [13–17]. For exam-

ple, the square of concurrence and the squashed entanglement satisfy the monogamy

inequality [18], whereas the relative entropy of entanglement, the entanglement of for-

mation and other measures do not satisfy monogamy in general. Recently, it has been

shown that the monogamous character is not an intrinsic property of other quantum cor-

relation measures. In particular, the quantum discord [19] for tripartite states does not

obey monogamy in general [20–22]. However, interestingly, though a quantum corre-

lation measure may not satisfy monogamy, yet the quantum correlation measure raised

to a power will certainly obey monogamy [23]. It has been shown that the square of the

concurrence, which is a monotonic function of entanglement of formation, is monoga-

mous. Similarly, it has been shown that the square of the quantum discord also satisfies
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monogamy. The concept of monogamy, not only is important from fundamental point

of view, it finds practical importance too. For example, the monogamy of quantum

correlations plays a crucial role in the security of quantum cryptography [24].

While the monogamy is an important property to study for various correlation measures,

still there remains other desirable properties that the correlation measures are expected

to obey from the perspective of being physically meaningful. One such property is the

additivity on tensor product of density matrices [25]. The property of additivity on ten-

sor product states dictates that a correlation measure is an additive measure if the value

of that measure on the tensor product of density matrices is simply equal to the addition

of the values of that correlation measure on the individual density matrices forming the

tensor product state. The quantum mutual information is an additive measure of total

correlation and the squashed entanglement is another additive measure of quantum cor-

relation [26]. However, all correlation measures are not yet proved to be additive [27].

There are measures of entanglement and capacity of channels that have been proved to

be non-additive [28–31]. For example the relative entropy of entanglement is proved to

be non-additive [32] and there is strong indication that the bipartite distillable entangle-

ment is also non-additive [27]. Also, the additivity of entanglement of formation still

remains an open question, and it is conjectured to obey a strong super-additivity condi-

tion [33]. Thus, the question of additivity of the different correlation measures is one of

the intriguing and yet to be solved question in the realm of quantum information theory.

In the next section we discuss in details on the aspects of total and quantum correlation

measures.

1.0.1 Total and quantum correlations

Let us consider a bipartite quantum state ρ consisting of subsystems ρA and ρB, with

marginal states ρA = trB(ρ) partial trace over part B and ρA = trB(ρ). A fundamen-

tal question in quantum information theory is to classify and quantify the correlations

present in the quantum state ρ. For the classification issue, one usually distinguishes

between total, quantum, and classical correlations. Landauer showed that the amount

of information stored is proportional to the work required to erase the memory of the

information content. These ideas were further developed by other researchers into a

connection of classical information and thermodynamics. In this regard the quantum

mutual information denoted by I(A : B) was proposed as a measure of total corre-

lation. It was motivated operationally by showing that exactly I(A : B) amount of
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energy was required to remove all correlations from a quantum state ρAB. Therefore,

the quantum mutual information was not motivated from the entanglement separability

paradigm, i.e., not in terms of singlets to construct a quantum state, but rather from a

thermodynamic or an information-theoretic perspective.

On the other hand, the theory of quantum entanglement in the entanglement-separability

paradigm also aims at quantifying and characterizing uniquely quantum correlations.

This is done by analyzing how entangled quantum states can be processed and trans-

formed by quantum operations. A very important role in the theory is played by the

class of Local Operations and Classical Communication (LOCC), since quantum en-

tanglement is non-increasing under these operations. By considering this class of op-

erations one is able to clearly distinguish between the quantum entanglement and the

classical correlations that are present in the quantum state. This theory is quite suc-

cessful, and this has led the authors in [34] pose the question whether one can similarly

construct a theory of purely classical correlations in quantum states and their behavior

under local or nonlocal processing. However, there the authors note that such an effort

cannot succeed in general since merely local actions can convert quantum entangle-

ment into classical correlations. Namely, Alice and Bob who possess an entangled state

|Ψ〉 =
∑

i

√
λi|a〉i ⊗ |b〉i with Schmidt coefficients i can, by local measurements, ob-

tain a joint probability distribution with mutual information equal to H(λ). Thus, from

the above observation, it does not seem possible to separate the classical correlations

from the entanglement in an operational way similar to that of quantum entanglement.

However, note that it may be possible to separate quantum and classical correlations in

a nonoperational way, see for example Ref. [19]. However, an operational approach to

the quantification of quantum and classical correlations was recently formulated in Ref.

[35].

In the approach to correlation as described above, the authors in [34] propose to treat

quantum entanglement and classical correlation in a unified framework, namely they

express both correlations in units of entanglement. This theory of all correlations may

have potential applications outside quantum information theory as well. Researchers

have started to look at entanglement properties of many-particle systems for example at

quantum phase transitions [11]. Instead of considering the entanglement of formation

in these studies, one may also investigate such properties using the total correlation

measure.

In an effort as stated in the above paragraph, the authors, in their paper [34], intro-

duce such a measure, called the entanglement of purification. It is important to note
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that the entanglement of purification is not an entanglement measure, but a measure of

correlations expressed in terms of the entanglement of a pure state. Many times it has

been seen that in quantum information theory that questions in the asymptotic approxi-

mate regime are easier to answer than the exact non-asymptotic questions. Thus, in this

vein the authors in [34] ask how to create a bipartite quantum state ρ in the asymptotic

regime, allowing approximation, from an initial supply of EPR-pairs by means of local

operations and asymptotically vanishing communication. This latter class of operations

were denoted as LOq (Local Operations with o(n) communication in the asymptotic

regime) versus the class LO for strictly Local Operations. After this they define this

formation cost ELOq as follows:

ELOq(ρ) = limε→0{
m

n
|LLOq, D(LLOq(|Ψ〉〈Ψ|⊗m), ρ⊗n) ≤ ε}. (1.1)

Here |Ψ〉 is the singlet state in H2 ⊗ H2 and LLOq is a local super-operator using

o(n) quantum communication. D is the Bures distance D(ρ, ρ) = 2
√

1− F (ρ′, ρ)

and the square-root-fidelity is defined as F (ρ, ρ) = Tr(

√
ρ

1
2ρρ

1
2 ) [36]. One observes

that by allowing asymptotically vanishing communication, one has preserved the inter-

convertibility result for pure states [37]. This is due to the fact that both the process of

entanglement dilution as well as entanglement concentration can be achieved with no

more than asymptotically vanishing amount of communication [38]. Thus, it is clear

that the cost ELOq(ρ) of creating the state ρ is defined analogously to the entanglement

cost Ec(ρ) [39, 40], with the restriction that Alice and Bob can only do a negligible

amount of communication. It is immediately clear that ELOq(ρ) will in general be

larger than Ec(ρ). In particular, for a separable density matrix Ec(ρ) = 0 whereas that

for any correlated density matrix, i.e. not of the form ρAB = ρA ⊗ ρB, ELOq(ρ) > 0.

The entanglement cost Ec was found to be equal to Ec(ρ) = limn→∞
Ef (ρ⊗n)

n
, where

Ef (ρ) is the entanglement of formation [39]. Similarly, the authors in Ref.[34] find an

expression for ELOq = limn→∞
Ep(ρ⊗n)

n
= E∞p (ρ), where Ep(ρ) is a new quantity, the

entanglement of purification of ρ.

Now, we discuss briefly a few points and results in existing literature on the measure of

total correlation captured by the entanglement of purification.

Firstly, it should be emphasized that entanglement of purification [34] is not a measure

of entanglement, but a measure of total correlation defined in units of pure state en-

tanglement. As clear from the discussion in the previous paragraph, this definition of

entanglement of purification was motivated operationally, trying to see if quantum states
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could be constructed from EPR pairs, i.e., the Einstein-Podolsky-Rosen pairs, with

vanishing amount of communication asymptotically. It is based on the entanglement-

separability paradigm, trying to capture the classical and quantum correlations in an

unified way. It was shown to be satisfying the properties of a genuine measure of total

correlation. Also, a monogamy relation between the entanglement of purification and

the quantum advantage of dense coding was given by Horodecki et al. [41]. However,

the conditions for the monogamy or polygamy nature of entanglement of purification

have not been found yet. The investigation in the monogamy or polygamy nature of

entanglement of purification is motivated from the fact that the mutual information, a

measure of total correlation is strictly monogamous for any tripartite pure states [21].

Therefore, if the entanglement of purification is a measure of total correlation can it

be strictly monogamous for all tripartite pure states? We find that the entanglement of

purification of a tripartite pure state ρABC across A : BC partition is never less than

its sum for the reduced density matrices ρAB and ρAC , and is mostly polygamous. This

observation calls for further investigation in understanding the nature of correlation cap-

tured by the entanglement of purification. At first, we prove that similar to the mutual

information, the entanglement of purification does not increase upon discarding ancilla.

Thereafter, we explore the monogamy, polygamy and the additivity properties of the

entanglement of purification for pure as well as mixed tripartite states. Furthermore, we

find analytically the lower bound and actual value of the entanglement of purification for

different classes of mixed states. We also present some conditions for the monogamy

of entanglement of purification in terms of monogamy of entanglement of formation

and other entropic inequalities. We use these properties of entanglement of purification

to explore the monogamy and additivity properties of the quantum advantage of dense

coding.

Next, we shift our focus to the measure of genuine multipartite entanglement. It is an

area of vibrant research, in which many important properties and features of the muti-

partite entanglement remains to be revealed and understood. It is interesting to mention

here the work in [42], which generalizes the entanglement entropy as the bipartite en-

tanglement measure to the α-entanglement entropy as a multipartite entanglement mea-

sure. Thereafter, the multipartite entanglement measures using tools from lattice theory

have also been calculated in [42].

However, in this thesis, we present results on the generalized geometric measure, which

is a measure of genuine multipartite entanglement. It is a generalization of the geomet-

ric measure of entanglement , which is defined as a measure of bipartite entanglement,
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to the multipartite scenario. A pure state is said to be genuinely multiparty entangled

if it is not product in any bipartition. It measures the shortest geometric distance from

the closest bi-separable states to quantify the genuine multiparty entanglement. In the

case of systems composed of m > 2 subsystems the classification of entangled states

is richer than in the bipartite case. Indeed, in multipartite entanglement apart from

fully separable states and fully entangled states, there also exists the notion of partially

separable states. Quantification of multipartite entanglement is also essential for charac-

terization of successful preparations of quantum states in the multiparty domains, in the

laboratories [43]. The notion of entanglement is rather well understood in the bipartite

regime, especially for pure states [44–48]. While several entanglement measures can be

computed for bipartite pure states, the situation for mixed states is difficult, and there

are only a few entanglement measures which can be computed efficiently. The logarith-

mic negativity [47] can be obtained for arbitrary bipartite states, while the entanglement

of formation [45, 46] can be computed for all two-qubit states. The situation becomes

complicated even for the pure states when the number of parties increases. However,

there have been significant advances in recent times to quantify multipartite entangle-

ment of pure quantum states in arbitrary dimensions [1]. They are broadly classified in

two categories, distance-based measures [49–52] and monogamy-based ones [44, 53–

55]. On the other hand, quantifying entanglement for arbitrary multiparty mixed states

is still an arduous task [56]. Recently, experiments by using photon polarization [57]

and ions [58] have been reported in which multiparty states of the order of ten par-

ties have been created successfully. Such physical implementations demand a general

tool to compute multiparty entanglement measures for arbitrary mixed states. Recently

there have also been notable advancements in this direction [? ]. Moreover, when an

entanglement measure can only be evaluated for pure states, the entanglement-assisted

study of cooperative phenomena becomes restricted to only a system which is at zero

temperature.

1.1 Summary of thesis

In this thesis, we have explored the entanglement of purification and the generalized

geometric measure. In this section, we give a summary of the results we have obtained

for these two measures.

In the first part, we find that contrary to the monogamy nature of the mutual information

for tripartite pure states, the entanglement of purification can be polygamous for such
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states. This shows that even though the mutual information and the entanglement of

purification are supposed to capture total correlation, the nature of these correlations

can be completely opposite at least for tripartite systems. In case of pure and mixed

states, the monogamy of entanglement of purification is related to the monogamy of

entanglement of formation. Also, we have found a necessary condition for monogamy

of entanglement of purification for a special class of mixed states, in terms of the inter-

action information or the polygamy of the quantum mutual information. A new lower

bound of the entanglement of purification has been given for the tripartite mixed states

and higher dimensional bipartite systems. Using the formula for the lower bound we

have been able to find the exact values of entanglement of purification for some classes

of states. Furthermore, in this thesis, we have also shown that if entanglement of pu-

rification is not additive, it has to be a sub-additive quantity. Using these results we

have also shown that the quantum advantage of dense coding is strictly monogamous

for all tripartite pure states and it is super-additive on tensor products. We have also

identified some of the quantum states with no quantum advantage of dense coding. We

have brought forward these important aspects of the measure of total correlation as well

as that of the quantum advantage of dense coding to the forefront. These will help us

understand better the nature of total and quantum correlations of composite quantum

states. This calls for more explorations and a deeper understanding of the total correla-

tion present in a composite mixed state.

In the second part of the thesis, we address the question of computing the generalized

geometric measure (GGM) for mixed states. The GGM of pure states has already been

computed efficiently in several systems for an arbitrary number of parties [59]. We

define the GGM for mixed states via the convex roof construction. To deal with the

obstacle of evaluating the convex roof extension, we use symmetry properties of cer-

tain multiparty quantum states and simplify the evaluation of GGMs for these classes

of mixed states, as prescribed in Refs. [60–62] (cf. [63]). Exploiting such symme-

tries, we are able to compute the GGM of different paradigmatic classes of mixed states

having different ranks. In particular, we first present the exact value of the GGM for

certain classes of rank 2 and rank 3 mixed states with an arbitrary number of qubits. We

then compute the GGM for a specific class of states which is a mixture of Greenberger-

Horne-Zeilinger [64] and all the Dicke states [65], having a variety of ranks. The com-

mon property that all these classes possess is that they remain invariant under the action

of the same symmetric local unitary operators on each qubit. Moreover, we find the

GGM of a class of tripartite states of rank 4 which remains unaltered under different
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local unitaries on each party. Finally, we show that such symmetry properties can lead

to an exact expression of the GGM for a class of multiqudit states having varied ranks.
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Chapter 2

Background Theory

In the present thesis, we have analyzed and derived results on the measures of total

correlation and genuine multipartite entanglement. In this analysis, we have used the

various properties of the Von-Neumann entropy, the properties of the quantum states and

the properties of total and quantum correlations and lastly symmetry properties of the

quantum states. Specifically, the study of quantum correlations requires the use of the

concepts of Hilbert space, quantum states, quantum measurements, quantum operations

in terms of the trace preserving completely positive maps, the measures of entanglement

and its properties etc. Therefore, in the next sections, we have given a brief necessary

outline of these background theories in the sections that follow hereafter.

2.1 Quantum formalism

2.1.1 Hilbert space

Hilbert space formalism is widely used and very helpful in the mathematical formu-

lation of quantum mechanics. Hilbert spaces were named after David Hilbert, who

studied them in the context of integral equations. The elements of an abstract Hilbert

space are also called vectors, which are usually sequences of complex numbers or com-

plex functions. In quantum mechanics for example, a physical system is described by a

complex Hilbert space which contains the wavefunctions. The wavefunctions represent

the possible states of the quantum system. We now state the formal definition of Hilbert

space as follows

11
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Definition

An inner product space is a vector space V over K(= R or C) together with a map

〈˙, ˙〉 : V XV → K satisfying (for x, y, z ∈ V and λ ∈ K):

• 〈x+ y|z〉 = 〈x|z〉+ 〈y|z〉

• 〈y|x〉 = 〈x|y〉†

• 〈λx|y〉 = λ∗〈x|y〉

• 〈x|x〉 ≥ 0

• 〈x|x〉 = 0 => x = 0

An inner product on V gives rise to a norm ||x|| = |〈x|x〉|. If the inner product space is

complete in this norm, or in other words if it is a Banach space with this norm, then we

call it a Hilbert space. Another way to define it is that a Hilbert space is a Banach space

where the norm arises from inner product. All finite-dimensional inner product spaces

are Hilbert spaces. However, the infinite-dimensional Hilbert space is also extremely

important in applications in mathematical formulations of quantum mechanics. Now,

with this definition stated as above, we now move on to the definition and properties of

the quantum states.

2.1.2 Quantum states

In quantum physics, quantum state refers to the state of a quantum system. According

to the quantum theory, the quantum state encodes all the information about the physi-

cal system. A quantum state provides a recipe to calculate the probability distributions

[66] for the possible values of each observable, i.e., for the outcome of each possi-

ble measurement on the system, corresponding to the observable whose value is to be

measured. Knowledge of the quantum state together with the rules for the system’s

evolution in time given by the Schrodinger’s equation exhausts all that can be predicted

about the system’s behavior.

From physical considerations, there exists specific rules about the proper mathematical

expression representing a quantum state. The density matrix formalism is a very useful
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and effective tool in proper and complete mathematical description of quantum states

living in Hilbert space. Specifically, if we represent a quantum state by a density matrix

ρ, then the following conditions must be satisfied

• Hermiticity: ρ = ρ†,

• Normalization: Tr(ρ) = 1,

• Positivity: ρ ≥ 0.

The quantum states can be divided into two main classes namely the pure states and

the mixed states. Mathematically, a pure quantum state can be represented by a ray or

a vector in a Hilbert space over the field of complex numbers. The ray or a vector is a

set of nonzero vectors differing by just a complex scalar factor such that any of them

can be chosen as a state vector to represent the ray and thus the state. A unit vector

is picked to represent a pure quantum state, but usually its phase factor can be chosen

freely. However, relative phase factors are important when state vectors with relative

phase differences are added together to form a superposition which is again a valid

quantum state. In terms of the density matrix representation, pure states are represented

by density matrices which additionally satisfy the condition Tr(ρn) = 1 for any positive

integer n.

A mixed quantum state corresponds to a probabilistic mixture of pure states. In other

words, in terms of density matrices, a mixed state ρ can be represented as ρ =
∑

i piσi,

where 0 ≤ pi ≤ 1,
∑

i pi = 1 and σi represent the pure states. However, different

distributions of pure states can give equivalent (i.e., physically indistinguishable) mixed

states. Mixed states are effectively described by the density matrices. For mixed states,

the density matrices satisfy the condition Tr(ρn) < 1 for any positive integer n.

The above formalism of density matrices are very effective in representing the states of

quantum systems. However, not only do we need the representation of quantum states,

but also to describe the dynamic behavior of quantum states such as the transformations

due to quantum measurements, or as a result of interaction with the environment, we

briefly discuss the formalism used for representing the quantum operations in the next

paragraph.
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2.1.3 Quantum Operations

In quantum mechanics, a quantum operation is a mathematical formalism used to de-

scribe a broad class of transformations that a quantum mechanical system can undergo.

This tool is highly powerful since it can address a wide range of physical processes and

transformations that a quantum system can undergo. The quantum operation formalism

describes not only unitary time evolution, but also the effects of measurement on quan-

tum systems and interactions with an environment. The quantum operations therefore

has different classes, of which the Trace-preserving completely positive maps form a

very important and powerful formalism for representing almost all kind of quantum op-

erations. The TPCP maps have far reaching applications and usefulness in the field of

quantum information theory and quantum computation and form an indispensable part

of the field of quantum information and computation. In this thesis, we have used some

properties of these maps, therefore we discuss some important points of these TPCP

maps in the sections that follow.

2.1.3.1 TPCP Maps

Trace-preserving completely positive maps or TPCP Maps in short arise naturally in

quantum information theory where one wishes to restrict attention to a quantum system

that should be considered a subsystem of a larger system or the environment with which

it interacts. In such situations, if the system of interest is described by a Hilbert space

HA and the larger system by a tensor product H = HA ⊗HB.

The result of an interaction with the larger system also called the environment is de-

scribed by a map Λ : B(HA) ⊗ B(HB) that takes one density matrix ρ to another

density matrix Λ(ρ). In the general scenario and in an axiomatic approach to quantum

operation, this can be defined as a map Λ from the set of density operators of the input

space QA to the set of density operators for the output space QB with three properties

which are stated as follows:

• Tr(Λ(ρ)) is the probability that the process represented by Λ occurs, when ρ is

the initial state. Therefore, we have 0 ≤ Tr(Λ(ρ)) ≤ 1 for any state ρ. This

property is for mathematical convenience.
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• Λ is a convex-linear map on the set of density operators , which implies the fol-

lowing equation

Λ(
∑
i

piρi) =
∑
i

piΛ(ρi). (2.1)

This property comes due to the requirement on quantum operations from the point

of view of physical considerations.

• Λ is a completely positive map. This means that if Λ maps density operators of

the system QA to density operators of system QB, then Λ(A) must be positive for

any positive operator A. Also, we need an additional extra condition. The extra

condition arises from the fact that if we introduce an extra system R of arbitrary

dimensionality, it must be true that (I⊗Λ)(A) is positive for any positive operator

A on the combined system RQA, where I denotes an identity map on system R.

This property also stems from a very important physical requirement, that not

only Λ(ρ) must be a valid density matrix (upto proper normalization factor) as

long as ρ is valid as a density operator, but also if ρ = ρRQ is the density matrix

of a joint system RQ, is Λ acts only on Q, then Λ(ρRQ) must also be a valid

density matrix (upto proper normalization factor) representing the joint system.

In general the above three are sufficient in defining a quantum operation. Though

the above formalism is powerful to describe quantum operations in general, yet

there exists a more convenient representation of these maps that prove very useful

in quantum information theory and computation.

2.1.3.2 Kraus Operators

The Kraus representation or the operator sum representation is very useful and effective

tool to represent quantum operations. The main ingredient is the Kraus theorem. The

Kraus theorem characterizes maps that represent quantum operations between density

operators. It is stated as follows:

Theorem:

LetH and G be Hilbert spaces of dimension n and m respectively, and Λ be a quantum

operation taking the density matrices acting on H to those acting on G. Then there

are matrices {Bi}1≤i≤nm mapping G to H, such that Λ(ρ) =
∑

iB
†
i ρBi. Conversely,

any map Λ of this form is a quantum operation provided by {Bi}1≤i≤nm which satisfy∑
iBiB

†
i ≤ 1..
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The matrices {Bi}1≤i≤nm are called Kraus operators. The Stinespring factorization the-

orem extends the above result to arbitrary separable Hilbert spaces H and G. However,

the representation of quantum operations by Kraus operators is not a unique represen-

tation. The Kraus operators are unique only upto an unitary equivalence which is stated

as below

Unitary equivalence:

Kraus matrices are not uniquely determined by the quantum operation Λ in general. The

following theorem states that all systems of Kraus matrices which represent the same

quantum operation are related by a unitary operation.

Theorem:

Let Λ be a (not necessarily trace preserving) quantum operation on a finite-dimensional

Hilbert spaceHwith two representing sequences of Kraus matrices {Bi}1≤i≤nm and{Ci}1≤i≤nm.

Then there is a unitary operator matrix U , such that Ci =
∑

j uijBj . In the infinite-

dimensional case, this generalizes to a relationship between two minimal Stinespring

representations. Also, according to the Stinespring’s theorem that all quantum opera-

tions can be implemented via unitary evolution after coupling a suitable ancilla or the

environment to the original system.

Apart from the above properties and theorem, there is another theorem on the Kraus

operators concerning the maximum number of Kraus operators one needs to represent

a quantum operation. This theorem is stated as below:

Theorem:

All quantum operations Λ on a system of Hilbert space of dimension d can be generated

by an operator sum representation or the Kraus operator representation containing at

most d2 elements,

Λ(ρ) =
M∑
k=1

EkρE
†
k, (2.2)

where, 1 ≤M ≤ d2 and
∑
E†kEk = I .

All of the above theorems and features of the Kraus representation makes quantum

operations formalism more convenient to handle and gives rise to various interesting

features.



17

2.1.4 von-Neumann entropy

The von-Neumann entropy is one of the most important and widely used physical quan-

tity in the quantum information theory and computation. We define the von-Neumann

entropy as follows.

Given the density matrix ρ, von Neumann defined the entropy as S(ρ) = −tr(ρ lnρ),

which is a proper extension of the Gibbs entropy (up to a factor kB) and the Shannon

entropy to the quantum domain. To calculate S(ρ) it is very convenient to compute

the eigen-decomposition of ρ as ρ =
∑

j ηj|j〉〈j|. The von Neumann entropy corre-

sponding to ρ is then given by S(ρ) = −
∑

j ηj ln ηj . The von-Neumann entropy has

some interesting properties, which prove crucial in proving many important features

of the different correlation measures in quantum information and computation. These

properties are as follows:

• S(ρ) is zero if and only if ρ represents a pure state.

• S(ρ) is maximal and equal to lnN for a maximally mixed state, N being the

dimension of the Hilbert space.

• S(ρ) is invariant under any kind of basis transformation to represent ρ, that is,

S(ρ) = S(UρU †), with U being a unitary transformation.

• S(ρ) is concave, that is, given a set of positive numbers λi which sum to unity

(Σiλi = 1) and density operators ρi, we have S
(∑k

i=1 λi ρi

)
≥
∑k

i=1 λi S(ρi).

• S(ρ) is additive for independent systems. In other words, this means that given

two density matrices ρA ,ρB describing independent systems A and B, we have

S(ρA ⊗ ρB) = S(ρA) + S(ρB).

• S(ρ) is strongly subadditive for any three systems A,B, and C. This implies

that S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC). This directly implies that S(ρ) is

subadditive which is nothing but the equation S(ρAC) ≤ S(ρA) + S(ρC). Below,

the concept of subadditivity is discussed, followed by its generalization to strong

subadditivity.

The above properties are extremely useful and are widely used. We will repeatedly take

help of these properties to prove our results on entanglement of purification and the

generalized geometric measure in this thesis.



18

Sub-additivity

If ρA, ρB are the reduced density matrices of a general state ρAB, then one has the

general inequality |S(ρA) − S(ρB)| ≤ S(ρAB) ≤ S(ρA) + S(ρB) . The right hand

inequality is known as sub-additivity. The two inequalities together are also popularly

known as the triangle inequality. While in Shannon’s theory the entropy of a composite

system can never be lower than the entropy of any of its parts, i.e., the conditional

entropy of any system cannot be negative, however, in quantum theory this is not the

case, i.e., it is possible that S(ρAB) = 0, while S(ρA) = S(ρB) > 0 [67], or to simply

put it S(A|B) = S(AB) − S(B) < 0, i.e., conditional von-Neumann entropy can be

negative.

Strong subadditivity

The von Neumann entropy is also strongly sub-additive. Given three Hilbert spaces,

HA,HB,HC ,, strong sub-additivity inequality states that S(ρABC) +S(ρB) ≤ S(ρAB) +

S(ρBC). By using the proof technique that establishes the left side of the triangle in-

equality above, one can show that the strong subadditivity inequality is equivalent to

the inequality S(ρA) + S(ρC) ≤ S(ρAB) + S(ρBC) when ρAB, etc. are the reduced

density matrices of a density matrix ρABC . If we apply ordinary subadditivity to the left

side of this inequality, and consider all permutations of A,B,C, we obtain the triangle

inequality for ρABC , then each of the three numbers S(ρAB), S(ρBC), S(ρAC) is less

than or equal to the sum of the other two.

The above two inequalities are two most important and widely used inequalities that

are frequently used in exploring various properties of quantum correlation and total

correlations. Likewise, we have used these inequalities to prove a few of our results on

entanglement of purification.

2.1.5 Some important properties of total and quantum correlations

2.1.5.1 Monogamy/ Polygamy

Monogamy is a property of a multiparticle quantum state that can be studied with re-

spect to a particular correlation measure. It is an important property that tells us about
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the nature of the correlation at our disposal, in particular, whether it is freely shareable

or not. Classical correlations [68] are always polygamous, whereas certain quantum

correlation measures satisfy this property and some others do not [14, 15, 20, 26]. For

example, the quantum discord is not in general a monogamous quantity for even some

cases of the pure tripartite states, whereas the total correlation given by the quantum

mutual information is strictly monogamous for all tripartite pure states. Therefore, the

monogamy or polygamy nature of the total correlation measure that supposedly contains

some amount of quantum and classical correlation is an important question to consider.

Now, according to the definition of monogamy, it is a property which does not allow the

free sharing of correlation between the subparts of a composite system. Mathematically,

if a correlation measure Q(ρ) satisfies

Q(A : BC) ≥ Q(A : B) +Q(A : C) (2.3)

for any tripartite state ρABC , then the correlation measure is called monogamous, oth-

erwise it is called polygamous. This definition can be extended to the case of n parties

as well. A correlation measure Q is said to be n partite monogamous if the following

inequality is satisfied

Q(A1 : A2..An) ≥ Q(A1 : A2) +Q(A1 : A3) + ..Q(A1 : An)

and otherwise it is called n partite polygamous.

2.1.5.2 Additivity

Quantum information theory has its share of very challenging mathematical problems.

These problems often can be formulated in simple terms, however finding a solution to

these problems prove to be quite arduous. One group of these kind of open problems

concerns the additivity properties of various quantities characterizing quantum chan-

nels, entanglement of formation and the entanglement of purification.

Coming to its definition, if a correlation measure E(ρAB) is additive, then it should

follow the equation as given below

E(ρAB ⊗ σCD) = E(ρAB) + E(σCD). (2.4)
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This means that the correlation measure of a density matrix in product form is just the

sum of the correlation measure of the constitutent density matrices. If the additivity

holds, this also implies that the regularized value of the measure is equal to its value for

the single copy. This is given by the equation

E(ρAB) = E∞(ρAB) = Limn→∞
E(ρ⊗nAB)

n
(2.5)

Specifically, it has been shown that four important questions of additivity in quantum

information theory are completely equivalent to each other. Namely, the conjectures

of additivity of the minimum output entropy of a quantum channel, additivity of the

Holevo expression for the classical capacity of a quantum channel, additivity of the en-

tanglement of formation, and strong super-additivity of the entanglement of formation,

are either all true or all false. However, the additivity of entanglement of purification

is not yet shown to be equivalent to these four additivity questions. Instead, it has been

suspected to be a non-additive quantity. The question of additivity in quantum informa-

tion theory has various important implications, in particular, according to the additivity

conjecture, the classical capacity or the maximal purity of outputs cannot be increased

by using entangled inputs of the channel.

2.1.6 Total correlations

We consider multiparticle quantum system with each subsystem defined on a finite di-

mensional Hilbert spaceH. Let L(H) be the set of all linear operators acting onH and

D(H) be the set of all density operators ρ with ρ ≥ 0 and Tr(ρ) = 1. The compos-

ite state ρABC ∈ D(HABC) is a general state that may contain classical and quantum

correlations including entanglement. The von-Neumann entropy for a density operator

ρA is defined as S(A) = −Tr(ρA log2 ρA), where ρA = TrBC(ρABC). In this section

we discuss two important measures of total correlation in the bipartite scenario, namely,

the quantum mutual information and the entanglement of purification. The measures

of total correlation try to capture quantitatively the total correlations comprising of the

classical as well as the quantum correlations in a bipartite state ρAB = TrC(ρABC).



21

2.1.6.1 Quantum mutual information

The quantum mutual information is a measure of total correlation in a quantum system.

It is a generalization of the classical mutual information. The quantum mutual informa-

tion is obtained by just replacing the Shannon entropy by the von-Neumann entropy for

the respective terms in the expression for the classical mutual information. Thus, for a

bipartite quantum state, the quantum mutual information of the state ρAB is defined as

I(A : B) = S(A) + S(B)− S(AB) (2.6)

.

Quantum mutual information satisfies some natural properties, all of which, a total cor-

relation measure is expected to satisfy. They are as follows

• It never increases upon discarding of quantum systems, i.e., I(A : BC) ≥ I(A :

B).

• Secondly, the quantum mutual information is additive on tensor product of density

matrices, which is I(AC : BD) = I(A : B) + I(C : D) for ρAB ⊗ σCD.

• Apart from these, the monogamy properties of the mutual information have been

studied in Ref.[21]. There, it was shown that a necessary and sufficient condition

for the monogamy of quantum mutual information can be stated in terms of the

interaction information [20, 21]. Specifically, it can be shown that for any pure

tripartite state |Ψ〉ABC , we have

I(A : B) + I(A : C) = I(A : BC),

which implies that the quantum mutual information is strictly monogamous for

a pure tripartite state. The necessary and sufficient criteria for quantum mutual

information to be monogamous for mixed tripartite state is that the interaction

information should be positive [21].

In classical information theory, interaction information of state ρABC is defined as

Ĩ(ρABC) = H(AB)+H(BC)+H(AC)−H(A)−H(B)−H(C)−H(ABC), (2.7)
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where H(AB) denote the Shannon entropies [69]. Replacing the Shannon entropies

by the von-Neumann entropies we obtain the quantum generalization of the interaction

information. The quantum interaction information is therefore nothing but

Ĩ(ρABC) = S(AB) + S(BC) + S(AC)− S(A)− S(B)− S(C)− S(ABC), (2.8)

where S(AB) denote the von-Neumann entropy of the density matrix ρAB. Interaction

information is a measure of the effect of the presence of a third party C on the amount

of correlations shared by the other two parties as it is given by the difference between

the information shared between the parties A and B when C is present and when C is

not present. Quantum interaction information can be positive as well as negative. It

is invariant under the action of local unitaries and non-increasing under the action of

unilocal measurements [20]. It has been used to provide necessary and sufficient condi-

tions for the monogamy of quantum discord in Ref.[20]. Quantum mutual information

is an important measure of correlation and finds application in a large number of settings

primarily in studying the channel capacities [70, 71]. Also, an operational interpretation

has been given of the quantum mutual information in Ref.[72]. There, it was interpreted

as the total amount of randomness or noise needed to erase the correlations in a bipartite

quantum state completely.

2.1.6.2 Entanglement of purification

The entanglement of purification is a measure of total correlation along a bipartition in a

quantum state, [34]defined using the notion of the entanglement separability paradigm.

Interestingly, in this approach the authors in [34] have treated both the quantum en-

tanglement and the classical correlation in a unified framework, by defining a measure

of total correlation namely the entanglement of purification in units of pure state en-

tanglement. By their definition, the entanglement of purification is expressed as the

entanglement of the purified version of the mixed state as follows.Suppose we have a

mixed state ρAB, and we purify it to a pure state |Ψ〉ABA′B′ . Then, the entanglement of

purification is defined as

Ep(A : B) = min
A′B′

Ef (AA
′ : BB′), (2.9)

where Ep(A : B) denotes the entanglement of purification of the state ρAB acrossA : B

partition, and Ef (AA′ : BB′) is the entanglement of formation across the bipartition

AA′ : BB′ of the pure state |Ψ〉ABA′B′ , obtained from ρAB by any standard purification
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procedure such as |Ψs〉AA′:BB′ =
∑

i

√
λi|Ψi〉AB ⊗ |0〉A′ |i〉B′ . Here, the λi are the

Schmidt coefficients and |Ψi〉 are the corresponding Schmidt vectors inHAB.

The above expression can be reformulated in terms of the trace preserving completely

positive (TPCP) maps, since every quantum operation can be written in terms of the

TPCP maps. Following Ref.[34], we get Ep(A : B) of ρAB as the following minimum

over unitary matrices as

Ep(A : B) = min
UA′B′

Ef (AA
′ : BB′), (2.10)

where Ef (AA′ : BB′) is the entanglement of formation across the AA′ : BB′ partition

of the pure state (IAB ⊗ UA′B′)(|Ψs〉〈Ψs|)(IAB ⊗ UA′B′)† obtained from ρAB by a stan-

dard purification procedure and then acting unitary matrices over the ancilla part. This

is nothing but the entropy as follows

min
UA′B′

S(TrAA′((IAB ⊗ UA′B′)(|Ψs〉〈Ψs|)(IAB ⊗ UA′B′)†)). (2.11)

Now by tracing out the AA′ part from the pure state as well as the unitary operator, one

obtains the following equivalent form of entanglement of purification in terms of the

TPCP map

Ep(A : B) = min
ΛB′

S((IB ⊗ ΛB′)(µBB′(ρAB)));

ΛB′(ν) = TrA′(UA′B′(νB′ ⊗ |0〉〈0|A′)U †A′B′);

µBB′(ρAB) = TrAA′(|Ψ〉〈Ψ|), (2.12)

where ΛB′ is a TPCP map. The above form is derived in Ref.[34]. Therefore, the min-

imization over unitary matrices in Eq.(2.11) is now represented as a minimization over

all TPCP maps ΛB′ , since a TPCP map is equivalently represented as an unitary trans-

formation on the larger system followed by tracing over the ancilla. It was shown that

the above optimization can be successfully performed in a Hilbert space of a limited

dimension dA′ = dAB and dB′ = d2
AB, due to the result by Terhal et al. [34]. For

pure states, the entanglement of purification is equal to the entanglement of formation

and for a mixed state ρAB, one has Ep(A : B) ≥ Ef (A : B). Alongside, the authors

have introduced the regularised entanglement of purification E∞p (A : B). It was shown

that the asymptotic cost of preparing n copies of ρAB from singlets using only local
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operations and an asymptotically vanishing amount of quantum or classical communi-

cation is equal to the regularised entanglement of purification. This implies that the

regularised entanglement of purification is actually the entanglement cost (with LOq)

of the quantum states ρ onHd⊗Hd [34], i.e., ELOq(A : B) = E∞p (A : B). Later, from

an operational point of view it was shown that if it is additive on tensor product states

then E∞P (A : B) is actually the optimal visible compression rate for mixed states [73].

Other operational interpretations have been explored for this quantity. In particular, the

regularized entanglement of purification was shown to be equal to the entanglement as-

sisted noisy channel capacity [74]. On another note it was shown that the regularized

entanglement of purification ELOq(A : B) gives the communication cost of simulating

a channel without the presence of prior entanglement [75]. However, the entanglement

of purification is mostly an unexplored quantity since it is a difficult quantity to calcu-

late analytically owing to the optimization needed to be done in a larger Hilbert space.

But, using the monogamy property of entanglement, the authors in Ref.[18] have found

the entanglement of purification for a class of bipartite states supported in symmetric

or antisymmetric subspaces analytically to be S(A). However, one of the unanswered

question regarding the entanglement of purification is the property of additivity. It is still

not known whether the entanglement of purification is additive on tensor product states

or not. But, some progress has been made in this direction by, where entanglement

of purification has been proved to be non-additive within a certain numerical tolerance

[76]. The entanglement of purification has been related to some other information the-

oretic quantities as well. It has also been shown that the entanglement of purification

is related to the partial quantum information, through its monogamy relation with the

quantum advantage of dense coding [41].

2.1.7 Quantum advantage of dense coding

In quantum information theory, superdense coding is a technique used to send two bits

of classical information using only one qubit. It is the inverse of quantum teleportation,

which sends one qubit with two classical bits. Both superdense coding and quantum

teleportation require, and use up, entanglement between the sender and receiver in the

form of Bell pairs. In other words, superdense coding or simply the quantum dense

coding is a method of utilizing shared quantum entanglement to increase the rate at

which information can be sent through a noiseless quantum channel. Sending a single

qubit noiselessly between two parties gives a maximum rate of communication of one

bit per qubit (given by the HSW Theorem). If the sender’s qubit is maximally entangled
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with a qubit in the receiver’s possession, then dense coding increases the maximum rate

to two bits per qubit. We discuss briefly the dense coding for qubits method as below.

If the sender (Alice) and receiver (Bob) share a maximally entangled state |Φ+〉 =
1√
2
(|0〉|0〉+ |1〉|1〉) then Alice may encode two bits of information into the shared state

by using one of four unitary operations corresponding to the different two bit strings.

The operations consist of the identity (doing nothing), a bit flip σX (where |0〉 → |1〉
and |1〉 → |0〉), a phase flip σZ (where |0〉 → |0〉 and |1〉 → −|1〉), or a combination of

both giev effectively by σY . After encoding, Alice and Bob share one of the states

|00〉 → (I ⊗ I)|Φ+〉 = |Φ+〉,
|01〉 → (σX ⊗ I)|Φ+〉 =

√
1
2
(|1〉|0〉+ |0〉|1〉) = |Ψ+〉,

|10〉 → (σY ⊗ I)|Φ+〉 = i
√

1
2
(|1〉|0〉 − |0〉|1〉) = |Ψ−〉,

|11〉 → (σZ ⊗ I)|Φ+〉 =
√

1
2
(|0〉|0〉 − |1〉|1〉) = |Φ−〉.

These resultant shared states are orthogonal, and if Alice sends her state to Bob, he can

undertake an orthogonal measurement to determine which of the four operators Alice

used, and hence determine what the original two bits of Alice’s message are.

The previous result is possible because the two parties share initially an entangled

state. Unfortunately, in real world applications of quantum computation, one generally

has imperfect knowledge and noisy quantum operations, therefore the resulting shared

quantum states are usually mixed and non-maximally entangled states and described in

terms of density matrices. Therefore, it is interesting to study coding protocols for Alice

to send classical information to Bob, directly acting on copies of a shared mixed state

ρAB. We describe the protocol of dense coding with CPTP map as follows. Alice and

Bob share a mixed state ρAB. The protocol to be optimized is the following.

(1). Alice performs a local CPTP map Λi with a priori probability pi on her part

of ρAB. She therefore transforms ρAB into the ensemble {(pi, ρABi)}, with ρABi =

(Λi ⊗ I)[ρAB].

(2). Alice sends her part of the ensemble state to Bob.

(3). Bob, having at disposal the ensemble {(pi, ρABi)}, extracts the maximal possible

information about the index i.

Each letter in an alphabet is associated to a completely positive trace preserving TPCP

map.
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As stated in the paper [41], the quantum advantage of dense coding as stated above

shares a monogamy relation with the entanglement of purification. As a result, any

results that can be obtained from entanglement of purification may be used to obtain

results for the quantum advantage of dense coding. We exploit this monogamy relation

to reveal some useful and important properties of quantum advantage of dense coding.

These results are mentioned in the next section in more details.

Mathematically, the quantum advantage of dense coding of the above scheme for a

quantum state ρAB is defined in terms of the coherent information as

∆(A〉B) = S(B)− infΛAS[(ΛA ⊗ IB)ρAB] = supΛAI
′(A〉B), (2.13)

where the infimum or supremum is performed over all the maps ΛA acting on the state

ρAB and I ′(A〉B) = S(B) − S(AB) is the coherent information of ρAB. There, it was

proved that the quantum advantage of dense coding is a non-negative quantity. Again,

a quantum state is said to be dense codeable if the above quantity ∆(A〉B) is strictly

positive.

It was shown in the paper by Horodecki [41] that it suffices to consider only the extremal

TPCP maps in evaluating the infimum or supremum for the above quantity, owing to the

concavity of the von-Neumann entropy. It was also shown that the quantum advantage

of dense coding may be non-additive, though not proved definitely. Apart from the

aforementioned properties, the quantum advantage of dense coding was shown to obey

a monogamy relation with the entanglement of purification as

S(B) ≥ ∆(A〉B) + Ep(B : C), (2.14)

for any tripartite state ρABC , with equality for pure tripartite states [41]. This monogamy

inequality in particular is an useful inequality and it will help us to derive various of the

quantum advantage of dense coding.

2.1.8 Quantum Correlations

The states in quantum world consisting of more than one parties have correlations be-

tween their different parties which have both the classical as well as the quantum ori-

gin. Therefore, the quantum systems can be correlated in non-classical ways and the
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existence of nonclassical correlations in a quantum system can be seen as a proof that

subsystems of the composite quantum system are genuinely quantum.

2.1.8.1 Bipartite entanglement

Let H = HA ⊗HB be a finite dimensional Hilbert space. Then, HA and HB will gen-

erally have different dimensions.IA denotes the identity in B(HA), the set of bounded

linear operators acting on HA, while IB is the identity linear map acting on HB. A

distinction between elements in B(H) and matrices is neglected, though it is always

pointed out when a particular basis is chosen. The term positive operator is used ev-

erywhere to refer to positive semi-definite operators and thus not just strictly positive.

First, an entangled state is defined as follows:

Definition:

A quantum state represented by a density operator ρ acting on HA ⊗ HB is called

separable if it can be written as a convex combination ρ =
∑

i piρAi⊗ρBi, where ρA/Bi

acts on HA/B,
∑

i pi = 1 and pi > 0. If this is not possible, the state is inseparable or

entangled.

The quantum entanglement in bipartite pure states can be described completely by the

use of the Schmidt decomposition. An example of the above is the entanglement entropy

or the von-Neumann entropy [1]. One can step from pure state entanglement measures

to mixed ones by the use of convex roof extension [1]. A well-known example of this is

the entanglement of formation [1], which is the extension of the entanglement entropy.

2.1.8.2 Genuine multipartite entanglement

In the case of systems composed of n > 2 subsystems the classification and varities

of entangled states is much richer than in the bipartite case. Indeed, in multipartite

entanglement apart from fully separable states and fully entangled states, there also

exists the notion of partially separable states. In particular, one calls a state genuinely

multipartite entangled when it is not separable across any bipartition, in contrast to the

partially separable states.

Multipartite entanglement is much more complicated than the entanglement of systems

consisting of two subsystems due to some various problems such as the non-existence
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of the Schmidt decomposition in the multipartite case, several types of separability and

entanglement in the multipartite case and non-existence of maximally entangled state

on some multipartite systems. Another striking property is that there exist n-particle

states which contain n-partite entanglement, but are separable if at least one party is

traced out. For example, cat states have such a property. In multipartite entanglement,

interesting property of entanglement appears - the monogamy of entanglement. While

bipartite entanglement is already understood quite well, there are many open questions

in the field of multipartite entanglement.

2.1.8.3 Measures of Entanglement

Entanglement can be thought of as a resource for various tasks. It is natural to ask

how good a given state is to perform those tasks in terms of its entanglement content.

Therefore, quantification of entanglement seems to be very crucial for trying to answer

such questions. Quantification of entanglement is done by measures of entanglement.

Specifically, a measure of entanglement is a function E from states to real numbers

which satisfies some specific postulates, as discussed below.

Postulates for measures of entanglement

In order to quantify entanglement, it should be noted first that the quantum operations

that may be physically performed are from the LOCC (Local operations and classical

communications) class. Quantum correlations including entanglement are those corre-

lations which cannot be created by LOCC. There are some tasks, for example, quantum

teleportation or superdense coding, which cannot be achieved only by LOCC opera-

tions, they need entanglement. Therefore, entanglement can be understood as a resource

for performing these kind of nonclassical tasks.

• Monotocity under LOCC:

Entanglement cannot increase under local operations and classical communica-

tion. This postulate has some consequences. Firstly, it implies that local uni-

tary operators do not change entanglement, as if ρ1, ρ2 are local unitarily equiv-

alent, they may be prepared one from another by LOCC, so E(ρ1) ≥ E(ρ2) and
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E(ρ2) ≥ E(ρ1), so E(ρ1) = E(ρ2). Another consequence of this postulate is

that entanglement is minimum on separable states. Therefore, it is natural to set

entanglement of separable (unentangled) states to zero. This is the convention

that ones uses in the field of quantum information and computation.

• Vanishes on separable states:

ρ is separable implies E(ρ) = 0.

The first two postulates together imply that E(ρ) ≥ 0 for all ρ.

In the bipartite case, where maximally entangled states exist, it is natural to normalize

the amount of entanglement content of quantum states. Let |Ψd〉+ be defined as |Ψd〉+ =√
1
d
(|00...0〉...+ |11...1〉+ ...|dd...d〉). Then, for this state we have the following

• E(|Ψd〉+) = log2d

• For any bipartite pure state, the measure of entanglement on should be equal to

the entropy of entanglement.

Sometimes some additional properties may be required, as they may be useful and are

quite natural. However, it is not always easy to satisfy all of them, so they are taken

as optional, i.e., there are some measures which do not satisfy all of these properties

simultaneously. These properties are listed as below:

• Convexity:

E(
∑
i

piρi) ≤
∑
i

piE(ρi) (2.15)

• Additivity:

E(ρ⊗n) = nE(ρ) (2.16)

• Strong additivity:

E(ρ⊗ σ) = E(ρ) + E(σ) (2.17)

• Asymptotic continuity for pure states:

E(|Φ〉n)− E(|Ψ〉n)

1 + log(dim(Hn))
→ 0 (2.18)

whenever, one has Tr(||Φ〉n〈Φ|n − |Ψ〉n〈Ψ|n||) between two sequence of states

|Φ〉n〈Φ|n and |Ψ〉n〈Ψ|n on sequence of Hilbert space H ⊗ H tends to zero as

n→ 0.
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2.1.8.4 Bipartite pure states

The only simple case to define a measure of entanglement is that of bipartite pure states.

That measure of entanglement is based on von Neumann entropy of reduced states and

is also called the entanglement entropy E(ρ) := tr(ρAlog2ρA) = tr(ρBlog2ρB), where

ρA(B) is obtained from ρAB by tracing out the subsystem B(A). The equality between

von Neumann entropies of ρA and ρB is a simple consequence of the Schmidt decom-

position.

2.1.8.5 Bipartite mixed states

Entropy of entanglement is not a proper measure of entanglement for mixed bipartite

states. In this section, we will review some measures of entanglement and principles of

constructing them.

Convex roof construction:

Convex roof construction [1] is a method of deriving a measure for mixed states from a

measure on pure states. It is defined in the following way:

Let E1 be a measure of entanglement on pure states. Then E2, the measure of entan-

glement for mixed states is defined as

E2(ρ) = inf{
∑
i

piE1(ρi)|ρ =
∑
i

piρi}, (2.19)

where the infimum is taken over all possible pure state decompositions of ρ as ρ =∑
i piρi, each ρi being a pure state.

2.1.8.6 Generalized geometric measure

The generalized geometric measure (GGM) [52] (cf. [49]) of an N -party pure quantum

state, |ψN〉, is a computable entanglement measure that can quantify genuine multiparty

entanglement. It is defined as an optimized distance of the given state from the set of

all states that are not genuinely multiparty entangled. Mathematically, it is given by

E(|ψN〉) = 1− Λ2
max(|ψN〉), (2.20)
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where Λmax(|ψN〉) = max |〈χ|ψN〉| = maxF (|ψN〉, |χ〉), with the maximization being

performed over all |χ〉 that are not genuinely multiparty entangled. Here F (|ψN〉, |χ〉)
is the fidelity [85] between two pure states |ψN〉 and |χ〉. Additionally, one can show

that the GGM for a pure state |ψN〉, is exactly equal to the square of the minimum trace

distance of |ψN〉 from pure states that are not genuinely multiparty entangled. It can

also be expressed as functions of the minimal Hilbert-Schmidt distances of |ψN〉 from

the same set of states [85].

An equivalent form of the above equation is

E(|ψn〉) = 1−max{λ2
I:L|I ∪ L = {A1, . . . , AN}, I ∩ L = ∅}, (2.21)

where λI:L is the maximal Schmidt coefficient in the bipartite split I : L of |ψN〉 [52].

Let us enumerate some properties of the GGM which establish it as a bona fide measure

of genuine multiparty entanglement [52]. E(|ψN〉) ≥ 0, for all |ψN〉, E(|ψN〉) = 0 iff

|ψN〉 is not genuinely multiparty entangled, and E(|ψN〉) is non-increasing under local

quantum operations at the N parties and classical communication between them.

We can now define the GGM of a general mixed quantum state, in terms of the convex

roof construction. For an arbitrary N -party mixed state, ρN , the GGM can be defined

as

G(ρN) = min
{pi,|ψiN 〉}

∑
i

piE(|ψiN〉), (2.22)

where the minimization is over all pure state decompositions of ρN i.e., ρN =
∑

i pi|ψiN〉〈ψiN |.
It is difficult to find the optimal decomposition and the computation of GGM is in gen-

eral impossible even for moderate-sized systems.

2.2 Entanglement measures under symmetry

The evaluation of entanglement measures can be simplified when the quantum states

possess some symmetry properties. A quantum state is said to possess some symme-

try if it remains invariant under some kind of transformation. In the paper by [60], the

authors have explored the technique of using symmetry to simplify the calculation of

the measures of entanglement. Therefore, in this section, we explore this idea, namely

looking at sets of states which are invariant under a group of local unitaries. The authors
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in [60] note that this idea itself is not new, and goes back to the first studies of entangle-

ment [86, 87]. Symmetry has also been used in this way to study tripartite entanglement

[88, 89]. Similarly, a paper by Rains [90] discusses distillible entanglement under sym-

metry. Now we move onto the details of exploiting the symmetry for the evaluation of

an entanglement measure.

2.2.0.1 Local symmetry groups

Two states ρ, ρ′ are regarded as equally entangled if they differ only by a choice of basis

in H1 and H2 or, equivalently, if there are unitary operators Ui acting on Hi such that

ρ′ = (U1 ⊗ U2)ρ(U1 ⊗ U2)†. If in this equation ρ′ = ρ, we call U = (U1 ⊗ U2) a

(local) symmetry of the entangled state ρ. Clearly, the set of symmetries forms a closed

group of unitary operators on H1 ⊗ H2. Now one follows a method opposite to the

stated above. Specifically, one fixes the symmetry group and studies the set of states

left invariant by it. Therefore, from now on, let G be a closed group of unitary operators

of the form U = (U1⊗ U2). As a closed subgroup of the unitary group, G is compact,

hence carries a unique measure which is normalized and invariant under right and left

group translation. Integrals with respect to this Haar measure are denoted by
∫
dU , and

are also considered as averages over the group. In particular, when G is a finite group,

we have
∫
dUf(U) = |G|

∑
U∈G f(U). An important operator used in the application

of this theory is the operator P(A) =
∫
dUUAU †, for any operatorA onH1⊗H2, which

is sometimes referred to as the twirl operation. It is a completely positive operator, and

is doubly stochastic since it takes density operators to density operators and the identity

operator to itself. Using the invariance of the Haar measure it is immediately clear that

PA = A is equivalent to [U,A] = 0 for all U ∈ G. The set of all A with this property is

called the commutant of G. This is denoted by G′. Computing the commutant is always

the first step in applying this theory. However, the main focus of the theory proposed

by authors in [60] lies in the G-invariant density operators ρ with P (ρ) = ρ. These are

precisely the states that have the symmetry that we will use to simplify the evaluation

of the entanglement measures.

2.2.0.2 Computation of an entanglement measure using symmetry argument

The method for computing the entanglement measure can be explained in the setting of

the convex hull construction.
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For this purpose we first define the entanglement measure for mixed states using the

convex hull construction method. Therefore, let K be a compact convex set, let M ⊂
K be an arbitrary subset, and let f : M → R ∪ +∞. We then define a function

cof :→ R ∪+∞ by

cof(x) = inf{λi,si}{
∑
i

λif(si)|
∑
i

λisi = x} (2.23)

where the infimum is over all convex combinations with λi ≥ 0,
∑

i λi = 1, and by

convention the infimum over the empty set is +∞. Thus along the line of this definition

of convex hull, the entanglement measure defined for a mixed state by the convex hull

construction is just given by the following.

E(ρ) = coE(ρ). (2.24)

With the above definition in hand, we now proceed to the method of applying sym-

metry to simplify the evaluation of the above convex hull construction to evaluate the

entanglement measure E for a mixed state ρ.

So in an addition to a subset M ∈ K of a compact convex set and a function f : M →
R∪∞, one considers a compact group G of symmetries acting onK by transformations

αU : K → K, which preserve convex combinations. It is also assumed that αUM ⊂M ,

and f(αUs) = f(s) for s ∈ M . All of this assumption is readily verified for αU(A) =

UAU † and f the entanglement defined on the subset M ⊂ K of pure bipartite states.

Now, the task at hand is to compute cof(x) for all G-invariant x ∈ K, i.e., those with

αU(x) = x for all U ∈ G.

Since the integral with respect to the Haar measure is itself a convex combination, one

can define, as before, the projection P : K → K by Px =
∫
dUαU(x). The set of

projected points Pxwill be denoted by PK. Usually, this is of a much lower dimensional

object than K, so one will try to reduce the computation of the infimum, which involves

a variation over all convex decompositions of x in the high dimensional set K to a

computation, which can be done entirely in PK. To this end, one can define the function

ε : PK → R ∪+∞ by

ε(x) = inf(f(s)|s ∈M,Ps = x). (2.25)
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, again with the convention that the infimum over the empty set is +∞. Then the main

result as stated in [60] is that, for

x ∈ PK, cof(x) = coε(x) (2.26)

. But the convex hull on the right is now to be computed in the convex subset PK. The

authors in [60] thus arrive at the following recipe for computing the entanglement of

formation of G-invariant states:

• Find, for every state ρ ∈ PS, the set Mρ of pure states σ such that Pσ = ρ.

• Compute

ε(ρ) := inf(E(σ), σ ∈Mρ). (2.27)

• For later use try to get a good understanding of the pure states achieving this

minimum.

• Compute the convex hull of the above function given by Eq.(2.27).

The remainder of this subsection is now devoted to the proof of the Eq.(2.26). This is

done by first showing that both sides are equal to

Z = inf{
∑
i

λif(si)|si ∈M,
∑
i

λiPsi = x}. (2.28)

Indeed, the only difference between Eq.(2.28) and Eq.(2.23) is that in this equation a

weaker condition is demanded on the si. Hence more si are admissible, and therefore

this infimum is smaller, Z ≤ cof(x). On the other hand, if si satisfying the constraint

for Z are given, inserting the definition of P produces a convex combination giving x,

namely the combination of the states αU(si), labeled by the pair (i, U), and weighted

with
∑

i λi
∫
dU . This convex combination is again admissible for the infimum defin-

ing cof , and gives the value
∑

i λi
∫
dUf(αU(si)) =

∑
i λi
∫
dUf(si) =

∑
i λif(si),

where the authors in [60] have used the invariance property of f and the normalization

of the Haar measure. Hence all numbers arising in the infimum defined in Eq.(2.28) also

appear in the infimum in Eq.(2.23), which proves that Z ≥ cof(x), hence Z = cof(x).

Now, in order to prove the equality Z = coε(x) just note that in the infimum in Eq.(2.28)

the constraint is only in terms of Psi, whereas the functional to be minimized involves
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f(si). Therefore one can compute the infimum given by Eq.(2.28) in stages, by first

fixing all Psi and minimizing each f(si) under this constraint, which amounts to re-

placing f by ε, and then varying over the Psi, which is the infimum defining coε. Hence

coε(x) = Z = cof(x).

Therefore, from the above theory we now have the technique to exploit the symmetry

properties of quantum states to simplify the calculation of the entanglement measures

for mixed states.



36



Chapter 3

Main results I: Entanglement of
purification

The entanglement of purification is a measure of total correlation in a quantum state

defined in the entanglement separability paradigm. As discussed in the previous section,

it lacks a closed form for analytical calculation and involves an optimization over a

Hilbert space of large dimension. Therefore, many of its properties have remained

unexplored. In this chapter we prove some of its important properties as well as give

some improved lower bounds as well as exact values for some classes of states. We also

shed light on the open problem of the additivity of entanglement of purification.

3.0.1 Entanglement of purification under discarding quantum sys-
tems

The entanglement of purification can be rewritten in terms of the quantum mutual infor-

mation. For the pure state |Ψ〉ABA′B′ , which is the optimally purified state for the mixed

state ρAB for evaluating the entanglement of purification, the quantum mutual informa-

tion between parties AA′ and BB′ is given by I(AA′ : BB′) = S(AA′) + S(BB′) −
S(AA′BB′). Since |Ψ〉ABA′B′ is a pure state, we have

Ep(A : B) =
I(AA′ : BB′)

2
.

Therefore, the entanglement of purification is actually half of the optimised quantum

mutual information of the purified version of the mixed density matrix. The above

37
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equations are then used to prove a better lower bound for the entanglement of purifica-

tion. Before that, we prove an important property of entanglement of purification, an

attribute of a measure of total correlation.

Proposition 1: The entanglement of purification never increases upon discarding of

quantum system, i.e.,

Ep(A : BC) ≥ Ep(A : B). (3.1)

Proof : If ρABC is pure, then Ep(A : BC) = S(A). Also, we know that Ep(A : B) ≤
S(A). This leads to Ep(A : BC) ≥ Ep(A : B). In case of mixed states ρABC , we note

that the set of all the pure states for calculating Ep(A : BC) is a subset of the set of all

pure states taken for calculating Ep(A : B). This clearly implies that

min[I(AA′ : BB′)] ≤ min[I(AA′ : BC(BC)′)]. (3.2)

From here we thus conclude that Ep(A : BC) ≥ Ep(A : B). Thus, like the quantum

mutual information, the entanglement of purification also never increases upon discard-

ing of quantum systems. This is a desired property that the total correlation should not

increase upon discarding of quantum system. It is easily seen that the equality condition

holds when ρAB is supported in the symmetric or antisymmetric subspace.

3.0.2 Lower bounds for entanglement of purification

Here, we state some simple inequalities for entanglement of purification which will be

later used for deriving the monogamy and polygamy conditions for it. Let |Ψ〉ABA′B′
be the optimal pure state for evaluating the entanglement of purification of ρAB. Using

the sub-additivity of conditional entropy [85] for a composite quantum system of four

parties, i.e., S(AB|A′B′) ≤ S(A|A′) + S(B|B′), we get S(ABA′B′) − S(AB) ≤
S(AA′) − S(A) + S(BB′) − S(B). But we know Ep(A : B) = S(AA′) = S(BB′)

and S(ABA′B′) = 0, since according to the definition of entanglement of purification

ρABA′B′ is a pure state. Using this in the above inequality, we get 2Ep(A : B) ≥ I(A :

B). Therefore, we have the following lower bound on Ep(A : B)

Ep(A : B) ≥ I(A : B)

2
. (3.3)
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Extending this to the asymptotic limit, one easily obtains E∞p (A : B) = ELOq(A :

B) ≥ I(A:B)
2

, by using the fact that the quantum mutual information is additive on tensor

product of quantum states. The above lower bound was known for the entanglement of

purification, but only in the asymptotic limit, and it was obtained from an operational

point of view in [34]. Here we obtain this bound for a single copy of ρAB, and easily

extend this to the asymptotic limit as ELOq(A : B) ≥ I(A:B)
2

and get back the result

given in Ref.[34]. Also, the lower bound given in [34] for a single copy of ρAB isEf (A :

B). However, we know that for some states one has Ef (A : B) ≤ I(A:B)
2

. Therefore,

for these states we get a better lower bound for a single copy of ρAB. Now, we use

the equation for entanglement of purification in terms of quantum mutual information

to derive a lower bound for tripartite mixed states which is different from half of its

quantum mutual information.

Proposition 2: For any pure or mixed tripartite quantum state, it holds that

Ep(A : BC) ≥ S(A)− 1

2
[S(A|B) + S(A|C)]. (3.4)

Proof : Let |Ψ〉ABCA′D′ be the optimal pure state for evaluating the entanglement of

purification of ρABC . Therefore, we have Ep(A : BC) = I(AA′:BCD′)
2

. Note that the

quantum mutual information of pure states satisfy the monogamy equality condition.

Therefore, Ep(A : BC) = I(AA′:B)
2

+ I(AA′:CD′)
2

. Again, the mutual information is

non-increasing upon discarding of quantum systems, hence we have

Ep(A : BC) ≥ I(A : B)

2
+
I(A : C)

2
. (3.5)

This implies Ep(A : BC) ≥ S(A) − (S(A|B)
2

+ S(A|C)
2

). In general, from the previous

literature we know that Ep(A : BC) ≥ I(A:BC)
2

. However, for the states with I(A :

BC) ≤ I(A : B) + I(A : C), i.e, with the negative interaction information, we then

have Ep(A : BC) ≥ I(A:B)
2

+ I(A:C)
2
≥ I(A:BC)

2
. Therefore, for these class of states, the

entanglement of purification is upper and lower bounded as S(A) ≥ Ep(A : BC) ≥
S(A)− (S(A|B)

2
+ S(A|C)

2
). Extending this to the asymptotic limit we obtain

ELOq(A : BC) ≥ I(A : B)

2
+
I(A : C)

2
, (3.6)
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using the fact that quantum mutual information is additive on tensor product of density

matrices. We note that the tripartite quantum states with negative interaction informa-

tion are always polygamous for the quantum mutual information. Therefore, for these

states, the above bound is always greater than the previous bound I(A:BC)
2

. This may

give a better lower bound than I(A:B)
2

or the regularised classical mutual information

[34] for states consisting of quantum as well as classical correlations, depending on the

negativity of interaction information. One may extend this to the case of n parties as

well, such that for a n partite density matrices ρA1A2...An , we get

Ep(A1 : A2A3..An) ≥ max[
(I(A1 : AiAj..)

2
+

(I(A1 : AkAl..)

2
] (3.7)

etc. where one takes all possible combinations of bipartitions betweenA1A2...An (keep-

ing the node A1 same for the reduced density matrices) to achieve the maximum value

of the lower bound. Therefore, the quantum states with negative interaction informa-

tion across any bipartition will have either the regularized classical mutual information

or this as the better lower bound than half of its quantum mutual information.

Corollary: The entanglement of purification for the class of tripartite mixed states sat-

isfying the sub-additivity equality condition is given by S(A).

Proof : From the previous paragraph we see that when S(A|B) + S(A|C) = 0, we get

Ep(A : BC) ≥ S(A). But again, from the upper bound of entanglement of purification

we have Ep(A : BC) ≤ S(A). Therefore combining the above two equations, one ob-

tains Ep(A : B) = S(A) for the states which satisfy the strong sub-additivity equality

condition. Also, we know that mixtures of the tripartite mixed states each satisfying

the strong sub-additivity equality condition and satisfying an additional constraint of

biorthogonality if the third party is traced out, satisfy the strong sub-additivity equality,

and hence their entanglement of purification is also S(A). Hence the proof. The struc-

ture of the states obeying the sub-additivity equality condition has been precisely given

in Ref.[91]. There it was shown that every separable state can be extended to a state

that obeys the sub-additivity equality condition. Therefore, from these observations we

can comment that all separable states can be extended to a tripartite mixed state which

has the maximum amount of total correlation as S(A). From the viewpoint of the struc-

ture of the states [91], the structure states satisfying the SSA equality has been given

as ρABC =
⊕

j qjρAbLj ⊗ ρbRj C , with states ρAbLj on Hilbert space HA ⊗ HbLj
and ρbRj C
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on HbRj
⊗ HC with probability distribution qj . Thus, all states of this form and all ex-

tensions of this class of states have the maximal amount of total correlation given by

the entanglement of purification as S(A). Now we discuss the lower bound and exact

values with some specific examples as given below.

3.0.2.1 Lower bounds for entanglement of purification for bipartite states

One can use the polygamy of the quantum mutual information to lower bound the entan-

glement of purification in higher dimensional bipartite states. If a sub-party is of higher

dimension, and if the quantum mutual information is polygamous for the lower dimen-

sional subparts obtained by breaking the higher dimensional subparty, then it gives a

better lower bound for the entanglement of purification than just half of the quantum

mutual information of the state ρAB.

Suppose for a 2n dimensional party B in ρAB, we break it down into two lower dimen-

sional subparties B1 and B2 [92]. Then, from Eq(3.5) we have

Ep(A : B) ≥ 1

2
[I(A : B1) + I(A : B2)]. (3.8)

For negative interaction information between B1 and B2, i.e., S(AB1) + S(AB2) +

S(B1B2)− S(A)− S(B1)− S(B2)− S(AB1B2) < 0, the R.H.S is greater than I(A:B)
2

[21]. Thus it gives a better lower bound. We may say that this better lower bound arises

as a result of a second order polygamy relation of quantum mutual information. One

can easily extend to the asymptotic limit as well, thus we obtain the lower bound

ELOq(A : B) ≥ 1

2
[I(A : B1) + I(A : B2)] >

I(A : B)

2
. (3.9)

For these states ELOq(A : B) quantifies more correlation than I(A:B)
2

as given in the

original paper. For these states, one now has to compare the quantity 1
2
[I(A : B1)+I(A :

B2)] with the classical mutual information for obtaining a better lower bound. The

above equation can also be written as

Ep(A : B) ≥ S(A)− 1

2
[S(A|B1) + S(A|B2)].

From this equation we can say that for the 2n dimensional party B in the bipartite state

ρAB, if the internal structure of B is such that across any subpartition inside it, the sub-

additivity equality condition is satisfied then the entanglement of purification of that
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state is S(A). Therefore, with the aid of the new lower bound as half of the summation

of the quantum mutual information of the subparties, we are able to conclude about

the new exact values of entanglement of purification for these classes of the higher

dimensional bipartite states.

3.0.2.2 Lower bounds for entanglement of purification for tripartite states

Among other examples, for the tripartite states of the form

ρABC = p|W 〉〈W |+ (1− p)[a|000〉〈000|+ (1− a)|111〉〈111|] (3.10)

, where |W 〉 = 1√
3
[|100〉 + |010〉 + |001〉] is the |W 〉 state, a better lower bound is

provided by 1
2
[I(A : B) + I(A : C)] ≥ 1

2
I(A : BC), since the quantum mutual

information is polygamous for these classes of states. This holds even for the regularised

version of the entanglement of purification, i.e., ELOq(A : BC) ≥ 1
2
[I(A : B) + I(A :

C)], owing to the additivity of the quantum mutual information on tensor product of

density matrices. The difference ∆LB between the two lower bounds equal to 1
2
[I(A :

B)+I(A : C)−I(A : BC)] is plotted in Fig 3.1, which shows that it is always positive.

Again we may consider the state

ρABC = p|W 〉〈W |+ (1− p)
8

I3 (3.11)

and the difference between the lower bounds are plotted in Fig 3.2.

3.0.3 Exact values of entanglement of purification

First we state the value of entanglement of purification for the following class of bipar-

tite mixed states. The entanglement of purification of the states satisfying the Araki-

Lieb equality condition is S(A). We know S(A) ≥ Ep(A : B) ≥ 1
2
I(A : B). But

1
2
I(A : B) = S(A) + 1

2
[S(B)− S(A)− S(AB)]. The states satisfying the Araki-Lieb

equality condition have S(B) − S(A) = S(AB). Then, we have S(A) ≥ Ep(A :

B) ≥ S(A). Therefore, Ep(A : B) = S(A) for these states. The structure of states

satisfying the Araki-Lieb equality condition is given in Ref.[93]. There, it was shown

that the states satisfy the Araki-Lieb equality condition if and only if the following con-

ditions are satisfied. First, HA can be factorized as HL ⊗ HR and secondly ρAB =

ρL ⊗ |ΨRB〉〈ΨRB|, where |ΨRB〉 ∈ HR ⊗HB. The structure of such states that satisfy
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the Araki-Lieb equality condition is therefore of the form ρAB = ρL ⊗ |ΨRB〉〈ΨRB|.
Therefore, the value of entanglement of purification for these states is S(A).

For the case of tripartite states, the entanglement of purification of states of the form

ρABC = p|GHZ〉〈GHZ|+ + (1− p)[b|000〉〈000|+ (1− b)|111〉〈111|] (3.12)

is S(A) for all values of {p, a, b} ∈ [0, 1], where |GHZ〉+ =
√
a|000〉+

√
(1− a)|111〉

is the generalized GHZ state [64]. This holds for n party as well, i.e., for the following

state

ρABC = p|GHZn〉〈GHZn|+ + (1− p)[b|0〉〈0|⊗n + (1− b)|1〉〈1|⊗n] (3.13)

where |GHZn〉+ =
√
a|0〉⊗n+

√
(1− a)|1〉⊗n.

Proof : The proof is as follows. We know that for tripartite states Ep(A : BC) ≥
1
2
[I(A : B)+I(A : C)]. For the state given above, I(A : B)+I(A : C) = 2I(A : B) =

2[S(A) + S(B)− S(AB)] = 2S(A). The first equality follows owing to the symmetry

of the state between parties B and C. The third equality follows from the fact that the

nonzero eigenvalues of the density matrices ρAB and ρB are exactly equal. Therefore,

for the given state S(A) ≥ Ep(A : BC) ≥ S(A). Thus, Ep(A : BC) = S(A). Let us

consider another example. The tripartite mixed state as a mixture of the |GHZ〉+ and

|GHZ〉−, i.e., if ρABC = p|GHZ〉〈GHZ|+ + (1− p)|GHZ〉〈GHZ|− then it also has

Ep(A : B) = S(A) according to our previous argument. Here, the states are generalized

|GHZ〉 states. And similar to the above, this is also true for the arbitrary mixture of n

partite generalized |GHZ〉 states.

3.0.4 Monogamy and polygamy relations for entanglement of pu-
rification

As we have discussed in the last chapters, we explore the monogamy or polygamy rela-

tions of entanglement of purification hereafter for the tripartite as well as the multipartite

case.
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FIGURE 3.1: Difference between lower bounds for state p|W 〉〈W | + (1 −
p)[a|000〉〈000| + (1 − a)|111〉〈111|]. The difference between the new lower bound

and the previous one is always positive in this case.

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

p

DLB

FIGURE 3.2: Difference between lower bounds for state ρ = p|W 〉〈W | + (1−p)
8 I3.

The difference between the new and the old lower bound is always positive here. The
difference in lower bounds is given by the amount of polygamy of quantum mutual

information.
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3.0.4.1 Monogamy and polygamy relations for entanglement of purification for
tripartite pure states

Proposition : The entanglement of purification is polygamous for a tripartite pure state

ρABC :

Ep(A : B) + Ep(A : C) ≥ Ep(A : BC). (3.14)

Proof : From Eq(3.3) we know that Ep(A : B) ≥ I(A:B)
2

. Therefore, we have

Ep(A : B) + Ep(A : C) ≥ I(A : B)

2
+
I(A : C)

2
. (3.15)

In case of the tripartite pure state ρABC the right hand side of the inequality just gives

S(A). This implies that

Ep(A : B) + Ep(A : C) ≥ S(A).

Since for pure tripartite state ρABC , Ep(A : BC) = S(A), we obtain:

Ep(A : B) + Ep(A : C) ≥ Ep(A : BC).

This shows the polygamous nature of the entanglement of purification for pure tripar-

tite state ρABC . One can directly see that the same relation holds for the regularised

entanglement of purification: ELOq(A : B) + ELOq(A : C) ≥ ELOq(A : BC), i.e.,

the regularised entanglement of purification is also a polygamous quantity. This proves

that entanglement of purification for any tripartite pure state is in general a polygamous

quantity. An implication of this is that the sum of the asymptotic entanglement cost of

preparing ρAB and ρAC will not be restricted by the asymptotic cost of preparing ρA:BC .

The polygamy inequality above shows that there can be states satisfying the equal-

ity condition in the inequality. To analyse the states that may satisfy the equality

condition we find a following relation to the monogamy of entanglement of forma-

tion for those states. Given a pure state ρABC , if entanglement of formation violates

monogamy, then entanglement of purification will violate monogamy equality for the

same. However the converse is not true. The proof is as follows. If entanglement of

formation Ef (A : BC) violates monogamy for some pure state ρABC , then we have

Ef (A : BC) < Ef (A : B) + Ef (A : C). But for a pure state ρABC , we know that

Ef (A : BC) = Ep(A : BC). Therefore, replacing this in the above equation we get

Ep(A : BC) < Ef (A : B) + Ef (A : C). Also, it is known that for any state ρAB, we
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have Ef (A : B) ≤ Ep(A : B). This implies Ep(A : BC) < Ep(A : B) + Ep(A : C)

which shows that the entanglement of purification also violates monogamy. Hence

the proof. However the vice versa may not be true. We know that for pure states

the monogamy of entanglement of formation is equivalent to the monogamy of quan-

tum discord [21]. Therefore, we conclude that the polygamy of quantum discord will

also imply the polygamy of entanglement of purification likewise. In other words,

monogamy of entanglement of formation or quantum discord is a necessary condition

for the tripartite state ρABC to satisfy the monogamy equality condition for entangle-

ment of purification. Now let us try to compare the monogamy inequality of the en-

tanglement of formation with the entanglement of purification for mixed tripartite state

ρABC . Before that, we define a quantity called correlation of classical and quantum

origin Ecq(A : B) of the state ρAB as

Ecq(A : B) = Ep(A : B)− Ef (A : B).

This quantity is positive for mixed states and vanishes for pure bipartite states. Intu-

itively, this may contain some classical correlation and some amount of quantum cor-

relation beyond entanglement that is captured by the entanglement of formation. From

the definition it is clear that for a given mixed state ρABC , if Ecq(A : B) and Ef (A : B)

are monogamous or polygamous, then the entanglement of purification will be monog-

amous or polygamous correspondingly. One can also show that for three-qubit states if

the the correlation of classical and quantum origin obeys monogamy and entanglement

of formation satisfies [94]

Ef (A : B) + Ef (A : C) ≤ 1.18

then the entanglement of purification will obey a weak monogamy relation as given by

Ep(A : B) + Ep(A : C) ≤ Ep(A : BC) + 1.18. (3.16)

3.0.4.2 Monogamy and polygamy relations for entanglement of purification for
tripartite mixed states

The entanglement of purification Ep(A : BC) of a mixed tripartite state ρABC is
I(AA′:BC(BC)′)

2
, where the optimal pure state of ρABC is |ΨABCA′(BC)′〉. Similarly, the

entanglement of purification Ep(A : B) of ρAB is I(AA′′:BB′′)
2

, where the optimal pure

state for ρAB is |ΦABA′′B′′〉, and the entanglement of purification Ep(A : C) of ρAC
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is I(AA′′′:CC′′′)
2

, where the optimal pure state for ρAC is |ξACA′′′C′′′〉. Therefore, the

monogamy inequality for a mixed tripartite state ρABC is

I(AA′ : BC(BC)′) ≥ I(AA′′ : BB′′) + I(AA′′′ : CC ′′′). (3.17)

But owing to the largely difficult optimization needed, we may not be able to check

this equation directly. Instead, we analyze some specific cases of mixed states that are

polygamous for entanglement of purification as follows.

At first we note that the tripartite mixed states satisfying the strong sub-additivity equal-

ity condition are polygamous for entanglement of purification. To see this, let |ΨABA′B′〉
and |ΨACA′′C′′〉 be the optimal pure states for ρAB and ρAC respectively. Then Ep(A :

B) + Ep(A : C) ≥ 1
2
[I(A : B) + I(A : C) + I(AA′ : B′) + I(AA′′ : C ′′)]. But

I(A : B) + I(A : C) = 2S(A)− (S(A|B) + S(A|C)), and if the strong sub-additivity

equality condition is satisfied then we have S(A|B) +S(A|C) = 0. Putting these in the

equation, we get Ep(A : B) + Ep(A : C) ≥ S(A) + 1
2
[I(AA′ : B′) + I(AA′′ : C ′′)].

But the last two terms on the R.H.S are positive in general, as the quantum mutual in-

formation is always positive and vanishes only for the maximally mixed state. Also,

we know Ep(A : BC) = S(A). Thus, combining these inequalities together we obtain

Ep(A : B) + Ep(A : C) ≥ Ep(A : BC). Thus, the entanglement of purification is

polygamous for the class of states that satisfy the strong sub-additivity equality. Among

other classes of states, if anyone of the reduced density matrices ρAB, ρAC of a mixed

state ρABC are entirely supported on the symmetric or antisymmetric subspaces, then

the state will violate monogamy of entanglement of purification. This follows from the

result by Winter et al.[18]. The entanglement of purification of such bipartite density

matrices (with the same dimension for both parties) is S(A). But the entanglement of

purification of the tripartite mixed state is also S(A) and in general Ep(A : C) ≥ 0.

Therefore, the polygamy inequality follows directly by combining the above observa-

tions. Also, any tripartite extension of bipartite mixed states that satisfy the Araki-Lieb

equality condition for their von-Neumann entropy is polygamous for entanglement of

purification. We know that the states that satisfy the Araki Lieb equality condition have

Ep(A : B) = S(A)[S(B)]. However, the other reduced density matrix has some non

zero correlation and therefore non-zero entanglement of purification. Thus, in this case

we have Ep(A : B) + Ep(A : C) ≥ S(A) = Ep(A : BC), making entanglement of

purification a polygamous measure of total correlation. Though for pure tripartite states

we could prove the general polygamy inequality, for mixed states it is not clear whether

such general inequality exists or not.
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Next, we discuss the relation to polygamy of quantum mutual information. Suppose

Ep(A : B) + Ep(A : C) = S(B|A) + S(C|A) + I(A : B) + I(A : C). This is

greater than S(BC|A) + I(A : B) + I(A : C) which is again greater than Ep(A :

BC) + I(A : B) + I(A : C) − I(A : BC). From the above equations one can see

that if the mutual information is polygamous, then here the entanglement of purification

becomes polygamous. Again, a sufficient condition for monogamy of Ep is

I(A : BC)

2
≥ Ep(A : B) + Ep(A : C). (3.18)

This implies I(A:BC)
2

≥ I(A:B)
2

+ I(A:C)
2

, which is nothing but I(A : BC) ≥ I(A :

B) + I(A : C), i.e., the monogamy inequality for the quantum mutual information.

This says that the states satisfying this particular sufficient condition for monogamy of

Ep will also satisfy the monogamy inequality of quantum mutual information.

3.0.4.3 Monogamy and polygamy relations for entanglement of purification for
multipartite states

Now we investigate the polygamy of entanglement of purification in case of n partite

matrices. The conditions for the polygamy for mixed states also get translated here as

sufficient conditions for polygamy. To put it in other words, density the n-partite den-

sity matrices, pure or mixed, are polygamous if any one of the reduced density matrices

of the subsystem satisfy the Araki-Lieb equality condition, strong sub-additivity equal-

ity condition or is supported on the symmetric or antisymmetric subspace. Now we

state a simple sufficient condition for the polygamy of entanglement of purification and

construct some examples.

Proposition 3: All the n-partite states, pure or mixed with
∑n

i=1 I(A : Ai) ≥ 2S(A)

are polygamous for entanglement of purification.

Proof : We have
∑n

i=1Ep(A : Ai) ≥ 1
2
[
∑n

i=1 I(A : Ai)]. From this we get

n∑
i=1

Ep(A : Ai) ≥ S(A) +
1

2
[
n∑
i=1

I(A : Ai)]− 2S(A). (3.19)

Thus, we get the condition in the proposition as the sufficient condition for polygamy

of entanglement of purification. A large number of states will satisfy this condition, and
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thus will be polygamous. However, some states will violate this condition, and it will

be inconclusive about the polygamous nature in case of those states.

Using the above relation, we easily see that the n-party generalized |GHZ〉 and the

n-party |W 〉 states are polygamous with respect to the entanglement of purification. We

can explicitly see the proofs as follows. We have the generalized GHZ state as

|GHZ〉 =
√
p|0〉⊗n +

√
1− p|1〉⊗n (3.20)

, where 0 ≤ p ≤ 1 [64]. But we have obtained before that for tripartite pure states,

Ep(A : A1) + Ep(A : A2) ≥ S(A). Thus, it holds true for the tripartite gener-

alized |GHZ〉 states as well. Now for n ≥ 3, we see that all the reduced density

matrices are exactly the same and L.H.S becomes
∑n

i=1Ep(A : Ai). This is nothing

but Ep(A : A1) + Ep(A : A2) +
∑n

i=3Ep(A : Ai). Since each of the two party re-

duced density matrices are exactly the same as the two party reduced density matrices

in the case of tripartite pure state, therefore using the above two equations we obtain∑n
i=1Ep(A : Ai) ≥ S(A) +

∑n
i=3Ep(A : Ai). The last term on R.H.S is always

positive. Therefore we obtain
∑n

i=1Ep(A : Ai) ≥ S(A), rendering the entanglement

of purification polygamous for all n in the case of generalized |GHZ〉 state. This is

expected since every reduced density matrices share only classical correlation with the

other reduced density matrices.

We now consider

|W 〉 =
1√
n

[|10..0〉+ |01..0〉+ ..], (3.21)

where there are n terms within the parenthesis. We show that this state is also polyg-

amous for all values of n. To see this, first we note that all the two party reduced

density matrices ρAAi of this state are exactly same due to the symmetry of the state.

Specifically we have

ρAAi =
1

n
[(n− 2)|00〉〈00|] + 2|Φ+〉〈Φ+|], (3.22)

where |Φ+〉 = 1√
2
[|10〉+ |01〉] is the Bell state. Now we calculate 1

2
[
∑n

i=1 I(A : Ai)] =
n
2
I(A : A1), since all the two party reduced density matrices are same. Evaluating the

eigenvalues in terms of n, we find that S(A) = S(A1) = 2 log2 n − log2(n − 1) and

S(AA1) = 2 log2 n−1− log2(n−2). Putting these values in the equation above, we get
n
2
I(A : A1)−S(A) = n

2
+ n

2
log2(n−2)+(n−1) log2

n
n−1

. This value is always positive
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for all values of n > 2. Thus combining the earlier result of tripartite pure state with

the above finding, we conclude that the entanglement of purification is polygamous for

n party |W 〉 state.

Likewise the case for mixed states, where we state some conditions relating monogamy

of entanglement of purification with that of quantum mutual information, we now state

a proposition connecting the polygamy of quantum mutual information to the polygamy

of entanglement of purification for a pure state of n parties.

Proposition 4: All the n party pure states for which the quantum mutual information is

(n− 1) partite polygamous for at least any one of the (n− 1) party reduced density ma-

trices of the pure state, is n partite polygamous for both the entanglement of purification

as well as the quantum mutual information.

Proof : Note that for n partite pure state, we have

n∑
i=2

Ep(A1 : Ai) ≥
1

2

n∑
i=2

I(A1 : Ai). (3.23)

Now, let us take a reduced density matrix ρA1A2...An−1 to be polygamous for quantum

mutual information, i.e.,
∑n−1

i=2 I(A1 : Ai) ≥ I(A1 : A2...An−1). Then, we have I(A1 :

An)+
∑n−1

i=2 I(A1 : Ai) ≥ I(A1 : An)+I(A1 : A2...An−1). Since the n partite quantum

state we are considering is a pure state, therefore by virtue of monogamy of quantum

mutual information, the R.H.S. of this equation is nothing but I(A1 : A2A3...An). But,

we know for a pure state I(A1 : A2A3...An) = 2S(A1). From here it then follows

that
∑n

i=2Ep(A1 : Ai) ≥ S(A1) and also
∑n

i=2 I(A1 : Ai) ≥ 2S(A1). These two

equations are just the equations of polygamy for the entanglement of purification and

the quantum mutual respectively for a n partite pure state. It is easy to see that one could

take any one of the possible (n− 1) different reduced density matrices possible of the n

partite pure state (keeping the nodeA1 intact for each reduced density matrix) as the one

polygamous for the quantum mutual information and eventually get back the polygamy

equation for both the entanglement of purification and quantum mutual information. As

a specific example of this proposition, we easily see that all the four party pure states

with negative interaction information across any two pair of its bipartite reduced density

matrices, are polygamous for entanglement of purification.
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3.0.5 Sub-additivity of entanglement of purification

Additivity is a desirable property to hold for a given measure of total correlation. Quan-

tum mutual information is an additive measure of correlation, however entanglement

of purification may not be an additive measure. Using strong numerical support this

has been shown in Ref.[76]. Here we prove that if it is non-additive then it has to be a

sub-additive quantity. We have the following theorem.

Theorem 2: The entanglement of purification is sub-additive in the tensor product of

density matrices, i.e., for a tensor product density matrix ρAB ⊗ σCD, the following

equation holds

Ep(AC : BD) ≤ Ep(A : B) + Ep(C : D).

with equality if and only if the optimal pure state for the tensor product of density ma-

trices is the tensor product of optimal pure states of the corresponding density matrices

upto a local unitary equivalence.

Proof : Let us suppose |ΨABA′B′〉 and |ΦCDC′D′〉 are the optimal purification for ρAB
and σCD corresponding to the value of entanglement of purification. Then |ΨABA′B′〉 ⊗
|ΦCDC′D′〉 is a valid purification for ρAB⊗σCD, however not generally the optimal one.

Now, we know that

Ep(A : B) =
I(AA′ : BB′)

2
, Ep(C : D) =

I(CC ′ : DD′)

2
. (3.24)

Adding these two quantities we get Ep(A : B) +Ep(C : D) = I(AA′:BB′)
2

+ I(CC′:DD′)
2

.

But the quantum mutual information is additive on tensor product of quantum states.

Therefore,

I(AA′ : BB′)

2
+
I(CC ′ : DD′)

2
=
I(AA′CC ′ : BB′DD′)

2

where I(AA′CC ′ : BB′DD′) is the quantum mutual information of the state |ΨABA′B′〉⊗
|ΦCDC′D′〉. Thus, we have

Ep(A : B) + Ep(C : D) =
I(AA′CC ′ : BB′DD′)

2
.

Since |ΨABA′B′〉 ⊗ |ΦCDC′D′〉 is only one such purification of ρAB ⊗ σCD and the opti-

mization for Ep(AC : BD) is over all possible purifications of ρAB ⊗ σCD denoted by
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the set of pure states {|ξABCDA′′B′′〉}, therefore we have

min
A′′B′′

I(ACA′′ : BDB′′)

2
≤ I(ACA′C ′ : BDB′D′)

2
,

where I(ACA′′ : BDB′′) is the quantum mutual information of any such purification

|ξABCDA′′B′′〉 and the minimum is over all such purification of ρAB ⊗ σCD by the

addition of ancilla part A′′B′′ to it. Hence we easily see that the above equation is

nothing but the following inequality,

Ep(AC : BD) ≤ I(ACA′C ′ : BDB′D′)

2
,

which directly implies that, Ep(AC : BD) ≤ Ep(A : B) + Ep(C : D) for the four

partite tensor product density matrix ρAB ⊗ σCD. Now, in the following paragraph we

check the equality condition.

While checking the equality condition, we now omit the subscripts and write |ΨABA′B′〉
as |Ψ〉, |ΦCDC′D′〉 as |Φ〉 and |ξABCDA′′B′′〉 as |ξ〉 for simplicity. First, we check that

if |ξ〉 = |Ψ〉 ⊗ |Φ〉, then whether the dimensionality of the optimal purifying state

agrees with the dimension of the Hilbert space of the ancilla part, as given in Ref.[34].

We note that if |ξ〉 = |Ψ〉 ⊗ |Φ〉, then dA′′(|ξ〉) = dA′(|Ψ〉)dC′(|Φ〉), dB′′(|ξ〉) =

dB′(|Ψ〉)dD′(|Φ〉). According to the theorem given in Ref.[34],

dA′(|Ψ〉) = dAB(ρAB), dC′(|Φ〉) = dCD(σCD) (3.25)

and

dA′′(|ξ〉) = dABCD(ρAB ⊗ σCD). (3.26)

Similarly by the same theorem, we have

dB′(|Ψ〉) = d2
AB(ρAB), dD′(|Φ〉) = d2

CD(σCD) (3.27)

and

dB′′(|ξ〉) = d2
ABCD(ρAB ⊗ σCD). (3.28)



53

Now, we verify if the above two equations are consistent with dimensions proposed in

Ref.[34] for |ξ〉. Putting the values of dA′ and dB′ in terms of dAB, we get

dA′′(|ξ〉) = dAB(ρAB)dCD(σCD) (3.29)

and

dB′′(|ξ〉) = d2
AB(ρAB)d2

CD(σCD). (3.30)

These values can be reframed as the dimensions of the tensor product of the correspond-

ing density matrices, i.e.,

dAB(ρAB)dCD(σCD) = dABCD(ρAB ⊗ σCD). (3.31)

Similarly

d2
AB(ρAB)d2

CD(σCD) = d2
ABCD(ρAB ⊗ σCD). (3.32)

This holds true even when |ξ〉 = UA′C′ ⊗UB′D′|Ψ〉 ⊗ |Φ〉, since the unitary matrices do

not map density matrices from Hilbert space of a given dimension to that of a different

dimension. This shows that the dimensions are in agreement with those given by the

theorem in Ref.[34].

We now move on to the equality condition for the mutual information. For this pur-

pose, let us note that if |ξ〉 = UA′C′ ⊗ UB′D′ |Ψ〉 ⊗ |Φ〉, then owing to the additivity

of quantum mutual information and its invariance under the action of local unitaries,

one has I(ACA′′ : BDB′′) = I(AA′ : BB′) + I(CC ′′ : DD′), where the mu-

tual information terms are that of |ξ〉, |Ψ〉, and |Φ〉 respectively. This implies that

Ep(AC : BD) = Ep(A : B) + Ep(C : D) for ρAB ⊗ σCD. This proves the if part

of theorem above.

For the only if condition we see that if |ξ〉 6= UA′C′ ⊗ UB′D′ |Ψ〉 ⊗ |Φ〉, then I(|ξ〉) 6=
I(|Ψ〉⊗|Φ〉). This is because, the action of a non-local unitary will change the probabil-

ity distributions of the reduced density matrices and thus will change the value of quan-

tum mutual information across ACA′C ′ : BDB′D′ partition. As a result, the equality

holds only if the optimal pure state for the tensor product of the density matrices is the

tensor product of corresponding optimal pure states, upto the local unitary equivalence

UA′C′⊗UB′D′ . Therefore, we see that if the entanglement of purification is non-additive,
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it is actually sub-additive. Thus, the above theorem rules out the super-additivity of en-

tanglement of purification. The sub-additivity has been shown numerically in Ref.[76]

for the Werner states. It is important to note that, according to the result by authors

in Ref.[34], one is guaranteed to find the optimal pure state in the Hilbert space of the

aforementioned dimensionality. In that case our equality condition holds for the tensor

product of the optimal pure states. However it does not rule out the existence of optimal

pure states in Hilbert space of other dimensions. Thus, in addition to the optimal pure

state in Hilbert space of the dimensions given by the theorem, one may find other opti-

mal pure states in Hilbert space of higher or lower dimension. In particular, one might

be able to find optimal pure state in Hilbert space of lower dimension. As an example

we have the Werner state and its optimal pure state for entanglement of purification can

be found in Hilbert space of dimensions 4× 4 as proved numerically in Ref.[34].

Using the results we have obtained on entanglement of purification, we identify the

classes of states that are additive on tensor products for the entanglement of purification

as follows. We see that the bipartite states satisfying the equality condition in Araki-

Lieb inequality, the higher dimensional bipartite states satisfying the equality condition

in strong sub-additivity when any party of it can be broken down into two lower di-

mensional subparties, the tripartite states satisfying the strong sub-additivity equality

condition are additive on tensor products for entanglement of purification. Thus, for

the above class of states, the regularised entanglement of purification and their opti-

mal visible compression rate is given by the entanglement of purification. Apart from

this, we are able to also draw the conclusion that the entanglement of purification is

additive on tensor products if and only if it is also super-additive on tensor products

for all quantum states. However, whether there can be states ρAB ⊗ σCD for which

Ep(AC : BD) < Ep(A : B)ρAB + Ep(C : D)σCD is still an open question. We note

that the question of non-additivity is now reduced to only the sub-additivity condition,

ruling out the possibility of Ep(AC : BD) > Ep(A : B)ρAB + Ep(C : D)σCD for

ρAB ⊗ σCD.

3.0.6 Implications on quantum advantage of dense coding

3.0.6.1 Upper bounds and exact values

From the lower bound and some of the actual value of entanglement of purification,

using the property of monogamy with it and non-negativity of the quantum advantage
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of dense coding, we can identify some of the quantum states that have no quantum

advantage of dense and also put an upper bound on it for some specific cases.

Let ρABCD be a quantum state, such that the sub-additivity equality condition is satisfied

for the reduced density matrix ρABC , i.e., S(B|A) + S(B|C) = 0. Then, from the

monogamy inequality with entanglement of purification, we get S(B) ≥ ∆(D〉B) +

Ep(B : AC). But, in this case Ep(B : AC) = S(B). Thus, putting this value, we

have ∆(D〉B) ≤ 0. But, since ∆(D〉B) ≥ 0, thus we have ∆(D〉B) = 0 for the states

ρBD, i.e., the quantum advantage of dense coding vanishes precisely for these states.

Similarly, for any tripartite state, pure or mixed ρABC , if the state ρBC satisfies the

Araki-Lieb equality condition, then the quantum advantage of dense coding ∆(A〉B)

of ρAB also becomes zero. Apart from the above exact values, the lower bound on

entanglement of purification puts an upper bound on the quantum advantage of dense

coding via its monogamy relation with the quantum advantage of dense coding.

3.0.6.2 Strict monogamy for tipartite pure states

Therefore, from the monogamy inequality and the polygamy of entanglement of purifi-

cation for pure tripartite states as well as some of the mixed tripartite states mentioned

here previously, it follows that

4(B〉A) +4(C〉A) ≤ 4(BC〉A),

implying that the quantum advantage of dense coding is strictly monogamous for the

tripartite pure states as well as the other tripartite mixed states mentioned previously.

This property is straight forwardly carried over to the asymptotic limit as well. Thus,

we have 4∞(B〉A) +4∞(C〉A) ≤ 4∞(BC〉A) for those same set of states. Also, it

is easy to see that for the mixed states satisfying SSA equality condition, the symmetric

(antisymmetric) subspace condition and the states satisfying the Araki-Lieb equality

condition and the cases for the n partite pure states, monogamy is followed.

3.0.6.3 Superadditivity

In the same way as that of the entanglement of purification, we conclude that the quan-

tum advantage of dense coding is super-additive on tensor product of density matrices,
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i.e., for a four partite tensor product state ρAB ⊗ σCD, we have the following equation

∆(AC〉BD) ≥ ∆(A〉B) + ∆(C〉D).

The proof is as follows. By definition, we have ∆(A > B) = supΛAI
′(A > B). Thus,

for the density matrix ρAB ⊗ σCD we have ∆(A〉B) + ∆(C〉D) = supΛAI
′(A〉B) +

supΛCI
′(C〉D) = supΛA⊗ΛCI

′(AC〉BD). The second equation follows from the fact

that the von-Neumann entropies are additive on tensor products of density matrices.

Again for ρAB⊗σCD, by definition we have ∆(AC〉BD) = supΛACI
′(AC〉BD). How-

ever, the optimization for ρAB⊗ρCD is over all ΛAC , and {ΛA⊗ΛC} is only a subset of

{ΛAC}. Thus, supΛACI
′(AC〉BD ≥ supΛA⊗ΛCI

′(AC〉BD) for the same four partite

product state ρAB ⊗ σCD. With the last equation we arrive at the super-additivity equa-

tion for the quantum advantage of dense coding for tensor product states of the form

ρAB ⊗ σCD, i.e., ∆(AC〉BD) ≥ ∆(A〉B) + ∆(C〉D) for ρAB ⊗ σCD.

With the above results, we finally finish giving or results on the entanglement of purifi-

cation and therefore also of quantum advantage of dense coding. We hope that these

results will be useful in future studies of these quantities.



Chapter 4

Main results II: Generalized
Geometric Measure

Multipartite entanglement is a very rich and active area of research in quantum theory.

There is a lack of results in this area since the evaluation of multipartite measures of

entanglement becomes increasingly difficult with increasing number of parties, dimen-

sions and ranks of the quantum states. However, it has been proposed that symmetry

properties of quantum states can be used to simplify such calculations. In this chapter,

we have followed this path for the evaluation of the generalized geometric measure, i.e.,

we have used the symmetry of quantum states to evaluate the genuine multipartite en-

tanglement captured by generalized geometric measure for classes of states possessing

symmetry properties in varying number of parties, dimensions and ranks.

4.1 Generalized geometric measure

A pure state is said to be genuinely multiparty entangled if it is not product in any bi-

partition. The generalized geometric measure (GGM) [52] (cf. [49]) of anN -party pure

quantum state, |ψN〉, is a computable entanglement measure that can quantify genuine

multiparty entanglement. It is defined as an optimized distance of the given state from

the set of all states that are not genuinely multiparty entangled. Mathematically, it is

given by

E(|ψN〉) = 1− Λ2
max(|ψN〉), (4.1)

57
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where Λmax(|ψN〉) = max |〈χ|ψN〉| = maxF (|ψN〉, |χ〉), with the maximization being

performed over all |χ〉 that are not genuinely multiparty entangled. Here F (|ψN〉, |χ〉)
is the fidelity [85] between two pure states |ψN〉 and |χ〉. Additionally, one can show

that the GGM for a pure state |ψN〉, is exactly equal to the square of the minimum trace

distance of |ψN〉 from pure states that are not genuinely multiparty entangled. It can

also be expressed as functions of the minimal Hilbert-Schmidt distances of |ψN〉 from

the same set of states [85]. An equivalent form of the above equation is

E(|ψn〉) = 1−max{λ2
I:L|I ∪ L = {A1, . . . , AN}, I ∩ L = ∅}, (4.2)

where λI:L is the maximal Schmidt coefficient in the bipartite split I : L of |ψN〉 [52].

Let us enumerate some properties of the GGM which establish it as a bona fide measure

of genuine multiparty entanglement [52]. It can be shown that E(|ψN〉) ≥ 0, for all

|ψN〉, E(|ψN〉) = 0 iff |ψN〉 is not genuinely multiparty entangled, and E(|ψN〉) is non-

increasing under local quantum operations at theN parties and classical communication

between them.

We can now define the GGM of a general mixed quantum state, in terms of the convex

roof construction. For an arbitrary N -party mixed state, ρN , the GGM can be defined

as

G(ρN) = min
{pi,|ψiN 〉}

∑
i

piE(|ψiN〉), (4.3)

where the minimization is over all pure state decompositions of ρN i.e., ρN =
∑

i pi|ψiN〉〈ψiN |.
It is difficult to find the optimal decomposition and the computation of GGM is in gen-

eral impossible even for moderate-sized systems. However, the situation is different if

the mixed quantum state under consideration possesses some symmetry [50, 61]. In

Ref. [61], Vollbrecht and Werner have provided a general method to compute an en-

tanglement measure, defined via the convex roof extension, of a class of mixed states

which are invariant, on average, under a group of local unitaries. Below we briefly out-

line the same. Suppose ρ′N = (U1 ⊗ U2 ⊗ . . . ⊗ UN)ρN(U †1 ⊗ U
†
2 ⊗ . . . ⊗ U

†
N), where

Ui are the local unitary operators, acting on Hilbert spaces Hi. The GGM of ρN and ρ′N
are the same. If it happens that ρN = ρ′N , then (U1 ⊗ U2 ⊗ . . . ⊗ UN) is called a local

symmetry of ρN . Let G be a group of unitary operators U = (U1 ⊗ U2 ⊗ . . . ⊗ UN)

and P be a twirl operator, such that, A P−→
∫
dU UAU † ≡ P(A), where the integral is

carried out Haar uniformly. In case of a mixed state ρN , if there exist a twirl operator P

such that P(ρN) = ρN , then the entanglement, G(ρN), can be obtained from a pure |ψ〉
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which satisfies

P(|ψ〉〈ψ|) = ρ. (4.4)

In principle, one can have a set of pure states, {|ψ〉} = MρN , which satisfies Eq. (4.4),

and it is sufficient to perform the optimization over this set. A further step is needed

where we convexify the optimized quantity over the parameters in ρN , if it is not al-

ready convex. Moreover, the choice of the set of pure states which satisfy Eq. (4.4)

is made by looking at the fact that after the twirl operations, all the off-diagonal terms

in the representation of the density matrix should vanish. In this way, the pure states

get projected to the initial mixed state. If a given mixed state satisfies the above two

properties, the method can be successfully applied to obtain the compact form of GGM

for that state.

We now show that the simplified method for convex roof extension [61] can be utilized

to evaluate the GGM for several classes of multiparty states with arbitrary number of

parties having certain symmetries. We present these classes according to their ranks.

Note that in this method, the GGM of the mixed states reduces to the GGM of certain

pure states. Therefore, as mentioned in Sec. 4.1, the value of GGM obtained in this

paper is directly connected to other entanglement measures originating from distance-

based measures, when optimized over non-genuinely multipartite entangled states. If

an entanglement measure E is defined by using a set of multiparty states, over which

the optimization is carried out, that is smaller than the set of non-genuinely multiparty

entangled states, which for example is the case when the geometric measure [49] is

considered, the GGM will form a lower bound for E.

4.1.0.1 Generalized geometric measure for multipartite states for qubits of rank
two

The rank 2 mixed state, which we are now going to consider is a mixture of two orthog-

onal N -party pure states, given by

ρ2
N(x) = x|ψN〉〈ψN |+ (1− x)|ψ⊥N〉〈ψ⊥N |, (4.5)
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FIGURE 4.1: (Color online.) GGM of ρ2
N (x, sym) = x|ψN 〉〈ψN |+ (1−x)|ψ⊥N 〉〈ψ⊥N |

against x. All the quantities are dimensionless.

where 0 ≤ x ≤ 1 and the subscript and superscript of ρ represent the number of qubits

and rank respectively. Here, |ψN〉 and |ψ⊥N〉 lie in two orthogonal mutually complemen-

tary subspaces of the N-party Hilbert spaceH⊗N . |ψN〉 =
∑bN

2
c

i=0 ai|D2i
g 〉, with

|Dk
g 〉 =

(Nk)∑
j=1

bkj| 00...0︸ ︷︷ ︸
N−k

11..1︸︷︷︸
k

〉, (4.6)

where |Dk
g 〉’s are the generalized Dicke states [65] with k number of excitations i.e.

they are the general superpositions of pure states with all permutations of (N − k) |0〉’s
and k |1〉’s. And

|ψ⊥N〉 =

bN
2
c−1∑

i=0

a′i|D2i+1
g 〉. (4.7)

We have chosen the coefficients in all pure and mixed states such that there are properly

normalized.

For ρ2
N(x), we can find a group of local unitary operators consisting of two unitaries,

U1 = I , and U2 = σz, which, on average, keep ρ2
N(x) invariant. Here, I is the identity

operator on the qubit Hilbert space and σx, σy, and σz are the Pauli operators. One can

check that ρ2
N(x) =

∑2
k=1 U

⊗N
k |ψ2

N(x)〉〈ψ2
N(x)|U †⊗Nk , where |ψ2

N(x)〉 =
√
x|ψN〉 +
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eiφ
√

1− x|ψ⊥N〉 is the only class of pure states that is twirled to ρ2
N(x) by applying

the twirl operator corresponding to those unitaries. Hence, by following the recipe in

[61], we can calculate the GGM of ρ2
N(x). Since it involves several parameters, for

illustration, we choose a fully symmetric class of states ρ2
N(x, sym), where |ψN〉 and

|ψ⊥N〉 consist of equal superposition of all possible even and odd excitations respectively.

For example, for three particles, |ψ3〉 = 1
2
(|000〉 + |110〉 + |101〉 + |011〉) and |ψ⊥3 〉 =

1
2
(|111〉+ |001〉+ |010〉+ |100〉) respectively. The GGM of ρ2

N(x, sym) is the convex

hull of the GGM of the pure states |ψ2
N(x, sym)〉 =

√
x|ψN〉+

√
1− xeiφmin|ψ⊥N〉. Here

the phase, φmin, gives the minimum GGM among all the GGM with different φ values.

We then find that GGM reaches its minimum for φmin = 0. Therefore, the GGM of

ρ2
N(x, sym) is given by

G(ρ2
N(x, sym)) =

1

2
(1− 2

√
x
√

1− x), (4.8)

since the right hand side is already convex as depicted in Fig. 4.1. An important point

to note here that the GGM of ρ2
N(x, sym), given in Eq. (4.8), is independent of number

of parties, N .

4.1.0.2 Generalized geometric measure for rank three multiqubit states

We now calculate the GGM for different classes of mixed states, of rank 3.

Case 1

Let us now consider a three-qubit rank 3 mixed state, ρ3
3(x1, x2) [50], which is a mixture

of known |GHZ+
3 〉, |D1〉, and |D2〉. Here, |GHZ+

3 〉 = 1√
2
(|000〉+|111〉) [64], and |D1〉

and |D2〉 are given by |D1
g〉 and |D2

g〉 of Eq. (4.6) respectively, with bkj = 1√
3

for all j.

It reads as

ρ3
3(x1, x2) = x1 |GHZ+

3 〉〈GHZ+
3 |+ x2 |D1〉〈D1|+ (1− x1 − x2)|D2〉〈D2|. (4.9)

Note that |D1〉 is the well-known W-state [95]. The mixture is invariant under twirling

operator consisting of local unitaries given by U1 = I , U2 =

(
1 0

0 e
2πi
3

)
, and U3 =
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FIGURE 4.2: (Color online.) Plot corresponds to GGM of |ψ3,g
3 〉 vs. the mixing param-

eters x1 and x2. Here, α = 0.55 for the |gGHZ3〉 state. Both convex and nonconvex
regions are seen. The convex part corresponds to the GGM of ρ3,g

3 (x1, x2). All quan-
tities are dimensionless

(
1 0

0 e
−2πi

3

)
, that act on each qubit [50]. The corresponding pure states which after

twirling operations, leads to ρ3
3(x1, x2), can be written as

|ψ3
3(x1, x2)〉 =

√
x1|GHZ+〉+

√
x2e

iφ1|D1〉+
√

1− x1 − x2e
iφ2 |D2〉. (4.10)

The minimum of GGM among {φ1, φ2} is again obtained when φ1 = φ2 = 0. By

computing the Hessian matrix, we find both analytically and numerically that the GGM

of |ψ3
3(x1, x2)〉 is convex with respect to x1 and x2. Therefore, the GGM of ρ3

3(x1, x2)

is given by

G
(
ρ3

3(x1, x2)
)

=
1

6

(
3−

{
1− 5x2

1 − 12x2(x2 − 1)+

8
√

6x1x2

(
1 +

√
x2(1− x1 − x2)− x1 − x2

)
+

4x1

(
1 + 3

√
x2(1− x1 − x2)− 3x2

)} 1
2
)
, (4.11)

and is depicted in Fig. 4.2.
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Case 2 Let us now move to a more general state while keeping the rank fixed. Precisely,

we consider a class of mixed states of the form

ρ3,g
3 (x1, x2) = x1|gGHZ3〉〈gGHZ3|+ x2|D1

g〉〈D1
g |+ (1− x1 − x2)|D2

g〉〈D2
g |,
(4.12)

where |gGHZ3〉 = α|000〉 +
√

1− α2|111〉 is the generalized Greenberger-Horne-

Zeilinger state with 0 ≤ α ≤ 1. The twirling operator that keep ρ3
3(x1, x2) invariant,

also keep the state ρ3,g
3 (x1, x2) invariant, and the class of pure state that are projected to

ρ3,g
3 (x1, x2) is given by

|ψ3,g
3 (x1, x2)〉 =

√
x1|gGHZ3〉+ eiφ1

√
x2|D1

g〉+ eiφ2
√

1− x1 − x2|D2
g〉. (4.13)

In this case, we have ρ3,g
3 (x1, x2) =

∑3
j=1 U

⊗3
j |ψ

3,g
3 (x1, x2)〉〈ψ3,g

3 (x1, x2)|U †⊗3
j , where

{Uj, j = 1, 2, 3} is the same as in Case 1.

Numerical simulation guarantees that the minimum of E(|ψ3,g
3 (x1, x2)〉) occurs for φ1 =

φ2 = 0. However, unlike the previous cases, we find that E(|ψ3,g
3 (x1, x2)〉) is not convex

for all values of x1 and x2. In particular, we plot E(|ψ3,g
3 (x1, x2)〉) in Fig. 4.2, when

α = 0.55 and the coefficients in |D1
g〉 and |D2

g〉 are all equal. For certain regions of

the parameter space, the GGM of |ψ3,g
3 (x1, x2)〉) is already convex, and hence GGM

of |ψ3,g
3 (x1, x2)〉) in that region is the GGM of ρ3,g

3 (x1, x2). On the other hand, for

the remaining regions, a convexification has to be carried out to obtain the GGM of

ρg3(x1, x2). Specifically, E(|ψ3,g
3 (x1, x2)〉) 6= G(ρ3,g

3 (x1, x2)), when x1 is high while x2

is low. To illustrate the convexification, we introduce a new variable, r = x2
1−x1 , and

let us consider cases where r = 0.96 and 0.98. The convexification of the curves so

generated are depicted in Fig. 4.3.

Case 3

Let us move to a class of states which is a multiqubit generalization of ρ3
3(x1, x2). It is

given by

ρ3
N(x1, x2) = x1 |GHZ+

N〉〈GHZ
+
N |+ x2 |D1〉〈D1|+ (1− x1 − x2)|DN−1〉〈DN−1|,

(4.14)
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FIGURE 4.3: (Color.) Plot corresponds to GGM of |ψ3,g
3 〉 vs. x1, for two values of

r = x2
1−x1 . Here, α = 0.55 for the |gGHZ3〉 state. These are given by the dotted

lines. The straight lines corresponds to the convexified quantities. All quantities are
dimensionless.

where |GHZ+
N〉 = 1√

2
(|0〉⊗N + |1〉⊗N), and |DN−1〉 is given by |DN−1

g 〉 of Eq. (4.6)

with bkj = 1√
(Nk)

. Again, we have

ρ3
N(x1, x2) =

3∑
j=1

U⊗Nj |ψ3
N(x1, x2)〉〈ψ3

N(x1, x2)|U †⊗Nj , (4.15)

where |ψ3
N(x1, x2)〉 is given in Eq. (4.10) with |D2〉 being replaced by |DN−1〉, for the

same set of unitaries, given in Case 1. Hence, we can compute the GGM of |ψ3
N(x1, x2)〉

and check its convexity. For φ1 = φ2 = 0 which gives the lowest GGM,

Fig. 4.4 shows the GGM of |ψ3
5(x1, x2)〉 with respect to the parameters, x1 and x2 with

N = 5. From the figure, it is clear that for example the GGM of |ψ3
5(x1, x2)〉 is convex

for 0.64 ≤ x1 ≤ 1.0 and 0.0 ≤ x2 ≤ 0.36 and hence in that region, we have the GGM

of ρ3
5(x1, x2). In the rest of the region, to obtain the GGM of ρ3

5(x1, x2), we have to find

the convex hull of E(|ψ3
5(x1, x2)〉).
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FIGURE 4.4: (Color online.) The plot of GGM for ρ3
5(x1, x2) =

x1 |GHZ+
5 〉〈GHZ

+
5 | + x2 |D1〉〈D1| + (1 − x1 − x2)|D4〉〈D4| against x1 and x2

whenever it is convex. All axes are dimensionless.

4.1.0.3 Generalized geometric measure for multipartite states for qubits of higher
ranks

We now consider classes of mixed states with rank more than three. First, we explore a

class of multiparty states which can be dealt with symmetric unitaries. In other words,

this class of states remain invariant, when the same unitary acts on all the parties, i.e.

ρNN =
∑

j U
⊗N
j ρNNU

†⊗N
j . We will then find another class of states for which symmetric

unitaries do not work.

Symmetric unitary case Let us now consider a class of mixed states with arbitrary

number of parties, which can be obtained by generalizing ρ3
3(x1, x2). The state,

ρNN(x1, x2, . . . , xN−1)

, is a mixture of generalized GHZ and all the Dicke states. It reads as

ρNN(x1, x2, . . . , xN−1) = (1−
∑
i

xi)|gGHZN〉〈gGHZN |+
N−1∑
i=1

xi|Di
g〉〈Di

g|, (4.16)
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with |gGHZN〉 = α|0〉⊗N +
√

1− α2|1〉⊗N . Rank of the above state spans the integers

in [1, N ]. One can check that

ρNN(x1, . . . , xN−1) =
N∑
j=1

U⊗Nj ρNN(x1, . . . , xN−1)U †⊗Nj ,

(4.17)

where the set of local unitaries, {Uj}Nj=1 consists of I and

(
1 0

0 e
2πij
N

)
with j = 1, . . . ,

(N − 1). We have to now show that

ρNN(x1, x2, . . . , xN−1) =
∑
j

U⊗Nj |ψNN (x1, . . . , xN−1)〉〈ψNN (x1, . . . , xN−1|U †⊗Nj ,

(4.18)

where |ψNN (x1, . . . , xN−1)〉 =
√

1−
∑

i xi|gGHZN〉 +
∑N−1

i=1

√
xie

φi |Di
g〉. To prove

this, we note the actions of local unitaries on each off-diagonal terms which e.g. are

given by

U⊗Nj |Dq
g〉〈Dr

g|U
†⊗N
j = e

2πi(q−r)
N |Dq

g〉〈Dr
g|. (4.19)

We use the identity
∑

j e
2πi(q−r)

N = δqr in the analysis. Similarly,

∑
j

U⊗Nj |Dq
g〉〈gGHZN |U

†⊗N
j = e

2πiq
N |Dq

g〉〈gGHZN | = 0. (4.20)

All off-diagonal terms therefore vanish. Therefore, we are now able to calculate the

GGM of |ψNN (x1, . . . , xN−1)〉 and check whether E(|ψNN (x1, . . . , xN−1)〉) is convex or

not. If it is convex, then E(|ψNN (x1, . . . , xN−1)〉) = G(ρNN(x1, . . . , xN−1)). If it is natu-

rally convex, we perform convexification to obtain the exact value of G(ρNN(x1, . . . , xN−1)).

To illustrate this example, we consider a five-qubit state which is of the form

ρ5
5 = x1|GHZ+

5 〉〈GHZ+
5 |+

x2

2
(|D1〉〈D1|+ |D2〉〈D2|)+

1− x1 − x2

2
(|D3〉〈D3|+ |D4〉〈D4|).

(4.21)
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FIGURE 4.5: (Color online.) GGM of ρ5
5 = x1P [GHZ+

5 ] + x2
2 (P [D1] + P [D2]) +

1−x1−x2
2 (P [D3] + P [D4]). All axes are dimensionless.

Following the aforementioned prescription, we compute E(|ψ5
5(x1, x2)〉) with

|ψ5
5(x1, x2)〉 =

√
x1|GHZ+

5 〉+

√
x2

2

2∑
k=1

eiφk |Dk〉+

√
1− x1 − x2

2

4∑
k=3

eiφk |Dk〉.

(4.22)

For φk = 0, k = 1, . . . , 4 which gives the infimum of GGM, E(|ψ5
5(x1, x2)〉) is plotted

with x1 and x2 in Fig. 4.5. By using the Hessian technique, we find that it is convex for

the entire range of x1 and x2. Therefore, G(ρ5
5) is obtained for all x1 and x2 and is given

by

G(ρ5
5) =

1

2

(
1−

(
1− 4

{
2x1 + 4x2 + 3

10

7− 2x1 − 4x2

10
−

(√x1x2

20
+

√
x1(1− x1 − x2)

20
+

2x2

5
√

2
+

2(1− x1 − x2)

5
√

2

+
3

10

√
x2(1− x1 − x2)

)2
}) 1

2

)
. (4.23)

Comparing Figs. 4.4 and 4.5 with the situations obtained before, it seems that higher

rank states, for a fixed total number of qubits of the entire systems, have a greater affinity
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FIGURE 4.6: (Color online.) Plot of GGM of ρ4
3 with respect to the parameters, x

and y. The GGM of the corresponding unique pure state, |ψ4
3(x, y)〉 =

√
x|ζ1〉 −

i
√
y/2(|ζ2〉− |ζ3〉) +

√
1− x− y|ζ4〉 has a kink along the lines shown on the surface,

in the plot. The GGM of the pure state is non-convex around these lines, and hence
convexifications are required to obtain the GGM of ρ4

3 along those lines.

for being convex, when their GGMs are considered.

Asymmetric unitary case

Until now, we have considered the states which remain unaltered under twirling operator

consisting of local symmetric unitaries of the form U⊗
N

i .

Let us now illustrate a class of three-qubit mixed states which remains unchanged under

the local unitaries of the form Ui ⊗ Uj ⊗ Uk. The class of mixed state having rank 4,

reads

ρ4
3 =

∑
i

xi|ζi〉〈ζi|, (4.24)

where
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|ζ1〉 =
1

2
(|001〉+ |010〉 − |100〉+ |111〉),

|ζ2〉 =
1

2
(−i|000〉 − i|011〉+ |100〉+ |111〉),

|ζ3〉 =
1

2
(i|000〉+ i|011〉+ |100〉+ |111〉),

and |ζ4〉 =
1

2
(|001〉+ |010〉+ |100〉 − |111〉).

It is invariant under {Ui, i = 1, . . . 4}, which are given by

U1 = I ⊗ I ⊗ I,

U2 = iσy ⊗H ′ ⊗H ′,

U3 = I ⊗ σy ⊗ σy,

and U4 = −iσy ⊗H ′T ⊗H ′T ,

with H ′ = 1√
2

(
1 1

−1 1

)
. Note that these unitaries form a closed group. The only pure

states that are twirled to the above mixed states are of the form |ψ4
3〉 =

∑
i

√
xie

iφi|ζi〉.
We compute the GGM of |ψ4

3〉 and minimize it over φi’s. The GGM of ρ3
4 is given by

the minimum of the E(|ψ4
3〉) for different values of (φi)s provided the quantity is convex

itself.

To visualize its GGM, let us consider, x2 = x3 = y
2
, i.e. the state is of the form

ρ3
4 = x|ζ1〉〈ζ1|+

y

2
(|ζ2〉〈ζ2|+ |ζ3〉〈ζ3|) + (1− x− y)|ζ4〉〈ζ4|. (4.25)

In this case, we find that the minimum GGM of |ψ4
3(x, y)〉 for different values of (φi)s

is obtained when φ1 = − φ2 = −π
2

and φ3 = 0. We find the GGM of ρ4
3(x, y) by

convexifying the GGM of |ψ4
3(x, y)〉).

4.1.0.4 Generalized geometric measure for multipartite states for qudits

In the previous sections, we have evaluated the GGM of certain multiqubit systems.

We will now show that a similar method can be extended to obtained the analytical

expression of GGM of multiqudit mixed states. Specifically, we consider an N -qudit
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mixed state of rank d, in the Hilbert spaceH⊗Nd , of the form

ρdN,d =
d∑

k=1

pk|Ψ〉k〈Ψ|k, (4.26)

where |Ψ〉k =
∑
{j} qj1j2...jN |j1j2...jN〉(k) and (

∑
m jm)(mod d) = k. Our aim is to

evaluate the GGM of the state ρdN,d. Therefore, like previous cases, we construct a

twirling operator, consisting of unitary operators Zd which are d-dimensional, non-

hermitian generalization of the σz and given by

Zd =
d−1∑
j=0

e
2πij
d |j〉〈j|. (4.27)

Here, each of the unitary operators act locally and symmetrically on ρdN,d as Z⊗Nd . Note

that the set
{
Id, Z

⊗N
d ,

(
Z⊗Nd

)2

, ..,
(
Z⊗Nd

)d−1
}

forms a group and the corresponding

twirling operator keeps ρdN,d invariant. Now, we have to find the set of all pure states

|Ψ〉dN,d that are projected to ρdN,d under the action of the aforementioned twirling oper-

ator. It can be easily checked that |Ψ〉dN,d =
∑d

k=1 e
iφk |Ψ〉k are the only class of pure

states that are mapped to ρdN,d under the twirling operator, i.e., we have the following

d−1∑
q=0

(
Z⊗Nd

)q
|Ψ〉dN,d〈Ψ|dN,d

(
Z†⊗Nd

)q
= ρdN,d. (4.28)

In this case also, the minimum of the GGM’s of |Ψ〉dN,d over the phases {φk} gives the

GGM of ρdN,d provided the minimum GGM is already a convex function of the state

parameters. Otherwise one has to convexify the function to obtain the GGM of ρdN,d.

Until now, we have considered systems with the same dimensions of the local Hilbert

spaces. However, this formalism can be further extended where the local Hilbert spaces’

dimensions are not equal, i.e., for quantum systems belonging inHd1⊗Hd2⊗. . .⊗HdN ,

with d1 6= d2 6= ...dN . In that case, we have two different scenarios. Firstly, a1d1 =

a2d2 = ... = dN , where {ai}N−1
i=1 ∈ I+. Without loss of generality, dN is taken to be

the largest dimension and the corresponding unitaries are of the form Zd1⊗Zd2 ..⊗ZdN
with its subsequent powers upto dN − 1, such that the composite unitary matrices form

a group. Evidently, the case of equal dimensions is a special case of this. Thus, the

pure states over which we have to perform the minimization still have the same form,

with a slightly different version of the condition given by
∑

m jm(mod dN) = k. The

second one is the situation when all the dimensions are prime to each other, and in this
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case, we have to take unitaries upto the power of
(
d1d2...dN

)
− 1, where the form of

pure states remain the same, with the modified condition,
∑

m jm
(
mod d1d2...dN

)
= k.

Therefore, in general, we have to take the maximum power of the unitaries which is the

lowest common multiple of d1, d2, ..., dN to apply the similar prescription. In the next

paragraph, we illustrate this with an example.

For simplicity, we consider the following three-qutrit state, ρ3
3,3 =

∑2
k=0 xk|Ψ〉k〈Ψ|k,

where |Ψ〉k =
∑

j qj1j2j3|j1j2j3〉(k) and j1 + j2 + j3(mod 3) = k. The exact form of the

pure states {|Ψk〉}2
k=0 reads as

|Ψ0〉 =
1

3
(

2∑
i=0

|iii〉+
∑
perm

|012〉),

|Ψ1〉 =
1

3
(
∑
perm

|001〉+
∑
perm

|022〉+
∑
perm

|112〉),

and |Ψ2〉 =
1

3
(
∑
perm

|011〉
∑
perm

|002〉+
∑
perm

|122〉). (4.29)

For this case, the unitaries which construct the twirling operators are given as {I3, Z3, Z
2
3}.

Note that the unitaries of the form Zi
3 ⊗Zi

3 ⊗Zi
3 form a group for i ranging from 0 to 2

and ρ3
3,3 is evidently invariant under the corresponding twirling operator. The pure state

that is mapped to ρ3
3,3 under the action of the aforesaid twirling operator is of the form

|Ψ3
3,3〉 =

√
x1|Ψ〉1 + eiφ2

√
x2|Ψ〉2

+eiφ3
√

1− x1 − x2|Ψ〉3. (4.30)

It can be easily found that minimum GGM of |Ψ3
3,3〉 is obtained for φ2 = φ3 = 0 and it

is a convex function of the parameters x1 and x2. Hence, the GGM of ρ3
3,3 is given by

G(ρ3
3,3) =

2

3
{1−

√
x1x2 −

√
x1{1− x1 − x2} −

√
x2{1− x1 − x2}}.

G(ρ3
3,3) is depicted in Fig. 4.7 and the convexity of the function can be visualized from

the same.

Note added: This work is based on a poster presentation [98] at the International Work-

shop on Quantum In- formation (IWQI-2012), Harish-Chandra Research Institute, Al-

lahabad, India. We thank J. Solomon Ivan for pointing out during a discussion over

the poster that the same method as followed here can be used to evaluate the GGM for

an arbitrary mixture of |GHZ+〉and|GHZ−〉 where |GHZ±〉 = 1√
2
(|0〉⊗N ± |1〉⊗N).
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FIGURE 4.7: (Color online.) Plot of GGM of ρ3
3,3 against x1 and x2. The

GGM of the corresponding unique pure state, |Ψ3
3,3〉 =

√
x1|Ψ〉1 + eiφ2

√
x2|Ψ〉2 +

eiφ3
√

1− x1 − x2|Ψ〉3 is plotted with φ1 = φ2 = 0. The GGM of the pure state is
convex everywhere, as evident from this plot and hence E(|Ψ3

3,3〉) = G(ρ3
3,3).

We thank Otfried Guehne for informing us about their independent work on evaluating

multipartite entanglement [99], by a method that is different from the one followed in

this work on generalized geometric measure.



Chapter 5

Conclusions and future directions

5.1 Conclusions

Quantum physics has played an exceptionally important and prominent role in shaping

and developing the field of modern theoretical physics and also furthering the cutting

edge technology. Though not fully understood, one cannot deny the tremendous impact

it has on furthering our understanding of nature. Yet a lot remains to be understood

and explored in the field of quantum science. Specifically, an exciting field of quantum

information and computation promise us with many new possibilities in theory as well

as applications. In this field of quantum information science and technology, the theory

of quantum correlations perhaps form one of the most important and impactful area. In

this area, research has been done extensively in the past to understand, quantify and use

the purely quantum correlations. In particular, the quantum entanglement has been a

topic of active research all throughout. Quantum entanglement has also been used to

perform various tasks that perform well above that allowed by laws of classical physics.

Therefore, our main focus of research here has been on quantum entanglement.

Quantum entanglement has found myriad used in quantum information science and

computation. One of the very interesting and unique application of entanglement has

also been to quantify total correlations [34]. This total correlation measure also called

the entanglement of purification is less explored area compared to other uses and appli-

cations of entanglement. Therefore, in the first part of this thesis, we have found out

various interesting properties of the entanglement of purification, and through it we have

also discovered many interesting properties of the quantum advantage of dense coding

as well. Another important and less understood area is the multipartite entanglement

73
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and its evaluation for multipartite mixed states. Typically with increasing dimensions,

parties and ranks of the quantum states the calculation of the genuine multipartite en-

tanglement measure becomes very difficult and arduous. So, in the second part of our

thesis we have focused on evaluation of the genuine multipartite entanglement measure

called the generalized geometric measure for arbitrary number of parties, dimensions

and ranks of mixed quantum states. We have used the technique of using symmetries

inherent in quantum states to simplify such calculations. We have been able to find

many closed formulas for this measure for many classes of states, which we have elab-

orated in the second part of the thesis. Therefore, with the motivation as stated in this

paragraph, we now summarize the results that we we obtained as part of this thesis in

the next paragraph.

In the first part of the thesis, we find that the monogamous nature of correlations is

not unique to quantum correlations, but can also be the case for the total correlations

for certain quantum states. Thus, monogamy is not a property of the quantum correla-

tion alone. Contrary to the monogamy nature of the mutual information for tripartite

pure states, we have proved that the entanglement of purification can be polygamous for

such states. This shows that even though the mutual information and the entanglement

of purification are supposed to capture total correlation, the nature of these correlations

can be completely opposite at least for tripartite systems. In case of pure and mixed

states, the monogamy of entanglement of purification is related to the monogamy of

entanglement of formation. Also, we have found a necessary condition for monogamy

of entanglement of purification for a special class of mixed states, in terms of the inter-

action information or the polygamy of the quantum mutual information. A new lower

bound of the entanglement of purification has been given for the tripartite mixed states

and higher dimensional bipartite systems. Using the formula for the lower bound we

have been able to find the exact values of entanglement of purification for some classes

of states. Furthermore, in this paper we have also shown that if entanglement of pu-

rification is not additive, it has to be a sub-additive quantity. Using these results we

have also shown that the quantum advantage of dense coding is strictly monogamous

for all tripartite pure states and it is super-additive on tensor products. We have also

identified some of the quantum states with no quantum advantage of dense coding. We

have brought forward these important aspects of the measure of total correlation as well

as that of the quantum advantage of dense coding to the forefront. These will help us

understand better the nature of total and quantum correlations of composite quantum

states. This calls for more explorations and a deeper understanding of the total correla-

tion present in a composite mixed state. The total correlation quantified by the mutual
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information can be split into quantum correlation and classical correlation. However,

we still do not know whether we can express the entanglement of purification as the sum

of quantum and classical correlations. In view of the polygamy nature of entanglement

of purification, can it be the case that the entanglement of purification contains more

classical like correlation than the quantum correlation. This will be a topic of future

investigation.

Computing entanglement of an arbitrary mixed state is a formidable task. The entan-

glement of mixed states is generally defined by constructing the convex roof over all

possible pure states which is practically impossible to compute in most of the cases. Al-

though there exists a few bipartite measures which can be obtained for arbitrary states,

the evaluation of entanglement for a mixed state in multiparty domain is still a challeng-

ing task. In this thesis, we have computed a genuine multiparty entanglement measure

known as generalized geometric measure of some classes of mixed states with arbitrary

number of parties and dimensions by using certain symmetries. We evaluate the mea-

sure for several classes of multiqubit and multiqudit states having different ranks. The

method, we exploited, uses a pure state that contains the same amount of entanglement

as the given mixed state, and leads to the mixed state by action of a certain twirling

operation. This summarizes our results on the generalized geometric measure aptly.

5.2 Future directions

In this thesis, we have been able to unravel certain important properties of the entan-

glement of purification as well as we have found the exact values of the generalized

geometric measure for different classes of mixed states. Our analysis and results have

in turn paved way for new possibilities in this filed. In the next two sections, we there-

fore discuss some of the future directions to research that arise from our thesis.

The entanglement of purification is a difficult quantity to calculate analytically due to

the absence of a closed formula. In our thesis, we have tried to find out its exact values

for some of the cases. However, also due to the lack of a closed formula and optimiza-

tion over a high dimensional Hilbert space, even numerical optimization is a difficult

task. Therefore, it is an interesting problem to try to formulate a numerical program for

entanglement of purification. This numerical program may use the semi-definite opti-

mization procedure to simplify the method for numerical calculation. Also, even if one

is unable to find exact values for entanglement of purification, good lower bounds for
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general mixed states shall help too. We have found better lower bounds for some states,

but better lower bounds can be found as part of future research too. This shall help in

answering several other important questions about the entanglement of purification, for

example the monogamy and additivity. Thus, apart from the exact values and lower

bounds, various other important properties of it remains unknown. In this thesis, we

have been able to find a general monogamy inequality for entanglement of purification,

however only for the case of pure states. Thus it is still an open question as to whether

the entanglement of purification satisfies a general monogamy or polygamy inequality

for mixed states as well. This shall help one to compare and contrast its properties with

that of the quantum mutual information. Next, the other very important question about

the entanglement of purification is the question of additivity. It still remains an open

question whether the entanglement of purification is additive or not. Though we have

proved the sub-additivity, we have still not been able to find states that satisfy strict

sub-additivity condition. Thus it will be interesting to see and find states that satisfies

the strict inequality condition. Otherwise, to prove additivity, one just has to prove a

general super-additivity condition for entanglement of purification for all states. There-

fore, we see that the entanglement of purification is an important area of research and

our results in this thesis opens up possibilities of new research in this are.

The generalized geometric measure is a computable measure of genuine multipartite

entanglement, that has already been calculated for arbitrary number of parties for pure

states. However, like other measures of entanglement, it is a very difficult task to com-

pute it for the mixed states. In this regard, we have used the symmetry properties of

the quantum states to simplify such calculation and found out exact values for some

classes of mixed states. But, the choice of the unitary operators and the quantum states

possessing symmetry are limited. Therefore, it is an interesting direction to find out

larger classes of mixed states of varying parties, dimensions and ranks for which this

technique will be applicable. Apart from this, we also have chosen only some groups

of unitary operators for the process. It will also be a topic of further investigation to

find out other groups of unitary operators that can used for applying the same tech-

nique to calculated exact values of the generalized geometric measure for more number

of classes of mixed states. This will be helpful in other arenas where there are vast

applications of the genuine multiparty entanglement measures as well.
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50, 033509 (2009); Q.-Q. Shi, R. Orús, J. O. Fjrestad, and H.-Q. Zhou, New
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