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SYNOPSIS

0.1 Introduction

String theory is an attempt to provide a framework to unify everything we know about nature,

including all particles and forces between them, in a consistent quantum theory. But surprising

devolepments in string theory from the time of its inception suggests that it should be thought

of as a unified frame work in a more broader sense which has the potential to unfold mysteri-

ous unity of many seemingly di↵erent arenas in theoretical physics and mathematics. A prime

example for such a deep relation uncovered by this frame work is the equivalence between

quantum field theories and quantum theory for gravity known as gauge/gravity duality.

Main goal of this thesis is an improved understanding of string theory and gauge/gravity

duality by looking into the perturbative aspects of it. Below we list the major results of the

studies that will be presented in this thesis.

• We found a consistent prescription for computing the renormalised masses and S-matrix

elements of string states whose masses are not protected by any symmetry [1], [2].

• We determined the stability of massive non-BPS SO(32) spinor in SO(32) heterotic string

theory compactified on circle in the entire moduli space which is parametrised by the

radius of compactification and string coupling [3].

• As a modest step towards understanding the inner working of gauge/string duality we

studied a simple example of gauge/string duality put forward in [67]. We found the

matching of leading order terms in a class of correlators of this conjectured duality

between topological A-model string theory on CP1 and gaussian matrix models. We also

found a nice interpretation for the mismatch in the sub-leading terms [4].

In the following sections we give a brief description of these results.
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0.2 Mass Renormalisation in String Theory

String perturbation theory gives a well defined procedure for computing S-matrix elements

only for external states whose masses are protected by symmetry to any order in perturbation

theory which is free from ultraviolet divergences. This is because string perturbation theory

based on world sheet conformal invariance require external states to satisfy the tree level on-

shell condition. But generic states in string theory receive mass renormalisation. It is possible

to address this apparent conflict directly if we generalise Polyakov prescription for computing

string amplitudes for o↵-shell vertex operators. O↵-shell amplitudes computed this way are

the analogue of o↵-shell Green’s functions in quantum field theory. So once we have o↵-shell

amplitudes we can use them to compute physical masses and S-matrix elements following LSZ

prescription. But o↵-shell string amplitudes defined this way are ambiguous because they

depend on the local coordinates on the world sheet. However following the spirit of gauge the-

ories we showed that physical quantities defined using o↵-shell string amplitudes like S-matrix

elements and physical masses do not depend on the choice of local coordinates [1], [2]. We

also showed that when a state appears as single particle intermediate state in the S-matrix of

massless / BPS states, the mass renormalisation obtained from our prescription agrees with

that obtained by factorising S-matrix of massless / BPS states.

String perturbation theory is a degenerate perturbation theory with high amount of degener-

acy. Because of this degeneracy renormalization leads to the mixing of physical states with

unphysical states. To understand the situation we studied a degenerate quantum fields theory

example. We chose to study degenerate abelian Higgs model because it is a simple and at the

same time complicated enough setup to demystify the secrets of string perturbation theory.

We found a prescription for perturbatively computing the loop corrected physical states in

degenerate quantum field theories and successfully lifted it to string theory. We also argued

that only the squares of renormalized physical masses appear as the locations of the poles of

the S-matrix of other physical states [2].

0.3 S-duality Improved String Perturbation Theory

Our current understanding of string theory is based mostly on perturbation expansion in the

string coupling. Furthermore this perturbation expansion is believed to be an asymptotic
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expansion. For this reason one might worry that our ability to compute anything in string

theory may be limited to very narrow corners of the full string theory landscape - regions in

which the theory admits a description as a very weakly coupled string/M/F-theory. Ref. [44]

suggested making use of string duality and suitable interpolation formula to translate the weak

coupling results in string theory to approximate results for physical quantities over the entire

range of string coupling constant. As a specific example, the mass of the stable non-BPS

particle in ten dimensional type I / SO(32) heterotic string theory was considered. Using a

suitable formula that interpolates between the result for this mass in weakly coupled SO(32)

heterotic string theory and weakly coupled type I string theory, an approximate formula for the

mass of this state was derived over the entire range of string coupling of SO(32) heterotic / type

I string theory compactified on a circle. Now if we compactify SO(32) heterotic string theory

on a circle then that will introduce BPS winding states into the theory whose total charge is

the same as that of the charge carried by the non-BPS state under study. Thus the latter can

decay into the former if the mass of the non-BPS state is larger than the sum of the masses of

the BPS states to which it could possibly decay. If we do not switch on any Wilson line so that

the SO(32) gauge group is unbroken then the moduli space is two dimensional, parametrized

by the string coupling and the radius of compactification. We used perturbative results in

the compactified string theory and a suitable generalization of the interpolation formula used

in [44] to derive expression for the mass of the non-BPS state in the full two dimensional

moduli space. With the help of the approximate formula for the mass we determined the part

of the region of the two dimensional moduli space in which the non-BPS state is unstable.

0.4 Correlators in the Simplest Gauge-String Duality

Although di↵erent examples of gauge/string duality are well studied by now, the underlying

mechanism is still not well understood. A simple example of how the Feynman diagrams for an

n-point gauge correlator glue up into an n-point string scattering amplitude in a dual space-

time can potentially provide a lot of insight into how gauge-string duality works. A candidate

proposal for the “simplest gauge-string duality” was put forward in [67]. It relates the Gaussian

one matrix integral in a large N ’tHooft limit to the A-model topological string theory on

CP1 [68], [69]. This conjectured duality was constructed using Gopakumar’s prescription for

systematically constructing the string theory dual of free field theory [76], [77], [79] with the

modification suggested by Razamat for the case of matrix models [80], [81]. If this duality is
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correct then gauge invariant correlators of the single trace operators can be expected to be

related to physical vertex operator scattering amplitudes in the dual topological string theory.

We computed a class of n-point correlators for single trace operators in Gaussian matrix model

and found leading order agreement with the corresponding correlators in the dual topological

string theory. But the sub-leading terms showed mismatch. However we found that correlators

of topological string theory can be expressed as combination of the class of matrix model

correlators in which we are interested. Interestingly using this relation the mismatch can be

interpreted as due to the contact terms corresponds to the collision of physical vertex operators

present in the topological string correlators which is absent in the Gaussian matrix model.

4



List of Figures

1.1 Scattering of electron and positron from the point of view of (a) quantum field

theory and (b) string theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Pictorial representation of the second terms on the right hand sides of eq.(3.3.14).

Here 1PI means sum of contributions which are 1PI in the leg carrying momen-

tum k, whereas Full means sum of all contributions to the 2-point function

shown in Fig.4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 The four regions in the g-rH plane. The curves bounding these regions are

rH = 1, rH = g1/2 and rH = g�1. . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Graph of Fm,n(g)/F3,1(g) vs. tan�1 g for various (m,n) in region I. The labels

are as follows: thin dots for F0,0, thick dots for F1,0, small thin dashes for F2,0,

small thick dashes for F3,0, large thin dashes for F0,1, large thick dashes for F1,1,

continuous thin line for F2,1 and continuous thick line for F3,1. The four graphs,

clockwise from top left, correspond to rH = 1, 1.25, 1.5 and 2 respectively. . . 101

4.3 Region of instability of Fm,0 for 0  m  3 in the region II of the g � rH plane.

Clockwise from top left the diagrams are based on the interpolating function

F0,0, F1,0, F2,0 and F3,0 respectively. . . . . . . . . . . . . . . . . . . . . . . . 101

4.4 Graph of Fm,0(g)/F3,0(g) vs. tan�1 g for various m in region II. The labels are

as follows: thin dots for F0,0, thick dots for F1,0, continuous thin line for F2,0

and continuous thick line for F3,0. The four graphs, clockwise from top left,

correspond to rH = 1, 1.25, 1.5 and 2 respectively. . . . . . . . . . . . . . . . . 103

5



A.1 Scattering experiment where initial state which is a direct product of single

particle states A,B,C transform to the final state consists of single particle states

D and E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.2 Factorisation of scattering amplitudes involving 5 external states into product

of scattering amplitudes involving 4 and 3 external states when (k1+k2+k3)2 =

(k)2 = �m2
p where mp is the mass of physical state in the theory. . . . . . . . 126

A.3 Pictorial representation of perturbative series corresponds to the scattering of 3

closed strings whose asymptotic states are represented by black thick ellipses. . 127

A.4 Riemann surfaces ⌃h1 and ⌃h2 with unit discs around points p1 on ⌃h1 and p2

on ⌃h2 with respect to the local coordinates z1 around p1 and z2 around p2. . . 153

A.5 Two annuli having inner radius |q| and outer radius 1 obtained by removing a

disc of radius |q| from D1 and D2 where q is a complex parameter. . . . . . . . 153

A.6 Plumbing fixture produces Riemann surface ⌃h with genus h = h1 + h2 with 2

less number of punctures than that total number of punctures which were there

on ⌃h1 and ⌃h2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6



CHAPTER1
Introduction

Physics is a collective e↵ort to explain and predict wide range of physical phenomena using

minimal set of fundamental laws. The tenets of physics relevant to sub-atomic scale are quan-

tum mechanics and special theory of relativity. Quantum mechanics describes the nature of

physical objects and special theory of relativity explains the nature of spacetime where these

objects exist. In order to explain phenomena relevant to sub-atomic scale we require a frame-

work which can combine the principles of quantum mechanics and special theory of relativity.

Quantum field theory provides such a frame work to combine the principles of quantum me-

chanics and special theory of relativity. Within the framework of quantum field theory we

could successfully develop and unify the theories of electromagnetic interaction, weak interac-

tion and strong interaction. This unified theory is known as the standard model of particle

physics. Phenomena occurring in the cosmological scale require deep understanding of gravity

and is based on the principles of general relativity. Unfortunately quantum field theory could

not facilitate the consistent inclusion of general relativity in a straight forward manner.

String theory attempts to provide a fundamental description of nature by providing a frame-

work to unify everything we know about nature, including all particles and forces between

them, in a consistent quantum theory. Basic objects in string theory are one dimensional

extended objects known as strings. Harmonics of these vibrating strings correspond to elemen-
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tary particles with di↵erent masses and quantum numbers. Though string theory has passed

several non-trivial mathematical consistency checks, so far there is no experimental evidence

for string theory. This can be attributed to the lack of experimental facilities which can detect

quantum e↵ects of gravity. Such a situation is common for any theory of quantum gravity.

Interestingly string theory can play crucial role in explaining phenomena which are experi-

mentally verifiable using current experimental facilities. Consider the phenomena of quan-

tum phase transition. Quantum phase transitions are believed to be important in describing

superconducting-insulator transitions in thin metallic films. In some cases near critical point

quantum phase transition can be described using strongly interacting field theories. In order to

to explain quantum phase transition at critical point we need to solve strongly interacting field

theories. But traditional methods in quantum field theory can not solve strongly interacting

quantum field theories. Surprisingly string theory framework unfolded the magical equivalence

between certain conformal field theories and quantum theory of gravity in anti-de Sitter space-

time known as AdS/CFT or gauge/gravity correspondence. Gauge/gravity correspondence is

a unique approach to strongly coupled field theories. This correspondence states that every

sensible quantities in strongly interacting quantum field theory can be calculated by doing a

perturbative computation in string theory. In this sense a detailed understanding of perturba-

tive string theory is crucial in understanding real world phenomena.

Our current understanding of string theory is based on three aspects: perturbative string

theory, non-perturbative string dualities and gauge/gravity correspondence. This thesis delve

into all these three aspects from the perturbative side with the aim of an improved understand-

ing of string theory. Below we give brief introduction to the issues addressed and summary of

the results reported in this thesis.

8



e�(a) (b)

e+ e+

e�

�

e�

e+ e+

e�

Figure 1.1: Scattering of electron and positron from the point of view of (a) quantum field
theory and (b) string theory.

1.1 Mass Renormalization in String Theory

Primary quantity of interest in string theory are string amplitudes which are the proposed

scattering amplitudes in string theory. Scattering amplitudes give the probability of producing

di↵erent final products at the end of scattering of di↵erent particles. For example consider

scattering of an electron and a positron. A Feynman diagram corresponding to this process is

shown in figure 1.1.a. According to string theory electron and positron are specific vibration

of strings. So from the point of view of string theory Feynman diagram looks as figure1.1.b. In

quantum field theory we compute the scattering amplitude corresponding to the scattering of

electron and positron by evaluating the Feynman diagrams using Feynman rules or Feynman

prescription. In string theory we compute this scattering amplitude by evaluating string dia-

grams using string theory analogue of Feynman prescription known as Polyakov prescription.

String theory contains infinite number of elementary particles because string has infinite num-

ber of harmonics. But Polyakov prescription computes scattering amplitudes directly only for

those particles which do not receive mass renormalization. Examples of such states are mass-

less gauge particles and BPS states. But a generic state in string theory receives correction to

its mass from quantum e↵ects. Interestingly for many states this is not a problem since they

appear as single particle intermediate states in the S-matrix of massless and/or BPS external

states. Renormalized masses and S-matrix elements of those states can be found by examining

the locations and residues of the poles of the S-matrix of massless and/or BPS states. For
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this reason direct computation of the S-matrix of massive string states has not received much

attention. However this does not always work, e.g. if the massive state under consideration

carries a conserved charge that is not carried by any of the massless or BPS states, then the

former cannot appear as a single particle intermediate state in the S-matrix of the latter. For

this reason it seems important to find a more direct approach to computing the mass renor-

malization and S-matrix elements of massive string states.

There are two related but independent problems which arise in the computation of mass renor-

malization in string theory. First we have to define the analog of the o↵-shell Green’s function

in string theory. This requires giving up the conformal invariance of vertex operators and

hence is ambiguous. Second is related to the fact that string perturbation theory is a de-

generate perturbation theory with high amount of degeneracy. Because of this degeneracy

renormalization leads to the mixing of physical states with unphysical states and hence the

definition of the physical state needs to be modified carefully. In chapter 2 we will address this

issue by restricting ourselves to a special class of states which under renormalization do not

mix with unphysical states due to some global symmetries and will show that renormalized

mass and S-matrix elements of these special states are unambiguous [1]. In chapter 3 we will

generalize this procedure to general states in string theory [2]. We will give systematic pre-

scription for perturbatively finding the modified physical states and show that renormalized

mass and S-matrix elements computed using the modified physical states are unambiguous.

Concise summary of background that may be needed for a clear understanding of these two

chapters are given in appendix A and appendix B with the aim of making the discussion as

self contained as possible.

1.2 S-duality Improved String Perturbation Theory

Our current understanding of string theory is based mostly on perturbation expansion in the

string coupling. Furthermore this perturbation expansion is believed to be an asymptotic ex-
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pansion. For this reason one might worry that our ability to compute anything in string theory

may be limited to very narrow corners of the full string theory landscape - regions in which the

theory admits a description as a very weakly coupled string/M/F-theory. Ref. [44] suggested

making use of S-duality of string theory and suitable interpolation formula to translate the

weak coupling results in string theory to approximate results for physical quantities over the

entire range of string coupling constant. As a specific example, the mass of the stable non-BPS

particle in ten dimensional type I / SO(32) heterotic string theory [54] was considered. Using a

suitable formula that interpolates between the results for this mass in weakly coupled SO(32)

heterotic string theory and weakly coupled type I string theory, an approximate formula for

the mass of this state was derived over the entire range of string coupling of SO(32) heterotic

/ type I string theory compactified on a circle.

Consider the compactification of SO(32) heterotic string theory on a circle. Compactifica-

tion will introduce BPS winding states into the theory whose total charge is the same as that

of the charge carried by the non-BPS state under study. Thus the latter can decay into the

former if the mass of the non-BPS state is larger than the sum of the masses of the BPS states

to which it could possibly decay. If we do not switch on any Wilson line so that the SO(32)

gauge group is unbroken then the moduli space is two dimensional, parametrized by the string

coupling and the radius of compactification. In chapter 4 we will address this problem of

determining the stability of non-BPS particle using this interpolation technique which exploit

the S-duality between type I and SO(32) heterotic string theory [3]. We will use perturba-

tive results in the compactified string theory and a suitable generalization of the interpolation

formula used in [44] to derive expression for the mass of the non-BPS state in the full two

dimensional moduli space. With the help of the approximate formula for the mass we will

determine the part of the region of the two dimensional moduli space in which the non-BPS

state is unstable.
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1.3 Simplest Gauge-String Duality

Gauge/string duality is a statement of equivalence between certain quantum field theories and

quantum theory of gravity in certain spaces. Attractive feature of this equivalence is that

it gives a non-perturbative definition of quantum theory of gravity in certain spaces. Also

it provides a unique method for solving strongly interacting quantum field theory. Although

di↵erent examples of gauge/string duality are well studied by now, the underlying mechanism

is still not well understood. A simple example of how the Feynman diagrams for an n-point

gauge correlator glue up into an n-point string scattering amplitude in a dual space-time can

potentially provide a lot of insight into how gauge-string duality works.

A candidate proposal for the “simplest gauge-string duality” was put forward in [67]. It relates

the Gaussian one matrix integral in a large N ’tHooft limit to the A-model topological string

theory on CP1 [68], [69]. This conjectured duality was constructed using Gopakumar’s pre-

scription for systematically constructing the string theory dual of free field theory [76], [77], [79]

with the modification suggested by Razamat for the case of matrix models [80], [81]. If this

duality is correct then gauge invariant correlators of the single trace operators can be expected

to be related to physical vertex operator scattering amplitudes in the dual topological string

theory. In chapter 5 we will compute a class of n-point correlators for single trace operators in

Gaussian matrix model and compare them with the corresponding correlators in the dual topo-

logical string theory [4]. Brief discussion on gauge/string duality and Gopakumar prescription

is given in appendix C. Detailed calculations are given in appendix D.
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CHAPTER2
Mass Renormalization in String Theory:

Special States

2.1 Introduction

String theory unlike conventional quantum field theory is not based on a Lagrangian. Key-

stone of string theory is a prescription for directly computing string amplitudes, which are the

proposed S-matrix elements of string theory, known as Polyakov prescription.

Path integral formulation of string theory requires summing over all possible world-sheets

traced by the relativistic strings in space-time with each surface weighted by a unimodular

complex number whose phase is the area of the corresponding world-sheet. Polyakov in his

seminal papers [11, 12] showed that this summation over random two dimensional surfaces

reduces to two dimensional exactly solvable conformal field theory on Riemann surfaces. This

connection was established by introducing a metric on each world-sheet which matches with

the metric on world-sheet induced from space-time only when string propagates according to

the laws of classical mechanics. Net e↵ect of this is to introduce an unphysical degree of free-

dom, Liouville mode, into the problem which disappears from the world-sheet action due to

it’s Weyl invariance. Demanding Weyl invariance even at the quantum level makes sure that
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Liouville mode will not reappear in the action due to quantum correction. This demand im-

pose stringent condition on the dimension and geometry of the background space-time through

which string propagates.

In conformal field theory language an asymptotic state of string can be mapped to an op-

erator known as vertex operator constructed using fields in conformal field theory. Using these

vertex operators Vai , i = 1, ..., n we can compute the n-point string amplitude corresponding

to scattering of n-asymptotic states having quantum numbers a1, ..an as follows,

A(n)
a1,...,an

=
X

g

Z

d(moduli) h (Ghost insertions)
n
Y

i=1

Vai i⌃g (2.1.1)

where subscript ⌃g indicates that we need to compute the correlator of conformal field theory

on genus g Riemann surface ⌃g, the integration is over all distinct Riemann surfaces having

genus g and the summation is over the genus of world-sheet. String amplitudes defined in

this way are independent of Liouville mode only if we demand that the vertex operators cor-

responding to physical asymptotic states are conformal (0, 0) primaries. In BRST formalism

this is equivalent to the demand that vertex operator corresponding to physical states should

be annihilated by BRST charge. Space time interpretation of this demand is that physical

states should satisfy classical mass-shell condition. Thus Polyakov prescription gives a well de-

fined procedure for computing S-matrix elements involving BPS or a class of massless external

states -whose masses are protected from renormalization - to any order in perturbation theory.

Attractive feature of string theory is that this perturbation expansion is free from ultraviolet

divergences [5–10].

However this procedure for computing S-matrix elements breaks down for generic states in

string theory. This is due to the fact that for general states loop corrections generate (ul-

traviolet finite) mass renormalizations, and hence in order to compute the physical S-matrix

elements we have to shift the external momenta to their renormalized on-shell values. On the

14



other hand string perturbation theory, which is based on world-sheet conformal invariance,

requires the vertex operators representing external states to carry momenta that satisfy the

tree level on-shell condition.

For many states this is not a problem since they appear as single particle intermediate states

in the S-matrix of massless and/or BPS external states and hence their renormalized masses

and S-matrix elements can be found by examining the locations and residues of the poles of the

S-matrix of massless and/or BPS states. For this reason direct computation of the S-matrix of

massive string states has not received much attention. However this does not always work, e.g.

if the massive state under consideration carries a conserved charged that is not carried by any

of the massless or BPS states, then the former cannot appear as a single particle intermediate

state in the S-matrix of the latter. For this reason it seems important to find a more direct ap-

proach to computing the mass renormalization and S-matrix elements of massive string states.

There are two related but independent problems which arise in the computation of mass renor-

malization in string theory. First we have to define the analog of the o↵-shell Green’s function

in string theory. This requires giving up the conformal invariance of vertex operators and hence

is ambiguous. Second is related to the fact that string perturbation theory is a degenerate per-

turbation theory with high amount of degeneracy. Because of this degeneracy renormalization

leads to the mixing of physical states with unphysical states and hence the definition of the

physical state needs to be modified carefully. By choosing a special class of states we avoid the

second problem. These special class of states do not mix with unphysical states due to some

global symmetries. However we still need to deal with the first problem, ı.e. the ambiguity in

the definition of the o↵-shell Greens function. we will show that although the o↵-shell Greens

functions are ambiguous, the renormalized mass and S-matrix elements of special states com-

puted from them are free from these ambiguities. For general states we need to address both

problems. We will give systematic prescription for perturbatively finding the modified physical
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states and show that renormalized mass and S-matrix elements computed using the modified

physical states are unambiguous.

The chapter is organised as follows. In §2.2 we make precise the problem associated with

mass renormalization in string theory. In §2.3 we introduce the special class of states for which

we address the problem in this chapter. In §2.4 we describe how to compute the renormal-

ized mass of these special states and also show that this renormalized mass is free from any

ambiguity. In §2.5 we show how to compute the S-matrix elements of these special states,

and demonstrate that they are also free from ambiguities. We end in §2.6 with a discussion

of our results, extensions to heterotic and superstring theories and possible generalizations.

Concise summary of string perturbation theory and closed bosonic string field theory is given

in appendix A and appendix B. This chapter is based on [1].

Various other approaches to studying mass renormalization in string theory can be found

in [13–26]

2.2 The question

Consider a string theory amplitude with n-external states representing particles carrying mo-

menta k1, · · · kn and other discrete quantum numbers a1, · · · an with tree level massesma1 , · · ·man .

Then the momenta ki satisfy the tree level on-shell condition k2
i = �m2

ai
, this is needed to en-

sure the BRST invariance of the vertex operators in the world sheet theory. The world-sheet

computation, involving correlation functions of these vertex operators integrated over the mod-

uli spaces of (punctured) Riemann surfaces, yields the result for what in a quantum field theory
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can be called ‘truncated Green’s function on classical mass shell’:1

R(n)
a1···an(k1, · · · kn) ⌘ lim

k2i!�m2
ai

F (n)
a1···an(k1, · · · kn) ,

F (n)
a1···an(k1, · · · kn) ⌘ G(n)

a1···an(k1, · · · kn)
n
Y

i=1

(k2
i +m2

ai
) , (2.2.2)

where G(n)
a1···an(k1, · · · kn) correspond to the momentum space Green’s function in the quantum

field theory. This is similar to but not the same as the combination that appears in the

expression for the S-matrix in a quantum field theory

S(n)
a1···an(k1, · · · kn) = lim

k2i!�m2
ai,p

G(n)
a1···an(k1, · · · kn)

n
Y

i=1

{Z�1/2(ki, ai)(k
2
i +m2

ai,p
)} , (2.2.3)

where mai,p is the physical mass of the i-th particle, defined as the location of the pole as

a function of �k2 in the untruncated two point Green’s function G(2) and Z(ki, ai)’s are the

residues at these poles.

For simplicity we have ignored the mixing between di↵erent states under wave-function renor-

malization in writing down (2.2.3), but we shall discuss the general case now. If we consider the

set of all fields whose tree level masses are all equal to m then the two point Green’s function

G(2)
ab (k, k

0) for all these fields is described by the matrix

G(2)
ab (k, k

0) = (2⇡)D+1�(D+1)(k + k0)Z1/2(k)ac(k
2 +M2

p )
�1
cd (Z

1/2(�k))Tdb , (2.2.4)

where M2
p is the mass2 matrix and Z1/2(k) is the wave-function renormalization matrix, the

latter being free from poles near k2 + m2 ' 0. The sum over c, d are restricted to states

which have the same tree level mass m as the states labelled by the indices a, b. D + 1 is

the total number of non-compact space-time dimensions. We can diagonalize M2
p and absorb

1We have absored all factors of i ⌘
p
�1 and minus signs into the definition of G(n) and R(n).
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the diagonalizing matrices into the wave-function renormalization factor Z1/2(k) to express

M2
p as a diagonal matrix. These eigenvalues, which we shall denote by m2

a,p, are the squares

of the physical masses. Taking into account the non-diagonal nature of the wave-function

renormalization factor Z, (2.2.3) is modified to

S(n)
a1···an(k1, · · · kn) = lim

k2i!�m2
ai,p

G(n)
b1···bn(k1, · · · kn)

n
Y

i=1

{Z�1/2
i (ki)ai,bi(k

2
i +m2

ai,p
)} , (2.2.5)

where Z�1/2
i is the inverse of the matrix Z1/2 introduced in (2.2.4) for the i-th external state.

In this expression we can interpret the sum over bi’s as sum over all fields in the theory if we

define Z1/2(k)ab and Z�1/2(k)ab to be zero when a, b label fields with di↵erent classical mass.

At tree level Z = 1, M2
p = m2 I and hence the R(n) defined in (2.2.2) and S(n) defined in

(2.2.5) agree. In general however R(n) and S(n) are di↵erent. While S(n) defined in (2.2.5) is

the physically relevant quantity, string theory directly computes R(n) defined in 2.2.2. This is

a serious trouble for states receiving mass renormalization. Say external state with quantum

number ai and tree level mass mai receives mass renormalization. Then beyond one loop ra-

diative correction introduces series of 1
k2i+m2

ai

with k2
i +m2

ai
= 0 in R(n) which makes the string

amplitude ill-defined. Thus the question arises: how can we use string theory to compute

on-shell S-matrix elements beyond tree level? At a more basic level: how can we use string

theory to calculate the physical mass mai,p of the i-th particle?

When the external strings represent massless gauge particles, the situation improves dra-

matically. In this case gauge symmetry prevents mass renormalization and hence we have

m2
ai,p

= m2
ai

= 0. As a result R(n) and S(n) di↵er only by the wave-function renormalization

factor Z. This can be fixed by using analyticity property of the S-matrix, e.g. the S-matrix

should factorize into the product of lower point S-matrices when the external momenta are

such that some internal line could become on-shell. Thus string world-sheet computation can
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be used to compute the S-matrix of massless external states.

Now typically in string theories many massive string states appear as one particle interme-

diate states in the scattering of massless states and as a result the S-matrix of the massless

states can have poles when the square of appropriate combination of external momenta ap-

proaches the squared mass of a massive state. The location of this pole gives information

about the mass of the massive state while the residue at this pole contains information about

the S-matrix involving massive external states. However this procedure does not always work.

Some string theories contain massive states which do not appear as one particle intermediate

states in the scattering of massless particles. We shall now describe some examples of such

situations.

• Consider bosonic string theory compactifed on a circle S1. In this case a state carrying

a winding number (and/or momentum) along S1 cannot be produced as single particle

intermediate state in the scattering of massless states which do not carry any momentum

and winding charge.2

• Another notable example is SO(32) heterotic string theory which contains massive states

belonging to the spinor representation of SO(32). They cannot appear as single particle

intermediate states in the scattering of massless external states which are all in the adjoint

or singlet representation of SO(32). Thus the S-matrix element involving these particles

cannot be computed by examining any massless S-matrix element near its poles.

In order to deal with these cases we shall try to develop a di↵erent strategy – compute the

mass renormalization directly. We shall focus on a special class of states – which we shall call

special states – for which the analysis simplifies. In the following section we shall be describing

these special states and their relevance to the problems mentioned above.

2Such states could still appear in pairs in the intermediate channel, producing a cut in the S-matrix of
massless states, and by examining where the cut begins, we can find the mass of the intermediate state. But
it is much harder to identify cuts than poles in the S-matrix, and we shall not explore this option.
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2.3 Special States

Let us suppose that we are dealing with a string theory with D + 1 non-compact dimensions,

with SO(D, 1) Lorentz invariance. Then while discussing the mass renormalization of a massive

state we can go to the rest frame of the particle so that the spatial component ~k of the

momentum vanishes. In this frame we consider physical states described by vertex operators

of the form

c c̄ e±ik0X0
V (2.3.6)

where c, c̄ are ghost fields and V is a dimension (h, h) primary made of the compact coordinates

and the oscillators of the non-compact spatial coordinates. The on-shell condition on k0 is

k0 = m, m2 = 4(h� 1) , (2.3.7)

in the ↵0 = 1 units. The operators V will form a finite dimensional representation of the

SO(D) little group. If the world-sheet theory has additional global symmetry group G asso-

ciated with the compact directions then the operators V will also belong to finite dimensional

representation of this symmetry group.

Now consider all operators of the form e±ik0X0O whereO’s are dimension (h�1, h�1) operators
made of the ghost fields, compact coordinates and oscillators of X0 and the non-compact spa-

tial coordinates. They can be organised into irreducible representations of SO(D)⇥G. Among

them the operators which are not of the form (2.3.6) will be called unphysical vertex operators

at mass level m.3 We shall define special vertex operators to be a set of vertex operators of

the form given in (2.3.6) belonging to those irreducible representations of the symmetry group

SO(D) ⇥ G such that there are no unphysical vertex operator at mass level m transforming

in these representations. Put another way, if the unphysical vertex operators at mass level m

3Technically the unphysical operators described here can the divided into two kinds, BRST trivial ones and
states which are not invariant under BRST transformation. The former are called pure gauge and the latter
are called unphysical. We shall not need to make this distinction, and call all such states unphysical.
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transform in certain irreducible representations R1, R2, · · · then the special vertex operators

are those physical states which transform in representations other than R1, R2, · · ·. In this

case the two point function of any special vertex operator and an unphysical operator on any

Riemann surface will vanish.

We shall now give some examples of special vertex operators.

• Consider bosonic string theory in 25+1 dimensions. We consider vertex operators of the

form (2.3.6) with V given by

S
⇥

@X i1 · · · @X in @̄Xj1 · · · @̄Xjn
⇤

. (2.3.8)

where X i for 1  i  25 are the spatial coordinates and S denotes the operation of

taking the symmetric traceless part of the product. This belongs to a rank 2n symmetric

traceless representation of SO(25) – also known as the leading Regge trajectory. In order

to get an unphyical state at the same mass level we have to replace some of the @X i or

@̄Xj by ghost or X0 excitations and/or replace the product of some of the @X i’s and/or

@̄X i’s by higher derivatives of X i’s. This clearly reduces the rank of the tensor and hence

the unphysical states cannot belong to the rank 2n symmetric tensor representation of

SO(25). Thus vertex operators of the form (2.3.8) are special.

• Consider bosonic string theory compactified on a circle. Let Y be the coordinate along

the compact direction, and YL and YR be its left and right-moving components on the

world-sheet. We now consider the vertex operator of the form (2.3.6) with

V = e±i(n/R�wR)YL/2e±i(n/R+wR)YR/2 S
⇥

@̄X i1 · · · @̄X ip@Xj1 · · · @Xjq
⇤

, p� q = nw ,

(2.3.9)

where X i for i = 1, · · · 24 denote the non-compact directions and S stands for the pro-

21



jection into rank p + q symmetric traceless representation of SO(24). Following the

same argument as before it follows that there are no unphysical vertex operators at this

mass level carrying n units of momentum, w units of winding and belonging to the rank

p + q symmetric traceless representation of SO(24). Thus these are also special states

according to the definitions given above.

• Finally we note that the stable non-BPS states of SO(32) heterotic string theory- which

correspond to the lowest mass states in the spinor representation of SO(32)-are also

special states. Besides the ghost fields and the e±ik0X0
factor, the left-moving part of

the vertex operator is given by the SO(32) spin field of dimension 2, and has no further

oscillator excitations. Level matching requires that the right-moving part of the Neveu-

Schwarz (NS) sector vertex operator corresponds to level 3/2 excitations above the NS-

sector ground state. We can take this to be  i j k where  i for 1  i  9 are the

world-sheet superpartners of the 9 non-compact bosonic coordinates. This belongs to

the totally anti-symmetric rank 3 tensor representation 84 of SO(9). It is easy to see

that any other unphysical state at this mass level, obtained by replacing some of the  i’s

by ghost or  0 oscillators or derivatives of  i or bosonic coordinates cannot belong to

the 84 representation of SO(9). Thus these states are special states.

The reader might have noticed that there is a close relationship between special states which

are prevented from mixing with the unphysical states due to global symmetry on the world-

sheet and the states which cannot appear as poles in the scattering of massless states due to

conserved charges. Indeed the lowest mass states in each of the examples of the latter kind

given earlier also correspond to special states. On general grounds one expects that in every

charge sector we can construct a set of special states by saturating the required oscillator levels

by (anti-)symmetric products of bosonic (fermionic) fields associated with the non-compact

coordinates. For this reason we shall focus on computation of physical mass and S-matrix

elements involving these special states and massless states, since the renormalized mass and

S-matrix elements of all other states can be obtained from the locations of the poles of the
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S-matrix involving the special states and massless states.

2.4 Mass renormalization

If we work in the rest frame, then the o↵-shell continuation of a special vertex operator would

correspond to deforming k0 away from m. This keeps the vertex operator primary but it no

longer has dimension 0. Thus in order to define the correlation functions of such vertex oper-

ators on a Riemann surface we need to make a choice of local coordinate around every point

on the Riemann surface. If z denotes some reference cordinate system on the Riemann surface

then the local coordinate w around some point z = z0 is described by some function f(w; z0)

that maps the w plane to the z plane around z = z0. We take f(0; z0) = z0 and f(w; z0) to

be analytic around w = 0. Thus f depends on both, the choice of the reference coordinate

system z and the choice of the local coordinate system w. The vertex operator at z0 is inserted

using the local coordinate w, which corresponds to inserting its conformal transformation by

the function f(w; z0) in the z coordinate system [27]. Thus if the o↵-shell vertex operator

is a primary operator of dimension (�, �) then we multiply it by (f 0(0; z0))�(f 0(0; z0))� while

inserting it into the correlation function in the z coordinate system, f 0 being the derivative of

the function f(w; z0) with respcet to w. For more general vertex operator representing general

o↵-shell string state the same procedure would work although the conformal transform of the

vertex operator will be more complicated.4. This definition makes the correlation function in-

variant under a change of reference coordinate system z, but dependent on the choice of local

coordinates w, ı.e. the function f(w; z0). As a result, if we define o↵-shell strng amplitudes

by integrating such correlation functions over the moduli space, the result will depend on the

choice of local coordinates.

In a sense the situation in string theory is not very di↵erent from that in a gauge theory.

In gauge theory for computing the mass renormalizaton of a massive charged particle we have

4For related approaches to defining o↵-shell amplitudes in string theory, see [28–31]

23



to first compute the o↵-shell propagator carrying momentum k = (k0,~0) and then look for

its poles in the k0 plane. The o↵-shell propagator is not gauge invariant; however the loca-

tion of its pole in the k0 plane is gauge invariant and leads to a gauge invariant definition of

the renormalized mass. Thus a possible strategy in string theory will be to consider o↵-shell

propagator that depends on the choice of local coordinates, look for its poles in the k0 plane

and prove that the location of the pole is independent of the choice of local coordinates even

though the propagator itself is not gauge invariant. If we had an underlying string field the-

ory then this analysis will be parallel to that in an ordinary gauge theory. This can be done

in principle for bosonic string theory where a complete closed string field theory is known [32].5

At present there is no known string field theory for closed heterotic and superstring theo-

ries except a closed heterotic string field theory at tree level [33]. Nevertheless we can try to

extract the relevant features of the o↵-shell string theory amplitudes from a bosonic string field

theory and then develop a general proof of indpendence of the renormalized mass of the choice

of local coordinates that does not require the existence of an underlying string field theory.

The essential features seem to be the following:

1. Bosonic string field theory gives a triangulation of the punctured Riemann surface equipped

with local coordinate system at each puncture. Using this local coordinate system we

can define o↵-shell amplitudes.

2. Near boundaries of the moduli space where a Riemann surface of genus n degenerates

into two Riemann surfaces of genus n1 and n2 = n � n1 connected by a long handle,

the choice of the local coordinates of the original Riemann surface matches with the

choice of the local coordinates of the lower genus surfaces. The precise meaning on ‘near

boundaries of the moduli space’ will be made clear later (see item 6 in the discussion in

§2.4.2 (above eq.(3.4.2)).

5Due to the presence of tachyon, the mass renormalization in this case is infrared dvergent.
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For an o↵-shell amplitude induced from string field theory the above requirements are auto-

matically satisfied, but even in the absence of string field theory we could try to choose local

coordinates at the punctures consistent with the above criteria. Indeed even before the con-

struction of fully covariant closed string field theory, such choices of local coordinates were

explored (see e.g. [34]). Given such a choice of local coordinates, we can define o↵-shell two

point functions in string theory and define the mass to be the location of the pole in the k0

plane. The important point is to show that this definition is independent of the choice of local

coordinates.

From now on we shall restrict our analysis to bosonic string theory. We discuss possible

generalizations to superstring and heterotic string theories in §2.6.

2.4.1 Analysis of poles of o↵-shell two point function

Let us denote the set of all the special vertex operators by cc̄Vi eik0X
0
and the corresponding

states as

c1c̄1|Vii ⌦ |k0,~k = 0i . (2.4.1)

In the zero mode sector of non-compact bosons labelled by (k0,~k), the states satisfy the usual

�-function normalization. The operaors Vi will be chosen so that in the rest of the matter-ghost

CFT, they satisfy the orthonormality relation

hVi|c�1c̄�1c0c̄0c1c̄1|Vji = �ij . (2.4.2)

Let F (k) be the o↵-shell two point function of special states obtained by summing over all

genera. If there are np special states at mass level m then F (k) is an np ⇥ np matrix satifying

F (k) = F (�k)T , (2.4.3)
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where F T denotes transpose of F . Then the o↵-shell propagator of special states is given by6

1

k2 +m2
+

✓

1

k2 +m2

◆2

F (k) , (2.4.4)

where m is the tree level mass. The first term represents the tree level propagator whereas the

first factor of the second term is the e↵ect of the two external propagators. F (k) admits a genus

expansion of the form
P

n Fng2n in string coupling g, with higher genus contributions having

higher order poles at k2+m2 = 0 from regions of the moduli space where the Riemann surface

degenerates into two or more Riemann surfaces of lower genera connected by long handles,

with the two external vertices lying on the two lower genus Riemann surfaces at the two ends.

We expect that after resummation, (2.4.4) may be written as Z1/2(k) (k2 +M2
p )

�1(Z1/2(�k))T

for some physical mass2 matrix M2
p and wave-function renormalization matrix Z1/2(k) which

has no pole near k2 = �m2. This will be seen explicitly in (2.4.11)-(2.4.15) below. We can

take M2
p to be diagonal by absorbing the diagonalizing matrix into the definition of Z1/2(k).

If m2
a,p for a = 1, 2 · · ·np are the eigenvalues of the mass2 matrix M2

p then the physical poles

of the propagator are at k2 = �m2
a,p.

Now consider the e↵ect of changing the local coordinate system by an infinitesimal amount.

Let the change in F to first order be �F . Then in order that the location of the poles of the

propagator in the k2 plane does not shift, the net change in (2.4.4) must be of the form of an

overall multiplicative factor that renormalizes Z1/2(k). Thus we require

1

k2 +m2
+

✓

1

k2 +m2

◆2

(F (k) + � F (k))

= (1 + �Y (k))

(

1

k2 +m2
+

✓

1

k2 +m2

◆2

F (k)

)

(1 + �Y (�k))T , (2.4.5)

6We have removed an overall factor of �i and also absorbed a factor of �i into the definition of F (k).
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for some matrix �Y (k) whose genus expansion is free from any poles at k2 +m2 = 0. Equiva-

lently we can write

�F (k) = (k2 +m2) �Y (k) + (k2 +m2) (�Y (�k))T + �Y (k)F (k) + F (k) �Y (�k)T . (2.4.6)

At each genus the two point function �F receives two contributions – from the change of local

coordinates at the vertex carrying momentum k and the change in local coordinates at the

vertex carrying momentum �k. Both these contributions have an explicit factor of k2 + m2

due to the fact that when k2 +m2 = 0 the vertex is on-shell and hence there is no dependence

on local coordinates. In concrete terms, since the o↵-shell vertex operator of a special state is

a primary of dimension ((k2 +m2)/4, (k2 +m2)/4), if we insert such an operator at the origin

w = 0 of the local cordinate system, and then change the local coordinate from w to w+ ✏(w)

then we pick up a net multiplicative factors of (1 + ✏0(0))(k
2+m2)/2 ' (1 + (k2 + m2)✏0(0)/2).

Thus we introduce the function �H via the relations

�F (k) = (k2 +m2) �H(k) + (k2 +m2) (�H(�k))T , (2.4.7)

where the first term is the e↵ect of the change of local coordinates at the vertex carrying

momentum k and the second term is the e↵ect of change of local coordinates at the vertex

carrying momentum �k. The rules for computing �H are the same as that of F except that

at one of the punctures the vertex cc̄Vi is replaced by ✏0(0)cc̄Vi/2. We shall call the puncture

where the e↵ect of change of local coordiantes is inserted the ‘special puncture’. Eq.(2.4.6) can

now be satisfied by choosing �Y (k) such that

�H(k) = �Y (k) + (k2 +m2)�1 �Y (k)F (k) . (2.4.8)

Our goal will be to show the existence of �Y (k) satisfying (2.4.8) such that the genus expansion

of �Y (k) does not have any pole at k2 +m2 = 0.
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We now claim that there exist quantities eF and � eH with the properties that the genus expan-

sion of neither of them has any poles near k2 +m2 = 0, both have genus expansion starting at

one loop and F and �H can be expressed in terms of eF and � eH as

F = eF (1� (k2 +m2)�1
eF )�1 , (2.4.9)

�H = � eH(1� (k2 +m2)�1
eF )�1 . (2.4.10)

Let us first proceed assuming this to be true. From eqs.(2.4.9) and (2.4.4) we see that the full

propagator is given by

(k2 +m2)�1 + (k2 +m2)�2
eF (1� (k2 +m2)�1

eF )�1 = (k2 +m2 � eF (k))�1 . (2.4.11)

If we choose a real basis of fields in position space then we have eF (k)† = eF (k) and eF (k)T =

eF (�k). In this case by choosing suitable unitary matrix U(k) satisfying U(�k)T = U(k)† we

can express eF (k) as U(k) eFd(k)U(k)† where eFd(k) is a diagonal matrix satisfying eFd(�k) =

eFd(k). Furthermore the genus expansion of U(k) is free from poles at k2 +m2 = 0 since eF (k)

has this property. We can now express (2.4.11) as

U(k)(k2 +m2 � eFd(k))
�1U(k)† = U(k)(k2 +m2 � eFd(k))

�1U(�k)T . (2.4.12)

Let M2
p denote the diagonal matrix that describes the locations of the zeroes of the eigenvalues

of the diagonal matrix k2 + m2 � eFd(k) in the �k2 plane. We can solve for this iteratively

starting with the leading order solution k2 = �m2. Then we can write

(k2 +m2 � eFd(k))
�1 = Xd(k)(k

2 +M2
p )

�1 , (2.4.13)
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whereXd(k) is a diagonal matrix whose genus expansion does not have any pole near k2 = �m2

and satisfies Xd(�k) = Xd(k). Defining

Z1/2(k) = U(k)
p

Xd(k) , (2.4.14)

satisfying Z1/2(k)† = Z1/2(�k)T we can express the propagator (2.4.11) as

Z1/2(k) (k2 +M2
p )

�1 Z1/2(�k)T . (2.4.15)

The genus expansion of Z1/2(k) does not have any poles at k2+m2 = 0 since neither U(k) nor

X1/2
d (k) has such poles.

Now using eq.2.4.9 we can express (2.4.10) as

�H = � eH(1 + (k2 +m2)�1F ) . (2.4.16)

Comparing this with (2.4.8) we get

�Y = � eH . (2.4.17)

Since � eH does not have any pole near k2 +m2 = 0 this establishes that �Y also does not have

any pole near k2 +m2 = 0. This in turn establishes the desired result that the locations of the

poles of (2.4.4) in the k2 plane do not change under change in local coordinates.

2.4.2 Explicit construction of eF and � eH

It now remains to prove the existence of pole free eF and � eH satisfying 2.4.9 and 2.4.10. We

shall do this in steps.

1. First we extend the definitions of �H and F where we allow the external states inserted

at the punctures (except at the special puncture) to be general string states of ghost
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number two,7 inserted using the same local coordinate system as before. This makes F

into an infinite dimensional square matrix which we shall call F and �H into an np⇥
infinite dimensional matrix (since one of its two punctures is special) which we shall call

�H.

2. We now use another insight from string field theory [32]: it provides us with a triangu-

lation of the moduli space in which the full moduli space of a genus n Riemann surface

with two punctures can be decomposed into a ‘one particle irreducible’ region Rn and the

rest. The region Rn has the property that it does not contain any boundary of the mod-

uli space in which a genus n Riemann surface degenerates into a pair of two punctured

lower genus Riemann surfaces connected by a long handle, with each side containing

one of the original punctures. The rest of the moduli space is obtained by gluing in all

possible ways lower genus punctured Riemann surfaces corresponding to regions Rn0 by

the plumbing fixture procedure [34,35] (see appendix A.5.1). If we denote by bF and � bH
the contributions to F and �H from integration over the one particle irreducible regions

Rn of the moduli spaces, then bF and � bH have no poles at k2+m2 = 0 since the region of

integration does not include the degenerating Riemann surfaces. We shall shortly discuss

how to define bF and � bH in the absence of a string field theory underlying the choice of

local coordinates we have made. There is also an additional subtle point in the definition

of � bH which will be discussed in point 11 of this discussion.

3. We can regard bF and F as maps from H⇥H to C where H denotes the space of string

states of ghost number 2. However since string states of ghost number 4 form the dual

vector space of string states of ghost number 2 via the inner product in the CFT, we

can also regard F and bF as maps from states of ghost number 2 to string states of ghost

number 4. We shall in fact include left multiplication by the operator b̄0b0 – the zero

modes of the b and b̄ ghost fields – to regard F and bF as maps from states of ghost

7As will become clear later, we need to extend this definition only to those states which are annihilated by
L0 � L̄0, b0 and b̄0.
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number 2 to states of ghost number 2. This is the way we shall interpret F and bF from

now on. By including similar factor in the definition of �H and � bH, they can be regarded

as maps from string states of ghost number 2 to the space of special states.

4. With this convention the full contribution to F and �H is obtained by gluing bF and � bH
using the string propagator

� =
1

4⇡

Z 2⇡

0

d✓

Z 1

0

ds e�s(L0+L̄0)+i✓(L0�L̄0) =
1

2
�L0,L̄0

Z 1

0

ds e�s(L0+L̄0) . (2.4.18)

The normalization of � has been chosen such that acting on special states at mass level

m it gives (k2 +m2)�1. We can now express F and �H as

F = bF + bF� bF + bF� bF� bF + · · · = bF(1�� bF)�1 = (1� bF�)�1
bF ,

�H = � bH + � bH� bF + � bH� bF� bF + · · · = � bH(1�� bF)�1 . (2.4.19)

Note that each factor of� is accompanied by a hidden factor of b̄0b0 coming from bF ; these

are required to provide the correct integration measure on the moduli space. Eqs.(2.4.19)

provide us with explicit implementation of plumbing fixture, building a higher genus Rie-

mann surface from gluing of lower genus punctured Riemann surfaces.

In the world-sheet description, bF� bF contains integration over those Riemann surfaces,

which can be obtained by gluing two Riemann surfaces corresponding to regions of the

moduli space included in the definition of bF , at one each of their punctures by the relation

w1w2 = e�s+i✓, 0  s <1, 0  ✓ < 2⇡ , (2.4.20)

where w1 and w2 are the local coordinates at the punctures. Similar interpretation holds

for terms like � bH� bF .

5. In the absence of an underlying string field theory we can use (2.4.19) to define bF and
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� bH. Consider for example bF . Let Fn and bFn denote the genus n contribution to F and

bF respectively. Since both F and bF have genus expansion beginning at genus one, the

genus expansion of (2.4.19) tells us that bF1 is identical to F1. Now at genus two the

right hand of the first equation in (2.4.19) gets a contribution from the bF1� bF1 term.

This represents integration over certain region of the genus two moduli space with the

same integrand as that in the expression for F2. Then bF2 is given by the integral of

the same integrand over the complementary region of the genus two moduli space. The

same process can now be repeated for higher genus, bFn being given by an integration

over certain region of the genus n moduli space with the same integrand as that of Fn.

The region of integration is the region that is not covered by gluing the lower genus bFm’s

by �. By construction bFn defined this way does not include integration over any region

of the moduli space that corresponds to degeneration of the Riemann surface of the kind

discussed before, since these regions are already included from the gluing of lower genus

contributions. Since the structure of the second equation in (2.4.19) is similar to that of

the first equation, the genus n contribution to � bH will be given by integration over the

same region of the genus n moduli space as that for bFn, with the integrand being the

same as that of �H.

6. Note however that for this procedure to be consistent it is essential that for those Riemann

surfaces which are built by gluing lower genus Riemann surfaces, represented in the genus

expansion of the right hand side of (2.4.19) by product of lower genus contributions

connected by �, the choice of local coordinates at the punctures must coincide with

those on the lower genus Riemann surfaces. We shall assume that the local coordinates

have been chosen this way even if they are not inherited from an underlying string field

theory. We also need to assume that the Riemann surfaces produced by the gluing

procedure are all distinct, ı.e. the same Riemann surface should not be produced by two

di↵erent gluing procedure. This can be achieved with an appropriate choice of local

coordinates, e.g. by scaling the local coordinates by a su�ciently small number � we can
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ensure that the gluing produces only Riemann surfaces close to degeneration and hence

di↵erent gluing produces di↵erent Riemann surfaces.

7. We define PT to be the projection operator into all states of momentum k – physical and

unphysical – with L0 = L̄0 = (k2 +m2)/4, and define

�̄ ⌘ �� 1

k2 +m2
PT , (2.4.21)

F̄ ⌘ bF + bF�̄ bF + bF�̄ bF�̄ bF + · · · = bF(1� �̄ bF)�1 = (1� bF�̄)�1
bF ,

�H̄ ⌘ � bH + � bH�̄ bF + � eH�̄ bF�̄ bF + · · · = � bH(1� �̄ bF)�1 . (2.4.22)

Physically F̄ and �H̄ denote ‘one particle irreducible’ contribution to appropriate two

point functions of fields at mass level m after integrating out the fields at other mass

levels. Using (2.4.22) we can rewrite 2.4.19 as

F = F̄(1� (k2 +m2)�1PT F̄)�1

= F̄ + F̄(k2 +m2)�1PT F̄ + F̄(k2 +m2)�1PT F̄(k2 +m2)�1PT F̄ + · · · ,

�H = �H̄(1� (k2 +m2)�1PT F̄)�1

= �H̄ + �H̄(k2 +m2)�1PT F̄ + �H̄(k2 +m2)�1PT F̄(k2 +m2)�1PT F̄ + · · · .

(2.4.23)

8. We now define

P = c1c̄1|ViihVi|c�1c̄�1c0c̄0 ⌦ Izero , (2.4.24)

as the projection operator into the special states with tree level mass m. Here Izero

corresponds to identity operator acting on the zero mode sector of non-compact bosons,

labelled by (k0,~k). In the following we shall omit explicit mention of the operator Izero

as the various operators we shall work with will always act as identity operator in this
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sector. Applying the projection operator P on both sides of the first equation in (2.4.23)

and from the right in the second equation in (2.4.23), and noting that

P F P = F, �HP = �H, (2.4.25)

we get

F = P F̄ P + P F̄(k2 +m2)�1PT F̄ P + P F̄(k2 +m2)�1PT F̄(k2 +m2)�1PT F̄ P + · · · ,

�H = �H̄P + �H̄(k2 +m2)�1PT F̄ P + �H̄(k2 +m2)�1PT F̄(k2 +m2)�1PT F̄ P + · · · .

(2.4.26)

9. Now P denotes projection operator into special states which transform in certain repre-

sentations of the symmetry group SO(D)⇥G. PT � P denotes projection operator into

states at the same mass level which are not special, and hence by definition transform in

representations of SO(D)⇥G other than those in which special states transform. Thus

the two point function of special and non-special states on any Riemann surface vanishes,

leading to (PT � P ) bFP = 0, (PT � P )�P = 0. This in turn gives

(PT � P ) F̄ P = 0, P F̄ (PT � P ) = 0 . (2.4.27)

Using this we can replace the PT F̄ P factors in (2.4.26) by P F̄ P . Defining

eF = P F̄ P, � eH = �H̄P, (2.4.28)

we get

F = eF + eF (k2 +m2)�1
eF + eF (k2 +m2)�1

eF (k2 +m2)�1
eF + · · ·

�H = � eH + � eH(k2 +m2)�1
eF + � eH(k2 +m2)�1

eF (k2 +m2)�1
eF + · · · .(2.4.29)
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10. This reproduces 2.4.9, 2.4.10. Furthermore since F̄ and �H̄ have no poles at k2+m2 = 0

it follows that eF and � eH defined in (2.4.28) also have no poles at k2 +m2 = 0. This is

the desired result.

11. We now come to a subtle point in the definition of � bH alluded to earlier. First consider

the contributions � bH to the right hand side of the second equation in (2.4.19). Naively,

(k2+m2)� bH represents the di↵erence between two contributions, both given by integrat-

ing over the same subspace of the moduli space that is used to define bF . In one of them

we use the original local coordinate encoded in the function f at the puncture carrying

momentum k, while in the other one we use the local coordinates encoded in the function

f + �f at the puncture carrying momentum k. This di↵erence is clearly what we need

to compute the contribution to (k2 +m2)�H from these Riemann surfaces. For reasons

that will become clear soon, let us denote this contribution to � bH by �0 bH.

Now consider the contribution (k2 + m2)�0 bH� bF . Again this gives the di↵erence be-

tween two contributions: B � A. The first contribution A is obtained by gluing the

Riemann surfaces corresponding to bF to those corresponding to bF at one each of their

punctures using the original coordinate system f , with the coordinate at the external

punctures also given by the original local coordinate system f . This induces a specific

local coordinate system at the external punctures on the Riemann surfaces represented

by bF� bF (see e.g. [37]). By the compatibiity condition discussed in point 6, this is the

correct choice of coordinate system on the Riemann surfaces in the original system. The

second contribution B is obtained by gluing Riemann surfaces represented by bF and bF
at one each of their punctures using the original coordinate system f , with the coordinate

at the external puncture carrying momentum k given by the deformed local coordinate

system f + �f . This induces a specific local coordinate system at the external punctures

carrying momentum k on the Riemann surfaces represented by bF� bF , but this is not the

correct choice of coordinate system as prescribed in the deformed system since we are
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still using the original local coodinate system f for the gluing. Let f + �1f denote the

coordinate at the external puncture carrying momentum k that we get using the gluing

procedure described above and f + �f be the local coordinate at the external puncture

for the deformed system which we would get by using the coordinate system f + �f both

for external puncture and for the punctures we are using for gluing.8 Let us denote by

(k2 + m2)�1 bH the di↵erence between the two contributions, the (k2 + m2) factor being

there due to the fact that the external vertex represents a dimension (0,0) primary in the

k2 +m2 ! 0 limit, and hence f + �1f and f + �f acting on the external vertex gives the

same result in the k2 +m2 ! 0 limit. Then (k2 +m2)�0 bH� bF + (k2 +m2)�1 bH gives the

desired di↵erence between the o↵-shell amplitudes computed using the deformed system

and the original system. We can then add the error term �1 bH to �0 bH to define a corrected

� bH so that the net contribution to �H can still be written as the right hand side of the

second equation in (2.4.19). The only possible caveat with this is that since the defini-

tion of �1 bH involves integration over moduli spaces of Riemann surfaces corresponding to

bF� bF , this involve a degeneration limit where the parameter s appearing in the definition

of � in (3.3.10) goes to 1. Integration over s from this region could produce a pole at

k2 = �m2. We shall now argue that this does not happen. For this note that in the

s!1 limit the Riemann surface degenerates into two Riemann surfaces, and the local

coordinates induced at external punctures are inherited from the local coordinates at the

external punctures of the Riemann surfaces which are being glued, and independent of

the local coordinates at the punctures which we use to glue the two Riemann surfaces.

Thus the functions f + �f and f + �1f should become identical as s ! 1. From this

we conclude that for large s they should di↵er by a term proportional to q = e�s+i✓.

As a result the expression for �1 bH, which involves di↵erence in the contributions with

8Two points may need clarification here. First we are using the same symbol f for the coordinates on the
component Riemann surface and the Riemann surface we get by gluing these components since f stands for
the original choice of local coordinates on all Riemann surfaces. Similar remark applies to f + �f . The second
point is that while comparing the coordinate systems f + �f and f + �1f we work at the same point in the
moduli space of the glued Riemann surface.

36



local coordinates f + �1f and f + �f at the external puncture carrying momentum k,

will have an extra factor of q and/or q̄ in the integrand. Since the leading contribution

to the integrand in (3.3.10) in the s ! 1 limit comes from states of mass level m and

is proportional to e�(k2+m2)s/2 ⇠ |q|(k2+m2)/2, we see that an extra factor of q and/or q̄

in the integrand will kill the pole at k2 = �m2. Thus �1 bH is free from poles at k2+m2 = 0.

To summarize, (k2 +m2)(�1 bH+ �0 bH� bF), added to P bF� bF , produces correctly the con-

tribution to o↵-shell Green’s function with the deformed coordinate system from those

Riemann surfaces which correspond to bF� bF . Furthermore �1 bH does not contain any pole

at k2 = �m2. Defining � bH = �0 bH+�1 bH, we ensure the equality of two sides of the second

equation of (2.4.19) to this order. We can then move on to the term (�1 bH+ �0 bH� bF)� bF
and carry out similar analysis, generating further correction �2 bH to � bH. After carrying

out this procedure to the desired order in perturbation theory we can ensure that (2.4.19)

and hence all subsequent equations still hold with this new definition of � bH.

2.5 S-matrix elements of Special States

The on-shell S-matrix element for massive external string states can be analyzed byfollowing

a procedure similar to the one used for mass renormalization. Again we shall restrict to S-

matrix elements of special states (and possibly massless states for which there is no mass

renormalization); the S-matrix elements of other states can be found in principle from the

above by computing its residues at appropriate poles. Using the given local coordinate system

for n-punctured Riemann surfaces we compute the o↵-shell n-point function F (n)
a1···an(k1, · · · kn)

of n external legs. With the help of (2.2.5), (2.2.2) we can then define the on-shell S-mtatrix

elements via

S(n)
a1···an(k1, · · · kn) = lim

k2i!�m2
ai,p

F (n)
b1···bn(k1, · · · kn)

n
Y

i=1

n

Z�1/2
i (ki)aibi(k

2
i +m2

ai,p
) (k2

i +m2
ai
)�1

o

.

(2.5.1)
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We shall now prove that S(n) defined this way is invariant under a change of local coordinates

even though F (n)’s themselves transform under such changes. The change in S(n) comes from

two sources: the change in F (n) and the change in Z�1/2
i (ki). We begin by computing the

change in Z�1/2
i (ki). First of all comparing (2.2.4) with the transformation law (2.4.5) of the

propagator under a change of local coordinates, we get

�Z1/2
i (ki) = �Yi(ki)Z

1/2
i (ki) , (2.5.2)

where �Yi is the same as �Y introduced in (2.4.5) and computed in (2.4.17) for the i-th external

state. The multiplication on the right hand side of (2.5.2) should be regarded as a matrix

multiplication. This gives

�Z�1/2
i (ki) = �Z�1/2

i (ki)�Yi(ki) = �Z�1/2
i (ki)� eHi(ki) , (2.5.3)

where in the last step we have used the equality of �Y and � eH(k)given in (2.4.17).

Next we shall analyze the contribution to �F (n)
b1···bn . This can be expressed as

�F (n)
b1···bn =

X

j

�jF
(n)
b1···bn , (2.5.4)

where �j denotes the e↵ect of the change of local coordinates at the j-th puncture. We shall

later show that there exist quantities eF (n)
j;b1···bn and �j eH

(n)
b1···bn whose perturbation expansions have

no poles at k2
j +m2

aj
= 0 and in terms of which we have the relations

F (n)
b1···bn =

⇣

1� (k2
j +m2

aj
)�1

eFj(kj)
⌘�1

bjcj

eF (n)
j,b1···bj�1cjbj+1···bn , (2.5.5)

and

�jF
(n)
b1···bj = (k2

j +m2
aj
)



�j eH
(n)
b1···bn + � eHj(kj)bjcj

⇣

1� (k2
j +m2

aj
)�1

eFj(kj)
⌘�1

cjdj
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(k2
j +m2

aj
)�1

eF (n)
j,b1···bj�1djbj+1···bn

i

, (2.5.6)

where the quantities eFj(kj) and � eHj(kj) are the same matrices which were called eF (kj) and

� eH(kj) in eqs.(2.4.9), (2.4.10), with the subscript j indicating that we have to use appropriate

matrices ( eFj(kj))bjcj and (� eHj(kj))bjcj relevant for the j-th external leg. The various products

and inverses appearing in (2.5.5), (2.5.6) are then interpreted as matrix products and matrix

inverses acting on the j-th leg.

We shall prove the existence of eF (n)
j;b1···bn and �j eH

(n)
b1···bn with the desired properties later; for

now we shall proceed assuming this to be true. Using (2.5.5) we can express (2.5.6) as

�jF
(n)
b1···bj = (k2

j +m2
aj
) �j eH

(n)
b1···bn + � eHj(kj)bjcj F

(n)
b1···bj�1cjbj+1···bn . (2.5.7)

We are now in a position to calculate �S(n). Using eqs.(2.5.1), (2.5.3) and (2.5.7) we get

�S(n)
a1···an = lim

k2i!�m2
ai,p

8 i

n
X

j=1

n
Y

`=1
` 6=j

n

Z�1/2
` (k`)a`b`(k

2
` +m2

a`,p
) (k2

` +m2
a`
)�1

o

(k2
j +m2

aj ,p
) (k2

j +m2
aj
)�1

h

�Z�1/2
j (kj)ajbjF

(n)
b1···bj + Z�1/2

j (kj)ajbj�jF
(n)
b1···bn

i

= lim
k2i!�m2

ai,p
8 i

n
X

j=1

n
Y

`=1

n

Z�1/2
` (k`)a`b`(k

2
` +m2

a`,p
) (k2

` +m2
a`
)�1

o

⇥
n
X

j=1

h

�� eHj(kj)bjcjF
(n)
b1···bj�1cjbj+1···bn + (k2

j +m2
aj
)�j eH

(n)
b1···bn

+� eHj(kj)bjcjF
(n)
b1···bj�1cjbj+1···bn

i

= lim
k2i!�m2

ai,p
8 i

n
Y

`=1

n

Z�1/2
` (k`)a`b`(k

2
` +m2

a`,p
)
o

n
X

j=1

n
Y

`=1
` 6=j

(k2
` +m2

a`
)�1 �j eH

(n)
b1···b` . (2.5.8)

Now note that the genus expansion of the j-th term in the sum has no poles at k2
j +m2

aj
= 0

since there is no explicit factor of (k2
j + m2

aj
)�1 and the genus expansion of �j eH(n) does not
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contain any poles at (k2
j + m2

aj
) = 0. As a result after resummation this term will have no

pole at k2
j +m2

aj ,p
= 0, and after being multiplied by the (k2

j +m2
aj ,p

) term, will give vanishing

contribution in the k2
j ! �m2

aj ,p
limit. Since this analysis can be repeated for every j, we see

that �S(n) vanishes. Thus the S-matrix is invariant under a change in the local coordinates.

It remains to prove the existence of eF (n)
j;b1···bn and �j eH

(n)
b1···bn satisfying (2.5.5), (2.5.6) and having

no poles at k2
j = �m2

aj
in their genus expansion. For this we first define F (n)

j by allowing the

j-th external state of F (n) to be an arbitrary string state. We also use the fact that the change

in local coordinates generates a vertex proportional to (k2 + m2) to introduce the quantity

�jH(n) via

�jH
(n)
b1···bn = (k2

j +m2
aj
)�1 �jF

(n)
b1···bn . (2.5.9)

Then in the same spirit as the bF and � bH defined in (2.4.19) we introduce bF (n)
j and �j bH(n) via

the expansion:

F (n)
j = bF (n)

j + bF� bF (n)
j + bF� bF� bF (n)

j + · · · = (1� bF�)�1
bF (n)
j ,

�jH
(n) = �j bH

(n) + � bHj� bF (n)
j + � bHj� bF� bF (n)

j + � bHj� bF� bF� bF (n)
j + · · ·

= �j bH
(n) + � bHj�(1� bF�)�1

bF (n)
j , (2.5.10)

where bF has been defined via (2.4.19) and � bHj is the same as � bH defined in (2.4.19), but

for the j-th external state. All multiplications in (2.5.10) are matrix multiplications on the

j-th external leg with fixed indices bi for i 6= j on all other legs. bF (n)
j and �j bH(n) represent

contributions to F (n)
j and �jH(n) which are one particle irreducible on the j-th external leg.

Thus they are given by integration over subregions of the moduli space of Riemann surface

with the same integrands as F (n) and �jH(n), and these subregions have the property that they

do not include any degeneration of the j-th external leg.9 Thus the genus expansions of bF (n)
j

9The definition of �j bH
(n) su↵ers from subtleties of the same kind that a↵ects the definition of � bH, and these

are dealt with in the same way as in the case of � bH, following the procedure discussed in point 11 at the end
of §2.4.
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and �j bH(n) do not have any pole at k2
j +m2

aj
= 0. Now we define

F̄ (n)
j = bF (n)

j + bF�̄ bF (n)
j + bF�̄ bF�̄ bF (n)

j + · · · = (1� bF�̄)�1
bF (n)
j

�j eH
(n) = �j bH

(n) + � bHj�̄ bF (n)
j + � bHj�̄ bF�̄ bF (n)

j + � bHj�̄ bF�̄ bF�̄ bF (n)
j + · · ·

= �j bH
(n) + � bHj�̄(1� bF�̄)�1

bF (n)
j = �j bH

(n) + � bHj(1� �̄ bF)�1�̄ bF (n)
j ,(2.5.11)

where �̄ has been defined in (3.4.2). Since �̄ has no poles at k2
j+m2

aj
= 0, the genus expansions

of F̄ (n)
j and �j eH(n) also do not have any poles at k2

j + m2
aj

= 0. Using (2.4.22), (2.5.10) and

(2.5.11) we get

F (n)
j = (1� F̄(k2

j +m2
aj
)�1PT )

�1F̄ (n)
j

�jH
(n) = �j eH

(n) + �H̄j(k
2
j +m2

aj
)�1PT (1� F̄(k2

j +m2
aj
)�1PT )

�1F̄ (n)
j . (2.5.12)

We now define

eF (n)
j = P F̄ (n)

j . (2.5.13)

Since the genus expansion of F̄ (n)
j has no poles at k2

j = �m2
aj
, the genus expansion of eF (n)

j also

has no poles at k2
j = �m2

aj
. It follows from the definition of special states that �H̄jPT = �H̄jP .

Using this and (2.5.13), multiplying the first equation of (2.5.12) by P from the left, using

PF (n)
j = F (n) and eqs.(2.4.27), (2.4.28) we can write the two equations in (2.5.12) as

F (n) = (1� (k2
j +m2

aj
)�1

eFj)
�1

eF (n)
j ,

�jH
(n) = �j eH

(n) + � eHj(k
2
j +m2

aj
)�1(1� (k2

j +m2
aj
)�1

eFj)
�1
eF (n)
j . (2.5.14)

This reproduces (2.5.5) and (2.5.6) after using (2.5.9).
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2.6 Discussion and generalizations

In this chapter we have given an algorithm for computing renormalized mass and S-matrix

elements for a special class of massive states in bosonic string theory, and have shown that

these are independent of the specific o↵-shell continuation that we use for computing them.

While the results are in the same spirit as the proof of gauge invariance of physical mass and

S-matrix elements in a gauge theory, in many sense the analysis here is simpler than in gauge

theories. In the latter the gauge invariance results from cancellation between the contributions

from di↵erent Feynman diagrams, while here we do not require any such cancellations. In fact

if we had been trying to prove gauge invariance of renormalized mass and S-matrix elements

in string field theory, we would still need cancellation between di↵erent Feynman diagrams.10

The simplicity in string theory of course is a consequence of the fact that in string theory

there is only one contribution from every genus. Technically the di↵erence between our anal-

ysis and the corresponding analysis in string field theory can be traced to the fact that in

string field theory a change in local coordinates will change the local coordinates not only at

the external punctures, but also at the internal punctures that we use to glue two Riemann

surfaces using the plumbing fixture procedure. As a result each Feynman diagram gets addi-

tional contribution from the change in local coordinates at the internal punctures which cancel

between di↵erent Feynman diagrams.

For general external states we expect new complications even in the bosonic string theory.

This is due to the fact that under quantum correction the physical states would begin mix-

ing with the unphysical states and we need to take into account this mixing for defining an

appropriate o↵-shell continuation. For example from genus two onwards bF will have non-zero

matrix element between a physical state and a BRST trivial state from the boundary of the

10A change of local coordinates correspond to a field redefinition of the string field [36] followed by a gauge
transformation that is needed to bring the transformed fields to the Siegel gauge.
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region of integration of the moduli space that defines bF , forcing us to change the definition

of the physical state. Furthermore the required mixing will depend on the particular o↵-shell

continuation we choose ı.e. on the choice of local coordinates at the punctures. In the next

chapter we will study general states and will prove that the renormalized mass and S-matrix

elements are independent of the o↵-shell continuation for all physical states, suitably defined.

In fact it seems to us that the o↵-shell formalism could be a useful way of studying string

perturbation theory both for massive and massless external states, and can be used to give

alternate proofs of well known results in string theory. For example in the standard on-shell

approach the proof of decoupling of pure gauge states, corresponding to trivial elements of the

BRST cohomology, involves first showing that the result is given by a total derivative in the

moduli space and then showing that the boundary terms arising from the integration of the

total derivative terms vanish. In the o↵-shell formalism the boundary terms can be ignored al-

together since they can be made to vanish by appropriate o↵-shell continuation of the external

momenta. The price we pay is that due to BRST non-invariance of the external o↵-shell states

there will be additional terms proportional to one or more powers of (k2
i +m2

ai
) associated with

the external states. In individual terms these may be cancelled by inverse powers of (k2
i +m2

ai
)

coming from integration over moduli near the boundaries. Thus the task will be to show that

the final result vanishes nevertheless in the on-shell limit.
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CHAPTER3
Mass Renormalization in String Theory:

General States

3.1 Introduction

In chapter 2 we described a systematic procedure for computing the renormalized masses and

S-matrix elements of a special class of states in bosonic string theory which do not mix with

unphysical states under renormalization. Our goal in this chapter will be to generalize this

procedure to states in bosonic string theory which do mix with unphysical states under renor-

malization. We shall also briefly discuss extensions to the Neveu-Schwarz (NS) sector states

in superstring and heterotic string theories.

We shall now summarize the contents of the rest of the sections. The reason that we had

to restrict our analysis to a special class of states in chapter 2 was to avoid the mixing between

physical and unphysical states which are degenerate at tree level. In §3.2 we construct an

example of a gauge theory where the tree level spectrum in a particular gauge has accidental

degeneracy between physical and unphysical states. We then develop an algorithm for extract-

ing the quantum corrected physical mass in this theory, with the aim of generalizing this to

string theory later.

44



In §3.3 we review some basic results for on-shell states in closed bosonic string theory, dividing

them into physical, unphysical and pure gauge states and discuss their o↵-shell generalization.

We also review the prescription for defining o↵-shell amplitudes in string theory which depend

on the choice of local coordinates at the punctures where the vertex operators are inserted.

Finally we discuss the constraints imposed on the choice of local coordinate system from the

requirement that they be compatible with the plumbing fixture procedure for gluing two Rie-

mann surfaces to form a third one. This allows us to express an o↵-shell amplitude as sums of

products of one particle irreducible contributions and propagators.

§3.4-§3.6 contains our main results. In §3.4 we generalize the method of §3.2 for systemat-

ically computing the renormalized physical masses in string theory. We also show that at one

loop order the renormalized physical masses are independent of the choice of local coordinate

system but the renormalized masses in the unphysical / pure gauge sector do depend on the

choice of local coordinates. In §3.5 we examine the locations of the poles in the scattering am-

plitudes of external massless / BPS / special states in the complex �k2 plane where k is given

by the sum of some specific subset of external momenta. We find that the possible locations

of the poles are precisely at the squares of physical and unphysical masses found using the

general algorithm of §3.4. We also show that at the leading order the residues at the physical

poles are non-vanishing in general but the residues at the poles associated with the unphysical

/ pure gauge sector states vanish. In §3.6 we combine the results of §3.4, §3.5 with the result

of chapter 2 that the S-matrices of massless / BPS / special states are independent of the

choice of local coordinate system, to argue that to all orders in string perturbation theory

the renormalized physical masses are independent of the choice of local coordinate system and

that the residues at the poles associated with the unphysical / pure gauge sector states vanish.

In other words the poles in the S–matrix elements of massless / BPS / special states in the

�k2 plane occur only at the renormalized physical mass2 defined in §3.4. Finally in §3.7 we
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briefly discuss generalization of our analysis to Neveu-Schwarz sector states in heterotic and

superstring theories. This chapter is based o [2].

3.2 A field theory example

String perturbation theory is a degenerate perturbation theory with high amount of degeneracy.

To understand the situation it is a good idea to look into a degenerate quantum fields theory

example which share most of the complications that occur in string theory. Degenerate abelian

Higgs model is a tractable and complicated enough setup to demystify the mysteries of string

perturbation theory. In this section we shall illustrate the problem of mixing between physical

and unphysical states in this gauge theory. We shall also provide an algorithm for extracting

the renormalized physical mass in this theory. This algorithm will be generalized to string

theory in §3.4.

3.2.1 The model

Consider a quantum field theory in D+1 dimensions containing an abelian gauge field Aµ and

a pair of complex scalars �,�, each carrying charge q under the gauge field. We consider a

gauge invariant Lagrangian density of the form

L = �1

4
Fµ⌫F

µ⌫ � (@µ�
⇤ + iqAµ�

⇤)(@µ�� iqAµ�)� c (�⇤�� v2)2

�(@µ�⇤ + iqAµ�
⇤)(@µ�� iqAµ�)� V (�,�) ,

Fµ⌫ ⌘ @µA⌫ � @⌫Aµ , (3.2.1)

where V (�,�) is a potential whose detailed properties will be discussed shortly, but for now

we just mention that it plays no role in the breaking of the U(1) gauge symmetry. Minimizing

the potential in the first line we see that |�| = v is the minimum of the potential. We choose
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� = v as the vacuum expectation value of �. We now define �R,I ,�R,I via

� = v +
1p
2
(�R + i�I), � =

1p
2
(�R + i�I), (3.2.2)

and

m ⌘
p
2 q v . (3.2.3)

We now describe the choice of the potential V (�,�). We require it to have the property that

when expanded around the point (� = v,� = 0), it has an expansion of the form

�1

2
m2

0�
2
R �

1

2
m2�2

I + cubic and higher order terms in �R,�I ,�R,�I , (3.2.4)

where m0 is an arbitrary mass parameter but m has been chosen to be the same quantity

defined in (3.2.3). Using this we get, after throwing away total derivative terms,

L = �1

2
@µA⌫@

µA⌫ � 1

2
m2AµA

µ +
1

2
(@µAµ �m�I)

2 � 1

2
@µ�I@

µ�I � 1

2
m2�2

I �
1

2
@µ�R@

µ�R

�2 c v2 �2
R �

1

2
@µ�I@

µ�I � 1

2
m2�2

I �
1

2
@µ�R@

µ�R � 1

2
m2

0 �
2
R + interaction terms .

(3.2.5)

To this we add a gauge fixing term

Lgf = �1

2
(@µAµ �m�I)

2 , (3.2.6)

so that the third term in L is cancelled by Lgf in the total Lagrangian density L + Lgf . The

resulting Lagrangian has the fields Aµ, �I and �I all carrying mass m, whereas �R and �R

carry di↵erent masses.

Now if we work in the momentum space and are at the rest frame k = (k0,~0) then the

fields Ai transform in the vector representation of the little group SO(D) whereas the fields

47



A0,�I and �I transform in the scalar representation of the same group. At tree level the

fields Ai and �I are physical whereas the fields A0 and �I are unphysical.1 In particular

by choosing unitary gauge we can remove A0 and �I from the spectrum. Alternatively by

choosing another gauge fixing term e.g. �(@µAµ � m ⇠ �I)2/(2⇠) with ⇠ 6= 1 we could make

the unphysical fields A0 and �I have mass di↵erent from m and hence non-degenerate with

the physical fields. We shall however work with ⇠ = 1 and address the problems associated

with the degeneracy directly since this is what we shall need to do in string theory. Our main

goal will be to disentangle the physical and unphysical states after inclusion of loop corrections.

Now it is clear that under loop corrections the SO(D) vector fields Ai cannot mix with the

unphysical fields and hence they remain physical states. Interestingly as we will explain in

§2.3 such special states exists in string theory also. However the state �I can now mix with A0

and �I . To see what kind of mixing is possible, we note that according the general principle of

gauge theory the corrections must take the form of a gauge invariant term written in terms of

the original variables �, �, Aµ together with a possible renormalizaton of the gauge fixing term.

Let us suppose that quantum corrections generate a gauge invariant mass term for � of the

form �↵�⇤� and changes the gauge fixing term (3.2.6) to �(@µAµ �m�I + ��I + ��I)2/2.2.

Here, ↵, � and � are in principle computable constants which arise from loop corrections.

Adding these to (3.2.1) we can express the quadratic terms involving Aµ,�I and �I as

�1

2
@µA⌫@

µA⌫ � 1

2
m2AµA

µ � 1

2
@µ�I@

µ�I � 1

2
m2�2

I �
1

2
@µ�I@

µ�I � 1

2
m2�2

I

�1

2
↵�2

I � ��I@µA
µ +

1

2
(2m� � �2)�2

I � ��I@µA
µ � 1

2
�2�2

I + (m� �) � �I �I .(3.2.7)

1In the language that we shall develop shortly, one linear combination of these fields will be called unphysical
and the other will be called pure gauge.

2We could have also changed the coe�cient of the @µA
µ inside the gauge fixing term and added other gauge

invariant terms, but the corrections we have taken are su�ciently general to illustrate the basic points.
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In momentum space, up to overall multiplication and momentum conserving delta functions,

the quadratic Lagrangian density in the ~k = 0 sector can be written as

1

2
Ai(�k){(k0)2 �m2}Ai(k) +

1

2
(A0(�k) �I(�k) �I(�k) )M

0

B

B

@

A0(k)

�I(k)

�I(k)

1

C

C

A

, (3.2.8)

where

M =

0

B

B

@

�(E2 �m2) iE � iE �

�iE � E2 � (m� �)2 (m� �)�
�iE � (m� �)� E2 �m2 � �2 � ↵

1

C

C

A

, E ⌘ k0 . (3.2.9)

As expected Ai(k)’s, being special states, do not mix with other fields. In this example its

mass is not a↵ected by the quantum corrections, but this is just a consequence of the limited

number of terms we have added, e.g. this could change if we had added a gauge invariant term

proportional to Fµ⌫F µ⌫ in the quantum corrections to the Lagrangian density.

Let us define the matrices

I =

0

B

B

@

�1 0 0

0 1 0

0 0 1

1

C

C

A

, eFT =

0

B

B

@

0 iE � iE �

�iE � 2m� � �2 (m� �)�
�iE � (m� �)� ��2 � ↵

1

C

C

A

, (3.2.10)

so that we can write

M = �{(m2 � E2)I � eFT} . (3.2.11)

The full propagator (up to overall sign and factors of i) is then given by

PT = �M�1 = {(m2 � E2)I � eFT}�1 , (3.2.12)
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and the renormalized squared masses are the locations of the poles of this matrix in the E2

plane. Only one of these poles is physical. We need to find a systematic algorithm for deter-

mining which one is physical and calculate its location. This will be done in §3.2.2, but to

facilitate the analysis we shall now introduce a few notations.

Let us introduce a set of basis states as follows:

|pi =

0

B

B

@

0

0

1

1

C

C

A

, |gi = 1

|E|
p
2

0

B

B

@

�iE
|E|
0

1

C

C

A

, |ui = 1

|E|
p
2

0

B

B

@

iE

|E|
0

1

C

C

A

. (3.2.13)

The conjugate basis hp|, hg| and hu| are defined by taking transpose together with a change of

sign of the momentum vector. The latter operation changes the sign of E and hence e↵ectively

the conjugate basis corresponds to hermitian conjugates of the vectors (3.2.13). Then we have

the following identities

0

B

B

@

hg|I|gi hg|I|ui hg|I|pi
hu|I|gi hu|I|ui hu|I|pi
hp|I|gi hp|I|ui hp|I|pi

1

C

C

A

=

0

B

B

@

0 1 0

1 0 0

0 0 1

1

C

C

A

. (3.2.14)

We shall call |pi, |gi and |ui as tree level physical, pure gauge and unphysical states respectively.

The name pure gauge for |gi stems from the fact that on-shell (at |E| = m) this describes a

pure gauge deformation of the vacuum at the linearized level and the name physical originates

from the fact that the �I field represented by the vector |pi is the physical field at the tree

level.

3.2.2 The algorithm for computing the physical mass

Our goal will be to develop an algorithm for finding the corrected physical state and the physical

mass after taking into account the quantum correction to M represented by eFT . Furthermore
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instead of aiming at the exact result we want to do this perturbatively in the parameters ↵, �, �

since this is what we need in string theory. The problem is made complicated by the fact that

the full matrix M is expected to have zero eigenvalue at more than one value of E near m,

and we expect only one of these to represent physical mass. Let mp be the quantum corrected

physical mass, and |pi0 be the eigenvector with zero eigenvalue at E = mp. Then naively we

might expect that as we switch o↵ the perturbation parameters ↵, �, �, the vector |pi0 should
approach the unperturbed physical state |pi and we can use this as a criterion for identifying

the quantum corrected physical state. The problem however is that since the unperturbed

matrix has three di↵erent eigenvectors with zero eigenvalue at E = m, what we have here is

an analog of degenerate perturbation theory and there is no guarantee that the eigenvectors

of the quantum corrected matrix will approach a particular unperturbed eigenvector in the

limit of switching o↵ the perturbation. Indeed, we shall see that in general it is not possible

to construct an eigenvector with zero eigenvalue in the perturbed theory that approaches the

particular vector |pi in the limit ↵, �, � ! 0. The best we can do is to find such an eigen-

vector that approaches a linear combination of the unperturbed physical state |pi and the

unperturbed pure gauge state |gi as we switch o↵ the perturbation. We shall take this as the

criterion for identifying the quantum corrected physical state and look for an algorithm for

constructing such a state.

With this goal in mind, we now seek a change of basis of the form

|pi0 = A|pi+B|gi+ C|ui, |gi0 = |gi+D|pi, |ui0 = |ui+K|pi , (3.2.15)

such that the following conditions hold

0

B

B

@

0hg|I|gi0 0hg|I|ui0 0hg|I|pi0
0hu|I|gi0 0hu|I|ui0 0hu|I|pi0
0hp|I|gi0 0hp|I|ui0 0hp|I|pi0

1

C

C

A

=

0

B

B

@

⇤ ⇤ 0

⇤ ⇤ 0

0 0 1

1

C

C

A

, (3.2.16)
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and
0

B

B

@

0hg| eFT |gi0 0hg| eFT |ui0 0hg| eFT |pi0
0hu| eFT |gi0 0hu| eFT |ui0 0hu| eFT |pi0
0hp| eFT |gi0 0hp| eFT |ui0 0hp| eFT |pi0

1

C

C

A

=

0

B

B

@

⇤ ⇤ 0

⇤ ⇤ 0

0 0 ⇤

1

C

C

A

. (3.2.17)

where ⇤ denotes unconstrained numbers. Notice that (3.2.15) is not the most general change

of basis. In fact the most general change of basis is related to the one given in (3.2.15)

by arbitrary mixing between the states |ui0 and |gi0 without involving |pi0. However all the

conditions demanded in (3.2.16), (3.2.17) are invariant under such a change of basis and hence

by taking convenient linear combinations of |ui0 and |gi0 satisfying (3.2.16), (3.2.17) we can

always ensure that the change of basis is of the form given in (3.2.15). We now substitute

(3.2.15) into (3.2.16), (3.2.17) and use (3.2.14) to get

A⇤A+B⇤C + C⇤B = 1, D⇤A+ C = 0, K⇤A+B = 0 ,

Ahu| eFT |pi+Bhu| eFT |gi+ Chu| eFT |ui+K⇤Ahp| eFT |pi+K⇤Bhp| eFT |gi+K⇤Chp| eFT |ui = 0

Ahg| eFT |pi+Bhg| eFT |gi+ Chg| eFT |ui+D⇤Ahp| eFT |pi+D⇤Bhp| eFT |gi+D⇤Chp| eFT |ui = 0 .

(3.2.18)

We shall soon discuss how to construct A,B,C,D,K perturbatively satisfying (3.2.18) and

the criteria mentioned at the beginning of this subsection. However let us first examine the

consequences of (3.2.16) and (3.2.17). Using these equations we see that in the primed basis

the matrices I and eFT are exactly block diagonal, with the |pi0 block having no mixing with

the |ui0 and |gi0 blocks. Of course the basis we have chosen is not orthonormal in the (|ui0, |gi0)
sector, but this can be rectified by appropriate linear transformation in the (|ui0, |gi0) space

without a↵ecting the |pi0-|pi0 element. Thus we get

0hp|PT |pi0 = {(m2 � E2)� eF (E)}�1 , (3.2.19)
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where

eF (E) ⌘ 0hp| eFT |pi0

= A⇤Ahp| eFT |pi+ A⇤Bhp| eFT |gi+ A⇤Chp| eFT |ui+B⇤Ahg| eFT |pi+B⇤Bhg| eFT |gi

+B⇤Chg| eFT |ui+ C⇤Ahu| eFT |pi+ C⇤Bhu| eFT |gi+ C⇤Chu| eFT |ui . (3.2.20)

The pole of (3.2.19) can be constructed iteratively by expressing this equation as

E2 = m2 � eF (E), (3.2.21)

and solving the equation iteratively by starting with E2 = m2. We can identify this as the

physical pole provided the following two conditions hold:

1. Let us introduce a perturbation parameter � and take

↵ ⇠ �, � ⇠ �, � ⇠ � . (3.2.22)

In particular if ↵, �, � arise at one loop order then the power of � counts the number of

loops. We need to ensure that the coe�cient of �n in the expressions for A, · · ·K and

eF (E) are free from any pole at E ' m for every n. Otherwise the iterative procedure

for finding the solution that starts with E = m will break down.

2. We also need to ensure that the coe�cient C approaches 0 in the limit �! 0 and E ! m

so that the state |pi0 approaches a linear combination of the tree level physical state and

tree level pure gauge state in this limit. |pi0 will then satisfy the criteria mentioned at

the beginning of this subsection.

We shall now discuss how to solve (3.2.18) satisfying these conditions. Since each matrix

element of eFT is of order �, we can factor out the overall factor of � from the last two equations

in (3.2.18), take the �! 0 limit, and regard (3.2.18) as a set of � independent equations which
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can be solved to determine the leading order result for the coe�cients A, · · ·K. It is easy

to check that leaving aside an overall phase there are as many unknowns as the number of

equations, and hence we expect these equations to have solutions. Solving the leading order

equations can in fact be facilitated by using another expansion parameter, namely (E2 �m2).

For this we note that (3.2.10), (3.2.13) gives

��1hp| eFT |gi ⇠ O(E2 �m2) +O(�), ��1hg| eFT |pi ⇠ O(E2 �m2) +O(�),

��1hg| eFT |gi ⇠ O(E2 �m2) +O(�) , (3.2.23)

while the other matrix elements of ��1
eFT are of order unity as E ! m and � ! 0. Making

use of (3.2.23), let us look for a leading order in � solution in which

A,B,K ⇠ 1, C,D ⇠ (E2 �m2) . (3.2.24)

Using (3.2.23), (3.2.24) we see that to the leading order in �, (3.2.18) gives

A⇤A = 1 +O(E2 �m2), D⇤A+ C = 0, K⇤A+B = 0,

��1
n

Ahu| eFT |pi+Bhu| eFT |gi+K⇤Ahp| eFT |pi
o

= O(E2 �m2) ,

��1
n

Ahg| eFT |pi+Bhg| eFT |gi+ Chg| eFT |ui+D⇤Ahp| eFT |pi
o

= O((E2 �m2)2) .

(3.2.25)

Each term in the left hand side of the first, third and fourth equations is of order unity and

each term in the left hand side of the third and fifth equations is of order (E2 � m2). The

solution is

A = 1 +O(E2 �m2), K⇤ = {hu| eFT |gi � hp| eFT |pi}�1hu| eFT |pi+O(E2 �m2),

D⇤ = {hg| eFT |ui � hp| eFT |pi}�1{hg| eFT |pi �K⇤hg| eFT |gi}+O((E2 �m2)2) ,

B = �K⇤ +O(E2 �m2), C = �D⇤ +O((E2 �m2)2) . (3.2.26)
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Using (3.2.23) and the comments below it, we see that as long as the order � contribution

to {hu| eFT |gi � hp| eFT |pi} does not vanish (and in particular does not have zero at E2 = m2),

A, B and K given in (3.2.26) are of order unity, while C and D are of order (E2 � m2), in

agreement with our assumption (3.2.24). The reader may be surprised by the appearance of

the one loop term {hu| eFT |gi� hp| eFT |pi} in the denominator in a perturbation theory, but this

is simply a consequence of the degenerate perturbation theory that we need to carry out in

this case. Requiring {hu| eFT |gi � hp| eFT |pi} to be non-zero is equivalent to demanding that the

degeneracy between the physical and the unphysical / pure gauge states is lifted at the first

order. Starting with (3.2.26) we can now iteratively solve the system of equations in a power

series in � and (E2 �m2). For this we choose A to be real,3 express eqs.(3.2.18) as

A =
p
1� B⇤C � C⇤B ,

K⇤ = {hu| eFT |gi � hp| eFT |pi}�1
h

Ahu| eFT |pi+ (B +K⇤)hu| eFT |gi+ Chu| eFT |ui

+K⇤(A� 1)hp| eFT |pi+K⇤Bhp| eFT |gi+K⇤Chp| eFT |ui
i

,

D⇤ = {hg| eFT |ui � hp| eFT |pi}�1
h

Ahg| eFT |pi+Bhg| eFT |gi+ (C +D⇤)hg| eFT |ui

+D⇤(A� 1)hp| eFT |pi+D⇤Bhp| eFT |gi+D⇤Chp| eFT |ui
i

,

C = �D⇤A, B = �K⇤A , (3.2.27)

and evaluate the right hand sides of these equations iteratively, beginning with the leading or-

der solution. To get a perturbation expansion we also need to expand {hu| eFT |gi� hp| eFT |pi}�1

in a power series in � starting with the leading order solution. Each power of � will be free

from any pole near E2 = m2 as long as the leading order result for ��1{hu| eFT |gi � hp| eFT |pi}
does not have any zero near E2 = m2. Once we determine the coe�cients A, · · ·K we can also

determine eF (E) using (3.2.20).

3Eqs.(3.2.18) have a symmetry under which the constants A,B,C are multiplied by an overall phase. We
have chosen this phase appropriately to make A real.
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Note that in this scheme even in a fixed order in � we need to iterate the procedure infi-

nite number of times to generate all powers of E2 �m2. However eventually we are interested

in computing these coe�cients at the physical mass2 which di↵ers from m2 by order �. Sim-

ilarly when we solve (3.2.21) to find the location of the pole, we need to know the expansion

of eF (E) to order (E2 �m2)n for computing the correction to mass2 to order �n+1. Thus for

computing physical quantities to any given order in � we need to run the iteration only a finite

number of times.

We now observe that since eq.(3.2.26) gives B ' �K⇤ ⇠ 1, it follows from (3.2.15) that

|pi0 di↵ers from |pi by an order one term proportional to the pure gauge states. This is a

consequence of having degenerate eigenvalues at the tree level and will continue to be true in

string theory as well. On the other hand since C ⇠ E2�m2 which is of order � when E is set

equal to the corrected physical mass, the coe�cient of |ui in |pi0 vanishes as �! 0. Thus the

quantum corrected physical state approaches a linear combination of the unperturbed physical

state and the unperturbed pure gauge state in the limit in which we switch o↵ the perturba-

tion. This is consistent with the criteria for identifying the quantum corrected physical state

that we set out at the beginning of this subsection.

3.2.3 Explicit evaluation of the physical mass

Let us now explicitly evaluate the coe�cients A, · · ·K and F (E) for the problem at hand and

from this find the location of the physical pole. From (3.2.10), (3.2.13) it follows that here

hp| eFT |pi = ��2 � ↵, hg| eFT |gi =
�

2
(2m� � � 2|E|), hu| eFT |ui =

�

2
(2m� � + 2|E|),

hp| eFT |gi = hg| eFT |pi =
1p
2
(�|E|+m� �)�, hp| eFT |ui = hu| eFT |pi =

1p
2
(|E|+m� �)�,

hg| eFT |ui = hu| eFT |gi =
�

2
(2m� �), (3.2.28)
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This gives the leading order solutions (3.2.26) to be

A = 1, B = �K = � 1p
2
(�m+ ↵)�1�(m+ |E|),

C = �D = �(�m+ ↵)�1

⇢

1p
2
(�|E|+m)� � ��p

2
(m2 � E2)(�m+ ↵)�1

�

.

(3.2.29)

There are corrections to these solutions of order � and also of order (E2 �m2) ((E2 �m2)2 in

C and D), but these will not be needed for computing the leading correction to the physical

mass. Since ↵, �, � are each of order � we see that B ' �K⇤ ⇠ 1 and C ' �D⇤ ⇠ (|E|�m)

in the � ! 0 limit, in agreement with the general results quoted earlier. Substituting these

into (3.2.20) and using (3.2.28) we get

eF (E) = �↵ +O(�2) +O(�)(|E|�m) . (3.2.30)

The iterative procedure (3.2.21) now gives the leading order correction to the physical mass

E2 = m2 + ↵ +O(�2) . (3.2.31)

The physical state at leading order in �, obtained from (3.2.13), (3.2.15), (4.2.3) and (3.2.29)

is given by, for E =
p
m2 + ↵

0

B

B

@

i�E/(↵ + �m)

��m/(↵ + �m)

1

1

C

C

A

+O(�) . (3.2.32)

Let us compare this with the exact result. We have from (3.2.9)

detM = �(E2 �m2 +m�)2(E2 �m2 � ↵) . (3.2.33)
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This has zeroes at E2 = m2 +↵ and E2 = m2�m�. Since we know that � enters through the

renormalized gauge fixing term, the physical mass should not depend on �. This determines

the physical pole to be at

E2 = m2 + ↵ , (3.2.34)

which agrees with the perturbative result (3.2.31). Furthermore at E =
p
m2 + ↵ we can easily

compute the zero eigenvector of M and it is given by

v =

0

B

B

@

i�E/(↵ + �m)

��m/(↵ + �m)

1

1

C

C

A

. (3.2.35)

This agrees with the perturbative result (3.2.32) up to corrections of order �.

3.2.4 Masses of the unphysical / pure gauge states

For completeness we shall also describe the computation of the masses in the unphysical / pure

gauge sector using perturbation theory. For this we define the matrices

I 0 =

 0hg|I|gi0 0hg|I|ui0
0hu|I|gi0 0hu|I|ui0

!

, eF 0 =

 0hg| eFT |gi0 0hg| eFT |ui0
0hu| eFT |gi0 0hu| eFT |ui0

!

. (3.2.36)

Then the unphysical / pure gauge sector masses will be at the zeroes of the eigenvalues of the

matrix

(m2 � E2)I 0 � eF 0(E) , (3.2.37)

as a function of E.4 For computing the first subleading correction to the unphysical mass we

can use the ansatz that the zero eigenvalue of (3.2.37) will occur at (E �m) ⇠ � and evaluate

each matrix element to order � using this ansatz. Since (m2�E2) ⇠ � we have to evaluate I 0 to

order unity. It follows from (3.2.15) and the fact that at the leading order D ⇠ (E2�m2) ⇠ �

4It follows from (3.2.15), (3.2.24) that I 0 is a non-singular matrix near E ⇠ m and hence the zero eigenvalue

of (3.2.37) occurs at the same value of E as that of m2 � E2 � (I 0)�1
eF 0(E).
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that I 0 to order �0 has the structure

 

0 1

1 K⇤K

!

, (3.2.38)

with K given in (3.2.26). On the other hand (3.2.15), (3.2.23) and (3.2.24) shows that eF 0 to

order � has the structure
 

0 hg| eFT |ui
hu| eFT |gi 0hu| eFT |ui0

!

. (3.2.39)

Thus for computing order � correction to the unphysical / pure gauge sector masses we need

to look for zero eigenvalue of the matrix

 

0 (m2 � E2)� hg| eFT |ui
(m2 � E2)� hu| eFT |gi (m2 � E2)K⇤K � 0hu| eFT |ui0

!

. (3.2.40)

Now in order that a matrix has zero eigenvalue, its determinant must vanish. From the

structure of the matrix given above it is clear that this requires one of the o↵-diagonal elements

to vanish. Since the o↵-diagonal elements are conjugates of each other and hence vanish at the

same value of E, the condition for zero eigenvalue of the (3.2.40) can be stated as

(m2 � E2)� hu| eFT |gi = 0 . (3.2.41)

Using the value of hu| eFT |gi quoted in (3.2.28) we see that to order � the renormalized masses

in the unphysical / pure gauge sector occur at the zero of

E2 �m2 +m� = 0 . (3.2.42)

This is in agreement with the exact result quoted below (3.2.33).
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3.3 Organization of o↵-shell amplitudes in string theory

In this section we shall discuss some general aspects of o↵-shell states and o↵-shell amplitudes

in closed bosonic string theory.

3.3.1 O↵-shell string states and a basis

We begin by describing the space of o↵-shell string states with which we shall work and

reviewing some well known results about the choice of basis for o↵-shell states. O↵-shell string

states are required to satisfy the following conditions:

1. They have ghost number 2 where we count the c, c̄ ghosts to have ghost number 1, b, b̄

ghosts to have ghost number �1 and SL(2,C) invariant vacuum to have ghost number 0.

2. They are annihilated by the b, b̄ ghost zero modes b0 and b̄0 and L0 � L̄0 where L̄n and

Ln are the total left and right moving Virasoro generators.

This is also the space of o↵-shell states in covariant closed string field theory in the Siegel

gauge [32]. The requirement of annihilation by (L0�L̄0) and (b0� b̄0) is needed for consistently

defining o↵-shell amplitude [27] whereas the condition (b0 + b̄0) |statei = 0 is needed to make

the kinetic operator invertible.5 In this space we can introduce a non-degenerate inner product

between states |si and |s0i via
hs|s0i ⌘ hs|c0c̄0|s0iBPZ (3.3.1)

5In contrast the o↵-shell states in gauge invariant closed string field theory of [32] are only annihilated by
(b0� b̄0) and (L0� L̄0). Like in all gauge theories, the kinetic operator in this theory is not invertible till we fix
a gauge and the Siegel gauge condition of annihilation by (b0+ b̄0) precisely does that. In quantum closed string
field theory we also need to relax the constraint on the ghost number and allow states of all ghost numbers to
propagate in the loop. In our analysis we shall dump all the loop contributions into one particle irreducible
(1PI) amplitudes and express the full amplitude as sum of tree diagrams constructed out of 1PI amplitudes as
vertices and tree level propagators. Thus the only place where we have to explicitly introduce o↵-shell states
is as the external lines of the 1PI amplitudes and as the states propagating along the propagator in the tree
amplitudes. These states always carry ghost number two when we compute physical amplitudes relevant for
mass renormalization or S-matrix elements, and hence we have put that restriction on the definition of o↵-shell
states.
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where hr|r0iBPZ is the BPZ inner product. In defining the bra hr| corresponding to a given

ket |ri we reverse the sign of the momentum. We also remove the momentum conserving

delta function from the definition of the inner product. The fact that the inner product is

non-degenerate follows from the Fock space representation of the basis states.

On-shell condition for the string state |si takes the form

L0|si = 0 , (3.3.2)

which also implies L̄0|si = 0. On-shell we can divide the states into physical, pure gauge and

unphysical states as follows. First of all pure gauge states are of the form

QB|ri (3.3.3)

where QB is the total BRST charge (left moving plus right moving) and |ri is a state of ghost

number 1 annihilated by b0, b̄0, L0 and L̄0. Since QB has ghost number 1, commutes with Ln,

L̄n and {QB, b0} = L0 and {QB, b̄0} = L̄0, it follows that QB|ri has ghost number 2 and is

annihilated by b0, b̄0, L0 and L̄0.

Physical states are defined to be states of ghost number two which are annihilated by QB,

b0, b̄0, L0 and L̄0 but cannot be written in the form QB|ri with |ri annihilated by b0, b̄0, L0

and L̄0. It follows from this that the physical states are orthogonal to pure gauge states. The

main point to note is that {QB, c0} and {QB, c̄0} do not have any c0 or c̄0 factor, and hence the

matrix elements of {QB, c0} and {QB, c̄0} between states, satisfying condition 2 above, vanish.

The same argument, together with the relation Q2
B = 0, shows that the pure gauge states also

have vanishing inner product with pure gauge states. A linearly independent basis of physical

states is the maximal set of physical states satisfying the condition that no linear combination

of these basis states is a pure gauge state.
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Now since the inner product is non-degenerate there must exist states which have non-vanishing

inner product with the pure gauge states. These states are annihilated by b0, b̄0, L0 and L̄0,

but not by QB. We shall call them unphysical states. We can choose a linearly independent

basis of unphysical states such that no linear combination is annihilated by QB. The number

of such basis states must be at least equal to the number of pure gauge states so that we have

a non-degenerate inner product matrix. We shall now argue that the number is actually equal

to the number of pure gauge states. For this let us temporarily relax the constraint on the

ghost number and consider states of all ghost number annihilated by b0, b̄0, L0 and L̄0. Then

since for every unphysical state |si of ghost number g, QB|si is a pure gauge state of ghost

number g + 1, we conclude that the number of pure gauge states at ghost number g + 1 is

the same as the number of unphysical states at ghost number g. On the other hand, since the

inner product (3.3.1) pairs states of ghost number g and 4 � g, we know from our previous

argument that the number of unphysical states at ghost number 3 � g must be at least equal

to the number of pure gauge states at ghost number g+1 and hence the number of unphysical

states at ghost number g. Taking g ! 3�g we can arrive at the reverse conclusion. This shows

that the number of unphysical states at ghost number 3 � g should be equal to the number

of unphysical states at ghost number g and hence the number of pure gauge states at ghost

number g + 1. Taking g = 1 we see that the number of unphysical states at ghost number 2

must be equal to the number of pure gauge states at ghost number 2. This is the promised

result.

Let us now return to states of ghost number 2 only. We have already seen that the inner

product pairs unphysical states with pure gauge states by a non-degenerate matrix and that

the pure gauge states are orthogonal to themselves as well as physical states. By adding ap-

propriate linear combinations of pure gauge states and physical states to the unphysical states

we can ensure that the latter are orthonormal to the physical states and unphysical states.
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Taking further linear combinations within physical states and within unphysical states we can

ensure that the physical states form an orthonormal basis and that the pure gauge states and

the unphysical states are paired in a one to one fashion. Thus at any mass level the inner

product matrix will have a block diagonal structure of the form

I =

0

B

B

@

I

I

I

1

C

C

A

(3.3.4)

where I denotes identity matrix of appropriate dimensions. The first set of rows/columns stand

for pure gauge states, the second set of rows/columns stand for unphysical states and the last

set of rows/columns stand for physical states. At non-zero momentum, it is in fact possible to

choose a basis satisfying this requirement with physical states of the form

|↵i = c1c̄1|�↵i (3.3.5)

where �↵ are dimension (1,1) primary in the matter sector satisfying

h↵|�i ⌘ h�↵|c�1c̄�1c0c̄0c1c̄1|��iBPZ = �↵� . (3.3.6)

Physical states of the form (3.3.5) are dimension zero primaries and hence transform as scalars

under conformal transformation.

So far we have reviewed well known results, but now we shall make a small jump and dis-

cuss the o↵-shell continuation of these results. At a given mass level m we can go o↵-shell

(satisfying the two conditions mentioned at the beginning of this section) by deforming the

momentum k such that k2 +m2 is deformed away from zero. We shall require the deformed

basis to still satisfy the inner product structure described in (3.3.4), but will need to relax the

various other requirements by terms of order (k2 +m2). For example if we take a state |si of
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ghost number 1 that is annihilated by b0, b̄0 and (L0� L̄0), and apply the BRST charge QB on

it, the resulting state will not be annihilated by b0 and b̄0. The part that is not annihilated by

b0 and b̄0 is given by (c0 + c̄0)L0|si = 1
4(k

2 +m2)(c0 + c̄0)|si. Hence the o↵-shell ‘pure gauge’

states will have to be defined as QB|si � 1
4(k

2 + m2)(c0 + c̄0)|si. These are not annihilated

by QB but under the action of QB give states proportional to (k2 + m2). Similarly physical

states will now be defined by first continuing the momentum o↵-shell and then by adding

appropriate linear combination of unphysical states proportional to (k2 + m2) so that they

remain orthonormal to the pure gauge states. These will only be BRST invariant up to terms

of order (k2 +m2) and transform under a conformal transformation as scalars up to terms of

order (k2+m2). Similar procedure can be used to define the unphysical states o↵-shell so that

they remain orthogonal to physical states and themselves.

We shall denote by |↵ip, |sig and |siu an appropriate basis of o↵-shell physical, pure gauge and

unphysical states at mass level m, satisfying the identities

ph↵|�ip = �↵�, ghr|siu = uhr|sig = �rs, ph↵|siu = ph↵|sig = 0, ghr|sig = uhr|siu = 0 .

(3.3.7)

Note that this preserves the inner product matrix I given in (3.3.4). We shall see that at higher

loop order we need to redefine the physical, unphysical and pure gauge states by making a

further rotation of the basis.

3.3.2 O↵-shell amplitudes

In this subsection we shall describe the construction of o↵-shell amplitudes in string theory,

which in turn was inspired by bosonic string field theory [32] and other earlier work (e.g.

[27, 34]). In order to define o↵-shell amplitudes in string theory we need to introduce local

coordinate system around the punctures on the Riemann surface where the vertex operators

are inserted [27] (see also [28–31]). Let us denote by z a reference coordinate system on a
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Riemann surface, possibly consisting of several coordinate charts. Let zi denote the location

of the i-th puncture in the z-coordinate system and wi denote the local coordinate system

around the i-th puncture, related to z by some functional relation z = fi(wi) such that the

wi = 0 point gets mapped to z = zi: fi(0) = zi. Then the contribution to the n-point o↵-shell

amplitude from the genus g Riemann surfaces can be expressed as

Z

Mg;n

*

n
Y

i=1

fi � Vi(0) ⇥ ghost insertions

+

, (3.3.8)

where f �V (0) denotes the conformal transformation of the vertex operator V by the function

f(w), the correlator h i is evaluated in the reference z-coordinate system and
R

Mg;n
denotes

integration over the moduli space of Riemann surfaces of genus g with n punctures with ap-

propriate measure. A detailed description of how to construct the integration measure (or

equivalently the rules for inserting b-ghosts into the correlation function) for a given choice

of local coordinate system can be found in [27, 32]. The o↵-shell amplitudes defined this way

depend on the choice of local coordinate system wi but are independent of the choice of the

reference coordinate system z.

We shall work with a class of local coordinate systems satisfying the following properties:6

1. The local coordinate system is taken to be symmetric in all the puncture, ı.e. the function

fi(w) should depend on i only via the location zi of the puncture.

2. On 3-punctured sphere and 1-punctured tori the choice of the local coordinate system

is arbitrary subject to condition 1. We declare all 3-punctured spheres and 1-punctured

6We note that the choice of local coordinates which appear in the Siegel gauge amplitudes in closed bosonic
string field theory of [32] automatically satisfies these requirements. Thus all our subsequent discussions hold
for this theory. In particular our analysis shows that the renormalized physical masses are the same in di↵erent
versions of closed string field theory using di↵erent vertices satisfying Batalin-Vilkovisky equations. Since
these di↵erent versions are related to each other by field redefinitions together with a change in the gauge
fixing condition [36] this indirectly tests gauge invariance of the renormalized physical masses in closed string
field theory.
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tori to be one particle irreducible (1PI) contributions to genus zero 3-point amplitudes

and genus one 1-point amplitudes respectively.

3. We can construct a set of 4-punctured spheres by gluing a 3-punctured sphere with

another 3-punctured sphere at one each of their punctures by the plumbing fixture pro-

cedure

w1w2 = e�s+i✓ 0  ✓ < 2⇡, 0  s <1 . (3.3.9)

Here w1 and w2 are the local coordinates at the punctures used for gluing. We choose the

local coordinates on these 4-punctured spheres to be the ones induced from the local coor-

dinates on the original 3-punctured spheres [37], and declare the contribution from these

4-punctured spheres to o↵-shell four point amplitudes to be the one particle reducible

(1PR) contributions to the genus zero four point amplitudes. On the rest of the genus

zero four punctured Riemann surfaces we choose the local coordinate system arbitrarily

subject to condition 1 and continuity and declare them to be 1PI contributions to genus

zero four point amplitude. We shall use a shorthand notation calling the corresponding

Riemann surfaces 1PI Riemann surfaces. Similarly by gluing a 3-punctured sphere to a

1-punctured torus we can generate a set of 2-punctured tori. We choose the local coordi-

nates on these 2-punctured tori to be the ones induced from the local coordinates of the

3-punctured sphere and the 1-punctured torus, and declare their contribution to be the

1PR contribution to the genus one 2-point function. On the rest of the 2-punctured tori

we choose the local coordinates arbitrarily subject to condition 1 and the requirement of

continuity, and declare them to be 1PI contribution to the genus one 2-point amplitude.

4. We now repeat this process to Riemann surfaces of higher genus and/or higher number of

punctures. At any stage, Riemann surfaces which can be obtained by gluing two or more

1PI Riemann surfaces to each other using the plumbing fixture procedure are declared

to be contributions to 1PR amplitudes and on these Riemann surfaces the choice of local

coordinates is induced from the local coordinates of the 1PI Riemann surfaces which have
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been glued. The rest of the Riemann surfaces are declared as 1PI contributions and the

local coordinates at the punctures on these Riemann surfaces can be chosen arbitrarily

subject to condition 1 and continuity.

We shall call the choice of local coordinates satisfying the criteria described above ‘gluing

compatible local coordinate system’. In the language of string field theory this has been called

o↵-shell factorization, – a brief discussion and relevant references can be found in [39].

For our analysis it will also be useful to introduce the notion of amplitudes which are 1PI

in a given momentum k, where k is the sum of a subset of the momenta carried by the external

states of that amplitude. Riemann surfaces 1PI in the leg carrying momentum k are defined

to be those Riemann surfaces which cannot be obtained by gluing two or more 1PI or 1PR

Riemann surfaces at punctures carrying momenta k and �k. Thus this set of Riemann sur-

faces include the usual 1PI Riemann surfaces but also many 1PR Riemann surfaces which are

obtained by gluing two or more 1PI Riemann surfaces at punctures carrying momenta other

than k or �k. The total contribution to an amplitude 1PI in momentum k is then obtained

by integrating over the moduli spaces of all Riemann surfaces which are 1PI in momentum k.

As an example consider genus one 2-point function with external vertex operators carrying

momentum k and �k. This receives contribution from 1PI Riemann surfaces and also 1PR

Riemann surfaces obtained by gluing 1-punctured torus to 3-punctured sphere. However all of

these are counted as 1PI in the momentum k since the 1PR Riemann surfaces are obtained by

gluing punctures carrying zero momentum, and not momentum ±k.

3.3.3 O↵-shell amplitudes from 1PI amplitudes

As we shall now discuss, the o↵-shell amplitudes constructed with the help of such choice of

local coordinates can be organized in the same way that the full amplitudes in a quantum field

theory can be organized as sums over tree level Feynman diagrams with 1PI amplitudes as
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vertices. As in [38] we begin our discussion with the propagator. We shall work with general

o↵-shell string states of ghost number 2, as defined in §3.3.1. If ±k denote the momenta carried

by the external legs, then let bF be the contribution to the o↵-shell two point amplitude from

Riemann surfaces which are 1PI in momentum k. This includes sum over di↵erent genera

starting from genus 1. As discussed in [38], this can be regarded as a map from H ⇥H to C

where H denotes the Hilbert space of o↵-shell states of ghost number two as defined in §3.3.1,

but using the duality between ghost number two and ghost number four states by the BPZ

inner product we can also regard this as a map from states of ghost number two to states of

ghost number four which are annihilated by c0 and c̄0. We can include a further action by

b̄0b0 to regard bF as a map from H to H. This is the viewpoint we shall adopt from now. The

factor of b̄0b0 in fact arises naturally in the tree level propagator of the string, which after being

stripped of this factor, has the form

� =
1

4⇡

Z 1

0

ds

Z 2⇡

0

d✓ e�s(L0+L̄0)ei✓(L0�L̄0) =
1

2(L0 + L̄0)
�L0,L̄0

. (3.3.10)

With this convention the full propagator is given by

⇧ = �+� bF�+� bF� bF�+ · · · = �(1� bF�)�1 = (1�� bF)�1� . (3.3.11)

Pictorially this contribution can be represented as in Fig. 4.3 with the horizontal line denoting

� and the blob marked 1PI denoting the contribution bF from the Riemann surfaces that are

1PI in momentum k. If F is the full o↵-shell two point function, then F and ⇧ are related by

⇧ = �+�F� . (3.3.12)

Also F and bF are related by

F = bF + bF� bF + · · · = bF(1�� bF)�1 = (1� bF�)�1
bF = bF + bF(��1 � bF)�1

bF . (3.3.13)
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k

1PI1PI

k1
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`1
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Figure 3.1: Pictorial representation of the second terms on the right hand sides of eq.(3.3.14).
Here 1PI means sum of contributions which are 1PI in the leg carrying momentum k, whereas
Full means sum of all contributions to the 2-point function shown in Fig.4.3.

Like bF , F , ⇧ and � can be regarded as maps from H to H.

As described in [38], we can use (3.3.13) to define bF in terms of F . At genus one bF = F . Start-

ing with this, we define bF at genus two so as to satisfy (3.3.13) up to genus two. Physically the

contribution to bF at genus two is given by integrating over those Riemann surfaces which can-

not be obtained by plumbing fixture of a pair of genus one Riemann surfaces. This definition

of course depends on the choice of local coordinates at the punctures that we use to glue the

two genus one Riemann surfaces. This procedure can be continued to define bF at higher orders.

As another example let us consider an m + n point amplitude � with external momenta

k1, · · · km, `1, · · · `n satisfying
Pm

i=1 ki = �
Pn

j=1 `j = k, and other quantum numbers a1, · · · am,
b1, · · · bn. Our goal is to express the amplitude in a way that makes manifest the poles in the

momentum k. For this we introduce two auxiliary quantities: �a
1 describing the contribution

to (m + 1)-point functions with external states carrying quantum numbers a1, · · · am, a and

momenta k1, · · · km, �k and �b
2 describing the contribution to (n + 1)-point functions with

external states carrying quantum numbers b1, · · · bn, b and momenta `1, · · · `n, k. Here the

quantum numbers a and b run over all o↵-shell string states of ghost number 2. Note that
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we have not explicitly exhibited the dependence of �1 on the indices a1, · · · am and momenta

k1, · · · km for brevity; a similar comment holds for �2. We shall also introduce the quantities

b�a
1 and b�b

2 which describe contributions to �a
1 and �b

2 from those Riemann surfaces which are

1PI in the leg carrying momentum k (in the sense described at the end of §3.3.2). Then the

full contribution to � can be expressed as

� = b�+ b�a
1Iac⇧cb

b�b
2

= b�+ b�T
1 I�(1� bF�)�1

b�2

= b�+ b�T
1 I(1�� bF)�1�b�2 , (3.3.14)

where b� represents contributions to � which are 1PI in the leg carrying momentum k and I
is the inner product matrix (3.3.4) over the full space of o↵-shell string states. The equality

between di↵erent expressions on the right hand sides of (3.3.14) follows from (3.3.11). A

pictorial representation of the second term on the right hand side of the first line of (3.3.14)

has been shown in Fig. 3.1

3.4 Physical state propagator in string theory

In this section we shall generalize the gauge theory analysis of §3.2 to give an iterative procedure

for constructing physical state propagator in string theory. From this we can compute the

masses of physical states.

3.4.1 Renormalized propagator at a given mass level

Since string theory contains infinite number of states, the quantities ⇧, �, F and bF introduced

in §3.3.3 are all infinite dimensional matrices. Our first step will be to ‘integrate out’ all states

except the ones at mass level m so that we can work with finite dimensional matrices with rows

70



and columns labelled by states at mass level m.7 For this we denote by PT the total projection

operator at mass level m,

PT = {|↵ip ph↵|+ |sig uhs|+ |siu ghs|} , (3.4.1)

and define

�̄ = �� (k2 +m2)�1PT , (3.4.2)

F̄ = bF + bF�̄ bF + · · · = bF(1� �̄ bF)�1 = (1� bF�̄)�1
bF = bF + bF(�̄�1 � bF)�1

bF , (3.4.3)

where bF has been defined in §3.3.3. It is clear from the definition of �̄ and bF that their genus

expansions do not have any poles at k2 = �m2. Hence F̄ defined in (3.4.3) also does not have

such poles. From (3.3.13), (3.4.3) we get

F = F̄{1� (k2 +m2)�1PT F̄}�1 = {1� F̄ (k2 +m2)�1PT}�1F̄ . (3.4.4)

We now define

PT = PT I ⇧PT , eFT = PT I F̄PT , FT = PTIFPT , (3.4.5)

where ⇧ has been defined in (3.3.11). Physically FT denotes the two point amplitude restricted

to external states of mass level m, eFT is the contribution to FT that is 1PI in momentum k

after integrating out all states other than those at mass level m, and PT denotes the o↵-shell

two point Green’s function restricted to external states of mass level m. It follows from (3.4.4),

(3.4.5) that

FT = eFT (1� (k2 +m2)�1I eFT )
�1,

PT = (k2 +m2)�1IPT + (k2 +m2)�2 FT = PT{(k2 +m2)I � eFT}�1 , (3.4.6)

7Throughout this paper we shall denote by states at mass level m all states which have tree level mass m,
ı.e. states which are annihilated by L0 and L̄0 when k2 = �m2.
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where it is understood that the inverse on the right hand sides is being taken in the finite

dimensional subspace of mass level m states only. We shall label the matrices eFT and PT as

0

B

B

@

ghr| eFT |r0ig ghr| eFT |s0iu ghr| eFT |↵0ip
uhs| eFT |r0ig uhs| eFT |s0iu uhs| eFT |↵0ip
ph↵| eFT |r0ig ph↵| eFT |s0iu ph↵| eFT |↵0ip

1

C

C

A

and

0

B

B

@

ghr|PT |r0ig ghr|PT |s0iu ghr|PT |↵0ip
uhs|PT |r0ig uhs|PT |s0iu uhs|PT |↵0ip
ph↵|PT |r0ig ph↵|PT |s0iu ph↵|PT |↵0ip

1

C

C

A

(3.4.7)

respectively.

PT and eFT and the inner product matrix I are the exact analogs of the corresponding quanti-

ties defined in §3.2. In particular the genus expansion of eFT is free from any poles at k2 = �m2

at every order. In §3.4.3 we shall generalize the procedure of §3.2 to construct the propagator

of physical states.

One point worth emphasizing is that for our analysis we do not really need the gluing com-

patibility condition discussed in §3.3.2 to be valid for the whole range 0  s < 1 with s

defined in (3.3.9); it is su�cient if the compatibility condition holds in a small neighborhood

of degeneration points, e.g. for s � s0 for some constant s0. One way to see this is that we can

rescale all the local coordinates wi to bring the range s � s0 in (3.3.9) to s � 0. This will have

the e↵ect of rescaling all the o↵-shell amplitudes by some power of e�s0(k2+m2). But we can also

proceed with the original choice of local coordinates and repeat the whole analysis by changing

the definition of 1PI and 1PR amplitudes so that two or more 1PI amplitudes glued together

using (3.3.9) for s � s0 are now declared as 1PR. We also have to modify the definition of

� given in (3.3.10), with the integral over s now running from s0 to 1. This will produce a

multiplicative factor of e�s0(L0+L̄0) in the definition of �. But the rest of the analysis is not

a↵ected by this. In particular we can continue to define �̄ and F̄ via eqs.(3.4.2) and (3.4.3).

The contribution to �̄ from states of mass level m now gives PT (k2+m2)�1(e�s0(k2+m2)/2� 1).

Since this does not have a pole at (k2 +m2) = 0, �̄ and F̄ will continue to be free from poles
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at k2 +m2 = 0.

3.4.2 An alternate definition of eFT

The definition of eFT given in §3.4.1 looks complicated, since we first need to define the 1PI

amplitudes bF , then construct F̄ via (3.4.3) and finally project onto the mass level m sector as

in (3.4.5). In particular the definition of bF requires dividing up the moduli space of Riemann

surfaces into 1PI and 1PR parts. Since eFT will play a crucial role in the definition of the

physical renormalized mass, we shall now give an alternate definition of eFT which does not

require us to explicitly identify the 1PI subspace in the moduli space of Riemann surfaces. For

this we note from (3.4.6) that

eFT = FT (1+(k2+m2)�1IFT )
�1 = FT�FTI(k2+m2)�1FT+FTI(k2+m2)�1FTI(k2+m2)�1FT+· · · .

(3.4.8)

Now FT has a simple interpretation since it denotes the full o↵-shell 2-point function restricted

to mass level m. Thus we can regard (3.4.8) as the definition of eFT . In this way of defining eFT

we never have to divide the contribution to an amplitude into 1PI and 1PR parts. The only

price we pay is that from (3.4.8) it is not obvious that eFT is free from poles at k2 +m2 = 0,

since each term on the right hand side of (3.4.8) does contain such poles. Nevertheless our

previous arguments guarantee that all such poles cancel.

It may seem that eFT defined this way requires less information than in the earlier defini-

tion, but this is not the case. The definition of eFT requires information on the choice of local

coordinate system, which in turn completely fixes the division of the amplitudes into 1PI and

1PR parts. Thus even though we do not explicitly use this division in defining eFT , the data

used in the construction of eFT is su�cient to determine the division of an amplitude into 1PI

and 1PR parts.
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The definition of eFT given in this subsection will be useful when we generalize the analysis to

super and heterotic string theories.

3.4.3 Renormalized physical state propagator and masses

Following the analysis of §3.2.2 we now seek a change of basis

|↵i0p = A�↵|�ip +Bs↵|sig + Cs↵|siu, |ri0g = |rig +D�r|�ip, |ri0u = |riu +K�r|�ip , (3.4.9)

such that the following conditions hold

0
ph↵|�i0p = �↵�,

0
ph↵|si0u = 0

ph↵|si0g = 0
uhr|�i0p = 0

ghr|�i0p = 0 , (3.4.10)

and

0
ph↵| eFT |si0u = 0

ph↵| eFT |si0g = 0
uhr| eFT |�i0p = 0

ghr| eFT |�i0p = 0 . (3.4.11)

We now substitute (3.4.9) into (3.4.10), (3.4.11) and use (3.3.7) to get8

(A†A+B†C + C†B)↵� = �↵�, (D†A+ C)r↵ = 0, (K†A+B)r↵ = 0 ,

uhr| eFT |↵ipA↵� + uhr| eFT |sigBs� + uhr| eFT |siuCs� + (K†)r� ph�| eFT |↵ipA↵�

+(K†)r� ph�| eFT |sigBs� + (K†)r� ph�| eFT |siuCs� = 0

ghr| eFT |↵ipA↵� + ghr| eFT |sigBs� + ghr| eFT |siuCs� + (D†)r� ph�| eFT |↵ipA↵�

+(D†)r� ph�| eFT |sigBs� + (D†)r� ph�| eFT |siuCs� = 0 . (3.4.12)

8We seek a change of basis that is real in the position space. In momentum space this implies that changing
the momentum from k to �k has the e↵ect of complex conjugating the coe�cients A↵� , · · ·K�r. This has been
used in (3.4.12).
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Let us first count the number of independent variables and the number of independent equa-

tions. The number of real components in the variables A↵�, Bs↵, Cs↵, D�r and K�r are

2n2
p + 4⇥ 2npng , (3.4.13)

where np is the number of physical states and ng = nu is the number of pure gauge / unphysical

states at mass levelm. On the other hand the number of independent equations can be counted

as follows. Since both sides of the first equation in (3.4.12) are hermitian matrices, this gives

n2
p real equations, whereas each of the rest gives 2npng real equations. Thus the total number

of equations is

n2
p + 4⇥ 2npng . (3.4.14)

Thus we see that we have n2
p extra variables compared to the number of equations. This can

be traced to the freedom of multiplying A, B and C by a unitary matrix from the right which

is a symmetry of the equations (3.4.12) (and represent the freedom of a unitary rotation in the

subspace of physical states |↵i0p). Up to this freedom we can determine the matrices A, · · ·K
by solving (3.4.12).

We shall now describe an iterative procedure for solving these equations. For this we note

that the leading (genus one) contribution to eFT satisfies the property

ph↵| eFT |sig ⇠ � (k2 +m2), ghr| eFT |sig ⇠ � (k2 +m2), ghr| eFT |�ip ⇠ � (k2 +m2) , (3.4.15)

where � now stands for the genus expansion parameter given by the square of the string cou-

pling. These properties follow from the fact that at genus one eFT includes the full contribution

to the torus two point function. Representing a pure gauge state as QB|ni plus a term of order

(k2 + m2), deforming the contour of integration of the BRST current so that it acts on the

other vertex operator, and then using that fact that acting on an o↵-shell physical or pure

gauge state QB gives a term proportional to (k2 + m2), we arrive at (3.4.15). This in turn
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allows us to look for solutions where at order �0,

A,B,K ⇠ 1, C,D ⇠ (k2 +m2) . (3.4.16)

The solution to order �0 and leading order in k2 +m2 are given by

A↵� = �↵� +O(k2 +m2), C = �D† +O(k2 +m2), B = �K† +O(k2 +m2),

��1 {��� uhr| eFT |sig � �rs ph�| eFT |�ip}K†
s� = ��1

uhr| eFT |�ip +O(k2 +m2)

��1 {��� ghr| eFT |siu � �rs ph�| eFT |�ip}D†
s�

= ��1
ghr| eFT |�ip + ��1

ghr| eFT |sig Bs� +O
�

(k2 +m2)2
�

. (3.4.17)

This gives a sensible solution satisfying (3.4.16) provided the npng ⇥ npng matrix

Sr�,s� ⌘ ��1{ uhr| eFT |sig ��� � ph�| eFT |�ip �rs}, (3.4.18)

is invertible. Starting with this solution we can solve for the matrices A,B,C,D,K iteratively

in powers of the genus expansion parameter � and (k2+m2) exactly as in §3.2. As long as the

matrix defined in (3.4.18) is invertible, the coe�cient of �n for any n is free from poles near

k2 = �m2. Physically, invertibility of Sr�,s� is the condition that the degeneracy between the

masses of physical states and the unphysical / pure gauge states is lifted at one loop order. If

this condition fails then we need to go to higher order in perturbation theory to lift the degen-

eracy. We expect that in principle there should be no di�culty in carrying out this procedure,

although in practice the analysis is likely to become more complicated.

The coe�cients A, · · ·K satisfying (3.4.12) ensures, via eqs.(3.4.9)-(3.4.11) that the matri-

ces I and eFT expressed in the primed basis have block diagonal form, with no cross terms
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between the states |↵i0p and (|ri0u, |ri0g). As in §3.2 we define

eF↵�(k) =
0
ph↵| eFT |�i0p . (3.4.19)

Then the propagator restricted to the modified physical sector is given by

P↵� ⌘ 0
ph↵|PT |�i0p =

⇣

(k2 +m2 � eF (k))�1
⌘

↵�
. (3.4.20)

From here onwards we proceed as in [38]. We can diagonalize eF (k) as

eF (k) = U(k) eFd(k)U(k)†, U(k)† = U(k)�1 = U(�k)T , (3.4.21)

so that we have

P = U(k)(k2 +m2 � eFd(k))
�1U(k)† . (3.4.22)

We can now determine the solutions to the equation k2+m2� eFd(k) = 0 iteratively for each of

the diagonal entries of eFd(k), starting with k2 = �m2 as the leading order solution. This gives

the physical masses. Let M2
p denotes the diagonal matrix with the diagonal elements being

equal to the squares of the physical masses. Then we can express (k2 +m2 � eFd(k))�1 as

Xd(k)(k
2 +M2

p )
�1 , (3.4.23)

where Xd(k) is a diagonal matrix which has no poles near k2 = �m2. Eq.(3.4.22) now allows

us to express the physical propagator P↵� as

P = Z1/2(k)(k2 +M2
p )

�1Z1/2(�k)T , Z1/2(k) ⌘ U(k)Xd(k)
1/2 . (3.4.24)

In §3.6 we shall argue that the squares of the physical masses given by the diagonal elements

of M2
p do not depend on the choice of local coordinates at the punctures, although the wave-

function renormalization matrix Z1/2(k) does depend on the choice of local coordinates.
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Finally we would like to note that since Bs↵ is of order unity, the corrected physical state

|↵i0p di↵ers from the tree level physical state |↵ip by a pure gauge state with coe�cient of

order unity. Thus even in the �! 0 limit, |↵i0p does not approach |↵ip.

3.4.4 Renormalized masses in the unphysical / pure gauge sector

We shall now briefly describe the computation of the renormalized masses in the unphysical /

pure gauge sector by generalizing the procedure described in §3.2.4. For this we define

I 0 =

 0
ghr|si0g 0

ghr|si0u
0
uhr|si0g 0

uhr|si0u

!

, eF 0 =

 0
ghr| eFT |si0g 0

ghr| eFT |si0u
0
uhr| eFT |si0g 0

uhr| eFT |si0u

!

. (3.4.25)

Then the renormalized mass2’s in the unphysical / pure gauge sector will be given by the zeroes

of the eigenvalues of the matrix

(k2 +m2)I 0 � eF 0(k) , (3.4.26)

in the complex �k2 plane. To evaluate the order � correction to these masses, we shall assume

as in §3.2.4 that k2 +m2 is of order � when �k2 is equal to the renormalized mass2 and keep

terms in (3.4.26) up to order �. Using (3.4.9), (3.4.15) and (3.4.17) one finds that to order

unity

0
ghr|si0g = 0, 0

ghr|si0u = 0
uhr|si0g = �rs, (3.4.27)

and to order �,

0
ghr| eFT |si0g = 0, 0

ghr| eFT |si0u = ghr| eFT |siu, 0
uhr| eFT |si0g = uhr| eFT |sig . (3.4.28)
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Hence to order � (counting k2 +m2 as order �)

(k2 +m2)I 0 � eF 0(k) =

 

0 (k2 +m2) �rs � ghr| eFT |siu
(k2 +m2) �rs � uhr| eFT |sig (k2 +m2) 0

uhr|si0u � 0
uhr| eFT |si0u

!

.

(3.4.29)

Using the fact that the vanishing of an eigenvalue of a matrix is equivalent to requiring the

vanishing of its determinant, we see that the required condition is the vanishing of the de-

terminant of the upper right (or lower left) block. This in turn is equivalent to requiring the

vanishing of an eigenvalue of

(k2 +m2) �rs � ghr| eFT |siu (3.4.30)

as a function of �k2. Starting with this first order solution one can iteratively compute higher

order corrections to the renormalized mass2 in the unphysical / pure gauge sector by looking

for zero eigenvalues of (3.4.26).

3.4.5 Dependence on choice of local coordinates

An important question is: how do the physical masses depend on the choice of local coordi-

nates? We shall postpone a full discussion on this till §3.6, but at this stage we can derive

the result at order �. The locations of the physical mass squares are determined by the zeroes

of k2 +m2 � eFd(k) in the �k2 plane. Let us focus on the one loop, ı.e. order � correction to

the mass2. For this we need to determine the function eFd(k) and hence eF (k) to order � at

k2 = �m2. It follows from (3.4.9), (3.4.15), (3.4.17), (3.4.19) and the fact that the leading

contribution to eFT is of order � that to order � and at k2 +m2 = 0

eF↵� = h↵| eFT |�i . (3.4.31)

At order � this represents the full two point function of the tree level physical states |↵i and
|�i on the torus. Since |↵i and |�i are both dimension zero primaries at k2 = �m2, we see

that to this order eF↵� at k2 = �m2 is independent of the choice of local coordinates. Hence
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the renormalized physical masses are also independent of the choice of local coordinates to this

order.

We can also consider the fate of the masses in the unphysical / pure gauge sector under a

change in the local coordinate system. To order � the mass2’s in this sector are given by the

zeroes of the eigenvalues of the matrix (3.4.30) in the �k2 plane. Since the matrix elements

ghr| eFT |siu involve unphysical and pure gauge states, which are generically not dimension zero

primaries, we see that in the generic case the order � contribution to the masses of the un-

physical and pure gauge states will depend on the choice of local coordinates.9 Higher order

contributions can correct these results but cannot cancel the order � corrections. This we

conclude that the unphysical / pure gauge sector masses do depend on the choice of local

coordinate system.

3.5 Poles of S-matrix elements of massless / BPS / spe-

cial states

In this section we shall show that if we consider an S-matrix of external massless, BPS and/or

special states then the poles in this S-matrix in any channel are the same ones as those which

appear in the analysis of §3.4.3.10 Let us denote by k the total momentum carried in some

particular internal channel, being equal to the sum of momenta of two or more external states,

and look for poles in the �k2 plane. Our starting point will be the expression (3.3.14) for

the (m + n)-point amplitude. The S-matrix elements are obtained from this by multiplying

this by appropriate renormalization factors on the external legs and then setting the external

momenta on-shell. Since multiplicative factors on the external legs do not a↵ect the locations

of the poles in the k2 plane, we can directly use � to examine these poles. Our interest will

9If the vertex operator involves ghost excitations then the integration measure provided by b-ghost insertions
also depend on the choice of local coordinates [27, 32].

10This generalizes the result of [35] in the absence of mass renormalization.
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be to look for those poles which arise from states at mass level m. For this it will be useful to

‘integrate out’ the states at other mass levels. With this goal in mind, we define

�̄T
1 I = b�T

1 I(1 + �̄ bF + �̄ bF�̄ bF + · · ·) = b�T
1 I(1� �̄ bF)�1 ,

�̄2 = (1 + bF�̄+ bF�̄ bF�̄+ · · ·) b�2 = (1� bF�̄)�1
b�2 , (3.5.1)

where �̄ has been defined in (3.4.2). We also define

�̄ = b�+b�T
1 I(�̄+�̄ bF�̄+�̄ bF�̄ bF�̄+· · ·)b�2 = b�+b�T

1 I�̄(1� bF�̄)�1
b�2 = b�+b�T

1 I(1��̄ bF)�1�̄b�2 .

(3.5.2)

Using (3.3.14), (3.4.2), (3.4.3), (3.5.1) and (3.5.2) we now get

� = �̄+ �̄T
1 I

�

1� (k2 +m2)�1PT F̄
 �1

PT (k
2 +m2)�1�̄2

= �̄+ �̄T
1 IPT (k

2 +m2)�1
�

1� (k2 +m2)�1F̄PT

 �1
�̄2

= �̄+ �̄T
1 IPT (k

2 +m2 � PT F̄PT )
�1PT �̄2

= �̄+ �̄T
1PT �̄2 , (3.5.3)

where PT has been defined in (3.4.5). Now the genus expansions of �̄, �̄T
1 and �̄2 are free from

poles at �k2 = m2. Thus the only poles near �k2 = m2 can come from the poles of matrix

PT . These are precisely the renormalized physical and unphysical squared masses as discussed

in §3.4.

— For later use, it will be useful to isolate the contribution from the physical states from that

of the unphysical and pure gauge states. For this we insert the projection operator PT on both

sides of PT on the right hand side of (3.5.3) using the identity PTPTPT = PT . Now using

(3.4.1) and (3.4.9), PT may be expressed as

PT =
X

↵

|↵i0p 0
ph↵|+

X

r,s

h

eArs|ri0g 0
ghs|+ eBrs|ri0g 0

uhs|+ eCrs|ri0u 0
ghs|+ eDrs|ri0u 0

uhs|
i

, (3.5.4)
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where eArs, eBrs, eCrs and eDrs are constants which can be computed from (3.4.9), (3.4.12). The

first term on the right hand side of (3.5.4) describes the contribution from renormalized phys-

ical states whereas the other terms represent contribution from renormalized unphysical and

pure gauge states.

Let us now examine the residues at the poles in (3.5.3) at leading order in string pertur-

bation theory. First consider the residue at a physical pole. This is given by the products of

the components of �̄1 and �̄2 along the corresponding physical state |↵i0p. At the tree level the
relevant component of �̄1 is given by the contribution to the full (m+ 1) point tree amplitude

with external states |↵i0p and m other massless / BPS / special states, and similarly the rel-

evant component of �̄2 is given by the contribution to the full (n + 1) point tree amplitude

with external states |↵i0p and n other massless / BPS / special states. Since in the leading

order |↵i0p is given by a linear combination of tree level physical state |↵ip and a pure gauge

state, and since the pure gauge states decouple in the on-shell tree level amplitude, we can

replace |↵i0p by |↵ip in computing the leading order contribution to the relevant components

of �̄1 and �̄2. Thus in the leading order the residue at the physical pole is given by the prod-

uct of two tree level S-matrix elements – one with (m + 1) external states and the other one

with (n + 1) external states. As long as these are non-zero, the residue at the corresponding

physical pole will be non-zero. Higher order contributions can correct the residue but cannot

make this vanish in perturbation theory. Thus even after including higher order corrections,

the corresponding physical mass2’s will appear as the locations of the poles in the �k2 plane

of the original S-matrix element involving (m+ n) external massless / BPS / special states.

Let us now turn to the contribution from the unphysical / pure gauge states. It follows from

(3.4.9), (3.4.15), (3.4.17) and (3.5.4) that for k2 = �m2 and leading order in �, the coe�cients

eDrs vanish. On the other hand the same equations show that in this approximation |si0g = |sig.
Thus the residue is given by a sum of products of appropriate components of �̄1 and �̄2, and
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in each of these terms either the component of �̄1 or the component of �̄2 (or both) is aligned

along a tree level pure gauge state |sig. Thus this factor is given by a tree level amplitude, one

of whose external states is |sig and the other states are on-shell massless / pure gauge / special

states. Since this vanishes due to BRST invariance, we conclude that at least at leading order

in � the unphysical states do not contribute to the poles in the S-matrix elements of massless

/ BPS / special states.

— Before concluding this section we would like to note that the various quantities which appear

in (3.5.3) – e.g. �̄, �̄T
1 IPT , PT �̄2 etc. – can be defined without having to explicitly identify

the 1PI Riemann surfaces by following the same strategy as in §3.4.2. For example we have

the relations

�̄T
1 IPT = �T

1 I (1� (k2 +m2)�1I eFT )PT ,

PT �̄2 = (1� (k2 +m2)�1I eFT )PT �2 ,

�̄ = �� �T
1 I (k2 +m2)�1 (1� (k2 +m2)�1I eFT )PT �2 . (3.5.5)

Since �, �1 and �2 are full amplitudes, their definitions do not require us to divide the moduli

space of Riemann surfaces into 1PI and 1PR parts. The definition of eFT given in §3.4.2 also

does not require this division. Thus �̄T
1 IPT , PT �̄2 and �̄ defined via (3.5.5) also do not require

this divison. This observation will be useful when we generalize the analysis to super and

heterotic string theories.

3.6 All order results

We shall now combine the results of §3.4.5 and §3.5 to prove some all order results in a generic

situation. For this we need to first explain what we mean by a generic situation. The conditions

under which our arguments will hold are listed below.

1. We assume that the degeneracies between physical and unphysical masses are lifted
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at first order in perturbation theory. Otherwise our prescription of §3.4 of computing

renormalized physical masses will have to be modified.

2. We have seen that to leading order the residue at a particular physical mass2 of an

S-matrix element of external massless / BPS / special states is proportional to the prod-

uct of S-matrix elements of two lower point tree level S-matrix elements each of which

contains, as one of the external states, the physical state whose mass we are interested

in. We shall assume that it is possible to choose the external massless / BPS / special

states of the original amplitude in such a way that both these lower point S-matrix ele-

ments are non-vanishing at tree level. Had we restricted the external states to be only

massless or BPS states then this fails in some cases, as was illustrated in [38]. (A par-

ticular example of this is the SO(32) spinor states of ten dimensional SO(32) heterotic

string theory; these cannot appear as one particle intermediate states in the scattering of

massless external states which are all in the adjoint or singlet representation of SO(32).)

However at present we do not know of an example where it fails even after we allow as

external states the special states introduced in [38]. Once the residue at the pole can

be made non-vanishing at leading order, higher order corrections can modify the residue

but cannot make it vanish in perturbation theory.

3. We have seen in §3.4.5 that the renormalized masses of unphysical / pure gauge states

do in general depend on the choice of local coordinates. We shall assume that this is true

in all cases, ı.e. there is no renormalized mass corresponding to unphysical / pure gauge

states which is accidentally independent of the choice of local coordinates.

Next we shall combine the genericity assumption with some of the relevant results in §3.4.5,

§3.5 and ref. [38] to draw the following conclusions:

1. In a generic situation the renormalized masses of the unphysical / pure gauge states

depend on the choice of local coordinates.
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2. It was shown in §3.4.5 the renormalized masses of physical states do not depend on the

choice of local coordinates at least to order �.

3. In a generic situation the mass2 of physical states appear as poles in the �k2 plane of

some S-matrix of massless / BPS / special states.

4. It was also shown near the end of §3.5 that the unphysical /pure gauge states do not

contribute poles in the S-matrix of massless / BPS / special states at least to leading

order in �.

5. The S-matrix involving external massless / BPS / special states do not depend on the

choice of local coordinates to all orders in � [38].

Let us now combine these results. Points 1 and 5 show, to all orders in �, that the unphysical

/ pure gauge states cannot appear as intermediate states in the S-matrix of massless / BPS /

special states. This is consistent with the leading order result mentioned in point 4. On the

other hand points 3 and 5 show, to all orders in �, that the mass2 of physical states cannot

depend on the choice of local coordinates. This is consistent with the leading order result

described in point 2.

—We can also extend this argument to prove the invariance of the S-matrix elements of general

external physical states under a change of local coordinates. For this we note that as long as

each of the external states have non-zero tree level amplitude with some set of massless / BPS

/ special states, we can replace each of the massive, non-BPS and non-special external physical

states by the corresponding combination of massless / BPS / special states and examine the

corresponding S-matrix for values of momenta where the intermediate physical states of interest

go on-shell. The desired S-matrix can then be found by examining the residue at the pole.11

Since the S-matrix of massless / BPS / special states is invariant under a change in the local

coordinate system, its residues at various poles must also be invariant under a change of local

11If the physical state under consideration is unstable then this is the only way to define its ‘S-matrix’ since
the state does not exist as asymptotic state.
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coordinates. This establishes the invariance of the S-matrix elements involving general external

physical states under a change of the local coordinate system.

3.7 Generalizations to heterotic and super string theo-

ries

We shall now briefly discuss generalizations to heterotic and superstring theories. We shall

restrict our discussion to the Neveu-Schwarz (NS) sector, and work with picture number �1
states. In this case the discussion of §3.3 can be adapted with few changes:

1. The discussion in §3.3.1 remains valid without any change.

2. In the analysis of §3.3.2 we need to choose local superconformal coordinate system (w, ⇠)

around every puncture for defining o↵-shell amplitudes, and fi � Vi will label the trans-

form of the vertex operator Vi by the superconformal transformation fi that relates the

local coordinates near the i-th puncture to the reference superconformal coordinates on

the super Riemann surface. The detailed analysis of the integration measure (ghost in-

sertions) for o↵-shell amplitudes can be carried out by combining the description of the

measure for on-shell amplitudes in super and heterotic string theories given in [5] with

the description of the measure for o↵-shell amplitudes in bosonic string theory given

in [27, 32].

3. The gluing of two Riemann surfaces is implemented via the identification [5]

w1w2 = qNS, w2⇠1 = "⇠2, w1⇠2 = �"⇠1, ⇠1⇠2 = 0, " = ±
p
�qNS , (3.7.1)

and we need to sum over both choices of the sign of ", leading to GSO projection.

4. The choice of local superconformal coordinates should be compatible with gluing in the

same way as in the case of bosonic string theory. We shall also require that the contours
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in the supermoduli space over which we integrate [5] should be compatible with gluing.

In particular this means that in situations where we can integrate out the odd moduli at

the expense of inserting picture changing operators [40, 41], the locations of the picture

changing operators on the glued Riemann surface should be those induced from the

locations of the picture changing operators on the lower genus Riemann surfaces which

are being glued. A consistent super or heterotic string field theory should automatically

satisfy this property in a Siegel like gauge. Construction of classical superstring field

theory satisfying these requirements can be found in [33, 42].

5. We can now define eFT following the procedure outlined in §3.4.2. This avoids having

to divide the super Riemann surfaces into 1PI and 1PR surfaces, and directly gives us

the expression for eFT in terms of the full o↵-shell two point function FT of mass level m

states. Similarly generalization of the analysis of §3.5 can also be carried out by defining

�̄, �̄T
1 IPT , PT �̄2 etc. as in (3.5.5) instead of in terms of 1PI super Riemann surfaces.

The rest of the analysis can be carried out in a straightforward matter and we arrive at the

same conclusions as in the case of bosonic string theory.

The di�culty in the Ramond sector stems from the fact that there is no natural inner product

between states in the �1/2 picture since the inner product pairs states in the �1/2 picture to

states in the �3/2 picture. Thus generalization of the analysis of §3.3.1 will require us to work

with picture number �1/2 and �3/2 states together. On the other hand superstring pertur-

bation theory naturally uses �1/2 picture vertex operators [5]. This issue has been resolved

in [43].
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CHAPTER4
S-duality Improved Perturbation Theory in

Compactified Type I / Heterotic String

Theory

4.1 Introduction

Our current understanding of string theory is based mostly on perturbation expansion in the

string coupling [5]. Furthermore this perturbation expansion is believed to be an asymptotic

expansion. For this reason one might worry that our ability to compute anything in string

theory may be limited to very narrow corners of the full string theory landscape – regions in

which the theory admits a description as a very weakly coupled string/M/F-theory.

Ref. [44] suggested making use of duality and suitable interpolation formula to translate the

weak coupling results in string theory to approximate results for physical quantities over the

entire range of string coupling constant. As a specific example, the mass of the stable non-BPS

particle in ten dimensional type I / SO(32) heterotic string theory was considered. Using a

suitable formula that interpolates between the result for this mass in weakly coupled SO(32)

heterotic string theory and weakly coupled type I string theory, an approximate formula for

the mass of this state was derived over the entire range of string coupling. Furthermore by
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comparing the results in di↵erent orders it was estimated that this approximate formula lies

within 10% of the exact result over the entire range of coupling. Generalization of this analysis

has since been discussed in [45–47].

Since a generic string theory moduli space is multi-dimensional it is natural to ask if this

interpolation technique can be used to find approximate expressions for various physical quan-

tities over the full multi-dimensional moduli space.1 In this chapter we explore this in the

context of SO(32) heterotic / type I string theory compactified on a circle. If we do not switch

on any Wilson line so that the SO(32) gauge group is unbroken then the moduli space is two

dimensional, parametrized by the string coupling and the radius of compactification. We use

perturbative results in the compactified string theory and a suitable generalization of the inter-

polation formula used in [44] to derive expression for the mass of the non-BPS state in the full

two dimensional moduli space. Comparison between di↵erent orders of approximation again

indicates that the approximate formula derived here lies within 10% of the exact formula over

the entire two dimensional moduli space.

In type I / SO(32) heterotic string theory compactified on S1, one can identify a set of BPS

states whose total charge is the same as that of the charge carried by the non-BPS state under

study. Thus the latter can decay into the former if the mass of the non-BPS state is larger

than the sum of the masses of the BPS states to which it could possibly decay. With the

help of the approximate formula for the mass we determine the part of the region of the two

dimensional moduli space in which the non-BPS state is unstable. Again we find that the

region determined this way is only mildly sensitve to the order of the approximation that we

use.

1This issue arose aleady in the analysis of [45] (albeit in the context of a supersymmetric gauge theory instead
of string theory) where the interpolation technique together with perturbative results were used to determine
approximate formulæ for anomalous dimension of non-BPS operators in the complex coupling constant plane.
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The rest of the chapter is organized as follows. In §4.2 we review the interpolation tech-

nique and the normalization conventions of [44], and the additional ingredients we need for

dealing with the compactified theory. In §4.3 we carry out the computation of the one loop

correction to the mass of stable non-BPS state in type I string theory compactified on S1. In

§4.4 we carry out a similar calculation in SO(32) heterotic string theory compactified on S1.

In §4.5 we construct the interpolation formula for the mass of the non-BPS state in various

approximation, and compare the results in di↵erent orders of approximation. In §4.6 we use

the interpolation formula to analyze the region of stability of the non-BPS state. In §4.7 we

discuss extension of our analysis to the case of compactification on higher dimensional tori.

We conclude in §4.8 with a brief summary of our results and their possible relation to related

developments. This chapter is based on [3].

4.2 Normalization conventions and tree level results

Let gH and gI be the string coupling in ten dimensional heterotic and type I string theories

respectively. We introduce a new coupling parameter g in terms of which gH and gI are given

by

gH = 27/2⇡7/2g, gI = 23/2⇡7/2g�1 . (4.2.1)

We normalize the heterotic and type I metric such that the heterotic string tension in heterotic

metric and the type I string tension in type I metric are both given by 1/2⇡. The mass of the

non-BPS state, measured in the ten dimensional Einstein metric, is parametrized by

M(g) = 215/8⇡7/8F (g) . (4.2.2)

The tree level weak and strong coupling values of F (g), computed respectively from tree level

heterotic and type I string theories, are

FW
0 (g) = g1/4, F S

0 (g) = g3/4 . (4.2.3)
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Upon compactification on a circle the tree level masses will continue to be given by (4.2.3)

if we measure it in the canonical metric in ten dimensions. We shall follow this convention.

Let rI , rH and rE denote the radii of the compact circle measured in the type I, heterotic and

canonical metric. Then

rE = (gI)
�1/4rI = 2�3/8⇡�7/8g1/4rI ,

rH = (gH)
1/4rE = 27/8⇡7/8g1/4rE = 21/2g1/2rI . (4.2.4)

We expect the quantum corrections in the heterotic and type I string theories to modify the

weak coupling results to

FW (g) = g1/4
"

1 +
1
X

k=1

A2k(rH)g
2k

#

, F S(g) = g3/4
"

1 +
1
X

n=1

Bn(rI)g
�n

#

, (4.2.5)

where the functions A2k(rH) and Bn(rI) have finite rH ! 1 and rI ! 1 limits respectively,

corresponding to the results in the non-compact theory. We now introduce the interpolating

function2

Fm,n(g) = g1/4
h

1 + a1(rH)g + · · · am(rH)gm + bn(rI)g
m+1 + bn�1(rI)g

m+2

+ · · ·+ b1(rI)g
m+n + gm+n+1

i1/{2(m+n+1)}
, (4.2.6)

where the functions ak(rH) and bk(rI) are determined as follows. We determine ak(rH) by

demanding that after setting the bk’s to zero, the expansion of (4.2.6) in powers of g at fixed

rH agrees with that of FW (g) up to order g
1
4+m. Similarly the functions bk(rI) are determined

2There are various other possible interpolation schemes (see e.g, [48,49]), but the one given in (4.2.6), called
the fractional power of polynomial (FPP) scheme in [45], seems to be most suitable for our purpose as this
gives a clear separation between the coe�cients which are determined using weak coupling expansion and the
coe�cients which are determined using strong coupling expansion. This is needed to ensure that the weak
coupling expansions at fixed rH and strong coupling expansion at fixed rI match the perturbation expansions.
The di�culty in achieving this with other approximation schemes, e.g. 2-point Padé approximant, is similar
to the di�culties faced in [45] in getting a duality invariant approximation scheme beyond four loops using
2-point Padé approximant.
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by demanding that after setting the ak(rH)’s to zero, the expansion of (4.2.6) in powers of g�1

at fixed rI agrees with that of F S(g) up to order g
3
4�n.

We shall now argue that the weak coupling expansion at fixed rH of the full function Fm,n

keeping both ak’s and bk’s non-zero coincides with that of FW up to order g
1
4+m, and similary

the strong coupling expansion at fixed rI of the full function Fm,n coincides with that of F S up

to order g
3
4�n. From eq.(4.2.4) it follows that rI = 2�1/2g�1/2rH , and hence as g ! 0 keeping

rH fixed, rI !1. In this limit the coe�cients Bk appearing in the strong coupling expsnsion

should approach finite values given by the results in the non-compact theory. Thus the coef-

ficients bk, determined in terms of the coe�cients B` for k  n, should also approach finite

values in this limit. This shows that the expansion of bk in powers of g at fixed rH contains

non-negative powers of g. Substituting this into (4.2.6) we now see that the coe�cents bk do

not a↵ect the weak coupling expansion of Fm,n to order g
1
4+m, and hence the weak coupling

expansion of Fm,n to this order agrees with that of FW . A similar analysis shows that the

expansion of ak in powers of g�1 at fixed rI contains non-positive powers of g. Hence the

expansion of Fm,n in powers of g�1 at fixed rI to order g
3
4�n is insensitive to the coe�cients ak

and coincides with that of F S(g).

From (4.2.3), (4.2.6) we can find the following interpolating functions for the mass of the

non-BPS particle

F0,0(g) = g1/4 (1 + g)1/2 ,

F1,0(g) = g1/4 (1 + g2)1/4 . (4.2.7)

4.3 Strong coupling expansion

Denote by �M the first order correction to the mass formula from the strong coupling end,

i.e. in weakly coupled type I string theory compactified on a circle S1 of radius rI . This can
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be obtained by calculating the one loop correction to the energy of the non-BPS D0-brane

of type I string theory compactified on S1. This calculation di↵ers from the corresponding

calculation in [44] by having to include extra contribution from open string winding modes

along the circle, begining on a D0-brane and ending on one of its images. The result takes the

form [50–53]

��M =
1

2
g

1
4
I (8⇡

2)�
1
2

Z 1

0

s�
3
2ds[ZNS;D0D0 � ZR;D0D0 + ZNS;D0D9 � ZR;D0D9], (4.3.1)

where ZNS;D0D0, ZR;D0D0, ZNS;D0D9, ZR;D0D9 denote respectievely the contributions from the

NS and R sector open strings with both ends on the D0-brane and NS and R open strings

with one end on the D0-brane and the other end on the D9-brane wrapped on S1 of radius rI .

Explicit computation gives

ZNS;D0D0 =
1

2

✓

X

n

q̃2n
2r2I

◆

f3(q̃)8

f1(q̃)8
+ 2

5
2 (1� i)

f3(iq̃)9f1(iq̃)

f2(iq̃)9f4(iq̃)
� 2

5
2 (1 + i)

f4(iq̃)9f1(iq̃)

f2(iq̃)9f3(iq̃)
,

ZR;D0D0 =
1

2

✓

X

n

q̃2n
2r2I

◆

f2(q̃)8

f1(q̃)8
,

ZNS;D0D9 = 16
p
2
f2(q̃)9f1(q̃)

f4(q̃)9f3(q̃)
,

ZR;D0D9 = 16
p
2
f3(q̃)9f1(q̃)

f4(q̃)9f2(q̃)
, (4.3.2)

where n is the quantum number corresponding to the winding number of the fundamental open

string along the compact direction and

q̃ ⇠ e�⇡s, (4.3.3)

f1(q) = q1/12
1
Y

n=1

(1� q2n) = ⌘(2⌧), q ⇠ e2⇡i⌧ ,

f2(q) =
p
2 q1/12

1
Y

n=1

(1 + q2n) =
p
2
⌘(4⌧)

⌘(2⌧)
,
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f3(q) = q�1/24
1
Y

n=1

(1 + q2n�1) =
⌘(2⌧)2

⌘(⌧)⌘(4⌧)
,

f4(q) = q�1/24
1
Y

n=1

(1� q2n�1) =
⌘(⌧)

⌘(2⌧)
. (4.3.4)

Individual terms in 4.3.1 are both IR and UV divergent. Using the prescription for the IR and

UV regularization described in [44] we can express 4.3.1 as follows,

�M = K̃S(gI)
1/4 , (4.3.5)

K̃S ⇠ �1

2
(8⇡2)�

1
2 lim
⇤!1

lim
✏!0



Z ⇤

✏

s�
3
2ds

⇢

1

2

✓

X

n

q̃2n
2r2I

◆✓

f3(q̃)8

f1(q̃)8
� f2(q̃)8

f1(q̃)8

◆

+16
p
2
f2(q̃)9f1(q̃)

f4(q̃)9f3(q̃)
� 16
p
2
f3(q̃)9f1(q̃)

f4(q̃)9f2(q̃)

�

+

Z ⇤

✏/4

s�
3
2ds

⇢

2
5
2 (1� i)

f3(iq̃)9f1(iq̃)

f2(iq̃)9f4(iq̃)
� 2

5
2 (1 + i)

f4(iq̃)9f1(iq̃)

f2(iq̃)9f3(iq̃)

��

. (4.3.6)

Note that for rI < 1/
p
2, the n = 1 term in the sum behaves as eq2r

2
I�1 = e⇡s(1�2r2I ) and hence

the integral over s has a divergence from the large s region. This reflects the appearance of

the open string tachyon in the spectrum for rI < 1/
p
2 [54]. For this reason the open string

loop corrections to the mass of stable non-BPS state makes sense only for rI � 1/
p
2, and in

the rest of this section we shall focus on this region. Using (4.2.4) we see that in terms of the

radius rH in the heterotic metric, this condition takes the form

rH > g1/2 . (4.3.7)

It is possible to convert expression 4.3.6 in the ‘closed string channel’ using the modular

tranformation laws of fi’s :

K̃S = � lim
⇤!1

lim
✏!0

1

4⇡
(8⇡2)�

1
2



Z ⇡/✏

⇡/⇤

dt(C00 + C09 + C⇤
09) +

Z ⇡/✏

⇡/4⇤

dt(M+M⇤)

�

(4.3.8)
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where

C00 =

✓

⇡

t

◆4✓
X

n

q
n2

2r2
I

p
2 rI

◆✓

f3(q)8

f1(q)8
� f4(q)8

f1(q)8

◆

,

C09 = 2
9
2

✓

f4(q)9f1(q)

f2(q)9f3(q)
� f3(q)9f1(q)

f2(q)9f4(q)

◆

,

M = 2
9
2

✓

f3(iq)9f1(iq)

f2(iq)9f4(iq)
� f4(iq)9f1(iq)

f2(iq)9f3(iq)

◆

,

q ⇠ e�t. (4.3.9)

C00 denotes the cylinder amplitude with boundaries lying on the D0-brane, given by the inner

product between the boundary states of D0-brane. C09 denotes the cylinder amplitude with

one boundary lying on the D0-brane and the other boundary on the D9-brane wrapped on

S1, given by the inner product between the boundary states of D0-brane and the D9-brane

wrapped on S1. M denotes the möbius strip amplitude with boundary lying on the D0-brane,

given by the inner product between the boundary states of D0-brane and the crosscap.

Using this and eqs.(4.2.1), (4.2.2) we can write the corrected strong coupling expression for

F S(g, rI) to order g
3
4�1 as,

F S
1 (g, rI) = g

3
4

⇣

1 +KS(rI)g
�1
⌘

, KS(rI) ⇠ 2�
3
2 K̃S . (4.3.10)

KS(rI) can be obtained by integrating expression 4.3.6 numerically for di↵erent values of rI .

We find that the result of this numerical evaluation fits well with the function

KS(rI) ' 0.351� 0.048 exp
⇥

�10 (rI � 2�1/2)2/3
⇤

, (4.3.11)

within 1% accuracy over the entire range 1/
p
2  rI <1.
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4.4 Weak coupling expansion

First order correction to M in the weakly coupled heterotic string theory given by

�M = MKW (rH)g
2, (4.4.1)

where KW (rH) can be calculated by doing a one loop heterotic string calculation similar to

that in [44], but including the e↵ect of closed heterotic string winding and momentum modes

along the circle. The result is

KW (rH) = � 1

64⇡

Z

d2⌧

Z

d2z

⇢

X

⌫0

{#⌫0(
z

2
)16}(⌘(⌧))�18(⌘(⌧))�6

✓

#11(z)

#11(z)

◆2�

exp

✓

�4⇡z22
⌧2

◆

(⌧2)
�9/2 1

rH

⇢

X

n,w

exp
⇣

� ⇡i⌧

2
(
n

rH
+ wrH)

2 +
⇡i⌧

2
(
n

rH
� wrH)

2
⌘

��

,

(4.4.2)

with ⌧ denoting the modular parameter of the torus, ⌫ denoting the spin structure on the

torus taking values 00, 01, 10 and 11, # are the Jacobi theta functions, rH radius of S1 on

which heterotic string theory is compactified and n,w representing the momentum and winding

number along the compactified direction. Since this expression is invariant under T-duality

transformation rH ! 1/rH (except for the overall factor of 1/rH that is taken care of by the

transformation law of g2 multiplying it), we can focus on the region rH � 1. In this region

the evaluation of the integral can be facilitated using a Poisson resummation in the variable

n. This yields

KW (rH) = � 1

64⇡

Z

d2⌧

Z

d2z

⇢

X
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{#⌫0(
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exp
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exp
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��

. (4.4.3)
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In the rH !1 limit only k = w = 0 term in the sum survives, giving back the ten dimensional

result. For finite rH numerically integrating expression 4.4.3 for di↵erent values of rH we find

that the result can be fitted approximately with the function,

KW (rH) ' 0.23
⇣

1 +
1

r7H

⌘2/7

. (4.4.4)

Then the corrected weak coupling expression for FW (g, rH) to order g2 is given as,

FW
2 (g, rH) = g

1
4

⇣

1 +KW (rH)g
2
⌘

. (4.4.5)

Notice that KW (rH) diverges in the rH ! 0 limit. This is easily understood using the known

T-duality invariance rH ! 1/rH in the heterotic string theory. Under this the ten dimensional

string coupling transforms to g/rH . Defining

erH =
1

rH
, eg =

g

rH
, (4.4.6)

we can express (4.4.5) as

FW
2 (g, rH) = (erH)

�1/4
eg

1
4

⇣

1 + .23 (1 + (erH)
�7)2/7eg2

⌘

. (4.4.7)

Except for the overall factor of (erH)�1/4 which reflects the overall scale factor relating the ten

dimensional Einstein metric in the dual pair of heterotic string theories, we see that this has

a perfectly good erH ! 1 (rH ! 0) limit at fixed eg. For this reason, for rH < 1 it is more

natural to use the coupling constant eg of the T-dual theory as an expansion parameter.

4.5 Interpolating functions

We now turn to the construction of the interpolating functions. For definiteness we shall treat

g and rH as independent variables. We shall divide up the g-rH plane into several regions
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Figure 4.1: The four regions in the g-rH plane. The curves bounding these regions are rH = 1,
rH = g1/2 and rH = g�1.

shown in Fig. 4.1 and use di↵erent interpolating functions in these di↵erent regions.

Region I: First consider the region I defined by

I : rH � 1, rH � g1/2 . (4.5.1)

In this region rI � 1/
p
2 (see (4.3.7)) and both the heterotic perturation theory in powers

of g and type I perturbation theory in powers of g�1 are well defined at small and large g

respectively. Thus we can use standard interpolation formula described in §4.2:

F0,0(g, rH) = g1/4 (1 + g)1/2 , (4.5.2)

F1,0(g, rH) = g1/4 (1 + g2)1/4 , (4.5.3)

F0,1(g, rH) = g1/4 (1 + 4KS(rI)g + g2)1/4 , (4.5.4)

F1,1(g, rH) = g1/4 (1 + 6KS(rI)g
2 + g3)1/6 , (4.5.5)

F2,0(g, rH) = g1/4 (1 + 6KW (rH)g
2 + g3)1/6 , (4.5.6)

F2,1(g, rH) = g1/4 (1 + 8KW (rH)g
2 + 8KS(rI)g

3 + g4)1/8 , (4.5.7)
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F3,0(g, rH) = g1/4 (1 + 8KW (rH)g
2 + g4)1/8 , (4.5.8)

and

F3,1(g, rH) = g1/4
�

1 + 10KW (rH)g
2 + 10KS(rI)g

4 + g5
�1/10

. (4.5.9)

Region II: Region II is defined by

II : 1  rH  g1/2 . (4.5.10)

In this region heterotic perturbation theory in power of g is still valid for small g but type I

perturbation theory in powers of g�1 breaks down at large g due to the presence of the tachyon.

Thus the only interpolating functions we can use are Fm,0 for 0  m  3.

Region III: Region III is defined by

III : rH  1, rH  g�1 . (4.5.11)

The significance of this region can be understood by reexpressing (4.5.11) in terms of T-dual

variables erH , eg introduced in (4.4.6). This corresponds to

erH � 1, erH � eg1/2 . (4.5.12)

In this region we shall use the interpolating functons of region I with (g, rH) replaced by (eg, erH)

and with an overall multiplicative factor of (erH)�1/4 = (rH)1/4 to account for the rescaling of

the canonical metric discussed below (4.4.7). Thus we use the functions

eFm,n(g, rH) = (rH)
1/4 Fm,n(g/rH , 1/rH) . (4.5.13)

Physically this corresponds to using an interpolating formula between the T-dual heterotic

string theory and its strong coupling dual type I string theory (obtained in the eg !1 limit at
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fixed erH/eg1/2). This is not the original type I string theory, but related to it via a strong-weak

coupling duality transformation. This is apparent from the fact that while in the original type

I string theory the non-BPS D-brane develops a tachyon for rH < g1/2, in the new theory the

non-BPS D-brane is tachyon free for rH < g�1.

Region IV: Region IV is defined by

IV : g�1  rH  1 . (4.5.14)

In the (eg, erH) variables this corresponds to 1  erH  eg�1/2, ı.e. this is the heterotic T-dual

image of region II. Thus we use the interpolation formulæ of region II with (g, rH) replaced by

(eg, erH):

eFm,0(g, rH) = (rH)
1/4 Fm,0(g/rH , 1/rH) . (4.5.15)

Note that the results in regions III and IV can be obtained from those in regions I and II by

heterotic T-duality transformation (4.4.6). For this reason we shall focus on regions I and II

from now on.

In Fig.4.2 we have plotted the ratios of Fm,n to F3,1 as a function of g for four di↵erent

values of rH in region I. As we can see, except for F0,0, all other Fm,n’s remain within about

10% of F3,1 over the entire allowed range of g in region I. This suggests that F3,1 gives the

actual mass of the particle within about 10% error over the entire range of parameter space of

region I (and hence also of region III). We shall return to a discussion of regions II and IV in

the next section.
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Figure 4.2: Graph of Fm,n(g)/F3,1(g) vs. tan�1 g for various (m,n) in region I. The labels
are as follows: thin dots for F0,0, thick dots for F1,0, small thin dashes for F2,0, small thick
dashes for F3,0, large thin dashes for F0,1, large thick dashes for F1,1, continuous thin line for
F2,1 and continuous thick line for F3,1. The four graphs, clockwise from top left, correspond to
rH = 1, 1.25, 1.5 and 2 respectively.
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Figure 4.3: Region of instability of Fm,0 for 0  m  3 in the region II of the g � rH plane.
Clockwise from top left the diagrams are based on the interpolating function F0,0, F1,0, F2,0

and F3,0 respectively.
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4.6 Stability analysis

Let (n,w) denote the momentum and winding numbers of a heterotic string state along the

compact circle.The non-BPS state carries the same quantum numbers as that of an heterotic

string state with quantum numbers (n,w) = (1, 1) in the spinor representation of SO(32), a

state with quantum number (n,w) = (0,�1) in the adjoint/singlet representation of SO(32)

and a state with quantum number (n,w) = (�1, 0) in the singlet/adjoint representation.3 The

total mass of this state in the heterotic string metric for rH > 1 is

MH
BPS =

✓

rH +
1

rH

◆

+ rH +
1

rH
= 2

✓

rH +
1

rH

◆

. (4.6.1)

In the Einstein metric this is given by

ME
BPS = (gH)

1/4MH
BPS = 215/8⇡7/8g1/4

✓

rH +
1

rH

◆

. (4.6.2)

After taking into account the normalization (4.2.2) we get

FBPS(g) ⇠ 2�15/8⇡�7/8ME
BPS = g1/4

✓

rH +
1

rH

◆

= 21/2g3/4
✓

rI +
1

2 g rI

◆

. (4.6.3)

This expression is not renormalized. Furthermore it is manifestly invariant under heterotic

T-duality transformation (4.4.6).

In the (m,n) approximation the non-BPS particle is stable when its mass is less than the

total mass of the BPS constituents to which it can decay. In regions I and II this requires

Fm,n(g) < g1/4
✓

rH +
1

rH

◆

. (4.6.4)

3We could also consider decay into (n,w) = (1, 1) in the spinor representation and (n,w) = (�1,�1) in the
adjoint or singlet representation, or (n,w) = (1, 1) in the spinor representation, (n,w) = (1,�1) in the singlet
representation and (n,w) = (�2, 0) in the singlet or adjoint representation. In each of these cases the total
mass of the decay products is the same as that given on the right hand side of (4.6.1).
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Figure 4.4: Graph of Fm,0(g)/F3,0(g) vs. tan�1 g for various m in region II. The labels are as
follows: thin dots for F0,0, thick dots for F1,0, continuous thin line for F2,0 and continuous thick
line for F3,0. The four graphs, clockwise from top left, correspond to rH = 1, 1.25, 1.5 and 2
respectively.

In regions III and IV the left hand side is replaced by eFm,n(g), but the results in these regions

are related to those in regions I and II respectively by heterotic T-duality. Now one can check

explicitly that in region I all the Fm,n(g)’s satisfy (4.6.4), showing that whatever approximation

we use, the non-BPS state is stable in this region. By heterotic T-duality the same result holds

in region III. In region II only Fm,0 approximations make sense. In Fig. 4.3 we have shown by

the shaded region the region of instability of the non-BPS state in di↵erent approximations.

As we can see, these regions are not too di↵erent from each other, indicating that this is a fairly

good approximation to the true region of instabiity of the non-BPS state in region II. The re-

gion of instability in region III can be found from this using heterotic T-duality transformation.

One point worth noticing is that in each of these plots, there is a narrow strip of region II where

the non-BPS state is stable. This may seem a bit surprising at first since in the whole of region

II perturbative open string theory describing the non-BPS D0-brane develops a tachyon. Note

however that this is true only in tree level open string theory which corresponds to g ! 1
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limit of this diagram. Indeed in this limit the strip width reduces to zero showing that the

D0-brane becomes unstable as soon as we cross the upper boundary of region II. At finite g

however the tachyon mass2 itself may get corrected and hence the tachyon may not develop

as soon as we cross the upper boundary. We cannot do this analysis directly in type I string

theory since at present it is not understood how to carry out open string perturbation theory

in the presence of a tree level tachyon. Instead we have checked the stability by comparing the

mass of the unstable brane with the total mass of the decay products, and arrived at Fig. 4.3.

It is natural to ask whether one can reliably determine the mass of the non-BPS particle

in the white part of region II where it is expected to be stable. This can be done via the

interpolating function Fm,0. Fig.4.4 shows the ratios of Fm,0 to F3,0 in region II. As we can

see from this graph, the ratios remain within about 10% of unity except for F0,0, indicating

that the interpolating formulæ based on F3,0 determines the actual mass of the stable non-BPS

particle even inside region II to within about 10% accuracy.

4.7 Compactification on higher dimensional tori

In this section we shall briefly discuss the generalization of the above analysis to type I /

SO(32) heterotic string theory compactified on T d – a d dimensional torus. We shall refrain

from switching on any gauge field background so as to keep SO(32) gauge group unbroken,

but allow generic values of the other moduli. This corresponds to choosing arbitrary constant

metric GHmn and NS-NS 2-form field BHmn along T d in heterotic description, and arbitrary

constant metric GImn and RR 2-form field CImn in the type I description. Generalization of

(4.2.4) relating the two sets of moduli are

GHmn = 2 g GImn, BHmn = CImn . (4.7.1)

104



The weak and strong coupling expansions take the same form as in (4.2.5) and the interpolation

formula takes the form of (4.2.6) with the dependence on rH now generalized to dependence on

GHmn and BHmn and the dependence on rI generalized to dependence on GImn. The procedure

for constructing the coe�cients ai and bi in (4.2.6) is the same as that for S1 compactification.

The analog of the strong coupling expansion (4.3.6), (4.3.10) now takes the form:

F S
1 (g) = g

3
4

⇣

1 +KS g
�1
⌘

,

KS ⇠ �2�5/2(8⇡2)�
1
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+16
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, (4.7.2)

where the sum over ~n refers to sum over d integers (n1, · · ·nd) labelling the winding numbers

of open strings along the d circles. Similarly the weak coupling result (4.4.2) now takes the

form

KW = � 1

64⇡

Z

d2⌧

Z

d2z

⇢

X
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{#⌫0(
z
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exp
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�4⇡z22
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X
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exp
h
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n
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H )k`n
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o

�2⇡i⌧1nkwk
i

, (4.7.3)

where the sum over ~n and ~w respresent the sum over dmomentum quantum numbers (n1, · · ·nd)

and d winding numbers (w1, · · ·wd).

As in the case of S1 compactification, we shall find that on the strong coupling side the
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computation of KS su↵ers from tachyonic divergence when 2GIk`nkn` becomes less than 1 for

any non-zero ~n. Inside this region we need to use only the zeroeth order result on the strong

coupling side. On the weak coupling side, when the size of the torus T d is small, KW com-

puted from (4.7.3) becomes large signalling an apparent breakdown of perturbation theory.

The remedy is to use a T-duality transformation and use the T-dual variables. In fact here

we have a large group O(6, 6; ZZ) of T-duality transformation acting on the moduli space. We

need to identify the analog of the regions I and II in Fig. 4.1 in which we carry out the actual

computation and interpolation and then extend the result to the rest of the moduli space using

heterotic T-duality invarinace. Since in the compactified heterotic string theory the e↵ective

coupling constant is given by g2/
p
detGH , the natural analog of regions I and II will be to

pick that domain in the moduli space for which
p
detGH takes the maximum possible value

– ı.e. given any point inside such a domain, any of its T-dual image should have lower value

of
p
detGH . Once we have identified such a domain we then divide this into the two regions I

and II depending on whether 2GIk`nkn` lies above 1 for all ~n or not. The rest of the analysis

would then proceed as in the case of S1 compactification.

4.8 Discussion

In this chapter we have analyzed the mass formula for stable non-BPS state in type I / SO(32)

heterotic string theory compactified on a circle using the interpolation formula between the

strong and weak coupling results. Our analysis indicates that the interpolation formula de-

termines the mass of the state within 10% accuracy over the entire moduli space. We also

determine the region of stability of the particle based on the mass formula and discuss gener-

alization of the analysis for generic toroidal compactification.

In recent times there has been significant developments in resumming perturbation theory

[55–66]. It will be interesting to see if the interpolation between strong and weak coupling

results can be combined e�ciently with these resummation techniques to get a better under-
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standing of physical quantities at intermediate values of coupling.
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CHAPTER5
Simplest Gauge-String Duality

5.1 Introduction

Arguably for last two decades gauge/string duality is the most fascinating and studied topic

in theoretical physics. Gauge/string duality is a statement of equivalence between certain

quantum field theories and quantum theory of gravity in certain spaces. Although di↵erent

examples of gauge/string duality are well studied by now, the underlying mechanism is still

not well understood. A simple example of how the Feynman diagrams for an n-point gauge

correlator glue up into an n-point string scattering amplitude in a dual space-time can poten-

tially provide a lot of insight into how gauge-string duality works.

A candidate proposal for the “simplest gauge-string duality” was put forward in [67]. It

relates the Gaussian one matrix integral in a large N ’tHooft limit to the A-model topological

string theory on P1 [68,69]. Gauge invariant correlators of the single trace operators TrMp can

then be expected to be related to physical vertex operator scattering amplitudes in the dual

topological string theory, where M is an N ⇥N hermitian matrix.

Two pieces of evidence in favor of this (for planar connected correlators of TrM2p) were dis-

cussed in [67]. The first was a nontrivial agreement of the degree of the covering map (from
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the worldsheet P1 to the target P1) which contributes to a given correlator. The second was a

matching of the two point function hTrM2k1TrM2k2iconn (for arbitrary k1, k2). While this was

encouraging, one needs stronger checks. Fortunately, it is possible to carry these out explicitly

for a large class of correlators and this is the aim of this note. We find, from the explicit

computations on both sides of the putative duality, that there is a simple relation between the

two sides which is a natural realization of gauge-string duality in this context.

Before outlining this relation, we briefly recap the thread of logic followed in [67]. The start-

ing point was the observation by de Mello Koch and Ramgoolam [70] (see also the earlier

work [71–73]) that the combinatorics for computing Gaussian correlators h
Qn

i=1 TrM
2kiig is

suggestive of a sum over branched covers from a genus g worldsheet to a target P1, with three

branchpoints1. Such holomorphic maps are known as Belyi maps. This interpretation of the

combinatorics was given a concrete realization in [67] (with a crucial modification, though,

which restricts one for the time being to planar worldsheets) in terms of a specific prescription

to glue Feynman diagrams. This also enables one to give an explicit form for the Belyi maps

in question using results of [75]. In essence, this prescription to glue Feynman diagrams is a

special application of the general approach to open-closed string duality put forward in [76–79]2

as adapted to the matrix model case by Razamat [80,81].

Furthermore, the target space P1 was identified [67] with the riemann surface canonically

associated to the Gaussian matrix model. This is the master field geometry which captures

the complexified eigenvalue distribution (“Wigner semicircle”). One then sees a skeletal ver-

sion of AdS/CFT in the scattering on the target P1. Finally, since the conventional worldsheet

theory describing holomorphic maps to a target is the A-model topological string theory, an

attempt was made to directly link this to the Gaussian matrix model. As described above,

1The authors of [74] have also proposed an intriguing interpretation of this in terms of a three dimensional
target space: a sphere with three holes times S1.

2For further elaborations on this proposal and related aspects see [82–89].
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some limited evidence was found in favor of this last proposal.

The additional evidence we provide here is much stronger and can be summarized as follows.

On the matrix model side one can explicitly compute the planar correlators (n � 2)

h 1
k1

TrM2k1
1

k2
TrM2k2 . . .

1

kn
TrM2kniconn =

(d� 1)!

(d� n+ 2)!

n
Y

i=1

(2ki)!

ki!ki!
(5.1.1)

where d =
Pn

i=1 ki. We will then compare with the genus zero topological string correlators,

of gravitational descendants of the kahler class operator, which turn out to be (n � 2)

h(2�2k1�1)(2�2k2�1)
n
Y

i=3

�2kiig=0 = dn�3
n
Y

i=1

(2ki)!

ki!ki!
. (5.1.2)

Firstly note that the RHS is symmetrical in the ki despite the LHS not being manifestly sym-

metric (k1, k2 singled out). We can view these two vertex operators as being at some fixed

positions e.g. z = 1 and z = 1 on the worldsheet. Secondly, we note that 5.1.1 and 5.1.2

exactly match for n = 2, 3 for any ki. As we will also see, this matching of two and three point

functions holds for a general single trace operator TrMp i.e. we do not have to restrict to even

powers.

In a nontrivial AdS/CFT duality, typically, one compares two and three point functions on

both sides since higher point functions are determined in terms of these through factorisation.

In that sense we have made a successful comparison of both sides. But here we also have the

luxury to see how things might work for higher point functions (at the planar level).

We note that the higher n-point functions of the matrix model are close to the string an-

swer though not exactly the same. In fact, for n > 4 the prefactor

(d� 1)!

(d� n+ 2)!
= dn�3 � (n� 2)(n� 3)

2
dn�2 � . . . (5.1.3)
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Thus the leading piece (for large degree d) is indeed that of the string correlator but there also

are some corrections which are subleading. Can we interpret these subleading correction terms

as well?

It turns out that there is a natural interpretation. We have the inverse relation

dn�3 =
n
X

m=3

S̃(m�2)
n�2

(d� 1)!

(d�m+ 2)!
(5.1.4)

where the (positive) coe�cients S̃(m�2)
n�2 turn out to count the number of ways in which to

partition (n� 2) elements into (m� 2) non-empty subsets (see Sec. 9.74 of [90], for example).

If we consider the (n� 2) vertex operators �2k3 , . . . �2kn then their insertions on the worldsheet

can come close to each other. Let’s say we have (m� 2) such groups of these operators where

(m� 2) can vary between (n� 2) (all of them separate) and 1 (all operators together at z = 0,

say). S̃(m�2)
n�2 simply counts the number of such groupings.

The interpretation of 5.1.4 is then that there are contributions from “contact terms” in the

topological string theory when these operators collide (see for e.g. [91]) which must correspond

to lower m-point function matrix correlators. Thus if �2k3 and �2k4 “come together”3 then by

the interpretation of [67] two ramification points on the worldsheet coincide. On the matrix

model side this is possible only if we replace TrM2k3TrM2k4 ! TrM2(k3+k4) giving rise to an

(n � 1)-point correlator. Note that this is necessitated by the fact that there is no OPE on

the matrix model side corresponding to bringing the matrix operators together. As a result,

for four or higher point correlators we have to separately consider, in the matrix model, the

contribution of these contact terms in the topological string correlators. The combinatorial

coe�cients in 5.1.4 account for these additional contributions and thus gives a natural way to

connect the string answers to that of the matrix model. Note that the operators �2k1�1, �2k2�1

3Strictly speaking, points on the worldsheet never come together, one is simply going to a boundary in
moduli space, where a sphere pinches o↵. Nevertheless we will use this loose terminology.
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appear in 5.1.2 on a di↵erent footing from the �2k.

We will therefore also discuss a closely related set of correlators, where we will find a sim-

ilar relation, but which now treats all the ki on the same footing. This is in terms of the

(n + 2)-point string correlator hP 2
Qn

i=1 �2kiig=0. The dual matrix correlator must now in-

volve an operator corresponding to the puncture operator P . We identify this operator to be

Limp!0
1
p
TrM2p ⇠ 2Tr lnM . We note that a similar identification was proposed by Eguchi

and Yang [98] in their (closely related) matrix model for the A-model on P1. We will see that

we can compute correlators of this operator both by analytic continuation (p ! 0) as well as

directly using standard matrix model technology. Once again using 5.1.4 we obtain a relation

between matrix and string correlators which is, in addition, symmetric in all the ki.

In sections 2 and 3 we describe the matrix and string results respectively. Sec. 4 elabo-

rates on the above comparison while Sec. 5 closes with general remarks. Appendix D give

more details of the calculation of correlators. This chapter is based on [4].

5.2 Matrix Correlators

We will (mostly) consider the subset of matrix correlators in the Gaussian matrix model with

even powers TrM2p i.e. h
Qn

i=1 TrM
2kiiconn and in the planar limit [92]. These can be obtained

from the generating function

Z[t] =

Z

[dM ]N⇥Ne
� 1

2NTrM2+
P

k tpNTrM2p
(5.2.5)

by di↵erentiating appropriately with respect to the tki , taking the logarithm and finally the

large N limit. This can be done in a variety of ways. One straightforward approach is to use

the technique of orthogonal polynomials to write down a general form for the answer. After

taking the logarithm to obtain the connected piece we can then take its large N limit.
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The generating function can be expressed in terms of the integral over eigenvalues �i of M (see

for e.g. [93])

Z[t] =

Z

Y

i

d�i�
2(�)e�N

P
i V(�)

V(�) =
1

2
�2 �

X

p

tp�
2p

�(�) = det�j�1
i . (5.2.6)

We express the Vandermonde determinant �(�) in terms of orthogonal polynomials Pm(�),

which satisfy the orthogonality relation

Z

d�Pm(�)Pl(�)e
�NV(�) = hm�ml. (5.2.7)

Then the generating function reads

Z = N !hN
0

N�1
Y

j=0

RN�j
j (5.2.8)

where Rm = hm
hm�1

. Using the recursion relations of Pm(�) we can derive the equation which

determines Rm

Rm(t)[1�
1
X

k=1

(2k)!

k!(k � 1)!
tkR

k�1
m (t)] =

m

N
. (5.2.9)

In the planar limit the rescaled index m/N becomes a continuous variable y that take values

in (0, 1) and Rm(t) becomes a continuous function R(t, y). Then the generating function for

connected correlators reduces to a simple one-dimensional integral

G(t) = lim
N!1

1

N2
ln(

Z[tk]

Z[0]
)

=

Z 1

0

dy(1� y)ln(
R(t, y)

y
). (5.2.10)
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We solve for R(t, y) from the continuum version of 5.2.9 and using 5.2.10 we obtain G(t). We

can then extract the connected correlators from G(t). Some of the steps are shown are shown

in Appendix A. The final answer is (for n � 2)

h 1
k1

TrM2k1
1

k2
TrM2k2 . . .

1

kn
TrM2kniconn =

(d� 1)!

(d� n+ 2)!

n
Y

i=1

(2ki)!

ki!ki!
. (5.2.11)

Here d =
P

i ki. This agrees with the enumeration of graphs in [94] (see also [95]). The

nontrivial d dependence shows that the answers are not, in general, factorised. Note that d

also has an interpretation as the degree of the Belyi map that contributes to this correlator [67].

It turns out that one can also evaluate the correlators with two odd powers (correlators with

one odd power vanish) using the results of [94]

h 1

2k1 + 1
TrM2k1+1 1

2k2 + 1
TrM2k2+1

n
Y

i=3

1

kn
TrM2kniconn =

d!

(d� n+ 3)!

n
Y

i=1

(2ki)!

ki!ki!
. (5.2.12)

with d =
P

i ki.

From these results we see that, in particular the two point function is given by

h 1
k1

TrM2k1
1

k2
TrM2k2iconn =

1

k1 + k2

(2k1)!

(k1!)2
(2k2)!

(k2!)2
. (5.2.13)

which agrees with the calculation in [67] since d = k1 + k2 in this case. We also have

h 1

2k1 + 1
TrM2k1+1 1

2k2 + 1
TrM2k2+1iconn =

1

k1 + k2 + 1

(2k1)!

(k1!)2
(2k2)!

(k2!)2
. (5.2.14)

Interestingly the three point function is the only one which is factorised. We have the

non-vanishing ones to be

h 1
k1

TrM2k1
1

k2
TrM2k2

1

k3
TrM2k3iconn =

(2k1)!

(k1!)2
(2k2)!

(k2!)2
(2k3)!

(k3!)2
. (5.2.15)
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and

h 1

2k1 + 1
TrM2k1+1 1

2k2 + 1
TrM2k2+1 1

k3
TrM2k3iconn =

(2k1)!

(k1!)2
(2k2)!

(k2!)2
(2k3)!

(k3!)2
. (5.2.16)

As mentioned in the introduction we will also compare correlators with (two) insertions of

the operator Tr lnM . These can also be explicitly evaluated as we show in Appendix A.

h(Tr lnM)2
n
Y

i=1

1

ki
TrM2kiiconn =

(d� n+ 2)(d� n+ 1)

4
h

n
Y

i=1

TrM2kiiconn

=
(d� 1)!

4(d� n)!

n
Y

i=1

(2ki)!

ki!ki!
. (5.2.17)

A heuristic way to obtain this answer is to consider the (n+ 2) point function

Lim✏1,2!0h
1

✏1
TrM2✏1

1

✏2
TrM2✏2

n
Y

i=1

1

ki
TrM2kiiconn =

(d� 1)!

(d� n)!

n
Y

i=1

(2ki)!

ki!ki!
. (5.2.18)

Thus analytically continuing in ✏i and using Limp!0
1
p
TrM2p ⇠ 2Tr lnM (the constant piece

does not contribute to the connected correlator) we obtain the answer in 5.2.17.

In the description in terms of Belyi maps given in [67] both sets of correlators in 5.2.11 and

5.2.17 get contributions only from maps of degree d =
P

i ki. For the latter, we can understand

this using the description of the logarithmic operator as in 5.2.18.

5.3 String correlators

Correlators in the A-model topological string on P1 are determined by recursion relations. The

main relations are summarized in, for instance, [100]. The observables in the theory are the

puncture operator V1 = P , the operator corresponding to the Kahler class V2 = Q and their
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gravitational descendants �n(P ), �n(Q) (for n > 0). The recursion relation we will mostly

employ is

h�n(V�)XY ig=0 = nh�n�1(V�)V↵i⌘↵�hV�XY ig=0 (5.3.19)

where X, Y are arbitrary observables and this holds in the so-called large phase space i.e. with

arbitrary backgrounds for the descendants turned on as well. Therefore this enables one to

express a general n-point function in terms of less complicated ones. In this paper we will

restrict ourselves to correlators involving the puncture operator P as well as �n(Q) which we

will henceforth denote by �n (for n > 0) without hopefully causing confusion.

Using these and other recursion relations we find for n � 2 (see Appendix B for details)

h(2�2k1�1)(2�2k2�1)
n
Y

i=3

�2kiig=0 = dn�3
n
Y

i=1

(2ki)!

ki!ki!
. (5.3.20)

Here, as before d =
P

i ki and is also the degree of the holomorphic map which contributes

to the above correlator, as can be seen from the selection rule given in D.2.22. We note that

though the left hand side of 5.3.20 is not manifestly symmetric in all the ki, the answer on the

RHS is nevertheless so. We also record the answer for the correlator with all even powers

h
n
Y

i=1

�2kiig=0 = (d+ 1)n�3
n
Y

i=1

(2ki)!

(ki!)2
. (5.3.21)

Here we retain the notation d =
P

i ki but caution that the degree of the map which contributes

to this correlator is actually (d+ 1).

We will also use the related result that (for n � 1)

hP 2
n
Y

i=1

�2kiig=0 = dn�1
n
Y

i=1

(2ki)!

ki!ki!
. (5.3.22)
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The selection rule D.2.22 for the correlator in 5.3.22 shows that the contributions come

only from holomorphic maps of degree d =
P

i ki.

5.4 Comparison

We can now compare the results on both sides.

5.4.1 Two and Three Point functions

We firstly note that the two and three point functions agree for arbitrary ki. We see from

5.2.13 and 5.3.20 for n = 2 that

h 1
k1

TrM2k1
1

k2
TrM2k2iconn =

1

k1 + k2

(2k1)!

(k1!)2
(2k2)!

(k2!)2

= h(2�2k1�1)(2�2k2�1)ig=0. (5.4.23)

as well as 5.2.14 and 5.3.22 for n = 2 that

h 1

2k1 + 1
TrM2k1+1 1

2k2 + 1
TrM2k2+1iconn =

1

k1 + k2 + 1

(2k1)!

(k1!)2
(2k2)!

(k2!)2

= h�2k1�2k2ig=0. (5.4.24)

Similarly, from 5.2.15 and 5.2.16 together with 5.3.20 and 5.3.21 for n = 3 we have

h 1
k1

TrM2k1
1

k2
TrM2k2

1

k3
TrM2k3iconn =

(2k1)!

(k1!)2
(2k2)!

(k2!)2
(2k3)!

(k3!)2

= h(2�2k1�1)(2�2k2�1)�2k3ig=0. (5.4.25)
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and

h 1

2k1 + 1
TrM2k1+1 1

2k2 + 1
TrM2k2+1 1

k3
TrM2k3iconn =

(2k1)!

(k1!)2
(2k2)!

(k2!)2
(2k3)!

(k3!)2

= h�2k1�2k2�2k3ig=0. (5.4.26)

As mentioned in the introduction, this in itself is a fairly good check that things are on the

right track.

5.4.2 General correlators

We can however go on to compare the general n point function. The answers are given in

5.1.1 and 5.1.2 (or 5.2.11 and 5.3.20). We see that for n � 4 they are not quite identical. But

this near agreement is quite remarkable in itself for a couple of reasons. Firstly, apart from

the individual factors (2ki)!
ki!ki!

which is a dependence that can be absorbed into a redefinition of

the individual operators, both sets of correlators could have depended on arbitrary symmetric

functions of the ki’s in a complicated way. The fact that both sides should, a priori, have

depended only on the particular symmetric combination d =
P

i ki is not obvious. Secondly,

as seen in 5.1.3, the combination (d�1)!
(d�n+2)! is a polynomial in d of degree (n�3) with the leading

term the same as the string answer. Thus there is exact agreement in the large d (or large

ki) regime which is some kind of BMN like limit. The large ki regime is where the Feynman

diagrams are dominated by graphs with a large number of edges and faces. From the point of

view of the moduli space one is getting contributions from many more points on the moduli

space. E↵ectively one will have a continuum description of moduli space [80]4.

We will now elaborate on the relation between the general matrix n-point correlator and

that of the string theory which was sketched in the introduction. Firstly we will normalize the

4See [96,97] for a discussion of the subtleties in how equilateral triangulations capture the continuum measure
on moduli space.
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operators on both sides so as to get rid of the factors (2ki)!
ki!ki!

. Namely, we define

�̃2k =
(k!)2

(2k)!
�k; O2k =

1

k

(k!)2

(2k)!
TrM2k. (5.4.27)

Then we have to compare

h(2�̃2k1�1)(2�̃2k2�1)
n
Y

i=3

�̃2kiig=0 = dn�3 (5.4.28)

with

h
n
Y

i=1

O2kiiconn =
(d� 1)!

(d� n+ 2)!
. (5.4.29)

Using the relation 5.1.4 we can write

h(2�̃2k1�1)(2�̃2k2�1)
n
Y

i=3

�̃2kiig=0 =
n
X

m=3

S̃(m�2)
n�2 hO2k1O2k2

m�2
Y

j=1

O2µjiconn. (5.4.30)

Here µj =
P

r2Rj
kr with (j = 1 . . . (m � 2)) where {Rj} are (m � 2) di↵erent non-empty

groupings of the (n � 2) integers (3, 4, . . . n). Thus the O2µj are essentially operators of the

form TrM
(
P

Rj
2krj ) over di↵erent groupings of the set (k3, . . . kn).

The stirling number of the second kind, S̃(m�2)
n�2 , which appears in 5.1.4 precisely counts the

number of ways in which we can partition (3, . . . n) into the (m� 2) sets Rj such that each Rj

contains at least one integer. Note that since the matrix correlator only depends on
P

i ki, we

have

hO2k1O2k2

m�2
Y

j=1

O2µjiconn =
(d� 1)!

(d�m+ 2)!
(5.4.31)

independent of the partitioning (i.e. the µj). We only need that k1 + k2 +
P

j µj =
P

i ki = d.
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This, in turn, is what enables us to write 5.4.30 or equivalently

h(2�̃2k1�1)(2�̃2k2�1)
n
Y

i=3

�̃2kiig=0 =
n
X

m=3

X

partitions{Rj}

hO2k1O2k2

m�2
Y

j=1

O2µjiconn. (5.4.32)

Recall that the interpretation of TrM2p in [67] was that it created a ramification point of

order p on the worldsheet. The map to the target P1 therefore locally looks likeX(z) = (z�z1)p

near this vertex operator insertion. In the string theory we can have two ramification points

with behavior (z � z1)p1 and (z � z2)p2 coming together when z1 ! z2 to create a ramifica-

tion point of order (p1 + p2). However, in the matrix model, unlike in a QFT, we do not

have an OPE of the two corresponding operators TrM2p1 and TrM2p2 giving something like

TrM (2p1+2p2). We have to put in the contribution to the string correlator, from the collision of

ramification points, separately on the matrix model side. They are not contained in the orig-

inal n-point correlator h
Qn

i TrM
2kiiconn. But we now see that we can interpret the di↵erent

terms on the right hand side of 5.4.32 as these additional contributions. Thus, in addition to

the n-point matrix correlator (corresponding to m = n or the partition where each of the Rj

contain exactly one integer) we also have the lower point functions all the way unto a three

point function (where we have all of (k3, . . . kn) come together). In general, through these lower

point functions we include all the contributions where various of the �2ki (for i = 3, . . . n) come

together in di↵erent groupings.

Note that we do not have any contribution corresponding to bringing any of the �2ki near

either of �2k1�1 or �2k2�1. It remains to be understood from the string point of view why

this is the case. Admittedly, this is somewhat unsatisfactory in that it treats the ki in an

asymmetric way despite the RHS being symmetric5. We will therefore remedy this by looking

at an alternate set of correlators where the symmetry is manifest. However, this will be at the

5One can make a similar comparison for the string correlator 5.3.21 (which is symmetric in the ki) with the
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expense of introducing additional operators of the form Tr lnM .

On the string theory side the correlators we consider are the ones in 5.3.22 rewritten using

the redefined operators in 5.4.27 as

hP 2
n
Y

i=1

�̃2ki(Q)ig=0 = dn�1. (5.4.34)

With the identification P $ 2Tr lnM ⇠ P we compare with the matrix correlator 5.2.17

hP2
n
Y

i

O2kiiconn =
(d� 1)!

(d� n)!
. (5.4.35)

We see that there is a mismatch for n � 2. But once again we have a natural relation between

the two sides. We use

dn�1 =
n
X

m=1

S̃(m)
n

(d� 1)!

(d�m)!
(5.4.36)

to write

hP 2
n
Y

i=1

�̃2kiig=0 =
n
X

m=1

S̃(m)
n hP2

m
Y

j=1

O2µjiconn

=
n
X

m=1

X

partitions{Rj}

hP2
m
Y

j=1

O2µjiconn. (5.4.37)

The partitions {Rj} (with j = 1 . . .m) are the m di↵erent non-empty groupings of the n

integers (1, 2, . . . n). Thus the O2µj are essentially operators of the form TrM
(
P

Rj
2krj ) over

di↵erent groupings of the set (k1, k2, . . . kn).

matrix correlator 5.2.12 (which singles out k1, k2).

h�̃2k1 �̃2k2

n
Y

i=3

�̃2kiig=0 =
n
X

m=3

X

partitions{Rj}

hO2k1+1O2k2+1

m�2
Y

j=1

O2µj iconn. (5.4.33)
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The interpretation of the RHS in 5.4.37 is therefore similar to before. Now we have all

the n operators �2ki on the same footing on the LHS and so they can all come close to each

other leading to the merging of ramification points. The RHS counts the contributions of these

separate groupings from the matrix model side where we have lower point functions involving

the merged operators TrM
(
P

Rj
2krj ). Note that the puncture operator P $ lim✏!0TrM2✏ does

not create any branching. In many ways this is a much more neat picture for the correspondence

between the correlators in the matrix model and the dual string theory.

5.5 Discussion

What we have learnt from this comparison of correlators in the topological string theory on P1

with those of the Gaussian matrix model is that they are not identically the same except for

the two and three point functions. In fact, in hindsight, we see that for four or higher point

functions there was no reason to have expected them to be the same since the matrix correlator

does not allow for the possibility of bringing operators together on the worldsheet. Instead,

the relation between the two sets of correlators is one in which we add in, on the matrix model

side, the separate contributions from the fusing of two matrix operators.

On the topological string theory side it would be good to understand more explicitly these

contact terms. Note that in the usual approach, such as [91], the worldsheet is in a gauge

where all the curvature is concentrated at the location of the vertex operators. However, as

remarked in [67], the matrix model naturally gives rise to a “strebel gauge” on the world sheet

where the curvature is localized not just at the location of the insertions but also at the inter-

action vertices. This is likely to a↵ect the contact term contributions and it would be good to

see if it exactly matches what we find here.
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We have made a comparison of the general set of even power matrix correlators which is the

sector in which the answer is easy to obtain in closed form. It would be good to extend this

to correlators involving an arbitrary number of odd powers as well. Significantly larger class

of correlators has been computed and compared with the matrix model correlators in [104].

Interestingly they also found the mismatch that we discussed and interpreted the mismatch

using contact terms. Another direction to extend the checks is to consider not just the so-called

stationary sector of the topological string theory involving the gravitational descendants �n(Q)

but also the �n(P ). Here we have looked at correlators with insertion of the puncture operator

insertion and seen that they correspond to insertions of TrlnM . It is tempting to guess that

�n(P )$ Tr(MnlnM) following [98]. However, as discussed in [67], there are important di↵er-

ences between the current proposal and the Eguchi-Yang model, which is presumably related

to the di↵erent relation, proposed here, between the general n-point correlators on both sides.

It is important to extend the relation between both sides beyond the planar/genus zero case.

This would require taking into account e↵ects of mixing of single and double trace operators

and hence the correspondence between string vertex operators and matrix gauge invariant

operators will acquire 1
N

corrections. Another interesting generalization would involve the

gaussian normal matrix model for which there is a proposed dual [103]. It would be nice

to make some contact between topological strings, such as the one described here, with the

imaginary Liouville backgrounds proposed in [103]6. We leave these explorations for the future.

Finally, the results described here, in addition to their value as a toy model of AdS/CFT,

may also be significant in the canonical gauge-string duality between N = 4 super Yang-Mills

theory and the string theory on AdS5 ⇥ S5. The localization arguments of [105] have shown

how the half BPS Wilson loops in the gauge theory reduce to a Gaussian matrix integral.

Given the duality elucidated here, one might hazard the guess that there is a corresponding

6We thank J. McGreevy for drawing our attention to this work and for comments on related issues.
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localization of the AdS5 ⇥ S5 string theory in the half BPS sector which reduces the string

sigma model to the A-model topological string theory on P17.

7See [106] for a proposed relation between the half BPS Wilson loops and a topological sector of the sigma
model on AdS5 ⇥ S5.
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APPENDIXA
Brief Review of String Perturbation Theory

Primary objects of interest in a relativistic quantum theory are the scattering amplitudes or

S-matrix elements because they provide the necessary bridge between theory and scattering

experiments. In a scattering experiment we prepare initial state composed of a collection of

well separated simple systems, then we allow them to interact and at a later time we measure

the end products of the interaction. It is a convenient experiment to setup theoretically in local

theories where the interactions turn o↵ when the basic constituents are well separated. In such

theories the asymptotic states, i.e. states at t = �1 and t = 1, can be prepared by taking

direct products of single particle states of the full interacting theory that are determined by the

quantum numbers of the one particle states like energy, momentum, spin, charge. S-matrix ele-

ments describe the transition probability from asymptotic states at t = �1 to states at t =1.

For a local relativistic quantum theory of point particles having a Hamiltonian it is possi-

B

A

C

D

E

Figure A.1: Scattering experiment where initial state which is a direct product of single particle
states A,B,C transform to the final state consists of single particle states D and E.
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k2

k1

k3

k4

k5
k2

k1

k3
�k k⌦

k4

k5

Figure A.2: Factorisation of scattering amplitudes involving 5 external states into product of
scattering amplitudes involving 4 and 3 external states when (k1 + k2 + k3)2 = (k)2 = �m2

p

where mp is the mass of physical state in the theory.

ble to split the Hamiltonian into two parts, free part whose eigenstates can be exactly solved

and interacting part which can be thought of as determining the interaction. Such splitting

of Hamiltonian is very useful due to Gell-Mann and Low theorem [112]. Gell-Mann and Low

theorem guarantees that in the interaction picture eigenstates of free Hamiltonian at t = �1
and t = 1 in full interacting theory evolves and becomes identical to eigenstates of the full

Hamiltonian at t = 0. Then S-matrix elements can be expressed in terms of the eigenstates

of the free part of the full Hamiltonian and interacting part of the Hamiltonian. This can be

converted into an expression in terms of Green’s function of full theory. Expression of S-matrix

elements in a quantum field theory which involves asymptotic states made of n single particle

states labelled by quantum numbers and momentum (a1, k1), ..., (an, kn) is given as

Sn
a1,...,an

(k1, ..., kn) = limk2i!�m2
ai,p

Gn
a1,...,an

(k1, ..., kn)⇧
n
i=1

n

Z� 1
2 (ki, ai)(k

2
i +m2

ai,p
)
o

(A.0.1)

where ai is the discrete quantum number and mai,p is the mass of the ith single particle state

of full interacting theory. Mass2, m2
ai,p

, of the single particle state of full interacting theory is

defined as the pole of 2 point Green’s function as a function of k2
i and Z(ki, ai) is the residue

at this pole.

Locality and unitarity are the most important ingredients of a relativistic quantum theory.

Locality is inevitable to make the theory casual and unitarity of S-matrix is necessary for a

sensible probabilistic interpretation of the theory. Requirement of locality leads to analytic-

ity property of Green’s function and S-matrix elements. Demanding unitarity imposes very
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+ + · · ·

Figure A.3: Pictorial representation of perturbative series corresponds to the scattering of 3
closed strings whose asymptotic states are represented by black thick ellipses.

stringent constraints on the scattering amplitudes. One such constraint is the factorisation

property of scattering amplitudes: when square of sum of momenta of a set of m  n � 1

external states becomes equal to the square of mass of a single particle state in the theory then

the scattering amplitude involving n external states split into two scattering amplitudes in-

volving m+1 and n�m+1 external states provided none of the conservation laws are violated.

When we are interested in weakly interacting quantum field theories whose interacting part

of Hamiltonian comes with small parameter (coupling constant) then we can taylor expand

the Green’s function and physical mass in terms of this small parameter. This perturbative

expansion of Green’s function and physical masses can be expressed diagrammatically using

Feynman diagrams. Thus scattering amplitudes can be computed perturbatively using Feyn-

man diagrams.

A.1 Polyakov Prescription

In first quantisation of string theory story is slightly di↵erent. This is because formulation of

perturbative string theory is not based on a Hamiltonian which we can hope to separate into

free and interacting part. Instead what we have is a prescription for directly computing string

amplitudes which are the proposed scattering amplitudes of string theory without referring to

an underlying Hamiltonian or Lagrangian known as Polyakov prescription.
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Underlying logic of Polyakov prescription is the following. First quantisation of free rela-

tivistic point particle using path integral formulation involves summing over all possible paths

weighted by a complex number of unit modulus whose phase is the invariant length of the

world line traced by the point particle in spacetime. Following this logic first quantisation of

free relativistic string is straight forward provided we do the following replacements. Instead

of world line we need to sum over world sheets traced by the string in spacetime and instead

of invariant length we need to consider the area of the world sheets.

Bold step in the Polyakov prescription is the way in which interactions between di↵erent strings

are introduced and the way in which a perturbative series for the string amplitude is proposed

by identifying an expansion parameter. Unlike in usual point particle case interactions are not

introduced by generalising the free action by adding an interacting piece. It is introduced by

simply stating that when di↵erent strings interact they merge to form an intermediate string

which at the end again split into a new set of strings. Based on the evolution of intermediate

string we can split Polyakov path integral into di↵erent terms of a perturbative series. First

term in the series corresponds to the free propagation of intermediate string without much

happenings and the second term corresponds to an intermediate string which during its propa-

gation splits into two new strings which after a while merge back to form another intermediate

string. By repeating this process of splitting the intermediate string into two new strings and

merging back we can generate all terms in this series. To identify the expansion parameter we

need to analyse the situation a little more carefully which we will do soon.

Summing over all possible world-sheets can be done by introducing a metric on the world-sheet

and integrating over all such 2-d metrics and distinct embedding of world-sheets in spacetime.

Since the spacetime through which the string propagates has non-Riemannian metric the in-

duced metric on the world-sheet is also non-Riemannian. But by performing a wick rotation

on the 2-d world-sheet coordinates we can make it a Riemannian metric and as a result the
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closed string world-sheets becomes compact Riemann surfaces with boundaries where bound-

aries corresponds to initial and final closed strings. Thus the perturbative expansion for string

amplitude can be thought of as a series of sum over Riemann surfaces with each terms in the

series corresponds to a sum over compact Riemann surfaces having n boundaries correspond-

ing to n closed external states strings with specific number of genus. Polyakov in his seminal

paper [11, 12] showed that such a sum over compact Riemann surfaces reduces to 2-d exactly

solvable conformal field theory on Riemann surfaces. We will briefly discuss how does this

magic happen. Detailed study of relativistic strings, their quantisation and interaction can be

found in [107–111]. More recent discussion on perturbative string theory is available in [5].

A.2 Riemann Surfaces

Before getting into a detailed discussion on perturbative string theory let us briefly discuss

about Riemann surfaces. Consider a 2-dimensional real manifold ⌃ and a collection of patches

U↵ on it such that union of all these patches completely cover ⌃. If ⌃ is a Riemann surface then

it is possible to map every patch U↵ to a patch in complex plane which can be parametrised by

a complex coordinate z↵. Also when ever two patches U↵ and U� overlaps in the overlapping

region the coordinates on each patch can be expressed as holomorphic functions of coordinates

on other patches. So the definition of Riemann surface depends on the ways we assign complex

coordinates in each patch and how we glue them using transition functions. Each such choice

of coordinates and gluing rule is called a specific complex structure. Sphere and torus are the

simplest examples of Riemann surfaces.

The realm of Riemann surfaces can be divided into three regimes: hyperbolic, parabolic and

elliptic Riemann surfaces. Geometrically, these correspond to negative curvature, zero curva-

ture/flat, and positive curvature Riemann surface. Riemann surface can be further divided

based the number of elementary non-contractable closed contours on them denoted by 2h and

h is called the genus of Riemann surface. In fact the integral of curvature of Riemann surface
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just depends on the genus and is proportional to 2h � 2. So only genus 0 Riemann surface,

sphere, is hyperbolic. Genus 1 Riemann surfaces, torus, are hyperbolic and all Riemann sur-

faces with h � 2 are elliptic.

With in each genus we have a family of inequivalent Riemann surfaces depending on the

complex structure that is assigned to it. All inequivalent complex structures forms a non-

compact space known as moduli space Mh and is parametrised by moduli parameters. For

rigorous treatment of Riemann surfaces see [113].

A.3 Bosonic String Theory

Bosoinc string theory is the natural generalisation of study of quantum mechanical propagation

and interaction of relativistic point particles through a d-dimensional spacetime to the case of

relativistic strings propagating through a d-dimensional spacetime.

A.3.0.1 Polyakov Action

Action for a relativistic free string propagating through a flat d-dimensional spacetime is given

by the surface area of the world-sheet swept by the string.

SNG = T

Z

dA = T

Z

d2⇠
p

�det hij (A.3.1)

here T is the string tension which can be expressed using another constant ↵0 as T = 1
2⇡↵0 ,

⇠i, i = 1, 2 are the coordinates on the world-sheet, hij = ⌘µ⌫
@Xµ

@⇠i
@X⌫

@⇠j
is the metric induced on

the world-sheet with embedding coordinates Xµ, µ = 0, 1, · · ·, d � 1 from the flat spacetime.

Subscript in the left hand side indicates that this action is known as Nambu-Goto action.

Through out the following discussions we will set ↵0 = 1 because dimensional analysis can

always be used to figure out the correct ↵0 dependence when ever require.
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Square roots in action makes quantisation di�cult. Instead of Nambu-Goto action we will

consider another classically equivalent action without square root known as Polyakov action.

Price that we pay for this convenience is that Polyakov action contains an auxiliary field g↵�

which can be interpreted as the intrinsic metric on the world-sheet.

Sp =
1

4⇡

Z

d2⇠
p
�g g↵�@↵X

⌫@�X
µ⌘µ⌫ , ↵, � = 1, 2. (A.3.2)

where g = det g↵�. Classically g↵� is proportional to the induced metric on the world-sheet

but not in general. We should remember that intrinsic metric on the world-sheet is an auxil-

iary field so it is important to make sure that physical quantities do not depend on it. Since

the choice of local coordinates and metric on the Riemann surface are intimately related the

physical quantities should not depend on the choice of coordinates on the Riemann surface.

Polyakov action is invariant under Poincare transformations, reparameterizations of world-

sheet coordinates and Weyl transformations of world-sheet metric g↵�. Due to the reparameter-

ization invariance of world-sheet action we need not consider Riemann surfaces with arbitrary

metric g↵�. This is because it is always possible to choose coordinates on an arbitrary Riemann

surface such that the metric takes the form ĝ↵� = e!(⌧,�)�↵� where (⌧, �) is the specific choice

of coordinates which achieve this. Such a choice is known as conformal gauge. In conformal

gauge action simplifies considerably due to its Weyl symmetry and becomes

Sp =
1

4⇡

Z

d�d⌧ @�X
⌫@⌧X

µ⌘µ⌫ . (A.3.3)

A.3.1 Quantization

Now it is straight forward to write down general classical solution both for open and closed

strings by imposing consistent boundary conditions. For closed string we can impose that

Xµ(⌧, �) is periodic along � direction on world-sheet with a periodicity of 2⇡. At the end

points of open strings we can impose two possible boundary conditions. One is Neumann
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boundary condition which demands that canonical momentum with respect to Xµ field along �

direction vanishes at the end points � = 0, ⇡. Other possibility is Dirichlet boundary condition

which demands that the end points of open string is not allowed to move along the spacetime

direction Xµ. Most general solution for a closed string is given as,

Xµ(⌧, �) = Xµ
L(⌧ + �) +Xµ

R(⌧ � �) (A.3.4)

where Xµ
L(⌧ + �) contains left moving oscillations and Xµ

R(⌧ � �) contains right moving oscil-

lations. Their mode expansion is as follows,

Xµ
L(⌧ + �) =

xµ

2
+

pµ

2
(⌧ + �) +

ip
2

X

k 6=0

↵̄µ
k

k
e�ik(⌧+�)

Xµ
R(⌧ � �) =

xµ

2
+

pµ

2
(⌧ � �) + ip

2

X

k 6=0

↵̄µ
k

k
e�ik(⌧��) (A.3.5)

here xµ and pµ are centre of mass position and momentum of the closed string.

To quantise this classical theory we will lift the c-numbers xµ, pµ and ↵̄µ
k ,↵

µ
k to operator status

and impose the following commutation relations.

h

xµ, p⌫
i

= i⌘µ,⌫

h

↵µ
m,↵

⌫
n

i

= m�m+n,0⌘
µ,⌫

h

↵̄µ
m, ↵̄

⌫
n

i

= m�m+n,0⌘
µ,⌫ (A.3.6)

wherem and n are non-zero integers. Now for constructing the Hilbert space of string we choose

↵µ
m, ↵̄

µ
m as lowering operators and ↵µ

�m, ↵̄
µ
�m as raising operators with positive m. Ground state

|pi which is characterised by the centre of mass momentum is annihilated by all lowering op-

erators. All other states in Hilbert state can be created by acting the raising operators on
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the ground state. All of them are spacetime bosons so string theory based on action A.3.3 is

known as bosonic string theory.

Stress tensor of the world-sheet theory is given by,

T↵� =
4⇡p�g

�Sp

�g↵�
. (A.3.7)

We should remember that metric on the world-sheet g↵� is an auxiliary field so we need to make

sure that within all physical quantities this auxiliary field satisfies equation of motion. This

implies within all physical quantities word-sheet stress tensor should vanish. But reparametri-

sation invariance automatically guarantees the vanishing of T�+ and T+�, where subscript +

indicates the coordinate ⌧ + � and - indicates ⌧ � �. So the only non-trivial components of

stress tensor are T�� and T++. They receive contribution from each modes of left and right

moving oscillations. For closed strings they are given by,

Lm =
1

⇡

Z 2⇡

0

d� T��e
im(⌧��) =

1

2

X

n

: ↵µ
m�n↵

⌫
n : ⌘µ⌫

L̄m =
1

⇡

Z 2⇡

0

d� T++e
im(⌧+�) =

1

2

X

n

: ↵̄µ
m�n↵̄

⌫
n : ⌘µ⌫ . (A.3.8)

Here : : denotes the process of taking all lowering operates to the right. It is not di�cult to

see that the Hilbert space that we constructed using ↵µ
m and ↵̄µ

m satisfying the commutation

relations A.3.6 contains negative norm states since ⌘00 = �1. Interestingly the requirement of

vanishing of world-sheet stress tensor within all physical quantities save the day. This implies

that T++ and T�� should vanish if we sandwich each of them within ket and bra corresponding

to physical states. So the physical subspace of Hilbert space contains only those states which

are annihilated by all Lm and L̄m for every m � 0.

Lm| phy i = L̄m| phy i = 0, m � 0. (A.3.9)
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For m = 0 this condition demands that all physical states in string spectrum carries centre of

mass momentum whose square is equal to the tree level mass2. On the top of it physical states

are annihilated by L0 � L̄o, operator taking a point on closed string to other, which ensures

that every points on a closed string are treated equally. This condition demands that physical

state can only be created by using a collection of left and right moving oscillators which satisfy

level matching condition. Level matching condition says that level numbers, which is the sum

of mode numbers (mode number of ↵µ
�m is m), of left moving oscillators should be equal to

that of right moving oscillators. Say a state has level number N , then its mass is given by

m2 = 4
⇣

N � d� 2

24

⌘

(A.3.10)

where d is the dimension of spacetime through which the string is propagating.

There are a set of states which has vanishing norm with any states with any physical state.

They are known as null states. It is easy to see that they have the following form

| spur i = L�n| arbitrary state i, m > 0. (A.3.11)

Spurious states with in the physical subspace of Hilbert space are called null states. This

implies two physical states which di↵er by a null state are equivalent. All states which are

neither belongs to the equivalence class of a physical state nor a null state are called unphysical

states. Let us end our discussion on Hilbert space of string by writing down the first excited

physical states of closed string.

• States 1
2

⇣

↵i
�1↵̄

j
�1 +↵j

�1↵̄
i
�1

⌘

|pi, i, j = 1, ..., d� 2 forms graviton in d-dimensional space-

time, quanta of spacetime metric Gµ⌫ , µ, ⌫ = 0, ..., d.

• States 1
2

⇣

↵i
�1↵̄

j
�1�↵j

�1↵̄
i
�1� 2

d�2�
ij
Pd�2

k=1 ↵
k
�1↵̄

k
�1

⌘

|pi, i, j, k = 1, ..., d�2 forms antisym-

metric tensor, quanta of spacetime anti-symmetric field Bµ⌫ , µ, ⌫ = 0, ..., d.
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• 1
d�2

⇣

Pd�2
k=1 ↵

k
�1↵̄

k
�1

⌘

|pi forms dilaton a scalar, quanta of spacetime scalar field �.

Theses states form irreducible representations of SO(d-2) which is the little group of Lorentz

group for the d-dimensional spacetime. But for a theory with Lorentz invariance only massless

states can form the irreducible representation of little group of Lorentz group. So requiring

Lorentz invariance for quantised free string demands that the first excited states (level number

N=1) should be massless. But mass of string states depends on the dimension of the spacetime

through which they propagate as shown in equation A.3.10. So consistent quantum mechanical

propagation of free relativistic string in flat Minkowskian spacetime is possible only if the

dimension of spacetime is 26. This also tells that ground state of string is tachyonic, i.e. mass2

is negative.

A.3.2 Identifying the Coupling Constant

So far we considered only the free propagation of relativistic string through flat spacetime. Let

us consider the propagation of relativistic string through a spacetime having non-zero vacuum

expectation value (VEV) for the massless fields Gµ⌫ , Bµ⌫ and �. Just like for an electrically

charged particle propagating through a spacetime in the presence of electromagnetic field,

Polyakov action gets modified and becomes,

Sp =
1

4⇡

Z

d2⇠
hp
�g gabGµ⌫(X) + ✏abBµ⌫(X)

i

@aX
µ@bX

⌫ +
1

8⇡

Z

d2⇠
p
�g R(2)�(x)

(A.3.12)

where R(2) is the scalar curvature of world-sheet metric gab. Here consistent propagation of

string demands that the VEV of Gµ⌫ , Bµ⌫ and � should satisfy Einstein equations. We are

interested in a specific back ground with VEV Bµ⌫ = 0, Gµ⌫ = ⌘µ⌫ and �(X) = �0 where �0

is a constant. Corresponding Polyakov action is given by

Sp =
1

4⇡

Z

d2⇠
p
�g gab⌘µ⌫(X)@aX

µ@bX
⌫ +

�0

2
�
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(A.3.13)

where � = 1
4⇡

R

d2⇠
p�g R(2) is the Euler characteristic of world-sheet. For a world-sheet with

genus h, n-boundaries and nc corners, the Euler characteristic is

� = 2� 2h� n� nc

4
. (A.3.14)

Increasing the genus of world-sheet will change the action by ��0 so we can think of e�0 as

the expansion parameter of Polyakov prescription for computing string amplitude. Similarly

increasing the number of boundaries will change the action by ��0
2 so we can identify e

�0
2 as

closed string coupling since adding a closed string increase the number of boundaries by one.

Finally adding an open string increases the corners of world-sheet by 2 so we identify e
�0
4 with

open string coupling.

A.3.3 Polyakov Path Integral for String Amplitude

Polyakov prescription defines h-loop closed string amplitude as path integral over all metrics on

Riemann surfaces having genus h and n- boundaries with boundary condition corresponds to

asymptotic state of n-closed strings and the embedding Xµ(⇠1, ⇠2) of this surfaces in spacetime.

For example consider the h-loop contribution to the scattering of n-closed strings in their

ground state. String at its ground state is specified just by the centre of mass position.

Then the h-loop contribution to the n-point amplitude is defined by imposing the boundary

condition on the world-sheet that the n-boundaries of the world-sheets are at specific points

in the spacetime say xI , I = 1, ..., n. Corresponding path integral is given below

Z

h

dgab dX
µ
i

h
e�Sp[gab,Xµ]

n
Y

I=1

Z

d2⇠I
p

�g(⇠I)�
⇣

xµ(⇠I)� xµ
I

⌘

. (A.3.15)
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Then in momentum space the h-loop contribution to n-tachyon string amplitude is given by

A(n)
h (k1, ..., kn) =

Z

h

dgab dX
µ
i

h
e�Sp[gab,Xµ]

n
Y

I=1

Z

d2⇠I
p

�g(⇠I) eikI .xI(⇠I). (A.3.16)

We can identify
R

d2⇠I
p

�g(⇠I) eikI .xI(⇠I) as the operator corresponds to tachyonic state of I th

closed string with momentum kµ
I . This operator is known as the integrated form of vertex

operator for tachyon. For generic states of the string also it is possible to find the appropriate

vertex operators. This one to one correspondence between operators and states is called the

state-operator correspondence. We will denote the vertex operator corresponds to a state with

quantum numbers represented by index aI carrying momentum kµ
I as

R

d2⇠I
p

�g(⇠I) VaI ,kI (⇠I).

Then the momentum space expression for h-loop string amplitude involving n-string states

having quantum numbers aI and momentum kI with I running from 1 to n is

A(n)
h (a1, k1; ...; an, kn) =

Z

h

dgab dX
µ
i

h
e�Sp[gab,Xµ]

n
Y

I=1

Z

d2⇠I
p

�g(⇠I) VaI ,kI (⇠I). (A.3.17)

Just like in any gauge theory it is important to carry out gauge fixing to make the path integral

well defined. Gauge transformations that we need to fix for making the above path integral well

defined are reparametrisations and Weyl transformations. This can be achieved by restricting

the path integral over metrics to a class of metrics which are not related to each other by above

mentioned gauge transformations. This class of metrics is parametrised a set of parameters

which forms a non-compact space known as moduli space.

For h � 2 story ends here. But on genus 0 and 1 Riemann surfaces there exists a class of

reparametrisations which can not be fixed by restricting to a class of metrics because under

those reparametrisations metric remains the same. This unfixed reparametrisations can be

gauge fixed by fixing the positions of m of the vertex operators where m is the dimension

of unfixed space of reparametrisation. Vectors generating these left over transformations are

called conformal killing vectors (CKV). There exists a simple relation between the number of
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CKV’s on genus h Riemann surface with n marked points (where we insert vertex operators)

and the dimension of it’s moduli space given by,

Number of real CKV �Real dimension of moduli space = 6� 6h+ 2n. (A.3.18)

Number of real CKV’s and real dimension of moduli space for Riemann surfaces without any

puncture for di↵erent genera are as listed below.

• For genus 0 surface : number of real CKV = 6, dimension of moduli space = 0.

• For genus 1 surface : number of real CKV = 2, dimension of moduli space = 2.

• For genus � 2 surface : number of real CKV = 0, dimension of moduli space = 6h�6.

CKV’s generate möbius group for sphere and group of translation for torus.

Gauge fixing can be carried out using Faddeev-Popov procedure by introducing ghost fields to

get the gauge fixed Polyakov path integral computing the n-point closed string amplitude,

A(n)(a1, k1; ...; an, kn) =
X

h

e(h�1+n
2 )�0

Z

Mh

dst
n�m
Y

I=1

Z

⌃h

d2zI

n

Z

h

db db̄ dc dc̄ dXµ
i

h
e�Sp�Sg

s
Y

k=1

1

4⇡

⇣

b,
@ĝ

@tk

⌘⇣

b̄,
@ĝ

@tk

⌘

m
Y

i=1

c(zi)c̄(zi)
n
Y

I=1

p

�ĝ(zI) VaI ,kI (zI)
o

.

(A.3.19)

Here s is the complex dimension of moduli space of genus h Riemann surfaces Mh and m is the

number of complex CKV’s on genus h Riemann surface ⌃h. (z, z̄) is the complex coordinates

on ⌃h and ĝ belongs to the class of metrics on genus h Riemann surface parametrised by the

coordinates of moduli space which can not be related each other by gauge transformations.
⇣

b, @ĝ
@tk

⌘

represents
R

⌃ d
2z

p

�ĝ(z) bzz
@ĝzz

@tk
and Sg denotes the action for the anti-commuting
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bosonic ghost fields b and c given by

Sg =
1

2⇡

Z

⌃h

d2z
p

�ĝ(z) b@̄c+ 1

2⇡

Z

⌃h

d2z
p

�ĝ(z) b̄@c̄ . (A.3.20)

InterestinglyXµ, µ = 0, ..., 25 fields and b, c fields together form a 2 dimensional conformal field

theory defined on genus h Riemann surface with vanishing central charge. This means action

Sp+Sg and path integral measure are invariant under all analytic coordinate transformations.

(So the world-sheet interpretation of spacetime Lorentz invariance is the absence of conformal

anomaly in the (X, b, c) conformal field theory.) Conformal dimension of Xµ, b, b̄, c, c̄ are

respectively (0, 0), (2, 0), (0, 2), (�1, 0), (0,�1). Then for computing terms inside the curly

brackets in the right hand side of equation A.3.19, which are nothing but correlators in the

above mentioned 2-d CFT, we can use the powerful techniques available in 2-d conformal field

theories. In this sense perturbative string theory reduces to 2-d exactly solvable conformal

field theory on Riemann surfaces.

A.3.4 BRST Symmetry

Gauge fixed Polyakov action in conformal gauge takes the following form

S = Sp + Sg =
1

4⇡

Z

⌃h

d2z @Xµ@̄Xµ +
1

2⇡

Z

⌃h

d2z b@̄c+
1

2⇡

Z

⌃h

d2z b̄@c̄ . (A.3.21)

Anti-commutation relation of b-c system is as follows

{bm, cn} = �m,�n

bm =
1

2i⇡

I

C

zm+1b(z), cm =
1

2i⇡

I

C

zm�2c(z). (A.3.22)

Zero modes of b-c system generates two ground states which are annihilated by all of the n � 1

modes. We call them | "i and | #i such that | "i is annihilated by c0 and | #i is annihilated by

b0 and | "i = c0| #i.
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Though we obtained this action after gauge fixing it still has some left over gauge symme-

try. These left over gauge transformations known as BRST transformations are generated by

the BRST operator

QB =
1

2⇡i

I

C

(dz jB � dz̄ j̄B) (A.3.23)

here C denotes a closed counter around the operator on which QB acts and jB is the BRTS

current

jB = cTX +
1

2
: cT g : +

3

2
@2c (A.3.24)

where TX and T g are the stress tensor for Xµ system and ghost system respectively. Mode

expansion of QB is given by

QB =
X

m

⇣

cnL
X
�n + c̄nL̄

X
�n

⌘

+
X

m,n

m� n

2
:
⇣

cmcnb�m�n + c̄mc̄nb̄�m�n

⌘

: �c0 � c̄0.(A.3.25)

Also we have the useful commutation relation

{QB, bm} = LX
m + Lg

m. (A.3.26)

It is important to note that Q2
B = 0. Beauty of this left over symmetry is that instead of

treating this as an end result we can rewrite the story by treating the gauge fixed action as our

starting point and quantize the theory using this symmetry. This approach is known as the

BRST formalism. In this formalism physical states satisfy conditions b0| i = 0, b̄0| i = 0 and

QB| i = 0. States which can be written as QB| ̃i with b0| ̃i = 0 are the null states. b0| i =
0, b̄0| i = 0 condition is the end result of imposing Siegel gauge condition (b0 + b̄0)| i = 0

and consistency condition (b0 � b̄0)| i = 0.
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Imposing Siegel gauge condition is important to make sure that string amplitude has only

singularities which has concrete physical interpretations. Let us explain this point. As we ob-

served zero modes of ghost system leads to four copies of states. Now we can ask out of these

four copies which one can provide states that are annihilated by BRST charge and at the same

time sensible string amplitudes. For simplicity we will consider only the ground states of right

moving sector. QB|k, #i = (k2+m2)|k, "i and QB|k, "i = 0. This means that |k, "i are physical
if k2 +m2 = 0 and null when k2 +m2 6= 0. This means that if we include states coming from

sector with ground states |k, "i string amplitude will be proportional to �(k2 +m2) since null

states decouples from the amplitudes involving only physical states. But such dependencies

are not allowed in S-matrix. By imposing Siegel gauge we can project out states build up of

|k, "i since b0|k, "i 6= 0. (b0 � b̄0)| i = 0 condition is to make sure that scattering amplitudes

well defined even with the inability to define local coordinates on Riemann surfaces globally

in moduli space without any phase ambiguity.

A.4 RNS Formulation of Superstring Theory

Superstring theory is the natural generalisation of supersymmetric quantum mechanics of rela-

tivistic point particle to relativistic strings. World-sheet theory of superstring can be obtained

by supersymmeterising the bosonic string world-sheet theory. Heterotic string theory can be

obtained by combining the right moving part of superstring with the left moving part of bosonic

string theory.

A natural way to study the supersymmetric version of bosonic string world-sheet theory is

to follow the superfield formalism. Following superfield formalism we will convert the space-

time embedding of bosonic string Xµ(z, z̄), µ = 0, ..., d � 1 to superfield Xµ(z, z̃, ✓, ✓̃) where

✓ and ✓̃ are complex grassmannian variables. Interestingly we can think of the world-sheet of

superstring as super-Riemann surface which is the super generalisation of ordinary Riemann

surfaces. In the following section we will describe the geometry of both super and heterotic
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string world sheet more precisely.

A.4.1 Super-Riemann Surface

Super-Riemann surface ⌃R can be locally parameterised by bosonic and fermionic complex

coordinates z and ✓. Also it is possible to define every where on ⌃R a derivative operator

D such that D2 is nowhere proportional to D. An example for such a derivative operator is

D✓ =
@
@✓

+ ✓ @
@z

since D2
✓ =

@
@z
.

Once we have the derivative operator D✓ we can introduce the the notion of super-conformal

vector fields. Vector field W is a super-conformal vector field if [W ,D✓} / D✓. Say we have

two overlapping patches U↵ and U� on ⌃ with local coordinates (z↵, ✓↵) and (z�, ✓�) respec-

tively. Then D✓↵ = (D✓↵✓�)D✓� . Field A is called a super-conformal primary of dimension �n
2

if under a super-conformal transformation (z, ✓)! (ẑ, ✓̂) it transform to (D✓✓̂)�nÂ.

World-sheet of superstring can be thought of as a smooth sub manifold of a complex manifold

⌃L ⇥ ⌃R where both ⌃L and ⌃R are super-Riemann surfaces and are parametrised by coordi-

nates (z, ✓) and (z̃, ✓̃). Why should we think in this way? For the case of bosonic string it has

left moving and right moving oscillations on it and each sector is parametrised by local coordi-

nates z and its complex conjugate z̄. Naive generalisation will say that the super analog of left

and right moving modes on superstring should be parametrised by (z, ✓) and (z̄, ✓̄). But this

will lead to an inconsistency due to the fact that constraint like z = z̃ are not invariant under

super-conformal transformations. Due to this reason we should write Xµ(z, z̃, ✓, ✓̃) instead of

Xµ(z, z̄, ✓, ✓̄). In the same spirit we should think of Heterotic string world-sheet as a smooth

submanifold of a complex manifold ⌃L ⇥ ⌃R where ⌃L is a super-Riemann surface and ⌃R is

a Riemann surface parametrised by coordinates (z, ✓) and z̃.
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Most general super-conformal transformation takes the following form,

ẑ = f(z) + ✓@f(z)✏(z)

✓̂ = (@f)
1
2 (✓ + ✏(z) +

1

2
✓✏@✏(z)) (A.4.1)

where f(z) is an arbitrary commuting analytic function and ✏(z) is an anti-commuting analytic

function. So only for special classes of super-Riemann surfaces with transition functions having

vanishing ✏(z) we can think of the super-Riemann surface as a spinor bundle over ordinary Rie-

mann surface with odd coordinate as section of the spinor bundle. And such super-Riemann

surfaces are called split super-Riemann surface otherwise non split.

Since there is no notion of distance along the odd direction of super-Riemann surface, they

share the topological characters of the underlying Riemann surface. For example the genus of

Super-Riemann surface is exactly same as that of the underlying Riemann surface which can

be obtained by setting all odd coordinates to zero. Like ordinary Riemann surfaces inequiva-

lent genus h super-Riemann surfaces also form super analog of moduli space known as super

moduli space, sMh. For h � 2 super moduli space sMh is characterised by 2h � 2 odd and

3h� 3 even complex variables. 3h� 3 even complex variable takes care of the inequivalent un-

derlying ordinary surfaces and 2h� 2 odd variable represents the inequivalent super-Riemann

surfaces which can not be thought of as spinor bundle over an ordinary Riemann surface. By

this we end our crash course on super-Riemann surface. Detailed beautiful discussion on super

manifolds and super-Riemann surfaces and its moduli space can be found in [114].
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A.4.2 World-sheet Action

Using this superfield we can write the supersymmetric version of Polyakov action for bosonic

string theory as

S[Xµ] =
1

2

Z

DXµD̃Xµ. (A.4.2)

Most general solution for the equation of motion can be locally written as,

Xµ(z, z̃, ✓, ✓̃) = Xµ(z, ✓) +Xµ(z̃, ✓̃)

Xµ(z, ✓) = Xµ(z) + ✓ µ(z) (A.4.3)

where Xµ(z) are same that appeared in the case bosonic string and  µ(z) are world-sheet

spinors. Since  µ(z) are world-sheet spinors they can have two possible boundary conditions

along every non-contractible cycles on the underlying Riemann surface of world-sheet. They

are periodic and anti-periodic boundary conditions. Say we look only into right moving modes

then creation operators coming from  µ with periodic condition will produce states which

are world-sheet bosons and creation operators coming from  µ with periodic condition will

produce states which are world-sheet spinors. Thus the spectrum splits into two sectors which

we call Neveu-Schwarz (NS) sector where we have spacetime bosons and Ramond (R) sector

where we have spacetime spinors. We need to introduce superfield for ghost system also. They

are super-conformal primaries B(z, ✓), B̃(z̃, ✓̃) with dimensions (32 , 0), (0,
3
2) and C(z, ✓), C̃(z̃, ✓̃)

with dimensions (�1, 0), (0,�1). Action for this Fadeev-Popov ghost system is

S[B,C] =
1

2

Z

BD̄C. (A.4.4)

Locally we can split these superfields into B(z, ✓) = �(z) + ✓b(z) and C(z, ✓) = c(z) + ✓�(z).

Ghost b, c corresponds to reparametrisation and �, � ghosts are commuting fermions corre-

sponds to local susy transformations. Requiring the absence of super-conformal anomaly in
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the combined system of X,B,C forces us to work with 10 dimensional spacetime.

A.4.3 Superstring Amplitudes

Superstring amplitudes are super analog of string amplitudes in bosonic string theory. Instead

of all possible Riemann surfaces with vertex operators for string states at marked points or

punctures we need to sum over all possible super-Riemann surfaces with vertex operators at

punctures. After gauge fixing sum over all surfaces with specific genus h will reduce to an

integration over super moduli space sMh,n.

Vertex operators corresponds to states in the NS-sector are inserted on marked points on

super-Riemann surface. Since R-sector states creates branch cuts in the ✓ coordinates, Ra-

mond punctures where vertex operators corresponding Ramond states are inserted are part

of super-conformal structure. More precisely at Ramond puncture the special derivative D
which defines the super-conformal structure does not exist because at Ramond punctures D2

vanishes. Consider a genus h super-Riemann surface with nR Ramond punctures and nNS

NS-punctures. Derivative operator D defined on such a surface takes the following form,

D⇤
✓ =

@

@✓
+
⇣

nR
Y

i=1

(z � zi)
⌘

✓
@

@z
. (A.4.5)

In this sense super-Rieman surfaces with Ramond punctures are super-Riemann surfaces with

singularity in the super-conformal structure. Complex dimension of the super moduli space of

such surfaces is (3h�3+nNS +nR|2h�2+nNS +
1
2nR). Dimensionality of super moduli space

will never be fractional because number of Ramond punctures nR on a super-Riemann surface

is always even. Physical meaning of this fact is that a spacetime fermion can never decay into

even number of fermions.

In subsection A.3.4 we argued that only a subspace of the full Hilbert space of bosonic string
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theory can give sensible string amplitude. Similarly we should check in superstring theory

whether we need any projection other than imposing that states should be annihilated by b0

and b̃0. We can find the needed further projection by studying the propagation of on-shell

intermediate states in string amplitudes. This corresponds to analysing the contribution of

amplitude coming from the integration over part of the moduli space which is very near to it’s

boundary. As we will see later (when we discuss factorisation of superstring amplitudes) near

the boundary of moduli space we can perform a part of super moduli integration (integration

of few coordinates of super moduli space is not a well defined operation in general due to the

non-split nature of super moduli) which corresponds to summing over spin structure. Sum-

ming over spin structure will attach a projection operation to the propagator which measures

the fermion parity. This projection, known as GSO projection, assures that all world-sheet

OPE’s are local. So we should implement GSO projection in the Hilbert space and restrict

to the reduced Hilbert space. One should note that this GSO operation can be implemented

separately in left moving and right moving sector. Interestingly appropriate combination of

GSO-projection in left and right moving sector can give rise to spacetime supersymmetric

spectrum. Even more interesting fact is that such theories do not have tachyons in its spec-

trum. Also supersymmetry guarantees the vanishing of massless tadpoles. All these issues are

thoroughly discussed in [5].

A.4.4 Picture Changing Formalism

Superstring amplitudes after gauge-fixing reduces to an integral over super moduli space. Su-

per moduli space of genus h super-Riemann surfaces are parametrised by 3h � 3 even and

2h � 2 odd complex variables. Picture changing formalism gives a prescription for writing

down superstring amplitude as an integral over moduli space of ordinary Riemann surface.

It tells us to integrate out odd super moduli at the cost of introducing the so called picture

changing operator (PCO) on ordinary Riemann surface. Before trying to understand PCO we

should discuss the concept of ‘ picture ’ because PCO is defined as the operator which changes
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the picture of vertex operator.

Concept of picture stems from the curious properties of �-� system. So let us analyse the

�-� system and its representations. This is a commuting fermionic system. Start with the

mode expansion of these fields.

�(z) =
X

n

�nz
�n� 3

2 �(z) =
X

n

�nz
�n+ 1

2 (A.4.6)

where n is a half integer for NS sector and integer for Ramond sector. they satisfy the com-

mutation relations

[�m, �n] = �n,�m. (A.4.7)

Move on to its Hilbert space. One of the main source of complications in superstring theory

arises from the fact that �-� system has infinite number of inequivalent representation of �-�

algebra which can be constructed using the raising operators by acting on infinite number of

vacuum states |qi having ghost charge (Qgh =
P

n : �n��n :) q, where q is integer or half

integer. q is called the ‘Bose-sea level’ of the representation. These set of vacuum sets are

inequivalent because unlike the degenerate ground states of b-c system here we can not start

from vacuum with one value of q to another by acting with finite number of oscillators. Say

there exists operators which can increase or decrease q and call them �(�m) and �(�n). Their

action on the q-vacua defines them,

�(��q� 3
2
)|qi = |q + 1i

�(�q+ 1
2
)|qi = |q � 1i. (A.4.8)
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Similarly we can define operators, spin fields, ⌃+ and ⌃� mapping Ramond states to NS states

or vice versa. q 2 Z+ 1
2 for Ramond sector. They are also defined by their action on q-vacuua,

⌃+(0)|0i = |1
2
i, ⌃�(0)|0i = |� 1

2
i. (A.4.9)

So each state in superstring theory has infinite number of inequivalent representation based

on the q-vacua that we use for building the tower of states. This leads to infinite number

of inequivalent vertex operators for any specific state and we discriminate each of them by

associating a picture number which indicates the q-vacua used for constructing the states.

Things are more transparent if we represent �-� system using a free scalar � and a pair

of free chiral fermionic fields ⇠ and ⌘ of conformal weight (0,0) and (1,0). This changeover of

representation is known as bosonization. Free scalar � is compactified on the circle R/2⇡Z

and is coupled to a background charge Q = 2. Action for the combined system is

S[�, ⇠, ⌘] =
1

2⇡

Z

⇣

@�@̄�� 1

2
R�

⌘

+
1

⇡

Z

⌘@̄⇠. (A.4.10)

Precise mapping between two systems is as follows,

� = e�@z⇠, � = e��⌘, �(�) = e��, �(�) = e�, ⇠ = ⇥(�), ⌘ = @z��(�). (A.4.11)

q-vacua in this representation is defined as

�n|qi = ⌘n|qi = ⇠m|qi = 0 for n � �1, m � 0

�0|qi = q|qi. (A.4.12)

Given these it is not di�cult to see that

�(�(z)) = e�(z), �(�(z)) = e��(z), ⌃+(z) = e
1
2�(z), ⌃�(z) = e�

1
2�(z). (A.4.13)
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It is important note that only the derivatives of ⇠-field is present in the identification A.4.11

between two systems. So the constant zero mode ⇠0 can not be produced from any of the

operators acting within �-� system. This means that (⇠, ⌘,�) - Hilbert space H⇠⌘� is twice as

large as the (�, �)-Hilbert space H�� . Precise equivalence is the following

H�� = {| i 2 H⇠⌘� | ⌘0| i = 0}. (A.4.14)

We saw that it is possible to construct operators which can take us from one q-vacua to

another. This means it should be possible to change the Bose-sea charge of a vertex operator

and this procedure is called picture changing. A general state in the Hilbert space of Bose-

sea level q can be converted to a state in the Hilbert space of Bose-sea level q + 1 by acting

with G�q� 3
2
�(��q� 3

2
) with Gn defined by TF (z) =

P

n z
�n� 3

2
Gn
2 . On physical vertex operators

(satisfy �BRSTV (q) = @(cV (q))) picture changing operation is represented as :

V (q)(w)! V (q+1)(w) =

I

dz

2i⇡
jBRST

⇣

⇠V (q)
⌘

(w)� @
⇣

c⇠V (q)
⌘

(A.4.15)

where V (q) is the vertex operator with picture number q and jBRST is the superstring BRST

current. Though the second term in the right hand side looks like a BRST variation actually

it is not a BRST exact deformation due to the presence of zero mode of ⇠ in it (remember ⇠0

is not in H��). We end our discussion on Picture changing formalism by mentioning that for

obtaining sensible string amplitude we should introduce enough number of PCO’s on the world-

sheet to make sure that total picture number is zero. More on picture changing formalism can

be found in [40].

A.4.5 Non-Split Super Moduli Space and Picture Changing For-

malism

In section A.4.1 we saw that when a super-Riemann surface is non-split the distinction between

even and odd coordinates is not well defined because super-conformal transformations can mix
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them. In-fact as shown in [9] super modui spaces relevant in superstring perturbation theory are

indeed non-split. But Picture changing formalism advises us to integrate out odd coordinates of

super moduli at the cost of introducing picture changing operators. Then the natural question

would be that how the ambiguity in distinguishing odd and even coordinate is reflected in the

amplitude defined using Picture changing formalism. This can be understood by considering

general correlation function of (⇠, ⌘,�) system which appears in superstring amplitudes

h
n+1
Y

i

⇠(xi)
n
Y

j

⌘(yj)
Y

k

eqk�(zk)i⌫ =

Qn
j #⌫(�yj +

P

x�
P

y +
P

qkzk � 2�)
Qn+1

i #⌫(�xi +
P

x�
P

y +
P

qkzk � 2�)

⇥
Q

i<i0 E(xi, xi0)
Q

j<j0 E(yj, yj0)
Q

i,j E(xi, yj)
Q

k<l E(zk, zl)qkql
Q

k �(zk)
2qk

(A.4.16)

with
P

k qk = 2g � 2 and

�(z)

�(w)
=
#(z �

P

i pi +�)

#(w �
P

i pi +�)

Y

i

E(w, pi)

E(z, pi)
(A.4.17)

where pi, i = 1, ..., g, are arbitrary points on genus-g Riemann surface and left hand side is

independent of pi. � is the Riemann class, naively it is the submanifold (points) of Riemann

surface on which Riemann theta function vanishes. E(z, w) is the prime form which behaves

as z � w in the z ! w limit and #⌫ is the Riemann theta function which depends on the spin

structure ⌫. Whenever we allow operators with in this correlator with singular OPE to collide

they produce singularities and that happen precisely when prime forms in the denominator

of right hand side vanishes. It is well known that theta function defined any genus Riemann

surface always has zeroes. This implies that theta functions in the denominator also produces

poles but this time we can not associate sensible physical interpretation with this so they are

spurious singularities.

Interestingly these spurious singularities can be interpreted in terms of the non-splitness of
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the super moduli space. Let us take a close look into the process of integrating out of odd

super moduli. To integrate out odd coordinates, m̂a first we need to isolate the m̂a dependence

of the string amplitude. As we discussed earlier in section A.4.1 odd super moduli characterises

the di↵erence between a split super-Riemann surface, ⌃m̂, and a non-split one, ⌃0 obtained

by setting m̂a = 0. So in order to isolate the m̂a dependence of the string amplitude we need

to identify the di↵erence in the integrated on ⌃m̂, and ⌃0. This can be done in the following

way. Start with fields on split super-Riemann surface and then do a field redefinition such

that the new fields satisfy the conditions of non-split super-Riemann surface. To implement

this philosophy we can use the fact that by doing a quasi-conformal coordinate transforma-

tion (z, ✓)! (z̃, ✓̃) we can convert a split super-Riemann surface to a no-split super-Riemann

surface. A general quasi super-conformal transformation is given by

z̃ = z + ✓v̂(z, z̄)

✓̃ = ✓ + v̂(z, z̄) +
1

2
✓v̂@v̂(z, z̄) (A.4.18)

where v̂(z, z̄) is a multi-valued, anti-commuting (�1
2 , 0) di↵erential on ⌃0. Use this relation

between coordinates on split and non-split super-Riemann surface we can fields on non-split

world-sheet in terms of fields on split world-sheet. Interestingly world-sheet action of non-spit

world-sheet in terms of fields on split world-sheet becomes action for a 2d massless scalar

coupled to N = 1 SUGRA in Wess-Zumino gauge if identify 2@̄v(z, z̄) which is a (�1
2 , 1) odd

di↵erential on ⌃0, as the gravitino field �̂(z, z̄) on ⌃0. Precise relation between the world-sheet

action on ⌃m̂ and ⌃0 is the following

S⌃m̂
= S⌃0 +

Z

⌃0

�̂ TF (A.4.19)

where TF is the super current given by

TF =
1

2
 @X +

1

2
b� +

3

2
�@c+

1

2
@�c. (A.4.20)
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This means odd super moduli is contained within the 2-d gravitino field. Choose a basis

(gauge) for graviton field on genus h world-sheet, �a(z, z̄), a = 1, 2, ..., 2h � 2. Then we can

write

�̂(z, z̄) =
2h�2
X

a=1

m̂a�a(z, z̄). (A.4.21)

Now as proved in [10] if the super moduli space is non-split then it is impossible to choose a

global choice of gauge (basis) for gravitino. i.e. at some region in the moduli space combination

of graviton basis may become pure gauge. At those regions the �-ghost insertions with in the

PCO’s will not be able to absorb all zero modes of commuting �-ghost fields. Presence of

these left over zero modes will make string amplitude divergent and we can identify theses

singularities as the spurious poles in the string amplitudes.

A.5 Factorisation of String Amplitudes

As we mentioned earlier unitarity of S-matrix is necessary for a sensible probabilistic interpre-

tation of the theory. Factorisation is one of the most important property of a unitary S-matrix.

So it is important to make sure that string amplitudes defined through Polyakov’s prescrip-

tion has factorisation property. Demonstrating the factorisation property of string amplitudes

involves several steps. They are

• Factorisation of moduli/super moduli space.

• Factorisation of CFT on Riemann/super-Riemann surface.

• Factorisation of measure.

• Demonstration of propagation of only physical states in the intermediate channels.

We are interested only in the factorisation of moduli space of bosonic string theory and fac-

torisation of super moduli space in superstring theory. For complete discussion refer [5, 35].
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⌃h1
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z1

D1

⌃h2

Figure A.4: Riemann surfaces ⌃h1 and ⌃h2 with unit discs around points p1 on ⌃h1 and p2 on
⌃h2 with respect to the local coordinates z1 around p1 and z2 around p2.

D2

|q||q|

D1

Figure A.5: Two annuli having inner radius |q| and outer radius 1 obtained by removing a
disc of radius |q| from D1 and D2 where q is a complex parameter.

A.5.1 Plumbing fixture

Since factorisation involves splitting of higher point amplitude into lower point amplitudes it

is important to identify a region in the moduli space of genus h Riemann surface with n punc-

tures where it splits into genus h1 and genus h2 Riemann surfaces with n1 and n2 punctures

respectively with h1 + h2 = h and n1 + n2 = n + 2. Such special region in the moduli space

of Riemann surfaces can be obtained by gluing a genus h1 and genus h2 Riemann surfaces

with n1 and n2 punctures respectively. Plumbing procedure is an example for a mathematical

construction which implements this gluing.

Consider two Riemann surfaces ⌃h1 having genus h1 and ⌃h2 having genus h2. Pick a point

p1 on ⌃h1 and p2 on ⌃h2 . Define local coordinates z1 around p1 and z2 around p2. Then cut

out a disc D1 around p1 with unit radius in z1 coordinate and a disc D2 around p2 with unit
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Figure A.6: Plumbing fixture produces Riemann surface ⌃h with genus h = h1+h2 with 2 less
number of punctures than that total number of punctures which were there on ⌃h1 and ⌃h2 .

radius in z2 coordinate as in figure A.4. Remove a disc of radius |q| from D1 and D2 where q

is a complex parameter. Then we are left with two annuli having inner radius |q| and outer

radius 1 as shown in figure A.5. Identify these two annuli as follows,

z1z2 = q, q = e�s+i✓ (A.5.1)

where s and ✓ are real variables. This identify the grey circle in D1 (see figure A.5) with black

circle in D2 and the black circle in D1 (see figure A.5) with gray circle in D2 with a phase shift

✓. Resulting Riemann surface is a Riemann surface ⌃h with genus h = h1 + h2 with two less

number of punctures than that total number of punctures which were there on ⌃h1 and ⌃h2 .

In this special region of moduli space of genus h Riemann surface with n punctures convenient

set of moduli parameters is (m⇤
1,m

⇤
2, q), where m⇤

i is the moduli for ⌃hi having ni + 1 marked

points. Riemann surfaces with |q| = 0 forms the boundary of moduli space and those sur-

faces are known as degenerate Riemann surface because these surface are not smooth Riemann

surfaces. At |q| = 0 surface splits into two branches that meet at a point. We call the limit

|q| ! 0 the degeneration limit. Since |q| = 0 points are not nice Riemann surfaces modulus

space of Riemann surfaces is not compact. One can do Deligne-Mumford compactification of

moduli space by adding these points into the moduli space.

Plumbing fixture procedure is more intuitive if we use local coordinates si and �i related
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to zi as follows

zi = e�si+i�i , i = 1, 2. (A.5.2)

This coordinate transformation converts disc Di around the point pi on ⌃i into a infinite tube

with pi sits at the1 of coordinate si. Removal of disc of radius |q| from the interior of disc Di

is equal to cutting the disc into a tube with finite length s = ln|q|. In this coordinate plumbing

fixture disc identification becomes

s1 + s2 = s, �1 + �2 = �. (A.5.3)

which is nothing but the process of inserting one tube into the other after twisting one tube by

angle �. Parameter s can be thought of as the proper time elapsed by the intermediate closed

string.

Let us take out this plumbing fixture tube. This is well defined if we allow all possible boundary

conditions for the intermediate closed string at the ends of the tube. Consider specific state of

closed string which is annihilated by both b0 and b̄0 with specific L0 and L̄0 at one end of the

tube. Evolution of state along the tube is implemented by the operator e�s(L0+L̄0)+i�(L0�L̄0).

Since near the boundary of moduli space we can split the Riemann surface into three pieces,

two punctured Riemann surfaces and plumbing fixture tube, with only the long plumbing fix-

ture tube depends on the moduli parameter s and � and also states in the restricted Hilbert

space which are annihilated by both b0 and b̄0 can not detect the � we can integrate over

s,� with integrand e�s(L0+L̄0)+i�(L0�L̄0). This integration produces the propagator for closed

bosonic string. So boundary of the moduli space provides the needed singularity corresponding

to the propagation of on-shell intermediate particles.
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A.5.2 Super Analog of Plumbing Fixture

Now we will discuss the super analog of plumbing fixture procedure. Again plumbing fixture

is implemented by picking two points on two super-Riemann surfaces and identifying the local

coordinates around the punctures. As we already discussed there are two kinds of punctures, NS

and Ramond punctures. So we can identify local coordinates around either two NS-punctures

or two Ramond punctures which leads two possible degenerations in the case of super moduli

space and they are

• NS-degeneration: On-shell NS states propagate in the intermediate channel.

• Ramond degeneration: On-shell Ramond states propagates in the intermediate channel.

Consider two super-Riemann surfaces s⌃hi , i = 1, 2 with NS punctures at pi. Say the local

coordinate around puncture pi is (zi, ✓i) defined within the disk sDi. We can map disk sDi to

NS-super tube using following coordinate change,

zi = e�si+i�i , ✓i = e�
s
2+i ✓2 ⇣i. (A.5.4)

Like for ordinary Riemann surface insert one NS super tube into other using the following

identifications

⇣2 = ⇣1 = ⇣, s1 + s2 = s, �1 + �2 = �+ ⇡. (A.5.5)

This gives the super analog of gluing formula for NS punctures is

z1z2 = q, q = e�s+i�

z2✓1 = �q 1
2 ✓2, z1✓2 = ±q

1
2 ✓1

✓1✓2 = 0. (A.5.6)
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It is not di�cult to verify that this gluing can be achieved via following super-conformal

coordinate transformation

z2 =
q

z1
, ✓2 = q

1
2
✓1
z1
. (A.5.7)

We can separate out the NS-super tube and perform integration over q to get the string

propagator in the NS-sector.

Now assume that we are gluing regions around two Ramond punctures. Salient feature of

Ramond puncture is that around it super derivative takes the form D⇤
✓ = @

@✓
+ ✓z @

@z
. With

respect to D⇤
✓ coordinate transformation A.5.7 is not super-conformal. But the following coor-

dinate transformation is super-conformal with respect to D⇤
✓

z2 =
q

z1
, ✓2 = ↵± i✓1 (A.5.8)

where ↵ is an odd variable. So gluing formula for Ramond punctures is given by

z1z2 = q, q = e�s+i�

✓1 = �↵± i✓2. (A.5.9)

Again we can separate out the Ramond-super tube and perform integration over q and ↵ to get

the string propagator in the Ramond sector. Now we need to understand the role of ± present

in the gluing relations for both NS and Ramond punctures. Remember world-sheet parity

operator (�)F has the same e↵ect of changing the sign of odd coordinate. Since averaging

over these ± signs is equivalent to the action of GSO-projection operator 1+(�)F

2 integrating

over NS or Ramond gluing parameters and averaging over possible ± signs gives the NS or

Ramond propagator with GSO-projection operator. So only states that are invariant under

GSO-projection contributes to singularities in superstring amplitude.
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APPENDIXB
Brief Review of String Field Theory

String theory based on Polyakov prescription directly defines the perturbative expansion of

S-matrix of string theory without referring to any underlying Lagrangian or Hamiltonian.

With this formulation we are allowed to ask only question which have a perturbative answer.

But there are several interesting non-perturbative questions which requires a complete non-

perturbative formulation of string theory. String field theory is an attempt to give a complete

non-perturbative definition of string theory. We will restrict ourselves to bosonic string field

theory in 26 dimensional space-time since a complete formulation of superstring field theory

has not been developed yet.

String field theory hopes to provide an underlying Lagrangian for string theory with a per-

turbative limit which reproduces Polyakov prescription. String field theory follows the general

principles of gauge theories. Transition from string theory to string field theory is analogous

to the transition from point particle quantum mechanics to quantum field theory. We go from

quantum mechanics to quantum field theory by promoting particle states specified by certain

quantum numbers to fields whose quantum fluctuations produces particles with same quantum

numbers from vacuum defined all over the space-time. In gauge theories having a Lagrangian

description dynamics or time evolution of fields is dictated by the underlying Lagrangian, its

symmetries and its local redundancies. Then natural first step in the transition from string
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theory to string field theory would be promoting the states in string theory to fields, the string

fields. Next step is to look for redundant transformations of these fields which can be identified

as gauge transformations. Interestingly covariant description of string theory already carries

such redundant transformations. These are the transformations induced on states in string

theory by the world-sheet parametrisation. If we restrict to string states which are annihilated

by bn, n � 0 these transformations can be treated as transformations generated by BRST

charge QBRST defined in A.3.25. Unlike in Polyakov prescription we will not demand that

string fields satisfy on mass-shell condition. Remaining task is to identify and quantise the

Lagrangian with gauge transformation whose linear approximation is generated by QBRST . We

also need to ensure that this reproduces Polyakov prescription in the perturbative limit.

As we will discuss later string field theory has all features of most general gauge theory hav-

ing a Lagrangian description can have. Quantisation of such a gauge theory requires the

sophisticated tools of Batalian-Vilkovsky formalism (BV-formalism) [115–121]. So we will first

familiarise ourselves with this powerful formalism before jumping into string field theory.

B.1 Batalian-Vilkovsky Formalism

Let us start by explaining what do we mean by most general gauge theory. Most studied and

successful examples of gauge theories are non-abelian Yang-Mills theories which is based on

gauge transformation which forms a nice Lie group with the commutators of this Lie-algebra

generators produces another Lie-algebra generator with field independent structure constants.

This Lie algebra is an associative algebra satisfying Jacobi Identity. Also these are irrespective

of whether field configuration satisfy classical equations of motion or not. By most general

gauge theory we mean a gauge theory with more flexible gauge group structure. We can

consider following generalisations.

• Allow the structure constants to depend on fields involved in the theory with appropri-
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ately modified Jacobi Identity.

• Allow gauge invariance for the gauge transformations to make it a reducible system.

• Allow two gauge transformations to produce another gauge transformation plus a term

that vanishes only on-shell.

B.1.1 Fields and Antifields

Consider a gauge theory with m0 gauge invariances whose gauge transformations are not

invariant under any other gauge transformation. Then at classical level for each such m0

gauge invariance we need to introduce ghost fields. Now suppose that gauge theory has m1

gauge transformations which are invariant under other set of gauge transformations which are

not invariant under any further transformations. Then we call it a first-stage reducible. In

such theories we need to add m1 ghost for ghost fields. For a general Lth stage reducible theory,

the set of fields �i, i = 1, ..., N is

�i = {�i, C↵s
s ↵s = 1, ...,ms; s = 0, ..., L}. (B.1.1)

To each of these fields assign a conserved charge known as ghost number. Assignment is as fol-

lows. Classical field �i has ghost number zero and C↵s has ghost number gh [C↵s
s ] = s+1. Simi-

larly assign statistics of ghost fields. Statistics (✏) of C↵s
s is given by ✏(C↵s

s ) = ✏↵s+s+1(mod 2).

Now for each field �i introduce an antifield �⇤
i . Assign ghost numbers and statistics as follows,

gh [�⇤
i ] = �gh [�i]� 1, ✏(�⇤

i ) = ✏(�i) + 1 (mod 2). (B.1.2)

Notice that field and antifield have opposite statistics.
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B.1.2 Antibracket

SayX, Y be two functions of fields �i and �⇤
i with statistics ✏X and ✏Y . Then define antibracket

as

(X, Y ) ⌘ @rX

@�i

@lY

@�⇤
i

� @rX

@�⇤
i

@lY

@�i
(B.1.3)

where subscript r denotes the right derivative and l denotes the left derivative which are defined

and related each other as

@lX

@�i
⌘
�!
@ X

@�i
,
@rX

@�i
⌘ X

 �
@

@�i
,
@lX

@�i
= (�)✏(�i)(✏X+1)@rX

@�i
. (B.1.4)

B.1.3 Classical BV-Master Equation

Construct an action fields and antifields S[�,�⇤] as a ghost number zero even arbitrary func-

tional of fields and antifields. Demand that S[�,�⇤] need to satisfy the classical master equa-

tion

(S, S) = 2
@rS

@�i

@lS

@�⇤
i

= 0. (B.1.5)

Also impose a regularity condition on S[�,�⇤] that upon setting all anti-fields to zero we should

get back the classical action for the gauge theory. This is to ensure that we will get back the

correct classical limit. We are only interested in solution to the classical master equation which

allows the consistent elimination of all antifields �⇤ because antifields are unphysical. Such

solutions are called proper solutions. It is guaranteed that classical BV-master equation of

a general reducible gauge theory has unique proper solutions satisfying reasonable regularity

conditions [122].

To appreciate the meaning of master equation we should expand the proper solution in terms

of antifields. Master equation in the zeroth order in antifields is the statement of invariance of
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original action under gauge transformation. First order master equation is the algebra satis-

fied by gauge transformation and second order is the generalised Jacobi identity and so on. In

this sense BV-formalism has the nice feature of incorporating the complete structure of gauge

symmetry with in the simple looking master equation.

B.1.4 Generalised BRST Symmetry

In the usual BRST-formalism gauge fixed action has residual gauge symmetry (BRST symme-

try) whose action is a graded derivation and nilpotent. Interestingly proper solution of classical

BV-master equation has a generalised BRST symmetry even before gauge-fixing. Generalised

BRST transformation of a functional X of fields and antifields generated by the proper solution

S is

�BX ⌘ (X,S). (B.1.6)

S is invariant under this transformation due to the classical BV-master equation. It is straight

forward to check that �2B = 0. A classical observable belongs to the cohomology of �B.

B.1.5 Gauge-Fixing

Consider an S that satisfies classical BV-master equation. Then for any function of F of

fields and antifields it is true to first order in infinitesimal fermionic constant ✏ that S 0 =

S + ✏((F, S), S) also satisfies classical BV-master equation. Assume that ✏(F, S) is a fermionic

functional ✏ which is a function only of fields. Then one can see that

S 0[�,�⇤] = S[�,�⇤ + ✏
@ [�]

@�
]. (B.1.7)

This is a very useful observation because to calculate S-matrix elements we must first assign

a definite value to the antifields. Now we can use the above discussed freedom and gauge fix
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the antifields to �⇤ = @ [�]
@� .

B.1.6 Quantum BV-Master Equation

Consider the partition function of the gauge theory

Z =

Z

[D�]e� 1
~S[�,

@ [�]
@� ]. (B.1.8)

It is important to make sure that physical quantities of the theory do not depend on the choice

of gauge fixing function  .  independence of partition function demands that S, quantum

master action, should satisfy the quantum BV-master equation

(S, S) = �2~�S, at �⇤ =
@ [�]

@�

� =
@r
@�⇤

@l
@�

. (B.1.9)

B.2 Closed Bosonic String Field Theory

Closed string field theory is the first example of a gauge theory which require BV-formalism

in it’s full form. Here we will give a brief summary of [32].

B.2.1 String Fields

In the previous section we discussed how bosonic string theory reduces to conformal field

theory of (Xµ, b, c)-fields on Riemann surfaces. Consider the Hilbert space of this conformal

field theory. A string field is a vector in this Hilbert space. Choose a set of basis states {|�si},
then an arbitrary string field can be expressed as

| i =
X

s

|�si s. (B.2.10)

163



 s are called the target space fields. Closed string fields need to satisfy the following conditions

(b0 � b̄0)| i = (L0 � L̄0)| i = 0. (B.2.11)

Restricting to this subspace of string fields is important for the consistent formulation of closed

string field theory. While we discussed string perturbation theory in A.3.4 we explained the

importance of restring to a subspace of Hilbert satisfying theses conditions in formulating per-

turbative string theory.

Assign ghost number G for each component of string field which is defined as the ghost number

of the first quantised state,

G(|�si s) = (G|�si) s = Gs(|�si s). (B.2.12)

Similarly assign ghost number for target space fields also. Target space ghost number gt for a

target field associated with state |�si is defined as

gt( s) = 2�Gs. (B.2.13)

Both string field and vacuum |1, pi have even grassmannality. String field satisfy following

reality condition

(| i)† ⌘ h hc| = �h | (B.2.14)

where h hc| is the hermitian conjugate defined using following rules. Say |1, pi is SL(2,C) vac-
uum in the asymptotic past and h1, p| is the SL(2,C) vacuum in the asymptotic future. Assume

| i is constructed from the vacuum |1, pi by acting with a set of oscillators Ai, i = 1, ..., n, i.e.

| i = A1...An|1, pi. Then hermitian conjugate h hc| is given by h hc| = h1, p|A†
n...A

†
1. h | is

the BPZ conjugate of| i. Say | i =  (0)|1i with  (0) a normal ordered operator, then BPZ
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conjugate is defined as

h | ⌘ h1|I � (0) (B.2.15)

where I denotes the conformal mapping I(z) = 1
z
.

Let us look into a specific string field, the tachyon field

|T i =
Z

dp

(2⇡)d
�(p)c1c̄1|1, pi. (B.2.16)

It’s hermitian and BPZ conjugates are

hThc| =

Z

dp

(2⇡)d
�⇤(p)h1, p|c̄�1c�1,

hT | =

Z

dp

(2⇡)d
�(p)h1,�p|c�1c̄�1 (B.2.17)

with target space tachyon field satisfying reality condition �⇤(p) = �(�p).

B.2.2 Kinetic Term

Closed string field kinetic term is given by

S0,2 =
1

2
h |c�0 Q| i. (B.2.18)

Since this inner product with normalisation

h1, p|c�1c̄�1c
+
0 c

�
0 c1c̄1|1, p0i = (2⇡)d�d(p� p0) (B.2.19)

vanishes if total ghost number is not 6, string field should have ghost number 2. Due to the

presence of c0 in the kinetic term gauge invariance of kinetic term requires the dynamical
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string field must satisfy conditions b�0 | i = L�
0 | i = 0. Gauge transformation of string field

is is �| i = Q|⇤i where |⇤i is a ghost number 1 string field satisfying reality condition and

b�0 |⇤i = L�
0 |⇤i = 0.

For example consider the kinetic term for the tachyon field is

Stach
kin =

1

2

Z

dp

(2⇡)d

Z

dp0

(2⇡)d
�(p0)h�p0, 1|c�1c̄�1c

�
0 c

+
0 (L0 + L̄0)c1c̄1|p, 1i�(p)

= �1

2

Z

dp

(2⇡)d
�(�p)(p2 � 2)�(p). (B.2.20)

B.2.3 Physical Spectrum

kinetic term leads to the following equation of motion

Q| i = 0. (B.2.21)

Field equation and gauge invariance suggests that physical states are those which have ghost

number 2 and annihilated by both Q and b�0 at the same time not expressible as Q-exact state.

B.2.4 Kinetic Term and Master Equation

Decompose the string field | i into two pieces | �i, | +i with | �i containing target space

fields and | +i containing target space antifields,

| i = | �i+ | +i (B.2.22)

here both | �i and | +i are annihilated by b�0 and L�
0 . Unlike the string field entered in the

kinetic term | �i and | +i contains all possible positive ghost number states annihilated by
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b�0 and L�
0 .

| �i =
X

G(�s)2

|�si s, | +i =
X

G(�s)2

|�̃si ⇤
s (B.2.23)

here  s denotes target space fields and  ⇤
s denotes target space antifields and

|�̃si ⌘ b�0 |�c
si. (B.2.24)

|�c
si is the conjugate state satisfying

h�r|�c
si = (�)�r�rs (B.2.25)

where (�)�r is for the statistics of the state |�ri. Ghost number for |�̃si is G(�̃s) = 5�G(�s).

From this we can see that sum of target space ghost numbers of field and antifield is -1 and

their statistics are also opposite as required in BV-formalism.

Closed string kinetic term which satisfy the classcal BV-master equation is given by the same

expression B.2.18 provided we don’t impose any restriction on the ghost number of the closed

string field. For proof see [32].

B.2.5 String Multilinear Functions

Let us start by defining the notion of string vertices. A string vertex Vg,n is a set of Rie-

mann surfaces of genus g and n punctures which does not include surfaces arbitrarily close to

degeneration. Also these set of surfaces are equipped with a specific choice of analytic local

coordinates (defined only unto a constant phase) around each of it’s punctures. Upto constant

phase ambiguity coordinates around each puncture are defined continuously over the set Vg,n.

Collection of Riemann surfaces in Vg,n also need to satisfy an important condition. As we
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discussed in section A.5.1 a subset of surfaces within Vg,n can be constructed by gluing lower

genus surfaces or surfaces with less number of punctures or surfaces with both lower genus and

carrying less number punctures. Plumbing fixture also can be implemented on a single surface

to obtain higher genius surface. So near the boundary of moduli space we can fill the moduli

space either by using surfaces belongs to Vg,n or that can be obtained by plumbing surfaces

belongs to Vg1,n1 and Vg2,n2 where g1 + g2 = g, n1 + n2 = n + 2 or just gluing regions around

two punctures of surfaces blonds to Vg�1,n+2. The condition that we wish to impose on Vg,n

is that at the boundary of Vg,n both moduli parameters and local coordinates defined around

each punctures on the surfaces up-to phase should agree with the surfaces that are obtained by

plumbing fixture procedure. This put a restriction on the way we should construct surfaces to

cover Vg,n. It is an extremely important condition which with other conditions on string fields

help us to construct a quantum action for closed string field theory which satisfy quantum

BV-master equation. Zweibach in [32] showed that genus g, n punctured Riemann surfaces

with minimal area metric defined on them form such Vg,n.

Now we will introduce the notion of surface states. A surface state h⌃| associated with a

Riemann surface ⌃ with n punctures is a state in the dual space of the n-fold tensor product

of the Hilbert space H of the underlying conformal field theory. It describes the state that is

created on the boundaries of Di, i = 1, .., n, small discs around punctures, by performing the

functional integral over the fields of the conformal field theory on ⌃ �
S

a Da. Assume that

h⌃| is the conjugate state of h⌃|. They have ghost number 6g � 6 + 6n and is annihilated by

BRST operator belongd to each copy of Hilbert space in H⌦.

Consider arbitrary string fields |B1i, ..., |Bni which are annihilated by both b�0 and L�
0 . They

can have arbitrary ghost number and statistics. Also they don’t satisfy reality condition. We

will insert |Bki on the kth puncture of elements belongs to Vg,n. Using theses string fields we

can make the tensor product state | ~Bi = |B1i ⌦ |B2i...⌦ |Bni 2 H⌦n.

168



Denote the compactified moduli space of genus g Riemann surfaces with n punctures as M̄g,n.

Assign local coordinates around each punctures on theses set of surfaces belongs to M̄g,n up

to a constant phase and call this enlarged space P̂g,n. Tangent vectors in P̂g,n can be described

using the concept of Schi↵er variations. Say zj is the local coordinate around jth puncture on

an arbitrary Riemann surface ⌃ 2 P̂g,n. Assume that the disc around ith puncture Di within

which we define local coordinates zi and disc around jth puncture Dj within which we define

local coordinates zj overlap in region Dij. Within the region Dij we can relate local coordinates

zi and zj using transition function fij, i.e. zi = fij(zj). Now infinitesimally change the local

coordinate in the disc Dj from zj to z✏j

zi = f ✏
ij(z

✏
j), (z✏ij)

�1(fij(zj)) ⌘ zj + ✏v(zj) (B.2.26)

where v(zj) is a vector field on the Riemann surface that is analytic in Dij. It is not di�cult to

guess that variation of local coordinates v(zj), j = 1, ..., n can help us to define tangent vector

of P̂g,n along directions corresponding to change in local coordinates around each punctures on

⌃. The non-trivial fact is that special choices of v(zj), j = 1, ..., n will even help as to define

tangent vectors of P̂g,n along directions corresponding to changing the moduli parameters of

⌃. Then on the tangent space T (P̂g,n) we can define di↵erential form of real degree 6g�6+2n

⌦g,n
B1,...,Bn

= h⌃|b(v1)...b(v6g�6+2n)| ~Bi. (B.2.27)

Here vi, i = 1, ..., 6g � 6 + 2n are the vector fields generating Schi↵er variation (for a clear

picture on Schi↵er variation read [32]) corresponding to 6g�6+2n tangent vectors of T⌃(P̂g,n)

and

b(v) =

I

dzjv(zj)b(zj) +

I

dz̄j v̄(z̄j)b̄(z̄) (B.2.28)
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with the integration contour over z(z̄) running along the circle forming the common boundary

of Di and Dj keeping the Dj component to its left (right).

Degree 6g � g + 2n form ⌦g,n
B1,...,Bn

can be integrated on the section of P̂g,n. Then we can

define string field vertex or multilinear function as integral of ⌦g,n
B1,...,Bn

over the subset of

surfaces defining the string vertex, using the minimal area section,

{B1, B2, ..., Bn}g =
Z

Vg,n

⌦g,n
B1,...,Bn

. (B.2.29)

Also we set

{·}g =
Z

Vg,0

⌦g,0. (B.2.30)

For genus zero set {·}0 = 0, {B}0 ⌘ 0 and {B1, B2}0 ⌘ hB1|c�0 Q|B2i. String multilinear

function has the following symmetry property

{B1, ..., Bi, Bi+1, ..., Bn}g = (�)BiBi+1{B1, ..., Bi+1, Bi, ..., Bn}g. (B.2.31)

B.2.6 String Field Products

Let us introduce bra h⌦g,n| via following relation

⌦g,n
B1,...,Bn

= h⌦g,n|B1i...|Bni. (B.2.32)

It is 6g� g+ 2n form on T (P̂g,n) which is valued in H⌦n. Using this we can define string field

products which take a set of string fields, and give another string field. String field product is

defined as follows

[B1, ..., Bn�1]g =
0

X

s

(�)�s

Z

Vg,n

h⌦g,n|�si|�̃si|B1i...|Bni (B.2.33)
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where prime over sum indicates that sum extends over basis of states |�si complete in the

subspace of states annihilated by (L0� L̄0). String multilinear functions can be obtained from

string field products by taking the following linear inner product

{Bn, B2, ..., Bn�1}g = hBn|c�0 |[B1, ..., Bn�1]gi. (B.2.34)

String field product satisfy the following crucial identity due to the important condition satisfied

by string vertices Vg,n that we discussed in the previous section

0 = Q[B1, ..., Bn]g +
n
X

i=1

(�)(B1+...+Bi�1)[B1, ..., QBi, ..., Bn]g

+
X

g1,g1,{il,jk},l,k

�(il, jk)[Bi1 , ..., Bil , [Bj1 , ..., Bjk ]g2 ]g1

+
1

2

0
X

s

(�)�s [�s, �̃s, B1, ..., Bn]g�1. (B.2.35)

It holds for all n � 0. The second sum in the right hand side runs over all di↵erent splittings

of the set {1, ..., n} into two groups {i1, ..., il} and {j1, ..., jk}. This splitting is insensitive to

the ordering of elements within each group. g1, g2, l and k satisfy the following conditions:

g1 � 0, g2 � 0, l � 0, k � 0, with g1 + g2 = g, l + k = n � 0

l � 1 when g1 = 0, k � 2 when g2 = 0. (B.2.36)

The factor �(il, jk) appearing on the right-hand side of eq. producttofunction is defined

to be the sign picked up when one rearranges the sequence {Q,B1, ..., Bn} into the order

{Bi1 , ..., Bil , Q,Bj1 , ..., Bjk}. The sum in the last term is over states in a complete basis of the

Hilbert space H. This sum is restricted to states satisfying the L0 � L̄0 constraint. Moreover,

since |�̃si = b�0 |�c
si, the sum can be restricted to states |�si annihilated by b�0 . This happens

because the conjugate of a state |�si that is not annihilated by b�0 must necessarily be annihi-

lated by b�0 . Then the extra b�0 in the definition of |�̃si kills the state and the corresponding
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term disappears from the sum.

B.2.7 Classical String Field Action

Classical string field theory action is given by

S( ) =
1

2

1
X

n=0

n

n!
{ n}0

=
1

2
h |c�0 Q| i+

1
X

n=3

n�2

n!
{ n}0. (B.2.37)

Extremise this action to obtain the following field equations

0 = F( ) ⌘ Q| i+
1
X

n=2

n�1

(n� 1)!
[ n]0. (B.2.38)

B.2.8 Gauge Structure

It can be easily verified using the identity B.2.35 that action is invariant user the following

gauge transformations

�⇤| i = Q|⇤+
1
X

n=1

n

n!
[ n,⇤]0. (B.2.39)

Commutator of two gauge transformation is given by

[�⇤2 , �⇤1 ]| i = �⇤( )| i+
1
X

l=0

l+2

l!
[ l,⇤2,⇤1,F( )]0 (B.2.40)

where ⇤( ) =
P1

n=0
n+1

n! [⇤1,⇤2, n]0 . This suggest that closed string field theory has the most

general gauge structure with field dependent structure constants and on-shell closure. This

most general gauge structure is a consequence of the theory not being cubic unlike Witten’s

open string field theory [123,124].
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B.2.9 Quantum String Field Action

Full quantum action for closed string field theory is given by

S( ) =
1

2

X

g�0

(~2)g
X

n�0

n

n!
){ n}g. (B.2.41)

Identity B.2.35 plays crucial role in making sure that this quantum action satisfies quantum

BV-master equation [32].

B.2.10 O↵-Shell String Amplitudes in Siegel Gauge

Like in any gauge theory we need to choose impose a gauge condition before doing any compu-

tation. Standard gauge condition is the Siegel gauge in which we restrict to a subspace Hilbert

space which is annihilated by (b0 + b̄0). Within this subspace of Hilbert space kinetic term

becomes

Skin =
1

2
h |c�0 c+0 (L0 + L̄0)| i. (B.2.42)

From this we can read out the propagator as

b�0 b
+
0

L0 + L̄0
P|R12i (B.2.43)

where P =
R

d✓
2⇡e

i✓(L0�L̄0), |R12i ⌘
P

s |�si1|�c
si2 and the subscripts on the kets are the labels

for the Hilbert spaces. Form of propagator if we identify it with the sum over conformal field

theories on plumbing fixture tubes parametrised using s 2 [0,1] and twist angle � 2 [0, 2⇡] is

given as

1

2i⇡
b�bs

Z 1

0

ds

Z 2⇡

0

d� e(�s+i�)L0e(�s�i�)L̄0 |R12i. (B.2.44)
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We end our review on string field theory by mentioning some of the nice properties of o↵-sell

amplitudes constructed from string field theory in Siegel gauge [39].

• The amplitudes are symmetric under permutations among scattering states.

• The amplitudes are integrals over sections of fiber bundles with base the moduli spaces

of Riemann surfaces and fibers spanning the possible choices of local coordinates at the

punctures where the scattering states are inserted. Ignoring coordinates at the punctures,

each Riemann surface contributes only once to the amplitude.

• The amplitudes factorizes even without imposing on-shell condition: near poles, all of

which must arise from the propagator, the amplitude is a product of the relevant o↵-shell

vertices.
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APPENDIXC
Brief Review of Gauge/String Duality and

Gopakumar Prescription

String theory is an attempt to provide a framework to unify everything we know about nature,

including all particles and forces between them, in a consistent quantum theory. But surprising

developments in string theory from the time of its inception suggests that it should be thought

of as a unified frame work in a more broader sense which has the potential to unfold mysteri-

ous unity of many seemingly di↵erent arenas in theoretical physics and mathematics. A prime

example for such a deep relation uncovered by this frame work is the equivalence between quan-

tum field theories and quantum theory for gravity known as gauge/gravity duality [125]. Most

studied examples of this duality are the equivalence between certain conformal field theories

and quantum gravity in anti-de Sitter spaces because of this reason this duality is commonly

known as AdS/CFT duality. Since the quantum theory of gravity which are explored in this

context are string theories this duality is also known as gauge/string duality.

Although di↵erent examples of gauge/string duality are well studied by now, the underlying

mechanism is still not well understood. This is mainly because of our limited understanding of

string theories which arises in the context of gauge/string duality. But duality between topo-

logical string theories and topological quantum field theories are exceptions. There we have
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the luxury of solving both sides exactly. Prominent example for such a well studied example is

the duality between topological closed string theory on the S2 blow up of the conifold geom-

etry and SU(N) Chern-Simons theory on S3 [126] widely known as Gopakumar-Vafa duality.

Interestingly it is even possible to derive this duality from the world-sheet perspective [127],

because SU(N) Chern-Simons theory on S3 is can be expressed as a topological string theory of

open strings [128]. Underlying mechanism behind this example is identified as the open/closed

string duality, holes in the open string world sheets in one side closes to give closed string

world sheets of other side.

Given this it would be interesting to have a well defined practical prescription for identifying

the string theory dual of a quantum field theory. As a modest step in this direction Gopakumar

proposed a prescription [76, 77, 79] for identifying the string dual of free fields. Gopakumar

prescription can be understood as a way to implement the open/closed string duality without

finding the open string interpretation of the quantum field theory.

In §.1 we will briefly review the canonical example of gauge/string duality which is the equiv-

alence between N = 4 superconformal Yang-Mills theory in 4 dimension and type II B string

theory on AdS5 ⇥ S5. In §.2 we will briefly discuss the proposal of Gopakumar for finding

the stringy dual of free field theory. In §.3 we will review the construction of duality between

zero dimensional Gaussian Hermitian matrix models and topological A-model string theory on

CP1 [67] as a specific realisation of the general approach to gauge-string duality proposed by

Gopakumar.

C.1 AdS5/CFT4

Consider N parallel D3 branes of type IIB string theory with string coupling g in a flat 10

dimensional spacetime. Assume that these parallel branes are separated by distance r. We will

analyse this configuration in a specific limit where string tension approaches infinity ( ↵0 ! 0)
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keeping the energies involved in the theory and the mass of the strings stretched between par-

allel D3 branes fixed ( r
↵0 fixed, i.e. r ! 0). This limit is known as decoupling limit due to

reason which is explained below.

Significant simplifications happens in this limit. In the ↵0 ! 0 limit the energy gap be-

tween massless and massive excitations of strings become infinite and e↵ectively D3 brane is

completely described by massless states in type IIB strings which includes gauge fields and

gravitons. It is not di�cult to see that the gauge theory involved has U(N) gauge group and

N = 4 supersymmetry in 4 dimension with SO(6) R-symmetry. Since there is no special scale

in the r = 0 limit theory is conformal with conformal group SO(2,4). Full theory describing

this limit is given by gauge theory on the world volume of N D3 branes coming from the open

strings, gravity coming from the closed strings and their interaction. In this e↵ective theory

interaction is proportional to g↵02. Since the limit in which we are interested keep energies

involved in the theory fixed, interactions won’t be prominent when ↵0 ! 0. Due to this van-

ishing of interaction between gravity and gauge theory the system is described by gravity and

N=4 SYM in 4 dimension.

Interestingly this system has nice supergravity description which is trustable in the low energy

regime. Supergravity solution with N D3 brane charge in the limit of our interest is given by

ds2 = ↵0
n U2

p
4⇡gN

[�(1� U4
0

U4
)dt2 + dx2

i ] +
p

4⇡gN
dU2

U2(1� U4

U4
0
)
+
p

4⇡gNd⌦2
5

o

(C.1.1)

where U = r
↵0 and U4

0 = 27

3 ⇡
4g2µ. Here µ is the energy density on the world volume theory

which is held fixed in the limit in which we are intersted. (t, x1, x2, x3) are the world volume

coordinates and d⌦2
5 is the metric on the unit five-sphere. U = 0 corresponds to horizon and

U > 0 corresponds to the region outside horizon. Radius of curvature of this geometry is

proportional to 1

gN
1
4
. So this description is trustable only in the gN >> 1. For weak coupling,
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i.e. g 0 this implies N >> 1.

Now look into the massless low energy excitation in this low energy supergravity descrip-

tion. From the point of view of an observer at infinity there are 2 kinds of massless low energy

excitations. They are states which have very low energy from the point of view of proper time

observer and states which have finite energy from the point of view of proper time observer

but constrained to propagate near the horizon of supergravity geometry.

Comparing the two descriptions of the same system one arrives at the surprising statement

that near horizon geometry of supergravity solution describing N D3 brane in the decoupling

limit is equivalent to large N limit of N = 4 superconformal Yang-Mills in 4 dimension with

gauge group U(N). Near horizon geometry in the decoupling limit is AdS5 ⇥ S5 with radius

(4⇡gN)
1
4 and flux of 5-form field strength on the 5 sphere. Since AdS5 ⇥ S5 geometry has

boundary data regarding the boundary conditions also becomes part of this duality. Given

that we arrived at this conclusion by starting with a consistent string theory configuration one

can go ahead and boldly propose the conjecture that type IIB string theory on AdS5 ⇥ S5

with radius (4⇡gN)
1
4 and flux of 5-form field strength on the 5 sphere plus some appropri-

ate boundary conditions and possibly some boundary degrees of freedom is dual to N = 4

superconformal Yang-Mills in 4 dimension with gauge group U(N) with Yang-Mills coupling

(2⇡g)
1
2 and the value of RR-scalar as the theta angle. Since N measures the size of geometry

in planck units quantum e↵ects in AdS5⇥S5 have the interpretation of 1
N
e↵ects in gauge theory

A conjecture is supported by series of checks until it is proved or disproved. So we need

to perform a series of checks to validate this conjecture. Till now there is no single example

against the claim instead what we have is plethora examples for one to one matching. For

instance symmetries in both sides show a perfect agreement. An attractive feature of this

canonical example for gauge/string duality is its strong-weak nature. This strong-weak na-

178



ture is evident because e↵ective coupling of super yang mills which is proportional to
p
gN is

very large when the supergravity description, which can be thought of as the weak coupling

description of string theory, is trustable. Because of this one can use this duality as a pow-

erful tool to study strongly interacting quantum field theory. Even one can think of this as a

non-perturbative definition a quantum theory of gravity in anti-de Sitter spacetime. To use

this duality one need a proper dictionary between objects in both sides of this duality. This

can be obtained if we interpret this duality as a duality between quantum theory of gravity in

the bulk of spacetime whose asymptotic behaviour matches with that of AdS5 ⇥ S5 space and

a quantum field theory living on the boundary of AdS5 [129,130].

C.2 Gopakumar’s Prescription

How exactly does a quantum field theory in the large N limit reorganise into a closed string

theory? Detailed study of duality between topological string theories and topological quantum

field theories taught us that underlying mechanism behind this example is open/closed string

duality, holes in the open string world sheets in one side closes to give closed string world sheets

of other side.Given this it would be interesting to have a well defined practical prescription

for identifying the string theory dual of a quantum field theory. Understanding this may give

valuable clue regarding the string dual to a QCD. As a modest step in this direction Gopaku-

mar proposed a prescription [76, 77,79] for identifying the string dual of free fields.

Gopakumar prescription implements open/closed string duality directly by thinking of it as a

field theory limit of open strings theory to find its closed string theory dual. Basic ingredient is

the isomorphism between the moduli space of Riemann surfaces and the space of metric graphs.

Think of every Feynman graph contributing to a given correlator as a metric graph. Metric

graph is a graph with length associated with each of it edges. Length of the edges of Feynman

graph is given by the Schwinger parameters. Integration over the Schwinger parameters is then

mapped to an integration over the moduli space of Riemann surfaces. Now interpret integrand
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as a worldsheet CFT correlator. To obtain skeletal graph with reduced Schwinger parameters

from Feynman graphs using electric network analogy. At graphical level, to get the skeletal

graph of any Feynman graph merge all homotopically equivalent contractions between any two

vertices. Then draw dual graph of skeletal graph and assign length for each edge as the inverse

of the Schwinger parameter. Construct Riemann surface from the Feynman graph in the fol-

lowing way. On each dual edge of the correlator attach an infinite strip. Glue all these infinite

strips using gluing conditions to get the punctured Riemann surface. Interestingly integral

over e↵ective Schwinger parameters together with sum over inequivalent skeleton graphs can

be mapped to an integral over the string moduli space Mg,n ⇥ Rn
+. Here Mg,n is the moduli

space of genus g surfaces with n-punctures. This way we can express the field theory as a

closed string theory.

C.3 Simplest Gauge/String Duality

Follow this prescription to obtain the string dual of Gaussian matrix model [67]. But for zero

dimensional matrix models there is no natural notion of Schwinger parameter (proper time).

To circumvent this Razamat gave an interesting proposal: associate unit length to each con-

tracted edge [80, 81]. Let us restrict to planar graphs contributing to connected correlators of

the form <
Qn

i=1 TrM
2ki >c, where M is an N⇥N hermitian matrix. On each dual edge of the

correlator attach an infinite strip of width one. Glue all these infinite strips to get the Riemann

surface. Resulting surface is a genus zero arithmetic surface. Interestingly arithmetic surfaces

are special set of points in the moduli space of genus zero Riemann surface. If a non-singular

Riemann surface C is an arithmetic surface then there exists a special map f : C ! CP 1 which

is branched only at (0,1,1) of CP 1. Such special maps are known as Beyli maps. Explicit

form of Belyi map is given as X(z) = sin2(⇡z2 ). This maps each strip to CP 1 and covers CP 1

exactly ones. Since there are d such strips, this map is a degree d map.

Now we can express Gaussian matrix model n-point correlator in terms 3 sets of permuta-
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tions as follows.

Nn <
n
Y

i=1

TrM2ki >g=
X

↵,�

�(↵.�.�)N2�2g(↵,�,�),
n
X

i=1

ki = d (C.3.2)

where ↵ denotes possible wick contractions among half edges,[2d], � denotes cyclic permuta-

tion of half edges in the diagram, (2k1)(2k2)...(2kn) and � denotes arrangement of half edges

around a face. With the help of Riemann existence counting the number of equivalence class of

permutations can be interpreted as counting holomorphic maps. Riemann existence theorem

says it is possible to associate equivalence class of ramified coverings to equivalence class of

permutation group. Then one can argue that correlator we are considering is a sum of degree

d Belyi maps.

Thus using Gopakumar’s prescription we expressed Gaussian matrix model as a topologi-

cal string theory. Now we need to identify a string theory living on CP 1 with correlators

getting contributions only from specific degree holomorphic maps. Most suitable candidate is

topological A-model string theory on CP 1. Correlators of this theory gets contributions only

from specific degree holomorphic maps due to a selection rule.
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APPENDIXD
Correlators in Matrix Model and Topological

String Theory

D.1 Correlators in the Gaussian Matrix Model

The generating function for arbitrary n point correlators h
Qn

i TrM
2kii of the Gaussian matrix

model is

Z[t] =

Z

[dM ]N⇥Ne
� 1

2NTrM2+
P

k tkNTrM2k
. (D.1.1)

Since M is a hermitian matrix it is possible to parametrize this in terms of a unitary matrix

U and eigenvalues �k. i.e; we can write M = U †⇤U , where ⇤ = diag(�1, ...,�N). Then the

generating function can be expressed in terms of an integral over eigenvalues �k and evaluated

using orthogonal polynomials as discussed in the text.

We find the final answer to be given as in 5.2.8

Z = N !
N�1
Y

j=0

hj = N !hN
0

N�1
Y

j=0

RN�j
j (D.1.2)

where Rm = hm
hm�1

. Thus the calculation of the generating function reduces to calculating hj

or equivalently Rj. To determine these we need to use the recursion formulae for the Pm. The

182



orthogonal polynomials satisfy the usual three term recursion formula

�Pm(�) = Pm+1(�) + SmPm(�) +RmPm�1(�). (D.1.3)

For even potentials V (�), where Pm(��) = (�1)mPm(��), we have Sm = 0. On the other

hand, we obtain a non-linear recursion formula by looking at
R

d��P 0
m(�)Pm(�)e�NV(�). This

gives

NRm

Z

d�Pm(�)Pm�1(�)V
0(�)e�NV(�) = mhm. (D.1.4)

We can now study the large N limit. Assume that n is an integer of order N and k is an

integer of order one. Then we can safely assume to leading order

Rm�k = Rm�k+1 = ... = Rm�1 = Rm. (D.1.5)

Using repeatedly the orthogonality property and integrating by parts we get

Z

d��2k�1Pm(�)Pm�1(�)e
�NV(�) =

(2k)!

k!(k � 1)!
hmR

k�1
m (t). (D.1.6)

By t we mean the collection of couplings {tk}. Then for V (�) given in 5.2.6, relation D.1.4

reduces to

Rm(t)(1� Am(t)) =
m

N
(D.1.7)
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where, Am(t) =
P

k
(2k)!

k!(k�1)!tkR
k�1
m (t). In the planar limit the rescaled index m/N becomes

a continuous variable y that takes values in (0, 1), and Rm(t) and Am(t) become continuous

functions R(t, y) and A(t, y). We use this to calculate various correlators explicitly.

D.1.1 Connected correlator h
Qn

i=1TrM
2kiiconn

The generating function for connected correlators h
Qn

i=1 TrM
2kii in the large N limit is ob-

tained by taking the continuum limit of D.1.2. In this limit, the free energy (up to an irrelevant

additive constant) reduces to a simple one-dimensional integral:

G(t) = lim
N!1

1

N2
ln(

Z[t]

Z[0]
)

=

Z 1

0

dy(1� y)ln(
R(t, y)

y
)

= �
Z 1

0

dy(1� y)ln(1� A(t, y)). (D.1.8)

Here for moving from the second step to the third we have used the following continuum limit

of relation D.1.7

R(t, y)

y
=

1

1� A(t, y)
,

A(t, y) =
X

k

A(k)tkR
k�1(t, y), (D.1.9)

where A(k) = (2k)!
k!(k�1)! . The free energy is the generating function of connected correlators.

Thus we obtain the required correlator by suitable di↵erentiation

h
n
Y

i

TrM2kiiconn =
@n

@tk1 ...@tkn
G(tk)|tki=0

=

Z 1

0

dy(1� y)
⇣

n
X

m=1

(m� 1)!
X

partitions{Rj}

m
Y

j=1

Y

r2Rj

@tkrA
⌘

|tki=0

(D.1.10)
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where A = A(t, y) and we use the fact that A(t = 0, y) = 0. The notation is as in Sec. 4: we

have partitioned the n integers (1, 2, . . . n) intom non-empty groupings {Rj} where j = 1 . . .m.

Examination of D.1.10 then reveals the structure of the correlator to be

h
n
Y

i=1

TrM2kiiconn = Tn�1(k1, ..., kn)(
n
Y

i=1

A(ki))

Z 1

0

dy(1� y)R(t = 0, y)d�n (D.1.11)

where d =
Pn

i=1 ki. We also note from D.1.9 that R(t = 0, y) = y. And Tn�1(k1, ..., kn) is a

polynomial of order n�1 in each ki which is symmetric in all ki. It is a combinatorial challenge

to work out the form of the polynomial. Surprisingly the answer is simple and given in [94]

(see also [95])

Tn�1(k1, ..., kn) =
(d� 1)!

(d� n)!
. (D.1.12)

Hence the connected n-point correlator in the large N limit is given by

h
n
Y

i=1

TrM2kiiconn =
(d� 1)!

(d� n+ 2)!

n
Y

i=1

(2ki)!

ki!(ki � 1)!
. (D.1.13)

D.1.2 Connected correlator h(Tr lnM)2
Qn

i=1TrM
2kiiconn

The generating function for the arbitrary (n+ 2)-point correlator h(Tr lnM)2
Qn

i=1 TrM
2kii is

given by

Z[t,↵] =

Z

[dM ]N⇥Ne
� 1

2NTrM2+
P

k tkNTrM2k+↵NTr lnM2
. (D.1.14)

We can evaluate the required correlator by following the arguments given in previous section.

The potential V (�) is slightly modified to have a logarithmic term,

V(�) =
1

2
�2 �

X

k

tk�
2k + ↵ ln�2. (D.1.15)

Here too we can write down a relation like D.1.7, which we derived by taking the large N limit

of the relation D.1.4. When m is odd ��1Pm(�) is a polynomial and can be expressed in terms
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of Pm�1(�) and Pm�2(�) using D.1.3. Note that we have an even potential so Sm is again zero.

Using this we can derive the following

Z

d���1Pm(�)Pm�1(�)e
�NV(�) = hm�1, for m odd

= 0, for m even. (D.1.16)

This leads us to the required relation

Rm(t,↵)[1�
X

k

tkA(k)R
k�1
m (t,↵)� 2

↵

Rm(t,↵)
] =

m

N
, for m odd

Rm(t,↵)[1�
X

k

tkA(k)R
k�1
m (t,↵)] =

m

N
, for m even. (D.1.17)

For large N we can take a continuum limit as in the previous case (we now take an average of

the cases with m even and m odd) and get

R(t,↵, y)

y
=

1

1� A(t,↵, y)

A(t,↵, y) =
X

k

A(k)tkR
k�1(t,↵, y) +

↵

R(t,↵, y)
. (D.1.18)

Thus the generating function for the large N connected correlator h(Tr lnM)2
Qn

i TrM
2kiiconn

is

G(t,↵) = �
Z 1

0

dy(1� y)ln[1� A(t,↵, y)]. (D.1.19)

Now without much di�culty we can extract the correlator from the generating function as we

did in the previous case.

h(Tr lnM)2
n
Y

i=1

TrM2kiiconn =
@n+2

4@↵2@tk1 ...@tkn
G(t,↵)|t=0,↵=0

=
@2

4@↵2
h

n
Y

i=1

TrM2kiiconn|↵=0

=
(d� 1)!

4(d� n)!

n
Y

i=1

A(ki)

Z 1

0

dy(1� y)
@2

@↵2
Rd�n(t = 0,↵, y)|↵=0.
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(D.1.20)

From D.1.18 it is clear that R(t = 0,↵, y) = y + ↵. Thus we get

h(Tr lnM)2
n
Y

i=1

TrM2kiiconn =
(d� 1)!

4(d� n)!

n
Y

i=1

(2ki)!

ki!(ki � 1)!
. (D.1.21)

D.2 Correlators of the topological A-model string the-

ory on P1

Physical observables in topological A-model string theory on P1 arises from the cohomology

of the target manifold P1. They are the puncture operator P , Kahler class Q and their

graviational descendants �n(Q), �n(P ) (for n � 1). The partition function of this topological

string theory depends on a set of couplings {tk, t0k} corresponding to these operators. This is

the generating function of all the correlators in the theory. The genus g correlation functions

h
Qn

i=1 �2ki(V↵i)ig (in the background where all couplings tk, t0k vanish) receives contributions

only from holomorphic maps (from the world sheet to the target P1) of degree d satisfying the

ghost number conservation law (see for e.g. Eq.(2.24) of [99])

2d+ 2(g � 1) =
n
X

i=1

(2ki + q↵i � 1) (D.2.22)

where V1 = P,V2 = Q with q1 = 0, q2 = 1. Here we will be considering only a specific set of

genus zero correlators namely h�2k1�1(Q)�2k2�1(Q)
Qn

i=3 �2ki(Q)ig=0 and hP 2
Qn

i=1 �2ki(Q)ig=0.

This set of correlators defines what is sometimes called the stationary sector of the string

theory. For both set of correlators the selection rule D.2.22 reduces to 2d� 2 = 2
Pn

i ki � 2.

To compute these correlators we can use the various recursion relations that they satisfy.

The important ones are summarized in [100]. These relations help us to express the n-point

correlators in terms of low point correlators. Relevant recursion relations are listed below.
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Topological recursion relation :

h�n(V�)XY ig=0 = nh�n�1(V�)V↵i⌘↵�hV�XY ig=0 (D.2.23)

where X, Y are arbitrary observables and this holds in large phase space - where all the cou-

plings {tk, t0k} are turned on.

Puncture equation :

hP
s
Y

i=1

�ni(Q)ig=0 =
s
X

i=1

nih�ni�1(Q)
Y

j 6=i

�nj(Q)ig=0. (D.2.24)

Hori’s relation [101] :

hQ
s
Y

i=1

�ni(Q)ig=0 = dh
s
Y

i=1

�ni(Q)ig=0 (D.2.25)

with d = 1
2

Ps
i=1 ni + 1 .

Eguch-Hori-Yang relation [99]:

d2h�n(V↵)
Y

i2S

�ni(V↵i)i0,d = �2dnh�n�1(V↵+1)
Y

i2S

�ni(V↵i)i0,d

+
X

X[Y=S

d
X

k=1

k2nh�n�1(V↵)
Y

i2X

�ni(V↵i)V↵i0,d�khV↵j

Y

j2Y

�nj(V↵j)i0,k. (D.2.26)

Recursion relation among 2-point correlators:

h�n(V↵)�m(V�)i =
mnM��⌘��⌘��

(n+m+ q↵ + q�)
h�n�1(V↵)V�ih�n�1(V�)V�i (D.2.27)
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where

⌘PQ = ⌘QP = 1,

⌘PP = ⌘QQ = 0,

MPP = MQQ = 2. (D.2.28)

If we turn o↵ all the couplings then we have hQi0,d = 0, hP i0,d = 0 except hQi0,1 = 1. Then

setting n = 2ki,↵ = 2, and S = 0 in D.2.26 will give us the following equation

(ki + 1)2h�2ki(Q)i0,ki+1 = 2ki(2ki � 1)h�2ki�2(Q)i0,ki . (D.2.29)

Therefore

h�2ki(Q)i0,ki+1 =
(2ki)!

(ki + 1)!(ki + 1)!

h�2ki�1(Q)P i0,ki =
(2ki � 1)!

(ki!)2
. (D.2.30)

Also due to the selection rule D.2.22 we have for all d

h�2ki+1(Q)i0,d = 0. (D.2.31)

Plugging these into D.2.27 will give the following 2-point correlator

h�2ki�1(Q)�2kj�1(Q)i0,ki+kj =
1

4(ki + kj)

(2ki)!

(ki!)2
(2kj)!

(kj!)2
. (D.2.32)

To calculate the higher point correlators we can use D.2.23 and reduce them to lower point

correlators by remembering the fact that the recursion relations are valid in the large phase
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space. For example

h�2k1�1(Q)�2k2�1(Q)�2k3(Q)i0,k1+k2+k3 = 2k3h�2k3�1(Q)P i0,k3hQ�2k1�1(Q)�2k2�1(Q)i0,k1+k2

=
1

4

(2k1)!

(k1!)2
(2k2)!

(k2!)2
(2k3)!

((k3!)2
. (D.2.33)

Repeated application of the recursion relations give us the following general correlators

h�2k1�1(Q)�2k2�1(Q)
n
Y

i=3

�2ki(Q)i0,d =
dn�3

4

n
Y

i=1

(2ki)!

(ki!)2

h
n
Y

i=1

�2ki(Q)i0,d = (d+ 1)n�3
n
Y

i=1

(2ki)!

(ki!)2

hP 2
n
Y

i=1

�2ki(Q)i0,d = dn�1
n
Y

i=1

(2ki)!

(ki!)2
(D.2.34)

where d =
Pn

i=1 ki. These results agree with the ones stated in [102].
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