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Synopsis
Quantum correlations of shared systems form the backbone for a large majority of
information protocols that are either not possible classically or are possible with
a reduced efficiency. It has recently been realized that quantum correlations can
be a tool in dealing with quantum many-body systems. In the proposed thesis,
we investigate the properties of quantum correlations in paradigmatic clean and
disordered quantum many-body systems.

We highlight here the main results obtained in the proposed thesis.

• We identify a macroscopic quantum superposition state (Schrödinger cat state)
that is resistant to particle loss and all types of decoherence. The resilience
to particle loss and noise is better than that in the existing cat states in the
literature. These results are published in Refs. [1,3].

• We uncover an ergodic-nonergodic transition of quantum correlations that leads
to the identification of a transition in the anisotropic Heisenberg quantum spin
model. These results are published in Refs. [2,5].

• We find that quenched disordered couplings in a quantum Heisenberg spin glass
model can constructively interfere to enhance genuine multipartite entangle-
ment in the ground state. This result is in Ref. [4].

The content of the proposed thesis is divided into two parts. In the first part of
the thesis, we describe our results on “macroscopic quantum superposition states”
and effects of local decoherence on the quantum correlation properties of these states.
In the second part of the thesis, we explore the connection between quantum infor-
mation theory and many-body physics in two related contexts. First, we study the
dynamics of bipartite quantum correlations and investigate their fundamental sta-
tistical mechanical properties in the quantum XYZ Hamiltonian, under quenched
dynamics of an external magnetic field, on one-dimensional (1D), quasi 1D (ladder),
and 2D lattices. Next, we investigate properties of the multisite quantum and clas-
sical correlations in the ground state of an XYZ model with randomly distributed
independent quenched Gaussian nearest-neighbor interactions.

Understanding the effects of local quantum decoherence on “macroscopic quan-
tum superposition states” have their importance not only in realizing quantum de-
vices, e.g., quantum computers, but also in addressing fundamental questions, such
as the quantum measurement problem and the quantum-to-classical transition. A
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“macroscopic quantum superposition state” was first introduced by E. Schrödinger
in his seminal 1935 paper through the concept of the Schrödinger cat, which is
an entangled state between a microscopic system and a macroscopic one. The mi-
croscopic system can be an atom, which can decay spontaneously, with the un-
decayed state, |up〉, and the decayed state, |down〉, making up a two-dimensional
complex Hilbert space (qubit). The macroscopic system was also conceived as a
qubit made up of the alive and dead states of a cat, respectively denoted as |alive〉
and |dead〉. The quantum state of the combined micro-macro system was considered
to be 1√

2 (|up〉|alive〉+ |down〉|dead〉).
Demonstration of micro-macro quantum states in various physical systems, like

superconductors, nanoscale magnets, laser cooled trapped ions, photons in a mi-
crowave cavity, and C60 molecules have been proposed. Moreover, quantumness
of such physical states plays an important role in several quantum communication
and computational tasks. The advantages of the quantum communication and com-
putation protocols over their classical counterparts vitally depend on the amount of
quantum coherence present in the system. For realization of communication networks
and computational devices that have a quantum advantage and that are scalable,
it is important to identify systems which can retain their quantum coherence even
with an increase in the number of particles under decoherence.

We identify a class of macroscopic quantum states which are robust against a
large spectrum of physically reasonable local noise models – they are effectively
decoherence-free for certain local noisy channels, and weathers decoherence better
than other known macroscopic superposition states for the remaining channels.

The robustness of entanglement and other quantum correlations of the entire
state is considered in the microscopic to macroscopic partition. The macroscopic
part contains, in general, a relatively larger number of particles than the microscopic
part. For specificity, we consider quantum states which has an unit amount of
entanglement in the micro to macro bipartition.

In case of the Schrödinger cat state, being realized by using the Greenberger-
Horne-Zeilinger (GHZ) state, the two macroscopic sectors, modeling the “alive” and
“dead” states of the “cat”, are distinguished by their magnetizations. In the case
of the cat state that we consider, which we refer to as the H-cat state, the “alive”
and “dead” parts are macroscopically distinct in terms of their violations of Bell
inequalities. We compute the critical visibilities for the states of the macroscopic
sector beyond which they violate local realism.

In order to capture the quantum correlation properties, characterizing the ro-
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bustness of the macroscopic superposition state against environmental noise, we
calculate logarithmic negativity, an entanglement quantifier, and quantum discord,
an information-theoretic quantum correlation measure, of the H-cat states, including
the Greenberger-Horne-Zeilinger state. Employing these measures, we observed that
the proposed macroscopic superposition state is more robust against loss of a finite
fraction of its particles and simultaneously against local decoherence mechanisms,
than in other cat states. For example, for 10 particles in the macroscopic part, the
H-cat state can preserve entanglement up to 44% of local depolarizing noise, while
the GHZ state remains entangled until 28% of the same noise. Quantum discord,
with qualitatively similar behavior, becomes < 5 × 10−4 for p ≈ 0.44 in case of the
GHZ state while the same happens for the H-cat state for p ≈ 0.85, where p repre-
sents the properties of local depolarizing noise. We believe that these findings will
help us to identify a potential candidate for quantum memory devices.

In the second part of the thesis, we discuss the behavior of quantum correlations
in many-body systems described by XYZ (Heisenberg) Hamiltonians, both in “clean”
and “disordered” cases. The discussion is in two separate but related contexts. In
the first, we consider a clean system, which is quenched to zero at the initial instant.
The ensuing dynamics is then investigated and we find that the system supports
an ergodic-nonergodic transition. We study the ergodic behavior of quantum corre-
lations, belonging to the entanglement-separability paradigm and the information-
theoretic one, by analyzing their properties, in the equilibrium as well as the time-
evolved state of the quantum anisotropic XYZ model, in 1D, quasi 1D, and 2D
lattices. The logarithmic negativity and the concurrence are considered as measures
belonging to the former paradigm while quantum discord and quantum work-deficit
are considered as those of the latter one. We find that although the entanglement
measures are ergodic irrespective of the system parameters, the information-theoretic
measures exhibit a rich picture with respect to their statistical-mechanical proper-
ties. Specifically, we find that the zz-interaction strength has a crossover value, for a
given xy anisotropy and a given information-theoretic quantum correlation measure,
that indicates a transition from nonergodic to ergodic behavior for that measure.
The qualitative features of the measures in the entanglement-separability paradigm
and the information-theoretic one are the same in the one-dimensional, ladder, and
two-dimensional square lattices. However, in the square lattice, the information-
theoretic measures are more sensitive to the change of the zz-interaction strength
than in other dimensions. Such a dimension-dependent change of ergodic behavior
is absent for the entanglement measures.

ix



In the second “context” of the second part, we consider quenched disordered
quantum spin-models and investigate their quenched averaged quantum correlations.
There are two different disorder interactions that are considered, and we refer to them
as “planar” and “azimuthal” disorders. We analyse the effects of these disorders on
the ground state, for bipartite and multipartite, classical and quantum, correlations.
More precisely, we examine the behavior of (single-site) magnetization, two-site clas-
sical as well as quantum correlations, and multipartite entanglement, measured by
the generalized geometric measure, for the ground states of the corresponding Hamil-
tonian. The relevant results are presented for various system sizes, ranging from five
to twenty quantum spin-1/2 particles. While the small systems were dealt by exact
numerical diagonalization, we adopt the density matrix renormalization group tech-
niques to investigate comparatively larger spin systems. We find that in the presence
of impurities in the couplings, there exists different parameter regions for different
observables which show enhancement due to disorder – also known as the order from
disorder phenomenon. The physical quantities like magnetization, classical correla-
tors, bipartite and multipartite entanglement always find a range of parameters in
which they increase with the introduction of disorder. Perhaps more radically, our
studies uncover the novel phenomenon of constructive interference of disordered cou-
plings, where we observe that the parameters of the system can be tuned in such a
way that disorder-induced order appears due to simultaneous presence of randomness
in two different couplings, while it is absent when disorder is present individually in
either of the couplings. Interestingly, the constructive interference, which is caused
due to the interplay between competing random coupling strengths in different di-
rections, appears only in the multipartite entanglement, and is absent in bipartite as
well as single-site physical quantities considered, exhibiting the significance of mul-
tiparty observables in cooperative physical phenomena. We believe that the results
obtained in the proposed thesis will be important for both fundamental and practical
aspects of the emerging field of quantum information technology.
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CHAPTER1
Introduction

Quantum mechanics has been a subject of interest for many research communities in-
cluding physicists, philosophers, chemists, biologists, mathematicians and computer
scientists. For a long time, the fundamental concepts of quantum mechanics seemed
mysterious and for example questions were raised on the completeness of the the-
ory [1]. Despite all these, the theory has emerged as a successful one for explaining
many phenomena, especially in the microscopic world, and its predictions matches
with experiments very precisely. Quantum information theory [2] is a subject which
deals with situations where laws of quantum mechanics are used in storing, process-
ing, and communicating information. This technique of information manipulation
has been fruitful in enhancing efficiencies of certain communication and computation
protocols, reducing the required physical resources for communication, and inventing
information processing tasks that were impossible in the classical domain. Numerous
quantum information processing protocols [3–6] and computational algorithms [7–10]
have been developed and several have been experimentally implemented in the lab-
oratories across the world [11–19]. A key resource in these protocols is identified
as quantum correlations [20, 21], such as entanglement [1]. Entanglement [1, 20, 22]
is a distinctive correlation, that has no classical counterpart. A widely used defi-
nition of entanglement is in terms of local (quantum)operations and classical com-
munication (LOCC)1. Entanglement is a property present exclusively in entangled
quantum states, the latter being those that cannot be prepared using LOCC [23,24].
Entanglement has been used as a resource in various quantum information and com-
putation tasks [25], which are either impossible using classical resources or possible
with reduced efficiencies. Some of the fundamental quantum protocols that exploit

1See Appendix A for a definition of LOCC.
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entanglement are quantum dense coding [3], quantum teleportation, quantum error-
correction [5], entanglement-based quantum cryptography [6], and one-way quantum
computation [10]. Several non-classical phenomena have however been discovered in
which entanglement is absent or potentially irrelevant [26–45]. To understand and
quantify the resource necessary for exhibiting such non-classicality, an information-
theoretic approach to quantum correlations have been proposed [21,46–51]. Similar
to entanglement, information-theoretic quantum correlations also have no classical
analogy, in general. Along with being proposed as a resource, quantum correlations
also find applications in many-body systems [52–68], for example in studying the
critical phenomena, and more recently, in looking for the possibility of coherence in
biological systems [69–74].

One of the challenges of realizing quantum information processing tasks is the
control of composite quantum systems evolving in the presence of environmental
noise [2]. For example, for certain quantum communication protocols, a quantum
correlated state acts as a channel between two or more parties to perform the pro-
tocol, and the performance of the protocol depends on the amount of quantum
correlation present in the state. For instance, in quantum teleportation [4], perfect
teleportation is possible only if two parties share a maximally entangled state. How-
ever, quantum correlations can be very fragile against environmental effects [2], and
may vanish due to the onslaught of temperature, magnetic field, or other external
noise. This is one of the main obstacles for practical implementation of quantum
computing and information processing tasks. Therefore, it is very important to main-
tain the initial quantum correlation in a shared state in order to achieve quantum
advantage in communication and computation protocols. Hence, to understand the
usefulness of a quantum correlated state, consideration of external environment is
very important in a given protocol. The action of the environment is defined by the
type of error introduced in the state while performing the protocol. For example, if
a quantum bit (qubit) is acted upon by an environment that flips the bits that define
the qubit, it can mathematically be represented by the action of the Pauli operator,
σz, on the qubit. A general quantum theory that models and characterizes such
environmental effects in quantum information theory is studied under the quantum
operations formalism [75–81]. We discuss the general formalism of quantum opera-
tions in chapter 2. In particular, we consider the Kraus decomposition for completely
positive and trace preserving channels. We then discuss several model environments
in terms of quantum channels.

Quantum correlations in a multipartite quantum state can be categorized into
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two broad paradigms: the entanglement-separability and the information-theoretic.
The idea of characterizing quantum correlations in the entanglement-separability
paradigm is based on the assumption that the product or separable states have no
quantum correlations. Examples of measures for two-party quantum states that
are based on the entanglement-separability paradigm are entanglement of formation
(EF ) [24,82], entanglement cost (EC) [23,83], distillable entanglement (ED) [23,24],
concurrence (C) [82], and logarithmic negativity (EN) [84–89]. The other approach is
to define quantum correlation within an information-theoretic paradigm. Examples
of bipartite quantum correlations that belong to this paradigm are quantum discord
[47] and quantum work-deficit [48]. In chapter 3, we discuss about the bipartite
quantum correlations of both the paradigms. We also briefly consider multipartite
quantum entanglement and its quantification.

One of the requirements for scalability of quantum information processing and
computation protocols is the generation of quantum correlated states of a large num-
ber of particles. Moreover, entanglement of certain multipartite states have their
importance in understanding the fundamental concepts of quantum mechanics. A
Quantum state that is important from a fundamental perspective, as well as from
the perspective of applications, is the Schrödinger cat state [22], that has, for ex-
ample, been used to understand the validity of quantum correlations at macroscopic
scale. It is an entangled state between a “microscopic” and “macroscopic” system.
The microscopic system can be an atom, which can decay spontaneously, with the
undecayed state, |up〉, and the decayed state, |down〉, making up a two-dimensional
complex Hilbert space (qubit). The macroscopic system was also conceived as a qubit
made up of the “alive” and “dead” states of a cat, respectively denoted as |alive〉 and
|dead〉. As we have not seen a cat being simultaneously in states of dead and alive,
this thought experiment has triggered a debate on the validity of the fundamental
principles of quantum mechanics at the macroscopic scale. Several interpretations
have been given in order to settle this “paradox”. One argument, albeit a contested
one, that provides a reason for the difficulty in the observation of the alive and dead
cat states simultaneously, is the decoherence mechanism [90]. This is related to the
fundamental question: does there exist any limit on the system size beyond which
the quantum effects are not observable?

The question of existence of the quantum superposition principle at the macro-
scopic scale has been investigated extensively in the past (see [91], for a review, and
references therein). The basic idea is to investigate the quantuness of a superposition
state composed of macroscopic objects that are distinguishable at the macroscopic
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scale, like the |alive〉 and the |dead〉 states of the cat in the Schrödinger’s thought
experiment. To investigate this from the point of view of experimental scenarios,
the macroscopic objects, e.g., the cat, can be replaced by states of multiparty sys-
tems. In that case, a cat-like state is written as |Ψ〉 ∝ |AN〉 + |BN〉, where |AN〉
and |BN〉 are states of systems made of several particles, and are distinguishable in
some sense, like the alive and the dead cats. This idea of replacing macroscopic de-
grees of freedom with quantum states of multiparty systems in order to capture the
essence of the Schrödinger cat state in a real experiment has, e.g., been discussed in
Leggett [92], Mermin [93], and of course, Schrödinger [22]. The current experimental
limit of a Schrödinger cat state that has been prepared, e.g., in the ion trap, is a
14-qubit state [94]. We describe the Schrödinger cat thought experiment and a few
proposed methods to detect macroscopicity in chapter 4.

The classic example of a Schrödinger cat state is the Greenberger-Horne-Zeilinger
(GHZ) state [95,96] (for experimental demonstrations, see e.g., [94,97–99]). Demon-
stration of Schrödinger like cat states in various physical systems, like supercon-
ductors [100–104], nanoscale magnets [105–107], laser cooled trapped ions [108],
photons in a microwave cavity [109], and C60 molecules [110] have been proposed.
Macroscopic quantum superposition in superconducting quantum interference de-
vices (SQUID) [111] has already been experimentally achieved (see also [112–114]).
There is therefore a need to characterize macroscopic quantum superposition states
also for understanding of these recent experimental developments [92,115–125].

An interesting decoherence model that one can consider while studying macro-
scopic superpositions is the loss of particles from the state. For example, if one
prepares a quantum state with polarization degrees of three or four photons, and
pass it to an absorptive optical cavity, a most natural environment effect would be
loss of photons. Therefore, apart from the dissipative and dephasing effects it is
important also to consider the effect of particle loss from the macroscopic sector of
the state. However, as is well-known, the GHZ state looses all quantum coherence
if even a single qubit is lost. For the study of noise effects on the GHZ state, see
e.g., [126–134] (See [135–141] for further work in this direction). Therefore, it is
interesting to construct quantum superposition states of large particles that are ro-
bust to both kinds of decoherence: particle loss as well as particle number preserving
quantum decoherence mechanisms. In chapter 5 of the thesis, we will investigate ro-
bustness properties of several quantum states, akin to the Schrödinger cat, and will
identify states that better withstand decoherence as compared to the GHZ state. In
particular, we identify a class of macroscopic quantum states, the Hm

CN
states, whose
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macroscopic sector is built by using W states [142–145], or more generally, Dicke
states [146] with m excitations, and by an orthogonal product state. We introduce
the explicit form of this class of states in chapter 5. In this chapter, we also study
the effect of local decoherence on the quantum correlation properties of the Hm

CN

states.
In chapters 6 and 7 of the thesis, we study the behavior of quantum correlations in

large quantum systems. Investigation of quantum correlations in many-body systems
have gained considerable interest in the past years and is important for the efficient
use of such systems for quantum information technologies. The wide interest in such
activities is also due to the fact that several concepts developed in quantum informa-
tion science turn out to be useful tools to detect co-operative phenomena [54,65,147],
like quantum phase transitions [148,149], and can help to develop approximate meth-
ods to obtain the ground states of non-integrable systems [150–152]. We consider
quantum spin systems and explore the connection between quantum information
theory and many-body physics in two related contexts. First, we study the dynam-
ics of bipartite quantum correlations and investigate their fundamental statistical
mechanical properties in the quantum XY and XYZ Hamiltonian, under quenched
dynamics of an external magnetic field, on one-dimensional (1D), quasi 1D (ladder),
and 2D lattices. Next, we investigate properties of the multisite quantum and clas-
sical correlations in the ground state of an XYZ model with randomly distributed
independent quenched Gaussian nearest-neighbor couplings.

Investigation of many-body systems in the non-equilibrium regime from a quan-
tum information perspective [10, 54, 153–165] have gained interest in recent years.
In this respect, dynamical evolution of a closed many-body quantum system under
sudden quench have been studied extensively [166–172]. Note that, experimentally
realizable physical systems, e.g., ultracold atoms in an optical lattice [173], can be
prepared in a controlled way, making them effectively isolated from the environ-
ment [17]. This, in turn, has generated a lot of interest in recent times in the
nonequilibrium dynamics of otherwise closed quantum systems due to external dis-
turbance, both experimentally [174–177] and theoretically [153,178–184].

Quenching, which involves sudden change in certain parameters of the system,
has attracted interest, in particular, due to their feasibility in experiments using, for
example, cold atomic gases [185–187] (for a review, see [153]). Spin magnetic systems
subjected to sudden quenching have been shown to exhibit non-intuitive behavior,
e.g., revival and collapse phenomena of the nearest-neighbor entanglement in the
quantum XY model [61,184]. Sudden quenching in XY model has been performed to
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investigate the long time behavior of entanglement in the system [188](cf. [189,190]).
It was observed that the entanglement of the time evolved state in the XY model does
not approach to its equilibrium value. This observation was argued to characterize
the ergodicity of entanglement and was related with the validity of a statistical
mechanical description for entanglement [188]. A statistical mechanical description
of a physical quantity is valid only when the time-average of the quantity matches
with its ensemble average, and in that case, the physical quantity is termed as
ergodic. Ergodicity of physical quantities in spin models has been of interest to
researchers for a long time [188–200]. In particular, the question of ergodicity of
physical quantities like magnetization, classical correlations, entanglement, quantum
discord, and quantum work-deficit in quantum XY spin chains have been investigated
[188,189,191,192,201,202].

In chapter 6, we consider the validity of the statistical mechanical description of
quantum correlation measures of anisotropic Heisenberg models in one-dimension,
ladder, and two-dimension [203]. Specifically, we find that the entanglement mea-
sures remain ergodic, irrespective of the initial strength of the applied magnetic field
in the z-direction and the interaction strengths, whereas for intermediate values of
the initial magnetic field, the information-theoretic measures like quantum discord
and quantum work-deficit show a transition from nonergodic to ergodic behavior,
with the tuning of the strength of the two-body interaction in the z-direction. The
results hold irrespective of the relative strengths (“anisotopy”) of the xx- and yy-
interactions. However, the transition point depends on the xy-anisotropy (i.e., the
parameter that controls the relative strength of the xx- and yy-interactions) and the
strength of the magnetic field.

In Sec. 6.9 of chapter 6, we also investigate the dynamics of bipartite quantum
correlations of the evolved state, starting from the zero-temperature state of the XY
spin chain of infinite size, after a sudden change in the nearest-neighbor coupling
strength from some initial value to a final value [204]. In the evolution process,
the final Hamiltonian is termed as the driving Hamiltonian. We characterize the
quantum correlations for both finite time and large time limits in this model. In
particular, for varied choices of initial states we study the dependence of the dynam-
ical behavior of quantum correlations, viz. entanglement and quantum discord, on
the driving Hamiltonian. Our results show that survival of any finite amount quan-
tum correlation present in a initial state followed by a quench distinctly depends on
the driving Hamiltonian and on whether quenching is across the critical point in the
XY spin chain.
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Disordered many-body systems form one of the centrestages of research in many
body sciences and lead to a plethora of interesting phenomena and applications.
Studying the effect of disorder in many-body systems is important and can hardly
be overestimated [205–214]. Realization of most physical systems inherently re-
sults in impurities or defects, which may supress the physical properties of the sys-
tems [215–219]. Moreover, disordered systems, both classical and quantum, dis-
play counterintuitive phenomena like disorder-induced order or order from disorder
in several physical quantities like magnetization, classical correlators, and entan-
glement [214, 220–226]. At the same time, disordered systems sustain rich phases
like spin glass [227–230] and Bose glass [231, 232], and phenomena like Anderson
localization [233] and high Tc-superconductivity [234–236]. Recent experimental de-
velopments, especially in ultra-cold gases, give rise to the possibility of introducing
disorder in a controlled way [237–243] and hence paves the way for novel recipes of
observation of these properties in the laboratory.

A paradigmatic disordered system consists of an one-dimensional array of quan-
tum spin-1/2 particles, governed by the Heisenberg spin glass Hamiltonian with
natural or engineered quenched disordered couplings in an external magnetic field.
These systems allow the order from disorder phenomenon – disorder-induced en-
hancement – for bipartite and multipartite observables.

Many of the quantum information protocols implemented in quantum many-body
systems assumed that the system is clean, i.e., there is no intrinsic or engineered dis-
order present in the system. However, in reality it is difficult to avoid these inherent
impurities while performing experiments. It may seen plausible that the presence of
disorder would deteriorate the effectiveness of the observed data as compared to the
case when disorder is not present. Therefore, great care is normally given to remove
the impurities and make the sample as clean as possible. This, on the other hand,
raises an interesting question: are materials with inherent impurities always of less
importance as compared to the case when the sample is clean. Study of magneti-
zation on disordered many-body systems, during the 1980s, shows that it may not
always be the case. For example, magnetization can increase in certain disordered
models as compared to the case when the same model is considered without disorder.
This and similar other phenomena has been one of the main reason for the interests
in the study of disordered systems.

In chapter 7, we concentrate on the behavior of different observables for the
ground state of one-dimensional quenched disordered quantum Heisenberg (or XYZ)
models or quantum Heisenberg spin glass models [244]. Specifically, we consider
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three paradigmatic classes of disordered Heisenberg spin glass Hamiltonians: the
quenched disorder is in (a) the “planar” couplings, or (b) the “azimuthal” couplings,
or in (c) both the planar and azimuthal couplings. Although entanglement, especially
multiparty entanglement, is known to be fragile, we find that both bipartite and mul-
tipartite entanglement can be enhanced by the introduction of all the disorder com-
binations mentioned. More important, and rather engrossing, is the uncovering of
parameter ranges where the individual insertions of planar and azimuthal quenched
disorder couplings do not result in disorder-induced enhancement of a multiparty
entanglement measure, while the same appears in the simultaneous presence of the
disorders. We term the phenomenon as “constructive interference of the disordered
couplings” and the coupling parameter ranges as the “Venus regions”. Importantly,
such constructive interference is not observed in single- as well as two-site physi-
cal quantities like magnetization, classical correlators, and bipartite entanglement.
Moreover, changing the Hamiltonian, for example, to the XY model also wipes out
the phenomenon. To our knowledge, this is the first time that such constructive in-
terference of quenched disorders, which is qualitatively different from the order from
disorder phenomena, known since the 1980s, is observed. Multiparty entanglement is
known to be an essential ingredient in several quantum information protocols. The
results obtained have therefore the potential for important applications in actual
realization of such protocols.

The counterintuitive nature of constructive interference for a physical quantity
leads us to believe that it can have implications in fundamental and applicational
regimes. Moreover, multiparty quantum information processing tasks typically have
origins in the bipartite domain in the sense that information processing tasks that
have already been considered in the bipartite domain are usually generalized to the
multipartite case. These generalizations are very important. However, instances
where the converse occurs are few and far between, and indicates important diver-
sions from the usual track (see e.g. [5, 10, 143, 245–252]). The fact that constructive
interference is observed only for multipartite entanglement in the presence of impu-
rities is also in the spirit of these latter instances.

Chapters 4 and 5 are, in the main, based on the publications

1. Quantum superposition in composite systems of microscopic and macroscopic
parts resistant to particle loss and local decoherence,
Utkarsh Mishra, Aditi Sen(De), and Ujjwal Sen, Phys. Rev. A 87, 052117
(2013).
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2. Local decoherence free macroscopic quantum states, Utkarsh Mishra, Aditi
Sen(De), and Ujjwal Sen, Phys. Lett. A 379, 261 (2015).

Chapter 6 is mainly based on the publications

1. Tuning interaction strength leads to an ergodic-nonergodic transition of quan-
tum correlations in the anisotropic Heisenberg model,
Utkarsh Mishra, R. Prabhu, Aditi Sen(De), and Ujjwal Sen, Phys. Rev. A
87, 052318 (2013). and preprint

2. Survival of time-evolved quantum correlations depends on whether quenching
is across critical point in XY spin chain, Utkarsh Mishra, Debraj Rakshit,
and R. Prabhu, Phys. Rev. A 93, 042322 (2016).

Chapter 7 is mainly based on the preprint

1. Constructive interference between disordered couplings enhances multiparty en-
tanglement in quantum Heisenberg spin glass models,
Utkarsh Mishra, Debraj Rakshit, R. Prabhu, Aditi Sen De, Ujjwal Sen, New
J. Phys. 18 , 083044 (2016).

9





CHAPTER2
Quantum channels

2.1 Introduction

The change in state of a quantum system is modeled by the evolution operation
allowed by quantum mechanics where a quantum system in an initial state evolves
to some final state. A general quantum evolution of a quantum system is described
by adding an ancillary to the system and then evolve the system plus ancillary with
a global unitary operator and then trace out the ancillary part. In this chapter,
we will focus on the unitary evolution of a closed composite quantum state of a
system (S) interacting with an environment (ancillary, denoted by E) and discuss
the representation of the general evolution of the system, S, alone. A schematic
diagram of the scenario is shown in Fig. 2.1.

In most quantum information theoretic protocols, it is desirable to transfer a
certain amount of information from one observer to another using shared quantum
states. For example, in quantum dense coding [3] a sender wishes to send classical
information to a receiver using a shared quantum state. The important quantity to
investigate here is the rate of transfer of classical bit per quantum bit. If there is
no external noise, then this rate is 2 classical bits per qubit at most. However, the
information content is hampered by the external noise which introduces errors in
the message sent to a distant place. For example, the rate in case of dense coding
is no longer 2 bit/qubit, due to the presence of noise [25, 253]. Therefore, it is very
important to understand the process by which error is introduced in manipulating
quantum states.
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2.2 Operator-sum representation of quantum chan-
nels

In this section, we will discuss the operator-sum representation of quantum evolution
of a system. For the description, we will consider the Schrödinger picture. A parallel
formalism can be discussed by using the Heisenberg picture. In the Schrödinger
picture, the operators are time independent and the state evolves with time. Let
us consider a composite Hilbert space HSE of two Hilbert spaces HS and HE, such
that HSE = HS ⊗HE, with dimensions dS and dE respectively. Typically, dE � dS,
although this is not a necessary condition. Let us consider that a quantum state
ρSE(t = 0) at the initial time t = 0, defined onHSE, evolves to another quantum state
ρSE(t) at some time t. This picture of quantum operations provide the effect of noise
created by the environment (E) on the system (S) via the global unitary operation,
the initial environment state, and the operation of tracing out the environment. The
evolution of the initial system-environment state is governed by a unitary operator
(USE(t)) that acts globally on ρSE(t = 0), and is given as

ρSE(t) = USE(t)ρSE(t = 0)U †SE. (2.1)

Here, though the dynamics of the system (S) alone might be open but the full system-
environment dynamics is closed. The density matrix of the system (S), denoted by
ρS(t), at any time t, can be obtained by tracing out the environment (E) part from
the whole state ρSE(t). If trE denotes the tracing over the environment E then

ρS(t) = trE(USEρSE(t = 0)U †SE). (2.2)

where {|a〉E, a = 1, . . . dE}, is an orthogonal basis of the environment (E).
We will consider the case when the initial density matrix, ρSE(t = 0), is a product

of density matrices of the system S and the environment E. If ρS(t = 0) denotes
the density matrix of the system S, and ρE(t = 0) denotes the density matrix of the
environment E at the initial time t = 0, then Eq. (2.2) can be expressed as

ρS(t) =
∑
a

〈a|EUSE
(
ρS(t = 0)⊗ ρE(t = 0)

)
U †SE|a〉E. (2.3)

Assume now that the environment is in some pure state at the initial time, i.e.,
ρE(t = 0) = |e〉E〈e|. This assumption has been referred to as the “church of the
larger Hilbert space”, and is attributed to J. Smolin. Using this, Eq. (2.3) can be

12



ρS ⊗ ρE USE(ρS ⊗ ρE)U †SE

ρS T (ρS) = trE[USE(ρS ⊗ ρE)U †SE]

add ancillary E

unitary evolution

partial trace over E

Figure 2.1: Schematic diagram showing the process of evolution of a quantum system,
S, represented by a density matrix ρS, defined on the Hilbert space HS. An initial
quantum state of the principal system is combined with an environment such that
the system and environment are in a product state. The combined system is evolved
using a global unitary operator acting on the Hilbert space, HS⊗HE, with HE being
the Hilbert space corresponding to the environment. At the end of the evolution,
the environment degrees of freedom are traced out and the resulting expression is a
representation of the system’s evolution alone.

written as

ρS(t) =
∑
a

KaρS(t = 0)K†a, (2.4)

where the “Kraus operator”, Ka ≡ E〈a|USE|e〉E, is an operator on the Hilbert space
of the system S and Eq. (2.4) is known as the operator-sum representation [75–78].
We therefore, have the quantum operation, T , taking ρS(t = 0) to ρS(t),

ρS(t) = T (ρS(t = 0)), (2.5)

where ρS(t) is given by Eq. (2.4). See Fig. 2.1 for a schematic representation.
The transformation map T is termed as a superoperator and is a linear map that

transforms a density matrix to another density matrix. It is to be noted that the
operator-sum representation is not unique and one can obtain other representations
that are equivalent up to change of bases.

Note that we have

∑
a

K†aKa = I. (2.6)

Importantly, an operator, T , given by Eq. (2.5), for arbitrary operators {Ka} on
HS such that Eq. (2.6) holds, can always be implemented by adding an environment
state, performing a global unitary, and tracing out the environment.
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We enumerate below some examples of such quantum channels operations on the
qubit space.

2.2.1 Bit flip channel

The bit flip channel corresponds to the bit flip error. In bit flip error, if the initial
qubit is in the state |0〉 then under the action of bit flip channel, it get flipped to
|1〉 with probability p while remaining intact with probability (1− p). Similarly, for
the case if the initial state is in |1〉 orientation. The action of bit flip channel on the
basis states {|0〉S, |1〉S} of the system S, is given as

|0〉〈0|S → (1− p)|0〉〈0|S + p|1〉〈1|S
|0〉〈1|S → (1− p)|0〉〈1|S + p|1〉〈0|S
|1〉〈0|S → (1− p)|1〉〈0|S + p|0〉〈1|S
|1〉〈1|S → (1− p)|1〉〈1|S + p|0〉〈0|S. (2.7)

In matrix representation, the bit flip transformation on a single-qubit state ρ is given
as

ρ′ = T (ρ) =
 (1− p)ρ00 + pρ11 (1− p)ρ01 + pρ10

(1− p)ρ10 + pρ01 (1− p)ρ11 + pρ00

 . (2.8)

Here |0〉S and |1〉S are the eigenstates of the Pauli operator, σz, with eigenvalues
+1 and −1 respectively.

2.2.2 Bit-phase flip channel

The action of bit-phase flip channel on the basis states {|0〉S, |1〉S} of a qubit system
is given as

|0〉〈0|S → (1− p)|0〉〈0|S + p|1〉〈1|S
|0〉〈1|S → (1− p)|0〉〈1|S − p|1〉〈0|S
|1〉〈0|S → (1− p)|1〉〈0|S − p|0〉〈1|S
|1〉〈1|S → (1− p)|1〉〈1|S + p|0〉〈0|S. (2.9)
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A quantum bit, initially in the state ρ, affected by both bit and phase flip errors,
then transforms into

ρ′ =
 (1− p)ρ00 + pρ11 (1− p)ρ01 − pρ10

(1− p)ρ10 − pρ01 (1− p)ρ11 + pρ00

 . (2.10)

Here the initial state remains intact with probability (1− p) and bit-phase flip error
occurs with probability p.

2.2.3 Phase damping channel

Phase damping happens when e.g., a photon travels through a wave guide, and
scatters randomly. The unitary representation of a phase damping channel is given
as

|0〉S|0〉E →
√

1− p|0〉S|0〉E +√p|0〉S|1〉E
|1〉S|0〉E →

√
1− p|1〉S|0〉E +√p|1〉S|2〉E (2.11)

The initial state of the environment changes whether the system, S, is in |0〉S or
|1〉S state. By using the formula Ka = E〈a|U |0〉E, the Kraus operators for the phase
damping channels are given by

K0 =
√

1− pI, K1 = √p
 1 0

0 0

 , K2 = √p
 0 0

0 1

 , (2.12)

where I is an identity matrix in the qubit Hilbert space. The Kraus operators satisfy
the normalization condition given in Eq. (2.6). By substituting these operators in
Eq. (2.4), the evolution of an initial single qubit state ρ under phase damping is
given as

ρ→ ρ′ = (1− p)ρ+K1ρK1 +K2ρK2. (2.13)

Hence under this noise model, the final state becomes

ρ′ =
 ρ00 (1− p)ρ01

(1− p)ρ10 ρ11

 , (2.14)

where ρij(i, j = 0, 1) are the matrix elements of the initial state ρ. The diagonal terms
of the initial density matrix remain invariant under the phase damping channel while
the off-diagonal terms decay with probability (1 − p). It should also be noted that
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the trace of the state ρ′ is preserved under the phase damping channel. In terms of
the Bloch vector of a single qubit state, the transformation can be visualized as

(rx, ry, rz)→ ((1− p)rx, (1− p)ry, rz). (2.15)

This implies that the Bloch sphere uniformly contracts around xy plane and no
change occurs along the z-direction.

2.2.4 Amplitude damping channel

The amplitude damping channel is a model for the decay of an excited state of a two-
level atom due to spontaneous emission of photons. Detection of the emitted photon
(“observation of the environment”), via a positive operator valued measurement,
gives us information about the initial preparation of the atom.

The unitary representation for the amplitude damping channel is given as

|0〉S|0〉E → |0〉S|0〉E
|1〉S|0〉E →

√
(1− p)|1〉S|0〉E +√p|0〉S|1〉E, (2.16)

where an atom initially in the ground state |0〉S remains in the ground state with
unit probability. On the other hand, it remains in excited state |1〉S with probability
1 − p and decays to the ground state from the excited state with probability p. In
this process the environment changes its state from being in the ground state |0〉E
to the excited state |1〉E as it receives a photon due to the decay of the atom. The
Kraus operators can again be obtained by taking partial trace over the environment
basis {|0〉E, |1〉E}. Two Kraus operators are enough to represent the action of the
amplitude damping channel on a single qubit and are given as

K0 =
 1 0

0
√

1− p

 , K1 =
 0 √

p

0 0

 . (2.17)

After substituting these Kraus operators in Eq. (2.4) the initial qubit state ρ trans-
forms to

ρ′ =
 ρ00 + pρ11

√
1− pρ01√

1− pρ10 (1− p)ρ11

 , (2.18)

where p is the rate of decay. Unlike the phase damping channel, both diagonal and
off-diagonal terms get affected by this channel. It is interesting to note that under the
amplitude damping channel, the identity I matrix does not transform to an identity
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matrix. A quantum channel with the property T (I) = I is called an unital channel.
The amplitude damping channel is, thus, an example of a nonunital channel. Under
the amplitude damping channel, the Pauli matrices (σx, σy, σz) and identity matrix
evolves as follows

T (σx) =
 0

√
1− p

√
1− p 0

 , T (σy) =
 0 −i

√
1− p

i
√

1− p 0

 ,
T (σz) =

 1 + p 0
0 −(1− p)

 , T (I) =
 1 + p 0

0 (1− p)

 . (2.19)

From Eq. (2.19), the transformation of a single quantum bit under the amplitude
damping channel can be obtain as

T (ρ) = 1
2(T (I) + rxT (σx) + ryT (σy) + rzT (σz)). (2.20)

That gives the following transformation for the Bloch vector, −→r ,

(rx, ry, rz)→ (
√

1− p rx,
√

1− p ry, p+ (1− p) rz). (2.21)

This implies that each point on the Bloch sphere shifts towards the north pole, i.e.,
towards the position of the |0〉 state in the Bloch sphere.

2.2.5 Depolarizing channel

The errors which happen to an arbitrary pure qubit, say |Ψ〉, when interacting with
its environment, can be categorized into bit flip error, which transforms |Ψ〉 into
σx|Ψ〉, phase flip error, which transforms |Ψ〉 into σz|Ψ〉, and bit-and-phase-flip error.
Here σx, σy, σz are the three Pauli matrices. If an arbitrary qubit ρ is sent through
a depolarizing channel, the state remains unchanged with probability (1− p′) while
the above three kinds of error occur with probability p′

3 each.
The unitary representation for the depolarizing channel is given by

|ψ〉S|0〉E →
√

1− p′|ψ〉S|0〉E +
√
p′

3 (σx|ψ〉A|1〉E + σy|ψ〉S|2〉E + σz|ψ〉S|3〉E). (2.22)

The initial state of the system-environment remain intact with probability 1 −
p′ and error occurred with probability p′

3 . The process of occurrence of error is
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random and once a measurement is performed on the environment in the basis
{|0〉E, |1〉E, |2〉E, |3〉E}, it is possible to infer about the type of error that has occurred.
The Kraus operators are given as K0 =

√
1− p′I, Ka =

√
p′

3 σ
a for a = x, y, z.

Substituting these Kraus operators in Eq. (2.4), the transformation of the state
ρ through the depolarizing channel is given as

ρ→ ρ′ = (1− p′)ρ+ p′

3 (σxρσx + σyρσy + σzρσz). (2.23)

By putting p′=3p
4 , we obtain

|i〉〈j| → p

2Itr(|i〉〈j|) + (1− p)|i〉〈j|. (2.24)

Here, 0 ≤ p′ ≤ 3
4 and 0 ≤ p ≤ 1. Note that for p′=3

4 , the qubit output state in
Eq. (2.23) will be proportional to the identity matrix, I, while the same for the noisy
state obtained via Eq. (2.24) occurs at p = 1. The effect of the depolarizing channel
can be obtained from the knowledge of the action of Eq. (2.23) on I, σx, σy, and σz.
The depolarizing channel scales the Bloch vector −→r uniformly to

−→r ′ = (1− 4p
3 )−→r , (2.25)

where
−→
r′ is the Bloch vector of the single qubit state after it has passed through the

depolarizing channel.

2.3 Chapter summary

In this chapter, we have discussed the operator-sum representation formalism of
quantum operations to describe the dynamics of a quantum system. This formalism
is quite general and also characterizes irreversible processes such as the measurement
process. We have also discussed about several paradigmatic quantum channels. We
will the latter in chapter 5 to study the robustness of macroscopic quantum super-
position states.
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CHAPTER3
Quantum correlations

Quantum correlations form an important resource for performing different tasks in
quantum information and computation. Development in experimental techniques
has made it possible to realize many quantum communication and computation
tasks that utilize quantum correlations. Characterization of quantum correlations
is one of the main challenges in the quantum information theory, that includes de-
tection, quantification, and manipulation of quantum correlations. These concepts
have been understood up to a certain extent in the bipartite case. In particular, var-
ious measures have been proposed that quantify the amount of quantum correlation
present in bipartite quantum states, a few of which are tractable at least numerically.
The problem to characterize quantum correlations for a general multipartite state is
much more involved. However, for pure multipartite states, the generalized geomet-
ric measure (GGM) is a computable measure that captures the genuine multipartite
entanglement of multipartite quantum states. In this chapter, we discuss bipartite
and multipartite quantum correlations, and some of their quantifiers.

3.1 Bipartite entanglement

One of the main tasks in quantum information theory is to characterize entanglement
of composite quantum systems, i.e., to find whether a composite state is entangled
or not, and if it is entangled, to find the amount of entanglement in that state,
and consider its manipulations. The simplest case, where this question has been
studied somewhat extensively is the case of bipartite systems. In this section, we
discuss about certain aspects of quantum entanglement of bipartite quantum states,
i.e., quantum states shared between two parties. Consider, therefore, two observers
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(parties) A and B who are in possession of two quantum systems, represented by
Hilbert spaces HA and HB respectively. The composite system is then represented
by the Hilbert space HAB = HA ⊗HB. The dimension of the Hilbert space of party
A is dA and similarly the dimension of the Hilbert space of party B is dB. The
dimension of the Hilbert space of the combined system is dim(HAB) = dAB = dAdB.
An arbitrary pure state, |Ψ〉AB, of the composite system is a vector in the Hilbert
space HAB. Let {|φi〉A ⊗ |ψj〉B} be an orthonormal basis of HAB. The state |Ψ〉AB
can be written as

|Ψ〉AB =
dA−1∑
i=0

dB−1∑
j=0

cij|φi〉A ⊗ |ψj〉B, (3.1)

where C = [cij] is the coefficient matrix of the expansion and ∑
ij |cij|2 = 1. The

density matrix corresponding to the state |Ψ〉AB is ρAB = |Ψ〉AB〈Ψ|. The state of
the subsystem, A(B), can be obtain from the density matrix, ρAB, by tracing out
the degrees of freedom of subsystem B(A).

To understand the entanglement of an arbitrary pure bipartite quantum state,
it is customary to represent the state in the Schmidt form. The Schmidt form is a
representation of a pure bipartite state in terms of eigenvectors of density matrices
of the local subsystems. Among other things, this representation is mathematically
convenient to perform calculations. For example, it is handy to calculate the reduced
density matrices of either of the subsystems from the Schmidt representation. For a
bipartite state given in Eq. (3.1), the corresponding Schmidt representation is given
as

|Ψ〉AB =
n∑
i=1

√
λi|i〉A ⊗ |̃i〉B, (3.2)

where {|i〉A} and {|̃i〉B} are orthonormal sets of HA and HB respectively, and λi’s
are positive real numbers. Here n ≤ min{dA, dB}.

With this, we now introduce the notion of entanglement for pure quantum states.
The state |Ψ〉AB is called entangled if and only if it cannot be expressed as a product
of two vectors belonging to the local Hilbert spaces HA and HB, i.e.,

|Ψ〉AB 6= |φ〉A ⊗ |ψ〉B. (3.3)

Otherwise, the state |Ψ〉AB is called an entangled state. In terms of Schmidt rep-
resentation, a state is called entangled if the Schmidt decomposition has more than
one term. Examples of entangled states are the so-called Bell states given by
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|Φ±〉AB = 1√
2

(|00〉AB ± |11〉AB)

|Ψ±〉AB = 1√
2

(|01〉AB ± |10〉AB), (3.4)

where |00〉AB = |0〉A ⊗ |0〉B, etc. Here, the Bell states are already written in the
Schmidt decomposition. As there are two nonzero eigenvalues of the local density
matrix, the states in Eq. (3.4) are entangled states. Operationally, it is possible to
prepare the product state, |φ〉A ⊗ |ψ〉B, without allowing the parties A and B to
ever come into contact with one another, while the only way to prepare an entangled
state is to apply a global unitary transformation to a product state.

Let us now consider the more general situation of mixed states. This requires the
concept of local operations and classical communications (LOCC). See Appendix A
for a formal description of LOCC. The more general quantum state shared by A and
B, that can be prepared by LOCC between A and B, is of the form [254]

%AB =
k∑
a=1

pa%
a
A ⊗ %aB, (3.5)

where %aA and %aB are quantum states defined on local Hilbert spaces, HA and HB

respectively, and where {pa} form a probability distribution. It can been shown that
k ≤ (dim(HAB))2 [255, 256]. An important example of a class of mixed bipartite
state is given by the Werner states,

ρAB = λ|Φ+〉〈Φ+|AB + 1
4(1− λ)I, (3.6)

where |Φ+〉 is one of the Bell states mentioned in Eq. (3.4). For λ = 1, the state
is pure, while for λ = 0, the state is maximally mixed. Here, I is the identity
operator on HA ⊗HB. States which can be written in the form given by Eq. (3.5)
are called separable. States which are not separable are entangled. Peres [86] noticed
that a transposition on only one of the subsystems transforms a separable state into
another valid quantum (separable) state, while entangled states may be transformed
into operators that does not represent a quantum state. A transpose operation, T ,
acting on a Hilbert space H is defined as

T : |i〉〈j| → (|i〉〈j|)T = |j〉〈i|. (3.7)

Given a density matrix of bipartite system, ρij,µν , the partial transposition, with
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respect to part A, is defined as

TA(ρij,µν) = ρµj,iν . (3.8)

Here, i, µ are the indices for the A part and j, ν are the indices for the B part, and
the partial transpose act only on the A-part. A similar operation can also be defined
for the B-part. Peres has shown that if a state ρAB has decomposition similar to
the one given in Eq. (3.5), then the eigenvalues of the states after taking the partial
transposition with respect to, say A, remains positive. However, if the state is
entangled, then after taking the partial transposition, the final density matrix may
have negative eigenvalues. For example, the singlet state, after partial transposition
has a negative eigenvalue. In this way, it is possible to separate the states with
positive partial transpose (PPT) with the one with nonpositive partial transpose
(NPT), and provide us a sufficient criterion for detecting entanglement. It was
shown by Horodecki et al. [87] that the criterion is also necessary in C2 ⊗ C2 and
C2 ⊗ C3.

We can now apply this “positive partial transpose (PPT) criterion” to detect the
entanglement of the Werner state. Applying this criterion to the Werner state, given
in Eq. (3.6), we obtain that the density matrix, after taking the partial transposition
with respect to A, is positive provided λ ≤ 1

3 .
Now we consider a few measures of entanglement that quantify the amount of

entanglement present in the state %. The necessity to quantify entanglement is
connected, for example, to the resource theory of entanglement where entanglement
is seen as a resource in different quantum communication and other tasks.

3.1.1 Concurrence

In two-qubit states, concurrence is a useful entanglement measure [82]. Concurrence
for a pure two-qubit state, |Ψ〉, is given by

C(|Ψ〉) = |〈Ψ|Ψ̃〉|, (3.9)

where the tilde represents the “spin-flip” operation defined as

|Ψ̃〉 = (σy ⊗ σy)|Ψ∗〉. (3.10)

Here |Ψ∗〉 is the complex conjugate of |Ψ〉 in the standard basis {|00〉, |01〉, |10〉, |11〉},
and σy is the Pauli operator, given by σy = i(−|0〉〈1| + |1〉〈0|). For the pure state
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|Ψ〉 = a|00〉+ b|01〉+ c|10〉+ d|11〉, the concurrence is given by C(|Ψ〉) = 2|ad− bc|.
Here a, b, c, and d are complex numbers such that |a|2 + |b|2 + |c|2 + |d|2 = 1. For
ad = bc, the state is in product form in its subsystems, and the concurrence is zero.

The concurrence of a mixed state, ρAB, of two qubits is defined as the minimal
average concurrence over ensembles of pure states representing ρAB, i.e.,

C(ρAB) = inf
∑
j

pjC(|Ψj〉), (3.11)

where ρAB = ∑
j pj|Ψj〉〈Ψj| and the infimum is over all such decompositions of ρAB.

For a two-qubit mixed state, ρAB, it is possible to perform the optimization, and the
concurrence of the state is given as

C(ρAB) = max[0, λ1 − λ2 − λ3 − λ4], (3.12)

where λ1, λ2, λ3, λ4 are the square roots of the eigenvalues of ρABρ̃AB in decreasing
order and ρ̃AB = σy ⊗ σyρ∗ABσy ⊗ σy, with the complex conjugation being taken in
the computational basis. The measure is non-zero for all entangled two-qubit states,
and is zero for the separable ones.

The variation of concurrence of the Werner state against the parameter λ (see
Eq. (3.6)) is shown in Fig. 3.1. It is observed that the concurrence is zero for
λ ≤ 1

3 and then increase monotonically with λ. It is equal to unity for λ = 1, i.e.,
C(|Φ+〉) = 1.

3.1.2 Logarithmic negativity

Logarithmic negativity [84,85,89] is another measure of entanglement of a bipartite
quantum state, ρAB, shared between two parties A and B. The definition of loga-
rithmic negativity is based on negativity, N(ρAB) = 1

2(||ρTA||1 − 1). The negativity
of a two-party state is therefore the sum of the absolute values of the negative eigen-
values of the partial transposed density matrix [86, 87] of the bipartite state ρAB.
Here TA denotes the partial transpose of ρAB with respect to party A. The norm,
||A||1 = tr

√
A†A, denotes the trace norm of a Hermitian matrix A.

The logarithmic negativity (LN) is defined as

EN(ρAB) = log2[2N(ρAB) + 1]. (3.13)

For two qubit states, LN is positive if and only if the state is entangled [87]. The
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measure is however defined and computable for bipartite states, for pure or mixed,
of arbitrary dimensions. But for entangled states which have a positive partial
transpose [256,257], the measure is vanishing. Also, it does not reduce to the entropy
of entanglement (Appendix B) on pure states.

3.2 Bipartite quantum correlations

We in the preceding section have discussed about entanglement and its measures for
bipartite quantum states. In this section, we will discuss about quantum correlations
beyond entanglement. Separable states have zero entanglement, by definition. The
question is whether all separable states represent classical situations. The motivation
for such a query is the existence of phenomena of multiparty systems which are
nonclassical and yet does not involve shared entanglement. Such phenomena include
problems in local indistinguishability [27,28,30,32,34–36] and deterministic quantum
computation with a single qubit [26,42] (cf. [258]). Mixed bipartite states of the form

ρccAB =
∑
i,j=1

pij|i〉〈i|A ⊗ |j〉〈j|B, (3.14)

where {|i〉A} and {|j〉B} are orthogonal sets in HA and HA respectively, and where
{pij} forms a probability distribution, are separable states. However, they consti-
tute a special class within separable states which are formed by mixing states of a
biorthogonal basis of HA ⊗ HB, and their correlations can be considered as truly
classical. They are referred to as classically correlated states.

There have been several attempts at conceptualizing quantum correlations from
information-theoretic perspectives that assign zero values to classically correlated
states, instead of assigning zero values to separable states as for entanglement mea-
sures. We discuss below about two such measures, viz, quantum discord and quantum
work-deficit.

3.2.1 Quantum discord

Quantum discord [46,47] is an information-theoretic measure of quantum correlation.
One of the ways to motivate the definition of quantum discord is to note that two
equivalent quantities that define mutual information in classical information theory
turn out to be different in their quantized version. For two random variables X and
Y , classical mutual information can be defined as
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Figure 3.1: Concurrence (C), quantum-discord (QD) and logarithmic negativity (LN)
of the Werner state (Eq. 3.8) against the parameter λ.

I(X : Y ) = H(X) +H(Y )−H(X, Y ), (3.15)

as well as

J (X : Y ) = H(X)−H(X|Y ). (3.16)

Here H(X) = ∑
x pX=x log2 pX=x is the Shannon entropy of the random variable X,

and pX=x is the probability that the random variable X takes the value x. H(X, Y )
is the joint entropy of the variables X and Y . The conditional entropy, H(X|Y ), is
defined as

H(X|Y ) =
∑
y

pY=yH(X|Y = y), (3.17)

where pY=y is the probability that the random variable Y takes the value y, and
H(X|Y = y) is the entropy of the variable X given that the variable Y takes the
value y. Note that H(X|Y = y) = −∑x px|y log2 px|y, where px|y is the probability
that X = x given that Y = y.

Using the Bayes’ rule for the random variables X and Y , i.e., pX=x|Y=y =
pX=x,Y=y/pY=y, it can be shown that H(X|Y ) = H(X, Y ) − H(Y ). This implies
the equality of I and J . However, it was noticed that the two definitions are not
same, when generalized to the quantum domain.
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It has been argued that I can be generalized to the quantum case, for a two-
party quantum states, ρAB, as I(ρAB) = S(ρA) + S(ρB) − S(ρAB), where S(%) =
−tr[% log2 %] is the von Neumann entropy of the quantum state %, and ρA and ρB are
the reduced density matrices of ρAB. The quantity J can be generalized for ρAB as
J(ρAB) = S(ρA) − S(ρA|B). Here S(ρA|B) = min{ΠB

i }
∑
i piS(ρA|i) is the conditional

entropy of ρAB, where {ΠB
i } are rank-1 projection-valued measurements performed

on the B-part of the system, with ρA|i = trB[(IA⊗Πi
B)ρAB(IA⊗Πi

B)], pi = trAB[(IA⊗
Πi
B)ρAB(IA ⊗ Πi

B)], and with IA being the identity operator on the Hilbert space of
A. Quantum discord of a bipartite quantum state, ρAB, is defined as

D(ρAB) = I(ρAB)− J(ρAB). (3.18)

It is shown in [46], that quantum discord defined in this way is nonnegative, and
is equal to zero on quantum-classical states only, which are states of the form
ρqcAB = ∑

j pjρ
j
A ⊗ (|j〉〈j|)B, where {pj} is a probability distribution, ρjA are states

on HA, and {|j〉B} is an orthonormal set in HB. Instead of party A, one can also
perform the measurement in party B, and the quantum discord in that case will be
denoted as D(ρBA). Quantum discord is not symmetric with respect to interchange
of subsystems A and B, i.e., in general, D(ρAB) 6= D(ρBA).

The quantum discord of the Werner state is shown in Fig. (3.1). The quantum
discord is zero only for λ = 0 and it remain nonzero for all other values of the λ.
The measurement operators, Πi (i = 1, 2), used to evaluate J , are defined, in the
computational basis, as

Π1 =
 cos2 θ

2
1
2e
−ιφ sin θ

1
2e
ιφ sin θ sin2 θ

2

 ,
and

Π2 =
 sin2 θ

2 −1
2e
−ιφ sin θ

−1
2e
ιφ sin θ cos2 θ

2

 ,
The minimization over all measurements involved in J is carried out by scanning
over the parameter space for θ ∈ [0, π] and φ ∈ [0, 2π].

3.2.2 Quantum work-deficit

Another information-theoretic measure of quantum correlation is the quantum work-
deficit, which is defined as the difference between the amount of work extractable
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from a shared state by global and local quantum heat engines [48–51]. It is possible
to quantify the amount of work that can be extracted from a bipartite state ρAB by
global operations as

IG(ρAB) = N − S(ρAB), (3.19)

where N is the logarithm (base 2) of the dimension of the Hilbert space on which
ρAB is defined. It can be interpreted as the number of pure qubits that can be ex-
tracted from ρAB by global operations on the state, and that consists of an arbitrary
sequence of unitary and dephasing operations. Such operations are called “closed
global operations”. Let us now define “closed local operations and classical commu-
nication (CLOCC)”. It consists of local unitaries, local dephasing, and sending the
dephased state from one party to other. The number of pure qubits that can be
extracted by CLOCC is given by,

IL(ρAB) = N − infΛεCLOCC[S(ρ′A) + S(ρ′B)], (3.20)

where S(ρ′A) = S(trB[Λ(ρAB)]) and S(ρ′B) = S(trA[Λ(ρAB)]). The quantum work-
deficit is defined as

WD(ρAB) = IG(ρAB)− IL(ρAB). (3.21)

This quantity is difficult to calculate, even numerically, and we will therefore, restrict
ourselves to local dephasing on only one of the parties. If the measurement is on the
B−part, the resulting “one-way” quantum work-deficit is defined as WD(ρAB), while
it is denoted as WD(ρBA) if the measurement is on the A−part.

3.3 Multipartite entanglement

Multiparty quantum correlations is much less understood than its bipartite coun-
terpart. We will restrict ourselves here to multiparty entanglement. There are
several motivations to study multiparty quantum correlations, including multiparty
entanglement. In particular, quantum many-body systems provide a suitable play-
ground to study entanglement and quantum correlations in real materials. Most
of the studies in these systems are concentrated on few body entanglement, e.g.,
bipartite entanglement [52, 53], tripartite entanglement [259–261] (See [6, 262–264]
for measures based on monogamy of quantum correlations in general), and quan-
tum discord [55]. See [20, 21, 147] for reviews. Instances where multipartite entan-
glement measures, e.g., geometric measure [226, 226, 265–269] and global entangle-
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ment [270], (see also [271, 272]), have been used to describe many-body phenomena
include Refs. [269, 273–282]. However, one of the main obstacles in investigating
multipartite entanglement is the lack of computable measures. We will focus on
pure multipartite quantum states and discuss about a measure of multipartite en-
tanglement for such states. We call a pure multipartite quantum state as genuinly
multiparty entangled if it is not a product across any bipartition of the sites involved.
We will now discuss about a mesure of genuine multiparty entanglement.

3.3.1 Generalized geometric measure

As a measure of genuine multipartite entanglement measure, we will employ the
generalized geometric measure (GGM) [269] (cf. [265]). In case of quantum systems
composed of more than two subsystems, the quantification of entanglement is much
more involved in comparison to the bipartite case. This is because in a multipartite
scenario, there are qualitatively different kinds of entangled states like biseparable,
triseparable, etc., and there are also genuine multipartite entangled states. In order
to quantify genuine multiparty entanglement, we use the GGM which is based on
the distance between the n-party multipartite pure state, and an n-party pure state
which is not genuinely multiparty entangled. More specifically, the GGM for an
n-party pure quantum state, |ψn〉, is given by

E(|ψn〉) = 1−max |〈φn|ψn〉|2, (3.22)

where the maximization is taken over all n-party pure quantum states, |φn〉, that
are not genuine multiparty entangled. It is possible to evaluate the maximization
analytically for an arbitrary state |ψn〉 and is given by

E(|ψn〉) = 1−max{η2
A:B|A ∪ B = {1, . . . , N},A ∩ B = ∅}, (3.23)

where ηA:B is the maximal Schmidt coefficient of |ψn〉 in the bipartite split A : B. It
can be shown that the GGM defined in this way is monotonically decreasing under
LOCC [269].

As an illustration, let us consider the N -party GHZ state [95,96] given by

|GHZ〉1,...,N = 1√
2

(|0 . . . 0〉+ |1 . . . 1〉). (3.24)

The GGM for the N -qubit GHZ state is given by E(|GHZ〉) = 1
2 .
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3.4 Chapter summary

In this chapter, we have discussed about measures of entanglement and other quan-
tum correlations. We first considered the concept of entanglement in the simplest
case, i.e., the bipartite case. In this case, we defined measures like concurrence and
logarithmic negativity, which are entanglement measures, as well as information-
theoretic measures like quantum discord and quantum work-deficit. We also defined a
measures of genuine multipartite entanglement for pure multipartite quantum states.
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CHAPTER4
Macroscopic quantum superpositions

4.1 Introduction

Quantum superposition is one of the fundamental principles in quantum mechanics,
and is considered to be the agent for various non-intuitive phenomena. According
to this principle, if a quantum object exists in two or more distinct quantum states,
then it can also exist in an arbitrary linear superposition of them. In other words, if
|ψ1〉 and |ψ2〉 represents two different situations of a physical system, then the same
system can also exist in |ψ〉 = c1|ψ1〉+ c2|ψ2〉, where c1 and c2 are arbitrary complex
number upto an irrelevant phase and a normalization. The principle of quantum
superposition in composite quantum systems, gives rise to another interesting feature
of quantum mechanics, which is (quantum) entanglement.

One of the important questions about quantum superposition is its scalability to
the macroscopic level. For a multiparty state to represent a macroscopic quantum
superposition, it has to be composed of a large number of subsystems, say qubits,
and simultaneously has to persist in a quantum superposition of at least two states,
which are “macroscopically distinct” [92,283]. The original idea of using macroscopic
superposition states was of Schrödinger in 1935 [22], where he introduced an entan-
gled state composed of a microscopic and a macroscopic part. These micro:macro
entangled states have since been found to be useful in technological pursuits, and
are also fundamentally important, e.g., for understanding the quantum measurement
problem and the quantum-to-classical transition [90,127,132,284,285]. These states
also have applications in quantum computation. Feynman proposed that complex
and large quantum systems can be efficiently simulated only by using a quantum
computer [286]. Shor’s algorithm demonstrated that quantum algorithms can be
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used to efficiently solve problems that may not be possible with classical ones [8].
Moreover, Steane proposed that to build a viable quantum computer that can com-
pile and implement a quantum algorithm, which outperforms the ones running on
classical machines, requires quantum coherence preserved in a system of about 103

qubits [287]. Such exciting developments on the theoretical front were accompa-
nied by several experimental proposals and realizations, by using e.g. photons, ion
traps, cold atoms, and nuclear magnetic resonance [15, 16, 18, 177, 288, 289]. These
experimental successes have led to further theoretical discussions to develop tools to
characterize such quantum superposition states.

In this chapter of the thesis, we discuss the Schrödiner’s cat state and it’s im-
portance in quantum theory. We then move on to discuss a few notions used for
quantifying the macroscopicity of quantum superposition states [92,115,124].

4.2 Schrödinger cat state

The Schrödinger cat state [22] is a quantum state of a composite system consisting
of microscopic and macroscopic parts that is used to state the so-called Schrödinger
cat “paradox”. The microscopic object is a radioactive atom and the macroscopic
object is a cat. A schematic diagram of the Schrödinger cat paradox is shown in Fig.
4.1. In this figure, a cat is kept inside a chamber together with a radioactive atom
and a flask of poison. The flask is attached to a hammer whose action on the poison
flask is controlled by a switch. The “on” and “off” states of the switch are further
controlled by whether the atom have decayed or not. If the atom is in its ground
state, no decay will happen and the flask will not break. On the other hand, if the
atom decays, the switch will be “on” and the flask will be broken with the stroke of
the hammer.

The linearity of quantum theory predicts the existence of a quantum state of the
combined micro:macro system that is

1√
2

(|up〉|alive〉+ |down〉|dead〉) . (4.1)

The undecayed state of the atom is denoted as |up〉, and the decayed state as |down〉,
making up a two-dimensional complex Hilbert space (qubit). The |alive〉 and the
|dead〉 states of the cat, on the other hand, was considered as a macroscopic system
again forming a qubit. From Eq. (4.1), we find that the cat is in two different
quantum mechanical states, in the closed chamber, depending on the decayed and
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Figure 4.1: Schematic representation of Schrödinger’s cat paradox experiment.

undecayed states of the atom. If the atom remains undecayed, the cat is in the
|alive〉 state, so that the composite system is in the state |up〉⊗ |alive〉. On the other
hand, if atom has decayed, the cat is in the |dead〉 state, with the composite system
as |down〉 ⊗ |dead〉. However, if the state in Eq. (4.1) exists, quantum theory also
allows the measurement of the atomic system in the basis {1

2(|up〉 ± |down〉)} which
leads to states of the cat which are formed by superposing |alive〉 and |dead〉 states
of the cat.

A quantum state of a multiparty system that has been considered to be a realiza-
tion of the Schrödinger cat state is the Greenberger-Horne-Zeilinger (GHZ) state [95],
which in the present context, can be written as

|GHZ〉 = 1√
2
(
|0〉µ|0⊗N〉A1...AN

+ |1〉µ|1⊗N〉A1...AN

)
. (4.2)

The party denoted by µ represents the microscopic part, while the parties A1 through
AN make up the macroscopic portion of the composite system. The microscopic part
is a single qubit, and is spanned by the orthonormal states |0〉 and |1〉. The macro-
scopic portion is built out of N qubits, denoted as A1, A2, . . . , AN , with each being
spanned by the orthonormal states |0〉 and |1〉. Comparing this state with the orig-
inal Schrödinger state, Eq. (4.1), |0⊗N〉A1...AN

can be thought of as representing the
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alive cat and |1⊗N〉A1...AN
as the dead cat. It is to be emphasised here that the |alive〉

and the |dead〉 cat states are macroscopically distinguishable. A question of concern,
both from the point of theory and experiment, therefore, is the characterization of
macroscopic distinguishability of the two macroscopic parts as a function of N . We
will discuss this issue in the next section.

4.3 Characterization of macroscopic quantum su-
perposition

If a quantum system is composed of N particles, then our interest in this section is
to investigate whether the system can possess a quantum state of the form |Ψ〉 ∝
|AN〉+ |BN〉, where [283]

1. N is sufficiently large, and

2. the states |AN〉 and |BN〉 are “macroscopically” distinguishable.

Leggett [92, 283] considered this question and proposed a measure, namely “dis-
connectivity”, to quantify genuine macroscopic quantum superposition. It is defined
by using von Neumann entropies of local density matrices of the N -particle state.
For a quantum state of N -particles, a quantity, δN ′ , is defined as

δN ′ = S(ρN ′)
minM(S(ρM) + S(ρN−M)) , (4.3)

where S(ρN ′) is the von Neumann entropy of the reduced state ρN ′ and N ′ ≤ N .
The disconnectivity D of a many-particle state is then defined as the largest N for
which δN is smaller than some fraction a. The disconnectivity of the N -qubit GHZ
state is N .

Dür, Simon, and Cirac [115] have investigated a method to characterize macro-
scopic quantum superposition of special types of multipartite states, given by

|Ψn〉 = 1√
K

(|φ1〉⊗n + |φ2〉⊗n), (4.4)

where |φ1〉 = |0〉 and |φ2〉 = cos(ε)|0〉+ sin(ε)|0〉 and K = 2 + 〈φ1|φ2〉n + 〈φ2|φ1〉n =
2(1 + cosn(ε)). Two different approaches were followed to identify what they called
“the effective particle number”, Neff , and found that for the states of the form in
Eq. (4.4), Neff = nε2.
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Lee and Jeong [124] has defined a measure of macroscopic quantumness for an
arbitrary M -mode harmonic-oscillator system using phase space representation of
states of the system. In particular, the states were expressed in terms of Wigner
function of the phase space variable. The measure defined in this way quantifies both
the degree of coherence and the effective size of the physical system that involves
the superposition.

Motivated by the Leggett [92] approach of characterizing the macroscopic quan-
tum superposition by devising methods to distinguish the macroscopic sectors in
macroscopic quantum superposition states as the number of parties are increased,
we consider the Schrödinger cat state given by

|ΨN〉 ∝ |0〉|AN〉+ |1〉|BN〉, (4.5)

where |0〉 and |1〉 are orthogonal states of the “minuscule” sector, similar to the
sector spanned by the decayed and undecayed states of the atom in Eq. (4.1), while
|AN〉 and |BN〉 are orthogonal states of the “large” sector, similar to the alive and
dead state of the cat’s state. The aim here is to identify properties, if possible,
of the two states of the large sector that show completely different characteristics
with increasing the number of parties in that sector. We use the critical visibility,
pcricN , associated with the states of the large sector, needed for the violation a Bell
inequality. For an N - party state |AN〉, consider a state of the form

ρ(pN) = pN |AN〉〈AN |+ (1− pN)ρ(N)
noise, (4.6)

where ρ(N)
noise = 1

2N I, with I being the identity operator on the Hilbert space of which
|AN〉 is an element. The aim here is to find the status of the violation of local realism
by the state, ρ(pN). For pN = 0, the state is identical to a maximal noisy state and
no violation of local realism occurs.

If the critical visibilities associated with two large states, |AN〉 and |BN〉, of the
large sectors, differ significantly with the increasing number of parties, N , then the
two sectors are macroscopically distinguishable. It is to be noted that for the N -party
GHZ state, the above method does not distinguish the two states of the large sector,
|0〉⊗N and |1〉⊗N . However, if for example one of the large sector states is the N -party
WN state, |WN〉 = 1√

N

∑ |10⊗N−1〉 and the other is |0〉⊗N , then, it can be shown that
the critical visibility of the two large sector states differ drastically [141,144]. There-
fore, a state of the form |ΨN〉 ∝

(
|0〉µ|WN〉A1...AN

+ |1〉µ|0⊗N〉A1...AN

)
could represent

a valid macroscopic quantum superposition. Our claim that the characterization
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of macroscopic superposition, presented here, in terms of Bell inequality violations
subsequent to local measurement, is a sufficient and not a necessary one.

In chapter 5, we characterize the macroscopicity of a class of multipartite states
by using the above method, and compare their macroscopicity with the N party
GHZ and other multiparty states.

The Bell inequality violation for the multiparty state that we use is the following.
Given a symmetric multiparty state |ΨN〉 of N parties, we perform measurements
at N − 2 parties, and consider the violation of Bell inequality and the corresponding
critical visibility to white noise of the post-measurement two-party state. In our
case, the two-party state is a two-qubit state, and we consider the Clauser-Horne-
Shimony-Holt (CHSH) inequality [290–292] for finding the extent of violation of local
realism of the two-qubit state. The Bell inequality violation of the multiparty state
is then defined as the violation amount for the two-qubit state maximized over the
measurement bases and measurement outcomes at the N−2 parties. For asymmetric
states, we need to perform an additional maximization over all choices of the N − 2
parties, among the N parties, where the measurements are carried out. Note that
this is a multiparty measure of local realism violation for the state |ΨN〉. This is
similar to the post-measurement Bell inequality violation considered in [293], and
is akin to the concept of localizable entanglement [294]. Relating violation of Bell
inequalities with macroscopicity was probably first done in Ref. [93], where N -qubit
GHZ states were shown to violate Bell inequalities by an amount that increases
exponentially with N . A different angle was explored in Ref. [295] (see also [283]),
where “macroscopic realism” was used as a premise in the derivation of a Bell-type
inequality.

4.4 Chapter summary

Quantum superposition is one of the fundamental concepts in quantum mechanics.
However, its existence at macroscopic scale remains debatable. The question of ex-
istence of macroscopic quantum superposition was put forward by Schrödinger to
understand the consequences of the postulates of quantum mechanics at the macro-
scopic scale. Current experimental techniques have made it possible to create a
superposition of multipartite states in different experimental setups, e.g., ion-trap,
photon, SQUID, etc. In this chapter, we have discussed about macroscopic su-
perpositions. We have identified a measure to characterize the macroscopicity of
a quantum state. It is motivated by an idea of Leggett on macroscopic quantum
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superpositions. We have used the violation of local realism by the states of large
systems to characterize macroscopic superpositions. The new results presented here
and in the next chapter are mainly based on the publications

1. Quantum superposition in composite systems of microscopic and macroscopic
parts resistant to particle loss and local decoherence,
Utkarsh Mishra, Aditi Sen(De), and Ujjwal Sen, Phys. Rev. A 87, 052117
(2013).

2. Local decoherence-resistant quantum states of large systems, Utkarsh Mishra,
Aditi Sen(De), and Ujjwal Sen, Phys. Lett. A 379, 261 (2015).
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CHAPTER5
A family of robust macroscopic quantum

superposition states

5.1 Introduction

In this chapter, we identify a class of quantum states, each of which consists of a mi-
croscopic(minuscule) and a macroscopic(large) sector, that are effectively decoherence-
free when each particle is locally passed through a noisy quantum channel. The
states under consideration are of the form |0〉|AN〉 + |1〉|BN〉, where |0〉 and |1〉 are
orthogonal states of the minuscule sector, while |AN〉 and |BN〉 are orthogonal states
of the large part of the state. N is the number of parties in the large part. We
will show that it is possible to choose the states |AN〉 and |BN〉 in such a way that
the resulting state is macroscopic in the sense of their drastic difference in visibil-
ities to Bell inequality violation. The quantumness of the considered state under
decoherence is calculated using measures of quantum correlations. The robustness
of entanglement [20] and other quantum correlations [21] of the state is considered
in the partition of the entire system into the minuscule and the large parts. The
large part contains, in general, a relatively larger number of particles than the mi-
nuscule part. For specificity, we consider quantum states which has unit amount of
entanglement in the minuscule to large bipartition.

We refer to the quantum states in the class that we investigate as the Hm
CN

states,
which have k particles in its minuscule part and N in its large part. The large sector
is built by using W states [142, 144, 145], or more generally, Dicke states [146] with
m excitations, and by an orthogonal product state. For the case when the large
sector is built by the W state and the product state, we call the entire state as the
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H-cat state and denote it by |HC〉. The large part of the Hm
CN

states can be shown
to be “macroscopic” in a sense discussed in chapter 4. To study the behavior of
quantumness of the state, we consider the effect of environment on each qubit of
the state. The environment is modeled by quantum channels, discussed in chapter
2. We consider five kinds of noise models: local bit flip, local bit-phase flip, local
phase damping, local amplitude damping, and local depolarizing channels. While
performing quantum information processing using multipartite quantum states, dif-
ferent kind of decoherence effects may arise. For example, when using photons as a
carrier of information, along with the environmental effects considered above, loss of
particles is also a source of decoherence. The effect of loss of photons as a source of
decoherence was, e.g., investigated in the teleportation protocol by Park et al. [296].
We consider also the effect of particle loss from the large sector of the state, as a
source of decoherence.

We first investigate the quantum correlations properties of the decohered H-cat
state under the noise models. In particular, we report the the effect of loss of a
finite particle in the large sector, local depolarizing channel to each qubit, and their
simultaneous effect on the H-cat state. We show that the H-cat state is robust, i.e.
can preserve quantum coherence in the form of quantum correlations between its
minuscule to large sector bipartition, against loss of a finite fraction of its particles
and against local depolarizations on all its particles, and with the simultaneous
action of both these noise effects. We then compare the robustness of this state
with other quantum states of large systems including the N -party GHZ state. In
particular, we find that for a finite number of particles in the macroscopic part, the
H-cat state is more robust to local depolarizing noise than the GHZ state. It is
important to mention here that it is not the multiparty entanglement of the noise-
affected H-cat state that we consider. Instead, we consider the bipartite quantum
correlations between the micro and the macro sectors of the noisy state. This is
because it is this quantity that affects the state’s ability to produce macroscopically
distinct superpositions in the large sector by measurements in the minuscule one.

We then discuss the effect of decoherence on the quantum correlation properties
of the Hm

CN
state given in Eq. (5.1). We observe that the content of entanglement

and other quantum correlations in the microscopic to macroscopic partition of this
class of states is independent of the number of particles in their macroscopic sectors,
when all the particles suffer passage through local amplitude and phase damping
channels. Decay of quantum correlations – entanglement as well as quantum discord
– of this class of states in the minuscule to large partition is also much lower in
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the case of all the local quantum channels, as compared to the other macroscopic
superposition states.

5.2 The Hm
CN

state as macroscopic quantum states

We define here a class of quantum states, each consisting of a minuscule and a large
part. We denote it by |Hm

CN
〉, and is given by

|Hm
CN
〉 = 1√

2
[|0⊗k〉µ|Wm

N 〉M + |1⊗k〉µ|0⊗N〉M ], (5.1)

where
|Wm

N 〉 = 1√(
N
m

) ∑ |1⊗m0⊗N−m〉. (5.2)

The sum in the last equation denotes the equal superposition of all the
(
N
m

)
combi-

nations of m |1〉’s and (N − m) |0〉’s. Here
(
N
m

)
= N !

m!(N−m)! . The suffix µ denotes
the microscopic part while the suffix M is for the macroscopic sector of the state.
We assume that 1 ≤ m < N . The case m = 0 is uninteresting, as then the µ : M
partition is unentangled. The Hm

CN
state becomes a GHZ state for m = N , which

is considered separately in the succeeding section. We will generally be interested
in the cases where 1 ≤ k � N , i.e., where the number of particles (qubits) in the
microscopic part is much smaller than that of the macroscopic part. For k = 1 and
m = 1, this reduces to the H-cat state [141,297].

The state |Hm
CN
〉 has unit entanglement in the µ : M partition, and is of the form

of the Schrödinger cat state, i.e., |0̄〉µ|alive〉M + |1̄〉µ|dead〉M , where |0̄〉µ and |1̄〉M are
orthonormal states of the microscopic part, and |alive〉M and |dead〉M are orthonor-
mal states of the macroscopic (cat) part. In the case of Hm

CN
, the “alive” and “dead”

states are modeled by |Wm
N 〉 and |0⊗N〉, with the latter pair being macroscopically

distinct in terms of their violation of Bell inequalities [144]. Following [144], we have
computed the critical visibility for the state |Wm

N 〉 beyond which the state violates
local realism. The critical visibility in this case is given by

pcritN (m) =

(
N
m

)
(
√

2− 1)2N−1 +
(
N
m

) (5.3)

which tends to zero as N →∞. It is in this sense that the states |Wm
N 〉 and |0⊗N〉 of

the large part of the H-cat state are macroscopically different. The Bell inequality
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violation for the multiparty state that we use here is discussed in chapter 4.
For investigating the quantum coherence of this class of quantum states, each

qubit of the Hm
CN

state is sent through a noisy quantum channel. We then investi-
gate the behavior of entanglement and quantum discord in the minuscule to large
bipartition.

5.3 Effect of local decoherence on the H-cat state

First of all, we will study the effects of decoherence on the coherence properties of the
H-cat state [141]. The H-cat state is obtained from the |Hm

CN
〉 state by substituting

m = 1 and k = 1. The H-cat state, shared between N + 1 particles, is given by

|HC〉µA1...AN
= 1√

2
(
|0〉µ|WN〉A1...AN

+ |1〉µ|0⊗N〉A1...AN

)
. (5.4)

Here we consider its coherence properties after it has been subjected, simultaneously
as well as separately, to local decoherence channels, in the form of local depolarizing
channels, on all its constituent particles (in the micro as well as the macro sectors)
and to loss of a finite fraction of its particles (in the macro part). The initial density
matrix, i.e. the density matrix of the H-cat state before it passes through the local
depolarizing channels and is affected by particle loss, is denoted here by ρinN+1 =
|HC〉〈HC |.

5.3.1 Effect of particle loss on the quantum correlations of
the H-cat

We have already discussed that in various information processing tasks, using pho-
tons as a carrier of quantum information, it is essential to consider the loss of particles
to account the effect of decoherence. In this section, we consider loss of particles as
a channel of decoherence in characterizing macroscopic quantumness of the H-cat
state. We begin with by considering a situation where the system looses a certain
number of particles from its macroscopic part. Suppose ρinN+1 looses l particles from
among the N particles constituting the macroscopic portion of the system. The re-
sultant density matrix will then be an (N − l+ 1) party system having the following
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Figure 5.1: Entanglement after particle loss in H-cat state. The horizontal axis
represents the number of particles lost (l) from the macroscopic part of the H-cat
state while the vertical one represents the entanglement between the micro and the
macro parts of the H-cat state after particle loss. The entanglement with respect to
l is plotted for different initial number of particles, N . The vertical axis is measured
in ebits, while the horizontal one is in particles.

form:

ρLN−l+1 = 1
2

[(N − l)
N

|0〉〈0| ⊗ |WN−l〉〈WN−l|

+ l

N
(|0〉〈0|)⊗N+1−l + |1〉〈1| ⊗ (|0〉〈0|)⊗N−l

+
√N − l

N
|0〉〈1| ⊗ |WN−l〉〈0⊗N−l|+ h.c.

]. (5.5)

Here, the tensor product notation has been retained between the microscopic part
(one qubit) and whatever has remained (N − l qubits) after the loss of m particles
from the macroscopic part. To investigate the effect of particle loss on the quantum
coherence of the H-cat state |HC〉µA1...AN

, we find the entanglement, as quantified by
logarithmic negativity, of the resultant state (after particle loss) in the µ : A1 . . . AN−l

bipartition. Note here that we have assumed, without loss of generality, that the
particles AN−l+1, AN−l+2, . . ., AN are lost. After taking the partial transposition
with respect to the microscopic sector of the system, the partial transposed state of
ρLN−l+1 is seen to be block-diagonal. The negative eigenvalue of the partial transposed
state is
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Figure 5.2: Quantum discord after particle loss in H-cat state. Other notations are
the same as in Fig. 5.1.

λ− = −1
2

(
1− l

N

)
. (5.6)

Therefore, the entanglement of H-cat state after the loss of ` particles is EN(ρLN−l+1) =
log2

(
2− l

N

)
. If l and N are such that the ratio l

N
is a finite constant, then the en-

tanglement between the microscopic and macroscopic parts will be less than unity,
but can still be substantially higher than zero. The behavior of entanglement of
the H-cat state with different rates of particle loss and for different total numbers
of particles, is depicted in Fig. 5.1. The logarithmic decrease of entanglement with
increasing numbers of particles lost, as seen from EN(ρLN−l+1), is also clearly visible
in Fig. 5.1.

We have also derived the quantum discord in the same situation, and found
that the qualitative behavior is the same, except for slight changes in the curvature
properties. In particular for N = 50, while about 85 % of the entanglement is
retained after 10 particles are lost, it is about 80 % for quantum discord. See Fig.
5.2. It is worth to mention here that, for calculating the quantum discords of various
states, we first find the corresponding state analytically, and then the optimization
in the definition of quantum discord is performed numerically.
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5.3.2 Effect of depolarizing channel on the quantum corre-
lations of the H-cat

The depolarizing channel destroys off-diagonal elements of a quantum density matrix,
destroying quantum coherence in the state, and is the usual model for decoherence
phenomena [2]. Note that this is a local noise model, which is a natural choice for
multiparty experimental situations, and our interest is in analyzing the coherence
retained, after the action of this local noise on all the qubits building up the state.
The form of the depolarizing channel, that we have used in this section, is given by
Eq. (2.23) in chapter 2. We now investigate the quantum correlation properties of
the H-cat state under local decoherence effects on all the N +1 constituent particles.
To this end, each particle, whether from the microscopic or the macroscopic sector,
of the initial state ρinN+1, is fed to a depolarizing channel, Dp. The output state,
after this process, can be expressed as D1

p ⊗ D2
p ⊗ . . . ⊗ DN+1

p ρinN+1 ≡ ρ
Dp

N+1, where
D1
p, D

2
p, . . . , D

N+1
p are N + 1 depolarizing channels acting on the N + 1 particles in

the initial state. The entanglement and quantum discord of the locally decohered H-
cat state can now be analyzed in the micro : macro bipartition. The mathematical
form of the entanglement will be presented in a more general context below, and
so we refrain from presenting it here. The results for entanglement are depicted
in Fig. 5.3, where we also present the corresponding curves for the GHZ states.
Interestingly, we obtain that the H-cat state is more resistant to local decoherence
than the GHZ state, and for example, for 10 particles in the macroscopic part, the
H-cat state can preserve entanglement up to 44% of local decohering noise, while
the GHZ state remain entangled until 28% of the same noise. Quantum discord has
a qualitatively similar behavior, and e.g. for N = 7, the quantum discord in the
micro : macro partition for the GHZ state becomes < 5 × 10−4 for p ≈ 0.44, while
the same happens for the H-cat state for p ≈ 0.85. See Fig. 5.4 for a depiction.
The behavior of the entanglement of the H-cat state under local decoherence, for
arbitrary N , can be read off from the formulas in Sec. 5.3.3 by setting m = 0. A
plot of the entanglement for N = 103 is presented in Fig. 5.6. This is the m = 0
curve (continuous blue line) there.

5.3.3 Effect of both particle loss and local decoherence on
the H-cat

We now consider the situation where the H-cat state is affected by local decoherence
as well as by particle loss. We assume that l particles are lost (from the macro
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Figure 5.3: Entanglement of GHZ and H-cat states against local decoherence. While
the continuous lines are for the GHZ states, the discontinuous ones are for the H-cat.
The horizontal axis represents the dimensionless (decohering noise) parameter p, and
the vertical axis is the entanglement in the micro : macro bipartition (in ebits).

part) and that the remaining N − l+ 1 particles are all affected by local decoherence
as modelled by the depolarizing channel. The entanglement in the micro : macro
bipartition is analyzed for the resulting (N − l + 1)-party state. There are two
eigenvalues of the partial transposed state that make the maximum contribution.
We denote them by λ(1)

− and λ(2)
− , where |λ(1)

− | > |λ
(2)
− |. Their explicit forms are given

by

λ
(1)
− = 1

4

{
c+ (N − l − 1)d+ a

−
√

4(N − l)b2 + (c+ (N − l − 1)d− a)2
}
, (5.7)

where

a = γ1p̃+ l

N
p̃N−l+1 + p

2 p̃
N−l,

b = 1√
N

(1− p)2p̃N−l−1,

c = α1
p

2 + l

N

(
p

2

)2
p̃N−l−1 + p

2 p̃
N−l,

d = 1
N

p

2(1− p)2p̃N−l−2,
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Figure 5.4: Quantum discord of GHZ and H-cat states against local decoherence.
We plot the quantum discord (in ebits) on the vertical axis against the depolarizing
parameter p (dimensionless) on the horizontal axis. The dashed line is for the GHZ
state, while the continuous one is for the H-cat. The system is of 8 particles, so that
N = 7. The states are led into local depolarizing channels at all the parties. The
quantum discord of the output state is calculated in the micro : macro partition,
where the measurement is carried out in the micro part.

with α1 = 1
N

(
p̃N−l + (N − l − 1)(p2)2p̃N−l−2

)
, γ1 = (N−l

N
)(p2)p̃N−l−1, p̃ = 1− p

2 , and

λ
(2)
− = 1

4

{
(a1 − b1 + f + Ñg)

−
√

4(Ñ + 2)e2 + (−a1 + b1 + f + Ñg)2
}
, (5.8)

where

a1 =
(
p

2

)2
p̃N−l−1 + l

N

p

2 p̃
N−l + γ2p̃,

b1 = 1
N

(1− p)2p̃N−l−1,

e = 1√
N

(1− p)2p

2 p̃
N−l−2,

g = 1
N

(1− p)2
(
p

2

)2
p̃N−l−3,

f =
(
p

2

)2
p̃N−l−1 + l

N

(
p

2

)3
p̃N−l−2 + α2

p

2 ,
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Figure 5.5: Effect of local decoherence and particle loss on H-cat state. Entanglement
(measured in ebits) in the micro : macro bipartition is plotted on the vertical axis
against a base of the dimensionless depolarizing parameter p, and the number of lost
particles (l). The H-cat state under consideration is of 11 qubits, so that N = 10.

with α2 = (1/N)[2p̃N−l−1(p/2) + (N − l − 2)(p/2)3p̃N−l−3], γ2 = 1
N

(p̃N−l + (N − l −
1)
(
p
2

)2
p̃N−l−2), Ñ = N − l − 4.

The remaining eigenvalues make a contribution to the logarithmic negativity that
is rather insignificant, and so for N = 8, l = 1 and p = 0.1, their contribution to
the entanglement is less than 10−2. Note here that by setting l = 0, we can obtain
the entanglement expressions for the case when decoherence occurs without particle
loss.

The entanglements are plotted in Figs. 5.5 and 5.6. In particular, in 5.6, we
consider the case when the macroscopic system is constituted out of N = 103 par-
ticles, and we find that the entanglement in the micro : macro bipartition remains
almost at its initial maximal value even with the loss of about 10% of its particles.
Entanglement remains nonzero even when the remaining 90% particles are fed to
local depolarizing channels until p . .03.
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Figure 5.6: Effect of local decoherence and up to 10% particle loss on a H-cat state
of 103 + 1 qubits. All other considerations except the values of N and l are the same
as in Fig. 5.5. The inset shows the details near p = 0.

5.4 Noise effects on entanglement of other mi-
cro:macro states

In this section, we compare other potential cat states with the H-cat state. We
consider some other micro:macro states, and compare their ability to withstand
particle loss. We begin by considering the state

|Ψ1〉µA1...AN
= 1√

2
(
|0〉µ|WN〉A1...AN

+ |1〉µ|W̃N〉A1...AN

)
, (5.9)

where
|W̃N〉A1...AN

= σx
⊗N |WN〉A1...AN

, (5.10)

with σx = |0〉〈1|+ |1〉〈0|. The state |Ψ1〉 is the G state of Ref. [145]. This state is a
cat-like state in the sense that the states |W 〉 and |W̃ 〉 are macroscopically distinct
in terms of their σz-magnetizations, just like in the case of the GHZ state. This
state, however, becomes separable if, for any N , we lose more than two particles.

Another state that can be considered as the micro:macro state is apparently quite
similar to the H-cat state, with only the N-qubit W state state replaced by the state
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|W̃N〉. This state therefore is

|Ψ2〉µA1...AN
= 1√

2
(
|0〉µ|W̃N〉A1...AN

+ |1〉µ|0 . . . 0〉A1...AN

)
. (5.11)

This state is a cat-like state in the same sense as the H-cat state – the Bell inequality
violations of |W̃N〉 and |0 . . . 0〉 are drastically different. Moreover, the states |W̃N〉
and |0 . . . 0〉 are also macroscopically different in terms of their σz-magnetizations.
This state becomes separable if, for any N , we lose more than one particle.

An interesting generalization of the GHZ state is the concatenated GHZ [138]
state

|Ψ3〉 = 1√
2
(
|GHZ+

p 〉⊗(N+1) + |GHZ−p 〉⊗(N+1)
)
, (5.12)

where
|GHZ±p 〉 = 1√

2
(
|0〉⊗p ± |1〉⊗p

)
. (5.13)

Here, there are N+1 logical qubits, and each logical qubit is built by using p physical
qubits. Loss of all physical qubits from a logical qubit renders this state separable,
like the GHZ state. Also, loss of some physical qubits from different logical qubits
leads to separable states.

Yet another state is [92]

|Ψ4〉 = 1√
2

(|0〉|WN〉+ |1〉|W⊥
N 〉). (5.14)

where
|W⊥

N 〉 = 1√
N

N∑
i=1

ωi−1|0 . . . 1i . . . 0〉. (5.15)

The index i denotes the position of |1〉, while the remaining positions are filled with
|0〉s. ω is an nth complex root of unity. After a loss of l particles from the macroscopic
sector of the state, the resulting state is a state of N − l + 1 parties, and can be
written as

ρN−l+1
Ψ4 = 1

2(N̄ |01̄〉〈01̄|+ l̄|00̄〉〈00̄|+ N̄ |11̄〉〈02̄|

+ α|10̄〉〈00̄| + h.c.), (5.16)

where |0̄〉 = |0 . . . 0〉, |1̄〉 = |WN−l〉, |2̄〉 = |W⊥
N−l〉, and N̄ = N−l

N
, l̄ = l

N
, α =∑l

i=1 ω
N−i. The eigenvalues of the partially transposed matrix in the micro : macro

bipartition are − N̄
2 , N̄

2 , N̄
2 , N̄

2 , l−2|α|
2N , l+2|α|

2N . Since 0 ≤ |α| ≤ 1, there is only one

50



negative eigenvalue, namely − N̄
2 , for l 6= 0. We have seen in the case of H-cat

state that the same eigenvalue contributes to the negativity, and hence in turn to
the logarithmic negativity, which quantifies the entanglement in the micro : macro
bipartition. So the behavior of |Ψ4〉, under particle loss, is the same as of the H-cat
state. However, the states |WN〉 and |W⊥

N 〉 are neither macroscopically distinct in
terms of their magnetizations nor in terms of their violations of Bell inequalities, or
for that matter, any quantum correlation properties.

After discussion of the robustness of the H-cat state, we will now present the ro-
bustness of the Hm

CN
state. The state Hm

CN
can be considered a macroscopic quantum

superposition in the sense defined in chapter 4 and Eq. (5.3). Thus, the Hm
CN

state
represent a class of macroscopic quantum superposition states for each value of m.

5.5 Effect of decoherence on the Hm
CN

state

In this section, we discuss the effect of decoherence on the quantum correlations
properties of Hm

CN
when there are k particles in the microscopic sectors of the state.

We then address two aspects of these states: (1) we consider the effects of local
decoherence on these states and identify the state which is more robust against
local noise than the other states, and (2) we study the scaling behavior of quantum
correlations of this class of states with the increase in number of particles against
noise.

5.5.1 Effect of local phase damping channel on the Hm
CN

state

Let us begin with the situation when each qubit of the Hm
CN

state is sent through
a phase damping channel (Sec. 2.2.3). The block of the local phase damped Hm

CN

state, after partial transposition, which contributes in the calculation of logarithmic
negativity, in the micro : macro bipartition, is of the form

Blpdc
Hm

CN

= 1
2



0 b . . . b

b 0 . . . 0
. . . . . .

. . . . . .

. . . . . .

b 0 . . . 0


,
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Figure 5.7: Entanglement and quantum discord of the local phase damped Hm
CN

state.
We plot the logarithmic negativity (in ebits) and quantum discord (in bits) on the
vertical axes versus the decoherence parameter p (dimensionless) on the horizontal
axes, for the Hm

CN
state, after each of the qubits are affected by phase damping noise.

The plot are displayed for m = 1, 2, and 3. Note that for m = 1, the Hm
CN

state is the
same as the HC state. All plots are for N = 6 and for k = 1. Here, and in the rest of
the paper, we mostly plot the curves for the different quantities for a modest number
of particles in the large sector (which, in the current case implies that we are dealing
with a 27 × 27 matrix). This is despite the fact that in many cases, we can consider
bigger system sizes and even have analytical results for arbitrary N . We however feel
that the curves for the relatively modest system sizes will give the reader a feeling of
the situation in a potential experimental realization of the phenomena considered.

where b = 1√
(N

m)
(1 − p)k+m. The block is obtained by considering the action of the

LPDC on the off-diagonal elements of the state given in Eq. (5.1). We have to see
how the term ((|0〉µ〈1|)⊗k⊗|Wm

N 〉M〈0 . . . 0| +(|1〉µ〈0|)⊗k⊗|0 . . . 0〉M〈Wm
N |) transforms

under the LPDC. To see it more closely, let us define |0⊗N〉M = |0̄〉, |Wm
N 〉M = |1̄〉,

and |0⊗k〉µ = |¯̄0〉, |1⊗k〉µ = |¯̄1〉. The diagonal terms transform as

|¯̄1〉〈¯̄1| ⊗ |0̄〉〈0̄| 7→ |¯̄1〉〈¯̄1| ⊗ |0̄〉〈0̄|
|¯̄0〉〈¯̄0| ⊗ |1̄〉〈1̄| 7→ |¯̄0〉〈¯̄0| ⊗D + |¯̄0〉〈¯̄0| ⊗OD, (5.17)

whereD is diagonal in the basis formed by the elements of the superposition∑ |1⊗m0⊗N−m〉
in Eq. (5.2), and OD consists of off-diagonal elements in the same basis. On the
other hand, the off-diagonal terms transform as

|¯̄0〉〈¯̄1| ⊗ |1̄〉〈0̄| 7→ (1− p)m+k|¯̄0〉〈¯̄1| ⊗ |1̄〉〈0̄|
|¯̄1〉〈¯̄0| ⊗ |0̄〉〈1̄| 7→ (1− p)m+k|¯̄1〉〈¯̄0| ⊗ |0̄〉〈1̄| (5.18)
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As we can see, the transformed diagonal terms do not interfere with the transformed
off-diagonal terms, and therefore, only one independent block will contribute in the
negativity and hence in the logarithmic negativity of the state given in Eq. (5.1)
in its micro : macro bipartition under LDPC. The size of the block is (

(
N
m

)
+ 1) ×

(
(
N
m

)
+ 1). The eigenvalues of this block are calculated analytically and only one

negative eigenvalue is obtained. The negative eigenvalue is given by

λlpdcHm
CN

= −1
2(1− p)k+m. (5.19)

Therefore, the logarithmic negativity of the local phase damped state is given by

Elpdc
Hm

CN

(k,m) = log2[2|λlpdcρHm
CN

|+ 1]. (5.20)

An important point to note is that the entanglement does not depend on the total
number of particles, N . That is, the effect on the Hm

CN
state after all N qubits of

the state are sent through phase damping channels, is independent of the size of the
macroscopic part. As we will see below, (Sec. 5.5.2), this beautifully simple situation
persists for the local amplitude damping channel. The case is richer for the local
depolarization (Sec. 5.5.3), and the noise-affected state does depend on N , although
the scaling of quantum correlations is better than in the noise-affected GHZ state.
Coming back to local phase damping, when m = 1, k = 1, we obtain

Elpdc
Hm

CN

(1, 1) = log2(γ2 + 1), (5.21)

with γ = 1− p. This value of entanglement is the maximum among all other states
in this class, i.e., among all Hm

CN
, as also observed in Fig. 5.7. Moreover, note that

in the noiseless case, the entanglement is unity for all Hm
CN

.
Instead of entanglement, if one considers quantum discord, in the micro : macro

bipartition, we again find that the H1
CN

state, with a single particle in the microscopic
section, is maximally robust under this kind of noise than all the other states in this
class (see Fig. 5.7). Moreover, numerical simulation indicates that quantum discord
for this class of states is also independent of system-size of macroscopic part up to
first order of magnitude (see Fig. 5.8). It is also observed that the independency of
quantum discord on the number of parties in the macroscopic sector remains valid
for higher values of k.
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Figure 5.8: Independence of quantum discord of the local phase damped H1
CN

state
on the number of particles in the macroscopic sector. Quantum discord (in bits) for
the H1

CN
state (i.e., the HC state) for different values of N after the state is local

phase damped, is plotted on the vertical axis, against the decoherence parameter
p (dimensionless) on the horizontal axis. Here, the microscopic part of the state
consists of a single particle (i.e., k = 1). This shows that the quantum discord, like
entanglement, is independent, up to numerical accuracy, of size of the macroscopic
sector. A similar feature holds for higher values of k. The inset shows the same
figure blown up near p = 0.

5.5.2 Effect of local amplitude damping channel on the Hm
CN

Consider now the situation when all the qubits of the Hm
CN

state are sent through
amplitude damping channels. In this case, the block of the partially transposed
local amplitude damped Hm

CN
state, which gives negative eigenvalues contributing to

entanglement in the micro : macro bipartition is an (
(
N
m

)
+ 1) × (

(
N
m

)
+ 1) matrix,
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Figure 5.9: Independence of quantum discord of the local amplitude damped Hm
CN

state on the number of particles in the macroscopic sector. All other considerations
are the same as in Fig. 5.8, except that we do not have the inset here.

and is given by

Bladc
Hm

CN

= 1
2



pk + pm (1−p)
m+k

2√
N̄

. . . (1−p)
m+k

2√
N̄

(1−p)
m+k

2√
N̄

0 . . . 0
. . . . . .

. . . . . .

. . . . . .

(1−p)
m+k

2√
N̄

0 . . . 0


.

Here, N̄ =
(
N
m

)
. We have used the same method as for the LPDC, to obtain the

block contributing in the negativity of the state given in Eq. (5.1) under LADC.
Here, after the channel has acted, the diagonal terms interfere with the off-diagonal
terms, and therefore the first element of the block Bladc

Hm
CN

is non-zero. The negative
eigenvalue of this matrix, denoted by λladcHm

CN

, is given by

λladcHm
CN

= 1
4(pk + pm −

√
(pk + pm)2 + 4(1− p)k+m), (5.22)
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Figure 5.10: Logarithmic negativity and quantum discord against the noise param-
eter of amplitude damping channel, for the local amplitude damped Hm

CN
state. All

other considerations are the same as in Fig. 5.7.

and therefore the logarithmic negativity is

Eladc
Hm

CN

(k,m) = log2[2|min(0, λladcHm
CN

)|+ 1]. (5.23)

It is clear from Eqs. (5.22) and (5.23) that the logarithmic negativity is independent
of N , just as for the local phase damping channel. Quantum discord, which is
obtained numerically, is also independent of system size, as depicted in Fig. 5.9, for
k = 1. The independency of quantum discord on N holds true also for higher values
of k. For k = 1 and m = 1, the negative eigenvalue in Eq. (5.22) reduces to

λladcHm
CN

(1, 1) = 1
2(p−

√
p2 + (1− p)2). (5.24)

Just like for the local phase-damping channel, the state H1
CN

can sustain more noise
than any other states in this class for both the quantum correlation measures. Note
here that quantum discord is non-zero for the entire range of the noise parameter,
except at p = 1. Both the quantum correlations are plotted in Fig. 5.10 for different
values of m.

5.5.3 Effect of local depolarizing channel on the Hm
CN

state

We now consider the effect of the local depolarizing channel on the Hm
CN

state. Unlike
phase and amplitude damping channels, entanglement in this case does depend on
the total number of particles, N , in the macroscopic part, and decreases with the
increase of N . We also probe the behavior of entanglement with respect to m for
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Figure 5.11: Logarithmic negativity and quantum discord for the local depolarized
Hm
CN

state against the noise parameter of the depolarizing channel. All other con-
siderations are the same as in Fig. 5.7.

fixed total number of particles and also for a fixed number, k, of parties in the
microscopic part.

As seen in Fig. 5.11 (left), the state with two excitations (i.e., m = 2), is more
robust against local depolarizing channels than the state with one excitation (i.e.,
m = 1). Likewise, quantum discord decreases with the increase of excitations (see
Fig. 5.11 (right)).

5.5.4 A comparison of the local decohering channels

It is interesting to find the channel, from the ones considered in this thesis, that is
least destructive for the Hm

CN
. For fixed N , m, and k, we compared their effects on

entanglement and discord of the state. An example of such comparison is presented
in Fig. 5.12. It is observed that for both the quantum correlation measures, the
local depolarizing channel is maximally destructive. The local amplitude damping
channel is much less destructive in both cases. The local phase damping channel
has, however a richer behavior. It is minimally destructive to logarithmic negativity,
while surprisingly being almost maximally destructive to quantum discord.

5.6 Effect of decoherence on the GHZ state

Up to now, we have studied decoherence effects on the Hm
CN

state for different models
of decoherence. In this section, we study effects of these noise models on the well-
known macroscopic state, the GHZ state. The GHZ state, consisting of k parties in
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Figure 5.12: How much quantum correlation is retained against which noise? Log-
arithmic negativity and quantum discord for different noisy channels in the micro :
macro bipartition for the H1

CN
state for k = 1. Here we have taken N = 6. The verti-

cal axes are in ebits for logarithmic negativity and in bits for quantum discord. The
dimensionless parameter p on the horizontal axes corresponds to the noise parameter
in the LPDC, the LADC, or the LDPC.

the microscopic part and N in the macroscopic one, is given by

|GHZ〉N+k = 1√
2

(|0⊗k〉µ ⊗ |0⊗N〉M + |1⊗k〉µ ⊗ |1⊗N〉M). (5.25)

Just like the Hm
CN

state, the |GHZ〉N+k state also possesses one ebit of entangle-
ment which is the same as its quantum discord, in the microscopic to macroscopic
bipartition. In this section, we will study the trends of quantum correlations of the
|GHZ〉N+k state, against the three local noise models that we had considered for
the Hm

CN
state, and compare with those of the Hm

CN
state. It has to be noted here

that the macroscopic sector of the Hm
CN

state consisting of N -qubit Dicke state has
non-zero entanglement in any bipartition while both the states of the same sector of
the GHZ state have zero entanglement to begin with.

5.6.1 Effect of local phase damping channel on the GHZ
state

Let us begin by considering the effect of local phase damping channels on the GHZ
state. After each qubit of the GHZ state is sent through a phase damping channel,
the resulting state can be written as

ρlpdcGHZN+k
= 1

2

(
P µ⊗k

0 ⊗ P0...0 + P µ⊗k
1 ⊗ P1...1 + A(P µ⊗k

0,1 ⊗ P0...0,1...1 + h.c.)
)
, (5.26)
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where A = (1 − 2β)N+k, β = p
2 , P µ

0 = |0〉〈0|, P µ
1 = |1〉〈1|, P µ

0,1 = γ|0〉〈1|, P0...0 =
|0 . . . 0〉〈0 . . . 0|, P1...1 = |1 . . . 1〉〈1 . . . 1|, P0...0,1...1 = |0 . . . 0〉〈1 . . . 1|. Here, γ = 1 −
p. After performing the partial transpose on the state ρlpdcGHZN+k

with respect to
micro : macro bipartition, the matrix Blpdc

GHZN+k
, whose eigenvalues contribute to

the entanglement of the noisy GHZN+k state in the micro : macro bipartition, is
found to be of the form

Blpdc

GHZN+k
=
 0 (1−2β)N+k

2
(1−2β)N+k

2 0

 ,
and hence the entanglement is given by

Elpdc

GHZN+k
= log2[(1− p)N+k + 1]. (5.27)

It is clear from Eq. (5.27) that the entanglement of the state depends on the number
of the particles in the macroscopic part. This is in sharp contrast to the situation in
the case of the Hm

CN
state, where quantum correlations do not depend on the number

of particles in the macroscopic part of the state. Note that the exponential of the
logarithmic negativity decreases as (1− p)k+m for the Hm

CN
state (Eq. (5.20)), while

as (1 − p)N+k for the GHZ state (Eq. (5.27)). Since m < N , the entanglement of
the Hm

CN
state under a noisy environment, as modeled by local dephasing channels,

is more than that of the GHZN+k state, for any N , m, and k. The entanglements
match for m = N . The Hm

CN
and GHZN+k states are equal up to local unitary

transformations form = N . But this does not imply equality of the entanglements for
all channels, as the local unitary transformations and the local decohering channels
may not commute. Note also that it is certainly possible to consider the case when
1 ≤ m� N , and in such cases, (1− p)k+m and (1− p)k+N are very different.

5.6.2 Effect of local amplitude damping channel on the GHZ
state

In this case, all the qubits of the GHZN+k state are sent through amplitude damp-
ing channels. The block of the total matrix, after partial transposition, which is
responsible for non-zero logarithmic negativity is

Bladc
GHZN+k

= 1
2

 pkγN γ
N+k

2

γ
N+k

2 pNγk

 .
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Correspondingly, the eigenvalue which can be negative for some values of p, is given
by

λladcGHZN+k
= 1

4

(
pkγN + pNγk −

√
(pkγN + pNγk)2 + 4γN+k(1− pN+k)

)
. (5.28)

For fixedN , comparing Eqs. (5.22) and (5.28), we find that under the local amplitude
damping channel, the H1

CN
state has higher entanglement than the GHZN+k state

for all N > 2 and for k � N . See Figs. 5.13. Moreover, the “critical value” of the
decohering parameter, p, at which the decohered state becomes separable, is always
greater for the H1

CN
state than that for the GHZN+k state for all N > 2 and for

k � N (see also Table I). For higher values of m, i.e. for m > 1, the Hm
CN

state
has higher entanglement than the GHZ state, provided we choose sufficiently high N
(See Figs. 5.13). Note that unlike the case of the local phase damping channel, the
entanglements of the local amplitude damped HN

CN
and GHZN+k states do not match.

However, the local amplitude damped HN
CN

can have only a lower entanglement than
the local amplitude damped GHZN+k. This is clearly seen from Eqs. (5.22) (for
m = N) and (5.28) (see also Fig. 5.13 for m = 1, 10, 20, 30).

5.6.3 Effect of local depolarizing channel on the GHZ state

Let us now study the effect of local depolarizing channels on the GHZN+k state. To
calculate the entanglement, in the micro : macro bipartition, we have to find the
negative eigenvalue of the matrix given by

Bldpc

GHZN+k
= 1

2

 a b

b a

 ,
where a = αkβN + βkαN , b = γN+k, γ = (1 − p) and α = (1 − p

2) . The eigenvalue
of Bldpc

GHZN+k
, which is negative for some values of p, is given by

λldpcGHZN+k
= 1

2[αkβN + αNβk − γN+k]. (5.29)

The logarithmic negativity, then, is given by

Eldpc

GHZN+k
= log2(2|min(0, λldpcGHZN+k

)|+ 1). (5.30)

For six particles in the macroscopic sector and a single particle in the microscopic
one, a comparison of entanglement and discord between the |H1

CN
〉, |H2

CN
〉, |H3

CN
〉,
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Figure 5.13: Comparison of the entanglements of the local amplitude damped Hm
CN

and GHZN+k states. We plot here the difference, D, between the logarithmic neg-
ativities (logarithmic negativity of the noisy Hm

CN
state minus that of the noisy

GHZN+k state) of the local amplitude damped Hm
CN

and GHZN+k states for k = 1
and m = 1, 10, 20, 30, on the vertical axes, against the amplitude damping parame-
ter, p, on the horizontal axes, for different number of qubits, N , in the macroscopic
part. The logarithmic negativities are measures in ebits, while N is measured in
qubits. p is a dimensionless parameter. The curves are plotted in the respective
cases only up to a certain value of N , that depends on m. For higher N , the curves
are always positive with respect to the vertical axis. The highest value of N , for a
given m, that is plotted in a given panel, is however not necessarily the highest value
of N , for which D ≥ 0 for all p. The D = 0 line is marked on all the panels for ease
of reference.
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Figure 5.14: The panels are the same as in Fig. 5.11, except that there is an
additional curve in each panel corresponding to the GHZ state for k = 1, N = 6.
See Table I for numerical values.

and the GHZ states, after they are affected by local depolarizing channels, is pre-
sented in Fig. 5.14. We find that the |H1

CN
〉, |H2

CN
〉 and |H3

CN
〉 can sustain about

43%, 46%, and 45% noises respectively, while the GHZ remains robust against up to
34% noise, for k = 1 and N = 6. When k = 2, the value of p at which logarithmic
negativity vanishes is 0.445 for the |H1

CN
〉 state while it is 0.43 for the GHZ state.

When k = 3 these values are 0.42 and 0.48 for the |H1
CN
〉 and GHZ states, respec-

tively. A comparison between the |H1
CN
〉 and GHZ states, after they are affected by

local depolarizing channels, is presented in Fig. 5.15 for different values of k. A com-
parison with respect to robustness of entanglement and quantum discord, between
the different noise models, of the GHZ state is presented in Fig. 5.16. The latter
comparison reveals a picture that is quite different from that obtained in a similar
comparison in Fig. 5.12 for the Hm

CN
state. See Figs. 5.12 and Fig. 5.16 for more

details.

5.7 Effect of local bit and bit-phase flip channels
on the GHZ and the Hm

CN
states and their com-

parison

In this section, we will compare the effects on the quantum correlations of the Hm
CN

state with those of the GHZ state, in their µ : M bipartitions when each qubit of the
states is sent through the bit flip or the bit-phase flip channel with error probability
p. In case of the bit flip, logarithmic negativity of the Hm

CN
state is decreasing
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Figure 5.15: H1
CN

(left panel) and GHZ (right panel) after being affected by local
depolarizing channels for different number of particles in the macroscopic sectors.
The vertical axes represent logarithmic negativity (in ebits) in the micro : macro
bipartition, the horizontal axes correspond to the depolarizing parameter, p (dimen-
sionless). We choose N = 6. As is clear from the panel on the right, increase of
k for a fixed N leads to increase in logarithmic negativity for the GHZ state. The
insets reveal the situations where the entanglements vanish. The axes of the insets
represent the same quantities as of the corresponding parent figures.
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Figure 5.16: The panels are the same as in Fig. 5.12, except that all the curves cor-
respond now to the noise-affected GHZ states instead of the H1

CN
states. Comparing

the panels here with those of Fig. 5.12, we see that the noise-affected GHZ states
behave very differently from the corresponding noise-affected H1

CN
states. This is

especially true for the entanglements of the local phase damped states and for the
quantum discords of the states after being affected by any type of noise.
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Figure 5.17: Effect of local bit flip error on the Hm
CN

state for N = 6, 8, 10, m = 1,
and k = 1 with respect to its logarithmic negativity and quantum discord in the µ :
M bipartition. Other considerations are the same as in Fig. 5.7.

with respect to the error probability p. It is also decreasing with increasing number
of qubits in the large sector (see Fig. 5.17). The decrease in entanglement with
respect to N is very small and therefore we can say, up to numerical precision, that
the logarithmic negativity remains independent of N . Quantum discord of the bit-
flipped Hm

CN
state for different number of qubits in the large sector is shown in the

right panel of Fig. 5.17 for m = 1 and k = 1. The quantum discord, up to numerical
accuracy, also remains unaffected with the increase in N . The quantum discord is
obtained numerically with the measurements done on the minuscule sectors. The
entanglement of the GHZ state, in the µ : M bipartition increases with N for fixed
p. It can be calculated exactly for arbitrary N [298]. Quantum discord for GHZ
state, after being affected by the local bit flip error channel is also increasing with
N , although the increase is very small as compared to that for entanglement.

To see the role of m on the quantum correlations of bit flip error affected Hm
CN

state, we have calculated the logarithmic negativity and quantum disocrd for the
N = 6 qubit Hm

CN
state for different values of m ranging from m = 1 to 5. We

find that as we increase m, the entanglement of the Hm
CN

state increases and reaches
a value close to that of the GHZ state. Quantum discord of the Hm

CN
state also

increases with increasing m and becomes almost equal to that for the GHZ state for
m ≈ 3.

The situation for the bit-phase flip error affected Hm
CN

state is very similar.
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Table for critical values of decoherence parameter for different states un-
der different noisy channels.

Channel H1
CN

H2
CN

H3
CN

GHZ G HN−1
CN

HN
CN

LPDC 97.5 92 86 67.5 81 73 67.5
LADC 97 91 84 78 87 73.5 75
LDPC 43 46 45 33 43 39 33

Table 5.1: Comparison of “critical values” of decoherence at which the entanglement
vanishes for different states under different noisy channels. The critical point has
been taken at the value of decoherence parameter where logarithmic negativity be-
comes less or equal to 10−4. The values are exhibited as percentages of the noise
level that the corresponding state can sustain before becoming separable. The states
considered to construct this Table consists of one qubit in its minuscule sector and
six qubits in its large sector. The first column shows the type of local noise acting
on the state. The second, third, fourth, fifth, sixth, seventh, and eighth columns
exhibit the critical values for the H1

CN
, H2

CN
, H3

CN
, GHZ, G, HN−1

CN
, and HN

CN
states

respectively. The G state appears in Eq. (5.31). Note that the critical values for the
GHZ and HN

CN
states are the same for the LPDC and LDPC, while they differ for

the LADC.

5.8 Effect of local decoherence in other macro-
scopic quantum states

In this section, we will discuss the effects of noise on quantum correlations of some
further macroscopic states. We then compare their results with those of the Hm

CN

and GHZN+k states.

5.8.1 G state

Consider the state

|G〉µA1...AN
= 1√

2
(
|0〉µ|WN〉A1...AN

+ |1〉µ|W̃ 〉A1...AN

)
, (5.31)

introduced in [145], where

|W̃N〉A1...AN
= σ⊗Nx |WN〉A1...AN

, (5.32)

with σx = |0〉〈1|+|1〉〈0|. This state is a cat-like state in the sense, that the states |W 〉
and |W̃ 〉 are macroscopically distinct in terms of their σz-magnetizations, similar to
the case of the GHZ state. In the absence of noise, this state also possesses maximum
entanglement in the micro : macro bipartition.
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Let us begin by considering the effect of local phase damping channels on the
state |G〉µA1...AN

. In this case, the block which gives the negative eigenvalues has
dimension 2N × 2N , and is given by

Blpdc
G = 1

2

 0N×N BN×N

BN×N 0N×N

 ,
where

BN×N =



γN−1 γN−1 . . γN−1. γN+1

γN−1 γN−1 . . γN+1 γN−1

. . . γN+1 . .

. . . . . .

. . . . . .

γN+1 γN−1 . . γN−1 γN−1


,

and 0N×N is an N × N matrix with all entries being 0. The block is obtained by
generalizing the explicit calculation of negativity, for the state given in Eq. (5.31)
under LPDC for N = 3, 4, 5, to general N , by using the same approach as employed
in Sec. 5.5.1. The eigenvalues are calculated using induction technique. The results
are cross-checked matching with numerical simulations for N = 3, 4, 5, 6, 7 qubit
states. The negative eigenvalues so obtained are

1
2N γN−1(γ2 − 1) with multiplicity (N − 1), (5.33)

and
1

2N (−(N − 1)γN−1 − γN+1) with multiplicity 1. (5.34)

From the eigenvalues, it is clear that the entanglement of the G state in the micro :
macro bipartition, after it is affected by the local phase damping channels, depends
on the size of macroscopic sector (see Fig. 5.18). For N = 6, the G state can sustain
81% local phase damping noise, which is lower than that of the Hm

CN
for any N and

for m = 1, 2, 3 (see Table I).
We now consider the effect of local amplitude damping channels on the state.

The block which gives the negative eigenvalues, after partially transposing the noisy
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state, is of dimension 2N × 2N , and is given by

Bladc
G = 1

2



l1 . . . l1 l2 . . . l2

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

l1 . . . l1 l2 . . . l2

l2 . . . l2 l3 l4 . . l4

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

l2 . . . l2 l4 l4 . . l3



,

where l1 = 1
N
pγN−1, l2 = 1

N
γ

N+1
2 , l3 = (N−1)

N
γ2pN−2, and l4 = 1

N
γ2pN−2. Here also

we have done extensive analyses for small numbers of parties, and then extended
the results for general N , by identifying that the off-diagonal elements, after passing
through the LADC, form a block and the diagonal elements interfere in this block.
The eigenvalue calculation is again based on the induction method. The negative
eigenvalues are

λladcG,1 = 1
4[(Nl1 + l3 + (N − 1)l4)−

√
4N2l22 + (−Nl1 + l3 + (N − 1)l4)2], (5.35)

and

λladcG,2 = 1
4[a1 + c1 + (2N − 4)d1 −

√
2N(N − 1)b2

1 + (−a1 + c1 + (2N − 4)d1)2](5.36)

where a1 = pN−1γ, b1 = 2
N
γ

N−1
2 p, c1 = 2

N
p2γN−2, and d1 = 1

N
p2γN−2. Fig. 5.18

clearly shows that the entanglement, as quantified by the logarithmic negativity, of
the G state decreases with the increase in the number of particles in the macroscopic
section, unlike in the case of the Hm

CN
state, for both local phase and local ampli-

tude damping channels. A comparison of the logarithmic negativities and quantum
discords for the G state under different local noisy channels is presented in Fig.
5.19 where we additionally consider the local depolarizing channel. For a fixed N ,
from the perspective of the robustness of entanglement, the local amplitude damp-
ing channel is the best among the channels considered, while the local depolarizing
channel is the worst. The situation is rather similar for quantum discord – local
amplitude damping is still the best, but the local phase damping is marginally worse
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Figure 5.18: Entanglement of the noisy G state depends on the number of particles
in the macroscopic sector. The logarithmic negativity (in ebits) of the noisy G state
is plotted on the vertical axes against the decohering parameter p (dimensionless)
on the horizontal axes, for different values of N . The left panel is for the local phase
damping channels while the right one is for the local amplitude damping channels.

than local depolarizing. Note the qualitative similarity of this situation with that
for the Hm

CN
state (see Fig. 5.12) and the dissimilarity with that for the GHZ state

(see Fig. 5.16). In Fig. 5.20, we compare the entanglement of the local depolarized
G state with those in the local depolarized Hm

CN
states. We find that the critical

value for the G state is rather similar to those of the Hm
CN

states. See Table I for
further details. Note that the plots of logarithmic negativity and quantum discord
of the G state are shown here for N = 6 under the different noisy channels. The
corresponding analytic expressions of logarithmic negativity, for local phase damping
and local amplitude damping, for arbitrary N , are given in the text. For the case of
the local depolarizing channel, the logarithmic negativity is calculated numerically.
The optimization for quantum discord is performed numerically in all the cases.

5.8.2 HN−1
CN

state

Let us introduce another multiparticle state which is quite similar to the H1
CN

state,
with only the W 1

N replaced by WN−1
N , where WN−1

N is obtained from Eq. (5.2) by
putting m = N − 1. The state, therefore, is given by

|HN−1
CN
〉µA1...AN

= 1√
2

(|0〉µ|WN−1
N 〉A1...AN

+ |1〉µ|0 . . . 0〉A1...AN
). (5.37)

This state is a cat-like state in the same sense as the H1
CN

. Moreover, the states
|WN−1

N 〉 and |0 . . . 0〉 are macroscopically different in terms of their σz-magnetizations.
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Figure 5.19: The panels here are the same as in Fig. 5.12, except that the curves
here pertain to the noisy G states. For numerical values, see Table I.

The effects of local phase and amplitude damping channels, for this case can be
obtained by putting m = N − 1 in Eqs. (5.20) and (5.23). (See Fig. 5.21.) Let us
now investigate the effect of the local depolarizing channels on the state. The blocks
which give the negative eigenvalues are of dimension (N + 1)× (N + 1), and are

B1
HN−1

CN

= 1
2



a b b . . . b

b c d . . . .d

b d c . . . d

. . . . . . d

. . . . . . .

. . . . . . .

. . . . . . .

b d d . . . c


and

B2
HN−1

CN

= 1
2



ã b̃ b̃ . . . b̃

b̃ c̃ d̃ . . . .d̃

b̃ d̃ c̃ . . . d̃

. . . . . . d̃

. . . . . . .

. . . . . . .

. . . . . . .

b̃ d̃ d̃ . . . c̃



,

respectively, where a = βαN + 1
N
α2βN−1, b = 1√

N
γNα, c = α2βN−1 + 1

N
(βαN + (N −

1)β3αN−2), d = 1
N
βγ2αN−2, and ã = αβN + β2αN−1, b̃ = 1√

N
βγN , c̃ = β2αN−1 +
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Figure 5.20: The plot here is the same as the left panel in Fig. 5.14, except that
the curve for the GHZ state is replaced by that for the G state. The inset shows a
magnified view of the curves in an intermediate zone. The numerical values of p at
which the entanglements vanish, for the different states, are given in Table I.

1
N

(αβN + (N − 1)α3βN−2), d̃ = 1
N
αγ2βN−2. The blocks are calculated by using the

same methods as employed in the Sec. 5.5.1. Induction method is used to calculate
the eigenvalues of the blocks. The negative eigenvalues are

λldpc
HN−1

CN
,1 = 1

2(a+ c+ (N − 1)d−
√

(4Nb2 + (−a+ c+ (N − 1)d)2)) (5.38)

and

λldpc
HN−1

CN
,2 = 1

4(ã+ c̃+ (N − 1)d̃−
√

(4Nb̃2 + (−ã+ c̃+ (N − 1)d̃)2)) (5.39)

respectively. The logarithmic negativity of the local depolarized state is therefore
given by

Eldpc

HN−1
CN

= log2[2|(min(0, λldpc
HN−1

CN
,1)|+ 2|min(0, λldpc

HN−1
CN

,2)|+ 1]. (5.40)

The comparison among local amplitude damping, local phase damping, and local
depolarizing channels, for the H5

C6 state, is presented in Fig. 5.22. It is clear from
the figure that the effect of the local amplitude damping channel, on the HN−1

CN
state
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Figure 5.21: The panels in this figure are the same as in Fig. 5.18, except that here
they are for the HN−1

CN
state.
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Figure 5.22: The panels in this figure are the same as in Fig. 5.12, except that here
they pertain to the HN−1

CN
state, for N = 6.

is much less pronounced as compared to local phase damping and local depolarizing
channels. For fixed noise models, the percentage of noise that the individual states
can sustain, before it becomes separable in the microscopic to macroscopic partition,
is given in Table I.

5.9 Chapter summary

Studying macroscopic quantum superposition states under environmental noise is
important from a variety of perspectives ranging from fundamental concepts, like
the quantum-to-classical transition, to robustness of quantum information process-
ing and computational tasks. We have studied a class of multipartite quantum states
consisting of a microscopic and a macroscopic part and are akin to Schroödinger cat
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state. The microscopic part is assumed to be formed by a few qubits, while the
macroscopic one is built by a large number of the same. We have investigated the
effect of several paradigmatic models of local environmental noise on the multiparty
states, by calculating quantum correlations between their microscopic and macro-
scopic sectors, after the states are affected by the local noise. We have considered five
different types of local noisy channels, viz. the local phase damping, the local ampli-
tude damping, and the local depolarizing channels. In addition, we also consider loss
of finite fraction of particles from the macroscopic sector as effect of decoherence. In
studying the quantum correlations, we considered both entanglement measures as
well as information theoretic quantum correlation measures.

We find that the quantum correlations of all the states from the class considered
here remain independent of the size of the macroscopic sector under local phase
damping and local amplitude damping channels. We identify the state in this class
which remains maximally robust for a given local noise. Interestingly, we observe
that for all the quantum states in the class, entanglement is almost equally robust
against local amplitude damping and local phase damping noise, while being much
worse off against local depolarization. In contrast, quantum discord is much more
robust against local amplitude damping than local depolarization or local phase
damping noise. Finally, we find that the quantum correlations in the proposed class
of multiparty quantum states is better preserved than that in the other macroscopic
superposition states against all the local noise models. The findings may help us to
identify a potential candidate for quantum memory devices.

The results of chapters 4 and 5 are published as

1. Quantum superposition in composite systems of microscopic and macroscopic
parts resistant to particle loss and local decoherence,
Utkarsh Mishra, Aditi Sen(De), and Ujjwal Sen, Phys. Rev. A 87, 052117
(2013).

2. Local decoherence-resistant quantum states of large systems, Utkarsh Mishra,
Aditi Sen(De), and Ujjwal Sen, Phys. Lett. A 379, 261 (2015).
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CHAPTER6
Behavior of quantum correlations under

time evolution of spin models: Ergodicity

6.1 Introduction

In this chapter, we consider the question of validity of the statistical mechanical
description of quantum correlation measures of anisotropic Heisenberg models in
one-dimension (1D), ladder and two-dimension (2D) by investigating their ergodic
properties in these models under sudden quenching in one of the system parame-
ters. These studies are important in order to understand the behavior of quantum
correlations in realistic materials. Spin models have been established as promising
substrates in different physical systems for implementing many quantum information
protocols which include, for example, one-way quantum computation [10] and quan-
tum communication tasks [299–305]. Moreover, application of measures of quantum
correlations of both the paradigms have proven advantageous in investigations of co-
operative physical phenomena observed in many-body systems [52–65, 147]. Due to
the paucity of analytical as well as numerical methods to solve quantum spin mod-
els, most of these considerations are restricted to the ground state or the thermal
state of the system. While it is important to understand the quantum correlation
properties of these “static states” of the system, the time-evolution of the system is
an integral part of several quantum information processing protocols, a prominent
example being the one-way quantum computer [10].

Quantum Heisenberg models, e.g., have created lots of interest due to their rich
physical properties and the possibility of realizing such systems in artificial materials
as well as in inorganic compounds. However, investigations into the dynamics of such
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models, for example, under the influence of time-dependent magnetic fields, are lim-
ited by the fact that the system cannot be diagonalized analytically. We investigate
the time dynamics of quantum correlations of the anisotropic Heisenberg model in a
time-dependent magnetic field, in one-dimensional, ladder, and two-dimensional lat-
tices. The characterization, quantification, and realization of quantum correlations
in many-body systems are some of the main challenges in quantum information and
of interest in current research [20,21,54,147].

Properties like magnetization, susceptibility, classical and quantum correlations
in the static states of the isotropic Heisenberg model have been studied extensively,
both theoretically and experimentally [54, 147, 306, 307]. The model can be exactly
solved by the Bethe ansatz [308]. Variation of different physical parameters in this
model leads to the appearance of rich phases [309, 310], like spin-liquid, resonating
valence bond states, etc. Moreover, such models can now be created in the lab-
oratories in a controlled way by using e.g., photons [311], trapped ions [312], and
cavity QED [313]. However, numerical simulations or approximate methods are the
only techniques that can be used to investigate properties of the time-evolved states
of this model. Here we investigate the behavior of quantum correlations of the
evolved state as well as the equilibrium state in the anisotropic Heisenberg model
in low-dimensional systems, under the influence of time-dependent magnetic fields
and temperature. We find that quantum correlation measures in the entanglement-
separability paradigm are ergodic in these systems irrespective of system parameters.
However, information-theoretic quantum correlation measures exhibit a transition
from nonergodic to ergodic behavior with the change of interaction strength in the
direction of the magnetic field. We also observe that the transition point changes
drastically as we go from one-dimensional and ladder lattices to the two-dimensional
one.

We then move to study the time-dynamics of quantum correlations in the quan-
tum transverse anisotropic XY spin chain of infinite length at zero as well as finite
temperatures. The evolution occurs due to the instantaneous quenching of the cou-
pling constant between the nearest-neighbor spins of the model, which is either
performed within the same phase or across the quantum phase transition point con-
necting the order-disorder phases of the model [148,149]. We characterize the time-
evolved quantum correlations, entanglement and quantum discord, which exhibit
varying behavior depending on the initial state and the quenching scheme. We show
that the system is endowed with enhanced bipartite quantum correlations compared
to that of the initial state, when quenched from ordered to the deep disordered phase.
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However, bipartite quantum correlations are almost washed out when the system is
quenched from disordered to the ordered phase with the initial state being at the
zero-temperature. Moreover, we identify the condition for the occurrence of enhanced
bipartite correlations when the system is quenched within the same phase. Finally,
we investigate the bipartite quantum correlations when the initial state is a thermal
equilibrium state with finite temperature, which reveals the effects of thermal fluctu-
ation on the phenomena observed at zero-temperature. Specifically, we show that if
the coupling constant of the driving Hamiltonian is fixed at a value that corresponds
to the disordered phase, then the entanglement remains non-zero, irrespective of
the choice of the initial state. In fact, the bipartite entanglement at large time is
enhanced significantly compared to that of the initial state, if the initial state corre-
sponds to the ordered phase and the system is quenched into the disordered phase.
On the other hand, if the coupling constant of the driving Hamiltonian is fixed at a
value that belongs to the ordered phase of the corresponding Hamiltonian, then the
dynamics show rich features. Moreover, we mention two important scenarios. First,
the quenching is performed across the quantum critical point with the initial and the
final values of the interaction strength chosen from two sides of the quantum phase
transition point, with the initial state belonging to the disordered phase. In this
case, the large time entanglement of the evolved state always vanishes irrespective
of the choice of the initial state with finite entanglement. Second, the initial and the
final values of the interaction strength are chosen from the ordered phase. In this
case, entanglement always survives. Additionally, we identify quenching strategies
via which the long time evolved entanglement of the system is enhanced compared to
that of the initial state. We also perform analogous investigations for the quantum
discord. Further, we extend our analysis to finite temperature of the initial thermal
equilibrium state. In general, we find that, as it may be expected, quantum discord
is more robust against thermal fluctuations in comparison to entanglement.

6.2 The model

We consider a system of N quantum spin-1
2 particles arranged in a lattice with

unequal nearest-neighbor interactions along x, y, and z directions. It is therefore the
antiferromagnetic anisotropic Heisenberg model or the XYZ model, and is given by

Hint = 1
4
∑

[Jxσx~i σ
x
~j

+ Jyσ
y
~i
σy~j + Jzσ

z
~i
σz~j ], (6.1)
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where σa~i (a = x, y, z) are the Pauli spin matrices at the site ~i of the spin lattice,
and Jx, Jy, and Jz represent the coupling constants in the x, y and z directions re-
spectively. The summation in Eq. (6.1) runs over all nearest-neighbor pairs on the
lattice. Periodic boundary conditions are assumed in all cases considered in this
thesis. We will consider systems of quantum spins arranged in lattices in different
low dimensions. Assigning different relations among Jx, Jy, and Jz, in the above
Hamiltonian lead to various other well-known spin models, including the isotropic
Heisenberg model for which Jx = Jy = Jz, and the anisotropic XY model for which
Jx 6= Jy, Jz = 0. To check for ergodic properties of different physical quantities of
these Heisenberg spin models, we will consider the initial state of the evolution to be
the canonical equilibrium state at the initial instant (see discussion in the succeeding
section). A non-trivial evolution of the system can be obtained in this case by intro-
ducing a magnetic field represented by Hmag, in such a way that [Hint, Hmag] 6= 0.
Hence the total Hamiltonian can now be written as

H(t) = Hint − h(t)Hmag. (6.2)

For the present paper, we choose Jx = J(1 + γ), Jy = J(1 − γ), Jz = Jδ and
Hmag = J

2
∑
σz~i , with the summation running over all sites of the lattice. Here J > 0

is assumed to have the dimension of energy, while γ and δ are dimensionless system
parameters. Here γ represent xy-anisotropy. For brevity, we will sometimes call it
simply as “anisotropy”. The time-dependence of the applied magnetic field is of the
form

h(t) =
 a, t ≤ 0

0, t > 0,
(6.3)

where a 6= 0 is a dimensionless parameter. Here t represents the time. Therefore,
the total Hamiltonian is given by

H(J, γ, δ, h(t)) = J
4
∑[(1 + γ)σx~i σ

x
~j

+ (1− γ)σy~i σ
y
~j

+ δσz~i σ
z
~j
]− J

2h(t)∑σz~i . (6.4)

When h(t) = 0 and Jx = Jy = Jz, the above Hamiltonian is exactly solvable by
using Bethe ansatz [308] by which the ground state energy can be obtained [314].
However, there exists no such exact solution for the anisotropic Heisenberg model.
Moreover, we wish to study the evolution of the system and hence require the single
site- and two-site properties of the entire energy spectrum of the system at a given
time. Hence, to study the statistical mechanical properties of such systems at finite
temperature, we opt for exact diagonalization using numerical simulations.
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6.3 Statistical mechanical properties

In this chapter, we aim to study the statistical mechanical properties of the anisotropic
Heisenberg model in time-dependent external magnetic fields. The statistical me-
chanical notions like canonical equilibrium state, time-evolved state and ergodicity
will be briefly defined in this section, mainly to set the terminology and the no-
tations. In particular, we introduce a quantity called the “ergodicity score” which
helps us to quantify the degree to which a physical quantity is possibly nonergodic.

6.3.1 Time-evolution

For the quantum spin system, described by the Hamiltonian in Eq. (6.4), we denote
the canonical equilibrium state of the system, at time t, as ρeqβ , and is given by

ρeqβ (t) = exp(−βH(t))
Z

, (6.5)

where Z is the partition function,

Z = tr[exp(−βH(t))],

and β = 1
kBT

, with kB being the Boltzmann constant. T represents the absolute
temperature.

The canonical equilibrium state can evolve due to the application of external
“disturbances”, like switching on of the magnetic field across the system. In our
case, the evolution of the system is governed by the Hamiltonian given in Eq. (6.4).
We assume that the system is in contact with a heat bath at temperature T ′ for a
long time until t = 0. We assume that the contact is in the canonical sense, so that
the system and the heat bath exchange energy (under the normal average energy
constraint), but do not exchange particles. We assume that this contact leads the
system to the canonical equilibrium state at t = 0, i.e., the state of the system at
t = 0 is ρeqα (0), where α = 1

kBT ′
. For t > 0, the magnetic field is switched off, and

we consider the situation where the contact with the heat bath is also cut off for
all times t > 0. The system therefore starts evolving according to the Schrödinger
equation governed by the Hamiltonian in Eq. (6.4), with the initial state of this
evolution being ρeqα (0), and we denote the corresponding evolved state as ρα(t). Note
here that ρeqα (t = 0) = ρα(0).

77



6.3.2 Ergodicity and ergodicity Score

To check whether a given physical quantity Q is ergodic, we consider the value of Q
in the evolved state at a “large time”. The time of evolution, tl, is termed as large,
for the physical quantity Q, if (i) there are no fluctuations in the physical quantity Q
with respect to time for t > tl, or if (ii) the fluctuation amplitude ofQ with respect to
time is smaller than the required precision level, for t > tl, or if (iii) the fluctuations
of Q with respect to time is of a constant amplitude. We are interested in the
time-average of the physical quantity Q at large-times. For the cases (i) and (ii), an
explicit time-averaging is not required, as the system dynamics brings the quantity
Q to its time-averaged value. For the case (iii), an explicit time-averaging for times
t > tl is required. We now ask whether there exists a temperature T ′, at which the
large-time time-averaged value of a physical quantity Q in the evolved state is equal
to the value of same physical quantity in the equilibrium state at temperature T at
large-time. The physically relevant range of T can be considered as up to an order
of magnitude of the initial temperature T ′. This difference between T and T ′ is, for
example, to allow for possible errors in an experimental realization of the physical
system or some typical theoretical effective standard deviation in that system.

If the time-average of a physical quantity is the same as the ensemble average, the
quantity is said to be ergodic. Such a study is therefore based on the comparison of
the large-time time-averaged value, Q∞(T ′, a), with the canonical equilibrium value,
Qcan(T, h(t =∞)). Note that these quantities also depend on the system parameters
J, γ, and δ. The physical quantity Q is therefore said to be ergodic if

Q∞(T ′, a) = Qcan(T, h(t =∞)). (6.6)

Otherwise, it is termed as nonergodic.
Let us now introduce a quantity which can quantify the degree to which a given

physical quantity, Q fails to be ergodic. We call it the “ergodicity score”, and define
it as

ηD(δ̃, α) = max[0,Q∞(T ′, a)−max
T
Qcan(T, h(t =∞))] (6.7)

where δ̃ denotes the aggregate of all physical parameters required to define the Hamil-
tonian of the system under consideration. For the system considered here, δ̃ consists
of J, h, δ and γ. We remember that α = 1

kBT ′
. The maximization over T is for all T

that falls in the physically relevant range around T ′, as discussed earlier. Note there-
fore that a non-zero value of ηQ implies that Q is nonergodic and that a vanishing
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Q indicates ergodicity.

6.4 Single- and two-site density matrices of time-
dependent Heisenberg Model

To analyze the ergodic properties of quantum correlations, let us now find the general
form of the single- and two-site density matrices of equilibrium and evolved states of
the Hamiltonian given in Eq. (6.4). The general single-site density matrix is given
by

ρ1 = 1
2[I + ~m.~σ], (6.8)

where I is the 2× 2 identity matrix, and ~m = tr[ρ1~σ] is the magnetization vector. If
the entire system is of N qubits, then the single-site density matrix can be obtained
by tracing out N − 1 parties. For a periodic lattice, tracing out of any N − 1 qubits
will lead to the same single-site density matrix. In the equilibrium state, since
ρ∗eqβ (t) = ρeqβ (t), where the complex conjugation has been taken in the computational
basis, mx = 0. Moreover, in this case, my = 0, since [H,⊗iσzi ] = 0. Therefore, the
single-site density matrix for the equilibrium state reduces to

ρeq1 (t) = 1
2[I +meq

z (t)σz]. (6.9)

where we have hidden the dependence on temperature in the notation. The single-
site density matrix for the evolved state also turns out to be ρ1(t) = 1

2(I+mz(t)σz).
The nearest-neighbor two-site density matrix can be written, in general, as

ρ12 = 1
4[I⊗ I + ~m.~σ ⊗ I + I⊗ ~m.~σ +

∑
i,j=x,y,z

Tij(σi ⊗ σj)] (6.10)

where Tij = tr[(σi ⊗ σj)ρ12] represent the two-site correlation functions. Since peri-
odic boundary conditions are assumed, the nearest-neighbor state, ρ12, is indepen-
dent of which two neighboring sites are chosen for constructing the nearest-neighbor
state. Due to the form of the single-site density matrices that has already been de-
rived, the two-site density matrices for both equilibrium and evolved states reduces
to

ρ12 = 1
4[I⊗ I +mz(σz ⊗ I + I⊗ σz) +

∑
i,j=x,y,z

Tij(σi ⊗ σj)]. (6.11)

We observe numerically that all off-diagonal correlations vanish for the equilibrium
state. However, for the evolved state, only xz- and yz-ones vanish.
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6.5 Ergodicity of physical quantities in quantum
XY model

In this section, we recapitulate some of the earlier attempts to investigate ergodicity
in many-body systems. Much attention has been given to the XY Hamiltonian as it is
exactly solvable [188–197,199,200] (see [315] for a discussion on exact diagonalization
of XY model). P. Mazur [191] had investigated ergodicity of magnetization in the XY
model and reported that the magnetization is a nonergodic quantity in the model.
Later on, in a series of papers, Barouch et al. [189, 190] had investigated the time
evolution of classical correlators, denoted as Ti,j(i, j = x, y, z) in our notation, and
magnetization, mz, in the XY model with time-dependent magnetic field. From their
detailed study, they infer that the classical correlators do not approach to a value,
in the limit of infinite time, to an equilibrium value for any temperature T . Also the
single-site magnetization do not approach to its equilibrium magnetization for any
value of temperature T . This observation of magnetization has been argued to be
connected with the observation by Mazur [191].

With the development in quantum information and computation theory, attempts
have been made to study the time dynamics of quantum correlations in realistic sys-
tems. These studies were also motivated by experimental success in optical lattices,
ion traps where complex many-body Hamiltonians can be realized and the inter-
action between the constituent subsystems can be controlled [147]. Entanglement
dynamics under sudden quenching has been studied in the infinite XY model. It was
observed that the two-site entanglement, evolved from the initial equilibrium state,
does not approach its equilibrium value [188]. A systematic study of ergodicity in XY
model and comparison of different physical quantities with respect to their ergodicity
behavior is reported in [201]. The two-site entanglement is a function of single-site
magnetization, mz, and two-site classical correlators. A complementary behavior is
observed between entanglement and classical correlators. Entanglement is found to
be nonergodic while classical correlators show opposite behavior and remain ergodic
in the XY model [201]. In later papers, a comparison was made between quantum
correlations of both the paradigms with respect to their ergodic behavior in finite
and infinite XY model [202]. In both the cases, it was observed that quantum cor-
relations belonging to entanglement-separability paradigm remains always ergodic,
irrespective of the value of anisotropic parameter and strength of field. On the other
hand, information-theoretic quantum correlation measures shows rich behavior for
an intermediate value of the magnetic field. For higher and lower value of the mag-
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netic field the quantum discord, e.g., is observed to be ergodic, while for intermediate
values of the field, quantum discord found to be nonergodic. Interestingly, the re-
sults match also for the system with finite size. The finite size observation is a key
result for us as we have investigated the ergodicity of quantum correlations in the
XYZ model where the model is not exactly solvable and one has to rely on numerical
calculations. In the next section, we present the ergodicity of quantum correlations
in the XYZ model with a time-dependent magnetic field.

6.6 Quantum Heisenberg XYZ spin chain with mag-
netic field

In this section, we investigate the statistical mechanical properties of quantum cor-
relation measures in the one-dimensional quantum spin-1

2 lattice described by the
Hamiltonian in Eq. (6.4). The isotropic antiferromagnetic Heisenberg model in
one-dimension provides an understanding of the spin-spin correlation functions and
suppression of long range magnetic order in spin-liquids. Moreover, some materials
like Sr2CuO3 and SrCuO2 mimic the Heisenberg spin chain [306]. Recently devel-
oped techniques make it possible to realize this model in physical systems like pho-
tons [311], trapped ions [312], and cavity QED [313]. Entanglement in the ground
and the thermal states of the Heisenberg model have also been studied [316].

6.6.1 Quantum correlations in equilibrium and evolved states

For any system, that is in its canonical equilibrium state, all quantum correlations
vanish when the temperature goes to infinity. Measures that are defined within the
entanglement-separability paradigm typically vanish even for moderately high tem-
peratures while information-theoretic measures like quantum discord goes to zero
asymptotically with the increase of temperature. This feature is retained by the sys-
tem described by the Hamiltonian in Eq. (6.4), on an one-dimensional lattice with
periodic boundary conditions. This shows that information-theoretic quantum cor-
relation measures are more robust to temperature when compared to entanglement-
separability measures. Moreover, we observe that the entanglement of the nearest-
neighbor reduced state of the canonical equilibrium state behaves differently with
temperature in different ranges of γ and δ. See Figs. 6.1(a) and 6.1(b). In particular,
we find that for fixed low values of the anisotropy, γ, the entanglement saturates to
a value with increasing β, and this saturated value is more or less independent of
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Figure 6.1: Behavior of quantum correlations in the equilibrium state. We plot
quantum correlation measures of nearest-neighbor reduced states of the canonical
equilibrium states, for a system of 12 quantum spin-1

2 particles arranged as a ring
and described by the Hamiltonian H with respect to Jβ, and the relative strength
of the zz-interaction, δ, for different values of γ. The left plots are for logarithmic
negativity and the right ones are for quantum discord. The left plots are for γ = 0.2
while the right one are for γ = 0.8. Quantum discord is measured in bits. All other
axes in the figures correspond to dimensionless parameters.

δ, the relative strength of the zz-interaction. However, when γ is relatively high,
entanglement saturates to a low value for small δ, while for high δ, it saturates to
a higher value. On the other hand, quantum discord saturates to a low value with
decreasing temperature for small δ as well as for high δ, while it saturates to a high
value for intermediate values of δ (see Figs. 6.1(c) and 6.1(d)). This behavior of
quantum discord is true for all values of γ. However, with the increasing of the value
of γ, the point where the maximum value of quantum discord is obtained, shifts to
higher values of δ. We have performed calculations also for concurrence and quantum
work-deficit, and they have qualitatively similar features as logarithmic negativity
and quantum discord respectively.

Let us now discuss the time-dynamics of entanglement and other quantum corre-
lations in the nearest-neighbor state. For the discussion, we choose γ = 0.8. However,
the behavior remains the same for other moderate values of γ. The entanglement
measures collapse and revive non-periodically with time, when δ is small. See Fig.
6.2(a), where we can view this feature for logarithmic negativity. For intermediate
values of δ, revival of entanglement occurs less frequently (Fig. 6.2(b)). For very
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Figure 6.2: Quantum correlations of the time-evolved states. The system under
consideration is the same as in Fig. 6.1, but for 8 spins. The evolution is assumed to
begin in the equilibrium state at t = 0 and at an exemplary value of the temperature
given by Jα = 20. Logarithmic negativity (top plots) and quantum discord (bottom
plots) of the nearest-neighbor reduced states of the time-evolved states, are plotted
against the initial magnetic field, a, and Jt

~ , for different values of δ. Here we choose
γ = 0.8. The left plots are for δ = 0.2 and the right ones are for δ = 0.8. All axes
correspond to dimensionless quantities except those for quantum discord, which is
measured in bits.

high δ, the model is “Ising-like”, and the entanglement as well as other quantum
correlation measures collapse and revive periodically with time. The non-periodic
collapse and revival behavior persists up to moderate values of δ for the information-
theoretic quantum correlation measures like quantum discord. See Figs. 6.2(c) and
6.2(d).

6.6.2 Statistical mechanical properties of quantum correla-
tion measures

We now examine the ergodicity properties of the quantum correlation measures.
From Figs. 6.1 and 6.2, by analyzing the behavior of the entanglements of the
equilibrium and evolved states, we find that entanglement measures are ergodic for
all values of δ, γ(6= 0), and a. We have analyzed this for logarithmic negativity
as well as for concurrence. Hence, the ergodicity score is vanishing for all system
parameters for all such measures.

Quantum discord and quantum work-deficit, both information-theoretic mea-
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Figure 6.3: Ergodicity score for quantum discord. The ergodicity score for quantum
discord of the anisotropic Heisenberg XYZ chain (with a magnetic field) of 8 spins,
arranged in a ring, is plotted against δ and the applied initial magnetic field a, for a
fixed γ = 0.8. The initial state of the time-evolution is the t = 0 canonical equilib-
rium state at a temperature given by Jα = 20. The ergodicity score is measured in
bits. All other physical parameters used in the figure are dimensionless.

sures, also remain ergodic, when δ ≥ γ. However, for δ < γ these measures exhibit
nonergodicity for a large range of the magnetic field. In Fig. 6.3, we plot ηD with
respect to the δ and the field strength, a, for γ = 0.8, where we assume that the
time-evolution starts off from the canonical equilibrium state for the Hamiltonian in
Eq. (6.4) at t = 0 and for temperature given by Jα = 20. To plot ηD, we choose
Jβ = 20 for the equilibrium state, in the calculation of Qcan(T, h(t =∞)), since we
find that the quantum discord of the equilibrium state is a monotonically increasing
function with respect to Jβ and saturates for a Jβ much below Jβ = 20.

The trends, with respect to δ, of ergodicity scores of quantum discord and quan-
tum work-deficit for different γ, are depicted in Fig. 6.4. For a fixed anisotropy γ,
there always exists a certain value of δ, for which quantum discord changes from
being nonergodic to being ergodic. We denote that critical value of δ as δγc , remem-
bering that it pertains to quantum discord, and that there is a similar critical δ, at a
possible different value, for quantum work-deficit. We observe that the δγc increases
with the increase in γ, and in Fig. 6.4, δγ=0.4

c < δγ=0.6
c < δγ=0.8

c for both quantum
discord and quantum work-deficit.

The general behavior, of the quantum correlation measures in this system, that
is emerging, is as follows. Entanglement measures exhibit ergodic behavior in all
relevant parameter domains. The picture is richer for information-theoretic quantum
correlation measures, and in particular, for a given anisotropy γ and a given measure,
there is a critical δ = δγc at which the system transits from nonergodic to ergodic
behavior for that measure.
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Figure 6.4: Comparing ergodicity scores for quantum discord and quantum work-
deficit. The ergodicity score for quantum discord (left) and quantum work-deficit
(right) of the nearest-neighbor reduced state of the time-evolved states of the
anisotropic Heisenberg XYZ chain (with a magnetic field) of 12 spins, arranged in
a ring, is plotted against δ, for different values of γ and a for fixed initial magnetic
field a = 0.6. Here we choose Jα = 20 for the t = 0 canonical equilibrium state
from which the evolution starts off. The depicted curves are for γ = 0.4 (red circles),
γ = 0.6 (pink triangles), and γ = 0.8 (green squares). The ergodicity score for quan-
tum discord is measured in bits, while that for quantum work-deficit is measured in
qubits. All other quantities used in the figure are dimensionless.

6.7 Quantum Heisenberg XYZ spin ladder with
magnetic field

It is interesting to study whether the two quantum correlation paradigms showing
opposing statistical mechanical behavior persists in higher-dimensional systems. To
find this, we first consider the spins in a ladder arrangement, which is made up of
two Heisenberg XYZ spin-1

2 chains, coupled by the same interactions along the rungs
[317]. There is the time-dependent z-field at all sites. Periodic boundary condition
is assumed along the rails. Such systems can be found in solid state materials
like Sr2CuO3 and Sr14Cu24O41 [306]. Recently it was found that the entanglement
spectrum [318] of the ground state of this model is related to the energy spectrum
of its two single Heisenberg chain [319].

In this model, the quantum correlation measures of the evolved and equilibrium
states behave in a similar fashion as for the XYZ chain. In particular, entanglement
of the nearest-neighbor states remain ergodic in this case. And there exists a critical
δ, above which the time-averaged value of the information-theoretic correlation mea-
sures, quantum discord and quantum work-deficit, of the nearest-neighbor reduced
states of the evolved states match with the same measure of the equilibrium state,
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Figure 6.5: Behavior of quantum correlations in the equilibrium state. We plot
quantum correlation measures of nearest-neighbor reduced states of the canonical
equilibrium states, for a system of 8 quantum spin-1

2 particles arranged as a ladder
and described by the Hamiltonian H with respect to Jβ, and the relative strength
of the zz-interaction, δ, for different values of γ. The top plots are for logarithmic
negativity and the bottom ones are for quantum discord. The left plots are for
γ = 0.2 while the right one are for γ = 0.8. Quantum discord is measured in bits.
All other axes in the figures correspond to dimensionless parameters.

for some β, in a given magnetic field and a given γ (see Fig. 6.6 for the states along
the rails). Quantum discord of the long-time equilibrium state does not remain a
monotonically increasing function with β like in the 1D model. See Fig. 6.5. To
calculate ηD, we choose Jβ = 60, at which the maximum value of Qcan(T, h(t =∞))
is attained, for all values of δ. δγc increases with the increase in γ, while it is in-
dependent of the choice of the initial applied magnetic field for a fixed γ. These
qualitative features of quantum discord remain the same, when a rung of the ladder
is considered. A similar feature is observed for quantum work-deficit of the rung
and rail states. See Fig. 6.6(b) in this respect. We therefore again find that the
strength of the zz-interaction, as quantified by δ, can be adjusted in such a way that
the nonergodic nature of the information-theoretic measures, that persists in this
system for low δ, gets washed off, and we obtain ergodic behavior for high δ.
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Figure 6.6: Ergodicity curves in the Heisenberg XYZ ladder. The ergodicity scores
of quantum discord (left) and quantum work-deficit (right) of a nearest-neighbor re-
duced state, along a rail, of the time-evolved state, in the ladder, of 8 spins is plotted
with respect to the relative strength of the zz-interactions. The transition points,
where the system moves from nonergodic to ergodic behavior of the information-
theoretic measures are qualitatively similar to those in one-dimension, for a fixed γ.
The depicted plots are for γ = 0.4 (red circles), γ = 0.6 (pink triangles) and γ = 0.8
(green squares). For the evolved state, a = 0.6, Jα = 20. The units are the same as
in Fig. 6.4.

6.8 2D Quantum Heisenberg XYZ model with mag-
netic field

The two-dimensional Heisenberg model describes important systems, including ma-
terials like SrCu2(BO3)2 and CaV4O9 [320]. Experimental studies of the Heisenberg
model in 2D lattices have been proposed e.g., in trapped ions [321] and optical
lattices [322].

We consider a quantum Heisenberg XYZ spin model on a square lattice with an-
tiferromagnetic interactions between the nearest-neighbor spins. Periodic boundary
condition is assumed and hence, geometrically, the system forms a spin-arrangement
on a torus. The time-dependent magnetic field is assumed to be active at all sites.
Like in the ladder and 1D models, we again find that the entanglement measures are
ergodic for all values of γ, δ, and the initial magnetic field a. Interestingly, unlike
in the 1D and ladder systems, the transition from nonergodicity to ergodicity of the
information-theoretic measures, occurs for relatively low values of the zz-interaction
strength, i.e., for low values of δ (Fig. 6.7). For example, when γ and h are 0.6, in
the ladder and 1D systems, both quantum discord and quantum work-deficit remain
nonergodic till δ ≈ 0.8, while they both become ergodic in 2D at δ ≈ 0.16. These
observations lead us to infer that information-theoretic measures are more sensitive
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Figure 6.7: Ergodicity scores in the 2D Heisenberg XYZ model. The ergodicity
scores of quantum discord (left) and quantum work-deficit (right) in the nearest-
neighbor reduced state of the time-evolved state, with respect to the strength of the
zz-interaction for the anisotropic Heisenberg XYZ model on a 2D square lattice,
consisting of 12 spins in a torus. The plots are for γ = 0.6 (pink triangles) and
γ = 0.8 (green squares). For the time-evolved state, a = 0.6, Jα = 20. The units
are the same as in Fig. 6.4.

to the dimension of the lattice, than the entanglement measures, with respect to
their statistical mechanical properties.

6.9 Behavior of quantum correlations under sud-
den quenching in coupling constant in XY spin
chain

In a few preceding sections, we studied the dynamics of quantum correlations in
the XYZ Hamiltonian with time-dependent quenching in the magnetic field. In this
section, we investigate the dynamics of quantum correlations, in the XY spin chain,
with time-dependent quenching in the coupling constant. The anisotropic quantum
XY spin chain in presence of external transverse magnetic field is given by

H =
∑
i

J(t)
4

[
(1 + γ)σxi σxi+1 + (1− γ)σyi σ

y
i+1

]
− h

2
∑
i

σzi , (6.12)

where J(t) is the time dependent pairwise coupling strength between the nearest-
neighbor spins, h is the external transverse magnetic field, and γ is the anisotropy
constant. For case of nomenclature, we have made a slight change of notation here
with reference to the Hamiltonian displayed in Eq. (6.4). The periodic boundary
condition, i.e. σiN+1 = σi1(i = x, y, z), is considered. Note that, in the above Hamil-
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Figure 6.8: The quenching scheme employed in section 6.9. In case A, the final
coupling constant is fixed in the disordered phase, i.e., J̃2 < 1. In case B, the final
coupling constant is fixed in the region of ordered phase, i.e., J̃2 > 1. In both the
cases, the initial coupling constant J̃1 is varied from the values ranging from the
disorder to the ordered phase. Such situations cover both the scenarios i.e., when
J̃1 and J̃2 are in same phase or J̃2 and J̃2 are different phases. All quantities are
dimensionless.

tonian, when γ = 0, the system corresponds to the XX model and when γ = 1, it
corresponds to the Ising model.

The time-dependent coupling constant between the nearest-neighbor spins in the
Hamiltonian is chosen as a step function, which is given by

J(t) =
 J1, t ≤ 0
J2, t > 0.

(6.13)

The sudden change in the coupling constant, i.e., from J1 at time t ≤ 0, when the
system is prepared in the canonical equilibrium state, e−βH(J1) with β = 1/κBT , κB
and T being Boltzmann constant and temperature respectively, to J2 at time t > 0,
when the system is unitary evolving under the influence of new Hamiltonian, H(J2),
with coupling constant J2, is termed as quenching.

In order to characterize the bipartite quantum correlations present in the spin
system whose Hamiltonian is given in Eq. (6.12), we need to find the two-site density
matrices of the time evolved state of the system. The single- and two-site density
matrix can be expressed in terms of magnetization and classical correlators and
is given in Eq. (6.8) and Eq. (6.10) respectively. For the Hamiltonian given in
Eq. (6.12), the magnetization, mz, and the two-site diagonal correlations, Tii, can
be exactly calculated for the one-dimensional infinite XY spin model with external
quenched transverse magnetic field [189, 190, 198]. The analytical expression for
mz and Tii can also be obtained analogously if the quenching is considered in the
nearest-neighbor couplings strengths. The exact analytical expressions and details
of the calculations for this case are sketched in Appendix C.
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6.10 Instantaneous quenching in the interaction
strength

We now consider that the system, whose Hamiltonian is given in Eq. (6.12), starts
evolving from the initial canonical state at zero temperature due to sudden quenching
in the coupling constant, as given in Eq. (6.13), and study the behavior of bipartite
quantum correlation measures, both concurrence and quantum discord, with respect
to the evolution time. The evolution of the system is initiated at t = 0 by an
instantaneous change in the nearest-neighbor interaction strength from some initial
value, J1, to a final value, J2. Throughout the process of time evolution of the
system, the external magnetic field is kept unaltered. Hence, we scale the coupling
constants J by J/h, which is henceforth denoted as J̃ . It is well known that the
static XY Hamiltonian undergoes a quantum phase transition from a “disordered”
phase with J̃ < 1 to an “ordered” phase with J̃ > 1 at the quantum critical point
J̃ = 1. The system is considered to be in equilibrium at t = 0 with Hamiltonian
H(J̃1) and starts evolving after t > 0 with the new driving Hamiltonian H(J̃2).

The quantum XY spin chain with transverse magnetic field and time-dependent
coupling constant described by the Hamiltonian given in Eq. (6.12) is exactly solvable
by successive applications of Jordan-Wigner, Fourier, and Bogoliubov transforma-
tions (See Appendix C). The two-site density matrices (see Eq. (6.10)), for both
initial and evolved states of this spin chain, can be obtained by using the analytical
expressions of the magnetization and the two-site correlation, which are given in Ap-
pendix C. The bipartite quantum correlations for the initial and the evolved states
can be computed using these two-site density matrices.

During quenching, the choice of the values for J̃1 and J̃2 can be considered in
two different situations: (i) a situation where both J̃1 and J̃2 are chosen from the
same phase (i.e., both J̃1 < 1 and J̃2 < 1 or both J̃1 > 1 and J̃1 > 1), and (ii) when
both of them are chosen from the different phases. For simplification, we fix J̃2 to
be in either of the two phases and then probe the behavior of quantum correlations
for different initial states by continuously varying the initial values of the coupling
constant, J̃1, from the disordered phase to the ordered one. Fig. 6.8 depicts these
two situations schematically.

90



Figure 6.9: Dynamics of nearest neighbor concurrence (left) and quantum discord
(right) in the evolved state of quantum XY model against time, t, and quenched
coupling J̃1. The final coupling is fixed at J̃2 = 0.5. We choose γ = 0.5. The base
axes represent dimensionless quantities, while the vertical axis in the top (right)
panel is in ebits (bits).

6.11 Dynamics of quantum correlations under quench-
ing

Let us now discuss the behavior of quantum correlation measures, both concurrence
and quantum discord, for two different cases depending on the choice of coupling
constant J̃2, i.e., Case A: J̃2 corresponds to the disordered phase (i.e., J̃2 < 1) and
Case B: J̃2 corresponds to the ordered phase (i.e., J̃2 > 1). These cases cover both
the scenarios that were mentioned earlier. The characteristics of bipartite quantum
correlations in each of these cases are considered separately.

Case A: J̃2 corresponds to the disordered phase

Consider first the case when the quenched coupling constant, J̃2, at t > 0 is fixed at
a value which corresponds to the disordered phase of the driving Hamiltonian, H(J̃2)
(see Fig. (6.8)). The initial state at t = 0 corresponds to the zero-temperature state
of the system governed by the Hamiltonian H(J̃1). Depending on the choice of J̃1,
the initial state is tuned across the disordered and ordered phases. The external
applied magnetic field is not altered to keep the uniform scaling of coupling constant
throughout the evolution process. Using mz and correlators, Tij, we evaluate the
concurrence and quantum discord for the nearest-neighbor spins.

In Fig. 6.9, we plot the concurrence (right panel) and quantum discord (left panel)
for the system under evolution with respect to the coupling constant of the initial
Hamiltonian H(J̃1) and time (t). The transverse magnetic field is kept constant,
h = 1, and anisotropic constant, γ, is chosen to be as γ = 0.5. We choose J̃2 = 0.5 and

91



vary both J̃1 and time from zero to some higher values. We observe that the behavior
of quantum correlations is qualitatively similar for any choice of J̃2, provided J̃2 is
less than unity. From Fig. 6.9, it is clear that the behavior of quantum correlations
can be divided into three different regions in the J̃1− t plane: Region 1 with J̃1 < 1,
region 2 close to J̃1 = 1, and region 3 with J̃1 > 1. In region 1 and 3, at moderate to
high time scales, the value of quantum correlations, both concurrence and discord,
have less variation with respect to time and hence tend to attain steady values at
large time. However, in region 1, the value of concurrence is lower in comparison to
the same in region 3, while quantum discord in region 1 possess a very small finite
value, which is much less than that in the region 3, where it can reach the maximum
value of approximately 0.2. At small values of time, in regions 1 and 3, the quantum
correlations show noticeable irregularities in their behavior with respect to J̃1. Such
irregular values of entanglement, at small times, can be attributed to the non-zero
value of the correlator, txy, which eventually vanishes at large time. In region 2, as
we vary J̃1 from disorder to order phase, the concurrence sharply decreases, becomes
minimum at J̃1 = 1 and further increases until it saturates in region 3. For small
time scales, in region 2, concurrence has irregular behavior and at moderate time
scales, it saturates to a small value of the order of 10−2. However, quantum discord
in this region takes more time to reach the steady value. Note that, at large time,
the system is always more entangled in the region where the choice of quenched
coupling constants are from different phases, as described previously in situation
(ii), in comparison to when the coupling constants chosen from the same phase, as
described previously in situation (i).

Finally, a close look in Fig. 6.9 shows that in the region 3, bipartite quantum
correlations at large time, where we may assume the system tends to reach steady
state, is always greater than that of the initial state at time t = 0. However, in
the region 1, such enhancement in the quantum correlations through the evolution
process happens only if the coupling strength of the initial state, J̃1, is less than 0.5,
which is equal to our choice of the coupling constant of the driving Hamiltonian, J̃2.
We will follow up this scenario later with further discussions.

Case B: J̃2 in ordered phase

Let us now fix J̃2 of the driving Hamiltonian from the ordered phase. Again the
initial state is chosen as the zero temperature state of H(J̃1).

In Fig. 6.10, we plot the concurrence (left panel) and quantum discord (right
panel) for the system under evolution with respect to the coupling constant corre-
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Figure 6.10: Variation of the nearest neighbour concurrence (left panel) and quantum
discord (right panel) of the evolved state in XY model with respect to quenched
coupling constant J̃1 and t, whereJ̃2 = 2.0 and γ = 0.5. The dimensions are the
same as in Fig. 6.9.

sponding to the initial Hamiltonian H(J̃1) and time. The transverse magnetic field
is kept constant, h = 1, and anisotropic constant, γ, is chosen to be as γ = 0.5. We
choose J̃2 = 2.0. Similar to the case A, the behavior of quantum correlations can
again be analysed by dividing the J1–t plane into three distinct regions: Region 1
with J̃1 < 1, region 2 close to J̃1 = 1.0, and region 3 with J̃1 > 1. Here we discuss
concurrence and quantum discord individually as they have different characteristics.

In region 1, concurrence shows revival and collapse with respect to time. In
particular, the amplitude and reviving regions of concurrence gradually decrease
and finally vanish at large time. It is worth mentioning here that the number of
revivals that appear in the region 1 depends on the value of anisotropic parameter
γ. As we increase γ from zero to one, the number of revivals increases. In the
region 3, entanglement oscillates between two non-zero values and the amplitude of
oscillations being maximum at low time scales located close to region 2. However, as
expected, at J̃1 = 2.0 such oscillations vanish and the entanglement assumes constant
non-zero value. In region 2, concurrence shows continuous revival and collapse with
the increase in time. The collapse and revival of bipartite entanglement in XY spin
chain with time-dependent field have been studied in [61].

At small time scales, irrespective of regions, quantum discord has large irregu-
larities in its strength and as time increases, these irregularities vanish and regular
oscillations occur. Comparing entanglement and discord, for at large t, we find that
at J̃1 = 1, entanglement shows much sharper transition from zero to a non-zero value
while smooth transition is observed for quantum discord. Note that, at large times,
the strength of quantum discord is much higher in region 3 than that of region 1,
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Figure 6.11: (a) Plot of the difference in entanglement between the final and the
initial two-site states, δC, in the quantum XY spin chain against J̃1 and J̃2. The
negative values (the blue regime) in the difference indicates that the initial bipartite
entanglement is more as compared to the final bipartite entanglement in the J1− J2
plane, while the positive value (the red regime) reveals that bipartite entanglement is
enhanced during dynamics compared to the initial state. Here γ = 0.5 and h = 1.0.
(b) The plot of the difference in quantum discord between the final and the initial
two-site states, δD. The dimensions are same as in Fig. 6.9.

where quantum discord survives with small values. In region 2, quantum discord
shows smooth increasing trend from disorder to order phase of J̃1.

Dynamical enhancement

In previous section, we have elaborately discussed the features of quantum correla-
tions measures for two specific cases, Case A and Case B, for two chosen values of
the coupling constant, J̃2, corresponding to the driving Hamiltonian. We would now
like to see whether such features are generic at large times, when the observables
acquire steady state values. For this, we set t → ∞ in the analytical expressions of
the magnetization and the correlators and continuously vary the coupling constants
J̃1 and J̃2.

In Fig. 6.11(a), we plot the difference of final and the initial state entanglement,
δC, where δC = C(t→∞)−C(t = 0), as a function of quenched coupling constants
J̃1 and J̃2 for γ = 0.5. Here the external magnetic field is set at unity, and we set
J̃1 = J1 and J̃2 = J2.

In Fig. 6.11(a), depending on the ranges of the initial and final coupling constants,
we divide the panel into four parametric regimes: (i) region 1: with J1 and J2 both
less than unity, (ii) region 2: with J1 < 1 and J2 > 1, (iii) region 3: with J1 > 1 and
J2 > 1, and (iv) region 4: with J1 > 1 and J2 < 1.

The white line along the diagonal in Fig. 6.11(a) corresponds to the case, when

94



J1 = J2. Obviously, in this case the system is not perturbed externally and the
entanglement of the system at infinite time is same as in the initial time. One can
immediately have two interesting observations when the system is quenched across
the phase transition point. First, when the initial state is in the ordered phase, i.e.,
J1 > 1, and the system is instantaneously quenched to deep in disordered phase, i.e.,
J2 � 1, the nearest-neighbor bipartite entanglement is enhanced significantly than
that of the initial state. For example, for J2 = J1 = 1.4, the bipartite entanglement
of the initial unperturbed state measured by concurrence is approximately 0.066
ebit, which get enhanced to a value close to 0.186 ebit by quenching J2 to its final
value at J2 = 0.2. Secondly, when the initial state is in the disordered phase, i.e.,
J1 < 1, and the system is instantaneously quenched to ordered phase with J2 > 1,
the amount of entanglement is significantly decreased compared to the initial value.
In fact, any finite entanglement present in the initial state is washed out completely
if J2 is chosen from deep ordered phase (see Fig. 6.12(a)). As for an example, the
initial state has entanglement 0.143 ebit for J2 = J1 = 0.6, which vanishes for any
driving Hamiltonian H(J2), with J2 > 1.3.

However, when the system is quenched within the same phase, the steady state
bipartite entanglement at infinite time may be enhanced or deteriorated compared
to that of the initial state depending on the parametric range. In this situation, we
observe that the enhancement occurs when J2 > J1.

Fig. 6.11(b) shows the difference between the final and the initial state quantum
discord, δD, where δD = D(t→∞)−D(t = 0), as a function of quenched coupling
constants J̃1 and J̃2 for γ = 0.5. The features of quantum discord is approximately
similar to the bipartite entanglement. However, unlike entanglement, quantum dis-
cord survives with small values when the system is quenched from the disordered
to the ordered phase (see also Fig. 6.13(a)). We have checked that the qualitative
behavior of the entanglement and the quantum discord remain same for other choices
of the anisotropy constant, γ.

6.12 Effect of thermal fluctuations

In this section, we consider the thermal state at a given inverse temperature, β, as
the initial state and investigate the effect of temperature of the bipartite quantum
correlations of the evolved state at large times.

In Figs. 6.12(a-d), we plot the behavior of bipartite entanglement at t → ∞ as
a function of quenched coupling constants J1 and J2 for different temperatures. We
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Figure 6.12: Long-time behavior of the nearest neighbor concurrence in the quantum
XY model with sudden quenching in the couplings. The coupling strengths J1 and
J2 are varied from 0 to 3. The anisotropy parameter of the Hamiltonian is fixed
at γ = 0.5. The different plots are for different values of β of the initial quantum
state. (a) β →∞, (b) β = 3.0. (c) β = 2.0, and (d) β = 0.8. All the quantities are
dimensionless, except concurrence, which is in ebits.

choose (a) β =∞, (b) β = 3 , (c) β = 2, and (d) β = 0.8.
To start with, we review the behavior of the entanglement at zero-temperature,

but now plot the final state entanglement itself at infinite time as a function of J1

and J2. We again divide the panel into four parametric regimes as introduced in
the previous section. In Fig. 6.12 (a), we observe that in region 1 the bipartite
entanglement survives with moderate values. In region 2, it is fragile and is close to
zero. In the entire region 3, the entanglement assumes non-zero value. In region 4,
the entanglement is relatively more robust against perturbation, compared to other
three regions. We monitor the effect of temperature of the initial thermal state on
the entanglement starting from zero-temperature to a finite temperature. It is clear
that, in all the regions, the entanglement decreases with the increase of temperature.
Comparing Figs. 6.12(a)-6.12(d), we observe that entanglements in regions 1 and 2
vanish much faster than that of the regions 3 and 4.

Therefore, we conclude that the robustness of the entanglement with respect to
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Figure 6.13: Long-time behavior of quantum discord of nearest-neighbour spins in
the infinite quantum XY chain with sudden quenching in the couplings. Other details
are same as in Fig. 6.12, except that quantum discord is measured in bits.

temperature depends both on J1 as well as J2. The behavior of quantum discord is
more or less similar to that of the entanglement, except that the quantum discord is
more robust for the increase in temperature as depicted in Figs. 6.13(a-d). In partic-
ular, both quantum correlation measures survives with relatively high temperature
when J1 > 1 and J2 < 1.

6.13 Chapter summary

Many-body systems provide a suitable playground to study quantum correlations and
extract their properties. Also, using tools from quantum information theory, sev-
eral properties of many-body systems of interacting particles have been investigated.
This establish a strong connection between quantum information and many-body
systems. In this chapter, we look for the evolution of quantum correlations in quan-
tum Heisenberg models. Quantum Heisenberg models have created lot of interest
due to their rich physical properties and the possibility of realizing such systems in
artificial materials as well as in inorganic compounds. However, investigations into
the dynamics of such models, for example, under the influence of time-dependent
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magnetic fields, are limited by the fact that the system cannot be diagonalized ana-
lytically. Here, we have studied the behavior of quantum correlations, both from the
entanglement-separability paradigm and the information-theoretic one, of the equi-
librium state as well as the evolved state of the quantum Heisenberg anisotropic XYZ
model, by numerical simulations. In particular, we found that although entanglement
measures are ergodic irrespective of the system parameters, information-theoretic
measures exhibit a rich picture, with respect to their statistical mechanical proper-
ties. Specifically, we find that the zz-interaction strength has a cross-over value, for a
given xy-anisotropy and a given information-theoretic quantum correlation measure,
that indicates a transition from nonergodic to ergodic behavior for that measure.
The qualitative features of the measures in the entanglement-separability paradigm
and the information-theoretic one are the same in the one-dimensional, ladder, and
two-dimensional square lattices. However, in the square lattice, the information-
theoretic measures are more sensitive to the change of the zz-interaction strength
than in other dimensions. Such dimension-dependent change of ergodic behavior is
absent for entanglement measures.

Controlled dynamics of isolated complex quantum systems, of many-particles, in
presence of external perturbation has its importance in various fields of theoretical
and experimental physics. Quantum correlations, on the other hand, are important
resources, for various quantum information and computational tasks. However, they
are usually believed to be fragile in presence of the external perturbation. We char-
acterized the dynamics of quantum correlations, such as concurrence and quantum
discord, in an infinite XY model between the nearest-neighbor spins due to sudden
quenching of the interaction strength.

Two separate cases, where the coupling constant of the driving Hamiltonian,
J̃2, is chosen either from the ordered phase, i.e., J̃2 > 1 or the disordered phase,
i.e., J̃2 < 1, were considered in section 6.9. With such choices of J̃2, we continu-
ously change the initial state by varying the initial coupling coupling constant J̃1

and temperature. Summarizing, for each of the cases, we consider two scenarios
of quenching – either both the initial as well as final coupling strengths are in the
same phase or they are across the critical point that connects two different phases.
We demonstrate that when the system is quenched from the disordered to ordered
phase, any finite entanglement in the initial state eventually vanishes at large times
via the dynamical process involving successive collapse and revival phenomena. On
the contrary, when the system is quenched from ordered to disordered phase, then the
final state blessed with enhanced entanglement compared to the initial state. Such
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observation can be advantageous in setting up quantum protocols. Since suddenly
switching from highly interacting to weakly interacting spin configuration enables us
to achieve higher amounts of entanglement between two neighboring spins than that
of the initial state. Also, in the entire parametric regime, the maximum amount
of entanglement that can be confined between the two nearest-neighbor spins via
quenching exceeds the maximum amount of entanglement that can be present be-
tween the two nearest-neighbor spins of the unperturbed system. Moreover, we fond
that such enhancement of entanglement is also possible via quenching within the
same phase, specifically when J̃2 > J̃1 and J̃2 is not too close to the phase transition
point at zero-temperature. We established that this feature is generic by scanning J̃2

itself over the entire range covering the disordered to ordered phases of the driving
Hamiltonian and by taking t → ∞, where the system supposedly reaches steady
state. We fond that the behavior of quantum discord is similar to entanglement.
However, unlike entanglement, quantum discord survives with small values when
quenched from the disordered to ordered phase.

We extended the analysis from the zero temperature initial state to the initial
state with finite temperature, in order to see the effect of thermal fluctuations on
the quantum correlations. We find that irrespective of the quenching scheme, the
quantum correlations are more robust against thermal fluctuation if the initial state
is in ordered phase compared to the disordered phase.

The new results of this chapter are based on the following papers

1. Tuning interaction strength leads to an ergodic-nonergodic transition of quan-
tum correlations in the anisotropic Heisenberg model,
Utkarsh Mishra, R. Prabhu, Aditi Sen(De), and Ujjwal Sen, Phys. Rev. A
87, 052318 (2013).

2. Survival of time-evolved quantum correlations depends on whether quenching
is across critical point in XY spin chain, Utkarsh Mishra, Debraj Rakshit,
and R. Prabhu, accepted for publication in Phys. Rev. A ( arXiv:1510.00685
[quant-ph]).
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CHAPTER7
Constructive interference between

disordered couplings

7.1 Introduction

In chapter 6, we discussed the behavior of bipartite quantum correlations under sud-
den quenching. In particular, we considered temporal quenching in the magnetic
field in XYZ Hamiltonian and in the nearest-neigbor couplings in the XY model. In
this way we have explored the characteristic difference in the behavior of quantum
correlations measures belonging to two different paradigm. In this chapter, we in-
vestigate single- and two-site classical correlators, two-site and multisite quantum
entanglement measures and uncover the difference in their behavior in disordered
many-body systems. We, therefore, make further progress in establishing the rela-
tion between quantum information theory and many-body physics which could be
helpful in the development of quantum technologies.

More precisely, we investigate the single-site magnetization and two-site classical
correlators, concurrence between two nearest-neighbor sites and generalized geomet-
ric measure of entanglement in the ground state of the disordered Heisenberg spin
model in one-dimension with random coupling interactions. The quenched average
of the quantities, in the “disordered” Hamiltonian, is compared with their value in
the corresponding “clean” Hamiltonian. We observed that the above quantities show
enhancement in the disordered case with respect to the ordered one, a phenomenon
termed “order from disorder” or disorder induce order”. We further observe that
there are ranges of the physical parameters where simultaneous application of in-
dependent quenched disorders in the coupling constants results in enhancement in
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multisite entanglement while such enhancement is absent for individual applications
of the disorders. We term the phenomenon as constructive interference, a novel effect
qualitatively distinct from the order from disorder phenomena. The phenomenon is
absent in the other, two-and single-particle, observables considered in this chapter.

Disorder-induced order and order by disorder have been investigated in different
spin glass models [220–223]. The term order by disorder was used by Villain et al.
[221] while studying effect of dilution induced long range order in classical Ising model
in a two-dimensional lattice. Further investigation of the phenomena in quantum
systems was reported in [214]. The term “disorder-induced order” was used in [224] to
report about long-range order induced by a random field that breaks the continuous
symmetry of the model.

Most of the above investigations were in classical spin models. We have con-
sidered quenched disorder in a quantum spin model and look for disorder-induced
enhancement in the system. In the next section, we define the enhancement score
for the quenched disordered systems, that quantifies the amount by which a given
quantity is enhanced by introduction of disorder as compared to the case when no
disorder is present.

7.2 The ordered and disordered quantum Heisen-
berg models

In this section, we first discuss the quenched averaging of a physical quantity and
then we introduce the Hamiltonians that we investigate.

7.2.1 Quenched averaging

In the disordered models, that we consider here, the physical parameters of the sys-
tem are “quenched”, i.e., the time scales in which the dynamics of the system takes
place is much shorter in comparison to the time in which the disordered system pa-
rameters equilibrate. It implies that during the time-evolution of the system, a par-
ticular realization of the random disorder parameters remains frozen. The physically
relevant values of the system observables (physical quantities) are, therefore, their
quenched averaged values, where we first compute the value of the physical quantity
of interest for a given disorder configuration of the system and subsequently perform
the averaging over probability distribution of the disorder.
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7.2.2 The Heisenberg quantum spin glasses

We now introduce the four different Heisenberg Hamiltonians which will be studied
in this chapter.
Case 0: The one-dimensional disordered quantum Heisenberg (or XYZ) model with
nearest-neighbor interactions in an external magnetic field is described by the Hamil-
tonian

H〈J,δ〉 = κ

∑
〈i,j〉

Jij
4
[
(1 + γ)σxi σxj + (1− γ)σyi σ

y
j

]
+
∑
〈i,j〉

δij
4 σzi σ

z
j −

h

2

N∑
i

σzi

 . (7.1)

Here, Jij(1−γ) and Jij(1+γ) are proportional to the xx and yy interactions, while δij
is that to the zz one. γ measures the anisotropy between the first two interactions,
and is dimensionless. Jij, δij, and h are also dimensionless. κ is a constant, and
has the units of energy. Jij are independently and identically distributed (i.i.d.)
Gaussian random variables with mean 〈J〉 and unit standard deviation. Similarly,
δij are i.i.d. Gaussian random variables with mean 〈δ〉 and unit standard deviation.
We set 〈λ〉 = 〈J〉/h and 〈µ〉 = 〈δ〉/h, which are therefore again dimensionless.
σki (k = x, y, z) are the Pauli spin matrices at the ith site and 〈ij〉 indicates that
the corresponding summation is over nearest-neighbor spins. The applied field, h, is
kept ordered throughout the paper.
Case 1: Quantum Heisenberg model. In this case, the Hamiltonian, which we
denote by H, has site-independent couplings, i.e., Jij = J and δij = δ. Since we
will be in need of multisite state characteristics, the Bethe ansatz [308] is difficult to
apply in an efficient way, especially in the disordered cases considered. We denote
J/h and δ/h as λ and µ respectively.
Case 2: Quantum Heisenberg “planar” spin glass. The Hamiltonian in this case is
given by

H〈J〉 = κ

∑
〈i,j〉

Jij
4
[
(1 + γ)σxi σxj + (1− γ)σyi σ

y
j

]
+
∑
〈i,j〉

δ

4σ
z
i σ

z
j −

h

2

N∑
i

σzi

 , (7.2)

where the couplings δij are considered to be site-independent, and fixed at δ.
Case 3: Quantum Heisenberg “azimuthal” spin glass. The system in this case is
governed by the Hamiltonian, H〈δ〉, in which Jij = J , while the couplings, δij, are
i.i.d. Gaussian random variables with mean 〈δ〉 and unit standard deviation.
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7.3 Enhancement score for the quenched disor-
dered systems

Intuitively, disorder or defects in a system are supposed to have adverse effects on
physical properties like magnetization, classical correlations, quantum correlation,
etc. While this is true in many cases [215, 216], there are also a significant number
of physical systems, both classical and quantum, where certain physical properties
get enhanced in the presence of disorder, as compared to the corresponding clean
systems [220, 221, 225, 226]. In this section, we first introduce a quantity called the
“enhancement score” in order to quantify such disorder-induced advantage for a given
quantity and then we study its behavior for different observables in Heisenberg spin
glass systems.

7.3.1 Enhancement score and physical quantities

In a disordered system, if a quenched averaged physical quantity, Qav, associated
with a state of the system is larger than the same quantity, Q, of the corresponding
ordered system in the analogous state, then the value of the physical quantity is
said to exhibit a disorder-induced enhancement. To characterize such advantage, we
introduce the enhancement score, ∆Q, of a physical quantity Q, which is defined as

∆Qa,b,... = |Qav(〈a〉, 〈b〉, . . .)| − |Q(〈a〉, 〈b〉, . . .)|. (7.3)

Here, Qav(〈a〉, 〈b〉, . . .) is the quenched averaged value of a physical quantity, Q, of
the system where the averaging is performed over the system parameters, a, b, . . .,
which follow Gaussian distributions with mean 〈a〉, 〈b〉, . . . and standard deviations
σa, σb, . . . respectively. The definition can of course be generalized to the case of other
probability distributions. Q(〈a〉, 〈b〉, . . .) is the corresponding physical quantity for
the ordered case of the same system, where the values of the system parameters
a, b, . . . are kept constant (i.e., they are not disordered) at 〈a〉, 〈b〉, . . . respectively.
Both Qav and Q will also usually depend on other systems parameters (that are not
disordered) which are kept the same for both the systems (disordered and ordered)
and which are kept silent in the notation. A positive enhancement score for a physical
quantity, Q, in a certain range of the system parameters will imply that “disorder-
induced enhancement” or “order from disorder” is attained for Q in that region of
the parameter space. Whereas a negative value of the same will indicate that Q gets
degraded.
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Figure 7.1: Order from disorder in the planar spin glass. The enhancement scores
(∆Qλ ) for different physical quantities are plotted in the different panels. In all cases,
the disordered Hamiltonian is H〈J〉, while the ordered one is H. For the plots, we
consider a system of 6 spins. And, we choose γ = 0.7 and h = 0.8. The planar spin
glass Hamiltonian consists of 6 i.i.d Gaussian random variables, Jij, which are each
of mean 〈J〉 and standard deviation unity. The quantities that are plotted here are
the enhancement scores for (a) magnetization (∆Mz

λ ), (b) the zz-classical correlator
(∆Tzz

λ ) (c) bipartite quantum correlation as quantified by concurrence (∆C
λ ), and

(d) genuine multipartite quantum correlation measure quantified by GGM (∆Eλ). In
these panels, the quantities along ordinates are 〈λ〉, while the abscissae represent
the µ. Quenched average of the observable is performed over 5 × 103 random re-
alizations. The regions represented in red are the ones for which ∆Q is positive
indicating that the corresponding physical quantity Q attains a higher value with
the introduction of disorder in these regions. The areas represented in blue are the
ones for which ∆Q is negative and they point to parameter regions where the Q is
higher in the corresponding clean system. In the white regions, Q remains unaltered
by the introduction of disorder in the system. All the parameters plotted here are
dimensionless.
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In this chapter, the physical quantities that we study are single-site observables
like magnetization, two-site observables like classical correlators, and bipartite as
well as multipartite quantum correlation measures. We calculate two-site concur-
rence (Sec. 3.1.1) to quantify the entanglement. For multisite entanglement, we
calculate generalized geometric measure (Sec. 3.3.1). For the Heisenberg Hamilto-
nian, that we consider here, in both ordered as well as disordered cases, the x and y
components of the magnetization of the ground state vanish, while the z component
of the magnetization, M i

z = tr(σzi ρi), of the single-site reduced density matrix (ρi)
at the ith site of the ground state is in general non-vanishing. In the disordered
case, one has to further perform a quenched averaging over the relevant variables
to obtain the physically meaningful quenched averaged magnetization. The classical
correlators between the ith and jth sites are defined as T ijαβ = tr(σαi ⊗ σ

β
j ρ

ij
AB) with

α, β = x, y, z and ρijAB being the bipartite density matrix obtained from the ground
state. It can be shown that the off-diagonal correlators of the ground state vanish
in both ordered and disordered cases [189].

7.3.2 Enhancement score for the Heisenberg quantum spin
glasses

In this subsection, we investigate the behavior of different measurable quantities in all
the three disordered models, introduced in Sec. 7.2.2. We compute the ground state
in each of these models and investigate the behavior of the enhancement score, ∆Qξ ,
corresponding to physical quantities like transverse magnetization, classical correla-
tions, concurrence, and generalized geometric measure. Here, ξ denotes the aggregate
of system parameters that are quenched disordered. There is a wide range of the
anisotropy parameter, γ, and magnetic field strength, h, of these models for which
order from disorder phenomena of several quantities of the ground state are observed.
For the purpose of depiction of the effects, throughout this paper, we choose γ = 0.7
and h = 0.8. However, it is worth mentioning that the qualitative behavior of all
the observables in the disordered as well as in the ordered cases remain unchanged
with the variation of γ and h. Quantitatively, the values of enhancement score of
the quantities increase or decrease with the change of the system parameters, like
anisotropy, coupling strengths, and magnetic field. Interestingly, we find that in all
these models, there are large surfaces in the parameter space in which the magne-
tization and classical correlators behave in a complementary way to bipartite and
multipartite entanglement, i.e., when ∆Mz

ξ , ∆Tzz
ξ are positive, ∆C

ξ , ∆Eξ are negative,
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Figure 7.2: Order from disorder in azimuthal spin glass. The plots in the different
panels are for (a) ∆Mz

µ , (b) ∆Tzz
µ , (c) ∆C

µ , and (d) ∆Eµ. The disordered Hamiltonian
for the enhancement scores is H〈δ〉, whose 6 i.i.d. Gaussian random variables, δij,
have mean 〈δ〉 and unit standard deviation. In each of these panels, the ordinate is
λ and the abscissa is 〈µ〉. All other considerations are the same as in Fig. 7.1.

and vice versa.
In the following cases of the disordered systems, quenched averaging is performed

over 5 × 103 realizations. For fixed values of 〈λ〉, 〈δ〉, and h, we have performed
the numerical simulations for higher number of realizations and have found that
the corresponding quenched physical quantities have already converged for 5 × 103

realizations or before.

7.3.2.1 Order from disorder in planar spin glass

We investigate here the behavior of enhancement scores of different physical quan-
tities for the case when the disorder is introduced in the planar coupling, i.e., in
the xx- and yy-couplings. The Hamiltonian for such a system is given in Eq. (7.2).
In Fig. 7.1, we show the behavior of the enhancement scores of magnetization, zz-
correlator, concurrence, and GGM, with the variation of 〈λ〉 and µ. In all the cases
considered, we have observed disorder-induced enhancement also for Txx and Tyy.
We do not exhibit them in the figures given.
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The investigation shows that for all observables, there exist regions in which the
enhancement score is vanishing. These appear as white regions in the panels in Figs.
7.1, 7.2, and 7.3. Also, for large mean values of the disordered interactions, where the
simultaneous presence of ferro- and anti-ferromagnetic couplings due to the disorder
is absent, the enhancement scores vanish. These features are true for all types of
disorder considered here.

In all the observables considered, viz. magnetization, classical correlators, and
bipartite as well as multipartite entanglement, for a given µ, there typically appears
oscillations in the surface of the enhancement score as we scan the 〈λ〉 axis and
occasionally such oscillations have a positive enhancement score in their crests and
negative one in their troughs. The parameter regions, which have a positive enhance-
ment for a certain physical quantity, indicates an order from disorder phenomenon
for that quantity. See Fig. 7.1 for a depiction.

7.3.2.2 Order from disorder in azimuthal spin glass

We now move on to study the behavior of the enhancement scores of physical quan-
tities, when the disorder is introduced in the “azimuthal” coupling, for which the
Hamiltonian is introduced as Case 3 in Sec. 7.2.2. In Fig. 7.2, we plot the physical
quantities, Mz, Tzz, C, and E , with respect to the planar coupling constant, λ, and
the mean azimuthal coupling constant, 〈µ〉. We have chosen the anisotropy constant
as 0.7 and the external applied magnetic field as 0.8, as before.

As seen in the panels of Fig. 7.2, there are again order from disorder phenomena
for all the observables considered. The behavior of the enhancement scores for mag-
netization and classical correlators are quite similar to those in the proceeding case.
For concurrence and GGM, there are some differences. In particular, the λ = 0 line
has ∆C

µ ≈ 0 in this case, while in the preceding case, the 〈λ〉 = 0 line had ∆C
λ > 0.

7.3.2.3 The case of disorder in both planar and azimuthal couplings

When both planar and azimuthal couplings are disordered (see Eq. (7.1)), one may
expect that the effects of disorder may suppress the physical quantities in a stronger
way, and result in a complete absence of phenomena akin to “order from disorder”.
However, we find that this is not the case. All the observables that we consider again
exhibit regions in which disorder-induced order can be seen (as shown in Fig. 7.3).
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Figure 7.3: Order from disorder when both planar and azimuthal couplings are
quenched disordered. The plots in the different panels are for (a) ∆Mz

λ,µ, (b) ∆Tzz
λ,µ , (c)

∆C
λ,µ, and (d) ∆Eλ,µ. The disordered Hamiltonian in this case is H〈J,δ〉. The Jij (δij) are

i.i.d. Gaussian random variables with mean 〈J〉 (〈δ〉) and unit standard deviation.
In the panels, the ordinates represent 〈λ〉 while the abscissae represent 〈µ〉. All other
considerations are as in Fig. 7.1.

7.4 Constructive interference between planar and
azimuthal couplings in GGM

The Hamiltonian that we study involve planar and azimuthal interaction strengths,
which may both be Gaussian distributed quenched disordered variables. We have
already seen that irrespective of whether they are individually or jointly present, a
spectrum of measurable quantities show order from disorder, instead of getting di-
minished in the presence of defects. At this juncture, we ask a more radical question:
Does there exist any observable which gets enhanced in the joint presence of the dis-
orders while it deteriorates when the randomness is applied individually in either of
the couplings, in the Heisenberg spin glass models? Mathematically, we are looking
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Figure 7.4: Constructive interference. The panels exhibit plots with the enhancement
score of GGM, denoted as ∆E , as the ordinate, and the system parameter, α, as the
abscissa for Heisenberg spin glasses with (a) N = 5, (b) N = 6, (c) N = 7, and (d)
N = 8, where N is the number of quantum spin-1/2 particles in the system. In all
these plots, red circles connected with dashed lines represent the cases when disorder
is present in both the couplings (planar as well as azimuthal), and for these cases,
α represents 〈λ〉 and ∆E represents ∆Eλ,µ. We choose 〈δ〉 = −0.9. The blue squares
connected with dotted lines are for the cases when disorder is present only in the
planar coupling. In these cases, α represents 〈λ〉, ∆E represents ∆Eλ, and δ is fixed at
−0.9. The green triangles connected with dash-dotted lines represent the cases when
disorder is present only in the azimuthal coupling. In these cases, α represents λ, ∆E
represents ∆Eµ, and 〈δ〉 = −0.9. The black solid lines, parallel to the horizontal axes
are drawn to separate the positive and negative regions of the enhancement score of
GGM. For all the plots, we have chosen γ = 0.7 and h = 0.8. All quantities plotted
here are dimensionless.
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for the following conditions to be satisfied simultaneously by an observable Q:

∆Qλ,µ = |Qav(〈λ〉, 〈µ〉)| − |Q(〈λ〉, 〈µ〉)| > 0, (7.4a)
∆Qλ = |Qav(〈λ〉)| − |Q(〈λ〉)| < 0, (7.4b)
∆Qµ = |Qav(〈µ〉)| − |Q(〈µ〉)| < 0. (7.4c)

Here, µ = 〈µ〉 in Eq. (7.4b) and Qav(〈λ〉) corresponds to the planar spin glass.
Similarly, λ = 〈λ〉 in Eq. (7.4c) and Qav(〈µ〉) corresponds to the azimuthal spin
glass. Any observable satisfying the above set of equations would imply that the
competing random interactions can interfere constructively for the quantity Q. We
refer to this phenomenon as the “constructive interference of Q”.

We have extensively investigated the above equations for various finite number
of spins in the Heisenberg Hamiltonian ranging from N = 5 to N = 20, and scanned
over significant ranges of the system parameters. While smaller system sizes are han-
dled by exact diagonalization, the relatively larger ones are investigated by employing
the density matrix renormalization group techniques. The investigations help us to
identify certain parameter ranges, where the system exhibits the phenomenon of the
constructive interference in the genuine multipartite quantum correlation measure,
GGM. Interestingly, no other observable, considered here, shows such a behavior.

7.4.1 Constructive interference in systems realizable with
current technology

Let us first discuss the results corresponding to the Heisenberg spin glass models,
consisting of a comparatively small number of spins. The behavior of quantum
correlations, in this case can be examined in experimentally realizable systems like
ion traps, photons, etc [16, 112, 311, 323–327], and hence the results obtained in
this subsection can be verified and observed in the laboratories. All the results
presented in this subsection are obtained by performing exact diagonalization of the
Hamiltonians. Fig. 7.4 shows the enhancement scores for the GGM for different
system sizes, and for different blending of disordered couplings. The anisotropy and
external magnetic field strength are again chosen as 0.7 and 0.8 respectively. The
coupling strength, δ, in the azimuthal direction, is −0.9 for the case when it is
ordered, while in the cases when the azimuthal couplings, δij, are disordered, they
are chosen with mean −0.9 and unit standard deviation.
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Figure 7.5: The enhancement scores for (a) magnetization, Mz, (b) Tzz-correlator,
and (c) concurrence, C, against α for systems with N = 6. All other descriptions
are the same as given in Fig. 7.4.

Whenever any of the curves, in the panels of Fig. 7.4, is positive, the correspond-
ing disordered system has higher value of GGM as compared to that of the ordered
system. It is clear from Fig. 7.4 that ∆Eλ, ∆Eµ, as well as ∆Eλ,µ show order from dis-
order, although in different parameters ranges. There are several other parameter
ranges than those exhibited in the panels of Fig. 7.4 where such phenomenon occurs.
The choice of the parameters and parameter ranges in Fig. 7.4 are for the following
specific purpose. Near the two values of α (= 〈λ〉, here), where the curves of ∆Eλ,µ
crosses the horizontal axes, one obtains regions where order from disorder for GGM
is exhibited with the introduction of both planar and azimuthal disorders, while the
same is absent with the inclusion of just any one of these disorders. We call these as
“Venus regions”. For example, for N = 6 (see Fig. 7.4(b)), the two distinct ranges
of α (which represents either 〈λ〉 or λ), in which the constructive interference can
be observed are [−0.78,−0.67] and [0.68, 0.78]. In these regions, the enhancement
score, ∆Eλ,µ (red circles connected by dashed line), is positive while the other two
enhancement scores, viz., the ∆Eλ (blue squares connected by dotted line) and ∆Eµ
(green triangles connected by dot-dashed line), remain negative. Note that with in-
creasing number of particles, the Venus regions, i.e., the windows of α demonstrating
constructive interference moves towards α = 0. Interestingly, no such phenomenon
is found in other quantities considered in this chapter, viz., magnetization, two-point
correlators, and bipartite entanglement (see Fig. 7.5). It is worth mentioning here
that the Venus regions do not surface without an external magnetic field. In fact,
depending on N , there exists a critical magnetic field strength, hc, only beyond
which the constructive interference can be observed. Below hc, the ∆Eλ lies above the
∆Eλ,µ and the ∆Eµ. As the external magnetic field is increased beyond hc, the curve
corresponding to the ∆Eλ,µ goes above that of ∆Eλ and ∆Eµ, resulting in the emerging
of the Venus regions. We find that the hc is approximately 0.6 for N = 6.
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Figure 7.6: DMRG data of the enhancement score ∆E(2) as a function of α for (a)
N = 8, (b) N = 12, (c) N = 16, and (d) N = 20. All other descriptions are the
same as in Fig. 7.4. The insets show blow-ups of the regions with constructive
interference.

7.4.2 Approximate GGM and sustenance of Venus regions
in larger systems

It is natural to ask if the results presented in the previous subsection also holds
for the disordered Heisenberg systems with larger number of spins. However, ex-
act computation of the quenched averaged GGM, in systems with large number
of parties, is hindered, due to the following three key reasons: (i) An exponential
growth of the Hilbert space with increasing number of parties essentially prohibits
one from performing exact diagonalization of the Hamiltonian. (ii) For obtaining
the desired accuracy, as one tries to obtain convergence in the quenched averaging
of physical quantities, it typically requires a large number (approximately 5× 103 to
8× 103) of random realizations, unless the quantities are self-averaging, which is not
the case for all genuine multipartite observables. (iii) Determination of multipar-
tite entanglement, as quantified by the GGM, requires all possible bipartite splits,
and the number of bipartitions in an N -party system is ∑N/2

r=1

(
N
r

)
, which increases

substantially with increasing N . For example, the number of bipartitions required
to evaluate the GGM for the N = 8 system is 162, whereas it grows to over half a
million for the system involving just 20 parties.

The difficulty in computing GGM can partly be curbed by choosing selective
bipartitions instead of considering all possible bipartitions. We therefore introduce
E (2) as a measure of multipartite entanglement, defined as

E (2) = 1−max
{
{η2

i }, {η2
i,i+1}

∣∣∣
i=1,...,N

}
, (7.5)

where ηi and ηi,i+1 are the maximum Schmidt coefficients of the single- and nearest-
neighbor two-body reduced density matrices respectively. We call it the “approxi-
mate GGM”. Although E (2) may not be a genuine multiparty entanglement measure,
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Figure 7.7: The DMRG data of the enhancement scores for (a) magnetization, Mz

(b) classical correlator, Tzz, and (c) concurrence for systems with N = 20. All other
considerations are the same as given in Fig. 7.4. The magnetizations used here in
panel (a) are for the site N/2.

it does quantify multiparty entanglement and it is certainly an entanglement mono-
tone.

In order to perform numerical simulations with larger number of spins, we adopt
the finite size density matrix renormalization group method [328–330] with the open
boundary condition in the system, which is an iterative numerical approach for ob-
taining highly accurate low energy physics of quantum many-body systems. In the
DMRG approach, starting from a portion of the system, known as system block, the
system size is enlarged step by step until the desired system size is reached. The value
of physical quantities for the disordered spin chain can be achieved by performing
several sweeps of the finite system DMRG [328–330]. We choose to work with open
boundary conditions as it is well known that the accuracy drops significantly for
closed boundary conditions. For N -site systems, the bipartite classical and quantum
correlations are calculated for the (N/2, N/2 + 1) pairs, so that boundary effect are
minimized.

For the Heisenberg spin models with and without disorder, we evaluate the ap-
proximate GGM and plot the enhancement scores in Fig. 7.6. Here we consider
the spin systems with sizes N = 8 (Fig. 7.6(a)), N = 12 (Fig. 7.6(b)), N = 16
(Fig. 7.6(c)), and N = 20 (Fig. 7.6(d)). The symbols are kept consistent with
Fig. 7.4. It can clearly be noticed that the ∆E(2) again identify two distinct ranges of
the parameter α (on the negative and positive sides of α), where the Venus regions
materialize. We also find that the conclusions drawn from the E (2) are consistent
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with the physics discussed by studying the system with smaller sizes. For example,
the windows of α exhibiting constructive interference shifts towards α = 0 with in-
creasing number of spins. We find that even for N = 20, there is a non-zero region
where constructive interference occurs. It is to be noted the shrinking observed, of
the Venus regions, could be due to the modification of the multiparty party entan-
glement measure, since we have already observed that no two-party or single-site
observables exhibit the constructive interference. It is plausible that in the presence
of both the disorders, multipartite entanglement will exhibit a Venus region even
in the thermodynamical limit. We additionally investigate the magnetization, two-
point correlations in the zz direction and the concurrence in this regime. Fig. 7.7
shows their behavior for N = 20. We find no constructive interference phenomena
in any of these quantities.

7.5 Chapter summary

In summary, we have studied the quantum Heisenberg spin system in one-dimension
with random coupling interactions. We have examined the behavior of the magne-
tization, classical as well as the two-party quantum correlations, and multipartite
entanglement for the ground states. The relevant results are presented for various
system sizes ranging from five to twenty quantum spin-1/2 particles. While the small
systems were dealt by exact numerical diagonalization, we adopt the density matrix
renormalization technique to investigate comparatively larger spin systems. In the
presence of impurities in the couplings, there exists different parameter regions for
the different observables which show enhancement due to disorder – also known as
the order from disorder phenomenon. The physical quantities like magnetization,
classical correlators, bipartite and multipartite entanglement always find a range of
parameters in which they increase with the introduction of disorder. Our studies
uncover the phenomenon of constructive interference, where we observe that the
parameters of the system can be tuned in such a way that disorder-induced order
appears due to simultaneous presence of randomness in two different couplings, while
it is absent when disorder is present individually in either of the couplings.

The constructive interference, which is caused due to the interplay between com-
peting random coupling strengths in different directions, appears only in the multi-
partite entanglement, and is absent in bipartite as well as single-site physical quan-
tities considered.

The new results of this chapter are on the preprint server arXiv.org as
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CHAPTER8
Summary and conclusion

Quantum correlations form an intrinsic aspect of quantum theory that enables the
manifestation of several interesting phenomena that are not possible within the
realms of the classical world. In order to develop a coherent understanding of the use
of quantum correlations as well as to attain ability to efficiently manipulate the same
in real situations, it is of importance to study the behavior of quantum correlations
in many-particle states.

In this thesis, we have investigated the dynamics of entanglement and other
quantum correlations in states of systems of many-particles. This investigation is
carried out in macroscopic quantum superposition states composed of many particles
and in the ground and thermal states of many-body statistical mechanical models.
The main points of the thesis and possible future directions inspired by the analysis
of the work carried out in this thesis are highlighted as follows:

• We have investigated effects of local decoherence on the quantum correlation
properties of states composed of a large number of parties. In particular, we
have identified a family of macroscopic quantum superposition states, called
them H-cat and Hm

CN
states, and investigated their robustness against particle

loss and particle-conserving decoherence models. The robustness is measured
by calculating quantum correlation, in a natural division of the whole system
into microscopic and macroscopic parts, of the states as a functions of the
decoherence parameters. We find that the state the H-cat and the Hm

CN
states

are more robust against lossy and non-lossy quantum channels as compared to
the other existing macroscopic superposition (cat) states. These investigations,
reported in chapter 5 of the thesis, contribute to the existing notions of what
is termed in the literature as “macroscopic quantum superpositions”.
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There are several proposals in the literature to characterize macroscopic quan-
tum superposition. However, most of such characterizations are limited to
situations with a fixed number of particles, so that lossy quantum channels are
disallowed. It will be very interesting to find a way that unifies the existing
measures of characterization of macroscopic quantum superpositions.

• In the next part of the thesis, we have investigated the long-time behav-
ior of quantum correlations in the Heisenberg spin model in presence of a
time-dependent magnetic field and asked the following question: Are quan-
tum correlations ergodic in this model? Such investigations are important
from both technological and fundamental perspectives of nonequilibrium dy-
namics of quantum many-body systems. In particular, this is important for
understanding the role of entanglement and other quantum correlations in
thermalization and prethermalizationon. In our study, we focused on quan-
tum correlation measures belonging to the entanglement-separability as well
as the information-theoretic paradigm. We found that while quantum corre-
lation measures belonging to the entanglement-separability paradigm remain
non-ergodic irrespective of the Hamiltonian parameters, information-theoretic
measures shows a richer behavior. While for some parameter ranges, the infor-
mation theoretic measures remain ergodic, they become non-ergodic in others.
The investigations, reported in chapter 6 of the thesis, once again underline
the rich connections between quantum information and quantum many-body
physics. The results reported here could be simulated with the help of current
experimental advances e.g., in cold atoms, optical lattices, nuclear magnetic
resonance (NMR), solid state setups.

A further analysis was performed to check for shifting of the nonergodic-ergodic
transition point with change in the dimension of the lattice. It will be inter-
esting to study the effects of interaction beyond nearest neighbor on the above
conclusions about ergodicity.

• In chapter 6 of the thesis, we also report the observation that the survival of
quantum correlations in the model depends on whether quenching is across
different phases or within the same phase of the considered model. We have
analysed the finite-time and long-time phase diagram of quantum correlations
in the XY model with respect to quenching parameters. In this way, one
can identify the parameter regions where quantum correlations enhance as
compared to the initial state.
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• In chapter 7 of the thesis, we have investigated the behavior of different observ-
ables in the ground states of one-dimensional quenched disordered quantum
Heisenberg (XYZ) models, also know as the quantum Heisenberg spin glass
models, and look for the region of parameter space where entanglement in the
quenched disordered state is more as compared to the ordered case. More im-
portantly, we find that quenched disordered couplings in a quantum Heisenberg
spin glass model can constructively interfere to enhance genuine multipartite
entanglement in the ground state, while the phenomenon is absent for the
single- and two-party classical and quantum correlations.

In our analysis, we have fixed the variance of the probability distribution from
which the coupling strengths of the Hamiltonian are drawn. This quantity
measures the strength of the disorder. It will be interesting to investigate the
scaling of quantum correlations with the strength of the disorder, i.e., with the
variation of the variance.
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APPENDIXA
LOCC

LOCC or “local operations and classical communication” are a special class of op-
erations that were introduced to understand the resource perspective of the en-
tanglement and other quantum correlations as a resource in quantum information
tasks [23, 24]. A general LOCC protocol consists of both local quantum operations
and classical communications. Let Alice and Bob share a bipartite quantum state.
Let Alice perform quantum operations on her side of the state of the two-component
system. Suppose that after performing the local operations, Alice communicates the
outcome of a possible measurement that she has performed, to Bob by some classical
channel. Depending on the the outcome at Alice’s side, Bob performs his operations,
and obtains an outcome. Bob then communicates the outcome of any measurement
performed by him to Alice through a classical channel. This process may be repeated
as many times a s desire.

The above protocol may be generalized to the case of more than two observers.
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APPENDIXB
Entropy of entanglement

For a pure bipartite state, |Ψ〉AB, entropy of entanglement is a useful measure of
entanglement. It is defined as

E(|Ψ〉AB) = S(ρA) = S(ρB), (B.1)

where, S(ρA) (or S(ρB)) is the von Neumann entropy of the state ρA (or ρB). If the
state, |Ψ〉AB, is written in the Schmidt form,

|Ψ〉AB =
min(dA,dB)∑

i=1

√
λi|i〉A ⊗ |̃i〉B, (B.2)

then the entropy of entanglement is obtained in term of the Schmidt coefficients,
λi’s, and is given as

E(|Ψ〉AB) = −
min(dA,dB)∑

i=1
λi log2 λi. (B.3)
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APPENDIXC
The Jordan-Wigner transformation for the

infinite quantum XY spin chain

Following the approach discussed in Refs. [189, 190], it is possible to obtain exact
analytical expressions for the single- and two-body density matrices. Below we briefly
discuss the method and present the final expressions.

We define the raising and the lowering spin operators, b†i and bi, in terms of the
spin operators by Sxi = (b†i + bi)/2, Syi = (b†i − bi)/2i and Szi = b†ibi − 1/2. The
raising and the lowering operators are further expressed in terms of Fermi operators
cj, where bj = exp

(
−πi∑j−1

i=1 c
†
jcj
)
ci, and it’s complex conjugate, c†j. It is the last

transformation that is called the Jordan-Wigner transformation. By performing a
Fourier transformation, we obtain a new set of operators ap and a†p, where c†j =

1√
N

∑N/2
p=−N/2 exp(ijφp)a†p. Here φp = 2πp/N .

Expressing the Hamiltonian, H, in Eq. (6.12) in terms of the newly introduced
operators, ap and a†p, we can write H = ∑N/2

p=1 H̄p, where

H̄p = 1
2
[
αp(t)(a†pap + a†−pa−p) + iδp(t)(a†pa†p + apap) + 2h

]
, (C.1)

where αp(t) = 2 (J(t) cosφp − h) and δp(t) = −2γJ(t) sinφp. Recognizing that
[H̄p, H̄

′
p] = 0 for p, p′ = 1, 2, · · · , N/2, the Hilbert space corresponding the Hamil-

tonian H can be broken down in N/2 non-interacting subspaces each of which are
in four-dimensional Hilbert spaces. Choosing {|0〉 , a†pa

†
−p |0〉 , a†p |0〉 , a

†
−p |0〉} as the
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basis for the pth subspace, H̄p can be represented in matrix form as

H̄p =


h iδp(t)

2 0 0
− iδp(t)

2 2J(t) cosφp − h 0 0
0 0 J(t) cosφp 0
0 0 0 J(t) cosφp

 . (C.2)

At time t = 0, if we assume the system to be in thermal equilibrium state, the
corresponding density matrix for the pth subspace, ρp(0) is given by

ρp(0) = exp(−βH̄p)
Tr(exp(−βH̄p))

, (C.3)

where β = 1/(κT ), κ is the Boltzmann constant and T being the absolute tempera-
ture of the system.

Using Eq. (C.2), the matrix form of ρp(0) can be obtained as

ρp(0) = 1
E(0)


k11 k12 0 0
k21 k22 0 0
0 0 k33 0
0 0 0 k44

 , (C.4)

where

E(0) = k11 + k22 + 2 exp (−J1β cosφp) ,

k11 = 1
2Λ(J1) exp[−β (−J1 cosφp + Λ(J1))]

(Λ(J1)− J1 cosφp + h) + exp[−β (−J1 cosφp − Λ(J1))](Λ(J1) + J1 cosφp − h),

k22 = 1
2Λ(J1) exp[−β (−J1 cosφp + Λ(J1))]

(Λ(J1) + J1 cosφp − h) + exp[−β (−J1 cosφp − Λ(J1))](Λ(J1)− J1 cosφp + h),
k44 = exp (−βJ1 cosφp) = k33,

k12 = i
J1γ sinφp

Λ(J1) exp (−βJ1 cosφp) sinh(βΛ(J1)) = k∗21, and

Λ(J) =
√
J2γ2 sin2 φp + (cosφp − h)2. (C.5)

In Eq. (C.5), we have replaced J(t = 0) by J1 as assumed in Eq. (6.13).
Solving the Liouville equation of the system [189], it can be shown that the
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evolution of the density matrix, ρp(t), corresponding to the pth subspace satisfies

i
d

dt
ρp(t) = [Hp(t), ρp(t)] , (C.6)

where p = 1, 2, · · · , N/2. Considering Up(t) as the time evolution matrix satisfying

Up(t) = exp
(
−itH̄p(t)

)
, (C.7)

the solution of the Eq. (C.6) is given by

ρp(t) = Up(t)ρp(0)Up(t)†. (C.8)

Using Eqs. (C.2) and (C.7), we obtain

Up(t) = exp(−itJ2 cosφp)


v11 v12 0 0
−v∗12 v∗11 0 0

0 0 1 0
0 0 0 1

 , (C.9)

where we put J(t) = J2. v11 and v12 are given by

v11 = i(J2 cosφp − h)
Λ(J2) sin

(
Λ(J2)t

~

)
+ cos

(
Λ(J2)t

~

)
,

v12 = −J2γ sinφp
Λ(J2) sin

(
Λ(J2)t

~

)
. (C.10)

Plugging Eqs. (C.9) and (C.4) in Eq. (C.8), we have

ρp(t) =


l11 l12 0 0
l21 l∗22 0 0
0 0 1 0
0 0 0 1

 , (C.11)

where

l11 = k11|v11|2 + k12v11v
∗
12 + k∗12v

∗
11v12 + k22|v12|2,

l12 = −k11v11v12 + k12|v11|2 − k12v
2
12 + k22v11v12,

l21 = −k11v
∗
12v
∗
11 − k12(v∗12)2 + k∗12(v∗11)2 + k22v

∗
11v
∗
12,

l22 = k11|v12|2 − k12v11v
∗
12 − k∗12v

∗
11v12 + k22|v11|2. (C.12)
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APPENDIXD
Magnetization in the quantum XY model

The magnetization operator per spin in z-direction is given by mz = (1/N)∑j〈σzj 〉,
which can again be written in terms of the ap and a†p operators as

mz(t) = (2/N)
N/2∑
p=1
〈a†pap + a†−pa−p − 1〉. (D.1)

We therefore have

mz = 2
N

N/2∑
p=1

− (Ap(0)Bp(t) + 4 Re [Cp(0)Dp(t)])
Ep(0) , (D.2)

where Ap(0) = (k11 − k22), Bp(t) = |v11|2 − |v22|2, Ap(0) = k12, Dp(t) = v11v
∗
12

and Ep(0) = (k11 + k22 + 2 exp(−J1β cosφp)). Using set of Eqs. (C.5) and (C.10)
into Eq. (D.2), and simplifying further, the final expression for the magnetization is
obtained as

mz = 2
N

N/2∑
p=1

tanh (βΛ(J1)/2)
Λ(J1)Λ(J2)2

[
(J2 cosφp − h)Q

+ J2(J1 − J2)γ2h sin2 φp cos
(

2Λ(J2)t
~

) ]
, (D.3)

where Q = (J1 cosφp − h)(J2 cosφp − h) + J1J2γ
2 sin2 φp.
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APPENDIXE
Nearest-neighbour correlators in the

quantum XY model

The nearest-neighbour spin-spin correlators are given by tαβ = (1/N)∑j〈sαj s
β
j+1〉,

where α, β stands for x, y, and z. The correlators, txx and tyy, are given by G(R),
where R = −1 and 1 for the xx and the yy correlator, respectively. Expressing G(R)
in terms of the ap and a†p operators, we find G(R) = 〈T1〉+ 〈T2〉, where

〈T1〉 = 1
N

N/2∑
1

[
2 cos(2πp

N
R)〈a†pap + a†−pa−p − 1〉

]
, (E.1)

and

〈T2〉 = 1
N

N/2∑
1

[
2i sin(2πp

N
R)〈a†pa

†
−p + apa−p〉

]
. (E.2)

Now, the term 〈a†pap+a†−pa−p−1〉 which appears in 〈T1〉, has already been calculated
while deriving the magnetization, mz(t). It can be shown that

〈T2〉 = −1
N

N/2∑
p=1

4 sin
(2πp
N

R
) [

Ap(0)Pp(t) + iCp(0)Qp(t)
Ep(0)

]
, (E.3)
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where Pp(t) = Re[iv∗11v
∗
12] and Qp(t) = Re[(v∗11)2 + (v∗12)2]. Using Eqs. (C.5), (C.10)

and (E.3), the final expression for 〈T2〉 is given by

〈T2〉 = 1
N

N/2∑
p=1

2 sin(φpR) tanh (βΛ(J1)/2)
Λ(J1)Λ(J2)2 (γ sinφp)

[
J2(J2 cosφp − h)Q

− h(J1 − J2)(J2 cosφp − h) cos
(

2Λ(J2)t
~

) ]
. (E.4)

In an analogous way, we find the expression of the the xy-correlator, txy, as

txy = 1
N

N/2∑
p=1

tanh (βΛ(J1)/2)
Λ(J1)Λ(J2) h(J1 − J2)γ sin2 φp sin

(
2Λ(J2)t

~

)
.

(E.5)

It can readily be seen that txy vanishes for the equilibrium case, i.e., if J1 = J2.
By using Wick’s theorem the zz-correlator, tzz, can be now be expressed as tzz =
m2
z −G(−1)G(1) + t2xy.
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Rev. A 68, 062306 (2003).
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[241] D. Hv̈onen, S. Zhao, M. Månsson, T. Yankova, E. Ressouche, C. Niedermayer,
M. Laver, S. N. Gvasaliya, and A. Zheludev, Phys. Rev. B 85, 100410(R) (2012).

[242] S. Krinner, D. Stadler, J. Meineke, J.-P. Brantut, and T. Esslinger, arXiv:
1311.5174 [quant-ph].

143



[243] K. R. A. Hazzard, B. Gadway, M. Foss-Feig, B. Yan, S. A. Moses, J. P. Covey,
N. Y. Yao, M. D. Lukin, J. Ye, D. S. Jin, and A. M. Rey, arXiv: 1402.2354
[quant-ph] and references therein.

[244] U. Mishra, D. Rakshit, R. Prabhu, A. Sen(De), and U. Sen, arXiv:1408.0179
[quant-ph].

[245] P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral,
M. Aspelmeyer, and A. Zeilinger, Nature 434, 169 (2005).

[246] W. Dür, Phys. Rev. Lett. 87, 230402 (2001).

[247] D. Kaszlikowski, L. C. Kwek, J. Chen, and C. h. Oh, Phys. Rev. A 66, 052309
(2002).
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[313] A. Imamoǧlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M.
Sherwin, and A. Small, Phys. Rev. Lett. 83, 4204 (1999); S.B. Zheng and G.C.
Guo, Phys. Rev. Lett. 85, 2392 (2000).

[314] K. Yosida, Theory of Magnetism (Springer, Berlin, 2010).

[315] E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. (N.Y.) 16, 407 (1961).

[316] M. C. Arnesen, S. Bose, and V. Vedral, Phys. Rev. Lett, 87, 017901 (2001); K.
M. O’Connor and W. K. Wootters, Phys. Rev. A 63, 0523202 (2001); L. Zhou,
H. S. Song, Y. Q. Guo, and C. Li , Phys. Rev. A 68, 024301 (2003).

[317] E. Dagotto and T. M. Rice, Science, 271, 618 (1996).

[318] P. Calabrese and A. Lefevre, Phys. Rev. A 78, 032329 (2008).

[319] D. Poilblanc, Phys. Rev. Lett. 105, 077202 (2010).

[320] L. O. Manuel, M. I. Micheletti, A. E. Trumper, and H. A. Ceccatto, Phys.
Rev. B 58, 8490 (1998); S. Miyahara and K. Ueda, J. Phys.: Condens. Matter
15, R327 (2003).

[321] S. Korenblit, D. Kafri, W. C. Campbell, R. Islam, E. E. Edwards, Z.-X. Gong,
G.-D. Lin, L.-M. Duan, J. Kim, and K. Kim, New J. Phys. 14 095024 (2012).

[322] M. Lubasch, V. Murg, U. Schneider, J. I. Cirac, and M.-C. Baũls, Phys. Rev.
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