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SYNOPSIS

In the field of quantum information science [1–3], quantum entanglement [4] is a well

known resource allowing for implementation of various quantum information protocols

that are otherwise impossible in the classical realm. The examples include quantum tele-

portation [5], super dense coding [6], quantum key distribution [7], and remote state prepa-

ration [8, 9] among others. The quantitative understanding of entanglement as a resource is

of utmost importance to harness entanglement effectively and therefore a formal resource

theory of entanglement is developed in recent years [4]. However, quantum resource the-

ory is not exclusive to entanglement and can be developed for other non-classical resources

at our disposal. In general, a quantum resource theory comprises three basic ingredients

(not all of them are independent): (i) a set of allowed or free operations, (ii) a set of

allowed or free states, and (iii) a set of resource or non-free states [10].

With our ever increasing ability to control and manipulate systems at smaller and

smaller scales and need of miniaturization, resources other than entanglement have been

identified. Recent developments in the field of quantum thermodynamics [11–16] and

quantum biology [17–20] suggest quantum coherence as one of the key resources in vari-

ous applications within these areas of research. This necessitates a deeper and quantitative

understanding of quantum coherence which is a basic manifestation of the linearity of

quantum mechanics. Though there exists a formal theory of coherence in terms of cor-

relation functions in the context of quantum optics [21], however, for discrete quantum

systems and in the new light of quantum coherence as a resource, formal and general re-

source theories of coherence are developed very recently. This has been a very vibrant and

fruitful area of research since then and various applications of coherence based on these

theories have been reported till date [22]. The proposed thesis is a substantial contribution

to these resource theories of coherence consolidating their foundations as well providing

various applications of the same.
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The crucial results obtained in the proposed thesis are listed below.

• We provide a set of coherence quantifiers based on well known entanglement quan-

tifiers. This establishes a quantitative equivalence of entanglement and coherence

resource theories. These results are published in Ref. [23].

• We provide an operational meaning to a key quantifier of coherence, namely, the

relative entropy of coherence which is vital for its justification as a physically mean-

ingful resource. This result has been reported in Ref. [24].

• We provide the trade off of coherence as a resource in noisy environments, thereby,

providing a set of maximally coherent mixed states in Ref. [25].

• We provide detailed results on coherence manipulations in physical processes in-

cluding the possibility of catalysis in Ref. [26].

• Using typicality analysis, we provide generic aspects of coherence as a resource and

establish that the most of the randomly sampled pure states are not maximally co-

herent. This analysis also helps in reducing the computational complexity of certain

entanglement measures on a specific class of bipartite mixed quantum states. These

results are published in Refs. [27, 28].

The thesis is divided into eight Chapters and a few appendices.

Chapter 1 (Introduction) forms the basic platform that is necessary to the understand

the crux of the thesis. We provide a short pedagogical account of various developments

that led to our research. This chapter includes various definitions and a brief sketch of

results in the context of resource theories of coherence with a comprehensive list of refer-

ences.

Quantum coherence and entanglement are two fundamental manifestations of quan-

tum theory and key resources for quantum technologies. Now we have resource theoretic
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description for both the notions. It is the aim of Chapter 2 (Measuring quantum coherence

with entanglement) to provide a clear quantitative and operational connection between

coherence and entanglement. We start with showing that all quantum states displaying

coherence in some reference basis are useful resources for the creation of entanglement

via incoherent operations. We then define a general class of measures of coherence for a

quantum system in terms of the maximum bipartite entanglement that can be created via

incoherent operations applied to the system and an incoherent ancilla. The resulting mea-

sures are proven to be valid coherence monotones satisfying all the requirements dictated

by the resource theory of quantum coherence. Thus, given an entanglement monotone

(measure of entanglement) we can always construct a coherence monotone (measure of

coherence).

The resource theory of coherence provides a solid platform for quantitative under-

standing of the notion of coherence. However, coherence quantifiers in this theory lack

operational significance. Providing operational meaning to coherence quantifiers is in-

sightful for our understanding of the notion of coherence. To achieve this aim, in Chapter

3 (Erasing quantum coherence: An operational approach), we introduce the concept of

erasing of coherence via injecting noise (decohering process) into the system of interest.

In particular, we find that in the asymptotic limit, the minimum amount of noise that is

required to fully decohere a quantum system, is equal to the relative entropy of coherence.

This holds even if we allow for the nonzero small errors in the decohering process.

In realistic implementation of quantum technologies the resourcefulness of quantum

coherence is severely restricted by environmental noise, which is indicated by the loss of

information in a quantum system, measured in terms of its purity. In Chapter 4 (Maximally

coherent mixed states: Complementarity between maximal coherence and mixedness), we

obtain an analytical trade-off between the coherence and mixedness. Using this we find

the upperbound on the coherence for fixed mixedness in a system. This gives rise to a

class of quantum states, “maximally coherent mixed states”, whose coherence cannot be
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increased further under any purity-preserving operation. For the above class of states,

quantum coherence and mixedness satisfy a complementarity relation, which is crucial to

understand the interplay between a resource and noise in open quantum systems.

In Chapter 5 (Catalytic coherence transformations), we study the physical processes

that are allowed in the resource theory of coherence with/without aid of catalysts. Catalytic

coherence transformations allow the otherwise impossible state transformations using only

incoherent operations with the aid of an auxiliary system with finite coherence which is

not being consumed in anyway. We show that the simultaneous decrease of a family of

Rényi entropies of the diagonal parts of the states under consideration are necessary and

sufficient conditions for the deterministic catalytic coherence transformations. Similarly,

for stochastic catalytic coherence transformations we find the necessary and sufficient

conditions for achieving higher optimal probability of conversion. We, thus, completely

characterize the coherence transformations amongst pure quantum states under incoherent

operations. We give numerous examples to elaborate our results. We also explore the pos-

sibility of the same system acting as a catalyst for itself and find that indeed self catalysis

is possible.

Generic aspects of the properties such as entanglement of closed quantum systems

have been established using the concentration of measure phenomenon on the set of ran-

dom pure states [29]. It serves as a beautiful example in the context of the reduction of

computational complexity of various entanglement measures for bipartite mixed states. In

Chapter 6 (Average coherence and its typicality for random pure states), we establish the

typicality of the relative entropy of coherence using the concentration of measure phe-

nomenon. In particular, we prove that the coherence content of an overwhelming majority

of Haar distributed random pure states is equal to the average relative entropy of coherence

(within an arbitrarily small error) in higher dimensional Hilbert spaces. We find the di-

mension of a random subspace of the total Hilbert space such that all pure states that reside

on it have the relative entropy of coherence arbitrarily close to the typical value. More-
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over, we establish that randomly chosen pure states are not typically maximally coherent

(within an arbitrarily small error).

In Chapter 6 we have explored coherence content of random pure states. However,

mixed states are encountered more naturally in experimental scenarios due to the inter-

action between the system of interest and the environment. Therefore, consideration of

typicality of coherence content of random mixed states is of great importance in practical

scenarios and this is the topic of Chapter 7 (Typicality of coherence for random mixed

states). In this chapter we establish the typicality of the relative entropy of coherence

for random mixed states sampled from the induced measure via partial tracing of random

bipartite pure states, invoking again the concentration of measure phenomenon. As an

important application towards the reduction of computational complexity of entanglement

measures, we establish the typicality of the relative entropy of entanglement and distillable

entanglement for a specific class of random bipartite mixed states. In particular, most of

the random states in this specific class have relative entropy of entanglement and distillable

entanglement equal to some fixed number (to within an arbitrary small error).

We provide the crux of our thesis and possible future research directions inspired from

our investigations in chapter 8.

Finally, in appendices A, B, C and D, we provide some old mathematical results that

are used in the thesis together with proofs of some of the results of the thesis.

The results obtained in this thesis enrich our understanding of the notion of quantum

coherence at a fundamental and quantitative level. The proposed thesis is a significant

contribution to the nascent field of the resource theory of coherence and resource theories,

in general. We believe that the results presented here can motivate and lead to further

research in the area of quantum resource theories and quantum information science.
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CHAPTER1
Introduction

The storage, transmission and processing of information form the building blocks of in-

formation theory and these building blocks rely on physical carriers. When these physical

carriers are single quantum systems such as single atoms or single photons, it provides the

basis for quantum information theory. The consideration of single quantum systems as the

physical carriers of information stems from the rapid miniaturization of devices at atomic

scales. For example, the storage and processing units in a classical computer are becom-

ing smaller and smaller reaching nano or atomic scales in which quantum effects become

crucial. Moreover, with the current technological advancements, it has been possible to

manipulate single quantum systems [2]. At these small scales, the quantum theory de-

scribes the physical systems and the governing laws for the manipulation of these systems

are completely different than their counterparts in classical physics. However, the proba-

bilistic nature of quantum theory has baffled the greatest minds in science and philosophy

to the extent that it was deemed an incomplete theory to explain the physical reality [30].

Over the years, quantum physics has emerged as a very successful theory that explains mi-

croscopic phenomena and its predictions match with the experiments to a great accuracy.

Quantum theory opens up new possibilities for information processing and communica-

tion tasks. The enhanced performance of quantum systems in information processing and

communication tasks is believed to be rooted mainly in quantum superposition and en-
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tanglement present in quantum systems. Some noteworthy applications include quantum

teleportation [5], super dense coding [6], quantum key distribution [7], factorization of

large numbers [31] and searching a large database on a quantum computer [32]. However,

the role of quantum entanglement is not very explicit in many applications. Since entan-

glement stems from the basic yet extremely nontrivial superposition principle of quantum

physics, the superposed quantum states are good candidates that can provide the reason

behind the enhancement of performance in information processing and communication

tasks. Also, recent developments in thermodynamics of nano scale systems suggest that

the quantum superposition or quantum coherence plays an essential role in determining

the quantum state transformations and more importantly, in providing a family of second

laws of thermodynamics [11–14, 16, 33–39]. Further, the phenomenon of quantum coher-

ence has been arguably attributed to the efficient functioning of some complex biological

systems [17–20, 40, 41].

Miniaturization [42] and technological advancements to handle and control systems at

smaller and smaller scales necessitate the deeper understanding of concepts such as quan-

tum coherence, entanglement and correlations [11–14, 16–20, 33, 34, 41]. On a purely

theoretical level it is important to understand what kinds of tasks may be achieved with

quantum systems. While the theory of quantum coherence is historically well developed

in quantum optics [21, 43, 44] in terms of quasiprobability distributions and higher-order

correlation functions, a rigorous framework to quantify coherence for general states adopt-

ing the language of quantum information theory has only been attempted in recent years

[41, 45–48]. These frameworks fall in the subject of quantum resource theories. Based on

these theories, various quantifiers of coherence have been proposed and explored in detail.

Moreover, a plethora of applications of coherence under these frameworks are obtained

(see for example Ref. [22] for a recent review of coherence).

Quantum resource theories (QRTs) are formalisms that identify properties of physical

systems such as entanglement, coherence, athermality and asymmetry as resources and
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provide rigorous framework for manipulation of physical systems (quantum states) under

relevant restrictions. QRTs consist of three main ingredients: (a) the restricted set of

allowed or free states, (b) the restricted set of allowed or free operations, and (c) the

restricted set of non free or resource states. For example, for the QRT of entanglement

these three ingredients are: (a) the set of separable states as the restricted set of allowed

states, (b) the set of local operations and classical communication as the set of allowed

operations, and (c) the set of entangled states as the set of resource states. However, these

three ingredients are not independent of each other and affecting one of the constituents

affects the others. The examples of QRTs include the resource theory of athermality in

quantum thermodynamics [11–13, 16, 33, 49, 50] (which led to the introduction of many

second laws of quantum thermodynamics [11]), the resource theories of coherence [41,

45–48], the resource theory of asymmetry [45, 46, 51–61] (which led to generalization of

Noether’s theorem [60]), the resource theory of steering [62] and the resource theory of

noncontextuality [63]. Recently, it is obtained that a QRT is asymptotically reversible if

its allowed operations are the set of all operations that do not generate asymptotically a

resource [10].

This thesis is a contribution towards the resource theoretic frameworks of quantum

coherence, especially, towards the QRT of coherence based on incoherent operations. It

deals mainly with the resource character of quantum superposition in particular with its

quantification, mathematical characterization, operational justification and manipulation

in the absence and presence of environmental noise.

Coherence is a fundamental aspect of quantum physics that encapsulates the defining

features of the theory [64] ranging from the superposition principle to quantum corre-

lations. It is a key ingredient in various quantum information and estimation protocols,

and is primarily accountable for the advantage offered by quantum tasks versus classical

ones [2, 65]. In general, quantum coherence is an important physical resource in low-

temperature thermodynamics [12, 13, 15, 16, 66], for exciton and electron transport in

3



incoherent 
operation 

separable S:A 

incoherent incoherent 

incoherent 
operation 

coherent incoherent 

entangled S:A 

A  S A  S 

(a) (b) 

Figure 1.1: (a) Incoherent operations cannot create entanglement from incoherent input
states. (b) Entanglement can instead be created by incoherent operations if at least one of
the inputs is coherent. We show that all coherent input states of a system S are useful for
entanglement creation via incoherent operations on S and an incoherent ancilla A. Input
coherence and output entanglement are quantitatively equivalent: For every entanglement
monotone E, the maximum entanglement that can be created between S and A by inco-
herent operations defines a faithful measure of quantum coherence CE in the initial state
of the system S.

biomolecular networks [17–20, 40, 41], and for applications in nanoscale physics [38, 39].

Intuitively, both coherence and entanglement capture the quantumness of a physical

system, and it is well known that entanglement stems from the superposition principle,

which is also the essence of coherence. It is then legitimate to ask how can one resource

emerge quantitatively from the other. In chapter 2, we investigate whether the parallel be-

tween coherence and entanglement, apparent at the formal level of resource theories, can

be upgraded to a more solid conceptual premise. We provide a mathematically rigorous

approach to resolve the above question. Our approach is based on using a common frame

to quantify quantumness in terms of coherence and entanglement. In particular, in our cen-

tral result we show that any nonzero amount of coherence in a system S can be ‘activated’

into (distillable) entanglement between S and an initially incoherent ancilla A, by means

of incoherent operations (see Fig. 1.1). This establishes coherence as a universal resource

for entanglement creation. In quantitative terms, given a distance-based pair of quantifiers

for coherence and entanglement, we show that the initial degree of coherence of S bounds

from above the entanglement that can be created between S and A by any incoherent op-
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eration. Conversely, our scheme also reveals a novel, general quantification of coherence

in terms of entanglement creation. Namely we prove that, given an arbitrary set of entan-

glement monotones {E}, one can define a corresponding class of coherence monotones

{CE} that satisfy all the requirements of Ref. [47]. The input coherence CE of S is specif-

ically defined as the maximum output entanglement E over all incoherent operations on

S and A. Fundamentally, these results demonstrate a quantitative equivalence between

coherence and entanglement, and provide an intuitive operational scheme to interchange

these two nonclassical resources for suitable applications in quantum technologies.

Despite the resource theoretic framework of coherence is well grounded, it lacks an

operational significance as such. Chapter 3 is aimed at filling this gap. In the quantum

information theory, to equip a particular “resource” of interest with an operational mean-

ing, consideration of thermodynamic cost of destroying (erasing) the “resource”, turns out

to be very fruitful and far reaching [67–73]. For example, the Landauer erasure princi-

ple [67] has been a central one in laying the foundation of physics of information theory.

Similarly, an operational definition of total correlation, classical correlation and quantum

correlation is obtained independently in Refs. [74] and [75], considering the thermody-

namic cost to erase the same. Additionally, it has been shown that the thermodynamic

cost of erasing quantum correlation has to be associated with entropy production in the

environment [76]. This approach has also been successfully applied to private quantum

decoupling [77] and recently to markovianization [78]. Importantly, this approach can

suitably be used for the quantification of any other quantum resource [74]. In these tasks,

quantum state randomization [79–81] plays a pivotal role. The resource theory of quantum

coherence is still in its infancy as our understanding about it is limited from both quali-

tative and quantitative perspectives. Following the aforementioned operational approach,

we quantify quantum coherence in terms of the amount of noise that has to be injected

into the system such that the system decoheres completely. This, in turn, will provide

operational meaning of the coherence. We consider two different measures to quantify the
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Figure 1.2: Fully decohering and ε-decohering maps: If we start with n copies of any state
(coherent or incoherent) and pass them through some decohering map, then the n copies
decohere completely if the map is fully decohering and if the map is ε-decohering then the
n copies come very close to the fully decohered state keeping some amount of coherence
which is close to zero. We show that in both the cases the minimum amount of noise that
is required is same and is equal to relative entropy of coherence in the asymptotic limit.

amount of noise in the process of decohering a quantum system: the entropy exchange be-

tween system and environment during the decohering operation [82, 83] and the memory

required to store the information about the decohering operation [74]. We show that in the

asymptotic limit, both these measures yields the same minimal cost of erasing coherence

(the minimal noise required to fully decohere the system) and it turns out to be equal to

the relative entropy of coherence [47] (see Fig. 1.2). This result is valid provided we take

the decohering operations as the random unitary operations considered by us. Relative

entropy of coherence has been already identified as bona fide measure of coherence in the

resource theory of coherence [47], by considering the allowed operations to be incoherent

operations and free states to be incoherent states. Here, to quantify coherence we followed

a approach that is very much different compared to the other measures existing in resource

theory but interestingly this approach yields the same quantifier as the relative entropy of

coherence. Thus, our results provide an operational meaning of the relative entropy of

coherence which in turn strengthens the basis of the coherence resource theory, in general.

A significant aspect in the dynamics of quantum systems is the role of environmental
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noise and the unavoidable phenomenon of decoherence. It is known that decoherence is

detrimental to amount of information contained in a quantum state, as measured by its

purity. To effectively characterize the role of decoherence in erasing information [67] one

needs to quantify the purity or, its complementary property, the mixedness of the state. A

faithful measure of mixedness is the normalized linear entropy [84]. From the perspec-

tive of resource theory of purity [71, 85], mixedness can be obtained as a complementary

quantity to global information. Since, noise tends to increase the mixedness of a quantum

system, it emerges as an intuitive parameter to understand decoherence. A natural ques-

tion that arises is: How do important physical quantities in quantum information theory,

such as entanglement [4], fare against mixedness of quantum systems? An interesting di-

rection is to obtain the maximum amount of entanglement for a given mixedness, which

leads to the notion of maximally entangled mixed states [86–90]. The amount of entangle-

ment in such states cannot be increased further under any global unitary operation. Also,

the form of the maximally entangled mixed states depends on the measures employed to

quantify entanglement and mixedness in the system [89]. Such states have also been in-

vestigated in Gaussian quantum systems [91–93]. In chapter 4, we investigate the limits

imposed by mixedness of a quantum system on the amount of quantum coherence present

in the system. Since, we consider quantum systems where the missing phase-reference

frame is apparently lacking, the formalism based on the resource theory of asymmetry

[46] becomes over-restrictive a. Hence, we use the theoretical approach based on the set

of incoherent operations and states [47], to characterize and quantify coherence. We de-

rive an analytical trade-off between the two quantities that allows us to upperbound the

maximum coherence in a given mixed quantum state and vice-versa. Using the l1 norm of

coherence [47] as a measure of quantum coherence and normalized linear entropy [84] as a

aThe discussion on coherence, in Ref. [46], states that the set of phase insensitive operations restricts
transformations allowed by incoherent operations. However, restrictive operations are not necessarily physi-
cally more relevant or significant under all contexts. For example, in a recent article on the resource theories
of thermodynamics based on Gibbs preserving operations and thermal operations [50], the authors have ar-
gued how Gibbs preserving operations outperform thermal operations even though the former is restricted
by the latter set of operations.
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measure of mixedness, we prove that for a general d-dimensional quantum system the sum

of the (scaled) squared coherence and the mixedness is always less than or equal to unity.

This allows us to derive a class of quantum states, viz. “maximally coherent mixed states”

(MCMS), that have maximal coherence, up to incoherent unitaries, for a fixed mixedness.

These states are parametrized mixtures of a d-dimensional pure maximally coherent state

and maximally mixed state. Interestingly, for different values of mixedness the analytical

form of MCMS remains unchanged and, unlike maximally entangled mixed states, is not

dependent on the choice of the measure of coherence and mixedness, as observed for the l1

norm, the relative entropy, and the geometric measures of coherence. The obtained analyt-

ical results, show an important trade-off between a relevant quantum resource and noise in

open quantum systems and a complementary behavior between coherence and mixedness

in the class of MCMS, which may be crucial from the perspective of quantum resource

theories and thermodynamics. Significantly, since the mixedness of a quantum system

can be experimentally measured using quantum interferometric setups [94, 95], without

resorting to complicated state tomography, our results provide a mathematical framework

to experimentally determine the maximal coherence in a quantum state.

A major concern of any resource theory is to describe and uncover the intricate struc-

ture of the physical processes (state transformations) within the set of allowed operations.

The possibility of catalysis is one such phenomenon which allows the otherwise impossi-

ble state transformations via the set of allowed operations in a given resource theory. This

is very natural as the additional systems (catalysts) are always available and importantly,

in such transformations the additional resources are not consumed in anyway. The catal-

ysis in quantum resource theories was first introduced in Refs. [96, 97] in the context of

entanglement. The consideration of catalysts in the resource theory of thermodynamics

turned out to be very surprising and extremely important that has led to the introduction

of many second laws of quantum thermodynamics [11] compared to the single second law

in the macroscopic thermodynamics [98]. Recently, in the context of entanglement it is
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Figure 1.3: The schematic for catalytic coherence transformations. Consider a finite di-
mensional quantum system in state |ψ1〉. Let |ψ2〉 be an incomparable state to |ψ1〉, i.e.,
using only incoherent operations one cannot convert |ψ1〉 into |ψ2〉 with certainty. How-
ever, if one has temporary access to another coherent state |φ〉, one can always achieve
the transformation from |ψ1〉 to |ψ2〉. The state |φ〉 is not consumed in any way and can,
therefore, be viewed as a catalyst for this transformation.

found that a quantum system can act as a catalyst for itself, allowing further the possibility

of self catalysis [99]. Catalysis in the resource theory of coherence was first considered in

Ref. [66] and is developed since then (see Refs. [100, 101], also see Fig. 1.3). In chapter

5, we further delineate the phenomenon of catalysis in the resource theory of coherence

both in the deterministic and stochastic scenarios and completely characterize the coher-

ence transformations amongst pure quantum states under incoherent operations. This is an

important step towards a complete theory of quantum coherence based on incoherent oper-

ations as the allowed operations [47]. In particular, we obtain the necessary and sufficient

conditions for the deterministic and stochastic coherence transformations in the presence

of catalysts. We first find the necessary and sufficient conditions for the enhancement of

the optimal probability of conversion while the catalysts are available. Then we go on

to find the necessary and sufficient conditions for the deterministic catalytic coherence

transformations and show that these are given by the simultaneous decrease of a family of

Rényi entropies of the diagonal parts of the states under consideration in a fixed basis. This

result is very similar in nature to the many second laws of quantum thermodynamics. We
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also provide a dedicated discussion on the practicality of these necessary and sufficient

conditions. Further, for the cases where no catalytic coherence transformation is possi-

ble we consider the possibility of entanglement assisted coherence transformations and

find the necessary and sufficient conditions for the same. Furthermore, we find that self

catalysis in the context of coherence resource theory is possible for the transformations

of certain states. We hope that our results will be useful for coherence transformations

in the resource theory of coherence, in situations where processing of coherence is lim-

ited by additional restrictions from quantum thermodynamics and in context of single-shot

information theory [102].

Random pure quantum states offer new insights for various phenomena in quantum

physics and quantum information theory by exploiting the strong mathematical tools of

probability theory and random matrix theory [103]. These states play a fundamental role

in providing a satisfactory explanation to the postulate of equal a priori probability of

statistical physics [104, 105]. Moreover, various properties of complex quantum systems

become typical for these states allowing to infer general structures on the set of states on

the Hilbert space [29, 81, 103]. In particular, the entanglement properties of pure bipartite

quantum states sampled from the uniform Haar measure have been studied extensively

[29, 81, 106–115]. It has been shown that the overwhelming majority of random pure

quantum states sampled from the uniform Haar measure are extremely close to the max-

imally entangled state [29] which seems very counterintuitive. Notably, Lévy’s lemma

and in general, the concentration of measure phenomenon, used in proving the above re-

sult paved the way to construct counterexamples to the conjecture of the additivity of

minimum output entropy [116–118] among other important implications [119]. Also, the

physical relevance of generic entanglement has been established by showing that it can be

generated efficiently [120]. In chapter 6, we find the behavior of the quantum coherence

for a system in a pure quantum state chosen randomly from the uniform Haar measure.

We show that for higher dimensional systems the coherence behaves generically, i.e., most
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of the systems in these random pure states posses almost the same amount of coherence.

We demonstrate that the generic nature of coherence of these states holds for various mea-

sures of coherence such as the relative entropy of coherence [47] which is also equal to

the distillable coherence, the coherence of formation [121] and the l1 norm of coherence

[47]. In these situations the coherence is solely determined by a few generic parameters

that appear in the “concentration of measure phenomenon”, such as the dimension of the

Hilbert space. We find a large concentrated subspace of the full Hilbert space with the

property that the relative entropy of coherence [47] of every pure state in this subspace is

almost always lower bounded by a fixed number that is very close to the typical value of

coherence. Moreover, for all the states (pure or mixed) in this subspace, the coherence of

formation [121] is also lower bounded by the same fixed number. These subspaces are of

immense importance in situations where quantum coherence is a useful resource as they

guarantee a lower bound on the amount of coherence that may be used. Furthermore, we

find that most of the pure states sampled randomly from the Haar measure are not typi-

cally maximally coherent. This is in sharp contrast to the fact that most of the bipartite

pure state sampled randomly from the Haar measure are typically maximally entangled

[29]. Since the quantum coherence quantifies the wave nature of a particle [122, 123], one

may ask how ‘wavy’ is a quantum particle if the state of the particle is chosen at random

from the uniform Haar measure? Our result shows that the ‘typical wave nature’ of a

quantum particle such as a qudit is directly related to d-th harmonic number.

As we approach towards the realistic implementations of quantum technology, mixed

states are encountered naturally due to the interaction between the system of interest and

the external world. Therefore, consideration of average entanglement and coherence con-

tent of random mixed states is of great importance in realistic scenarios. In chapter 7, we

aim at finding the average relative entropy of coherence of random mixed states sampled

from various induced measures including the one obtained via the partial tracing of the

Haar distributed random bipartite pure states. We first find the exact expression for the
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average subentropy of random mixed states sampled from induced probability measures

and use it to find the average relative entropy of coherence of random mixed states. We

note that the subentropy is a nonlinear function of state and therefore, it is expected that

the average subentropy of a random mixed state should not be equal to the subentropy

of the average state (the maximally mixed state). Surprisingly, we find that the average

subentropy of a random mixed state approaches exponentially fast towards the maximum

value of the subentropy, which is achieved for the maximally mixed state [124]. As one of

the applications of our results, we note that the average subentropy may also serve as the

state independent quality factor for ensembles of states to be used for estimating accessible

information. Interestingly, we find that the average coherence of random mixed states, just

like the average coherence of random pure states, shows the concentration phenomenon.

This means that the relative entropies of coherence of most of the random mixed states

are equal to some fixed number (within an arbitrarily small error) for larger Hilbert space

dimensions. It is well known that the exact computation of the most of the entangle-

ment measures for bipartite mixed states in higher dimensions is almost impossible [4].

However, using our results, we compute the average relative entropy of entanglement and

distillable entanglement for a specific class of random bipartite mixed states and show

their typicality for larger Hilbert space dimensions. It means that for almost all random

states of this specific class, both the measures of entanglement are equal to a fixed number

(that we calculate) within an arbitrarily small error, reducing hugely the computational

complexity of both the measures for this specific class of bipartite mixed states. This is a

very important practical application of the results obtained in this thesis.

Finally, in chapter 8, we provide a brief summary and implications of our investigations

along with the possible future directions and open questions.
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CHAPTER2
Measuring quantum coherence with entanglement

2.1 Introduction

The linearity and probabilistic nature are fundamental features of quantum theory that are

the root causes of various surprises offered by the quantum theory. For example, a quan-

tum system may simultaneously be in a superposition of more than one of the possible

states and it has a definite nonzero probability of being in any of the superposed states.

Quantum coherence and entanglement [4] are distinctive traits encompassing the defining

features of the quantum theory [64]. Quantum entanglement is provably a key resource

in various quantum information processing tasks including superdense coding [6], remote

state preparation [8, 9] and quantum teleportation [5]. Recent developments in thermo-

dynamics of nano scale systems suggest that the quantum coherence plays an essential

role in determining the quantum state transformations and more importantly, in provid-

ing a family of second laws of thermodynamics [11–14, 16, 33–37]. Similarly, coherence

is deemed to be an important resource in exciton and electron transport in biomolecular

networks [17–20, 40, 41].

While the theory of quantum coherence is historically well developed in quantum op-

tics [21, 43, 44] in terms of quasiprobability distributions and higher-order correlation

functions, a rigorous framework to quantify coherence for general states adopting the lan-
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guage of quantum information theory has only been attempted in recent years [41, 47, 48].

This framework is based on the characterization of the set of incoherent states and a class

of ‘free’ operations, named incoherent quantum channels, that map the set onto itself

[41, 47]. The resulting resource theory of quantum coherence is in direct analogy with

the resource theory of quantum entanglement [4], in which local operations and classical

communication are identified as the ‘free’ operations that map the set of separable states

onto itself [49]. Within such a framework for coherence, one can define suitable measures

that vanish for any incoherent state, and satisfy specific monotonicity requirements under

incoherent quantum channels. Measures that respect these conditions gain the attribute of

coherence monotones, in analogy with entanglement monotones [125].

Motivated by the fact that the cause underlying the notion of quantum coherence and

entanglement is same, and noting that entanglement stems from the superposition princi-

ple (which is also the essence of coherence), in this chapter, we investigate the parallel

between quantum coherence and entanglement. The parallel between these two notions

is apparent at the formal level of resource theories, here, we aim to upgrade this formal

parallelity to a more solid conceptual premise. Intuitively, both coherence and entangle-

ment capture the quantumness of a physical system, it is then legitimate to ask how can

one resource emerge quantitatively from the other. We provide a mathematically rigorous

approach to answer the above question. We base our research on treating both the no-

tions of coherence and entanglement on the similar footing by using a common frame to

quantify quantumness. The results of this chapter clearly show qualitative and quantitative

equivalence between coherence and entanglement at a fundamental level, and provide an

intuitive operational scheme to interchange these two nonclassical resources for suitable

applications in quantum technologies.

This chapter is organized as follows. In Sec. 2.2, we introduce and discuss the re-

source theory of coherence and give a brief overview of various coherence monotones

relevant for this thesis. Then we consider the problem of creation of entanglement from
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coherence and show that any nonzero amount of coherence in a system can be ‘activated’

into (distillable) entanglement between the system and an initially incoherent ancilla, by

using only incoherent operations, in Sec. 2.3. In Sec. 2.4, we prove that, given a family

of entanglement monotones, one can define a corresponding family of coherence mono-

tones. Towards the end of the chapter, in Sec. 2.5, we summarize the results obtained in

this chapter.

2.2 Characterizing coherence

As mentioned in the chapter 1, a resource theory is essentially constructed from the re-

strictions imposed on the quantum operations. These restrictions may arise from variety

of reasons. For example, it may arise from our practical limitations to carry out some

quantum operations such as global quantum operations in the case where two or more par-

ties are separated and this gives rise to the very well studied free operations, namely, the

local operations and classical communication (LOCC). Or these restrictions may arise as

a consequence of symmetries in the form of superselection rules and conservation laws.

A resource theory may be formulated by starting from a set of allowed (or free) states and

then defining the allowed (or free) operations as the quantum operations that map the set

of allowed states into itself. Or a resource theory may also be given its full structure by

defining the set of allowed (or free) states starting from the maximally mixed state and

applying only the allowed (or free) operations. We will follow the former procedure to

develop the resource theory of coherence in this thesis.

In the following we discuss the resource theory of quantum coherence based incoherent

operations following Ref. [47]. For the QRT of coherence the three basic ingredients

are: (a) the set of incoherent states as the restricted set of allowed states, (b) the set of

incoherent operations as the set of allowed operations, and (c) the set of coherent states as

the set of resource states. It is to be noted that these three elements need not be independent
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from one another. The concept of quantum coherence is intrinsically basis dependent and

it is parallel to the fact that quantum entanglement is dependent on global basis changes.

Therefore, we start by fixing a reference basis. For an arbitrary fixed reference basis {|i〉},

the incoherent states are defined as

σ =
∑

i
pi |i〉 〈i| , (2.1)

where pi are nonnegative probabilities. Any state which cannot be written in the above

form is referred to as a coherent state. For instance, the maximally coherent state for a

system of dimension d is given by |φd〉 =
∑d−1

i=0 |i〉 /
√
d [47]. A completely positive trace

preserving map Λ is said to be an incoherent operation if it can be written as

Λ[ρ] =
∑

l
KlρK

†
l , (2.2)

where the corresponding Kraus operators Kl map every incoherent state to some other

incoherent state. If I is the set of incoherent states, then each of the Kraus operator

Kl satisfies KlIK†l ⊆ I. Such operators Kl will be called incoherent Kraus operators

in the following. Following established notions from entanglement theory [4, 126–128],

Baumgratz et al. proposed the following postulates for a measure of coherence C(ρ) in

Ref. [47]:

(C1) C(ρ) ≥ 0, and C(ρ) = 0 if and only if ρ ∈ I.

(C2) C(ρ) is nonincreasing under incoherent operations, i.e., C(ρ) ≥ C(Λ[ρ]) with

Λ[I] ⊆ I.

(C3) C(ρ) is nonincreasing on average under selective incoherent operations, i.e.,

C(ρ) ≥
∑

l plC(σl), with probabilities pi = Tr[KlρK
†
l ], quantum states σl =

KlρK
†
l /pl, and incoherent Kraus operators Kl satisfying KlIK†l ⊆ I.

(C4) C(ρ) is a convex function of density matrices, i.e., C(
∑

i piρi) ≤
∑

i piC(ρi).
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At this point we note that conditions (C3) and (C4) automatically imply condition (C2).

The reason why we listed all conditions above is that – similar to entanglement measures

– there might exist meaningful quantifiers of coherence which satisfy conditions (C1) and

(C2), but for which conditions (C3) and (C4) are either violated or cannot be proven. Fol-

lowing the analogous notion from entanglement theory, we call a quantity which satisfies

conditions (C1), (C2), and (C3) a coherence monotone. It is important to note that the set

of incoherent operations is not uniquely defined and there exists various sets of incoherent

operations leading to the different resource theories of coherence. For a good exposition

of these resource theories we refer the readers to a very recent review article [22] on the

resource theories of coherence.

Various (convex) coherence monotones have been obtained in recent years. We will

list a few of them that are relevant to this thesis. These include the l1 norm of coherence,

the relative entropy of coherence and the coherence of formation. For a density matrix ρ

of dimension d and a fixed reference basis {|i〉}, the l1 norm of coherence Cl1(ρ) [47] is

defined as

Cl1(ρ) =
d∑

i,j=1
i 6=j

| 〈i| ρ |j〉 |. (2.3)

The relative entropy of coherence Cr(ρ) [47] is defined as

Cr(ρ) = S(ρ(d))− S(ρ), (2.4)

where ρ(d) is the diagonal part of the density matrix ρ in the fixed reference basis and S

is the von Neumann entropy defined as S(ρ) = −Tr (ρ ln ρ). Here and in the rest of the

thesis, all the logarithms are taken with respect to the base e. The coherence of formation
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Cf (ρ) [121] is defined as

Cf (ρ) = min
{pa,|ψa〉〈ψa|}

∑
a

paS(ρ(d)(ψa)), (2.5)

where ρ(d)(ψa) is the diagonal part of the pure state |ψa〉, ρ =
∑

a pa |ψa〉 〈ψa| and min-

imum is taken over all such decompositions of ρ. We emphasize that in this thesis, we

consider the notion of coherence applicable to finite dimensional quantum systems. See

Ref. [22] for a recent review on coherence.

Bipartite coherence.—We first extend the framework of the resource theory of coher-

ence to the bipartite scenario (see also [129]). In particular, for a bipartite system with two

subsystems X and Y , and with respect to a fixed reference product basis {|i〉X ⊗ |j〉Y },

we define bipartite incoherent states as follows:

ρXY =
∑

k
pkσ

X
k ⊗ τYk . (2.6)

Here, pk are nonnegative probabilities and the states σXk and τYk are incoherent states on

the subsystem X and Y respectively, i.e. σXk =
∑

i p
′
ik |i〉 〈i|

X and τYk =
∑

j p
′′
jk |j〉 〈j|

Y

for probabilities p′ik and p′′jk. Note that bipartite incoherent states as given in Eq. (2.6) are

always separable.

We next define bipartite incoherent operations as follows:

ΛXY [ρXY ] =
∑

l
Klρ

XYK†l (2.7)

with incoherent Kraus operators Kl such that KlIK†l ⊆ I, where I is now the set of bi-

partite incoherent states defined in Eq. (2.6). It is straightforward to extend the definitions

in Eqs. (2.6) and (2.7) to arbitrary multipartite states.

An important example of a bipartite incoherent operation is the two-qubit CNOT gate

UCNOT. It is not possible to create coherence from an incoherent two-qubit state by using
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the CNOT gate, since it takes any pure incoherent state |i〉⊗|j〉 to another pure incoherent

state,

UCNOT (|i〉 ⊗ |j〉) = |i〉 ⊗ |mod (i+ j, 2)〉 . (2.8)

It is important to mention that—despite being incoherent—the CNOT gate can instead be

used to create entanglement. In particular, note that the state UCNOT(|ψ〉⊗|0〉) is entangled

for any coherent state |ψ〉. This observation will be crucial for the results presented in this

chapter.

2.3 Coherence and entanglement creation

Referring to Fig. 1.1 for an illustration, we say that a (finite-dimensional) system S in the

initial state ρS can be used for the task of “entanglement creation via incoherent opera-

tions” if, by attaching an ancilla A initialized in a reference incoherent state |0〉 〈0|A, the

final system-ancilla state ΛSA[ρS ⊗ |0〉 〈0|A] is entangled for some incoherent operation

ΛSA. Note that incoherent system states ρS cannot be used for entanglement creation in

this way, since for any incoherent state ρS the state ΛSA[ρS ⊗ |0〉 〈0|A] will be of the form

given in Eq. (2.6), and thus separable.

However, the situation is different if coherent states are considered. In particular,

entanglement can in general be created by incoherent operations, if the underlying system

state ρS is coherent. This phenomenon was exemplified above by using the two-qubit

CNOT gate. In the light of these observations, it is natural to ask the following question:

Are all coherent states useful for entanglement creation via incoherent operations?

In order to answer this question, we will first consider distance-based quantifiers of

entanglement ED and coherence CD as presented in [47, 126, 128, 129]:

ED(ρ) = min
σ∈S

D(ρ, σ), CD(ρ) = min
σ∈I

D(ρ, σ). (2.9)
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Here, S is the set of separable states and I is the set of incoherent states. Moreover, we

demand that the distance D be contractive under quantum operations,

D(Λ[ρ],Λ[σ]) ≤ D(ρ, σ) (2.10)

for any completely positive trace preserving map Λ. This implies thatED does not increase

under local operations and classical communication [126, 127], and CD does not increase

under incoherent operations [47]. Equipped with these tools we are now in position to

present the first important result of this chapter.

Theorem 1. For any contractive distanceD, the amount of (distance-based) entanglement

ED created from a state ρS via an incoherent operation ΛSA is bounded above by its

(distance-based) coherence CD:

ES:A
D

(
ΛSA

[
ρS ⊗ |0〉 〈0|A

])
≤ CD

(
ρS
)
. (2.11)

Proof. Let σS be the closest incoherent state to ρS , i.e., CD(ρS) = D(ρS, σS). The con-

tractivity of the distance D further implies the equality

D
(
ρS, σS

)
= D

(
ρS ⊗ |0〉 〈0|A , σS ⊗ |0〉 〈0|A

)
. (2.12)

In the final step, note that the application of an incoherent operation ΛSA to the incoherent

state σS ⊗ |0〉 〈0|A brings it to another incoherent – and thus separable – state. Applying

Eq. (2.10) and combining the aforementioned results we arrive at the desired inequality:

CD
(
ρS
)
≥ D

(
ΛSA

[
ρS ⊗ |0〉 〈0|A

]
,ΛSA

[
σS ⊗ |0〉 〈0|A

])
≥ ES:A

D

(
ΛSA

[
ρS ⊗ |0〉 〈0|A

])
. (2.13)

This completes the proof of the Theorem.
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The result just presented provides a strong link between the frameworks of entangle-

ment on the one hand and coherence on the other hand. An even stronger statement can

be made for the specific case of D being the quantum relative entropy. The corresponding

quantifiers in this case are the relative entropy of entanglement Er [126], and the relative

entropy of coherence Cr [47] already introduced in Eq. (2.4). As we will now show, the

inequality (2.11) can be saturated for these measures if the dimension of the ancilla is not

smaller than the dimension of the system, dA ≥ dS . In this case there always exists an

incoherent operation ΛSA such that

ES:A
r

(
ΛSA

[
ρS ⊗ |0〉 〈0|A

])
= Cr

(
ρS
)
. (2.14)

To prove this statement, we consider the unitary operation

U =

dS−1∑
i=0

dS−1∑
j=0

|i〉 〈i|S ⊗ |mod(i+ j, dS)〉 〈j|A +

dS−1∑
i=0

dA−1∑
j=dS

|i〉 〈i|S ⊗ |j〉 〈j|A . (2.15)

Note that for two qubits this unitary is equivalent to the CNOT gate with S as the control

qubit and A as the target qubit. It can further be seen by inspection that this unitary is

incoherent, i.e., the state ΛSA[ρSA] = UρSAU † is incoherent for any incoherent state ρSA.

Moreover, this operation takes the state ρS ⊗ |0〉 〈0|A to the state

ΛSA
[
ρS ⊗ |0〉 〈0|A

]
=
∑

i,j
ρij |i〉 〈j|S ⊗ |i〉 〈j|A , (2.16)

where ρij are the matrix elements of ρS =
∑

i,j ρij |i〉 〈j|
S . In the next step we use the fact

that for any quantum state τSA the relative entropy of entanglement is bounded below as

follows [130]: ES:A
r (τSA) ≥ H(τS) − H(τSA). Applied to the state ΛSA[ρS ⊗ |0〉 〈0|A],

this inequality reduces to

ES:A
r

(
ΛSA

[
ρS ⊗ |0〉 〈0|A

])
≥ H

(∑
i
ρii |i〉 〈i|S

)
−H(ρS). (2.17)
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Noting that the right-hand side of this inequality is equal to the relative entropy of coher-

ence Cr(ρ
S) [47], we obtain ES:A

r (ΛSA[ρS ⊗ |0〉 〈0|A]) ≥ Cr(ρ
S). The proof of Eq. (2.14)

is complete by combining this result with Theorem 1.

This shows that the degree of (relative entropy of) coherence in the initial state of S

can be exactly activated into an equal degree of (relative entropy of) entanglement created

between S and the incoherent ancilla A by a suitable incoherent bipartite operation, that

is a generalized CNOT gate.

With these results we are now in position to tackle the central question whether all

coherent states are useful for entanglement creation via incoherent operations. The (affir-

mative) answer is provided by the following Theorem.

Theorem 2. A state ρS is useful for entanglement creation via incoherent operations if

and only if ρS is coherent.

Proof. If ρS is incoherent, it cannot be used for entanglement creation via incoherent op-

erations due to Theorem 1. On the other hand, if ρS is coherent, it also has nonzero relative

entropy of coherence Cr(ρ
S) > 0. Due to Eq. (2.14) there exists an incoherent operation

ΛSA leading to nonzero relative entropy of entanglement ES:A
r (ΛSA[ρS ⊗ |0〉 〈0|A]) > 0.

This completes the proof of the Theorem.

Let us mention that the results presented above also hold for the distillable entangle-

ment Ed. In particular, the relative entropy of coherence Cr also serves as an upper bound

for the creation of distillable entanglement via incoherent operations:

ES:A
d

(
ΛSA

[
ρS ⊗ |0〉 〈0|A

])
≤ Cr

(
ρS
)
. (2.18)

This inequality follows from Theorem 1, together with the fact that the relative entropy of

entanglement is an upper bound on the distillable entanglement [131]: Ed ≤ Er. More-

over, it can also be shown that the inequality (2.18) is saturated for the unitary incoherent

operation presented in Eq. (2.15). This can be seen using the same reasoning as below
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Eq. (2.15), together with the fact that the distillable entanglement is also bounded below

as follows [132]: ES:A
d (τSA) ≥ H(τS)−H(τSA).

2.4 Quantifying coherence with entanglement

Somehow reversing the perspective, the result presented in Theorem 1 can also be re-

garded as providing a lower bound on distance-based measures of coherence via the task

of entanglement creation. In particular, the amount of coherenceCD of a state ρS is always

bounded below by the maximal amount of entanglement ED generated from this state by

incoherent operations. Going now beyond the specific setting of distance-based quanti-

fiers, we will show that such a maximization of the created entanglement, for any given

(completely general) entanglement monotone, leads to a quantity which can be used as a

valid quantifier of coherence in its own right.

Namely, we introduce the family of entanglement-based coherence measures {CE} as

follows:

CE(ρS) = lim
dA→∞

{
sup
ΛSA

ES:A
(

ΛSA
[
ρS ⊗ |0〉 〈0|A

])}
. (2.19)

Here, E is an arbitrary entanglement measure, the supremum is taken over all incoherent

operations ΛSA, and dA is the dimension of the ancilla a.

It is crucial to benchmark the validity of {CE} as proper measures of coherence. Re-

markably, we will now show thatCE satisfies all the aforementioned conditions (C1)–(C3)

given any entanglement monotone E, with the addition of (C4) if E is convex as well. We

namely get the following result:

Theorem 3. CE is a (convex) coherence monotone for any (convex) entanglement mono-

tone E.

Proof. Using the arguments presented above it is easy to see that CE is nonnegative, and

aNote that the limit dA → ∞ in Eq. (2.19) is well defined, since the supremum
supΛSA ES:A

(
ΛSA

[
ρS ⊗ |0〉 〈0|A

])
cannot decrease with increasing dimension dA.
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zero if and only if the state ρS is incoherent. Moreover, CE does not increase under

incoherent operations ΛS performed on the system S. This can be seen directly from the

definition of CE in Eq. (2.19), noting that an incoherent operation ΛS on the system S

is also incoherent with respect to SA. The proof that CE further satisfies condition (C3)

is presented in the Appendix A. There we also show that CE is convex for any convex

entanglement monotone E, i.e. (C4) is fulfilled as well in this case.

This powerful result completes the parallel between coherence and entanglement, de

facto establishing their full quantitative equivalence within the respective resource theo-

ries.

2.5 Chapter summary

In this chapter we have shown that the presence of coherence in the state of a quantum

system yields a necessary and sufficient condition for its ability to generate entanglement

between the system and an incoherent ancilla using incoherent operations (see Fig. 1.1).

Building on the above connection, we proposed a family of coherence quantifiers in terms

of the maximal amount of entanglement that can be created from the system by incoherent

operations. The proposed coherence quantifiers satisfy all the necessary criteria for them

to be bona fide coherence monotones [47].

The framework presented in this chapter should also be compared to the scheme for

activating distillable entanglement via premeasurement interactions [133–135] from quan-

tum discord, a measure of nonclassical correlations going beyond entanglement [136,

137]. The latter approach has attracted a large amount of attention recently [136, 138–

140], and it is reasonable to expect that several (theoretical and experimental) results

obtained in that context also carry over to the concept presented here, even taking into

account the close relationship between bipartite coherence and discord [129]. Exploring

these connections further will be the subject of future research.

24



The theory of entanglement has been the cornerstone of major developments in quan-

tum information theory and, in recent years, it has immensely contributed to the advance-

ment of quantum technologies. A complete characterization of coherence may improve

our perception of quantumness at its most essential level, and further guide our understand-

ing of nascent fields such as quantum biology and nanoscale thermodynamics. Hence, it is

of primary importance to construct a physically meaningful and mathematically rigorous

quantitative theory of quantum coherence. By effectively realizing a unification between

the notions of coherence and entanglement from a quantum informational viewpoint, we

believe the present chapter delivers a substantial step in this direction.

This chapter is based on the following paper:

1. Measuring quantum coherence with entanglement,

A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso, Phys. Rev. Lett.

115, 020403 (2015).
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CHAPTER3
Erasing quantum coherence: An operational approach

3.1 Introduction

With our ever increasing abilities to control systems at smaller and smaller scales, the

quantum properties like quantum coherence and quantum entanglement make their pres-

ence felt more and more prominently. As mentioned in chapter 1, recent developments in

thermodynamics of nano scale systems [11–14, 16, 33–37] and in the field of complex bi-

ological systems suggest the pivotal role played by quantum coherence in these contexts.

Given the importance of quantum coherence, a formal structure of coherence resource

theories is developed in recent years [23, 45–48, 60, 100, 129, 141–144]. The resource

theories of coherence are still in a very active phase of development and our understand-

ing of these resource theories is severely restricted both at quantitative and qualitative

levels. Although mathematically sound, the resource theories of coherence lack opera-

tional significance as such. There are some notable works, e.g. Refs. [23, 121], which

have contributed towards filling this gap. In this chapter, we follow a thermodynamical

approach to provide an operational significance to the resource theory of coherence based

on the incoherent operations.

The thermodynamic cost of destroying (erasing) a particular resource of interest has

been central in quantum information theory to equip the resource with an operational
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meaning. This approach has been very fruitful, far reaching [67–73], and has been applied

successfully in the contexts of private quantum decoupling [77], markovianization [78]

and operationally defining total correlation, classical correlation and quantum correlation

[74, 75]. Additionally, the thermodynamic cost of erasing quantum correlation has shown

to be associated with entropy production in the environment [76].

In this chapter, we quantify coherence in terms of the cost of erasing the same. In

particular, we define the coherence of a quantum system in terms of the minimal amount

of noise that has to be injected into the system such that the system decoheres completely

utilizing random unitary operations as the decohering operations. This, in turn, will pro-

vide operational meaning of the coherence. The obtained measure of coherence depends

on method of decohering process (here we consider an ensemble of random unitary op-

erations) and on the quantifiers of the injected noise during the decohering process. We

consider the entropy exchange between system and environment during the decohering

operation [82, 83] and the memory required to store the information about the decohering

operation [74] as quantifiers of injected noise. Interestingly, we find that in the asymptotic

limit, both these noise quantifiers yield the same minimal cost of decohering the systems

completely (utilizing our method) and it turns out to be equal to the relative entropy of

coherence [47]. We emphasize here that in order to quantify coherence we followed an

approach that is very much different compared to the other measures existing in resource

theory of coherence but we get the same quantifier as the relative entropy of coherence.

Our results show that the relative entropy of coherence is endowed with an operational

meaning.

The chapter is organized as follows: In Sec. 3.2, we give a brief outline of the con-

cepts required to understand the process of erasure of quantum coherence with illustrious

examples. We present our main result of obtaining minimal cost of erasing coherence of a

quantum system or of decohering a quantum system completely, in Sec. 3.3. We conclude

in Sec. 3.4 with overview and implications of the results presented in this chapter. In the
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Appendix B, we provide some definitions like that of typical subspaces and present some

well known theorems for the sake of completeness.

3.2 Preliminaries and various definitions

Before we proceed further, we would like to give an illustration of a process of fully

decohering a qubit quantum system in state |ψ2〉 = 1√
2

∑1
a=0 |a〉, which is a maximally

coherent state. Suppose we want to erase the coherence of this state. This can be achieved

by applying two incoherent unitary transformations I2 and σz with equal probability, i.e.,

|ψ2〉 〈ψ2| → ρ =
1

2
|ψ2〉 〈ψ2|+

1

2
σz |ψ2〉 〈ψ2|σz =

1

2
I2. (3.1)

Note that the final state is an incoherent state. This means that the application of two

incoherent unitary operations with equal probability suffices to erase the coherence of the

maximally coherent state. The same holds for the class of maximally coherent mixed states

in two dimensions [25]. Also, it can be seen that for a d dimensional quantum system, an

ensemble of unitary transformations { 1
d2
, X̂kẐj}jk exists, where X̂ |j〉 = |j ⊕ 1〉 , Ẑ |j〉 =

e
2πij
d |j〉 and ⊕ denotes addition modulo d, that can randomize any state ρ of the system

completely [81], i.e.,

ρ→ 1

d2

d∑
j=1

d∑
k=1

X̂kẐjρẐj†X̂k† =
1

d
Id. (3.2)

But what is the cost to be paid in order to implement this probabilistic incoherent

operation or how much noise does this operation inject into the system? One possibility,

is to consider the amount of information (memory) needed to implement this (erasing)

operation, which is related to the probabilities associated with the unitaries, and is equal

to the Shannon entropy, S(p = 1/2) = 1 bit for above qubit example. Therefore, one can

say that applying an operation consisting of two elements, with equal probability, costs one

29



bit of information or injects one bit of noise in the system. Similarly, for a qudit system,

we can achieve the exact randomization via a map of the form Eq. (3.2). The entropy

that this map injects into the system as quantified by the amount of information needed

to implement it, is given by S(p = 1/d2) = 2 log2 d bits. Clearly, the state independent

randomization over-estimates the amount of noise that is necessary to decohere the state

(cf. qubit and qudit cases). Also, this cost is independent of the nature of the operation,

i.e., whether the operation is incoherent, unitary etc. The other choice to quantify the

amount of noise injected into the system can be obtained based on exchange entropy as in

Refs. [74, 82, 83]. As we show below, the exchange entropy is smaller than S(p).

Exchange entropy:— The exchange entropy [82, 83] is defined as the amount of en-

tropy that any channel R injects into the system S which passes through R. To define

exchange entropy, we purify the system state ρS by a reference system Z such that ρS =

TrZ |ψ〉 〈ψ|SZ . Now the entropy that R injects into the system is defined as He(R, ρ
S) :=

H
(
(R⊗ IZ)[ψSZ ]

)
, where IZ is the identity operator on the reference system Z and H is

the von Neumann entropy. The exchange entropy has been successfully employed in gain-

ing insights in security of cryptographic protocols [82, 83], in determining cost of erasing

total, classical and quantum correlations [74]. Let R be comprised of random unitary en-

semble {pi, Ui}Ni=1. Then exchange entropy satisfies, He(R, ρ
S) ≤ H(p) ≤ logN . For

the example of maximally coherent qubit state, the entropy exchange is equal to one bit

which is equal to the memory required to implement the erasing operation, as obtained in

the preceding paragraph. Next we define general decohering map which can decohere any

system and then ε-decohering map that decoheres any state with small error ε > 0.

Decohering and ε-decohering maps:— Let the decohering be achieved by an ensemble

of incoherent unitaries {pi, U I
i }Ni=1. We associate the mapR : ρ 7→

∑N
i=1 piU

I
i ρU

I†
i , to the

ensemble of these incoherent unitaries. We call this class of incoherent completely positive

trace preserving (ICPTP) maps on system S as the decohering maps. A decohering map

R acting on a state ρ, is defined to be ε-decohering map if there exists an incoherent state
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τ such that ||R(ρ)− τ ||1 ≤ ε, where || · ||1 is the trace norm [2, 3] and for a matrix A, the

trace norm is defined as ||A||1 = Tr
√
A†A. Note that the map R need not be comprised

of incoherent unitaries. In fact, we show that a mapRc, comprised of general unitaries, is

equally suitable for decohering process. With these definitions in hand, we now proceed

to present our results.

3.3 Cost of erasing quantum coherence

We will mainly be concerned with the asymptotic case of the decohering procedure.

But before going to the asymptotic case, let us consider the single copy scenario. Sup-

pose a CPTP map Υ decoheres the system in any state ρ and maps it to some inco-

herent state ρI =
∑

a pa |a〉 〈a|, where {|a〉} is the fixed reference basis, pa ≥ 0 and∑
a pa = 1, i.e., ρ → Υ[ρ] = ρI . The entropy exchange of this map is given by

He(Υ, ρ) = H
(

(Υ⊗ IZ)[|ψ〉 〈ψ|SZ ]
)

, where Z is a reference system used to purify ρ.

Now from monotonicity of the mutual information, i.e., I(Υ[ρSZ ]) ≤ I(ρSZ), we have

He(Υ, ρ) ≥ H(ρI)−H(ρ). Based on this expression, the minimum exchange entropy in

this case is defined as Hmin
e = min{pa}H(ρI) −H(ρ) (Note that the minimum exchange

entropy is defined and not derived). Next, we will compute the minimum exchange en-

tropy in the asymptotic limit when the CPTP map decoheres the state ρwith some nonzero

small error.

Lemma 1: Consider an ε-decohering map R on the n copies of the system S in the state

ρ as R : ρ⊗n 7→
∑N

i=1 piU
I
i ρ
⊗nU I†

i , where U I
i is an incoherent unitary operator. Then,

the amount of entropy that is injected into the system is lower bounded as He(R, ρ⊗n) ≥

n[Cr(ρ)− ε log d−H2(ε)], where Cr(ρ) is the relative entropy of coherence for the state ρ

and H2(ε) = −ε ln ε− (1− ε) ln(1− ε) is the binary Shannon entropy. In the asymptotic

limit, the minimum entropy exchange, i.e., the minimum cost for erasing coherence, is
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given by

sup
ε>0

lim inf
n→∞

1

n
min

{
He(R, ρ⊗n) : R ε-decohering

}
= Cr(ρ). (3.3)

The relative entropy of coherence of any state ρ is given by Cr(ρ) = H(ρ(d)) − H(ρ),

where H(ρ) = −Tr(ρ ln ρ), is the von Neumann entropy and ρ(d) =
∑

a〈a|ρ|a〉|a〉〈a| is

the diagonal part of ρ in the reference basis {|a〉}.

Proof.—First of all, define

RD := P(R[ρ⊗n]) =
∑
k

ΠkR[ρ⊗n]Πk, (3.4)

where {Πk} are the projectors on the product subspaces written in the reference basis for

the n copies of the system. Any incoherent state under the projective measurement in the

reference basis remains intact. Now utilizing the monotonicity of the trace norm under

CPTP maps [2, 3], we have

||RD − τ ||1 = ||P(R[ρ⊗n])− P(τ)||1

≤ ||R[ρ⊗n]− τ ||1 ≤ ε, (3.5)

where in the last line we have used the fact that the map R is an ε-decohering map. Now

consider the following quantity

||R[ρ⊗n]−RD||1 ≤ ||R[ρ⊗n]− τ ||1 + ||τ −RD||1 ≤ 2ε, (3.6)

where we have used the triangle inequality for the trace distance and made use of Eq.

(3.5) together with the fact that the mapR is an ε-decohering map. Now, since ||R[ρ⊗n]−

RD||1 ≤ 2ε, in the worst case one has ||R[ρ⊗n]−RD||1 = 2ε. From the Fannes-Audenaert
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inequality [145] (see also Appendix B, Sec. B.1), we have

|H(R[ρ⊗n])−H(RD)| ≤ ε ln(dn − 1) +H2(ε)

≤ εn log d+H2(ε), (3.7)

where in the last line we have used ln(dn−1) ≤ n log d andH2(ε) = −ε ln ε−(1−ε) ln(1−

ε). Noting the fact that RD is the diagonal part of R[ρ⊗n] and H(RD) ≥ H(R[ρ⊗n]), we

have

H(R[ρ⊗n]) ≥ H(RD)− nε log d−H2(ε). (3.8)

Here, we pause to look at entropy of RD more closely. The incoherent unitary operations

cannot change the diagonal parts of any density matrix except permuting the diagonal

elements (of course they can change phases of off diagonal terms). This can be seen

from the fact that any incoherent unitary U I can be written as a product of a unitary

diagonal matrix V and a permutation matrix Π, i.e., U I = VΠ. Therefore, we have

U IρU I† = V
∑

ij ρij |Π(i)〉 〈Π(j)|V †. In the following, a superscript (d) on a state ρ will

mean the diagonal part of the density matrix in the fixed product reference basis. Now the

diagonal part of the density matrix U IρU I† is given by

(U IρU I†)(d) =
∑
l

〈l|V
∑
ij

ρij |Π(i)〉 〈Π(j)|V † |l〉 |l〉 〈l|

=
∑
i

ρΠ(i)Π(i) |Π(i)〉 〈Π(i)| . (3.9)
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Therefore, we have H((U IρU I†)(d)) = H(ρ(d)). Making use of this fact for RD, we have

H(RD) ≥
∑
i

piH

((
U I
i ρ
⊗nU I†

i

)(d)
)

=
∑
i

piH
(
ρ(d)⊗n) = nH

(
ρ(d)
)
. (3.10)

From the Eq. (3.8), we have

H(R[ρ⊗n]) ≥ nH(ρ(d))− nε log d−H2(ε)

≥ n[H(ρ(d))− ε log d−H2(ε)], (3.11)

where in the last line, we have used −H2(ε) ≥ −nH2(ε). Now, we come to the question

of finding the cost of decohering operation, i.e., the entropy that we have injected in the

system. For this (as in the definition), we will consider the purification of ρ which is given

by ψ such that ρ⊗n = TrZ(|ψ〉 〈ψ|⊗n). Let us define

ΩSnZn := (I⊗nZ ⊗R)[|ψ〉 〈ψ|⊗n]. (3.12)

Since, R does not act on the reference system Z, H(ΩZn) = H
(
TrS(|ψ〉 〈ψ|⊗n)

)
=

H(ρ⊗n) = nH(ρ). Now,

He(R, ρ⊗n) = H(ΩSnZn) ≥ H(ΩSn)−H(ΩZn)

≥ H(R[ρ⊗n])− nH(ρ), (3.13)

where in the first line, we have made use of the Araki-Lieb inequality [2, 3, 146]. Using

Eq. (3.11) in the above equation, we get

He(R, ρ⊗n) ≥ n[H(ρ(d))−H(ρ)− ε log d−H2(ε)]

= n[Cr(ρ)− ε log d−H2(ε)]. (3.14)
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Therefore, in the asymptotic limit, the minimal entropy exchange is equal to the relative

entropy of coherence as in Eq. (3.3) (see Fig. 1.2). This completes the proof of the Lemma

1.

Next we consider the question of cost of erasing coherence while the amount of noise

injected into the system is quantified by logN , where N is the number of unitaries in the

ensemble comprising the ε-decohering map.

Lemma 2: For any state ρ and ε > 0 there exists, for all sufficiently large n, a map

Rc : ρ 7→ 1
N

∑N
i=1 UiρU

†
i on system with Ui being a unitary operator on the system, which

ε-decoheres it, and with logN ≤ n (Cr(ρ) + ε), where Cr(ρ) is the relative entropy of

coherence of the state ρ. In the asymptotic limit, the minimal amount of noise as quantified

by logN , that is injected into the system is given by

sup
ε>0

lim sup
n→∞

1

n
min {logN : Rc ε-decohering} = Cr(ρ). (3.15)

Proof.—Let us consider n copies of the system in the state ρ. Also, consider the typical

projector Π that projects the system onto its typical subspace. Let ρ̃ = Πρ⊗nΠ. By

definition of the typical projector, we have Tr(Πρ⊗n) ≥ (1 − ε). Therefore, using the

“gentle operator lemma” [3] (see also Appendix B, Sec. B.1), we have

||ρ⊗n − ρ̃||1 ≤ 2
√
ε. (3.16)

Now consider an ensemble of unitaries with some probability density function p(dU), i.e.

{U, p(dU)} such that, for any state γ on the typical subspace of ρ⊗n,
∫
U
p(dU)UγU † =

1
D
IΠ, where D = 2n(H(ρ)−ε) and IΠ is the identity supported on the typical subspace of

the system. Therefore, we have

∫
U

p(dU)Uρ̃U † =
1

D
IΠ := τ ≥ 1

Dd

IΠ, (3.17)
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where Dd = 2n(H(ρ(d))+ε). Then, using the “operator Chernoff bound” [147, 148] (see also

Appendix B, Sec. B.2), we show that we can select a subensemble of these unitaries which

suffices the approximation. To this end, we consider X := DUρ̃U † as random operators

with the distribution p(dU). Here X ≥ 0. Using ρ̃ ≤ Π/D, we have X = DUρ̃U † ≤

UΠU † ≤ I. Now, the average value EX of the random operator X is given by

EX = D

∫
U

p(dU)Uρ̃U † ≥ D

Dd

IΠ = 2−n(Cr(ρ)+2ε)Π, (3.18)

where Cr(ρ) is the relative entropy of coherence of the state ρ. If X1, .., XN , where

Xi = DUiρ̃U
†
i (i = 1, .., n), are N independent realizations of X , then using the operator

Chernoff bound, we have

Pr

(
(1− ε)EX ≤ 1

N

N∑
i=1

Xi ≤ (1 + ε)EX

)

≥ 1− 2 dim(Π) exp[− Nε2

4 ln 2
2−n(Cr(ρ)+2ε)]. (3.19)

For N = 2n(Cr(ρ)+3ε) or higher, we have the corresponding probability on LHS of Eq.

(3.19) nonzero for sufficiently large n. For this case, we have (1− ε)EX ≤ 1
N

∑N
i=1 Xi ≤

(1 + ε)EX . This can be recast as
∣∣∣∣∣∣ 1
N

∑N
i=1 Uiρ̃U

†
i − τ

∣∣∣∣∣∣
1
≤ ε. Now, we have

∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
i=1

Uiρ
⊗nU †i − τ

∣∣∣∣∣
∣∣∣∣∣
1

≤ ε+ ||ρ⊗n − ρ̃||1 ≤ ε+ 2
√
ε. (3.20)

Therefore, there indeed exists decohering map Rc that (ε + 2
√
ε)-decoheres any state

with, N = 2n(Cr(ρ)+3ε) ≤ 2n(Cr(ρ)+ε+2
√
ε), i.e., logN ≤ n (Cr(ρ) + ε+ 2

√
ε). Thus, in the

asymptotic limit, the minimal cost of erasing coherence is given by Eq. (3.15) (see Fig.

1.2). This concludes the proof of the Lemma 2.

Note that we have not assumed any measure of coherence to start with, rather we

have used two different quantifiers of the amount of noise, that are very important and
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well accepted in information theory (see also [74]). We find that the relative entropy

of coherence emerges as the minimal amount of the noise that has to be added to the

system to erase the coherence by considering our method of erasing via random unitary

transformations. Thus, our result provides an operational interpretation of the relative

entropy of coherence developed in the resource theory of coherence [47]. Moreover, our

result is robust, i.e. even if we allow for nonzero errors in the erasing process, we still get

the same answer in the asymptotic limit. Operational interpretations of various quantities

in both classical and quantum information theory have been very striking with far-reaching

impact on our understanding about the subject that has lead to explore different avenues.

Operational interpretations of total and quantum correlations [74] are worth mentioning

in this regard. However, computing the operational quantifiers is a formidable task in

general. Thanks to the relative entropy of coherence that computing operational quantifier

of coherence proposed by us is not a difficult task. Moreover, to the best of our knowledge,

no other measure of coherence except the relative entropy of coherence, the coherence of

formation [121] and the l1 norm of coherence [149] is endowed with such an operational

interpretation.

3.4 Chapter summary

To summarize, we have provided an operational quantifier of quantum coherence in terms

of the amount of noise that is to be injected into a quantum system in order to fully deco-

here it. In the asymptotic limit, it is equal to the relative entropy of coherence provided

one uses our method of erasing coherence via random unitary transformations. This pro-

vides the cost of erasing quantum coherence. It is worth mentioning that we have not

assumed any of the measures of coherence to start with in order to prove our results. The

relative entropy of coherence emerges naturally as the minimal erasing cost of coherence.

Moreover, our result is robust, i.e., if we allow for nonzero error in the erasing process, it
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still gives the same answer in the asymptotic limit. In an independent work, Winter and

Yang [121] have shown that the relative entropy of coherence, emerges as the asymptotic

rate at which one can distill maximally coherent states. This is very surprising as the

same quantity, namely, the relative entropy of coherence comes up from two (apparently)

completely different tasks such as the erasure and distillation of coherence. The resource

theory of coherence starts with the premise that the allowed operations are the incoherent

ones and the free states are the incoherent states, and thereby proposes the relative entropy

of coherence as a valid measure of coherence along with the other measures like l1 norm

of coherence. The formalism used in this chapter and in Ref. [121] is well established

and has far reaching implications in providing operational meaning to a resource, similar

to other resources like quantum entanglement and correlations, in general. In this regard,

our results along with results of Ref. [121] further escalate the significance of the relative

entropy of coherence as a bona fide measure of coherence.

In future one may ask the converse, i.e., in a complete protocol, what is the cost to

keep a state coherent? Some partial results in a specific situation is provided in Ref. [150].

It is worth proving that whether this cost is also equal to the relative entropy of coherence

of ρ, in the asymptotic limit. However, we leave it for future explorations. It is interest-

ing to find a quantitative connection of our results to Landauer’s erasure principle [67]

along with its improved and generalized versions [151, 152]. Moreover, it will also be

very interesting to further explore the quantitative relation between the no-hiding theo-

rem [153, 154] and coherence erasure, both being very fundamental in their nature, as the

no-hiding theorem applies to any process of hiding a quantum state, whether by random-

ization, thermalization or any other procedure. This will be the subject of future work.

We hope that our results provide deep insights to the nature of coherence and interplay of

information within the realm of quantum information and thermodynamics.

This chapter is based on the following preprint available at arXiv.org:

1. Erasing quantum coherence: An operational approach,
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U. Singh, M. N. Bera, A. Misra, and A. K. Pati, arXiv:1506.08186 [quant-ph].
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CHAPTER4
Maximally coherent mixed states: Complementarity

between maximal coherence and mixedness

4.1 Introduction

Recent developments in modern science have shown that quantum coherence plays an

important role in low temperature physics starting from the formulation of the basic laws

of thermodynamics to work extraction [11–16, 33, 34, 49, 66, 155, 156]. Furthermore,

it plays an important role in investigating nanoscale systems [38, 39] and understanding

efficient energy transfer in complex biological systems [18–20, 40, 41]. In recent years,

researchers have attempted to develop a framework to formalize the theory of quantum

coherence within the realms of quantum information and quantum resource theories [10,

45–49, 58, 60, 129, 141–143]. The resource theories of coherence have been discussed

briefly in chapter 2 of this thesis.

While dealing with quantum dynamical systems, a careful consideration of environ-

mental noise and the unavoidable phenomenon of decoherence is needed as it is a well

known fact that the noise is worst enemy in realizing the quantum technologies for prac-

tical uses. The presence of noise deteriorates the amount of information contained in a

quantum state as measured by the purity, during the information processing tasks. There-

fore, an effective characterization of decoherence requires the quantification of the purity
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or, its complementary property, the mixedness of a quantum state. The mixedness of a

quantum state acts as an intuitive parameter to understand decoherence as noise tends to

increase it. At this point, it becomes a natural question that: How does an important re-

source in quantum information theory trade against the mixedness of quantum systems?

This question has attracted a lot of attention in the context of quantum entanglement and

has led to the notion of the maximally entangled mixed states [86–90]. For these states,

one cannot increase their entanglement further under any global unitary operation and the

form of these states depend on the quantifiers used to measure entanglement and mixed-

ness. These states have also been explored in the context of Gaussian quantum information

theory [91–93].

In this chapter, we explore the limitations on processing of coherence in the noisy sce-

narios. In particular, we find analytical trade off relations between the coherence and the

mixedness of a quantum systems at our disposal. For quantifiers of coherence, we use the

quantifiers obtained in the resource theory of coherence based on incoherent operations

[47]. These relations are then utilized to find the upper bound on the amount of coherence

of a given mixed quantum state (the mixedness of the state is fixed) and vice-versa. Based

on the above results, we derive a class of quantum states and call them “maximally coher-

ent mixed states” (MCMS), that have maximal coherence, up to incoherent unitaries, for a

fixed mixedness. Interestingly, unlike for the case of entanglement, the analytical form of

MCMS is independent of measures employed to quantify the coherence and mixedness as

confirmed for the l1 norm, the relative entropy, and the geometric coherence (as measures

of coherence) [23]. It is known that quantum interferometric setups [94, 95] can be uti-

lized to measure the mixedness of a quantum system experimentally, our results provide a

mathematically rigorous framework to experimentally measure the maximal coherence in

a quantum state, without invoking the state tomography.

This chapter is organized as follows. In Sec. 4.2, we briefly discuss the quantification

of coherence and mixedness in the realm of quantum information theory. In Sec. 4.3, we
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theorize the trade-off between coherence and mixedness in d-dimensional systems. In Sec.

4.4, we define a class of maximally coherent mixed states that satisfy a complementarity

relation between coherence and mixedness. In Sec. 4.5, we investigate the allowed set

of transformations within classes of fixed coherence or mixedness. We conclude with a

discussion of the main results of this chapter in Sec. 4.6.

4.2 Quantifying coherence and mixedness

In this section we present a brief overview of the concepts of quantum coherence and

mixedness of quantum systems. To characterize the coherence in a quantum system, we

follow the theoretical approach developed in Ref. [47]. All mathematical formulations

and results that are subsequently presented and discussed are valid within the framework

of the above theory of quantum coherence.

4.2.1 Quantum coherence

Quantum coherence, an essential feature of quantum mechanics arising from the super-

position principle, is inherently a basis dependent quantity. Therefore, any quantitative

measure of it must depend on a reference basis. We have discussed the resource theories

of coherence in chapter 1 and introduced the l1 norm, the relative entropy of coherence [47]

and a few other measures of coherence. Relevant to this chapter is one more quantifier of

coherence—the geometric coherence [23]—and is given by Cg(ρ) = 1−maxσ∈I F (ρ, σ),

where I is the set of all incoherent states and F (ρ, σ) =
(

Tr[
√√

σρ
√
σ]
)2

is the fidelity

of the states ρ and σ. It is important to note that quantum coherence, by definition, is not

invariant under general unitary operation but does remain unchanged under incoherent uni-

taries. Furthermore, the maximally coherent pure state is defined by |ψd〉 = 1√
d

∑d−1
i=0 |i〉,

for which Cl1(|ψd〉 〈ψd|) = d− 1 and Cr(|ψd〉 〈ψd|) = ln d.
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4.2.2 Mixedness

For every quantum state, the ubiquitous interaction with environment or decoherence af-

fects its purity. Noise introduces mixedness in the quantum system leading to loss of

information, and hence, its characterization is an important task in quantum information

protocols. The mixedness, which represents nothing but the disorder in the system, can

be quantified in terms of entropic functionals, such as the linear and the von Neumann

entropy of the quantum state. For an arbitrary d-dimensional state, the mixedness, based

on the normalized linear entropy [84], is given by

Ml(ρ) =
d

d− 1

(
1− Trρ2

)
. (4.1)

Therefore, for each quantum system, mixedness varies between 0 and 1, i.e. 0 ≤Ml(ρ) ≤

1. Furthermore, since Trρ2 describes the purity of quantum system, mixedness expect-

edly emerges as a complementary quantity to the purity of the given quantum state. The

other operational measure of mixedness of a quantum state ρ is the von Neumann entropy,

H(ρ) = −Tr(ρ ln ρ). Moreover, in a manner similar to quantum coherence, a geomet-

ric measure of mixedness can also be defined, which is given by Mg(ρ) := F (ρ, I/d) =

1
d

(
Tr
√
ρ
)2 and lies between 0 and 1.

4.3 Trade-off between quantum coherence and mixedness

In this section, we investigate the restrictions imposed by the mixedness of a system on the

maximal amount of quantum coherence. We prove analytically, that there exists a trade-

off between the two quantities and for a fixed amount of mixedness the maximal amount

of coherence is limited. The results allow us to derive a class of states that are the most

resourceful, in terms of quantum coherence, under a fixed amount of noise, characterized

by its mixedness.
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The important trade-off between quantum coherence, as quantified by the l1 norm,

and mixedness, in terms of the normalized linear entropy, is captured by the following

theorem.

Theorem 4. For any arbitrary quantum system, ρ, in d-dimensions, the amount of quan-

tum coherence, Cl1(ρ), in the state is restricted by the amount of mixedness, Ml(ρ),

through the the inequality

C 2
l1

(ρ)

(d− 1)2
+Ml(ρ) ≤ 1. (4.2)

Proof. Using the parametric form of an arbitrary density matrix, the state of a d-dimensional

quantum system can be written in terms of the generators, Λ̂i, of SU(d) [2, 157–160], as

ρ =
I
d

+
1

2

d2−1∑
i=1

xiΛ̂i, (4.3)

where xi = Tr[ρΛ̂i]. The condition of positivity can be stated in terms of the coefficients

of the characteristic equation for the density matrix ρ. Specifically, the Eq. (4.3) is posi-

tive iff all the coefficients of the polynomial det(λI− ρ) =
∑d

i=0(−1)iAiλ
d−i=0, Ai ≥ 0

for 1 ≤ i ≤ d (A0 = 1). This criterion can be verified simply by calculating traces of

various powers of ρ [159, 160]. The generators Λ̂i (i = 1, 2, .., d2−1) satisfy (1) Λ̂i = Λ̂†i ,

(2) Tr(Λ̂i) = 0, and (3) Tr(Λ̂iΛ̂j) = 2δij. These generators are defined by the struc-

ture constants fijk (a completely antisymmetric tensor) and gijk (a completely symmetric

tensor), of Lie algebra su(d) [158, 159]. The generators can be conveniently written as

{Λ̂i}d
2−1
i=1 = {ûjk, v̂jk, ŵl}. Here ûjk = (|j〉〈k| + |k〉〈j|), v̂jk = −i(|j〉〈k| − |k〉〈j|),

and ŵl =
√

2
l(l+1)

∑l
j=1 (|j〉〈j| − l|l + 1〉〈l + 1|), where j < k with j, k = 1, 2, .., d and
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l = 1, 2, ..(d− 1) [158, 159]. The generators can be labelled as

{Λ̂1, .., Λ̂ (d2−d)
2

, Λ̂ (d2−d)
2

+1
, .., Λ̂(d2−d), Λ̂(d2−d)+1, .., Λ̂(d2−1)}

= {û12, .., û(d−1)d, v̂12, .., v̂(d−1)d, ŵ1, .., ŵ(d−1)}.

The l1 norm of coherence of a d-dimensional system, given by Eq. (4.3), can be written

as

Cl1(ρ) =

(d2−d)/2∑
i=1

√
x2
i + x2

i+(d2−d)/2. (4.4)

Furthermore, the mixedness is given by

Ml(ρ) =
d

d− 1
(1− Trρ2) = 1− d

2(d− 1)

d2−1∑
i=1

x2
i . (4.5)
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Using the expressions for Cl1(ρ) and Ml(ρ), we obtain

C 2
l1

(ρ)

(d− 1)2
+Ml(ρ)

=
1

(d− 1)2

(d2−d)/2∑
i=1

√
x2
i + x2

i+(d2−d)/2

2

+ 1− d

2(d− 1)

d2−1∑
i=1

x2
i

= 1− 1

(d− 1)2

d2−1∑
i=1

x2
i

+
1

(d− 1)2

(d2−d)/2∑
i=1

√
x2
i + x2

i+(d2−d)/2

2

− (
d2 − d

2
− 1)

d2−1∑
i=1

x2
i


= 1− 1

(d− 1)2

d2−1∑
i=1

x2
i −

((d2 − d)/2− 1)

(d− 1)2

d2−1∑
i=d2−d

x2
i

+
1

(d− 1)2

(d2−d)/2∑
i=1

√
x2
i + x2

i+(d2−d)/2

2

− (
d2 − d

2
− 1)

d2−d∑
i=1

x2
i


≤ 1− d

2(d− 1)

d2−1∑
i=d2−d

x2
i , (4.6)

where, in the last step, we have used the inequality 2
√
xy ≤ (x+y). Since d

2(d−1)

∑d2−1
i=d2−d x

2
i ≥

0, we have
C 2
l1

(ρ)

(d−1)2
+Ml(ρ) ≤ 1, which concludes our proof.

Theorem 4 proves that the scaled coherence, Cl1 (ρ)

(d−1)
, of a quantum system with mixed-

ness Ml(ρ), is bounded to a region below the parabola
C 2
l1

(ρ)

(d−1)2
+ Ml(ρ) = 1 (see Fig. 4.1).

The quantum states with (scaled) quantum coherence that lie on the parabola are the max-

imally coherent states corresponding to a fixed mixedness and vice-versa. The trade-off

obtained between coherence and mixedness can be neatly presented for a qubit system.

Let us consider an arbitrary single-qubit density matrix of the form

ρ =

 a c

c∗ 1− a

 . (4.7)
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The eigenvalues of the above density matrix are given by

λ± =
(

1±
√

1− 4[a(1− a)− 4|c|2]
)
/2. (4.8)

The positivity and Hermiticity of the density matrix implies that 0 ≤ a(1 − a) − 4|c|2 ≤

1/4. Now, the mixedness of the state ρ is given by Ml(ρ) = 4a(1 − a) − 4|c|2. The l1

norm of coherence is Cl1(ρ) = 2|c|. Using the expressions of coherence and mixedness,

we obtain C 2
l1

(ρ)+Ml(ρ) = 4a(1−a). Since, 4a(1−a) ≤ 1, we have C 2
l1

(ρ)+Ml(ρ) ≤ 1,

with the equality holding if and only if a = 1/2.

From Theorem 4, we know that the maximum coherence permissible in an arbitrary

quantum state with a fixed mixedness, are the values that lie on the parabola
C 2
l1

(ρ)

(d−1)2
+

Ml(ρ) = 1. The same holds for the maximum mixedness allowed in a quantum state with

fixed coherence (see Fig. 4.1). A natural question arises: What are the quantum states

that correspond to the maximal coherence and satisfy the equality in Eq. (4.2)? The above

question is addressed in the following section.

4.4 Maximally coherent mixed states and complementar-

ity

Let us find the quantum states with maximal l1 norm of coherence for a fixed amount of

mixedness, say, Mf . For this, we need to maximize the coherence under the constraint

that the mixedness Mf as quantified by normalized linear entropy, is invariant. Here we

provide the form of maximally coherent mixed state for a general d-dimensional system.

Theorem 5. An arbitrary d-dimensional quantum system with maximal coherence for a

fixed mixedness, Mf , up to incoherent unitaries, is of the following form

ρm =
1− p
d

Id×d + p |ψd〉〈ψd|, (4.9)
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where |ψd〉 = 1√
d

∑d
i=1 |i〉, is the maximally coherent state in the computational basis,

Id×d is the d-dimensional identity operator and the mixedness, in terms of normalized

linear entropy, is equal to, Mf = 1− p2.

Proof. Using the parametric form of the density matrix given in Eq. (4.3), the expressions

for coherence and mixedness of any d-dimensional system was obtained in Eqs. (4.4) and

(4.5). To prove the above theorem, we seek the maximal coherence for a fixed mixedness,

say Mf , i.e. we maximize the function Cl1 , under the constraint

Mf = 1− d

2(d− 1)

d2−1∑
i=1

x2
i . (4.10)

Hence, we need to maximize the Lagrange function

L =

k/2∑
i=1

√
x2
i + x2

i+k/2 + λ

(
1− d

2(d− 1)

k+d−1∑
i=1

x2
i −Mf

)
, (4.11)

where D = d2−d and λ is the Lagrange multiplier. The stationary points,
{
x′j
}

, of Cl1(ρ)

imply vanishing of

∂L
∂xj

∣∣∣{x′j} =


x′j√

x′j
2+x′

j+D/2
2
− λd

d−1
x′j , for j ≤ D/2

− λd
d−1

x′j , for j > D

. (4.12)

Therefore, we have x′j = 0 for all j > D and
√
x′j

2 + x′j+D/2
2 = d−1

λd
for j ≤ D/2. This

implies that

x′1
2

+ x′1+D/2
2

= x′2
2

+ x′2+D/2
2

= ... = x′D/2
2

+ x′D
2

=

(
d− 1

λd

)2

. (4.13)

Putting these values of x′j’s in the constraint equation Eq. (4.10) we get, λ = (d −

1)/(2
√

(1−Mf )). The positive value of λ is chosen because negative value leads to

negative coherence, which is not desired. The value of coherence for the stationary states,
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is given by

Cl1(ρ) =

D/2∑
j=1

√
x′j

2 + x′j+D/2
2 = (d− 1)

√
(1−Mf ). (4.14)

This is the maximal value of coherence that a state can have for a fixed value of mixedness

Mf . Therefore, the states with x2
j + x2

j+D/2 = 4(1 −Mf )/d
2 for j ≤ D/2 and xj = 0

for j > D, are the states that have maximum coherence for a given mixedness Mf . These

states can be written as

ρm =
I
d

+
R

2

D/2∑
i=1

(cos θiΛ̂i + sin θiΛ̂i+D/2), (4.15)

where R =
2
√

(1−Mf )

d
and θi = tan−1(xi+D/2/xi). We observe that the diagonal part

of these states is maximally mixed and the points,
{
xi, xi+D/2

}D/2
i=1

, that define the offdi-

agonal elements, lie on the circle of radius R in the real (xi, xi+D/2)–plane. An equiv-

alent form of above states can be written, by identifying {θ1, .., θd−1, θd.., θ (d2−d)
2

} =

{φ12, .., φ1d, φ23, .., φ(d−1)d}, as

ρm =
I
d

+
R

2

d∑
i,j=1
i<j

(eiφij |i〉〈j|+ e−iφij |j〉〈i|). (4.16)

Now, the phases appearing in the off diagonal components can be removed by applying

an incoherent unitary of the form U =
∑d

n=1 e
−iγn|n〉〈n|, which keeps the coherence

invariant. To this end by choosing φij = γi − γj we get,

ρm =
I
d

+
R

2

d∑
i,j=1
i<j

(|i〉〈j|+ |j〉〈i|). (4.17)

Now, setting R = 2p/d, we obtain the state given in Eq. (4.9). Therefore, up to incoherent

unitary transformations, the states with maximal coherence for a fixed mixedness are those
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that take the form given by Eq. (4.9). This completes the proof.

For a single-qubit quantum system, the proof can be mathematically elaborated. For

the density matrix, given in Eq. (4.7), we need to maximize the coherence under the

constraint that, Mf = 4a(1 − a) − 4|c|2, is invariant. Hence, we need to maximize,

Cl1(ρ) = 2|c|+ λ(4a(1− a)− 4|c|2−Mf ), where λ is the Lagrange multiplier. Upon op-

timization, the stationary points are given by a = 1/2 and |c| = 1/(4λ). Using constraint

equation, we get λ = ±1/(2
√

1−Mf ). Choosing the positive value of λ, we obtain |c| =√
1−Mf/2. Thus, the maximum value of coherence is equal to, Cl1(ρ) =

√
1−Mf and

the corresponding states, are given by

ρm(φ) =
1

2

 1
√

1−Mf exp[iφ]√
1−Mf exp[−iφ] 1

 , (4.18)

where φ is an arbitrary phase. The phase can be removed through incoherent unitaries

which keeps the coherence invariant. The density matrix in Eq. (4.18), up to incoherent

unitaries, has the form ρm = 1−p
2
I2×2 + p|ψ2〉〈ψ2|, where |ψ2〉 = (|0〉 + |1〉)/

√
2 is

the maximally coherent state and I2×2 is the identity operator, in two dimensions. p =√
1−Mf .

From Theorem 5, the l1 norm of coherence of the maximally coherent mixed state,

given in Eq. (4.9), is Cl1(ρm) = (d − 1)p, and the mixedness is equal to Ml(ρm) =

d
d−1

(1− Tr[ρ2
m]) = 1 − p2. Therefore, we obtain a complementarity relation between

coherence and mixedness,

C 2
l1

(ρm)

(d− 1)2
+Ml(ρm) = 1, (4.19)

which satisfy the equality in Eq. (4.2), and thus lie on the parabola,
C 2
l1

(ρm)

(d−1)2
+Ml(ρm) = 1,

in the coherence-mixedness plane (see Fig. 4.1). We call the parametrized class of states,

defined by Eq. (4.9), that satisfy the complementarity between coherence and mixedness,
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Figure 4.1: Plot showing the trade-off between the (scaled) coherence, Cl1(ρ)/(d − 1),
and mixedness, Ml(ρ), as obtained from Eq. (4.2). The redline represents the extremal
parabola in Eq. (4.19), which corresponds to the MCMS class that satisfy a complemen-
tarity relation between coherence and mixedness. The figure plots the (scaled) coherence,
along the Y -axis, and mixedness, along the X-axis, for 1× 105 randomly generated states
in d = 2, 3, 4, and 5 dimensions, using a specific mathematica package [162].

i.e., any change in coherence leads to a complementary change in mixedness, as the “max-

imally coherent mixed states”. The MCMS class consists of pseudo-pure states, which are

an admixture of the maximally coherent pure state and an incoherent state. Incidentally,

states of the form given by Eq. (4.9), have also been discussed as states of fixed purity that

maximize the sum of quantum uncertainties [161].

Similarly, one can derive a class of states with maximal mixedness for fixed coherence.

Using an approach similar to Theorem 5, one can show that the set of maximally mixed

coherent states also satisfy the complementarity relation and thus lie on the parabola given

by Eq. (4.19), and hence, are of the same form as MCMS class.

Interestingly, we note that the form of MCMS remains the same if we employ a dif-

52



ferent set of measures for characterizing coherence and mixedness. For example, let us

consider, the relative entropy of coherence, Cr(ρ), and von Neumann entropy H(ρ), as

our respective measures of coherence and mixedness. It can be shown, using the formal-

ism employed in Theorems 4 and 5, that the trade-off relation, Cr(ρ) + H(ρ) ≤ 1 (for

qubits), and the subsequent form of MCMS remains the same. Similarly, if one consid-

ers geometric coherence and geometric mixedness for qubit systems, as the measures of

coherence and mixedness, one can obtain an identical trade off relation between the two

quantities. To elaborate, the analytical form of geometric coherence for any arbitrary qubit

state (Eq.(4.7)) is given by [23],

Cg(ρ) =
1

2
[1−

√
1− 4|c|2], (4.20)

where c is the offdiagonal element of the qubit density matrix ρ in the computational basis.

Further, for an arbitrary qubit state, the geometric mixedness is given by

Mg(ρ) =
1

2
[1 +

√
4(a(1− a)− |c|2)]. (4.21)

From Eq. (4.20) and Eq. (4.21), we have

Cg(ρ) +Mg(ρ) = 1 +
1

2
[
√

4(a(1− a)− |c|2)−
√

1− 4|c|2]

≤ 1, (4.22)

where in the last line we have used the fact that 4a(1 − a) ≤ 1. Hence, we observe that

the trade off relation is the same in Theorem 4. For arbitrary qubit systems, the form of

MCMS, given in Eq. (4.9), remains the same for the geometric coherence and geometric

mixedness considered as the measures of coherence and mixedness, respectively, and the

complementarity relation, Cg(ρ)+Mg(ρ) = 1, is satisfied. Hence there is a strong sense of

universality about the form of MCMS, within the framework of the considered theory of
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coherence, in contrast to the measure dependent class of maximally entangled mixed states

derived in the context of entanglement theory [86–90]. However, the form of MCMS for

geometric coherence in general qudit systems needs to be further investigated. We note

that the question of universality of the class MCMS for all equivalent sets of measures for

coherence and mixedness, in any dimension, is still open.

4.5 Transformations within classes of state

The trade-off between coherence and mixedness, as established in Theorem 4, along with

the complementarity relation given by Eq. (4.19) for MCMS class, lead to the question of

convertibility within the classes of fixed mixedness or coherence. In other words, given

a class of states with fixed mixedness what are the transformations that allow one to vary

the coherence, while keeping the mixedness invariant, or vice-versa. The importance of

transformation and interconversion between classes of states lies in the predominant role it

plays in resource theories [10, 58, 60] and its central status in the formulation of the second

law(s) of thermodynamics in quantum regime [11, 15, 16, 33, 34, 49, 66]. In this section,

we investigate the set of operations that allow for such transformations for qubit states.

Here, we exclusively consider the l1 norm of coherence and normalized linear entropy as

the measures of coherence and mixedness, respectively.

4.5.1 States with fixed coherence

For a fixed value of coherence, say α, in a fixed reference basis, say the computational

basis, the states with varying mixedness, up to incoherent unitaries, are given by

ρ(a) =

 a α

α 1− a

 . (4.23)
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Now, let us consider two states, ρ(a1) and ρ(a2), that have the same coherence but different

mixedness. For the conditions, (1− a1) ≥ a2 ≥ a1 or (1− a1) ≤ a2 ≤ a1, the inequality,

a1(1− a1) ≤ a2(1− a2) is satisfied. For this case, it is easy to see that ρ(a2) is majorized

[3, 163–166] by ρ(a1), i.e., ρ(a2) ≺ ρ(a1). Therefore, using Uhlmann’s theorem [3, 164–

166], we can write

ρ(a2) =
∑
i

piUiρ(a1)U †i , (4.24)

where Ui’s are unitaries and pi ≥ 0,
∑

i pi = 1. For qubit case, to keep the coherence

invariant, we only allow incoherent unitaries. In the following, we shall see that the map,

Φ[ρ] = pρ+ (1− p)σxρσx, (4.25)

where σx =

 0 1

1 0

, is sufficient to convert the state from ρ(a1) to ρ(a2), keeping the

coherence unchanged. Specifically, we can achieve ρ(a2) from ρ(a1) using Eq. (4.25),

by setting p = (1 − a1 − a2)/(1 − 2a1), which is a valid probability for the case we are

considering. Similarly, in the opposite case with the conditions (1 − a2) ≥ a1 ≥ a2 or

(1− a2) ≤ a1 ≤ a2, one can find a similar map, as in Eq. (4.25), from ρ(a2) to ρ(a1).

Therefore, given two qubit density matrices ρ and σ with the same coherence, if ρ ≺ σ

(σ ≺ ρ), then there will always exist a probability distribution and incoherent unitaries,

leading to a transformation σ → ρ (ρ → σ). An interesting observation of the above

analysis arises from considering maps related to open quantum systems. For noisy opera-

tions, for example the maps in Eq. (4.25), the transformation between states with the same

coherence is reminiscent of the phenomenon of freezing of quantum coherence [129].
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4.5.2 States with fixed mixedness

In the same vein, we explore the transformations which convert one state to other with the

same mixedness, but varying amount of coherence. The states of the form

ρ(a) =

 a
√

4a(1−a)−M
4√

4a(1−a)−M
4

1− a

 , (4.26)

have the same mixedness M but can have different coherences. Now, let us consider two

different states ρ(a1) and ρ(a2). Since, these states have same mixedness, and hence same

eigenvalues, they must be related to each other by a unitary similarity transformation.

This similarity transformation can be easily found, once we get the eigenvectors of both

the states. Let ρ(a1) |e(1)
i 〉 = λi |e(1)

i 〉 and ρ(a2) |e(2)
i 〉 = λi |e(2)

i 〉 (i = 1, 2). Now, the

unitary similarity transformation S, such that ρ(a2) = Sρ(a1)S† can be obtained from the

definition S |e(1)
i 〉 = |e(2)

i 〉. Thus, for two states of given fixed mixedness, one can always

find a reversible similarity transformation between them. For an example, consider two

states,

ρ1 =

 0.3 0.4

0.4 0.7

 ; ρ2 =

 0.9 0.2

0.2 0.1

 , (4.27)

of the mixedness M = 0.2. The similarity transformation from ρ2 to ρ1, i.e., ρ2 = Sρ1S
†,

using eigenvectors of both the states, is given by S = 1√
2

 1 1

−1 1

 ,which is a coherent

unitary. In general, the state with identical mixedness but with varying coherence are

connected through coherent unitaries.
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4.6 Chapter summary

In this chapter, we show that there exists an intrinsic trade-off between the resourcefulness

and the degree of noise in an arbitrary d-dimensional quantum system, as quantified by

its coherence and mixedness, respectively. The obtained results are important from the

perspective of resource theories as it allows us to quantify the maximal amount of coher-

ence that can be harnessed from quantum states with a predetermined value of mixedness.

Thus, we are able to analytically derive a class of maximally coherent mixed states, up

to incoherent unitaries, that satisfy a complementarity relation between coherence and

mixedness, in any quantum system. Due to the experimental ease with which the mea-

surement of purity is feasible [95], our results can be utilized to experimentally determine

the maximal l1 norm of coherence for any general d-dimensional quantum state. For qubit

systems, the above conclusions can also be extended to the relative entropy and geometric

measures of coherence. Importantly, the theoretical formulation and results provided in

this chapter are valid within the framework of the resource theory of coherence, as defined

in [47], and cannot be mathematically extended directly to the quantification of coherence

based on the theory of asymmetry [46]. Developing a framework that can operationally

connect the two resource-theoretical perspectives is an important direction for future re-

search.

The results presented in this chapter provide interesting insights on other aspects of the

theory of coherence and may help in understanding the connection between the resource

theories of coherence and entanglement. It was shown in a recent paper [23], that the

maximum amount of entanglement that can be created between a system and an incoherent

ancilla, via incoherent operations, is equal to the coherence present in the system. Using

the formalism presented in [23] and the complementarity relations derived in this chapter,

one can prove that the maximum entanglement that can be created between a quantum

system and an incoherent ancilla, via incoherent operations, is bounded from above by the

mixedness present in the system. Another significant aspect of the results is to address the
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question of order and interconvertibility between classes of quantum states, which is the

fundamental premise for developing quantum resource theory and thermodynamics. Our

analysis shows that for qubit systems with a fixed coherence, majorization provides a total

order on the states based on their degree of mixedness, while for fixed mixedness, all the

qubit states with varying degree of coherences are interconvertible. As a future direction,

it will be very interesting to investigate if there exists such a total order in d-dimensional

states with fixed coherence based on their degree of mixedness. We note that the total

order on the states is only possible for a specific class of states and provided one works

within the framework of the resource theory of coherence considered in our study. It is

known that total order between states of fixed coherence is not possible within the resource

theory of asymmetry [12, 45, 58].

To summarize, the present chapter deals with an important aspect of quantum physics,

in particular, it addresses the question of how much a resource can be extracted from any

arbitrary quantum system subjected to decoherence. We prove that there is a fundamental

limit on the amount of coherence that can be extracted from mixed quantum systems and

also derive the class of states that are most resourceful under decoherence. The results

presented in this chapter provide impetus and new directions to the study of important

physical quantities in open quantum systems and the effect of noise on quantum resources.

This chapter is based on the following paper:

1. Maximally coherent mixed states: Complementarity between maximal coherence

and mixedness,

U. Singh, M. N. Bera, H. S. Dhar, and A. K. Pati, Phys. Rev. A 91, 052115 (2015).
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CHAPTER5
Catalytic coherence transformations

5.1 Introduction

Quantum resource theories [10, 85] have been a corner stone to the development and quan-

titative understanding of various physical phenomena in quantum physics and quantum

information theory. For an introduction to resource theories see chapter 1 and references

therein. The main advantages of having a resource theory for some physical quantity of

interest are—they provide a succinct understanding of various physical processes and op-

erational quantification of the relevant physical quantities (deemed as resources). There-

fore, one of the main goals of a resource theory is to give a detailed account of physical

processes allowed within the set of free operations and unfold the structure underlying

these processes. The notion of catalysis is very fruitful to this goal—catalysts allow the

otherwise impossible physical processes within the set of allowed operations and are not

consumed in anyway during the process. The term catalyst is used in similar spirit as in

the field of chemical sciences (see Fig. 1.2). Therefore, various catalysts are readily avail-

able at one’s disposal. In the context of resource theories, catalysts have been employed

in the resource theory of entanglement [96, 97], thermodynamics [11], and very recently

to decoupling of quantum information [167] and all these have yielded surprising results.

Notably, in the resource theory of thermodynamics, the possibility of catalysis [11] re-
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sulted in many second laws of thermodynamics at very low temperatures compared to the

single second law in the macroscopic thermodynamics [98]. Moreover, the possibility self

catalysis is explored in the context of entanglement [99].

Ref. [66] is the first one to introduce the possibility of catalysis in the resource theo-

ries of coherence and catalysis is developed since then (see Refs. [100, 101], also see Fig.

1.2). The aim of this chapter is to uncover the intricate structure underlying the coherence

transformations (physical processes involving coherence) further using only incoherent

operations as these are the only allowed operations in the resource theory of coherence

based on incoherent operations. We consider the possibility of catalysis in the determin-

istic and stochastic scenarios both. We find the necessary and sufficient conditions for

transformations among pure quantum states under incoherent operations both in the deter-

ministic and stochastic scenarios considering the presence and absence of catalysts. We

prove that the simultaneous decrease of a family of Rényi entropies of the diagonal parts

of the states under consideration in a fixed basis are the necessary and sufficient conditions

for deterministic pure state transformations in the presence of catalysts. This result is very

similar in nature to the many second laws of quantum thermodynamics [11]. In the case

of pure state stochastic coherence transformations, we find the necessary and sufficient

conditions for the enhancement of the optimal probability of conversion with the aid of

catalysts. Moreover, when a given pure state transformation is not possible even catalyti-

cally, we consider the possibility of entanglement assisted coherence transformations and

find the necessary and sufficient conditions for the same. Thus, this chapter is a significant

contribution to a complete theory of quantum coherence based on incoherent operations

[47] and will be relevant in the scenarios where processing of coherence is limited by ad-

ditional thermodynamical restrictions and in the context of single-shot information theory

[102].

This chapter is organized as follows. We start with a discussion on interconversion of

quantum states under incoherent operations, measures of coherence and coherence trans-
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formations for pure states along with some other preliminaries in Sec. 5.2. In Sec. 5.3,

we discuss and obtain various results on catalytic coherence transformations under deter-

ministic and stochastic scenarios. We present the necessary and sufficient conditions for

catalytic coherence transformations in Sec. 5.4. We then go beyond catalytic coherence

transformations to entanglement assisted incoherent transformations in Sec. 5.5. Finally,

we conclude in Sec. 5.6 with overview and implications of the results presented in this

chapter. The Appendix C lists some useful results that are obtained earlier by other re-

searchers.

5.2 Preliminaries

Interconversion of quantum states, the set of allowed operations.–The notion of inter-

convertibility of quantum states is desirable in many situations. For example, if we have

a reference quantum state that serves as a basic unit of certain resource such as coherence

or entanglement (just like Kilogram serves as a basic unit for mass), then one would like

to convert any other given state to the reference state and in this way one can estimate the

amount of resource in a given state. The distillable entanglement [168–170] of a bipartite

quantum state is one of the measures of entanglement that is obtained via converting the

state into the maximally entangled state. The other examples include the distillable coher-

ence and coherence of formation [121] (for single quantum systems), and entanglement

of formation [171, 172] (for bipartite quantum systems). We would like to emphasize

here that the conversion from one state to the other is achieved by employing the relevant

set of allowed operations. As mentioned in chapter 1, there is no common agreement

for the definition of quantum coherence and we have more than one resource theories of

coherence. We consider the resource theory of coherence based on the set of incoherent

operations. In this resource theory of coherence, the set of incoherent operations is the

allowed set of operations and any interconversion among quantum states is effected via
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operations from this set only. In quantum theory, a physically admissible operation Φ is a

linear completely positive and trace-preserving map. Such a map Φ can be expressed by a

set of Kraus operators {Kn}Nn=1 such that Φ(ρ) =
∑N

n=1KnρK
†
n, with

∑N
n=1 K

†
nKn = I

[2]. However, as mentioned, in the resource theory of coherence, the allowed operations

are only the incoherent operations. An operation ΦI is called an incoherent operation if

the Kraus operators {Kn} of ΦI are such that KnIK†n ⊆ I. Here I is the set of all in-

coherent states. Given a fixed reference basis, say {|i〉}, any state which is diagonal in

the reference basis is called an incoherent state. Let us recall that the bona fide quantifiers

of coherence include the l1 norm of coherence, the relative entropy of coherence [47] and

the Rényi entropies for certain range of the Rényi index [101]. For a pure state |ψ〉, the

relative entropy of coherence Cr(|ψ〉) becomes the von Neumann entropy of its diagonal

part in the fixed reference basis, i.e., Cr(|ψ〉) = H(ψ(d)), where H is the von Neumann

entropy and ψ(d) is the diagonal part of the state |ψ〉 in a fixed reference basis.

Catalysis.–Just like the concept of catalysis in chemical reactions (conversion of a mixture

of compounds into mixture of other compounds with the aid of a catalyst), there exists a

similar concept in the context of interconversion of quantum states. Let us consider that

we need a conversion of an initial state |ψ1〉 into a final state |ψ2〉 of a quantum system

H by using only the restricted class of operations and assume further that this conversion

is not possible. Now, if there exists a pure state |φ〉 of the same system H or any other

ancillary system K such that |ψ1〉 ⊗ |φ〉 can be transformed into |ψ2〉 ⊗ |φ〉 by using

only the restricted class of operations, then such a transformation is called a catalytic

transformation and |φ〉 is called as a catalyst for the transformation |ψ1〉 → |ψ2〉. The state

|φ〉, just like a catalyst in a chemical process, does not change after the transformation (also

see Fig. 4.1). It is also possible that n copies of same initial state |ψ1〉 can act as a catalyst

for the transformation |ψ1〉 → |ψ2〉, i.e., despite the impossibility of the transformation

|ψ1〉 → |ψ2〉, the transformation |ψ1〉 ⊗ |ψ1〉⊗n → |ψ2〉 ⊗ |ψ1〉⊗n may be possible. Here,

n is a positive integer and depends on the transformation under consideration. This kind
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of catalysis is dubbed as self catalysis and we elaborate on it further as we go along. For

the resource theory of coherence, we take incoherent operations for the restricted class of

operations in the above definition, and the transformations then are referred to as catalytic

coherence transformations.

Deterministic coherence transformations.–The possibility of transformation of a quan-

tum system from one state with finite coherence to another state is determined by the

majorization of the diagonal elements of the corresponding pure states in a fixed basis.

This result was first proved in Ref. [100]. We state this result again for brevity:

Theorem 6 ([100]). Let |ψ1〉 and |ψ2〉 be two pure states with ψ(d)
1 and ψ(d)

2 being the

diagonal parts of |ψ1〉 and |ψ2〉, respectively in a fixed reference basis. Then a transfor-

mation from the state |ψ1〉 to |ψ2〉 is possible via incoherent operations if and only if ψ(d)
1

is majorized by ψ(d)
2 , i.e., ψ(d)

1 ≺ ψ
(d)
2 .

For two probability vectors p = {pi} and q = {qi} (i = 1, . . . , d) arranged in de-

creasing order, p is said to be majorized by q, i.e., p ≺ q if
∑l

i=1 pi ≤
∑l

i=1 qi for

l = 1, . . . , d − 1 and
∑d

i=1 pi = 1 =
∑d

i=1 qi. Theorem 6 is the key ingredient for dis-

cussing the incoherent transformations between two pure states and the problem at the

hand. However, we find that the proof of the converse part of the Theorem 6, given in Ref.

[100], is true only for a specific class of incoherent operations. In the original proof, it

was claimed that if a pure state |ψ〉 can be transformed to another pure state |φ〉 through

an incoherent channel then the elements Kn of the channel can always be written as [100]

Kn = Pπn


a

(n)
1 δ1,i(2)a

(n)
2 δ1,i(3)a

(n)
3

0 δ2,i(2)a
(n)
2 δ1,i(3)a

(n)
3

0 0 δ3,i(3)a
(n)
3

 , (5.1)

where δij is the Kronecker delta function, a(n)
j (j = 1, 2, 3) is the nonzero entry of Kn in

the jth column, i(j) is the location of a(n)
j in the ith row and was treated independent of n,

and Pπn is the permutation matrix. This means that the channel elementsKn considered in
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Ref. [100] were of the same kind (upper triangular matrices) up to permutations. However,

this is not the case always. For example let the initial state be |ψ〉 =
∑2

i=0

√
1/3 |i〉, the

final state be |φ〉 = |0〉, and define an incoherent operation Φ = {Kn}8
n=1 with the Kraus

elements Kn being given by

K1 =


1

2
√

2
1

2
√

2
1

2
√

2

0 0 0

0 0 0

 = K2,

K3 =


− 1

2
√

2
1

2
√

2
1

2
√

2

0 0 0

0 0 0

 = K4,

K5 =


1

2
√

2
0 0

0 1
2
√

2
− 1

2
√

2

0 0 0

 = K6 = K7 = K8.

It is easy to see Kn |ψ〉 = αn |φ〉 (for some αn such that
∑

n |αn|2 = 1),
∑8

n=1K
†
nKn = I

and Φ(|ψ〉〈ψ|) =
∑8

n=1Kn|ψ〉〈ψ|K†n = |φ〉〈φ|. But, obviously, K1 and K5 are not related

to each other via permutations and therefore, these are different kinds of upper triangular

matrices. This means that i(j) that was considered independent of n must depend on n,

in general. This discrepancy has already been noticed in Ref. [101] and amended by

considering i(j) that explicitly depend on n.

It is important to note that for coherence transformations of pure states via incoherent

operations, without loss of generality, we can always assume that the coefficients of the

pure states in a fixed reference basis are all real, positive and arranged in the decreasing

order [100]. Throughout this chapter we take this for granted and mention this at the places

where we think it is necessary.

Stochastic coherence transformations.–We discussed above the necessary and sufficient

conditions for the successful transformation of an initial state |ψ1〉 into a final state |ψ2〉
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by incoherent operations under the name of deterministic coherence transformation (as the

probability to achieve the transformation is 1). For dimensions strictly greater than two,

because the majorization is only a partial order, Theorem 6 leaves us with the possibility

that there can be a pair of states |ψ1〉 and |ψ2〉 such that neither ψ(d)
1 ≺ ψ

(d)
2 nor ψ(d)

2 ≺ ψ
(d)
1 .

These states will be called incomparable states in terms of coherence properties. To deal

with these incomparable states, the stochastic transformations have been investigated in

Refs. [101, 173–175]. Here, a stochastic coherence transformation means that for an

incoherent operation ΦI with Kraus operators {Kn }Nn=1, although ΦI cannot transform

|ψ1〉 into |ψ2〉, i.e., |ψ2〉 〈ψ2| 6= ΦI [|ψ1〉 〈ψ1|], there may exist a subset {Ki }N
′

i=1 of set

{Kn }Nn=1 (N ′ < N ) such that Ki |ψ1〉 ∝ |ψ2〉. The maximum value of probability of

transforming the initial state into the finial state, i.e., 〈ψ1|
(∑N ′

i=1K
†
iKi

)
|ψ1〉, has been

calculated in [101]. Here
∑N ′

i=1K
†
iKi 6= I. Thus, deterministic coherence transformations

are the stochastic coherence transformations with optimal probability of transformation

being equal to 1.

5.3 Deterministic and stochastic catalytic coherence trans-

formations

Catalysis under deterministic incoherent operations.– We know that there exists pair of

incomparable quantum states such that any one of them cannot be transformed to another

only using incoherent operations. Such examples can be constructed very easily. Let us

consider a qutrit system with the states |ψ1〉 =
∑2

i=0

√
ψi1 |i〉 and |ψ2〉 =

∑2
i=0

√
ψi2 |i〉.

Choose ψi1 and ψi2 such that |ψ0
1| ≤ |ψ0

2| and |ψ0
1|+ |ψ1

1| > |ψ0
2|+ |ψ1

2|. The diagonal parts

of such states will never be majorized by one another. The specific examples are given in

Table 5.1. Let us consider d-dimensional incomparable states |ψ1〉 =
∑d−1

i=0

√
ψi1 |i〉 and

|ψ2〉 =
∑d−1

i=0

√
ψi2 |i〉. Despite the impossibility of transformation from |ψ1〉 to |ψ2〉 via

incoherent operations, it is known that another auxiliary system with coherence (catalyst)
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can be used to make this transformation possible [100, 101] (via catalytic coherence trans-

formations (see Fig. 4.1)). There are following general properties of catalytic coherence

transformations [100]: (a) No incoherent transformation can be catalyzed by a maximally

coherent state |ψM〉 = 1√
d

∑d−1
i=0 |i〉. (b) Two states are interconvertible, i.e., |ψ1〉
 |ψ2〉,

under catalytic coherence transformations if and only if they are equivalent up to a per-

mutation of diagonal unitary transformations. (c) |ψ1〉 → |ψ2〉 under catalytic coherence

transformations only if both |ψ0
1| ≤ |ψ0

2| and |ψd−1
1 | ≥ |ψd−1

2 | hold. However, the neces-

sary and sufficient conditions are hitherto missing for catalytic coherence transformations.

We provide these conditions for stochastic coherence transformations later in this section

and for the deterministic coherence transformations for pure quantum states in the next

section.

But before going any further, let us consider a specific example of a qutrit system in the

state |ψ1〉 =
√

0.4 |0〉 +
√

0.4 |1〉 +
√

0.1 |2〉 +
√

0.1 |3〉. We want to make the otherwise

impossible transformation from |ψ1〉 to |ψ2〉 =
√

0.5 |0〉 +
√

0.25 |1〉 +
√

0.25 |2〉 via

incoherent operations using a catalyst in state |φ〉. It can be seen that we can choose

|φ〉 =
√

0.6 |0〉 +
√

0.4 |1〉. In this case, we have |ψ1〉 ⊗ |φ〉
ICO−−→ |ψ2〉 ⊗ |φ〉. Here ICO

denotes the incoherent operation. It is important to note that the state |φ〉 is not unique.

For example in the above case |φ〉 =
√

0.62 |0〉 +
√

0.38 |1〉 can also act as a catalyst.

So it is a legitimate question to ask that what is the structure of the set of catalysts for

a given catalytic transformation, i.e., for fixed |ψ1〉 and |ψ2〉, what is the set {|φ〉} such

that |ψ1〉 ⊗ |φ〉
ICO−−→ |ψ2〉 ⊗ |φ〉? The following proposition answers this question for four

dimensional systems.

Proposition 7. Consider a four dimensional system with states |ψ1〉 =
∑4

i=1

√
ψi1 |i〉 and

|ψ2〉 =
∑4

i=1

√
ψi2 |i〉 such that |ψ1〉 9 |ψ2〉 under incoherent operations. Without loss

of generality we can assume that the coefficients {ψi1}, {ψi2} are real and arranged in

decreasing order. The necessary and sufficient conditions for the existence of a catalyst

|φ〉 =
√
a |1〉 +

√
1− a |2〉 (a ∈ (0.5, 1)) for these states are: ψ1

1 ≤ ψ1
2; ψ1

1 + ψ2
1 >
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Table 5.1: Some examples of incomparable (via incoherent operations) coherent states in
the computational basis.

|ψ1〉 |ψ2〉√
0.5 |0〉+

√
0.4 |1〉+

√
0.1 |2〉

√
0.6 |0〉+

√
0.2 |1〉+

√
0.2 |2〉√

0.5 |0〉+
√

0.4 |1〉+
√

0.1 |2〉
√

0.6 |0〉+
√

0.25 |1〉+
√

0.15 |2〉√
0.5 |0〉+

√
0.4 |1〉+

√
0.1 |2〉

√
0.7 |0〉+

√
0.15 |1〉+

√
0.15 |2〉√

0.4 |0〉+
√

0.4 |1〉+
√

0.2 |2〉
√

0.45 |0〉+
√

0.3 |1〉+
√

0.25 |2〉√
0.4 |0〉+

√
0.4 |1〉+

√
0.2 |2〉

√
0.5 |0〉+

√
0.25 |1〉+

√
0.25 |2〉

ψ1
2 + ψ2

2; ψ1
1 + ψ2

1 + ψ3
1 ≤ ψ1

2 + ψ2
2 + ψ3

2 , and

max

{
ψ1

1 + ψ2
1 − ψ1

2

ψ2
2 + ψ3

2

, 1− ψ4
1 − ψ4

2

ψ3
2 − ψ3

1

}
≤ a ≤ min

{
ψ1

2

ψ1
1 + ψ2

1

,
ψ1

2 − ψ1
1

ψ2
1 − ψ2

2

, 1− ψ4
2

ψ3
1 + ψ4

1

}
. (5.2)

Proof. For |ψ1〉 =
∑4

i=1

√
ψi1 |i〉, |ψ2〉 =

∑4
i=1

√
ψi2 |i〉 and |φ〉 =

√
a |1〉 +

√
1− a |2〉,

we can define |γ1〉AB =
∑4

i=1

√
ψi1 |i〉 |i〉, |γ2〉AB =

∑4
i=1

√
ψi2 |i〉 |i〉 and |η〉AB =

√
a |11〉 +

√
1− a |22〉. Then ψ(d)

1 ⊗ φ(d) ≺ ψ
(d)
2 ⊗ φ(d) is equivalent to TrA(|γ1〉〈γ1| ⊗

|η〉〈η|) ≺ TrA(|γ2〉〈γ2| ⊗ |η〉〈η|). Now the proof of our proposition follows from the The-

orem 25 of Appendix C which was proved in Ref. [176]. �

It may be noted that based on the connections between the resource theories of co-

herence and entanglement, the results of the catalytic transformations in entanglement

theory can always be carried over to the coherence theory. Also, it is noted that if for

the states |ψ1〉 =
∑d−1

i=0

√
ψi1 |i〉 and |ψ2〉 =

∑d−1
i=0

√
ψi2 |i〉, |φ〉 is a catalyst then |φ〉

acts as a catalyst for the states |ψ1〉 =
∑d

i=0

√
ψ̃i1 |i〉 and |ψ2〉 =

∑d
i=0

√
ψ̃i2 |i〉, where

ψ̃ik = ψik for k = 1, 2 and i = 1, · · · , d − 2. ψ̃d−1
k = ψd−1

k − εk and ψ̃dk = εk for

k = 1, 2. For example, for the states |ψ1〉 =
√

0.4 |0〉 +
√

0.4 |1〉 +
√

0.1 |2〉 +
√

0.1 |3〉

and |ψ2〉 =
√

0.5 |0〉 +
√

0.25 |1〉 +
√

0.25 |2〉 the catalyst is |φ〉 =
√

0.6 |0〉 +
√

0.4 |1〉.

Now for the states |ψ1〉 =
√

0.4 |0〉 +
√

0.4 |1〉 +
√

0.1 |2〉 +
√

0.05 |3〉 +
√

0.05 |4〉 and

|ψ2〉 =
√

0.5 |0〉 +
√

0.25 |1〉 +
√

0.25 |2〉 the catalyst can again be chosen as |φ〉 =
√

0.6 |0〉 +
√

0.4 |1〉. Moreover, if |ψ1〉 9 |ψ2〉, it is possible that |ψ1〉 ⊗ |ψ1〉⊗N →
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|ψ2〉 ⊗ |ψ1〉⊗N for some N ≥ 1. This means that a state can act as catalyst for itself.

For example, take states |ψ1〉 =
√

0.9 |0〉 +
√

0.081 |1〉 +
√

0.01 |2〉 +
√

0.009 |3〉 and

|ψ2〉 =
√

0.95 |0〉 +
√

0.03 |1〉 +
√

0.02 |2〉. |ψ1〉 acts as a catalyst here, i.e., |ψ1〉 9 |ψ2〉

but |ψ1〉 ⊗ |ψ1〉 → |ψ2〉 ⊗ |ψ1〉. Similarly, if we take |ψ1〉 =
√

0.9 |0〉 +
√

0.088 |1〉 +
√

0.006 |2〉 +
√

0.006 |3〉 and |ψ2〉 =
√

0.95 |0〉 +
√

0.03 |1〉 +
√

0.02 |2〉 the two copies

of |ψ1〉 act as a catalyst, i.e., |ψ1〉 9 |ψ2〉 but |ψ1〉 ⊗ |ψ1〉⊗2 → |ψ2〉 ⊗ |ψ1〉⊗2. These

examples are taken from Ref. [99] which deals with self catalysis in entanglement theory.

Catalysis under stochastic incoherent operations.– Here we explore the possibility of

transforming a pure state to another incomparable pure state using stochastic incoherent

operations as we already know that for such a pair of states there doest not exist any deter-

ministic incoherent operation that can facilitate this transformation. We consider the trans-

formations both in presence and in absence of catalysts. It is obtained in Ref. [101] that

for a pure state |ψ〉 =
∑d−1

i=0

√
ψi |i〉, the functions Cl(ψ) =

∑d−1
i=l |ψi|, l = 0, · · · , d − 1

are valid coherence measures in the sense of the resource theory of coherence [47]. More-

over, in the absence of catalysts, the optimal probability P
(
|ψ1〉

ICO−−→ |ψ2〉
)

of converting

a pure state |ψ1〉 into |ψ2〉 is given by [101]

P
(
|ψ1〉

ICO−−→ |ψ2〉
)

= min
l∈[0,d−1]

Cl(ψ1)

Cl(ψ2)
. (5.3)

We first prove that the optimal probability of deterministic incoherent state trans-

formations is always one. Consider a pair of pure states |ψ1〉 =
∑d−1

i=0

√
ψi1 |i〉 and

|ψ2〉 =
∑d−1

i=0

√
ψi2 |i〉 such that |ψ1〉

ICO−−→ |ψ2〉. From Theorem 6, if |ψ1〉
ICO−−→ |ψ2〉,

then (ψ0
1, . . . , ψ

d−1
1 ) ≺ (ψ0

2, . . . , ψ
d−1
2 ). Thus

∑l
i=0 ψ

i
1 ≤

∑l
i=0 ψ

i
2. Due to normalization,

we have

d−1∑
i=l

ψi1 ≥
d−1∑
i=l

ψi2.

That is Cl(ψ1) ≥ Cl(ψ2) for all l values. Hence, P (|ψ1〉
ICO−−→ |ψ2〉) = 1. We note that mere
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the presence of another quantum system (a catalyst) can enhance the optimal probability of

transition given by Eq. (5.3). For example consider the states |ψ1〉 =
√

0.4 |0〉+
√

0.4 |1〉+
√

0.2 |2〉 and |ψ2〉 =
√

0.5 |0〉 +
√

0.25 |1〉 +
√

0.25 |2〉. Here P
(
|ψ1〉

ICO−−→ |ψ2〉
)

= 0.8

and P
(
|ψ2〉

ICO−−→ |ψ1〉
)

= 0.83. Now consider another state |φ〉 =
√

0.6 |0〉 +
√

0.4 |1〉.

We have P
(
|ψ1〉 ⊗ |φ〉

ICO−−→ |ψ2〉 ⊗ |φ〉
)

= 0.8 and P
(
|ψ2〉 ⊗ |φ〉

ICO−−→ |ψ1〉 ⊗ |φ〉
)

=

0.92. Notice that P
(
|ψ1〉

ICO−−→ |ψ2〉
)

= 0.8 is not increased by the use of |φ〉. This is a

consequence of our following proposition.

Proposition 8. If, under the best strategy of ICO, P
(
|ψ1〉

ICO−−→ |ψ2〉
)

is equal to |ψd−1
1 |/|ψd−1

2 |,

then this probability cannot be increased by the presence of any (catalyst) state. Here

|ψ1〉 =
∑d−1

i=0

√
ψi1 |i〉 and |ψ2〉 =

∑d−1
i=0

√
ψi2 |i〉.

Proof. If, under the best strategy of ICO, P (|ψ1〉 → |ψ2〉) is equal to |ψd−1
1 |/|ψd−1

2 |,

then for any catalyst state |φ〉 =
∑m

i=1

√
φi |i〉, the minimal coefficients of |ψ1〉 ⊗ |φ〉 and

|ψ2〉⊗|φ〉 are
√
ψd−1

1 φm and
√
ψd−1

2 φm, respectively. Thus, P (|ψ1〉⊗|φ〉 → |ψ2〉⊗|φ〉) =

minl∈[0,(d−1)m]
Cl(ψ1⊗φ)
Cl(ψ2⊗φ)

≤ Cd−1,m(ψ1⊗φ)

Cd−1,m(ψ2⊗φ)
=
|ψd−1

1 φm|
|ψd−1

2 φm|
= |ψd−1

1 |/|ψd−1
2 |. �

We note that the above proposition can be strengthened and we provide the necessary

and sufficient conditions for the enhancement of the optimal probability for transforma-

tions under incoherent operations in the presence of catalysts as our next proposition.

Proposition 9. For two pure states |ψ1〉 =
∑d−1

i=0

√
ψi1 |i〉 and |ψ2〉 =

∑d−1
i=0

√
ψi2 |i〉 there

exists a catalyst |φ〉 such that P (|ψ1〉 ⊗ |φ〉
ICO−−→ |ψ2〉 ⊗ |φ〉) > P (|ψ1〉

ICO−−→ |ψ2〉), if and

only if

P
(
|ψ1〉

ICO−−→ |ψ2〉
)
< min

{
|ψd−1

1 |
|ψd−1

2 |
, 1

}
.

Proof. The proof follows directly from Theorem 6 of main text and Theorem 26 of the

Appendix C. �
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5.4 Necessary and sufficient conditions for deterministic

catalytic coherence transformations

We know that under incoherent operations, in the absence of catalysts, the necessary and

sufficient conditions for transforming a pure state |ψ1〉 to another pure state |ψ2〉 are given

by Theorem 6, i.e., Cr(|ψ1〉) ≥ Cr(|ψ2〉). Here Cr(|ψ〉) denotes the relative entropy of

coherence of |ψ〉 [47]. Now if we allow for catalysts, does the decrease of relative entropy

of coherence, Cr(|ψ1〉) ≥ Cr(|ψ2〉), ensure existence of an incoherent operation that maps

|ψ1〉 to |ψ2〉? In the following we prove that this is not the case, i.e., mere decrease of

the relative entropy of coherence is not sufficient. We next characterize the necessary and

sufficient conditions for catalytic coherence transformations between the initial state |ψ1〉

and the target state |ψ2〉.

Proposition 10. For two pure states |ψ1〉 , |ψ2〉 ∈ H(d), if the coefficients of |ψ1〉, in a fixed

basis, are all nonzero, then the necessary and sufficient conditions for catalytic coherence

transformations are the simultaneous decrease of a family of Rényi entropies which are

defined as Sα(ψ(d)) = sgn(α) ln
(
Tr
[(
ψ(d)

)α])
/(1 − α). Here ψ(d) is the diagonal part

of the pure state |ψ〉 and sgn(α) = 1 for α ≥ 0, and sgn(α) = −1 when α < 0. More

precisely, there exists a catalyst state |φ〉 such that |ψ1〉 ⊗ |φ〉
ICO−−→ |ψ2〉 ⊗ |φ〉 if and only

if the conditions

S̃α

(
ψ

(d)
2

)
|α|

<
S̃α

(
ψ

(d)
1

)
|α|

(5.4)

are satisfied simultaneously for all α ∈ (−∞,+∞), where S̃α
(
ψ(d)

)
= Sα

(
ψ(d)

)
− ln d.

For α = 0, S̃α
(
ψ(d)

)
/|α| = limα→0+ S̃α

(
ψ(d)

)
/|α| =

∑d
i=1 lnψ

(d)
i /d where ψ(d)

i are

components of ψ(d) in a fixed reference basis.

Proof. We use a result from Ref. [177] (which we restate as Lemma 27 in Appendix

C for clarity and completeness) to prove our proposition. For α 6= {0, 1} note that
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S̃α
(
ψ(d)

)
/|α| = lnAα

(
ψ(d)

)
/(1− α) + ln d/α(1 − α) − ln d/|α|, where Aα

(
ψ(d)

)
=(

1
d

∑d
i=1

(
ψ

(d)
i

)α)1/α

(as in Lemma 27). So for α 6= {0, 1}, the proof of our proposition

follows from Lemma 27 and Theorem 6. Similarly, for α = 1, the proof follows from

Lemma 27 and Theorem 6. For α = 0 the proof follows again by noting that

lim
α→0+

S̃α

(
ψ

(d)
1

)
|α|

=
1

d

d∑
i=1

lnψi1 = lnA0(ψ
(d)
1 ),

where, for any probability vector p, A0(p) =
(∏d

i=1 pi

) 1
d
, as in Lemma 27 and ψ(d)

1 =(
ψ1

1, . . . , ψ
d
1

)T . This completes the proof of proposition. �

We emphasize that Proposition 10 assumes that the initial state |ψ1〉 must contain only

nonzero entries. But this problem can be remedied by allowing slight perturbation to the

initial state. Moreover, the strict inequality in Proposition 10 can be made nonstrict. In

this view, we generalize Proposition 10 to the following proposition.

Proposition 11. For two pure states |ψ1〉 and |ψ2〉, the following two conditions are equiv-

alent:

1. For a given pure state |ψ1〉 there exists a state |ψε1〉 with ε > 0 and a catalyst state |φ〉

such that (i) || |ψ1〉 − |ψε1〉 || < ε; (ii) |ψε1〉 ⊗ |φ〉
ICO−−→ |ψ2〉 ⊗ |φ〉.

2. For all α ∈ (−∞,+∞)

S̃α

(
ψ

(d)
2

)
|α|

≤
S̃α

(
ψ

(d)
1

)
|α|

. (5.5)

Proof. We first prove the implication 1 ⇒ 2. Although |ψε1〉 may have zero component,

there always exists a state |ψε′1 〉 close to |ψε1〉 with nonzero components only, which also

satisfy (i) and (ii) in the condition 1. Thus, without loss of any generality, we can as-

sume the components of |ψε1〉 are all nonzero. Since |ψε1〉 ⊗ |φ〉
ICO−−→ |ψ2〉 ⊗ |φ〉, then by
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Proposition 10,

S̃α

(
ψ

(d)
2

)
|α|

<
S̃α
(
(ψε1)(d)

)
|α|

for every ε > 0. Based on the continuity of functions S̃α(·)/|α|, we have S̃α
(
ψ

(d)
2

)
/|α| ≤

S̃α

(
ψ

(d)
1

)
/|α|.

Now we prove the implication 2⇒ 1. For |ψ1〉 =
∑d

i=1

√
ψi1 |i〉, let

|ψε1〉 =
d∑
i=1

√
(1− ε)ψi1 + ε/d |i〉 .

Then || |ψ1〉 − |ψε1〉 || → 0, when ε → 0. Due to Lemma 28 of Appendix C, we know the

functions S̃α(·)/|α| are strictly Schur concave for all α ∈ (−∞,∞), thus S̃α
(
ψ

(d)
1

)
/|α| <

S̃α
(
(ψε1)(d)

)
/|α| for every ε > 0. As S̃α

(
ψ

(d)
2

)
/|α| ≤ S̃α

(
ψ

(d)
1

)
/|α|, we have

S̃α

(
ψ

(d)
2

)
|α|

<
S̃α
(
(ψε1)(d)

)
|α|

.

It is easy to see the coefficients of |ψε1〉 are all nonzero. Hence, by Proposition 10, there

exists a catalyst in state |φ〉 such that |ψε1〉 ⊗ |φ〉
ICO−−→ |ψ2〉 ⊗ |φ〉. This completes the

proof. �

To elaborate more about the necessary and sufficient conditions for catalytic coherence

transformations we consider various examples. Fig. 5.1 shows that for states |ψ1〉 =
√

0.4 |0〉+
√

0.4 |1〉+
√

0.1 |2〉+
√

0.1 |3〉 and |ψ2〉 =
√

0.5 |0〉+
√

0.25 |1〉+
√

0.25 |2〉

a catalytic transformation is possible but for states |ψ1〉 =
√

0.5 |0〉+
√

0.4 |1〉+
√

0.1 |2〉

and |ψ2〉 =
√

0.6 |0〉 +
√

0.25 |1〉 +
√

0.15 |2〉 no catalytic transformation is possible.

Moreover, using the similar techniques as in Ref. [11], we can remove the (−∞, 0) part

with the help of another ancillary qubit.

Proposition 12. For pure states |ψ1〉 and |ψ2〉, the following two conditions are equiva-
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lent:

1. For a given pure state |ψ1〉 there exist states |ψε1〉⊗ |0ε〉 with ε > 0 and |φ〉 such that (i)

|| |ψ1〉 ⊗ |0〉 − |ψε1〉 ⊗ |0ε〉 || < ε; (ii) |ψε1〉 ⊗ |0ε〉 ⊗ |φ〉
ICO−−→ |ψ2〉 ⊗ |0〉 ⊗ |φ〉.

2. For all α ∈ [0,+∞)

S̃α

(
ψ

(d)
2

)
|α|

≤
S̃α

(
ψ

(d)
1

)
|α|

. (5.6)

Proof. (1 ⇒ 2) Similar to the proof of Proposition 11, without loss of generality, we can

assume the components of |ψε1〉 and |0ε〉 are all nonzero. Since |ψε1〉 ⊗ |0ε〉 ⊗ |φ〉
ICO−−→

|ψ2〉 ⊗ |0〉 ⊗ |φ〉, then by Proposition 10,

S̃α
(
(|ψ2〉〈ψ2| ⊗ |0〉〈0|)(d)

)
|α|

<
S̃α
(
(|ψε1〉〈ψε1| ⊗ |0ε〉〈0ε|)(d)

)
|α|

for every ε > 0. Based on the continuity and additivity of S̃α(·)
|α| we have

S̃α
(
ψ
(d)
2

)
|α| ≤

S̃α
(
ψ
(d)
1

)
|α| .

(2 ⇒ 1) For |ψ1〉 =
∑d

i=1

√
ψi1 |i〉 let |ψε1〉 =

∑d
i=1

√
(1− ε)ψi1 + ε/d |i〉, and |0ε〉 =√

1− ε/2 |0〉 +
√
ε/2 |1〉. Then || |ψ1〉 ⊗ |0〉 − |ψε1〉 ⊗ |0ε〉 || → 0, when ε → 0. Similar

to proof of Proposition 11, it is easy to obtain

S̃α
(
(|ψ2〉〈ψ2| ⊗ |0〉〈0|)(d)

)
|α|

<
S̃α
(
(|ψε1〉〈ψε1| ⊗ |0ε〉〈0ε|)(d)

)
|α|

(5.7)

for all α ∈ [0,+∞). In the case of α < 0, due to the definition of S̃α, the left side of

inequality 5.7 will be −∞, and the right side will be finite. By Proposition 10, there exist

catalyst state |φ〉 such that |ψε1〉 ⊗ |0ε〉 ⊗ |φ〉
ICO−−→ |ψ2〉 ⊗ |0〉 ⊗ |φ〉. This completes the

proof. �

In fact, we need not worry about the rank of the initial state. If |ψ1〉 can be transformed

to |ψ2〉 using the catalyst |φ〉, then Cs(|ψ2〉 ⊗ |φ〉) ≤ Cs(|ψ1〉 ⊗ |φ〉) where Cs(|ψ〉) :=
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Figure 5.1: The plot shows the variation of ∆S̃α = S̃α(ψ
(d)
2 ) − S̃α(ψ

(d)
1 ) as a function

of α. In the left figure, we take |ψ1〉 =
√

0.4 |0〉 +
√

0.4 |1〉 +
√

0.1 |2〉 +
√

0.1 |3〉 and
|ψ2〉 =

√
0.5 |0〉+

√
0.25 |1〉+

√
0.25 |2〉. Based on our Proposition 10, the transformation

from |ψ1〉 to |ψ2〉 will be possible with the aid of a catalyst. In the right figure, we take
|ψ1〉 =

√
0.5 |0〉 +

√
0.4 |1〉 +

√
0.1 |2〉 and |ψ2〉 =

√
0.6 |0〉 +

√
0.25 |1〉 +

√
0.15 |2〉.

Because for certain values of α, ∆S̃α increases, from Proposition 10, there does not exist
a catalyst that can allow the transformation from |ψ1〉 to |ψ2〉 in this case.

Rank(ψ(d)) and is a proper measure of coherence [178]. ψ(d) is the diagonal part of

|ψ〉 in the fixed reference basis. This implies Cs(|ψ2〉) ≤ Cs(|ψ1〉), i.e., Rank(ψ
(d)
2 ) ≤

Rank(ψ
(d)
1 ). Therefore, |ψ1〉 and |ψ2〉 can also be viewed as pure states in H(d′), where

d′ = max{Cs(ψ1),Cs(ψ2)} = Cs(ψ1); |ψ1〉 will be full rank and the above propositions

can be used.

All the Propositions 10, 11, and 12 tell us that in order to check whether the trans-

formation under consideration is possible, we need to check infinitely many conditions,

thus, making the proposition only of theoretical merit. However, as we show below in

Proposition 13, if only a few conditions on Rényi entropy hold, then they suffice to show

that all other conditions hold automatically.

Proposition 13. Consider two pure states |ψ1〉 and |ψ2〉. Given ε > 0, we can construct

two pure states |φ1〉 and |φ2〉 with φ
(d)
1 ∈ Bε(ψ

(d)
1 ), φ(d)

2 ∈ Bε(ψ
(d)
2 ). Here, for two

probability vectors x and y, Bε(x) is the ε ball around x and is defined as Bε(x) :=
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{ y : 1
2

∑
i | yi − xi| < ε }. Consider following conditions:

S0(ψ
(d)
2 ) ≤ S0(φ

(d)
1 ) +

log ε

1− α
(for 0 < α < 1); (5.8a)

S∞(φ
(d)
2 )− log ε

α− 1
≤ S∞(ψ

(d)
1 ) (for α > 1); (5.8b)

S̃α(ψ
(d)
2 )

|α|
≤ S̃α(ψ

(d)
1 )

|α|
(for α = 0). (5.8c)

If conditions (5.8a), (5.8b), and (5.8c) hold, then for any α ∈ [0,∞),

S̃α(ψ
(d)
2 )

|α|
≤ S̃α(ψ

(d)
1 )

|α|
. (5.9)

Proof. Based on Lemma 30 of Appendix C, we can construct two pure states |φ1〉 and

|φ2〉 with φ(d)
1 ∈ Bε(ψ

(d)
1 ), φ(d)

2 ∈ Bε(ψ
(d)
2 ), such that

Sα(ψ
(d)
1 ) ≥ S0(φ

(d)
1 ) +

log ε

1− α
(for 0 < α < 1); (5.10a)

S∞(φ
(d)
2 )− log ε

α− 1
≥ Sα(ψ

(d)
2 ) (for α > 1). (5.10b)

Note that for any probability vector x, Sα(x) ≤ Sβ(x) if α ≥ β. Now for 0 < α < 1,

from conditions (5.10a) and (5.8a), we have

S̃α(ψ
(d)
1 ) = Sα(ψ

(d)
1 )− ln d

≥ S0(φ
(d)
1 ) +

log ε

1− α
− ln d

≥ S0(ψ
(d)
2 )− ln d

≥ Sα(ψ
(d)
2 )− ln d = S̃α(ψ

(d)
2 ). (5.11)
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Similarly, for α > 1, from conditions (5.8b) and (5.10b), we have

S̃α(ψ
(d)
1 ) = Sα(ψ

(d)
1 )− ln d

≥ S∞(ψ
(d)
1 )− ln d

≥ S∞(φ
(d)
2 )− log ε

α− 1
− ln d

≥ S̃α(ψ
(d)
2 ). (5.12)

Combining the above two equations with the condition (5.8c), we get

S̃α(ψ
(d)
2 )

|α|
≤ S̃α(ψ

(d)
1 )

|α|
,

for all values of α ∈ [0,∞), where α = 1 case comes from the continuity of S̃α(·)/|α|.

Hence, we only need to check conditions (5.8a), (5.8b), and (5.8c) to determine whether

the transformation between two pure states is possible with the aid of catalysts. This es-

tablishes the practicality of Propositions 10, 11, and 12.

5.5 Entanglement assisted coherence transformations

Consider a pair of pure states such that there exists no catalytic incoherent transformation

(see Fig. 5.1) between them. Can we find an incoherent operation between such pair of

states with some assistance of another physical resource? The following proposition an-

swers this question. We follow the proof techniques of Ref. [179] to prove the proposition.

Proposition 14. For any pure states |ψ1〉 and |ψ2〉 there exist a k-partite pure state |φ̃〉1,...,k

and |φ1〉 ⊗ . . .⊗ |φk〉 such that

|ψ1〉 ⊗ |φ̃〉1,...,k
ICO−−→ |ψ2〉 ⊗ |φ1〉 ⊗ . . .⊗ |φk〉

76



with φ(d)
i = φ̃

(d)
i := Tr{ 1,...,k }/iφ̃

(d) and k ≤ 3 if and only if the following two conditions

are satisfied: (1) Cs(|ψ2〉) ≤ Cs(|ψ1〉) and (2) Cr(|ψ2〉) < Cr(|ψ1〉). Here Cs is a proper

coherence measure defined in [178], which for a pure state is equal to the number of

nonzero coefficients in the state spanned in the reference basis.

Proof. Note that from Theorem 6, |ψ1〉⊗|φ̃〉1,...,k
ICO−−→ |ψ2〉⊗|φ1〉⊗. . .⊗|φk〉 is equivalent

to ψ(d)
1 ⊗ φ̃

(d)
1,...,k ≺ ψ

(d)
2 ⊗φ

(d)
1 ⊗ . . .⊗φ

(d)
k . Then the proof of our proposition follows from

Lemma 29 of the aAppendix C. �

Now let us apply Proposition 14 to a numerical example. Consider two pure states

|ψ1〉 and |ψ2〉 with ψ(d)
1 = (0.5, 0.4, 0.1) and ψ(d)

2 = (0.6, 0.25, 0.15). Then, we know

that |ψ1〉 cannot be transformed to ψ2 using any catalyst as there exists an α such that

S̃α

(
ψ

(d)
2

)
− S̃α

(
ψ

(d)
1

)
< 0 (see Fig. 5.1). Thus, |ψ1〉 ⊗ |φ〉⊗n → |ψ2〉 ⊗ |φ〉⊗n is not

possible. However, |ψ1〉 can be transformed to |ψ2〉 using an entanglement assisted inco-

herent transformation as Cr(|ψ2〉) < Cr(|ψ1〉) and Cs(|ψ2〉) = Cs(|ψ1〉) (see Proposition

14). We emphasize here that in the above process of entanglement assisted incoherent

transformation, coherence in the ancillary system is not consumed. This can be proved by

using the following fact

Cr(|φ1〉 ⊗ · · · ⊗ |φk〉)− Cr(|φ̃〉1,...,k)

=
k∑
i=1

H
(
φ

(d)
i

)
−H

(
φ̃

(d)
1,...,k

)
≥ 0.

Particularly, when k = 2, for pure states |φ̃〉12, |φ〉1 and |φ〉2, where φ(d)
1 = φ̃

(d)
1 , φ

(d)
2 =

φ̃
(d)
2 , we have Cr (|φ〉1 ⊗ |φ〉2)−Cr

(
|φ̃〉12

)
= I

((
|φ̃〉12

)(d)
)
≤ I

(
|φ̃〉12

)
= 2Er

(
|φ̃〉12

)
,

giving an upper bound on the increased coherence. Here, I(ρ12) := H(ρ1) + H(ρ2) −

H(ρ12) is the mutual information of ρ12 and Er
(
|φ̃〉12

)
:= H

(
Tr2

[
|φ̃〉 〈φ̃|12

])
is the

entropy of entanglement of the state |φ̃〉12. Further, we generalize Proposition 14 to the

following proposition. The proof techniques for the following proposition are adapted

from Refs. [11, 180].
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Proposition 15. For two pure states |ψ1〉 and |ψ2〉, the following two conditions are equiv-

alent:

1. For a given state |ψ1〉 there exist states |ψε1〉, |φ̃〉1,...,k and |φ1〉 ⊗ . . . ⊗ |φk〉 with

φ̃
(d)
i = φ

(d)
i and ε > 0 such that (i) || |ψ1〉 − |ψε1〉 || < ε; (ii) |ψε1〉 ⊗ |φ̃〉1,...,k

ICO−−→

|ψ2〉 ⊗ |φ1〉 ⊗ . . .⊗ |φk〉. Here, k ≤ 3.

2. Cr(|ψ2〉) ≤ Cr(|ψ1〉).

Proof. Let us first prove the implication 1 ⇒ 2. Since |ψε1〉 ⊗ |φ̃〉1,...,k
ICO−−→ |ψ2〉 ⊗

|φ1〉 ⊗ . . . ⊗ |φk〉 and coherence cannot increase under incoherent operations, we have

Cr(|ψ2〉⊗|φ1〉⊗. . .⊗|φk〉) ≤ Cr(|ψε1〉⊗|φ̃〉1,...,k). As Cr(|φ1〉⊗. . .⊗|φk〉)−Cr(|φ̃〉1,...,k) =∑k
i=1 H

(
φ

(d)
i

)
− H

(
φ̃

(d)
1,...,k

)
≥ 0, we have Cr(|ψ2〉) ≤ Cr(|ψε1〉). Let ε → 0, then

Cr(|ψ2〉) ≤ Cr(|ψ1〉).

The implication 2 ⇒ 1 can be proved as follows. For |ψ1〉 =
∑d

i=1

√
ψi1 |i〉 let

|ψε1〉 =
∑d

i=1

√
(1− ε)ψi1 + ε/d |i〉. Then || |ψ1〉 − |ψε1〉 || → 0, when ε → 0. Moreover,

Cr(|ψ2〉) ≤ Cr(|ψ1〉) is equivalent to H
(
ψ

(d)
2

)
≤ H

(
ψ

(d)
1

)
. As H(·) is strictly concave,

then H
(
ψ

(d)
2

)
≤ H

(
ψ

(d)
1

)
< H

(
ψ̃

(d)
1

)
. It is easy to see Cs(|ψε1〉) = d ≥ Cs(|ψ2〉). Now

using Proposition 14 we complete the proof. �

5.6 Chapter summary

In this chapter we find the necessary and sufficient conditions for the deterministic and

stochastic coherence transformations between pure quantum states mediated by catalysts

using only incoherent operations. We first find the necessary and sufficient conditions for

the possibility of the increase of the optimal probability of achieving an otherwise impos-

sible transformation with the aid of a catalyst. Then, we show that for a given pair of pure

quantum states, the necessary and sufficient conditions for a deterministic catalytic trans-

formation from one state to another are the simultaneous decrease of a family of Rényi

entropies of the corresponding diagonal parts of the given pure states in a fixed reference
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basis. We also discuss about the practicality of these conditions. Further, we delineate

the structure of the catalysts and find that it is possible for a pure quantum state to act as

a catalyst for itself for a given otherwise impossible state transformation using incoher-

ent operations. This phenomena may be termed as self catalysis. Moreover, for the pair

of states which violate the necessary and sufficient conditions for deterministic coherence

transformations, we consider the possibility of using an entangled state and show that even

though there exists no catalyst for such a pair of states but an entangled state can indeed

be used to facilitate the transformation. We dub such transformations as entanglement

assisted coherence transformations. Here we emphasize that in entanglement assisted co-

herence transformations the coherence of the entangled state is not consumed at all. We

also provide necessary and sufficient conditions for the entanglement assisted coherence

transformations. In this way we completely characterize the allowed manipulations of the

coherence of pure quantum states and thus, this chapter contributes towards a complete

resource theory of coherence based on incoherent operations.

The consideration of catalytic transformations is very natural and has resulted in strik-

ingly nontrivial consequences. One such instance is the introduction of many second laws

of quantum thermodynamics superseding the common wisdom of single second law of

macroscopic thermodynamics. Now given the importance of quantum coherence in quan-

tum thermodynamics and various other avenues, we hope that our results which provide

the limitations on coherence transformations will be extremely helpful in the processing

of quantum coherence in such situations and in particular, in the context of single-shot

quantum information theory. Further, it will be important to analyze the possibility of self

catalysis in greater detail in future as the catalysts in this case are readily available.

This chapter is based on the following paper:

1. Catalytic coherence transformations,

K. Bu, U. Singh, and J. Wu, Phys. Rev. A 93, 042326 (2016).
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CHAPTER6
Average coherence and its typicality for random pure

states

6.1 Introduction

This chapter is devoted mainly to random pure states, matrix integrals and the concentra-

tion of measure phenomenon in the context of resource theories of coherence. In classical

and quantum information theory, probabilistic methods have been proven to be very useful

and far reaching [103]. For example, both the classical and quantum compression theo-

rems employ a well known probabilistic tool—the central limit theorem—for their proofs.

One of the main advantages of use of such probabilistic tools is their simplicity together

with their generic or typical consequences. Moreover, probabilistic techniques are conve-

nient mathematical tools to prove existence theorems–where non-probabilistic proofs are

scarce—however, for some problems like the minimum output entropy additivity problem

they are only natural. Therefore, it becomes very important to find the “typical” behaviour

of various physical quantities of interest. The technical meaning of the word “typical” will

be given in this chapter.

In the entanglement resource theory, the computation complexity of various multipar-

tite entanglement measures grows exponentially with the number of parties. A feasible

approach is to consider only typical behaviour of multipartite entanglement and this has
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been a vibrant research area with several remarkable results [29, 81, 103–115]. These

results are naturally linked with probability measures on matrix spaces, random quantum

states and a very important tool from probabilistic techniques—the concentration of mea-

sure phenomenon [119]. Already, random states and the notion of “typical entanglement”

have been used succesfully in providing a satisfactory explanation to the postulate of equal

a priori probability of statistical physics [104, 105]. In particular, it has been shown that

an overwhelming majority of random pure quantum states sampled from the uniform Haar

measure are extremely close to the maximally entangled state [29]. Additionally, the use-

fulness of these results from an experimental viewpoint has also been established [120].

Given the fact that quantum coherence is a useful resource in a wide range of appli-

cations arising in quantum thermodynamics [11–14, 16, 33–37] and in quantum biology

[17–20, 40, 41], in this chapter, we consider typical behaviour of coherence as quantified

in the resource theory of coherence based on incoherent operations. Using the concen-

tration of measure phenomenon, we first show that quantum coherence of random pure

states is typical for higher dimensional Hilbert spaces. In particular, we show that for

an overwhelming majority of random pure states the coherence is equal to the typical

coherence—which is equal to the value of coherence averaged over the probability mea-

sure on the state space—to within arbitrarily small error. We show that the typical nature

of coherence holds true for various measures of coherence such as the relative entropy of

coherence [47] which is also equal to the distillable coherence, the coherence of forma-

tion [121] and the l1 norm of coherence [47]. Further, in contrast to the fact that most of

the bipartite pure state sampled randomly from the Haar measure are typically maximally

entangled [29], we show that most of the pure states sampled randomly from the Haar

measure are not typically maximally coherent.

This chapter is organized as follows. We start with a discussion of random pure quan-

tum states, measures of coherence, concentration of measure phenomenon and some other

preliminaries in Sec 6.2. In Sec 6.3, we calculate the average relative entropy of coher-
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ence for random pure states sampled from the uniform Haar distribution, establish the

typicality of this average amount of coherence and find the dimension of the subspace of

the total Hilbert space with the property that all pure states on this subspace have at least

a fixed amount of relative entropy of coherence as well as coherence of formation. We

then present our results on expected classical purity, its typicality and the upper bound on

the root mean square average l1 norm of coherence in Sec 6.4. Subsequently, in Sec 6.5,

we establish that most of the randomly sampled pure states are not typically maximally

coherent. Finally, we conclude in Sec 6.6 with overview and implications of the results

presented in this chapter.

6.2 Random pure quantum states, measures of coherence

and concentration of measure phenomenon

Random pure states.—Before we discuss about random quantum states, let us fix a mea-

sure µ on the set of quantum states. Having fixed a measure µ on the set of quantum states

one can calculate the desired averages over all states with respect to this measure. Here

we are interested in the set of pure quantum states. For a d-dimensional Hilbert space H,

the set of pure states is identified as complex projective space CP d−1. On this space there

exists a unique natural measure d(ψ), induced by the uniform Haar measure dµ(U) on the

unitary group U(d) [181–185]. This amounts to saying that any random pure state |ψ〉 is

generated equivalently by applying a random unitary matrix U ∈ U(d) on a fixed pure

state |ψ0〉, i.e., |ψ〉 = U |ψ0〉. Now one can define the average value of some function g of

pure state as follows:

Eψg(ψ) :=

∫
d(ψ) g(ψ) =

∫
U(d)

dµ(U) g(Uψ0).
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In what follows, by random pure states we mean the states generated by applying random

Haar distributed unitaries on some fixed pure state and all the averages are with respect to

the Haar measure.

Measures of coherence.—The measures of coherence that we consider in this chapter are

the l1 norm of coherence, the relative entropy of coherence and the coherence of formation.

For a density matrix ρ of dimension d and a fixed reference basis {|i〉}, let us recall that

the l1 norm of coherence Cl1(ρ) [47] is defined as

Cl1(ρ) =
d∑

i,j=1
i 6=j

| 〈i| ρ |j〉 |. (6.1)

The relative entropy of coherence Cr(ρ) [47] is defined as

Cr(ρ) = H(ρ(d))−H(ρ), (6.2)

where ρ(d) is the diagonal part of the density matrix ρ in the fixed reference basis and H is

the von Neumann entropy defined as H(ρ) = −Tr (ρ ln ρ). All the logarithms are taken

with respect to the base e. The coherence of formation Cf (ρ) [121] is defined as

Cf (ρ) = min
{pa,|ψa〉〈ψa|}

∑
a

paH(ρ(d)(ψa)), (6.3)

where ρ(d)(ψa) is the diagonal part of the pure state |ψa〉, ρ =
∑

a pa |ψa〉 〈ψa| and mini-

mum is taken over all such decompositions of ρ.

Concentration of measure phenomenon.—For many functions defined over a vector

space, the overwhelming majority of vectors take a value of the function very close to the

average value as the dimension of the vector space goes to infinity or becomes very large.

This observation, collectively, is referred to as the concentration of measure phenomenon.

Here we show that several measures of coherence have this property. Let us consider a
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simple example to demonstrate the concentration of measure phenomenon. Consider the

k-sphere Sk in Rk+1 with k being very large. A direct calculation yields that the uniform

measure µ on Sk is almost concentrated around every equator when k is large. Similarly,

an explicit calculation [119] of the measure of spherical caps implies that given any mea-

surable set S with µ(S) ≥ 1/2, for every r > 0, µ(Sr) ≥ 1 − exp{(k − 1)r2/2} where

Sr = {x ∈ Sk : d(x,S) < r} and d(x, y) is the Euclidean distance on Rk+1. This is one

of the first quantitative instances of the concentration of measure phenomenon. For Lips-

chitz continuous functions on the sphere, Lévy’s lemma is the rigorous statement about the

concentration of measure phenomenon [119]. Let us first define the Lipschitz continuous

functions.

Lipschitz continuous function and Lipschitz constant.—Suppose (M,d1) and (N, d2)

are metric spaces and F : M → N . If there exists η ∈ R+ such that d2(F (x), F (y)) ≤

ηd1(x, y) for all x, y ∈M , then F is called a Lipschitz continuous function on M with the

Lipschitz constant η. Every real number larger than η is also a Lipschitz constant for F

[186]. Next, we introduce a form of Lévy’s lemma that will be the key ingredient in this

chapter.

Lévy’s Lemma (see [119] and [29]).—Consider a sequence F = {Fk : Sk → R}k of

Lipschitz continuous functions from the k-sphere to the real line with each function Fk

having the same Lipschitz constant η that is independent of k (with respect to the Euclidean

norm). Let a point X ∈ Sk be chosen uniformly at random. Then, for all ε > 0 and k,

Pr {|Fk(X)− E(Fk)| > ε} ≤ 2 exp

(
− (k + 1)ε2

9π3η2 ln 2

)
. (6.4)

Here E(Fk) is the mean value of Fk. It is insightful to consider ε = r−1/4 in Eq. (6.4). With

this choice, the bound on the right hand side decreases exponentially as exp (−
√
r) while

the bound on the left hand side decreases like r−1/4, making it clear that the probability

of being non-typical decreases much faster and hence “essentially zero” for large r. Note
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that the average over the Haar distributed d-dimensional pure states is equivalent to the

average over the k-sphere with k = 2d − 1. Importantly, Lévy’s lemma has been used

in constructing counterexamples to the conjecture of the additivity of minimum output

entropy [116–118].

At various places, we use the trace norm and the Euclidean norm for matrices: (1) the

trace norm of a matrixA, denoted by ||A||1, is defined as ||A||1 = Tr
√
A†A, where † is the

Hermitian conjugate. (2) the Euclidean norm of a matrix A, denoted by ||A||2, is defined

as
√

Tr(A†A). The trace distance between two density matrices ρ and σ is defined as

||ρ− σ||1 [3]. Notice that we follow a definition of trace distance without a factor of half

in front of the trace norm. Finally, for proving the existence of concentrated subspaces

with fixed amount of coherence we need the notion of small nets [81].

Existence of small nets.— It is known [81] that given a Hilbert space H of dimension d

and 0 < ε0 < 1, there exists a setN of pure states inH with |N | ≤ (5/ε0)2d, such that for

every pure state |ψ〉 ∈ H there exists |ψ̃〉 ∈ N with || |ψ〉 − |ψ̃〉 ||2 ≤ ε0/2. Such a set is

called as an ε0-net.

We emphasize here that all the main results presented below are based on Lévy’s

lemma and hence are of probabilistic nature. The method to demonstrate the typical prop-

erties is always to prove that the opposite is an unlikely event.

6.3 Average relative entropy of coherence and its typical-

ity for random pure states

To show the typicality of coherence of random pure quantum states we first find the av-

erage relative entropy of coherence for a random pure state, where average is taken over

the uniform Haar measure, and then apply Lévy’s lemma to show the concentration ef-

fect for quantum coherence. Now consider a pure state |ψ〉 and denote by ρ(d)(ψ) the

diagonal part of |ψ〉 in the fixed reference basis {|i〉}, i.e., ρ(d) (ψ) =
∑d

i=1 | 〈i|ψ〉|2Πi,
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where Πi = |i〉 〈i|. The relative entropy of coherence of the state |ψ〉 in the fixed refer-

ence basis {|i〉} is Cr (ψ) = H(ρ(d) (ψ)) = −
∑d

i=1 | 〈i|ψ〉|2 ln | 〈i|ψ〉|2. If we draw pure

states |ψ〉 from the uniform Haar measure then the expected value of the relative entropy

of coherence is given by

EψCr (ψ) := −
d∑
i=1

∫
d(ψ) | 〈i|ψ〉|2 ln | 〈i|ψ〉|2. (6.5)

As discussed earlier, we can take |ψ〉 = U |1〉 where U is sampled from the Haar distribu-

tion and |1〉 is a fixed state. This allows us to rewrite the above equation as

EψCr (ψ) = −
d∑
i=1

∫
dµ(U) | 〈i|U |1〉|2 ln | 〈i|U |1〉|2. (6.6)

Since the Haar measure is invariant under the left translation, we have

EψCr (ψ) = −d
∫

dµ(U) |U11|2 ln |U11|2, (6.7)

where U11 = 〈1|U |1〉. Note that all entries Uij of a Haar unitary U has the same distri-

bution [187]: d−1
π

(1 − r2)d−2rdrdθ, where r = |Uij| ∈ [0, 1] and θ ∈ [0, 2π]. We remark

here that the distribution of each entry Uij = reiθ is just the joint distribution of r and θ.

The distribution of |U11|2 is given by (d − 1)(1 − r)d−2dr, where 0 ≤ r ≤ 1. Now, we

have

EψCr (ψ) = −d(d− 1)

∫ 1

0

r(1− r)d−2 ln r dr

= −d(d− 1)
∂B(α, β)

∂α

∣∣∣
(α,β)=(2,d−1)

, (6.8)

where B(α, β) is the Beta function, defined as

B(α, β) :=

∫ 1

0

rα−1(1− r)β−1dr =
Γ(α)Γ(β)

Γ(α + β)
. (6.9)
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Figure 6.1: The frequency plot showing the (scaled) relative entropy of coher-
ence Cr(ψ)/ ln d for the Haar distributed random pure states for dimensions d =
20, 30, 40 and 500. Here, both the axes are dimensionless. We have EψCr(ψ)/ ln 20 ≈
0.87, EψCr(ψ)/ ln 30 ≈ 0.88, EψCr(ψ)/ ln 40 ≈ 0.89 and EψCr(ψ)/ ln 500 ≈ 0.93. The
plot shows that the (scaled) relative entropy of coherence is indeed very close to the aver-
age value

∑d
k=2 1/k. As we increase the dimension, the figure shows that more and more

states have coherence close to the average value and the variances approach to zero.

Note that ∂B(α, β)/∂α = (Ψ(α) − Ψ(α + β))B(α, β), where Ψ(z) := Γ′(z)/Γ(z) and

Γ(z) =
∫∞

0
xz−1e−xdx, with Re(z) > 0, is the Gamma function. In particular, for natural

number n, Ψ(n) =
∑n−1

k=1 1/k − γ with γ ≈ 0.57721 being the Euler constant. Therefore,

we get ∂B(α, β)/∂α|(α,β)=(2,d−1) = −(d(d− 1))−1
∑d

k=2 1/k. Using this in Eq. (6.8), we

have EψCr (ψ) =
∑d

k=2
1
k
. Thus, a d-dimensional random pure state hasHd−1 amount of

average relative entropy of coherence, where Hd =
∑d

k=1 1/k is the d-th harmonic num-

ber. Now we are ready to discuss the concentration of measure phenomenon for quantum

coherence.

Theorem 16 (Concentration of the relative entropy of coherence). Let |ψ〉 be a random
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pure state on a d-dimensional Hilbert spaceH with d ≥ 3. Then for all ε > 0

Pr {|Cr(ψ)− (Hd − 1)| > ε} ≤ 2 exp

(
− dε2

36π3 ln 2(ln d)2

)
, (6.10)

where Hd =
∑d

k=1 1/k is the d-th harmonic number.

Proof. We will apply Lévy’s lemma, Eq. (6.4) for averages, to prove the theorem. Con-

sider the map F : |ψ〉 → F (ψ) := H(ρ(d) (ψ)) = Cr(ψ). We have already shown that

EψF = Hd− 1. We prove the theorem by identifying k with 2d− 1 in Lévy’s lemma (Eq.

(6.4)). We just need the Lipschitz constant η for the function F such that |F (ψ)−F (φ)| ≤

η|| |ψ〉 − |φ〉 ||2. Let |ψ〉 =
∑d

i=1 ψi |i〉 and therefore, ρ(d) (ψ) =
∑d

i=1 pi(ψ) |i〉 〈i| with

pi(ψ) = |ψi|2. Now, F (ψ) = −
∑d

i=1 pi(ψ) ln pi(ψ). The Lipschitz constant for F can be

bounded as follows:

η2 := sup
〈ψ|ψ〉≤1

∇F · ∇F = 4
d∑
i=1

pi(ψ) [1 + ln pi(ψ)]2

≤ 4

(
1 +

d∑
i=1

pi(ψ)(ln pi(ψ))2

)

≤ 4
(
1 + (ln d)2

)
≤ 8(ln d)2, (6.11)

where the last inequality is true for d ≥ 3. Therefore, η ≤
√

8 ln d for d ≥ 3. By

definition, any upper bound on the Lipschitz constant can also serve as a valid Lipschitz

constant, therefore, we can take η =
√

8 ln d for d ≥ 3. This concludes the proof of the

theorem. �

The inequality (6.10) means that for large d, the number of pure states with the relative

entropy of coherence not very close to Hd − 1 are exponentially small, or in other words,

most pure states chosen randomly have Hd− 1 amount of relative entropy of coherence to

within an arbitrarily small error. This is the concentration of relative entropy of coherence

around its expected value (the typical value of the relative entropy of coherence). Further,
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as quantum coherence is a quantifier of the wave nature of a quantum particle [122, 123],

Theorem 16 has a nice physical meaning and it quantifies the ‘typical wave nature’ of

a random pure state. Fig. 6.1 plots the relative entropy of coherence for numerically

generated Haar distributed random pure quantum states and shows that indeed most of the

states have coherences close to the expected value.

Having established the concentration of relative entropy of coherence, it is of great

practical importance to delineate the largest subspace of the total Hilbert space such that

all the pure states in this subspace have a fixed nonzero amount of coherence. Specifically,

we find a large subspace of the total Hilbert space such that the amount of the relative

entropy of coherence for every pure state in this subspace can be bounded from below

almost always by a number that is arbitrarily close to the typical value of coherence. The

following theorem formalizes this.

Theorem 17 (Coherent subspaces). Let H be a Hilbert space of dimension d ≥ 3 of

a quantum system. Then, for any positive ε < ln d, there exists a subspace S ⊂ H of

dimension

s =

⌊
dK
( ε

ln d

)2.5
⌋

(6.12)

such that all pure states |ψ〉 ∈ S almost always satisfy Cr(ψ) ≥ Hd − 1 − ε. K may be

chosen to be 1/16461. Here bc denote the floor function.

Proof. Here we follow the strategy of Ref. [29] which is based on the construction of nets

to prove the theorem. Let S be a random subspace of H of dimension s. Let NS be an

ε0-net for states on S, for ε0 = ε/(
√

8 ln d). By definition, we have |NS | ≤ (5/ε0)2s. Note

that S may be thought of as US0, with a fixed S0 and a unitary U distributed according to

the Haar measure. We can fix the net NS0 on S0 and let NS = UNS0 . This is a natural

way to choose a random subspace. Now, given |ψ〉 ∈ S , we can choose |ψ̃〉 ∈ NS such

that || |ψ〉 − |ψ̃〉 ||2 ≤ ε0/2. Note that Cr(ψ) is a Lipschitz continuous function with the

90



Lipschitz constant η =
√

8 ln d. From definition of the Lipschitz function and ε0-net, we

have

|Cr(ψ)− Cr(ψ̃)| ≤ η|| |ψ〉 − |ψ̃〉 ||2 ≤ ηε0/2 = ε/2.

Define P = Pr
{

inf |ψ〉∈S Cr(ψ) < Hd − 1− ε
}

. Now, we have

P ≤ Pr

{
min
|ψ̃〉∈S

Cr(ψ̃) < Hd − 1− ε/2
}

≤ |NS | Pr {Cr(ψ) < Hd − 1− ε/2}

≤ 2
(

10
√

2 ln d/ε
)2s

exp

(
− dε2

144π3 ln 2(ln d)2

)
, (6.13)

where in the last line we have used our Theorem 16 and the definition of ε0-net. If this

probability is smaller than one, a subspace with the stated properties will exist. This can

be assured by choosing

s <
(d− 1)ε2

6190(ln d)2 ln
((

10
√

2 ln d
)
/ε
) . (6.14)

Now, using the fact that lnx ≤
√
x/2 for x ≥ 10

√
2, we have ln

(
(10
√

2 ln d)/ε
)
≤√

5
√

2 ln d/ε with ε < ln d. For a nontrivial dimension s, i.e., s ≥ 2, we require d ≥

32921. Therefore, s =
⌊

dε2.5

16461(ln d)2.5

⌋
. This completes the proof of the theorem. �

The theorem implies that if a subspace of dimension s (which can be appropriately

large), given by Eq. (6.12), of total Hilbert space is chosen at random via the Haar distri-

bution then the relative entropy of coherence of any pure state in this subspace is almost al-

ways greater thanHd−1−ε, which is very close to the typical value of coherence. This fol-

lows from the fact that the probability that the chosen subspace will not have the above said

property is small. Now, for any pure state |ψ〉 in S, the relative entropy of coherence Cr(ψ)

is typically lower bounded by Hd − 1− ε. Therefore, for all ρ ∈ S, the coherence of for-
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mation which is defined as Cf (ρ) = min
∑

i piH(ρ(d)(ψi)) such that ρ =
∑

i pi |ψi〉 〈ψi|

[121], is also typically lower bounded by Hd − 1− ε, i.e., Cf (ρ) ≥ Hd − 1− ε.

6.4 Average classical purity of random pure quantum states

In this section, we calculate the average classical purity [188] of random pure quantum

states and show its typicality. It is not straightforward to find the expected value of the

l1 norm of coherence for random pure states. Therefore, we resort to an indirect method

to obtain an upper bound on it using the expected value of classical purity. The classical

purity P (Π(ψ)) of a state |ψ〉 is defined as P (Π(ψ)) := Tr[(Π(ψ))2] where Π : ρ →∑
i 〈i| ρ |i〉 |i〉 〈i|, i.e., it maps any state to its diagonal part in a fixed basis {|i〉} [188].

For a pure state |ψ〉, we have Π(ψ) = ρ(d)(ψ). The expected classical purity EψP (Π(ψ))

can be obtained as follows. For a random pure state |ψ〉 sampled from the uniform Haar

measure the expected classical purity is given by

EψP (Π(ψ)) =

∫
d(ψ)P (Π(ψ)) =

∫
U(d)

dµ(U)P (Π(Uψ0)).

Let Φ be a linear super-operator that transforms a random pure state |ψ〉〈ψ| to Φ(|ψ〉〈ψ|).

The purity of the state Φ(|ψ〉〈ψ|) is defined as Tr[Φ(|ψ〉〈ψ|)2]. Therefore, the expected

purity for the states Φ(|ψ〉〈ψ|) is given by

EψP (Φ(ψ)) =

∫
d(ψ)Tr[Φ(|ψ〉〈ψ|)2]

=

∫
d(ψ) Tr

(
Φ† ◦ Φ(|ψ〉〈ψ|)|ψ〉〈ψ|

)
=

〈
ψ0

∣∣∣∣∫ dµ(U)U †Φ† ◦ Φ(U |ψ0〉〈ψ0|U †)U
∣∣∣∣ψ0

〉
, (6.15)

where Φ† is the dual of Φ in the sense: Tr (Y Φ(X)) = Tr
(
Φ†(Y )X

)
for any X, Y and

|ψ0〉 is a fixed state such that |ψ〉 = U |ψ0〉. We use the following formula from matrix
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integral [189]

∫
dµ(U)U †Υ(UXU †)U =

dTr (Υ(Id))− Tr (Υ)

d(d2 − 1)
Tr (X) Id

+
dTr (Υ)− Tr (Υ(Id))

d(d2 − 1)
X, (6.16)

where Tr (Υ) is the trace of the super-operator Υ, defined by Tr (Υ) =
∑d

i,j=1 〈i |Υ(|i〉 〈j|)| j〉,

to simplify Eq. (6.15). Now identifying X with |ψ0〉〈ψ0| and Υ with Φ† ◦ Φ in Eq. (6.16),

we get

EψP (Φ(ψ)) =
dTr

(
Φ† ◦ Φ(Id)

)
− Tr

(
Φ† ◦ Φ

)
d(d2 − 1)

+
dTr

(
Φ† ◦ Φ

)
− Tr

(
Φ† ◦ Φ(Id)

)
d(d2 − 1)

=
1

d(d+ 1)

[
Tr
(
Φ† ◦ Φ(Id)

)
+ Tr

(
Φ† ◦ Φ

)]
.

Let Φ = Π, then Π† = Π and Π◦Π = Π. Moreover, Tr
(
Π† ◦ Π(Id)

)
= d and Tr

(
Π† ◦ Π

)
=

d. The expected classical purity, therefore, is given by

EψP (Π(ψ)) =
2

d+ 1
. (6.17)

The following theorem establishes that the EψP (Π(ψ)) is a typical property of the pure

quantum states sampled from the uniform Haar distribution.

Theorem 18 (Concentration of classical purity). Consider a random pure state |ψ〉 in a

d dimensional Hilbert space. The classical purity of any pure state sampled from the Haar

distribution, for all ε > 0, satisfies

Pr

{∣∣∣∣P (Π(ψ))− 2

d+ 1

∣∣∣∣ > ε

}
≤ 2 exp

(
− dε2

18π3 ln 2

)
. (6.18)

Proof. We use Lévy’s lemma, Eq. (6.4), to prove the theorem. For this we need the Lip-
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schitz constant for the function G : |ψ〉 → P (Π(ψ)). Noting that P (Π(ψ)) = ||Π(ψ)||22,

we have

|P (Π(ψ))− P (Π(φ))| = |(||Π(ψ)||2 − ||Π(φ)||2)(||Π(ψ)||2 + ||Π(φ)||2)|

≤ ||Π(ψ)− Π(φ)||2 (||Π(ψ)||2 + ||Π(φ)||2)

≤ 2||Π(ψ)− Π(φ)||2

≤ 2|| |ψ〉 − |φ〉 ||2. (6.19)

Here in the second line we have used the reverse triangle inequality. In the third line we

have used the fact that the purity is upper bounded by 1 and in the last line, we have

used the monotonicity of the Euclidean norm under the map Π. Therefore, the Lipschitz

constant for the functionG : |ψ〉 → P (Π(ψ)) can be chosen to be 2. Now applying Lévy’s

lemma to the function G and noting k = 2d− 1, the proof of the theorem follows. �

Now we exploit the relation between the l1 norm of coherence and the classical purity

[188] to get an upper bound on the l1 norm of coherence a, which is

Cl1(ψ) ≤
√
d(d− 1) [1− P (Π(ψ))]. (6.20)

Since the classical purity of a random pure state is concentrated on its expected value

EψP (Π(ψ)) = 2/(d + 1) (see Theorem 18), one may replace P (Π(ψ)) by 2/(d + 1) in

Eq. (6.20) to get an upper bound on the l1 norm of coherence which depends only on the

dimension of the Hilbert space. Thus, Cl1(ψ) ≤
√

d(d−1)2

d+1
. Although this bound is very

close to the trivial bound (d − 1), we note that better results on the average l1 norm of

coherence of random pure states and their typical nature can be obtained b.

aNote that some of the results on the average l1 norm of coherence were mentioned in Ref. [188].
bPrivate communication with Kaifeng Bu.
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6.5 Random pure quantum states are not typically maxi-

mally coherent

It is well known that random bipartite pure states in higher dimension sampled from the

uniform Haar measure are maximally entangled with an overwhelmingly large probability

[29]. Our explorations in previous parts suggest that the randomly chosen pure states are

not typically maximally coherent (to within an arbitrarily small error) as they have their

relative entropy of coherence concentrated around Hd− 1 6= ln d (see also Fig. 6.1). Here

we make this observation precise by proving that indeed the trace distance between the

diagonal part of a random pure state and the maximally mixed state does not typically go

to zero in the higher dimension case, instead it is almost always concentrated around a

fixed nonzero value. To establish this, we use the following lemma.

Lemma 19. Let |ψ〉 be a random pure state in a d dimensional Hilbert space. The average

trace distance between the diagonal part of a random pure state and the maximally mixed

state is given by 2(1− 1/d)d, i.e.,

Eψ
∣∣∣∣∣∣∣∣ρ(d)(ψ)− I

d

∣∣∣∣∣∣∣∣
1

= 2

(
1− 1

d

)d
.

Proof. Consider a pure state |ψ〉 =
∑d

j=1 ψj |j〉 with ψj = 〈j|ψ〉 = xj + iyj , i =
√
−1

and xj, yj ∈ R(j = 1, . . . , d). The unique, normalized, unitary invariant measure d(ψ)

upon the pure state manifold of normalized state vectors |ψ〉 is realized by the following

delta function prescription

Γ(d)

πd
δ

(
1−

d∑
j=1

(x2
j + y2

j )

)
d∏
j=1

dxjdyj,

if one is interested in calculating the averages of the functions of the form f(〈ψ| P̂ |ψ〉),

where P̂ is a projector [190]. This is the case for us. Here Γ(d), which is equal to (d−1)!,
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is the Gamma function. By performing change of variables, namely, xj =
√
rj cos θj and

yj =
√
rj sin θj in above for each j with rj > 0 and θj ∈ [0, 2π], d(ψ) can also be realized

as

Γ(d)

(2π)d
δ

(
1−

d∑
j=1

rj

)
d∏
j=1

drjdθj.

For a fixed reference basis {|j〉}(j = 1, . . . , d), we have ρ(d)(ψ) =
∑d

j=1 |ψj |
2 |j〉〈j| with

rj := x2
j + y2

j = |ψj |2. Now

Eψ
∥∥∥∥ρ(d)(ψ)− Id

d

∥∥∥∥
1

=

∫
d(ψ)

(
d∑
j=1

∣∣∣∣|ψj |2 − 1

d

∣∣∣∣
)

= Γ(d)

∫ ( d∑
j=1

∣∣∣∣rj − 1

d

∣∣∣∣
)
δ

(
1−

d∑
j=1

rj

)
d∏
j=1

drj

= Γ(d+ 1)

∫ 1

0

dr1

∣∣∣∣r1 −
1

d

∣∣∣∣ ∫ ∞
0

δ

(
(1− r1)−

d∑
j=2

rj

)
d∏
j=2

drj

=
Γ(d+ 1)

Γ(d− 1)
K. (6.21)

where K =
∫ 1

0
dr1

∣∣r1 − 1
d

∣∣ (1− r1)d−2. In what follows, we calculate the integral K.

K =

∫ 1
d

0

dr1

(
1

d
− r1

)
(1− r1)d−2 +

∫ 1

1
d

dr1

(
r1 −

1

d

)
(1− r1)d−2

=
−2

d(d− 1)

{(
d− 1

d

)d−1

− 1

}
− 2

∫ 1
d

0

dr1r1(1− r1)d−2. (6.22)

Now

∫ 1
d

0

r1(1− r1)d−2dr1 =
−1

d(d− 1)

[(
d− 1

d

)d−1

+

(
d− 1

d

)d
− 1

]
.
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Putting above in Eq. (6.22), we get K = 2
d(d−1)

(
1− 1

d

)d. Therefore,

Eψ
∥∥∥∥ρ(d)(ψ)− Id

d

∥∥∥∥
1

= 2

(
1− 1

d

)d
. (6.23)

This completes the proof of the lemma. �

In the following theorem, we establish that most of the Haar distributed pure quantum

states are not typically maximally coherent (within an arbitrarily small error). The main

idea is to show that the trace distance of the diagonal part of any random pure quantum

state from the maximally mixed state is almost always concentrated around a nonzero

number, even in d→∞ limit.

Theorem 20. Let |ψ〉 be a random pure state in a d dimensional Hilbert space. The prob-

ability that the trace distance between the diagonal part of a random pure state and the

maximally mixed state is not close to 2
(
1− 1

d

)d is bounded from above by an exponen-

tially small number in the large d limit, i.e., for all ε > 0

Pr

{∣∣∣∣∣
∣∣∣∣∣∣∣∣ρ(d)(|ψ〉)− I

d

∣∣∣∣∣∣∣∣
1

− 2

(
1− 1

d

)d∣∣∣∣∣ > ε

}
≤ 2 exp

(
− dε2

18π3 ln 2

)
.

Proof. The Lipschitz constant for the function F : |ψ〉 →
∣∣∣∣ρ(d)(ψ)− I

d

∣∣∣∣
1

is 2 and it can

be shown as follows:

|F (|ψ〉)− F (|φ〉)| =
∣∣∣∣ ∣∣∣∣∣∣∣∣ρ(d)(ψ)− I

d

∣∣∣∣∣∣∣∣
1

−
∣∣∣∣∣∣∣∣ρ(d)(φ)− I

d

∣∣∣∣∣∣∣∣
1

∣∣∣∣
≤
∣∣∣∣ρ(d)(ψ)− ρ(d)(φ)

∣∣∣∣
1

≤ || |ψ〉 〈ψ| − |φ〉 〈φ| ||1

≤ 2
√

2(1− Re(〈ψ|φ〉) = 2 || |ψ〉 − |φ〉 || ,

where in the second line we have used the reverse triangle inequality |||A||1 − ||B||1| ≤

||A−B||1. Therefore, F : |ψ〉 →
∣∣∣∣ρ(d)(ψ)− I

d

∣∣∣∣
1

is a Lipschitz continuous function with
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the Lipschitz constant η = 2. Now applying Lévy’s lemma for averages to the function∣∣∣∣ρ(d)(|ψ〉)− I
d

∣∣∣∣
1
, we obtain

Pr

{∣∣∣∣ ∣∣∣∣∣∣∣∣ρ(d)(|ψ〉)− I
d

∣∣∣∣∣∣∣∣
1

− Eψ
∣∣∣∣∣∣∣∣ρ(d)(|ψ〉)− I

d

∣∣∣∣∣∣∣∣
1

∣∣∣∣ > ε

}
≤ η,

where η = 2 exp (−dε2/18π3 ln 2). We complete the proof of the theorem by using

Lemma 19 in the above expression. �

Theorem 20 tells us that for majority of pure quantum states the trace distance of the

diagonal part from the maximally mixed state is concentrated around 2
(
1− 1

d

)d, which for

d → ∞ converges to 2/e = 0.7357. Therefore, the diagonal part of most of random pure

quantum states maintains a fixed finite distance from the maximally mixed state. Thus,

Theorem 20 implies that the overwhelming majority of random pure quantum states are

not typically maximally coherent (within an arbitrarily small error). Next, we find a lower

bound on the relative entropy of coherence of the majority of random pure quantum states,

for which
∣∣∣∣ρ(d)(|ψ〉)− I

d

∣∣∣∣
1

= 2
(
1− 1

d

)d. Utilizing the Fannes-Audenaert inequality

[145, 191], we have

∣∣∣∣H ( I
d

)
−H(ρ(d)(ψ))

∣∣∣∣ = ln d−H(ρ(d)(ψ)) ≤ T ln(d− 1) +H2(T )

≤ T ln d+H2(T ),

where T =
∣∣∣∣ρ(d)(|ψ〉)− I

d

∣∣∣∣
1
/2 =

(
1− 1

d

)d and H2(T ) = −T lnT − (1− T ) ln(1− T )

is the binary Shanon entropy. Therefore,

Cr(ψ) = H(ρ(d)(ψ)) ≥ (1− T ) ln d−H2(T ). (6.24)

Combining Eq. (6.24) with Theorem 20, we conclude that the relative entropy of co-

herence of a randomly picked pure state is, with high probability, always greater than
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(1− T ) ln d−H2(T ). For d→∞, we have

lim
d→∞

Cr(ψ)/ ln d ≥ 1− 1

e
− lim

d→∞
H2(T )/ ln d

= 1− 1

e
≈ 0.6321. (6.25)

6.6 Chapter summary

In this chapter, we have established various generic aspects of quantum coherence of ran-

dom pure states sampled from the uniform Haar measure. We have shown that the amount

of relative entropy of coherence of a pure state picked randomly with respect to the Haar

measure, with a very high probability, is arbitrarily close to the average relative entropy

of coherence, which is given by
∑d

k=2 1/k for a d-dimensional system. In other words,

an overwhelming majority of the pure states have coherence equal to the expected value,

within an arbitrarily small error. This also establishes the typical wave nature of a quantum

particle in a random pure state. Further, we find a large subspace (of appropriate dimen-

sion) of the total Hilbert space of a quantum system such that for every pure state in this

subspace, the relative entropy of coherence (also equal to the distillable coherence [121])

is almost always greater than a fixed number (depending on the dimension of the Hilbert

space) that is arbitrarily close to the typical value of coherence. Also, for every state (pure

or mixed) in this subspace, the coherence of formation is almost always bounded from be-

low by the same fixed number. Therefore, quantum states in these subspaces can be useful

for many coherence consuming protocols. Further, we find the expected value of classical

purity of randomly chosen pure states, which is then used to find an upper bound on the

l1 norm of coherence exploiting known relations between coherence and classical purity.

Furthermore, we find the average distance of the diagonal part of a randomly chosen pure

quantum state from the maximally mixed state. We show that diagonal part of most of

random pure states maintains a fixed nonzero distance from the maximally mixed state,
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thus establishing its typicality. This amounts to stating that most of the randomly chosen

pure states are not typically maximally coherent (within an arbitrarily small error).

The results obtained in this chapter show the strong typicality of measures of coher-

ence and establish that the description of coherence properties of the Haar distributed pure

states, in larger dimensions, only requires a small number of typical parameters such as

the Hilbert space dimension. These parameters appear in the formulation of the concen-

tration of measure phenomenon. This, in turn, reduces a lot the complexity of coherence

theory with respect to the Haar distributed pure states. In the future, it will be very inter-

esting, from practical view point, to estimate the dimension of the largest subspace such

that it contains no incoherent state, unlike our result, where we find the dimension of the

subspace containing at least some fixed nonzero amount of coherence.

This chapter is based on the following paper:

1. Average coherence and its typicality for random pure states,

U. Singh, L. Zhang, and A. K. Pati, Phys. Rev. A 93, 032125 (2016).
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CHAPTER7
Typicality of coherence for random mixed states

7.1 Introduction

In the previous chapter (chapter 6), we have proved that the coherence of a random pure

state sampled from the uniform Haar measure is generic for higher dimensional systems,

i.e., most of the random pure states have almost the same amount of coherence [27]. The

importance of this result and the similar results for entanglement of random bipartite pure

states cannot be overemphasized. From an experimental viewpoint, a system of inter-

est is never free from uncontrollable environmental interactions which lead to the loss of

coherence in the quantum system. Therefore, mixed quantum states are encountered nat-

urally in the realistic implementations of quantum technologies. However, to the best of

our knowledge, there is no known result on the typicality of coherence for random mixed

states.

In the continuation of the chapter 6, here we consider random mixed states sampled

from various induced measures on the set of density matrices and establish their typi-

cality in the context of the resource theory of coherence based on the incoherent opera-

tions [47]. We pay special attention to the relative entropy of coherence of random mixed

states sampled from the induced measure obtained via the partial tracing of the Haar dis-

tributed random bipartite pure states. The typicality analysis of these random states is
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facilitated by finding the exact expression for the average subentropy of random mixed

states sampled from induced probability measures. As a side result, we find, surprisingly,

that the average subentropy of a random mixed state approaches exponentially fast towards

the maximum value of the subentropy—which is achieved for the maximally mixed state

[124]—eventhough the subentropy is a nonlinear function of quantum states. Importantly,

using the concentration of measure phenomenon, in particular, Lévy’s lemma, we show

that an overwhelming majority of random mixed states have their relative entropies of

coherence equal to the average relative entropy of coherence, within an arbitrarily small

error, for larger Hilbert space dimensions. The typicality analysis of coherence of random

mixed states helps us in tackling a very important and difficult question in the resource

theory of entanglement—the calculation of various entanglement measures for random

mixed states in larger Hilbert space dimensions. In particular, we show that for almost all

random states of a specific class of bipartite random mixed states, the relative entropy of

entanglement and distillable entanglement are equal to a fixed number (that we calculate)

within an arbitrarily small error.

This chapter is organized as follows. We start with a discussion of measures of coher-

ence, random mixed states and some other necessary preliminaries in Sec. 7.2. In Sec.

7.3, we calculate the average subentropy of the random mixed states sampled from various

induced probability measures on the set of mixed states. We then present our results on the

average relative entropy of coherence of random mixed states in Sec. 7.4. Then using the

results on the average coherence of random mixed states we elaborate the typicality of the

entanglement measures for a specific class of random bipartite mixed states in Sec. 7.5.

Finally, we conclude in Sec. 7.6 with overview and implications of the results presented

in this chapter. In Appendix D, we present the explicit calculations of various integrals

that appear in the main text.
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7.2 Quantum coherence and induced measures on the space

of mixed states

7.2.1 Quantum coherence

Recently, various coherence monotones that serve as the faithful measures of coherence

[23, 24, 47, 121] have been proposed based on the resource theory of coherence [47].

These monotones include the l1 norm of coherence, relative entropy of coherence [47] and

the geometric measure of coherence based on entanglement [23]. In this chapter, unless

stated otherwise, by coherence we mean the relative entropy of coherence throughout

this chapter. The relative entropy of coherence of a quantum state ρ, acting on an m-

dimensional Hilbert space, is defined as [47]: Cr(ρ) := H(Π(ρ))−H(ρ), where Π(ρ) =∑m
j=1 |j〉〈j|ρ|j〉〈j| for a fixed basis { | j〉 : j = 1, . . . ,m }. H(ρ) = −Tr[ρ ln ρ] is the von

Neumann entropy of ρ. All the logarithms that appear in this chapter are with respect to

natural base.

7.2.2 Induced measures on the space of mixed states

Unlike on the set of pure states, it is known that there exist several inequivalent measures

on the set of density matrices, D (Cm) (the set of trace one nonnegative m×m matrices).

By the spectral decomposition theorem for Hermitian matrices, any density matrix ρ can

be diagonalized by a unitary U . It seems natural to assume that the distributions of eigen-

values and eigenvectors of ρ are independent, implying µ to be product measure ν×µHaar,

where the measure µHaar is the unique Haar measure on the unitary group and measure ν

defines the distribution of eigenvalues but there is no unique choice for it [183, 192].

The induced measures on the (m2 − 1)-dimensional space D (Cm) can be obtained by

partial tracing the purifications |Ψ〉 in the larger composite Hilbert space of dimensionmn

and choosing the purified states according to the unique measure on it. Following Ref.
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[183], the joint density Pm(n)(Λ) of eigenvalues Λ = {λ1, . . . , λm } of ρ, obtained via

partial tracing, is given by

Pm(n)(Λ) = Cm(n)K1(Λ)
m∏
j=1

λn−mj θ(λj), (7.1)

where the theta function θ(λj) ensures that ρ is positive definite, Cm(n) is the normalization

constant and K1(Λ) is given by

Kγ(Λ) = δ

(
1−

m∑
j=1

λj

)
|∆(λ)|2γ , (7.2)

for γ = 1 with ∆(λ) =
∏

16i<j6m(λi − λj). See Refs. [183, 192] for a good exposition

of induced measures on the set of density matrices.

Now we introduce the family of integrals Im(α, γ) that will be a key to this chapter,

where

Im(α, γ) :=

∫ ∞
0

· · ·
∫ ∞

0

Kγ(Λ)
m∏
j=1

λα−1
j dλj

= bm(α, γ)
m∏
j=1

Γ (α + γ(j − 1)) Γ (1 + γj)

Γ (1 + γ)
,

with α, γ > 0, Γ(z) :=
∫∞

0
tz−1e−tdt is the Gamma function, defined for Re(z) > 0 and

bm(α, γ) = {Γ (αm+ γm(m− 1))}−1. The value of above family of integrals can be

obtained using Selberg’s integrals [183, 192, 193] (see Appendix D, Sec. D.2 for a quick

review of Selberg’s integrals). Let us define C(α,γ)
m = 1/Im(α, γ), which are called as

normalization constants. A family of probability measures over Rm
+ can be defined as:

dνα,γ(Λ) := C(α,γ)
m Kγ(Λ)

m∏
j=1

λα−1
j dλj. (7.3)

Also, να,γ is a family of normalized probability measures over the probability simplex
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∆m−1 :=
{

Λ = {λ1, . . . , λm} ∈ Rm
+ :
∑m

j=1 λj = 1
}

, i.e.,

να,γ (∆m−1) =

∫
dνα,γ(Λ) = 1.

Now a family of probability measures µα,γ over the set D (Cm) of all m × m density

matrices on Cm can be obtained via spectral decomposition of ρ ∈ D (Cm) with ρ =

UΛU † as follows

dµα,γ(ρ) = dνα,γ(Λ)× dµHaar(U), (7.4)

where dνα,γ(Λ) = dνα,γ(λ1, . . . , λm) and µHaar is the normalized uniform Haar measure.

By definition, µα,γ is a normalized probability measure over D (Cm). In the following,

we will use this family of probability measures to calculate the average subentropy and

average coherence of randomly chosen quantum states.

7.3 The average subentropy of random mixed states

Let us considerm dimensional random density matrices ρ sampled according to the family

of product measures µα,γ , such that dµα,γ(ρ) = dνα,γ(Λ)×dµHaar(U). The subentropy of

a state ρ with the spectrum Λ = {λ1, · · · , λm } can be written as [124, 194–196] (see also

Appendix D, Sec. D.1)

Q(Λ) = (−1)
m(m−1)

2
−1

∑m
i=1 λ

m
i lnλi

∏
j∈̂i φ

′(λj)

|∆(λ)|2
, (7.5)

where î = { 1, . . . ,m } \ { i }, φ′(λj) =
∏

k∈ĵ(λj−λk) and |∆(λ)|2 =
∣∣∣∏16i<j6m(λi − λj)

∣∣∣2.

The average subentropy over the set of mixed states is given by

IQm(α, γ) =

∫
dµα,γ(ρ)Q(ρ) =

∫
dνα,γ(Λ)Q(Λ). (7.6)
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Proposition 21. For γ = 1 and arbitrary α, the average subentropy IQm(α, 1) is given by

IQm(α, 1) =
−1

m(m+ α− 1)

m−1∑
k=0

gmk(α)umk(α), (7.7)

where

gmk(α) =ψ(2(m− 1) + α + 1− k)− ψ(m(m+ α− 1) + 1) and (7.8)

umk(α) =
(−1)kΓ(2(m− 1) + α + 1− k)

Γ(k + 1)Γ(m− k)Γ(m+ α− 1− k)
, (7.9)

with ψ(z) = d ln Γ(z)/dz being the digamma function.

Proof. See Appendix D.2.

In the remaining, we consider the induced measure µm(n)(m 6 n) over all the m×m

density matrices of the m-dimensional quantum system via partial tracing over the n-

dimensional ancilla of uniformly Haar-distributed random bipartite pure states of system

and ancilla, which is as follows: for ρ = UΛU † with Λ = diag(λ1, . . . , λm) and U ∈

U(m),

dµm(n)(ρ) = dνm(n)(Λ)× dµHaar(U), (7.10)

where dνm(n)(Λ) = Cm(n)K1(Λ)
∏m

j=1 λ
n−m
j dλj [183] is the joint distribution of eigen-

values Λ = diag(λ1, . . . , λm) of the density matrix ρ, and dµHaar(U) is the uniform Haar

measure over unitary group U(m). Apparently Eq. (7.10) is a special case of Eq. (7.4)

when (α, γ) = (n − m + 1, 1). That is, dµm(n)(ρ) = dµn−m+1,1(ρ) and dνm(n)(Λ) =
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Figure 7.1: The plot shows the average subentropy, obtained in Eq. (7.12), as a function of
dimension m = 2κ. In the first plot x axis is dimensionless. Surprisingly, as we increase
κ, the average subentropy approaches to the maximum value that subentropy can take.

dνn−m+1,1(Λ). From this, we see that

IQm(n−m+ 1, 1) = − 1

mn

m−1∑
k=0

gmk(n−m+ 1)umk(n−m+ 1). (7.11)

The closed compact form of the above equation is obtained by us in the Ref. [28]. If

m = n, this situation corresponds to the probability measure induced by the Hilbert-

Schmidt distance [183], then

IQm(1, 1) = − 1

m2

m−1∑
k=0

gmk(1)umk(1). (7.12)

In Eqs. (7.11) and (7.12), the functions gmk and umk are given by Eqs. (7.8) and (7.9).

If we plot the average subentropy for random mixed states of dimension m, Eq. (7.12),

as a function of m (see Fig. 7.1), we find that it approaches exponentially fast towards

the maximum value of the subentropy, which is achieved for the maximally mixed state

[124]. The maximum value of Q(ρ) is approximately equal to 0.42278 [124]. This is

surprising, since Q(ρ) is a nonlinear function of ρ and it is not expected that the average

subentropy should match with the subentropy of the average state, which is the maximally

mixed state. Table 7.1 lists the values of IQm(1, 1) as a function ofm and shows that indeed
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the subentropy approaches to its maximum value.

Table 7.1: The average subentropy for random mixed states of dimension m. ∆ is the
difference between successive values in the second column and surprisingly shows an
exponential convergence towards the maximum value of subentropy (≈ 0.42278) as we
increase m. The difference between the successive values of the average subentropy is
almost halved as we increase the number of qubits by one.

m IQm(1, 1) ∆
2 0.083333
4 0.214062 -0.130729
8 0.308176 -0.094114
16 0.362886 -0.054710
32 0.392185 -0.029299
64 0.407322 -0.015137
128 0.415012 -0.007690
256 0.418888 -0.003876
512 0.420833 -0.001945
1024 0.421808 -0.000975

7.4 The average coherence of random mixed states and

typicality

Now, we are in a position to calculate the average coherence of random mixed states and

establish its typicality. Let ρ = UΛU † be a mixed full-ranked quantum state on Cm with

non-degenerate positive spectra λj ∈ R+(j = 1, . . . ,m), where Λ = diag(λ1, . . . , λm).

Then coherence of the state ρ is given by Cr(UΛU †) = H(Π(UΛU †)) − H(Λ). The

average coherence of the isosepectral density matrices can be expressed in terms of the

quantum subentropy, von Neumann entropy, and m-Harmonic number as follows [188]:

C
iso

r (Λ) :=

∫
dµHaar(U)Cr(UΛU †) = Hm − 1 +Q(Λ)−H(Λ).

Here Q(Λ) is the subentropy, given by Eq. (7.5), H(Λ) is the von Neumann entropy of

Λ and Hm =
∑m

k=1 1/k is the m-Harmonic number. From this, we see that the average
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coherence of isospectral full-ranked density matrices depends completely on the spectrum.

Also, it is known that 0 6 Q(Λ) 6 1 − γEuler ≈ 0.42278, where γEuler is the Euler’s

constant. Now, using the product probability measures dµα,γ = dνα,γ × µHaar(U), the

average coherence of random mixed states is given by

Cr(α, γ) :=

∫
dµα,γ(ρ)Cr(ρ) =

∫
dµα,γ(UΛU †)Cr(UΛU †)

= Hm − 1 + IQm(α, γ)− ISm(α, γ), (7.13)

where IQm(α, γ) =
∫

dνα,γ(Λ)Q(Λ) and ISm(α, γ) =
∫

dνα,γ(Λ)H(Λ). In the remaining,

we again consider the induced measure µm(n)(m 6 n) over all them×m density matrices

of the m-dimensional quantum system via partial tracing over the n-dimensional ancilla

of uniformly Haar-distributed random pure bipartite states of system and ancilla.

Theorem 22. The average coherence of random mixed states of dimension m sampled

from induced measures obtained via partial tracing of Haar distributed bipartite pure

states of dimension mn, for (α, γ) = (n−m+ 1, 1), is given by

Cr(n−m+ 1, 1) = Hm − 1−

(
mn∑

k=n+1

1

k
− m− 1

2n

)
−

m−1∑
k=0

gmk(n−m+ 1)umk(n−m+ 1)

mn
.

Proof. See Appendix D.2.

The closed compact form of the above equation is presented in the Ref. [28]. For

m = n, which corresponds to the probability measure induced by the Hilbert-Schmidt

distance, the average coherence of random mixed states is given by

Cr(1, 1) =Hm − 1−Dm, (7.14)

with Dm = 1
m2

∑m−1
k=0 gmk(1)umk(1) +

∑m2

k=m+1
1
k
− m−1

2m
. To gain insights about above

result (Theorem 22), we calculate numerical values of the average coherence, Eq. (7.14),

for various values ofm and show that the average value approaches to a fixed number very

109



Table 7.2: The (scaled) average relative entropy of coherence for random mixed states of
dimension m. ∆, the difference between successive values in the second column, shows a
rather slow convergence as a function of m.

n Cr(1, 1)/ lnm ∆
2 0.360673
4 0.270505 0.090168
8 0.210393 0.060112
16 0.169065 0.041328
32 0.139761 0.029304
64 0.118346 0.021415
128 0.102244 0.016102
256 0.089816 0.012428
512 0.079993 0.009823
1024 0.072064 0.007929
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Figure 7.2: The plot shows the (scaled) average relative entropy of coherence,
Cr(1, 1)/ lnm, obtained in Eq. (7.14), as a function of dimension m = 2κ. Both the
axes in the figure are dimensionless.

slowly (see Fig. 7.2). Table 7.2 lists the values of the (scaled) average relative entropy of

coherence.

Now, just like in the case of random pure states where the average coherence is a

generic property of all random pure states [27], one may ask if the average coherence of

random mixed states is also a generic property of all random mixed states. The following

theorem (Theorem 23) establishes that the average coherence is indeed a generic property

of all random mixed states, i.e., as we increase the dimension of the density matrix, almost

all the density matrices generated randomly have coherence approximately equal to the
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average relative entropy of coherence, given by Theorem 22. Thus, the average coherence

of a random mixed state can be viewed as the typical coherence content of random mixed

states.

Theorem 23. Let ρA be a random mixed state on an m dimensional Hilbert spaceH with

m ≥ 3 generated via partial tracing of the Haar distributed bipartite pure states on mn

dimensional Hilbert space. Then, for all ε > 0, the relative entropy of coherence Cr(ρA)

of ρA satisfies the following inequality:

Pr
{
|Cr(ρA)− Cr(n−m+ 1, 1)| > ε

}
≤ 2 exp

(
− mnε2

144π3 ln 2(lnm)2

)
. (7.15)

Proof. See Appendix D.2.

Fig. 7.3 shows that indeed the relative entropy of coherence of most of the ran-

domly generated mixed states concentrate around the average relative entropy of coher-

ence. Next, we present an important consequence of Theorem 23 showing a reduction in

computational complexity of certain entanglement measures for a specific class of mixed

states.

7.5 Entanglement properties of a specific class of random

bipartite mixed states

Consider a specific class X of random bipartite mixed states χAB of dimension m ⊗ m

that are generated as follows. First generate random mixed states for a single quantum

system A in an m dimensional Hilbert space via partial tracing the Haar distributed bipar-

tite pure states on an mn dimensional Hilbert space. Now bring in an ancilla B in a fixed

state |0〉 〈0|B on a dB dimensional Hilbert space and apply the generalized CNOT gate, de-

fined as CNOT =
∑m−1

i=0

∑m−1
j=0 |i〉 〈i|

A⊗ |mod(i+ j,m)〉 〈j|B +
∑m−1

i=0

∑dB−1
j=m |i〉 〈i|

A⊗

|j〉 〈j|B, on the composite system AB. The random bipartite mixed states, thus obtained,
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Figure 7.3: The frequency plot showing the (scaled) relative entropy of coherence,
Cr(ρ)/ lnm for random mixed states for dimensions m = 2, 5, 10 and 20 obtained via
partial tracing of bipartite m×m Haar distributed pure states. Here x and y axes both are
dimensionless. We note that as we increase the dimension the figure shows that more and
more states have coherence close to a fixed value which is very close to the average value
of coherence that we have calculated.

are given by

χAB := CNOT
[
ρA ⊗ |0〉 〈0|B

]
=

m−1∑
i,j=0

ρij |ii〉 〈jj|AB ,

where and ρA := TrA0

{
|ψ〉 〈ψ|AA0

}
=
∑m−1

i,j=0 ρij |i〉 〈j|
A is a random mixed state gener-

ated according to an induced measure via partial tracing as mentioned above. Now, using

the results on convertibility of coherence into entanglement [23], we can estimate exactly

the relative entropy of entanglement Er [197] and distillable entanglement Ed [168, 170]

of random mixed states in the class X . In particular,

EA|B
r (χAB) = Cr(ρ

A) = E
A|B
d (χAB). (7.16)
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We can now use our exact results on the average relative entropy of coherence of random

mixed states to find the average entanglement for the specific class of bipartite random

mixed states in the class X as follows:

E
A|B
r (χAB) =

∫
dµn−m+1,1(ρ)EA|B

r

(
CNOT

[
ρA ⊗ |0〉 〈0|B

])
=

∫
dµn−m+1,1(ρ)Cr(ρ

A) = Cr(n−m+ 1, 1). (7.17)

Here Cr(n−m+1, 1) is given by Theorem 22. Similarly, E
A|B
d (χAB) = Cr(n−m+1, 1).

The following corollary follows immediately from Theorem 23.

Corollary 24. Let χAB ∈ X be a random mixed state on m ⊗ m dimensional Hilbert

space with m ≥ 3 generated as mentioned above. Then, for all ε > 0

Pr
{
|EA|B

r (χAB)− Cr(n−m+ 1, 1)| > ε
}
≤ 2 exp

(
− mnε2

144π3 ln 2(lnm)2

)
(7.18)

and

Pr
{
|EA|B

d (χAB)− Cr(n−m+ 1, 1)| > ε
}
≤ 2 exp

(
− mnε2

144π3 ln 2(lnm)2

)
. (7.19)

Corollary 24 establishes that most of the random states in the class X have almost the

same fixed amount of distillable entanglement and relative entropy of entanglement in the

large m limit. Thus, our results help in estimating the entanglement content of most of the

random states in the class X (which is an extremely hard task), asymptotically and show

the typicality of entanglement for class X of mixed states.

7.6 Chapter summary

To conclude, we have provided analytical expressions for the average subentropy and the

average relative entropy of coherence over the whole set of density matrices distributed
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according to the family of probability measures obtained via the spectral decomposition.

We find that as we increase the dimension of the quantum system, the average suben-

tropy approaches towards the maximum value of subentropy (attained for the maximally

mixed state) exponentially fast, which is surprising as the subentropy is a nonlinear func-

tion of density matrix. However, the scaled average coherence does not converge quickly

to some fixed value. Interestingly, using Lévy’s lemma, we prove that the coherence of

random mixed states sampled from induced measures via partial tracing show the con-

centration phenomenon, establishing the generic nature of coherence content of random

mixed states. As a very important application of our results, we show a huge reduction

in the computational complexity of entanglement measures such as the relative entropy of

entanglement and the distillable entanglement. We find the entanglement properties of a

specific class random bipartite mixed states, thanks to Theorem 23. Since quantum co-

herence and entanglement are deemed as useful resources for implementations of various

quantum technologies, our results will serve as a benchmark to gauge the resourcefulness

of a generic mixed state for a certain task at hand. Furthermore, our results may have some

applications in black hole physics as to how much coherence can be there in the Hawking

radiation for non-thermal states [198], in thermalization of closed quantum systems and in

catalytic coherence transformations.

This chapter is based on the following paper:

1. Average subentropy, coherence and entanglement of random mixed quantum states,

L. Zhang, U. Singh, and A. K. Pati, Annals of Phys. 377, 125 (2017).
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CHAPTER8
Summary and future directions

The theory of quantum information and computation is arguably one of main theories

that put the weirdness of quantum physics into our everyday use in the form of quan-

tum technologies [199, 200] that include quantum key distribution [7], quantum memories

(see e.g. Ref. [201] and references therein) and quantum computation [202, 203], among

others. Quantum coherence and entanglement are key resources for quantum enhanced

technologies and quantum resource theories provide a rigorous and mathematically com-

plete description of various resources such as quantum coherence and entanglement and

are the backbones of the theory of quantum information and computation. This thesis is a

significant contribution to the quantum resource theories of coherence and entanglement.

In this thesis, we have characterized quantum coherence at quantitative, qualitative and

operational levels for single and multipartite quantum systems. We have also investigated

noisy scenarios in the context of resource theory of coherence based on incoherent oper-

ations and elaborated how coherence of a quantum state trades with mixedness in these

scenarios. The salient points of the thesis and possible future directions motivated by our

investigations are summarized as follows:

• We find necessary and sufficient conditions for converting coherence of a single

quantum system into entanglement between the system and an arbitrary ancilla using

incoherent operations. Based on this connection, we introduce a family of bona fide
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coherence monotones in terms of the maximal amount of entanglement that can be

created from the system by incoherent operations.

The framework presented here is also comparable to the scheme for activating distil-

lable entanglement via premeasurement interactions [133–135] from quantum dis-

cord [136, 137]. Investigating these connections further will be the subject of future

research.

• We provide an operational quantifier of quantum coherence in terms of the minimal

amount of noise that is required to be injected into a quantum system in order to

fully decohere it. This also provides the cost of erasing quantum coherence and in

the asymptotic limit, it is equal to the relative entropy of coherence. Our results

along with results of Ref. [121] further escalate the significance of the relative

entropy of coherence as a bona fide measure of coherence.

It will be an important future direction to investigate the converse, i.e., what is the

cost to keep a state coherent? It is interesting to know if whether this cost is also

equal to the relative entropy of coherence of ρ, in the asymptotic limit. Further,

a clear quantitative connection of our results to the Landauer’s erasure principle

[67] along with its improved and generalized versions [151, 152] and the no-hiding

theorem [153, 154] will be another research direction that we leave open.

• We consider noisy scenarios in the context of processing coherence as a resource

and find an intrinsic trade-off between the resourcefulness and the degree of noise

in an arbitrary quantum system. We derive analytically a class of maximally coher-

ent mixed states, up to incoherent unitaries, that satisfy a complementarity relation

between coherence and mixedness, in any quantum system. From a resource theo-

retic point of view, our results quantify the maximal amount of coherence that can

be put to our use in quantum technologies in the presence of unavoidable noise. As

an immediate application of our investigations here one can prove that the maximum
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entanglement that can be created between a quantum system and an incoherent an-

cilla, via incoherent operations, is bounded from above by the mixedness present

in the system. We also investigate the order and interconvertibility between classes

of quantum states and prove that the for qubit systems with a fixed coherence, ma-

jorization provides a total order on the states based on their degree of mixedness,

while for fixed mixedness, all the qubit states with varying degree of coherences are

interconvertible.

As a future direction, it will be very interesting to investigate if there exists such

a total order in d-dimensional states with fixed coherence based on their degree of

mixedness.

• We investigate catalytic coherence transformations and find the necessary and suffi-

cient conditions for the deterministic and stochastic coherence transformations be-

tween pure quantum states assisted by catalysts using only incoherent operations.

Further, we delineate the structure of the catalysts and possibility of self catalysis,

i.e., possiblity for a pure quantum state to act as a catalyst for itself. Moreover,

in the cases where catalysis is not possible, we investigate in detail the possibility

of using an entangled state. In this way we completely characterize the allowed

manipulations of the coherence of pure quantum states.

The consideration of catalytic transformations is very natural and has resulted in

strikingly nontrivial consequences, e.g., the introduction of many second laws of

quantum thermodynamics was made possible by consideration of catalysts in re-

source theory of quantum thermodynamics. In the similar spirit our results will be

useful in the processing of quantum coherence in the context of single-shot quantum

information theory. An important question for future research will be to analyze the

possibility of self catalysis in greater detail as the catalysts in this case are readily

available.
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• We establish generic aspects of quantum coherence of random pure and mixed states

sampled from various probability measures on the Hilbert space. We show that an

overwhelming majority of the pure states sampled the uniform Haar measure have

coherence equal to the expected value, within an arbitrarily small error. We also

show that most of the randomly chosen pure states are not typically maximally

coherent (within an arbitrarily small error). Similarly, random mixed states sam-

pled from induced measures via partial tracing show the concentration phenomenon.

Lévy’s lemma has been instrumental in these results. As an important application of

our results, we show a huge reduction in the computational complexity of entangle-

ment measures such as relative entropy of entanglement and distillable entanglement

for a specific class random bipartite mixed states. Since quantum coherence and en-

tanglement are deemed as useful resources for implementations of various quantum

technologies, our results will serve as a benchmark to gauge the resourcefulness of

a generic mixed state for a certain task at hand.

From a practical view point, it will be very important and far reaching to investigate

the typical nature of coherence in the constrained Hilbert spaces. These constraints

may arise from the conservation laws such as conservation of energy or from other

practical limitations. Importantly, this will require a generalization of Lévy’s lemma

and therefore, will be of independent mathematical interest. Further, it will be im-

portant to explore the implications of our typicality analysis in thermalization of

closed quantum systems and in catalytic coherence transformations.
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APPENDIXA
Proof of monotonicity (C3) and convexity (C4) in

Theorem 3

Proof of monotonicity (C3) in Theorem 3

Here we prove that for any entanglement monotone E the coherence quantifier

CE(ρS) = lim
dA→∞

{
sup
ΛSA

ES:A
(

ΛSA
[
ρS ⊗ |0〉 〈0|A

])}
(A.1)

does not increase on average under (selective) incoherent operations:

∑
i

piCE(σSi ) ≤ CE(ρS) (A.2)

with probabilities pi = Tr[Kiρ
SK†i ], quantum states σSi = Kiρ

SK†i /pi, and incoherent

Kraus operators Ki acting on the system S.

Due to the definition of CE , the amount of entanglement between the system and

ancilla cannot exceed CE for any incoherent operation ΛSA, i.e.,

ES:A
(

ΛSA
[
ρS ⊗ |0〉 〈0|A

])
≤ CE

(
ρS
)
. (A.3)

Note that this statement is also true if we introduce another particle B in an incoherent
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state |0〉 〈0|B. Then, for any tripartite incoherent operation ΛSAB it holds:

ES:AB
(

ΛSAB
[
ρS ⊗ |0〉 〈0|A ⊗ |0〉 〈0|B

])
≤ CE

(
ρS
)
. (A.4)

We will now prove the claim by contradiction, showing that a violation of Eq. (A.2)

also implies a violation of Eq. (A.4). If Eq. (A.2) is violated, then by definition of CE

there exists a set of incoherent operations ΛSA
i such that the following inequality is true

for dA large enough:

∑
i

piE
S:A
(

ΛSA
i

[
σSi ⊗ |0〉 〈0|

A
])

> CE
(
ρS
)
. (A.5)

In the next step we introduce an additional particle B and use the general relation

ES:AB

(∑
i

piρ
SA
i ⊗ |i〉 〈i|

B

)
≥
∑
i

piE
S:A
(
ρSAi
)

(A.6)

which is valid for any entanglement monotone E. With this in mind, the inequality (A.5)

implies

ES:AB

(∑
i

piΛ
SA
i

[
σSi ⊗ |0〉 〈0|

A
]
⊗ |i〉 〈i|B

)
> CE

(
ρS
)
. (A.7)

Recall that the states σSi are obtained from the state ρS by the means of an incoherent op-

eration, and thus we can use the relation piσSi = Kiρ
SK†i with incoherent Kraus operators

Ki. This leads us to the following expression:

ES:AB

(∑
i

ΛSA
i

[
Kiρ

SK†i ⊗ |0〉 〈0|
A
]
⊗ |i〉 〈i|B

)
> CE

(
ρS
)
. (A.8)

It is now crucial to note that the state on the left-hand side of the above expression can

be regarded as arising from a tripartite incoherent operation ΛSAB acting on the total state
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ρS ⊗ |0〉 〈0|A ⊗ |0〉 〈0|B:

ΛSAB
[
ρS ⊗ |0〉 〈0|A ⊗ |0〉 〈0|B

]
=
∑
i

ΛSA
i

[
Kiρ

SK†i ⊗ |0〉 〈0|
A
]
⊗ |i〉 〈i|B . (A.9)

This can be seen explicitly by introducing the Kraus operators Mij corresponding to the

operation ΛSAB:

MSAB
ij = LSAij

(
KS
i ⊗ IA

)
⊗ UB

i . (A.10)

Here, Lij are incoherent Kraus operators corresponding to the incoherent operation ΛSA
i :

ΛSA
i

[
ρSA
]

=
∑
j

Lijρ
SAL†ij. (A.11)

The unitaries UB
i are incoherent and defined as

UB
i =

dB−1∑
j=0

|mod(i+ j, dB)〉 〈j|B . (A.12)

With these definitions we see thatMij are indeed incoherent Kraus operators. Moreover, it

can be verified by inspection that the incoherent operation ΛSAB arising from these Kraus

operators also satisfies Eq. (A.9).

Finally, using Eq. (A.9) in Eq. (A.8) we arrive at the following inequality:

ES:AB
(

ΛSAB
[
ρS ⊗ |0〉 〈0|A ⊗ |0〉 〈0|B

])
> CE

(
ρS
)
. (A.13)

This is the desired contradiction to Eq. (A.4), and completes the proof of property (C3) for

CE , thus establishing that CE is a coherence monotone for any entanglement monotone

E.
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Proof of convexity (C4) in Theorem 3

Here we show that the quantifier of coherence CE given in Eq. (A.1) is convex for any

convex entanglement measure E:

CE

(∑
i

piρ
S
i

)
≤
∑
i

piCE
(
ρSi
)

(A.14)

for any quantum states ρSi and probabilities pi. For this, note that by convexity of the

entanglement quantifier E it follows:

ES:A

(
ΛSA

[∑
i

piρ
S
i ⊗ |0〉 〈0|

A

])
≤
∑
i

piE
S:A
(

ΛSA
[
ρSi ⊗ |0〉 〈0|

A
])
. (A.15)

Taking the supremum over all incoherent operations ΛSA together with the limit dA →∞

on both sides of this inequality we obtain the following result:

CE

(∑
i

piρ
S
i

)
≤ lim

dA→∞
sup
ΛSA

{∑
i

piE
S:A
(

ΛSA
[
ρSi ⊗ |0〉 〈0|

A
])}

. (A.16)

Finally, note that the right-hand side of this inequality cannot decrease if the supremum

over incoherent operations ΛSA and the limit dA →∞ are performed on each term of the

sum individually:

lim
dA→∞

sup
ΛSA

{∑
i

piE
S:A
(

ΛSA
[
ρSi ⊗ |0〉 〈0|

A
])}

≤
∑
i

pi lim
dA→∞

sup
ΛSA

ES:A
(

ΛSA
[
ρSi ⊗ |0〉 〈0|

A
])

(A.17)

=
∑
i

piCE
(
ρSi
)
.

Together with Eq. (A.16), this completes the proof of convexity in Eq. (A.14).
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APPENDIXB
The Fannes-Audenaert Inequality, the gentle operator

lemma and the operator Chernoff bound

B.1 The Fannes-Audenaert inequality and the gentle op-

erator lemma

The Fannes-Audenaert inequality :– In the context of continuity of the von Neumann en-

tropy, Audenaert proved a tighter inequality than the Fannes inequality [191], which is

now known as the Fannes-Audenaert inequality [145] and can be stated as follows: For

any ρ and σ with T ≡ 1
2
||ρ− σ||1, the following inequality holds

|H (ρ)−H (σ)| ≤ T log (d− 1) +H2(T ), (B.1)

where d is the dimension of the Hilbert space of the state ρ and H2(T ) = −T lnT − (1−

T ) ln(1− T ) is the binary Shannon entropy.

The gentle operator lemma :– The gentle operator lemma, which was first stated in Ref.

[204] and later improved in Ref. [205] is stated as follows: Suppose that a measurement

operator Λ (0 ≤ Λ ≤ I) has a high probability of detecting a subnormalised state ρ, i.e.,

Tr {Λρ} ≥ Tr(ρ) − ε, where 1 ≥ ε > 0 and ε is close to zero. Then
√

Λρ
√

Λ is close to
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the original state ρ such that,

∥∥∥ρ−√Λρ
√

Λ
∥∥∥

1
≤ 2
√
ε, (B.2)

where ‖σ‖1 = Tr
√
σ†σ.

B.2 The typical subspaces and the operator Chernoff bound

In this section, we give definitions of the typical subspaces and discuss their properties.

See Ref. [3] for further reading.

Typical sequence and typical set:– Consider a sequence xn of n realizations of a random

variable X which takes values {x} according to probability distribution {pX(x)}. A se-

quence xn is δ-typical if its sample entropy H (xn), defined as − 1
n

log pXn(xn), is δ-close

to the entropy H (X) of random variable X , where this random variable is the source of

the sequence. The set of all δ-typical sequences xn is defined as the typical set TXn

δ , i.e.,

TX
n

δ ≡ {xn : |H (xn)−H(X)| ≤ δ}. (B.3)

Now, consider a quantum state with spectral decomposition as

ρX =
∑
x

pX(x) |x〉 〈x|X . (B.4)

Considering n copies of the state ρX , we have

(ρX)⊗n := ρX
n

=
∑
xn

pXn(xn) |xn〉 〈xn|X
n

, (B.5)

where Xn = (X1 . . . Xn), xn = (x1 . . . xn), pXn(xn) = pX(x1) . . . pX(xn) and |xn〉 =

|x1〉X1 ⊗ . . .⊗ |xn〉Xn .

Typical subspace:– The δ-typical subspace TXn

ρ,δ is a subspace of the full Hilbert space X1,
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. . . , Xn and is spanned by states |xn〉X
n

whose corresponding classical sequences xn are

δ-typical:

TX
n

ρ,δ ≡ span
{
|xn〉X

n

: xn ∈ TXn

δ

}
. (B.6)

Also, one can define a typical projector, which projects a state onto the typical subspace,

as

ΠXn

ρ,δ ≡
∑

xn∈TXnδ

|xn〉 〈xn|X
n

. (B.7)

Properties of typical subspaces:–

(a) The probability that the quantum state ρXn is in the typical subspace TXn

ρ,δ approaches

one as n becomes large:

∀ε > 0, Tr
{

ΠXn

ρ,δ ρ
Xn} ≥ 1− ε, (B.8)

for sufficiently large n, where ΠXn

ρ,δ is the typical subspace projector.

(b) The dimension dim
(
TX

n

ρ,δ

)
of the δ-typical subspace satisfies

∀ε > 0, (1− ε) 2n(H(X)−δ) ≤ Tr
{

ΠXn

δ

}
≤ 2n(H(X)+δ), (B.9)

for sufficiently large n.

(c) For all n the operator ΠXn

δ ρX
n
ΠXn

δ satisfies

2−n(H(X)+δ)ΠXn

δ ≤ ΠXn

δ ρX
n

ΠXn

δ ≤ 2−n(H(X)−δ)ΠXn

δ . (B.10)

The operator Chernoff bound:– Let X1, . . . , Xn (∀m ∈ [n] : 0 ≤ Xm ≤ I) be n inde-

pendent and identically distributed random operators with values in the algebra B (H) of

bounded linear operators on some Hilbert space H. Let X denote the sample average of
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the n random variables: X = 1
n

∑n
m=1 Xm. Suppose that for each operator Xm

EX {Xm} ≥ aI, (B.11)

where a ∈ (0, 1) and I is the identity operator onH. Then for every ε where 0 < ε < 1/2

and (1 + ε) a ≤ 1, the probability that the sample average X lies inside the operator

interval [(1± ε)EX {Xm}] is bounded as [147, 148],

Pr
X

{
(1− ε)EX {Xm} ≤ X ≤ (1 + ε)EX {Xm}

}
≥ 1− 2 dim(H) exp

(
− nε

2a

4 ln 2

)
.

(B.12)
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APPENDIXC
Catalytic majorization

Here, for the sake of completeness, we restate various results obtained earlier by other

researchers which are useful for this thesis. The following theorem is due to Ref. [176].

Theorem 25 ([176]). For a bipartite qubit system with states |ψ1〉 =
∑4

i=1

√
αi |ii〉,

|ψ2〉 =
∑4

i=1

√
βi |ii〉 such that |ψ1〉9 |ψ2〉 under local operations and classical commu-

nication (LOCC). Without loss of generality we can assume that the coefficients {αi}, {βi}

are real and arranged in decreasing order. Then the necessary and sufficient conditions for

the existence of a catalyst |φ〉 =
√
a |11〉+

√
1− a |22〉 (a ∈ (0.5, 1)) for these two states

are the following two conditions: α1 ≤ β1; α1+α2 > β1+β2; α1+α2+α3 ≤ β1+β2+β3,

and

max

{
α1 + α2 − β1

β2 + β3

, 1− α4 − β4

β3 − α3

}
≤ a ≤ min

{
β1

α1 + α2

,
β1 − α1

α2 − β2

, 1− β4

α3 + α4

}
. (C.1)

The following theorem is from Refs. [174, 175].

Theorem 26 ([175]). For two d-dimensional probability vectors p and q with the compo-

nents arranged in decreasing order, there exists a probability vector r such that P (p⊗r →
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q ⊗ r) > P (p→ q) if and only if

P (p→ q) < min

{
pd
qd
, 1

}
.

In the case of catalytic majorization the necessary and sufficient conditions for catalytic

transformations are obtained independently in Refs. [177] and [206]. In Ref. [177], the

following result was obtained.

Lemma 27 ([177]). Let p and q be two distinct d-element probability vectors arranged in

decreasing order with p having nonzero elements. Then the existence of a vector r such

that p⊗ r ≺ q ⊗ r is equivalent to the following three strict inequalities:

Aα(p) > Aα(q) for α ∈ (−∞, 1); (C.2)

Aα(p) < Aα(q) for α ∈ (1,∞); (C.3)

S(p) > S(q). (C.4)

where Aα := (1
d

∑d
i=1 p

α
i )

1
α , and S(p) = −

∑d
i=1 pi log pi is the Shannon entropy. For

α = 0, A0(p) = (
∏
pi)

1/d. If any component of vector p is zero, then Aα = 0 for all

α ≤ 0.

The following lemma is from Ref. [11].

Lemma 28 ([11]). The Rényi entropies Sα are strictly Schur concave for α ∈ (−∞, 0) ∪

(0,∞). The Rényi entropies for α = 0,±∞ are Schur concave. Also, the function∑
i log pi is strictly Schur concave.

Since S̃α(ψ(d)) is equal to Sα(ψ(d)) − ln d and limα→0+ S̃α(ψ(d))/|α| = 1
d

∑
i lnψ

(d)
i ,

the above lemma holds for functions S̃α(·)/|α| too. That is, S̃α(·)/|α| are strictly Schur

concave for all α ∈ (−∞,+∞).

The following lemma is from Ref. [179].
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Lemma 29 ([179]). Let p and q be d-dimensional probability vectors with components

being arranged in decreasing order and p 6= q. Then there exists a k-partite probability

distribution r1,...,k such that

q ⊗ r1,...,k ≺ p⊗ (⊗r1 ⊗ . . .⊗ rk)

if and only if Rank(p) ≤ Rank(q) and S(p) < S(q). Here, we can always choose k = 3.

S(p) = −
∑d

i=1 pi log pi is the Shannon entropy.

Consider a probability vector x. Define another subnormalized probability vector x′

from the ε ball Bε(x) around x, defined as

Bε(x) := { y :
1

2

∑
i

| yi − xi| < ε } (C.5)

for any ε > 0. Now we have the following lemma from Ref. [11].

Lemma 30 ([11]). Given any probability vector x, for 0 < α < 1 and ε > 0, we can

construct a probability vector x′ ∈ Bε(x) such that

Sα(x) ≥ S0(x′) +
log ε

1− α
. (C.6)

For α > 1, we can construct another probability vector x′′ ∈ Bε(x) such that

S∞(x′′)− log ε

α− 1
≥ Sα(x). (C.7)

The explicit construction of x′ and x′′ from a given probability vector x can be found

in Refs. [11, 207].
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APPENDIXD
Quantum subentropy, Selberg’s Integrals and its

consequences

D.1 Quantum subentropy

The von Neumann entropy of a quantum system is of paramount importance in physics

starting from thermodynamics [208, 209] to the quantum information theory, e.g., in stud-

ies of the classical capacity of a quantum channel and the compressibility of a quan-

tum source [210], and serves as the least upper bound on the accessible information.

The von Neumann entropy of an m dimensional density matrix ρ, is defined as S(ρ) =

−
∑m

j=1 λj lnλj , where λ = {λ1, · · · , λm } are eigenvalues of ρ. An analogous lower

bound on the accessible information, obtained in Ref. [124] and called as the suben-

tropy Q(ρ), is defined as Q(ρ) = −
∑m

i=1 λ
m
i

(∏
j 6=i(λi − λj)

)−1

lnλi. Also, when two

or more of the eigenvalues λj are equal, the value of Q is determined by taking a limit

starting with unequal eigenvalues, unambiguously. The upper bound S(ρ) and the lower

bound Q(ρ) on the accessible information are achieved for the ensemble of eigenstates of

ρ and the Scrooge ensemble [124], respectively. Thus, the von Neumann entropy and the

subentropy together define the range of the accessible information for a given density ma-

trix. For a comparison between the von Neumann entropy and the subentropy, see Refs.

[124, 194–196]. Now, we present Selberg’s integrals and the calculation of the average
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subentropy of random mixed states.

D.2 Selberg’s Integrals and its consequences

Proposition 31 (Selberg’s Integrals, [193]). If m is a positive integer and α, β, γ are

complex numbers such that

Re(α) > 0, Re(β) > 0, Re(γ) > −min

{
1

m
,

Re(α)

m− 1
,

Re(β)

m− 1

}
,

then

Sm(α, β, γ) =

∫ 1

0

· · ·
∫ 1

0

(
m∏
j=1

xα−1
j (1− xj)β−1

)
|∆(x)|2γ [dx]

=
m∏
j=1

Γ(α + γ(j − 1))Γ(β + γ(j − 1))Γ(1 + γj)

Γ(α + β + γ(m+ j − 2))Γ(1 + γ)
, (D.1)

where ∆(x) =
∏

16i<j6m(xi − xj) and [dx] =
∏m

j=1 dxj . Furthermore, if 1 6 k 6 m,

then

∫ 1

0
· · ·
∫ 1

0

(∏k
j=1 xj

)(∏m
j=1 x

α−1
j (1− xj)β−1

)
|∆(x)|2γ [dx]

= Sm(α, β, γ)
∏k

j=1
α+γ(m−j)

α+β+γ(2m−j−1)
. (D.2)

The following two integrals (Propositions 32 and 33) are direct consequences of Propo-

sition 31.

Proposition 32 ([193]). With the same conditions on the parameters α, γ,

∫ ∞
0

· · ·
∫ ∞

0

|∆(x)|2γ
m∏
j=1

xα−1
j e−xjdxj =

m∏
j=1

Γ(α + γ(j − 1))Γ(1 + γj)

Γ(1 + γ)
. (D.3)
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Proposition 33 ([193]). With the same conditions on the parameters α, γ, and 1 6 k 6 m,

∫ ∞
0

· · ·
∫ ∞

0

(
k∏
j=1

xj

)
|∆(x)|2γ

m∏
j=1

xα−1
j e−xjdxj

=

(
k∏
j=1

(α + γ(m− j))

)(
m∏
j=1

Γ(α + γ(j − 1))Γ(1 + γj)

Γ(1 + γ)

)
. (D.4)

In the following, we prove Propositions 34 and 35 from Propositions 32 and 33, re-

spectively, using the Laplace transform.

Proposition 34 ([183, 192]). It holds that

1

C
(α,γ)
m

:=

∫ ∞
0

· · ·
∫ ∞

0

δ

(
1−

m∑
j=1

xj

)
|∆(x)|2γ

m∏
j=1

xα−1
j dxj

=
1

Γ(αm+ γm(m− 1))

m∏
j=1

Γ(α + γ(j − 1))Γ(1 + γj)

Γ(1 + γ)
. (D.5)

Proof. Let

F (t) :=

∫ ∞
0

· · ·
∫ ∞

0

δ

(
t−

m∑
j=1

xj

)
|∆(x)|2γ

m∏
j=1

xα−1
j dxj.

Applying the Laplace transform (t→ s) to F (t) gives us

F̃ (s) =

∫ ∞
0

F (t)e−stdt

=

∫ ∞
0

· · ·
∫ ∞

0

exp

(
−s

m∑
j=1

xj

)
|∆(x)|2γ

m∏
j=1

xα−1
j dxj

= s−αm−2γ(m2 )
∫ ∞

0

· · ·
∫ ∞

0

|∆(y)|2γ
m∏
j=1

yα−1
j e−yjdyj,

leading to the following via the inverse Laplace transform (s→ t) to F̃ (s):

F (t) =
tαm+γm(m−1)−1

Γ (αm+ γm(m− 1))

∫ ∞
0

· · ·
∫ ∞

0

|∆(x)|2γ
m∏
j=1

xα−1
j e−xjdxj,
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Therefore, we have

1

C
(α,γ)
m

= F (1) =
1

Γ (αm+ γm(m− 1))
×
∫ ∞

0

· · ·
∫ ∞

0

|∆(x)|2γ
m∏
j=1

xα−1
j e−xjdxj.

Hence the desired identity via Eq. (D.3).

Proposition 35. It holds that, for 1 6 k 6 m,

∫ ∞
0

· · ·
∫ ∞

0

(
k∏
j=1

xj

)
δ

(
1−

m∑
j=1

xj

)
|∆(x)|2γ

m∏
j=1

xα−1
j dxj

=
1

Γ(αm+ γm(m− 1) + k)

∫ ∞
0

· · ·
∫ ∞

0

(
k∏
j=1

xj

)
|∆(x)|2γ

m∏
j=1

xα−1
j e−xjdxj. (D.6)

Proof. Similarly, let

f(t) :=

∫ ∞
0

· · ·
∫ ∞

0

(
k∏
j=1

xj

)
δ

(
t−

m∑
j=1

xj

)
|∆(x)|2γ

m∏
j=1

xα−1
j dxj.

Then, the Laplace transform of f(t) is given by

f̃(s) =

∫ ∞
0

· · ·
∫ ∞

0

(
k∏
j=1

xj

)
exp

(
−

m∑
j=1

sxj

)
|∆(x)|2γ

m∏
j=1

xα−1
j dxj

= s−(αm+γm(m−1)+k)

∫ ∞
0

· · ·
∫ ∞

0

(
k∏
j=1

yj

)
|∆(y)|2γ

m∏
j=1

yα−1
j e−yjdyj.

Therefore, we have

f(t) :=
tαm+γm(m−1)+k−1

Γ(αm+ γm(m− 1) + k)

∫ ∞
0

· · ·
∫ ∞

0

(
k∏
j=1

yj

)
|∆(y)|2γ

m∏
j=1

yα−1
j e−yjdyj.

By setting t = 1 in the above equation, we derived the desired identity via Eq. (D.4).
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Proposition 36. It holds that

d

dt

(
Γ(t+ a)

Γ(t+ b)

)
= (ψ(t+ a)− ψ(t+ b))

Γ(t+ a)

Γ(t+ b)
, (D.7)

where ψ(t) = d
dt

ln Γ(t).

D.2.1 The proof of Proposition 21 of the main text

A family of probability measures over Rm
+ can be defined as:

dνα,γ(Λ) := C(α,γ)
m Kγ(Λ)

m∏
j=1

λα−1
j dλj, (D.8)

where K1(Λ) is given by

K1(Λ) = δ

(
1−

m∑
j=1

λj

)
|∆(λ)|2 , (D.9)

with ∆(λ) =
∏

16i<j6m(λi − λj) and C(α,γ)
m = 1/Im(α, γ) with

Im(α, γ) =
1

Γ (αm+ γm(m− 1))

m∏
j=1

Γ (α + γ(j − 1)) Γ (1 + γj)

Γ (1 + γ)
. (D.10)

The subentropy of a state ρ with the spectrum Λ = {λ1, · · · , λm } can be written as

[124, 194–196]

Q(Λ) = (−1)
m(m−1)

2
−1

∑m
i=1 λ

m
i lnλi

∏
j∈̂i φ

′(λj)

|∆(λ)|2
, (D.11)
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where î = { 1, . . . ,m } \ { i }, φ′(λj) =
∏

k∈ĵ(λj − λk) and

|∆(λ)|2 =

∣∣∣∣∣ ∏
16i<j6m

(λi − λj)

∣∣∣∣∣
2

. (D.12)

The average subentropy over the set of mixed state is given by

IQm(α, γ) =

∫
dµα,γ(ρ)Q(ρ) =

∫
dνα,γ(Λ)Q(Λ). (D.13)

Denote φ(x) :=
∏m

j=1(x − xj). Then φ′(x) =
∑m

i=1

∏
j∈̂i(x − xj). Thus φ′(xi) =∏

j∈̂i(xi − xj). Furthermore, we have

m∏
i=1

φ′(xi) =
m∏
i=1

∏
j∈̂i

(xi − xj) = (−1)
m(m−1)

2 |∆(x)|2 . (D.14)

Here |∆(x)|2 = |∆(x1, . . . , xm)|2 is called the discriminant of φ [193]. If we expand the

polynomial φ(x), then we have:

φ(x) = xm −

(
m∑
j=1

xj

)
xm−1 + · · ·+ (−1)m

m∏
j=1

xj =
m∑
j=0

(−1)jejx
m−j, (D.15)

where ej(j = 1, . . . ,m) is the j-th elementary symmetric polynomial in x1, . . . , xm, with

e0 ≡ 1.

In what follows, we calculate the integral IQm(α, γ) for γ = 1. Propositions 34 and 35

will be used frequently for γ = 1.

IQm(α, 1) = −mC(α,1)
m

m−1∑
k=0

(−1)k
∫ 1

0

dλ1λ
2(m−1)+α−k
1 lnλ1

×
∫ ∞

0

· · ·
∫ ∞

0

ekδ

(
(1− λ1)−

m∑
j=2

λj

)
|∆(λ2, . . . , λm)|2

m∏
j=2

λα−1
j dλj.

It suffices to calculate a family of integrals in terms of the following form: for k =
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0, 1, . . . ,m− 1,

∫ ∞
0

· · ·
∫ ∞

0

ekδ

(
(1− λ1)−

m∑
j=2

λj

)
|∆(λ2, . . . , λm)|2

m∏
j=2

λα−1
j dλj.

If k = 0, then

∫ ∞
0

· · ·
∫ ∞

0

e0δ

(
(1− λ1)−

m∑
j=2

λj

)
|∆(λ2, . . . , λm)|2

m∏
j=2

λα−1
j dλj

= (1− λ1)(m−1)(m+α−2)−1

∫ ∞
0

δ

(
1−

m−1∑
j=1

xj

)
|∆(x1, . . . , xm−1)|2

m−1∏
j=1

xα−1
j dxj

= (1− λ1)(m−1)(m+α−2)−1

∏m−1
j=1 Γ(α + j − 1)Γ(1 + j)

Γ((m− 1)(m+ α− 2))
. (D.16)

Here we used Proposition 34 in the last equality.

If 1 6 k 6 m− 1, it suffices to calculate the following:

∫ ∞
0

· · ·
∫ ∞

0

(
k∏
j=1

λj+1

)
δ

(
(1− λ1)−

m∑
j=2

λj

)
|∆(λ2, . . . , λm)|2

m∏
j=2

λα−1
j dλj

= (1− λ1)(m−1)(m+α−2)+k−1×∫ ∞
0

· · ·
∫ ∞

0

(
k∏
j=1

xj

)
δ

(
1−

m−1∑
j=1

xj

)
|∆(x1, . . . , xm−1)|2

m−1∏
j=1

xα−1
j dxj

= (1− λ1)(m−1)(m+α−2)+k−1

∏m−1
j=1 Γ(α + j − 1)Γ(1 + j)

Γ((m− 1)(m+ α− 2) + k)

Γ(m+ α− 1)

Γ(m+ α− 1− k)
. (D.17)

Here we used Proposition 35. Next, we calculate the integral

∫ 1

0

dλ1λ
t
1

∫ ∞
0

· · ·
∫ ∞

0

ekδ

(
(1− λ1)−

m∑
j=2

λj

)
|∆(λ2, . . . , λm)|2

m∏
j=2

λα−1
j dλj.
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(1). If k = 0, then

∫ 1

0

dλ1λ
t
1

∫ ∞
0

· · ·
∫ ∞

0

δ

(
(1− λ1)−

m∑
j=2

λj

)
|∆(λ2, . . . , λm)|2

m∏
j=2

λα−1
j dλj

=

∏m−1
j=1 Γ(α + j − 1)Γ(1 + j)

Γ((m− 1)(m+ α− 2))
×
∫ 1

0

λt1(1− λ1)(m−1)(m+α−2)−1dλ1

=

∏m−1
j=1 Γ(α + j − 1)Γ(1 + j)

Γ((m− 1)(m+ α− 2))
× Γ(t+ 1)Γ((m− 1)(m+ α− 2))

Γ(t+ 1 + (m− 1)(m+ α− 2))

=
Γ(t+ 1)

∏m−1
j=1 Γ(α + j − 1)Γ(1 + j)

Γ(t+ 1 + (m− 1)(m+ α− 2))
.

By taking the derivative with respect to t on both sides, we get

∫ 1

0

dλ1λ
t
1 lnλ1

∫ ∞
0

· · ·
∫ ∞

0

δ

(
(1− λ1)−

m∑
j=2

λj

)
|∆(λ2, . . . , λm)|2

m∏
j=2

λα−1
j dλj

= [ψ(t+ 1)− ψ(t+ 1 + (m− 1)(m+ α− 2))]
Γ(t+ 1)

∏m−1
j=1 Γ(α + j − 1)Γ(1 + j)

Γ(t+ 1 + (m− 1)(m+ α− 2))
.

For t = 2(m− 1) + α, we have

∫ 1

0

dλ1λ
2(m−1)+α
1 lnλ1

∫ ∞
0

· · ·
∫ ∞

0

δ

(
(1− λ1)−

m∑
j=2

λj

)
|∆(λ2, . . . , λm)|2

m∏
j=2

λα−1
j dλj

= [ψ(2(m− 1) + α + 1)− ψ(m(m+ α− 1) + 1)]×
Γ(2(m− 1) + α + 1)

∏m−1
j=1 Γ(α + j − 1)Γ(1 + j)

Γ(m(m+ α− 1) + 1)
.
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(2). If 1 6 k 6 m− 1, then

∫ 1

0

dλ1λ
t
1

∫ ∞
0

· · ·
∫ ∞

0

ekδ

(
(1− λ1)−

m∑
j=2

λj

)
|∆(λ2, . . . , λm)|2

m∏
j=2

λα−1
j dλj

=

(
m− 1

k

)∫ 1

0

dλ1λ
t
1

∫ ∞
0

· · ·
∫ ∞

0

(
k∏
j=1

λj+1

)
δ

(
(1− λ1)−

m∑
j=2

λj

)
×

|∆(λ2, . . . , λm)|2
m∏
j=2

λα−1
j dλj

=

(
m− 1

k

)∏m−1
j=1 Γ(α + j − 1)Γ(1 + j)

Γ((m− 1)(m+ α− 2) + k)

k∏
j=1

(m+ α− j − 1)×

∫ 1

0

λt1(1− λ1)(m−1)(m+α−2)+k−1dλ1

=

(
m− 1

k

)∏m−1
j=1 Γ(α + j − 1)Γ(1 + j)

Γ((m− 1)(m+ α− 2) + k)

k∏
j=1

(m+ α− j − 1)×

Γ(t+ 1)Γ((m− 1)(m+ α− 2) + k)

Γ(t+ 1 + (m− 1)(m+ α− 2) + k)

=

(
m− 1

k

)
Γ(t+ 1)

∏m−1
j=1 Γ(α + j − 1)Γ(1 + j)

Γ(t+ 1 + (m− 1)(m+ α− 2) + k)

k∏
j=1

(m+ α− j − 1)

=

(
m− 1

k

)
Γ(t+ 1)

∏m−1
j=1 Γ(α + j − 1)Γ(1 + j)

Γ(t+ 1 + (m− 1)(m+ α− 2) + k)

Γ(m+ α− 1)

Γ(m+ α− 1− k)
.

By taking the derivative with respect to t, we get

∫ 1

0

dλ1λ
t
1 lnλ1

∫ ∞
0

· · ·
∫ ∞

0

ekδ

(
(1− λ1)−

m∑
j=2

λj

)
|∆(λ2, . . . , λm)|2

m∏
j=2

λα−1
j dλj

=

(
m− 1

k

)
[ψ(t+ 1)− ψ(t+ 1 + (m− 1)(m+ α− 2) + k)]

×
Γ(t+ 1)

∏m−1
j=1 Γ(α + j − 1)Γ(1 + j)

Γ(t+ 1 + (m− 1)(m+ α− 2) + k)

Γ(m+ α− 1)

Γ(m+ α− 1− k)
.
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For t = 2(m− 1) + α− k, we have

∫ 1

0

dλ1λ
2(m−1)+α−k
1 lnλ1

×
∫ ∞

0

· · ·
∫ ∞

0

ekδ

(
(1− λ1)−

m∑
j=2

λj

)
|∆(λ2, . . . , λm)|2

m∏
j=2

λα−1
j dλj

=

(
m− 1

k

)
[ψ(2(m− 1) + α− k + 1)− ψ(m(m+ α− 1) + 1)]

×
Γ(2(m− 1) + α− k + 1)

∏m−1
j=1 Γ(α + j − 1)Γ(1 + j)

Γ(m(m+ α− 1) + 1)

Γ(m+ α− 1)

Γ(m+ α− 1− k)
.

In summary, we get

IQm(α, 1)

= −mC(α,1)
m

[
m−1∑
k=0

(−1)k
(
m− 1

k

)
[ψ(2(m− 1) + α− k + 1)− ψ(m(m+ α− 1) + 1)]

×
Γ(2(m− 1) + α− k + 1)

∏m−1
j=1 Γ(α + j − 1)Γ(1 + j)

Γ(m(m+ α− 1) + 1)

Γ(m+ α− 1)

Γ(m+ α− 1− k)

]

= − 1

m(m+ α− 1)

[
m−1∑
k=0

(−1)k [ψ(2(m− 1) + α + 1− k)− ψ(m(m+ α− 1) + 1)]

× Γ(2(m− 1) + α + 1− k)

Γ(k + 1)Γ(m− k)Γ(m+ α− 1− k)

]
. (D.18)

Let us define

gmk(α) =ψ(2(m− 1) + α + 1− k)− ψ(m(m+ α− 1) + 1), (D.19)

and

umk(α) =
(−1)kΓ(2(m− 1) + α + 1− k)

Γ(k + 1)Γ(m− k)Γ(m+ α− 1− k)
. (D.20)

140



Then, from Eq. (D.18), we have

IQm(α, 1) =
−1

m(m+ α− 1)

m−1∑
k=0

gmk(α)umk(α). (D.21)

This completes the proof of Proposition 21 of main text. For (α, γ) = (n−m+ 1, 1), we

have

IQm(n−m+ 1, 1) = − 1

mn

m−1∑
k=0

gmk(n−m+ 1)umk(n−m+ 1). (D.22)

If m = n, this situation corresponds to the measure induced by the Hilbert-Schmidt dis-

tance [183], then we have

IQm(1, 1) = − 1

m2

m−1∑
k=0

gmk(1)umk(1). (D.23)

In Eqs. (D.22) and (D.23), the functions gmk and umk are given by Eqs. (D.19) and (D.20).

D.2.2 The proof of Theorem 22 of the main text

For (α, γ) = (n −m + 1, 1) the value of average subentropy IQm(n −m + 1, 1) is given

by Eq. (D.22). From the results of Page [106] and others [107–109] it is also known that

ISm(n−m+ 1, 1) =
mn∑

k=n+1

1

k
− m− 1

2n
. (D.24)

The average coherence of random mixed states is given by

Cr(α, γ) :=

∫
dµα,γ(ρ)Cr(ρ) =

∫
dµα,γ(UΛU †)Cr(UΛU †)

=

∫
dνα,γ(Λ)

[∫
dµHaar(U)S(Π(UΛU †))− S(Λ)

]
= Hm − 1 +

∫
dνα,γ(Λ)(Q(Λ)− S(Λ))

= Hm − 1 + IQm(α, γ)− ISm(α, γ), (D.25)
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where IQm(α, γ) =
∫

dνα,γ(Λ)Q(Λ) and ISm(α, γ) =
∫

dνα,γ(Λ)S(Λ). Also, we have used

the fact that the average coherence of the isosepectral density matrices can be expressed

in terms of the quantum subentropy, von Neumann entropy, and m-Harmonic number as

follows [188]:

C
iso

r (Λ) :=

∫
dµHaar(U)Cr(UΛU †)

= Hm − 1 +Q(Λ)− S(Λ).

Here Q(Λ) is the subentropy, given by Eq. (D.11), S(Λ) is the von Neumann entropy of

Λ and Hm =
∑m

k=1 1/k is the m-Harmonic number. Now using Eqs. (D.22) and (D.24),

in Eq. (D.25) completes the proof of the theorem and Cr(n−m+ 1, 1) is given by

Cr(n−m+ 1, 1) = Hm − 1−

(
mn∑

k=n+1

1

k
− m− 1

2n

)
−

m−1∑
k=0

gmk(n−m+ 1)umk(n−m+ 1)

mn
.

(D.26)

Similarly,

Cr(1, 1) =Hm − 1−

(
m2∑

k=m+1

1

k
− m− 1

2m

)
− 1

m2

m−1∑
k=0

gmk(1)umk(1). (D.27)

D.2.3 The proof of Theorem 16 of the main text

To prove Theorem 16 of the main text, we use the concentration of measure phenomenon

and in particular, Lévy’s lemma [29, 119], which can be stated as follows:

Lévy’s Lemma: Let F : Sk → R be a Lipschitz function from k-sphere to real line

with the Lipschitz constant η (with respect to the Euclidean norm) and a point X ∈ Sk be

chosen uniformly at random. Then, for all ε > 0,

Pr {|F(X)− EF| > ε} ≤ 2 exp

(
− (k + 1)ε2

9π3η2 ln 2

)
. (D.28)
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Here E(F) is the mean value of F . But before we present the proof we need to find the

Lipschitz constant for the relevant function on Sk which is G : Snm 7→ R, defined as

G
(
|ψ〉AB

)
= S

(
ρA(d)

)
− S

(
ρA
)

= Cr(ρ
A) where ρA(d) is the diagonal part of ρA =

TrB(|ψ〉 〈ψ|AB).

Lemma 37. The function F̃ : Smn 7→ R, defined as F̃ (|ψ〉AB) = S(ρA) where ρA =

TrB(|ψ〉 〈ψ|AB) and S is the von Neumann entropy, is a Lipschitz continuous function

with Lipschitz constant
√

8 lnm.

Proof. The proof is given in Ref. [29].

Lemma 38. The function F : Snm 7→ R, defined as F (|ψ〉AB) = S(ρA(d)) where ρA(d)

is the diagonal part of ρA = TrB(|ψ〉 〈ψ|AB) and S is the von Neumann entropy, is a

Lipschitz continuous function with Lipschitz constant
√

8 lnm.

Proof. We follow the proof strategy of Ref. [29]. Let |ψ〉AB =
∑m

i=1

∑n
j=1 ψij |ij〉

AB and

therefore, ρA(d) =
∑d

i=1 pi |i〉 〈i| with pi =
∑

j |ψij|2. Now, F (ψAB) = −
∑m

i=1 pi ln pi.

The Lipschitz constant for F can be bounded as follows:

η2 := sup
〈ψ|ψ〉≤1

∇F · ∇F = 4
m∑
i=1

pi [1 + ln pi]
2

≤ 4

(
1 +

m∑
i=1

pi(ln pi)
2

)

≤ 4
(
1 + (lnm)2

)
≤ 8(lnm)2,

where the last inequality is true for m ≥ 3. Therefore, η ≤
√

8 lnm for d ≥ 3.

Lemma 39. The function G : Snm 7→ R, defined as G
(
|ψ〉AB

)
= S

(
ρA(d)

)
− S

(
ρA
)

where ρA(d) is the diagonal part of ρA = TrB(|ψ〉 〈ψ|AB) and S is the von Neumann

entropy, is a Lipschitz continuous function with the Lipschitz constant 2
√

8 lnm.
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Proof. Take σA = TrB

(
|φ〉 〈φ|AB

)
.

∣∣∣G(|ψ〉AB)−G(|φ〉AB)∣∣∣ :=
∣∣S (ρA(d)

)
− S

(
σA(d)

)
−
[
S
(
ρA
)
− S

(
σA
)]∣∣

≤
∣∣S (ρA(d)

)
− S

(
σA(d)

)∣∣+
∣∣S (ρA)− S (σA)∣∣

≤
√

8 lnm
∣∣∣∣∣∣|ψ〉AB − |φ〉AB∣∣∣∣∣∣

2
+
√

8 lnm
∣∣∣∣∣∣|ψ〉AB − |φ〉AB∣∣∣∣∣∣

2

≤ 2
√

8 lnm
∣∣∣∣∣∣|ψ〉AB − |φ〉AB∣∣∣∣∣∣

2
.

Thus, G is a Lipschitz continuous function with the Lipschitz constant 2
√

8 lnm.

Now applying Lévy’s lemma, Eq. (D.28), to the function G
(
|ψ〉AB

)
= Cr(ρ

A), we

have

Pr
{
|Cr(ρ

A)− Cr(n−m+ 1, 1)| > ε
}
≤ 2 exp

(
− mnε2

144π3 ln 2(lnm)2

)
, (D.29)

for all ε > 0. This completes the proof of Theorem 16 of the main text.
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