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4.7 Top: Map of DOS for varying temperature and voltage, on the upward sweep.

For V/t ≤ 2.2, the low T DOS remains gapped and becomes pseudogapped for

T > Tpg, in both the sweep cycles. For 2.2 < V/t < 3.4 the DOS remains

gapped at low temperature, develops subgap weight with increasing T , even in

the insulating phase, and ultimately becomes pseudogapped at large T . For the

downward sweep, the DOS in this regime retains subgap weight even to the lowest
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increasing T , and develops a pseudogap at high T . Bottom: The variation of

density of states (DOS) with temperature for V/t = 0, 2.2, 3.4 and 5. . . . . . . 8181

4.8 LDOS at an edge site (top row) and at a central site (bottom row) for V/t =

0, 2.2, 3.4 and 5 from left to right. The edge sites remain ungapped for all
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Fermi level gradually decreases. . . . . . . . . . . . . . . . . . . . . . . . . . 8282

4.9 (a1-d1) Variation of the average charge profile, along the longitudinal direction,
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4.10 (a) Effective functional for different values of V/t. For V < V −
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c < V ≤ V +
c it develops two minima (inset). For
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effective description, the large V moment has been approximated to be zero. . 8484
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4.11 (a) Variation of average moment magnitude 〈|M |〉 with temperature (T ) for dif-

ferent values of bias voltage (V ). For each V the corresponding Néel temperature

(TN(V )) has been marked with a black cross on the trace. 〈|M |〉(T ) develop
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over that at V = 0 and and the corresponding squared average moment magni-

tudes at T∗. The comparison suggests that the finite V magnetic transition can be
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(π, π, π) with temperature for different values of V . From this, the Néel tem-
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5.1 Variation of the time-series for the nearest neighbor overlap ONN across the

thermally driven antiferromagnet (AF) to paramagnet (PM) crossover in the 2D

Hubbard model. Panels (a)-(d) represent temperatures T/thop = 0.01, 0.1, 0.16
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6. The mean of the time-series at low temperature has a negative value owing

to AF correlations, which gradually goes to zero with increasing temperature as

the system becomes magnetically disordered. τ0 = 1/thop is the unit of time. . . 9898

5.2 (a1)-(a4) Temperature dependence of the auxiliary field dynamical structure

factor D~q(ω) at U/thop = 6. Panels from left to right correspond to T/thop =

0.001, 0.08, 0.12 and 0.18 respectively. (b1)-(b4) Corresponding plots for the

dynamical spin structure factor D~q(ω). . . . . . . . . . . . . . . . . . . . . . . 9999

5.3 Variation in the auxiliary field dynamical structure factor with changing onsite

Hubbard interaction strength at T/thop = 0.01. The panels correspond to U/thop

values (a) 6, (b) 8 and (c) 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9999

5.4 Time-series of the nearest neighbour overlap of the spinsONN
i at the edge, quarter

(half-way between the edge and the center) and the central sites with varying bias

V/thop values (a) 0, (b) 4, (c) 5 and (d) 6. The Hubbard interaction U/thop = 8

and the temperature T/thop = 0.01. . . . . . . . . . . . . . . . . . . . . . . . 100100
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5.5 Magnon spectrum with increasing bias (V ) in the driven dissipative 2D Hubbard

model at U/thop = 8 and temperature T/thop = 0.01. Panels (a)-(d) correspond

to bias V/thop = 0, 4, 5 and 6 respectively. The system size is 12 × 12 with

periodic boundary condition in the transverse direction. . . . . . . . . . . . . . 100100

5.6 Variation of lineshapes with bias voltage for ~q = (
π
2
, 0) and (

π
2
, π
2
) at U/thop = 8

and T/thop = 0.01. The multi-peak features are due to the spatial inhomogenity
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relaxation of the local moments. . . . . . . . . . . . . . . . . . . . . . . . . . 101101

5.7 Magnon spectrum with increasing bias (V ) for the effective Heisenberg model.

The moment amplitudes are fixed by the T = 0 nonequilibrium mean field

profiles. Panels (a)-(d) correspond to bias V/thop = 0, 4, 5 and 6 respectively.

The system size is 24 × 24 with periodic boundary condition in the transverse

direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102102

5.8 Variation of lineshapes of the amplitude modulated Heisenberg model at J =
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B.1 (Top panel) Time series for local densities at the sites i = (Lx/4, 0, 0) shown in

blue and i = (Lx/2, 0, 0) shown in orange, respectively, with changing temper-

ature and voltage. For a fixed voltage V , increasing temperature T leads to an
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insulator-metal transition for T < Tpg. . . . . . . . . . . . . . . . . . . . . . . 115115
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SUMMARY

In this thesis we have developed a real space and real time scheme to tackle out of equilibrium

strongly correlated problems in a dissipative environment. It exploits the separation of timescales

between the ‘fast’ electronic degrees of freedom and the ‘slow’ collective modes. Starting from a

Schwinger-Keldysh action we arrive at the effective Langevin equation governing the dynamics

of the slow degrees of freedom, by introducing auxiliary fields and making a semiclassical

‘gradient approximation’ in the temporal coordinates. The Keldysh-based Langevin scheme

reduces to a nonequilibrium mean-field theory at zero temperature and incorporates non-gaussian

thermal fluctuations of the auxiliary fields at finite temperature. Using this, we have studied the

nonequilibrium steady state response and magnetic dynamics in the Mott insulator, modeled by

the single-band Hubbard model at half-filling, connected to metallic leads at the edges. A voltage

bias is imposed by maintaining the leads at different chemical potentials.

We first discuss the inhomogeneous nonequilibrium mean-field theory of the voltage bias

driven transition from a Mott insulator to a correlated metal. Within our Keldysh mean-field

approach the problem reduces to a self-consistency scheme for the charge and spin profiles in this

open system. We solve this problem for a two dimensional antiferromagnetic Mott insulator at

zero temperature. The charge and spin magnitude remains uniform over the system at zero bias,

but a bias V leads to spatial modulation over a length scale ξ(V ) near the edges. ξ(V ) grows

rapidly and becomes comparable to system size as V increases towards a threshold scale Vc. The

linear response conductance of the insulator is zero with the current being exponentially small for

V ≪ Vc. The current increases rapidly as V → Vc . Beyond Vc , we observe an inhomogeneous

low moment antiferromagnetic metal, and at even larger bias, a current saturated paramagnetic

metal. We also observe a strong spatial dependence of the local density of states (LDOS) near

the voltage driven transition. We suggest an approximate scheme for the spectral features of this

nonequilibrium system.

Next, we use the Langevin dynamics approach to map out the thermal phases of an anti-

ferromagnetic Mott insulator pushed out of equilibrium by a large voltage bias (V ). The Mott

insulator is realised in the half-filled Hubbard model in a three dimensional bar geometry with

leads at voltage ±V/2 connected at the two ends. We decouple the strong Hubbard interaction

via the combination of an auxiliary vector field, to capture magnetic fluctuations, and a homo-
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geneous scalar field to maintain half-filling. The magnetic fluctuations are assumed to be slow

on electronic timescales. At low temperature, we find a voltage driven first order transition from

a Mott insulator to a correlated metal. The current-voltage characteristics show hysteresis with

respect to voltage sweeps, up to a coexistence temperature Tcx, as found in experiments on several

transition metal oxides. We find an initially slow and then progressively rapid suppression of

the Néel temperature TN and pseudogap temperature Tpg with bias, and discover that the bias

leads to a finite temperature insulator-metal transition. We explain the thermal results in terms

of strong amplitude fluctuation of the local moments in the first order landscape.

Lastly, we discuss the nonequilibrium steady state dynamics of the collective magnon modes

in the two dimensional voltage driven half-filled Hubbard model at low temperatures. From

the time-series of the auxiliary fields obtained through the Langevin scheme, we calculate

the dynamical spin structure factor D~q(ω), which captures the low energy magnetic excitation

spectrum obtained in inelastic neutron scattering (INS) experiments. At low temperatures, for the

periodic system at equilibrium, it has a well defined spin-wave dispersion ω(~k), with Goldstone

modes at ~k = (0, 0) and (π, π). For the open system, new low energy features appear due

to broken translation invariance along the transport direction. As V approaches the threshold

voltage (Vc) for the insulator-metal transition in two dimensions, we find that a new low energy

branch develops in the spectrum. This is due to the reduction in amplitude of the moments,

governed by the penetration length ξ(V ). The essential features in D~q(ω) are captured by a

classical Heisenberg model with modified moment amplitudes.
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Chapter 1
Introduction

1.1 Overview

A confluence of ideas between quantum mechanics and statistical mechanics gave rise to modern

condensed matter theory. The correspondence between Euclidean quantum field theory and

quantum statistical mechanics led to development of finite temperature quantum many body

theory [11]. It led to a better understanding of the low temperature properties of metals via

Fermi liquid theory [22] and also provided an approach to various symmetry broken phases[33, 44]

like superconductors, magnets, charge density waves, etc. The developments in theory were

supplemented by emergence of a number of experimental techniques including electric and

thermal transport, neutron, electron, Raman, and X-ray scattering, calorimetric measurements,

scanning tunneling microscopy and many more [55].

A crucial concept relating theoretical approaches to experiments is “linear response theory”

which hinges on two principles: (i) proportionality of the response to the drive for sufficiently

weak perturbations, and (ii) the fluctuation-dissipation theorem [66, 77]. The former allows for

characterization of a system’s response to weak external perturbation in terms of response func-

tions which are independent of the strength of perturbation and depend only on the equilibrium

state. The latter relates response functions to the thermodynamic fluctuations in the equilibrium

state. The combination of the two has been an indispensable tool in interpreting experimental

data and comparing it to theory.

Modern experiments, however, have pushed the frontier to a domain where linear response

theory is no longer applicable. Technology driven miniaturization has contributed to this. As

sample sizes have shrunk by orders of magnitude, the effective field inside them has grown

correspondingly, driving the systems strongly out of the linear response regime. Simultaneously,

developments in ultracold atoms and ultrafast lasers has given access to time-dependent phenom-

ena like thermalisation after a quench, and periodic driving, with unprecedented experimental

control. This has led to the discovery of rich and novel paradigms like non-thermal fixed points
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[88], self-organized criticality [99] and hidden metastable phases [1010–1515], that inherently exist out

of equilibrium.

The approach to nonlinear transport in classical systems is based on Boltzmann kinetic theory

which connects the dynamics to thermodynamics. It can be generalized to a semiclassical theory

to study transport in semiconductors by invoking the Fermi golden rule. However, it was realised

that the correct kinetic equation for most quantum systems could not be deduced simply from the

golden rule but had to be derived from more general considerations. This led to the development

of quantum kinetic theory which incorporated the effect of interactions within a perturbative

framework and, in practical applications, assumed the presence of quasiparticles along with

some sort of linearization scheme close to equilibrium. This approach has been remarkably

successful in numerous systems [1616–1818].

However, strongly correlated systems, like the Mott insulator, which do not have well defined

quasiparticles, have been difficult to fit within this framework. The few attempts at applying

the kinetic theory ideas to Mott systems have highlighted the importance of starting from a

more general framework [1919, 2020]. The Schwinger-Keldysh approach (abbreviated simply as the

Keldysh approach) offers a framework suited for describing generic nonequilibrium quantum

systems. Even though it was introduced nearly sixty years ago by Schwinger [2121], and subse-

quently developed by Kadanoff and Baym [2222] while being independently pursued by Keldysh

[2323], it has gained prominence mainly in the last couple of decades. However, nonperturbative

numerical techniques within this framework are still at a nascent stage.

Mott insulators are materials which cannot be described by the conventional band theory

of solids. A combination of strong local repulsion and commensurate filling inhibits electron

tunneling, leading to localization of electrons. The Mott physics related to suppression of

‘double occupancy’ plays a crucial role in many families of transition metal compounds like

the cuprates, ruthenates, iridates and nickelates. The problem of nonequilibrium transport in

Mott insulators has been an active field of research, but there are outstanding problems. The

temperature dependent transport characteristics of Mott insulators is one of the unsettled issues

between theory and experiments.

On the theoretical front, dynamical mean field theory (DMFT) [9898] and its variants, which fo-

cus on local quantum fluctuations, have been successful in capturing equilibrium ‘Mott physics’.

Combined with ab-initio methods, they have been used for modeling real materials. A comple-

mentary approach that emphasises spatial thermal fluctuations rather than quantum fluctuations

is the static auxiliary field based Monte-Carlo. It has been successfully applied to several

interesting problems [2424–2626]. Recently, a nonequilibrium generalization of DMFT [104104] has

been developed. Though it has successfully captured several out of equilibrium phenomena, it

performs poorly with respect to experiments in capturing long time steady state transport in inho-

mogeneous Mott systems. Furthermore, the effect of strong electronic driving on the magnetism

in these systems remains relatively unexplored.

In this thesis, we have developed a nonperturbative scheme for handling nonequilibrium
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transport and dynamics of strongly correlated systems and applied it to the problem of long

time steady state transport in Mott insulators driven by a strong bias voltage. Based on the

Schwinger-Keldysh framework, it relies on the separation of timescales between the fermionic

degrees of freedom and the bosonic collective modes.

In this Chapter we briefly discuss the equilibrium physics of Mott insulators, the Hubbard

model realisation of the Mott state, linear response theory, and the experimental and theory

situation on nonequilibrium studies in Mott systems. In Chapter 2, we discuss our models and

methods for handling the driven Mott state. Chapters 3 discusses a mean field approach for

transport in the nonequilibrium zero temperature state, while Chapter 4 presents a Langevin

equation formulation of the driven Mott state at the finite temperature. Chapter presents results

on the collective magnetic excitations in the voltage biased Mott insulator.

1.2 The physics at equilibrium

1.2.1 Mott insulators

Mott insulators are a class of materials that, according to conventional band theory, should

conduct electricity but are in fact insulators. This happens due to electron–electron interactions

whose effects are not considered in conventional band theory. A material is called insulating if it’s

dc electrical conductivity (σ) approaches zero as the temperature is lowered, i.e., lim
T→0

σ(T ) = 0.

If the conductivity remains finite or diverges at a finite temperature the system is considered

metallic or superconducting respectively.

Band theory provides an independent electron description of the ground state: forN electrons

the lowest lyingN/2 states are filled with two electrons each. In the independent-electron picture,

the system is predicted to be metallic if the density of states at the Fermi level is non-vanishing:

ρ(ǫF ) 6= 0. If ρ(ǫF ) = 0 the system must be an insulator, at least for translation invariant

systems. Band theory asserts it is necessary to have an even number of electrons per unit cell for

ρ(ǫF ) = 0, since a band with orbital degeneracy n can hold 2n electrons per unit cell. On the

other hand, with an odd number of electrons per unit cell we necessarily have a partially filled

band, hence ρ(ǫ) 6= 0, and consequently the material must be a metal. This basic prediction

of band theory fails spectacularly for transition metal oxides in which the valence orbitals are

d or f orbitals. Hence valence electrons are much more localized in these systems. This leads

to a strong energy penalty for placing two electrons in the same local valence orbital, and the

motion of valence electrons becomes strongly correlated on the lattice. Building on the ideas

of Wigner [2828], Mott gave the famous Mott criterion for insulator to metal transition based

on the competition between the Debye screening length and the Bohr radius and applied these

ideas to study transition metals [2929]. Later, organic compounds, like the κ − (ET )2X [3030] and

κ-BEDT[3131] families, were discovered to be Mott insulators on frustrated lattices. The left panel

in Fig.1.11.1 shows the phase diagram and a material in the κ − (ET )2X family. The insulating
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Figure 1.1: Left: Pressure-temperature phase diagram of κ − (ET )2Cu[N(CN)2]Cl , an

organic Mott insulator, determined by transport measurements. AF and SC are abbreviations for

antiferromagnet and superconductor, respectively. The black dotted line represents the magnetic

transition while the solid black line with data points shown in red indicates finite temperature

insulator-metal transition, which ends at a critical point around 40K. Right: Conductance

G(P, T ) around the critical endpoint in the phase diagram. The light blue shaded area indicates

the conductance jump. The red and purple lines represent the critical behavior that gives the

critical exponents δ and β, corresponding to pressure and temperature driven conductance jumps

respectively. Taken from Ref.[3030]

phase is stable at low pressure and undergoes a magnetic transition from an antiferromagnet

to a paramagnet with increasing temperature. At low temperatures one finds a transition to a

superconducting state with increasing pressure. It is a well known that superconductivity lurks in

the vicinity of the antiferromagnetic insulating phase and a transition can be induced by doping,

as in cuprates, or by applying pressure. Above the superconducting phase, we have a pressure

driven insulator-metal transition at finite temperature, indicated by a first order line truncating at

a critical point around 40K. Apart from the details, the generic structure and phases mentioned

in the phase diagram is ubiquitous across Mott insulators. The right panel in Fig.1.11.1 shows

conductance as a function of pressure and temperature, which characterises the nature of the

insulator-metal transition.

1.2.2 The Hubbard model

The first model based theory was proposed by Hubbard. Considering just one valence orbital

he introduced a model, now named after him [3232, 3333], with a kinetic energy term and a local

Coulomb repulsion.

H = −t
∑

<ij>
σ∈↑,↓

c†iσcjσ + h.c.+ U
∑

i

ni↑ni↓ (1.1)
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Figure 1.2: Schematic representation of a pressure induced Mott transition. U is the on-site

Coulomb repulsion, andW is the bandwidth of the system. At low pressure, where U/W > 1 in

the insulating phase, majority of particles (electrons or holes) are localised at lattice sites, even at

a finite temperature. For U/W < 1, at high pressure, the particles can move freely with double

occupancies and vacancies allowed in the system. The transition between the two regimes occurs

as an insulator-metal transition, without symmetry breaking. Taken from Ref.[3030].

where niσ = c†iσciσ, t is the nearest neighbour hopping which promotes delocalisation of the

electrons, and U is the onsite Coulomb repulsion which penalizes double occupancy. The

operators ciσ and c†iσ are the annihilation and creation operators which satisfy the canonical

anticommutation relations.

{ciσ, cjσ′} = {c†iσ, c
†

jσ′} = 0 (1.2)

{ciσ, c
†

jσ′} = δijδσσ′ (1.3)

The limitations of this model, i.e., omission of longer-range interaction, neglect of multiple

bands, need to be reevaluated when applied to real materials. However it turns out that even

this seemingly simple model describes very rich physics that is far from completely understood.

An exact solution for this model at arbitrary filling beyond 1D systems has not been found.

Nevertheless a lot of theoretical machinery has been developed and the behaviour is reasonably

understood in the half-filled limit.

Quite generally, when the Coulomb scale becomes larger than the kinetic energy significant

deviations from band behaviour are expected. A schematic representation of the Mott transition

is shown in Fig.1.21.2. It shows the transition from an insulating phase where particles are localised

on lattice sites and double occupancies (along with vacancies) are energetically disfavoured, to

a metallic phase, where particles can get delocalized as double occupancies are allowed. The

transition doesn’t break any symmetry. The barring of double occupancy can also be interpreted

in terms of formation of a local moment[3434]. From the above arguments, we conclude that strong

electron correlation promotes formation of local moments.
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Figure 1.3: Schematic representation of linear response theory. The system is at equilibrium for

times before t0. At t0 the perturbation H ′ is turned on and the system evolves according to the

new HamiltonianH0+H
′ and remains in a nonequilibrium state. Linear response theory relates

the expectation value δ〈A〉neq of any operator A in the nonequilibrium state to a equilibrium

expectation value 〈· · · 〉eq of the more complicated time-dependent commutator [A(t), H ′
(t′)]

(Ref. [2727]).

Apart from the insulating character, which is due to the presence of large local moments, a

Mott insulator generally hosts some kind of magnetic ordering of the moments at low temper-

atures. In bipartite lattices a Néel antiferromagnetic order is most prevalent, while frustrated

lattices can host various other kinds of magnetic textures. The antiferromagnetic state can easily

be motivated from the half-filled Hubbard dimer, by realising that it leads to a gain in magnetic

exchange energy J ∼ t2

U
through virtual hopping, which is not possible for a ferromagnetic

alignment of the local moments[3434]. With increasing temperature T , the antiferromagnetic Mott

insulator undergoes a magnetic transition to a paramagnetic Mott insulator as T ∼ J .

1.2.3 Linear response theory

Linear response theory (LRT) deals with the scenario where an equilibrium system is weakly

perturbed out of equilibrium. It hinges on the fact that in case of weak external perturbation the

response of the system can be approximated very well by the terms linear in the perturbation. This

is called the linear response (LR) regime, and though the system is in a non-equilibrium state all

its characteristics can be inferred from the properties of its equilibrium state (Fig.1.31.3). Consider

an equilibrium system described by the time independent Hamiltonian H0. The expectation

value of an operator A is given by:

〈A〉 =
1

Z0

Tr [ρ0A] =
1

Z0

∑

n

〈n0|A|n0〉e−βEn (1.4a)

ρ0 = e−βH0 =

∑

n

|n0〉〈n0|e−βEn (1.4b)
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where ρ0 is the equilibrium density operator,Z0 = Tr [ρ0] is the equilibrium partition function and

β is the inverse temperature. {|n0〉} represents a complete set of eigenstates of the Hamiltonian

H0, with eigenvalues En. Suppose now that at some time t0, an external perturbation is applied

to the system, driving it out of equilibrium. The perturbation is described by an additional time

dependent term in the Hamiltonian:

H(t) = H0 +H ′
(t)Θ(t− t0) (1.5)

In order to find the expectation value of the operatorA for t > t0 we must find the time evolution

of the eigenstates of the unperturbed Hamiltonian |n(t)〉. From this we can infer 〈A(t)〉 as:

〈A(t)〉 =
1

Z0

Tr [ρ(t)A] =
1

Z0

∑

n

〈n(t)|A|n(t)〉e−βEn (1.6a)

ρ(t) =
∑

n

|n(t)〉〈n(t)|e−βEn (1.6b)

The crucial assumption here is that although the states evolve with a modified Hamiltonian

after the perturbation is switched on, the distribution of states (which are now time dependent)

is governed by the same Boltzmann distribution e−βEn

Z0

as the equilibrium states. The time

dependence of the states |n(t)〉 in the interaction representation is given by

|n(t)〉 = e−iH0tU(t, t0)|n(t0)〉 (1.7)

where |n(t0)〉 ≡ |n0〉. To linear order inH ′, we have U(t, t0) = 1− i
∫ t

t0
dt′H ′

(t′). Inserting this

in Eq.1.6a1.6a, one obtains the expectation value of the operator A to linear order in the perturbation

〈A(t)〉 = 〈A〉0 − i

∫ t

t0

dt′
∑

n

e−βEn

Z0

〈n(t0)|A(t)H
′
(t′)−H ′

(t′)A(t)|n(t0)〉 (1.8a)

= 〈A〉0 − i

∫ t

t0

dt′〈[A(t), H ′
(t′)]〉0 (1.8b)

where 〈· · · 〉0 denotes equilibrium average with respect to the Hamiltonian H0. A(t) and H ′
(t′)

are operators in the interaction representation. The above equation relates an inherently nonequi-

librium quantity 〈A(t)〉 to a correlation function of the system at equilibrium. It can be rewritten

as

δ〈A(t)〉 ≡ 〈A(t)〉 − 〈A〉0 =

∫

∞

t0

dt′ χAH′(t, t′)e−η(t−t′) (1.8c)

where

χAH′(t, t′) = −iθ(t− t′)〈[A(t), H ′
(t′)]〉0 (1.8d)

is the retarded response function. The infinitesimal positive parameter η forces the response at

time t due to the influence of H ′ at time t′ to decay when t ≫ t′. In the end of a calculation we
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must therefore take the limit η → 0
+. We are interested in the case whereH ′

(t) = λ(t)A, as most

experiments measure the correlation function 〈A(t)A(t′)〉. Here λmust be a small parameter for

LRT to be applicable. From the Lehmann representation we can show

〈A(t)A(t′)〉 =
∑

m,n

e−βEm〈m|A(t)|n〉〈n|A(t′)|m〉

=

∑

m,n

e−βEm |〈m|A|n〉|2e−i(En−Em)(t−t′) (1.9a)

Defining tr ≡ t− t′ and taking a Fourier transform gives

K(ω) ≡

∫

∞

−∞

dtr 〈A(t)A(t
′
)〉eiωtr =

∑

m,n

e−βEm |〈m|A|n〉|22πδ (ω − (Em − En)) (1.9b)

Similarly, we can expand the retarded response function using the Lehmann representation to

obtain

χAA(tr) = −iθ(t− t′)〈[A(t), A(t′)]〉0 (1.9c)

= −i
∑

m,n

(

e−βEm − e−βEn
)

|〈m|A|n〉|2e−i(Em−En)(t−t′)θ(t− t′) (1.9d)

Taking a Fourier transform gives us,

Im [χAA(ω)] = π
(

1− e−βω
)

∑

m,n

e−βEn |〈m|A|n〉|2δ (ω − (Em − En)) (1.9e)

Comparing Eq.1.9b1.9b and 1.9e1.9e we arrive at the relation (restoring ~)

K(ω) =
2~

1− e−β~ω
Im [χAA(ω)] = 2~ (1 + nB(~ω)) Im [χAA(ω)] (1.10)

which is the quantum fluctuation-dissipation theorem that relates the correlation function with

the dissipative part of the retarded response function χAA(ω). nB(ω) ≡ 1
eβω−1

is the Bose

distribution function.

LRT has been an indispensable tool for classifying different equilibrium phases, based on their

response to weak perturbation, into metals, insulators, superconductors, etc. By construction,

the results within LRT remain independent of the strength of external force. The central theme of

the thesis is to deal with scenarios where LRT becomes ineffective in predicting the response of

a system to a strong perturbation. In such a scenario the state of the system might get completely

reorganised depending on the strength of perturbation, as we shall find out later.
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to a hidden state [1111] and pattern formation [3737].

Of particular interest are the experiments on transition metal oxide (TMO) Mott insulators,

e.g., vanadium oxides [3838, 3939], ruthenates [4040, 4141] and iron oxides [4242, 4343]. Many of these

compounds undergo thermally driven insulator metal transition (IMT) at some temperature

TIMT in equilibrium, often with accompanying change in structure. However, at temperatures

much below TIMT these can be driven into a metallic phase by applying a large voltage across

the sample. The nonlinear current-voltage (I-V) characteristics for these materials have been

obtained from two terminal and four terminal measurements. Fig.1.41.4 shows the temperature

dependent I-V and other transport characteristics for three different materials. These and a host

of other experiments reveal some generic features in the I-V:

• A low temperature hysteresis in the current with respect to voltage sweep - changing

abruptly from low current to high current at some voltage Vc+ on the upward sweep, and

showing the reverse switching at Vc− < Vc+ on the downward sweep, and

• Reduction of Vc± and also ∆Vc = Vc+ − Vc− with increasing temperature, with hysteresis

vanishing above some temperature T ∗.

These features have been observed in samples of nanometer [4242] to millimeter [4141] size.

Apart from the I-V character, several other remarkable effects have emerged in transport

experiments due to the presence of a large bias. Experiments on 1D organic Mott insulators[3737],

as well as on ruthenates[4444], have shown the emergence of wave-like patterns with increasing

voltage. Another experiment on a ruthenate material has found suppession of magnetic transition

temperature with increasing bias[4848].

1.3.2 Pump-probe spectroscopy

Pump-probe spectroscopy is an experimental technique used to study ultrafast electronic dynam-

ics. In this technique, an ultrashort laser pulse is split into two portions; a stronger pump beam is

used to excite the sample, generating a non-equilibrium state, and a weaker probe beam is used to

monitor the pump-induced changes in the sample by optical spectroscopy [5353] or photoemission

[5454]. Recording these changes as a function of time delay between the arrival of pump and probe

pulses yields information about the relaxation of electronic states in the sample.

In Mott insulators, a pump pulse with energy larger than the Mott-Hubbard gap creates

charged excitations of doublons (doubly occupied sites) and holons (unoccupied sites). In

optical spectroscopy experiments, these excitations lead to a Drude-like low frequency response

at femtosecond (fs) timescales, as shown in Fig.1.51.5. The dissipationless Drude component,

corresponding to the coherent motion of charges, indicates a transient photoinduced insulator

to metal transition, which quickly relaxes through recombination processes and, at later times,

by transferring energy to other degrees of freedom. The Drude peak vanishes within a few
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Figure 1.5: Femtosecond pump-probe absorption spectroscopy in undoped cuprates Nd2CuO4

(NCO) and La2CuO4 (LCO), taken from Ref.[5353]. Panels (a) and (b) show normalized spectra

of changes in photoinduced absorption (∆OD) for NCO and LCO respectively, for different time

delays after excitation. The solid black lines in both the panels show∆OD for 1% doped NCO and

2% doped LCO respectively, for comparison. (c) Schematic representation of the photoinduced

phenomena: [i] ground state of the Mott insulator, [ii] photoinduced metallic states showing the

Drude response, [iii] localized carriers showing the midgap absorption, and [iv] heating of the

system after photocarrier recombinations.

femtoseconds after excitation and the relaxation processes show up as ‘in-gap’ features in the

time evolution of the optical spectrum.

Time-resolved magneto-optic measurements, like magneto-optical Kerr rotation (MOKE),

have also revealed ultrafast switching of magnetic order after photoexcitation in strongly corre-

lated systems [5858]. On the other hand, time-resolved photoemission spectroscopy (trPES) [5959]

and angle-resolved PES (trARPES) [6060] have been used to study the time evolution of the single-

particle spectrum and the band structure, respectively, of correlated materials after excitation by

a pump beam. These experiments have led to a new paradigm in which the coupling between

various degrees of freedom can be probed by measuring the relaxation timescales after excitation.

Each of these timescales are typically associated with particular kind of processes, and hence, the

relaxation mechanisms allow us to identify, within a single experiment, the dominant interactions

present in a material.

1.3.3 Ultracold atomic gases

Unlike real materials, where all kinds of interactions are simultaneously present, ultracold atoms

allow us to design systems which can simulate specific Hamiltonians and manipulate their

coupling strengths, with unprecedented control, via Feshbach resonances [6161]. These also allow
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Figure 1.6: Expansion of homogeneously confined interacting fermions. (a) Experimental in situ

absorption images for different interactions after 25 ms expansion in a horizontally homogeneous

lattice. J and U are the hopping and the onsite Coulomb interaction strengths, respectively. The

images show a symmetric crossover from a ballistic expansion for non-interacting clouds to an

interaction-dominated expansion for both attractive and repulsive interactions. The dynamics is

independent of the sign of the interaction, revealing a novel, dynamic symmetry of the Hubbard

model. (b) Simulated density distributions using a 2D Boltzmann equation. Taken from Ref.

[6262]

for the cleanest realization of closed system dynamics in which quantum states with coherence

longer than the typical timescales of the dynamics can be prepared.

In the cold atomic systems, the dynamics has longer timescales than in solid-state materials

and therefore it can be followed without ultrafast probes. The dynamics of ultracold gases can

be imaged either directly in the confining trapping potential, to access the density distribution

n(~x) in position space, or after they are released, during a time-of-flight expansion measuring the

momentum distribution n(~k). Fig.1.61.6 shows the momentum distribution snapshots for expansion
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of an interacting cloud after 25ms for different values of the onsite Hubbard interaction. Since the

momentum distribution does not depend on the sign of U , this reveals a ‘dynamical symmetry’

between the +U and the −U Hubbard models [6262].

Several other interesting problems have also been studied within the ultracold atoms setup,

like the slow decay of artificially excited doublons into particle-hole pairs [6363, 6464], doublon

production due to an interaction quench [1818], and periodic modulation of lattice depth to excite

to excite doublons whose production rate is sensitive to nearest neighbour density and spin

correlator [6565].

1.3.4 Inelastic neutron scattering

Neutron scattering is a powerful probe of strongly correlated systems. It can directly detect

common phenomena such as magnetic order, and can be used to determine the coupling between

magnetic moments through measurements of the spin-wave dispersions. In the absence of

magnetic order, one can detect diffuse scattering and dynamic correlations. Neutrons are also

sensitive to the arrangement of atoms in a solid (crystal structure) and lattice dynamics (phonons).

With a spin angular momentum of 1
2
~, the neutron interacts directly with the magnetization

density of the solid. While elastic scattering can directly reveal static magnetic order (e.g.,

neutron diffraction provided the first experimental evidence for Néel antiferromagnetism [6666]),

through inelastic scattering one can probe dynamic spin-spin correlations [6767].

The differential scattering cross section dS/dΩdω in inelastic neutron scattering (INS) ex-

periments is a measure of the spin autocorrelation function, which can be expressed in terms of

dynamical spin susceptibility χ~q(ω) using the fluctuation-dissipation theorem (Eq. 1.101.10).

dS

dΩdω
∼

∑

ij

∫

dt〈σ−

i (t)σ
+
j (0)〉 e

iωt−i~q·(~ri−~rj) ∝
1

1− eβω
Im [χ~q(ω)] (1.11)

where ~σ is the electronic spin and β is the inverse temperature. In an ordered antiferromagnet,

one can measure the precession of the spins about their average orientations, which show up as

dispersing spin waves, as shown in Fig.1.71.7, for the square-lattice spin-1/2 antiferromagnet and

high-Tc parent compound La2CuO4.

1.4 Nonequilibrium theoretical approaches

The last section described various experiments which probe out of equilibrium response in

Mott insulators and discussed the related phenomenology. In this section, we first review the

theoretical methods available to study out of equilibrium lattice systems in presence of strong

correlation. Then we go on to discuss the method we have developed and used to study the

voltage biased Mott insulator at steady state.
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Figure 1.7: Spin waves in La2CuO4. (A) Dispersion relation along high symmetry directions

in the 2D Brillouin zone, shown in inset (C), at T = 10K (open symbols) and 295K (solid

symbols). Solid (dashed) line is a fit to the spin-wave dispersion relation at T = 10K(295K)

which is obtained from a Heisenberg model with first-, second-, third-nearest neigbour and

ring exchange magnetic couplings. (B) Wavevector dependence of the spin-wave intensity at

T = 295K compared with predictions of linear spin-wave theory shown by the solid line. Taken

from Ref. [6868].

1.4.1 Time-dependent approaches

Generic nonequilibrium quantum systems are described by a time-dependent Schrödinger equa-

tion. A naive approach would be to solve it numerically for a many-body wave function. While

this approach has been tried for small systems [6969], it is, however, quite restricted in terms

of the system size and accessible timescales, due to exponential growth of the Hilbert space

dimension. Hence, alternative approaches often geared towards specific simplifying limits have

been developed for nonequilibrium systems, some of which are discussed below.

1.4.1.1 Time-dependent perturbative approaches

Time dependent perturbative approaches such as second order perturbation theory (SOPT), self-

consistent perturbation theory and iterated perturbation theory (IPT) have been used to study

nonequilibrium Hubbard model in the weak coupling regime. In the weak coupling perturbation

theory the self energy is expanded to the requisite order and the Green’s function is obtained

by resumming the Dyson’s series. This, and its generalisation to IPT, has been used to study

problems like thermalisation in the Hubbard model after a quench [7171, 123123] and damping of

Bloch oscillations [7272]. They have been useful in identifying various prethermal regimes in the

isolated Hubbard model.

Bare perturbation theory is not a conserving approximation [7373]. As a result conserved

quantities, like the total energy after a quench, keep drifting even when the Hamiltonian becomes

time independent (post-quench). To remedy this self-consistent approaches which use the dressed

Green’s function to construct the self energy have been developed. Still, they fail to capture the

dynamics even for moderate interaction strengths when compared against exact methods [116116].

Sophisticated resummation techniques like the T-matrix approximation [7474, 7575] and its variants
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also fail when the interaction strength becomes larger than the bandwidth of the noninteracting

system. Hence, the applicability of perturbative expansions in the interaction strength for studying

out of equilibrium insulator metal transition at long times even within the dynamical mean field

theory (DMFT) framework (discussed below) remains unclear.

Other approaches which exploit the largeness of the number of internal degree of freedom

N , or that of the spatial dimensions D, can be used to study the time dependent response of

interacting many body systems. Within these schemes it can be shown that processes beyond

a certain order in the expansion parameter become irrelevant as N (D) → ∞. Although they

involve a formal perturbative expansion in terms of the inverse of some large parameter, these

approaches often yield results which are nonperturbative in the strength of interaction and driving

fields.

One such study has focussed on the nonequilibrium response of quantum dot arrays, with a

large N no. of onsite levels, which are coupled to each other by nearest-neighbour tunneling

matrix[7676]. By setting up an expansion in the dimensionless tunneling conductance, it has been

shown that terms beyond the second order drop out in the N → ∞ limit. This limit also allows

one to obtain analytic expression for the transient and long time bond currents flowing across the

system. It captures some generic features of field driven Hubbard models, like the damping of

Bloch oscillations at finite interaction strength and ‘breakdown’ of the Mott insulator beyond a

threshold field. However, it fails to predict the nature of breakdown transition or that of the state

at large field.

1.4.1.2 Time-dependent Gutzwiller Mean Field Theory

The time-dependent Gutzwiller (TDG) [7777–8080] method is an extension of the well known

Gutzwiller approximation [8181–8383] which involves making a variational ansatz for the time-

dependent wavefunction and becomes exact in the limit of infinite coordination. The dynamics

of the variational parameters and of the wavefunction is obtained by applying the time-dependent

variational principle on the action and imposing local constraints. In doing so, the interacting

many-body Hamiltonian gets mapped to an effective noninteracting Hamiltonian which depends

on local variational parameters and defines an effective Schrödinger equation for the noninter-

acting electrons. The variational parameters themselves are determined by an evolution equation

that involves the effective Hamiltonian. This allows the method to capture local correlations

beyond the standard mean-field techniques.

However, it describes particle dynamics only in terms of an effective one-body Hamiltonian

and does not couple states at different momenta. This misses out the dissipative processes

(collisions) which lead to a genuine relaxation to steady state. It has been used to study quench

problems [7777, 7878] and nonlinear transport in a Mott insulator connected to leads [8080]. However,

it does not capture qualitative features of the I − V characteristics found in experiments on Mott

insulators. Moreover, the temperature dependence of the nonequilibrium response has not been

established using this method although a finite temperature generalization of the method exists
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Figure 1.8: DMFT self-consistency (Ref. [121121]).

[8484].

1.4.1.3 Time-dependent DMRG

The density matrix renormalisation group (DMRG) [8585–8787] is presently the most successful

numerical method for studying low temperature (or ground state) properties of one dimensional

quantum lattice systems at equilibrium [8888]. In recent years, it has undergone remarkable

developments, due to insights from information theoretic concepts and the generalization to

matrix product states (MPS) [8989–9191]. It has been extended and adapted to study real-time

evolution [9090–9393], even at finite temperature and in presence of dissipation [9494].

In the context of nonequilibrium dynamics in Mott insulators, it has been applied to study

breakdown of the field driven isolated Mott insulator [9595, 9696], and the bias driven nonlinear

transport in a Mott insulator connected to leads [9797]. However, it could only access relatively

short times which indicate that the system might be stuck in a prethermalised phase. Moreover,

DMRG, by construction, is limited to one dimensional or quasi-two dimensional systems, like

ladders etc., whose properties are known to be very different from two or three dimensional

systems.

1.4.1.4 Nonequilibrium dynamical mean field theory

Dynamical mean field theory (DMFT) [9898] has been a versatile tool for studying strongly

correlated lattice systems for nearly three decades. The central idea in this approach is mapping

of a lattice problem to an effective impurity problem immersed in a self-consistently obtained

bath [9999]. The mapping becomes exact in the limit of infinite dimensions [100100]. The method

treats spatial correlations in a mean-field manner, but accurately treats the temporal quantum

fluctuations. Some amount of spatial correlations can be recovered by its real-space [101101] and

cluster extensions [102102]. It has been used extensively to study insulator-metal transitions in

two and three dimensional lattice systems and has successful in modeling real materials when

combined with band structure calculations [103103]. A nonequilibrium generalization of this method

has been developed [104104, 105105] and used to study a large number of nonequilibrium problems
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including Bloch oscillations [106106, 107107], dielectric breakdown of Mott insulators [108108–110110],

photoexcitations and photodoping [112112–114114], time-dependent parameter changes [116116–118118] and

periodically driven systems [119119–121121].

Fig.1.81.8 shows the algorithm for DMFT self-consistency schematically. A crucial ingredient

within the DMFT framework is the impurity solver - the technique used to solve the effective

impurity problem. Different solvers can give very different results in the same physical situation;

so one must select the correct solver depending on the problem at hand. At equilibrium, quantum

Monte-Carlo (QMC) solvers provide an exact solution of the impurity problem in situations which

allow for successful handling of the fermion sign-problem. However, additional complications

arise in the nonequilibrium context essentially because of real time evolution, in which case the

continuous-time Monte-Carlo (CTQMC) [122122] schemes suffer from the dynamical sign-problem

(also known as the phase-problem). This limits the time range over which accurate results can

be obtained. For nonequilibrium DMFT applications, the times which can be reached with the

strong-coupling CTQMC approach are usually too short. The weak-coupling CTQMC method,

on the other hand, has been useful for studying ultrafast phenomena in the weak to intermediate

coupling regime [117117, 123123, 124124].

On the other hand there are approximate solvers like IPT and non-crossing approximation

(NCA) [125125] which are computationally cheaper and perform reasonably for equilibrium prob-

lems. IPT, which reproduces the correct strong coupling limit at half-filling in equilibrium, fails

beyond weak coupling in the nonequilibrium setting. NCA and its extensions provide reliable

results in the strong insulating phase but falter in the metallic phase at low temperatures. More-

over, inhomogeneous systems and symmetry broken phases with nontrivial spatial configurations

bring in additional complications and are poorly handled within this framework.

Due to these issues DMFT has difficulty in handling steady state (non-periodic) nonequilib-

rium problems. Specifically, for the voltage driven breakdown of Mott insulators, which requires

dealing with long-time response of an inhomogeneous system, it does not capture the qualitative

features in the current-voltage characteristics as found in experiments. Recently, there has been

an extension of nonequilibrium DMFT specifically meant to handle steady state problems which

will be discussed below.

1.4.2 Steady state approaches

1.4.2.1 Imaginary time effective equilibrium approaches

The central idea in equilibrium statistical mechanics is that the statistical density matrix of a state s

at energyEs and particle numberNs is given by the Boltzmann factor e−β(Es−µNs). This facilitates

theoretical description of quantum systems in equilibrium since both the thermal average and

time evolution are based on the same operator, and one can use Wick rotation to formulate an

imaginary time theory which captures both types of dynamics. The real time correlators can be

obtained by performing an analytic continuation of the imaginary time correlation functions, and
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connection with experiments can also be made by utilising the fluctuation-dissipation theorems,

well established at equilibrium.

Away from equilibrium, the form of statistical density matrix is unknown. In principle, one

must track the exact evolution of the system starting from some initial time t0 to some later time tf

till all measurements have been recorded. However, in presence of dissipation, if the separation

between t0 and tf is large as compared to the intrinsic relaxation time, then properties of the system

become time independent at long times even in presence of strong driving. An early attempt

to formulate NESS in quantum many-body systems was made by Zubarev [126126], who tried to

construct a time-independent density matrix formalism by solving the equation of motion within

the scattering state formalism. This approach has later been revisited by Hershfield in the context

of transport through quantum dot systems [127127] whereby one can express such nonequilibrium

quantum impurity models in terms of the system’s Lippmann–Schwinger operators [128128].

Hershfield Y operator technique The NESS density matrix ρ is written in the Boltzmann

form, ρ = exp (−β (H − Y )) by introducing a new operator Y (known as the Hershfield Y

operator) which takes care of nonequilibrium boundary conditions like lead chemical potentials

etc. Hershfield introduced the idea that Y can be expressed in terms of Lippmann-Schwinger

operators ψαkσ which are fermionic operators that diagonalize the full Hamiltonian (including

the leads and the coupling terms)

H =

∑

αk

ǫαkψ
†

αkσψαkσ (1.12)

and can be formally expressed by the equation

ψ†

αkσ = c†αkσ +
1

ǫαk − L+ iη
LT c

†

αkσ (1.13)

where c†αkσ creates an electron in state k with spin projection σ in the lead α. In a symmetric

left-right lead setup α takes values ±1. The corresponding dispersion in the leads is denoted

by ǫαk. L and LT are Liouvillian superoperators corresponding to the full Hamiltonian H and

the tunneling HamiltonianHT , which couples the leads with the interacting system, respectively.

Hershfield showed that the Y operator has the general form

Y =
Φ

2

∑

αkσ

αψ†

αkσψαkσ (1.14)

where Φ is the source-drain voltage which is given by the chemical potential difference between

the two leads. These scattering operators allow one to reformulate the nonequilibrium problem

as an effective equilibrium problem associated with a modified Hamiltonian. The existence and

uniqueness of the steady state is tied to the validity of the inequalities vF/L≪ |t0|
−1 ≪ η, where

vF denotes the Fermi velocity, t0 is the time instant in which the system-bath coupling is switched
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on, η → 0
+ defines a slow switch-on rate and L the linear system size [129129]. Intuitively, these

inequalities ensure that hot electrons hopping onto a given lead at time t0 will not be reflected

back and return to the junction before the measurement process, and further that the process of

switching on HT remains adiabatic.

These equations can be easily solved for a non-interacting system. The primary issue with

this, in principle exact formulation, is that it cannot be readily applied for interacting problems

because it requires the solution of the Lippmann-Schwinger equation for the scattering states,

which amounts to knowing the full solution itself. Some efforts have been made to directly

implement Hershfield’s density matrix within finite-order perturbation theories [130130–132132] but

they have proven quite cumbersome to be extended to infinite orders. Hence, the applicability of

these methods for interacting problems is limited to the perturbative regime, except for special

scenarios [133133]. Moreover, they have been applied mainly to very small systems like quantum

dots, and their effectiveness for generic strongly correlated systems remains unclear. Next, we

discuss a nonperturbative extension of this method and its domain of validity.

Matsubara Voltage Han and Heary [134134] proposed that, by introducing a Matsubara term to

the source-drain voltage, one can extend the equilibrium formalism such that the perturbation

expansion of the imaginary-time Green function can be mapped to the Keldysh real-time theory.

The unperturbed Hamiltonian is written as

K0(iφm) = H0 + (iφm − Φ)Y0 (1.15)

with the Matsubara voltage φm = 4πm/β with integer m. Since [H0, Y0] = 0, e−βK0 =

e−β(H0−Y0)e−iφmβY0 and e−iφmβY0 = 1, the Matsubara voltage drops out and we have the identity

e−βK0(iφm)
= e−β(H0−ΦY0) = ρ0 (1.16)

However for a generic point on the imaginary time axis τ ∈ [0, β), e−iφmτY 6= 1, and hence the

above identity does not hold for the interacting density matrix.

By treating the interaction as a perturbation the expectation value of any operator A can be

expanded in powers of the interaction - the Dyson’s series expansion - within a real time Keldysh

theory for long times and also within an imaginary time theory. It has been argued in Ref.

[135135] that there exists a term-by-term correspondence of the two expansions provided one makes

analytic continuations iφm − Φ → 0 and τ → it, in that order, and treats energy denominators

in the imaginary time expansion to be principal valued

1

(Kn −Km)
→ P

(

1

En − Em

)

(1.17)

as iφm → Φ.

Although, a straightforward analytic continuation of the nonequilibrium Keldysh contour to
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an imaginary-time one is not possible [135135], the above procedure provides a nonperturbative

mapping of real time observables at long times with the expectation values of the corresponding

operators in imaginary time, which can be calculated using numerically exact techniques like

QMC. This is potentially a powerful technique for nonequilibrium steady-state problems. How-

ever, it was found that the range of validity of this mapping could only be ascertained for specific

kinds of level-connectivity and, more importantly, it could not be established for serially coupled

dots [136136]. This limits the applicability of this formalism to interacting lattice systems.

1.4.2.2 Mean field approaches

One of the simplest methods used to study the NESS in interacting systems is the mean field

approach. For the Hubbard model it involves factorization of the onsite interaction term to

introduce classical fields which couple to the charge or spin of the fermions. Thus, the interacting

problem gets mapped to an effectively noninteracting problem in which the static background

fields have to be determined self-consistently.

This has been used to study a variety of steady state problems: pattern formation in 1D Hub-

bard model [137137], filamentary conduction in disordered systems [141141], insulator-metal transition

induced by an electric field [142142] and breakdown of one-dimensional insulators in presence of

long-range Coulomb interaction [143143]. However, an unrestricted Hartree-Fock treatment of the

onsite Hubbard repulsion taking into account the self-consistent renormalisation of the local

potential for a voltage driven system was lacking in the literature. We have developed such a

scheme details of which shall be discussed in the subsequent chapters.

1.4.3 Auxiliary master equations

The auxiliary master equation approach (AMEA) [144144] is a DMFT formulation specifically

meant to deal with NESS systems which treats the impurity problem within an auxiliary system

consisting of a correlated impurity, a small number NB of uncorrelated bath sites and two

Markovian environments described by a Lindblad master equation. The approach allows for a

solution of the steady-state impurity problem with controlled accuracy and, in many cases, with

a small NB, while the exact bath spectral function is smoothly obtained in the NB → ∞ limit.

The Lindblad quantum master equation can be readily solved by diagonalizing the Lindbladian

within the many-body “super-Fock" space of reduced density matrices of the system. Its solution

determines both the retarded and Keldysh impurity Green’s function as well as the self-energy,

which is subsequently used in the DMFT loop to obtain the new bath hybridization function,

which is fitted by new bath parameters.

AMEA has primarily been used to solve transport problems in heterojunctions with a layer

of correlated sites sandwiched between noninteracting leads [144144, 145145]. A real-space version of

this has been used to study the interplay of Hubbard repulsion and long-range Coulomb inter-

action on the charge redistribution at the interface of a paramagnetic Mott insulator sandwiched
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between two metallic leads [146146]. However, it has not been used to study the temperature de-

pendent nonequilibrium transport characteristics of the Mott insulator at steady state, although

the formulation should, in principle, be able to capture this.

1.5 Our motivation and principal results

We wish to study the finite temperature steady state response of a voltage driven Mott insulator

connected to noninteracting leads. Additionally, we also wish to capture the dynamics of the

collective modes (magnons) in the voltage driven state.

Unlike the equilibrium scenario, there are no exact methods for studying nonintegrable lattice

systems out of equilibrium, except in 1D. The quantum Monte-Carlo approaches are severely

limited in size and accessible times, and are further marred by the ‘phase problem’. The situation

is worse when we consider nonperturbative approaches which attempt to access the long time

state at large bias in reasonably sized systems. The AMEA is a potential candidate, but it has not

been applied to this specific scenario. Moreover, it is likely to miss the collective mode dynamics

due to the local nature of the DMFT approximation.

We have developed a real space and real time scheme to tackle out of equilibrium strongly

correlated problems in a dissipative environment. It exploits the separation of timescales between

the ‘fast’ electronic degrees of freedom and the ‘slow’ collective modes. Starting from a

Schwinger-Keldysh action we arrive at the effective Langevin equation governing the dynamics

of the slow degrees of freedom. The scheme gives access to a variety of many body problems in

open systems.

At zero temperature this reduces to a nonequilibrium unrestricted Hartree-Fock theory. Using

this, we have studied the transport and spectral properties across the voltage-driven insulator-

metal transition in a two dimensional Mott insulator connected to noninteracting leads at zero

temperature. We find that the effect of bias penetrates deeper into the system with increasing

voltage. Moreover, a lengthscale can be associated with the bias, that controls the degree of

penetration and ‘diverges’ as the bias approaches a critical value. A strong spatial dependence

is also reflected in the local density of states, the charge density and local moment profile inside

the system.

We have applied the finite temperature Langevin scheme to study the nonequilibrium steady

state response in the half-filled three dimensional Hubbard model, with large onsite repulsion.

At low temperatures, we find a voltage driven first order transition from a Mott insulator to a

correlated metal. The current-voltage characteristics show hysteresis with respect to voltage

sweeps, up to some coexistence temperature, as found in experiments on various transition metal

oxides. The Néel temperature is strongly renormalized, and a new temperature scale for insulator

metal transition (absent in the equilibrium phase diagram), emerges at large bias.

Being formulated in real time, the Langevin scheme can also access dynamical correlations at

steady state, like collective mode spectrum, current noise etc. In this regards, we study the effect
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of voltage bias on the magnon spectrum in the two dimensional Hubbard model at low, but finite

temperature. At low bias we recover the antiferromagnetic spin waves with Goldstone modes at

wavevectors (0, 0) and (π, π), but with additional features due to broken translation symmetry

along the longitudinal direction due to the leads. We find that as the voltage approaches critical

value the spin wave spectrum develops a new diffuse branch at lower energy. Beyond the critical

voltage the usual spin wave spectrum disappears and low energy branch becomes more diffuse,

although remnants of the Goldstone features still survive.
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Chapter 2
Theoretical tools

2.1 Model

The focus in this thesis is on Mott insulators connected to non-interacting leads with a chemical

potential difference between them. In addition to introducing the voltage bias, the leads provide

dissipative channels for the system to relax. The isolated Mott insulator when subjected to a field

does not thermalise for a significantly long time, and instead gets trapped in a prethermalised

metastable state[7171]. The presence of metallic leads at the two edges allows relaxation to a

nonequilibrium steady state (NESS) [147147].

We model the Mott insulator (“system”) by the repulsive Hubbard model, while the leads

are modelled as conducting electron reservoirs. Each site at the left and right edges of the Mott

insulator, Fig. 2.12.1, is coupled to the nearest bath site via a tunnelling matrix element.

H = Hsys +Hbath +Hcoup (2.12.1)

Hsys =

∑

<ij>,σ

−tijd
†

iσdjσ + U
∑

i

ni↑ni↓ (2.1a)

Hbath =

∑

ν,β

(ǫν − µβ) c
†β
ν cβν (2.1b)

Hcoup =

∑

<ij>,σ

vij

(

c†Liσ djσ + c†Riσ djσ + h.c.
)

(2.1c)

where c†βν (cβν ) denote the creation (annihilation) operators of the bath β ∈ {L,R} (L denotes

the left lead and R the right lead) in their eigenbasis, with eigenenergies ǫν . µβ are the chemical

potentials in the noninteracting leads. µL,R = µ ± (V/2), V being the applied bias. vij denote

the matrix elements of the system-bath coupling. d†iσ (diσ) are the corresponding operators for

the system. ts, µ and U are the nearest-neighbour hopping amplitude, chemical potential and

onsite Coulomb repulsion strength, respectively, in the system. Within this setup, we study the

2D dissipative Hubbard model at zero temperature and its collective mode dynamics at low, but
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[

Ĝ−1
12 (t, t

′
)

]

ij;
αα′

=
1

2

(

~M q
i (t) · ~ταα′ − φq

i (t)δαα′

)

δijδ(t− t′) +
[

Ĝ−1
K (t, t′)

]

ij;
αα′

(2.4e)

[

Ĝ−1
21 (t, t

′
)

]

ij;
αα′

=
1

2

(

~M q
i (t) · ~ταα′ − φq

i (t)δαα′

)

δijδ(t− t′) (2.4f)

Ĥc
ij(t) =

(

φc
i(t)12 − ~M c

i (t) · ~τ
)

δij − t<ij>12 (2.4g)

where 12 is the 2× 2 identity matrix. Ĥc
(t) is a time-dependent Hamiltonian which depends on

the ‘classical’ component of the auxiliary fields. Γ̂R,A,K
(t, t′) are dissipation terms which enter

the action as a result of integrating out the leads. We approximate the density of states of the leads

with a Lorentzian function which does not have nonanalytic features like van Hove singularities

or band edges, since these can lead to non-Markovian memory kernels in the correlation functions

of the system at long time, as reported in Ref. [148148]. F (t, t′) is the distribution function of the

disconnected system, and ◦ denotes convolution. The ‘classical’ and ‘quantum’ components of

the auxiliary fields are linear combinations of the fields introduced in the H-S transformations in

Eqs. 2.3a2.3a and 2.3b2.3b.

~M c
=

1

2

(

~M+
+ ~M−

)

, ~M q
=

(

~M+ − ~M−

)

(2.5)

where we have suppressed the time and other labels for notational brevity. A similar transfor-

mation holds for the φ fields. We have mapped the original fermionic action for the dissipative

Hubbard model into an action containing time dependent auxiliary fields. The mapping is for-

mally exact up to this point. Next, we make physically motivated approximations and derive two

kinds of effective theories.

2.2.1 Keldysh mean field theory at T = 0

It is instructive to write the action in Eq. 2.42.4 in frequency representation.

S̃ [φ,M ] = Tr ln
(

iǦ−1
(ω, ω′

)
)

+
1

U

∫

dω

2π

∑

i

(

φc
i(ω)φ

q
i (−ω)− ~M c

i (ω) ·
~M q
i (−ω)

)

(2.6a)

where the components of Ǧ−1 in the 2 × 2 Keldysh space are given by,

[

(

Ĝ−1
)R
]

ij;
αα′

= (ωδij + t<ij> + iΓ̂R
ijα(ω))δαα′δ(ω − ω′

)

− (φc
i(ω − ω′

)δαα′ − ~M c
i (ω − ω′

) · ~ταα′)δij (2.6b)
[

(

Ĝ−1
)12
]

ij;
αα′

=
1

2
( ~M q

i (ω − ω′
) · ~ταα′

− φq
i (ω − ω′

)δαα′)δij + Γ̂
K
ijα(ω)δ(ω − ω′

)δαα′ (2.6c)

[

(

Ĝ−1
)21
]

ij;
αα′

=
1

2
( ~M q

i (ω − ω′
) · ~ταα′ − φq

(ω − ω′
)δαα′)δij (2.6d)
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[

(

Ĝ−1
)A
]

ij;
αα′

= (ωδij + t<ij> + iΓ̂A
ijα(ω))δαα′δ(ω − ω′

)

− (φc
i(ω − ω′

)δαα′ − ~M c
i (ω − ω′

) · ~ταα′)δij (2.6e)

Γ̂
R,A,K

(ω) are Fourier transform of ΓR,A,K
(t, t′), assuming they depend only on t− t′. In making

this assumption we have neglected the initial transient dynamics of the system after connecting

the leads.

At this point one can, in principle, find the saddle point of this action with respect to the

frequency dependent auxiliary fields. But for evaluating the saddle point equations one would

have to invert the full frequency and site off-diagonal Green’s function Ǧ−1. This is a very

challenging task, and requires some physically motivated approximations in order to proceed.

Here we invoke the static path approximation (SPA)[2424–2626], in which we drop the frequency

dependence of the auxiliary fields, and thus restrict ourselves to the description of steady states

only. The advantage we gain is that the Green’s functions become diagonal in frequency. This

allows us to access much larger sizes, in order to establish detailed spatial dependence of various

quantities of interest. This would be a drastic approximation if we were to consider the transient

response of the system. But once it relaxes to a NESS, we expect the average long time behaviour

to be reasonably captured by the zero frequency mode of the auxiliary fields. The effect of

finite-frequency modes can be built back perturbatively on top of the zero-mode theory.

Let us introduce the notation,

φc,q
i (ω = 0) ≡ φc,q

i , ~M c,q
i (ω = 0) ≡ ~M c,q

i

and make the auxiliary fields dimensionless by scaling them as

φc,q
i →

U

2
φc,q
i , ~M c,q

i →
U

2

~M c,q
i

With these steps we arrive at an effective steady state description given by the ‘static path’ action

SSPA,

SSPA
[

φ, ~M
]

= −iT r ln
[

iǦ−1
(ω)
]

+ S ′

[

φ, ~M
]

(2.7a)

where,

Ǧ−1
(ω) ≡





(

Ĝ−1
(ω)
)R (

Ĝ−1
(ω)
)K

0̂

(

Ĝ−1
(ω)
)A



+ Σ̂⊗ σx (2.7b)
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with

[

(

Ĝ−1
(ω)
)R
]αα′

ij

=

(

(ω + iη)δij + Γ̂
R
ijα(ω)

)

δαα′ − Ĥαα′

ij (2.7c)

[

(

Ĝ−1
(ω)
)A
]αα′

ij

=

(

(ω − iη)δij + Γ̂
A
ijα(ω)

)

δαα′ − Ĥαα′

ij (2.7d)

[

(

Ĝ−1
(ω)
)K
]

ij;
αα′

= Γ̂
K
ijα(ω)δαα′ + F (ω − µ)

[

(

Ĝ−1
(ω)
)R

−
(

Ĝ−1
(ω)
)A
]αα′

ij

(2.7e)

Γ̂
R,A,K
ijα (ω) =

∑

β∈{L,R}

(

∑

mn

vmivnjg
R,A,K
β,mnα(ω)

)

(2.7f)

Ĥαα′

ij = −t<ij>δαα′ +
U

2
(φc

iδαα′ − ~M c
i · ~ταα′

)δij (2.7g)

Σ̂
αα′

ij = −
U

4
(φq

i δαα′ − ~M q
i · ~ταα′

)δij (2.7h)

and

S ′

[

φ, ~M
]

=
U

4

∑

i

(

φc
iφ

q
i −

~M c
i ·

~M q
i

)

(2.7i)

gR,A,K
β (ω) denote the retarded, advanced and Keldysh components of Green’s function of the

reservoir β, while ĜR,A,K denote those of the system. Ĥ is an effective Hamiltonian which one

can obtain if one retains only the zero frequency mode of the auxiliary fields. F (ω − µ) is the

distribution function of the isolated system. η is a small positive number, which regulates the

Keldysh action.

The mean-field consistency conditions can be obtained by extremising the SPA action with

respect to the quantum auxiliary fields. We get the following family of saddle point equations:

δSSPA

δφq
i

∣

∣

∣

∣

φq , ~Mq=0

= 0,
δSSPA

δ ~M q
i

∣

∣

∣

∣

φq , ~Mq=0

= 0

These can be simplified to obtain the consistency conditions:

D
∫

−D

dω Im
[

Tr
(

ĜK
ii (ω)

)]

= φc
i (2.8a)

D
∫

−D

dω Im
[

Tr
(

ĜK
ii (ω)~τ

)]

= ~M c
i (2.8b)

where ĜK
(ω) = −ĜR

(ω)
(

Ĝ−1
(ω)
)K

ĜA
(ω) and the trace is over the 2× 2 spin subspace. D

is the cutoff in energy which must be larger than all other energy scales in the problem.
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charge fluctuations due to amplitude fluctuations of the local moments | ~Mi|. This point is

discussed further in AppendixB.2B.2.

2. We perform a cumulant expansion of the action to second order in {M q} fields, introduce

a ‘noise’ by decoupling the quadratic term, and evaluate the ‘classical’ saddle point to

obtain a stochastic equation of motion (EOM).

3. We simplify the EOM by performing a semiclassical expansion of the two-point functions

to obtain a ‘Langevin’ equation in terms of the ‘slow’ time coordinate. The noise kernel

is assumed to be Gaussian, which can be motivated in the high temperature limit (Ref.

AppendixB.1B.1).

We discuss (2) and (3) below in detail.

2.2.2.1 Cumulant expansion

The Ǧ−1 introduced in Eq.2.4a2.4a can be decomposed into a Green’s function Ǧ−1
c , which depends

only on the ‘classical’ field and a self-energy Σ̌q, which depends only on the ‘quantum’ field.

Ǧ−1
=
(

1̌ + Σ̌q ◦ Ǧc

)

◦ Ǧ−1
c

Σ̌q(t, t
′
) =

1

2

~M q
i (t) · ~ταα′δijδ(t− t′)⊗ τxK (2.9)

where τxK denotes the structure in 2×2 Keldysh space. We expand the action in Eq.2.42.4 to second

order in Σ̌q.

S̃ = S̃0
+ S̃1

+ S̃2
+ ... (2.102.10)

S̃0
= −iTr ln

[

ιǦ−1
c (t, t′)

]

= 0 (2.10a)

S̃0 vanishes from the causality relation between the retarded and advanced Green’s functions.

S̃1
=

∑

i

∫

dt

(

Im
[

Tr
(

ĜK
ii (t, t)~τ

)]

−
~M c
i (t)

U

)

· ~M q
i (t) (2.10b)

S̃2
=

i

2

∫

dt

∫

dt′
∑

ij;ab

M q
ia(t)

[

Π̂
K
(t, t′)

]ab

ij
M q

jb(t
′
) (2.10c)

where

[

Π̂
K
(t, t′)

]ab

ij
≡ Tr

[

(

ĜK
ij (t, t

′
)τaĜK

ji (t
′, t)τ b

)

+

(

ĜR
ij(t, t

′
)τaĜA

ji(t
′, t)τ b

)

+

(

ĜA
ij(t, t

′
)τaĜR

ji(t
′, t)τ b

)

]

(2.10d)
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Now, we decompose the term quadratic in M q.

eιS̃
2

= e−
1

2
Mq◦Π̂K◦Mq

∝

∫

D[ξ] exp

(

−
1

2
ξ ◦
[

Π̂
K
]−1

◦ ξ + i ξ ◦M q

)

(2.10e)

Hence, this adds a term to the coefficient of M q in S̃1 and additionally, the generating functional

is reweighted by the quadratic piece in ξ.

We obtain the equation of motion by requiring that the first order variation w.r.t the ‘q’ fields

must vanish at φq
= 0, ~M q

= 0. This gives us the following equation for the ‘c’ fields

Im
[

Tr
(

ĜK
ii (t, t)~σ

)]

= ~M c
i (t)−

~ξi(t) (2.11a)

〈ξai (t)ξ
b
j(t

′
)〉 =

[

Π̂
K
(t, t′)

]ab

ij
(2.11b)

Eq.2.11a2.11a is a stochastic equation for { ~M} which looks decoupled in site index and time. This is,

however, misleading as ǦK
ii (t, t) is, in general, a non-local function of space and time. In order

to calculate it one should solve the Kadanoff-Baym (KB) equations[149149] taking into account the

entire history of { ~Mi(t)}. This is numerically challenging and so we would like to do away with

the time kernels, if possible, while retaining the non-local character in spatial indices.

In the next section we shall see how the separation of timescales between the electronic and

magnetic excitations can be invoked to simplify the time dependence.

2.2.2.2 Semiclassical expansion

In this section we suppress the spatial indices for the sake of notational brevity. Symbols with

ˆon them are to be interpreted as matrices. Starting from ĜK
(t, t) and transforming to Wigner

coordinates allows us to write

ĜK
(t, t) = ĜK

(t, tr = 0) =

∫

dω ĜK
(t, ω) (2.12)

In what follows, we would write a series expansion for ĜK
(t, ω) in powers of ~. For this purpose

we first construct a series expansion for ǦR.

The retarded Green’s function ĜR: The retarded Green’s function obeys the Dyson’s equation

(Ĝ−1R ◦ ĜR
)(t1, t2) = δ(t1 − t2)1̂ (2.132.13)
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Transforming to Wigner coordinates allows us to expand the LHS in a Kramers-Moyal series[1818],

(

ω − Ĥc
(t) + Γ̂

R
(ω)
)

ĜR
(t, ω) +

ι~

2

(

∂tĤ
c
(t)∂ωĜ

R − (1̂ + ∂ωΓ̂
R
)∂tĜ

R

)

+O(~
2
) = 1̂

(2.13a)

where t ≡ t1+t2
2

is the center-of-mass time, and ω is the Fourier conjugate to the relative time

tr ≡ t1 − t2. Furthermore, we have assumed that Γ̂R depends only on the relative time, as is the

case at steady state.

This expansion relies on the condition that ~ ≪ (timescale for ~M fluctuations)×(energy-scale

for electronic excitations). The timescale for magnetic fluctuations is set by J−1, where J ∼ t2

U

is the magnetic exchange scale, while the energy-scale for electronic excitations is set by the

electronic bandwidth given by U , for U ≪ t. Setting ~ = 1, we then have the condition J ≪ U

for the expansion to be valid.

Inverting the equation above gives us

ĜR
(t, ω) = ĜR

(t, ω)−
ι~

2

(

ĜR∂tĤ
c
(t)∂ωĜ

R
+ ĜR

(1̂ + ∂ωΓ̂
R
)∂tĜ

R

)

+O(~
2
) (2.13b)

where, ĜR
(t, ω) is the “adiabatic” retarded Green’s function given by

ĜR
(t, ω) =

(

ω1̂ − Ĥc
(t) + Γ̂

R
(ω)
)−1

(2.13c)

which depends only on the instantaneous configuration of the background field, and not on its

history.

Now, for any matrix Â(α), we have ∂αÂ = −Â
(

∂αÂ
−1
)

Â. Using this we can rewrite 2.13b2.13b

to O(~) as

ĜR
(t, ω) =

(

1̂ +
ι~

2

[

ĜR∂tĤ
c
, ĜR

(

1̂ + ∂ωΓ̂
R
)]

)

ĜR
(t, ω) (2.13d)

where [ , ] denotes the commutator bracket.

The Keldysh Green’s function ĜK: Knowing ĜR and ĜA to any order in ~ allows one to

construct the ĜK to that order provided the distribution function is known apriori. In our case,

the distribution function in the disconnected system F (ω) = tanh(ω/2T ) gets corrections due

to hybridisation with the leads, as is apparent from the form of Ĝ−1
K (t′, t′′) defined in Eq.2.4d2.4d.

From the structure of Ǧ−1, it follows that

ĜK
(t1, t2) = −ĜR

(t1, t
′
) ◦ Ĝ−1

K (t′, t′′) ◦ ĜA
(t′′, t2) (2.142.14)
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Transforming to Wigner coordinates and implementing the Kramers-Moyal expansion, as above,

allows us to write

ĜK
(t, ω) = ĜK

(t, ω) +
ι~

2

[

ĜR∂tĤ
c~, ĜR

(

1̂ + ∂ωΓ̂
R
)]

F ĜR −H.c.+ (..) (2.14a)

ĜK
(t, ω) = F (ω)

(

ĜR
(t, ω)− ĜA

(t, ω)
)

− ĜR
(t, ω)Γ̂K

(ω)ĜA
(t, ω) (2.14b)

The terms denoted by (..) in Eq.2.14a2.14a can be dropped as their contribution is negligible for the

gapped system. Now, we can write the matrix elements of adiabatic Green’s function in the 2×2

spin subspace as:

ĜR
ij(t, ω) = gRij(t, ω)1̂2 +

~hR
ij(t, ω) · ~σ (2.15a)

and similarly, for,

Λ̂
R
ij(t, ω) ≡ −ι~

[

Ĝ∂tĤ
c, ĜR

(

1̂ + ∂ωΓ̂
R
)]

(2.15b)

we can write,

Λ̂
R
ij(t, ω) = ρRij(t, ω)1̂2 +

~λR
ij(t, ω) · ~σ (2.15c)

Plugging these in eq.2.14a2.14a we obtain

Tr
[

ĜK
ii (t, ω)σ

a
]

= Tr
[

ĜK
ii (t, ω)σ

a
]

+

∑

j

(

Γij(t, ω)∂tM
a
j

−
(

~Aij(t, ω)× ∂t ~Mj

)

a
+ ~Ba

ij(t, ω) · ∂t
~Mj

)

(2.15d)

where,

Γij =

(

ρRijg
R
ji −

~λR
ij ·

~hR
ji +R → A

)

(2.15e)

~Aij =

(

ρRij
~hR
ji −

~λR
ijg

R
ji +R → A

)

(2.15f)

~Ba
ij =

(

~λR
ijh

R
a,ji − λR

a,ij ·
~hR
ji +R → A

)

(2.15g)

Finally, from eq.2.122.12 we know that the equal time Keldysh Green’s function which enters the

EOM eq 2.11a2.11a is obtained by performing an integral over ω of eq.2.15d2.15d.

∫

Im
[

Tr
(

ĜK
ii (t, ω)~τ

)]

dω ≡ 〈~σi(t)〉{ ~M}
(2.16a)
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where 〈~σi(t)〉 is the instantaneous expectation value of the electron spin obtained under the

adiabatic approximation. We further assume,

∫

dω Γij(t, ω) ≈
1

γi(t)
δij (2.16b)

∫

dω ~Aij(t, ω) ≈
α

γi(t)
~Mi(t)δij (2.16c)

[

Π
K
(t, t′)

]ab

ij
≈ 2Di(t)Tδijδabδ(t− t′) (2.16d)

where γi, α and Di are parameters, to be determined, and T is the temperature. ~Ba
ij adds a small

correction to the amplitude stiffness which has been neglected. The classical form of the noise

kernel can be motivated by making a high temperature expansion of ΠK on the homogeneous

mean-field state (AppendixB.1B.1). The noise vanishes as T → 0 as a result of this approximation,

but the actual noise survives even at zero temperature in a quantum system. The parameters γi,

α and Di may seem arbitrary as of now, but γi and Di would be determined in terms of α by

imposing a couple of consistency conditions in the subsequent sections.

With these considerations, one can write a stochastic evolution equation for {M},

d ~Mi

d t
− α ~Mi ×

d ~Mi

d t
= γi(t)

(

〈~σi〉{ ~M}
− ~Mi +

~ξi

)

(2.172.17)

〈ξai (t)ξ
b
j(t

′
)〉 = 2Di(t)Tδijδabδ(t− t′) (2.17a)

〈~σi〉{ ~M(t)} =

∫

Im
[

Tr
(

GK
ii (t, ω)~τ

)]

dω (2.17b)

where a, b denote O(3) indices, GK denotes the adiabatic Keldysh Green’s function, and the

trace is over the local 2 × 2 spin subspace. ~σi =
1
2

∑

αβ

d†i,α~ταβdi,β is the local fermion spin

and ~τ ≡ (τx, τ y, τ z) is the 2 × 2 Pauli vector. Its average is computed on the instantaneous

{ ~M} background. 〈~σi〉 is a non-linear, non local, function of the ~M field and encodes the

strong correlation effects in the problem. α is the dimensionless Gilbert damping[150150, 151151]

parameter which provides a relaxational torque to the angular degrees of freedom, γi, which

has the dimension of energy, contributes to longitudinal damping and Di are position dependent

diffusion coefficients.

As we had stated earlier, γi and Di are not independent parameters. This can be clarified by

casting Eq.2.172.17 into a Landau-Lifshitz-Gilbert(LLG) form by solving for ∂ ~M
dt

, which gives,

d ~Mi

d t
= Ai(t) ~Mi ×

(

〈~σi〉+ ~ξi

)

+Bi(t) ~Mi ×
(

~Mi ×
(

〈~σi〉+ ~ξi

))

+ γi(t)
((

〈~σi〉+ ~ξi

)

− ~Mi

)

(2.18)

with, Ai(t) ≡ γi(t)α
1+α2|Mi(t)|2

and Bi(t) ≡ γi(t)α
2

1+α2|Mi(t)|2
. The first term is the ‘Bloch’ term which

leads to precessional motion of the spins. In order to capture the correct spin wave dispersion
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Ai = 2U must be satisfied, which follows from the subleading term in the strong coupling

expansion of 〈~σi〉. This means that the time dependence in Ai(t) must drop out, which leads us

to the condition,

γi(t) =
2U

α

(

1 + α2| ~Mi(t)|
2
)

(2.19)

and hence, Bi = 2Uα also becomes independent of time. Hence Eq. 2.182.18 simplifies to,

d ~Mi

d t
= 2U ~Mi ×

(

〈~σi〉+ ~ξi

)

+ 2Uα ~Mi ×
(

~Mi ×
(

〈~σi〉+ ~ξi

))

+ γi(t)
((

〈~σi〉+ ~ξi

)

− ~Mi

)

(2.20)

with 〈ξai (t)ξ
b
j(t

′
)〉 = 2Di(t)Tδabδijδ(t− t′).

In the next section we shall determine the local diffusion coefficients Di(t) in terms of α by

requiring detailed balance at equilibrium. Finally, the value ofα can be ascertained by evaluating

Eq. 2.15f2.15f for a two site system. A tedious, but straightforward, calculation suggests α = (U/t)2.

Hence, all the parameters which were introduced ‘by-hand’ get fixed upon further considerations

and the final formulation does not have any free parameters. Having said that, we must note that

unlike the other two parameters the value of α doesn’t get fixed any consistency condition, but

rather through a calculation. We shall test the sanctity of this result by benchmarking our scheme

against equilibrium Monte-Carlo results in Chapter 44.

2.2.3 Accessing equilibrium dynamics

The Langevin scheme yields a time series for the auxiliary field ~Mi(t) starting from an initial

configuration which may be arbitrary. Thus the scheme allows for thermalisation of the system

to the equilibrium state. However, it remains to be ascertained that the system reaches the correct

equilibrium state, which is nontrivial, given the multiplicative nature of the noise. Moreover, the

dissipation coefficient γi(t) and the diffusion Di(t) not only vary over sites, but also depend on

the instantaneous configuration of the auxiliary fields. Nevertheless, we shall show that even with

such nontrivial parameters, the Langevin scheme converges to the correct long time equilibrium

state. To do this we write the Fokker-Planck equation for the distribution function of the moments

P ({~mi(t)}, t) = 〈
∏

i,a δ(m
a
i −Ma

i )〉.

∂ P

∂ t
= −

∂

∂ ma
i

·

{

[

ǫabcm
b
iF

c
i + αma

im
b
i

(

F b
i − TD̃i

∂

∂ mb
j

)

+
1

α

(

F a
i − TD̃i

∂

∂ ma
i

−
(

δab +ma
im

b
i

)

T
∂ D̃i

∂ mb
i

)

]

P

}

(2.212.21)

where the repeated indices are to be summed over, and

D̃i =
Diγi
2U

(2.21a)
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is the effective diffusion coefficient, and

~Fi = 〈~σi〉{~m} − ~mi (2.21b)

is a generalised force. At steady state ∂ P
∂ t

= 0 leading to conservation of probability current. For

the dynamics at equilibrium, the following conditions are additionally met:

• The force is conservative, and hence, can be derived from the spin-fermion Hamiltonian

as ~Fi = − ∂H
∂ ~mi

, where,

H =

∑

<ij>,σ

thop c
†

iσcjσ − 2U
∑

i

(

~mi · ~σi + |~mi|
2
)

(2.22)

is the same Hamiltonian which was introduced in Eq. 2.4g2.4g if we include the classical

stiffness of the auxiliary moments, and the charge field is fixed to the half-filling saddle

point value.

• The distribution is given by a Boltzmann form,

P ({~mi(t)}) ∝ Trel
(

e−βH
)

(2.23)

Using this form in Eq. 2.212.21, we find that the distribution becomes stationary if we assume

D̃i = 1 (2.24a)

which leads to,

Di =
2U

γi
=

α

1 + α2|~mi(t)|2
(2.24b)

This determines the diffusion coefficient in terms of the known parameters and the instan-

taneous background configuration.

Hence, we find that with a suitable choice of the dissipation and diffusion coefficients, the

Langevin scheme indeed leads to the correct equilibrium state.

An alternative, and perhaps more intuitive approach, would be to show that the Langevin

equation for the auxiliary fields maps to the well studied Landau-Lifshitz-Gilbert (LLG) equation

at strong coupling. This is easy to see once we expand the electronic spin in powers of t/U in

terms of the instantaneous background configuration,

〈~σi(t)〉 = ~Mi(t)−
J

2U

∑

j∈NN

~Mj(t) (2.25)

where J = 4t2hop/U . Substituting this in Eq. 2.202.20 and projecting the dynamics on the spheres
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by an interpretation rule to properly define it[153153]. Two dominant interpretations, which lead to

either the Itô or the Stratonovich stochastic calculus, are usually considered, yielding different

dynamical properties for the system. Depending on the stochastic calculus used, disparate Fokker-

Planck equations for the time evolution of the nonequilibrium probability distribution of the

corresponding variables are obtained. It is well known that this equation reproduces Boltzmann

equilibrium statistics only if the Stratonovich midpoint prescription stochastic calculus is used.

For other kinds of time discretisations appropriate drift terms have to be added[154154] to get the

correct equilibrium.

We solve the above equation using a stochastic Heun discretisation scheme[155155] to generate

a time series for ~Mi(t). The stochastic Heun scheme converges in quadratic mean to the

Stratonovich solution of Eq.2.172.17. Upon obtaining the time series, electronic observables are

computed on the instantaneous configurations (assuming that electronic timescales are much

shorter than spin fluctuation scales) and averaged over the time series.

2.3 Observables

In this section we discuss various observables which can be computed once we know the time

series of the auxiliary fields. We shall compute the electronic observables from the instantaneous

background fields under the assumption of adiabaticity, as discussed above.

2.3.1 Current

In a nonrelativistic fermionic system, defined in a lattice, the continuity equation for local charge

conservation is given by

(−e)
dni

dt
+ ~∇lattice · ~Ji = 0 (2.27)

where ni = c†ici is the local charge density and ~Ji is the local current density operator. For a

system at steady state, the Heisenberg equation of motion for ni is

dni

dt
=

i

~
[H,ni] (2.28)

where the RHS is an equal time commutator. For the Hubbard model Eq.1.2.21.2.2, this leads to

[H,ni] = −t
∑

j∈NN

(

c†icj − c†jci

)

(2.29)

The sum over nearest neighbours is the lattice divergence when the reference point is set at

the site i. By comparing with Eq.2.272.27, we can identify −t
(

c†icj − c†jci

)

as the current density

along the direction of nearest neighbour site j from the site i. The expectation value of the
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current is

Ii→j ≡ 〈Ji→j〉a = −
ieat

~

(

〈c†icj〉 − 〈c†jci〉
)

(2.30)

A bias voltage is usually applied by attaching leads across two ends of the sample. For the

kind of systems we consider, this sets up a current along the longitudinal direction (defined by

the two leads) and the transverse components (orthogonal to the longitudinal direction) of the

current vanish. Furthermore, for a clean system at steady state the current along all bonds in a

given direction are the same. Here, we focus only on the steady state average current of a clean

system along the longitudinal direction, which, in terms of the nonequilibrium Green’s functions

(NEGF) is given by (e = a = ~ = t = 1).

Ij,→j+1 (V ) =

∑

σ

∫ tmax

0

dt

tmax

∫

∞

−∞

dω

2π

[

G<
j+1, j;σ(t, ω)− G<

j, j+1;σ(t, ω)
]

(2.31)

G<
(t, ω) =

1

2

(

GK
(t, ω) + GA

(t, ω)− GR
(t, ω)

)

The adiabatic NEGFs are calculated on the instantaneous backgrounds using Eqs. 2.13c2.13c and

2.14b2.14b.

In order to stabilise the numerical computations, we need to add a small dissipation η at

each site. This can be alternatively interpreted as weak coupling of each site in the system to

noninteracting fermionic baths. Such a construction is necessary to regulate a Keldysh theory

in absence of the leads, and is a part of the formulation itself, with the understanding that one

should take the limit η → 0 at the end of a calculation. Numerically one has to work with a

small η and ideally work in a limit where the results become independent of its value. In our

calculations we find that the current conservation is sensitive to the choice of η, which is quite

natural since a particle can escape into the bath before it reaches the other lead if the coupling

to the bath is sufficiently strong. This can be avoided by choosing η to be much smaller than

the average level spacing δ. However choosing it to be very small may lead to ill-conditioning

of the matrices during diagonalisation. We find that η ∼ 0.1δ is a good choice for numerical

implementations. Later, we shall discuss this issue in detail.

Transport experiments measure the charge current in the leads which is the same as the

longitudinal bond current defined above at steady state, if there is no leakage in the setup. By

recording the current across the sample upon applying an external voltage (Vsource) the I − V

characteristic of the sample is obtained. It is important to note that the contacts can also contribute

to the measured resistance in a two terminal setup, which might lead to spurious features in the

I − V . A four-probe measurement which records the voltage drop a cross the two ends of

the sample (Vsample) eliminates this problem. Experiments report both I − Vsource as well as

I−Vsample. We shall compare our results with I−Vsource reported in experiments, as the voltage

drop across the sample in a conducting state depends on other resistive elements in the circuits

which we haven’t accounted for in our theoretical models.
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2.3.2 Density of states

The density of states (DOS) for an isolated non interacting system is given by

A(ω) =
1

N

∑

n

δ (ω − ǫn) (2.32)

where ǫn is the n-th eigenvalue and N is the total number of sites. An open system cannot be

‘diagonalised’ by going to the energy basis. The presence of external dissipation necessarily

leads to broadening of the exact eigenstates of the isolated system. A more general definition

which is also applicable to open systems can be given in terms of the retarded Green’s function

Aii(ω) = −
1

2π

∑

σ

Im
[

GR
ii,σ (ω)

]

(2.33)

A(ω) =
1

N

∑

i

Aii(ω) (2.34)

where Eq.2.332.33 defines the local density of states (LDOS). Within the Langevin formulation, the

LDOS is computed from the adiabatic retarded Green’s function GR
({ ~M(t)}, ω) defined over

the instantaneous background configuration and averaged over the time-series of ~Mi(t).

The DOS can be measured in photoemission spectroscopy (PES) while the LDOS can be

measured via tunneling probes like scanning tunneling microscopy (STM). The angle resolved

photoemission spectroscopy (ARPES) can measure the spectral function from which both the

DOS and LDOS can be inferred.

2.3.3 Dynamical structure factor

The dynamical structure factor D~q(ω) correlates auxiliary fields at two different points in space

and time,

D~q(ω) =
1

N2

∑

ij

∫

dt

tmax

∫

dt′

tmax

~Mi(t) · ~Mj(t
′
) e−iω(t−t′)+i~q·(~ri−~rj) = | ~M~q(ω)|

2 (2.352.35)

where

~M~q(ω) =
1

N

∑

i

∫ tmax

0

dt

tmax

~Mi(t) e
−iωt+i~q·~ri (2.35a)

and N is the total number of sites.

Inelastic neutron scattering (INS) experiments can measure the dynamical spin susceptibility

χ~q(ω) given by,

χ~q(ω) =
1

N2

∑

ij

∫

dt

tmax

∫

dt′

tmax

〈~σi(t) · ~σi(t
′
)〉 e−iω(t−t′)+i~q·(~ri−~rj) (??)

= |〈~σ~q(ω)〉|
2
+ vertex corrections (2.36)
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If the vertex corrections are ignored, the dynamical spin susceptibility can be well approximated

by the auxiliary field dynamical structure factor, which we demonstrate in Fig. 5.25.2.

2.3.4 Static structure factor

The time averaged auxiliary field static structure factor S(~q) can be used to indicate the presence

of long range magnetic order in a system. It is given by the zeroth moment of the dynamical

structure factor defined above,

S(~q) =

∞
∫

−∞

dωD~q(ω) =

∫ tmax

0

dt

tmax

| ~M~q(t)|
2 (2.37)

where ~M~q(t) is the lattice Fourier transform of the instantaneous configuration ~Mi(t). The

wavevector ~Q = (π, π, π) is the relevant ordering vector for Néel antiferromagnetic order.

S(~q = ~Q) ∼ O(1) indicates the presence of long range antiferromagnetic order, whileS(~q) ∼ 1
N2

indicates a magnetically disordered state. We track the ordering peak of S(~q) with temperature

T to detect the transition from a Néel state at low T to a paramagnetic state at high T .

This maps on to the static spin structure factor of the electrons if the vertex corrections can

be neglected. Experimentally the spin structure factor is an accessible quantity. The changes

in magnetisation of a sample can be measured in superconducting quantum interference device

(SQUID) magnetometry.

2.3.5 Magnetic moment distribution

The magnetic moment distribution is given by

P (m) =
1

N

∑

i

∫ tmax

0

dt

tmax

δ
(

m− | ~Mi(t)|
)

(2.38)

For the equilibrium Mott insulator at low temperature the distribution is sharply peaked at the

saturation value of the local moments (∼ 1) and broadens on increasing temperature due to

thermally induced amplitude fluctuations. This is not an experimentally accessible quantity, but

it yields insight into the underlying magnetic state and is crucial in formulating effective theories,

as we shall find out in Ch. 44

We have checked that the electronic moment distribution resembles the auxiliary field distri-

bution at low temperature but gets significantly less broadened with increasing temperature in

the insulating phase. The local electronic moment profile can be measured in nuclear magnetic

resonance (NMR) experiments, from which the moment distribution can be inferred.
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Chapter 3
Voltage driven insulator-metal transition at

zero temperature

In this chapter we present our results on the mean field theory for a voltage driven insulator-metal

transition (IMT) in a two dimensional Mott insulator at zero temperature. The Mott phase is

realised within the single band Hubbard model. Before delving into the results we discuss the

phenomenological background to the problem. We then discuss the mean-field ground state of

the 2D Hubbard model and some of its features as a function of the onsite Hubbard repulsion.

Finally, we discuss the nonequilibrium transport and spectral properties, and interpret our results

in terms of a bias dependent length scale.

3.1 Background

The field driven breakdown of band insulators is well understood owing to the early work of

Landau [156156] and Zener [157157]. In these insulators electron correlation effects are neglected and

the breakdown is understood in terms of field assisted quantum tunneling of electrons across

the band gap. In contrast, Mott insulators are strongly correlated, with a charge gap of many

body origin due to Coulomb repulsion between electrons. The nonequilibrium physics of Mott

insulators has attracted a lot of attention in recent times with both experimental [3737–4343, 4545–5757]

and theoretical [6969–7272, 7474, 7575, 7777, 7878, 9595–9797, 106106–121121, 123123, 137137, 141141–143143] studies trying to

explore the effect of the strong electron correlation on nonlinear transport in these insulators.

In most of the steady state experiments the current voltage (I-V) characteristic at low temper-

ature has a sharp threshold voltage [3737–4343, 4545–4747]. The theory for band insulators predict that

the I-V is given by the Landau-Zener (LZ) form I ∼ V e−Vth/V , with Vth ∝ ∆
2L/W , where ∆ is

the band gap, L is the longitudinal size and W the bandwidth of the system. The observed I-V

characteristics at Mott breakdown are quite different from the LZ response, and show a sharp

threshold at low temperature.
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The theoretical studies broadly use two approaches: field driven and bias driven. In the field

driven approach, a constant electric field is applied across the system, either by introducing a

time dependent gauge field via Peierls coupling or by imposing a linear potential gradient. This

has been used in the one dimensional Hubbard model to study the time-dependent Schrodinger

equation [6969], and also in an application of DMRG [9595]. Nonequilibrium DMFT has extensively

used this approach [106106, 111111, 115115, 116116]. Many of these studies find that the I-V characteristics

obey the LZ form. Recently, the Hartree-Fock mean-field approach has also been used to

study field driven problems. A discontinuous insulator to metal transition, along with a region

of bistability, has been found within a homogeneous mean-field study [142142]. For disordered

systems, both hysteresis and filamentary conduction have been found within an unrestricted

Hartree-Fock study [141141].

In the bias driven setup the interacting “bulk” is coupled to non-interacting leads at the two

ends. A chemical potential difference (bias) between the two leads tends to drive a current.

Time dependent DMRG [9797], nonequilibrium DMFT [108108, 109109], and a 3D time dependent

Gutzwiller mean-field based study [7777, 8080], have used this setup. These methods impose a linear

potential profile across the system, or construct a screening potential by hand [108108]. Despite the

assumed form for the potential the Gutzwiller method obtains spatially inhomogeneous behavior

in various quantities. The current in these studies do not show the sharp voltage driven change

that is observed in experiments [3838–4343, 4545–4747], and fit rather with the LZ form. A few bias

driven calculations, however, do compute the internal field self-consistently and find that the

breakdown process is preceded by a spatially modulated state [137137, 143143]. This hints that the

spatial symmetry breaking due to the applied bias can promote inhomogeneous states which play

a crucial role in the breakdown.

To explore this aspect, we used a Keldysh mean-field approach to study the 2D Hubbard

model, at half-filling and strong interaction, connected to metallic leads. Our main finding is on

the non-trivial spatial behavior of the charge and spin density in the Mott insulator as the system

heads towards breakdown. We observe that there is a weakly size dependent threshold voltage

Vc, of order the gap in the zero bias Mott insulator, which defines the reference scale in the biased

problem. Around V = Vc the system shows crossover from exponentially small current to a

high current state. The key features of this phenomenon can be captured by a bias dependent

“penetration length” ξ(V ), which becomes comparable to system size as V → Vc. We restrict

ourselves to zero temperature since a model with SU(2) symmetry in one or two dimensions

cannot have magnetic long-range order at finite temperature [158158, 159159]. A more sophisticated

approach would be needed at finite temperature. Before launching into the voltage response we

first discuss the nature of the V = 0 state.
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3.2 Equilibrium mean-field theory

At half-filling on the square lattice, with only nearest neighbour hopping, the ground state of the

Hubbard model is an antiferromagnetic insulator (AF-I). At low U/t the magnetic order arises

due to nesting of the Fermi surface, while at large U/t it is driven by nearest neighbour AF

exchange. The effect is well captured within a mean field theory which starts by rewriting the

interaction term as:

Uni↑ni↓ =
U

4
(ni)

2 − U
(

~σi · Ω̂i

)2

(3.1)

with ni ≡ ni↑ + ni↓ and ~σi =
1

2

∑

αβ c
†

iα~ταβciβ , where ~τ ≡ {τ 1, τ 2, τ 3} is the 2 × 2 Pauli

vector and Ω̂ is an O(3) unit vector, followed by factorisation of the quadratic pieces in terms of

expectation values.

〈ni〉 = φi, 〈~σi〉 =
1

2

~Mi (3.2)

where M̂i = Ω̂. This leads to an effective mean-field Hamiltonian of the form

HMF = −t
∑

<ij>
σ∈↑,↓

c†iσcjσ +
∑

i

(

U

2
φi − µ

)

ni −
U

2

∑

i,αβ

c†iα
~Mi · ~ταβciβ −

U

4

∑

i

(

φ2

i − | ~Mi|
2

)

(3.3)

where φi and ~Mi have to be determined self-consistently. For the periodic system, one can

simplify the mean field equations by assuming the expectation values to be homogeneous.

While the ground state is an antiferromagnetic insulator (AF-I) for all values of U/t there is

a qualitative difference between the U/t . 1 insulator and the U/t ≫ 1 insulator. For U/t . 1

one obtains a ‘Slater insulator’ where the charge gap is associated with the magnetic order. When

U/t ≫ 1, however, the charge gap (or a pseudogap) survives even when magnetic order is lost.

This is the ‘Mott insulator’.

To locate the Slater to Mott crossover we used two indicators. In the first, Fig.3.13.1 (left panel),

we compare the density of states (DOS) in the AF-I ground state with that in a ‘paramagnetic

phase’ - where the moment magnitude is same as the AF-I state but the orientations are ran-

domised. The results show that at U = 6t the loss of magnetic order still leaves a prominent

pseudogap. At this U the V = 0 state is a Mott insulator.

The second indicator is related to charge and spin excitation energies. The charge gap 2∆

between the upper and lower Hubbard bands at T = 0 crudely defines the temperature scale

Tgap ∼ 2∆ ∼ U (at largeU ) at which the DOS would become gapless. Another scaleEmag arises

from the energy difference between the perfect AF-I state and the random orientation state. This

defines the temperature scale at which magnetic order would be lost. Fig.3.13.1 (right panel) shows

that for U/t = 6 we are in a regime where 2∆ ≫ Emag. In fact 2∆ ∼ U , while Emag ∼ t2/U .

Again the signature of a Mott insulator.

A full thermal theory has indeed been developed for the equilibrium problem [2424–2626] and

recovers Tc scales consistent with Fig.3.13.1. See Fig.1 in [2626]. We would discuss a non equilibrium
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ments surviving close to the center of the system. It is an inhomogeneous antiferromagnetic

metal.

4. Current saturation in PM-M, (V ≫ Vc): The spectral features and the current no longer

change with voltage and the moments become vanishingly small.

Apart from the current, and the spatial behaviour of charge and spin variables, we provide detailed

results on the voltage dependence of the local DOS.

We discuss the results for our implementation of the scheme in a 2D system, which is finite

in the longitudinal direction, while being periodic in the transverse direction. For the conducting

leads, we approximate the density of states (DOS) by a Lorentzian function.

ρL,R(ω) =

(

D

3 tan
−1
(
3

2
)

)

1
(

ω2 +
(

2D
3

)2
) (3.4)

Where D is the bandwidth of the bath. After integrating out the bath we retain only the diagonal

terms arising from the bath Green’s functions, which are proportional to the bath DOS, an

approximation that is justified in the wide-bandwidth limit [137137].

Unless explicitly mentioned, we have shown the results for a system with 32 sites in the

longitudinal (x) direction and 8 sites in the transverse (y) direction. We have also studied

the size dependence of our results by varying the longitudinal size from 12 to 48 sites, and

the transverse size from 4 to 8 sites. The size dependence has been discussed in the relevant

sections. Unless otherwise mentioned, all energies are measured in units of hopping in the

system ts = t = 1, and all currents are measured in units of et/~.

3.3.1 I-V characteristic

The bond currents are calculated using the NEGFs as detailed in Sec. 2.3.12.3.1. Since the mean field

state is static the time averaging of observables becomes trivial and the bond current between

nearest neighbour sites in the x direction is given by the expression,

Ij, j+1 (V ) =

∑

σ

∫

∞

−∞

dω

2π

(

G<
j+1, j;σ(ω)−G<

j, j+1;σ(ω)
)

G<
(ω) =

1

2

(

GK
(ω) +GA

(ω)−GR
(ω)

)

where GR,A,K are the NEGFs defined on the mean field state (Eq. 2.7b2.7b).

For the system in consideration, which has periodic boundary conditions along the transverse

direction, the current is found to be the same along all longitudinal chains. Hence, the total

current scales linearly with the transverse size of the system. At steady state one further expects

the current to be the same on all bonds along the longitudinal axis. This has been numerically

checked to be true strictly in the limit η → 0. We discuss this further in Sec.3.4.5.23.4.5.2.
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saturation current is shown in Fig.3.33.3(c). Isat ∼ 1/Lx, and vanishes as Lx → ∞.

This is in contrast to the DMFT [108108, 115115, 116116] and Gutzwiller mean field [8080] studies in

which the current appears to have a LZ functional form I ∼ V e−α/V . However, we find that

the low V current, although exponentially suppressed, deviates from this form. We could not

derive an explicit low V form for the current due to several limitations, but a large-N study[7676]

has suggested a form which is different from the LZ form for the low V current. However, it

could not conclude whether the voltage driven breakdown is a ‘true’ transition or just a crossover.

Within the limitations of our scheme we find that it is a crossover for the 1D and 2D Hubbard

models connected to leads. Within our treatment, the I-V curve in these systems has a point of

inflection (second derivative vanishes) at the ‘critical voltage’ Vc, at which point it goes from

being curved upwards to being curved downwards, while the LZ form does not have any such

point. Such a point arises within our theory because the current saturates at large V , while the

LZ current keeps growing linearly at large V . Within our theory, the current saturation occurs

due to the finite bandwidth of system, irrespective of the bandwidth of the bath. The behaviour

we observe has similarity to some experiments [3737, 4040].

3.3.2 Density of states

The overall density of states (DOS), A (ω), is obtained by averaging the local DOS, Aii(ω), over

the x direction.

Aii (ω) =
∑

σ

Aii,σ = −
1

π

∑

σ

Im
(

GR
ii,σ (ω)

)

(3.5a)

A (ω) =
1

L

L
∑

i=1

Aii (ω) (3.5b)

At V = 0 the LDOS is gapped at all sites, except for a couple of sites at the edges - which get

renormalised due to coupling with the metallic baths. The sites away from the edges remain

essentially unaffected in the absence of bias, as is evident in Fig.3.43.4(a1). Hence, the system

averaged DOS at V = 0, Fig.3.43.4(b1), resembles that of an isolated Mott insulator, except for two

subtleties:

(i) a small subgap weight shows up in the LDOS on all sites, which contributes to subgap

weight which is discernible in Fig.3.43.4(b1). This is due to the presence of a small dissipation η at

every site which is necessary to stabilise the numerical implementation, as we discussed in the

previous section. The subgap weight at V = 0 diminishes with reducing η.

(ii) There are additional peaks in the DOS at high energy, beyond the coherence peaks, when

compared with the usual mean field DOS at the same value of U/t, shown in Fig.3.13.1(c). This is

due to the rectangular geometry chosen where the transverse direction (Ly = 8) is much shorter

than the longitudinal direction (Lx = 32). We have checked that those features merge into a

smooth profile when the transverse size is increased to match with the longitudinal size.
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3.4.2 Nature of the transition

Most experiments on the bias driven insulator-metal transition show (i) a first order jump from the

insulating to the conducting state on increasing bias, (ii) a hysteretic response to bias cycling, and

(iii) a seemingly growing current, an ‘ohmic response’, as the bias is increased past breakdown.

We do not see these in our results at U = 6t so some clarification is in order

The I-V curves for the bias driven insulator-metal transition, within this study, grow smoothly

across Vc, from an exponentially suppressed current state to high current state. The transition

within our inhomogeneous mean field study does not require the magnetic order parameter to

vanish throughout the system, rather it is driven by a ‘penetration length’ becoming comparable

to system size - with moments still surviving in the center of the system. This is specific to

low spatial dimensions - 1D and 2D, and unlike the scenario reported in Ref. [142142], where

the system undergoes a discontinuous transition with respect to the applied field. This crucial

difference might be due to the assumption of a uniform order parameter in that study. However,

a 3D generalisation (to be discussed in the next chapter) of this method yields I-V characteristics

in which the current switches discontinuously between the two regimes. There we also find

hysteresis with respect to upward and downward voltage sweeps. This is the scenario reported

in most of the experiments [3737–4343, 4545–4747] on voltage driven Mott insulators.

3.4.3 The large bias state

Within our scheme the current saturates at large values of bias since the current kernel is bounded

by the bandwidth of the bath-connected system. Increasing V beyond this scale does not have

any effect on the current. The range of V , post-breakdown, for which the current keeps growing

depends on the ratio of gap (∆) to the bandwidth (W ). For example, in Fig.3.23.2(a), for U/t = 2

we have ∆/W ≈ 10, and one needs to apply a bias which is ten times larger than the breakdown

voltage to find current saturation. This might be the scenario for most experiments [3737–4343, 4545–4747]

where they do not report saturation upto V ∼ 2Vc.

3.4.4 Quantum fluctuations and long range Coulomb effects

In this chapter we found that a mean field theory successfully captures the bias driven insulator

to metal transition in the 2D Hubbard model. However, due to neglect of fluctuations, it may not

predict the correct transition scales. In the V ∼ Vc regime, where the local moments are still

large at the center, while those near the edges get completely quenched, quantum fluctuations

might significantly alter the parent state. The long range Coulomb interaction, as considered in

Ref.[143143], should also play a significant role in this regime. It would redistribute the charges

accumulating at the edges into a more uniform profile. Overall, it is very likely that incorporating

quantum fluctuations and long range Coulomb effects would not only reduce the critical voltage,

but may also change the nature of the transition, inducing a discontinuous change from insulating
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grid ∼ 5× 10
3.

3.5 Conclusion

We have studied the breakdown of a two dimensional antiferromagnetic Mott insulator in response

to a voltage bias, using Keldysh mean field theory at zero temperature. We obtained the current-

voltage characteristics for a finite sized system and studied its size dependence. The I-V results

which we obtain show a threshold behaviour, unlike those obtained from dynamical mean field

theory studies. We studied the variation of the local density of states in the longitudinal direction

in response to the bias. The LDOS changes from ‘gapped’ to ‘ungapped’ as one moves from

the center to the edge at V < Vc, with the fraction of ‘ungapped’ sites increasing as one heads

towards Vc. These effects emerge due to the progressive ‘penetration’ of the applied bias into

the bulk over a lengthscale ξ(V ), which grows to system size near the critical bias. All response

functions can be calculated, approximately, based on a knowledge of this lengthscale. The results

emphasize the role of spatial symmetry breaking due to the applied bias, and the need for a real

space treatment of the resulting problem. Our method readily generalizes to disordered and

frustrated Mott systems.
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Chapter 4
Nonequilibrium response of the Mott

insulator at finite temperature

In the last chapter we discussed the voltage driven breakdown of a two dimensional (2D) Mott

insulator at zero temperature. The transport characteristics showed a sharp crossover from an

insulating to a metallic state across a voltage Vc, and the essential physics could be attributed

to a voltage dependent length scale ξ which is responsible for penetration of the effects of bias

from the edges to the center of the system. It also motivated pattern formation accompanying the

insulator-metal transition. However, as with any mean field theory, it neglected fluctuations of the

auxiliary fields. This is particularly debilitating in the study of Mott systems, which usually have

magnetically ordered ground states and undergo a thermally driven magnetic transition driven

by angular fluctuations of the magnetic order parameter. Mean field theory fails to capture this

entirely, and thus cannot be reliably compared with experiments which often explore the voltage

driven insulator metal transition with varying temperature.

Moreover, as we discussed in Sec.1.3.11.3.1, several experiments in Mott insulators reveal a

discontinuous current-voltage characteristic along with hysteresis. One also observes a strong

temperature dependence in the current response. While the actual experimental scenario might

be very complicated due to the presence of multiple orbitals in real materials and the coupling

of lattice degrees of freedom with the electrons, in this chapter, we explore the interplay of mag-

netism and nonequilibrium charge transport in Mott insulators by studying the three dimensional

(3D) Hubbard model at finite temperature in the presence of a voltage bias.

A 3D system is considered because there is no real magnetic transition in lower dimensions for

the systems we study. Although a finite sized calculation in lower dimensional systems may reveal

an apparent ‘transition’, the results become strongly size dependent and the ‘transition’ does not

survive in the thermodynamic limit. We also neglect the effects of lattice and multiple orbitals in

this study, which must be built-in if a quantitative comparison with experiments has to be made.

We use the effective Langevin scheme introduced in Chapter22, which incorporates thermal

fluctuations of the magnetic auxiliary field that is used to decouple the Hubbard interaction.
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Before going into the results, we discuss the background to this problem in the next section.

4.1 Background

Strongly correlated systems driven out of equilibrium define a frontier in condensed matter.

Experiments have probed the response to large bias in Mott insulators [3636–4343, 4545–4848], explored

‘pump-probe’ phenomena where a material is subjected to an intense pulse of radiation [5555–5757],

and revealed metastable hidden phases [1111–1515]. Among these, the voltage biased Mott insulator

is widely studied due to the well understood equilibrium state and the occurence of a bias driven

insulator-metal transition (IMT). The breakdown of the ‘collectively localised’ Mott state is

expected to be very different from that of a band insulator.

Experiments across multiple materials suggest that the current-voltage (I-V) characteristic

across the bias driven transition has a common form [3838–4343, 4545]. These include (i) a low

temperature hysteresis in the current with respect to voltage sweep - changing abruptly from

low current to high current at some voltage V +
c on the upward sweep, and showing the reverse

switching atV −

c < V +
c on the downward sweep, and (ii) reduction ofV ±

c and also∆Vc = V +
c −V −

c

with increasing temperature, with hysteresis vanishing above some temperature T ∗. These

features have been observed in samples of nanometer size [4242] to millimeter size [4141].

Multiple theories have tried to model the voltage induced breakdown [6969, 9595, 9797, 104104, 108108–

111111, 116116, 120120, 137137, 141141–146146, 160160–165165]. Most microscopic approaches suggest a Landau-Zener

(LZ) like mechanism [6969, 9595, 9797, 109109, 116116]. The resulting I-V characteristic fails to capture the

discontinuous nature of breakdown, and the strong temperature dependence observed in a wide

variety of compounds. Phenomenological network models invoking the ideas from percolation

[160160, 161161] capture the low V transport for some materials but their applicability in the strongly

nonequilibrium state remains uncertain. It is only for narrow gap “dirty” Mott insulators, with

in-gap states, that a successful theory [162162] based on ideas of Frohlich [163163–165165] seems to be

available. In our understanding the limitations for strong coupling systems arise from (i) the

neglect of spatial symmetry breaking (due to the bias), (ii) the difficulty in accessing the long

time, steady state, current, and (iii) ignoring the magnetic order that occurs at low temperature.

This chapter addresses the whole set of issues using a scheme that is non perturbative in both

the interaction strength and the applied bias and only exploits the “slowness” of the magnetic

fluctuations on electronic timescales. Our Keldysh based Langevin equation approach retains

the effects of dissipation channels (the leads), the applied bias, strong interaction, and thermal

fluctuations, and yields the nonequilibrium electronic state at long times. The approach is a

‘twofold’ generalisation of the standard magnetic mean field theory of the Hubbard model: (i) at

zero temperature (T = 0) we get a Keldysh mean field theory for magnetism in the biased open

system, while (ii) at finite temperature a ‘thermal noise’ generates magnetic fluctuations in the

driven system. The result is a stochastic evolution equation for the magnetic moments ~Mi(t) (see

later) which define the background for electron physics.
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Figure 4.1: Equilibrium phase diagram of the 3D Hubbard model in the temperature T/t vs

interaction strength U/t plane, where t is the hopping strength. The solid red squares show

dependence of the Néel temperature TN on U/t, as obtained from a classical auxiliary field

Monte-Carlo method on 4
3 clusters. The AF-I region denotes the Néel antiferromagnetic phase

and insulating characteristics. The open squares are the TN obtained from a DQMC method

(Ref.[166166]). The light blue region depicts the preformed local moment regime which is a

paramagnetic insulator phase. The dashed line shows the TN obtained from Hartree-Fock theory

and the gray region denotes the paramagnetic metal phase. Taken from Ref.[2626]

4.2 Physics at equilibrium

The equilibrium physics of the Hubbard model at half-filling on a cubic lattice has been studied

using various Monte Carlo techniques. Although the numerically exact quantum Monte Carlo

(QMC)[166166] sets the benchmark, a much simpler approximate technique, the static path auxiliary

field classical Monte Carlo[2626], can capture the not only the phases correctly but also gets the

transition scales to a good accuracy.

Within the static path approximation (SPA), the Hubbard model is mapped to a non-interacting

problem of tight-binding electrons coupled to background static auxiliary fields which are clas-

sical. The auxiliary fields are sampled using an exact diagonalisation based classical Monte

Carlo to get the finite temperature equilibrium ensemble. The observables can be calculated by

diagonalising the electronic Hamiltonian for each background configuration and averaging over

the configurations.

The half-filling phase diagram within SPA, and its comparison with QMC is shown in Fig.4.14.1.

For any finiteU/t the ground state is an antiferromagnetic insulator (AF-I). At temperature T = 0

the magnetic moment per site grows with increasing U and saturates to 1/2 as U/t → ∞. As

the temperature is increased the system loses long range order (LRO) at a scale TN(U). Beyond

TN , the system is a paramagnetic metal (PM) for U . 4t and a paramagnetic insulator (PI) for

U & 4t. The crossover region from PM to PI shows a pseudogapped density of states (DOS)

[2626].

73





4.3 Effective Langevin equation

We consider the repulsive 3D Hubbard model in a finite geometry, connected to leads along the

long direction. We recapitulate the Hamiltonian introduced in Eq.2.12.1

H = Hsys +Hbath +Hcoup

Hsys = −ts

σ
∑

<ij>

(

d†iσdjσ + h.c.
)

+ U
∑

i

ni↑ni↓ − µN

Hbath =

β∈{L,R}
∑

ν

(ǫν − µβ) c
†β
ν cβν

Hcoup = −
∑

<ij>,σ

vij

(

c†Liσ djσ + c†Riσ djσ + h.c.
)

where ts, µ and U are the nearest-neighbour hopping amplitude, chemical potential and onsite

Coulomb repulsion strength in the system, respectively. ǫν are the eigenenergies and µβ are the

chemical potentials in the conducting leads, where β = (L,R), with L denoting the left lead

and R the right lead. µL,R = µ± (V/2), V being the applied bias. vij denotes the system-bath

coupling matrix.

Starting from the complex time Keldysh action for the above Hamiltonian we decouple

the quartic term by performing a Hubbard-Stratonovich transformation. This introduces real

auxiliary fields at each instant, which couple to the instantaneous density and spin of the electrons

- henceforth called the charge field φi(t) and spin field ~Mi(t) respectively. The action becomes

quadratic in the fermionic fields which can be formally integrated out. We fix the charge field

at it’s equilibrium saddle point value. Using assumptions related to the slowness of the ~Mi(t),

and a simplified noise kernel, both discussed in Chapter22, we arrive at the stochastic dynamical

equation for ~Mi(t), which we reproduce here for completeness,

d ~Mi

dt
− α

(

~Mi ×
d ~Mi

d t

)

= γi(t)
(

〈~σi〉{ ~M}
+ ~ξi − ~Mi

)

(4.4a)

〈ξai (t)ξ
b
j(t

′
)〉 =

4T

Uγi(t)
δijδabδ(t− t′) (4.4b)

〈~σi〉{ ~M(t)} =

∫

Im
[

Tr
(

GK
ii (t, ω)~τ

)]

dω (4.4c)

where γi(t) =
2U
α

(

1 + α2| ~Mi(t)|
2

)

. a, b denoteO(3) indices, GK denotes the adiabatic Keldysh

Green’s function, and the trace is over the local 2 × 2 spin subspace. ~σi =
1

2

∑

αβ

d†i,α~ταβdi,β ,

~τ ≡ (τx, τ y, τ z) being the 2× 2 Pauli vector, is the local fermion spin. Its average is computed

on the instantaneous { ~M} background. 〈~σi〉 is a non-linear, non local, function of the ~M field

and encodes the strong correlation effects in the problem.
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at higher temperatures, particularly in the metallic phase. At very low temperatures T < 0.05t

current conservation can be violated by up to 10% near the edges. For obtaining the current-

voltage characteristics I − V , we have averaged the current along the longitudinal direction.

The I-V characteristics is plotted in Fig.4.64.6(a) for different temperatures. The inset shows

hysteresis for T < Tcoex ∼ 0.02t while the main panel shows the response for T & 0.02t. Above

Tcoex and upto T ∼ 0.3t the I-V characteristic has a “threshold” at some Vc(T ) below which, the

current remains exponentially suppressed. Beyond Vc, the current rises sharply with increasing

V and saturates as V approaches the bandwidth D of the connected system. With increasing T ,

the threshold reduces, vanishing for T & 0.3t. The current saturation at large V is similar to

what we observed in the 2D problem at zero temperature. The suppression of Vc with increasing

T has been observed in experiments on various driven Mott systems [3737–4343].

Fig.4.64.6(b) shows I(T ) at different V/t values. The results reveal three regimes:

1. Insulating, where the system becoming more conducting with increasing T , showing

∂I/∂T > 0 at all T . This happens for V/t ≤ 2.

2. Metallic, where the system becoming less conducting with increasingT , showing ∂I/∂T <

0 at all T . This occurs for for V/t > 3.8.

3. Showing an insulator-metal transition: crossing over from ∂I/∂T > 0 to ∂I/∂T < 0 with

increasing T . We label the temperature at which ∂I/∂T = 0 as TIMT . The thermal IMT

happens for 2 < V/t < 3.8.

The corresponding ‘resistance’ R = V/I is shown in Fig.4.64.6(c) on a logarithmic scale. In the

deep insulating regime R decreases exponentially with increasing T/t and well in the metal it

rises monotonically withT/t. At intermediateV/t it shows non monotonicT/t dependence. This

feature, arising from thermal fluctuations in a non equilibrium situation, is the most important

result of our paper. We will discuss the physical basis further on. Note that within a linear

response treatment of the Mott insulator V/I is independent of V/t and solely dependent on T/t.

This would be true of the V . 1 window (the top right curve). The effective resistance at all

other voltages depends crucially on the applied bias.

4.5.3 Density of states

Another quantity of interest is the system averaged single particle density of states (DOS)

A(ω) = −
1

2πN

tM
∫

0

dt

tM

∑

i

Im
(

Tr
[

GR
ii (t, ω)

])

, (4.6)

where GR is the adiabatic retarded Green’s function and the trace is over the local 2 × 2 spin

subspace. N is the total no. of sites.
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where gR,A,K are the Green’s functions of the connected tight-binding system. The mean current

is computed by averaging over the time-series of M . This can be simplified further if one

averages over the self-energy instead of the Green’s function, assuming the distribution for Ms

to be normal, i.e., 〈Mα
i (t)M

β
j (t)〉 ≈ Tδijδαβ . So the average self-energy

〈ΣR,A,K
i,j;α,β (ω)〉 = Tδijδαβg

R,A,K
ij (ω) (4.10)

can be used to approximate the mean current. Fig.4.124.12 compares the temperature dependence of

the approximate current with the actual result in the P-M phase. They seem to compare well for

sufficiently large V , given the drastic nature of the approximations.

This suggests that the current in the metallic phase is essentially given by the tight-binding

result for V ≥ 6t as T → 0. For a finite system this has a finite value, and scales linearly with

the number of conduction channels which is proportional to the cross sectional area A. Hence

the resistance in the metallic phase is finite even as T → 0 within a finite sized calculation, as

is evident in Fig.4.124.12, and would vanish only if A → ∞. As the temperature increases, thermal

fluctuations of the background moments leads to enhanced scattering which depletes the current

further.

4.7 Discussion

4.7.1 Validity of approximations

The Langevin equation we use involves two key assumptions: (i) adiabaticity, and (ii) thermal

noise. The adiabatic assumption would be valid if the typical frequency associated with magnetic

fluctuations were self consistently smaller than the electron frequency. We have not shown the

magnetic spectra here but atU = 6t the magnetic bandwidth is 3Jeff ∼ 12w2

U
, while the electronic

bandwidth is∼ U , and their ratio is∼ 1/3. This argument does not hold in the deep metallic state

where U is rendered ineffective. The ‘thermal noise’ is used in the spirit of a first approximation,

consistent with mean field theory at T = 0. In a scheme with quantum fluctuations built in, the

noise would need self consistent modification.

The noise in the current carrying state is nontrivial. The noise kernel (Eq.4.4b4.4b) depends

on bias through the local diffusion coefficients Di(t) = α/(1 + α2| ~Mi(t)|
2
), which themselves

depend on the local moment magnitude. For a given α, the noise grows stronger as | ~Mi|

diminishes, which is the primary effect caused by increasing bias, as we have discussed in the

previous sections.

4.7.2 Landau damping in the metallic phase

In the metallic phase, one expects Landau damping of the local moments due to the electrons,

which has a characteristic 1/q dependence in the long wavelength limit, and would give long
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range dissipative kernel in space. The present scheme should be able to capture the physics of

Landau damping since it retains the spatial variations of the classical auxiliary fields exactly.

Here we demonstrate it explicitly by linearising the Langevin equation about a mean field saddle

point.

We recollect the Langevin equation governing the dynamics of the spin field,

d ~Mi

dt
− α ~Mi ×

d ~Mi

dt
= γi

(

〈~σi〉 − ~Mi +
~ξi

)

(4.11)

where γi =
2U
α
(1 + U2| ~Mi|

2
) is the dissipation coefficient and ~ξi is the noise. 〈~σi〉 depends on

the background ~M configuration through the relation,

〈~σi〉 = Tr
[

ĜK
ii (t, t)~τ

]

(4.12)

where ĜK is the adiabatic Keldysh Green’s function defined for a given ~M background. Lin-

earising this about an antiferromagnetic (AFM) saddle point by assuming ~Mi(t) = Miẑ+δ ~mi(t)

and retaining only the terms linear in δ ~m gives us,

δṁi,a − αǫabcMi,bδṁi,c = 2Uγi

∫

dt′ ΠR
ij,ab(t, t

′
)δmj,b(t

′
) + γiξi,a (4.13)

where ΠR is the electronic polarisation in the AFM saddle point and a summation over repeated

indices is assumed.

This gets further simplified when we consider the paramagnetic (PM) phase for which Mi

vanish and Π
R
ij,ab → (Π0)

R
ijδab, where Π0 is the polarisation of free electrons in a tight-binding

lattice.

Thus, the above equation in the fourier representation becomes,

[

−ι
ω

γ
+ 2U(Π0)

R
~q (ω)

]

δ ~m~q(ω) = ~ξ~q(ω) (4.14)

(Π0)
R
~q (ω) =

∑

~k

nF (ǫ~k+~q/2
)− nF (ǫ~k−~q/2

)

ω + ιη −
(

ǫ~k+~q/2
− ǫ~k−~q/2

) (4.15)

where ǫ~k = −2thop
∑

i cos(ki) is the tight-binding dispersion with hopping amplitude thop and

nF is the Fermi distribution function.

Linearising the dispersion in ~q and defining ~v(~k) ≡ 2thopsin(~k), we get,

(Π0)
R
~q (ω) ≈

∑

~k

nF (ǫ~k − ~v(~k) · ~q/2)− nF (ǫ~k + ~v(~k) · ~q/2)

ω + ιη − ~v(~k) · ~q
(4.16)

=

∫

dǫ ρ(ǫ)
nF (ǫ− ~v(ǫ) · ~q/2)− nF (ǫ+ ~v(ǫ) · ~q/2)

ω + ιη − ~v(ǫ) · ~q
(4.17)
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(4.18)

where we have replaced the momentum sum by an integration over the density of states. At low

temperature, the Fermi functions in the numerator restrict the integral to a narrow strip of width

~v · ~q ≪ ǫF about the Fermi energy. Hence, in the long wavelength limit, we can approximate the

above integral by,

(Π0)
R
~q (ω) ≈ −

ρ(ǫF )

2

∫

1

−1

dz
vF qz

ω + ιη − vF qz
(4.19)

= ρ(ǫF )

[

1 +
ω

2vF q
ln

∣

∣

∣

∣

∣

vF q − ω

vF q + ω

∣

∣

∣

∣

∣

]

+ ιπρ(ǫF )
ω

2vF q
θ(vF q − |ω|) (4.20)

The singular 1/q contribution in the imaginary part of (Π0)
R is the Landau damping term.

4.7.3 Numerical issues

There are several numerical issues in this study which we try to address here. Firstly, in order to

stabilise the inversion routines one needs to add a small dissipation η at each site in the system,

as we discussed at length in Ch.33. In order to get physically sensible results, one must choose

η ≪ δ, where δ is the average level spacing in the problem. Once this criteria is met, we find

that current conservation across the system is better respected in the 3D problem, as compared

to the 2D case (∼ 10% as compared to ∼ 25% for the lowest value of η).

The second issue is with the run length in the Langevin dynamics in order to achieve a steady

state. As discussed in Sec.4.54.5, the time taken for thermalisation is controlled by a characteristic

timescale τ0 for the equilibrium system. This can, in principle, vary in presence of large bias,

and hence we let the system thermalise for 100τ0 before recording the time-series. We have also,

varied the run length at a few parameter points and checked that the results presented here do not

change with increasing run length up to twice the duration.

Lastly, there is the issue of size dependence of our results. The Langevin scheme presented

here leads to a numerically intensive computation primarily because of the presence of leads

in the nonequilibrium problem, and is worsened by the presence of multiplicative noise. As a

result, for each site in every time step we need to diagonalise the electronic Hamiltonian twice.

Moreover, one needs to have a sufficiently long run length in order to achieve a steady state. All

these considerations constrain us to a modest size of 8× 4× 4.

However, to out benefit, we discovered that the voltage driven insulator-metal transition is

first order for the 3D system. This means the transition should be realised even in larger systems

although the coexistence region may pick up a size dependence. Furthermore, the magnetic

transition at equilibrium is easily captured within our working size and several other studies

have used even smaller systems to study it. For the voltage driven problem, a larger size may

provide more resolution around the low temperature insulator-metal transition region of the phase
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diagram, but it should not change the essential features highlighted in this study. We have also

checked the size independence of results for a few parameter points on a 10× 4× 4 system.

4.7.4 Comparison with experiments

Experimentally, the I-V characterstics have a generic form across the transition metal oxides,

TMO’s, (e.g. vanadium oxides [3838, 3939], ruthenates [4040, 4141], magnetites [4242, 4343]) and some

organics [4545]. All these show a first order transition at low T which gets weaker with increasing

temperature. This aspect is well captured by our theory, unlike other microscopic approaches.

Some TMOs also undergo a temperature driven structural transition at equilibrium. However,

the transport measurements have been made below this equilibrium transition temperature.

Our theory suggests that the transport characteristics can be explained via a purely electronic

mechanism. An experiment on a multiorbital ruthenate has also reported suppression of Néel

temperature with increasing current [4848].

4.8 Conclusion

We have constructed a nonperturbative real time finite temperature scheme to study steady

state nonequilibrium effects in a strongly correlated system. This Langevin equation approach

simplifies the underlying Keldysh field theory by assuming adiabaticity, i.e, that electrons are

much faster than magnetic degrees of freedom, and a thermal noise. With these assumptions

we could implement a numerical study of a Mott insulator in a finite 3D geometry. We have

established a voltage sweep driven hysteretic insulator-metal transition at low temperature, the

collapse of the Néel and pseudogap temperature with increasing bias, and a thermally induced

insulator-metal transition at finite bias.

In our analysis the primary driver of the finite temperature effects is thermal amplitude

fluctuation of the local moments in the bias induced first order landscape. AsV → Vc, the thermal

amplitude fluctuation of the moments drives the thermal response of the system. A softening

of the moment implies stronger charge fluctuation and greater metallicity. The behaviour of

moment magnitudes and their angular fluctuation directly affects the DOS. Deep in the AF-I

phase the large ordered moments generate a large ‘gap’ in the DOS, albeit with exponentially

suppressed low energy weight and current. With increasing T the angular fluctuations of the

moments smear the gap and increase the current. As the voltage increases, amplitude fluctuations

of the moments also join in, creating additional low energy DOS and larger current.

In the deep metallic phase the moment magnitude is small at low T . This closes the Mott

gap and allows a large current to flow. As T increases, the moment distribution broadens, the

mean moment increases, and its angular fluctuation scatters the electrons. This suppresses the

current. At intermediate V a combination of activation induced current increase competes with

scattering induced current decrease leading to the thermal IMT.
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The Langevin approach has opened up a scope to tackle various nonequilibrium problems

which have remained inaccessible till now.
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Chapter 5
Nonequilibrium magnetic dynamics

5.1 Background

Antiferromagnetic insulators have been the subject of intense study, especially in 2D, since the

discovery of high temperature superconductivity in layered cuprates [169169]. It has been suggested

that superconductivity in these materials might be related to their magnetic properties [170170–174174],

although the exact mechanism behind superconductivity remains debated to this day. This makes

the antiferromagnetic Mott insulating parent state, and magnetism in the doped Mott insulator,

an object of great interest.

The low temperature collective excitations in a magnet are spin waves. Inelastic neutron

scattering experiments, introduced in Sec.1.3.41.3.4, measure the dynamical spin correlations in a

solid through the interaction of neutrons with the magnetization density. It can measure the spin

wave dispersion and broadening of the lineshapes. Theoretical modeling of quantum magnets

constitutes writing down effective quantum spin models, like the Heisenberg model, based on

phenomenological considerations. However, these can be derived as the low energy effective

model, starting from a microscopic electronic Hamiltonian, like the Hubbard model, in the strong

coupling regime where the charge excitations are essentially gapped out, which leads to fixed

amplitude of the quantum spins in the corresponding spin model. Linear spin-wave theory (LST)

[175175, 176176], has been extensively used to describe low temperature behaviour of the quantum spin

models. Under the assumption of a large (fixed) amplitude of the spins, it maps the quantum

spin model to a quadratic bosonic problem which can be easily solved. It has been successful

in describing low temperature experimental results [6868] and has also been tested against exact

numerics [177177].

An alternative approach is to start from the parent electronic model which hosts a magnetically

ordered ground state that is accessible though a mean field treatment of the electronic interactions

in the same spirit as we have discussed in Ch.33. The small oscillation dynamics of the order

parameter about the mean field state can be recovered by using the random phase approximation
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(RPA) approach. Being a more microscopic approach as compared to LST, it is applicable in

more general scenarios. In the context of Hubbard model, it can not only capture the correct

spin wave dispersion but also yield high-energy features like the particle-hole continuum[183183].

It can also treat unconventional ordered states and incorporates small fluctuations in the size

of the local moments. This apprach has been used to describe several experiments in Mott

insulators[178178–183183].

However, as we have seen in Chapter 3, the presence of a strong voltage drive promotes

double occupancy locally in the 2D Hubbard model, even when overall half-filling is maintained.

In this scenario, the size of the local moment reduces and the spins can undergo large amplitude

fluctuations which cannot be captured by LST or RPA. Specifically, since RPA captures Gaussian

fluctuations about an ordered state, it fails to capture a regime where the ordered state itself tends

to destabilise through slow, but large amplitude fluctuations of the order parameter. Moreover,

inhomogeneous driven systems have not been treated by these methods. In this chapter we

briefly discuss the magnetic excitations in the 2D Hubbard model at equilibrium and then use the

Langevin scheme, discussed in the previous chapter, to study excitations in a driven dissipative

2D Mott insulator at low but finite temperature.

5.2 Model and method

5.2.1 Model

We work with the 2D Hubbard model connected to noninteracting leads, which we had introduced

in Ch.22 and recapitulate here,

H = Hsys +Hbath +Hcoup (5.15.1)

Hsys =

∑

<ij>,σ

−tijd
†

iσdjσ + U
∑

i

ni↑ni↓ (5.1a)

Hbath =

∑

ν,β

(ǫν − µβ) c
†β
ν cβν (5.1b)

Hcoup =

∑

<ij>,σ

vij

(

c†Liσ djσ + c†Riσ djσ + h.c.
)

(5.1c)

where c†βν (cβν ) denote the creation (annihilation) operators at the energy level ν of the leads

β ∈ {L,R} (L denotes the left lead and R the right lead). µβ are the chemical potentials in the

conducting leads. µL,R = µ± (V/2), V being the applied bias. vij denote the matrix elements

of the system-bath coupling. d†iσ (diσ) are the creation (annihilation) operators for the system. ts,

µ and U are the nearest-neighbour hopping amplitude, chemical potential and onsite Coulomb

repulsion strength, respectively, in the system. We set thop = 1, and consider it to be the unit of

energy.
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5.2.2 Equilibrium Heisenberg limit

The Hubbard model Eq.5.1a5.1a at strong coupling U ≫ thop reduces to the Heisenberg model. This

can be seen most easily starting from the local term U
∑

i ni↑ni↓ as the parent Hamiltonian and

treating the kinetic term −thop
∑

<ij>,σ c
†

iσcjσ + h.c. under second order degenerate perturbation

theory. The second order energy correction is given by

δE(2)
= −t2hop

∑

<ij>

∑

‖E〉

∑

α,α′

〈αiαj|
(

c†iαcjα + h.c.
)

|E〉
1

U
〈E|

(

c†iα′cjα′ + h.c.
)

|α′

iα
′

j〉 (5.2)

Using the relation ~σi =
1
2

∑

αβ c
†

iα~ταβciβ , where ~τ is the 2× 2 Pauli vector, and considering the

fact that the sum over |E〉 acts as a complete sum, we can write

Heff =
4t2hop
U

∑

<ij>

~σi · ~σj = J
∑

<ij>

~σi · ~σj (5.3)

with J ≡
4t2

hop

U
. This is the nearest neighbour Heisenberg model. Here we have neglected

a constant term. More complicated spin models can be obtained if we go to higher orders

in perturbation theory and for more complex lattices with longer-range hopping terms. Upon

implementing a Holstein-Primakoff transformation and keeping fluctuations at the leading order

in S = |σ| (the magnitude of the spin), gives us a quadratic bosonic Hamiltonian which can be

diagonalized using a Bogoliubov transformation to obtain the spin wave dispersion [33, 175175, 176176]

ω~q = ±2JS
√

ǫ2~0 − ǫ2~q (5.4)

where ǫ~k is the tight binding dispersion and the lattice constant a = 1. This is strictly true in the

U → ∞ limit. At finite values of U the dispersion gets corrected due to the terms neglected in

deriving the effective spin Hamiltonian, Eq.5.2.25.2.2.

5.2.3 Random phase approximation

The random phase approximation (RPA) describes spin excitations on the magnetically ordered

equilibrium state of the Hubbard model. It captures the magnetic dynamics and order parameter

renormalization both at weak and strong coupling [178178, 179179] and does a reasonable interpolation

at intermediate coupling [180180]. Starting with a mean-field decomposition of the Hubbard

Hamiltonian, as discussed in Sec. 3.23.2, and assuming a homogeneous ordered state, we diagonalize

the 2 × 2 mean-field Hamiltonian in momentum space (Ref. AppendixAA) to obtain the band

dispersions

EA,B
~k

= ±
√

ǫ2~k +∆2 ≡ ±E~k (5.5)

where ǫ~k = −2thop (cos(kx) + cos(ky)) is the tight-binding dispersion and the order parameter

∆ =
U
2

∑

′

~k,σ
sgn(σ)〈c†~k+ ~Q,σ

c~k,σ〉 (with sgn(σ) = ±1 for ↑ (↓) respectively) must be obtained by
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solving the gap equation. Here the ~Q = (π, π) and summation is on the reduced Brillouin zone

(denoted by ′).
1

U
=

∑

~k

′f(E~k)

E~k

(5.6)

Here we have assumed that the homogeneous saddle point value of the charge field φ and the

chemical potential µ cancel each other, which is indeed the case for the translation invariant

system at half-filling.

The antiferromagnetic ordering implies the existence of low energy bosonic excitations,

which are the transverse spin waves, as well as longitudinal spin fluctuations. The spin waves are

gapless by the Goldstone theorem since they arise due to a spontaneously broken spin rotation

invariance. These can be analyzed by studying the transverse dynamical spin susceptibility,

χ+−
(~q, ~q′, ω) =

∫

dt

[

i

2N
〈Tσ+

~q (t)σ
−

−~q′(0)〉

]

eiωt (5.7)

where N is the total number of sites, T is the time ordering operator, ~σ~q =
1
2

∑

~k,αβ c
†

~k+~q,α
~ταβc~k,β

is the Fourier transform of the local electron spin operator, and ~τ are the usual Pauli matrices.

For the translation invariant mean field state the transverse susceptibility is a 2× 2 matrix at

each point in the reduced Brillouin zone due to doubling of the unit cell caused by antiferromag-

netic ordering at ~Q = (π, π),

χ̂+−

0 =





χ+−

0 (~q, ~q, ω) χ+−

0

(

~q, ~q + ~Q, ω
)

χ+−

0

(

~q + ~Q, ~q, ω
)

χ+−

0

(

~q + ~Q, ~q + ~Q, ω
)



 (5.8)

The RPA transverse susceptibility can be obtained by solving a Dyson equation,

χ̂+−

RPA =
(

✶̂− Uχ̂+−

0

)−1
· χ̂+−

0 (5.9)

The spin-wave spectrum can be obtained by analyzing the pole structure of χ̂+−

RPA, which shall

be discussed later.

The spin wave dispersion be obtained from the poles of the RPA susceptibility, Eq.5.95.9, which

is given by the condition,

det

([

1− Uχ+−

0 (~q, ~q,Ω) −Uχ+−

0 (~q, ~q + ~Q,Ω)

−Uχ+−

0 (~q + ~Q, ~Q,Ω) , 1− Uχ+−

0 (~q + ~Q, ~q + ~Q,Ω)

])

= 0 (5.105.10)

where χ+−

0 are the susceptibilities of the homogeneous mean field state given by,

χ+−

0 (~q, ~q, ω) = −
1

2

∑

~k

′

(

1 +
ǫ~kǫ~k+~q −∆

2

E~kE~k+~q

)





f
(

EA
~k+~q

)

− f
(

EA
~k

)

ω+ −
(

EA
~k+~q

− EA
~k

) +

f
(

EB
~k+~q

)

− f
(

EB
~k

)

ω+ −
(

EB
~k+~q

− EB
~k

)




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+

(

1−
ǫ~kǫ~k+~q −∆

2

E~kE~k+~q

)





f
(

EB
~k+~q

)

− f
(

EA
~k

)

ω+ −
(

EB
~k+~q

− EA
~k

) +

f
(

EA
~k+~q

)

− f
(

EB
~k

)

ω+ −
(

EA
~k+~q

− EB
~k

)



 ,

(5.10a)

χ+−

0 (~q, ~q + ~Q, ω) =
∆

2

∑

~k

′

(

1

E~k+~q

−
1

E~k

)





f
(

EA
~k+~q

)

− f
(

EA
~k

)

ω+ −
(

EA
~k+~q

− EA
~k

) −
f
(

EB
~k+~q

)

− f
(

EB
~k

)

ω+ −
(

EB
~k+~q

− EB
~k

)





−

(

1

E~k+~q

+
1

E~k

)





f
(

EB
~k+~q

)

− f
(

EA
~k

)

ω+ −
(

EB
~k+~q

− EA
~k

) −
f
(

EA
~k+~q

)

− f
(

EB
~k

)

ω+ −
(

EA
~k+~q

− EB
~k

)





(5.10b)

where EA,B
~k

= ±E~k =
√

ǫ~k +∆2, ǫ~k is the tight-binding dispersion and ω+
= ω + iη with

η → 0
+. Also note that, χ+−

0

(

~q + ~Q, ~q, ω
)

= χ+−

0 (~q, ~q + ~Q, ω) and χ+−

0 (~q + ~Q, ~q + ~Q, ω) can

be obtained from Eq.5.10a5.10a.

At low temperature T ≪ ∆, the Fermi factors in Eq.5.105.10 can be approximated by their zero

temperature values, and for thop ≪ ∆, E~k can be expanded in powers of thop/∆. With these

approximations the solution of Eq.5.105.10 is given by Eq.5.45.4 with S =
∆
U

.

5.2.4 Langevin dynamics approach

The RPA approach captures the small ‘Gaussian’ fluctuations about an ordered state. However, as

the order gets suppressed the moments undergo large angular fluctuations which are not captured

within RPA. The Langevin scheme introduced in Sec.2.2.22.2.2 provides a framework for dealing with

such a scenario, as the dynamics, in this case, is not constrained around a particular quantization

axis.

We rewrite the effective Langevin equation in Landau-Lifshitz- Gilbert(LLG) form introduced

in Eq.2.182.18,

d ~Mi

dt
= γi(t)

((

〈~σi〉{ ~M}
+ ~ξi

)

− ~Mi

)

+ 2U ~Mi ×
(

〈~σi〉{ ~M}
+ ~ξi

)

+ 2Uα ~Mi ×
(

~Mi ×
(

〈~σi〉{ ~M}
+ ~ξi

))

(5.11a)

with γi(t) = (2U/α)(1 + α2| ~Mi(t)|
2
) and the noise defined is given by (thop = 1),

〈ξai 〉 = 0, 〈ξai (t)ξ
b
j(t

′
)〉 =

2αT
(

1 + α2| ~Mi|2
)δabδijδ (t− t′) (5.11b)

α is the Gilbert damping parameter, which is set to (U/thop)
2
. The second term in the RHS of
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