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SYNOPSIS

Introduction -

Dirac materials are condensed matter systems where the low energy excitations around a finite

number of points in the Brillouin Zone(BZ) behave as either massive or massless Dirac particles

[11]. The most well known example is that of graphene which is a two dimensional hexagonal

lattice comprised of carbon atoms. In graphene, the gap between the conduction and valence

bands vanish at the K and K ′ points of the BZ and about these points the energy-momentum

dispersion is linear, mimicking the massless Dirac equation[22, 33]. In recent years, a large num-

ber of seemingly diverse materials have been identified which display similar characteristics.

Examples include Weyl semimetals[44], d-wave superconductors[55], surface states of topological

insulators[66], etc. These materials, despite being vastly different from each other, exhibit proper-

ties which are a direct consequence of their low energy spectrum and hence are universal. Other

systems like silicene[77], transition metal dichalcogenides[88] are described by the massive Dirac

equation. Most of these have strong spin-orbit coupling which plays a crucial role in transport

and other properties. One of the major points of focus of this thesis is to investigate the physical

consequences of the nontrivial spin texture of the low energy excitations in these materials.

We next briefly discuss some of the materials studied in the thesis.

Silicene -

Silicene is a two dimensional allotrope of silicon with the atoms arranged on a hexagonal lattice.

The lattice, unlike graphene, has a periodically buckled topology due to the relatively larger size

of the silicon atoms. Also, compared to graphene, silicene has significantly stronger spin-orbit

coupling which leads to a gapped low energy spectrum about the K and K ′ points. Silicene is

of particular interest as the band gap can be tuned by oxidation[99], by application of an electric

field perpendicular to the sample or by a biaxial strain[1010]; this also makes it a good candidate

for monolayer topological insulators[1111].
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Transition metal dichalcogenides -

Monolayer transition metal dichalcogenides(TMD) are also two dimensional semiconducting

materials. The lattice is hexagonal with the metal atoms(eg, Mo, W) and the chalcogen(eg, S,

Se) dimers located at the inequivalent sites. The low energy Hamiltonian about the K and K ′

points in the BZ is formed by the d-orbital electrons of the transition metal. The inversion sym-

metry breaking gives rise to a large direct band gap in the spectrum(∼1 eV). Also, the presence

of strong(∼80 meV) spin-orbit coupling leads to spin split valence bands. This spin splitting,

however, is opposite about the K and K ′ points, resulting in a overall time reversal symmetric

spectrum. This results in a spin and valley coupled description of the low energy physics[1212]. A

small hole doping produces two spin polarized Fermi surfaces with opposite polarization, one

about each of the K points.

Weyl semimetals -

Weyl semimetals(WSM) are three dimensional free fermion phases. In such systems, the low

energy physics is governed by emergent chiral Weyl fermions around nodes in the BZ where the

valence and the conduction bands touch. Just like graphene, the energy-momentum dispersion

is linear and is described by the Weyl equation. These Weyl nodes can be viewed as monopoles

which act as a source or sink of Berry curvature[1313]. As the total Berry flux integrated over the

BZ has to be zero, the Nielsen-Ninomiya theorem dictates that there must be an even number of

Weyl nodes in the BZ. This prevents the destruction of the WSM phase by a small perturbation.

Another novel feature is the presence of Fermi arc surface states which connect the projection of

the Weyl nodes on the surface BZ[1414]. These systems also exhibit several interesting transport

phenomena due to the chiral anomaly[1515] such as negativemagnetoresistance, and the anomalous

Hall effect[1616]. In the past few years, it has been shown that TaAs and NbAs classes of materials

host Weyl fermionic modes[1717].

Summary of the research work -

The thesis consists of mainly two parts. The first part of the thesis contains studies of transport

through heterostructures involving Dirac materials and the second part contains an analysis of
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spin susceptibility in hole doped TMDs.

Overall, the thesis has seven chapters. They are briefly described in the following:

• In the first chapter, we introduceDiracmaterials. We start from the low energyHamiltonian

valid near isolated points in the BZ and provide tight binding realization of the effective low

energy theory. In particular, we discuss the two different types of WSMs: Time-reversal

symmetry (TRS) broken and inversion symmetry broken, and provide a minimal model

describing each of them. We also discuss the buckled honeycomb lattice description of

silicene. Lastly, we discuss the simplest model describing the TMDs.

• In the second chapter, we consider a two node(loacted at k = (0, 0,±k0)) TRS broken

Weyl semimetal sandwiched between two normal metal leads. The leads are kept at a

small potential difference and the separation between the Weyl nodes (2k0) is varied. We

explicitly construct a finite sized lattice and attach the leads via self energy terms in the

total Green’s function. The current is next calculated using the Green’s function of the full

system[1818]. We find that the current oscillates as a function of θ = 2k0L where L is the

length of the physical system. The nontrivial spin texture around the Weyl nodes forces

the backscattering process at the lead-WSM interface to scatter an electron from one node

to the other as long as spin is preserved, giving rise to the aformentioned oscillations. This

can be interpreted as a momentum space interferometer where the backscattering channel

is analogous to the weakly coupled arm of a Fabry-Perot type interferometer[1919]. A similar

study is conducted for a minimal model of the inversion symmetry broken WSM with four

nodes in the bulk. An additional selection rule is obtained as the backscattering preserves

the pseudo-spin degree of freedom.

• In chapter three, we extend the study to transport acrossWSM-superconductor heterostruc-

tures. We first observe a similar pattern in Andreev spectroscopy in aWIS geometry where

W is a pristineWSM, I is aWSMwith a barrier potential and S is a s-wave superconductor.

We study this geometry using both the analytical scattering matrix approach and also nu-

merically using a slightly modified version of the Landauer formalism. In this chapter, we

try to disentangle the physics of Klein tunneling (which is probed by changing the barrier
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potential) and k0L oscillations[2020]. In fact, as the relevant system parameters are changed,

two distinct frequencies emerge: one from the Klein tunneling due to the finite barrier

height and one from the chiral nature of the excitations. The calculations are repeated

even for the inversion symmetry broken model with similar results.In the same chapter, we

briefly look at the Josephson effect for a SWS geometry where W is a WSM and S-s are

s-wave superconductors. We find that analogous to the previous cases, the Andreev bound

state spectrum exhibits a periodicity as a function of θ and the resulting critical current

also displays a similar period. Additionally, the critical current actually changes sign and

undergoes a 0− π transition[2121].

• In chapter four, we explore the possibility of obtaining spin dependent Andreev reflection

for a two dimensional system with strong spin orbit coupling when the TRS is broken. We

explicitly study the case of silicene, driven with high frequency circularly polarised light

by considering an effective static model obtained from the Brillouin-Wigner expansion of

the high frequency drive limit[2222]. However, our results are not specific to the Floquet

system and should be qualitatively seen in other TRS broken systems also.

• Chapter five contains our study of the spin-spin correlation function of a hole doped TMD

with screened Coulomb interaction. For concreteness, we take the parameter values of

MoS2. We first employ the static Hartree-Fock(HF) approximation and find that the HF

Hamiltonian has a structure very similar to the original noninteracting Hamiltonian with

parameters renormalized depending on the hole doping. These parameters are found self

consistently. On top of the ground state of this HF Hamiltonian, we obtain the spin-spin

correlation function by performing a time dependent Hartree-Fock approximation analysis

and the poles of this function are studied to find spin-wave modes separated from the

particle-hole continuum. Interestingly, these spin wave modes are present in this system

even though there is no spontaneous magnetic ordering of the ground state. We find that

these modes are present for arbitrary small values of the strength of the interaction and

should be experimentally observable[2323]. Also, limitations of such approaches are also

discussed.
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• We conclude by summarizing our findings in chapter seven. In this last chapter, we also

discuss possible future works.
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Chapter 1
Introduction

1.1 Preliminaries

1.1.1 The Dirac equation

In 1928, Paul A.M.Diracwrote down theHamiltonian describing relativistic spin 1
2
particles[2727]:

H = cp.α +mc2β (1.1)

where αi and β obey Clifford algebra

{αi, αj} = 2δij,

{αi, β} = 0, (1.2)

β2 = I

The eigenvalues of the above Hamiltonian are E = ±
√
c2p2 +m2c4. In 3 + 1 dimensions,

the minimal representation of αi and β are complex 4× 4 matrices. The eigenvectors are called
Dirac spinors and is a four component wavefunction. This was the first successful merge of
quantum mechanics and special relativity as the space and time derivatives are on the same
footing in the Hamiltonian and hence in the equations of motion.

A number of variations of the Dirac equation followed. In 1929, Hermann Weyl[2828] pointed
out that in the m → 0 limit a simplified representation exists which is block diagonal form
utilizing just 2 × 2 Pauli matrices. It can be shown that the solutions of this Weyl equation
have definite chirality. A pair of Weyl fermions with opposite chiralities can be combined to
obtain a Dirac fermion. Another interesting representation was put forward by Ettore Majorana
in 1937[2929] which involved real numbers instead of complex numbers. The solution describes a
neutral particle that was its own anti-particle.
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1.1.2 Berry Phase and Chern Numbers

Let us consider a system whose Hamiltonian depends on parameters R = (R1, R2, ...). These
parameters can in general depend on time, ie, R = R(t). We want to adiabatically vary R(t)

over a path C in the parameter space. We next introduce a set of instantaneous eigenfunctions
|n(R)〉 satisfying

H(R)|n(R)〉 = εn(R)|n(R)〉 (1.3)

Now, if the evolution is adiabatic, if a system starts as an eigenstate |n(R(0))〉, it stays an
instantaneous eigenstate as the system evolves. This is known as the quantum adiabatic theorem.
This means that the phase of the state is the only degree of freedom. Thus, the state at time t can
be written as

|ψn(t)〉 = eiγn(t)exp
[
− i
∫ t

0

dt′εn(R(t′))
]
|n(R(t))〉 (1.4)

We insert this in the time dependent Schrödinger equation to obtain

i∂t|ψn(t)〉 = H(R(t))|ψn(t)〉 (1.5)

We multiply by 〈ψn(t)| from the left to find

γn = i

∫
C
dR.〈ψn(t)| ∂

∂R |ψn(t)〉

=

∫
C
dR.An(R) (1.6)

The vector An(R) is called the Berry curvature or the Berry vector potential and is gauge
dependent. Under the gauge transformation

|n(R)〉 → eiζ(R)|n(R)〉 (1.7)

where ζ(R) is an arbitrary smooth function, the Berry curvature transforms as

An(R)→ An(R)− ∂

∂Rζ(R). (1.8)

Now, for a closed contour in the parameter space,ie, for R(T ) = R(0), due to single
valuedness of the wavefunctions, we must impose

ζ(R(T ))− ζ(R(0)) = 2π × integer. (1.9)

This shows that for a closed contour, γn only changes by an integer multiple of 2π under
gauge transformations and thus, cannot be removed. This gauge invariant physical quantity is
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called the Berry phase [3030] and is given by

γn =

∮
C
dR.An(R). (1.10)

In analogy to electrodynamics, it is useful to define the gauge invariant Berry curvature or
Berry flux

Ωn
µν(R) =

∂

∂Rµ
Anν (R)− ∂

∂Rν
Anµ(R). (1.11)

For a three dimensional parameter space, this can be recast into

Ωn = ∇R ×An(R)

γn =

∫
S
dS.Ωn (1.12)

where S is any arbitrary surface enclosed by C.

1.1.3 Role of Berry phase in condensed matter physics

Condensed matter physics deals with lattices with periodic potential for which the Hamiltonian
H has a period a in the real space such that

H(r) = H(r + a). (1.13)

Bloch’s theorem states that the eigenfunctions of such a system can be written as

|ψnk(r)〉 = eik.r|unk(r)〉 (1.14)

where |unk(r)〉 has the same periodicity as the crystal lattice with |unk(r)〉 = |unk(r + a)〉. The
|unk(r)〉s are the eigenstates of the Bloch hamiltonianH(k) = e−ik.rH(r)eik.r so that

H(k)|unk(r)〉 = εn,k|unk(r)〉. (1.15)

The energy eigenvalues are periodic in k with

εn,k = εn,k+G (1.16)

where G is the periodicity of a reciprocal lattice vector.
The wave functions |unk(r)〉 depend parametrically on k. This means that if k is changed

adiabatically (by application of an electric field for example), Berry phase would play a crucial
role.

In the situation when the space has no boundary (for example torus, sphere), one can show
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[3131] that the integration of the Berry curvature is quantised. This is the case for lattice systems
as the momenta lie on a d dimensional torus. So, we can write

1

(2π)d

∫
BZ

ddk Ωn.n̂ = cn (1.17)

where cn is known as the first Chern number corresponding to the n-th band and as already
mentioned, is an integer. cn characterizes the topological structure of the mapping from the BZ
to the Hilbert space, ie, from k to |unk(r)〉.

1.2 Dirac Materials

In several solid state systems, one would naively expect the low energy excitations to have
exclusively non-relativistic description. However, the presence of periodic potential in a crystal
dresses the electronic states and in some cases, the emergent low energy band structure most
resembles the Dirac equation. These materials are quite different from electrons and holes
described by the Schrödinger equations. When m → 0, the difference is quite obvious as the
Dirac fermions have gapless spectrum with a linear dispersion. Even whenm 6= 0, the electrons
and holes in the Dirac equation share the same spinor space and have the same effective mass
m. However, particles and holes obeying the Schrödinger equation can have different effective
masses. Another interesting feature is the fact that since these Dirac materials are low energy
emergent phases, strict restrictions of Lorentz symmetry need not be obeyed always.

The most well known example is that of Graphene which hosts a gapless spectrum and is
described by a 2×2 dimensional representation of theDirac equation. Similarmassless spectra are
observed in other systems like surface states of topological insulators, d-wave superconductors,
Weyl semimetals etc. Transport properties and response functions of such systems are typically
governed by the low energy spectrum and are hence universal despite the materials themselves
being quite different from each other. Other examples include systems such as Silicene and
transition metal dichalcogenides where the low energy excitations are described by the massive
Dirac equation.

1.2.1 Graphene

Two-dimensional materials based on honeycomb lattices have become a subject of intense inves-
tigation in the past few years, due to their interesting band structure and associated topological
properties. The paradigm of this is realized in graphene, a pure carbon honeycomb lattice, which
hosts a gapless spectrum with Dirac points at theK andK ′ points in the Brillouin zone [2424] due
to a combination of inversion and time-reversal symmetry, as well as the very weak spin-orbit
coupling (SOC) typical of light elements.

The honeycomb lattice of Graphene is shown in Fig. 1.11.1(a). Here, A and B are the two
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Figure 1.1: (a) Graphene is a two dimensional honeycomb lattice composed of carbon atoms. a1

and a2 are the unit lattice vectors and δi are vectors connecting the nearest neighbour atoms. (b)
The hexagonal Brillouin Zone of Graphene. b1 and b2 are the reciprocal lattice vectors. This
figure is taken from [2424].

inequivalent lattice sites. The corresponding tight binding Hamiltonian is:

H = −t
∑
〈ij〉

a†σ,ibσ,j + h.c. (1.18)

where aσ,i(bσ,i) is the electronic operator onA(B) sublattice on siteRi. The nearest neighbouring
sites are connected by the vectors δi with δ1 = a

2
(1,
√

3), δ2 = a
2
(1,−

√
3), δ3 = a(−1, 0).

Fourier transforming this Hamiltonian, we obtain:

H =
∑
k

Ψ†σ(k)hσ(k)Ψσ(k) (1.19)

where, Ψσ(k) = [aσ(k), bσ(k)]T is the pseudo-spin basis and

hσ(k) =

[
0 f(k)

f ∗(k) 0

]
(1.20)

with, f(k) = −t
∑

i e
ik.δi . The energy eigenvalues corresponding to the above Hamiltonian is

given by E(k) = ±|f(k)|. This spectrum is gapless at two points at the corners of the graphene
BZ. Their position is given by

K = (
2π

3a
,

2π

3
√

3a
),K′ = (

2π

3a
,− 2π

3
√

3a
) . (1.21)

As shown in Fig. 1.21.2, the spectrum can be expanded near the K and K′ points and about
these two points, the linearized Hamiltonian can be written as

hσ(K′ + q) = vFq.τ and hσ(K + q) = h∗σ(K′ + q) (1.22)
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where, τi are Pauli matrices written in the pseudo-spin basis and vF = 3at
2
. Thus we end up

with the two dimensional Dirac equation. One feature quite apparent in the above linearized
Hamiltonian is the fact that the pseudo-spin and momentum are locked unlike normal metal. The
eigenvalues and eigenvectors of the Hamiltonian hσ(K′ + q) is given by

E(q) = ±vF |q|, ψ±q (r) =
1√
2
eiq.r(eiθq/2, e−iθq/2)T . (1.23)

where θq is the angle the planar vector q makes with respect to the x-axis.
The Dirac nodes in graphene is protected by the presence of inversion symmetry,ie, the

absence of any terms in the Hamiltonian∝ τz. Any such perturbation would have anticommuted
with the Hamiltonian and ended up opening a gap in the spectrum.

It is easy to see that under k→ −k, the pseudo-spin spinor part of the wave function becomes
orthogonal[11]. This prevents intra-nodal backscattering as long as the scattering potential has
no off-diagonal components in the pseudo-spin space. Experimentally, measurement of local
density of states around impurities display supression of interference patterns corresponding to
such processes[3232]. However, internodal backscattering processes are not supressed by such
selection rules and are necessary to explain interference patterns.

Figure 1.2: The energy spectrum of the tight binding model of graphene. About the gapless
points in the BZ, the energy dispersion is linear. This figure is taken from [2424].

1.2.1.1 Haldane model

Historically, the first example of Chern insulator on honeycomb lattice was given by Haldane[3333].
A second term is added to describe next-nearest-neighbour (NNN) hopping from A-to-A and
B-to-B hopping. Additionaly, a periodic local magnetic field is added to break time-reversal
symmetry. This magnetic field can be chosen to have zero total flux through the unit cell.
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Figure 1.3: The solid lines denote the nearest neighbour bonds whereas the dashed lines show
the NNN bonds. νij = ± signs give us the phase convention for the Haldane model.

The easiest way of introducing this is by putting magnetic phases on NNN terms as shown in
Fig. (1.31.3). Nearest neighbour terms remain unaffected as closed paths of such processes enclose
the complete unit cells and hence no net flux. Lastly, a staggered mass term is added to explicitly
break the inversion symmetry.

The Hamiltonian can be written as

H = t
∑
〈ij〉

a†σ,ibσ,j + t2
∑
〈〈i,j〉〉

eiνijφc†σ,icσ,j +M
∑
i

(a†σ,iaσ,i − b
†
σ,ibσ,i) (1.24)

where the anihilation operator c can be either a or b and νij can be chosen according to Fig. (1.31.3).
The low energy model near the Dirac points can be obtained after some algebra to be

hσ(K + q) = −3t2cos(φ) + vFq.τ + (M − 3
√

3t2sin(φ))σz (1.25)

and

hσ(K′ + q) = −3t2cos(φ) + vFq.τ ∗ + (M + 3
√

3t2sin(φ))σz. (1.26)

The total Chern number of the Haldane model can be computed to be C = 1
2
[sgn(M+) −

sgn(M−)] whereMη = M − 3
√

3ηt2sin(φ).
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1.2.2 Silicene

Another two dimensional material is silicene which is a two dimensional allotrope of silicon with
the atoms arranged on a hexagonal lattice. Unlike graphene, silicene has a periodically buckled
topology due to the relatively larger size of the Si atoms. This is modelled by a staggered onsite
potential with opposite signs on opposite sublattice sites. Also, compared to graphene, silicene
has significantly stronger spin-orbit coupling. These two features lead to adding a term ∝ τz in
the Hamiltonian which leads to a gapped low energy spectrum about the K and K ′ points. This
band gap can be tuned by application of an electric field perpendicular to the sample, by a biaxial
strain[1010] or by oxidation[99]. This makes silicene a good candidate for monolayer topological
insulators[1111].

1.2.3 Transition Metal Dichalcogenides(TMDs)

Transition metal dichalcogenide (TMD) monolayers, where a transition metal M (e.g., Mo or
W) resides on one sublattice and a dimer of chalcogen X atoms (e.g., S, Se) on the other, have
recently emerged as another set of important materials in the class of two-dimensional materials
based on honeycomb lattices [3434, 3535]. These systems are gapped at theK andK ′ = −K points
due to broken inversion symmetry. The strong SOC associated with M atoms leads to very
interesting spin-valley coupling near these points [3636, 3737]. In particular, one finds spin up and
down components of the valence band well-separated in energy, with their ordering interchanged
for the two valleys. This is shown in Fig 1.41.4. This allows for an effective valley polarization to be
induced when the system spin polarizes via pumping with circularly polarized light [3838–4040]. The
coupling of spin and valley in this way has been dramatically demonstrated via the observation
of a valley Hall effect in this circumstance [4141].

MoX2

Figure 1.4: (a) The conduction and the spin-split valence bands near the band edges near the K
and K’ points of the BZ. (b) Strength of the spin-orbit coupling of the valence band in eV. This
figure is taken from [88].

The locking of spin and valley degrees of freedom in TMD monolayers is a unique feature

24



1.2. Dirac Materials

of these materials. When hole-doped, it leads to a non-zero expectation value of σzτz, where σz
a Pauli matrix for spin, and τz the analogous operator for the valley index. This occurs without
any interaction present in the Hamiltonian, yet is reminiscent of ferromagnetic ordering, albeit
without time-reversal symmetry-breaking since this reverses both spin and valley.

1.2.4 Weyl Semimetals

Weyl semimetals (WSMs) are 3D topological systems with an even number of Weyl nodes in
the BZ where the conduction and the valence bands touch. About these points, the dispersion is
linear and the low energy physics is governed by the anisotropic Weyl equation[1313]

H =
∑
i

vi(n̂i.p)σi (1.27)

where vi are the anisotropic velocities and n̂i are the principal directions and σi are Pauli matrices
which can describe either spin or some other internal degree of freedom. The low-energy
excitations having a definite chirality κ = sign[n̂1.(n̂2 × n̂3)].

It is necessary to point out a few things to emphasize the topological nature ofWSMs. Firstly,
it is easy to see that the WSM phase is protected against small perturbations. This is because
the low energy Hamiltonian is already a linear combination of all the three Pauli matrices. Any
perturbation in the same basis can also be necessarily expressed in terms of Pauli matrices.
Consequently, all that the perturbations are allowed to do is to change the position of the Weyl
nodes in the BZ. Secondly, it can be shown[4242] that in the 3D BZ, Weyl nodes always occur in
pairs with opposite chiralities; this is known as the Nielsen-Ninomiya theorem.

The Berry flux is identically zero throughout the BZ in the presence of both inversion and
time reversal symmetries(TRS). Hence, to obtain Weyl nodes, it is necessary to break either
of these symmetries. The minimal model for a TRS broken WSM has two nodes whereas an
inversion symmetry broken WSM with TRS is required to have four nodes.

1.2.4.1 Sources of Berry Flux

Let us consider the simplest possible model for a two node WSM with nodes at k = (±k0, 0, 0)

with chirality κ = ±1. The Hamiltonian can then be written as

Hκ = κvp.σ (1.28)

where p = (kx + κk0, ky, kz)

Wavefunction of the filled band near the Weyl point is given by

ψ(θ, φ) =
1√
2

[
− sinθ√

1+κcosθe
−iφ

√
1 + κcosθ

]
(1.29)
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+- C=1C=0 C=0

Figure 1.5: (a) The 2D planes between the two Weyl nodes can be thought of integer quantum
hall systems with non-vanishing Chern number. (b) The Fermi arcs lie within the projections
of the Weyl nodes on the surface BZ. The red line on the surface BZ (kx-ky plane) indicates a
nonzero LDOS due to the Fermi arc states whereas the yellow plane indicates zero LDOS. Both
figures are taken from [2525].

where θ and φ are the polar and azimuthal angle corresponding to the vector p. The Berry flux,
integrated over a small sphere about the Weyl nodes is equal to 2πκ. This is true for any surface
enveloping the Weyl nodes. Thus, the nodes can be thought of as magnetic monopoles with their
flux associated with the quantized charge at the nodes.

This, coupled with the Nielsen-Ninomiya theorem, shows that the only way the WSM phase
can be destroyed is by merging two Weyl nodes with opposite chiralities together.

1.2.4.2 Surface states

WSMs host topologically protected surface states even though the bulk itself is gapless. Instead
of closed surfaces, the surface states form open Fermi arcs that connect the projections of the
Weyl nodes on the surface BZ. This is surprising as typically, it is expected that the bulk has to
be gapped to prevent the hybridisation of the surface and the bulk states. This is what is seen in
topological insulators for example. However, in case of WSMs, as the nodes themselves act as
sources or sinks of Berry flux, the 2D layers between the two Weyl nodes have non-vanishing
Chern number and effectively are integer quantum hall systems with edge states[2525]. The Fermi
arcs are the collection of such edge states. This is deonstrated in Fig. 1.51.5.

1.2.4.3 Different types of WSM

One could always add a term ∝ f(p)I in Eq. 1.281.28 where f(p) is any function that goes to zero
at the Weyl nodes. This does not destroy the WSM phase nor does it change the location of the
nodes. However, the tilt of the dispersion changes. In principal, this tilt angle could so large
that touching electron and hole pockets are produced instead of point-like Fermi surface that was
previously present. This type of WSM are known as type II WSM and are predicted to occur in
WTe2[4343].

Another class of WSM that have recently become quite relevant are multi-Weyl semimetals.
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These are WSMs with linear dispersion along one direction and quadratic or cubic dispersion in
the perpendicular directions[4444]. Such systems are protected by point group symmetry of the
lattice.

1.3 Structure of the thesis

The thesis deals with transport and collective modes in Dirac materials. In chapter 22 we start
with the simplest TRS broken WSM with two nodes and study transport through the same by
explicitly constructing a lattice model and attaching two normal leads on either side via self
energy terms. A small chemical potential is maintained between the leads and the separation
between the Weyl nodes (2k0) is varied and the current is calculated. We demonstrate that the
nature of the current depends on the spin texture of the low energy states around the Weyl nodes.
We do the same analysis for the minimal inversion symmetry broken WSM with four nodes. We
next study, in Chapter 33, Andreev spectroscopy in a WIS geometry where W is a pristine WSM,
I is a WSM with a barrier potential and S is a s-wave superconductor. In the same chapter,
we briefly look at the Josephson effect through a TRS broken WSM and show that the critical
current actually changes sign and undergoes a 0 − π transition as a consequence of the same
spin texture. Next, we explore the possibility of obtaining spin dependent Andreev reflection for
a two dimensional system with strong spin orbit coupling when the TRS is broken in chapter
44. And lastly, in chapter 55 we study spin waves in a TMD monolayer using the time dependent
Hartree-Fock approximation(TDHFA).
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Chapter 2
Momentum space interferometry in Weyl
semi-metals

In this chapter we study the low energy transport of a Weyl semimetal sandwiched between two
normal leads. Here, as we elaborate later, the spin texture and the chirality of the excitations
play a crucial role. In fact, we show that for a TRS broken WSM (with two Weyl points), the
current for a fixed chemical potential difference, oscillates as a function of δkL where δk is the
separation of the Weyl nodes in the BZ and L is the size of the system in real space.

There have been several experimental and theoretical studies[4545–4949] of spin textures in
topological insulators (TIs)[66, 5050] and in other Dirac materials[11]. However, much less attention
has been paid to the study of the emergent pseudo-spin or orbital degree of freedom that appears
in many of these materials. A notable exception is the work by Roy et al[5151, 5252], which showed
that the surface states of three dimensional topological insulators are ferromagnetic in terms of
this orbital pseudo spin. They also showed that as a physical consequence, tunneling between
two surfaces can be suppressed by a mismatch of the orbital pseudo spin even when the other
physical degrees of freedom allow tunneling.

For a time-reversal symmetry breakingWSMwhose minimal model has just twoWeyl nodes,
the identification of the scale δk is obvious, but for a time-reversal invariant, inversion symmetry
broken WSM, the minimal model has four Weyl nodes. Hence, naively the identification of δk
is not obvious. However, we shall see that analogous to the behaviour in topological insulators,
orbital pseudo spin conservation comes to the rescue. Unlike the spin whose polarization is
tied to the direction of motion of the quasi-particle, the polarization of the orbital pseudo-spin
turns out to be independent of the momentum in the inversion symmetry broken WSM. Hence,
conservation of pseudo spin, allows for scattering only between a single pair of Weyl nodes, and
we show that we get δkL oscillations for an appropriate δk even for inversion symmetry broken
WSMs.

This chapter is divided into several sections. In section 2.12.1, we introduce the TRS broken
WSM model and we calculate the current as a function of the internodal distance in the NWN
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geometry for a fixed chemical potential difference across the sample. We demonstrate the
periodic oscillations and provide the mechanism behind the same. In section 2.22.2, we repeat the
same process for an inversion symmetry broken WSM and introduce additional selection rules
which dictate the scattering processes as TRS is preserved. Lastly, in section 2.32.3, we discuss the
robustness of these oscillations and propose experimental setups that could probe into this kind
of transport.

2.1 Time-reversal broken WSM

In this section, we will study the current through a junction of a TRS breaking WSM of length
L between two normal leads.

The WSM is modeled by the standard Hamiltonian for a three dimensional topological
insulator in the Bi2Se3 class with a time-reversal perturbation(bz) added to make it a WSM
[2626, 5353] -

H0 =εkτx − λz sin kzτy − λτz (σx sin ky − σy sin kx) + bzσz, (2.1)

where εk = ε − 2t
∑

i cos ki is the kinetic energy, τ represents the orbital (pseudo-spin) degree
of freedom, σ represents the spin and λ, λz are the strengths of the spin-orbit coupling.

This is a 4 band model where, in the limit where λz � ε − 6t � bz, the two middle bands
touch at (0, 0,±k0) forming a pair of Weyl nodes. Here, k0 is defined via tk2

0 = bz − ε+ 6t, and
the top-most and lower most bands are far from the touching point and can be ignored at low
energies. Thus the model reduces to the the two band model studied in detail in Ref.[5454]. We
provide details of this derivation is section 2.1.12.1.1.

The phase diagram of this model is given in Fig. (2.12.1).
To compute the current, we will use the lattice version of this four band model. We choose the

chemical potential µW (measured from the Weyl node) to be sufficiently small, so that the states
belonging to the twoWeyl nodes are well-separated. Note that our choice of theWeyl nodes along
the kz axis implies that the surface states for this model appear on the surfaces perpendicular
to the x or y axes. We will compute current through the WSM both along the z direction,
which is the direction of the separation of the Weyl nodes and along the x direction which is
perpendicular to the separation. We will compute it explicitly using the lattice version of Eq.2.12.1
using the Green’s function technique. The Green’s function for the isolated Weyl semimetal is
constructed as GW (ω) = (ω − HW )−1. The two leads on either side of the WSM are coupled
via self-energy terms in the full Green’s function. Since the attached leads are expected to have
very large bandwidths compared to that of the WSM, these self energies are taken to be constant
matrices diagonal in the σ and τ indices. The full Green function is then given by

G(ω) = (G−1
W − ΣL − ΣR)−1 . (2.2)
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2.1. Time-reversal broken WSM

0 5 10

5

10

Figure 2.1: A typical phase diagram of our model system. The Weyl semi-metal (WSM) phase
appears at the strong topological insulator (STI), normal insulator (NI) (ε = 6t) and strong
topological insulator (STI), weak topological insulator (WTI) (ε = 2t) boundaries with broken
time reversal/ parity perturbations. The WSM phase extends with increasing perturbations
(blue/filled region). Parameters used here are λz = λSO, and b = (0.6λSO, 0, 0). This figure is
taken from [2626].

Here Σj = −it̃2jπδσ,σ′δτ,τ ′ with t̃j being the hopping amplitude from the Weyl semimetal to the
jth lead. The current is then obtained as [1818]

〈J〉 =
2πe

~2

∫
dωTr[G†(ω)ΓRG(ω)ΓL](fR(ω)− fL(ω)) . (2.3)

Here Γj = i(Σj − Σ†j) and fj is the Fermi function of the jth lead.

In Fig.2.22.2(a), we show that the current with fixed bias, when measured along the z direction
shows oscillations as a function of k0L, whereas no oscillations are seen in the x direction as
shown in the inset of Fig.2.22.2(a). It is to be noted here that in the transverse direction, most of the
contribution to the current comes from oblique incidence due to the presence of the low energy
states near the Weyl nodes at (0, 0,±k0). As the dispersion near (kx, 0, 0) is gapped, normal
incidence will have vanishingly small contribution to the low energy transport properties of the
bulk. The assumption here is that the leads are sufficiently large in the y and z directions so that
ky and kz are good quantum numbers.

2.1.1 Low energy subspace

In order to explain the oscillations, we first compute the spin texture of the low energy bands
near the two nodes.
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Figure 2.2: (Color online) (a) Oscillations in the current along the direction in which the Weyl
nodes are split in the momentum space for the TR symmetry broken WSM bulk as a function of
k0L/π. The dotted lines show the theoretically predicted periodicity. The parameters used are
t = 1, λSO = λz = 0.5t,ε = 6t,µL = 0.3t,µR = 0. The inset shows the behaviour of the current
in the perpendicular direction with the same parameter values. It is quite clear that this does not
show any oscillations as a function of k0L/π. (b) Spin textures of the second band in the kx-kz
plane, with the Weyl nodes at k = k0ẑ and k = −k0ẑ indicated by red dots. Possible scattering
process for a forward moving spin up electron is shown. The spin texture is symmetric under
{kx, σx} ↔ {ky, σy}.

We begin by identifying the low energy subspace of this four band model.

H0 = εkτx − λz sin kzτy − λτz (σx sin ky − σy sin kx) + bzσz.

We divide the Hamiltonian into three parts:

h1 =εkτx − λz sin kzτy

h2 =− λτz (σx sin ky − σy sin kx)

and h3 =bzσz .

We diagonalise h1 using the unitary operator:

U =
1√
2

(
I I
eiφI −eiφI

)
, (2.4)

where φ = −tan−1(λzsinkz/εk). Here, the unit matrix I is in the spin space. Hence,

U †h1U = r(k)τzIσ (2.5)

where, r(k) = (ε2k + (λzsinkz)
2)1/2. The second part of the Hamiltonian h2, under this unitary

operation, takes the form:

U †h2U = −λτx (σx sin ky − σy sin kx)
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2.1. Time-reversal broken WSM

(2.6)

Lastly, the third term of the Hamiltonian does not change because it involves only σ matrices.
Hence, the full Hamiltonian, under the action of U becomes:

HU = U †H0U =

(
r(k)I + bzσz −λ(σx sin ky − σy sin kx)

−λ(σx sin ky − σy sin kx) −r(k)I + bzσz

)
.

When kx = ky = 0, HU becomes quite trivial and it is easy to identify the low energy subspace
to be the one with a relative sign difference between r and bz, ie, the middle 2 × 2 block. This
gives us the low-energy Hamiltonian:

HL =

(
r(k)− bz −λ(sin ky − i sin kx)

−λ(sin ky + i sin kx) −r(k) + bz

)
. (2.7)

ThisHamiltonianwill haveWeyl nodes atk0 = (0, 0,±k0)wherek0 = cos−1(
4t2−
√

(4t2−λ2z)b2z+λ4z
4t2−λ2z

).

2.1.2 Spin preserving selection rule

Near the Weyl nodes, the low energy Hamiltonian Eq.(2.72.7) can be written as

HWSM = εkσ̃z + λ(kxσ̃x + kyσ̃y). (2.8)

Here εk = (~2/2mW )(k2
x+k2

y+k2
z−k2

0) is the kinetic energy andmW is the effectivemass and
we have chosen the effective spin σ̃ = −σ, in terms of the spin of the original Hamiltonian. Note
that the orbital pseudo spin is no longer a good quantum number in this effective model. Also
note that this model, when projected to the low energy subspace, breaks inversion symmetry[5555].
In the lattice model, we have computed the spin textures of the lower (filled) band of the two
middle bands of the 4 band model and as can be seen in Fig.2.22.2(b), the spin texture at k = k0 is
not opposite to the spin texture at k = −k0. Thus, in terms of the two dimensional low energy
reduced subspace, the Hamiltonian for the model is given by

H = vxkxσ̃x + vykyσ̃y + svzkzσ̃z (2.9)

where vx = λ, vy = λ and vz = ~2k0/mW , σ̃i are the effective two component spins and s = ±1

for the two nodes. We also note that although the spin textures are not opposite, the topological
quantum numbers as computed either as the sign of the product of the three velocities (svxvyvz)
or from the integrated Berry curvature (2πs) around the nodes is clearly opposite for the two
nodes.

We can now easily understand the oscillations in k0L by using the scatteringmatrix formalism
in the reduced two band model. We restrict ourselves to small µW , so that the two Weyl
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Figure 2.3: (Color online) Diagrammatic representation of the interference process. The
diagram on the left shows the closed loop experienced by an electron with up spin(red line).
The wall in the middle is representative of the Brillouin zone (BZ) with the holes being the only
momentum values that allow low energy scattering states in the TR broken WSM bulk. The
scattering processes(green arrows) at the leads take the electron from oneWeyl node to the other.
The diagram on the right shows the same for an electron with down spin(blue line).

nodes are disconnected at the Fermi energy and the wave-functions can be easily obtained.
The scattering matrix problem in this case can be easily solved for a WSM-Normal metal
interface. The fact that intra-nodal backscattering is prohibited in chiral electronic systems is
well known[11]. Additionally, we find here that there is a small but non-zero probability of
internodal backscattering.

This can be repeated for incident electrons in eitherWeyl nodes and the conclusion is the same
: spin conservation during the scattering processes at the leads implies that normal reflection at
any interface is inter-nodal and that the probablility of scattering to the same node is suppressed.
This results in the reflection amplitude picking up a phase equal to ≈ 2k0L for small E when
this exercise is repeated for the other boundary of the NWN geometry at x = L.

As can be seen from the Fig. 2.32.3, an electron with spin up entering the WSM from the left
lead with an energy close to the Fermi energy of the WSM bulk is automatically forced to occupy
a forward moving quantum state close to theWeyl node at ~k = (0, 0, k0) due to the spin texture of
the low lying bands. As the electron travels through the bulk, its chirality is preserved. However,
at the right junction, it can either leak into the right lead or can backscatter into a quantum state
near the other Weyl node at ~k = (0, 0,−k0) moving to the left. The electron then travels to the
left junction and gets reflected back to the original Weyl node, thus performing a closed loop
evolution thereby introducing an interferometric phase. It is to be noted that the closed loop
actually comprises of evolution both in real space (traversal from one lead to the other with a
fixed momentum) and momentum space (scattering from one Weyl node to the other) processes.
In higher orders of reflection amplitude, this fundamental loop repeats itself. The final result
is a geometric progression in this loop which can be summed over. It can be easily shown that
the phase picked up by the electron during one such loop is = 2k0L + δµL/vz where δµ is the
chemical potential of the bulk WSM. This phase relation becomes equal to 2k0L as the chemical
potential is tuned closer to the Fermi energy of the WSM bulk. The same structure for the
amplitudes is repeated by an electron with down spin but in a time reversed fashion as depicted
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Figure 2.4: (Color online) (a) Current along the direction in which the Weyl nodes are split
in the WSM bulk for the inversion symmetry broken WSM as a function of k0L/π. The dotted
lines clearly indicate the predicted periodicity due to internodal scattering. The periodicity is
a function of only one of the relevant momentum scales of the problem(see main text). The
parameters used are λ = 1, µL = 0.1λ, µR = 0. The number of sites is kept fixed at L = 60. The
inset shows the variation of current in the perpendicular direction for the same set of parameter
values. As expected, it does not exhibit any periodicity. (b) Spin textures of the second band
with the Weyl nodes indicated by red dots for the inversion symmetry broken WSM. Possible
scattering process for a forward moving spin up electron is shown. The red cross indicates the
absence of the corresponding process due to preservation of the orbital degree of freedom. The
spin texture is symmetric under {kx, σx} → {kz, σz}.

in Fig. 2.32.3.
It is to be noted here that the interference happens between the dominant unscattered classical

path from the left lead to the right and the subleading loops. This can be thought of as a Fabry-
Pérot interferometer with one arm being weakly coupled, where the coupling strength is equal
to reflection strength. Since the final states of the spin up and spin down sectors are orthogonal
to each other, we do not get any interference from these two time reversed partners.

2.2 Inversion symmetry broken WSM

In this section, we study the same geometry as before, but with the time-reversal symmetry broken
WSM replaced by a time-reversal invariant, inversion symmetry brokenWSM. Aminimal model
in this class[5656, 5757] is given by

Hinv = λ
∑

α=x,y,z

σαsinkα + σyτyMk − µ (2.10)

whereMk = (m + 2 − coskx − coskz). This model describes a trivial insulator when m > λ.
The bulk gap closes at m = λ and two Dirac nodes appear at k = (0,±π/2, 0). For m < λ,
each of the Dirac nodes split into two Weyl nodes along the ky axis, so that the model has four
Weyl nodes along the ky axis at ky = ±(π − k0) and ky = ±k0 where k0 = sin−1(m/λ).
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Figure 2.5: (Color online) Variation of current as a function of the number of lattice sites. The
dashed line has a periodicity of 4 sites whereas the continuous line has a periodicity of 5 sites.
The parameters used are λ = 1, µL = 0.1λ, µR = 0.

We now compute the current when the leads are placed at y = −L/2 and y = L/2 - i.e.,
along the direction of the Weyl nodes in momentum space, and also when the leads are along the
x axis, perpendicular to theWeyl nodes. The lead biases are kept fixed at µL = 0.1λ and µR = 0.
The results for the y and x axes are shown in Figs 2.42.4(a) and its inset. Surprisingly, we find that
our results are similar to those found in the time-reversal breaking 2 Weyl node WSM, although
here there are fourWeyl nodes, and naively, the reflection at each of the junctions with the normal
leads can lead to reflection from 2 other possible Weyl nodes, if only spin conservation is taken
into account, as can be seen from the spin structures plotted in Fig.2.42.4(b). However, when we
taken into account the conservation of pseudo spin (also called orbital spin), this is no longer
true.

Just focusing on the ky axis, the Hamiltonian in eq.(2.102.10) reduces to

h(ky) = (λsinky +mτ y)σy = ±(λsinky +mτ y). (2.11)

We note that the lower conduction band has lower value of energy (λsinky − m) and is thus
energetically constrained to have 〈τ y〉 = −1 (+1) when ky > 0 (ky < 0). This is in fact true
for any other axis parallel to the ky axis. The pseudospin 〈τy〉 thus forms a domain wall in
momentum space. This argument can be repeated in its entirety for the higher among the two
valence bands and we find that 〈τ y〉 is constrained to be equal to−1 when ky > 0 and 〈τ y〉 = +1

when ky < 0. This is exactly the same as the values for the lower conduction band. This prevents
〈τ y〉 from changing even for the two middle bands across the band touching points.

This implies that for themiddle two bands in this four bandmodel, only pseudospin preserving
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Figure 2.6: (Color online) Variation of current for different values of the scrambling parameter
α. All parametrs are same as that of Fig. 2.42.4.

scattering processes can occur between the Weyl nodes at ky = π − k0 and ky = k0 or between
the nodes at ky = −π + k0 and ky = −k0. This explains why there is a single relevant scale k0

in the scattering at the junctions even though there are multiple momentum scales in the problem
(all possible differences between the nodes, or at least two possible momenta, even if we impose
spin conservation).

This is further demonstrated in Fig. 2.52.5. Here, the value of current along the direction of
separation of Weyl nodes is plotted as a function of the length of the system by fixing k0. Let us
consider an electron with 〈σy〉 = 1 moving along the ky axis with momentum ky = π − k0 + δ

where δ � k0. If spin is conserved, this electron can backscatter to two possible quantum states
- one at ky = k0 − δ and the other at ky = −k0 − δ at a junction. The separation in the BZ of
the first state with the incoming electron is equal to π − 2k0 whereas that of the second state is
equal to π.

In Fig. 2.52.5 the phase picked up for the chosen set of parameter values is equal to (π−2k0)L ≈
0.5πL and πL in the other. Hence, for the first process, we expect a periodicity of ≈ 4 sites
whereas, and for the second case, we expect the periodicity to be 2 as a function of the length(L).
As we vary the length of the system, we find that there is a repeated pattern after the length of
the system is varied by 4 sites. This is given by the dashed lines in Fig. 2.52.5. The entire process
is repeated by changing the parameters of the Hamiltonian such that (π− 2k0)L ≈ 0.4πL. This,
as expected, produces a periodicity of ≈ 5 sites as is seen from the continuous line in Fig 2.52.5.
This conclusively establishes that backscattering is allowed only if pseudospin(τ ) is preserved.

Thus, although in principle, the description of the multiple scattering processes in the TR-
symmetric, inversion symmetry brokenWSM could have been quite different from that of the TR
broken WSM due to the presence of additional momentum scales, the selection rule introduced
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by the preservation of the pseudo-spin degree of freedom(τ ) during scattering processes reduces
this setup to be exactly two copies of the previously discussed interferometer.

2.3 Summary and Conclusion

In the numerical results presented in the article, the self-energy terms considered are diagonal
in the σ and τ basis. We study the possible effects of off-diagonal self-energy by introducing a
minimal perturbation of the diagonal Σ given by Σ = −it̃2jπδσ,σ′ ⊗ (δτ,τ ′ + ατx). Here, α is the
parameter that scrambles the pseudospin(τ ) inside the leads. As can be seen from fig.(2.62.6), we
find that the value of the current as well as the oscillations depend very weakly on α. In fact the
same analysis for the TR symmetry broken model exhibit no dependence of the current on the α
parameter. Hence, it has not been shown here. We thus conclude that the oscillations are quite
robust and do not exactly depend on how precisely the WSM bulk is connected to the leads as
well as on the nature of the leads and are a consequence of the chirality of the bulk Weyl nodes.

In the next chapter, we will be further exploring similar oscillatory patterns in WSM-
superconductor heterojunctions.
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Chapter 3
Transport through Andreev bound states
in a Weyl semimetal quantum dot

A quantum dot made ofWSMmaterial in the presence of superconductors is of particular interest
due to the distinctive nature of transport at aWSM-Superconductor (SC) interface [5454, 5555, 5757, 5858]
and provides the possibility of capturing the otherwise elusive physics associated with the chiral
excitation in the WSM [5858]. In this manuscript we study transport through the Andreev states of
a WSM quantum dot in a simple setup where we sandwich the dot in between a superconductor
and a normal lead (see Fig. 3.13.1). Bound levels will form in the dot due to multiple reflections
from the two boundaries and these levels will strongly depend on the Fermi-energy mismatch
[5959] between the dot and the SC, as well as on the size of the dot. One expects some of the physics
of a graphene quantum dot [6060] to carry over to this case, since the WSMs also have a linear
dispersion; however there are differences as well. One of the features of the Dirac dispersion is
that the Andreev bound states carry current that oscillates as a function of χ = V0L/vF , where
V0 is the chemical potential of the dot [6161, 6262], L is its size and vF is the Fermi velocity. A
second oscillation appears as a function of δkL, where δk is the momentum separation of the
nodes that are connected by superconducting pairing. In graphene, an s-wave superconductor
couples electrons at one valley with holes at the other valley and the Andreev bound states are
hence also dependent on the matching of the valley polarizations [6363], with δk = K − K ′ as
the separation of the valleys in momentum space. On the other hand in a WSM-SC interface,
the s-wave superconductor is required to couple the electrons at one node with the holes at the
other node. Hence, reflection processes couple one chiral node to another node of opposite
chirality [5454] and δk = 2k0 where 2k0 is the distance between the nodes in momentum space.
Coupling between nodes is otherwise forbidden, irrespective of their positions in momentum
space. Further, the inter-valley length scaleK−K ′ in graphene is quite large, whereas inWSMs,
2k0 is a relevant length scale, because the nodes are typically quite close to each other. At finite
bias, however, as we shall see below, the relevant parameter changes from 2k0L, and the nature
of the bands becomes important. In the rest of this chapter, our focus is to study and predict the
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Figure 3.1: Setup of the system. A time-reversal broken Weyl semimetal WSM of length L has
been sandwiched between a superconductor (SC) with a gap ∆ and a normal/WSM metal lead
(N). The momentum separation between the Weyl nodes in the WSM dot is 2k0 and the WSM
has a bias V0.

behavior of the current through the Andreev bound states of the WSM quantum dot at a finite
bias.

This chapter is arranged in the following sections. In section 3.13.1, we start by studying
the Fig. 3.13.1 using the analytical scattering matrix approach. We then introduce a slightly
modified Landauer-Buttiker formalism to describe the same setup numerically using Green’s
functions. We find that at finite bias the conduction peaks follow a periodic pattern of the form
(q+ ± q−)L ≈ 2n±π, with n± being integers. Here q± are the Fermi momenta in the quantum
dot at finite bias, along the direction of conduction, and are the analogs of k0 at zero bias. Their
values can be determined from the band structure of the system and the bias V0 present in the
dot. At small enough bias, the periodicity reduces to the expected 2k0L = nπ oscillations. In
section 3.1.33.1.3, we then study the same geometry with inversion symmetry brokenWSM and point
out certain key differences from the previous case. Lastly, we summarise our findings in 3.33.3.

3.1 Modelling a WSM-SC interface for a TRS broken WSM

The simplest model of a WSM with broken time-reversal (TR) symmetry requires two chiral
nodes in momentum space, whereas the simplest WSMwith broken inversion symmetry requires
the presence of four chiral nodes. In this section we restrict ourselves to using the simplest model
of a TR-broken WSM, having two nodes, for analytic simplicity. We also consider an inversion
symmetry broken model, which has some new aspects beyond what is present in the two node
model, later in the chapter.

As described in chapter 22, a two-band TR-broken WSMmodel was obtained by starting from
a four-band Hamiltonian describing a 3D TI in the Bi2Se3 family and including a time-reversal
breaking perturbation bz [5353]:

H0 =εkτx − λz sin kzτy − λτz (σx sin ky − σy sin kx) + bzσz + V0. (3.1)

A gate potential V0 is applied to the dot region which spans a distance L. For sufficiently small
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-

Figure 3.2: Diagrammatic representation of the possible scattering processes showing all the
relevant scales. The Weyl nodes are located at kz = ±k0 and q± are the two possible momenta
of electronic excitations above the finite potential barrier V0 of the WSM. tanθ denotes the Fermi
velocity vF of such excitations. I describes an incident electron and R and AR describe normal
and Andreev reflected electrons and holes respectively.

V0, the low energy excitations can be described by the two-band Hamiltonian

HWSM = ε̃kσz + λ(kxσx + kyσy) + V0, (3.2)

with ε̃k ≈ t̃(p2 + k2
z − k2

0) and with p2 = k2
x + k2

y . In the rest of the chapter, all parameters are
scaled with respect to t̃ which is the energy scale. The eigenvalues of Eq. (3.23.2) are E±(k) =

±
√
ε̃2k + λ2p2 + V0. This implies that the Fermi velocity is anisotropic - the velocity in the z

direction is different from that in the x, y direction. Close to theWeyl nodes kz = ±k0, the Fermi
velocity along the z-direction vz = 2k0.

We construct aWSMdot by sandwiching the dot region (with a finite V0) in between a normal-
metal (N) and an s-wave superconductor (S). We then study transport through the quantum dot,
first using a scattering matrix approach, where the N region is chosen to be an unbiased WSM
(V0 = 0) and we use Eq. (3.23.2) to solve for the wavefunctions. Next, we further study and
verify our findings using a lattice simulation where we model the normal metal using a flat band
approximation, i.e, by considering a uniform density of states within the relevant energy scales.

The superconducting region can be described in terms of the Boguliobov-de Gennes (BdG)
Hamiltonian:

HSC =

(
ξkI2×2 ∆iσy

−∆iσy −ξkI2×2

)
, (3.3)

where ∆ is the pairing potential in the superconductor and ξk = (~2(k2
x + k2

y + k2
z)/2mS − µS).

mS is the effective mass of the electron in the superconductor (we takemS ≈ mW for simplicity)
and µS is the chemical potential. The parameter µS depends on the details of the superconducting
material. In the numerical results we take µS � ∆, which is the realistic limit.
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3.1.1 Scattering matrix approach

In this section, we describe the derivation of the scattering matrix in a Normal-WSM dot-SC
system. The normal Hamiltonian is modelled by a WSM Hamiltonian without any chemical
potential whereas the WSM dot is modelled by the same WSM Hamiltonian along with a barrier
potential V0. We define V (z) = V0(Θ(z) − Θ(z − L)) where we assign the locations of the
Normal-WSM dot junction and theWSM dot-SC junctions to be at z = 0 and z = L respectively.
The wavefunction corresponding to energy E in the normal system(for z < L) is given by the
following energy eigenstates of Eq. 3.23.2 in the Nambu-Gor’kov space (with the Hamiltonian in
the hole space written as −H∗WSM(−k)),

ψN(z < 0) =
∑
σ=±

{
Eσ
(
aσRe

σikσe z + aσLe
−σikσe z

)
+Hσ

(
bσRe

−σikσhz + bσLe
σikσhz

)}
, (3.4)

and similarly, the wavefunction in the WSM dot corresponding to the same energy is given by:

ψWSM(0 < z < L) =
∑
σ=±

{
Eσ
(
cσRe

σikσe z + cσLe
−σikσe z

)
+Hσ

(
dσRe

−σikσhz + dσLe
σikσhz

)}
. (3.5)

Here σ = ± is the band index, ai, ci(bi, di) denote the electron (hole) amplitudes with i ∈
{L,R} denoting the left or right moving solution. Eσ(Hσ) are normalized eigenvectors,
which are non-zero in electron (hole) sector of the Hamiltonian. In each sector E(H)+ ∝
(fe(h), (−)λ+(−))

T , and E(H)− ∝ ((−)λ−(+), fe(h))
T , with fe(h) = µW + V (x) + (−)Ei +√

(µW + V (x) + (−)Ei)2 − (λp)2, λ± = λ(kx + iky).

In the superconductor, the solutions of Eq. (3.33.3) are:

ψSC(z > L) =


uc↑

uc↓

−vc↓
vc↑

 eiqez +


vd↓

−vd↑
ud↑

ud↓

 e−iqhz,

where, with Ω =
√

∆2 − E2
i ,

u(v) =
√

(Ei + (−)iΩ) /2Ei

and qe and−qh are, respectively, the outgoing electron and hole momenta in the superconductor,
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3.1. Modelling a WSM-SC interface for a TRS broken WSM

defined as (with Fermi momentum kF )

qe(h) =
√
k2
F − p2 + (−)2mSiΩ/~2 .

The boundary conditions at z = {0, L} are given by the continuity of the wavefunction and its
derivative at that point:

ψN(z) = ψWSM(z)|z=0

ψWSM(z) = ψSC(z)|z=L
∂zψWSM(z) |z=0= ∂zψN(z) |z=0

mS

(
σz 0

0 σz

)
∂zψWSM(z) = mW∂zψSC(z) |z=L,

with σz being the Pauli matrix. We take mS ≈ mW for simplicity. By solving these equations,
we get the reflection matrices,

a+
L

a−L
b+
L

b−L

 =

(
ree reh

rhe rhh

)
a+
R

a−R
b+
R

b−R

 . (3.6)

We obtain the net reflection matrix of the form

S(E,p) =

(
ree(E,p) rhe(E,p)

reh(E,p) rhh(E,p)

)
, (3.7)

where, ree and rhh are the reflection matrices, and reh and rhe are the Andreev reflection matrices,
in the basis of excitations near the two nodes with ± chirality [5454]. E is the incident energy and
p = (px, py, 0) is the momentum in the transverse direction. The differential conductance is then
written as

Gp(E) =
e2

h
Tr[I2 −Ree(E,p)Ree(E,p)† +Rhe(E,p)Rhe(E,p)†] (3.8)

where,

Ree(he) =

 √
v+
e(h) 0

0
√
v−e(h)

 ree(he)

 1√
v+e

0

0 1√
v−e


where vje(h) is the velocity of the electron (hole) channel of the jth node. The nature of

processes at the WSM-SC boundary is depicted in Fig. 3.23.2. The relation in Eq. 3.83.8 is true for
eachmomentumpin the transverse direction. Finally, we integrate over the transversemomentum
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(a)

(b)

Figure 3.3: (color online) A typical pattern of the current through the WSM dot oscillating with
the size of the dot, with beats due to the double periodicity (a) The peaks of conduction, i.e,
the map of the Andreev spectrum, appear at lengths d where (q+ + q−)d/π is an integer, with
q± =

√
k2

0 ± 2mWV0 in red(solid) lines. The best fit to this pattern in terms of the simple two
frequency function given in Eq. 3.93.9 with α = 2.24 and β = 0.9 plotted in blue (dotted) lines
is also shown. Note the excellent agreement between the numerical data and the formula. The
parameters used are k0 = 1,mS = mW = 0.5, µS = 4, µW = 0, λ = 0.5, ∆ = 0.01, V0 = 0.56.
(Here we only consider normal incidence). (b) Here the current integrated over the transverse
momentum is shown, which also peaks at the same lengths d where (q+ + q−)d/π is an integer.
(c) The complete plot of the current though the WSM dot as a function of its bias voltage and its
size. Other parameters used are mentioned above.

to obtain the conductance G(E) =
∑

pGp(E).

We summarize our results from the scattering matrix approach in Fig. 3.33.3 and we emphasize
the following: first, the oscillation in the conductance is present even for normal-incidence, as
expected from earlier results [5454, 5555] which showed that the probability of normal-reflection at a
WSM-SC junction is finite at normal incidence. This is further elaborated in the next section 3.23.2.
Next, the oscillations in the conductance appear due tomultiple reflection andAndreev reflections
in the dot region, similar to those of a quantum mechanical double barrier problem. But for
a WSM, such reflections can only take place from one chiral node to the other chiral node of
opposite chirality (c.f. Fig. 3.23.2) as shown in the last chapter. At finite bias, due to the presence
of V0, the relevant length scale depends on a combined function of k0 and V0, i.e., they depend
on q± =

√
k2

0 ± 2mWV , which are momenta along the direction of propagation at the Fermi
energy in the dot-region. This allows us to predict the oscillation frequencies depending on the
symmetry, the positions of the Weyl nodes, the bias, etc. In the present model, the conductance
can be fitted well with the functional dependence of the form

G = α + β sin [(q+ + q−)L] sin [(q+ − q−)L] , (3.9)

where, α, β are independent of the length L, and can, in principle, be obtained analytically, as
shown in the Supplemental. In Fig. 3.33.3(a), we show the pattern of the conductance obtained
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3.1. Modelling a WSM-SC interface for a TRS broken WSM

Figure 3.4: (a) Variation of the amplitude of oscillation (β) of the zero-bias conductance with the
barrier height along the x axis and the ratio of the Fermi momentum and the separation of Weyl
nodes along the y axis. The parameters used are k0 = 1, mS = mW = 0.5, λ = 0.5, ∆ = 0.01.
(Here we only consider normal incidence). (b) Conductance as a function of the length of the
barrier along the x axis and the incident energy along the y axis at fixed V0 = 0.2

at normal incidence, G0, fitted with a function of the form given in Eq. (3.93.9). The close
correspondence shows that the theoretically obtained function can predict all the peaks in the
conductanceG. In Fig. 3.33.3(b), we show the full conductance, after integrating over the transverse
momenta. The conductance continues to peak at values of L where (q+ + q−)L/π is an integer.
Finally, in Fig. 3.33.3(c) we show the variation of G0 as functions of both the barrier height V0 and
k0. This pattern can be fully predicted from the functional dependence in Eq. (3.93.9).

Note that for V0 � k2
0 , q± ≈ k0±(mWV0/k0). We also note that the amplitude of the velocity

at the Fermi energy in the dot-region is vF = k0/mW . So, the conductance oscillations have a
slow frequency envelope whose period is V0L/vF = nπ and a faster oscillation characterized by
k0L = mπ, (where n,m are integers), allowing us to write the conductance as

G ≈ α + β sin (2k0L) sin (2V0L/vF ) , (3.10)

with corrections to the above equation appearing only at the order O (V 2
0 /k

2
0). Note however,

that in Fig. 3.33.3, we have specifically chosen a value of V0, such that condition for Eq. (3.103.10)
is not satisfied. In the regime, where the condition for Eq. (3.103.10) is satisfied, we find that the
periodicity for the conductance shows peaks as a function of L and V0 whenever k0L = nπ and
V0L/vF = nπ as expected.

Finally, we also note that the amplitude β of conductance oscillations depends strongly
on the ratio kF/k0 and increases with increasing V0. On the other hand, β decreases with
increasing incident energy E and the conductance reaches a maximum value of 4e2/h, and
becomes independent of the barrier height V0 in the limit E → ∆, matching earlier results in
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Chapter 3. Transport through Andreev bound states in a Weyl semimetal quantum dot

similar systems like graphene [5959, 6161]. We show the numerical fitting of β in the phase space of
kF − V0 in Fig. 3.43.4(a).

In passing, we also note that a similar functional dependence (as shown in Eq. (3.93.9)), of the
conductance oscillations would be true for a graphene dot, when 2k0 and vF are respectively
replaced by the momentum separation between the two valleys of graphene K − K ′ and the
Fermi velocity near the Fermi energy.

3.1.2 Lattice simulation

In order to study transport in our geometry, we implement a slight modification of the standard
Landauer-Buttiker formalism to suit our purpose.

We consider the x, y directions to be translationally invariant, so that the momenta kx, ky
appear as parameters. After Fourier transforming kz, our next step is to rewrite the Hamiltonian
in the Nambu-Gorkov form -

HW =
1

2

∑
〈z,z′〉

Ψ†z,ihWij(kx, ky)Ψz′,j, (3.11)

using the basis

Ψ†z =
(
ψ†z,↑,1, ψ

†
z,↓,1, ψ

†
z,↑,2, ψ

†
z,↓,2, ψz,↓,1,−ψz,↑,1, ψz,↓,2,−ψz,↑,2

)
.

For each site z, the basis Ψz,i has 8 components for i = 1, .., 8. The superconductor is modeled
as a 1D superconductor:

HS =
∑
z

Φ†z(εSCη
z + ∆ηx)IσΦz − tSC

∑
〈z,z′〉

Φ†zη
zIσΦz′ + hc,

≡1

2

∑
〈z,z′〉

Φ†z,ihSijΦz′,j. (3.12)

where Φ†z =
(
φ†z,↑, φ

†
z,↓, φz,↓,−φz,↑

)
. The normal lead’s Hamiltonian is the written as:

HL =
1

2

∑
〈z,z′〉

a†z,ihLijaz′,j, (3.13)

in the basis a†z =
(
α†z,↑, α

†
z,↓, αz,↓,−αz,↑

)
.

The tunneling Hamiltonian between theWSM and the superconductor and between theWSM
and the normal leads are given respectively by:

HWS =
1

2
Ψ†N,iV

S
ijΦ1,j +

1

2
Φ†1,iV

S†
ij ΨN,j,
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3.1. Modelling a WSM-SC interface for a TRS broken WSM

and HWL =
1

2
Ψ†1,iVL

ijaN,j +
1

2
a†N,iV

L†
ij Ψ1,j . (3.14)

Here, φ† and a† are, respectively, the creation operators at the superconductor and the normal lead,
without any orbital index. Also note that we couple both orbitals equally to the superconducting
site, which, albeit not the most generic case, represents the simplest coupling.

With this choice of basis,

Vi=SC/L =


ti 0 ti 0 0 0 0 0

0 ti 0 ti 0 0 0 0

0 0 0 0 −ti 0 −ti 0

0 0 0 0 0 −ti 0 −ti


T

,

where ti = tSC/L are the hopping matrix elements between the leads and the WSM. The
Hamiltonian has an explicit particle-hole symmetry under

Φ†z,i = CijΦz,j, a
†
z,i = Cijaz,j, Ψ†z,i = CW

ij Ψz,j (3.15)

where, C = σy ⊗ σy, and, CW = σy ⊗ I⊗ σy.

Now, wewish to compute how the field operators evolve in time. Starting from theHeisenberg
equation of motion

ȧz,i =
i

~
[
HL +HWL, az,i

]
, (3.16)

we obtain

ȧz =
i

~
(−hLaz − VL†Ψ1δz,N)

⇒
(
i~
∂

∂t
− hL

)
az = VL†Ψ1δz,N . (3.17)

Here, we have used the identity ChC† = −h∗.

The solution for the operator is given by

a(t) = i~GL(t− t0)a(t0) +

∫ t

t0

dt′GL(t− t′)VL†Ψ(t′)

= ηL(t) +

∫ t

t0

dt′GL(t− t′)VL†Ψ(t′), (3.18)

where the Green’s function GL of the uncoupled lead is the solution of the equation

(
i~
∂

∂t
− hL

)
GL(t− t′) = Iδ(t− t′). (3.19)
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Similarly, for the superconducting lead, one obtains

Φ(t) = i~GS(t− t0)Φ(t0) +

∫ t

t0

dt′GS(t− t′)VS†Ψ(t′)

= ηS(t) +

∫ t

t0

dt′GS(t− t′)VS†Ψ(t′) (3.20)

Finally, for the operators in the Weyl semi-metal, we write:

Ψ̇ =
i

~
(
− hWΨ− VLa− VSΦ

)
. (3.21)

In the above equation, we need to substitute the solutions of a(t) and Φ(t). We define the self
energy operators as

ΣL(t) =

∫ t

t0

dt′VLGL(t− t′)VL†

and ΣS(t) =

∫ t

t0

dt′VSGS(t− t′)VS†. (3.22)

Fourier transforming the equation for Ψ(t), we obtain

Ψ(ω) = GW(ω)Γ(ω)

where GW = (ω− hW/~−ΣL(ω)/~−ΣS(ω)/~)−1 is the Green’s function of the whole system
and Γ(ω) = 1

~(VSηS(ω) + VLηL(ω)).

When the system is finite along the z direction and periodic along x, y:

Ṅz→z+1 =
i

~
[H,Nz]

=
i

~
(−t̃+ λzτ)

(
Ψ†z+1,τ̄ ,σ(t)Ψz,τ,σ(t)−Ψ†z,τ,σ(t)Ψz+1,τ̄ ,σ(t)

)
. (3.23)

Here we have used the explicit form of the Hamiltonian in the main text of the chapter. So, the
current along z from a given site z to z + 1:

Jz(t) =
ie

~
(−t̃+ λzτ)

(
〈Ψ†z+1,τ̄ ,σ(t)Ψz,τ,σ(t)〉 − 〈Ψ†z,τ,σ(t)Ψz+1,τ̄ ,σ(t)〉

)
. (3.24)

Now, Fourier transforming the field operators, we have,

〈Ψ†z,i(t)Ψz+1,j(t)〉 =

∫
ω,ω′
〈Ψ†z,i(ω)Ψz+1,j(ω

′)〉ei(ω−ω′)t, (3.25)
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Figure 3.5: Dispersion of the inversion symmetry broken WSM along with the barrier potential
V0. vF1 = tan(θ1) and vF2 = tan(θ2) are the Fermi velocities at q+ and q− respectively.

with

〈Ψ†z,i(ω)Ψz+1,j(ω
′)〉 =

∑
PP ′

VP ′†
I′;klGW

†
I′z,li(ω

′)GWz+1,I;jm(ω)VP
I,mn〈Γ

P ′†
k (ω′)ΓPn (ω)〉

=
∑
P,P ′

GWz+1,I;jm(ω)ζPml(ω)GW†Iz;li(ω)δ(ω − ω′)δPP ′ .

Here ζPml(ω) = (VP
I ρ

P (ω)VP †
I )mlf

P(ω)where {I, P} is either {1, L} or {N,SC} denoting either
the normal or the superconducting lead respectively and fP(ω) denotes the Fermi function of the
P -th lead. Lastly, ρP (ω) denotes the density of states of the P -th lead.

Putting everything back in, we can finally evaluate the current

Jz(t) = eIm

∫
dω
∑

P

Tr
[
AGW z,I(ω)ζP(ω)GW†z+1,I(ω)

]
, (3.26)

where A31 = A42 = −t̃ + λz and A13 = A24 = −t̃ − λz and Aij = 0 otherwise. For the
superconducting part, we obtained the Greens function by recursively solving for the surface
of an s-wave superconductor [6464]. Also, we imposed the flatband approximation for the
normal lead. Hence, ΣL(ω) = VLGL(ω)VL† = −iπVLVL†. For this calculation, we have used
tSC = tL = 0.25. The values of the other parameters are given in the main text.

A schematic diagram that represents this process is presented in Fig.3.63.6(a). The information
about the chemical potential of the leads (and the temperature, in principle) is included when
averaging over the lead states.

We obtain the current as a function of k0 and V0 with the chemical potential on the left
lead kept fixed at ∆/2, and summarize the results in Figs. 3.63.6(b) and (c), where we have also
taken the transverse momentum to be zero. As in the scattering matrix calculation, here again,
the current oscillates as a function of both k0L/π and V0L/πvF , which clearly confirms the
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Figure 3.6: (color online) (a)The schematic of the procedure used for the lattice simulation.
After integrating out the two leads, one superconducting and one normal metal, the full Green’s
function of the system, G, contains the corresponding self energies. The final current through
the system is obtained after averaging over the lead states, which include the information of
the Fermi function of the leads (b), (c) Results of the lattice based simulation, verifying the
oscillation dependence of the current as a function of V0 and k0 respectively. Here, the dotted
lines show the periodicity expected from Eq. 3.103.10. The parameters used are ∆ = 0.1, ε = 6,
λZ = λ = 0.5, µL = 0.05, µR = 0. The length of the WSM dot is kept fixed at 60 in units of
lattice spacing.

central result of our chapter that inter-node Andreev reflection, if not prohibited by additional
symmetries of the problem [5555], plays a crucial role in determining transport properties of the
Weyl semimetal-superconducting interface. In order to find the Fermi velocity, we first determine
q+ and q−, the points of intersection of the barrier potential with that of the energy dispersion, as
shown in Fig.3.53.5. The Fermi velocities at these points are given by vF1 and vF2 respectively and
are obtained by taking the derivative of the dispersion with the momentum. The Fermi velocity
used to obtain Fig.3.73.7(a) is given by the mean of these two velocities vF = (vF1 + vF2)/2. As
we vary V0, vF also changes due to nonlinearity of the dispersion beyond a small value of the
potential V0. We scale the V0 axis of Fig.3.63.6 and Fig.3.73.7 by a factor of 1/vF .

3.1.3 Inversion symmetry broken WSM

The distinct unambiguous signatures of WSM systems can be further clarified if one takes an
inversion symmetry broken WSM. An inversion broken WSM requires the presence of at-least
four chiral nodes in the Brillouin zone.

The Hamiltonian used to describe an inversion symmetry brokenWSM is the same as chapter
22 written in the Nambu basis:

Hinv = λ
∑

α=x,y,z

σαηzsinkα + σyτyηzM(k), (3.27)

where, just like the last chapter,M(k) = m+ 2− coskx − coskz. We remind ourselves that this
model describes a normal insulator whenm > λ and a Dirac semi-metal whenm = λ with two
nodes at ky = ±π/2. When m < λ, each of the two nodes split into two Weyl nodes forming a
Weyl semi-metal with 4 nodes. Note that for this model, k+ + k− = π is fixed.
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Figure 3.7: (a) Variation of the current as a function of the barrier height for an inversion
symmetry broken WSM. The length of the Weyl semimetal is kept fixed at 100 sites. The values
of the other parameters are λ = 1, µL = 0.5∆ and µR = 0. Here, k0 = π/2 − sin−1(m/λ) is
kept fixed. (b) The same as a function of the separation of Weyl nodes (m is varied to change
the separation of the Weyl nodes) in the Brillouin zone for fixed barrier height. The dotted lines
indicate the periodicity expected from the ideas of the main text.

In this simplest situation, the nodes can be co-linear in momentum space, and without
loss of generality, can be placed at momentum k1 = (−k+, 0, 0), k2 = (−k−, 0, 0), k3 =

(k−, 0, 0), k4 = (k+, 0, 0) with k+ = sin−1(m/λ) and k− = (π − sin−1(m/λ)). Time reversal
symmetry requires the first and last nodes to have the same chirality, and the two nodes in the
middle to have opposite chirality. If the chirality of the nodes were not relevant -i.e., if we were
working with a 3 dimensional Dirac metal, then proximity to an s-wave superconductor would
couple nodes of opposite momenta through Andreev processes. So we would expect the relevant
momentum scales to be 2k±. But in a WSM the coupling is only allowed between nodes 1-2,
and 3-4, giving the relevant momentum scale k+ − k− and between nodes 1-3, and 2-4, giving
the relevant momentum scale k+ + k−. Thus the relevant scales of the conductance oscillations
strongly distinguishes between a dot made of a Dirac metal from a dot made of aWSM. However,
working with a 4-band model is cumbersome in the scattering matrix framework.

The relevant inter-nodal distance is k+ − k− = 2k0. We keep the x and z directions
periodic and the y direction finite. Repeating the calculations for this setup, we end up with the
same expression for the current (i.e, Eq.3.263.26) with A redefined such that A21 = A43 = λ and
A12 = A34 = −λ and Aij = 0 otherwise. The results are summarized in Fig. 3.73.7, and clearly,
the two basic periodicities of the current as emphasized in the previous section are also seen
here.

3.2 Oscillations in the Josephson current in Weyl semimetals

In this section we study the current in a simple Josephson junction setup. We show that unlike in
a normal metal-SC interface, the inter-nodal ‘normal’ (electron to electron) reflection process in
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Chapter 3. Transport through Andreev bound states in a Weyl semimetal quantum dot

Figure 3.8: (Color online) The probability that an electron will be reflected as an electron (|χ±|2)
or as a hole (|η±|2) at a WSM-SC interface, discussed in Eq. (3.283.28). Note that the probability
of reflection as an electron is finite. The parameters used are ~2k2

0/2mW = 10µW = 103∆ =
µS/2, p� k0 andmS = mW .

a WSM-SC interface is not suppressed even for energies close to Fermi-energy, due to the broken
time-reversal symmetry separating the Weyl nodes. The Josephson current, flowing through the
bound levels formed by multiple inter-nodal ‘normal’ and Andreev (electron to hole) processes
in a SC-WSM-SC system, consequently, acquires a specific periodicity as a function of the length
of the WSM which depends only on the separation of the Weyl nodes in the momentum space
(see Fig. 3.103.10).

This oscillation in the Josephson current and the resulting changes of sign of the critical cur-
rent at arbitrary values of φ (or the 0-π transition) is an inherent property of the SC-ferromagnet-
SC junction [6565–7070] and has also been experimentally observed[7171]. Since our model also
explicitly violates time-reversal invariance, our results show quite a strong similarity with the
Josephson current in similar systems[7272] as well in semiconductor nanowires with Zeeman
coupling[7373].

Since this work has been incorporated in a previous thesis, we briefly quote the key results
before moving on.

3.2.1 WSM-SC junction

For the case of a WSM-SC junction, the WSM and and the superconducting wavefunctions
on the two sides of the junction can be matched at the junction by requiring the continuity of
the wavefunction and its first derivative. As is shown earlier in this chapter, this leads to the
net reflection matrix Rj from the WSM-SC junction, which connects the left and right-moving
solutions at the interface with the jth superconductor.

For the case of near-normal incidence (k0 � p) of an electron, the reflection matrices reduce
to the form:

rjee =

(
χ+ 0

0 χ−

)
, rjhe = e−iφj

(
0 η+

η− 0

)
. (3.28)
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3.2. Oscillations in the Josephson current in Weyl semimetals

Figure 3.9: The variation of the bound levels (solutions of Eq. (3.293.29)) near the chemical potential
with the lengthL of theWSM for various values of θ, where θ = 2k0Lmod(2π). The parameters
used are the same as in Fig. 3.83.8.

In this simplified form it is immediately clear that both the reflection and the Andreev reflection
change the chirality and can only take place from one node to the other because of the chiral
nature of the nodes. We plot the probabilities of normal and the Andreev reflection in Fig. 3.83.8.
We note that even at energies close to the Fermi energy, normal reflection is not suppressed as
the existence of the new momentum scale k0 6= kF , allows the incident electron momentum to
be different from the Fermi momentum of the superconductor [7474].

3.2.2 Bound levels in the SC-WSM-SC geometry

Multiple reflections at theWSM-SC boundaries lead to bound electronic levels in the SC-WSM-SC
geometry. The bound levels Eb can be found by solving

det
[
I4×4 −RLMRRM

]
|E=Eb

= 0, (3.29)

whereM is the matrix which accounts for the phase the electron/hole acquires while moving
from one junction to another. Writing

RLMRRM =

(
Tee Teh
The Thh

)
, (3.30)

in the limit of near normal incidence with k2
0/2mW much larger than incident energy E and µS

much larger than pairing potential ∆, the T matrices have the simplified form (withmS = mW ):
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Chapter 3. Transport through Andreev bound states in a Weyl semimetal quantum dot

Figure 3.10: (Color online) The Josephson current as a function of both L and k0 is shown at the
value of φ ≈ π/2. The initial value at the origin is (k0, L) = (q, l), ql ≈ 10π. The contours of
constant current follow a set of (approximate) hyperbolas for constant θ = 2k0Lmod(2π), a few
of which are shown in the right margin (with the minimum and the maximum current occuring
near θ = π and θ = 0 respectively). Other parameters used are the same as in Fig. 3.83.8.

Tee =

(
α+ 0

0 α−

)
, The =

(
0 β+

β− 0

)
, (3.31)

with α± ≈ e±2ik0L (1 + 4iEδ) ,

β± ≈ ±e∓2ik0L2i(1 + e−iφ)∆,

where δ =
√

2mWµS/k0Ω and φ = φR − φL.
This immediately shows the periodicities: T (2k0L) = T (2k0L → 2k0L + 2π), which

implies that the bound levels Eb, the solutions of Eq. 3.293.29 are periodic in both φ and 2k0L. The
periodicities of Eb in the difference of the superconducting phases φ and in 2k0L, in the limit of
k0 � p is shown in Fig. 3.93.9. This is our central result.

3.2.3 Periodic oscillations in the Josephson current

The Josephson current for the system with the total HamiltonianH is written as Jjos = 2e
~

〈
∂H
∂φ

〉
,

where the average is taken over the filled states of the system. For the non-interacting system,
where the length L is much smaller than the coherence length in superconductors, the Josephson
current flows through the bound levels (neglecting the continuum contribution) and can be
estimated as [7575]

J(µW ) =
2e

~
∑
b

∂Eb
∂φ

f(Eb − µW ), (3.32)
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3.3. Summary

where f is the Fermi-distribution function. Apart from the 2π periodicity of the Josephson
current in φ, as the bound levels Eb are periodic in L with the periodicity of π/k0, the Josephson
current also inherits the same periodicity.

The Josephson current as a function of both k0 and L is also shown in Fig. 3.103.10, where the
locus of constant current approximately follows θ = 2k0Lmod(2π). This is another of our main
results.

3.3 Summary

To summarise, we have discussed transport through a Weyl semimetal quantum dot, in a normal-
metal-WSM-superconductor geometry, that captures a number of features unique to the presence
of chiral nodes in the WSM. We took a simple time-reversal broken WSM and studied it in the
scattering matrix approach as well as by using tight-binding simulations. The key result of our
work, Eq. (3.93.9), differentiates the effect of Klein tunneling in the Dirac system from that due to
the presence of chiral nodes in the WSM. An experimental setup should be similar in essence to
that shown in Ref. [6060], but the details of the prediction would depend on the material used.

Lastly, we have demonstrated the presence of an unusual periodicity in the Josephson current
that results in the striking 0 − π transition that the critical Josephson current goes through as a
function of only the separation of the two Weyl nodes and the size of the sample. This provides
a direct path for possible observations of the manifestation of inter-nodal reflection in Weyl
semimetals.
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Chapter 4
Spin-dependent Andreev reflection in
spin-orbit coupled systems by breaking
time-reversal symmetry

In this chapter we take a model system that represents a number of 2D systems (like silicene,
germanene, stanene), typically in a honeycomb lattice, with a small time-reversal (TR) invariant
spin-orbit coupling and optionally a sub-lattice staggered potential [7676–8080]. Andreev reflection,
among other transport phenomena, has been studied extensively in these systems [8181, 8282, 8282, 8282–
8989]. As the spin-symmetry is typically not broken, AR is not suppressed as long as the band gap
remains smaller than the superconducting gap. Following the discussion by Haldane [3333], time-
reversal symmetry (TRS) can be broken in such 2D systems by introducing complex next-nearest-
neighbor (NNN) hopping (in addition to existing real-spin orbit coupling, which does not break
TRS), which acts like a pseudo spin-orbit coupling in the orbital space. This, physically, may
result from the orbital effect of a magnetic field in the system. In cold-atomic setup, such a system
is, interestingly, realized through periodic drive. Such Floquet manipulation of band-structures,
by driving a quantum system periodically, has been of much interest in recent times [5656, 5757, 9090–
106106] in a number of contexts including topological insulator [9090, 100100–102102], fractional chern
insulators [9797], Majorana modes [106106], phosphorene [9898], spintronics [9999], engineered gauge
fields [9696], disordered systems [104104], nano-wire as well as Weyl semimetals [5656, 5757]. Under
certain conditions the dynamics of a periodically driven system can be described in terms of an
effective static Hamiltonian [107107–110110]. The central idea is to have the driving off-resonant and
to project the time-periodic Hamiltonian into the zero-photon sector. The effective Hamiltonian
is often topologically non-trivial and opens the door towards controlling the band-structure
by means of external fields. Such ideas have been tested experimentally in solid-state [111111],
photonic [112112] and also cold-atomic [113113–115115] systems, where it has been particularly successful
and generated much excitement in theorists and experimentalists alike.
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Chapter 4. Spin-dependent Andreev reflection in spin-orbit coupled systems by breaking
time-reversal symmetry

Figure 4.1: A setup where the model we discuss can be realized. On the right side (x > 0),
the N region is modeled with spin-orbit coupled two dimensional material (say silicene). Time
reversal symmetry is broken with either a complex next-nearest-neighbor hopping term or with
circularly polarized light. The left side (x < 0), the S is modeled with a proximity induced
superconductor of the same material (without the radiation).

Figure 4.2: Spin asymmetry in band structure created by next-nearest-neighbor hopping as
shown in Eq. (4.44.4). The Hamiltonian of the time reversal symmetric system with δεησ = δε−η−σ
is shown in (a) Such symmetry is broken for finite t2 and θ, as shown (b). The parameters used
are lEz = 0.005t0 and λ = 0.05t0.

The setup we consider is shown in Fig. 4.14.1, where a part of the system has proximity induced
superconductivity (theS region) and the other part (theN region) has broken TRS due to complex
NNN hopping, representing a system with spin-orbit as well as pseudo spin-orbit coupling. The
effective Hamiltonian of the systemN , in presence of TRS breaking, would include an additional
mass term [3333]. In this chapter we explore how the competition between the spin-orbit coupling
and the TR breaking mass term can give rise to spin dependent AR reflection probability in
certain parameter regimes.

In the case of generating the NNN coupling by periodically driving the system, theN region
in Fig. 4.14.1, is irradiated with circularly polarized light with frequency much larger than any other
energy scale of the system (such as the natural band-width). Apart from the driving amplitude
and the frequency of the drive, it is also possible to control this probability by collimation of
the incident angle of the electrons. Further, as the spin-orbit coupling in the relevant system is
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4.1. Pseudo Spin-Orbit Coupled system

typically of the order of only a few millielectron-volt [116116], the required driving amplitude for
the spin polarised conductance to show up is also relatively small.

4.1 Pseudo Spin-Orbit Coupled system

A two dimensional honeycomb lattice with spin-orbit coupling is represented by the low-energy
Hamiltonian

H0
σ =

(
H0

+,σ 0

0 H0
−,σ

)
(4.1)

where
H0
η,σ =

3t0a0

2
(ηkxτx + kyτy) + (lEz + ησλ)τz − µI. (4.2)

The nearest neighbour hopping, t0, is independent of the spins. a0 is the lattice spacing, σ = ±
refers to the up/down spin and τi are Pauli matrices in the sublattice basis. In a buckled structure,
the atoms of the sub-lattices are separated in the direction perpendicular to the plane of the
lattice. 2l is the separation between the a and b sublattices and Ez is the applied electric field.
The energy separation lEz acts as a staggered potential between the sub-lattices. The term λ

controls the strength of the spin-orbit coupling and µ is the chemical potential. We note that
λ only describes the time-reversal (TR) invariant intrinsic spin-orbit interaction and not the
Bychkov-Rashba effect, since we expect the latter to be small for such systems [116116, 117117].This
description can apply to a variety of topical models such as graphene, silicene, germanene and
stanene in honeycomb lattice. The above low-energy Hamiltonian can be derived by expanding
the lattice Hamiltonian Hhc of such systems near the two inequivalent Dirac points (marked by
η = ±) in the Brillouin zone.

When complex NNN hopping is introduced, the Hamiltonian gets modified[3333]:

HNHal,η,σ =
3t0a0

2
(ηkxτx + kyτy) + (lEz + 3

√
3η Ξσ)τz − µI. (4.3)

Here,

Ξσ =
σλ

3
√

3
− t2 sin(θ), (4.4)

where t2 is the NNN hopping amplitude and +(−)θ is phase associated with the hopping from
A to A (B to B) sub-lattices. The Hamiltonian results in a similar band-structure

εη,σ(k) = −µ±
√
t20(k2

x + k2
y) +D2

ησ, (4.5)

with Dησ = lEz + 3
√

3Ξσ is the gap introduced by the TRS breaking. Fig. 4.24.2 describes the
band structure before and after the time reversal symmetry is broken by introducing the NNN
hopping term.

61



Chapter 4. Spin-dependent Andreev reflection in spin-orbit coupled systems by breaking
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Figure 4.3: The topological phases of the system Eq. (4.84.8) is shown above in (a), where the chern
number of up and down spin bands are shown in parenthesis. The quantum spin-hall system is
particularly marked. Periodic drive created spin asymmetry in band structure is shown in (b)
and (c). The Hamiltonian of the pristine system (α = 0), representing silicene is time reversal
symmetric giving the relation δεησ = δε−η−σ among the gaps of the system. Such symmetry is
broken for finite α, as shown in the right. An Andreev reflection process is allowed for an
incident electron with energy E, spin σ and valley index η, only when ε ≥ max{δεση, δε−σ−η}.
lEz = 0.08 for both (a), (b) and ω = 10t0 for (c).

In Fig. 4.14.1, the N region,x > 0, is described by the Eq. (4.34.3). On the other hand, the region
S is modeled by the system along with proximity induced s-wave superconductivity. For x < 0

(region S) we take the Hamiltonian Eq. (4.24.2) and set lEz = 0 for simplicity. Further we need to
take a large doping U0 for the mean-field description of the superconducting part to remain valid.
The pair potential ∆ (which we consider to be real) couples the time-reversed electron and hole
states in the superconductor. Hence, we arrive at the low-energy Hamiltonian of the S side [8181]:

HSC
η,σ =

(
H0
η,σ σ∆I

σ∆I −H0
η,σ

)
. (4.6)

where H0
η,σ is the Hamiltonian of the static system in Eq. (4.24.2). For our numerical simulations

we have used U0 = 2t0.

Either θ or t2 can be varied to control Dησ. This gap will compete with the real spin-orbit
coupling energy scale λ and in suitable situation spin-dependent Andreev reflection might be
observed.
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4.2. Time Reversal symmetry breaking by Periodic drive

Figure 4.4: Top panel: The conductances of an electron in the static (α = 0) system for various
values of the staggered potential (lEz). Out of the four channels (η = ±1, σ = ±1) the AR
probabilities are the same for channels with same value of ησ. For certain values of lEz, only two
of the channels with ησ = −1 contribute in transport. Bottom panel: For similar values of lEz,
the driven system with α = 0.2 and ω = 10t0, significant difference in AR probability arises,
even when it remains sufficient to consider only two of the channels (ησ = −1). In these figures
the arrows on the E axis denote the minimum gaps of the system and the minimum energies E
that satisfies Eq. (4.154.15) are marked by circles. The parameters used are λ = 0.5∆, ∆ = 0.1t0.

4.2 Time Reversal symmetry breaking by Periodic drive

As a physical realization of the model discussed in the previous section, we next turn our attention
to a similar two dimensional systems with spin orbit coupling. Time reversal symmetry in this
system is now broken when circularly polarized light of frequency ω is irradiated on it. This high
frequency drive is represented by a time dependent vector potentialA(t) = A0(cosωt, sinωt, 0).

The irradiation can be treated in the perturbative high-frequency approximation where ω is
the largest energy scale of the system. In the presence of the radiation, the hopping elements
of the honeycomb lattice Hamiltonian of Eq. (4.24.2), Hhc, are modified by Peierls substitution,
making the Hamiltonian Hhc(t) time periodic with the nth Fourier component being Hhc(n). In
the high-frequency limit, the effective Hamiltonian that controls the dynamics of the system is
given by Hhc

eff ≈ Hhc(0) +
∑

n6=0H
hc(−n)Hhc(n)/nω. Expanding this effective Hamiltonian near

the Dirac points provides us with a low-energy Hamiltonian for the N region:

HNσ =

(
HN+,σ 0

0 HN−,σ

)
(4.7)

where [110110]
HNη,σ =

3tσa0

2
(ηkxτx + kyτy) + (lEz + 3

√
3ηΛ0

σ)τz − µI, (4.8)

with

tσ =t0J0(α)− 4tσλ

3ω

∑
n 6=0

Jn(α)Jn(α
√

3)√
3n

×
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Figure 4.5: The amplitude of the difference in conductances
∑

η(Gη↓ − Gη↑) plotted against
E/∆. As α increases the system develops a gap at the K and K ′ points and consequently with
larger α, the sub-gap conductance vanishes, giving rise to zero spin-dependent value. For the
choice of our parameters: lEz = 0.25∆, λ = 0.5∆ and ∆ = 0.1t0, the critical value of α is
0.64. The value of the driving frequency is chosen to be ω = 10t0. Surprisingly, the maximun
value of the spin-dependent conductance, as a function of E/∆ (E being the incident energy)
remains partly constant with α, shown in the second figure.

×
(

2 sin
nπ

2
+ sin

πn

6

(
1 +

1

2
(−1)n

))
, (4.9)

Λ0
σ =

σλJ0(α
√

3)

3
√

3
−
∑
n6=0

t20J
2
n(α)

ωn
sin

2πn

3
, (4.10)

where α = a0A0 characterizes the strength of the drive and Jn is the Bessel function of order n.
We have tσ ∼ t0 for small α and large ω. It is important to note that the spin symmetry of the
static system (i.e, the energy-dispersion of Eq. (4.24.2) remaining the same under transformation
σ, η → −σ,−η) is now broken in the presence of the periodic driving. The polarization of the
time dependent field breaks the TR symmetry of the Hamiltonian. The energy spectrum is thus
given by

εη,σ(k) = −µ±
√
t2σ(k2

x + k2
y) +D2

ησ, (4.11)

with the redefined mass term Dησ = lEz + 3
√

3Λ0
σ.

From this it is evident that in the region N we have a tunable gap between the conduction
and valence band given by δεησ = 2|Dησ|. The presence of three energy scales: the spin-
orbit coupling, the staggered potential and the TR breaking mass from the driving gives rise
to a rich topological phase diagram, where one can have trivial insulating, Chern insulating as
well as spin hall insulating states, with topological phase transitions separating one phase from
another [110110]. In Fig. 4.34.3 we briefly summarize these points. It is also known that in this situation
it is possible to achieve purely spin polarized low-energy band-structures [7979], that would result
in the suppression of AR.
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4.3. Scattering matrix formalism

4.3 Scattering matrix formalism

The quantum states can be found in both N and S region by solving the BdG equations in the
respective regions. To compute the probability of Andreev reflection wematch the wavefunctions
for regions N and S at the boundary x = 0 in familiar fashion [5959]:

Ψe− + rΨe+ + rAΨh+ = bΨS+

+ dΨS− (4.12)

where Ψe− and Ψe+ are the wave functions of the incident and reflected electron (in band η, σ).
Ψh+ is the wavefunction of the reflected hole (in band −η,−σ):

Ψe∓ =
ei(∓kex+kyy)

√
cosφi

(
∓ξ

1
4
η,σ

θ
1
4
η,σ

e±
iφi
2 , η

θ
1
4
η,σ

ξ
1
4
η,σ

e∓
iφi
2 , 0, 0

)T

,

Ψh+ =
ei(khx+kyy)

√
cosφ′

0, 0,−
θ

1
4
−η,−σ

ξ
1
4
−η,−σ

e−
iφ′
2 , η

ξ
1
4
−η,−σ

θ
1
4
−η,−σ

e
iφ′
2

T

,

where

ξη,σ = εη,σ +Dησ, θη,σ = εη,σ −Dησ.

φi is the angle of incidence of the electron and φ′ is the angle of the reflected hole given by

cosφi =
tσke√

ξη,σ
√
θη,σ

, tanφi = ηky/ke,

cosφ′ =
t−σkh√

ξ−η,−σ
√
θ−η,−σ

, tanφ′ = ηky/kh.

Here we have set µ = 0. The incident angle φi has an upper limit for Andreev reflection to take
place. This critical angle is given by

φc = sin−1 tσ
√
ξ−η,−σ

√
θ−η,−σ

t−σ
√
ξη,σ
√
θη,σ

. (4.13)

In the S region, the relevant wavefunctions are

ΨS± =ei((±k0−iκ)x+kyy)


e∓iβ

±ηr±ei(±γ±∓β)

1

±ηr±e±iγ±


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with

sin γη,σ± =
(3/2)a0ηt0ky√

ησλ− U0 ∓ iQ
√
−ησλ− U0 ∓ iQ

,

rη,σ± =

√
−ησλ− U0 ∓ iQ
ησλ− U0 ∓ iQ

, Q =
√
|∆|2 − ε2η,σ,

k0 =
2
√
M

3a0ηt0
, κ =

2U0Q

3a0ηt0
√
M
,

M = U2
0 −Q2 − (ησλ)2 −

(
3a0ηt0ky

2

)2

.

β is the phase associated with Andreev reflection and β = cos−1(ε/|∆|) for ε < ∆ and β =

−i cosh−1(ε/|∆|) for ε > ∆. The solved parameters r and rA, for each of the band, are elements
of the scattering matrix of the system, where the probability of reflection and Andreev reflection
are, respectively, |r|2 and |rA|2. Finally, the differential conductance at theNS junction is given
by the Blonder-Tinkham-Klapwijk formula

Gη,σ =

∫ π
2

0

fη,σ(φi) cosφi dφi, (4.14)

where fη,σ(φi) = (1− |r|2 + |rA|2) for each incident channel. For sub-gap conductance, as in
our case, one can equivalently write fη,σ(φi) ≡ 2|rA|2, as |r|2 + |rA|2 = 1 for each channel.
Also, we note that G is measured with respect to the ballistic conductance of the N system in
absence of the superconductor.

Lastly, we would like to point out that under redefinition of parameters, the two Hamiltonians
given in Eq. (4.34.3) and Eq. (4.84.8) are the same. So, the formalism of this section can be easily used
to study the differential conductance in the geometries described in both Sec (4.14.1) and (4.24.2).

4.4 Spin-dependent Andreev reflection

For µ = 0, in order for Andreev reflection to occur, the excitation gap in region N must be
smaller than the superconducting gap ∆. Thus, at α = 0 and for a large-enough lEz ∼ O(∆), it
is enough to consider only one pair of bands (ησ = −1) to participate in Andreev processes [8181]
and for incident energy larger than the gap of this pair of bands one expects AR to occur. Such
a simplification is not possible for finite α as the degeneracy among the bands is now lifted.
An electron coming in the band of η, σ Andreev reflects to the band with indices −η,−σ. This
provides us with a condition that the AR is allowed only when

∆ ≥ E ≥ max{δεση, δε−σ−η}. (4.15)

As an example, for the case considered in Fig. 4.34.3, for α = 0.4, although the band σ =
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Figure 4.6: Appearance of spin-dependent AR in presence of both the spin-orbit coupling (λ 6= 0)
and periodic driving (α 6= 0). We plot the angle resolved sub-gap (E/∆ = 0.4) conductance
fη,σ(φi) (c.f. Eq. (4.144.14)) as a function of the incident angle φi for all the channels available
(η = ±1, σ = ±1), as marked individually. The resultant spin-current is plotted in dashed
(red) line. Non-vanishing λ prefers two (given by ησ = −1) out of the four channels. Whereas,
non-vanishing α prefers one valley (here, η = +1). In combination of both present, we observe
spin-dependent AR. lEz = 0.25∆, ω = 10t0 and ∆/t0 = 0.1 are kept fixed.

−1, η = +1 is gapless (i.e, δε+↓ = 0), the AR takes place only when E ≥ δε−↑. This simply
implies that in a purely spin-polarized band-structure AR is prohibited (i.e, in a range of energy
from min{δεση, δε−σ−η} to max{δεση, δε−σ−η}). Any occurrence of spin-dependent AR is still
not evident yet. However, this does not prohibit the probabilities of the AR in various channels
to differ from each other as long as E satisfies Eq. (4.154.15).

Before we discuss the Haldane model, we first study the case of the driven system. We start
by briefly summarizing the results of the static system in the upper panel of Fig. 4.44.4. Introduction
of the spin-orbit coupling term λ breaks the four-fold degeneracy of the Dirac points, but keeps
the band-structure symmetric with respect to η, σ → −η,−σ. Further, due to the presence of
the sub-lattice staggered potential lEz, the two branches ησ = ±1 are now separated by a gap.
Consequently, for lEz ∼ λ, it becomes sufficient to consider only one of the ησ branches for
low-energy transport. The λ term in Eq. (4.24.2) does not break the TR symmetry and for lEz < λ,
the system is a spin-hall insulator with opposite Chern numbers for up and down-spin valence
bands. For lEz > λ the system becomes a trivial insulator. As the spin-valley symmetry remains
intact, the AR probability remains independent of spin. One can compare these results with that
of Ref. [8181].

Breaking the TR symmetry by introducing the driving (characterized by the amplitude α) has
dramatic consequence in Andreev reflection. We summarize the results depicting spin-dependent
AR probabilities in the lower panel of Fig. 4.44.4 and in Fig. 4.54.5. In the presence of α 6= 0, the
four bands (σ = ±1, η = ±1) are now split and there exists a range of energy that does not
satisfy Eq. (4.154.15). When the energyE is larger than this forbidden energy, each of the previously
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Figure 4.7: (a) The angle resolved sub-gap conductance fη,σ(φi) is plotted as a function of the
incident angle φi and the resultant spin-resolved conductance is plotted with dashed lines. Only
ησ = −1 branches contribute for our choice of parameters: E = 0.6∆, λ = 0.5∆, ∆ = 0.1t0,
lEZ = 0.25∆. (b) Same plot for lEz = 0.5∆. Other parameter values remain unchanged from
Fig. 4.44.4.

equivalent spin channels labeled by the value of ησ acquires different probabilities of Andreev
reflection. Consequently the conductance G becomes spin-dependent. Even for lEz = 0, the
four channels η = ±1, σ = ±1 are now split and a significant spin-conductance can be observed.
With increasing lEz, only two channels, given by ησ = −1 remain relevant in the subgap regime,
which continue to carry large spin conductance. For our numerical results, we keep ω = 10t0,
which is almost double of the band-width of the system. This is well within the regime where
the high-frequency approximation is expected to be valid.

Our results show spin-dependent conductance even for a comparatively small value of α/t0.
This is because a finite spin-dependent AR appears due to the competition between the two terms
in Eq. (4.104.10) (see the discussion below). The second term appearing in Λσ (see Eq. (4.104.10))
needs to be of the order of λ (the spin-orbit coupling strength) for this spin dependence to show
up. In our simulation we have taken λ = 0.05t0. In typical systems, λ is quite small, for
example, the value of λ in silicene is only 3.9 meV whereas t0 ≈ 1.6 eV [116116], giving a value
λ/t0 ≈ 2.5 × 10−3. We expect the relevant value of α/t0 to be of the same order for such a
system.

With increasing α, the system eventually develops a gap (a topological insulator with Chern
number = ±2, see Fig. 4.34.3) bigger than ∆ and consequently the sub-gap conductance vanishes.
Interestingly, the maximum spin-conductance observed depends only weakly on α. These results
are summarized in Fig. 4.54.5.

Now we turn to further analysis of the origin of spin-dependent AR in our system. For that,
we study how the angle dependent differential conductance fη,σ(φi) behaves as a function of the
incident angle φi. As shown in Fig. 4.64.6, a finite value of λ and α is achieved via two different
intermediate states. The action of a finite λ prefers two channels (ησ = −1 for this case) out
of four. Whereas, a finite α results in a critical angle φc < π/2 for channels belonging to one
of the valley (η = 1), giving rise to net conductance dominated by channels of the other valley
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Figure 4.8: The conductances of an electron when the TRS is broken by complex NNN hoppings
as is shown in Eq. (4.34.3). The parameters taken are t2 = 0.005t0, θ = π/4, lEz = 0.005t0,
∆ = 0.1t0, λ = 0.05t0.

(η = −1). Now, in the ησ = −1 channel consisting η = 1, σ = −1 and η = −1, σ = 1, the
effect of driving, for the parameter range presented in Fig. 4.64.6, is a finite critical angle of the
η = 1, σ = −1 channel, making the net conductance spin-dependent. Thus, when both the
effects are present, it becomes clear that the sub-gap conductance has spin-dependence. The
angle resolved conductance study also hints at achieving a purely spin polarized sub-gap transport
at a range of collimation angle of the incident electron. The angle-resolved sub-gap conductance
in the parameter range of Fig. 4.44.4 is presented in Fig. 4.74.7 for a sample value of the incident
energy.

In case of generating the mass in a periodically driven setup, we neglect any other degrees of
freedom present in the system (such as phonon and the effect of the substrate), which may limit
our prediction for a realistic setup. The heating, when driving with frequency larger than the
band width is likely to be negligible [107107, 118118–120120] but may require appropriate cooling of the
substrate. Despite the advantage of periodic drive in terms of the tunability of the time-reversal
broken mass term, the time dependent drive has significant limitation in solid state systems,
where a periodic drive, in presence of interaction, can heat the system eventually.

Lastly, the same study is repeated for the Haldane model introduced in Sec. 4.14.1. The results
are summarized in Fig. 4.84.8. As expected, the spin asymmetry due to the next-nearest-neighbor
hopping, results in spin-dependent Andreev reflection amplitudes which can be tuned by t2 and
θ.

4.5 Summary

To summarize, we consider a simple Dirac system in the presence of a number of mass terms
that may compete with one another. In such a system the Andreev reflection probability, hence
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the sub-gap conductance, at the interface with a superconductor becomes spin-dependent. It is
possible to achieve, as we see in Fig. 4.64.6, sub-gap spin dependent transport. If we consider the
case where the time-reversal broken mass term is introduced by circularly polarized light, it is
possible to control the spin-dependence, by controlling the amplitude of drive α, frequency ω
and the handedness of the radiation. Our work is a proof of concept how spin-dependent AR can
be achieved and has direct implication in practical systems like silicene, germanene and stanene,
as well as in cold-atomic setup.
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Chapter 5
Spin waves in MoS2

Recently, it has been argued that for strong enough interactions, TMD systems develop a sponta-
neous imbalance of spin/valley populations [121121, 122122], which leads to actual ferromagnetic spin
order in the groundstate. It thus becomes interesting to consider how one might probe and dis-
tinguish these orderings. One possible strategy is to investigate the spin response of the system,
both to search for sharp collective modes that are a hallmark of ferromagnets, and to understand
broader features of the response that demonstrate the ordering present in these materials. This is
the subject of our study.

At higher dopings the valence bands will support two Fermi surfaces in each valley, indicating
that they contain holes of both spins. Because of the opening of the second Fermi surface
the system now supports gapless spin-flip excitations, albeit at finite wavevector. Regions in
frequency and wavevector where these exist are illustrated in Fig. 5.25.2, along with the spin wave
dispersion for these parameters. Observation of such a continuum of gapless modes would allow
a direct demonstration of the spin-split Fermi surfaces in this system. In practice, because these
modes appear above wavevectors of order q . 1/awith a the lattice constant, their presence may
be difficult to observe by direct electromagnetic absorption because of momentum conservation.
In real systems, disorder relaxes this constraint and may make their detection feasible [123123].

This chapter is organized as follows. In Section 5.15.1 we describe both the single particle
Hamiltonian and the interaction model we adopt for this system. Section 5.25.2 describes a static
Hartree-Fock analysis of the system, demonstrating that the effective single-particle Hamiltonian
is rather similar to the non-interacting one, with renormalized parameters. In Section 5.35.3 we
carry out a time-dependent Hartree-Fock analysis of the spin response function, and show how
one can identify poles that signal allowed spin-flip excitations of the system. In Section 5.45.4 we
carry out an analytic analysis of the equations generated in the previous section, appropriate for
low hole doping. Section 5.55.5 provides results one finds from numerical solutions for the spin
response functions. We conclude with a summary in Section 5.65.6.
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Figure 5.1: Absorptive part of spin response function Im χτ (q, ω) for q = 0, chemical potential
µ0 = −0.49∆ and U0 = 0.2eV with τ = +1. Model parameters for band structure in Table I. A
sharp collective mode near ω ≈ −0.0845∆ is prominent above a particle-hole continuum in the
interval −0.092 . ω/∆ . −0.087.

5.1 Model of the system

Our starting point is a simple two-band Hamiltonian for the monolayer MX2, such as MoS2,
developed through several numerical, symmetry-based analyses [1212] which capture the electronic
properties near the K,−K valleys. In the absence of interactions this has the form

Hτ
0 (k) =

[
∆/2 at(τkx − iky)

at(τkx + iky) −∆/2 + sτλ

]
, (5.1)

which is written in the basis |ψτc 〉 = |dz2〉 and |ψτv 〉 = 1√
2
(|dx2−y2〉 + iτ |dxy〉), where τ = ±

is the valley index and dz2 , dx2−y2 , dxy are orbitals of the M atoms. (Here and throughout this
chapter we take ~ = 1.) Spin is a good quantum number, denoted by s = 1 for ↑ and s = −1 for
↓. The strength of spin-orbit coupling is encoded in the parameter λ. In the ground state of this
Hamiltonian, states up to the chemical potential µ0, which is tunable in principle via gating, are
filled. Estimates [3636] for the parameters relevant to MoS2 are listed in Table I.

a t ∆ λ

3.190 Å 1.059 eV 1.66 eV 0.075 eV

Table 5.1: Values of various parameters for MoS2 from Ref. [1212].

The energy eigenstates of the full Hamiltonian with momentum k and spin s will be denoted
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Figure 5.2: The top panel, for µ0 = −0.49∆, in which there is only a single Fermi surface in
the valley, has a continuum of particle-hole excitations (shown in green) below some minimum
frequency. The lower panel has µ0 = −0.57∆ for which there are two Fermi surfaces in the
valley, giving rise to the continuum modes with vanishingly small energies for qx > 0.4k0 with
k0 = ∆/2ta. For both panels, U0 = 0.2eV and τ = +1. Other parameters are listed in Table I.
Blue lines illustrate the collective spin wave mode dispersion.

by φl,s(k), with l = {τ, α} (α = ± for conduction/valence bands), and have the form

φl,s(k) =
1√
2

 τe−iτφ
√

1 + αmsτ√
m2
sτ+a2t2k2

α
√

1− αmsτ√
m2
sτ+a2t2k2

 , (5.2)

with corresponding eigenvalues

εαl,s(k) =
τsλ

2
+ α

√
m2
sτ + (atk)2, (5.3)

wheremsτ = ∆−τsλ
2

and k =
√
k2
x + k2

y . The bands near theK (τ = 1) valley, shown in Fig. 5.35.3,
illustrate the distinct spin structure of the system. The valence and conduction band are separated
by a relatively large gap Eg = (∆− λ) at k = 0, whereas the two spin valence bands are further
separated by a smaller gap of magnitude Eλ = 2λ. This gap between the spin-split valence
bands remains almost constant for a range of k until akt � ∆. Note that the two conduction
bands of the model are nearly degenerate. The K and −K valleys of the system are related by
time-reversal, so that the spins of the two bands are reversed in going from one to the other.

To write down an effective interaction, it is convenient to define field operators of spin s
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Figure 5.3: The band dispersion of Hamiltonian (5.15.1) showing a direct band gap Eg between the
valence and the conduction band and the separation of spin polarized bands in the conduction
band. Position for two of µ0 are marked on the right margin. k0 = ∆/2ta is the scale of
momentum. The parameters used are listed in Table 1 and τ = +1.

projected into the set of states defined in our model,

Ψs(r) =
1√
LxLy

∑
k,l

ei(k+Kτl )·rφl,s(k)cl,s(k), (5.4)

where cl,s(k) is the annihilation operator for the l, s state at momentum k relative to the valley
minima/maxima atKτl = τlK, with the sign determined by the τ index implicit in l, and LxLy is
the area of the system. A repulsive interaction among the band-electrons can then be represented
in the form

Hint =
1

2

∑
s,s′

∫
d2rd2r′V (r− r′) : Ψ†s(r)Ψs(r)Ψ†s′(r

′)Ψs′(r′) :, (5.5)

with V represents a finite-range repulsive interaction. Physically this arises from Coulomb
interactions among the band electrons; the finite range can be provided by a screening gate or by
carriers in the layer itself (although we will not treat the screening dynamically in what follows).
We assume the screening length is large on the scale of the lattice constant so that inter-valley
contributions to the density Ψ†s(r)Ψs(r) oscillate rapidly, and can be ignored when integrated
over r. This leads to the replacement

Hint →
1

2

∑
s,s′

∑
τ,τ ′

∫
d2rd2r′V (r− r′) : Ψ†sτ (r)Ψsτ (r)Ψ†s′τ ′(r

′)Ψs′τ ′(r′) :, (5.6)
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Figure 5.4: Plot of a typical χ(q, ω), Eq. (5.275.27), showing the particle-hole excitations of the
spin-split valence bands below an energy ωc. There is a single collective mode visible for which
the real part of the denominator of Eq. (5.275.27) is zero. Here we have used q = 0, µ0 = −0.49∆,
τ = +1 and U0 = 0.2eV.

with

Ψsτ (r) =
1√
LxLy

∑
k,l

eik·rφl,s(k)cl,s(k)δτ,τl , (5.7)

where τl is the valley content of the composite l index. At this point we can make the approxi-
mation V (r− r′) = 2U0δ

2(r− r′), and arrive at an interaction form

Hint = U
∑
{likiq}

∑
s,s′

φ†l1s(k1)φ†l2s′(k2)φl3s′(k2 + q′)φl4s(k1 − q′)

c†l1s(k1)c†l2s′(k2)cl3s′(k2 + q′)cl4s(k1 − q′)δτl1 ,τl4δτl2 ,τl3 , (5.8)

where U = U0

LxLy
. This is the interaction Hamiltonian that we use in the Hartree-Fock analyses

that follow.

5.2 Hartree-Fock Approximation

In order to carry out an analysis of the spin response in this system within the time-dependent
Hartree-Fock approximation, it is first necessary to find the density matrix of the system within
the static Hartree-Fock (HF) approximation. This has the form

〈c†ls(k)cl′s′(k′)〉 = nls(k)δll′δss′δk,k′ . (5.9)

Note in writing this, we have assumed that neither interband nor intervalley coherence have
formed in the system spontaneously. Performing a HF decomposition on Eq. (5.85.8) gives a
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potential for an effective single-body Hamiltonian,

HHF
int =− 2U

∑
ll′,ss′,k

δss′
∑

a,b=A/B

c†lsφ
a∗
ls (k)

×

(∑
l′′

φals(k)nl′′s(k)φb∗l′′s(k)

)
φbl′s(k)cl′s. (5.10)

where, for notational simplicity, we have used the a, b indices to denote the orbital degree of
freedom (A ≡ |dz2〉 and B ≡ 1√

2
(|dx2−y2〉 + iτ |dxy〉)). The full HF Hamiltonian for electrons

with wavevector k then becomes

H0,HF
ls,l′s(k) = H0

ls,l′s(k)− 2U
∑
ab

φa∗ls (k)nabs φ
b
l′s(k), (5.11)

with nabsτl =
∑

kl φ
a
ls(k)nls(k)φb∗ls (k). The quantities nls need to be determined self-consistently.

Note in writing H0,HF
ls,l′s(k), we have dropped a term proportional to the total fermion number

which is a constant. In the orbital basis (l, l′) one may write

H0,HF(k) =

[
m̃sτ atτke−iτφ

atτkeiτφ −m̃sτ

]
+ τsλ/2− U(nAAsτ + nBBsτ ), (5.12)

with renormalized mass m̃sτ = ∆−τsλ
2
−U(nAAsτ − nBBsτ ). For a fixed density (obtained by fixing

µ0), the value of m̃τs is found numerically using the requirement that the values nls(k) used to
generate Eq. (5.125.12) yield wavefunctions that produce the very same values – i.e., the density
matrix used to generate the HF Hamiltonian is the same as what one finds from its eigenvectors
and eigenvalues. In the present case, the wavefunctions have a functional form that is the same
as that of the free wavefunctions, Eq. (5.25.2), with modified parameters:

φl,s(k) =
1√
2

 τe−iτφ
√

1 + αm̃sτ√
m̃2
sτ+a2t2k2

α
√

1− αm̃sτ√
m̃2
sτ+a2t2k2

 . (5.13)

The energy eigenvalues then become

ε̃l,s(k) =
τsλ

2
+ α

√
m̃2
sτ + (atk)2 − U(nAAτs + nBBτs ), (5.14)

which is similar but not identical to the non-interacting energy eigenvalues, Eq. (5.35.3). Here, in
analogy with the previous section, the index l = {τ, α} implicitly contains the valley index τ as
well as the conduction/valence band index α = ±1. In the remainder of this chapter, we will use
these as the basis states for our analysis.
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5.3 Time dependent Hartree-Fock Approximation

Our focus in this study is the spin-spin response function

χτ (r− r′, t) = −iΘ(t)〈[ρ+−
τ (r, t), ρ−+

τ (r′, 0)]〉, (5.15)

with ρσσ′τ (r, t) = ΨHF†
στ (r, t)ΨHF

σ′τ (r, t), with field operators

ΨHF
sτ (r) =

1√
LxLy

∑
k,l

eik·rφl,s(k)cl,s(k)δτ,τl . (5.16)

The single particle states appearing in this expression are the HF wavefunctions, Eq. (5.135.13).
We do not consider intervalley particle-hole operators as this would involve large momentum
imparted to the system. Assuming translational invariance, in momentum space the response
function has the form

χτ (q, t) = −iΘ(t)

LxLy

∑
{ki,qi,li}

fl1l2,↑↓(k1 + q,k1)fl3l4,↓↑(k2 − q,k2)

〈[eiHtc†l1↑(k1 + q)cl2↓(k1)e−iHt, c†l3↓(k2 − q)cl4↑(k2)]〉

≡ 1

LxLy

∑
{ki,qi,li}

fl1l2,↑↓(k1 + q,k1)fl3l4,↓↑(k2 − q,k2)χ̃l1l2l3l4(k1,k2,q, t), (5.17)

with

χ̃l1l2l3l4(k1,k2,q, t) = −iΘ(t)〈[eiHtc†l1↑(k1 + q)cl2↓(k1)e−iHt, c†l3↓(k2 − q)cl4↑(k2)]〉. (5.18)

It is implicit that the τl content of each l index on the right hand side of this equation is a single
value of τ , and the Hamiltonian appearing in the e±iHt factors isH = H0 +Hint, using Eqs. (5.15.1)
and (5.85.8). The weights flilj ,σσ′(k1,k2) ≡ φ†liσ(k1)φljσ′(k2) are wavefunction overlap factors,
and the indices li have allowed values τl = ±1 and αl = ±1.

The equation of motion of χ̃, Eq. (5.185.18), is

i∂tχ̃l1l2l3l4(k1k2q, t) ={nl1↑(k1 + q)− nl2↓(k1)}δl1l4δl2l3δk1,k2−q

+ iΘ(t)〈
[
[H0, c

†
l1↑(k1 + q)cl2↓(k1)](t), c†l3↓(k2 − q)cl4↑(k2)

]
〉

+ iΘ(t)〈
[
[Hint, c

†
l1↑(k1 + q)cl2↓(k1)](t), c†l3↓(k2 − q)cl4↑(k2)

]
〉. (5.19)
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The first commutator reads

[H0, c
†
l1↑(k1 + q)cl2↓(k1)] =

∑
l

h0
ll1,↑(k1 + q)c†l↑(k1 + q)cl2↓(k1)−

∑
l′

h0
l2l′,↓(k1)c†l1↑(k1 + q)cl′↓(k1).

(5.20)

The first commutator appearing in the last term of Eq. (5.195.19) is[
Hint,c

†
l1↑(k1 + q)cl2↓(k1)

]
=2U

∑
{li,ki}

[
fl6l7,↑↑(k6,k6 + q′)fl5l8,↑↑(k5,k5 − q′)c†l5↑(k5)c†l6↑(k6)cl7↑(k6 + q′)cl2↓(k1)δl1,l8δk5−q′,k1+q

+ fl6l7,↓↓(k6,k6 + q′)fl5l8,↓↓(k5,k5 − q′)c†l1↑(k1 + q)c†l5↓(k5)cl7↓(k6 + q′)cl8↓(k5 − q′)δl2,l6δk1,k6
− fl6l7,↑↑(k6,k6 + q′)fl5l8,↓↓(k5,k5 − q′)c†l5↓(k5)c†l6↑(k6)cl8↓(k5 − q′)cl2↓(k1)δl1,l7δk1+q,k6+q′

− fl6l7,↑↑(k6,k6 + q′)fl5l8,↓↓(k5,k5 − q′)c†l1↑(k1 + q)c†l6↑(k6)cl7↑(k6 + q′)cl8↓(k5 − q′)δl2,l5δk1,k6
]
.

(5.21)

Here, for notational simplicity, we have absorbed the δτiτj factors inside the fliljs. Hence,
we end up with terms involving 2, 4, and 6 fermion operators. We approximate the last of these
using a HF decomposition [124124] and find that the q′ = 0 terms cancel each other. The other
terms are[
Hint, c

†
l1↑(k1 + q)cl2↓(k1)

]
→− 2U

∑
{li,ki}

[
fl6l5,↑↑(k1 + q,k1 + q + q′)fl5l1,↑↑(k1 + q + q′,k1 + q)nl5↑(k1 + q + q′)c†l6,↑(k1 + q)cl2,↓(k1)

+ fl2l5,↓↓(k1,k1 + q′)fl5l8,↓↓(k1 + q′,k1)nl5↓(k1 + q′)c†l1,↑(k1 + q)cl8,↓(k1)

− fl6l1,↑↑(k1 + q− q′,k1 + q)fl2l8,↓↓(k1,k1 − q′)nl2↓(k1)c†l6,↑(k1 + q− q′)cl8,↓(k1 − q′)

+ fl2l8,↓↓(k1,k1 − q′)fl6l1,↑↑(k1 + q− q′,k1 + q)nl1↑(k1 + q)c†l6,↑(k1 + q− q′)cl8,↓(k1 − q′)
]
.

(5.22)

At this point, we would like to point out that because flilj ∝ δτiτj and τ1 = τ2, all the electronic
operators have the same valley index τ in this expression.

Finally, we introduce ρabs1s2(q) =
∑

ll′k φ
a∗
ls1

(k + q)c†l↑(k + q)cl′↓(k)φbls2(k) and nabs =∑
kl φ

a
ls(k)nls(k)φb∗ls (k) to write

[Hint,c
†
l1↑(k1 + q)cl2↓(k1)]

→− 2U
∑
abl′

[
nab↑ φ

b
l1↑(k1 + q)φa∗l′↑(k1 + q)c†l′↑(k1 + q)cl2↓(k1)

− nab↓ φbl′↓(k1)φa∗l2↓(k1)c†l1↑(k1 + q)cl′↓(k1)
]
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+ 2U
∑
ab

φal1↑(k1 + q)
[
nl1↑(k1 + q)− nl2↓(k1)

]
φb∗l2↓(k1)ρab↑↓(q). (5.23)

Substituting Eq. (5.205.20) and Eq. (5.235.23) in Eq. (5.195.19) we obtain a closed expression for the response
function that involves elements of the static density matrix described in the last subsection. This
is the form in which we carry out the time-dependent Hartree-Fock approximation. The resulting
equation may be expressed as

i∂tχ̃l1l2l3l4(k1,k2,q, t) ={nl1↑(k1 + q)− nl2↓(k1)}δl1l4δl2l3δk1,k2−q

−
[
ε̃l1,↑(k1 + q)− ε̃l2,↓(k1)

]
χ̃l1l2l3l4(k1,k2,q, t)

+ 2U
∑
ab

[
φal1↑(k1 + q)

(
nl2↓(k1)− nl1↑(k1 + q)

)
φb∗l2↓(k1)

]
χ̃ab↑↓l3l4(k1,k2,q, t),

(5.24)

where
χ̃abs1s2l3l4(k2,q, t) ≡

∑
l1l2k1

φa∗l1s1(k1 + q)φbl2s2(k1)χ̃l1l2l3l4(k1,k2,q, t)

defines χ̃ab↑↓l3l4 and φ
a
l,s is the amplitude for the ath orbital (see Eq. (5.135.13)). Fourier transforming

Eq. (5.245.24) with respect to time, with further work it may be cast in the form

−χcd,c
′d′

0 (q, ω) = χcd,c
′d′(q, ω)− 2U0

∑
ab

χcd,ab0 (q, ω)χab,c
′d′(q, ω). (5.25)

Here U0 = LxLyU , χcd,c
′d′(q, ω) ≡ 1

LxLy

∑
l3,l4,k χ̃

cd
↑↓l3l4(k,q, ω)φc

′

l4↑(k)φd
′∗
l3↓(k− q), and

χab,cd0 (q, ω) = − 1

LxLy

∑
l3,l4,k2

nl4↑(k2)− nl3↓(k2 − q)

ω + iδ + ε̃l4,↑(k2)− ε̃l3,↓(k2 − q)
φa∗l4↑(k2)φbl3↓(k2−q)φcl4↑(k2)φd∗l3↓(k2−q)

(5.26)

is the susceptibility associated with the single-particle Hamiltonian H0,HF , which may be
viewed as a 4× 4 matrix written in the basis AA,BB,AB,BA.

Finally, we write Eq. (5.255.25) in matrix form and relate it to the physical response function in
Eq. (5.175.17), yielding

χτ (q, ω) = −Tr′
[(

1− 2U0χ0(q, ω)
)−1

χ0(q, ω)

]
. (5.27)

In this equation, all the matrices are 4×4. but the Tr′ is taken only over the “diagonal” elements,
Tr′χab,cd =

∑
a,c=A,B χ

aa,cc. Eq. (5.275.27) is one of our main results.

When Imχ(q, ω) 6= 0 the system may absorb energy from a perturbation that flips an electron
spin, so that the system has spin excitations with energy ω at momentum q; as a function of ω for
fixed q this either comes over a range of frequencies, where there is a continuum of excitations,
or as sharp poles where there is a collective mode [124124]. The latter case is characterized by
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Chapter 5. Spin waves in MoS2

Figure 5.5: Schematic representation of the left and right hand sides of Eq. (5.375.37) as functions of
ω, shown in red and blue respectively. For low enough kF , an isolated spin wave mode is always
present.

Det(1 − 2U0χ0(q, ω)) = 0. An example of χ(q, ω) is illustrated in Fig. 5.15.1, where both a
continuum and a sharp collective mode are evident. Fig. 5.45.4 shows the same example on a linear
scale. In this case a sharp collective mode is expected at the point where the relevant determinant
vanishes. This mode is separated from the “incoherent” particle-hole excitations whose edge is
denoted by ωc.

In addition to the collective mode that is evident in Fig. 5.45.4, a second mode arises very close
to the particle-hole continuum edge, which is rather difficult to discern in the response function
due to its close proximity to the continuum excitations. The presence of such a mode can be
demonstrated explicitly by examining the low hole-doping limit. We now turn to this discussion.

5.4 Spin-wave modes for small hole-doping

For small densities of holes, it is possible to make analytical progress on finding zeros of
Det(1 − 2Uχ0(q, ω)) in the limit q → 0, indicating the location of sharp, collective spin-
wave modes. Specifying τ = 1 as the valley we will focus upon, the valence bands are
indexed by α = −1 in Eq. (5.145.14). The dominant contributions to χ0 in Eq. (5.265.26) come from
l3 = l4 = {τ = 1, α = −1}. This leads to the approximate expression

χ̃ab,cd0 (q = 0) = − 1

LxLy

∑
k

Mab,cd(k)
∆n(k)

ω + iδ + ∆ε̃(k)
, (5.28)

where∆n(k) = n↑(k)−n↓(k) and∆ε̃(k) = λ−(m̃↑−m̃↓)−U(n↑(k)−n↓(k))−1
2

(
1
m̃↑
− 1

m̃↓

)
(atk)2

≡ E0 − 1
2
γk2, where E0 = λ − (m̃↑ − m̃↓) − U0(n↑(k) − n↓(k)) and γ =

(
1
m̃↑
− 1

m̃↓

)
(at)2.

Notice we have employed a small k expansion of ε̃(k), which works well because ∆n(k) differs
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5.4. Spin-wave modes for small hole-doping

from zero only at small k in the low hole doping limit. The particle-hole continuum is identified
by the interval of ω for which ω + ∆ε̃(k) vanishes for some k where ∆n(k) 6= 0. This range is
given in the present approximation by −E0 < ω < −E0 + 1

2
γk2

F ≡ ωc, where kF is the Fermi
wavevector for the pocket of holes in the valence band.

The matrix elements Mab,cd(k) = φa∗↑ (k)φb↓(k) can be obtained by similarly expanding the
Hartree-Fock wave functions for small k,

φ̃s(k) ≈

[
e−iφ atk

2m̃s

−[1− (atk)2

8m̃2
s

]

]
, (5.29)

where only up to second order terms in k are kept. To this order the only relevant non-vanishing
elements of theM matrix are

MAA,BB = MBB,AA =
(atk)2

4m̃↑m̃↓
,

MBB,BB = 1− (atk)2

4m̃2
↑
− (atk)2

4m̃2
↓
,

MAB,BA = MBA,AB =
(atk)2

4m̃2
↑
.

Except for MAA,AA which vanishes to O(k2), all the other entries of M contain phases of the
form e−iφ, with φ the angle of kwith respect to the kx-axis, which vanishes upon integration over
momentum. Thus these do not contribute to χ̃0. At q = 0, χ̃0 has a block-diagonal form and
Det(1−2Uχ0(q, ω)) can be written as the product of two subdeterminants,D1 andD2, given by

D1 =(1− 2U0χ̃
AA,AA
0 )(1− 2U0χ̃

BB,BB
0 )

− 4U2
0 χ̃

AA,BB
0 χ̃BB,AA0 , (5.30)

D2 =1− 4U2
0 χ̃

AB,BA
0 χ̃BA,AB0 . (5.31)

If either of these vanishes at an ω outside the particle-hole continuum frequency interval, there
is a sharp collective mode at that frequency. Note that particular response functions appearing
in D1 and D2 indicate that the former is associated with spin flips in which electrons remain in
the same orbital, while the latter arises due to electrons which both flip spin and change orbital.

Using the integrals

I0 =
1

LxLy

∑
|k|<kF

1

ω + E0 − 1
2
γk2

=

∫ kF

0

kdk

2π

1

ω + E0 − 1
2
γk2

= − 1

2πγ
ln
(
ω + E0 − 1

2
γk2

F

ω + E0

)
(5.32)
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Figure 5.6: Spin wave excitations and the particle-hole continuum as a function of the chemical
potential (µ0) shown for three different values of the interaction strength U0 when q = 0. The
blue dashed line corresponds to the mode described in Fig. 5.55.5. The mode corresponding to
Eq. (5.405.40) is barely visible as a red line. The vertical lines indicate the boundary beyond which
the stability condition is violated.

and

I1 =
1

LxLy

∑
|k|<kF

k2

ω + E0 − 1
2
γk2

=
1

2πγ

[
−ω + E0

γ
ln
(
ω + E0 − 1

2
γk2

F

ω + E0

)
− k2

F

]
, (5.33)

the condition D1 = 0 reduces to

1− 2U0

(
I0 −

(at)2

4

(
1

m̃2
↑

+
1

m̃2
↓

)
I1

)
=
U2

0 (at)4

4m̃2
↑m̃

2
↓
. (5.34)

Similarly, D2 = 0 can be simplified to

I1 = ±2m̃↑m̃↓
U0(at)2

. (5.35)

The condition Eq. (5.345.34) will be met for some value of ω outside the particle-hole contin-
uum, for small interaction strength U0. This can be understood as follows. For small U0, we
approximate the equation as

(at)2

4

(
1

m̃2
↑

+
1

m̃2
↓

)
I1 ≈ I0 −

1

2U0

. (5.36)

Using the fact that

I1 =
ω + E0

γ
I0 −

k2
F

2πγ
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5.4. Spin-wave modes for small hole-doping

this equation can be recast as

I0 =
(at/2)2

(
1
m̃2
↑

+ 1
m̃2
↓

)
k2F
2πγ
− 1

2U0

(at/2)2
(

1
m̃2
↑

+ 1
m̃2
↓

)
E0+ω
γ
− 1

. (5.37)

The numerator of the right hand side of this equation is negative for small U0. As ω increases
from large negative values, the right hand side is positive and increases in magnitude, diverging
at

ω = ωdiv ≡ −E0 +
4γ

a2t2

(
1

m̃2
↑

+
1

m̃2
↓

)−1

. (5.38)

Importantly, ωdiv > ωc in the low doping limit, so the divergence is above the particle-hole
continuum. Above ωdiv the right hand side increases uniformly from arbitrarily large negative
values, eventually vanishing at large positive ω. By contrast, I0 diverges to large negative values
as ω → −E0 from below, and comes down from arbitrarily large positive values starting at the
particle-hole continuum edge ωc. This guarantees there will be a crossing of the left and right
hand sides of Eq. (5.375.37) between this edge and ωdiv, and a collective mode with frequency ω1 in
this interval. This is qualitatively shown in Fig. 5.55.5. Note that for decreasing U0 this solution
moves closer to the particle-hole continuum, which we indeed find numerically, as illustrated in
Fig. 5.65.6. As is shown in the next section, for small U0 and small hole doping, one can show that
for q = 0

ω1 ≈ −E0 +
1

2
γk2

F

(
1 + e−πγ/U0

)
. (5.39)

The second condition Eq. (5.355.35), for small U0, can only be satisfied for the negative sign of
the right hand side. The position of the spinwave mode at q = 0 can be approximately evaluated
to be

ω2 ≈ −E0 +
1

2
γk2

F

(
1 + e−ε0/k

2
FU0

)
, (5.40)

where ε0 = 8πm̃↑m̃↓/a
2t2. It is clear from Eqs. (5.395.39) and (5.405.40) that the separation of ω2 from

the particle-hole continuum is very small when compared to that of ω1 for small hole doping and
for the relevant parameter range. This result is again consistent with our numerical solutions, as
illustrated in Fig. 5.65.6.

We conclude this section with two comments on these results. First, the appearance of a
sharp collective mode with arbitrarily small U0 supports the interpretation of the non-interacting
groundstate as being effectively polarized in a “pseudospin” spin variable, σzτz, as discussed
in the Introduction. When interactions are introduced, incoherent particle-hole excitations are
pushed up in energy via a loss of exchange energy which, for repulsive interactions, generically
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lowers the groundstate energy for a polarized state. However, an appropriate linear combination
of particle-hole pair states can minimize this loss of exchange energy, leading to the sharp
collective mode.

Secondly, although we have demonstrated the existence of two discrete modes, the second
of these (at ω = ω2) lies exceedingly close to the particle-hole continuum edge. This means
that small perturbations can easily admix these different kinds of modes together, making the
detection of the second mode challenging. Indeed, in our own numerics the introduction of
broadening in our discrete wavevector sum, introduced to simulate the thermodynamic limit,
typically mixes this mode with the continuum. In this situation the mode does not show up
sharply in the response function we focus upon. We note that our analysis shows the mode to be
associated with simultaneous spin flip and a change of orbital, A ↔ B, so that we expect this
second mode should show up more prominently in more complicated response functions that
simultaneously probe both of these.

5.5 Numerical Results and Discussion

In general, to compute χτ we need to know χ0. This can be obtained numerically, and we
accomplish this by approximating the integral in Eq. (5.265.26) as a discrete sum. For our calculations
we discretize momenta onto a 100×100 two dimensional grid, with each momentum component
running from−k0 to +k0. We have checked that the contribution to χ0 dies off quickly within the
range of momentum integration. We also discretize ω to a set of 5000 points, within which we
compute physical response functions. A small but non-vanishing imaginary η is retained, of the
order of the spacing of the ω values, to produce the continuity expected in the thermodynamic
limit (where the momentum grid over which we sum becomes arbitrarily fine). Figs. 5.15.1 and 5.45.4
depict typical results.

The response function Eq. (5.155.15) qualitatively describes the dynamics of an electron-hole
pair between bands of opposite spins. The lowest energy excitations necessarily involve the
bands nearest the chemical potential µ. When µ is within the gap so that the system is insulating,
such an excitation will have energy comparable to the band gap Eg ∼ 1eV [125125–127127]. On the
other hand, when hole-doped, the chemical potential falls below the top of the valence band,
electron-hole pairs from the two spin species in the valence band become available (see Fig. 5.35.3).
The resulting excitations can have energy of order λ ∼ 0.1eV, a considerably lower energy scale.
Discrete poles in χ have infinite lifetime and represent the collective spin-wave modes of the
system; these only can arise when interactions are included in the model. A set of representative
plots illustrating both the spin-wave dispersion and the particle-hole continuum are shown in
Fig. 5.75.7 for both the valleys. Note the clear symmetry apparent between the two valley responses
when ω → −ω. This is a manifestation of time-reversal symmetry, and indicates that strong
absorption from a perturbation with one helicity in one of the two valleys implies equally strong
absorption in the other valley when the helicity is reversed.
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Figure 5.7: The blue line depicts the dispersion of the isolated spin wave excitation,ie, the ω, qx
points for which the real part of the denominator of the spin susceptibility given by Eq. (5.275.27)
vanishes. The green continuum represents the particle-hole excitations forwhich the denominator
of Eq. (5.275.27) has a nonvanishing imaginary component. Here we have taken U0 = 0.2eV.

It is interesting to consider the possible consequences of this if the system develops true
ferromagnetism, which is thought to occur above some critical interaction strengthUc [121121, 122122].
In the simplest description, this leads to different self-consistent exchange fields and different
hole populations for each valley [122122]. The computation of spin-response in this situation is
essentially the same as carried out in our study, but the effective chemical potential would be
different for each valley. In this case we expect the spin response to be different for the two
possible perturbations, reflecting the broken time-reversal symmetry in the groundstate. Such
behavior has indeed been observed for electron-doped TMD’s [121121].

Another feature apparent in Fig. 5.65.6 is a cusp in the continuum spectrum, which appears
at µ0 = µc ≈ −0.55∆. This is the point at which the chemical potential touches the top of
the lower valence band (Fig. 5.35.3). For µ0 > µc, a particle-hole continuum is only present at
non-vanishing frequencies determined by the difference in energy between the highest occupied
and the lowest unoccupied bands of opposite spins. However, for µ0 ≤ µc, low energy particle-
hole excitations set in for processes in which (for one of the valleys) a spin-down valence band
electron is excited to the spin-up valence band at finite wave vector, but vanishing frequencies.
This is further illustrated in Fig. 5.25.2, in which one finds the continuum excitations reaching down
to zero energy, at a finite qx, only when the chemical potential is below this critical value.

As is apparent from Fig. 5.45.4 the first spin-wave mode from the condition Eq. (5.375.37) appears
above the continuum. Further, for a givenU0, the separation from the continuum increases linearly
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with increasing hole doping, as illustrated in Fig. 5.75.7, until the chemical potential touches the
top of the lower valence band. At this point a similar cusp as for the continuum appears in the
spin wave dispersion. The linear increase of the separation between the spin wave mode and the
top of the particle-hole continuum at small hole doping can be understood in the following way.

For small U0, assuming that the renormalized masses m̃s to be close to their non-interacting
values, we can write

1

m̃2
↑

+
1

m̃2
↓
≈ (

2

∆− λ
)2 + (

2

∆ + λ
)2 ≈ 8

∆2
. (5.41)

Furthermore, we note

γ

(at)2
=

1

m̃↑
− 1

m̃↓
≈ 4

λ

∆2
. (5.42)

These allow Eq. (5.375.37) for small U0 and small hole doping to be written as:

−1

2πγ
ln
(

ω − ωc
ω − ωc + 1

2
γk2

F

)
≈

k2F
2π
− λ

U0

ω − ωc − 2λ+ 1
2
γk2

F

, (5.43)

whereωc = −E0+ 1
2
γk2

F is the boundary of the continuumof particle-hole excitations. Moreover,
again for smallU0, assuming the upper valence band to have spin up(which is the case for τ = +1),
we can write the chemical potential as µ0 ≈ −1

2
∆ + λ − 1

2

(at)2k2F
m↑

, so that the change in µ0 due

to hole doping can be written as δµ = 1
2

(at)2k2F
m↑

. Using this in the above equation we get

−1

2πγ
ln
(

ω − ωc
ω − ωc + c0δµ

)
≈ 1

2U0

, (5.44)

where, for small δµ, ω − ωc and 1
2
γk2

F are neglected compared to λ. As the right-hand side is
independent of δµ, the solution ω − ωc should also scale as δµ.

When U0 is small, the above equation can be solved for ω = ω1 ≈ −E0 + 1
2
γk2

F (1+e−πγ/U0).
Note that this result differs from that of Eq. (5.405.40) in that k2

F appears in the exponential in the
latter. This renders |ω2 − ωc| much smaller than |ω1 − ωc| in the low hole-doping limit.

As discussed in the previous section, the second spinwave solution of Eq. (5.405.40) lies extremely
close to the continuum, and so is almost invisible in our numerical solutions for the range of
the parameters we consider. One expects this mode to be visible for larger U0 and larger hole
doping. However, in our calculations we find that the stability condition[124124] ω(−Imχτ ) > 0

fails for some range of ω for U0 large enough that we are able to numerically resolve the mode
from the continuum. An example of this is shown in Fig. 5.85.8. The point beyond which this
stability condition is not satisfied is indicated by vertical lines in Fig. 5.65.6. Note that, physically,
the instability we find in the response functions indicates that the symmetry of the ground-state
we are assuming is broken, very likely into a state with inter-orbital coherence. Whether such a
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Figure 5.8: Spin susceptibility for U0 = 0.5eV, τ = +1 and µ0 = −0.57∆. Two discrete spin
wave modes (indicated by arrows) are visible near ω = −0.055∆ and ω = −0.092∆, with the
second mode very close to the continuum. However, the positivity ω(−Imχ) > 0 does not hold
for all ω implying that our assumed Hartree-Fock state is not the true ground state.

state exists at large U , or is preempted by a first-order transition into a state with different hole
populations in the valleys, requires a more general Hartree-Fock study than we have presented
in this work, and is left for future study.

5.6 Summary

Our calculations indicate that with strong enough interaction the system becomes unstable.
Within our model this would likely be to a state with inter-orbital coherence, but first order
instabilities in which the system spontaneously forms unequal valley and spin populations are
also possible, which may preempt any instability indicated in linear response. Whatever the
true groundstate of the system, our formalism in principle allows a calculation of the density
matrix associated with it, and of collective modes around it. Moreover, the approach we present
can be extended to more general response functions (for example, involving spin and orbital
simultaneously) which could reveal further and perhaps clearer signatures of the two collective
modes we find in our analysis. Exploration of these represent interesting directions for future
work.
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Chapter 6
Summary and Future Directions

To summarise, in Chapters 22 and 33, we have proposed setups to explore the nature of chiral
nodes in WSM by studying transport through a WSM heterostructures. We have considered
the minimal models of both inversion symmetry broken and TR symmetry broken WSM-s. We
have identified the oscillations that we observe in each of the cases to be closely related to the
preservation of the symmetries of the microscopic models. For the TR broken WSM, spin plays
the role of the conserved quantity that leads to selection rules for scattering processes in the
boundary. For the inversion symmetry broken WSM, the orbital degree of freedom plays an
important role along with the spin. In fact, these selection rules lead to the interferometry that
we have explored in Chapters 22 and 33.

As far as the relevance of our findings in these chapters to experimental observations are
concerned, it should be noted that there are various theoretical proposals for manipulation of
the bulk band structure in a WSM. For us, the parameter of relevance is the separation of the
Weyl nodes and one way of changing this is by shining high frequency light which has been
explored in Ref.[5757]. Another interesting way of doing the same could be by straining the
sample[128128]. The separation can also be tuned by adjusting the magnetic doping [129129–131131]. In
fact, an important point to note is that one of our models requires creating junctions of WSM
with normal leads which should be much simpler experimentally than creating junctions ofWSM
with superconductors. Note also that unlike the K −K ′ scale in graphene, the k0 scale in Weyl
semimetals is much smaller and does not require very large momentum transfer. Hence, small
wiggles in the interfaces will not be able to wash out the signal. Moreover, even atomically
sharp junctions are not a bottle-neck with the present day technology of growing thin films of
topologically materials[132132, 133133].

In the predicted WSM material TaAs [134134, 135135], chiral node pairs (formed by breaking
inversion symmetry) are separated in momentum space by a distance ∼ 0.02Å−1. Assuming
standard electronmass, the relevant energy scale is about amilli electronvolt, which only becomes
larger if the effective mass is smaller. Combining this with the fact that large momentum
scattering (from −k0 to k0) is needed to break the topological protection of the chiral nodes,
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helical excitations inWSM are expected to be robust against disorder in a relatively clean sample.
The periodicity of the Josephson current as well as the bound levels that we have discussed are,
in principle, observable in tunneling experiments. The periodic variation of the bound-levels
can also be probed in Andreev spectroscopy. For a typical sample, the length scales for such
periodic variations would be of the order of few tens of nanometers.

The effect of having many Weyl nodes complicates the theoretical modeling and presents a
weakness in our proposal. But, as long as the transport takes place along a pair of Weyl nodes, a
similar periodicity in the transport properties is expected. It is not clear whether these oscillations
are present in WSMs with higher Chern numbers. Such studies are left for the future.

In chapter 55, we have studied collective excitations of a simple TMD model, showing that
even without the formation of spontaneous magnetic order, interactions induce sharp collective
modes that are commonly associated with such order. The presence of these modes can be
understood as a consequence of intrinsic order induced by the strong spin-orbit interaction that
yields different energetic orderings of spins in different valleys, and arises when the system is
doped. The presence of these modes is a direct analog of “Silin-Leggett modes” present in a
simple Fermi liquid subject to a magnetic field, such that the Fermi wavevector becomes spin-
dependent. Our analysis is developed using the time-dependent Hartree-Fock approximation
of a physical spin response function, and reveals two sharp modes in addition to a continuum
of particle-hole excitations. While one of these modes (associated with spin flips for electrons
maintaining their orbital index) breaks out from the continuum in a clearway, the other (associated
with electrons changing both spin and orbital) remains very close to the continuum edge and is
difficult to distinguish independently. Signatures of how the subbands are populated can be seen
in properties of the spin response functions when the chemical potential is modified, which in
principle can be accomplished by gating the system.

Lastly, we sketch some problems for future studies. Apart from transport signatures of the
chiral nodes in WSM, the appearance of surface states, and the consequent Fermi arc dispersion
is another remarkable feature of WSMs. Their transport characteristics in the Josephson current
would be interesting to study. Quantitative investigations of the effects of disorder and interactions
on transport in the WSM are also left for future studies. The TDHFA formalism developed in
Chapter 55 is very general and studies of collective modes in other topological systems can be
done.

In closing, we summarise by pointing out that most of the phenomena discussed in this thesis
is a consequence of the nontrivial spin texture of the ground state which in itself, is a consequence
of the Dirac equation. Hence, we expect these results to be quite general and should be seen in
other systems with similar band structures, thus opening avenues for future research.
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