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Summary

Over the past few decades superstring theory ( [1], [2]) has firmly established itself as by far the most

promising theory describing all known interactions in nature, including gravity, in a consistent manner.

One of the most crucial feature of superstring theory is that scattering amplitudes computed are always

ultraviolet finite as opposed to amplitudes computed in ordinary quantum field theories. Therefore ex-

plicit evaluation of string scattering amplitudes and studying their various properties are of paramount

importance. The two oldest way of computing string scattering amplitudes are Ramond-Neveu-Schwarz

(RNS) ( [1], [2], [3]) and Green-Schwarz (GS) ( [1]) formalism. However both formulations, despite suc-

cess in some aspects also su↵er from some limitations. While RNS formulation breaks manifest spacetime

supersymmetry at the intermediate stages of the computation, computation in GS formulation breaks

manifest Poincaré invariance. At the turn of last century, Nathan Berkovits introduced the pure spinor

(PS) formulation ( [4], [5]) of superstring theory which maintains manifest spacetime supersymmetry as

well as Poincaré invariance at all stages of the computation. In addition, evaluation of loop amplitudes in

RNS formalism requires insertion of picture changing operators and summing over various spin structures,

both of which leads to pragmatic di�culty in explicit evaluation of superstring scattering amplitudes at

two loops or higher. The PS formulation provides a prescription for evaluating amplitudes ( [6], [7], [8])

which can circumvent both of these di�culties and simplifies evaluation of higher loop amplitudes for

superstrings by a considerable margin. However, unlike RNS formalism, the PS formalism so far lacks

an explanation starting from a gauge invariant worldsheet action. Furthermore, the present amplitude

prescription for PS formalism becomes ill defined as one goes to higher loops. Therefore the equivalence

of PS and RNS formalism is a non-trivial statement ( [9], [10], [11]) and explicit demonstrations exhibiting

such equivalence are extremely crucial.

The massless states and scattering amplitudes involving massless states in PS formalism have been
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studied thoroughly ( [7], [12], [13], [14], also see [15], [47]) and explicitly shown to be equivalent to the

results obtained from RNS formalism ( [10]). For first massive states of open superstrings (m2 = 1
↵0 ),

the unintegrated vertex was constructed in [18]. However, to explicitly compute scattering amplitudes

involving massive states one needs further ingredients, such as, covariant theta expansion of all superfields

appearing in the vertex and integrated vertex operator for massive states.

The main motivation of this thesis is twofold. Firstly, one needs to develop a systematic procedure

for performing fully covariant theta expansion of all superfields describing the first massive states of open

superstrings. Secondly, one needs to explicitly compute all tree level three point amplitudes involving two

massless states and one massive state. This allows us to directly compare the results of PS formalism

with that obtained using RNS formalism.

In this thesis we develop a systematic procedure based on representation theory of SO(9) group (which

is the little group for massive states in open superstring) for performing the theta expansion for all massive

superfields in a covariant manner [19]. Further the procedure, by construction, is guaranteed to have only

physical fields appearing in each order of theta expansion. This procedure also sheds extremely crucial

insight into developing a strategy for finding massive integrated vertex [20]. Furthermore our analysis

can be argued to be independent of mass level in question and therefore indicates that this systematic

procedure of performing theta expansion and constructing vertex operators can be readily generalized to

higher massive states.

With the vertex and their theta expansion completely known, one now possesses all the ingredients

needed to compute any string amplitude involving massless and first massive states in PS formalism. In

this thesis, all massless-massless-massive tree level three point amplitudes have been explicitly computed

in PS formalism for the first time [21]. The same amplitudes can be independently computed in RNS

formalism and allows one to directly compare RNS and PS formalism for first massive states. We find

that PS formalism agrees with RNS formalism for first massive states as well, extending the explicit check

of their equivalence from only massless states to include first massive states as well.
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Chapter 1

Introduction to Pure Spinor

Superstrings

The first half of 20th century saw physicists identify the four fundamental interactions that govern the

observed physical world. These four fundamental interactions, viz., gravitational, electromagnetic, weak

and strong interactions, have all been described successfully by theories that agree remarkably well with

experiments conducted so far. However, while all three non-gravitational interactions could be described

together quantum mechanically in the form of the “Standard Model”, gravitation so far has been well

understood only at the classical level (General theory of relativity). It soon became apparent that to

have a complete unified description of all fundamental forces it is crucial to have a quantum theory of

gravity first and foremost. At the phenomenological level, current energy scales accessible to modern day

and near future colliders, can safely ignore quantum e↵ects of gravity. On the other hand studies of early

universe and black holes, some of which are indeed being probed by present observations, crucially hinges

on the nature of quantum e↵ects of gravity. Theoretically, however, it has always been clear that at high

enough energies (near the Planck scale) one will start seeing the e↵ects of quantum gravity amongst other

interactions as well. This requires also to find an “ultraviolet (UV) completion” of the quantum field

theory which describes the standard model.

For the last four decades or so, (super)string theory ( [1], [2]) has emerged as the sole candidate which

is able to consistently and successfully quantize gravity as well as unify it with all other interactions in

a single coherent framework. Moreover, as expected of any such candidate for an unified theory, string

theory has been demonstrated to be free of all ultraviolet divergences and thereby providing a potential
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Chapter 1 – Introduction to Pure Spinor Superstrings

UV completion of standard model physics seen at lower energies 1. This remarkable achievement starts

with the simplest of ideas - all physics are thought to arise due to oscillations of a quantum, relativistic

one dimensional object, or simply put, a string. In this introductory chapter we briefly summarize the

evolution of this strikingly simple idea and its far reaching consequences. We start with bosonic strings,

move on to superstrings and describe the two formalisms of superstrings that are perhaps more commonly

known in literature (both were developed prior to pure spinor formalism). This walk down the memory

lane naturally leads to pure spinor formalism which is introduced and reviewed succinctly in this chapter

as well.

1.1 Bosonic Strings

A relativistic classical string will trace out a two dimensional surface, commonly referred to as a world-

sheet, embedded in the ambient spacetime. The classical dynamics of such a string, in analogue with its

point particle cousin, was proposed to be described by a geometrical action named after their proposers

Y.Nambu and T.Goto -

SNambu�Goto / Area of worldsheet (1.1)

SNambu�Goto = � 1

2⇡↵0

Z
d2⇠

p
�det[hab(⇠))] (1.2)

where ↵0 is the regge slope parameter, ⇠1, ⇠2 are worldsheet co-ordinates and hµ⌫(⇠) is the worldsheet

metric (with the worldsheet indices µ, ⌫ taking values 1 and 2).

This action, although intuitively obvious and elegant, due to its nonlinear nature posits di�culty in

covariant quantization. This was remedied by A.Polyakov by proposing another action which is classically

equivalent to Nambu-Goto action but allows covariant quantization readily.

SPolyakov =
1

4⇡↵0

Z
d2⇠ ⌘mn @µX

m(⇠) @⌫X
n(⇠)hµ⌫(⇠) (1.3)

where, Xm(⇠) are the spacetime co-ordinates describing the embedding of the worldsheet in the d-

dimensional spacetime (m,n runs from 0, 1, · · · (d � 1)). Throughout the thesis we talk of strings prop-

agating in flat spacetime described by the Minkowski metric ⌘mn = diag(�1,+1,+1 · · · ) in Cartesian

co-ordinates. The generalization of the action for propagation in curved target spacetime is straightfor-

1How to exactly obtain the standard model starting from superstring theory is as of now an actively pursued research
topic in the community with many promising developments over the years.
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Chapter 1 – Introduction to Pure Spinor Superstrings

ward but will not be needed in this thesis.

The Polyakov action also brought into light a very crucial aspect of string theory that continues

to dominate how the community approaches the subject. The Polyakov action revealed that while as a

spacetime theory string theory is di↵erent from a QFT, as a worldsheet theory, string theory is a conformal

field theory (CFT) in 2 dimensions. This in conjunction with rapid development of 2D CFT amounted to

rapid evolution in the knowledge of string theory. Several crucial features were soon unearthed, viz. the

quantum string theory is well defined (in the sense the Weyl anomaly vanishes) only at a critical spacetime

dimension (which is 26 for bosonic string theory). The analysis of the spectrum soon revealed that open

strings contain gauge bosons as massless states and closed strings contain graviton as its massless states.

This was the first time gauge theory and gravity is seen to emerge from a single theory.

Two major shortcomings of bosonic string theory were

• There were no fermionic states in the spectrum of the theory (hence the name bosonic string theory).

• The spectrum contained a tachyon which signaled that the vacuum about which we are doing bosonic

string perturbation theory is an unstable one.

Both of these shortcomings are naturally overcome in what has been come to be known as superstring

theory. The two earliest ways of describing superstrings were Ramond-Neveu-Schwarz (RNS) formal-

ism which introduces a worldsheet supersymmetry and Green-Schwarz (GS) formalism which introduces

spacetime supersymmetry. We discuss the success and the shortcomings of these two formalisms next.

1.2 RNS Superstrings

The gauge fixed worldsheet action for bosonic string reads (we always give the action for open strings in

flat background here onwards since that is the primary subject matter under investigation in this thesis),

S =
1

2⇡

Z
d2z

✓
1

↵0@X
m@̄Xm + b@̄c

◆
(1.4)

where b(z), c(z) are anti-commuting holomorphic ghost fields that arises out of gauge fixing the

worldsheet di↵eomorphism. z and z̄ are complex co-ordinates obtained from worldsheet co-ordinates ⇠1

and ⇠2.

The central idea of RNS formalism, is to introduce local worldsheet supersymmetry for the Polyakov

action. Consequentially, the worldsheet theory now resembles a superconformal field theory (SCFT). The
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Chapter 1 – Introduction to Pure Spinor Superstrings

gauge fixed action reads

SRNS =
1

2⇡

Z
d2z

✓
1

↵0@X
m(z, z̄)@̄Xm(z, z̄) +  m(z)@̄ m(z) + b(z)@̄c(z) + �(z)@̄�(z)

◆
(1.5)

Here,  m(z) is an anti-commuting worldsheet field (it is a conformal primary) which transforms as a

spacetime vector under spacetime Lorentz transformation. The �(z) and �(z) are two commuting holo-

morphic ghost fields which arise due to gauge fixing the local worldsheet supersymmetry. The powerful

techniques of SCFT immediately allows one to extract a huge amount of physics from the quantum RNS

superstring. In particular, the spectrum now contains at each mass level a supermultiplet which has both

bosons and fermions present. The Weyl anomaly vanishing condition for superstrings translates to the

statement that the dimension of spacetime must be equal to 10.

The RNS formalism has proven to be extremely powerful over the years. It is by no means an

overstatement to say it is, for most purposes in the existing literature, synonymous with superstring

theory. The major advantages of this formalism are

• Manifest Poincaré covariance at all stages.

• Well defined methodology based on SCFT to construct all possible vertex operators representing

external states.

• Well defined amplitude prescription to all loop order for arbitrary number of external states based

on theory of (super) Riemann surfaces and their moduli space.

• Provides all basic ingredients to formulate an o↵-shell string field theory based on on-shell RNS

formalism.

• Helped in listing all possible consistent superstring theories, viz., Type-I , Heterotic SO(32), Het-

erotic E8 ⇥E8, Type IIA and Type IIB. It further enabled a detailed study of the spectrum of each

of these theories, their low energy supergravity limits and was pivotal in realizing non-trivial web of

duality relations via which all of these superstring theories (along with the unique 11 dimensional

supergravity theory) are related to each other non-perturbatively. In turn it also lead to discovery

of various D-branes which also belong to the spectrum of superstrings.

While the RNS formalism lends great conceptual depth and clarity to the theory of superstrings,

it does have some shortcomings, mostly pragmatic in nature. Firstly, the spacetime supersymmetry is
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Chapter 1 – Introduction to Pure Spinor Superstrings

obfuscated in RNS and only appears after one performs the GSO projection [23]. Furthermore, SCFT

involving both periodic and anti-periodic boundary conditions for conformal fields (which is the case in

RNS formalism) leads to many equivalent description of a single SCFT vacua (known in literature as dif-

ferent “pictures”, see [3]). This picture changing operation is part of the amplitude prescription and leads

to spurious singularities in evaluating superstring amplitudes. Even without these unphysical poles, the

direct evaluation of superstring scattering amplitude for 2-loops and beyond prove to be a mathematically

challenging and daunting task. Mostly the challenge comes in summing over spin structures (which arises

due to existence of worldsheet spinor). So while there is a well defined prescription, it does not lead to a

feasible calculation for amplitudes at higher loops.

RNS formalism also su↵ers from the drawback that it does not o↵er any clue regarding how to

generalize it in presence of a background involving nonzero Ramond-Ramond fluxes. However, in this

thesis we only focus on superstrings in flat backgrounds and therefore we will refrain from going into details

of this issue as well as how pure spinor formalism can potentially resolve them (see, for example [24]).

1.3 Green-Schwarz Superstrings

There exists another approach to superstring theory which starts with manifest spacetime supersymmetry.

This approach,named Green-Schwarz formalism, has the following worldsheet action in conformal gauge

SGS =
1

⇡↵0

Z
d2z

✓
1

2
@Xm@̄Xm + p↵@̄✓

↵

◆
(1.6)

here ✓↵ is a right handed Majorana-Weyl spinor in 10 dimension which serves as the superpartner of the

co-ordinate field Xm. The conjugate momenta to the ✓↵ is p↵ which is related to the other fields via what

is known as the Green-Schwarz constraint

d↵ = 0 , d↵ ⌘ p↵ � 1

2
�m↵�✓

�@Xm � 1

8
�m↵��m��✓

�✓�@✓� . (1.7)

The constraint consists of both first class as well as second class constraint due to the OPE

d↵(z)d�(w) = �
↵0�m↵�

2(z � w)
⇧m(w) + · · · , (1.8)

⇧m ⌘ @Xm +
1

2
�m↵�✓

↵@✓� (1.9)

9



Chapter 1 – Introduction to Pure Spinor Superstrings

This formalism has the distinct advantage of manifest spacetime supersymmetry at all stages (The

quantities ⇧m and d↵ are manifestly spacetime supersymmetric combinations). It has also proved to be

extremely useful in establishing the seminal result of anomaly cancellation which triggered what is referred

popularly as “first superstring revolution”. However this formalism su↵ers from a serious drawback in that

the existence of this second class constraint prevents us from performing a straightforward quantization

in a covariant manner. The di�culty however can be gotten rid of by going to special gauges (e.g. light-

cone gauge) where the theory can be quantized readily. However, this automatically implies manifest

Poincaré covariance is sacrificed and for each calculation performed in this formalism, one must establish

the covariance painstakingly at the end.

1.4 Pure Spinor Superstrings

At this stage, the question that begs to be answered is - can we develop a formalism of superstring theory

which has the following three characteristics?

1. It maintains manifest spacetime supersymmetry at all stages.

2. It maintains manifest Poincaré covariance at all stages.

3. It possesses an amplitude prescription which actually enables one to compute higher loop string

amplitudes in practice and not just in principle.

Roughly two decades ago Nathan Berkovits gave the pure spinor formalism in [4] (also see [5] for a

review) which answered this question in a�rmative as far as the first two characteristics are considered.

As for the third characteristics, the answer can also be considered to be an a�rmative with certain caveats

that we will discuss later in this chapter.

1.4.1 Worldsheet CFT

In this section, we introduce the pure spinor formalism. The original formulation is now dubbed as the

minimal pure spinor formalism ( [4]). The world sheet action of the minimal formalism is given by 2.

S =
1

⇡↵0

Z
d2z

✓
1

2
@Xm@̄Xm + p↵@̄✓

↵ � w↵@̄�
↵

◆
(1.10)

2Some numerical factors for pure spinor formalism in this thesis will di↵er from literature. This is entirely due to di↵erent
choices of various conventions which we summarize in appendix A.
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Chapter 1 – Introduction to Pure Spinor Superstrings

where, m = 0, 1, , · · · , 9 and ↵ = 1, · · · , 16.

The p↵ and w↵ are the conformal weight one conjugate momenta of the conformal weight zero fields

✓↵ and �↵ respectively. The fields with upper (lower) spinor indices transform as right (left) handed Weyl

spinor. The �↵ satisfy the pure spinor constraint (first written down by the great french mathematician

Elle Cartan almost 90 years ago)

�↵�m↵��
� = 0 (1.11)

Due to pure spinor constraint, the conjugate momentum to the pure spinor, viz. w↵ enjoys the following

gauge transformation under which the action is invariant

�w↵ = ⇤m�
m
↵��

� (1.12)

where ⇤m is the gauge transformation parameter. Therefore, the worldsheet fields can only appear in the

following gauge invariant combinations 3

Nmn =
1

2
w↵(�mn)

↵
��

� , J = w↵�
↵ , T = w↵@�

↵

Any other gauge invariant combination can be expressed in terms of these objects. The ghost current is

given by J = �↵w↵ which implies that the �↵ carries the ghost number +1 and the rest of the fields carry

zero ghost number.

1.4.2 OPE

Before proceeding ahead, we note down some important OPEs of the theory which arise frequently in

calculations

d↵(z)d�(w) = �
↵0�m↵�

2(z � w)
⇧m(w) + · · · , d↵(z)⇧

m(w) =
↵0�m↵�

2(z � w)
@✓�(w) + · · ·

3The coincident operators are normal ordered via

: A(z)B(z) :⌘ 1
2⇡i

I

z

dw
w � z

A(w)B(z) (1.13)

where, A and B are any two operators and the contour surrounds the point z. However, we shall often suppress the normal
ordering symbol : : throughout this thesis with the understanding all coincident operators are always normal ordered.

11



Chapter 1 – Introduction to Pure Spinor Superstrings

d↵(z)V (w) =
↵0

2(z � w)
D↵V (w) + · · · , ⇧m(z)V (w) = � ↵0

(z � w)
@mV (w) + · · ·

⇧m(z)⇧n(w) = � ↵0⌘mn

2(z � w)2
+ · · · , Nmn(z)�↵(w) =

↵0(�mn)↵�
4(z � w)

��(w) + · · ·

J(z)J(w) = � (↵0)2

(z � w)2
+ · · · , J(z)�↵(w) =

↵0

2(z � w)
�↵(w) + · · ·

Nmn(z)Npq(w) = � 3(↵0)2

2(z � w)2
⌘m[q⌘p]n � ↵0

(z � w)

⇣
⌘p[nNm]q � ⌘q[nNm]p

⌘
+ · · · (1.14)

In the above OPEs, @m is the derivative with respect to the spacetime coordinate Xm, @ is the derivative

with respect to the worldsheet coordinate, V denotes an arbitrary superfield. The d↵ and ⇧m denote the

spacetime supersymmetric combinations

d↵ = p↵ � 1

2
�m↵�✓

�@Xm � 1

8
�m↵��m��✓

�✓�@✓�

⇧m = @Xm +
1

2
�m↵�✓

↵@✓� (1.15)

The D↵ is the supercovariant derivative given by

D↵ ⌘ @↵ + �m↵�✓
�@m , @↵ ⌘ @

@✓↵
=) {D↵, D�} = 2(�m)↵�@m (1.16)

Finally, the remarkably simple BRST operator is defined to be4

Q =

I

C

dz
�
�↵d↵

�
(z) . (1.17)

To see the nilpotency of the BRST operator, first make use of the OPE between d↵(z)d�(w) to express

Q2 =

I

C1

dz

I

C2

dw�↵(z)��(w)d↵(z)d�(w) / (�↵���m↵�) , (1.18)

4In all subsequent occurrences of
H
dz in this thesis we will use the notation to imply the usual factor of 1

2⇡i is absorbed
within the definition of the measure dz.
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Chapter 1 – Introduction to Pure Spinor Superstrings

which trivially vanishes due to pure spinor constraint.

1.4.3 Non-minimal Pure Spinor formalism

With the minimal formalism one can finally write down an action for superstrings which in some sense

forms a union of the best parts of both RNS and Green-Schwarz formalism without their respective

drawbacks. However, the amplitude prescription for minimal formalism at loop levels still requires one

to make use of picture changing operation. For this and some other reasons, soon the formalism was

extended by introducing an additional set of variables which we will describe now (for details see [6]).

The action describing the worldsheet CFT for non-minimal pure spinor formalism is given as

S
non�min

=
1

⇡↵0

Z
d2z

✓
1

2
@Xm@̄Xm + p↵@̄✓

↵ � w↵@̄�
↵ � w̄↵@̄�̄↵ + s↵@̄r↵

◆
(1.19)

where the new variables are a bosonic left handed pure spinor �̄↵ and a fermionic spinor r↵ satisfying the

following constraints

�
�̄�m�̄

�
= 0 ,

�
�̄�mr

�
= 0 . (1.20)

These constraints imply the following gauge invariance for the conjugate momentum variables

�w̄↵ = ⇤̄m(�m�̄)
↵ � �m(�mr)↵ , �s↵ = �m(�m�̄)

↵ . (1.21)

For arbitrary ⇤̄m and �m.

This in turn implies, that only the following gauge invariant combinations can introduce the conjugate

momenta of the new non-minimal variables

N̄mn =
1

2
[(w̄�mn�̄)� (s�mnr)] , J̄ = w̄↵�̄↵ � s↵r↵ ,

Smn =
1

2
(s�mn�̄) , S = s↵�̄↵ . (1.22)

It is crucial that the introduction of this new non-minimal variables do not a↵ect the cohomology.

13



Chapter 1 – Introduction to Pure Spinor Superstrings

This is ensured by defining the non-minimal BRST charge as follows

Qnon�min = Q+

I

C

dzw̄↵r↵ . (1.23)

The additional term is invariant under the gauge transformation (1.21). This implies via the quartet

argument (see [25]) that the cohomology of Qnon�min is same as that of Q. We will not require non-

minimal formalism in the new results being presented in this thesis. So without going into unnecessary

details let us point out certain crucial improvements that this o↵ers over the minimal formalism. In turn

this will also justify why our results presented in this thesis, while obtained using minimal variables, are

equally valid for non-minimal formalism.

1.4.4 Vertex Operators

First and foremost, as we have just discussed that since the cohomology is una↵ected by introduction of

non-minimal variables,i.e. for unintegrated vertex operator V and integrated vertex operator U ,

QV = 0 & QU = @RV =) Qnon�minV = 0 & Qnon�minU = @RV , (1.24)

there is a possibility that all physical states can be potentially constructed using minimal variables alone.

For massless states, this indeed is the case as shown in [4] (also see appendix D for derivation of massless

vertex in our conventions). Let us briefly describe why using this result we can rigorously establish that

all higher massive vertex operators can also be constructed solely in terms of minimal variables.

We recall from the RNS formalism that the massive states also appear in the OPEs of the massless

vertex operators. This allows us, in principle, to construct the massive vertex operators from the knowl-

edge of the massless vertex operators. More specifically for open strings, this construction, pointed out

to the author and his collaborators by Nathan Berkovits, goes as follows. If V1, V2 are unintegrated and

U1, U2 are integrated massless vertex operators respectively, then we have

QU1 = @RV1 and QU2 = @RV2 (1.25)

We now take the contour integral of U1 around the integrand of U2 and define

U3(z) ⌘
I

dw

2⇡i
U1(w)U2(z) (1.26)

14



Chapter 1 – Introduction to Pure Spinor Superstrings

Acting on this with the BRST operator Q and using (1.25), we obtain

QU3 =

I
dw

2⇡i
U1(w)QU2(z) =

I
dw

2⇡i
U1(w)@zV2(z) ⌘ @zV3 (1.27)

where,

V3(z) ⌘
I

dw

2⇡i
U1(w)V2(z) (1.28)

and in the first equality in (1.27), we have used the fact that
H
dw @RV1(w) is zero.

Now, if we choose the momentum k1 and k2 of U1 and U2 to satisfy

(k1 + k2)
2 = 2k1 · k2 ⌘ (k3)

2 = �m2 = � n

↵0 (1.29)

then, by construction, the V3 and U3 will be unintegrated and integrated massive vertex operators respec-

tively of open string states at mass level n.

One might ask how do we know that the U3 and V3 as defined in (1.26) and (1.28) do not vanish.

To answer this question, we recall that the OPE of two massless vertex operators necessarily contain

the massive vertex operators (this is necessary for the consistency of the theory and is well known from

the RNS formalism). Now, the integrated vertices U1 and U2 have conformal weight one. Hence, by

dimensional analysis, it is easy to see that the integrand involving the integrated massive vertex operator

can only appear at the first order pole in (1.26) and hence its contour integral can’t vanish. By a similar

argument, we see that V3 as defined in (1.28) can’t vanish.

Since the massless vertices can be chosen to be independent of all non-minimal variables as shown in [4],

this construction shows that the massive vertices can also be constructed without using the non-minimal

variables.

While this result establishes that all higher massive vertex operators can always be constructed by

taking OPE of massless states, this algorithm turns out to be not very pragmatic as of yet. In fact, prior

to work presented in this thesis, no covariant methodology of constructing vertex operators existed for

pure spinor formalism. This is usually thought to be a criticism of pure spinor formalism that this thesis,

in part, wishes to nullify.
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Chapter 1 – Introduction to Pure Spinor Superstrings

1.4.5 Amplitude prescriptions for pure spinor formalism

Minimal Formalism

The tree level N-point amplitude prescription is given by

AN = hV1V2V3

Z
U4 · · ·

Z
UN i . (1.30)

where as in RNS and bosonic strings, we use SL(2,R) symmetry to fix three external states at three fixed

points on the disk (these are therefore represented by unitegrated vertex Vi, i = 1, 2, 3). The rest of the

external states are represented by integrated vertex Ui, i = 4, · · · , N . The measure is defined in such a

way that it is non-vanishing if and only if

⌦
(��s✓)(��t✓)(��u✓)(✓�stu✓)

↵
= 1 . (1.31)

Later in chapter 5 we will give step by step details of how to evaluate such amplitudes.

We will not need to evaluate loop amplitudes in this thesis, but nonetheless a few comments are

necessary for completeness. As discussed in [6] (see also [7], [12], [13], [14], [15]), the multiloop amplitude

prescription in minimal PS formalism involves insertion of a picture lowering operator YC and two picture

raising operators ZB and ZJ , to absorb the 11 zero modes of �↵ and 11g zero modes of w↵ at genus g.

These operators are given by

YC = C↵✓
↵�(C��

�) , ZB =
1

2
Bmn(��

mnd)�(BpqNpq) , ZJ = (�↵d↵)�(J) . (1.32)

The crucial point here is that C↵ is a constant spinor and Bmn is a constant tensor. Even though one

can show that dependence of the amplitude on these two constant spinor/tensor is BRST trivial, there

presence nonetheless breaks manifest Lorentz invariance. While this instance of breaking is by no means

as severe as that of Green-Schwarz formalism, it still leaves one craving for a better amplitude prescription

which maintains manifest Lorentz covariance at all stages.

Non-minimal formalism

The non-minimal formalism can be identified with ĉ = 3, N = 2 string theory. Therefore one can directly

use the amplitude prescription for the topological strings to write down an amplitude prescription for

16



Chapter 1 – Introduction to Pure Spinor Superstrings

non-minimal pure spinor formalism (see [6], also [15]).

The tree level prescription is given as

AN = hNV1V2V3

Z
U4 · · ·

Z
UN i . (1.33)

Following standard methods in any CFT, one first needs to integrate out all conformal weight 1 variables

by using their OPEs to reduce the amplitude to an expression consisting of only zero modes of �↵ and ✓↵.

The prescription looks almost identical to that of minimal, except for the presence of the factor N , which

serves as a regularization. The regularization is necessary since the integral over � and �̄ may diverge

due to their bosonic non-compact nature. At first glance it may seem demoralizing, but a neat method

for regularization, originally formulated in [26] (also see [6]) for any BRST invariant system, proposes

N = exp({Q,�}) . (1.34)

It was shown in [26], since N = 1+Q⌦, for some ⌦, the functional integral which gives the amplitude is

independent of the choice of the regularization N .

The precise form of the measures were given in [6] and there it was also shown explicitly that for tree

level and using the fact that all vertex operators are expressed solely in terms of minimal variables, both

minimal and non-minimal prescription coincides exactly.

Finally, the g-loop, N -point amplitude in non-minimal formalism is given by

AN, g =

Z
d3g�3⌧hN (y)

3g�3Y

i=1

(

Z
dwiµi(wj)b(wj))

NY

j=1

Z
dzjU(zj)i . (1.35)

Here, ⌧ are the complex Teichmüller parameters and µj are the associated Beltrami di↵erentials, b is a

composite operator which serves as the “b-ghost” in non-minimal pure spinor formalism. This expression

does not involve any PCOs and as a result is completely Lorentz covariant at all stages.

However, as mentioned earlier, things are not as perfect as they may seem at first glance. This

amplitude prescription comes with its own problems which we briefly discuss now. The expression of

the b ghost is quite complicated in non-minimal formalism, but the important thing to note is that it

diverges ⇠ �̄

(�̄�)4
as �̄� ! 0. The entire measure as goes as ⇠ �8+3g�̄11 as �̄� ! 0. This suggests that

the amplitude prescription can give a meaningful premise of calculation provided the integrand diverges

slower than ⇠ ��(8+3g)�̄�11 as �̄� ! 0. Since all our vertex are polynomials in �, the only possible
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Chapter 1 – Introduction to Pure Spinor Superstrings

divergence can come from the b-ghosts. This suggests that we can have at most three number of b-ghosts,

or the prescription, with the current regularization, works only up to 2 loops.

While this situation leaves one unsated, there are still plenty of causes for optimism. Firstly, the fact

that this prescription, for the massless amplitudes ( [7], [13], [12], [14], [15], [16], [17]) have been shown

to reproduce the RNS results (for tree as well as loop) gives confidence that one is along the right path.

Furthermore, for the cases where the computation is well defined, this prescription is much more practical

than the corresponding RNS computation. Also, in [8], general arguments were given to demonstrate,

that in principle one can always find a regulated b-ghost which has a better divergence and will therefore

allow one to compute loop amplitudes beyond genus 2 (in principle even up to all orders). The only snag is

that so far no one has managed to find a concrete realization of the proposed regularization methodology.

1.5 Outline of the rest of the thesis

For now we set our sight into the problem at hand. We will like to develop a systematic strategy to

construct massive vertex operators which also provides a recipe for performing their full covariant ✓

expansion in terms of the physical fields. The first construction of massive unintegrated vertex was done

in [18], which is reviewed in chapter 2 . In chapter 3 we give our methodology of performing the full

covariant ✓ expansions of massive vertex. We also give the explicit ✓ expansion results for the various

superfields appearing in the vertex. In chapter 4 we use the insights developed in chapter 3 to propose a

generalized methodology based on group theory to construct all massive vertex operators. As an evidence

for our methodology, we re-derive the unintegrated massive vertex using this novel technique and also

state the result for the integrated vertex which was constructed for the first time in literature using this

methodology. Once vertex operators are constructed for first massive states, we would like to establish

the equivalence of RNS and PS formalism for first massive states as well. This has been done in chapter

5 by computing all massless-massless-massive amplitudes in PS formalism and directly comparing them

with their RNS counterparts. We conclude with brief summary and some interesting future directions

that this thesis leads to in chapter 6 .
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Chapter 2

Review of construction of first massive

unintegrated vertex

2.1 Vertex Operators in pure spinor formalism

Pure spinor formalism expresses every vertex for a given mass level in a following schematic form

V ⇠
X

n

BnFn (2.1)

here Bn are composite operators of appropriate conformal weight and ghost number (same as that of the

vertex V) constructed out of the objects ⇧m, @✓↵, d↵, Nmn, J and �↵. We often use the name “basis”1 to

denote such an object Bn appearing in a vertex. The Fn are suitable spacetime superfields whose index

structure is such that after contraction with Bn it yields a scalar. All of the superfields Fn must describe

the same supermultiplet corresponding to the vertex operator V.

Construction of an unintegrated vertex operator V for a given mass level therefore requires one to find

at least one superfield F describing the massive supermultiplet in question such that following conditions

hold -

• All Fn can be expressed in terms of F or its supercovariant derivative D↵F .

• The BRST condition must hold : QV = 0.

1The name is slightly misleading, since these objects Bn for a given conformal weight and ghost number are really not
linearly independent due to pure spinor constraint. But nonetheless one can take care of the pure spinor constraint in a
systematic way by either solving the constraints or using Lagrange multiplier.
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Chapter 2 – Review of construction of first massive unintegrated vertex

The notion of a b-ghost is not a natural one in pure spinor since one does not start from a worldsheet

di↵eomorphism invariant theory to arrive at the pure spinor wordsheet CFT. Nonetheless in non-minimal

pure spinor, one can construct a composite operator which serves the purpose of a b-ghost2 . However

this b-ghost has multiple poles at �↵ = 0 and any integrated vertex constructed using b-ghost are mostly

not very useful when it comes to computing scattering amplitudes. Instead one defines the integrated

vertex U via the following descent equation

QU = @RV , (2.2)

where @R denotes derivative along the real line R (since we are talking of open strings, for closed strings

it will be just the holomorphic derivative across the entire C plane).

Constructing an integrated vertex therefore first requires construction of the unintegrated vertex V .

Then it must be expressible in the schematic form

U ⇠
X

m

B̃mGm (2.3)

with the following conditions holding true

• All superfield Gm can be expressed in terms of F or its supercovariant derivative D↵F (This F is

must be the same superfield in terms of which the unintegrated massive vertex was expressed).

• The BRST condition must hold : QU � @RV = 0.

For massless states, the unintegrated as well as integrated vertex operator were explicitly constructed

in [4]. We give a brief review of this construction in our convention in appendix D. For the first massive

states of open superstrings, the unintegrated vertex was constructed in [18]. In this chapter we review that

construction, in our convention. Then we discuss what are the ingredients lacking in this construction

that prevent us from using it to compute scattering of first massive states. The conclusion of this chapter

will complete the review part of this thesis and lay the groundwork for the new results which form the

subsequent chapters of this thesis.

2There is a b-ghost in minimal PS formalism as well, but it breaks manifest Lorentz covariance by introducing a constant
right handed spinor.
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Chapter 2 – Review of construction of first massive unintegrated vertex

2.1.1 Unintegrated massive vertex operator at (mass)2 = 1
↵0

In this subsection, we focus on the open string states at first mass level, i.e. m2 = 1
↵0 . The unintegrated

vertex operator for these states was constructed in [18]. We review this construction below. At the

first mass level, the open string spectrum comprises of 128 bosonic and 128 fermionic degrees of freedom

contained in a traceless symmetric tensor gmn, a three-form field bmnp and a spin-3/2 field  m↵. These

fields satisfy the following constraints

⌘mngmn = 0 ; @mgmn = 0 ; @mbmnp = 0 ; @m m↵ = 0 ; �m↵� m� = 0 (2.4)

Due to these constraints, the number of independent components in gmn, bmnp and  m↵ is 44, 84 and 128

respectively. Further, these form a massive spin-2 supermultiplet in 10 dimensions.

The unintegrated vertex operator describing the physical states at mass level n, i.e., m2 = n
↵0 is

constructed out of objects3 with ghost number 1 and conformal dimension n. Recall, in the list of objects

using which we will construct our basis, only the pure spinor ghost �↵ has non-zero ghost number (but

zero conformal weight). And all other operators have zero ghost number and conformal weight one.

So for n-th massive level each of the basis will be of the form ⇠
m=nP
m=0

@m�↵B̂n�m, where B̂n�m is a

conformal weight (n�m) operator constructed by multiplying suitable number of all weight 1 operators

and their worldsheet derivatives (for example, a subset of conformal weight 3 candidates for basis can be

��⇧md�@✓↵, ��⇧m@d�, ��@2⇧m,@3�↵, @2�↵⇧m and so on). Consequently, the most general unintegrated

vertex operator at first massive level (n = 1) of the open string can be written as

V = @�↵A↵(X, ✓)+ : @✓��↵B↵�(X, ✓) : + : d��
↵C�

↵(X, ✓) : + : ⇧m�↵Hm↵(X, ✓) :

+ : J�↵E↵(X, ✓) : + : Nmn�↵F↵mn(X, ✓) : (2.5)

where A↵, B↵� , C
�
↵, Hm↵, E↵ and F↵mn are general superfields, unconstrained as of now. In accordance

with [18], the normal ordering : : is defined as follows

: AB : (z) ⌘ 1

2⇡i

I

z

dw

w � z
A(w)B(z) (2.6)

3These objects are constructed using ⇧m, @✓↵, d↵,�
↵, J and Nmn.
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Chapter 2 – Review of construction of first massive unintegrated vertex

where, A and B are any two operators.

The equation of motion for the superfields in (2.5) is determined by the BRST condition QV = 0. Let

us explicitly see how one evaluates QV using the OPEs given in 1.4.2 for one of the terms.

Q(@✓↵��B↵�(w)) =

I

C
dz�⇢d⇢(z)@✓

↵��B↵�(w) (2.7)

Where the contour C encloses the point w. The only relevant OPE needed to evaluate this expression are

that between d⇢ and @✓↵ and d⇢ and B↵� ,

d⇢(z)@✓
↵(w) ⇠ ↵0

2

� ↵
⇢

(z � w)2
, d⇢(z)B↵�(w) ⇠

↵0

2

D⇢B↵�(w)

(z � w)
. (2.8)

This on performing the standard complex integrals using Cauchy formula gives,

Q(@✓↵��B↵�(w)) =
↵0

2
@✓↵�⇢��D⇢B↵�(w) (2.9)

Similarly one can evaluate the action of Q on the other terms of the vertex. One obtains 4

2

↵0QV = �@✓��↵�� [D↵B�� � �s↵�Hs� ] +⇧
m�↵��

⇥
D↵Hs� � �s↵�C

�
�

⇤

�d��
↵��


D↵C

�
� + ��↵E� +

1

2
(�st)�↵F�st

�

+�↵@��
h
D↵A� +B↵� + ↵0�s��@sC

�
↵ � ↵0

2
D�E↵ +

↵0

4
(�stD)�F↵st

i

+J�↵�� [D↵E� ] +N st�↵��
⇥
D↵F

st
�

⇤
(2.10)

At this point we would like to set each term in square bracket to zero, but there are two primary obstacles in

doing so, both stemming from pure spinor constraint. Firstly, any operator quadratic in �� is constrained

by pure spinor constraint. This is easily remedied by using the bi-spinor decomposition A.23, the pure

spinor constraint (��m�) = 0 and the fact that �� is a Grassmann even object. We can express

�↵�� =
1

5! 32
(��mnpqr�)(�mnpqr)

↵� . (2.11)

4Note that some of the numerical factors in various expressions in this thesis will not agree with that in [18] since we are
using di↵erent convention for (anti)symmetrization. See appendix A for details.
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Chapter 2 – Review of construction of first massive unintegrated vertex

This is done for each of the term in QV , for example,

2

↵0 Q(@✓↵��B↵�(w)) =
1

5! 32
@✓↵(��mnpqr�)

h
(�mnpqr)

⇢�D⇢B↵�(w)
i
. (2.12)

Similarly, using the fact (��m@�) = 0 (which is readily obtained by taking @ on pure spinor constraint),

we can express

�↵@�� =
1

3! 16
(��mnp@�)(�mnp)

↵� +
1

5! 32
(��mnpqr@�)(�mnpqr)

↵� . (2.13)

The second obstacle comes from the fact that not all of the “basis” are linearly independent (see

footnote 1). In particular, one obtains as a consequence of the pure spinor constraint the following

identity

: Nmn�↵ : (�m)↵� �
1

2
: J�↵ : (�n)↵� = ↵0@�↵(�n)↵� (2.14)

It is assumed henceforth that all failure of linear independence of the basis operators due to pure spinor

constraint stem from this identity and anything directly derivable from this identity 5. For the mass level

in question, the relevant identity that can be derived from (2.14) is

: Nst�
↵�� : �s�� �

1

2
: J�↵�� : (�t)�� �

5↵0

4
�↵@��(�t)�� +

↵0

4
��@��(�st)

↵
�(�

s)�� = 0. (2.15)

This clearly demonstrates that 3 of our basis elements are related by a single relation. To take into

account of this constraint, we contract (2.15) by an arbitrary superfield with appropriate index structure

and treat the arbitrary superfield as a Lagrange multiplier.

�2 : Nst�
↵�� : (�vwxy�[s)↵�K

t]
vwxy+ : J�↵�� : (�vwxy�s)↵�K

s
vwxy

+↵0�↵@��
h
2(�vwxys)↵�⌘stK

t
vwxy + 16(�wxy)↵�K

s
wxys

i
= 0 (2.16)

Therefore, we must solve (2.10) subjected to the constraint (2.16). Which yields the following set of

5At the moment of writing this thesis, we are unaware of any explicit proof of this assumption. But given the successful
construction of unintegrated and integrated vertex for first massive states, which crucially depends on taking into account
all constraints correctly, provides strong evidence that this assumption is correct. It is perhaps not too optimistic to forecast
probably this assumption can be proven exactly in the future.
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equations 6

(�mnpqr)
↵� [D↵B�� � �s↵�Hs� ] = 0 (2.17)

(�mnpqr)
↵�

⇥
D↵Hs� � �s↵�C

�
�

⇤
= 0 (2.18)

(�mnpqr)
↵�


D↵C

�
� + ��↵E� +

1

2
(�st)�↵F�st

�
= 0 (2.19)

(�mnpqr)
↵�

h
D↵A� +B↵� + ↵0�s��@sC

�
↵ � ↵0

2
D�E↵ +

↵0

4
(�stD)�F↵st

i

= 2↵0�↵�mnpqr�
vwxys
↵� ⌘stK

t
vwxy (2.20)

(�mnp)
↵�

h
D↵A� +B↵� + ↵0�s��@sC

�
↵ � ↵0

2
D�E↵ +

↵0

4
(�stD)�F↵st

i

= 16↵0�↵�mnp�
wxy
↵� ⌘stK

s
wxys (2.21)

(�mnpqr)
↵�D↵E� = (�mnpqr�

vwxy�s)
↵
↵K

s
vwxy (2.22)

(�mnpqr)
↵�D↵F

st
� = �2(�mnpqr�

vwxy�[s)↵↵K
t]
vwxy (2.23)

Above identity (2.14) implies that the vertex operator V remains invariant under the following field

redefinition for an arbitrary tensor spinor ⇤�m

�F↵mn = �m↵�⇤
�
n � �n↵�⇤

�
m , �E↵ = ��m↵�⇤�m , �A↵ = �2↵0�m↵�⇤

�
m (2.24)

Due to the nilpotency of the BRST operator Q, any vertex operator V also enjoys a gauge freedom given

6Since the operators which are used to build each of the basis have non-trivial OPEs amongst themselves, it is essential
one adopts a fixed ordering as a convention before comparing two terms with same basis. For example, J�↵ is not same as
�↵J because both operators have non-trivial OPE amongst themselves. Our convention is from left to right whenever they
appear, the ordering must be {⇧m, d↵, @✓

↵, Nmn, J,��}.
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by the transformation

V (z) ! V (z) +Q⌦(z) (2.25)

This gauge freedom along with the field redefinition freedom (2.24) can be used to impose the following

algebraic conditions on the superfields

B↵� = (�mnp)↵�Bmnp , C↵
� = (�mnpq)↵�Cmnpq

�m↵�F�mn = 0 , (�mHm)↵ = 0 (2.26)

Using these and the equations of motion (2.17) - (2.23), all the superfields can be solely expressed in

terms of the single superfield Bmnp as

Hs↵ =
3

7
(�mn) �

↵ D�Bmns , Cmnpq =
1

2
@[mBnpq] , E↵ = 0 = A↵

F↵mn =
1

8

✓
7@[mHn]↵ + @q(�q[m) �

↵ Hn]�

◆
(2.27)

Further, one also finds

Km
npqr =

1

1920


(�npqrs)

↵�D↵F
ms
� � 1

3
(�su[npq)

↵��mr]D↵F
su
�

�
(2.28)

The above solution, when substituted in (2.21), simplifies to

�
@2 � 1

↵0
�
Bmnp = 0 (2.29)

which demonstrates that the states described by Bmnp are indeed massive with (mass)2 = 1
↵0 . Next, we

must demonstrate that the superfield Bmnp indeed describes the states with the desired mass. We now

need only show that this superfield contains the correct physical fields as well.

The superfield Bmnp also satisfies [18]

D↵B
mnp = 6�[m↵�Z

np]� � 1

8
(�[mn) �

↵ Hp]
� (2.30)
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The Zmn� can be chosen to be anti symmetric in the indices m and n and furthermore it satisfies

Zmn��m↵� = 0.

In order to show that the superfields contain the physical fields gmn, bmnp and  m↵, it is convenient

to go to the rest frame ~k = 0, where ~k denotes the spatial momenta. In the following, we shall label the

spatial indices using the beginning Latin alphabets, namely, a, b, c etc.

As argued in [18] using the supersymmetry transformation properties, Zmn↵, Bmnp and Hm↵ satisfy

in the rest frame,

Zab↵ =
1

2

⇣
�[a b]

⌘↵
; Z0b↵ = �7

4

⇣
�0 b

⌘↵
(2.31)

D↵B
abc = 12(�[ab c])↵ ; B0ab = 0 (2.32)

and

Hc
↵ = �72 c

↵ (2.33)

where,  c
↵ is an arbitrary tensor-spinor superfield satisfying

(�a)
�↵ a

↵ = 0 (2.34)

The spin-3/2 field  a
↵ is defined to be the ✓ independent component of  a

↵ i.e.

 a
↵ =  a

↵

���
✓=0

(2.35)

Furthermore, the physical fields gab and babc are defined to be the ✓ independent components of Gab and

Babc respectively i.e.

gab ⌘ Gab
���
✓=0

; babc ⌘ Babc

���
✓=0

(2.36)

where, the superfield Gab is defined to be

Gab ⌘ 2 D↵�
↵�
(a  b)� , ⌘abG

ab = 0 (2.37)
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Chapter 2 – Review of construction of first massive unintegrated vertex

Due to the fact that babc is anti-symmetric in all the indices and equations (2.34) and (2.37), the fields

babc, gab and  a
↵ contain precisely the desired number of degrees of freedoms, namely, 84, 44 and 128

respectively. This shows that in the rest frame we have the correct counting for the degrees of freedom

in the massive superfields.

2.2 Why this vertex is not enough for computing scattering of massive

states?

For these superfields to represent the massive spin-2 supermultiplet, the higher ✓ components of the

superfields Babc, a↵ and Gab must be determined completely in terms of bmnp, gmn and  m↵. The

construction laid out so far can ensure that only in the rest frame. However, this construction is not

enough to compute all scattering amplitudes involving first massive states for the following two reasons.

1. The relations derived in [18] and reviewed in this chapter provides enough information only to

obtain a ✓ expansion of the superfield Bmnp, but only in a rest frame. Since knowing the full ✓

expansion is imperative to compute any scattering amplitude, only scattering processes involving a

single massive states can be evaluated using this vertex (by going to the rest frame of the massive

state). Not only is this incomplete once we have more than one massive states, it is also displeasing

to use pure spinor formalism which boasts of manifest super-Poincaré covariance at all stages to

perform a calculation in a specific choice of frame (viz. rest frame). Therefore we must develop a

way of performing the full ✓ expansion of the superfield in a completely covariant manner.

2. As is well known, typically all superfields contain some auxiliary fields in higher components of

✓ expansion. It is expected that any naive covariantization of the rest frame results will lead to

superfields which possesses auxiliary fields in its ✓ expansion. While this is not a very serious

problem, it is preferable to have a vertex which is by construction such that only the physical fields

appear at all stages of ✓ expansion. This ensures that such a vertex can be readily used to compute

scattering of any number of massive states.

In the next chapter we will give a prescription which solves both these problems simultaneously.
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Chapter 3

Group theory and covariant ✓ expansion

of Massive superfields

The goal of this chapter is to basically covariantize the rest frame results described in last chapter. We

seek to covariantize not only the superfield Bmnp, but also the superfields  m↵ and Gmn. Furthermore we

will postulate three relations which expresses the supercovariant derivative of  m↵ in terms of Bmnp and

Gmn, and supercovariant derivative of Bmnp and Gmn in terms of  m↵. These di↵erential relations along

with certain other on-shell conditions will provide us with necessary ingredients to achieve the following

two goals

• Perform the ✓ expansion of all 3 superfields in a fully covariant manner.

• Establish firmly that the ✓ expansion thus performed will only contain physical fields bmnp, gmn and

 ↵ as co-e�cients and no auxiliary fields will appear.

Prima facie introducing three superfields, all of which describe the same spin 2 massive supermultiplet

may seem redundant. However, the redundancy is completely taken care of by our proposed relations

which allow us to express any superfields in terms of the others by making use of the supercovariant

derivative. Moreover we will see in the next chapter that this method of obtaining the covariant ✓

expansion immediately provides crucial insight into developing a general methodology of constructing

massive vertex for any mass level.

There are two consistency checks for our proposed relations. Firstly, they must reduce in the rest

frame to the results already described in the previous chapter (which are the results of [18]). Secondly, all

proposed relations must be consistent among themselves as well as with the BRST condition QV = 0. We
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Chapter 3 – Group theory and covariant ✓ expansion of Massive superfields

will see at the end of this chapter that both these checks are satisfied by our relations. We conclude this

chapter by giving the explicit ✓ expansion results for the relevant superfields obtained by our proposed

relations ( [19], [21]). There has been a previous attempt to covariantize the rest frame results (in [27]). As

will be pointed out later in this chapter, our result di↵er from that paper. In fact, as we will demonstrate,

the results of that paper are in conflict with both of the consistency checks described above.

3.1 Ingredients for ✓ expansion

As mentioned in the last chapter, one drawback of working in the superspace formalism is that a given

superfield contains usually auxiliary degrees of freedom in surplus to the actual physical degrees of freedom

of the theory. In our case also, by looking at the coe�cients in the ✓ expansion of the superfields Bmnp, Gmn

and  m↵, we can easily convince ourselves that they will generically contain much more degrees of freedom

than 128+128 provided by the physical fields gmn, bmnp and  m↵. Thus, it is imperative that we express

the higher ✓ components of these superfields in terms of the physical fields thereby removing the redundant

degrees of freedom.

To ensure that gmn, bmnp and  m↵ are the only physical degrees of freedom, there must be relations

expressing D↵ m� in terms of Gmn, Bmnp and D↵Gmn, D↵Bmnp in terms of  m↵. These will provide

the recursive relations1 relating the higher ✓ components of the superfields to the lowest components

gmn, bmnp and  m↵. Along with these, the algebraic constraints such as kmBmnp = 0 are also needed to

remove the extra degrees of freedom at the zeroth order in ✓ expansion. We need to ensure that all these

relations are consistent with the on-shell condition QV = 0 (or equivalently equations(2.17) to (2.23)).

In this section, we give the above mentioned relationships among the superfields. In the process, we

also give the covariant generalizations of the rest frame results (2.32) - (2.37) given in section 2.1.1. We

shall be very brief and just state the result. One can check the validity of these by writing them in the

rest frame and verifying that they agree with those in the subsection 2.1.1 and satisfy all the equations.

In appendix 3.2, we indicate how to check this systematically. For simplicity, we work in the momentum

space in what follows2.

We start by recalling the rest frame results (2.31), (2.33), (2.34) and (2.37). We claim that the

1Note that the gauge invariance (2.25) has already been completely exploited in writing down the solution (2.27).
2i.e. we replace all the @m by i km.
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covariant generalization of these results is given by

Hm� = �72 m� , (�m)↵� m
� = 0 (3.1)

and,

Gmn = 2D↵�
↵�
(m n)� , ⌘mnGmn = 0 (3.2)

These results have the correct limit in the rest frame. In fact the covariant expression of (2.32) as

proposed in [27], after substituting in Hs� as given in (2.27) reduces in the rest frame to Hb
� = �96 b

� .

This is in clear contradiction with (2.33) .

Further, we also claim that the relations between the various superfields and all the necessary con-

straints, which are needed to ensure that superfields contain only the physical degrees of freedom, are

given by

D↵Gsm = 16ikp(�p(s m))↵ (3.3)

D↵Bmnp = 12(�[mn p])↵ + 24↵0ktk[m(�|t|n p])↵ (3.4)

D↵ s� =
1

16
Gsm�

m
↵� +

i

24
kmBnps(�

mnp)↵� �
i

144
kmBnpq(�smnpq)↵� (3.5)

(�m)↵� m� = 0 ; km m� = 0 ; kmBmnp = 0 ; kmGmn = 0 & ⌘mnGmn = 0 (3.6)

We shall now argue as to how to arrive at above equations. To see that equations (3.1) and (3.2) are the

correct covariant generalizations of the rest frame results given in [18], we note that the 128 fermionic

degrees of freedom in the rest frame are contained in the spatial components of  m� , namely in  a� .

Similarly, the 44 Bosonic degrees of freedom are contained in Gab. This means that  0� , G0b and G00

must either be zero or should be determined in terms of  a� , Babc and Gab, since otherwise, we shall

need to impose further constraints on  a� and Gab. However, it is easy to see that due to the rest frame
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constraints

(�a)
↵� a

� = 0 , ⌘abGab = 0 , when ka = 0 (3.7)

we can’t construct  0� and G00 in terms of  a� and Gab consistent with rotational invariance in the

rest frame. Another way to argue this is to note that G00, G0a and  0� belong to the singlet, 9 and 16

representations of SO(9) group (which is the little group in the rest frame). This means that these fields

can not be expressed as linear combinations of the existing fields  a� , Babc and Gab (which form 128, 84

and 44 representations respectively of SO(9)). Hence,  0� , G00 and G0a must be zero in the rest frame3,

i.e.

 0� = 0 , G00 = 0 , G0a = 0 , when ka = 0 (3.8)

Now, the proposed generalizations (3.1) and (3.2) can be written as

Hm� + 72 m� = 0 , (�m)↵� m
� = 0 , Gmn � 2D↵�

↵�
(m n)� = 0 , ⌘mnGmn = 0 (3.9)

which can alternatively be written in terms of their spatial and temporal components as

Ha� + 72 a� = 0 , H0� + 72 0� = 0 , (�a)
↵� a

� + (�0)
↵� 0

� = 0

Gab � 2D↵�
↵�
(a  b)� = 0 , G00 � 2D↵�

↵�
(0  0)� = 0 , G0a � 2D↵�

↵�
(0  a)� = 0

⌘abGab + ⌘00G00 = 0 (3.10)

All of these equations are identically satisfied in the rest frame by the rest frame equations4 given in [18]

and the above equation (3.8). This means that if we think of the left hand side of the four equations in

(3.9) as tensors, then all the components of these tensors vanish in the rest frame. This means that these

3For G0a, also see the footnote (4).
4It should be noted that the covariant derivative of  m� was not given in [18]. Hence, the equation involving G0a in

(3.10) can’t be fully derived using only the results given there. However, it easily follows from the above equations (3.5) and
(3.6). The constraint kmGmn = 0 of (3.6) implies that G0a is identically zero in the rest frame. On the other hand, the
equation (3.5) implies that the second term of the equation involving G0a in equation (3.10) is also identically zero. In fact,
using (2.31), we see that this second term is proportional to D�Z

0a� in the rest frame whose result in terms of the basic
superfields was not given in [18].
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tensors must vanish identically in all the frames. This proves equations (3.1) and (3.2).

The equation (3.4) can be derived from equation (2.30). However, this requires knowing the covariant

form for Zmn↵. It is easy to see that this is given by

Zmn↵ =
1

2

⇣
�[m n]

⌘↵
+ 4↵0kt(�↵�t )k[m n]

� (3.11)

It reduces to the correct rest frame results given in equation (2.31) and satisfies Zmn��m↵� = 0 as required.

By putting this expression for Zmn↵ in equation (2.30) and using (3.1), we precisely obtain equation (3.4).

A simple procedure to covariantize a given rest frame expression is to make use of two projectors

which serve the purpose projecting out the temporal and spatial parts of a given vector in the rest frame.

Recall in the rest frame, on-shell momentum for 1st massive states can be expressed as k = (k0,~k) with

(k0)2 = 1
↵0 and ~k = 0.

Suppose one has a rest frame equation for some vector as V a = 0. It can be written covariantly using

the tensor

Pmn = ⌘mn + ↵0kmkn , PmnPnr = Pm
r. (3.12)

It is quite easy to see in the rest frame,

P 00 = 0 , P 0a = 0 , P ab = ⌘ab. (3.13)

So this quantity is indeed a projector which projects out only the spatial part of a vector in the rest

frame. So the equation V a = 0 in rest frame can be expressed covariantly in rest frame as PmnVn = 0.

Since we have managed expressing a covariant tensor to be zero at rest frame, it must be zero as a tensor

at all frames and therefore we have in general at any frame the following equation to be true PmnVn = 0.

Similarly to covariantize a rest frame equation which involves the temporal part, i.e. equation of form

(in rest frame) V 0 = 0, we can use as a projector

P̃mn = ↵0kmkn (3.14)
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which in rest frame reduces to

P̃ 00 = 1 , P̃ 0a = P̃ ab = 0. (3.15)

Alternatively, in order to arrive at the equations5 (3.3)-(3.5), we can write an ansatz with arbitrary

coe�cients using the superfields, gamma matrices, Minkowski metric and momentum vector km. The

coe�cients can be fixed by demanding that the ansatz reduces to the rest frame result and it is consistent

with other equations in which it appears. For instance, to obtain the relation (3.5), we expand D↵ s� in

the basis of linearly independent gamma matrices using the identity (A.23). The superfields appearing in

the expansion can be fixed by using the equations of motion QV = 0 and demanding its consistency with

the solution (2.27). Similarly, the coe�cients appearing in the ansatz for (3.3) and (3.4) can be fixed by

using equations (2.27), (3.1), (3.2) and (3.5). We will discuss this particular procedure in its full glory

later in chapter 4. There we will also see how it allows a potential generalization to all higher massive

levels.

The constraints given in (3.6) are necessary to ensure that the lowest components of the superfields

contain only the physical degrees of freedom. To see this, we note that these conditions, on the ✓

independent components of superfields, imply

(�m)↵� m� = 0 ; km m� = 0 ; kmbmnp = 0 ; kmgmn = 0 & ⌘mngmn = 0 (3.16)

These conditions are the momentum space version of the constraints given in (2.4) and guarantee that

 s� , gmn and bmnp have the correct number of degrees of freedom, namely 128, 44 and 84 respectively.

Once the equations (3.3) - (3.6) and (2.26) - (2.29) hold, all the equations resulting from QV = 0,

namely (2.17) - (2.23) are satisfied identically as we indicate in section 3.2. The equations (3.3) - (3.6)

are the equations which are needed to do the ✓ expansion of the superfields completely which is done in

section 3.3.
5The equation 67 of [27] is to be contrasted with the equation (3.4) given above. Note that the term proportional to ↵0

is not present in [27].
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3.2 Consistency of the proposed covariant relations with QV = 0

In this section we give an outline of the proof that the relations given in section 3.1 are consistent with

the equations of motion (2.17) to (2.23) and among themselves. We indicate the steps for the consistency

with equations (2.17) and (2.18). The rest of the equations can be verified in a similar fashion.

We first show that our expression for D↵Bmnp is consistent with the two expressions of Hs� given in

equations (2.27) and (3.1). For this, we note that by putting the expression of D↵Bmnp from (3.4) into

the expression of Hs↵ given in (2.27), we obtain

Hs↵ =
3

7
(�mn) �

↵ D�Bmns

=
3

7
(�mn) �

↵

h
12(�[mn p])� + 24↵0ktk[m(�|t|n p])�

i

= �96 s↵ + 24 s↵

= �72 s↵

In the rest frame, this matches with the corresponding result given in (2.33). If we only consider the

momentum independent term in the covariant expression of D↵Bmnp as done in [27], then the two ex-

pressions of Hs↵ do not match with each other (see also 5). In fact the covariant expression of (2.32) as

proposed in [27], after substituting in Hs� as given in (2.27) reduces in the rest frame to Hb
� = �96 b

� .

This is in clear contradiction with (2.33)

Next, on substituting (3.1) and (3.4) in (2.17) and using (2.29) along with km m↵ = 0 of (3.6), we

obtain

LHS = (�mnpqr)
↵� [D↵B�� � �s↵�Hs� ]

= �12(�stu�mnpqr�st)
↵
�  u↵ � 24↵0kvks(�

stu�mnpqr�vt)
↵
�  u↵ + 72(�s�mnpqr)

�
�  s�

= 0

This shows that the equation (2.17) is identically satisfied.

Next, we consider equation (2.18). Using the expression of Cmnpq from (2.27), expression of Hs� from

equation (3.1), equation (3.5) and noting that the trace of product of 5 form with 1 and 3 form is zero,
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we obtain for the left hand side of (2.18)

LHS = (�mnpqr)
↵�

⇥
D↵Hs� � (�s)↵�C

�
�

⇤

=
i

2
(�mnpqr�stuvw)

�
�k

tBuvw � i

2
(�mnpqr�s�

tuvw)��ktBuvw

= 0

Hence, (2.18) is also identically satisfied.

To verify the rest of the equations resulting from QV = 0, one can follow similar steps as in the above

two cases. All one needs to use are the various gamma matrix identities and equations (2.27) - (2.29),

(3.1) and (3.3) - (3.6). Using these, we can show that all the remaining equations, viz. (2.19) to (2.23)

are satisfied identically. This establishes the consistency of our proposed relations in section 3.1 with

QV = 0.

Finally, we also need to verify that all the relations given in section 3.1 are consistent with each other.

One way to verify this is to take the supercovariant derivative of both sides of equations (3.3)-(3.5). Using

the identity (A.6), the left hand side of these equations will become proportional to a single superfield,

whereas the right hand sides will now involve the supercovariant derivatives of the superfields. The RHS

can be shown to be identical to LHS using equations (3.3) - (3.6) and various gamma matrix identities.

The consistency of (3.6) with the equations (3.3) - (3.5) is also easy to verify. The consistency of our

proposed relations with QV = 0 and among themselves is therefore established.

3.3 ✓ Expansion

As mentioned in the previous sections, the lowest components of the superfields  s↵, Bmnp and Gmn are

the physical fields  s↵, bmnp and gmn respectively. The higher ✓ components of the superfields contain

the same physical fields in a more involved manner. In this section, we shall outline the procedure to

determine the ✓ expansion of these superfields in terms of the physical fields exclusively. We recall the
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key equations from previous section which we shall need below

D↵ s� =
1

16
Gsm�

m
↵� +

i

24
kmBnps(�

mnp)↵� �
i

144
kmBnpq(�smnpq)↵� (3.17)

D↵Bmnp = 12(�[mn p])↵ + 24↵0ktk[m(�|t|n p])↵ (3.18)

D↵Gsm = 16ikp(�p(s m))↵ (3.19)

These equations are su�cient to obtain the ✓ expansion of all the superfields to all orders in ✓ once we

specify the ✓ independent components of Bmnp, Gsm and  s↵. Intuitively, we can see how these equations

will determine the higher ✓ components once the lowest components are specified - if we equate the ✓`

components on both sides of these equations, we shall have ✓` components of the superfields on the right

hand side. But on the left hand side, because we have a covariant derivative D↵, we shall always have ✓`+1

and ✓`�1 component of the superfield on which D↵ acts. Thus, the higher components can be determined

in terms of the lower components.

We denote the ✓ expansion of the superfields as

 s� =
16X

n=0

 s�↵1↵2···↵n✓
↵1✓↵2 · · · ✓↵n (3.20)

Bmnp =
16X

n=0

bmnp↵1↵2···↵n✓
↵1✓↵2 · · · ✓↵n (3.21)

Gmn =
16X

n=0

gmn↵1↵2···↵n✓
↵1✓↵2 · · · ✓↵n (3.22)

For each of the superfields, the fermionic and bosonic degrees of freedom occur either at even or odd ✓

components only. For example in  s� , the fermionic field  s� appears at even ✓ components and the

bosonic fields gmn and bmnp appear at odd ✓ components respectively. In the case of Bmnp and Gmn,

the bosonic fields appear at the even ✓ components and the fermionic field appear at odd ✓ components.

While moving the fermionic objects such as ✓↵ across these various components, it is helpful to keep in

mind the aforementioned points.

On substituting (3.20)-(3.22) into (3.17)-(3.19) and comparing the (`� 1)th component on both sides,

we find
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(�1)`�1
h
`  s�↵1↵2···↵`

+ ikr(�
r)↵1↵2 s�↵3···↵`

i

=


1

16
(�m)�↵1 gsm↵2···↵` �

i

24
kmbnps↵2···↵`(�

mnp)�↵1 �
i

144
kmbnpq↵2···↵`(�

mnpq
s )�↵1

�

(3.23)

` bmnp↵1↵2···↵` + ikr(�
r)↵1↵2bmnp↵3···↵`

= (�1)`

12(�[mn)

�
↵1
 p]�↵2···↵`

+ 24↵0ktk[m(�|t|n)
�

↵1
 p]�↵2···↵`

�
(3.24)

` gmn↵1↵2···↵` + ikr(�
r)↵1↵2gmn↵3···↵` = (�1)`16 i kp(�p(s)

�
↵1
 m)�↵2···↵`

(3.25)

where, (`� 1) = 1, 2, · · · , 16.

The higher ✓ components of the superfields can now be fixed using the above equations recursively.

We start with the ` = 1 component of (3.23) which fixes the O(✓) component of  s� to be

 s�↵1✓
↵1 =

1

16
(�m✓)� gsm � i

24
kmbnps(�

mnp✓)� �
i

144
kmbnpq(�

mnpq
s ✓)� (3.26)

Next, using the fact that 1-form �m↵� is symmetric in its spinor indices, the equation (3.23) gives for ` = 2

 s�↵1↵2✓
↵1✓↵2 =

1

16
(�m✓)� gsm↵2✓

↵2 +
i

24
km(�mnp✓)�bnps↵2✓

↵2 +
i

144
km(� mnpq

s ✓)�bnpq↵2✓
↵2

(3.27)

where, we have used the fact that bmnp↵ and gmn↵ are Grassmann odd. They can be determined using

the ` = 1 components of equations (3.24) and (3.25) respectively as

bmnp↵2 = �12(�[mn)
�
↵2
 p]� � 24↵0ktk[m(�|t|n)

�
↵2
 p]�

gmn↵2 = �16 i kp(�p(m) �
↵2
 n)� (3.28)

These can be substituted in equation (3.27) to fix the O(✓2) component of  s� completely.

At the next oder in ✓, the  s�↵1↵2↵3 will require gmn↵2↵3 and bmnp↵2↵3 . These can again be determined
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using equations (3.24) and (3.25) along with order ✓ result (3.26).

Executing this process recursively determines all the ✓ components of the superfields in terms of the

physical fields. Equation (3.23) relates the `th component of  s� to the (` � 2)th component of  s�

and (` � 1)th components of Bmnp and Gsm. Equation (3.24) relates the `th component of Bmnp to the

(` � 2)th component of Bmnp and (` � 1)th component of  s� . Finally, the equation (3.25) determines

`th component of Gmn in terms of (` � 2)th component of Gmn and (` � 1)th component of  s↵. These

statements can be schematically represented as

D(`+1) s� ⇠ D`Gsm +D`Bmnp

D`Bmnp ⇠ D(`�1) s�

D`Gmn ⇠ D(`�1) s�

where for any superfield V , DV ⌘ (✓↵D↵V )
��
✓=0

, so that D` picks up the `th ✓ component of the superfield

it acts on.

Furthermore, the only seed that we need to provide to these recursive relations are the zeroth compo-

nent of each of the three superfields, which by definition are the three physical fields in the massive spin

2 supermultiplet. This guarantees that by construction the ✓ expansion performed using these recursion

relations will only have physical fields appearing at all orders.

For calculating any amplitude involving the massive states in pure spinor formalism, we shall need

the✓ expansion result of the above vertex operator. Clearly, the ✓ expansion of the basic superfields

Bmnp and  m↵ automatically implies the ✓ expansion of the full vertex operator. For our purposes, we

shall need the ✓ expansion results of  m↵ upto order ✓3 and that of B↵� upto order ✓4. We used the

mathematica package GAMMA to do this computation [28]. Using equations (3.3), (3.4) and (3.5), we
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obtain (for details, please see [19])

B↵� = �mnp
↵�

"
bmnp + 12( p�mn✓) + 24↵0krkm( p�rn✓) +

3

8
(✓� q

mn ✓) gpq �
3i

4
(✓�tum✓)ktbunp

+
3

4
↵0krkm(✓� q

rn ✓) gpq �
i

24
(✓�tuvwmnp✓)k

tbuvw � 1

6
iks ( v�tu✓) (✓�stuvmnp✓)

�4i↵ksktkm (✓�tun✓) ( p�su✓) + iks (✓�tmn✓) ( p�st✓) + iks (✓�tmn✓) ( t�sp✓)

+2iks (✓�stm✓) ( n�tp✓)� iks (✓�stm✓) ( t�np✓) +
1

64↵0 (✓�smn✓)(✓�tup✓)bstu

� 1

288↵0 (✓�stu✓)(✓�mnp✓)bstu +
1

64↵0 (✓�stu✓)(✓�unp✓)bstm

+
1

32
(✓�sux✓)(✓�txp✓)bsmnktku � 1

16
(✓�sun✓)(✓�txp✓)bstmkukx

+
1

64
(✓�stx✓)(✓�unp✓)bstmkukx +

1

192
(✓�xzm✓)(✓�stuyznp✓)bstukxky

+
1

192
(✓�uyz✓)(✓�stxzmnp✓)bstukxky +

1

3456
(✓�stuwxyz✓)(✓�vxyzmnp✓)bstukvkw

+
1

32
(✓�svn✓)(✓�tup✓)bstukvkm +

1

64
(✓�tuv✓)(✓�snp✓)bstukvkm

� 1

96
(✓�stu✓)(✓�vnp✓)bstukvkm � 1

32
(✓�stv✓)(✓�uvp✓)bstmkukn

+
1

384
i (✓�tvw✓) (✓�suvwmnp✓) kugst +

1

32
i (✓�sun✓) (✓�tup✓) ktgsm

+
1

64
i (✓�stu✓) (✓�unp✓) ktgsm +

1

64
i (✓�smn✓) (✓�tup✓) kugst

+
1

64
i (✓�sum✓) (✓�tnp✓) kugst �

i↵0

16
(✓�suv✓) (✓�tvp✓) ktkukngsm + O(✓5)

#

(3.29)
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Similarly, the ✓ expansion of the superfield  s↵ is given by

 s�

=  s� +
1

16
(�m✓)� gsm � i

24
(�mnp✓)�kmbnps �

i

144
(� npqr

s ✓)�knbpqr

� i

2
kp(�m✓)�( (m�s)p✓)�

i

4
km(�mnp✓)�( [s�np]✓)�

i

24
(� mnpq

s ✓)�km( q�np✓)

� i

6
↵0kmkrks(�

mnp✓)�( p�rn✓) +
i

288
↵0(�mnp✓)�kmkrks(✓�

q
nr✓) gpq

� i

192
(�mnp✓)�km(✓�q[np✓)gs]q �

i

1152
(�smnpq✓)�k

m(✓�npt✓) g
qt

� i

96
kp(�m✓)�(✓�pq(s✓) gm)q �

1

1728
(�mnp✓)�km(✓�tuvw nps✓)ktbuvw

� 1

864↵0 (�s✓)�(✓�
npq✓)bnpq �

1

10368
(� mnpq

s ✓)�km(✓�tuvwnpq✓)k
tbuvw

� 1

864
(�m✓)�(✓�

npq✓)bnpqkmks �
1

576
(�smnpq✓)�k

m(✓�tun✓)b pq
u kt

� 1

96↵0 (�
m✓)�(✓�

qr
(s✓)bm)rq +

1

96
(�m✓)�(✓�

nqr✓)knk(sbm)qr

+
1

96
(�mnp✓)�km(✓�rq[n✓)bps]rk

q +O(✓4) (3.30)

where,

bmnp = emnpe
ik·X , gmn = emne

ik·X ,  m↵ = em↵e
ik·X (3.31)

Using these ✓ expansion results in (2.5) we get the ✓ expansion of the unintegrated vertex operator.

In this form, the vertex operator can be readily used to compute scattering of massive states and also to

construct the integrated vertex for first massive states.
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Chapter 4

A general methodology for constructing

massive vertex in pure spinor formalism

In the last chapter we saw how to covariantly perform the ✓ expansion of the massive unintegrated

vertex. This was achieved in particular by expressing the massive spin 2 supermultiplet in three ways

using three superfields. The defining features of these superfields lie in the fact that the zeroth component

of each of this superfields are the physical fields that constitute the massive spin 2 supermultiplet. The

seeming redundancy of introducing multiple superfields to describe the same supermultiplet was accounted

for by our proposed di↵erential relations which are self-consistent and do not a↵ect the BRST condition

for the vertex. These di↵erential relations lead to a set of recursive relations which allow us to perform

the fully covariant ✓ expansion. Of course, once we have the full expansion and it satisfies the consistency

check, it does not need any more justification regarding the origin of these di↵erential relations. However,

in this chapter we will see that our results strongly hints at a much more powerful methodology based

on representation theory of SO(9) group (which is the little group for all massive states) which not only

allows us to systematically derive our proposed di↵erential relations, but also provide us with a completely

systematic way of constructing the vertex. This in particular is of huge significance, since as discussed in

chapter 1 , a common critique of PS formalism is its lack of a clear principle for constructing all vertex

operators.

In this chapter, we will first illustrate our methodology by re-deriving the massive unintegrated vertex

of chapter 2 while simultaneously deriving our proposed di↵erential relations. Then we will hypothesize

a generalized construction methodology for any massive vertex (unintegrated as well as integrated). As

further evidence for our hypothesized methodology, we will briefly describe its success in constructing the
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integrated vertex for the first massive states (Which was done for the first time in literature). We will

conclude by briefly discussing the case for massless states and also how to obtain the answers for closed

strings once the vertex is known for open superstrings.

4.1 A re-derivation of massive unintegrated vertex

Imagine a situation, where the construction of [18] and the rest frame analysis performed therein is not

known of. In such a case one can start constructing the vertex operator based on certain number of very

reasonable assumptions in a systematic fashion. Let us describe this in a step by step manner.

Recall, to construct a vertex, is to basically express all the superfields in terms of a single superfield

and its supercovariant derivatives such that QV = 0 is satisfied. We modify this as follows -

• We seek to express the vertex not only in terms of a single superfield and its supercovariant derivative,

but in terms of multiple superfields, without any supercovariant derivatives.

• The precise number and nature (by that we mean its index structure and grassmanality of its

zeroth component) of these superfields are fixed by requiring that zeroth component of each of these

superfields contain precisely the physical field.

Bmnp

���
✓=0

⌘ bmnp , Gmn

���
✓=0

= gmn ,  m↵

���
✓=0

=  m↵. (4.1)

Promote all the on-shell conditions for the physical fields to hold true for these superfields as well.

km m↵ = 0 ! km m↵ ⌘ 0 , (�m (m)↵ = 0 ! (�m (m)↵ ⌘ 0

kmbmnp = 0 ! kmBmnp ⌘ 0 , kmgmn = 0 ! kmGmn ⌘ 0 (4.2)

(4.1) and (4.2) together constitutes the definitions of these superfields. We will refer these superfields

often as physical superfields.

• Next we re-express all unconstrained superfields of the vertex (2.5) and the Lagrange multiplier

superfield of equation (2.16) as a linear combination of these 3 superfields with unknown constant

co-e�cients. The guiding principle behind constructing this ansatz is representation theory of the
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little group SO(9). For example, let us see how to write down the ansatz for the superfield F↵mn.

First, we express the superfield separately for di↵erent possible spatial and temporal index. Recall

that F↵mn is antisymmetric under m $ n, it gives us -

F↵mn )

8
>><

>>:

F↵ 0a

F↵ ab

Now consider the component F↵ 0a, under SO(9) it can potentially transform as the following irreps

16 ⌦ 9 = 16 � 128. We recognize the irrep 128 as the physical irrep. Similarly for F↵ ab, it can

potentially transform as 16 ⌦ 36 = 16 � 128 � 432. Again we recognize only 128 to be the physical

representation. Since we are after a solution of superfield for which at all stages the co-e�cient should

be physical fields, we want to write an ansatz for F↵mn solely in terms of the physical superfields.

The representation theory analysis tells us that there are two independent tensor structures linear

in the superfield  m↵ (which contains the irrep 128 in its zero-th component). At this point by

simple inspection we can write down the following ansatz

F↵mn = a k[m n]↵ + b ks(�s[m] n])↵ (4.3)

where a,b 2 C are constants to be determined. Solving for F↵mn now reduce to solving for a and b.

• The redundancy of describing a single supermultiplet by three physical superfields suggest that

there must be relations amongst these three superfields. In particular we are after a set of relations

which relates the supercovariant derivative of bosonic superfields in terms of linear combination of

fermionic superfields and vice versa. Once again we employ representation theory to write down the

ansatz for such di↵erential relations. Let us see how it works for D↵ m� .

First we use A.23 to express

D↵ m� = (�s)↵�Ssm + (�stu)↵�Amstu + (�stuvw)↵� Smstuvw (4.4)

Now we do similar group theoretical analysis for each of the superfields Ssm, Amstu and Smstuvw.

Note that since in 10 dimensions, the gamma 5-form is self dual, only the self dual part of Smstuvw
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should be kept. This leads to the ansatz

D↵ m� = (�s)↵� â Gsm + (�stu)↵� [â1k[sBtu]m + b̂1kmBstu] + (�mstuv)↵� ĉ1ksBtuv (4.5)

Once again, the complex co-e�cients â, â1 etc. are to be determined. In the last chapter we fixed

this co-e�cients by demanding they reduce to rest frame results derived in [18]. Then we went on

to show that they lead to self-consistent relations without a↵ecting the BRST condition QV = 0.

Here, we do not assume any prior knowledge of rest frame analysis. We fix these co-e�cients by

demanding that they are

1. Consistent with QV = 0.

2. Consistent with the definitions of the physical superfields (equations (4.1) and (4.2)).

3. Consistent among themselves (self-consistency).

• All such superfields expressed in ansatz forms are substituted in QV = 0 equations (i.e. equations

(2.17)-(2.23)) and we set the co-e�cients of each independent tensor structure to zero which gives

us a system of linear algebraic equations for the unknown co-e�cients. Solving for the co-e�cients

gives us the solution for the massive unintegrated vertex.

4.1.1 Ansatz for the vertex and the di↵erential relations

We note that the superfields Bmnp and Hm↵ appearing in 2.5 along with the gauge fixing conditions 2.25

satisfy the definitions of two of the three physical superfields. So instead of introducing  m↵, we will

work with Hm↵ in this chapter 1.

Di↵erential relations :

D↵Hs� = a(�m)↵�Gms + s1(�
mnp)↵�k[mBnp]s + b(�mnp)↵�ksBmnp + s2(�

smnpq)↵�kmBnpq (4.6)

(�mnp)⇢�D↵Bmnp = (�mnp)⇢�[b1(�mnHp)↵ + b2k
sKm(�snHp)↵] (4.7)

1In fact, as we have seen both superfields are related to each other just by an overall numerical factor.
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D↵Gmn = âkp(�p(mHn))↵ (4.8)

Consistency of these ansatz with the definition (4.2) of the superfields gives us the following equations,

b2 = 2↵0b1 , s2 = �s1
6

, b = 0. (4.9)

Next, using the equation km(�m)↵�D↵D� = �16 i
↵0 (see (A.6)), we obtain further,

s1 = 18i b1 , aâ = i . (4.10)

Superfields :

We take Bmnp and Hm↵ to be the two physical superfields corresponding to irreps 84 and 128 respectively.

The rest we express in the following ansatz

Cmnpq = c1k[mBnpq], (4.11)

E↵ = A↵ = 0, (4.12)

F↵mn = c2 k[mHn]↵ + c3 k
s(�s[m]Hn])↵, (4.13)

Km
npqr = e1k

mk[nBpqr] + e2�
m
[nBpqr]. (4.14)

1st equation of QV = 0

On substituting the ansatz in (2.17), we obtain

80b1 �
10

↵0 b2 = �10 . (4.15)
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2nd equation of QV = 0

On substituting the ansatz in (2.18), we obtain

c1 = s2 , c1 = �1

6
s1 . (4.16)

3rd equation of QV = 0

On substituting the ansatz in (2.19), we obtain

12b1c1 + c2 + c3 = 0 . (4.17)

4th equation of QV = 0

On substituting the ansatz in (2.20), we get identically zero just based on the tensor structure of the

ansatz and it does not give any relation between the unknown co-e�cients.

5th equation of QV = 0

On substituting the ansatz in (2.21), we obtain

4 + 4ic2 + 8e1 � c2s1 + 4c3s1 + 6c2s2 � 56e2↵
0 = 0 . (4.18)

6th equation of QV = 0

On substituting the ansatz in (2.22), we once again get identically zero just based on the tensor structure

of the ansatz and it does not give any relation between the unknown co-e�cients.

7th equation of QV = 0

On substituting the ansatz in (2.23), we obtain

e2 = 0 , ic2 � 4e1 = 0 . (4.19)

All of these equations for unknown co-e�cients can be uniquely solved to give the solution
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b1 =
1

6
, b2 = �↵

0

3
, b = 0 ,

s1 = �3i , s2 =
i

2
,

c1 =
i

2
, c2 =

7i

8
, c3 =

i

8
,

e1 =
7

32
, e2 = 0 . (4.20)

It is evident from the ansatz, that none of the superfields for first massive unintegrated vertex contains

44 at their zeroth component, therefore the co-e�cient a and â do not get individually determined

from QV = 0 equations. This is not troubling, since the only use of Gmn superfield is now to perform

the covariant ✓ expansions of all the physical superfields. From the structure of the recursion relations

discussed in section 3.3 it is obvious that neither a nor the â enters the ✓ expansion separately. Instead

they will always appear in the product aâ which is already determined in equation (4.10) as required by

self consistency. In chapter 3 we fixed these by comparing with rest frame definition. However note that

the rest frame definition of Gab is not unique and can always be redefined by an overall numerical factor

(see also footnote 4 of chapter 3).

The solution can now be easily verified to be exactly same as that obtained in chapter 2 and the

di↵erential relations are same as that proposed in chapter 3 with the following definitions Hm↵ = �72 m↵

and a = �72
16 , â = �16i

72 .

This method of constructing the vertex has two distinct advantages over the method described in

chapter 2. Firstly, the consistency of the solution with BRST condition QV = 0 is manifest and does not

need separate attention. Secondly, this method can be easily generalized for construction of unintegrated

and integrated vertex for all higher massive levels. Next we propose such a general methodology for

constructing vertex operator for any massive states.

4.2 A general method to construct massive vertex in pure spinor for-

malism

From the RNS formalism, the field content of each mass level for open superstrings are known. Suppose

in n-th mass level, there are total nB number of bosonic fields bi and nF number of fermionic fields fi

(we suppress the index structure throughout this section). To construct the unintegrated and integrated
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vertex for this mass level the following steps must be followed.

Unintegrated Vertex

• Step 1 : Introduce a superfield for each of the physical superfields such that

Bi

���
✓=0

⌘ bi , 8i = 1(1)nB (4.21)

Fi

���
✓=0

⌘ fi , 8i = 1(1)nF . (4.22)

Also elevate all kinematic conditions on the physical fields bi and fi to their respective superfields

(eg. for first mass level kmgmn = 0 ! kmGmn = 0 and so on.)

• Step 2 : Write down the unintegrated vertex in the form V ⇠
P
n
ÔnSn, where Ôn are all possible

conformal weight n and ghost number 1 object constructed out of ⇧m, d↵, @✓↵, Nmn, J,�↵ and their

worldsheet derivatives. Sn are appropriate superfields which are as of now unconstrained.

• Step 3 : Derive all the constraints relevant at conformal weight n and ghost number 1 level by taking

suitable OPEs and derivative of the identity (2.14). Introduce a Lagrange multiplier superfield Kn

for each of these constraints and add them to equations obtained in QV = 0. For conformal weight

2 or greater operators, there can be additional constraints due to non-trivial OPE between the

constituent conformal operators (e.g. ⇧m⇧n, ⇧md↵,Nmn�↵ etc. ). One can handle them directly

by eliminating some of the basis elements in favor of the others. We give some such instances later

in this chapter. For details see [20](also see [22]).

• Step 4 : Use representation theory to write down ansatz for all superfields Sn and Lagrange

multiplier superfields Kn in terms of the linear combination of physical superfields.

Sbosonic
n =

X

i

c(n)i Bi , Sfermionic
n =

X

i

d(n)i Fi ,

Kbosonic
n =

X

i

ĉ(n)i Bi , Kfermionic
n =

X

i

d̂(n)i Fi . (4.23)

c(n)i , d(n)i , ĉ(n)i , d̂(n)i 2 C , 8 i & n

• Step 5 : Also use representation theory to write down ansatz for di↵erential relations amongst the
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physical superfields of the following form

D↵Fi =
X

j

s(i)j Bj 8i = 1(1)nF , (4.24)

D↵Bi =
X

j

ŝ(i)j Fj 8i = 1(1)nB (4.25)

s(i)j , ŝ(i)j 2 C 8 i & n

• Step 6 : Substitute these ansatz in QV = 0 equations subjected to the constraints and use the

consistency with the definitions of physical superfields and self-consistency to solve for all of the

unknown co-e�cients. This completes the construction of the unintegrated vertex.

Integrated vertex

• Step 1 : Once the unintegrated vertex is known, write down ansatz for integrated vertex of the

form U ⇠
P
n
ÕnTn, where now Õn are all possible basis operators of conformal weight (n+ 1) and

ghost number zero constructed using the basic constituent operators. Tn are appropriate superfields

which are to be determined in terms of the physical superfields.

• Step 2 : Take into account all of the constraints at this conformal weight and ghost number using

similar procedure as discussed for unintegrated vertex.

• Step 3 : Use representation theory to write down ansatz for all superfields Tn and Lagrangian

superfields in terms of the physical superfields.

• Step 4 : Substitute the ansatz in the BRST condition QU � @RV = 0 subjected to the constraints

and solve for the unknown co-e�cients to obtain the solution.

This is the first time in literature to the best of our knowledge, a general super-Poincaré covariant

prescription for constructing vertex operator for massive states in pure spinor has been proposed. While

as of now a direct and explicit proof of this methodology is lacking, there are two non-trivial pieces of

evidence that suggest this methodology is correct. First is the re-derivation of the unintegrated vertex

presented in this chapter. Second is the successful application of this methodology to construct the

integrated vertex operator for the first time in [20]. The details of the construction form a part of a

separate thesis (see [22]). Here we will only state the final result for sake of completeness.
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4.3 Integrated vertex for first massive state : results

We give the following ansatz for the integrated vertex which has conformal weight = 2 and ghost number

= 0,

U = : @2✓↵C↵ : + : @⇧mCm : + : @d↵E
↵ : + : (@J)C : + : @NmnCmn :

+ : ⇧m⇧nFmn : + : ⇧md↵F
↵

m : + : ⇧mNpqFmpq : + : ⇧mJFm : + : ⇧m@✓↵Gm↵ :

+ : d↵d�K
↵� : + : d↵N

mnG↵
mn : + : d↵JF

↵ : + : d↵@✓
�F↵

� :

+ : NmnNpqGmnpq : + : NmnJPmn : + : Nmn@✓↵Hmn↵ :

+ : JJH : + : J@✓↵H↵ : + : @✓↵@✓�H↵� : (4.26)

The ansatz for each of these superfields using representation theory of SO(9) are,

C↵ = Cm = E↵ = C = Cmn = Fm = F↵ = Pmn = H = H↵ = 0

Fmn = f1Gmn , Gm↵ = g1 m↵

K↵� = a �↵�mnpB
mnp , H↵� = h1�

mnp
↵� Bmnp

F↵
� = f5(�

mnpq)↵ �kmBnpq , F↵
m = f2k

r(�r)
↵� m�

Fmpq = f3Gm[pkq] + f4Bmpq , G�
pq = g2�

��
[p  q]� + g3k

r���r k[p q]�

Hmn↵ = h2 k[m n]↵ + h3k
q(�q[m) �

↵  n]�

Gmnpq = g4k[mBn]pq + g5k[pBq]mn + g6k[mGn][pkq] + g7 ⌘[m[pGq]n] (4.27)
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As mentioned, all the basis elements obtained in QU will not be independent, they will be subjected to

the following constraints for each of which we introduce a Lagrange multiplier superfield,

(I1)
n
� ⌘ : NmnJ�↵ : (�m)↵� �

1

2
: JJ�↵ : (�n)↵� � ↵0 : J@�↵ : �n↵� = 0 (4.28)

(I2)
mnq
� ⌘ : NmnNpq�↵ : (�p)↵� �

1

2
: NmnJ�↵ : (�q)↵� � ↵0 : Nmn@�↵ : �q↵� = 0 (4.29)

(I3)
n
�� ⌘ : d�N

mn�↵ : (�m)↵� �
1

2
: d�J�

↵ : (�n)↵� � ↵0 : d�@�
↵ : �n↵� = 0 (4.30)

(I4)
pn
� ⌘ : ⇧pNmn�↵ : (�m)↵� �

1

2
: ⇧pJ�↵ : (�n)↵� � ↵0 : ⇧p@�↵ : �n↵� = 0 (4.31)

(I5)
�n
� ⌘ : @✓�Nmn�↵ : (�m)↵� �

1

2
: @✓�J�↵ : (�n)↵� � ↵0 : @✓�@�↵ : �n↵� = 0 (4.32)

The above 5 identities follow from taking the OPE of (2.14) with the object of conformal weight one,

namely J,Nmn, d�,⇧p and @✓� respectively. The identity which can be obtained by taking the derivative

of (2.14) is given by

(I6)
n
� ⌘ : @Nmn�↵ : (�m)↵�+ : Nmn@�↵ : (�m)↵� �

1

2
: @J�↵ : (�n)↵� �

1

2
: J@�↵ : (�n)↵�

� ↵0�n↵�@
2�↵ = 0 (4.33)

Apart from these, there are two more constraint identities which follow from the OPEs given in section

1.4.2. The OPE of d↵ with d� implies

: d↵d� : + : d�d↵ : +
↵0

2
@⇧t(�t)↵� = 0 (4.34)

Similarly, the OPE of Nmn with Npq implies

: NmnNpq : � : NpqNmn : = �↵
0

2

h
⌘np@Nmq � ⌘nq@Nmp � ⌘mp@Nnq + ⌘mq@Nnp

i
(4.35)

One way to think about these two identities is to note that we are working with a given ordering of the

pure spinor variables inside the normal ordering. However, for : d↵d� : and : NmnNpq :, there is no

preferred ordering. The above two identities (4.34) and (4.35) are a reflection of this fact2.

2Note that there are OPE between ⇧m and ⇧n as well as between J and J . However, no pure spinor fields appear in
these OPE and hence they do not lead to any non trivial constraint between basis elements.
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We also need similar ansatz for the Lagrange multipliers in terms of the basic superfields. We propose

(K1)
↵
m = c1k

r(�r)
↵� m�

(K2)
↵
mnq = c2k[m�

↵�
n]  q� + c3kq�

↵�
[m n]� + c4�

↵�
q k[m n]� + c5k

r�↵�rmn q� + c6k
r�↵�rq[m n]�

+ c7k
rkq�

↵�
r k[m n]� + c8k

r�↵�r ⌘q[m n]�

(K3)
↵�
m = c9Gmn(�

n)↵� + c10kmBstu(�
stu)↵� + c11ksBtum(�stu)↵� + c12ksBtuv(�

stuv
m )↵�

(K4)
↵
mn = c13(�n)

↵� m� + c14(�m)↵� n� + c15k
rkm(�r)

↵� n� + c16k
rkn(�r)

↵� m�

(K5)
↵
�m = c17kpGqm(�pq)↵� + c18Bmpq(�

pq)↵� + c19Bpqr(�
pqr

m )↵� + c20kmkpBqrs(�
pqrs)↵�

(K6)
↵
m = c21k

r(�r)
↵� m� (4.36)

Following the steps outlined in previous section, the final form of the first massive integrated vertex

operator is obtained to be

U = : ⇧m⇧nFmn : + : ⇧md↵F
↵

m : + : ⇧m@✓↵Gm↵ : + : ⇧mNpqFmpq :

+ : d↵d�K
↵� : + : d↵@✓

�F↵
� : + : d↵N

mnG↵
mn : + : @✓↵@✓�H↵� :

+ : @✓↵NmnHmn↵ : + : NmnNpqGmnpq : (4.37)

where, the superfields appearing in (4.37) are given in position space by

Fmn = �18

↵0Gmn , F ↵
m =

288

↵0 (�
r)↵�@r m� , Gm↵ = �432

↵0  m↵

Fmpq =
12

(↵0)2
Bmpq �

36

↵0 @[pGq]m , K↵� = � 1

(↵0)2
�↵�mnpB

mnp

F↵
� = � 4

↵0 (�
mnpq)↵ �@mBnpq , G↵

mn =
48

(↵0)2
�↵�[m n]� +

192

↵0 �
↵�
r @r@[m n]�

H↵� =
2

↵0 �
mnp
↵� Bmnp , Hmn↵ = �576

↵0 @[m n]↵ � 144

↵0 @
q(�q[m) �

↵  n]�

Gmnpq =
4

(↵0)2
@[mBn]pq +

4

(↵0)2
@[pBq]mn � 12

↵0 @[p@[mGn]q] (4.38)
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This completes the construction of the integrated vertex.

There are few comments in order before we move on. It is quite obvious that as one goes on to higher

and higher massive states, the tensor structures of the superfields appearing in vertex will involve more

and more indices. This can lead to a computational nightmare without a guiding principle like the one

given in this chapter based on symmetry arguments. Furthermore, in outlining the general methodology

and its successful implementation for first massive level (in both unintegrated and integrated vertex)

nowhere did we crucially make use of the mass level in question. In fact for n-th massive states only

changes are in the mass-shell condition k2 = � n
↵0 and in the irreps which constitutes the higher spin

supermultiplets. The general methodology and its successful use so far has never depended on these two

details. This gives us enough confidence to propose that this general methodology is correct and we hope

to rigorously establish that fact in the future.

4.4 Massless states

At this stage, it is but only natural to wonder whether a similar strategy can work for the massless case

also. Sadly, that is not the case however. A crucial feature of our proposed di↵erential relations hinge

on the fact that /k↵�{D↵, D�} / k2. For k2 6= 0, i.e. for massive states, this lead to the fact that our

di↵erential relations could be inverted. For massless case however, k2 = 0 , and this methodology breaks

down. This is not worrying for two reasons. Firstly, there is only one massless supermultiplet (spin 1)

and the vertex for those states have been explicitly constructed and its covariant ✓ expansion completely

determined in [4] (also see [29] and see appendix D for the derivation in our convention). Since there is only

1 massless supermultiplet but an infinite tower of massive supermultiplets, it is of paramount importance

that one develops a methodology for the latter. Secondly, even though the methodology outlined in this

chapter will not work for massless case, one can nonetheless construct the vertex by an ansatz. For

the massless states every superfield appearing in integrated vertex (the unintegrated vertex is rather

trivial for massless case being uniquely fixed by conformal weight and ghost number requirements) can be

expressed in terms of a single superfield A↵ which satisfies N = 1, d = 10 super Yang-Mills equations as a

consequence of QV = 0. The structure of the set of equations obtained from QU � @RV = 0 then is such

that each equation determines only one unknown superfield in terms of a superfield determined at the

previous equation (with the first equation determining an unknown superfield in terms of A↵). This leads

to a systematic procedure for constructing the massless vertex if one so wishes. But as already discussed
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above, this is not at all necessary for constructing the massless vertex.

4.5 Closed Superstrings

Before concluding this chapter, let us briefly comment on how one can construct the vertex for closed

superstrings once the open superstring answer is known. The idea is to use the fact that for closed

superstrings, the left moving and the right moving sector is completely decoupled. Therefore each vertex

operator can be cast into a tensor product of a left moving and a right moving sector. For heterotic

strings, the right moving sector is just the bosonic strings, for which we can use the bosonic vertex

operator already known in literature. For type II superstrings, one can use the open superstring vertex

for each sector with di↵erent labels distinguishing the right handed fields from the left handed fields and

take a tensor product. There are some minor changes expected due to change in mass level conditions

(for closed superstring n-th mass level has m2 = 4n
↵0 ) and also from the fact that vertex operators no

longer live only on the boundary but rather on any point of the Riemann surface. However, both these

changes can be easily accounted for by suitable redefinitions of various conformal primaries defined on

the worldsheet.
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Chapter 5

Equivalence of Pure Spinor and RNS

superstrings for first massive states

Now that we have the integrated and unintegrated vertex for massive states of open superstrings, as well

as their full ✓ expansion, we have all the ingredients necessary to compute scattering of massive states. A

crucial question in pure spinor formalism is whether it is completely equivalent to RNS formalism? Some

progress was made in [9], [10] to answer this question (in a�rmative) based on cohomology methods

(also see [11] for relating pure spinor with Green-Schwarz formalism). For massless states, the explicit

equivalence between pure spinor and RNS formalism was firmly established in [13] (also see [7], [12], [14]).

Such explicit check for massive states however has been lacking so far. In this chapter we explicitly

compute all massless-massless-massive 3-point correlation function for open superstrings in pure spinor

formalism. We then directly compare the result thus obtained with the same computation done in RNS

formalism and explicitly extend the equivalence between the two formalism from massless states to the

first massive states as well. The result of this chapter first appeared in the paper [21].

5.1 Tree amplitude prescription in pure spinor formalism

Both minimal as well as the non minimal pure spinor formalisms give the same amplitude prescription at

tree level as we already mentioned in chapter 1. In this section, we shall review this prescription [4,6]. In

particular, we shall focus on 3-point functions on the disk with a specific ordering of vertex operators on

the boundary. To evaluate any 3-point correlator, the knowledge of the unintegrated form of the vertex
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Chapter 5 – Equivalence of Pure Spinor and RNS superstrings for first massive states

operator for external states is su�cient. All the amplitudes of interest in this chapter are of the form

A3 = hV1V2V3i (5.1)

where hV1V2V3i denotes 3-point function on the disk with a fixed ordering.

In this chapter, V1 and V2 will be taken to be unintegrated vertex operators creating massless states

(gluon or gluino) and V3 will be the unintegrated vertex operator creating a massive state (bmnp, gmn or

 m↵). However, we must emphasize, none of the strategy that we shall outline below is particular to

this specific kind of 3-point functions. The tree-level amplitude prescription will be equally valid for any

3-point functions of open strings states (massive or massless).

Our choice of normalization of pure spinor measure is the standard one in the literature

⌦
(��s✓)(��t✓)(��u✓)(✓�stu✓)

↵
PSS

= 1 (5.2)

The process of 3-point amplitude computation can be succinctly summarized in a series of steps that is

given below.

• Step 1 : Assume a particular order of the vertex operator inserted on the disk and make use of the

OPEs between various conformal weight 1 objects to reduce the three point function to a correlation

function involving only the three superfields and three pure spinor ghost �↵ coming from the three

vertices. The correlation function which contains @✓↵ terms do not contribute since they always fail

to have the correct number of ✓ zero modes to give non-zero answer as required by 5.2. Now perform

the ✓ expansion for each of the vertex, viz. V1, V2 and V3, explicitly. Although one can do the full ✓

expansion, but that is rendered redundant due to 5.2 which states that only terms involving exactly

five ✓s can give a non-zero contribution. The relevant order of ✓ expansion for each of the vertex

for a given amplitude can therefore be deduced from this consideration.

• Step 2 : From the product V1V2V3, retain only the terms which have precisely five ✓s as all other

terms will give zero contribution trivially due to 5.2. 1

• Step 3 : Expand the physical fields appearing in various vertices in a basis of plane waves with

1Notice that 5.2 also suggests we should retain only terms with exactly three number of �s. But this is automatically
ensured by the fact that by construction all unintegrated vertex in PS formalism have ghost number 1 and therefore they
each carry exactly a single factor of �. Consequentially the product V1V2V3 always goes as �3.
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polarizations as the coe�cients

H�1...�k
p1...pn (X) = h�1...�kp1...pn eik·X

Here h�1...�kp1...pn are the constant tensor-spinor of appropriate index structure denoting the polarizations

for the physical field H�1...�k
p1...pn (X).

The correlation function hV1V2V3i at this stage factorizes completely into two separate correlation

functions, one involving Xm fields and the other involving pure spinor fields. These can be evaluated

independently and their result can be multiplied to obtain the final answer for a given ordering.

• step 4 : Evaluate the 3-point function on disk by the usual methodology of bosonic open strings.

Typically these correlation functions can be put into the schematic form h: eik1·X(x1) :: eik2·X(x2) ::

F(@Xm(x3)) eik3·X(x3) :iDisk where F(@Xm(x)) =
Q
i
@Xmi(x).

• Step 5 : The correlators living on pure spinor superspace can be evaluated following the list of

identities first derived in [12,30]. We list in appendix B.0.1 the subset of those identities that were

needed in evaluating the 3-point functions in our case.

• Step 6 : Multiply the results obtained from step 4 and step 5 to obtain the full contribution for a

given order of the 3 vertices.

Once the answer has been obtained for a given order, the final answer for all other inequivalent

orders can be readily obtained by suitable permutation of momenta and polarization labels. Since each

ordering carries di↵erent Chan-Paton factors, the full amplitude cannot be obtained by simply adding the

contribution coming from di↵erent ordering before multiplying them by Chan-Paton factors. Therefore, to

compare our result with the result obtained in RNS formalism, we shall directly compare each inequivalent

ordering separately.

While the algorithm described above is quite straightforward in principle, the growing number of terms

in ✓ expansion of the vertex operators implies that the cleanest way to perform these amplitude calculations

beyond a point is to employ the help of an available computer algebra system. We used Cadabra [31,32]

which is an open source computer algebra system developed to aid in field-theoretic computations. For

our present purpose, we found Cadabra to be very useful in implementing the algorithm described above

(Cadabra was also used for amplitude computation involving massless states in [33]).
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5.2 Three point functions using pure spinor formalism

In this section, we calculate the 3-point functions involving two massless and one massive state using the

pure spinor formalism. In subsection 5.2.1, we simplify the pure spinor correlators and set up the problem

at the superfield level and in subsection 5.2.2, we evaluate the resulting correlators.

5.2.1 Simplifying 3-point correlator

Since we are only interested in the 3-point functions on the disk, the location of all the vertex operators

can be fixed and hence we only need to consider the unintegrated vertex operators. Thus, the correlator

we need to evaluate is given by

A3 =
⌦
V (1)
A (x1)V

(2)
A (x2)V

(3)
b,g, (x3)

↵
(5.3)

where, Vb,g, denotes the massive vertex operator (2.5) and VA denotes the unintegrated vertex operator

of the massless states given by2

VA = �↵A↵ (5.4)

The unintegrated vertex operators in (5.3) are fixed at some arbitrary locations xi. The SL(2,R) in-

variance on the disc guarantees that the 3-point function is independent of the choices of xi. Using the

expressions of the unintegrated vertex operators, the desired 3-point function is given by

A3 =
D
�↵A(1)

↵ (x1)�
�A(2)

� (x2)
⇣
@✓⇢��B�⇢ + d⇢�

�C⇢
� +⇧

m��Hm� +Nmn��F�mn

⌘
(x3)

E

(5.5)

We have suppressed the superscript 3 from the massive superfields since there is only one massive state

and hence there is no chance of any confusion. We now manipulate each term of (5.5) one by one.

2The ✓ expansion of the massless superfields in our conventions is given in appendix D.
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First Term

The first term is given by

T1 = h�↵A(1)
↵ (x1)�

�A(2)
� (x2)@✓

⇢��B�⇢(x3)i

= (�mnp)�⇢
D
�↵Ã(1)

↵ ��Ã(2)
� @✓⇢��B̃mnp

ED
eik1·X(x1)eik2·X(x2)eik3·X(x3)

E

= (�mnp)�⇢
D
�↵Ã(1)

↵ ��Ã(2)
� @✓⇢��B̃mnp

Ex13x23
x12

. (5.6)

where, the superfields with tilde denote the same superfields with eik·X factor stripped o↵. Thus, e.g.,

in the✓ expansion of B̃mnp, we just write the polarization tensor em↵, emnp and emn instead of  m↵, bmnp

and gmn respectively. We have also used the momentum conservation to write

D
eik1·X(x1)eik2·X(x2)eik3·X(x3)

E
= |x12|2↵

0k1·k2 |x23|2↵
0k2·k3 |x13|2↵

0k1·k3 =
x13x23
x12

. (5.7)

The T1 does not contribute to any of the amplitude since it does not provide the 5 zero modes of ✓↵ which

is required for the non vanishing of pure spinor correlators.

Second Term

The 2nd term is given by

T 0
2 = h�↵A(1)

↵ (x1)�
�A(2)

� (x2)d⇢�
�C⇢

�(x3)i

To simplify this term, we use the OPE of d↵ with superfields to obtain

T 0
2 = h�↵A(1)

↵ (x1)�
�A(2)

� (x2)d⇢�
�C⇢

�(x3)i

=

I

x3

dw

w � x3
h�↵(x1)A(1)

↵ (x1)�
�(x2)A

(2)
� (x2)d⇢(w)�

�(x3)C
⇢
�(x3)i

= �
I

x1

dw

w � x3

⌧
�↵(x1)


↵0

2

D⇢A
(1)
↵ (x1)

w � x1

�
��(x2)A

(2)
� (x2)�

�(x3)C
⇢
�(x3)

�

+

I

x2

dw

w � x3

⌧
�↵(x1)A

(1)
↵ (x1)�

�(x2)


↵0

2

D⇢A
(2)
� (x2)

w � x2

�
��(z3)C

⇢
�(x3)

�
(5.8)

In going to the last line, we have unwrapped the contour to enclose the points x1 and x2. This gives a

sign. A further sign comes while moving d↵ across A↵. The signs in front of the individual terms in the

last line are net e↵ect of these sign factors. We now use equations (3.4),(2.27) and (D.1), the identity
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QV = ↵0

2 �
↵D↵V for an arbitrary superfield V and unwrap the contour of Q. After using the on-shell

condition and the pure spinor fierz identity

�↵�� =
1

5!⇥ 32
�↵�mnpqr(��

mnpqr�) (5.9)

we obtain (after some simplification using the gamma matrix identities)

T 0
2 = T̃2 + T2 (5.10)

where,

T̃2 ⌘ �3i↵0

64

x23
x12

h
(�mstuv)

↵�(k3)m + 4(�tuv)
↵�(k3)s

iD
Ã(1)
↵ ��Ã(2)

� (��stuvw�) ̃w�

E

�3i↵0

64

x13
x12

h
(�mstuv)

↵�(k3)m + 4(�tuv)
↵�(k3)s

iD
��Ã(1)

� Ã(2)
↵ (��stuvw�) ̃w�

E
(5.11)

and

T2 ⌘ � i↵0

2

x23
x12

(�m�
stuv)↵�(k3)s

D
�↵Ã(1)

m ��Ã(2)
� ��B̃tuv

E

+
i↵0

2

x13
x12

(�m�
stuv)↵�(k3)s

D
��Ã(1)

� �↵Ã(2)
m ��B̃tuv

E
(5.12)

Third Term

The 3rd term is given by

T3 = h�↵A(1)
↵ (x1)�

�A(2)
� (x2)⇧

m��Hm�(x3)i

=

I

x3

dw

w � x3
h�↵A(1)

↵ (x1)�
�A(2)

� (x2)⇧
m(w)��(x3)Hm�(x3)i

= �
I

x1

dw

w � x3

⌧
�↵(x1)

h
�i↵0(k1)

mA(1)
↵ (x1)

w � x1

i
��(x2)A

(2)
� (x2)�

�(x3)Hm�(x3)

�

�
I

x2

dw

w � x3

⌧
�↵(x1)A

(1)
↵ (x1)�

�(z2)
h
�i↵0(k2)

m
A(2)
� (x2)

w � x2

i
��(x3)Hm�(x3)

�

=
72i↵0

5!⇥ 32
(�stuvw)

↵�(k1)
m
D
Ã(1)
↵ ��Ã(2)

� (��stuvw�) ̃m�

E
(5.13)
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Again, in going to the 3rd equality, we have unwrapped the contour and used the OPE between ⇧m and

superfields. In going to the last line, we have performed the contour integration and used the momentum

conservation and the identity (5.9).

Fourth Term

Finally, the 4th term is given by

T4 = h�↵A(1)
↵ (x1)�

�A(2)
� (x2)N

mn��F�mn(x3)i

=

I

x3

dw

w � z3
h�↵A(1)

↵ (x1)�
�A(2)

� (x2)N
mn(w)��(x3)F�mn(x3)i

= �
I

x1

dw

w � x3

⌧h↵0

4

(�mn)↵⇢�
⇢(x1)

w � x1

i
A(1)
↵ (x1)�

�(x2)A
(2)
� (x2)�

�(x3)F�mn(x3)

�

�
I

x2

dw

w � x3

⌧
�↵(x1)A

(1)
↵ (x1)

h↵0

4

(�mn)�⇢�⇢(x2)

w � x2

i
A(2)
� (x2)�

�(x3)F�mn(x3)

�

=
3i↵0

64

x23
x12

h
(�mstuv)

↵�(k3)m + 4(�tuv)
↵�(k3)s

iD
Ã(1)
↵ ��Ã(2)

� (��stuvw�) ̃w�

E

+
3i↵0

64

x13
x12

h
(�mstuv)

↵�(k3)m + 4(�tuv)
↵�(k3)s

iD
��Ã(1)

� Ã(2)
↵ (��stuvw�) ̃w�

E
(5.14)

In going to the 3rd equality, we have unwrapped the contour and used the OPE of Nmn with �↵ whereas

in going to the 4th equality, we have used the expression of F↵mn in terms of  m↵ as given in (2.27). We

note that T4 is exactly minus of the T̃2 as given in (5.11).

Combining all the terms, we find that the total 3-point function is given by

A3 = hV1V2V3i = T2 + T3 (5.15)

where T2 and T3 are given in equations (5.12) and (5.13) respectively. Below, we shall give the results for

the correlators hV1V2V3i for di↵erent choices of the 2 massless and one massive external states.

5.2.2 Evaluation of correlators

The two terms T2 and T3 given in (5.15) are at the superfield level. To compute some specific 3-point

function, we need to keep only the fields of interest to be non zero in the superfields. After specializing

to some specific amplitude, A3 can be evaluated using the ✓ expansion results given in section 3.3 and

appendix D and the pure spinor correlators listed in appendix B.0.1. We use the symbolic computer

63



Chapter 5 – Equivalence of Pure Spinor and RNS superstrings for first massive states

programme Cadabra to do this calculation [31,32]. We now give the results for di↵erent 3-point correlators.

2 gluon and 1 bmnp field
3

For this case, we have

T2 =
29i

840
emnpe1me2n(k1)p , T3 =

13i

840
emnpe1me2n(k

1)p

This gives

haabi = T2 + T3 =
i

20
emnpe1me2n(k1)p (5.16)

2 gluon and 1 gmn field

For the haagi amplitude, we have

T2 = � 1

80
(e1 · g · e2) + ↵0

160
(e2 · k1)(e1 · g · k1)� ↵0

160
(e1 · k2)(e2 · g · k1)

T3 = � 3↵0

160
(e1 · k2)(e2 · g · k1)� ↵0

40
(e1 · e2)(k1 · g · k1) + 3↵0

160
(e2 · k1)(e1 · g · k1)

This gives,

haagi = T2 + T3

= � 1

80

⇥
2↵0(e1 · k2)(e2 · g · k1) + 2↵0(e2 · k1)(e1 · g · k2)� 2↵0(e1 · e2)(k1 · g · k2) + (e1 · g · e2)

⇤

(5.17)

2 gluino and 1 bmnp field

For the h��bi amplitude, we have

T2 =
23

11340
(⇠1�mnp⇠2)emnp , T3 =

1

18144
(⇠1�mnp⇠2)emnp

3This amplitude was also considered in [27]. As already comented, the ✓ expansion results of that paper are in conflict
with the rest frame analysis done [18]. Furthermore, this amplitude was determined only upto kinematic factors without the
overall normalization. This particular amplitude, due to polarization condition can be easily seen to have a unique kinematic
factor, therefore it is the overall normalization which is of the crucial importance and which was not calculated in [27].
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This gives

h��bi = T2 + T3 =
1

480
(⇠1�mnp⇠2)emnp (5.18)

2 gluino and 1 gmn field

For the h��gi amplitude, we have

T2 = 0 , T3 =
i↵0

80
(⇠1�m⇠2)gmnk

n
1

This gives,

h��gi = T2 + T3 =
i↵0

80
(⇠1�m⇠2)emnk

n
1 (5.19)

1 gluon, 1 gluino and 1  m↵ field

In this case, since all the external states are di↵erent, the two orderings ha� i and h�a i are di↵erent.

We give the result for both cases. For the ha� i correlator, we have

T2 =
4

21
em1 (⇠2 m)� 31

210
↵0(⇠2 n)(e

1 · k2)kn2 � 9

140
↵0(⇠2�mn p)e

m
1 kn1 k

p
2

T3 =
1

105
em1 (⇠2 m)� 53

210
↵0(⇠2 n)(e

1 · k2)kn2 � 19

140
↵0(⇠2�mn p)e

m
1 kn1 k

p
2

This gives

ha� i = T2 + T3

=
1

5

h
em1 (⇠2 m)� 2↵0(⇠2 n)(e

1 · k2)kn2 � ↵0(⇠2�mn p)e
m
1 kn1 k

p
2

i
(5.20)

On the other hand, for the h�a i correlator, we have

T2 =
4

21
em2 (⇠1 m)� 31

210
↵0(⇠1 n)(e

2 · k1)kn1 � 9

140
↵0(⇠1�mn p)e

m
2 kn2 k

p
1

T3 =
1

105
em2 (⇠1 m)� 53

210
↵0(⇠1 n)(e

2 · k1)kn1 � 19

140
↵0(⇠1�mn p)e

m
2 kn2 k

p
1
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This gives

h�a i = T2 + T3

=
1

5

h
em2 (⇠1 m)� 2↵0(⇠1 n)(e

2 · k1)kn1 � ↵0(⇠1�mn p)e
m
2 kn2 k

p
1

i
(5.21)

3 massless fields

For comparing the pure spinor results with the corresponding RNS results, we also need the massless

amplitudes. For haaai correlator, the pure spinor calculation gives the following result in our conventions

haaai =
i

180

⇥
(e1 · e2)(e3 · k1) + (e1 · e3)(e2 · k3) + (e2 · e3)(e1 · k2)

⇤
(5.22)

On the other hand, for the ha��i correlator, we get

ha��i =
1

360
(�2�m�3)e1m . (5.23)

From the explicit expression of all massless-massless-massive amplitudes obtained in this section,

we observe that all such 3-point functions are symmetric under a change of cyclic order. Therefore

the inclusion of Chan-Paton factors (denoted by ta, tb tc) will make the full amplitude proportional to

Tr(ta, {tb, tc}). Compare this with the 3-point functions involving all massless states, which are antisym-

metric under a change of cyclic order and therefore after taking into account the Chan-Paton factors,

the final answer becomes proportional to Tr(ta, [tb, tc]). Another point to note is that all the amplitudes

considered in this section are invariant under the gauge transformations ei ! ei + ki. We now turn to

comparing the RNS and PS results.

5.3 Comparing pure spinor and the RNS results

By comparing the pure spinor results given above with the corresponding RNS results given in appendix

(C.0.2), we see that the tensor structures of the 3-point functions match perfectly. Moreover the relative

coe�cients of the various terms in the correlators haagi and ha� i which have more than one terms,

also match exactly. This is a non trivial test. We shall now show that the overall numerical factors (i.e.
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Correlator RNS PS

haaai �g3a
p
2↵0 i

180

ha��i 1p
2
gag2�

1
360

haabi 6g2agb
p
2↵0 i

20

h��bi � 1
2
p
2
g2�gb

1
480

haagi �g2agg � 1
80

h��gi
p
↵0g2�gg

i↵0

80

ha� i �16↵0
p
2
gag�g 

1
5

h�a i �16↵0
p
2
gag�g 

1
5

normalizations) of the di↵erent 3-point functions in pure spinor and RNS are also in perfect agreement

with each other.

We have denoted the overall normalization of the vertex operators in the RNS calculations relative

to those in PS calculations by ga, g� etc. (see appendix C.0.2). For example, if NRNS and NPS denote

the normalizations of the gluon vertex operator in the RNS and PS respectively, then for the hVaVaVai

correlator, we have (denoting V ⌘ N Ṽ )

(NPS)
3hṼaṼaṼaiPS = (NRNS)

3hṼaṼaṼaiRNS (5.24)

From this, it is clear that only the relative normalization between RNS and PS vertex operators have any

physical significance. To exploit this fact, we define

NRNS = ga NPS (5.25)

In our calculations, we have set the overall normalization of the PS vertex operators to be 1 and kept the

relative normalization factor ga, g� etc. to be in the RNS vertex operators.

With the above convention, the overall RNS and the pure spinor numerical factors for each correlator

is given in the table above. By comparing the RNS and pure spinor numerical factors for haaai and ha��i,

we find

(ga)
3 =

�i

180
p
2↵0

, (g�)
2 =

p
2

360 ga
. (5.26)
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In terms of ga and g�, the numerical factors for haabi, haagi and ha� i give

gb =
i

120
p
2↵0 g2a

, gg =
1

80 g2a
, g = �

p
2

80↵0gag�
(5.27)

The above values of gb, gg and g agree perfectly with the value obtained using h��bi, h��gi and h�a i

correlators. This is a non trivial consistency check.

This explicitly demonstrates the equivalence of pure spinor and RNS formalism for first massive states

of open superstrings.
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Summary of the past and Dreams for

the future

6.1 Lessons learnt

Pure spinor formalism, since its inception at the beginning of this century, has experienced plenty of

success for massless states. Since the massless states typically enjoy a large amount of protection from

supersymmetry, this can somehow mislead a reader into thinking that pure spinor formalism works best

only for massless states. The central theme of this thesis has been to persuade its reader of the usefulness

of pure spinor formalism even for massive states. This was done by first developing a systematic way

of addressing the question of vertex operator construction in pure spinor formalism. This methodology

was explicitly applied to re-derive the unintegrated vertex for first massive states and further lead to

construction of the corresponding integrated vertex for the first time. This methodology also gave us a

way of performing the fully covariant ✓ expansion of both vertices solely in terms of physical fields for the

first time. With both these advances one finally had all the ingredients necessary to compute scattering

of massive states in pure spinor formulation.

In particular, explicit computation of all massless-massless-massive amplitudes in pure spinor allowed

us to conclusively extend the equivalence of PS and RNS formalism for open superstrings to include the

first massive states as well. This result is of great significance since these massive states are not protected

by any supersymmetry and therefore should dispel any remaining doubt regarding validity of pure spinor

formalism for massive states. The fact that none of our methodology was crucially hinged on the mass

level in question also strongly hints at the fact that both RNS and PS formalism are equivalent and a
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proof may not be in that distant future.

6.2 Looking forward

There are many new questions to consider based on the results of this thesis. Here we summarize a few

of them.

Firstly, we would like to subject our general methodology to one more explicit test by constructing

the unintegrated vertex operator for 2nd massive level. This should be reasonably straightforward in

practice, albeit computationally a bit more challenging. The success of this construction should provide

us with a “physicist’s proof” of our general methodology and its validity for all higher massive states.

We would also like to explicitly test our integrated vertex operator by using it to evaluate some

amplitude which can be compared then with the RNS answer. For this purpose, we can choose to

compute 1-loop mass renormalization for first massive states of SO(32) heterotic string theory ( [34]).

The RNS result was obtained in [35], [36]. The reason behind choosing this particular problem is two-fold.

One, this amplitude will also allow us to test the construction for closed superstrings. Two, we will like

to use the insight gained for on-shell vertex to devise an o↵-shell amplitude prescription for pure spinor

formalism (A closed string field theory for pure spinor formalism in some sense). This will allow us to

compute the 2-loop mass renormalization which seems extremely challenging to do by RNS formalism.

It will also be very interesting to see our methodology adapted to construct vertex operators in AdS5⇥

S5 background. The massless vertex operators are already known in terms of superfields (unintegrated

in [37], integrated in [38]). We would like to extend the construction for massive states as well. This can

have potentially important implications for detailed study of the conjectured AdS/CFT duality in [39].

The integrated vertex can also be obtained by making use of the b-ghost. From a pragmatic viewpoint

this is discouraged since the b-ghost in non-minimal formalism is highly singular (at �↵ = 0) and the

resulting vertex is essentially impotent in computing scattering amplitude. However, there has always been

a suggestion that it is possible to find a more regulated b-ghost (see [8], also [40]). While this regulated

b-ghost is not essential by any means to construct integrated vertex, it is absolutely indispensable to

propose a more regulated and well behaved loop amplitude prescription (especially for higher loops, in

principle for all loop order). A direct comparison of massive vertex constructed using b-ghost and the

way outlined here must di↵er only by a BRST exact term ⇠ Q⌦. A comparison of this two method of

obtaining the vertex may potentially suggest a less singular form of the composite b-ghost operator in
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pure spinor formalism.

It is often quoted, usually attributed to a generic wise person in human history, that every answered

question raises a hundred more. However, in light of finitude of human capacity, especially that of the

author of this thesis, we can assert that while it is good to look ahead into the unknown horizons once

in a while, it seldom serves one well to keep staring too far into the future. The line must be drawn

somewhere, so that a finished work can be celebrated and more importantly new unborn works can be

brought into the light.
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Appendix A

Summary of conventions

In this appendix, we give a summary of the notations and conventions we have used in this thesis.

• Our (anti)symmetrization convention is as follows

Anti-symmetrization : T [m1...mn] ⌘ 1

n!
(Tm1...mn ± all permutations ) (A.1)

Symmetrization : T (m1...mn) ⌘ 1

n!
(Tm1...mn + all permutations) (A.2)

• All antisymmetric products of gamma matrices are defined as

�m1...mp ⌘ �[m1...�mp] (A.3)

Anti-symmetrized product of p gamma matrices is sometimes referred to as p-form.

• Our convention for super-covariant derivative is

D↵ = @↵ + (�m)↵�✓
�@m ; where @↵ ⌘ @

@✓↵
(A.4)

Therefore, the Cli↵ord identity of gamma matrices implies

{D↵, D�} = 2(�m)↵�@m =) (�m)↵�D↵D� = 16 @m (A.5)
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In momentum space, this implies for the first massive state

km(�m)↵�D↵D� = 16 i kmkm = �16 i

↵0 (A.6)

• All normal ordering of products of operators are considered to be generalized normal ordering defined

as follows-

: AB : (z) ⌘ 1

2⇡i

I

z

dw

w � z
A(w)B(z) , For any two operators A and B. (A.7)

A.1 Useful identities involving gamma matrices in d=10

In this appendix, we write down the list of gamma matrix identities that were used in our calculations.

A useful reference for the more exhaustive list is [41]. Most of the manipulations involving the gamma

matrices were done with the help of the Mathematica package Gamma [28].

We work solely with 16 ⇥ 16 gamma matrices in d = 10. These are the o↵-diagonal elements of the

32⇥ 32 gamma matrices �m matrices satisfying

{�m,�n} = 2⌘mnI32⇥32

More specifically,

�m =

0

B@
0 (�m)↵�

(�m)↵� 0

1

CA

• Spinor index structure of various gamma matrices

Following is the spinor index structure for various antisymmetric products of gamma matrices

(�m1...mn)↵� or (�m1...mn) ↵
� for n = 0, 2, 4, 6, 8, 10

(�m1...mn)↵� or (�m1...mn)↵� for n = 1, 3, 5, 7, 9

• Hodge duals
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For 10 dimensional 16⇥ 16 gamma matrices, the hodge duality is more than mere duality. It turns

out to be an equality. We summarize them below

(�m1...m2n)↵� =
1

(10� 2n)!
(�1)(n+1)✏m1...m2np1...p10�2n(�p1...p10�2n)

↵
� (A.8)

(�m1...m2n) �
↵ = � 1

(10� 2n)!
(�1)(n+1)✏m1...m2np1...p10�2n(�p1...p10�2n)

�
↵ (A.9)

(�m1...m2n+1)↵� =
1

(9� 2n)!
(�1)n✏m1...m2n+1p1...p9�2n(�p1...p9�2n)

↵� (A.10)

(�m1...m2n+1)↵� = � 1

(9� 2n)!
(�1)n✏m1...m2n+1p1...p9�2n(�p1...p9�2n)↵� (A.11)

where, ✏m1···m9 is the 10 dimensional epsilon tensor defined as

✏0 1 ··· 9 = 1 =) ✏0 1 ··· 9 = �1 (A.12)

Due to the above dualities, we only take �m1 , �m1m2 , �m1m2m3 , �m1m2m3m4 and �m1m2m3m4m5 along

with the identity matrix I16⇥16 as the linearly independent basis elements for vector spaces of 16⇥16

complex matrices.

• Symmetry property of gamma matrices under exchange of Spinor indices

(�m)↵� = (�m)�↵ : Symmetric (A.13)

(�m1m2)↵� = �(�m1m2) ↵
� : Anti-Symmetric (A.14)

(�m1m2m3)↵� = �(�m1m2m3)�↵ : Anti-Symmetric (A.15)
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(�m1m2m3m4)↵� = (�m1m2m3m4) ↵
� : Symmetric (A.16)

(�m1m2m3m4m5)↵� = (�m1m2m3m4m5)�↵ : Symmetric (A.17)

For 1, 3 and 5 forms, the same (anti) symmetry properties hold when the spinor indices are upstairs.

• Various Gamma Traces

(�m1...mn)↵↵ = 0 for n = 2, 4, 6, 8 (A.18)

(�m1...m10)↵↵ = �16 ✏m1...m10 (A.19)

(�m)↵�(�n)
�↵ = 16 �mn (A.20)

(�m1...mn)↵�(�pn...p1)
�↵ = 16n! �m1...mn

p1...pn � 16 �n5 ✏
m1...m5

p5...p1 , for n 2 odd, (A.21)

the second term contributes only when n = 5.

(�m1...mn)↵�(�pn...p1)
�
↵ = 16n! �m1...mn

p1...pn , for n 2 even (A.22)

• Bi-Spinor decomposition

Any Bi-spinor T↵� can be decomposed as

T↵� = tm(�m)↵� + tmnp(�
mnp)↵� + tmnpqr(�

mnpqr)↵� (A.23)

where, for r = 1, 3, 5 1

tm1...mr =
1

16r!
(�m1...mr)

↵� T↵� (A.24)

1for r = 5, the RHS should be multiplied by an extra factor of 1
2 .
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Similarly, a tensor-spinor T↵� can be decomposed as

T↵� = t �↵� + tmn(�
mn)↵� + tmnpq(�

mnpq)↵� (A.25)

where, for r = 2, 4

tm1...mr =
1

16r!
(�m1...mr)

↵
� T↵� (A.26)

• Tensor index contracted identities involving gamma matrices

(�mn)↵�(�mn)
⇢
� = 4(�m)��(�m)↵⇢ � 2�↵� �

⇢
� � 8�↵��

⇢
� (A.27)

(�mn)↵�(�mnp)
⇢� = 2(�m)↵⇢(�pm)�� + 6(�p)

↵⇢��� � (⇢$ �) (A.28)

(�mn)
↵
�(�

mnp)⇢� = �2(�m)��(�
pm)↵⇢ + 6(�p)���

↵
⇢ � (⇢$ �) (A.29)

(�mnp)
↵�(�mnp)⇢� = 12[(�m)↵�(�m)�⇢ � (�m)↵⇢(�m)��] (A.30)

(�mnp)
↵�(�mnp)⇢� = 48(�↵⇢ �

�
� � �↵��

�
⇢ ) (A.31)
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Appendix B

Some pure spinor results

In this appendix, we note some pure spinor results which are used in this work.

B.0.1 Pure spinor superspace identities

While computing the scattering amplitudes in pure spinor formalism, the last step requires evaluation

of integration over the zero modes of �↵ and ✓↵. Due to the pure spinor constraints and the symmetry

properties of ✓↵ and �↵, there are only a finite number of these basic pure spinor correlators which are

non zero. Below, we list those pure spinor correlators which are used in this note (see [12] for a complete

list, also [30])

h(��m✓)(��n✓)(��p✓)(✓�stu✓)i =
1

120
�mnp
stu (B.1)

h(��pqr✓)(��m✓)(��n✓)(✓�stu✓)i =
1

70
�[p[m⌘n][s�

q
t �

r]
u] (B.2)

h(��mnpqr✓)(��s✓)(��t✓)(✓�uvw✓)i = � 1

42
�mnpqr
stuvw � 1

5040
✏mnpqr

stuvw (B.3)

h(��q✓)(��mnp✓)(��rst✓)(✓�uvw✓)i = � 1

280

h
⌘q[u⌘

z[r�sv⌘
t][m�nw]�

p]
z � ⌘q[u⌘

z[m�nv ⌘
p][r�sw]�

t]
z

i

+
1

140

h
�[mq �n[u⌘

p][r�sv�
t]
w] � �[rq �

s
[u⌘

t][m�nv �
p]
w]

i

� 1

8400
✏qmnprstuvw (B.4)
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h(��mnpqr✓)(��stu✓)(��
v✓)(✓�wxy✓)i

=
1

120
✏mnpqr

ghijk

✓
1

35
⌘v[g�h[s�

i
t⌘u][w�

j
x�

k]
y] �

2

35
�[g[s�

h
t �

i
u]�

j
[w�

k]
x �

v
y]

◆

+
1

35
⌘v[m�n[s�

p
t ⌘u][w�

q
x�

r]
y] �

2

35
�[m[s �

n
t �

p
u]�

q
[w�

r]
x �

v
y] (B.5)
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RNS results

In this section, we summarize the results of the 3-point functions involving two massless and one massive

states computed using the RNS formalism. In subsection C.0.1, we state our conventions and in subsection

C.0.2, we give the results of 3-point computations. A useful reference for this section is [42] (also see [43])

C.0.1 Conventions for RNS calculations

Due to the picture number anomaly on a genus g Riemann surface, a non vanishing RNS correlator must

have the picture number 2g� 2. This is ensured by working with vertex operators in appropriate picture

number and the insertions of appropriate number of picture changing operators (PCOs). For the 3-point

functions on Riemann sphere, we can avoid the insertions of PCOs by working with vertex operators of

the appropriate picture number so that the total picture number adds up to �2 (which is the picture

number anomaly on Riemann sphere).

We start by writing down the vertex operators for the massless states in various picture numbers. The

gluon vertex operator in the �1 and 0 picture numbers is given by

V (�1)
a (x) = ga em 

m(x)e��(x)eik·X(x)

V (0)
a (x) =

gap
2↵0

em
⇣
i@Xm(x) + 2↵0kn 

n(x) m(x)
⌘
eik·X(x) (C.1)

The gluino vertex operator in the �1/2 picture number is given by

V (�1/2)
� (x) = g� ⇠

↵S↵(x)e
��(x)/2eik·X(x) (C.2)
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The polarization vectors of the gluon and gluino satisfy the transversality conditions

emkm = 0 , ⇠↵�m
↵�̇

km = 0 (C.3)

Now, we turn to the vertex operators for the first massive states [44, 45]. The vertex operators for the

anti-symmetric 3-form field bmnp in the picture numbers �1 and 0 are given by

V (�1)
b (x) = gb emnp 

m(x) n(x) p(x)e��(x)eik·X(x)

V (0)
b (x) = gb

p
2↵0 emnp

⇣ 3i

2↵0@X
m n p + kq 

q m n p
⌘
eik·X(x) (C.4)

The vertex operators for the symmetric traceless massive graviton field gmn are given by

V (�1)
g (x) =

ggp
2↵0

emni@X
m(x) n(x)e��(x)eik·X(x)

V (0)
g (x) = gg emn

⇣ 1

2↵0 i@X
mi@Xn + @ m n + i@Xmkp 

p n
⌘
eik·X (C.5)

Finally, the vertex operators for the massive gravitino field  m↵ in the �1/2 picture number is given by

V (�1/2)
 (z) =

g p
↵0

⇣
⇠↵mi@Xm � ↵0

4
⇠�m 

m�n
��̇
��̇↵p knk

p
⌘
S↵e

��/2eik·X(z) (C.6)

The polarization vectors of the 1st massive states satisfy the conditions

kmemnp = kmemn = km⇠↵m = 0 (C.7)

For comparison with PS result, it is useful to parametrize the massive tensor spinor ⇠↵m as

⇠↵m = �8↵0⇢̄m�̇k
p�̄�̇↵p , km⇢̄m�̇ = ⇢̄m�̇�

�̇↵
m = 0 (C.8)

We now turn to the OPEs and correlation functions of the worldsheet matter and ghost sector fields.

The important correlators of the open string Xm fields are given by

*
nY

j=1

eikj ·X(yj)

+
=

nY

i<j

|yi � yj |2↵
0ki·kj (C.9)
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*
qY

`=1

i@Xm`(w`)
nY

j=1

eikj ·X(yj)

+
=

pX

i=2

2↵0⌘m1mi

(w1 � wi)2

*
pY

`=2
` 6=i

i@Xm`(w`)
nY

j=1

eikj ·X(yj)

+

+
nX

`=1

2↵0km1
`

(w1 � y`)

*
pY

`=2

i@Xm`(w`)
nY

j=1

eikj ·X(yj)

+
(C.10)

This can be evaluated recursively using (C.9). We shall encounter the situation where some w` may

coincide with some yj . E.g., we shall need the following correlator

�m ⌘
D
eik1·X(z1)eik2·X(z2)@Xm(z3)e

ik3·X(z3)
E

=

I
dw

w � z3

D
eik1·X(z1)eik2·X(z2)eik3·X(z3)@Xm(w)

E

=

✓
2i↵0km1
z13

+
2i↵0km2
z23

◆
|z12|2↵

0k1·k2 |z23|2↵
0k2·k3 |z13|2↵

0k1·k3 (C.11)

In going to the 2nd line, we have used the definition of the normal ordering (1.13) and in going to the

3rd line, we have used (C.10) for q = 1 and n = 3.

Similarly, we also need

D
eik1·X(z1)eik2·X(z2)i@Xp(z3)i@X

q(z3)e
ik3·X(z3)

E

= 4(↵0)2

kp1
z13

✓
kq1
z13

+
kq2
z23

◆
+

kp2
z23

✓
kq1
z13

+
kq2
z23

◆�
|z12|2↵

0k1·k2 |z23|2↵
0k2·k3 |z13|2↵

0k1·k3

Next, we consider the worldsheet correlators involving the  m fields

*
nY

i=1

 mi(yi)

+
=

nX

j=2

(�1)j
⌘m1mj

(y1 � yj)

*
nY

`=2
` 6=j

 m`(y`)

+
(C.12)

This expression can also be evaluated recursively. In the final step, the two point function can be evaluated

by using the OPE

 m(z) n(w) =
⌘mn

z � w
+ · · · (C.13)

Next, we consider the ghost sector. The basic correlator involving the reparametrization ghost c(x) is
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given by

hc(x1)c(x2)c(x3)i = x12x23x13 (C.14)

The basic correlator involving the bosonized ghost field �(z) is given by

*
nY

k=1

eqk�(zk)
+

=
nY

k<`

1

(zk � z`)qkq`
;

nX

k=1

qk = �2 (C.15)

Finally, we consider the spin fields. The basic OPEs involving the spin fields are given by (a consistent

set of these OPEs can be found in [46])

 m(z)S↵(w)e
��(w)/2 =

(�̄m)↵̇�S�e��(w)/2

p
2(z � w)1/2

+ · · · (C.16)

 m(z)S↵̇(w)e��(w)/2 =
(�m)↵�̇S

�̇e��(w)/2

p
2(z � w)1/2

+ · · · (C.17)

S↵(z)e
��(z)/2S�̇(w)e�3�(w)/2 =

C �̇
↵ e�2�(w)

(z � w)2
+ · · · (C.18)

S↵(z)e
��(z)/2S�(w)e

��(w)/2 =
(�mC)↵� m(w)e��(w)

p
2(z � w)

+ · · · (C.19)

 m(z)e��(z)S↵(w)e
��(w)/2 =

(�̄m)↵�̇S
�̇(w)e�3�(w)/2

p
2(z � w)

+ · · · (C.20)

jmn(z)S↵(w) = �
(�mn) �↵ S�(w)

2(z � w)
, jmn ⌘ :  m n : (C.21)

Using the above OPEs, we can work out the following useful correlators which are needed in our calcula-

84



Chapter C – RNS results

tions

h m(x1)e
��(x1)S↵(x2)e

��(x2)/2S�(x3)e
��(x3)/2i =

(�mC)↵�p
2z12z13z23

(C.22)

⇠�q

D
 m(x1)e

��(x1)S↵(x2)e
��(x2)/2 q(x3) 

p(x3)�
�̇�
p S�(x3)e

��(x3)/2
E
=

8 ⇠�mC �̇
↵p

2z213z
2
23

(C.23)

C.0.2 3-point functions

We are now ready to give the results of 3-point functions of two massless and one massive field (for

the computation of 3-point functions of states in leading Regge trajectory in RNS, see [47]). These are

straightforward to evaluate using the vertex operators and the correlators given in the previous subsection.

Hence, we just state the final results below. For our calculations, we shall take the bosonic massless and

massive fields to be either in the �1 or 0 picture numbers. On the other hand, the fermionic massless

or massive fields will always be taken in the �1/2 picture. The picture numbers will be shown by a

superscript on the vertex operators inside correlators. Thus, the 3-point amplitudes are given by

A3 =
⌦
c(x1)V

(1)
a,� (x1)c(x2)V

(2)
a,� (x2)c(x3)V

(3)
b,g, (x3) i (C.24)

We start by considering the 3-point functions involving all massless fields. The two possible correlators

in this case are haaai and ha��i. Using the worldsheet correlators given above, these 3-point functions

can be evaluated to be

haaai ⌘
D
c(x1)V

(�1)
a (x1)c(x2)V

(�1)
a (x2)c(x3)V

(0)
a (x3)

E

= �g3a
p
2↵0

h
(e1 · e2)(e3 · k1) + (e1 · e3)(e2 · k3) + (e2 · e3)(e1 · k2)

i
(C.25)

As an amplitude this vanishes on summing (k1 $ k2) term if the gauge group is abelian.

Similarly, the a�� correlator can be worked out to be

ha��i ⌘
D
c(x1)V

(�1)
a (x1)c(x2)V

(�1/2)
� (x2)c(x3)V

(�1/2)
� (x3)

E

=
1p
2
gag

2
�e

1
m

⇣
⇠2�mC⇠3

⌘
(C.26)
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Again, for the abelian gauge group, the corresponding amplitude vanishes.

Next, we consider the two massless and one massive field. We start with two gluons and one bmnp

field

haabi ⌘
D
c(x1)V

(�1)
a (x1)c(x2)V

(�1)
a (x2)c(x3)V

(0)
b (x3)

E

= 6g2agb
p
2↵0e1me2nemnpk

p
1 (C.27)

Next, we consider the 3-point function of two gluons and one massive gmn field which is given by

haagi ⌘
D
c(x1)V

(�1)
a (x1)c(x2)V

(�1)
a (x2)c(x3)V

(0)
g (x3)

E

= �g2agg
h
2↵0⌘mne1me2nepqk

p
1k

q
1 + e1pe

2
qepq + 2↵0e1me2qepqk

p
1k

m
2 � 2↵0e1qe

2
mepqk

m
1 kp1

i

(C.28)

Next, we include gluino and consider the h��bi and h��gi correlators which can be worked out to be

h��bi ⌘
D
c(x1)V

(�1/2)
� (x1)c(x2)V

(�1/2)
� (x2)c(x3)V

(�1)
b (x3)

E

= � 1

2
p
2
g2�gb(⇠

1�mnpC⇠2)emnp (C.29)

and,

h��gi ⌘ hc(x1)V (�1/2)
� (x1)c(x2)V

(�1/2)
� (x2)c(x3)V

(�1)
g (x3)i

=
p
↵0g2�ggemn(⇠

1�nC⇠2)km1 (C.30)

Finally, we consider the massive fermion. The two di↵erent 3-point functions with one massive fermion

and two massless fields are ha� i and h�a i which are given by

ha� i ⌘
D
c(x1)V

(�1)
a (x1)c(x2)V

(�1/2)
� (x2)c(x3)V

(�1/2)
 (x3)

E

= �16↵0
p
2
gag�g 


�↵0e(1)m ⇠↵(2)k

q
2k

p
1 ⇢̄q�̇(�̄mp)

�̇
�̇C

�̇
↵ � 2↵0kq2k

m
2 e(1)m ⇠↵(2)⇢̄q�̇C

�̇
↵ + e(1)m ⇠↵(2)⇢̄m�̇C

�̇
↵

�

(C.31)
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and,

h�a i ⌘
D
c(x1)V

(�1/2)
� (x1)c(x2)V

(�1)
a (x2)c(x3)V

(�1/2)
 (x3)

E

= �16↵0
p
2
gag�g 


�↵0e(2)m ⇠↵(1)k

q
1k

p
2 ⇢̄q�̇(�̄mp)

�̇
�̇C

�̇
↵ � 2↵0kq1k

m
1 e(2)m ⇠↵(1)⇢̄q�̇C

�̇
↵ + e(2)m ⇠↵(1)⇢̄m�̇C

�̇
↵

�

(C.32)

To compare the results involving the fermionic fields with the PS results, we need to first convert the

RNS gamma matrix conventions into the PS gamma matrix conventions. This mainly involves setting

the charge conjugation matrix to be the Kronecker delta �↵� which implies (for details, see e.g., [42, 43])

(�mC)↵� ! �m↵� , (�̄mC)↵̇�̇ ! �↵�m , (�mnpC)↵� ! (�mnp)↵� (C.33)

and so on.
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Appendix D

✓ expansion of massless vertex operator

✓ expansion of the massless vertex operator is known and has been extensively used in the literature (see,

e.g., [15]). However, some of our conventions (e.g., equation (1.16)) are di↵erent from the literature in

which the✓ expansion of massless vertex operator is used. Below, we derive the results in our convention

briefly indicating the steps. We start by recalling the N = 1 SYM equations in 10 dimensions [48] (see

also [49], [50]).

N = 1 SYM equations in 10 dimensions

In 10 dimensions, the open string massless states are described by the 10 dimensional N = 1 super Yang

Mills equations. The field strengths describing the theory are given by

F↵� = {r↵,r�}� 2�m↵�rm , F↵m = [r↵,rm] = �Fm↵ , Fmn = [rm,rn]

where rm ⌘ @m +Am , r↵ ⌘ D↵ +A↵ and D↵ is defined in (1.16).

The 10 dimensional Yang-Mills equations of motion follow from

F↵� = 0 =) D↵A� +D�A↵ = 2�m↵�Am (D.1)
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Using this along with the Bianchi identities, we obtain the following equations at linearized level

Fm↵ = (�m)↵�W
� , D↵W

� = �1

2
(�mn) �

↵ Fmn =) D↵W
↵ = 0

D↵Fmn = @m(�nW )↵ � @n(�mW )↵ , D↵A
m = ��m↵�W � + @mA↵

@mFmn = 0 , �m↵�@mW � = 0 (D.2)

Further, the superfields Am,W↵ and Fmn can be expressed as

Am =
1

16
�↵�m D↵A� , Fmn = @mAn � @nAm

W↵ = � 1

10
(�m)↵�(D�Am � @mA�) (D.3)

N = 1 SYM equations from pure spinor formalism

The pure spinor formalism gives the N = 1 SYM equations through its BRST equations of motion. To

obtain the correct normalization of the superfields, we derive these equations using the BRST equation

of motion QU = @RV and match with the equations given above. At the massless level, the unintegrated

vertex operator is constructed from the ghost number 1 and conformal weight 0 objects. The most general

object with this property has the form V = �↵A↵. Similarly, the most general integrated vertex operator

has the form

U = @✓↵Ã↵ +⇧mÃm + d↵W̃
↵ +NmnF̃mn (D.4)

Using the OPEs given in section 5.1, we obtain

Q(@✓↵Ã↵) = �↵
0

2
@✓↵��D�Ã↵ +

↵0

2
@�↵Ã↵

Q(⇧mÃm) =
↵0

2
⇧m�↵D↵Ãm +

↵0

2
@✓↵��Ãm�

m
↵�

Q(d↵W̃
↵) = �↵

0

2
d↵�

�D�W̃
↵ � ↵0

2
⇧m�↵W̃ ��m↵� +

(↵0)2

2
@�↵@mW̃ ��m↵�

Q(NmnF̃mn) =
↵0

2
Nmn��D�F̃mn � ↵0

4
d↵�

�F̃mn(�
mn)↵� �

(↵0)2

8
@�↵D�F̃mn(�

mn)�↵
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We also have,

@R(�
↵A↵) = @�↵A↵ + �↵@A↵

= @�↵A↵ + @✓��↵D�A↵ + 2⇧m�↵@mA↵ (D.5)

where we have used the pure spinor open string identity

@R = @✓↵D↵ + 2⇧m@m (D.6)

The BRST equation of motion gives,

0 = QU � @RV

= @✓↵��
⇣
�↵

0

2
D�Ã↵ �D↵A� +

↵0

2
Ãm�

m
↵�

⌘
+ ⇧m�↵

⇣↵0

2
D↵Ãm � ↵0

2
W̃ ��m↵� � 2@mA↵

⌘

+ d↵�
�
⇣
�↵

0

2
D�W̃

↵ � ↵0

4
F̃mn(�

mn)↵�

⌘
+
↵0

2
Nmn��D�F̃mn

+ @�↵
⇣↵0

2
Ã↵ +

(↵0)2

2
@mW̃ ��m↵� �

(↵0)2

8
D�F̃mn(�

mn)�↵ �A↵
⌘

(D.7)

To match these equations with the 10 dimensional SYM equations, we rescale the fields as

Ã↵ =
2

↵0A↵ , Ãm =
4

↵0Am , W̃↵ = � 4

↵0W
↵ , F̃mn =

4

↵0Fmn (D.8)

After this rescaling, the BRST equation gives

D�A↵ +D↵A� = 2Am�
m
↵� , D↵Am = �W ��m↵� + @mA↵ , D�W

↵ = �1

2
Fmn(�

mn) ↵
�

�@mW ��m↵� =
1

4
D�Fmn(�

mn)�↵ , Nmn��D�Fmn = 0

The first 4 equations are precisely satisfied by the 10 dimensional N = 1 SYM equations given in appendix

D whereas the last equation is satisfied by the pure spinor constraint. The correctly normalized vertex
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operators of the massless states in our conventions thus become

V = �↵A↵

U =
2

↵0@✓
↵A↵ +

4

↵0⇧
mAm � 4

↵0d↵W
↵ +

4

↵0N
mnFmn

=
4

↵0

✓
1

2
@✓↵A↵ +⇧mAm � d↵W

↵ +NmnFmn

◆
(D.9)

Theta expansion of massless superfields

Finally, we turn to the ✓ expansion. We shall follow the steps outlined in [29]. We shall need the following

equations for doing the ✓ expansion

D↵A� +D�A↵ = 2Am�
m
↵� , D↵Am = �W ��m↵� + @mA↵

D�W
↵ = �1

2
Fmn(�

mn) ↵
� , Fmn = @mAn � @nAm (D.10)

Before proceeding to do the✓ expansion, we need to fix a gauge. We shall choose the gauge ✓↵A↵ = 0. In

this gauge choice, we have

0 = D�(✓
↵A↵) = A� � ✓↵D�A↵ =) A� = ✓↵D�A↵ (D.11)

Now, multiplying by ✓� in the 1st equation and by ✓↵ in the 2nd and 3rd equations of (D.10) and using

the above identity along with the gauge choice ✓↵A↵ = 0, we obtain

(1 +D)A↵ = 2Am(�m✓)↵ , DAm = �(✓�mW ) , DW↵ =
1

2
Fmn(�

mn✓)↵ (D.12)

where we have defined D ⌘ ✓↵D↵ = ✓↵@↵.

We can use the above 3 equations along with the 4th equation of (D.10) to do the✓ expansion. If we

denote the `th order component of the superfield M by M (`), then we have

M (`) = m↵1···↵`✓
↵1 · · · ✓↵` =) DM (`) = ` M (`) (D.13)
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Using this, the 3 equations of (D.12) and the 4th equation of (D.10) give the following recursive relations

(1 + `)A(`)
↵ = 2A(`�1)

m (�m✓)↵ =) A(`)
↵ =

2

1 + `
A(`�1)

m (�m✓)↵

`A(`)
m = �(✓�mW (`�1)) =) A(`)

m = �1

`
(✓�mW (`�1))

`W↵
(`) =

1

2
F (`�1)
mn (�mn✓)↵ =) W↵

(`) =
1

2`
(�mn✓)↵ F (`�1)

mn

F (`)
mn = @mA(`)

n � @nA
(`)
m (D.14)

Denoting the✓ independent components of the superfields Am and W↵ to be

A(0)
m ⌘ am , W↵

(0) ⌘ �↵ (D.15)

the above recursive relations give

A↵ = am(�m✓)↵ � 2

3
(�m✓)↵(✓�m�)�

1

8
(�m✓)↵(✓�

mpq✓)fpq �
i

15
(�m✓)↵(✓�p�)(✓�

mpq✓)kq + · · ·

Am = am � (✓�m�)�
1

4
(✓�mnp✓)f

np � 1

6
(✓�m�

pq✓)(✓�[m@n]�) +
1

48
(✓�m�

rn✓)(✓�npq✓)@rf
pq + · · ·

(D.16)

where fmn = @man � @nam and the plane wave expansion of the gluon and gluino are given by

am = emeik·X , �↵ = ⇠↵eik·X (D.17)
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