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SYNOPSIS

In this work, we focus on three different aspects of the amplitudes in the perturbative quantum
field theories. In the first line of work, we considered the conformal field theories in the mellin space.
The second work was related to the amplitudes in the diffeomorphism invariant theories when some
of the gravitons carry very low momenta. Finally, the third work was related to the so called CHY
prescription for the tree amplitudes involving the massless particles. We describe each of the three

works below.
1. Feynman Rules for CFTs in Mellin Space [1]

The first work is related to the correlation functions in the conformal field theories (CFTs). In the
Wilsonian picture of quantum field theories, the CFTs are the fixed points of the renormalization
group flow. Apart from their relevance to better understanding of the usual QFTs as the end points of
the renormalization group flow, the CFTs living at these fixed points are relevant for many statistical
mechanical systems near the critical points as well. The CFTs are also extremely important in string
theory. In particular, the most well understood duality in the context of AdS CFT correspondence,
namely the correspondence between the Type IIB string theory in the bulk and the N’ = 4 SYM in

the boundary involves a conformal field theory.

The aim of the first work was to understand the CFTs in the mellin space. The position to
mellin space transformation of the CFTs is done with respect to the cross ratios of position space.
Hence, given any amplitude, the number of independent mellin variables in it is same as the number
of independent cross ratios. This is very convenient since the non trivial information about a CFT
correlator is only a function of the cross ratios and not the individual space-time points. The mellin

amplitude of a correlator involving only the scalar operators is defined as [2, 3]

we) = T ([ 5ren e I (> 3 ar

1<i<j<n @00

Here s' are the Mellin variables and M ({s"}) is defined to be the Mellin amplitude. The variable

A is the scaling dimension of the operator inserted at z°.

One of the most important property of the mellin amplitude is that the spectrum of primary
operators and their descendants become very transparent in this space. The mellin amplitude is a
meromorphic function of its arguments and its poles in different channels correspond to twists of the

operators exchanged in that channel in the intermediate state.

The goal of this work was to obtain Feynman rules for perturbative CFTs in the mellin space. We

succeeded in deriving the tree Feynman rules in an arbitrary CFT in arbitrary dimensions involving
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Figure 1: 4-point exchange diagram
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Figure 2: Example of an arbitrary tree diagram

the scalar operators [1]. In particular, we found that the propagator in the mellin space corresponds
to a beta function. More specifically, if we consider a Feynamn diagram as shown in figure 3.12, its

mellin amplitude is given by

1 <ﬂ/ — 812 D )
2I'() 2 72

M (812) =
where v is the conformal dimension of the internal lines connecting the two vertices, D is the space-
time dimension and 515 is the Mellin momentum flowing through the propagator. An advantage of
our approach is that this expression is valid for an arbitrary number of external lines at two vertices

provided we define the Mellin momenta s,; appropriately.

The importance of this result is that one can now use this propagator to write the amplitude for
an arbitrary tree diagram in a perturbative CFT. For an arbitrary tree diagram, such as the one shown

in figure 2, the mellin amplitude is given by the product over all the propagator factors as

1 <m + k2, D )
y = Vab
(f}/ab) 2 2

M(sw) =] o

where, the product is over all the internal lines. 7, is the conformal dimension of the internal line

joining a™ and b™ vertices. kg, is the total Mellin momentum flowing through the propagator joining



a'™ and the b*" vertices.

From the expression of the amplitude, it is clear that its poles occur when the argument of the

beta function becomes zero or a negative integer, i.e.
k2 4+ =—-2n , n=0,1,2-

The physical interpretation of these poles is that the primary (n = 0) fields with conformal dimension
Yab, along with all of its descendants (n > 0) are propagating through the internal line. Thus, this
representation of the amplitude in terms of the product over beta functions is very convenient in

reading off the conformal family contributing to a given process.

2. Subleading Multiple Soft Graviton Theorem [4]

In the second work, we consider the field theories which have diffeomorphism invariance. One
universal feature of the diffeomorphism invariant theories is the presence of a massless spin 2 particle
[5]. These particles are the familiar gravitons and are responsible for the gravitational interaction. For
theories containing spin 2 particles, it was shown by Weinberg that the amplitudes in these theories
of processes containing soft gravitons can be related to the amplitudes without the soft gravitons [6].
More specifically, he showed that if we expand the S matrix of a theory involving arbitrary number
of soft gravitons in the powers of the momenta of the soft gravitons, then the leading term in this
expansion can be written as product of the amplitude without the soft gravitons multiplied by a factor
which depends upon the momentum and polarizations of the soft gravitons. Moreover, this soft
factor was universal and did not depend upon the details of the theory but only on the linear momenta
carried by the particles.

Generally, a universal feature is related to some symmetries of the theory. Recently, it was found
that the universal soft factorization in the gravitational theories are related to some asymptotic sym-
metries of space-time [7-9], called BMS symmetry. The ward identities associated with these BMS
symmetries give rise to the Weinberg’s soft theorem. Based on these motivations, the subleading
term in the expansion of the S-matrix in terms of the soft momenta was also worked out. However,
unlike leading order result, the extension of the subleading result for more than one goft graviton
turned out to be more involved. The case of double soft graviton was investigated for specific the-
ories in [10-17]. However, it was not clear whether these results are universal or dependent upon

theory in hand.

In [18, 19], building on the ideas from the string field theory [20], a new approach based on
Feynman diagrams was developed by Ashoke Sen to prove the factorization property of the ampli-

tudes involving the soft gravitons. This was done for multiple gravitons at leading order and a single



graviton at the subleading order.

Using the method of [18, 19, 21], in [4], we extended the soft graviton theorem to subleading
order in the soft graviton momenta for an arbitrary number of soft gravitons. More specifically, we
showed that given any theory having the diffeomorphism invariance, the amplitudes involving an
arbitrary number of soft gravitons factorizes at the subleading order. The result does not depend
upon the finite energy external states involved in the scattering. It only depends upon the linear and
angular momenta carried by these states. Unlike the leading and the single subleading order results,
the general result involves a term which has a purely quantum origin. This term, called contact term,
arises at subleading order only when we have more than one soft graviton. A subsequent study by
Alok Laddha and Ashoke Sen showed that this universal contact term drops out when we consider a

classical limit [22].

Since our result at the subleading order does not depend upon the theory, any theory of quantum
gravity in the low energy limit must satisfy this. Another feature of our result is that it is valid in
arbitrary dimensions and only assumes the finiteness of the S-matrix. Whenever the S-matrix is not
finite, our results are valid at tree level only. This happens in four and less number of dimensions. In 5
dimensions, naively, one encounters some IR enhancement in individual diagrams indicating possible
breakdown of multiple soft theorem. However, it is expected that such IR enhanced contributions

cancel after summing over all the diagrams.

3. Testing Soft Theorem Using CHY Formalism [23]

The third work was related to a new formalism developed by Freddy Cachazo, Song He and Ellis Ye
Yuan for computing the tree level scattering amplitudes involving massless particles in quantum field
theories [24-27]. This is known as the CHY formalism. This work was motivated by the desire to test
our result on the general subleading soft graviton theorem in a specific theory. For this, we considered
the Einstein’s theory of gravity in the CHY formalism. Since our subleading result should be valid
in any theory, it should also be valid for the purely Einstein’s gravity containing only gravitons. Our
goal was to derive the multiple subleading soft graviton theorem in Einstein’s gravity using the CHY

formalism and compare with our earlier result derived using Feynman diagram technique.

In the CHY formalism, an n-point tree amplitude of the massless particles is expressed as a sum
over discrete set of points in the moduli space of an n-punctured Riemann sphere. The positions of

the punctures are obtained by solving the so called scattering equations

N el Va e {1,2,...,n}
Oq — Op

b=1

b#a



where {0, } are the holomorphic coordinates of the punctures and {p,} are momenta of the massless
particles. Using the SL(2, C') invariance of the moduli space of the sphere with n-punctures, we can
fix the positions of three punctures and using (n — 3) number of independent scattering equations as

constraint relations, the CHY formula is given as,

M= [ [ T1 4] Gmowomtoonon | TT 6(30 2L nuh (0, o).
crmar e

where o, = 0, — 0.

The details of the theory is contained in the integrand [,,. It is determined by demanding some

consistency requirements. For the purely Einstein’s gravity, it is given by [27]

Li({p}. e} {o}) = 4(=1)" (05 — 00) 7 det (L)

where U is a 2n x 2n anti-symmetric matrix and WU is obtained by removing s-th and ¢-th row from

first n rows and removing s-th and ¢-th columns from first n columns of W. The matrix ¥ has the

T
\II=<A c)
C B

where A, B, C' are n X n matrices defined as,

form

Pa - Po €a-€p
——— a#b a#b
Aab = Oq — Op # s Bab: Oq — Op ?é
0 a=>b 0 a=
€a~pb a,?éb
04 — Oy
Ca fr— n De
’ - > Ca-P a="b.

e=1,c#a 9a — Oc
The polarizations ¢, ,, of the gravitons are related to the space-time vectors €, by €, ,,€a.0 — €q -

The single and the double soft graviton result using the CHY formalism had been tried earlier in
the literature [15, 16, 28,29]. However, there were some issues with these results. Our aim was to
resolve these issues and derive the most general tree level subleading soft graviton result in Einstein’s
gravity using this formalism. In doing this, we first needed to classify the various solutions of the
scattering equations when there are an arbitrary number of the soft gravitons. We did this analysis
in [23]. Using this result, the general case of the soft graviton theorem for an arbitrary number of
the soft graviton was derived by performing the contour integrals in CHY formula successively. Our
results for the Einstein’s gravity matched perfectly with the general results derived in [4]. This not



only showed the consistency with the known result but it was also a non trivial check for the validity

of the CHY formalism itself given that the formalism has not yet been derived from first principles.
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Chapter 1
Introduction

Ever since Newton introduced the powerful language of mathematics [30] to describe the observable
universe, we have been uncovering its secrets with ever increasing success. In the centuries following
Newton, we discovered how the nature works at the scales which could be probed by our eyes. This
included the regime in which the size of objects to be described were “large enough” and their
speeds were “small enough”. The laws which were uncovered during this period corresponded to the
gravitational interaction which works at the scales of planets, stars and galaxies, the electromagnetic
interactions which govern the behaviour of light, electricity and magnetism, and also the laws of
thermodynamics which are needed when there is a large collection of particles. Using these laws
expressed in mathematical language, one could very accurately predict the outcome of some event

and then go and check whether the laws were applicable in real world or not.

Towards the dawn of 20th century, we started observing phenomenon which could not be de-
scribed using these “classical laws”. Moreover, with enough information in hand about the material
objects, the time was ripe enough to ask questions about the nature of space time itself in which these
objects reside. The developments along these lines led to the birth of quantum mechanics which
is indispensable when we consider very small objects and special and general theories of relativity

which are crucial for understanding the nature of space-time itself.

It was soon realised that a more accurate description of nature at sub atomic scales is provided
by the quantum version of field theories, namely quantum field theories (QFTs). The progress along
this direction led to a very accurate picture of nature which has been very rigorously verified in ex-
periments upto nuclear scales. This description was called standard model and it describes the three
known interactions, namely, strong, weak and electromagnetism in a unified manner. However, even
though the standard model is very successful, it excludes the most obvious force visible to us, namely,
gravity. The classical aspects of gravity is described by Einstein’s general theory of relativity. To-
gether with standard model of particle physics, the general relativity has very successfully described

the evolution of the universe since the time its age was just fraction of seconds.

Despite the impressive success of the standard model and general relativity, they fail to describe

9



some very important and interesting aspects of nature, e.g., the origin of the universe itself, the
interior of black holes and questions about what happens at Plank scale. The main reason of the
failure is that the classical theory of gravity is insufficient in situations where the gravity is very
strong and the standard model is insufficient in situations when we want to probe very very small

length scales.

The inadequacy of the standard model and the general relativity is also made clear from the
Wilsonian point of view. The standard model and the naive quantisation of the gravity suffer from so
called ultraviolet divergences. In the Wilsonian picture, this is a reflection of the fact that the theory
is accurate only upto some length scale and breaks down beyond it. Some other theory takes over
below this scale and the original theory remains just an effective description of this new theory above
this scale. These issues imply that we need a theory which should replace the standard model and

general relativity and provide a UV complete description of nature.

In constructing the standard model and general relativity, a number of guidance was provided by
the requirement of mathematical consistency along with the experimental observations. In particular,
the general relativity was constructed largely on aesthetic grounds using the tools of differential
geometry. However, once constructed, it was used to make predictions which matched with the
observations. Similarly, the standard model was based upon some prior experimental and clever use
of mathematical tools. However, not all of its predictions were verified at the time of its construction.

Some very verified much later.

The theories, which are needed when the standard model and general relativity fail, must reduce
to these known theories when the latter are known to be applicable. However, they can be very
different in the new regime. One of the goals of theoretical physics is to discover the theory which
describes nature in these extreme regimes. Now, we don’t have the direct access to the regimes in
which known theories fail. This makes the search for new theories very difficult. In the absence of
experimental inputs, one way to proceed is to use the mathematical consistency to go beyond the
already known theories. To be sure, the ultimate validity of the theories constructed in this manner
can only be decided by comparing their predictions with the actual observations. However, this may
have to wait till we have enough technological advances to probe the regime where existing theories
fail.

The string theory is an attempt in this direction. Its goal is to provide an UV complete theory
incorporating all the interactions. In string theory, the fundamental particles are the one dimensional
vibrating strings. The consistency with quantum mechanics demands that these one dimensional
strings must propagate in 10 space-time dimensions. The connection with the observed 4 dimensional
world is made by making the six of the dimensions to be compact and smaller than the length scales
probed in experiments so far. One feature of string theory is that it automatically provides a consistent
theory of quantum gravity since one of the vibration modes of strings is graviton which mediates

gravity. The Einstein’s equation also naturally emerge from string theory. Moreover, string theory is
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free from ultraviolet divergences making it a UV complete theory.

The formalism of string theory makes use of QFTs. In particular, a very special type of QFTs,
namely, conformal field theories (CFTs) play a very important role in its formulation. In the Wilso-
nian picture, the CFTs are the fixed points of the renormalisation group flow. Some instances where

CFTs appear in string theory are

1. A propagating string traces out a two dimensional surface in space-time. The theory living on
this surface is a CFT. Demanding that this CFT be unbroken at quantum level gives rise to the

Einstein’s equation of motion in space-time.

2. In the context of AdS CFT correspondence, the boundary theory dual to the bulk string theory
usually involves a conformal field theory.

Apart from their relevance in string theory, the CFTs are also important for better understanding of
usual QFTs as the end points of the renormalisation group flow and describe many statistical systems

near their critical points.

In this thesis, we focus on some aspects of conformal field theories and gravity as we describe
now. The dynamical information of a conformal field theory is encoded in the conformal dimensions
of the operators and the 3-point functions. The position and the momentum spaces are not ideal for
making this fact transparent. E.g., the momentum space is useful when we have to extract information
about the mass spectrum of the theory. However, due to the absence of single particle spectrum,
the momentum representation of CFTs do not provide any simplification. However, it turns out
that there is a mathematical representation which is more suited to CFTs. This is so called Mellin
representation [2,3]. This representation is sensitive to the scaling behaviour of the operators and
hence is suitable for CFTs. It encodes the information about the scaling dimensions and the 3-point
functions of the theory in the same way as momentum space encodes the information about the mass

spectrum in usual QFTs.

In this work, we focus on the situations where CFT is perturbed by scalar marginal operators. In
such situations, we can write a Feynman diagrammatic expansion for the correlation functions of the
theory. This is the regime of weakly coupled CFT. Our goal in this work is to derive tree Feynman
rules for such CFTs in the Mellin space for scalar operators. We find that the scalar propagators are
given by the beta functions. We also give diagrammatic rules to write down the expression of an

arbitrary loop Feynman diagram as an integration over the Schwinger parameters.

In the second work, we focus on some aspects of the gravitational interaction in the low energy
infrared (IR) limit. In an scattering experiment, due to the limit on their resolution, any detector can’t
distinguish between the amplitudes with very low energy massless particles from the amplitudes
without the low energy massless particles. It turns out that if these massless particles arise due to

some gauge symmetries, then some special thing can happen. For a theory involving spin-2 massless
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gravitons, we have general coordinate invariance as gauge symmetry [5]. Using this, it was shown
by Weinberg that in the expansion of an S-matrix (involving an arbitrary number of low energy
massless gravitons) in powers of the momenta of the soft gravitons, the leading term can be written
as product of the S-matrix without the soft gravitons multiplied by a factor which depends only upon
the momenta and the polarisations of the gravitons [6]. Moreover, this soft factor turns out to be

universal and does not depend upon the details of the theory.

Following a diagrammatic method developed by Ashoke sen [18, 19], we prove that the universal
factorisation property shown by Weinberg for arbitrary number of gravitons for the leading term
actually holds upto the subleading term in the expansion of S-matrix in terms of soft momenta. The
diagrammatic method also shows that the universality is lost beyond the subleading term and the
factorisation property itself is lost beyond the subsubleading order. The universal soft factor for the

case of multiple soft gravitons contains a piece which has a purely quantum origin [22].

Finally, we derive the soft graviton theorem in the specific case of Einstein’s gravity and match
with our universal result. For this, we do not use the Feynman diagrammatic method but instead
use the CHY (Cachazo-He- Yuan) prescription for computing the tree amplitudes involving massless
particles [24-27]. The CHY prescription was developed by making a connection between the fac-
torisation of the Riemann sphere with punctures with the factorisation property of the amplitudes.
In this method, an n-point amplitude involving the massless particles is computed by doing a spe-
cific sum over the moduli space of Riemann sphere with n punctures. Unlike the Feynman diagram
method, each term in this sum corresponding to some amplitude is gauge invariant by itself. We use
this method to derive the multiple subleading soft graviton theorem in Einstein’s gravity and find the
result to be in perfect agreement with the universal result derived using the diagrammatic technique.
In the process, we also fix some signs in the CHY description of the Einstein’s gravity. Apart from
confirming the multiple soft graviton theorem, our result also provides a non trivial test of the CHY

prescription itself.

The rest of the thesis is organised as follows. In chapter 2, we derive the Feynman rules in
mellin space for CFTs involving the scalar operators and give diagrammatic rules to write down the
mellin amplitude of an arbitrary loop diagram. In chapter 3, we consider the multiple subleading soft
graviton theorem and derive it for an arbitrary theory having general coordinate invariance using the
Feynman diagrammatic method. Finally, in chapter 4, we consider the Einstein’s gravity and derive
the subleading multiple soft graviton theorem for it using the CHY prescription. In appendix A, we
review the Mellin representation of the conformal field theories and discuss its properties. Appendix
B is devoted to the review of the CHY formalism. Appendices C, D and E are devoted to the details

of some calculations in chapters 2, 3 and 4 respectively.
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Chapter 2

Feynman Rules for Tree Mellin Amplitudes
of Scalar Fields

In this chapter, we shall be describing the tree Feynman rules in Mellin space for the conformal field
theories (CFTs). It has been realized in the last few years, beginning with the pioneering work of
Mack [2,31] (see also [3]), that Mellin space provides the natural setting for the study of CFTs. The
Mellin transform of a CFT correlator is a meromorphic function in the Mellin variables. In particular,
for a four point function, the isolated simple poles locate the conformal twists of the operators in the
spectrum whereas the residues at these poles contain information about the 3-point couplings. Thus
the CFT data (operator dimensions and OPE coefficients) is at once made manifest in the Mellin
space representation. Mellin amplitudes are also conformally invariant making conformal symmetry

manifest in Mellin space.

Usually in quantum field theory, we Fourier transform the position space correlators to write
Feynman rules in momentum space. The important advantage in doing so is that translation invari-
ance leads to momentum conservation and the position space integrals are reduced to simple products
in momentum space at tree level. In momentum space, conformal transformations have a non-linear
action and as a result the conventional way of doing perturbative QFT in momentum space is not so

advantageous for CFTs.

Various important features of QFT such as locality, causality and unitarity can be understood in
terms of the analytic properties of momentum space amplitudes. The isolated poles of the momen-
tum space propagator correspond to single-particle states and the branch cuts on the real axis give
the multi-particle states (Kdhlen Lehmann spectral representation) and the amplitudes factorise on
residues at the poles to lower point amplitudes. In a CFT, we do not have single particle states char-
acterised by the masses since mass is a dimensionful parameter. Hence the propagators in momentum
space have branch cuts extending to the origin. In the radial quantization of CFT, the dilatation op-
erator acts as the Hamiltonian. The eigenvalues of this operator are discrete for d > 2. This discrete

set of operators appear in the operator product expansion (OPE) as the exchanged primaries and de-
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scendants in an interacting CFT (in d > 2) . So it is desirable to have a representation for correlation
functions in CFTs that makes this discrete spectrum manifest. As shown by Mack, it turns out that

Mellin space provides such a representation.

The analogy of the Mellin space CFT correlators with scattering amplitudes is also striking. This
has been explored in the context of the AdS/CFT correspondence. Following Mack, the application of
the Mellin representation of conformal correlation functions was explored at strong coupling for large
N CFTs using tree level Witten diagrams in Ad.S [32-38]. While at tree level, there seem to be a set of
Feynman rules to write the Mellin amplitudes, the loop level seems to be significantly more involved.
In the flat space limit of AdS/CFT, a relation between the bulk scattering amplitude and the CFT
Mellin amplitudes was also suggested in [32,35] and later put on a firm footing in [36,39—41]. To be
precise, the flat space S-matrix is expressed as an integral transform of the CFT Mellin amplitude and
the Mellin variables, in the flat space limit, turn into flat space kinematic invariants (the Mandelstam
variables). This scheme also relates the S-Matrix program in QFTs to the Bootstrap program in
CFTs [42].

It was shown recently that it may be possible to bootstrap the full holographic correlator for the
four point function of one-half BPS single trace operators in the context of IIB supergravity in Ad.S5 x
S5 [43,44]. In the context of higher-spin holography, there have been efforts to understand the non-
locality in the bulk interactions with Mellin amplitudes in the dual free CFT [45-47]. A new approach
to the conformal bootstrap has also been developed in Mellin space [48,49] (see also [50-52]). In this
method, conformal correlation functions are expanded in a manifestly crossing symmetric basis of
functions provided by exchange Witten diagrams (in three channels). Demanding consistency with
the Operator Product Expansion (OPE) one obtains constraints on operator dimensions and OPE

coefficients.

The Mellin representation for tensor and fermionic operators and the factorization of Mellin am-
plitudes has also been studied recently [41, 53]. The Mellin representation has also been explored in
the context of minimal model CFTs in [54] and for open string amplitudes in [55]. It was explored
in the weak coupling regime in [56, 57] in the context of SYM and has also been used to calculate
corrections beyond the planar limit to the 4-point function of a primary operator in N’ = 4 SYM
in [58] (see also [59-63]).

The goal of this work is to further explore the suitability of the Mellin representation for studying
perturbative CFTs. We shall work with weakly coupled CFTs and attempt to formulate Feynman
rules in Mellin space for perturbative field theory computations. We consider an exactly marginal
perturbation around a free CFT and investigate whether it is possible to obtain a set of Feynman rules
that can be used to calculated Mellin amplitudes. For simplicity, we shall restrict to scalar operators
in this chapter. We present a complete derivation of the Feynman rules associated to tree level am-
plitudes in complete generality. For this purpose, we also develop a diagrammatic algorithm to write

down the Mellin amplitude for any Feynman diagram (upto arbitrary loop order) as an integral over
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Schwinger parameters corresponding to the internal propagators in the diagram. We further relax the
conformality of the integrals, we consider, to study Mellin amplitudes in free CFTs with a generic
perturbation. It turns out that when we consider integrals that enjoy a scale covariance only (as op-
posed to the full conformal covariance) the corresponding “Mellin amplitudes” can be interpreted as
“off-shell” quantities that reduce to the “on-shell” conformal Mellin amplitudes under an LSZ like

prescription.

This chapter is organized as follows. In section 2.1, we give a quick review of the Mellin ampli-
tude for conformal field theories and also describe the situation when the Feynman rules developed in
this chapter are useful. A more general introduction to the Mellin amplitudes is given in appendix A.
In section 2.2, we consider some simple tree level Feynman diagrams involving only scalar fields and
derive their Mellin amplitude. This is to introduce the general strategy that we follow for deriving
the Mellin amplitude of a general tree level Feynman diagram. In section 2.3, we provide a general
derivation for the Feynman rules for tree level diagrams. For this, we develop an algorithmic method
for writing down the Mellin amplitude for an arbitrary Feynman diagram (tree as well as loops) as
an integral over the Schwinger parameters for the internal propagators. In section 2.4, we consider
the Mellin amplitudes for loop diagrams involving scalar fields and write an integral expression for
the Mellin amplitude for such diagrams. In section 2.5, we extend the notion of Mellin amplitude to

include generic scalar deformations of a free CFT which may break conformal invariance.

Throughout this chapter, the space-time Lorentz indices will be suppressed. We shall use the in-
dices {4, j, - - - } for external vertices and the indices {a, b, - - - } for internal vertices. For convenience,
we shall use the upstair indices for denoting the external vertices and the lower indices for denoting
the internal vertices. This turns out to be useful for us mainly because of the fact that our analysis
does not depend on how many external legs are attached to a given internal vertex. This will become
clear when we consider explicit calculations. More details on the notations and conventions relevant

for this chapter can be found in the appendix C.

2.1 Mellin amplitude and perturbative CFTs

The Mellin amplitude for an arbitrary n-point function is defined by the Mellin transformation of the

position space correlation function [2,31]

a@)= I ([T - ™)

1<i<j<n —i00 7

5 (N = sij> M(s7) @)
=1

j=1

Here s% are the Mellin variables and M (s*) is defined to be the Mellin amplitude. The variable A*
is the scaling dimension of the operator inserted at z*. One strips M (s%) of the factors of I'(s%) for

convenience. This turns out to be particularly useful for large IV gauge theories where these Gamma
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functions account for the poles corresponding to the multi trace operators whereas M (s%) accounts
for poles corresponding to the single particle states. Here, we summarize some important properties
of the Mellin amplitude defined in (2.1). More details on the Mellin amplitude and its properties can
be found in appendix A.

1. The delta function constraints in the definition of Mellin amplitude (2.1) ensure the covariance

of A({z;}) under conformal transformations. More precisely, under inversion

i g0)? (2 = 'J?'j)Q
(x ) - (21)2(20 )2

The correlation function A ({z'}) transforms as

n

H(xi)—QAi

=1

A({z"}) — A({z'})

The delta function constraints > s = A ensure that both sides of (2.1) transform in the same
7
way. !
2. The Mellin amplitude M ({s"}) is manifestly conformally invariant. The conformal trans-
formations act on the position space variables . The z' dependence of the expression (2.1)
and the delta functions imposing constraints on the Mellin variables ensure that A({z'}) is

conformally covariant.

3. The Mellin variables s are symmetric in 4 and j. So the number of Mellin variables s¥ is
n(n — 1)/2. However, due to the n delta function constraints, the number of independent
n(n—3)

Mellin variables is only =——. This is also the number of independent cross-ratios for n

points.

4. The delta function constraints can be solved in terms of the “dual Mellin momenta” [2] with
s = k' k7 and (k')> = —A" and overall Mellin momentum conservation » . k* = 0. These
are fictitious momenta associated with each z'. We refer to (k') = —A’ as the “on-shell”

condition for Mellin momenta.

As mentioned above, we shall consider perturbative CFTs in this chapter. More precisely, we
shall consider the situations in which a CFT is perturbed by marginal operators in an expansion in
the coupling parameter. If the coupling parameters are exactly marginal, the amplitudes will be those
of an exact CFT. This situation arises, e.g., when we perturb free A” = 4 SYM by interaction coupling

gy (or A = g&,,N in the large N limit).

Now, given an exact CFT such as free field CFT of scalar fields ¢;, we can consider perturbation
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by interaction vertices of the form
_ 9n D
Sint = ol A7z G199+ - Op (2.2)

The dimensions of the operators are given by [¢;] = A; and the condition of marginality is given by
> A=D (2.3)
i=1

where, D denotes the space-time dimension.

The interaction vertices of the form (2.2) will contribute to n-point function in perturbation theory.
We shall see how these contributions can be evaluated using the Feynman diagram technique. For
this, we shall make use of the fact that the free field 2-point function for an operator of dimension A
is given by

L
(z—y)

We shall not assume any other details of the theory except the existence of interaction vertices of

2.4)

the form given in (2.2).

2.2 Some Examples of Tree Diagrams

In this section we consider a few simple tree level examples which will illustrate the general strategy
we shall follow for deriving the Mellin amplitude of Feynman diagrams involving only scalar fields.
Specifically, we shall be looking at the contact interaction diagram, the diagram with one internal
propagator and the diagram with two internal propagators. The Mellin amplitude for the contact in-
teraction diagram and one propagator diagram were presented in [56]. We begin with these examples

for pedagogy and completeness of our presentation.

2.2.1 Contact Interaction

The position space Feynman diagram for the contact interaction is shown in Figure 2.1. In this
diagram, N external lines are meeting at the vertex u. We denote the scaling dimension of the field
correponding to the external vertex =' by A’. As mentioned earlier, we choose to place the index

upstairs to keep the notation compact when we discuss more complicated Feynman diagrams.
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Figure 2.1: Contact Interaction Diagram
The position space correlation function corresponding to the contact interaction is given by

Iz/ﬂ ﬁ(gﬁ—u)—m"rw) (2.5)
2(2m)P/2 |14 '

The factors of T'(A?) and 7 have been included for the sake of convenience' later on. We follow these

conventions throughout the chapter.

As mentioned in section 2.1, this expression is covariant under conformal transformations pro-

vided we impose the following ‘conformality condition’ on the conformal dimensions

Z A; =D (2.6)

We now introduce a Schwinger parameter for each propagator via the identity

1 1

= - Alexp [—a(z — y)?
(x_y)zA—F(A)/O dor 0 exp [—a(z — y)?] .7

Using this identity in (2.5) gives,

L[] [ |- (Lo )

n the rest of the chapter, we denote the measure as

dPu

—Q(QW)D/2 =Du
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The factors of T'(A?) present in (2.5) are cancelled by the corresponding factors in (2.7).

Performing the Gaussian integration over u, we obtain

N\U

H/ da! ZCW) exp _ZO” (ZZ@ON &) ) (2.8)

1<j

where, 29 = 2 — 27,
We shall now render (2.8) particularly suitable for imposing the conformality conditions (2.6).

For this, we insert the following partition of unity in (2.8)

1:/?@5(0—20&)

We then rescale the Schwinger parameters, o — /v o' and perform the integration over the auxiliary
variable v using delta function. The end result is

B R 5 e =

1<jg

We now impose the conformality condition (2.6) on equation (2.9) to obtain

:H[/Owdai(ai)ﬂ"-l] exp( Zzaoﬂ ' ) (2.10)

=1 1<J

To proceed further, we now use the inverse Mellin transform representation of the exponential func-
tion ,
1 ctioo
et =— ds I'(s)x™* 2.11
o (s) @11

c—ioo
Here c is a real number greater than or equal to zero (if ¢ = 0, then the contour of integration has a
dent at the origin so as to put the pole at the origin on the left). The contour can be shifted to the right
freely as all the poles are on negative real axis ( note that the poles of I'(s) are at 0 and all negative
integers). This freedom in shifting the contour (or equivalently, the freedom in the choice of ¢) turns

out to be very crucial as we shall see below.

Using (2.11) for the exponential factor in (2.10), we obtain,

r=1111 [ / jj;x[ds”K )" 28”F<s”)] li [ /0 " doi(al) 1} (2.12)

where, the s (corresponding to x*/) are our Mellin variables and ¢*/ are real numbers greater than
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zero. Also,

N ds¥
= A — s s = — 2.13
p ;e : [ds¥] = o (2.13)
J#i

If p° had any real part, the integration over the Schwinger parameters o in (2.12) will give divergent
result. However, as explained in the appendix C.2, the integrals fooo dai(ai)pi_l behave as delta
function inside the contour integration provided the real part of the exponent p° is zero along the

contour. More explicitly, as shown in the appendix C.2, we have the following result

/C CHOO[ds]f(s) /0 o1 = / CHOO[ds] f(s) (2mid(s — s,)) (2.14)

—i00 —100
if we choose ¢ = Re(ss¢) (so that the real part of the exponent s, — s is zero along the contour).

Thus, for the Schwinger parameter integrals in (2.12) to be well defined, we need to ensure that
the real part of the exponents p’ vanish along the contour of integration. Using the expression of p*

given in (2.13), this means that we need to choose the set {c;;} in such a way that they satisfy

N
d =N (2.15)
j=1
J#i

We observe from the discussion in section 2.1 that (2.15) is the same set of constraints that s must

satisfy if the expression in (2.12) has to transform correctly under the conformal transformations.

Therefore we can infer that a solution to (2.15) exists (or else it would lead to a contradiction) and

the Schwinger parameter integrals in (2.12) are well defined.

Using (2.14), the expression (2.12) becomes

I HH [/c +ioo[d8ij](xij)—zswr(sij)] [H 27id (Ai _ ZSU)] (2.16)

. . . . 1) —q . .
joi<g LYerTee Ji

As discussed above, the constraints p; = 0 (enforced by the delta functions) are precisely the con-
straints on the Mellin variables discussed in section 2.1. These constraints originate from the fact
that the position space correlation function is covariant under conformal transformations. We also
note that these constraints reduce the number of independent Mellin variables from N(N — 1)/2 to
N(N — 3)/2. A careful look at (2.16) tells us that the N delta functions force the ()2 terms

N(N-3)
2

to combine and form cross ratios between the external vertices 2! and some extra factors that

give appropriate transformation properties to the position space correlator.

We can now read off the Mellin ampltitude corresponding to the Feynman diagram in Figure 2.1.
Comparing (2.16) with the defining expression of Mellin amplitude (2.1), we find that the Mellin
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amplitude for contact interaction is just 1.

2.2.2 Tree With One Internal Propagator

The next Feynman diagram that we consider (Figure 2.2) involves two internal vertices connected by
an internal propagator. This example will give us the expression for the scalar propagator in Mellin
space. 7 denotes the scaling dimension of the internal propagator.

1 No

Figure 2.2: Two vertex

The position space expression for this diagram is given by
I= / Duy Duy [H(xg —uy) PAT(AD [ [ (24 - Us) 22T (AD) (uy — uy) Y
icl je2
The conformality conditions for the two interaction vertices in this diagram are,
Y Ai+y=D | Y Al+y=D (2.17)
i€l i€2
We again use the identity (2.7) and introduce the Schwinger parameters for each propagator (internal

as well as external)

X i iyAis A 1 o B
I = [H/O dody ()% 1H/O dod ()22 1m/0 dt t 1]/Dul Duy

1€l J€e2

exp (— Za’l(ﬂl —uy)? — Zaﬂ(mﬂ — ug)® — t(ug — u1)2>

icl je2
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where ¢ is the Schwinger parameter for the internal propagator.

Performing the u; integration, we obtain

I= ﬁ]‘[ﬂ(/da;(a;w*) /Ooodtﬂ—l/puz exp< > od(a) — uy) >

a=1 ica JEe2
. -D/2 .
( aj +t> exp (Z ol +t> { Z adad (z%) +tZa1 1 — ug) }
1€l 1€1 (i,5)€1 i€l
(2.18)

Next, we insert the partition of unity

1=/ dyb( Zal—t)

i€l

in the integral of (2.18), rescale the Schwinger parameters
of =\ Jyaoh t—Jyt (2.19)

and perform the integration over the variable y using the delta function. The result is

2 .
1 o o ‘ S Al4y-D
I = — / daé(a;)AG_l/ dtt”‘l( az—i-t)iel
I'(7) gg[ 0 0 ; '
exp( S afal(el]) )/%exp< S (o] — ) — ¢ 3l ._u2>
(3,7)€1 JjEe2 1€l

Next, we perform the us integration, insert the following partition of unity in the integral
1:/ dys(y— Y ah— 13 ai) |
1€2 1€l

carry out similar rescalings as in (2.19) (but this time, with the variables o/, and ¢) and perform the
integration over the auxiliary variable y. This gives,

I = ﬁﬂ[/{)wd%( )R- 1}1—[[/00061@]2'(0%)@_1} /Doodt -1

1€l JjE2
( (1+t%) Z ol al :1:11 Z a2a2 3722 +tZZa1a2 x12 )
(i,5)€l (i,5)€2 i€l je2
> Al4y—D
) . .\ i€l ) STAL idy—D
((mz)z(xwza;) (Cab 1y o) %™
i€l i€2 i€2 i€l
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We impose the conformality conditions (2.17), and then use the identity (2.11) for each exponential

factor. After some rearrangement, we obtain,

ij

i
(i,j)€142 ab ¥ i€l

11 </°C dag(ag)ﬂ%—1> /Oo dt 7727 (14 7)o (2.20)
0

je2 0

where,

po= A= sh-) sh o (ie1)

jel je2
Y ij ji -
py = A — E 8o — E S12 (i€2)
j€2 jel
_ E E ijo. — E ij _
S19 = 812 ) Saa = Sa‘,ya, s a = 1,2
icl je2 1<i<j<Na

Once again, we choose (“;]b appropriately so that the integrals over the Schwinger parameters o} and
b act as delta functions in the Mellin space (as explained in the previous section). This means that

the Mellin variables satisfy the constraints
ph=0=pl Vi (2.21)

These reduce the number of independent Mellin variables from (N7 + No)(Ny + Ny — 1) /2 to (N7 +
Ny)(Ny + Ny — 3)/2. Summing over ¢ and using the conformality conditions (2.17) gives useful

relations between the Mellin variables
ZA§=2511+812=D—7 ; ZA2=2522+312=D—7 (2.22)
iel i€2

By comparing (2.20) with the definition of Mellin amplitude (2.1) (taking into account the constraints
(2.21)), we can easily read off the Mellin amplitude to be

2F1(7)ﬁ(7 _2812’ 12‘) 7)

1 [
M(sm):m /0 dt 7721 4 %)~ = (2.23)

where we have used (2.22) to simplify the arguments of beta function.

The physical interpretation of the amplitude is clear. We can identify the beta function to be the
Mellin space propagator. Moreover, the poles of the beta function have clear physical interpretation.

At this stage, it is convenient to introduce dual Mellin momenta. If the Mellin momentum flowing
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L

Figure 2.3: 4-point exchange Witten diagram

into the internal propagator through the external vertex x’ be k’ (where we have suppressed the dual

spacetime index), then the full momentum propagating through the internal propagator is
SOOI
il i€2
and the kinematical variable entering into the propagator is

sp=Y Y sh=D_K|- D K|=-F

icl je2 iel je2

This means that the poles of the propagator appear at particular values of the k2, namely
S19 = —k>=~v+2n : n=0,1,2,--- (2.24)

These poles correspond to the primary and its leading twist descendants (n = 0) and the satellite

(n > 0) propagating states?.

It is instructive to compare the above result (2.23) at weak coupling with an analogous result at
strong coupling obtained using Witten diagrams in the dual bulk theory in AdS in [32,33,35]. As
an example, we look at the result obtained in [33] for the 4-point function exchange Witten diagram

involving scalars as shown in Figure 2.3.

2As shown by Mack [2], the poles of the Mellin amplitude occur at s =y —£+2n , (n = 0,1,2---). The first pole
(n = 0) corresponds to the exchanged primary operator and all its leading twist descendants (i.e. those operators in the
conformal multiplet whose dimensions and spins keep v — ¢ fixed). The higher poles (n > 0) correspond to the satellite
poles. The above result (2.24) is consistent with this expectation.
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The Mellin amplitude for this diagram is given by (for a coupling constant g),

, [ (AA =2 ¢ (A5Ai g
g

1 2 2
2 (s12—7) F(1+~v-2)

" <2—A%—A%+’y 2—AJ—AS+7y v—s12 2+7— S12
3by

M(Slg) =

1+ D'l
9 ) 9 ’ 2 ) 2 ) ! 27

This Mellin amplitude has the same analytic structure as our corresponding result (2.23) for the weak

coupling case which is proportional to 3 (3512, 2 — ).

It would be interesting to understand the extrapolation of the weak coupling results to the strong
coupling results (in the particular example we have considered, how the beta function of the weakly
coupled regime extrapolates to the 3F5 hypergeometric function in the strong coupling regime). In
the maximally supersymmetric case, it may be possible to use the integrability of the boundary field
theory as well as the string theory in the bulk to understand this interpolation between the results at

strong coupling and at weak coupling.

2.2.3 Tree With Two Internal Propagators

In order to check our interpretation of the result (2.23) as the propagator in Mellin space, we consider
one more example before generalising to arbitrary tree level diagrams. We consider a Feynman

diagram with two internal propagators (see figure 2.4).

1 1
L] L3

Figure 2.4: Three vertex tree
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The position space expression for this is given by

I = /DU]DUQDUg H {(m’l — ul)_zAiT(A’i)} H {(1'12 — u2)—2A§F(A;)}

1€l 1€2
< I1 {(a;g _ ug)—mér(Ag)} (g — ur) =212 (g — 1) 202 (2.25)
€3

In this case, the conformality conditions are

ZAZ = D—7at1 — Ya-la > 1<a<3

1€a
where, 791 = 0 = 734.
For extracting the Mellin amplitude, we follow the same strategy as in the previous examples.
However, now we have to choose an ordering of the vertices u, for conducting the manipulations.

All the choices lead to the same result eventually®. We follow the order u; — 1o — us. The final

result turns out to be

2o
cab+Loo

=TI I ) st reien) [I(II [ eyt ) arten

%J .
a=1b=a \(i,j)€a+b" “ab™ "> i€a

where,
3 .
Pa = A;—Zsya—Z(Zsffb) , 1<a<3
jea b=1 \jeb
b#a

Again, the integration over the variables o, impose the constraints p!, = 0 which can be re-written as

(using the conformality conditions)

3
ZA; - 25(1(1, + Zsab =D — Ya—1,0 — Ya,a+1 1 S a S 3
i€a =1
b#a

Due to these constraints, the number of independent Mellin variables are only N (NN — 3)/2 (where

3The different choices for this ordering lead to integrals over the Schwinger parameters which are not manifestly
equal. For diagrams with higher number of interaction vertices, it can often be difficult to show that these different
integrals corresponding to the same Feynman diagram are all equal.
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N is total number of external states). The Mellin amplitude is given by

1 o0 o0
]\j(sab) / dtlz(tlz)"ﬂz—slz—sll’»_l / dt23(t23)“¥23—813—823—1
(723) Jo 0

[(y12)T
2 2 —s11 9 —S822—S12
(1+2,(1+ 1)) (1 + t23) (2.26)

_ 1 Y12 — S12 — S13 D 1 Yo3 — S23 — S13 D
B [21“(712)6< 2 ’ 2 712)] [2T(723)6( 2 "2 /23>

This result, being a product of two beta functions with appropriate arguments, is consistent with

our interpretation of the Mellin space propagator (2.23). Moreover, the poles of the propagator
occur when the negative of the total Mellin momenta squared flowing through it is equal to the
conformal dimension of the primary and descendants. This is easily seen by introducing the dual

Mellin momenta and writing the arguments of beta functions in terms of these momenta.

2.3 General Tree Level Feynman Diagrams

We now consider general tree level Feynman diagrams. We shall show that the Mellin amplitude for
an arbitrary tree diagram is given by the product over internal propagators. For each internal prop-
agator, we obtain a factor of beta function with appropriate arguments consistent with the examples

considered in the previous section.

In subsection 2.3.1, we present a diagrammatic algorithm to write down the Mellin amplitude (in
terms of integrals over the Schwinger parameters) for any diagram involving only scalar operators.
In subsection 2.3.2, we consider a tree diagram with n internal vertices such that one can go from
one end of the diagram to the other end without encountering any branches (figure 2.11). Finally, in

subsection 2.3.3, we consider a completely general tree diagram.

2.3.1 Diagrammatic Rules for Writing Mellin Amplitude

In this subsection, we present a diagrammatic technique which will be helpful in directly writing
down the Mellin space amplitudes as integrals over the Schwinger parameters. These rules can be
used for any tree as well as loop diagrams and will allow us to avoid going through all the algebraic

manipulations, as described in the examples of the section 2.2.

For developing these rules, we shall use a simplified way to represent the Feynman diagrams.
In our diagrammatic algorithm, the external lines in a Feynman diagram would not be playing any
significant role. Hence, to simplify the diagrammatic representation, we represent the set of external
lines attached to an interaction vertex by a small hollow circle at the vertex and the internal propagator

by dashed lines. We call this the skeleton of the Feynman diagram. The skeleton for the single

27



propagator Feynman diagram we considered earlier, is shown in Figure 2.5. Note that this way of
representing a Feynman diagram is insensitive to the number of external legs attached to any given

interaction vertex.

U1 U9

Figure 2.5: Skeleton of the single propagator diagram

Illustrating the rules

We now consider an explicit example of the two propagator case of section 2.2 to understand the
diagrammatic rules. The skeleton of this Feynman diagram is shown in Figure 2.6. Considering
this example serves a two-fold purpose. Apart from being an explicit (and simple) example of the
application of the rules, it also helps us understand the origin of the rules. The essential idea is
to represent the steps of derivation leading to the Mellin amplitude as a series of diagram. The
components of the diagram are assigned some weight factors. The Mellin amplitude can be written
in terms of the weight factors of the final diagram obtained after integrating over all the position

space vertices.

Figure 2.6: Tree level three vertex

We start with the position space expression for this diagram which is given in equation (2.25). For
integrating over the interaction vertices, we choose the ordering u; — uy — wu3. We first consider
the effect of integration over the u, variable. When w; is integrated over, we get terms of the form
odod (zh —27)? and o t15 (2 — uy)? in the exponent. The factors of o eventually do not contribute to
the Mellin amplitude (their role is in providing the delta function constraints on the Mellin variables
as seen in examples of previous section). After using the Cahen Mellin identity for the exponentials,
the coefficient of o] (2% — 2])? essentially becomes the part of Mellin amplitude. Keeping this in
mind, we assign a weight 1 to the factor (2 — 27)%. We also assign a weight of ;5 with the factor

(2% — uy)? (the reason for this will become clear shortly).

The statements made in the previous paragraph can be nicely captured by a diagrammatic means.
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We take the diagram in figure 2.6 and replace the small hollow circle associated to the vertex u; with
a bigger circle and the dashed lines connecting the adjacent un-integrated vertex with solid lines.
We associate a weight 1 with this bigger circle and a weight ¢, with the solid line (which is the
Schwinger parameter associated with the line joining the vertices 1 and 2). This has been shown in

Figure 2.7 (from now on, we won’t write the vertex indices u,,)

@ S o

Figure 2.7: Diagrammatic representation of integration over vertex 1

Next, we perform the integration over the wuy vertex. This gives rise to terms of the form (1 +
1) o (2] — 21)% taafad (o] — xh)?, ahed (¢ — 25)?, abtas(zh — ug)® and o tiates (2] — ug)? in
the exponent. Keeping in mind that the coefficients of o/, (z!, — x])? eventually become part of
the Mellin amplitude, we diagrammatically represent this step by replacing the small circle around
the u, vertex with a bigger circle, replace the dashed line connecting it with w3 vertex by a solid
line and making one more circle around the u; vertex. We also connect the vertices u; and u3 by a
different solid line. From the terms just mentioned, we see that we need to associate a weight 1 with
the circle around u» vertex, a weight ¢53 with the solid line connecting uo and ug vertices, a weight
t15to3 with the solid line connecting v, and u3 and a weight th with the new circle around w«;. This

step, combined with the first step, can be represented as in Figure 2.8.

1
t t
. e
12
t12to3

Figure 2.8: Diagrammatic representation of integration over second vertex

At this stage, we can state our strategy as follows: as mentioned above, the coefficients of
a;ag(azfl — x{))2 in exponent in the final expression becomes the part of the Mellin amplitude. We
have chosen to represent the coefficients for the case a = b (i.e. a’,ad (x! — x2)? ) by associating the

weight factors to the circles drawn around the vertex u,. On the other hand, the coefficients for the

case a # b (i.e. alaf(x! — x])? ) are represented by associating the weight factors to the solid line

connecting the vertices u, and wuy.

Finally, we integrate over the third vertex. The effect of this integration is represented by making

the small circle around that vertex bigger. Drawing another circles around the first two vertices each
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and drawing another solid line connecting the first and second vertices. We associate a weight of 1
for the circle around the third vertex, a weight of t§3 for the new circle around the second vertex, a
weight of #3,t2, for the new circle around the first vertex and a weight of ¢;5t2, for new solid line

connecting the first two vertices. This is shown in Figure 2.9.

9
153

2 42
t12t23

t19to3

Figure 2.9: Diagrammatic representation of integration over third vertex

Next, we replace the two lines between the first two vertices by a single line and associate a
weight which is sum of the weights of previous two lines. Similarly, we replace the multiple circles
at each vertex by a single circle and associate a weight which is sum of the weights of all circles
initially present. After combining multiple lines and circles, Figure 2.9 has been redrawn in Figure
2.10.

To write the Mellin amplitude,

1. For each initial dashed line between the vertices u, and u;, we associate an integral

1 00
dtop (ta Yab—1
r (PYab) /0 ’ ( b)

2. For each solid line and circle in the final diagram, we include in the integrand, the correspond-

ing weight factor raised to the power of s,, where a and b are the two vertices associated with

1+ t3,

@

1+ t35(1 + t35) -

t12to3

Figure 2.10: Final step for writing the Mellin amplitude
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the line or the circle (in which case a = b).

Following the steps described above, the Mellin amplitude for the three vertex tree can be obtained
to be

1 o S
- - dt t 712—1/ dt " oz —1
I'(v12)I(723) /0 12(t12) . 23(t23)

2 2 —S811 2 —822 2 —S812 —S813

M(Sab)

—823

This is same as the expression (2.26) given in the previous section.

General Rules

We shall now state the general rules for writing down the Mellin amplitude for any given Feynman
diagram involving scalar fields. With a little thought, we can convince ourselves that the method
described above works for any diagram. This is essentially due to the reason that for deriving the
Mellin amplitude of any diagram, we need to integrate over the position space vertices and introduce
the Mellin variables in the same manner. Hence, the steps of integration over the vertices, for any

diagram, can be captured in a diagrammatic manner as described above for three vertex tree diagram.

We start with the skeleton and follow the steps given below for each interaction vertex, one at a
time. For a general Feynman diagram there is a freedom to choose the order in which the different

vertices are integrated over one by one. This procedure works for any chosen ordering.
Diagrammatic representation of integrating over an interaction vertex

At any interaction vertex on the skeleton (which has not been integrated yet), in general, there
will be a small hollow circle denoting the external lines, and dashed and solid lines for the internal

propagators. To represent the effect of integration over this vertex, we do the following:

1. Replace the small circle with a bigger circle and associate a weight 1.

2. If this vertex is connected by a solid line (with weight ) to another vertex which already has a
circle with some weight, draw another circle at that vertex. Associate a weight 2 to this new

circle.

3. If this vertex (that is being integrated over) is connected to another vertex with a dashed line,
we replace that dashed line with a solid line and associate a weight equal to the Schwinger

parameter for this internal line.

4. After the third step, if this vertex (which is being integrated over) happens to be connected
to two or more vertices {a} by solid lines with weights {t,}, then we join each pair of those
vertices by a solid line as well. To the new line joining vertex a and b, we associate the weight
ta,tb-
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5. If any two vertices are connected by multiple lines (or any vertex has multiple circles) with
each line (or circle) being associated with some weight, we replace them with a single line (or
a single circle) with a weight equal to the sum of the weights of the individual lines (or circles).
The final diagram should have a single line between any two vertices and a single circle at each

vertex.

6. If the vertex (which is being integrated over) is only connected with internal lines but no ex-
ternal lines (in other words, it does not have small circle), then we do not make a bigger circle

around it. However, the steps 2-5 are still applicable.

Writing the Mellin amplitude

1. For each initial dashed line between the points a and b, we write an integral

1 o0
dta t[l Yab—1
r (/Vub) /0 ’ ( b)

2. For each solid line between the interaction vertices a and b (and a circle at @) in the final
diagram, we include in the integrand a factor equal to the corresponding weight raised to the
power Sy (54, for the circle).

Although the output of this procedure is always the Mellin amplitude which is unique, the exact
expression for the integrand (function of the Schwinger parameters for the internal lines) depends on
the order we choose for integrating over the vertices. Also, it is not easy to show by direct evaluation
of the integrals that these different integrals are in fact equal. For our purposes, we shall choose the

order for integrating over the vertices that leads to the simplest integral.

2.3.2 n-Vertex Simple Tree

In this subsection, we consider a tree level diagram with any number of interaction vertices such that
all the internal propagators are connected as a single chain. In other words, there are no branches
on the skeleton as shown in Figure 2.11. We refer to this diagram as the simple n-vertex tree. The
examples considered in section 2.2 are special cases of this.

Figure 2.11: Simple tree with n vertices
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The position space amplitude for this diagram is given by the following integral expression

[ / Dua{ (af — ua)—%fzr(A;)}{(ua - uaﬂ)—maﬂ}]

This expression can be brought to the standard form

[T T [ e T (2risi ) 220

a=1b=a \(i,j)€a+b Cab_wc
n ..
where, oy = Al — Z si - Z (Z sfjb> , 1<a<n (2.28)
jea p=1 jeb
a

For the standard order of integration over the position space vertices (namely, u; — uy — - -+ — uy,),
the Mellin amplitude M (s,) in (2.27) is given by

n—1 ) —Qu
M(Sab) = n—l;ﬂ{/o dtua—H( aa-i—l)Ra_l (GZ) ¢ } (229)

where,

a

= Ya,a+1 — Z Z Seb Qu, - Z Sba 1 S a S n—1 (230)

b=a+1 c=1 b=1

G—1+taa+1(1+ta+1a+2( ------ +t5_14)) 1<a<n-1, a<b (2.31)

To evaluate this integral, we start with the Schwinger variable ¢,,_;,, and make a coordinate
transformation and a rescaling simultaneously

2 2
1+ tn In = Yn-1 yN—ltn—Zn—l — tn—2,n—1

By making a further coordinate transformation y, 1 — 1 — y,_1, the integration over y, 1 can be
recognised as a beta function and we obtain

M(sw) = H2{ / OOdtu,uﬂ(tu,aﬂ)&‘l(Gz—l)_Q“}
) 0

(A/a a+1

[\le—lﬁzl

F
( ne1 an Ry, +Qn_1)
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We iteratively perform similar steps in order to integrate over the remaining Schwinger parameters

and make necessary simplifications to obtain,

n—1 Va.a+1 — Z Z Sbe
1 ]_ beLa_a C€Ra,a 1 D - 2”‘(1/7(1’
M(Sab) = n_l— §ﬁ< ,2+1 + 7 2/ +1) (232)
H F(va,a-l—l) a=1

where,

bELa7a+1 cERqat1 b=1 c=a+1

The L, .41 and I, .41 appearing in above two equations stand for Left and Right respectively. If
we cut the diagram 2.11 along the propagator ¢, .1, the vertices will get divided in two sets. The
set Lg q+1 includes all the vertices which lie to to left of the cut and the set 1, .41 includes all the
vertices which lie to the right of the cut. An example for n = 4 is given in Figure 2.12 in which the

sets L3 4 and R34 have been shown.

Left Right
L3,4 = {1a 273} R3,4 = {4}
®-------- ®------mmm-- R EEE T °
1 2 3 4

Cutting the line {34

Figure 2.12: Left and Right of a cut line

The result (2.32) is consistent with the previous examples as the Mellin amplitude is a product
over all the propagator factors (each of which is a beta function with appropriate arguments). We
can again introduce dual Mellin momenta and replace the Mellin variables in the arguments of beta
functions in favour of the total Mellin momenta flowing through the propagator. The propagators
develop a pole when the negative of total Mellin momenta squared flowing through it becomes equal

to the conformal dimension of a primary or descendant flowing through it.

2.3.3 General Tree

Finally, we consider a completely general tree Feynman diagram and show that the Mellin amplitude

for it can be written in a simple form as product over all the internal propagator factors. The derivation
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Figure 2.13: Example of a general tree level Feynman diagram (skeleton)

of Mellin amplitude for an arbitrary tree Feynman diagrams is a graph theoretic exercise and does
not shed any light on the physical significance of the result itself. Hence, in this section, we shall
only state the final result and discuss it’s physical significance. The details of the derivation have

been presented in the appendix C.4.1.

From the diagrammatic rules given in section 2.3.1, we know that the amplitude can be written in

the following form

M ({sa}) = ] [ /0 N dtab%] P ({1 {50}) (233)

The product runs over all the internal lines*. F is function of the Schwinger parameters and the
Mellin variables.

The function £’ depends on the order of integration of the position space vertices and, in general,
is a very complicated function of the Schwinger parameters. It turns out that for the tree diagrams,
it is possible to make a choice for the order in which the vertices are integrated over such that the
integral (2.33) can be performed easily. This has been described in detail in the appendix C.4.1. With
such a choice, the function F' can be expressed as

F = H (tub)_Pab (A(Lb)_Qab

all propagators

4Since we are considering a general tree which may have brances, it is not necessary that neighbouring vertices will
always be labelled with consecutive integers.
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where,

Pab:ZZSCd ) Qab=ZZSCd +Zsad

c€Ly, dERyy c€Lgyp dezab d€Lgp
c#a d#a
The term involving the double sum in @), is absent if there is no branching at the vertex a in the
skeleton. The tilde in one of the L in this double sum denotes the fact that we should not include

terms of the type s.q where ¢ and d are on the same branch in the set L.

To define the function A,;, we shall need a reference vertex which can be chosen freely from any
one of the end vertices (a vertex with only one dashed line attached to it) on the skeleton. Let that

vertex be P (see figure C.1 and the related discussion in appendix C.4.1), then
Aw=1+10 L+t (1+ (1 +0p)..))

b,c,...,o are all on the shortest continuous route from a to the reference vertex P.

The final result, after integrating over all the Schwinger parameters in (2.33), turns out to be a
product of beta functions with one beta function for each internal propagator. The arguments of beta
functions involve the Left and Right part of the propagator as in the case of simple tree in previous
subsection. Since there may be branches in our tree, we need to specify what Left and Right of a
cut line mean in this context. As a rule, we refer to the part of the diagram (after the cut) having
the reference vertex P as the Right. With this, we can write the Mellin amplitude for a completely

general tree as

1 Yab— Do D Scd D
c€Lyy, dER,
M ({sa)) = | [ 557557 e S (2.34)

The product is over all the internal propagators of the diagram.

The physical interpretation of the above result becomes clear if we again consider the dual Mellin
momenta. As before, we denote the Mellin momentum flowing into the diagram through the external
vertex x’ by k. We first note that the constraints on the Mellin variables are automatically satisfied

if the total Mellin momentum is conserved. The constraint satisfied by the Mellin variables is

Z(ZSQ’;)=AZ — K (zb:zkg)zo

b jeb

where, we have used A = — (k)%

The simplest way to satisfy the above equation is by demanding that the total Mellin momenta is

conserved, namely 3 > &/ = 0.
b jeb
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Now, the full Mellin momentum propagating through an internal propagator, joining the vertices

a and b, is

SDIPIEEP B

cELyp t1€C cERy 1E€C

and the kinematical variable in the propagator is

SDIPFES 3 35 3 SEEIO 9D I N B ob oiE) BE

cE€Ly, dERyy c€Lyp dERyy, t€EC jEd c€Ly, 1€C deRyp, jEd

In terms of the Mellin momenta, the expression for the propagator can be written as

1 1 D 1 ST (w—2+1+4n) 1
5 \a k? y o Jab | = 2
2F(7ab)ﬁ<2(/b+ ) 2 W) F(%b)z Al (Y — 2+ 1) k2 + 79w+ 2n

n=0

This shows that the total Mellin momentum (squared) flowing through the propagator has poles at
—vap— 2n. These correspond to the propagation of a primary field and the corresponding descendants
(see footnote 4). The above sum representation of the propagator is analogous to the Kéhlén Lehmann

spectral representation in ordinary quantum field theories.

The Feynman rules for tree level Feynman diagrams in perturbative CFT for scalar fields is now
obvious. The propagator for any internal line is given by (2.34) and we simply multiply all the

propagator factors of the diagram.

We would like to wrap up this discussion with a brief recapitulation of the most important points
we have learnt so far. Mellin space provides a manifest conformally invariant representation for
correlation functions in a CFT. At tree level, there exist a set of Mellin space Feynman rules that
can be associated with Feynman diagrams involving scalar operators. Some linear combinations of
the Mellin variables that appear in the propagators can be interpreted as Mandelstam variables con-
structed out of the (hypothetical) external Mellin momenta flowing into the diagram. The invariance
of the amplitude under special conformal transformation allows for a statement of conservation of
Mellin momentum. All the Mellin variables (or equivalently all the Mandelstam variables) are not
independent and the number of independent Mellin variables is equal to the number of independent
cross ratios between the external vertices in the diagram. Mellin space also allows a spectral repre-
sentation for the correlation functions as any propagator in the diagram has a discrete infinite set of

poles corresponding to the exchanged primary field and its descendants.
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2.4 One-Loop Feynman Diagram

After deriving the Mellin space Feynman rules for tree level diagrams, the next step is to consider
loop diagrams. We have not yet been able to derive the Feynman rules for loop diagrams. In this
section, we shall content ourselves with the expression for the one-loop Mellin amplitude as an
integral over the internal Schwinger parameters. It may be possible to derive the loop Feynman rules
in Mellin space using an approach similar to the one presented in appendix C.4.2 which treats the

n-vertex simple tree in a way different from what we have already seen in section 2.3.

The position space amplitude for the loop Feynman diagram in figure (2.14) is given by

n n—1
@--------m----- Q
.
d
.
.
4
s
’ N
’ N
1@ 2
A 4
~
S ’
A 4
A 4
A v
Ay
A ’
A 4
O-------m---o-- °
2 3

Figure 2.14: One loop diagram with n internal vertices

n

1_[[/1)uaZ a () — ug) 22eD(AY) }

a=1

[T — ) >0 (2.35)
b=1
wheren + 1 = 1.

2.4.1 One-Loop Mellin Amplitude

The Mellin amplitude for the n-vertex one-loop diagram can be derived using the position space
amplitude (2.35) by following the same procedure as in the previous sections for tree diagrams. The
Mellin amplitude is written as integral over the Schwinger parameters and the integrand depends
upon the order in which we perform the integration over the interaction vertices in position space.

For the cyclic order of integration (u; — us — - - - — u,), the Mellin amplitude turns out to be

n n—1 n

taa—i—l ')a at1-1 b —Sab
M(sw) = [] { / dto it } I] H(H 4K Kb> (2.36)

a=1 7aa+1 a=1 b=a
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where,

Hg = tloat1 - -tb_lvbGZ_l 1<a<b<n-1
HY = &t 1<a<n-—1
ﬁ;’ =0 1<a<n

K, = (tlnt12 cota1aGT T g tn—l,n) I1<a<n-1

K, = 1

We have defined G? in eq. C.1.

2.4.2 Special Case: Loop With 3 Internal Vertices

The conformal Mellin amplitude of one loop diagram with 3 internal vertices ( “delta” diagram) can
be exactly evaluated in terms of a tree amplitude (“star” tree diagram). This happens due to the

standard “star-delta” relation in an analogy with a similar result in electrical circuits.

bR R > I
(> 1

Figure 2.15: Skeleton of the “star” and the “delta”

The position space expression for the star diagram is

Lspar = /DU4£[1 [/ Dua{H(CEZ - ua)_ZAZF(AZ)}(ua — U4)_27‘/1’4]

1€a

To show the equivalence with the 3 vertex loop, we need to perform the integration over the central
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vertex uy4. For this vertex, we perform the standard algebraic steps as in section 2.2.1 and obtain
Istar =

/Du (28 — ug) 22D (AL) H /Oodz‘4M
a16a a - F(%le)

(U /[dsa]F(Sa)> {t147524(U1 - Uz)}_ng{tmtw(Ul - U3)}_282{t24t34(u2 - UB)}_%

Integration over the Schwinger parameters £, 4 give 3 delta functions. We can thus perform the 3

integrals over s,. The resulting expression is proportional to the 3 vertex loop amplitude in position

space, i.e.
T ~
Istar = (7123) (’}/23) (/13 {/DUQ (1‘ _ua) 2A F(Al)}
1:[1 ("ya 4) a=1 i€a
X (U — ug)” 12 (uy — ’U3)_2%3 (ug — ’LL3)_2FY23
where,

Y4 = Y12 + M3 . Yaq = Y12 + Vo3 . Va1 =13 + Vo3

Thus, if we represent the internal propagator of 3 vertex loop by v, and those of the star diagram by

7.4, then the above relation says

L(712)T(723) T (713)
L(714)T (794) T (734)

]St(LT'(S(LlH /y;b) - X ]delta(saba Vab)

The star diagram is a tree diagram and its Mellin space amplitude can be easily written down using

the Feynman rules given in the previous sections. Thus, we find the 3 vertex loop amplitude in Mellin

space to be
Lyt = 1 (”/12+713—S12—513 D N N )
— s 12— N
A 8 ()T (725) T (13) 2 2 3
Y12 + Vo3 — S12 — S93 D Y13 + Y23 — S13 — S93 D
B 5 75—’712—723 B 5 75—“/13—723

2.5 Non-Conformal Mellin Amplitudes

In this section, we revisit some of the tree level Feynman diagrams we have been considering so far.
However, this time we relax the conformality conditions imposed on them. The motivation for defin-

ing these “non-conformal Mellin amplitudes” comes from noting that exactly marginal deformations
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of CFTs are rare (generally arising only in some special supersymmteric gauge theories).

We have been considering CFTs whose Lagrangian descriptions are in terms of scalar fields.
Since the couplings generically run with the energy scale, the beta function is non-zero and conformal
invariance is broken. Thus, even a classically marginal perturbation generally breaks conformal
invariance once quantum effects are included. We thus study these non-conformal Mellin amplitudes
by considering a generic scalar perturbation around a free CFT that may not preserve any of the
conformal or scale symmetry. At an operational level, we relax the conformality conditions that we

have been imposing at each interaction vertex.

2.5.1 Some Examples

As a concrete example, we consider the simple n-vertex tree of figure 2.11. The conformal Mellin
amplitude for this diagram was given in (2.29). If we do not impose the conformality conditions,
then instead of (2.27), we obtain

HH( I/ (s r<sab><zz@>*si@>z\7<sab>
a=1b=a \(i,j)€a+b —i00

where,

w = J1(I1 e Ity (@)

a=1 \i€a a=1
n a—1 n _)\u
X H <Hba2a},> + (HabZa},)}
a=1 \ b=1 1€b b=a 1€b
n
= 9 ( (e — pa)> M (s4) (2.37)
a=1
where p! is defined in equation (2.28) and
Gg = 1+taa+1(1+ta+1a+2( """ +t3—1,c)) 1 S a S n—1
Hab = ta7a+1ta+1,a+2 ce 'tb—l,bin ) Haa = Gan
)\a = D_ZAZ_")/G,—L(I_’Y(I,G—‘,—l ) I<a<n
1€a
pa = D ph . 1<a<n
1€a

It is a simple exercise to extract the overall delta function from the expression of M (Sap) as we have
done in equation (2.37). We shall take M (s,;) in (2.37) to be the definition of the “non-conformal
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Mellin amplitude” for n-vertex simple tree>.

One crucial limitation of this treatment that should be noted here is that the delta function in
(2.37) is graph dependent and consequently the definition of M (s,;) is also graph dependent. There-
fore, although we can calculate M (s,;,) for individual diagrams, that is not exactly equal to doing
perturbation theory in Mellin space. The delta function emerges in this context from the fact that
the position space integrals still scale in a given way, although this scaling property depends on the

particular graph being considered and may not refer to any symmetry of the theory itself.

The conformality condition amounts to setting all A, equal to zero. However, we work with non
zero \,. For concreteness, we consider the special cases n = 1 and n = 2 which give us some

interesting results.

Contact Interaction
For a single vertex (i.e. n = 1), the expression (2.37) gives
N N
—~ i Z Al—
) =11 (/ ey ) ()=
i=1 \/0 i=1

All symbols have their usual meaning as used previously. In the conformal case, the expression
above just gives delta function constraints on the Mellin variables. We now evaluate this in the non

conformal case. For this, we insert the partition of unity

. N
1:/ dq 5<q—2ai>
0 i=1

in the above integral, make the coordinate transformations o = ¢ v and use the identity

N .
| 11T
H/ dz’ (z)" 16 (1—2:;;) :Z_T (2.38)
(%)
Using the expression for p;, we finally obtain,
N N
H LA =Y 59
i=1 7j=1
M(s) = ks (2.39)

JCEHY

SWe are using the same symbol M (s,p) to denote both conformal as well as non-conformal Mellin amplitudes.
However, the distinction should be clear from the context.
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We have used the constraint arising from the overall delta function (see the definition (2.37)) to

simplify the arguments of the Gamma function in denominator.

Tree With One Internal Propagator

We next consider the tree diagram with one internal propagator (i.e. n = 2). For n = 2, the

expression (2.37) reduces to

M(sw) = ﬁﬂﬂuwdamé)pf)/ (e ()

a=1 i€a 0
-\ \
. . . . —A2
<(1 +t2)2a’1 +t2a’2> (Z ol +tzag> (2.40)
1€l 1€2 €2 el

where, we have relabelled ¢1, — ¢ and 7,2 — 7 to match with our notation in section 2.2. After some

manipulations (see Appendix C.4.3), the non-conformal Mellin amplitude can be extracted to be,

M(Sab) =
D - A R - A A A
3F2<7—§+A1+>\2,R1+/;1 17 1+/;2 2;R1+/;1+ 17R1+/;2+ 2;1)
2 Ritpi—X Ri+pa—>X
1 ' ( 1+p1 I)F( 1t+p2 2)
X = T'(p}) 2 2 (2.41)
Qr(fy) ;!;[1 il;[ ] I (R1+/;l+/\1) I (R1+/;2+)\2)

where, R =7 — spand \, = D —y — > Al
ic€a
We now look at the pole structure and the conformal limit of the expression (2.41).

Pole Structure

The poles of the amplitude (2.41) occur when the arguments of the gamma functions in the numerator
in second line are zero or negative integers (35 does not give rise to any pole). Thus, as a function

of the Mellin variables, the poles of the amplitude lie at

Ry +p1— A , D
1 p21 1=_n —_— 511—|—512:ZA;+"}/—5+2TL
i€l
and,
Ri+ps— A : D
S p22 g — - 822+512=ZA2+7—5+2”/
i€2

where, n, n’ are zero or arbitrary positive integers, i.e. 0, 1,2, - -.

This shows that in the non-conformal case there are two sets of poles, which in the conformal
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limit A, — 0, coalesce to give the one set of poles we had earlier.

Conformal Limit

In the conformal limit, we have A\;, Ay — 0. To impose this limit, we first take \; — 0 keeping A,
fixed and non-zero. In this limit, two of the arguments of the 3 F5 hypergeometric function in (2.41)

will become identical and it will thus reduce to a 5 F} hypergeometric function

— g ;
M (sa) = MH[HF(%) [ (Fileits)

5(101 +p2— /\2>
a=1 Li€a 2

2F1( D R1+P2—)\2,Rl+ﬂ2+/\2;1>

e

~ 2
Y 2+27 2 ) 2

Now using the Gauss identity (C.11), we obtain after some simplification

—~ 2 . o{p1+p2— Ao L0y — Ny
M(su) = %MH[HF@;)] L o ) p(Pre= . 20

a=1 Li€a

If we now take the limit Ay — 0, we recover the Mellin amplitude (2.23) for the conformal case along

with the delta function constraints (2.21) on the Mellin variables.

2.5.2 Scale Invariant Amplitudes and Off-Shell Interpretation

In usual QFTs, we often consider correlation functions in which the external legs are off-shell. One
puts these external legs on-shell via the LSZ procedure. It turns out that we can define analogous

“off-shell” objects for conformal field theories in Mellin space as well.

For this purpose, we consider position space correlation functions with scale covariance (as in a
theory with scale symmetry) ® although they need not have the full conformal covariance. We expect
any physically interesting scale invariant theory to be conformally invariant as well (see [64] and the
references therein). However, it is still interesting to consider this case, since as we shall argue below,
the corresponding “Mellin amplitudes” seem to be “off-shell” quantities that reduce to the “on-shell”

Mellin amplitudes’ of conformally invariant theories through an LSZ like procedure.

We can imagine extending the definition of the Mellin amplitude to scale invariant theories in the

following manner

Ay =1] (/_wo gir(gi)(mi — y‘)—%f‘f) b (Zl: AT — ZZ,,JJ‘) M (sY)

i<j 100 i#jJ

®In our notations, this would be equivalent to setting >~ A\, = 0 although individual )\, need not be equal to 0.
a

7(kl)? = — Al being the on-shell condition.
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As opposed to the NV (number of external lines) delta function constraints for the conformal amplitude
(2.1), in this case we only have one overall constraint on the Mellin variables resulting from the
covariance under scale transformations. Therefore, the number of Mellin variables in this case is
only N(N — 1)/2 — 1 which is also the correct number of independent kinematical variables in a

scale invariant theory.

For this case also, we can introduce the dual Mellin momenta in exactly the same manner as
before (see section 2.1). In terms of these dual momenta, the overall delta function constraint trans-
lates to the condition ), (k%)> = — Y. A" which is weaker than the conformal case (k)> = —A",
However, we can still demand the conservation of these dual momenta, i.e. ZZ Et = 08.

The contact interaction diagram has only one interaction vertex and ensuring scale invariance
automatically ensures conformal invariance as well. However, for more than one interaction vertices,
there is a difference between the scale and conformally invariant Mellin amplitudes and the expres-
sions for the former can be obtained by imposing > A, = 0 on the corresponding non-conformal
Mellin amplitudes. For example, for the single propagator case, to obtain the scale invariant Mellin
amplitude, we would need to impose A\; + Ao = 0 on (2.41).

From the examples given in subsection 2.5.1, we can see that each amplitude has a factor in-
volving the product over Gamma functions, namely, [, I'(p") (we have suppressed the label for the
internal vertices). We also know that the conformal Mellin amplitudes involve product over delta
functions with the same arguments, namely, Hi ) (pi). In terms of dual Mellin momenta, we can

write

gi= Al ZSU = (k)2 + A
J#i

Thus, in the conformal case, the delta functions impose a set of constraints (k%)% + A’ = 0 which
is the “on-shell” condition for the Mellin momenta. In contrast, for the scale invariant amplitudes,
we have Gamma functions with the same arguments for each external leg. In the space of Mellin
momenta, the “on-shell point” (or equivalently the conformal theory) lies at the pole of the Gamma
function (where its argument vanishes). This motivates us to interpret these Gamma functions as
external leg factors. It is in this sense that the scale invariant amplitudes are “off-shell” objects and
imposing the conformality conditions is akin to an LSZ prescription in which the external leg factors

are replaced by the corresponding delta functions.

8This is not possible when the scale covariance is also absent.
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Chapter 3
Multiple Subleading Soft Graviton Theorem

In this chapter, our goal will be to derive the subleading multiple soft graviton theorem. We start
by describing what we mean by the soft graviton theorem. The soft graviton theorem expresses
the scattering amplitude of finite energy external states and low energy gravitons' in terms of the
amplitude without the low energy gravitons [35, 6, 65, 66]. More specifically, suppose we have a
quantum field theory describing some particles including the gravitons. We now consider an S-
matrix element in this theory involving /N external states of finite energy momenta py,ps, -« , PN
and M external gravitons of small momenta® k1, ko, - - - , k3;. We can do a Laurent series expansion
(i.e., we allow for the inverse powers of the momenta) of this S matrix in the powers of the soft
momenta ky, ko, - - - , kps. This is not very surprising since we can always perform a Laurent series
expansion for a well behaved function. However, in the situation described above, a non trivial thing
happens. It turns out that the coefficients of the expansion are given in terms of the S matrix without
the soft gravitons. This happens for the leading, subleading and the subsubleading orders in the
expansion and, in general, breaks down beyond that. Moreover, the leading and the subleading terms
in the expansion take a universal form whereas the subsubleading terms depend upon the theory. This

property is called the soft graviton theorem.

One way to think about the soft graviton theorem is as follows. Suppose, the theory has no in-
frared divergences. Then, a scattering without the soft graviton is a localized phenomenon : particles
come together, interact in a localized region and then go far from each other. We now add some low
energy gravitons in the system. We can think of this situation as the same scattering but in a slowly
varying gravitational background. Now, it is a property of the slowly varying gravitational fields that
we can set the metric to be flat metric and its first derivative to be zero in a local region. However, we

can’t set the second derivative to be zero. Thus, if we are interested in the leading and the sublead-

'When we say low or finite energy, we mean it in the center of momentum frame, otherwise, this notion is ambiguous.
E.g., we could take the whole system and boost it. In that case, the soft gravitons will also acquire the finite energy. A
more Lorentz invariant notion of what we mean by the low energy can be given by saying that the quantity Zf’l"—; (where
p; and k denote the momenta of finite energy particles and soft gravitons respectively) is small. ‘

2We shall consider the situation in which all the soft momenta become small at the same order. This is called the
simultaneous soft limit.
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ing behavior of the amplitude in soft momenta, we can relate the scattering in the presence of soft

gravitons to the scattering in the absence of the soft gravitons in a universal manner.

We shall be proving the soft graviton theorem in a theory which has general coordinate invariance.
We shall also assume that the quantum theory is free from anomalies and hence the general coordinate

invariance is not broken by the quantum effects.

We shall not make any assumption about the finite energy external states. They can be massive or
massless. In particular, they can be finite energy gravitons themselves. We shall also not make any
assumption about their interactions. E.g., the finite energy sector can involve the strong and weak
interactions. The external states can even be composite objects such as black holes or gold atoms.
However, we shall assume that the S matrix of the theory is infrared finite. Now, in 4 and lower
non compact dimensions, the S matrix is infrared divergent at loop order. This happens because the
massless particles have long range interactions in 4 and lower non compact dimensions. Thus, the
idea that scattering is a local event breaks down. In other words, at tree level, we can talk about
the soft theorem in any dimensions. However, once we start including the loop effects, we need to
be careful about the infrared effects®>. Due to these IR divergences, our derivation will be valid for
arbitrary loop amplitudes in higher than 4 non compact dimensions but only for tree amplitudes in 4

and lower non compact dimensions®.

The soft graviton theorems have been investigated intensively during the last few years [15, 16,
28, 67-89] due to their connection to asymptotic symmetries [7-9,90-97]. They have also been
investigated in string theory [18, 19,98-110]. In particular in specific quantum field theories and
string theories, amplitudes with several finite energy external states and one soft graviton have been
analyzed to subsubleading order, leading to the subsubleading soft graviton theorem in these theo-
ries. A general proof of the soft graviton theorem in a generic quantum theory of gravity was given
in [18,19,21] for one external soft graviton and arbitrary number of other finite energy external states
carrying arbitrary mass and spin. For specific theories, soft graviton amplitudes with two soft gravi-
tons have also been investigated in [10—-17]. Our goal in this chapter will be to derive, in a generic
quantum theory of gravity, the form of the soft graviton theorem to the first subleading order in soft
momentum for arbitrary number of soft gravitons and for arbitrary number of finite energy external

states carrying arbitrary mass and spin.

The rest of the chapter is organized as follows. In section 3.1, we describe the general strategy
followed here for proving the soft graviton theorem and give the final result. In section 3.2 we
prove the subleading soft graviton theorem for two external soft gravitons and arbitrary number of

3Note that in quantum field theories we introduce the notion of inclusive cross section in which the infrared diver-
gences cancel (E.g., even in 4 dimensions). However, the soft theorem we are interested in is a statement about the S
matrix and not the inclusive cross section.

“In 5 non compact dimensions, naively, one encounters some IR enhancement in individual diagrams indicating
possible breakdown of multiple soft theorem. However, it is expected that such IR enhanced contributions cancel after
summing over all the diagrams. See the discussion in section 3.4.
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external states of arbitrary mass and spin. In section 3.2.3 we carry out various consistency checks
of this formula. These include test of gauge invariance and also comparison with existing results.
We generalize the result to the case of multiple soft gravitons in section 3.3. The infrared issues are
discussed in section 3.4.

3.1 General strategy and the main result

In this section, we describe the general strategy we shall be following for deriving the subleading
soft graviton theorem. We shall be using a Feynman diagram technique for this purpose. The method

used is summarized below.

1. Assume that the theory is described by a gauge invariant 1PI effective action. This is a rea-
sonable assumption since given the Lagrangian of the theory, there is a well defined notion of
the 1PI effective action. The use of 1PI effective action allows us to include the complicated
interactions. E.g., we may want to include the QCD interactions (involving, e.g., protons and
pions coupled to gravity) for which elementary Feynman diagrams do not exist. However, it
can be easily taken into account in the 1PI effective action. We shall assume the most general

form of the 1PI effective action and proceed from there.

2. To determine the Feynman rules, we expand the action in powers of all the fields representing
the fluctuation over the background value. The most relevant is the expansion of the metric
field

guy :nuy+2huy+"' (31)

We are expanding the metric around the flat space which has Poincare invariance®. This means
that we are assuming that the flat space is the solution to the equations of motion derived from
the 1PI effective action. This is necessary since the notion of S matrix makes sense only in the
flat space. If we have a small cosmological constant A, we can treat it as perturbation around the
flat space. In our universe, we can talk about the S matrix by ignoring the effect of A. However,
the value of A puts a restriction on the validity of the soft graviton theorem. In particular, the
soft graviton theorem will break down when the soft momenta becomes comparable to the

inverse of the size of cosmological horizon

1
size of cosmological horizon

EF o~

Thus, for the validity of the soft graviton theorem, the momenta of the soft gravitons should be

3Since we assume that the background is Poincare invariant, only the scalar fields can have non zero vacuum expec-
tation value.
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small compared to the momenta of the other particles. However, the soft momenta should be

large compared to the scale set by the cosmological constant.

3. We now add manifestly Poincare invariant gauge fixing term to the 1PI effective action. E.g.,
the gauge fixing term can be (9,7 )?. This will break the general coordinate invariance but not
the Poincare invariance. We shall not need any explicit choice of the gauge fixing term since

our manipulations will be formal. However, we shall use the fact that it is Poincare invariant.

4. After fixing the gauge, we can now derive the Feynman rules of the theory and compute the
S matrix elements (note that the propagator is ill defined without gauge fixing). However, we
want to prove the result for an arbitrary theory with diffeomorphism invariance. Hence, we
don’t want to work with any specific 1PI effective action. Due to this reason, we shall follow
an alternative approach. We shall use the gauge fixed action to derive the Feynman rules for

the finite energy particles but not the soft gravitons®.

5. For the soft gravitons, we note that we are working with 1PI effective action. Hence, we only
need to draw tree Feynman diagrams for computing the S matrix elements. Now, in a tree
Feynman diagram, the momenta of each internal line is fixed by the momenta of the external
lines. Thus, there is a clear separation between the “hard” and “soft” internal lines and we can
pretend that the soft and finite energy gravitons are two different particles. This allows us to

treat the soft gravitons differently’.

6. Exploiting the above fact, for calculating the coupling (and hence Feynman rules) of the soft
gravitons with the finite energy particles, we covariantize the gauge fixed effective action of
step 4 with respect to the metric 7, + 25, where S,, denotes the soft graviton. Given a
Lorentz invariant action, we can always covariantize it (by replacing the flat space metric with
curved space metric, the ordinary derivatives by covariant derivatives and introducing non min-
imal terms involving the Riemann tensor). This is the reason we allowed only the Lorentz
invariant gauge fixing terms in step 4. Note that we are thinking of 5, in (3.1) as the field
which describes only the finite energy gravitons. For describing the soft gravitons, we have
introduced a new field S, whose coupling with the other fields in the theory is determined by

covariantizing the gauge fixed action with respect to S,,,.

We could have expanded the metric in the original 1PI effective action in step 2 as g,, =
Ny + 28 + 2hy,. This would be equivalent to the above procedure® if the gauge fixing
term we choose in step 4 for the hard particles (including hard gravitons) does not break the

The 1PI effective action is for all gravitons including the soft ones. Hence, one can definitely derive the Feynman
rules for the soft gravitons also using the gauge fixed 1PI effective action itself.

If we had worked with ordinary action, we would need to draw the loop diagrams as well. In loop diagrams, the loop
momenta run over all possible values and hence the internal loop lines can’t be identified as soft or finite energy lines.

8This equivalence is only upto the terms involving the Riemann tensor.
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general coordinate invariance with respect to the soft gravitons. This would mean choosing the
gauge fixing term to be (D,h*)* = 0 instead of (J,h*)? = ( where D,, denotes the covariant
derivative with respect to the metric 7,,, +2.5,,,. This is a particular choice of gauge for the hard
particles. We can’t choose the gauge fixing term to be general coordinate invariant. However,
we can choose the gauge fixing term for the hard part to be general coordinate invariant under
the soft gauge transformations. This procedure introduces interaction between the hard and soft
gravitons. However, this is just a gauge artifact and hence the Feynman rules will be different
than if we had a different choice of the gauge fixing term (the S matrix elements will be same

for any gauge choice).

7. While covariantizing the action, we are allowed to add possible terms involving the Riemann
tensor of the soft graviton field S,,. However, the Riemann tensor has two derivatives of S,
and hence gives two powers of soft momenta in numerator. This means that the presence of the
Riemann tensor will affect the soft graviton theorem only at the subsubleading order. Since we
shall be interested only upto subleading order, the Riemann tensor ambiguity is irrelevant for

our purpose.

8. After obtaining the Feynman rules, we can now draw all possible diagrams and compute them

in the usual manner.

Following the procedure described above, our final result for an amplitude with N external finite
energy particles carrying polarizations and momenta (¢;, p;) fori = 1,--- | N, and M soft gravitons

carrying polarizations and momenta (&, k,.) forr = 1,--- | M, takes the form

N M M o
A = {Hemz(p@)} [{H Sﬁo)} oo +Z{H Sﬁg)} [Sél)f‘}alma”
=1 r=1 s=1 =1
r#s
M M N
"2 { 1 SS))} {Z {py- (ke k) M(pj;sr,kmewku)} Fm"'aN] NER)
s=1 j:1

rau=1

where
N
S = (pe- k) e DY (3.3)
=1
(ST :i\[:(p--k )™ €4 iy Ko D [pbam"'a’v eI ety i asesaan | (3.4
. S ' O 8;
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Figure 3.1: A leading contribution to the amplitude with two soft gravitons.

M(pi;gl; ki, eq, kz)

= (pi'kl)_l(pi'kQ)_l { — ki kopi-€1-pipi-€2-Pi
+2pi'k2pi'5l'pipi‘52'k1+2pi‘k1pi'52'pipi'51'k2_2pi‘k1pi'k2pi'51'52'pi}

+ (ky - k’z)_l{ — (ko -e1-ea-pi)(ka-pi) — (k1 2921 -pi)(k1 - i)
+ (ko 1o pi)(by-pi) + (ki -e2-e1pi) (ke - pi) — 51652%(]{1 - pi) (k2 - pi)

— 2(ps €1 k2)(pi- g2 k1) 4+ (pi- €2 pi) (ko - €1 - ko) 4+ (pi - €1+ pi) (k1 - €2 - kl)} ;

(3.5)

and I'** 2~ g defined such that

N
F(€17p1, e 76]\/'7]?]\[) = {H Ei,ai} [er-on s (36)

i=1

gives the amplitude without the soft gravitons, including the momentum conserving delta function.
The indices a, 3,7, § run over all the fields of the theory and J is the (reducible) representation of
the spin angular momentum generator on the fields. The indices a, b as well as pu, v, p are space-time
coordinate / momentum labels. We shall use Einstein summation convention for the indices «, (3, - - -
carried by the fields and also for the space-time coordinate labels a,b- - - and y, v, - - -, but not for the
indices r, s, - - - labelling the external soft gravitons and ¢, j, - - - labelling the external finite energy

particles. For the signature of the space-time metric we shall use mostly + sign convention.
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Figure 3.2: A leading contribution to the amplitude with two soft gravitons.

Figure 3.3: A subleading contribution to the amplitude with two soft gravitons. The subamplitude r
excludes all diagrams where the soft particle carrying momentum £ gets attached to one of external
lines of I'.
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3.2 Amplitudes with two soft gravitons

In this section we shall analyze an amplitude with arbitrary number of finite energy external states
and two soft gravitons in the limit when the momenta carried by the soft gravitons become soft at the
same rate. The relevant diagrams are shown in Figs. 3.1-3.5. We use the convention that all external
momenta are ingoing, thick lines represent finite energy propagators and thin lines represent soft
propagators. ¢, k, for r = 1, 2 represent the polarizations and momenta carried by the soft gravitons

subject to the constraint
" erw =0, ke, =0. (3.7)

I'® and '™ denote one particle irreducible (1PI) three and four point functions and I' denotes full
amputated Green’s function. In Fig. 3.3, I denotes sum of all amputated Feynman diagrams in which
the soft graviton is not attached to an external leg via a 1PI three point function. The internal thick
lines of the diagrams represent full quantum corrected propagators carrying finite momentum. For
Figs. 3.1 and 3.3 we also have to consider diagrams where the two soft gravitons are exchanged.
Among these diagrams the contributions from Fig. 3.1 and Fig. 3.2 have two nearly on-shell
propagators giving two powers of soft momentum in the denominators. For example in Fig. 3.1 the

line carrying momentum p; + k; is proportional to
{(pi + k)2 + M2} = (2ps - b)) (3.3)

using the on-shell condition k? = 0, p? + M? = 0 if the mass of the internal state is the same as the
mass of the i-th external state. Therefore the contribution from these diagrams begins at the leading
order. The rest of the diagrams have only one nearly on-shell propagator and therefore their contribu-
tion begins at the subleading order. The contribution from Fig. 3.5 is somewhat deceptive — it appears
to have one nearly on-shell propagator carrying finite energy giving one power of soft momentum
in the denominator and a soft internal propagator giving two powers of soft momentum in the de-
nominator. However the three graviton vertex has two powers of soft momentum in the numerator.
Therefore the contribution from this diagram begins with one inverse power of soft momentum and

is subleading.

3.2.1 Feynman rules

For deriving the expressions of vertices, we follow the strategy developed in [18,19,21]. We begin
with the 1PI effective action of the theory and use Lorentz covariant gauge fixing conditions such
that the propagators computed from this gauge fixed action do not have double poles. We now find
the coupling of the soft graviton to the rest of the fields by covariantizing this action. As in [19,21]

we shall assume that all the fields carry tangent space indices so that covariantization corresponds to
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Figure 3.5: A subleading contribution to the amplitude with two soft gravitons.

replacing ordinary derivatives by covariant derivatives and then converting the tensor indices arising
from derivatives to tangent space indices by contraction with inverse vielbeins. For simplicity we
shall choose a gauge in which the metric associated with the external soft gravitons always has
determinant —1 so that we do not need to worry about the multiplicative factor of v/— det g while

covariantizing the action. This is done by parametrizing the metric as

Juv = (6237] 77)“,, = Nuv + 2 S;w + 2 Sp,pSpV + -, S,uy = Sl/;u S“'u = 07 (39)
where all indices are raised and lowered by the flat metric 1. We also introduce the vielbein fields
I

ea:( ) _5 +S + = SbSb T E@M:(8_577)&“:5au_Saﬂ+%5’absb/‘+...(3_10)

Covariantization of the action now involves the following step. Let {¢,} denote the set of all the

fields of the theory. We replace a chain of ordinary derivatives J,, - - - J,,, acting on a field ¢, by

EaﬁlLl U Eal:n D,UJI e D,U'n (3.11)
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Figure 3.6: A 1PI vertex involving two finite energy particles and one soft particle.

where

1
Duqboa = a,uqba + szb(Jab)aﬁgb,B ) (312)

with (J)? representing the action of spin angular momentum generator on all the fields, normalized
so that acting on a covariant vector field ¢., we have

(Jab)cd — 5ac77bd o 6bcnad ) (313)
For our analysis we shall only need the expression for wl‘jb to first order in S,,,. This is given by’
ab __ abga a Qb
w, =0d°5—=0S, . (3.14)

For each pair of covariant derivatives acting on the field ¢,, we also have a contribution from the
Christoffel symbol

DuDypy = -+ — {Mpy} D, éa, (3.15)

where

{Mp V} = 0uS,f + 9,5, — 9"S),, + terms involving quadratic and higher powers of S, (3.16)
and - - - terms represent the usual derivatives and spin connection term. Since we shall compute
subleading soft graviton amplitudes we shall only keep terms up to first order in the derivatives of
soft gravitons. Also for amplitudes with two soft gravitons we only need to keep up to terms with
two powers of soft graviton field S,,,. As we shall see, for specific vertices we can make further
truncation of the action.

Let us now derive the form of the three point vertex involving one soft graviton and two finite

9Terms involving higher powers of S will give rise to vertices that have two or more soft gravitons, and a power of
soft momentum. Such vertices will not contribute to the amplitude to subleading order in soft momentum.
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energy fields, as shown in Fig. 3.6. For this we first express the quadratic part of the 1PI action as

2m)P6P) (g1 + g2)ba (@) K (g2) d5(q2) , (3.17)

1/dDQ1 dDQz

2 ) (2n)P (2m)P

where we take
K (q) = K*(=q) . (3.18)

For grassmann odd fields there will be an extra minus sign in this equation, but it does not affect the
final results. If the soft graviton carries polarization € and momentum £k, then the coupling of single
soft graviton to the fields ¢,, obtained by covariantizing (3.17), takes the form [21]

1 dPq, dPq §
B3 - = 1 2 (om\PsP) k
S 2 / (27T)D (27T)D ( 7T) (Ql =+ q2 + )
Y J o 1 0 o a
xPo(q1) [ — Ew s qu K ﬁ(%) + é(kb Eap — Ka Ebu)aqz K (q2) (J b)f
m m
1 82Kaﬁ(¢]2)
— g, (ke + ke’ — EPe,) | Ps(gs) . 3.1
9 aq2“aqzy qu( €y + Ep Eu ) B(qz) ( 9)

In this equation the first term inside the square bracket represents the effect of multiplication by
EF =04 — SFin (3.11). The second term is the effect of the spin connection (3.14) appearing in
the definition of the covariant derivative in (3.12) and the third term is the effect of the Christoffel
symbol appearing in (3.15). From this we can derive an expression for the soft graviton vertex shown
in Fig. 3.6 to order k:

]_"(3)003(67 kapa —pP — k)

i ) B
= 5| —ewp+ k) 5K (—p — k) = cup’ K™ (p)

2 Opu Py

30 = ) K (0 = B) (7). = Gl = by 20) 5K ) (7))
TR k) (e + e~ H2)

—%%m (kuel + kvl — kPew) | - (3.20)

Using (3.18), (3.7), and expanding each term in Taylor series in the soft momentum k, we arrive at
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Figure 3.7: A 1PI vertex involving two finite energy particles and two soft particles.

the following expression for the vertex I'® in Fig. 3.6 to order &:

- oK(—p) 1 821C(—p) 1 OK(—p) p 1 b Talc(_p)
= 0| —eup” — e Pk —kpepy——— P — ke, (JOV
b o, 9 tmb R op.Op, 2 bu op,, 2 (™) op,,
(3.21)

where we have used a matrix notation and (.J**)" denotes the transpose of J*, i.e. ((J*)")% =
( Jab)’ya‘

Next we consider the four point vertex containing two soft gravitons and two finite energy par-
ticles as shown in Fig. 3.7. Since this vertex appears in Fig. 3.4 which begins contributing at the
subleading order, we need to evaluate this to leading power in the soft momentum. Therefore we can
ignore the spin connection and Christoffel symbol terms in the expression for the covariant deriva-
tives appearing in (3.11), and only focus on the contribution from the £/ terms. Since we have two
soft gravitons, we need to keep terms quadratic in the soft graviton field S,,. These can come from
two sources — either one power of S from two F *’s or two powers of S from a single £ /. The

resulting action is given by

(27)P6 P (g1 + go + (1 + £2) P (q1) P (g2)

Va/caﬂ(qz)]

1/ dPq; dPqy dPl, dPl,
2) @2m)P 2m)P (2m)P (2m)P
0821Caﬁ(q2)

3.22
? 8(12;18(12;) ( )

1
~S°0s,,
+2 Pl 8QQM

1
X [55;;1/ (el)spg(£2)ng

Using this and the symmetry (3.18), we get the following form of the vertex shown in Fig. 3.7 to

leading order in soft momenta, written in the matrix notation:

P<4)(51, ki,e9,koyp, —p — k1 — kz)
I’K(-p) 1 Vé"C(—p)}

. v, o b b
= 3 {slwsgy,ﬂ,p P+ = (51,# € T €op 81717,,) p—

3.23
apuapp 2 apﬂ ( )

Next let us consider the contribution from the amplitude in Fig. 3.8 for off-shell external momenta
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Figure 3.8: An amputated amplitude with one external soft particle and many external finite energy

particles. We exclude from this any diagram where the soft particle gets attached to one of the
external lines.
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Figure 3.9: A 1PI vertex involving three soft gravitons.

¢1,- -+, qn- This can be obtained by covariantizing the truncated Green’s function I'*'""*N (¢, - - - q)
without the soft graviton. Since this amplitude appears inside Fig. 3.3 which begins contributing at
the subleading order, we only need the leading contribution from this amplitude. This is easily

computed using the covariantization procedure, giving the result [19]

N

foq---OtN (57 ka q1, qN) = - Z gp,l/Q;q

i=1

0
10N (g - 3.24
aqiy (Ch? ) QN) ’ ( )

reflecting the effect of having to multiply every factor of momentum (derivative with respect to space-
time coordinates) by inverse vielbeins as in (3.11).

The next vertex to be evaluated is the three point vertex of three soft gravitons as shown in
Fig. 3.9, involving external on-shell soft gravitons carrying momenta ki, ko and polarizations €1, €5
respectively and internal soft graviton carrying momenta —k; — ky and polarization labelled by the
pair of indices (i, v). This vertex appears in Fig. 3.5 which begins contributing at the subleading
order. Therefore we need to evaluate this vertex to leading order in soft momenta — given by the
Einstein-Hilbert action. This is best done by regarding the external soft gravitons as background field
S, so that the vertex can be regarded as the one point function of the internal graviton in the presence
of soft graviton background. This is proportional to 12, — %R 9, computed from the soft graviton

metric. Evaluating this to quadratic order in S,, we can read out the vertex. Using standard results on
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the expansion of connection and curvature in powers of fluctuations in the metric (see e.g. [111,112])
we find that the vertex takes the form:

V;ES) (517 kl) £, kz)

7; > a C C a a C
Y €1,ab€2,cd [{mwn“nbdk%p —2n dn ukgk% —2n bn yk(lllflu +2n d77 yklukg

+20"n" ki kay — 200" ik, — 40%,0° KSR 4+ 200 0 kSkS + 277“w"ykfk’i}

+{p < 1/}] . (3.25)

We now turn to the computation of the propagators. In the normalization in which the three point
vertex of Fig. 3.9 is given by (3.25), the soft graviton propagator in the de Donder gauge takes the

form:

1

2 7
G/w,pa(k) - _5 <77,u,p77urr + 771//)77/1,0 - mn/tl/nf)(f> ﬁ ) (326)

where p, v are the indices carried by one of the gravitons and p, o are the indices carried by the other
graviton.

The final ingredient is the propagator for an internal finite energy line carrying momentum gq.
This is given by iIC;ﬁl (). We define

2 5(q) = i K 5(q) (¢ + M), (3.27)
where ); is the mass of the j-th external state. Then the propagator can be expressed as
Alg) = (¢ + M}) = (q), (3.28)

where we have adopted the matrix notation dropping the indices «, (3.
Now from (3.27) we have

K(q) E'(q) =i (q> + M}). (3.29)

Taking derivatives of this with respect to momenta we arrive at the following relations:

oK (—p) _, o=i(— _
3; Pg (—=p) = —’C(—p)—a; 2 +2ip",
u u
O’K(—p) i OK(—p) 0= (—p)  OK(—p) O='(—p) O’E(—p) ..
—EZ _ —_ — - _ _ _ ++2Z /.11/7
OpuOpy (=) Opu Opy Opy Opu (=) 0p,.0py 1

(3.30)
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Finally rotational invariant of C implies the following relations:

OK(=p)  ,0K(—p)
8pb 8pa
=(-p) , 0= (D)
+ .
8[)() b 8pa

)

(J)K(=p) = —K(=p)J*+p

JYE(=p) = —E(-p)(J*)" - (3.31)

3.2.2 Evaluation of the diagrams

We begin with the evaluation of Fig. 3.1. Even though we can use the form (3.28) for the internal
propagator for any 7, (3.28) being independent of 7 due to (3.27), we shall use the form (3.28) with
j = ¢ when the soft gravitons attach to the i-th external line. In this case the propagator carrying

momentum —p; — k for some soft momentum £ takes the form
Al=pi= ) = {(pi + 0P+ MY E (opi = ) = 2okt ) Ep = ). (332)

We now define

N
I (pi) = { H Gj,aj} LN (py, - pN) (3.33)

j=1
i

with the understanding that F‘(lz) (ps) also implicitly depends on the p;’s and ¢;’s for j # 4. Using this

we can express the contribution from Fig. 3.1 as

N
Av =) 2pi k)T @ (ki ko) 4 2k ko) el T (e, kisps, —pi = ki) 2 (—ps — k)

=1

T (eg, bi pi+ kv, —pi = by = k) 2 (=pi = b1 = k2) Dy (pi + ba + o) (3.34)
where we have summed over soft graviton insertion on different external legs. We now use the
expression (3.21) for I'® and manipulate this expression as follows:

1. Take all the J factors to the extreme right using (3.31) and their derivatives with respect to
P

2. Expand K, =* and I'(;) in Taylor series expansion in k;, k2, and keep up to the first subleading

terms in soft momenta.

3. Use the relations (3.30) to move all momentum derivatives to the extreme right to the extent

possible.

4. Finally use the on-shell condition

e, K(—p) =0, (3.35)



to set all terms in which the left-most IC does not have a derivative acting on it to zero.

While these steps are sufficient to arrive at the final result given in (3.39), for the analysis of section
3.3 we shall need some of the results that appear in the intermediate stages. For example, Taylor
series expansion in k, together with the use of (3.30), (3.31) leads to the result

=1

. O=i(—
T®(e ksp, —p— k) E'(-p— k) = [2 " pupy + z‘euyp”/C(—p)% + 2 ggkap? (J)"

"

+K(—p) Qp, k) (3.36)

to subleading order. Here

i P=(-p) | . 9Z(=p) |/ qabyr

k)=-k- —_— ko — J) 3.37

Qlp. k) = 5 k- pe, T + i ey o (J*) (3.37)

denotes a term that receives contribution from subleading order in soft momentum. We shall see that
its contribution to the amplitude vanishes due to (3.35). Using (3.36) we can express the amplitude
(3.34) as

N
Ar =) (2pi k) @i (ky A+ ko) + 2k - ko)

=1
0= (—p;
% + 2 e1pkiapt () + K(=p) Qi k)|
pi,u
apz'p
+2 £9,4p ke (P + k7)) (JY" + K(—pi) Qlpi, k2)] L pi + k1 + o). (339

Ezr [2 Eliwpi,upiy + igl,ul/p;’]c(_pi)

12687 (b1 + K1) (Dio + ko) + 22,0 (57 + BOK(=pi — k)

to first subleading order. Expanding the terms inside the second square bracket and I'(;) in a Taylor

series expansion in k7 and k-, and using (3.35), (3.31), we get, up to subleading order,

N

A = Z(pz k) THpi - (k4 ko) 4+ k- ko e [51”]9;‘01%7 2uwpf 1; Ty (i)

i=1
+2€C17Tpm]91:7 Ez,Wk‘f pf F(z’) (pv) + EferpirrpiTkQa,EQ,bup/;('] “b)TF(i)(Pi)

v a oT v arz Di
+e1b0k1aD5 €205 Py (J b)TF(i) (pi) + €77 DioDir €2,0D5 P (ky + k2), %
ip
1. alc(—]?i) aEi(_pi)
—i (k- p; o €200 D] Dy Cinlpi)| - 3.39
+2Z( 1 Di) €1po E2,00 DY D P o @ (pi) (3.39)
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To this, we also need to add an expression in which we interchange (k1,e1) <> (k2,£2). This gives
the amplitude

N

A = Z(pz : k2)_1(pi (ko + k1) + 2k, - /ﬁ)_lEiT [5‘2”]%0%7 E1,wPs Pt L (pi)

i=1
+2€gTPiaPir 51,uuk5 Pf F(i) (Pz‘) + EgTPiaPirklaé“l,bqu(Jab)TF(i) (Pz)

v a oT v 8F i) \Pi
+52,bak2ap? 51,;wpi pf('] b)TF(i) (p1) + 52 PicDir 51,;wpi pf (kQ + kl)p a(;( )
ip
1. OK(—p;) =" (—py)
+—i (k2 - Di) €2, 008 1,000 Df ‘ Cey(pi) | - (3.40)

The contribution from Fig. 3.2 can be evaluated by knowing the result for single soft graviton
insertion since the two parts of the diagram on which the two soft gravitons are inserted can be

evaluated independently. We shall express this as

(2p; - k1) ™" (2p; - ko) el T (er, ks pi, —ps — k) 2 (—pi — k1)}
2y {5? F(g)(&“z, kaspj, —pj — ko) Ej(_pj - kz)}r(z‘,j)(pi + kipj + ko), (3.41)

a;

where F(i”j)-’ is defined in the same way as I'(;) except that we now strip off both the polarization

tensors of the i-th and the j-th leg:

N
L) (inpy) = { 11 ez,ae} DN (py, -+ ). (3.42)

=1
i

It is understood that in (3.41) the terms inside the first curly bracket contracts with the first index
a; of I'(; ;) and the terms inside the second bracket contracts with the second index a; of I'j; ;). By
manipulating the matrices acting on the ¢-th and the j-th leg independently in the same way as before,
using the results

€ial (0 (Pinpi) = T () €810 (pinpy) = TG (pi), (3.43)

and summing over insertions on all external legs, we arrive at the following result for the amplitude
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up to first subleading order:

N
Ay = Z (pi - /ﬁ)_l (p; - /‘02)_1 El.uupi‘ip;/ €2,p0 p§p§’ U(e1, k1, €9, kaser,pr, -+ s ens p)
I v L6 (pi) ]
+ Z i k2) " E2p0 DD € |1 PP R # + ke erp bl (J°) Ty (pi)
_ o [ ol (p7) a ]
) (k) (- k) e DD € |20 PP sz% + Faa 20 1} (J*) Tiiy (1)

4,j=1
7]

(3.44)

Next we consider the contribution from Fig. 3.3. The contribution from this term has at most one
pole in the soft momentum and therefore begins at subleading order. Therefore we only need the
leading contribution from this diagram. For this we use the result (3.24) for the off-shell amplitude

shown in Fig. 3.8. This gives the following expression for the contribution from Fig. 3.3:

N
Ag = — Z(Qpi . k‘l)_leiTF(g)(a, ki;pi, —pi — k1) Z(—=p1 — k1) ZeTagyp]ua v I j) (pis 0 X3.45)

1=1

where again we have summed over the insertion of the first soft graviton on all external finite energy

states. We can now manipulate this using the form of I'® given earlier. This leads to

Ay = =D (pi k)7 PzpprETé’S”pm o L) - (3.46)

The diagram obtained by interchanging (kq,&1) <> (ko,£2) gives

N

=1

Fig. 3.4 also begins contributing at the subleading order. Therefore we only need its leading
contribution, which is given by
N
Ar =Y {2+ by + ko) } e TW (o1, kyy €9, ha piy —pi — by — k) (=i — k1 — k2) Ty (pi)3.48)

i=1

This can be evaluated using the expression (3.23) for the vertex I'“ shown in Fig. 3.7 and manipu-
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lating the resulting expression in the same way as the previous diagrams. The result is

N
Ay = Z{pz (ki + ko)) e l_%lv:@»”/)pfp?

=1
OK(—p;) 0= (—p

i)
Cin(pi). (3.49)
8piu apip ( )(p )

?
g UV g UV
D) (51,u052,pvpi Pi t E€1,p0€2,wP; P; >

Finally we turn to the computation of the diagram shown in Fig. 3.5. Its contribution is given by

N
As = VO (21 k29, k) Grupo (k1 + k) Y ] TOCD (ky + ki ps, —pi — by — k2) T (pi)3.50)

=1

where V) and G w,po have been defined in (3.25) and (3.26) respectively, and [®)ro) is defined via
the equation

T (e, k;p,—p — k) = £, DO (k;p, —p — k) . (3.51)

Using the leading order expression for I'®) given in (3.21), and the relations (3.30), (3.31), (3.35)
this can be brought to the form

Z{Pi (ky + ko) Ky ko) e [—(kz e1-€9-pi)(ko i) = (k1 -2 €1 - pi) (k1 - i)

(kg g1 g pi)(ky-pi) + (k1 -ea-e1-pi) (ko pi) — %00 (k1 - ;) (ko - 2i)
—2(p; €1 - ka)(pi-ea- k) + (pi-e2-pi) (ka1 ko) + (pi- €1 - pi)(ky - o kl)]r(i)(pz‘)
(3.52)

The full amplitude is given by

A = A+ A+ A+ A3+ AL+ Ay + As

N N
= { Z(Pz k)7 51,;;1129?17?} { Z(Pj “hg) 7 52,papfp?} U(er,p1,--- en,pN)

i=1

N N
_ o Ol (ps aﬁri Di -
+{ (pj - k2) leg,papf-pj} > (i k) v kel €l {pﬁ’ 8(;-( )—p,- é;_(b )+(J b)TF(i)(pi)}

N N
- o Ol () (pi 2Oy (pi a
+{ Z( Pj- kl) 1517p0p§pj} Z 2 52,bu kQa €; { i 8(;( ) — Dy ()( ) + (J b)TF(i)(pi):|

Opip

N
{ {pi- (k1 + ka)}t M(ps; €1, Ky, 29, kz)} L(er,p1, - ,en,PN) s (3.53)
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where

M(pi;&“h ki, €9, /‘62) = (pi : /ﬁ)_l(pi : kQ)_l { - (/‘51 : k2) (pi ‘€1 'pi) (pi © €2 'Pi)
+2(pi- ko) (pi-e1-pi) Pi-€2- k1) +2(pi- k1) (pi-€2-pi) (pi- €1 Fa)

—2(pi- k1) (pi- ko) (pi-c1-e2 'pi)}

+ (k‘l : k?)_l{ - (k‘z “€1° €2 "Pz‘) (k'z "Pz‘) - (k'l c€2 &1 ‘Pi) (k‘l pz)
+ (k’Q c€1 &2 'pi) (k’l 'pi) + (/‘01 “€2° &1 'pi) (l‘v’Q 'pi) - EidEQ,cd (lﬁ 'pi) (lf2 'pi)
—2(pi-e1- ko) (pi-ea- k1) + (pi-e2-pi) (ka-e1- ko) + (pi-e1-pi) (kl'EQ'kl)}-

(3.54)

Here we have used the shorthand notation p; - 1 - p; = glwpf“ pY etc. M receives contributions from
the first two terms in (3.39) and (3.40) and also from (3.49) and (3.52).

3.2.3 Consistency checks

In this section we shall carry out various consistency checks on our result. First we shall check the
internal consistency of our result. Then we shall compare our results with the previous results derived

for specific theories.

Internal consistency

The first internal consistency check of our result comes from the requirement of gauge invariance.

This means that if we make the transformation
Erw — Krp v + kw &rp r=12, (3.55)

for any vector &, satisfying k, - & = 0, the result (3.53) does not change. Checking this involves

tedious but straightforward algebra, and needs use of the equations

N
S 2, 30
i=1
and
N
oreran orav-an _ s
Z{pf op; — i Ipiv + (JO) T eifiien | — () (3.57)
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reflecting respectively translational and rotational invariance of the amplitude without the soft gravi-
ton. While making this analysis we also need to be careful to ensure that while passing p;,, through
0/0pj, in order to make use of (3.56), we have to take into account the extra terms proportional
to d;50;,. For this reason the terms in the third and fourth lines of (3.53) are not gauge invariant by
themselves — their gauge variation cancels against the variation of the term in the last line of (3.53).

More specifically if we denote by 9, the gauge variation:
5r : Er,pv — Er,uv + krugru + kTVSTu ) (358)

for some vector &, satisfying &, - £ = 0, then under ¢, the term in the third line of (3.53) remains

unchanged, but the term in the fourth line changes by

N
—2 Z (pi - k)" € PIPY 2 - €1 €/ Ty . (3.59)

On the other hand we get, after using momentum conservation equation Zjvzl pil'w =0,
N

Z {pi- (k1 + kz)}fl O M(piser, ki, ea, k2) € F

=1

c ko) £ Pl K - €1 €] T5(3.60)

||Mz

Using this one can easily verify that the d; variation of the fourth line and the last line of (3.53)
cancel. A similar analysis shows that the J, variation of the third and the last lines of (3.53) cancel,
and that the fourth line of (3.53) is invariant under ds.

The second consistency requirement arises from the fact that individual terms in (3.53) depend on
the off-shell data on I'** "~ while the actual result should be insensitive to such off-shell extension.
For example if we add to T~ any term proportional to p? + M?, it does not affect the on-shell
amplitude without the soft gravitons since it vanishes on-shell. However 0I'***~ /Jp;  receives a
contribution proportional to p!' that does not vanish on-shell. We note however that in (3.53) the
derivatives of '~ come in a very special combination that vanishes under addition of any term
to OI'/Op;,, proportional to p!'. Therefore (3.53) is not sensitive to such additional terms in I".

More generally we can add to I'**~ any term proportional to K% (—p;)Gg' ™ 7% for
any function G, since its contribution to on-shell amplitudes without the soft gravitons vanishes due
to (3.35). Using (3.35) and the rotational invariance of I described in (3.31), is easy to see however
that the addition of such terms to I" does not affect (3.53).

Comparison with known results

In order to compare the amplitude with known results, it is convenient to rewrite the amplitude (3.53)

as a sum of two terms 4; + A5 by adding and subtracting a specific term given in the last two lines
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of (3.61):

N N
Ay = {Z(pi k)™ sl,wpﬁ‘pi”} {Z(pj : kz)‘lz-:z,pap?p}’} I(er,p1,- - en,pN)

i=1 j=1
N
arz Di aari i a
{ Z kl 51 00 p]p] } k? 52 bu k2a €; |:pf ( )( ) —D; ( )( ) + (J b)TF(z)(p’t)l
i=1

N

—

N

vOLw(pi) 0T (i) b\T

k2 52 00 P p } Z kl 51 b klap |: 7 _p? + (Ja ) F(L)(pl)
I i—1 apm apib

=

.

= OPia Opiv

ki ko)™t Z (pi- k1)~ (pi - ko) ™! {(/ﬁ €9 ki)(pi-e1-pi) (D ko)

+ (ka-e1 - ka) (pi-ea-pi) (pi - kl)} & Taypi) s (3.61)

N
Ay = {ZN(pi;Elakla‘f%kb)} (e, pr,- - en.DN), (3.62)

=1

where

N(piser, k1,6, ke) = {pi- (k4 k2)} " M(pisen, ki, €2, ko)
— (k1 ko) (pi - k) (pi - ko) !

X {(/ﬁ g9 k1) (pi-e1-pi) (pi- ko) + (ko &1+ ko) (pi- g2 pi) (pi- kl)} ;
(3.63)

M being given in (3.54). With this definition A; and A, can be shown to be separately gauge
invariant.

Refs. [15, 16] computed the double soft limit for scattering of gravitons in Einstein gravity using
CHY scattering equations [24-27, 113]. Since our result is valid for general finite energy external
states in any theory, it must also be valid for scattering of gravitons. Therefore we can compare the
two results. The contribution in [15, 16] comes from two separate terms, the degenerate solutions and
non-degenerate solutions. The contribution from the degenerate solutions agrees with our amplitude
A, given in (3.62) up to a sign after using momentum conservation rules (3.56). The contribution
from the non-degenerate solutions were evaluated in [16] to give only the first three lines of (3.61).
However the analysis was carried out in a gauge in which k; - €5 = 0 and k5 - £ = 0. For this choice
of gauge the contribution from the last two lines of (3.61) vanishes. However, the results of [15, 16]
differs from ours by a sign. But, apart from the issue of sign, there is agreement between our results

and the results in pure gravity derived from CHY equations in [15, 16], with (3.61) giving the full
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gauge invariant version of the contribution from non-degenerate solutions of CHY equations. As
we shall show in the next chapter by reanalyzing the double soft limit of the CHY formula for the
scattering amplitudes, the result obtained from the CHY formula actually agrees with ours including
the sign [23].

Ref. [11] computed the double soft limit of graviton scattering amplitude in four space-time
dimensions using BCFW recursion relations [114]. This analysis was also carried out in the gauge
ky1-e9 = 0and ky-e; = 0. In this gauge the subleading contribution to .A; comes only from the second
and the third lines which, written in the spinor helicity notation, has the standard form involving
derivatives with respect to the spinor helicity variables, called ‘non-contact terms’ in [11]. Therefore
we focus on the A, term. Ref. [16] showed that the contribution from the degenerate solution to the
CHY equations agrees with the ‘contact terms’ computed in [11] using BCFW recursion relations.
Therefore our result for A, agrees with the contact terms of [11] up to the sign factor discussed
earlier. We have also verified this independently by noting that in the gauge k;-co = 0Oand kg1 =0

many of the terms in .4, vanish and the remaining terms take the form
N
S {pi e+ k)} | = (i k) (pi - k) (e Ra) (pi- 21 pi) (P e2 - i)
i=1
—2(pi-e1-ea-pi) — (b1 k‘2)_1 Eidglcd (kv - pi) (ko - pi) | T(er, pry -+ s ens pn) - (3.64)

By expressing this in the spinor helicity notation we find that when the two soft gravitons carry
the same helicity (3.64) vanishes. This is in agreement with the result of [11]. On the other hand
when the two soft gravitons carry opposite helicities, A, gives a non-zero result that agrees with the
‘contact terms’ of [11] up to a sign. We have not tried to resolve this discrepancy in sign between
our results and that of [11]. However given that we have now verified that the CHY result for contact
terms actually comes with a sign opposite to that found in [15, 16] and agrees with our amplitude
Ajs [23], it seems that the difference in sign between our results and the BCFW results may be due to
some differences in convention, e.g. the difference in the choice of sign of the graviton polarization

tensor. !0

3.3 Amplitudes with arbitrary number of soft gravitons

The method described in the earlier sections can now be generalized to derive the expression for the
amplitude with multiple soft gravitons when the momenta carried by all the soft gravitons become
small at the same rate. As mentioned towards the begining of this chapter, we claim that the sublead-

ing soft graviton amplitude with M soft gravitons carrying momenta ky, - - - , kj; and polarizations

10We have used the convention that the graviton polarization tensors in four dimensions are given by squares of the
gauge field polarization tensors without any extra sign.
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Figure 3.10: A leading contribution to the amplitude with multiple soft gravitons.

€1,---,epm and N finite energy particles carrying momenta pyq, - - - , py and polarizations €y, - - - , €y

is given by

M N
H {Z(pl : kT)_l Er,,uz/pélp;j} F(Elvpla T 7€N7PN)

M N
~ yOUG () 0T (ps) o
) (0 k) Esp ke Pl € f[p,—ajpjaj —pj—gjpjb’ + (J) T (py)
s=1 j=1

><H {Z k) er,uypif‘p,-”}

i=1

M N M N
+ Z {Z {pj - (K + ku)}_l M(pj?gra Ky €us ku) 6? F(j)(pj)} H {Z(pi ‘ kS)_l Es,wpfp;}} ;

rau=1 j=1 =1
r<u sFET,U

(3.65)

where M (p;; e, ky, €4, k,,) has been defined in (3.54). Independently of the general argument given
below, we have used Cadabra [115, 116] and Mathematica [117] to check (3.65) explicitly for ampli-
tudes with three soft gravitons.

We begin by reviewing the derivation of the leading term given in the first line of (3.65). For this

note that this term may be rearranged as

Z H { H 5r,uupélpiy} { H (pz ' kr)_l} F(Elaph e 7€N7pNI3-66)

A0t U =y e

Physically the ¢-th term in the product represents the contribution from the soft gravitons in the
set A; attached to the i-th finite energy external line. To see how we get this factor, let us denote the
momenta of the soft gravitons attached from the outermost end to the innermost end of the ¢-th line in
a given graph by El, e En The corresponding polarizations are denoted by =1, - - - £,. This is shown
in Fig. 3.10. The unordered set {%1, e En} coincides with the set {ks; s € A;}. A similar statement
holds for the polarizations. The leading contribution from the products of three point vertices and

propagators associated with the i-th line of the graph may be computed using (3.36), (3.35) and is
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given by

{H Eru DD} } {pi -k} Mo e+ R} {p (R ) (3.67)

The total contribution obtained after summing over all permutations of the momenta 7%1, -+, k, using
(D.1) is given by

{’c’wzﬁf‘pﬁ} S e e B e e (Rt £ T

r=1 permutations of k1, kn

= {H 5r,u,,p§‘p?} {H(pi -753)‘1} = {H sr,w,pﬁ‘pi”} {H (p; - ks)‘l} . (3.68)
r=1 s=1 rEA; sEA;

This reproduces (3.66).

We now turn to the analysis of the subleading terms. For this let us first analyze the contribution
from the products of the propagators and vertices in Fig. 3.10 to subleading order. Using (3.36) this
may be expressed as

-1

{2p; -k} H2pi - by + k) + 2Ky ko)t 2p (Rt k) 42 )k

v L~ v aEZ —Pi ~ ~ a .
EiT [2 eV Dippiv + 1 €1} K(—pi)% + 28 yukrapt(J b)T + K(—ps) Qp, kl)]
if
v I I P v | v = (—p; — E
|28 P+ T b + T} + 50, (0 + FV(—p k)%
ip

+2 Bpukaapl (J) + K(=pi) Qps E2>]
' [2 i+ ke -+ ke Hpw + ko)
N ~ ~ - - 0T —p— g —Fy— e —
i Enyu (pf K -k ) K(=pi — k= ko — -+ k) e apg !
i

+2 Zn ke (T + K(=pi) Q(ps, %n)] Cy(pi+ k1 + -+ kn) . (3.69)

First let us analyze the contribution from the k, - %u terms in the denominator. Since this is
subleading, we need to expand one of the denominators to first order in &, - k,, set k,. - k, = 0 in the

rest of the denominators, and pick the leading contribution from all other factors. This leads to

~ n 1
m=2 r,u= 1 1 m =1 7
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After performing the sum over all permutations of El, e ,En using (D.3) this gives

- H {(pz' : Es)_l gs,;wpfpiy} Z Er : Eu {pz’ : (Er + Eu)}_l . (371)
s=1

rau=1
r<u

Next we consider the terms involving the contraction of £, with Z'T for r < u, coming from the
first term inside each square bracket in (3.69). Since this term is subleading, once we pick one of
these factors we must pick the leading terms from all the other factors. Again using (3.35) we can

express the sum of all such contributions as

2 Z { H gs,;wp?p;j} gu#w péi 7;71*/ { H ! =~ }E? F(i) (pz') . (3.72)

mzlpi'(%l'f'""i‘km)

After summing over all permutations of (El, E1), "+, (En, £,) using (D.2) this gives
2 { H (pi . %3)_1} Z {pi : (Zr + %u)}_l { H gs,w/pfp;/}
s=1 rau=1 s=1
r<u SFETU

(Di - ko) (i - 0i) (i Eu- k) + (pi- k) (Di- Eu-pi) (Di- & ku)} el Tioy(pi) -

(3.73)

—N—

We now turn to the rest of the contribution from (3.69) in which we drop the Er : Eu factors in
the denominator and also the terms involving contraction of ET with £, in the first term inside each
square bracket. Our first task will be to expand the factors of K and Z' in Taylor series expansion
in powers of the soft momenta. It is easy to see however that to the first subleading order, the order
k* terms in the expansion of =* do not contribute to the amplitude. This is due to the fact that once
we have picked a subleading term proportional to 755’8251' JOplop?, we must replace the argument
of IC by —p; in the accompanying factor and in all other factors we must pick the leading term. In
this case repeated use of (3.35) shows that the corresponding contribution vanishes. Therefore we
can replace all factors of 9= (—p; — ky — -+ )/ opt by 9= (—p;)/0p!. Similar argument shows that
all the IC(—p;) Q terms, and the terms involving contraction of £, with Z’r in the second term inside
each square bracket in (3.69), give vanishing contribution at the subleading order. This allows us to
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express the rest of the contribution from (3.69) as

(2pi - k)2 (R4 ko)} e {20 (ky -+ )}
¢! [2 EL+2L1 42 gl,bu”/%lapf(Jab)T]

[2 E+ 2Ly + 189D, Elp alcﬁ(p:fi) azé;;pz) ) gQ,buE%p?(Jab)T] o
[2 Ent 2 Lot i B (Fip -+ Fonr ) alg(p_fi) E(;;;pz-) Loz, o Ja,b)T]
Loy (D + Ey 4 -+ k), (3.74)
where,
0= (—pi) ~

53 = ggypiupiw ‘CS = gwjpiylc(_pi) (375)

Gpm
We now expand (3.74) in powers of soft momenta. Even though L is leading order, its contribution
to the amplitude vanishes by (3.35) unless there is some other matrix sitting between e,L»T and L. The
possible terms come from picking up either the term proportional to 9K /9p;, 0=/0p;,, or (J®)T
from one of the factors. Both these terms are subleading and therefore we can pick at most one such
term in the product, with the other factors being given by &£, 4+ L. Therefore if we expand (3.74) and
pick the subleading factor from the r-th term in the product, then in the product of £ + L, we can
drop all factors of L, for s < r since they sit to the left of the subleading factor and will vanish due
to (3.35). This gives the following expression for the subleading contribution to (3.74):

(ps Lk )—1{}% . (7%1 "’7%2)}_1"'{]71 . (El +...+%n)}—1
[Z { HS } [ B (k1 + -+Erl7p)alf9(p_f : 8?;;%) + Epheat (S|
{ I &+ )} o (1)

=r+1

F(pi- k) Mpi- (b + k)Y e {pi - (k- + k) ) {H } Z I (ps) _

Opip

S_

(3.76)

The last term comes from the Taylor series expansion of I'(; in powers of soft momenta. In the
product the (£ + L;)’s are ordered from left to right in the order of increasing s. We now manip-
ulate the product []_, 1(E + L) as follows. If the subleading factor is the one proportional to
0K /0pi, 0=/ 0p, then we leave the product of the factors (€, + L) for s > r unchanged. However
if the subleading factor is the one proportional to (J%)7, then we expand the product of the factors
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(Es + L) for s > 1 as

(Err+ Log1) -+ (En + L) = Engr - 6-+§:éa4 Eu1 Lo (Eupr + Lurr) - (En + La)3.77)

u=r—+1

Using this, and combining the contribution from the first term on the right hand side of (3.77) with

the last term in (3.76), we can express (3.76) as
(pi - ]) i (B + ko)) e i (Bt ha) )

ol
[Z { H5 } {mu ralf (%) Ty (ps) + 8 DiuDiv k:rpa ()}
pip
s#r
.on r—1 ; n
7 ~ > i 8](: —Pi ‘E.l — P
"2 {Hgs}gr’“”pg(klp*”+kf—1’ﬂ) ) 2 p){ H (85+£s)}Fu)
1 s

2 apip 8pm =r+1
+Zi > Hc‘? et (I 2K (-0 2 T (64 £0) T |
2 r=1 u=r+1 o Z o 8]91’/) s=u+1
s#r

(3.78)

We now use (3.31) to move the K(—p;) factor in the last term to the left of (J%)? and use (3.35).

This allows us to express (3.78) as

(i ) M (4 o)} i (oo )}

~ 'y
!Z { H } {51’ by ""apz (‘]ab)TF( )(pl) + ggypiupiykrp o © }
Pip

s#r

OK(—pi) OZ'(—p;)

.on r—1 n

Z ~ ~

s s ~r v e e r— P . s S r 7
+5 E { | |5 }5 b (kip+ -+ k1) iy Opin {S:|r+| 1(5 +L )} (i)

« OK(=pi) by OK(=pi) aEi(_pi)
+ Z {Hg } Er b rapl Eu pgpz (p apzb —D; 8pia apip

{ I . +£s)} P(i)] : (3.79)

r<u s#T
s=u+1

It is easy to see that terms proportional to p?9K /dp;, in the fourth line of (3.79) cancels the terms in
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the third line of (3.79). Therefore we are left with

(i F0) " Hpi - (iR} Api - (o 4+ )}

6? [ { HS } {Er bukmp@ ( ]ab) F(l) (pv) + E pwpwkrp s }
r=1

SE£T
.oon u—1 i n
¢ P ~ - OK(=pi) OE' (—pi)
+= 65 k 57’ 4p, Eu,po 7 gs+£s Fi .

Qz{n }p it st ZELVEC] ] 1) b

r<u SFET

(3.80)
First consider the term in the second line of (3.80). We sum over all permutations of (21, k1), - - - , (Zn, kn)-

After the sum over r is performed, this expression is already invariant under the permutations of the
soft gravitons inserted on the ¢-th line. Therefore we simply have to sum the expression in the first
line over all permutations using (D.1), producing the result:

n » ar
{H(Pi k)™ } [ZH{&‘ Y DipDiv } {é?rbu vl (J) Ty (i) + &7 pwpwkrpa } (3.81)
Pip

s=1 1 s=1
S#ET

Since this is already subleading, we have to pick the leading contribution from all the other external
legs, producing factors of [, A, {(pj ke) e, Wpé-‘ Py } after summing over permutations of the soft
gravitons. Finally we sum over all ways of distributing the soft gravitons on the external lines. The

net contribution from these terms is given by

il i) (pi)
ZZ(p7 : T 8’fbﬂ k?"apzp zT p?T (J“b)TF() p7 :| H {Z s a Es,y,yp?pjy‘}(-?’-Sz)

r=1 i=1 s=1 =1
SFET

We now combine this with the contribution from the sum of graphs where one soft graviton attaches
to the amplitude via the vertex I' shown in Fig. 3.8 and the other soft gravitons attach to the external

lines. Using (3.24) we get the contribution from these graphs to be

. - i) (pi)
—Z H{Z i+ ks) 1ss,wp;‘pj} Zembp“ . (3.83)

s=1 j=1 apzb
s#T

The sum of (3.82) and (3.83) reproduces the terms in the second and third line of (3.65).
Let us now turn to the contribution from the last line of (3.80). We express p; - Z’r factor as

pz'(zl+"'+kr)_pi'(k1+"'kr—1) (384)

so that each term in (3.84) cancels one of the denominator factors in the first line of (3.80). Now we
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are supposed to sum over all permutations of the soft grav1t0ns carrying the labels 1, - - - n. However
instead of summing over all permutations of kl, = k:,L in one step, let us first fix the positions of all
soft gravitons except the one carrying momentum k’r, and sum over all insertions of the soft graviton
carrying momentum Er to the left of the one carrying momentum Eu Using (3.84) at each step, it is
easy to see that the contributions from the terms cancel pairwise. For example for three soft gravitons,
with 1 fixed to the left of 3, and the position of 2 summed over on all positions to the left of 3, we

have

{pi - T} i (b + R}y i o+ Fa+ 7)) {pi - (b + ho) — i< B}
i o} i (kb + Eo) " {pi- (ky 4+ Ko+ Fea) ) i - o}
{pi 'El}_l {pi- (E1 + ks +E3)}_1 . (3.85)

As a result of this pairwise cancellation, at the end we are left with only one term arising from the
insertion of &, just to the left of k. In order to express the result in a convenient form we relabel the

gravitons attached to the i-th line from left to right, other than the one carrying momentum ET, as

~ ~ -~ o~

(é\lj{;\l): Uty (é\u—Qy ku—2)7 (guy ku)7 (gu—i-l? ku+1)7 ) (é\m kn) . (386)

and sum over all insertions of the graviton carrying the quantum numbers (&,, ET) to the left of
(Eus Eu) Then for fixed r, s the result is given by

Y L (S | R A )

(pi- v+ Fhuath+k)y " {pi- (b4 + ka4 by + byt kg 4+ k)
i _ oK (—p;) 0= (—p; s oA
IE{H g}grbupz Eupop@ 8( A ) 8( ){ H ( s+£s) F()(pi)a (3.87)
Pib Pip s—u+t1
where
&= by Ly = sepyio(—py) 0 (3.88)

2 Gp, i

Next we add to this a term obtained by exchanging the positions of 7 and w. This is equivalent to

exchanging the p and b indices in (0K /0pi,) (0Z2/0p;,) and gives

(i Fa) o (b + B} (Bt Ruc) !
v r-(E1+---+Eu_2+7{-T+'IZ ) R (RN (1 EREIREY STy Sy Yy SRR EPPRIEY 10}

i o OK(=p) Z'(=p) | 17 5 . 7
T
L [ { H 8 } €rbupz €u PO’pL ] aplb SH ((-c:s + ES)

Ipip

(3.89)
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Figure 3.11: A subleading contribution to the amplitude with multiple soft gravitons.

Summing over the remaining permutations corresponds to treating the 7-th and u-th graviton as
one unit sitting together, and summing over all permutations of the n — 1 objects generated this way.
However it will be more convenient for us to first add to this the contribution from the diagrams
shown in in Fig. 3.11 and Fig. 3.12. Since these diagrams are subleading, we need to pick the
leading contribution from all the vertices and propagators. For the product of any of the I'® vertices
and the propagator to the right of this vertex, we can use (3.36) to generate factors of (55 + Zs) in
the numerator. Using (3.35) we can argue that in all such factors to the left of the vertex, where
momentum %T + Eu enters the finite energy line, we can drop the L, factors. Following analysis
similar to the ones leading to (3.49) and (3.52), we arrive at the following results for Figs.3.11 and

3.12 respectively,

<pL k)" pi - (k4 >}-1 R ZHCERE
k1+ + )} ! "{pi'(/l;l+"'+k\u—2+%r+zu+zu+1+“‘+En)}_1
u—2 . .
L oV oV aK(—p,) 65’1(_]71)
[{ 1:[ }{ ru Eu Vﬂpz pz 9 <5r,uagu,pupi p; + Erpou,uvP; pi) 8]71'” 8]%‘,;
{ IT & )} ] Ly (pi) (3.90)
s=u+1
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Figure 3.12: Another subleading contribution to the amplitude with multiple soft gravitons.
and!!

(B - k)™ (i k) M (o + o)} Apy - (o + Frua) } !
{pi- (ki 4+ hyoth+k) e dpi (k44 kueo+ ke + ky & kugr 4+ + k) } !

u—2
E@T [{ H gs} {_(ku : gr : g/:u pz)(ku pz) - (kr ) gu : gr ) pz)(kr pz)
s=1

(ko2 2 p)) Ry pi) + (k- B - B ) (R 92) — 8% ca (k- i) (R - i)
_2(p1 * gr : ku)(pz : g:u : kr) + (pl : gu pl)(ku * gr : ku) + (pz : gr pl)(kr : gu : kr)}

{ﬁﬁ<@+@%]mmm. (3.91)

s=u+1

After adding these to (3.87), (3.89) the terms involving derivatives of K and = get canceled. Once

these terms cancel, we can drop the terms proportional to ES. The result takes the form

-~

(pi - &) i~ (y + )} o (R -+ u2))

~ -~

{pi- (oi -+ ks + ke + k)Y e (b e+ s + oy kb sy + o+ k) )

u—2 n
{ H gs} { H (z:\s} {_2 ET : ku Eruygu,yppfpél - (ku ) gr : gu pz)(ku : pi)
s=1

s=u+1

(ky - ko)t "

—(ky -8y B pi) ki) + (k- B - B i) (B - p3) + (B - B B0 i) (Ko - i)
_ggng,Cd(kT ’ pl)(ku ’ pl) - 2(]), ’ gr ’ ku)(pl ’ c’:u : kr) + (pi ’ gu ’ pz)(ku ’ gr : ku)

i B pi) (e Za Ke) T () (3.92)
We can now sum over all permutations of the soft gravitons carrying momenta El, e ,Eu_g,
E,,H, SRR %n and the relative position of the unit carrying momentum ET + %u among these. The only

factors that differ for different permutations are the factors in the first two lines of (3.92). Sum over

""We could have dropped the Es factors from (3.91) using (3.35), but will postpone this till the next step.
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permutations using (D.1) converts these to

{ - m} { 11 o m} o (BT = (e (ot ) { e ’/;»—1}(3.93)

s=u+1 s;:r,lu
where we have used the fact that the unordered set {7{}, %u, El, cee %U_Q, Euﬂ, e En} corresponds to
the set {El, e ,En} Using a similar relation for the polarizations we can express the product of éA’S
factors in (3.92) as [ 2r.u €s- We now sum over all possible choices of 7, u from the set {1,--+ ,n},
and add to this the contribution (3.71), (3.73). This gives

n

> { H (%”pwpm}{ II @ 75)} {pi+ (ke + k) } " M(piiE ke B k) €] Ty (p2)

rau=1 s=1

r<u SFETU SFET,U
=) { IT e pipn) } { IT - ksrl}{m (ki + k)Y M(pss €0, ks €us k) €6 Tioy(pi)
ruEA; SEA; sEA;
r<u SFET U S#ET, U
(3.94)
where we have used the fact that the set {ky, - - - , kn } corresponds to the set {k,;a € A;}, and that a
similar relation exists also for the polarization tensors.
Summing over all insertions of all other soft gravitons on other legs we now get the result
N [ N
SR o111 1 KR
Ay,An; A;C{1,- M} i=1 L =1 geA;
AiﬁA]-:Q)fori#j; AjUAQU--UAN={1,---M} e
Z [{pz : (kr + ku)}_l H {(pz : ks)_l gs,w/ pfpzy}
ruEA, SEA;
r<u s#T,u
M(pz» Er, k?“a Eus ku) P(Ehpl? T ENapN)] . (395)

After rearrangement of the sums and products, this reproduces the terms on the last line of (3.65).

This completes our proof that amplitudes with multiple soft gravitons are given by (3.65).

3.3.1 Consistency check

We now briefly discuss the gauge invariance of the general multiple subleading soft graviton result
(3.65). For this it will be useful to use the compact notation for the amplitude A as given in eq.(3.2).

Let us suppose that we transform ¢, by the gauge transformation 9, defined in (3.58). Then the
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non-vanishing contribution to d, A is given by

N M M
{ H Ei,ai} Z { H SI(U)} 61781()0) [Sﬁ,l)r]almal’
=1

s=1 r=1
S#D T#S,p

N M M N
+{ H} 2 { 11 ng} {Z oy (ke + k) @M(pj;er,kr,gu,ku)} pavon
1=1 ru=1 =1

U= s=1
r<u SFETU

(3.96)

The first line of (3.96) can be evaluated using (3.59), and yields the result

N M M
- { 11 } > { 11 550)} SO kg T (397
=1 s=1 r=1
s#p

TF#S,p

The second line of (3.96) receives contribution from the choices r = p or u = p. Since M (p;; &, ky, €4, k)
is symmetric under the exchange of r and u, we can take v = p and replace the » < w constraint in

the sum by r # p. Therefore the second line of (3.96) takes the form

N M M N
{ H €1al} Z { SS(O)} { Z {p; - (ke +kp)} 1 6, M(pjser, kr,yp, k;p)} [eran (3.98)
i=1 r=1 s=1 7=1
/P Tp

s#

Using (3.60) we can now express this as

N M M
i {HE} Z{ 11 SﬁO)} SO k, - g, TOVON (3.99)
1=1

r=1 s=1
S#T,P

This precisely cancels (3.97), establishing gauge invariance of the amplitude.

3.4 Infrared issues

In our analysis we have assumed that possible soft factors in the denominator arise from propagators
but not from the 1PI vertices. This holds when the number of non-compact space-time dimensions
D is sufficiently high. However we shall now show that for D < 5, individual contributions violate
this condition due to infrared effects in the loop. Let us consider for example the diagram shown
in Fig. 3.13. In the 1PI effective field theory, this corresponds to a graph similar to one shown in
Fig. 3.3, but with both soft gravitons connected to the vertex I. If there is no inverse power of soft
momenta from I" then this contribution is subsubleading and can be ignored. However let us consider
the limit in which the loop momentum ¢ in Fig. 3.13 becomes soft — of the same order as the external

soft momenta. In this limit each of the propagators carrying momenta p; + ¢, p; + € + ko, pj — £
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p1+€+k2

Figure 3.13: A possible subleading contribution in five non-compact dimensions.

and p; — { + k; gives one power of soft momentum in the denominator and the soft propagator
carrying momentum ¢ gives two powers of soft momentum in the denominator. On the other hand in
D non-compact space-time dimensions the loop momentum integration measure goes as [) powers
of soft momentum. Therefore the net power of soft momentum that we get from this graph for soft
¢is D — 6, and in D = 5 this integral can give a term containing one power of soft momentum in
the denominator, giving a subleading contribution. Since we have not included these diagrams in
our analysis we conclude that for loop amplitudes our result is valid for D > 6. It is easy to see by
simple power counting that higher loop amplitudes do not lead to any additional enhancement from
the infrared region of loop momenta.

Similar analysis can be carried out for multiple soft graviton amplitudes described in section 3.3.
As we connect each external soft graviton to an internal nearly on-shell line carrying finite energy,
the number of powers of soft momentum in the denominator goes up by one. However the required
number of powers of soft momentum in the denominator of the subleading contribution also goes
up by one. Therefore the result of section 3.3 continues to be valid for loop amplitudes for D > 6,
irrespective of the number of external soft gravitons.

Even though this analysis shows that individual diagrams can give contributions beyond what we
have included in our analysis for D < 5, we expect that for D = 5 such contributions will cancel
when we sum over all diagrams. This expectation arises out of standard results on factorization of
soft loops [118, 119] that tells us that after summing over graphs, the contribution from the region
of soft loop momentum takes the form of a product of an amplitude without soft loop and a soft
factor that arises from graphs like Fig. 3.13 without the external soft lines. Since the graphs like
Fig. 3.13 without soft external lines do not receive large contribution from the small ¢ region, and are

furthermore independent of the external soft momenta, their contribution may be absorbed into the
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definition of the amplitude without the soft gravitons. Therefore we conclude that the contribution
from the loop momentum integration region for small ¢ in graphs like Fig. 3.13 must cancel in the
sum over graphs. Nevertheless since our general analysis relies on the analysis of individual con-
tributions of different graphs of the type shown in Fig. 3.1-3.5, and since the coefficients of Taylor
series expansion of these individual contributions as well as those not included in Fig. 3.1-3.5 (like
Fig. 3.13) do receive large contribution from small loop momentum region, we cannot give a fool-
proof argument that our general result is not affected by infrared contributions of the type described
above.

Note that similar infrared enhancement also occurs for amplitudes with single soft graviton, but
by analyzing the tensor structure of these contributions it was argued in [21] that gauge invariance
prevents corrections to the soft theorem from such effects to subsubleading order for D > 5. Similar
argument has not been developed for multiple soft graviton amplitudes.

This problem of course does not arise for tree amplitudes where the vertices are always polyno-

mial in momenta. Therefore for tree amplitudes our results hold in all dimensions.
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Chapter 4

Soft Graviton Theorem Using CHY
Prescription

In the last chapter, we derived the subleading multiple soft graviton theorem using the Feynman
diagram technique for an arbitrary theory which has diffeomorphism invariance. In this chapter, we
continue with this aspect of the scattering amplitudes. More specifically, our goal in this chapter will
be two fold. First of all, we want to test our general result (3.2) for some specific theory. However,
we shall not be using the Feynman diagram technique applied to a particular theory for testing this
result. We shall be doing this in a more non trivial setting by using the Cachazo-He-Yuan (CHY)
prescription for the tree amplitude calculation [24-27,29,113,120]. In the CHY proposal, instead of
drawing Feynman diagrams and evaluating them using the Feynman rules, an n-point tree amplitude
is given by doing a specific sum over a specific set of discrete points in the moduli space of an n-
punctured Riemann sphere M, ,,. We shall be using this proposal and apply to Einstein’s gravity
at tree level in arbitrary dimensions. Along with testing the subleading soft graviton result, as our

second goal, it will also provide a non trivial test of the CHY proposal itself.

We start by recalling the multiple soft graviton theorem (3.2) proved in the last chapter and
express it in a form which is more suitable for our purposes. Let us suppose that we have n external
finite energy particles carrying polarizations and momenta (g,,p,) for a = 1,--- ,n, and m soft
gravitons carrying polarizations and momenta (¢,,1., 7 k) forr =1,--- 'm. g, for 1 < a < ncan

be any tensor or spinor representation of the Lorentz group. Then for small 7 the amplitude M, ,,
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may be expressed in terms of the amplitude M, without the soft gravitons as follows:!

m

M = 778 [LS% p Mu 70 3T 8 [Sin]
r=1 =1 =1
£

S

_|_7_—m+1 Z H 57(1928 Z {pa : (kn—i-r + kn—i—u)}_l M(pa; Endrs kn—i—m Entus kn+u) Mn 3
TN o=
+O(r7™?) 4.1)
where
ng,)-r = Z(pa : kn+r‘)_1 E(n+r),uv prZ ) 4.2)
a=1
(1) _ - -1 v o 9 p 0 po
(S s M) = Z(pa “knts)” Entsonkntsp Pl | P I Dq p) + J7 1 M, (4.3)
a—1 Pap Pac

and M has been defined in (3.5). Our goal in this chapter will be to prove this result for Einstein’s
gravity using the CHY prescription.

This chapter is organized as follows. In section 4.1, we summarize the results related to the CHY
proposal for the Einstein’s gravity which will be needed in our analysis. A more general review of
the CHY prescription is given in the appendix B. In section 4.2, we review the derivation of the single
soft graviton theorem at subleading order [28,69,77,78]. In the process, we also fix the normalization
of the CHY prescription for the Einstein’s gravity which have been ignored in earlier works. This is
crucial for fixing the sign issue mentioned in section 3.2.3. In section 4.3, we consider the double
soft graviton result using the CHY prescription and derive the results of [15,16] in a more systematic
manner. Finally, we consider the multiple soft gravitons in section 4.4 and show that the result derived
using the CHY method agrees with the above result (4.1). In all our analysis, we work in a general

gauge without making any specific gauge choice?.

Before proceeding further, we again mention that the references [15, 16] derived the double soft
graviton theorem from CHY scattering equation®. The result derived in the last chapter differs from

these references by a sign. In this chapter, we show by careful analysis that the sign that we get

'In [4] the amplitudes M, included the momentum conserving delta-functions in their definition. In this chapter, we
shall use the CHY formula for M,, and will not include the momentum conserving delta functions in the definition of
M,,. As has been discussed below (4.14), the soft graviton theorem takes the same form as in [4] for amplitudes without
delta functions.

2The only exception is that we do impose ef, = 0 gauge condition on the polarization tensor ¢ of the soft gravitons.
Using on-shell condition this also implies k#¢,,,, = 0 where k is the momentum of the soft graviton.

*Double and multiple soft theorem for other soft particles from CHY scattering equations has been studied in [10,29,

121]
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from the double soft limit of the CHY scattering formula agrees with our result (4.1) provided we
normalize the amplitude so that the single soft theorem comes with the correct sign. We also find
few extra terms in the intermediate stages of analysis that were missed in the analysis of [15,16], but
they cancel in the final result.

4.1 Cachazo-He-Yuan prescription for Einstein’s gravity

We start by summarizing the CHY proposal for Einstein’s gravity [25-27,29,113,120]. According to
this proposal, an n-point tree amplitude involving massless particles can be derived from a sum over
discrete set of points in the moduli space of an n-punctured Riemann sphere M, ,,. The position of
the punctures corresponding to these points in M, ,, are determined from the solutions of so called
scattering equations:

n

Pa-Pb
Oq — Op

=0 Va e {1,2,...n}. (4.4)
b=1

b#a
where {o,} are the holomorphic coordinates of the punctures and {p,} are momenta of massless
particles. Using the SL(2, (') invariance of M, ,, we can fix the positions of three punctures and use

any (n — 3) of the n scattering equations as constraint relations. The CHY formula is given as,

M, = / [ ﬁ dac] (apqaqrarp)(aijajkaki)[ f[ 5(17212 Jfa;pl;b)] Z,, 4.5)

=1
c#p,q,T ai,j,k b#a

where o,y = 0, — 0. Here we used SL(2,C) invariance to fix three punctures p, ¢, 7, and made use
of the linear dependence of the scattering equations to remove three scattering equations for ¢, j, k
particles. The SL(2,C) invariance of (4.5) requires

7, =1, H (co,+d)* under o, — (ao,+0b)(co,+d) . (4.6)
a=1

Using this requirement, together with multi-linearity in all the polarization vectors of n-gravitons and
gauge invariance of M,,, CHY gave the following form of the integrand Z,, for Einstein gravity [25]:

T, =4(-1)"(0s — 0y) "2 det (T2 4.7)

where U is a 2n X 2n anti-symmetric matrix defined below and U# is obtained by removing s-th
and ¢-th row from first n rows and removing s-th and ¢-th columns from first n columns of W. The
(—1)™ factor was not present in the original formula, but we have included it in order to get soft
graviton theorems with conventional signs for the leading soft graviton theorem. This factor has also
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appeared recently in [122]. The overall n independent normalization and sign of the amplitude will

be irrelevant for our analysis. W has the form:

A —CT
U — (4.8)
C B
where A, B, C' are n X n matrices defined as,
by S
Aab - Ta — 0b ) Bap = Ta = b
0 a=b 0 a=b
Oq — Op
Cop = { n 4.9)
_ Z Ea'pc a = b

c=l,c#a 9a — Oc

Here for each a, ¢, is a space-time vector. In the expression for Z,, each ¢, appears quadratically.
In the final formula, we replace €, €, by €, ., and identify £, as the polarization tensor for the a-th
graviton.

Since the total number of independent scattering equations is equal to the total number of inde-
pendent variables, the integration over o,’s reduce to a sum over discrete set of points, it can be seen
using simple counting that the total number of solutions to the scattering equation is (n — 3)! [24].

In the rest of the chapter, we shall use the CHY formula (4.5) to study soft limits — limits in
which one or more external momenta become small. Our general strategy will be as follows. We first
represent the integration over o,’s as contour integrals using (B.23), taking the contours to lie close
to the solutions of the scattering equations. In this region we can make appropriate approximation on
the integrand using the soft limit. Once we make this approximation, we now deform the contours
away from the solutions of the scattering equation, possibly through regions where the original ap-
proximation fails, but Cauchy’s theorem guarantees that the value of the integral is unchanged. As

we shall see, this gives an effective method for approximating the CHY formula in the soft limit.

4.2 Single soft-graviton theorem

In this section, we review the derivation of subleading single soft graviton theorem from CHY pre-
scription given in [28, 69, 77, 78], taking special care about the signs. We shall see that the (—1)"
factor in (4.7) is necessary for getting the conventional signs. We also work with general polariza-
tions of external gravitons without making any gauge choice (other than the one given in footnote
2) as in [78] — this will be necessary for generalizing the analysis to multiple soft graviton theorem

where special gauge choices of the type used e.g. in [28] is not possible. Single soft graviton theorem
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for general gauge choice has been derived in [78].

4.2.1 Statement of the theorem

We shall begin by stating the subleading single soft graviton theorem in a form which is convenient
for our purpose. We consider the scattering amplitude of (n + 1) massless gravitons with (n 4 1)’th
particle momentum soft and expand the amplitude about the soft momentum. Let pq, - - - p,, denote
the momenta of the finite energy particles, and p,,.; = 7k, 1 denote the momentum of the soft
particle. We shall take the soft limit by taking 7 — 0 limit at fixed k,,.;. We also denote by ¢; the

polarization tensor of the ¢-th graviton. Then the subleading soft theorem takes the form

1
Mn-l—l(pl»pZ»---amekn-i-l) = [;57(1(21 +S7(l]—-‘21 +O(T)]Mn(plvp27)pn) (410)
where,

g0 _ Zn: E(n+1),v P Vs @.11)

TZ+1 p— kn+1.pa 9

n Tov

n E(nt1), v Ph k(n-‘rl),p JP
St = Y . (4.12)
a=1 +

Here, j;“’ is the total angular momentum acting on the a-th state, defined as,

T 0 0

=p—— —ph——+ JI (4.13)
apa N apa v

where J! is the spin angular momentum of the a-th hard graviton, defined as
(S €)pe = (J") s Peas = ohe", —opel, +ohe, —oye )l (4.14)

There is one subtle point that must be mentioned here. The full amplitude contains a momentum
conserving delta function, and the derivation of the multiple soft graviton theorem derived in last
chapter included this momentum conserving delta function in the definition of the amplitude. In that
case the external momenta can be taken as independent and the derivatives with respect to momenta,
present in the definition of J*¥, are well defined. On the other hand, the CHY formula given in
(4.5) does not have this delta function. It is however easy to see that as long as (4.5) satisfies the
soft graviton theorem, the full amplitude including the delta function also satisfies the soft graviton
theorem [68]. To see this, we multiply both sides of (4.10) by 5 (p1 4+ -+ +pn+ Tkyy1), and
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manipulate the right hand side as follows:

n
En H oY
Til Z ot 1)er P P Mn (5(D) (pl T +pn) + 7—kn-i-l

5P (py ot )
kn-i—l-pa (pl b )

7p
a=1 8pa,p

n+1 ,uV pa /(n+1),p v 8 P a v (D)
4 _ JPY L M, & ... O
Z n-l—l -Pa {pa apa,p paa a,v i ¢ ' (pl ! +p") ! (T)

15
_ _12 (n+1)uv§aPaM 5P (pr+ -+ pyp)
n+1 a

E(n+1) ,ul/ pa (n+1),p v 0 p 0 pl/} $(D)
+ Paz— —Pam— +J M, 0" (p1 + -+ +p
Z n+1 Pa { ¢ dpuyﬂ ¢ dpav'/ ¢ { ( ' n) }
_|_()( )7 (4.15)
where we have used the fact that
n
En Hk 0
Z (n+1).uv Pa t1)pp P (py + -+ +pn) =0, (4.16)
kn+1~pa apa,u

a=1

as a consequence of the condition &/, = 0 that we impose on the polarization tensors of the soft
gravitons. Since the right hand side of (4.15) now takes the form of the right hand side of the soft
graviton theorem with the momentum conserving delta function included in the definition of the
amplitude, we see that once we prove eq.(4.10) for the CHY amplitudes, it also holds for the full
amplitude including the momentum conserving delta functions. A similar result holds also for the
multiple soft graviton theorem (4.1).

While proving (4.10), or more generally for the multiple gravitons for the CHY amplitude (4.5),
we shall treat all the external momenta as independent while computing the derivatives of the am-
plitude with respect to the external momenta. However while verifying the equality of the two sides
of the equation we shall make use of the conservation of total momenta, since the final identity we
are interested in proving is not (4.10) or its generalization to multiple soft graviton case, but the
ones obtained from these by multiplying both sides of the equation by momentum conserving delta

functions.
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4.2.2 Single soft limit of CHY formula

We now begin the analysis of the single soft limit of CHY formula. Let us introduce some compact

notations,*

n n

a- , Engr.
= Mforlgagn’ n :ZLpb’ 4.17)

n+r —
b1 Oq — Op b—1 Ontr — Op

b#a

/DU _/ H dac] (0pqCqr0rp)(0iO10ks) (4.18)

675qu

and rewrite the CHY formula for the (n + 1)-point scattering amplitude as,

M, 1 pl P2y -5 Pns Tkn—l—l)

/Da/dan+1 H (Zp;fb "“)}5<Tzn:k"“‘pb) Lyer. (4.19)

a1 b1 a(n+1) b1 O(n+1)b
a#i,j,k b#a

While carrying out various manipulations below, we shall not be careful about orders of the delta
functions. However it should be understood that while doing the final integration over the o,’s, the
delta functions must be brought to the same order in which they were arranged initially. With this
understanding we expand the product of delta functions inside the integral (4.19) in a Taylor series

in 7 as:

H ( Da pb n+1)

Oab Oa(n+1)
a;éz ] k b#a
n n
Pa-Db Prknt1 o Pi-De Pa-Do
- I 50)+ Y(X50) I (250 o)
L a(302) o3 tma(0) 11 o(3%
a#1,5,k b#£a c#l a#i,7,k,l b#a
= 09 475U +0(r?). (4.20)

The integrand can also be expanded in powers of T as,

d-[n—i-l
T ——

LT HOE) =L L+ 0(), (4.21)

7=0

[n+1 = [n+1

4For single soft gravitons we only need , but later we shall make use of the definition of for general r.
g g y n+1 n+r g
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Now substituting (4.20) and (4.21) in (4.19) and keeping terms up to subleading order in 7, we obtain

|
Muni(puhrhuet) = 3 [ Do [ dowa 50750 (72, (10 +7 1)
|
= —/Daé(o)/danH O(fr1) 1(0)1+/D0/d0n+1 5 §( n+1)[r(£21

/ Do 5© / Aoy 6(f7 ) 1Y, (4.22)

Now we shall analyze the three terms appearing in equation (4.22) one by one.

First term

Using the expressions (4.7), (4.8) and (4.9), we get, on putting 7 = 0,

~ ni1Pa 2
10 = =Cly b = — (> ) 0, (4.23)

a—1 On+1 — Oq

Here, the negative sign comes from the (—1)" factor in the definition of I,,. Using this, the first term
on the right hand side of (4.22) can be written as

1
A = —/Da 5(0)/d0n+1 3( ) I

n n n
Pa ] kn N € N 2
= ——/Do‘ || E : papb)/dan+16(§: +1Pb><ZLpa) I
a;zglk b= 1,b?éa, Uab =1 U(n—i—l)b a—1 O-n+1 — O'a

- 1o TS5 fam (5 et (5 et

1 On4+1 — Op 1 On4+1 — Oq

a#i,5,k b#a

(4.24)

In going to the last line, we have used the contour integral representation of the delta function as de-
scribed in (B.23), with the 0, integration contour wrapping the solutions of the scattering equation
of the (n + 1)-th particle. We now deform the contour and do the contour integration about the poles
of rest of the integrand. The deformed contour will wrap the other poles in clockwise direction, and
therefore the residue theorem will have an extra minus sign. We shall also need to take care of poles

at infinity if they exist. If we denote collectively by { R;} all these poles, the first term becomes

a 1 - nt1-Da \?2
/Da Zp p") 7{ pp— (Z Cnt1D ) . (425)
4 Oab R;} (E knt1-pp ) a1 In+1 — Oa
a;éz] k b;éa, i On4+1—0p

Using momentum conservation » ._, p, = —7 kp41 and the on-shell conditions k2, = 0,

€ni1-kny1 = 0, we can see that for large o, , the last term in (4.25) falls off as (o,;)~* and
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the last but one term grows as (0,,41)%. Therefore there is no pole at oc. The rest of the poles inside
the deformed contour are the simple poles at 0,1 = 0, coming from the combination of the last two

terms in (4.25). Computing the residue at each such pole, we obtain the result

n

2
A = 1 Z M M,, . (4.26)

T a—1 kn-i-l-pa

Replacing €, 41,641, Y €n41,0 10 the above expression, we see that it agrees with the leading soft

theorem (4.10) including the sign.

Second Term

The second term on the right hand side of (4.22) is given by
Ay = /Da/danH sWa(frm ) I}f‘jl

n . kn n ; '/c n n /a.(
= [ oo [ana S et (3 R[] o(3 1)
1 Un+1) Olc — Oab

c=1 a=1 =
c#l a#i,5,k,l b#a
n n
R Epi. €ntl- 2
O(zﬂ)(z Lpd) I,. (4.27)
= O (n+1)b 1 On+1 — 04

Let us focus on the 0,,.1 integration. The relevant integral is

/dgnHM(;(zn:M)(iM)Q_ (4.28)

01— Ont1 p—y On+l — b g Int+l — 04

We can analyze this by deforming the o, integration contour in the same way as before. The only
extra complication is that along with the simple poles at 0,11 = 0, (a # ), we now also have a
double pole at o, and we have to be a little more careful in evaluating the residue. This can be done,
yielding the result

1 2 K1t 2 Knj1-py ]

2(€nt1- e 1-Pp) — (Ensi- — (€nt1- : 4.29
3 oy 2lemm) (i) = (ewna) PR = (ennn)” 20 (429)
b#£l

Substituting this into (4.27) we get

n n n

as = = [oen ST (32522 3t

=1 a=1 b=1 c=1

a#i,j,k,1l b#a c#l b#£l
kpiq. k1.
[2 (%H-Pl) (En+l-pb) - (€n+1-Pl)2 2 =L (€n+1~Pb)2 + pz] . (4.30)
n+1-Di kn+1'pb
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The derivative of the delta function can be obtained by using the representation (B.23) of the
delta function. Instead of contour integral of 1/f we have contour integral of —1/f2. We shall see,

however, that we do not need to make use of this explicit representation.

Third term

We now turn to the evaluation of the third term on the right hand side of (4.22)
As = / Do 6 / oy 6(f7 ) I, (4.31)

We begin by introducing some notations. We denote by U the matrix st defined in (4.8) and the
paragraph above it for n finite energy external states, with some fixed choice of s and ¢ in the range
1 < s,t < n. We shall denote by U the same matrix for n + 1 external states with the (n + 1)-th state
describing a soft graviton carrying momentum 7 k1. W is a (2n — 2) X (2n — 2) matrix and W is a
2n x 2n matrix. We shall denote by P the Pfaffian of ¥ and by P the Pfaffian of W:

> 1 = = 3 1 et T =
(4.32)
Furthermore we shall denote by ]3@5 = —ﬁﬁa for a < 3 the Pfaffian of the matrix obtained by

eliminating from P the a-th row and column and B-th row and column. Similarly ﬁam(g is defined
to be totally anti-symmetric in «, 3,7, d, which, for « < § < v < 4§, is given by the Pfaffian of the
matrix obtained by eliminating the «, (3, 7, 0-th rows and columns of the matrix U. Similar definitions

and properties hold for ﬁa,g and ﬁam(g. Then we have

L = 4(=1)" (0, — 0,) % det U = 4(=1)"" (0, — 0¢) 2 P2, (4.33)
and therefore
1) Oyt n DR opP
]n—gl = or . - 8(_1) i (O-S - Ut) ? Pa_ o : (4.34)

Now from the definition (4.32) of the Pfaffian it follows that

op X OWop ~
¥ (e @osp | (4.35)
or 5 or 0

a<f,a,B#s,t

Here we have adopted the notation that in \/I\]aﬂ and 13(15 we shall let the indices run over 1 < o, 8 <
(n+1), a,8 # s,t,and (n + 2) < «, 8 < 2n + 2. Therefore the last rows and columns will be

called (2n + 2)-th rows and columns, even though they are actually 2n-th rows and columns. We
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have also implicitly assumed that the integers s and ¢ are consecutive — otherwise there will be extra
minus signs when one of « or /3 falls between s and . Our final result will be valid even when s and
t are not consecutive.

Now using the explicit form of the (n + 1) x (n + 1) matrices A, B, C given in (B.42) for n + 1
gravitons, with p,, 1 = 7 k41, we get,

a14(1 a1412 n a-kn
b:Oforlga,bgn, (m+l) _ _Pa-Fnl forl <a <n,
or or Oa — Opt1
0B,
b0 forl<ab<n+l,
or
oC, 0C4q(n a-kn
—b=0f0r1§a,b§n,a7§b, (n+) _ _Ca-Fn1 forl <a<n,
or or Oa — Onil
oC, 0C 44 a-kn IC(n41)(n
ﬂ=0f0r1§b§n, = _Sofnil forl <a <n, M=O.
or or Oq — Onit or
(4.36)
On the other hand using (4.35) and (4.8), we get
PY: n+1 DA, ~ n+1 OB, ~
- _1 a—b+1 a Pa 1 a—b+1 [ Pn (n
a7 zb_:l (=1) o b+ Zb_:l( ) 5y ©(nti+a)(nti+h)
a<l?1aib¢st a(’l<7b
n+1
I—=CT gy =
a n—>b
—Pa n ) 4.37
+ ; or (n+14b) ( )
aFs,t
Using (4.36), (4.37) we can rewrite (4.34) as,
n -2 D - a—naAa n+l) 5
M, = §(=1)"" (0, — 0y)2 P{ S (1) %P@mm
ac;é:slt
aCa n+1 TL 8CYaa N
+Z ( u )P(n—i-l)(n—i-l—i-a + Z i or a(n+1+a)} . (438)

a;és t

We shall now evaluate the various components ﬁaﬁ that appear in the expression (4.38). For this
it will be useful to express U in the matrix form:

-k T Pa-€nt1
A TPa-Rnt1 _ a-€n-}
ab Oa—0n+1 Oa’d Oq—0On+1
Tkn41-Pp Thn+41-€4 .
U= | o1 0 On+1—0d Cln+n+) (4.39)
O Tec-kni1 B €c.€pt1 ’ .
cb Oc—0n+1 cd Oc—0On+1
n+1-Pb_ Cn+1-€d
P — Clnt1)(n+1) Eap— 0

where the indices a, b, ¢, d for the matrices A, B, C run from 1 to n (with a, b # s, t), and the (n+1)-
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th components of these matrices have been written down explicitly. Also useful will be the explicit

form of C(n+1)(n+1):

n
€n+1-Pe

Cinty(nt1) = — (4.40)

Opi1 — 0o
—1 n+1 c

We begin with ﬁa(nﬂ). This is the Pfaffian of the matrix (4.39) without the a-th and (n + 1)-th

rows and columns. Expanding this about the last column we get

n

n
a €En+1-P a En+1-€d =

e=1
e#s,t,a

(4.41)

We now notice that for 7 = 0, the matrix obtained by eliminating the (n + 1)-th and (2n + 2)-th rows
and columns of \Tl, is in fact the matrix W. Therefore we can rewrite (4.41) as

n

5 €nt1-Pe . €nt1-€d
Ponit)lreo = —)ett M Py ()l e P (442
(n+1)| =0 Z ( ) Opil — O ae dz:;( ) Onit — 04 a(n+d) ( )

e=1
e#s,t,a

Similarly we have

n

n
~ €nt1-pP ~ _ €Entl1-€d =
e#s,t d#a

(4.43)

To analyze ﬁa(n+1+a) we expand it in the (n + 1)-th row. For 7 = 0 only the (2n + 2)-th column
contributes and gives

Ponttta)lr=o = —(=1)""'Clat1)nt+1) Panr) (nt14a)@n+2) lr=0
n
_ €n+1-Pe S
= (=) § L e S : (4.44)
( ) (CZl Ons1 — Oc a(n+a)

In order to evaluate the right hand side of (4.38) we also need P |-=o- This is evaluated by expanding
the Pfaffian of the matrix ¥ given in (4.39) in the (n + 1)-th row. The only contribution comes from

the last element in the row, giving the result

~ ~ O EntPe
P|T=0 = _(_1)nO(n+1)(n+1)|T:0 P = (_1)n Z Lp P. (4.45)

g — 0
—1 n+1 c

Substituting these results in (4.38) and using (4.36) we get the result for [,(121 which can be
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substituted into (4.31). Using the definition of f}!,; given in (4.17) and the definition (B.23) of the

delta function, we now get

-1
= K, 1-Po -2 D - En+1-P
A = —8/Da5(0)jl§dcrn Shiha o, —o0y) 2P Ty
’ o z_: On+1 — Op ( t) ; On+1 — Oy

b=1
- Da-k - €nt1-P €nil-€
E : a—n_Fa-hntl E e+l tntl-Pe 5 E : n+1+d nt+l-td 7
{ (_1) { ( 1) Poe + —Pa(n+d)
a1 Oaq — On+1 o1 On+1 — Oe On+1 — 04
ars,t e7s;t,a
- €q.k u €nt1-P €nt1-€
a Ca-n+tl e tntlle 3 n d+1 ®n+1-€d &
+ E :(_1) { E (_1) e(n+a + E P(n+a)(n+d)
o Oa = On+1 \ "3 On+1 — Oe Op+1 — 04
eFs,t d;éa

On+1 — Oqg 1 On4+1 — O¢

+ Z ( i ) (Z M) ﬁa,(nm} | (4.46)

a;ﬁs t

The 0,1 contour winds anti-clockwise around the zeroes of (22:1 %) We can now deform
the contour towards infinity, picking up residues from o, = 0,, — it is easy to see that there are no
poles at co. For the coefficients of ﬁab’ ﬁ(nﬂ)(mb) and ﬁa(mb) for a # b, the integrand has single
poles at 0,11 = 0, and 0,,.1 = 03, and the result can be computed easily by picking up the residues.
Finally for the coefficient of ﬁa(nm) the integrand has a double pole at 0,1 = 0,, therefore to
evaluate the residue we have to expand it in a Laurent series around the pole and pick the coefficient

of the (0,11 — 0,) " term. After some algebra, one finds:

Az =8 /Da5(0) (0s—0,) 2P

n

— _ €En+1-P €En+1-Pb ~
Z (_1)a+b " (Ua - Ub) ! {kn—i- 2 I } kn-{—l'pa En+1-Db Pab
ab=1 n+1-Pa Ent1.pp

a#bsa,b#s,t

- €n+1-Pa €n41-Db =

+ g D (g, — o)t {2 — kpi1.€q €nti-€p P

— Oq b) kn+1-pa kn-f—l-pb n+1-€a En+1-€b L (n+a)(n+b)
a#b

a+b 1} €n+1-Pa €n+1-Db ~
+ E - Ub) {k - L , {kn—i-l-pa €nt1-€b — Fny1-€p En-l-l-pa} Pa(n+b)
a,b=1 n+1-Pa n+1-Pb
aZbiats,t

n n
- €n+1-Pa €n+1-Pe _
* Ta =0 1{ - } Fnt1-€a €nt1-De — kns1-De €nti1-€a} P

; ;( ’ 2 kniy1-Pa Kny1-pe {ns1-€a nir-pe nt1-De nt1-€a} a(n+a)

a#s,t c#a

(4.47)

95



4.2.3 Comparison with soft graviton theorem

The first term A; given in (4.26) exactly matches the leading soft graviton result given by the first
term on the right hand side of (4.10) once we make the identification &, ,, = €4, €q,. TO check
that the second and the third terms A, and .43 given respectively in (4.30) and (4.47) agree with the

known subleading soft graviton theorem, we first express (4.12) as

(1) (1)
Sﬂ—H S orbital + Sspm (448)
where

n

o - _ €n+1-Pa d d

Sorbital = £ kZH-pa [(€n+1-pa)kn+1,p% - (kn—l-l-pa)e(n-i-l),l/% )
n ¢ p
(1) n+1-Pa v

Sepin = Zm€<n+1),uk(n+1),uJ5 . (4.49)

a=1 n rra

Therefore we have, from (4.5)

L p -Po
wa:l M, = { rbltal + SSPIH} Do H - In
Oab
a;el 7, k b;ﬁa
n Pi1-De Pa-Pob
= Do S\ < —) ( )
/ Z orbital ; o, — 0, H Oab
c#l a#1,7,k,1 b;ﬁa

/ Do H Zpgapb){ Sbital SPm}I (4.50)

b=1
a,;ﬁz > k b#a

First let us compute the operation of S (rbltal on the delta function,

(1) - pi-p
Sorbltal(s(z o, — (CT )

c=1

c#l
_ st - Pi-Pc - (€nt1-Pa) [ i _ ] Pi-De
=0 (; oy — Uc> ; Knt1-pa (Enﬂ.pa) g OPap (kn+1 pa e * Opa CZ 91— Oc
c#l cAl
_ / - Pi-De ) g 1 [ _ 2kn+l~pa
5 (; prd D Dbl I CR T CRE AR CRE s
Al a#l
2 kn+1~pl]
+(€n+1-pa) kn+1'pa . (451)
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With this, the first term on the right hand side of equation (4.50) becomes,

/DUZ T (X202 2

a#i,j,k,1l b#a c#l a#l
Frta. Epir.
[2(crnm) (cwripa) = (enrm) T2 — (epa) T 1 @52)
kn+1.pl kn+1'pa

This exactly agrees with A, given in equation (4.30).
It remains to show that the second term on the right hand side of equation (4.50) agrees with As.
Using the definition of 7,, given in (4.7) and that det(Ws!) = det U =2 we get

I, =4(=1)" (o5 — 0,) 2 P%. (4.53)

In order to calculate the action of S™) on this, it will be useful to record how Ss(pl)n defined in (4.49)
acts on the ‘square root’ € of the graviton polarization tensor . This is done by identifying the action

of J*” on € as

p

(J*€), = (J"),%q = dhe” — Vet (4.54)

fa CQ « oD oo
This allows us to express S, /| as

(1 : €n+1-Pe M v 0 17 0 0
Sn—i—l - Z k n+1 knJrl (pc,u6 Dew pcuWC‘u + ec,uaTCV - ecuae_cu 3 (455)

—; nt1-Pe

and therefore
S I, =8(=1)" (o, —0y) 2P S\ P. (4.56)

Using (4.55) and (B.42) we get

1 €n+1-Pa €n+1-Pb
S(l) Agy = { = - €y Ky [Paulew — DavDeu) 5
L Oq — Op kn—i—l-pa kn—}—l‘pb nHl 1 [ o ¢ #]

1 {en D € p}
+1-Pa n+1-b o v
— e kY [€an€or — €avop)
n+1 "n+1 [Captbr avtoul »
Oq gy kn-{—l-pa kn-i—l-pb

57(11-213&6 =

O v
Sn+10ab - Tdb n+1 Kt

|:€n+1-pa €n+1-Db
a

- €ap Pov — €avPh fora;éb,
kn-i—l'pa kn+1~pb:| [ e ¢ “]

n
1 €n+1-P €n41-Db
sW oo — A [ tlfe  Cn €an Pov — €avPiu) -
" bzl:o-a_ab N N (o v P
b#a

(4.57)
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We now use a formula similar to (4.37) with (n + 1) replaced by n and 0, replaced by Sﬂl:

n n
1) 75 a— 1 ~ a— 1 ~
SenP = >0 (D NS Aw) Pa+ D (1) NS Bas) Pna)
a<§y£:bqlés t at;b<:b1
+ Z a " b+1 551421017(1) ﬁa(n-ﬁ-b) 3 (458)
a,b=1
a#s,t

and use (4.56), (4.57) to express the second term on the right hand side of eq.(4.50) as

/DJH Zp§€b>8—1 (0, — o) 2 P

b=1
a;éz 7,k b/a

n
—b D - €n+t1-P €n+1-Db
Z (_1)0 ’ Pab (Ua - Ub) ! {kn+ 2 — kn+ } €n41-Db kn-}—l-pa
a,b=1 n+1-Pa n+1-Pb

a#b,a,b#s,t

n

o~ _ En 1-pa E’I’L—‘,—l'l)b
+ 2 : _1)@ an a)(n+b) \Oq — Op ! { e - } € -€p kn 1-€a
( ) ( + )( + ) ( ) kn—i—l'pa kn+1'pb n i

b TS 1 €n+1-Pa €nt1-Db
+ —1)e P r — €ns1-€a kna1-Pb — €ns1-Pb kngr.-€
Z ( ) b(n—i—a)o_a_o_b kn+1.pa kn_;_l'pb {n—i—l a "n+1-Pb n+1-Pb RFn+1 a}
a#s,t;a7#b
n
1 €ni1-Pa Ent1-Pb
- — €ntl1-€q kns1.Pb — Ena1-Po Kna1-€
Z an+a ;Ua—ab {/‘Jn+1-pa kn+1-pb {n+1 a Fn+1-Po n+1-Pb Fn+1 a}
a;ﬁst bta

(4.59)

This is identical to (4.47).
This finishes the proof that the CHY prescription for graviton scattering amplitude is consistent
with the subleading single soft graviton theorem.

4.3 Double soft graviton theorem

In this section we shall consider the limit of the graviton scattering amplitude when two of the gravi-
tons carry soft momenta. We shall reproduce the result of [15, 16] with opposite sign and in general
gauge. During this analysis we also find some additional terms that were left out in the analysis

of [15, 16], which nevertheless cancel at the end.
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4.3.1 Double soft limit

We shall first follow [10,29] to analyze the solutions to the scattering equations of (n + 2) particles
with momenta {py, pa, ..., Pn, T knt1, T knro} in the double soft limit 7 — 0 keeping ki, 11, ky4 2 fixed.
The scattering equations of first n particles, (n + 1)-th particle and (n + 2)-th particle are given

respectively by:
PaPv | TPalinir | TPalniz g yycqy o p}, (4.60)
b—1 Oa — Op Oq — On+1 Oa = On+t2
b#a
n
k'n N kn kn
+1-Pb n T Rnt1-Fng2 0, (4.61)
= On+t1 = 0b  Ont1 — Ont2
n
Epio. kny2.kn
n+2-Po n R R 0, (4.62)

by On+2 — 06 Ont2 = Onyl

where we have removed overall factors of 7 from the last two equations. We also have momentum

conservation relation,
pl+py+ . +ph+r(kh + kL, =0. (4.63)

The solution to the scattering equations can be divided into two classes [10,29]: degenerate solutions
where 0,11 — 0,12 ~ 7 and non-degenerate solutions for which ¢, 1 — 0,10 ~ 1 in the 7 — 0 limit.
For both classes of solutions o,’s for 1 < a < n remain finite distance away from each other and
from 0,41, 0pio as 7 — 0. In order to show that there are no other types of solutions we shall now
show that the total number of degenerate and non-degenerate solutions add up to (n — 1)! — the actual
number of solutions for scattering equation of (n + 2) particles [25].

At 7 = 0, eq.(4.60) describes the scattering equations for n particles which have (n — 3)! solu-
tions for {01, 09, ..., 0, }. Generically these solutions are non-degenerate, with non-coincident o,’s.
Therefore to count the number of non-degenerate and degenerate solutions in the 7 — 0 limit, we
have to multiply (n — 3)! by the number of solutions for o,,,, and o, for fixed oy, - - - , op,.

Let us first count the number of non-degenerate solutions. For fixed o4, -- ,0,, we can ignore

the last term in (4.61) in 7 — O limit and express this as a polynomial equation for o, :

n

> keripa [J(0n —00) =0, (4.64)
a=1

b=1
b#a

Naively this is of degree (n — 1), but momentum conservation (4.63) makes the coefficient of the
(0pg1)" L term —7 kyy1.kpyo which vanish in the 7 — 0 limit. Therefore in this limit this is a

polynomial equation of degree (n — 2) and gives (n — 2) solutions for o,,, 1. Similarly eq.(4.62) gives
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(n — 2) solutions for o, ;5. Therefore the total number of non-degenerate solutions is given by

n—3)!'xn—-272=n-2)!x(n—2).

For counting the number of degenerate solutions, we first define p, £ through [10,29],

Ont1 =P =5, Un+2:P+§:

and add and subtract (4.61) and (4.62) to write them as,

n n

Z kn—21~pb +Z Ernt2.Db o,

5
n n

kpp1. ko ia. 27 kyyo.ky,
Z 21 Po _Z ?pb _ +2-Rn+1 —0.
1P T30 5 PT30p £

Expanding € as £ = 7& + 72 & + O(73), the second equation may be written as,

1 1 ~ kg1 1 knso.
5_12 Z +1-Py Z +2:Po

Fri1-knyo v P~ 0b Fny1 ko vy P~ 00

On the other hand (4.67) in the 7 — 0 limit gives

n

Z (kn—i-l + kn-i—?)'pb —0

b1 P — 0Op
n n
= Z(kn—i-l + knt2).D H (p—o0p) =0
b=1 a=1,a#b

(4.65)

(4.66)

(4.67)

(4.68)

(4.69)

(4.70)

This is a polynomial equation in p of degree (n—2), since the p"~* coefficient vanishes by momentum

conservation (4.63) as 7 — 0. Hence it gives (n —2) solutions for p for a given set of {071, 09, ..., 0, }.

For each such solution, ¢; is fixed uniquely from (4.69). Therefore we will get total of

(n—=3)(n—2)=(n—2)!

4.71)

degenerate solutions. Adding this to (4.65) we get (n — 1)! solutions which is the expected total

number of solutions of the scattering equations for (n + 2) particles. This shows that we have not

missed any solution.
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4.3.2 Contribution from non-degenerate solutions

The contribution from the non-degenerate solutions to subleading order in 7 may be written as,

n n
/Da/d0n+1dan+2[ H (s( Pa-Pb +Tpa ntl —|—7'pa n+2):|
Tab Ta(n+1)  Oa(n+2)

a=1 b=1

a#i,j,k b#a
n n
5<7_ n+1-Pb g n+1-Fn+2 >5<T Z n+2-Pb 12 n+2-Fn41 >I'n,+2 7 (4.72)
vy T(nt1)b O(n+1)(n+2) p—y O (n+2)b O (n+2)(n+1)

where it is understood that we pick contributions from those zeroes of the J-functions for which

Oni1 — Opio ~ 1 as T — 0. The product of first (n — 3) delta functions can be expanded in powers

of 7 as:

Da pb Fnt1 Pa-Fnto
11 o(3 +7
Oab Oa(n+2)

a=1 b=1 Ua(n—i—l)
a#i,5,k b/a
_ H 5( pa-pb) g Z [Pl- ntl D n+2]5/< pl-pc) H 5( pa-Pb)
i b1 Oab =1 Ul(n—i—l) Ul(n—i—?) o1 Ole i b1 Oab
a#i,gk ba B c#£l ati gkl b#a
=00 4760, (4.73)

On the other hand the product of last two delta functions have the form:

" kn . n «fun, ]- N n n
(5(7 Fn+1-Pb _H-QLM) == [()( no)+ TMé/(an) +0(r )} L (479

vy O(n+1)b O (n+1)(n+2) O(n+1)(n+2)

" nt-2- n+2-Fn 1 n n
6(7 Fniapy o M) _ - [5( n )+7M5'( n )+ 0(72)] . (475)

1 O (n+2)b O (n+2)(n+1) T 2 O (n+2)(n+1)

where f',  has been defined in (4.17). Finally the integrand I,,,» may be expanded as,

8[n+2

Lz = Lnsslrmo+ 72| + O(72) = I, + 7 I, + O(7). (4.76)
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Substituting all these expansions in the (n 4 2)-point amplitude (4.72), we get

1 T ki1 knso o) o
5 / Do / do_n-ﬁ-l d07l+2 [5(0) +7 O(l)} [0( 7?-4-1) +7 = -2 /(fn+1):|
T O (n+1)(n+2)

kpto.ky n
[0(f0) + 7 222 g )] (10, 4+ 7111
O(n+2)(n+1)
1 < en n
= ;/DU(S(O) /d0n+1 o2 0(frs1) 0(frso) —77(322
l D d d 5(1)5 n 5 n ](0)
+7_ o On+1A0n42 ( n—l—l) ( n+2) n+2
1
42 [ D080 [ donidonsa8(52,0) 672 11

1 kn 1-kn 2 n n 0
+; /DU(S(O) /d0n+1 d0n+2g+—+5,( 1) O(filys) Ir(zJZQ

n+1 — On+42
1 [ .
2 [ Dos® [ dordoi 87, 2 g 1) 10, @77

For evaluating this, it will be convenient to introduce two soft parameters 7; and 7, instead of a single

parameter 7 and take the external momenta to be py, - - - pn, 71 kna1, T2 Fnio. In1o 1s then given by
Livo = 4(=1)"" (05— 0y) > P (4.78)

where P is the Pfaffian of the matrix

A Tlpa-kn+1 TQpa~kn+2 _CT Pa-€nt1 Pa-€nt2
ab Oa—0Oni1 Oa—0ni2 d Ta—0Oni1 Ta—0ni2
T1kn+1-Pb 0 0 Tiknt1-€4 —C _ Titn42.-kny1
Ont1—0p Ont1—04d (n+1)(n+1) Ont2—0Ont1
T2kn42.Dp T2knio.cq T2eny1.kny2
T o —0 0 0 o —0 o —o0 C(n+2) (n+2)
\I] — n+2 b n+2 d n—+1 n+2 (4 79)
C Tl‘c~krn+1 7'2‘c~kn+2 B €c-€nt1 €c-€En42 :
cb Oc—0On+1 Oc—0n+42 cd Oc—0On+1 Oc—0n42
€nt1-Pb C T2€n+1-kny2 €n+1-€d 0 Ent1-€nt2
— (n+1)(n+1) — — —
On+1—0p On+4+1—0n+2 On+41—0( On+1—0n+2
€En+2-Pb T1€n+2-kn+1 C’ €En+2.€4 €En+2.€nt1 0
Ont2—0 Ont2—0nt1 (n+2)(n+2) 5. "0y On42—0nt1

In (4.79) we have set terms with two or more powers of 7 to be zero. The values of C,,11)(n+1) and

Cn+2)(n+2) to linear order in 7 are:

n n
€n+t1-P Ty €nt1-Knio €n+t2-P T1 €ng2-Fngt
Clnt1)nt1) = — Z e - = Claed)(nsr) = — Z e -

On+1 — Oq On+1 — On42 On+2 — Oqg On+2 — On+41

(4.80)

a=1 a=1

At the end of the computation we shall take the limit 74, 79 — 7 — 0.

We shall now analyze the different terms on the right hand side of (4.77). However, before we
proceed to evaluate the integrals, we would like to remind the reader of the general strategy for
analyzing these integrals that was described in the last paragraph of section 4.1. The expansion
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(4.77) of the amplitude in powers of 7 is valid when the integration contours wrap around the non-
degenerate solutions for which 0,1 — 0,19 ~ 1. Once we have made this approximation we can
deform the contours of 0,1 and 0, 5 even to regions where |0, 1 — 0,1 2| << 1. Treating (4.77) as
the integrand still gives the correct result by Cauchy’s theorem even though the original integrand is
no longer approximated by (4.77). A similar remark will hold for the contribution from degenerate
solutions — we shall make our approximation in the region where the integration contour is close to
the degenerate solution of the scattering equation, and once the approximation is made, we shall be

free to deform the contour away from the region where the approximation is valid.
First two terms

In (4.77), the first two terms on the right hand side may be analyzed as in the case of single soft
graviton by carrying out the integration over o,,9 and 0, independently. For this we note from
(4.79) that

a=1 On+1 — Og a=1 Op42 — 0

D D - €n+1-Pa & €n+2-Pa o
Plri=r=0 = —Clnr)n+1) Cons2)ng2) P = — <Z Lp) <Z Lp) P, (4.81)

where P is the Pfaffian of the matrix ¥ for n-particle scattering amplitude without soft graviton. This

gives

]1(1222 - <Z M) (Z M) I,. (4.82)

a—1 On+1 — Oqg a—1 On4+2 — Og

We can now proceed to evaluate the first two terms on the right hand side of (4.77) as in sections
4.2.2 and 4.2.2. The first term is given by

-1 2
1 "\ kp1p " 61D
By, = — | Dos©O1, j{d . _ntl-fa _ntilfa
0 7'2/ ’ it Z On+1 — Oq az:; On+1 — Oq

{Ai} a=1
n k —1 n 2
do,, _fnt2-Pa_ _nt2Pa ) (4.83)
% 2 (az:; O-n-i-‘z — Oq ; U7L+2 — Ogq

{Bi}
where {A4;} and { B, } are defined as the set of points satisfying

n n

kna1-Pa Fnt2.pa
Yol _ g a p=a, Y2 w p= B (4.84)

— 0 — 0
a=1 p a a=1 p a

We can now carry out integration over o,,;; and o, o independently by deforming the contours to
oo. The contribution comes from residues at the poles at o, — which can be evaluated following
the procedure described in section 4.2.2 — and the contribution from oo can be evaluated after using
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momentum conservation. The result is

~ (€nt1-Pa)”
/DU () M + 7 (€n+1.kn+2)2 (kn+1.k'n+2)_1
a— 1 kn—i—l-pa

En a -
[Z M + 7 (€n+2-/€n+1)2 (Kns1-Fny2) 1] : (4.85)

a—1 kn+2-pa
Using M, = [ Do 6\ I, this may be rewritten as
By = 7289, S\ M, + 77! {Sﬂl (ent2-kni1)? (RngrFong2) ™

15, (eneronsn)? <kk>] M, + O(+°).
(4.86)

where we define

n ' 2 n ) , I ]{7 j\py
(0) — (E" ‘p(l,) (1) e E”v“ E"vy pa P “a
Sy = g —p L Sy = E hop . (4.87)
a-'r a=1 Tra

a=1

For evaluating the second term on the right hand side of (4.77) we note that 5" defined in (4.73)
contains sum of two sets of terms — one set involving 1/0;(,+1) and the other set involving 1/0(,2).
First consider the set involving 1/0;(,41). In this case we can carry out the integration over o,
first following the procedure of section 4.2.2 and arrive at the product of .S, © nio times an integral of
the form given in (4.27). The contribution from the pole at 0,1 = oo can be ignored since that
will produce an extra factor of 7 and give a subsubleading contribution. The integration over 7,11 is
proportional to (4.27) and can be analyzed as in section 4.2.2, leading to the result (4.30) multiplied
by 57(322. Using the equality between (4.30), (4.52) and the first term on the right hand side of (4.50),
this may be expressed as

180, / Do (S0, 50y 1, = 7 50,50 M, — 7 5O, / DosO S I (4.88)

where in the left hand side of this equation it is understood that only the orbital part of .S, (1) i1 acts on
0©). The contribution from the second term in §!) introduced in (4.73) is given by an expression
similar to that in (4.88) but with (n + 1) and (n + 2) interchanged. Therefore the total contribution
from the second term on the right hand side of (4.77) may be expressed as

1 1 1
Bi— = {8, + 508U} My - 28, [ Do st - 250, [ Do st
(4.89)
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We shall now turn to the analysis of the last three terms in (4.77).
Third Term:

We now consider the third term on the right hand side of (4.77):
1 (0) n n (1)

To evaluate this we have to first evaluate I,,(LlJZQ. We have the analog of (4.34):

oI oI
I(l) — n+2 n+2
n+2 ( on + 0Ty

o op
8’7’1 87'2

=8(—-1)"* (0, —0,) 2 P

T1=T2=0

. (4.91)

T1=72=0

where P is the Pfaffian of the matrix ¥ given in (4.79).
Let us now examine the 7; derivative of P. Since we have to set T, = 0 at the end, we can make

this replacement even before taking the 7, derivative. In this case the Pfaffian P of the matrix 4.79)

reduces to
TiPa-knt1 _ T Da-€n+1
Aab Oq—0n+1 Cad 0q—0nt1
T1kn41.Dp 0 T1knt1.€4 _O
_ n On+1—0p Ont+1—0(g (n+l)(n+1)
(1" Consmen) I 77, nebn ' s (4.92)
cb Oc—0n+1 cd Oc—0Onit1
€n+41-Pb €n+1-€4
o Cnanmry) ooy 0

One can now recognize this matrix as the same matrix that appears in (4.39). Therefore when the
7, derivative acts on the Pfaffian of this matrix, then at 7, = 0 it will have the same form as that in
(4.47) after 0,4 integration. The extra factor of C,, 2)(n 12y at 7 = 0, multiplied by a similar factor
coming from the P factor in (4.91), will generate a factor of Sﬂz after integration over o,,,,. There
is an additional contribution from 0,5 = o0, but this is subsubleading and may be ignored. Using
the equality of (4.47), (4.59) and second term on the right hand side of (4.50), the net contribution of
this term to the right hand side of (4.77) can be shown to have the form:

59, / Do s $W 1, 493)

A similar term with (n -+ 1) and (n + 2) exchanged comes from the P /97, term in (4.91). The sum
of these two give

BQE

5

1
SO, / DodVS L, + 2810, / Do sOSM, 1, (4.94)

This cancels the last two terms in (4.89).

This however is not the complete contribution from the third term in (4.77), since we still have
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to include the contribution where 7, derivative acts on the C(;,4.9)(n4-2) factor in (4.92), and a similar
contribution with (n + 1) and (n 4 2) exchanged. Now from (4.80) we have

ICn12)(n+2) _ €nt2-kni1
ony On+2 — On+1

(4.95)

Therefore at 7, = 75 = 0, the contribution to P /071, with the derivative acting on the first term in
(4.92), reduces to

€n+2~kn+l

e €n 2'kn 1 = €nt+1-Pa 7
) C(n+l)(n+l)|n:7’2:0P = - i hs + P, (496)

On42 — On+ On+2 = Ont1l =] Ontl — Oa

Aab - (CT)ad
ch Bcd
71 = 79 = 0, using (4.81), and adding also the extra contribution from the opP /0Ty termin (4.91), we

get the net extra contribution to /. 7522 to be

8(—1)" (O_S_O_t)—Q (Z €n+1-Pa ) (Z €n+2-Pa )ﬁ?

a—1 On4+1 — Ogq a—1 On+2 — Og

where P is the Pfaffian of the matrix ( ) Substituting this into (4.91) and setting

(4.97)

n n
€n+2~kn+1 €n+1-Pa + En—|-1~l’f'n-‘,-2 €n+2-Pa
Ont2 = On+1 = Ont1l = Oa Ontl = Ont2 = Ont2 = Oa

Noting that 4 (—1)" (o, — 0,)~2 P% = I,,, the contribution of (4.97) to (4.90) is given by

2 n n ~  Ent1Pa N €ni2Pa
- / Do 1, / Aoy 1 Ao 0(f71) 0(fs) (Z L) (; L)

a=1 On+1 — Oq On+2 — Oq
k a k &
€En42-Rp41 €n+1-Pa I €En41-Fp42 €n4-2-Pa (4.98)
On+2 — On+41 a—=1 On+1 — Ogqg On+1 — On42 a—1 On+2 — Oqg

We now regard the integrals over o,, 1 and 0, 5 as contour integrals as in (B.23). Let us examine

the first term in the square bracket. It takes the form

—1 —1
“ D 5(0)[n %d . %d . +1-Fa n+ a
- / o Ont1 On+2 ;:1 —0n+1 . 521 —0n+2 iy

{A:} {B:}
n n n
Z €n+1-Pa Z €n+2-Pa ( €nt2-Fng1 ) Z €n+1-Pa (4.99)
a—1 On+1 — Oqg a—1 Op+2 — 0gqg On+2 — On+41 a—1 On+1 — Oqg ’

where, {A;} and {B;} have been defined in (4.84) and accordingly the o,,.; and o, contours run

anti-clockwise around the poles of the first and second factors of the integrand respectively. We shall
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now deform the 0,4, contour away from the pole towards infinity. The only pole is at 0,19 = 011
and a possible contribution from o,, .o = oo. Let us first examine the contribution from the pole at

0n+1- This is given by

—1 —1
2 i SN S "\ knyo

By = —= /DUO(O) I, j{danﬂ Z n+1-Pa Z n+2-Pa
T On+1 — Ogq a1 Ont+l — Oa

{As} a=1

n 2 n
(Z €n+1-Pa > (Z—€"+2‘p“ >(en+g.kn+1). (4.100)

a—1 On+1 — Oq a—1 On4+1 — Oq

Next we analyze the contribution from 0,5 = cc. Using momentum conservation equation y _, p, =

—7(kny1 + knaio) this is given by

, -1 2

2 Nk, Da "L e, 1.p

“ D 5(0) In % d . n+1-Fa n-+ a

T / 7 It Zlan—H — Og Z_;Un—i-l — 0Oq
{Az} a= a=

X (€ns2-kni1)” (kpyi ko)t (4.101)

Now we deform the o, 1 contour to oo, picking up residues at o,. The result is

2

Ba =~ Mu S0 (envaknin)? (Fga-hinso) (4.102)

The residue at 0,,.1 = oo has an additional factor of 7. Therefore its contribution is subsubleading.
The contribution from the second term in the square bracket in (4.98) can be obtained from
(4.100), (4.102) by exchange of (n + 1) and (n + 2) and is given by B + Bg, where

-1 —1
2 - k'L y p - k? 1'p
= -2 [ DosOp, fd a _nt2-Fa _ntl-Pa
85 T / 7 n+2 Z On+4+2 — Oq ; On42 — Ogq

a=1

{Bi}
n 2 n
€n+2-Pa €En+1-Pa
> . Z—Hp (€nt1-kni2) | (4.103)
a=1 In+2 7 Ta ‘=1 On+2 — Oa
and
By=—2M, 5 Fns2)? byt bnsz) ™! |
6 = _; n Mn4-2 (€n+1- n+2) ( n+1- n+2) . (4 04)
Fourth and fifth terms
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The fourth term on the right hand side of (4.77) is given by:

kni1-kn
/D05(0) /d0n+1d0n+2M5,( 7?+1)5( n+2)175?22

On+2
= ——/DO'(S(O) % do. n-+1 % d0n+2 ”‘H kn+2 (Zn: kn-}—l-pc >_2(Zn: kn+2-pa )_1
(A { Tntl T Ont2 Moy Onkt T 0l MD) Ondz T Ca
B}

Eni1:Db \2[ = €nsoDp \2
(bz—> (bz—) I, (4.105)

1 On4+1 — Op 1 On42 — Oy

We now deform the o, contour away from the poles {A;} towards infinity and pick up residues
at 0,11 = 0,40 as well as the contribution from infinity. There are no poles at 0,,,; = o,. The

contribution from the pole at 0,5 is given by

1 “ Kpt1-De \ 2 = kniopa \ 71
R L B o o R

—1 Op+2 — Oc —1 On42 — Og

(g €nt2-D )Q(bZ": €nt1-D )2' (4.106)

On+2 — Ob — In+2 — Op

On the other hand the contribution from infinity is given by, after using momentum conservation,

By = —l/Daé(O) ]{da 42 —(E"“'kn+2)2(zn: Fny2.Da >_1(zn: €nt2-Db )21
T " kn+1'kn+2 a—1 On42 — Oq b—1 On42 — Op "
{B:} = —
1 ‘
= ; Mn 87(322 (kn-i-l-kn—i-Z)_l (En-i-l-kn—i-Q)z ; (4107)

where in the second step we have performed integration over o,, 5, picking up residues at 7. In this
case, as 0,19 — 00, the contribution to the integrand goes as 7, and therefore this does not contribute
at the subleading order.

The contribution from the fifth term on the right hand side of (4.77) can be evaluated in a similar

manner, giving contributions similar to (4.106) and (4.107), with n + 1 and n + 2 exchanged:

1 " EpeoPe \ 2/ e Epi1.pa \ L
> [poso, ]{Al}danﬂ(czi) (Z*—p) (s )

1 On+1 — Oc —1 On+1 — Oq

(Zn: €nt1-Db >Q(bzn: €nt2-Db )2’ (4.108)

0. — O g — O,
b—1 n+1 b — n+1 b

and

1 .
Bl() = ; M'n 87(7,(21 (l{?n_f_l.k?n_,_g)_l (En_f_g.k?n_i_l)z . (4109)
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Adding the contributions By to By we get the total contribution from non-degenerate solutions:

{T_2Sn+l Sn+2M + T_1Sn+l Sn+2M + 7'_1571+2 57(11+)1Mn}

~1 —1

2 a kn -DPa - kn 2-Pa & €n+1-Pa
_ D 5(0) [n %d Intl-Fa Znt2-Pa _—
T/ oo, fap (o) Sk (3o

n
€n+2-Pa k‘
€'n+2 n+l

{A:} o=t (
k -1 n 2 n
_“ 0) n+2-Da n+1 -Pa €n+2-Pa €n+1-Pa X
/DU(5 I j{ dp (; 1 —p o, > < ) ( E s 24y o, (€nt1-Fns2)

{Bi} )
1 & kn -De ) n 2-Pa & €n+2-Db
= | DosO1, 7{ d = S (R e
+7_ / o ) P ; 0— 0o, 0 — o, +1-Kni2) Z 0— o
1 "k ”
4+ / Do 5(0) I, % dp Z n+2-Pe n+1 -Pa
T {Az} —1 P — O¢ — Oq

The term in the first line was derived in [16]. The terms in the second and the third line vanish in

n+1 k:n+2

(4.110)

the gauge chosen in [16]. The terms in the fourth and fifth lines were missed in the analysis of [16].
We shall see that these terms cancel similar terms arising in the analysis of the degenerate solutions.
Using the gauge transformation laws of Sfﬁzl 57(11221\/[” and 57(322 Sn +1M analyzed in [4], one can

verify that (4.110) is invariant under the gauge transformations of the soft graviton polarizations.

4.3.3 Contribution from degenerate solutions

When the integration contours of ¢,; and 0,5, wrap around the degenerate solutions for which
|Oni1 — Onaal ~ T, we will carry out the integration in p and ¢ variables introduced in (4.66). In
terms of these variables the integration measure takes the form,

/d0n+1 dopi 5(f7?+1)5( :zl+2) T /dpdf()( nt1t n+2) 5(fn+1 7?—}-2) e (4110

with the understanding that p integration is done using the first delta function and & integration is
done using the second delta function. Therefore the contribution to the (n + 2)-point amplitude from

the degenerate solutions becomes,

/Dao(o)/d,;dg(s(ZMjL ~ Fn2py )

—1 P~ 3~ Ob 1P+‘—Ub
"~ Kpi1Do "~ Kng2-Po 27 kpy1-knio
5( 1By >I+2, 4.112)
D SR RS R '
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where it is understood that we sum over contributions from those zeroes of the second d-function for
which £ ~ 7. By carrying out the integration over £ using the second delta function, this integral can

be approximated as

p—0y/ 2kni1.kngo

2 - - u kn -Po - k:n 2-Db 52
2 o0 [apa(3o e Sy & o). @
7_/ g 1% 0 — o + IH_2|5_7—§1+O(7’ ) (4113)
b=1 b=1
where
" iy o
€1 =2kpi1.knio <§ Fnt1-Py E M) ' (4.114)

— 0, — 0
v P b 1 P b

Now in the degeneration limit we can evaluate [,,, , by regarding this as the square of the Pfaffian of
the matrix ¥ which now takes the form

Tpa-k'n+1 Tpa-k'n+2 _ T Pa-€nt1 Pa-€nt2
Aab Ga—p Ga—p Cad Oa—p Oa—p
Tk'n+1~pb _ Thni1.kngo Tkni1.cq _ _ 6n<1»2-kfn+1
p—0p 0 &1 pP—0d O(’H'l)(n'H) &
T kny2.py Tkny1kny2 0 Thkni2.€4 €nt1-kni2 —C
G| TS 6 (202 |y )
- C T €c.knt1 T €c.kny2 B €c.€nt1 €c.€nt2 ’ :
cb oc—p oep cd oc—p oc—p
€n+1-Pp C _ fn41.-Fn42 €n+41-€4 0 _ Etni4l-€n42
p—0p (n+1)(n+1) &1 p—0od T&1
€n+2-Pb €n+2-kni1 €n42-€4 €nt2-€ntl
P & Cotmen 25 & 0

where we now have

n n
€n+1-P €nt1-k €nio-P €nso-kn
Clnt1)(n+1) = — E il SR Clnt2)int2) = — E "12 o _ Int2-Pnl
P Ta 51 p Oq 51

a=1 a=1

(4.116)

Given the appearance of 1/7 in the (2n + 3)-(2n + 4)-th element of the matrix, one may wonder
whether the Pfaffian may give a leading contribution of order 1/7, thereby upsetting the counting
of powers of 7. It is easy to see however that the coefficient of this element in the expansion of the
Pfaffian, given by the Pfaffian obtained by eliminating the (2n+3) and (2n +4)-th rows and columns
of this matrix, actually goes as 7 and therefore does not upset the counting of powers of 7. With this
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understanding we can now compute the Pfaffian of v, arriving at the result [29]:

In+2 = [(gl)_2€n+l-€n+2 kn+1-kn+2 - (51)_2€n+1-kn+2 67‘L—§—2-kn—i-1

2
_C(n+1)(n+1) C(n+2)(n+2)1 L, + O(T)

= |:(€1)_2€n+1~€n+2 kn+1-kn+2 - (51)_2€n+1~kn+2 €n+2~kn+1

n n ’
- {Z ol e _ &) €n+1-/€n+2} {Z fr + (51)_16n+2'kn+1}] Iy

c=1 p—0c c=1 p—0Oc

+O(7). (4.117)

Substituting this into (4.112) we get

Ak kg / <(0) / " Fnp 1P e Kng2-Do " (kg1 — Fnt2)-pa 2
— Do 6% 1, dpé(bz:;—p_gb-l-bz:;—)(z >

pP— 0/ \N— p—0q4
n n n
M) ( M) e e 1 ( (Ant1 — /‘v’n+2)-pa)2
(; P — O¢ 2:; p— 0q 2 4kn+1'kn+2 az:; p—0q

n n n n 2
€nt1.D € . 1 k D k Do
+<€n+2-/‘~'n+1 Z e €nt1-Knto Z i c) 2%k Z - Z - '
p — O¢ c=1 p — Oc

k -0 — 0
o—1 n+1-n+4+2 b—1 1Y b b—1 1Y b

(4.118)
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By making use of the -function, we can rewrite this as

kn+1-kn+2/ ~ / - kn+1-pb & kn—l—Q‘pb & kn—i—l‘pa -1 & kn—l—Q‘pa -1
b onsns, (35 S (5 s (e

— 0
by P b

n n n n 2
en+1.pc> ( en+z.pd) 1 ( kn+1-pa) ( kn+z.pa)
R —— | t €pr1€pp2 R I E—
[{<Z ; P —0d e knJrl-knJrQ ; P — 0Oa ; P — 0Oa

— 0
_1/) c

n n
€n+1-Pe €n+2-Dd 1
D (ZL)(Z_)}(kn+l.kn+2)
{ czlp_o-(3 d:lp_gd
- €n+1-Pe a kn+2-pb a €n+2-De - kn—i—l-pb
€nt2-kni1 Z Z + €ny1-knyo Z Z — o
b

— P~ 0c i P 0b — P~ 0c
+e c (k’ k )_2 (i kn—i—l'pa) (Zn: kn+2'pa,)
n+1-tn42 n+1-vn+42 pa D — Oa i 0— 04
n c D n c D n k P n k P
1+1-Fe n+2-Fe n+1-Mb n+2-Mb
€ g.k'n 1 d — € 1.:]{7" 2 ) —— I
("+ +cz_:p—0c e ;p—ac ;p—ab bz;p—ab
€n+1-Pe = €n+2.-Pe 2 & knJrl-pb & kn+2-pb
~(knyr.k <e k le ok ) .
( n+1 n+2) n+2-vn+1 Z n4+1-"n+2 ; p— o, ; p— oy ; 0— oy

(4.119)

Note that there are many other ways of writing this expression — by replacing one or more factors of

Sy iy 5 Enain 2t and vice versa. We have chosen the one that will be most convenient
b=1 pP—0p b=1 pP—

for our analysis, but the ﬁnal result does not depend on this choice.

We now represent the delta function as a contour integration as in (B.23)

“~ K1 “~ K yo. “~ Fpy1. “~ Koy L
/dp(g(ZLf’bJrzﬂ) :fdp(zﬁJrzﬂ) L (4120)

v P~ 0 T PO v P~ 0v T PO
and deform the p integration contour away from the zeroes of the argument of the delta function.

This will generate three kinds of terms, the residues at p = o, for 1 < a < n, residues at the zeroes
n kn -Ma n kn 2-Fa . .
of ( > Lp) and ( > Lp) —called {A;} and {B;} in (4.84) — and residue at co. We shall

a=1 P — Oq a=1 P~ Oq

now analyze these three kinds of terms one by one.
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Residue at o,: This gives
n
Dl = _7'71 Mn Z{pa'(kn—i-l + kn+2)}71(pa-kn—i-l)il(pa-kn—ﬂ)il
a=1
-1 2
(kn—l—l-kn—l—Q) {€n+1'pa €n+2-Pa + (kn+1'kn+2) €n+1-€n+2 kn—i—l-pa kn+2-pa}
—2 €n+1-Pa €n+2~pa{€n+2-kn+1 €n+1-Pa kn+2-pa + €n+1~kn+2 €n+2-Da kn—i—l-pa}

_(kn+1-kn+2)_1€n+1‘€n+2 kn—i—l-pa kn+2-pa

{En—i-Q-k'n—i-l En—i—l-pa, kn+2-pa - €n+2-kn+1 e'n,—i-l-pa k:n—Q—l-pa,

+ent1-Fng2 €nt2.Pa Fng1.Da — €ng1-kni2 €ng2.Da kn+2.pa}

_(kn+l'kn+2)_l Eni1-Pa knyo-Pa {€n+2'kn+l €nt1-Pa — Eng1-Knio €n+2-Pa}2] (4.121)

where the overall minus sign comes from the reversal of the integration contour. Expanding the

square and using the convention

E€n+1l = €nt1 & €n+1, Ent+2 = €ny2 ® En+2 (4'122)
we get
D, = ! M, Z{pa.(kn+1 + kn+2)}7l M(pa; Ent1s Knt1, Eny2, kn+2) ) (4.123)
a=1
where

M(pa,; Ent1s Knt1, Engo, kn—i—?)

= —(Pa-kni1) " (Pa-knsa) [kn+1-kn+2 Pa-Ent1-Pa Pa-Ent2-Pa + 2 Pa-Ent1-Ent2-Pa Knt1-Pa knt2-Da
—2 pa-Ent2-kni1 Pa-Ent1-Pa knt2-Pa — 2 Da-Ent1-Fni2 Da-Ent2-Pa Fni1-Pa
+(knt1-Fns2) ™" (Knt1-pa) (kn+2-pa){sn+1.£n+z kni1-pa knio-pa

- pa-5n+1-5n+2-kn+1 kn+2'pa + pa-5n+1-5n+2-kn+l kn—i—l-pa

- pa-5n+2-€n+1-kn+2 kn-ﬁ-l'pa + pa-5n+2-5n+1-kn+2 kn—i—?-pa
_kn—i-l-gn—i-Q-kn—i-l pa-gn—i-l-pa - kn,+2-€n,+1-kn+2 pa-gn—i-Q-pa, + 2 kn+2~€n+1'pa kn—i—l-£n+2-pa }:| .

(4.124)

Residue at {A;} and {B;}: The contribution to (4.119) from the residues at A; and B; defined in
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(4.84) are given by

Dy = _kn+1'k"+2/Da(5(0)[n 7{dp(ZM>—1<2”:/;nilfa>—l(zn:/;ni25a>—1

T — P — Oy — —
(A} b=1 a=1 a=1

{2l

n n n n
€n+1-P Z €n+2-Dd _ Z €n+1-P Z kny2.po
-2 { ( E C) ( ) }(knJrl'knJrQ) 16n+2-kn+l 0 — O': 0— oy ]
d=1 c=1 b=1

— P — 0O¢ p— 04
kni1-Fnga / " Fons 1205\ "L /e Knt1Pa\ "L/ = Fnt2.Pa !
S [DosOa, g (3o ) () ()
. o (20 (o) (o
(B} b=1 a=1 =

n 2
[
2 {(Zn: E"*—l'pc) (dzn: M) }(an Kio) Lenp1-hns 2 6:12 p: bz; l;nil,(ib] |

p—0.) N\~ p—oy
(4.125)

These terms were missed in the analysis of [15]. They cancel similar contributions (4.110) coming

from non-degenerate solutions.

Residue at co: Finally we can examine the residue of the integral (4.119) at p = oc. This is given by

Fnt1-Fnsa M,, (i(knﬂ + kni2) pb) (Z Font1 pa) B ( zn: k”+2'p“)

-1

T

[{ (cizl €n+1-pc) (g €n+2-pd) + en+1.€n+2 . kn+2 (Z kni1 pa) (g kn+2.pa) }
—2 { <zn: €n+1-pc) (zn: €n+2‘pd> }(kn+1-/€n+2)_1

c=1 =1
n n n

n
(€n+2~/€n+1 Z €n+1-Pe Z Enio.po + €ng1-knio Z €n+2-De Z kn+1~pb)
b

c=1 b=1 c=1

n n
+€nt1-€ni2 (kn+1-kn+2)_2 (Z kn+1-pa> (Z kn+2-pa>
a=1 a=1
n n

n n
(€n+2~/€n+1 Z €nt+1-Pe = Ent1-Fnga Z €n+2-pc) (Z Kni1.po — Z kn+2-pb>

c=1 c=1

(kn-i-l kn+2 (€n+2 kn-l—l Z €n+1-Pec — €n+1- kn+2 Z €n+2 pc) Z kn—i—l -Pb Z k:n+2 pb] .

(4.126)
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Using momentum conservation law ZZ=1 Pa = —T (kny1 + kni2) we can see that this is of order 7.

Therefore this contribution is subsubleading and can be ignored.

4.3.4 Total contribution

The full amplitude corresponding to two soft gravitons is obtained by adding the contributions (4.110)
from the non-degenerate solutions and the contributions (4.123) and (4.125) from the degenerate

solutions. This is given by
Muz = 78,0 80M + 77 S0, S1M, + 77 50, 5,0 M,

+7—_1 Mn Z{pa-(kn+1 + kn+2)}_1M(pa; En+1, kn+17 En42; kn—i—?) . (4127)

a=1

This agrees with the result given in (4.1) for two soft gravitons. As shown in last chapter, (4.127) is
invariant under the gauge transformations of the soft graviton polarizations.

Note that (4.125) cancels part of the contribution from (4.110). This suggests that there may be
a better way of organising the calculation instead of representing it as a sum of contributions from
degenerate and non-degenerate solutions.

4.4 Multiple soft graviton theorem

In this section we shall generalize the analysis of the previous section to the case where arbitrary
number of gravitons become soft.

4.4.1 Degenerate and non-degenerate solutions

We assume that there are n + m number of gravitons and m of them become soft. We parametrize

the m soft momenta as
ph=Tk .  a=n+l-- nt+m, (4.128)
and take the soft limit by taking 7 — 0 at fixed k,. The momentum conservation now takes the form
pr+- (K 4+ R, =0. (4.129)

In this case the full solution space of the scattering equations gets divided into different sectors.
These different sectors correspond to the case when a group of r; punctures associated with soft
gravitons come within a distance of order 7 of each other, another group of ry punctures associated
with soft gravitons come within a distance of order 7 of each other and so on. A detailed analysis
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of the number of solutions of each type can be found in appendix E. In this section our goal will be
to prove that for the subleading multiple soft graviton amplitude, only two sectors contribute — non-
degenerate solutions where all the punctures are finite distance away from each other and degenerate
solutions where two of the punctures come within a distance 7 of each other and all other punctures
are finite distance away from each other.

To prove this, we note that the CHY formula for the amplitude is given by

n+m

Mn+m=/Dqu:d0n+q[ I1 5( %)}Lﬁm. (4.130)

atigh b=l

We now analyze the product of delta functions and focus on the last m of them corresponding to the

soft gravitons. These m delta functions are given by

5<7§:—k”+q'pb +72§:—k”+q‘k”+“ ) 1<qg<m. 4.131)

vy Onta — b w1 Onta — Ontu
uFq

Each of these delta functions gives a factor of % to the amplitude irrespective of how many of the
m o,’s come within a distance of order 7 of each other. These are the only source of singular 7
dependence coming from the delta functions. Therefore we get a net factor of 77" from the delta
functions.

Next, we consider the 7 factors coming from the measure when r of the m o,’s associated with
the soft gravitons come within a distance of order 7 of each other. Without loss of generality we can
label these as 0, ym—ryq for 1 < g < r. We now make following redefinitions of the coordinates

o, = o forl<a<n+m-r+1,

a

Ontm—r+q = (T:H-m—r—i-l + qu ) ((] =2, 7T) : (4.132)

For the above coordinate transformation, we have

n+m n+m—r+1 r
1] do- =T’”—1< 11 da;> (Hd§q> : (4.133)
c=1 c=1 q=2

We shall prove shortly that 7,,.,,, does not give rise to any singular behavior in the 7 — 0 limit for
finite 0/, £,. Assuming this to be the case, we see that this contribution is leading only for » = 1 and
can receive subleading contribution only for 7 = 1, 2. In other words, for the subleading soft graviton
amplitude, the contributions come only from those solutions for which none of the punctures go close
to each other (non degenerate solutions) or two of the punctures go close to each other (degenerate
solutions).

Let us now prove that I, |, has a finite limit as 7 — 0 with o7, &, fixed (i.e., when r punctures go
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close to each other). We define

p=En+m-—r, (4.134)
and express I, as
— n+m -2 B2
Lo = 4(=1)™™ (5, — 0,) "2 P2, (4.135)
where P is the Pfaffian of the matrix
TPa-kp+1 TPa-kp+r _ T _ _p+1-Pa _ _fp+r-Pa 7
(Ap)ab Oa—0p+1 Oa—0Op+r (Cp )ad Op+1—0a Op+r—0a
Thpt1-py 0 T2 kpy1kptr | Teakptt _C ) _ Teptr-kpil
Tpi1—0p Opi1=0Opir Td—0pi1 pHLpt Opir—0pi1
Thptr-pb | T2kptr-kpt1 0 _ Teg-kpyr _ Teptikpir —C
Tptr—0b | Opgr—0pi1 O4—0Opir Opi1—Opir prrptT 136)
(C ) Teckpy1 Teckpir (B ) €c.pil €c.€pir T
p)cb Oc—Op+1 Oc—Opir pled Oc—Op+1 Oc—Op+r
€ . TE .k € € € €
p+1-Pb Cp+1 ot p+1-Kptr p+1-€d 0 p+1-€Eptr
Ip+1—Tb ’ Op+1—Opir Opt1—04d Op+1—Opir
€p+r-Pb 7'Ep-ﬁ-r-k'p+l C €p+r-€d €p4r-€Ept1 O
| Optr—0b | Optr—0Opi1 prrptr Optr—04 Optr—Opt1 i

where the matrices A, B and C are defined as in (B.42) for m + n = p + r particles and A, B,
and C,, denote the first p X p blocks of these matrices. Using the parametrization (4.132), the matrix

(4.136) may be expressed as

We now note the following features of the matrix shown in (4.137):

1. (Ap)abs (Bp)ap and (C,)qp have finite 7 — 0 limit.

(A ) 7—pa-kp-ﬁ-l Tpankp-H” _(CT) _ _€p+1-Pa _ _€ptr-Pa
p)ab — — p Jad _ _
Oa—0Op+1 Oa—Op+r Op+1—0a Optr—0Oa
Thp+1-Pp 0 _ Thpyikpyr | Tedkp1 || _ Eptr-kpia
Op41—0p &r 0d—0p+1 ptlp+l &r
Thpirpo | Thpir-kpit 0 _ Ted-kpyr €pt1-kpir _Cf
Iptr—0b &r Od—Opir &r pFrptr
(C ) T€p‘]€p+1 TEC.k’p+r B €c-€pt+1 €c-Eptr
p)cb _ _ ( P)Cd _ —
Oc—0Op+1 Oc—Op+4r Oc—0Op+1 Oc—Op+r
€pi1-Pb C _ epti-kpyr €pt1-€d 0 _ €pil-Epir
Opt1—0p p+lptl r Op+1—04d T&r
€p+r-Pb €ptr-Kpt1 C €p+r-€d €ptr-€pt1 0
| Tp+r—0b &r pErptr Optr—0d T&r

N

.137)

2. There are four blocks of the matrix formed by the vertical double line and the horizontal double

line. We note that
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(a) The upper left block has r rows and 7 columns that are proportional to 7.
(b) The upper right and lower left blocks have finite 7 — 0 limit.

(c) In the lower right block, the diagonal matrix elements vanish, whereas the off-diagonal

matrix elements are proportional to 1/7.

We now note that the inverse powers of 7 appear only in the elements of the lower right block of
size r x r. Let us suppose first that r is even. Then we get a maximum contribution of 77"/ from
the Pfaffian of the lower right block, and the coefficient of this term is proportional to the Pfaffian of
the upper left block of (4.137). This matrix has r rows and columns with every element proportional
to 7, and therefore its Pfaffian will be proportional to T2 cancelling the 77"/2 factor. Therefore this
term is finite as 7 — 0.

If r is odd, then the singular terms in the lower right block can give a maximum contribution of
7~(=1/2_This is given by a sum of terms, one of which is proportional to the Pfaffian of the matrix
given by the lower right block of size (r — 1) x (r — 1), multiplied by the Pfaffian of the matrix
obtained by eliminating the last (r — 1) rows and columns of 0. The other terms are related to this
one by rearrangement of the last 7 rows and columns and can be analyzed similarly. It is easy to see
that the matrix obtained by eliminating the last (r — 1) rows and columns of (4.137) has r rows and
columns proportional to each other in the 7 — 0 limit, and therefore its Pfaffian gives a factor of
7(r=1)/2_This cancels the 7~ ("~1)/2 factor, giving a finite 7 — 0 limit.

Next we need to consider the possibility that we may not choose the maximally singular terms
from the lower right block. One such term corresponds to choosing the Pfaffian of the matrix given
by the last £ x k block for some even integer £ < r, multiplied by the Pfaffian of the matrix obtained
by eliminating the last & rows and columns, but from the latter we do not pick any term that has 1/7
factor. The Pfaffian of the £ x k matrix goes as 7-%/2 whereas the matrix obtained by eliminating
the last & rows and columns has r rows (and columns) given by linear combinations of (r — k)
independent vectors in the 7 — 0 limit. Therefore its Pfaffian goes as 7%/2. This again shows that the
product has a finite 7 — 0 limit. The other terms of this kind are related to the one discussed above
by rearrangement of the last 7 rows and columns and are therefore also finite as 7 — 0.

This finishes our proof that /,,,, remains finite in the 7 — 0 limit.
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4.4.2 Contribution from non-degenerate solutions

In this section we shall compute the contribution to the amplitude from non-degenerate solutions to
the scattering equations. The amplitude is given by

Mn+m(p17 "'7pn77—kn+17 e TkTH-m)

[ oo i T (5222 550

a?'él J k b#a
m n m
Kptr. kpnar.kn
Hé(T Z n+r-Db 4 72 ZM) Lo - (4.138)
=1 b1 O(n+r)b ‘=1 T(n+r)(n+w)
UFET

We now expand the various factors in this expression up to order 7 assuming that (o, — 03,) ~ 1 for
all pairs a, b with a # b, 1 < a,b < n + m. Expansion of the first (n — 3) delta functions in (4.138)
takes the form:

H (Zp;ib

Z Pa- n—i—v)

-1 =1 v=1 Ua n+v
a;ﬁzgk b#a
n
_ H (Zpgpb> Zzpl n+v5/<zplpc> H <ZP;P1;)+O( )
—1 p—1 ab =1 vy Clno) =1 a=1 p—1 ab
afijk bt c#l Likl  bta
= 60 1 76W L 0O(r?). (4.139)

Expansion of the last m delta functions in (4.138) takes the form:

g pb knar-Fniy
Hé( Z ZZ ey

n+r n—l—r n+u

m

- T Z—’f"” () 4+ 0(r)]

u—1 O (n+r)(ntu)
UFET
m
= H5 n e o3 By Tt + 00| L @aao)
v=1 = ! (ntv)(ntu) r=1
r#v

where f]' . has been defined in (4.17). Finally, expansion of the integrand 7,,,,, gives,

8In+m
T:0+T 87'

+O(r?) = 1, +7 1)+ 0(?) . (4.141)

7=0

]n-f—m = ]'n-i-m
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Then, up to subleading order, the non degenerate contribution becomes

Tim DO’/ [Hd0n+] 5(0) —1—7(5(1)} []ner—k I"+7,L]

qg=1

3

n+v n+u !
n+r +T§:§: 5 n+vH n+r

1 it O (n+v) (n+u) o1
e r#v

1 m m

= T_m DUé(O)/[];[dUn+Qi|E(S n+r n+m

Tm 1 /DU/ Hd0n+q] H(S( n—l—r) ‘['r(l(-)zm
r=1

m m
(0)/ Hd0n+Q] H n-l—r n+m
r=1
1 m m m m
N + +
s [ 00 [ [T 353 2oty ) [T o) 240
g=1 v=1 u= n+v (n+u) r—=1
UFV r#U
(4.142)

For evaluating I,S sz and In m 1t will be convenient to introduce m soft parameters 7, 7o, ..., Ty,

generalizing the approach followed in (4.79), and label the momenta of (n+m) particles as p1, ps,

ceiy Py T1 K1, T2
Then to linear order in 7;, I, ,, is given by

_ n+m 252
Lyym =4(-1)""(0s — 0y) °P (4.143)
where P is the Pfaffian of the matrix
B A Tlpa'kn+1 Tmpa~kn+m _CT Pa-€n+1 Pa-€nt+m T
ab Ta—0Ont1 Ta—0Ontm ad Ta—0Ont1 0a—0Ontm
Tikni1.Pp 0 0 Tikntied _Ti€nim-kni1
Tn41—0p Ont1—0¢g (n+1)(n+1) Ontm—0n+1
TmKntm Db 0 0 Tmkn+tm-€d o Tm€n+1-Kntm _O
\I] — On+4+m —0p Ontm—0d Ontl1—Onitm (n+m)(n+m)
C T1€c.knt1 Tm€c-kntm B €c.€ntl €c.€ntm
cb oo—0 o —0 cd — —
c n+t1 c n+m Oc—0On+1 Oc—0On4+m
€En41-Pb C’ Tm€n+1~kn+m €En41-€4 0 €En41-€En+m
On}1—0p (’IL+1)(7L+1) Ont1—0n+4m Ont1—04 On+t+1—0n+m
€nfm-Pb Ti€ntm-Knt1 C €ntm-€d €ntm-Entl 0
L optm—0yp Ontm—0n+1 (n+m)(n+m) Ontm—04d On4m—0n+1
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The values of C, r)(nr) forr = 1,2, ..., m are:

n m
€ntr-Da €ntr-Kntq
C _ ntrla L i L (4.145)
(n+r)(n+r) a; Tt — O qz:; qo'n-i-r — Onig
q#r

With this, (4.144) gives

P

o = (=2 p T (37 ety (4.146)

g=1 b1 Onta T O

where P is the Pfaffian of (4.144) for m = 0. Therefore we have

m n 2
10, = (=TT (3 =) 4.147
wem = (1) qf:[l DD (4.147)
To evaluate L(llﬁm we use the analogue of (4.91):
m 8[ . m 8ﬁ

[(1) = ntm — 8§(—1)"tm - -2p ‘

nm rz:; ({)TT T1=To=...=Tm=0 ( ) (0 Ut) rz:; (97'7« T1=To=...=Tpy=0
(4.148)

~

~0P
The strategy for evaluating P

will be to first set 7, = 0 for ¢ # r in the matrix (4.144) and

0Ty |{rg=0}
then expand the Pfaffian successivelqy about the rows (n + 1) to (n + m) except the (n + r)-th row.
This gives
~ m ~
P—+ ( I1 C(n+q)(n+q)) ™ (4.149)
=1
ar

where P\ is the Pfaffian of the matrix U for (n + 1) graviton scattering with the first n gravitons
carrying momenta py, - - - , p, and polarizations €y, - - - €, and the last one carrying soft momentum

Trkn+r and polarization ¢,,,,. The overall sign in (4.149) will not be needed for our analysis. Using
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(4.145) and (4.149) we get

o~

~OP m
e I <H0<n+q><n+q>)

D n a s D n
PO (TI Consarnrn) |

T1=...=Tm=0 i T1=...=Tm=0
qFr qFr
m
op™
- H (C(n+q n+q) P'r(n) )
i Tr I11=...=7;m=0
a#r

2
(C(n+q>(n+q)> ‘T _

s

+f)2i|: En-i—u-kn-i-r :| [zn: €n+u-Pa ]

u—1 On+tu — On+r —1 Ontu — Oq a=1 1=...=Tm=0
u#r qFu
(4.150)
Hence the expression for Lg sz becomes,
m m (n)
1 b ~ BP
‘[‘V(l-‘zm = 8(—=)"* — o)’ Z H (C(n+q n+£1)) Pr T -
r=1 g=1 ro M= =Tm =0
;é'r
1y n+u-Fntr n+u-Pa (C’ ) ‘
) ! rz:; z:: |:O-Tl+u — On+4r ; Ontu — Oqa q];[ (rranta) T1=...=Tm=0
uFEr qF#u
(4.151)

We shall now proceed to evaluate the right hand side of (4.142).
First term:

The first term on the right hand side of (4.142) may be expressed as

—/DU(S 0)/ Hd0n+q] H5 n—H" n+m
— - Fnrpp \71 - €ntr-Pd 2
_ /D 5(0)[ H{j{AM}dUm—r(Zﬁ) (Z ()'n+1_ O'd> } ’

Fo

b=1 d=1
(4.152)
where for fixed r, { A,;} are defined as the set of points satisfying
" Ky
P at  oper = A (4.153)
Ontr — Op

b=1

We can now carry out integration over all {0, } independently by deforming the contours to oc. The
contribution comes from residues at the poles at o, — which can be evaluated following the procedure

described in section 4.2.2 — and the contribution from oo can be evaluated after using momentum
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conservation. The result up to subleading order is

]:0 = —/DO'O(O) [ H [Z fn—i-r pa (En-i-r an+u) ( n+r:.
u;ér U

m 1
)]

n+r -Da u—=1
#r

S| CHALUSE=S SRS SEAR N (R or i) EA L

r=1 u=1 u=1
UFV UFV

(4.154)
where Sn + has been defined in (4.87).
Second term
The second term on the right hand side of (4.142) is given by
_ / Pi1-De - Pa-Po < bi- kn+v
7= GO oo a (30 T1 o( %) S [ [Tl

o
—1 b—1 =1 g=1 l(n+v)
c#l a;&z 7, k: l b#a

m

[TLo(3 o) (3 e )] 159

r—1 Ontr — O¢ —1 Ontr — 0d

The integrals over {o,,,} for ¢ # v are of the form (4.24) and can be analyzed as in section 4.2.2
to produce factors of — S,(l qu The contribution from the pole at 0,1, = oo is subsubleading and can
be ignored. The remaining integration over o,,,, has the form given in (4.27) and can be analyzed as
in section 4.2.2. The final result, given in (4.30), can in turn be related, using the equality of (4.30),
(4.52) and the first term on the right hand side of (4.50), to

s M, / Do 5@ st 10 (4.156)

where S,(;ZU has been defined in (4.87). Then the result up to subleading order is

A= e o[ TS (s M~ [ Das® s, In)]
=t 4
- Z HSH+T ( n+v )_ n+r /D(T()(O) Snl-avl
=! r;v =1 r;«_év
(4.157)
Third term:

123



We shall now consider the third term in the right hand side of (4.142):

m

— / Do 50 / Hdan+q] H (o )19 (4.158)

Substituting the first term of I77 Im givenin (4.151) into (4.158) and taking the sum over r out of the

integration we get,

1 m m
> [ D08 ST [ dansadi2.) Consaara

r=1 q=1

q#T

. aﬁ(n)
/ Aoy O(f1) 8 (— 1) (0, — o) 2 PM L . (4.159)
87—7’ T1="=Tym=0
We can easily see that the integration over each o,,, for ¢ # r generates a factor of — Sﬂq On the

other hand integration over o,,,, has exactly the structure of third term (4.31) of single soft graviton
case with 7'V ni1 given in (4.34). Using the equality of (4.31), (4.47), (4.59) and the second term on the
right hand side of (4.50), the expression (4.159) can be written as:

m m

= =S ([Ts) [ oo st 160
r=1 =

q#'f

On the other hand, substituting the second term on the right hand side of (4.151) into (4.158) we
get:

m n
kptaPe \~!
Dos© [L j{ do, ( ﬂ) C’zn
7’é q;éu
. kn+u-pb -1 En-l—u-kn—kr . Entu-Pa
o D y o ) (4.161)
{Ay:} p—y On+tu — Ob Ontu — Ondr o1 Intu — Oa

We shall evaluate the integration over o,,.,, by deforming it to oo. During this deformation we shall
encounter poles at 0, , = 0,4, for 1 < r < m, r # u, and at 0,,,, = oo but there are no poles at
{o,} for 1 < a < n. The contribution to (4.161) from the residue at the pole at {7, 4, : 1 <7 < m}
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is given by:

n

m 1 m m k . -1
-FB = /DUO(O)InZ €n+u n+r) H% dan,+q(ZM)
{Aq,i}

g — 0
r=1 u=1 =1 =1 n+q c
#u

2 Q

uFEr
<i €ntq-Pd )2(i kn+u-pb )_1(i €ntu-Pa )
=1 Intq — 04 "= Ontr — Op Opir — g
n
kpar-Pe \ !
0 n—+r C
- m—1 ZZ Entu-Fnir) H Sﬁlq /DU5(O)I % danM(ZJF—)
T r=1 u 1 {Ar:} =1 In+r — Oc
q#u

(dzn: €ntr-PDd >2<bz": Knu-Db )*(;": €n+u-Da ) 4.162)

—1 On+4r — 04 1 On4r — Op ) Op+tr — Ogq

On the other hand the contribution to (4.161) from the residue at the pole at 0,,,, = o0 is given by:

(HSn+q) (ensn ka) (Koo an+v) L)
Q#u T#“ v;éu

.F4E

Fourth term:

The fourth term on the right hand side of (4.142) is given by:

O [ (L] 33 et Tt

o—1 'u 1 O (n+v)(n+u) o
r;év
Dos© I, f{ d0n+ L) ( L)
v=t il {Ar:} ' 1 Intr = b 4= Ontr — 0d
u#v TV
kn v-kn i & kn v-Pa -2 & €ntv-Pe 2
[7{ dory gyt Bt (Z—* P ) (Z—+ P ) ] (4.164)
{Ay,i} On+v = Ontu a—1 Ont+v — Oq —1 On+v — O¢

where in the last line we have used the definition of derivative of delta function inside the contour
integration as 0'(f) = —f—lg. For evaluating the integral over o,,,,, we shall deform the contour away

from {A,,;} towards the infinity and pick the residues at 0,4, = 0y, as well as the contribution
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from infinity. There is no pole at 0,,., = 0,. The contribution from the pole at o, is given by

m m m L l{?n . 1 n i : 9
7= G [ ST o (30 ) (3 et )

v=1 u=1r=1 Un+ =1 Tntr
UFV r#V
n n
Knto. -2 Ento- 2
(Z n+v-Pa ) (Z n+v-Pe ) kn—i—v'kn—l—u
o= Ontu — Oq =1 Ontu — Oc
T ) "N kDb \ Tl = EntuPd |2
_ Si]/DU(S(O)]/j{ d0,+,( L) ( netu- )
T 1;;[1_[1 M "oy ;C’nﬂ_”b ;U’”u_ad
uFEV  TFEUY

(zn: M)‘Q(i M)an+v.kn+u. (4.165)

—1 Ontu — Oq —1 Ontu — Oc

On the other hand the contribution from infinity is given by, after using momentum conservation,

%/D”(”iﬂf Ao ( M)(Z+_m>
d

U — 0 a — O
v=1 r 1 n+r b — In+tr d

Fe

(kn-i—v- Z k’n-i—u €n+v Z kn—i—u

u=1
u;év u;éu

- 7_,,7}_1 Z n+uv- Z kﬂ—i—u 1 En—i—v Z k’n-i—u H Sn?tzr M (4166)

u;év u;év r;ﬁv

Adding the contributions from Jj to Fg we get the total contribution from non-degenerate solutions

I C D SRS | A GRS
v=1 r=1

r=1
r#v
n L D 1
0 .
m—1 ZZ Entu-k n—i—r H S'r(z-|)-q /D05 0)[ f do_n-i—r(z L)
7— r=1 u=1 T,i} =1 Un+r - O-C
uF#r q;éru
n € 9, 1 k 1 n
(Z n+r-Pd > (Z n+u-Pb > <Z €ntu-Pa )
4 On+r T 9d y—y On+tr — 0b — In+r — Oa
Tm 122 n-+r-. n—i—u [ H Sﬂ.,.q /DO’(S
r=1 u=1
uFET q;ﬁu’r
% do (i gy )‘l(i €n+u-Pd )Q<i k1P )—2<i EntrDe )2
. {Au,z’} e b=1 On+u — Op d—1 Opn4y — 0q o1 On4u — Oq —1 Op+u — O¢ ’

(4.167)
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where in the last line we have relabelled the dummy indices from what they were in (4.165).

4.4.3 Contribution from degenerate solutions

We now evaluate the contribution to the amplitude from the degenerate solutions of the scattering
equation. As shown in section 4.4.1, we only have to consider the case where two of the punctures
come close to each other, and that this contribution begins at the subleading order. We can choose
the two punctures out of m punctures in (”;) ways. We shall consider the contribution of two generic
punctures 0,1, and 0,4, coming close to each other and then sum over all possible (”21) terms.
When |0,,1 — 0pty| ~ 7, it is convenient to go to the (p, §) coordinate system as in the double

soft graviton case:

I

i
+
DO |y

(4.168)

Ontp = P — 57 On+tu

In terms of these variables, we have

/dan'i'P Aoy, 1y 5(f1?+p) 5( ;l-i-u) = =2 /dp dg 5(f7711+p + f:—i-u) 5(f7711+p B 7?+u) J (4.169)

with the understanding that p integration needs to be done using the first delta function and £ inte-
gration using the second delta function. Therefore, the contribution of this solution to the amplitude

becomes, to subleading order in 7:

n

U 2 O n kn -Po - K u-P
M7(1p+n)1 — —T—m/Da5(0) H Aoy yr O, n—l—r)/ dpdié(ZJg—p . Z o )
r=1

b—1 P~ 2~ Ob b:1/’+§_”b
r#£p,u

= kn—i—p'pb ~ kn_;,_u.pb QTkn+p.kn+u
9 ( Z ¢ - Z - 5 In+m

3
=1 P T2 0% Wy P S T 0

n

2 y N n kn .p n kn w-p
_Tm_l/Da()(O) H doyir 6(frr) /dp(S(ZZ—PbJFZJr—b)
r=1

9
1P T270  PT T

12

r#ED,U
&t

— =l T, 4.170
2 knipkngu (4.170)

where in the second step we have explicitly performed the £ integration using the second delta func-

tion, and

n

—1
Enap. Ny -
€1 = 2insp s <Z WL +—pb> . @.171)

— 0 — 0
vy P b w1 P b

Now in the degeneration limit we can evaluate [,,,, by regarding this as the square of the Pfaffian of

the matrix U given in (4.136). In computing the Pfaffian, it is convenient to first shift the (n+p)*" and
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(n+u)" rows and columns to the (n +m — 1) and (n +m)" positions and also the (2n +m + p)*"
and (2n + m + u)™ rows and columns to the (2n + 2m — 1) and (2n + 2m)"™ positions, and then
evaluate the Pfaffian. Now, if we exchange two rows (say ¢ and k) and the corresponding columns (¢
and k) , then the value of Pfaffian changes by a sign. However one can easily see that the combined
effect of all the movements is to not generate any sign. Now the problem effectively reduces to that

of computing 1, ,, for two soft gravitons, and using (4.117) we get,

[n—l—m = [(51)_2€n+p‘6n+u kn—l—p n+u ~ (61) €n+p n—+u €n+u-kn+p
2
_Cn-i—p,n—i-p Cn+u,n+u:| In+m—2 + O(T)

= [(él) En+p-Entu kn—i—p ntu (51) En-i—p n+u €n+u~kn+p

n n 2
Entp-Pe €ntu-Pe
_{ Z AR (51) En+p- n+u} { Z ,0_:—0 (51) €ntu- n+p}] In+m—2

— 0
c=1 P ¢ c=1

+0(7), (4.172)

where I, ,, o is the integrand for the scattering amplitude of (n 4+ m — 2) gravitons in which we
have removed the s-th and the wu-th gravitons from the original set. Therefore, to the desired order of

expansion, the contribution to the (n + m)-point amplitude from the degenerate solution becomes,

(p,u)

an+1:71
4k + =y o k +p-Pb - k Db
- e [ D05 T o b s a3 Beet 4 3 Bl
=1 b=1 b=1
T’#p,

(Z n+p n+u) pa>_2 (Z En—l—p'pc) (i €n+u-pd) _ 6n+p~€n+u (i (kn—l—p - kn-l—u)-pa)Q

pot — 0, — p—oc ‘= p—0d 4 kpyp-Fng p p— 0g

n ¢ D n € p 1 i k D - k ¥Y ’
+p- +u- +p-’b ntu-r'b
+(€n+u-kn+p Z n po': - €n+p-k7‘1,+’ur Z “ C) <Z — - Z p —_ O‘b > ] )
c b=

— P - — p—0c/ 2knipkntu “p—0p =
(4.173)

In the above expression, we are only interested in the 7 independent contribution of /,,,, . Hence,

we can evaluate it at 7 = 0. In terms of [,,, it is given by

m n 5 2

Liima = (=12 T (Z %) I, +0(7). (4.174)
r=1 b=1 nTr
b

The integration over o, for r # p,u in (4.173) can now be performed by the standard contour
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deformation, producing a factor of (—1)™2 | . Lo S,(SZT. The remaining integral over p has
exactly the same form as (4.118) and can be analyzed as in section 4.3.3. Using (4.123), (4.125) we

see that the final result for (4.173) is given by a sum of two terms:

m n
5 1 —m 0 —
Mﬁzp-i};?)%( : = 7 ! H ST(HET Z{pa-(kner + knJru)} ! M(pa; €n+p7 knerv Endu knJru) Mn )
NS
(4.175)
and
M
n n
K, n-+u Frtu-pp —2 Frtp-pa !
et [0 (T[S )n f (3 Sett) (3 et
=1 P b a1 P a
77£pu {Asq}

n n 2
(SemEen)
e oo (s )e f 0 (S020) (0 520)
" {Au.i) b=1 ’ am1 P Oa
n n 2
(Eenisn)
(ﬁsor I, 7{ d,;(;%iuib)—l(i%>_l

a=1

(B
i f () (S et

b=1 a=1

n n 2
(Z 6”*—“90) (ZE’”—“pd) S (4.176)
—1 P — 0O¢ =1 pP— 04

M is the same function as defined in (4.124).
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4.4.4 Total contribution

We can now add the expressions given in (4.175) and (4.176), sum over all possible choices p, v in
the range 1 < p < u < m, and add this to (4.167) to get the final result. The result is

m m m
—(m— 1)
Mn+1n - |:H57l+li|M +T ( 1 HSTL-i-'I (S7(L+U )
r=1 v=1 =
T;év
m m n-+m
—(m— 0 -
T =y Z ( H ST(“Z’“) Z {pa-(kn-i-p + kn-i-U)} ! M(pa§EN+p7 kn+p75n+uv kn-iru) Mn'
B

4.177)

This agrees with the result (4.1) as claimed. This finishes the proof that the CHY prescription gives
the same result for the subleading multiple soft graviton theorem as the Feynman diagram technique

described in the previous chapter.
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Appendix A

Mellin Representation of Conformal Field
Theory

In this appendix, we review some basics of Mellin representation of the conformal field theories
following [2,32,44,123,124].

A.1 Motivation for Mellin Representation

In usual quantum field theories (which have Poincare invariance), the amplitudes are easier to ana-
lyze in the momentum space as opposed to position space. One reason for this is that we are usually
interested in perturbation around wave like solutions of the theory. For this purpose, the decomposi-
tion of solution in terms of sine and cosine modes is most appropriate if we are using the cartesian
coordinates. The Fourier transform to momentum space naturally picks out these different modes.

Some of the nice features of the momentum space amplitudes are

1. Tree level amplitudes in momentum space are given by products of propagator and vertices.
No integration is needed to be performed. In position space, the two point function G(x,y) is

given by an integral kernel. However, in momentum space G/(p) is just a rational function.

2. The momentum space amplitudes have nice analytic properties as functions of external mo-
menta. These analytic properties have nice physical interpretations. In particular, the poles in
the amplitude correspond to stable or unstable single particle states! and the branch cuts on
real axis correspond to the multi particle states. Moreover, the residues of the poles factorize

on lower point amplitudes.

3. The physical requirements of locality, causality and unitarity are also translated into some

analytic behaviour of the amplitude in momentum space. The locality is ensured by some kind

'The unstable particle is characterized by a non zero value of its on shell self energy diagram.
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of polynomial boundedness of amplitudes for theories involving finite number of derivatives.
The causality is related to the properties of analytic continuation of the amplitudes. Finally, the

unitarity is encoded in various dispersion relations and the cutting rules.

All these properties are difficult to handle in the position space since the analytic behaviour of posi-
tion space amplitudes is not very transparent. Now, we are interested in the conformal field theories.
Naively, one might expect that since CFT's are also quantum field theories, we should also be able to
analyze them in the momentum space. However, it turns out that the momentum space is not very
useful for CFTs.

To see this, we recall that, in general, the non trivial interacting CFT's have a continuous spectrum
(going to zero) since there is no mass (gap) scale in the theory. Due to the absence of isolated single
particle states in the spectrum, the momentum space amplitudes do not have simple poles. More
specifically, the role of Hamiltonian in CFTs in radial quantization on S%! x R is played by the
dilatation operator since it generates the “time” translation. The spectrum of the theory corresponds
to the eigenvalues {A;} of this operator. This spectrum is discrete for d > 2. Now, the two point

function of scalars in CFT's behaves as

(O(r1)blra)) = ——

S — A.l
|$1 —I2|2A ( )

A is the scaling dimension of the scalars and it is not necessarily an integer in non trivial CFTs.

(d=A) which has a branch cut

The Fourier transform of this two point function is proportional to p—2
starting at p> = 0 for a generic non integer A. Thus, even for the simplest correlators, the momentum

space behaviour is very complicated.

Another way to see the problem is to note that on the “cylinder” S¢~! x R, the good quantities are
not the momenta but the spherical harmonics. Moreover, CFTs have additional global symmetries,
namely, scale invariance and the special conformal invariance apart from Poincare symmetry. Now,
the special conformal transformations acts non trivially on the Mandelstam invariants p;.p;. This is

unlike the Poincare transformations which keep the Mandelstam variables invariant.

Due to the above reasons, the momentum space does not provide a very useful representation
for analyzing CFTs. Hence, correlators in CFTs are usually analyzed in the position space itself
which again has all the disadvantages mentioned earlier. It prompts us to ask the question if there
is representation which is more suitable for CFTs. One property we would like to have for this
representation is that the amplitudes in this representation should possesses poles associated with the
spectrum of the theory just as momentum space does for Poincare invariant theories. It turns out that
there is indeed such a representation, namely, Mellin representation [2]. The Mellin representation
makes use of the fact that the non trivial information of a CFT correlator depends only upon the so
called cross ratios. Hence, instead of transforming each position space coordinate (just as we do when

going from position to momentum space), it is more useful to make a transformation with respect
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to the cross ratios. We shall describe below this transformation and properties of CFT correlators in
Mellin space. For this, we start by reviewing some of the properties of the CFT correlators in position

space.

A.2 CFT Correlators in Position Space

A general n-point correlator in position space is given by (suppresing the indices on operators)

Aw) = (O (11)08,0,(32) -+ Ot (w0)) (A2)

The A, ¢; denote the dimension and spin of the i-th operator. We shall focus on the case when O;
are primary operators. we shall also restrict to the case ¢; = 0 for simplicity. We shall now analyze

the consequence of the conformal symmetry on this correlator.

The Poincare invariance implies that A(z;) can depend only upon® x7; = (z; — x;)*. The scale

invariance implies

Oa,(Azy) = X204, (1) — Az) = A X B A(x) (A.3)

Now, under scale transformation, we have x7; — A\*z7;.

2.

This means that the ratios ;T] will be scale
kl

invariant. Thus, if a theory had just the Poincare and scale invariance, the amplitude could be written

in the form

1 ~

A(z;) = ORE] Alryy) (A4)
i<j
where 7;; are a set of @ — 1 independent cross ratios which can be chosen, e.g., to be
2
Lij ..
Tij = —5 : (1,7) # (1,2) (A.5)
aP)

and A;; are chosen to satisfy
2 A= A (A.6)
i<j i=1
Equations (A.4),(A.5) and (A.6) ensure that equation (A.3) holds.

Finally, we consider the consequence of the covariance under the special conformal transforma-

2For £; # 0, there can be more tensor structures.
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tion (SCT). To implement SCT, we note that SCT can be expressed as
SCT = Inversion x Translation x Inversion (A7)

Thus, if we can make our amplitude covariant under inversion transformation, then it will automati-

cally be covariant under SCT. Now, under inversion, we have z# — x*/ x? and

i i=1

on () -wron =A%) - [l ae o

. A . . .. « ., 222

Noting that x7; — x7;/x7x7 under inversion, it is easy to check that the “cross ratios” -5 are
ik” 5L

. . . . . .. -3 .

invariant under the inversion. Total number of independent cross ratios is % for n points. We

can prove this recursively. Suppose, we have a set of independent cross ratios for (n — 1) points

(z1,--- ,xp—1). We now add another point x,,. Using this, we can construct n — 2 new cross ratios as
2 .2 2 .2
Ty, Ts: T{oX
S, e where a=3,4,--,(n—1) (A.9)
T13Tap T1a%2n

It can be easily verified that any other cross ratio built from the n points can be expressed in terms of
the cross ratios of n — 1 points and the cross ratios of equation (A.9). Now, if .S,, is the number of

independent cross ratios for m points, then we have
Spn_1+n—2=275, (A.10)
We also know that for 4 points, number of independent cross ratios are 2, i.e.,

Sy =2 (A.11)

n(n—3)
2

Solving the above two equations recursively, we find S,, = which proves the desired result.

It turns out that this result is valid as long as the number of space-time dimensions d is greater than
the number of points n. If n is large compared to d, there are non trivial relations between the @
cross ratios. More precisely, for a d-dimensional space-time, the number of conformal cross ratios is
given by (see, e.g., [44])

n(n — 3)

S, = — ; d+1>n

1
S, = nd—é(d+1)(d+2) ; d+1<n (A.12)

Returning to the covariance under SCT, to take into account (A.8), the correlator can be expressed

134



in the form

Alz;) = Aluy,) (A.13)

1<j

where {u,} are the independent cross ratios and A;; must satisfy

Nip=2Dy . D Ag=4A;  ; i=12-n (A.14)

G

For 4 point function, an explicit solution for A;; is given by

Ay + A Ay + A A+ A
A14 - _% ) A24 - % ) A34 - %
A A A A A A
Ay = % L A= % L Ay = —% (A.15)

A.3 Mellin Representation of CFT Correlators

As mentioned earlier, in the Poincare invariant QFTs, the Fourier transform to momentum space is
useful since it naturally picks out the different harmonic modes. However, this is not suitable for
the CFTs since CFT correlators more naturally admit a power law decomposition (and not harmonic
decomposition) as in equation (A.13). It turns out that the Mellin transform of a function does
precisely this, i.e., it decomposes a function in terms of functions with definite scaling behaviour.

More precisely, the Mellin transform f(s) of a function f(x) is defined as

f(s) = /OOO dz x5 f(z) = f(z) = ! /wo ds 7% f(s) (A.16)

a % —100
s is the complex Mellin variable. The contour in above equation runs along the imaginary axis.

However, sometimes we need to deform it to pick up appropriate poles.

From (A.16), we see that the decomposition of f(z) is in terms of power law behaviour. More
precisely, the components of f(x) with different power law behaviour are associated with the poles

of f(s). In other words, if f(x) has contributions from different scaling dimensions, the f(s) would

be sensitive to these scaling dimensions. As an example, we consider a simple Mellin function

f(s) = (where A is real) (A.17)
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For x > 1, we close the contour in (A.16) from right and obtain

f(z) = Res ( v ) - %A (A.18)

s—A s — A

This property of the Mellin transform is essentially the reason we consider the Mellin representation
of CFT correlators. We now follow [2] to obtain the Mellin representation of 4-point CFT correlator.
For details, please refer to [2].

We consider the 4-point correlator involving the scalar operators in position space. Restricting to
n = 4, equation (A.13) gives

M) = (O (1) O, (22) Oy () O, (w0) ) = T () fw,v) (A.19)

where A,;; satisfy the constraint (A.14) and u, v are the conformal cross ratios given by

2 .2 2 .2
Tiok T4
u = 12-¥34 : v = 14423 (AZO)

2 .2 2 .2
L13L4 L13Lo4

We now make a Mellin transform with respect to the cross ratios u and v. This gives,

M(Ll) = H(l‘ij)_2Aijf(uvv)

i<j
1 100 100 - s o
T (2mi)? /_wo b /_m dpy u™" Bzf(ﬁhﬁz)g(xij) 284
= —(2;-)2 / dB / dBs F(Br Bo) [ (ig) (A21)

i<j

In going to the 3rd line, we have used (A.20) and defined s;; = A;; + 35, where 3;; are linear
combinations of 5, and /35 as

512 - 534 - Bl ) 614 - 523 - 62 ) 513 - 624 = _ﬁl - 52 (A22)

The f3;; and s;; satisfy

4 4
Zﬁij =0 — Z Sij = A; R Sij = Sji (A.23)
j=1 j=1

J#i J#i

The conventional definition of Mellin amplitude includes a product of Gamma functions in the mea-
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surc as

1 100 100
M(zi)) = ——3 / / d®s M (si;) [ [T (si5) (i) > (A.24)
(271—7’) —100 —100 ’L'<j
The integration in above equation is over two independent Mellin variables (say si5 and s13). The
factors of I'(s;;) are a matter of convention. However, these Gamma functions turn out to be very

useful for large N CFTs as we shall see.

The above steps can be repeated for an arbitrary n-point function. In that case, the Mellin ampli-
tude can be defined as

0 sy o\ T - -
M (fl)l) = H (/_ 2;9_(; F (Sij) (zij) 2 1]) ]:!O Ai — ZSU M (Sij) (A25)

1<i<j<n 100 .
J#i
We have imposed the analog of the constraint (A.23) for n point function by including explicit delta
functions in the measure. These constraints take care of the covariance property (A.8) of the ampli-
tude. Due to this, the total number of independent Mellin variables is %n(n — 3) which is same as the

number of independent conformal cross ratios.

The constraints on the Mellin variables can be solved by introducing a set of fictitious momenta

k!" and identifying s;; with some kind of Mandelstam variables as

]

sy = kiky . D K =0, kK = -A (A.26)
1=1

The s;; defined in this way automatically satisfy the delta function constraints. One motivation for
this representation of the Mellin variables is that in the context of AdS CFT in the large radius limit,
the s;; behave as the flat space Mandelstam variables [32,39,40].

It is instructive to solve the constraints on Mellin variables explicitly and express the amplitude
(A.25) as integral over just independent variables for n = 4. In this case, the four constraint equations

are

S12+ S13+ 514 = Ay ) S12 + Sog + S24 = Ay

513 + Sog + s34 = Ag ; S14 + Soq + Sz = Ay

Due to these constraints, there are only two independent Mellin variables. We shall choose them

to be s and sy3. It turns out that instead of using s, and s;3, it is more convenient to use the
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representation (A.26) and define shifted variables s and ¢ as

1
S = —(k’1+k2)2 = A1+A2—2812 - 512=§(A1+A2—S)
‘ 1
—(k1 4+ k3)? = Ap+ Ay — 2513 — 813 = §(A1 + Az — f)
In terms of s and t, the other Mellin variables can be solved as
S+t—A2—A3 5+t—A1—A4
S14 = ) 523 =
2 2
_ A2+A4—t s _A3—|—A4—S
524 9 ) 34 = )
Using s and ¢, the 4 point correlator can be expressed as
Alr) = —— 4 (A27)
(i) = W (u,v) :

i<j
where A;; are given in (A.15) and

/ dt EMSt)u%U_S?j A1+A2—S r A1+A3—t
2mi oo 271 2 2

r A3+A4—S r A2+A4—t I S+t—A2—A3 T S+t—A1—A4
2 2 2 2
(A.28)

A.4 Properties of Mellin Amplitudes

The Mellin amplitude M (s;;) have very nice properties which are not manifest in the position space
amplitude. We first list some of these properties

1. The Mellin amplitudes are meromorphic functions of the independent Mellin variables?, i.e.,
they only have poles but no branch cuts unlike momentum space amplitudes. The branch cuts
in momentum space come from absence of a mass gap. However, the Mellin amplitudes which
are sensitive to the scaling behaviour of operators do not have branch cuts since in most cases

of interest, we only have discrete spectrum of dimensions of operators.

2. The poles in different channels correspond to the twists T = A — ¢ +2m (m =0,1,2,---)

of the operators exchanged in that channel in the intermediate state. The first pole (m = 0)

3This is true as long as we can ignore the multi trace operators. We shall consider the presence of the multi trace
operators towards the end of this section.
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corresponds to the exchanged primary operator and all its leading twist descendants (i.e. those
operators in the conformal multiplet whose dimensions and spins keep A — ¢ fixed). The higher

poles (m > 0) correspond to the satellite poles.

3. The Mellin amplitude factorizes in terms of the lower point amplitudes when the intermediate
particle goes on-shell. In other words, the residues at poles of the correlators are related to
the lower point correlators. This property of factorization is also present for usual QFTs in the

momentum space.

4. The channel dualities (i.e. ability to evaluate the amplitude in different OPE channel) are

simply manifest as the exchange of corresponding Mellin variables.

5. For large N CFTs where multi trace correlators factorize, the additional Gamma functions
present in the definition of the Mellin amplitude take care of the contributions of the multi trace
correlators. This means that the Mellin amplitude M (s;;) contains information only about the

single trace operators.

6. In the large radius limit of AdS, the Mellin amplitudes become flat space scattering ampli-
tude and the Mellin variables s;; become the Mandelstam variables of flat space (upto some
proportionality factor) [32,39,40].

The first four properties are universal properties and essentially follow from the OPEs. We shall
illustrate these for the case of 4-point function of scalar primary operators. The Sth property requires
the large N CFT whereas the 6th property needs large /N and large t* hooft coupling. We now

elaborate on each of these property below.

Meromorphicity of Mellin Amplitudes

We start by considering the 4-point function
A(z:) = (O, (1) O, () Oy () O, (1)) (A.29)
The OPE in the s channel is given by

An (le),Url e (1'12)/1'2

O (1)Ons(2) = ‘12 || A1 A2 —AtE=2n O OR M (x) + -+
An
An (-T34) s (1734) "
OAa (‘r3)0A4 (x4) = C34 |$34’A/.:1+A4—A+1{‘—‘;e7b o Oil H (x4) + - (A.30)
An
The - -- terms in (A.30) denote the contributions of the multitrace operators such OAiﬁ%OAj. In

the above OPE of two scalar operators, we have the contributions from spin ¢ operators O)'"*.
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This happens because the scalar operators are not coincident. Hence, when we expand the OPE in
terms of operators at a single point, these operators can have non zero orbital angular momentum
spins. The clA2’” are dimensionless coefficients and are known as OPE coefficients or 3-point function

—A+L—2n

coefficients. The factor |z,|*1+52 in RHS of above OPE is necessary for both sides to have

the same conformal transformation properties (or equivalently the mass dimension).

Now, the correlator in (A.29) can be evaluated by doing an s channel OPE expansion which
converts the correlator into a sum over two point functions. The leading behaviour of the amplitude
in the s channel expansion is dictated by (A.30). Thus, the leading behaviour in s channel of the
correlator (A.29) in |z 5| variable goes as power law |x5|~(A1+5827A+(=27) " We want to reproduce
this behaviour from our definition of the Mellin amplitude given in (A.27) and (A.28). For this, we
note that x5 enters in (A.27) through the prefactor involving A5 and through the definition of u
in A(u, v). Now, the factor A; + A, in the power law behaviour is taken care by the prefactor in
(A.27) through the term involving A;5. For the remaining terms in power law, we note that j(u, v)
involves integration over u*/? (note that u involves x2,). This means that M (s, t) must have poles at

s = A —{+2n. This will ensure the expected behaviour of the amplitude in the s channel expansion.

The total Mellin amplitude M (s, t) is a sum of contributions from each of these poles. Thus, for

the s channel expansion, we can write

M(s,1) ~ ; — (AM i(Z)Jr ) (A31)

T

Thus, we have an infinite set of descendant poles (labelled by n) associated with each primary op-
erator twist (T = A — ¢). For each operator O, = 9**O)' " contributing to the OPE in (A.30),
we have a pole in (A.31). Due to the discreteness of dimensions of the primary operators, the sum in
(A.30) is a discrete sum and hence the sum in (A.31) is also discrete. This implies that M (s, t) has

no branch cuts but is a meromorphic function.

An important point to note about the Mellin amplitude M (s, t) is that it can only have simple
poles. The higher order poles will not be consistent with the OPE structure (A.30). To see this, we
note that if M (s, t) had a double pole in s, then the s integral in (A.28) will go as

/ us/2

s—a)

where a is a constant and f(s) is an analytic function in s. The evaluation of this integral will give

an expression proportional to log(u) which will be in contradiction with the OPE behaviour (A.30).
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Factorization of Residue

We next consider the factorization of the residue. To evaluate the correlator in (A.29), we need
to replace On, (1)Oa,(x2) and O, (r3)Oa,(x4) by their OPE expansions (A.30). Now, we can
choose our basis of operators so that the two point function becomes diagonal and the non zero
contribution only occurs when same operators appear in both the OPEs. After doing this, the 4-point
function reduces to a sum over 2-point functions as

An Am C($12;8 ) 0(5634,3,2)
Az($1) = Ci2 C34 |:|x12|A1+A2Ay+£2n |$34|A3+A47A+5727n <OA(y)OA(Z)>:| (A33)

An,m

Since OPE is consistent with the conformal symmetry, the above expression can also be expressed in

terms of so called conformal blocks as

A(z;) = QA” 2012034 Gaslu,v) (A.34)

z<]

The functions G ¢(u,v) are the conformal blocks in s channel. They represent the kinematic data
determined by the conformal symmetry. The sum in the above expression is only over A. The
sum over n and m present in OPE (A.30) which correspond to the contribution from descendants is
already included in the definition of the conformal block. It turns out that the conformal block Ga ¢

admit an expansion in powers of u as
(o e]
Gae=u"> u"gy(v) (A.35)
n=0

where g, (v) admits a power series expansion in 1 — v. E.g., the first term is given by

<v—1>‘f - (A+£—A1+A2 A+l+A5— A,
2471

5 5 : 5 S A+ 1—v> (A.36)

go(v) =

The expressions (A.33) and (A.34) represent the factorization of the amplitude in terms of two
sets of 3-point functions (each set determined by c%, or c5;). For this to be consistent with Mellin

amplitude, we must have the following expansion for the Mellin amplitude

ey 5y Qunl(t)
M(s, 1) ~ 12 734 2bnit) =AY A37
(97 ) ;S—(Taﬁ-Zn) y TA ( )

The Qy,(t) are a set of orthogonal polynomials of degree ¢ which are usually parametrized in terms
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of another polynomial @), ,, as

00 () A+ 0)(A—1),
&n - 1—As —A1+As 3—Ay —A3+Ay
4£F (A+£+§ A ) F (A+£ § +A ) F (A+E+§ A ) P (A-i-f ﬁ +A )

Qen(t)

nl(A — 44 1), (FAHEAER: ) T (ZAHERutAL )

(a)m, denote the Pochhammer symbol

I'(a +m)
(@)m = T (A.38)
and the polynomial (), behave as
Qen(t) = t" + O™ (A.39)

Channel Duality

In the above analysis, we used the OPE in s channel. However, we could have used the OPE in the
t channel as well (7 — x3). The operators in the intermediate state Oa , would then correspond to
the operators appearing in the OPE of Ox, (1)Oa,(x3). Since the final result should be independent
of the OPE channel used for calculation, the Mellin amplitude must have a set of poles similar to
(A.31) and (A.37) in t variables as well (i.e. at t = T + 2n). For identical scalars, there should be a
symmetry under exchange of the s and t channels. This is manifest in the Mellin amplitude which is

symmetric in s and ¢ variables. This is channel duality.

Large N Limit

In general CFTs in dimensions d > 2, given any two primary operators O; and O, which have twists
T, and T, respectively, the CFT contains an infinite family of double twists operators with arbitrarily
increasing spin /. Moreover, in the limit ¢ — oo, their twists are given by T, + Ty + 2m where m is
a positive integer. This makes the Mellin amplitude non meromorphic since these infinite sequence

of poles start getting accumulated at these asymptotic values of the twists.

It turns out that in the large NV limit, the above situation simplifies considerably. This happens
because in the large NV limit, the spin ¢ double trace operators of the form O;9*"9"1#¢ (O, have the
twists T = A; + Ay + 2n + O(1/N?). Similarly, the double trace operators 039201 #¢ (D, have
the twists T = Az + Ay + 2n + O(1/N?). Now, from expression (A.28), we see that the additional
Gamma functions present in the definition of the Mellin amplitude have poles at s = Ay + Ay + 2n
and s = Az + Ay +2n/ (for positive integers n and n’). These poles are precisely the poles we expect
due to the contributions of double trace operators. Thus, we don’t need to include these poles into

the Mellin amplitude M (s, t). This implies that M (s,t) only captures the single trace piece of the
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OPE.

This is very convenient from the AdS CFT point of view. The single trace operators of the
boundary CFT correspond to the single particle states in the bulk. Similarly, the multi trace oper-
ators correspond to the multi particles states. Now, suppose we are interested in the single particle
scattering in bulk string theory. In the dual boundary theory of large N CFT, this will correspond to
correlators of single trace operators. In the Mellin space, this information will be encoded in M (s;;)
which does not care about the multi trace operators. Thus, in the large N limit, if we are working
with Mellin amplitudes, we don’t need to worry about contamination by multi particle states if we
consider the single particle scattering (i.e. in perturbative string theory). In other words, the Mellin
amplitude gives a nice way to disentangle the contributions of the multi particle intermediate states

in single particle scatterings.

Flat Space Limit

In the context of AdS CFT, we can consider the Mellin representation of the Witten diagrams. These
Mellin amplitudes of the Witten diagrams again share all the universal properties of the Mellin space.
They depend on the “radius” of the AdS and are meromorphic functions. Now, we can consider
the flat space limit of AdS by sending the radius to infinity. Equivalently, we can consider particles
which are much more energetic than the AdS length scale and hence they are insensitive to the
AdS curvature. In effect, this requires a large t* hooft coupling. This is due to the fact that high
energy particles in the AdS correspond to CFT operators with large scaling dimensions and hence

the resulting CFT theory should be strongly coupled charecterized by a large t’ hooft coupling.

Now, the location of the poles in Mellin amplitude depend upon the CFT coupling (or equivalently
the radius of AdS). In taking the flat space limit, we make the coupling (or radius) very large. Due
to this, the poles of the Mellin amplitudes start coming together and merge to form a branch cut. It
turns out that in this situation, we can relate the AdS Mellin amplitude to the flat space scattering
matrix. An explicit relation between the massless flat space scattering amplitude 7 (.5;;) and the
Mellin amplitude M (s;;) is given by [32,39,40]

RQSZ--
T(Sy) = J%EEONCSdH (Zk>/ do e 2= ZA)M( _ 4013)
4B 5 iz ai-d Sij
M(Sij) = N/ ﬁ T( 45 ) ,  Sij >>1 (A40)

In the above expressions, A/ is a normalization factor which behaves as N' ~ RP(1=4)/2+d+1 " the
{Sij = k;.k;} are the Mandelstam variables of the flat space scattering process, the {s;;} are the

Mellin variables and the A; are the dimensions of the external operators.
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Appendix B

CHY Prescription for Tree Amplitude
Calculation

In this appendix, we review the CHY prescription for computing the tree amplitudes involving the

massless particles in arbitrary dimensions [24-27] (for review, see [120]).

B.1 Kinematic Space, Scattering Equations and CHY Formula

We start by recalling some facts about the singularity structures of the amplitudes. Since we are
interested in the tree level amplitudes, the singularities correspond to the poles of the amplitudes and
they occur when a subset of the Mandelstam variables become zero. If the momenta of the n particles
involved in the scattering are denoted by k1, - - - , k,, the Mandelstam variables can be defined by

250y,0, = (Kay +ka2)2 = 2ka, K, (B.1)

The total number of independent Mandelstam variables is n(n — 3)/2. The codimension one sin-
gularity in the Mandelstam space is obtained by setting one of the Mandelstam variables to zero.
Similarly, the codimension two singularity in the Mandelstam space is obtained by setting two of the
Mandelstam variables to zero and so on. The highest codimension of a singularity in the Mandelstam
space can be n — 3. In general, studying the singularity subspaces in the Mandelstam space is a com-
plicated problem. In the CHY formalism, we consider another space which encodes the information

about the singularities of the Mandelstam space in a more transparent manner.

For this purpose, we consider a Riemann sphere with n punctures. If z is a choice of complex
coordinate on the Riemann sphere, doing an SL(2, C) transformation gives an equivalent coordinate
system

az+b
cz+d

z—=w = a,b,c,d € C and ad—bc=1 (B.2)
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Now, the n punctured Riemann sphere can be parametrized by n holomorphic variables {oy, 09, -+ , 0, }
together with the SL(2, C) redundancy. Due to the SL(2, C) freedom, any three points on the Rie-
mann sphere can be fixed. The remaining n — 3 points can be anywhere on the sphere. The different
choice of locations of these n — 3 points correspond to a different Riemann sphere (such that one
can’t go from one Riemann sphere to other by a holomorphic change of coordinates). The set of all
Riemann spheres with n marked points having SL(2, C) redundancy is called the moduli space of n
punctured Riemann spheres and is denoted by M ,,. This means that the moduli space M, is an

n — 3 dimensional complex space.

The moduli space M, ,, has boundaries. These boundaries correspond to the situation when some
of the punctures come very close to each other. In this situation, the sphere degenerates. Our goal
is to find a mapping between the singularities in the Mandelstam space and the degeneration limit of

the n punctured Riemann sphere.

For concreteness, we consider the case of n = 4. The Mandelstam variables for this case are

given by

S = 2812 = 2834 = —(kl + k2)2
t = 2593 = 2514 = — (ko + k3)?
u = 2813 = 2824 = —(kl + k3)2 (B3)

which satisfy s +t + u = 0.

Next, we consider the moduli space of 4 punctured Riemann sphere. We fix the location of three
punctures using the SL(2, C) invariance at o, = 0, 03 = 1 and 04 = oo. The coordinate o5 is free to
vary and parametrizes the moduli space. The degeneration limits of the Riemann sphere correspond

to the situations when o, is very close to any one of the fixed punctures.

The mapping between the Mandelstam space and the M, 4 requires finding a relation between o

and the Mandelstam variables s, t, u
02 = f(81273137823) (B.4)
with the following demand

og — 0 when S19 — 0

4
2

09 when si3— 0

oy — 1 when S14 — 0
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A relation satisfying these conditions is given by

gy = =212 (B.5)

513

For the purpose of generalizing this to the case of n points, we rewrite this relation in terms of

arbitrary value of all the 4 coordinates as

S12 513 S14
+ +

=0 (B.6)
01 —02 01 —03 01—04

This equation is covariant under the SL(2, C) transformation after using the momentum conserva-

tion'. Moreover, by fixing the 3 coordinates as 01 = 0,03 = 1 and 04 = 0o, we recover equation

(B.5).

The generalization of equation (B.6) to the case of n points is given by the so called scattering

equation as

Y0 wa (B.8)

r—1 Ja — Ob

b#a
Even though there are n equations, only n — 3 of them are linearly independent. This is expected
since there are only n — 3 independent variables after taking into account the SL(2, C) redundancy.
This is reflected in the fact that three specific linear combinations of the scattering equations are zero,

namely

n n

Sor S| =0 for m=0,1,2 (B.9)
Oq — Oy

o=t bra

After making the connection between the Mandelstam variables and the location of punctures
on the Riemann sphere, we propose following formula for any tree level amplitude involving the

massless states

| | dO'a n n s
tree a=1 S “ab
ptree _ T[] —| z, B.10
n /Mo,n Vol SL(2,C) ( )

b—1 a1 %a ™ 0b
a#b

The delta functions ensure that the integral receive contributions only from the points in the moduli

!"To check this, we note that under the SL(2, C) transformation (B.2), we have

Oy — Oy — I» — %
poa (cop+d)(coy + d)

(B.7)
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space which are related to the Mandelstam variables through the scattering equations (B.8). The Z,,

is an unknown function which needs to be determined for a given theory.

Due to the fact that only n — 3 of the scattering equations are independent, the above proposed
equation (B.10) has a serious problem. If we find a solution for n — 3 variables and insert into the
scattering equations, the remaining 3 will get automatically satisfied. Thus, the integrand of (B.10)
has a product of three delta functions with zero argument, namely §(0)6(0)d(0), which will make
the whole expression divergent. Due to this, we need to omit three delta functions. Suppose, we
choose a = p, ¢, and omit the delta functions corresponding to these values. We want to do this in
a covariant manner. It turns out that the following combination is independent of the choice of the

three punctures

n n

S
Op0aory [ 0 Z@%{T (B.11)

a=1 b=1
a#p,q,r b#a

where, o0, = 0, — 0.

Similarly, since we have fixed the locations of the three punctures (say oy, 0, 0,), We also have

I1 do, n
a=1
— = n d B.12
Vol SL(Q, C) OtmOmnOne H Oq ( )
a;él,_m,n
Thus, our proposed relation is modified to
n n n s
b
Affee = /Movn H do, (Uémgmngné)(gpngrarp) H J CZ; o, j o 7, (B.13)
a#lm,n b#p,q,r c#b

The delta functions in the above equation should be treated with care since they correspond to Holo-
morphic variables. For proving soft graviton theorems, it is more convenient to use a contour integral

representation for these delta functions. We discuss these issues in the next section.

The integrand in the above equation should be SL(2, C) invariant. This imposes some restriction

on the function Z,, as we describe now. We denote the measure in (B.10) by dy,,, i.e.

n n n

Se
dp, = H Ao (OtmOmnne) (OpgOgrTrp) H ) Z—b (B.14)

a=1 b=1 c=1 Oc— 0b
a#L,m,n b#p,q,T c#b
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Under SL(2, C) transformation (B.2), this transforms as

n

dp, — du, H(C% +d)™* (B.15)

a=1

Thus, for the integrand in (B.13) to be SL(2, C) invariant, we must have

n
T, = I, ]| [(cou + d)* (B.16)
a=1
Our next job is to construct the functions Z,, taking into account the above requirement for differ-
ent theories. However, before doing this, we first turn to finding the number of independent solutions
of the scattering equations.

Suppose, we are interested in finding the number of solutions N, of the scattering equations for
the case of n particles. We shall obtain this in a recursive manner. For this, we focus on the n-th

scattering equation and write the scattering equations as

n—1
Z koK N ko k,

= 0 for a=1,2,---,n—1 B.17)
b1 Oq — Op Oq — Op
b#a
n—1
ky .k
b (B.18)
On — Op
b=1

Now, we consider the limit in the kinematic space where the n-th particle is becoming soft, namely
kn=1Tq T—0 (B.19)

Now, in this limit, the number of solutions of the scattering equations should remain same unless
we hit the soft limit T = 0. Upto leading order, the term involving k,.k,, in equation (B.17) can be
ignored. The (B.17) then becomes the set of scattering equations for the n — 1 particles which have
N,,_; solutions. We denote these solutions as a,g) wherea =1,2,--- . n—land I =1,2,--- ,N,_;.

Substituting these solutions in (B.18), we find

n—1

q.kyp
Z ——5 =0 (B.20)

b=1 On — Oy

We now need to find the number of solutions of o,,. For this, we note that the above equation is a
polynomial equation for o,,. Naively, the degree of this polynomial equation is n — 2. However, it
is easy to check that the coefficient of the (c,,)"~2 in this polynomial equation is 3"~ k,.q which

is zero by momentum conservation. Thus, the degree of the polynomial equation is » — 3 and hence
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the number of solutions of o,, are n — 3. Now, for n = 4, we have already seen that the number of

solutions is just one. Thus, we have following recursive equations
Ny=1 ; N, = (n—3)N,_1 (B.21)

The unique solution of these recursive equations is NV,, = (n—3)!. Thus, the total number of solutions

of the scattering equations for n particles is (n — 3)!.

B.2 Delta functions in CHY formula

In writing down the CHY formula for scattering amplitudes (B.13), we made use of the delta function
involving the holomorphic variables. The delta functions in (B.13) are abstract quantities which are

defined via the equation
[ 0 8(4@) Flo) = 3 01)) Floww) (B.22)
(o)

where f and F are arbitrary functions and o, are the zeroes of the function f(o). In contrast to
the usual delta function, the weight factor is (f'(0(4))) " instead of (|f'(c())|)~". Therefore we can

also represent this as a contour integral

F(o)
za: j'{ do 7o) (B.23)

O(a)

where fg( : denotes an anti-clockwise contour around o), including the (27¢) ! factor.

To see the equivalence between (B.22) and (B.23), we just need to Taylor expand f(o) around

O(a)
f(o) = flow) + (0= 0@)f (@) +-- (B.24)

By residue theorem, we shall only get f’(0(,)) in the denominator and F'(o(,)) in the numerator after
performing the contour integral in (B.23) showing the equivalence between the two expressions.
The absence of absolute value in the right hand side of (B.22) can some time cause confusion

when we have multiple integration. Consider for example the integral

/dmdy5(m—y) Mr+y) F(z,y). (B.25)

Let us do the y integration first. If we use the second delta function to do this integral then the result

150



is
1
/d$ 0(2z) F(z,—x) = QF(O,O). (B.26)
On the other hand if we use the first delta function to carry out the y integral first then the result is
1
—/dwé(Zaz)F(az,x) = _EF(O’ 0). (B.27)

Therefore the two results do not agree. Thus, for holomorphic delta functions, it matters which delta
function we use to perform which integral and hence we need to be careful when multiple integrals
involving multiple holomorphic delta functions are present.

This ambiguity can be resolved if we regard the holomorphic delta functions as grassmann odd
objects so that exchanging their positions costs a sign. We also regard the integration measure as
wedge products so that changing the order of doing the integration also costs a sign. For a given
order of integration and delta functions we shall follow the convention that the last integration will
be done first using the last delta function, and successive integrations will follow the same order. If
we want to use a different delta function for the last integration, we need to first bring that particular
delta function to the end picking up appropriate minus sign and then carry out the integration using
(B.22) or (B.23). In terms of the contour integral representation (B.23), it means that if we have
multiple contour integrals, then the 1st integral should be done using the poles of the arguments of
first delta function, second integral using the poles of the arguments of the second delta function and
SO on.

It is easy to see that with this convention, under a change of variables the product of delta func-

tions pick up the inverse of the Jacobian without absolute value
IR (Z A,U-aj> = (det A)~' [ 6(). (B.28)
i=1 j i=1

where on both sides the delta functions in the product are arranged from left to right in the order of

increasing 7.

B.3 Construction of 7,

We now turn to the construction of Z,,. We shall do this for the scalar theory with cubic interactions,
Yang-Mills theory and Einstein’s gravity theory. These examples will illustrate the general strategy.
For the construction of Z,, for other theories, please refer to the original literature. Before we can

describe the construction of Z,, we take a small detour to explain the concept of colour ordered
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amplitude.

When a theory has some internal symmetries or gauge redundancies, the particles in the theory
carry the flavour and the colour indices respectively. We consider the case when these groups are
U(N). In that case, the structure constant of the group can be written in terms of the trace of the

generators, namely
abc i a[qb e
= ——1tr(1°1°,T B.29

The vertex factors and the propagators of the theory contain the explicit factors of these structure
constants. This implies that the scattering amplitudes carry these flavour/colour indices. It turns out
that for a theory containing a single type of particle, the tree level scattering amplitudes can be written

in the form?

Affee - Z tT’(TalTM T Tan)Mn({paz‘}ﬂ {€a}) (B.30)

a€Sn [Zn,

The notation S, /Z,, means that we need to sum over all the permutations S,, of the flavour/colour
labels with the quotient by Z,, since trace is invariant under the cyclic permutation of the matrices 7.
The function M,,({pa, }, {€4,}) is called the colour ordered partial amplitude. The CHY formalism is

very convenient in taking into account these partial amplitudes as we shall see below.

Now, we return to the construction of Z,,. For any theory, it must satisfy the condition (B.16).
For specific theories, there might be more restrictions on the form of Z,,. We first try to construct a

function which satisfies (B.16). For this, we consider the so called Park Taylor factor defined by

Cpla] = ! (B.31)

(00, = 0ay)(0ay — Uu3) T (Uanﬂ — 04y)

This has the property that under the SL(2, C) transformation (B.2), it transforms as

Cypla] — C,la] ﬁ(caa +d)? (B.32)

a=1

Thus, the product of two Park Taylor factors, namely C),[a]C,,[b] will satisfy the property (B.16).
Now, the Park Taylor factors involve a specific ordering (ay, as,- - - ,a,). Thus, the product of the
Park Taylor factors is natural if we are interested in the partial amplitudes. For the full amplitude,

we also need to multiply this by the trace over product of generators and sum over inequivalent

2For theories containing several type of particles, more complicated expressions may hold.
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permutations. Thus, we define

Co= > tr(T“T" - T)Cylal (B.33)

a€Sy, [,

The product C,,C,, is a legitimate choice of the function Z,,.

We have succeeded in constructing an example of function Z,,. However, we still don’t know the
theory whose amplitude will correspond to this function. A hint is obtained by noting that the product
Cyla]Cy[b] involves two orderings. Thus, the particles of the theory should carry two indices. Now,
the function C,,[a]C,,[b] does not involve any polarization tensor. Thus, we expect that this function
should represent only the amplitudes (if it represent amplitudes at all) involving the scalar particles.
A natural guess is that this function should represent a theory of scalar particles having a flavour
group U(N) x U(N). Explicit calculations show that this is indeed the case and the amplitudes
computed using the CHY formula with the function C,C,, correspond to so called bi adjoint scalar

theory with cubic interaction described by the Lagrangian

1, ) 1 -
L= 50u270"®rr+ 5191k 9777 2170 17K R (B.34)
Now, if we are interested in the ¢® theory with no flavour index, we just need to forget about the
flavour indices which come from the factor of trace over the product of generators in the expression
of C,. Since C?[a] correspond to summation of diagrams which have specific orderings, to produce
results corresponding to diagrams with no orderings, we need to sum over all possible orderings

70— > Cllal (B.35)

n om—2
aESn

The overall numerical factor is necessary since there is an over counting.

We now turn to the Yang Mills theory which has a single colour group U(NN). We first focus on
the partial amplitudes. To take into account the single colour group, the function Z,, must contain one
Park Taylor factor C,,[a]. Thus, the Z,, for the YM theory for the partial amplitudes should be of the
form ZYM = (), [a]P where P is an unknown function. The function P should satisfy the following

properties

1. Under the SL(2, C) transformation (B.2), it should transform as

P — PH(caa +d)? (B.36)

a=1
so that Z, satisfy (B.16).

2. The YM amplitude is a function of the polarization vectors €% and the momenta p%~. Since rest
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of the factors in the CHY formula do not involve €, they must enter through P. In other words,

P should be a function of the kinematic variables (e, p#) along with the puncture locations o,.

3. We shall demand that P is a polynomial in the kinematic variables (e, p*). In other words,
P should not have any pole in the kinematic variables. This is demanded because we want to
generate all the singularities of the amplitude by the scattering equations which connect the
moduli space M, ,, with the Mandelstam space. We don’t want to put these singularities of the
amplitudes in the CHY formula by hand.

4. For the amplitude to be gauge invariant, we must have
Pl + apt) = P(er) = Pk =pt) =0 (B.37)

We demand that this should hold only when the scattering equations are satisfied. We shall
also demand that the above equation is satisfied for each solution of the scattering equation

independently?.

5. From the usual QFT, we know that the Feynman amplitudes should be expressible as

An(637pg) = ETIEIQJZ T EZnAmuz---un (pg) (B.33)

For this to happen, the function P must also satisfy an identical relation and hence it must be

linear in each polarization vector. In other words, we must have

P(Aet) = AP(el) (B.39)

We now give the form of the function P and explain how this satisfy the above requirements. We

claim that the function P is given by

(_1)s+t

Os — Oy

Pk} {eh} {ou}) =PFU = — PR(W) (B.40)

Pf(U) denotes the Pfaffian of a 2n x 2n anti-symmetric matrix. The matrix WSl is obtained by

removing s-th and ¢-th row from first n rows and removing s-th and ¢-th columns from first n columns

of W. The matrix W has the form
A —-CT
U = (B.41)
C B

3In this respect, the CHY prescription differs from the Feynman diagram technique. To check the gauge invariance
of amplitudes using the Feynman diagram technique, we need to sum over all the Feynman diagrams. However, in the
CHY prescription, the contribution to the amplitude from each solution is gauge invariant by itself.
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where A, B, C' are n x n matrices defined as,

€a-€p
Da-Po ab ——— a £b
Aab = Ta — 0b ) Bay = Ta = b
0 a="b 0 a=">b
€a-Pb

{ O — 0p
Cab = n
_oy fale oy

c=1,c#a 9a — Oc
The quantity Pf'U which corresponds to the Pfaffian of the matrix ¥ after removing the s-th and
t-th rows and columns is called the reduced Pfaffian. The reason we need to remove two rows and
two columns from the matrix W is that it has two null eigenvectors (o7, 03", - -+ ,7;0,0,--- ,0) for

m = 0, 1. Due to this, the determinant and hence the Pfaffian of W vanish trivially.

We now explain why reduced Pfaffian is a natural choice for our case. Using the momentum
conservation and transversality condition €,.p, = 0, the equation (B.36) can be explicitly checked.
The 2nd and 3rd conditions are trivially true. For the 4th condition, we note that if we replace €
by p” in the Pf'U, then the rows and columns labeled by a and n + a become proportional to each
other and Pf'¥ and hence the amplitude vanishes. Note that this happens only when the scattering
equations are imposed and C,, present in these rows and columns vanish.

Another motivation for the choice of P comes from a conjecture given in [125]. Suppose we have
a function of the form g, where P and () are polynomials, with the following properties
1. It has n — 3 poles consistent with trivalent Feynman diagrams. In other words, the poles of the
function are similar to the one which can arise in an arbitrary Feynman diagram in ¢* theory.
2. The numerator of the function has n — 2 powers of the momenta.

3. The function satisfies the gauge invariance.

According to the conjecture, if these conditions are satisfied, then the function is unique*. Now,
the Pf'0 is a rational function with n — 2 powers of the momenta in the numerator. The poles of
this function are consistent with the trivalent Feynman diagrams. Moreover, this function is gauge

invariant. Thus, according to the conjecture, the function given in (B.40) should be unique.

The final form of the function Z,, for an arbitrary amplitude (not colour ordered) in the YM theory
is, thus, given by

M — ¢, P (D) (B.42)

“There is also a stronger version of this conjecture which relaxes the condition that the poles should be consistent
with the trivalent Feynman diagrams [125]. In other words, we allow for any arbitrary pole structure.
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where, C,, and Pf' (V) are defined in (B.33) and (B.40) respectively.

Finally, we consider the Einstein’s gravity theory. It has no flavour/colour group. Hence, the
function Z,, for it should not carry any Park Taylor factor. Moreover, it should be linear in polarization
tensor e#” of each graviton which is symmetric and traceless. Now, if we consider a function (Pf' ¥)?,
then it will contain product of polarization tensors in the form €} €' ef?€s? - - - el eln . If we identity
ele” = e as the graviton polarization, then this function will have the desired property of describing
the graviton scattering processes in CHY formalism. The correct factor for the gravity amplitudes is
given by

A(=1)"

s A=D" .
0. o PPV = (- pde(93) (B.43)

TGy — 4 (—1)"(Pf T)? = (05 — o¢)

156



Appendix C

Appendix for chapter 2

In this appendix, we summarize our notations, conventions and useful identities used in chapter 2.

We shall also give details of some calculations.

C.1 Notations and conventions

Convention for indices

1. The vertices are labeled by indices a, b, - - -
2. The co-ordinate of the vertices are u,, up, - - -

3. The co-ordinate of all external points attached to the a'* vertex are x° (we suppress the space-

time Lorentz index)
4. The conformal dimension of the operator inserted at x’, is Al

5. The squared distance between two points 2, and =] is
' N2 — (052 ji\2
(7q —a3)" = ()" = (4,)
6. The Mellin variable dual to x;Jb is denoted by si’; which satisfies
ij i

— i =
S = Sha and Spy =

157



Convention for summations and products

1. If there are IV, external lines meeting at the a'” vertex, then we denote

No
Z = Z = sum over all external lines connected to the vertex u,
1€a =1

1V(1,
H = H = product over all external lines connected to the vertex u,
1€EaQ =1

2. For the double summation and products (which avoid over counting), we use the notations

> 2.=2 Al =1

1<i<j<N, (i,5)€a 1<i<j<Nq (i,5)€a

3. If the upper index is not mentioned then it implies that upper indices have been summed over

all possible values. e.g. for the Mellin variables, we shall use

Saa = Z SZI 3 Sab = Sba = Z Z SZ; ) (a 7é b)

(i,5)€a i€a jeb

Some other conventions

1. Mellin measure dsij] = 2‘;2
2. Position space measure Du = %
3. Mellin space delta function O (s — so) = 2mi 0(s — so)

Shorthand notations

The Schwinger parameters in the integral expression of Mellin amplitude, for n-vertex simple tree
and one loop diagrams appear in a nice structure. It is useful to introduce a short hand notations
for these functions of Schwinger parameters. These notations turn out to be especially convenient
for various manipulations. Along with these, we shall also introduce some functions of the Mellin

variables.

Set1: G¢

Go = 141t (Lt gl +o 1) l<a<n-1
G* 1 1<a<n-—-1 (C.1)
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The value of the upstair index ¢ will be greater than or equal to the lower index.

Set2: H!
ffg = tu,a-}-l"'tb—l,ng_l 1<a<b<n-—1
H = ¢! 1<a<n-—1
H' = 0 1<a<n

H? is not symmetric in its indices. A good mnemonic worth remembering is that upstairs index is

always larger than or equal to the downstairs index.

Set3: K, and f(a,

ta,a-i—l"'tn—l,n 1§a§n_1
=1
= (t1,t1o-- ‘ta—l,aGZ_l + Ka> 1<a<n-1

= 1

Set 4

Ra = 7a,a+1_ZZ(3bc) ; 1§a§n—1

c=a+1 b=1

C.2 Mellin space delta function

In this section we want to show that

I / sl s) /O Tt pro-s1 / a1 (5) @mid(s — 5.) (2)

—100 —100

where ¢ = Re(s).

The above identity essentially shows that inside the contour integration, the real integral fooo dt tso—s—1
behaves as the delta function as long as the real part of (s — s) is zero along the contour. In order to

prove our claim, we first perform a change of variable t = e* to get

1= [wwls) [ ar oo

—1300 —00
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Now, since the argument (sy — s) of the exponential function is purely imaginary along the contour
of integration, the z integral is an integration over an oscillating function. Using the delta function

representation

Sw) =5 [ dpem

2 J_

we obtain

f=/mmww@@mmww»=ﬂw

—1400

This proves the desired result (C.2).

C.3 Some Useful Identities

Some useful identities used in our derivations are as follows [126, 127]

1. The following Mellin-Barnes representation turns out to be very useful

(1 +1 2 r(1a> /Oo [ds] z~°T'(a = 5)L(s) (C.3)

2. The first Barnes lemma is

ct+ioco
/ [ds] B(a+ s,b—s)B(c+s,d—s)=F(a+d,b+c) (C4)

—100
3. An useful rearrangement identity involving the product of beta functions is

Bla —u,u)p(d—u, k)= 6(d—u,u)b(d, k) ; provided a=d+k (C.5)

4. The recursive integral form of product of beta functions is

m—1 o _ —La el 1 Na Na— - Na
H / dtaat1 (ta,a+1)Na 1<GT) = H 55(77 Lo + 1T) (C.6)
a=1 0 a=1

where Ny = 0 and GG" is defined in appendix C.1.
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10.

. The definition of the Hypergeometric function is

I'(b . T(a; +n)---T(a, +n)
ey by by ) - p " o(CT
qu(ah ap i Dby T'(a Z T(by+n)--D(by+n) (7

n:D
with |z| < 1.

The recursive integration formula for hypergeometric functions is

5(ap+17bq+1 - ap+1)p+1Fq+1 (al, SRR ¢ by, .- 7bq+1 ; 33)

1
= / dt (t) =1 —t)lari—en =l p (al, ceeyap s by by tw) (C.8)
0

. Following identities relate two 3 F5 hypergeometric functions with different arguments

3F2(a1, as, as; by, ba; 1) = 3F2(a1, by — ag,by — asz; be, by + by — ay — as; 1)
% F(bl)F(bl + bg — a1 — Qg — a3)
F(l)l - al)F(bl + bg — Uy — (Lg)

(C.9
and,

3F2(a1, g, as; by, be; 1)

= 3F5(by —ay,by —ay, by + by —a; —ag —as;by + by —ay — ag, by + by —ay; —az; 1)
F(bl)F(bg)F(bl + bQ — a1 — Ay — ag)

(C.10)
F(al)F(bl + bQ —a; — ag)F(bl + bQ — a1 — CL3)
The Gauss identity is
F(bl)F(bl —a; — CI,Q)
F b 1) = C.11
2 1(@1,&2, 15 ) F(bl _ (Il)r(bl _ 0,2) ( )
An integral representation of 5 F7 is
1 . b—1
Fi(a,b;c;2) = ————— (1 =) (1 —tz2) dt C.12
Filobic2) = g [ #7007 1k C.12)
Following identity relates two o/ Hypergeometric function with different arguments
oFi(a,bic;2) = (1—2)"%F (a, c—b;c : 1) (C.13)
Z J—
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C.4 Details of some calculations

C.4.1 Mellin amplitude of a completely general tree

In this appendix, we carry out the derivation of Mellin amplitude for an arbitrary tree Feynman
diagram and show that the amplitude is given by product of beta functions with one beta function for

each internal propagator.

From the diagrammatic rules described in section 2.3.1, we know that a general Mellin amplitude

takes the form

M ({sa}) = ] [ /0 N dt@%] P ({1} {51}) (C.14)

The t,;, is the Schwinger parameter for the propagator joining the internal vertices a and b and the
product is over all the internal propagators of the Feynman diagram. The function F' is, in general,

an arbitrary function of the Schwinger parameters ¢,;, and the Mellin variables s;,.

As mentioned earlier, the function F', for any given graph, depends on the order of integration
over the position space vertices. For a straight chain of propagators (as in section 2.3.2), the natural
choice is to go from one end to the other without any jumps. This results in the simplest expression
for F'. For a tree with branches, this option is absent. We shall, however, prescribe an order that gives

an expression for F' such that the integration over the Schwinger parameters can be performed easily.

To specify the ordering, we first choose any one of the vertices, with only one edge attached, to be
the reference vertex P (see figure C.1) on the skeleton diagram. In our prescription, the integration
over this vertex will be carried out after performing integration over all the other vertices. For all
the other vertices, the order is indicated by some arrows on the lines. For drawing these arrows,
one needs to follow two rules. The first rule is that, among all the lines meeting at a vertex, there
should be only one line with an outgoing arrow. All the other lines attached to that vertex should have
ingoing arrows. The second rule is that any given vertex is integrated only after all the other vertices
connected to it by (lines with) ingoing arrows have been integrated over. Thus, P is the only vertex
with a single line which has an ingoing arrow and according to our prescription, it is integrated in the
end. Figure C.1 gives an example of a compatible ordering using arrows. In this example, an order
allowed by the above rulesis 1 -3 -2 —+4 —5— 06— 7— 8 — 9 — 10. This, however, is not

the only ordering consistent with our rules and all such allowed orderings are equally good for our

purpose.

We can now write down the function F' for this prescribed order of integration for any Feynman
diagram using the diagrammatic rules described in section 2.3.1. We state the result here in a graph
independent manner. From the diagramatic rules, we know that each pair of vertices a, b (which may

be the same point also) of the Feynman diagram contributes a multiplicative factor raised to —s,; to
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Figure C.1: Order of integration over the vertices depicted by the numbers (in increasing order)

F'. In other words, if we denote this factor by F;, then the function F' is given by,

N N
F=]]1](Fa) " (C.15)

a=1b=1

where N is the total number of internal vertices.

We now describe the functional dependence of F on Schwinger parameters. For this, we draw
the shortest continuous line (without raising the pen) between the two vertices a and b on the skeleton
diagram (via the vertices that come on the way). We refer to the set of vertices that we cross as A;.
Since we are considering a tree, there will exist a vertex in this set that is nearest to the reference

vertex P. The set of vertices on the continuous route from this vertex to P is denoted by B.

To see an example, let us consider the pair of points (3,5) in figure C.1. Here, As; = {3,4,6,5}.
The vertex in the set Aj3s nearest to P is 6 and Bss = {6,7,9, 10}.

Since the vertices in the sets A,;, and By, form individual chains, there is always a line on the
skeleton diagram connecting the consecutive vertices in each of these sets. Below, we shall make use

of the Schwinger parameters corresponding to the propagators in these lines.
The functional dependence of F,;, on the Schwinger parameters can now be easily written down

by following the diagrammatic rules of section 2.3.1 and is given by

|~Aab|_1
Fap = H t A (i) Aap(i+1) | Kab (C.16)

1=1

where |A,,| denotes the number of vertices in the set .4,, and the product in the bracket is over

those propagators which lie along the shortest continuous line joining the two vertices a and b. The
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function K is given by

_ 2 . _
Koy =1+ 15, (1)8,, (1-41) B By (i-41)Bap (14+2) b KB (1Bu |- 1)Bas(1Bas)) = 1

It should be emphasized that the above form of F,; is true only for the chosen order of integration

and will be different if we change the order.

As an example, for the Feynman diagram in figure C.1, the factor F3 5 is given by
Fs5 = tsatactes (1 + tgr (1 + 15 (1 + tg,w)))

By using (C.16) in (C.15) and rearranging the terms, we can write a simplified expression for the

function F as

Fo= I () (Ag) % 17
all propagators

where,
Ap=1+t (1+6, (1+..(1+12)..))

b,c,...,o are all on the shortest continuous route from « to the reference vertex P. In other words, for
each propagator on the skeleton graph, we draw the shortest continuous line connecting it with the
propagator containing the reference vertex P. tqp, toc, - - - , Ty are the Schwinger parameters of the

successive propagators on this line.

The functions P, and @y in (C.17) are given by

Pab:ZZSCd ) Qabzzzscd +Zsad

c€Lg4p dERy, Cfigb dfi‘:*’ d€ Ly
The L., (R4) in the above definition refer to the set of vertices which lie to the left (right) of the
propagator joining the vertex a and b. By convention, we call the set of vertices which include the
reference vertex P as R,;. The term involving the double sum in (), is absent if not more than two
lines meet at the vertex a in the skeleton graph. The tilde in one of the L in this double sum denotes
the fact that we should not include terms of the type s.q where ¢ and d are on the same branch in the

set L,p.

Finally, we now need to integrate over the Schwinger parameters in (C.14). Since the integrals
are not factorised, we shall have to carry out one integral at a time and we shall do that in an order

compatible with the arrows on the skeleton (integrating over the line involving the reference vertex
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P in the end). For example, for the figure C.1, a compatible order is t15 — tog — t34 — t46 —
ts6 — ter — tgg — t79 — t910. Carrying out these integrals in exactly the same way as in the simple

tree case in section 2.3.2 and using the conformality conditions, we obtain the desired result (2.34).

C.4.2 Mellin-Barnes approach to n-vertex tree

In this appendix, we present an alternative derivation of the factorization of n vertex tree diagram.
This derivation makes use of the Barnes’ first identity and shows the usefulness of the Barnes integrals

for Mellin space.

We start by noting that the Mellin amplitude of n vertex simple tree of section (2.3.2) can be

written in a form which closely resembles the loop amplitude (2.36)

n—1 ) n n—1 _ s,
]\/{n(sab) = H |:/ dta,a+1(ta,a+1)%’a+l_1:| H H(Hg + Kch) '
0

a=1 b—c c=1

where, the functions H, band K, are defined in the appendix (C.1).

The basic idea is to use the identity (C.3) to convert the terms involving sum as products of Mellin
Barnes integrals. We then perform the integration over Schwinger parameters. The Mellin Barnes
integrations are performed in the end by making repeated use of Barnes first lemma.

Using the identity (C.3) and noting that H + = 0 ( which means that we only need to introduce
n(n — 1)/2 Barnes variables w,, ), we obtain after making use of the definitions of H band K,

n—1n—1 .
Sab H H (/ dwbc (Sbc — W, wbc)) /Q dtn_l’n (tn—l,n)Rnil_l

b=1 c=b
n—2

H / dta,a—i—l(ta,a—kl)Rail(GZil)iQa
a=1 0
where,

Ra = —QZwbb—Qza:Zwbp ] 1§a§n—1

b=1 c=1
a
Z(Sab_wub) ; I1<a<n-1
b=1

tn—1, integral is straightforward and it gives a Mellin space delta function. For integration over other

Q

Schwinger parameters, we use the identity (C.6). After simplifying the expressions by making use of
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the conformal conditions, we obtain

- n—2
Roe D—2v4
M (Sap) H {H/ [dwpe] B(Sbe — Whe, wbc)} H 25( 5 %)51\4 (Rn—l)
b=1

. (C.18)

where, 701 = 0 = Ro.

We note that we have obtained beta functions for only n — 2 propagators. The missing propagator

is hidden in the Mellin-Barnes integrals and the Mellin space delta function as we shall show below.

To perform the integration over the w,,;, variables, we rewrite (C.18) as

M(sa) = {H/ [dwpe] B(Sbe — Whe, Wee }H 5<R b- 2%‘”1)
n—1 00
H {/ [de,n—l] B(Sb,n—l — Wpn—1, wb,n—l)} 5M( n—l) (C19)

e

The first line does not involve the w, 1 variables (note that for n vertex case, only R,_; involves
the wg,,,—1 variables). This helps in performing the integration over w, ,_; variables. We first use
the delta function to get rid of integration over w,_1 ,,— and then use the identity (C.4) to perform

integration over other w, ,,_; variables. After carefully keeping track of various terms, we obtain

. {H /ZOO [dwbc Sbc Wy, Whe } H B(R D= 2270} a+1>

n—1
ﬁ Z 5a7n_1 . Rn—l - Rn2—2 + Rn—Q 7 Rn—l - RZ—Q + Rn—Q) (CZO)
a=1

M(Sab) =

[\.')Ir—\

The factor of % in front arises due to the delta function in (C.19).

To proceed further, we note that the conformal condition at vertex 1 can be expressed in following

way

R, D

811—7‘1—5—%2

This allows us to use the rearrangement identity(C.5) as

Rl D — 2"}/12 . Rl D — 2"}/12 Rl
B (811 - w11,w11) B (77 T) = ﬁ (77 T) B (? - wll:wll)
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Using this, we can rewrite (C.20) as

M(sqw) = 2 (R;%) /_m[dwn]ﬁ <— — w1, wn)

/ d’wlz] (812 — Wi2, wlz) / [dwzz]ﬁ (322 — Wa2, wzz)

100 —100

n—2
1 Ra D —2 a,a
{ dwbc] B(Sbc — Wy, wbc)} H 5/3(77 %)
—zoo s

(Z ooy Pt mRustRas  Rui=Ruat RH) can)

2 ’ 2

a=1

The integrals in the third line do not include the integrations over the (w7, wq2, wye) variables. More-
over, these variables appear only in the form of sum (i.e. wi; + w2 + wys) in the beta functions of

last two lines. Hence, it is useful to use a new set of coordinates as follows
{wi1, wi2, w0} — {wi1, wao, ur } ;U = Wi+ Wi+ Wao

After this coordinate change, the last two lines of (C.21) do not include w5 or w,, variables any-
where. They just appear in the first two lines. Performing the integration over these variables using

Barnes first lemma gives

1 /R, D—2 ico R R D — 2.
M = >3 (—1 T%z)/ [duq )5 (—1—1—512—1-522—“17“1)5(—2_Ula—m)

no2 (n-2 J n—2
100 1 Ra D - 2'7a,a+1
11 {H ] 5 = e ’“’bc>} I35 =)
n—1 Rn—l - Rn—Q + Rn_z Rn—l _ Rn_2 + Rn—Q
B Sa,n—1 — 9 , 5
a=1

In the next step we use the conformal condition at the vertex 2 to use the rearrangement identity
(C.5) for the two beta functions inside the integration in the first line of the above expression. After
this, we note that the u; variable appears in the combination u; + wi3 + wy3 + w33 in all but one
of the beta function. We exploit this by trading the u, variable for a new variable u, defined as

Uy = Uy + wyz + woz + wss. This allows us to perform the integrations over wis, wo3 and wss
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variables using the Barnes’ first lemma. The end result after this step is

Rl D 2’712 R2 D — 2712 o0 RQ
M = §5(7 7)5(7 T) /_ioo[duz]ﬂ (7 + S13 + S23 + S33 — Ug, U2>

Wit 21 Ry D 2Yea
];[ {H / dwbc] B(Sbc - 'lch,wbc)} ;!;!; §B(77 #)

c —100

n—1
Ry 1—Ry 2+ R, Ry 1—Ry 9o+ Ru-
B <Z Sam_1 — 1 2 2 1 2 2)

2 ’ 2
a=1
Continuing this process iteratively, i.e. combining the beta functions and then making a change of
coordinate (such that only two beta functions involve the appropriate w,;, variables), we obtain the

desired result. We need to make repeated use of the identity (conformal condition at a'* vertex)

—+§S a+1+2_ (C22)
ba+1l = 5 Va+1,a+2 .

In the end step, we obtain the desired result

n—2 ;
- 1 1 R, D — 2’ya7a+1 10 R, >
M(Sab) = 5 b:[l 55(7, T)] / [duvz—f%]ﬁ( 9 Up—3 , Un—3)

—100

n—1
R, R,
X ﬂ (Z Sa,n—1 — g - + Up-3 2 - — unS)

a=1

B hlﬂ(& D—27a,a+1>
B 2"\ 27 2

where, we have used the identity (C.22) for a = n — 1 after performing the u,,_3 integration.

C.4.3 Details of calculation in section 2.5.1

In this appendix, we present the details of the calculation leading to the equation (2.41). Our starting

expression is (2.40). We insert a partition of unity in this expression in the form

1=/dqa(5<qa—ZAZ> ; a=1,2

1€a
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and make the coordinate transformations o, = q, ¥’ (a = 1,2) and then use the identity (2.38) to

obtain
. B EF(PZ) S e [ .
ow = w1 S| [0 0y [ an @)
| @ 0 @yt ™ ()
where,

Ri=y—s5 and p,=)» g 5 a=12

1€a
To proceed further, we rescale ¢, — tq1¢- and obtain,

2 [IIT(r5)

~ 1 ica /Oo Ri+p2—Ao— —su [
M(sy) = | | dt (t)frrea—Ae=l(] 4 42 dqdq
bw) = 103) AT () | Jo ) () ) dnda:

-1 —A2
(@) P () (142 4 82,)  (1+0)

Integration over ¢; gives a delta function. We now take out the factor of 1 + t? from the term

containing the single power of A, rescale t> — t and make a further change of coordinates

_u . v
= 1—wu 1 —w
This gives,
H F(pé) 1 1
~ 1 ica ’ Ritpy—g
M(sy) = —— 1|4 — A=A d d 1
(Sab) oT(7) H T (p) (Pl + p2 1 2)/0 U/O v(v) 2

a=1

-\
WP (1 — )2 (] S11+A1—§(R1+p2—xg)_1(1 uv )
P (=) 1) S —

Now, using the identities (C.12) and (C.13), we obtain

2 [ITT(pe)
~ 1 ica oy R pp—X D
M(sw) = () £[1 T (pa) 5(p1 +p2— M /\2)5 < 5 + 5 ' ’Y)

! _ D
/ du (U)p2_1(1 - u>p1 12F1 </\1 "5 T VoSt AL U)
0
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‘We have also used

1 D
511—1-/\1—5([1’1—1-/)2—/\2):5—7

Next, we use the identity (C.8) for a = 2,b = 1 and the identity (C.9) to obtain

N 2 [TIT(:) B
M(sw) = 21“1(7) H le; (00) 8 <% + & 5 a ; % - ”/) ﬁ(ﬂhpz)

a=1

D
3lh (5—7, A2, p1; S11+pi, A+ A 1) 5(P1+P2—>\1—>\2>

In writing the above expression, we have used the fact that 3F, is symmetric in first set of three

indices and the second set of two indices.

The above expression is not symmetric in the two vertices. We can put it in a symmetric form by

using the identity (C.10). After some simplification, we obtain the desired result (2.41).

170



Appendix D

Summation Identities for chapter 3

In this appendix, we list three summation identities that are used in the derivation of the multiple soft

graviton theorem in section 3.3.

Z HCL1+CL2+ +CLm_ =H . (Dl)

all permutations of subscripts 1,--- ,n m=1 m=1

> D Cu H(a1 +ota)”

all permutations of subscripts 1,--- ., n "'
n n
=TT (an)™ D (ar+a0)" (aucur +ar cra). (D.2)
m=1 rau=1

r<<u

Z ZZbru(al+"'+am)_1H(CZ1+"'+a3)_1

all permutations of subscripts -+ m m=2mwt

r<<u

me ay +a,)”" forby =by forl <r <s<n.(D.3)

m=1 ru=1
r<u

The proof of these identities are given below.
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First Identity

To prove the first identity, we note that the summand on the left hand side of (D.1) may be expressed

as

oo (0.0} o
/ dsie 514 / dsqpes2(artaz) / ds, e snlarttan) (D.4)
0 0 0

Defining new variables

li=s1+S2+-Sp, tla=82+---+5u---, ln=5n, (D.5)
we may express (D.4) as
/ dty dty - - - dt, e~ 10112027 inan (D.6)
R
where the integration range R is
00>t >ty > 2ty 2ty > 0. (D.7)
Summing over all permutations of the subscripts 1, - - - , n can now be implemented by summing over

permutations of ¢4, - - - £,,. This has the effect of making the integration range unrestricted, with each
t; running from O to oo. The corresponding integral generates the right hand side of (D.1).
Second Identity

The proof of the second identity (D.2) follows from a simple variation of the first identity. For this
note that the coefficient of the c,, term on the left hand side of (D.2) for » < w is given by a sum over
permutations with the same summand as in (D.1), but with the restriction that we sum over those
permutations in which r comes before uw. Translated to (D.7) this means that after summing over

permutations the restriction ¢, > t,, is still maintained. Therefore the result is
/ dty dty - - - dt, e~ 1o t2az=—inan (D.8)
tr >ty
This integral can be easily evaluated to give
(ar---an) tay (ay +a,) . (D.9)

This is precisely the coefficient of ¢,, on the right hand side of (D.2). Similarly in the computation
of the coefficient of ¢, for r < u we only sum over those permutations for which « comes before r.

This has the effect the changing the constraint ¢, > ¢, to ¢, < ¢, in (D.8) and reproduces correctly
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the coefficient on c,,, on the right hand side of (D.2).

Third Identity
Finally we consider (D.3). We begin with a different sum

n

¢ -1
> H(a1+a2+...+ag—2bm> . (D.10)

all permutations of subscripts 1,--- ,n ¢=! nut

r<u

and note that the first subleading term in a Taylor series expansion of (D.10) in powers of b,,,,’s give
the left hand side of (D.3). We now manipulate this as before, arriving at the analog of (D.4):

gde e} geoe} ge el n
_ _ _ _Sn(a1+"'+an—z u=1 brn)
/ dse swl/ dsyes2(a1+az blz).../ ds,e oy ) (D.11)
Jo JO J0

The change of variables given in (D.5) converts this to

/ dty dts - - - dt, e~t101—t2a2——tnan
R

n—1 n
exXp [(tg — t3)blg -+ (tg — t4)(b12 -+ b23 -+ 613) + -+ (tn—l — tn) Z bru -+ tn Z bru

rau=1 ryau=1
r<u r<u

_ (D.12)

= / dty dty - - - dt, e 101~ 2027indn oy [ Z byt
R

rau=1
r<u

We now expand the last factor of (D.12) in a Taylor series expansion and pick the coefficient of the
b, term. This has the effect of multiplying the integrand by ¢,, and restrict the sum over permutations
to those for which r remains to the left of u. However as b,., is symmetric in r, u, there is also another
term related to this one under the exchange of the subscripts r and u. Therefore the integral is given
by

/ dty dty -+ - dt, e 1R TGy (s ) (D.13)
tr >ty

Evaluation of this integral gives

-1 Ay Ay -1 -1
ceay, = (a;---a, ca,) . D.14
(ay an) {(ar +ay)? + (ar —I—au)Q} (ay an)” (ay + ay) ( )
This is precisely the coefficient of b,.,, on the right hand side of (D.3).

We can also give recursive proof of all the identities without using the integral representations.
Let us begin with the identity (D.1). Let us suppose that it holds for (n — 1) objects. We now

organise the sum over permutations of all subscripts 1, --- ,n in (D.1) by first fixing the last element
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to be some integer ¢, and summing over all permutations of the subscripts other than 7. This gives,
using (D.1) for (n — 1) objects,

((1,1 A7 I N0 P R (ln)_l (Cll + - CLn)_l . (DIS)

We now sum over all possible choices of z. This gives

n

Z(al @Gy Gy) (@ ea,) (D.16)
i=1
This can be written as
(ay---ap) Hap + - +ay)™? Zai = (ay---ay)"?, (D.17)
i=1

reproducing the right hand side of (D.1).

A recursive proof of (D.2) can be given as follows. Let us again assume that the identity is valid
for (n — 1) objects. Now for u > r, the coefficient of ¢,, on the left hand side involves a sum over
permutations of the subscripts 1, -- , n, with the same summand as in identity (D.1), but with the
restriction that r always appears to the left of w in the permutation. We now organise the sum as
follows. First we fix the last element and sum over permutations of the first (n — 1) elements. If the

last element is 7 with i # wu, then the result, using (D.3) for (n — 1) objects, is given by

{ ﬁ(am)‘l} ay (@ +a.)"" (ag +---a,) 7" (D.18)

m=1

m#£i

Note that % cannot be 7 since that will violate the rule that the r always appears to the left of u. On
the other hand if the last element is u then the sum over permutations over the first (n — 1) elements

becomes unrestricted and we can apply (D.1) to get

{ ﬁ(am)—l} (a1 + - +ay,)"". (D.19)

m=1
m#u

Therefore the total answer, obtained by summing over all possible choices of the last element (other

than r), is
Z { H (am)_l} ay (ay +a,) " (ay +---a,)t + { H (am)_l} (ay+---+a,) ' (D.20)
z';ér,u m:1 m=1
m#£i m#u
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Elementary algebra reduces this to
(ay---an) tay (ay +a,) ", (D.21)

which is the coefficient of c,, on the right hand side of (D.2). The analysis for the case » > wu is
identical, with the roles of r and w interchanged.

Finally we turn to the proof of (D.3). By collecting the coefficients of b,,, on both sides and using
the symmetry of b,,,, we can write this identity as

> S (ar+Fam)  [Jlar+ - +a)™

all permutations of subscripts 1,--- ., n "2 =1
= (g, +a,)”" J](am)™". (D.22)
m=1

As before, we shall proceed by assuming this to be valid for (n — 1) objects and then prove this for
n objects. Let us first consider the contribution from the m = n term in the sum on the left hand side
of (D.22). The contribution of this term is given by

n—1

(a1 + - 4 an)? > [[ar+--+a)™t. D23

all permutations of subscripts 1,--- ,n =1

We now perform the sum over all permutations by fixing the last element to be some fixed number
i, sum over permutations of the rest for which we can use (D.1), and then sum over all choices of 7.

This gives

(a1 +--+ an)_zz { H(am)_l} = (ay +--+ Gn)_l{ H(@m)_l} : (D.24)

Next we consider the contribution to the sum in the left hand side of (D.22) for m < (n — 1). This is

given by

n—1 n—1

(a1 4+ an)"! S > (ar+-+am) " [[lar + - + @) (D25)

all permutations of subscripts 1,--- ,n ™2 =1

m>r,u

We again perform the sum over permutations by fixing the last element to be some fixed number <,
summing over permutation of the rest of the objects, and then summing over 7. Note however that
now ¢ cannot be either r or u since then we cannot satisfy the constraint m > 7, u. The sum over
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permutations can now be performed using (D.22) for n — 1 objects and gives

(ar+-+a) > { H(am)_l} (a, + ay) ™

=1 m=1

i#T, S m#£i
n

= (ay+ - +a,) H(a + au)_l{ H(am)_l} (@, +--+a,—a,—ay,). (D.26)

m=1

Adding this to (D.24) we get

(ay 4 a,) ™ { 11 (am)_l} , (D.27)

which is precisely the right hand side of (D.22).
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Appendix E

Counting different solutions of Scattering

Equations for m soft gravitons

In this appendix, we shall analyze the solutions of the scattering equations for the case when there are
m number of soft gravitons. For multiple soft gravitons, the solutions to the scattering equation fall
into different classes. A given class corresponds to the case when a group of 7; punctures carrying
soft momenta come within a distance of order 7 of each other, another group of 75 punctures carrying
soft momenta come within a distance of order 7 of each other and so on. We shall now derive the
number of solutions of the scattering equations for this situation. The scattering equations for the

first n gravitons (which are finite energy gravitons) is given by

n m
a- u-kb v
ZM“ZP—H:O (@a=1,---,n). (E.1)
b—1 Oq — Op o—1 Oq — On4w
b#a

The scattering equations for the gravitons in the i-th group S; containing r; punctures that come with
a distance of order 7 can be written as

n m
k k k k k
+u-Pb n+u-vntv +u-Pntv
e Y e (N (TR (E.2)
b1 On4u — Ob s, Ontu — On+to o1 On4u — On+to
VU vgS;

where we have removed an overall factor of 7 from the equation.

In the 7 — 0 limit, we can ignore the second term in the left hand side of (E.1). The equation
(E.1) then reduces to the scattering equations of n finite energy particles and hence the number of
solutions for the set (o1, -+ ,0,) is (n — 3)!. To obtain the number of solutions for the rest of the
punctures, we note that the first two terms in (E.2) are of order unity since the denominators of the
second term is of the order 7, while the third term is of order 7. Hence, we can ignore the third term.
With this, the scattering equation for the punctures in each group S; decouple from each other and
we can focus on solutions of the punctures of each group separately given the solution for the set
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(017 e 70-71)-

For ease of notation, we consider the case of first set S; and assume that its punctures are labelled

as (Gp11,+* , Opayy ). We redefine the variables as
On+a = O-n+1+7_§a7 &:2,"',7"1. (E3)
In the 7 — 0 limit, all the r; punctures (¢,,.1, - , 0n4sy ) cOme within a distance of order 7 of each

other, and therefore £, ~ 1. Our goal now is to find out how many solutions exist for the variables
(Ong1, &2, -+, & ). We shall now prove that the number of solutions for this set is (n — 2)(r; — 1)!.
To do this, we write the scattering equations for the group S; in terms of the variables in (E.3) to

leading order in 7:

n

kn+1~pb B kn+1-kn+2 L kn—i—l-kn-i-m -0 (E4)
b—1 Op+1 — Op 52 57“1
= k7z+2-pb + k'rb+2'kvz+1 + kn+2-kn+3 . kn—i—2~kn+r1 - 0 (ES)
— Ony1 = O 3 §2 — &3 & — &
& kn+r1—1'pb + kn+r1—1~kn+1 kn+r1—1-kn+r1—2 kn+r1—1'kn+r1 - 0 (E6)
b—1 On+1 — Oy 67’1—1 57"1—1 - 57’1—2 57’1—1 - §r1
= kn 1 kn r kn kn T k'n r1—
trPb | e Bt o B gL (E.7)
On4+1 — Op 51’1 51“1 - €'r1—1

b=1

Adding all the equations and using momentum conservation, we find that all the £,’s drop out of the
equation and we get a polynomial equation of degree n — 2 for o,,.;. Hence it has n — 2 solutions.
We can now recursively prove that the number of solutions for the set (&, -+ , &, ) is (r; — 1)!. We
consider a situation in which the last momentum £k, ,, is softer than the other r; — 1 soft momenta.
We then replace k.., by w ¥, for a new soft parameter w and fixed ¢, ,,,, and take the limit
w — 0.' In this limit, the terms involving k,,,, in (E.4)-(E.6) can be ignored and therefore they
reduce to the analog of eqs.(E.4)-(E.7) for a cluster of (r; — 1) punctures. These by assumption have
(r1 — 2)! solutions for the variables (&5, - - - , &, —1). On the other hand, after we factor out an overall
factor of w from the last equation (E.7), it reduces to a polynomial equation for &, of degree r; — 1
for a given solution of (oq, -+ , 011, &2, ,&—1). Therefore &, has (r; — 1) solutions. Thus, there
are a total of (r; — 1)! solutions for the set (&, - - - , &,). For finite w the solutions will change, but we

expect their number to remain the same. Since for fixed oy, - - - 0, 0,11 has (n — 2) solutions, this

!'This trick was used in [24, 128] for counting the number of solutions to the scattering equations.

178



proves our claim that the number of solutions for the set (0,11, , Tpar, ) is (n — 2)(r — 1)L

We can repeat the analysis for the remaining group of punctures with the result that the number
of solutions for the punctures in the group S; is (n — 2)(r; — 1)!. The total number of solutions is,

thus, given by
(n=3)! [ J1(ri = i(n = 2)] (E.8)

where the product runs over all clusters containing punctures carrying soft momentum.
To see that it gives the correct number of total solutions (n + m — 3)! for the n + m number of

gravitons, we need to sum over all the possibilities. This is given by,

m

N o= -3 Y {H[(r—l)!(n_z)]mr}nm (:?)'mw (E.9)

{m} r=1 r=1

Y rme=m

|

where m, is the multiplicity for the 7 punctures coming together. The factor — is the

Nmrm, |
L (rh)ymem,!
number of ways of dividing m objects into groups of r objects with multiplicity m,. To evaluate
the constrained sum in (E.9), it is convenient to define the following unconstrained sum (generating

function)

N(y)

(TL — 3)' H Z { [(7’ — 1)'(% — 2)} e —(r')::"mrlyrmr}

ﬁ
Il
8 3
I

, — 2
= ml(n—3)!'| | exp [(’n )y""]
r=1 r
= ml(n—3)(1—y) "2
L (n+k—3)
= '(n —3)! —_—y". E.10
mi(n ); H(n—3) " (E.10)

The coefficient of y™ in (E.10) is the quantity in (E.9). This coefficient is precisely (n + m — 3)! —
the expected number of solutions of the scattering equations for n + m particles. This shows that we

have not left out any solutions.
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