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SYNOPSIS

Introduction -

Two dimensional Dirac materials are the most widely studied materials in the condensed mat-
ter community since Andre Geim and Kostya Novoselov were awarded the Nobel Prize in
Physics in 2010 for their breakthrough discovery of graphene. The reason for their significance
in condensed matter research lies in their electronic band structure which shows a Dirac-like
dispersion i.e. the low energy excitations inside these materials behave like relativistic particles
[1]. Graphene, a well-known Dirac material is a one atomic thick layer of sp2 bonded carbon
atoms structured in the form of a honeycomb lattice. The Dirac-like spectrum in graphene is
stable against electron-electron interactions, disorder and the presence of non-magnetic impu-
rities due to the combination of two underlying lattice symmetries: inversion symmetry and
time-reversal symmetry. Graphene is thus, a zero gap semiconductor with excellent electronic
properties which makes it an extremely promising material for future electronic devices [2].
However, graphene is gapless. Also, its band gap cannot be tuned. This is a hurdle in device
fabrications using this material [4]. There have been several theoretical studies regarding the
possibility of opening of a gap in the graphene band structure. Some of them also have been
experimentally verified. One possibility is the epitaxial growth of graphene on a substrate [5]
which breaks the inversion symmetry but preserves the time-reversal symmetry of the lattice
structure. It is like providing di↵erent on-site energies for the atoms on the A and B sub lat-
tices. A vertically applied electric field has also been demonstrated to be e↵ective in opening
an electronic band gap in bilayer graphene [6]. Yet another possibility of inducing the gap is
by the time-reversal breaking of the lattice structure, proposed by Haldane in 1988 [7].

Dirac materials with spin-orbit coupling -

There exists another class of materials e.g. silicene, germanene, stanene, etc.[8] belonging to
the graphene family which are not completely planar due to the large atomic radii of their
atoms which gives rise to the buckled structure of their lattices. This feature of such lattices
makes a crucial di↵erence in the electronic properties of the charge carriers. Firstly, they
can be shown to possess a significant amount of spin-orbit coupling as compared to graphene.
Spin-orbit couplings provide a spin-dependent hopping to the charge carriers which cause the
quantum spin Hall e↵ect initially proposed by Kane and Mele in graphene. However, it is easier
to observe in these materials like silicene, germanene etc. [9]. Second, due to their buckled
structure, a staggered potential term is present in their tight binding Hamiltonian which is
positive for the A sublattice and negative for the B sublattice. Both the staggering potential
and the spin-orbit coupling give rise to a band gap in the electronic band structure which can
be tuned by an external electric field applied perpendicular to the sample. The finite band gap
and its external tunability are crucial and important di↵erences between graphene and buckled
spin-orbit coupled Dirac materials. Device fabrication in the electronics industry is likely to
find spin-orbit coupled materials more useful. Also, the spin-orbit coupling turns out to be an
e↵ective tool to manipulate electronic states without the application of an external magnetic
field [10].
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Periodically driven systems -

In recent times, research in the field of periodically driven systems have become very exciting
due to the possibility of e�ciently tuning topological states of matter [11]. The possibility of
realizing a proposed theoretical model in well-controlled experimental cold atomic setup and
optical lattices have also provided additional impetus [12]. Time-periodic Hamiltonian can
be studied within the Floquet formalism which provides a set of states, called the Floquet
states which are not eigenstates of the original Hamiltonian but are the state vectors of the
time evolution operator over one period. The corresponding energies of Floquet states are
called the quasienergies which are periodic in nature. These are uniquely defined in the first
Floquet Brillouin zone (FBZ) extending from �~!/2 to ~!/2, where ! is the frequency of the
external drive. Periodically driven systems can be studied in two limits: ! > band width of
the system, called the high frequency limit and ! < band width of the system, called the low
frequency limit. Both limits have their own advantages and disadvantages for experimental
realizations. Such systems have opened up a new class of topological materials which cannot be
characterized just by the Chern number which has been utilized to characterize non-driven or
static systems. There exists another invariant, called the winding number, calculated from the
eigenstates of the time evolution operator of the Floquet Hamiltonian which has been shown
to characterize periodically driven systems [13].

Summary of the research work -

The thesis firstly contains the study of transport in a Ferromagnetic-Normal-Ferromagnetic
(FNF) junction of silicene, a 2D Dirac material with a significant amount of spin-orbit cou-
pling. We included the staggered potential term which acts oppositely for the A and B sub
lattices and acts as an external tunable parameter which provides an external control over the
transport quantities of practical importance. We studied spin and valley polarized conduc-
tances and tunneling magneto resistance (TMR) in the FNF setup.

The second focus of the thesis is on time-dependent systems which are driven by external
circularly polarised electromagnetic radiation. Due to the non-adiabatic evolution, the sys-
tem does not necessarily remain in the ground state of the initial Hamiltonian. It turns out
that this way of driving the system induces topological structure in the bulk spectrum. These
periodically driven systems can be studied using the Floquet formalism. People [11] have ex-
tensively studied graphene under the application of light and have shown that it opens a gap
in the Dirac spectrum which can also be tuned by the light parameters. Moreover, the Gedik
group from MIT [14] reported the emergence of Floquet-Bloch states on the surface of a 3D
topological insulator Bi2Se3.

In this thesis, we explore the Dirac Hamiltonian including both the intrinsic spin-orbit
coupling and the staggered potential term in the tight binding Hamiltonian framework. We
use the Brillouin-Wigner perturbation theory to study the system in the high-frequency limit
of the external drive. In this limit, the system is not allowed to make real transitions and one
can incorporate the e↵ect of light through virtual processes. It turns out that this gives rise
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to an e↵ective Hamiltonian with additional terms in the Hamiltonian, besides renormalizing
the original terms. It also gives rise to higher range hopping terms in the original Hamilto-
nian. The band gap of the e↵ective time-independent system can be externally tuned by the
frequency of the light, the amplitude of the light and the external electric field. We show that
the system exhibits various topological phase transitions as we vary the various parameters of
the model. We provide the phase diagrams where we demonstrate the bulk invariant as we
vary the drive frequency !, the amplitude of the drive and the external electric field.

In this thesis, we also investigate the low-frequency limit where the bandwidth of the sys-
tem is higher than the frequency of the drive. This limit is far more interesting as this may
not have any non-driven analog. Once again, we compute the phase diagram in this limit and
show that the system exhibits many more topological phase transitions due to the mixing of
the Floquet bands. This gives rise to another band gap in the spectrum at the Floquet zone
boundary other than the band gap near the zero quasienergy. Also, we computed the edge
state spectrum for each individual topological phases and verified that the system does not
follow the usual bulk-edge correspondence of static systems where the Chern number, which
is a bulk invariant, is equal to the number of edge states in the system when computed in a
finite geometry. Rather, it is another invariant which gives the number of the edge states in
the two non-equivalent gaps in the Floquet systems. The di↵erence between two invariants
corresponding to the two non-equivalent gaps has been shown to be equal to the Chern number
of the band [13].

The thesis has four chapters and we summarise the thesis in the fifth chapter. The content of
each chapter is briefly described below -

• The first chapter provides a detailed analysis of Dirac materials which includes the study
of the tight-binding structure of the honeycomb lattice, consequences of inversion and
time-reversal symmetries, buckled Dirac materials e.g. silicene, germanene, stanene etc.
We also provide the details of the edge state spectrum computation for a nanoribbon
geometry.

• The second chapter contains the detailed calculation of transport studies in the FNF
geometry together with the Landauer-Buttiker formalism.

• We try to explain the Floquet formalism in the third chapter in detail. Here, we focus on
the Brillouin-Wigner perturbation theory to study the high-frequency limit of periodically
driven Dirac systems with spin-orbit coupling. We discuss the numerical results and
summarize this part.

• Chapter four contains the study of the low-frequency limit of the model. Here, we give
a detailed analysis of each of the phases by computing the spin-resolved Chern numbers
and finally, the bulk-boundary correspondence of periodically driven systems. We also
discuss the method of computing the real space Chern number which is required to study
the topological structure in the absence of translational symmetry.
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Chapter 1

Introduction

1.1 Dirac materials: Graphene

Graphene is a single layer of graphite which is made up of hexagonal rings of carbon, giving
rise to a honeycomb-like lattice structure. This is the lightest [18], strongest [19], thinnest,
best conductor of heat at room temperature [20, 21], very high electron mobility conductor
[22] ever discovered.

The honeycomb lattice of Graphene is made up of two inequivalent lattice sites A and B
(Fig: 1.1, where black and green colour dots represent A and B sublattice points) and hence
the unit cell of graphene contains two atoms [23].

The lattice vectors are given by -

A1 = a0

 p
3

2
,
3

2

!
and A2 = a0

 
�
p
3

2
,
3

2

!
(1.1)

where, a0 = 1.42˙Å is the lattice constant. The reciprocal lattice vectors are given by -

B1 =
2⇡p
3 a0

✓
1,

1p
3

◆
, and B2 =

2⇡p
3 a0

✓
1,

�1p
3

◆
. (1.2)

The nearest neighbour vectors are given by -

�1 = a0 (0,�1) , �2 = a0

 p
3

2
,
1

2

!
, �3 = a0

 
�
p
3

2
,
1

2

!
(1.3)

The six next nearest neighbours are same for A and B sub lattice and are placed at -

a1,2 = ±A1, a3,4 = ±A2, a5,6 = ±(A1 � A2) (1.4)
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Figure 1.1: Graphene: two dimensional honeycomb lattice structure

We can write down the tight-binding Hamiltonian for the ⇡ orbital electrons of Graphene -

H = �t

X

hi,ji

c
†
icj + h.c. (1.5)

where, t = 2.8 eV (in units of energy) is the nearest neighbour hopping amplitude in graphene.
The energy dispersion derived from this Hamiltonian is -

Ek = ± t

p
3 + f(k) (1.6)

where,

f(k) = 2 cos(
p
3kya0) + 4 cos

 p
3

2
kya0

!
cos

✓
3

2
kxao

◆
(1.7)

The low energy behavior of graphene is governed by the Dirac electrons which have the linear

dispersion at the two valleys K and K
0.

1.2 Spin-orbit coupling (SOC) in Dirac materials: Sil-
icene, Germanene, Stanene

Control over the spin degrees of freedom has been the ultimate goal in spintronics. Exten-
sive studies have been conducted in 2D electron gases such as GaAs/Ga1�xAlxAs [24] and
HgTe/CdTe/HgTe quantum wells [25]. More interesting phenomena are expected in low di-
mensional systems with su�ciently strong SOC.

There exist a class of Dirac materials which are similar to the Graphene, but in contrast to
the planar lattice, these materials are buckled and the two triangular sublattices are separated
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Figure 1.2: Buckled Dirac Materials e.g. Silicene, Germanene, Stanene

by a vertical distance 2l (Fig: 1.2) and have larger spin-orbit coupling than graphene e.g.
silicene has spin-orbit coupling hundred times larger than graphene.

The tight binding Hamiltonian for the buckled Dirac materials including all possible terms
[26] -

H = �t

X

hi,ji,↵�

c
†
i↵cj↵ + l Ez

X

i,↵

⇠i c
†
i↵cj↵ � µ

X

i,↵

c
†
i↵ci↵ +

i�

3
p
3

X

hhi,jii,↵,�

⌫i,j c
†
i↵ �

z
↵� cj�

+i�R1

X

hi,ji

c
†
i↵

⇣
~� ⇥ ~dij

⌘z

↵�
cj� � i�R2

X

hhi,jii,↵�

⇠i c
†
i↵

⇣
� ⇥ d̂ij

⌘z

↵�
cj�. (1.8)

We explain each term: the first term represents the nearest neighbour hopping term with t=1.6
eV. The second term is the staggered potential term which is due to the buckled structure of
the lattice. The third term is the chemical potential term. The atomic spin-orbit coupling term
is given by the fourth term with �=3.9 eV while the last two are the extrinsic and intrinsic
Rashbha spin-orbit coupling respectively. We note the following properties of intrinsic and
extrinsic Rashbha spin-orbit couplings present in spin-orbit coupled Dirac materials [27] -

1. The intrinsic Rashbha SO-coupling is zero at the Dirac point K but it has a nonzero
value when ~k deviates from K point. Moreover, when the structure returns to the planar
structure (✓ = 900), the intrinsic Rashbha SO-coupling vanishes even when ~k deviates
from K. Therefore the intrinsic Rashbha is entirely caused by the buckled geometry.

2. The intrinsic Rashba SOC is quite di↵erent from the extrinsic Rashba SOC, which arises
from a perpendicular electric field or interaction with a substrate leading to breaking of
mirror symmetry in some direction, and thus has finite magnitude at the Dirac point K.

3. The extrinsic Rashbha SO-coupling due to perpendicular electric field may be written
as-

�R1 = Ez ⇠0 e z0
3Vsp↵

(1.9)
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Figure 1.3: Graphene nano ribbon with periodic boundary condition in x-direction and open
boundary condition in y-direction.

where, z0 is proportional to the atomic size of silicon. Its magnitude is about 0.2 meV if
we assume a typical electric field Ez ⇠ 50V

300nm and use the value z0 ⇠ 4.5aB

4. The extrinsic Rashbha for silicene, �R1 / Ez, and becomes of the order of 10 µeV at
Ez =

�SO

l = 17meVA�1.

5. For silicene, the atomic SO = 3.9 meV, extrinsic Rashbha = 0.2 meV and the intrinsic
Rashbha = 0.7 meV.

We give a detail study of each SO-coupling term in momentum space in Appendix A.

1.3 Edge state computation for nano ribbon geometry

Here, we wish to give the details of a computation to get the edge state spectrum of a zigzag
nanoribbon which is assumed to be finite in the y-direction while periodic in the x-direction.

We consider a graphene nanoribbon as in Fig:(6.1). To illustrate the procedure we take the
unit cell (dashed line) which has ten lattice points along the y-direction. Since it has periodicity
in the x-direction, momentum in this direction is a good quantum number. The number of
lattice points along y-direction forms the basis to write down the Hamiltonian matrix. The
tight binding Hamiltonian for graphene is given by eq.(1.5) and we write down the Hamiltonian
matrix for graphene ribbon below -
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1 2 3 4 5 6 7 8 9 10

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

1 0 ↵ 0 0 0 0 0 0 0 0

2 ↵⇤ 0 � 0 0 0 0 0 0 0

3 0 �⇤ 0 ↵ 0 0 0 0 0 0

4 0 0 ↵⇤ 0 � 0 0 0 0 0

5 0 0 0 �⇤ 0 ↵ 0 0 0 0

6 0 0 0 0 ↵⇤ 0 � 0 0 0

7 0 0 0 0 0 �⇤ 0 ↵ 0 0

8 0 0 0 0 0 0 ↵⇤ 0 � 0

9 0 0 0 0 0 0 0 �⇤ 0 ↵

10 0 0 0 0 0 0 0 0 ↵⇤ 0

where,

↵ = ei(kx
p
3/2�ky/2) and � = e�iky

We diagonalise this Hamiltonian and plot the eigenvalues with respect to the momentum in x-direction
kx. If we take even number of sites along y-axis we get the edge spectrum as represented in Fig:(1.4).

The edge spectrum changes if we had odd number of sites along y-direction. In this case, there
are dangling bonds on one side of the ribbon which are not zigzag type like the other side of the nano
ribbon [29] and hence, there is only one edge mode exactly at zero energy as shown in Fig:(1.5).

We use this method of edge state computation to analyze the bulk-boundary correspondence in
Floquet topological insulators [28]. We incorporate the e↵ect of light by the Peierl’s substitution in
the hopping amplitudes which would change the form of matrix elements of the Hamiltonian discussed
above.

1.4 Driven quantum systems

The topological state of quantum matter is known to possess edge states which are robust against
disorder as long as the bulk band gap is not closed. These edge states could be potentially useful for
applications. However, topological systems are hard to find and so it is interesting to see whether
non-trivial topology can be induced in materials by external driving.

Recently, it has been realised that periodic driving can be used as a tool to manipulate the bulk
band structure and that it can induce topological structure in trivial insulators. Such insulators
are called the Floquet topological insulators. These induced topological phases also possess gapless
edge states like topological insulators. But, unlike topological insulators, these driven topological
phases can exhibit anomalous topological phases which are not possible in non-driven systems [30,
31]. Moreover, Floquet topological phases have been experimentally discovered in solid state [14],
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optical [32] and cold-atom systems [33].The concept of Floquet engineering has been employed very
successfully in various experiments with ultracold atoms in driven optical lattices. This includes
dynamic localisation [34], photon-assisted tunnelling [35], the control of the boson superfluid-to-
Mott-insulator transition [36], resonant coupling of Bloch bands [37], the dynamic creation of kinetic
frustration [38], as well as the realisation of artificial magnetic fields and topological band structures
[39, 40]. In quantum gas without a lattice, periodic driving has recently also been employed to tune
or induce spin-orbit coupling [41, 42].

In the following section, we review the Floquet formalism to deal with periodically driven systems.
Using this formalism and comparing the frequency of the drive ! with the bandwidth of the material,
it is possible to derive an e↵ective static Hamiltonian when the frequency is much larger than the
bandwidth. There are various perturbative schemes e.g. Floquet Magnus expansion [43, 44, 45,
46], Brillouin-Wigner perturbation theory [47] and van Vleck degenerate perturbation theory [48,
49] to get the e↵ective time-independent Hamiltonian in inverse frequency expansion. The B-W
perturbation theory has been described in Ref. [47] to obtain the high-frequency e↵ective Hamiltonian
for periodically driven systems. In comparison with other similar high-frequency expansions, the B-W
expansion has far fewer terms at higher orders. Moreover, the B-W theory has a simple recursive
technique to compute higher order terms which is often less cumbersome than the other expansions.
We give a detailed study of irradiated spin-orbit coupled materials using the B-W perturbation
theory in next chapter. However, the perturbation theory breaks down as the frequency of the drive
becomes equal to the bandwidth of the system. This limit corresponds to the low-frequency limit and
is discussed at length in the last chapter.

1.4.1 Time-evolution of periodically driven systems

The time-evolution of any quantum state is governed by the Schrödinger equation [50, 51] -

i @t  (t) = H(t) (t) (1.10)

where, H(t) is the Hamiltonian of the system. If the Hamiltonian is time-independent then we can
diagonalise the Hamiltonian to get the complete set of solutions {En, n} of the following Schrödinger
equation -

H n = En n (1.11)

and this will allow to compute the time-evolution of any state as -

 (t) =
X

n

cn n e
�iEnt (1.12)

where, the amplitudes {cn} are constant in time and can be calculated from the initial conditions:
cn = h (0)| ni.

Now, if we have a time-dependent system then one cannot diagonalise the Hamiltonian to get the
eigenstates { n} as the system is changing its state at each instant of time. It simply means that the
system does not possess a ground state. But, we can integrate the Schrödinger equation to obtain -

 (t) = U(t) (0) (1.13)

where, the time-evolution operator is given by -

U(t) = T e�i
R
t

0 H(t0) dt0 (1.14)
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Here, T is the time-ordering operator. The time-evolution operator is an unitary operator as follows
from eq.1.13 i.e. U(0)=1. However, we have not achieved much to get an understanding of the
behavior of the system as eq.(1.13) is just the restatement of the problem itself. But for time-periodic
Hamiltonians i.e. H(t+T) = H (t), discrete time-translational symmetry allows the following condition
-

U(mT, 0) = U(T, 0)m (1.15)

We explicitly show how this follows from the periodicity of the Hamiltonian -

U(mT, 0) = T e�i
R
mt

0 H(t) dt

= T e�i
P

m

k=1

R
kT

(k�1)T H(t) dt (1.16)

which simplifies to (using H(t+T)=H(t)) -

U(mT, 0) = T e�i
P

m

k=1

R
T

0 H(t) dt

= T
mY

k=1

e�i
R
T

0 H(t)dt (1.17)

Because the terms over a full period are equal, they commute. Hence, one can write -

U(mT, 0) =
TY

0

T e�i
R
T

0 H(t)dt (1.18)

= [U(T, 0)]m (1.19)

Thus, the eigenstates of U(T) have evolved into themselves in each driving period gaining a complex
phase and the eigenvalue problem for periodically driven systems takes the form -

U(T ) n = e�i✏nT  n (1.20)

Now, we can write down the time-evolution of any initial state using the eigenvalues and eigenstates
of the Floquet operator as -

 (mT ) =
X

n

cn n e
�i ✏n mT (1.21)

where, {cn} are determined by the initial state: cn = h (0)| ni. The importance of the time-periodic
Hamiltonian lies in the fact that the knowledge of the propagator, the time evolution operator over a
period T provides all the information needed to study the long-time dynamics of periodically driven
quantum systems.

1.4.2 Time-independent E↵ective Hamiltonian

We consider an evolution operator for the time-periodic Hamiltonian over a period T as [52]-

U(T ) = T e�i
R
T

0 H(t)dt (1.22)
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Since U(T) is an unitary operator we can write it as -

U(T ) ' e�iHeffT (1.23)

One can write the Fourier components of the time-periodic Hamiltonian -

H(t) =
1X

n=�1
Hn e

in!t ' H0 +H1e
i!t +H�1e

�i!t (1.24)

Here, we have considered the first Harmonic contribution. Expanding the exponential in eq.(1.22) in
Taylor series -

U(T ) = T e�i
R
T

0 H(t)dt ' T
⇢
1� i

Z T

0

H(t)dt+
�i2

2

Z T

0

H(t1)dt1

Z T

0

H(t2)dt2 + ....

�
(1.25)

= 1� i

Z T

0

H(t)dt� 1

2

Z T

0

dt1

Z t1

0

dt2H(t1)H(t2) +

Z T

0

dt2

Z t2

0

dt1H(t2)H(t1)

�
(1.26)

We have used the time-ordering operator in the last line. Now, we put the form of H(t) from eq.(1.24)
and perform the integrals to get the e↵ective evolution operator -

U(T ) ' 1� iH0T � T

!

�
⇡H2

0 � i ([H0, H�1]� [H0, H!] + [H�1, H1])
 

(1.27)

' 1� iHeffT � 1

2
H2

effT
2 + .... (1.28)

)

Heff = H0 �
1

!
([H0, H�1]� [H0, H1] + [H�1, H1]) (1.29)

The same equation can be derived by using the Magnus expansion. Other perturbative methods as
discussed at the beginning of this section can also be employed to arrive at similar e↵ective time-
independent Hamiltonians which is an essential prerequisite for Floquet engineering. These e↵ective
Hamiltonians would also be perturbative series in terms of 1

! . The actual dynamics will then follow
the dynamics Ueff (t) = e�iHeff t induced by the e↵ective Hamiltonian only stroboscopically, but in
the regime of fast driving, where ! exceeds the relevant scales of H(t), the e↵ective dynamics is a
good approximation also for t 6= nT [53].
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Chapter 2

Transport through
Ferromagnet-Normal-Ferromagnet
junction

The honeycomb lattice structure of graphene causes the Dirac-like dispersion as well as the chirality
to its charged particles. These characteristics led to the intensive study of the transport properties of
this material. Also, a detailed study of the transport phenomenon of graphene junctions is essential for
its potential application in electronics and spintronics. There have been numerous theoretical as well
as experimental studies on transport in graphene junctions with other materials like superconductors,
ferromagnets, normal metals etc [54, 55, 56, 57, 58, 59, 60, 61, 62]. It has also been predicted that spin
transport controlled by a gate electrode is possible in a ferromagnet deposited graphene [58, 60, 61].
Moreover, a single layer of graphene has been shown to exhibit a quantum spin Hall e↵ect due
to the presence of spin-orbit interaction and further suggested this phenomenon to be prominent
and easily observed in materials with strong spin-orbit interaction [63]. We intend to focus on Dirac
materials with large spin-orbit coupling to study the transport in the junction of ferromagnet-normal-
ferromagnet, made up of silicene. Silicene has a honeycomb lattice structure with thousand times
larger spin-orbit coupling than graphene due to large radii of its constituent atoms. The large radius
of atoms give rise to lattice distortion and eventually causes the buckling to its lattice structure.
Due to buckling, the charge carriers on two sublattices would feel opposite potential when placed in
an external electric field. This feature provides a handle to control the electronic properties by an
external electric field. It has been shown that at the critical electric field, K-valley (K 0) is "-spin
(#-spin) polarised. The possibility of using silicene as a spintronic device has also been reported very
recently [64, 65, 66, 67]. We analysed charge conductance and spin and valley polarisation along
with the tunneling magnetoresistance (TMR) in FNF junction below. TMR is an important quantity
in spintronics which occurs at junctions between materials, i.e., ferromagnetic-Normal-ferromagnetic
junction. The resistance of the junction is di↵erent for parallel and antiparallel spin configurations,
and this di↵erence in resistance can be experimentally measured.

2.1 The setup

We wish to study the FNF junction in silicene as shown in Fig.(2.1). Ferromagnetism is induced in
silicene by the proximity e↵ect when it is placed in proximity with a magnetic insulator, which we
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Figure 2.1: Schematic of the FNF junction in silicene in which two ferromagnetic patches (dark
brown, dark grey) have been deposited on two sides of a normal silicene sheet (cyan, light grey)
to induce ferromagnetism in it. Here L is the length of the normal silicene region.

model by the following Hamiltonian given by [68]

H = ~vF (⌘kx⌧̂x � ky ⌧̂y) + (elEz � ⌘��SO)⌧̂z + V (x)� h(x), (2.1)

where vF is the Fermi velocity of the charge carriers in silicene, e is the charge of the electron and
⌘,� correspond to the valley and spin indices and ⌧̂ corresponds to the sublattice (pseudospin) Pauli
matrices. �SO is the parameter that specifies the spin-orbit coupling in silicene. Due to the buckled
structure of silicene, the atoms in the two sublattices respond di↵erently to an externally applied
electric field Ez [69]. Thus lEz is the potential di↵erence between the two sublattices A and B due to
this applied electric field where l is the separation between the two sublattices. Hence, the potential
di↵erence is a tunable parameter and can be tuned by an external electric field [69]. Also, when the
Fermi energy is close to the Dirac point, at the critical electric field Ec

z = ⌘��SO, one of the valleys in
silicene is up-spin polarized and the other one is down-spin polarised [69]. Here ⌘ = ±1 denotes the
K and K0 valleys respectively and � = ±1 denotes the spin indices. V (x) denotes the profile for the
potential barrier in the normal silicene region and h(x) corresponds to the exchange splitting or the
energy di↵erence between the up and down spin electrons in the Ferromagnetic Silicene regions. Note,
however, that in real materials the proximity of a ferromagnet to silicence can actually change the
band structure of silicene itself. In that case, the only way to proceed will be to perform first-principles
calculations as has been done in graphene [70].

We now consider the geometry shown in Fig. 2.1 and assume that the system is translationally
invariant along the y direction. The interfaces between the normal and the FS are located at x = 0
and x = L where L the length of the normal silicene region sandwiched between the ferromagnetic
patches. Here V (x) = U⇥(x)⇥(L � x) is the profile of the potential barrier modelled in the normal
silicene region and h(x) = h[�s⇥(�x) + �0s0⇥(x� L)] denotes the exchange field or Zeeman field in
the two ferromagnetic regions with s = s0 corresponding to the parallel (P) configuration and s = �s0

corresponding to the antiparallel (AP) spin configurations of magnetization respectively. We show
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S = 1 (u) S' = 1 (u) S' = -1 (d)

Figure 2.2: Schematic of the configurations with P (uu) and AP (ud) spin polarizations for
one of the valleys of the FNF silicene junction.

the schematic of up and down spin in left region (for s = 1) and in right region for parallel (s0 = 1
or P or uu) and antiparallel (s0 = �1 or AP or ud) configurations in FNF junction for both E < h
and E > h regions in Fig. 2.2. The orientation of the exchange field in the left region is kept fixed
by keeping s = 1 and then s0 = 1 and s0 = �1 in the right region corresponds to the parallel (P or
uu) and antiparallel (AP or ud) configuration respectively. Note that the E < h line crosses the same
band in the third region for the P configuration, but crosses the other band for the AP configuration.
As reported earlier [71], this feature gives rise to negative TMR in graphene. In silicene, also, the
same feature is responsible for negative TMR which we discuss later in next section.

2.2 The band structure analysis

In Fig.(2.3) we demonstrate the spin polarization of both the K and K0 valleys for FS with the
magnetisation directions up (u defined by s = +1) and down (d defined by s = �1) via an energy
band diagram. The diagram clearly shows that di↵erent spin orientations behave di↵erently in the
K and K0 valleys at di↵erent values of the exchange field h. To further explain, we fix �SO/h = 0.5
and show the dispersion for K ", K #, K0 " and K0 # for four di↵erent values (represented by red,
green, blue and magenta for Ez/h = 0.1, 0.5, 1.0, 2.0 respectively) of the tunable parameter Ez/h,
for the cases u and d. Note that we use ", # to denote the spins of the incoming (also reflected and
transmitted) charge carriers and we use u, d to denote the orientation of magnetic exchange. For the
u or s = +1 case, at Ez/h = �SO/h = 0.5 both K " and K0 # have a vanishing band gap. On the
other hand, for Ez/h = 0.1, Ez/h = 1, and Ez/h = 2, the valleys at K ", K #, K0 ", K0 # are all
gapped. Also note that due to the exchange splitting h, the K0 valley is shifted upwards for the #
spin while the K valley is shifted downwards for the " spin. The case for d or s = �1 is the other
way around. Hence, it is clear that unlike in graphene, the contributions to the conductances from
various spin configurations will not be identical for the K and K0 valleys.
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Figure 2.3: (a) to (d) gives the schematic of the band structure for s = +1, at K (for both "
and # spin) and K0 (for both " and # spin) valleys for ferromagnetic silicene for four di↵erent
values of the dimensionless parameter Ez/h (red (0.1), green (0.5), blue (1.0) and magneta
(2.0)). On the other hand (e) to (h) gives the same for s = �1. We use these diagrams to
qualitatively explain the dependence of conductances on the electric field as mentioned in the
text.

2.3 Scattering Matrix Approach

We model our FNF setup within the scattering matrix formalism [72] where we match the wave func-
tions at each ferromagnet�normal interface to obtain the scattering matrix and find the conductances
and the TMR . The wave functions for the valley ⌘ in each of the three regions, x < 0, 0 < x < L
and x > L can be written as

 i = ai
eikixxp
2E⌧i

✓
⌘kiSiei⌘✓i

⌧i

◆

+ bi
e�ikixx

p
2E⌧i

✓
�⌘kiSie�i⌘✓i

⌧i

◆
, (2.2)

where a1 = 1, b1 = r for x < 0, a2 = a, b2 = b for 0 < x < L and a3 = t, b3 = 0 for x > L. Note
that we keep track of the sign of the charge carriers by including the index Si in all the regions (the
sign of the charge carriers changes from electron-type to hole-type when Si is negative in any region).
This actually happens for the anti-parallel configuration when energy of the incident charge carrier
is below the induced magnetic field energy i.e. (E < h). This charge reversal actually qualitatively
changes the conductances, as was shown in graphene [71].

We obtain the scattering matrix both for E > h and E < h by matching the wave functions (see
Eq.(2.2)) at x = 0 and x = L and solving Eq.(2.3) numerically.
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Further,

ki =
q
Ei

2 � (elEz � ⌘�i�SO)
2

and ⌧i = Ei � (elEz � ⌘�i�SO) , (2.4)

with �1 = �, �3 = �0, E1 = E+sh, E3 = E+s0h and Si = sgn[Ei�(elEz�⌘�i�SO)]. Since momentum
is conserved in the y direction and does not change, it is convenient to write the x-component of the
wave-vectors as

kxi =
q

ki
2 � ky

2 . (2.5)

where ky is the conserved momentum in the y direction.
In Eqs. (2.4 and 2.5) we consider i = 1, 3 only. For simplicity we assume that Ez = 0 in the

middle region which makes the momentum in the middle region independent of valley and spin (�2).
Hence for the central region,

k2 =
q
E2

2
� �2SO ,

kx2 =
q
k2
2
� ky

2 ,

and ⌧2 = E2 . (2.6)

where E2 = E � U and U is the height of the potential barrier in the normal silicene region.

2.4 Results

In this section we present our numerical results for the FNF junction for di↵erent parameter regimes.
We first study the model described in Eq.(2.1) which has a spin-independent barrier in the normal

silicene region. We compute the conductance using the transmission coe�cients obtained in Eq.(2.3)
for both the parallel (s = s0) and the anti-parallel (s = �s0) configurations of spins, using the
Landauer�Buttiker formalism [72]. We use the scattering matrix to compute the total transmission
probability T ss0(✓1) = |t|2kx3/kx1 for parallel and anti-parallel configurations by choosing the spins
appropriately and for a particular incident angle ✓1 (which fixes the angles in the other regions as
well). The factor of kx3/kx1 in the transmission function is needed because the probability flux
density includes a factor of the velocity which is essentially ~k/m. Since experimentally, it is not
easy to control the angle of incidence of the impinging electron, we then compute the conductance by
integrating over the possible angles of incidence and multiplying by the number of modes within the
width W of the silicene sample. At zero temperature, this leads us to a conductance given by

Gss0 =
e2

h

Wk1
⇡

Z ✓C

0

T ss0(✓1) cos ✓1d✓1 . (2.7)

Here, ✓C is the critical angle of the incident particles which is needed to ensure propagating particles

14



0 0.5 1 1.5 2
E
z
/h

0

0.5

1

1.5

2

2.5

3

3.5

4
uu
ud

0 0.5 1 1.5 2
E
z
/h

0

0.5

1

1.5

2

2.5

3

3.5

4
uu
ud

0 0.5 1 1.5 2
E
z
/h

0

0.5

1

1.5

2

2.5

3

3.5

4
uu
ud

0 0.5 1 1.5 2
E
z
/h

0

0.5

1

1.5

2

2.5

3

3.5

4
uu
ud

0 0.5 1 1.5 2
E
z
/h

0

0.5

1

1.5

2

2.5

3

3.5

4
uu
ud

0 0.5 1 1.5 2
E
z
/h

0

0.5

1

1.5

2

2.5

3

3.5

4
uu
ud

0 0.5 1 1.5 2
E
z
/h

0

0.5

1

1.5

2

2.5

3

3.5

4
uu
ud

0 0.5 1 1.5 2
E
z
/h

0

0.5

1

1.5

2

2.5

3

3.5

4
uu
ud

G
K↑↑

G
K↑↓ G

K↓↑
G

K↓↓

G
K′↑↑

G
K′↑↓ G

K′↓↑
G

K′↓↓

(a) (b) (c) (d)

(e) (f) (g) (h)

0 0.5 1 1.5 2
E
z
/h

0

0.5

1

1.5
uu
ud

0 0.5 1 1.5 2
E
z
/h

0

0.5

1

1.5
uu
ud

0 0.5 1 1.5 2
E
z
/h

0

0.5

1

1.5
uu
ud

0 0.5 1 1.5 2
E
z
/h

0

0.5

1

1.5
uu
ud

0 0.5 1 1.5 2
E
z
/h

0

0.5

1

1.5
uu
ud

0 0.5 1 1.5 2
E
z
/h

0

0.5

1

1.5
uu
ud

0 0.5 1 1.5 2
E
z
/h

0

0.5

1

1.5
uu
ud

0 0.5 1 1.5 2
E
z
/h

0

0.5

1

1.5
uu
ud

G
K↑↑

G
K↑↓ G

K↓↑
G

K↓↓

G
K′↑↑

G
K′↑↓ G

K′↓↑
G

K′↓↓

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 2.4: Conductances (GV ��0) in units of e2W/⇡h, for the P (uu) and AP (ud) configu-
rations of a FNF junction are shown as a function of the dimensionless parameter Ez/h for
E > h [upper panels, (a-h)] and E < h [lower panels, (i-p)] respectively. Here Ez is the external
electric field and h is the ferromagnetic exchange field. The value of the other parameters are
chosen to be �SO/h = 0.5, U/h = 30. Energy of incident electron, for E > h is E/h = 4.0 and
for E < h is E/h = 0.5.
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Figure 2.5: Total charge conductance (Gc) in units of e2W/⇡h, valley polarization (Pv) and
spin polarization (PS) for P and AP configurations of a FNF junction are shown as a function
of the dimensionless parameter Ez/h for E > h [left panels, (a), (c) and (e)] and E < h [right
panels, (b),(d) and (f)] respectively. The value of the other parameters are chosen to be the
same as in Fig. 2.4. The insets emphasize that Pv and PS are actually di↵erent in magnitude
for the uu and ud configurations for E > h regime.
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in the first and third regions and is given by ✓C = ⇡/2 for k1  k3 and ✓C = arcsin(k1/k3) for
k1 > k3. Note that unlike the case for graphene, in silicene, the contributions at the two valleys are
not identical and hence, we do not get the degeneracy factor of two. Instead, the contributions at both
the valleys have to be computed independently and added to obtain the total conductance through
the junction. Thus we define the total charge conductances Gc, valley and the spin polarizations
(Pv,PS) and TMR through the FNF junction in terms of the following constituent conductances�
Gss0

V ��0 . Here, ss0 denotes uu (P) or ud (AP) spin configurations, V denotes the valley (K or K0) and
� denotes the spin of the incoming charge carrier in region 1 and �0 denotes the spin of the outgoing
charge carrier in region 3, which can be di↵erent, because we have spin-orbit coupling in the system.
These conductances have been shown in Fig. 2.4 for both E > h and E < h. It is now easy to realize,
in reference to the band diagrams given in Fig. 6.1 that the conductances go to zero when there is a
gap in the density of states either in region 1 or 3. The maxima can also be understood by noting that
the density of states at those values of Ez/h are maximum and both reduce when Ez/h is reduced or
increased. This can be checked for each of the various conductances on a case by case basis.

The total charge conductance Gss0
c and the valley Pss0

v and spin Pss0
S polarizations for both the P

(s = s0) and AP (s = �s0) configurations are now defined as

Gss0
c =

X

V ��0

Gss0
V ��0 ,

Pss0
v =

P
��0(Gss0

K��0 �Gss0
K0��0)

Gss0
c

,

and Pss0
S =

P
V �(G

ss0
V �" �Gss0

V �#)

Gss0
c

. (2.8)

Note that the indices ss0 in Eq.(2.8) gives rise to four possible spin configurations uu, ud, du, dd for
a FNF junction, of which uu and dd imply P configurations with s = s0 and ud and du denote AP
configurations with s = �s0.

Now from the knowledge of all the possible conductances, one can define the tunneling magne-
toresistance (TMR) through the FNF geometry as

TMR =
Guu

c �Gud
c

Guu
c

. (2.9)

Note that the standard definition of TMR has Gud
c in the denominator. However it is also sometimes

defined with Guu
c [73] and we choose this definition because in our case, Gud

c vanishes at Ez = h.
This implies a singularity in the TMR which is avoided in our definition. Note that for Ez > h,
the di↵erence in TMR between the two definitions is negligible. For Ez < h, there are numerical
di↵erences, but no qualitative di↵erence in the behavior of TMR with the two definitions.

The results are di↵erent for the energy regimes E > h and E < h, because of the di↵erence in
band structure, which has band gaps and hence no propagating states available for transport (see
Fig. ??), for certain ranges of Ez/h for E < h. Since the main di↵erence of silicene from graphene
is the fact that the gap in silicene is tunable by the external electric field Ez, we choose to focus on
the dependence of conductances on Ez. In cases, where we study the conductances as functions of
other parameters such as the barrier strength U or the exchange splitting �, we present our results
for three di↵erent values of Ez/h.

Note that when Ez = �SO, silicene is actually coplanar, i.e. the two sublattices are in same plane
like in graphene. But the spin-orbit coupling in silicene is much stronger than in graphene [74]. This
increases or decreases the momentum of the incident charge carrier (see Eq.(2.4)) depending on the
spin-polarization of the ferromagnetic silicene. Hence, we do not expect to reproduce the results of
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Figure 2.6: TMR is shown as a function of the dimensionless scale Ez/h in panel (a) with
green and purple lines corresponding to E > h and E < h regime respectively. In panel (b)
TMR is shown as a function of U/h for E < h for three values of Ez/h. The other parameters
are chosen to be the same as in Fig. 2.4. In the inset of panel (a) we emphasize the very slow
rate of increase of TMR in the E < h regime.

FNF junctions in graphene in the gapless regime.

2.4.1 Spin-independent Barrier

Here we discuss the case where we have a finite spin-independent (scalar) barrier in the normal silicene
region. The energy of the incident electron can be in the regime E > h or E < h and we present
the behavior of the conductances and the TMR below. To carry out our numerical analyses, we have
chosen to normalise all our energy scales by the Zeeman energy h, so that all our results are in terms
of dimensionless quantities. We also choose to measure conductances in units of e2W/⇡h.

We first present the results for the various constituent conductances for the P and AP configuration
in Fig. 2.4 in order to understand the behavior of the conductances, the valley and spin polarizations
and the TMR in various parameter regimes. The conductances are shown independently at the K and
the K0 valleys as well as independently for the incoming (�) and the outgoing (�0) spins of the charge
carriers. In Figs. 2.4(a-h), we show the behavior of the conductances at the K and K0 valleys, with
respect to the dimensionless parameter Ez/h for the four possibilities ("", "#, #", ##) in the E > h
regime for both the uu and ud configurations. Here the uu configuration corresponds to the majority
spin density of states in the left and right FS regions being up spin (parallel to each other) and the
ud configuration corresponds to the majority spin being opposite (anti-parallel) in the two regions.
When " charge carrier comes in from the left then it can either go to " state or # state in right region.
So "" etc, denote spins of the incoming and scattered charge carriers. The behavior of the various
conductances in Figs. 2.4(a-h) can now be understood easily when analysed in terms of the band
structure presented in Fig. 2.3.

For E > h, the results have been presented for E/h = 4. Using the band diagram, it is easy to
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check that both at K and K0, there are always electron states available for conductance for both the
P and AP configurations and for all possible incoming and outgoing spins. The di↵erences in the
magnitude both at K and K0 valleys stems from the decrease in the momentum of the propagating
states at the Fermi energy, as can be seen from the band diagram.
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Figure 2.7: In the left panels, we show the total charge conductance (Gc) in units of e2W/⇡h,
valley and spin polarizations (Pss0

v , Pss0
S ) for E > h and on the right panels for E < h respec-

tively. The dashed and solid lines correspond to two di↵erent exchange splittings (�/h) due to
the spin-dependent barrier in the normal silicene region. The value of the other parameters are
chosen to be �SO/h = 0.5, U/h = 30. Energy of the incident electron, for E > h, is E/h = 4.0
and for E < h, E/h = 0.5. The small di↵erence in magnitude of Pss0

v and Pss0
S is highlighted

in the insets for E > h regime.

The results for E < h is shown in Figs. 2.4(i-p) for E/h = 0.5. Consider the uu case for the
valleys K and K0. For GK,K0"", (red lines shown in Fig. 2.4(i) and Fig. 2.4(m)), the band diagram
(see Fig. 2.3) shows that if we start with a spin up electron at the K valley, (Fig. 2.4(i)) then there
is a non-zero density of states for " electrons in the third region for all values of Ez/h until it reaches
the value of 2 (the magenta line goes above the value of E/h = 0.5). On the other hand, for the K0

valley, (shown in Fig. 2.4(m)), there is no density of states for the " electrons beyond Ez/h = 1.0 (the
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Figure 2.8: The variation of the TMR with respect to Ez/h and U/h is shown for two values of
�/h. In the panels, the dashed and the solid lines correspond to �/h = 0.5 and �/h = �0.5
respectively. We choose the same value of the other parameters as mentioned in Fig. 2.7.

blue line goes above the value E/h = 0.5) in the third region. This explains why beyond Ez/h = 2
for the K valley and beyond Ez/h = 1 for the K0 valley, the conductances Guu

K"" and Guu
K0"" are zero.

It is also clear from the band diagram that for Guu
K"", its value increases from the value at Ez/h = 0,

because the momenta of the electrons at E/h = 0.5 grows (comparing the red and green lines) and
beyond that it decreases (comparing the green, blue and magenta lines). On the other hand, for
Guu

K0"", it is clear that the momentum of the electrons at E/h = 0.5 decreases as a function of Ez/h
(comparing the red, green and blue lines). This explains why the conductance rises initially and then

falls beyond Ez/h = 0.5 for G""
K and why it falls monotonically for G""

K0 .
A similar detailed analysis can also be made for the ud case as well as each of the other graphs

in Figs. 2.4(j,k,l) and Figs. 2.4(n,o,p), which explains each feature of the graph. However, since the
method is similar to what has been described above, we will not go through each one of the graphs
in detail. The behavior of the charge conductance, the valley and spin polarizations and the TMR
are also now understandable, since we can explain how each of the constituents Gss0

V ��0 behave as a
function of Ez/h from the band diagram.

(a) E > h
In Figs. 2.5(a), 2.5(c) and 2.5(e), we show the behavior of the charge conductance (Gss0

c ) and the
valley and spin polarizations (Pss0

v and Pss0
S ) with respect to the dimensionless parameter Ez/h for

the P and AP configurations (uu and ud) in the E > h regime. Note that in Fig. 1.3(a), Guu
c and Gud

c

are both finite at Ez/h = 0 and start decreasing as we increase the value of Ez/h. Gc is obtained by
summing Gss0

K and Gss0
K0 , which in turn are obtained as

Gss0
K = (Gss0

K"" +Gss0
K"#) + (Gss0

K#" +Gss0
K##)

⌘
X

�0

Gss0
K"�0 +Gss0

K#�0 (2.10)
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and similarly for Gss0
K0 . In other words, the total charge conductance Gss0

c = Gss0
K + Gss0

K0 is obtained
by summing over all the conductances in the panels (a) to (h) in Fig. 2.4.

In Fig. 2.5(c), Puu
v and Pud

v are plotted which are close to zero on the scale of the charge con-
ductance. However, they are not identical, as shown in the inset. But it appears that in this regime,
silicene has negligible valley polarization, similar to graphene, which in fact has no valley polarization
at all, since the two valleys are identical. This can be understood because the valley polarization Pv

is simply proportional to Gss0
K � Gss0

K0 , and as can be seen from Fig.2.4 that the magnitudes of the
conductances at K and K0 are almost the same for E > h. In Fig. 2.5(e), the behavior of the spin
polarization has been shown for both P (uu) and AP (ud) configurations, which is also very small in
this regime. As shown in the inset, the spin polarization is positive for the P and negative for the AP
configurations and increases as a function of Ez/h. This di↵erence is due to the spin-orbit coupling
in silicene, whereas in graphene, they are much smaller, since the spin-orbit coupling is vanishingly
small. Finally, in Fig. 2.6(a), the behavior of the TMR is shown as a function of Ez/h by the green
solid line in the E > h regime. In this regime, the TMR is close to zero.

(b) E < h
The right panels in Fig. 2.5 shows the behavior of the charge conductance Gss0

c and the valley and
spin polarizations Pss0

v , Pss0
S with respect to the dimensionless parameter Ez/h, in the E < h regime,

for the same spin and polarization configurations mentioned earlier. These are just the appropriate
sums and di↵erences of the constituent conductances in Figs. 2.4(i-p). Here also, their behavior is
easy to understand by comparing each of the graphs in Figs. 2.4(i-p) with the band diagrams in
Fig. 2.3 and noting when there is no density of states for the configuration in either the incoming or
the outgoing spin configuration of the charge carriers. For instance, for the uu case, there is only one
contribution for Ez/h > 1 in Fig. 2.4(i) and for the ud case, there is no contribution for Ez/h > 1.
This is because we have chosen E/h = 0.5 and the blue line (Ez/h = 1.0) in the band diagram goes
above that line either for the incoming or scattered region for all cases in the ud configuration and
all but one case in the uu configuration. In other words, their behavior follows what is expected from
the availability or non-availability of propagating states at the K and K0 valleys as explained above
in the discussion of Fig. 2.4.

The most interesting point to note is that the valley polarization and the spin polarization for
the parallel or uu configuration is unity for Ez/h > 1 in E < h regime. This is simply because of
the entire contribution to the conductance in this regime originates from Guu

K"". So the conductance
is both fully valley and spin polarised and would be an important regime to achieve by tuning the
incident electron energy E/h < 1 and the electric field Ez/h > 1. In the anti-parallel or ud regime, the
spin polarization can be tuned to negative values when Ez/h < 1, but without any valley polarization.

The behavior of TMR is demonstrated in Figs. 2.6(a) and 2.6(b) for the E < h regime. For
Ez/h = 0, the TMR is negative and reaches its maximum negative value. Then the TMR increases
as we increase the value of Ez/h and changes sign and reaches saturation at Ez/h ' 1 since the
conductance becomes fully spin polarised at that point. Note that we need to restrict the value of
Ez/h below two as the TMR takes an indeterminate form at Ez/h = 2 due to the vanishing of both
Guu

c and Gud
c (see Fig.1.3(c) and Eq.(2.9)) for all spin configurations. This is a consequence of our

choice of the incident energy at E/h = 0.5.
The striking feature of positive to negative transition in the TMR also arises as we vary the

strength of the potential barrier U in the middle normal silicene region for di↵erent values of Ez/h.
This feature is shown in Fig. 2.6(b) where the TMR oscillates between positive and negative values
with respect to U for Ez/h = 0.1. Such oscillations of the TMR from positive to negative values have
been reported earlier in Ref. [71] in graphene, due to the change in the type of the charge carrier in
the third region. Note also there is no significant qualitative change in the behavior of TMR even

21



if we choose U ⇠ h. This extra tunability of the TMR with respect to an external electric field is a
unique feature of silicene that we wish to emphasize here.

2.4.2 Spin-dependent Barrier

Here we discuss the e↵ect of a spin-dependent barrier on the total charge conductance, valley and spin
polarizations and the TMR. The barrier is modelled in the normal silicene region as U� = U � ��
which is shown in Fig. 2.2. Here positive (negative) � represents the exchange splitting in the silicene
barrier with its magnetization parallel (anti parallel) to the spin orientation of the FS in the first
region.

In Figs. 2.7(a-f) we show the behavior of the total charge conductances Gss0
c , spin and valley

polarizations Pss0
S and Pss0

v , in the E > h and E < h regimes, for ±�/h. Since the qualitative
behavior of all the conductances remain similar to the spin independent barrier case, we do not show
the behavior of the conductances at the K and K0 valleys independently, or analyse the graphs in
detail via the band structure. Similarly, in Figs 2.8(a-c), we show the behavior of the TMR as a
function of Ez/h and as a function of U/h as well (for Ez < h), for both ±�/h. We find that the
results are fairly similar to the spin-independent barrier case.

2.5 Conclusion

To summarize, in this paper, we have investigated the transport properties (charge conductance as
well as spin and valley polarizations) and the TMR through an FNF junction in silicene. Here we have
adopted the Landauer-Buttiker formalism to carry out our analysis. We show that the conductances
and the TMR in this geometry can be tuned by an external electric field Ez for each case ("", "#, #",
##) in the left and right ferromagnetic silicene regions, for both parallel (uu or dd) and anti-parallel (ud
or du) configurations. For specific values of the electric field, we analyse both the charge conductance
and valley and spin polarization in terms of the independent behavior of the conductances at the two
valleys and the band structure at specific incident energies. We find that we can tune a full valley
polarised and also a fully spin polarised current through our setup via the external electric field. We
also find that the TMR can be tuned to 100 % in this geometry via the electric field. This is one
of the main conclusions of our analysis. We also show that the TMR through our setup exhibits an
oscillatory behavior as a function of the strength of the barrier (both spin independent and spin-
dependent) in the normal silicene region. The TMR also changes sign between positive and negative
values and such a transition can be tuned by the external electric field. This is another conclusion
of our analysis. Hence, from the application point of view, our FNF geometry may be a possible
candidate for making future generation spintronic devices out of silicene.

As far as the practical realization of such an FNF structure in silicene is concerned, it should be
possible to fabricate such a geometry with the currently available experimental techniques. Ferro-
magnetic exchange in silicene may be achieved via proximity e↵ect using a magnetic insulator, for
instance, EuO [70, 75]. The typical spin orbit energy in silicene is �SO ⇠ 4 meV [74]. For an incident
electron with energy E ⇠ 4 meV and exchange energy h ⇠ 8 meV, the maximum value of the spin
and valley polarization as well as sign change of TMR from positive to negative value occur at an
electric field Ez ⇠ 0.03 VÅ�1, potential barrier of height U ⇠ 160 meV, exchange splitting in the
normal silicene region � ⇠ 4 meV and width of the barrier L ⇠ 100 nm.
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Chapter 3

Periodically Driven Systems

Topological insulators and topological phase transitions [76] have been at the forefront of research
in the last several years. More recently, it has been realized that driving systems periodically is an
e↵ective way to obtain and control topological phases [39, 77, 78, 79]. In the last few years, the concept
of engineering such periodically driven systems, often called Floquet systems, has gained prominence,
particularly due to the feasibility of experiments in solid state[80] as well as in photonic[32] and
cold atom systems[33]. Floquet topological systems have been studied extensively to predict non-
equilibrium Majorana modes[81, 82, 83, 84], non-trivial transport properties[85, 86, 87, 88, 89] as well
as to control the band-structure[78, 90, 91].

Despite this progress, there remain many unresolved questions involving driven topological sys-
tems, mainly because the presence of the driving implies that the system is out of equilibrium. With
the lack of energy conservation, the bands in a driven system can be characterized by quasiener-
gies [92]. But the standard picture of assuming that the quasi-energy levels are similar to the usual
energy levels of a band is not quite right because the distribution function for the electrons in the
quasi-energy bands cannot be assumed to be the usual Fermi distribution function. Furthermore, a
driven system has a much richer topological phase structure than its static counterpart[30] and may
even possess phases that have no analog in the static system [31]. This has led to the proposal of
characterising the topological indices of a periodically driven topological insulator as a combination
of winding numbers instead of a single Chern number.

3.1 Floquet-Bloch band theory

Floquet theory is a framework to deal with the periodic quantum system either in space (static
system) or in time (dynamic system). We are interested in the Hamiltonians which are periodic in
time i.e.

H(t) = H(t+ T ) (3.1)

The Schrödinger equation for a quantum system can be written as -

✓
H(r, t)� i~ �

�t

◆
 (r, t) = 0 (3.2)

According to Floquet theorem, there exist solutions to the above equation that have the form -

 ↵(r, t) = e�i✏↵t/~�↵(r, t) (3.3)

23



Figure 3.1: The schematic diagram of extended Floquet zone scheme for a two band model.

where, �↵ are periodic function in time i.e. �↵(r, t) = �↵(r, t + T ). Putting eq.(3.3) into the
Schrödinger equation -

H(r, t)�↵(r, t) = ✏↵�↵(r, t) (3.4)

where, H(r, t) = H(r, t) � i~ @
@t and ✏↵ is the quasienergy for the eigenvalue equation 3.4. Since the

Floquet modes �↵ are periodic in time we notice that

�0
↵(r, t) = �↵(r, t) e

�in!t ⌘ �↵n(r, t) (3.5)

gives the same solution as eq.(3.3)

 ↵(r, t) = e�i✏↵t/~e�in!t�↵(r, t)

= e�i(✏↵+n~!)t/~�↵(r, t) (3.6)

but with the shifted quasienergy ✏0↵ = ✏ + n~!. Here, the index ↵ corresponds to a whole class of
solutions indexed by ↵0 = (↵, n); n = 0,±1,±2, .... The eigenvalues ✏↵ therefore can be mapped into
a Brillouin zone, �~!/2  ✏  ~!/2. It means all states eq.(3.5) with n being an integer number
n = 0,±1,±2, .. gives identical solutions which belong to the same physical state  ↵(r, t). We now
introduce the composite Hilbert space R ⌦ T where T is the space of time-periodic functions. We
explain this extended zone scheme schematically for a two-band model below.
Suppose that we have a two-level system characterized by two energy labels ✏1 and ✏2 which now
exposed to an external periodic electromagnetic radiation. Due to the time periodicity, the conjugate
variable, energy is conserved and it is called the quasienergy like we have conserved quasi-momentum
for translationally invariant systems. The inequivalent quasienergies lie within the range [�⇡/T ,
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⇡/T ]. There exist infinitely many states �✏1±~!,�✏1±2~!,�✏1±3~!, .. which are equivalent to �✏1 but
have shifted quasienergies ✏1 ± ~!, ✏1 ± 2~!, ✏1 ± 3~!, .. respectively as shown in fig.(3.1). The same
is true for the other state at ✏2. We notice that we have an inequivalent gap at the Floquet zone
boundary other than the gap near zero quasienergies. We label the gap at Floquet zone boundary
by �⇡ and the gap near zero quasienergies by �0. These gaps can close and reopen as we vary the
parameters of the system and the edge states can appear at any of these gaps or at both gaps.
It is clear that when the drive frequency is larger than the bandwidth then the Floquet zone boundary
is not accessible and hence the system can exhibit edge states only near zero quasienergy but when
system couples with the external light resonantly then the gap at Floquet zone boundary makes a
crucial di↵erence in determining the correspondence between the bulk topology and the number of
edge states in periodically driven system. We analyse this interesting consequence at length in the
next chapter.

3.2 Brillouin-Wigner (B-W) Perturbation Theory

A simple theoretical idea that has been used in the field of Floquet systems is to realize that at very
high frequencies when the frequency of the drive is larger than the bandwidth, the system cannot
follow the rapid oscillations of the external drive and hence, the e↵ective Hamiltonian is just the time-
averaged one. An e↵ective Hamiltonian is then systematically constructed using perturbation theory,
at high frequencies, to include virtual photon absorption and emission processes to give corrections
of O(!�n), where ! is the frequency. Here, it has been shown that at least at high frequencies, in
models like graphene, the assumption that the quasi-energies can be treated as usual energy levels
works well.

In an earlier work, Ezawa[97] investigated photo induced phase transitions in silicene and showed
that at high frequencies, various new phases such as the quantum Hall insulator, spin-polarized
quantum Hall insulator, spin polarized metal and spin-valley polarized metal are realized. However,
his study was restricted to high frequencies of O(!�1) in the high-frequency expansion and also to
low energies, close to the Dirac cone. Here, we study a systematic Brillouin-Wigner (B-W) expansion
[47] of the e↵ective Hamiltonian of systems with a spin-orbit coupling term, and obtain the e↵ective
Hamiltonian to O(!�2), without restricting ourselves to the low energy limit. To obtain the phase
diagram, which should be qualitatively applicable to all materials with spin-orbit couplings such as
silicene, germanene, and stanene, we keep the spin-orbit term small but arbitrary. Thus we are able
to access many more phases in the spin-polarized, buckled systems.

In this paper, we will only use the B-W theory, since, with the addition of spin-orbit couplings,
we have even more terms and the recursive technique can be conveniently used to compute the higher
order terms. We start with a time-periodic Hamiltonian H(⌧ + T ) = H(⌧), where T = 2⇡/! is the
period, given by its Fourier components

Hn =

Z T

0

d⌧

T
H(⌧)ein!⌧ . (3.7)

The B-W perturbation theory can now be used to obtain the e↵ective Hamiltonian order by order in
1/! as[47]

HBW =
1X

n=0

H(n)
BW

(3.8)
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Figure 3.2: (a) The hexagonal Brillouin zone for the model that we consider with various
high-symmetry points (discussed in the text) marked. (b) The band structure with momenta
along the red dotted line in (a) in the presence of spin-orbit coupling and a staggered electric
field Ez. It is possible to have Dirac nodes for di↵erent spins at di↵erent valleys. A spin-orbit
coupling constant of � = 0.1t and a staggering potential of lEz = 0.1t have been used to obtain
the schematic diagram presented here.

where, the first few orders are:

H(0)

BW
=H0

H(1)

BW
=
X

n 6=0

H�nHn

n!

H(2)

BW
=

X

n,m 6=0

✓
H�nHn�mHm

nm!2
� H�nHnH0

n2!2

◆
. (3.9)

As an example-system, it is useful to consider electrons in a honeycomb (hc) lattice (say, graphene)
irradiated by circularly polarized light. The time independent Hamiltonian is modelled by a lattice
Hamiltonian of fermions with uniform nearest neighbour (NN) hoppings given by

Hhc = �t
X

hi,ji,�

c†i�cj� . (3.10)

The e↵ect of the radiation can be taken into account by the vector potentialA(⌧) = A0(cos!⌧, sin!⌧).
The Hamiltonian, using Peierls substitution, is then given by
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Hhc(⌧) = �t
X

hi,ji

e�i↵ sin(!⌧�2⇡l/3)c†icj . (3.11)

where l = 0, 1, 2 for the three NNs in the honeycomb lattice, i.e. Rj = Ri + �l and ↵ = A0a0 with a0
being the lattice constant. We have dropped the spin index as the Hamiltonian is the same for either
spin sector. The Fourier components of the Hamiltonian are,

Hhc

n = �t
X

hi,ji

ei
2⇡nl

3 Jn(↵)c
†
icj , (3.12)

where Jn is the Bessel function of order n. Using Eq. (3.9) one obtains the e↵ective B-W Hamiltonian
upto the first order in (t/!) as

Hhc

BW =�
X

hi,ji

Jc†icj +
X

hhi,jii

i⌫ij⇤c
†
icj , (3.13)

where,

J = tJ0(↵), ⇤ = � t2

!

X

n 6=0

J2
n(↵)

n
sin

2⇡n

3
. (3.14)

⌫ij = ±1 depending on whether the next to nearest neighbour (NNN) hopping is clockwise or anti-
clockwise. The first term represents a renormalized hopping amplitude, whereas the second term can
open a gap in the system, driving the system to the topological regime.

Now, we introduce a generic 2D Hamiltonian on a honeycomb lattice to describe systems with
spin-orbit (SO) coupling as well as to allow a buckled structure where the atoms of the sub-lattices
are separated in the direction perpendicular to the plane of the lattice. Materials such as silicene,
germanene and stanene can be e↵ectively described by such a model. Cold-atom systems can also be
used to simulate these kinds of e↵ective models.

The SO coupling can be introduced by adding a next to nearest neighbour (NNN) term in the
Hamiltonian [93]

HSO =
i�

3
p
3

X

hhi,jii�

�⌫ijc
†
i�cj�. (3.15)

� controls the strength of the SO coupling, � is the spin index and stands for " and # as indices
and ±1 in equations. We note that this takes into account only the time-reversal (TR) invariant
intrinsic SO coupling. The other prominent SO e↵ect, Bychkov-Rashba e↵ect, has been neglected in
the following discussions and is expected to be small in the systems of our interest[94].

The staggered sub-lattice potential originating from a buckled structure can be represented as an
onsite potential [97] given by

HST =
X

i�

(⇣ilEz � µ)c†i�ci�, (3.16)

where 2l is the separation between the atoms on the A and B sub-lattices and Ez is the applied
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Figure 3.3: The various e↵ective coupling paths in a honeycomb lattice obtained by B-W
expansion. Note that for the L- paths, there are two ways, both involving three hoppings, to
reach the B sublattice from A. (Only one of them is shown). They contribute equally and
we write them together in the amplitude Eq. (3.24) that enters the Hamiltonian. The O(�2)
contribution (dotted path) vanishes.

electric field. ⇣i = +1/� 1 for A/B sub lattices. The full Hamiltonian is thus

H = Hhc +HSO +HST. (3.17)

We briefly note that the low energy limit of the above Hamiltonian near the K and K 0 points in the
Brillouin zone has a Dirac structure given by

H⌘
� =

✓
�⌘

� � µ v(⌘qx � iqy)
v(⌘qx + iqy) ��⌘

� � µ

◆
(3.18)

where v = 3ta0/2, �
⌘
� = lEz + ⌘�� and ⌘ = ±1 are the valley indices for the two valleys K

and K 0 (see Fig. 3.2) at momenta
⇣
± 4⇡

3
p
3a0

, 0
⌘
. Squaring the Hamiltonian, we get the eigenvalues

E⌘(q) = �µ ±
q
v2(q2x + q2y) +�

⌘
�
2. The Dirac mass term or the gap in the system is controlled by

�⌘
�. The Hamiltonian Eq. (3.17) is time-reversal symmetric, but the system can be tuned from a

trivial semimetal to a spin-hall insulating state by an applied electric field Ez, by tuning �⌘
� through

zero.

3.3 E↵ective time-independent Hamiltonian

In this section, we describe the procedure followed in the B-W calculation. We will start by performing
a Peierls substitution on Eq. 3.17 to incorporate the e↵ect of shining circularly polarized laser. The
time-dependent Hamiltonian thus obtained is used to calculate the Floquet Hamiltonian using Eq. 3.7.
Using Eq. 3.9, the B-W e↵ective Hamiltonian up to O(!�2) is computed.

We first rewrite the static Hamiltonian in Eq. 3.17 in terms of a and b electrons for the A and B
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sublattice as

H ⌘
X

hi,ji�

J�a
†
i�bj� +

X

hhi,jii�

(i⇤0

�⌫
A
ij + ⇤

A)a†i�aj�

+
X

i�

µ̃Aa†i,�ai,� + all terms with a,A $ b, B (3.19)

with J� = �t, ⇤0
� = ��

3
p
3
, ⇤A,B = 0, ⌫Aij = �⌫Bij = ⌫ij . The reason for the introduction of the new

notation will become clear when we start computing the corrections to the various terms using the
B-W expansion. In comparison with the earlier work on the honeycomb lattice, this model has an
NNN term because of the spin-orbit coupling and also a potential di↵erence between the A and B
sublattices due to the applied electric field Ez. Our aim is to see how this a↵ects the terms in the
B-W expansion.

As mentioned earlier, the e↵ect of shining circularly polarized light with a vector potential A(⌧)
on the two-dimensional honeycomb lattice is obtained by using the Peierls substitution. Note that,
A · �A = ↵ sin(!⌧ � 2⇡l/3) whereas A · �B = �↵ sin(!⌧ � 2⇡l/3), for the A and B sublattices. The
band gap at the two valleys K and K 0 can be tuned by the applied electric field Ez and also by
the spin-orbit coupling term �, whose value can be changed by the time-dependent perturbation, as
we shall see below. Hence, the tunability of the band gap is highly enhanced by time-dependent
perturbations.

The electric field from the irradiation couples with both the NN and the NNN hopping. Among
the nearest neighbor (NN) hopping terms, the sites in the A and B sub-lattices have three neighbours
each. In addition, the Peierls substitution has to be performed for the six next to nearest neighbour
(NNN) sites in both the sub-lattices. The computation is more tedious than that of the NN case.
The Floquet Hamiltonian is calculated by integrating the resulting time dependent Hamiltonian using
Eq. 3.7.

We now use the B-W expansion defined in Eq. (3.9) to obtain the e↵ective Hamiltonian to O(!�2)
in real space. The real space expansion is specially useful for obtaining a physical understanding of
the perturbation. In realistic materials, the intrinsic spin-orbit coupling can range from a few milli-
electron volts (silicene) to a few tens of milli-electron volts (germanene and stanene) [95, 96]. The
band-width of these materials, on the other hand, are of the order of a few electron volts. This
di↵erence in magnitude allows us to neglect higher order terms in �, at higher orders in O(1/!),
while showing the results below. In general, such approximations are not necessary, and the B-W
e↵ective Hamiltonian can be obtained exactly at each order, particularly for numerical purposes. We
briefly sketch the procedure for this in the Appendix.

With this in mind, we compute all the terms to O(1/!) and find that terms of O(�2) cancel.
To the next order, we keep only O(t3/!2) terms. First, the expansion renormalizes various hopping
amplitudes J�, ⇤0

�, ⇤
A,B
� and µ̃A,B

� in Eq. (3.19) and we call the renormalized Hamiltonian HI
BW

.
Second, the expansion also produces longer range hopping terms of the form

HII
BW =

L�pathX

i,j,�

L�a
†
i�bj� +

M�pathX

i,j,�

M�a
†
i�bj� + h.c. (3.20)

The di↵erent L and M paths as well as the nearest neighbour J and next nearest neighbour ⇤ paths
are shown in Fig. 3.3. The total e↵ective B-W Hamiltonian is then

HBW =HI
BW +HII

BW. (3.21)
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Figure 3.4: The Chern numbers (above) and the various amplitudes of hopping (below) are
shown as a function of ↵ = a0A0. An arbitrary spin orbit coupling � = 0.05, a staggered
potential lEz = 0.08t and ! = 10 have been used. The original hopping amplitude t is taken
as the unit of energy. We note that, as the hopping amplitudes di↵er between the two spin
sectors, it is possible to achieve a spin-filtered system in the presence of SO coupling and the
staggered potential. In one such situation, denoted by the white dot, we note that there is
band-touching only for the # spin, whereas the " spin is in the gap. The band-structure near
the K,K

0 point is shown in the inset.

30



Explicit forms of the various hopping amplitudes are given below:

J� =� tJ0(↵) +
4t��

3!

X

n 6=0

�n sin
⇡n

6
+

t3

!2

2

4
X

n 6=0

�n

✓
2 cos

2⇡n

3
+ 3

◆
+

X

m,n 6=0

�nm

✓
4 cos

2⇡n

3
+ 1

◆3

5 ,

(3.22)

⇤0

� =
��J0(↵

p
3)

3
p
3

�
X

n 6=0

t2J2
n(↵)

!n
sin

2⇡n

3
, (3.23)

L� =� 4t��

3!

X

n 6=0

�n sin
⇡n

2
+

2t3

!2

0

@
X

n 6=0

�n cos
2⇡n

3
+

X

m,n 6=0

�nm cos
2⇡(m� n)

3

1

A , (3.24)

M� =� 2t��

3!

X

n 6=0

�n cos⇡n sin
⇡n

6
+

t3

!2

0

@
X

n 6=0

�n cos
2⇡n

3
+

X

m,n 6=0

�nm cos
2⇡(m+ n)

3

1

A , (3.25)

⇤A/B =� t2 (±lEz � µ)

!2

X

n 6=0

J2
n(↵)

n2
cos

2⇡n

3
, µ̃A/B =

0

@1� 3t2

!2

X

n 6=0

J2
n(A)

n2

1

A (±lEz � µ), (3.26)

where �n = Jn(↵)Jn(↵
p
3)/

p
3n, �n = J2

n(↵)J0(↵)/n
2 and �nm = Jm(↵)Jn(↵)Jm+n(↵)/mn. We

mention here a few important points to be noted. The presence of the SO coupling gives rise to spin-
dependent nearest neighbour hopping amplitudes J�. Furthermore, the NNNN hopping amplitudes,
the L and M terms, also become spin-dependent. The staggered onsite electric field Ez plays an
important role in controlling the NNN hopping amplitudes ⇤A,B but appears only as a second order
(in 1/!) contribution. Various amplitudes have been shown in Fig. 3.4, where we note that by
controlling a single parameter, ↵ (which controls the strength of the driving term), their strengths
can be tuned and can give rise to topological phase transitions.

Next, we proceed to write the Hamiltonian in momentum space by Fourier transforming the B-W
e↵ective Hamiltonian, Eq. 3.21. Alternatively, the B-W expansion can also be performed directly
in the momentum space, which we have briefly sketched in the Appendix B. In the basis of the
sublattices, in the spin sector �, the B-W Hamiltonian has the form

HBW� =

✓
�⇤� + ⇠A + µ̃A �J� + �L� + �M�

�⇤J� + �⇤L� + �⇤M� ��⇤� + ⇠B + µ̃B

◆
, (3.27)

where

�J� = J�
⇣
1 + 2e�i3kya0/2 cos

⇣p
3kxa0/2

⌘⌘
, �L� = L�

⇣
e�3ikya0 + 2 cos

⇣p
3kxa0

⌘⌘

�M� = 2M�

⇣
e�i3kya0/2 cos

⇣
3
p
3kxa0/2

⌘
+ e�3ikya0 cos

⇣p
3kxa0

⌘
+ e3ikya0/2 cos

⇣p
3kxa0/2

⌘⌘

�⇤� = �4⇤0

� sin
⇣p

3kxa0/2
⌘⇣

cos
⇣p

3kxa0/2
⌘
� cos (3kya0/2)

⌘

and ⇠A/B = 2⇤A/B
⇣
cos

⇣p
3kxa0

⌘
+ 2 cos

⇣p
3kxa0/2

⌘
cos (3kya0/2)

⌘
. (3.28)
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This gives the energy eigenvalues

EBW

� =
⇠A + ⇠B + µ̃A + µ̃B

2
±

s

|�J� + �L� + �M�|2 +
✓
�⇤� +

⇠A � ⇠B + µ̃A � µ̃B

2

◆2

.

For an undoped system, µ = 0, ⇠A|µ=0
= � ⇠B|µ=0

= ⇠ and µ̃A
��
µ=0

= � µ̃B
��
µ=0

= µ0. Using this,
the above expression reduces to

EBW

�

��
µ=0

= ±
q

|�J� + �L� + �M�|2 + (⇠ + �⇤� + µ0)
2.

⇠ + �⇤� + µ0 is the e↵ective staggered potential and a finite µ simply shifts the energies. The
various amplitudes appearing in the energy expression vanishes at various high-symmetry points
in the Brillouin zone, as shown in Fig. 3.5. As, at the K,K 0 points, the parameters �J�, �L, �M = 0,
�⇤� = ±3

p
3⇤0

� and ⇠ = �3⇤A, the condition for a band touching point is

⇠ + �⇤� + µ0 = 0,

) µ0 = ⌥3
p
3⇤0

� + 3⇤A. (3.29)

Real solutions of ! from this (quadratic) equation provides the band-touching frequencies at K/K 0

points. At the � point, �⇤� = 0, ⇠ = 6⇤A and �J� + �L + �M = 3(L� + 2M� + J�). So, here the
condition for band-touching is to simultaneously satisfy

µ0 = �6⇤A and L� + 2M� + J� = 0. (3.30)

Finally, for the various M points, �⇤� = 0, ⇠ = �2⇤A and �J� + �L + �M = ±(J� � 3L� + 2M�). So,
for a band touching at any of the M points, the condition is to simultaneously satisfy

µ0 = 2⇤A and (J� � 3L� + 2M�) = 0. (3.31)

With appropriate limit Eq. 3.31 and Eq. 3.30 recovers the results quoted in Ref. [47]. A final comment
is to note that as J�, L�,M�,⇤0

� di↵er between the two spin sectors in the presence of the SO coupling,
it is generally not possible to have the bands touching at any of these high-symmetry points for both
the up and down spins simultaneously.

To obtain the low energy e↵ective Hamiltonian, we first need to identify the band-touching points
in momentum space. In general, finding the band-touching points is not easy, because the various
terms in the e↵ective Hamiltonian are only known as a power series in the photon coupling strength. It
is possible, however, to expand the Hamiltonian about a generic Dirac point, (which need not be one of
the symmetric points in the Brillouin zone) which would be useful if we could find the band-touching
points. In this section we will assume that the gap closes at the K and K 0 points in the Brillouin
zone, and write down the e↵ective Hamiltonian, so that we can compare it with the Hamiltonian to
O(!�1) in the high frequency limit, obtained by Ezawa[97], who made this assumption. In the basis
of the two sub-lattices, as can be seen from Eq. (3.27), around the K and K 0 points, the e↵ective
Hamiltonian reduces to

HBW|k=K/K0 ⇡ T� (⌘qx⌧x + qy⌧y) +D⌘
�⌧z � µRI, (3.32)
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Figure 3.5: The various amplitudes in Eq. (3.28) vanish at high-symmetry points in the hexag-
onal Brillouin zone. The �⇤� term vanishes at lines (blue) joining the various M points. All
three �J�, �L�, �M� terms vanish at K and K

0 points, whereas �L� additionally vanishes at six
other high symmetry points in the Brillouin zone, as noted by the green dots.

with

T� =
3a0
2

(2L� � J� +M�)

R = 1 +
3t2

!2

X

n 6=0

J2
n(A)

n2

✓
cos

2⇡n

3
� 1

◆

D⌘
� =

⇣
lEzR+ 3

p
3⌘⇤0

�

⌘
,

⌘ = ±1 for expansions around K and K 0 points respectively and ⌧i are the Pauli matrices in the
sub-lattice space. We note that the contributions from L and M paths, making the NN hopping
spin-dependent was absent in Ref. [97], where the e↵ect of the time dependent vector potential was
taken into account by Peierls substitution only in the NN hopping amplitude but not in the SO
coupling. Although these contributions should be negligible in the case of silicene, it may not be
small for other compounds with larger SO coupling and also for cold atom systems where the value
of the SO coupling is arbitrary. We compute the eigenvalues of the Hamiltonian in Eq. (3.32) by
squaring it, and find

E⌘(q,�) = �µR±
q
T 2
� (q

2
x + q2y) +D⌘2

� . (3.33)

This gives the gap at the K/K 0 point as 2D±
� for spin sector �. The condition for the vanishing of the

gap is the equivalent of the condition given in Eq. (3.29) ( without taking the low energy limit). The
change in sign of the gap D±

� as a function of a parameter signals a topological transition, which is
characterized by the change in the spin Chern number C� of ±1. The gap function at low energies was
earlier computed by Ezawa[97]. Our results agree at low values of the strength of the electromagnetic
field since the work by Ezawa[97] also approximates the value of the Bessel function J0(A) by its
leading quadratic dependence on the strength of the electromagnetic field.
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Figure 3.6: The phase diagram of the e↵ective B-W Hamiltonian, Eq. (3.21) characterized
by the spin Chern numbers (C", C#). Chern numbers along the dashed (red) line is shown
in Fig. 3.4. We have taken a small but arbitrary spin orbit coupling constant � = 0.05t and
! = 10t. We use the standard method for Chern number computation, c.f, Ref. [118].

3.4 Numerical Results

Although, in general time-periodic systems possess a much richer topological classification than static
systems [30], the B-W Hamiltonian Eq. (3.21) is an e↵ective static Hamiltonian and allows us to study
the model in terms of the standard topological classification of time independent systems. Neither
Eq. (3.17) nor Eq. (3.21) mixes the two spin sectors, so the spin Chern numbers C�, (independent for
each spin), can classify the topology of the system. For Eq. (3.17), which is valid in the absence of
any time-dependent perturbation, time-reversal (TR) symmetry is intact, and we expect to have the
total Chern number of the ground state C = C" + C# = 0. This is not necessarily true for the case
of the B-W Hamiltonian in Eq. (3.21), as the polarization of the time dependent field breaks the TR
symmetry explicitly.

First, we compute the phase diagram of the static B-W Hamiltonian, and the results are shown
in Fig 3.6 and 3.7. A phase diagram similar to that in Fig 3.6, but only for a much smaller range of
parameters (both for the strength of the electromagnetic field or light and the applied electric field
Ez) was obtained in Ref. [97]. The TR symmetric phase, i.e., when C = C" + C# = 0 is present only
when both the TR breaking vector potential of the drive or the staggered potentials are small. In
most of the phase-space, C" = C# instead. In relatively small regions of the phase-space, it is possible
to have |C"| 6= |C#| and at the boundaries of these regions, the gap closes for only one variant of the
spin. Now, if the Fermi energy is in the gap of the other spin band, low energy excitations become
completely spin-filtered. The size of such regions depend on the strength of the spin-orbit coupling.
One such case is shown in Fig. 3.4.

To compare the Chern numbers obtained from the B-W expansion with the Chern numbers of the
time dependent system, one critical issue is that the occupations of the quasienergy levels (defined
below) are generally not known. Our approach is similar to that of Ref. [30], and we compute the
Chern number of the quasienergy band below the quasienergy ✏ = 0 which can also be defined in terms

34



of the winding numbers of the time evolution operator above and below the band. For a time-periodic
system on a lattice, the quasienergies ✏n(k) of band n satisfy the Schrödinger equation for the Floquet
Hamiltonian,

HF (k, ⌧)|un(k, ⌧)i = ✏n(k)|un(k, ⌧)i, (3.34)

where HF (⌧) = i@⌧ � H(⌧), k is the Bloch momentum and the Floquet states |un(k, ⌧)i are time-
periodic functions with the same period as that of H(⌧). Numerically, the eigenstates of the time

evolution operator U(T ) = T exp[�i
R T
0
H(⌧)d⌧ ] (T represents time-ordered product and T = 2⇡/!)

provides the Floquet states |un(k, 0)i. As these Floquet states are defined in the Brilloiun zone,
one can compute (using the standard technique[118]) the Chern number for each band. Finally we
compare the Chern number of the up-spin sector obtained from the time-dependent Hamiltonian
with that of the e↵ective B-W Hamiltonian in Fig. 3.7, where the boundaries obtained from the
time-dependent Hamiltonian have been shown by dotted lines. Note that the B-W results are given
both for up-spin and down-spin, whereas to avoid cluttering the diagram, the exact results are given
only for the up-spin sector. Generally, in the large frequency regime, we expect to have excellent
agreement as, in fact, is seen in the figure. Note that for silicene, the spin-orbit coupling is one order
of magnitude smaller than that shown in the figures, and hence the region of splitting between the
up and down spins will be extremely narrow and not visible at the scales shown. For germanene
and stanene, the order of magnitude of the spin-orbit coupling is almost the same as that used in
the figure, and so the phase diagram for both of them will be quite similar to the one shown here.
As mentioned earlier, a time-periodic system possesses a richer topological structure than its static
counterpart [30]. Broadly speaking, the Chern number of our time-periodic system can be written as
C = C0 � C⇡, where C0 and C⇡ are the number of chiral edge states (with the ± signs for opposite
chiralities) at the quasi-energy ✏ = 0 and !/2 respectively [86]. Starting from larger frequencies and
reducing it, once the frequency becomes equal to the band-width, direct transitions from the bottom
of one band to the top of the next band can occur, giving rise to band foldings. This may lead to band
crossings in the extended quasi-energy zone resulting in non-zero C⇡ [86]. So we expect, as long as
! is larger than the band-width, an e↵ective Hamiltonian that is obtained by using a high-frequency
expansion such as the B-W expansion, should reproduce the Chern number correctly. What is further
interesting is that with increasing driving amplitude A, the electrons lose their kinetic energy (J�,
Eq. (3.22)), resulting in a shrinking of the band-width. This, in turn, results in a larger range of
frequency where the B-W Hamiltonian can reliably predict the Chern number. This is shown in
Fig. 3.7, where we see that at low values of the amplitude of the light, the B-W expansion breaks
down at 6t, which is the band-width. But with increasing amplitude of light, the regime of validity
of the B-W Hamiltonian in Fig. 3.7 increases.

Further, even if the B-W expansion does not break down at smaller frequencies, the higher order
contributions of the expansion may no longer be negligible. Such situations, where the e↵ective
Hamiltonian fails to predict the correct Chern numbers occurs with smaller values of !/t. In the
Fig. 3.7, such discrepancies occur only a very small region (red line) and extends below !/t < 2.

3.5 Conclusion

In summary, we have discussed a high-frequency e↵ective Hamiltonian, using the Brillouin-Wigner
expansion method, to describe periodically driven honeycomb lattice systems with spin-orbit coupling
and staggered potentials. Our e↵ective Hamiltonian successfully predicts the topological nature of
the system for a wide range of parameters and also provides the opportunity to explore non-trivial
topological phases with external controls.
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Figure 3.7: The phase diagram of the e↵ective B-W Hamiltonian for both up and down spins,
Eq. (3.21), with the frequency of the drive ! and the strength of the drive ↵. In the shadowed
region, when the band width of the e↵ective Hamiltonian becomes bigger than the driving
frequency, the Chern number fails to match with the exact computation discussed in the text.
We do not show other phases that appear in this shadowed region for the exact computation.
We compare the phase boundaries of the up-spin sector of the B-W Hamiltonian with those
from the exact numerical results (indicated by dashed lines) and see that they match exactly
at high frequencies. In other regions, even for comparatively small !/t up to 2, the match
is still excellent. In the red region near ↵ ⇡ 5.0 (marked along the axis), the Chern number
fails to match with exact computation, which is generally true for smaller !/t as higher order
expansion becomes necessary. Other phases are similar to that in Fig. 3.6.
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Although the B-W and other similar high-frequency expansions provide e↵ective time-independent
Hamiltonians of the time periodic system, that does not necessarily mean that they can capture and
predict correct physical properties. The time-periodic system is inherently a non-equilibrium system
and in general possesses no ground state. The lack of clarity of the occupation statistics of the
electrons remain a critical issue to be resolved in such systems [101, 98, 99], which in turn may
limit predictions of transport properties. Preparing such non-equilibrium Floquet ground state [100,
102] and predicting their transport properties are also being intensely investigated. If the driving
frequency is much larger than the band width, then the energy absorption in the system is likely
to be negligible [103, 104, 48, 105], and in this limit the system might be represented as being in
quasi-equilibrium, at least for a finite time [106]. In this case, it can be described by an e↵ective
Hamiltonian such as the B-W Hamiltonian. Nevertheless, it may be interesting to see how well
the transport properties as computed from a B-W Hamiltonian compares with the other methods
of computing non-equilibrium transport of the time-dependent system. We hope to return to such
studies in the future.
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Chapter 4

Bulk-Edge Correspondence for
Periodically Driven Systems

4.1 The low frequency analysis

This chapter aims to study the periodically driven systems when these are exposed to the radiation
of frequency less than the bandwidth of the system. We have discussed the high frequency analysis
where we performed the systematic Brillouin-Wigner expansion of the Hamiltonian to second order
in the inverse of the frequency, not only in silicene, but in other spin-orbit coupled materials [107, 47].
But, as was discussed in the last chapter, the BW expansion breaks down when the frequency !
becomes smaller than the band-width of the e↵ective Hamiltonian. The real constraint on the appli-
cability of the BW expansion is a combined bound on both ! and the amplitude of driving and in fact,
the validity of BW increases, even for lower frequencies when the amplitude increases. However, the
physical reason for the breakdown of the earlier studies at low frequencies is because, at frequencies
comparable to the band-width, it is no longer possible to neglect the topology of the quasienergy
space, which forms a periodic structure with the single valuedness of the eigenfunction requiring the
quasienergies to be within a “Floquet zone”. Low frequency driving can lead to crossings between
the bottom of one Floquet band and the top of the next Floquet band. These crossings are neglected
in the BW expansion and hence, the study of the driving at low frequencies requires a new formalism
which goes beyond the e↵ective static approximation of a dynamical Hamiltonian.

Such a formalism has been studied[30] recently, where it was shown that although the Floquet
spectrum can be organised into quasi-energy bands, and the Chern numbers of these bands can be
computed, just this one number was not su�cient to classify the system completely and to predict
the edge spectrum. It was shown instead, that the Chern number of the band which is computed by
integrating the Berry curvature over the whole Brillouin zone is actually the di↵erence between the
number of chiral edge modes leaving the band from above and those entering the band from below.
Since in a static system, the spectrum is bounded from below, the edge states entering the band were
always zero; hence, the Chern number of the band was su�cient to determine the edge spectrum.
But for Floquet systems, this is no longer true and it is possible to have edge states even when the
Chern number of the band is zero. So to really characterise the edge states, one needs to have access
to full time-dependent bulk evolution operator U(t), evaluated for all intermediate times within the
driving period[30]. The invariant thus computed predicts the complete Floquet edge-state spectrum.

It was shown that the number of the edge states, counted with a sign corresponding to their
chirality, is related to the winding number of the bulk time evolution operator and it was also shown
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that the di↵erence in the winding numbers at two di↵erent energies was precisely equal to the sum
of all the Chern numbers that lie between these energies. More specifically, for a two band model
with the Fermi energy at zero quasi-energy, it was shown that the gaps at zero quasi-energy and at
the zone boundary !/2 gave rise to winding numbers C0 and C⇡, whose di↵erence gave the Chern
number of the band. In other words, a Floquet topological insulator is characterized by two integers,
in contrast to the single Chern number for static topological insulators.

While this formalism is, of course, applicable both in the high frequency as well as the low
frequency regime, at high frequencies, since the frequency is much larger than the band-width, the
zone boundary is not accessible. Hence, in the high frequency limit, computation of the Chern
numbers at zero quasi-energy is su�cient to characterize all the phases.

However, in most cases, the high frequency, strong amplitude limit needed for obtaining new
topological phases is currently experimentally unattainable and in recent times, the focus on low
frequencies has increased. Early work in this area focussed on graphene [108, 109, 110, 111] and
showed not only the existence of several new phases and resulting chiral edge modes, but also how
disorder could enhance conductance by several orders of magnitude. Broad dips in the conductance at
resonances between valence and conduction bands in graphene nano-ribbons have been predicted [112]
and more recently studied [113] in detail. New states with optically induced changes of sub-lattice
mixing have been identified [114]. Quantum resonances have been studied in irradiated graphene
n-p-n junctions [115]. The role of the symmetries of the instantaneous Hamiltonian and the time-
evolution operator in determining the phase diagram at ultra-low frequencies in irradiated graphene
using the adiabatic impulse method has also been recently emphasized [116]. More recently, universal
fluctuations of the topological invariants have also been studied [117].

Here, we will compute the Chern numbers of a silicene 1 band, both at zero quasi-energy and at
the zone boundary, and for both spin up and spin down electrons, since the up-down symmetry is
broken in the presence of spin-orbit coupling. We will work in the low frequency regime, where the
static approximation does not hold; however, it is still possible to reliably compute Chern numbers
using numerical methods. We will show explicitly that the bulk-boundary correspondence holds, by
checking that the C�

0
and C�

⇡ as obtained by counting the number of edge states at the right and left
edges of the sample, agrees with the Chern number of the bulk obtained from C�

⇡ � C�
0
.

4.2 Computation of dynamical band structure

We start with two dimensional Dirac systems which are buckled due to the large ionic radius of the
silicon atoms and consequently have a non-coplanar structure unlike graphene. These materials can
be described by a four-band tight binding model in a hexagonal lattice given by

H = �t
X

hi,ji,�

c†i�cj� +
i�

3
p
3

X

hhi,jii,�

�⌫i,jc
†
i�cj�

+lEz

X

i�

⇠ic
†
i�ci� . (4.1)

Here, the first term is the kinetic term where t is the hopping parameter. The second term represents
the spin-orbit coupling term where the value of � depends on the material and ⌫i,j = ±1 depending on
whether the next-nearest neighbour hopping is clock-wise or anti-clock-wise. The last term represents
the staggered sub-lattice potential due to the buckling. When a beam of circularly polarised light is
incident on the sheet, the corresponding electro-magnetic potential A = (A0 cos(!⌧), A0 sin(!⌧), 0) is

1We will generically use the name silicene to denote materials with non-zero spin-orbit coupling and buckling.
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Figure 4.1: The phase diagram for the model Hamiltonian in Eq. 4.1 as we vary the amplitude
↵ and the drive frequency !, with the external electric field fixed at lEz = 0.08t. Each phase
is characterized by the spin resolved quantum numbers (C", C#). We label the phases by
calligraphic letters. The dotted lines Pi indicate the topological phase boundaries, inferred
from the gap closing in momentum space, shown only for the " spin sector.

introduced into the Hamiltonian using Peierls substitution. ! is the frequency of light and A0 is its
amplitude. In the Fourier transformed space, this is written as

H(⌧) =

0

BB@

lEz � �� �t 0 0
�⇤t �lEz + �� 0 0
0 0 lEz + �� �t
0 0 �⇤t �lEz � ��

1

CCA (4.2)

where

��(⌧) =
2�

3
p
3

"
p
3a0 sin k̃x � sin

 p
3a0
2

k̃x +
3a0
2

k̃y

!

� sin

 p
3a0
2

k̃x �
3a0
2

k̃y

!#
(4.3)

with k̃x = kx +A cos!⌧ and k̃y = ky +A sin!⌧ and

�t(⌧) = t [exp(�i↵ sin!⌧)

+T+exp
i↵(

p
3 cos!⌧ + sin!⌧)

2

+T�exp
i↵(�

p
3 cos!⌧ + sin!⌧)

2

#
(4.4)

with T± = exp(ia0(±
p
3kx+3ky/2)). Here, we have defined ↵ = Aa0, where a0 is the lattice constant.
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Figure 4.2: The phase diagram as a function of the amplitude ↵ and the external electric field
lEz. A low drive frequency is chosen (! = 3.0t) since we wish to study the system in the low
frequency limit. All the phases are the same as those found in Fig.4.1 except for three new
phases - H, I and J . The labelling of the phases follows the same convention as in Fig. 4.1.

For the bulk system, the vector potential and hence the Hamiltonian is periodic in both the x
and y directions. This implies that we can rewrite the Hamiltonian in terms of a Floquet eigenvalue
problem with the Hamiltonian given by

HF = �i
@

@⌧
+H(⌧), (4.5)

the eigen functions given by
 k,b(x, y, ⌧) = ub(kx, ky, ⌧)e

ir·k�i✏b⌧ (4.6)

with ub(kx, ky, ⌧) = ub(kx, ky, ⌧ +2⇡/!), and where ✏b are the quasienergies or the eigenvalues of HF .
The Hamiltonian can now be solved numerically as a function of the amplitude A0, frequency ! and
the sub-lattice potential Ez, both for the quasienergy eigenvalues and for the wave-functions.

At high frequencies, ! constitutes a large gap between unperturbed subspaces, and the extended
Floquet Hilbert space splits into decoupled subspaces with di↵erent photon numbers. Since the
perturbation scale of the Hamiltonian, which is the band-width t, is much smaller than !, one can
use systematic perturbation theory to include virtual processes of emitting and absorbing photons, and
upto a given order in perturbation theory, one can obtain an e↵ectively static Hamiltonian as shown
in Ref. [107]. The Chern numbers for the model can then be computed by integrating the Berry
curvature over the whole Brillouin zone [118] using the eigenvectors of the e↵ective Hamiltonian.
However it is expected that such an expansion in 1/! would fail to predict the correct Chern numbers
once the frequency of the drive, !, becomes comparable to the bandwidth. This is the part of the
phase diagram that we shall complete in this paper.
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4.3 The phase diagram of the Floquet Hamiltonian

As the frequency of the drive becomes comparable to the e↵ective bandwidth of the system, it is
essential to now consider the complete nature of the quasi-energy bands in the computation of the
topological invariants of the system. As was mentioned in the introduction, the quasi-energy bands
(of the two band system) are now identified with two topological invariants, C0 and C⇡ and the net
Chern number of a band is given by C = C0 � C⇡ (independently for each of the spins).

The Fourier-transformed time-dependent Hamiltonian (Eq. 2) is block-diagonal in the spin space.
For either the " or the # spin, it is a 2 ⇥ 2 Hermitian matrix which encodes the bulk properties of
the system. The time evolution operator at stroboscopic times can then be written as

U(k, 2⇡/!) = T e�i
R 2⇡/!

0 H(k,⌧)d⌧ . (4.7)

and the Floquet states ub(kx, ky, 0) are the eigenstates of this operator. The Chern number of each
Floquet band is then defined by integrating the Berry curvature of the Floquet states over the whole
Brillouin zone -

C =
1

2⇡

Z

BZ
dkxdky(r⇥Alower(k)), (4.8)

where Alower is the Berry connection in terms of Floquet states of the quasi-energy band with
quasienergy lying between (�!/2, 0). We numerically compute the Chern numbers of the lower
band (of both " and # spins) following the work by Fukui et al [118].

When the parameter ranges are such that a high frequency approximation would be valid, the
Chern number computed using the e↵ective static Hamiltonian would exactly match the one obtained
by considering the Floquet states. In this sense, the following phase diagram that we present comple-
ments what has been obtained earlier in Ref. [107], and completely specifies the topological phases of
the system for all parameter regimes.

The phase diagrams for both the up spin and the down spin bands are presented in Figs. 4.1
and 4.2. In Fig. 1, we show the Chern number of the lower quasienergy band as a function of the
amplitude of the drive versus the frequency, whereas in Fig. 2 we show it as a function of the amplitude
of the drive versus the sub-lattice potential. For lower frequencies, many di↵erent phases appear and
appear to follow a fractal structure, as was seen for graphene in Ref.[119]. But as such phases are not
expected to be protected by a large enough band-gap, we have only shown phases which are ‘large
enough’ (occupy enough area in the phase diagram) and we have ignored tinier phases. As ↵ ! 2
and ! ! 6, these phases smoothly go over to the high frequency phases in Ref. [107]. We have also
chosen to name only those phases that are large enough to be possible stable phases in calligraphic
letters as A,B . . .J , with A,B, C, E ,F being present in both Figs. 4.1 and 4.2, and B0,D,G in Fig.4.1
and H, I,J in Fig. 4.2. Note that there are two phases B and B0 which have identical values of the
Chern numbers for both the " spin band and the # spin band. Nevertheless, they are two distinct
phases since they occur for di↵erent values of ! and ↵ and are not continuously connected to each
other and they could have di↵erent edge state structures. Note also the existence of a phase A which
has zero Chern numbers for both spin " and spin # electrons. We will see later in the next section,
that this is a topological phase and has edge states despite having zero Chern numbers.

The lines that separate the phases are when the gap closes and the gap closing typically occurs
at the high symmetry points of the Brillouin zone as shown in Fig. 4.3. For the lines P2, P4 and P5,
the gap closes at the � point whereas for the P1 and P3 lines, it closes at the K point and for the P6

line, the closure happens at the half-way point between the � point and the K point. Note that we
have concentrated on the spin " bands and hence have lines separating region C from E , which have
di↵erent Chern numbers for " spin, but no line separating regions C from B, which have the same
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Figure 4.3: Gap closing points in the Brillouin zone along the Pi (i = 1 . . . 6) phase boundaries
(drawn in Fig.1) as described in the caption of Fig.1.

Chern number for " spin. A similar analysis can be done for the # spin case.
We note that the Chern number changes by ±2 at the P5 crossing, which essentially implies a

quadratic touching of the bands. This is similar to the transition explained in Ref. [108] where the
Hamiltonian for the first � point transition at the Floquet zone boundary was obtained perturbatively,
and was shown to lead to a Chern number change of ±2. This can only happen at the spherically
symmetric � point. Along P1, P2, P3 and P4, the change in the Chern number is ±1 and the band
touching happens at the � or K points. Along P6, however, the change in the Chern number is ±3.
This happens at 3 points in the Brillouin zone, symmetric around the � point as shown in Fig. 4.3.
We have also checked that a change of the chirality of the circularly polarized light, besides changing
signs of all the Chern numbers also breaks inversion symmetry with respect to the gap closing diagram
in Fig. 4.3. The blue points are at K 0 instead of K points and the green points are placed so as to
complete the smaller hexagon.

However, the computation of the Chern number does not specify the C0 and C⇡ invariants indi-
vidually. As the bulk-boundary correspondence in our system comes from these invariants, to discover
these two indices, we need to consider the edge-state structure in a system with edges - e.g., a ribbon
geometry. This is what we shall discuss in the next section.

We complete the study of the phase boundaries and their relation to the high symmetry points of
the Brillouin zone for down spin also. Below we draw the phase boundaries for down spin and label
them by Q1, Q2, ...Q7 in the phase diagram shown in Fig.4.5. Next, we show that the gap closing
points for the # spin also occur at one of the high symmetry points of the Brillouin zone Fig.4.6.

4.4 Connection of bulk topology to the boundary

In this section, we study the quasi-energy band-structure of the model in an infinite zigzag nanorib-
bon geometry, with a finite width. We identify the four integers C"

0
, C#

0
, C"

⇡, C
#
⇡ (defined later) that
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Figure 4.4: The quasi-energy band structure of a zigzag nanoribbon of the periodically driven
spin-orbit coupled system for phase A. Both spin sectors, " and # (shown in red and black
respectively) possess one pair of chiral edge states both at zero quasi energy and Floquet zone
boundary. We also label the chirality of the left edge state at the two inequivalent gaps by R
or L depending on whether the state is right-moving or left-moving. The system is finite in
the y-direction while the x-direction is periodic.
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Figure 4.5: Phase diagram for the model Hamiltonian in Eq.4.1 as we vary the amplitude
↵ and the drive frequency ! in the resonant coupling limit, fixing the external electric field
at Ez=0.08 t. Each phase is characterised by spin resolved quantum numbers (C", C#). We
label the phases by calligraphic letters. The dotted lines Qi indicate the phase boundaries
(gap closing points) in momentum space along the topological phase boundaries for the # spin
sector only. A similar analysis for the " sector has been shown before.

Figure 4.6: Gap closing points in the Brillouin zone along the Qi, i = 1 . . . 6 phase boundaries
(drawn in Fig.1) as described in the caption of Fig.1.
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Table 4.1: Spin-resolved topological quantum numbers and the edge states for phases in
Figs.4.1, 4.2

.

Phases (C"
, C

#) C
"
0

C
"
⇡ C

#
0

C
#
⇡

A (0,0) 1 1 1 1
B,B0 (+2,+2) 0 �2 0 �2
C (+2,+3) 0 �2 1 �2
D (+1,+2) �1 �2 0 �2
E (+3,+3) 1 �2 1 �2
F (+1,+1) 1 0 1 0
G (+1,+1) �1 �2 �1 �2
H (+1,+1) 0 �1 0 �1
I (�2,�2) 0 2 0 2
J (�1,�1) 0 1 0 1

characterize Floquet topological insulators in our model, in each of the phases in Fig. 4.1 and 4.2,
by choosing appropriate values of !, ↵ and lEz. A representative diagram for the phase A has been
shown in Fig. 4.4 and the remaining diagrams have been relegated to the appendix. The spectrum
has been shown slightly beyond the ‘first Floquet-Brillouin zone’, �!/2 < ✏b < !/2, so that the edge
states at the zone boundary are clearly visible.

The first point that we note is the gaps and the edge states at the zone boundaries (at ✏b =
!/2 ⌘ �!/2). In the high frequency regime studied earlier, we had restricted ourselves to frequencies
below the zone boundaries (i.e, at ✏ = ±!/2), and hence the edge states at the zone boundary do not
appear. However, in this work, our main focus is on the low frequency regime, and one of our aims is
to explicitly check that the Chern number of the band is given by the di↵erence between the number
of chiral edge states above and below the band. How do we count the number of chiral edge states?
As shown in Ref. [30], the number of edge modes are related to the winding number of the Floquet
operator. Unlike the Chern number of a band, which depends only on the stroboscopic dynamics
of the Floquet operator, the winding number has information about the circulation direction, which
gets related to the direction of propagation of the edge states. In a Floquet system, the chirality at
a given edge depends on details of the driving and can be either positive or negative, independent of
the chirality of the driving force[120]. The chirality of the driving force only provides the required
time-reversal breaking. However, at low frequencies, there is no direct relation between the chirality
of the drive and the chirality of the edge states, since the drive can lead to multiple gap closings and
openings with multiple edge states. Hence, the edge state chirality needs to be explicitly computed
for each phase.

Let us now focus on the Floquet band structure in the various di↵erent phases. For illustration,
let us confine ourselves to the spin up band. Let us also confine our attention to the left edge (L). The
determination of the chirality of the edge state as shown on the graph is made by actually checking
whether the right-moving state (positive slope) is at the left edge or at the right edge and similarly
whether the left-moving slope (negative slope) is at the left or right edge. This can be done explicitly
since we have numerically obtained all the wave-functions. We can now easily count the number of
chiral edge states at the band-gap at zero, and at the band gap at !/2, in the various plots in the
panels in Fig. 4.4 and in the appendix. We choose a convention where a right-moving (positive slope
in the energy versus momentum plot) at the left L edge state is assigned a winding number or chirality
�1 and a left moving (negative slope) state is assigned a chirality +1. We then compute C�

0
by taking

it to be �1/+ 1 depending on whether the L state ( or states) in the band-gap at zero frequency is
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right-moving or left-moving and adding up the values. Similarly, in the band-gap at frequency !/2,
we compute C�

⇡ by taking �1/+1 for each right-moving/left-moving state and adding up the values.
For instance, in Fig. 4.3, for the spin-up band, at zero frequency, there is a single edge state at the
left edge which has negative slope; thus C"

0
= +1. At the frequency !/2 also, there is a single edge

state at the left edge with negative slope, thus C"
⇡ = +1 as well. The Chern number of the " band in

phase (A) was computed earlier to be C" = 1 which precisely agrees with C"
0
�C"

⇡, as expected from
Ref. [30].

Using the same method, C�
0
and C�

⇡ can be computed for each of the phases in Fig. 4.1 and 4.2
and the results are tabulated in Table 1. Note that, as expected, the Chern number of the band,
C� = C�

0
� C�

⇡ in each case. Note also that the phases A,B, C, E ,F in the table are present in both
Figs. 4.1 and 4.2, whereas B0,D and G occur only in Fig.4.1 and H, I and J only in Fig. 4.2.

We also compute the Floquet band structure in a zigzag nano ribbon in all the di↵erent phases
which have been shown in Figs.4.1 and 4.2. The name of the phase, as well as the values of C0 and C⇡

are given in the figure itself Fig.4.7. As described above, C0 and C⇡ are computed by taking it to be
�1/+1 depending on whether the L state (or states) in the appropriate band-gap is right-moving or
left-moving at the left edge of the sample and adding up the values. We note that the phase A which
has zero Chern number but has two pair of edge states appearing at the Floquet zone boundary and
near the zero quasienergy is similar to the anomalous Floquet Anderson insulator studied by Rudner
et. al [30].

4.5 Conclusions

In comparison with earlier studies of irradiated graphene, the main di↵erence for spin-orbit coupled
materials is the fact that the phase boundaries for the spin " electrons and the spin # electrons occur
at di↵erent points in the parameter space. Besides, due to the buckling, an external electric field can
be applied which can tune the masses at the K and K 0 points . This external tuning parameter helps
in finding new phases as seen in Fig. 4.2, which do not exist in graphene.
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Figure 4.7: The quasi-energy band structure of a zigzag nanoribbon of the periodically driven
spin-orbit coupled system for the phases A,B,B0

,D, E ,F . The drive parameters, amplitude
and frequency for each phase are given in each diagram. Other labelings are same as fig.4.4.
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Chapter 5

Summary

In this thesis, we have mainly studied the e↵ect of including spin-orbit coupling in Dirac materials.
This is applicable to materials such as silicene, germanene and stanene. An understanding of the
role of spin-orbit coupling is crucial, for applications in the field of spintronics, where the spin, rather
than the charge of the electron is utilised. Current research in the field focuses on manipulating the
band structure of materials such a graphene, as well as spin-orbit coupled materials like silicene, so
that they can be used for spintronic applications.

In this context, we have studied silicene junctions, where part of the material is polarised by cou-
pling it via the proximity e↵ect to a ferromagnet. In particular, we have studied a ferromagnet-normal
material-ferromagnet junction. In this geometry, we have obtained spin and valley polarisations in
terms of the independent conductances of the di↵erent spins at the two valleys and the band structure
of ferromagnetic silicene, and saw how one could obtain pure valley or spin polarisation by modulating
the external electric field. The spin-orbit coupling was crucial to get this result, which does not oc-
cur in graphene. We also investigated the oscillatory behaviour of the transverse magneto-resistence
(TMR) with respect to the strength of both spin independent and spin-dependent barrier potentials
and showed how the TMR can even change sign as a function of the external electric field.

We have also studied the e↵ect of shining light on spin-orbit coupled materials. Similar to earlier
work on graphene, we showed that the parameters of the Hamiltonian and the band structure are
a↵ected by driving the system by shining circularly polarised light. Using a perturbation expansion
known as the Brillouin-Wigner expansion, we computed the e↵ective Hamiltonian in the zero-photon
subspace not only to order O(!�1) but by keeping all the important terms to order O(!�2) and
obtained the photo assisted correction terms to both the hopping and the spin-orbit terms, as well
as longer-ranged hopping terms. We then used the e↵ective static Hamiltonian to compute the phase
diagram in the high-frequency limit and compared it with the results of direct numerical computation
of the Chern numbers of the Floquet bands and showed that at su�ciently large frequencies, the B-W
theory high-frequency expansion worked well even in the presence of spin-orbit-coupling terms. We
also investigated topological phase transitions beyond the high-frequency regime and unearthed many
new topological phases. These phases are characterised by the spin-resolved topological invariants,
C0", C0#, C⇡" andC⇡#, which specify the spin-resolved edge states traversing the gaps at zero quasi-
energy and the Floquet zone boundaries respectively. We showed that for each phase boundary, and
independently for each spin sector, the gap closure in the Brillouin zone occurred at a high symmetry
point.

There is an upsurge in the study of proximity induced spin-orbit coupling in graphene which
would help to integrate graphene into functional devices. There has been experimental studies on
methods like hydrogenation [128], fluorination [129] and heavy adatom adsorption [130]. Our study
would be relevant in these systems also. Moreover, we focussed on Dirac materials with spin-orbit
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coupling in solild-state systems but, the study can also be extended to two dimensional optical lattices
where one can artificially synthesise spin-orbit coupling with a combination of microwave driving and
lattice shaking [131] and also to ultra cold atoms [132], in both bosonic [133, 134] and fermionic
systems [135, 136] where the Raman coupling has been shown to give rise to an e↵ective spin-orbit
interaction. These are a few extensions that we have in mind for the future. Besides this, a more
general understanding is required of how systems behave under low frequency driving, where it is not
possible to get an e↵ective static system. This is a more long-term future goal. Finally, our work on
driven systems has mainly dealt with closed systems. It would be of interest to understand the more
general problem of driving in open systems.
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Chapter 6

Appendix

6.1 Derivation of momentum space Hamiltonian for spin-
orbit coupled Dirac materials

The tight binding Hamiltonian of silicene like materials 1 in real space include following terms [26] -

H = �t
X

hi,ji,↵�

c†i↵cj↵ + l Ez

X

i,↵

⇠i c
†
i↵cj↵ � µ

X

i,↵

c†i↵ci↵ +
i�

3
p
3

X

hhi,jii,↵,�

⌫i,j c†i↵ �
z
↵� cj�

+i�R1

X

hi,ji

c†i↵

⇣
~� ⇥ ~dij

⌘z
↵�

cj� � i�R2

X

hhi,jii,↵�

⇠i c
†
i↵

⇣
� ⇥ d̂ij

⌘z
↵�

cj� . (6.1)

where, the first term represents the nearest neighbor hopping. Second term represents the staggered
potential term which is arised due to buckled structure of these materials. Chemical potential term
is given by the third term which is the on-site term. Last three terms represent the e↵ective atomic
spin-orbit coupling which is next nearest neighbour, extrinsic Rashbha spin-orbit which is induced by
the external electric field which is the nearest neighbour and intrinsic Rashbha spin-orbit associated
with the next nearest neighbour. Now, we Fourier transform each term to get the momentum space
Hamiltonian.

Fourier transforming the atomic intrinsic SOC -

Hso =
i�

3
p
3

X

hhi,jii,↵�
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#

1We call silicene like materials to the Dirac materials with spin-orbit coupling.
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Now,

X
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The intrinsic Rashbha -

HR2 = �i�R2
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Let us focus on the A-sublattice -
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Now, Fourier transforming this term -
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Figure 6.1: Next nearest neighbour for A and B sub lattice

where, ✓j is the angular direction of the NNN. There are six NNN for each sub lattice -
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Similarly, for B-sub lattice -
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Let us focus on the fifth term, the extrinsic Rashbha spin-orbit coupling -
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⌘
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⇣
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(6.10)
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) Hso =
i�
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p
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⌘
(6.11)

Finally, the full Hamiltonian in momentum space can be written as -

Hfree = �t
X
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†
k,"bk," + �⇤k b
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(6.12)

= t
X

k

�k
⇣
a†k"bk" + a†k#bk#
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(6.13)

=  †
k Hfree  k (6.14)
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where,

�k =
3X

i=1

eik·�i

�so =
�2�

3
p
3
(sin(k.a1)� sin(k.a2) + sin(k.a3))

sk = �R1

3X
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e�i✓jeik.bj

⌘k =
8 i�R2

3

X

j
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(6.15)

6.2 Derivation of B-W Hamiltonian from Fourier com-
ponents of momentum space Hamiltonian

The Hamiltonian for "-spin charge carriers in silicene -

H(k, t) =

✓
⇠(k, t) �(k, t)
�(k, t)⇤ �⇠(k, t)

◆
(6.16)

where,

�(k, t) = t
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(6.17)

With Pierels substitution -
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To restore the Bloch form, we make a gauge transformation on B-sites,

cBk ! cBk eik.a1 (6.18)
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hence, we will get �(k, t) as -

�(k, t) = t
h
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There won’t be any change in ⇠(k, t).

So, �(k, t) and ⇠(k, t) in eq.(6.17) with Peierls substitution have following form -
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Fourier components of �(k, t) and ⇠(k, t) -

If we have a function,
f(t) = e�i( �1sin�+ �2cos�)

Then the Fourier components of f(t) will be -

fn = Jn(↵)e
�in�

where, ↵ =
p
�2
1
+ �2

2
and � = tan�1 �2

�1

We have t-dependent exponential in each term of �(k, t) and ⇠(k, t). We can use above result to find
the fourier components of each time-dependent term.

We can write �(k, t) and ⇠(k, t) as -

�(k, t) =t
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Now the Fourier components of di↵erent functions will be -

fn
1,2(t) = Jn(↵)e
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Hence, Fourier components of �(k, t) becomes -
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Similarly, Fourier components of ⇠(k, t) becomes -

⇠n(k, t) = i⇤
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If one considers A sublattice as B then ⇠n(k, t) will be -
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(6.22)

Now, the Fourier components of the Hamiltonian can be written as -

Hn(k, t) =

✓
⇠n(k, t) �n(k, t)
�n(k, t)⇤ �⇠n(k, t)

◆
(6.23)

where, the Fourier components of �n and ⇠n are given by eq.(6.20) and (6.21). Now, one can use the
Fourier components of the Hamiltonian to derive the e↵ective time-independent Hamiltonian using
B-W expansion given by eq.(3.8) and (3.9).
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