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Summary

Linear perturbation of relativistic accretion on to black holes leads to the emergence

of an embedded curved acoustic geometry. The acoustic perturbations are governed

by this emergent sonic geometry. Such emergent acoustic spacetime could be studied

to gain knowledge about different interesting properties of curved spacetime as the

metric possesses many properties which are analogous to the kinematic properties

of general relativistic spacetime. Such analogous properties which are found in an

acoustic spacetime includes a sonic horizon and corresponding acoustic Hawking

radiation in the form of a thermal spectrum of sound quanta emitting from the

sonic horizon. Below we list the main results of our study:

• The emergence of acoustic geometry is independent of the physical quantity

in terms of which we obtain the perturbation equation that is compared to the

equation of massless scalar field in curved spacetime. For particular geomet-

rical configuration of the accreting matter, linear perturbation of the velocity

potential, the mass accretion rate and the relativistic Bernoulli’s constant give

rise to the same acoustic spacetime metric up to a conformal factor.

• The acoustic spacetime metric depends on the geometrical configuration of the

accreting matter quite sensitively. The acoustic spacetime metric for constant

height flow and conical flow are the same but differs for accretion disc under

hydrostatic equilibrium along the vertical direction.

• Location of the acoustic horizon coincides with the critical points of the sta-

tionary accretion flow. Critical points are defined as the place where the

gradient of the ‘advective velocity’ has 0/0 form. Depending on the geomet-
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rical configuration of the accreting matter, the critical points and hence the

acoustic horizon may or may not be isomorphic to the transonic surface. For

constant height flow and the conical flow, acoustic horizon and the transonic

surface are coincidental but for a disc, under vertical equilibrium, they are

located at different points.

• The causal structure of the acoustic spacetime constructed by the null sound

rays clearly shows the location of acoustic horizon and tilting of the sound

cones.

• Axially symmetric accretion flow could encounter a stationary shock. In such

cases, the flow becomes multi-transonic. The flow starts subsonically at large

radial distance and becomes supersonic at the outer sonic point. After that,

it encounters a shock and becomes subsonic. The subsonic flow then again

becomes supersonic at the inner sonic point. The causal structure of the

acoustic spacetime corresponding to such multi-transonic shocked accretion

flow shows that the shock location could be interpreted as an acoustic white

hole horizon.

• The acoustic surface gravity is proportional to the gradient of the ‘advective

velocity’ minus the gradient of the sound speed evaluated at the acoustic

horizon.

• Standing and travelling wave analysis of the perturbation equation implies

that the stationary accretion solutions are stable under linear perturbation.

• For disc under vertical equilibrium, the transonic surface is not identical to

the acoustic horizon. This is due to the fact that the speed of the acoustic

perturbation in such a system is not exactly equal to the local sound speed.

It is possible to define an effective sound speed which is the speed of the

propagation of the acoustic perturbation. The transonic surface defined in

terms of this effective sound speed coincides with the acoustic horizon.

2
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1
Aspects of analogue gravity

It was the seminal work of Unruh [1] that led to a new area of research known as

the analogue gravity phenomenon. In the last few decades, the field has expanded

hugely and encampasses a diverse list of physical systems where analogue gravity

phenomena could be studied. An analogue model of gravity possesses interesting

properties which are analogue counterparts of properties found in general relativity.

The most important of such properties is the existence of an acoustic event horizon

similar to the gravitational event horizon of a black hole in general relativity. An

acoustic event horizon is the boundary of an acoustic black hole or the so-called

“dumb hole” [2] from which acoustic waves cannot escape to the outside similar to

the case of the event horizon of a black hole from which light can not escape to the

outside.

By studying the behaviour of quantum fields in the background (classical) curved

spacetime near the event horizon, Hawking predicted that a black hole is not entirely

black and it actually radiates as a black body with a thermal spectrum of Planckian

distribution with a temperature T H [3]. This is a striking result which comes out as

a consequence of treating the fields as quantum fields and thus provides a way to test

the ultimate theory of quantum gravity which is yet to be well understood. Though

this result of Hawking was derived in the context of black hole spacetime, such

Hawking-like effect is not exclusive to black holes in general relativity. Hawking-like

effect could be seen in other systems (where there is no effect of general relativity)
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Chapter 1. Aspects of analogue gravity

also. As the Hawking radiation is a kinematic effect, the only requirement for

the Hawking-like effect is the existence of a Lorentzian metric with some sort of a

horizon[4].

Analogue gravity systems, because of the presence of the acoustic spacetime and

the acoustic event horizon, thus provides a platform where Hawking-like effect,

henceforth called analogue Hawking radiation, could be observed. Unruh, in his

paper [1], showed that in a Newtonian (non-relativistic flat spacetime) system of

transonic fluid there exists an acoustic horizon and a thermal spectrum of acous-

tic quanta may be radiated from the acoustic horizon in the same way Hawking

radiation is emitted from the event horizon of black holes. The analogue Hawk-

ing temperature T AH of the emitted radiation is given by the same formula as in

Hawking radiation with the only difference that the black hole surface gravity is

replaced by acoustic surface gravity κ which is proportional to the gradient of the

velocity of the transonic fluid at the acoustic horizon. Thus by exploring analogue

gravity systems, we are able to look into different aspects of curved spacetime in a

laboratory set up. Below, we provide a brief account of the emergence of acoustic

spacetime in a Newtonian fluid system.

1.1 Acoustic spacetime in Newtonian transonic fluids

The following treatment is borrowed from [5]. We consider a barotropic, inviscid

and irrotational fluid in Newtonian background. Such a fluid is governed by the

continuity equation

∂tρ+∇.(ρv⃗) = 0, (1.1)

and the Euler equation

∂tv⃗ + (v⃗.∇)v⃗ +
1

ρ
∇p+∇ϕ+∇Φ = 0. (1.2)

where, v⃗ is the velocity of the fluid, ρ is the density of the fluid, p is the pressure

of the fluid, ϕ is the gravitational potential and Φ is the potential for any external

8



1.1. Acoustic spacetime in Newtonian transonic fluids

force. Eq. (1.2) can be rewritten in the following form

∂tv⃗ − v⃗ × (∇× v⃗) +
1

ρ
∇p+∇(

1

2
v2 + ϕ+ Φ) = 0. (1.3)

The fluid being irrotational, the second term in the above equation vanishes. Fur-

ther, we can introduce a potential field ψ in the fluid which is defined by the relation

v⃗ = −∇ψ. ψ is generally called the velocity potential. Also due to the assumption

that the fluid is barotropic, i.e., the density is a function of the pressure only, we

can define the specific enthalpy of the fluid as

h(p) =

∫ p

0

dp′

ρ(p′)
. (1.4)

Eq. (1.4) implies that ∇h = (1/ρ)∇p. Thus, the Euler Eq. (1.3) reduces to

−∂tψ + h+
1

2
(∇ψ)2 + ϕ+ Φ = 0. (1.5)

1.1.1 Linearization of fluid equations

We linearize the fluid equations given by Eq. (1.1) and (1.5) about some stationary

background (ρ0, p0, ψ0). We write the fluid variables as sum of its background value

plus some small fluctuations of linear order,

ρ = ρ0 + ρ1

p = p0 + p1

ψ = ψ0 + ψ1

(1.6)

Using the above equation in the Eq. (1.1) and (1.5) and collecting the terms that

are linear in the fluctuations gives the following equations

∂tρ1 +∇.(ρ1v⃗0 + ρ0v⃗1) = 0 (1.7)

− ∂tψ1 +
p1
ρ0

− v⃗0.∇ψ1 = 0. (1.8)

In deriving the Eq. (1.8), we have used the linearization of the specific enthalpy

with the use of the barotropic equation of state, i.e.,

h(p) = h(p0 + p1) = h0 +
p1
ρ0
. (1.9)

9



Chapter 1. Aspects of analogue gravity

We have also assumed that the external as well as the gravitational force are constant

hence there are no fluctuations from those terms. Eq. (1.8) gives p1 in terms of ψ1

and the background variables. Now the local sound speed is defined by the relation

c2s0 =
∂p

∂ρ
, (1.10)

and from the barotropic relation we have p1 = c2s0ρ1. Thus, from Eq. (1.8) we

obtain ρ1 in terms of ψ1 and other background variables as

ρ1 =
ρ0
c2s0

(∂tψ1 + v⃗0.∇ψ1). (1.11)

Now using the above equation in the linearized continuity equation, i.e., Eq. (1.7)

provides the following wave equation

−∂t
[
ρ0
c2s0

(∂tψ1 + v⃗0.∇ψ1)

]
+∇.

[
ρ0∇ψ1 −

ρ0
c2s0
v⃗0(∂tψ1 + v⃗0.∇ψ1)

]
= 0. (1.12)

The above wave equation describes the propagation of the linearized scalar field ψ1.

Once this equation is solved for ψ1, one can easily find ρ1 and p1 also. Thus the

above wave equation completely describes the propagation of acoustic perturbation

in the fluid.

1.1.2 The acoustic spacetime metric and horizon

Eq. (1.12) can written in a compact form if we define a symmetric 4× 4 matrix fµν

as

fµν =
ρ0
c2s0


−1

... −vj0
. . . . . . . . . . . . .

−vi0
... (c2s0δ

ij − vi0v
j
0)

 . (1.13)

Then Eq. (1.12) can be rewritten as

∂µ(f
µν∂νψ1) = 0. (1.14)

Here, µ, ν runs from 0 to 1 and the i, j runs from 1 to 3 and (1 + 3) dimensional

spacetime coordinates are given by xµ = (t, xi). Now, the equation of propaga-

tion of a scalar field φ in curved spacetime metric gµν is given by the equation

10



1.1. Acoustic spacetime in Newtonian transonic fluids

∂µ(
√
−ggµν∂νφ) = 0, where g is the determinant of the metric gµν . Thus an acous-

tic spacetime time metric Gµν is could be defined by the relation

√
−GGµν ≡ fµν , (1.15)

where G is the determinant of the acoustic metric Gµν . G can be determined by

taking determinant of both of the sides in Eq. (1.17) which gives

(
√
−G)4G−1 = det(fµν) ⇒ G = det(fµν). (1.16)

From the Eq. (1.13), we find det(fµν) = −ρ40/c2s0 and there G = −ρ40/c2s0 and
√
−G = ρ20/cs0. Therefore, we also find the inverse metric Gµν to be given by

Gµν =
1

ρ0cs0


−1

... −vj0
. . . . . . . . . . . . .

−vi0
... (c2s0δ

ij − vi0v
j
0)

 . (1.17)

and the acoustic metric Gµν itself is found by intervting the above matrix and is

given by

Gµν =
ρ0
cs0


−(c2s0 − v20)

... −vj0
. . . . . . . . . . . . .

−vi0
... δij

 . (1.18)

Thus, the acoustic line element could be given as

ds2 = Gµνdx
µdxν =

ρ0
cs0

[
−(c2s0 − v20)dt

2 − 2v⃗0.dx⃗dt+ (dx⃗)2
]
. (1.19)

Defining a new time coordinate τ by

dτ = dt+
v⃗0.dx⃗

c2s0 − v20
, (1.20)

the line element could be written as [2, 5]

ds2 =
ρ0
cs0

[
−(c2s0 − v20)dτ

2 +

(
δij +

vi0v
j
0

c2s0 − v20

)
dxidxj

]
. (1.21)

It is assumed that the vector v⃗0
c2s0−v20

is integrable. From the above expression of

the line element, it is clear that the corresponding acoustic metric is static, i.e., it

11



Chapter 1. Aspects of analogue gravity

is stationary (time-independent) and the time-translation Killing vector is hyper-

surface orthogonal as there is no time-space cross terms. If the background flow

is spherically symmetric then Eq. (1.21) can be further written in terms of the

spherical polar coordinates as [1]

ds2 =
ρ0
cs0

[
−(c2s0 − vr0

2)dτ 2 +
c2s0

c2s0 − vr0
2dr

2 + r2(dθ2 + sin2 θdϕ2)

]
. (1.22)

The above line element has the similar form of the Schwarzschild metric.

The acoustic event horizon is defined as the boundary of the region from which

null geodesics (here phonons) cannot escape. For the line element in Eq. (1.22),

the acoustic event horizon is located at vr02 = c2s0. Thus the event horizon is the

transonic surface of the fluid flow. The ergosphere is defined as the surface where

the norm of the time-like Killing vector changes the sign and the Killing vector

becomes space-like in the region inside the ergosphere. If the background fluid

flow is steady, then the acoustic metric is time-independent and hence there exist a

time-like Killing vector ξµ = δµt . Norm of the time-like Killing vector ξµ is given as

ξµξ
µ = Gµνξ

µξν = Gµνδ
µ
t δ

ν
t = Gtt = − ρ0

c2s0
(c2s0 − v20). (1.23)

Thus the norm changes sign at v20 = c2s0. Therefore, any region of supersonic flow can

be regarded as ergo-region. For a general spacetime time metric, the ergosphere and

the event horizon are not the same. However, for a static metric, these two surfaces

coincide. For example, in general relativity, in the static Schwarzschild spacetime,

event horizon and the ergosphere are basically the same surfaces. However, in the

stationary but non-static Kerr spacetime, the ergosphere and the event horizon are

two different surfaces. The event horizon of the Kerr black hole resides inside the

ergosphere. Therefore, for an acoustic spacetime metric which is non-static, the

event horizon would be different from the ergosphere and one has to use particular

tools to define the event horizon (for example, see [6] for such details). For our

present work, the acoustic metrics are found to be static and thus we can easily

locate the acoustic event horizon. If spacetime is stationary, asymptotically flat and

the event horizon has spherical topology, then the event horizon could be located

easily in a suitable coordinate system [7]. In such spacetime, the event horizon is a

12



1.1. Acoustic spacetime in Newtonian transonic fluids

Figure 1.1: An artistic impression of cascading sound cones in the geometrical limit.

Supersonic flow tilts the sound cone past the vertical at the horizon and

forms an acoustic black hole. Image coursey: [8].

r = constant hypersurface which is null. We shall use such an approach to locate

the event horizon in our work.

Fig. 1.1 shows an artistic impression of cascading sound cones in the geometrical

limit. Supersonic flow tilts the sound cone past the vertical at the horizon and forms

an acoustic black hole. Fig. 1.2 shows an artistic impression of trapped waves in

the physical acoustic limit. Supersonic flow forces the waves to move downstream

inside the acoustic horizon. Fig. 1.3 shows how the sound cone is tilted as the fluid

becomes supersonic from the subsonic state. Fig. 1.1, 1.2, 1.3 have been taken from

[8].

1.1.3 Causal structure of the acoustic spacetime

The tilting of the sound cone can be visualised by constructing the causal structure

of the spacetime following the same procedures as found in general relativity. Some

of the following treatments are taken from [9] and more detailed discussions on the

causal structure of the acoustic Spacetime could be found there. For simplicity, let

us consider the case where the perturbation propagates only in the x-direction. The

13



Chapter 1. Aspects of analogue gravity

Figure 1.2: An artistic impression of trapped waves in the physical acoustic limit.

Supersonic flow forces the waves to move downstream inside the acoustic

horizon. Image coursey: [8].

Figure 1.3: Moving fluid tilts the sound cone as it moves and tilts past the vertical

when it becomes supersonic. Image coursey: [8].

14



1.1. Acoustic spacetime in Newtonian transonic fluids

line element in Eq. (1.19) becomes

ds2 =
ρ0
cs0

[
−(c2s0 − v20)dt

2 − 2v0dxdt+ dx2
]
. (1.24)

The sound-cones are constructed from the null geodesics and the null geodesics are

obtained by equating ds2 to zero which gives

dt

dx

∣∣∣∣
±
=
v0 ± cs0
v20 − c2s0

=
1

v0 ∓ cs0
. (1.25)

Now let’s assume that v0 > 0, then the slope (dt/dx)− > 0 and regular for all x.

However, (dt/dx)+ < 0 for subsonic flow and (dt/dx)+ > 0 for supersonic flow.

Similarly if v0 < 0, then (dt/dx)+ < 0 and regular for all x and (dt/dx)− > 0

for subsonic flow and it is < 0 for supersonic flow. Thus at the sonic point, the

sound-cone tilts past the vertical. Fig. 1.2 shows a schematic diagram of the tilting

of the sound cone.

For a given velocity profile v0 of the background flow, one can draw the causal

structure explicitly. In order to draw the causal structure, let us first introduce the

null coordinates as the following

du = dt− dx

(v0 + cs0)
, (1.26)

dw = dt− dx

(v0 − cs0)
. (1.27)

In terms of the null coordinates u,w, the line element in Eq. (1.24) becomes

ds2 = − ρ0
cs0

(c2s0 − v20)dudw. (1.28)

The null geodesics will be given by u = constant and w = constant lines. For

example, let us consider the following representative left-going velocity profile as

provided in [9]

v0(x) = − 2cs0
exp(2x/a) + 1

, (1.29)

where a > 0. To simplify further, we take the sound speed to be a constant which is

true for isothermal flow. The velocity profile is plotted in Fig. 1.4 for a = 2.0, cs0 =

0.5. At x = 0, |v0| = cs0 and hence x = 0 is the acoustic horizon for this particular

15
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Figure 1.4: A simple and representative left-going velocity profile as given by Eq.

(1.29) with a = 2.0, cs0 = 0.5.

velocity profile. Now integrating the Eq. (1.26) and (1.27) with the velocity profile

in Eq. (1.29) gives

u = t− x

c
− a

c
ln |1− exp(−2x/a)| , (1.30)

w = t+
x

c
+

a

3c
ln (1 + 3 exp(−2x/a)) . (1.31)

In Fig. 1.5, we construct the causal structure of the acoustic spacetime metric

given in Eq. (1.24) with a left-going velocity profile given in Eq. (1.29) with

a = 2.0, cs0 = 0.5. The solid lines represent the u = constant null rays and the

dashed lines represent the w = constant null rays. As can be noticed, the sound

cones tilt past the vertical as the fluid crosses the horizon at x = 0. The region

x < 0 represents an acoustic black hole. In the x < 0 region, x decreases along both

the null rays as t increases.

Extending the analogy further, we can construct an acoustic white hole also. Sim-

ilar to the general relativity, an acoustic white hole can be defined as a region where

sound waves cannot enter. For illustration we again take a simple representative

right-going velocity profile as presented in [9]
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Figure 1.5: Acoustic black hole: causal structure of the acoustic spacetime metric

given in Eq. (1.24) with a left-going velocity profile given in Eq. (1.29)

with a = 2.0, cs0 = 0.5. The solid lines represent the u = constant

null rays and the dashed lines represent the w = constant null rays.

u,w are given in Eq. (1.30) and (1.31), respectively. As can be noticed,

the sound cones tilt past the vertical as the fluid crosses the horizon at

x = 0. The region x < 0 represents an acoustic black hole. In the x < 0

region, x decreases along both the null rays as t increases.
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Figure 1.6: Right-going velocity profile presented in Eq. (1.32) with a = 2.0, cs0 =

0.5.

v0(x) =
2cs0

exp(2x/a) + 1
. (1.32)

The null coordinates for this velocity profile is given by

u = t− x

c
− a

3c
ln (1 + 3 exp(−2x/a)) , (1.33)

w = t+
x

c
+
a

c
ln |1− exp(−2x/a)| . (1.34)

Fig. 1.6 represents a right-going velocity profile as given by Eq. (1.32) with

a = 2.0, cs0 = 0.5. Fig. 1.7 represents the corresponding causal structure of the

acoustic spacetime. u = constant null rays are represented by the solid lines and

the w = constant null rays are represented by the dashed lines. x = 0 is the acoustic

horizon. For x < 0, along both the null rays x increases as t increases. x < 0 region

represents an acoustic white hole.

With a suitable velocity profile, it is possible to construct a causal structure

where both an acoustic black hole and acoustic white hole horizon could be present.

One can proceed further and draw the Penrose diagrams for the acoustic spacetime

metric also. For details of such a study, we refer the readers to [9].
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Figure 1.7: Acoustic white hole: causal structure with a right-going velocity profile

(Eq. (1.32) with a = 2.0, cs0 = 0.5). Solid lines represent the u =

constant null rays and dashed lines represent the w = constant null

rays. The acoustic horizon is located at x = 0. The region x < 0

represent an acoustic white hole. For x < 0, for both null rays, x

increases as t increases.
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Chapter 1. Aspects of analogue gravity

1.1.4 Acoustic surface gravity

The acoustic surface gravity plays a role similar to that of the surface gravity in

general relativity, i.e., it acts as a gateway to calculate the analogue Hawking tem-

perature. Depending on the nature of the acoustic metric, the calculation of surface

gravity may be easy or more involved. For a static spacetime, the Killing horizon

associated with the time-translation Killing vector χµ = δµt coincides with event

horizon [10]. Thus χµ is tangent to the null generators of the horizon. Because

the event horizon and Killing horizon coincide, we have χµχµ = 0 at the horizon.

Therefore, the χµ is orthogonal to itself and hence normal to the horizon. Also the

normal to the surface χµχµ = 0 is given by ∂α(χµχµ). Thus there must be a scalar

κ such that on the horizon [10, 11]

∂α(−χµχµ) = 2κχα. (1.35)

This is one of the procedures to calculate the surface gravity in general relativity and

the scalar κ is the surface gravity of the black hole. The same applies to the static

acoustic spacetime metric also. It is to be remembered that the above equation is

to be evaluated at the horizon. If the metric is stationary but not static, then we

have found a suitable vector field which satisfies the above properties and then the

surface gravity can be obtained in terms of that vector using Eq. (1.35), e.g., see

[5]. However, here as well as in the subsequent analysis, all the metrics are found

to be static and hence we can use the Eq. (1.35) to calculate the acoustic surface

gravity.

For the acoustic metric in Eq. (1.19), we find the norm of the Killing vector to

be1

χµχ
µ = Gtt =

ρ0
cs0

(v20 − c2s0). (1.36)

and

χα = Gαµχ
µ = Gαµδ

µ
t = Gαt = − ρ0

cs0
v0α. (1.37)

1It should be noted that in order to calculate the surface gravity using Eq. (1.35), we have to

use a coordinate system where the metric elements are non-singular. For example, we can not

use the line elements in Eq. (1.21) or (1.22) to calculate the surface gravity.
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1.2. Black hole accretion as analogue gravity model

Thus Eq. (1.35) gives

∇
[
ρ0
cs0

(v20 − c2s0)

]
= −2κ

ρ0
cs0
v⃗0, (1.38)

which is to be evaluated at the horizon. Now taking dot product of both sides with

respect to the unit vector along v⃗ gives the following equation in terms of a normal

derivative

∂

∂n

[
ρ0
cs0

(v20 − c2s0)

]
= −2κ

ρ0
cs0
v0, (1.39)

which finally gives the acoustic surface gravity as

κ =

∣∣∣∣ ∂∂n(cs0 − v0)

∣∣∣∣ . (1.40)

It may be noticed that there is no dependence on the density term. This is due

to the conformal invariance of the surface gravity. In Unruh’s work [1], the sound

speed is assumed to position independent. Such assumption reduces Eq. (1.40) to

the formula found in [1].

1.2 Black hole accretion as analogue gravity model

Most of the analogue gravity models are based in condensed matter systems. Due to

the fact that a condensed matter system is a quantum mechanical system, it is the

appropriate place to explore the analogue Hawking radiation and other quantum

mechanical aspects of the curved spacetime. However, it is to be mentioned that

the notion of an acoustic metric and an acoustic horizon was first introduced by

Moncrief [12] in the context of linear stability analysis of spherically symmetric

accretion in the Schwarzschild metric. Thus, though Unruh [1] first pointed out

that thermal spectrum of sound waves is emitted from the acoustic horizon, the

notion of an acoustic spacetime metric and acoustic horizon predates Unruh’s work

and finds its place in accretion physics. In last two decades, there have been several

works which illustrate the fact that an accreting black hole can be regarded as an

example of a classical analogue gravity model and investigates different properties of

the acoustic spacetime Newtonian, Pseudo-Newtonian or even in general relativistic

background [13].

21



Chapter 1. Aspects of analogue gravity

In order that a fluid system possesses an acoustic spacetime which has an acoustic

horizon, the fluid must be transonic. In the case of black hole accretion, this criterion

is always satisfied. This is because black hole accretion is intrinsically transonic in

nature. The sound speed in an accretion system reaches it’s maximum value c/
√
3

at the event horizon, c being the velocity of light. However, the fluid matter could

reach a velocity which is very close to the velocity of the light. Thus near the

horizon, the fluid is always transonic. Black accretion systems are a very unique

kind of classical analogue gravity system because here we have two kinds of horizons.

One is the event horizon of the black hole and another is the acoustic horizon which

lies outside the event horizon of the black hole. Thus the accreting matter actually

passes through two different kinds of horizons, first it encounters the sonic horizon

and then it encounters the event horizon.

Even though the detailed analysis of quantum Hawking-like effects may not be

possible in a purely classical analogue system, the study of the acoustic surface

gravity may have significant importance in such systems. The acoustic surface

gravity itself is an important entity to study as it may help to understand the flow

structure as well as the acoustic spacetime. Therefore, the acoustic surface gravity

may be studied independently without studying the analogue Hawking-like phenom-

ena characterized by the analogue Hawking temperature which may be too small

to be detected experimentally in such system. The acoustic surface gravity plays

an important role to study the non-negligible effects associated with the analogue

Hawking effects which could be examined through the modified dispersion relations.

Such studied has been performed in purely analytical work as well as experimental

setup ([14–19]).

The deviation of the Hawking-like effect in the dispersive medium depends very

sensitively on the gradient of dynamical velocity. In most of the above-mentioned

studies, the velocity gradient is estimated by prescribing a particular velocity profile

using certain assumptions. On the other hand in our current work, the values of the

space gradient of the dynamical flow velocity have been computed very accurately.

Thus it is obvious that the non-universal feature of the Hawking-like effect could be
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1.2. Black hole accretion as analogue gravity model

further modified by studying the black hole accretion system as an analogue gravity

system. Therefore, it is obvious that though the accreting black hole system may

not provide any direct signature of the Hawking-like effect, it can still be considered

as a very important as well unique theoretical construct to study analogue gravity

phenomena.

Studying the features of the acoustic spacetime embedded in the accretion system

provides a different point of view of the accretion process. It would be shown that

the acoustic horizons and the transonic surface of the stationary accretion flow are

related actually very intricately. In fact, we shall see that the acoustic horizon and

the critical points of accretion flow are identical. In the next chapter, we introduce

some basic aspects of stationary accretion on to black holes and will discuss the

flow models we consider in our work.
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2
Aspects of black hole accretion

2.1 Accretion flow geometry

The simplest model of accretion was given by Bondi [20] and is usually known as

Bondi flow or Bondi accretion. Bondi flow describes spherically symmetric accre-

tion of hydrodynamic fluid within Newtonian framework. The general relativistic

version of the Bondi flow was given by Michel [21] and is considered to be the most

simplest general relativistic accretion configuration onto compact astrophysical ob-

jects. However, in most realistic astrophysical systems, the accreting matter has

some amount of angular momentum which breaks the spherical symmetry of the

flow. In such cases, the accreting matter forms a disc around the accretor and such

a disc is known as an accretion disc. In order to describe the accretion flow in

the form of an accretion disc, usually three different kind of geometric configura-

tions of the matter is considered in the literature (see [22] and references therein

for further details). These three flow geometries are flow with constant thickness,

wedge shaped flow with conical geometry and flow in hydrostatic equilibrium along

vertical direction.

• Flow with constant thickness: In this model of accretion disc, the thickness

of the accretion disc is assumed to be constant. In other words, the height

of the accretion disc does not change with the radial distance measured from

the center of the accretor along the equatorial plane.This kind of geometry
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Chapter 2. Aspects of black hole accretion

resembles a right circular cylinder of a fixed height with the axis of symmetry

along the z-axis. This is the simplest possible flow geometry one can choose to

describe accretion disc in astrophysics. As one can see, the height of the disc,

being constant, does not change when we linear perturb different flow variables

in the linear perturbation analysis we perform in the following chapters. If

we denote the local height of the disc (half of the thickness of the disc), as

measured from the equatorial plane along the vertical direction, by H then

for this model H = constant.

• Wedge shaped flow with conical geometry: In the Bondi flow [20] or Michel

flow [21], the flow geometry is spherically symmetric and the introduction of

angular momentum destroys the spherical symmetry of the flow making the

flow axially symmetric. However the flow can still be assumed to be quasi-

spherical in the sense that though it deviates from the absolute spherical

symmetry, the ratio of the height of the disc and the radial distance remains

constant. In other words the local flow height H is given by H ∝ r, where r

is the radial distance. The proportionality constant is obtained from the solid

angle subtended by the flow at the center. In this case also the height does

not depend on accretion variables such as velocity and density. Therefore

here also the height remains unaffected while we do the linear perturbation

analysis.

• Flow in hydrostatic equilibrium along vertical direction: This model of flow

geometry is the most complicated one. In this model the flow is assumed to

be in hydrostatic equilibrium along vertical direction. The flow thickness is

therefore a function of radial distance as well other accretion variables. In the

following chapters, we shall discuss this model of accretion disc in more details

and work with few different mathematical expressions for the disc height as

could be found in accretion literature.
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2.2. Stationary low angular momentum accretion flow

2.2 Stationary low angular momentum accretion flow

In our work, we consider an inviscid flow, i.e., there is no viscous dissipation in

the accreting fluid. Such a flow can be described by two conservation equations.

The first one is the continuity equation which ensures the conservation of mass

and the second one is the Euler equation which ensures the conservation of energy-

momentum. These equations are in general time-dependent and non-linear in na-

ture. In order to simplify, it is convenient to consider the scenario where the accre-

tion flow has obtained a steady state, i.e., the accretion variables, e.g., the velocity

components and density, are time-independent or remain nearly unchanged over

the period of observation.

For such steady state accretion flow, the two conservation equations, where the

time derivatives now vanish, could be integrated to obtain two first integrals of

motion. The continuity equation, upon integration, gives the mass accretion rate

which is the rate of infall of accreting matter and is a constant of motion of the flow.

Similarly, integrating the relativistic Euler equation gives the relativistic Bernoulli’s

constant which for flow with adiabatic equation of state is basically the specific

energy of the flow.

We consider the accretion flow to possess low angular momentum. For accretion

flow with high angular momentum, there should be some driving mechanism to

make the accreting matter fall onto the accretor. In absence of such mechanism,

the matter may settle into stable Keplerian orbits and accretion onto the accretor

would not be possible. Viscosity plays an important role in driving the accretion

flow. Viscosity transports angular momentum from the inner part of the accretion

disc to the outer part of the disc. Thus, such a outward transportation of the angular

momentum lowers it’s angular momentum and helps it to fall onto the accretor.

In our work, we consider the flow to be inviscid and therefore there is no viscous

driving force. Neither we incorporate any other force in our governing equations

which would ensure that the accreting matter never settles into stable Keplerian or-

bits and always falls towards the accretor. This motivates us to consider low angular
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Chapter 2. Aspects of black hole accretion

momentum flow. If the angular momentum is sufficiently small, then the matter

would never settle into stable orbits and always falls towards the accretor. Thus

low angular momentum accretion is possible without external driving mechanism

like the viscous force.

The question which may arise is why we do not take into account viscosity in

the first place. Apart from the fact that inclusion of viscosity makes the study of

general relativistic accretion much more complicated, the main reason we exclude

viscosity from our model is that it has been observed that the presence of viscosity

breaks the Lorentzian symmetry of the acoustic metric and it is not possible to

construct analogue spacetime for such flow [5].

It is believed that low angular momentum flow structure is a common feature

for accretion onto the supermassive black hole at our Galactic centre (see [23] and

references therein). Such sub-Keplerian weakly rotating flows may be observed in

various astrophysical systems, for detached binary systems fed by accretion from OB

stellar winds [24, 25], for instance. Also for semi-detached low-mass non-magnetic

binaries [26], and for super-massive black holes fed by accretion from slowly rotating

central stellar clusters ([27, 28] and references therein) such flows are common. Even

for a standard Keplerian accretion disc, turbulence may produce such low angular

momentum flow (see, e.g., [29] and references therein).

Because of the inner boundary conditions posed by the presence of the event

horizon, black hole accretion is necessarily transonic [30] except for the possible

cases of wind fed accretion of supersonic stellar winds [31]. In transonic accretion

flow, the accreting matter starts subsonically with very small radial velocity at large

distance. As the matter falls towards the accretor it loses gravitational potential

and gains kinetic energy, i.e., the velocity increases as it nears the accretor. At

a certain radial distance the accreting matter becomes supersonic and falls onto

the black hole supersonically. For low angular momentum accretion, flow can also

manifest multi-transonicity, i.e., one may observe the transition from the subsonic

to supersonic flow at more than one places during the course of motion of the

matter falling towards the horizon. Accretion solutions passing through more than
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2.3. Linear perturbation, stability analysis and analogue gravity

one sonic points may be connected through a discontinuous shock wave [30, 32–59].

In the subsequent chapters, we will study both shocked and as well as shockless

accretion flow.

2.3 Linear perturbation, stability analysis and

analogue gravity

To study the observational signature of black holes, one studies the dynamical and

radiative properties of black hole accretion and constructs the characteristic black

hole spectra [60, 61]. Such spectra is analyzed observationally to probe the space-

time at close proximity of the event horizon of astrophysical black holes. One can

use the stationary solutions to construct the black hole spectra ([42] and references

therein). However, nonsteady features (time variability) and various kind of local

as well as global fluctuations may be present in large astrophysical fluid flows. Such

fluctuations may introduce undesired instability in the flow and in such cases, the

stationary solutions may not be suitable to construct the black hole spectra.

In order to ensure that the stationary solutions are stable under time-dependent

fluctuations, one performs a linear perturbation analysis. This is most basic task to

check the stability of the stationary solutions. There are different ways to perform a

linear stability analysis. Similar to many standard works in accretion literature [12,

62], we work with Eulerian perturbation which is perturbation relative to the inertial

frame. Working with Eulerian perturbation is much simpler and the perturbation

equation can be expressed in terms of the mass accretion rate[62] (variation of which

can be measured observationally). One can also express the perturbation equation

in terms of the relativistic Bernoulli’s constant [63, 64] or the velocity potential [12].

Such perturbation equation can be studied to understand the nature of the solutions

and hence the stability of the stationary solutions. In the following chapters, we

will discuss the perturbation scheme in more details.

The perturbation equation is basically a wave equation which describes the prop-

agation of the acoustic disturbance (perturbations) in the fluid. In fact, it was first
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noticed by Moncrief [12], in context of linear stability analysis of general relativistic

spherical accretion in Schwarzschild metric, that the wave equation mimics the wave

equation of a massless scalar field in curved spacetime. Comparing these two wave

equation, one can obtain an acoustic spacetime metric which describes the prop-

agation of the acoustic perturbation in the accretion fluid. Thus the emergence

of acoustic spacetime metric is a by product of stability analysis of the stationary

accretion solutions. Our work combines these two apparently disjoint fields of study

– the linear stability analysis of stationary accretion flow and the analogue gravity

phenomenon. In this thesis we investigate the emergence of acoustic spacetime met-

ric by performing linear perturbation of the accretion on to Schwarzschild and Kerr

black holes and explore different properties of the acoustic spacetime. We then use

the perturbation equations to study the linear stability of the stationary solutions

in these systems. Thus, the main theme of our work is the linear perturbation of

black hole accretion and the investigation of the emerging of acoustic spacetime.

Throughout our works, we will set G = c = MBH = 1 where G is the universal

gravitational constant, c is the velocity of light and MBH is the mass of the black

hole. The radial distance will be scaled by GMBH/c
2 and any velocity will be scaled

by c. We shall use the negative-time-positive-space metric convention.
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3
Relativistic sonic geometry for

isothermal accretion in the

Schwarzschild metric1

In this chapter, we investigate the emergence of the curved acoustic spacetime metric

for isothermal accretion onto a Schwarzschild black hole. We consider the accretion

flow to be inviscid and irrotational. We show that the linear perturbation of three

different quantities – the velocity potential, the relativistic Bernoulli’s constant and

the mass accretion rate – give rise to (conformally) the same acoustic metric. From

the acoustic metric, we identify the location of the acoustic horizon and demonstrate

it by constructing the causal structure of the acoustic spacetime. We discuss how

one can compute the value of the acoustic surface gravity in terms of the accretion

variables corresponding to the background solutions, i.e., the stationary integral

solutions for different flow geometries. We show that the salient feature of the

acoustic spacetime is independent of the physical variable we perturb but sensitively

depends on the geometric configuration of the black hole accretion disc.

1This chapter is based on the work titled “Relativistic sonic geometry for isothermal accretion

in the Schwarzschild metric” by M. A. Shaikh, I. Firdousi and T. K. Das [64].
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Chapter 3. Relativistic sonic geometry for isothermal accretion in the
Schwarzschild metric

3.1 Governing equations

We consider the background spacetime to be stationary and spherically symmetric.

The line element for such a spacetime has the general form

ds2 = −gttdt2 + grrdr
2 + gθθdθ

2 + gϕϕdϕ
2, (3.1)

where the metric elements gµν are functions of r and θ.2 For Schwarzschild space-

time, the metric elements are given by

gtt = g−1
rr = (1− 2/r), gθθ = gϕϕ/ sin2 θ = r2. (3.2)

In the units used here, the event horizon of the Schwarzschild black hole is located

at r = 2. The energy momentum tensor for an ideal fluid is given by

T µν = (p+ ε)vµvν + pgµν , (3.3)

where vµ is four-velocity of the fluid that satisfies the normalization condition vµvµ =

−1. p and ε are the pressure and the energy density of the fluid, respectively. For

isothermal flow, p ∝ ρ, where ρ is the rest-mass energy density. The total energy

density ε is the sum of the rest-mass energy density and the internal energy density

(due to the thermal energy), i.e., ε = ρ+ εthermal.

The continuity equation is given by

∇µ(ρv
µ) = 0, (3.4)

where the covariant divergence is defined as ∇µv
ν = ∂µv

ν+Γνµλv
λ with the Christof-

fel symbols Γνµλ = 1
2
gνσ[∂λgσµ+∂µgσλ−∂σgµλ]. The energy momentum conservation

equation is given by

∇µT
µν = 0. (3.5)

A substitution of of Eq. (3.3) in Eq. (3.5) provides the relativistic Euler equation

(p+ ϵ)vµ∇µv
ν + (gµν + vµvν)∇µp = 0. (3.6)

2To avoid any ambiguity, we would like to clarify here that the ‘00’ component of the metric

tensor gµν is taken to be −gtt in this work
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3.2. Velocity potential, mass accretion rate and the relativistic Bernoulli’s constant

The specific enthalpy of the flow is defined as

h =
p+ ε

ρ
. (3.7)

For isothermal flow, the sound speed my be defined as [65]

c2s =
1

h

∂p

∂ρ
. (3.8)

The relativistic Euler equation for isothermal fluid can thus be written in terms of

the sound speed as

vµ∇µv
ν +

c2s
ρ
(vµvν + gµν)∂µρ = 0. (3.9)

The above equation can be further expanded using the definition of the covariant

derivative which provides

vµ∂µv
ν + Γνµλv

µvλ +
c2s
ρ
(vµvν + gµν)∂µρ = 0. (3.10)

3.2 Velocity potential, mass accretion rate and the

relativistic Bernoulli’s constant

In this section, we define three different quantities, i.e., the velocity potential, the

mass accretion rate and the relativistic Bernoulli’s constant. Linear perturbation

of the accretion flow could be performed to obtain the perturbation equation in

terms of these three different quantities. Here we use the continuity equation, Euler

equation or the irrotationality condition (derived below) and show how one can

define these aforementioned three quantities.

3.2.1 Velocity potential

In Newtonian framework, vorticity ω⃗ is defined as the curl of the velocity vector v⃗,

i.e., ω⃗ = ∇ × v⃗ [66]. Thus it represents the local rotation of the fluid elements in

the flow. In general relativity, the vorticity is defined as [6, 67]

ωµν = hρµh
σ
νv[ρ;σ], (3.11)
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where vµ;ν = ∇νvµ and v[µ;ν] ≡ 1
2
[vµ;ν − vν;µ] and hµν is the projection operator

which projects an arbitrary vector in space-time into its components in the subspace

orthogonal to vν and it is given by hµν = δµν+v
µvν . Vorticity geometrically measures

the twisting of the congruence[68]. In general, a flow may have non vanishing

vorticity ωµν . A flow is said to be irrotational if it has vanishing vorticity, that is

ωµν = 0.

Eq. (3.11) can be rewritten using the definition of the projection operator as

ωµν = v[µ;ν] +
1

2
vρ[vν∇ρvµ − vµ∇ρvν ]. (3.12)

The relativistic Euler equation given by Eq. (3.9) provides

vµ∇µvν = −c
2
s

ρ
[∂νρ+ vµvν∂µρ]. (3.13)

Using the above equation in Eq. (3.12) and rearranging gives

ωµν =
1

2ρc2s
[∂ν(vµρ

c2s)− ∂µ(vνρ
c2s)]. (3.14)

For irrotational flow ωµν = 0 which provides

∂ν(vµρ
c2s)− ∂µ(vνρ

c2s) = 0. (3.15)

This is the condition of irrotationality of isothermal fluid flow and henceforth we

will refer Eq. (3.15) as the irrotationality condition. In the derivation of the ir-

rotationality condition, we have used the fact that for isothermal flow the sound

speed cs is constant since the flow temperature remains invariant throughout. The

irrotationality condition given by Eq. (3.15) can be used to introduce a potential

field which, in analogy to the Newtonian fluid flow, we call the velocity potential

ψ. The velocity potential ψ is defined by the following relation

vµρ
c2s = ∂µψ. (3.16)

3.2.2 Relativistic Bernoulli’s constant

The relativistic Bernoulli’s constant is obtained by integrating the temporal compo-

nent of the relativistic Euler equation given by Eq. (3.10). We consider two different

34



3.2. Velocity potential, mass accretion rate and the relativistic Bernoulli’s constant

kinds of accretion flow on to the Schwarzschild black hole. First one is the spherically

symmetric accretion known as Michel Flow [21] and the second one is the axially

symmetric flow. First, we consider the case of Michel flow. Due to the spherical

symmetry, the four-velocity components are given by vµ = (vt, vr, vθ = 0, vϕ = 0).

The temporal component of the Eq. (3.10) is obtained by using ν = t which can be

written as

vr∂rv
t + vt∂tv

t + Γtµλv
µvλ +

c2s
ρ
[(vt)2 − gtt]∂tρ+

c2s
ρ
vrvt∂rρ = 0, (3.17)

where the relevant Christoffel symbol is Γtrt = 1
2
gtt∂tgtt. The normalization condition

gives gtt(vt)2 − 1 = grr(v
r)2 which can be used to rearrange the above equation as

vt∂tv
t +

c2s
ρ

grr(v
r)2

gtt
∂tρ+ vrvt∂r{ln(vtρc

2
s)} = 0. (3.18)

For stationary accretion flow, where the time derivatives vanish, the above equation

can be integrated to obtain the first integral of motion which we call the relativistic

Bernoulli’s constant ξ0 and is given by

ξ0 = −vt0ρc
2
s
0 = constant, (3.19)

where vt0 and ρ0 are the stationary values of vt and ρ, respectively. It should be

noted that ξ0 can not be identified with the actual specific energy which is not a

constant for isothermal flow.

For axially symmetric flow, the velocity component vϕ ̸= 0. We assume that

the four-velocity component along the vertical direction vθ is negligible compared

the radial component vr, i.e., vθ ≪ vr. Using the normalization condition and

the relevant Christofell symbol, the temporal component of the relativistic Euler

equation for axially symmetric flow could be written as

vt∂tv
t +

c2s
ρ

{grr(vr)2 + gϕϕ(v
ϕ)2}

gtt
∂tρ+ vrvt∂r

{
ln(vtρc

2
s)
}
= 0. (3.20)

Therefore, for stationary axially symmetric accretion flow, similar to the Michel

flow, integrating the above equation gives the same expression for the relativistic

Bernoulli’s constant as given by Eq. (3.19), i.e., ξ0 = −vt0ρc
2
s
0 = constant.
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3.2.3 Mass accretion rate

The continuity equation given by Eq. (3.4) can be written as

1√
−g

∂µ(
√
−gρvµ) = 0, (3.21)

where g is the determinant of the spacetime metric gµν and therefore g = −r4 sin2 θ.

For spherically symmetric Michel flow, the ∂θ and ∂ϕ terms do not contribute and

the hence the continuity equation becomes

1√
−g

∂t
(
ρvt

√
−g
)
+

1√
−g

∂r
(
ρvr

√
−g
)
= 0. (3.22)

For stationary flow, the ∂t term also vanish. Integrating over the covariant volume

element √
−gd4x gives

∂r(
√
−gρ0vr0)drdθdϕ = 0. (3.23)

Let us now write g = g̃ sin2 θ where g̃ = −r4. Then the above equation gives

∂r(
√
−g̃ρ0vr0 sin θ)drdθdϕ = 0. One can integrate out the θ, ϕ parts which will give

a purely geometrical factor Ω̃. Finally, integrating over the radial part gives the

mass accretion rate which is given by

−Ṁ = Ω̃
√

−g̃ρ0vr0 (3.24)

Ṁ represents the mass flux per unit time for ingoing accretion solution. It should

be noted that for non-comoving observer, the ‘dot’ does not mean a time derivative

(since we are dealing with stationary solutions only), it simply implies that the

amount of mass falling in through a certain surface remains invariant per unit time

for steady state solutions. The negative sign implies the in fall of matter. Because

of the fact that Ω̃ is merely a geometrical factor, we can absorb it in the left hand

side to redefine the mass accretion rate to be Ψ0 ≡ −Ṁ/Ω̃ =
√
−g̃ρ0vr0 without any

loss of generality.

For axially symmetric accretion, under the assumption that vθ ≪ vr and using the

fact that for axial symmetry the derivative with respect to ϕ vanish, the continuity

equation given by Eq. (3.21) can be written as

∂t(ρv
t
√
−g) + ∂r(ρv

r
√
−g) = 0. (3.25)
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3.2. Velocity potential, mass accretion rate and the relativistic Bernoulli’s constant

It is convenient to do a vertical averaging of the above equation. We assume that

the thickness of the accretion disc is small compared to the radial size of the accre-

tion disc. For such accretion disc, a vertical averaging of any flow variables f(t, r, θ)

can be performed by integrating it along the θ direction using the following approx-

imation [69]∫
f(t, r, θ)dθ ≈ Hθf(t, r, θ =

π

2
), (3.26)

where Hθ is the characteristic angular scale of the flow and depends on the model of

accretion disc we are working with. In Sec. 2.1, we discussed three different geomet-

rical configurations of the axially symmetric accretion flow, namely, the constant

height flow (CH), the wedge-shaped conical flow (CF) and the flow under hydro-

static equilibrium along the vertical direction (VE). Hθ contains the information

about the vertical structure of the disc and by doing so allows us to work fully in

the equatorial plane. This is the motivation behind doing a vertical averaging. Hθ

can be also thought as the appropriate weight function to get the correct flux of

the infalling matter while integrating the continuity equation. Thus, after vertical

averaging the continuity equation Eq. (3.25) becomes

∂t(
√

−g̃ρvtHθ) + ∂r(
√

−g̃ρvrHθ) = 0. (3.27)

For stationary solutions, therefore we have

∂r(
√

−g̃ρ0vr0(Hθ)0) = 0, (3.28)

which, when integrated over r, gives

√
−g̃ρ0vr0(Hθ)0 = constant. (3.29)

(Hθ)0 represents the stationary value of Hθ. To get the rate of in fall of matter, we

also need to integrate over the azimuthal angle ϕ which introduces a geometrical

factor which can be absorbed without any loss of generality to define the mass

accretion rate for stationary axially symmetric accretion flow as

Ψ0 =
√

−g̃ρ0vr0(Hθ)0. (3.30)
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Hθ can be related to the local height or thickness of the accretion disc H(r) as

Hθ = H(r)/r. In Sec. 2.1, we discussed that for CH the thickness of the disc is

constant for all the radial distance, i.e., H(r) = constant. For CF the disc thickness

is proportional to the radial distance, i.e., H(r) ∝ r. Therefore, for CH we have

Hθ = constant/r and for CF we have Hθ = constant.

The expression for the disc height for VE is rather involved. For VE, the ex-

pression of the disc height is obtained by balancing the pressure gradient with the

component of the gravitational force along the vertical direction. In the Newtonian

framework, the balancing equation is obtained from the component of the Euler

equation along the vertical direction and one can find out the expression for the

disc height from this equation. However, for the general relativistic framework, it

is a quite involved task. Therefore, historically there have different models of VE.

The first of such models was given by Novikov and Thorne [70] which was further

improved by Riffert and Harold [71]. In this chapter, we will use the expression as

derived by Abramowicz et al. [72]. In Chap. 7, we will discuss in detail about these

three models of VE disc heights.

In the Schwarzschild metric, the expression for the disc height in VE as obtained

by Abramowicz et al. is given by the relation

H2
θ v

2
ϕf(r) =

p

ρ
, (3.31)

where f(r) is independent of the flow variables. From the above relation, it is clear

that the disc height for VE depends on the flow variables vϕ, p and ρ. Therefore,

when the fluid variables are perturbed, the disc height Hθ is also perturbed which is

not the case for CH or CF where the disc height is independent of the flow variables.

In the next section, we show how the acoustic spacetime metric is obtained by

linearly perturbing three different quantities discussed in this section.
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3.3. The acoustic metric from linear perturbation analysis

3.3 The acoustic metric from linear perturbation

analysis

One of the main themes of our work is to show how the linear perturbation of

the accretion flow equations gives rise to the emergence of the curved acoustic

spacetime metric. In analogue gravity literature, the standard way to obtain the

acoustic metric is to linearly perturb the fluid equation and obtain the perturbation

equation in terms of the velocity potential of irrotational flow (for example, see [1,

5, 12]). However, one can derive the acoustic spacetime metric by obtaining the

perturbation equation in terms of the relativistic Bernoulli’s constant [63, 64, 73] or

the mass accretion rate [13, 22, 53, 64, 73–77] also. In this chapter, we derive the

acoustic spacetime metric by linearly perturbing all these three different quantities.

First, we derive the acoustic spacetime metric for Michel flow and then for axially

symmetric accretion flow for three different geometric configurations of the disc in

a unified way. Before performing these perturbation analyses, we provide a general

scheme that is followed in the analysis.

In order to perform linear perturbation analysis of the accretion solutions, we

write down a full time-dependent accretion flow variable as the sum of a stationary

time-independent part and a time-dependent small fluctuation. Using the same, we

write down the velocity potential, mass accretion rate or the relativistic Bernoulli’s

constant about their stationary background value. Then these equations are sub-

stituted in the equations governing the flow, i.e., the continuity equation, Euler

equation, irrotationality condition and the normalization condition and at every

stage, the equations contain the terms that are up to linear order in perturbations

and any terms of higher order in perturbations are discarded. This makes the

perturbation analysis linear in nature. By rearranging the resulting equations we

obtain the perturbation equation in terms of the velocity potential, mass accretion

rate or the relativistic Bernoulli’s constant. The perturbation equation is then com-

pared to the equation of a massless scalar field in curved spacetime to obtain the

acoustic spacetime metric.
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For example, the perturbation equation in terms x1(t, r), where x1 is small time-

dependent fluctuation of the variable x(t, r) about it’s stationary background value

x0(r), is obtained to be of the form

∂µ (f
µν∂νx1) = 0. (3.32)

where fµν is a symmetric 2 × 2 matrix with µ, ν running over t, r. On the other

hand, the wave equation of a massless scalar field φ in a curved spacetime time with

metric gµν is given by

∂µ
(√

−ggµν∂νφ
)
= 0. (3.33)

Comparing Eq. (3.32) and Eq. (3.33) one obtains the acoustic spacetime metric

Gµν from the relation

fµν =
√
−GGµν , (3.34)

where G is the determinant of the acoustic spacetime metric Gµν . We will discuss

the acoustic metric obtained by perturbing different quantities and compare them

at end of the current section. There, we will provide the expressions of the acoustic

metric that will be used in the rest of this chapter. Before that, we will find out

the fµν for different cases.

3.3.1 Linear perturbation of Michel flow

For spherically symmetric Michel flow, the velocity components vθ and vϕ are zero.

Therefore, from the normalization condition vµv
µ = −1, we find the relation be-

tween vt and vr as

vt =

√
1 + grr(vr)2

gtt
. (3.35)

3.3.1.1 Perturbation of the velocity potential

It is possible to obtain the perturbation equation for the velocity potential for

general flow in a general curved background spacetime without considering the
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3.3. The acoustic metric from linear perturbation analysis

symmetries of the flow or the background spacetime. In [6], the acoustic metric for

a general background spacetime metric gµν was derived by perturbing the velocity

potential for an adiabatic flow. A flow is called adiabatic when the total heat

content of the fluid system is conserved and is governed by the equation of state

p ∝ ργ, where γ = cp/cv is the adiabatic index of the fluid. cp and cv are the specific

heats of the fluid at constant pressure and at constant volume, respectively. For

adiabatic flow, the velocity potential ψ is defined as hvµ = ∂µψ. For isothermal

flow the velocity potential is defined by the relation ρc
2
svµ = ∂µψ as given by Eq.

(3.16). Here, first, we obtain the acoustic metric for isothermal flow without any

symmetry by perturbing the velocity potential and then for the Michel flow with

spherical symmetry.

We write the accretion variables about their stationary values as

ρ = ρ0 + ρ1,

vµ = vµ0 + vµ1 ,

ψ = ψ0 + ψ1,

(3.36)

where the subscript ‘0’ represents the stationary time-independent part of the vari-

ables and the subscript ‘1’ represents the time-dependent fluctuations. The linear

perturbation of the normalization condition provides

gµνv
µ
0 v

ν
1 = 0. (3.37)

We now use Eq. (3.36) to substitute ρ, vµ, ψ in the Eq. (3.16) and retain only

the terms that are upto first order in perturbations. This provides the following

equations

ρ
c2s−1
0 c2sρ1 = vµ0∂µψ1, (3.38)

ρ
c2s
0 v

µ
1 = −gµν∂νψ1 − vµ0 v

ν
0∂νψ1. (3.39)

Similar substitutions of ρ, vµ, ψ in the continuity equation given by Eq. (3.4) pro-

vides

∂µ
[√

−g (vµρ1 + ρ0v
µ
1 )
]
= 0. (3.40)
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Substituting ρ1 and vµ1 from the above equation using Eq. (3.38) and Eq. (3.39),

respectively, provides the perturbation equation in terms of ψ1 as

∂µ

[√
−g

ρc2s−1

{
gµν +

(
1− 1

c2s

)
vµ0 v

ν
0

}
∂νψ1

]
= 0. (3.41)

From the above equation we identify the symmetric matrix fµν as

fµν = k1(r)
[
c2sg

µν +
(
1− c2s

)
vµ0 v

ν
0

]
, (3.42)

where k1(r) = −(
√
−g)/(ρc2s−1c2s).

In the above derivation, we have not assumed any symmetry of the accretion flow

or the background metric. We now consider the case of Michel flow with spherical

symmetry. For the Michel flow, the Eq. (3.38) becomes

ρ1 =
1

ρ
c2s−1
0 c2s

(vt0∂tψ1 + vr0∂rψ1), (3.43)

and Eq. (3.39) provides

vt1 =
1

ρ
c2s
0

[(gtt − (vt0)
2)∂tψ1 − vr0v

t
0∂rψ1] (3.44)

vr1 =
1

ρ
c2s
0

[(−grr − (vr0)
2)∂rψ1 − vr0v

t
0∂tψ1]. (3.45)

Eq. (3.40) becomes

∂t[
√
−g(vt0ρ1 + ρ0v

t
1)] + ∂r[

√
−g(vr0ρ1 + ρ0v

r
1)] = 0. (3.46)

We now substitute ρ1, vt1 and vr1 in the above equation using Eq. (3.43), (3.44) and

(3.45), respectively. This provides

∂t
[
k1(r){c2sgtt + (1− c2s)(v

t
0)

2}∂tψ1

]
+ ∂t

[
k1(r)(1− c2s)v

r
0v

t
0∂rψ1

]
+ ∂r[k1(r)(1− c2s)v

r
0v

t
0∂tψ1] + ∂r[k1(r){−c2sgrr + (1− c2s)(v

r
0)

2}∂rψ1] = 0,
(3.47)

from which we obtain the symmetric 2× 2 matrix as

fµν = k1(r)

 c2sg
tt + (1− c2s)(v

t
0)

2 (1− c2s)v
r
0v

t
0

(1− c2s)v
r
0v

t
0 −c2sgrr + (1− c2s)(v

r
0)

2

 (3.48)

From the fµν matrix, the acoustic spacetime metric is obtained by using the relation

given by Eq. (3.34).
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3.3.1.2 Perturbation of the relativistic Bernoulli’s constant

In Eq. (3.19), we have defined the relativistic Bernoulli’s constant which is a

conserved quantitiy for stationary flow. We now define another quantity ξ =

−vt(t, r)ρc
2
s(t, r) which has the stationary part equal to the relativistic Bernoulli’s

constant ξ0. We perturb the density and velocity components upto linear order

about their background stationary values as following

ρ(t, r) = ρ0(r) + ρ1(t, r),

vt(t, r) = vt0(r) + vt1(t, r),

vr(t, r) = vr0(r) + vr1(t, r),

(3.49)

where ρ1(t, r), vt1(t, r) and vr1(t, r) represent the first order perturbations. In terms

of ξ, Eq. (3.18) can be recast in the form

vt∂tv
t +

c2s
ρ

grr(v
r)2

gtt
∂tρ+

vrvt

ξ
∂rξ = 0. (3.50)

Using Eq. (3.49) in Eq. (3.50) and collecting only the terms which are linear in

perturbations provides

−αξ0
vr0
∂tv

r
1 −

c2s
ρ0
αξ0∂tρ1 = ∂rξ1, (3.51)

where we have used vt1 = α(r)vr1 with α(r) = (grrv
r
0)/(gttv

t
0). Similarly, using Eq.

(3.49) in the expression of ξ, one can write ξ(t, r) = ξ0 + ξ1(t, r) where ξ1 is given

by

ξ1 =
ξ0α

vt0
vr1 +

ξ0c
2
s

ρ0
ρ1. (3.52)

Differentiating both sides of the above equation with respect to t provides

ξ0α

vt0
∂tv

r
1 +

ξ0c
2
s

ρ0
∂tρ1 = ∂tξ1. (3.53)

Now we express ∂tvr1 and ∂tρ1 solely in terms of ∂tξ1 and ∂rξ1 using Eq. (3.51) and

Eq. (3.53) which gives

∂tv
r
1 =

1

δ

ξ0c
2
s

ρ0
[∂rξ1 + α∂tξ1] , (3.54)

∂tρ1 = −1

δ

ξ0α

vr0v
t
0

[
vr0∂rξ1 + vt0∂tξ1

]
, (3.55)
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where δ = (−ξ20c2sα)/(ρ0vr0gtt(vt0)2). Also, substituting the density and velocity

components in the continuity equation given by Eq. (3.23) using Eq. (3.49) provides

the following equation

∂t
[√

−g(ρ1vt0 + αρ0v
r
1)
]
+ ∂r

[√
−g(ρ1vr0 + αρ0v

r
1)
]
= 0. (3.56)

Differentiating both sides of the above equation with respect to t and substituting

∂tv
r
1 and ∂tρ1 using Eq. (3.54) and (3.55), respectively, gives

∂t
[
k2(r)

{
c2sg

tt + (1− c2s)(v
t
0)

2
}
∂tξ1

]
+ ∂t

[
k2(r)v

r
0v

t
0(1− c2s)∂rξ1

]
+ ∂r

[
k2(r)v

r
0v

t
0(1− c2s)∂tξ1

]
+ ∂r

[
k2(r)

{
−c2sgrr + (1− c2s)(v

r
0)

2
}
∂rξ1

]
= 0.

(3.57)

The above equation is of the form ∂µ (f
µν∂νξ1) = 0. Therefore, the symmetric 2× 2

matrix fµν is obtained to be

fµν = k2(r)

 c2sg
tt + (1− c2s)(v

t
0)

2 vr0v
t
0(1− c2s)

vr0v
t
0(1− c2s) −c2sgrr + (1− c2s)(v

r
0)

2

 , (3.58)

where k2(r) = −(
√
−g)/(c2sρc

2
s−1).

3.3.1.3 Perturbation of the mass accretion rate

We follow the similar procedure to find out the fµν matrix by perturbing the mass

accretion rate. We define the quantity Ψ(t, r) =
√
−g̃vr(t, r)ρ(t, r) which has the

stationary part equal to the stationary mass accretion rate Ψ0 defined in Eq. (3.24).

Using the perturbation Eq. (3.49), we can write Ψ(t, r) = Ψ0 + Ψ1(t, r) where Ψ1

is obtained to be given by

Ψ1(r, t) =
√

−g̃(vr0ρ1 + ρ0v
r
1). (3.59)

Also, using Eq. (3.49) in the continuity equation, i.e., Eq. (3.23) provides

∂t[v
t
0ρ1 +

grrv
r
0

gttvt0
ρ0v

r
1] +

1√
−g̃

∂rΨ1 = 0. (3.60)

Using Eq. (3.59) and Eq. (3.60) we express ∂tvr1 and ∂tρ1 solely in terms of ∂tΨ1

and ∂rΨ1,

∂tv
r
1 =

gttv
t
0

ρ0
√
−g̃
[
vt0∂tΨ1 + vr0∂rΨ1

]
, (3.61)

∂tρ1 = − 1√
−g̃
[
grrv

r
0∂tΨ1 + gttv

t
0∂rΨ1

]
. (3.62)
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Now, we use Eq. (3.52) to substitute ξ1 in Eq. (3.51) which provides

α

vr0
∂tv

r
1 +

c2s
ρ0
α∂tρ1 + ∂r(

α

vt0
vr1 +

c2s
ρ0
ρ1) = 0. (3.63)

Taking time derivative of the above equation and substituting ∂tvr1 and ∂tρ1 using

Eq. (3.61) and Eq. (3.62), respectively, gives the perturbation equation in terms of

Ψ1,

∂t[k3(r)
{
c2sg

tt + (1− c2s)(v
t
0)

2
}
∂tΨ1] + ∂t

[
k3(r)v

r
0v

t
0(1− c2s)∂rΨ1

]
+ ∂r

[
k3(r)v

r
0v

t
0(1− c2s)∂tΨ1

]
+ ∂r[k3(r)

{
−c2sgrr + (1− c2s)(v

r
0)

2
}
∂rΨ1] = 0

(3.64)

Similar to the previous section, the above perturbation equation is of the form

∂µ (f
µν∂νΨ1) = 0. Therefore, we obtain fµν to be given by

fµν = k3(r)

 c2sg
tt + (1− c2s)(v

t
0)

2 vr0v
t
0(1− c2s)

vr0v
t
0(1− c2s) −c2sgrr + (1− c2s)(v

r
0)

2

 , (3.65)

where k3(r) = −(grrv
r
0)/(v

t
0).

3.3.2 Linear perturbation of axially symmetric flow

In this section, we consider an accretion flow where the accreting matter forms an

axially symmetric disc around the accretor. we consider three different geometric

configuration for accretion disc, namely, the constant height flow (CH), the conical

flow (CF) and the disc under hydrostatic equilibrium along the vertical direction

(VE). We have discussed these flow geometries in Sec. 2.1 and Sec. 3.2.3. We shall

work with these three models of accretion disc in a unified way.

The normalization condition vµv
µ = −1 gives

gtt(vt)
2 = 1 + grr(v

r)2 + gϕϕ(v
ϕ)2. (3.66)

From irrotationality condition, given by Eq. (3.15), with µ = t and ν = ϕ and with

axial symmetry we have

∂t(vϕρ
c2s) = 0, (3.67)

and with µ = r and ν = ϕ we have

∂r(vϕρ
c2s) = 0. (3.68)
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Eq. (3.67) and Eq. (3.68) implies that vϕρc
2
s is a constant of motion for axially sym-

metric irroatational flow. Similar to the previous sections we express the accretion

variables in terms of time-dependent linear perturbations about their background

stationary values,

vt(t, r) = vt0(r) + vt1(t, r),

vr(t, r) = vr0(r) + vr1(t, r),

vϕ(t, r) = vϕ0 (r) + vϕ1 (t, r),

ρ(t, r) = ρ0(r) + ρ1(t, r),

(3.69)

where the subscript ‘0’ stands for stationary part and ‘1’ stands for the linear

perturbations. Using Eq. (3.69) in the expression vϕρ
c2s = constant, we find the

relation between vϕ1 and ρ1 to be

vϕ1 = −c
2
sv
ϕ
0

ρ0
ρ1. (3.70)

Similarly, using Eq. (3.69) in Eq. (3.66) and substituting vϕ1 using Eq. (3.70) we

get

vt1 = α1v
r
1 + α2ρ1, (3.71)

where

α1 =
grrv

r
0

gttvt0
, α2 = −gϕϕ(v

ϕ
0 )

2c2s
gttvt0ρ0

. (3.72)

For accretion flow governed by isothermal equation of state, the pressure–density

relation is given by p ∝ ρ. For flow in hydrostatic equilibrium along the vertical

direction, i.e., for VE model of accretion disc, the disc height is given by the relation

provided in Eq. (3.31). Linear perturbation of Eq. (3.31) using Eq. (3.69) gives

(Hθ)1
(Hθ)0

= c2s
ρ1
ρ0
, (3.73)

where we have used Eq. (3.70) to substitute vϕ1 . Eq. (3.73) gives the expression

of the linear perturbation of the disc height for VE model. For other two models,

i.e., CH and CF, the expression for the disc height does not contain any accretion

variables and there the disc heights for these two models are not affected by the
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perturbation in the accretion flow. Therefore, we can combine the three cases and

express the linear perturbation of the disc height as

(Hθ)1
(Hθ)0

= β
ρ1
ρ0
, β =

 0 CH,CF

c2s VE.
(3.74)

Using Eq. (3.69) in the continuity equation given by Eq. (3.27) gives

∂t

[√
−g̃
{
vt0(Hθ)0ρ1 + ρ0(Hθ)0v

t
1 + ρ0v

t
0(Hθ)1

}]
+ ∂r

[√
−g̃ {vr0(Hθ)0ρ1 + ρ0(Hθ)0v

r
1 + ρ0v

r
0(Hθ)1}

]
= 0

(3.75)

3.3.2.1 Perturbation of velocity potential

From irrotationality condition it was found that vϕρc
2
s is a constant of motion.

Velocity potential is defined as vµρc
2
s = ∂µψ which gives ∂ϕψ1 = 0. Therefore, Eq.

(3.38) for axially symmetric flow gives

ρ1 =
1

ρ
c2s−1
0 c2s

[vt0∂tψ1 + vr0∂rψ1], (3.76)

and Eq. (3.39) gives

vt1 =
1

ρ
c2s
0

[(gtt − (vt0)
2)∂tψ1 − vr0v

t
0∂rψ1] (3.77)

vr1 =
1

ρ
c2s
0

[(−grr − (vr0)
2)∂rψ1 − vr0v

t
0∂tψ1] (3.78)

Now we substitute ρ1, vt1, vr1 and (Hθ)1 in Eq. (3.75) using Eq. (3.76), (3.77), (3.78)

and Eq. (3.74), respectively, to obtain the perturbation equation,

∂t

[
k̃1(r)

{
−gtt +

(
1− 1 + β

c2s

)
(vt0)

2

}
∂tψ1

]
+ ∂t

[
k̃1(r)

(
1− 1 + β

c2s

)
vr0v

t
0∂rψ1

]
+ ∂r

[
k̃1(r)

(
1− 1 + β

c2s

)
vr0v

t
0∂tψ1

]
+ ∂t

[
k̃1(r)

{
grr +

(
1− 1 + β

c2s

)
(vr0)

2

}
∂tψ1

]
= 0,

(3.79)
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where k̃1(r) =
√
−g̃/(ρc

2
s−1
0 ). As earlier, we compare the above equation to the wave

equation of the form ∂µ(f
µν∂νψ1) = 0 and obtain the fµν matrix as

fµν = k̃1

 −gtt +
(
1− 1+β

c2s

)
(vt0)

2
(
1− 1+β

c2s

)
vr0v

t
0(

1− 1+β
c2s

)
vr0v

t
0 grr +

(
1− 1+β

c2s

)
(vr0)

2

 (3.80)

3.3.2.2 Perturbation of relativistic Bernoulli’s constant

As earlier, we introduce the time-dependent variable ξ(t, r) = −vt(t, r)ρc
2
s(t, r)

which has the stationary part equal to the relativistic Bernoulli’s constant ξ0 and

may be expressed as ξ(t, r) = ξ0 + ξ1(t, r) under linear perturbation. Using the

perturbation equations given by Eq. (3.69) in Eq. (3.20) we get

−α1ξ0
vr0

∂tv
r
1 −

c2s
ρ0
α1ξ0∂tρ1 = ∂rξ1, (3.81)

whereas using the Eq. (3.69) in the expression for ξ, one obtains

ξ1 =
ξ0
vt0
vt1 +

ξ0c
2
s

ρ0
ρ1. (3.82)

We differentiate the above equation with respect to t and substitute vt1 using Eq.

(3.71) to obtain

∂tξ1 =
α1ξ0
vt0

∂tv
r
1 + (

ξ0c
2
s

ρ0
+
ξ0
vt0
α2)∂tρ1. (3.83)

Now, we use Eq. (3.81) and Eq. (3.83) to express ∂tvr1 and ∂tρ1 solely in terms of

derivatives of ξ1,

∂tv
r
1 =

1

δ
[(
ξ0c

2
s

ρ0
+
ξ0
vt0
α2)∂rξ1 +

ξ0α1c
2
s

ρ0
∂tξ1], (3.84)

∂tρ1 = −ξ0α1

δ
[
1

vt0
∂rξ1 +

1

vr0
∂tξ1], (3.85)

where δ = (ξ20c
2
sα1)/(v

r
0ρ0gtt(v

t
0)

2). Differentiating the Eq. (3.75) with respect to t

and rearranging gives

∂t

[√
−g̃(Hθ)0

{
vt0(1 + β) + α2ρ0

}
∂tρ1 +

√
−g̃(Hθ)0ρ0α1∂tv

r
1

]
+ ∂r

[√
−g̃(Hθ)0 {vr0(1 + β)∂tρ1 + ρ0∂tv

r
1}
]
= 0.

(3.86)
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Substitution of ∂tvr1 and ∂tρ1 in the above equation using Eq. (3.84) and (3.85),

respectively, gives the perturbation equation in terms of ξ1

∂t

[
k̃2(r)

{
−gtt +

(
1− 1 + β

c2s

)
(vt0)

2

}
∂tξ1

]
+ ∂t

[
k̃2(r)

(
1− 1 + β

c2s

)
vr0v

t
0∂rξ1

]
+ ∂r

[
k̃2(r)

(
1− 1 + β

c2s

)
vr0v

t
0∂tξ1

]
+ ∂t

[
k̃2(r)

{
grr +

(
1− 1 + β

c2s

)
(vr0)

2

}
∂tξ1

]
= 0,

(3.87)

where k̃2(r) = (
√
−g̃(Hθ)0)/(ρ

c2s−1
0 ). The above equation, when compared to the

equation ∂µ{fµν∂νξ1} = 0, gives the fµν matrix as

fµν = k̃2

 −gtt +
(
1− 1+β

c2s

)
(vt0)

2
(
1− 1+β

c2s

)
vr0v

t
0(

1− 1+β
c2s

)
vr0v

t
0 grr +

(
1− 1+β

c2s

)
(vr0)

2

 (3.88)

3.3.2.3 Perturbation of the mass accretion rate

Now, let us find out the fµν matrix by perturbing the mass accretion rate. We

define the variable Ψ(t, r) =
√
−g̃ρ(t, r)vr(t, r)(Hθ) which has the stationary part

equal to the stationary mass accretion rate Ψ0 given by Eq. (3.30), i.e., Ψ(t, r) =

Ψ0 + Ψ1(t, r). Thus, using the perturbation equations given by Eq. (3.69), we get

the perturbation of the mass accretion rate Ψ1(t, r) to be given by

Ψ1(r, t) =
√

−g̃{ρ0vr0(Hθ)1 + ρ1v
r
0(Hθ)0 + ρ0v

r
1(Hθ)0}. (3.89)

Taking time derivative of the above equation and substituting (Hθ)1 using Eq. (3.74)

gives

∂tΨ1

Ψ0

= (1 + β)
∂tρ1
ρ0

+
∂tv

r
1

vr0
. (3.90)

Also, substituting velocity components and density in the continuity Eq. (3.27)

using Eq. (3.69) provides

∂rΨ1

Ψ0

= −[{ vt0
vr0ρ0

(1 + β) +
α2

vr0
}∂tρ1 +

α1

vr0
∂tv

r
1]. (3.91)
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Eq. (3.90) and (3.91) can be used to write ∂tvr1 and ∂tρ1 in terms of the derivatives

of Ψ1,

∂tv
r
1

vr0
=

1

Λ
[{gtt(vt0)2(1 + β)− gϕϕ(v

ϕ
0 )

2c2s}
∂tΨ1

Ψ0

+ (1 + β)gttv
r
0v

t
0

∂rΨ1

Ψ0

], (3.92)

∂tρ1
ρ0

= − 1

Λ
[grr(v

r
0)

2∂tΨ1

Ψ0

+ gttv
r
0v

t
0

∂rΨ1

Ψ0

], (3.93)

where Λ = (1 + β) + (1 + β − c2s)gϕϕ(v
ϕ
0 )

2.

Substituting ξ1 in Eq. (3.81) using Eq. (3.82) provides

α1

vr0
∂tv

r
1 +

c2s
ρ0
α1∂tρ1 + ∂r(

vt1
vt0

+
c2s
ρ0
ρ1) = 0, (3.94)

where vt1 is given by Eq. (3.77). Differentiating the above equation with respect to

t gives

∂t

(
α1

vr0
∂tv

r
1

)
+∂t

(
α1c

2
s

ρ0
∂tρ1

)
+∂r

(
α1

vt0
∂tv

r
1

)
+∂r

{(
α2

vt0
+
c2s
ρ0

)
∂tρ1

}
= 0. (3.95)

A substitution of ∂tvr1 and ∂tρ1 in the above equation using Eq. (3.92) and Eq.

(3.93), respectively, provides the perturbation equation in terms of Ψ1,

∂t

[
k̃3(r)

{
−gtt +

(
1− 1 + β

c2s

)
(vt0)

2

}
∂tΨ1

]
+ ∂t

[
k̃3(r)

(
1− 1 + β

c2s

)
vr0v

t
0∂rΨ1

]
+ ∂r

[
k̃3(r)

(
1− 1 + β

c2s

)
vr0v

t
0∂tΨ1

]
+ ∂t

[
k̃3(r)

{
grr +

(
1− 1 + β

c2s

)
(vr0)

2

}
∂tΨ1

]
= 0,

(3.96)

where k̃3(r) = (grrv0c
2
s)/(v

t
0Λ). The above equation is of the form ∂µ{fµν∂νΨ1} = 0

which helps us to identify the fµν as

fµν = k̃2

 −gtt +
(
1− 1+β

c2s

)
(vt0)

2
(
1− 1+β

c2s

)
vr0v

t
0(

1− 1+β
c2s

)
vr0v

t
0 grr +

(
1− 1+β

c2s

)
(vr0)

2

 (3.97)

3.3.3 Acoustic metric

In the previous section, we performed a linear perturbation analysis to find out the

perturbation equation in terms of three different quantities–the velocity potential
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ψ1, the relativistic Bernoulli’s constant ξ1 and the mass accretion rate Ψ1. This was

done for two different accretion flow–the spherically symmetric Michel flow and the

axially symmetric disc-like flow. For disc like axially symmetric flow, we considered

three different kinds of geometric configurations of the disc and derived the pertur-

bation equations in a unified way introducing the variable β defined in Eq. (3.74).

As stated earlier, the acoustic spacetime metric is obtained from the perturbation

equation of the form ∂µ(f
µν∂νx1) = 0, where x1 is the linear perturbation of the

accretion variable x. The acoustic spacetime metric Gµν is obtained from the rela-

tion given by Eq. (3.34) which is obtained by comparing the perturbation equation

and the wave equation of a massless scalar field in curved spacetime as given by Eq.

(3.33). Thus, the acoustic metric Gµν is related to fµν as

Gµν =
1√
−G

fµν , (3.98)

which implies that the acoustic metric is conformally the same to fµν . The confor-

mal factor is known if we know the determinant G of the acoustic metric. This, in

general, is simply done by taking determinant of the both sides of the Eq. (3.98).

For a 1+3 dimensional problem, this gives G = det(fµν) and for a general 1+(n−1)

dimensional problem we have

−G = {−det(fµν)}
2

n−2 . (3.99)

It is evident from the above expression that for 1+1 dimensional system, the above

expression encounters a problem and it is not possible to define G and hence the

metric Gµν from fµν . However, this is a problem of concern only when the system is

intrinsically two dimensional. But in our problem, the system is 1 + 3 dimensional

and the fµν is 2 × 2 only due to the symmetries of the problem. Therefore, the

problem is rather formal and not fundamental. One can always augment the 1 + 1

dimensional spacetime with two extra flat dimensions to make the problem go away

[8, 9]

Due to the fact that G contributes only as a conformal factor, we, in principle,

do not need to find out G exactly to study the conformally invariant features of

the acoustic spacetime. The location of the acoustic horizon, the causal structure
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of the acoustic spacetime or the acoustic surface gravity are conformally invariant.

Therefore, we study these conformally invariant features of the acoustic spacetime

without considering the conformal factor in the acoustic spacetime metric. Thus, in

the following, we work with the expression for acoustic metric without the overall

conformal factors.

3.3.3.1 Acoustic metric for Michel flow

In Sec. 3.3.1, we derived the perturbation equation for spherically symmetric Michel

flow. It could be noticed that fµν matrix obtained by perturbing the three different

quantities (given by Eq. (3.48), (3.58) and (3.65) for velocity potential, relativistic

Bernoulli’s constant and the mass accretion rate, respectively) are the same apart

from an over all multiplicative factor ki(r) (i = 1, 2, 3 represents the case of velocity

potential, relativistic Bernoulli’s constant and the mass accretion rate, respectively)

and it is given by

fµν = ki(r)

 c2sg
tt + (1− c2s)(v

t
0)

2 (1− c2s)v
r
0v

t
0

(1− c2s)v
r
0v

t
0 −c2sgrr + (1− c2s)(v

r
0)

2

 (3.100)

where

k1 = k2 = −(
√
−g)/(ρc2s−1c2s), k3 = −(grrv

r
0)/(v

t
0). (3.101)

Therefore, the acoustic metric Gµν , neglecting the conformal factor which contains

ki and G, is given by

Gµν = −

 c2sg
tt + (1− c2s)(v

t
0)

2 (1− c2s)v
r
0v

t
0

(1− c2s)v
r
0v

t
0 −c2sgrr + (1− c2s)(v

r
0)

2

 (3.102)

and therefore, Gµν (where we again neglect any overall factor arising in the process

of taking the inverse of Gµν) is given by

Gµν =

 −c2sgrr + (1− c2s)(v
r
0)

2 −(1− c2s)v
r
0v

t
0

−(1− c2s)v
r
0v

t
0 c2sg

tt + (1− c2s)(v
t
0)

2

 (3.103)

52



3.3. The acoustic metric from linear perturbation analysis

3.3.3.2 Acoustic metric for Axially symmetric flow

For axially symmetric flow in Sec. 3.3.2, we also consider different flow configura-

tions. We worked with different disc models by introducing the variable β and we

notice that the fµν matrix contains the β term. Therefore, the final acoustic metric

is dependent on the model of the accretion disc. As in the case of the Michel flow,

for axially symmetric flow also, we notice that the fµν matrix is the same (apart

from an overall multiplicative factor) for all the three quantities we perturb and

may be given as

fµν = k̃i(r)

 −gtt + (1− 1+β
c2s

)(vt0)
2 (1− 1+β

c2s
)vr0v

t
0

(1− 1+β
c2s

)vr0v
t
0 grr + (1− 1+β

c2s
)(vr0)

2

 (3.104)

where i = 1, 2, 3 for the linear perturbation of velocity potential, relativistic Bernoulli’s

constant and the mass accretion rate, respectively and

k̃1 =
√

−g̃/(ρc
2
s−1
0 ), k̃2 = (

√
−g̃(Hθ)0)/(ρ

c2s−1
0 ), k̃3 = (grrv

r
0c

2
s)/(v

t
0Λ),

(3.105)

where Λ is defined below Eq. (3.93). We notice that the factors k̃i in fµν obtained

by perturbing the velocity potential and the relativistic Bernoulli’s constant are the

same (apart from the Hθ which comes due to vertical averaging), whereas the k̃i

obtained by perturbing the mass accretion rate is different from that of the other

two cases. This can be explained in the following way: The relativistic Bernoulli’s

constant is obtained by integrating the temporal component of the relativistic Eu-

ler equation and the velocity potential is defined via the irrotationality condition.

However, we have used the irrotationality condition in order to find the temporal

component of the Euler equation and to define the relativistic Bernoulli’s constant.

One can easily see that these two quantities are related by a time derivative. Thus,

it is expected that the linear perturbation of these two these two quantities gives

the same acoustic metric with the same conformal factors. The mass accretion rate

is, on the other hand, derived from the continuity equation where the irrotationality

condition plays no part. Thus the conformal factor of the acoustic metric obtained

by perturbing the mass accretion rate is different from the other two cases.
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As in the case of Michel flow, we neglect the overall conformal factors and use

the expressions for the acoustic metric given below

Gµν =

 −gtt +
(
1− 1+β

c2s

)
(vt0)

2 vr0v
t
0

(
1− 1+β

c2s

)
vr0v

t
0

(
1− 1+β

c2s

)
grr +

(
1− 1+β

c2s

)
(vr0)

2

 (3.106)

and

Gµν = −

 grr +
(
1− 1+β

c2s

)
(vr0)

2 −vr0vt0
(
1− 1+β

c2s

)
−vr0vt0

(
1− 1+β

c2s

)
−gtt +

(
1− 1+β

c2s

)
(vt0)

2

 (3.107)

We will use the expressions of the acoustic metric given by Eq. (3.102), (3.103),

(3.106) and (3.107) in the next section to study the location of the acoustic horizon

and the causal structure of the acoustic spacetime.

3.4 Location of the acoustic horizon

The acoustic spacetime metric Gµν given by Eq. (3.103) and (3.107) for Michel

flow and Axially symmetric flow, respectively, are time-independent and hence the

acoustic spacetime is stationary. The spacetime metric is also spherically symmet-

ric. In the asymptotic limit r → ∞ (with the fact that at r → ∞, the velocity

components vµ → 0), the acoustic metric is the same as the flat Minkowski metric.

In other words, the acoustic metric is stationary spherically symmetric and asymp-

totically flat. For such a spacetime, in analogy to the general relativity, we can

define the acoustic horizon as time-like hypersurface r = constant whose normal

nµ = δrµ is null with respect to the acoustic metric [7, 12]

Gµνnµnν = 0. (3.108)

Thus the acoustic horizon is found by solving the equation

Gµνδrµδ
r
ν = Grr = 0. (3.109)

3.4.1 Michel flow

For Michel flow, the acoustic horizon, given by Grr = 0, satisfies

−c2s + grr(v
r
0)

2(1− c2s) = 0 (3.110)
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or

c2s =
grr(v

r
0)

2

1 + grr(vr0)
2

(3.111)

It is convenient to express the above equation in terms of the ‘advective velocity’

u which is defined, for Michel flow, as the radial speed of the accreting matter as

measured by a stationary observer. A stationary observer is an observer with fixed

spatial coordinates. The four-velocity components of the accreting matter can be

expressed in terms of its radial speed u0 (the stationary value of u) with respect to

the stationary observer as

vt0 =
1

√
gtt

1√
1− u20

, (3.112)

vr0 =
u0√
grr

1√
1− u20

. (3.113)

Using the above two equations, we can rewrite Eq. (3.111) in terms of u0 as

cs
2|h = u20|h. (3.114)

Hereafter, the suffix ‘h’ would imply that the equation is to be evaluated at the

acoustic horizon. Thus, we find that the acoustic horizon is located at a radial

distance where the local sound speed and the advective speed becomes equal. In

other words, the acoustic horizon and the transonic surface (defined as the surface

where the Mach number M ≡ u0/cs becomes 1) coincide.

3.4.2 Axially symmetric flow

For axially symmetric flow, the condition Grr = 0 for acoustic horizon gives

c2s =
(1 + β)grr(v

r
0)

2

1 + grr(vr0)
2
. (3.115)

The ‘advective velocity’ u for axially symmetric flow, is defined as the radial speed

of the accreting matter as measured in a frame co-rotating (CF) with the accreting

matter. The accretion in the CF is described by two variables–u and the specific

angular momentum λ = −vϕ/vt. In terms of u0 and λ0 (stationary value of λ), the
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velocity components vµ0 can be expressed as

vt0 =

√
gϕϕ

gtt(gϕϕ − λ20gtt)

√
1

1− u20
, (3.116)

vr0 =
u0√

grr(1− u20)
, (3.117)

vϕ0 = λ0

√
gtt

gϕϕ(gϕϕ − λ20gtt)

√
1

1− u20
. (3.118)

Using the above three equations, we express the horizon condition given by Eq.

(3.115) in terms of u0 and λ0 as

u20
∣∣
h =

c2s
1 + β

∣∣∣∣
h
. (3.119)

For constant height flow and conical flow, β = 0 and therefore for these two models,

the acoustic horizon coincide with the transonic surface. For, flow in hydrostatic

equilibrium along the vertical direction, β ̸= 0 and the effective sound speed in the

VE model is therefore observed to be ceff = cs/(1 + β). ceff is the actual speed of

propagation of linear perturbation inside the transonic fluid. This effective sound

speed will be discussed in great details in Chap. 7.

3.5 Causal structure

In this section, we will study the causal structure of the acoustic spacetime at and

around the acoustic horizon to illustrate the behavior of the phonon null geodesics.

The causal structure of the acoustic spacetime is independent of the conformal

factor. The null geodesic corresponding to the radially traveling phonons is given

by ds2|θ=const,ϕ=const = 0. This provides

(
dr

dt
)± ≡ b± =

−Grt ±
√
G2
rt −GrrGtt

Grr

. (3.120)

So t(r) is obtained as

t(r)± = t0 +

∫ r

r0

1

b±
dr. (3.121)
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3.5.1 Causal structure for Michel flow

The acoustic metric elements for the Michel flow is given by Eq. (3.103). The

metric elements can be expressed in terms of u0 using Eq. (3.112) and Eq. (3.113),

Gtt = gtt

(
u20 − c2s
1− u20

)
, (3.122)

Gtr = −
(
1− c2s
1− u20

)
u0, (3.123)

Grr = grr

(
1− u20c

2
s

1− u20

)
. (3.124)

Thus, b± becomes

b± = gtt

(
u0 ± cs
1− u0cs

)
. (3.125)

For accretion flow, u0 < 0 which implies the in fall of matter. Near the acoustic

horizon which coincide with the transonic surface, u0 can be approximated as

u0 = −cs +
∣∣∣∣du0dr

∣∣∣∣
h
(r − rh) +O(r − rh)

2 + .. (3.126)

Therefore, it is noticed that at the acoustic horizon, i.e., at r = rh, b+ → 0 which

makes the coordinate t+ diverge as ln |r − rh| at the acoustic horizon. However, b−

remains non-zero at the acoustic horizon and hence t− remains finite.

In order to draw the causal structure, we need to perform the integration in Eq.

(3.121). The expression for b± contains u0 which could be found by numerically

solving the accretion flow equations. Below we discuss briefly how to solve for the

stationary solutions using the continuity and Euler equation.

In order to solve for the stationary solutions for spherically symmetric accretion,

we use two expressions–first one is the mass accretion rate, Ψ0 =
√
−g̃ρ0vr0, which

is obtained by integrating the continuity equation and the relativistic Bernoulli’s

constant given by Eq. (3.19) which obtained by integrating the temporal component

of the Euler equation. In terms of u0, these are given by

Ψ0 =
1

√
grr

ρ0u0r
2√

1− u20
, (3.127)

ξ0 =
√
gtt

1√
1− u20

ρ
c2s
0 , (3.128)
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where we have used vt0 = −gttvt0. Logarithmic differentiation of the above two

equations provides, respectively,

u′0 = −u0(1− u20)

[
ρ′0
ρ0

+
2

r
+

g′tt
2gtt

]
, (3.129)

ρ′0
ρ0

= − 1

c2s

[
u0u

′
0

(1− u20)
+

g′tt
2gtt

]
, (3.130)

where, the ‘prime’ stands for differentiation with respect to the radial coordinate r.

Substituting Eq. (3.130) in Eq. (3.129) provides the gradient of the radial velocity

as [75]

u′0 =
u0(1− u20)

u20 − c2s

[
2c2s
r

− g′tt
2gtt

(1− c2s)

]
. (3.131)

The above equation can be solved for u0(r), numerically for given value of the

sound speed which is a constant for isothermal flow. The isothermal sound speed

my be expressed in terms of the bulk ion temperature, T , through the Clapeyron-

Mendeleev equation [78, 79],

cs =

√
kBT

µmH

, (3.132)

where kB is the Boltzmann constant, mH is the mass of the hydrogen atom (mH ≈

mp for one temperature fluid) and µ is the mean molecular weight. Thus, we

solve Eq. (3.131) for u0 for given temperature T of the background flow. It is to

be noticed that the denominator in the expression for u′0 in Eq. (3.131) vanishes

at u20 = c2s and thus introduces a singularity in the differential equation. However,

there is no physical singularity in the background flow at any radial distance outside

the event horizon of the black hole. Therefore, in order that u′0 is non-singular

at the transonic surface, the numerator also must vanish at that same location.

This condition provides us with the location of the transonic surface and hence the

location of the acoustic event horizon. Equating the numerator and denominator

of Eq. (3.131) to zero, simultaneously, gives

u20
∣∣
h = c2s

∣∣
h =

1

(2r − 3)

∣∣∣∣
h
. (3.133)

The above condition, obtained by equating denominator and numerator simultane-

ously to zero, is generally called the critical point condition in accretion literature
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and the radial points satisfying this condition are called critical points of the flow

and are denoted as rc. We also notice that the critical point and the acoustic horizon

are the same and we will use them interchangeably.

At the critical points, the gradient of the radial velocity has 0
0

form. Therefore,

the value of the gradient of the radial velocity at the critical points is evaluated

by taking limit r → rc (and consequently u20 → c2s) of the right-hand side of Eq.

(3.131) using L’Hospital method. Thus, we have

u′0|h = ±

√
c2s(1− c2s)

2

[
(1− c2s)

2c2s

{
g′2tt
g2tt

− g′′tt
gtt

}
− 2

r2

]
h
, (3.134)

where ‘double prime’ stands for double derivative with respect to r. It is to be noted

that u0 < 0 for accretion flow and u0 > 0 for wind solution, so we have to pick the

‘sign’ accordingly for accretion or wind solution. For accretion solutions, the flow

becomes supersonic from subsonic at the horizon. In other words, the magnitude

|u0| increases with decreasing r. Therefore, the slope d|u0|/dr at the horizon would

be negative and u′0 = −d|u0|/dr would corrspond to the positive sign in Eq. (3.134).

For a given temperature of the background flow, using Eq. (3.131) and Eq. (3.134)

we can solve for u0 and find out the Mach number, which is the the ratio of |u0| and

the sound speed cs, as a function of the radial distance and we can also perform

the integration in Eq. (3.121), numerically, to find t±(r) and thus draw the causal

structure of the acoustic spacetime.

In Fig. 3.1, the plot at the top shows the variation of the Mach number M as a

function of the radial distance r for a given temperature T = 1010K. The acoustic

horizon is located at rh = 274.08. The plot at the bottom shows the corresponding

causal structure of the acoustic spacetime. As can be seen in causal structure, the

t+ lines (solid lines) diverge at the acoustic horizon whereas the t− lines (dotted

lines) are non-singular at the horizon. Outside the horizon, i.e., for r > rh, the

radial coordinate increases along t+ and decreases along t−. Thus, the phonons can

move outward as well as inward. However, inside the horizon, i.e., r < r h, radial

coordinate decreases along both t+ and t− implying the fact that the phonons are

allowed to move only inward. Thus, it is clear from the causal structure that the

acoustic horizon behaves like a one-way membrane in the same way as the event
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Figure 3.1: Top: Mach number vs radius plot of Michel flow. Bottom: Causal

structure of the acoustic spacetime corresponding to the transonic flow

(dashed line in the left figure). The dotted line is the t(r)− vs r and the

solid line is t(r)+ vs r. where t(r)± is given by Eq. (3.121).
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horizon of a general relativistic black hole. In case of a black hole, nothing can

come out of the event horizon whereas, in case of acoustic spacetime time, acoustic

phonons are trapped inside the acoustic horizon and cannot escape from it.

3.5.2 Causal structure for axially symmetric flow

For axially symmetric flow, the stationary flow configuration depends on the spe-

cific angular momentum also. Thus, the Mach number versus radial distance plot

depends on the set of parameters [T, λ0]. A different set of values of these param-

eters would result in different Mach number versus radial distance plots. Unlike

the Michel flow, axially symmetric flow can allow more than one critical points

in the flow. One can construct a parameter space of [T, λ0 which allows multiple

critical points. Such construction of parameter space will be demonstrated in the

next chapter. For our current purpose, we have chosen particular set values of the

parameters [T, λ0] which allows multiple critical points and the accretion flow passes

through the outer critical point. We will talk more about the critical points and

possible transonic flow with shock formation in the next chapter.

The metric elements for axially symmetric flow is given by Eq. (3.107) which can

be expressed in terms of u0 and λ0 as

Gtt =
(1 + β)u20 − c2s

c2s(1− u20)(1− 2/r)−1
, (3.135)

Gtr = Grt =
−u0(1 + β − c2s)

√
r2

r2−λ2(1−2/r)

c2s(1− u20)
, (3.136)

Grr =
c2s(1− u20) + (1 + β − c2s)

r2

r2−λ2(1−2/r)

c2s(1− u20)(1− 2/r)
. (3.137)

The acoustic horizon is located at u20 = c eff
s

2, where c eff
s = cs/

√
1 + β. Thus near

the acoustic horizon, u0 may be expanded as

u0 = −c eff
s +

∣∣∣∣du0dr
∣∣∣∣

h
(r − r h) +O(r − r h)

2 + .., (3.138)

which again implies that b+ ∝ (r − rh) near the acoustic horizon and therefore,

t+ ∝ ln |r − r h| near the horizon. Thus t+ diverges at the acoustic horizon while

t− remains finite. In order to find t± as function of r we have to solve for u0 for
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given values of [T, λ0]. The procedure to find the solution is similar to the case of

Michel flow. We start with the two integrals of motion–the mass accretion rate and

the relativistic Bernoulli’s constant. The mass accretion rate is given by Eq. (3.30)

which in terms of u0 becomes

Ψ0 = ρ0u0H0

√
∆

1− u20
, (3.139)

where ∆ = r(r − 2) (such that grr = g−1
tt = r2/∆) and H0(r) = (Hθ)0r is the local

disck thickness. The relativistic Bernoulli’s constant is given in terms of u0 and λ0

as

ξ0 = ρ
c2s
0

√
∆

B(1− u20)
, (3.140)

where B = gϕϕ − λ20gtt. Taking logarithmic derivative of the Eq. (3.140) provides

ρ′0
ρ0

= − 1

c2s

[
u0u

′
0

1− u20
+

1

2

(
∆′

∆
− B′

B

)]
. (3.141)

The expression of the mass accretion rate given by Eq. (3.139) contains the term

H0 and therefore explicitly depends on the model of the accretion disc. Taking

logarithmic derivative of Eq. (3.139) gives

ρ′0
ρ0

+
u′0
u0

1

1− u20
+

∆′

2∆
+
H ′

0

H0

= 0. (3.142)

Below we provide the equations neccessary to solve for u0 for different models of

accretion disc.

3.5.2.1 Constant height flow (CF)

For constant height flow, the thickness of the accretion disc is the same at all radial

distances. Therefore, H0 = constant. Eq. (3.142) for constant height flow becomes

ρ′0
ρ0

+
u′0
u0

1

1− u20
+

∆′

2∆
= 0. (3.143)

Using the above equation, we substitute ρ′0/ρ0 in Eq. (3.141) which gives the dif-

ferential equation for u0 as

u′0 =
u0(1− u20)

u20 − c2s

[
B′

2B
− (1− c2s)

∆′

2∆

]
≡ N CH

D CH . (3.144)
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The critical points of the flow is obtained by setting N CH = D CH = 0. D CH = 0

shows that the ciritical points are located at u20 = c2s which also gives the location

of the acoustic horizon.

u20
∣∣

c = c2s
∣∣

c =
∆′

∆
− B′

B
∆′

∆

∣∣∣∣∣
c

. (3.145)

Using the L’Hospital method we find u′0 at the critical point as

u′0|c = ±

√
1− c2s

4

[
(1− c2s)

(
∆′2

∆2
− ∆′′

∆

)
−
(
B′2

B2
− B′′

B

)]
. (3.146)

In Fig. 3.2, the top panel shows the Mach number versus r plot on the left and

the corresponding causal structure of the acoustic spacetime on the right for the

values of the parameters [T = 1010 K, λ0 = 3.75].

3.5.2.2 Conical Flow (CF)

H0 for conical flow is given as H0 ∝ r. Therefore, for CF, Eq. (3.142) becomes

ρ′0
ρ0

+
u′0
u0

1

1− u20
+

∆′

2∆
+

1

r
= 0. (3.147)

Using Eq. (3.141) and Eq. (3.147) we get

u′0 =
u0(1− u20)

u20 − c2s

[
B′

2B
− (1− c2s)

∆′

2∆
+
c2s
r

]
≡ N CF

D CF . (3.148)

The critical points and the acoustic horizon are located at u20 = c2s and are given by

u20
∣∣

c = c2s
∣∣

c =
∆′

∆
− B′

B
∆′

∆
+ 2

r

∣∣∣∣∣
c

. (3.149)

The gradient of the advective velocity at the critical points is obtained to be given

by

u′0|c = ±

√
1− c2s

4

[
(1− c2s)

(
∆′2

∆2
− ∆′′

∆

)
−
(
B′2

B2
− B′′

B

)
− 2c2s

r2

]
. (3.150)

In Fig. 3.2, the middle panel shows the Mach number versus r plot for conical flow

on the left and the corresponding causal structure on the right side for the values

of the parameters [T = 1010 K, λ0 = 3.75].
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Figure 3.2: We demonstrate the Mach number (M) Vs. radial distance (r) struc-

ture (phase portrait) for multi-transonic axisymmetric accretion and it’s

corresponding causal structures (at and around the sonic point(s)) for

three different flow geometries, namely, constant height flow (top panel),

conical flow (middle panel) and flow in the hydrostatic equilibrium along

the vertical direction (lower panel). The isothermal accretion has been

characterized by λ = 3.75 and T = 1010K. The panels show how the

location of acoustic horizon and the curvature at and around the horizon

varies for different flow geometries. On the right the dashed line is the

t(r)− vs r and the solid line is t(r)+ vs r. where t(r)± is given by Eq.

(3.121).
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3.5.2.3 Flow under vertical hydrostatic equilibrium (VE)

Unlike the CH and CF models of the accretion disc, the disc height for accretion flow

with hydrostatic equilibrium along the vertical direction depends on the accretion

variables such as density, pressure and the velocity. The expression of the disc

height as given by Abramowicz et al. [72] in the Schwarzschild limit becomes

H0 =

√
2P0

ρ0

r2

|vϕ0|
=

√
2P0

ρ0

r2

λ0|vt0|
=

√
2P0

ρ0

r2

λ0

√
B

∆

√
1− u20. (3.151)

Using Eq. (3.151), (3.142) and (3.141) gives

u′0 =
u0(1− u20)

(1 + c2s)
(
u20 −

c2s
1+c2s

) [(1 + c2s)
B′

2B
− ∆′

2∆
+

2c2s
r

]
≡ N VE

D VE . (3.152)

The critical points are obtained at u20 = c2s/(1 + c2S) = c eff
s

2. Thus critical point or

the acoustic horizon location is given by

c2s
∣∣
c
=

∆′

∆
− B′

B
B′

B
+ 4

r

∣∣∣∣∣
c

. (3.153)

Using L’Hospital method at r → rc we obtain u′0 at the critical point as

u′0|c = ±

√
1− c2s

4(1 + c2s)

[(
∆′2

∆2
− ∆′′

∆

)
− (1 + c2s)

(
B′2

B2
− B′′

B

)
− 4c2s

r2

]
. (3.154)

In Fig. 3.2, the bottom panel shows the Mach number versus r plot on the left side

and the corresponding causal structure for accretion flow on the right side for the

values of the parameters [T = 1010 K, λ0 = 3.75].

In our current analysis, we have not considered the formation of shock in the

accretion flow. Presence of shock formation alters the nature of the accretion flow

by allowing the flow to be multi-transonic. In such a case, the flow passes through

more than one or specifically two critical points-outer and inner critical points.

At the location of the shock formation, the accretion variables such as velocity

and density become discontinuous and the flow makes a discontinuous jump from

supersonic to subsonic state. It has been shown that the presence of shock formation

also gives rise to an acoustic white hole at the location of the shock formation [52,

73, 77]. We shall consider shocked accretion flow and discuss the corresponding

effects on the acoustic spacetime in the next chapters.
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3.6 Acoustic surface gravity

In theoretical physics, one of the main objectives to study the analogue gravity

phenomenon is to understand the Hawking-like effects – the emission of phonons

from the close vicinity of the acoustic horizon which is considered to be analogous to

the usual Hawking radiation emanating out from the standard gravitational black

holes. In fact, the main goal of Unruh’s work [1] was to show that a transonic

fluid system shows Hawking-like effect and the quantized phonons emitted from the

acoustic horizon has a thermal spectrum with an analogue Hawking temperature

TAH . The Hawking temperature (as measured at infinity) of a black hole is given in

terms of the surface gravity κg3 as TH = h̄κg
2πkB

(in the units we are working with)[3,

80]. The analogue Hawking temperature could be given by a similar formula with

the acoustic surface gravity κ and hence the acoustic surface gravity provides a way

to evaluate the corresponding analogue Hawking temperature TAH .

The acoustic spacetime metric Gµν is the same up to a conformal factor for the

three quantities that we perturb linearly. The acoustic surface gravity is a confor-

mally invariant quantity. Therefore, we get the same acoustic geometry irrespective

of the quantity we perturb for a particular flow geometry.

3.6.1 Acoustic surface gravity for Michel flow

The acoustic metric elements given by Eq. (3.103) is independent of the time

coordinate. Therefore, the spacetime possesses the stationary Killing vector χµ =

δµt . The norm of the Killing vector at the horizon is given by

χµχ
µ| h = Gtt| h = 0. (3.155)

Thus, the Killing vector is null at the acoustic horizon and therefore, the Killing

horizon and the acoustic horizon coincide. For such a spacetime, the acoustic surface

gravity could be given in terms of the Killing vector by the following relation to be
3The subscript g is used to denote black hole surface gravity as we have already denoted the

acoustic surface gravity by κ.
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evaluated at the horizon [11]

∇α(−χµχµ) = 2κχα, (3.156)

where κ is the surface gravity. α = r component of the above equation gives the

surface gravity as

κ = − G′
tt

2Gtr

∣∣∣∣
h
. (3.157)

In terms of the background metric elements and velocity, κ becomes

κ =

∣∣∣∣∣
√
gtt/grr
1− c2s

u′0

∣∣∣∣∣
h

. (3.158)

3.6.2 Acoustic surface gravity for axially symmetric flow

Similar to the acoustic geometry in Michel flow, the acoustic metric, as given by

Eq. (3.107), also possesses the stationary Killing vector χµ = δµt which is null at

the acoustic horizon u20 = c2s/(1+ c2s). Therefore, the surface gravity is given by the

formula

κ = − G′
tt

2Gtr

∣∣∣∣
h
=

∣∣∣∣∣ 1 + β

1 + β − c2s

√
gtt(gϕϕ − λ20gtt)

grrgϕϕ
u′0

∣∣∣∣∣
h

. (3.159)

Usning the expressions for the background metric elements, the surface gravity for

the axially symmetric flow becomes

κ =

∣∣∣∣∣ 1 + β

1 + β − c2s

r − 2

r2

√
r2 − λ20(1−

2

r
)u′0

∣∣∣∣∣
h

. (3.160)

It is to be clarified that the surface gravity has been calculated on the equatorial

plane since the radial Euler equation has been solved to obtain the stationary inte-

gral solutions for the height averaged expressions for the thermodynamic quantities.

For time-dependent stability analysis, only the radial Euler equation has been per-

turbed as well, under similar physical conditions. The acoustic horizon is thus a

circular ring located on the equatorial plane and the surface gravity corresponding

to that geometric structure has been computed in this work.

67



Chapter 3. Relativistic sonic geometry for isothermal accretion in the
Schwarzschild metric

3.7 Critical points and the transonic points in VE

model

In Sec. 3.5, it was how the location of the acoustic horizon may be determined. In

order to obtain the location of the acoustic horizon, first, we had to find out the

differential equation for the advective velocity u0 by taking special derivatives of

the two constant integrals of motion–the relativistic Bernoulli’s constant and the

mass accretion rate. From the equation of u′0, we identified the critical points of

the flow which we noticed that coincide with the location of the acoustic horizon.

The critical points are also identical to the transonic points for Michel flow as well

as for CH and CF. However, the critical points and the transonic points are not the

same in case of flow under vertical equilibrium. In case of VE, the critical points

are located at u20 = c eff
s

2 instead of at u20 = c2s which hints to the fact that in VE

flow, the effective speed with the acoustic perturbation propagate is c eff
s . In Chap.

7, this apparent non-isomorphism of the critical points and the transonic points has

been discussed in details.

In the work presented in this chapter, one of the most important findings is

the following: The salient features of the acoustic geometry do not depend on the

physical quantity we perturb to obtain the same metric. Linear perturbation of the

velocity potential, the relativistic Bernoulli’s constant and the mass accretion rate

give rise to the same acoustic metric, apart from a conformal factor. The conformal

factor does not contribute to the acoustic horizon as well as the acoustic surface

gravity. The acoustic geometry is thus an intrinsic property of the accreting black

hole system. At the same time, we also find that for the same set of initial boundary

conditions used to describe the accretion flow, the location of the acoustic horizon,

as well as the value of the acoustic surface gravity, depends, quite sensitively, on

the geometric configuration of matter–different disc models provide different values

of rh and κ for the same set of values [T, λ0]. Hence, the properties of the acoustic

metric do not depend on the physical quantity we perturb to obtain the metric,

rather such properties get influenced by the matter geometry in connection to the
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axially symmetric accretion.

We have studied the acoustic geometry embedded in accretion flow onto a Schwarzschild

black hole. However, the astronomers believe that most of the astrophysical black

holes possess a non-zero spin angular momentum. Thus, it is important to know

how the features of the acoustic metric that we studied depend on the spin of the

black hole. In the next chapter, we investigate the features of the acoustic spacetime

for isothermal accretion flow onto a Kerr black hole.
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4
Relativistic sonic geometry for

isothermal accretion in the

Kerr metric1

In the previous chapter, we studied the acoustic spacetime metric embedded in an

isothermal accretion flow onto a non-rotating Schwarzschild black hole. In this chap-

ter, we investigate the emergence of the analogue gravity phenomenon by linearly

perturbing an isothermal accretion flow onto a rotating Kerr black hole. Similar to

the Schwarzschild case, we find that the acoustic metric obtained by perturbing the

three different physical quantity–the velocity potential, the relativistic Bernoulli’s

constant and the mass accretion rate–give rise to the same acoustic metric apart

from a conformal factor. We show how the salient features of the acoustic space-

time get influenced by spin of the black hole. The causal structure of the acoustic

spacetime is constructed with as well as without shock formation. We explicitly

show the dependence of the acoustic horizon and the acoustic surface gravity on

the black hole spin. We also show how the perturbation equation may be used to

perform a linearly stability analysis of the stationary accretion flow.

1This chapter is based on the work titled “Relativistic sonic geometry for isothermal accretion

in the Kerr metric” by M. A. Shaikh [73].
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4.1 Basic set up

The accretion flow is governed by a few number of basic equations which include the

mass conservation equation (continuity equation), the energy-momentum conserva-

tion equation (the relativistic Euler equation) and the irrotationality condition. We

consider the accreting fluid to be perfect and to be governed by isothermal equa-

tion of state. Below we provide these basic equations as well as set the necessary

background to study the acoustic spacetime embedded in the accretion system and

perform linear stability analysis of the stationary accretion solutions.

We consider the following metric for a stationary rotating spacetime

ds2 = −gttdt2 + grrdr
2 + gθθdθ

2 + 2gϕtdϕdt+ gϕϕdϕ
2, (4.1)

where the metric elements are functions of r and θ. The metric elements in Boyer-

Lindquist (BL) coordinates are given by [81]

gtt =

(
1− 2

µr

)
,

grr =
µr2

∆
,

gθθ = µr2,

gtϕ = gϕt = −2a sin2 θ

µr
,

gϕϕ =
Σ

µr2
sin2 θ,

(4.2)

where a is the spin of the black hole and

µ = 1 +
a2

r2
cos2 θ,

∆ = r2 − 2r + a2,

Σ = (r2 + a2)2 − a2∆ sin2 θ.

(4.3)

The event horizon of the Kerr black hole is located at grr = 0 which, in the units

we are working with (G = c =MBH = 1), is located at r+ = 1+
√
1− a2. r+ is the

outer solution of grr = 0.

The continuity equation in Eq. (3.4), relativistic Euler equation in Eq. (3.10) and

the irrotationality condition in Eq. (3.15) were provided in the previous chapter
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for a general bakcground metric gµν and therefore are applicable for accretion flow

onto a Kerr black hole also.

The accretion flow is described by the four-velocity (vt, vr, vθ, vϕ). We assume the

flow to be axially symmetric and also to be symmetic about the equatorial plane

and the velocity along the vertical direction to be negligible compared to the radial

velocity, i.e., vθ ≪ vr. Due to the axial symmetry, any term with derivative with

respect to the azimuthal coordinate ϕ would vanish. We perform a vertical averaging

of the continuity equation using the approximation provided by Eq. (3.26)

∂t(
√

−g̃ρvtHθ) + ∂r(
√

−g̃ρvrHθ) = 0. (4.4)

The value of the determinant of the Kerr metric is g = −µ2r4 sin2 θ and it’s value

on the equatorial plane is g̃ = −r4. Hθ is the local angular scale of the flow

and is related to the local disc thickness H(r) as Hθ = H/r. For the present

work, we consider the flow to be a wedge-shaped conical flow such that H(r) ∝ r

and Hθ = constant. Hθ (and therefore H(r)) does not depend on any accretion

variable such as the velocity components or the density. Thus, linear perturbation

of the accretion flow variables will not affect Hθ. The vertical averaging allows us to

work fully on the equatorial plane by containing the information about the vertical

structure inside Hθ. From now on all the equations will be derived by assuming the

flow to be vertically averaged and the variables have values equal to that on the

equatorial plane.

Apart from the Boyer-Lindquist coordinate frame (BLF), we shall use a second

reference frame which is called the corrotating frame (CRF)[69]. This frame is

obtained by an azimuthal Lorentz boost from the locally nonrotating frame (LNRF)

into a tetrad basis that corotates with the fluid. LNRF is an orthonormal tetrad

basis who lives at θ = constant, r = constant, ϕ = ωt + constant, where ω =

2a
r3+a2(r+2)

on the equatorial plane (originally calculated by Bardeen et al. [82]). Let

u be the radial velocity (referred as the ‘advective velocity’) of the fluid as measured

in the CRF and λ = −vϕ
vt

be the specific angular momentum of the fluid. Then the
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four-velocity components in BLF is related to u and λ in the following way [69]

vr =
u√

grr(1− u2)
, (4.5)

vt =

√
(gϕϕ + λgϕt)2

(gϕϕ + 2λgϕt − λ2gtt)(gϕϕgtt + g2ϕt)(1− u2)
, (4.6)

vt = −

√
gttgϕϕ + g2ϕt

(gϕϕ + 2λgϕt − λ2gtt)(1− u2)
. (4.7)

u and λ are the two velocity variables needed to describe the flow in the equatorial

plane.

4.2 Linear perturbation of velocity potential, mass

accretion rate and the relativistic Bernoulli’s

constant

In this section, we will linearly perturb the accretion flow equations to obtain the

perturbation equation in terms of the velocity potential, relativistic Bernoulli’s

constant and the mass accretion rate. The procedure to the obtain the pertur-

bations equation is the same as provided in the previous chapter for accretion onto

Schwarzschild black hole. From the perturbation equation, we identify the fµν ma-

trix to obtain the acoustic spacetime metric. Before going to the details of the

derivation of the acoustic metric by perturbing the three different quantities, we

first write down some useful equations which will be essential later in the section.

The normalization condition is given by vµvµ = −1 which gives

gtt(v
t)2 = 1 + grr(v

r)2 + gϕϕ(v
ϕ)2 + 2gϕtv

ϕvt. (4.8)

From the irrotationality condition given by Eq. (3.15) with µ = t and ν = ϕ and

using the axial symmetry, we have ∂t(vϕρc
2
s) = 0 and with µ = r and ν = ϕ we have

∂r(vϕρ
c2s) = 0. Therefore, vϕρc

2
s is a constant of motion for irrotational isothermal

accretion flow. ∂t(vϕρc
2
s) = 0 can be expanded to give

∂tvϕ = −vϕc
2
s

ρ
∂tρ. (4.9)
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Substitution of vϕ = gϕϕv
ϕ + gϕtv

t in the above equation provides

∂tv
ϕ = − gϕt

gϕϕ
∂tv

t − vϕc
2
s

gϕϕρ
∂tρ. (4.10)

Differentiation of both sides of Eq. (4.8) with respect to t gives

∂tv
t = α1∂tv

r + α2∂tv
ϕ, (4.11)

where α1 = −(grrv
r)/vt and α2 = −vϕ/vt. We substitute ∂tvϕ in Eq. (4.11) using

Eq. (4.10) to get

∂tv
t =

(
−α2vϕc

2
s/(ρgϕϕ)

1 + α2gϕt/gϕϕ

)
∂tρ+

(
α1

1 + α2gϕt/gϕϕ

)
∂tv

r (4.12)

We perturb the velocity and density about their stationary background values as

following

vµ(t, r) = vµ0 (r) + vµ1 (t, r), (4.13)

ρ(t, r) = ρ0(r) + ρ1(t, r), (4.14)

where, as usual, the subscript ‘0’ stands for the stationary part and ‘1’ stands for

the linear time-dependent perturbation. Using Eq. (4.13) and (4.14) in Eq. (4.12)

and keeping only the terms that are first order in pertubed quantities give

∂tv
t
1 = η1∂tρ1 + η2∂tv

r
1, (4.15)

where

η1 = − c2s
Λvt0ρ0

[Λ(vt0)
2− 1− grr(v

r
0)

2], η2 =
grrv

r
0

Λvt0
and Λ = gtt+

g2ϕt
gϕϕ

. (4.16)

4.2.1 Linear perturbation of velocity potential

We introduce the velocity potential field ψ using the irrotationality condition given

by Eq. (3.15) in the following way

−∂µψ = vµρ
c2s . (4.17)

We showed that vϕρc
2
s is a constant of motion and hence ∂ϕψ is a constant of motion.

The velocity potential is perturbed in the following way ψ = ψ0 + ψ1. Therefore,
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∂ϕψ = constant, gives δ(∂ϕψ) = ∂ϕψ1 = 0. Contracting both sides of Eq. (4.17)

with vµ and using the normalization condition vµv
µ = −1 gives

ρc
2
s = vµ∂µψ. (4.18)

Linear perturbation of the above equation provides

ρ1 =
1

c2sρ
c2s−1
0

[vr∂rψ1 + vt∂tψ1]. (4.19)

Linear perturbation of Eq. (4.17) gives

vt1 =
1

ρ
c2s
0

[(gtt − (vt0)
2)∂tψ1 − vt0v

r
0∂rψ1], (4.20)

vr1 =
1

ρ
c2s
0

[(−grr − (vr0)
2)∂rψ1 − vr0v

t
0∂tψ1]. (4.21)

Linear perturbation of the continuity equation, e.g., Eq. (4.4) gives

∂t[
√

−g̃Hθ(ρ0v
t
1 + vt0ρ1)] + ∂r[

√
−g̃Hθ(ρ0v

r
1 + vr0ρ1)] = 0. (4.22)

Now we substitute vt1, vr1 and ρ1 in the above equation using Eq. (4.20), (4.21) and

(4.19), respectively, to obtain the perturbation equation in terms of ψ1 as

∂t

[
kψ(r)

{
−gtt + (vt0)

2

(
1− 1

c2s

)}
∂tψ1

]
+ ∂t

[
kψ(r)

{
vr0v

t
0

(
1− 1

c2s

)}
∂rψ1

]
+ ∂r

[
kψ(r)

{
vr0v

t
0

(
1− 1

c2s

)}
∂tψ1

]
+ ∂r

[
kψ(r)

{
grr + (vr0)

2

(
1− 1

c2s

)}
∂rψ1

]
= 0,

(4.23)

where kψ(r) = −(
√
−g̃Hθ)/ρ

c2s−1
0 . The above equation can be written as ∂µ(fµνψ ∂νψ1) =

0, where fµνψ is given as

fµνψ = kψ(r)

 −gtt + (vt0)
2
(
1− 1

c2s

)
vr0v

t
0

(
1− 1

c2s

)
vr0v

t
0

(
1− 1

c2s

)
grr + (vr0)

2
(
1− 1

c2s

)
 (4.24)

4.2.2 Linear perturbation of mass accretion rate

For stationary accretion flow, partial differentiation with respect to t vanishes.

Therefore, the continuity equation, given by Eq. (4.4), for stationary flow becomes
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∂r(
√

−g̃ρ0vr0Hθ) = 0, (4.25)

which under spatial integaration provides
√
−g̃ρ0vr0Hθ = constant. Multiplying

this quantity with the azimuthal component of the volume element, i.e., dϕ and

integrating gives the mass accretion rate

Ṁ = −Ω
√
−g̃ρ0vr0Hθ, (4.26)

where Ω arises due to the inegration over the ϕ angle and the negative sign implies

the infall of matter. Ω being merely a geometrical factor, we redefine the mass

accretion rate to be Ψ0 ≡ −Ṁ/Ω without any loss of generality,

Ψ0 =
√

−g̃ρ0vr0Hθ. (4.27)

Ψ0 is the stationary mass accretion rate of the stationary accretion flow. For,

non-stationary, i.e. for time-dependent flow, we define the mass accretion rate as

Ψ(t, r) =
√
−g̃ρ(t, r)vr(t, r)Hθ which has the stationary part equal to Ψ0 and can

be written as

Ψ(t, r) = Ψ0 +Ψ1(t, r), (4.28)

where

Ψ1(t, r) =
√

−g̃Hθ(ρ0v
r
1 + vr0ρ1). (4.29)

Eq. (4.22) can be written as

a1∂tv
r
1 + b1∂tρ1 = ∂rΨ1, (4.30)

where

a1 = −
√

−g̃Hθρ0η2, b1 = −
√

−g̃Hθ(v
t
0 + ρ0η1). (4.31)

Differentiation of Eq. (4.29) with respect to t provides

c1∂tv
r
1 + d1∂tρ1 = ∂tΨ1, (4.32)
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where

c1 =
√

−g̃Hθρ0, d1 =
√

−g̃Hθv
r
0. (4.33)

With the help of Eq. (4.30) and Eq. (4.32), we write down ∂tv
r
1 and ∂tρ1 solely in

terms of derivatives of Ψ1,

∂tv
r
1 =

1

∆1

(b1∂tΨ1 − d1∂rΨ1) (4.34)

∂tρ1 =
1

∆1

(−a1∂tΨ1 + c1∂rΨ1), (4.35)

where ∆1 = b1c1 − a1d1 = −g̃H2
θρ0Λ̃ and

Λ̃ =
grr(v

r
0)

2

Λvt0
− vt0 +

c2s0
Λvt0

[Λ(vt0)
2 − 1− grr(v

r
0)

2]. (4.36)

Also, we can write vt = vt0 + vt1 and ∂tvt1 as

∂tvt1 = η̃1∂tρ1 + η̃2∂tv
r
1, (4.37)

where

η̃1 = −
[
Λη1 +

gϕtvϕ0c
2
s

gϕϕρ0

]
, η̃2 = −Λη2, (4.38)

where η1 and η2 has been defined in Eq. (4.16). Now, we go back to the irrotation-

ality condition given by Eq. (3.15). We use µ = t and ν = r and devide by vtρc
2
s to

get

grr
vt
∂tv

r +
c2sgrrv

r

ρvt
∂tρ− ∂r

(
ln(ρc2svt)

)
= 0. (4.39)

We linearly perturb the above equation and use Eq. (4.37) to get

∂t

[
grr
vt0
∂tv

r
1

]
+∂t

[
grrc

2
sv
r
0

ρ0vt0
∂tρ1

]
−∂r

[
η̃2
vt0
∂tv

r
1

]
−∂r

[
(
η̃1
vt0

+
c2s
ρ0

)∂tρ1

]
= 0. (4.40)

Finally, substitution of ∂tvr1 and ∂tρ1 in the above equation using Eq. (4.34) and

(4.35), respectively, provides the perturbation equation in terms of Ψ1,

∂t

[
kΨ(r)

{
−gtt + (vt0)

2

(
1− 1

c2s

)}
∂tΨ1

]
+ ∂t

[
kΨ(r)

{
vr0v

t
0

(
1− 1

c2s

)}
∂rΨ1

]
+ ∂r

[
kΨ(r)

{
vr0v

t
0

(
1− 1

c2s

)}
∂tΨ1

]
+ ∂r

[
kΨ(r)

{
grr + (vr0)

2

(
1− 1

c2s

)}
∂rΨ1

]
= 0,
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(4.41)

where

kΨ(r) =
grrv

r
0c

2
s

vt0vt0Λ̃
and gtt =

1

Λ
=

1

gtt + g2ϕt/gϕϕ
. (4.42)

Eq. (4.41) can be written as ∂µ(fµνΨ )∂νΨ1 = 0, where fµνΨ is given by the 2 × 2

symmetric matrix

fµνΨ = kΨ(r)

 −gtt + (vt0)
2
(
1− 1

c2s

)
vr0v

t
0

(
1− 1

c2s

)
vr0v

t
0

(
1− 1

c2s

)
grr + (vr0)

2
(
1− 1

c2s

)
 (4.43)

4.2.3 Linear perturbation of relativistic Bernoulli’s constant

The energy-momentum conservation equation can be written as ∇µT
µ
ν = 0. Using

the definition of co-variant derivative ∇µvν = ∂µvν − Γλµνvλ, the energy-momentum

conservation equation can be written as

vµ∂µvν − Γλµνvλv
µ +

c2s
ρ
(vµvν∂µρ+ ∂νρ) = 0. (4.44)

Therefore, the temporal component ν = t of the relativistic Euler equation is given

by

vt∂tvt + vr∂rvt − Γλµtvλv
µ +

c2s
ρ
(vtvt∂tρ+ vrvt∂rρ+ ∂tρ) = 0. (4.45)

It can be shown that Γλµtvλv
µ = 0. Therefore, the temporal component of the

relativistic Euler equation becomes

vt∂tvt +
c2s
ρ
(vtvt + 1)∂tρ+ vrvt∂r{ln(vtρc

2
s)} = 0. (4.46)

For the stationary accretion flow, where all the time derivatives vanish, the above

equation provides the relativistic Bernoulli’s constant ξ0 = vt0ρ
c2s
0 which is a constant

of motion for stationary flow. We now define a quantity ξ(t, r) = vtρ
c2s for non-

stationary flow such that the stationary part of ξ is equal to ξ0, i.e,

ξ(t, r) = ξ0 + ξ1(t, r), (4.47)
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where ξ1 is given by

ξ1(r, t) =
c2sξ0
ρ0

ρ1(r, t) +
ξ0
vt0
vt1. (4.48)

Differentiating both sides of the above equation and using Eq. (4.37) gives

ξ0

[
c2s
ρ0

+
η̃1
vt0

]
∂tρ1 +

ξ0η̃2
vt0

∂tv
r
1 = ∂tξ1. (4.49)

Linear perturbation of Eq. (4.46) provides

ξ0grrv
r
0

vt0

c2s
ρ0
∂tρ1 +

ξ0grr
vt0

∂tv
r
1 = ∂rξ1. (4.50)

In deriving the above equation, Eq. (4.37), (4.38) and (4.16) are also used. Eq.

(4.49) and Eq. (4.50) can be used to express ∂tvr1 and ∂tρ1 in terms of derivatives

of ξ1,

∂tv
r
1 =

1

∆2

[b2∂tξ1 − d2∂rξ1], (4.51)

∂tρ1 =
1

∆2

[−a2∂tξ1 + c2∂rξ1], (4.52)

where

a2 =
ξ0grr
vt0

,

b2 =
ξ0grrv

r
0

vt0

c2s
ρ0
,

c2 =
ξ0η̃2
vt0

,

d2 = ξ0

[
c2s
ρ0

+
η̃1
vt0

]
,

∆2 = b2c2 − a2d2 =
ξ20grrc

2
s

ρ0v2t0v
t
0

.

(4.53)

Differentiating Eq. (4.22) with respect to t and using Eq. (4.15) provides

∂t[
√

−g̃H0{(ρ0η2)∂tvr1+(ρ0η1+v
t
0)∂tρ1}]+∂r[

√
−g̃H0(ρ0∂tv

r
1+v

r
0∂tρ1)] = 0 (4.54)

Substitution of ∂tvr1 and ∂tρ1 in the above equation, using Eq. (4.51) and (4.52),

respectively, gives

∂t

[
kξ(r)

{
−gtt + (vt0)

2

(
1− 1

c2s

)}
∂tξ1

]
+ ∂t

[
kξ(r)

{
vr0v

t
0

(
1− 1

c2s

)}
∂rξ1

]
+ ∂r

[
kξ(r)

{
vr0v

t
0

(
1− 1

c2s

)}
∂tξ1

]
+ ∂r

[
kξ(r)

{
grr + (vr0)

2

(
1− 1

c2s

)}
∂rξ1

]
= 0,
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(4.55)

where kξ =
√
−g̃H0/ρ

c2s−1. Comparing the above equation with ∂µ(f
µν∂νξ1) = 0,

we find out the symmetric 2× 2 matrix fµν as

fµνξ = kξ(r)

 −gtt + (vt0)
2
(
1− 1

c2s

)
vr0v

t
0

(
1− 1

c2s

)
vr0v

t
0

(
1− 1

c2s

)
grr + (vr0)

2
(
1− 1

c2s

)
 (4.56)

4.3 Acoustic metric

The linear perturbation of the velocity potential, mass accretion rate and the rel-

ativistic Bernoulli’s constant performed in Sec. 4.2.1, 4.2.2 and 4.2.3, respectively,

provides the perturbation equation of the following form

∂µ(f
µν
x ∂νx1) = 0, x = (ψ,Ψ, ξ). (4.57)

We compare the above equation with the equation of massless scalar field φ in curved

spacetime with metric gµν which is given by ∂µ(
√
−ggµν∂νφ) = 0. This gives the

acoustic spacetime metric Gµν
x in terms of fµνx as

√
−GxG

µν
x = fµνx . Thus, the

acoustic metric is related to the fµνx matrix by just a conformal factor
√
−Gx. Also

fµνx are also the same for different quantities x apart from an overall multiplicative

factor kx(r). Therefore, similar to what we did in the previous chapter, we neglect

these conformal factors kx/
√
−Gx and work with an acoustic metric which the same

for the all three cases of perturbations. Thus, the acoustic metric that we work with

is given by

Gµν =

 −gtt + (vt0)
2
(
1− 1

c2s

)
vr0v

t
0

(
1− 1

c2s

)
vr0v

t
0

(
1− 1

c2s

)
grr + (vr0)

2
(
1− 1

c2s

)
 (4.58)

and

Gµν =

 −grr − (vr0)
2
(
1− 1

c2s

)
vr0v

t
0

(
1− 1

c2s

)
vr0v

t
0

(
1− 1

c2s

)
gtt − (vt0)

2
(
1− 1

c2s

)
 (4.59)
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4.4 Location of the acoustic event horizon

The procedure to locate the acoustic event horizon was discussed in the last chapter

in Sec. 3.4, which gives the location of acoustic horizon as the condition Grr = 0.

Therefore, the location of the acoustic event horizon is obtained by solving the

following equation which is to be evaluated at the horizon, i.e., at r = r h

c2s =
grr(v

r
0)

2

1 + grr(vr0)
2
. (4.60)

In the CRF, i.e., in terms of u0 (the stationary value of u defined in Sec. 4.1), the

horizon condition becomes

u20 = c2s. (4.61)

The transonic point of a transonic fluid is defined as the location where the fluid

becomes supersonic from subsonic, i.e., where the Mach number M becomes equal

to 1. Therefore, we find that the acoustic horizon and the transonic point are

basically the same radial location.

One of the main goals of this chapter is to see how the different properties of the

acoustic spacetime get influenced by the spin of the background spacetime. Thus,

we would like to study the dependence of the acoustic horizon on the black hole spin

a. In order to do that, first we need to solve the stationary accretion flow equations.

It is not possible to solve the accretion flow equations analytically and therefore

we solve the equations numerically. The solutions depend on a set of parameters

that governs the accretion flow. We can solve the equations for a particular set of

values of these parameters. The nature of the solutions would depend critically on

the selected values of these parameters. For axially symmetic isothermal accretion

on to a Kerr black hole, these parameters are namely, the bulk-ion temperature of

flow T , the specific angular momentum of the flow λ0 and the black hole spin a.

Depending the given values of the set of parameters [T, λ0, a], the Eq. (4.61) may

have one or more than one solutions. Therefore, we first discuss about the choice

of parameters and then we discuss the dependence of acoustic horizon on the black

hole spin a for fixed values of other parameters.
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4.4.1 Choice of parameters [T, λ0, a]

The characteristic features of the axially symmetric isothermal accretion flow onto

a rotating Kerr black hole (with the disc model considered here) are determined

by the set of three parameters [T, λ0, a]. We use the same method as described

in Sec. 3.5.2 to set up the equations for the gradient of the advective velocity.

We write down the mass accretion rate Ψ0 and the relativistic Bernoulli’s constant

obtained in Sec. 4.2.2 and 4.2.3, respectively, in terms of the advective velocity

u0 and the specific angular momentum λ0. Then we take logarithmic derivative

of the equations Ψ0 = constant and ξ0 = constant. We use these two equations

to eliminate the density term ρ′0/ρ0, where the ‘dash’ represents single derivative

with respect to the radial coordinate, as usual. This provides the gradient of the

advective velocity as

u′0 =
u0(1− u20)

u20 − c2s

[
B′

2B
− (1− c2s)

∆′

2∆
+
c2s
r

]
≡ N

D
, (4.62)

where ∆ = r2 − 2r + a2 as defined in Eq. (4.3) and B = gϕϕ + 2λ0gϕt − λ20gtt. The

critical points of the flow are defined by the points where N = D = 0. Thus, critical

points are located at u20 = c2s and critical points, transonic points and the acoustic

horizon coincide for the particular accretion flow described here and therefore such

points may be referred by these names interchangeably. This gives the following

condition to be satisfied at the critical points

u2c = c2sc =
∆′

∆
− B′

B
2
r
+ ∆′

∆

(4.63)

The roots of the above equation lying outside the event horizon of the Kerr black

hole (given by r+ = 1+
√
1− a2) are the critical points of the flow. Due to the fact

that N = D = 0 at the critical points (r = rc), the advective velocity gradient u′0|c
at the critical points is obtained by taking the limit as r → rc (and u20 → c2s0) by

using L’Hospital rule. This gives the velocity gradient to be

u′0|c = ±

√
1− c2s

4

[
(1− c2s)

(
∆′2

∆2
− ∆′′

∆

)
−
(
B′2

B2
− B′′

B

)
− 2c2s

r2

]
. (4.64)

where the double ‘dash’ stands for the second derivative with respect to the radial

coordinate r.
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Figure 4.1: Regions of parameter space [λ0, a] allowing multiple critical points for

different values of T . For prograde motion higher spin corresponds to

lower λ0 whereas for retrograde motion higher spin corresponds to higher

λ0 for a particular T . For fixed fixed values of [T, λ0] only a finite range

of a allow multi-critical accretion.
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Depending on the values of the parameters [T, λ0, a], the equation (4.63), and

hence the accretion flow, can have one or more than one ( or more specifically

three) solutions for r > r+. If the flow has only one critical point then the flow

passes through this point and the flow is called mono-critical. Such flow is always

mono transonic, i.e., the flow makes the transition from subsonic state to super-

sonic state only once. However, we are more interested in the case where the flow

has more than one critical points. The corresponding flow in such case is said to

be multi-critical flow as it allows multiple critical points r in, r mid, r out such that

r in < r mid < r out (see Fig. 4.4, for example, below). These critical points can be

characterized by performing a critical point analysis. Such analysis shows that the

inner and outer critical points r in and r mid, respectively, are saddle type, whereas

the middle critical point r mid is center type. Thus the accretion flow can pass only

through the outer or inner critical points. when the accretion flow passes through

both the outer and inner critical points, the accretion flow is called multi-transonic

flow. Multi-critical flows are not necessarily multi-transonic flows. This could be

understood as the following: suppose the flow starts its journey from large ra-

dial distance subsonically. At r = r out, it makes a transition from subsonic state

to supersonic state. Thus r out is basically the outer acoustic horizon. After the

flow becomes supersonic it may encounter a shock formation which makes the flow

subsonic from supersonic discontinuously, i.e., the dynamical variables such as the

velocity, sound speed, density and pressure makes discontinuous jump. After it be-

comes subsonic due the shock formation, it again passes through the inner critical

point and becomes supersonic from subsonic. Therefore in presence of shock forma-

tion, the flow can pass through both outer and inner critical points and hence the

flow is multi-transonic. But all parameters which allow multiple critical points do

not allow shock formation. Thus the parameters space which allows shock formation

is smaller than the parameter space for multiple critical points.

In Fig. 4.1 we show the region of the parameter space [a, λ0] which allows multi-

critical flow, for four fixed values of temperatures. It can be noticed that for multi-

critical accretion at a fixed value of T , for prograde motion (a > 0), higher spin
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corresponds to lower λ whereas for retrograde motion (a < 0), higher spin cor-

responds to higher λ. Here as well as in the following, whenever we talk about

the dependence of any quantity on the black hole spin a and explicitly mention

whether the motion is prograde or retrograde, we would imply the dependence on

the magnitude of the spin a.

4.4.2 Dependence of the acoustic event horizon of [T, λ0, a]

For multi-critical accretion, the inner critical point r in generally is found to be very

close to the event horizon of the accreting black hole which is located at r+. There

exist few important circular orbits of test particles very close to the event horizon.

These are, namely, the inner most stable circular orbit (ISCO) at r ISCO, the photon

sphere at r photon and the inner most unstable bound orbit at r bound. Thus, it would

be interesting to compare the location of the inner critical point r in, with the above

mentioned radii of circular orbits of test particles [82–84].

The radius of innermost circular orbit, closest to the black hole, (along which the

motion is at the speed of light) is given by

r photon = 2

(
1 + cos

(
2

3
cos−1(−a)

))
(4.65)

and the last bound but unstable circular orbit on which energy of the orbit is equal

to the rest mass of the particle is given by

r bound = 2− a+ 2
√
1− a (4.66)

if a particle in the equatorial plane comes from infinity, with v∞ ≪ c, where c is

the speed of light, and passes within r bound, then it will be captured by the black

hole. Lastly the radius of the inner most circular orbit which is stable is given by

r ISCO = 3 + Z2 ∓
√
(3− Z1)(3 + Z1 + 2Z2) (4.67)

where

Z1 = 1 + (1− a2)
1
3 [(1 + a)

1
3 + (1− a)

1
3 ] (4.68)
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Figure 4.2: Inner acoustic horizon r in (along the vertical axis) vs black hole spin a

(along the horizontal axis) plots for different sets of [T, λ0] values. T and

λ0 are the temperature and the specific angular momentum respectively.

A, B and C corresponds to a fixed λ0 = 3.6 and T = 1010K, 5× 1010K

and 7.5 × 1010K, respectively. D, B and E corresponds to a fixed

T = 5 × 1010K and λ0 = 2.8, 3.6 and 3.9 respectively. For all the set

of parameters [T, λ0], r in decreases with a for prograde motion whereas

it increases with a for retrograde motion. r photon, r bound and r ISCO

represent the radius of the circular photon orbit, innermost bound but

unstable circular orbit and the innermost stable circular orbit (ISCO),

respectively. At least for these values of parameters [T, λ0], inner acous-

tic horizon r in always remains outside the innermost unstable bound

circular orbit r bound. See text for more.
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and

Z2 =
√

3a2 + Z2
1 (4.69)

the upper sign and lower sign in Eq. (4.67) are for prograde and retrograde motion

of the particle.

Fig. 4.2, shows the dependence of r in on the black hole spin a for different set

of values of temperature and specific angular momentum as well as the variation of

the radius of the circular orbits with a for that range . Plots A, B and C shows

the variation of r in with a for temperatures 1010K, 5 × 1010K and 7.5 × 1010K,

respectively, for a fixed specific angular momentum λ0 = 3.6. Whereas plots D,

B and E shows the same for specific angular momentum λ0 = 2.8, λ0 = 3.6 and

λ0 = 3.9, respectively for a fixed temperature 5 × 1010K. For a fixed [T, λ0], the

location of the inner critical points, i.e., r in decreases with a for prograde motion

whereas it increases with a for retrograde motion. Also by plotting the radius of

different circular orbits for the corresponding range of a it is noticed that at least

for these values of parameters [T, λ0], inner acoustic horizon r in always remains

outside the innermost unstable bound circular orbit r bound. However in order to

check whether this is true for all the points of the parameter space [T, λ0] the

analysis should be done for all values of [T, λ0] which is beyond the scope of the

present work.

Fig. 4.3, shows the dependence of the outer acoustic horizon r out on the black hole

spin a for different set of values of temperature and specific angular momentum.

Plots A, B and C shows the variation of r out with a for temperatures 1010K,

5 × 1010K and 7.5 × 1010K respectively, for a fixed specific angular momentum

λ0 = 3.6. Whereas plots D, B and E shows the same for specific angular momentum

λ0 = 2.8, λ0 = 3.6 and λ0 = 3.9 respectively for a fixed temperature 5×1010K. Here

also for a fixed [T, λ0], the location of the outer critical points, i.e., r out decreases

as the black hole spin a increases for prograde motion and increases with increasing

a for retrograde motion.

From plots A, B and C in Fig. 4.3, i.e, for same λ0 (here for λ0 = 3.6), it is seen

that for smaller temperature r out is large compared to that for higher temperature

88



4.4. Location of the acoustic event horizon

260.76

260.765

260.77

260.775

260.78

260.785

260.79

0.05 0.1 0.15 0.2 0.25 0.3

T = 1010K
λ0 = 3.6

Aou
te

r
ac

ou
st

ic
ho

riz
on

(r
ou

t)

black hole spin (a)

40.48

40.5

40.52

40.54

40.56

40.58

40.6

40.62

40.64

40.66

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

T = 5× 1010K

λ0 = 3.6

B

ou
te

r
ac

ou
st

ic
ho

riz
on

(r
ou

t)

black hole spin (a)

18.75

18.8

18.85

18.9

18.95

19

19.05

19.1

−0.23−0.225−0.22−0.215−0.21−0.205 −0.2 −0.195−0.19

T = 7.5× 1010K

λ0 = 3.6

Cou
te

r
ac

ou
st

ic
ho

riz
on

(r
ou

t)

black hole spin (a)

47.63

47.635

47.64

47.645

47.65

47.655

47.66

47.665

0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8 0.81

T = 5× 1010K
λ0 = 2.8

Dou
te

r
ac

ou
st

ic
ho

riz
on

(r
ou

t)

black hole spin (a)

36.4

36.45

36.5

36.55

36.6

36.65

36.7

36.75

−0.56 −0.54 −0.52 −0.5 −0.48 −0.46 −0.44 −0.42 −0.4

T = 5× 1010K

λ0 = 3.9

Eou
te

r
ac

ou
st

ic
ho

riz
on

(r
ou

t)

black hole spin (a)

Figure 4.3: Outer acoustic horizon r out vs black hole spin a plot for different set of

[T, λ0] values. T and λ0 are the temperature and the specific angular

momentum respectively. A, B and C corresponds to a fixed λ = 3.6

and T = 1010K, 5 × 1010K and 7.5 × 1010K respectively. D, B and

E corresponds to a fixed T = 5 × 1010K and λ0 = 2.8, 3.6 and 3.9

respectively. For all the set of parameters [T, λ0], r out decreases as

the black hole spin a increases for prograde motion and increases with

increasing a for retrograde motion.
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as argued earlier. Also the change in r out w.r.t a is quite small as compared to

the variation of r in with a. This is due to the fact that for large value of r out, the

spacetime becomes asymptotically flat, and in such Newtonian gravity limit, the

influence of the spin of black hole on the matter flow is less important and that is

why change of r out with respect to a is small compared to that of r in.

4.5 Causal structure of the acoustic spacetime

Acoustic null geodesic corresponding to the radially traveling (dϕ = 0, dθ = 0)

acoustic phonons is given by ds2 = 0. Thus(
dr

dt

)
±
≡ b± =

−Grt ±
√
G2
rt −GrrGtt

Grr

. (4.70)

So t(r) can be obtained as

t(r)± = t0 +

∫ r

r0

dr

b±
. (4.71)

We can introduce two new sets of coordinates as following

dz = dt− 1

b+
dr, and, dw = dt− 1

b−
dr. (4.72)

In terms of these new coordinates the acoustic line element can be written as

ds2|ϕ=θ= const = Ddzdw, (4.73)

where D is found to be equal to Gtt. z and w are called the null coordinates.

The acoustic metric elementsGtt, Grt = Gtr, Grr given by Eq. (4.59) are expressed

in terms of the background metric elements and the velocity variables u0(r) and λ0

using Eq. (4.5), (4.6) and (4.7). Thus b±(r) is function of the stationary solution

u0(r). Therefore we have to first obtain u0(r) by solving the relativistic Euler

equation for steady state. This is done by numerically integrating Eq. (4.62), which

provides the gradient of the advective velocity, i.e, u′0, with the initial condition given

by Eq. (4.63). Thus for a particular set of [T, λ0, a] we get u0(r) numerically and

hence we get b±(r). The integration in Eq. (4.71) is then performed numerically to
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Figure 4.4: Mach number M = |u0|/cs vs radial distance r plots for different val-

ues of [T, λ0, a]. T, λ0 and a are the temperature, the specific angular

momentum and the black hole spin, respectively. The parameter val-

ues for the plots are (row wise) [T, λ0, a] = [5 × 1010K, 3.5, 0.2], [7.5 ×

1010K, 3.0, 0.6], [1011K, 2.5, 0.9] and [5× 1010K, 3.84,−0.3] respectively.

The vertical dashed line represents the location of shock formation and

the transition from supersonic to subsonic state.
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Figure 4.5: The acoustic causal structures for shocked multi-transonic accretion.

The dashed lines denote t(r)− vs r i.e w = const and the solid lines

denote t(r)+ vs r i.e z = const. The vertical dashed lines indicates the

location of inner acoustic horizon (at smaller radii) and that of the shock

formation (larger radii). The rows from top to bottom corresponds to

[T, λ, a] = [5×1010K, 3.5, 0.2], [7.5×1010K, 3.0, 0.6], [1011K, 2.5, 0.9] and

[5× 1010K, 3.84,−0.3] respectively.
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find t±(r) as a function of r. Finally we plot t(r)± as function of r to see the causal

structure of the acoustic spacetime.

If the accretion flow encounters a shock then some quantities are invariant accross

the shock. The mass flux, i.e., the mass accretion rate is conserved. The momentum

flux conservation also requires that the rr component of the energy-momentum

tensor is conserved. In addition to these two conditions, there is another condition

depending on the radiative efficiency at the shock. In the present case, we consider

the temperature of the flow before and after the shock to be the same, i.e., we

consider the shock to be temperature preserving. These three conditions are the

so called ‘the shock jump conditions’ and could be given by the following set of

equations [65]

[[ρ0v
r
0r

2]] = 0,

[[T rr]] = 0,

[[T ]] = 0,

(4.74)

where the symbol [[f ]] = f+ − f−, where, f− and f+ denote the values of the

variable f before and after the shock, respectively. The second condition in the

above equation could be reduced to the following condition[[
ρ0

(
(vr0)

2

c2s
+ grr

)]]
= 0. (4.75)

From Eq. (4.74) and (4.75), it is easy to obtain a relation between vr0+ and vr0−

which is vr0+vr0− = c2sg
rr. The location of shock formation for an isothermal flow

with temperature T and specific angular momentum λ0 can be obtained numeri-

cally. The first condition in Eq. (4.74) is satisfied trivially due to the constancy of

mass accretion rate. The third condition is also satisfied trivially because the two

braches of accretion flow passing through r out and r in correspond to the same tem-

perature T . Thus in order to obtain the location of the shock formation, we need to

ensure that T rr changes continuously at the shock location r sh. This is equivalent

to ensuring that the quantity S sh ≡ T rr/Ψ0 is invariant accross the shock. The

quantity S sh is called the ‘shock invariant quantity’ and is given by

S sh =
1

u0
√

1− u20

(
u20 + c2s(1− u20)

)
. (4.76)
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The general scheme to find the shock location numerically is the following: Let the

numerical value of S sh along the trajectories passing through r out and r in be given

by S out
sh (r) and S in

sh(r), respectively. Then the location of shock formation r sh is

such that S out
sh (r sh) = S in

sh(r sh).

We take few representative values of the parameters as [T, λ0, a] and study the

causal structure of the corresponding accretion flow. The phase portraits of the

stationary solution for four different sets of [T, λ0, a] are shown in Fig.4.4. The

transonic accretion flow passes through the outer critical point r out and becomes

supersonic from subsonic state. Then it encounters a shock at r sh and becomes sub-

sonic from supersonic state and after that it crosses r in to become supersonic again.

We obtain the causal structure corresponding to this multi-transonic solution. The

[T, λ0] are chosen such that the accretion flow allows multiple critical points (See Fig.

4.1) as well as shock formation for the black hole spin a = 0.2, 0.6, 0.9 and −0.3. The

parameter values for the plots are (row wise) [T, λ0, a] = [5× 1010K, 3.5, 0.2], [7.5×

1010K, 3.0, 0.6], [1011K, 2.5, 0.9] and [5 × 1010K, 3.84,−0.3], respectively. The ver-

tical dashed line represents the location of shock formation and transition from

supersonic state to subsonic state. In Fig. 4.5 we plot the causal structures for the

multi-transonic accretion flows ( plotted in Fig. 4.4). The rows from top to bottom

corresponds to [T, λ0, a] = [5×1010K, 3.5, 0.2], [7.5×1010K, 3.0, 0.6], [1011K, 2.5, 0.9]

and [5× 1010K, 3.84,−0.3] respectively.

As is obvious from the Fig. 4.5, the shock formation in multi-transonic black hole

accretion flow can thus be considered as the presence of an acoustic white hole in

the corresponding sonic geometry. Where as the inner and outer transonic surfaces

act as acoustic black hole horizons.

The aforementioned procedure to construct the relevant causal structures are

based on the assumptions that the stationary integral flow solutions are obtained

for the steady state (through the integration of the time independent Euler and the

continuity equations). Such assumptions, however, are to be justified by showing

that the steady states are stable for this case. In subsequent sections, we thus

perform the linear stability analysis of the accretion flow to ensure that the steady
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4.6. Acoustic surface gravity

states are stable states.

4.6 Acoustic surface gravity

The acoustic metric given by Eq. (4.59) is independent of time t. Therefore we

have the stationary Killing vector χµ = δµt . Thus, following the same procedure as

described in the previous section, we find that κ can be written as

κ =

∣∣∣∣∣(r2 − 2r + a2)
√

(r3 + a2r + 2a2 − 4aλ− λ2(r − 2))

(1− c2s)
√
r(r3 + a2r + 2a2 − 2aλ)

u′0

∣∣∣∣∣
h

(4.77)

In the Schwarzschild limit a = 0, this reduces to the result derived earlier in [64].

Thus we obtain the acoustic surface gravity as a function of the background metric

elements and the stationary values of the accretion variables. The surface gravity

depends explicitly on the black hole spin a and the specific angular momentum

λ0. The acoustic surface gravity is linearly proportional to the gradient of the

advective velocity (u′0) at the acoustic horizon. u′0 depends on the values of the

parameters [T, λ0, a], which could be found from numerical solution of the accretion

flow. Thus the dependence of the acoustic surface gravity on the black hole spin a

and the specific angular momentum λ0 could be understood only through numerical

analysis of the accretion flow for a given set of values of the parameters [T, λ0, a]. In

Fig. 4.6, we plot the acoustic surface gravity at the inner acoustic horizon (κ in) as

a function of the black hole spin for a given set of values of [T, λ0] and in Fig. 4.7,

we do the same for the acoustic surface gravity at the outer acoustic horizon (κ out).

It is noticed that κ in increases with increasing a for prograde motion and decreases

with increasing a for retrograde motion for a given [T, λ0]. Whereas κ out decreases

with increasing a for prograde motion and increases with increasing a for retrograde

motion for a given [T, λ0]. However since the shock forms only for a restricted region

of parameter space the nature of the complete dependence of κ on a is difficult to

understand explicitly. One can also notice that the value of κ out is up to 104 times

smaller than that of κin. One of the reasons for this is that the gradient u′0 is smaller

at the outer acoustic horizon than that at the inner acoustic horizon. Also since the

outer acoustic horizon forms at a relatively large distance from the black hole, the

95



Chapter 4. Relativistic sonic geometry for isothermal accretion in the Kerr metric

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.05 0.1 0.15 0.2 0.25 0.3 0.35

T = 1010K
λ0 = 3.6

A

κ
in

black hole spin (a)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

T = 5× 1010K
λ0 = 3.6

B

κ
in

black hole spin (a)

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0.011

0.012

−0.23−0.225−0.22−0.215−0.21−0.205 −0.2 −0.195−0.19

T = 7.5× 1010K
λ0 = 3.6C

κ
in

black hole spin (a)

0

1

2

3

4

5

6

7

0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8

T = 5× 1010K
λ0 = 2.8

D

κ
in

black hole spin (a)

0

0.005

0.01

0.015

0.02

0.025

−0.56 −0.54 −0.52 −0.5 −0.48 −0.46 −0.44 −0.42 −0.4

T = 5× 1010K
λ0 = 3.9E

κ
in

black hole spin (a)

Figure 4.6: Acoustic surface gravity at the inner horizon (κ in) vs black hole spin (a)

plot. A, B and C corresponds to a fixed λ0 = 3.6 and T = 1010K, 5×

1010K and 7.5×1010K respectively. D, B and E corresponds to a fixed

T = 5× 1010K and λ0 = 2.8, 3.6 and 3.9 respectively. For all the set of

parameters [T, λ0], κ in increases with increasing a for prograde motion

and decreases with increasing a for retrograde motion.
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Figure 4.7: Acoustic surface gravity at the outer horizon (κ out) vs black hole spin

(a) plot. A, B and C corresponds to a fixed λ0 = 3.6 and T = 1010K, 5×

1010K and 7.5×1010K respectively. D, B and E corresponds to a fixed

T = 5× 1010K and λ0 = 2.8, 3.6 and 3.9 respectively. For all the set of

parameters [T, λ0], κ out decreases with increasing a for prograde motion

and increases with increasing a for retrograde motion.
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Kerr parameter does not play any significant role to influence the properties of the

spacetime close to the outer horizon. Therefore the value of the acoustic surface

gravity evaluated at the outer acoustic horizon does not seems to be reasonably

sensitive on the black hole spin.

4.7 Effect of the presence of dissipative mechanism

We have considered inviscid accretion of ideal fluid only. Description of non ideal

fluid is characterized by various dissipative processes in conjunction with the pres-

ence of viscosity. Viscosity, however, breaks the Lorentzian symmetry [5] and acous-

tic metric cannot be constructed for viscous flow using the formalism we follow in

this work. It should also be mentioned that effect of viscosity, as well as magnetic

field, may not always be neglected as the dissipative mechanism, through different

processes such as comptonisation, bremsstrahlung or synchrotron processes, may

become significant. This would influence the overall flow dynamics and therefore

turbulent instability may develop. In such cases the linear stability analysis would

also become insufficient and non-linear stability analysis would be required to en-

sure the stability of the system. Such work would require large scale numerical

simulation of the flow profile and analysis for such flow is beyond the scope of the

present work. Hence the study of the viscous accretion of non ideal fluid as well as

analogue system is beyond the scope of this work. We have also assumed that the

accretion flow is axially symmetric. Thus for any non-axially asymmetric flow, the

present formalism would not be appropriate.

98



5
Relativistic sonic geomtry for

adiabatic accretion in the

Kerr metric1

5.1 Introduction

In the previous chapters, we investigated the emergence of acoustic spacetime metric

and its properties for accretion on to Schwarzschild and Kerr black hole where the

accreting matter is governed by an isothermal equation of state. In isothermal flow,

the total energy of the flow is not conserved but the temperature of the flow is

constant throughout the flow. However, there also exist another common type of

flow where instead of the temperature, the entropy of flow along the fluid trajectory

is conserved. Such a flow is governed by an adiabatic equation of state. If the

entropy of the flow is constant throughout the fluid, then the flow may be called an

isentropic flow.

In isothermal flow, the speed of sound is taken to be a constant. Thus the gradient

of the local sound speed is zero throughout the accretion flow. However, it is more

1This chapter is based on the work titled “Linear perturbations of low angular momentum ac-

cretion flow in the Kerr metric and the corresponding emergent gravity phenomena” by M. A.

Shaikh and T. K. Das [77].
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general to consider a flow where the sound speed is also position-dependent and

hence the gradient of the sound speed c′s0 is non-zero. Adibatic flow, where the

sound speed is position-dependent, thus provides a more general description of the

accretion flow as well as that of the emergence of analogue gravity spacetime in

accretion flow.

In this chapter, we study the acoustic geometry embedded in adiabatic flow ac-

creting on to a Kerr black hole. The basic set up for the accretion system will

be mostly the same as provided in the case of an isothermal accretion on to Kerr

black hole discussed in the last chapter (Chap. 4). Therefore, in this chapter we

will mainly provide the results for adiabatic flow while referring the reader for the

basics to the Chap. 3 and 4.

5.2 Basic equations governing the flow

We consider the spacetime metric for a stationary rotating spacetime given by Eq.

4.1. We assume the hydrodynamic fluid accreting onto the Kerr black hole to be

perfect, irrotational, and is described by an adiabatic equation of state. The energy

momentum tensor for such fluid is given by Eq. 3.3. vµ is the four-velocity of the

fluid which satisfies the normalization condition vµvµ = −1. The adiabatic equation

of state is given by the relation p = kργ where ρ is the rest-mass energy density and

γ = cp/cv is the adiabatic index (cp and cv are specific heats at constant pressure and

at constant volume, respectively ). The total energy density ε is the sum of the rest-

mass energy density and the internal energy density (due to the thermal energy),

i.e., ε = ρ + εthermal. The continuity equation and energy-momentum conservation

equation is given by Eq. (3.4) and (3.5), respectively. The general relativistic Euler

equation for barotropic ideal fluid is thus given by

(p+ ε)vµ∇µv
ν + (gµν + vµvν)∇µp = 0. (5.1)

The specific enthalpy of the flow is defined as h = (p + ε)/ρ. We assume the flow

to be isentropic, i.e., the specific entropy of the flow s/ρ is constant, where s is

the entropy density. Therefore, for an isentropic flow, the following thermodynical
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identity, where T is the temperature of the fluid,

dh = Td(
s

ρ
) +

1

ρ
dp (5.2)

gives dp = ρdh which when used in h = (p + ε)/ρ also gives dε = ρdh. Thus the

adiabatic sound speed is given by

c2s =
∂p

∂ε

∣∣∣∣
s
ρ
= constant

=
ρ

h

∂h

∂ρ
. (5.3)

The relativistic Euler equation for isentropic flow can thus be written as

vµ∇µv
ν +

c2s
ρ
(vµvν + gµν)∂µρ = 0. (5.4)

For general relativistic irrotational isentropic fluid, the irrotationality condition is

given by ([6])

∂µ(hvν)− ∂ν(hvµ) = 0. (5.5)

5.3 Accretion flow geometry

We consider an axially symmetric accretion flow in the Kerr background. The

flow is assumed to be symmetric about the equatorial plane. The four velocity

components are written as (vt, vr, vθ, vϕ). We assume that the velocity component

along the vertical direction is negligible compared to the radial component vr, i.e.,

vθ ≪ vr. Also due the axial symmetry ∂ϕ term in the continuity equation would

vanish. Thus the continuity equation for such flow can be written as

∂t(ρv
t
√
−g) + ∂r(ρv

r
√
−g) = 0 (5.6)

where g is the determinant of the metric gµν . For Kerr metric, g = − sin2 θr4µ2.

The accretion flow variables, i.e., velocity components and the density are in gen-

eral functions of t, r, θ coordinates. However, assuming that the flow thickness is

small compared to the radial size of the accretion disc, we do an averaging of any

flow variable f(t, r, θ) along the θ direction using Eq. (3.26). Thus the continuity
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equation for vertically averaged axially symmetric accretion can be written as ([64,

76])

∂t(ρv
t
√

−g̃Hθ) + ∂r(ρv
r
√

−g̃Hθ) = 0 (5.7)

where g̃ is the value of g on the equatorial plane, i.e., g̃ = −r4. The angular scale

Hθ of the flow thickness, i.e., the angle made by the flow thickness at the center of

the black hole at any radial distances r from the center of the black hole along the

equatorial plane is given by Hθ = H(r)/r, assuming the the flow thickness to be

small at all r.

In the present work, we consider the conical flow model where the accretion flow

is assumed to maintain a wedge-shaped conical geometry. As mentioned earlier, in

such flow the local flow thickness is proportional to the radial distance measured

along the equatorial plane, i.e., H
r
= constant or Hθ being the characteristic angular

scale of local flow is constant for such conical flow geometry. Thus Hθ does not

depend on the accretion flow variables like velocity or density. Therefore linear

perturbation of these quantities (discussed in the next section) will have no effect

on it. For simplicity, therefore, we will write Hθ simply as H0. The same is true

for the CH model also. However, due to the complicated dependence of H(r) on

the flow variables in the VE model, the flow thickness will also be perturbed when

the flow variables are perturbed. This will make the analysis too complicated to

be presented here. Therefore as mentioned earlier, we do not consider CH and VE

models and work only with the CF model. From now on all the equations will be

derived by assuming that the flow variables are vertically averaged and their values

are computed on the equatorial plane.

5.4 Linear perturbation analysis and the acoustic

geometry

The scheme of the linear perturbation analysis would be the the same as provided

in Chap. 3 and 4: We shall write the accretion variables, e.g., four velocity com-
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ponents and density about their stationary background values upto first order in

perturbation. These expressions are then used in the basic governing equations

such as the continuity equation, normalization condition and the irrotationality

condition. Keeping only the terms that are linear in the perturbed quantities gives

equations relating different perturbed quantities upto first order in perturbations.

Further manipulations of these equations gives a wave equation which describes the

propagation of the perturbation of the mass accretion rate. Perturbation equation

in terms of velocity potential or the relativistic Bernoulli’s constant could be found

easily following the same procedure as discussed in Chap. 4. In this chapter, we

perform perturbation analysis for mass accretion rate only.

Below we derive some useful relations using the irrotationality condition (Eq.

(5.5)), the normalization condition vµvµ = −1 and the axial symmetry which will

be later used to derive the wave equation for linear perturbation. From irrotaionality

condition given by Eq. (5.5) with µ = t and ν = ϕ and with axial symmetry we

have

∂t(hvϕ) = 0, (5.8)

again with µ = r and ν = ϕ and the axial symmetry the irrotationality condition

gives

∂r(hvϕ) = 0. (5.9)

So we get that hvϕ is a constant of the motion. Eq. (5.8) gives

∂tvϕ = −vϕc
2
s

ρ
∂tρ. (5.10)

Substituting vϕ = gϕϕv
ϕ + gϕtv

t in the above equation provides

∂tv
ϕ = − gϕt

gϕϕ
∂tv

t − vϕc
2
s

gϕϕρ
∂tρ. (5.11)

The normalization condition vµvµ = −1 provides

gtt(v
t)2 = 1 + grr(v

r)2 + gϕϕ(v
ϕ)2 + 2gϕtv

ϕvt (5.12)

which after differentiating with respect to t gives

∂tv
t = α1∂tv

r + α2∂tv
ϕ (5.13)
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where α1 = −vr/vt, α2 = −vϕ/vt and vt = −gttvt + gϕtv
ϕ. Substituting ∂tvϕ in Eq.

(5.13) using Eq. (5.11) gives

∂tv
t =

(
−α2vϕc

2
s/(ρgϕϕ)

1 + α2gϕt/gϕϕ

)
∂tρ+

(
α1

1 + α2gϕt/gϕϕ

)
∂tv

r (5.14)

We perturb the velocities and density around their steady background values as

following

vµ(r, t) = vµ0 (r) + vµ1 (r, t) (5.15)

ρ(r, t) = ρ0(r) + ρ1(r, t) (5.16)

where µ = t, r, ϕ and the subscript “0” denotes the stationary background part and

the subscript “1” denotes the linear perturbations. Using Eq. (5.15)-(5.16) in Eq.

(5.14) and retaining only the terms of first order in perturbed quantities we obtain

∂tv
t
1 = η1∂tρ1 + η2∂tv

r
1 (5.17)

where

η1 = − c2s0
Λvt0ρ0

[Λ(vt0)
2 − 1− grr(v

r
0)

2], η2 =
grrv

r
0

Λvt0

and Λ = gtt +
g2ϕt
gϕϕ

(5.18)

5.4.1 Linear perturbation of mass accretion rate

For stationary background flow the ∂t part of the equation of continuity, i.e.,

Eq. (5.7) vanishes and integration over spatial coordinate provides
√
−g̃H0ρ0v

r
0 =

constant. Multiplying the quantity
√
−g̃H0ρ0v

r
0 by the azimuthal component of

volume element dϕ and integrating the final expression gives the mass accretion

rate, Ψ0 = Ω̃
√
−g̃H0ρ0v

r
0. Ψ0 gives the rate of infall of mass through a particular

surface. Ω̃ arises due to the integral over ϕ and is just a geometrical factor and

therefore can we can redefine the mass accretion rate by setting it to unity without

any loss of generality. Thus we define

Ψ0 ≡
√
−g̃H0ρ0v

r
0. (5.19)
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Now let us define a quantity Ψ ≡
√
−g̃Hρ(r, t)vr(r, t) which has the stationary

value equal to Ψ0. Using the perturbed quantities given by Eq. (5.15) and (5.16)

we have

Ψ(r, t) = Ψ0 +Ψ1(r, t), (5.20)

where

Ψ1(r, t) =
√

−g̃H0(ρ0v
r
1 + vr0ρ1). (5.21)

Using Eq. (5.15)-(5.17) and (5.20) in the continuity Eq. (5.7) and differentiating

Eq. (5.21) with respect to t gives, respectively

ρ0η2∂tv
r
1 + (vt0 + ρ0η1)∂tρ1 = − 1√

−g̃H0

∂rΨ1, (5.22)

and

ρ0∂tv
r
1 + vr0∂tρ1 =

1√
−g̃H0

∂tΨ1. (5.23)

In deriving Eq. (5.22) we have used Eq. (5.17). With these two equations given by

Eq. (5.22) and (5.23) we can write ∂tvr1 and ∂tρ1 solely in terms of derivatives of

Ψ1 as

∂tv
r
1 =

1
√
−g̃H0ρ0Λ̃

[−(vt0 + ρ0η1)∂tΨ1 − vr0∂rΨ1]

∂tρ1 =
1

√
−g̃H0ρ0Λ̃

[ρ0η2∂tΨ1 + ρ0∂rΨ1]

(5.24)

where Λ̃ is given by

Λ̃ =
grr(v

r
0)

2

Λvt0
− vt0 +

c2s0
Λvt0

[Λ(vt0)
2 − 1− grr(v

r
0)

2]. (5.25)

Now let us go back to the irrotationality condition given by the Eq. (5.5). Using

µ = t and ν = r gives the following equation

∂t(hgrrv
r)− ∂r(hvt) = 0 (5.26)

For stationary flow this provides ξ0 = −h0vt0 = constant which is the specific

energy of the system. We substitute the density and velocities in Eq. (5.26) using

Eq. (5.15), (5.16) and

vt(r, t) = vt0(r) + vt1(r, t). (5.27)
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Keeping only the terms that are linear in the perturbed quantities and differentiating

with respect to time t gives

∂t (h0grr∂tv
r
1) + ∂t

(
h0grrc

2
s0v

r
0

ρ0
∂tρ1

)
− ∂r (h0∂tvt1)− ∂r

(
h0vt0c

2
s0

ρ0
∂tρ1

)
= 0

(5.28)

We can also write

∂tvt1 = η̃1∂tρ1 + η̃2∂tv
r
1 (5.29)

with

η̃1 = −
(
Λη1 +

gϕtvϕ0c
2
s0

gϕϕρ0

)
, η̃2 = −Λη2. (5.30)

Using Eq. (5.29) in the Eq. (5.28) and dividing the resultant equation by h0vt0

provides

∂t

(
grr
vt0
∂tv

r
1

)
+ ∂t

(
grrc

2
s0v

r
0

ρ0vt0
∂tρ1

)
− ∂r

(
η̃2
vt0
∂tv

r
1

)
− ∂r

(
(
η̃1
vt0

+
c2s0
ρ0

)∂tρ1

)
= 0

(5.31)

where we have used that h0vt0 = constant. Finally substituting ∂tv
r
1 and ∂tρ1 in

Eq. (5.31) using Eq. (5.24) we get

∂t

[
k(r)

(
−gtt + (vt0)

2(1− 1

c2s0
)

)]
+ ∂t

[
k(r)

(
vr0v

t
0(1−

1

c2s0
)

)]
+ ∂r

[
k(r)

(
vr0v

t
0(1−

1

c2s0
)

)]
+ ∂r

[
k(r)

(
grr + (vr0)

2(1− 1

c2s0
)

)]
= 0

(5.32)

where

k(r) =
grrv

r
0c

2
s0

vt0vt0Λ̃
and gtt =

1

Λ
=

1

gtt + g2ϕt/gϕϕ
(5.33)

Eq. (5.32) can be written as ∂µ(fµν∂νΨ1) = 0 where fµν is given by the symmetric

matrix

fµν =
grrv

r
0c

2
s0

vt0vt0Λ̃

 −gtt + (vt0)
2(1− 1

c2s0
) vr0v

t
0(1− 1

c2s0
)

vr0v
t
0(1− 1

c2s0
) grr + (vr0)

2(1− 1
c2s0

)

 (5.34)

This is the main result of this section and will be used in the next section to

obtain the acoustic metric. In the Schwarzschild limit (a = 0) we have vt0Λ̃ =

1 + (1 − c2s0)gϕϕ(v
ϕ
0 )

2. Thus the fµν in Eq. (5.34) matches the result obtained by

[76] in the Schwarzschild limit.
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5.4.2 The acoustic metric

The linear perturbation analysis performed in the previous section provides the

equation describing the propagation of the linear perturbation of the mass accretion

rate Ψ1(r, t) and is given by the following equation

∂µ(f
µν∂νΨ1) = 0 (5.35)

where µ, ν each runs over r, t. This equation is compared to the wave equation of

a massless scalar field φ propagating in a curved spacetime given by Eq. (3.33).

Comparing these two equations one obtains the acoustic metric Gµν which is related

to fµν as given by Eq. (3.98). fµν could be written as fµν = k(r)f̃µν , where k(r) is

the overall multiplicative factor and f̃µν is the matrix part as given in Eq. 5.34. Thus

Gµν = (k(r)/
√
−G)f̃µν and therefore, Gµν is related to f̃µν by a conformal factor

given by k(r)/
√
−G. One of our main goals of the present work is to show that the

acoustic horizon are the transonic surface of the accretion flow and to demonstrate

that by studying the causal structure of the acoustic spacetime. However, the

location of the event horizon or the causal structure of the spacetime do not depend

on the conformal factor of the spacetime metric. Thus in order to investigate these

properties of the acoustic spacetime we can take Gµν to be the same as f̃µν by

ignoring the conformal factor. Thus the acoustic metric Gµν and Gµν , apart from

the conformal factor, are given by

Gµν =

 −gtt + (vt0)
2(1− 1

c2s0
) vr0v

t
0(1− 1

c2s0
)

vr0v
t
0(1− 1

c2s0
) grr + (vr0)

2(1− 1
c2s0

)

 (5.36)

and

Gµν =

 −grr − (vr0)
2(1− 1

c2s0
) vr0v

t
0(1− 1

c2s0
)

vr0v
t
0(1− 1

c2s0
) gtt − (vt0)

2(1− 1
c2s0

)

 (5.37)

5.5 Location of the acoustic event horizon

The metric corresponding to the acoustic spacetime is given by Eq. (5.37). The

metric elements of Gµν are independent of time and thus the metric is stationary.
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In Chap. 3 and 4, we showed that the location of the acoustic horizon is obtained

from the condition given by Grr = 0. Therefore on the event horizon we have the

following condition

c2s0 =
grr(v

r
0)

2

1 + grr(vr0)
2
. (5.38)

Now we move to the co-rotating frame as defined in [69] where u is the radial

velocity of the fluid in the co-rotating frame which is referred as the ‘advective

velocity’ and λ = −vϕ/vt is the the specific angular momentum. For stationary

flow, the advective velocity and the specific angular momentum will be denoted

with a subscript “0” as earlier. In this co-rotating frame, vr, vt and vt are given in

terms of u, λ by Eq. (4.5), (4.6) and (4.7), respectively. In co-rotating frame the

Eq. (5.38) becomes

u20| h = c2s0| h. (5.39)

where the subscript “h” implies that the quantity is to be evaluated at the horizon

and would imply the same hereafter. Thus we see that the acoustic horizon is

located at a radius where the adevcetive velocity u0 becomes equal to the speed of

sound cs0 which is exactly the surface known as the transonic surface. Thus the

transonic surface of the accretion flow and the acoustic horizon coincide.

5.6 Causal structure of the acoustic spacetime

Acoustic null geodesic corresponding to the radially traveling (dϕ = 0, dθ = 0)

acoustic phonons is given by ds2 = 0. Thus

(
dr

dt
)± ≡ b± =

−Grt ±
√
G2
rt −GrrGtt

Grr

(5.40)

where the acoustic metric elements Gtt, Grt = Gtr, Grr are given by Eq. (5.37).

These are expressed in terms of the background metric elements, the sound speed
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5.6. Causal structure of the acoustic spacetime

and the velocity variables u0(r) and λ0 = −vϕ0/vt0 using Eq. (4.5) and (4.6)

Gtt = − 1

grr(1− u20)

(
1− u20

c2s0

)
Gtr = Grt =

u0
(1− u20)

(
1− 1

c2s0

)√
(gϕϕ + λ0gϕt)2

grr(gϕϕ + 2λ0gϕt − λ20gtt)(gϕϕgtt + g2ϕt)

Grr =
1

gttgϕϕ + g2ϕt

(
gϕϕ −

(gϕϕ + λ0gϕt)
2

(gϕϕ + 2λ0gϕt − λ20gtt)

(1− 1
c2s0

)

(1− u20)

)
.

(5.41)

t(r) can be obtained as

t(r)± = t0 +

∫ r

r0

dr

b±
. (5.42)

We can introduce a new set of coordinates as following

dz = dt− 1

b+
dr, and, dw = dt− 1

b−
dr (5.43)

In terms of these new coordinates the acoustic line element can be written as

ds2|ϕ=θ= const = Ddzdw (5.44)

Where D is found to be equal to Gtt.

b±(r) is function of the stationary solution u0(r) and the sound speed cs0(r).

Therefore we have to first obtain u0(r) and cs0(r) for stationary accretion flow.

This is done by simultaneously numerically integrating the equations describing

the gradient of the advective velocity u′0 and the gradient of the sound speed c′s0

which are derived below. The ‘dash’ represents single derivative with respect to

the radial coordinate r. The solutions are characterized by the parameters [ξ0, γ,

λ0, a]. Remember that ξ0 = −h0vt0 is the specific energy of the flow which is a

conserved quantity for the flow under consideration. Thus given a particular set of

[ξ0, γ, λ0, a] we get u0(r) and cs0(r) by numerically solving the Eq. (5.52) and (5.51)

simultaneously and then using these solutions of u0(r) and cs0(r) we get b±(r). The

integration in Eq. (5.42) is then performed by applying Euler method. Finally we

plot t(r)± as function of r to see the causal structure of the acoustic spacetime.

5.6.1 Equations for u′0 and c′s0

To derive the expression for the gradient of advective velocity u′0 and the gradient

of the sound speed c′s0 we use the expressions for the two conserved quantities of
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the flow. The mass accretion rate Ψ0 in terms of u0 is given by

Ψ0 = 4πH0r
2ρ0

u0√
grr(1− u20)

(5.45)

and the relativistic Bernoulli’s constant is given by

ξ0 = h0

√
gttgϕϕ + g2ϕt

(gϕϕ + 2λ0gϕt − λ20gtt)(1− u2)
. (5.46)

For adiabatic flow with conserved specfic entropy, in other words an isentropic flow,

the enthalpy is given by dh = dp/ρ which when used in the definition of enthalpy

given h = (p+ε)/ρ gives h = dε/dρ. The energy density ε includes rest-mass energy

ρ and an internal energy equal to p/(γ− 1). Thus ε = ρ+ p/(γ− 1). For polytropic

equation of state p = kργ, the enthalpy is therefore given by

h0 =
γ − 1

γ − (1 + c2s0)
(5.47)

To obtain an equation for the gradient of the sound speed one defines a new quantity

Ξ̇ via the following transformation

Ξ̇ = Ψ0(γk)
1

γ−1 (5.48)

k is a measure of the specific entropy of the accreting matter as the entropy per

particle σ is related to k as

σ =
1

γ − 1
log k + γ

γ − 1
+ constant. (5.49)

Thus Ξ̇ represents the total inward entropy flux and could be labelled as the sta-

tionary entropy accretion rate. Expressing ρ in terms of k, γ, h, c2s0, the entropy

accretion rate could be written as

Ξ̇ = 4πH0
u0√

grr(1− u20)
r2
(

(γ − 1)c2s0
γ − (1 + c2s0)

) 1
γ−1

(5.50)

Taking the logarithmic derivative of the above equation with respect to r, the

gradient of the sound speed could be written as

c′s0 = −cs0(γ − (1 + c2s0))

2

[
1

u0(1− u20)

du0
dr

+
1

r
+

1

2

∆′

∆

]
(5.51)
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where ∆ = r2−2r+a2 as given by Eq. (4.3) and the ∆′ denotes the first derivative of

∆ with respect to r. The gradient of the advective velocity could be found by taking

logarithmic derivative of eq. (5.45) and eq. (5.46) (substituting dh/h0 = c2s0dρ/ρ0)

and eliminating dρ/ρ0, which gives

u′0 =
u0(1− u20)

[
c2s0
(
2
r
+ ∆′

∆

)
− ∆′

∆
+ B′

B

]
2(u20 − c2s0)

=
N

D
(5.52)

where B = (gϕϕ + 2λ0gϕt − λ20gtt) and B′ is the first derivative of B with respect to

r. The critical points of the flow are obtained by equating D = N = 0. D = 0 gives

the location of critical points to at u20| crit = c2s0| crit. and N = 0 gives

u20
∣∣
r=r crit

= c2s0
∣∣
r=r crit

=
∆′

∆
− B′

B
2
r
+ ∆′

∆

∣∣∣∣∣
r=r crit

(5.53)

Using the above condition we can substitute u20 and c2s0 in eq. (5.46) at the critical

points which provides

ξ0 =
1

1− 1
γ−1

∆′
∆

−B′
B

2
r
+∆′

∆

√
2∆ + r∆′

2B + rB′

∣∣∣∣∣∣∣
r=r crit

(5.54)

Thus, for a given value of ξ0 which is a constant along the flow and that of γ, λ0 and

a, the above equation could be solved for r crit numerically and the critical points

could be found. To find the value of the gradient of the advective velocity at the

critical points, we use L’Hospital rule which gives

u′0| crit =
−β ±

√
β2 − 4αΓ

2α
(5.55)

where

α = 1 + γ − 3c2s0
∣∣
r=r crit

β = 2cs0(1− c2s0)(γ − (1 + c2s0))

(
1

r
+

∆′

2∆

)∣∣∣∣
r=r crit

Γ = c2s0(1− c2s0)
2

[
(γ − (1 + c2s0))

(
1

r
+

∆

2∆′

)2

− Γ1

]
r=r crit

Γ1 =
1− c2s0
2c2s0

(
∆′2

∆2
− ∆′′

∆

)
− 1

2c2s0

(
B′2

B2
− B′′

B

)
− 1

r2

(5.56)

∆′′ and B′′ are the second derivatives of ∆ and B with resepect to r, respectively.

For a given set of paramters [ξ0, γ, λ0, a], we can now solve eq. (5.52) and (5.51)

111



Chapter 5. Relativistic sonic geomtry for adiabatic accretion in the Kerr metric

simultaneously to obtain the Mach number as a function of the radial coordinate

r. Depending on the values of the parameters [ξ0, γ, λ0, a], the phase portrait may

contain one or more critical points.

5.6.2 Mono-transonic case

Let us first consider the case where the accretion flow is mono-transonic. For such

accretion flow there exist only one transonic surface. In other words, the flow

starts its journey from large radial distance subsonically, i.e., |u0| < |cs0| or M =

|u0|/|cs0| < 1, where M is the Mach number of the flow and at some certain radial

distance r, the advective velocity becomes equal to the speed of sound or M = 1.

The radius r at which M becomes equal to 1 is called the transonic point. For

the flow under consideration, the transonic points are the critical points of the

flow where the denominator in the expression of u′0 becomes 0. Thus the transonic

points are given by r = r crit which in turn are obtained by solving the Eq. (5.54)

for given values of the parameters [ξ0, γ, λ0, a]. For r < r crit the flow is supersonic,

i.e., M > 1 and remains supersonic all the way upto the event horizon r+.

We would like to choose the parameters [ξ0, γ, λ0] in a way such that the Eq.

(5.54) has exactly one solution outside the event horizon (i.e., for r > r+) for all

values of a and see how the radius of the transonic surface or equivalently r crit varies

with the black hole spin a. Then with the same [ξ0, γ, λ0] we pick a few values of

the black hole spin a and draw the causal structure of the acoustic space time and

show that the location of the acoustic horizon matches r crit for that value of a. In

Fig. 5.1, we plot the critical points r crit of mono-transonic flow as a function of the

black hole spin.

In Fig. 5.2, we show the causal structure of the acoustic spacetime for mono-

transonic accretion flow. The parameters [ξ0, γ, λ0] = [1.1, 1.4, 2.1] are same for all

the plots while the black hole spins are a = −0.9,−0.5, 0, 0.5, 0.9 row-wise from top

to bottom. Solid lines represent t+(r) vs r, i.e., z = constant lines and the dotted

lines represent the t−(r) vs r, i.e, w = constant lines. It is illustrated from the

causal structures that the radius of the acoustic horizon, where t+(r) diverges, are
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Figure 5.1: The critical points r crit (which are transonic points of the mono-

transonic accretion flow) is plotted as function of the black hole spin

a for the set of values [ξ0, γ, λ0] = [1.1, 1.4, 2.1].

same as the critical points r crit for the given value of [ξ0, γ, λ0, a].

5.6.3 Multi-transonic case

For a given set of values of the parameters [ξ0, γ, λ0, a], the Eq. (5.54) can have

more than one or more specifically three solutions for r > r+. In presence of

shock formation, the flow can pass through both outer and inner critical points and

hence the flow can be multi-transonic as discussed in Sec. 4.4.1. However, all the

set parameters [ξ0, γ, λ0, a] which allow multiple critical points do not allow shock

formation. In other words only a subset of the parameters allowing multiple critical

points allow shock formation. This is best shown by plotting the parameter space

[56].

We have assumed a non-dissipative inviscid accretion flow. Therefore the flow

has conserved specific energy and mass accretion rate. Thus the shock produced in

such flow is assumed to be energy preserving Rankine Hugonoit type which satisfies

the general relativistic Rankine Hugonoit conditions [52, 56, 85–90]

[[ρvµηµ]] = [[ρvr]] = 0

[[Ttµη
µ]] = [[(p+ ε)vtv

r]] = 0

[[Tµνη
µην ]] = [[(p+ ε)(vr)2 + pgrr]] = 0

(5.57)
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Figure 5.2: Causal structure of the acoustic spacetime for mono-transonic accretion.

t+(r) vs r, i.e., z = constant lines are represented by the solid lines and

t−(r) vs r, i.e., w = constant lines are represented by the dashed lines.

t±(r) are given by Eq.(5.42). The causal structures are plotted with

[ξ0, γ, λ0] = [1.1, 1.4, 2.1] for a = −0.9,−0.5, 0, 0.5, 0.9, row-wise from

top to bottom. It could be noticed that the acoustic horizon where the

t+(r) lines diverges, coincides with the critical point r crit. See text for

more.
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Where ηµ = δrµ is the normal to the surface of shock formation. [[f ]] is defined

as [[f ]] = f+ − f− , where f+ and f− are values of f after and before the shock,

respectively. First condition comes from the conservation of mass accretion rate

and the last two conditions come from the energy-momentum conservation. These

conditions are to be satisfied at the location of shock formation. In order to find

out the location of shock formation, it is convenient to construct a shock invariant

quantity, which depends only on u0, cs0 and γ, using the conditions above. The

first and second conditions are trivially satisfied owing to the constancy of the mass

accretion rate and the specific energy. The first condition is basically (Ψ0)+ = (Ψ0)−

and third condition is (T rr)+ = (T rr)−. Thus we can define a shock invariant

quantity S sh = T rr/Ψ0 which also satisfies [[S sh]] = 0. The enthalpy h0 is given

by equation Eq. (5.47) and the sound speed is given as c2s0 = (1/h0)dp/dρ =

(1/h0)kγρ
γ−1, which gives ρ0 (and hence also p and ε) in terms of k, γ and cs0.

Thus

ρ = k−
1

γ−1

[
(γ − 1)c2s0

γ(γ − 1− c2s0)

] 1
γ−1

p = k−
1

γ−1

[
(γ − 1)c2s0

γ(γ − 1− c2s0)

] γ
γ−1

ε = k−
1

γ−1

[
(γ − 1)c2s0

γ(γ − 1− c2s0)

] 1
γ−1
(
1 +

c2s0
γ(γ − 1− c2s0)

) (5.58)

Now Ψ0 = constant×r2ρvr0 and T rr = (p+ε)(vr0)
2+pgrr, where vr0 = u0/

√
grr(1− u20).

Therefore the shock-invariant quantity S sh = T rr/Ψ0 becomes

S sh =
(u20(γ − c2s0) + c2s0)

u0
√

1− u20(γ − 1− c2s0)
(5.59)

where we have remove any over all factor of r as shock invariant quantity is to be

evaluated at constant r = r sh.

The procedure to find the location of shock formation is the following. Let us

denote the values of S sh along the flow passing through outer critical point as

S out
sh and the same for the flow passing through inner critical point as S in

sh. At the

location of shock formation r sh, we have S out
sh = S in

sh. Thus evaluating the S out
sh

and S in
sh we find out r sh by noting the value of r for which S out

sh = S in
sh. In general

there are two such values of r sh such that one is between inner and middle critical
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points r in < r sh1 < r mid and the other one is between middle and outer critical

points r mid < r sh2 < r out. However, it has been shown in the literature that the

shock formation at r sh1 is unstable and that at r sh2 is stable. In this context, it

is to be mentioned that the stability analysis of the shock does not involve full

time dependent calculations, for further details see [44]. Therefore only r sh2 is the

allowed location of shock formation and hence we shall refer to only this location

as the location of shock formation, hereafter.

In the left column of Fig. 5.3, we show the phase portraits of the flow, i.e.,

the Mach number vs radial distance plots for three different values of the Kerr

parameter a = 0.5, 0.55, 0.6, keeping [ξ0, γ, λ0] to be the same as [ξ0 = 1.002, γ =

1.35, λ0 = 3.05]. These chosen values of the parameters [ξ0, γ, λ0, a] allow the flow

to be multi-critical as well as multi-transonic by allowing shock formation. The

shock transition of the flow has been denoted by a vertical dashed line in the phase

portrait which implies that the shock formation at that location makes the flow to

jump from supersonic state in the branch passing through the outer critical point

to the subsonic state in the branch passing through the inner critical point.

In the right column of the Fig. 5.3, we show the causal structure corresponding

the flow shown by the phase portrait in the left column in the particular row. In

the causal structure plots, the vertical dashed line in the left is the location of

the inner critical point and the vertical dashed line in the right is the location of

shock formation. The outer critical point is located at the white line separating

densely populated diverging t+(r) lines. It is obvious from the causal structure

that the inner and outer critical points are the inner and outer acoustic horizon of

the acoustic spacetime. Also it could be noticed that for an observer in the region

r in < r < r sh2, the surface of shock formation would resemble a white hole horizon.

Thus the shock formation can be regraded as the presence of an acoustic white hole.
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Figure 5.3: Mach number M vs r plot (on the left) and the corresponding causal

structure (on the right). The parameters [ξ0 = 1.002, γ = 1.35, λ0 =

3.05] are same where as the black hole spin is a = 0.5 (top panel),

a = 0.55 (middle panel) and a = 0.6 (bottom panel). The solid lines

represents t+(r) vs r lines and the dashed lines represents the t−(r) vs

r lines.
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5.7 Acoustic surface gravity

The acoustic metric given by Eq. (5.37) is independent of time t. Therefore we have

the stationary Killing vector χµ = δµt which is null on the horizon, i.e., Gµνχ
µχν | h =

Gtt| h = 0. Thus, following the discussion on acoustic surface gravity in the previous

chapters, the acoustic surface gravity is obtained to be given by

κ =

∣∣∣∣κ0(du0dr − dcs0
dr

)∣∣∣∣
h

(5.60)

where

κ0 =

√
(gttgϕϕ + g2ϕt)(gϕϕ + 2λ0gϕt − λ20gtt)

(1− c2s0)(gϕϕ + λ0gϕt)
√
grr

(5.61)

and the subscript “h”, as mentioned earlier, denotes that the quantities have been

evaluated at the acoustic horizon. On the equatorial plane (θ = π
2
) the metric

elements are given by

gtt = 1− 2

r
, gϕt = −2a

r
, gϕϕ =

r3 + a2r + 2a2

r
(5.62)

Thus κ0 can be further written as

κ0 =
r
√

(r2 − 2r + a2)(gϕϕ + 2λ0gϕt − λ20gtt)

(1− c2s0)(r
3 + a2r + 2a2 − 2aλ0)

√
grr

(5.63)

The acoustic surface gravity is thus obtained as a function of the background metric

elements and the stationary values of the accretion variables. The surface gravity

depends explicitly on the black hole spin a.

5.8 Higher order perturbations and non-stationary

flow

Up to now, we demonstrated that the emergence of acoustic spacetime as an ana-

logue system is a natural outcome of the linear stability analysis of the relativistic

black hole accretion. It is interesting to investigate whether, in general, the emer-

gence of gravity like phenomena is a consequence of linear perturbation analysis
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only, or any complex nonlinear perturbation (of any order) of fluid may lead to the

emergent gravity phenomena. In other words, it is important to know how uni-

versal the analogue gravity phenomena is – whether black hole like spacetime can

be generated by only one means (linear perturbation) or any kind of perturbation

of general nature would lead to the construction of an analogue system. We have

briefly discussed some recent works on this topic in the concluding chapter.

We have explicitly performed the perturbation analysis to make correspondence

between the analogue gravity and the accretion astrophysics around black holes.

Various properties of the corresponding analogue spacetime, however, can be studied

by examining the stationary solutions as well, both for matter flow in spherically

symmetric as well as for axially symmetric accretion ([13, 22, 52, 53, 74, 91–93]).

It is to be noted that the correspondence between the analogue system and the

accretion astrophysics can be established through the process of linear stability

analysis of stationary integral accretion solutions. That means, only the steady state

accretion has been considered. The body of literature in accretion astrophysics is

huge and diverse, and hence there are several excellent works that exist in literature

where complete time-dependent numerical simulation has been performed to study

non-steady flow of hydrodynamic fluid including various kind of time variabilities

([58, 59, 94–123]).

119





6
Linear stability analysis of stationary

accretion flow in the Kerr metric1

For large scale astrophysical fluid flows, transient phenomena are not quite uncom-

mon to take place. For accreting black hole systems, any conclusion drawn based

on the results obtained using the integral stationary transonic solutions are thus

reliable only if the accretion flow under considerations happens to be steady. One

thus needs to ensure whether such steady flow is stable, at least within a reasonable

astrophysical time scale. Such cross verification can be accomplished by perturb-

ing the corresponding spacetime dependent governing equations (the Euler and the

continuity equations for the present case) governing the flow and by investigating

whether such perturbation converges (or, at least does not diverge) to ensure the

stability of such transonic accretion. In Chap. 4 and Chap. 5, we performed linear

perturbation of the accretion flow in the Kerr spacetime for isothermal and adiabatic

equation of state, resepectively. There, it was shown that the perturbation equa-

tion of the mass accretion rate (or that of the velocity potential or the relativistic

Bernoulli’s constant) has the form ∂µ(f
µν∂νx1) = 0, where x1 is the time-dependent

fluctuation of Linear order around background value x0 of the quantity x. fµν is a

1This chapter is based on the works titled “Relativistic sonic geometry for isothermal accretion

in the Kerr metric” by M. A. Shaikh [73] and “Linear perturbations of low angular momentum

accretion flow in the Kerr metric and the corresponding emergent gravity phenomena” by M.

A. Shaikh and T. K. Das [77].
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2× 2 symmetric matrix. In order to show that the stationary solutions are stable,

one has to show that the amplitude of the fluctuation x1(t, r) does not diverge.

Below, we seek to perform an analysis of the perturbation equation to understand

the behaviour of the fluctuation and hence to check the stability of the stationary

solutions.

First, we take the case of an isothermal accretion flow discussed in Chap. 4. We

have derived the wave equation describing the propagation of the linear perturbation

of velocity potential, mass accretion rate and the relativistic Bernoulli’s constant in

Eq. (4.23), (4.41) and (4.55), respectively. These equations can be further studied to

understand the stability of the stationary accretion solutions. As the wave equations

have similar forms, let us study one case, say for the velocity potential, and use the

results accordingly for other cases.

Let us take the trial solution as

ψ1(r, t) = Pω(r)e
iωt, (6.1)

using this trial solution in the wave equation ∂µ(f
µν∂νψ1) = 0, where fµν is equal

to fµνψ given by Eq. (4.24), provides

−ω2f ttPω + iω[f tr∂rPω + ∂r(f
rtPω)] + ∂r(f

rr∂rPω) = 0. (6.2)

6.1 Standing wave analysis

For standing wave to form there must be two nodes, one at some inner point r1 and

another at some outer point r2, such that at these two points we have Pω(r1) = 0 =

Pω(r2). In other words the perturbation must vanish for all times at two different

radii. Multiplying the Eq. (6.2) by Pω(r) and integrating the resulting equation

between r1 and r2 gives

ω2

∫ r2

r1

P 2
ωf

ttdr − iω

∫ r2

r1

∂r[f
trP 2

ω ]dr −
∫ r2

r1

[Pω∂r(f
rr∂rPω)]dr = 0. (6.3)

The middle term in the above equation does not contribute as at the boundary r1

and r2, Pω vanishes. Integrating the last term by parts, the Eq. (6.3) can be written
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as

ω2

∫ r2

r1

P 2
ωf

ttdr +

∫ r2

r1

f rr(∂rPω)
2dr = 0, (6.4)

and thus we get

ω2 = −
∫ r2
r1
f rr(∂rPω)

2dr∫ r2
r1
f ttP 2

ωdr
. (6.5)

One thing to be noticed is that the inner boundary condition Pω(r1) = 0 may be

satisfied only if the accretor has a physical surface. In that case, the outer boundary

could be located at the source from which the accreting material is coming and the

inner boundary could be located at the surface of the accretor which is accreting

the material (see Petterson [62]). Also, the flow should be continuous in the whole

range in between these two boundary points. If the accretor is a neutron star then

the surface (where the inner boundary with vanishing perturbation is to be located)

should be separated from a possible supersonic region by a shock formation. This

would imply that the solution, in that case, would not be continuous in the range

between the outer boundary point and the surface of the neutron star and therefore

standing wave analysis could not be performed. Also in the black hole accretion,

the flow enters the horizon supersonically ([30, 60]) and there is no mechanism to

make the perturbation vanish and therefore the above-mentioned requirements are

not expected to be fulfilled and hence standing wave may not be formed in the

context of black hole accretion. Also, the flow has to be subsonic for the whole

range as transonic flow would contain a horizon from which the reflected wave

cannot come out and superpose with the wave in the outer region. Therefore the

standing wave analysis, which relies on the continuity of the solution, is restricted

to only subsonic flows. However, provided that the flow is subsonic in a particular

astrophysical system (e.g., in case of accretion onto a Newtonian star, depending

on the location of the surface of the star, the accretion flow may be subsonic for

all radial distance and hit the surface of the star subsonically [42]) we can study

Eq. (6.5) to understand the nature of ω. The stability analysis for accretion onto

a compact object in flat spacetime was done by Petterson et al [62] where the flow

was considered to be subsonic.
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From Eq. (4.24), f tt for velocity potential is given by

f tt = −
√
−g̃H0

ρ
c2s−1
0

[
−gtt + (vt0)

2

(
1− 1

c2s

)]
. (6.6)

as gtt > 0 and c2s < 1 we find that f tt > 0. Now f rr is given by

f rr = −
√
−g̃H0

ρ
c2s−1
0

[
grr + (vr0)

2

(
1− 1

c2s

)]
. (6.7)

Using Eq. (4.5), the terms inside the square bracket can be written as

grr +
u20

grr(1− u20)

(
1− 1

c2s

)
(6.8)

=
(1− u20) + u20

(
1− 1

c2s

)
grr(1− u20)

(6.9)

=

(
1− u20

c2s

)
grr(1− u20)

(6.10)

> 0. (6.11)

Thus f rr < 0 and hence ω2 > 0. Therefore ω has two real roots and the trial

solution is oscillatory and the stationary accretion solution is stable against the

assumed perturbations. We have used the fact that the flow is subsonic to get

f rr < 0. Same result is also applicable for the relativistic Bernoulli’s constant. It

is easy to show that the conclusion also holds for the mass accretion rate.

6.2 Traveling wave analysis

Following Petterson et al [62], we study the traveling waves whose wavelengths are

small compared to the smallest length scale in the system. In case of black hole

accretion, this may be the radius of the event horizon of the black hole. Therefore,

for such wave, the frequency is large and hence the trial solution may be taken as

the power series of the form

Pω(r) = exp
[

∞∑
n=−1

kn(r)

ωn

]
. (6.12)
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We substitute the trail solution in Eq. (6.2) and find out leading order terms by

equating the coefficients of individual power of ω to zero. Thus we get

coefficient of ω2 : f rr(∂rk−1)
2 + 2if tr∂rk−1 − f tt = 0, (6.13)

coefficient of ω : f rr [∂2rk−1 + 2∂rk−1k0] + i[2f tr∂rk0

+∂rf
tr] + ∂rf

rr∂rk−1 = 0, (6.14)

coefficient of ω0 : f rr[∂2rk0 + 2∂rk−1∂rk1 + (∂rk0)
2]

+∂rf
rr∂rk0 + 2if tr∂rk1 = 0. (6.15)

Eq. (6.13) gives

k−1(r) = i

∫ −f tr ±
√

(f tr)2 − f ttf rr

f rr
dr (6.16)

using k−1(r) from Eq. (6.16) in Eq. (6.14) gives

k0(r) = −1

2
ln[
√

(f tr)2 − f ttf rr] + constatnt (6.17)

and using Eq. (6.16) and (6.17) in Eq. (6.15) gives

k1(r) = ± i

2

∫
∂r(f

rr∂rk0) + f rr(∂rk0)
2√

(f tr)2 − f ttf rr
dr (6.18)

Now for the case velocity potential (Eq. (4.24)) or relativistic Bernoulli’s constant

((Eq. (4.56)))

detfµν = f ttf rr − (f rt)2 =

(√
−g̃H0

ρ
c2s−1
0

)2

F (6.19)

and for the case of mass accretion rate (Eq. (4.43))

detfµν = f ttf rr − (f rt)2 =

(
grrv

r
0c

2
s

vt0vt0Λ̃

)2

F , (6.20)

where vt0 is the stationary value of vt given by Eq. (4.7) and vr0 and vt0 are stationary

values of vr and vt given by Eq. (4.5) and (4.6), respectively, and

F = [−gttgrr + (1− 1

c2s
)(−gtt(vr0)2 + grr(vt0)

2)]. (6.21)

We can further express F in terms of λ0, u0 and the background metric elements as

F = − gϕϕ
grr(gϕϕgtt + g2ϕt)

1 + (1− c2s)

c2s(1− u20)


(
1 + λ0

gϕt
gϕϕ

)2(
1 + 2λ0

gϕt
gϕϕ

− λ20
gtt
gϕϕ

) − u20


 . (6.22)
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F is negative everywhere. This can be understood in the following way: The

expression of vt from Eq. (4.6) requires gϕϕ + 2λ0gϕt − λ20gtt > 0 in order that vt is

real. Which can be rewritten as(
1 + λ0

gϕt
gϕϕ

)2

− λ20

(
g2ϕt
g2ϕϕ

+
gtt
gϕϕ

)
> 0, (6.23)

or

0 < 1− λ20

[
(
g2ϕt
g2ϕϕ

+
gtt
gϕϕ

)/(1 + λ0
gϕt
gϕϕ

)2

]
< 1. (6.24)

Therefore

(1 + λ0
gϕt
gϕϕ

)2

(1 + 2λ0
gϕt
gϕϕ

− λ20
gtt
gϕϕ

)
=

1

1− λ20

[
(
g2ϕt
g2ϕϕ

+ gtt
gϕϕ

)/(1 + λ0
gϕt
gϕϕ

)2
] > 1 (6.25)

using the fact that u20 < 1 and c2s < 1 it is easy to see that F is negative everywhere.

Thus k−1(r) and k1(r) are purely imaginary. Therefore the leading contribution to

the amplitude of the wave comes from k0(r). Thus considering the first three terms

in the expansion in Eq. (6.12) the amplitude of the wave can be approximated as

|ψ1| = |ξ1| ≈

[
ρ
2c2s−2
0

g̃H2
0F

] 1
4

, |Ψ1| ≈

( vt0vt0Λ̃

grrvr0c
2
s

)2
1

−F

 1
4

(6.26)

The trial solution in Eq. (6.12) with the frequency ω ≫ 1 ensures that contribution

from the higher order terms will be very small. The amplitude given by Eq. (6.26)

is bounded for finite values of the stationary variables and the solution is therefore

expected to be stable.

A robust way to ensure that the trial solution does not diverge and is stable, is to

check whether the power series in Eq. (6.12) converge or not, i.e., we have to show

|kn/ωn| ≫ |kn+1/ω
n+1|. As the frequency is very large ω ≫ 1, the contributions

from higher order terms are very small. Thus it should suffice to show that |ωk−1| ≫

|k0| ≫ |k1/ω|. k−1, k0, k1 are complicated functions of the accretion variables and

thus it is not possible to have an analytic form. However, we can find the spatial

dependence at large distance r → ∞ where the spacetime is effectively Newtonian.

From the constancy of the mass accretion rate we have vr0 ∝ 1/(ρ0r
2). At the

asymptotic limit ρ0 approaches its constant ambient value ρ∞ and hence at r → ∞,
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vr0∞ ∝ 1/r2. The sound speed is constant for isothermal flow. vt0 ∼ 1 and vt0 ∼ −1.

Also Λ̃∞ ∝ (vr0)
2. We remeber that for conical flow H0 = constant and g̃ = −r4 on

the equatorial plane. Thus, In this asymptotic limit, for all the three perturbation

cases, we have

f tt ∼ r2, f rr ∼ r2, f tr ∼ r0, (f rt)2 − f ttf rr ∼ r4 (6.27)

which gives k−1 ∼ r, k0 ∼ ln r and k1 ∼ 1/r. Therefore, the sequence converges in

the leading order at least at large r.

The perturbation equation and the fµν elements has exactly the same form for

an adiabatic flow (which we discussed in Chap. 5 considering only the case of mass

accretion rate) as those for an isothermal flow. Therefore, it is trivial to repeat the

same analysis for an adiabatic accretion flow in the Kerr metric which gives the

same result as discussed above.

We followed a linear perturbation scheme to obtain the perturbation equation as

well as the emergent relativistic acoustic geometry embedded within the accretion

flow in Chap. 4 and 5. In this chapter we used those perturbation equations to

check whether the background steady state of such flow is stable. This implies

that the emergent gravity phenomena are a natural outcome of the linear stability

analysis of transonic accretion.

In our present work, we limit our stability analysis procedure within a purely

analytical framework and did not opt for any numerical studies in this aspect. There

are, however, a number of works exist in the literature (for some recent works, see

[124–127]) which studies, fully numerically, the stability analysis of spherically or

axially symmetric black hole accretion in two or three dimensions. We, however,

did not concentrate on such approach since our main motivation was to explore how

the emergent gravity phenomena can be observed through the stability analysis of

steady-state solutions of hydrodynamic accretion.

127





7
Effective sound speed in

relativistic accretion discs around

Schwarzschild black holes1

7.1 Introduction

Accretion flows onto astrophysical black holes are supposed to exhibit transonic

properties in general [30, 60, 61]. For low angular momentum, practically invis-

cid, axially symmetric accretion, sonic transition may take place at more than one

locations on the equatorial plane of the disc and such multi-transonic flow may ac-

commodate steady, standing shock transition as discussed in Chap. 3, 4 and 5 [30,

32–59, 129]. Properties of the shocked multi-transonic accretion are usually studied

for three different geometrical configurations of accreting matter. These goemetric

configurations have been discussed in the previous chapters (also see, e.g, [41, 92,

93, 130, 131] for the details of such geometric configurations.)

Among those three, one particular configuration, namely the accretion in hydro-

static equilibrium along the vertical direction, exhibits certain peculiar features.

For such flow geometry, the Mach number at the critical points of the flow may not

1This chapter is based on the work titled “Effective sound speed in relativistic accretion discs

around Schwarzschild black holes” by M. A. Shaikh, S. Maity, S. Nag and T. K. Das [128].
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become unity [36, 48, 53, 56, 93, 132] and hence the critical points may not be con-

sidered as sonic points. For accretion under the influence of various post-Newtonian

pseudo-Schwarzschild or pseudo-Kerr black hole potentials, critical points for poly-

tropic flow are formed at a location different from that of sonic points. For isother-

mal accretion under the influence of post-Newtonian black hole potentials, critical

points and sonic points are, however, isomorphic. The amount of deviation of the

value of the Mach number from unity, remains the same for both the saddle type

sonic points for multi-transonic shocked polytropic flows under the influence of post-

Newtonian potentials, and such deviations depends only on γ, where γ is the ratio

of the specific heats evaluated at constant pressure and at constant volume, respec-

tively. For general relativistic accretion in the Schwarzschild or the Kerr metric,

even for the isothermal flow the sonic point and the critical point can be located at

two different radial coordinates on the equatorial plane as measured from center of

the accretor. The amount of deviation of the value of the Mach number (evaluated

at the critical point) from unity, may be found to be different for two different sonic

points for multi-transonic flows.

Such non-isomorphism of critical points and sonic points, i.e, the fact that their

locations may differ, may introduce various complexities while dealing with the

multi transonic flow profile and related astrophysical phenomena. While plotting the

stationary transonic integral solutions onto the Mach number versus radial distance

phase portrait, phase orbits corresponding to the inwardly directed accretion and

outward directed wind solutions intersect at the critical point. If the location of

the critical point and its corresponding sonic point form at different locations, the

subsonic and supersonic branches are found not to be identical with two branches

of the phase orbits located at two sides of the critical points.

The critical points are obtained using the critical point analysis method – a

technique borrowed from the dynamical systems theory. For many of the accretion

scenarios, it may be possible to locate the critical points analytically (see [133] and

references therein). Using certain eigenvalue techniques, one becomes able to gain,

completely analytically, qualitative ideas about the phase portrait of the transonic
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flow structure close to the critical point [134–138]. If a sonic point is located at a

distance different from that of the critical point, one needs to numerically integrate

the flow equations, starting from the critical point, up to that particular point where

the Mach number becomes unity. The elegance of the analytical eigenvalue-based

methods is thus lost if a critical point and a sonic point are different. One needs to

take recourse only to the complicated numerical techniques to have ideas about the

subsonic and supersonic branches in the phase plot.

Accreting black hole systems have been studied from the perspective of emergent

gravity phenomena in the previous chapters for accretion in the Schwarzschild and

the Kerr metric to understand how such systems can be perceived as an interesting

example of classical analogue model naturally found in the universe. Other studies

could be also found, for example, in [13, 22, 52, 53, 64, 73, 74, 77, 91–93, 139]. For

such work also, the non-isomorphism between the critical and the sonic point may

enhance the complexity involved with the solution scheme. The Mach number at

the acoustic horizons should necessarily be unity, which requires the introduction of

the numerical solution scheme to obtain the integral stationary flow solutions. Had

it been the situation that the Mach number would be unity at the critical point

an elegant analytical method could perhaps be employed to compute the value of

acoustic surface gravity and related quantities, evaluated at sonic horizons.

The aforementioned discussions demand that it is imperative to introduce certain

effective sound speed for which the effective Mach number evaluated at the critical

points would be unity and the critical points and sonic points will be isomorphic.

This will greatly reduce the complexity involved in employing numerical solution

schemes for construction of the phase portrait and many other quantities relevant

to the astrophysics of transonic black hole accretion and analogue gravity phenom-

ena. The concept of effective sound speed has been discussed in the literature for

accretion flows under the influence of post-Newtonian pseudo-Schwarzschild black

hole potentials [51, 132]. In the present work, we will provide a novel perturbative

approach to introduce the concept of effective dynamical sound speeds embedded

within the general relativistic, axially symmetric accretion flow maintained in the
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hydrostatic equilibrium along the vertical direction.

We consider three different expressions for disc thickness as proposed by Novikov

& Thorne [70], by Riffert & Herold [71] and by Abramowicz et al [72] to describe

the accretion disc in hydrostatic equilibrium along the vertical direction in the

Schwarzschild metric. For each of these three disc heights, we construct the time-

independent Euler and the continuity equations. We solve such equations to find

the corresponding first integrals of motion. For polytropic accretion, such first

integrals are the total specific energy and the mass accretion rate Ψ0. The polytropic

accretion is parametrized by the specific energy ξad
0 , the specific angular momentum

λ0, and the adiabatic index γ. A three-parameter set [ξ ad
0 , λ0, γ] where ξ ad

0 , λ0, γ

are all constants, is taken to describe the flow and to solve the corresponding flow

equations. For the isothermal accretion, two first integrals of motion are quasi-

specific energy ξ iso
0 (which is the integral solution of the time-independent part of

the relativistic Euler equation) and the mass accretion rate Ψ0. An isothermal flow

is parametrized by [T, λ0], where T and λ0 are the conserved flow temperature and

the constant specific angular momentum, respectively.

For all these three disc heights, we calculate for polytropic flow, the space gradient

of the dynamical velocity and stationary sound speed, i.e., u′0 and c′s0, respectively.

The ‘dash’ represents single derivative with respect to the radial coordinate r, as

usual. From the expressions for u0′ and cs0′, we evaluate the critical point conditions

and compute the value of Mach number at the critical point. We show that the

value of Mach number at the critical point is not unity and write down what would

be the effective sound speed for which the Mach number at the critical point would

have resumed the value unity.

We then linear perturb the full time-dependent Euler and continuity equation fol-

lowing the same method as described in the previous chapters. Such perturbations

lead to the formation of the acoustic spacetime metric. The acoustic metric governs

the dynamics of propagation of linear perturbation inside the background fluid (the

fluid which composes the accretion disc). We then construct the corresponding wave

equation for the propagation of such linear perturbation and calculate the speed of
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propagation of linear acoustic perturbation. We finally show that if we substitute

the usual stationary sound speed cs by the suitable form of the speed of propaga-

tion of linear acoustic perturbation, then the Mach number at the critical points

becomes unity. Hence we establish that certain representation of the ‘dynamical

sound speed’ (the speed of propagation of linear acoustic perturbation obtained

through the dynamical stability analysis of the full spacetime-dependent fluid equa-

tions) should actually be considered as the effective speed of sound propagation

along the equatorial plane of the black hole accretion disc. If one replaces the usual

static sound speed by the aforementioned effective dynamical sound speed, the crit-

ical points always coincide with the sonic points and all the complexities originating

from the non-isomorphism of the critical and the sonic points get resolved.

For isothermal flow, we perform the same operation for finding the Mach number

at the critical points corresponding to the three different disc heights. We find

that unlike the adiabatic accretion for which the accretion disc characterized by

all three disc heights would produce a mismatch between the critical and the sonic

points, for isothermal flow, accretion disc characterized by only one expression of

disc height (proposed by Abramowicz et al [72]) produces the non-isomorphism

between the critical and the sonic points. For accretion characterized by the other

two expressions of disc heights (as proposed by Novikov & Thorne and Riffert &

Herold [70, 71]), the location of the critical and the sonic points are found to be the

same.

In section 7.2, we present the basic equations governing the general relativistic

accretion flow and introduce relevant thermodynamic quantities. In section 7.3,

we find out the conditions for critical points for the three different disc models

of vertical equilibrium for adiabatic as well as the isothermal equation of state.

In section 7.4, we derive the acoustic spacetime metric by linear perturbing the

accretion flow equations. Finally in section 7.5, using the acoustic spacetime metric

we obtain the effective speed, c eff
s0 , of the propagation of the acoustic perturbations.

This suggests that at the critical point one always have u20 = c eff
s0

2.
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7.2 Governing equations

We consider an inviscid axially symmetric irrotational accretion flow accreting onto

a Schwarzschild black hole. The background spacetime metric is given by Eq. (3.1)

with the metric elements given by Eq. (3.2). The energy momentum tensor for a

perfect fluid is given by Eq. (3.3). The equation of state for adiabatic flow is given

by p = kργ where k is a constant. Whereas for isothermal case p ∝ ρ. The sound

speed for adiabatic flow (isoentropic flow) is given by Eq. (5.3) and the sound speed

for isothermal flow is defined by Eq. (3.8).

The mass conservation equation and the energy-momentum conservation equa-

tions are given by Eq. (3.4) and Eq. (3.5), respectively. Using the expression for

the sound speed, the energy momentum conservation equation can be written in

the following form

vµ∇µv
ν +

c2s
ρ
(vµvν + gµν)∂µρ = 0, (7.1)

where cs for adiabatic case and isothermal case are given by Eq. (5.3) and Eq.

(3.8), respectively.

7.3 Accretion disc models and critical points

The procedure to find the critical points have been discussed in Chap. 3, 4 and

5. Here we provide a brief description of the method. To find the critical points

of the accretion flow, we have to find the expression of the gradient of the advec-

tive velocity u0, i.e., the expression of u′0 for stationary accretion flow. In order

to do that, we need two constant integrals of the stationary flow. The first one

comes from the continuity equation and the second one comes from the momentum

conservation equation. For convenience, one then performs a vertical averaging of

the flow equations by integrating over θ and the resultant equation is described by

the flow variables defined on the equatorial plane (θ = π/2). In addition one also

integrates over ϕ which gives a factor of 2π due to the axial symmetry of the flow.

Thus in case of stationary (t-independent) and axially symmetric (ϕ-independent)
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flow with averaged vθ ∼ 0, the continuity equation can be written as

∂

∂r
(4πHθ

√
−g̃ρ0vr0) = 0, (7.2)

where, as before, the factor Hθ arises due to the vertical averaging and is the

local angular scale of flow. Remember that the actual local flow thickness H(r) is

related to the angular scale of the flow Hθ as Hθ = H(r)/r, where r is the radial

distance along the equatorial plane from the center of the disc. g̃ is the value of the

determinant of the metric gµν on the equatorial plane, g̃ = det(gµν)|θ=π/2 = −r4.

The equation (7.2) gives the mass accretion rate Ψ0 as

Ψ0 = 4π
√
−gHθρ0v

r
0 = 4πH(r)rρ0v

r
0. (7.3)

The t, r component of the four velocity, vt, vr, are given in terms of u0 and λ0 =

−vϕ0/vt0 in Eq. (3.116) and (3.117), respectively. λ0 is the specific angular momen-

tum of the fluid and is a constant for stationary flow. Thus, using grr = r2/∆ with

∆ = r(r − 2), Ψ0 can be written as

Ψ0 = 4πH(r)∆1/2ρ0
u0√
1− u20

. (7.4)

For adiabatic flow, we define a new quantity Ξ̇ from Ψ0 by multiplying it with

(γk)
1

γ−1 . Ξ̇ is a measure of entropy accretion rate and typically called as the entropy

accretion rate. Expressing ρ0 in terms of γ, k and cs0 finally gives

Ξ̇ =

(
c2s0

1− nc2s0

)n
4πH(r)∆1/2 u0√

1− u20
= constant, (7.5)

where we have used n = 1/(γ− 1). The second conserved quantity can be obtained

from the time-component of the relativistic Euler equation (7.1) which for stationary

adiabatic case gives

ξ ad
0 = −h0vt0 = constant, (7.6)

and for stationary isothermal case gives

ξ iso
0 = −ρc

2
s0
0 vt0 = constant, (7.7)

135



Chapter 7. Effective sound speed in relativistic accretion discs around
Schwarzschild black holes

where cs0 is a constant for isothermal flow. vt0 can be further expressed in terms of

u0 as

vt0 = −

√
∆

B(1− u20)
, (7.8)

where B = gϕϕ − λ20gtt. Thus

ξ ad
0 =

1

1− nc2s0

√
∆

B(1− u20)
, (7.9)

and

ξ iso
0 = ρ

c2s0
0

√
∆

B(1− u20)
. (7.10)

For adiabatic flow, the expression for u′0 can be derived by using the expression

of the two quantities, Ξ̇ and ξ ad
0 given by equation (7.5) and (7.9), respectively.

Taking logarithmic derivative of both sides of equation (7.9) gives the gradient of

sound speed as

cs0
′| ad

= −1− nc2s0
2ncs0

[
u0

1− u20

du0
dr

+
1

2

(
∆′

∆
− B′

B

)]
. (7.11)

For isothermal flow, we make use of equation (7.4) and (7.10). Taking logarithmic

derivative of the equation (7.10) we can find ρ′0/ρ0 as

ρ′0
ρ0

∣∣∣∣ iso

= − 1

c2s0

[
u0

1− u20

du0
dr

+
1

2

(
∆′

∆
− B′

B

)]
. (7.12)

Below we discuss different models of vertical structure of accretion disc and the

corresponding critical point conditions for stationary accretion flow in such model

of accretion disc.

7.3.1 Models of accretion disc under vertical equilibrium

In the beginning of the current section we mentioned that for accretion disc flow, in

order for the governing equation to be written in terms of the variables evaluated at

the equatorial plane, the equations are vertically averaged which introduces the disc

height H(r) or equivalently the local angular scale of the flow Hθ in the resulting
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equations. Thus in order to solve for the accretion flow profile, we need to have an

expression for the local thickness of the accretion disc. In our present work, we are

concerned with accretion disc which is under hydrostatic equilibrium in the vertical

direction. In Newtonian accretion flow, for accretion disc under vertical equilibrium,

the disc height calculation is a rather straightforward work of balancing the pressure

gradient in the vertical direction with the component of the Newtonian gravitational

force in the vertical direction.

In case of a general relativistic accretion disc around a black hole, one needs to

incorporate the general relativistic effects on the balancing of pressure gradient and

gravitational force. Historically there have been three such general relativistic mod-

els of disc height which incorporated the general relativistic effects. The first of such

prescriptions of disc height was given by Novikov & Thorne [70]. In deriving the

expression for the disc height, [70] replaced the Newtonian formula for acceleration

by the vertical acceleration which is calculated from the Riemann tensor R3
030 given

in [82] and transformed to the local tetrad. A relatively improved expression was

given by Riffert & Herold [71] who derived the gravity-pressure balance equation it-

self by imposing two particular orthonormality condition on the vertical component

of the Euler equation. However, both the disc models of [70] and that of [71] do not

apply below r = 3 (in the units we are working with) where the disc height becomes

zero. Thus the disc height expressions are not valid up to the horizon r = 2 (for

a Schwarzschild black hole). [72] provided an expression for the disc height which

is regular up to the horizon. Abramowicz et al [72] derived the equation directly

from the relativistic Euler equation and no additional simplifying assumptions were

made.

In the following, we work with the above mentioned three prescriptions of disc

heights for general relativistic accretion disc under hydrostatic equilibrium in the

vertical direction around Schwarzschild black holes.
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7.3.2 Novikov-Thorne (NT)

The expression for the disc height as derived by [70] for accretion disc around

Schwarzschild black hole could be given by

H NT(r) =

√
p0
ρ0
r3/2
√
r − 3

r − 2
. (7.13)

7.3.2.1 Adiabatic case

For adiabatic equation of state, p0/ρ0 can be written as

p0
ρ0

=

(
n

n+ 1

)(
c2s0

1− nc2s0

)
. (7.14)

Thus we can write H(r) as

H NT(r) =

(
n

n+ 1

)1/2(
c2s0

1− nc2s0

)1/2

f NT(r), (7.15)

where f NT(r) = r3/2
√

(r − 3)/(r − 2). Using this expression of H(r), Ξ̇ for this

model can be written as

Ξ̇ NT =

√
n

n+ 1

(
c2s0

1− nc2s0

) 2n+1
2

4π∆1/2 u0√
1− u20

f NT(r). (7.16)

Taking logarithmic derivative of both sides of the above equation and substituting

c′s0 using Eq. (7.11) gives

u′0|
ad
NT =

u0(1− u20)
[

2n
2n+1

c2s0(
∆′

2∆
+

f ′NT
f NT

) + 1
2
(B

′

B
− ∆′

∆
)
]

u20 −
cs02

1+ 1
2n

=
N ad

NT
D ad

NT
. (7.17)

The critical points are obtained from the condition D ad
NT = 0 which gives u20|c =

c2s0/(1 + (1/2n))|c or

u20|c =
c2s0|c
1 + β

, where β =
γ − 1

2
. (7.18)

7.3.2.2 Isothermal case

For isothermal equation of state, p = k0ρ (k0 is a constant), the disc height is given

by

H iso
NT =

√
k0r

3/2

√
r − 3

r − 2
=
√
k0f NT(r). (7.19)
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Therefore, the mass accretion rate is given by

Ψ iso
NT = 4π

√
k0∆

1/2ρ0
u0√
1− u20

f NT(r). (7.20)

Taking logarithmic derivative of the above equation with respect to r and substi-

tuting ρ′0/ρ0 using equation (7.12) gives

u′0|
iso
NT =

u0(1− u20)
[
c2s0

(
f ′NT
f NT

+ ∆′

2∆

)
+ 1

2

(
B′

B
− ∆′

∆

)]
u20 − c2s0

=
N iso

NT
D iso

NT
. (7.21)

Thus critical points are given by the condition D iso
NT = 0, which gives

u20|c = c2s0|c. (7.22)

7.3.3 Riffert-Herold (RH)

RH [71] improved the result obtained by NT. The modified expression for the disc

height is given by

H RH(r) = 2

√
p

ρ
r3/2
√
r − 3

r
. (7.23)

7.3.3.1 Adiabatic case

H RH(r) =

(
n

n+ 1

)1/2(
c2s0

1− nc2s0

)1/2

f RH(r), (7.24)

where f RH = 2r
√
r − 3. H RH(r) has the same form as that of H NT. Therefore,

the expression for u′0 can be derived similarly which gives

u′0|
ad
RH =

u0(1− u20)
[

2n
2n+1

c2s0(
∆′

2∆
+

f ′RH
f RH

) + 1
2
(B

′

B
− ∆′

∆
)
]

u20 −
cs02

1+ 1
2n

=
N ad

RH
D ad

RH
. (7.25)

Setting D ad
RH = 0 gives the critical point condition as

u20|c =
c2s0|c
1 + β

, where β =
γ − 1

2
. (7.26)
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7.3.3.2 Isothermal case

Following the same procedure as given in section 7.3.2.2, u′0 for isothermal equation

of state would be given by

u′0|
iso
RH =

u0(1− u20)
[
c2s0

(
f ′RH
f RH

+ ∆′

2∆

)
+ 1

2

(
B′

B
− ∆′

∆

)]
u20 − c2s0

=
N iso

RH
D iso

RH
, (7.27)

which gives the critical point condition as u20 = c2s0.

7.3.4 Abramowicz-Lanza-Percival (ALP)

The expression for the disc height as given by [72] can be written as

H(r) =
√
2r2
√
p

ρ

1

|vϕ0|
=

√
2

α

√
p

ρ

r2

λ0

√
1− u20, (7.28)

where we have used vϕ0 = −λ0vt0.

7.3.4.1 Adibatic case

Using the above expression for the disc height the entropy accretion rate can be

written as

Ξ̇ ALP =

√
n

n+ 1

(
c2s0

1− nc2s0

) 2n+1
2 r2

λ0
4π

√
2Bu0. (7.29)

Taking logarithmic derivative of the above equation with respect to r and substi-

tuting c′s0 using equation (7.11) gives the expression for the gradient of advective

velocity as

u′0|
ad
ALP =

c2s0u0(1− u20)
[
B′

2B
+ 2

r
− 2n+1

4nc2s0

(
∆′

∆
− B′

B

)]
(
2n+1
2n

+ c2s0
) (
u20 −

c2s0
1+ 1

2n
+c2s0

) =
N ad

ALP
D ad

ALP
. (7.30)

Setting D ad
ALP = 0 gives the critical point condition as

u20|c =
c2s0

1 + β

∣∣∣∣
c

, β =
γ − 1

2
+ c2s0. (7.31)
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7.3.4.2 Isothermal case

The disc height for isothermal case, with the equation of state p = k0ρ , would be

given by

H(r) =

√
2

α

√
k0
r2

λ0

√
1− u20. (7.32)

For isothermal case, the mass accretion rate can be written as

Ψ| iso
ALP = ρ0

√
k
r2

λ0
4π

√
2Bu0. (7.33)

Taking logarithmic derivative of the above equation with respect to r and substi-

tuting ρ′0/ρ0 using equation (7.12) gives

u′0|
iso
ALP =

c2s0u0(1− u20)
[
B′

2B
+ 2

r
− 1

2c2s0

(
∆′

∆
− B′

B

)]
(1 + c2s0)(1−

c2s0
1+c2s0

)
=
N iso

ALP
D iso

ALP
. (7.34)

Setting D iso
ALP give the critical point condition as

u20 =
c2s0

1 + β

∣∣∣∣
c

, β = c2s0. (7.35)

Thus we summarize the results obtained for different vertical equilibrium disc mod-

els and equations of states as follows. The critical points for any disc model and

equation of state are obtained from the condition

u20|c =
c2s0

1 + β

∣∣∣∣
c

, (7.36)

where β depends on the disc model and the equation state. We give the values of

β in table 7.1.

7.4 Acoustic spacetime metric

In this section, we derive the acoustic spacetime metric by linear perturbing the

equations governing the accretion flow. Following standard linear perturbation

analysis, we write the time-dependent accretion variables, for example, the velocity
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Accretion disc models β for isothermal

equation of state

β for adiabaic

equation of state

Novikov & Thorne (NT) 0 γ−1
2

Riffert & Herold (RH) 0 γ−1
2

Abramowicz Lanza & Percival

(ALP)

c2s0
γ−1
2

+ c2s0

Table 7.1: Values of β for different disc structure models. Critical point condition

is given by u20|c =
c2s0|c
1+β .

components and density, as small time-dependent fluctuations about their station-

ary values. Therefore,

vt(r, t) = vt0(r) + vt1(r, t),

vr(r, t) = vr0(r) + vr1(r, t),

ρ(r, t) = ρ0(r) + ρ1(r, t),

(7.37)

where the quantities with subscript ‘1’ are the small time-dependent perturbations

about the stationary quantity denoted by subscript ‘0’. We define a new variable

Ψ = 4π
√
−gρ(r, t)vr(r, t)Hθ which is equal to the stationary mass accretion rate for

the stationary accretion flow and hence

Ψ(r, t) = Ψ0 +Ψ1(r, t), (7.38)

where Ψ0 is the stationary mass accretion rate defined in equation (7.3). The

geometric factor 4π is just a constant and therefore, we can redefine the mass

accretion rate Ψ as simply Ψ =
√
−gρ(r, t)vr(r, t)Hθ without any loss of generality.

Using the equations (7.37) we get

Ψ1 =
√
−g[ρ1vr0Hθ0 + ρ0v

r
1Hθ0 + ρ0v

r
0Hθ1]. (7.39)

It could be noticed that the perturbation Ψ1 contains a term which is the pertur-

bation of Hθ. We remember that Hθ is the local angular scale of the flow and is

related to the local flow thickness H(r) as Hθ = H(r)/r. The expressions for the
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disc thickness for vertical equilibrium model of Novikov-Thorne, Riffert-Herold and

Abramowicz-Lanza-Percival are given by equation (7.13), (7.23) and (7.28), respec-

tively. These expression contains p/ρ and further analysis needs an equation of

state. Below we perform the analysis for adiabatic equation of state and isothermal

equation of state.

7.4.1 Acoustic metric for adiabatic flow

For adiabatic flow, pressure is given by p = kργ. The enthalpy can be thus written

as

h = 1 +
γ

γ − 1

p

ρ
, (7.40)

and the perturbation h1 can be written as

h1 =
h0c

2
s0

ρ0
ρ1. (7.41)

We assume the accretion flow to be irrotational. Irrotationality condition provides

the following equation for adiabatic flow [6]

∂µ(hvν)− ∂ν(hvµ) = 0. (7.42)

The above equation along with the spherical symmetry of the flow (which implies

∂ϕ = 0) provide the conserved quantity hvϕ = constant. Thus, using equation

(7.41) one obtains

vϕ1 = −vϕ0c
2
s0

ρ0
ρ1. (7.43)

Linear perturbing the equation given by normalization condition, i.e., vµvµ = −1

and using vϕ1 = (1/gϕϕ)vϕ1 gives the perturbation of vt in terms of vr1 and ρ1 as

vt1 = α1v
r
1 + α2ρ1, α1 =

grrv
r
0

gttvt0
and α2 = −

gϕϕ(v
0
ϕ)

2c2s0
gttvt0ρ0

. (7.44)

We express Hθ1 in terms of perturbations of other quantities. For Novikov-Thorne

and Riffert-Herold, we get

Hθ1

Hθ0

=

(
γ − 1

2

)
ρ1
ρ0
, (7.45)
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and for Abramowicz-Lanza-Percival, we have

Hθ1

Hθ0

=

(
c2s0 +

γ − 1

2

)
ρ1
ρ0
. (7.46)

Thus the expressions for different vertical equilibrium disc models can be given by

an single equation as

Hθ1

Hθ0

= β
ρ1
ρ0
, (7.47)

where β for different disc models for adiabatic equation of state are given in Table

7.1. Using this expression of Hθ1, we derive the acoustic metric for the three differ-

ent disc models in a combined way.

The continuity equation for vertically averaged accretion flow takes the form

∂t(
√
−gρvtHθ) + ∂r(

√
−gρvrHθ) = 0. (7.48)

Using equation (7.37) and (7.38) in the above equation and further using equation

(7.44) and (7.47) provides

∂rΨ1

Ψ0

= −
[{

α2

vr0
+ (1 + β)

vt0
ρ0vr0

}
∂tρ1 +

α1

vr0
∂tv

r
1

]
. (7.49)

Differentiating equation (7.39) with respect to t and using equation (7.47) gives

∂tΨ1

Ψ0

= (1 + β)
∂tρ1
ρ0

+
1

vr0
∂tv

r
1. (7.50)

Equation (7.49) and (7.50) could be used to express ∂tvr1 and ∂tρ1 entirely in terms

of derivatives of Ψ1. This provides

∂tv
r
1

vr0
=

1

Λ

[{
gtt(v

t
0)

2(1 + β)− gϕϕ(v
ϕ
0 )

2c2s0

} ∂tΨ1

Ψ0

+ (1 + β)gttv
r
0v

t
0

∂rΨ1

Ψ0

]
, (7.51)

and

∂tρ1
ρ0

= − 1

Λ

[
gtt(v

r
0)

2∂tΨ1

Ψ0

+ gttv
r
0v

t
0

∂rΨ1

Ψ0

]
, (7.52)

where Λ is given by

Λ = (1 + β) + (1 + β − c2s0)gϕϕ(v
ϕ
0 )

2. (7.53)
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The temporal component of the Euler equation (7.1) for axially symmetric flow can

be written as

vt∂tv
t +

c2s0
ρ

{grr(vr)2 + gϕϕ(vϕ)
2}

gtt
∂tρ+ vrvt∂r {ln(hvt)} = 0. (7.54)

Differentiating the above equation with respect to t and using the perturbation

equations (7.37), (7.41) and (7.44) provides

∂t

(
α1

vr0
∂tv

r
1

)
+∂t

(
α1c

2
s

ρ0
∂tρ1

)
+∂r

(
α1

vt0
∂tv

r
1

)
+∂r

{(
α2

vt0
+
c2s
ρ0

)
∂tρ1

}
= 0. (7.55)

Finally substituting ∂tvr1 and ∂tρ1 in the above equation using equation (7.51) and

(7.52), respectively, gives the following equation

∂µ(F
µν∂νΨ1) = 0, (7.56)

where µ, ν run from 0 to 1. 0 stands for t and 1 stands for r. The matrix F µν is

symmetric and is given by

F µν =
grrv0c

2
s0

vt0Λ

−gtt + (1− 1+β
c2s0

)(vt0)
2 vr0v

t
0(1−

1+β
c2s0

)

vr0v
t
0(1−

1+β
c2s0

) grr + (1− 1+β
c2s0

)

 . (7.57)

The equation (7.56) describes the propagation of the perturbation Ψ1. Equation

(7.56) mimics the wave equation of a massless scalar field φ in curved spacetime.

Thus, following the similar procedure as discussed in the previous chapters, the

acoustic metric Gµν is obtained to be given by

Gµν = k(r)

−grr − (1− 1+β
c2s0

)(vr0)
2 vr0v

t
0(1−

1+β
c2s0

)

vr0v
t
0(1−

1+β
c2s0

) gtt − (1− 1+β
c2s0

)(vt0)
2

 , (7.58)

where k(r) is some conformal factor arising due to the process of inverting Gµν in

order to obtain Gµν . For our current purpose we do not need to find the exact

expression for k(r). In the following section we will be using equation (7.58) to

solve for the null acoustic geodesic.

7.4.2 Acoustic metric for isothermal flow

The procedure to derive the acoustic metric for isothermal flow is exactly the same

as laid out in the previous section 7.4.1. The differences comes from the difference in
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the equation of state. For isothermal equation of state, p/ρ = constant. The sound

speed is defined by equation (3.8). The irrotationality condition for isothermal flow

is given by [64]

∂µ(ρ
c2svν)− ∂ν(ρ

c2svµ) = 0, (7.59)

where the sound speed cs is a constant for isothermal flow. Using the above equation

and the axial symmetry of the flow provides

ρc
2
svϕ = constant. (7.60)

Linear perturbation of the above equation leads to the same equation as equation

(7.43) with cs now a constant. The perturbation of Hθ gives

Hθ1

Hθ0

= β
ρ1
ρ0
, (7.61)

where β for isothermal flow for different model is given is Table 7.1. The detailed

derivation of acoustic metric for isothermal flow for vertical equilibrium model of

ALP could be found in [64]. The other models follows the same. This leads to the

acoustic metric which has the same form as given in equation (7.58) with the only

difference is that the sound speed cs is a constant for the isothermal case.

7.5 Effective speed of acoustic perturbation

The acoustic metric for general relativistic axially symmetric disc in Schwarzschild

spacetime was derived in the previous section for adiabatic and isothermal flow

which is given by equation (7.58). From the acoustic metric given by equation

(7.58), one can find out the location of the acoustic horizon. In analogy to the

black hole event horizon in general relativity, the acoustic horizon can be defined as

a null surface which acts like a one-way membrane for the acoustic perturbation. In

other words, the acoustic perturbations inside the acoustic horizon cannot escape

to the outside. For transonic flow, the transonic surface where bulk velocity and

speed of acoustic perturbations becomes equal should act like such horizon. Because

once the matter flow becomes supersonic, any acoustic perturbations will be dragged
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along the medium and hence the perturbation cannot escape to the subsonic region.

If a surface r = constant is the horizon, then the condition that the surface is null

with respect to the metric Gµν provides

Gµνn
µnν = 0, (7.62)

where nµ = δrµ is the normal to the surface r = constant [12]. Thus Grr = 0

gives the location of the sonic horizon. Therefore, in terms of u0, the location of

the sonic or acoustic horizon is given by u20 = c2s0/(1 + β). However, as argued

earlier, the acoustic horizon is basically the transonic surface which in turn implies

that the effective speed of the acoustic perturbation is c eff
s0 = cs0/

√
1 + β. Now, in

section 7.3, we showed that the critical point conditions for the different models and

equations of state can be written in a single form as u20 = c2s0/(1 + β). Therefore,

the critical point condition becomes u20 = c eff
s0

2. Therefore, the fact that the critical

points coincide with the acoustic horizon further implies that the critical points

are the transonic points with effective sound speed given by c eff
s0 = cs0/

√
1 + β.

Hence, the apparent mismatch of the critical point and sonic point is resolved if we

abandon the static sound speed cs and use effective speed of sound c eff
s0 as the speed

of propagation of acoustic perturbation and define the Mach number as the ratio of

the dynamical bulk velocity u0 and the effective sound speed c eff
s0 . In such a case,

the critical point and the sonic point (where the Mach number is unity) becomes

the same.

The acoustic null ray travelling in the radial direction would be given by ds2|θ,ϕ=constant =

0 [5]. Thus for acoustic null geodesic, which describes the path of radially travelling

phonons, we have

Gtt + 2Grt

(
dr

dt

)
+Grr

(
dr

dt

)2

= 0. (7.63)

The metric elements Gµν are expressed in terms of u0, λ0 using Eq. (3.116) and
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(3.117) as

Gµν =
k(r)
c2s0
1+β

G̃µν ,

G̃tt = u20 −
c2s0

1 + β
,

G̃tr = G̃rt = − u0
1− u20

(
1− c2s0

1 + β

)√
gϕϕ

gϕϕ − λ20gtt
,

G̃rr =
1

gtt

c2s0
1 + β

+
1

gtt(1− u20)

(
1− c2s0

1 + β

)
gϕϕ

gϕϕ − λ20gtt
.

(7.64)

The null geodesic is independent of the conformal factor and hence we can use

G̃µν instead of Gµν in equation (7.63). dr/dt obtained from equation (7.63) is

the coordinate speed of the acoustic phonons as observed from infinity. In the

large radial distance, the Schwarzschild metric becomes asymptotically flat. In the

non-relativistic Newtonian limit, gµν → ηµν and u0 ≪ 1, cs0 ≪ 1 where ηµν =

diag(−1, 1, r2, r2 sin2 θ) is the flat spacetime metric in the polar coordinate. In this

limit we have

G̃tt = u20 −
c2s0

1 + β
,

G̃tr = G̃rt = −u0,

G̃rr = 1.

(7.65)

Thus equation (7.63) becomes

(u20 −
c2s0

1 + β
)− 2u0

(
dr

dt

)
+

(
dr

dt

)2

= 0, (7.66)

which could be rewritten as∣∣∣∣drdt − u0

∣∣∣∣ = cs0√
1 + β

= c eff
s0 . (7.67)

The above equation implies that the acoustic perturbation moves with an effective

speed c eff
s0 = cs0/

√
1 + β relative to the moving medium.

For the isothermal case β = 0 for NT and RH and β = c2s0 for ALP. However,

c2s0 ≪ 1 and therefore, 1+β → 1 and hence c eff
s0 = cs0. Therefore, for isothermal case,

the critical point and sonic point coincide in non-relativistic Newtonian accretion

flow. For the adiabatic equation of state, β = (γ − 1)/2 for NT and RH and for
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ALP β = (γ − 1)/2 + c2s0. Thus, 1 + β → (γ + 1)/2 as c2s0 ≪ 1. Therefore, for

adiabatic equation of state, effective sound speed is c eff
s0 =

√
2/(γ + 1)cs0 for all the

three disc heights.

7.6 In closing

For accretion flow maintained in hydrostatic equilibrium along the vertical direc-

tion, the Mach number does not become unity at critical points and hence the

critical points and the sonic points become different (location-wise). This happens

because, for such a disc model, the flow thickness contains the expression of sound

speed. The deviation of Mach number from unity is always observed for polytropic

accretion because the sound speed is a position dependent variable for polytropic

flow. For isothermal accretion, the sound speed is a position independent con-

stant(because of the temperature invariance). For accretion under the influence of

the post-Newtonian black hole potentials, the critical and the sonic points are thus

identical for isothermal flow.

The situation is observed to be completely different for complete general relativis-

tic flow. For certain expressions of disc thickness, the Mach number deviates from

unity at the critical point even for isothermal accretion. For other disc heights, the

critical and the sonic points remain the same for isothermal flow. We try to explain

such finding in the following way.

The expression for the flow thickness as obtained by ALP has been derived by

setting an energy-momentum conservation equation along the vertical direction as

well, in addition to the conservation of the Euler equation along the radial direction

(for the equatorial plane). Hence the variation of the sound speed gets intrinsically

included in the set of equations (written for the equatorial plane) through the pro-

cess of vertical averaging, even if one considers the isothermal flow. The sound speed

remains position independent constant only along radial direction if such vertical

averaging would not be performed. Hence for accretion discs with flow thickness as

expressed by ALP, the critical points and the sonic points are formed at different
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radial distances. For two other expressions of disc heights, the relativistic Euler

equation is not constructed or solved along the vertical direction.

The effective dynamical sound speed for different disc models and equation states

is given by ceff
s0 = cs0/

√
1 + β. As given in Table 7.1, β depends on the model as well

as the equation of state. In particular, it is noticed that for isothermal equation

state, β for NT and RH model are zero. For NT and RH, the disc height can be

written as H =
√
p/ρf(r) where f(r) is function of the radial coordinate only. For

isothermal equation of state p ∝ ρ and therefore H ∝ f(r). Thus for these two

models, the disc height is just a function of r for the isothermal equation of state.

Thus, the height for such cases does not depend on any flow variables such as the

velocity or density. Therefore, such prescription of disc height does not make the

critical point different from the sonic point.

For axially symmetric accretion flow maintained in hydrostatic equilibrium along

the vertical direction, the local disc thickness H(r) is a function of the radial sound

speed as well. Presence of the sound speed, especially when the sound speed is

position dependent, is the prime reason behind the formation of the sonic point at

a different location than that of the critical point. The assumption of hydrostatic

equilibrium along the vertical direction demands the disc to be geometrically thin.

Within the framework of the Newtonian gravity, the thickness can be evaluated

using the following procedure. The pressure gradient along the vertical direction is

balanced by the component of the gravitational force along that direction. From

figure 7.1, this gives

1

ρ

dp

dz
=
dΦ

dR
× sin θ, (7.68)

where Φ(R) is the gravitational potential and θ is the angle made by the disc at a

distance r along the equatorial plane. Assuming the disc to be thin, i.e., z(r) ≪ r,

where z(r) is the half-thickness of the disc as shown in figure 7.1, the above equation

becomes

1

ρ

dp

dz
=
dΦ

dr
× z(r)

r
, (7.69)
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Fg

z(r) = H(r)/2

R

r

Fg sin θ

Fg cos θ

θ

Figure 7.1: Schematic diagram showing the components of the gravitational force

Fg = dΦ/dR .

The above equation is further approximated as

1

ρ

p

z(r)
=
dΦ

dr
× z(r)

r
. (7.70)

For adiabatic equation of state, the sound speed is given by c2s = γp/ρ. Thus the

disc half-thickness is given by

z(r) = cs

√
r

γ dΦ
dr

. (7.71)

While writing dp/dz to be p/z, it has been assumed that a differential form

can safely be approximated, at least in the present context. Such approximation

assumes that the pressure is a (very) slowly varying function of the coordinate

associated with the vertical direction. It is difficult to comment on how accurate

such approximation is. To obtain the exact z dependence of the pressure, one

needs to formulate and solve the Euler equation along the z direction. Instead of

accomplishing such task, usual literature uses the value of the vertically averaged

pressure evaluated on the equatorial plane only, thus makes the model effectively

one dimensional. Such approximation is probably the major cause behind having a

mismatch between the location of the critical and the sonic point. Had it been the

case that one would solve a two-dimensional disc structure, the sonic surface would

probably coincide with the critical surface. In that case, however, the problem would
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not be analytically treatable, not even a semi-analytical method would suffice to

address the problem, and it would be imperative to take recourse to full numerical

solutions.

Also, it is important to note that a thin disc, where the hydrostatic equilibrium

along the vertical direction may be assumed, would incorporate small sound cross-

ing time, and hence, such disc model is more suitable for subsonic flow only. The

aforementioned discussion indicates the possible reasons for which the sonic and

the critical points are not isomorphic for one-dimensional flow solutions in New-

tonian gravity. For general relativistic fluid, the governing equations look more

complex and the overall solution method is rather involved. However, the overall

underlying logic used to develop the solution remains the same. It is not possi-

ble to analytically/semi-analytically construct a two-dimensional disc model where

the sonic points would automatically coincide with the critical points. Analytical

methods restrict us to use the effective one-dimensional flow structure with verti-

cally averaged values of accretion variables. Within such set of constraints, what

best can be done is to redefine the concept of the sound speed through a dynamical

approach and to introduce an effective sound speed which makes a sonic point to

coincide with a critical point. We have done the same in the present work.

It is, however, important to note that it is difficult to conclude the universality

of such phenomena (which kind of disc height will or will not exhibit the non-

isomorphism of critical points) since the corresponding expression for flow thick-

nesses in the works considered here have been derived using a certain set of ideal-

ized assumptions. A more realistic flow thickness may be derived by employing the

non-LTE radiative transfer [140, 141] or by taking recourse to the Grad-Shafranov

equations for the MHD flows [142–144].
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8
Concluding remarks

Before we summarise the results of the thesis, let us discuss some of the ongoing

works on the analogue gravity phenomenon in the context of accretion astrophysics.

8.1 Non-linear perturbations and acoustic spacetime

The general procedure to obtain the analogue spacetime metric is to perform a linear

perturbation analysis. However, one may ask whether the emergence of the analogue

spacetime metric is a consequence of only linear perturbation or non-linear pertur-

bation could also lead to such analogue spacetime metric. For example, instead of

performing a linear order perturbation analysis, one may extend the perturbation

analysis up to second order in the perturbed quantities and ask whether the result-

ing perturbation equations could be interpreted in a way where analogue spacetime

metric could be obtained. Recently, Roy et al [145] has attempted such a task by

performing perturbation analysis up to second order in perturbed quantities in a

Newtonian fluid system. Such a task not only answers whether analogue gravity

phenomenon could be found in a more general way than just in a linearized fluid

system but also provides a way to test non-linear stability analysis of the accretion

flow. There are two existing ways to approach the non-linear perturbation analysis–

one is the way as discussed in the works of Roy et al [145] and another is the way

which could be found in [146] by Sen et al. Of course, there are plenty of numerical
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works which deal with non-linear stability analysis by numerical simulation of the

accretion disc. However, we are more interested in the analytical approach which

also addresses the analogue gravity phenomenon also.

The first approach to introduce higher-order perturbation is to expand the time-

dependent fluctuations of the accretion variables about their stationary background

values as a sum of higher order modes with successively diminishing amplitudes.

Thus any variable x(t, r) is written as

x(t, r) = x0(r) + ϵx1(t, r) + ϵ2x2(t, r) +O(ϵ3), (8.1)

where x2 ≪ x1 and it is also assumed that the origin of the fluctuations are in-

dependent and they do not add up to give a single resultant perturbation. Such

a perturbation scheme for inviscid, irrotational and barotropic fluid in Newtonian

framework gives the following perturbation equation in terms of the perturbation

of the mass accretion rate f = ρvr2

∂µ(h
µν∂νf1) = 0, (8.2)

∂µ(h
µν∂νf2)− ∂µ(g

µν∂νf1) = 0, (8.3)

where the hµν and gµν metric elements are given by

htt =
v0
f0
,

htr = hrt =
v20
f0
;

hrr =
v0
f0
(v20 − c2s0),

gtt =
ρ1
ρ0

v0
f0
,

gtr = grt =
ρ1
ρ0

v0
f0

[
v0 −

ρ0
ρ1
v1

]
,

grr =
ρ1
ρ0

v0
f0

[
(v20 − c2s0) + (γ − 1)c2s0 −

ρ0
ρ1

2v0v1

]
,

(8.4)

where ρ is the density, v is the velocity of fluid and cs0 is the sound speed. γ is the

specific heat of the fluid. This is the approch and corresponding results obtained

in [145]. Eq. (8.2) can be interpreted in the usual way that the perturbation f1

is governed by the curved spacetime metric related to hµν . However, in the wave
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equation for f2 there is a source term which is coupled to hµν and we can not use

the usual method to find out and associate an anlogue metric to gµν which governs

the propagation of the second order mode f2.

The second approch to study non-linear perturbation in accretion flow, a varibale

x(t, r) is written as x(t, r) = x0(r) + x′(t, r) and then the perturbation equation is

obatained in terms of the fluctuations without neglecting any higher order terms

like ρ′v′ or ρ′2 and v′2. For example, the fluctuation of the mass accretion rate

(defined as f = ρvr2) is expressed as

f ′

f0
=
ρ′

ρ0
+
v′

v0
+
ρ′

ρ0

v′

v0
. (8.5)

Using such perturbation scheme to the continuity equation and Euler equation, the

perturbation equation could be found in terms of f ′ as

∂µ(h
µν∂νf

′) = 0, (8.6)

where hµν elements are given by

htt =
v

f
,

htr = hrt =
v2

f
,

hrr =
v

f
(v2 − c2s).

(8.7)

The metric elements hµν contains the full varibales v, f, cs and not only the station-

ary values. Thus the Eq. (8.6) becomes the usual linear perturbation equation if the

in the metric elements the varibales are replaced by their stationary values. In fact,

we can expand the varibales upto any higher order to get non-linear perturbation

equation. However, unike the linear case, hµν in Eq. (8.6) is time-dependent and

not stationary. Thus we are unable to compare it to the wave equation of mass-

less scalar field propagating in stationary curved spacetime. Therefore, the usual

method to obtain the acoustic metric fails. This fact is complemented by numerical

simulation done by Mach and Malec [147] where it is shown that introducing non-

linear perturbation would force the acoustic horizons to suffer a shift about their

stationary values and thus the comparison between the acoustic horizon and the

event horizon of the black hole would appear limited.

155



Chapter 8. Concluding remarks

8.2 Effective sound speed in accretion disc around

Kerr black holes

In Chap. 7, we discussed an effective sound speed obtained through the study of

acoustic perturbation and corresponding acoustic metric in accretion discs under

hydrostatic equilibrium along the vertical direction in the Schwarzschild spacetime.

The next step is to study whether such an effective sound speed could be defined

also in accretion disc around Kerr black holes to remove the non-isomorphism of

the critical points and the transonic points of the accretion flow under hydrostatic

equilibrium along the vertical direction. Such an attempt could be found in recent

work by Maity et al [148].

8.3 Brief summary

The underlying theme of our work was to show how the linear perturbation analysis

of the accretion flow gives rise to the acoustic spacetime metric. First, we showed

that this emergence of the curved acoustic metric is independent of the physical

quantity which is being linearly perturbed. In other words, we showed that the

linear perturbation of the velocity potential, mass accretion rate and the relativis-

tic Bernoulli’s constant give rise to the same acoustic spacetime metric up to a

conformal factor. However, the acoustic spacetime time metric obtained by linear

perturbation depends sensitively on the geometry of the accretion disc, i.e., the

geometrical configuration of accreting matter. It was shown that while the acoustic

metric for accretion disc with conical and constant height geometry are identical,

it differs in the case of accretion flow in hydrostatic equilibrium along the vertical

direction.

Acoustic event horizon have been identified by using the analogy borrowed from

the general relativity. For a stationary, asymptotically flat spacetime with the event

horizon of spherical topology, the event horizon could be defined as r = constant

null hypersurface. In the corotating frame, we found that the event horizon of the
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acoustic spacetime metric for an accretion flow is located at the critical points of

the stationary accretion flow. For accretion flow with conical or constant height disc

models, the critical points are the transonic points. Thus for these models of the

accretion disc, the transonic surface and the acoustic horizon coincide. However,

for an accretion flow in hydrostatic equilibrium along the vertical direction, the

transonic points and the critical points are not isomorphic and therefore the acoustic

horizon and the transonic surface for this particular model of accretion disc are not

the same surfaces. This apparent non-isomorphism of the critical points and the

transonic points could be removed by defining an “effective” sound speed which is

the speed of propagation of the acoustic perturbations. The transonic point defined

in terms of the “effective” sound speed coincide with the critical point and hence

coincide also with the acoustic horizon of the acoustic spacetime.

The event horizon of an acoustic black hole is basically the boundary of the

region from which null geodesics cannot escape to the outside. In terms of the

sound-cones, this is the surface where the sound-cone tilts past the vertical. This

is best visualized by constructing the causal structure of the acoustic spacetime.

For illustration, we have constructed the causal structure for radially travelling null

geodesics. By numerically integrating the stationary accretion flow equation, we

constructed the causal structure which showed the existence of an acoustic horizon

at the critical points of the flow where the sound-cones tilt past the vertical.

Depending on the physical parameters governing the stationary flow, there could

be more than one critical points of the flow. We showed that for a particular set of

values of the governing parameters, the accretion flow could be multi transonic by

encountering a stationary shock. We showed by drawing the causal structure that

the shock location indicates the presence of an acoustic white hole.

Astrophysical black holes are supposed to possess non-zero spin a. Thus it is

important to understand how the black hole spin influences the properties of the

acoustic black hole. The influence of the black hole spin was studied in details

by performing the linear perturbation of the accretion flow on to a rotating black

hole. We studied the dependence of the location of the acoustic event horizon (both
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inner and outer for multi transonic flow) on the black hole spin for fixed values of

the other parameters. Similarly, the dependence of the causal structure and the

acoustic surface gravity on the black hole spin was studied in details.

Our analysis was done for Schwarzschild and Kerr spacetime using both isother-

mal as well as the adiabatic equation of state. Thus our work provides the necessary

elements to complete a set of work on the analogue gravity phenomenon arising in

accretion flow in general relativistic spacetime metric. We showed how the linear

perturbation equation could be used to perform a linear stability analysis of the

stationary accretion solutions and in this way, our work combines these two appar-

ently disjoint phenomena–the emergence of analogue gravity metric and the linear

stability analysis of the stationary accretion solutions.
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