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Chapter 6

Conclusion

In this thesis, we have studied the capability of the long-baseline experiments to constrain

new physics scenarios using CC and NC measurements. We have also discussed about the

effect of non unitarity on the mass hierarchy determination at long-baseline experiments.

The main conclusions from these various studies are summarized as follows.

We examine how NC events can synergistically aid the search for new physics and CP vi-

olation when combined with other measurements. We show that typically the NC events

offer a window to CP phases and mixing angles that is complementary to that accessed by

CC event measurements at both long and short baseline experiments. They can break

degeneracies existing in CC measurements, allowing one to distinguish between new

physics that violates 3+0 unitarity and new physics that does not. NC events seem not

to be affected greatly by matter effects which arise at energies and baselines relevant to

DUNE, rendering analytical understanding of new physics somewhat easier. They also aid

in constraining parameters that are not easily accessible to CC measurements. Overall,

in an experimental era when combined measurements can lead to significantly increased

precision and understanding, NC studies can play a valuable role in the search for new

physics at neutrino detectors.

We have studied constraints on non unitarity parameters at DUNE and T2HK, specially
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focusing on the contribution of the NC measurements at DUNE. We have calculated the

NC events in the presence of both heavy and light sterile neutrinos and have found that

even in the averaged out regime of light sterile neutrinos, the NC events are different from

the heavy sterile case in the leading order. In this analysis, we have found that the νe

background is the most dominant component in the measurements of the α11 parameter

and hence this parameter will be better bounded by this background than by the signal.

In case of the α22 parameter, NC measurements help in enhancing the bounds further. We

have also found that combining both DUNE and T2HK can improve overall bounds on

all the NU parameters. Finally, we have found that NC measurements at DUNE help in

deriving better bounds on the α33 parameter compared to the CC measurements.

Long baseline neutrino experiments are sensitive to large matter effects and they have the

potential to resolve the mass ordering in the neutrino sector. The superbeam experiment

DUNE is one of the most promising candidates to study the neutrino mass hierarchy,

along with NOνA and T2K. But in the presence of non unitarity of the leptonic mixing

matrix, the capability of such experiments to discriminate between the two hierarchies

gets suppressed. The mass hierarchy sensitivity of DUNE decreases in the presence of

new physics. In this chapter we analyse the origin and extent of this loss of sensitivity at

the level of oscillation probabilities, events, mass hierarchy sensitivity and the discovery

reach of DUNE, NOνA and T2K. We have found that in the presence of NU, the mass hi-

erarchy sensitivity of NOνA and T2K decreases significantly. But DUNE can still resolve

the neutrino mass hierarchy at more than 5σ C.L. irrespective of the true hierarchy.

We address the question of constraining the parameter space of NSI parameters at DUNE

by exploiting wide band nature of the beam. We systematically study correlations among

various parameters using two beam tunes (LE and ME) and illustrated that to probe a

subset of NSI parameter space more effectively, it is advantageous to use a combination

of LE and ME tuned beams as opposed to using only the standard LE beam tune.

We provide a systematic and comprehensive description of the overall impact of the NSI
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parameters on the relevant probabilities (for νµ → νe and for νµ → νµ) as a function

of energy as well as the CP phase. In the section 5.5, we provide analytic expressions

of all the relevant expressions for the SI-NSI probability differences in the presence of

individual NSI parameters (taken one at a time). These aid in our understanding of the

dependencies of oscillation probabilities. We then quantify the differences in terms of a

∆χ2 quantity and connected the features obtained to the probability level description. In

Fig. 5.9, we have illustrated the ∆χ2 correlations among the various parameters in the new

parameter space appearing in the presence of NSI at a confidence level of 99%. Our key

findings can be summarized as follows. The degenerate contours in the space associated

with parameters, |εeµ| and φeµ (shown as panels shaded in light yellow colour in Fig. 5.9)

shrink significantly when we use the LE+ME beam as opposed to LE beam alone. For a

quantitative estimate of the improvement, one can compute the area of the parameter space

outside each contour (i.e., above the confidence level of 99%) and express the area as the

percentage of the total parameter space plotted. It is evident from the pair of numbers

(cyan for LE and black for LE+ME) indicated in the light yellow panels that the LE+ME

beam leads to improvement over the LE beam. For the remaining NSI parameters, we

see marginal or no improvement in terms of constraining the parameters using LE+ME

beam in comparison with LE beam. Our detailed analysis also provides explanation for

distinguishing features of the ∆χ2 contours for different parameters.
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SUMMARY

Neutrino oscillations have been established on a firm footing. We have now entered in the

precision measurement era in neutrino physics. Although we have reliable measurements

of the mixing angles θ12 and θ13 and the mass squared differences (∆m2
21, |∆m2

31|), we

do not know the mass hierarchy (i.e. the sign of ∆m2
31), octant of θ23 and also do not

have completely conclusive information about leptonic CP phase (δcp). Upcoming various

super beam neutrino experiments have the potential to give us very good information

about these unknowns. These experiments are also quite sensitive to new physics which

enters into the oscillation probability.

Neutrinos can be detected through charged current (CC) interactions. In CC measure-

ments, the final state particles are a lepton along with a hadron. We distinguish differ-

ent flavors of neutrino species in the CC process by detecting the corresponding lepton

flavour. Neutrinos also interact through the Z boson, i.e. via neutral current (NC) interac-

tions. In the standard neutrino oscillation scenario, the NC events are proportional to the

total number of the active flavor neutrinos. But in the presence of new physics, the number

of NC events are modified and can be used as a tool to search and constrain new physics

scenarios. The synergy between CC and NC will help us to probe the new physics sce-

narios more effectively. We also discuss the effect of new physics to the standard neutrino

oscillation measurements.

One of the forms of new physics under active exploration is an extra sterile neutrino,

which mixes with the active neutrino flavours. The effect of a sterile neutrino shows up not

only in the short baseline experiments but also in the long-baseline experiments because

of the mixing mentioned above. All the active flavor neutrinos contribute to the neutral

current processes and produce a large number of events. We note that the NC probability

is immune to any parameter uncertainty in the 3+0 case as opposed to the charge current

(CC) measurements. In the presence of sterile states, however, active flavors can oscillate

into a sterile flavor, giving a lesser number of events compared to standard (3+0) case.
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Thus any depletion of NC events indicates the presence of sterile neutrino. We can also

use the NC measurements to test the unitarity of the leptonic mixing matrix.

The neutrino mass ordering is one of the principal unknowns in the neutrino sector. Long

baseline neutrino experiments have the potential of resolving this issue as they are sensi-

tive to large matter effects. In the presence of new physics such as non unitarity, the ca-

pability of such experiments to discriminate between the two hierarchies gets suppressed.

In this thesis, we focus on the capability of the long-baseline neutrino experiments to

constrain various new physics scenarios such as light sterile neutrino, non unitarity of the

leptonic mixing matrix, NSIs etc. We also focus on the degeneracy arises due to NSIs in

the neutrino oscillations probability and the effect of new physics such as non unitarity in

the measurements of mass hierarchy.
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Chapter 1

Introduction

Neutrinos are the second most abundant particles in nature after photons. In the Stan-

dard Model (SM) [1], there are three flavor neutrinos which are electron type (νe), muon

type (νµ), and tau type (ντ). Neutrinos are electrically neutral. They do not participate

in the electromagnetic interactions, and they interact only through weak interactions with

other SM particles. Neutrinos are produced in the flavor state through charged current

(CC) interactions. But the flavor states do not coincide with the mass eigenstates. The

flavor states are linear superpositions of the mass eigenstates and they are related to each

other by the leptonic mixing matrix or Pontecorvo−Maki−Nakagawa−Sakata (PMNS)

matrix [2, 3]. Consequently as the neutrino propagates, it can change its flavor. Standard

neutrino oscillations depend on the two mass squared differences namely the solar (∆m2
21)

and atmospheric (∆m2
31) differences, three mixing angles (θ12, θ13, and θ23) and one CP

violating phase (δcp). Since the neutrino is a very weakly interacting particle, it is very

difficult to detect it. We need a large detector mass to get a significant amount of neutrino

events. The present and the future experiments are focused on determining the proper-

ties of neutrinos, such as mass squared differences, mixing angles, and the CP violating

phase more precisely. The other goals of the present and future experiments also include

exploring scenarios with any kind of new physics present in the neutrino sector. In this
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thesis, we focus on the capabilities of long-baseline experiments to search for new physics

scenarios and its effect on the standard measurements of the oscillation parameters.

In this chapter we first provide a brief history of the neutrino. Then, we describe SM,

the physics of neutrino oscillations, and the mechanism of neutrino mass generation. We

then describe some new physics scenarios in the neutrino sector and finally give a brief

summary of our results.

1.1 History of neutrinos

In 1914, Chadwick demonstrated that the beta (β) spectrum from the decay of radioactive

nuclei was continuous, in contrast to α and γ rays with unique energy spectrum. Later

Meitner showed that the missing energy could not be described by the neutral γ rays

and that led to the idea of the possible explanation of the continuous β- decay spectrum

with a new neutral particle. In order to conserve energy, linear momentum and angular

momentum (spin) in β- decay, W. Pauli [4] proposed a neutral weakly interacting spin-half

fermion. Later, Enrico Fermi named the new particle as the neutrino in 1933 and gave

his famous theory of β- decay in 1934, now known as the Fermi theory [5, 6]. In 1956,

F. Reines and C.L. Cowan [7] were able to detect the (anti) neutrino through inverse beta

decay and confirm its existence.

1.2 Neutrinos in the Standard Model

There are four fundamental forces in nature, namely gravity, strong, electromagnetic and

weak forces. The SM combines the strong, electromagnetic and weak interactions of

the elementary particles in the common framework of quantum field theory. The SM is a

S U(3)C×S U(2)L×U(1)Y local gauge invariant theory where C, L and Y denote color, left-

handed chirality and hyper charge respectively. Strong interactions are mediated by eight
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massless gluons which are the generators of S U(3)C. The weak and the electromagnetic

forces are mediated by massive bosons (W±, Z) and a massless γ respectively. There are

three generations in the SM, and the particles in the generations carry the same quantum

numbers and they differ only in mass. The neutrinos ( or leptons ) do not carry any

color charges. Therefore, here we consider only the electroweak part of the SM. The

S U(2)L × U(1)Y local gauge invariant Lagrangian (considering only the leptonic part of

the SM) is given by

L = i
∑
e,µ,τ

L̄αL /DLαL + i
∑
e,µ,τ

l̄αR /DlαR −
∑

α,β=e,µ,τ

YαβL̄αLΦlβR + h.c. (1.2.1)

where LαL = (ναL lαL)T is the lepton doublet under S U(2)L, lαR is a singlet under S U(2)L,

Φ is the Higgs doublet and Yαβ are Yukawa couplings and

Dµ = ∂µ + ig
∑

a=1,2,3

Aµaτ
a/2 + ig′BµY/2. (1.2.2)

Here Aµa is the vector gauge boson field associated with the three generators τa/2 (a=1,2,3)

of the group S U(2)L and Bµ is the vector boson field associated with the generator Y of the

group U(1)Y . g and g′ are the two independent coupling constants of S U(2)L and U(1)Y

respectively. Expanding the covariant derivatives of Eq 1.2.1, we get the interaction La-

grangian of leptons with the gauge bosons:

LI = −
1
2

L̄αL(g /Aaτa − g′ /B)LαL + g′l̄αR /BlαR

Separating the interaction Lagrangian into charged current (CC) and neutral current (NC)

parts, we get :

LCC
I = −

g
2
{ν̄αL( /A1 − i /A2)lαL + l̄αL( /A1 + i /A2)ναL} (1.2.3)
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and

LNC
I = −

1
2
{ν̄αL(g /A3 − g′ /B)ναL − l̄αL(g /A3 + g′ /B)lαL − 2g′l̄R /BlR} (1.2.4)

Now we define a field (Wµ) (such that it annihilates W+ and creates W− bosons) as:

Wµ ≡
Aµ

1 − iAµ
2

√
2

and we obtain

LCC
I = −

g
2
{ν̄αL /WlαL + l̄αL /W

†ναL}

= −
g

2
√

2
ν̄αγ

µ(1 − γ5)lαWµ + h.c. (1.2.5)

The SM must include the quantum electrodynamics (QED) interaction :

L
(γ)
I = e jµemAµ (1.2.6)

where e is the electric charge of the elementary particle, Aµ is the electromagnetic field,

and

jµem = l̄γµl. (1.2.7)

We can get the QED Lagrangian from the NC Lagrangian by combining Aµ
3 and Bµ ap-

propriately to define Aµ. We define two orthogonal fields (Aµ, Zµ) as

Aµ = sin(θW)Aµ
3 + cos(θW)Bµ

Zµ = cos(θW)Aµ
3 − sin(θW)Bµ. (1.2.8)
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The angle θW is called the weak mixing angle or the Weinberg angle. Inserting the above

two equations into Eq. 1.2.4 and using charge neutrality condition of neutrino, we get

L
(NC)
I,L = −

g
2 cos(θW)

{ν̄αL/ZναL − (1 − 2 sin2 θW)l̄L/ZlL + 2 sin2 θW l̄R/ZlR}

+ g sin(θW) l̄ /Al. (1.2.9)

By defining g sin(θW) = e, we get the QED interaction Lagrangian as in Eq. 1.2.6 and the

weak neutral current is given by

LZ = −
g

2 cos(θW)
jµZZµ, (1.2.10)

where

jµZ = ν̄αLγ
µναL − (1 − 2 sin2 θW)l̄Lγ

µlL + 2 sin2 θW l̄Rγ
µlR. (1.2.11)

Neutrinos are produced through a CC interaction and they can be detected through both

CC and NC interactions. Any presence of new physics beyond the standard model, in

principle can alter the detection and production process and we will discuss those issues

in chapter 2 and chapter 3.

1.3 Neutrino Oscillation

Similar to the K0 � K̄0 oscillation in quark sector, neutrino-antineutrino oscillation [8,9]

was proposed by Bruno Pontecorvo in 1957. In the 1967 paper [10], B.Pontecorvo dis-

cussed the effect of neutrino oscillations on the solar neutrinos. Three years later in 1970,

the solar neutrinos were first measured by R. Davis [11, 12]. The observed neutrino flux

from the sun was about 2-3 times smaller than the predicted neutrino flux by the Stan-

dard solar model [13]. Over a period of time, it was realized that the neutrino oscillation

was the most natural way to explain the solar neutrino anomaly compared to any other

17



astrophysical (or particle physics) explanation [14]. Finally the theory of neutrino oscil-

lations was developed in 1975 − 76 by S. Eliezer and A.R. Swift [15], S.M. Bilenky and

B. Pontecorvo [16].

Neutrinos are produced in flavor states (να) through the CC interaction as in Eq. 1.2.5.

Neutrinos are massless in the SM. But for neutrino oscillation, the neutrino should have

mass, which allows the flavor and the mass basis to mix. We can represent the flavor states

(|να〉) as:

|να〉 =

3∑
i=1

U∗αi|νi〉, (1.3.1)

where U is the unitary lepton mixing matrix (or PMNS mixing matrix) and |νi〉 is the mass

eigenstate of i-th neutrino. The 3 × 3 PMNS mixing matrix is given by,

U =



1 0 0

0 c23 s23

0 −s23 c23





c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13





c12 s12 0

−s12 c12 0

0 0 1


, (1.3.2)

where si j = sin θi j, ci j = cos θi j and δ is the Dirac-type CP phase.

1.3.1 Neutrino Oscillations in Vacuum

In neutrino oscillation experiments, the flavor neutrinos are produced at the source through

pion, kaon, or µ decays or via nuclear reactions. Those neutrinos are observed at the de-

tector through weak processes, either via CC or NC interactions. As mentioned earlier, the

flavor states are superpositions of mass eigenstates. During propagation, different mass

eigenstates pick up different phases, resulting in a non-zero flavor transition probability.

To observe the oscillation pattern, there are two necessary ingredients:
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1) Neutrinos must maintain quantum coherence over the macroscopic distances.

2) At production and detection, there must be sufficient uncertainty in their momenta

so that coherent flavor states are produced.

Consider a left-handed ultra relativistic neutrino with flavor α (α = e, µ, τ) and momentum

p produced at time t = 0,

|να(t = 0)〉 =

3∑
i=1

U∗αi|νi(t = 0)〉. (1.3.3)

After time t, the the flavor state becomes:

|να(t)〉 =

3∑
i=1

U∗αi|νi(t)〉. (1.3.4)

The massive state (|νi〉) is an eigenstate of the vacuum HamiltonianH0:

H0|νi〉 = Ei|νi〉, with Ei =

√
p2 + m2

i . (1.3.5)

For ultrarelativistic neutrinos, we have

Ei ' E +
m2

i

2E
, p ' E. (1.3.6)

Therefore, we can write the flavor states as

|να(t)〉 =

3∑
i=1

U∗αie
−iEit|νi(t = 0)〉

=

3∑
i=1

U∗αie
−i(E+m2

i /2E)t|νi(t = 0)〉

=

3∑
i=1

U∗αie
−i∆m2

i1/2Et|νi(t = 0)〉, (1.3.7)

where ∆m2
i1 = m2

i −m2
1. We have neglected an overall phase factor in the above Eq. 1.3.7.
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Hence, we can write the transition probability in vacuum as:

P(να → νβ) = |〈νβ|να(t)〉|2

= |

3∑
i=1

U∗αie
−i∆m2

i1/2EtUβi|
2. (1.3.8)

Two Flavor Case:

Here for simplicity, we consider two flavor neutrinos to illustrate the neutrino oscillation

in vacuum. For the two flavor case, the lepton mixing matrix (U) can be represented by

only one mixing angle (θ) as:

U =


cos(θ) sin(θ)

− sin(θ) cos(θ).


The appearance probability (να → νβ) in the two flavor case is given by

Pαβ = sin2(2θ) sin2(
∆m2

21L
4E

), α , β, (1.3.9)

and the survival probability (να → να) is

Pαα = 1 − sin2(2θ) sin2(
∆m2

21L
4E

). (1.3.10)

For an ultrarelativistic neutrino, t equals the length (L) in natural units. The oscillation am-

plitude depends on the mixing angle θ and the oscillation phase depends on mass squared

difference (∆m2
21), L and the energy (E) of the neutrino. The total oscillation probability

i.e. Pαβ + Pαα for a given flavor α equals to unity since the time evolution of the neutrino

is unitary.
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1.3.2 Neutrino Oscillation in Matter

The vacuum oscillation probability changes in presence of matter. When a neutrino prop-

agates through matter, it interacts coherently with matter. Only electron type neutrinos

interact with electrons in the medium coherently via CC interactions but all the flavor neu-

trinos interact coherently with up, down type quarks and electrons via NC interactions.

The weak interaction consists of both the vector and the axial vector parts, of which only

the vector parts add up coherently. The contribution in the oscillation Hamiltonian due to

the charged current coherent process is given by

VCC =
√

2GF Ne,

where GF is the Fermi constant and the Ne is the number density of the electron in the

medium. In astrophysical environments with low temperature and density, the medium

is composed of electrons, protons and neutrons, and electrical neutrality implies an equal

number density of electrons and protons. The NC coherent contributions of electrons and

protons cancel each other and only neutrons contribute coherently in the neutral current

potential:

VNC = −
1
2

√
2GF Nn,

where Nn is the number density of the neutrons in the medium. For anti neutrino, both

VCC and VNC change sign. Now in presence of matter, the Schrodinger equation for the

flavor neutrinos becomes

i
dΨ
dx

=
1

2E
(UM2U† + A)Ψ. (1.3.11)
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In the case of three neutrino mixing, we have

Ψ =



νe

νµ

ντ


, M2 =



0 0 0

0 ∆m2
21 0

0 0 ∆m2
31


, A =



ACC + ANC 0 0

0 ANC 0

0 0 ANC


, (1.3.12)

where ACC ≡ 2EVCC and ANC ≡ 2EVNC. The neutral current potential (ANC) will not con-

tribute to the oscillation probability since we can absorb it in a redefinition of the neutrino

field with an overall phase. Therefore, for three neutrino mixing, only the charged current

matter potential term (ACC) will affect neutrino propagation through matter. The matter

effect plays a crucial role in neutrino oscillations. We discuss its effect in the following

section.

The MSW Effect

For simplicity, we consider two neutrino mixing between νe, νµ and ν1, ν2. For two flavor

case, the mixing matrix (U) is given by Eq. 1.3.9 and the time evolution of the flavor

states becomes

i
d
dx


νe

νµ

 =
1

4E


−∆m2 cos(2θ) + ACC ∆m2 sin(2θ)

∆m2 sin(2θ) ∆m2 cos(2θ) − ACC



νe

νµ

 , (1.3.13)

where θ is the mixing angle and ∆m2 = m2
2 − m2

1. The effective Hamiltonian (HF) in

presence of matter is given by

HF =
1

4E


−∆m2 cos(2θ) + ACC ∆m2 sin(2θ)

∆m2 sin(2θ) ∆m2 cos(2θ) − ACC

 . (1.3.14)
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We can diagonalize the above matrix by an orthogonal transformation

UT
MHFUM = HM, (1.3.15)

where

HF =
1

4E
diag(−∆m2

M, ∆m2
M) (1.3.16)

is the effective Hamiltonian in matter in the mass basis and

∆m2
M =

√
(∆m2 cos(2θ) − ACC)2 + (∆m2 sin(2θ))2. (1.3.17)

UM is the effective unitary mixing matrix in matter which can be represented as:

UM =


cos(θM) sin(θM)

− sin(θM) cos(θM)

 , (1.3.18)

where θM is the effective mixing angle in matter and is given by

tan(2θM) =
tan(2θ)

1 − ACC/∆m2 cos(2θ)
. (1.3.19)

Note that there will be a resonance when ACC becomes equal to ∆m2 cos(2θ) and the

number density of electrons at resonance is given by

NR
e =

∆m2 cos(2θ)

2
√

2E GF

. (1.3.20)

The effective mixing angle (θM) becomes equal to
π

4
(i.e. maximal mixing) at resonance.

Therefore, total flavor transition from one flavor to another becomes possible in the two

flavor case if the resonance region is broad enough. This phenomena is called the MSW

effect [17, 18], named after Mikheev, Smirnov, and Wolfenstein.
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Now ACC is positive for neutrino in the normal matter. From Eq. 1.3.19, we can observe

that the resonance exists only if θ < π/4, as for θ > π/4 the value of cos(2θ) < 0. The

situation becomes reversed for the anti neutrino case, since ACC is negative in matter.

If we consider constant matter density, then we can solve the differential Eq. 1.3.13

easily. For an electron type initial flavor, the appearance and disappearance transition

probabilities are given by

Pνe→νµ = sin2(2θM) sin2(
∆m2

ML
4E

), and

Pνµ→νµ = 1 − sin2(2θM) sin2(
∆m2

ML
4E

). (1.3.21)

The structure of the above equations is identical to the two-neutrino oscillation probability

in vacuum.

1.4 Neutrino Mass : type I see-saw mechanism

Neutrinos are massless in the standard model since there are no right handed neutrinos in

the theory. But from neutrino oscillations, we know that neutrinos should have tiny mass

squared differences, cosmology also indicates that neutrinos have very small absolute

masses (< 1 eV) [19]. The most popular way to generate the small neutrino mass is

the see-saw mechanism [20–23], by introducing right handed SM singlet fields into the

theory. We consider Ns right handed sterile neutrino fields νsR, with s = s1, .., sNs . In the

presence of right handed sterile neutrinos, the most general Dirac-Majorana mass term

can be written as

Lmass = LL
mass +LR

mass +LD
mass, (1.4.1)

where Majorana mass terms are,

LL
mass =

1
2

∑
αβ=e,µ,τ

νT
αLC†ML

αβνβL + h.c., (1.4.2)
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LR
mass =

1
2

∑
s,s′=s1,..,sN

νT
sRC†MR

ss′νs′R + h.c. , (1.4.3)

and the Dirac mass term is,

LD
mass =

∑
s=s1,..,sN

∑
α=e,µ,τ

ν̄sRMD
sαναL + h.c. (1.4.4)

The mass matrices ML, MR and MD are complex. The Majorana mass matrices ML and

MR are symmetric. Now, to obtain the neutrino fields with definite masses, we have to

diagonalize Eq. 1.4.1. For convenience, we define a column matrix of N (= 3 + Ns) left

handed fields as

NL ≡


νL

νC
R

 , (1.4.5)

where

νL =



νeL

νµL

ντL


, and νC

R =



νC
s1R

.

.

νC
sNR


(1.4.6)

The general mass term in Eq. 1.4.1 can be written in the compact form as

Lmass =
1
2

NT
L C† M NL + h.c., (1.4.7)
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where M is a N × N symmetric matrix and is given by

M =


ML MDT

MD MR

 . (1.4.8)

We can diagonalize Eq. 1.4.7 by the unitary matrix V . The definite mass eigenstates (nL)

are related to the flavor states (NL) as

NL = V nL, with nL =



ν1L

.

.

νNL


. (1.4.9)

Now,

VT M V = Mdiag, where (Mdiag)k j = mkδk j (k, j = 1, ..,N), (1.4.10)

with real and positive masses mk. In terms of the massive left handed fields the mass term

as in Eq. 1.4.7 becomes

Lmass =
1
2

nT
LC† Mdiag nL + h.c. (1.4.11)

The ML mass term is forbidden by SM gauge symmetry. Hence we will take ML = 0. The

mass term MR is generated by new physics beyond the standard model. Thus we can take

it very large. If all the eigenvalues of MR are much bigger than the all elements of ML,
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then we can diagonalize Eq. 1.4.10 as

VT MV = Mdiag '


(Mlight)3×3 0

0 (Mheavy)Ns×Ns

 , (1.4.12)

with

V '


1 −

1
2

MD†(MRMR†)−1MD [(MR)−1MD]†

−(MR)−1MD 1 −
1
2

(MR)−1MDMD†(MR†)−1

 . (1.4.13)

The light (Mlight) and heavy (Mheavy) mass matrices are given by

Mlight ' −MDT
(MR)−1MD, Mheavy ' MR (1.4.14)

The eigenvalues of MR will give the masses of the heavy neutrinos, whereas the eigen-

values of Mlight will give light neutrino masses. Elements of Mlight are suppressed with

respect to MD elements by the small matrix factor MDT
(MR)−1. However, light neutrino

masses and their relative magnitudes can vary over wide ranges, depending on the values

of the MD and MR matrix elements. The neutrino mass generation above is called Type-I

see-saw mechanism.

There are other see-saw mechanisms like the type II [24–28] and type III [29, 30] see-

saw which produce small neutrino mass naturally by adding a new heavy scalar triplet

(type II see-saw) or a heavy fermionic triplet (type III see-saw) under S U(2)L to the

theory and there exists low scale see-saw i.e. the inverse see-saw mechanism [31, 32]

which can produce small neutrino mass naturally by adding small lepton number violating

terms in the theory. In the literature, there exist other mechanisms for small neutrino

mass production: for e.g., models with specific textures for the mass matrix [33–35],

models with µ − τ symmetries [36–38], radiative models [39], and models with extra
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dimensions [40–43] etc.

1.5 Neutrino oscillation parameters: present status

Standard three neutrino oscillations depend on three mixing angles (θ12, θ13, and θ23), two

mass squared difference (∆m2
21, ∆m2

31) and one CP violating phase (δcp). Although we

have reliable measurements of the solar (∆m2
21 = m2

2 − m2
1) and atmospheric (magnitude

of ∆m2
31 = m2

3 − m2
1) mass squared differences and the mixing angles θ12(∼ 33.8o) and

θ13(∼ 8.6o), we do not know the mass hierarchy ( i.e. ∆m2
31 > 0, normal hierarchy (NH) or

∆m2
31 < 0 , inverted hierarchy (IH) ), octant of θ23 (i.e. θ23 can be either >

π

4
or <

π

4
) and

also do not have very good information about the leptonic CP phase (δcp). The present

status of the neutrino oscillation parameters are shown in table 1.1.

Table 1.1: Current status of oscillation parameters [44].

Oscillation parameter Best fit value 3σ range

θ12/
◦ 33.82+0.78

−0.76 31.61→ 36.27

θ23/
◦ (NH) 49.6+1.0

−1.2 40.3→ 52.4

θ23/
◦ (IH) 49.8+1.0

−1.1 40.6→ 52.5

θ13/
◦ (NH) 8.61+0.13

−0.13 8.22→ 8.99

θ13/
◦ (IH) 8.65+0.13

−0.13 8.27→ 9.03

δcp/
◦ (NH) 215+40

−29 125→ 392

δcp/
◦ (IH) 284+27

−29 196→ 360

∆m2
21/10−5eV2 7.39+0.21

−0.20 6.79→ 8.01

∆m2
31/10−3eV2 (NH) +2.525+0.033

−0.032 +2.427→ +2.625

∆m2
31/10−3eV2 (IH) −2.512+0.034

−0.032 −2.611→ −2.412
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1.6 New Physics in the neutrino sector

Three neutrino oscillations are established on a firm footing due to various experiments

like Super-Kamiokande [45], T2K [46,47], Daya Bay [48] etc. We have now entered into

the precision measurements era in neutrino oscillation. New physics in the neutrino sector

has the potential to alter the measurements of the standard oscillation parameters. In this

section, we will summarize a few relevant new physics scenarios.

A Light Sterile Neutrino

The short baseline experiment LSND [49] had found a significant excess of positron like

signals over the estimated background from their primary anti-muon neutrino (ν̄µ) beam.

The standard neutrino oscillation depends on the phase
∆m2

i jL

4E
. Now the solar (∆m2

21 ∼

10−5 eV2 ) and atmospheric (∆m2
31 ∼ 10−3 eV2) mass squared differences can not produce

enough ν̄µ → ν̄e transition for the LSND baseline (L ∼ 30 m) and energy range (E ∼ 30

MeV). To resolve these anomalies, a sterile neutrino of mass squared difference ∼ 1 eV2

was proposed. The sterile neutrino mass state mixes with the active flavors and is able to

explain the excess positron like signal through the oscillation of ν̄µ to ν̄e. LSND results

were tested in the MiniBooNE [50] experiment which also got an excess of events both

in the neutrino and the anti-neutrino mode though it is not in an exact agreement with

the LSND signal. Apart from these results, there are hints of light sterile neutrino from

different other experiments. The somewhat lower than expected event rate at SAGE and

GALLEX measurements also supports the sterile neutrino oscillation with ∆m2 & 1 eV2

[51, 52] (the Gallium anomaly). Also in reactor anti-neutrino experiments, the observed

events are lower than the predicted values and this is known as the reactor anomaly. The

observed lower number of events can be explained by sterile neutrino oscillations of mass

squared difference & 1.5 eV2 [53]. But the sterile neutrino hypothesis does not fit very

well in the global analysis of sterile neutrino. There exist tensions between the appearance
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and disappearance data [54,55] and also cosmology disfavour pure light sterile hypothesis

[56].

Non Standard Interactions (NSI)

Neutrino mass already guarantees new physics beyond the standard model. Non-Standard

interactions provide a general framework to quantify and the parametrize the effect of

additional new physics in the neutrino sector in terms of an effective potential. Models of

physics that predict NSIs include, for example, R-parity violating supersymmetric models

[57], various see-saw models [58,59], left-right symmetric models, extra dimensions [60]

etc. i.e. basically all modern beyond standard model physics could give rise to NSIs in

the neutrino sector. The details of a particular model may vary, but typically they all have

the following forms for neutral current (NC) and charged current (CC) NSIs,

LNC = −2
√

2GF

∑
f ,P,α,β

ε
f ,P
α,β(ν̄αγµPLνβ)( f̄γµP f ), (1.6.1)

LCC = −2
√

2GF

∑
f ,P,α,β

ε
f ,P
α,β(ν̄αγµPLlβ)( f̄γµP f ′), (1.6.2)

where GF is the Fermi constant and ε matrix quantify the effect of new interactions rel-

ative to the weak scale. f and f ′ (∈ {e, u, d} ) are the matter fermions and P ∈ {PL, PR}

are the chirality projection operators. The production is affected by the CC NSIs and both

the CC and NC NSIs can affect the detection of neutrinos in the detector. On the other

hand, any NC NSIs will affect the neutrino propagation through matter. In general, NSIs

can alter standard measurements like mass hierarchy, CP or octant of long-baseline ex-

periments. Therefore, we need to constrain the NSIs parameters so that we can measure

those parameters accurately. In chapter 5, we consider the effect of different beam tunes

of DUNE to constrain the NSIs parameters.
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Non Unitarity of Leptonic Mixing Matrix

Non unitarity of the leptonic mixing matrix is the another departure from the standard

three neutrino hypothesis. In several extensions of the standard model, neutral heavy

leptons (NHL) could arise naturally. For example, in type I see-saw models [61], we need

heavy right handed neutrinos to produce small active neutrino masses. Due to the mass

mixing between heavy and light flavor states, as in Eq. 1.4.7, we need a bigger matrix (V

as in Eq. 1.4.13) to diagonalize the mass matrix M of Eq. 1.4.8. The full matrix V of

dimension 3 + Ns is unitary but its 3 × 3 sub-block matrix (i.e. 1 −
1
2

MD†(MRMR†)−1MD)

is non unitarity. There are other variants of the see-saw mechanism, like the inverse see-

saw [31, 32], where we introduce small lepton number violating mass terms which help

to produce small neutrino mass naturally without very heavy right handed neutrinos as

opposed to the type I see-saw. The inverse see-saw can produce sizeable non unitarity of

the lepton mixing matrix [62, 63]. More generally, non unitarity of the leptonic mixing

matrix may arise due to the effect of new physics at both high and low energy scales.

In the high energy scenario, the non unitarity is because of the mixing of heavy right-

handed neutrinos which are kinematically forbidden in neutrino oscillation experiments.

On the other hand, if there are light sterile neutrinos of mass squared difference ∼ 1

eV2, then due to mixing the 3 × 3 leptonic mixing matrix becomes non unitarity and

the sterile states are kinematically accessible in neutrino oscillations. In chapter 3, we

will compare non unitarity coming from both heavy and light sterile neutrinos and we

discuss the capabilities of future experiments to constrain the non unitarity parameter

space. In chapter 4, we show how the mass hierarchy measurements will be hampered in

the presence of leptonic non unitarity.

Other new physics like neutrino decay, neutrino decoherence, CPT violation/Lorentz vio-

lation etc. can also affect the neutrino oscillations and can be constrained by present and

future neutrino experiments.
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1.7 An overview of the thesis

Neutrino physics has entered the era of into the precision measurements. Present and fu-

ture long-baseline experiments will able to measure standard neutrino oscillations param-

eters with increased precision and will also be able to point the presence of new physics

in the neutrino sector. This thesis addresses the capabilities of long-baseline experiments

(such as DUNE, T2HK, NOνA and T2K) to constrain new physics scenarios and studies

the effect of new physics in the measurements of standard oscillations parameters.

Chapter 2 discusses what neutral current measurements can reveal. NC events depend on

the total number of active flavors present in the beam. Therefore the presence of one extra

light sterile neutrino will reduce the NC events. This allows us to constrain light sterile

neutrino mixing parameters. We can also distinguish between new physics scenarios that

violate three flavour unitarity and those which do not.

In chapter 3, we discuss the potential of DUNE and T2HK to constrin the non unitarity

of the leptonic mixing matrix using CC and NC measurements. The synergy between CC

and NC will provide better bounds on the non unitarity parameters. We also compare the

non unitarity coming from both heavy and light sterile neutrinos and show that the NC

events for both cases will not remain same in the leading order, unlike CC events.

In chapter 4, we discuss the effect of non unitarity on the mass hierarchy determination

at DUNE, NOνA and T2K. We find that in the presence of non unitarity, the capability of

those experiments to determine the mass hierarchy will be reduced significantly.

In chapter 5, we consider different beam tunes available at DUNE to constrain non-

standard interactions. The combination of low and high energy beams will help to con-

strain some of the non-standard parameters (e.g. εeµ) more effectively.
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Chapter 2

What measurements of neutrino neutral

current events can reveal

The major goals of present-day and near-future neutrino oscillation experiments are: a)

the determination of the neutrino mass hierarchy (MH) and b) the discovery and possi-

ble measurement of the magnitude of CP violation (CPV) in the lepton sector. In ad-

dition, ancillary goals include making increasingly precise determinations of neutrino

mass-squared differences, δm2
i j = m2

i − m2
j (i, j = 1, 2, 3 & i , j) and mixing angles θi j.

Recent status reviews may be found in [64–66].

The capability for increased precision in neutrino experiments has recently led to the

formulation of another important line of inquiry: the search for new physics at neutrino

detectors, and its identification and disentanglement from physics related to the standard

model with three generations of massive neutrinos. It is the purpose of this work to bring

out facets of NC measurements at neutrino detectors that can aid in furthering efforts in

this direction either on their own or when employed in synergy with other measurements.

Most investigations for new physics at long or short baseline neutrino experiments have

focussed on measurements made using the CC channels, with either νµ → νe or νµ → νµ as

the underlying probabilities, and a final state electron or muon respectively. Our purpose
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in this chapter is to study the potential of neutrino NC events at such experiments to

provide a tool to investigate features of new physics scenarios. This category of neutrino

interactions in a typical detector fed by a neutrino beam generated in an accelerator facility

can comprise neutrino-nucleon and neutrino-electron elastic scattering, neutrino deep-

inelastic scattering, neutrino-nucleon resonant scattering with a pion in the final state, and

finally, neutrino coherent pion scattering1. Similar processes exist, of course, for anti-

neutrinos. The relative contributions from these various channels depend on the detector

medium, the cross section and the energy of the beam, among other things.

As we shall show in the remainder of the chapter, the measurement and study of NC

events can in some cases provide a qualitatively different, complementary and statisti-

cally superior handle on neutrino properties in new physics scenarios compared to CC

measurements. Even when making measurements without the presumption of any new

physics, these differences and complementarity can be useful. To see this, we consider

Fig. 2.1, which assumes the 3+0 scenario. This figure shows, in the left panel, the full 3σ

allowed possible band of CC electron events at the DUNE far detector given our present

knowledge of three generation neutrino parameters2. The hierarchy is treated as being

unknown, and the mixing angles and the CP phase are varied in their presently allowed

ranges. Clearly, any measurement by DUNE in this large band is currently acceptable as

being consistent with the standard model with massive neutrinos, given the present three

flavour parameter ranges. The right panel shows the NC events for the same parameter

variations3. Besides the superior statistics, we note the lack of any dependence on the

parameter uncertainties. The reason for this is, of course, the fact that the NC rate is

1NC resonant pion scattering in DUNE can comprise the processes νµp → νµpπ0(nπ+) and νµn →
νµnπ0(pπ−). NC coherent pion scattering from a target nucleus A is the process νµA→ νµAπ0.

2 Throughout this work, we have used the GLoBES software package [67, 68] along with the snu.c
routine [69, 70] to generate probability, events, and to do ∆χ2-level analyses.

3As explained in Sec. 2.2, we use migration matrices provided to us by Michel Sorel to relate recon-
structed visible energy in NC events in DUNE to true energy. We note that in the reconstructed energy
spectrum in Fig. 2.1, and also later in the chapter in the right panel of Fig. 2.7, there is a small but some-
what surprising dip between 200 and 300 MeV. We thank Dr. Sorel for checking that this dip is indeed
produced by the migration matrices. Since these matrices incorporate many physics details, it is difficult to
pin down the origin of the dip more precisely. However, our conclusions are not affected by this dip.
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insensitive to any flavour oscillations given the universality of weak interactions. A sig-

nificant deviation from the rate shown, if detected, would clearly indicate the presence of

certain kinds of new physics (as we discuss later in the chapter), as opposed to the CC rate

which is encumbered by significant uncertainty as well as the possibility of degeneracy

between new and standard physics.

3+0
θ12∈ [31o : 36o]
θ13∈ [8o : 9o]
θ23∈ [38o : 52o]
δ13 ∈ [-π:π] 
hierarchy unknown
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Figure 2.1: The left and right panel correspond to νe CC and NC events respectively. Here, all parameters
are varied in their currently allowed range. Evis

rec represents the reconstructed visible energy of the events in
the detector. In the case of CC events, it closely matches the true energy of the incoming neutrino. For the
NC events, Evis

rec can be very different from the true incoming neutrino energy, as we discuss later.

In subsequent sections, we first emphasise and bring out a general property of CC versus

NC event measurements which can be useful in new physics settings with CP violation

at both long and short baselines. We show, in a general way, that NC and CC measure-

ments complement each other in providing information on CP phases and mixing angles.

Then, using the 3+1 scenario4 at DUNE as an exemplar, we derive an approximate ana-

lytic expression for the probability governing NC event rates in vacuum , and discuss its

features. We find that the effects of matter on NC event rates are small, allowing us to use

the vacuum expression to good effect.

4This is dictated less by a belief in the veracity of 3+1 as nature’s choice of physics beyond the standard
model and more by the fact that it offers a simple template enabling us to bring out features and draw
conclusions which may have applicability to other more complex new physics scenarios. Indeed, recent
constraints restrict the allowed 3+1 parameter space significantly, as we discuss in Sec. 2.2.
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We find that NC measurements can be revealing in several ways; for instance, we show

that some CP-violating phase combinations lead to significant effects on the neutrino and

anti-neutrino NC probabilities, although not to a significant CP-violating difference be-

tween them. Nevertheless, we find that under some circumstances there is good sensi-

tivity to these phases. We provide bi-probability plots of neutrino versus anti-neutrino

NC probabilities for fixed mixing angles to show that the CP phases can have substantial

effects. We discuss how NC events break the degeneracy present in CC events, allow-

ing us to discriminate new physics associated with new sterile states from that associated

with non-standard interactions in neutrino propagation. We identify the general category

of new physics scenarios which lend themselves to such degeneracy breaking via NC

events. Using the 3+1 scenario as an example, we show the efficacy of NC events in

constraining parameters and discuss how they can help improve existing bounds.

Finally, it bears noting that since all three flavours contribute, NC event measurements

are typically statistically rich. For instance, in the Deep Underground Neutrino Exper-

iment (DUNE), a 7-ton fine-grained tracking near detector at ∼ 500 m is planned, and

it is expected to detect in excess of 400000 NC current events in a year [71]. Similar

considerations would hold for the planned Short-Baseline Neutrino (SBN) program at

Fermilab [72, 73]. Even at long baselines, NC events are typically very high in num-

ber compared to νe (ν̄e) measured CC channel, which buttresses the significance of any

conclusions based on their measurement.

2.1 Neutral current events in new physics scenarios with

CP violation: a general property

This section identifies a salient property of the NC probability, PNC, defined as ΣβPνα→νβ ,

α, β = e, µ, τ for a given neutrino source beam of flavour α and an assumed physics

scenario, which will actively contribute to the measured NC rate. In the standard 3 + 0
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scenario, for instance, given a source beam of primarily muon neutrinos and the univer-

sality of weak interactions, PNC = Pµe + Pµτ + Pµµ = 1. For the same source beam, but an

assumed 3+1 scenario, PNC = 1 − Pµs = Pµe + Pµτ + Pµµ , 1, where s denotes the sterile

flavour. This section is focussed on bringing out a feature of NC events that is generic to

new physics scenarios with CP violation, assuming a 3+25 scenario at a short baseline as

an example.

In general, useful conclusions regarding the properties of PNC can be drawn by examin-

ing analytic expressions and comparing them to expressions for their corresponding CC

counterparts, e.g. Pµe. We begin by writing down a general expression for the flavour

oscillation probability in vacuum,

Pνα→νβ = δαβ − 4Re
∑
k> j

(U∗αkUβkUα jU∗β j) sin2 ∆k j

+ 2Im
∑
k> j

(U∗αkUβkUα jU∗β j) sin 2∆k j. (2.1.1)

Here k, j run over the mass eigenstates, wheras α, β denote flavours. Additionally, ∆k j =

1.27 × δm2
k j[eV2] × L[km]/E[GeV] where L is the baseline length and E is the neutrino

energy. Eq. 2.1.1 is valid for any number of flavours (including sterile ones, if present).

Consider an experiment sourced by an accelerator generated νµ beam, and a 3+2 scenario,

with two additional sterile flavour states νs1 and νs2 , and mass eigenstates ν4 and ν5. From

Eq 2.1.1, we see that the CP violating part of Pµs1 resides in

PCP
µs1
∝ Im

∑
k> j

(U∗µkUs1kUµ jU∗s1 j) sin 2∆k j

' Im
[
U∗µ5Us15

(
Uµ4U∗s14 sin 2∆54 + Uµ3U∗s13 sin 2∆53 + Uµ2U∗s12 sin 2∆52 + Uµ1U∗s11 sin 2∆51

)
+ U∗µ4Us14

(
Uµ3U∗s13 sin 2∆43 + Uµ2U∗s12 sin 2∆42 + Uµ1U∗s11 sin 2∆41

)
+ U∗µ3Us13

(
Uµ2U∗s12 sin 2∆32 + Uµ1U∗s11 sin 2∆31

)
+ U∗µ2Us12

(
Uµ1U∗s11 sin 2∆21

)]
(2.1.2)

5Note that 3+2 scenario is highly disfavored from cosmology.
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A similar expression can be written down for PCP
µs2

with s1 replaced by s2 everywhere,

leading to

PNC = 1 − Pµs1 − Pµs2 .

For a short baseline (SBL) experiment, the terms proportional to sin 2∆i j, with i, j = 1, 2, 3

can be dropped in comparison to the others, and Pµs1,2 simplify; for instance,

PCP
µs1
' Im

[
U∗µ5Us15

(
Uµ4U∗s14 sin 2∆54

+ Uµ3U∗s13 sin 2∆53 + Uµ2U∗s12 sin 2∆52 + Uµ1U∗s11 sin 2∆51
)

+ U∗µ4Us14
(
Uµ3U∗s13 sin 2∆43 + Uµ2U∗s12 sin 2∆42 + Uµ1U∗s11 sin 2∆41

)]
.

(2.1.3)

For this scenario, the CP violating part of the CC probability, under the same approxima-

tion as Eq. 2.1.3, is proportional to

PCP
µe ∝ Im

∑
k> j

(U∗µkUekUµ jU∗e j) sin 2∆k j

' Im
[
U∗µ5Ue5

(
Uµ4U∗e4 sin 2∆54 + Uµ3U∗e3 sin 2∆53 + Uµ2U∗e2 sin 2∆52 + Uµ1U∗e1 sin 2∆51

)
+ U∗µ4Ue4

(
Uµ3U∗e3 sin 2∆43 + Uµ2U∗e2 sin 2∆42 + Uµ1U∗e1 sin 2∆41

)]
. (2.1.4)

In a scenario geared towards explaining the short baseline anomalies [49, 53, 74–76], fur-

ther simplifications are possible, e.g. δm2
lm >> δm2

mn, l = 4 or l = 5, m, n = 1, 2, 3 6.

After a little algebra, one then finds that the CP violating difference between NC events

measured using an initially muon-flavoured neutrino beam, and those measured using its

anti-neutrino counterpart, will be proportional to the quantity DNC, given by

DNC ∝ Im
[
U∗µ5Uµ4(Us15U∗s14 + Us25U∗s24)

]
sin∆54 sin∆43 sin∆53. (2.1.5)

6We stress that the general conclusion we draw in this section remains unchanged with or without such
simplifications.
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On the other hand, the analogous difference for CC events from νµ → νe transitions is

proportional to

DCC ∝ Im
[
U∗µ5Uµ4Ue5U∗e4

]
sin∆54 sin∆43 sin∆53. (2.1.6)

Comparing Eq. 2.1.3 with Eq. 2.1.4 and Eq. 2.1.5 with Eq. 2.1.6, we see that in both

cases they tap into different CP phases and sectors of the mixing matrix. Consequently,

the NC measurements will provide a qualitatively and quantitatively different window

into the CP violating and mixing sectors of a new physics scenario compared to the CC

measurements. Should a new physics scenario with CP violation be nature’s choice, then

combining NC measurements with CC measurements would provide a valuable way to

probe it.

2.2 Neutral current and new physics at long baselines

For the remainder of this chapter, we focus largely, but not exclusively, on the 3+1 sce-

nario in order to study the potential of NC events as a probe and diagnostic tool for new

physics.

Additionally, we perform our calculations for the DUNE far detector. DUNE [71] is a

proposed future super-beam experiment with the main aim of establishing or refuting the

existence of CPV in the leptonic sector. In addition to this primary goal, this facility will

also be able to resolve the other important issues like the mass hierarchy and the octant of

θ23. The νµ(ν̄µ) super-beam will originate at the Fermilab. The optimised beam simulation

assumes a 1.07 MW - 80 GeV proton beam which will deliver 1.47 × 1021 protons-on-

target (POT) per year. A 40 kt Liquid Argon (LAr) far-detector will be placed in the

Homestake mine in South Dakota, 1300 km away. The experiment plans to have a total of

7 years of running, divided equally between neutrinos and anti-neutrinos, corresponding

to a total exposure of 4.12 × 1023 kt-POT-yr. The complete experimental description
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of the DUNE experiment such as the CC signal and background definitions as well as

assumptions on the detector efficiencies concerning the CC events are from [77]. The

details regarding the anticipated NC events at DUNE were taken from [78]. The NC event

detection efficiency has been assumed to be 90%. In order to correctly reproduce the NC

events spectra, we have made use of the migration matrices. In a NC event, the outgoing

(anti-)neutrino carries away some fraction of the incoming energy. This energy is missed

and hence, the reconstructed visible energy is less than the total incoming energy. As

such, the events due to energetic (anti-)neutrinos are reconstructed inaccurately at lower

visible energies in a majority of such cases7. Therefore, using a gaussian energy resolution

function in such a situation is not appropriate. We have used the migration matrices

from [79], provided to us by [80]. Note that these migration matrices correspond to a

binning of 50 MeV and therefore, in this work too, we have considered the energy bins

of 50 MeV for NC events8. For the analysis of CC events, we have used energy bins

of 125 MeV as in [77]. The background to NC events consists of CC events that get

mis-identified as NC events. These include electron events (due to CC signal νµ → νe or

intrinsic beam νe → νe), muon events (νµ → νµ), tau events (νµ → ντ) and their respective

CP-reversed channels due to anti-neutrino/neutrino contaminations in the beam. It should

be noted that the backgrounds too, will oscillate into the sterile flavour depending on the

values of Ue4,Uµ4 and Uτ4. In such a scenario, the simplifying assumptions of putting one

or more of these matrix elements to 0, may not give the correct estimate of the NC signal

events. For the NC analysis, the signal and background normalisation errors have been

taken to be 5% and 10% respectively.

Finally, we note that in the 3+1 scenario, flavor oscillations may lead to some depletion of

the active neutrino flux and of its muon neutrino component at the location of the DUNE

near detector (∼ 500 m). This could, in principle, distort the flux measurement made at

this location, which forms the basis of conclusions drawn regarding oscillations measured

7The profile of NC events spectrum, for example, can be seen in the right panel of Fig. 2.1.
8For the sake of clarity, we show NC events in Figs. 2.1 and 2.7 in energy bins of 125 MeV. However,

for binned-∆χ2 calculations, we have considered 50 MeV energy bins.
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at the far detector. We have assumed an overall error of 5% in flux measurements, and

have checked that given the currently allowed parameter ranges for the 3+1 scenario, the

change in flux due to a sterile species is always below this limit. On the other hand, as we

show in this work, depletion in the NC rate significantly above this uncertainty is expected

at the far detector, hence enabling DUNE to detect the possible presence of a sterile state

via neutral current measurements.

2.2.1 An approximate analytical expression for Pµs

As mentioned above, the NC rate in a 3 + 1 scenario will be proportional to 1 − Pµs.

We give below a useful approximate expression, starting from Eq. 2.1.1, since the full

expression which follows from it is extremely long and complicated. In obtaining this

approximate form, we have adopted the following parameterisation for the PMNS matrix:

U3+1
PMNS = O(θ34, δ34)O(θ24, δ24)O(θ14)O(θ23)O(θ13, δ13)O(θ12) (2.2.1)

Here, in general, O(θi j, δi j) is a rotation matrix in the i j sector with associated phase δi j.

For example,

O(θ24, δ24) =



1 0 0 0

0 cos θ24 0 e−iδ24 sin θ24

0 0 1 0

0 −eiδ24 sin θ24 0 cos θ24


; O(θ14) =



cos θ14 0 0 sin θ14

0 1 0 0

0 0 1 0

− sin θ14 0 0 cos θ14


etc.

Measurements from MINOS, MINOS+, Daya Bay and the IceCube experiments pro-

vide significant constraints on the 3+1 paradigm. See, for instance, [81–83]. The Super-
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Kamiokande data, MINOS NC data, NOνA NC data and the IceCube-DeepCore data

provide constraints on the 3-4 mixing [84–87]. Our work in this chapter utilises only

the currently allowed parameter space for this scenario as determined by these refer-

ences9. Since these current constraints restrict θ13, θ14, θ24 ≤ 13◦, we take sin3 θi j = 0,

where θi j is any of these angles. We also set θ23 = 45◦ for simplicity, and assume

sin2 ∆m2
31L

4E
= sin2 ∆m2

32L
4E

, while neglecting the contribution from the solar mass-squared

difference, since ∆m2
21 << ∆m2

31. Additionally, we work under the assumption that the

mass-squared differences δm2
lm, l = 4, m = 1, 2, 3 are all approximately equal, implying

that the fourth mass eigenstate is much heavier than the other three. With these simplifi-

cations, we obtain, for the vacuum transition probability for νµ to νs,

Pvac
µs ' cos4 θ14 cos2 θ34 sin2 2θ24 sin2 ∆m2

41L
4E

+
[

cos4 θ13 cos2 θ24 sin2 θ34 − cos2 θ13 cos2 θ24 cos2 θ34 sin2 θ24

+
1
√

2
sin 2θ13 sin 2θ34 sin θ14 cos3 θ24 cos(δ13 + δ34)

]
sin2 ∆m2

31L
4E

+
1
2

cos2 θ13 cos2 θ24 sin 2θ34 sin θ24 sin(δ34 − δ24) sin
∆m2

31L
2E

. (2.2.2)

Prior to testing the accuracy of this formula and determining its applicability, we note the

following characteristics:

1. The first term is, in its exact form, a rapidly oscillating term due to the large mass-

squared difference. In the plots to follow, for specificity, we assume it to be ' 1

eV2, and adopt the DUNE baseline of 1300 km.

2. Of the three phases, only two linear combinations appear: δ1 = δ13 + δ34 and δ2 =

δ34 − δ24; and only the latter is responsible for CP violation in neutral currents.

9It should be noted that there are global analyses of the existing oscillation data that provide constraints
on the 3+1 paradigm [55, 88, 89]. However, there exist differences in their results corresponding to the
fits in the parameter space ∆m2

41 − sin2 θ34. There is also the difficulty in reconciling the appearance data
with the disappearance data. Keeping these points in mind, we adhere to the constraints on 3+1 from the
disappearance data from the above-mentioned standalone experiments.
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It follows that these simplifications and characteristics percolate into PNC = 1−Pµs, which

we now plot in Fig. 2.2.
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Figure 2.2: Probability plots , comparing PNC = 1 − Pµs using the approximate formula for Pµsgiven in
the text, Eq. 2.2.2 (red dashed curves) with the full GLoBES result in vacuum (green dashed curves) and
matter (black solid curves). The left panel is for neutrinos and the right one for anti-neutrinos. Choices of
phases and mixing angles have been made as shown. The curves correspond to L = 1300 km.

We see that there is good agreement between the exact GLoBES curves (solid black and

dashed green lines) and the ones generated by the analytical approximation (red dashed

line). The curves show no rapid oscillations since the small wavelength oscillation part of

first term in Pµs is averaged out to 0.5.

From Fig. 2.2 we see that the approximate formula, derived for the vacuum case, also

works well for matter, i.e. the overall matter effect in NC event rates is small. Some un-

derstanding of this feature can be gleaned from Fig 2.3, which shows full GLoBES curves

for the various probabilities, and demonstrates how the νµ → νe and νµ → ντ channels

have matter effects that are already small in each of these channels, and that nearly cancel

each other over the DUNE energy range and baseline. While we certainly cannot gen-

eralise this over baselines, energies and new physics scenarios, we note that such a near

cancellation can occur for a range of baselines and energies in the 3+0 scenario10.

10For a fuller discussion of the 3+0 case see [90].
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Figure 2.3: Probability plots , comparing Pµe, Pµτ, Pµµ and PNC = 1 − Pµs, all for the 3+1 model, using
GLoBES. The left panel is for neutrinos and the right one for anti-neutrinos, and solid curves are for matter
while the dashed ones are for vacuum. Choices of phases and mixing angles have been made as shown. The
curves correspond to L = 1300 km.

Finally, we note that the NC probabilities for neutrinos and anti-neutrinos are very similar

with the the approximate formula, as a comparison of the left and right panels in Figs. 2.2

and 2.3 demonstrate.

2.2.2 Effect of the CP violating phases on PNC

This section attempts to understand the dependence of PNC on the three CP violating

phases δ13, δ24 and δ34 in a simple way.

In Fig. 2.4 we have plotted the PNC = 1 − Pµs as a function of the Energy (GeV) in

the presence of matter for L = 1300 km. The plots correspond to normal hierarchy,

θ14 = 8◦, θ24 = 5◦ and θ34 = 20◦. The solid curves show the probability values for

neutrinos while the dashed ones are for anti-neutrinos. In the left panel we show the

dependence of PNC on the δ13 phase. For this panel, we show curves corresponding to

δ13 = −180◦,−90◦, 0 and 90◦. The other two phases δ24 and δ34 have been set to 0. In

the right panel, we show the dependence of PNC on the δ13 and δ34 phases with the δ24

phase kept equal to 0. We show four set of curves for both neutrinos and anti-neutrinos
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Figure 2.4: PNC vs Energy (in GeV) assuming normal hierarchy for L = 1300 km in the presence of
matter. θ14 = 8◦, θ24 = 5◦, θ34 = 20◦ (fixed). The solid (dashed) curves are for neutrino (anti-neutrino). Left
panel: δ13 ∈ {−180◦,−90◦, 0, 90◦}, δ24 = δ34 = 0. Right panel: δ13, δ34 ∈ {±90◦,±90◦} and δ24 = 0 as shown
in the key.

corresponding to δ13, δ34 ∈ {±90◦,±90◦}. From Fig. 2.4, we can draw the following

conclusions:

• PNC has significant dependence on the CP phases δ13 and δ34.

• The left panel shows that the differences between neutrino and anti-neutrino prob-

abilities are small. However, there is appreciable separation between the δ13 =

0,−180◦ and δ13 = −90◦, 90◦curves. This can be understood from Eq. 2.2.2 where

the δ13-dependence is through a cosine term.

• In the right panel, the introduction of the δ34 phase induces larger differences be-

tween the neutrino and anti-neutrino probabilities, specially at higher energies. Re-

ferring to Eq. 2.2.2, we see that as the energy increases, the CP violating term will

tend to undergo less suppression compared to the other terms, hence its effect tends

to become more visible. Thus, the measurement of a large CP-asymmetry in the

NC events at DUNE can point to a CP-violating value of δ34
11.

• In the right panel, for neutrinos, while the peaks for all curves have about the same
11Or, more accurately, a CP-violating value of δ2 = δ34 − δ24, as we emphasise below.
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value of PNC, among the minima, the lowest value of PNC occurs for (δ13, δ34) val-

ues around (−90◦, 90◦) while the highest value occurs for (δ13, δ34) values around

(−90◦,−90◦). For anti-neutrinos, again, examining minima, the lowest value of

PNC occurs for (δ13, δ34) values around (90◦,−90◦) while the highest value occurs

for (δ13, δ34) values around (90◦, 90◦). This again, is easy to understand from Eq.

2.2.2, where the CP dependence is of the form A cos(δ13 +δ34)+B sin δ34 for δ24 = 0.

Note that here we have shown the curves for restrictive values of δ13 and δ34, but

this behaviour is verified again in Fig. 2.6 in a more general way.

• It is also evident from the right panel of Fig. 2.4 that the probability curve for neu-

trino corresponding to (δ13, δ34) of let’s say (x, y) where x, y = ±90◦ is degenerate

with the anti-neutrino curve of (−x,−y), especially at higher and lower energies.

Small differences due to matter effects can be seen near the minima. Neglecting

these small matter effects, we see from the approximate expression for the vac-

uum oscillation probability, Eq. 2.2.2, that the degenerate probability curves should

indeed be identical.
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Figure 2.5: PNC vs Energy (in GeV) assuming normal hierarchy for L = 1300 km in the presence of
matter. θ14 = 8◦, θ24 = 5◦, θ34 = 20◦ (fixed). The left (right) panel corresponds to neutrino (anti-neutrino)
probabilities. Different values of δ13, δ24, δ34 are chosen as shown in the key.

Under the approximations in which Eq. 2.2.2 is valid, it can be seen that there are only two
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effective CP phases that will play a role in PNC at the leading order. These are δ1 = δ13+δ34

and δ2 = δ34 − δ24. Thus, in our chosen parameterisation of the PMNS matrix, there is

a degeneracy between the three CP phases. We show this explicitly in Fig. 2.5. We

have plotted PNC as a function of the energy for neutrinos (anti-neutrinos) in the left

(right) panel. We choose two sets of different (δ13, δ24, δ34) values (as shown in the key

in the figures) which give the same δ1 and δ2 values. The assumed values of the other

oscillation parameters are same as Fig. 2.4. It can be seen that there is almost complete

degeneracy between the curves corresponding to common values of the phases δ1 and δ2.

Note that Eq. 2.2.2 is derived for vacuum, and for the special value θ23 = 45o. However

the degeneracies hold true for matter probabilities at L = 1300 km and for other assumed

values of θ23 within its allowed range.

It is therefore possible to set one of the phases equal to 0, without the loss of generality.

Since, we have considered sin θ24 to be a small quantity as its range of values is the most

restricted, putting δ24 = 0 may be the best choice in order to not have significant differ-

ences between vacuum and matter probabilities. We explore this in Fig. 2.6, generated

using GLoBES. These plots show the values of probabilities in the PNC - P̄NC plane for

different values of the oscillation parameters. In Fig. 2.6, we show results for normal

hierarchy, θ14 = 8◦, θ24 = 5◦ and θ34 = 20◦. The left (right) panel corresponds to neutrino

energy of 3 GeV (5 GeV). The green region shows the space in the PNC − P̄NC plane when

all the three phases are varied in the range [−180◦, 180◦]. The red region corresponds

to the space when δ13 and δ34 are varied in [−180◦, 180◦], holding δ24 equal to 0. The

four black points correspond to δ13, δ34 ∈ {±90◦,±90◦} when δ24 = 0. From Fig. 2.6, we

conclude that

• The fact that the red region is almost the same as the green region suggests that

putting δ24 = 0 does not lead to any loss of obtainable PNC - P̄NC space.

• The four black points - δ13, δ34 ∈ {±90◦,±90◦} indeed quite closely correspond to

the δ13, δ34 values for which the the PNC and P̄NC are minimum or maximum. This

47



is true for both 3 GeV and 5 GeV.

• The dependence on the δ13 and δ34 phases as expressed in Eq. 2.2.2 is reasonably

accurate.
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Figure 2.6: P̄NC vs PNC at E = 3 GeV (left-panel) and at E = 5 GeV (right-panel) for L = 1300 km in the
presence of matter. θ14 = 8◦, θ24 = 5◦, θ34 = 20◦ (fixed). Green region: This region corresponds to all P̄NC

- PNC values that are obtained when all the three CP phases are varied in [−180◦, 180◦]. Red region: This
region corresponds to all P̄NC - PNC values that are obtained when δ13 and δ34 are varied in [−180◦, 180◦]
while δ24 = 0. Black points: δ13, δ34 ∈ {±90◦,±90◦} when δ24 = 0.

Finally, we point out that the situation above serves as another example of the point made

in Section 2. The NC events for the long baseline of DUNE and the chosen 3+1 new

physics scenario provide a window into CP violation via the phase combinations δ1 =

δ13 + δ34 and δ2 = δ34 − δ24 both in vacuum and in matter. On the other hand, as discussed

in [91], the CC probability Pµe in matter for the same scenario is sensitive to all three CP

phases12, which leads to degeneracies. Thus NC measurements, with their high statistics,

are an important complementary tool to probe CP violation and break degeneracies in

new physics scenarios in conjunction with CC measurements.

12In vacuum, as discussed in [91], the CC probability has no sensitivity to δ34.
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2.3 Neutral current measurements as a tool to break BSM

physics degeneracies
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Figure 2.7: CC and NC events as a function of reconstructed neutrino energy in DUNE with 3.5 yrs of
neutrino running. The left panel corresponds to νe CC events for two different new physics scenarios, as
well as for the standard 3+0 paradigm. The green line and the red band in the right panel show NC neutrino
events in the presence of propagation-related NSI, and in the presence of a sterile neutrino, respectively. In
all cases the respective CP phases have been varied over their full range of [−180◦,+180◦]. In the case of
NSIs, A(δeαδeβ + εαβeiφαβ ) (α, β = e, µ, τ) represents the matter term in the effective Hamiltonian in the pres-
ence of NSIs. Here, A is the Wolfenstein matter term and is given by A(eV2) = 0.76× 10−4ρ(g/cc)E(GeV),
ρ being the matter density and E, the neutrino energy. The chosen example values of NSI and sterile
parameters are shown in the key. The remaining NSI parameters are equal to 0.

In this section, we demonstrate the capability of NC events to break degeneracies which

would otherwise arise in CC events, vis a vis new physics scenarios. While we choose

propagation based non-standard interactions (NSI) and a 3+1 sterile scenario to demon-

strate our point, our conclusion will hold for any two new physics settings, one of which

does not break 3+0 unitarity (in this example, the propagation NSI) and another one which

does (3+1 sterile). A similar conclusion would hold, for example, for NSI in propagation

and neutrino decay, or NSI in propagation and NSI in production or detection (which

inherently violate unitarity by adding to or depleting the source neutrino beam).

Both NSI arising during propagation and extra sterile neutrino states affect νe CC events.

From Fig. 2.7 (left panel) we see that there is a wide range of possible spectra that can
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arise either from propagation NSI or an extra sterile neutrino state (3+1 scenario). Shown

also is the standard 3+0 scenario band. NSI affect the individual transition probabilities

but the total oscillation probability of all the active flavours remains unity. On the other

hand, in the presence of extra sterile states, the total oscillation probability of the active

flavours becomes less than unity, leading to a depletion in NC events in the presence of

sterile states compared to propagation NSI (the right panel of Fig. 2.7). Thus, NC events

break the degeneracy seen in the CC event spectrum. We expect around 9345 NC total

signal events in the case of 3+0 (or with propagation NSI present) in DUNE for 3.5 years

of neutrino run. With 3+1 and sterile oscillation parameters corresponding to the right

panel of Fig. 2.7, this number will deplete to ∼ (8306 − 8804) depending on the true

values of the CP violating phases. Thus, a 6% - 11% reduction in the total NC signal

event rate is possible for θ34 ≈ 20◦. We do quantitative analyses in Sec. 2.4, to show

that with a reduction in NC rates of this size, DUNE can distinguish between the 3+0 (or

propagation NSI) and the 3+1 scenarios at a 90% C.L.

We note that as the sterile parameters become small, the 3+1 and 3+0 scenarios merge

and become indistinguishable. In other words, the red band in the right panel of Fig. 2.7

will tend to grow narrower and merge with the green solid line. Thus, the 3+1 parameters

need to be such that a measurable difference in the NC rate can be attained.

2.4 Constraints on the 3+1 paradigm: Sensitivity fore-

casts with DUNE

In this section, we demonstrate the sensitivity of the DUNE experiment to exclude the

3+1 scenario using a combined analysis of NC and CC measurements. We assume a 40

kt Liquid Argon detector and 3.5 years each of neutrino and anti-neutrino running. We

have used the optimised beam profile, as described earlier in Section 2.2. The CC and

NC events due to such a beam have been shown in Figs. 2.1 and 2.7 . We simulate data
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assuming that 3+0 is the true case i.e. we put the mixing parameters ∆m2
41, θ14, θ24, θ34, δ24

and δ34 equal to 0. Note that in such a situation δ13 is δCP. We assume the hierarchy to

be normal, θ12 = 33.48◦, θ13 = 8.5◦ and θ23 = 45◦. The mass-squared differences ∆m2
21

and |∆m2
31| have been taken to be 7.5 × 10−5eV2 and 2.45 × 10−3eV2 [92–94] respectively.

The CP phase δ13 is assumed to be −90◦, based on the recent hints from [95, 96]. We

now fit this simulated data with events generated assuming the 3+1 scenario. We con-

sider θ14 ∈ [0, 12◦]13, θ34 ∈ [0, 50◦]14, θ23 ∈ [40◦, 50◦], δ13 and δ34 ∈ [−180◦,+180◦]

and ∆m2
41 ∈ [0.1, 10] eV2. Previously, we argued that the results with NC data will not

depend significantly on the parameters θ24 and δ24. However, the same is not true of the

CC events i.e. the νµ → νe and νµ → νµ oscillation channels. Hence, in the fit, we vary

θ24 ∈ [0, 4◦]15 and δ24 ∈ [−180◦,+180◦]. We assume the hierarchy to be known and hence

do not consider the inverted hierarchy while fitting. We generate event spectra for various

combinations of these 3+1 test oscillation parameters and then calculate the binned Pois-

sonian ∆χ2 between such test events spectra and the simulated 3+0 true events spectra

(data). We have assumed 5% normalisation error for the signal events and 10% normal-

isation error for the background events. The ∆χ2 are marginalised over these systematic

uncertainties through the method of pulls.

In Fig. 2.8, we show the sensitivity of the DUNE experiment to exclude the 3+1 paradigm

with NC and CC measurements. We consider the test case of ∆m2
41 = 1 eV2. In producing

these plots, we have not considered the variation of the CP violating phases in the fit, so as

to show the effect of the mixing angles only. That is, we show the results corresponding

to test (δ13, δ24, δ34) = (−90◦, 0, 0). We show the 90% C.L. limits (corresponding to ∆χ2 =

4.61 for a two-parameter fit) in the test θ14 - test θ34 plane for different values of test θ24.

The left panel in Fig. 2.8 corresponds to the choice of test θ24 = 0 and the right panel

corresponds to test θ24 = 4◦, as depicted in the figure titles. We show results for NC stand-

13The 90% C.L. allowed range for θ14 has been taken from [82].
14Note that, the allowed range of θ34 from [86] is θ34 ∈ [0, 23◦] at 90% C.L. However, in order to show

the individual contributions from various channels we consider larger values of θ34.
15The results from IceCube [83] dictate the allowed range for θ24 at 90% C.L.
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Figure 2.8: 90% (∆χ2 = 4.61) C.L. contour plots in the test θ14 - test θ34 plane for different choices of
test θ24. Left: test θ24 = 0 and Right: test θ24 = 4◦. The true case has been taken to be 3+0 and the test
case is 3+1. The value of test ∆m2

41 is 1eV2 for both the plots. The results are for the DUNE experiment
with 3.5 years each of neutrino and anti-neutrino running. For these figures, test (δ13, δ24, δ34 = −90◦, 0, 0)
i.e. the ∆χ2 has not been marginalised over the test CP phases. We show results for the NC standalone data,
appearance standalone data, disappearance standalone data, appearance and disappearance data combined
(CC) and finally, the CC and the NC data combined (“ALL").

alone data, appearance stand-alone data, disappearance stand-alone data, appearance and

disappearance combined ( i.e. CC data) and finally all data i.e. CC and NC combined.

This helps to better understand the contribution that each type of data has in excluding

the 3+1 scenario with respect to the given active-sterile mixing angle. The regions that

lie towards the increasing values of test θ14 and test θ34 are the ones for which DUNE

can exclude 3+1 at 90% C.L. An examination of the Fig. 2.8 allows us to draw some

important conclusions:

• The NC data by itself constrains mainly the θ34 angle and this constraint has a

small dependence on the test values of the mixing angles θ14 and θ24. The most

conservative exclusion of the θ34 angle corresponds to θ14 = 0 where θ34 ' 18◦ is

excluded by the data. The strongest bound of θ34 ' 16◦ corresponds to θ14 = 12◦.

• The appearance data are sensitive to all three active-sterile mixing angles. At θ34 =

0, θ14 / 12◦ is allowed for both θ24 = 0 and θ24 = 4◦. However, the constraints

on θ34 are somewhat weak and strongly-correlated with the values of test θ14. The
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weakest constraints are obtained for θ14 = 0, which excludes values corresponding

to θ34 ' 38◦.

• The disappearance data are mainly sensitive to θ24 and θ34. The constraints are

essentially independent of the value of test θ14. The strongest constraint, of θ34 '

36◦ being ruled-out, occurs when test θ24 = 4◦.

• The combined NC+CC data are quite sensitive to θ34. If θ24 = 4◦ and θ14 ∼ 0, then

θ34 ' 16◦ can be ruled out. For θ24 = 4◦ and θ14 ∼ 12◦, DUNE data can rule out

θ34 ' 0.

It is quite evident from the above discussions that the NC data have a marked advantage

over the CC data in excluding the 3+1 paradigm when the mixing angles θ14 and θ24 are

very small. If it so happens that the angles θ14 and θ24 are small but the angle θ34 is large,

then, even though the appearance and the disappearance data would not show any hints of

new physics, there would be a clear evidence of new physics in the NC data.
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Figure 2.9: 90% (∆χ2 = 4.61) C.L. contour plots in the test θ14 - test θ34 plane for different choices of
test θ24. Left: test θ24 = 0 and Right: test θ24 = 4◦. The true case has been taken to be 3+0 and the test case
is 3+1. The value of test ∆m2

41 is 1eV2 for both the plots. The results are for the DUNE experiment with
3.5 years each of neutrino and anti-neutrino running. For these figures, the ∆χ2 has been marginalised over
the test CP phases. We show results for the NC standalone data, appearance standalone data, disappearance
standalone data, appearance and disappearance data combined (CC) and finally, the CC and the NC data
combined (“ALL").
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In obtaining Fig. 2.8, effects of the three CP phases were not taken into account and each

of the three of them were held fixed at their input true values. In Fig. 2.9, we repeat

the same exercise as that in Fig. 2.8, except that, for each test combination of values

of θ14, θ24 and θ34, we marginalise the ∆χ2 over the three CP phases δ13, δ24 and δ34 and

select the smallest ∆χ2. Thus, Fig. 2.9 correctly takes into account the lack of knowledge

regarding the CP violating phases. It can be seen that the results due to CC appearance are

significantly affected because of marginalisation over the CP phases. This physics point

was emphasised in [91,97]. While for the plots in Fig. 2.8, a significant region of the given

θ14 − θ34 parameter space was ruled out by the appearance data; for the plots in Fig. 2.9,

most of such θ14−θ34 region is allowed at 90% C.L. This holds true especially at the larger

values of θ14. Thus, with CC data alone, DUNE cannot be expected to provide significant

constraints on θ34. On the other hand, the effect of marginalisation over CP phases on the

NC data is small. Thus, NC data can decisively constrain the mixing angle θ34 even when

the CP phases are unknown, as can be seen in the plots in Fig. 2.9. Therefore, another

advantage that the NC events have over CC is that they are more immune to the lack of

knowledge regarding the CP phases. Even with CP violating phases present, it would be

easier to rule out a moderately large value of θ34 with the NC data compared to ruling

out moderately large values of θ14 and θ24 with the CC data. Taking into account the

marginalisation over all the relevant mixing angles and the CP phases, the combined NC

and CC data from DUNE can exclude the 3+1 paradigm for θ34 ' 18◦. With reference

to Fig. 2.8 and Fig. 2.9, we note that in Fig. 2.8, the most conservative estimate of θ34

corresponds to θ14 = 0. This is no longer true in Fig. 2.9 where the most conservative

constraints on θ34 occur at larger values of θ14. This difference is stark in the case of CC

data which reinforces the importance of CP phases in the CC channels. For NC too, this

argument holds true although the differences are much smaller in nature.

To show how the exclusion of the 3+1 paradigm depends on the mass-squared difference

∆m2
41, we repeat the exercise done in Fig. 2.8 for test ∆m2

41 values ranging in [0.1, 10] eV2.

We marginalise over the two mixing angles θ14 and θ24, in addition to the CP phases, and
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Figure 2.10: 90% (∆χ2 = 4.61) C.L. contour plots for 3+1 exclusion in the test ∆m2
41 - test θ34 space

(left) and test ∆m2
41 - test θ24 space (right). The results are for the DUNE experiment with 3.5 years each of

neutrino and anti-neutrino running. The true case has been taken to be 3+0 and the test to be 3+1. In the left
panel, we show results with the NC data, and NC and CC data combined (“ALL"). In the right panel, we
show results with the NC data, the disappearance data (“DIS") and the NC and CC data combined (“ALL").

report the minimum ∆χ2 as a function of test ∆m2
41 and test θ34. The results are shown

in the left panel of Fig. 2.10. Note that the other details regarding the simulation and

assumptions on the oscillation parameters remain the same as those in Fig. 2.8. It is easy

to see that the results do not depend much on the mass-squared difference ∆m2
41. At 90%

C.L., θ34 ' 18◦ can be ruled out with the combined CC and NC data. With NC data alone,

θ34 ' 20◦ can be ruled out at 90% C.L. NC data is most effective in constraining θ34. On

combining the NC data with the CC data an improvement of ≈ 2◦ is seen.

We show DUNE’s ability to constrain the ∆m2
41 − θ24 parameter space in the right panel

of Fig. 2.10. We consider test ∆m2
41 values ranging in [0.1, 10] eV2 and test θ24 values in

[0, 40◦]. In the fit, we marginalise over θ14 and θ34 and the three CP violating phases. It can

be seen that most of the sensitivity to the exclusion of θ24 comes from the disappearance

data. With the CC and NC data combined, DUNE can rule out θ24 ' 9◦±1◦ depending on

the test value of ∆m2
41. The current results from IceCube already exclude θ24 ' 4◦ at 90%

C.L. for test ∆m2
41 ≈ 0.5 eV2 However, IceCube’s θ34-constraint is strongly correlated

with the test value of ∆m2
41 and it can be seen in [83] that for test ∆m2

41 ≈ 10 eV2, the

55



constraints from the IceCube data worsen to θ24 ' 45◦ at 90% C.L. DUNE, on the other

hand, can provide a strong constraint on θ24 that is relatively independent of test ∆m2
41.
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Chapter 3

Non Unitarity at DUNE and T2HK with

Charged and Neutral Current

Measurements

Neutrino oscillation remains one of the strongest hints of physics beyond the standard

model. The smallness of neutrino masses is yet to be understood and there are many

different models attempting to explain it. Non-unitarity (NU) of the neutrino mixing

matrix [98–100] is yet another interesting departure from the standard three-neutrino

paradigm. One way it appears in the theory is via the type-I seesaw mechanism [21,23,27]

which gives masses to the neutrinos via the exchange of fermionic messengers. In the

type-I seesaw, due to the presence of a Majorana mass term for heavy right handed neu-

trinos, we need a matrix bigger than the 3 × 3 PMNS mixing matrix for diagonalization

of the mass matrix. This results non-unitarity of the PMNS matrix and it is discussed in

detail in [61] and also in section 1.6. There are other variants of low-scale seesaw mech-

anism such as the inverse and linear seesaw [31, 32, 101, 102] where the masses of the

right handed neutrinos are not so heavy compared the type-I seesaw and it can produce

sizeable non unitarity in the leptonic mixing matrix [62, 63]. Generally, non unitarity of
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the leptonic mixing matrix may arise due to the effect of new physics at both high and low

energy scales. At high energies, the non unitarity of the three flavor mixing matrix, called

the indirect non-unitary effect [103–106], is because of the mixing of heavy right-handed

neutrinos. On the other hand, direct non-unitary effects are manifested at lower energy

scales i.e. an energy which is much below the electroweak breaking scale. The light

SM gauge group singlet (or light sterile neutrinos) mixes with the active neutrino through

mixing and also take part in neutrino oscillations. It was the LSND experiment [49]

which for the first time claimed a signal consistent with oscillations driven by ∆m2
41 ∼ 1

eV2. It found an excess of positrons which could be explained in terms of ν̄µ → ν̄e os-

cillations driven by this mass-squared difference. If nature has such sterile states, it can

also lead to non unitarity of the 3 × 3 leptonic mixing matrix. The non unitarity frame-

work introduces new CP phases, which appear together with the standard CP phase in

oscillation probabilities and hamper measurements at the far detectors of long baseline

experiments [63, 98, 99, 107–112].

Most studies on non unitarity have been focused on CC measurements at the far detector

of long-baseline neutrino experiments which generally measure νµ → νe and νµ → νµ

oscillations, both in neutrino and anti-neutrino modes [63, 107–111]. Recently, NC mea-

surements have been explored at DUNE [71, 113] in the context of one light sterile neu-

trino [114, 115]. Constraints on one light sterile neutrino have already been derived at

DUNE and T2HK [116] and can be found in [117–120]. However, the larger non uni-

tarity framework is more general than the one encompassing just one extra light sterile

neutrino.

Here in this chapter, we have incorporated NC measurements with CC measurements to

derive the constraints on NU parameters. There already exist tight constraints on the NU

parameters [61, 63, 121] that come from weak interaction universality and lepton flavour

violating processes (LFV). There are also model independent direct bounds on NU pa-

rameters coming from zero distance experiment such as NOMAD [122,123] and neutrino
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oscillation experiments [124, 125]. In this chapter, however, we derive complementary

bounds on those parameters in presence of NC measurements at DUNE. We have also

explored the effect of combining NC measurements with the CC measurements at DUNE

to probe the bounds. In addition to that, we quantify the bounds that comes from T2HK

and then combine it with DUNE to explore the enhanced effect.

3.1 The Non Unitarity Framework

In the presence of non unitarity due to heavy sterile neutrino, states in the mass basis

(|νi >) remain orthogonal to each other, while the low energy effective flavor states 1(|να〉),

are not orthogonal, can be represented as

|να〉 = N∗αi|νi〉, (3.1.1)

where N is a 3 × 3 general matrix [63] and can be represented as

N = NNUU =



α11 0 0

α21 α22 0

α31 α32 α33


U.

Here U is the standard unitary PMNS mixing matrix and it depends on three mixing

angles (θ12, θ13, and θ23) and one CP violating phase (δcp). NNU contains the non unitar-

ity part. Under the condition that all the diagonal elements of NNU are unity and all the

off-diagonal elements vanish, then N becomes the standard PMNS mixing matrix. The di-

agonal elements (α11, α22 and α33) of NNU are real and the off-diagonal elements (α21, α31

and α32) are complex in general and can be expressed as αi j = |αi j|eφi j for i , j. There

1For light sterile neutrinos, the flavor basis remains orthogonal ( i.e. 〈να|νβ〉 = δαβ) as all the mass
eigenstates are kinematically accessible.
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are three new CP phases φ21, φ31 and φ32 that arise in the mixing matrix N in presence of

non unitarity. The new phases, especially φ21 can play an important role in long-baseline

experiments such as DUNE and T2HK. This affects the standard CP (δcp) sensitivity of

these experiments significantly [107, 109]. For the later portion of the discussion, we de-

note |αi j| as αi j for notational simplicity and mention the CP phases (φi j) explicitly. In this

section, we analyse the effect of non unitarity on the neutrino oscillation probability.

In the presence of non unitarity, the time evolution of the mass eigenstate in vacuum is

i
d | νi〉

dt
= H | νi〉, (3.1.2)

where H is the free Hamiltonian in the mass basis and can be expressed as

H =



0 0 0

0
∆m2

21

2E
0

0 0
∆m2

31

2E


.

Here E is the energy of the neutrinos and ∆m2
21 and ∆m2

31 are the solar and atmospheric

mass squared differences respectively. After time t(≡L), the flavor state can be written as

|να(t)〉 = N∗αi|νi(t)〉 = N∗αi(e
−iHt)i j|ν j(t = 0)〉. (3.1.3)

Hence the transition probability from one flavor to another in presence of non unitarity

can be written as

P(να → νβ) = |〈νβ|να(t)〉|2 = |

3∑
k, j

N∗αkdiag(e−i∆m2
k1t/2E)k jNβ j|

2. (3.1.4)

In presence of matter the flavor eigenstates interact with matter coherently and the free

Hamiltonian gets modified. In the presence of non unitarity, the interaction Lagrangian
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becomes

Lint = −
g

2
√

2
(Wµ l̄αγµ(1 − γ5)Nαiνi) −

g
2 cos(θW)

(Zµν̄iγ
µ(1 − γ5)(N†N)i jν j) + h.c. (3.1.5)

Therefore in the mass basis, the total Hamiltonian (Hmat) [126] of the propagating neu-

trino is given by

Hmat =



0 0 0

0
∆m2

21

2E
0

0 0
∆m2

31

2E


+ NT



VCC + VNC 0 0

0 VNC 0

0 0 VNC


N∗, (3.1.6)

where VCC =
√

2GFne and VNC = −
1
√

2
GFnn are the charged current and neutral current

matter potential respectively. Here ne and nn are the electron and neutron densities respec-

tively 2. The Hamiltonian Hmat is hermitian and we can diagonalize it by a unitary matrix

(Um) as:

Hmat = Um



a1 0 0

0 a2 0

0 0 a3


U†m, (3.1.7)

where a1, a2 and a3 are the eigenvalues of Hmat. Therefore, the transition probability

(να → νβ) becomes

P(να → νβ) = |〈νβ|να(t)〉|2 = |N∗αi(Umdiag(e−ia1t, e−ia2t, e−ia3t)U†m)i jNβ j|
2. (3.1.8)

We note that most of the upcoming super beam neutrino experiments will measure their

flux through near detector measurements. Therefore, in the presence of non unitarity the
2We assume that the electron (ne) and neutron (nn) densities are same for DUNE and T2HK and for

simplicity also assume constant matter density (ρ = 2.95 gm/cc) for our simulated results.
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expected events at the near detector differ from the actual events by a factor of P(να →

να) = ((NN†)αα)2. For DUNE and T2HK, the beam comprises mainly of muon neutrinos,

and hence the above factor, i.e. the normalization factor, becomes ((NN†)µµ)2 = ((α22)2 +

|α21|
2)2. Depending on the values of α22 and |α21|, we will get different muon events

compared to (simulated) events without NU at the near detector. If α22 ∼ 0.95 and α21 ∼ 0,

then there will be a mismatch of around 20% between the simulated and the actual events.

Thus, the near detector measurements can in principle put a tight constraint on the non

unitarity parameter α22.

Now, the να events (Rα) in a detector which are located at a distance L from the νµ source,

are given by

Rα ∼

∫
dE

dΦsource
µ (E)

dE
Pµα(E, L)

L2 σα(E)η(E), (3.1.9)

where
dΦsource

µ (E)

dE
is the muon neutrino flux at the source, σα(E) is the detection cross

section and η(E) is the detection efficiency. The flux at source is unknown. We can

measure it through near detector measurements or we can rely on Monte Carlo simulation

of the flux. At near detector the muon events (Rµ(E)) from νµ beam can be expressed as:

Rµ(E)near ∼

∫
dE

dΦsource
µ (E)

dE
(
Pµµ(E, L)

L2 )nearσµ(E)η(E).

Hence,

dΦsource
µ (E)

dE
∝ Rµ(E)near/(Pµµ)near.

In the standard case (Pµµ)near ' 1 but for the non unitarity case (Pµµ)near = (NN†µµ)2 =

(α2
22 + α2

21)2 which is different from unity. So, in presence of non unitarity, the mea-

sured flux at near detector will be different from the standard simulated flux by the factor

(Pµµ)near. Using the near detector flux measurements, the events at far detector can be
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expressed as:

Rα(E) f ar ∼

∫
dE

dΦsource
µ (E)

dE
(
Pµα(E, L)

L2 ) f arσα(E)η(E),

∝
Rµ(E)near

(Pµµ)near
(Pµα) f ar. (3.1.10)

Now we can measure the transition probability by the ratio of far and near detector events

as:

Pµα ∼
(Rα) f ar

(Rµ)near
∼

(Pµα) f ar

(Pµµ)near
. (3.1.11)

For the standard case, (Pµµ)near ' 1. Hence the measured oscillation probability (Pµα)

coincides with the actual oscillation probability (Pµα) f ar. But for the non unitarity case,

the measured oscillation probability (Pµα) will be different from (Pµα) f ar due to the factor

(Pµµ)near. Therefore, in presence of non unitarity, the effect of flux measurements at the

near detector can be included in the measured oscillation probability through the normal-

ization factor (Pµµ)near [106] as in Eq. 3.1.11 and that factor plays an important role in

constraining the NU parameters. In the disappearance channel, the NU parameter which

causes the maximum effect in the probability cancels the effect of that NU parameter

when we consider the normalization factor as discussed in [127]. It is also apparent from

the disappearance plot of Fig. 3.1.

Now, if we use the simulated flux at the source, then using Eq. 3.1.9, we can directly

calculate the transition probability. Hence, for the simulated flux, we do not need to con-

sider the normalization factor (NN†)2
µµ (arising from the near detector flux measurements)

to measure the transition probability and the measured oscillation probability (Pµα) will

be same as (Pµα) f ar. In this analysis, we have considered two cases i.e. one with the

simulated flux at source where normalization factor is not required in the probability ex-

pression and the other with near detector measurements i.e. the normalization factor is

present in the probability calculation.
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In the presence of non unitarity, both the charged current and the neutral current events

get modified. The neutral current events for the νµ beam in vacuum are proportional to

NNC
events ∝

3∑
j=1

|

3∑
i=1

A(W → µ+νi)exp(−i∆m2
i1L/2E)A(νiZ → ν j)|2

=

3∑
j=1

|

3∑
i=1

N∗µiexp(−i∆m2
i1L/2E)(N†N) ji|

2. (3.1.12)

In presence of matter the NC events will be proportional to

NNC
events ∝

3∑
k=1

|

3∑
i, j=1

N∗µi(Umdiag(e−ia1t, e−ia2t, e−ia3t)U†m)i j(N†N)k j|
2, (3.1.13)

where Um and ai’s are defined in Eq. 3.1.7.

Light Sterile case:

The 3 × 3 PMNS mixing matrix will also become non unitary in the presence of light

sterile neutrinos. As shown in [106], in this case, the leading charged current transition

probability among the active flavors will remain the same as the non unitary case (due

to the heavy sterile neutrinos) if the effect of the light sterile neutrino is averaged out

in the detector. The active flavor states in the presence of light sterile neutrinos can be

represented as

|να〉 = u∗αl|νl〉 =

3∑
i=1

N∗αi|νi〉 +

n∑
J=4

Θ∗αJ |νJ〉, (3.1.14)

where u is a unitary mixing matrix and its dimension (n) depends on the number of sterile

neutrinos. N represents the 3×3 active-light sub-block of u andΘ represents the 3×n sub-

block of u that mixes active and sterile states. The vacuum transition probability να → νβ
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in presence of light sterile neutrino is given by

P(να → νβ) = |〈νβ|να(t)〉|2 = |u∗αidiag(e−i∆m2
i1t/2E)i juβ j|

2

= |

3∑
i, j=1

N∗αidiag(e−i∆m2
i1t/2E)i jNβ j +

n∑
J,K=4

Θ∗αJdiag(e−i∆m2
J1t/2E)JKΘβK |

2

= |

3∑
i, j=1

N∗αidiag(e−i∆m2
i1t/2E)i jNβ j|

2 + O(Θ4). (3.1.15)

The cross terms will vanish in the limit ∆m2
J1L/2E >> 1 (where L ≡ t) since the finite

energy resolution of the detector will render < sin(∆m2
J1L/2E) >=< cos(∆m2

J1L/2E) >=

0. Therefore, if we neglect the correction corresponding to order (Θ4), then the leading

order transition probability να → νβ, will be same as Eq. 3.1.4.

In the presence of light sterile neutrinos, the neutral current events also change from their

standard value. Only the active flavors participate in the neutral current events, and we

have, for vacuum case and a νµ beam the proportionality to

NNC
events ∝

n∑
j=1

|

n∑
i=1

A(W → µ+νi)exp(−i∆m2
i1L/2E)A(νiZ → ν j)|2

=

n∑
j=1

|

n∑
i=1

u∗µiexp(−i∆m2
i1L/2E)(

∑
ρ=e,µ,τ

u†jρuρi)|2 (3.1.16)

=
∑
ρ=e,µ,τ

P(νµ → νρ). (3.1.17)

Now from Eq. 3.1.16, we can write

NNC
events ∝

n∑
j=1

|

n∑
i=1

u∗µiexp(−i∆m2
i1L/2E)(

∑
ρ=e,µ,τ

u†jρuρi)|2

=

n∑
j=1

|

3∑
i=1

N∗µiexp(−i∆m2
i1L/2E)(

∑
ρ=e,µ,τ

u†jρNρi) +

n∑
I=4

Θ∗µIexp(−i∆m2
I1L/2E)(

∑
ρ=e,µ,τ

u†jρΘρI)|2

65



=

n∑
j=1

|

3∑
i=1

N∗µiexp(−i∆m2
i1L/2E)(

∑
ρ=e,µ,τ

u†jρNρi)|2 + O(Θ4)

'

3∑
j=1

|

3∑
i=1

N∗µiexp(−i∆m2
i1L/2E)(

∑
ρ=e,µ,τ

N†jρNρi)|2 +

n∑
J=4

|

3∑
i=1

N∗µiexp(−i∆m2
i1L/2E)(

∑
ρ=e,µ,τ

Θ†JρNρi)|2

=

3∑
j=1

|

3∑
i=1

N∗µiexp(−i∆m2
i1L/2E)(N†N) ji|

2 +

n∑
J=4

|

3∑
i=1

N∗µiexp(−i∆m2
i1L/2E)(

∑
ρ=e,µ,τ

Θ†JρNρi)|2(3.1.18)

Due to the presence of theΘ2 term in Eq. 3.1.18, the neutral current events will not remain

same as Eq. 3.1.12 in the leading order. Therefore, the NC analysis will be different for

light and heavy sterile case to that order.

The constraints on the NU parameters due to heavy sterile are very tight [61, 109, 121].

The constraints derived by using precision measurements of electroweak processes are not

applicable for light sterile neutrinos. Hence, oscillation experiments provide the best way

to probe the NU in the presence of light sterile neutrinos. In the averaged out regime of

light sterile neutrino corresponding to Eq. 3.1.15, the NU due to a heavy sterile is nearly

same as light sterile neutrino. Therefore, we take the mass of the light sterile neutrino to

be such that it averages out before reaching the near detector. Henceforth, in the rest of

the chapter, we consider non unitarity that comes from light sterile neutrino. Using NC

and CC measurements, we constrain NU parameters that also provide the complementary

bounds of NU parameters due to the heavy sterile neutrino as the oscillation probabilities

nearly same in both cases.

3.2 Experimental and Simulation details

In this work we present results for the DUNE and T2HK experiments. The configura-

tions of DUNE experiment are discussed in the section 2.2. The specifications of T2HK

experiment are as follows:

66



3.2.1 T2HK

Hyper-Kamiokande (HK) [116,128,129] is the upgraded version of the Super-Kamiokande

(SK) [45] program in Japan. In this experiment, the fiducial mass of the SK detector will

be increased by about twenty times. HK will have two 187 kt third generation Water

Cherenkov detector modules which will be placed near the current SK site. The detector

will be placed at a baseline of 295 km from the J-PARC proton accelerator research com-

plex in Tokai, Japan. T2HK has almost similar physics goals as DUNE, such as measuring

the neutrino mass hierarchy, the octant of θ23, and determining the leptonic CP phase.

In our analysis we have considered a beam power of 1.3 MW and the 2.50 off-axis flux

for T2HK. The total fiducial mass considered is 374 kt, corresponding to two tanks each

of 187 kt. We have assumed a total run time of 10 years, of which the neutrino run will

be for 2.5 years while the anti-neutrino run will be for 7.5 years. The assumed energy

resolution is 15%/
√

E. As a check, we have matched the number of events used in this

work with the TABLE III and TABLE IV of ref. [128]. The signal normalization error

in νµ(ν̄µ) disappearance and νe(ν̄e) appearance channel are 3.9% (3.6%) and 3.2% (3.6%)

respectively. The background and energy calibration errors assumed in this work are 10%

and 5%, respectively for all channels.

Throughout the analysis, we have fixed the true values or the best fit values of the neutrino

oscillation parameters as given in [44] unless stated. We fix the true values of the solar

and the reactor mixing angles at θ12 = 33.82◦ and θ13 = 8.61◦ respectively. The assumed

true value of the atmospheric mixing angle is θ23 = 49.7◦. The true value of the leptonic

CP phase is fixed at δcp = 2170. The mass square differences considered in this work are

∆m2
21 = 7.39×10−5 eV2 and ∆m2

31 = 2.525×10−3 eV2 respectively. The 3σ bounds on the

NU parameters are taken from the neutrino experiments only and can be found at [109]3.

We have prepared a non unitarity code for this work which provides results consistent

3Since in the averaged out limit of light sterile neutrino, the NU due to heavy sterile is same as light
sterile neutrino and hence the bounds given in [109] is also applicable to our case.
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with the MonteCUBES [130] non unitarity engine. The results presented in this work are

generated by incorporating our non-unitarity code with GLoBES [67, 68].

3.3 Results

In this section, we present our results for DUNE and T2HK experiments. First, we discuss

the effect of non unitarity on neutrino oscillation at the probability level and then at the χ2

level.

3.3.1 Probability Plots

In Fig. 3.1 and Fig. 3.2, we show the effect of NU parameters on both the appearance and

the disappearance probabilities at DUNE in presence of matter effects. We consider one

NU parameter at a time to disentangle the effect of a particular parameter from the rest

but in the χ2 analysis we consider all the parameters as simultaneously varying. Again, to

incorporate the near detector measurements, we have to consider the normalization factor

((NN†)µµ)2 = (α2
22 + α2

21)2 4, in the transition probability as in Eq.3.1.11. But that is not

the case for the simulated flux. We show the probability plots both with and without the

normalization factor. Wherever we use the normalization factor, we specify it in the plots.

Fig. 3.1 shows the effects of the diagonal NU parameters on appearance and disappear-

ance channels. The red line corresponds to the standard 3ν oscillation probability. The

purple line corresponds to the case with α11 = 0.95. It is seen that α11 has a significant ef-

fect on the appearance channel. The cyan solid (dashed) line shows the effect of α22 with

(without) the normalization factor. In the appearance channel, α22 has a significant effect

irrespective of the normalization factor. On the other-hand, normalization reduces the ef-

4Only α22 and α21 will arise in the normalization factor for the νµ beam. Therefore, we consider the
normalization factor for α22 and α21. We consider only one NU parameter at a time while generating
the probability plots. Hence there is no difference between with and without normalization for other NU
parameters.
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Figure 3.1: Effect of diagonal NU parameters on appearance and disappearance channels
considering one parameter at a time. All the non diagonal parameters are kept at zero.
The plots are shown for α11 = α22 = 0.95 and α33 = 0.9.

fect of α22 on the disappearance channel. But the effect of α22 without the normalization

is significant in the disappearance channel. Therefore, if we consider the simulated flux,

then both the appearance and disappearance channels will get affected by α22. The effect

of α33 is very small on both the appearance and the disappearance channel and hence

constraining it by these channels is not very fruitful.

In Fig. 3.2, we show the effect of non diagonal NU parameters on the oscillation prob-

ability while setting the diagonal parameters to unity. Since there is a phase associated

with each non-diagonal parameter, we show the probability plots for a fixed value of the

phase φi j. The top left panel shows the variation of α21 while the top right panel shows the

variation of α31 and α32. In the lower panel, we have shown the effect of all the three non

diagonal parameters on the disappearance channel. Even a small value of α21 can change

P(νµ → νe) oscillation probability significantly almost for all the values of energy. The

effect of the normalization factor is negligible in this case. If the phase φ21 is allowed to

vary for a given value of α21, the probability deviates from the standard 3ν case specially

around the oscillation maxima. The other two non-diagonal parameters α31 and α32 has

negligible effect on the appearance channel. But for larger values of α31 (say around 0.1),

we can see a significant deviation from the standard case and a large phase dependency.
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Figure 3.2: Effect of non-diagonal NU parameters on the appearance and disappearance
channels.

From the plots in the lower panel, it is observed that the non diagonal parameters do not

affect the measurements of the disappearance channel significantly. From all of these

results, we can draw the following conclusions:

• Effects of α11 on the appearance channels are large compared to the disappearance

channel.

• The effect of normalization is crucial for the α22 parameter. Depending on the

normalization condition both the appearance and disappearance channel will con-

tribute.

• The effect of α33 is very small on both the appearance and disappearance channel.

• Out of the three non diagonal parameters, α21 affects the appearance probability
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Figure 3.3: Effect of NU parameters on the Background neutrino oscillation (νe → νe)
and on the neutral current probability.

significantly. The effect is enhanced in presence of the phase. None of these param-

eters has any noticeable effect on disappearance probability.

In Fig. 3.3, we show the variation of Pee as well as the NC measurements with energy

as a function of NU parameters. The Pee oscillation probability plays an important role

in the background events. With the normalization,5 although the effect of α11 on Pee is

negligible, yet the probability changes drastically for the same value of α11 if the normal-

ization is switched off. The effect of normalization on Pee channel plays an important role

to constrain the α11 parameter as discussed in 3.3.3 and 3.3.4. The effect of α31 is small

compared to α11 but it shows a mild CP dependence. From the right panel of Fig. 3.3,

we observe that in the presence of α22 and α33, the PNC oscillation probability decreases

significantly from unity. But with normalization factor (as α4
22 is in the denominator) the

NC probability becomes greater than unity. Therefore, when we consider both the param-

eters α22 (with norm) and α33 simultaneously there is a cancellation between α22 and α33

as shown by the pink line in the right panel of Fig. 3.3.

5For Pee channel the normalization factor is α4
11.
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Figure 3.4: NC neutrino events in presence of one NU parameter at a time without the
normalization factor.

3.3.2 NC event Plots

In Fig. 3.4, we show the NC events as a function of the visible energy (Evis) in the

detector in presence of NU parameter without the normalization factor. We consider one

NU parameter at a time to show the effect of that particular parameter in the NC events.

The red line corresponds to the expected number of events in the standard scenario. From

the left panel, we observe that in presence of α22, the NC events reduce significantly.

Therefore, NC measurements are useful to constrain the α22 parameter. The effect of α11

is very mild on NC events as shown by the blue line in the left panel. In the right panel,

we have shown the effect of α33, α21 and φ21. In presence of α33, the events get suppressed

compared to standard expected values. Hence, we can put an effective bound on α33 using

NC measurements. The grey band corresponds to the case of varying φ21 in the full range

keeping α21 at 0.1. The band crosses the standard events since we consider only α21 with

φ21 variation keeping other parameters fixed to their standard model values. Now, α21

affects the NC events mildly and there are CP dependency in the events. Therefore, the

NC events help to improve the bound on α21 slightly.

In the next subsection, we present our sensitivity plots to constraint the NU parameters.
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3.3.3 χ2 analysis

To quantify the effect of non unitarity at DUNE and T2HK, we have performed a χ2

analysis. We define the χ2 as:

χ2(ntrue,ntest, f ) = 2
Nreco∑

i

(ntrue
i ln

ntrue
i

nfit
i ( f )

+ nfit
i ( f ) − ntrue

i ) + f 2, (3.3.1)

where n represents event rate vectors in Nreco bins of reconstructed energy and f is the nui-

sance parameter. ntrue
i stands for the true events corresponding to standard three neutrino

oscillation paradigm and nfit
i ( f ) represents the events corresponding to the new physics i.e.

non unitarity. In the fit, we have marginalized over all the standard neutrino oscillation pa-

rameters in their 3σ allowed ranges. The standard CP phase (δcp) is marginalized over the

full range. In addition to that, we have also marginalized over all the NU parameters in the

ranges : α11 ∈ [1, 0.95], α22 ∈ [1, 0.96], α33 ∈ [1, 0.76], α21 ∈ [0, 0.026], α31 ∈ [0, 0.098]

and α32 ∈ [0, 0.017]. The unknown CP phases φi j are marginalized over the full range i.e.

φi j ∈ [0◦, 360◦]. In this way, we choose the minimum ∆χ2 for a selective NU parameter

by marginalizing over all the standard as well as the remaining NU parameters.

In Fig. 3.5, 3.6, and 3.7 we show the capability of DUNE, T2HK and their combination,

to probe the NU parameters. We focus mainly on the diagonal NU parameters α11, α22

and α33, and off-diagonal parameter α21. The bounds on the other two parameters i.e. α31

and α32 are not improved compared to the present bounds and hence those results are not

included in this discussion. The results are shown for two specific cases: with normaliza-

tion factor (w norm) and without normalization factor (w/o norm). The plots captioned

as ‘w norm’ means that the norm factor is used for both background and signal. The term

‘w/o νe BG norm’ stands for the case where the norm factor is not used for the νe (and ν̄e)

background, but used for all other backgrounds. The term ‘w/o norm’ stands for the cases

where norm factor is not used for both background and signal. In the top panel of Fig. 3.5
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we have shown the sensitivity of α11 (upper panel) and α22 (lower panel) both for DUNE

and T2HK. We have presented the results for CC measurements at T2HK and then for the

combination of it with CC and NC measurements at DUNE, named as ‘COMB’. In Fig.

3.6, we show the constraints for α21 and in Fig. 3.7, obtained constraints are shown for

α33 both at DUNE and T2HK. We draw the following conclusions from this analysis:

Figure 3.5: Constraints on α11 and α22 at DUNE and T2HK using CC measurements.
We have also combined CC measurements at T2HK with the CC+NC measurements at
DUNE. We call these combined results as ‘COMB’.

Bound on α11: It is observed from the upper panel of Fig. 3.5 that both DUNE and

T2HK give loose constraints when we use the norm factor in the measurements. But, if
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the norm factor is not used in the νe (and ν̄e) background, then we can see a significant

enhancement in the sensitivity in both DUNE and T2HK. This enhancement is because of

the decrease in νe (and ν̄e) background due to the exclusion of the norm factor. This can

also be confirmed from the probability plots in Fig. 3.3. Since the disappearance channel

νe → νe depends only on α11 significantly hence the effect of marginalization of other

parameters does not affect this channel. This point is also discussed in the subsection

3.3.4. Thus, it is important to point out that the νe (and ν̄e) background is the main

channel constraining the α11 parameter. The NC measurements of DUNE do not improve

the bound on α11 and it is also apparent from the event discussions. From the plots we

observe that DUNE can exclude all values of α11 ≤ 0.94 while T2HK can exclude all

α11 ≤ 0.95 at 3σ CL. Thus, T2HK provides slightly better constraints on α11 compared

to DUNE. Combinations of the two experiments can improve the constraint further and at

3σ CL, it can exclude all α11 ≤ 0.965.

Bound on α22: We observe from the lower panel of Fig. 3.5 that the bound is very

poor with norm for both DUNE and T2HK. Even after combining the two experiments,

the bound on α22 does not improve with the norm factor. But it improves significantly

when we do not include the norm factor. As shown in Fig. 3.4, the NC events at DUNE

get reduced in presence of α22. Therefore, when we add NC measurements with the CC

measurements at DUNE, we observe a significant enhancement on the bound and all α22,

such that α22 ≤ 0.978 can be ruled out at 3σ CL. Finally, when we combine both the

experiments we get better constraints on α22 and at 3σ CL, all α22 ≤ 0.988 can be ruled

out. It is observed from Fig. 3.1 that the disappearance probability for α22 decreases

significantly if the norm factor is not applied. Therefore, the constraint on α22 mainly

comes from the disappearance channels.

Bound on α21: From Fig. 3.6, we observe that the use of normalization factor does

not affect the bounds on α21, unlike α11 and α22. But at DUNE, adding NC with CC
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Figure 3.6: Constraints on α21 at DUNE and T2HK using the CC measurements. Also
shown are the effects of combining CC and NC measurements at DUNE, and finally, the
combination of DUNE (CC+NC) with the CC measurements at T2HK.

improves the constraints further. Combining T2HK with DUNE improves the constraints

significantly from the individual results and at 3σ, the combined experiments can exclude

all α21 ≥ 0.04 6.

Figure 3.7: Constraints on α33 at DUNE and T2HK using CC measurements. We have
also combined CC measurements at T2HK with the CC+NC measurements at DUNE.

Bound on α33: From Fig. 3.7, we note that NC measurements at DUNE can improve

the bounds on α33 compared to CC measurements. In presence of α33, NC events decrease
6On α21, tighter constraints can be achieved in short baseline experiments at Fermilab and related details

can be found in [131].
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significantly compared to the standard expected events as shown in Fig. 3.4. Therefore,

combining CC measurements with NC measurements at DUNE improves the bound on

α33 to a great extent. Without the norm factor, combining NC with CC measurements at

DUNE constrains α33 such that at 3σ CL all values of α33 ≤ 0.92 are excluded. Use of the

norm factor alleviates the sensitivity as the marginalization over α22 cancels the effect of

α33 as shown by the pink line in the right panel of Fig. 3.3. For T2HK, CC measurements

do not improve the bounds on α33. DUNE CC measurements give better bounds on α33

compared to T2HK both with and without the norm factor due to the large matter effect.

Combination of this with CC+NC measurements at DUNE slightly improves the bounds.

The bound on α33 that comes from the combination is α33 ≤ 0.925 at 3σ CL.

The constraint on NU parameters derived in [109] rules out all α11 < 0.95, α22 < 0.96,

α33 < 0.76, and α21 > 0.026 at 3σ CL. However, the combination of DUNE and T2HK

can improve the bounds of diagonal NU parameters further. The combination of DUNE

and T2HK without the norm factor can rule out all α11 < 0.965, α22 < 0.988, and α33 <

0.925 at 3σ CL. But with the norm factor, the ability of DUNE and T2HK to constrain

α11 and α22 is reduced significantly and we are not able to improve the constraints on

these parameters. But with the norm factor, we can still improve the constraints on α33

significantly. The combination of DUNE and T2HK can rule out all α33 < 0.86 at 3σ CL.

3.3.4 Effect of Marginalization and Normalization Factor

In Fig. 3.8, we have shown the ability of the appearance channels to constrain α11 param-

eter and also discuss the effect of marginalization of α21 parameter. In the left panel, we

consider the appearance channels without any νe (ν̄e) background but in the right panel,

we show the effect of νe (ν̄e) background in the χ2 analysis. The solid line corresponds to

the case where there is no normalization factor but the dotted line corresponds to the case

with the normalization factor.
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Figure 3.8: Constraint on α11 using the appearance channel. The solid line corresponds
to the case without normalization factor and the doted line corresponds to the case with
normalization factor.

We observe from the left panel that when we do not consider any marginalization then the

appearance channels put tight constraint on α11. But if we consider the marginalization

over both α21 and φ21, then the ability of the appearance channels to constrain α11 reduces

drastically. In this case, the effect of normalization factor is not significant as shown

by the green solid line and yellow dotted line. In the right panel, we have considered

the νe (ν̄e) background. Now, the disappearance channels (νe → νe or ν̄e → ν̄e) do not

depend on other parameters significantly except α11. Therefore, when we perform the

marginalization over α21 and φ21, the contribution that comes from νe or ν̄e background

is still significant as shown by the green solid line. But the use of the normalization

factor cancels the effect of α11 on νe → νe (and ν̄e → ν̄e) oscillation probability. Hence,

with normalization it is not possible to put tight bounds on α11 as shown by the yellow

doted line. The same argument holds for α22 where the main contribution comes from the

disappearance channels νµ → νµ and ν̄µ → ν̄µ respectively.
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Chapter 4

Effect of Non Unitarity on Neutrino

Mass Hierarchy determination at

DUNE, NOνA and T2K

The ordering of the neutrino masses is another critical unknown in the neutrino sector.

In long baseline neutrino experiments, the earth matter effect plays an important role.

The matter effect has opposite signs for the two hierarchies in the probability expression.

So experiments like DUNE [78], NOνA [132], T2K [46, 47] etc. have the potential of

distinguishing between the normal (NH, m2
3 − m2

1 > 0) and inverted (IH, m2
3 − m2

1 < 0)

mass hierarchies.

There is an additional complication which may hamper the determination of the neutrino

mass ordering - the possible presence of new physics like non unitarity which can give

rise to additional CP phases. The new phases may mimic the leptonic CP phase and lead

to further degeneracies. In this chapter, we explore the effect of non-unitarity on mea-

surements of the neutrino mass ordering. This study has been performed in the context of

the three long baseline (LBL) neutrino experiments T2K, NOνA and DUNE. We analyse

the effect of non-unitary mixing on the oscillation probabilities for the given experiment
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baseline, and describe the mass hierarchy sensitivity for the individual experiments. We

show that the hierarchy sensitivity decreases in the presence of non unitarity. The exper-

iments are simulated using the standard long baseline package GLoBES [67, 68], which

includes earth matter effects and relevant systematics for each experiment. We have used

MonteCUBES [130] Non Unitarity Engine (NUE) with GLoBES while performing this

analysis.

In the presence of non unitarity matrix, the electron neutrino appearance probability

changes in vacuum, as explained in [63, 133]. The expression for Pµe with NU can be

written as

Pµe = (α11α22)2P3×3
µe + α2

11α22|α21|PI
µe + α2

11|α21|
2 (4.0.1)

, where P3×3
µe is the standard three flavor neutrino oscillation probability and PI

µe is the

oscillation probability containing the extra phase due to non unitarity in the mixing matrix.

P3×3
µe above can be written as :

P3×3
µe = 4[cos2 θ12 cos2 θ23 sin2 θ12 sin2(

4m2
21L

4Eν

) + cos2 θ13 sin2 θ13 sin2 θ23 sin2(
4m2

31L
4Eν

)]

+ sin(2θ12) sin θ13 sin(2θ23) sin(
4m2

21L
2Eν

) sin(
4m2

31L
4Eν

) cos(
4m2

31L
4Eν

− I123)

(4.0.2)

And

PI
µe = −2[sin(2θ13) sin θ23 sin(

4m2
31L

4Eν

) sin(
4m2

31L
4Eν

+ φ21 − I123)]

− cos θ13 cos θ23 sin(2θ12) sin(
4m2

21L
2Eν

) sin(φ21)
(4.0.3)

where I123 = −δcp and α21 = |α21| exp(φ21). Here we have observed that only four extra

parameters from NNP enter the vacuum probability expression for Pµe- the real parameters

α11 and α22, one complex parameter |α21| and the phase associated with |α21|. In our

analysis, we have not considered the effect of the third row elements of NNP matrix (i.e.

80



α31, α32 and α33) as their contributions are negligible even in the presence of matter effect.

4.1 Simulation Parameters and Experiment details

In this chapter, we have studied the neutrino mass hierarchy sensitivity of three long base-

line experiments- T2K (Tokai to Kamioka), NOνA (The NuMI1 Off-axis νe Appearance

experiment) and DUNE. The main goal of T2K is to observe νµ → νe oscillations and

to measure θ13 as well as leptonic CP violation while NOνA can measure the octant of

θ23, the neutrino mass hierarchy, θ13 and leptonic CP violation. DUNE, with its 1300 km

baseline, can address all these issues with a higher degree of precision. Here, we fix the

three-flavor neutrino oscillation parameters to their best fit values taken from [93]. Since

the solar and reactor mixing angles are the most precisely measured, we take θ12 = 33.480

and θ13 = 8.50 respectively. For true NH (IH), the value of the two mass square differences

are ∆m2
21 = 7.5×10−5 eV2 and ∆m2

31 = 2.457×10−3 eV2 (−2.449×10−3 eV2) respectively.

We consider the maximal value of θ23 as the true value i.e. θ23 = 45o. However, the

physics conclusions drawn in this work are not going to change significantly even if we

consider non maximal θ23 in ‘data’ and then marginalize it in ‘fit’ in the allowed 3σ range.

The effect seen in the probability level at DUNE [See subsection 4.4.1] can be realized at

more than 5σ CL only. This point is discussed in the text. The bounds on non unitarity

parameters that we use in this work are: α2
11 ≥ 0.989, α2

22 ≥ 0.999 and |α21|
2 ≤ 0.0007

at 90% C.L. [63]. The allowed range of φ21 is [−π, π]. We assume the limiting values

of these NU parameters while generating the bi-probability and bi-event plots. In our

χ2 analysis, the central values of the allowed ranges are taken as the true values (unless

stated).

1Neutrinos at the Main Injector

81



4.2 Bi-probability and Bi-event plots

In this section, we study the effect of non-unitarity at the probability level and explain

the mass hierarchy degeneracy on the basis of bi-probability and bi-event plots. The bi-

probability plots are shown in the P(νµ → νe) - P(ν̄µ → ν̄e) plane. In figure 4.1, the blue

solid ellipse corresponds to the standard case with δcp varying from −π to π. The gray and

the cyan shaded regions (for Normal and Inverted Hierarchy respectively) correspond to

the non-unitary case where the NU phase φ21 is also varied with δcp from −π to π. The

true values of the NU parameters (except φ21) are fixed at their upper and lower bounds.

For each δcp, due to the variation of φ21 in [−π, π], we get a continuous band of ellipses.

From figure 4.1, we draw the following conclusions:

• For DUNE at its peak energy i.e. E = 2.5GeV , it is observed that in the 3ν frame-

work, ellipses corresponding to NH and IH are well separated. Even in the presence

of NU there is no overlap between the ellipses that correspond to NH and IH. In the

case of NOνA, there is some overlap between the blue ellipses corresponding to

NH and IH and the overlap is more prominent in the presence of NU. In T2K, there

is more overlap even for the 3ν case and with NU, the scenario worsens drastically.

From this observation, we can conclude that only DUNE can discriminate between

the two hierarchies at its peak energy even in the presence of NU.

The effect seen in figure 4.1 can also be verified from figure 4.2. These bi-event plots

are generated assuming the peak energy of the three experiments i.e. for DUNE, E =

2.5 GeV, for NOνA, E = 1.6 GeV and for T2K, E = 0.6 GeV. But to draw some realistic

conclusions, we consider the bi-event plots between the energy integrated total number of

neutrino and anti-neutrino events (figure 4.3) for the three experiments. Here also, we fix

the NU parameters to the boundary values and vary δCP and φ21 from −π to π.

• In DUNE, as in the bi-probability plots, the standard ellipses are well separated
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Figure 4.1: Bi-probability plots (P̄ versus P): For DUNE, NOνA and T2k at their peak energy. The blue
ellipse corresponds to the standard 3ν case and is obtained by varying δCP ∈ [−π, π]. The cyan and the gray
bands show the effect of non unitarity for NH and IH when both the phase δCP and φ21 is varied from −π
to π and all other NU parameters are fixed at their limiting values i.e. α11 = 0.9945, α22 = 0.9995 and
|α21| = 0.0257.
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for NH and IH, indicating the ability of DUNE to resolve hierarchy degeneracy in

the 3ν framework. But non unitarity induces a small degeneracy between the two

hierarchies as there is a small overlapping region between the gray and the cyan

bands. If we consider the co-ordinate (1000, 340) in the total events plot for DUNE,

it lies in the overlapping region between the gray (IH) and the cyan (NH) band, and

hence it is not possible to pinpoint the hierarchy near this co-ordinate. But due to the

available spectral information as well as the high capability of the DUNE detector,

DUNE may resolve the degeneracy seen in fig 4.3. On the other hand, a co-ordinate

say (2000, 300) in the cyan band is far removed from the standard blue ellipse as

well as the overlapping region, and hence any event corresponding to this point can

be a hint of NU with NH. The situation gets worse in the case of NOνA and T2K.

The standard 3ν ellipses that correspond to NH and IH show a similar behavior as

the corresponding bi-probability plots. The overlapping is more prominent in the

presence of NU. If the leptonic mixing matrix is non unitary, then these experiments

are unable to discriminate between the two hierarchies. From this point of view, non

unitarity of the leptonic mixing matrix has to be taken seriously.

• NOνA and T2K show another interesting feature. In NOνA, almost 50% of the

standard ellipse in a particular hierarchy is a part of the NU induced band of ellipses

in the opposite hierarchy. So in that region, any co-ordinate in the standard blue

ellipse is not only a part of the standard NH ellipse, but also a part of both the gray

and cyan bands. In T2K, similar behavior can be seen for a larger region of the

parameter space.

From the above analysis, it is clear that in presence of NU, all the three experiments are

incapable of discriminating between the two mass hierarchies. DUNE can tell us about

the mass hierarchy when operating at its peak energy as seen from figure 4.1 and 4.2. Still

there is tension between the two hierarchies in the presence of NU. In the next section,

we discuss these issues in terms of sensitivity plots.
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Figure 4.2: Bi-event plots For DUNE, NOνA and T2k at their peak energy. The blue ellipse corresponds
to the standard 3ν case and is obtained by varying δCP ∈ [−π, π]. The gray and the cyan band show the
effect of non unitarity when both the phase δCP and φ21 is varied from −π to π and all other NU parameters
are fixed to their limiting values.
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Figure 4.3: Energy dependent bi-event plots For DUNE, NOνA and T2k for their whole energy ranges
i.e from 0.5 to 10 GeV, 0.4 to 4 GeV and 0.4 to 1.2 GeV respectively. All other variations are same as the
previous plot ( figure 4.2).

4.3 Sensitivity Studies

4.3.1 Statistical Details and χ2 Analysis

The results presented in this section are based on χ2 analysis where we have calculated

∆χ2 by comparing the predicted spectra for the alternate hypothesis. For an assumed

normal hierarchy as the true hierarchy, ∆χ2
MH is defined as χ2

NH − χ
2
IH. Similarly for an

assumed true inverted hierarchy, ∆χ2
MH = χ2

IH − χ
2
NH. Now, in terms of event rates, we can
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define it as:

χ2(ntrue,ntest, f ) = 2
Nreco∑

i

2∑
j=1

(ntrue
i, j ln

ntrue
i, j

ntest
i, j ( f )

+ ntest
i, j ( f ) − ntrue

i, j ) + f 2, (4.3.1)

where n represents event rate vectors in Nreco bins of reconstructed energy and f is the

nuisance parameter. Here ntrue
i, j and ntest

i, j ( f ) are the event rates that correspond to data and

fit in the ith bin. j = 1 is for neutrinos and j = 2 for anti-neutrinos. The number of bins

are different for each experiment i.e. for DUNE there are 39 bins each of width 250 MeV

in the energy range 0.5 to 10 GeV, for NOνA there are 28 bins of width 125 MeV in the

energy range 0.5 to 4 GeV and for T2K, we have 20 bins of width 40 MeV in the range

0.4 to 1.2 GeV.

In the χ2 calculation for the standard 3ν case, we have marginalised over the whole range

of δcp from −π to π in the ‘fit’. To measure the hierarchy sensitivity, we fix our ‘data’ in a

particular hierarchy and test the opposite hierarchy in the ‘fit’. We have also marginalised

over ∆m2
31 in the ‘fit’ in its allowed 3σ ranges i.e. for an assumed NH as the true hierarchy,

we vary ∆m2
31 in the ‘fit’ assuming IH. Then we calculate the minimized χ2 (i.e. χ2

min) for

each true δcp assuming the best fit values of the oscillation parameters as the true values.

In the presence of NU, in addition to δCP and ∆m2
31, we have marginalised over all the non

unitarity parameters in the ‘fit’ in their allowed ranges assuming the central values as the

true values. For a particular true value of δcp we show the maximum and the minimum

of χ2
min which is obtained corresponding to a variation of the new phase φ21 in the ‘data’

from −π to π.

4.3.2 Mass Hierarchy Sensitivity

Here we present our results for the mass hierarchy sensitivity of the three experiments in

the presence of NU. We compare our results with the standard three flavor case. We also

show the combined hierarchy sensitivity of the T2K and NOνA experiments in the pres-
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ence of NU. In the plots, the blue line corresponds to the standard hierarchy sensitivity of

these experiments while the gray band shows the effect of NU. The green line corresponds

to the special case where φ21 is zero in both ‘data’ and ‘fit’ i.e. it shows the effect of the

three absolute NU parameters α11, α22 and |α21|. We have shown the sensitivity plots for

both the hierarchies. We have combined both νe appearance and νµ disappearance chan-

nels in both the ν and ν̄ modes to utilize the full potential of each experiment towards

mass hierarchy measurements. We can make the following observations from these plots:

• It is seen in the bi-probability and bi-event plots for DUNE that the ellipses corre-

sponding to both the hierarchies are well separated in the standard three flavor case.

figure 4.4 shows that for an assumed NH as the true hierarchy, DUNE can exclude

the wrong hierarchy (i.e. IH in this case) at more than 5σ C.L. for all the true val-

ues of δcp. But in the presence of NU, for the true NH case, the mass hierarchy

sensitivity decreases in the lower half plane (LHP, from −π to 0) compared to the

standard scenario. In the upper half plane (UHP, from 0 to π), the sensitivity with

NU increases compared to the standard case for some fraction of true δcp, especially

near δcp = π.

The effect of marginalizing over a large parameter space brings the χ2 down and

hence in the presence of NU, the mass hierarchy sensitivity decreases. In the case

of NOνA, the hierarchy sensitivity in the standard scenario is already less than 3σ

except near δCP = −π/2, while that of T2K is less than 2σ. In the presence of NU,

this sensitivity further decreases especially in the LHP for an assumed true NH. IN

the UHP, the hierarchy sensitivity in the presence of NU increases for some true

combinations of δCP and φ21, but the increase is not so significant.

• The dark red line of figure 4.4 and 4.5, representing the special case of true φ21 = 0,

lies within the gray band for all the three experiments as expected. In DUNE, the

green plot, showing the sensitivity when both true and test φ21 = 0 (if there is no
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Figure 4.4: Mass hierarchy sensitivity plots for DUNE (5+5), NoνA (3+3) and T2K (3+3) for both the
hierarchies. The blue line represents the standard mass hierarchy sensitivity. The gray band corresponds to
the variation of true δCP and φ21 (both φtr

21 (true) and φts
21 (test)) from [−π, π] . The dark red line represents

the case when φtr
21 = 0 but φts

21 is varied from [−π, π]. The green line shows the effect of the non zero
absolute parameters for φtr

21 = φts
21 = 0. For all the cases with NU, we assume the central values of the NU

parameters as the true values.
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Figure 4.5: Mass hierarchy sensitivity plots for the combination of NOνA (3+3) and T2K (3+3) in both
the hierarchies. The blue line represents the standard mass hierarchy sensitivity. The gray band corresponds
to the true variation of δCP and φ21 from [−π, π].

new physics phase), shows higher sensitivity for δCP ∈ [−π,−π/6] and δCP > 1.45π

than the standard case for an assumed true NH. But in between δCP ∈ [−π/6, 1.45π]

the green plot dips below the standard 3ν scenario. In the case of NOνA, the green

plot drops compared to the standard 3ν sensitivity only for a small fraction of δCP

around 0 and 1.5π for an assumed true NH. The sensitivity shoots up to 3σ for more

than 70% of true δCP in the LHP. In the case of T2K, the green line is always higher

than the standard sensitivity for assumed true NH. For more than 70% of true δCP

in the LHP, sensitivity is higher than 1σ.

• For an assumed true IH, DUNE can exclude NH for all values of true δcp at more

than 5σ C.L.. Even in the presence of NU, DUNE can resolve the neutrino mass

hierarchy at more than 5σ C.L. irrespective of the true hierarchy. But in the case of

NOνA and T2K, the sensitivity decreases with NU and T2K is the most affected.

• Figure 4.5 shows the combined hierarchy sensitivity of T2K and NOνA. The sen-

sitivity increases slightly compared to their individual sensitivities. In the presence

of NU, some fraction of δCP around −π (π) has a sensitivity more than 3σ in the NH

(IH) case. We have not combined DUNE data with T2K and NOνA as its individual

sensitivity is more than 5σ.
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4.3.3 Mass Hierarchy Discovery Reach

In this section, we show the mass hierarchy discovery reach of these experiments in the

presence of NU. As the DUNE experiments can rule out the wrong hierarchy with more

than 5σ C.L. even in the presence of NU, here we present the discovery potential of T2K

and NOνA and their combinations only. We have generated these results assuming the

maximum deviation from unitarity, i.e. the true values of the NU parameters are fixed at

their boundary values. The contours are shown in δCP − φ21 (true) parameter space and

are drawn at 1 d.o.f.. The regions bounded by the contours are the allowed regions in this

parameter space.

In figure 4.6, we show the MH discovery reach of NOνA and T2K for both NH and IH.

For each true ∆m2
31 in NH (IH), we vary test ∆m2

31 in IH (NH). We observe that NOνA

can probe NH at 3σ C.L. for some true combinations of δCP and φ21. The region outside

the blue contours is the excluded region where 3σ discovery of MH is not possible. The

3σ allowed region shrinks for the case where assumed true hierarchy is inverted. In the

case of T2K, only a 1σ discovery is possible with NU for both the hierarchies. In figure

4.7, we have presented our results for the combined case. Here we observe that adding

T2K data with NOνA can slightly improve the discovery potential of NOνA. The size of

the blue contours increases slightly for both the hierarchies compared to NOνA, which in

turn means that for more true values of δCP and φ21, the combined setup can discover MH

at 3σ C.L..

In fig.4.8, we have shown the effect of marginalisation on θ23 for maximal and non max-

imal true θ23 and have observed that the physics conclusions drawn in this work are not

going to change with non maximal true θ23. Also from the contour plots in the lower

panel, it is confirmed that the NU effect seen in probability level at DUNE (subsection

4.4.1) can be lifted by combining appearance and disappearance channels both in neu-

trino and anti-neutrino mode.
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Figure 4.6: Mass hierarchy discovery potential of NOνA (3+3) and T2K (3+3) for both the hierarchies.
Here we assume the boundary values of the NU parameters as the true values i.e.α11 = 0.9945, α22 = 0.9995
and |α21| = 0.0257.

Figure 4.7: Mass hierarchy discovery potential of the combined experiments : We combine NoνA (3+3)
and T2K (3+3) data in both the hierarchies. Here also, we assume the boundary values of the NU parameters
as the true values i.e.α11 = 0.9945, α22 = 0.9995 and |α21| = 0.0257.
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Figure 4.8: Here, the upper panel shows the mass hierarchy sensitivity of DUNE for true θ23 = 450 and
θ23 = 42.30 marginalising θ23 in the allowed 3σ range in fit. The lower panel shows the contour plots for
θ23 = 38.30 (left) and θ23 = 42.30 (right) in the true δCP − φ21 parameter space.
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4.4 Results

In this chapter, we have attempted to analyse the mass hierarchy sensitivity of the long-

baseline experiments T2K, NOνA and DUNE in the presence of non-unitarity. Below we

summarize the salient results of this work:

• The presence of non-unitarity leads to a strong degeneracy between the standard

3ν case and the NU induced case in estimating the neutrino mass hierarchy for all

three superbeam experiments at the level of oscillation probabilities. An analysis

of the bi-probability plots of the three experiments shows that only DUNE can

discriminate between the two hierarchies at its peak energy even in the presence

of NU, while T2K and NOνA show significant overlaps between the NH and IH

ellipses. Also, for certain values of δcp and the NU phase in all three experiments,

it is not possible to specify whether the value arises from the standard case or the

NU induced case.

• From the bi-event plots for the three experiments, we observe that if analyzed at

the peak energies of the respective experiments, DUNE can distinguish between

the hierarchies even in the presence of NU, while NOνA and T2K are unable to do

so because of their shorter baselines and less matter effects. If an integration over

the energy ranges of the experiments is taken into account, then DUNE also suffers

from a small overlap between the hierarchies with NU. Further, for NOνA and T2K

in the presence of NU, there is a degeneracy in the same hierarchies between the

standard and the NU induced hierarchy measurements, as well as a degeneracy

between NH (IH) in the 3ν scenario and IH (NH) in the NU induced scenario.

Also, with NU any of these experiments may misinterpret a non unitary event as a

standard 3ν event. Thus at the event level, all the three experiments are incapable of

discriminating between the mass hierarchies with NU, except for DUNE at its peak

energy.
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• The results for the sensitivity to the mass hierarchy show that with NH as the true

hierarchy, DUNE can exclude the wrong hierarchy at more than 5σ C.L. for all true

values of δcp. But in the presence of NU, for the true NH case, the mass hierarchy

sensitivity decreases in the LHP (−π to 0) compared to the standard scenario. In

the UHP (0 to π), the sensitivity with NU increases compared to the standard case

for some combination of true δcp and φ21, especially near δcp = π/2. In the case

of NOνA, the hierarchy sensitivity in the standard scenario is already less than 3σ

except near δCP = −π/2, while that of T2K is less than 2σ. In the presence of NU,

this sensitivity further decreases especially in the LHP for an assumed true NH. IN

the UHP, the hierarchy sensitivity in the presence of NU increases for some true

combinations of δCP and φ21, but the increase is not significant.

• For true IH, DUNE can exclude NH for all values of true δcp at more than 5σ C.L.

Even in the presence of NU, DUNE can resolve the neutrino mass hierarchy at more

than 5σ C.L. irrespective of the true hierarchy. But in the case of NOνA and T2K,

the sensitivity decreases with NU and T2K is the most affected.

• The combined hierarchy sensitivity of T2K and NOνA increases slightly compared

to their individual sensitivities. In the presence of NU, some fraction of δCP around

−π/2 (π/2) has a sensitivity more than 3σ in the NH (IH) case.

• Finally, the mass hierarchy discovery reach of NOνA and T2K is studied and it is

observed that NOνA can probe NH at 3σ C.L. for some true combinations of δCP

and φ21. The 3σ allowed region shrinks for the case true IH. In the case of T2K,

only 1σ discovery is possible with NU for both the hierarchies. Adding T2K data

with NOνA can slightly improve the discovery potential of NOνA. The combined

setup can discover MH at 3σ C.L.. for a greater range of true values of δCP and

φ21. We have not studied the discovery reach for DUNE since it has already been

observed that it can rule out the wrong hierarchy at more than 5σ C.L. even with

NU.
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• We have carefully checked our results (figure 4.4 and 4.6) for non maximal θ23 val-

ues (with the present best fit value and and a benchmark value of θ23 = 38.30 as the

true value), marginalizing over the whole allowed range of θ23 in the fit for DUNE

(for true NH). In figure 4.8, we depict the DUNE hierarchy sensitivity showing the

comparison between maximal and non-maximal θ23 (best fit value θ23 = 42.30). In

the lower panel, we have shown the contour plots for true θ23 = 42.30 (left) and true

θ23 = 38.30 (right). We have chosen θ23 = 38.30 just to show the maximal possible

correlation between φ21 and δcp The contour plot with θ23 = 42.30 is consistent with

the sensitivity plot shown in the upper panel. We observe from the upper panel

that the differences between the sensitivity for maximal and non-maximal θ23 are

very small and in all cases, the capability of DUNE to exclude the wrong IH is

much more than 5σ for all true values of δcp. This is also the reason why the whole

δcp − φ21 parameter space is excluded for DUNE for assumed true NH/IH at more

than 5σ C.L., as confirmed by the contour plots in the lower panel. The reason for

this is as follows: the probability plots shown in subsection 4.4.1 are only in the ν

mode. But when we combine both ν and ν̄ in appearance and disappearance modes

to calculate the sensitivity, NU hampers the sensitivity at DUNE at a higher confi-

dence level only. And also, as pointed out in Section III, the physics conclusions

drawn here remain unchanged even if we consider non maximal θ23 in ‘data’ and

then marginalize it in ‘fit’ in the allowed 3σ range.

We conclude that the presence of non-unitarity in the neutrino mass matrix can signifi-

cantly affect the potential of the experiments NOνA and T2K to resolve the neutrino mass

hierarchy. The experiment DUNE is less affected due to its longer baseline and conse-

quent large matter effects, which results in a resolution of the hierarchy degeneracy for

DUNE even in the presence of non-unitarity at its peak operating energy. It is worthwhile

to analyze other long baseline experiments to understand more thoroughly the effect of

non-unitarity on their capability for determining the mass hierarchy.
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4.4.1 Effect of θ23 Variation

Figure 4.9: Pµe vs Energy plots for DUNE to show the effect of θ23 variation. In the left (right) panel,
we show the variation in standard ( with NU) case. We consider the boundary values of the NU parameters
here. The blue (green) line represents the Pµe vs E for θ23 = 450 in NH (IH). The gray (cyan) band shows
the variation of θ23 in 3σ allowed range in NH (IH) mode.

In this study we have assumed the maximal value of the atmospheric neutrino mixing

angle θ23. However it can be shown at the probability level that there is a significant

effect of varying θ23 on the oscillation probability, which has the potential of affecting

the results for the hierarchy sensitivity. To demonstrate this we present in figure 4.9 the

probability Pµe as a function of the neutrino energy for DUNE, incorporating a variation

in θ23 depicted by the grey (cyan) band for true NH (IH) in the figure. Here we have

compared the standard case with the NU case for δCP = 0. In the left panel, we vary

θ23 over its current 3σ range for both the hierarchies and see that the probabilities for

NH and IH are still well separated. But in the presence of NU (right panel), if we vary

over θ23, there is a large overlapping region between the probabilities for NH and IH.

This indicates that a more rigorous procedure should be followed to take into account

the current uncertainty in θ23 while performing this analysis though the conclusion drawn

above remains unchanged.
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Chapter 5

Correlations and degeneracies among

the NSI parameters with tunable beams

at DUNE

In the previous chapter, we consider two new physics scenarios namely light sterile neu-

trino and non unitarity of the leptonic mixing matrix. In this chapter we consider how

we can improve bounds on NSI parameters using tunable beams at DUNE. In a seminal

paper in 1978, Wolfenstein first proposed the possibility that NSI could be responsible

for conversion of a given neutrino flavour to another even if neutrinos were massless [17].

However, thanks to the wealth of data accumulated by a variety of oscillation experiments

covering different energies and baselines, we now have a fairly clear picture that neutrino

oscillations occur due to nonzero neutrino masses.

On the theoretical side, neutrino oscillations require non-zero masses while neutrinos are

massless in the SM. This implies that one needs to go beyond the SM in order to explain

the results of oscillation experiments. The minimal way is to have a new physics model

which can give rise to nonzero neutrino masses but the interactions are still described

by SM. Once we invoke new physics to accommodate neutrino masses, it is only natural
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to consider the possibility that the neutrino interactions are described by NSI (as was

proposed by Wolfenstein [17]). Clearly, a dominant contribution from such interactions is

ruled out by the present data [44, 134–136]. However a subdominant contribution cannot

be ruled out given the present accuracy of the neutrino oscillation experiments. Therefore,

the idea proposed by Wolfenstein does not hold true in totality in the current times yet his

insight remains in the form of subdominant effects due to NSI on neutrino oscillations.

The fact that parameter degeneracies crop up in the presence of standard interactions (SI)

has been well recognized since the past two decades or so [90, 137–141]. Identification

and resolution of parameter degeneracies is crucial for a clean determination of the oscil-

lation parameters. Besides, any new physics sector (such as NSI considered in the present

work) introduces a multitude of parameter degeneracies apart from those in the standard

case and the structure of parameter degeneracies is far more complex. There has been

a vast body of work done on NSI and neutrino oscillations. For a comprehensive recent

review on the topic of NSI in the context of neutrino oscillations, we refer the reader

to [142].

It should be noted that the studies carried out so far on constraining NSI terms on DUNE

has invariably utilized the standard low energy (LE) flux that peaks around the first oscilla-

tion maximum for Pµe i.e., around 2−3 GeV. We advance in this direction by incorporating

different beam tunes at DUNE and understand the role of beam tunes in constraining the

NSI parameters. In a recent work, high energy beams have been shown to be helpful in

distinguishing the NSI scenario from the standard three neutrino scenario [143]. While

the new physics context of the present study is that of propagation NSI, our approach is

valid for a variety of new physics models.

The chapter is organised as follows. In Sec. 5.1, we give the theoretical introduction

to neutral current (NC) NSI which is the new physics scenario considered in the this

chapter. We also mention the present constraints on the NSI terms. In Sec. 5.2, we

describe the numerical simulation procedure as well as introduce the beam tunes used. In
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Oscillation Parameter Best-fit value 3σ range

θ12 [◦] 34.5 31.5 - 38.0

θ13 [◦] 8.45 8.0 - 8.9

θ23 [◦] 47.7 41.8 - 50.7

δ/π −0.68 [−1,−0.06] and [0.87, 1]

∆m2
21 [10−5 eV2] 7.55 7.05 - 8.14

∆m2
31 [10−3 eV2] +2.50 2.41 - 2.60

Table 5.1: Neutrino mass and mixing parameters obtained from the global fit to neutrino
oscillation data [134, 135]

.

subsection 5.3.1, we first discuss the impact of individual NSI terms on the behaviour of

probabilities (Pµe and Pµµ) as functions of δ. In subsections 5.3.2 and 5.3.3, we analyze

the behaviour of the probability difference between NSI and SI as a function of energy as

well as δ. In Sec. 5.4, we do a comparative ∆χ2 analysis to discuss in detail how the higher

energy beams in conjunction with the standard low energy beam impact the sensitivities

of parameters. In section 5.5 and 5.6, we have given the relevant probability expressions

that aid in understanding our results. Section 5.7 contains the SI-NSI event difference plot

for some representative choice of parameters.

5.1 Model : Nonstandard interaction during propaga-

tion

The new physics scenario considered in the present work is that of propagation NSI which

impacts the propagation of neutrinos. Such a scenario can be described by a dimension-
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six operator involving four fermions,

LNS I = −2
√

2GFε
fC
αβ (ν̄αγµPLνβ)( f̄γµPC f ) (5.1.1)

where α, β = e, µ, τ indicate the neutrino flavor, f denotes the matter fermions, e, u, d. The

new NC interaction terms can impact the neutrino oscillation physics via flavour changing

interaction or flavour preserving interaction. From a phenomenological point of view,

only the sum (incoherent) of all the individual contributions (from different scatterers

such as e, u or d) contributes to the coherent forward scattering of neutrinos on matter.

Normalizing to ne, the effective NSI parameter for neutral Earth matter1 is given by

εαβ =
∑

f =e,u,d

n f

ne
ε

f
αβ = εe

αβ + 2εu
αβ + εd

αβ +
nn

ne
(2εd

αβ + εu
αβ) = εe

αβ + 3εu
αβ + 3εd

αβ ,(5.1.2)

where n f is the density of fermion f in medium crossed by the neutrino and n refers to

neutrons. Also, ε f
αβ = ε

f L
αβ + ε

f R
αβ which encodes the fact that NC type NSI matter effects

are sensitive to the vector sum of NSI couplings. Only the vector part adds up coherently.

Contribution of the axial vector part depends on the spin of the particle. Hence it will not

contribute in the coherent process as the net spin of the system is zero.

In the presence of NSI, the Hamiltonian in the effective Schrodinger -like equation gov-

erning neutrino evolution can be expressed as

H =
1

2E

{
U



0

∆m2
21

∆m2
31


U† + a(x)



1 + εee εeµ εeτ

εeµ
? εµµ εµτ

εeτ
? εµτ

? εττ


}
, (5.1.3)

where ∆m2
i j are the mass-squared differences. Here a(x) = 2

√
2EGFne(x) is the standard

charged current (CC) potential due to the coherent forward scattering of neutrinos, ne is

1For neutral Earth matter, there are two nucleons (one proton and one neutron) per electron.
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the electron number density and εαβ (≡ |εαβ| eiϕαβ) are complex NSI parameters. U is the

PMNS three flavour neutrino mixing matrix.

We now mention the constraints on the NC NSI parameters. The combination that enters

oscillation physics is given by Eq. 5.1.2. Assuming that the errors on individual NSI

terms are uncorrelated, model-independent bounds on NC NSI terms εαβ were given in

Ref. [144]. In particular, one obtains the following:

εαβ <∼

 ∑
C=L,R

[|εeC
αβ |

2 + 3|εuC
αβ |

2 + 3|εdC
αβ |

2]


1/2

, (5.1.4)

which leads to

|εαβ| <



4.2 0.33 3.0

0.33 0.068 0.33

3.0 0.33 21


. (5.1.5)

for neutral Earth matter. The values of εeC
αβ, ε

uC
αβ , and εdC

αβ are derived using neutrino scat-

tering experiments, LEP data, atmospheric neutrino experiments as in [145–147]. Direct

experimental constrains from neutrino experiments on NSI parameters are more restric-

tive. The SK NSI search in atmospheric neutrinos crossing the Earth found no evidence

in favour of NSI and the study led to upper bounds on NSI parameters [148] given by

|εµτ| < 0.033, |εττ − εµµ| < 0.147 (at 90% CL) in a two flavour hybrid model [59]. The off-

diagonal NSI parameter εµτ is constrained −0.20 < εµτ < 0.07 (at 90% CL) from MINOS

data in the framework of two flavour neutrino oscillations [149, 150].

In what follows, we shall adopt a numerical approach to discuss the impact of various NSI

parameters. For the sake of simplicity and clarity, we consider one NSI parameter at a

time. Wherever analytic description is feasible, we give approximate analytic expressions

which are valid in the present context and additional plots which help in understanding
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the results obtained numerically (for more details, see section 5.5 and 5.6).

5.2 Simulation procedure and beam tunes

In order to simulate DUNE, we use the GLoBES package [67, 68] with the most recent

DUNE configuration file provided by the collaboration [77] and implement the density

profile given by Preliminary Reference Earth Model (PREM) [151]. We assume a to-

tal runtime of 7 years with 3.5 years in the neutrino mode and another 3.5 years in the

antineutrino mode.

Parameter LE ME

Proton beam Ep+ = 80 GeV Ep+ = 120 GeV

1.07 MW 1.2 MW

Focusing 2 NuMI horns, 230kA, 6.6 m apart

Target location -25 cm -1.0 m

Decay pipe length 204 m 250 m

Decay pipe diameter 4 m 4 m

Table 5.2: Beamline parameters assumed for the different design fluxes used in our sen-
sitivity calculations [77, 152]. The target is a thin Be cylinder 2 interaction lengths long.
The target location is given with respect to the upstream face of Horn 1. The LBNF neu-
trino beamline decay pipe length has been chosen to be 194 m. Decay pipe lengths of up
to 250 m could be accommodated on the Fermilab site and were an option in previous
designs of the beamline.

We consider two beam tunes obtained from a G4LBNF simulation [153,154] of the LBNF

beam line using NuMI-style focusing.

LE beam The standard νµ beam which peaks around a relatively lower energy of ∼ 2.5

GeV (corresponding to the first oscillation maximum for the νµ → νe appearance

channel) is referred to as an LE beam in our analyses. It is generated by an 80 GeV

proton beam delivered at 1.07 MW with protons on target (pot) of 1.47 × 1021.
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Figure 5.1: The neutrino fluxes (LE and ME) used in the present work. LE beam refers to the standard
flux generated by an 80 GeV proton beam as used in [77]. ME beam refers to the flux peaking at a higher
energy. See Table 5.2 for more details.

ME beam The second beam is has the characteristic that it is larger at higher energies

(& 4 GeV onwards) and we refer to this beam as medium energy (ME) beam. The

ME beam is generated by a 120 GeV proton beam delivered at 1.2 MW with a pot

of 1.1 × 1021.

Both the LE and ME fluxes are shown in Fig. 5.1. The LE flux peaks around 1.5 GeV

to 3.5 GeV but after that it falls off rapidly. In contrast, the ME flux is almost flat from

2 - 6 GeV and after that it falls off but at a much slower rate compared to the LE flux

and it remains substantially higher than the LE flux even beyond 6 GeV. At ∼ 2.5 GeV,

the ME flux is ∼ 25 − 35% smaller than the LE flux. Hence, in our analyses of probing

the NSI parameters, we use a combination of LE and ME flux together, so as to extract

information on new physics from both the lower energy (1−3 GeV) and the higher energy

(& 4 GeV) regime as much as possible. We compare the results with those obtained using

the LE beam only for the same total runtime of the experiment. The beamline parameters

assumed for the different design fluxes used in our sensitivity calculations are given in

Table 5.2.

Our analysis includes both appearance (νµ → νe) and disappearance (νµ → νµ) chan-
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nels, simulating both signal as well as background. The simulated background includes

contamination of antineutrinos (neutrinos) in the neutrino (antineutrino) mode, and also

misinterpretation of flavors, as discussed in detail in [77]. To analyze the NSI scenario,

we utilise the GLoBES extension called snu.c which is described in [70, 155].

To calculate the sensitivity with which the NSI parameters can be probed, one can define

the (statistical) χ2 as follows 2:

χ2(ntrue,ntest) = 2
Nreco∑

i

∑
j

(ntrue
i, j ln

ntrue
i, j

ntest
i, j ( f )

+ ntest
i, j ( f ) − ntrue

i, j ). (5.2.1)

where n represents event rate vectors in Nreco bins of reconstructed energy. Here, the SI

case is treated as true while the NSI parameters are allowed to vary in the test data set.

The sum over the number of channels ( j) runs over the νµ → νe and νµ → νµ channels

and the corresponding antineutrino channels, ν̄µ → ν̄e and ν̄µ → ν̄µ. The index i indicates

the sum over all the energy bins ranging from E = 0 − 20 GeV. We have a total of 71

bins of non-uniform widths (64 bins with uniform bin width of 125 MeV in the energy

range E = 0 − 8 GeV and 7 bins with variable width beyond 8 GeV) [77]. The detector

configuration, efficiencies, resolutions and systematic uncertainties for DUNE are listed

in Table. 5.3.

Detector details Normalisation error Energy calibration error

Signal Background Signal Background

DUNE

Runtime (yr) = 3.5 ν + 3.5 ν̄ νe : 5% νe : 10% νe : 2% νe : 10%

40 kton, LArTPC

νµ : 5% νµ : 10% νµ : 5% νµ : 10%

Table 5.3: Detector configuration, efficiencies, resolutions and systematic uncertainties
for DUNE.

2The definition of the χ2 in Eq. 5.2.1 includes only statistical effects for the purpose of understanding.
The systematic effects have of course been taken into account in our numerical results obtained using
GLoBES.
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We have used the standard oscillation parameters in Table 5.1, taken from Ref. [134,

135]. For the neutrino mass hierarchy, we assume a spectrum corresponding to normal

hierarchy in the true dataset. Since DUNE has no sensitivity to the solar parameters and

since θ13 is rather well measured by current reactor and long baseline experiments, we

keep these values fixed to their current best-fit values, while marginalizing over θ23 (in

the present 3σ range) and δ ([−π, π]), if not plotting them. In addition, we marginalize

over the atmospheric mass-squared splitting, ∆m2
31, allowing for the two possible mass

hierarchies. When studying a non-diagonal NSI parameter, εαβ, we also marginalize over

its corresponding phase, ϕαβ in the range [−π, π]. Therefore, if we study two non-diagonal

complex parameters simultaneously, we marginalize over a total of five parameters.

In our analysis, we consider two diagonal NSI parameters and three off-diagonal NSI

parameters with both their moduli and phases. If we also include the yet unknown CP

phase, δ, we have a total of nine parameters. We depict ∆χ2 correlations among these nine

parameters (δ, εee, |εeµ|, ϕeµ, |εeτ|, ϕeτ, |εµτ|, ϕµτ, εττ) considering them pairwise at a time and

the number of such combinations is 36.

5.3 A scan of parameter space at the level of probability

In order to obtain insight into the correlations and degeneracies among the various NSI

and SI parameters that may impact the signals at DUNE, the first step is, naturally, to look

at the relevant oscillation probabilities. We consider the following oscillation channels

that are accessible3 at DUNE :

1. Appearance channel : νµ → νe (ν̄µ → ν̄e)

2. Disappearance channel : νµ → νµ (ν̄µ → ν̄µ).

3νµ → ντ is also in principle there, but the signal is extremely tiny.
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Figure 5.2: Pµe (top row) and Pµµ (bottom row) at fixed baseline (L = 1300 km) and fixed energy values
(E = 2.5 GeV for Pµe and E = 5 GeV for Pµµ) plotted as a function of the CP phase, δ. The strength of all
NSI terms is taken to be the same (= 0.1).

In what follows, we consider the relevant parameters that include two of the diagonal NSI

parameters (εee, εττ) and the moduli and phases of the three off-diagonal NSI parameters

(εeµ,εeτ,εµτ). A detailed assessment of the role of individual NSI terms on the different

oscillation channels has been carried out in [156,157]. Based on the analyses in [156,157],

we can conclude that among all NSI parameters, εeµ and εeτ mainly impact the appearance

channel (νµ → νe) while εee has a milder impact. It is clear that εeµ enters νµ → νe channel.

The almost maximal mixing in the 2 − 3 sector ensures that εeτ also impacts this channel

with similar strength as εeµ (see section 5.5 and the discussion in Sec. IV of [156]).

Similarly, the disappearance channel (νµ → νµ) is more sensitive to the presence of NSI

parameter εµτ (see section 5.6 and the discussion in Sec. IV of [156]).

In the following sub-sections, we perform a scan of the parameter space at the probabil-

ity level. We first discuss the fixed energy and fixed baseline snapshots of probabilities

(subection 5.3.1). We then discuss SI-NSI degeneracies in the context of DUNE as a

function of energy keeping δ fixed at the best-fit value (subsection 5.3.2). Further, we go

on to the discussion of SI-NSI degeneracies as a function of δ (keeping the energy fixed)

in subection 5.3.3.
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5.3.1 Snapshots of Pµe and Pµµ at fixed energy and fixed baseline

In Fig. 5.2, we fix the baseline at 1300 km and show the impact of NSI parameters 4 on

snapshots of Pµe and Pµµ as a function of δ at certain (appropriately chosen) fixed energy

values. This aids in identification of parameters that may have the largest impact at the

level of probabilities, though at specific energy values. For the νµ → νe channel (top

row in Fig. 5.2), we choose the fixed value of energy to be E = 2.5 GeV. This value

corresponds to the first oscillation maximum for Pµe. On the other hand, Pµµ is very close

to zero at 2.5 GeV while it is substantial at higher values of energy. Hence we depict

curves for Pµµ (bottom row in Fig. 5.2) at 5 GeV. The grey bands show the variation of

the probability when the relevant phases (δ, ϕαβ) are allowed to vary in the range [−π, π].

As a reference, the SI case is shown as a solid black line in all the plots.

As far as Pµe at 2.5 GeV (top row) is concerned, we note that the effect of εeµ or εeτ

is more pronounced when compared to the other NSI terms. The presence of εeµ or εeτ

modifies the overall amplitude and the location of the peaks/dips of the probabilities while

the presence of a nonzero φeµ or φeτ brings in additional phase shifts. We note that εµτ has

a much smaller effect on Pµe. εee and εττ also have a miniscule effect on the amplitude

of Pµe. On the other hand, Pµµ at 5 GeV (bottom row) gets affected most by the presence

of the εµτ term. εeτ, εee, εττ have practically no impact on Pµµ. εeµ induces some phase

dependence on Pµµ.

In what follows, we generalise the above discussion and study the energy dependence of

the SI-NSI degeneracies for Pµe and Pµµ and also vary the NSI terms instead of keeping

their values fixed.
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Figure 5.3: Heatmaps corresponding to |∆Pµe| (top row) and |∆Pµµ| (bottom row) in the two-dimensional
plane of individual NSI term (εαβ) and energy. The NSI phases are set to zero. The dashed white lines
indicate the value of energy at 2.5 GeV and 5 GeV.

5.3.2 Energy dependence of the SI-NSI degeneracies

To quantify the impact of NSI terms, let us define a quantity, |∆Pαβ| = |PNS I
αβ − PS I

αβ|(α, β =

e, µ), which is absolute value of probability difference between the SI and NSI scenarios.

Our results are given in Fig. 5.3 in the form of heatmaps as functions of energy and the

strength of the NSI parameter for |∆Pµe| (top row) and |∆Pµµ| (bottom row). The NSI

phases are taken to be zero and the standard oscillation parameters have been pinned to

their best-fit values (see Table 5.1). If we carefully examine the top row of Fig. 5.3, we

note that |∆Pµe| is mostly affected by |εeµ| and |εeτ|. Note that, the impact of |εeµ| or |εeτ|

is most prominent around 2 − 3 GeV. One can derive a useful conclusion here regarding

difference in impact of |εeµ| and |εeτ| on |∆Pµe|. As we go beyond ∼ 4 GeV, |εeτ| gradually

makes |∆Pµe| smaller (red region), while |εeµ| makes |∆Pµe| stay at a high value (blue

region) which is almost independent of energy. This, in turn, suggests that one may be

able to probe εeµ more effectively than εeτ by use of higher energy beam tune. The other

NSI terms εµτ, εee or εττ do not induce much change, keeping |∆Pµe| . 0.005 for most of

4The moduli of all the NSI parameters have been chosen to be equal to 0.1 (allowed by present con-
straints [144, 158]). For reasons of clarity and simplicity, we take one NSI parameter non-zero at a time.
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Figure 5.4: Heatmaps for |∆Pµe| (top row) and |∆Pµµ| (bottom row) are shown as the function of a NSI
phase ϕαβ (taken one at a time) as the energy is changed, keeping the baseline fixed at 1300 km. The
associated NSI amplitudes (εαβ) were kept fixed at 0.05. The two horizontal dashed white lines correspond
to the energies 2.5 GeV and 5 GeVs.

the energy range.

From the bottom row of Fig. 5.3 corresponding to |∆Pµµ|, we note that εµτ plays an impor-

tant role. |∆Pµµ| is large (blue) in most of the energy range as long as |εµτ| & 0.02. This

is to be contrasted with other NSI terms, as even a small value of εµτ can induce a large

impact on |∆Pµµ|. As can be noted, a higher energy beam may be able to probe εµτ via this

channel effectively. If we look at the impact of |εeµ| and |εeτ|, we note that |εeµ| gradually

makes |∆Pµµ| larger at E & 5 GeV (indicated by blue region on the top right side of the

panel) while |εeτ| does not seem to impact |∆Pµµ|. Thus, for the disappearance channel as

well, it appears that the higher energy beam may prove more useful in probing εeµ than

εeτ. For an analytic understanding of the energy dependence of ∆Pαβ in the presence of

NSI, see section 5.5 and 5.6.

We next consider the case of nonzero phases ϕαβ. In Fig. 5.4, heatmaps corresponding

to |∆Pµe| (top row) and |∆Pµµ| (bottom row) in the two-dimensional plane of individual

NSI phase (ϕαβ) and energy are shown. The moduli of NSI terms (|εeµ|, |εeτ| or |εµτ|) were

kept fixed at 0.05. From Fig. 5.4, we note that |∆Pµe| (top row) is most affected by φeµ
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or φeτ while φµτ has almost no effect. Around 2 − 4 GeV, φeµ and φeτ produce similar

qualitative features indicating SI-NSI degeneracy (red band) occurring at a pair of values

given by φeµ ≈ 0,±π and φeτ ≈ −0.6π, 0.4π. At energies beyond 4 GeV, |∆Pµe| is very

small (∼ 0) almost uniformly in the presence of φeτ while in the presence of φeµ, it still

exhibits a relatively high value (0.005 − 0.01) in large region of the parameter space. For

a quantitative understanding of this feature, we refer the reader to section 5.5.

For |∆Pµµ|, Fig. 5.4 (bottom row) shows that it is affected most significantly by φµτ, show-

ing sharp SI-NSI degeneracy around φµτ ≈ ±π/2. This arises because of the fact that

|∆Pµµ| ∝ cos φµτ (See Eq. 5.6.3 in section 5.6). We also note that |∆Pµµ| remains close to

zero in the presence of φeτ and shows moderate variation for in the presence of φeµ.

Finally, we would like to mention that the qualitative features of Fig. 5.4 remain un-

changed even if the moduli of the relevant off-diagonal NSI terms (|εeµ|, |εeτ| or |εµτ|) are

increased.

5.3.3 δ-dependence of SI-NSI degeneracies

In Figs. 5.5 and 5.6 we depict the heatmaps for |∆Pµe| and |∆Pµµ| in the δ − εαβ plane. In

these plots, the first (second) row corresponds to a fixed energy of 2.5 (5) GeV. We can

derive the following conclusions in connection with Pµe (see also section 5.5) :

• In the case of νµ → νe channel (Fig. 5.5), the NSI terms εeµ and εeτ have relatively

larger impact than the other NSI parameters. For εeµ and εeτ, the degenerate re-

gions (|∆Pµe| . 0.05) are narrowly concentrated around a pair of values of δ (see

Table 5.4 below) These sharp SI-NSI degenerate regions exist even for 5 GeV but

at somewhat different values of δ. For εeτ, the degenerate region seems to be larger

at 5 GeV in contrast to 2.5 GeV. This is not seen in the case of εeµ (this observation

is consistent with Fig. 5.3). Note that the locations of SI-NSI degenerate regions is

roughly independent of the size of |εeµ| and |εeτ|. For |εµτ|, the degenerate region is
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Figure 5.5: Heatmaps for |∆Pµe| are shown for a fixed baseline of 1300 km in the parameter space of
δ − εαβ for two fixed energies: 2.5 GeV (top row) and 5 GeV (bottom). A single NSI parameter was
considered at a time and the associated NSI phases were taken to be zero. The dashed horizontal white line
corresponds to the bestfit value of the Dirac CP phase δ (≈ −0.68π) taken from Table 5.1.

E ∆Pµe(|εeµ|) ≈ 0 ∆Pµe(|εeτ|) ≈ 0

2.5 GeV 0.25π,−0.8π 0.8π,−0.2π

5 GeV 0.4π,−0.6π 0.95π,−0.15π

Table 5.4: The values of δ where |∆Pµe| almost vanishes in the presence of εeµ or εeτ (red
spikes) in Fig. 5.5.

broader and shows a soft feature of peaking at δ ≈ ±π for 2.5 GeV. For εee and εττ,

the degenerate regions have similar structure showing no CP phase dependence.

• For the νµ → νµ channel (Fig. 5.6), as mentioned earlier, it is more appropriate

to look at 5 GeV (the bottom row). As expected, εµτ has the largest impact and

its effect is independent of the CP phase, δ (see also section 5.6). The impact of

εeµ is also important with two sharp peaks occurring around δ ≈ ±π/2. The other

terms such as εeτ, εee, εττ have almost no effect at 5 GeV (here also the results are

consistent with Fig. 5.3).

To complete the discussion, we now discuss the effect of non-zero phases. We keep the

moduli of the respective NSI terms fixed at |εαβ| = 0.05 and plot heatmaps corresponding
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Figure 5.6: Similar to Fig. 5.5 but for the νµ → νµ channel.
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Figure 5.7: Heatmaps for |∆Pµe| are shown for a fixed baseline of 1300 km in the parameter space of
δ − ϕαβ for two values of energies, 2.5 GeV (top row) and 5 GeV (bottom row). Note that |εαβ| was fixed to
0.05. The dashed horizontal white line corresponds to the bestfit value of the Dirac CP phase δ (≈ −0.68π)
taken from Table 5.1.

to |∆Pµe| and |∆Pµµ| in the ϕαβ−δ plane in Fig. 5.7 and Fig. 5.8 respectively. As before, we

show our results for two different values energy, 2.5 GeV (top row) and 5 GeV (bottom

row). We make the following observations from these plots:

• In the case of the νµ → νe channel (Fig. 5.7), we see degenerate regions in the case

of ϕeµ and ϕeτ (where |∆Pµe| . 0.005) slanted at an angle of 135o. In the case of ϕµτ,
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Figure 5.8: Similar to Fig. 5.7 but for the νµ → νµ channel.

|∆Pµe| remains close to zero and stays within <∼ 0.005 in the entire ϕµτ − δ space 5.

For 5 GeV, the pattern remains very similar for φeµ, but the extent of degeneracy

increases for φeτ, as expected from our previous analyses.

From the analytic expressions given in section 5.5 (Eq. 5.5.1 and 5.5.2), we can

note that the SI-NSI degeneracy in the presence of φeµ or φeτ for a fixed non-zero

moduli of the corresponding NSI term, arises from the following:

sin(δ + φeµ − γ
eµ
1 ) ≈ 0 (for φeµ) and sin(δ + φeτ + γeτ

1 ) ≈ 0 (for φeτ)

=⇒ δ + φeµ ≈ nπ + γ
eµ
1 and δ + φeτ ≈ nπ − γeτ

1 ,with n = 0,±1,±2, . . .

(5.3.1)

Here γeµ
1 = tan−1( tan2 θ23

∆
+ cot∆) and γeτ

1 = tan−1( 1
∆
− cot∆). We note that Eqns. 5.3.1

show equations of straight lines with a slope of 135o and equal intercepts on the δ

and ϕαβ axes 6. Furthermore, the various intercepts (corresponding to different n)

on the ϕαβ or δ axes are separated by π which is also seen in Fig. 5.7.

5In general, εµτ has milder impact on the Pµe. The effect of the associated NSI phase φµτ is, thus,
small. If we take somewhat larger value of |εµτ|, |∆Pµe| would increase slightly but the qualitative feature of
|∆Pµe(φµτ)| would still remain similar.

6x/a + y/b = 1 is a general equation of straight line with intercepts a and b on the x and y axes
respectively.
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• In case of the νµ → νµ channel (Fig. 5.8), we focus on the bottom row. Here

φeµ shows the SI-NSI degenerate regions roughly mimicking straight lines at 135o

slope, whereas φeτ shows no effect. φµτ manifests itself by rendering |∆Pµµ| to a

much larger value (& 0.02) for most of the parameter space, but there exist two

sharp degenerate regions occurring at φµτ ≈ ±π/2 with no δ dependence.

5.4 Probing the NSI parameter space at the level of χ2

In the present section, we numerically explore the NSI parameter space at the level of χ2

using the standard LE as well as ME beam tunes. Our main results are summarized in

Fig. 5.9 where we depict contours at a confidence level (c.f.) of 99%. The solid cyan

(black hatched) contours correspond to LE (LE + ME) beams. More specifically, the

regions enclosed by these contours depict the regions where there is SI-NSI degeneracy

for those pair of parameters. Below, we discuss some noteworthy features as can be

observed from Fig. 5.9:

1. Let us first consider the panels with εeµ (either |εeµ| or φeµ or both) which are shown

in light yellow colour. We note that use of different beam tunes (ME in conjunction

with the LE beam) offers visible improvement of results (shrinking of contours) in

these pairs of parameters. This is one of the key results of the present article. In

order to explain the observed pattern, let us recollect from Figs. 5.3 and 5.4 that the

presence of |εeµ| or φeµ leads to large difference between SI and NSI scenarios even

at larger values of energies i.e., E & 4 GeV. Thus, with the LE+ME option we are

able to place tighter constraints on the parameter space corresponding to parameters

|εeµ| and φeµ.

From Eq. 5.2.1, the ∆χ2 in the presence of two NSI parameters, say, a and b, can be
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Figure 5.9: A comparison of the sensitivity of DUNE to probe the NSI parameters at 99% confidence
level when a standard low energy (LE) beam tune is used (cyan region) and when a combination of low and
medium energy (LE + ME) beam tune is used (black hatched region), keeping the total runtime same (3.5
years of ν + 3.5 years of ν̄ run) for both scenarios. In the latter case, the total runtime is distributed between
the LE beam (2 years of ν + 2 years of ν̄) and the medium energy beam (1.5 years of ν + 1.5 years of ν̄).
The panels with a light yellow (white) background indicate significant improvement (no improvement) by
using LE + ME beam over using LE only. The numbers in the light yellow shaded panels correspond to
the area lying outside the contour for the two cases (cyan for LE and black for LE+ME) expressed as a
percentage of the total parameter space plotted. These numbers quantify the improvement over the LE only
option when the ME beam tune is used in conjunction with the LE beam tune in these panels.

written as 7:

∆χ2(a, b) ∼ ∆χ2
µe(a, b) + ∆χ2

µµ(a, b)

∼ Min
∑

energy

[
|∆Pµe(a)| + |∆Pµe(b)| + |∆Pµµ(a)| + |∆Pµµ(b)|

]
. (5.4.1)

7For the ease of understanding, we write neutrino contribution only. The dependence on flux and cross-
section has been omitted for clarity in understanding the dependence on probabilities.
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For e.g., if we focus on the |εeµ|-|εeτ| plane, we have

∆χ2(|εeµ|, |εeτ|) ∼ Min
∑

energy

[
|∆Pµe(|εeµ|)| + |∆Pµe(|εeτ|)| + |∆Pµµ(|εeµ|)| + |∆Pµµ(|εeτ|)|

]
,

(5.4.2)

where the sum is over all the energy bins (0− 20 GeV) and the minimization is per-

formed over δ, θ23, ∆m2
31, φeµ, φeτ. From the probability level discussion (Fig. 5.3),

we can assess the impact of the NSI terms |εeµ| and |εeτ| on Pµe and Pµµ. In the case

of |∆Pµe|, at low values of energy, the impact of the two NSI parameters is quite

similar. But, at higher energies, the effects due to |εeµ| tend to be larger than effects

due to |εeτ|. This means that ME beam is expected to alter the degenerate region

more in the case of |εeµ| and less in the case of |εeτ|. That the smaller contribution

from the disappearance channel is in the same direction as the larger contribution

from the appearance channel (with |εeµ| and |εeτ| acting in opposite directions) can

also be seen from the plot.

2. We next consider the remaining panels in which we see that there is very little

or no improvement of results after using the ME beam along with the LE beam.

If we look at the pair of parameters, |εeτ| − εee, φeτ − εee, εττ − εee, φeτ − |εeτ| and

εττ − |εeτ| in particular, we note that the degenerate regions get enlarged slightly.

This is because of the fact that the the presence of εeτ, unlike εeµ, actually adds to

the SI-NSI degeneracy at higher energies (see Figs. 5.3 and 5.4 and the discussions

in Sec. 5.3.2).

3. For the panels with |εµτ| and φµτ as one of the parameters, there is very marginal

improvement (except when |εeµ| or φeµ is present) in the degenerate contours using

the LE+ME beam. To see how the ∆χ2 arises in panels showing the parameter space

associated with |εµτ|, let us take for example, the pair of parameters, |εµτ| and |εeτ|

118



and express the ∆χ2 (Eq. 5.4.1) as

∆χ2(|εµτ|, |εeτ|) ∼ Min
∑

energy

[
|∆Pµe(|εµτ|)| + |∆Pµe(|εeτ|)| + |∆Pµµ(|εµτ|)| + |∆Pµµ(|εeτ|)|

]
,

(5.4.3)

where the sum is over all the energy bins (0− 20 GeV) and the minimization is car-

ried over δ, θ23, ∆m2
31, φµτ, φeτ. Now, from Eq. 5.6.3, we know that in leading order,

|∆Pµµ(εµτ)| is independent of δ and is directly proportional to cos φµτ. Minimiza-

tion over φµτ ∈ [−π, π] will always then find the constant, energy-independent value

of φµτ ≈ ±π/2 which makes the ∆χ2 contribution due to Pµµ vanishingly small8.

Thus, even when |εµτ| is present, the ∆χ2 receives a dominant contribution from

the νµ → νe channel. This is more clear from the panels showing the parameter

space associated to φµτ (i.e., where φµτ is not marginalised). The magnitude of ∆χ2

in such panels is dominantly contributed by the νµ → νµ channel for all values of

φµτ 0 ±π/2. But around φµτ ≈ ±π/2, the contribution from the νµ → νµ becomes

very small and the νµ → νe channel dominates, as we have also verified numerically.

This explains the appearance of degenerate contours at φµτ ≈ ±π/2 as well.

4. All the parameter spaces showing εee (entire 2nd column and the top panel of the

1st column) have an additional degeneracy around εee ≈ −2, in addition to the true

solution at εee ≈ 0. This extra solution comes due to the marginalisation over the

opposite mass hierarchy. Similar degeneracy has also been observed in previous

studies: in [159–161] (in the context of NSI) and also in [162] in the context of

Lorentz violating parameters.

8On the other hand this does not happen for εeµ and εeτ for the following reason. Eqns. 5.5.1 and 5.5.2
tell us that in leading order, |∆Pµe(εeµ)| ∝ sin(δ+φeµ−γ

eµ
1 ) and |∆Pµe(εeτ)| ∝ sin(δ+φeτ+γeτ

1 ) where γeµ
1 and

γeτ
1 are energy-dependent quantities. Thus, unlike in the case of |∆Pµµ(εµτ)|, there does not exist a unique

energy-independent phase value which would make its contribution to ∆χ2 to ∼ 0.
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5.5 Analytic understanding of the behaviour of ∆Pµe

Here we look at the expressions for probability difference between SI and NSI and make

an attempt in understanding how the individual NSI parameters affect the SI-NSI de-

generacy. We calculate these expressions by making use of the probability expressions

from [156] upto first order in εαβ’s. Using the expressions for Pµe in presence of a single

NSI parameter (|εeµ|, |εeτ| or εee) we arrive at the following three equations:

∆Pµe(εeµ) = PNS I
µe (εeµ) − PS I

µe

≈ −4A∆ sin∆|εeµ|s13s2(23)c23Deµ
1 sin(δ + φeµ − γ

eµ
1 )︸                                                              ︷︷                                                              ︸

I

+ 2A∆ sin∆|εeµ|αs2(12)s2(23)s23Deµ
2 sin(φeµ + γ

eµ
2 )︸                                                        ︷︷                                                        ︸

II

+ O(ε2
eµ)

≈ 2A∆ sin∆|εeµ|s2(23)

[
− 2s13c23Deµ

1 sin(δ + φeµ − γ
eµ
1 ) + αs2(12)s23Deµ

2 sin(φeµ + γ
eµ
2 )

]
, (5.5.1)

&

∆Pµe(εeτ) = PNS I
µe (εeτ) − PS I

µe

≈ 4A∆ sin∆|εeτ|s13s2(23)s23Deτ
1 sin(δ + φeτ + γeτ

1 )︸                                                           ︷︷                                                           ︸
I

+
(
− 2A∆ sin∆|εeτ|αs2(12)s2(23)c23Deτ

2 sin(γeτ
2 − φeτ)

)︸                                                              ︷︷                                                              ︸
II

+ O(ε2
eτ)

≈ 2A∆ sin∆|εeτ|s2(23)

[
2s13s23Deτ

1 sin(δ + φeτ + γeτ
1 ) − αs2(12)c23Deτ

2 sin(γeτ
2 − φeτ)

]
, (5.5.2)

where,

Deµ
1 = [sin2 ∆ + (tan2 θ23

sin∆
∆

+ cos∆)2]1/2 γ
eµ
1 = tan−1(

tan2 θ23

∆
+ cot∆)

Deµ
2 = [sin2 ∆ + (cot2 θ23

∆

sin∆
+ cos∆)2]1/2 γ

eµ
2 = tan−1(

cot2 θ23∆

sin2 ∆
+ cot∆)

Deτ
1 = [sin2 ∆ + (

sin∆
∆
− cos∆)2]1/2; γeτ

1 = tan−1(
1
∆
− cot∆)
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Deτ
2 = [sin2 ∆ + (

∆

sin∆
− cos∆)2]1/2 γeτ

2 = tan−1(
∆

sin2 ∆
− cot∆).

Here A = a/∆m2
31 = 2

√
2EGFne/∆m2

31. By making the substitution A → A(1 + εee) [163]

we also have,

∆Pµe(εee) = PNS I
µe (εee) − PS I

µe

≈ s2
2(13)s

2
23

[sin2 [{
1 − A(1 + εee)

}
∆
]{

1 − A(1 + εee)
}2 −

sin2 {(
1 − A

)
∆
}(

1 − A
)2

]
︸                                                               ︷︷                                                               ︸

I

+

{
α2s2

2(12)c
2
23

[sin2 {
A(1 + εee)∆

}{
A(1 + εee)

}2 −
sin2 (

A∆
)

A2

]
+

αs2(13)s2(12)s2(23)

[sin
[{

1 − A(1 + εee)
}
∆
]

1 − A(1 + εee)
.
sin

{
A(1 + εee)∆

}
A(1 + εee)

−
sin

{(
1 − A

)
∆
}

1 − A
.
sin

(
A∆

)
A

]
cos(δ + ∆)

}
︸                                                                                                                                  ︷︷                                                                                                                                  ︸

II

,

(5.5.3)

where ∆ =
∆m2

31L
4E

.

When ∆Pµe becomes close to zero, it becomes difficult to separate NSI from SI and we

have a SI-NSI degeneracy. We plot the terms in Eq. 5.5.1, Eq. 5.5.2 and Eq. 5.5.3 as

functions of δ for an energy of 2.5 GeV and also at a higher energy of 5 GeV in Fig. 5.10

with fixed values of the NSI amplitude and zero NSI phase as indicated in the figure.

For εeµ or εeτ, the second term (blue) is very small (scaled down by the additional factor

α ∼ 10−2 compared to the first term) and also independent of the CP phase δ. It is the

first term (green) which mainly dictates the behaviour of ∆Pµe in presence of εeµ or εeτ.

We note the locations (see Table 5.5) where the overall value of ∆Pµe (red) becomes zero

in Fig. 5.10. These locations are indeed consistent with the locations of the red spikes

in Fig. 5.5 as listed in Table 5.4. The origin of these special values of δ can easily be

understood as follows.

On a closer inspection of the first term in Eq. 5.5.1 and Eq. 5.5.2, we observe that it is

proportional to Deµ
1 for εeµ and to Deτ

1 for εeτ. From Fig. 5.11 (left panel), we observe
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that around 2.5 GeV both Deµ
1 and Deτ

1 have similar magnitude 9. But as the energy in-

creases further Deµ
1 keeps on increasing while Deτ

1 decreases. This indicates that at higher

energies, |∆Pµe(|εeµ|)| increases while |∆Pµe(|εeτ|)| becomes smaller. This explains why

the degeneracy increases for higher energy in presence of εeτ compared to εeµ in the νe

appearance channel, as observed from our simulation earlier(see Fig. 5.3).

On a related note, let us also try to understand the role of ϕαβ in Fig. 5.4 with variation in

energy. In Fig. 5.11 (right panel) we show the variation of the phase arguments γeµ
1 and

γeτ
1 (appearing in the first terms of Eq. 5.5.1 and Eq. 5.5.2) with energy. Around 2.5 GeV,

γ
eµ
1 ≈ γ

eτ
1 . At higher energies, γeµ

1 > γeτ
1 , but both remains positive. Both of them tends to

get plateaued at E & 4 GeV or so, with γeµ
1 /π ∼ 0.3 and γeτ

1 /π ∼ 0.1 on an average to a

crude approximation. Since |∆Pµe(εeµ)| ∝ sin(δ + φeµ − γ
eµ
1 ) approximately, we can guess

that with a given b.f. value of δ ≈ −0.7π we will have a degeneracy around φeµ/π ≈ 0,±π

at energies & 4 GeV. Similarly, since |∆Pµe(εeτ)| ∝ sin(δ+φeτ+γ
eτ
1 ) approximately, we will

have a degeneracy around φeµ/π ≈ 0.6,−0.4 at energies & 4 GeV. A look at Fig. 5.4 (top

row: first and second columns) indeed shows that the heatmaps for |∆Pµe| looks similar

around 2.5 GeV and at energies & 4 GeV, the degenerate regions (red bands) become

independent of energy and are located at the φeµ (or φeτ) values just predicted above.

E ∆Pµe(|εeµ|) ≈ 0 ∆Pµe(|εeτ|) ≈ 0

2.5 GeV 0.22π,−0.82π 0.76π,−0.16π

5 GeV 0.4π,−0.63π 0.92π,−0.1π

Table 5.5: The values of δ (obtained from Fig. 5.10) where ∆Pµe(|εeµ|) and ∆Pµe(|εeτ|) (the
red curves in Fig. 5.10) becomes zero, giving rise to SI-NSI degeneracy.

9Recall that the b.f. value of θ23 in our analysis is not maximal, rather 47.7o. Even then the octant does
not appear to play a significant role despite the presence of the extra tan2 θ23 factor in the definition of Deµ

1 .
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Figure 5.10: The terms (denoted by green, blue and cyan curves) in the RHS of Eq. 5.5.1 (first column),
5.5.2 (second column) and 5.5.3 (third column) are plotted as functions of δ for two fixed energies 2.5 GeV
(top row) and 5 GeV (bottom row). The overall ∆Pµe is represented by the red curve and the small red
circles denote where it becomes zero.

5.6 Probability analysis for Pµµ

Proceeding along similar lines as section 5.5, we derive the expressions for PNS I
µµ − PS I

µµ.

∆Pµµ(|εeµ|) = PNS I
µµ (|εeµ|) − PS I

µµ

≈ −4s3
23

A
1 − A

|εeµ|

[
As23|εeµ| + 2s13 cos δ

]
X︸                                               ︷︷                                               ︸

I

+ 4s2(23)
Y

A(1 − A)

[
αs13s2(12) cos δ − (αs2(12) + Ac23|εeµ|)D(|εeµ|) cos(δ − θ(|εeµ|))

]
︸                                                                                                        ︷︷                                                                                                        ︸

II

(5.6.1)

∆Pµµ(|εeτ|) = PNS I
µµ (|εeτ|) − PS I

µµ
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Figure 5.11: Deµ
1 and Deτ

1 are plotted as functions of energy (left panel). γ
eµ
1 and γeτ

1 are plotted as
functions of energy in the right panel. The standard oscillation parameters are at their b.f value (Table 5.1).

≈ −4s2
23c23

A
1 − A

|εeτ|

[
Ac23|εeτ| + 2s13 cos δ

]
X︸                                                  ︷︷                                                  ︸

I

+ 4s2(23)
Y

A(1 − A)

[
αs13s2(12) cos δ − (αs2(12) − As23|εeτ|)D(|εeτ|) cos(δ − θ(|εeτ|))

]
︸                                                                                                       ︷︷                                                                                                       ︸

II

(5.6.2)

where,

X = c2
23∆ sin 2∆ +

sin2(1 − A)∆
(1 − A)

− 2c2
23 cos A∆ sin∆

sin(1 − A)∆
(1 − A)

Y = c2
23 sin2 A∆ + s2

23 sin2(1 − A)∆ − s2
23 sin2 ∆ − c2(23)A sin2 ∆

D(|εeµ|) =

{
s2

13 + A2s2
23|εeµ|

2 + 2As13s23|εeµ| cos δ
}1/2

; θ(|εeµ|) = arctan
As23|εeµ| sin δ

s13 + As23|εeµ| cos δ

D(|εeτ|) =

{
s2

13 + A2c2
23|εeτ|

2 + 2As13c23|εeτ| cos δ
}1/2

; θ(|εeτ|) = arctan
Ac23|εeτ| sin δ

s13 + Ac23|εeτ| cos δ
.
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Figure 5.12: The terms (denoted by green, blue and cyan curves) in the RHS of Eq. 5.6.1 (first column),
5.6.2 (second column) and 5.6.3 (third column) are plotted as functions of δ for two fixed energies 2.5 GeV
(top row) and 5 GeV (bottom row). The overall ∆Pµµ (sum of the three terms) is represented by the red
curve and the small red circles denote where it becomes zero.

∆Pµµ(εµτ) ≈ (−2|εµτ|A∆s3
2(23) sin 2∆ cos φµτ)︸                                 ︷︷                                 ︸

I

+ (−4A|εµτ|c2
2(23)s2(23) sin2 ∆ cos φµτ)︸                                      ︷︷                                      ︸

II

≈ −4|εµτ|As2(23) sin∆ cos φµτ[∆s2
2(23) cos∆ + c2

2(23) sin∆]. (5.6.3)

In Fig. 5.12, we plot the terms of Eq. 5.6.1, 5.6.2 and 5.6.3 for two fixed energies 2.5 GeV

and 5 GeV as functions of δ. We have already observed before that for the disappearance

channel, it is the higher energy range that contributes more. To understand ∆Pµµ, we will

thus refer to the more relevant bottom row of Fig. 5.12. It is clear from the figure (first

and second column) that the two terms for ∆Pµµ act in the same direction for εeµ (thereby

increasing the overall |∆Pµµ|), but show opposite behaviour for εeτ, leading to an overall

very small ∆Pµµ through cancellation in the latter case. Looking back at Eqns. 5.6.1 and

5.6.2, we note that both term I and II are roughly proportional to cos δ. But due to the

presence of a relative sign in the coefficient of A|εeτ| in the second term, this behaves in
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almost opposite direction of the first. 10 This has an interesting consequence that ∆Pµµ(εeτ)

is significantly small at higher energies unlike ∆Pµµ(εeµ). This is also manifestly evident

from our simulation (Fig. 5.3: bottom row, first and second columns). Additionally, in

Fig. 5.6 (bottom row, first and second column) we have also observed the appearance of

two red peaks around ±π/2 for εeµ and mostly reddish region (implying very small ∆Pµµ)

in presence of εeτ.

Finally, we see from Eq. 5.6.3 and the corresponding third column of Fig. 5.12 that

∆Pµµ(εµτ) is independent of the CP phase δ and its value is quite significant (except around

2.5 GeV) compared to that in presence of εeµ or εeτ. This corroborates the observations in

Fig. 5.3 (bottom row, third column) and Fig. 5.6 (third column).

5.7 SI-NSI difference at the level of event rates in the con-

text of DUNE

Figure 5.13: SI-NSI difference at the level of event rates for νµ → νe channel (top row) and νµ → νµ
channel (bottom row) and for different NSI parameters. The LE flux has been used.

In order to illustrate the SI-NSI degeneracy at the level of event rates, we can define the

10s13 ∼ 0.15, As23|εeµ| ∼ Ac23|εeτ| ∼ 0.03, D(|εeµ|) ∼ D(|εeτ|) . 0.15
αs13s2(12) ∼ 0.004, αs2(12) ∼ 0.027, θ(|εeµ|) ∼ θ(|εeτ|) . 10o

Thus in the first term of the Eq. 5.6.1 and Eq. 5.6.2, cos δ part is dominating and in the second term, θ(εαβ)
is very small,- making the overall ∆Pµµ approximately proportional to cos δ for ease of understanding.
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following quantity

∆Nαβ(E) = NNSI
αβ (E) − NSI

αβ(E) (5.7.1)

where Nαβ stands for the number of events for να → νβ. The results are shown in Fig. 5.13.

The top row depicts the event difference in case of νµ → νe channel and the bottom row

shows the event difference in case of νµ → νµ channel. We have picked four choices of

the parameters as indicated in the figure. These choices are guided by our observations in

Sec. 5.3. The red curves correspond to the almost degenerate case while blue curves cor-

respond to regions away from degeneracy. The vertical grey line is showing the location

of 2.5 GeV (5 GeV) in the top panel (bottom panel). If we use a given beam tune (say,

the standard LE beam tune), the characteristic shape of the event difference spectrum is

similar to the original event spectrum in case of no degeneracy (see the blue solid and

dashed curves). When we choose the parameters corresponding to degenerate solutions,

the spectrum shape of the event difference is completely altered (see the red curves). In

the latter case, one can note that the SI-NSI degeneracy manifests itself in the form of

a dip near the energy value of 2.5 GeV at which first oscillation maximum occurs for

νµ → νe channel.

Some of the crucial features that can be seen from Fig. 5.13 are :

• εeµ and εeτ have the largest impact in case of νµ → νe channel (top row of Fig. 5.13).

• εµτ has the largest impact in case of νµ → νµ channel (bottom row of Fig. 5.13).
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Neutrino oscillation physics is entering into the precision measurements era. The present and future long

base-line neutrino experiments could able to determine the values of oscillation parameters with more

precision. Another aim of these experiments is  to search for various new physics which may arise in the

neutrino sector. New physics can alter the oscillation probability. Hence long-baseline experiments with

huge detector mass can in principle put severe constraints on the new physics scenarios. We can detect

neutrino through charged current (CC) and neutral current (NC) measurements. In literature, there are

many studies on CC measurements. But NC measurements are less explored. In this thesis,  we show the

capability of NC and CC measurements to constrain various new physics scenarios. We also show that how

the presence of new physics can alter the standard measurements at long-baseline neutrino experiments.

    The  new physics  which  are  in

active  exploration  are  sterile

neutrino,  non-unitarity,  non-

standard interactions (NSI) etc. The

NC measurements are proportional

to the total number of active flavor

present  in  the  beam.  In  the

presence  of  light  sterile  neutrino,

the  active  flavor  can  oscillate  into

the sterile state. Hence the number

of  active  flavors  reduces  form the

standard expected value. Thus,  we

are  able  to  constrain  some  sterile

parameters  which  are  not  much

accessible in the CC measurements.

We  can  also  combine  NC  and  CC

measurements of the long-baseline experiments to constrain sterile and non-unitarity parameters more

effectively. We observe that the different beam tune at DUNE experiment can improve the bounds on  NSI

parameters significantly. We also show that in the presence of non-unitarity, the mass hierarchy sensitivity

of the long-baseline experiments will be  deteriorated to a great extent. 

  NC measurements give us a new window to explore new physics scenarios in the long-baseline neutrino

experiments. Finally, the combination of NC and CC measurements can constrain the new physics more

effectively.                                 
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