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Summary

For few years now there have been keen interest among theoretical high-energy physicists
regarding a 0+1 dimensional model of Majorana fermions with random all to all inter-
action known as the Sachdev Ye Kitaev model or the SYK model for short. Although in
condensed matter theory there have been much studies regarding thermalization and other
thermodynamic properties in models without a spin glass transition for example the orig-
inal Sachdev Ye (SY) model or (a simpler but of similar properties) the SYK model itself,
the property which has been of most interest to people in the high energy community is
that this model or more precisely, this class of models exhibit maximal chaotic behavior
in the Infra Red(IR) regime or low frequency regime. This makes it interesting because
as we know that the maximal chaotic behavior is exhibited by the fastest scrambler of
information in nature i.e. Black Holes. So this model can potentially describe or atleast
serve as a prototype for the dual of black holes.

In this thesis we look closely into the chaotic behavior of the SYK model with complex
fermions in the presence of a chemical potential. In particular we look at the four point
and six point OTOC. The findings of the works related to this can be nicely summarized
as follows,

• We observe that the effect of the chemical potential appears through an effective
coupling which is a function of both the disorder averaged coupling strength as well
as the chemical potential. The maximal Lyapunov exponent becomes a sensitive
function of the chemical potential via the effective coupling.

• This feature is fairly robust and holds even when we have multiple flavors of fermions
in the system.

• We compute the six point OTOC numerically and plot it to extract the chaos expo-
nent by fitting with a suitable function. The maximal chaos exponent in this case in
the IR is ≈ 3π

β
within the numerical errors.

We also look at the SYK model with Majorana fermions when the system undergoes
a quench. Our main goal is to study the thermalization of the system post the quench
scenarios numerically. For this purpose we consider 2, 4, 6 and 8 point interactions where
more than one type of vertex are allowed. We look at two different quench protocols
namely “STEP" and “BUMP" quenches.

The main technical results of this analysis are as follows:
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2 Summary

• In q = 2 theory, the two point functions do not thermalize in any of the quench
scenario. But an interesting observation is that the two point functions equilibrate
instantaneously as soon as both the time arguments are outside the quench region.

• In q = 4 theory, the two point functions thermalize for all the quench scenario.
G>(t1, t2) converges exponentially towards its equilibrium expectation value. This
exponential behaviour is observed as soon as both the time arguments are outside
the quench region.

• In q = 4 theory, we also identify two exponents, of which, one is equal to the
coupling and the other is proportional to the final temperature. The first one is
the exponent of G>(t − ta, t) as a function of t with ta fixed, while the other is the
exponent of G>(t, tb) as a function of t with tb fixed.
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Introduction

The study of chaos in quantum dynamical systems has been interesting to the physics
community for quite some time [1–5]. One of the key features of this phenomena is
that there is no unique definition of chaos in quantum mechanics as opposed to classical
mechanics. In a classical dynamical system chaos is characterized by the response of
classical trajectories subjected to the initial condition. To elaborate let us denote by q(t)
the position of a particle at time t in a classical dynamical system, subjected to the initial
condition (or position) q(0). Now if we start with some different initial condition say,
q(0) + δq(0) such that the final position of the particle becomes q(t) + δq(t), then we say
that the system is chaotic if,

δq(t)
δq(0)

∼ eλLt. (0.0.1)

Note that a system can be bounded yet be chaotic. The exponent λL is called the Lyapunov
exponent and is the measure of chaos in a system. Chaos in a system can subsequently
lead to ergodicity, thermalization and other coarse grained properties of the system. In
quantum mechanics since trajectories of particles are ill defined, such a description is not
very useful and hence there have been various descriptions of chaotic behavior in quantum
mechanical systems such as the Random Matrix models [6–10], behavior of the four point
Out of Time Ordered Correlation functions (OTOC) [11–14].

It was shown [11,15,16], following the OTOC description of chaos in a quantum systems,
that Black Holes being the fastest scramblers of information in nature puts an upper bound
on the value of the Lyapunov exponent and they themselves saturate this bound,

λL ≤
2π
β
. (0.0.2)

This feature is famously known in the literature as the maximal chaotic behavior. It is
for this reason that any quantum mechanical model which exhibits this phenomena is
interesting to study as a dual to a geometry with Black Holes [17–20].

The Sachdev-Ye-Kitaev(SYK) model provides us with such an example. This is a 0+1 di-
mensional quantum mechanical model consisting of N Majorana fermions which interact
among themselves. The Hamiltonian of this model is given by,

H =
∑
i1...iq

Ji1...iqψ
i1 ....ψiq . (0.0.3)

Where Ji1...iq is a Gaussian random distributed coupling for the q point interaction vertex.
In the IR limit i.e the low energy or equivalently the strong coupling limit this model
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8 Introduction

exhibits an emergent conformal or reparametrization invariance. We work in the large
N limit where only the melonic diagrams contribute to the two point function to order
∼ 1/N. As for the four point function, the contribution to order ∼ 1/N for the fully
connected piece comes from the ladder diagrams. One can calculate the four point OTOC
at finite temperature and it exhibits a behavior as,

〈ψi(t)ψ j(0)ψi(t)ψ j(0)〉 ∼ 1 − e
2π
β t , (0.0.4)

which implies that the Lyapunov exponent saturates the bound [21].

λL =
2π
β
. (0.0.5)

The study of chaotic behavior of quantum systems is interesting for other reasons as well,
since it is widely believed that chaos leads to ergodicity and thermalization. The nature
of the maximally chaotic mode and its response to perturbations of the hamiltonian by
relevant operators have been one the major interest of the SYK programme also [22].

There are several generalizations of this model preserving these remarkable features.
These are two-dimensional versions of the model, formulated both on the lattice [23] and
in the continuum [24], models having flavor symmetry [25] and supersymmetry [26, 27].
There are also tensor models with non-random coupling sharing many properties of the
SYK [28–35]. Our focus is mostly on the SYK model with complex fermions. It has been
studied in from a thermodynamical perspective [36] to compute transport coefficients of a
strange metal. The class of models sharing these similar features, constitute a vast areana
for studying dynamical quantum phase transitions [37]. There are several other features
of the SYK like models (in particular Tensor models) which have picked up interests
recently, for example the finite N results i.e. non-perturbative in N [38].

For classical dynamical systems, characterized by phase space coordinates {q(t), p(t)},
where q(t) and p(t) are generalized positions and generalized momenta. A particular
trajectory is represented by q(t). High sensitivity of the late time trajectory with respect
to the initial condition can be quantified as:

exp (λLt) =
∂q(t)
∂q(0)

≡ {q(t), p(t)} , (0.0.6)

where λL is the so-called Lyapunov exponent and the right-most expression above is
the Poisson bracket [39]. By virtue of the correspondence principle, we obtain a quan-
tum mechanical characterization, by replacing the Poisson bracket with a commutator:
{q(t), p(t)} → −i~[q(t), p(t)] [16]. Instead of computing the commutator, one calcu-
lates the squared commutator, so that there is no spurious cancellation due to destructive
phases. This argument, however, is limited and does not necessarily imply that allowing
for such phases will always cancel the chaotic growth. In this article, we will calculate
the cubic power of the commutator, which will explicitly display the exponential growth
behaviour.

Thus, we can define a generic function for the diagnostic of chaos:

C(n)(t1, t2) ≡ 〈[V(t1),W(t2)]n〉 , (0.0.7)
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where n ∈ Z+, and V and W are two self-adjoint operators and the expectation value
is defined with respect to a particular state of the system. Note that, in defining the
chaos diagnostic in (0.0.7), we have recast the chaotic property as a feature of n-point
correlation function of the system. A straightforward analogy with the classical limit
does not preclude a two-point function from displaying the exponential growth, but we
know of no explicit example of the same. In this article, we will explicitly discuss the
case for n = 3 in a thermal state.

Before doing so, let us briefly look at the n = 2 case. Written explicitly, the commutator
contains various four-point functions with no particular time-ordering, since t1 and t2 are
defined without any ordering. For a thermal state expectation value, using the KMS con-
ditions1, it is further possible to rearrange the various four-point functions in terms of two
pieces: one time-ordered four-point function and another out-of-time-ordered correlator
(OTOC). These are given by 〈V(0)V(0)W(t)W(t)〉 and 〈V(0)W(t)V(0)W(t)〉, respectively,
choosing t1 = 0 and t2 = t. The time-ordered correlator does not display the exponential
growth, it is contained in the four-point OTOC. There have been exhaustive studies of
OTOC in quantum systems [40–42].

For n = 3, upon using the KMS condition, the chaos diagnostic in (0.0.7) has one time-
ordered and two OTOC pieces. These are simply, 〈V(0)V(0)V(0)W(t)W(t)W(t)〉 (time-
ordered) and

〈V(0)W(t)V(0)W(t)V(0)W(t)〉, 〈V(0)W(t)V(0)V(0)W(t)W(t)〉,
〈W(t)V(0)V(0)W(t)V(0)W(t)〉 ,

(0.0.9)

etc, which are OTOC. While a complete understanding of the behaviour of (0.0.7) for
arbitrary n is desirable, we will explore an exact calculation for n = 3 in this article, with
a particularly simple model.

Thermalization of a system can be labeled as the non-equilibrium dynamics of the system
before reaching to a final temperature. The equilibrium analytic results for many quanti-
ties fail to hold out of equilibrium for obvious reasons and hence in many cases one has
to resort to numerical techniques to compute relevant quantities and study their behavior.
In contemporary literature [20, 43–45] the thermalization in SYK model was studied in
the presence of quantum quenches. By this we mean that assuming a system to be at
equilibrium one introduces a quench (localized at t = 0 say) and then the dynamics of the
system is studied post quench where at late times the system equilibriates to some other
temperature.

Certain aspects of quantum quenches in SYK models have been studied in [43]. In this
paper, using similar numerical techniques, we will study quantum quenches in q = 2, 4,
and higher SYK models. We will consider one particular observable which is the greater

1KMS condition is simply the Euclidean periodicity condition on thermal correlators. For example, for
two operators V(0) and W(t), the KMS condition on the two-point function reads:

tr
(
e−βHW(t)V(0)

)
= tr

(
e−βHV(0)W(t + iβ)

)
. (0.0.8)

Here β is the inverse temperature. Evidently, this condition can be used to interchange the order of the
operators inside a thermal correlator.
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Green’s function G>(t1, t2),

G>(t1, t2) = −i
N∑

i=1

〈ψi(t2)ψi(t1)〉 . (0.0.10)

For majorana fermions, all other two-point functions can be calculated from G>(t1, t2).
The non-trivial time evolution of G>(t1, t2) can be examined by exactly solving its equa-
tions of motion which are the Kadanoff-Baym(KB) equations. Our analysis will involve
changing various parameters with two different kinds of time dependence. The usual
quench protocol in condensed-matter literature is changing, suddenly2 or smoothly but
rapidly, the parameters from one value to another different value. We will consider sud-
den change from one value to another, which we call step quench. In addition to this,
we will also study bump quench, in which the coupling changes for a finite time interval
before returning back to the original value3. We follow the convention q = k quench
when the final hamiltonian of the system has k fermion interaction and the couplings Jq

undergo quench with q , k. We will also consider only sudden limit for both step and
bump quenches.

This thesis contains a study of chaos and thermalization in SYK models. To be a bit more
precise, we study the chaotic behavior and the six point correlation function of the SYK
model with complex fermions with a chemical potential corresponding the conserved
U(1) charge,

∑
i ψ
†

i ψi for the complex fermions.
We first look at how the maximally chaotic behavior is affected by the introduction of the
chemical potential. To be able to get an analytic handle on the computations we work in
the regime of large q, i.e. q → ∞. We find that in this limit the response of the maximal
Lyapunov exponent against µ can be determined through an effective coupling.
Then we look at the non conformal part of six point function of the fermions and try to
see both the triple short time limit and the OTOC and how they vary with µ (the chemi-
cal potential). We use the numerical methods to calculate the six point function because
the analytic computation of the six point function is hard and not tractable. Instead the
numerical results help us deduce the behavior of the six point function for various para-
metric values.
Lastly we look at the thermalization in SYK model (with Majorana) with different quench
protocols, the so called "STEP" and "BUMP" quenches. We determine the behavior of
the two point function as a function of time by numerically evolving the Kadanoff-Baym
equations.
The organization of the thesis is as followed,

• In Chapter 1 we briefly review the SYK model with complex fermions for setting
up the notations and some background. We give the main and relevant results and
indications on how to derive the important formulas.

• Chapter 2 contains the works on the behavior of the maximal Lyapunov exponent
λL when we turn on a chemical potential. Here we derive in details all the relevant

2The smallest scale in the sudden limit is the time scale over which the couplings change.
3Although bump quenches are not well studied in condensed-matter literature, they are more relevant to

black hole physics (using AdS/CFT) than step quenches [46, 47].
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quantities and conclude with a generalization of this phenomena to multiple flavors
of fermions.

• In Chapter 3 we take a look at computing the six point function of complex fermions
and focusing on the non conformal piece. We look at the chaotic behavior of this
piece of the six point function by analyzing the the OTO configuration. We also
look at the behavior as we take the triple short time limit for the six point function.
The works of Gross and Rosenhaus [48, 49] were followed in this regard.

• Lastly in Chapter 4 we present the work on thermalization of the SYK model in
two different quench scenarios, "STEP" and "BUMP". We also compute expo-
nents which characterize the thermalization process out of equilibrium and deter-
mine them as a function of the coupling or as a function of the effective temperature.

• We devote Chapter 5 to the conclusions and discussions for all the works.

All the chapters contain their own appendices.





1 SYK model with complex
fermions and chemical potential

The model we consider is a simple generalization of the so-called Sachdev-Ye-Kitaev
(SYK) system [21, 50–52], in which one considers fermionic degrees of freedom with an
all-to-all interaction. The interaction coupling is drawn from a random Gaussian distribu-
tion with a zero mean value and a given standard deviation characterizing the width. In
the large N limit, in which the number of fermionic degrees of freedom becomes infinite,
the system becomes analytically tractable in the sense that the corresponding Schwinger-
Dyson equations can be explicitly determined. The solution of this equation readily de-
termines the two-point function, as a function of the coupling strength, in general. In
particular, in the low energy limit, this Schwinger-Dyson equation is analytically solvable
and yields a two-point function with a manifest SL(2,R) symmetry. In the infra-red (IR),
this is described by a conformal field theory (CFT), and the two-point function breaks the
conformal group into the SL(2,R) subgroup. In the large N limit, further, the four-point
correlator can be explicitly calculated, which yields the corresponding Lyapunov expo-
nent: λL = 2πT , where T is the temperature of the thermal state. Here, we are working
in natural units. This Lyapunov exponent saturates the so-called chaos bound [11]. In-
triguingly, the chaos bound saturation also occurs for black holes, in which the local boost
factor at the event horizon determines the corresponding Lyapunov exponent as well as the
corresponding Hawking temperature. Only extremal black holes have an SL(2,R) global
symmetry, due to the existence of an AdS2 sector near the horizon. Correspondingly, the
low energy conformal system coming from the SYK model can be shown to capture the
essential physics of the AdS2 [53].

This theory is supposed to have a holographic dual [18, 46, 51, 52, 54–56]. Since SYK is
a (nearly) CFT1, it is naturally assumed to be dual to (nearly) AdS2 geometry. Indeed,
at low temperatures the effective action of the model is given by a Schwarzian derivative
, which also appears in dilaton gravity in AdS2 [57–59]. However, full knowledge of a
gravity dual of the SYK model is still not known.

In addition to pseudo-Goldstone mode of the original SYK, or h = 2 mode of [6], the
complex SYK model contains a mode associated with U(1) charge. Since the U(1) charge
is conserved, the corresponding mode has the dimension h = 0. In the real SYK model,
the four-point function is a sum over eigenfunctions with integer h, including the h = 2
mode. But since it corresponds to an existing operator in the spectrum, it makes the four-
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14 SYK model with complex fermions and chemical potential

point function to diverge. The same mode also contributes to the Lyapunov exponent of
the out of time order correlators. One might expect that the h = 0 mode in the complex
SYK also causes divergence in the four-point function and exhibit chaotic behaviour.

1.1 The SYK model

We will begin by briefly recalling the SYK model. The SYK model is describes all-to-
all random interactions between N Majorana fermions in (0 + 1) dimension involving q
fermions at a time. The Hamiltonian is given by [21, 50]

H = (i)q/2
∑

1≤i1≤......iq≤N

ji1...iqψi1 . . . ψiq , (1.1.1)

where q ≤ N and q = even. The set of couplings
{
ji1...iq

}
are drawn from a random

distribution, such as a Gaussian one, described by

P
(

ji1...iq

)
= exp

−N3 j2
i1...iq

12J2

 , (1.1.2)

where P denotes the probability distribution. The gaussian distribution for a random
variable means the average value of the couplings ji1...iq is zero and the two point average
with all indices contracted is non-vanishing,

〈
ji1...iq

〉
= 0 ,

〈
j2
i1...iq

〉
=

J2 (q − 1)!
Nq−1 . (1.1.3)

The Majorana condition on the fermions simply means that they satisfy the anti-commutation
relation, {

ψi, ψ j

}
= δi j . (1.1.4)

The Lagrangian corresponding to (1.1.1) is given by

S =

∫
dτLE

(
{ψi} ,

{
dψi

dτ

})
, LE =

1
2
ψi

dψi

dτ
− H , (1.1.5)

equivalently L = −
1
2
ψi

dψi

dt
− H , with t = −iτ . (1.1.6)

In the above LE and L corresponds to the Lagrangian in Euclidean and Minkowski signa-
tures, respectively.

To compute correlators at finite temperature the Schwinger-Keldysh formalism is em-
ployed in which, the observables are computed by integrating along the closed-time con-
tour C. The initial state is evolved along this contour both forward and backwards in time.
The contour-ordered Green ’s function is defined as [43],

iG(t1, t2) = 〈TC (ψi(t1)ψi(t2))〉 = θC(t1 − t2)〈ψi(t1)ψi(t2)〉 − θC(t2 − t1)〈ψi(t2)ψi(t1)〉 . (1.1.7)
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The correlation function in the path integral formalism is computed by inserting the com-
ponents of fields on the forward and return path of the contour. The components of the
matrix Green’s functions that we will be interested in are called greater (lesser) Green’s
functions, denoted as G>(<)(t1, t2), and are defined in the following manner 1

G>(t1, t2) ≡ G(t−1 , t
+
2 ) = −i〈ψi(t2)ψi(t1)〉 ,

G<(t1, t2) ≡ G(t+
1 , t
−
2 ) = i〈ψi(t1)ψi(t2)〉 ,

(1.1.8)

where by t+
i we mean ti on the upper contour and t−i denotes ti on the lower contour, and

the contracted index i simply denotes a sum over i. The relative minus sign above is due
to swapping of the position of two Majorana fermions under contour ordering. From the
above definitions, for Majorana fermions,

G<(t2, t1) = −G>(t1, t2) . (1.1.9)

This relation holds even for non-equilibrium dynamics [43, 60].

This model exhibits conformal symmetry in the infrared which is spontaneously broken
by the h = 2 mode, where h is the quantum number of the S L(2) subgroup of the confor-
mal symmetry. This h = 2 mode has chaotic behaviour for q ≥ 4. It turns out that the
h = 2 mode saturates the chaos bound λL = 2π/β [11]. The model with only q = 2 term,
however, does not have chaotic behaviour. This is clearly due to the quadratic nature of
the action and as a result the model is integrable.

1.1.1 SYK model with Complex Fermions

In order to introduce a chemical potential, we will explore the model involving complex
fermions. This model has been studied earlier in the condensed matter context [36], fo-
cussing on transport properties and thermodynamics; and in the context of chaos in [61].
We are interested in the large q expansion of the complex fermion model with an addition
of a non-vanishing chemical potential, which seems analogous to adding a mass term.

The Hamiltonian for the SYK model with complex fermions is

H =
∑

Ji1i2...iq/2iq/2+1...iqψ
†

i1
ψ†i2 ...ψ

†

iq/2
ψiq/2+1 ....ψiq . (1.1.10)

In what follows we will use the notations and conventions used in [36]. In addition to
this interaction term we introduce a chemical potential µ. We are interested in studying
the effect of a conserved charge on the chaotic behaviour of the model. Some of the
earlier works [36, 61] have analysed this model with either quartic interactions or in the
non-chaotic regime. We will work in the large q limit and find out how the Lyapunov
exponent changes as we tune in the chemical potential.

To establish this fact we need to first collect all the necessary ingredients for explaining
this behavior. An exhaustive study of this model is done in [61], we will mention some of
the essential features that will be necessary for our analysis. In addition to the higher di-
mensional operators of the form On = 1

N

∑
i ψ
†

i ∂
2n+1
t ψi which behave in a manner similar to

1We use the commutation relation
{
ψi, ψ j

}
= δi j. So, G>(t, t) = −i/2 and G<(t, t) = i/2.
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those found in the SYK model with Majorana fermions; we also have the operators of the
form Õn = 1

N

∑
i ψ
†

i ∂
2n
t ψi. The lowest lying mode of these operators give the Schwarzian

mode and the U(1) charge respectively. In absence of a mass like term in the action the
two point function of the particle and anti-particle are the same in the free case as well as
the low energy limit of the interacting theory.

G f ree(τ) =
1
2

sgn(τ), Gc(τ) = b
sgn(τ)

|τ|
2
q

, (1.1.11)

where, Gc(τ) is the propagator in the conformal limit. In the low energy, i.e., IR limit it
is possible to obtain the four point function of the fermions using the expansion in the
eigen-basis of the quadratic Casimir operator.

The conformal Casimir operator in terms of the cross ratio χ is given by,

C(χ) = χ2(1 − χ)∂2
χ − χ

2∂χ . (1.1.12)

This is easy to check since, L(τ)
0 = −τ∂τ − ∆, L(τ)

−1 = −∂τ and L(τ)
1 = −τ2∂τ − 2∆τ we have

the Casimir as,

C1+2 = (L(τ1)
0 + L(τ2)

0 )2 −
1
2

(L(τ1)
1 + L(τ2)

1 )(L(τ1)
−1 + L(τ2)

−1 ) −
1
2

(L(τ1)
−1 + L(τ2)

−1 )(L(τ1)
1 + L(τ2)

1 ) ,

i.e., C1+2 = 2(∆2 − ∆) + 2L(τ1)
0 L(τ2)

0 − L(τ1)
1 L(τ2)

−1 − L(τ1)
−1 L(τ2)

1 . (1.1.13)

1.1.2 The four-point kernel and the Casimir

The eigenfunctions of the conformal Casimir also forms a eigen basis for the four point
kernel in the IR limit. The eigenvalue equation of the Casimir is given by,

C1+2

〈
ψ†(τ1)ψ(τ2)Vh(τ0)

〉
= h(h − 1)

〈
ψ†(τ1)ψ(τ2)Vh(τ0)

〉
. (1.1.14)

Where,〈
ψ†(τ1)ψ(τ2)Vh(τ0)

〉
= f A

h + i f S
h =

sgn(τ1 − τ2) + i sgn(τ1 − τ0)sgn(τ2 − τ0)
|τ1 − τ2|

2∆−h |τ1 − τ0|
h |τ2 − τ0|

h . (1.1.15)

When we have Vh = 1 or Vh = ψ†ψ we get respectively an antisymmetric and a symmetric
three point function, 〈

ψ†(τ1)ψ(τ2) 1
〉

=
sgn(τ1 − τ2)
|τ1 − τ2|

2∆ , (1.1.16)〈
ψ†(τ1)ψ(τ2)ψ†ψ(τ0)

〉
=

sgn(τ1 − τ0)sgn(τ2 − τ0)
|τ1 − τ2|

2∆ . (1.1.17)

We can write

C1+2F (τ1, τ2, τ3, τ4) = C(χ)F (χ), and C(χ)Fh(χ) = h(h − 1)Fh(χ) , (1.1.18)
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where

Fh(χ) =
Γ2(h)
Γ(2h) 2F1(h, h, 2h; χ) . (1.1.19)

The eigenvalue of the Casimir operator are chosen to be real so that it is guarantied to be
a hermitian operator. This implies that h(h − 1) ε R and thus we are left with,

h =
1
2

+ i s , or h ε R (1.1.20)

Since we have complex fermions, i.e., ψi = ξi + iηi in case of the correlation functions we
have contribution of two different kinds,

〈ψ†(t1)ψ(t2)...〉 = 〈(ξ(t1)ξ(t2) + η(t1)η(t2))...〉 + i〈(ξ(t1)η(t2) − η(t1)ξ(t2))...〉 . (1.1.21)

While the first piece, namely, the real part is anti-symmetric under the exchange of t1 and
t2, the second piece is symmetric.

In case of the four point function if we consider the time reversal invariant contribu-
tion this leads to two different contributions namely FA(τ1, τ2, τ3, τ4) and FS (τ1, τ2, τ3, τ4)
which are respectively anti-symmetric and symmetric under t1 ↔ t2 and t3 ↔ t4. The first
term i.e., FA(τ1, τ2, τ3, τ4) is identical to the SYK with Majorana but the second term is
new and occurs in the complex fermion model. From [61] we have,

FA(τ1, τ2, τ3, τ4)
G(τ12)G(τ34)

= α0

∫ ∞

0

sds
π2

kA( 1
2 + is)

coth(πs)(1 − kA(1
2 + is))

ΨA
1
2 +is

(χ)

+α0

∑
2 j>0

2 j − 1
2

π2

kA(2 j)
1 − kA(2 j)

ΨA
2 j(χ), (1.1.22)

FS (τ1, τ2, τ3, τ4)
G(τ12)G(τ34)

= α0

∫ ∞

0

sds
π2

kS (1
2 + is)

coth(πs)(1 − kS (1
2 + is))

Ψ S
1
2 +is

(χ)

+α0

∑
2 j+1>0

2 j + 1
2

π2

kS (2 j + 1)
1 − kS (2 j + 1)

Ψ S
2 j+1(χ) , (1.1.23)

where
χ =

τ12τ34

τ13τ24
, (1.1.24)

is the conformal cross ratio and ΨA and Ψ S are linear combinations of the eigen-functions
of the quadratic Casimir. They are antisymmetric, respectively symmetric under the trans-
formation,

χ→
χ

χ − 1
, (1.1.25)

which effectively exchanges the first two or last two arguments of four point function.
Finally kA and kS are eigenvalues of the four point kernels (for antisymmetric and sym-
metric) which commute with the Casimir.
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The next step is to deform the integration contour an take it to infinity. In this process
we pick up the contributions i.e. residues of the integrand at the values of h such that
1 − kA,S (h, ∆) vanishes so the poles that are picked out are precisely the points where the
eigenvalue of the kernel becomes unity. Here also we find a contribution from h = 2 for
kA. In a similar fashion one is able to deform the contour and pick the contributions such
that kS (h, ∆) = 1. The values of h which satisfy these conditions approach

hA = hn = 2n + 1 + 2∆ + O
(
1
n

)
, n ε Z+ (1.1.26)

hS = hn = 2n + 2∆ + O
(
1
n

)
, n ε Z+ (1.1.27)

for large valus of n.

1.1.3 Fermion propagator, with a chemical potential

We define, following [36], the Green’s function to be: G (τ) = −
〈
T

(
ψ (τ)ψ† (0)

)〉
, where

the symbol T stands for time-ordering and τ is the imaginary time. The free fermion
propagator, in the Fourier space, takes the form:

G(µ, ω) =
1

iω + µ
, (1.1.28)

which, in the real space, corresponds to the operator (−∂t + µ). The two point function in
the interacting theory, in the large q limit, can be expanded as:

G(µ, τ) = G0(µ, τ)
(
1 +

g(µ, τ)
q

+ ..

)
, (1.1.29)

where G0(µ, τ) is the Fourier transform of the free propagator, which at zero temperature
it is given by,

G0(µ, τ) = −eµτ
sgn(τ)

2
. (1.1.30)

Figure 1.1: Before the deformation poles are at hεZ and after deformation h is such that
kA(h, ∆) = 1. Figure adopted from [21]
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Here Θ is the Heaviside step function. At non-vanishing temperature, however, it is ob-
tained by evaluating the sum over Matsubara frequencies that appear in the propagator,
(iωn + µ)−1, which yields,

G0(µ, τ) = −
eµτ

eµβ + 1
, 0 ≤ τ ≤ β , (1.1.31)

G0(µ, τ) =
eµτ

e−µβ + 1
,−β ≤ τ ≤ 0 . (1.1.32)

The propagator for τ < 0 is obtained using the periodicity τ → τ + β. The relative sign
between τ < 0 and τ > 0 is a reflection of the fact that G0(µ, τ) is a fermion propagator.
Finally, the function g(µ, τ) is the correction due to melonic diagrams to the free propa-
gator, in the large q limit. In the next subsection we will derive a differential equation for
g(µ, τ) and subsequently solve it.

Let us now see what becomes of the Schwinger Dyson equations in the presence of the
chemical potential and a q point random all to all interaction. We have,

G(µ, ω) =
1

−iω + µ − Σ(µ, ω)
. (1.1.33)

Σ(µ, τ) = J2 (G(µ, τ))q/2 (G(µ,−τ))q/2−1 . (1.1.34)

When µ = 0 and we go to the IR limit we see that the above two equations can be solved
self consistently by using a reparametrization ansatz,

Gc(τ) = b
sgn(τ)

|τ|
2
q

. (1.1.35)

Notice that if we have J2 >> µ then also this solution holds. But let us now rewrite this
expression as an expansion in 1/q,

Gc(τ) = bsgn(τ)
(
1 −

2 log |τ|
q

+ ..

)
. (1.1.36)

This is fairly easy to see and gives us the idea that in the large q the two point function can
indeed be expanded in such a series (1.1.29) where the function appearing as a coefficient
of the 1/q term (i.e. g(µ, τ)) approaches −2 log |τ| in the IR and at zero temperature.

1.1.4 Differential equation for g(µ, τ)

To derive the desired differential equation, we follow a simple generalisation of the method
discussed in [21]. First, note that, in the large N limit, all melonic Feynman diagram can
be summed up to obtain the following Schwinger-Dyson equation:

1
G(µ, ω)

= iω + µ − Σ(ω, µ) , (1.1.37)

Σ(µ, τ) = J2(−1)q/2(G(µ, τ))q/2(G(µ,−τ))q/2−1 . (1.1.38)
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It is straightforward to derive the first Schwinger-Dyson equation by summing up the one
particle irreducible diagrams. Also it is straightforward to verify the second equation
above by looking at the melonic diagrams. Each propagator in this diagram is the two
point function of the full interacting theory i.e. each propagator themselves contain such
melonic contributions, see figure 1.2.

⌃ ⇠ J2G (µ, ⌧)
q
2 G (µ,�⌧)

q
2�1

⇣q

2
� 1

⌘
lines

⇣q

2
� 1

⌘
lines

J J

Figure 1.2: A diagrammatic representation of Σ. Each vertex is worth of strength J, and
(q

2 − 1
)

propagators run inside the loop in each direction. The direction of the arrows correlate with the
sign of τ in the argument of the propagators. The overall direction of the diagram, from left to
right, selects out two additional propagators running in this direction and hence the corresponding
powers of G.

These Schwinger-Dyson equations take especially simple form in the q → ∞ limit. In
particular, the function g(µ, τ) in this limit appears in the exponential:

1
G(µ, ω)

= iω + µ − (iω + µ)2 f ∗ g(µ, ω)
2q

. (1.1.39)

Σ(µ, τ) =
J2G0(µ, τ)

(2 + 2 cosh(µβ))q/2−1 e
1
2 (g(µ,τ)+g(µ,−τ)) . (1.1.40)

We can now identify the self energy contribution to the inverse propagator as the Fourier
transform of Σ(µ, τ) appearing in (1.1.37). Taking the inverse Fourier transform of the
self energy contribution in (1.1.39) we get the differential equation:

(∂t − µ)2 [
G0(µ, τ)g(µ, τ)

]
= 2

qJ2G0(µ, τ)
2(2 + 2 cosh(µβ))q/2−1 e

1
2 (g(µ,τ)+g(µ,−τ)) . (1.1.41)

For τ > 0 this equation reduces to:

∂2
τg(µ, τ) = 2J̃2e

1
2 (g(µ,τ)+g(µ,−τ)) , (1.1.42)
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where,

J̃2 =
qJ2

2(2 + 2 cosh(µβ))
q
2−1

. (1.1.43)

It is worth pointing out at this point that this differential equation is quite similar to that
appearing in [21]. We will solve this equation analytically in the next section.

Before moving further, a few comments regarding the large q result are in order. It is
straightforward to check that, if one goes beyond the leading order in (1/q)-expansion,
the Schwinger-Dyson equation again rearranges itself to the differential equation of the
type discussed above, with the same effective coupling J̃.

To see this explicitly let us first notice that the µ dependence of J̃ comes only from the
free part. If we look at the behavior of the self-energy contribution at O( 1

q2 ) we find for
µ = 0 case, the terms take the form

J2
(
1 +

g(τ)
q

+
g′(τ)

q2 + ...

)q−1

. (1.1.44)

The equation for function g′ cannot be obtained by simply exponentiating it, as was done
for the leading correction, namely g(τ). We instead have an asymptotic series expansion
in 1

q . Now if we turn on finite µ then from the self-energy expression we get,

J2

2(2 + 2 cosh(µβ))q/2−1

(
1 +

g(µ, τ)
q

+
g′(µ, τ)

q2 + ..

) q
2
(
1 +

g(µ,−τ)
q

+
g′(µ,−τ)

q2 + ..

) q
2−1

.

(1.1.45)
The form is exactly like in the SYK model. As a result the equation that we would obtain
in this case will be identical to that for g′ in the SYK model. In other words even for finite
µ, the effective coupling constant J̃ remains unaltered even at higher order in 1/q. The
emergence of one effective coupling is an inherent feature of this asymptotic expansion in
(1/q).

1.2 The six point function preliminaries

In this section we look at some preliminary facts on the six point function which we will
elaborate on later in chapter 3. If we do a large N analysis then from the 1/N expansion
of the six point function is given by,

1
N3

N∑
i, j,k=1

〈
ψ†i (τ1)ψi(τ2)ψ†j(τ3)ψ j(τ4)ψ†k(τ5)ψk(τ6)

〉
= G(τ12)G(τ34)G(τ56)

+
1
N

(G(τ12)F (τ3, τ4, τ5, τ6) + G(τ34)F (τ1, τ2, τ5, τ6) + G(τ56)F (τ1, τ2, τ3, τ4)) +
1

N2S(τ1, ..., τ6) .

(1.2.1)

Here S denotes the fully connected component of the six point function. Since we are
working in the large N limit the only contributions to the fully connected piece comes
from what are known as the “Contact" and the “Planar" diagrams.
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Figure 1.3: The “Contact" and “Planar" diagrams respectively. The dots denote that there
are rungs connecting the legs of the same colour in the “Planar" diagram. (Adapted from
[18, 48], drawn using package tikz.)

We thus have for the “Contact" diagrams,

S c = (q−1)(q−2)J2
∫

dτadτbG(τab)
q
2−3G(−τab)

q
2F (τ1, τ2, τa, τb)F (τ3, τ4, τa, τb)F (τ5, τ6, τa, τb) .

(1.2.2)
While the “Planar" contribution goes as,

Sp =

∫ ∞

−∞

dτadτbdτcFamp(τ1, τ2, τa, τb)Famp(τ4, τ3, τc, τa)Famp(τ5, τ6, τb, τc) , (1.2.3)

where,

Famp(τ1, τ2, τ3, τ4) = −

∫ β

0
dτ0F (τ1, τ2, τ3, τ0)

∫
dω4

2π
e−iω4τ40

1
G(µ, ω4)

.

And S = Sc + Sp, is the full contribution to the fully connected piece of the six point
function.



2 Tuning of Chaos Behavior

In this chapter we study the SYK model with complex fermions, in the presence of an
all-to-all q-body interaction, with a non-vanishing chemical potential. We find that, in the
large q limit, this model can be solved exactly and the corresponding Lyapunov exponent
can be obtained semi-analytically. The resulting Lyapunov exponent is a sensitive func-
tion of the chemical potential µ. Even when the coupling J, which corresponds to the
disorder averaged values of the all to all fermion interaction, is large, values of µ which
are exponentially small compared to J lead to suppression of the Lyapunov exponent.

This chapter is divided in the following sections: In section 2.1, we discuss the calculation
of the retarded kernel. We will first have to compute the retarded Green’s function. Sec-
tion 2.2 is devoted to studying the dependence of the Lyapunov exponent on µ, in details.
We comment briefly on flavoured complex fermion model in section 2.3.

2.1 Calculating the retarded kernel

Let us begin by computing the retarded kernel. We are going to find the expression of the
kernel with all its components analytically continued to real time. Our goal is to find the
eigen-function of this retarded kernel with eigenvalue 1. But for this purpose we need to
figure out what will be the retarded two point function and the Wightman correlator.

Notice that the right hand side of the differential equation (1.1.42) is symmetric under
τ → −τ, whereas on the left hand side we switch from g(µ, τ) → g(µ,−τ). We can
therefore send τ → −τ, and subsequently obtain the resulting equation for g(µ,−τ). The
solutions to the differential equations are exactly of the Maldacena-Stanford form [21],
and are given by

eg(µ,τ) =
cos2

(
πν
2

)
cos2

(
πν

(
|τ|
β
− 1

2

)) , with βJ̃ =
πν

cos
(
πν
2

) . (2.1.1)

Note that, the parameter ν that naturally emerges here contains information about the two
independent UV-couplings: βJ and βµ.

23
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2.1.1 The retarded Green’s function

We begin by defining the retarded Green’s function

GR (µ, t) = lim
ε→0+

[
G> (µ, it + ε) −G< (µ, it − ε)

]
Θ(t) . (2.1.2)

In the q→ ∞ limit, we obtain:

GR (µ, t) = −eiµtΘ(t) . (2.1.3)

The above result, in the limit µ → 0, yields: GR(t) = Θ(t) which is the expected answer.
We can also define:

GR (µ,−t) = lim
ε→0+

[
G> (µ,− (it + ε)) −G< (µ,− (it − ε))

]
Θ(t) , (2.1.4)

which implies GR (µ,−t) = e−iµtΘ(t).

2.1.2 The retarded kernel

Now we analyze the four-point function. In the large N limit, the four-point function can
be expanded in a series of (1/N) and, here, we will only compute the the leading (1/N)-
contribution, in which only the ladder diagrams contribute. Since we are working with
complex fermions, the only non-trivial four-point function is given by

1
N2

N∑
i, j=1

〈
T

(
ψi(t1)ψ†i (t2)ψ†j(t3)ψ j(t4)

)〉
= G (t12) G (t34) +

1
N
F (t1, t2, t3, t4) + . . .

(2.1.5)

The contribution at order (1/N) is collectively denoted by F =
∑

n Fn, where n is the
number of rungs in the corresponding ladder diagram. We refer to [21] for more details.
The composition rule is pictorially represented in figure 2.1.

At large N, the summation over the ladder diagrams can be performed by expressing Fn+1

in terms of Fn integrated, weighted with a kernel, as also pictorially shown in figure 2.1:

Fn+1 (t1, t2, t3, t4) =

∫
dtdt′KR

(
t1, t2; t, t′

)
Fn

(
t, t′, t3, t4

)
, (2.1.6)

where the kernel, denoted above by KR, is given by

KR (t1, t2, t3, t4) = (−1)q/2J2(q − 1) GR (µ, t13) GR (µ,−t24)[
Glr(µ, t34)

]q/2−1 [
Glr(µ,−t34)

]q/2−1 . (2.1.7)

Here Glr (µ, t) is the Wightman function, which is essentially given by the propagator
evaluated at complex time, and in the large q limit we get:

[Glr(t)]q/2−1 [Glr(−t)]q/2−1 =
[
G(it + β/2)

]q/2−1 [
G(−it − β/2)

]q/2−1 . (2.1.8)
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+ + + . . .

t1 t3

t2 t4

. . . . . . . . .

. . . . . . . . .. . .⌘

Fn+1 = K · Fn

Figure 2.1: A diagrammatic representation of the four point function calculation, in the large N
limit. First, only the ladder diagrams contribute, as shown in the first row here. Second, from the
structure of the diagrams, one obtains an iterative process to generate Fn+1 from Fn, composing
with a kernel.

The above is consistent with interpreting the propagator G(µ,−t) as the fermion moving
backward in time, or the anti-fermion moving forward in time. This is why a separation
along the thermal circle picks up a relative sign.

Finally, we obtain:

(−1)q/2J2(q − 1) [Glr(t)]q/2−1 [Glr(−t)]q/2−1 = (−1)q−1 2π2ν2

β2 cosh2
(
πνt
β

) . (2.1.9)

Using this, the complete retarded kernel is given by

KR (t1, t2, t3, t4) = −(−1)q−1eiµ(t13−t24) 2π2ν2Θ (t13)Θ (t24)

β2 cosh2
(
πνt34
β

) (2.1.10)

= eiµ(t12−t34) 2π2ν2Θ (t13)Θ (t24)

β2 cosh2
(
πνt34
β

) . (2.1.11)

The last equality follows from the fact that q is even.

2.2 Exploring the chaos regime

So far, we have obtained the retarded kernel for four fermion fields placed at four arbitrary
points on the thermal circle, denoted respectively by t1, . . . , t4. To extract the chaos be-
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haviour, one needs to calculate the OTO correlation in real time, separating the fermions
by a quarter of the thermal circle [50]. We want to compute the following OTO correla-
tion:

F (t1, t2) = Tr
[
yψi(t1)yψ†i (0)yψ†j(t2)yψ j(0)

]
, y = ρ(β)1/4 . (2.2.1)

In the limit t1, t2 → ∞, the diagram with zero rung is suppressed and thus F (t1, t2) is an
eigenfunction of the retarded kernel KR, with an eigenvalue one. This statement translates
into an integral equation of the following form:

F (t1, t2) =

∫ ∞

−∞

∫ ∞

−∞

dt3dt4KR (t1, t2, t3, t4)F (t3, t4) (2.2.2)

=

∫ ∞

−∞

∫ ∞

−∞

dt3dt4eiµ(t12−t34) 2π2ν2Θ (t13)Θ (t24)

β2 cosh2
(
πνt34
β

) F (t3, t4) . (2.2.3)

Choosing an exponential-ansatz for F (t3, t4) of the form

F (t3, t4) = e
πν
β (t3+t4) eiµt34

cosh
(
πνt34
β

) , (2.2.4)

yields:

F (t1, t2) = eiµt12

∫ t1

−∞

∫ t2

−∞

dt3dt4
2π2ν2e

πν
β (t3+t4)

β2 cosh3
(
πνt34
β

) (2.2.5)

= e
πν
β (t1+t2) eiµ(t12)

cosh
(
πνt12
β

) . (2.2.6)

This implies, following the subsequent steps outlined in [21], that the Lyapunov exponent
is given by

λL =
2π
β
ν , (2.2.7)

where ν is given in equation (2.1.1). In the two extreme limits, we easily get:

λL =
(
2J̃

)
+ . . . , as ν→ 0 ⇐⇒ βJ̃ → 0 , (2.2.8)

=
2π
β

(
1 −

2
βJ̃

)
, as ν→ 1 ⇐⇒ βJ̃ → ∞ . (2.2.9)

In terms of the IR emergent coupling βJ̃, the dependence is identical to the one observed
in [21], however, in terms of the original parameters {βJ, βµ} defining the system, there is
a non-trivial dependence of the Lyapunov exponent. The figure 2.2, shows behaviour of
λ = βλL/2π, which is the normalised Lyapunov exponent, as a function of the coupling
βJ for various values of βµ. Similarly the figure 2.3 shows variation of λ as a function of
βµ for different values of βJ.

To compare with the results obtained in [22] we can also plot the Figure 2.4 using our
formula.
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Figure 2.2: The Lyapunov exponent λ is normalised and takes values between 0 and 1. This
figure shows dependence of λ on βJ for different values of βµ.
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Figure 2.3: The Lyapunov exponent λ is again normalised and takes values between 0 and 1. This
figure shows dependence of λ on βµ for different values of βJ.

Before concluding this section, let us make some comments regarding tuning the chaotic
properties of SYK-type models. In [22], a two-body infinite-range random interaction
between Majorana fermions was introduced, in addition to the four-fermi interaction in
the SYK model. It was found that this interaction can tune the Lyapunov exponent down,
and in fact, push it all the way to zero, similar to what we have observed above. However,
the precise dependence of the Lyapunov exponent with the one-body interaction strength
is different compared to our results.

The Hamiltonian considered in [22] is of the following form:

H =
∑

1≤i1≤i2≤i3≤i4≤N

Ji1i2i3i4 ψi1ψi2ψi3ψi4 + i
∑

1≤i1≤i2≤N

ki1i2 ψi1ψi2 , (2.2.10)

where Ji1i2i3i4 are chosen from a familiar Gaussian ensemble, and the couplings ki1i2 denote
the infinite-range interaction and ψi’s are Majorana fermions. Assuming N is even, we can
consider a particularly special case, in which ki1i2 are non-random, and are characterized
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Figure 2.4: Plot of λLβ

2π against βJ with q = 10. The plots are with respect to κ =

0.1, 0.2, 0.5, 1, where J → J
κ

and µ→ µκ

by a particularly nearest neighbour interaction:

ki1i2 = kδi1+1,i2 if i1 = odd ,
= 0 otherwise . (2.2.11)

The interaction term is now particularly simple:

Hint = i
N∑

i=odd

ki,i+1 ψiψi+1 ≡ Ψ
†KΨ , (2.2.12)

where Ψ † = (ψ1, ψ2, . . . ψN) . (2.2.13)

Evidently, the † operation is equivalent to the transpose operation since we are deal-
ing with Majorana fermions. The matrix K contains the information about the nearest-
neighbour interaction of (2.2.11). It is easy to diagonalize the coupling matrixK , and the
resulting eigenvalues are:

(
N
2

)
copies of

(
+ k

2

)
and

(
N
2

)
copies of −

(
k
2

)
. Suppose that χ+

a ,
with a = 1, . . . ,N/2, eigenvectors have positive eigenvalues and χ−a , with a = 1, . . . ,N/2,
eigenvectors have negative eigenvalues. It is also straightforward to check that: (χ+)† =

χ−, thus we can drop the superscript, and subsequently the interaction term can be written
as:

Hint = k
N/2∑

a

χ†aχa , where
{
χ†a, χb

}
= 2δab . (2.2.14)

We can now rewrite the four-body interaction in the complex χ-basis. Since our starting
point did not preserve the U(1)-symmetry of the complex fermion model in (1.1.10), the
full resulting Hamiltonian does not match with the complex fermion model with q = 4.
However, in the UV, with (J/k) → 0, the four-point interaction is negligible and the two
systems are physically equivalent. In the IR, the two systems are completely distinct.
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2.3 Flavoured Complex fermions with a chemical po-
tential

Let us now generalise this set up, where instead of a U(1) symmetry we have N f number
of flavoured fermions with a global SU(N f ) flavour symmetry, similar to the model con-
sidered in [25]. The fermions now carry two indices, Ψα

i . Here the α is the flavour index
where as i is the site index. One has the following operator algebra:

{Ψα
i , Ψ

β
j } = {Ψα†

i , Ψ
β†
j } = 0 , {Ψα

i , Ψ
β†
j } = δi jδ

αβ . (2.3.1)

It is a trivial matter to find first the kinetic term without introducing the chemical potential
µ it given by

−

∫
dτΨα†

i ∂τΨ
α
i . (2.3.2)

Here repeated indices are summed over unless stated otherwise.

The SU(N f ) invariant two point function in this case will be given by

G(τ) = 〈Ψα
i (τ)Ψα†

j (0)〉 ≡
N f sgn(τ)

2
δi j . (2.3.3)

If we absorb this factor of N f into the overall normalization of the kinetic piece then we
observe that now if one introduces a conserved charge µ then the relevant operator is:

µ

N f
Ψα

i Ψ
α†
i .

We know that the interaction term should be a gauge singlet. We also require that, upon
imposing reality condition on the fermions, this interaction should reduce to the corre-
sponding interaction term in the Gross-Rosenhaus model. Under this, we intuitively write
down the interaction term as:

1

Nq/2
f

Ji1....iqΨ
α1†

i1
....Ψ

αq/2†

iq/2
Ψ
αq/2

iq/2+1
...Ψα1

iq
. (2.3.4)

Now we just use the melon diagrams to figure out the 1PI effective self energy contribu-
tion. Essentially, as before, we observe that from the diagramatics one obtains:

Σ(τ) =
CN f

q
2

Nq
f

J2 [G(τ)]q/2 [G(−τ)]q/2−1 .

So, one can redefine the coupling strength as: J2
eff

=
C

N f
q
2

Nq
f

J2. This means that, if we
have multiple groups of flavours, then the relative strength of the effective couplings scale
according to the above relation. Hence, again we get back the same set of Schwinger-
Dyson equations which we have already solved.
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We already see the emergence of an effective coupling:

J2
eff =

1
Nq

f

N f !(
q
2

)
!
(
N f −

q
2

)
!
J2 , (2.3.5)

which, in the limit q � 1, N f � 1 such that N f � q, naively, yields:

J2
eff =

1
Nq

f

1(
q
2

)
!
J2 → 0 . (2.3.6)

Thus, with a very large global symmetry, the emergent coupling is very weak. This im-
plies that the resulting chaotic behaviour will be accompanied with a vanishingly small
value of the Lyapunov exponent. Thus, we can tune the chaotic behaviour with a global
flavour symmetry, as well.
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In the standard SYK model, in the large q limit, the relevant scale in the system is provided
by an effective coupling:

J =
qJ2

2q−1 ,

which has mass dimension one. The IR CFT resides in the J → ∞ limit, but the ex-
ponential growth of OTOC and subsequently the Lyapunov exponent can be obtained as
a perturbation series in 1/J . This naturally gives an RG-flow of the Lyapunov expo-
nent [21]. In the previous chapter we saw how the maximally chaotic mode of the SYK
model with complex fermions in the large q limit behave in the presence of a chemical
potential µ. Here, in the UV Hamiltonian, we have two natural parameters: βµ and βJ
and the effective coupling in the IR is given by (This is the same as in (1.1.43) with J̃
from here on denoted as)

J2
eff =

q
2

J2

(2 + 2 cosh (µβ))
q
2−1

. (3.0.1)

The strict IR is located at Jeff → ∞ limit, and one can calculate systematically the RG-
flow of the Lyapunov exponent in a perturbation series in 1/Jeff . This RG-flow shows
sensitive behaviour for the Lyapunov exponent as the UV parameter βµ is dialled up as
we saw in 2.2.

In keeping with the theme, in this article, we further compute higher point OTOC for com-
plex fermion SYK-model, with a non-vanishing chemical potential. Our analyses follow
closely the analyses in [48], in the large q limit. However, our analyses are performed
in the complementary regime in that we completely focus on the operators that display
chaotic nature and away from the conformal limit. In spirit of the NAdS/NCFT picture,
this is rather natural regime to consider; in the context of chaotic properties of many body
systems, this is an example of a tractable and explicit higher point OTOC which displays
the expected exponential growth.

In this paper, after computing the fermion six point function with a non-vanishing chem-
ical potential, we take the triple short time limit to estimate the the bulk three point cor-
relator, away from the conformal limit. In this regard, we compute bulk three point func-
tion(triple short time limit of the fermion six point correlators, neglecting the Schwarzian

31
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mode) of the modes satisfying conformal invariance as well as the Schwarzian mode,
using the techniques employed by Gross and Rosenhaus [48].

This chapter is organized as follows. In section 3.1, we compute the six point fermion
correlator in the triple short time limit for the conformal modes in the IR limit i.e. µ
turned off. We then interpret it in terms of the bulk three point correlator [48, 49] in
the IR limit of the conformal modes and check that we do indeed find them to be of
the form of conformal three-point function, in the triple short time limit. We apply this
technique in Section 3.2 to compute the six point function and take the triple short time
limit to determine the three point correlation function of fermion bilinears away from the
conformal limit. These computations in the presence of a chemical potential µwhich only
affects the correlation functions through the effective coupling. We also numerically plot
the OTO configuration with changing time and attempt to extract the chaos exponent.

3.1 Correlation Functions

Let us begin with the short time i.e., τ1 − τ2 = τ12 → 0 limit of the four point function
both for the symmetric and anti-symmetric case,

FA(τ1, τ2, τ3, τ4) =G(τ12)G(τ34)
∞∑

n=1

c2
n

(
|τ12τ34|

|τ13τ14|

)hn

,

FS (τ1, τ2, τ3, τ4) =G(τ12)G(τ34)
∞∑

n=1

c̃2
n

(
|τ12τ34|

|τ13τ14|

)hn

,

(3.1.1)

When we calculate the the six point function of the complex fermions we go to different
short time limits, where the correlation function take some effective form. In the triple
short time limit we calculate it as an effective three point function of the fermion bi-linear
operators. This way one can compute the correlation function near points where differ-
ent arguments approach each other yielding poles and by the property of being analytic
everywhere else we get the full contribution.

In the remaining part of this article we calculate the O(1/N2) coefficient of the six point
function with respect to the 1/N expansion. To this order there are contributions from the
contact diagrams as well planar diagrams. We will now write down the corresponding
expressions:

S = S1 + S2 + S̃1 + S̃2. (3.1.2)

Here the contributions of S1 (contact) and S2 (planar) are exactly same as in [48], namely
the result for the Majorana fermions. In case of the SYK model with complex fermions,
if we demand time reversal invariance, (since the Hamiltonian is itself time reversal in-
variant) we have only two other contributions. Now,

S̃1

90
= (q−1)(q−2)J2

∫∫ ∞

−∞

dτadτbG(τab)q−3FS (τ1, τ2, τa, τb)FA(τ3, τ4, τa, τb)FS (τ5, τ6, τa, τb) ,

(3.1.3)
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is the contact diagram contribution. Here, we have written only one particular assign-
ment of the arguments; there are other possible assignments whose contributions account
for the factor of 1/90 on the left hand side. There are total 90 possible independent
configurations. We will use same symbol h to denote the conformal weight of the bi-
linear operators both for FA and FS , although the values are different for the two: for
FA ⇒ hn = 2n + 1 + 2∆ + O

(
1
k

)
, and for FS ⇒ hn = 2n + 2∆ + O

(
1
k

)
. Also we have,

S̃2

90
=

∫ ∞

−∞

dτadτbdτcF
S

amp(τ1, τ2, τa, τb)F A
amp(τ3, τ4, τb, τc)F S

amp(τ5, τ6, τc, τa) , (3.1.4)

where,

F S
amp(τ1, τ2, τ3, τ4) = J2

∫
dτ0FS (τ1, τ2, τ3, τ0)G(τ40)q−1 . (3.1.5)

Using the Selberg integrals in its special and general forms, one obtains:

F S
amp(τ1, τ2, τ3, τ4) = G(τ12)

∑
n

c̃2
nξ̃nsgn(τ12)sgn(τ43)

|τ12|
hn |τ34|

hn−1

|τ24|
hn+1−2∆|τ23|

hn−1+2∆ . (3.1.6)

Using the short time expansion of four point amplitudes, we get:

S̃ 1

90
=bq(q − 1)(q − 2)J2

∑
n,m,k

c̃ncmc̃k|τ12|
hn |τ34|

hm |τ56|
hkG(τ12)G(τ34)G(τ56)I(1)

nmk ,

S̃ 2

90
=bq(q − 1)(q − 2)J2

∑
n,m,k

c̃ncmc̃kξ̃nξmξ̃k|τ12|
hn |τ34|

hm |τ56|
hk

×G(τ12)G(τ34)G(τ56)I(2)
nmk ,

(3.1.7)

where explicit expressions of the constants c, ξ, c̃, ξ̃ are given in appendix 3.4. The
integrals I(1) and I(2) are given by

I(1)
nmk(τ1, τ3, τ5) = sgn(τ12)sgn(τ56)

∫ ∞

−∞

dτa dτb
sgn(τ1aτ1bτ5aτ5b)|τab|

hn+hm+hk−2

|τ1a|
hn |τ1b|

hn |τ3a|
hm |τ3b|

hm |τ5a|
hk |τ5b|

hk
,

(3.1.8)

I(2)
nmk(τ1, τ3, τ5) = −sgn(τ12)sgn(τ56)

∫ ∞

−∞

dτa dτb dτc

[
sgn(τ3b)sgn(τ3c)

|τ3c|
hm−1+2∆|τ3a|

hm+1−2∆

×
sgn(τab)sgn(τbc)|τab|

hn−1|τca|
hm−1|τbc|

hk−1

|τ1a|
hn−1+2∆|τ1b|

hn+1−2∆|τ5b|
hk−1+2∆|τ5c|

hk+1−2∆

]
.

(3.1.9)

The integral (3.1.8), can be simplified by the change of variables, τa → τ1 − (1/τa), and
τb → τ1 − (1/τb). The simplification is done by first decomposing the integral into sums
of integrals. Namely the integration from −∞ to ∞ will be written as a sum of two, an
integral from −∞ to 0 and an integral from 0 to∞. We implement the change of variables
on each fragment separately, simplify each of them before recombining them back. At
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the end of this exercise, we get

I(1)
nmk(τ1, τ3, τ5) = sgn(τ12)sgn(τ56)

∫ ∞

−∞

dτa dτb

[
1

|τ31|
2hm |τ51|

2hk

×
|τab|

hn+hm+hk−2sgn(τ51τa + 1)sgn(τ51τb + 1)
|τa + 1

τ31
|hm |τb + 1

τ31
|hm |τa + 1

τ51
|hk |τb + 1

τ51
|hk

 .
(3.1.10)

These change of variables are followed up by another pair of change of variables which
are carried out in a sequential manner. We will first implement τa → τa − (1/τ31), and
τb → τb − (1/τ31) and then we will rescale the integration variables τa → (τ53τa)/(τ31τ51)
and τb → (τ53τb)/(τ31τ51).

I(1)
nmk(τ1, τ3, τ5) =

sgn(τ12)sgn(τ56)
|τ31|

hn+hm−hk |τ51|
hn+hk−hm |τ53|

hk+hm−hn
× Ĩ(1)

nmk(hn, hm, hk) ,

Ĩ(1)
nmk(hn, hm, hk) =

∫ ∞

−∞

dτa dτb
|τab|

hn+hm+hk−2sgn(τa − 1)sgn(τb − 1)
|τa|

hm |τb|
hm |1 − τa|

hk |1 − τb|
hk

= S̃ f ull
2,2 (α, β, γ) ,

(3.1.11)

where, α = −hn + 1, β = −hk + 1, and γ = hn+hm+hk
2 − 1.

As in [48], we divide the Selberg integral, S̃ f ull
2,2 , into different parts. This is achieved by

decomposing the integral into three pieces [−∞, 0], [0, 1] and [1,∞] for each integration
variable. This results in six Selberg integrals with appropriately modified arguments.
Carefully keeping track of the signs, gives

S̃ f ull
2,2 (α, β, γ) = S 2,2(α, β, γ) + S 2,2(1 − α − β − 2γ, β, γ)

+ S 2,2(1 − α − β − 2γ, α, γ) + 2S 2,1(1 − α − β − 2γ, α, γ)

− 2S 2,1(α, β, γ) − 2S 2,1(α, 1 − α − β − 2γ, γ) .

(3.1.12)

The generalized Selberg integrals and some important results which are used above are
given in [48], but for completeness we give the relevant definitions here

S n,n(α, β, γ) =

∫
[0,1]n

dτ1...dτn

n∏
i=1

|τi|
α−1|1 − τi|

β
∏
i< j

|τi j|
2γ ,

S n,p(α, β, γ) =

∫
[0,1]p

∫
[1,∞)n−p

dτ1...dτn

n∏
i=1

|τi|
α−1|1 − τi|

β
∏
i< j

|τi j|
2γ .

(3.1.13)

In a similar fashion one can manipulate I(2)
nmk to bring it in a form of the conformal three

point function. This computation, however, is considerably more involved so we instead
do the analysis in the large q. The I(2)

nmk in our case differs from that obtained in [48] by
only the sgn functions while the rest of the integrand has exactly the same form. So for
us also at large q, I(2)

nmk takes the form,

I(2)
nmk(τ1, τ2, τ3) ≈

s̃(2)
nmk

|τ31|
hn+hm−hk |τ51|

hn+hk−hm |τ53|
hk+hm−hn

+ · · · (3.1.14)

In our case of course s̃(2)
nmk is different from s(2)

nmk obtained by Gross and Rosenhaus [48].
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3.2 Away from the Conformal Limit

In this section we carry out the calculation of correlation functions away from the confor-
mal IR fixed point. In the previous chapter we studied the effect of introducing a chemical
potential µ, in the SYK-model with complex fermions. We found that a non-zero µ takes
us away from the conformal limit since it explicitly introduces a scale in the problem.
The effect of introduction of this scale parameter is reflected in the chaotic behavior of
the model, namely, it brings down the value of the Lyapunov exponent. We computed
the required quantities and studied the maximally chaotic mode(in the large q limit where
things can be handled analytically).

We write below the relevant expressions in the large q limit. The two point function(to
the leading order in large N) is given by

G(µ, τ) = G0(µ, τ)

1 +
1
q

log

 cos
(
πν
2

)
cos

[
πν

(
1
2 −

τ
β

)] + ..

 , (3.2.1)

where,

G0(µ, τ) = −
eµτ

eµβ + 1
, 0 ≤ τ ≤ β , (3.2.2)

G0(µ, τ) =
eµτ

e−µβ + 1
,−β ≤ τ ≤ 0 . (3.2.3)

The above relation can be written in a compact manner by,

G0(µ, τ) = −sgn(τ)
eµτ

eµβsgn(τ) + 1
, 0 ≤ τ ≤ β . (3.2.4)

We now aim at calculating the enhanced contribution to the four point function slightly
away from the conformal limit with the chemical potential µ. Note that since we want to
be slightly away from the IR, we will keep µβ to be small and expand all functions in this
variable. Then it can be interpreted that we move slightly away from the IR by turning on
a small chemical potential.

To this end we need to first calculate the shift in the eigenvalue of the Kernel for the h = 2
mode. For this we incorporate the technique used in [21]. We begin with the equation,

KΨ = kΨ, ⇒

∫ ∫
K(τ1, τ2, τ3, τ4)Ψ (τ3, τ4)dτ3dτ4 = kΨ (τ1, τ2) . (3.2.5)

The Kernel is given by,

K(τ1, τ2, τ3, τ4) = −(−1)q/2J2(q − 1)G(µ, τ13)G(µ,−τ24)G(µ, τ34)q/2−1G(µ,−τ34)q/2−1 .
(3.2.6)

We will work in the large q limit. Substituting the Kernel in equation (3.2.5) gives

−qJ2
∫

dτ3dτ4
sgn(τ13)sgn(τ24)eµτ13e−µτ24

(eµβsgn(τ13) + 1)(e−µβsgn(τ24) + 1)

cos2
(
πν
2

)
sin2

(
x̃34
2

)
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×
Ψ (τ3, τ4)

{(eµβsgn(τ34) + 1)(e−µβsgn(τ34) + 1)}q/2−1 = kΨ (τ1, τ2) , (3.2.7)

where ν is defined in (2.1.1) and x̃i j =
2πντi j

β
+ π(1 − ν). Multiplying (3.2.7) by e−µτ12 on

both sides of the equation, and differentiating twice, once with respect to τ1 and once with
respect to τ2 gives,

∂τ1∂τ2

(
sgn(τ13)sgn(τ24)

(eµβsgn(τ13) + 1)(e−µβsgn(τ24) + 1)

)
= 4δ(τ13)δ(τ24) . (3.2.8)

Using the parametrization k = 2
h(h−1) eq.(3.2.7) reduces to,

−
qJ2 cos2

(
πν
2

)
(2 + 2 cosh(µβ))q/2−1 ×

e−µτ12

sin2
(

x̃12
2

)Ψ (τ1, τ2) =
2

h(h − 1)
∂τ1∂τ2

(
e−µτ12Ψ (τ1, τ2)

)
. (3.2.9)

If we substituteΨ (τ1, τ2) = eµτ12e−in(τ1+τ2)ψn(τ12) then after some manipulation of eq.(3.2.9)
(also using (2.1.1)) we arrive at the differential equation,n2 + 4∂2

x −
ν2h(h − 1)

sin2
(

x̃
2

) ψn(x) = 0 . (3.2.10)

Here, x = 2πτ
β

and we have suppressed the subscript on τ since everything is now a function
of the time difference τ12.

The solution to this equation with appropriate boundary condition is well known. In fact
this is the same equation as obtained in [21]. The solution is given by, (with ñ = n/ν)

ψh,n(x) =

(
sin

x̃
2

)h

2F1

(
h − ñ

2
,

h + ñ
2

,
1
2

; cos2
( x̃
2

))
, n = even

ψh,n(x) = cos
x̃
2

(
sin

x̃
2

)h

2F1

(
h − ñ + 1

2
,

h + ñ + 1
2

,
3
2

; cos2
( x̃
2

))
, n = odd .

The quantization condition on h is obtained by demanding that the wave function vanishes
at x = 0, i.e., x̃ = π(1−ν). As we approach the conformal limit ν→ 1 this solution actually
diverges for generic values of h near 2 (we are interested in the h = 2 eigenfunctions). But
we want values of h such that the solutions are finite or vanishing, so the first or second
argument of the hypergeometric has to be a negative integer. This gives the quantization
of h near 2 to be,

hn = 2 + |ñ| − |n|, hn = 2 + |n|
(
1 − ν
ν

)
. (3.2.11)

This gives the shift in the eigenvalue k = 2
h(h−1) to be,

k(2, n) = 1 −
3|n|
2

(1 − ν) +

(
7n2

4
−

3|n|
2

)
(1 − ν)2 + ... . (3.2.12)

This result is identical to the shift obtained in [21], only difference being that ν now
depends on the effective coupling βJeff instead of βJ .
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3.2.1 The enhanced four point contribution

Let us now look at the four point function and use the above result to figure out the
enhanced contribution for the Schwarzian mode slightly away from the conformal limit.
We begin with the expansion of the four point function in the basis of eigenfunctions of
the Kernel, (using the variable θ = 2πτ

β
on the thermal circle and the period becomes 2π)

F (θ1, θ2, θ3, θ4)
G(θ12)G(θ34)

= 2
∑
h,n

k(h, n)
1 − k(h, n)

Ψ exact
h,n (θ1, θ2)Ψ exact∗

h,n (θ3, θ4) . (3.2.13)

To find the enhanced contribution of the Schwarzian or h = 2 mode we use the eigen-
function of the Casimir for h = 2 and the shifted eigenvalue in the denominator. In the
numerator we just use the eigenvalue with h = 2 in the IR. This is done to ensure that we
are only slightly away from the conformal limit driven by introducing a small chemical
potential. Here we will use all results for the large q limit,

F (θ1, θ2, θ3, θ4)
G(θ12)G(θ34)

=
2βJeff

π2

∑
|n|≥2

ein(y′−y)

n2(n2 − 1)

sin
(

nx
2

)
tan

(
x
2

) − n cos
(nx

2

)
sin

(
nx′
2

)
tan

(
x′
2

) − n cos
(
nx′

2

) .
(3.2.14)

Here,

x = θ1 − θ2, x′ = θ3 − θ4, y =
θ1 + θ2

2
, y′ =

θ3 + θ4

2
. (3.2.15)

We have used 1 − ν ∼ 2
βJeff

for large βJeff.

We will now carry out the sum over n. The final expression after all simplifications is
complicated, and to get some sensible result for the six point function using these results
we resort to doing numerical computation. That is, we carry out the integration numeri-
cally to see the behavior of the six point function. We also deduce the chaotic behavior of
the OTO six point correlator even though we do not have an analytic result.

3.2.2 The "Contact" and and “Planar" diagrams

What we want to now claim is that among the Contact diagrams and Planar diagrams,
which contribute to the six point function at leading order in ∼ 1/N, the contact diagrams
dominates the planar ones by an order q4, for the enhanced non-conformal mode contri-
bution to the four point function. So at large q, the contact ones dominate over the planar
ones, and hence we will look at only the former. But let us show a brief argument for why
that is true.

The contact contribution goes as,

S c = (q−1)(q−2)J2
∫

dτadτbG(τab)
q
2−3G(−τab)

q
2F (τ1, τ2, τa, τb)F (τ3, τ4, τa, τb)F (τ5, τ6, τa, τb) .

(3.2.16)
While the planar contribution goes as,

Sp =

∫ ∞

−∞

dτadτbdτcFamp(τ1, τ2, τa, τb)Famp(τ4, τ3, τc, τa)Famp(τ5, τ6, τb, τc) , (3.2.17)
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where,

Famp(τ1, τ2, τ3, τ4) = −

∫ β

0
dτ0F (τ1, τ2, τ3, τ0)

∫
dω4

2π
e−iω4τ40

1
G(µ, ω4)

,

is the amputated four point function. We can use the SD equations to write,

1
G(µ, ω4)

= −iω4 + µ − Σ(µ, ω4) . (3.2.18)

Since we are working at finite temperature, we have to do a Matsubara sum. Notice that
the iω + µ term has no poles, so when we evaluate the sum using the contour integration
prescription, this part vanishes and we are left with,

Famp(τ1, τ2, τ3, τ4) =

∫ β

0
dτ0F (τ1, τ2, τ3, τ0)Σ(µ, τ40) ,

Famp(τ1, τ2, τ3, τ4) = J2
∫ β

0
dτ0F (τ1, τ2, τ3, τ0)G(τ40)q/2−1G(−τ40)q/2 . (3.2.19)

Now we can convert the τ integrals to θ integrals via appropriate scaling and we get,

S c ∼
q(βJe f f )3

(2π)2 , (3.2.20)

where,

Famp(τ1, ..., τ4) ∼
βJe f f

2πqβ
. (3.2.21)

In terms of the θ variable we have,

F (θi, θ j, θa, θb) ∼ βJeffG(θi j)G(θab) , (3.2.22)

and in the large q limit, for large but finite βJeff,

(G(θab))
q
2 (G(−θab))

q
2 ∼

1

(βJeff)2 sin2
(
θab
2

) . (3.2.23)

Here we have put ν = 1 inside the sine function which is consistent to the leading order
with ν → 1 as βJe f f → ∞. As a consequence the (βJeff)2 coefficient of the “Contact"
diagram as well as the amputated four point function cancels out due to the (βJeff)2 ap-
pearing in the denominator of (3.2.23). Now since the planar diagram is given by the
product of three amputated four point functions hence, when we take the product and
convert the τ integrals to θ integrals in (3.2.17), we finally get,

Sp ∼
(βJeff)3

q3(2π)6 . (3.2.24)

Taking the ration of S c with Sp we see that,

S c

Sp
∼ (2π)4q4 . (3.2.25)

So in the large q limit as one can easily see that the contact diagram is far more dominant
compared to the planar ones and hence it is justified to consider the contribution of the
contact diagrams only.
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3.2.3 The six point function

Although one can get an analytic answer for the enhanced four point contribution slightly
away from the conformal limit, calculation of the full six point function becomes some-
what messy to carry out analytically. We therefore compute the six point function using
numerical methods.

Let us first summarize the results, we will then we state all the relevant values used in
carrying out these computations.

• We first compute the six point contribution with three h = 2 mode keeping all the
time arguments to be separate and then we take the short time limit θ1 → θ2 or
θ3 → θ4. We see that the six point function decreases in this limit for various small
values of µβ keeping βJ fixed at some large value.

• We then reverse the order, that is we first take the triple short time limit and then
carry out the integrals numerically for all the possible nonconformal contributions,
i.e.,

Fh=2FcFc, Fh=2Fh=2Fc, Fh=2Fh=2Fh=2 . (3.2.26)

We find that among the three terms listed above, the first contribution almost van-
ishes up to any order in µβ that we are working with, whereas the other two terms
are small but are of the same order and they go as (µβ)2 with small coefficients.
These will get corrected as we go to higher orders.

• To benchmark the code we compute λ(1)
11k (as was done in [48] for all three conformal

modes) for the contact diagrams and plot it against k, where for large k, hk = 2k +

1 + 1/2∆ + O(1/k). We find the similar fall off behavior at large k.

Let us now look at some details of the analysis. One of the things that we have to keep
in mind is that we are slightly away from the conformal limit because we have turned
on a small µβ. We need to be careful while working with the conformal modes. Due to
explicit scale in the theory, the modes may not be conformal anymore. In other words,
the normalized four point contributions of these modes may not be a function of only the
cross ratio χ anymore. However, for small βµ, the conformal perturbation theory makes
sense and within this limit using the conformal basis is justified.

If we recall the eigenvectors of the Kernel then we see that,

Ψ (θ1, θ2) = e
µβ
2π (θ12)ein θ1+θ2

2 ψn(θ12) ,

and to obtain the conformal modes one has to go to the IR, do the sum over n in the four
point function to obtain the sum over integer values of h as well as the integral over the
principle continuous series. One then deforms the contour to pick up the poles at kc = 1,
eigenvalue of the kernel in the conformal limit. In the IR limit the exponential µβ factor
becomes equal to 1, but since it has no n dependence it plays no role when we carry out
the sum over n. Therefore, slightly away from the conformal limit we will have (small
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µβ),

Fh,2(θ1, θ2, θ3, θ4)
G(θ12)G(θ34)

= e
µβ
2π (θ12+θ34)

∞∑
m=1

c2
mχ

hm
2F1(hm, hm, 2hm, χ) (3.2.27)

=

∞∑
m=1

c2
mχ

hm
2F1(hm, hm, 2hm, χ) +

µβ(θ12 + θ34)
2π

∞∑
m=1

c2
mχ

hm
2F1(hm, hm, 2hm, χ)

+

(
µβ

2π

)2 (θ12 + θ34)2

2!

∞∑
m=1

c2
mχ

hm
2F1(hm, hm, 2hm, χ) + · · · .

The above expression breaks conformal invariance and this is the four point function we
will be working with away from the conformal limit.

Since βJeff appears as an overall factor we strip of this factor and look at the integrals
only. For small µβ this factor is large but finite. µβ is kept to be ∼ 7.4 × 10−4.

3.2.4 The Short time and OTO behavior of the Six point function

Since this is a part of the non-conformal piece, we will first compute it by keeping all
times different and then taking one time approaching another for example τ1 → τ2, and
look at how it behaves. In Figure 3.1, we see the behavior of the six point as we take the
short time limit. It is easy to check that when we compute the six point function in the
triple short time limit vanishes.

The contribution to the non-conformal piece coming from the product of three h = 2
modes is shown in Fig. 3.1. In computing the contribution for one or two h , 2 modes,
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Figure 3.1: The plot of the six point function vs τ1 as τ1 → τ2.

we have to be careful as what happens to the “Planar" diagrams as well. For more details
see, Appendix A.

For calculating the OTO correlation function we have to first set a specific configuration
of operators, which is then analytically continued to real time. However, we do not have
the analytic expression so we use the following procedure. We modify the times that are to
be analytically continued keeping their relative positions to be the same. This effectively
corresponds to changing only one time independently. We observe the behavior of the
correlator and compare it with the behavior of the enhanced four point function (for which
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Figure 3.2: The OTO six point and four point function response for changing τ1.

we already know that there is a chaotic behavior) under the same operation. From the
results plotted in fig. 3.1 and fig. 3.2 above it is easy to see that the six point OTO
correlation function actually does exhibit chaotic behavior when we analytically continue
to real time. The chaos exponent can be estimated by fitting the data with an oscillatory
function. We choose an ansatz

a + b sin(λτ) + c cos(λτ) . (3.2.28)

We find that the data is fitted for the following values of a, b, c, and λ,

a = −0.68904 ,
b = 0.56662 ,
c = 0.63927 ,
λ = 1.4364 .

(3.2.29)

The maximal value of the Lyapunov is 3/2 but the fitted value of λ is less than the max-
imal. This is due to the errors in our numerical computation. Because of the small but
non-vanishing value of the chemical potential µ we are indeed slightly away from the
conformal limit but since we are working with the enhanced contribution we should have
gotten a value which is nearer to 3/2. Here we would like to mention that, upto these
errors, this value of λ is in agreement with [62], as the maximal chaos exponent for the
six point OTOC.

3.3 Appendix A

If we consider the behavior of Famp for the h = 2 mode as we take two times to be closer
to each other, then we find the results shown in Figure 3 below.
As we can see from the graph the value of Famp is quite large when the times are well
separated. But computing the six point “Planar" diagram in the triple short time limit
numerically one finds that the contribution is small i.e of the same order as the “Contact"
integrals hence using the fact that the coefficient of the “Contact" diagrams are much
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dominant over the “Planar" ones, we are justified in considering the contribution of the
former only. Although one has to be careful when considering the “Planar" contribution
when h , 2 modes are taken but since the numerics is pretty involved and takes very long
time we do not present those results here.
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Figure 3.3: Plot of Famp against θ1 as it is taken towards to θ2. Along the θ1 axis we mark
the number of steps while the actual interval is 0 − 1 in steps of 0.1.

3.4 Appendix B

In this appendix we collect the expressions of the constants that appear in six point am-
plitude.

cn =
2q

(q − 1)(q − 2) tan(π∆)
(hn −

1
2 )

tan
(
πhn
2

) Γ2(hn)
k′A(hn)Γ(2hn)

, (3.4.1)

c̃n =
2q

(q − 1)(q − 2) tan(π∆)
(hn −

1
2 )

cot
(
πhn
2

) Γ2(hn)
k′S (hn)Γ(2hn)

, (3.4.2)

ξn = bqπ1/2Γ(1 − ∆ + hn
2 )Γ( 1

2 −
hn
2 )Γ(∆)

Γ( 1
2 + ∆ − hn

2 )Γ(hn
2 )Γ( 3

2 − ∆)
, (3.4.3)

ξ̃n = bqπ1/2Γ( 1
2 − ∆ + hn

2 )Γ(1 − hn
2 )Γ(∆)

Γ(∆ − hn
2 )Γ(1

2 + hn
2 )Γ( 3

2 − ∆)
. (3.4.4)
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Here we study non-equilibrium dynamics in SYK models using quantum quench. We
consider models with two, four, and higher fermion interactions (q = 2, 4, and higher)
and use two different types of quench protocol, which we call step and bump quenches.
We analyse evolution of fermion two-point functions without long time averaging. We
observe that in q = 2 theory the two-point functions do not thermalize. We find thermal-
ization in q = 4 and higher theories without long time averaging. We also calculate two
different exponents of which one is equal to the coupling and the other is proportional to
the final temperature. This result is more robust than thermalization obtained from long
time averaging as proposed by the eigenstate thermalization hypothesis(ETH). Thermal-
ization achieved without long time averaging is more akin to mixing than ergodicity.
Our main object of interest is the Kadanoff-Baym equations which we will use to analyse
the non-equilibrium dynamics of the SYK model. Before we set up the Kadanoff-Baym
equations, let us consider the Schwinger-Dyson equation.

4.1 Why non-equilibrium dynamics?

The study of non-equilibrium dynamics is becoming important both in condensed mat-
ter physics [43, 50, 63–70] as well as in string theory [20, 45, 71–74]. Applications to
holography i.e. in case of a black hole collapse where the system tends towards equi-
libriation [75, 76] has been in the literature in the recent past. Studies of holographic
entanglement entropy, in context of time evolution [77] and multi-scale renormalization
ansatz [78–80] is another related area of research which finds the use of non-equilibrium
dynamics. One of the most interesting question in this field is to understand patterns of
thermalization in the systems which are out of equilibrium. For example, it is important
to know under what conditions a closed quantum system thermalizes, i.e., for a system
prepared in a pure excited state, and undergoes unitary evolution, determine how the late
time limit of the expectation values of certain observables are effectively described by a
thermal ensemble1. Interest in the non-equilibrium dynamics from string theory point-of-
view stems from black hole physics. The AdS/CFT correspondence(or the holographic

1The expectation values can equilibrate but the stationary limits may not be described by a thermal
ensemble, which we will observe below for q = 2 theory for which the fermion two-point functions freeze
instantaneously but its values are not described by a thermal ensemble.

43
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principle, in general) says that a black hole corresponds to thermal ensemble in the bound-
ary quantum theory, and the thermalization process in the quantum system is conjectured
to be dual to black hole formation in the bulk gravitation theory.

On the bulk gravity side it has been conjectured that black holes are fast scramblers [15].
This proposal led to another conjecture [11] that the chaotic behaviour, that leads to
scrambling, which is parametrized by the Lyapunov exponent λL has an upper bound,
and that upper bound is saturated by black holes. This naturally gave additional impetus
to the study of non-equilibrium dynamics in systems which exhibit chaos, especially if
the Lyapunov exponent of the theory saturates the upper bound.

The eigenstate thermalization hypothesis (ETH) is an attempt to explain how closed uni-
tary quantum systems in pure excited states can thermalize [81, 82]. Thermalization with
ETH crucially involves long time averaging of the observables under consideration. It is,
however, not clear what is the precise relation between chaos and ETH. In many studies
of quantum systems, thermalization is observed even without long-time averaging [65].
Thermalization has also been seen in the integrable systems without long time averaging.
The late time behaviour of integrable models is described by the generalized Gibbs en-
sembles [44,83]. These ensembles have fugacities turned on for several conserved charges
of the integrable system. The integrable model, by definition, is not chaotic on its own.

The most convenient method for studying non-equilibrium dynamics, both theoretically
[43, 45, 66–69, 72, 84–86] and experimentally [87, 88], turns out to be quantum quench.
In other words, quantum quenches are the most convenient way of generating non-trivial
excited states of the theory. In quantum quench one abruptly changes parameters of the
Hamiltonian of the system starting from an equilibrium configuration(generally a thermal
state or the ground state) of the system. The change in the coupling generally excites the
system and the system evolves non-trivially with the final Hamiltonian. The evolution of
the system is examined by calculating the expectation values of some of the observables
of the system. If the expectation values of those observables approach the expectation
values in a thermal ensemble, the system is said to have thermalized.

An important aspect of the work presented in this chapter is to check if step quenches
produce special fine-tuned pure states which looks exactly thermal. These pure states are
inspired by the Euclidean evolved boundary states of Calabrese and Cardy [89]. These
states, which we will refer to as Kourkoulou-Maldacena (KM) states below, have inter-
esting bulk duals [90]. The details of these pure states can be found in section 4.3.2. We
observed that the final states of quantum quenches using disordered couplings are not KM
states. But one can use mass like terms to perform the sudden step quenches for which
the final states are the KM states.

The thermalization we observe in q = 4 theory without long time averaging, is much more
robust than what one expects from the ETH. We therefore believe that thermalization in
a chaotic system is more akin to mixing in classical systems which is a stronger condition
than ergodicity.

The outline of this chapter is as follows: In section 4.2, we will briefly recall the derivation
of the Schwinger-Dyson equation in the SYK model with Majorana fermions. This will
also be used to fix our notation. We will write down the Schwinger-Dyson equation for
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a model with both q = 2 and 4 interactions. The couplings for these terms will have
arbitrary time dependence to start with. In section 4.3 we will set up the Kadanoff-Baym
equations for this system which can be easily generalized for higher q models. Finally
we will briefly discuss the eigenstate thermalization hypothesis(ETH). In section 4.3.2, we
discuss Kourkoulou-Maldacena states with an eye on possible relation between our results
and these excited states. In section 4.4, we discuss various quench protocols that we
study in the SYK model and present results of our numerical computations. Section 5.3
contains conclusion and discussion where we wrap up our results and discuss about ways
to prepare Kourkoulou-Maldacena states and the implications of thermalization without
long-time averaging.

4.2 The Schwinger-Dyson(SD) equations

We will consider the time dependent Hamiltonian which describes different quench pro-
tocols depending on the kind of time dependence we allow for the couplings of the theory.
To simplify the matter we will extract the time dependence of the couplings and write it
in terms of separate functions of time. For example, up to the quartic fermion interaction
i.e., q = 4, the Hamiltonian is

H(t) = i
∑
i< j

J2,i j f2(t)ψiψ j −
∑

i< j<k<l

J4,i jkl f4(t)ψiψ jψkψl , (4.2.1)

where, f2(t) and f4(t) contain the time dependence of the couplings. The partition function
of this model is written in terms of the action functional,

S [ψ] =

∫
C

dt

 i
2

∑
i

ψi∂tψi − i
∑
i< j

J2,i j f2(t)ψiψ j +
∑

i< j<k<l

J4,i jkl f4(t)ψiψ jψkψl

 . (4.2.2)

All the interaction terms in the SYK model couple all fermions to each other and have
random couplings. The randomness of the coupling is meant to mimic the disorder in
the system. We will average the partition function over the gaussian distributed random
couplings,

Z =

∫
Dψ

∫
DJ2,i j

∫
DJ4,i jkl P1(J2,i j)P2(J4,i jkl) exp(iS [ψ]) , (4.2.3)

where the gaussian weight functions, P1(J2,i j) for the quadratic coupling andP2(J4,i jkl) for
the quartic coupling have width 2J2

2/N and 12J2
4/N respectively. Usually in the quenched

disorder the integration over the random variables is carried out at the end of the compu-
tation, however, in the large N limit we can reverse the order. Carrying out the gaussian
integral over the quadratic and quartic couplings gives us the effective action

iS eff = −

∫
C

dt
1
2

∑
i

ψi∂tψi −
1
2
×

J2
2

2N

∫
dt1dt2

∑
i, j

f2(t1) f2(t2)ψi(t1)ψi(t2)ψ j(t1)ψ j(t2)

+
3J2

4

4!N3

∫
dt1dt2

∑
i, j,k,l

f4(t1) f4(t2)ψi(t1)ψi(t2)ψ j(t1)ψ j(t2)ψk(t1)ψk(t2)ψl(t1)ψl(t2) .

(4.2.4)
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In this effective action the sum runs over all values of i, j, k, l and the combinatoric factors
take care of the ordering of fermions in each term. Following [43], we will write this
effective action in terms of auxiliary fields and convert it into a quadratic action in terms
of the fermions. The path integral in terms of the auxiliary functions, suggestively named
as G(t) and Σ(t),

Z =

∫
DψDGDΣ exp

−∫
C

dt
1
2

∑
i

ψi∂tψ
i +

J2
2 N
4

∫
C

dt1dt2 f2(t1) f2(t2)G(t1, t2)2

−
3J2

4 N
4!

∫
C

dt1dt2 f4(t1) f4(t2)G(t1, t2)4

+
i
2

∫
C

dt1dt2Σ(t1, t2)

G(t1, t2) +
i
N

∑
i

ψi(t1)ψi(t2)

 ,
(4.2.5)

where,

G(t1, t2) = −
i
N

∑
i

ψi(t1)ψi(t2) . (4.2.6)

The auxiliary field Σ is introduced so that we can implement the constraint (4.2.6) as
an equation of motion of Σ. This is done by implementing the constraint through the
δ-function. This procedure reduces the action (4.2.5) to quadratic form in terms of the
fermions. We can now integrate out the Majorana fermions and write the effective action
S [G, Σ] purely in terms of G and Σ,

S [G, Σ] = −
iN
2

Tr(log
[
−i(G−1

0 − Σ)
]
) +

iJ2
2 N
4

∫
dt1

∫
dt2 f2(t1) f2(t2)G(t1, t2)2

−
3iJ2

4 N
4!

∫
dt1

∫
dt2 f4(t1) f4(t2)G(t1, t2)4 +

iN
2

∫
dt1dt2Σ(t1, t2)G(t1, t2) .

(4.2.7)

An advantage of this form of the effective action is that the Schwinger-Dyson equations
can be derived as equations of motion of this action,

Σ(t1, t2) = G−1
0 (t1, t2) + G−1(t1, t2) , (4.2.8)

Σ(t1, t2) = J2
2 f2(t1) f2(t2)G(t1, t2) − J2

4 f4(t1) f4(t2)G(t1, t2)3 . (4.2.9)

A similar analysis can be carried out for the six and higher fermion interactions in an
analogous manner. Let us now consider the eq.(4.2.9) and take the convolution product
with G(t1, t2) from both right and left, this procedure gives us two equation,∫

C

dt3G−1
0 (t1, t3)G(t3, t2) = δC(t1, t2) +

∫
C

dt3Σ(t1, t3)G(t3, t2) , (4.2.10)∫
C

dt3G(t1, t3)G−1
0 (t3, t2) = δC(t1, t2) +

∫
C

dt3G(t3, t2)Σ(t1, t3) . (4.2.11)

To study the Kadanoff-Baym equations besides eq. (4.2.10), (4.2.11) we will need the
retarded, the advanced and the Keldysh Green’s functions which are defined as

GR(t1, t2) ≡ Θ(t1 − t2)[G>(t1, t2) −G<(t1, t2)], (4.2.12)
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GA(t1, t2) ≡ Θ(t2 − t1)[G<(t1, t2) −G>(t1, t2)] , (4.2.13)
GK(t1, t2) ≡ G>(t1, t2) + G<(t1, t2) . (4.2.14)

Along these lines define the retarded, advanced self-energy in the following manner.

ΣR(t1, t2) ≡ Θ(t1 − t2)[Σ>(t1, t2) − Σ<(t1, t2)] , (4.2.15)
ΣA(t1, t2) ≡ −Θ(t2 − t1)[Σ>(t1, t2) − Σ<(t1, t2)] . (4.2.16)

4.3 The Kadanoff-Baym (KB) equations

Equations (4.2.10) and (4.2.11) can be manipulated using the real space representation of
G−1

0 on the left hand side and contour deformation on the right hand side to write

i∂t1G
>(t1, t2) =

∫ ∞

−∞

dt3{Σ
R(t1, t3)G>(t3, t2) + Σ>(t1, t3)GA(t3, t2)} . (4.3.1)

− i∂t2G
>(t1, t2) =

∫ ∞

−∞

dt3{GR(t1, t3)Σ>(t3, t2) + G>(t1, t3)ΣA(t3, t2)} . (4.3.2)

Note that the contour starts from some time t0 and the operators are inserted in the correct
order for different values of t1 and t2 and then comes back to t0. For quenches starting
from a thermal state, the contour further goes down in the imaginary time direction for an
interval of length βi which is the inverse temperature of the initial thermal state (Figure
4.1).

t0 t1

t2

iβ

t0 → −∞

t1

t2

Figure 4.1: Contour deformation for Bogoliubov principle of weakening correlations.

If one takes the limit t0 → −∞ then for all observables at finite time, the contribution
from the imaginary time interval can be neglected which follows from the Bogoliubov
principle of weakening correlations [91].2

We will briefly explain derivation of (4.3.1) using the Langreth rules below. Derivation
of (4.3.2) follows in an analogous manner. The left hand side of (4.3.1) can be derived
starting from the equation(4.2.10), and choosing the Green’s function G(t3, t2) to be the

2For this work, the calculation is further simplified because the free part of the Hamiltonian is zero.
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greater Green’s function G>(t3, t2), and integrating by parts to get

L.H.S. = i
∫
C

dt3(∂t1δC(t1, t3))G>(t3, t2)

= i
∫
C

dt3δC(t1, t3)∂t3G
>(t3, t2)

= i∂t1G
>(t1, t2) ,

(4.3.3)

where we have used the fact that G−1
0 is given by the derivative of the δ-function. The

right hand side of (4.2.10) is

R.H.S. =

∫
C

dt3Σ(t+
1 , t3)G(t3, t+

2 ) . (4.3.4)

C

t1

t2 t2C1

t1C2

Figure 4.2: Contour deformation for Langreth Rules.

Using the contour deformation we can rewrite (4.3.4) as∫
C

dt3Σ(t+
1 , t3)G(t3, t+

2 ) =

∫
C1

dτΣ(t1, τ)G>(τ, t2) +

∫
C2

dtΣ>(t1, t)G(t, t2) . (4.3.5)

The first term in (4.3.5) can be written as∫
C1

dτΣ(t1, τ)G>(τ, t2) =

∫ t1

−∞

dτΣ>(t1, τ)G>(τ, t2) +

∫ −∞

t1
dτΣ<(t1, τ)G>(τ, t2)

=

∫ ∞

−∞

dτΘ(t1 − τ)Σ>(t1, τ)G>(τ, t2) −
∫ ∞

0
dτ̃Σ<(t1, τ̃)G>(τ̃, t2) ,

(4.3.6)

where, τ̃ = t1 − τ. Inserting Heaviside Θ(τ̃) function in the term involving Σ< we can
extend the integration limit from (0,∞) to (−∞,∞). After substituting τ̃ = t1 − τ, the
integral remains invariant. So we get,∫

C1

dτΣ(t1, τ)G>(τ, t2) =

∫ ∞

−∞

dτΘ(t1 − τ)
(
Σ>(t1, τ) − Σ<(t1, τ)

)
G>(τ, t2) ,∫

C1

dτΣ(t1, τ)G>(τ, t2) =

∫ ∞

−∞

dτΣR(t1, τ)G>(τ, t2) .
(4.3.7)

Similar manipulations can be carried out for the second term in (4.3.5) to get,∫
C2

dtΣ>(t1, t)G(t, t2) =

∫ ∞

−∞

dtΣ>(t1, t)GA(t, t2) . (4.3.8)
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4.3.1 Eigenstate Thermalization Hypothesis

It has been shown that the q = 4 SYK model with Majorana fermions [70, 74] and com-
plex fermions [20] with large but finite N satisfy the eigenstate thermalization hypothesis
(ETH). Although it has been claimed [92] that q = 2 SYK model with complex fermions
satisfies ETH, it was later found that the finite N scaling in q = 2 SYK model with Ma-
jorana fermions does not scale correctly with the system size [70]. It has therefore been
suggested that q = 4 SYK model should thermalize while the q = 2 model should not.
Our results do not conflict with this suggestion, however, note that ETH necessarily in-
volves long-time averaging of the observables [81, 82, 93]. Long time averaging is not
necessary for thermalization or equilibration in many scenario of quantum quenches [65],
even in free theories [45]. In fact, it is not even clear what is the relation of ETH with such
thermalization or equilibration processes which do not involve long-time averaging after
quantum quenches. Also note that in black hole collapse geometries [46, 47, 94], there is
no long-time averaging invloved. These geometries are the bulk duals of thermalization
in the corresponding boundary CFT.

4.3.2 Kourkoulou-Maldacena states and Instantaneous thermal-
ization

In this section we will introduce certain pure excited states in SYK models. The mo-
tivation for constructing these states comes from the boundary state ansatz of quantum
quenches in 1D systems in the thermodynamic limit [89]. The ansatz by Calabrese and
Cardy corresponds to starting from the ground state of a gapped theory and quenching it
to a gapless theory (1+1D CFT), the final state obtained after the quench has the generic
form

|CC〉 = e−κHCFT |B〉 , (4.3.9)

where κ > 0 is a parameter fixed by the quench process, HCFT is the Hamiltonian of
the final gapless theory and |B〉 is a conformally invariant boundary state (B state) of
the CFT. We will refer to these states as Calabrese-Cardy(CC) states. Determination of
the particular B state that is relevant for the description of the post quench state of the
system for a specific quantum quench is a non-trivial problem [95]. Nevertheless, using
conformal symmetry of the final theory, it can be shown that expectation values of one-
point and two-point functions effectively thermalize, where the expectation values in the
long-time limit are described by a thermal ensemble with inverse temperature β = 4κ. In
fact, it has been shown that finite subsystems thermalize where again the long-time limit
is described by a thermal ensemble with inverse temperature β = 4κ [67, 71]. Since the
quench process started from the ground state, the system always remains in a pure state.
An interesting aspect of this process of thermalization of subsystems is that correlation
functions of holomorphic operators of the final CFT thermalize instantaneously [45, 96].

We will now consider certain pure excited states in SYK models. These states were first
constructed by Kourkoulou and Maldacena in [90]. Considering N majorana fermions,
the analogous B states are defined as

(ψ2k−1 − iskψ
2k)|Bs〉 = 0, sk = ±1, k = 1, ....,N/2 . (4.3.10)
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Hence, there are 2N/2 number of such B states. These are high energy states. One can
produce lower energy states by evolving these B states for a finite euclidean time κ. We
will refer to these low energy states as KM states.

|KM〉 = e−κH |Bs〉 . (4.3.11)

An interesting feature of KM states is that, in the large N limit, “diagonal” two-point
functions ψi(t1)ψi(t2) are “instantaneously thermalized”(using the 1+1D CFT terminology
used above)

〈KM|ψi(t1)ψi(t2)|KM〉 = Tr
[
e−βHψi(t1)ψi(t2)

]
, i = 1, ...,N → ∞ (4.3.12)

where the effective inverse temperature β = 2κ. The “off-diagonal” two-point functions
ψ2k−1(t1)ψ2k(t2) have non-trivial time dependence and decay to zero in the long-time limit.
These “off-diagonal” two-point functions are zero in a thermal ensemble. The KM states
also have interesting bulk duals in AdS 2.

Unlike in 2D CFT quenches, we could not find any quench scenario with disordered cou-
plings where the final state is the KM state. This work was initially inspired by our cu-
riosity about the possibility of the KM states being the final states of step quenches but not
for bump quenches in SYK models. The negative result that the final states in quenches in
SYK models are not KM states leads to deeper understanding of the thermalization pro-
cess in chaotic theories. We will comment further on this issue in the concluding section
5.3.

4.4 Quantum Quenches in SYK models

The KB equations are solved numerically after discretizing the two time arguments t1 and
t2. For quenches in q = 2 theory, we could start from the ground state, since the Green’s
function oscillates and decays fast with time. For all other cases, we start with a thermal
state which gives an exponential decay of the initial data as a function of the relative time
difference. Moreover, since we start from a stationary state, all the initial data in the third
quadrant are shifted functions of the data on (t1 < 0, t2 = 0) line and (t1 = 0, t2 < 0) line.
We use a grid of the kind bounded by red coloured lines in figure 4.3. Since the terms far
away from the diagonal fall of exponentially fast, the grid points in the second and fourth
quadrant lying outside the red coloured lines are ignored in our numerical code.

We used grids of three different sizes 2001 × 1001, 3001 × 1501 and 4001 × 2001 points.
The computation time grows very fast with increasing grid size. We also used a fixed time
step size dt = 0.05.3 In the rest of the paper, we will suppress factors of this time step size
dt. So, unless it is explicitly mentioned all the times are measured in units of dt. In step
protocols, the quenches happen at t1 = 0 and t2 = 0. For all the cases with bump protocol,

3We also checked our results with dt = 0.025 to make sure some of our results are not due to finite
size numerical time steps. But we will not present any numerical results of the runs with dt = 0.025. So,
dt = 0.05 for the rest of the paper.
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Figure 4.3: The red lines mark the grid used for solving the Kadanoff-Baym equations. This
corresponds to ignoring terms on the top left of the second quadrant and the bottom right of the
fourth quadrant where the values of G>(t1, t2) are negligible.

the perturbations4 are turned on between t1 = 1 and t1 = 10, similarly between t2 = 1
and t2 = 10 for the other direction. The KB equations are solved self-consistently in this
grid using the Predictor-Corrector method. The predicted values on line A are calculated
causally from the data on line B as shown in figure 4.3. The predicted values are then
corrected until the desired accuracy is obtained.

For most of quenches we are considering here, the initial data is obtained by solving the
SD equation numerically for finite inverse temperature β [43]. For step quenches in q = 2
theory in which J2 interaction is dominant, we can start from the ground state. The initial
data are obtained by solving the SD equation in the ground state (β→ ∞) numerically. In
this case we use

lim
β→∞

1
1 + e−βω

= Θ(ω) =


0, if ω < 0.
1/2, if ω = 0.
1, if ω > 0.

(4.4.1)

In case of the bump quench in q = 2 theory, for cases in which we start from the ground
state, the initial data is calculated using the analytic expression for G>(t1, t2). The greater
Green’s function in ground state for q = 2 theory is

G>(t1, t2) =
1

2J2(t1 − t2)
[J1(2J2(t1 − t2)) − iH1(2J2(t1 − t2))] . (4.4.2)

Calculation of final temperature: The temperature in the long time limit is calculated
using the relation [43]

iGK(ω)
A(ω)

= tanh
(
βω

2

)
, (4.4.3)

4Note that we are not doing any perturbative or series expansion in our calculation. The word ‘pertur-
bation’ in this context means exciting the system by turning on the source term which injects energy in the
system.
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where GK(ω) is the Fourier transform of the Keldysh Green’s function GK(t1, t2) (4.2.14)
which is a function of only t1 − t2 in a thermal ensemble and A(ω) is

A(ω) = −2 Im GR(ω) . (4.4.4)

GR(ω) is the Fourier transform of the retarded Green’s function GR(t1, t2) (4.2.12) which
also is a function of only t1 − t2 in a thermal ensemble.

The relation (4.4.3) is a result of the KMS condition which ensures [97] that

G>(ω) = −eβωG<(ω) , (4.4.5)

and it holds for all fermionic theories. We can therefore conclude that the system under
consideration has thermalized only if the quantity on the LHS of (4.4.3) has tanh profile
as a function of the frequency ω. Note that for the determination of the final temperature
we also have to use the relation between greater and lesser Green’s functions (1.1.9).

Check for energy conservation: We also check for energy conservation to ensure that
our numerical results are correct. From (4.2.7), the total energy as a function of time t1 is
given by

E(t1) =

∫
C

dt2Σ(t1, t2)G(t1, t2)

=

∫ t1

−∞

dt2
(
Σ>(t1, t2)G>(t1, t2) − Σ>(t2, t1)G>(t2, t1)

)
. (4.4.6)

In the second line, the first term arises from the upper half of the contour and the second
term arises from the lower half of the contour. We have also used (1.1.9) for the second
term.

The quench processes we are considering, merely satisfying (4.4.3) in the long time limit
is not sufficient to guarantee thermalization. This is because, as we mentioned above, all
fermionic theories at finite temperature satisfy the relation (4.4.3). So, to check thermal-
ization, we first calculate the final temperature using the above relation. The SD equation
of the final theory is then solved at the calculated final temperature and in the end we
check if the generated real time two-point functions agree with the two-point functions
obtained from the quench process.

4.4.1 Quenches in q = 2 SYK model

In this subsection we will study quantum quenches in which the final theory is the q = 2
SYK model, that is the model which only has 1-body (quadratic, J2) interaction. These
quenches are special cases because the two-point functions equilibrate instanteneously.
From (4.3.1, 4.3.2), for q = 2 final theory,

∂t1G
>(t1, t2) = −∂t2G

>(t1, t2)⇒ G>(t1, t2) = G>(t1 + dt, t2 + dt) . (4.4.7)
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This is observed in our numerical solutions of the KB equations below. However, note
that the instanteneously equilibrated configuration is not a thermal ensemble, so the final
state cannot be a KM state.

Since, the initial theory is J2 dominant(for step quench) or a q = 2 theory, we can start the
quench from the corresponding ground state. We will present here only cases in which
J4 interaction is used to perform both step and bump quenches. We also found similar
results for quenches using J6 and J8 interactions, as we expect from (4.4.7). The results
are qualitatively similar for quenches starting from thermal state.

The value of the J2 coupling is always fixed at 1. We will present results for step quench
with initial J4 = 2 which is suddenly turned off at time t = 0. For bump quench, we
turn on J4 = 5 for a time duration of 9 × dt = 9 × 0.05 = 0.45 from time step t = 1 to
t = 10. This same quench parameters are used for all quenches starting from different
initial temperatures including the ones starting from ground state.

The step quench happens at t = 0, the two time arguments of G>(t−100, t) are outside the
quench region if t > 100. The bump quench happens between t = 0 and t = 11 so the two
time arguments are outside the quench region if t ≥ 111. Figure (4.4) are plots of the real
and imaginary parts of G>(t − 100, t) as a function of time t for step and bump quenches
starting from ground states. One can see that the Green’s function freezes or equilibrates
instantaneously once the two time arguments are outside the quench regions. But the
equilibrated value is different from the thermal expectation value. Figure (4.5) compares
iGK(ω)/A(ω) with tanh(β fω/2) for step and bump quenches starting from initial inverse
temperature β = 10.
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(a) Step quench at t = 0.
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(b) Bump quench between t = 1 and t = 10

Figure 4.4: Plots of real and imaginary parts of G>(t − 100, t) for (a) step quench, both the time
arguments are outside the quench region for t > 100, and for (b) bump quench, both the time
arguments are outside the quench region for t ≥ 111. As we can see, the greater Green’s function
equilibrates instantaneously.

4.4.2 Quenches in q = 4 SYK model

In this subsection we will consider quantum quenches in which the final theory is q = 4
SYK model which only has 2-body (quartic, J4) interaction. We will present results for
which the interaction terms used for the quench process is J2. We also found similar
results for quenches with J6 and J8 interactions. For the initial thermal states, we con-
sidered three different inverse temperatures βi = 10, 20, and 30. We find that increasing
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(a) Step quench, βi = 10

-2 -1 1 2
ω

-1.0

-0.5

0.5

1.0

iGK(ω)/A(ω)

(b) Bump quench, βi = 10

Figure 4.5: Plots of iGK(ω)/A(ω) for the equilibrated limits of (a) step quench and (b) bump
quench. For both the quenches, we start from a thermal state of inverse temperature βi = 10. The
red lines are plots for the function tanh(βω/2) with the respective β f ’s.

the inverse temperature from 20 to 30 does not affect the results much. This is expected
since for a fairly large β, the fermion distribution function is well represented by the step
function (4.4.1). So, we expect that the quench starting from β = 20 and 30 should also be
qualitatively similar and quantitatively close to the quenches starting from ground states.

Three different values of J4 are used, namely, 0.5, 1 and 1.5. For step quenches, we start
from a theory with J4 and J2. At t = 0, the J2 coupling is suddenly changed to 0. For the
bump quenches, starting from a theory with only J4, J2 is turned on for a time duration
of 9 × dt = 9 × 0.05 = 0.45 from time step t = 1 to t = 10. As mentioned above, we
will use this time interval for all bump quench protocol. Changing this time interval does
not affect our main results. Longer time interval only injects more energy into the system
resulting in higher final temperature.
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Figure 4.6: (a) Real part of the greater Green’s function G>(t − 100, t) in the SYK model with
quartic interaction and changing the quadratic interaction J2 following bump protocol for three
different set-up using different initial temperatures and different values of J4 and J2. (b) Imaginary
part of the same greater Green’s function G>(t − 100, t).

Once both the time arguments are outside the quench region, we find that the greater
Green’s function thermalizes rapidly but not instantaneously, as can be seen in Figure(4.6).
Figure (4.7a, 4.7b) are two resolved plots of G>(t−100, t) for different initial inverse tem-
peratures as a function of t for step quenches. Since the step quench happens at t = 0,
both the time arguments are outside the quench region if t > 100. Immediately after time
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t crosses 100, G>(t − 100, t) changes rapidly and exponentially towards its equilibrium
thermal value. The evolutions for t > 100, both real and imaginary parts, fit exponential
functions very well. The two exponents of the two exponential fits for real and imaginary
parts are roughly equal. This behaviour is not a numerical artifact. The exponents do
not change with change in time step size. We have checked for different time step sizes
dt = 0.05 and dt = 0.025. Moreover, we have also checked energy conservation using
(4.4.6).
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(c) Bump, βi = 10
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Figure 4.7: Real and imaginary parts of G>(t − 100, t) for different quench protocols.

Similarly, for bump quenches in Figure (4.7c, 4.7d), once the two time arguments are
outside the quench region, the Green’s function thermalizes rapidly and its real and imag-
inary parts fit exponential functions very well. Below, we will consider only the exponent
for the imaginary part which we will denote by γItt.

Im[G>(t − 100, t)]
post quench region
−−−−−−−−−−−−→ a1 + b1e−γIttt . (4.4.8)

The bump quench happens between time steps t = 0 and t = 11, so the two time arguments
of G>(t − 100, t) are outside the quench region if t ≥ 111. One of the most interesting
numerical result of this work is that we find that

γItt = J4 . (4.4.9)

This can be seen from Fig. (4.8) and Table 4.1.

We also check if the final stationary limit is described by a thermal ensemble. For which
we compare iGK(ω)/A(ω) with tanh(β fω/2) for some final temperature β f . Figure (4.9a,
4.9b) are two such comparisons. Figure (4.9a) is for step quench with J4 = 1 and step
profile of J2 = 0.03 starting from initial temperature βi = 20. Similarly, Figure (4.9b) is
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Figure 4.8: The exponent γItt as a function of J4.

for bump quench with J4 = 1 and bump profile of J2 = 0.3 from t = 1 to t = 10 starting
from initial temperature βi = 20. In all the other quenches, the stationary limit fits thermal
ensemble very well as in these two examples.

-0.6 -0.4 -0.2 0.2 0.4 0.6
ω

-1.0

-0.5

0.5

1.0

iGK(ω)/A(ω)

(a) Step quench, βi = 20, β f = 14.53

-0.6 -0.4 -0.2 0.2 0.4 0.6
ω

-1.0

-0.5

0.5

1.0

iGK(ω)/A(ω)

(b) Bump quench, βi = 20, β f = 7.81

Figure 4.9: Comparison of iGK(ω)/A(ω) (blue dots) with tanh(β fω/2) (thin red line).

Since we observe thermalization, another observable of interest is G>(t, t2) where t2 is
fixed. In the hydrodynamics limit [46] of large t, both the real and the imaginary parts
of the expectation value of this observable are again exponential functions with both the
exponents equal. We will consider the exponent of the imaginary part which we denote by
γIt. This exponent is equal to the exponent of the retarded Green’s function in a thermal
ensemble with temperature equal to the temperature of the final thermalized limit of the
quench process. We will denote the exponent of the retarded Green’s function by γret.

Im[G>(t, t2)]
t→∞
−−−→ a2 + b2e−γItt, GR(t, β f )

t→∞
−−−→ a3 + b3e−γrett . (4.4.10)

At low temperature, γIt is proportional to the final temperature.

γIt = γret ∼
π

2β f
. (4.4.11)

This result is similar to the result of [43] where after a change of variables from (t1, t2) to
(T = t1 + t2, t = t1 − t2) and performing the Fourier transform with respect to t, one looks
for the thermalization rate as a function of T .
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In a thermal ensemble, the retarded Green’s function is a function of the relative time
difference. In the conformal limit of SYK model, the retarded Green’s function in a
thermal ensemble of inverse temperature β is

GR(t1, t2) = −i2b cos(π∆)
(

π

sinh(2π(t1 − t2)/β)

)∆
θ(t1 − t2)

(t1−t2)→∞
−−−−−−−→ −i2b cos(π∆)(2π)∆ e−2π∆t/β θ(t1 − t2) . (4.4.12)

where ∆ = 1/q = 1/4 and b = (4πJ2
4)−1/4. In the conformal limit, the exponent is

γcon f =
2π∆
β

=
π

2β
. (4.4.13)

Figure (4.10) is the plot of γIt and γcon f .
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Figure 4.10: The exponent γIt as a function of γcon f = π/(2β f ). γretx is exactly equal to
γIt as we can see from Table 4.1 so γret is not plotted here.

At high temperatures, we find that the exponent of GR(t) gets significant correction com-
pared to its value at the conformal limit. The corrected value of the exponent, which we
have denoted by γret above, is calculated by solving the SD equation numerically.

Important numerical results for the step and bump quenches with J2, starting from differ-
ent initial temperatures, are summarized in Table 4.1. We also calculate the exponent γItt

for G>(t, t − 100), G>(t − 300, t), G>(t, t − 300), G>(t − 500, t) and G>(t, t − 500). The
numerical values do not change significantly compared to the values given in Table 4.1
for G>(t − 100, t) hence, we can conclude that G>(t − ta, t) and G>(t, t − ta) thermalize
exponentially with the same exponent for arbitrary ta.



58 Thermalization in the SYK model

Table 4.1: Numerical results for different quench protocols in q = 4 theory by changing
J2 coupling. The following are absolute values after taking care of the time step dt =

0.05. The value of J4 is fixed during the entire quench process. The values of J2 are the
perturbations used to perform the different quench protocols.

J4 Quench J2 βi β f γItt γIt γret γcon f

0.5 Bump 0.1 20 18.75 0.50 0.08 0.08 0.08

0.5 " 0.3 20 13.17 0.53 0.10 0.10 0.12

0.5 Step 0.05 20 13.48 0.53 0.10 0.10 0.12

1.0 Bump 0.1 10 9.39 1.08 0.15 0.15 0.17

1.0 " 0.1 20 13.17 1.06 0.11 0.11 0.12

1.0 " 0.2 20 10.22 1.06 0.14 0.14 0.15

1.0 " 0.3 20 7.81 1.12 0.18 0.18 0.20

1.0 " 0.3 30 12.45 1.00 0.12 0.12 0.13

1.0 Step 0.03 10 9.51 1.16 0.15 0.15 0.17

1.0 " 0.03 20 14.53 1.16 0.10 0.10 0.11

1.0 " 0.04 10 9.18 1.14 0.15 0.15 0.17

1.0 " 0.04 20 13.32 1.15 0.11 0.11 0.12

1.0 " 0.05 20 12.20 1.14 0.12 0.12 0.13

1.0 " 0.05 30 13.39 1.18 0.11 0.11 0.12

1.5 Bump 0.1 10 8.89 1.68 0.16 0.16 0.18

1.5 " 0.1 20 15.99 1.54 0.09 0.09 0.10

1.5 " 0.1 30 20.05 1.53 0.08 0.08 0.08

1.5 " 0.3 10 5.31 1.73 0.26 0.26 0.30

1.5 " 0.3 20 6.28 1.66 0.23 0.23 0.25



5 Conclusion and Discussions

We divide this chapter in three sections which refer to the previous chapters and contains
concluding remarks for each of the chapters.

5.1 Tuning of Chaos behavior

We have explored and demonstrated a tunable Lyapunov exponent by introducing con-
served charges in the system, even when the charge is a simple U(1). We have considered
SYK-type models, with complex fermions and a q-body all-to-all randomized interac-
tion, in the q → ∞ limit. For these models, we have explicitly demonstrated that a
non-vanishing chemical potential has an exponentially large dominance over the q-body
interaction coupling strength, in determining the chaos behaviour. It is expected, from
the structure of the Schwinger-Dyson equations, that similar features hold for the tensor
models [28], which share many interesting properties of the SYK-type interaction, but
without the disorder averaging.

There are various interesting directions for future explorations. Given the results above,
one may explore higher dimensional generalizations of the SYK-model, e.g. the model
in [24], with an introduction of conserved charges. One would, naívely, expect a sim-
ilar behaviour of the resulting Lyapunov exponent for the higher dimensional models;
however, it would be very interesting to check how the details fall into the right places.
Staying within the theme of a tuneable chaos, motivated by the similarities of SYK-model
behaviour and random matrix behaviour at late times, it is natural to incorporate the ef-
fect of conserved charges in random matrix theories and analyze the consequences at late
times [17].

From a holographic perspective, our analysis suggests that by introducing bulk gauge
fields that correspond to introducing chemical potentials for the dual boundary theory,
one should be able to do away with chaos completely, or, at least, should be able to tune
down the Lyapunov exponent from its’ maximal value. This would be an interesting as-
pect to check explicitly. Towards that, one presumably begins with a gravity description
in e.g. (d + 1)-dimensional bulk with AdS-asymptotic, and studies a scattering problem,
a la [98], in the presence of a global charge. On a similar note, it is also very intrigu-
ing to explore the possibility of constructing an SYK-type model from explicit D-brane
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construction in string theory, with or without global charges. One natural obstacle, for
the SYK-type interaction, is to realize the dynamical origin of disorder averaging from
the brane picture. Perhaps the large N tensor models can emerge more naturally in such
scenarios. We are currently exploring some of these issues further.

5.2 Chaotic Correlation Function

We have computed the fermion six point function in the SYK model with complex fermions
in the presence of a non-vanishing chemical potential. We then took triple short time limit
of this correlation function so that it appears as a three point function of fermion bilin-
ears. We show that the three point function of fermion bilinears, for h , 2 modes, have
the scaling property of conformal field theory three point function, as is expected as a
generalisation of the results of [48] to the complex fermion case. Like in [48], we find
that the contribution of the contact three point graphs in the large q limit is subleading
compared to that of the planar graphs.

We also compute three point function of fermion bilinears for the h = 2 mode. This mode
is known to break the conformal invariance of the SYK model, both spontaneously as
well as explicitly. This mode is known to exhibit chaotic behaviour with the Lyapunov
exponent λL that saturates the chaos bound. The three point function of bilinears in this
case has a behaviour different from those of the conformal, i.e., h , 2 modes. In this
case we find that in the large q limit, the contribution of the planar graphs is subleading
compared to the contact graphs.

As a future direction to explore further, since the couplings of the SYK model are chosen
from random gaussian distributions, it is tempting to ask if one can apply techniques of
stochastic quantisation to reconstruct the bulk description. We hope to report on this soon.

5.3 Thermalization in SYK model

We studied quench in the SYK model with different quench protocols. While we have
presented results for q = 2 theory, and q = 4 theory with step and bump quench protocols,
we have carried out this analysis for q = 6 as well as for q = 8 models. We find that the
qualitative features of the results are similar to the q = 4 cases.

We observed that the q = 2 theory does not thermalize for any of the quench scenario
we considered. We considered quenching of J4, J6, and J8 using step and bump protocol.
The initial states that we considered are thermal states of inverse temperature βi = 10, 20,
and 30 as well as the ground states. An interesting aspect of all the quenches is that the
greater Green’s function G>(t1, t2) equilibrates instantaneously as shown in (4.4.7). Its
expectation value freezes once both the time arguments are outside the quench region.
Although in the final states G>(t1, t2) equilibrates instantaneously, its equilibrium value is
not the same as the thermal ensemble expectation value.
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The instanteneous equilibation or freezing that we observed is like a glassy state. It can be
shown that if the final theory have both J2 and J4 couplings, then two point functions al-
ways thermalize. This is true even for arbitrarily small J4 coupling in the large N limit that
we are considering. We expect that this would change if we consider effects subleading
in N, where J2 and J4 couplings would truly start competing [22].

It would be interesting to identify the final state after each of these quenches. It is, how-
ever, beyond the scope of the present work since we are working only with the equations
of motion of the G>(t1, t2) and solving them as an initial value problem. The q = 2 theory
is not chaotic and does not satisfy the ETH, nevertheless thermalization in this theory is
possible if the final state were a KM state (4.3.11). This, for example, happens quite often
with step quenches in 1 + 1 dimensional theories (even in integrable theories) where the
analog of KM states are the CC states (4.3.9).

In q = 4 theory, we find that thermalization happens in all the quench scenario we consid-
ered. We considered quenching with J2, J6, and J8 using step and bump protocols. The
initial states are thermal states of inverse temperature βi = 10, 20, and 30. We examined
two kinds of greater Green’s functions, G>(t − ta, t) and G>(t, tb) as a function of time t
with fixed ta and tb.

When both the time arguments t− ta and t are outside the quench region, both the real and
imaginary parts of G>(t − ta, t) are exponential functions with the same exponent. This
exponent γItt is equal to the value of coupling J4 of the system.

The long time limit of both the real and imaginary parts of G>(t, tb) are exponential func-
tions with the same exponent. This exponent γIt is equal to the exponent γret of the re-
tarded Green’s function GR(t1, t2) in a thermal ensemble (4.4.12) with temperature equal
to the final temperature of the quench process. This is obvious at least for the imaginary
part of the G>(t, tb) since the system thermalizes. GR(t1, t2) is a simple multiple of the
imaginary part of G>(t1, t2). As one can see in Figure 5.1, the long time limit of G>(t, tb)
is calculated in a subset of the large (t1 − t2) of GR(t1, t2).

Figure 5.1: The large t limit of greater Green’s function G>(t, tb) is calculated in the large (t1− t2)
region of the retarded Green’s function GR(t1, t2). Moreover, in this region, the system has more
or less thermalized. Hence, γIt = γret.
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One clear and important observation that we can make is that the thermalization in q = 4
theory is not because the final state is a KM state. If the final state had been a KM state,
G>(t − ta, t) would have thermalized instantaneously once both its time arguments are
outside the quench region.1 This is because the ‘diagonal’ two-point function that we are
considering are already thermalized in a KM state.

5.3.1 How to prepare KM states

The KM state, in principle, can be prepared by performing a sudden quantum quench
starting from the ground state using the extra term

Hµ(t) = iµ(1 − Θ(t))
N/2∑
k=1

skψk(t)ψk+1(t) , (5.3.1)

where sk’s specifies the particular |Bs〉 defined in (4.3.10). This new term has been used in
a different but related context in [90]. The argument behind this assertion is similar to the
argument provided in [99] for the preparation of thermofield double state by performing
a sudden quench. We will consider small µ limit. The full Hamiltonian before the quench
at t = 0 is

H + Hµ = (i)q/2
∑

1≤i1<i2<...<iq≤N

Ji1,i2,..,iqψi1ψi2 ....ψiq + iµ
N/2∑
k=1

skψk(t)ψk+1 . (5.3.2)

The ground state of the above Hamiltonian is the state which minimizes the second term.
But minimizing the second term corresponds to strong positive or negative correlation of
ψk and ψk+1 depending on the value of sk. Strong correlation of ψk and ψk+1 is the basis
of the definition of |Bs〉 in (4.3.10). In hindsight, it is in some sense obvious why the KM
states were not obtained from the step quench using the disordered couplings like j2,i j or
J2. This is because not just two fermions, but all the fermions were randomly and strongly
correlated in the ground states of the initial Hamiltonians.

5.3.2 Ergodicity versus Mixing

In this work, we don’t consider long time averaging. q = 4 theory satisfies eigenstate
thermalization hypothesis(ETH). But thermalization from ETH crucially requires long
time averaging. Thermalization without long time averaging has been observed in many
other works but in most of the cases it is because the final state turns out to be a very
particular state like CC states. So, in this sense, the thermalization that we observed is
much more robust than what one expects from ETH. Thermalization with ETH follows
from quantum ergodicity. But what we observe is more akin to a quantum version of
mixing.

1Although quenches in q = 4 theory start from thermal states, as we have noted above the results should
be qualitatively similar and quantitatively close to quenches starting from ground states.
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(a) Ergodicity (b) Mixing

Figure 5.2: (a) Ergodicity: the shape of the initial sample only changes slightly but sweeps
out the entire allowed region under time evolution, (b) Mixing: the initial sample spreads
out and reaches infinitesimally close to all the points in the allowed region of the phase
space. Figure adopted from [85, 100].

In classical theories, mixing is a much stronger phenomenon compared to ergodicity.
Figure (5.2a) shows ergodic evolution in the classical phase space. The initial state is
described by an ensemble concentrated in the deformed rectangle in the phase space.
The volume is conserved under time evolution due to the Liouville theorem for a closed
system, but the shape can change. For ergodic systems, the shape of the initial sample
hardly changes but it sweeps out the entire allowed space under time evolution. So, a long
time averaging gives the expectation value in the micro-canonical ensemble. In mixing,
as shown in Figure (5.2b), the initial sample spreads out and reaches infinitesimally close
to all the points in the allowed region of the phase space. So, without time averaging,
mixing gives the expectation value in the microcanonical ensemble.

Using this classical analogy, we believe that even in quantum systems, chaos is a much
stronger condition for thermalization than the eigenstate thermalization hypothesis(ETH).
Our results on thermalization in the quenched SYK model seem to suggest that quench
without long time average is a quantum analog of mixing. It would be interesting to make
this more concrete. We hope to return to this soon.
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