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Summary

This thesis is a thorough study on the constraints on neutrino masses coming from

recent cosmological data, in various cosmological models. While the first two parts

of the thesis deals with the sum of active neutrino masses
∑

mν , the last part

incorporates a 3+1 scenario incorporating a light eV scale sterile neutrino. In the

first part, we deal with base ΛCDM+
∑

mν model and some of its simple extensions

with tensor perturbations and dynamical dark energy. Neutrino mass bounds are

dependent on the model and dataset combination being used, and we currently

have only upper bounds instead of a detection. In the base ΛCDM+
∑

mν model,

the 95% bound is very close to the minimum mass required by inverted hierarchy

of neutrino masses. However, current experiments do not have the sensitivity to

determine the mass hierarchy of neutrinos. On the other hand, in extended models,

the bounds on
∑

mν can relax by a factor of two or more. However, that is not the

case for an extended model with non-phantom dynamical dark energy, where the

bound on
∑

mν is actually stronger than ΛCDM+
∑

mν . Noticing this, we study 12

1



parameter extended cosmology with massive neutrinos and non-phantom dynamical

dark energy and see that the bounds are stronger than ΛCDM+
∑

mν even in such

an extended scenario. However, introducing a parameter like Alens which is strongly

correlated with
∑

mν relaxes the bound greatly. In the final part, we study light

sterile neutrinos. We study the improvement of the bounds on a sterile neutrino

effective mass due to CMB B-mode data from BICEP2/Keck collaboration (BK14).

Fully thermalized sterile neutrinos with 1 eV mass (as predicted by short baseline

experiments) are disfavoured by cosmology. These become slightly more disfavoured

with BK14 data, due to tighter bounds on the mass, the effect likely coming from

the lensing information encoded in the BK14 data.

2



1
Introduction

Cosmological observations are a powerful probe of neutrino properties, namely

energy density and mass. In this chapter, we mainly discuss the role of neutrinos

in shaping the cosmological evolution. Later chapters of this thesis are devoted to

constraints on the neutrino mass from cosmological observables.

1.1 Basic Cosmology

Einstein’s field equations of classical General Relativity state that [1]:

Gµν = 8πGTµν . (1.1)

In Eq. (1.1), the Einstein tensor Gµν corresponds to the geometry of the space-

time, whereas the energy-momentum tensor Tµν is determined by the matter and

energy content of the spacetime. The universe is homogeneous and isotropic on large

scales, a notion that is known as the cosmological principle. The general form of

15



1 Introduction

a metric which preserves this notion is the Friedmann-Lemâıtre-Robertson-Walker

(FLRW) metric, given by the following line element [2–4]:

ds2 = dt2 − a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (1.2)

where t is time, r, θ, and φ are the spherical comoving coordinates, and K is the

curvature parameter. The function a(t) is the scale factor. We choose to define a(t)

such that at present time t = t0, a(t0) = 1.

Assuming that Tµν = diag(ρ, P, P, P ) (corresponding to a perfect fluid with

energy density ρ and pressure P ) one can arrive at the following Friedmann equa-

tions [1]:

H(a)2 =
8πG

3
ρ(a)− K

a2
(1.3)

ä

a
= −4πG

3
(ρ+ 3P ), (1.4)

with the dot denoting a time derivative.

Here, H(a) ≡ ȧ/a is usually known as the Hubble parameter, and provides a

measure of the expansion rate of the universe. The value of the Hubble parameter

at present time, H0 = H(t0), is called the Hubble constant. The reduced Hubble

constant h is given by: h ≡ H0/(100 km s−1 Mpc−1).

The contribution to the energy density ρ(a) comes from various sources: pho-

tons (γ), massive neutrinos (ν), baryons(b), dark matter (c), dark energy (DE).

16



1 Introduction

Introducing the redshift as z = 1/a− 1, we can write,

ρ(z) = ργ(z) + ρc(z) + ρb(z) + ρDE(z) + ρν(z). (1.5)

If K = 0, i.e. the universe is flat, then from Eq. (1.3), evaluated today, i.e.

a = 1, gives the total density (i.e. critical density required at present day for a flat

spatial geometry),

ρcr,0 =
3H2

0

8πG
. (1.6)

In general, we use the subscript 0 to denote quantities evaluated at the present

time. We redefine the densities of the constituents of the universe in the following

way,

Ωi =
ρi,0
ρcr,0

, (1.7)

for i ≡ γ, ν, b, c, DE. We also define Ωk = −K/H2
0 , as the curvature density.

From the first Friedmann equation (1.3), evaluated at present time, we can write,

∑
i

Ωi = 1, (1.8)

where i now sums over curvature also, along with all the other components. In this

thesis, we also use another notation for the densities, defined as ωi ≡ Ωih
2. Thus,∑

i ωi = h2.

The Equation of State (EoS) wi of a particular component of the universe (except

curvature) is defined as Pi = wiρi. Here we introduce another useful equation, which
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is not independent from Eqs. (1.3) and (1.4), often known as the continuity equation,

ρ̇+ 3H(ρ+ P ) = 0. (1.9)

Solving this continuity equation by incorporating the EoS, one can show that,

ρi(z) ∝ (1 + z)3(1+wi). (1.10)

Since photons always behave as radiation, wγ = 1/3, whereas for CDM and

baryons behave as matter for most of the evolution of the universe and thus one can

take wc = wb = 0. For DE, we for now allow for an arbitrary but constant EoS, i.e.

wDE = w. If dark energy is described by a cosmological constant, Λ, then w = −1,

and in that case we shall denote ΩDE as ΩΛ. We can now recast Eq. (1.3) as,

H(z)2 = H2
0

[
Ωγ(1 + z)4 + (Ωc + Ωb) (1 + z)3+

+ ΩDE(1 + z)3(1+w) + Ωk(1 + z)2 +
ρν(z)

ρcr,0

]
. (1.11)

Here we have not explicitly mentioned the redshift dependence of neutrino energy

density, since neutrinos behave as radiation in the early universe but can turn non-

relativistic and behave as matter at late times, with the redshift of non-relativistic

transition depending on their mass. An important quantity to note here is Ωm, which

includes the present day matter density from all matter, i.e. CDM, baryons, and
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neutrinos whose masses are large enough so that they are non-relativistic currently.

1.2 Cosmological distances

In this section we introduce some distance scales frequently used in cosmology. The

comoving causal horizon rh at time t is the comoving distance covered by a photon

from t = 0 until time t, i.e.,

rh(t) =

∫ t

0

dt′

a(t′)
=

∫ ∞
z(t)

dz′

H(z′)
. (1.12)

This is same as conformal time, which is usually denoted by η(t) (as long as η(0)

is taken to be zero). If two particles are separated by a comoving distance larger

than rh today, they were not in causal contact since t = 0. Another important

length scale is the Hubble length or time or radius tH(t) ≡ H(t)−1. In an ever

accelerating universe, two particles presently separated by more than the present

Hubble radius cannot communicate between each other from now on, though they

might have communicated in the past.

An analogous quantity to rh is the comoving sound horizon rs(t), i.e., the distance

covered by an acoustic wave in the baryon-photon plasma in time t since t = 0. It

is given by,

rs(t) =

∫ t

0

cs(t
′)

a(t′)
dt′ =

∫ ∞
z(t)

cs(z
′)

H(z′)
dz′, (1.13)

where cs is the speed of the sound in the plasma, and it is given by cs = 1/
√

3(1 +R),

with R = (Pb + ρb)/(Pγ + ργ).
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The comoving distance χ between us and a particle at a redshift z is

χ(z) =

∫ z

0

dz′

H(z′)
, (1.14)

and as can be seen from Eq. (1.12), this is equal to η0−η(z), where η0 is the present

value of the comoving causal horizon. On the other hand, the comoving angular

diameter distance DA(z) is defined as,

DA(z) ≡
sin
(√

Kχ
)

√
K

. (1.15)

Hence, if we are in a flat universe, i.e., Ωk = 0,

DA(z) = χ(z) =

∫ z

0

dz′

H(z′)
. (1.16)

The angular size θ (that is observed by us) of an object is related to its comoving

linear size l through θ = l/DA(z). Thus if we know the linear size of an object, we

can use it as a “standard ruler” to measure its angular diameter distance.

Another distance measure is given by the luminosity distance dL(z), that relates

the observed flux F to the intrinsic luminosity L of an object at redshift z:

dL(z) ≡
√

L

4πF
= (1 + z)χ(z) = (1 + z)DA(z) . (1.17)

Similar to the standard ruler case, here we can have “standard candles” which are

objects of known intrinsic luminosity, and they can be used to measure their lumi-
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nosity distance via the measurement of their flux. In both cases, such measurements

can be used to make inferences about the cosmological parameters which participate

in the integral in Eq. (1.14).

Since in this thesis, we are interested in neutrinos, in the next section we move

away from cosmology and briefly describe the phenomenon of neutrino oscillations,

which is an important step in understanding the neutrino mass parameter,
∑
mν

used in cosmology.

1.3 Neutrino oscillations

Standard model of particle physics was constructed with 3 massless neutrinos. How-

ever, neutrino oscillation experiments [5–9] have confirmed that neutrinos have dis-

tinct but small masses, with the lightest one having the option of having a zero

mass. Neutrinos are produced in a particular flavor eigenstate |να〉 (α = e, µ, τ) via

charged-current weak interactions. The flavor of the neutrino is determined by the

charged lepton involved in the interaction, namely electron, muon, or tau. A flavor

eigenstate is a quantum superposition of the three mass eigenstates |νi〉 (i = 1, 2, 3)

with individual masses mi,

|να〉 =
∑
i

U?
αi|νi〉. (1.18)

Here U is the Pontecorvo Maki Nakagawa Sasaka (PMNS) matrix [10, 11]. Neutrinos

are produced at the source as a particular flavor eigenstate, and while they travel, the

three mass eigenstates can each obtain different phases due to having different phase

21



1 Introduction

velocities. Thus, when the neutrinos reach their destination and are detected, there

is a non-vanishing probability that the flavor of the detected neutrino is different

from the original one, i.e. the neutrino oscillates among the flavors. The probability

that a particular neutrino with flavor α transforms into a neutrino with flavor β is

given by [12],

P (να → νβ) '
∑
i,j

U?
αiUβiUαjU

?
βje
−i

∆m2
ijL

2E , (1.19)

where L is the distance travelled, ∆m2
ij ≡ m2

i −m2
j is the squared mass splitting,

and E is the energy of the neutrino. In Eq. (1.19), the neutrinos are taken to be

ultra-relativistic. Things are easier to understand if we assume only two family

mixing, where the mixing matrix takes the simple form,

U =

 cos θ sin θ

− sin θ cos θ

 . (1.20)

For such a scenario the probability in Eq. (1.19) is simply written as:

P (να → νβ) ' sin2 (2θ) sin2

[
1.27

∆m2[eV2] L[km]

E[GeV]

]
(α 6= β). (1.21)

where we have chosen some convenient units. Here ∆m2 is the squared mass split-

ting. Thus, for neutrino oscillation to happen, the mass-squared differences cannot

be zero, i.e., at least two of the three active neutrinos must be massive, which we

know from the data from the neutrino oscillations experiments.
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While neutrino oscillation experiments are able to determine the squared mass

splittings ∆m2
21 (+ve) and |∆m2

31| with reasonable accuracy (with |∆m2
31| � ∆m2

21),

the sign of ∆m2
31 is not known. This gives rise to two possible hierarchies of neutrino

masses: normal (m1 < m2 � m3) and inverted (m3 � m1 < m2), based on whether

the sign of ∆m2
31 is +ve or -ve, respectively. From now on, we denote the normal

hierarchy as NH, and inverted hierarchy as IH. A recent global analysis of data from

neutrino oscillation experiments [13] puts the following bounds on the squared mass

splittings (in units of eV2, limits are given at 1σ):

∆m2
21 = 7.39+0.21

−0.20 × 10−5,

∆m2
31 = 2.525+0.033

−0.032 × 10−3 (NH), (1.22)

∆m2
32 = −2.512+0.034

−0.032 × 10−3 (IH).

Let us denote the mass of the lightest neutrino with m0. In case of normal

hierarchy, m0 = m1, whereas for the inverted case, m0 = m3. Then, the sum of

neutrino masses,
∑
mν = m1 +m2 +m3 in a particular hierarchy will be given by,

∑
mν = m0 +

√
m2

0 + ∆m2
21 +

√
m2

0 + ∆m2
31 (NH), (1.23)

and

∑
mν = m0 +

√
m2

0 −∆m2
32 +

√
m2

0 −∆m2
32 −∆m2

21 (IH), (1.24)
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We can determine the minimum mass sum,
∑
mmin
ν , required by a particular

hierarchy by putting m0 = 0. This leads to
∑
mmin
ν = 0.058850.00045

−0.00044 eV (1σ) for

NH, and
∑
mmin
ν = 0.099500.00070

−0.00067 eV (1σ) for IH. For convenience, we approximate

these values to
∑
mmin
ν,NH = 0.06 eV and

∑
mmin
ν,IH = 0.1 eV from now on. Note

that, the neutrino oscillation experiments are not sensitive to the lightest neutrino

mass m0 or
∑
mν , and thus cannot put an upper bound on

∑
mν . This is where

cosmological data becomes important, which is sensitive to the
∑
mν . Strongest

upper bounds on
∑
mν come from cosmological data.

1.4 The ΛCDM model

One of the most successful theories in cosmology is the ΛCDM model the main

constituents of the universe are cold dark matter, and a cosmological constant Λ

describing dark energy (i.e. w = −1), with other constituents of the universe like

radiation and ordinary matter are given by the standard model of particle physics

(except massive neutrinos), with adiabatic, nearly scale-invariant initial conditions

for scalar perturbations to explain the inhomogeneity and anisotropy observed in

the universe. Here cold dark matter describes a pressure-less, stable form of matter

which interacts with other constituents of the universe only through gravity. In

ΛCDM model, the universe is spatially flat, i.e. Ωk = 0. In this model, it is

presently usual to take one massive and two massless neutrinos, with
∑
mν fixed to

0.06 eV (the minimum mass required by normal hierarchy).

The ΛCDM model has six free parameters: the physical baryon and CDM den-
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sities ωb ≡ Ωbh
2 and ωc ≡ Ωch

2, The amplitude of the primordial power spectrum of

scalar fluctuations, As, the tilt of the primordial power spectrum ns (ns =1 for com-

plete scale invariance), the angular size of the sound horizon at the time of photon

decoupling Θs = rs(zdec)/χ(zdec) (with zdec the redshift of decoupling and χ(zdec)

the comoving distance to the CMB last scattering surface), and the optical depth

to reionization τ . Looking at Eq (1.11), one can see that only three free parameters

control the background evolution: h, ωb, and ωc, given the flatness assumption, the

neutrino density being fixed, and the background photon energy density is precisely

measured from the CMB blackbody temperature. However, since CMB observations

directly measure the angle subtended by the sound horizon at decoupling, instead

of h, Θs is used. On the other hand, As and ns are related to perturbations, as they

parametrize the power spectrum of initial scalar fluctuations. Instead of As, we usu-

ally vary ln(1010As), since As takes values of order ≈ 10−9. Finally, the parameter

τ takes care of the ionization history in the late universe, which we shall come back

to later.

In this thesis, we are interested inferring neutrino masses from cosmology. Thus

we shall consider the sum of neutrino masses
∑
mν as a free parameter in Chapters 2

& 3, whereas the effective mass of a sterile neutrino meff
s will be treated as a free

parameter in Chapter 4. Along with that, we shall not restrict ourselves to a ΛCDM

cosmology only. We shall consider various extensions to the ΛCDM model, details

of which will be provided in the following chapters as and when required.
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1.5 Brief thermal history of the universe

At the very early times, all the standard model particles were in thermal equilibrium

with each other at a common temperature T , through frequent interactions with

each other. Due to universal expansion, however, the universe cooled down. If a

particle maintains its equilibrium with the plasma with some particular interaction,

and its rate Γ falls below the expansion rate H at that particular time (Γ � H),

then the particle can be considered effectively decoupled from the plasma. Also,

as long as Ti � mi, where mi is the mass and Ti is the temperature of some

particle species, that particular species can be considered relativistic, i.e. its energy

density contributes to radiation. Also, at early times (large z), the universe is

radiation dominated, since from Eq. (1.11) we can see that the contribution from

radiation scales as (1 + z)4, whereas the matter contribution scales as (1 + z)3, i.e

the contribution from radiation is much larger than matter. To understand how

neutrinos affect the cosmological evolution, it would be beneficial to understand the

main events in the history of the universe first. Thus, below we describe those main

events briefly:

• Baryogenesis, Electroweak phase transition, QCD phase transition.

Baryogenesis is a physical process that generated the baryon asymmetry in

the universe (i.e. more matter than anti-matter). There are several models of

baryogenesis [14–16], but they have not been experimentally verified. Assum-

ing that baryogenesis actually took place, it likely happened before the elec-

troweak phase transition, which occurred at around T & 125 GeV (z ≈ 1015,
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t ≈ 10−11 s) when the Higgs field acquired a non-zero vacuum expectation

value and broke the electro-weak symmetry [17–23]. Next big event is the

QCD phase transition (T ≈ 100 MeV, z ≈ 1012, t ≈ 10−5 s) [24] when quarks

confine to form hadrons and mesons.

• Neutrino decoupling. At T ≈ 1 MeV (z ≈ 5 × 109, t ≈ 1 s) the rate of

weak interactions falls below the Hubble expansion rate at that time [25–28].

Neutrinos decouple from the primordial plasma and start free-streaming.

• Electron-positron annihilation. As the temperature of the universe plum-

mets below the electron mass, T ≈ 0.5 MeV (z ≈ 3 × 109, t ≈ 6 s) the

annihilation/pair-production process e+ + e− → γγ becomes unfavourable in

the reverse direction.

• Big Bang Nucleosynthesis (BBN). At a temperature of T ≈ 100 keV

(z ≈ 4× 108, t ≈ 3 min), the synthesis of light elements (mostly 4He, some 2H

and 7Li and traces of some other elements) begins [29–32] as nuclear reactions

bind nucleons into light nuclei.

• Matter-radiation equality. Matter-radiation equality happens at the time

when the energy density of matter and radiation become equal. i.e. ρm(zeq) =

ρr(zeq), where zeq = Ωm/Ωr − 1 is the redshift of matter-radiation equality.

Given the current estimates, zeq ≈ 3400 (T ≈ 0.75 eV, t ≈ 60000 yrs) [33].

• Recombination and Photon decoupling. As the temperature drops fur-

ther the reaction e− + p+ → H + γ (where H is neutral Hydrogen) becomes
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energetically disfavourable in the reverse direction, leading to free electrons

getting captured in neutral Hydrogen and Helium atoms. This process is

known as “recombination.” Photon decoupling is a separate event but happens

nearly at the same time of recombination, because of recombination. Drop in

the free electron density due to recombination leads to a drop in the rate of

Thomson scattering e−+ γ → e−+ γ. Hence the photons start to free-stream,

and are usually referred as the Cosmic Microwave Background. These events

take place at around T ≈ 0.26 eV (z ≈ 1090, t ≈ 380000yrs.) [33].

• Drag epoch. The very small baryon-to-photon-ratio ηb ∼ 10−9 leads to

the baryons being dragged along with photons for some time after photon

decoupling. This drag epoch ends when baryons stop feeling the photon drag

and are released from the photons. This occurs at a redshift zdrag ≈ 1060 [33].

• Reionization. From the drag epoch until the first stars form, the universe is

transparent to the CMB photons. This period is called the “dark ages” [34–

36], because there were no sources of photons in the visible frequency range.

When the first stars form, the UV radiation emitted by them reionizes neutral

Hydrogen present in the universe. As a result the universe again becomes

(partially) opaque to radiation since CMB photons get scattered again by free

electrons. Given current estimates, the mid-point of reionization redshift is

zre ≈ 7.5 [33].

• Matter-dark energy equality. If we assume dark energy is described by

a cosmological constant, matter-dark energy equality happens at a redshift
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zΛ = (ΩΛ/Ωm)1/3−1 ≈ 0.3 [33]. After this, the universe becomes cosmological

constant dominated.

• Today. Today, the average temperature of the universe is T ≈ 0.24 meV,

redshift is z = 0 by definition. The current energy content as per the ΛCDM

model: 68.5% dark energy, for about 26.5% dark matter, around 4.9% by

baryons and rest by photons and neutrinos [33].

We would like to mention here that for a particular interaction, equilibrium holds

as long as the rate of a given interaction, Γ, is greater than the Hubble rate, H.

When the interaction rate falls with universal expansion and Γ ∼ H, the reaction is

said to freeze-out. When all the interactions that are keeping a given particle species

in thermal equilibrium freeze-out, the particle decouples from the primordial plasma.

The evolution of the phase space distribution f of a particle species (baryons, dark

matter, dark energy, photons, neutrinos) throughout the expansion history of the

Universe is governed by the Boltzmann equation:

L[f ] = C[f ] , (1.25)

where the Liouville operator L is a total derivative with respect to time and C is

the collision operator. For each particle species the Boltzmann equations result

in a set of coupled differential equations for the evolution of perturbations. See

[37–41] for details regarding Boltzmann equations and cosmological perturbation

theory. Solving the Boltzmann equations is done through numerical codes known as

Boltzmann solvers. Two popular Boltzmann solvers are CAMB [42] and CLASS [43].
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1.6 Cosmological history of neutrinos

In the very early universe (with neutrino temperature Tν � 1 MeV), neutrinos

were in thermal equilibrium with the primeval plasma, through standard weak in-

teractions with an interaction rate, Γ ∼ G2
FT

5
ν , which was more than the Hubble

expansion rate, i.e. Γ� H. Here GF is the Fermi coupling constant. The frequent

weak interactions ensure that the neutrino temperature is same as that of photons

(Tγ), i.e. Tν = Tγ. In thermal equilibrium, the background neutrino distribution is

given by the Fermi-Dirac distribution function,

fν(p, z) =
1

e
p

Tν (z) + 1
(1.26)

for a particular momentum p, and redshift z = 1/a−1, where a is the scale factor of

the universe. And in the very early universe, considering that the temperature of the

neutrinos is far greater than their mass, i.e. Tν � mν , we have made the approxima-

tion in Eq. (1.24) that the energy of the neutrinos, Eν ' p. Due to the assumption of

homogeneity and isotropy of the background universe (i.e. without perturbations),

the background distribution doesn’t depend on the spatial coordinates or direction

of the momentum.

The expansion of the universe leads to a decrease in temperature, and this causes

the weak interaction rate to fall. At around Tν,dec ∼ 1 MeV, the interaction rate falls

below the expansion rate (i.e. Γ < H), and the neutrinos decouple from the primeval

plasma. After decoupling, neutrinos can affect the other components of the universe

only through gravitational effects, as far as only the known physics is considered.
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Since neutrinos are decoupling when they are relativistic, they keep the shape of

their distribution with an effective temperature Tν(a) ∝ a−1 (i.e. Tν(z) ∝ (1 + z)).

Note that after decoupling neutrinos are no longer in equilibrium, and thus their

“temperature” is ill-defined. However, we can still assign an effective “temperature”

to neutrinos since lack of any interaction preserves the shape of their Fermi-Dirac

distribution.

If we assume instantaneous decoupling of neutrinos at Tγ ∼ 1 MeV, then neu-

trinos don’t get exposed to the entropy released to the photons during the electron-

positron annihilation which takes place shortly after the neutrinos decouple, at

around Tγ ∼ 0.5 MeV. The photon temperature, thus decreases at a rate slower

than Tγ ∝ (1 + z), whereas Tν continues to decrease at the rate of (1 + z). Using

conservation of entropy of the universe, one can show that the electron-positron

annihilation leads to a higher photon temperature compared to neutrinos, with the

ratio Tν/Tγ = (4/11)1/3 ' 0.714. Considering the current photon temperature,

measured very precisely from the CMB blackbody spectrum, is Tγ,0 ' 2.725 K, the

temperature of the Cosmic Neutrino Background (CνB) should be around the value

of Tν,0 ' 1.95 K. While neutrinos remain relativistic in the early universe, the tem-

perature ratio is useful in determining the neutrino energy density with respect to

the photon energy density, ργ(Tγ) = (π2/15)T 4
γ . The background energy density of

any particle species can be calculated from the following equation,

ρ(T ) = g

∫
d3p

(2π)3
f(p, T )E(p), (1.27)
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where g is the degeneracy, p is the momentum, T is the temperature, E is the energy

of a particle with momentum p, and f(p, T ) is the distribution function. For photons

and each species of neutrinos, g = 2. For photons, this is to account for the two spin

states whereas for neutrinos, this is to take care of a neutrino and anti-neutrino. For

photons, E(p) = p, whereas for neutrinos E(p) ≈ p when relativistic.

The neutrino energy density is usually parametrized by Neff, which is the effective

number of neutrino species, so that the total neutrino energy density is given by,

ρν(Tν) = (7/8)(π2/15)NeffT
4
ν . The (7/8) factor comes because neutrinos are fermions

and follow Fermi-Dirac statistics, while photons are bosons and follow Bose-Einstein

statistics. It is important to remember that broadly, Neff pertains to any relativistic

species which are not photons. Thus, the total radiation density in the early universe

is given by,

ρr =

[
1 +

7

8

(
4

11

)4/3

Neff

]
ργ. (1.28)

With the assumption of instantaneous decoupling of neutrinos, if we consider neu-

trinos and photons to be the only relativistic species remaining in the early universe

after electron-positron annihilation, then we simply have Neff = 3.

In reality, neither neutrino decoupling, nor electron-positron annihilation are

instantaneous processes. Consequently, some neutrinos continue to remain in equi-

librium even during the electron-positron annihilation process at around T ∼ 0.5

MeV, and receive a part of the entropy released. This, and some other known ef-

fects like finite temperature QED radiative corrections and flavor oscillations, can

be accommodated with a slight increase of the energy density of neutrinos, giving
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Neff = 3.046 [26] (or Neff = 3.045 by a newer analysis [27]) instead of a simple

Neff = 3. A departure of Neff from this theoretical prediction would be due to

non-standard effects or to the contribution of other relativistic species like a sterile

neutrino or dark radiation [44].

As the universe expands and cools down further, neutrinos turn non-relativistic

roughly when their average momentum becomes similar to their mass, 〈p〉 = mν .

The average momentum of a neutrino depends on its temperature [45],

〈p〉(z) ≈ 3.15 Tν(z) = 3.15

(
4

11

)(1/3)

(1 + z) Tγ,0. (1.29)

The redshift for this non-relativistic transition znr is given by [45]:

1 + znr ≈ 1900
(mν

eV

)
. (1.30)

The matter radiation equality happens at a redshift of zeq ' 3400. Thus, from

Eq. (1.30) we can see that neutrinos with masses mν . 1.8 eV become non-

relativistic after matter-radiation equality. Recombination happens at a temper-

ature of Tγ ≈ 0.3 eV, which roughly corresponds to the redshift zrec ≈ 1090. Con-

sequently, neutrinos with mass mν ' 0.6 eV or less become non-relativistic after

recombination. On the other hand, znr = 0 (note: z = 0 at present, by defini-

tion) implies that mν ≈ 1/1900 eV = 5.3 × 10−4 eV. Any mν less than this value

corresponds to a neutrino which is relativistic currently. Given the values of the

squared mass splittings in Eq. (1.22), at least two of the three active neutrinos

are non-relativistic today. The lightest mass eigenstate, however, can be massless
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and hence might be relativistic at present. After neutrinos become non-relativistic,

their energy density adds to the matter energy density, along with cold dark mat-

ter (CDM) and baryons. Due to their small masses, neutrinos are the only known

particle species which behave as radiation deep into the matter dominated era, and

then turn non-relativistic to behave as matter.

The average number density of a particle species at a temperature T is given by,

n(T ) = g

∫
d3p

(2π)3
f(p, T ). (1.31)

Number density of a neutrinos species, using Eq. (1.31), can be calculated to be,

nν(Tν) =
6ζ(3)

4π2
T 3
ν . (1.32)

Considering all the three species, the number density of cosmic neutrinos comes out

to be around 336/cm3. As in case of energy density, it is possible to get a simple

ratio of the number densities of photons and one species of neutrinos at the same

redshift z (simply from Eq. (1.31)), which is given by,

nν(Tν)

nγ(Tγ)
=

3

4

(
Tν
Tγ

)3

=
3

11
, (1.33)

which sets the present number density of CMB photons to be 411/cm3.

The energy density of neutrinos, when they turn relativistic, is different from the

relativistic case, since it is no longer possible to approximate E(p) ≈ p in Eq. (1.27)

when neutrinos are non-relativistic. Now we must write E(p) =
√
p2 +m2

ν and
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then evaluate the integral. In the limiting case mν � p, and we can approximate

the energy as E ≈ mν . As a function of the effective neutrino temperature Tν the

neutrino energy density ρν (for a single species) is given by:

ρν(Tν) =


7π2

120
T 4
ν (Tν � mν),

mνnν (Tν � mν).

, (1.34)

Since Tν(z) ∝ (1 + z), we have ρν(z) ∝ (1 + z)4 in the early universe and ρν(z) ∝

(1 + z)3 in the late universe.

After neutrinos decouple from the primeval plasma at Tν,dec ∼ 1 MeV, neutri-

nos travel at an average speed which is close to the speed of light, i.e. neutrinos

free-stream. Later, when they turn non-relativistic, they can still have high thermal

velocities (when compared to CDM, baryons). This has a very important impact

on cosmological structure formation. Since neutrinos can free-stream out of grav-

itational potential wells in over-dense regions of the universe due to high thermal

velocities, neutrinos hamper structure formation below a length scale, called the

neutrino free-streaming scale, denoted with λfs. Let cν(z) denote neutrino speed at

a particular redshift z. Then λfs is roughly the distance travelled by a neutrino over

a Hubble time, tH ≡ 1/H.

It is defined as follows [40]:

λfs(z) ≡ (1 + z)−1 2π

kfs(z)
≡ 2π

√
2

3

cν(z)

H(z)
. (1.35)

Here kfs is the free-streaming wavenumber.
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As long as neutrinos are relativistic, cν(z) ≈ 1, and λfs(z) = 2π
√

2
3
tH. Thus,

kfs(z) = (1 + z)−1

√
3

2
H(z) =

√
3

2
aH(z) (1.36)

On the other hand, after the non-relativistic transition cν(z) can be written

as [40] :

cν(z) =
〈p〉(z)

mν

≈ 3.15
Tν(z)

mν

≈ 158(1 + z)

(
1 eV

mν

)
km

s
. (1.37)

Here we have used Eq. (1.29). We can see that cν(z) decreases with Tν(z) as (1+z).

Using Eq. (1.37) in Eq. (1.35) we can get [40]:

λfs ≈ 8.1(1 + z)
H0

H(z)

( mν

1 eV

)
h−1Mpc ,

kfs ≈ 0.776(1 + z)−2H(z)

H0

( mν

1 eV

)
hMpc−1 . (1.38)

To understand the variation of kfs with redshift, we note that during matter

domination, H(z) ≈ H0

√
Ωm(1 + z)3/2. Before the non-relativistic transition but

within the matter domination era, kfs(z) decreases as (1 + z)1/2, as we can see from

Eq. (1.36). After the non-relativistic transition kfs(z) begins increasing with time

as (1 + z)−1/2. Hence it can be inferred that during the non-relativistic transition,

kfs goes through a minimum value, which corresponds to a maximum neutrino free-

streaming scale. This minimum is denoted with knr. It is the wavenumber above

which free-streaming effects of neutrinos should be incorporated. We denote the

corresponding free-streaming length scale by λnr, the scale below which neutrino free-

36



1 Introduction

streaming effects are not negligible, and on these scales neutrino density fluctuations

are damped leading to suppressed structure formation. knr is obtained by evaluating

kfs [from Eq. (1.38)] at znr [from Eq. (1.30)]:

knr ≈ 0.0178
√

Ωm

( mν

1 eV

) 1
2
hMpc−1 . (1.39)

Modes with k < knr are, on the other hand, not affected by free-streaming. Thus on

scales larger than λnr, neutrinos behave as cold dark matter.

1.7 Neutrino mass effects on cosmology

In the literature there are a lot of excellent articles describing the effects of neutri-

nos on cosmological observations [44, 46–59]. Below we briefly describe the effects

neutrinos impart on the CMB and LSS probes.

1.7.1 Neutrino mass effects on CMB anisotropies

The information in the CMB anisotropies is the power spectrum coefficients CTT
` .

These are the coefficients of the expansion in Legendre polynomials (P`) of the two-

point correlation function. In the case of the angular fluctuations in the temperature

in direction n̂, ∆T (n̂)/T [45]:

〈
∆T (n̂)

T

∆T (n̂′)

T

〉
=
∞∑
`=0

2`+ 1

4π
CTT
` P`(n̂ · n̂′) . (1.40)

.
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Where T is the average temperature. A similar expression holds for the E mode

polarization field (sourced by scalar perturbations) and for its cross-correlation with

temperature, and also for B mode polarization (which are not produced by scalar

fluctuations). Primordial B modes can only be sourced in the presence of tensor

modes, i.e., gravitational waves, whereas some E-mode polarization are also con-

verted to B mode through gravitational lensing.

As a consequence of the opposite action of gravity and radiation pressure in

the photon-baryon fluid in the early Universe acoustic waves are generated which

get “frozen” in the CMB spectrum once photons decouple [60], and thus we see a

series of peaks and troughs in the temperature power spectrum. The scale of the

oscillations is given by the sound horizon at decoupling rs(zdec).

After decoupling photon perturbations are affected by time variations in the

gravitational potentials. This effect is known as integrated Sachs-Wolfe (ISW) effect.

The gravitational potentials don’t change in the completely matter-dominated era.

So the ISW effect has two contributions: the early ISW contribution right after

recombination, when the radiation component is not negligible, and a late ISW

contribution, when the dark energy density begins to dominate [45].

One can classify effect of neutrino masses on the CMB anisotropies in two cate-

gories: background effects and perturbation effects. Background effects are related

to changes to the background evolution of H(z). CMB anisotropy spectra are sen-

sitive to the following characteristic scales: zeq, rs(zdec), and χ(zdec). In fact, the

angular position of the first peak is given by Θs = rs(zdec)/χ(zdec), and the height

of the first peak is very sensitive to the redshift of matter-radiation equality, zeq.
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As far as the latest CMB data is concerned, zeq and Θs are well constrained, and

thus to understand the impact of
∑
mν or Neff on the CMB anisotropies, it makes

sense to vary other parameters also, so that these characteristic scales remain fixed.

This is the approach advocated in [40]. The perturbation effects are related to the

impact of neutrinos on metric fluctuations (gravitational potentials). Since current

cosmological bounds on neutrino masses from different probes are mν � 1 eV, we

consider neutrinos to be radiation at matter-radiation equality. Thus

zeq =
ωb + ωc

ωγ

[
1 + 7

8

(
4
11

) 4
3 Neff

] ≡ ωb + ωc
αωγ

, (1.41)

where α ≡ [1 + 7/8(4/11)4/3Neff ] ≈ (1 + 0.2271Neff). In this section we consider

Ωk = 0, and ΩDE = ΩΛ. Then we can rewrite the sum rule in Eq. (1.8) as,

ωγ + ωb + ωc + ωΛ + ων = h2. (1.42)

Also the background evolution of H(z) in Eq. (1.11) can be rewritten as,

H(z) = H0

√
(Ωb + Ωc)(1 + z)3 + Ωγ(1 + z)4 + ΩΛ +

ρν(z)

ρcrit

. (1.43)

The effect of increasing
∑
mν on the CMB temperature power spectrum while

keeping Θs and zeq fixed is shown in Fig. 1.1.

Neutrinos with mass mν � 0.6 eV become non-relativistic long after photon

decoupling. If we increase the neutrino mass while keeping ωb and ωc fixed, the
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Figure 1.1: Effect of increasing
∑
mν on the CMB temperature power spectrum,

adjusting h and ΩΛ to keep Θs and zeq fixed. Here DTT
l ≡ l(l + 1)CTT

l /2π in units
of µK2. Upper panel : the black curve is the power spectrum for the baseline model
where

∑
mν = 0.06 eV, h = 0.7, and ΩΛ = 0.713. The red (blue) curve is for∑

mν = 0.9 eV (
∑
mν = 1.5 eV), where the increase in

∑
mν is compensated with

h = 0.628 (h = 0.586) and ΩΛ = 0.620 (ΩΛ = 0.545). Lower panel : relative change
in power compared to the baseline model, with the same color coding as above.
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early time evolution remains unchanged (zeq and rs(zdec) also) and independent

of the neutrino mass up to the time of the non-relativistic transition. Moreover

presence of baryons introduce an asymmetry between even and odd peaks, and thus

varying ωb can be problematic. Thus neutrino masses mν � 0.6 eV have small effect

on the CMB, but we can still discern some of the effects.

First, the neutrino density increases the total non-relativistic density at late

times, ωm = ωb + ωc + ων , with ων ∝
∑
mν . The late background evolution affects

the CMB anisotropy spectrum via changes in the χ(zdec) which depends on H(z)

via Eq. (1.14), and on the redshift of matter-to-Λ equality through late ISW effect.

Increasing
∑
mν modifies these two quantities. By tuning h and ΩΛ, it is possible to

keep one of them fixed, but not both at the same time. Since the CMB temperature

anisotropy spectrum measures Θs with great precision, and is only slightly sensitive

to the late ISW effect due to cosmic variance, with increase in
∑
mν we choose in

Fig. 1.1 to decrease the Hubble parameter to maintain a fixed scale χ(zrec). With

such a choice, an increase in neutrino mass comes together with a decrease in ωΛ, and

hence a decrease in the late ISW effect explaining the reduction of the CMB spectrum

for l ≤ 20 in Fig. 1.1. In practice however, this change is difficult to measure due to

cosmic variance and CMB anisotropy data alone cannot provide useful information

on sub-eV neutrino masses [44]. Since both
∑
mν and h enter the expression of H(z)

and hence χ(zrec) means that
∑
mν will be strongly correlated with h in CMB data

in the ΛCDM +
∑
mν model. This is an issue we shall get back to in later chapters.

Second, the non-relativistic transition of neutrinos changes the total pressure-to-

density ratio of the universe, and leads to a small change in the metric fluctuations.
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If this transition happens not long after photon decoupling (i.e. the neutrinos are

massive enough), this variation can be seen via the early ISW effect [40, 44, 61]. It

is responsible for the dip seen in Fig. 1.1 for 20 ≤ l ≤ 200 which is of the order of

∆Cl/Cl ∼ −(
∑
mν/10 eV) in the temperature spectrum. Third, when the neutrino

mass is higher, due to a decrease in the matter power spectrum due to neutrino

free streaming effects, the CMB photons are exposed to less lensing. Lensing causes

smearing in the high-l peaks in the CMB spectra. This reduced lensing effect is the

reason of most of the the oscillations visible in Fig. 1.1 for l ≥ 200. Fourth, the

neutrinos having the smallest momenta begin to become non-relativistic before the

neutrinos with average momenta. The photon perturbations are affected by this via

gravitational coupling with neutrinos. This leads to a small enhancement of CTT
l

for l ≥ 500, not properly visible on Fig. 1.1 because of the lensing effect. Seeing the

overall effect of neutrino masses on CMB anisotropies, we see that CMB anisotropy

alone cannot be a very powerful probe of sub eV neutrino masses.

1.7.2 Neutrino mass effects on the matter power spectrum

The clustering of matter at large scales is another useful probe of neutrino masses.

It can be described by the following two-point correlation function :

〈
δm(~k, z)δm(~k′, z)

〉
= Pm(k, z)δ(3)

(
~k − ~k′

)
, (1.44)

where δm(~k, z) is the Fourier transform of the matter energy density perturbation,

and Pm(k, z) is called the power spectrum of matter energy density fluctuations, at
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the redshift z.

For matter power spectrum, zeq is an important quantity, as it is the redshift at

which Pm(k) turns around, because different growth is experienced by modes which

enter the horizon before to matter radiation equality vs after matter-radiation equal-

ity. During radiation dominated era, the radiation pressure hampers the growth of

matter overdensities, and matter perturbations can only grow logarithmically with

the scale factor: δm ∝ ln a, whereas, during the matter dominated era, matter

perturbations can grow faster: δm ∝ a [37–40]. The turn-around happens at a

wavenumber keq =
√

2Ωm(1 + zeq) which corresponds to a mode entering the hori-

zon at zeq [40]. Also, the overall amplitude of Pm(k) depends strongly on Ωm (we are

considering a spatially flat ΛCDM scenario), whereas ωb and ωb/ωc govern the high-k

(small scale) part of the spectrum [40]. Increasing ωb/ωc causes a suppression in the

small scale power spectrum CDM perturbations have a slower growth rate in pres-

ence of baryons. Again, the acoustic oscillations in the photon-baryon fluid during

recombination gets “frozen” in the baryons also, when baryons are decoupled from

photons after the drag epoch, with rs(zdrag) setting the characteristic scale. Imprint

of this Baryon Acoustic Oscillations (BAO) are seen on the matter power spectrum

in the form of wiggles, whose amplitude and phase depends on ωb [40]. Measurement

of the BAO signal from matter power spectrum is useful for constraining neutrino

masses, since the BAO data is helpful in breaking the degeneracy between h and∑
mν present in the CMB data.

Thus any useful comparison of the matter power spectra for different values of∑
mν should be done keeping zeq, Ωm, ωb, and ωb/ωc fixed. Since zeq is given by
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Figure 1.2: Impact of increasing
∑
mν on the linear matter power spectrum, zeq

and Ωm fixed. Upper panel : the black curve is the power spectrum for the baseline
model where

∑
mν = 0.06 eV, h = 0.7, and Ωm = 0.287. The red (blue) curves

are obtained for
∑
mν = 0.9 eV (

∑
mν = 1.5 eV), where the increase in

∑
mν is

compensated for by setting h = 0.722 (h = 0.738). Lower panel : relative change in
power with respect to the baseline model, with the same colour coding as above.
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Eq. (1.41), if we keep ωb and ωc fixed, both zeq and ωb/ωc remain unchanged. Things

are slightly complicated for Ωm, which, at late times, is given by Ωm = Ωc+Ωb+Ων =

(ωc +ωb +ων)/h
2, considering neutrinos have become non-relativistic. Since ωc and

ωb are already fixed, the only way to keep Ωm fixed is to increase h as we increase∑
mν .

In Fig. 1.2, we show the effect of increasing
∑
mν on the matter power spectrum

with with Ωm and zeq fixed. The signature of neutrino masses seen as a a step-like

suppression in P (k) on small scales (large k) due to a combination of two main

effects. Firstly, due to their high thermal velocities, below their free-streaming scale

neutrinos do not cluster, therefore don’t contribute to the matter fluctuations δm.

Secondly, CDM and baryon perturbations grow slower in the presence of massive

neutrinos, since massive neutrinos behave as radiation below their free-streaming

scale and thus increase the radiation-to-matter fraction. Above the neutrino free-

streaming scale matter perturbation δm grows as in a purely matter dominated

universe, i.e. δm ∝ a (for k � knr). However, below the neutrino free-streaming

scale, numerical calculations find that δm ∝ a1−3fν/5 (for k � knr), where fν ≡

Ων/Ωm [40]. These two effects together result in a suppression of ∆Pm(k)/Pm(k) ≈

−8fν as long as we can consider the matter perturbations to be linear [40, 62].

Furthermore, numerical simulations incorporating non-linear effects have found the

suppression to be around ∆Pm(k)/Pm(k) ≈ −10fν [63–66].

Since neutrinos with different masses become non-relativistic at different times, it

is expected that the suppression of matter power spectrum happens in three steps (or

two if the lightest eigenstate is massless) as per the knr of each eigenstate. However,

45



1 Introduction

the imprint of individual masses is found to be too small to be probed by current or

near-future surveys [67–69]. Thus in this thesis, we use the
∑
mν parameter, since

cosmological data is currently found to be sensitive only to the total mass.

1.8 Statistical methods in cosmology

Before we move to analysis of cosmological data and present results on neutrino

masses, in this section we provide a brief description of the statistical methods

(which are relevant to this thesis) used in cosmological studies to estimate model

parameters from the vast amount of cosmological data currently available. See [70–

74] for an in-depth overview of application of Bayesian statistics and data analysis

in cosmology.

Let A and B be two events which can be assigned probabilities, p(A) and p(B)

respectively. Let p(A|B) denote the probability of A being true on the condition

that B is true. Let p(A,B) denote the joint probability of A and B.

Then Bayes’ theorem [75] states that,

p(B|A) =
p(A|B)p(B)

p(A)
(1.45)

While A and B correspond to discrete events, we now switch to continuous ran-

dom variables, with ps now describing probability distribution functions rather than

probabilities. In cosmology, we usually have some data from observations d and

a cosmological model M described by some parameters θ. Then, we can rewrite
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Eq. (1.45) for the model M as,

p(θ|d) =
p(d|θ)p(θ)

p(d)
. (1.46)

In the field of cosmological parameter estimation, the quantity on the left hand

side, p(θ|d) in a particular model M is what we want to calculate, i.e. the proba-

bility distribution of the model parameters given the data, often called the posterior

distribution. On the right hand side of Eq. 1.46 lie three quantities. p(d|θ) is of-

ten called the likelihood function which gives the probability distribution function

of the observed outcome of an experiment, d given a particular parameter set θ of

the model M. p(θ) is known as the prior distribution of model parameters which

depends on our initial belief about the model parameters (irrespective of the data).

The quantity in the denominator is p(d), which is usually known as evidence.

Since p(θ|d) is a probability distribution, we must have

∫
dθp(θ|d) =

1

p(d)

∫
dθp(d|θ)p(θ) = 1 (1.47)

which immediately gives us an expression for the evidence,

p(d) =

∫
dθp(d|θ)p(θ). (1.48)

Evidence p(d) doesn’t depend on model parameters and is thus useful in com-

parison between various models for some particular data d. In this thesis we have

not used any evidence based model comparison and thus we do not discuss it fur-
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ther. However if someone is only interested in parameter inference instead of model

comparison, that person will only care about the ratio of the values of the posterior

distribution at different values of the model parameters. The overall normalization,

evidence, is irrelevant in such a scenario. We can then use a simpler form of Bayes’

theorem,

p(θ|d) ∝ p(d|θ)p(θ). (1.49)

It is evident that the posterior distribution depends both on the likelihood and

the prior. Here comes one important point. If the data is informative, then the

posterior should mostly depend on the likelihood instead of the prior. On the other

hand, if the data is not informative, or only weakly informative, then the posterior

will largely depend on the prior [71]. This is particularly important in the case of

neutrino masses. It is usual to take a
∑
mν ≥ 0 prior since a mass is a positive

quantity (to leave out the un-physical negative masses from the analysis). Over and

above this prior, it is possible to add other priors on
∑
mν ≥ 0 based on what one

believes to be the correct mass model for neutrinos. Currently, cosmological data is

not informative enough to detect the neutrino mass sum, and we only get various

upper bounds for various dataset and model combinations. For a particular dataset,

this upper bound can vary greatly depending on the choice of the prior on
∑
mν .

This issue has gained a lot of attention in recent literature: [76–81].

In a Bayesian analysis, the joint posterior distribution p(θ|d) of all varying pa-

rameters in the model is computed. Let us consider that there are n free parameters
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in the model: (θ1, θ2, ...., θn). We can then compute the 1D posterior distribution

p(θ1|d) for a single parameter θ1 by integrating out other parameters:

p(θ1|d) =

∫
dθ2...dθn p(θ|d) . (1.50)

This method of integrating out other parameters is known as marginalization.

Similarly for the 2D posterior distribution p(θ1, θ2|d) we integrate out all other

parameters except θ1 and θ2, i.e. a straightforward generalization of Eq. 1.50.

We now move to the discussion of credible regions or confidence levels (C.L.).

A f% credible region, denoted by R encloses a fraction f/100 of the posterior

probability, considering a normalized posterior distribution (such that
∫
dθ p(θ|d) =

1).

∫
R
dθ p(θ|d) = f/100. (1.51)

Usually credible regions are typically used for f ≈ 68.3, f ≈ 95.4, and f ≈ 99.7,

and these are referred to as 1σ, 2σ, and 3σ confidence levels. In the case of a single

parameter, confidence regions known as confidence intervals. Another important

thing is, the region R is not unique, and several such regions which are different

from each other, can be constructed. One way to chose a credible region is to use

the highest posterior density regions, R?, such that p(θ|d) ≥ p for all points in

parameter space belonging to R?, with p(θ|d) = p being the boundary of R?.

Now we want to apply Bayesian statistics in cosmology is to perform parameter
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estimation. Given some data d and a model M with a given parametrization θ

with a prior distribution p(θ), we want to determine the posterior distributions of

the parameters. In cosmological analyses, each evaluation of the likelihood involves

a call to one Boltzmann solver (e.g. CAMB [42] or CLASS [82]). Evaluation of the

posterior distribution in cosmological studies is usually not very easy, considering it

usually involves dealing with O(10) parameters. For instance the minimal ΛCDM

model alone has 6 parameters, and cosmological datasets usually have a number

of nuisance parameters to account for calibration, systematics, etc. One needs an

efficient way of sampling the posterior distribution and nowadays the predominantly

used method is Markov Chain Monte Carlo (MCMC) method [83]. In this thesis, we

have exclusively used the popular MCMC sampler CosmoMC [84] interfaced with the

Boltzmann solver CAMB [42] which takes care of the background and perturbation

evolution equations.
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Results on

∑
mν in various cosmological

models

This chapter is based on my paper: “Updated Bounds on Sum of Neutrino

Masses in Various Cosmological Scenarios” (arXiv: 1806.10832)[85]. In this thesis,

we are interested in neutrino mass bounds from cosmology. In this work we start

with ΛCDM model and some of its simple extensions with tensor perturbations

and dynamical dark energy. Our main goal in the above paper was to understand

how strong the upper bound on
∑
mν can be with the latest cosmological datasets

available at that time, in various cosmologies. We provide bounds on
∑
mν in the

background of five different cosmological models: (1) ΛCDM +
∑
mν (2) ΛCDM +

r +
∑
mν , where r is the tensor to scalar ratio, (3) w0waCDM +

∑
mν , where we

assume Chevallier-Polarski-Linder (CPL) parametrization for dynamical dark energy

instead of a simple cosmological constant, (4) w0waCDM +
∑
mν with w(z) ≥ −1,

i.e., we restrict the w0 − wa parameter space to exclude phantom dark energy, and

(5) w0waCDM + r +
∑
mν with w(z) ≥ −1, a model extended with both tensors
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and non-phantom dynamic dark energy.

We use combinations of the following datasets: (1) Cosmic Microwave Back-

ground (CMB) temperature, polarization and their cross-correlation data from Planck

2015; (2) BAO signal from SDSS-III BOSS DR12, MGS and 6dFGS; (3) the Type

Ia supernovae (SNe Ia) luminosity distance measurements from Pantheon Sample;

(4) the data released from the BICEP2/Keck Collaboration for the BB mode of the

CMB spectrum up to and including 2014; (5) and also local measurements of the

Hubble parameter (H0) from the Hubble Space Telescope; (6) the 2016 measure-

ment of the optical depth to reionization (τ) obtained from the analysis of the data

from High Frequency Instrument of the Planck satellite; and (7) the galaxy cluster

data from the observation of the Sunyaev-Zel’dovich (SZ) signature from thee 2500

square degree South Pole Telescope Sunyaev Zel’dovich (SPT-SZ) survey.

The two low redshift priors (on τ and H0) are particularly important in constrain-

ing
∑
mν because of presence of significant degeneracy of these two parameters with∑

mν [86] in the CMB data. We emphasize here that at the time of completion of

this work, apart from Planck 2015 and the two redshift priors, the other datasets

had not been studied widely in literature for obtaining bounds on
∑
mν and we are

the first to use combinations of these above mentioned datasets and priors to obtain

the very strong bounds presented in this paper, in the above mentioned cosmological

models.

As noted in previous chapter, current cosmological measurements are primarily

sensitive to the sum of the three masses,
∑
mν . Same total mass, but different

mass splittings should result in slightly different signatures in the cosmological ob-
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servables. However current experiments do not have the sensitivity to distinguish

these differences with reasonable significance [76]. For this reason, in this work, we

present results which are obtained with the approximation of 3 degenerate neutrino

masses (from now on DEG), i.e.,

m1 = m2 = m3 =

∑
mν

3
(DEG). (2.1)

This approximation is predominant in literature in analyses where
∑
mν is varied.

Planck 2015 data combined with others led to a bound of
∑
mν < 0.23 eV at 95%

C.L. (Planck 2015 TT + lowP + lensing + BAO + JLA + H0) [87]. Depending

on the used data and variations in the analysis, different analyses [33, 78, 86, 88–

94] obtain 95% C.L. upper bounds from current data approaching the value of 0.1

eV, minimum mass required for IH. These results suggest IH is under pressure

from cosmology. However, getting a 95% limit of
∑
mν less than the minimum

required mass for IH does not rule out IH. Recent papers [76, 78] have suggested a

rigorous but simple statistical method of computing the confidence level at which the

hypothesis of IH can be rejected against NH using results from both cosmological and

oscillations data. These recent analyses indicate that cosmology does slightly prefer

NH compared to IH, but no statistically significant conclusion can be reached yet.

In this work, we, however, do not perform this statistical analysis and concentrate

only on obtaining bounds on
∑
mν .

This chapter is structured as follows: in Section 2.1 we describe our analysis

method, the varying parameters of various cosmological models analyzed in this
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paper and the priors on the said parameters. We also briefly describe the Chevallier-

Polarski-Linder (CPL) parametrization for dynamical dark energy. In Section 2.2,

we briefly describe the various datasets we have used in this work. In Section 2.3

we provide the results of the analyses. We summarize Section 2.4.

2.1 Cosmological Models and Analysis Method

As mentioned in the previous section, in this work we have considered 5 different

models of cosmology to obtain bounds on the sum of three active neutrino masses.

Below we list the vector of parameters to vary in each of these cosmological models.

• For ΛCDM +
∑
mν model:

θ ≡
[
ωc, ωb, Θs, τ, ns, ln[1010As],

∑
mν

]
. (2.2)

• For ΛCDM + r +
∑
mν model:

θ ≡
[
ωc, ωb, Θs, τ, ns, ln[1010As],

∑
mν , r

]
. (2.3)

• For both the w0waCDM +
∑
mν models (with or without phantom dark en-

ergy) :

θ ≡
[
ωc, ωb, Θs, τ, ns, ln[1010As],

∑
mν , w0, wa

]
. (2.4)

• For the w0waCDM+r+
∑
mν model (non-phantom dark energy with tensors)
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:

θ ≡
[
ωc, ωb, Θs, τ, ns, ln[1010As],

∑
mν , w0, wa, r

]
. (2.5)

We fix Neff to the theoretical value of 3.046 in all our analyses in this chapter.

In ΛCDM + r +
∑
mν , along with scalar perturbations we also include tensor per-

turbations and let another parameter r to vary, which is the tensor-to-scalar ratio

at the pivot scale of k∗ = 0.05hMpc−1. The choice to study this model is motivated

by the results from the publicly available dataset from the measurement of the BB

mode spectrum of the CMB from BICEP2/Keck collaboration, namely BK14, which

provides an upper bound to r < 0.07 at 95% C.L, when combined with Planck 2015

and other datasets [95]; while the bound without BK14 data is much more relaxed

at r < 0.12 [87]. We expect this data to modify the constraints on the neutrino

related parameters.

The motivation to study the dynamical dark energy models stems from the fact

that from the quantum field theoretic point of view, a cosmological constant has

been a very difficult thing to explain [96]. For the two dynamical dark dark energy

models, we again only concentrate on scalar perturbations, but the background

ΛCDM cosmology with the dark energy equation of state (EoS) w = −1 is replaced

by a varying equation of state with the following parametrization in terms of the

redshift z:

w(z) = w0 + wa
z

1 + z
. (2.6)

This parametrization is famously known as the Chevallier-Polarski-Linder (CPL)

parametrization [97, 98]. This parametrization uses Taylor expansion of w(a) (only

55



2 Results on
∑
mν in various cosmological models

the first two terms). This parametrization is suitable for describing the past expan-

sion history of the universe, especially at high redshifts [98], but other parametriza-

tions might be needed to describe future evolution [99] since as z → −1, w(z)

diverges.

Notice that w(z = 0) = w0 corresponds to the dark energy EoS today, whereas

w(z → ∞) = w0 + wa refers to the dark energy EoS in the very far past. Between

these two times, it is easy to see that w(z) is a monotonic function. Therefore,

to explore only the non-phantom dark energy region of the parameter space, i.e.,

w(z) ≥ −1, it is sufficient to apply the following hard priors [100]:

w0 ≥ −1; w0 + wa ≥ −1. (2.7)

We abbreviate the model, w0waCDM +
∑
mν (w(z) ≥ −1) as the NPDDE model,

whereas this same model without any such prior on the EoS will be simply called

the DDE model. A Un by a phantom dark energy component (w(z) ≤ −1) would

lead to a Big Rip in most cosmological models, where dark energy density becomes

infinite in a finite time, resulting in dissociation of any bound state, i.e., the “Big

Rip” [101]. Such a universe is unphysical in a sense and hence we study the NPDDE

model separately.

In our work, we conduct a Bayesian analysis to derive constraints on
∑
mν .

For all the parameters listed in Eq. (2.2-2.5), we impose flat priors in our analysis.

The prior ranges are listed on the Table 2.1. We obtain the posteriors using the

Markov Chain Monte Carlo (MCMC) sampler CosmoMC [84] which uses CAMB
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Parameter Prior
ωc [0.001,0.99]
ωb [0.005,0.1]
Θs [0.5,10]
τ [0.01,0.8]
ns [0.8,1.2]
ln [1010As] [2,4]∑
mν (eV) [0,5]

r [0,1]
w0 [-3, -0.33]
wa [-2, 2]

Table 2.1: Flat priors on cosmological parameters included in this work. For the
NPDDE model, hard priors according to Eq. (2.7) are also implemented so as to
exclude the parameter space region corresponding to phantom dark energy.

[42] as the Boltzmann solver and the Gelman and Rubin statistics [102] to quantify

the convergence of chains. All our MCMC runs achieved a convergence criterion of

R − 1 < 0.01, except for the analyses including the SPT-SZ dataset where we had

R − 1 < 0.03. We use the Halofit model [103, 104] included in CAMB to take care

of any non-linear corrections required.

2.2 Datasets

Below, we provide a description of the datasets used in our analyses. We have used

different combinations of these datasets.

Cosmic Microwave Background: Planck 2015: Measurements of the CMB

temperature, polarization, and temperature-polarization cross-correlation spectra

from the publicly available Planck 2015 data release [105] are used. We consider a
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combination of the high-l (30 ≤ l ≤ 2508) TT likelihood, as well as the low-l (2 ≤ l

≤ 29) TT likelihood. We call this combination simply as TT. Along with that, we

include the Planck polarization data in the low-l (2 ≤ l ≤ 29) likelihood, and refer

to this as lowP. We also consider the high-l (30 ≤ l ≤ 1996) EE and TE likelihood.

This dataset and TT together are referred to as TTTEEE. The Planck 2015 high-

l polarization data might have remained contaminated with residual systematics

[106], so bounds obtained without the use of high-l polarization likelihoods can be

considered slightly more reliable.

Baryon Acoustic Oscillations (BAO) Measurements and Related Galaxy

Cluster data: In this work, we include BAO measurements obtained from vari-

ous galaxy surveys. We make use of the SDSS-III BOSS DR12 Consensus sample

(as described in [107]; uses galaxy samples at zeff = 0.38, 0.51 and 0.61), the DR7

MGS at zeff = 0.15 [108], and 6dFGS survey at zeff = 0.106 [109]. We refer to

this combination as BAO. Here zeff is the effective redshift of the particular survey.

In some cases, we have also used the full shape measurements of the correlation

function and galaxy power spectrum (refer to [107] for details) from the SDSS-III

BOSS DR12. We denote this as FS. The full shape of these measurements reveal

additional information other than the BAO signal.

Type Ia Supernovae (SNe Ia) Luminosity Distance Measurements: We

also include measurements of the luminosity distance from Type-Ia Supernovae (SNe

Ia) from the Pantheon Sample [110] which has data from 279 Pan-STARRS1 (PS1)

Medium Deep Survey SNe Ia (0.03 < z < 0.68) and combines it with distance esti-

mates of SNe Ia from SDSS, SNLS, various low-z and HST samples. This combined
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sample of SNe Ia is largest till date and consists of data from a total of 1048 SNe

Ia with 0.01 < z < 2.3. We denote this dataset as PAN hereafter. This dataset

replaces the Joint Light-curve Analysis (JLA) SNe Ia sample which consists of 740

spectroscopically confirmed type Ia supernovae [111].

Galaxy Cluster Data from South Pole Telescope: In this work, we use

data from the SPT-SZ survey [61] which provides data from a sample of 377 clusters

(identified at z > 0.25). SPT-SZ is a survey of 2500 deg2 of the southern sky

conducted with the South Pole Telescope (SPT, [112]). These galaxy clusters are

recognized by their Sunyaev-Zel’dovich (SZ) effect [113] signature. We call this

dataset as SZ from now on.

Optical Depth to Reionization: The optical depth is proportional to the

electron number density integrated along the line of sight, and thus most of the

contribution to it comes from the time when the universe re-ionizes. We impose a

Gaussian prior of τ = 0.055±0.009, taken from [114], in which Planck collaboration

has identified, modeled and removed previously unexplained systematic effects in the

polarization data of the Planck High Frequency Instrument (HFI) on large angular

scales (low-l) (the data was not made publicly available). It was the most recent and

reliable measurement of τ from Planck data available at the time of inception of this

work. Also, this prior is very close to the τ = 0.0544+0.0070
−0.0081 (68%) bound reported by

Planck 2018 collaboration [33]. As we shall see, use of this prior (τ = 0.055± 0.009)

ensures that the results on
∑
mν presented in this chapter are very close to the

results that can be obtained with Planck 2018 likelihoods, since the improvement in

measurement of τ is one of the key changes from Planck 2015 to Planck 2018 [33].
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We shall hereafter refer to this prior as τ0p055. We use τ0p055 as a substitute for

low-l polarization data, and hence we exclude the lowP data whenever we apply the

τ0p055 prior, to avoid any double counting.

Hubble Parameter Measurements: We used a Gaussian prior of 73.24±1.74

km/sec/Mpc (68%) on H0 measured by [115]. We shall refer to this prior as R16.

It is to be noted that different datasets prefer different values of H0 and there is no

clear consensus. For instance, strong lensing observations [116] of the H0LiCOW

program gave a slightly lower value of H0 = 71.9+2.4
−3.0 km/sec/Mpc, whereas another

measurement [117] prefers a much lower value of H0 = 68.3+2.7
−2.6 km/sec/Mpc. The

recent SDSS DR12 BAO data prefers an even lower value of 67.6± 0.5 km/sec/Mpc

[107]. We chose the R16 value as it is in 3.4σ tension with Planck 2016 intermediate

results [114], whose measured value of H0 is 66.93 ± 0.62 km/sec/Mpc assuming

ΛCDM with 3 active neutrinos of total mass fixed at
∑
mν = 0.06 eV. Using the

R16 prior we get an idea of how the parameter bounds will change if cosmology has

to accommodate such a large value of Hubble constant. However the large tension

between Planck 2015 and R16 leads to a considerably worse fit to the data when the

R16 prior is included and thus makes the bounds on
∑
mν much less reliable. The

situation has become even worse recently (after the work in presented this thesis

was completed) with the current best local measurement of H0 being 74.03 ± 1.42

km/sec/Mpc (68%) [118], with a 4.4σ with Planck 2018 in the ΛCDM model.

B Mode Polarization data of CMB: For the BB mode spectrum of CMB,

we use the dataset available from BICEP2/Keck collaboration which includes all

data (spanning the range: 20 < l < 330) taken up to and including 2014 [95]. This
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dataset is referred to as BK14.

2.3 Results on
∑
mν

For clarity, we have presented and explained the results on the sum of three active

neutrino masses separately for each model (see Section 2.1 for a description of mod-

els) in different subsections. All the quoted upper bounds are at 95% C.L. The main

results are summarized in Tables 2.2 – 2.9. Details about models and datasets are

given in Section 2.1 and Section 2.2 respectively.

2.3.1 Results for the ΛCDM +
∑
mν Model

In this subsection, we present the 2σ (95% C.L.) upper bounds on
∑
mν for the

ΛCDM+
∑
mν model for various combinations of datasets. Upper bounds on

∑
mν

are given at 2σ (95% C.L.) while marginalized limits for any other parameter men-

tioned in the text are given at 1σ (68% C.L.). We have divided these results in two

separate sections for convenience of analyzing and presenting. First we present re-

sults obtained without using any priors on the optical depth to reionization (τ) and

Hubble constant (H0) and discuss the effects of different datasets on the bounds.

Next we summarize the results obtained using the said priors.

Results without τ and H0 priors

In Tables 2.2 and 2.3 we present the bounds without applying any Gaussian prior to

the low redshift parameters τ and H0. In Table 2.2 bounds are obtained without the
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Figure 2.1: Comparison of 1-D marginalized posterior distributions for
∑
mν for

various data combinations in ΛCDM +
∑
mν , without τ and H0 priors. The plots

are normalized in the sense that area under the curve is same for all curves.
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Figure 2.2: Comparison of 1-D marginalized posterior distributions for H0 for
various data combinations in ΛCDM +

∑
mν , without τ and H0 priors.
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Model: ΛCDM +
∑
mν

Dataset
∑
mν (95% C.L.)

TT < 1.064 eV
TT + lowP <0.724 eV
TT + BAO <0.311 eV
TT + lowP + BAO <0.200 eV
TT + PAN <0.383 eV
TT + lowP + PAN <0.260 eV
TT + BAO + PAN <0.299 eV
TT + lowP + BAO + PAN <0.190 eV

Table 2.2: Upper bounds at 95% C.L. on
∑
mν (degenerate case), in ΛCDM+

∑
mν

model for the given datasets. Details about models and datasets are given in Section
2.1 and Section 2.2 respectively.

Model: ΛCDM +
∑
mν

Dataset
∑
mν (95% C.L.)

TTTEEE <0.833 eV
TTTEEE + lowP <0.508 eV
TTTEEE + BAO <0.204 eV
TTTEEE + lowP + BAO <0.158 eV
TTTEEE + PAN <0.306 eV
TTTEEE + lowP + PAN <0.230 eV
TTTEEE + BAO + PAN <0.196 eV
TTTEEE + lowP + BAO + PAN <0.145 eV

Table 2.3: Upper bounds at 95% C.L. on
∑
mν (degenerate case), in ΛCDM+

∑
mν

model for the given datasets. This is same as Table 2.2 but including the high-l
polarization data of Planck 2015. Details about models and datasets are given in
Sections 2.1 and 2.2 respectively.
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use of the high-l polarization data from Planck 2015, while in Table 2.3 it is included.

Figure 2.1 and 2.2 shows 1-D marginalized posterior distributions for
∑
mν and H0

respectively, for various data combinations. As mentioned in Chapter 1, CMB TT

data alone is not particularly sensitive to masses much lower than 1 eV. This is

clearly reflected in the results. The TT data alone can only constrain
∑
mν <

1.064 eV at 95% C.L. Addition of the high-l E mode polarization auto-correlation

and temperature-polarization cross-correlation data leads to a higher constraining

capability, reducing the bound to
∑
mν < 0.833 eV. This phenomenon of mass

bounds getting stronger with addition of high-l polarization data is seen throughout

all the analyses we have done, and corroborates well with previous studies [78, 87].

Addition of the lowP data makes the bounds significantly stronger, i.e.,
∑
mν <

0.724 eV for TT+lowP and
∑
mν < 0.508 eV for TTTEEE+lowP. This can be

attributed to lowP data being able to partially do away with degeneracies present

with
∑
mν and other parameters like τ and As. If we consider TT data only, an

increase in
∑
mν reduces the smearing of the damping tail [119, 120], which can

be compensated by an increase in τ . The value of As also needs to increase, as the

Planck TT data severely constrains the quantity Ase
−2τ , which leads to a degener-

acy between these two parameters; variations approximately following the relation

δAs/As ∼ 2 δτ . Effects of As and
∑
mν are also not independent in cosmology. The

value of As determines the overall amplitude of matter power spectrum. Increase

in As increases the amplitude, whereas an increase
∑
mν suppresses matter power

spectrum in small scales. The low-l polarization data can in principle break this

degeneracy between As and τ , and consequently the three-way degeneracy between
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Figure 2.3: 1σ and 2σ marginalised contours for τ vs.
∑
mν for TT and TT+lowP

datasets in the ΛCDM+
∑
mν model, showing the reduction in correlation between

τ and
∑
mν due to addition of lowP data, leading to a stronger bound on

∑
mν .

As, τ and
∑
mν . This is possible through the appearance of the well known “reion-

ization bump” in the l < 20 range in the polarization spectra whose amplitude is

∝ τ 2 in the EE spectra and ∝ τ in the TE spectra [121], and the bump cannot

be reproduced by varying other parameters, thus breaking the degeneracy. Indeed,

while the TT data alone prefers a τ = 0.127+0.037
−0.033, the TT+lowP data prefers a much

lower τ = 0.080 ± 0.019; a smaller value of τ leading to a stronger upper bound of∑
mν . Refer to Figure 2.3 for a visualization of this effect. Similar inference can be

made for TTTEEE and TTTEEE+lowP. However this degeneracy breaking is only

partial. A very precise measurement of low-l polarization is needed to completely

break the degeneracy.

While
∑
mν and τ are strongly correlated in the Planck TT,

∑
mν and H0 are
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strongly anti-correlated. As in Chapter 1, defining ωi ≡ Ωih
2 (where i ≡ γ, c, b,Λ

with γ ≡ photons, c ≡ CDM, b ≡ baryons, and Λ ≡ cosmological constant) the

comoving distance to the last scattering surface at redshift zdec in a flat ΛCDM +∑
mν universe is given by,

χ(zdec) =

∫ zdec

0

dz

H(z)
∝
∫ zdec

0

dz√
ωγ(1 + z)4 + (ωc + ωb)(1 + z)3 + ωΛ + ρν(z)h2

ρcr,0

,

(2.8)

where ρν(z) is the neutrino energy density at a redshift z, and ρcr,0 = 3H2
0/8πG is

the critical density today as defined in Eq. 1.6. ρν(z) scales differently with redshift,

depending on whether neutrinos can be considered as radiation or matter. At late

times, when neutrinos become non-relativistic, ρν(z) scales as matter (i.e. ρν(z) ∝

(1+z)3) and depends on
∑
mν . Since in a flat universe, ΩΛ = 1−(Ωc+Ωb)−Ωγ−Ων ,

at late times, the last two terms within the square root in the denominator in Eq. 2.8

give:

ωΛ +
ρν(z)h2

ρcr,0
= (1− Ωγ)h

2 − (ωc + ωb) + ων((1 + z)3 − 1). (2.9)

Now, (ωc + ωb) is well constrained by CMB acoustic peaks. Since ων ∝
∑
mν , any

change to χ(zdec) due to increase in
∑
mν can be compensated by decreasing h, i.e.,

H0, and hence the anti-correlation. This corroborates with what we have already

discussed in Section 1.7.

Addition of the BAO data improves the mass bounds significantly by partially

breaking the degeneracy between
∑
mν and H0. We find that addition of the BAO

data to TT + lowP reduces the bound to
∑
mν < 0.200 eV from

∑
mν < 0.724 eV.
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For the TTTEEE+lowP+BAO case, we get
∑
mν < 0.158 eV, which is also much

stronger than the bound without BAO data. One can understand such important

changes in bounds by understanding the impact of neutrino masses on the quantity

Dν(zeff)/rs(zdrag) which is measured by BAO using spatial correlation of galaxies.

Here rs(zdrag) is the comoving sound horizon at the end of the baryon drag epoch

(the epoch at which baryons decouple from photons, slightly after recombination)

and changes in
∑
mν has a small effect on it. On the other hand, the dilation scale

Dν(zeff) at the effective redshift zeff of the survey, is a combination of the angular

diameter distance DA(z) and the Hubble parameter H(z),

Dν(z) =

[
(1 + z)2D2

A(z)
cz

H(z)

]1/3

(c ≡ speed of light), (2.10)

and it is the quantity which is affected by
∑
mν most. If

∑
mν is increased while

ωc+ωb is kept fixed, the expansion rate at early times increases. This requires ΩΛ to

decrease to keep Θs fixed, which is very well constrained by the CMB power spectra.

Decrease in ΩΛ leads to a increase in Dν(zeff), which in turn leads to a decrease in

both rs(zdrag)/Dν(zeff)) and H0. BAO data prefers a higher value of H0 than the

CMB spectra, and by rejecting the lower H0 values removes the regions with higher∑
mν values. See [61] for a detailed discussion on this topic. In our analysis we

found that TT+lowP data prefers a value of H0 = 65.53+3.01
−1.26 km/sec/Mpc, whereas

TT+lowP+BAO prefers H0 = 67.76 ± 0.62 km/sec/Mpc, confirming the above.

For TTTEEE+lowP and TTTEEE+lowP+BAO these bounds are H0 = 66.17+1.96
−0.81

km/sec/Mpc and H0 = 67.67+0.54
−0.51 km/sec/Mpc respectively. This effect of BAO
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data rejecting lower H0 values is evident from Figure 2.2.

As stated before, the Pantheon Sample (PAN) is the newest dataset available

on Supernovae type Ia luminosity distance measurements, replacing its predecessor,

the Joint Light-curve Analysis (JLA) sample. Observations of SNe Ia at a range

of redshifts (0.01 < z < 2.3 for the Pantheon Sample) can be used to measure

the evolution of luminosity distance as a function of redshift, and thereby deter-

mining the evolution of the scale factor [122]. This information can be used to

constraint cosmological parameters like dark energy equation of state w, and Ωm.

The PAN dataset also provides substantially stronger mass bound when added to

the CMB data, albeit not as strong as BAO data. In particular, TT+lowP+PAN

gives a bound of
∑
mν < 0.260 eV, whereas for TTTEEE+lowP+PAN we get∑

mν < 0.230 eV. The 1σ constraints on the Hubble constant are H0 = 67.43+1.16
−0.96

and H0 = 67.22+0.98
−0.70 km/sec/Mpc respectively. These are higher than that of CMB

only data but lower than that of CMB+BAO data, which explains the weaker bounds

from the Pantheon Sample compared to BAO. On the other hand, inclusion of both

BAO and PAN data with CMB produces bounds slightly stronger than CMB+BAO.

The bound with TT+lowP+BAO+PAN is
∑
mν < 0.190 eV whereas, for TT-

TEEE+lowP+BAO+PAN, it is
∑
mν < 0.145 eV, both of which far below the∑

mν < 0.23 eV bound quoted in [87]. Figure 2.1 depicts this effect of addition

of BAO, PAN and BAO+PAN to the Planck data. Also from Figure 2.2 we see

that the CMB+BAO+PAN combination prefers a slightly higher value of H0 than

CMB+BAO. The degeneracy breaking between H0 and
∑
mν due to BAO and PAN

can be visualized in Figure 2.4.
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Figure 2.4: 1σ and 2σ marginalised contours for H0 vs.
∑
mν for TT+lowP,

TT+lowP+BAO and TT+lowP+PAN datasets in ΛCDM +
∑
mν model, showing

the degeneracy breaking effect of BAO and PAN datasets separately. Evidently the
BAO data is more effective in breaking the degeneracy between the two parameters.

Results with τ and H0 priors

In the previous section (2.3.1) we described how lower values of τ and higher values of

H0 help in constraining
∑
mν . Thus precise measurement of these two parameters

are instrumental in obtaining meaningful bounds on the sum of neutrino masses.

Figures 2.5 and 2.6 shows 1-D marginalized posterior distributions for
∑
mν and H0

respectively, for various data combinations. In Tables 2.4 and 2.5 we have presented

the 95% C.L. bounds on
∑
mν where we have utilized the τ0p055 and R16 priors,

along with bounds where we have included the FS and SZ datasets.

The addition of the Gaussian prior τ = 0.055 ± 0.009 significantly improves

the bound by strongly breaking the degeneracy between τ and
∑
mν , which is

depicted in Figure 2.7 Compared to the bound of
∑
mν < 0.311 eV from TT+BAO,

TT+BAO+τ0p055 yields a bound of
∑
mν < 0.159 eV. This change in mass bound
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Figure 2.5: Comparison of 1-D marginalized posterior distributions for
∑
mν for

various data combinations in ΛCDM +
∑
mν , with τ and H0 priors. The plots are

normalized in the sense that area under the curve is same for all curves.

65 66 67 68 69 70

H0[km/sec/Mpc]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
/P

m
a
x

TT+BAO
TT+BAO+τ0p055

TT+BAO+PAN+τ0p055

TT+BAO+PAN+R16+τ0p055

65 66 67 68 69 70

H0[km/sec/Mpc]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
/P

m
a
x

TTTEEE+BAO
TTTEEE+BAO+τ0p055

TTTEEE+BAO+PAN+τ0p055

TTTEEE+BAO+PAN+R16+τ0p055

Figure 2.6: Comparison of 1-D marginalized posterior distributions for H0 for
various data combinations in ΛCDM +

∑
mν , with τ and H0 priors.
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Model: ΛCDM +
∑
mν

Dataset
∑
mν (95% C.L.)

TT + BAO + τ0p055 < 0.159 eV
TT + BAO + FS + τ0p055 < 0.159 eV
TT + BAO + PAN + τ0p055 <0.152 eV
TT + BAO - MGS + PAN + τ0p055 <0.141 eV
TT + BAO + FS + PAN + τ0p055 <0.160 eV
TT + BAO + SZ + τ0p055 <0.175 eV
TT + BAO + PAN + SZ + τ0p055 <0.168 eV
TT + lowP + R16 <0.134 eV
TT + R16 + τ0p055 <0.121 eV
TT + BAO + PAN + R16 + τ0p055 <0.117 eV
TT + BAO - MGS + PAN + R16 + τ0p055 <0.109 eV
TT + BAO + FS + PAN + R16 + τ0p055 <0.122 eV

Table 2.4: Upper bounds at 95% C.L. on
∑
mν (degenerate case), in ΛCDM +∑

mν model for the given datasets. Details about models and datasets are given in
Section 2.1 and Section 2.2 respectively.

Model: ΛCDM +
∑
mν

Dataset
∑
mν (95% C.L.)

TTTEEE + BAO + τ0p055 <0.124 eV
TTTEEE + BAO + FS + τ0p055 <0.133 eV
TTTEEE + BAO + PAN + τ0p055 <0.118 eV
TTTEEE + BAO - MGS + PAN + τ0p055 <0.113 eV
TTTEEE + BAO + FS + PAN + τ0p055 <0.123 eV
TTTEEE + BAO + SZ + τ0p055 <0.136 eV
TTTEEE + BAO + PAN + SZ + τ0p055 <0.131 eV
TTTEEE + lowP + R16 <0.125 eV
TTTEEE + BAO + PAN + R16 + τ0p055 <0.091 eV
TTTEEE + BAO - MGS + PAN + R16 + τ0p055 <0.089 eV
TTTEEE + BAO + FS + PAN + R16 + τ0p055 <0.098 eV

Table 2.5: Upper bounds at 95% C.L. on
∑
mν (degenerate case), in ΛCDM+

∑
mν

model for the given datasets. This is same as Table 2.4 but including the high-l
polarization data of Planck 2015. Details about models and datasets are given in
Section 2.1 and Section 2.2 respectively.
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can be attributed to a large change in the preferred value of τ , mostly driven by

the prior on τ (and albeit preferring a slightly lower value of H0 as depicted in

Figure 2.6). For TT+BAO we have the 1σ bound of τ = 0.123± 0.031, whereas for

TT+BAO+τ0p055 we have τ = 0.060 ± 0.009. Similarly for TTTEEE+BAO, we

have
∑
mν < 0.204 eV and τ = 0.105± 0.023, and it improves to

∑
mν < 0.124 eV

and τ = 0.060+0.08
−0.09 for TTTEEE+BAO+τ0p055. We emphasize here again that this

use of the prior τ0p055 is well motivated in the sense that, as Planck Collaboration

[114] has mentioned in their paper that such a small value of τ also fully agrees with

other astrophysical measurements of reionization from high redshift sources. Also

Planck 2018 measurements agree with this value of τ [33]. For ΛCDM +
∑
mν , our

tightest bound (except when we remove the MGS data from BAO) without any H0

prior comes from addition of the PAN data. TTTEEE+BAO+PAN+τ0p055 gives

a bound of
∑
mν < 0.118 eV, whereas without the high-l polarization data, we

achieved
∑
mν < 0.152 eV. This is one of our main results in this chapter, and one

of the strongest bounds in literature available presently without the use of any H0

prior. In fact, after the completion of our work, Planck 2018 results [33] reported

a bound of
∑
mν < 0.120 eV (95%; Planck 2018 TT,TE,EE+lowE+lensing+BAO)

in this ΛCDM +
∑
mν model. Thus we can see that the use of the τ−prior with

Planck 2015 data (combined with BAO) actually helped us in getting bounds which

we can expect with the use of Planck 2018 and BAO.
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Figure 2.7: 1σ and 2σ marginalized contours for τ vs.
∑
mν for TT+BAO and

TT+BAO+τ0p055 datasets in ΛCDM +
∑
mν model, showing the reduction in

correlation between τ and
∑
mν due to addition of τ0p055, leading to a stronger

bound on
∑
mν .

∑
mν < 0.152 eV (95%) (TT+BAO + PAN + τ0p055), (2.11a)∑
mν < 0.118 eV (95%) (TTTEEE+BAO + PAN + τ0p055). (2.11b)

A prior on H0 helps to break the degeneracy between
∑
mν and H0 in the

Planck data. In Figure 2.8 we demonstrate the same. Addition of the R16 prior

(H0 = 73.24 ± 1.74 km/sec/Mpc) leads to even stronger bounds than BAO data;

TT+lowP+R16 yields
∑
mν < 0.134 eV at 95% C.L., whereas with TTTEEE +

lowP + R16 it is
∑
mν < 0.125 eV. A very aggressive bound of

∑
mν < 0.091 eV
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for ΛCDM +
∑
mν is obtained with TTTEEE+BAO+PAN+R16+τ0p055, while

the bound with TT+BAO+PAN+R16+τ0p055 is a bit relaxed at
∑
mν < 0.117

eV. These might be the most stringent bounds ever reported in literature within

the minimal ΛCDM +
∑
mν model. However, note that in Table 2.4, TT + R16 +

τ0p055 yields a bound of
∑
mν < 0.121 eV, which shows us that BAO and PAN do

not contribute significantly above the combination of CMB+R16. One can visualize

from Figure 2.5 that the R16 data prefers neutrinos with lower mass much more, due

to the preference of significantly higher values of H0 as shown in Figure 2.6 and the

strong anti-correlation present between H0 and
∑
mν . However, as stated before,

we need to be cautious with the interpretation of such tight mass bounds, since they

are driven by the large 3.4 σ tension between Planck and R16 measurements of the

Hubble constant and since there seems to be no agreement among datasets on the

value of H0.

We notice the bounds can be strengthened further by removal of the DR7 Main

Galaxy Sample (MGS) from the BAO data, as can be seen in Tables 2.4 and 2.5.

We have denoted the MGS removed dataset simply as BAO – MGS. We find that

TT + BAO – MGS + PAN + τ0p055 prefers an H0 = 67.88+0.55
−0.56 km/sec/Mpc which

is a bit higher than TT + BAO + PAN + τ0p055, which prefers H0 = 67.71± 0.55

km/sec/Mpc. The preference of MGS sample for lower H0 values has been discussed

in [108]. The lack of MGS data improves the mass bounds to
∑
mν < 0.141 eV for

TT + BAO – MGS + PAN + τ0p055, and
∑
mν < 0.113 eV for TTTEEE + BAO

– MGS + PAN + τ0p055. Adding the R16 prior, we get
∑
mν < 0.109 eV and∑

mν < 0.089 eV respectively.
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Figure 2.8: 1σ and 2σ marginalized contours for H0 vs.
∑
mν for TT+lowP

and TT+lowP+R16 datasets in ΛCDM +
∑
mν model, showing the reduction in

correlation between H0 and
∑
mν due to addition of the R16 prior, leading to a

very strong bound on
∑
mν .

Inclusion of the galaxy cluster data from full spectrum measurements (FS) from

the SDSS-III BOSS DR12 either worsened or did not help the bounds, as can be

seen in Tables 2.4 and 2.5. Previous studies [78, 123, 124] have shown that the

constraining power of the BAO measurements is higher than that of the full shape

measurements in the minimal ΛCDM +
∑
mν model, and we find that still to be

true for the latest data. Addition of the galaxy cluster data (SZ) from the SPT-SZ

survey also worsened the neutrino mass bounds slightly. As shown in Figure 2.9,

both FS and SZ data prefer a slightly lower value of σ8 (the normalization of linear

matter power spectrum on scales of 8h−1 Mpc) and thereby favouring slightly larger

values of
∑
mν ; as more suppression of matter power spectrum allows for a larger

neutrino mass sum, i.e., σ8 and
∑
mν are strongly anti-correlated.
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Figure 2.9: Comparison of 1-D marginalized posterior distributions for σ8 for
various data combinations in ΛCDM +

∑
mν model. Data combinations with FS

and SZ prefer a slightly lower value of σ8, due to which slightly less stringent upper
bounds on

∑
mν are obtained.
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Model: ΛCDM + r +
∑
mν

Dataset
∑
mν (95% C.L.)

TT + BAO + PAN + τ0p055 <0.161 eV
TT + BAO + PAN + BK14 + τ0p055 <0.133 eV
TT + BAO + PAN + BK14 + R16 + τ0p055 <0.107 eV
TTTEEE + BAO + PAN + τ0p055 <0.122 eV
TTTEEE + BAO + PAN + BK14 + τ0p055 <0.110 eV
TTTEEE + BAO + PAN + BK14 + R16 + τ0p055 <0.085 eV

Table 2.6: Upper bounds at 95% C.L. on
∑
mν (degenerate case), ΛCDM + r +∑

mν model for the given datasets. Details about models and datasets are given in
Section 2.1 and Section 2.2 respectively.

2.3.2 Results for the ΛCDM + r +
∑
mν Model

In this section we present results in the ΛCDM + r +
∑
mν model in Table 2.6.

For the TT+BAO+PAN+τ0p055 dataset, we see that in the ΛCDM + r +
∑
mν

model
∑
mν < 0.161 eV, which is a bit relaxed than the

∑
mν < 0.152 eV in the

minimal ΛCDM +
∑
mν model. This is simply due to added degeneracies in an

extended parameter space with an extra parameter, r, which is the tensor-to-scalar

ratio defined at a pivot scale of k = 0.005 Mpc−1. The TT+BAO+PAN+τ0p055

combination constrains the tensor-to-scalar ratio at r < 0.13 (95% C.L.), whereas

for TTTEEE+BAO+PAN+τ0p055, we have r < 0.12 (95% C.L.). Addition of the

BK14 data from BICEP2/Keck collaboration, which contains information about the

CMB BB spectra, strengthens this bound to r < 0.07 for both the data combina-

tions. It also strengthens the sum of neutrino mass bounds to
∑
mν < 0.133 eV

and
∑
mν < 0.110 eV for TT+BAO+PAN+BK14+τ0p055 and TTTEEE + BAO +

PAN + BK14 + τ0p055 respectively, which are actually lower than the ones quoted

in Eq. 2.11.
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CMB B-mode polarization has two well-known sources [125]. The first part comes

from the inflationary gravitational waves (IGW), i.e., tensors, which is supposed to

produce a bump peaked around l ' 80 (the so called ‘recombination bump’) in

the BB-mode CMB spectra due to induction of quadruple anisotropies in the CMB

within the last scattering surface. The IGW signature cannot be reproduced by

scalar perturbations, and the amplitude of the bump depends on the tensor-to-

scalar ratio, r. The other part comes from the deflection of CMB photons due to

gravitational lensing produced by large scale structure at considerably late times,

which converts a small fraction of the E mode power into B mode. This lensing

BB spectra peaks at around l ' 1000. The ’reionization bump’ is also expected to

be present as in the EE spectra, in the l < 10 region. However, the BK14 data

contains information only in the 20 < l < 330 and cannot constrain τ through the

reionization bump.

While the bound on r is stronger due to BK14, this does not seems to be the main

effect in tightening of the mass bounds. We found that the correlation coefficient (de-

fined as Rij = Cij/
√
CiiCjj, where i and j are the two parameters being considered

and C is the covariance matrix of cosmological parameters) between r and
∑
mν to

be Rr,Σmν = +0.056 in case of TT+BAO+PAN+τ0p055, and Rr,Σmν = +0.051 in

case of TT+BAO+PAN+BK14+τ0p055, which implies that the correlation is very

small before addition of BK14, and there is also no big enough change in the correla-

tion with the addition of BK14 dataset to account for the change in mass bound. The

main effect might be coming from lensing BB spectra. Quantitatively, the correlation

coefficient between σ8 and
∑
mν in TT+BAO+PAN+τ0p055 is Rσ8,Σmν = −0.828,

78



2 Results on
∑
mν in various cosmological models

0.76 0.78 0.80 0.82 0.84

σ8

0.0

0.2

0.4

0.6

0.8

1.0

1.2
P
/
P
m
a
x

TT+BAO+PAN+τ0p055

TT+BAO+PAN+BK14+τ0p055

0.76 0.78 0.80 0.82 0.84

σ8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
/
P
m
a
x

TTTEEE+BAO+PAN+τ0p055

TTTEEE+BAO+PAN+BK14+τ0p055

Figure 2.10: Comparison of 1-D marginalized posterior distributions for σ8 for
various data combinations in ΛCDM + r +

∑
mν model. Addition of BK14 data

seems to prefer a higher σ8, due to which slightly more stringent upper bounds on∑
mν are obtained.

and in TT+BAO+PAN+BK14+τ0p055 it is Rσ8,Σmν = −0.780. We find that BK14

data prefers a slightly larger value of σ8 (see in Figure 2.10), and due to the strong

anti-correlation present between σ8 and
∑
mν in the data, the mass bounds improve

a bit. Similar inference can be made for the results including the high-l polarization

from Planck. As before, inclusion of the R16 prior improves the bounds even more.

For TT+BAO+PAN+BK14+R16+τ0p055, we have a bound of
∑
mν < 0.107 eV

and for TTTEEE+BAO+PAN+BK14+R16+τ0p055 it is
∑
mν < 0.085 eV, both of

which are tighter than the corresponding bounds in minimal ΛCDM +
∑
mν model

without the BK14 data.
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Model: w0waCDM +
∑
mν (DDE)

Dataset
∑
mν (95% C.L.)

TT + BAO + PAN + τ0p055 <0.305 eV
TT + BAO + PAN + R16 + τ0p055 <0.284 eV
TTTEEE + BAO + PAN + τ0p055 <0.276 eV
TTTEEE + BAO + PAN + R16 + τ0p055 <0.247 eV

Table 2.7: Upper bounds at 95% C.L. on
∑
mν (degenerate case), in w0waCDM +∑

mν model (DDE), for the given datasets. Details about models and datasets are
given in Section 2.1 and Section 2.2 respectively.

2.3.3 Results for the w0waCDM +
∑
mν Model (DDE)

In this section we present results for the w0waCDM +
∑
mν (DDE) model. The

mass bounds are presented in Table 2.7. For the DDE model we let the dark energy

parameters vary in both the phantom and non-phantom range. There is a well-

known strong degeneracy between the dark energy equation of state, w and sum

of neutrino masses,
∑
mν [126]. An increase in

∑
mν can be compensated by

a decrease in w, due to the mutual degeneracy with Ωm. This degeneracy leads

to a large degradation of the mass bounds, as can be seen from Table 2.7 and

comparing with the results from the ΛCDM+
∑
mν model for the same datasets (see

Tables 2.4 and 2.5). Figures 2.11 and 2.12 provide the 1-D marginalized posterior

distributions for
∑
mν and H0 respectively. From Figure 2.11 we can clearly observe

that for the same dataset, the DDE model allows much larger values of
∑
mν than

ΛCDM +
∑
mν . For TT+BAO+PAN+τ0p055 we obtain a bound of

∑
mν <

0.305 eV, whereas for TTTEEE+BAO+PAN+τ0p055 the bound is slightly tighter

at
∑
mν < 0.276 eV. The dynamical dark energy model also helps to reduce the

tension between Planck 2015 and R16, by allowing higher values of H0 along with
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Figure 2.11: Comparison of 1-D marginalised posterior distributions for
∑
mν

comparing the ΛCDM +
∑
mν and DDE models. The plots are normalized in the

sense that area under the curve is same for all curves.

a broader distribution. (see Figure 2.12). Imposition of the R16 prior improves

the mass bounds. However, the magnitude of this effect is less than what we saw

in ΛCDM +
∑
mν . This is because H0 and w are also degenerate, i.e., a change

in H0 can be compensated by a change in w instead of
∑
mν . This decreases the

magnitude of correlation coefficient between H0 and
∑
mν . This phenomenon of

changing correlation across these two models can be looked upon in Figure 2.13.

Quantitatively, for TT+BAO+PAN+τ0p055, the correlation coefficient between H0

and
∑
mν changes from RH0,Σmν = −0.40 in ΛCDM +

∑
mν to RH0,Σmν = −0.15 in

w0waCDM +
∑
mν . Also, in the DDE model, Planck 2015 and the R16 prior have

a much smaller tension than in ΛCDM +
∑
mν .

The w0-wa diagram in Figure 2.14 shows that for CMB+BAO+PAN+τ0p055

only a very small region which corresponds to completely non-phantom dark energy

is allowed. Rest of the allowed region in the parameter space crosses the phantom
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Figure 2.12: Comparison of 1-D marginalised posterior distributions for H0 com-
paring the ΛCDM +

∑
mν and DDE models. The DDE model prefers a broader

distribution for H0 and also the mean value of H0 is higher, thereby reducing the
tension between Planck 2015 and R16. Adding the R16 prior in the DDE model
leads to even larger H0 values.
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Figure 2.13: 1σ and 2σ marginalised contours in the
∑
mν – H0 plane for TT

+ BAO + PAN + τ0p055, comparing their correlation in the w0waCDM +
∑
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(DDE) and ΛCDM +
∑
mν models.
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Figure 2.14: 1σ and 2σ marginalized contours for w0 vs. wa for TT + BAO +
PAN + τ0p055 and TTTEEE + BAO + PAN + R16 + τ0p055 datasets in the
w0waCDM +

∑
mν (DDE) model. The dashed lines are at w0 = −1 and wa = 0

respectively. The two green lines originating from (-1,0) separate the non-phantom
region from the rest. The region above the slanted green line and at the right of the
vertical green line is the non-phantom region.

barrier (w = −1 line) at some point in the evolution of the universe. We also find

that the datasets are compatible with a cosmological constant (w0 = −1, wa = 0).

Imposing the R16 prior leads to shifting of the contours towards the phantom re-

gion. Thus, the allowed non-phantom region shrinks even more. A recent study

[127] showed that the disfavouring of the non-phantom region even persists in a 12

parameter extended space. Our results are also in agreement with Planck collabo-

ration [87] which reported similar contours for the given combination of similar but

older datasets (see Figure 28 in that paper, for the combination of TT+lowP+ext,

where ’ext’ implies combination of BAO, JLA and a H0 prior). In the next two

sections we present our results on neutrino mass bounds in a cosmology with only

non-phantom dynamical dark energy.
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Model: w0waCDM +
∑
mν with w(z) ≥ −1 (NPDDE)

Dataset
∑
mν (95% C.L.)

TT + BAO + PAN + τ0p055 <0.129 eV
TT + BAO + PAN + R16 + τ0p055 <0.106 eV
TTTEEE + BAO + PAN + τ0p055 <0.101 eV
TTTEEE + BAO + PAN + R16 + τ0p055 <0.082 eV

Table 2.8: Upper bounds at 95% C.L. on
∑
mν (degenerate), in w0waCDM+

∑
mν

model with w(z) ≥ −1 (NPDDE), for the given datasets. Details about models and
datasets are given in Section 2.1 and Section 2.2 respectively.

χ2-values : Previous studies [128, 129] reported a improvement in fit with DDE

models compared to ΛCDM. We found similar improvement in our analysis. We

compare the best-fit χ2 values of the w0waCDM +
∑
mν and ΛCDM +

∑
mν mod-

els. We define, ∆χ2
DDE ≡ χ2

min(DDE) − χ2
min(ΛCDM +

∑
mν), when used for

the same dataset. For TT+BAO+PAN+τ0p055, we find ∆χ2
DDE = −0.40; for

TTTEEE+BAO+PAN+τ0p055 it is ∆χ2
DDE = −0.34. The ∆χ2 is better with the

R16 prior. For TT+BAO+PAN+R16+τ0p055, we find ∆χ2
DDE = −1.48, whereas

for TTTEEE+BAO+PAN+R16+τ0p055 it is ∆χ2
DDE = −3.27.

See also [130–135] for previous studies on massive neutrinos and dynamic dark

energy together.

2.3.4 Results for the w0waCDM+
∑
mν Model with w(z) ≥ −1

(NPDDE)

While the current data prefers the phantom region of the dark energy parameter

space, it is also important to look at the non-phantom side of the things, since phan-

tom dark energy is somewhat unphysical [136]. Dark energy models with a single
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Figure 2.15: Comparison of 1-D marginalized posterior distributions for
∑
mν

comparing the ΛCDM +
∑
mν and NPDDE models. The plots are normalized in

the sense that area under the curve is same for all curves.
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Figure 2.16: Comparison of 1-D marginalized posterior distributions for H0 com-
paring the ΛCDM+

∑
mν and NPDDE models. The NPDDE model prefers smaller

values for H0, thereby increasing the tension between Planck 2015 and R16. Adding
the R16 prior in the NPDDE model leads to H0 values which are somewhat similar
to ΛCDM +

∑
mν without R16.
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scalar field cannot cross the phantom barrier (w = −1) and more general models

that permit the crossing require extra degrees of freedom to provide gravitational

stability [137]. Field theories allowing phantom dark energy are fraught with one

or more of the following problems like unstable vacuum, Lorentz violation, ghosts,

superluminal modes, non-locality, or instability to quantum corrections.There, how-

ever, have also been theories where the field theory does not have any such issues but

other effects like photon-axion conversion or modified gravity leads to an apparent

w < −1 (see [138] for a brief review). Nonetheless, there are wide class of theories

like quintessence [139, 140] which are non-phantom in nature and it is important to

consider situations where we do not allow the phantom crossing.

The constraints on
∑
mν are shown in Table 2.8. We find that the restricting

ourselves to only the non-phantom sector yields bounds which are even stronger

than the minimal ΛCDM +
∑
mν model for the same datasets, even though it

is an extended parameter space (also previously confirmed in [100]). For TT +

BAO + PAN + τ0p055, we have
∑
mν < 0.129 eV in the NPDDE model, whereas

for ΛCDM +
∑
mν model, using the same dataset, we had

∑
mν < 0.152 eV.

For TTTEEE + BAO + PAN + τ0p055, in NPDDE, we have
∑
mν < 0.101 eV,

compared to
∑
mν < 0.118 eV for ΛCDM +

∑
mν . Adding the R16 prior further

reduces the allowable mass region, as we have seen throughout this chapter. TT +

BAO + R16 + PAN + τ0p055 prefers a
∑
mν < 0.106 eV, and TTTEEE + BAO

+ PAN + R16 + τ0p055 prefers
∑
mν < 0.082 eV, which is below the minimum

sum required by the inverted hierarchy.

However this substantial strengthening of neutrino mass bound in NPDDE model
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compared to DDE model is not surprising when we consider the degeneracy between

w and
∑
mν . As depicted in Figure 2 of [126], due to strong anti-correlation between

w and
∑
mν , higher mass sum values prefer a lower value of w and on the other

hand higher values of w for w ≥ −1 are dominated by very low mass sum values.

In NPDDE, what happens is we remove the phantom region, i.e., the portion of the

parameter space which likes larger values of neutrino mass sum. Stronger bounds

in an NPDDE model compared to ΛCDM +
∑
mν is also confirmed in a recent

study [100], which also confirmed the phenomenon that as we go away from the

w = −1 line in the non-phantom region of the parameter space the mass bounds

get stronger, whereas in the phantom region going away from the w = −1 line leads

to weaker bounds, by running MCMC with separate fixed values of w0 and wa. A

similar effect is seen in the bounds on H0. Higher values of H0 prefer a lower w, and

removal of the phantom region of the parameter space leads to a preference towards

lower values of H0. Consequently, an NPDDE model actually increases the tension

between Planck CMB data and R16. The alleviation of tension between Planck and

R16 in DDE models comes from the phantom region of the w0 − wa plane. One of

the consequences of such strong mass bounds is that, if in future neutrino hierarchy

is found to be inverted by experiments, a universe with non-phantom dark energy

will be less likely than a cosmological constant Λ or phantom dark energy [100]. The

1-D marginalized posteriors for
∑
mν and H0 for the NPDDE model are shown in

Figures 2.15 and 2.16 respectively.
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Figure 2.17: Comparison of 1-D marginalized posterior distributions for
∑
mν

comparing the ΛCDM +
∑
mν and NPDDE+r models. The plots are normalized

in the sense that area under the curve is same for all curves.

Model: w0waCDM + r +
∑
mν with w(z) ≥ −1 (NPDDE+r)

Dataset
∑
mν (95% C.L.)

TT + BAO + PAN + BK14 + τ0p055 <0.116 eV
TT + BAO + PAN + BK14 + R16 + τ0p055 <0.095 eV
TTTEEE + BAO + PAN + BK14 + τ0p055 <0.093 eV
TTTEEE + BAO + PAN + BK14 + R16 + τ0p055 <0.078 eV

Table 2.9: Upper bounds at 95% C.L. on
∑
mν (degenerate), in w0waCDM + r +∑

mν model with w(z) ≥ −1 (NPDDE with tensors), for the given datasets. Details
about models and datasets are given in Section 2.1 and Section 2.2 respectively.

2.3.5 Results for the w0waCDM+r+
∑
mν Model with w(z) ≥

−1 (NPDDE+r)

In this section we report results for the w0waCDM+r+
∑
mν model with w(z) ≥ −1.

We denote this model as ”NPDDE+r”. The main motivation behind studying this

model was to see if we can further strengthen the mass bounds by adding the tensor-

to-scalar ratio as a free parameter and adding the BK14 dataset, as in Section 2.3.2.
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Figure 2.18: Comparison of 1-D marginalized posterior distributions for H0 com-
paring the ΛCDM +

∑
mν and NPDDE+r models.
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Figure 2.19: Comparison of 1-D marginalized posterior distributions for σ8 for
NPDDE and NPDDE+r models. Addition of BK14 data seems to prefer a higher
σ8, due to which slightly more stringent upper bound on

∑
mν is obtained.
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We find that it is still possible. Once again, the BK14 data prefers a slightly larger

value of σ8, as can be observed from Figure 2.19, which leads to slightly stronger

bounds. The 1-D marginalized posterior distributions for
∑
mν and H0 are given

in Figures 2.17 and 2.18 respectively. The 95% C.L. bounds on
∑
mν are shown

in Table 2.9. Albeit the fact that we don’t know for sure if we live in a universe

with non-phantom dark energy or if the debatable R16 prior should be used, the∑
mν < 0.078 eV bound for TTTEEE + BAO + PAN + BK14 + R16 + τ0p055

dataset for this NPDDE+r model was possibly the strongest bound on
∑
mν ever

reported in literature for any kind of cosmological scenario, at the time of completion

of this work.

2.4 Discussion and Summary

Neutrino oscillation experiments have confirmed that neutrinos are massive with

three distinct species. However, still, certain neutrino properties including the sum

of the three neutrino masses (
∑
mν) have not been precisely determined. Cosmology

can put bounds on
∑
mν and in reality, tightest bounds on

∑
mν are obtained from

cosmological data. Massive neutrinos leave distinct imprints in the CMB and can

be constrained with CMB data. However since neutrinos with masses � 1 eV are

relativistic during decoupling of photons, CMB data is not particularly sensitive to

low values of
∑
mν . Since massive neutrinos also cause suppression in the matter

power spectrum, tighter bounds are obtained with large scale structure data. In

this work we have used latest cosmological datasets and likelihoods available at that
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time and provided very strong bounds on the sum of the masses of three active

neutrinos in five different cosmological models: ΛCDM+
∑
mν , ΛCDM+r+

∑
mν ,

w0waCDM +
∑
mν (DDE), w0waCDM +

∑
mν with w(z) ≥ −1 (NPDDE), and

w0waCDM + r +
∑
mν with w(z) ≥ −1 (NPDDE+r). Among datasets, along

with CMB data from Planck 2015, we have used BAO measurements from SDSS-

III DR12, MGS and 6dFGS; full shape (FS) measurements from SDSS-III DR12,

SNe Ia luminosity distance measurements from Pantheon Sample (PAN); the BK14

data from the BICEP2/Keck Collaboration; the galaxy cluster data from the SPT-

SZ survey and suitable Gaussian priors on H0 (R16) and τ (τ0p055). The priors

help in breaking the mutual degeneracies of H0 and τ with
∑
mν present in the

Planck data. In the minimal ΛCDM +
∑
mν model, we obtained a robust bound of∑

mν < 0.152 eV at 95% C.L. with the use of TT + BAO + PAN + τ0p055. Adding

the high-l polarization data tightens the bound to
∑
mν < 0.118 eV. The use of

the H0 prior further improves these bounds to
∑
mν < 0.117 eV and

∑
mν < 0.091

eV respectively, showing a weak preference for normal hierarchy. The low bounds

obtained with the R16 prior, H0 = 73.24±1.74 km/sec/Mpc are debatable since they

are driven by the 3.4 σ tension between Planck data and R16 over the value of H0.

Currently there seem to be no agreement over datasets on the value of H0. The R16

prior itself is obtained from combining geometric distance calibrations of Cepheids,

each of which separately give constraints on H0: 72.25 ± 2.51, 72.04 ± 2.67, 76.18 ±

2.37, and 74.50 ± 3.27 km/sec/Mpc [115]. Removing the third constraint (obtained

from Milkyway cepheids) can reduce the H0 tension and thereby worsen the bounds.

While there is no reason to discard the data from Milkyway cepheids we should be

91



2 Results on
∑
mν in various cosmological models

cautious while looking at results obtained with the R16 prior. On the other hand,

however, there is a possibility that both Planck and R16 might be correct and the

discrepancy has to be explained by some new physics, like say, some dark radiation

species which contributes to Neff.

In the dynamical dark energy model w0waCDM +
∑
mν (DDE) we find that the

degeneracy between the dark energy equation of state, w and
∑
mν significantly

relaxes the bounds. Our most conservative bound for this model is
∑
mν < 0.305

eV with TT + BAO + PAN + τ0p055, while the most aggressive bound of
∑
mν <

0.247 eV has been obtained with TTTEEE + BAO + PAN + R16 + τ0p055, which is

very close to the
∑
mν < 0.23 eV set by Planck collaboration in ΛCDM+

∑
mν with

similar datasets. This shows the superior constraining power of the new datasets and

priors. The DDE model also provides marginally better χ2 fit to the data compared

to ΛCDM +
∑
mν and partially alleviates the H0 tension between Planck data and

R16. While we find that the DDE model is compatible with a cosmological constant

for the combination of CMB+BAO+PAN+τ0p055, the 68% and 95% contours in

the w0−wa plane mostly allow phantom dark energy (w < −1) and only a very small

region of non-phantom dark energy, which shrinks even more with the inclusion of

the R16 prior. Also due to the strong degeneracy between
∑
mν and w, larger∑

mν is preferred for lower w (i.e. phantom region), while the deeper we go into

the non-phantom region smaller the preferred
∑
mν . So in the NPDDE model

(w0waCDM +
∑
mν with w(z) ≥ −1) when we vary the dark energy parameters

only in the non-phantom region, we end up with
∑
mν bounds which are even

tighter than ΛCDM +
∑
mν (also confirmed by a recent study [100]). In NPDDE,
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without R16, we obtained a very strong bound of
∑
mν < 0.101 eV with TTTEEE

+ BAO + PAN + τ0p055. Adding the R16 prior leads to an even more aggressive

bound of
∑
mν < 0.082 eV. Allowing for tensors in the ΛCDM + r +

∑
mν model

and including the BK14 data leads to slightly stronger bounds, which seems to be

stemming from BK14 preferring a slightly larger value of σ8. This phenomenon

persists even when we consider the NPDDE model with tensors (i.e., NPDDE+r

model). In the NPDDE+r model, without R16, for TTTEEE + BAO + PAN +

BK14 + τ0p055, we found
∑
mν < 0.093 eV. Such strong bounds in the NPDDE and

NPDDE+r models imply that if future experiments discover that neutrino hierarchy

is inverted, the nature of dark energy is more likely to be phantom than non-phantom

((as previously inferred in [100]). In NPDDE+r, with the R16 prior, we find our

most aggressive bound of
∑
mν < 0.078 eV.

The fact that in the w0waCDM +
∑
mν model (with w(z) ≥ −1) the neutrino

mass bounds are tighter than ΛCDM +
∑
mν piqued our interest in cosmologies

with massive neutrinos and non-phantom dynamical dark energy. The non-phantom

(w(z) ≥ −1) part of the w0 − wa parameter space corresponds to single field dark

energy models like Quintessence, which are of great theoretical interest. We thus

wanted to study this scenario further in an even more extended parameter space to

see if the mass bounds are still tighter than ΛCDM +
∑
mν . This is the topic of the

next chapter.
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3
Neutrino masses and non-phantom dark

energy in a 12 parameter extended scenario

This chapter is based on our paper titled “Strong Bounds on Sum of Neutrino

Masses in a 12 Parameter Extended Scenario with Non-Phantom Dynamical Dark

Energy (w(z) ≥ −1)” (arXiv: 1807.02860) [141].

In this work we have first considered a 12 parameter extended scenario with

6 usual ΛCDM parameters, two dynamical dark energy parameters (w0 − wa ap-

proach, CPL parametrization) with w(z) ≥ −1, two neutrino parameters (Neff and∑
mν), and two inflationary parameters (r and the running of the spectral index,

nrun ≡ dns/dln k). We performed Bayesian analyses to constrain parameters using

different combinations of datasets quite similar to as in Chapter 2: (1) Cosmic Mi-

crowave Background temperature, polarization, and lensing data from Planck 2015;

(2)the data released from the BICEP2/Keck Collaboration for the BB mode of the

CMB spectrum up to and including 2014 (BK14); (3) Baryon Acoustic Oscillation
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Measurements from SDSS III BOSS DR12, MGS and 6dFGS; (4) Supernovae Type

Ia Luminosity Distance Measurements from the newly released Pantheon Sample,

and (5) the HST Gaussian prior (H0 = 73.24 ± 1.74 km/sec/Mpc (68% C.L.)) on

Hubble constant. Next we turned off the tensor perturbations (i.e., removed r) and

constrained this 11 parameter scenario with the same datasets except BK14. Finally

we add a new parameter Alens (scaling of the lensing amplitude) and again constrain

this 12 parameter extended space with the mentioned datasets. We emphasize here

that this is the first time someone has evaluated the non-phantom dark energy sce-

nario in a 12 parameter extended space. Our main focus in this chapter is on sum of

neutrino masses, however we provide the constraints on all the varying parameters.

The main motivation behind this work is the fact that the neutrino mass bounds

from cosmology improve greatly in a non-phantom dynamical dark energy (NPDDE)

scenario, and are stronger even compared to the minimal ΛCDM +
∑
mν as we saw

in the previous chapter. Main goal of this work is to see, with NPDDE, if the bounds

remain stronger than ΛCDM +
∑
mν even in a 12 parameter extended space. Also,

in the previous chapter, we had not touched upon issues like the possibility of extra

radiation species (Neff > 3.045) and the Alens-problem [142, 143], which we do now.

In a particular model, we set Alens = 1 for the theoretically predicted value of the

gravitational potential (which generates weak lensing of the CMB photons). When

Alens is varied, the weak lensing is uncoupled from the primary anisotropies which

produce it, and then multiplied by the value of Alens [143]. As we have mentioned

in Chapter 1, lensing causes smoothing of the CMB acoustic peaks. In a particular

model, if the data prefers Alens > 1, it means it prefers more smoothing than what
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theoretically should be. Thus Alens serves as a consistency check parameter. A

puzzling inconsistency in ΛCDM with Planck data is that the latest measurement

by Planck 2018 gives Alens = 1.180 ± 0.065 (68% C.L.) in a ΛCDM + Alens model

[33] is 2.8σ level higher than the theoretical prediction of Alens = 1. If there is any

physical reason for this extra smoothing (i.e. if this is not some statistical fluctuation

in the data), it may not be extra lensing but may be any new effect that mimics

lensing [33], though currently the cause of this discrepancy is unknown.

Apart from the Alens inconsistency issue and the H0 tension (discussed in the

previous chapter), CMB data also has ∼ 2σ tension in the measurements of Ωm

and σ8 with x-ray galaxy cluster measurements [144] or cosmic shear surveys like

CFHTLenS [145] and KiDS-450 [146]. For instance, the KiDS-450 survey measures

a combined quantity S8 ≡ σ8

√
Ωm/0.3 = 0.745 ± 0.039 (68% C.L.) which has

a more than 2σ tension with Planck 2018, which prefers a much higher value of

S8 = 0.834± 0.016 (68% C.L.; TT,TE,EE + lowE). These inconsistencies in ΛCDM

model and different datasets have motivated several studies of cosmological scenarios

in largely extended parameter spaces [127, 147–149].

In this work, we have, for the first time, shown that neutrino mass bounds can

indeed be stronger than the minimal ΛCDM +
∑
mν model even in a 12 parameter

extended scenario if one considers non-phantom dark energy, even though one ex-

pects the bounds to relax in such a large extended space. We have also shown that

it is possible to effectively constrain cosmological parameters with some reasonable

1-σ ranges with current cosmological data, in a 12 parameter extended scenario with

non-phantom dark energy. The mass bound however relaxes considerably when we
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include Alens, since Alens is strongly correlated with
∑
mν .

Here we would also like to emphasize that we take the datasets at face value,

i.e., any discrepancy or tension between datasets in our model is assumed to have

a physical reason and not due to unknown systematics involved in the experiments.

Also, it is imperative to point out that the best bounds on sum of neutrino masses

that we have presented, are strong and comparable or better to the bounds provided

by the recently released Planck 2018 results [33] in the ΛCDM+
∑
mν model. Hence

our results remain very much relevant although we have used the Planck 2015 data.

This chapter is arranged as follows: in section 3.1 we describe the cosmological

models used in this chapter and the prior ranges of parameters used. In section 3.2

we briefly describe the datasets used in this work. In section 3.3 we present our

analysis results. In section 3.4, we further discuss how the neutrino mass bounds

will change in the three models with new values of τ and Alens obtained by the new

Planck 2018 collaboration [33]. We provide a discussion and summary in section

3.5. The main results are in tables 3.2, 3.4, and 3.5.

3.1 Models

In this work we have considered 3 different cosmological scenarios to obtain bounds

on the cosmological parameters. Below we list the vector of parameters to vary in

each of these cosmological scenarios.
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• For NPDDE11+r model with 12 parameters:

θ ≡
[
ωc, ωb, Θs, τ, ns, ln[1010As], w0, wa, Neff,

∑
mν , r, nrun

]
. (3.1)

• For NPDDE11 model with 11 parameters:

θ ≡
[
ωc, ωb, Θs, τ, ns, ln[1010As], w0, wa, Neff,

∑
mν , nrun

]
. (3.2)

• For NPDDE11+Alens model with 12 parameters :

θ ≡
[
ωc, ωb, Θs, τ, ns, ln[1010As], w0, wa, Neff,

∑
mν , nrun, Alens

]
. (3.3)

In this analysis, the first model, NPDDE11+r, comprises of six additional parame-

ters on top of ΛCDM model. For our analysis we are adding the following additional

parameters: two dark energy parameters w0 and wa, effective number of relativistic

species at recombination Neff, total neutrino mass
∑
mν , the tensor-to-scalar ratio

r (evaluated at pivot scale k∗ = 0.05hMpc−1) and the running of spectral index

of primordial power spectrum nrun(≡ dns/dln k). In this model, the scaling of the

lensing amplitude, Alens is fixed at the theoretically predicted value of unity.

We also consider two other scenarios. In the NPDDE11 model, we do not run

the tensor perturbations and constrain the parameter space considering scalar only

perturbations. In the NPDDE11+Alens model we also allow the Alens parameter to

vary. This is since the cause of the Alens-anomaly is unknown and therefore it is
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Parameter Prior
Ωbh

2 [0.005,0.1]
Ωch

2 [0.001,0.99]
τ [0.01,0.8]
ns [0.8, 1.2]
log[1010As] [2,4]
Θs [0.5,10]
w0 [-1,-0.33]
wa [-2,2]
Neff [0.05,10]∑
mν (eV) [0,5]

r [0,1]
nrun [-1,1]
Alens [0,10]

Table 3.1: Flat priors on the main cosmological parameters constrained in this
chapter.

important to look into the effect of varying Alens on the constraints of rest of the

parameter space.

For the cosmological parameters mentioned in eqs. 3.1–3.3, we have assumed flat

priors which are listed in table 3.1, along with hard priors given in eq. 2.7. Once

again, we obtain the constraints using the Markov Chain Monte Carlo (MCMC)

sampler CosmoMC [84] which uses CAMB [42] as the Boltzmann code and the

Gelman and Rubin statistics [102] to estimate the convergence of chains. All our

chains reached the convergence criterion of R− 1 < 0.01.
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3.2 Datasets

In this chapter we use similar datasets as in Chapter 2 with some small changes in

naming. Firstly, we use the Planck 2015 high-l and low-l temperature and E mode

polarization power spectra and their cross-correlation, TTTEEE+lowP, but here we

refer to it simply as “Planck” for convenience. We also use the lensing potential

measurements via reconstruction through the four point functions of Planck 2015

measurements of CMB anisotropies [87]. We simply refer to this data as “lensing.”

Other than Planck and lensing, we also use BK14, BAO, PAN, and R16, as de-

tailed in Section 2.2 in previous chapter. While we use R16 in most cases, we also

provide some results with a prior with a lower value of H0 = 71.6±2.7 km/sec/Mpc,

which is based on the determination of the Hubble constant from the H0LiCOW pro-

gramme [116]. We call this prior H071p6. This is to compare what happens when

we use a H0 prior that has less tension with Planck than R16.

3.3 Results

We have split the results in the three smaller sections for the three different models

we have studied. The description of models and datasets are given at section 3.1 and

section 3.2 respectively. We have presented the results in the following order: first

the NPDDE11+r model, then the NPDDE11 model and lastly the NPDDE11+Alens

model. All the marginalized limits quoted in the text or tables are at 68% C.L.

whereas upper limits are quoted at 95% C.L.
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Parameter Planck+BK14 Planck+BK14 Planck+BK14 Planck+BK14

+BAO +BAO+PAN +R16 +R16+lensing

Ωbh
2 0.02243± 0.00021 0.02244± 0.00020 0.02265± 0.00020 0.02262± 0.00020

Ωch
2 0.1189+0.0033

−0.0034 0.1190± 0.0033 0.1233± 0.0030 0.1228+0.0029
−0.0032

τ 0.096+0.017
−0.018 0.095+0.017

−0.018 0.099± 0.018 0.079± 0.015

ns 0.969± 0.010 0.969± 0.009 0.981± 0.008 0.982± 0.009

ln(1010As) 3.126+0.036
−0.037 3.125+0.036

−0.037 3.142± 0.036 3.099± 0.030

Θs 1.041± 0.0005 1.041± 0.0005 1.040± 0.0004 1.041± 0.0004

r < 0.075 < 0.074 < 0.070 < 0.075

H0 (km/s/Mpc) 66.64+1.38
−1.37 67.37+1.26

−1.25 69.14+1.36
−1.35 69.15± 1.38

σ8 0.827± 0.018 0.833± 0.018 0.847± 0.018 0.825± 0.015∑
mν (eV) < 0.123 < 0.126 < 0.143 < 0.186

w0 < −0.859 < −0.933 < −0.915 < −0.914

wa 0.013+0.065
−0.077 0.033+0.036

−0.063 0.031+0.041
−0.064 0.035+0.043

−0.070

Neff 3.082+0.209
−0.211 3.089± 0.208 3.391± 0.185 3.393+0.181

−0.197

nrun −0.00756+0.00793
−0.00797 −0.00743+0.00811

−0.00815 −0.00232+0.00783
−0.00788 0.00173+0.00754

−0.00750

Table 3.2: Bounds on cosmological parameters in the NPDDE11+r model.
Marginalized limits are given at 68% C.L. whereas upper limits are given at 95%
C.L. Note that H0 and σ8 are derived parameters.

3.3.1 NPDDE11+r model

Bounds on the NPDDE11+r model parameters are presented in table 3.2 while

the bounds on the ΛCDM model parameters are presented in table 3.3. We do

not include the bounds from CMB only data as the bounds are not strong enough

in the NPDDE11+r model, a finding that corroborates with a recent study [127]

which had varied the dark energy EoS in both phantom and non-phantom regions.

However adding either BAO or R16 with CMB data seems to provide strong bounds

on cosmological parameters. Comparing with the bounds on the parameters in
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Parameter Planck Planck Planck Planck

+BAO +BAO+PAN +R16 +R16+lensing

Ωbh
2 0.02230± 0.00014 0.02230± 0.00014 0.02236± 0.00015 0.02237± 0.00015

Ωch
2 0.1190± 0.0010 0.1188± 0.0010 0.1183± 0.0013 0.1179± 0.0013

τ 0.083± 0.016 0.084± 0.017 0.086± 0.017 0.071± 0.013

ns 0.967± 0.004 0.967± 0.004 0.968± 0.004 0.969± 0.004

ln(1010As) 3.098± 0.032 3.100+0.033
−0.032 3.104± 0.033 3.073± 0.025

Θs 1.041± 0.0003 1.041± 0.0003 1.041± 0.0003 1.041± 0.0003

H0 (km/s/Mpc) 67.63± 0.47 67.69± 0.47 67.94+0.62
−0.63 68.13+0.62

−0.61

σ8 0.831± 0.013 0.831± 0.013 0.831± 0.013 0.817± 0.008

Table 3.3: Bounds on cosmological parameters in the ΛCDM model. Marginalized
limits are given at 68% C.L. whereas upper limits are given at 95% C.L. Note that
H0 and σ8 are derived parameters.
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Figure 3.1: Comparison of 1-D marginalized posterior distributions for
∑
mν (eV)

and Neff for various data combinations in NPDDE11+r.
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Figure 3.2: 1σ and 2σ marginalized contours for H0 (km/sec/Mpc) vs.
∑
mν (eV)

and H0 (km/sec/Mpc) vs. Neff for Planck+BK14+R16 in the NPDDE11+r model,
showing only a small correlation between H0 and

∑
mν whereas a strong positive

correlation between H0 vs. Neff.
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Figure 3.3: 1σ and 2σ marginalized contours in the σ8 − Ωm plane showing that
the NPDDE+r model is ineffective in reducing the tension between CFHTLenS and
Planck 2015.
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Figure 3.4: Comparison of 1-D marginalized posterior distributions for w0 and wa
for different data combinations in NPDDE11+r.

the ΛCDM model however we can see that the 68% C.L. spreads of the relevant

parameters have increased to different degrees for different parameters. This is an

expected phenomenon given the number of parameters has been doubled. Overall

the six ΛCDM parameters have been estimated in the NPDDE11+r model with

reasonable spreads, showing that it is possible to constrain cosmology with NPDDE

effectively in a large parameter space, with current datasets.

We also find tight bounds on
∑
mν in this model. The 1-D posteriors for

∑
mν

and Neff are given in figure 3.1. Our most aggressive bound in this chapter is found

in this model with Planck+BAO dataset:
∑
mν < 0.123 eV (95% C.L.) which is

very close to the minimum mass of
∑
mν ' 0.1 eV (95% C.L.) required for inverted

hierarchy of neutrinos. Although we are in such an extended parameter space,

this bound is stronger than a bound of
∑
mν < 0.158 eV (95% C.L.) obtained

in ΛCDM +
∑
mν with Planck+BAO [85]. Without the BAO data, only Planck
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and BK14 together provide a bound of
∑
mν < 0.414 eV (95% C.L.) whereas

only using Planck in the same model gives us a bound of
∑
mν < 0.509 eV (95%

C.L.) which is incidentally very close to the bound of
∑
mν < 0.49 eV (95% C.L.)

reported by Planck collaboration [87] using the same data in the minimal ΛCDM +∑
mν model. We saw in Chapter 2, in smaller parameter spaces, that the models

comprising of NPDDE provide stronger bounds on
∑
mν than ΛCDM +

∑
mν ,

because of a degeneracy present between the dark energy EoS w and
∑
mν [126]

which leads to the phantom region of the dark energy parameter space preferring

larger masses and the non-phantom region preferring smaller masses. However,

cosmological datasets usually prefer the phantom region more when the dark energy

EoS is allowed to vary both in the phantom and non-phantom regions, which usually

leads to weaker bounds on
∑
mν . This work shows that even in a 12 parameter

model like NPDDE11+r the data is effective in constraining
∑
mν , unlike in the 12

parameter model in [127] (with both phantom and non-phantom regions allowed),

where the bounds on neutrino mass sum loosens up considerably. Contrary to what

happens in lower dimensional parameter spaces, the R16 prior does not lead to

stronger bounds on
∑
mν , as the magnitude of correlation between H0 and

∑
mν

is very small in this model. Again, as in Chapter 2 this small correlation can be

explained with the mutual degeneracies between H0,
∑
mν , and w. As we saw

in Chapter 2 when w is kept constant in a flat ΛCDM +
∑
mν universe, H0 and∑

mν are strongly anti-correlated, to keep the distance to the last scattering surface,

χ(zdec) unchanged. On the other hand, when the DE EoS is varied, H0 and w are

also degenerate, as both of them control the late time expansion rate of the universe.
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Thus, when we consider a varying DE EoS, a change in H0 now can be compensated

by a change in w, instead of
∑
mν . This leads to the decreased degeneracy between

H0 and
∑
mν in our NPDDE models.

However we found a strong positive correlation still present with Neff, which

leads to a large increase in the value of Neff with the use of R16 prior (the corre-

lations can be visualized in figure 3.2). Indeed, while Planck+BK14+BAO prefers

a H0 = 66.64+1.38
−1.37 km/sec/Mpc (68% C.L.), and Neff = 3.082+0.209

−0.211 (68% C.L.),

the inclusion of the R16 prior to this data combination leads to higher values of

H0 = 69.13+1.09
−1.08 km/sec/Mpc (68% C.L.), and Neff = 3.392+0.188

−0.186 (68% C.L.) both.

The standard value of Neff = 3.045 is excluded at 68% C.L., and favours a dark ra-

diation component, but only very mildly, since Neff = 3.045 is included in 95% C.L.

Thus this exclusion of Neff = 3.045 at 68% C.L. happens solely due the large tension

present between Planck and R16 regarding the value of H0. The R16 prior also

prefers higher values of σ8. This model does not help the conflict between Planck

and CFHTLenS regarding the value of σ8. Visual depiction of this can be found in

figure 3.3 in the σ8 − Ωm plane. Inclusion of the Planck lensing data lead to wors-

ening of the mass bounds whereas bounds on Neff are almost unaffected. Lensing

data however lowers the preferred σ8 value.

The use of the H071p6 prior, which has a lower value of H0 than R16, how-

ever, leads to lower values of Neff, due to a smaller tension between Planck and

H071p6. In particular, with Planck + BK14 + BAO + H07106, we get a bound of

Neff = 3.202+0.200
−0.202 (68%). Thus, Neff = 3.045 is no longer excluded at 68% in this
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case.

As discussed in Chapter 2 the SNe Ia luminosity distance measurements pro-

vide information about evolution of luminosity distance as a function of redshift

(0.01 < z < 2.3 for the Pantheon sample). This can be used to measure the evolu-

tion of the scale factor [122] and is helpful in constraining the dark energy EoS. We

found that addition of the PAN data did help in constraining the dark energy pa-

rameters more tightly. For Planck+BK14+BAO, we have a bound of w0 < −0.859

(95% C.L.), which shrinks to w0 < −0.933 (95% C.L.) with the addition of PAN.

On the other hand, Planck+BK14+BAO produces a bound of wa = 0.013+0.065
−0.077

(68% C.L.), whereas Planck+BK14+BAO+PAN leads to wa = 0.033+0.036
−0.063 (68%

C.L.). We see that the 68% spreads of wa have shrunk. This has also been de-

picted in figure 3.4. The R16 prior also has similar but less strong effect. With

Planck+BK14+BAO+R16 we have w0 < −0.908 (95% C.L.) and wa = 0.028+0.046
−0.065

(68% C.L.). In all cases we found that the cosmology is compatible with a cosmo-

logical constant (i.e., w0 = −1, wa = 0).

As far as values of the tensor-to-scalar ratio is concerned, we find that if we

run the chains without the BK14 data, we get a bound of r < 0.155 (95% C.L.)

with Planck+BAO, which is higher than the bound of r < 0.12 (95% C.L.) set by

Planck collaboration [87]. However, inclusion of the BK14 data leads to a bound of

r < 0.075 (95% C.L.), which is close to the r < 0.07 (95% C.L.) limit set by the

BICEP2/Keck collaboration [95]. This value of r remains almost unchanged across

all the datasets as long as the BK14 data is included.
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Parameter Planck Planck Planck Planck

+BAO +BAO+PAN +R16 +R16+lensing

Ωbh
2 0.02241± 0.00021 0.02242± 0.00020 0.02264± 0.00020 0.02261± 0.00020

Ωch
2 0.1187± 0.0033 0.1188± 0.0034 0.1232± 0.0031 0.1226± 0.0031

τ 0.092± 0.018 0.091± 0.018 0.095± 0.018 0.077+0.014
−0.016

ns 0.969± 0.009 0.969± 0.009 0.981± 0.009 0.982± 0.009

ln(1010As) 3.117+0.037
−0.038 3.116± 0.038 3.133± 0.037 3.095+0.031

−0.028

Θs 1.041± 0.0005 1.041± 0.0005 1.040± 0.0004 1.041± 0.0004

H0 (km/s/Mpc) 66.53+1.37
−1.36 67.32+1.27

−1.28 69.07+1.39
−1.38 69.05± 1.39

σ8 0.822± 0.019 0.829± 0.018 0.843± 0.019 0.823+0.015
−0.014∑

mν (eV) < 0.126 < 0.128 < 0.151 < 0.191

w0 < −0.851 < −0.934 < −0.912 < −0.914

wa 0.011+0.069
−0.079 0.035+0.035

−0.064 0.030+0.043
−0.064 0.035+0.042

−0.069

Neff 3.073+0.209
−0.211 3.081+0.212

−0.211 3.385± 0.190 3.382± 0.191

nrun −0.00511+0.00775
−0.00780 −0.00477+0.00785

−0.00784 −0.00016+0.00775
−0.00777 0.00356± 0.00742

Table 3.4: Bounds on cosmological parameters in the NPDDE11 model. Marginal-
ized limits are given at 68% C.L. whereas upper limits are given at 95% C.L.. Note
that H0 and σ8 are derived parameters.

3.3.2 NPDDE11 model

In this section we consider the NPDDE11 model where we turn off the tensor per-

turbations and also do not include the BK14 data. This does not affect the bounds

much as can be seen from table 3.4 and comparing with table 3.2, which verifies the

stability of the results in a smaller parameter space.

The 1-D posteriors for
∑
mν and Neff for selected datasets are given in figure 3.5.

We again find strong bounds on the sum of neutrino masses. We notice that the

removal of BK14 data has a small effect on
∑
mν which persists over different

datasets. For instance, in NPDDE11+r, for Planck+BAO, we find a
∑
mν < 0.131
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Figure 3.5: Comparison of 1-D marginalized posterior distributions for
∑
mν (eV)

and Neff for various data combinations in NPDDE11.
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Figure 3.6: 1σ and 2σ marginalized contours for H0 (km/sec/Mpc) vs.
∑
mν (eV)

and H0 (km/sec/Mpc) vs. Neff for Planck+R16 in the NPDDE11 model, showing
negligible correlation between H0 and

∑
mν whereas a strong positive correlation

between H0 vs. Neff.
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Figure 3.7: Comparison of 1-D marginalized posterior distributions for w0 and wa
for different data combinations in NPDDE11.

eV (95% C.L.), which is reduced to
∑
mν < 0.123 eV (95% C.L.) when we add

the BK14 data. In the NPDDE11, this bound is
∑
mν < 0.126 eV (95% C.L.)

with Planck+BAO, which is our best bound in this model. This is also stronger

than the bound obtained in ΛCDM +
∑
mν with Planck+BAO, as in the previous

NPDDE11+r model, and a large improvement compared to the ones presented in

[127], which varied dark energy parameters in both in phantom and non-phantom

range.

The strengthening of the bound from NPDDE11+r to NPDDE11 with Planck

+ BAO might simply be due to reduction in the parameter space volume. On the

other hand, as we saw in Chapter 2, it seems BK14 prefers a lower
∑
mν . However

even then the changes are small. Again, BK14 data seems to prefer slightly larger

values of σ8, thereby increasing the tension with CFHTLenS. Also, the inclusion of

R16 prior again seems to discard the standard value of Neff = 3.045 at 68% C.L.
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Figure 3.8: Comparison of 1-D marginalized posterior distributions for
∑
mν (eV)

and Neff for various data combinations in NPDDE11+Alens.

but again, not at 95% C.L., and also it doesn’t lead to stronger
∑
mν , as before in

the NPDDE+r model, due to a large positive correlation between H0 and Neff but

a only small correlation between H0 and
∑
mν . This can be visualized in figure 3.6.

The PAN dataset provides stricter bounds on w0 and wa, as before. We depict that

in figure 3.7.

The use of the H071p6 prior instead of R16, here again, leads to lower values of

Neff. For instance, with Planck+BAO+H07106, we get a bound of Neff = 3.193+0.197
−0.199

(68%). Thus, Neff = 3.045 is no longer excluded at 68% in this model also.
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Parameter Planck Planck Planck Planck

+BAO +BAO+PAN +R16 +R16+lensing

Ωbh
2 0.02265± 0.00024 0.02263± 0.00023 0.02289± 0.00023 0.02270± 0.00021

Ωch
2 0.1192± 0.0034 0.1192+0.0034

−0.0033 0.1232± 0.0032 0.1226+0.0030
−0.0033

τ 0.059+0.021
−0.022 0.059+0.021

−0.022 0.059± 0.022 0.058+0.021
−0.022

ns 0.978± 0.011 0.978± 0.010 0.991± 0.010 0.986± 0.009

ln(1010As) 3.052± 0.044 3.052+0.044
−0.045 3.060+0.044

−0.045 3.055+0.043
−0.044

Θs 1.041± 0.0005 1.041± 0.0005 1.040± 0.0004 1.041± 0.0004

H0 (km/s/Mpc) 66.99+1.45
−1.46 67.94± 1.30 69.80± 1.48 69.23+1.44

−1.45

σ8 0.781± 0.025 0.791+0.025
−0.023 0.796+0.030

−0.024 0.795+0.030
−0.023∑

mν (eV) < 0.239 < 0.246 < 0.312 < 0.321

w0 < −0.812 < −0.923 < −0.890 < −0.903

wa 0.020+0.089
−0.114 0.056+0.048

−0.089 0.048+0.056
−0.092 0.043+0.047

−0.083

Neff 3.212+0.227
−0.228 3.201± 0.223 3.517+0.196

−0.216 3.440+0.192
−0.210

nrun 0.00136+0.00806
−0.00807 0.00123+0.00805

−0.00809 0.00685+0.00794
−0.00803 0.00718± 0.00788

Alens 1.21+0.08
−0.09 1.20+0.08

−0.09 1.24+0.08
−0.10 1.08+0.06

−0.07

Table 3.5: Bounds on cosmological parameters in the NPDDE11+Alens model.
Marginalized limits are given at 68% C.L. whereas upper limits are given at 95%
C.L. Note that H0 and σ8 are derived parameters.
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Figure 3.9: 1σ and 2σ marginalized contours in the σ8−Ωm plane showing that the
NPDDE11+Alens model is effective in reducing the tension between CFHTLenS and
Planck 2015.

3.3.3 NPDDE11+Alens model

We present the limits on the cosmological parameters in table 3.5. A number of im-

portant changes happen with the introduction of the new varying parameter Alens.

Considering that our main goal in this chapter is to constrain neutrino masses, we

see a substantial relaxation in the bounds on
∑
mν . In previous cases we had fixed

Alens = 1. However now that Alens is varied we find that the data prefers a large

Alens and discards the ΛCDM value of Alens = 1 at more than 95% C.L. (except in

case of inclusion of Planck lensing data, which prefers a much lower Alens, implying

a tension between Planck and lensing). The increasing of the lensing amplitude

with increasing Alens has the same effect as the decreasing of
∑
mν [119]. Increasing

Alens leads to more smearing of high-l peaks in the CMB temperature and polariza-

114



3 Neutrino masses and non-phantom dark energy in a 12 parameter extended
scenario

tion angular power spectra (CTT
l , CTE

l , CEE
l , CBB

l ), due to increased gravitational

lensing of CMB photons. On the other hand, massive neutrinos help in reducing

this smearing, because it decreases the gravitational lensing of the CMB photons,

by suppressing the matter power spectrum in small scales, due to neutrinos hav-

ing large thermal velocities which prevents them from clustering. As described in

Chapter 1 increasing the
∑
mν parameter causes increasing suppression of matter

power in the small scales [44], which leads to decreasing gravitational lensing of

the CMB photons. This leads to a strong positive correlation between Alens and∑
mν , such as, to compensate for the increase in Alens, the neutrino masses are

also increased. The 1-D plots for
∑
mν and Neff for selected datasets are given in

figure 3.8. In this model, the Planck only data is almost insensitive to neutrino

masses < 0.6 eV. Our tightest bound of
∑
mν < 0.239 eV (95% C.L.) again comes

with Planck+BAO data. This bound, while weaker than the previous models we

have discussed, is still close to the
∑
mν < 0.23 eV (95% C.L.) bound provided

by Planck 2015 collaboration [87], and still a large improvement compared to the

ones presented in [127], which varied dark energy parameters in both in phantom

and non-phantom range and had found a bound of
∑
mν < 0.557 eV (95% C.L.)

with Planck+BAO, demonstrating the large difference between phantom and non-

phantom dark energies as far as neutrino masses are concerned. The preferred Neff

values are also higher in NPDDE11+Alens compared to the previous cases. The

addition of the R16 data leads to even higher Neff which leads to the Neff = 3.045

value being disallowed even at 95% C.L. with Planck+R16, for which the 68% and

95% limits are Neff = 3.517+0.196
−0.216 and Neff = 3.517+0.424

−0.396 respectively. This signifies
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the presence of tension between Planck and R16 in this model, as it was in previous

models.

The use of the H071p6 prior, again leads to lower values of Neff. In particular,

with Planck + BAO + H07106, we get a bound of Neff = 3.329+0.207
−0.227 (68%). Thus,

Neff = 3.045 is not excluded at 95% in this model, but excluded only at 68%.

Another important change is the change in bounds on the optical depth to

reionization, τ . With Planck+BAO, the NPDDE11 model preferred a value of

τ = 0.092±0.018 (68% C.L.), whereas this model prefers τ = 0.059+0.21
−0.22 (68% C.L.),

which is actually closer to the bound of τ = 0.055 ± 0.009 (68% C.L.) given by

Planck 2016 intermediate results [114]. This was previously observed in [127] which

did the analysis with varying the dark energy parameters in both the phantom and

non-phantom sector. This implies that the main effect is through the degeneracy

between τ and Alens and has not much to do with dark energy. Again, while the

NPDDE11+r and NPDDE11 models failed to reconcile Planck with weak lensing

measurements like CFHTLenS, the NPDDE11+Alens model prefers lower values of

σ8 and the agreement with CFHTLenS is considerable. This can be visualized in

figure 3.9. This was also previously seen in [127] and hence, again we can infer that

this happens because of varying Alens. The bounds on the dynamical dark energy

parameters are however weaker than in the other two models we have studied in

this chapter. The cosmological constant is however compatible with the data even

in this model.
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Figure 3.10: Comparison of 1-D marginalized posterior distributions for w0 and wa
for different data combinations in NPDDE11+Alens.

3.4 τ and Alens: Implications for Planck 2018

Both τ and Alens are correlated with
∑
mν , and with each other. As we saw in

Chapter 2, when Alens is fixed, increase in
∑
mν reduces smearing in the damping

tail of the CMB power spectra, and it can be compensated by increasing τ [78, 85].

Hence they have a positive correlation. On the other hand, increasing Alens increases

the smearing of the damping tail, i.e., negative correlation with τ . Since the value of

τ has been significantly improved from Planck 2015 to Planck 2018, as in Chapter

2 we consider a prior of τ = 0.055± 0.009 (denoted with τ0p055) from Planck 2016

intermediate results [150] to understand how the bounds reported in this chapter

might change with the use of Planck 2018 likelihoods. Again, we note here that we
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use τ0p055 as a substitute for low-l polarization data, and thus we discard the lowP

data whenever we apply the τ0p055 prior, to avoid any double counting.

We find that in the NPDDE11+r model, with Planck + BK14 + BAO + τ0p055,

we get
∑
mν < 0.097 eV (95%) (i.e. improvement over the

∑
mν <0.123 eV limit

as in Table 3.2, with Planck + BK14 + BAO). This bound is actually lower than the∑
mν ' 0.1 eV , i.e. minimum mass required for inverted mass hierarchy of neutri-

nos. At the same time, in the NPDDE11 model, with Planck + BAO + τ0p055 we

get
∑
mν < 0.107 eV (95%), which is also an improvement from the result:

∑
mν <

0.126 eV (95%) with Planck + BAO (see Table 3.5. This happens, since in both of

these models, for the datasets considered in Tables 3.2 and 3.5, the mean value of τ

hovers around 0.09-0.1. The τ0p055 prior partially breaks the degeneracy between

τ and
∑
mν , and produces lower values of

∑
mν by lowering the preferred τ values.

On the other hand, in the NPDDE11+Alens model with Planck + BAO + τ0p055,

we found
∑
mν < 0.237 eV, which is almost similar to the bound

∑
mν < 0.239 eV

(95%) with Planck + BAO (see table 3.3). This happens since all the three param-

eters, τ , Alens, and
∑
mν are varied together. Now, as the data prefers Alens values

higher than the theoretical prediction of Alens = 1 in this model, the degeneracy

between Alens and τ leads to a much lowered value of τ , and thus the correlation

between τ and
∑
mν is already much smaller in this model, than the other two.

Thus τ0p055 has little effect on the neutrino mass bounds in this model.

Also, we obtained limits of Alens in a ΛCDM + Alens model with Planck 2015
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full temperature and polarization data. The value we got is Alens = 1.15+0.072
−0.082 (68%

C.L.). In the Planck 2018 Cosmological Parameters chapter [33], for similar data

and same model, given value of Alens is: Alens = 1.18 ± 0.065 (68%) (see equation

36b in the Planck 2018 paper). This shows that there is only a small change in

Alens from Planck 2015 to Planck 2018. Thus, it is likely that there will not be any

considerable changes in the limits of other cosmological parameters with the Planck

2018 data, in the context of the value of Alens.

3.5 Summary

In this work we have studied three different extended cosmological scenarios with

non-phantom dynamical dark energy (NPDDE) with a focus on constraining sum of

neutrino masses. We have presented bounds on all the varying parameters in these

extended scenarios and described the main effects we observed. In the first model,

NPDDE11+r, we consider 12 parameters: the 6 ΛCDM parameters, two dynamical

dark energy parameters with CPL parametrization (w0 and wa) with hard priors

to satisfy the non-phantom requirement, number of effective relativistic neutrino

species at recombination (Neff and sum of neutrino masses (
∑
mν), and the running

of the inflation spectral index (nrun) and the tensor-to-scalar ratio (r). We used

different combinations of recent datasets including Planck 2015 temperature and

polarization data, CMB B-mode spectrum data from BICEP2/Keck collaboration

(BK14), BAO SDSS III BOSS DR12, MGS and 6dFS data, SNe Ia Pantheon sample

(PAN), the R16 prior (H0 = 73.24± 1.74 km/sec/Mpc (68% C.L.)). We found that
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CMB only data is not very effective in constraining the cosmological parameters.

The 1σ spreads for the parameters were however increased in this model compared

to ΛCDM due to the doubling of number of parameters. Our best bound on neu-

trino masses in this model came from Planck+BK14+BAO:
∑
mν < 0.123 eV (95%

C.L.) which is a strong bound close to the minimum mass of ' 0.1 eV (95% C.L.)

required for inverted hierarchy of neutrino masses and is stronger than a bound of∑
mν < 0.158 eV (95% C.L.) obtained in ΛCDM +

∑
mν with Planck+BAO [85]

(see also [100] for a similar conclusion in a smaller parameter space). We also found

that inclusion of the R16 prior leads to a preference for dark radiation at 68% C.L.

but not at 95%, while without the R16 prior the data is completely consistent with

the standard value of Neff = 3.045. Although this is driven by the more than 3σ

tension present between Planck and R16 regarding the value of H0 and should be

interpreted cautiously. This model did not improve the σ8 tension present in the

σ8−Ωm plane between Planck and CFHTLenS. The Pantheon sample improved the

bounds on the dark energy parameters. All combinations of data are also compatible

with a cosmological constant (w0 = −1, wa = 0). However, this is mostly because

we are restricting the parameter space to w(z) ≥ −1 and [127] had found that the

data mostly prefers the phantom region in such an extended parameter space when

both phantom and non-phantom regions are allowed.

We tested the stability of these results in a lower parameter space (model:

NPDDE11) where we turned off the tensor perturbations and also did not use the

BK14 data. We found that the general conclusions made for NPDDE11+r were
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also true in this model. The tightest bound of
∑
mν < 0.126 eV (95% C.L.) in this

model also came from Planck + BAO.

Finally we studied the NPDDE11+Alens model where we also varied the lens-

ing amplitude. We found that except when Planck lensing data is included, the

Alens = 1 value predicted by ΛCDM was rejected at more than 95% C.L. by the

datasets. Due to this, the
∑
mν bounds also worsened with our best result in this

model:
∑
mν < 0.239 eV (95% C.L.) coming from Planck+BAO again. This result

is, however, still close to the
∑
mν < 0.23 eV (95% C.L.) bound by Planck collabo-

ration [87], showing that the cosmological data is effective in constraining neutrino

masses in a cosmology with NPDDE. The R16 prior also preferred a dark radiation

component but this time also at 95% C.L. level, as this model also prefers higher

values of Neff. On the other hand, we found that this model helps relieve the σ8

tension between Planck and CFHTLenS considerably.

The recent Planck 2018 results [33] put the bound of
∑
mν < 0.13 eV (95%

C.L.) in ΛCDM +
∑
mν with Planck+BAO. Thus, the aggressive bound of

∑
mν <

0.123 eV (95% C.L.) (Planck + BK14 + BAO) is still stronger than this bound by

Planck 2018 and hence, our results are very much relevant albeit the analysis is with

Planck 2015 dataset. In fact, when we use the following Gaussian prior on optical

depth to reionization: τ = 0.055 ± 0.009 from 2016 Planck intermediate results,

and discard the low-l polarization data, the bound on neutrino masses improves

to
∑
mν < 0.097 eV (95%), which is less than the 0.1 eV mass sum required for
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inverted hierarchy of active neutrino masses.

While we have used the CPL parametrization in our work, it is not the only

parametrization that can be used for non-phantom dark energy. Any change in

parametrization can lead to change in bounds obtained on the sum of neutrino

masses. For instance, if we set the wa parameter to zero, i.e., if we consider only a

simple w(z) = w0 parametrization, we find that bounds on
∑
mν relax slightly. In

the NPDDE11 model, with wa = 0 and w(z) = w0, and using Planck + BAO data,

we found
∑
mν < 0.141 eV (95%), instead of

∑
mν < 0.126 eV (95%) when we vary

both w0 and wa. In the NPDDE11+Alens model also, with wa = 0 and w(z) = w0,

and using Planck + BAO, we obtained
∑
mν < 0.261 eV (95%), instead of

∑
mν <

0.239 eV (95%). Some other parametrizations that can be considered include Log-

arithmic parametrization [151] (w(a) = w0 − waln(a)), Jassal-Bagla-Padmanabhan

(JBP) parametrization [152] (w(a) = w0 +waa(1− a)) etc. Analysis involving these

parametrizations is beyond the scope of this thesis. However, we would like to point

the reader to [130], where the authors found similar limits, with CPL and Logarith-

mic parametrizations, on
∑
mν for the case of degenerate hierarchy. However, in

case of JBP, bound on
∑
mν was found to be significantly stronger. While [130] does

not discard the phantom region, it is possible that results from analyses with only

non-phantom dark energy will also vary depending on the parametrization used, as

far as neutrino masses are concerned.

We would like to add a final remark that we have obtained the bounds while
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taking the datasets at face value. However unresolved systematics present in the

dataset could have affected our results and conclusions. Thus there is still a lot to

learn about robustness of datasets and also about dynamics of dark energy.
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4
Constraints on light sterile neutrino mass from

cosmology

This chapter uses parts of the preprint “Constraining light sterile neutrino mass

with the BICEP2/Keck Array 2014 B-mode polarization data” (arXiv: 1807.10294)

[153]. Leaving aside active neutrinos, we now move to sterile neutrinos. Sterile

neutrinos still remain nothing short of an enigma in neutrino physics. Presence of

anomalies in some short-baseline oscillation experiments [154–156] have been ex-

plained with an extra species of neutrino, namely a sterile neutrino, of mass ' 1 eV,

which amply mixes with the active neutrinos but is uncharged under the standard

model gauge group. Again, there are analyses [157–161] which indicate that all the

results cannot be explained comfortably with the sterile neutrino hypothesis. A re-

cent result [162] from the MiniBooNE collaboration finds present electron neutrino

and anti-neutrino appearance data still consistent with an extra sterile neutrino.

In a situation where standard model (SM) of particle physics is augmented with
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only an extra sterile neutrino species, from a cosmological perspective there are

two parameters of utmost importance. One is the effective number of relativistic

neutrino species, Neff, whose theoretically predicted value NSM
eff = 3.046 is supposed

to increase when contribution from the sterile neutrino is counted. The other is the

effective mass of the sterile neutrino, meff
s = ∆N

3/4
eff mph

s , where ∆Neff = Neff − 3.046

and mph
s is the physical mass of the sterile neutrino. Cosmology can provide strong

constraints on these two parameters. Neff, in general, can have contribution from

any relativistic species which is not a photon, and hence it is not restricted only

to the neutrino sector. Also, in certain scenarios like very low-reheating scenarios

with sterile neutrinos [163] or self-interacting sterile neutrinos [164], ∆Neff can be

negative. However, we do not consider such scenarios in this work, and consider

only a non-interacting extra species of sterile neutrino.

Provided we are only considering an extension to standard model with neutrino

oscillations in a 3+1 scenario, as long as the sterile neutrino is of similar mass to an

active neutrino and amply mixes with the active ones, its cosmological implications

are identical to the active neutrino. Sufficient mixing will lead to almost complete

thermalization [165, 166]. However, even if there is partial thermalization, it will,

in general, increase Neff, leading to a delayed matter-radiation equality and a higher

value of the Hubble parameter, H(zdec), at the CMB decoupling (given other param-

eters are kept fixed). This has two main consequences [167] on the CMB anisotropy

power spectrum, first being an increase in the first peak of the spectrum because of

early Integrated Sachs Wolfe (ISW) effect, and the second being a horizontal shift of

the peaks towards higher multipoles. Along with a horizontal shift, there will also
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be a vertical shift which will decrease the amplitude of the peaks at high multipoles,

a phenomenon related to Silk damping. These effects of an additional relativistic

sterile neutrino can be partially compensated if other cosmological parameters are

simultaneously varied. For example, if the total matter density ωm is also increased

without altering the baryon density, the redshift of matter-radiation equality can be

kept fixed. These degeneracies tend to degrade the constraints on Neff. However,

the CMB power spectra won’t be exactly the same even after such adjustments with

other parameters, especially because of the neutrino anisotropic stress arising from

the quadrupole moment of the cosmic neutrino background temperature anisotropies

which alters the gravitational potentials [168, 169]. Hence constraints can be put

on Neff from CMB power spectra data. In Chapter 3 we have already seen bounds

on Neff in case of massive active neutrinos.

If a light sterile neutrino has a mass ' 1 eV, it only starts to become non-

relativistic during CMB, and hence the effect of the mass is not strong on CMB

power spectra. Sterile neutrinos with masses much smaller than 1 eV will have a

small effect on CMB temperature and polarization power spectra. However, when

CMB power spectra data is used with other cosmological observations like constrain-

ing the Hubble parameter from direct measurements via a Gaussian prior or using

the Baryon Acoustic Oscillation (BAO) data or both, better bounds on the mass of

the sterile neutrino can be obtained [55], similar to the
∑
mν case. Current bounds

on sterile neutrinos from cosmological data imply that fully thermalized sterile neu-

trinos of mass ' 1 eV are disfavoured and can only be accommodated with partial

thermalization. See previous analyses on constraining sterile neutrino properties
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with cosmological data [170–181].

In this paper, we have, for the first time, used the BK14 data to constrain the

parameters associated with sterile neutrinos in an extended ΛCDM model, which

can be simply denoted with ΛCDM + r + Neff + meff
s . BK14 constrains the tensor-

to-scalar ratio and also contains information on gravitational lensing. In previous

two chapters we have noticed that BK14 data makes the bounds on
∑
mν slightly

stronger. Thus we expect this data to affect the constraints on the sterile neutrino

mass as well. We also provide results with Neff fixed at 4.046 and 3.5 separately, i.e.,

assuming full and partial thermalization of the sterile neutrinos respectively, and

these models are denoted as ΛCDM + r +meff
s .

4.1 Cosmological Analysis: Models and Datasets

Below we list the vector of parameters we have varied in this work in two cosmological

models.

• For ΛCDM + r +Neff +meff
s model:

θ ≡
[
ωc, ωb, Θs, τ, ns, ln[1010As], r, Neff,m

eff
s

]
. (4.1)

• For ΛCDM + r +meff
s model:

θ ≡
[
ωc, ωb, Θs, τ, ns, ln[1010As], r,m

eff
s

]
. (4.2)
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with i) Neff fixed to the value 4.046, which corresponds to full thermalization

of the sterile neutrino with active neutrinos and, ii) Neff fixed to the value 3.5,

which corresponds to partial thermalization.

In our work, we have fixed the active neutrino sector to give a contribution of NSM
eff =

3.046 to Neff, with two massless and one massive neutrino with mass of 0.06 eV. Thus

the contribution to Neff from the sterile species is simply ∆Neff = Neff − 3.046.

When the sterile neutrino is relativistic at early times, assuming the only radi-

ation species are photons and neutrinos, contribution of a light sterile neutrino to

Neff is given by [182],

∆Neff =

[
7

8

π2

15
T 4
ν

]−1
1

π2

∫
dp p3 fs(p), (4.3)

where Tν is active neutrino temperature, p is the neutrino momentum, and fs(p)

is momentum distribution function of the sterile neutrino. At late times its energy

density is parametrized as an effective mass [182, 183]:

ωs ≡ Ωsh
2 =

meff
s

94.1eV
=
h2mph

s

π2ρcr,0

∫
dp p2 fs(p), (4.4)

where ρcr,0 is the critical density as defined in Eq. 1.6, Ωsh
2 is the sterile neutrino

energy density. Since sterile neutrinos don’t have electroweak interactions and they

have mixing with the active neutrinos, they cannot decouple after the decoupling

of active neutrinos. Active neutrinos decouple at a temperature T ∼ 1 MeV, when

all of them are relativistic. Hence fs(p) doesn’t depend on the physical mass of the
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sterile neutrino, mph
s . However fs(p) depends on the production mechanism of the

light sterile neutrino. If the production is through a thermal process, one can simply

write fs(p) = (ep/Ts + 1)−1, the usual Fermi-Dirac distribution function, where Ts is

the sterile neutrino temperature. In this case, it can be shown that,

meff
s = ∆N

3/4
eff mph

s ; ∆Neff =

(
Ts
Tν

)4

. (4.5)

Non-thermal production, on the other hand, can lead to various possible scenarios.

One of the popular scenarios is the Dodelson-Widrow (DW) mechanism [184], for

which fs(p) = β(ep/Tν + 1)−1, where β is a normalization factor. In this case, one

gets [182],

meff
s = ∆Neff m

ph
s ; ∆Neff = β. (4.6)

So, the meff
s parametrization can accommodate two different scenarios of sterile

neutrino production. Also notice that in the ΛCDM + r +meff
s model, fixing Neff =

4.046 leads to meff
s being same as mph

s .

In our work, we conduct a Bayesian analysis to derive constraints on the sterile

neutrino parameters. For all the parameters listed in Eq. (4.1), and Eq. (4.2), we

impose flat priors. We also limit the physical mass of the sterile neutrino to mph
s ≤ 10

eV. The prior ranges are provided on the Table 4.1. We run chains using CosmoMC

[84] which incorporates CAMB [42] as the Boltzmann code and the Gelman and

Rubin statistics [102] to estimate the convergence of chains.

We use separate combinations of the following datasets: Planck 2015 TT+lowP,
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Parameter Prior
ωc [0.001,0.99]
ωb [0.005,0.1]
Θs [0.5,10]
τ [0.01,0.8]
ns [0.8,1.2]
ln [1010As] [2,4]
r [0,2]
Neff [3.046,7]
meff

s [0,3]

Table 4.1: Flat priors on cosmological parameters included in this work.

lensing, BK14, BAO and R16. The datasets are described in Chapter 2.

4.2 Results

For convenience, we have separated the results in two subsections for the the two

different models. The description of models and datasets are given in Section 4.1.

We have presented the results, first in the ΛCDM+r+Neff +meff
s model, and then in

the ΛCDM+r+meff
s model. All the marginalized limits quoted in the text or tables

are at 68% C.L. whereas upper limits are quoted at 95% C.L., unless otherwise

specified.

4.2.1 Results for ΛCDM + r +Neff +meff
s model

In this section, we present the results for the ΛCDM + r + Neff + meff
s model. In

Table 4.2 we have provided results without BK14 data, whereas, in Table 4.3, the

results are with BK14, to compare. We have presented constraints on the three
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Parameter TT+lowP TT+lowP TT+lowP TT+lowP TT+lowP

+BAO +R16 +R16+BAO +R16+BAO+lensing

meff
s (eV) < 0.78 < 0.53 < 0.34 < 0.36 < 0.40

Neff < 3.78 < 3.75 3.63± 0.21 3.59± 0.22 3.60+0.21
−0.24

r < 0.127 < 0.129 < 0.151 < 0.148 < 0.155

H0 (km/sec/Mpc) 68.35+1.23
−2.50 69.14+0.89

−1.59 71.77+1.63
−1.64 70.79+1.19

−1.20 70.78± 1.21

σ8 0.802+0.040
−0.029 0.815+0.029

−0.023 0.836+0.029
−0.021 0.828+0.029

−0.023 0.816+0.020
−0.016

Table 4.2: Bounds on cosmological parameters in the ΛCDM+r+Neff +meff
s model

without BK14 data. Marginalized limits are given at 68% C.L. whereas upper limits
are given at 95% C.L. Note that H0 and σ8 are derived parameters.

Parameter TT+lowP TT+lowP TT+lowP TT+lowP TT+lowP+BK14

+BK14 +BK14+BAO +BK14+R16 +BK14+R16+BAO +R16+BAO+lensing

meff
s (eV) < 0.68 < 0.46 < 0.28 < 0.30 < 0.35

Neff < 3.76 < 3.74 3.63± 0.21 3.59± 0.21 3.59+0.21
−0.23

r < 0.068 < 0.070 < 0.073 < 0.072 < 0.078

H0 (km/sec/Mpc) 68.31+1.25
−2.48 69.16+0.95

−1.61 71.73± 1.62 70.84± 1.20 70.75+1.17
−1.18

σ8 0.814+0.036
−0.027 0.825+0.027

−0.021 0.846+0.026
−0.020 0.841+0.025

−0.021 0.820+0.019
−0.015

Table 4.3: Bounds on cosmological parameters in the ΛCDM+r+Neff +meff
s model

with BK14 data. Marginalized limits are given at 68% C.L. whereas upper limits
are given at 95% C.L.. Note that H0 and σ8 are derived parameters.
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parameters r, Neff, and meff
s . with which we have extended the ΛCDM model, and

also two derived parameters H0 and σ8, which are important in constraining the

sterile neutrino mass.

With only TT+lowP, we see that the bound on the sterile mass is relaxed at

meff
s < 0.78 eV. The bound gets tightened with BAO data, which partially breaks

the degeneracy between meff
s and H0 present in the TT+lowP data, by rejecting

lower values of H0 [61, 85] and leads to a bound of meff
s < 0.53 eV. This effect can

be seen pictorially in Figure 4.1 where addition of BAO data leads to a significantly

smaller magnitude of anti-correlation between meff
s and H0. The R16 prior also

breaks the degeneracy partially, as can be seen in Figure 4.1. However, the H0 values

preferred by the R16 prior are larger than BAO, which leads to a preference to even

smaller masses (meff
s < 0.34 eV) to keep the comoving distance to the surface of last

scattering fixed [85]. Adding R16 and BAO together with CMB however does not

provide better bound than CMB+R16. Also, the lensing data degrades the bound

on meff
s . We note that CMB and/or BAO data do not allow full thermalization

of sterile neutrinos. However, at 95% C.L., with TT+lowP+R16, we obtained a

Neff = 3.63+0.44
−0.42. Such high values of Neff disallow the standard model prediction of

NSM
eff = 3.046 at 95% C.L. but allow Neff = 4.046, i.e., full thermalization. On the

other hand, it is also imperative to consider recent constraints on Neff coming from

Big Bang Nucleosynthesis (BBN). Planck 2018 results [33] have provided bound

of Neff = 2.95+0.56
−0.52 (95% C.L.) (which is independent of the details of the CMB

spectra at high multipoles) by combining the helium, deuterium, and BAO data

with an almost model-independent prior on θs derived from Planck data. Another
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Figure 4.1: 1σ and 2σ marginalized contours for H0 [km/sec/Mpc] vs. meff
s [eV]

in the ΛCDM + r + Neff + meff
s model with the following combinations: TT+lowP,

TT+lowP+BAO, and TT+lowP+R16. Both BAO and R16 data decrease the cor-
relation between the two parameters significantly.

recent study on BBN [185] provide a tight bound of Neff = 2.90± 0.22 (68% C.L.),

which means at at 95% C.L., there will be only a small overlap in the values of

Neff provided by [185] and TT+lowP+R16. It is also to be noted that addition of

the R16 prior leads to a slightly inferior fit to the data, due to the 3.4σ tension

present between Planck and R16 regarding the value of H0. We find that in this

ΛCDM + r+Neff +meff
s model, compared to TT+lowP, the dataset TT+lowP+R16

degrades the χ2-fit by an amount of ∆χ2 = +3.43.

Akaike information criterion (AIC): To understand the improvement/worsening

of the quality of fit with addition of sterile neutrino parameters (Neff and meff
s ) we

need to compare the fit to data given by ΛCDM + r + Neff + meff
s with that of

ΛCDM + r. Since the number of parameters in the two models are not same, a

popular method to compare the fit is the Akaike information criterion (AIC) [186].
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Figure 4.2: 1-D marginalized posteriors for meff
s [eV] and r in the ΛCDM+r+Neff +

meff
s model with various data combinations.

For a particular model and data, AIC is given by,

AIC = χ2
best-fit + 2k (4.7)

where k is the number of parameters in the model. The model with lower AIC

corresponds to the preferred model.

Thus, comparison with another model (with the same data) can be done with

∆AIC = ∆χ2 + 2∆k. Usually models with extra parameters provide better fit

to the data since they have a larger parameter space. The 2∆k term penalizes

models with extra parameters to prevent any over-fitting. Here 2∆k = 4.

We find that for the TT+lowP+R16 data:

∆χ2 = χ2
best-fit(ΛCDM + r +Neff +meff

s )− χ2
best-fit(ΛCDM + r) = −4.3 (4.8)
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i.e., the ΛCDM+r+Neff+meff
s model provides a better χ2 fit compared to ΛCDM+r.

But due to the 2 extra parameters, ∆AIC = −0.3. Since this difference is small, it

implies that the goodness of fits to the TT+lowP+R16 data for the two models are

similar.

Since the main aim of this work is to analyze the role of the BK14 data, Table 4.3

lists the bounds on the cosmological parameters, now with BK14 data included in

each combination. The inclusion of the BK14 data seems to have almost no effect on

the bounds of Neff and H0, as can be seen by comparing the results of Table 4.2 and

Table 4.3. However, bounds on meff
s improve slightly across all data combinations.

The 1-D marginalized posteriors for meff
s and r for various datasets are shown in

Figure 4.2. While for TT+lowP, we had meff
s < 0.78 eV, this bound improves to

meff
s < 0.68 eV with TT+lowP+BK14. Addition of BAO data further improves

this bound to meff
s < 0.46 eV. Our most aggressive bound in this work comes with

TT+lowP+BK14+R16: meff
s < 0.28 eV.

Effect of BK14 data on sum of active neutrino masses (
∑
mν) was also studied

by us in Chapter 2, in the ΛCDM + r +
∑
mν model. This is also seen in the

recent Planck 2018 results, where they provide a bound of
∑
mν < 0.12 eV with

Planck TT,TE,EE+lowE+lensing+BAO data in ΛCDM+
∑
mν model [33], whereas

the bound is
∑
mν < 0.11 eV with Planck TT,TE,EE+lowE+lensing+BK14+BAO

data in the ΛCDM+r+
∑
mν model [187]. This effect persists even in a 12 parameter

extended cosmology with NPDDE, as we saw in Chapter 3. In this work we have

shown that such an effect is also present in an extended ΛCDM cosmology with light
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sterile neutrinos.

To explain the results, we follow similar arguments as in Chapter 2. As we have

seen in previous two chapters, BK14 data significantly constrains the tensor-to-scalar

ratio, r. TT+lowP provides r < 0.127 whereas TT+lowP+BK14 gives a constraint

of r < 0.068. However, we found only a very small correlation between r and meff
s ,

and that does not explain the decrease in mass. In fact the correlation coefficient

between r and meff
s to be Rmeff

s ,r = −0.08 with TT+lowP and Rmeff
s ,r = +0.02 with

TT+lowP+BK14, i.e., there is no significant correlation before addition of BK14 and

also no significant change after. However we also find slightly increased values of σ8

across all data combinations when BK14 is included. For instance, for TT+lowP, we

have σ8 = 0.802+0.040
−0.029, which increases to σ8 = 0.814+0.036

−0.027 with TT+lowP+BK14.

σ8 and meff
s , both are strongly anti-correlated, as was the case for σ8 and

∑
mν in

Chapter 1. Indeed, we found Rσ8,meff
s

= −0.84 with TT+lowP and Rσ8,meff
s

= −0.81

with TT+lowP+BK14, and hence, even such small changes in σ8 should also create

small changes in meff
s , which we find is the case here. This has been depicted in

Figure 4.3. Again, notice that the lensing data prefers a lower σ8 value. As in

Table 4.3, TT+lowP+BK14+R16+BAO yields σ8 = 0.841+0.025
−0.021, whereas adding

the lensing data to this combination yields a lower σ8 = 0.820+0.019
−0.015. Due to the

same anti-correlation between σ8 and meff
s , we see that inclusion of lensing data

degrades the meff
s bounds.

Overall, we can say that the BK14 data makes the case for fully thermalized eV

scale sterile neutrinos slightly worse. The parameter to justify this statement is meff
s .

As we have shown that addition of the BK14 data does not affect the Neff bounds,
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Figure 4.3: 1σ and 2σ marginalized contours for σ8 vs. meff
s [eV] in the ΛCDM+ r+

Neff +meff
s model with the following combinations: TT+lowP and TT+lowP+BK14.

Adding BK14 leads to slightly higher σ8; and due to large anti-correlation present
between σ8 and meff

s , slightly stronger bound on meff
s is obtained.

BK14 data does not affect the thermalization situation, as far as cosmological data

is concerned. However, short baseline oscillation experiments predict a fully ther-

malised sterile neutrino of mass ' 1 eV. This requires that both Neff = 4.046 and

meff
s ' 1 eV be allowed by the data. Since adding the BK14 data tightens the bounds

on meff
s for all of the cosmological dataset combinations, it also takes the meff

s value

further away from the 1 eV value, while Neff bounds almost remain unchanged. The

BICEP2/Keck experiment has a multipole range 20 < l < 330 aiming to constrain

the tensor-to-scalar ratio. However since r and meff
s are only weakly correlated, the

slightly stronger constraints on the neutrino masses is possibly coming from gravi-

tational lensing information encoded in the BK14 data, and not from measurement

of r. This conclusion is essentially similar to what we had arrived at in Chapter 2

regarding the slight strengthening of
∑
mν bounds with BK14 data.
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Figure 4.4: 1σ and 2σ marginalized contours for σ8 vs. Ωm and σ8 vs. H0 in the
ΛCDM + r + Neff + meff

s model with the following combinations: TT+lowP and
TT+lowP+BK14. We have also presented the contours in the ΛCDM model with
Planck 2015 lensing and CFHTLenS data. Adding BK14 leads to slightly higher σ8,
which worsens the agreement with CFHTLenS and Planck 2015.

H0 and σ8 tensions:

It is also worth noting that in ΛCDM model, with TT+lowP, Planck collabora-

tion [87] found that H0 = 67.31 ± 0.96 km/sec/Mpc, whereas in this ΛCDM + r +

Neff + meff
s model we find H0 = 68.35+1.23

−2.50 km/sec/Mpc. This preference to larger

values of H0 decreases the more than 3σ tension present in the ΛCDM model, be-

tween Planck 2015 and R16. One of the main reasons is that marginalizing over

Neff, which allows for Neff > 3.046 and higher Neff values prefer a higher H0, to keep

the acoustic scale parameter θs fixed [87], which is very well constrained by Planck

data. Thus H0 and Neff are strongly correlated.

The ΛCDM+r+Neff +meff
s model also helps in reconciling the σ8 tension present

in the σ8−Ωm plane in ΛCDM model between Planck 2015 and weak lensing survey,
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like CFHTLenS [145] and KiDS-450 [146]. As mentioned in Chapter 3, the KiDS-

450 survey constrains the quantity S8 ≡ σ8

√
Ωm/0.3 = 0.745 ± 0.039 which has

a 2.3σ tension with Planck 2015 TT+lowP, which prefers a much higher value of

S8 = 0.851 ± 0.024 [87]. Planck data also prefers higher values of σ8 compared to

CFHTLenS. With TT+lowP in base ΛCDM model, one gets σ8 = 0.829 ± 0.014

[87]. However, in this ΛCDM + r + Neff + meff
s model, with TT+lowP, we get

σ8 = 0.802+0.040
−0.029, which is much lower and thereby the conflict is decreased somewhat.

We also get S8 = 0.824+0.030
−0.027, which is better agreement with KiDS-450 than ΛCDM.

However, the BK14 data prefers slightly higher σ8 values and thereby increases the

tension between Planck and these weak gravitational lensing surveys. This can be

visualized in Figure 4.4, where we see that the inclusion of BK14 data drives the

2D contours upwards to a small extent. In Figure 4.4, we have used the CFHTLenS

data with conservative cuts as described in [87].

Another important point is that while ΛCDM+r+Neff+meff
s helps in relieving the

H0 and σ8 tensions present in the ΛCDM model, they are not both relieved together

in any region of the allowed parameter space. In the right panel of Figure 4.4, we

can see that the regions where σ8 has lower values, H0 also has lower values (while

we need higher values of H0 to relieve the H0 tension), and similarly, where H0 has

higher values, σ8 also has higher values (while we need lower values of σ8 to relieve

the σ8 tension). This in turn implies that the two conflicts are not resolved together

in this model. And BK14 data worsens the conflicts even more. The R16 prior also

doesn’t help the issue here. As we can see from Tables 4.2 and 4.3, the inclusion of

this Gaussian prior leads to a preference for much higher Neff values, and higher σ8
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Parameter TT+lowP TT+lowP+BK14

meff
s (eV) < 0.66 < 0.50

r < 0.175 < 0.076

H0 (km/sec/Mpc) 73.92+2.60
−1.37 74.20+2.13

−1.28

σ8 0.840+0.049
−0.020 0.857+0.039

−0.018

Table 4.4: Bounds on a cosmological parameters in the ΛCDM+r+meff
s model with

Neff = 4.046, assuming complete thermalization of sterile neutrinos. Marginalized
limits are given at 68% C.L. whereas upper limits are given at 95% C.L. Note that
H0 and σ8 are derived parameters.

Parameter TT+lowP TT+lowP+BK14

meff
s (eV) < 0.83 < 0.63

r < 0.136 < 0.070

H0 (km/sec/Mpc) 69.04+2.15
−1.59 69.25+1.94

−1.42

σ8 0.803+0.051
−0.025 0.820+0.041

−0.021

Table 4.5: Bounds on a cosmological parameters in the ΛCDM + r + meff
s model

with Neff = 3.5, assuming partial thermalization of sterile neutrinos. Marginalized
limits are given at 68% C.L. whereas upper limits are given at 95% C.L. Note that
H0 and σ8 are derived parameters.

values as well, increasing the conflict.

4.2.2 Results for ΛCDM + r +meff
s model

In this section we verify the stability of the results obtained in the previous section,

by going to a smaller parameter space. We stop varying Neff and fix its value to

4.046 and 3.5. The first one corresponds to complete thermalization of sterile neu-
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trinos, while the later one corresponds to partial thermalization. We have restricted

ourselves to CMB data only. For Neff = 4.046 and Neff = 3.5, the results are given

in Tables 4.4 and 4.5 respectively.

We see that BK14 does help in obtaining better constraint on the sterile mass

also in this reduced parameter space. For Neff = 4.046, with TT+lowP, we get

meff
s < 0.66 eV, whereas inclusion of BK14 leads to a tighter bound of meff

s < 0.50

eV. Similar case of strengthening of mass bound is seen with Neff = 3.5, although

these bounds are more relaxed compared to the case Neff = 4.046, as a higher Neff

prefers a higher H0. Again we see that the BK14 data itself does not affect the H0

constraints much, but heavily constraints the tensor-to-scalar ratio, and also slightly

increases the preferred σ8 values. The main conclusions made in the previous section

on the larger parameter space thus remains unchanged in this smaller parameter

space.

It is imperative to note that for sterile neutrinos produced by a thermal process

and obeying Eq. 4.5, for Neff = 4.046, we have mph
s = meff

s , whereas for Neff = 3.5,

we have mph
s = 1.8meff

s . Hence, for Neff = 3.5 and with TT+lowP+BK14, we have a

corresponding bound of mph
s < 1.13 eV. This implies that CMB data allows sterile

neutrinos with mass ' 1 eV, but only with partial thermalization with Neff ' 3.5.

When we compare the quality of fit to the TT+lowP+BK14 data between the

ΛCDM+r+meff
s model (Neff = 3.5 and 4.046) and the ΛCDM+r (with Neff = NSM

eff ),

we find that,
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for the Neff = 4.046 case:

∆χ2 = χ2
best-fit(ΛCDM + r +meff

s )− χ2
best-fit(ΛCDM + r) = +7.03 (4.9)

whereas, for the Neff = 3.5 case:

∆χ2 = χ2
best-fit(ΛCDM + r +meff

s )− χ2
best-fit(ΛCDM + r) = −0.22 (4.10)

These correspond to ∆AIC = +9.03 (for Neff = 4.046) and ∆AIC = +1.78 (for

Neff = 3.5). Thus, the model with partial thermalization of Neff = 3.5 provides only

a slightly worse fit to the data compared to the ΛCDM+r model (with Neff = NSM
eff ),

and is preferred by the data much more than the full-thermalization case. This is

not surprising as in the previous section we had seen that CMB data alone did not

allow complete thermalization.

4.3 Discussion

Short Baseline (SBL) Oscillation anomalies have hinted towards a fully thermal-

ized sterile neutrino with mass around 1 eV. In this work we have studied, for the

first time, the light eV scale sterile neutrino situation in cosmology in light of the

BICEP2/Keck array 2014 CMB B-mode polarization data. We call this dataset

BK14. We first considered an extended−ΛCDM scenario with tensor perturbations

and sterile neutrino parameters: ΛCDM+r+Neff+meff
s model. Apart from BK14, we

have used Planck 2015 temperature and low-l polarization data (TT+lowP), latest
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BAO data and a Gaussian prior on the Hubble constant (R16) from local measure-

ments. We find that inclusion of the BK14 data has almost no effect on the bounds

of Neff and H0 but it strengthens the bounds on meff
s to a small extent by preferring

slightly higher values of σ8, with which meff
s is strongly anti-correlated. The BK14

data also tightly constraints the tensor-to-scalar ratio, r but we find negligible cor-

relation between r and meff
s . This makes us think that the effect on mass is coming

from the gravitational lensing information encoded in the B-mode polarization and

not from the Inflationary Gravitational Waves. The bound of meff
s < 0.46 eV (95%

C.L.) is found for the combination of Planck 2015, BAO and BK14 datasets, whereas

the bound is meff
s < 0.53 eV (95% C.L.) without the BK14 data. Our most aggressive

bound of meff
s < 0.28 eV (95% C.L.) is obtained with Planck 2015, R16 and BK14.

The R16 prior also leads to high Neff values which allow full thermalization of the

sterile neutrino (at 2σ) but such high values are in conflict with bounds from Big

Bang Nucleosynthesis. Also, addition of the R16 prior to the TT+lowP data leads

to a slightly worse χ2 fit to the data. On the other hand, it is to be noted that as per

the Akaike information criterion (AIC) the ΛCDM + r +Neff +meff
s model provides

equally good fit to the data as the ΛCDM + r model, for the TT+lowP+R16 data

combination. Previous studies have indicated that fully thermalized sterile neutrinos

with mass ∼ 1 eV (as predicted by SBL experiments) are disfavoured by cosmolog-

ical data. Our analysis indicates that it becomes slightly more disfavoured with the

inclusion of BK14 data, due to tighter mass bounds. The BK14 data also seems

to make the agreement between Planck 2015 and CFHTLenS (weak gravitational

lensing data) worse due to the higher σ8 values.
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We would also like to mention that the Planck 2018 results, released after the

above work was completed, indirectly confirmed tightening of bounds on
∑
mν

with BK14. They provide a bound of
∑
mν < 0.12 eV with Planck TT,TE,EE

+ lowE + lensing + BAO data in ΛCDM +
∑
mν model [33], whereas the bound

is
∑
mν < 0.11 eV with Planck TT,TE,EE + lowE + lensing + BK14 + BAO

data in the ΛCDM + r +
∑
mν model [187]. Thus we expect our main conclusion

regarding BK14 helping in improving the bound on sterile neutrino mass will remain

unchanged if used with the recent Planck 2018 likelihoods instead of Planck 2015

that we have used in this work.

While this work was still being completed, a new B-mode polarization data was

released publicly, from the same BICEP2/Keck collaboration. This newly released

data includes all the measurements upto and including 2015, and thus we call it

BK15 [188]. To understand the effect of the new data, we performed an MCMC

analysis with TT+lowP+R16+BK15 in the ΛCDM + r+Neff +meff
s model (with all

other settings remaining unchanged). We found the following bounds: meff
s < 0.27

eV (95% C.L.), r < 0.061, and σ8 = 0.847+0.026
−0.021. In the same model, when we had

used BK14 instead of BK15, we had found (see Table 4.3), meff
s < 0.28 eV (95%

C.L.), r < 0.073, and σ8 = 0.846+0.026
−0.020. As we can see, that while the bound on r

changes, the bounds on meff
s and σ8 almost remain unchanged. We also checked that

other parameters of interest, like H0 and Neff change negligibly. As before, since r

and meff
s have only a very weak correlation, it doesn’t affect the mass bound. On

the other hand, since TT+lowP+R16+BK15 almost doesn’t change the bound on

σ8, the mass bound almost remains the same. Thus, we find that reanalysis with
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BK15 instead of BK14 will not change the neutrino mass bounds much.
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5
Conclusions and future outlook

Neutrino oscillation experiments have firmly confirmed that the three active

neutrinos have 3 distinct mass eigenstates with small but distinct masses, with the

option of the lightest neutrino being massless. These mass eigenstates are quan-

tum superpositions of the flavor eigenstates, namely the electron neutrino, muon

neutrino, and tau neutrino. While the current oscillation experiments are sensitive

to the (squared) mass splittings, they don’t say anything about the mass of the

lightest neutrino. On the other hand, neutrino masses have non-trivial impact on

the evolution of the universe, and we can get a measure of the sum of the masses by

observing its impact on CMB and LSS. Due to these reasons, strongest bounds on

the sum of these neutrino masses (
∑
mν) come from cosmological data. However,

current cosmological data can only provide an upper bound to
∑
mν . Detection of

the non-zero neutrino mass sum is one of the important goals of near future CMB

and LSS surveys. This thesis is a thorough study on the bounds on neutrino masses

coming from recent cosmological data in various cosmological models.
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In chapter 2, we discuss the first paper which contributes towards this thesis [85].

In this work, using latest datasets publicly available at the time of inception of this

work, we provided strong bounds on
∑
mν in the backdrop of ΛCDM model and

some of its simple extensions with tensor perturbations and dynamical dark energy.

We considered five different cosmological models: ΛCDM+
∑
mν , ΛCDM+r+

∑
mν ,

w0waCDM +
∑
mν (DDE), w0waCDM +

∑
mν with w(z) ≥ −1 (NPDDE), and

w0waCDM+r+
∑
mν with w(z) ≥ −1 (NPDDE+r). Here w(z) = w0 +waz/(1+z),

defined at a redshift z, is the dark energy equation of state with CPL parametriza-

tion. r is the tensor to scalar ratio with the pivot scale of k∗ = 0.05hMpc−1. Given

a particular cosmological model and dataset combination, we perform a Bayesian

analysis using the MCMC sampler CosmoMC that uses CAMB as the Boltzmann

solver. Among datasets, along with CMB temperature anisotropy data (TT) from

Planck 2015 [87], we have used BAO measurements from various galaxy surveys like

SDSS-III BOSS DR12, MGS and 6dFGS; SNe Ia luminosity distance measurements

from Pantheon Sample (PAN); the BK14 data (B-mode polarization of CMB) from

the BICEP2/Keck Collaboration; and suitable Gaussian prior of τ = 0.055± 0.009

(τ0p055) on the reionization optical depth. These priors help breaking the mutual

degeneracies of H0 and τ with
∑
mν present in the Planck data. The prior on τ

was taken from Planck 2016 intermediate results [114] determined from improved

analysis of the low-l polarization data (lowP) of Planck. This was a significant im-

provement in the measurement of τ from Planck 2015 and since τ and
∑
mν are

strongly correlated in the Planck TT data, we took it into account. We exclude the

Planck 2015 lowP data when we include τ0p055, to avoid any double counting. For

148



5 Conclusions and future outlook

the minimal ΛCDM +
∑
mν model we find a robust upper bound of

∑
mν < 0.152

eV at 95% C.L. with the use of TT + BAO + PAN + τ0p055. Adding the high-l

polarization data from Planck strengthens this bound to
∑
mν < 0.118 eV. This is

very close to the
∑
mν ' 0.1 eV, the minimum mass sum allowed for inverted hier-

archy. Later, Planck 2018 [33] confirmed the same bound of
∑
mν < 0.120 eV using

Planck 2018 TTTEEE+lowE+lensing+BAO data, thereby confirming that for the

ΛCDM +
∑
mν model, this τ−prior method works. This bound is strengthened to∑

mν < 0.110 eV in ΛCDM + r +
∑
mν model with an additional dataset, BK14.

This bound is becomes better, to
∑
mν < 0.101 eV in a model with non-phantom

dynamical dark energy (NPDDE). Next, considering the NPDDE+r model and in-

cluding the BK14 data, the bound can be even further reduced to
∑
mν < 0.093

eV. So in these models with NPDDE we end up with
∑
mν bounds which are even

tighter than ΛCDM +
∑
mν . For the DDE model (without any extra prior on w0

and wa), the bound however relaxes to
∑
mν < 0.276 eV. Including the R16 prior

on the Hubble constant (H0 = 73.24± 1.74 km/sec/Mpc) from Hubble Space Tele-

scope (HST), the above bounds get even better, to
∑
mν < 0.117 eV, 0.091 eV,

0.085 eV, 0.082 eV, 0.078 eV and 0.247 eV respectively. These improvements are

mostly due to a greater than 3σ tension between Planck 2015 and Hubble Space

Telescope measurements of the Hubble constant in the ΛCDM model, and should

be taken cautiously. However, there is a possibility that both Planck and R16 might

be correct and the discrepancy has to be explained by some new physics.

The fact that in the non-phantom dynamical dark energy models the neutrino

mass bounds are tighter than ΛCDM +
∑
mν increased our interest in cosmologies
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with massive neutrinos and non-phantom dynamical dark energy. The non-phantom

(w(z) ≥ −1) part of the w0 − wa parameter space corresponds to single field dark

energy models like Quintessence and these are of considerable theoretical interest.

We thus wanted to study this kind of dark energy further in an even more extended

parameter space to see if the mass bounds still remain tighter than ΛCDM +
∑
mν .

In chapter 3, we discuss the second paper which contributes towards this thesis

[141]. In this work, we have studied constraints on
∑
mν in three different largely

extended cosmological scenarios with NPDDE. In the first model, NPDDE11+r,

we consider 12 parameters: the 6 ΛCDM parameters, two dynamical dark energy

parameters w0 and wa, Neff,
∑
mν , r, and the running of the spectral index (nrun).

We used various combinations of recent datasets including Planck 2015 temperature

and polarization data (Planck), Planck 2015 lensing data (hereafter lensing), and

also BK14, BAO, R16, PAN. The most aggressive bound on neutrino masses in

this model came from Planck+BK14+BAO:
∑
mν < 0.123 eV (95% C.L.) which is

stronger than a bound of
∑
mν < 0.158 eV (95% C.L.) obtained in ΛCDM +

∑
mν

with Planck+BAO. We have tested the stability of these results in a lower parameter

space (model: NPDDE11) where we excluded the tensor perturbations (and thus the

parameter r) and the results were consistent. The third and final model we studied

in this chapter is the NPDDE11+Alens model, where we also varied the parameter

Alens, which is the scaling of the lensing amplitude. We observed that except when

Planck lensing data was included, the Alens = 1 was discarded at more than 95%

C.L. Alens is strongly correlated with
∑
mν . Due to this, the

∑
mν bounds worsen in

this model with our best result being:
∑
mν < 0.239 eV (95% C.L.; Planck+BAO).
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Leaving aside active neutrinos, we now move on to sterile neutrinos. In chapter

4, we discuss the third paper which contributes towards this thesis [153]. In this

work, we study the thermal light (eV scale) sterile neutrino situation (3+1 scenario)

from cosmological perspective. In this paper, we have, for the first time, used the

BK14 data to constrain the effective mass (meff
s ) and energy density parameters

associated with sterile neutrinos. We considered an extended−ΛCDM cosmology:

ΛCDM + r + Neff + meff
s . Apart from BK14, we have used Planck 2015 TT+lowP,

lensing, BAO and R16. We find that BK14 data makes the constraints on meff
s

stronger to some extent by preferring higher σ8 values. The bound of meff
s < 0.46 eV

(95% C.L.) is found for the combination of TT+lowP, BAO and BK14 datasets. On

the other hand, the bound is meff
s < 0.53 eV (95% C.L.) without the BK14 data. Our

most aggressive bound of meff
s < 0.28 eV (95% C.L.) is obtained with TT+lowP, R16

and BK14, while without BK14 we get meff
s < 0.34 eV (95% C.L.). Note that similar

effect on
∑
mν was seen in previous two chapters. Inclusion of the BK14 data also

provides considerably stronger constraints to the tensor-to-scalar ratio, r but we find

negligible correlation between r and meff
s . Thus we conclude that the effect on the

neutrino mass is coming from the weak gravitational lensing information encoded

in the CMB B-mode polarization spectrum of BK14. Previous cosmological studies

have shown that fully thermalized sterile neutrinos with mass ∼ 1 eV (as favoured

by short baseline experiments) are disfavoured by cosmological data. Our analysis

indicates that such light sterile neutrinos become slightly more disfavoured with the

inclusion of BK14 data, due to tighter bounds on the effective mass of the sterile

neutrino.
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This work provides a lot of scope for future work especially in the field of neutrino

cosmology. There are a lot of opportunities in determining neutrino properties

from future data, a plethora of which will be available within the next few years:

DESI [189], Euclid [190], LSST [191], CMB-S4 [192], Simons Observatory [193],

LiteBIRD [194], PIXIE [195], CLASS [196], and so on. These future experiments

will possibly be able to provide evidence of non-zero neutrino masses, instead of just

an upper bound from current experiments, and might even say something conclusive

about neutrino mass hierarchy. Currently, as mentioned in Chapter 1, bounds on∑
mν depend greatly on the chosen prior and this is likely to change in the near

future. Improvement of measurements on CMB polarization and lensing, optical

depth to reionization, galaxy clustering, galaxy-lensing cross-correlation, SZ cluster

abundances, cosmic voids etc in the next decade holds a lot of promise in strongly

constraining the sum of neutrino masses, and in determining the neutrino mass

hierarchy (see [197] for a brief description). See [198–203] for forecasts on neutrino

mass from possible future experiments. See also [204–206] for the current status of

determination of neutrino mass hierarchy from various experiments.

Apart from neutrino masses, another interesting beyond standard model physics

that I would like to work on is non-standard neutrino interactions [207–211] which

can partially solve the H0 and σ8 tension. In the sterile sector the tension between

short baseline neutrino oscillation experiments and cosmological datasets has lead

to the development of a number ideas to reconcile the eV-scale sterile neutrinos

with cosmology. These include introduction of “secret interactions” among ster-

ile neutrinos which modifies the background potential and blocks thermalization
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[164, 171, 178, 179, 212–215], changes to the cosmological expansion rate at the

time of production of sterile neutrinos [216] or large lepton asymmetry [217], very

low reheating temperature [218] etc. The recent results from the MiniBooNE col-

laboration [162] have rekindled the interest in the sterile neutrinos. In future, I am

particularly interested in working on the case of self interactions in the active or

sterile sector.

N-body simulations including massive neutrinos [219–224] is another area that

one can work on. Massive neutrinos can greatly affect structure formation and thus

it is imperative to do all the non-linear calculations very precisely incorporating

neutrino effects, which is possible with an N-body simulation code. Massive neu-

trinos also induce a scale dependent galaxy bias, even in large scales, which is not

important for current galaxy surveys given the sensitivity of current surveys, but

will be important to be included in the analysis of data from future galaxy surveys

[225–227] for proper estimation of neutrino masses. Thus it is also an important

direction I would like to work on.

Apart from neutrinos, one can investigate the viability of various inflationary

models in light of future data, especially from the CMB B-mode polarization, whose

measurements are predicted to improve largely in the future experiments like Lite-

BIRD and PIXIE. In case of dark energy, various Dark energy parametrizations

for the Equation of State [228], or non-parametric reconstruction using principal

component analysis or Gaussian processes [229, 230], will likely be constrained with

much narrower limits with data from surveys like DESI and Euclid, and I would like

to work in this direction in the future.
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Dark energy-dark matter interactions have shown promise in solving both the

H0 and σ8 tension simultaneously [231, 232]. See also [233–238] for some other

recent studies involving dark sector interactions. In future I would like to work

in this area. Another interesting research area I am interested in is dark matter

self-interactions [239, 240] or interaction with other particle components in cosmol-

ogy, like neutrinos [241]. These interactions hold potential to solve some anomalies

in small scale structure formation, like the core vs cusp issue, and also the σ8 tension.
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