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SUMMARY

Quantum technologies have come a long way since the early days, and commercial ex-

ploitation of quantum resources is well underway. On the other hand, environments, espe-

cially in the form of thermal baths, often exert a rather destructive effect on these quantum

resources. In this thesis, we seek to understand some aspects of links between these two

sides - the first one is to consider how quantum resources get affected in presence of ther-

mal environments, and the second one is to envisage the possible role of quantum features

towards obtaining better performing machines in the thermal setting.

After a brief introduction to the dynamics of open quantum systems, we show that the

amount of magic created by converting the quantum coherence content present in a state

is itself a coherence monotone, and given a distance based magic monotone, it is pos-

sible to construct a coherence monotone. We next turn towards exploring the nature of

non-Markovian dynamics for the central spin model, whose importance, especially in the

context of NV-centre based quantum computation schemes, may hardly be overstated.

We provide the exact time local master equations in the Lindblad form, and utilize them

to investigate the nature of thermalization, or lack thereof, in these models, for infinite

temperature spin baths, as well as generalizing in the subsequent chapter to arbitrary fi-

nite temperatures. The analysis turns up a few surprising facts, among them, a resonance

condition for survival of quantum coherence in the long-time averaged state. We next

1



turn towards autonomous thermal machines, and assuming a recently proposed model of

quantum absorption refrigerators, show that there is a trade off involved in the optimizing

steady state cooling performance, and the waiting time involved in reaching the steady

state, the latter being quantified through the quantum speed limit. The existence of this

trade off prompts us to propose a new figure of merit for the performance of the refriger-

ator, and to demonstrate that injection of coherence in the initial configuration is highly

beneficial as far as the increment in the proposed figure of merit is concerned. We further

propose an autonomous thermodynamic machine for the purpose of creation of steady

quantum coherence, and magic. We show the existence of a critical temperature below

which it is possible to create magic in a single qubit at its steady configuration through this

machine. Subsequently we propose two new avenues of quantum thermometry. The first

of them is based on the use of a quantum switch, which shows marked improvement over

the analogus case without using quantum switches. The second one shows that it is pos-

sible to use a weak measurement based scheme for thermometric purposes, thus enabling

potentially fragile thermometric probes to measure temperature of a given bath. Both of

these schemes can be easily generalized to more general quantum parameter estimation

tasks. We hope the present thesis is helpful towards further clarifying the bidirectional

link between quantum resources on the one hand, and thermodynamics on the other.

2
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Chapter 1

Introduction

In the first half of the twentieth century, it became obvious that classical Newtonian

physics, based on which the scientific and industrial revolutions were largely built, was

grossly inadequate to describe phenomenon on very large as well as very small length

scales. While Einsteinian concepts of relativity took steps towards understanding the

former, the latter necessitated an even more profound way of thinking. This new the-

ory, known as quantum mechanics, has so far stood the test of every experiment until

now. Yet, as its first practitioners realised [1], the premises of quantum mechanics turned

out run counter to everyday common sense intuition. Faced with this dichotomy, most

physicists established an uncomfortable truce by adopting the mantra “shut up and calcu-

late". Decades later, inspired by Feynman [2] and Benioff [3], physicists began to wonder

whether the troublesome bugs of quantum theory may turn out to be useful features for

practical tasks. On the more foundational side, Bell’s work [4] showed that according

to quantum mechanical laws, nature turns out to be impossible to be described in a lo-

cal and realistic framework. Kochen and Specker showed that quantum mechanics is a

fundamentally contextual theory [5]. In conjunction with the new spirit of exploiting the

peculiarities of quantum mechanics for practical ends, the operational importance of such

foundational aspects of quantum theory began to be realized in the last decades of the

twentieth century. The development of quantum technologies was now afoot, and it was
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to be profoundly affected by, among others, the burgeoning fields of information theory

and computer science.

Scientists, like all human beings, explore nature, that is, they attempt to obtain infor-

mation about natural laws. Thus, one has to begin with the simple sounding question

“what is information ?" - vague and philosophical responses notwithstanding, the first

comprehensive quantitative framework to address this question had to wait until the end

of World War II and the middle of the twentieth century, when Claude Shannon pioneered

the mathematical theory of information and communication [6]. Since then, in the last

several decades, information theory has blossomed into a topic with wide ranging facets,

from a quantitative understanding of capacity of noisy communication channels [7], to

the study of computational linguistics [8], to financial analysis [9], among others. The

deep connection of information with physics was indicated even earlier than Shannon’s

entropic quantification of information, with the Szilard engine [10] version of Maxwell’s

demon thought experiment, which seeks to convert information about gas molecules to ex-

tractible work. 1960’s saw another profound discovery by Landauer [11] - that the erasure

of every bit of information costs kBT amount of energy. Since the Boltzmann constant is

10−24 JK−1, this cost was almost imperceptible on a practical level at that time. Hence no

bottleneck was encountered when computing power began to double roughly every eigh-

teen months, this phenomenon was informally described as the Moore’s law. However,

as computing elements have come down in size, Landauer’s limit is finally almost upon

us. For example, the laptop on which the present thesis is being written, is powered by 14

nm chips, which are only about two hundred times the size of the Bohr radius. Hence, the

quest for reversible computation has grown in recent years. Unitary quantum mechanics

is inherently reversible - and as has been discovered, contains several useful features to

augment information processing as well as computation. Thus, it was perhaps inevitable

that we seek to build nanoscale devices which exploit these useful features. In this chap-

ter, we shall briefly review some of these features pertinent to the present thesis before

providing a brief outline of the chapters contained in the thesis.
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1.1 Resource theoretic framework : an overview

Resources are intrinsically defined in terms of their usefulness in accomplishing certain

tasks. From this operational viewpoint, any feature which allows a certain task to be

performed which would be more difficult or impossible otherwise, is to be viewed as a

resource. If this feature is quantum mechanical in nature, the resource is called a quantum

resource. In the following subsections, we briefly describe the resources relevant to our

purpose.

1.1.1 Resources available in the quantum world

Entanglement

Perhaps the most well studied quantum resource is entanglement. This arises from the

combination of two postulates of quantum mechanics - the linearity postulate and the

tensor product postulate. Suppose there are two parties A, and B, with the corresponding

Hilbert spaces HA, and HB respectively. Hence, the combined state is an element of the

combined Hilbert spaceHA ⊗HB. If the combined pure state |ψ〉AB ∈ HAB can be written

in the product form |ψ1〉A ⊗ |ψ2〉B, where |ψ1〉A ∈ HA, and |ψ2〉B ∈ HB - then the combined

pure state is said to be separable. Else, the combined pure state is said to be entangled.

For arbitrary mixed states, a separable state is defined as a state ρAB which can be written

as a probabilistic mixture of product states, i.e., when

ρsep =
∑

i

piρ
i
A ⊗ ρi

B (1.1)

That entanglement is a peculiar quantum phenomenon was realized early on in the history

of quantum mechanics, with the famous EPR paper by Einstein, Podolsky, and Rosen [1]

in 1935. However, operational use of entangled resources towards practical communica-

tion tasks had to wait for another half a century. Bennett and Wiesner showed entangled
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states can be a resource for dense coding [12]. That is, if two parties share an EPR pair,

then one of the parties can send two bits of classical information by sending only a sin-

gle physical qubit to the other party. In what is perhaps the most famous example of a

task with genuinely quantum mechanical communicational advantage, Bennett and co-

workers showed [13] that it is possible to send all the information about a qubit to a blank

qubit at a distant location without sending the qubit physically, provided the sender and

the receiver share an EPR pair.

That there was a link between entanglement and quantum non-locality, as described by

CHSH-Bell type inequalities, was realized immediately. Gisin et al proved that every

pure bipartite entangled state violated some judiciously constructed Bell inequality. For

bipartite pure states, it was realized that there was an unique quantifier of quantum entan-

glement, known as entanglement entropy, and defined as the local entropy of any of the

subsytem’s states, that suffices to completely describe the entanglement content of a pure

quantum state, which is given by

E(|ψAB〉) = S (ρA) = S (ρB). (1.2)

However, the study of mixed state entanglement turns out to be lot more subtle than its

pure state counterpart. A particularly important realization was that there existed mixed

quantum states whose entanglement can not be distilled into a pure EPR pair. These states,

dubbed bound entnagled states, have long evaded easy and general characterization. For

example, it was long believed that bound entangled states do not violate Bell-type inequal-

ities, as per the Peres conjecture [14], but this has been disproved recently [15]. Mixed

states also do not admit a single entanglement measure that completely quantifies the en-

tanglement. Hence there have been several entanglement measures proposed in the recent

years. Some of the measures are directly motivated from operational tasks, for example,

entanglement of formation [16], entanglement cost [17], or distillable entanglement [18];

while other measures like negativity [19], or squashed entanglement [20] etc. are either
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easier to compute or satisfy certain nice mathematical properties.

From an operational standpoint, beyond the canonical examples like dense coding, tele-

portation, or remote state preparation [21] in the field of quantum commmunication, en-

tanglement turns out to be useful in several other areas as well. For example, entangled

probes can beat the shot noise 1√
N

scaling for metrological tasks, and offer much better

precision as the error scales as 1
N

, which is the so called Heisenberg scaling . In addition,

entanglement has also asserted as a resource for tasks like state discrminination [22], or

speeding up quantum evolution [23]. Apart from the operational efficacy of entanglement

in the above schemes, there is a vast and growing literature on entanglement in realistic

many body quantum systems, for example, the entanglement, or more precisely its first

derivative is an important tool to witness quantum phase transition in transverse Ising type

spin models.

Another facet of entanglement theory is the study of multipartite entanglement, which

unfortunately turns out to be a subtler and more complicated than bipartite entanglement.

For example, there exists inequivalent classes of genuinely multipartite entangled states,

which are impossible to transform into each other by local operations and classical com-

munications (LOCC), even in a probabilistic way (stochastic LOCC or SLOCC). For three

parties, there are two such inequivalence classes [24] - namely the GHZ class and the W

class. Even worse, for as little as four parties, there are an infinite number of such SLOCC

inequivalent classes[25]. It is easy to see that separable states are of vanishing volume in

the state space. Thus, it is natural to wonder why entanglement is so difficult to observe

in practice. The reason for this goes back to another fundamental property of entangle-

ment - viz, the monogamy property. The monogamy property, roughly stated, asserts that

the more a party is entangled with another party, the less the entanglement between any

of these parties with yet another. This explains why long range quantum entanglement

among multi-component bodies is so hard to observe.

As far as genuinely quantum correlations go, entanglement is not the end of the story as
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newer quantum correlation measures like quantum discord [26, 27, 28], quantum work

deficit [29], local quantum uncertainty [30] and yet many others have been proposed.

Among them, quantum discord is probably the most studied correlation measure and

claims of quantum discord being an useful resource in computational tasks [31] have been

put forward. However, the chief difficulty with constructing formal resource theories for

these quantities is the lack of convexity in the free state structure. That is, classical mixture

of free quantum states in the relevant context may have non-zero resource value. From

a practical point of view, these correlation measures generally do not satisfy monogamy

relations [32], so they are not useful resources for several tasks where monogamy is a

key ingredient, for example in cryptographic tasks. In the present thesis, we shall not be

concerned with these measures of quantum correlation.

Coherence

The one postulate of quantum mechanics that sets it apart from its classical counterpart

is the superposition principle. A state can simultaneously be in a superposition of two or

more basis states. However, a formal quantification of the superposition content of a state

had to wait until relatively recently. The concept of quantum coherence [33] is inherently

basis dependent. A state of the form 1√
2

(|0〉 + |1〉) may be considered coherent from the

perspective of a computational basis, but not the perspective of the complementary {|±〉}

basis. Hence, in contrast to the quantum correlation measures, we need to fix a basis {i}

when treating quantum coherence.

The states which have no quantum coherence in such a basis are denoted as incoherent

states, and defined as

ρincoherent =
∑

i

αi|i〉〈i| (1.3)

The states which are not incoherent states, turn out to be useful in their own right. For

example, these states are useful resources for phase discrimination tasks [34, 35, 36], or
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Figure 1.1: Pictorial representation of free states in resource theories of magic and coher-

ence in the qubit case. The stabilizer polytope is an octahedron within the Bloch sphere.

Any qubit state represented by a point outside the octahedron is a magic state. All inco-

herent states in the computational basis lie on the yellow line.

creation of other quantum resources [37, 28, 38, 39]. In a slightly altered formalism of

quantification of asymmetry, thermodynamic work extraction is also improved with the

presence of off-diagonal states [40, 41].

Magic

One of the principle scientific developments in last few decades has been the emergence

of the theory of quantum computation. Quantum computers are touted to be vastly more

powerful than their classical counterparts. For example, they are supposed to be able to

run algorithms to factorize non-prime numbers [42], or perform search in a database [43],

with a smaller time complexity than classical algorithms. Resources like quantum entan-

glement and quantum coherence have at various points been shown to lead to quantum

advantage vis-a-vis classical computers. For example, to implement Shor’s algorithm,

one needs a large amount of entanglement [44], whereas, to implement Grover’s algo-

rithm, one needs a small amount of entanglement [45, 46]. Similarly, it has recently been

demonstrated that in order to implement the Deutsch-Jozsa algorithm [47], one requires
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coherence as a resource [48]. Quantum coherence has also been related to the success

probability of the Grover search algorithm [49, 50]. Thus, the important question arises -

what kind of genuine quantum resources do quantum computers exploit ? To answer this

question - it is first useful to note that fault tolerance through error correction schemes

have to be built in to any potential quantum computer, since they are delicate to both

incoherent as well as coherent noise. These fault tolerance schemes often use stabilizer

gates, which is a subset of all possible unitary transformations, as their building blocks

[51]. However, by the Gottesman-Knill theorem [52] this stabilizer circuit architecture

turns out to be efficiently, that is, with at most a polynomial overhead, simulable, us-

ing probabilistic classical computers. Thus, in addition to stabilizer gates, one needs

other gates to obtain genuine quantum computing advantages. In the magic state injec-

tion paradigm of quantum computing [53], this is done by using some auxiliary states in

addition to the input, and global stabilizer operations. If these auxiliary states thus enable

beyond-classical computational advantage, then they are called magic states. Utilising

these quantum states, which lie outside of the stabilizer polytope enable the implementa-

tion of gates which are not classically simulable, e.g., the T-gate. A resource theory for

such magic states was recently proposed [54] and is a topic of active interest [55, 56].

The pure free states in this resource theory are the ones reachable via Clifford unitaries

acting on any member of the computational basis states. The total family of free states,

denoted as stabilizer states S, consists of the convex hull formed by the pure free states.

The free operations consist of Clifford unitaries, measurement in the computational basis,

composition with other stabilizer states and partial trace, as well as these operations con-

ditioned on measurement results. Magic monotones are relatively less studied until now,

although some monotones have been found ranging from distance based monotones [54]

to robustness type monotones [57] to monotones inspired from the Wigner function rep-

resentation of states in discrete phase space [54]. The magic states also turn out to have an

intimate connection to another foundational aspect of quantum mechanics - namely, the

contextuality of the theory[58], and inter-alia, linked to the continuous variable resource
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of non-Gaussianity.

Memory effects and non-Markovianity

The above resources were all properties of a state, now we shall discuss about a resource

that manifests itself in dynamical processes. For vast majority of stochastic processes,

at any particular time of the dynamics, the resultant outcome generically depends on

the previous history of the dynamics, that is, the dynamics is predicated on its previous

memory. For quantum processes, this type of generic dynamics is harder to theoretically

investigate than memoryless, i.e., Markovian processes, because of the generic build up

of quantum correlations between the system and the environment during the run time

of the dynamical process. Nonetheless, non-Markovian processes are now shown to be

important from an operational point of view in quantum thermodynamics [59], metrology

[60], or entanglement preservation [61].

Unlike classical stochastic processes, there is a lively debate on what constitutes Marko-

vianity in quantum processes. At one end of the spectrum, one concentrates on the CP-

divisibility of the dynamical maps into arbitrary small blocks. One may look for witnesses

of violation of completely positive evolution, for example via trace distance between ar-

bitray pairs of input states [62, 63], or via the increase of coherence [64]. This spirit is

captured in the so called Rivas-Huelga-Plenio measure of non-Markovianity which cap-

tures the deviation of the Choi matrix from positivity during the entire duration of the

dynamics [65, 66]. However, other attempts of defining non-Markovianity in terms of the

so called process tensor formalism are also in the literature [67, 68] - according to which,

even CP divisible dynamical maps can turn out to be non-Markovian.
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Superposition of quantum processes

In one of the previous sections, we discussed quantum coherence, which arises due to the

superposition between distinct quantum states that form a basis. In the context of quantum

dynamics, this leaves us with the idea of superposing quantum evolutions as well [69] via

a control. The basic idea is simple - if the control state is in one of the basis states, the

dynamics proceeds via one pathway. Now, if the control state is in superposition of these

basis states, the dynamics is coherently controlled.

This basic idea turned out to be extremely fruitful for quantum walks, where the walker’s

dynamics is predicated on the behavior of the quantum coin. Quantum walks have been

observed to enable greater, i.e., ballistic, dissipation, over and above classical random

walks. In the recent years, a related scheme, known as the quantum switch, has seen

several interesting developments [70, 71, 72], as well as experimental verifications [73,

74]. For the simplest case of a quantum switch, there are two pathways, each which have

two quantum processes in common, but the order of these processes are reversed in one

of the pathways. The pathway taken by a quantum particle depends on a control qubit.

The quantum switch turns out to be useful in several operational aspects. The presence

of a quantum switch enables one to send classical information through an otherwise zero

capacity channel [75, 72, 76], confers advantage over other quantum as well as classical

algorithms in a black box unitary guessing game [77], gives advantage in quantum tele-

portation with noisy singlets [78], and as we shall show in one of the latter chapters -

provides metrological advantage.

One must mention at this point that there is an ongoing debate about the nature of the

quantum switch - whether the indefinite causal order of quantum operations [79, 73] is

really the resource for the operational advantage gained through the use of a quantum

switch, or whether it is a manifestation of coherently controlled quantum processes with

no recourse to indefinite causal order being necessary [80, 81] to obtain the same effects.
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However, this is beyond the scope of the present thesis.

1.1.2 Generic structure of convex quantum resource theories

It may give one the impression that the study of quantum resources described so far, along

with other possible quantum resources, are disparate disciplines, with little in common.

However, in the recent years, a resource theoretic formulation has been developed, which

seeks to underline the common traits to quantum resources in a mathematically consis-

tent fashion [82]. The advantage of a general resource theoretic formalism over studying

individual resources separately is twofold - first, it allows one to organize and efficiently

observe the nature of individual quantum resources, and secondly, any result that holds

true in this generic formalism is also true for any other resource hitherto not discovered,

provided it follows the constraints incorporated in the original resource theoretic frame-

work.

Following Brandao and Gour’s seminal paper [83], we outline the following features of

a genetic convex resource theory. The convexity stems from the notion that a genuinely

quantum resource can not be created through classical mixing alone.

1. There is a set of states F , whose elements are called free states, that is, states which

do not have a given resource.

2. There is a set of free operations ΛF , which preserves the set of free states F , for

a given resource. Other operations, which may create quantum resources from a

free states, are assumed to be expensive. The important point to notice is that not

all such operations may turn out to actually be operationally easy to implement.

Hence, a realistic resource theory will have to consider subsets of the above set,

which are easily implementable in practice.

The typical questions one tries to address, given the structure of resource theories are the
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following..

1. How to quantify the amount of resource possessed by a state ?

2. Whether a state ρ1 is convertible to another state ρ2 under the free operations ?

3. How to interconvert quantum resources ?

To this end, Brandao and Gour [83] has laid down five basic postulates that a reasonable

quantum resource theory might be expected to follow.

1. Free states are closed under tensor product. That is, if σ1, and σ2 both belong to

free states with respective dimensions d1, and d2, then σ1 ⊗ σ2 is again a free state

with the dimension d1d2.

2. Free states are closed under partial trace. That is, if ρAB for a bipartite AB system is a

free state, then ρA, and ρB are also free states, albeit in requisite reduced dimension.

3. The set of free states F is closed under permutation of subsystems.

4. The set of free states F is a closed one.

5. The set of free states F is a convex set. That is, if σ1, and σ2 are free states, then

any convex mixture µσ1 + (1 − µ)σ2 ∈ F , where µ ∈ [0, 1]. This ensures that the

resource in question is a genuinely quantum mechanical one in the sense that it is

not possible to create resources through classical mixing alone.

The final property is not satisfied by so called non-convex quantum resources like discord,

or non-Gaussianity. In the table 1.1.2, we summarize the structure of the resource theories

of coherence, entanglement, and magic.

A point should be noted here. Brandao and Gour assumes that the free operations are any

operations that preserve the set of free states F . Under this assumption, they go on to
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Resource

theory
Free states Free operation

Entanglement
Separable states σ =
∑

i piρ
A
i ⊗ ρB

i

Local operations and Classical Commu-

nication (LOCC)

Coherence
diagonal incoherent states

σ =
∑

i ci|i〉〈i| in the basis {|i〉}

Incoherent operation

• If σ ∈ I, ΛIC[σ] ∈ I

• If σ ∈ I then for each Kraus chan-

nel {Ki} corresponding to incoher-

ent operation, KiσK
†
i
∈ I

Magic

States inside polytope acces-

sible via Clifford unitary rota-

tion of computational basis

Stabilizer operation

• Clifford unitary

• Measurement in computational ba-

sis

• Partial trace

• Composition with other stabilizer

states

Table 1.1: Structure of three popular quantum resource theories.
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prove that the resource theories satisying the postulates above are reversible. However,

from an operational standpoint, this result does not hold in general if one restricts the set

of free operations to operations which are actually easy to implement. For example, in en-

tanglement theory, such operationally important free operations are the LOCC protocols.

However, under LOCC, it is possible to show the existence of irreversibility in the form

of bound entangled states, which require non-zero number of singlets to be assembled,

yet can not be distilled with LOCC protocols.

1.1.3 Effect of environment on quantum resources

Quantum systems rarely exist in isolation. Even if a certain state contains some degree of

a quantum resource, it is continuously subject to interaction with an environment, which

most often is a thermal bath at a certain temperature. Therefore, from an experimental

point of view, it is important to investigate the effect that the presence of the environ-

ment has on the resource content of the original system. As it often turns out, ubiquitous

thermal environments often lead to decoherence, and consequently may partially or fully

destroy quantum features of a state, and are detrimental to the resource content of the

original quantum state. For everyday macroscopic objects, the decoherence time scale is

extremely small [84], therefore quantum effects are not apparent in our daily lives. Thus,

in order to make the most of quantum resources, one has to design a workaround. One of

the possible ways is the decoherence-free subspace approach [85], which relies on finding

a (often small) subspace of the system, which is effectively decoupled from the environ-

ment. Thus, any quantum features present in that subspace may be preserved. Another

strategy, known as dynamic decoupling [86, 87], relies on periodically running large con-

trol pulses through a system to ensure that the effective coupling between the system and

the environment vanishes. However, in this thesis, we shall not be concerned with these

methods of suppressing decoherence.
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1.2 Outline of Thesis

In this section, we briefly outline the plan of the thesis. In this chapter, we have provided

a brief introduction to various resources pertaining to quantum states and dynamics. In

Chapter 2, we review some of the basic aspects of the theory of the dynamics of quan-

tum open systems. Chapter 3 concerns itself with the demonstration of the connection

between resource theories of quantum coherence and magic. Chapter 4 contains an exact

treatment of the non-Markovian central spin model for infinite bath temperatures, corre-

sponding master equations, and the quantitative formulation of non-Markovianity. Chap-

ter 5 extends the treatment to arbitrary finite temperature central spin baths. In chapter 6,

we investigate the steady state performance of a popular model of quantum autonomous

refrigerators vis-a-vis the minimal time taken to reach the state through the lens of the

quantum speed limit. Chapter 7 is dedicated to the proposal and detailed investigation of

a protocol for the generation of steady quantum coherence and magic. We discuss how

superposition of temporal order may bolster the precision of single qubit thermometry in

chapter 8. Chapter 9 contains another proposal for quantum thermometry utilizing a weak

measurement scheme. We conclude by sketching some possible directions for future work

in Chapter 10.

1.3 Summary

• Different operational tasks call for different features of quantum mechanics.

• Operationally useful features of quantum mechanics can be considered as resources.

• It is possible to construct generic resource theoretic formulations which bring dif-

ferent resources under a common umbrella.

• Quantum entanglement is the most well known resource. Especially quantum en-

hanced communication schemes generally owe their advantage to the presence of
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entanglement.

• Quantum coherence is a basis-dependent resource, which seeks to quantify the su-

perposition content in quantum states.

• Magic states are resources for stabilizer circuit based quantum computation.

• Superposition of quantum processes may facilitate new tasks impossible with the

constituent processes considered in isolation.

• Memory effects in the dynamics of open quantum systems, formalized under the

notion of non-Markovianity, are operational resources.

• Thermal environments are generally detrimental to the resource content of pure

quantum states.
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Chapter 2

A primer on open quantum systems

In the previous chapter, we have briefly discussed about various quantum resources at our

disposal. In this chapter, we review some of the basic theory pertaining to the dynamics

of open quantum systems, that is, quantum systems in contact with an environment, about

whose detailed dynamics we are not interested in, and which is assumed to be unaffected

by the presence of the system by virtue of being significantly larger than the system.

The familiar Schroedinger equation, or the analogus Heisenberg equation of motion, de-

scribes the dynamical evolution of a closed quantum system. However, it is practically

impossible to obtain fully isolated quantum systems, and in cases where the exact dy-

namics of the environment is either unknown or of very little interest, we must obtain the

dynamical equations corresponding to the system state, represented by the density matrix

ρS alone. As we shall see in this chapter, there are several ways of tackling the problem.

2.1 Kraus operator formalism

The simplest possible description of any dynamics is the following - what is the state of

the system at the end of a certain specified time interval ? Note that this question excludes

the additional demand of formulating a dynamical differential equation. For example, for
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closed quantum systems, we know that the evolution is a norm-preserving one, whicb

is endowed with its physical meaning via the Born rule, that is, in a closed system, ipso

facto, one must find any particle somewhere in the initially defined parameter space. Thus

the evolution is unitary in that case, and any initial quantum state ρ(0), and final quantum

state ρ(t) is connected through an unitary U(t, 0), that is,

ρ(t) = U(t, 0)ρ(0)U(t, 0)† (2.1)

For open systems, non-conservation of particles in the form of dissipation or absorption

leads to a departure from unitarity, and the dynamics is no longer in the simple form

above. However, the Kraus operator formalism, originally developed by Sudarshan [88],

takes advantage of the following dictum, known as the Stinespring dilation theorem.

Every open quantum evolution on the state space of a system S , which forms a

Hilbert space HS , may be extended to an unitary evolution on the joint Hilbert

spaceH ⊗HA, where A is some auxiliary system.

Following the Stinespring dilation theorem, it is clear that corresponding to every dynam-

ical map Λ from the initial state ρS (0) to the final state ρS (t) for a system S , there exists

a joint unitary US A, whose action, followed by forgetting, that is, tracing out, of the aux-

iliary system A, leads to the final state ρ(t), i.e., the dynamical map for the system alone

follows

ρS (t) −→ Λ(ρS (0)) = ρS (t) = trA US A (ρS (0) ⊗ |0〉A〈0|) U
†
S A
. (2.2)

Note that a highly non-trivial assumption has been made here, that the initial system-

auxiliary joint state is a product state. Clearly, this is a limiting assumption, yet, this

assumption ensures that the dynamics turns out to be completely positive, that is adding
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any number of further trivial auxiliaries to this dynamics does not change the fact that the

density matrix is always positive semi-definite. On the contrary, initially entangled joint

states may engender dynamics that is not, in fact, guaranteed to be complete positivity

preserving, as observed by Pechukas [89]. While there is a debate in the literature whether

non-CP maps, when restricted to a certain sector of the parameter space, may turn out to

be physically relevant, it is beyond the scope of the present elementary discussion. We

refer the interested reader to Shaji and Sudarshan’s relevant work [90] in this context. We

shall further assume that all the Hilbert spaces in question are finite dimensional.

Now, let us assume a basis {|ai〉} pertaining to the auxiliary A. This allows the equation

above to be written as

ρS (t) =
∑

l

〈ai|US A (ρS (0) ⊗ |0〉A〈0|) U
†
S A
|ai〉 =

∑

i

KiρS (0)K†
i
. (2.3)

The above is known as the Kraus operator representation of the dynamical map, and

Ki = 〈ai|US A|0〉, are called the corresponding Kraus operators. Note that the choice of

different bases for the environment yields different Kraus operators. Hence the Kraus

operator representation is not unique. It is easy to check the following property of the

Kraus operators, by starting from the fact that tr(ρS (0)) = tr(ρS (t)) = 1.

∑

i

K
†
i
Ki = I (2.4)

2.1.1 Examples of quantum channels

In this subsection, we list some of the most popular quantum channels acting on qubits,

and their possible Kraus operator representations in tabular form. It is to be noted that all

the Kraus operators below have been expressed in the computational basis.

Let us now ask the following question - what is the most general form of a quantum
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Channel
Kraus Operator Represen-

tation
Physical Interpretation

Bit-flip

K0 =
√

1 − p

(

1 0

0 1

)

,K1 =

√
p

(

0 1

1 0

)

Flips quanutm states |0〉 ↔ |1〉 with prob-

ability p.

Phase-flip

K0 =
√

1 − p

(

1 0

0 1

)

,K1 =

√
p

(

1 0

0 −1

)

Flips the polar phase of the quantum

states θ ↔ −θ with probability p.

Bit-Phase

flip

K0 =
√

1 − p

(

1 0

0 1

)

,K1 =

√
p

(

0 −i

i 0

)

A combination of the bit flip and the

phase flip channel acting in sequence.

Amplitude

damping

K0 =

(

1 0

0
√

1 − γ

)

,K1 =

(

0
√
γ

0 0

)

A model of thermalization for zero tem-

perature environments where the proba-

bility of transition from the excited state

to the ground state is γ.

Generalized

amplitude

damping

K0 =
√

p

(

1 0

0
√

1 − γ

)

,K1 =

√
p

(

0
√
γ

0 0

)

,K2 =

√

1 − p

(√

1 − γ 0

0 1

)

,K3 =

√

1 − p

(

0 0√
γ 0

)

,

A model of thermalization for finite tem-

perature environments where the proba-

bility of transition from the excited state

to the ground state is γ, and the even-

tual corresponding temperature kBT =

ln(p/1 − p).

Depolarizing

K0 =

√

1 − 3p

4

(

1 0

0 1

)

,K1 =

√

p

4

(

0 1

1 0

)

,K2 =

√

p

4

(

0 −i

i 0

)

,K3 =

√

p

4

(

1 0

0 1

)

,

A model of mixing with a maximally

mixed state with probability p.

Table 2.1: Some well-known qubit channels
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channel ? To answer this question, let us first remember the following two properties of a

density matrix - firstly, any quantum density matrix should be positive semi-definite, and

secondly, it should have a trace equal to unity. Hence, it is easy to deduce the following

two properties of a legitimate quantum channel Λ, namely

1. Λ(ρ) ≥ 0∀ρ (Positivity)

2. tr (Λ(ρ)) = tr ρ = 1 (Trace-Preserving).

However, the above list does not exhaust the possible limitations on a dynamical map.

There may exist dynamical maps which are positive, yet when the system is coupled to

some ancilla, and prepared without loss of generality in a state |ψ〉, is considered, even

when acted upon by a trivial identity channel, the resulting map Λ ⊗ I may turn out to

be non-positive for some ancilla. For example, let us considet the transposition map, that

is, Λ(ρ) = ρT . Since the spectrum of any Hermitian operator remains invariant under

transposition, it is clear that the map is a positive one. However, if one applies the map

Λ⊗I to a two qubit entangled state, say, 1√
2

(|00〉 + |11〉), the resulting matrix is not positive

semi-definite, and consequently not a legitimate density matrix.

2.2 Dynamics of noisy quantum systems : quantum mas-

ter equations

Sometimes, it is not sufficient to know about the output state corresponding to a specific

quantum channel, given the input. In particular, if one is interested in the continuous time

evolution of the system, the relevant differential equation (or integro-differential equa-

tion) for the evolution must be found. Such an equation is often called a master equation.

Note that in principle, the set of Kraus operators at all times contains all possible infor-

mation about the system. However, in practice, it is often easier to work with master
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equations. Unlike Kraus operators, an arbitrary master equation, for example one in the

Bloch-Redfield form [91], is not guaranteed to preserve positivity, let alone complete

positivity, throughout the dynamical evolution. However, for a certain restricted class of

master equations, in the so called Lindblad form [92, 93], complete positivity is always

guaranteed, and thus this form has become the workhorse of studying open quantum dy-

namics.

2.2.1 Lindblad master equation

The first restriction required, in addition to the lack of initial quantum correlations be-

tween the system and environment, for the general derivation of a Lindblad master equa-

tion is the so called Born approximation, which assumes that the strength of coupling be-

tween the system and the environment is weak throughout the duration of the dynamics.

The second restriction is the Markov approximation, which dictates that the correlation

times corresponding to the dynamics is so small that the dynamics is effectively memo-

ryless. The third restriction is the so called Secular approximation, which mandates that

one should neglect fast oscillating terms. With these restrictions, one can write down a

master equation in the Lindblad form in the following way.

dρS

dt
= ∂tρS −

i

~
[HS , ρ] +

∑

j

L j

(

a jρS a
†
j
− 1

2
{a†

j
a j, ρS }

)

(2.5)

Where HS is the Hamiltonian acting on the system, {·} is the anti-commutator, and a j, and

a
†
j

are the relevant lowering and raising operators respectively, and {L j} are corresponding

Lindblad coefficients which characterize the strength of various processes characterizing

energy absorption or leaking from the system.
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2.3 Memory effects and Markovianity

The Markovian approximation is a drastic assumption. Even in the case of classical

stochastic processes, memoryless processes are vastly outnumbered by processes with

some form of memory, and non-Markovian processes are the rule, not the exception. In

the quantum case, as discussed in the previous chapter, there are lots of approaches to-

wards defining non-Markovianity. For the sake of brevity, we shall only discuss one of the

most popular approaches, based on CP-divisibility of the dynamics. For another approach

based on the process tensor formalism, the interested reader may consult Pollock et al’s

work [94].

A dynamical map Λ running from t = ti to t = t f is said to be Markovian when

it can be chopped up in infinitesimal CP maps, i.e., Λti,t f
≡ Λt f−δt,t f

◦ ...Λt,t+δt ◦

Λt−δt,t... ◦ Λti,ti+δt.

Any process which does not satisfy the above mentioned property is said to be non-

Markovian. Physically, such Markovian processes mandate that the flow of information is

always from the system towards environment, and consequently, any non-monotonic be-

havior unseen for CP dynamics indicates the backflow of information, thus indicating the

prevalence of a non-Markovian dynamics. Quantifying non-Markovianity of any arbitrary

given dynamics is discussed in the next subsection.

2.3.1 Measures of non-Markovianity

Like other quantum resources, it is possible to quantify non-Markovianity using witness

operators. Below we list a few of those witnesses in a tabular form. For a more detailed

list, we refer to Ref. [95].

However, one of the most popular measures of non-Markovianity in the CP divisibility
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Witness Physical Origin

Breuer-Laine-Piilo

measure[63]

For a quantum system undergoing CPTP evolution, the trace

distance between any two initial density matrices mono-

tonically decreases with time. Hence, if the trace distance

between two chosen initial points grows with time for cer-

tain temporal regions of the dynamics, the dynamics is non-

Markovian.

Coherence based witness

[64]

A quantum system undergoing incoherent CPTP evolution

should always lose coherence. Any intermediate gain in co-

herence is thus a signifier of non-Markovian dynamics.

Irreversible Entropy Pro-

duction Rate

Spohn’s theorem asserts that a system in a thermal environ-

ment must always have a positive rate of production of irre-

versible entropy. Any signature of temporary decrease in ir-

reversible dynamics is thus a signature of non-Markovianity

Data-processing viola-

tion [96]

The quantum data processing inequality asserts that the mu-

tual information between two systems undergoing a CP

evolution decreases monotonically. Hence the violation of

the data processing inequality in intermediate times indi-

cates the breakdown of CP, and consequent onset of non-

Markovianity.

Purity

For a qubit system going through a Lindbladian CP evo-

lution, the purity of the state always goes down monoton-

ically. Hence, any temporary increase in purity heralds a

non-Markovian dynamics.

Table 2.2: Different Witness based measures for non-Markovianity.
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sense is the so called Rivas-Huelga-Plenio (RHP) measure, which seeks to quantify the

amount of CP violation in the following way. A complete positive and trace preserving

(CPTP) dynamical map Λ(t, 0) is divisible, or not based upon whether [65]

q(t) = lim
ǫ→0+

|| (Id ⊗ Λ(t + ǫ, t))Φ+|| − 1

ǫ
, (2.6)

is zero or greater than zero, respectively. Here, d is the dimension of the Hilbert space

and ||.|| denotes for trace norm and Φ+ = |Φ+〉〈Φ+| is the d × d dimensional maximally

entangled state. By computing q(t) from above, the RHP measure of non-Markovianity

can be defined [97, 65] based on the positive definiteness of q(t) as

G =
η

η + 1
, (2.7)

where η =
∫ ∞

0
q(t)dt.

2.4 Connection with thermodynamics

One of the most ubiquitious kind of environments one encounters is the thermal envi-

ronment. For such thermal environments, there are a few different ways of proceeding.

The first approach, due to classical thermodynamics, is to concern ourselves with only

macroscopic emergent parameters like pressure, volume, etc. This approach, within its

limitations, has been supremely successful in terms of practical utility. However, this ap-

proach largely does not distinguish between microscopic models of underlying physics,

notwithstanding the indistinguishability-motivated corrections. From the perspective of

quantum open systems, it is remarkable that with a suitably chosen measure of ergotropy,

it is possible to prove that only the thermal state is completely passive, that is, we are

unable to extract work out of it even when infinite number of copies are available. The

critical caveat one has to keep in mind is that many of results for thermodynamics in the
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quantum regime depend on how one chooses to quantify work in terms of microscopic

parameters. One of the rather popular choices is to ascribe the change of average energy

owing to the change in Hamiltonian levels as the rate of work Ẇ, and that owing to the

change in level occupancies as the rate of heat absorption or dissipation Q̇, that is, for a

Hamiltonian H,

Ẇ = tr ρḢ, Q̇ = tr ρ̇H. (2.8)

However, we shall not dwell on the appropriate definition of work and heat in the quan-

tum context, and move on to discussing quantum thermal machines. These machines

are, by design, supposed to consist of small quantum systems, yet function in much the

same way as macroscopic thermal machines. The motivations come from numerous areas

of research, from algorithmic cooling protocols to the possibility of creating molecular

motors to biological considerations. Theoretical as well as experimental study of quan-

tum thermodynamic machines have attracted a great deal of interest in recent times. One

key ingredient for analysis of performance of these machines is the master equation of

the dynamics pertaining to the setup where a single or few quantum systems are coupled

with their heat baths in general. For example, in recently proposed quantum absorption

refrigerators [98], three qubits interact among themselves while they are coupled to their

respective baths. The Lindblad operators corresponding to the qubits interacting with heat

baths become crucial to the study the performance of the thermal machines in both steady

and transient regimes [99, 100, 101, 102, 103, 104]. Quantum thermal transistors [105]

whose performance is analogus to the usual transistors have also been explored . Thus,

we conclude that the master equation based approach outlined in this chapter provides

a whole host of tools in hithertho less explored regimes which might have far-reaching

impacts to enhance the performance of quantum thermodynamic machines.
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2.5 Summary

• Evolution of open quantum systems is non-unitary and expressible in the Kraus

operator-sum form

ρ −→
∑

i

KiρK
†
i

(2.9)

• Although severely limited by approximations, the Lindblad form of quantum master

equations is guaranteed to preserve complete positivity of the dynamics.

• Non-Markovianity in quantum dynamical systems may be defined from the CP-

divisibility perspective, and quantified using various witnesses.

• Master equation based approaches are crucial to quantitatively analyse the perfor-

mance of nascent quantum thermodynamic machines.
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Chapter 3

Linking coherence with magic

1

We have introduced various quantum resources in the previous chapter, including the

notions of quantum coherence and magic. The resource theories of coherence and magic

states, as reviewed, seem quite disjoint. But are they really so ? This is the question we

seek to address. In this chapter, we provide a link between these two resource theories.

Firstly we show, using contractive distance based monotones, that the magic generated

in a quantum state through incoherent operations [33] is upper bounded by the amount

of coherence initially in the state. Subsequently, we prove that the maximum amount

of magic generated through such incoherent operations can, by itself, be shown to be a

coherence monotone. Next, we turn towards obtaining a full coherence monotone based

on the discrete Wigner function representation [106, 107, 108] of quantum states, the

latter being useful for providing a calculable measure of magic. Next, we propose the

counterparts to various types of incoherent operations in the resource theory of magic

states. We subsequently move on to revealing the link between magic and other quantum

resources like quantum coherence and entanglement, in small quantum systems.

1This chapter is based on the paper "Coherence makes quantum systems magical", published in Journal

of Physics A : Mathematical and Theoretical, 51, 414006 (2018).
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3.1 Coherence Quantifiers through magic monotones

In this section, we demonstrate how the presence or lack of quantum coherence in systems

constrains the amount of magic in the system. In doing so, we reveal that quantum coher-

ence can be quantified by the maximum amount of magic generated through incoherent

operation on arbitrary quantum states. In subsequent work, unless otherwise stated, the

basis with respect to which quantum coherence is defined, is the computational basis and

the pure stabilizer states are the ones obtainable through Clifford unitary rotation of one

of the basis elements, say |0〉, of the computational basis. We now state our first result.

For any distance based coherence quantifier CD and corresponding magic quan-

tifier MD, the amount of magic generated through incoherent operations ΛIC on

a quantum state is upper bounded by the amount of coherence originally present

in that state, that is,

MD

[

ΛIC(ρ)
] ≤ CD

[

ρ
]

. (3.1)

The proof of this lemma is simple. The left hand side equals, by definition, minµ∈S D[ΛIC(ρ), µ] ≤

minσ∈I D[ΛIC(ρ), σ] = CD[ΛIC(ρ)] ≤ CD[ρ], where we used the fact that any incoherent

state in the computational basis is a stabilizer state.

Thus, the amount of magic created through incoherent operations in a quantum system is

upper bounded by the amount of quantum coherence originally present. However, we can

prove an even stronger result - namely, the amount of magic thus created, quantifies, in

itself, the amount of quantum coherence originally present in the system. To this end, we

propose the following set of coherence monotones corresponding to every distance based

magic monotone

CM

[

ρ
]

= sup
ΛIC

M
[

ΛIC(ρ)
]

(3.2)

Now, we shall prove that the proposed quantity above is indeed a coherence monotone.
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It is trivial to see that any incoherent state with respect to the adequately chosen basis

is a stabilizer state. Monotonicity under CPTP maps is guaranteed for any contractive

distance based measure. Therefore, we only present the proof for strong monotonicity

under selective measurements. The proof is identical in spirit to the one presented in Ref.

[37] for entanglement.

If σi =
KiρK

†
i

tr
[

KiρK
†
i

] and pi = tr
[

KiρK
†
i

]

where {Ki} are the Kraus operators correspond-

ing to some incoherent operation, then

∑

i

piCM[σi] ≤ CM[ρ]. (3.3)

Proof- Let us assume that the condition above is false. Then there will exist at least one

set of incoherent operations {Λi} for which

∑

i

piM[Λiσi] > CM[ρ]. (3.4)

Note that each Λi here is individually an incoherent operation and should not be confused

as being merely one Kraus element of a quantum operation. Now, since magic monotones

are non-increasing on average under measurements in the computational basis ,

M















∑

i

piρi ⊗ |i〉〈i|














≥
∑

i

piM[ρi] (3.5)

⇒ M















∑

i

piΛiσi ⊗ |i〉〈i|














> CM[ρ] (3.6)

⇒ M















∑

i

Λi

(

KiρK
†
i

)

⊗ |i〉〈i|














> CM[ρ]. (3.7)

Where the last step follows from the definition of σi = KiρK
†
i
/pi. Now, one can write a

bipartite incoherent operation Λ̃ such that the Kraus operators for Λ̃ are written as Mi j =
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Li j(Ki) ⊗ Ui, where Li j are the Kraus operators corresponding to the incoherent operation

Λi and Ui is the incoherent unitary
∑

j |mod(i+ j, dim (ancilla))〉〈 j|. For this operation, the

LHS =

M
[

Λ̃ (ρ ⊗ |0〉〈0|)
]

> CM[ρ] = CM[ρ ⊗ |0〉〈0|]. (3.8)

This is in contradiction with the result (3.1) proved earlier , thus completing the proof.

3.1.1 Coherence monotone inspired from another magic monotone

Historically, phase space methods in quantum optics and continuous variable quantum

information theory, have been very successful. In particular, the phase space (quasi)-

probability distributions like the Wigner distribution, the Sudarshan-Glauber p-distribution

or the Husimi q−distribution are extremely helpful in characterizing optical states [109].

Of these, the Wigner distribution is particulatly notable for the fact that it additionally

reproduces the correct marginal probability distributions. Since the introduction of phase

space distributions are so successful for CV systems, it was inevitable that attempts to

create analogues of such distributions for qudit states were to be made. There exist many

such proposed constructions in the literature, [110, 111, 112], of which we shall make use

of the construction of discrete Wigner function by Wootters [110]. Above, we showed

how to construct coherence monotones from distance based magic monotones. In most

cases, these monotones are extremely hard to exactly calculate. There is however, a com-

putable monotone, called sum negativity, already in the literature [54] in terms of the

negativity of the discrete Wigner function representation of a state. We show that the

discrete Wigner function representation can also give rise to a coherence monotone.

For finite Hilbert space dimension d, the expression for characteristic function associated

with each point (p, q) on the d × d phase grid is given by

A(p,q) = Dp,qA0D†p,q, (3.9)
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where Dp,q = ω
−2−1 pqZ pXq and A0 =

1
d

∑d−1
p,q=0 Dp,q. X and Z are the well known Shift and

Boost operators respectively, and ω = e2πi/d is the d-th root of unity and 2−1 is shorthand

for d+1
2

mod (d). The Wigner function of a quantum state represented by the density

matrix ρ, at a phase space point (p, q), is given by W(p,q) = tr
(

ρA(p,q)

)

. Sum of Wigner

functions along a line Wq =
∑

p W(p,q)is always positive semidefinite. Now let us propose

the following candidate for a coherence monotone

Cw[ρ] = min
σ∈I,λ≥0

||~Kρ − λ~Kσ|| (3.10)

Here ~Kρ is a probability vector whose elements are the sums of Wigner functions (W1(ρ),W2(ρ), ....)

along parallel lines in the phase grid and ||P − Q|| is the statistical distance between prob-

ability distributions P and Q.

Clearly, Cw[ρ] vanishes for incoherent states. Moreover, from the monotonicity of trace

distance under CPTP maps, Cw is monotonically decreasing under any CPTP map. The

remaining, i.e., strong monotonicity and convexity conditions have been shown in litera-

ture [113] to be equivalent to the equality condition

C[pρ1 ⊕ (1 − p)ρ2] = pC[ρ1] + (1 − p)C[ρ2]. (3.11)

The LHS of the above condition now reads as Cw[pρ1⊕(1−p)ρ2] = minσ1,σ2∈I,λ1,λ2≥0 ||~Kpρ1⊕(1−p)ρ2
−

~Kλ1σ1⊕λ2σ2
|| = minσ1,σ2∈I,λ1,λ2≥0 ||p~Kρ1

+(1−p)~Kρ2
−λ1

~Kσ1
−λ2

~Kσ2
|| = minσ1,σ2∈I,λ1,λ2≥0 ||p~Kρ1

−

λ1
~Kσ1
+ (1 − p)~Kρ2

− λ2
~Kσ2
|| = p minσ1∈I,λ′1≥0 ||~Kρ − λ′1 ~Kσ1

|| + (1 − p) minσ2∈I,λ′2≥0 ||~Kρ2
−

λ′2
~Kσ2
|| = pCw[ρ1] + (1 − p)Cw[ρ2] where λ′1 = λ1/p and λ′2 = λ2/(1 − p). This completes

the proof of the assertion that Cw is a full coherence monotone.
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Figure 3.1: Hierarchy of various free operations in the resource theory of magic.

3.1.2 Hierarchy of stabilizer operations

In analogy with the resource theories of quantum coherence or entanglement, we may

formulate various generalizations and specializations of stabilizer operations. A tenta-

tive hierarchy of such operations, roughly following the corresponding formulation for

incoherent operations in Ref. [114, 115] is depicted in Fig. 3.1.

Genuinely Stabilizer Operations : The most stringent of all the stabilizer operations must

be the genuinely stabilizer operations (GSO) similar to genuinely incoherent operations

introduced in [116] for which every stabilizer state is supposed to be a fixed point for the

dynamics. In the following proposition- we prove that such an operation is impossible

unless it is the trivial identity transformation.

There is no non-trivial Genuinely Stabilizer Operation.

Let us illustrate the proof for d = 2. Suppose there is such a CPTP operation Λ which is a

Genuinely Stabilizer Operation. This implies Λ is a genuinely incoherent operation with
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respect to both the eigenbasis of σz and σx. Thus the Kraus operators corresponding to

this operation are diagonal in both z basis as well as x basis, which holds true only for the

trivial identity operation.

Incoherent Stabilizer Operations - Stabilizer operations can still generate quantumness in

the form of quantum coherence. Thus, if we are to construct a resource theory encom-

passing both the stabilizer formalism and quantum superposition, it is relevant to consider

incoherent stabilizer operations. In the stabilizer protocol, two operations stand out as

potentially generators of quantum coherence. One being the Clifford unitary operation,

the other being composition with different stabilizer states. The other operations, viz.

measurement in computational basis or partial trace, can easily be shown to be incoherent

operations as well. Thus, we write down the following subset of these two operations -

1. Incoherent Clifford Unitary - Defined as those clifford unitaries which do not gen-

erate quantum coherence, these now represent permutations of computation basis

vectors. For example, in the qubit case, the bit-flip gate σx or the phase-gate























1 0

0 i























are incoherent Clifford unitaries, but the Hadamard gate H = 1
2























1 1

1 −1























is not.

2. Composition with other incoherent states Incoherent states are by definition, within

the stabilizer polytope, and composition with other incoherent states keeps quan-

tum coherence fixed [117]. Thus this represents a suitable incoherent stabilizer

operation.

Clearly every coherence monotone is a monotone under this formalism.

The lp-norm is a monotone under incoherent stabilizer operations for every p ≥ 1

For the proof of the above assertion, let us note that every stabilizer protocol Λ on a state

ρS can be expressed as Λ[ρS ] = TrA′
[

US A (ρS ⊗ σA) U
†
S A

]

where U is a Clifford unitary
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and σ is an ancilla stabilizer state. According to the conditons above, we must restrict σ

to the set of incoherent stabilizer states and U to the set of incoherent Clifford unitaries.

The effect of incoherent unitaries is either to permute the basis labellings for coherence.

or to lend a phase term to the off-diagonal elements of the density matrix, the latter, for

example, is illustrated by an incoherent unitary























1 0

0 i























. Both of these effects can be easily

verified to leave the lp-norm invariant. The lp-norm of a state ρ is given by

Clp
[ρ] =

















∑

i

∑

j,i, j

|ρi j|p
















1/p

. (3.12)

Now, for an incoherent ancilla stateσ =
∑

k qk|k〉〈k|, the lp norm Clp
[ρ⊗σ] = (

∑

k q
p

k
)1/pClp

[ρ] ≤

Clp
[ρ], where we have used Hölder’s inequality. Similarly one can also check using the

triangle inequality for the p-norm, that partial tracing doesn’t increase Clp
. Thus, lp-norm

is indeed a monotone for every p ≥ 1 under incoherent stabilizer protocols.

Operationally, it is natural to wonder about the strength of stabilizer operations vis-a-

vis the strength of incoherent stabilizer operations. A simple example is to consider the

Hadamard operation, which is a stabilizer unitary, but can generate coherence in the com-

putational basis.

Incoherent Stabilizer Preserving Operations- Continuing in the spirit of connecting the

two resource theories, one can impose on the set of incoherent operations only the con-

straint that it does not generate any magic from stabilizer states. For example, the phase

rotation is an incoherent operation, which may easily be seen to create magic starting

from a stabilizer state. The mathematical characterizaton of incoherent stabilizer preserv-

ing operations is beyond the scope of the present work and we invite the reader to embark

upon the same. An especially pressing concern would be to identify whether there exists

any incoherent stabilizer preserving operation which is not an incoherent stabilizer op-

eration, or even a stabilizer operation. Tentatively, Fig. 3.1 reflects that such operations

are not ruled out, however, we have not succeeded in finding explicit counterexamples or
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proofs either refuting or supporting this statement.

Stabilizer Preserving Operations - This is the most general type of free operation in the

resource theory of magic that one can envisage. One only imposes the constraint that no

stabilzer state is mapped to a magic state. In fact, such operations were studied in detail

in Ref. [56] and a family of monotones derived.

3.2 Concrete results in small quantum systems

In this section, we shift our focus towards linking magic with other quantum resources

in low dimensional systems. The smallest dimension for which we have a concrete com-

putable expression for magic is d = 3, which is expressed via the sum negativity of

discrete Wigner functions. Let us now look at the interplay between quantum coherence

and magic in this scenario. Since signature of the connection between magic and contex-

tuality has already been revealed [118, 58], our method of relating magic to other resource

theories connects contextuality inter alia with these resources. The nascent resource theo-

retic formulation of contextuality [119, 120] can shed further light on the results we obtain

here.

3.2.1 Explicit expression for magic in the qutrit case

We know from the discrete version of Hudson’s theorem, that at least in the odd-dimensional

case, a pure state with a positive discrete Wigner distribution, must be a stabilizer state.

Accordingly, a measure of magic named sum negativity, embodying the negativity of the

discrete Wigner function for a given state, was proposed and proved as a magic mono-

tone for odd prime power dimensions under stabilizer operations [54]. It is defined as the

following -

For any quantum state with discrete Wigner distribution Wu, the sum negativity is the
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sum of absolute values of the negative elements of the discrete Wigner (quasiprobability)

distribution.

For the qutrit case, after some algebra, we have the following discrete Wigner distribution

corresponding to a qutrit density matrix ρ.

W
(1,1)
=

1

3
(2λ3 + ρ11) ,W

(1,2)
=

1

3
(2λ2 + ρ22) ,W

(1,3)
=

1

3
(2λ1 + ρ33) ,

W
(2,1)
=

1

3

(

−λ3 −
√

3µ3 + ρ11

)

,W
(2,2)
=

1

3

(

−λ2 +
√

3µ2 + ρ22

)

,

W
(2,3)
=

1

3

(

−λ1 −
√

3µ1 + ρ33

)

,W
(3,1)
=

1

3

(

−λ3 +
√

3µ3 + ρ11

)

,

W
(3,2)
=

1

3

(

−λ2 −
√

3µ2 + ρ22

)

,W
(3,3)
=

1

3

(

−λ1 +
√

3µ1 + ρ33

)

. (3.13)

Where density matrix elements ρ12 = λ1 + iµ1, ρ13 = λ2 + iµ2, ρ23 = λ3 + iµ3, λi, µi ∈ R.

Now the sum negativity MS N[ρ] is simply given by

MS N[ρ] =
∑

u

|Wu| − 1. (3.14)

Similar to the case of logarithmic negativity in the resource theory of entanglement, it is

possible to come up with another monotone, which is the logarithm of the sum negativity.

This measure was dubbed the Mana [54].

3.2.2 Effect of coherent and incoherent noise on magic states

As with many other quantum resource theories, the maximally mixed state is a free state

in the resource theory of magic states while the maximally resourceful state turns out to

be a pure state. In the qutrit scenario, the maximally magical pure states come in two

different varieties, viz. the Strange states [54] and the Norrell states [54]. The strange

states are pure states which are invariant under the symplectic component of the Clifford
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Figure 3.2: Response of two different maximally magical pure states, viz a strange state

(red), and a Norrell state (blue), for admixture with maximally incoherent noise (left) and

coherent noise (right). The sum negativity of the resulting states has been plotted with

respect to the admixture parameter p ∈ [0, 1].

group and of the form 1√
2
(0, 1,±1)T and the corresponding permutations. Geometrically

speaking, the Strange states are the pure states maximally distant from the faces of the

stabilizer polytope. The Norrell states, in contrast, are pure states maximally distant from

the edges of the stabilizer polytope. They are thus natural qutrit generalizations to the T

and H states for qubits respectively.

It may therefore be interesting to have an answer to the question that which class of states

remain more magical under admixture of noise. However, noise can be either coherent

or incoherent. As we demonstrate below, depending on the character of the noise, the

relative robustness of two types of magical states may be of different nature.

Strange states are more robust under mixture with maximally incoherent, i.e.

white noise than Norrell states.

Proof- Due to symmetry, it suffices to check for one strange state and one Norrell state,

respectively. Let this strange state be |ψS 〉 = 1√
2
(0, 1,−1)T and this Norrell state be |ψN〉 =

1√
6
(−1, 2,−1)T . Let us consider the strange state (Norrell state) |ψS 〉(|ψN〉) mixed with the
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maximally mixed state to have the family of states ρS (ρN) = (1 − p)|ψS 〉〈ψS | + p

3
I ((1 −

p)|ψN〉〈ψN | + p

3
I). With the explicit expression for sum negativity given previously, it is

easy to check that the sum negativity for the noisy strange state is given by

MS N[ρS ] =























2
9
(3 − 4p), if 0 ≤ p ≤ 3

4

0, if 3
4
≤ p ≤ 1























(3.15)

while the corresponding sum negativity for the noisy Norrell state is given by

MS N[ρN] =
















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



2
9
(3 − 5p), if 0 ≤ p ≤ 3
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0, if 3
5
≤ p ≤ 1























(3.16)

Therefore, we see that the strange state remains more robust against admixture with white

noise than the Norrell state.

Now, let us consider an example of a purely coherent noise, i.e. admixture of a maximally

magical pure state with a maximally coherent state |c〉 = 1√
3
(|0〉 − |1〉 + |2〉).

The Norrell state above is more robust under the admixture of aforementioned

coherent noise than the strange state above.

Proof- Proceeding similarly as before, the expression for sum negativity of the noisy

strange state is now given by

MS N[ρS ] =























2
9
(3 − 2p), if 0 ≤ p ≤ 3

5

1
9
(3 + p), if 3

5
≤ p ≤ 1























, (3.17)

while the corresponding expression for sum negativity of the noisy Norrell state is given

by

MS N[ρN] =
2

9
(3 − p). (3.18)
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(a) Magic (quantified by sum negativity) vs l1-

norm coherence for randomly chosen qutrit pure

(deep blue) and mixed (light blue) states. The

red line corresponds to the bound conjectured in

(3.19).

(b) Magic (quantified by sum negativity) of the

reduced qutrit system vs negativity measure of en-

tanglement for randomly chosen qutrit-qubit pure

(orange) and mixed (green) states. The blue line

corresponds to the bound conjectured in (3.20).

Figure 3.3: Interplay between quantum coherence, magic and entanglement in a qutrit

(left) and a qutrit-qubit system (right).

Thus, throughout the range of the noise parameter p, the noisy Norrell state contains more

magic than the corresponding noisy strange state, which is demonstrated in Fig. 3.2(b).

3.2.3 Relation betweeen quantum coherence, quantum entanglement,

and magic content

Continuing with our theme of attempting to unearth the relation of coherence and magic

in quantum systems, it is a natural question to ask whether we can find a bound for the

quantity of magic in terms of coherence in the qutrit scenario. One bound is quite obvious.

Every incoherent state lies within the stabilizer polytope, therefore it is easy to see that

any quantum state, pure or mixed, is at least as close to a stabilizer state as to an incoherent

state. Thus, the magic of a quantum state is upper bounded by the amount of coherence

in the system. However, for qutrit pure states, numerical simulation in Fig. 3.3(a) leads

us to conjecture the following inequality, which gives a reverse, i.e., lower bound to the

magic in terms of quantum coherence.
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The following condition on quantum coherence, quantified via the l1-norm, and

magic, quantified by the sum negativity, holds for qutrit pure states

MS N[|ψ〉] ≥ Cl1[|ψ〉]
2

√

1 − Cl1[|ψ〉]
2

(3.19)

It has already been shown that the presence of entanglement in a bipartite state adversely

affects the coherence [121, 122] as well as contextuality [123] in the reduced state. Since

magic as a resource in quantum computation has ultimately been ascribed to the contex-

tual nature of quantum mechanics [58], it is important to quantify the corresponding trade

off for entanglement in the joint system and magic in the reduced system. The simplest

case is that of a qutrit qubit joint system. In this situation, we conjecture the following

trade off relation between bipartite entanglement, quantified by the negativity, of a qutrit

qubit joint system AB, and that of magic, quantified by sum negativity, in the reduced

qutrit system A.

The negativity of entanglement EAB and the sum negativity S NA satisfies the fol-

lowing trade off relation

16E2
AB + 9M2

S NA
< 4 (3.20)

Although an analytical proof is lacking, the numerical result furnished in Fig. 3.3(b)

strongly suggests that the proposition above is true and indeed, almost tight for pure 3× 2

states.
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3.3 Summary

• The maximal amount of magic, quantified by a contractive distance based measure,

liberated through incoherent operations on a quantum system is upper bounded by

the amount of quantum coherence originally present in the system.

• The maximal amount of magic obtainable through incoherent operations on a quan-

tum system, in itself, is a coherence monotone.

• It is possible to obtain a measure of coherence from the discrete Wigner function

representation of finite dimensional quantum systems.

• There are no genuinely incoherent stabilizer operations.

• Distance based measures which are not coherent monotones under incoherent op-

erations, may become monotones under incoherent stabilizer operations.

• Two families of qutrit magic states, namely, the Strange states and the Norrell states,

are differentially affected by the nature of noise.

• For qubit-qutrit systems, there is a complementarity relation between the bipartite

entanglement content, and the magic content of the reduced qutrit system.
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Chapter 4

Non Markovian dynamics of central

spin systems I : Infinite temperature

case

1

In the previous chapter, we have discussed about a link between two static resources, that

is, resources pertaining to quantum states. In this chapter and the next one, we shall study

the effect of a dynamical resource, namely, non-Markovianity, on the behaviour of a spin

system.

In many body problems, when we deal with microscopic (e.g. spin systems) or meso-

scopic (e.g. SQUIDs) physical systems, the analysis of dynamics often becomes compli-

cated by virtue of the system’s interaction with a background environment, as outlined

in the second chapter. For the purpose of such an analysis, the environment is often

modelled as a collection of oscillators or spin half particles [124]. They constitute two

different universal classes of quantum environment [125]. In the oscillator bath model,

1This chapter is based on the paper "Exact master equation for a spin interacting with a spin bath:

Non-Markovianity and negative entropy production rate", published in Physical Review A, 95, 012122

(2017).
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Figure 4.1: Schematic diagram of the central spin model. The central spin (red circle)

interacts with the bath (green) constituting of spins (blue circles).

the environment is described as a set of uncoupled Harmonic oscillators, for example, the

spin-boson [126, 127] and the Caldeira-Leggett models [127, 128] fall under its ambit.

These oscillator models have been widely studied in the context of various physical phe-

nomena under Markovian approximation [92, 93, 124]. On the other hand, the spin bath

models remain relatively less explored. However, the spin bath models play a pivotal role

in the quantum theory of magnetism [129], quantum spin glasses [130], theory of con-

ductors and superconductors [131]. Solving for the exact dynamics of quantum systems

under the spin bath models is thus of significant operational importance yet a technically

chllenging task. Indeed, in most of the cases the dynamics cannot be described exactly

and several approximation techniques, both local and nonlocal in time, have been em-

ployed [124, 132, 133, 107, 134, 135, 136].

In this chapter, we will focus on the dynamical behavior of a central spin interacting uni-

formly with a spin bath and derive an exact time-local master equation of the Lindblad

type. By virtue of the master equation being in this form, the dynamics is guaranteed to
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be completely positive even in the strong coupling regime. Moreover, the Kraus repre-

sentation of the dynamical map is also derived. Reduced dynamics of this particular spin

bath model has been considered before [135, 136] where correlated projection operator

techniques have been used to approximate the master equation of the central spin. How-

ever, the master equation furnished previously is time nonlocal and not of the standard

Lindblad form. We take a different approach and start from the exact reduced state of

the central spin at an arbitrary given time [135] to derive the canonical master equation

without considering any approximations. We emphasise that the master equation is not

only exact but allows one to systematically unravel the less explored but far reaching

consequences of the strong coupling regimes which can be instrumental in performing

information theoretic, quantum thermodynamic and several other quantum technological

tasks. Moreover, the relaxation rates in the canonical master equation are insightful to

understand several physical processes such as the dissipation, absorption and dephasing

and thus the nature of decohrence.

One of the characteristics of the central spin models is to exhibit the non-Markovian

features [137, 66]. As we discussed in the first chapter, non-Markovianity has been iden-

tified as a key resource in information theoretic [138, 61, 139], thermodynamic [59, 140,

141] and precision measurement protocols [142, 60, 143]. We study the non-Markovian

features of the reduced dynamics and demonstrate that the non-Markovianity increases

with the interaction strength. We next focus on the thermodynamic implications of non-

Markovianity in this system. Irreversible increase of entropy due to dissipation of energy

and work into the environment is inevitable for systems out of equilibrium[144, 145, 146,

147, 148, 149]. According to the Spohn’s theorem [150], the irreversible entropy produc-

tion rate is always non-negative under the Markovian dynamics. We show in this chapter

that the non-Markovianity of the dynamics allows for negative irreversible entropy pro-

duction rate. The resulting partial reversibility of the work and entropy influences the

performance of quantum heat engines, refrigerators and memory devices. More specifi-

cally, we investigate the entropy production rate and show that the non-Markovianity of
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the dynamics is always associated with a negative entropy production rate of the central

spin for a certain initial state. We also investigate the non-Markovianity in terms of the

rate of change of the purity of the central qubit and demonstrate that the rate of change of

the purity of the qubit is positive for the same aforesaid initial state, whenever the dynam-

ics is non-Markovian. Experimental detection of the non-Markovianity and the entropy

production rates for quantum systems are of paramount interest in current research. As

purity can be measured in the laboratory, this section hints at the possibility to exper-

imentally demonstrate non-Markovian features and negative entropy production rate in

spin bath models.

4.1 Central spin model and its reduced dynamics

In this section we first describe the central spin bath model. Then we derive the exact

canonical master equation of the Lindblad type. From the master equation of the Lind-

blad form we show that the reduced dynamics of the central spin exhibits non-Markovian

features throughout. We also derive the Kraus operators for the dynamical map.

4.1.1 The model

Let us first describe the central spin bath model, as depicted in the schematic Fig. 4.1. We

consider a spin-1
2

particle that interacts uniformly with N other spin- 1
2

particles constitut-

ing the bath.We further take the simplifying assumption that the spins of the bath do not

interact with each other. The Hamiltonian for this spin bath model is thus given by

H = HS + HS B =
~

2
ω0σ

0
z +
~

2

N
∑

i=1

α(σ0
xσ

i
x + σ

0
yσ

i
y + σ

0
zσ

i
z), (4.1)

where σi
k

(k = x, y, z) are the Pauli matrices of the i-th spin of the bath and σ0
k

(k = x, y, z)
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are the Pauli matrices for the central spin, α is the interaction strength. Here HS and

HS B are the system and interaction Hamiltonian respectively. We shall make the usual

assumption that initially the central spin and the spin bath is uncorrelated and the reservoir

is in a thermal state at infinite temperature i.e., completely unpolarized state [135]. The

composite state of the system and bath evolves unitarily under the total Hamiltonian H +

HB, starting from the factorized initial state, ρS B(0) = ρS (0)⊗ 1
2N IB, where IB is an N qubit

maximally mixed state and HB is the bath Hamiltonian. Since we are only concerned

with the reduced dynamics of the central spin and the bath is completely unpolarized

when initialized, there is no loss of generality by dropping any reference to the bath

Hamiltonian. Therefore, the reduced quantum state ρS (t) of the central spin at time t, can

be obtained by tracing out the bath degrees of freedom as

ρS (t) = TrB[e−i(H+HB)t/~{ρS (0) ⊗ 1

2N
IB}ei(H+HB)t/~]. (4.2)

Hereafter in this chapter, we drop the subscript S for the central spin unless otherwise

mentioned. The total angular momentum of the bath is given by J = 1
2

∑

iσ
i. The basis

| j,m〉 is defined as the simultaneous eigenbases of both J2 and Jz. For even N, j takes

the values j = 0, 1, 2, ....N/2 and for odd N, we have j = 1/2, 3/2, ...N/2 and m goes

from − j to j. It can be shown that [135] the z-component of the total angular momentum

1
2
σ0

z +
1
2

∑

i σ
i
z as well as J2 are conserved quantities. There are now two dimensional

subspaces spanned by |+〉 ⊗ | j,m〉 and |−〉 ⊗ | j,m + 1〉 which are invariant under time

evolution. Now the task of finding the analytical solution to the reduced dynamics of

the central spin is broken down into solving the equations of motion in each subspace.

Solving the equation of motion exactly vide Ref. [135], the initial reduced state of the

central spin, ρ =























ρ11 ρ12

ρ21 ρ22























can be shown to evolve as

ρ11(t) = A(t)ρ11(0) + B(t)ρ22(0),

ρ12(t) = C(t)ρ12(0). (4.3)
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Where,

A(t) =
∑

j,m
N j

2N

[

cos2 (µ+( j,m)t) +
Ω2
+(m)

4µ2
+( j,m)

sin2 (µ+( j,m)t)
]

,

B(t) =
∑

j,m
N j

2N

α2b2( j,m)

4µ2
+( j,m)

sin2 (µ+( j,m)t) ,

C(t) = eiω0t
∑

j,m
N j

2N

[

cos (µ+( j,m)t) − iΩ+(m)

2µ+( j,m)
sin (µ+( j,m)t)

]

×
[

cos (µ−( j,m)t) + iΩ−(m)

2µ−( j,m)
sin (µ−( j,m)t)

]

,

and

N j =























N

N
2
+ j























−























N

N
2
+ j + 1























,

Ω± = ±ω0 + α(±m + 1/2),

µ± =
1
2

√

Ω2
± + α

2b2
±,

b± =
√

j( j + 1) − m(m ± 1).

It follows from the above expressions that A(t) + B(t) = 1, which implies the dynamical

map is unital. The unitality of the dynamics has to be satisfied as the environment and the

systems starts from a product state while the environment being in the maximally mixed

state. We are now in position to derive the canonical master equation.

4.1.2 Canonical master equation

In what follows, we derive the exact canonical master equation of the Lindblad type for the

central spin starting from dynamical map given in Eq. 4.3. The dynamical map described

in Eq. 4.3 can be notationally represented as

ρ(t) = Φ[ρ(0)]. (4.4)

The equation of motion of the reduced density matrix of the form

ρ̇(t) = Λ[ρ(t)] (4.5)
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can be obtained from Eq. 4.3, which is characterized by the time dependent generator

Λ[.]. By following the method [151] given below, we find the master equation and thus

the generator of the specific reduced dynamics. Consider a convenient orthonormal basis

set {Ga} with the properties G
†
a = Ga and Tr[GaGb] = δab. The map given in Eq. 5.12 can

now be represented as

Φ[ρ(0)] =
∑

k,l

Tr[GkΦ[Gl]]Tr[Glρ(0)]Gk = [F(t)r(0)]GT , (4.6)

where Fkl = Tr[GkΦ[Gl]], rl = Tr[Glρ(0)]. Differentiating Eq. 4.6, we get

ρ̇(t) = [Ḟ(t)r(0)]GT . (4.7)

Let us consider a matrix L, with elements Lkl = Tr[GkΛ[Gl]]. We can now represent Eq.

5.13 as

ρ̇(t) =
∑

k,l

Tr[GkΛ[Gl]]Tr[Glρ(t)]Gk = [L(t)r(t)]GT . (4.8)

By comparing Eq. 4.7 and 4.8, we find

Ḟ(t) = L(t)F(t) ⇒ L(t) = Ḟ(t)F(t)−1. (4.9)

We can arrive at Eq. 4.9 given the inverse of F(t) does exist and F(0) = I. Considering

the specific map of the central spin in Eq. 4.3, and taking the Orthonormal basis set {Ga}

as { I2√
2
, σx√

2
,
σy√

2
,
σz√

2
}, we find the L(t) matrix to be

L(t) =



























































0 0 0 0

0 CR(t)ĊR(t)+CI (t)ĊI (t)

CR(t)2+CI (t)2 −CI (t)ĊR(t)−CR(t)ĊI (t)

CR(t)2+CI (t)2 0

0 CI (t)ĊR(t)−CR(t)ĊI (t)

CR(t)2+CI (t)2

CR(t)ĊR(t)+CI (t)ĊI (t)

CR(t)2+CI (t)2 0

(Ȧ(t) + Ḃ(t)) +
(

Ȧ(t)−Ḃ(t)

A(t)−B(t)

)

(1 − (A(t) + B(t))) 0 0
(

Ȧ(t)−Ḃ(t)

A(t)−B(t)

)



























































,

(4.10)
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where CR(t) and CI(t) are the real and imaginary part of C(t) respectively. Now from the

Eq. 4.8, we get the equation of motion as given by

ρ̇11(t) =
Lz0+Lzz

2
ρ11(t) +

Lz0−Lzz

2
ρ22(t),

ρ̇12(t) = (Lxx + iLxy)ρ12(t).
(4.11)

Eq. 4.11 gives the time rate of change of the density matrix. However, one needs to

have the Lindblad type master equation to understand various processes like dissipation,

absorption, dephasing in a more convincing way. Moreover, it is of prime importance to

have the master equation to study the non-Markovian behavior of the reduced dynamics

as we will see later. Therefore, our immediate aim is to derive the Lindblad type master

equation starting from Eq. 4.11. Eq. 5.13 can be written in the form [122]

ρ̇(t) = Λ[ρ(t)] =
∑

k

Xk(t)ρ(t)Yk(t)
†, (4.12)

where Xk(t) =
∑

i Gixik(t),Yk(t) =
∑

i Giyik(t) and {Ga} are the basis operators as defined

before. Using this decomposition of X(t) and Y(t), Eq. 4.12 can be rewritten as

ρ̇(t) =
∑

i, j={0,x,y,z}
zi j(t)Giρ(t)G j, (4.13)

where zi j(t) =
∑

k xik(t)y jk(t)
∗ are the elements of a Hermitian matrix. Using a new set of

operators [122] F (t) = (z00(t)/8)I2 +
∑

i(zi0/2)Gi and H(t) = i
2
~(F (t)−F †(t)), after some

algebra, the Eq. 4.13 can be written as

ρ̇(t) = i
~
[ρ(t),H(t)]

+
∑

i, j={x,y,z} zi j(t)
(

GiρG j − 1
2
{G jGi, ρ(t)}

)

,
(4.14)
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where the curly braces stand for anti-commutator. Hence, the canonical master equation

of the Lindblad form read as

ρ̇(t) = i
~
U(t)[ρ(t), σz] + Γdeph(t)

[

σzρ(t)σz − ρ(t)
]

+ Γdis(t)
[

σ−ρ(t)σ+ − 1
2
{σ+σ−, ρ(t)}

]

+ Γabs(t)
[

σ+ρ(t)σ− − 1
2
{σ−σ+, ρ(t)}

]

,

(4.15)

where σ± =
σx±iσy

2
, and Γdis(t),Γabs(t),Γdeph(t) are the rates of dissipation, absorption

and dephasing processes respectively , and U(t) corresponds to the unitary evolution.

A(t) + B(t) = 1, for this specific system, is used to derive the master equation. The rates

of dissipation, absorption, dephasing and the unitary evolution are, respectively, given as

Γdis(t) = − Lz0+Lzz

2
= d

dt

[

ln
(

1√
A(t)−B(t)

)]

,

Γabs(t) = − Lzz−Lz0

2
= d

dt

[

ln
(

1√
A(t)−B(t)

)]

,

Γdeph(t) = − 2Lxx−Lzz

4
= 1

4
d
dt

[

ln
(

A(t)−B(t)

|C(t)|2
)]

,

U(t) = − Lxy

2
= − 1

2
d
dt

[

ln
(

1 +
(

CR(t)

CI (t)

)2
)]

.

(4.16)

Note that the system environment interaction generates a time dependent driving Hamil-

tonian evolution in the form of U(t). Since the coefficients of dissipation and absorption

are equal, the master equation (5.29) can also be rewritten as

ρ̇(t) = i
~
U(t)[ρ(t), σz] +

Γdis(t)

2

[

σxρ(t)σx − ρ(t)
]

+
Γdis(t)

2

[

σyρ(t)σy − ρ(t)
]

+ Γdeph(t)
[

σzρ(t)σz − ρ(t)
]

.
(4.17)

The above equation implies that I2
2

is a fixed point of the reduced dynamics and hence, it

confirms the unitality of the dynamical map. As the bath is in a thermal state at infinite

temperature, the probabilities of losing energy to the bath modes and absorbing from it
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become equal which makes the dissipation and absorption rates to be the same. This is

quite similar to the bosonic thermal baths, as it follows from the KMS condition [124]

that given the baths having canonical equilibrium distribution the rates of the absorption

and dissipation process are balanced by the equation Γ(−ω) = Γ(ω) exp(−βω). Here β is

the inverse temperature of the bath and it implies that Γ(−ω) = Γ(ω), iff β = 0.

One of the important properties of a quantum dynamical map is completely positivity

[137, 66, 152, 153, 154, 62, 63, 65, 155, 156]. The notion “complete" comes with the

argument that for any valid quantum dynamical map, the positivity must be preserved if

the map is acting on a system which is correlated to an ancilla of any possible dimension.

For a Lindblad type canonical master equation with time dependent coefficients, as in

Eq. 5.29, the complete positivity is guaranteed by the following condition
∫ t

0
Γi(s)ds ≥ 0

[157], which can be easily verified for the specific decay rates given in (5.30). It is worth

mentioning that since the dynamical map for this specific spin bath model is derived

starting from an initial product system plus environment state, it is always guaranteed

to be completely positive [158, 89]. However, the complete positivity of the dynamical

map for the reduced system can break down in the presence of system-environment initial

correlation [89].

4.1.3 Operator sum representation

Other important aspect of general quantum evolution is the Kraus operator sum repre-

sentation, given as ρ(t) =
∑

i Ki(t)ρ(0)K†
i
(t). The Kraus operators can be constructed

[159] from the eigenvalues and eigenvectors of the corresponding Choi-Jamiolkowski

state [160]. The Choi-Jamiolkowski state for a dynamical map Φ[ρ] acting on a d dimen-

sional system is given by (Id⊗Φ)[Φ+], withΦ+ = |Φ+〉〈Φ+| being the maximally entangled

state in d × d dimension. For the particular evolution considered here, we find the Choi
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state to be


























































A(t)/2 0 0 C(t)/2

0 B(t)/2 0 0

0 0 B(t)/2 0

C∗(t)/2 0 0 A(t)/2



























































. (4.18)

The positive semi-definiteness of the above density matrix demands B(t) ≥ 0 ; A(t) ≥

|C(t)|. From the eigensystem of the Choi state given in (5.15), we derive the Kraus opera-

tors as

K1(t) =
√

B(t)























0 1

0 0























,

K2(t) =
√

B(t)























0 0

1 0























,

K3(t) =

√

A(t)−|C(t)|
2























−eiθ(t) 0

0 1























,

K4(t) =

√

A(t)+|C(t)|
2























eiθ(t) 0

0 1























,

(4.19)

where θ(t) = arctan[CI(t)/CR(t)]. It is straight forward to verify that the Kraus operators

satisfies the unitality property
∑

i Ki(t)K
†
i
(t) = I.

4.1.4 Non-Markovianity

The charecterization and quantification of the non-Markovianity is a fundamental aspect

of open quantum dynamics. There are several proposed measures based on CP divisibil-

ity [65, 97] and non-Markovianity witness [63, 62, 161, 162, 163, 164, 64, 165]. One

of the well accepted characterization and quantification of non-Markovianity based on
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the composition law of the dynamical map has been introduced by Rivas-Huelga-Plenio

[65], commonly known as RHP measure of non-Markovianity. In this approach, the non-

Markovian behaviour is attributed to the deviation from divisibility and the quantification

of non-Markovianity is done based on the amount of the deviation, as outlined in the

second chapter of the thesis. Note that for the Markovian evolution G is zero and the

maximum non-Markovianity corresponds to G = 1, i.e., when η → ∞. The positivity of

the function q(t) or indivisibility of the map appears when the relaxation rates ({Γi(t)}s)

take negative values. We will show in the following that for the specific dynamical evolu-

tion considered in the present chapter, the decay rates periodically get negative and hence

break the divisibility of the map, although they always maintain the complete positivity

condition by construction. For this particular evolution, we get

q(t) = [|Γdis(t)| − Γdis(t)] + [|Γdeph(t)| − Γdeph(t)]

= qdis(t) + qdeph(t),
(4.20)

where qdeph(t) = |Γdeph(t)| − Γdeph(t), is the non-Markovianity for the dephasing channel

and qdis(t) = |Γdis(t)| − Γdis(t), is that for the thermal part of the channel including the

dissipation and absorption process.

In Fig. 4.2 and 4.3, we plot the total non-Markovianity q(t) and the contribution due to

the thermal channel qdis(t) with different values of α to show the non-Markovian behavior

of the dynamics. We see that the revival of qdis(t) increases with the increasing interaction

strength α. In Fig. 4.4 and 4.5, we plot q(t) and total non-Markovianity qdis(t) respectively,

but for different number of bath spins N with a fixed interaction strength.

Let us now investigate the aspect of non-Markovianity from another well known perspec-

tive, namely the distinguishability of two quantum states [63, 62]. Consider any distance

measure D(.) between two quantum states, following contraction property

D(Φ[ρ1],Φ[ρ2]) ≤ D(ρ1, ρ2), (4.21)
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Figure 4.2: Variation of q(t) with time t for various interaction strength α. Number of

bath spins is kept fixed at N = 20. Positive q(t) implies the non-Markovian nature of the

dynamics according to the RHP measure.

where Φ[.] represents any CPTP map. Under any Markovian evolution, the time deriva-

tive of D(.) will always be negative, owing to this contraction property. Therefore, non-

monotonicity of these distances can be understood as a witness of the non-Markovian

information feedback into the system. One such distance measure is the trace distance

between quantum states [166]. Taking the trace distance between two states DT (ρ1, ρ2) =

1
2
||ρ1 − ρ2|| a quantity can be defined as

p(t) =
d

dt
DT (Φ[ρ1],Φ[ρ2]). (4.22)

Breuer-Laine-Piilo (BLP) proposed a measure of non-Markovianity [63, 62] by summing

over all the positive contributions of p(t) and maximizing over the input states, which is

given by

ς = max
ρ1,2

∫

p(t)>0

p(t)dt. (4.23)
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Figure 4.3: Variation of qdis(t) with time t for various interaction strength α. Number of

bath spins is kept fixed at N = 20. To distinguish the effect on the thermal part of the

quantum channel, we separately plot qdis(t). It can be seen from the plot that the non-

Markovian revival for the thermal part of the channel increases with the increase of the

interaction strength α for fixed N.

It can readily be taken as a witness of non-Markovian information feedback into the sys-

tem under any local decoherence channel. We find that for our specific quantum channel,

the trace distance fidelity between two quantum states ρ1(t) and ρ2(t), at any arbitrary time

after the action of the mentioned channel can be expressed as

D(Φ[ρ1],Φ[ρ2]) =
√

a2(A(t) − B(t))2 + |b|2|C(t)|2, (4.24)

with a = ρ1
11(0) − ρ2

11(0) and b = ρ1
12(0) − ρ2

12(0). In Fig. 4.6, we plot the function p(t)

for the two states |±〉 = 1√
2
(|0〉 ± |1〉). The time evolution of the same is plotted in Fig.

4.7, but for the case of increasing number of bath particles N. Note that calculating the

maximized measure defined in Eq. (4.23), requires optimization over a and b, which is

difficult in general. However, consideration of two specific states can demonstrate the
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Figure 4.4: Variation of q(t) with time t for different number of bath spins N. Interaction

strength α = 0.03 is taken.

non-Markovianity providing a lower bound of the measure. The two measures of non-

Markovianity based on divisibility of the map (RHP measure, η) and distinguishability

of two states under the action of the map (BLP measure, ς) respectively, that we discuss

here, may not agree in general [97, 167]. If a map is divisible, the evolution is Markovian

and so the RHP measure of non-Markovianty η is zero. Consequently the BLP measure ς

is also zero. But the converse is generally not true, i.e., there exist some non-Markovian

domain that are “bound" in terms of BLP measure and hence not captured by it. The

reason behind this is that the notion of complete positivity does not enter in BLP measure

and hence the divisibility breaking cannot be fully captured by it [97]. In this chapter we

also consider the BLP measure of non-Markovianity to study whether the non-Markovian

feature of our proposed master equation can be captured by BLP measure also.
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Figure 4.5: Variation of qdis(t) with time t for different number of bath spins N. Interaction

strength α = 0.03 is taken. Magnified view of the rectangular region is shown in the inset.

The plot depicts that the revival of qdis(t) increases with the increase of bath spins N.

4.2 Negative entropy production rate

The irreversible or nonequilibrium entropy production and its rate are two fundamental

concepts in the analysis of the nonequilibrium processes and the performance of thermo-

dynamic devices [144, 145, 146, 147, 148, 149]. The reduction of the nonequilibrium

entropy production can significantly alter the performance of thermodynamic devices and

thereby it is of utmost interest in various technological domains. The nonequilibrium

entropy production rate is defined as

σ(t) =
dS

dt
+J , (4.25)

where S is the von-Neumann entropy of the system and J = 1
KT

dQ

dt
= 1

KT
Tr[H(t)Λ[ρ(t)]]

is the entropy flux of the system. It can also be expressed as the time derivative of the
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Figure 4.6: Variation of p(t) with time t for the two states |±〉 = 1√
2
|0 ± 1〉, for different

interaction strength α (where N = 20). Positive p(t) implies non-Markovianity according

to the BLP measure.

relative entropy of the state ρ with respect to the thermal equilibrium state ρeq [150, 158]

σ(t) = − d

dt
S (ρ||ρeq), (4.26)

where, S (ρ||τ) = −S (ρ)−Tr(ρ ln τ). According to the Spohn’s theorem [150], the nonequi-

librium entropy production rateσ is always non-negative. The Spohn’s theorem is another

statement of the second law of thermodynamics dictating the arrow of time. However, its

validity essentially depends on the Markov approximation [62]. Under the non-Markovian

dynamics σ can be negative [168, 169]. Therefore, the non-Markovianity of the dynamics

is a thermodynamic resource providing partial reversibility of work and entropy. In addi-

tion, as negative σ(t) is a prominent signature of the non-markovianity and hence it can be

used to detect and quantify the non-Markovianity. Since, for the specific system consid-

ered here, the absorption and the dissipation rates are equal due to the infinite temperature

of the bath, the net heat flow dQ

dt
is always zero. Therefore, for this specific model, we
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Figure 4.7: Variation of p(t) with time t for two density matrices |±〉 = 1√
2
|0 ± 1〉, for

different number of bath spins N, and interaction strength α = 0.03. Magnified view of

the rectangular region is shown in the inset.

have

σ(t) =
dS

dt
. (4.27)

It is worth mentioning that under the action of the unital channel von-Neumann entropy

of a system always increases in Markovian dynamics, as it is also a doubly stochastic

map. Since the given channel is unital, the negative dS
dt

also ensures the deviation from

Markovianty. Note that the rate of change of entropy is given as

dS

dt
= − d

dt
(Tr[ρ(t) ln ρ(t)]) = −Tr[ln ρ(t)Λ[ρ(t)]]. (4.28)

Here Λ[.] represents a general quantum evolution of the form

Λ[ρ(t)] = − i
~
[ρ(t),HS (t)] +

∑

j Γ j(t)
[

V jρ(t)V†
j
− 1

2
{V†

j
V j, ρ(t)}

]

.
(4.29)
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If the Lindblad operators {V j} are Hermitian, then Eq. 4.28 reads as

dS
dt
= 1

2

∑

jkl Γ j(t) (λk(t) − λl(t)) ×

[ln λk(t) − ln λl(t)]|〈λk(t)|V j|λl(t)〉)|2.
(4.30)

where we take the spectral decomposition of the density matrix ρ(t) =
∑

i λi(t)|λi(t)〉〈λi(t)|.

The above equation also implies that dS
dt

is non-negative if the relaxation rates {Γ j(t)} are

non-negative. However, dS
dt

can be negative if one or more of the relaxation rates {Γ j(t)}

are negative, i.e, in the non-Markovian domain. For the dynamics considered here, σ(t)

can be expressed as

σ(t) =
1

2
ln

(

1 − x

1 + x

)

dx

dt
, (4.31)

where x =
√

(ρ11(t) − ρ22(t))2 + 4|ρ12(t)|2. We plot the nonequilibrium entropy production

rate σ(t) starting from the pure initial state |1〉 in Fig. 4.8, which clearly shows that

σ(t) becomes negative whenever Γdis(t) becomes negative. It has been shown in Ref.

[168] that for a diagonal qubit state, σ can be negative only when the non-Markovian

dynamics drives the system away from its thermal equilibrium. The example considered

here completely agrees with this fact.

From Eq. (4.30) it is quite evident that the time rate of change of the entropy can be

negative, only when the divisibility of the dynamical map breaks down. Therefore, a

witness of non-Markovianity can be constructed from the negative entropy production

rate for unital channels as follows

ϕ = max
ρin

∫

κ(t)>0

κ(t)dt, (4.32)

where κ(t) = −dS
dt

. Measure of the non-Markovianity based on the entropy production rate

has been considered before for unital dynamical maps[165].
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4.2.1 Rate of change of purity: Detection of non-Markovianity

Let us investigate the non-Markovian behavior by the rate of change of the purity of the

central qubit. If the Lindblad operators {V j} in Eq. 4.29 are Hermitian then the rate of

change of the purity P(= Trρ2), of the central qubit can be given as

dP

dt
= 2Tr[ρ(t)Λ[ρ(t)]] = −

∑

i

Γi(t)Qi(t), (4.33)

where Qi(t) = ||
[

Vi, ρ(t)
] ||2HS . The abbreviation in the subscript stands for Hilbert-Schmidt

norm (||X||HS =
√

Tr(X†X)). As {Qi(t)} are always positive, the positive rate of change of

purity can only occur for the negativity of one or more of {Γi(t)} which corresponds to the

divisibility breaking of the dynamical map. Note that the dynamics considered here can

be expressed as a master equation with the Pauli matrices being the Lindblad operators

(see Eq. 4.17) and the relaxation rates given as Γx(t) = Γy(t) = Γdis(t)/2, Γz(t) = Γdeph(t).

Since the Pauli matrices are Harmitian operators and thereby positive rate of change of

purity of the central spin clearly signifies the non-Markovianity of the dynamical map.

It is also worth mentioning that when the Lindblad operators {V j} are Hermitian or in

other words when they represent observables, then Qi(t) = ||
[

Vi, ρ(t)
] ||2HS , measures the

quantumness [170, 171] of the state ρ(t). Therefore, Eq. 4.33 implies that the more is the

quantumness of the state the more it is sensitive to the environment. After a little algebra,

we find that the rate of change of purity for the initial central qubit state |1〉, is given as

dP

dt
= [A(t) − B(t)]

d

dt
[A(t) − B(t)]. (4.34)

We plot the rate change of the purity with time in Fig. 4.8. From Fig. 4.8 it can be seen

that the positive rate of change of purity occurs periodically, whenever the relaxation rate

Γdis(t) is negative. Since we are taking a initial diagonal state in the computational basis,

there is no effect of the dephasing channel on the central qubit. For a qubit system, its

eigenvalues have the form λ = (1±z)

2
, where 0 ≤ z ≤ 1, and hence, the entropy of a qubit
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system is a monotonically decreasing function of the purity of the qubit. Therefore, signs

of the rates of change of purity and entropy (See Fig. 4.8) are opposite.

σ

dt
dP

Γdis

0

0.01

0.02

−0.01

−0.02

t

0 10 20 30 40

Figure 4.8: Variation of rate of change of the irreversible entropy production σ(t), rate

of change of the purity dP
dt

, and Γdis with time t for the initial state |1〉 with the interac-

tion strength α = 0.03 and number of bath spins N = 20. It is evident that σ(t) and
dP
dt

are negative and positive respectively, whenever Γdis is negative. This implies that

the non-Markovian information backflow revives purity of the state and causes negative

irreversible entropy production rate.

Nowadays with advanced experimental techniques, the purity of a quantum system can

be directly measured [172, 173, 174]. Hence, the non-Markovian revival of purity can be

experimentally verified to demonstrate the non-Markovianity and the negative nonequi-

librium entropy production rate in the laboratory.

4.3 Summary

• Dynamics of a central spin immersed in a completely unpolarized, non-interacting

spin bath is studied.

77



• The Lindblad type master equation corresponding to the exact dynamics is derived.

• The dynamics is proved to be non-Markovian using witness based measures like

the BLP measure, as well as the RHP measure, which is a CP divisibility-checking

measure.

• Negative entropy production rate, and positive rate of change of purity has been put

forward as non-Markovianity witnesses, and verified in the case of central spins.

78



Chapter 5

Non Markovian dynamics of central

spin systems II : Finite temperature

case

1

In the previous chapter, we have analyzed the central spin model for the case of com-

pletely unpolarized, that is, infinite temperature spin baths. In this chapter, we analyze

the more realistic case of finite temperature spin bath and the dynamic and thermodynamic

properties of the central spin model in such a scenario. This is of considerable relevance

for quantum computing schemes with NV centre [175] defects within a diamond lattice.

We show that it is possible to sustain quantumness in this system for relatively longer by

choosing bath parameter values appropriately. Perhaps fascinatingly, we shall show that

quantum coherence persists in the system even for the time averaged state provided certain

resonance conditions are met. The existence of such resonance conditions highlight the

importance of bath engineering techniques. We shall also analyse the trapped information

[176] content in the central spin system, and investigate the ergodicity or lack thereof in

1This chapter is based on the paper "Dynamics and thermodynamics of a central spin immersed in a

spin bath", published in Physical Review A, 96, 052125 (2017).
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the process of equilibration.

5.1 Central spin model and its reduced dynamics

In this section we reiterate the central spin model before deriving the exact dynamical

map for the central spin, and furnish the corresponding Kraus operators. .

5.1.1 The model

We consider a spin- 1
2

particle interacting uniformly with N other mutually non-interacting

spin-1
2

particles constituting the bath.

The total Hamiltonian for this spin bath model is given by

H = HS + HB + HS B (5.1)

=
~

2
ω0σ

0
z +
~ω

2N

N
∑

i=1

σi
z +

~ǫ

2
√

N

N
∑

i=1

(σ0
xσ

i
x + σ

0
yσ

i
y),

with σi
k

(k = x, y, z) as the Pauli matrices of the i-th spin of the bath and σ0
k

(k = x, y, z) as

the same for the central spin and ǫ is the system bath interaction strength. HS , HB and HS B

are the system, bath and interaction Hamiltonians respectively. N is the number of bath

atoms directly interacting with the central spin. The bath frequency and the system bath

interaction strengths have been rescaled as ω/N and ǫ/
√

N respectively. Utilising collec-

tive angular momentum operators for bath spins Jl =
∑N

i=1 σ
i
l
(where l = x, y, z,+,−), we

may write the corresponding Hamiltonians as

HB =
~ω
2N

Jz,

HS B =
~ǫ

2
√

N
(σ0

xJx + σ
0
y Jy).

(5.2)

Now, it is possible to shift the problem to a Bosonic setting using the well known Holstein-
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Primakoff transformation [127].

J+ =
√

Nb†
(

1 − b†b

2N

)1/2

, J− =
√

N

(

1 − b†b

2N

)1/2

b, (5.3)

where b and b† are the respective annihilation and creation operators with the commuta-

tion rule [b, b†] = 1. The Hamiltonians can now be expressed as

HB = − ~ω2
(

1 − b†b
N

)

,

HS B = ~ǫ
[

σ+0

(

1 − b†b
2N

)1/2
b + σ−0 b†

(

1 − b†b
2N

)1/2
]

.
(5.4)

5.1.2 Dynamical map of the central spin

We assume that the initial system bath joint state is a product state ρS B(0) = ρS (0)⊗ρB(0),

which ensures the complete positivity of the reduced dynamics [93, 92]. The initial bath

state is considered as a thermal state ρB(0) = e−HB/kBT/Z, where kB, T and Z are the

Boltzmann constant, bath temperature, and the partition function respectively. Now let

us the evolution of the state |ψ(0)〉 = |1〉|x〉, where |1〉 is the system excited state and |x〉

is an arbitrary bath state. Let the unitary orbit U(t) = exp
(

− iHt
~

)

, transform the state to

|ψ(t)〉 = γ1(t)|1〉|x′〉 + γ2(t)|0〉|x′′〉. We shall now introduce two operators Â(t) and B̂(t)

corresponding to the bath Hilbert space, which follow the relations Â(t)|x〉 = γ1(t)|x′〉

and B̂(t)|x〉 = γ2(t)|x′′〉. Then, we have |ψ(t)〉 = Â(t)|1〉|x′〉 + B̂(t)|0〉|x′′〉. Now from the

equation of motion d
dt
|ψ(t)〉 = − i

~
H|ψ(t)〉, we have

dÂ(t)

dt
= −i

(

ω0

2
− ω

(

1 − b†b
2N

))

Â(t) − iǫ
(

1 − b†b
2N

)1/2
bB̂(t),

dB̂(t)

dt
= i

(

ω0

2
+ ω

(

1 − b†b
2N

))

B̂(t) − iǫb†
(

1 − b†b
2N

)1/2
Â(t).

(5.5)

Writing Â(t) = Â1(t) and B̂(t) = b†B̂1(t), we have

dÂ1(t)

dt
= −i

(

ω0

2
− ω

(

1 − n̂
2N

))

Â1(t) − iǫ
(

1 − n̂
2N

)1/2
(n̂ + 1)B̂1(t),

dB̂1(t)

dt
= i

(

ω0

2
+ ω

(

1 − n̂+1
2N

))

B̂1(t) − iǫ
(

1 − n̂
2N

)1/2
Â1(t),

(5.6)

81



where n̂ = b†b is the number operator. The operator equations 5.6 can be straight-

forwardly solved and the solutions are functions of n̂ and t. We note that Â1(t)|n〉 =

A1(n, t)|n〉, where n̂|n〉 = n|n〉. The time-evolved reduced state of the qubit (|1〉〈1|) is now

obtained by tracing out the bath

φ(|1〉〈1|) = TrB

[|ψ(t〉〈ψ(t)|)] =
1
Z

∑N
n=0

(

|A1(n, t)|2|1〉〈1| + (n + 1)|B1(n, t)|2|0〉〈0|
)

e
− ~ω

kBT
(n/2N−1/2)

,
(5.7)

where, from the solution of 5.6, we have |B1(n, t)|2 = 4ǫ2(1−n/2N)
sin2(ηt/2)

η
and |A1(n, t)|2 =

1 − (n + 1)|B1(n, t)|2.

We similarly define χ(0) = |0〉|x〉 and χ(t) = Ĉ(t)|0〉|x〉 + D̂(t)|1〉|x〉. Proceeding as above

and substituting Ĉ(t) = Ĉ1(t), D̂(t) = bD̂1(t), we find

dĈ1(t)

dt
= i

(

ω0

2
+ ω

(

1 − n̂
2N

))

Ĉ1(t) − iǫn̂
(

1 − n̂−1
2N

)1/2
D̂1(t),

dD̂1(t)

dt
= −i

(

ω0

2
− ω

(

1 − n̂−1
2N

))

D̂1(t) − iǫ
(

1 − n̂−1
2N

)1/2
Ĉ1(t),

(5.8)

By solving the equation above, we find

φ(|0〉〈0|) = TrB

[|χ(t〉〈χ(t)|)]

= 1
Z

∑N
n=0

(

n|D1(n, t)|2|1〉〈1| + |C1(n, t)|2|0〉〈0|
)

e
− ~ω

kBT
(n/2N−1/2)

,
(5.9)

with |D1(n, t)|2 = 4ǫ2(1 − (n − 1)/2N)
sin2(η′t/2)

η′ and |C1(n, t)|2 = 1 − n|D1(n, t)|2. For the

coherences of the reduced density matrix, we can derive the following expression,

φ(|1〉〈0|) = TrB

[|ψ(t〉〈χ(t)|)]

= 1
Z

∑N
n=0

(

A1(n, t)C∗1(n, t)|1〉〈0|
)

e
− ~ω

kBT
(n/2N−1/2)

,
(5.10)

with A1(n, t)C∗1(n, t) = ∆(t).

Armed with these results, we can finally write down the time-evolved state of the central
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spin qubit as

ρS (t) = TrB

[

e−iHt/~ρS (0) ⊗ ρB(0)eiHt/~
]

,

=























ρ11(t) ρ12(t)

ρ21(t) ρ22(t)























,
(5.11)

where the elements of the central spin qubit density matrix are given as

ρ11(t) = ρ11(0)(1 − α(t)) + ρ22(0)β(t),

ρ12(t) = ρ12(0)∆(t),
(5.12)

with

α(t) = 1
Z

∑N
n=0 4(n + 1)ǫ2

(

1 − n
2N

)

sin2(ηt/2)

η2 e
− ~ω

kBT
(n/2N−1/2)

,

β(t) = 1
Z

∑N
n=0 4nǫ2

(

1 − n−1
2N

)

sin2(η′t/2)

η′2 e
− ~ω

kBT
(n/2N−1/2)

,

∆(t) = 1
Z

∑N
n=0 e−iωt/2N (cos(ηt/2) − i(ω0 − ω/2N) sin(ηt/2))×

(cos(η′t/2) + i(ω0 − ω/2N) sin(η′t/2)) e
− ~ω

kBT
(n/2N−1/2)

,

(5.13)

and,

η =

√

(

ω0 − ω
2N

)2
+ 4ǫ2(n + 1)

(

1 − n
2N

)

,

η′ =

√

(

ω0 − ω
2N

)2
+ 4ǫ2n

(

1 − n−1
2N

)

,

(5.14)

where the partition function is Z =
∑N

n=0 e
− ~ω

kBT
(n/2N−1/2)

.

5.1.3 Operator sum representation

As a stepping stone towards deriving the master equation, first we derive the Kraus opera-

tor representation of the dynamics, which is expressible in the form ρ(t) =
∑

i Ki(t)ρ(0)K†
i
(t).

The Kraus operators can be constructed [159] from the eigenvalues and eigenvectors of

the corresponding Choi-Jamiolkowski (CJ) state [160, 159]. The CJ state for a dynamical

map Φ[ρ] acting on a d dimensional system is given by (Id ⊗Φ)[Φ+], with Φ+ = |Φ+〉〈Φ+|
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being the maximally entangled state in d × d dimension. For the particular evolution

considered here, we find the CJ state to be



























































1−α(t)

2
0 0 ∆(t)

2

0 α(t)

2
0 0

0 0
β(t)

2
0

∆∗(t)
2

0 0
1−β(t)

2



























































. (5.15)

From the eigensystem of the CJ state given in (5.15), we derive the Kraus operators as

K1(t) =
√

β(t)























0 1

0 0























,

K2(t) =
√
α(t)























0 0

1 0























,

K3(t) =
√

X1

1+Y2
1























Y1eiθ(t) 0

0 1























,

K4(t) =
√

X2

1+Y2
2























Y2eiθ(t) 0

0 1























,

(5.16)

where θ(t) = arctan[∆I(t)/∆R(t)] and

X1,2 =

(

1 − α(t) + β(t)

2

)

± 1

2

√

(α(t) − β(t))2 + 4|∆(t)|2,

Y1,2 =

√

(α(t) − β(t))2 + 4|∆(t)|2 ∓ (α(t) − β(t))

2|∆(t)| .
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5.1.4 Coherence and Entanglement dynamics of the central spin

It is well-known that for usual Markovian systems, quantum features like entanglement or

coherence decay monotonically over time and eventually disappear [33, 64, 177]. Hence,

the obvious question arises, whether it is possible to preserve quantum features for long

periods of time for the non-Markovian central spin system.

Quantum Coherence: We choose the l1-norm of coherence as a quantifier of quantum

coherence. For a qubit, the l1-norm of coherence [33] Cl1 is simply given by twice the

absolute value of any off-diagonal element, i.e., 2|ρ12(t)|. The temporal dependence of

coherence now goes as

Cl1(t) = Cl1(0)|∆(t)|. (5.17)

One immediate corollary of the above is that we cannot create coherence over and above

the coherence present in the system initially, even though this is a strongly non-Markovian

system. In subsequent analysis, we can thus take the initial state to be maximally coherent

without loss of generality.

Quantum Entanglement: Quantum entanglement is a fragile resource[178], and fades

quickly in the Markovian scenario [177]. We envisage a situation where the central spin

is initially entangled to an ancilla qubit A in addition to being acted on by the spin bath.

There is no subsequent interaction between the ancilla qubit and the central spin. We shall

analyze entanglement dynamics of the two-qubit state ρS A. The factorization theorem for

quantum entanglement [179] yields,

E(ρS A(t)) = E(ρS A(0))E (χS A(t)) , (5.18)

where χS A(t) is the CJ State in 5.15 and the entanglement quantifier E is is chosen as con-

currence [106], which, for a two qubit system is expressed as E(ρAB) = max{0, λ1 − λ2 −

λ3 − λ4}, where λ1, . . . , λ4 are the square roots of the eigenvalues of ρABρ̃AB in decreasing

order, ρ̃AB = (σy ⊗ σy)ρ
∗
AB(σy ⊗ σy). The entanglement of the Choi state can now be ex-

85



pressed as E(χS A(t)) = max
(

0, |∆(t)| −
√

α(t)β(t)
)

. Again, since the initial entanglement

E(ρS A(0)) is simply a constant scaling term, we may assume a maximally entangled initial

state ρS A(0) without loss of generality.

Now we discuss the temporal behaviour of quantum coherence and entanglement with

the bath temperature T , the interaction parameter ǫ and bath size (N). If the spin bath

is in a very high temperature, thermal noise may be expected to triumph over quantum

features, this intuition is backed up by Fig. 5.1(a) and 5.1(d). However, small fluctua-

tions in quantum coherence persist for a long time due to the non-Markovianity of the

dynamics. On the contrary, for low bath temperature, as demonstrated in Fig. 5.1(a),

quantum coherence remains almost frozen. The dynamics of entanglement as shown in

Fig. 5.1(d), is quite similar to that of coherence, albeit with greater fragility. This is in line

with the usual observation of persistence of coherence, but not of entanglement, in similar

situations[180, 181, 182]. In the opposite regime, for low enough temperatures, entangle-

ment dynamics is very much similar to that of coherence. Another tuneable parameter

is the system-bath interaction strength ǫ, which depends on the physical realization of

the spins. For small enough interaction, the system expectedly evolves almost indepen-

dently from the bath and therefore the coherence and entanglement of the system persists

quite long, as shown in Fig. 5.1(b) and 5.1(e). On the other hand, if ǫ is of the same

order as the energy difference of the spin levels of the central spin, we observe a rapid

decay in quantum coherence with the presence of usual non-Markovian fluctuations. In

this case, entanglement decays to zero almost immediately with no revival detected in the

time span considered in Fig. 5.1(e). Eq. 5.13 enables us to investigate the effect of the

bath size on the dynamics of coherence and entanglement. If the bath is large, as depicted

in Fig. 5.1(c), quantum features like entanglement or coherence drop off rapidly. In case

the number of spins in the bath is not very large, the evolution of coherence undergoes

periodic revivals.

For the sake of concretenss, assuming typical order of magnitude values of various param-
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eters governing the dynamics of quantum coherence, we are able to estimate the timescale

for which coherence is sustained. Supposing the coupling strength ǫ ∼ 1 MHz, and as-

suming the spins having intrinsic energies ∼ 100 MHz, we can conclude that at room

temperature (T = 300 K) and for N = 100, the value of coherence is guaranteed to be at

least 80 percent of the initial coherence for at least ∼ 100 µs. Interestingly, this timescale

for guaranteeing at least 80 percent of the initial coherence is not too sensitive on the bath

temperature in practice. For example, if we assume the bath to be in a very low temp, say

10−4 K, then this time increases to only around ∼ 300 µs. It implies that for the open sys-

tem considered in this paper, the environment can be designed in such particular ways that

quantum signatures like coherence or entanglement can be preserved for a long period of

time. For diminishing number of bath spins, steady oscillations of both coherence and

entanglement increases both in magnitude and frequency, which can be attributed to the

finite size effect. We can contrast the situation with the the extreme case where only one

auxillary spin is coupled to the central spin. In that extremal case, the coherence merely

oscillates steadily, which is to be expected. But as the number of bath spin increases, the

coherence suppression also increases.

5.2 Analysis of time averaged dynamical map

We now focus our attention on the long time averaged state of the central spin, and its

coherence. Another question we address is whether the long time averaged state is a true

fixed point of the dynamical map, i.e. independent of initial condition. The time-averaged

state of the central qubit is expressible as

ρ = lim
τ→∞

∫ τ

0
ρ(t)dt

τ
. (5.19)
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Figure 5.1: Dynamics of quantum coherence and entanglement for the central qubit im-

meresed in the spin bath.

Explicitly,

ρ11 = limτ→∞

∫ τ

0
ρ11(t)dt

τ
= ρ11(0) (1 − α) + ρ22(0)β,

ρ12 = ρ12(0)∆,

where α, β and ∆ are long time averages of α(t), β(t) and ∆(t) respectively. They can be

simplified in the following way,

α =
∑N

n=0 2(n + 1)ǫ2
(

1 − n
2N

)

1
η2

e
− ~ω

kBT
(n/2N−1/2)

Z
, (5.20)
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The above result is obtained by noting that the average of sin2(θ(t)) over any integer

number of time periods = 1
2
. Similarly we obtain,

β =

N
∑

n=0

2nǫ2

(

1 − n − 1

2N

)

1

η′2
e
− ~ω

kBT
(n/2N−1/2)

Z
(5.21)

The equation for population dynamics shows that even the very long time averaged state

retains the memory of the initial state, which is a signature of the system being strongly

non-Markovian. This initial state dependence is depicted in Fig. 5.2(a). It is observed

that the parameter
(

ρ11

ρ22

)

which captures the population distribution for long time averaged

state is heavily dependent on the initial ground state population. If the initial population

of the ground state increases, so does the population of the ground state for long time

averaged state. However, in case the bath is very large, the population statistics for the

long time averaged state is markedly less sensitive to the initial population. This leads us

to posit that the only true fixed point independent of the initial conditions for this system

exists only in the limit N → ∞. We also observe that in the limit ρ11(0) = ρ22(0) = 1
2
,

(

ρ11

ρ22

)

tends towards 1 regardless of bath size N indicating the dynamics is almost unital.

Also we should mention that in the thermodynamic limit (N → ∞), when the temperature

of the bath is infinite, the state ρ̄11 = ρ̄22 = 1/2 is not only the fixed point of the dynamics

but the canonical equilibrium state also. Thus we can conclude that in the limit N → ∞

and T → ∞, the present open system dynamics is ergodic. Moreover, we see that the

system-bath coupling strength not only affects the timescale of evolution but also plays

significant role in the population statistics of the time averaged state. This we can see

from Eq.s 5.20 and 5.21, which is also depicted in Fig. 5.2(b). Also for most of the cases,

we have ∆ = 0. It is interesting to note that the long-time averaged state ρ is incoherent in

general. This implies, even though quantum coherence or entanglement persists for quite

a long time if the bath temperature is very low, as depicted in Fig. 5.1(a) or Fig. 5.1(d)

respectively, they must eventually decay. It is important to mention that there are specific

resonance conditions under which ∆ can have finite value, which will be analysed in the
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following section.

5.2.1 Resonance Condition for long lived quantum coherence

We have mentioned previously that the long time averaged state is in general diagonal,

but for very specific choices of parameter values, this is not true and there indeed is long

lived quantum coherence even in the long time averaged state. This can be of significant

interest for theoretical and experimental purposes. For the off-diagonal component, the

real and imaginary parts of ∆(t), defined as ∆R(t) and ∆I(t) respectively equals to

∆R(t) =

∑

n cos ωt
2N

[

cos
ηt

2
cos

η′t
2
+

(ω0− ω
2N )

2

ηη′ sin
ηt

2
sin

η′t
2

]

e
− ~ω

kBT
(n/2N−1/2)

Z

+
∑

n

(

ω0 − ω
2N

)

[

sin ωt
2N

cos
ηt

2 sin
η′t
2

η′ − sin ωt
2N

sin
ηt

2 cos
η′t
2

η

]

e
− ~ω

kBT
(n/2N−1/2)

Z
,

∆I(t) =

−∑

n sin ωt
2N

[

cos
ηt

2
cos

η′t
2
+

(ω0− ω
2N )

2

ηη′ sin
ηt

2
sin

η′t
2

]

e
− ~ω

kBT
(n/2N−1/2)

Z

+
∑

n

(

ω0 − ω
2N

)

[

cos ωt
2N

cos
ηt

2 sin
η′t
2

η′ − cos ωt
2N

sin
ηt

2 cos
η′t
2

η

]

e
− ~ω

kBT
(n/2N−1/2)

Z
.

(5.22)

We always have

sin θ1(t) sin θ2(t) sin θ3(t) = sin θ1(t) cos θ2(t) cos θ3(t) = 0.

For each of the rest of the terms, it can be shown that the criteria for non-zero time

averaged coherence reads

ω

2N
=

∣

∣

∣

∣

∣

η ± η′
2

∣

∣

∣

∣

∣

.

For the condition ω
2N
=

∣

∣

∣

∣

η+η′

2

∣

∣

∣

∣

to hold, it is easily shown that

N ≤ ω

ω0

. (5.23)
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This, given that ω and ω0 are usually of the same order of magntitude, is an unrealistic

demand. We thus concentrate on the other condition ω
2N
=

(

η−η′
2

)

. The equation ω
2N
=

(

η−η′
2

)

can be explicitly expanded out and the following quadratic equation in n is obtained

(

ǫ4

N2 +
ǫ2ω2

2N3

)

n2 −
(

2ǫ4

N
+ ǫ2ω2

N2

)

n+
(

ω0ω
3

4N3 −
ω2ω2

0

4N2 − ǫ2ω2

2N2 + ǫ
4

)

= 0.
(5.24)

By solving this quadratic and putting in the constraint that n is an integer, we derive the

following resonance condition.

N ± ǫω
2

√

q1

8N3 +
q2

16N4 +
q3

32N5 − q4

64N6

ǫ4

4N2 +
ǫ2ω2

8N3

∈ Z+ (5.25)

with

q1 = ǫ
4, q2 =

(

ǫ2ω2 + ǫ2ω2
0 + 2ǫ4

)

,

q3 =
(

ω2ω2
0 + 2ǫ2ω2 − 2ǫ2ωω0

)

, q4 = 2ω0ω
3,

where Z+ is the set of integers in the range ∈ [0,N]. Assuming ω = ω0 = 1, we obtain the

resonance condition as the following in the limit N ≫ 1,

N ±
√

N

ǫ
√

2
∈ Z+, (5.26)

Thus, in order to ensure that a non zero amount of quantum coherence survives in the

long time averaged state, we have to tune the interaction parameter exactly in such a way

that N ±
√

N

ǫ
√

2
is a positive integer. This simple illustration demonstrates the importance of

precise bath engineering in sustaining coherence.

5.2.2 Information trapping in the Central Spin System

Let us now investigate whether or under what condition the dynamical map considered

here does have a true fixed point. The time averaging map Λ takes any initial state ρ to the
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Figure 5.2: Variation of the ratio of long time averaged populations at excited and ground

state ρ̄11/ρ̄22 with (a) initial population of the excited state ρ11(0) and (b) interaction

strength ǫ, keeping the number of bath spins N as a parameter.

corresponding time averaged state ρ as given above. Let us now assume that the system

is in an initial state ρ. Now let us consider whether the corresponding time averaged state

ρ invariant under the map Λ ?" This can only happen when the map Λ is an idempotent

one, i.e. Λ
2
= Λ. Clearly, if the time averaged state did not retain the memory of the

initial state, this would be the case. Therefore the deviation from idempotence of the map

Λ can serve as a useful measure of the initial state dependence of the system in the long

run, which is termed as Information Trapping [176] and defined by

T
(

Λ
)

= max
ρ∈HS

D

[

Λ
2
ρ,Λρ

]

, (5.27)

where D[.,.] is a suitable distance measure on the Hilbert space of the system. Choosing

the trace norm as our distance measure, the expression for T in the central spin model is

computed as

T
(

Λ
)

= |β̄ − ᾱ|. (5.28)

We immediately note that this quantity vanishes iff β̄ = ᾱ, which is the case only in the

limit N → ∞,T → ∞, i.e. the thermodynamic and high temperature limit. The above

statement is confirmed in Fig. 5.3. As we increase the temperature of the bath, the trapped

information T asymptotically vanishes. It is also observed that at any given temperature,
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Figure 5.3: Variation of information trapping T with temperature T , keeping the number

of bath spins N as a parameter.

the amount of information trapped is greater for a smaller sized bath. This is consistent

with the observation that a very large bath is required for T to vanish. Fig. 5.4(a) and

5.4(b) lead to the observation that as the system-bath coupling gets stronger, the amount

of information trapping, i.e. the dependence of the time averaged state on the initial state,

also increases.

5.3 Canonical master equation and the process of equili-

bration

Finding the generator of a general dynamical evolution of a quantum system is one of

the fundamental problems in the theory of open quantum systems, which leads to a better

understanding of the actual nature of decoherence. It is our aim here to derive a canonical
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Figure 5.4: Variation of information trapping T with interaction strength ǫ at (a) low

temperature and (b) high temperature, keeping the number of bath spins N as a parameter.

master equation without resorting to the weak coupling and the Born-Markov approx-

imation for the reduced dynamics presented in Eq. 5.12, by virtue of which we will

later analyse various thermodynamic aspects of the qubit system. Using the formalism of

[122], we obtain the following exact time local master equation for the central spin in the

Lindblad form.

ρ̇(t) = i
~
δ(t)[ρ(t), σz] + Γdeph(t)

[

σzρ(t)σz − ρ(t)
]

+ Γdis(t)
[

σ−ρ(t)σ+ − 1
2
{σ+σ−, ρ(t)}

]

+ Γabs(t)
[

σ+ρ(t)σ− − 1
2
{σ−σ+, ρ(t)}

]

,

(5.29)

where σ± =
σx±iσy

2
, and Γdis(t),Γabs(t),Γdeph(t) are the rates of dissipation, absorption and

dephasing processes respectively, and δ(t) corresponds to the unitary evolution, respec-
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tively, given as

Γdis(t) =
[

d
dt

(α(t)−β(t))

2
− (α(t)−β(t)+1)

2
d
dt

ln(1 − α(t) − β(t))
]

,

Γabs(t) = −
[

d
dt

(α(t)−β(t))

2
− (α(t)−β(t)−1)

2
d
dt

ln(1 − α(t) − β(t))
]

,

Γdeph(t) = 1
4

d
dt

[

ln
(

1−α(t)−β(t)

|∆(t)|2
)]

,

δ(t) = −1
2

d
dt

[

ln
(

1 +
(

∆R(t)

∆I (t)

)2
)]

.

(5.30)

For the detailed derivation of the master equation, one can look into the Refs. [183, 122].

Note that the system environment interaction generates a time dependent Hamiltonian

evolution in the form of δ(t). This is analogous to the Lamb-shift correction in the unitary

part of the evolution. Complete positivity [137, 66, 152, 153, 63, 65] is one of the impor-

tant properties of a general quantum evolution, following the argument that for any valid

quantum dynamical map, the positivity must be preserved if the map is acting on a system

which is correlated to an ancilla of any possible dimension. For a Lindblad type evolution,

this is guaranteed by the condition
∫ t

0
Γi(s)ds ≥ 0 [157], which can be easily verified for

the specific decay rates given in (5.30). However, since the dynamical map here is derived

starting from an initial product state, complete positivity is always guaranteed [158, 89].

5.3.1 The principle of detailed balance

Here we investigate the process of approach towards steady state for the open system

dynamics considered in this paper. There are various different approaches to explore the

process of equilibration in an open system dynamics, each of which has their own merit

[184]. In this work we carry out this investigation for the specific system considered here

from a few different aspects, one of which is the method of quantum detailed balance.

When two or more irreversible processes occur simultaneously, they naturally interfere
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with each other. If due to the interplay between those different processes, over a sufficient

period of evolution time, a certain balance condition between them is reached, then the

system reaches a steady state. Consider the Pauli master equation for the atom undergoing

such processes [91] given by

Ṗn =
∑

m

γnmPm −
∑

m

γmnPn, (5.31)

where Pn is the diagonal matrix element of the density operator and γmn is the transition

probability for the process |m〉 → |n〉. The well known detailed balance condition [185,

186] for Pauli master equation is given as γmnP
(s)
n = γnmP

(s)
m , where P

(s)
n is diagonal density

matrix element at the steady state. We first derive a rate equation of the form of Eq.5.31

from the master equation 5.29 in order to study the detailed balance for our particular

system [187, 188]. Let us consider the unitary matrix U(t), which diagonalizes the system

density matrix (ρ(t)) as ρD(t) = U(t)ρ(t)U†(t). Then we can straightforwardly derive the

equation of motion for the diagonalized density matrix as

ρ̇D(t) = i
~
δ(t)[ρD(t), σ̄z(t)]

+ Γdeph(t)
[

σ̄z(t)ρD(t)σ̄z(t) − ρD(t)
]

+ Γdis(t)
[

σ̄−(t)ρD(t)σ̄+(t) − 1
2
{σ̄+(t)σ̄−(t), ρD(t)}

]

+ Γabs(t)
[

σ̄+(t)ρD(t)σ̄−(t) − 1
2
{σ̄−(t)σ̄+(t), ρD(t)}

]

,

(5.32)

where Ā j(t) = U(t)A jU
†(t). Considering Pa(t) = 〈a|ρD(t)|a〉, we get the rate equation

similar to the Pauli equation as

Ṗa(t) =
∑

i

∑

b

|〈a|Āi(t)|b〉|2Pb(t) −
∑

i

〈a|Ā†
i
(t)Āi(t)|a〉Pa(t), (5.33)

where Āi(t)s are all the Lindblad operators in the diagonal basis as given in Eq. 5.32.

For the instantaneous steady state we must have Ṗa(t) = 0, for all a. Thus, we have the
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detailed balance condition

∑

i Γi(ts)〈a|Ā†i (ts)Āi(ts)|a〉Pa(ts)
∑

i

∑

b Γi(ts)|〈a|Āi(ts)|b〉|2Pb(ts)
= 1, (5.34)

where ts is the time at which the system comes to the steady state. From Eq. 5.32 and

5.34, we arrive at the following condition

D(ts) =
Γdis(ts)Pa(ts)

Γabs(ts)Pb(ts)
= 1, (5.35)

where Pa,b(t) = 1
2
(1 ±

√

(ρ11(t) − ρ22(t))2 + 4|ρ12(t)|2) are the eigenvalues of the system

density matrix. Any deviation of D(t) from its steady state value, implies that the system

has not attained a steady state at that instant of time. The magnitude of such deviations

may be regarded as a measure of how far away the system is from equilibrating. In the

following we study the time dynamics of deviations from the detailed balance condition

Eq. 5.35.

From Fig. 5.5, we observe that the deviations from detailed balance condition are quite

persistent in the low temperature limit. In the opposite limit, as we go on increasing the

bath temperature, Fig. 5.5 shows that the fluctuations in deviation from the detailed bal-

ance condition increasingly tend to damp down. In the limit of a completely unpolarized

bath, the detailed balance condition is met if the system size is large enough. For an

initially coherent central qubit, any study of approach towards steady state has to also

take the coherence dynamics into account. In the very low temperature limit, the value

of quantum coherence (Fig. 5.1(a)) is encapsulated within a narrow band whose width

does not decay much over time. The persistence of coherence in this case implies the

deviations are further away from D(t) = 1 than in Fig. 5.5. In the opposite limit of a high

temperature bath, quantum coherence dies down very quickly, as seen in Fig. 5.1(a). This

explains why, just like Fig. 5.5, D(t) again approaches 1 in Fig. 5.6. In the intermediate

regime, as we increase the temperature, the approach towards D(t) = 1 becomes faster.
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Figure 5.5: Variation of D(t) with time, keeping temperature T as a parameter. ρ11(0) =

0.5, ρ12(0) = 0.

If the system-bath coupling strength is very weak, we see from Fig. 5.7 that the devia-

tion of D(t) from unity is very small. This is understandable because as the system-bath

interaction gets weaker, the change in the state of the system due to the exposure of bath

interaction becomes slower and the process becomes more and more quasi-static. Hence,

the system remains close to its steady state. As we go on increasing the strength of the

interaction, the fluctuations in population levels increase, implying that the deviation from

detailed balance condition also increases which is confirmed in Fig. 5.7. With increas-

ing the bath size, we see from Fig. 5.8 that deviations from detailed balance condition

becomes smaller and smaller. This is fully consistent with the observation for many phys-

ical systems that energy exchange and consequent thermalization of a system is better

facilitated by having a large bath rather than a small ancilla attached to it.
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Figure 5.6: Variation of D(t) with time, keeping temperature T as a parameter. ρ11(0) =

0.5 , ρ12(0) = 0.2.

5.3.2 Irreversible Entropy production

Here we investigate how this system approaches towards a steady state from another ther-

modynamic perspective, i.e. the phenomenon of irreversible entropy production (IEP).

The entropy production rate is formally defined as the negative rate of change of relative

entropy between the instantaneous state and the steady state, i.e., Σ(t) = − d
dt

S (ρ(t)||ρst).

For an ideal Markovian evolution, Σ(t) is always positive [150]. This happens for few

ideal situations and in general is not satisfied.

The rate equation 5.33 can be compactly represented as Ṗa(t) =
∑

bLabPb(t), with

L =























−Γdis(t) Γabs(t)

Γdis(t) −Γabs(t)























.

The entropy of the system is defined as S (t) = −∑

b Pb(t) ln Pb(t). By differentiating S (t)
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Figure 5.7: Variation of D(t) with time, keeping interaction strength ǫ as a parameter.

ρ11(0) = 0.5, ρ12(0) = 0.

with respect to time, it can be easily shown that

Ṡ (t) =
∑

abLabPb(t) ln
(LabPb(t)

LbaPa(t)

)

−∑

abLabPb(t) ln
(

Lab

Lba

)

,

= Σ(t) + Φ(t).
(5.36)

The first term in the right hand side can be identified as the entropy production rate Σ(t)

and the second term Φ(t) defines the effective rate at which entropy is transferred from

the environment to the system. For the particular central spin system considered in this

paper, the IEP rate is given by

Σ(t) = (Γdis(t)Pa(t) − Γabs(t)Pb(t)) ln

(

Γdis(t)Pa(t)

Γabs(t)Pb(t)

)

. (5.37)

We see from 5.37 that IEP rate is related to D(t) and at the time (ts) when system obeys

the detailed balance condition,we have Σ(ts) = 0. We also see from the expression of

100



T = 0.01, N= 100

ε = 0.1

ε = 0.2

ε = 0.5

 D(t)

1

1.1

1.2

1.4

1.5

1.6

t
0 10 20 30 40 50

Figure 5.8: Variation of D(t) with time, keeping N as a parameter. ρ11(0) = 0.5, ρ12(0) =

0.

IEP rate that for Markovian situation (i.e. Γdis(t),Γabs(t) ≥ 0), it will always be non-

negative. This behaviour is illustrated in Fig. 5.9. Whenever the irreversible entropy

production rate Σ(t) is negative, the absorption and dissipation rates are also negative

and vice versa in the time span we probed. Since negativity of at least one Lindblad

coefficient Γ(t) is a necessary and sufficient condition [65] for non-Markovianity, this

leads us to conclude that whenever this system is non-Markovian, a negative IEP rate Σ(t)

is obtained. While the negativity of IEP rate at any point in the dynamics necessarily

implies that the dynamics is non-Markovian, the opposite is not true in general. However,

in this illustration we note that the opposite is also true. If the bath temperature is very low,

we have already seen from Fig. 5.1(a) that the quantum coherence of the central spin qubit

persists for a long time, resulting in persistent deviations from the steady state detailed

balance condition as depicted in Fig. 5.5. Therefore, it is expected that the IEP rate will

also fluctuate and not show any sign of dying down to zero. This is indeed captured in
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Fig. 5.10. In the opposite limit, as we go on increasing the bath temperature, as seen

Fig. 5.5, the approach towards a steady state becomes quicker. This is again confirmed in

Fig. 5.10, where the fluctuations in IEP rate die down more and more quickly for higher

temperatures. As we have already observed in Fig. 5.8, the approach towards a steady

state through exchange of energy between the system and the bath is quicker for a larger

bath. This is again confirmed in Fig. 5.11 which shows the IEP rate becoming smaller

and smaller as we increase the bath size. The period of fluctuations also diminish with

increasing bath size.

5.4 Summary

• The exact finite temperature dynamics of the central spin model is studied.
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• Quantum master equation of the Lindblad type is derived.

• A resonance condition is obtained for the persistence of coherence in the long-time

averaged state.

• Irreversible entropy production rate, and the deviation from ergodicity, as measured

by trapped information, and departure from the detailed balance conditons have

been thoroughly studied.
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Chapter 6

Quantum speed limit constraints on

absorption refrigerators

1

In the last two chapters, we have analyzed the effect of a non-Markovian thermal bath on

the preservation of quantum features of a system. In this chapter, we shall be concerned

with the opposite question - viz, how does a genuinely quantum mechanical aspect of

dynamics affect the performance of a thermal machine ?

In contradistinction with the implicit grounding of classical thermodynamics on a deter-

ministic dynamical model, small scale thermal machines with constituents obeying laws

of quantum theory have only recently come within our purview [189, 190]. However,

these quantum machines still run up against the Carnot bound and barring non-thermal

reservoirs like coherent [191] or squeezed baths [192, 193, 194, 195], generally fail to

surpass it. Yet, the Carnot bound, attainable only through an infinitely slow process, is of

limited practical utility compared to the performance of thermal devices at finite power.

Classically, a bound on the efficiency at maximum power for cyclic thermal engines[196,

1This chapter is based on the paper "Quantum speed limit constraints on a nanoscale autonomous re-

frigerator", published in Physical Review E, 97, 062116 (2018).
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197, 198] and refrigerators [199, 200, 201] was obtained in several works, as a figure of

merit more relevant to practical scenarios. Investigations on finite time cyclic thermody-

namic processes for quantum thermal machines [202, 203, 204] have already provided

crucial physical insight on topics ranging from the origin of friction[205, 206, 207, 208]

in thermal processes to the third law of thermodynamics [209, 210].

In this chapter, we shall work with self-contained thermal machines where the energy

required to perform a task, e.g. cooling a cold bath, is provided by a third bath, thus re-

quiring no external control. Motivated by algorithmic cooling, such a quantum absorption

refrigerator (QAR) was proposed in [98], which provides the basis for our investigation.

Numerous other proposals of QAR have already been put forward [211, 212, 213, 214],

and experimental realization has been recently achieved in ion trap systems [215]. De-

pending upon the choice of initial parameters, such a setup at its steady state may be

shown to act as a refrigerator.

The key motivation to the work presented in this chapter is the following - in addition to

finding the steady state performance of such refrigerators, one should also consider how

long it takes for the system to reach the steady state. If the system cools very reliably at

steady state but only gets there very slowly, it is of limited utility. In this paper, we seek to

understand the behaviour of QAR conditioned through the intrinsic restriction to evolution

of a quantum system through its state space. The latter feature, known as the quantum

speed limit is a fundamental feature of quantum dynamics and finds several applications

in quantum computation, control theoretic settings and in the study of shortcut towards

adiabaticity (See, for example, Ref. [216]. and references therein for an overview). To

this end, we introduce and analyze a figure of merit, called the “bounding second order

cooling rate" (BSOCR). This is defined as the product of the equilibrium cooling rate and

the maximum possible speed of attaining equilibrium. We link the proposed figure of

merit with the transient features of the refrigerator and go on to illustrate the dependence

of BSOCR on various system parameters. We shall show that BSOCR increases linearly
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        =
g |101〉〈010| 
         +
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Er= Ec + Eh

EhEc

Tr

ThTc

Figure 6.1: Schematic diagram of the absorption refrigerator model used in this work.

with the coupling strength. We shall also demonstrate that the presence of quantumness

in the form of initial coherence in the system can boost the value of BSOCR. This is

followed up by an investigation of the figure of merit vis-a-vis the refrigeration efficiency.

We show that in the high temperature limit and subject to other specific conditions, we can

recover an expression for efficiency at maximum value of BSOCR which scales similarly

to the Curzon-Ahlborn bound.

6.1 Absorption refrigerator at steady state

We consider the model of three qubit absorption refrigerator introduced in Ref. [98]. A

schematic diagram of the model is furnished in Fig. 6.1 above. The three qubits consisting

the refrigerator are coupled to three different baths at different temperatures. The first

qubit which is the object to be cooled, is coupled to the coldest bath at temperature Tc.

The second qubit which takes energy from the first qubit and disposes into the environvent,

is coupled to a hotter bath at temperature Tr. The third and final qubit which provides the

free energy for refrigeration is coulped to the hottest bath at temperature Th. Here Tc ≤

Tr ≤ Th.Without loss of generality, the ground state energy of all the qubits are considered

107



to be zero and the excited state energy of the i-th qubit is Ei, where i ∈ {c, r, h}. The free

Hamiltonian of the combined system is H0 =
∑

i∈{c,r,h} Ei|1〉i〈1|. In thermal equilibrium the

qubits are in the corresponding thermal states τi = ri|0〉〈0| + r̄i|1〉, where

ri = (1 + e−βiEi)−1, (6.1)

is the probability of the i-th qubit to be in the ground state and r̄i = 1 − ri. Here β is

the inverse temperature 1/T . The total system is initially in a product state of locally

thermal qubits ρ0 = τc ⊗ τr ⊗ τh. The qubits interact via the interacting hamiltonian

Hint = g(|101〉〈010| + |010〉〈101|). Here the order of the qubits is c, r, h which is main-

tained throughout the chapter unless otherwise mentioned. The interaction strength g is

taken weak enough compared to the energy spacings Ei, i.e., g << Ei, so that the energy

levels and the energy eigenstates of the combined system are almost unaltered and the

temperature of the each qubit can be defined neglecting the interaction energy [98]. The

total Hamiltonian of the combined system is thus given by

H =
∑

i∈{c,r,h}
Ei|1〉i〈1| + g(|101〉〈010| + |010〉〈101|). (6.2)

As the qubits are coupled with heat baths at each time step, we shall take the simplifying

assumption that there is a finite probability that it will thermalize. Suppose pi is the

probability per unit time that the i-th qubit will revert back to its thermal state. Then the

evolution of the combined system is given by the following master eqaution

∂ρ

∂t
= −i[H, ρ] +

∑

i∈{c,r,h}
pi(τi ⊗ tri ρ − ρ). (6.3)

It is necessary to mention that this master equation is valid only in the perturbative regime

where the simultaneous thermalization of more than one qubit can be neglected. The

steady state refrigeration with the aforementioned model has been demonstrated in great

detail in Ref. [98, 217]. The steady state solution for this master equation, as obtained in
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Ref. [217], is given as

ρ f = τc ⊗ τr ⊗ τh + γσcrh, (6.4)

where

σcrh =
(

QrhZcτrτh + QchτcZrτh + QcrτcτrZh

+qcτcZrh + qrτrZch + qhZcrτh + Zcrh +
q

2g
Ycrh

)

. (6.5)

Here, Ycrh = i|101〉〈010| − i|010〉〈101| and Zcrh = |010〉〈010| − |101〉〈101|, Zi j = trk Zi jk,

where {i, j, k} ∈ {c, r, h} and qi and Q jk, are given as follows qi =
pi

q−pi
, Q jk =

p jqk+pkq j

q−p j−pk
,

where q = pc + pr + ph. The parameter γ in Eq. 6.4 is given by

γ =
−∆

2 +
q2

2g2 +
∑

i qi +
∑

jk Q jkΩ jk

(6.6)

where ∆ = r1(1− r2)r3− (1− r1)r2(1− r3), Ω jk = r′j(1− r′
k
)+ (1− r′j)rk. Here r′i = (1− ri)

for i = r, otherwise r′i = ri. The cooling rate for the cold bath is given as

Qc = qγEc, (6.7)

which clearly shows that the machine acts as a refrigerator only when γ > 0. It has been

shown that the efficiency η of this refrigerator is equal to Ec/Eh [217].

6.2 Quantum speed limit

Quantum evolution for a closed system is a unitary map. It has been shown that the fluctu-

ation [218, 219] or the average value [220, 221] of the generator of such maps determines

the maximum rate of unitary evolution of a quantum system through the corresponding

state space, giving rise to the concept of a limiting speed for dynamical evolution. For
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pure quantum states, this speed of evolution was introduced by Anandan and Aharonov

[219] utilizing the Fubini-Study metric, with subsequent works [222, 223] building on

the concept. Generalizations for mixed states in the case of unitary evolutions were pro-

posed [23] and tightness of bounds found earlier were proved in some cases [224]. For a

generalized quantum evolution characterized by CPTP maps, it is possible to find similar

speed limits [225, 226, 227, 228, 229]. In particular, for a Markovian channel on an open

quantum system expressed via a dynamical subgroup L, the following lower bound on

the time tevolution required for evolution of a quantum system from initial state ρ0 to a state

ρ f was given in Ref. [230] as

tevolution ≥
| cos θ − 1| tr ρ2

0
√

tr
(L†ρ0

)2

= τ, (6.8)

where θ = cos−1 tr(ρ0ρ f )
tr(ρ2

0)
is expressed in terms of relative purity between the initial and the

final state. Thus, 1/τ can be interpreted as the maximum speed of the evolution. In this

paper, using this maximum speed of evolution, we show how the existence of a quantum

speed limit constrains the performance of the QAR.

6.3 Effects on the performance of quantum refrigerator

from quantum speed limit

In this section, we establish a link between the cooling rate of the QAR at its steady state

and the minimum time that it takes to reach the steady state. We define the novel figure of

merit, i.e., the product of the steady cooling power of the QAR and the maximum speed

of evolution to the steady state as

χ =
Qc

τ
. (6.9)

110



Note that, for better performance, we need higher χ, i.e., higher cooling rate as well as

faster evolution to the steady state. Interestingly, we observe that there lies a trade-off

between these two desired criteria. It will be interesting to explore in detail how the

performance of steady QAR depends on χ, as well as how χ itself depends on the system

parameters. Before doing so, we would like to digress a bit towards transient refrigeration

by QAR.

The efficiency and cooling rate in the transient regime by QAR have been extensively

studied in Ref. [104]. The figure of merit χ is the upper bound on the temporal average of

time derivatives of the instantaneous cooling rate. The latter quantity, say P(t), is defined

as P(t) = dQc(t)

dt
, where Qc(t) is the instantaneous cooling rate. Now, the time average

P(t) =
1

tevolution

∫ tevolution

0

dQc(t
′)

dt′
dt′ =

Qc

tevolution

≤ Qc

τ
= χ, (6.10)

justifying our assertion. Thus the time-derivative of the transient cooling rate, averaged

over the entire duration of dynamics, is upper bounded by our figure of merit. The tran-

sient cooling rate is, of course, the amount of heat drawn from the bath per unit time

during the transient regime. Thus, the time derivative of cooling rate may be argued as a

second order time-derivative of the amount of heat drawn from the bath during transient

dynamics. Since our figure of merit represents an upper bound on the average time-

derivative of the transient cooling rate, we coin the term bounding second order cooling

rate (BSOCR) for the figure of merit χ. To avoid any potential confusion for the reader,

we emphasize that the exact expression for χ is homogeneous to Qc, i.e., the steady cool-

ing rate, and not to the time derivative of the transient cooling rate. The BSOCR can be

expressed in terms of the initial state ρ0 via (6.4), (6.6), and (6.8) as

Qc

τ
=

qEc

[

tr(ρ0σcrh)
]

/

[

√

tr([Hint, ρ0])2

] (6.11)

Using the equation above, we demonstrate the trade-off between the steady cooling power
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Figure 6.2: Demonstration that high equilibrium cooling power Qc can come at the cost

of slow evolution to equilibrium state. When all parameters other than g are fixed, steady

cooling rate Qc and the inverse of evolution time 1/τ, both functions of g, are parametri-

cally plotted by varying the interaction strength g from 10−4 to 10−1. The parameters are

chosen as Ec = 1, pc = pr = ph = 0.1, η = 1,Tc = 1,Tr = 5, Th = 10.

and the maximum speed of evolution. As Qc and 1/τ both are function of the interaction

strength g, we plot these quantities by varying the interaction strength g. Fig. 6.2 clearly

demonstrates the trade-off between steady cooling power Qc and maximum speed of evo-

lution 1/τ, implying one can only get better cooling rate by compromising on the speed

of evolution. This sets up the main crux of our investigation. It is also surprising that

the performance of an autonomous quantum thermal machine at the steady state depends

on the minimum time taken to reach the steady state. In the rest of the section, we shall

study how the BSOCR χ depends on the parameters of the QAR. We shall also investigate

whether initial quantumness can enhance the performance of the steady QAR.

Let us now note that the cooling rate Qc is expressible explicitly in terms of the parameters

of the model in the form

Qc =
ξ1

Υ1 +
Υ2

g2

(6.12)

and the inverse speed limit, i.e. minimum time required for evolution to the steady state
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is similarly expressible in the form

τ =
ξ2/g

Υ1 +
Υ2

g2

, (6.13)

where the parameters Υ1,Υ2, ξ1, ξ2 all depend on the system parameters other than g. All

these parameters are explicitly expressed as ξ1 = qEc∆, ξ2 =
∆ tr(τcτrτhσcrh)√

2(r1r3+r2(r1+r3−2r1r3−1))
,Υ1 =

2+
∑

i qi+
∑

jk Q jkΩ jk,Υ2 = q2/2. Thus, if other system parameters are kept fixed and only

the interaction strength g is tuned, then the above parametric relation yields the following

link between Qc and τ, which is valid for any interaction strength.

τ2 =

(

ξ2
2

ξ1

)

Qc − Υ1

ξ2
2

ξ2
1

Q2
c (6.14)

In case the first term of the RHS dominates over the second term, this immediately reveals

that there exists a trade-off between the speed of evolution and the steady state cooling

rate, which provides the rationale for investigating this tradeoff through our figure of

merit. In general, if the cooling rate Qcis small, the quadratic term is subleading, and

the tradeoff is alwats observed. More specifically, in the scenarios we illustrated in the

paper, the first term indeed dominates and this trade-off is observed. The expression for

BSOCR may now be calculated explicitly. For rhe sake of simplicity, we assume equal

reset probabilities, i.e., on putting pc = pr = ph = p, the expression for BSOCR written

in terms of the excited state probabilities {r̄i} reduces to

χ =
3
√

2gpEc f1(r̄c, r̄r, r̄h)

f2(r̄c, r̄r, r̄h)
. (6.15)

Where the numerator f1 is given by f1 = r̄crh−r̄r (1 − r̄c − r̄h + 2r̄cr̄h), and the denominator

f2 is given by f2 =
3
2
− 3r̄h + r̄r(−1 + 3r̄h + r̄2

h
) + r̄2

r (5 − 9r̄h + 4r̄2
h
) + r̄2

c (r̄r + r̄2
r (4 − 8r̄h) +

8r̄rr̄
2
h
− r̄h(1 + 4r̄h)) − r̄c(3 − 5r̄h + r̄2

h
+ 6r̄rr̄h − 3r̄r + r̄2

r (9 − 16r̄h + 8r̄2
h
)).
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Figure 6.3: Variation of BSOCR with interaction strength g. Left: for different strengths

of initial coherence κ applied to the |000〉〈111| subspace as well as Right : for same

amount of coherence in different subspaces viz., the |101〉〈010|, and the |000〉〈111| sub-

spaces. The reset probabilities have been taken as pc = pr = ph = p throughout. The

other parameters are taken as Tc = 1,Tr = 2,Th = 10, η = 0.5, p = 0.05, Ec = 1.

6.3.1 Dependence of the figure of merit on model parameters : role

of initial coherence

In this subsection, we investigate the role the choice of model parameters, namely, the

strength of thermalization, as well as the three qubit interaction, plays in determining

the magnitude of the BSOCR. We know that the three-body interaction cools the cold

qubit and draws heat from the cold bath. Hence, the more the interaction strength, the

stronger the biasing facilitating the refrigeration. However, the cooling power depends in

a complicated way on the strength g of the three-body interaction. On the contrary, from

Eq. 6.11, when the resetting probabilities {pi} are equal), we observe that the BSOCR

grows linearly with the strength g of the three-body interaction Hint when the qubits are

initialized in their respective local thermal states.

In Fig. 6.3, we demonstrate the linear dependence of the BSOCR on the interaction

strength. It will be interesting to inquire whether some initial coherence in the three qubit

QAR can boost the BSOCR beyond the linear increase with the interaction strength g seen
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above. We add an additional real off-diagonal part to the |000〉〈111| and the corresponding

adjoint element of the diagonal initial density matrix ρ0 with the following magnitude

= κ

√

∏

i=c,r,h

rir̄i ; 0 ≤ κ ≤ 1. (6.16)

. Now, the corresponding BSOCR is given by

Qc

τ
=

qEc

√

tr (−i[H, ρ0 + µ] − qµ)2

∣

∣

∣

∣

tr (ρ0σ + µσ) − 1
γ

tr
(

ρ0µ + µ2
)

∣

∣

∣

∣

, (6.17)

where µ = κ
√
∏

i=c,r,h rir̄i (|0c0r0h〉〈1c1h1r| + h.c.). Explicitly computing this expression

yields the following expression for BSOCR

= 3pEc

√

N1 p2 + N2 p + N3

D1 p4 + D2 p2 + D3

, (6.18)

where N1 = 9 tr µ2,N2 = −6 tr Mµ,N3 = tr M2,D1 = 81
Π2

2

4g4∆2 ,D2 = 18
(

Π1 +
λΠ2

∆

)

Π2

2g2∆
,D3 =

(

Π1 +
λΠ2

∆

)2
, λ = 2+

∑

i qi+
∑

jk Q jkΩ jk, and the corresponding meta-parameters are given

as M = −i[H, ρ0 + µ], γ = −∆
λ+

9p2

2g2

,Π1 = tr (ρ0σ + µσ) ,Π2 = tr
(

ρ0µ + µ
2
)

.

Clearly only N3 and D3 coefficients survive in the absence of initial coherence, i.e., κ = 0,

thus giving rise to the linearity with p in that case. One may easily check now for µ = 0

that N3

D3
is proportional to g2, thus confirming the linearity of BSOCR with interaction

strength. In fact it may be shown that the BSOCR can be expressed in the following

alternate way

= gEc

√

N′
1
g2 + N′

2
g + N′

3

D′
1
g4 + D′

2
g2 + D′

3

, (6.19)

with only the coefficients N′3,D
′
3 surviving in the special case of κ = 0, i.e., one with no

initial coherence.

Fig. 6.3 confirms that the injection of initial coherence can indeed significantly increase

the BSOCR. Thus, quantum coherence, already identified as a useful resource in quantum
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Figure 6.4: Variation of BSOCR with reset probability pc = pr = ph = p. Left : for

different strengths of initial coherence κ in the |000〉〈111| subspace as well as Right : for

same amount of coherence in different subspaces viz. the |101〉〈010|, and the |000〉〈111|
subspaces. The other parameters are taken as Tc = 1,Tr = 2,Th = 10, η = 0.5, g =

0.05, Ec = 1.

information theory and quantum thermodynamics [231, 40, 232, 41], can enhance the

performance of the QAR for a fixed interaction strength by reducing the minimum time

taken to reach the steady state. It is worth mentioning that in Ref. [233], it has been

pointed out that coherence can enhance the cooling of the cold qubit in the transient

regime. In this work, we show that coherence can also enhance the performance of the

steady heat machine. This is consistent with the assertion made in Ref. [227] that quantum

coherence can serve to augment the speed limit for general dynamics. At this juncture,

we want to emphasize that the present treatment of adding initial coherence to the system

is different from having a bath which is coherent. The choice of adding coherence only

to the |000〉〈111| subspace may seem restrictive, but it can be shown that the nature of

functional dependence of the BSOCR on the interaction strength or reset probabilities

does not change whether we add the coherence in any other density matrix element, say,

|010〉〈101|. However, the numerical value of the BSCOR depends on the subspace to

which coherence is added. In Fig. 6.3, we show that as far as the efficacy of applying

coherence to facilitate cooling is concerned, applying coherence to |000〉〈111| subspace is

far better than applying the same amount of coherence to |010〉〈101| subspace.
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Figure 6.5: Variation of BSOCR with steady state efficiency η for fixed parameter values

pc = 0.01, pr = 0.02, ph = 0.05,Tc = 1,Tr = 2,Th = 10, Ec = 1, g = 0.01.

Again, one can verify that this simple linear relation does not hold for the heat extracted

from the cold bath. Now, let us start with a slightly more general case where the density

matrix corresponding to the initial state ρ0 possesses some non-local coherence, the latter

typified by non-zero elements as in Eq. (6.16) in the earlier section. It is readily verified

that the reduced states are still Gibbsian in their respective energy eigenbases. Fig. 6.4

shows that although the BSOCR increases rapidly with increasing reset probability if the

p is very low, it decays considerably as we go on increasing p. However, we add the

following note of caution - one can not indefinitely go on increasing the reset probability

due to the weak coupling assumption used in the derivation of this master equation.

6.3.2 Efficiency at maximal figure of merit

For finite time thermodynamic cycles, finding the efficiency at maximum power is a well-

motivated pursuit. For QAR models, in addition to finding the efficiency at maximum

power [213], it makes sense to find the efficiency of the QAR when the BSOCR, the fig-

ure of merit encompassing both steady power characteristics and speed of evolution, is

maximal. Let us now focus on how the BSOCR depends on the efficiency of the machine.

For this model, the efficiency η is expressed as Ec/Eh . This allows us to explicitly com-
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pute the BSOCR for any efficiency. We demonstrate in Fig. 6.5 that in a generic case, the

BSOCR vanishes when there is no cooling as well as at the Carnot point, and attains its

maximal value at some intermediate point. Exactly calculating the efficiency at maximal

BSOCR in the most general case is quite cumbersome, therefore we restrict ourselves to

the case of equal reset probabilities and use the expression for BSOCR derived earlier. In

the high temperature limit and with the following assumptions, this allows us to derive

the following crucial result.

If the reset probabilities pc, pr, ph are equal and Th ≫ Tr ≫ Tc ≫ Ec along with

the condition that Tc

Tr
≈ Tr

Th
, the efficiency at maximal BSOCR equals

Tc

Tr













1 −
√

Tc

Th













. (6.20)

Proof : In the high temperature limit, the occupancies of the excited states of qubits are

approximated by

r̄i �
1

2
− xi

4
−

x2
i

8
+

x3
i

4
; xi =

Ei

Ti

. (6.21)

Putting them in the expression for BSOCR and weeding out higher order terms using the

fact that Th ≫ Tr ≫ Tc ≫ Ec leads to the following reasonably simple expression for the

BSOCR

Qc

τ
�

3
√

2gpEc

3 − xc xr(xc−xr)

3(xc−xr+xh)

=
3
√

2gpEc

3 − 1
3
F

. (6.22)

Now optimizing the BSOCR reduces to maximizing F. Putting xc =
Ec

Tc
, xr =

Ec

Tr

(

1 + 1
η

)

, xh =

Ec

ηTh
, we differentiate F with respect to η to obtain the efficiency at maximal BSOCR. The

solution to the equation ∂F
∂η
= 0 yields the following nontrivial solutions for efficiency at

extremal BSOCR -
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ηopt =
−T 2

c Tr + T 2
c Th − TcTrTh ±

√

T 4
c T 2

r + T 3
c T 2

r Th

2T 2
c Tr − TcT 2

r − T 2
c Th + 2TcTrTh − T 2

r Th

. (6.23)

Applying the condition Th ≫ Tr ≫ Tc , we now have the expression for efficiency at

extremal BSOCR as

ηopt �
TcTrTh − T 2

c Th ∓
√

T 3
c T 2

r Th

(Tr − Tc)2Th

=
Tc

Tr − Tc

∓ TcTr

(Tr − Tc)2

√

Tc

Th

, (6.24)

Noting that Tr − Tc ≈ Tr, we arrive at the following expression for efficiency at optimal

BSOCR

ηopt =
Tc

Tr













1 ∓
√

Tc

Th













. (6.25)

Now one can show that only the minus sign corresponds to the maximal BSOCR, taking

into account the fact Tc

Tr
∼ Tr

Th
. the other solution lies beyond the Carnot efficiency and con-

sequently the efficiency at maximal BSOCR is given by Tc

Tr

(

1 −
√

Tc

Th

)

- thus completing

the proof.

Now, let us mention that in the limit considered above, the Carnot efficiency for this

refrigerator is given by

ηCarnot =
Tc

Tr

(

1 − Tc

Th

)

. (6.26)

We immediately see that the relation between Eq. 6.20 and Eq. 6.26 is remarkably similar

to the relation between the expressions for Carnot bound and Curzon-Ahlborn (CA) bound

for efficiency heretofore derived for various cyclic heat pumps [202, 199].
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6.4 Summary

• A tradeoff in the steady state cooling power of an absorption refrigerator with the

time required to reach the steady state is obtained.

• A new figure of merit is introduced, which takes into account both the steady state

cooling power, as well as the minimal time required to reach the steady state con-

figuration.

• The magnitude of the new figure of merit, called the BSOCR, may be significantly

bolstered by the initial injection of quantum coherence.

• The expression for efficiency at maximal BSOCR is derived in the high temperature

scenario, subject to suitable conditions. The expression bears a strong resemblance

to the Curzon-Ahlborn expression for efficiency at maximal power.
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Chapter 7

Autonomous creation of quantum

resources

1

In the previous chapter, we have seen how quantum features like the presence of a speed

limit or the injection of quantum coherence impacts the performance of an autonomous

thermal machine. In this chapter, we shall investigate how similarly conceived autonomous

machines may allow us to create quantum resources. These are particularly useful since

autonomous machines do not require precise time control. Completely sealing off quan-

tum systems from the environment is very difficult anyway, therefore we may alternately

ask - can we somehow use the environment as an ally instead of an impediment [234, 235]

? This broad area of research has received renewed attention in recent years with the ad-

vent of bath-engineering techniques as well as works on non-Markovian environments

[236, 237, 238, 95, 239, 240, 241]. One particular realization in the recent past is of the

fact that apart from heat baths, baths such as spin baths can be used to overcome the Lan-

dauer erasure energy cost[11, 242, 243], although a corresponding cost has to be paid in

1This chapter is based on the paper "Generating steady state quantum coherence and magic through an

autonomous thermodynamic machine by utilizing a spin bath", published in Physical Review A, 98, 012102

(2018).
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Figure 7.1: Schematic diagram of model used in the work.

terms of angular momentum. .

In this work, we show, in a self-contained model, how to impart quantum properties to

the steady state of a qubit system interacting with a thermal bath utilizing an angular

momentum bath interacting with another qubit. We propose the setup and using a simple

reset model, explicitly find the steady state configuration. This enables us to observe

how non-classicality in the form of quantum coherence and magic builds up in the steady

state. Simply equilibrating a qubit in the angular momentum bath instead of the heat bath

may yield coherence in the energy eigenbasis, but may not yield magic. However, in

the proposed setup, we shall show that the reduced qubit in its steady state may indeed

have non-zero magic, i.e., be useful as ancilla for injection in the paradigm of stabilizer

quantum computation.

7.1 Autonomous thermal machine

In statistical mechanics, a basic concept is that of the canonical ensemble, where a physi-

cal system exchanges energy with the environment to equilibriate. It can be shown using

the MaxEnt principle that the population of equilibrium density matrix of the state which

maximizes the information theoretic entropy for a given amount of average energy follows

the Gibbs distribution with a potential-like parameter T , which we term as temperature.

However, instead of energy, we can envision a situation where the system exchanges spin

angular momentum along a specified direction, say ~k. In this situation, again maximizing
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the information theoretic entropy for a given amount of average spin angular momentum

along ~k-direction yields an equilibrium state which follows the Gibbs distribution with

a potential-like parameter which plays a role similar to the role of temperature for heat

baths. In this chapter, we shall loosely call this parameter as temperature of the angular

momentum bath. However we warn the reader, that this temperature in this context, is to

be understood as something different from the way temperature is used in the usual sense

for thermal baths. It is natural to wonder about the theoretical as well as experimental

basis for assuming such baths. Theoretically, the motivation comes chiefly from Vaccaro

and Barnett’s [242] pioneering work, showing such baths can give rise to Landauer era-

sure without energy cost. More recent resource theoretic works [243, 244, 245] consider

even more general kinds of baths with any number of conserved charges, of which the

bath proposed above is a very special case. Works on cyclic thermal machines between

a thermal and a spin reservoir have also been performed [246]. However, practical real-

ization of these baths seem to be rather difficult, as has been pointed out, for example,

in [247]. Hence, we reserve comment on the actual practical realization of our model.

In this context, we also note for clarity that the spin bath is not a thermal resource in

the usual sense, and hence the quantumness generation procedure outlined in this work,

although autonomous, is not altogether thermal. One compare and contrast this approach

with another recent work [248].

7.1.1 Scheme and master equation

Let us now introduce the setup in Fig. 7.1. The first qubit is immersed in a heat bath of

temperature T1, where the energy eigenbasis is along the z direction. The second qubit

is immersed in a spin bath of temperature T2, where the spin angular momenta along x

123



direction are exchanged. The Hamiltonian corresponding to the first qubit is

H1 =
1

2
ω1|1 |

1| , (7.1)and the Hamiltonian corresponding to the second qubit is

H2 =
1

2
ω2|1 |

1| .(7.2)We also assume an energy swapping interaction Hint = g (|01 |

10| + |10 |

01| between the two qubits. We assume the resonance condition ω1 = ω2 = ω. In

subsequent calculations, we shall assume ω = 1 without loss of generality. Thus the

collective Hamiltonian reads as

H = H1 ⊗ I + I ⊗ H2 + Hint (7.3)

The thermal state of a particle, immersed in the heat bath of inverse temperature β1 =

1/T1, now reads as

τ1 =
1

1 + e−β1
|0 |

0| + e−β1

1+e−β1
|1 |

1|.(7.4)

The corresponding equilibrium state of a particle, immersed in the spin bath of inverse

temperature β2 = 1/T2, is given by

τ2 =
1

1 + e−β2
| + |
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+| + e−β2

1+e−β2
| − |

−|(7.5)

During each small time interval δt of the dynamics, one of the qubits of the two qubit

state ρ12(t) can thermalize back to its respective equilibrium configuration (that is, τ1 for

the first qubit and τ2 for the second qubit) with probabilities p1 and p2 respectively. We

assume that the probability of both the qubits equilibrating in δt interval is negligible.

Thus, the master equation for the two qubits read as the following

dρ12(t)

dt
= −i[H, ρ12] +

∑

i

pi (τi ⊗ tri ρ12(t) − ρ12(t)) (7.6)

In general, the steady state of a qubit immersed in a bath and oblivious to any other system,

and the the state that the same qubit wants to revert to, while interacting with another

system, may be different. This may be especially prominent if the qubit in question is

coupled very strongly with the other qubit, when compared with the coupling with the

bath. Thus, we shall restrict ourselves to the weak interaction strength, i.e., g being small,

when using the above master equation. We have also assumed that the probability of both

the qubits resetting back to their respective equilibrium configurations is too small, which

means p1 p2 is quite small. The steady state ρ
steady

12
is obtained by solving for vanishing

right hand side of the evolution master equation 7.6. Since a general two-qubit density

matrix has fifteen real parameters, this implies solving a system of linear equations with

fifteen variables. However, the general expression for the steady state is algebraically

quite cumbersome - therefore we shall state and use simplifying assumptions in the rest

of the paper.
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Figure 7.2: Dependence of the steady state coherence of the first qubit on the heat bath

temperature T1 (left) and the reset probability for the spin bath p2 (right).

7.2 Quantum coherence generation in the reduced qubit

As we discussed in the first chapter of the thesis, quantum coherence is regarded as a

genuinely quantum mechanical resource. From the perspective of autonomous quantum

thermal machines, initial coherence is a resource for augmenting the performance of an

absorption refrigerator, as we also saw in the previous chapter. The inverse problem

of creating coherence in finite dimensional systems using thermal resources has also at-

tracted recent attention [249, 248]. As we shall show below, the reduced steady state of

the qubit attached to the heat bath is coherent in the energy eigenbasis. Thus, when the

steady state is reached in our setup, if we simply strip the other components of the present

model (except the heat bath and the attached qubit) away and replace them with the hot

and cold heat baths of the quantum absorption refrigerator setup, we can benefit from the

initial coherence in the absorption refrigerator setup.

From the general steady state solution, if one performs a perturbative expansion for small

interaction strength g, the l1-norm of coherence in the reduced qubit attached to the heat
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bath reads as

Cl1 =
4gp2

√

(1 + 4p2
1
)(1 + 4p2

2
)

∣

∣

∣

∣

∣

∣

tanh

(

1

2T1

)

tanh

(

1

2T2

)
∣

∣

∣

∣

∣

∣

+ O(g2) (7.7)

The first observation is that increased thermalization probability p1 leads to a decrease of

the steady coherence. The second observation is that for small thermalization probability

p2, increasing it also increases the magnitude of steady coherence. However, as we go

on increasing the reset probability p2, the magnitude of steady coherence asymptotically

reaches a maximum. Regarding the bath temperatures, we observe that the magnitude of

steady coherence is increased if the bath temperatures are low.

7.3 Generation of magic in the reduced qubit

Many fault-tolerant quantum algorithms use the so called stabilizer operations, i.e., uni-

tary gates and measurements chosen from a specific set. It can be shown via the Gottesmann-

Knill theorem, that these set of operations are efficiently simulable via classical means.

Thus, for universal quantum computation, if one only allows for stabilizer operations,

one must introduce additional ancilla states along with the original system. Stabilizer

operations may then be peformed over the larger Hilbert space consisting of the original

system plus the ancilla to effectively implement non-stabilizer operations on the actual

system. In order to facilitate non-stabilizer operations on the original system, the an-

cilla states must lie outside the convex hull of pure states, which are known as stabilizer

states. States which satisfy this property are defined to be endowed with magic. Thus,

just as quantum entanglement is the operational resource underlying the superiority of

quantum communication protocols, magic is the resource for classically non-simulable

gate implementation [54, 58]. Thus, creation of magic in a quantum system is vital for

quantum technology. Indeed, if we simply immerse a qubit to the heat bath, it thermalizes
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Figure 7.3: If a qubit state equilibrates on the z-axis of the Bloch sphere (blue blob) or on

the x-axis of the Bloch sphere (golden blob) - the state lies within the stabilizer polytope.

The first scenario is associated with the thermal state of the heat bath, the second with the

equilibrium state of the angular momentum bath depicted in our model.

at an equilibrium state which lies on the z-axis of the Bloch sphere, i.e., always within the

stabilizer polytope. More interestingly, if a qubit is immersed in the spin bath described

above, then the steady state lies on the x-axis of the Bloch sphere, i.e., again within the

stabilizer polytope, although it may be coherent in the energy eigenbasis. See Fig. 7.3 for

an illustration. Nonetheless, we shall now show that the magic can be indeed imparted in

the steady state of the qubit attached to the heat bath through our setup.

In the qubit case, the states which can not be used as ancilla to implement classically non-

simulable gates, lie inside the convex polytope formed by the eigenvectors of the mutually

unbiased operators σx, σy, and σz. Any state outside this so called stabilizer polytope is

said to possess magic. In terms of the Bloch vector ~r = (rx, ry, rz) of a quantum state,

the condition for the state lying within the stabilizer polytope is when all the following

inequalities are simultaneously met [56].

−1 ≤ rx ± ry ± rz ≤ 1. (7.8)

For qutrit and other higher prime power dimensional states, the negativity of the discrete
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Figure 7.4: Values of linear functions of Bloch vector (cf. 7.8 of the reduced qubit at-

tached to the heat bath vs. the reset probability p1 = p2 = p (left) and the heat bath

temperature T1 (right). Any one of the curves falling in the pale yellow region indicates

the presence of magic. If all three lines lie in the light grey region, that indicates the state

is within the stabilizer polytope.

Wigner function is an analytically computable magic monotone. However, for qubits, the

situation is less fortunate. While magic monotones like relative entropy of magic [54],

robustness of magic [58] or semi-definite programming based measures [56] indeed exist

in the qubit case - they are not amenable to simple analytical calculations. Thus, we would

only investigate the condition for the existence of magic. Fig 7.4 depicts the results for

the exact steady-state solution, which indicate that the above quantities in 7.8 can indeed

exceed unity and thus create magic in the reduced qubit attached to the heat bath. Fig

7.4 also allows us to observe that as we go on increasing the heat bath temperature, the

value of the quantities in 7.8 eventually stop exceeding unity. Thus there seems to be a

critical temperature associated with the heat bath above which magic creation may not be

possible in the reduced qubit attached to the heat bath.

Proving the above results from the full steady state solution, which is algebraically messy,

is quite challenging. Instead, as a way of simplification, we will follow a perturbative

approach, inspired by the fact that the quantum master equation 7.6 holds true if the

interaction strength g is weak. From the general expression for the Bloch vectors of the

qubit attached to the heat bath of temperature T1, we may write down the leading order
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terms for the perturbation expansion for small g as -

rx + ry + rz = tanh
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Let us now concentrate on specific parameter domains to explicitly find out the condition

for existence of magic. We begin with the assumption that the temperature T2 is very low

and assume further that the reset probabilities p1 and p2 are equal in magnitude and have

the value, say, p. Under these conditions

rx + ry + rz ≈ tanh

(

1

2T1

) [

1 + 4gp
4p2 + 4p − 1

(1 + 4p2)2
− g2 1 + 6p2 + 24p4

p2(1 + 4p2)2

]

(7.10)

Noting that the condition rx + ry + rz > 1 is sufficient for the existence of magic in the

reduced qubit, we express this condition under the above assumptions as

1 + 4g
p(4p2 + 4p − 1)

(1 + 4p2)2
− g2 1 + 6p2 + 24p4

p2(1 + 4p2)2
> coth

(

1

2T1

)

(7.11)

Let us now designate f1 =
p(4p2+4p−1)

(1+4p2)2 , f2 =
1+6p2+24p4

p2(1+4p2)2 , and λ = coth
(

1
2T1

)

− 1, thus the
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expression above is written as

g2 − 4g
f1

f2

+
λ

f2

< 0, (7.12)

which yields the condition
(

g − 2
f1

f2

)2

< 4
f 2
1

f 2
2

− λ

f2

(7.13)

Note that, it becomes possible to satisfy the above criteria, only if the right hand side

of the above expression is positive. If the reset probabilities are fixed, this implies the

existence of a threshold temperature of the hot bath, say T 1
crit above which rx + ry + rz can

never exceed unity. Similarly analyzing the conditions for rx − ry + rz and ry − rx + rz to

exceed unity, give rise to threshold temperatures T 2
crit, and T 3

crit
respectively. The actual

threshold temperature of the heat bath beyond which magic can not be generated is thus

the maximum of these three threshold temperatures, i.e.,

Tcrit = max
[

T 1
crit,T

2
crit,T

3
crit

]

, (7.14)

where we have assumed g1 =
p(1+4p−4p2)

(1+4p2)2 , h1 =
p(4p2−4p−1)

(1+4p2)2 , and the critical temperatures are

explicitly expressed as

T 1
crit =

1

ln
(

1 +
f2

2 f 2
1

) ,T 2
crit =

1

ln
(

1 +
f2

2g2
1

) ,T 3
crit =

1

ln
(

1 +
f2

2h2
1

) . (7.15)

Fig. 7.5 illustrates that the critical temperature increases with the reset probability p.

However, even if the temperature of the heat bath is less than Tcrit, the interaction strength

g must satisfy 7.13 or similar conditions for rx− ry+ rz or ry− rx+ rz for creation of magic.

This effect is demonstrated in Fig. 7.5, which shows that the allowed range of interaction

strength g steady decreases until it vanishes at the critical temperature Tcrit.

Let us now explore the opposite limit, that is, the spin bath temperature T2 being very

high, and again make the simplifying assumption that p1 = p2 = p. We recall that, for
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Figure 7.5: Magic creation in the limit of low spin bath temperature T2. Left : dependence

of critical temperature Tcrit on the reset probability p1 = p2 = p. Creation of magic is

possible in the pale yellow region and impossible in the light gray region. Right : allowed

interval for interaction strength g with respect to heat bath temperature T1 for creation of

magic. Creation of magic is possible in the pale yellow region and impossible in the dark

brown region.
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Figure 7.6: Condition for creation of magic for high spin bath temperature T2. Left :

dependence of critical temperature Tcrit on the reset probability p1 = p2 = p. Creation of

magic is possible in the pale yellow region and impossible in the light gray region. Right

: Allowed interval for interaction strength g with respect to heat bath temperature T1 for

creation of magic. Creation of magic is possible in the pale yellow region and impossible

in the dark brown region.
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x → ∞, tanh(1/x) ≈ 1/x, and cosh(1/x) ≈ 1. Making these approximations yield the

following result

rx + ry + rz ≈ tanh

(

1

2T1

) [

1 + 2g
p(4p2 + 4p − 1)

T2(1 + 4p2)2
− g2

p2

]

(7.16)

From the above formula, following the approach earlier, the condition that rx + ry + rz > 1

can be shown to be equivalent to

(

g − F1

F2

)2

<
F2

1

F2
2

− λ

F2

, (7.17)

where F1 =
p(4p2+4p−1)

T2(1+4p2)2 , and F2 = 1/p2. Similar to before, the critical threshold temper-

ature Tcrit of the heat bath is the maximum of the critical threshold temperatures corre-

sponding to the conditions for rx ± ry + rz, or ry − rx + rz surpassing unity respectively.

That is,

Tcrit = max
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where G1 =
p(1+4p−4p2)

T2(1+4p2)2 , and H1 =
p(4p2−4p−1)

T2(1+4p2)2 . In case the temperature of the heat bath

is less than the critical temperature, the interaction strength g must again satisfy either

7.17 or its analogues. The above situations are pictorially depicted in Fig 7.6 from which

we observe that the critical heat bath temperature for creation of magic is enhanced if

the spin bath temperature is lowered. From Fig 7.6, we also affirm that similar to the

low temperature case, the window of interaction strength g for which magic creation is

possible becomes narrower and narrower with increasing heat bath temperature T1 until

vanishing when the heat bath temperature exceeds the critical temperature Tcrit. In line

with our naive expectation that it becomes harder and harder to extract quantumness from

a system in presence of large classical noise, Fig 7.6 illustrates that for increased spin

bath temperature T2, the critical temperature of the thermal bath for creation of magic is

significantly depressed.
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Figure 7.7: Effect of asymmetry µ between the reset probabilities p1 and p2 = µp1 on the

critical temperature Tcrit for creation of magic in the low spin bath temperature T2 limit

(left) and high spin bath temperature T2 limit (right). Creation of magic is possible in the

pale yellow region and impossible in the light gray region.

Until now, we have made the simplifying assumption that the reset probabilities are equal.

Let us now study, in the low T2 limit, the effect of assymetry between the reset proba-

bilities. Suppose p1 = p and p2 = µp. Thus, in the low T2 limit, the corresponding

expressions are

rx + ry + rz ≈ tanh

(

1

2T1

) [

1 + 4gµp
4µp2 + 2µp + 2p − 1

(1 + 4p2)(1 + 4µ2 p2)
− 2g2 1 + 2µ2 p2 + 4p2 + 16µ2 p4 + 8µ3 p4

p2(1 + µ)(1 + 4p2)(1 + 4µ2 p2)

]

(7.19)

rx − ry + rz ≈ tanh

(

1

2T1

) [

1 + 4gµp
1 + 2µp + 2p − 4µp2

(1 + 4p2)(1 + 4µ2 p2)
− 2g2 1 + 2µ2 p2 + 4p2 + 16µ2 p4 + 8µ3 p4

p2(1 + µ)(1 + 4p2)(1 + 4µ2 p2)

]

(7.20)

−rx + ry + rz ≈ tanh

(

1

2T1

) [

1 + 4gµp
4µp2 − 2µp − 2p − 1

(1 + 4p2)(1 + 4µ2 p2)
− 2g2 1 + 2µ2 p2 + 4p2 + 16µ2 p4 + 8µ3 p4

p2(1 + µ)(1 + 4p2)(1 + 4µ2 p2)

]

(7.21)

In the opposite, i.e., high T2 limit, using previously stated approximations, viz., tanh(1/x) ≈

1/x and cosh(1/x) ≈ 1 for x → ∞, the expressions for linear functions of Bloch vectors
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are given by

rx + ry + rz ≈ tanh

(

1

2T1

) [

1 + 2gµp
4µp2 + 2µp + 2p − 1

T2(1 + 4p2)(1 + 4µ2 p2)
− 2g2 1

p2(1 + µ)

]

, (7.22)

rx − ry + rz ≈ tanh

(

1

2T1

) [

1 + 2gµp
1 + 2µp + 2p − 4µp2

T2(1 + 4p2)(1 + 4µ2 p2)
− 2g2 1

p2(1 + µ)

]

. (7.23)

−rx + ry + rz ≈ tanh

(

1

2T1

) [

1 + 2gµp
4µp2 − 2µp − 2p − 1

T2(1 + 4p2)(1 + 4µ2 p2)
− 2g2 1

p2(1 + µ)

]

. (7.24)

Fig 7.7 illustrates that, in both the low T2 and high T2 limit, the larger the reset proba-

bility of the spin bath is compared with te reset probability of the heat bath, the more the

magnitude of critical temperature for creation of magic.

However, when considering these results, one must also keep in mind that they have been

obtained through a perturbation expansion in g. Thus, the cases where magic creation

seems possible from the relations like 7.13 or 7.17, yet the interaction strength is quite

high, have to be more carefully treated. Moreover, if the interaction strength is quite high,

the reset model master equation itself may not work.

7.4 Summary

• An autonomous model of creating steady quantum coherence and magic is pro-

posed.

• The amount of coherence generated in this model increases for increased couplings

to the respective baths, and with lowering of temperature.

• There exists a critical temperature below which it is possible to autonomously gen-

erate magic in the steady state.

• The interaction parameter between the qubits should neither be too small, nor be

too large for the creation of magic. The allowed window of the magnitude of the in-

teraction parameter shrinks , ceteris paribus, if the spin bath temperature increases.
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Chapter 8

Indefinite causal order as a resource for

thermometry

1

Until this point, we have mostly treated the thermal environment as one endowed with

a known temperature. However, temperature is not a dynamical variable, and hence can

not be directly measured. Thus, the problem of thermometry becomes interesting in its

own right. The importance of discovering better quantum thermometric schemes stems

from two distinct motivations. Firstly, low temperature sensing is of utmost importance in

numerous instances ranging from many body physics [250, 251] to biophysics [252]. For

various engineered baths, which may themselves be small in size, one has to necessarily

take quantum effects into consideration. Secondly, quantum features may enhance the

ultimate precision reachable through thermometry. One of the challenges in thermome-

try lies in the fact that macroscopic probes may disturb the bath by distorting its thermal

profile [253]. Quantum thermometry [254, 255, 256, 257, 258, 259, 260, 261] is thus im-

portant, as it aims at improving the precision of nanoscale probes. In the case of metrology

and parameter estimation, it is well known that spatial entanglement [51, 262] between

1This chapter is based on the preprint "Superposition of causal order as a metrological resource for

quantum thermometry" appearing in arXiv, with arXiv number 1812.07508
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two distinct parties sometimes allows for a better scaling than the so called standard

quantum limit [263]. However, it has now been realized that quantum mechanics also

allows for operations with superposition of causal order [69, 70, 79, 73, 81]. This idea

has been recently exploited, among others, towards enhancing the classical capacity of

channels [72, 76], reducing communication complexity of tasks [70], and improving tele-

portation protocols in noisy scenarios [264]. Experimental implementations of quantum

switches have also been achieved [71, 265] using optical setups. Thus, an inevitable

question arises, can we get a metrological advantage in the presence of superposition of

causal order? In this chapter, we discuss a simple way to use superposition of processes

to enhance the precision of thermometry. We show that, by using a quantum switch it

is possible to estimate the temperature of a bath significantly more precisely than previ-

ously considered optimal qubit probes [266, 254] . While an optimal conventional qubit

probe is outperformed by a Harmonic oscillator probe with infinite levels, we show that

the same qubit probe, augmented with a quantum switch, can outperform the conven-

tional Harmonic oscillator probe in the operating temperature window. We also derive

thermodynamic uncertainty relations in the presence of the quantum switch.

8.1 A brief prologue on quantum thermometry

We first briefly review the existing theory of optimal qubit thermometry following [266,

254]. The imprecision in estimating the inverse temperature β from a probe which has

attained equilibration in a thermal bath of inverse temperature β is bounded from below

by the quantum Cramer Rao bound which assumes the form

δβ ≥ 1
√

ν Fβ
, (8.1)
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with ν being the number of runs which is assumed to be one throughout, and Fβ being the

quantum Fisher information (QFI) of the thermalized probe state ρ, is given by [267]

Fβ(ρ) =
∑

k

(∂βpk)
2

pk

+ 2
∑

n,m

(pm − pn)2

pm + pn

|〈ψn|∂βψm〉|2, (8.2)

where {pk}, and {|ψk〉} are the eigenvalues and eigenvectors of the state ρ. For a single copy

of the probe with a Hamiltonian H, the QFI equals the variance ∆H2 of the Hamiltonian.

Thus, the above expression amounts to the following thermodynamic uncertainty relation

δβ∆H ≥ 1 (8.3)

For optimal quantum thermometry in case of a qubit probe, one optimizes the QFI for the

temperature over the parameter x = ǫ/T , where ǫ is the energy gap of the probe Hamil-

tonian, and T being the bath temperature, and thus obtains the following transcendental

equation for x = x∗ [266]

ex∗ =
x∗ + 2

x∗ − 2
. (8.4)

The above equation can be numerically shown to have the solution x∗ ≈ 2.399. The re-

sulting QFI for temperature has a peak, which determines the operating window of the

thermometer.
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Bath 
T

M

N

Figure 8.1: Schematic of the protocol. The input probe is being sent in two possible

pathways (red solid line, which implements N◦M and blue dashed line, which implements

M ◦ N) based upon the configuration of the control. N and M are identical thermalizing

channels.

8.2 Quantum switch enhanced thermometry

8.2.1 Protocol

Let us now introduce the protocol for enhancing the precision of quantum thermometry.

Thermometry, in its simplest form, consists of the following. The bath, whose temper-

ature is to be estimated precisely, is at temperature T . A probe is sent to the bath, and

then recovered. During this time interval, the probe interacts with the bath, resulting in

the final state of the probe imbibing some information about the bath temperature T . An

estimate of the bath temperature is then obtained by analyzing the probe. Our protocol

is based on the above model with the following crucial difference. The probe interacts

with the bath twice in succession, and the ordering between these two interactions is su-

perposed with the help of a control qubit. If the control state is |0〉, one such ordering

is followed, i.e., in Fig.8.1, the channel M is encountered first, followed by the identical

channel N. If the control is at the orthogonal state |1〉, then the alternative ordering is

followed, i.e., the channel N is encountered first, followed by the identical channel M.

Now, if the control is in a superposition of these two orthogonal states, no specific and

definite ordering remains, and the resulting configuration is called a quantum switch. For
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simplicity, we assume that the probe is a qubit, and when in contact with the bath, under-

goes thermalization, which can be modelled by a generalized amplitude damping channel

N with the following Kraus operators [51]

K0 =
√

p























1 0

0
√

1 − λ























,K1 =
√

p























0
√
λ

0 0























, (8.5)

K2 =
√

1 − p























√
1 − λ 0

0 1























,K3 =
√

1 − p























0 0
√
λ 0























, p =
1

1 + e−βǫ
, λ = 1 − e−t/τ, (8.6)

where t is the time of interaction with the bath, ǫ is the energy spacing in the probe qubit,

τ is the relaxation time of the bath, and β = 1/T is the inverse temperature of the bath.

The Kraus operators are normalized, i.e.,
∑

i K
†
i
Ki = I. If the control state is initially

ρc = |ψc〉〈ψc|, where |ψc〉 =
√
α|0〉 +

√
1 − α|1〉, then the output state of the correlated

system-control is given by [72]

E [ρ ⊗ ρc] =
∑

i

∑

j

Wi j(ρ ⊗ ρc)W
†
i j
, (8.7)

where Wi j = KiK j ⊗ |0〉〈0| + K jKi ⊗ |1〉〈1| are the Kraus operators for the combined

probe-control joint system. We note, that the representability of any dynamics in the

operator-sum form does not depend on further assumptions about dynamics, e.g., the

Markov approximation, beyond the fact that every such dynamics can be dilated to a

global unitary. Consequently, there is no guarantee that one can easily write down the

corresponding master equation in the canonical Lindblad Gorini Kossakowski Sudarshan

(LGKS) form, although progress in this direction has been made [268, 122, 269, 171].

We further note that, setting t ≫ τ, and β = 1/T = 0 for the generalized amplitude

damping channel is equivalent to considering a depolarizing channel. Such channels have

been considered in the context of quantum switches, both theoretically [72, 76, 270], and

experimentally [270, 265]. However, beyond the formalism, our end goal is different from
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enhancing the classical capacity of channels [72, 76, 270].

It is clear that tracing out the control from the output state leaves us back with the same

state which we would have obtained in the absence of the control. However, the correla-

tion between the control and the probe established through the thermalizing channel may

also store some information about the bath temperature, thus enhancing the precision of

estimation of temperature. In the present work, we quantitatively investigate this phe-

nomenon. At this point, we note in passing that there is an ongoing debate on whether

the superposition of causal order offers the same operational advantage as a coherent con-

trol, especially in the case of enhancement of channel capacity, dubbed causal activation

[76, 71, 73], which is beyond the scope of the present work. We also clarify that the

present scheme is different from just using two different qubits as probes, as the control

qubit does not interact with the bath and has no energy spectrum. We also reiterate that

the control qubit is never sent through the bath. The bath always experiences only a single

probe qubit passing through it. This should not be confused with sending two qubits to

the bath. In the latter case, since QFI is additive, it is self-evident that the precision should

increase vis-a-vis a single qubit probe.

Thermometric precision

For simplicity, we assume that the time spent by the probe inside the bath is much longer

than the relaxation time τ of the bath, or λ = 1 − e−t/τ tends to unity vide 8.6. Hence,

following 8.7, the joint output state of the probe and the control reads as

ρout =












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






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





























αp p2
√
α(1 − α) 0 0

p2
√
α(1 − α) p(1 − α) 0 0

0 0 α(1 − p) 0

0 0 0 (1 − p)(1 − α)




























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



















.
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Note that the above density matrix without coherence in the control qubit is a diagonal

one, hence the off-diagonal, or genuinely quantum contributions to QFI in 8.2 does not

exist. However, in the case of an initially coherent control qubit, there is a non-zero mag-

nitude of genuinely quantum contribution to the QFI. This affirms that qubit thermometry

at equilibrium does benefit from quantum features other than the mere discreteness of

levels. The QFI for the output state above with respect to the parameter β is expressed in

the following form

Fβ(ρout) = ǫ
2 [2 + 4α(1 − α)]e3βǫ + 3e2βǫ + eβǫ

(1 + eβǫ)3(1 + 2eβǫ)
. (8.8)

If we parametrize βǫ = ǫ/T = x and optimize over x to maximize the QFI, the correspond-

ing condition is given by ∂xFβ(x) = 0, which, upon simplification, yields the following

transcendental equation for optimal x = x∗

ξ =
(1 + ex∗)(1 + 2ex∗)2

[

(x∗ − 2)ex∗ − (x∗ + 2)
]

e2x∗
[

(2 + 3x∗) + (6 + 4x∗)ex∗ + (4 − 2x∗)e2x∗
] , (8.9)

where ξ = 4α(1 − α) indicates the amount of superposition initially in the control qubit.

In term of resource theory of coherence [33], ξ is the square of the l1-norm of coherence

Cl1 ,i.e., ξ = C2
l1

(|ψc〉). If ξ = 0, this indicates the presence of a definite causal order,

and ξ = 1 corresponds to the maximal superposition in the control qubit. For ξ = 0, the

condition above reduces to the optimization condition 8.4 derived in Ref. [266]. In case of

maximal superposition, i.e., ξ = 1, the condition above leads to the solution x∗ ≈ 2.4741,

which is quite close to the solution of the optimality condition in the presence of a definite

causal order. Thus, other things equal, the operating window of the thermometer does not

shift much in presence of the switch. See Fig. 8.2 for an illustration of how the QFI

depends on the energy gap.
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Figure 8.2: Density plot of QFI for the inverse temperature β on the gap ǫ as well as the

superposition parameter α. Temperature is fixed at T = 1.

8.2.2 Thermodynamic uncertainty relations

Thermodynamic undertainty relations have a long history, which we shall not dwell upon

here [271, 272]. We note that the thermodynamic uncertainty relation in 8.1 is analo-

gous to the familiar uncertainty relation for incompatible observables. It is well known

[273, 274] that the presence of quantum entanglement and quantum superposition can

reduce uncertainty. Thus, it is natural to wonder whether the quantum switch induces

a similar effect for the thermodynamic uncertainty relation. Indeed, starting from 8.8,

and the quantum Cramer Rao bound, yields the following version of the thermodynamic

uncertainty relation

δβ∆H ≥ 1
√

1 +
ξǫ2

(1+e−βǫ )(2+e−βǫ )

. (8.10)

Since the quantum Cramer Rao bound for estimating a single parameter is tight, it is

possible to saturate the above uncertainty relation as well. We now concentrate on limiting

cases. If the bath temperature is very low, i.e., β = 1/T → ∞, this reads as

δβ∆H ≥ 1
√

1 +
ξǫ2

2

. (8.11)
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On the other hand, if the bath temperature is very high, i.e., β = 1/T → 0, the corre-

sponding thermodynamic uncertainty relation is given by

δβ∆H ≥ 1
√

1 +
ξǫ2

6

. (8.12)

The lower bound depends on the quantum coherence of the control qubit and the energy

gap of the probe qubit. Therefore, one can see that similar to earlier results [273, 274],

quantum coherence reduces thermodynamic uncertainty. Also, it is evident from the

above that a large gap in the probe Hamiltonian reduces the thermodynamic uncertainty.

However, it is easy to see that the average energy of the probe in such a case becomes

very big. Thus, the assumption that the probe is much smaller in comparison to the bath

may no longer hold.
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Figure 8.3: Left: QFI for temperature T vs. temperature T . Right: Relative advantage in

terms of QFI gained through the use of quantum switch. The red solid line indicates the

qubit probe used without any switch, the blue dash-dotted line indicates the qubit probe

used with a maximally coherent switch. Green shaded regions are only accessible when

using a quantum switch in the qubit protocol.

145



8.2.3 Performance advantage

Let us now quantify the relative advantage gained through the use of the qubit probe with

a quantum switch vis-a-vis a conventional qubit probe. The relative gain in QFI through

the use of a quantum switch utilizing a maximally coherent control qubit, with respect to

a conventional qubit probe, reads as

χ =
F switch
β

F no switch
β

=
(2 + ξ)e3βǫ + 3e2βǫ + eβǫ

2e3βǫ + 3e2βǫ + eβǫ
. (8.13)

In the limit of very high temperature, i.e., β → 0, and maximal superposition between

paths, the ratio χ ≈ 7/6, whereas in the limit of very low temperature, i.e., β → ∞ and

maximal superposition between paths, the ratio χ ≈ 1.5. Expressed in terms of precision

of estimation of temperature, this translates to ≈ 8% more precision for estimating a

very high temperature, and ≈ 22% more precision for estimating a very low temperature.

Thus, our protocol performs much better than the other qubit thermometry protocols in

the low-temperature regime, while retaining the advantage vis-a-vis other protocols in the

high-temperature regime as well. See Fig. 8.3 for an illustration of the advantage gained

through the use of the quantum switch.

Comparison with a Harmonic Oscillator probe - A qubit has only two energy levels,

therefore the problem of optimizing the Hamiltonian spectrum does not arise in general

except optimizing over the value of the energy gap. Extending the optimal thermometry

scheme [266] for N-level systems leads us to an optimal Hamiltonian spectrum with a

gapped ground state and a N−1 fold energetically degenerate energy eigenstates. Clearly,

designing such probes is practically quite challenging. In contrast, Harmonic oscillators

with equispaced energy levels are far more accessible. It was shown [266] that they are

superior to qubit probes with the same energy gap ǫ in terms of precision as well as the

breadth of the operating window. The corresponding QFI for the conventional Harmonic
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oscillator probe is given by [254]

F HO
β = ǫ2 e−βǫ

(1 − e−βǫ)2
(8.14)
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Figure 8.4: Comparison of the QFI for temperature with temperature T for the qubit probe

without quantum switch (red solid line), qubit probe with a maximally coherent quantum

switch (blue dash dotted line), and a harmonic oscillator probe (orange dotted line). The

energy level spacing in every case is ǫ = 1.

Comparing (8.14) with the expression (8.8) of QFI for a qubit probe with a quantum

switch reveals an interesting phenomenon. Below a certain threshold temperature, our

qubit probe with a maximally coherent control outperforms the conventional Harmonic

oscillator probe. Even better, this region includes the operating ranges of our probe as

well the conventional harmonic oscillator probe. See Fig 8.4 for illustration. Thus, it is

actually better to use a qubit probe in conjunction with a quantum switch rather than a

conventional Harmonic oscillator probe, even though the latter has an infinite number of

energy levels. The threshold temperature is obtained from equating the QFI expressions

for the qubit probe with a quantum switch 8.8, and the conventional harmonic oscillator

probe 8.14, which yields the following equation for βǫ = x

3e3x + 3e2x + ex

(1 + ex)3(1 + 2ex)
=

e−x

(1 − e−x)2
. (8.15)
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This is an algebraic quartic equation in ex and can be shown to have a non-zero real

solution of x ≈ 2.40. For example, assuming ǫ = 1 yields the threshold temperature to be

Tthreshold ≈ 0.4157, which is not in the optimal temperature window for our scheme.

8.3 Summary

• Quantum switch enhances the precision of equilibrium thermometry with a single

qubit probe.

• Thermal channels under the influence of a coherent control lead to a new uncertainty

relation with smaller-than-usual uncertainty.

• Although a single qubit probe steady state thermometry always performs poorly

when compared against a harmonic oscillator probe, it is possible to surpass the op-

timal precision obtained by harmonic oscillator probes through the use of a quantum

switch.
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Chapter 9

Thermometry using weak quantum

measurements

1

In the previous chapter, we had described a possible way to improve the performance of

quantum thermometers. The principle aim of quantum thermometry is always to avoid

strong interactions, which may either be detrimental to the original thermal profile of the

bath, or be damaging to the probing device itself. In this context, schemes which are,

in some sense gentle, are called for. This way of gathering information about a quan-

tum system through weak measurement scheme [275, 276, 277, 278], has recently come

to the fore. Weak measurement is a technique of extracting information about physical

quantities by allowing a weak interaction between the system and the measurement appa-

ratus generated by the observable, followed up by a strong post selection measurement on

the system. The weak measurement protocol helps one obtain weak values of an observ-

able, which are, in general, complex numbers, and whose range may vastly exceed the

range of the corresponding observable. This property, known as weak value amplification

(WVA), is quite popular in the context of measuring quantities which may or may not

1This chapter is based on the preprint "Quantum precision thermometry with weak measurement" ap-

pearing in arXiv, with arXiv number 1901.07415.
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have quantum mechanical observables associated with them, for example, the geometric

phase [279], non-Hermitian observables [280], tomographic estimation of quantum states

[281, 282, 283, 284, 285], or amount of entanglement within a quantum state [286, 287].

The WVA technique has found applications in observations of the spin Hall effect [288],

photon trajectories [289], or the time lag between rapidly occuring processes [290] as

well. Thus, it is perhaps a natural logical step to coonsider weak measurement based

thermometric protocols. In this chapter, such a scheme is investigated in detail.

In this chapter, we confine our analysis to finite dimensional probes, with an empha-

sis on qubit probes. As we shall show, the protocol offers better precision for a cer-

tain temperature window, which is a generic feature of many thermometric schemes

[256, 266, 291, 292]. At the same time, the scheme discussed in this chapter is more

flexible in the sense of enabling the experimenter to shift the optimal precision window,

even when the probe spectrum is fixed, by simply tweaking the choice of the post-selected

state. As a further potential advantage of this scheme, the measuring apparatus interacts

with the thermal qubit belonging to the bath only weakly, thus it is usable in situations

where a strongly interacting apparatus may destroy itself.

2

9.1 Weak measurement

Let us briefly introduce the protocol of weak measurement with respect to an observable

Â. A state of a quantum mechanical system S is pre-selected as |ψi〉S – which is the initial

state of S . The measuring apparatus M is prepared initially in a (fixed) state |φ〉M with

the position of the pointer being governed by the wave function φ(x). The interaction

Hamiltonian Hint ≡ gÂ⊗ P̂x acts on the system and the measuring apparatus jointly during

2According to the formulation of the weak measurement protocol, described in section 9.2, it is enough

to consider gτ ≪ 1, even if we allow hot probes. Note that, for performing the post-selection strong

measurement, the assumption gτ ≪ 1 may be dropped. Nevertheless, the issue of the measuring apparatus

getting destroyed due to the hot probe can be circumvented by considering a different measuring apparatus.
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a very small time interval τ, where g is the weak interaction strength and P̂x is the linear

momentum of M, canonically conjugate to the position observable X̂ (say) of M. After

the action of the measurement interaction, the system S is then post-selected in some state

|ψ f 〉 – via an appropriate selective (strong) measurement on M. Thus, the time-evolved

state of S + M before post-selection is given by

|Ψ〉 = e−igÂ⊗P̂x

[

|ψi〉 ⊗ |φ〉M
]

≈
(

IS ⊗ IM − igÂ ⊗ P̂x

)[

|ψi〉 ⊗ |φ〉M
]

, (9.1)

where we have ignored quadratic and higher order terms for g, since the interaction is

assumed to be weak. The unnormalized reduced state
∣

∣

∣Ψ̃
〉

S M
of the measuring apparatus

M is given by
∣

∣

∣φ̃ f

〉

M
≈

( 〈

ψ f |ψi

∣

∣

∣ψ f |ψi

〉

− ig
〈

ψ f

∣

∣

∣ Â |ψ〉i P̂x

)

|φ〉M , (9.2)

Upon normalization, this reads as

∣

∣

∣φ f

〉

M
≈

(

1 − igAwP̂x

)

|φ〉M ≈ e−igAwP̂x |φ〉M , (9.3)

where Aw ≡
〈

ψ f

∣

∣

∣ Â |ψi〉 /
〈

ψ f |ψi

∣

∣

∣ψ f |ψi

〉

is said to be the weak value corresponding to the

operator Â. Let us note two important features of the weak value, firstly, Aw need not be a

real quantitiy and secondly, it may take values which are not constrained by the range of

the spectrum corresponding to the observable Â.

The imaginary and real components of the weak value Aw may be experimentally ascer-

tained through investigating certain features of the final state
∣

∣

∣φ f

〉

M
of the pointer. These

features include deviation in momentum and position with respect to the initial state |φ〉M,

dispersion of the wave function in momentum space, and rate of change of the wave func-

tion in position space [293]. Laguerre-Gaussian modes of an optical beam have also been

used to measure the real and imaginary parts of a weak value [294, 295]. Other propos-

als to completely determine the weak value, based upon interference visibility and phase
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T
QubitApparatus

Figure 9.1: Schematic of the weak measurement based thermometric scheme. The bath

is a collection of thermalized qubits. We couple the measuring apparatus to one of these

qubits for a very small time-interval.

shifts [296], have also been put forward.

9.2 Assessing temperature through weak values

Consider a d dimensional quantum system S under the action of a time-independent

Hamiltonian Ĥ having non-degenerate energy eigenvalues E1, E2, . . . , Ed and the cor-

responding energy eigenstates |ψ1〉 , |ψ2〉 , . . . , |ψd〉. Assume that S is in contact with

a heat bath of temperature T and S has reached the thermal equilibrium state ρT ≡

e−βĤ/ (Tr[e−βĤ]) =
(

∑d
n=1 e−βEn |ψn〉 〈ψn|

)

/
(

∑d
n=1 e−βEn

)

. Here β = 1/(kBT ), with kB be-

ing taken as unity. Prepare the measuring aparatus M in a state |φ〉, having position wave

function φ(x). Note that here M is considered to be a continuous-variable system, in

general. We would like to perform measurement of an observable Â on the system S .

Consider now evolution of S + M under the action of an interaction Hamiltonian Ĥint =

gÂ ⊗ P̂x for a bried period of time τ. The interaction strength g is also considered to be

small – in the regime of weak interaction between S and M. Here P̂x is the momentum

observable of M canonically conjugate to the position observable X̂. We assume here that
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during the time interval [0, τ], S and M are under the action of only the Hamiltonian Ĥint.

This may be fulfilled in different ways: (i) We may decouple the system S at time t = 0

from the heat bath (after S achieves the thermal equilibrium state ρT ) and thereby switch

on the interaction Hamiltonian Ĥint for the time duration [0, τ]. (ii) On the other hand,

we may think of assuming here that the the strength g of interaction is much higher than

that of the system Hamiltonian Ĥ, so that due to action of Ĥint for a small time span τ,

it is enough to consider the change in states of S under the action of Ĥint only. The time

span τ should be small enough so that in spite of taking the strength g of the interaction

Hamiltonian Hint being greater than the free Hamiltonian, gτ ≪ 1. At the end of the

action of the interaction Hamiltonian, the joint state of S + M becomes:

ρS M(τ) = e−igτÂ⊗P̂x(ρT ⊗ |φ〉〈φ|)eigτÂ⊗P̂x

≈ (IS ⊗ IM − igτÂ ⊗ P̂x)(ρT ⊗ |φ〉 〈φ|)

× (IS ⊗ IM + igτÂ ⊗ P̂x)

≈ ρT ⊗ |φ〉 〈φ| − igτ[Â ⊗ P̂x, ρT ⊗ |φ〉 〈φ|]. (9.4)

Now we post-select the state of S to be |ψ f 〉. Then M will get collapsed into the following

(unnormalized) state as given by

η̃(τ) =
〈

ψ f |ρT |ψ f

∣

∣

∣ψ f |ρT |ψ f

〉

|φ〉 〈φ|

− igτ
( 〈

ψ f

∣

∣

∣ ÂρT

∣

∣

∣ψ f

〉

P̂x |φ〉 〈φ| −
〈

ψ f

∣

∣

∣ ρT Â
∣

∣

∣ψ f

〉

〈φ| 〈φ| P̂x

)

=
〈

ψ f

∣

∣

∣ ρT

∣

∣

∣ψ f

〉 [

|φ〉 〈φ|

− igτ
(

AwP̂x |φ〉 〈φ| − A∗w |φ〉 〈φ| P̂x

)]

≈
〈

ψ f

∣

∣

∣ ρT

∣

∣

∣ψ f

〉

× η(τ), (9.5)

with the corresponding normalized collapsed state of M being given by:

η(τ) = e−igτAwP̂x |φ〉 〈φ| eigτAwP̂x (9.6)
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and the corresponding weak value is given by:

Aw =

〈

ψ f

∣

∣

∣ ÂρT

∣

∣

∣ψ f

〉

〈

ψ f

∣

∣

∣ ρT

∣

∣

∣ψ f

〉 . (9.7)

Using the value of Aw together with a priori knowledge of |ψ f 〉, Â, and the energy eigen

spectrum of the system Hamiltonian Ĥ, one can, in principle, find out the value of the

temperature T – with the help of eqn. (9.7). Let us note in passing that the operator

A must not commute with the relevant energy eigenbasis, else the weak value ceases to

depend on the inverse temperature β, and thus, measuring the weak value furnishes no

thermometric advantage.

High temperature regime- Let us now consider the case where the bath temperature is

high, that is, β→ 0. Thus, we can replace e−β ≈ 1−β. Now, assuming the spectral decom-

position of Â with eigenvalues a j and corresponding eigenstates |a j〉 for j = 1, 2, . . . , d,

in conjunction with eqn. (9.7), helps us to obtain the following expression for the weak

value.

Aw =

∑d
j,k=1 a je

−βEk

〈

ψ f |a j

∣

∣

∣ψ f |a j

〉 〈

a j|ψk

∣

∣

∣a j|ψk

〉 〈

ψk|ψ f

∣

∣

∣ψk|ψ f

〉

∑d
l=1 e−βEl |

〈

ψ f |ψl

∣

∣

∣ψ f |ψl

〉

|2

≈

〈

ψ f

∣

∣

∣ Â
∣

∣

∣ψ f

〉

− β
〈

ψ f

∣

∣

∣ ÂĤ
∣

∣

∣ψ f

〉

1 − β
〈

ψ f

∣

∣

∣ Ĥ
∣

∣

∣ψ f

〉

≈
( 〈

ψ f

∣

∣

∣ Â
∣

∣

∣ψ f

〉

− β
〈

ψ f

∣

∣

∣ ÂĤ
∣

∣

∣ψ f

〉 )(

1 + β
〈

ψ f

∣

∣

∣ Ĥ
∣

∣

∣ψ f

〉 )

(9.8)

≈
〈

ψ f

∣

∣

∣ Â
∣

∣

∣ψ f

〉

+ β
(

〈

ψ f

∣

∣

∣ Â
∣

∣

∣ψ f

〉

×
〈

ψ f

∣

∣

∣ Ĥ
∣

∣

∣ψ f

〉

−
〈

ψ f

∣

∣

∣ ÂĤ
∣

∣

∣ψ f

〉 )

(9.9)

Inverting this expression, in the high temperature limit, the inverse temperature is express-

ible in terms of the weak value of the observable A as

β ≈
Aw − 〈ψ f |Â|ψ f 〉

〈ψ f |Â|ψ f 〉 × 〈ψ f |Ĥ|ψ f 〉 − 〈ψ f |ÂĤ|ψ f 〉
. (9.10)
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Let us now anayze the right hand side of the above result in further detail. We denote

the standard deviation of an observable O as ∆O. According to Vaidman’s formula [223],

A|ψ f 〉 = 〈A〉|ψ f 〉 + ∆A|ψ̄ f 〉, which implies the following expression for the weak value

Aw = 〈A〉 + ∆A
〈ψ̄ f |ρT |ψ f 〉
〈ψ f |ρT |ψ f 〉

. (9.11)

Here |ψ̄〉 indicates that it is a state orthogonal to |ψ〉. This formula has been proved [223]

in the following way - we can always decompose the state |ψ〉 as |ψ〉 = α|ψ〉 + β|ψ̄〉. Now,

〈A〉 = 〈ψ|A|ψ〉 = α, and ∆A =
√

〈A2〉 − α2 =
√

〈ψ|A†A|ψ〉 − α2 =
√

α2 + β2 − α2 = β.

Similarly applying Vaidman’s formula for the density operator ρT yields ρT |ψ f 〉 = 〈ρT 〉 +

∆ρT | ¯̄ψ f 〉, where | ¯̄ψ f 〉 is another state perpendicular to |ψ f 〉. Plugging in this expression to

the earlier equation for weak value of A yields the following expression for the inverse

temperature

β = − ∆A∆ρT

Cov(A,H)

〈ψ̄ f | ¯̄ψ f 〉
〈ψ f |ρT |ψ f 〉

(9.12)

For a qubit state, the corresponding orthogonal state is unique. Hence, |ψ̄ f 〉 = | ¯̄ψ f 〉, which,

when plugged in, yields the following expression

β = − ∆A∆ρT

Cov(A,H)〈ψ f |ρT |ψ f 〉
. (9.13)

The above equation may be of independent interest. Let us now note that the anoma-

lous weak value δA = |Re(Aw) − 〈A〉|, is expressible as δA = |Cov(A, ρT )|/|〈ρT 〉|. Now,

〈ρT 〉 = 〈exp(−βH)〉/Z ≤ 1/ (Z(1 − β〈H〉), where Z is the corresponding canonical parti-

tion function. Combining these results together, we obtain the following lower bound for

the temperature

T ≥ 〈H〉
1 − |Cov(A,ρT |

ZδA

(9.14)
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In the above equation, the anomalous weak value δA is a truly quantum mechanical quan-

tity. It is easy to note that the achievable lower bound on the temperature is stronger, if

δA is large in magnitude.

Qubit case - Let us now consider the generic situation in the case of the simplest non-

trivial quantum system, which is a qubit, for arbitrary temperature. Consider H =
∑d

i=1 Ei |ψi〉 〈ψi|.

If we take now Â = −i|ψ1〉〈ψ2| + i|ψ2〉〈ψ1| and |ψ f 〉 = (1/
√

2)(|ψ1〉 + |ψ2〉), then the weak

value Aw is given by:

Aw ≡ 〈ψ f |ÂρT |ψ f 〉/〈ψ f |ρT |ψ f 〉 = i
e−βE1 − e−βE2

e−βE1 + e−βE2
. (9.15)

Note that here 〈ψ f |Â|ψ f 〉 = 0, 〈ψ f |Ĥ|ψ f 〉 = (E1 + E2)/2, 〈ψ f |ÂĤ|ψ f 〉 = i(E1 − E2)/2.

For the high temperature limit, we have the following (approximate) expression for the

inverse temperature of the bath in the qubit case, which may be shown to be consistent

with (9.10).

β ≈ −2iAw

E2 − E1

. (9.16)

Now, based upon the existing methods of identifying/measuring the weak value Aw [293,

294], one can, in principle, get an estimate of the (inverse) temperature β in eqn. (9.16).

One of the advantages of the present scheme is that the measuring apparatus is brought

into contact with the heat bath for a very short time, hence reducing the chance of damage

to the apparatus. We add here that the rationale behind choosing the operator A in this

form is the following, if A is chosen as being along the z-axis of the Bloch sphere, there

is no information to be obtained about the temperature from the weak value. In case of

thermalization, the azimuthal symmetry of the state in the Bloch sphere picture means it

is equally feasible choosing any operator A along the x − y plane of the Bloch sphere,

thus we may assume the above form of A without loss of generality. Once A is fixed,

the azimuthal symmetry of the problem is lost, and one has to choose the post selected

state carefully. Above, we assumed an example of the post selected state, however a more
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general analysis of the precision of our scheme depending upon different post-selections

have been performed in the following sections.

9.3 Precision in measurement of temperature

It is natural to wonder about the optimal temperature window where the present scheme

works best, that is, most precisely. The usual procedure for determining the precision of

quantum thermometers is through finding the corresponding quantum Cramer Rao bound.

In this section, we adopt a different approach. We restrict to qubit systems for simplicity.

However, the present analysis can be extended to higher dimensions in a similar fashion.

9.3.1 Precision analysis for imperfect thermalization

Let us assume that the initial pre-measurement state is not exactly a thermal state, but

very close to it, and written in the following manner

ρ(δ)
T
= (1 − δ)ρT + δ|χ(θ, φ)〉〈χ(θ, φ)|, (9.17)

where 0 ≤ δ ≪ 1, and |χ〉 is a random pure qubit state with corresponding Bloch sphere

parameters θ, and φ. Physically this indicates imperfect thermalization, which is exper-

imentally relevant, especially in situations where the thermalization timescale is not ex-

tremely fast compared to the time available for sensing. The corresponding weak value is

denoted by Aδ
w. Now, an experimentalist may use the formula (9.15) to find the apparent

inverse temperature β̃ of the bath as

β̃ =
2

E2 − E1

(−iA(δ)
w ) (9.18)

It is of obvious practical interest to us that the inferred value of temperature does not
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change wildly if the thermalization is imperfect. In order to quantify this, we invoke the

idea of quantifying a relative error, which is the difference between the temperature fur-

nished from imperfect thermalization, and the genuine temperature of the bath, divided

by the bath temperature, and scaled by the imperfection δ. The squared relative error in-

troduced through imperfect thermalization may thus be taken to be |β̃ − β|2/(δ2β2). It is

this quantity we shall concentrate upon. To remove the effect of |χ〉, which may conceiv-

ably capture some information about the state in which the probe was initialized, we shall

finally average over the pure states |χ〉. We will write E2 − E1 as the gap ∆ from here on.

Performing a perturbation expansion for A
(δ)
w around δ = 0, and retaining terms upto first

order in δ, the expression for β̃ is given by

β̃ =
2

∆

(

c1 tanh
β∆

2
− ic2

)

, (9.19)

where c1 = 1 − δ |〈ψ f |χ〉|2
〈ψ f |ρT |ψ f 〉 , and c2 = δ

〈ψ f |A|χ〉〈χ|ψ f 〉
〈ψ f |ρT |ψ f 〉 . Note that, c1 and c2 are functions of the

Bloch sphere angles {θ, φ} of the state χ. Thus, averaging over them, the resulting root

mean squared relative error Nβ for the particular weak measurement strategy adopted in

the previous section, is written as a function of inverse temperature as

N2
β =

1

4π

" |β̃ − β|2
β2δ2

sin θdθdφ =
1

4πδ2

∫ π

θ=0

∫ 2π

φ=0

∣

∣

∣

∣

∣

∣

2

β∆

[

c1(θ, φ) tanh
β∆

2
− ic2(θ, φ)

]

− 1

∣

∣

∣

∣

∣

∣

2

sin θdθdφ.

(9.20)

Now, neglecting the second and the higher order coeffficients of δ, we note that the ex-

pression for relative RMS error is written as

N2
β =

1

4π

"
4|v1 tanh

β∆

2
+ iv2|2

∆2β2(1 − tanh2 β∆

2
)2

sin θdθdφ (9.21)

where v1 = (1 − c1)/δ, and v2 = c2/δ. At this point, let us fix the observable A =

−i|ψ1〉〈ψ2| + i|ψ2〉〈ψ1|, as in the previous section, and assume the arbitrary post selected
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state |ψ f 〉 = cos(ξ/2)|ψ1〉 + eiν sin(ξ/2)|ψ2〉. We also assume, without loss of generality,

that the energy gap ∆ = 1. The expression for root mean squared relative errorNβ is given

by

√

(13 − cos 2ν) cosh β − 4 cos 2ξ sin2 ν cosh2(
β

2
) − (3 + cos 2ν)

3β
[

cosh(β/2) + cos ξ sinh(β/2)
]

[1 − tanh2(β/2)]
.

(9.22)

For specific choices of the post selected state, the anove equation yields the expression for

error, and consequently, the inverse quantity signifies the precision of measurement. For

example, assuming |ψ f 〉 = 1√
2

(|ψ1〉 + |ψ2〉), as in the previous section, the relative error

reads as

N+β =
√

1 + 4 cosh β + 3 cosh 2β

3β2
. (9.23)

Fig. 9.2 shows that the precision, which is defined as the inverse of the relative error,

attains a relatively narrow peak at a finite temperature, which determines the best operat-

ing window of the scheme. While the qubit thermometric schemes [256, 266, 254, 297]

based on the strong measurement are different in conception than the present scheme, it

is nonetheless noteworthy that the phenomenon of a narrow peak in the precision corre-

sponding to an optimal temperature window is present in both the cases. We also note that

for the QFI based analysis of optimal qubit thermometric probes with unit energy gap, the

peak is situated at T ≈ 0.41 [256, 266], which is obtained through solving the transcen-

dental equation [256, 266] e1/T = (1+2T )/(1−2T ). In comparison, in the present scheme,

for a specific post-selected state |ψ f 〉, the location of the peak for optimal precision is ob-

tained by the vanishing of the first derivative with respect to the inverse temperature β

of the expression in (9.22). In particular, for the specific example |ψ〉 = 1√
2

(|ψ1〉 + |ψ2〉)

discussed in the previous section, the equation takes the form

β =
3 cosh β − 1

3 sinh β − 2 tanh
β

2

, (9.24)
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|ψf〉	=	√(1-ε)	|ψ1〉	+	√ε	|ψ2〉
|ψf〉	=	√2

1 	(|ψ1〉	+	|ψ2〉)

1/Nβ

0.1

0.2

0.3

0.5

0.6

0.7

T0 1 2 4 5 6

Figure 9.2: Precision of the scheme plotted against the temperature for the specific

choice of post-selected states |ψ f 〉 =
√

1 − ǫ|ψ1〉 +
√
ǫ |ψ2〉 (green dotted curve), |ψ f 〉 =

1√
2

(|ψ1〉 + |ψ2〉) (red dashed curve). Energy gap between ground and excited states is unity

in each case. ǫ = 0.01 is assumed.

Figure 9.3: The temperature at which the optimal precision is achieved is plotted against

the parameters ξ and ν of the post selected state |ψ f 〉.
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Figure 9.4: The magnitude of precision at optimal temperature is plotted against the pa-

rameters ξ and ν of the post selected state |ψ f 〉.

Figure 9.5: The magnitude of precision is plotted against the parameters ξ and ν of the

post selected state |ψ f 〉 for (left) low temperature T = 0.05, and (right) high temperature

T = 100.
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which has the solution T ≈ 0.79. The temperatures corresponding to optimal precision for

other choices of post-selected states are depicted in Fig 9.3. Interestingly, for every |ψ f 〉,

the corresponding optimal temperature is significantly higher than 0.41. This indicates

the possibility that the present scheme may be better than the strong measurement based

one based one for the relevant temperature range. It is natural to wonder about the post-

selected state |ψ f 〉 which corresponds to maximum precision. From Fig 9.4 as well as Fig

9.5, it may be concluded that for any arbitrary temperature, |ψ f 〉 close to |ψ1〉 maximizes

the precision. Here, let us add a note of caution, from the definition, the weak value is

independent of the temperature when |ψ f 〉 is exactly |ψ1〉, hence measuring the weak value

furnishes no information about the temperature. Thus, we must take |ψ f 〉 to be extremely

close to |ψ1〉, but not identically equal.

9.3.2 Precision analysis for unsharp post-selection

Let us now consider another potential source of error in the present scheme, that is, the

post selection may be unsharp. Let us assume the unsharp post-measurement qubit state

in the form

ρ(ǫ)
f
= (1 − ǫ)|ψ f 〉〈ψ f | +

ǫ

2
(9.25)

Thus, the corresponding perturbed weak value of the observable A is given by

Aǫ
w =

Tr(ρ(ǫ)
f

AρT )

Tr(ρ(ǫ)
f
ρT )

≈ Aw

[

1 +
ǫ

Aw

(

Tr(AρT ) − 1

〈ψ f |ρT |ψ f 〉

)]

+ O(ǫ2) (9.26)

Now, using (9.15), the corresponding expression for shifted inverse temperature is β̃ =

2
∆

(−iA
(ǫ)
w ). From which, the formula for the squared relative error incurred is given by

N2
β =
|β̃ − β|2
ǫ2β2

=
4

∆2β2[1 − tanh2(β∆/2)]2

∣

∣

∣

∣

∣

∣

Tr(AρT ) − 1

〈ψ f |ρT |ψ f 〉

∣

∣

∣

∣

∣

∣

2

. (9.27)
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Figure 9.6: The magnitude of precision at optimal temperature is plotted against the tem-

perature T and the polar angle ξ of the post selected state |ψ f 〉.

As in the previous section, if one chooses A = −i|ψ1〉〈ψ2|+i|ψ2〉〈ψ1|, then, assuming ∆ = 1

without loss of generality, the corresponding expression for relative error reads as

Nβ =
4

β
[

1 − tanh2 β

2

]

(1 + cos ξ tanh
β

2
)
, (9.28)

where ξ is the polar angle of the pure post selection state |ψ f 〉. For the specific choice

|ψ f 〉 = 1√
2

(|ψ1〉 + |ψ2〉) in the last section, this amounts to the following expression for

precision, which is defined as the inverse of the error

1/Nβ(|+〉) =
4

β
[

1 − tanh2 β

2

] , (9.29)

It can be seen from Fig. 9.6 that the precision, defined as the inverse of the relative

error, attains a peak at some temperature, which determines the corresponding optimal

temperature window for thermometry. Fig. 9.7 reveals that the optimal temperature for the

scheme varies from Topt ≈ 0.54 to Topt ≈ 1.12. Solution of the following transcendental
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Figure 9.7: Left- optimal temperature, and Right- precision at optimal temperature, as a

function of the polar angle ξ of the post measurement state |ψ f 〉.

equation determines the location of the optimal temperature T ∗ for any given post-selected

state |ψ f 〉 with the polar angle ξ

cos ξ =
sinh 1

T ∗ − T ∗(1 + cosh 1
T ∗ )

T ∗ sinh 1
T ∗ − cosh 1

T ∗ + 2
(9.30)

An interesting feature we observe in Fig 9.7 is that there is a shift in the optimal temper-

ature window towards the right, and higher temperatures is associated with the reduction

in the optimal precision attainable through the present scheme. This is in line with the in-

tuition that, as a distinctly quantum mechanical scheme, the weak measurement protocol

should work best in the low temperature regime.

9.4 Quantum Fisher Information based analysis of pre-

cision of weak thermometry protocol

Until now, we have looked at the robustness of precision of the weak measurement based

thermometric protocol. In this section, we present the complementary analysis of thermo-

metric precision in this protocol through the usual quantum estimation theoretic methods.

Let us first recall the relevant bound on fluctuation ∆u of estimation of a single parameter

u, which is known as the quantum Cramer-Rao bound (QCRB).
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∆u ≥ 1
√

nFu(ρu)
, (9.31)

where F is the quantum Fisher Information for the state ρu, and n is the number of runs.

For the single parameter estimation case, it is always possible to saturate the lower bound.

We now remember that the final state of the pointer after the post-selection in state |ψ f 〉 is

given in (9.6), which is a pure state. For a pure state |ψu〉with the corresponding parameter

u, we recall that the QFI is given by [298]

Fu = 4〈ψ̇u|ψ̇u〉 − 4|〈ψu|ψ̇u〉|2, (9.32)

where |ψ̇u〉 denotes the first derivative of the state |ψu〉 with respect to the parameter u.

Putting this in (9.6), we obtain the following expression for QFI for temperature T after a

little algebra

FT = g2τ2

(

dAw

dT

)2

(ξ − ξ2) (9.33)

Here ξ = 〈φ|eigA∗wP̂x P̂xe
−igAwP̂x |φ〉 = |〈φ|x〉|2e2gτIm(Aw). Thus, upto leading order, the square-

root of QFI is proportional to

√
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∣
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∣
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∣

(9.34)

Once more, we assume Â = σ̂y unless otherwise mentioned. Expressing an arbitrary post-

selected state as |ψ f 〉 = cos θ
2
|0〉+sin θ

2
eiφ|1〉, we obtain the expression for scaled precision

F̃ as being
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Figure 9.8: Scaled precision F̃ plotted against temperature for various choices of post-

selected state parameter θ. The energy gap ∆ is taken to be unity, and the azimuthal angle

φ of the post-selected state is assumed to be zero.

F̃ =
2e∆/T∆ sin θ

√

cos2 φ + cos2 θ sin2 φ

T 2
[

1 − cos θ + e∆/T (1 + cos θ)
]2

(9.35)

Some specific illustrations for different values of θ are demonstrated in Fig. 9.8. The

existence of an optimal temperature window is once more observed, as is the feature of a

shift in the optimal temperature window by shifting the choice of the post selection. As

earlier, attempt to shift this optimal temperature window towards the right, i.e., to higher

temperatures by judiciously choosing the post-selection state, inevitably results in a loss

of optimal precision. Thus, the QFI based analysis yields the same qualitative picture as

the analysis performed earlier.
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9.5 Summary

• A thermometric protocol in terms of the weak measurement scheme is proposed.

The weakness of interactions is suggested to be beneficial in case the probe is highly

susceptible to damage from the thermal environment.

• The optimal temperature window for this scheme can be tweaked by changing the

choice of post-selected states, and not solely determined by the energy spectrum of

the probe.

• There is a trade off involved in shifting the optimal temperature window towards

higher temperatures, and the precision as well as the robustness of precision.
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Chapter 10

Future directions of work

We have finally come to the conclusion of the present thesis. We have seen how quan-

tum resources like coherence and magic are interlinked, analysed the role non-Markovian

dynamic plays in affecting the quantum features of a central spin system, studied a quan-

tum autonomous rerigerator model from the perspective of limitations set forth by the

existence of a quantum speed limit, proposed an autonomous thermal machine for steady

state creation of quantum resources, and proposed two different novel methods of quan-

tum thermometry. The natural question is - what’s next ? While we strive to provide some

possible answers to this question - it should be borne in mind that some of these directions

may eventually turn out to be blind alleys, while unforeseen directions may spring up.

Firstly, unlike other quantum resources, for example, entanglement, the potential of con-

densed matter spin chain systems for the purpose of magic state quantum computation is

underexplored. We have very recently started investigation on how to quantify the magic

in simple spin chain systems, and this avenue of research looks promising indeed.

Secondly, The present thesis dwells almost entirely on the finite dimensional quantum sys-

tems. However, the basic question that the thesis seeks to address, namely, the interplay

between thermal and quantum features of systems, is equally relevant for infinite dimen-

sional systems. For example, the discrete Wigner function based approach to magic has a
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very strong resonance to the resource theory of non-Gaussianity and Wigner negativity in

the Bosonic case.

Thirdly, the quantum switch based protocol for thermometry as laid down in the penulti-

mate main chapter of the thesis, can easily be generalized to more general metrological

protocols, and indeed, beyond metrology as well. We hope to provide more concrete and

operationally important results in this direction soon.

Fourthly, quantum networks with nodes rich in quantum resources are going to be op-

erationally crucial in the age of quantum computers. The analysis of growth models of

quantum networks in different environments has to take quantum thermodynamic limita-

tions into consideration, just as thermodynamic considerations are relevant for classical

network science. Moreover, the growth and dynamics of such networks must be affected

by the monogamy of quantum correlations, unlike classical networks, where preferential

attachment based growth models are very successful. Thus, the study of quantum dy-

namics in these systems is going to be a necessary component of building a genuinely

quantum network.

Finally, with the recent emphasis on environmental concerns and a potentially looming

crisis of resources, doing less with more is more important than ever. Hence suitable anal-

ysis of energetic cost of implementing various protocols and creating useable resources is

an extremely practical question, and for that purpose, it is vital to envisage how quantum

resources may be created using environments as potential allies, instead of enemies.
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