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CHAPTER7
Summary and future outlook

This thesis composed of three projects. The first two are on atomic cluster

systems and the third one involves studies on polar oxide surfaces. All of them are

studied incorporating first principles density functional theory (DFT) calculation.

7.1 TaSi16 on HOPG: A DFT study

In this project extensive studies of electronic structure of HOPG supported TaSi16

cluster has been performed. For computational cost a single structure has been

deposited. After checking the chemical stability and molecular dynamics simu-

lation, it was found that it is physisorbed and the cage structure distorted but

it never broke. It can be predicted that these properties will remain same when

more number of clusters will be deposited. So this can be taken as ideal system

for self assembly of deposited cluster system which is used in cluster assembled

material. Here due to weak interaction of cluster and substrate the properties

of isolated clusters remains almost same after adsorbed on HOPG. Hence the

next work can be performed by changing the central Ta atom with V with DFT

calculatuon, as they are in same group in periodic table. For deposited TaSi16,
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the experimental studies are already there. If the DFT results from V doped

systems are similar as Ta doped systems, without experimental evidence of de-

posited V doped Si cluster, it can be predicted that if the central atom is from

same group the supported cluster will behave in similar manner. If the V doped

system behaves differently, then it will also very intersting to study further.

7.2 Desigining of RE free PM: Insights from

small Co clusters

In this section of the thesis, the importance of various quantites like HOMO-

LUMO gap, mixing, magnetic moment etc. has been demonstrated predicting

them as possible responsible parameters for determining the MAE in doped Co

cluter systems. We have studied with total 60 doped Co clusters by taking

10 of each dpoing elements. Incidentally mixing was not found as an important

parameter for controlling the MAE of doped Co cluster systems. We checked with

non magnetic doping elements from group 14 and group 15 and “which element is

doped with the Co cluster”, this fact did not play any role in controlling the MAE

values. The amount of mixing was found also insignificant in determination of

MAE. The next work can be a checking whether mixing playes any important role

while doping with non magnetic elements from other group. From these results

a machine learning study can be done taking the parameters as descriptors and

study further for other cluster systems with different sizes and changing the Co

atom to another magnetic elements.
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7.3 Emergence of 2DEG in polar oxide surfaces

Glide surfaces of wurtzite BeO and ZnO have been studied extensively. Insulator

to metal transition has been found with emergence of 2DEG in both cases. Strong

magneto electric coupling found interstingly. These systems can be used further

in spintronics. Most importantly the metallicity in the glide surfaces is found

with surface reconstruction. The reconstructed surfaces are dynamically stable

than the un reconstructed one, but metallic.

BeO is a rather large band gap insulator. It will be interesting to consider its

solid solution with ZnO and its surface, substitution at the surface to control and

achieve these unusual properties of 2DEG and magneto electric effect in a robust

way so that they could be useful in a number of applications from catalysis to

sensors.
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Summary

Over the last two-three of decades, extensive studies including theories and ex-

periments have been performed in the field of transition metal (TM) doped silicon

clusters. Proper understanding of metal-semiconductor interfaces along with cou-

pling of magnetism in the TM atoms with the semiconducting characteristics of

Si, was the initial motivation. Unlike C, Si only prefers sp hybridization[1, 2]

which is not favorable for stable cage structures. From first-principles electronic

structure calculations, Jackson and Nellermoe[3] demonsrated that stabilization

of a Si20 cage could be possible by keeping a Zr atom inside it. After This finding,

several experiments have produced a variety of clusters in this series. Depending

on the encapsulated TM atom, clusters at specific sizes were found to be more

stable than others. Several attempts were taken to justify the observed stability

of TM-Si clusters for a given size, in terms of several well known elctron count-

ing rules. These kind of attempts generate some intersting debate in literature.

While isolated clusters are interesting systems in their own way, any applica-

tion requires them to be deposited on some substrate. In this direction, Shibuta

et al.[4] performed the first experiment with Ta encapsulated caged Si clusters

on highly oriented pyrolytic graphite (HOPG) using X-ray photoelectron spec-

troscopy (XPS). In order to understand the properties of TaSi16 on HOPG from

microscpic origin, we have explored adsorption of TaSi16 on HOPG using density

functional theory (DFT).

Permanent magnets (PM) form essential parts in various devices in a wide

range of applications, such as, in hybrid and electric cars, wind turbines, motors

in many household appliances, satellite communications systems and magnetic

data storage systems. There is an urgent drive to design PM without rare earth

(RE) elements due to supply side constraints of RE elements like Dy, Tb, Nd
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etc. Generally, they are required to have large Curie temperature (Tc), large

saturation magnetization (MS), and large coercivity (Hc). Large coercivity is a

result of large magnetic anisotropy energy (MAE). The most widely used perma-

nent magnets in present day applications are Nd2Fe14B and SmCo type alloys.

El-Gendyet al. [5] explored cobalt-carbide nano-particles as RE-free magnets at

the nano-scale. They reported MAE values close to 100 meV/Co (0.75 MJ m−3),

significantly larger than that of bulk hcp Co. For understanding of the factors

that control MAE, to design new RE free PM, Islam and Khanna[6] worked on

Co4A2(A = C, Si) clusters theortically and found large enhancement of MAE the

clusters and their assemblies. Given the state of affairs, we tried to figure out the

the main factors controlling MAE and whether any trend could be found with

these factors responsible for enhancement of MAE in small doped Co clusters.

Polar oxide surfaces have been studied extensively theoretically and experi-

mentally for fundamental issues regarding their stability. Among the polar oxides

the ZnO(0001) surfaces has been studied widely as a prototypical example of a

polar oxide surface. The wide band gapped semiconductor ZnO with wurtzite

structure itself is of interest for a wide range of applications ranging from cataly-

sis, gas sensing, to opto and micro electronics [7–13]. Wurtzite BeO has the same

crystal structure as ZnO and it is also widely used as large band gap insulator

with pizoelectric properties. Various studies with shuffle BeO and ZnO inter-

faced with some other materials showing presence of 2 dimensional electron gas

(2DEG) at the interface as a result of discontinuity of polarization. We checked

if 2DEG can be found naturally at the surface of BeO and ZnO without making

any interface. We found that glide surfaces of BeO and ZnO are metallic and

have emergent 2DEG in. Moreover the glide surface is magnetic with appreciable

magneto electric effect.
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In summary, this thesis is comprised of two themes: study of (1) electronic

and magnetic properties of atomic clusters both isolated and surface supported,

and (2) stability and electronic structures of polar oxide surfaces.
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CHAPTER1
Introduction

1.1 Atomic clusters

What is atomic cluster? Atomic cluster is basically defined as a collection of finite

number of atoms that are mainly (or at least to a significant extent) connected

by direct chemical interactions between the constituent atoms. The formation

of clusters and their aggregates, ie whether these will be formed in gas phase,

liquid phase or will be suitable for deposition on soild substrate, depends on the

experimental techniques and methodology.

Atomic clusters are composed of a few to a few hundred atoms. Due to the

wide range of their possible sizes, compositions and charge states, the properties

exhibited by them are distinct from those an atom. The number of atoms on

the surface of a cluster is a substantial fraction of the total number of atoms

and the arrangement of atoms in a cluster is very different from that in the

corresponding bulk. Due to this, the properties of clusters are also different

from molecules. Molecules are usually formed by either covalent or ionic bonds

between the atoms, while bonding within clusters could be metallic, covalent, van
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der Waals or ionic also. Molecules are very stable against coalescing, but clusters

are metastable objects. Atomic clusters show extreme size-dependent electronic,

magnetic, chemical and optical properties. Addition or removal of even one atom

or one electron can induce dramatic changes in these properties[14]. This exciting

feature gives us the opportunity to tune properties of cluster according to our

requirements. For this reason clusters are considered as the ideal candidates to

serve as building blocks for novel materials. To analysis the properties of atomic

clusters, they are classified in various ways. Depending upon the types of the

constituent atoms and the nature of bonding between them, atomic clusters can

be classified into following categories. (i) semiconductor clusters such as GeN ,

SiN , (ii) ionic clusters, such as (NaCl)N (iii) rare gas clusters, such as ArN , (iv)

metal clusters with metallic bonding such as NaN . In cluster science, clusters

formed out of atoms that are metallic in the bulk are termed metal clusters.

Bulk metallic systems have finite density of states at the Fermi level and hence

have gapless spectra. But metal clusters can’t be defined in the same way as

they always show discrete electronic spectra because of their finite size. Metal

clusters can be of simple metals, noble metals, transition metals (TM). Clusters

can also be formed of more than one species, called mixed clusters. In case of

mixed clusters, the constituent atoms may be metals, or one metals with another

semiconductor or insulator etc. In the later sections we will discuss elaborately

about TM doped Si clusters, and Co clusters doped with some nonmagnetic

elements. Both of them can be considered as mixed clusters.

Cluster assembled materials

As clusters show fascinating size and shape dependent properties, they are con-

sidered as building blocks for designer new materials [14–17]. By assembling
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clusters, materials with novel functional and structural properties can be pro-

duced. These are called cluster assembled materials (CAM). Properties of CAMs

can be tuned by choosing appropriate building blocks.

Fullerene based materials are one of the popular examples of CAM [18] .

(C60) carbon fullerene can be combined to form a face-centered cubic solid. Such

crystals are known as fulleride. In fulleride, structural identities of C60 cluster

are retained and they have very different properties than diamond or graphite.

Alkali-doped fullerides A3C60 (A = K, Rb, Cs) are also capable of forming high

crystalline solids with interesting properties [19]. These doped fullerides exihibit

superconductivity which can be tuned by changing the interfullerene spacing. Liu

et al. studied another class of CAM, which are made from Al clusters [20]. They

reported Al13K cluster, which is an ionically bonded complex, have properties

similar to KCl molecule. These facts lead to the idea that such motifs can be

used for CAM. There are some theoretical and experimental studies exploring

properties of clusters which can be used as building blocks for CAM’s [21–24].

1.1.1 Surface supported clusters

To use clusters in various devices, it is necessary to deposit on a suitable substrate.

Surface supported clusters is one of the most active fields of research in material

science due to the industrial demand for miniaturization of electronic devices

[25]. Surface supported clusters provide a way for bottom-up approach using

which materials can be synthesized through self-assembly. The self-assembly is

known as a phenomenon where clusters are spontaneously assembled themselves

and larger units or films are formed. There are two different methods can be

employed in fabrication of supported clusters [26]: (i) deposition of atomic vapor,

(ii) deposition of preformed clusters from a cluster source, either size-selected or
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otherwise. The deposition of clusters over surfaces often changes its properties

compared to that of the isolated clusters by the cluster-substrate interaction (due

to hybridization, changes in the structure, diffusion, alloy formation etc.,) and

cluster-cluster interaction (in case of high coverage).

Adsorption of clusters over substrates can be broadly classified into two cate-

gories depending upon the nature of bonding between the cluster and substrate.

(i) Physisorption: Here cluster-substrate interactions are weak van der Waals

type, and most of the properties of the gas phase clusters remain same after

deposition. Deposition of xenon clusters on graphite [27], adsorption of noble

metal clusters on MgO substrate [28] etc. are examples of physisorption scenario.

(ii) Chemisorption: Here interactions between the cluster and the substrate are

strong and as a result structure and properties of the isolated gas phase clusters

are significantly modified after deposition. New chemical bonds form between

the clusters and the substrate. Au clusters on CeO2 substrate [29], Au and Pt

clusters on TiO2 substrate [30] etc are examples of chemisorption.

Characterization of the surface supported clusters

Several experimental techniques have been used to measure and understand prop-

erties of surface supported clusters [31]. Among them X-ray photo electron

spectroscopy (XPS), scanning tunneling microscopy (STM), scanning electron

microscopy (SEM), atomic force microscopy (AFM), transmission electron mi-

croscopy (TEM/HRTEM), Raman spectroscopy etc are very well-known. Brief

discussions of some of these techniques are given below.

X-ray photoelectron spectroscopy (XPS)

XPS is used to understand changes in the electronic structure of a cluster due to

the presence of a substrate. Electronic properties of gas phase clusters are very
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much sensitive to the number of atoms. The electronic properties of the cluster

may be significantly influenced by the presence of surface. When cluster and

the subtrate brought in contact, due to cluster-surface interaction, the highest

occupied level in cluster will adjust to the Fermi level of the substrate. A charge

accumulation at the cluster-surface interface can also be induced for this [32].

The other energy levels (valence as well as core) of the supported cluster may

also change compared to those in the gas phase. The shift in core-level binding

energy in comparison to the bulk value is known as core-level shift. As core-level

shift depends on the bonding environment, so information about the nature of

the cluster-surface interaction can be obtained.

In XPS, a material is irradiated with X-ray beam. Here a photon is absorbed

by an atom in the material, which leads to the emission of a core electron. The

kinetic energy distribution of emitted photo electrons is measured. The binding

energy (BE) of the emitted electron can be calculated as

Eb = hν − Ekinetic − φ (1.1)

hν is the energy of an incident X-ray photon, which is known, Eb is the binding

energy (BE) of the emitted electron, Ekinetic is the kinetic energy of the emitted

electron and φ is the work function which has to be overcome by the electron

reaching the vacuum. The binding energy of an electron is defined as the energy

difference between the initial (with n electrons) and final states (with (n − 1)

electrons) of the atom.

Eb = Ef (n− 1)− Ei(n) (1.2)

Ef (n1) and Ei(n) are the energy of the final and initial states respectively.In
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final state (n− 1) electrons have been relaxed after the emission of the core elec-

tron. In absence of relaxation of these electrons, the binding energy would be

exactly equal to the negative of the orbital energy (εk) from which the photoelec-

tron is emitted. This approximation is known as Koopmans theorem.

Eb = −εk. (1.3)

the atom is not in its ground state, when the relaxation of (n − 1) electronic

states is absent. The removal of a photoelectron creates a hole in the atom. The

remaining electrons can relax to screen the hole, and thus the final state becomes

lower in energy. Therefore Eb of an electron depends on both the initial and

final state effects. The core-level energy shifts are closely related to the charge

transfer in the outermost electronic orbitals of the atoms. Shifts in the binding

energies of the core-electrons are induced by the charge redistribution of the va-

lence electrons.Thus the information about the valence state (oxidation state) of

the atoms can be obtained from the core-level shifts. Binding energies of the core

electrons are increased due to the loss of electrons in the valance orbitals.and as a

result a positive shift in the core-levels is found. On the other hand, an excess of

electronic charge in the valance orbitals is responsible for decrease in the binding

energies of core electrons and a negative core level shifts is happened.

Scanning tunneling microscopy (STM)

Surface images with atomic scale resolution is produced using Scanning tunnel-

ing microscopy technique . The principle of STM is based on the phenomenon of

quantum tunneling. Here a fine probe tip scans the surface with clusters, mea-

suring the tunneling current at constant voltage (constant voltage imaging mode)

as a function of its position. When a conducting tip is brought very closed to
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a metallic or semi-conducting surface, a voltage bias between the two can allow

electrons to tunnel through the vacuum region between them. The convolution

of the density of the occupied surface and unoccupied tip states is represented by

the STM image. The STM images are correlated with the position of the atoms,

as the density of states is correlated with the positions of the nuclei. More tech-

nical details about STM can be found in Ref.[31].

Scanning electron microscopy (SEM)

In the scanning electron microscope technique the sample surface supporting clus-

ters are imaged by scanning it with a focused beam of electrons. In this method,

electrons produce various signals in the form of secondary electrons, back scat-

tered electrons and characteristic X-rays when they interact with atoms of the

sample. These signals contain information about the topography of the sample’s

surface, composition, etc. The details about this method can be found in Ref.

[31].

1.1.2 Production of substrate supported clusters by atomic

vapor deposition

In this method, thermal evaporation is used to vaporize the material, whose clus-

ters are to be produced, Then atomic vapor is deposited onto the substrate with

thermal energy (∼ 0.1 eV) and flux under Ultra High Vacuum (UHV) condition.

The flux is expressed in units of monolayer (ML) per second, where 1 ML is

defined as a single continuous layer or film which is one unit cell in thickness.

The deposited flux of atoms undergoes elementary growth processes and then

condensed into the stable clusters. These elementary growth processes includes

nucleation, diffusion, aggregates, and evaporation of the atoms.
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The terrace of a substrate has periodic lattice sites or adsoroption wells, which

are separated by energy barriers. Along with it can also have some defects such

as vacancy, dislocation etc. The adatoms can come on the terrace at different

random positions. Some adatoms can bind to the surface defect sites, some of

them can evaporate from the surface, and rest can diffuse on the terrace.

Among all the elementary growth processes, the most fundamental process

is diffusion of adatoms. The diffusion processes are thermally activated jumps

mostly in form of straight adatom movements between adjacent lattice sites. In

diffusion sometimes concerted movements of several atoms may also be involved.

Transition state theory (TST), assumes that the adatom stay in their adsorption

wells are large enough for thermal equilibration. When the adatoms have suffi-

cient thermal energy to cross the energy barriers between the neighboring lattice

sites, they perform the thermally activated jumps.

Adatoms may also undergo aggregation and form bonds to form as clusters dur-

ing collisions. In aggregation process diffusing adatoms assemble together to form

clusters. In this process produced clusters can remain stable or decay again as

adatoms, depending on the bond energy and the number of neighbors. If the

produced clusters are large enough to grow more rapidly than it decays on the

time-scale of deposition, the process in known as nucleation. Nucleation is the

series of atomic processes where the adatoms condense as stable clusters. It is

the first irreversible step towards the formation of new phase (cluster) on the

terrace. A stable cluster is known as the nucleus for the growth processes. The

attachment of a single adatom to the critical size above which cluster remains

stable, results into a stable nucleus. The critical cluster size can be defined as

(ic1), where ic is the number of atoms in the smallest stable cluster. The details

about the methods and different elementary processes can be found in the Ref
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[32].

1.1.3 Deposition of preformed cluster

The major limitation with atomic deposition is that, the size and shape of the

clusters can’t be controlled. Deposition of preformed clusters on a substrate is a

more controlled way to fabricate substrate supported clusters. By selecting the

size of the incident clusters, the growth mechanisms and characteristics of the

materials can be changed [33, 34]. For example, it has been shown that the prop-

erties of carbon film can be changed from graphitic to diamondlike by changing

the mean size of incident carbon clusters [35]. Two types of nanostructures can

be built by depositing preformed clusters on a substrate : (i) separated clusters

or islands in submonolayer range. (ii) Thin films or cluster-assembled materials

(CAM) (up to few monolayers). Organized arrays of low coordinated clusters

with specific electronic properties can be grown as they can have potential use in

many applications. The nanostructured materials as thin or thick films, exihibit

mechanical, catalytic, and magnetic properties different from their crystalline

counterparts [36–38].

Various factors like the cluster and substrate materials, size of the cluster, tem-

perature, cohesive energies, and kinetic energies of the cluster strongly influence

the outcome of the complex cluster-substrate collision process [32, 39] . Based

on the impact energy of the incident clusters, collision process can be classified

in to three regime .

(i)Low energy depositions: When the kinetic energy per atom (Eat) of the in-

coming cluster is smaller than the binding energy per atom (Ecoh), the interaction

is considered to be low energy . Typical limits for this deposition are around Eat

= 0.1 eV. In this case, deposited clusters exihibit the properties the gas-phase
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clusters and elastic collisions induce cluster deformations..

Medium energy depositions: If Eat is comparable to Ecoh , clusters may un-

dergo plastic deformations. In this regime Eat can have the values between 1-10

eV. Defects can be induced for deposition of clusters on the surface.

High energy depositions: The impact is considered to be high energy if Eat

is higher than Ecoh. Typically, a lower bound of 10 eV for Eat is considered in

this regime.The incoming cluster decomposes upon impact at this high energies.

Part of the cluster is implanted in the surface resulting in an intermixing of the

cluster and the surface.

The films made by clusters in different energy regimes are distinct and can

be easily identified. Amorphous and easily removable films are produced in low-

energy deposition. In case of medium energies, the film adheres more strongly

to the substrate. High energy deposition gives a hard shiny metallic coating.

Haberland et al. studied these processes theoretically using molecular dynamics

(MD) simulations [40]. Deposition of Mo1043 on the Mo(001) surface were studied

at different impact energies. The resulting film morphologies are in figure 1.1.

Clusters retain their gas phase properties with little structural distortion, at low

impact energies, There is no damage to the surface. Clusters tend to pile up

on the substrate leaving large cavities in the film. At medium energies, depo-

sition will induce some defects on the terrace. In this case individual clusters

can be identified, but they are deformed from their gas-phased structures. At

high impact energies, clusters are totally fragmented and lose their identity. The

flattening of the cluster makes the film smooth. A fraction of the cluster intermix

with surface layers and this implantation runs several layers deep. After deposi-

tion over the surface, clusters also undergo various elementary growth processes.

Like the atomic deposition, they may nucleate, diffuse, aggregate and evaporate

26



Figure 1.1: Molecular-dynamics simulations of the morphology of films obtained
by Mo1043 cluster deposition onto a Mo(001) substrate with different incident
kinetic energies per atom.
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on the terrace of the substrate. Clusters can merge to form another larger cluster

during the diffusion. This process is known as coalescence of the clusters. Coa-

lescence is not possible in case atomic deposition. When two clusters meet at the

surface by diffusion, they may either aggregate or coalesce. A schematic diagram

of aggregation and coalescence is shown in figure 1.2 The choice between two

Figure 1.2: Possible elementary growth processes for two clusters meeting on a
surface (a) aggregation (b) coalescence.

type of interaction depends on several factors such as cluster size, temperature,

cluster and substrate materials etc. For a critical size Nc, if two clusters of size

N > Nc collide with each other, they will not merge to form a larger clusters

and aggregate with each other. On the other hand if size of one of the cluster

is smaller than Nc, they will coalesce into a single cluster. Nc depends on the

bonding strength of the cluster atoms. More details are given in ref [39, 41]

1.1.4 Softlanding

Softlanding is driven by the idea to preserve the unique properties of preformed

size-selected clusters and stabilize them on the surface. The adsorption of clus-

ter on the surface without any collision-induced deformations and implantation

is the criterion for softlanding. This process strongly depends on cluster size

and material, as well as the substrate properties like surface energy, hardness,
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polarizability, corrugation and temperature [41]. When a cluster reaches at the

surface, it accelerates due to the attractive cluster-substrate interaction. The

translational energy is converted into internal energy and both the surface and

the cluster get heated. For small clusters, this internal energy leads to atomic

rearrangement and implantation. Softlanding does not necessarily preserve the

properties of the small gas phase clusters on those surfaces with large cluster-

substrate interactions. For example, MD simulations of Ag7 and Ag19 clusters,

deposited on Pd(100) and Pd(111) surface with almost zero impact energy ex-

hibit partial implantation and atom exchange [42]. In case of larger clusters with

several hundreds of atoms, the structural deformation and implantation are less

important. For large clusters at low energy depositions the energy available to

each atom is small. So atom exchanges required for the implantation is not pos-

sible. In case of CuN and AuN up to N = 55 deposited on Pd(100) a pronounced

atomic rearrangement has been found but there is no significant atom exchange at

negligible kinetic energy [43]. In case of inert surfaces softlanding is more simple.

Small clusters do not gain translational energy due to the smaller cluster-surface

interaction. Small as well as larger clusters retain their gas phase identity after

deposition when deposited at low impact energies. Honea et al.[44] compared

the Raman spectra of the mass selected small silicon clusters with size 4, 6 and

7, deposited over solid N2 with gas phase case. Raman spectroscopy gives the

information about the geometry of the cluster. They found that geometry of the

deposited clusters is same as in the gas phase. Busolt et al. [45, 46] measured the

spectra of small silver clusters deposited over graphite for the two photon photo-

electron processes. They reported a strong dependence of the spectra on cluster

size which shows that their gas phase identities are retained and no fragmentation

has been found.
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1.1.5 Cluster assembled films

Cluster assembled films can be obtained by depositing clusters using the softland-

ing or low energy cluster beam deposition (LECBD) technique. The morphologies

of the cluster assembled films depends upon the strength of the cluster-substrate

interactions [47]. For large cluster-substrate interactions the diffusion of the clus-

ters will be limited and the growth will be organized as random paving of the

individual clusters. In case of weak cluster-substrate interaction the diffusion will

be large and cluster will prefer to form large ramified islands on the surface. The

diffusion and coalescence of the supported clusters leads to growth of granular

thin film depending on the deposition conditions (cluster size, cluster and sub-

strate material, flux, temperature etc.). The grain size for the coalescence of the

clusters is limited by a critical size (Nc). Using LECBD technique, cluster assem-

bled films by depositing the TM clusters (FeN , NiN , CoN etc.) can be formed

[48–50]. For TM clusters, only the random paving type of growth is possible for a

wide range of substrates including graphite, organic materials and various other

metals. So we can assume that cluster assembled magnetic films produced by de-

positing TM clusters always grow from random paving of individual clusters. At

finite thickness of the film, TM clusters will undergo various growth process like

diffusion, coalescence, etc. and usually organized as highly porous and granular

thin film. The competition between the grain anisotropy and the exchange inter-

actions between grains determines the characteristics magnetic behavior of these

films.When cluster of average size Fe150, Co300, Ni300 are deposited at 300K, the

mean size of the supported grains are found to be 5 nm, 3 nm, and 4 nm respec-

tively [48–50]. It has been reported that for Fe clusters, the grains crystallizes

in a BCC structure and for Co and Ni, grains crystallizes in the FCC structures.

Such magnetic films have huge applications in the high density memory devices
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and spintornics.

1.2 TM doped Si clusters

Over the last 20-30 years, TM doped silicon and germanium clusters have been

studied extensively. In this section we will discuss TM doped Si clusters.

The studies of doped metal-silicon clusters was started in the late 1980 initially.

Regarding this one can consider Beck’s two seminal papers [51, 52] as the ini-

tial motivation. Beck’s actual motivation for exploring these cluster systems was

significantly different from the motivation of post-1990 work. During 1980, peo-

ple knew that, the electrical properties at the metal-semiconductor interfaces is

directly effected by the chemistry of this metal-Si interface. Due to this reason,

the study of metal-Si interface was relevant for better insight for these systems.

That time, the chemical processes or the reaction products at these interfaces

were not known [53, 54]. Tu [55] and Hiraki [56] proposed two completely dif-

ferent mechanisms to explain the reaction of a metal film with a Si substrate in

formation an alloy, or silicide. None of these proposals had any direct experimen-

tal or theoretical proof as there were some technical difficulties in exploration

of these above mentioned proposals. One of the crutial problem was, at the in-

terface, there was involvement of the large number of atoms. The symmetry of

the bulk structure was not paid attention. The properties those are produced by

the surface sensitive experimental techniques, were statistical averages over many

possible local geometries, but there was no information found regarding the lo-

cal chemistry of metal-Si bonding. Small binary clusters containing a single TM

atom were explored by Beck. He produced and studied binary clusters made

with three different TM atoms W, Mo and Cr with Si for better understanding
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of bonding and chemistry of TM-Si systems. From Beck’s experiments, it was

noted that stabilization of a Si cluster can be possible with keeping a TM atom

in the cluster. It was shown experimentally that for a specific size range, where

unstable bare Si clusters were found, after a single TM atom was incorporated,

the Si cluster became stable.

In electronics industry, Silicon is one of the most popular and widely used

materials from very early days to today. After the discovery of C fullerenes,

questions were asked if cages of Si would also be stable and could be used as

building blocks to synthesize novel materials. In the year 1990s, the searching for

small Si clusters was begun with a motivation of using them as building blocks of

some novel materials. But the realization for the difficulties was happened soon.

Firstly, elemental Si clusters are highly reactive as they have dangling bonds [57],

and so they are not suitable to be used as building blocks for CAM. Secondly,

Si prefers sp hybridization [1, 2] only, where in case of C sp, sp2 or sp3, these

three kinds of stable hybridization are found depending upon the structure and

composition of C based compounds. So formation of stable cage structures by Si

is not possible, due to its sp hybridization. Non-planar prolate structures were

formed by Si clusters, instead of cage structure [58, 59] as observed from ion mo-

bility experiments. These prolate structures were different from bulk fragments

[60]. The stabilization of Si20 cage was found when a Zr atom was encapsulated

in it. This was reported by Jackson and Nellemoe from their first principles

calculation[3]. After this finding, encapsulation of a metal atom inside the Si

cage, was considered as a probable way to form stable Si cage clusters.

In the pioneering experiment by Hiura et al. TMSinH+
x cluster ions were

produced for 5 TM atoms including Ir, Re, W, Ta and Hf [61]. Completely

dehydrogenated clusters were formed there at certain sizes depending upon the
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TM atom. This indicates that those TM-Si clusters were stable. Particularly,

stability was found in WSi12 cluster. Their proposal was WSi12 cluster with

hexagonal prism (HP) structure is the ground state structure. From first principle

calculations they proposed it. This work gave new dimension in the field of metal-

Si clusters, particularly in TM-Si clusters. Several theoretical and experimental

studies were performed with TM-Si clusters for their structural, electronic and

magnetic properties. In order to justify the stability found in TM-Si clusters,

some attempts were made using the electron counting rules commonly known

in chemistry and in the metal cluster field also. In the literature an interesting

debate was found with these ideas of explanation of stabilities in TM-Si clusters

from the point of view of elctron counting rule.

1.2.1 Studies on structure of TM-Si clusters

Knowledge of the structure of TM-Si clusters is very important to understand

their properties like any other atomic clusters. Several theoretical and experi-

mental studies have attempted finding the structures of these clusters. In order

to study the structures of small atomic cluster, no direct experimental probes are

found and this fact is well known. For a given cluster, “what is the ground state

structure”, this is the most important and difficult question in theory. In case

of experiments, the most important question is, among the produced clusters,

which isomers are showing largest abundance.

Regarding the structural stability of TMSiN cluster, the question what is the

smallest n value of Sin cage, for which encapsulation of a TM atom is possible

in the cage? This question was addressed both experimentally and theoretically,

and the answer is different for different TM atom encapsulated in the cage, as

expected. Let us first review the experimental works and then the theoretical
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calculations will be discussed regarding the studies on structures of TM-Si clus-

ters.

Experimental findings

In order to determine the position of the metal atom in TM-Si clusters, adsorption

reactivity (AR) of these clusters toward H2O was studied by the group of Kaya

and Nakajima [62–64]. From these experiments the measurement of the relative

adsorption reactivity (RAR) could be possible. Ohara et al. [65] has shown

in their experiments that, the reactivity of bare Si clusters towards H2O is low

enough compared to the metal atoms. This was established from the fact that the

abundance of bare Si clusters remained same after exposure to H2O, on the other

hand there was found a significant change in the abundance of Tb-Si clusters

after the exposure of H2O. Therefore a TMSin cluster is with an AR which has a

sensitive dependence on the location of metal atom. In case of TMSin cluster with

small n highly reactivity is found, when the TM atom is attached exohedrally with

this cluster. As the number of Si atoms are increaesed, these clusters become less

reactive. During the increase in number of Si atoms (n), a threshold size has been

found such that if n is just larger than this value, the cluster does not participate

in reactions. At a particular cluster size, RAR is defined as ln(If/I0), where

I0 and If represent the intensities of the cluster before and after the reaction

respectively in the mass spectrum. In order to explore the structures of several

TM-Si clusters including various 3d, 4d and 5d TM , Nakajima and co-workers

used this chemical probe method. Their studies included Ta, Hf, Lu, Nb, Zr, Y,

V, Ti, Sc encapsulated Si clusters in neutral and in singly charged anionic and

cationic states [64]. The variation of RAR of Sc, Ti and V encapsulated clusters

with changing n are depicted in figure 1.3.
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Figure 1.3: Variation of RAR as a function of number of Si atom in Sc-Si, Ti-Si
and V-Si clusters. This AR is for the reaction with H2O. The threshold size for
Si, at which the clusters become completely indifferent towards H2O, is shown by
arrow in each panel.The figure is adapted from ref [66]

From these plots, two things regarding the threshold sizes are clearly found.

(1) The charge state of the cluster plays an important role in determination of the

threshold size in case of a specific TM metal. The threshold size in a particular

TM encapsulated Si cluster, decreases from cation to neutral cluster and further

from neutral to the anionic charge state. It is depicted in Figure 1.3 with several
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panels clearly in sequential manner. In case of Lu and Ta this rule was not

followed and those can be considered as exception.

(2) The dependence of threshold size is also found on the element in same period.

There is a reduction of threshold size, as atomic number increases of the TM atom

within the same period and having same charge state. This is clearly understood

from the pattern in the panels (a)-(d)-(g) etc in figure 1.3. A slight increase in

the threshold size with the atomic number for the same group and same charge

state has been happened in general. Hence in case of neutral clusters, there is

an increment of threshold size from Ti to Zr and Hf. and in case of cations,

from V to Nb and Ta has been shown in in figure 1.4 in the panels d)-(e)-(f) etc,

sequentially.

In case of anion clusters, from Sc to Y an increment in threshold size has

been seen and after that a slight reduction of threshold size has been found in

Lu. These observations are consistent with the fact that across a period, during

the increment of atomic number, there is reduction of the metallic radii of the TM

atoms. In a group, there is an increment found in metallic radii, from 3d elements

to 4d elements and then a slight reduction of the metallic radii is found in few

5d elements. There is another finding which justify the indifference of clusters

towards the reaction, in terms of entire encapsulation of the TM in Si cage. As

the cage size increases, the reactivity can be found again for the situation when a

second metal atom comes into play. For a threshold size of Si cage or just bigger

which just entirely cover a single TM atom, the presence of second TM atom

makes the cluster reactive. This is due to the fact that the second TM atom has

to be on the surface of the cluster and hence the enhancement of reactivity is

found. The threshold sizes for the above TM-Si clusters, at different charge states

and metallic bond radii of the TM atoms are shown in Table 1.1 as reported in
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Figure 1.4: RAR towards H2O as a function of number of Si atoms in different
TM-Si clusters (n), when the TMs are 3d, 4d and 5d. The open and filled symbols
present clusters containing single and double TM atoms respectively.Figure is
adapted from ref [66]

Ref. [64]

Jaeger et al. [67] performed photo dissociation experiments. They observed

a primary loss of Cr atom in CrSi+7 clusters. But they reported loss of Si atoms
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Table 1.1: The metallic bond radii and threshold size for loss of AR in three
different charge states corresponding at which the TMSin clusters fail to react
with H2O

TM atom Metallic radius Å Cation Neutral Anion

Sc 1.63 17 15 15

Ti 1.45 13 13 11

V 1.31 12 10 9

Y 1.78 21 20 20

Zr 1.59 15 14 12

Nb 1.43 13 12 11

Lu 1.72 21 16 18

Hf 1.56 14 14 12

Ta 1.43 13 10 11

in case of CrS+
15 and CrSi+16 in their experiments. These observations can be

justified, if encapsulation the Cr atom can be possible in a larger Si cage. Since

only three sizes were produced in enough abundance in their experiments, they

were not able to find out the threshold size for which the entire encapsulation

could be possible.

Noble gas (NG) physisorption was probed by Lievens and co-workers [68] for

endoherdally doped Si clusters. Using this probe production of the bare Si, and

TM-Si clusters were possible. As a carrier gas , Heliun was used. There was a

dual-target dual-laser vaporization source. On adding about 1% of Ar to the He

gas, complexes were produced containing one or two Ar atoms by cation clusters.

Si+n , TMSi+n , (TM)2Sin clusters and (TM)1,2Si+n .Ar1,2 complexes were found in

the mass spectrum. Si+n .Ar1,2 complexes were absent there. Hence one can get

the picture of physisorbtion scenario of the Ar atoms with the metal atoms only

without anything between Si and Ar atoms.

The fraction of (TM)1,2Si+n .Ar1,2 complexes at different sizes were measured

in this work [68]. In case of a particular cluster, this fraction was found with

sharp fall at a particular size which depends on the TM atom in this particular

38



cluster. This size at which sharp fall as mentioned above was found, considered

as the threshold. This threshold was considered to point out the size at which,

entire encapsulation of the metal atom in the Si cage was happened. Figure 1.5

is showing experimental results.

Figure 1.5: Variation of fraction of argon complexes produced with various TMSin
clusters, with number of Si atoms in a cluster n. Clusters containing one or two
TM atoms are involved here. This figure is adapted from ref [68]

The threshold size for TM-Si cluster was found larger for the system which

contain two metal atoms. This justifies their entire encapsulation inside the Si

cage. The threshold size for V, Ti, Co and Cr were found as 12, 13, 8 and 9

respectively, from these experiments. It is consisent with the results of Koyasu

et al. [64].

Lievenss group performed experiments using NG physisorption technique to

the IR-MPD of clusters [69–72]. The information regarding the structure of the

experimentally originated cluster, could be found along with density functional

theory (DFT) calculations. Gruene et al. found that the V atom attached exo-

hedrally in VSi+n clusters for n = 6− 8 [69]. Claes et al. reported encapsulation

of a V atom inside a Sin cage for (n = 12 − 16) in their subsequent work [70].

These observations agreed with the chemical probe experiments. The lowest en-

ergy isomers were identified in most cases. Ngan et al. [71] showed that Mn

atom is endohedrally attached for n = 6 − 10 in case of MnSi+n clusters. They
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reported encapsulation of the Mn atom inside a Si cage, for n = 12− 14, 16 Iso-

mer for MnSi+11 could not be identified by them and due to mass coincidence with

Mn2Si+13, they could not measure the spectrum for MnSi+15. Nevertheless, from

their study it is confirmed that the Mn atom is encapsulated for MnSi+12 onward.

In a similar study Claes et al. reported about exohedral attachment of Mn and

V atoms in MnSi+n and in VSi+n clusters for n = 6− 9 [72].

The structures to neutral CoSin clusters were explored by Lievens et al. [73]

using Infrared-ultra violet two color ionization (IR-UV2CI) process. A compar-

ative study was done with the experimentally measured vibrational spectra and

the spectra obtained from DFT calculation. The conclusion was, the Co atom

encapsulated in a Si cage in CoSin clusters for n = 10 − 12. In figure 1.6 the

IR spectra of few low energy structures of CoSin clusters obtained from DFT

calculations, are presented.

Theoretical studies

There are several theoretical works on TMSin clusters. But most of them focused

either particularly small size range, or with few specific TM atoms. In this field

very few studies can be found which explored low energy isomers of TM-Si clusters

incorporating various different TM atoms and with involving a wide range of size.

Ma et al. [74] used global search techniques to find out low energy isomer in case

of Co-Si clusters.

There are various studies to find out the smallest TM encapsulated Si cage.

The question regarding the smallest metal encapsulated cage structure was ex-

plored by Guo et al. [75] in case of 3d TM atoms. Si14 was found as the smallest

Si cage encapsulating a Sc atom. Their observation for Sc did not agree with

the experiments by Koyasu et al. [64] incorporating the chemical probe method.
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Figure 1.6: Experimentally measured IR-UV2CI and theoretically calculated IR
spectra for a few low-energy isomers of CoSin clusters, with n = 10 − 12: A
comparative demonstration. Figure is adapted from Ref [73]

They reported the encapsulation of Cr, V and Ti atoms in Sin cage with n = 12.

According to them, Si11 cage can encapsulate one Mn atom and Fe, Ni, Co were

encapsulated by smallest Si10 cage. According to Gueorguiev et al. for TM = Ti,

V, Fe, Co, Ni the number of atoms in Si cage was 10 [76]. According to them,

the rest other 3d TM atoms attach endohedrally in the Si cage for size starting

at n = 12. In case of FeSi10 and CoSi10, the TM atoms were kept centrally, inside

the cage. This arrangement of Tm-Si cluster can be considered as a structure
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with two-layers. It consists with one quadrilateral, and one pentagon. The pen-

tagon is capped by the last Si atom. This two-layered structure is different from

the structure which was reported by Guo et al. A two-layer Si cage structure for

CoSi10 was also reported by Guo et al. But here instead of the pentagonal face,

the capping was found in quadrilateral face [75]. They reported FeSi10 structure

as perfectly symmetric structure with D5h point group symmetry, where the Fe

atom is encapsulated in the pentagonal prism composed of Si atoms. Gueorguiev

et al. [76] claimed their reported FeSi10 and CoSi10 are energetically not very

favorable. But they did not make any clear statement regarding the fact about,

which isomers are found with lowest energy from their calculations. During the

increment of the cage size, the encapsulation of all the TM atoms were found in

Sin cage with n = 12 [76, 77]. A HP cage structure was reported for n = 12 and

in some cases distortions also mentioned. In TiSi12, VSi12 and NiSi12, small Jahn-

Teller distortions were found in the perfectly D6h symmetric HP cage structures.

The ScSi12 cluster was theoretically explored by Sen and Mitas [78] and Reve-

les and Khanna [79]. Both reported about a HP caged ScSi12 cluster. Significant

distortion of the HP cage was reported by Reveles et al. They found a lowest

energy quartet state while a doublet spin state was reported by Sen et al. as

energetically lowest state. It is not clearly found, whether this structure is in the

the ground state from this report by Sen et al. Reveles et al. considered other

structures suggested previously in the literature but Sen et al. did not consider

any other structure. In order to find out the lowest energy ground state structure,

no global search was involved in these works mentioned above. In case of Ti-Si

clusters, a Ti atom encapsulated Si12 cage with HP structure was reported by

Sen et al. [78] and Reveles et al. [79]. A large distortion of the cage in TiSi12

was reported by Reveles et al. They found comparatively larger distortion in Ti
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encapsulated Si12 cage than the ScSi12 clusters. Regarding the spin state, Reveles

et al. reported a spin singlet state and Sen et al.reported a triplet lower energy

state for the TiSi12 cluster in their corresponding independent studies. Quan-

tum Monte Carlo (QMC) calculations with some acceptable accuracy produced

a notable difference in energies (0.7 eV) between the singlet spin state and the

triplet spin state with lowest energy. This was an important fact found that time.

In case of TiSi12, a basket-like structure was found as the ground state isomer

by Kawamura et al. They reported about the Ti-encapsulated Sin structures

with n takes value 13 and higher [80]. They reported for Ti-Si, the basket-like

ground state structure at n = 12 was found 0.273 eV lower than the distorted

HP cage structure at same size of n. These significant variations between dif-

ferent first principle calculations, point out the fact that either the calculations

are incorporating the approximations which do not allow to identify the lowest

energy isomers unambiguously, or global search was not performed to determine

the ground state structure in some of these DFT calculations or all of these DFT

works. Encapsulation of a V atom, by a slightly distorted Si12 cage with HP

structure was reported by Andriotis et al. [81]. This report agrees well with Guo

et al.’s result [75]. Apart from Andriotis et al., VSi12 clusters was also studied by

Reveles et al. [79] and Sen et al. [78] and reported with slightly distorted HP cage

structure like Andriotis et al. [81]. Sen et al. [78], Reveles et al. [79], Khanna et

al. [82], and Abreu et al. [83], all of them reported encapsulation of Cr atom in

a Si12 cage with HP structure. Reveles et al. reported a CrSi12 structure which

is perfectly symmetric D6h [79]. Kawamura et al. studied CrSin clusters over a

size range n = 8− 17 and reported Si12 is the smallest cage with HP structure to

encapsulate a Cr atom [80]. Mn doped Si clusters were studied by Li et al. [84].

They reported that the Sin cage with n = 11 could encapsulated the Mn atom
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in it. This result agrees with Guo et al. [75]. Khanna et al. reported among the

FeSin clusters, the smallest cluster is the FeSi10, where the Si10 cage can encap-

sulate the Fe atom [85]. This was an independent study apart from Guo et al.

and Gueorguiev et al. They also reported Fe atom occupies an interior position

in FeSi9, but at this size the entire encapsulation of Fe atom was not found in the

Si cage. The reported ground state structure of Khanna et al. was found almost

as similar as the reported ground state structure by Gueorguiev et al. [76]. A

pentagonal pyramid structure for FeSi10 cluster was studied by Sen et al [78].

Encapsulation of a Fe atom in between two Si5 pentagons were mentioned by

them. For the first time, Wang et al. [86] reported about CoSi10 cluster, in which

encapsulation of Co atoms happened in a Si cage and the cluster was formed with

a basket like structure. In an earlier work [74], in case of CoSi9, the same authors

claimed a cage-like structure. According to Ren et al. [87] and Li et al. [88], for

NiSin systems, the endohedral motifs are found to be most favorable for n = 8

and more. Their claims disagree with Guo et al. and Gueorguiev et al. and also

the results of Wang et al.[89]. Wang et al. [89] reported encapsulation of a Ni

atom in a Si cage at NiSi9.

Some theoretical studies of 4d and 5d TMSin clusters are discussed here.

Kawamura et al. [80] and Gueorguiev et al. [77] reported that group-IV atoms

Hf and Zr take endohedral position in a Si12 cage. In case of Zr the cage is

distorted from a perfect D6h symmetry as claimed by Gueorguiev et al. [77] and

for Hf, the endohedral occupation was found in Si10 even. But Zr was attached

exohedrally at this n = 10. A distorted HP cage for HfSi12 was reported by

Uchida et al.[90]. Sen et al. [78] also considered a structure where Hf was kept

endohedrally in a Si12 cage having HP geometry. So we can conclude from these

results that, definitely encapsulation of group-IV elements are happened in Sin
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cages, for n = 12. Among the Group-V element Nb attached endohedrally in

NbSi10, but the 5d group-V atom Ta, was found attached exohedrally in TaSi10.

For Si12 cage, the perfect encapsulation of Ta has been found the TaSi12 structure

was found with HP structure with D6h point group symmetry. The well-known

18-electron counting rule, are expected to satisfy by the Group-VI atoms Mo and

W, during their encapsulation in a Si12 cage after getting motivations from the

work of Hiura et al. [61]. All the works [76, 78, 80, 90–92] agree with the fact that

they are encapsulated inside a Si12 cage. According to Abreu et al. [93] partial

encapsulation was found for W atom in Si11 cage. In case of WSi12 the entire

encapsulation takes place. The rest of 4d TM-Si clusters ( TM =Tc-Pd)and the

remaining 5d TM-Si clusters (TM=Re-Pt), used to encapsulated in Sin cage with

n = 12 as reported in Refs. [76, 77, 90]. Among them Pd takes an endohedral

position for n = 10 where, Pt attached exohedrally with Si10 cage [77]. Below

size n = 12, Ir, Os, Re, Rh, Ru, Tc attached exohedrally with the Si cage, and

these are encapsulated by the Sin cage at n = 12 [76].

1.2.2 Relative Stability of TMSin Clusters

As a particular series of clusters is studied extensively, one of the important

fundamental questions which should be adddressed is, variation of their relative

stability with change in size and composition. In this case the most important

question is, which TMSin cluster is found with the greatest stability for a par-

ticular TM atom? Then for different TM atoms, what is this magic number ?

By measuring the mass abundance spectra of these clusters, these questions are

addressed experimentally . But only identification of the stable clusters is not

enough, rather to understand of the origin of their stability is more important.

Here the relevant point is, whether geometric close packing is responsible for this
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observed stabilities or some electronic shell closing effects are the reason behind

it.The experimental works and theoretical studies play equal role here.

Experimental search

In the first experiment [51] by Beck, it was found that, the TMSi+15 and TMSi+16

clusters mostly dominated the mass spectra, for the W, Mo, Cr TM atoms. But at

these sizes, no pure Si clusters were found. Hence after incorporating TM atoms,

stable clusters were obtained. The speculation was like that either (i) metal

atoms played the role of ’seed’ around which a compact atomic shell is found.

This atomic shell corresponds to a particular number of Si atoms (here 15 and

16). This leads to enhancement of stability in these particular TM-Si clusters or

(ii) during photoionization process, in the photo-fragmentation of larger clusters

the most stable fragments were found for the TMSi+15 and TMSi+16 clusters. Beck

produced TMSin clusters for TM = Cr, Mo and W in the subsequent work. They

used three different variations of the laser vaporization setup. Interestingly and

strikingly for all cases, the observed mass spectra were observed similar. The

TMSi+15 and TMSi+16 clusters mostly dominated it during ionization of the neutral

clusters with high laser fluence.

From Hiura et al.’s breakthrough experiment where silane (SiH4) gas was used

as reactant of producing TMSinH+
x clusters, a sequential growth was found from

W+ up to WSi12H+
x [61]. In case of WSin, similar cluster for n > 12 was not seen

often. For all other TM atoms a similar behavior was found. Depending on the

TM atom the reactivity with SiH4 almost stopped when n reached a particular

value m. This value of m was found to be 12 for W, 14 for Hf, 13 for Ta etc. For

several TM atoms, the relative abundance of TMSi+n clusters with variation of n is

depicted in in figure 1.7 Two important features came out from this experimental
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Figure 1.7: Variation of relative abundance of TMSi+n among TMSinH+
x clusters

as a function of n. Figure is adapted from Ref. [61]

observations. (i) In contrast to Beck’s results, no TMSi+15 or TMSi+16 clusters were

observed. (ii) the sum of the atomic number of the TM atom and m is always 86.

This number corresponds to the atomic number of Rn atom, which is a rare gas.

According to the speculation of Hiura et al. [61], as the methods of producing

TM-Si clusters are different, their observations and those of Beck are different.

The second observation gave rise to the idea that well-known 18-electron counting

rule of chemistry may explain relative stability of TMSim clusters for a specific m

value. If we assume the picture in following manner it will be easy to understand.

One electron is donated by each Si atoms to the central metal atom. According

to this assumed scenario, in WSi12, the W atom is with 18 valence electrons.

This leads to a closed electronic shell configurattion and it is stable. This same
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assumption was applied for TMSim clusters for TM including Ir, Re, Ta, Hf. This

electron counting rule strictly applied for the neutral clusters. But when the

reaction with SiH4 started, the metal atoms becomes positively ionized. Hence,

arguments from the authors were arisen as follows. They argued after the entire

encapsulation of the TM atom by the Si cage, the metal atoms become almost

neutral. Because, the positive charges would be spread over on the whole cluster.

Several subsequent studies have explored this simple idea.

Kaya and Nakajima [62–65] performed a numbers of experiments in this TM-

Si cluster series. Apart from their works, significant experiments were performed

by Lievens et al. [68, 94]. Ohara et al. [62] measured the mass abundance spectra

for TiSin, MoSin, HfSin and WSin cluster with anion charge state. TMSi15 and

TMSi16 clusters mostly dominated all the spectra. This observation does not

agree with the Hiura et al.’s experimental findings [61]. In case of TMSin clusters,

Hiura et al. found a local minimum in the the electron affinity (EA) for n = 16

as EA was varying with n. In general, for a cluster with closed electronic shell,

little amount of energy is gained when, an excess electron is added to it. It has

a small EA. Their argument was that the electronic effects are not responsible

for the stable characteristics of TMSi16 clusters. They claimed geometry of the

clusters as the reason behind the observed stability in this clusters. Koyasu et

al. [63] explored the system with V-Si, Ti-Si and Sc-Si clusters. The highest

abundance was found for TiSi16 in the mass spectrum of neutral TiSin clusters.

In case of VSin and ScSin clusters the greatest abundance was found at n = 16

but in the cationic and anionic states respectively. The mass spectra of these

clusters is shown in figure 1.8.

The further extention of this analysis was performed including with the 4d

and 5d TM atoms from the same groups like Sc, Ti, V i.e., Y, Lu, Zr, Hf, Nb, Ta

48



Figure 1.8: Mass spectra of (a) ScSin , (b) TiSin and (c) VSi+n clusters. Figure
adapted from Ref. [63]

[64]. Like Ti, tetravalent Zr and Hf produced the highest abundance of neutral

ZrSi16 and HfSi16 respectively. Like VSi+16, highest abundance was also found in

TaSi+16 and NbSi+16 cation clusters [64]. In comparison with its neighbors, LuSi−16

was not found with very significant abundance. In case of Y-Si series, the number

of YSi16 clusters was a bit less than YSi15 and YSi17, its neighbors. The stability

of these clusters was explained in terms of combined effect of structural geometry

and a filled 20 electron shell. ScSi16, TiSi16 and VSi+16 all are with compact FK

polyhedron structures [95, 96]. A closed electronic shell with 20 electrons was

formed in case of a tetravalent Ti atom in a TiSi16. This model is based on the

assumption that the single electron is coming from each of the Si atoms to form

this closed shell as mentioned earlier.

This concept of filled electron shell, is taken from metal clusters. There it

has been shown that within this approximation of a confined spherical electron

gas, valence electrons filled one particle energy states which appear in bunches.
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These can be labeled as 1S2 1P6 1D10 ... [14, 97]. 2, 8, 18, 20, ... electrons

appear as shell filling numbers. Clusters with having these numbers of electrons

are found to be more stable. V and Sc both have one valence electron more and

less respectively in the viewpoint from shell filling. In comparison to Ti, VSi16

and ScSi16 form 20 electrons closed shells in cationic and anionic charge state

respectively. High degree of degeneracy of the electronic levels was casued for

the highly symmetric FK polyhedron cage. These high degree of degeneracy is

necessary for a pronounced closed electronic shell effect. No prominent peak was

found in the abundance pattern of YSi16 and LuSi16. This has been explained

from the point of view of their structures. These TM atoms do not fit the Si16

cage very well as they are larger than the Sc atom. Indeed, these two atoms

are encapsulated in a larger size cage [64, 98]. The speculation of the electronic

shell model which is responsible for enhancement of stability in these clusters

was further confirmed by their photo electron spectra (PES). Koyasu et al. [63]

reported the experimental PES spectra of anionic VSi−16, TiSi−16 and ScSi−16. These

are shown in figure 1.9.

The PES spectra of VSi−16 and ScSi−16 are completely distinct from the PES

of TiSi−16. A low energy peak was found in TiSi−16 spectra at both the photon

energies (4.66 and 5.82 eV). These were pointed as X in panels (c) and (d) in

Figure 1.9. A large energy gap and at higher electron binding energies several

discrete transitions were found in these systems. This low energy feature was not

found in PES of VSi−16 and ScSi−16. The low energy feature X, was assumed by

Koyasu et al. as happened for a singly occupied molecular orbital (MO). In case

of true assumption, neutral TiSi16 should be found with a closed electronic shell

and with a large HOMO-LUMO gap, according to the suggestions of the spectral

feature. The measured value of HOMO-LUMO gap was found as 1.9 eV reported
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Figure 1.9: PES of (a) and (b) ScSi−16, (c) and (d) TiSi−16, (f) and (g) Vsi16 and
(e) TiSi16F− clusters. Figure adapted from Ref. [63].

by them. The idea that a singly occupied MO is responsible for the feature X,

is supported by the fact that TiSi−16 clusters reacted with F2 to generate TiSi16F

molecules. The feature X was absent in the TiSi16F− spectrum and the other

spectral features remain identical. This is appreciated as the F atom, got an

electron, from the singly occupied MO and ionic complex was produced. Further

support for the feature X because of a singly occupied MO, was found from the

measured PES spectra of the group-III, -IV , V TM doped Sin clusters for the

complete size range n = 6 − 20 [98]. Neukermans et al. [94] measured mass

spectrum of CrSi+n clusters and reported about the domination of CrSi+15 and

CrSi+16 in it, whereas the abundance at n = 18, 17 and 14 was much less in

these Cr-Si systems. Mass abundance of MnSi+n clusters was also found with
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same pattern like Cr-Si systems. It is also dominated by MnSi+15 and MnSi+16.

Neukermans et al. [94] reported MnSi+17 and MnSi+18 were also produced with large

abundance. According to the speculations of these authors, metal encapsulated

cage structure was responsible for the observed stability. These authors did not

invoke electronic structure of the clusters.

From all the above discussions, it was found that quiet different results for

relative abundance of various TMSi clusters are obtained from different sets of

experiments. But, How much of these experimental observations can be responsi-

ble for representing the relative thermodynamic stability and how much of these

experimental finding, can be determined from the point of view of formation

kinetics still remains an open question.

Findings from theoretical studies

In order to identify the highly stable TMSin clusters, to get explanations of

the experimental mass spectra, and for understanding the source of stability in

these clusters, several theoretical studies have been performed. The observed and

measured enhanced stability of particular TMSin clusters, can be explained by

invoking three different frameworks. These are (1) metal encapsulated Si cage

clusters with a compact geometric structure with a strong bonding between Si

and TM; (2) 18-electron counting rule, well-known in chemistry, as suggested by

the experimental works performed by Hiura et al.; (3) electron gas shell fillings

formed around the metal atom, in the Si cage . To identify stable TM-Si clusters

several descriptors have been used theoretically. These are: (i) Binding energy

per atom (BE) of the cluster; (ii) Embedding energy (EE) of the TM inside the Si

cage. This is defined as the gain in energy for putting the TM atom in the Si cage;

(iii) First order energy difference ∆1(n) which is defined as the gain in energy
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to produce the TMSin cluster by adding a Si atom to the TMSin1 cluster; (iv)

Second order energy difference ∆1(n). This is defined as the difference between

∆1(n) and ∆1(n+1); (v) The energy difference between the highest occupied and

the lowest unoccupied molecular orbitals (HOMO-LUMO gap). Thermodynamic

stability of these clusters is measured by the first four quantities in several ways.

In chemical reactions, how much the cluster can be stable is mentioned as the

kinetic stability. The HOMO-LUMO gap is used to measure this kinetic stability.

A cluster is stable or less reactive for large HOMO-LUMO gap and becomes

reactive with small HOMO-LUMO gap. These quantities are defined as

BE = (E(TM) + nE(Si)− E(TMSin))/n+ 1 (1.4)

EE = E(TM) + E(Sin)− E(TMSin) (1.5)

∆1 = E(Si) + E(TMSin−1)− E(TMSin) (1.6)

∆2 = E(TMSin+1) + E(TMSin−1)− 2E(TMSin) (1.7)

E’s are presented for the total energies of the corresponding systems. Def-

initions of BE, EE and ∆1 has already been stated earlier. ∆2 measures the

difference between gain in energy from system with size n − 1 to n, and during

going from system with size n to n + 1. An enhancement of stability in com-

parison to the two neighboring sizes, is denoted by a positive value of ∆2. In

addition to check their stability, sometimes few other quantities also used. These
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are for neutral clusters, vertical ionization potentials (VIP) and adiabatic ion-

ization potentials (AIP). To remove an electron from a neutral cluster keeping it

in same structure, the required energy is defined as VIP. The energy difference

between the neutral cluster and its cation, both in ground states of is defined

as AIP. High VIP/AIP is a signature of stability in neutral clusters. Neutral

clusters with closed electronic shells are found with VIP and/or AIP. But in case

of a excess single electron after shell filling, it will show low VIP or AIP. Like

neutral clusters, these kinds of quantities are defined in charged cluster systems

also. In case of anion cluster, the vertical detachment energy (VDE) is defined as

difference in energy between the anion and the neutral charge state, keeping the

both with anion structure. Adiabatic detachment energy (ADE) is mentioned

as the gap in energy between the anion and the neutral cluster at ground state

structure. ADE plays the role of adiabatic electron affinity (AEA) of the corre-

sponding neutral cluster. Neutral cluster with a filled electronic shell is found

with small AEA. Oppositely neutral cluster with one electron less to complete

shell filling, is found with large value of AEA usually. All these concepts are

taken from the study of metal cluster field [14, 97].

Let us now discuss some specific studies regarding the stability of TM-Si clus-

ters with or without invoking electron counting rule regarding the explanation of

their stabilities.

Inspired by the works of Jackson et al. [3] and Hiura et al. [61], Kumar et al. [95]

performed one of the first important theoretical studies exploring the stability of

TM-Si clusters. The so-called shell-shrinkage method was used to determine the

ground state structures of TM-Si cage clusters. They performed this work in-

cluding TM = Ti, Zr, Hf, Fe, Ru and Os. In this study, they reported about

the cage shrunk of the ZrSi20 cluster during their optimization procedure. They
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mentioned that one of the Si atoms stuck out from the cage. After removing this

Si atom and after re-optimization, they found a ZrSi17 cage and here two Si atoms

sticking out. A ZrSi16 cage with one capping Si atom was reported by them on re-

moval of these two atoms and removal of this last Si atom. After re-optimization

a symmetric fullerene(f)-like compact cage of ZrSi16 was formed. For TiSi16 they

reported a FK polyhedron structure was found which was energetically lower by

0.781 eV from the f-like structure. Very large HOMO-LUMO gap with a value

of 2.358 eV was reported for this FK isomer. TM atoms with small size like Fe,

Ru and Os, stable TMSi14 cages were found by them. All other details are given

in the original paper [95]. They reported all these clusters are found with large

HOMO-LUMO gaps more than 1 eV and thay also have significant BEs. The

large stability of the TiSi16 cage cluster has been explained interestingly. The

f-like Si16 and the FK both are with four unpaired electrons and spin moments of

4µB. So both of them can share four electrons and can form strong bonds with

the central Ti atom, which is tetravalent. and strong bonds with the tetravalent

Ti atom could be formed. Depletion of charge on the Si-Si bonds in Si16 was

found in a comparative study of charge densities of the isolated metal atom and

empty Si cage with the metal encapsulated Si cage cluster. Similarly, in case of

Si14, after metal encapsulation, depletion of charge density was occured at the

center of the faces. Additionally charge was accumulated in the TM-Si bonds.

Hence, without invoking any electron counting rules, explanation regarding the

stability of these clusters could be proceeded by forming strong TM-Si bonds.

Kumar et al. [99] performed similar analyses for the group-VI TM elements W,

Mo and Cr. As Cr atom is smaller than Ti, it does not fit a Si16 cage properly.

The f-like CrSi16 structure turns to a CrSi15 structure with capping by a Si atom,

after optimized. When this capping is removed, and it is again re-optimized, a
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stable f-CrSi15 structure was formed. In case of CrSi15, the ground state structure

was found from the capped cubic structure that was obtained in case of FeSi14.

In case of W and Mo, this cube derived structure was found as the lowest energy

isomer also, as similar as Cr mentioned above. Large HOMO-LUMO gaps, more

than 1.5 eV were found in all three clusters. HOMO-LUMO gaps were found for

the TMSi14 clusters, are larger compared to other size. But their BEs are smaller

in comparison the corresponding TMSi15 The largest . This was mentioned be-

cause at size 14, clusters were not found as magic in Beck et al.’s experiments.

Unlike Cr, For W and Mo, when the metal atoms were building coordination

with all the 16 Si atoms, stable structures were found. But a capped Si15 f-cage

was found to be the lowest energy structure. Based on all these observations it

was argued that for the group-VI elements, the most stable structure is a metal

encapsulated Si15 cage structure.

Several other studies [74, 76, 77, 80, 86, 88, 89, 92, 100] have been done address-

ing the question regarding relative stability of different TM-Si clusters without

incorporating electron counting rules necessarily. Kawamura et al. [80, 100] ex-

plored the structures and properties of Hf, Zr, Ti, Cr doped Si clusters with using

two different exchange correlation functional in their electronic structure calcu-

lations. Their study did not incorporate the electron counting rule to explain

the relative stabilities of these clusters. Other important theoretical studies was

done by Nagase et al. [92]. They explored several TM doped Si clusters over

a long size range. In case of Pt, Os, Zr and W doped Si clusters at n = 16,

they reported highest values of both the BE and the EE were found. This is an

important information. They mentioned about the local peaks at n = 14 for Zr

and Pt, n = 12 for Os and n = 8 and 12 for W. Their argument was, as TM-Si

clusters were formed when the metal is reacted with Si vapors, after a complete
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reaction TMSi16 would be produced. Locally stable clusters may be the output

of incomplete reaction. An incomplete reaction could stop at WSi12 in case of

W. According to this argument the relative abundance of various sizes in a given

experiment is determined by the kinetics of formation.

Hiura et al. [61] suggested explanation about the observed non-reactivity of

specific TMSin clusters towards SiH4. The empirical 18-electron counting rule of

inorganic and organometallic chemistry can explain this non-reactivity according

to them. Getting motivation by their suggestion, there are number of studies

performed to check how efficiently electron counting rules can explain the relative

stability of TM doped Si clusters. We have already discussed some earlier. Among

theses theoretical studies, most notable works are by Sen and Mitas [78], Khanna

and co-workers [79, 82, 83, 85, 101, 102]. Uchida et al. [90] and Guo et al.[75].

There was attempt to explain the observed stability of ScSi−16, TiSi16, VSi+16. Using

electron counting rule which is applied to a spherical electron gas, Reveles et al.

tried to give explanation regarding the observed stability of mentioned clusters

[96].

All 3d, and some of 4d and 5d TM doped Si12 clusters were explored theoretically

by Sen et al. They explored the stability of these clusters, in terms of 18-electron

rule [78]. They emphasize about the fact that how generally the stability of the

TMSin clusters can be explained by the 18-electron rule. They studied the FeSi10

and ReSi11 clusters for further exploring the applicability of the 18-electron count.

From a nominal valence electron count, FeSi10 and ReSi11 are expected to obey

this electron counting rule. Sen et al. [78] calculated the HOMO-LUMO gaps and

for all these clusters. It was found that WSi12 has the largest and a remarkably

large EE value of 8.44 eV Among all the TM. But In case of 3d series, the largest

EE was found in case of V, not for Cr (4.46 and 2.99 eV respectively). Quite large
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HOMO-LUMO gaps have been found for both VSi12 and CrSi12. In contrary to

the facts which are expected from the 18-electron counting, ReSi12 had a larger

EE (7.44 eV) than ReSi11 (6.34 eV). For FeSi10, EE was found as 1.07 eV, also

small rather. Regarding the applicability of electron counting rule in explanation

of stability of these cluster, the argument was like that the 18-electron rule can

be considered as just one of the factors, and it can’t be applied in general. One

of the criticisms of this work by Sen et al. [78] could be that a thorough search of

structure was not performed. For TMSi12 clusters they considered only HP cage

structures.

The same question was addressed by Khanna et al. [82, 85] from a slightly

different point of view. In case of CrSin and FeSin clusters their essential focus

was on the quantity ∆1. They reported the largest ∆1 at n = 12 among the CrSin

clusters for n = 11 − 14. They also reported that the only pure Si cluster was

found as Si12. In case of Si12, more energy was gained when bonds between Cr and

Si are formed, but during the Si-Si bond formation, energy gain was lower. These

things indicate about special stability of CrSi12. This stability was explained in

terms of the 18-electron rule. Inside the Si cage a uniform charge density around

the Cr atom was found. A charge transfer was found from the Si cage to Cr atom

with an amount of 2.6e. This was considered as another evidence that around

the metal atom, formation of a filled shell of electrons took place. Another fact

should be mentioned that, among the studied clusters, CrSi12 was found neither

with the largest BE, nor with largest HOMO-LUMO gap.

Khanna et al. claimed that due to the largest ∆1 value FeSi10 is more stable

than FeSi9 and FeSi11 clusters in their early work [85]. Largest BE, also as the

largest HOMO-LUMO gap was found in FeSi10. It has the largest VIP also, but it

does not have the largest EE. magic nature of Si10 among the pure Si cluster was
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claimed to be responsible for this. For Si+10 significantly larger peak was found in

compared to its neighbour, in the experimental mass spectrum of pure Si clusters

[103]. For large value of HOMO-LUMO gap (2.08 eV), it becomes stable as well

as non-reactive. Hence, the production of FeSi10 is likely to proceed by addition

of a single Si atom to FeSi9. It it is not like the process of incorporating the Fe

in a Si10 cage. The largest stability of FeSi10 was according to the 18-electron

counting rule in any case. But a later work shows that this conclusion can’t be

drawn here as this picture is not the complete one.

Reveles and Khanna focused on the quantity EE as among the 3d TM atoms,

Sen et al. reported the largest value of EE for VSi12. Reveles et al. calculated

this quantity by incorporating the Wigmer-Witmer (WW) spin conservation rule.

The main idea of this rule is that during the encapsulation of a TM atom in a Si

cage the total spin has to be conserved . Therefore EE, with enforcing the WW

rule is defined in equation 1.8.

EEWW = E(Si12) + EM(TM)− EM(TMSi12) (1.8)

M denotes the spin multiplicity of the TMSin cluster. To maintain same total spin

of the reactants and the products, the spin multiplicity of TM atom was taken

same as that of TMSin cluster, instead of its ground state. EE and EEWW were

calculated by Reveles and Khanna for the anion clusters along with the neutral

clusters [79]. They reported about the distorted HP cage structures. The amount

of distortions was found small in middle of the 3d series, and larger along the

both ends of the same series. A perfectly symmetric D6h structure for CrSi12 was

reported by them. Instead of Cr, the largest values for EE was found for V and

Fe in case of neutral clusters. V was found with largest EE for anion also. On the
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other hand Cr was found with largest value of EEWW . The EE and EEWW cal-

culated by these authors are shown in figure 1.10 It was claimed that for proper

Figure 1.10: Representation of (a) EE and (b) EEWW for 3d TM encapsulated
caged Si12 clusters. Figure is adapted from Ref. [79]

understanding about relative stability, with variety of sizes, spin conservation

must be enforced for calculating EE. With spin conservation, CrSi12 turns out to

be the most stable structure following the 18-electron counting rule. Khanna and
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co-workers in another work reported that CrSi14 follows the 18-electron rule [83].

In this context, it should be mentioned that in the PES spectra of the group-V

TM-Si cluster anions, Koyasu et al. did not report about any proof regarding

the electronic shell (18 electron) filling picture [98]. They reported that around

size 12, smoothnes was found in the threshold of the PES. No maxima was found

in the threshold for NbSi−12, TaSi−12 and VSi−12. Khanna et al. in their another

work, reported a second peak in EEWW in case of Fe, that is expected to obey

the 20 electron shell filig [98]. This was considered as a evidence of a closed shell

electronic structure of this cluster. The experimentally observed mass spectra

of the TiSin, ScSi−n , and VSi+n clusters, measured by Koyasu et al. [63] were

explored theoretically for better understanding by Reveles and Khanna [96] in

their another interesting work. From the experiments it was found, at n = 16 all

these three clusters are with greatest abundance. Reveles and Khanna calculated

BEWW and EEWW of the neutral and charged Sc, Ti and V doped Sin clusters

for n = 15-17 incorporating the WW spin conservation rule. These authors per-

formed the bond critical point (BCP) analysis [104] of these clusters. TiSi16,

VSi+16 and ScSi−16 which are expected to be obey the 20 electron counting rule, are

found with symmetric FK polyhedron structures. Other clusters which deviate

from the 20 electron count, in this series, have distorted structure from a perfect

FK polyhedron.

Apart from Khanna and co-workers and Sen et al. some important works regard-

ing the properties of different 3d TM encapsulated Si cage clusters have been

performed by Guo et al. [75]. They reported among the TMSi12 clusters, VSi12

has the largest BE and EE , which agrees with Sen et al. Truly, among all the

cage clusters, these were the largest BE and EE values. Among all the clusters,

NiSi10 was found with largest HOMO-LUMO gap and with the largest VIP. Sur-
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prisingly, among the TMSi12 clusters the largest HOMO-LUMO gap and VIP

were found in TiSi12. The same conclusion is also made by Guo et al. that,

electron counting rule (18 or 20 electrons) is just one of the aspects to determine

stability of these clusters.

As discussed, several studies, both theoretical and experimental, have ad-

dressed fundamental properties of TMSin clusters in the gas phase. There were

no studies trying to use them in applications, or studying their properties after

deposition on a substrate, often a precondition for application. The first such

attempt has come from experiments done by Nakajima’s group [4]. They have

deposited stable TaSi+16 clusters on a highly oriented pyrolytic graphite (HOPG)

substrate.

In this set of experiments, they explored formation of assemblies of TaSi16 on the

HOPG substrate. Structure and electronic properties of the deposited clusters

were studied using scanning tunneling microscopy (STM), X-ray photo emission

spectroscopy (XPS), and ultraviolet photo emission spectroscopy (UPS) probes.

STM and XPS measurements were performed both on the deposited samples and

after heating them at 400 and 720 K. To check the so-called superatomic charac-

ter of TaSi16, they also studied reaction of the deposited clusters with oxygen.

These experiments provided a lot of information on the behavior of deposited

TaSi16 clusters on HOPG, but none of these provides microscopic insights. In

order to have a microscopic picture of the system atomistic calculations are re-

quired. so, in order to better understand this important cluster-substrate sys-

tem, we have performed first-principles calculations on free and HOPG-deposited

TaSi16 clusters using density functional theory (DFT). The details are discussed

in chapter 3.
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1.3 Permanent magnet

Permanent magnets (PM) are the basis of an ever increasing number of devices of

modern life. PM has a wide range of applications such as hard-disk drives, spin-

tronics, hybrid vehicles, wind turbines, home appliances, and biomedical devices.

PM are characterized by a large volume magnetization and a high coercivity. The

coercivity measures the resistance to demagnetization by external fields. Proper

intrinsic properties of the magnetic material are the prerequisite for these two

characteristics. These are (1) a high spontaneous magnetization and (2) high

magneto-crystalline anisotropy or magnetic anisotropy energy (MAE). The PM

usually have high currie temperatures (Tc) The intermetallic phase Nd2Fe14B

[105, 106] is very popular rare earth (RE) permanent magnet. It is mainly used

in modern acoustic transducers, speakers which are used in consumer electronic

devices, cell phones, cars. NdFeB magnets play essential role in eco-friendly trans-

port and sustainable energy production. High performance magnets with 400 kg

MW−1 power is required in a generator of a direct drive wind mill. On average,

there is a requirement of 1.25 kg of high end permanent magnets by a hybrid and

electric vehicle [107]. Bonded Nd2Fe4B magnets are used in hard disk drives. In

hard disk it is used in motor that spins the disk. The sintered magnets are used

for the voice coil motor for moving the arm. In many applications these are used

at higher temperatures. For example, in the motor/generator block of hybrid

vehicles it operates at around 450 K. Another popular RE based PM are Sm-Co

intermetallics. SmCo5 and SmCo17 have high Tc with value 1020 K and 1190 K

respectively [108], which are much higher than the Nd2Fe4B intermetallics(Tc =

558 K). So Sm-Co type intermetallics are preferable to use at high temperature.

Sometimes Dy and other RE metals based PM are used in various devices. But
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due to high demand of RE metals And supply side constraint there is an urgent

drive to design PM without RE elements.

1.3.1 Properties of PM

The primary objective of a PM is to generate a magnetic field in the air gap of a

magnetic circuit [109]. Magnetic circuit is made up of one or closed loop paths,

which contain a magnetic flux usually generated by a PM or electromagnet. The

energy which is stored in the field outside the PM can be related to its shape

and magnetization. The magnetic induction B is divergence free (∇.B = 0) and

magnetic field H is curl free in the absence of any current according to Maxwell’s

equations. The volume integral of the product of a solenoidal and irrotational

vector field over all space becomes zero [110], with the condition that at infinity

the corresponding vector and scalar potentials should be regular. The wellknown

relation between magnetic induction and magnetization is

B = µ0(M +H) (1.9)

Here B is the magnetic induction vector due to the magnetization vector ~M .

Here

µ0 = 4π × 10−7TmA−1

represents the vacuum permeability. In a volume Va of free space, the magneto-

static energy is

Emag,a =
(µ0

2

) ∫
Va

H2dV. (1.10)
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Separating the space into the volume inside the magnet, Vi, and Va, we get

∫
B.HdV =

∫
Va

µ0H
2dV +

∫
Vi

B.HdV = 0 (1.11)

and

Emag,a = −1

2

∫
Vi

B.HdV (1.12)

As the left hand side of equation 1.12 is > 0, so induction B and field H are with

opposite direction to each other inside the magnet. Inside the magnet the mag-

netic induction B and the magnetic field H can be approximated by a uniform

vector field, and we can write

Emag,a = (1/2)

∫
Vi

(BH)dV (1.13)

Here B = |B| and H = |H|. The increment in stored energy in its external field

can be done, either by increasing the magnets volume Vi or by increasing the

energy density product (BH) [111]. The product of the magnetic induction B

and the corresponding magnetic field H, which is opposite in direction of B, is

the definition of the energy density product (BH) [112]. It is found in units of

J m−3. In absence of any field generating current, the magnetic field inside the

magnet is

H = −NM (1.14)

It depends on the shape of the magnet and can be expressed in terms of the

demagnetizing factor N . Our further assumption is, that the magnet is saturated
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and no secondary phases are present there. Hence, |M | = Ms. Ms represents

the spontaneous magnetization of the material. From equations 1.9 and 1.14 the

energy density product can be expressed as

(BH) = |µ0(M −NM)|| −NM | = µ0(1−N)NM2
s

[108] The maximum energy density product of a material is found by maximized

the above expression with respect to N . It is found as

(BH)max =
1

4
µ0M

2
s (1.15)

for N = 1/2. The energy density product becomes maximum and its value is

given by equation 1.15, when the magnetization is not reduced with increasing

opposing field until H > Ms/2. For an ideal permanent magnet, the magnetic

Figure 1.11: The maximum energy density product (BH)max is shown by the
area of the largest rectangle that can occupy below the second quadrant of the
B(H) curve. For an ideal PM Left: M(H) loop, right: B(H) loop respectively.

induction B is a straight line as function of field. The remanent magnetization,

Mr is the spontaneous magnetization, Ms, in case of an ideal loop as shown in

figure 1.11. At fields lower than half the remanence, magnetization reversal may

occur in some materials. The energy density product is limited by the coercive
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field, Hc, when Hc < Mr/2. Similarly, when M(H) is not found with square shape

but decreases gradually with increasing field H, the maximum value for (BH)max

is not obtained. A higher energy density product is an important figure of merit,

as it makes reduction of weight and volume of the PM containing device. Other

decisive properties are the remanence, the loop squareness and the coercive field

of a PM.

RE free PM

3d TM can give reasonable saturation magnetization, but they have low MAE in

bulk. For example, MAE of bulk HCP Co is 65 µeV/atom and for Fe and Ni it is

even lower than Co. For this reason alloys and compounds of 3d TM are explored

for using as RE free PM. FePt, CoPt, HfCo alloys are well-known RE free PM

[113]. As Pt and Hf are also very expensive metals, so there is a search for less

expensive alternatives. Theoretical modeling is one of the useful paths to find new

materials with the properties desired in a PM. The metastable Fe-C martensite

phase is an old and as well as popular system. The octahedral interstitial positions

of the body-centered cubic (bcc) Fe crystal are taken by C atoms here. This causes

a tetragonal distortion [114–116]. By quenching of the high-temperature face-

centered cubic (fcc) phase rapidly, the practical achievement of this metastable

phase is possible. As the phase diagram of Fe-C and that of Fe-Co-C systems were

found similar [117, 118], the reasonable prediction can be used that, same type of

structures found in Fe1−xCoxC alloy. On producing a tetragonal distortion in the

cubic system, the desired PM properties, including a large MAE, can be found

in Fe1−xCox based systems.

Burkert et al. [119] used theoretical calculations based on density functional

theory (DFT). Their prediction was, when a tetragonal distortion was given to the
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cubic structure of FeCo, the MAE value can be increased with changing the c/a

ratio. A Fe0.40Co0.60 alloy under a tetragonal distortion of c/a = 1.2 was predicted

to have MAE of 700-800 µeV/atom as compared to only 65 µeV/atom in bulk

hcp Co. As a strategy for producing such tetragonal distortions, they suggested

depositing FeCo alloy films on suitable substrates. The most preferable approach

to strain the lattice was considered as the coherent growth of the films, where Fe-

Co maintains the unit cells volume and adapts to the in plane lattice parameter

of a buffer layer and perpendicular strain is applied. But up to a critical thickness

dC , at which relaxation of lattice is started through misfit dislocations. Induced

strain is mostly relieved. Moreover in grown film, ratio of lattice constants c/a

was found as 1. As dC is found in the range of 15 monolayers or 2 nm, large

MAE are limited to only ultrathin Fe-Co films [120–122].

Delczeg-Czirjak et al.[123] proposed spontaneously strained Fe-Co-C phases

to get rid of the problem of thickness limitation. In films, it is given by lattice

relaxation with incorporating distortion. Stable energy minima for c/a > 1 for

many internally relaxed (Fe1−xCox)yC systems were presented by them. These

mentioned systems are with y = 8, 16, and 24 and C is found in an interstitial

positions of the octahedron. This result points out that, there is a possibility

to find out the martensite structures with desired properties. They reported

comparatively large tetragonal distortion up to c/a ≈ 1.17 are found for systems

with y = 16. Hence, significantly large values of the MAE can be found. For

systems containing lower amount of C, with y = 24, the c/a value is much small

and it is almost 1.035. For different values of y the MAE is calculated They

reported MAE value upto 41.6 µeV/atom = 0.59 MJ/M3.

We can get an overview from Figure 1.12 about the fact, how spontaneous

strain can affect the uniaxial anisotropy constants (KU) of the ternary (Fe0.4Co0.6)0.98C0.02
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Figure 1.12: KU is the uniaxial anisotropy. KU for ternary (Fe0.4 Co0.6)0.98 C0.02

(full squares) and binary Fe0.45 Co0.55 films (open triangles) grown on Au0.5 Cu0.5

buffers varies with film thickness. Figure is adapted from ref [113].

films. The values for binary Fe0.45Co0.55 films without spontaneous strain are

added. Because of the induced strain at the interface, the highest KU values are

present in ultrathin films. There was lattice relaxation within the first 5 nm of a

produced film. For higher thicknesses, thus degradation of KU happened abruptly

[123, 124]. When the induced strain is relaxed completely MAE of the binary

films tends to zero. The spontaneous strain in the Fe-Co-C films is responsible

for KU of 0.44 MJ/m3 is kept up to a 100 nm thickness. It is confirmed by DFT

calculations by Delczeg-Czirjak et al. [123].

Zunger et al. [125] performed supercell calculations utilizing special quasirandom

structures of Fe-Co-C systems. They reported slightly larger value of MAE =

0.75 MJ/m3 . Along with they reported large saturation magnetizations = 2 T

for these systems. The strong exchange interactions of Fe and Co atoms, are not

affected by nonmagnetic C in small quantity significantly. It is logical to predict

a notable Curie temperature. These properties make this system as a highly

demanding PM.ss
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After these theoretical predictions, the next step should be an experimental

confirmation. Reichel et al. used pulsed laser deposition for epitaxial growth of

the (Fe1−xCox)yC system [126]. It was found that during the growth of ternary

(Fe1−xCox)yC system on a CuAu buffer. the saturation of the tetragonal distor-

tion happened towards c/a ≈ 1.03 with the film thicknesses of at least 100 nm.

This is contradictory to the binary Fe1−xCox system. Rapid saturation toward

c/a = 1 was found for the binary system. Thus a tetragonal distortion is in-

duced here by C atoms indeed. For x = 0.6, large magnetocrystalline anisotropy

energy with a value 0.44 MJ/m3 was measured here. As a small amount of C

(approximately 2%) seems to enter the system, a direct comparison with the-

oretical results [123] was difficult to perform. Therefore, for a (Fe0.4 Co0.6)32C

system, the experimentally measured lattice constants a = 2.81 and c/a = 1.03,

were taken and calculations were performed in two different methods. The MAE

values were found as 0.22 MJ/m3 and 0.51 MJ/m3 [113]. The experimental value

is in between the two theoretical results; therefore, one can consider the theory

and experiment agree well with each other.

Another type of material studied as RE free PM, is binary alloys, like FeNi,

MnAl, CoNi, MnGa etc. in the L10 structure [127]. Inspite of the fact that, they

are 3d-based magnets, large values of MAEs are found here on the order of 1

MJ/m3 or higher. Evaluation of Curie temperatures are done here by applying

Monte Carlo simulation. Significant values Curie temperatures are found here. To

obtain large TC above 600 K, off-stoichiometric Mn-rich compounds are required

in case of the Mn based materials.

Involving the usefulness of traditional metallurgical methods for production of

novel magnetic materials, is another way of the research toward RE-free PMs. Us-

ing arc-melting and melt-spinning probes, several intermetallic compounds were
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produced from elemental precursors. MnBi is an important intermetallic com-

pound among them. It has important applications as a PM and for its useful

magnetic properties it has drawn much attention. It has a hexagonal structure

with a comparatively low temperature of formation along with high magnetocrys-

talline anisotropy, which gives large coercivity. Similar properties were found with

electronic structure calculations [124, 128–130]. Mixing procedure of Mn and Bi

is difficult since there is a difference of almost 1000 K in melting temperatures of

two metals [131]. For this reason the hexagonal phase with the uniaxial magne-

tocrystalline anisotropy and the relevant magnetic properties are not easy to be

obtained. These materials are synthesized using arc melting, taking into account

the loss of Mn during melting process caused by sublimation. This is different

from conventional techniques [132].The lattice parameters were a = 0.429 nm

and c = 0.612 nm, as same as those reported in the literature [132, 133]. Large

saturation magnetization is not found in it. Magnetic moments up to 4.0 µB per

Mn atom were found [134] here. A high coercivity above 1 T is produced here

by large magnetic anisotropy with a value of 2.2 MJ/m3 at 500 K as reported

[128]. Theoretical value of BHmax was reported above 12.7 MJ/m3 [135]. The

increase of coercivity with temperature was found up to 2.6 T at 523 K. This

is an interesting fact in MNBi [128, 133].For higher temperatures, the structure

becomes unstable [132].

Magnetic nanorods have been explored as an interesting class of material of RE

free PMs. Cobalt was selected as nanorod material for its uniaxial anisotropy with

K1 = 450 kJ/m3 and saturation polarization Js = 1.76 T [136]. In experiments,

Co nanorods with cylindrical geometry, having different diameter and height have

been produced [137, 138]. In order to study the effect of aspect ratio H/D on

coercivity, finite-element micromagnetic simulations have been performed. Here
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D and H represent the nanorod diameter and height respectively.

where The finite-element model of Figure 1.13 (a) presents the magnetic nu-

  

Figure 1.13: During magnetization reversal, a finite-element model of two inter-
acting D30H100 Co nanorods. (b) How coercivity depends on the distance be-
tween two D10H100 (blue diamonds), D20H100 (green triangles) and D30H300
(red squares) nanorods. The coercivity of a single nanorod acts as an upper limit
for structures containing several nanorods. Figure is adapted from [113].

cleation and reversal process of neighboring Co nanorods with H = 100 nm and D

= 30 nm starting at the end surfaces of the nanorods. As the diameter decreases,

the influence of inhomogeneous reversal processes become less important. This

leads to an increase of the coercive field up to µ0Hc = 1.125T with D = 10 nm

as shown in figure 1.13 (b).
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Nanoparticles as RE free PM

Magnetic nanoparticles are widely used in various industrial and medical ap-

plications, targeted drug delivery, high-density memory storage, components in

nano-electronic circuits [139–144] etc. RE-free permanent magnets at the nano-

scale have been notably explored by El-Gendy et al.[5]. They synthesized cobalt-

carbide nano-particles by wet chemical means with high MAE values close to

100 eV/Co (0.75 MJ/m3), significantly larger than that of bulk hcp Co. These

had a blocking temperature of 571 K, and Tc equal to 650 K, both much higher

than room temperature. In order to probe the microscopic source of the ex-

perimentally observed large magnetic anisotropy, first principles calculations was

performed by them. This phase consists of cobalt layers separated via carbon

layers, their magneto crystalline anisotropy was investigated. By finding out the

contribution from spin-orbit coupling to the total energy this was calculated. Re-

garding this spin-orbit coupling contribution, the magnetic moment along various

directions was constrained and characterized by the polar and azimuthal angles

θ and φ. One can separate total energy into two parts. One is the direction-

independent and the other is the small angular-dependent energy. The so-called

anisotropy energy is determined by the angular dependent second part. This can

be written as mentioned in reference [5].

∆E(θ, φ) = E(0, 0) + V sin2(θ − θ0)×K +K ′cos[2(φ− φ0)] (1.16)

The two magnetic anisotropy constants of the nanoparticle are presented by K

and K′. The spherical angles θ0 and φ0 correspond to the easy axis directed along

a minimum of anisotropy energy. They performed calculations of the ∆E(θ, φ)

by fixing spin moment along various directions to determine K and K′, until a
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Figure 1.14: Magnetic properties of the experimentally produced Co3C. (a) The
profile of magnetic hysteresis loops at different temperatures. (b) The dependence
of coercivity on temperature to find out blocking temperature (TB). Figure is
adapted from [5].

local minimum of the total energy can be reached. They found an easy axis along

[001] direction with spherical angles θ0 = φ0 = 0 for Co3C. This is shown in figure

1.15. The ∆E(θ,φ) was computed at several θ with constant φ = 0◦ and 90◦. In

order to determine the anisotropy constants, the above equation was numerically

fitted to the computed energies. The values of calculated K and K′ were 8.4 ×
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Figure 1.15: Variation of MAE with spherical angles θ and constant φ. Figure is
adapted from [5].

105 J/m3 and -0.61 × 105 J/m3 respectively. An effective Keff can be found

from numerical fitting of the experimental data. Variation over φ is not involved

here. From the above equation, and using the calculated values of constants, it

was found that, the theoretical Keff lies between two values, minimum (K + K′)

7.8 × 105 J/m3 at φ = 0◦ and maximum (K-K′) 9.0 × 105 J/m3 at φ = 90◦.

Their calculated values agree well with the experimental measurement of 7.4 ±

1.0 × 105 J/m3 pointing out that the primary contributon to the experimental

anisotropy comes from the magneto crystalline energy.

In another work, El-Gendy et al. studied CoFe2C nano-particles [145]. They

synthesized CoFe2C phase under supercriti calethanolic conditions using cobalt

acetate, iron acetate, and fumaric acid as precursors. They reported large MAE

value 4.6 MJ/m3, high thermal stability and high blocking temperature with

value about 790 K. This MAE value is comparable to the MAE of Nd-based 2-

14-1 alloy. Such large increases in MAE in nanoscale systems is interesting, and

opens a practical way of designing permanent magnets without RE elements.
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Doped Co clusters as RE free PM

With these startling and encouraging experimental findings, one requires funda-

mental understanding of the factors that are responsible for controlling the MAE

values in these systems for designing new materials. Islam and Khanna addressed

this issue in their work on Co4A2 (A=C and Si) clusters [6]. They reported sig-

nificant enhancement of MAE in these clusters and their assemblies compared to

bulk Co. They further extended their works on bigger system of Co12C4 clusters.

They reported MAE values for Co4C2 and Co12C4 as 25 K (0.54 meV/Co atom)

and 61 K (0.44 meV/Co atom) respectively. The MAE value for Co4C2 was found

almost nine times larger than the bulk hcp Co (65 µeV/atom). They mentioned

the reduction of MAE/atom as the size of the cluster was increased is consis-

tent with the fact that for very large clusters, the anisotropy should approach its

value in the bulk system. They mentioned several factors as probable causes for

enhancement in MAE. These are: (i) larger orbital moment compared to bulk,

(ii) increase in the spin moment on the Co atoms, (iii) mixing between Co d and

the p states of the A atoms. But no further analysis was done.

Given this state of affairs, to understand the effects of various factors control-

ling the MAE values of these those Co systems we have studied the properties

Co4A2 systems with (A=C, Si, Ge, N, P and As) using DFT. The details are

given in chapter 4.

1.4 Polar oxide

The interest and the richness of the field of oxide surfaces lies in its interdisci-

plinary nature and in the diversity of questions it raises, on both fundamental

and various novel applications. Research on oxide surfaces started more recently
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Figure 1.16: Relaxed clusters (a) Co4C2and (b) Co12C4 with the z-axis perpen-
dicular to the plane. The number near each atom represents the local moment of
that atom in µB. (c) and (d) are the anisotropy landscapes of Co4C2 and Co12C4

clusters respectively, with θ and φ as the polar and azimuthal angles respectively.
Figure is adapted from [6].

compared with metal or semiconductor surfaces, because of difficulties in prepar-

ing well-controlled single crystal surfaces and implementing spectroscopic tech-

niques which probe the local atomic and electronic structures. Oxides have va-

riety of crystallographic structures e.g rocksalt, corundum, spinel, inverse spinel,

wurtzite, perovskite - for the simplest ones that reflect the subtle mixing of ion-

icity and covalency in the metal-oxygen bonding and the specificities for the d

electrons in transition metal oxides [146]. In case of forming mixed valence com-

pounds like magnetite (Fe3O4), metal atoms with several oxidation states are

involved. Stabilization of oxide layers of different stoichiometries can be done by
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tuning the experimental conditions like temperature, partial oxygen pressure, etc.

Despite nearly two decennial of efforts, the exploration of such a rich behaviour

is still fragmentary.

Polar oxide surfaces are one of the most important type of oxide surfaces.

There are three major trends have been found in case of polar oxides. The

first trend concerns the scaling of the structure size (particles size, device feature

sizes, etc.) into the sub 100-nm regime. There has been a trend in recent years to

strengthen the utilization of these effects and to synthesize oxide ceramics where

the properties are dominated by size effects. A second trend is regarding the fact

that advanced functional components are made of material systems rather than

of discrete materials. Material integration issues play an important role which is

driven by the interest in integrating functions of polar oxides in to conventional

semiconductor chips as well as for the evolution of multifunctional components

and systems. The third trend concerns the role of theory and modeling. The ma-

terials and device design is more and more accompanied and guided by modeling,

like thermodynamics, finite-element methods, and ab-initio calculations.

There exists a macroscopic polarization along the surface normal in a polar

oxide surface and the instability of surface has an electrostatic origin. The com-

bined effect of orientation and termination is responsible for these polarization

and surface instability. Like ferroelectric materials, a depolarization field is re-

quired to stabilize these surfaces. This can be achieved in various ways like by

a deep modification of the surface electronic structure by total or partial fill-

ing of surface states. This leads to surface metallization sometimes. Another

way is strong changes in the surface stoichiometry- spontaneous desorption of

atoms, faceting, large cell reconstructions for the ordering of surface vacancies,

adsorption of impurities, etc [147]. These processes can lead to original surface
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configurations, where the local environment of the surface atoms is different from

the bulk or from non-polar terminations. Here some electronic surface states may

appear in the gap of the oxide. As a result, the cations and surface oxygens may

present an enhanced acid or basic character respectively with important impli-

cations on reactivity [148]. The reconstructed surfaces which are formed due to

the polar instability, can be used as nano-structured substrates for growing artifi-

cial structures with some specific conformations. They may drive specific growth

modes like the formation of size-controlled clusters [149], when they involve large

unit cells.

1.4.1 ZnO and BeO

ZnO and BeO are found in wurtzite and zinc belnd phaes. ZnO is a very popular

polar oxide semiconductor with a direct band gap Eg=3.44 eV [150]. It is not

only used in window layers in photo voltaic devices, varistors for voltage-surge

protection, UV absorbers, gas sensors, catalytic devices etc but it has various

novel applications like transparent field effect transistors, UV laser diodes, mem-

ristors, in high-temperature high-field electronics also. From experimental works

of Zu et al. [151] and Bagnall et al. [152] it was found clearly that ZnO thin

films can be reached to the level of active semiconductor grade.

2DEG at ZnO surface

Wurtzite ZnO surface has been extensively used in studies investigating 2 di-

mensional electron gas (2DEG) while interfaced with some other oxides. There

are several important studies with ZnO/Zn(Mg)O hetero structure where 2DEGs

have been investigated [153–162]. Two dimensional electron gas(2DEGs) has ex-

tensive applications to fabricate high electron mobility transistor (HEMT) type
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field effect devices [163]. Two-dimensional electron systems (2DESs) in Tran-

sition Metal Oxides Interfaces (TMOs) have been studied extensively over the

last decade. There are several experimental and theoretical works specially on

SrTiO3/LaAlO3 interfaces [164–172]. The hetero structures are usually grown

using molecular beam epitaxy (MBE) [164, 165]. On the other hand a 2DEG was

also demonstrated in samples grown with metal-organic vapor deposition which is

suitable for mass production [159, 161, 162]. Study of Hall effect and capacitance

measurements confirmed the presence of the 2DEG at these hetero structures

[153, 156, 157]. Tsukazaki et al. observed Shubnikov de Haas oscillation and the

quantum Hall effect in a high-mobility 2DEG in polar ZnO/MgxZn1xO grown

by laser MBE [154]. There the electron density could be controlled in a range

of 0.7 × 1012 to 3.7 × 1012 per square centimeter by tuning the Mg content

in the barriers. 2DEG has been conventionally created at semiconductor inter-

faces or surfaces utilizing various methods. Typical examples are electrostatic

gating using a field effect transistor structure as in SiO2/Si [173] or modula-

tion doping as in AlGaAs/GaAs [174]. But the formation mechanism of 2DEG

in MgxZn1xO/ZnO is not similar to these hetero structures, without external

filed or impurity doping 2DEG is naturally present when the interface is formed.

Uncompensated charges also remain at the interface due to the difference in po-

larization between MgxZn1xO and ZnO, leading to a large internal electric field.

By introducing additional charge carriers at the interface, such disorder can be

suppressed for improving growth technique [175]. Ye et al.[161] and Han et al.

[160] reported spin-polarized 2DEG at ZnO/Zn(Mg)O interfaces. Betancourt et

al.studied the formation and properties of the 2DEG at ZnO/Zn(Mg)O interfaces

using first-principles calculations based on hybrid density functional theory [176].

The 2DEG arises from the polarization discontinuity at the interface between the
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two materials. An electric field generated in bulk wurtzite ZnO due to uncom-

pensated bound charges which are at the interfaces. This electric field confines

free carriers close to the interface. The type of the confined carriers is determined

by the interface termination. And the charge density can be tuned by the amount

of Mg doping.

Ding et al. reported high-density 2DEG at Zn-polar BeMgZnO/ZnO hetero

structures interface using MBE [177]. High 2DEG concentration in MgZnO/ZnO

hetero structures requires growth of the MgZnO barrier at relatively low temper-

atures. But it affects the ternary quality that in turn decreases potential field

effect transistor performance. When it alloyed with BeO the sign of strain in the

BeMgZnO barrier on ZnO switches from compressive to tensile. Piezoelectric and

spontaneous polarization becomes additive in the BeMgZnO/ZnO hetero struc-

tures. As a result, a 2DEG concentration of 1.2 × 1013 per centimeter square

is achieved in the Be0.03Mg0.41Zn0.56O/ZnO hetero structure. Rodel et al. stud-

ied the 2DEG in ZnO by depositing pure aluminum on its surface in ultrahigh

vacuum and characterize its electronic structure by using angle-resolved photo

emission spectroscopy [178]. As Al oxidizes into alumina, oxygen vacancies cre-

ated which dope the bulk conduction band of ZnO and confine the electrons near

its surface. They reported electron density of the 2DEG is up to two orders of

magnitude higher than those obtained in ZnO hetero structures.

2DEG at BeO surface

Wurtzite BeO has the same crystal structure like ZnO. In the most recent exper-

iment Wang et al. investigated the BeO layer with macroscopic polarization on

top of the AlGaN barrier layer increases the 2DEG density in the triangular quan-

tum well (QW) at the interface of the AlGaN/GaN hetero structure [179]. From
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electronic band bending of BeO and a deeper triangular QW, which was observed

from the simulated conduction band profile, one can understand BeO layer can

modify the polarization field at the AlGaN/GaN interface. Good quality HEMT

can be found by increasing sheet carrier concentration 14% with respect to the

conventional HEMT.

The origin of such 2DEG lies in the polar discontinuity between the polar and

non polar interface. Here we have explored whether 2DEG can be found naturally

at the surface of wurtzite BeO and ZnO. The details are given in chapter 5. In

wurtzite materials there are two kinds of bonds between two elements, one is

parallel to C axis, other one is slanted. These studies of polar surface has been

performed on shuffle surface, ie, parallel bond to C axis has been cut. In case of

wurtzite BeO there are some studies with shuffle surface using DFT. The shuffle

surface becomes a 2-d layered structure of Be-O like honey comb lattice. Chen et

al. studied electrical and optical properties of Ge/BeO 2d hetero structure using

Density Functional Theory with Dispersion (DFT-D) [180]. Wu et al. studied

electronic and magnetic properties of BeO nanoribbons (BeO NRs) and their

stability in through extensive density functional theory calculations [181].

1.5 Structure of the thesis

In summary my thesis conists of two separate system. One is atomic cluster

system and the another one is polar oxide surface. In both cases I have studied

the electronic and magnetic properties within the frame work of DFT. Motivated

by the interesting ideas and enormous applications of atomic clusters and the

polar oxide surfaces, I have performed these works which are mentioned in details

in several chapters in following manner. Chapter 2 is devoted to the methods

82



and techniques used to perform the calculations in this thesis. Techniques for

solving the Kohn-Sham DFT using plane-wave basis sets, and construction of

PAW potentials are discussed. The next sections contain an overview of ab-

initio molecular dynamics simulations and climbing image nudged elastic band

methods. The methods that incorporate the dispersion interactions within the

DFT framework are also discussed. The evolutionary algorithm, Bader charges

have also been discussed. I have briefly discussed the theory of magneto crystaline

anisotropy energy in the framework of DFT and density functional perturbation

theory (DFPT) in this chapter.

Chapter 3 presents our studies of globally optimized TaSi16 clusters over

HOPG using the vdW-DF2 method. A summary of the experimental results

is presented as motivation. We find that the cage structure remains stable on

deposition on HOPG. The cluster is physisorbed and was almost not reactive

with exposure to oxygen. Ab-initio molecular dynamics simulations at 400 K

and 700 K show that at these temperatures, the structure is distorted but the

cage is maintained.

Chapter 4 discusses the factors controlling the MAE of small Co clusters

doped with group 14 and group 15 elements (C, Si, Ge, N, P, As). The MAE

(defined as the energy difference between the easy and hard direction of spin in

presence of spin orbit coupling)has been calculated for Co4A2 clusters. No trend

of MAE with dopant atom was found. MAE values of the clusters was visual-

ized as a function of four quantities (i) HOMO-LUMO gap, (ii) spin moment,

(iii) mixing parameter (mixing of Co d and dopant p orbital) and (iv) difference

of orbital angular momentum values between easy and hard direction. In sum-

mary we have found low HOMO-LUMO gap and high spin moment are mainly
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responsible for higher values of MAE irrespective of the doping elements. Large

difference of orbital angular momentum values played some role in determining

higher MAE values, whereas the mixing parameter does not have any significant

contribution in MAE.

Chapter 5 discusses the electronic structures of wurtzite BeO and ZnO glide

surfaces. In both cases the bulk insulator to surface metal transition has been

studied by electronic structure calculations by gradually increasing the vacuum

level above the top atomic layer. As we increase the distance between the slab

and its periodic image along the c axis keeping the atomic arrangements bulk-

like, the band gap decreases gradually with the lowest energy conduction band

coming towards the Fermi level, and at some critical vacuum level it becomes

metallic. We have found emergence of 2DEG at the glide surfaces in both oxides.

Apart from this surface metallicity we have found magnetization there, where the

bulk materials are non-magnetic. The peaks near the Fermi level in the electronic

densities of states lead to stoner insability. The metallic character in the glide

surfaces have been found due to polar catastrophe. It was clearly found from the

planar average potential plot, that the potential energy of electron in the vaccum

was not constant. The electrons felt a force along c axis and as a result they

come from the slab into the vacuum, and a 2DEG formed.

Chapter 6 discusses about the study regarding the stability of the glide sur-

faces of BeO and ZnO. Using DFPT we have performed the phonon dispersion

calculation. The dynamical instability were confirmed from imaginary frequen-

cies in both cases. Displacing the atoms along the soft phonon modes leads

to reconstruction of the surface with lower energy. However, the metallicity is

maintained demonstrating that it is a robust feature of these surfaces.
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CHAPTER2
Theoretical Methods

2.1 Introduction

Materials consist of atoms and molecules, which basically include positively charged

neuclie and negatively charged electrons. Electrons are very light weight parti-

cles so they have to be treated by quantum mechanics, where for nuclei classical

mechanics can be applied as they are comparatively massive than electrons. The

electronic, magnetic and chemical properties of materials can be explained by the

behavior of electrons. In the early 19th century, Drude (1900) and Lorentz (1909)

tried to understand the conduction of electrons in metals assuming that metals

contain free electrons that move in a uniform positive background generated by

the ions. They explained the electrical conductivity in metals but unfortunately,

other properties of the metallic systems could not be explained by their theory. In

1920, after the development of quantum mechanics, significant progress has been

found in understanding the properties of materials. Materials have been classified

into metals, semiconductors and insulators after formation of band theory of inde-

pendent electrons in 1930. To describe electron-electron interaction a numbers of
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theoretical methods have been proposed such as Hartree-Fock method [182–184],

Møller-Plesset perturbation theory, [185], coupled cluster theory [186] later.

In 1960s, after density functional theory (DFT) was formulated, significant

rapid progress in electronic structure calculations were made. DFT is a quantum

mechanical method which is used in physics and chemistry to investigate the

electronic structure of many-body systems, particularly atoms, molecules and

solids. An analytical solution of the many-electron Schrödinger equation is not

available. In practice the numerical solution is effectively impossible for large

number of electrons due to the finite speed and memory of computers. DFT

is used as a mean of circumventing solution of the many-electron Schrödinger

equation. In DFT the properties of a many-electron system can be determined

by using as functionals of the electronic density. Usually it is known as first

principle method as without any adjustable parameter, it allows to determine

many properties of a condensed matter system . For real materials and to design

new materials it has become a very useful tool for understanding the characteristic

properties of materials. It is also very useful for making specific predictions of

various experimentally observable phenomena.

2.2 The many body problem and Born-Oppenheimer

Approximation

The ultimate goal of most approaches in solid state physics and quantum Chem-

istry is the solution of the time-independent, non-relativistic Schrödinger equa-

tion.

ĤΨi(r1, r2....rN ,R1,R2....RM) = EiΨi(r1, r2....rN ,R1,R2....RM) (2.1)
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The description of a system with a set of atomic nuclei and electrons interact-

ing via Coulombic electrostatic forces can be given in terms of N -body interacting

Hamiltonian1 as:

Ĥ = −
M∑
A=1

1

2MA

∇2
A −

N∑
i=1

1

2
∇2
i +

1

2

M∑
A=1

M∑
B 6=A

ZAZB
|RA −RB|

+
1

2

N∑
i=1

N∑
j 6=i

1

|ri − rj|
−

M∑
A=1

N∑
i=1

ZA
|RA − ri|

(2.1)

Here R = {RA, I = 1, ...,M} is a set of M nuclear coordinates, and r =

{ri, i = 1, ..., N} is a set of N electronic coordinates. ZA and MA are the

nuclear charges and masses, respectively. The first and second terms represent the

kinetic energy contributions (Tn and Te) of the nuclei and electrons respectively.

The third and fourth terms represent the repulsive interactions (Vnn and Vee) of

the nuclei and electrons respectively. The attractive potential (Vne) between the

nuclei and electrons is presented by the last term.

As the exact solution of 2.1 is not found, due to the presence of nucleus-

nucleus and electron-electron interactions, we have to make approximations to

progress. The first important approximation is the so-called Born-Oppenheimer

approximation [187]. The main assumption is in many-body systems, electronic

and the nuclear motion can be separated. This idea arises from the fact that

nuclei are around 103 times heavier than the electrons and move much slower

than the electrons. So we can consider the electrons are moving in the field of

fixed nuclei. Hence we can assume the nuclear kinetic energy is zero and their

potential energy is almost a constant. In this approximation, electrons can be

considered in their ground state with respect to the momentary positions of the

1In atomic units: ~ = me = e = 1/4πε0 = 1
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nuclei at all the times. Thus the full Hamiltonian (Ĥ) in Eq. (2.1) can be split into

two parts: a nuclear subsystem (Ĥn) and an electronic subsystem (Ĥe). These

are explicitly shown as

Ĥn = T̂n + V̂nn (2.2)

Ĥe = T̂e + V̂ne + V̂ee. (2.3)

The many body wave function Ψ(r,R) can be written as

Ψ(r,R) =
∑
n

Θn(R)Φn({R}, r), (2.4)

where Θn(R) are the nuclear wave functions and Φn({R}, r) are the electronic

wave functions which is parametrically dependent on the positions of the nuclei.

So the total energy of the system is equal to the sum of the nuclear energy (EN)

and electronic energy (E), Etot = EN + E . For a fixed nuclear configuration,

the electronic energy can be determined by solving the electronic Schrödinger

equation,

ĤeΦ(R, r) = EΦ({R}, r). (2.5)

It is still impossible to get exact solution of Eq. (2.5) for the electron-electron

interactions, and further approximations are required. Hartree-Fock approxima-

tion is one of the fundamental approaches for solving the electronic Schrödinger

equation (Eq. (2.5)). In Hartree-Fock approximation, the many-electron proble

is reduced into an effective one electron problem. It is a mean-field theory where

an electron moves in an average field which is generated by the other electrons.

The N -electron wave function Φ({R}, r) is approximated by a single Slater-
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determinant of single particle wave functions here. This ensures the antisym-

metry of the many-body wave function upon particle exchange, and hence the

exchange effect in an exact manner is included. But Coulomb correlations is not

included here.

In order to improve upon the Hartree-Fock approximation, other methods

have been proposed that include correlation effects. These incorporate the second

or fourth order perturbation theory by Møller and Plesset (MP2 or MP4) [185],

configuration interaction (CI), multiconfiguration self-consistent field (MCSCF),

and coupled cluster approaches (CC) [187, 188]. These are quite accurate meth-

ods, but are very expensive computationally. DFT is a good alternative to these

wave function based methods. It replaces the complicated N -electron wave func-

tion and the associated Schrödinger equation by a formulation which is entirely

based on the electron density ρ(r) only.

2.3 The Density functional theory

2.3.1 The Hohenberg-Kohn (HK) theorems

Hohenberg and Kohn [189] formulated an exact formal variational principle to

determine the ground state energy of a many-electron system in 1964. The elec-

tron density is chosen to be the basic variable in their theroy. They gave two

theorems to build the foundation of DFT.

Theorem I: The external potential v(r) is uniquely determined by the ground

state electron density ρ(r) within a trivial additive constant. Thus the full Hamil-

tonian of the form 2.1 is determined by the ground state density, except for a

constant shift of the energy. So all properties of the many-electron system such

as its total energy, kinetic energy, and potential energy are also functionals of the
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ground state electron density ρ(r).

Theorem II: For a trial density ρ̃(r), such that ρ̃(r) ≥ 0 and
∫
ρ̃(r)dr = N , the

total energy functional E[ρ̃] has a lower bound equal to the ground state energy

E[ρ(r)] of the system:

E[ρ(r)] ≤ E[ρ̃(r)], (2.6)

where ρ(r) is the ground state electron density of the system.

From the first theorem, at a certain external potential v(r) the total energy

functional for an electronic system can be written as,

Ev[ρ] = Te[ρ] + Vne[ρ] + Vee[ρ] = FHK [ρ] +

∫
ρ(r)v(r)dr, (2.7)

where

FHK [ρ] = Te[ρ] + Vee[ρ], (2.8)

FHK is known as the Hohenberg-Kohn functional which is a universal functional of

ρ(r) because of its independence on the external potential. this includes kinetic

energy of the electrons Te[ρ] and the interaction energy between the electrons

Vee[ρ].

A variational principle for Ev[ρ(r)] with ρ(r) as the basic variable is pro-

vided by the second KS theorem. The ground state density ρ(r) is given by the

minimization of the total energy functional Ev[ρ̃(r)] with respect to trial density

ρ̃(r). From ρ(r) the ground state energy E[ρ(r)] of the system is determined.

Thus ground state density ρ(r) which minimizes E[ρ(r)] can be found via the
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stationary principle

δ{Ev[ρ]− µ[

∫
ρ(r)dr −N ]} = 0, (2.9)

where µ is the Lagrange multiplier for the constraint
∫
ρ(r)dr = N . Eq. (2.9)

gives the Euler-Lagrange equation,

µ =
δEv[ρ]

δρ(r)
= v(r) +

δFHK [ρ]

δρ(r)
, (2.10)

where µ represents the chemical potential of the N -electron system.

2.3.2 The Kohn-Sham (KS) equations

In principle, if the exact functional FHK is known, an exact solution for the

ground-state energy would be given by Eq. (2.10). Unfortunately, the exact form

of FHK is unknown. This leavs the Hohenberg-Kohn theorems without much

of practical relevance. An ansatz was given by Kohn and Sham [190] In 1965.

This states that the exact ground state density of an interacting system can be

identified with the ground state density of a reference system of noninteracting

electrons. Thus the problem of the system of interacting electrons is mapped onto

a reference system of non-interacting electrons with introducing a set of single

particle equations, popularly known as Kohn-Sham equations. The ground state

density ρ(r) of a non-interacting system can be written as

ρ(r) =
N∑
i=1

|ψi(r)|2, (2.11)

where ψi(r) present one-electron orbitals known as Kohn-Sham orbitals. The

Hamiltonian for non-interacting reference system with the same ground state
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density ρ(r) can be written as

ĤR =
N∑
i=1

[−1

2
∇2
i + veff (ri)]. (2.12)

Here the effective potential veff (r) is such that the ground state density of ĤR

is same as ρ(r). As ĤR is non-interacting, the ground state wave function Ψs(r)

is a Slater determinant of the N lowest-energy eigenfunctions.

The kinetic energy Ts[ρ] of the reference system can be written as

Ts[ρ] = 〈Ψs| −
1

2

N∑
i=1

∇2
i |Ψs〉 = −1

2

N∑
i=1

〈ψi| ∇2 |ψi〉 . (2.13)

By solving the one-electron Schrödinger equation, one can obtain the one-electron

orbitals ψi(r)

[
− 1

2
∇2 + veff (r)

]
ψi(r) = ĤKSψi(r) = εiψi(r), (2.14)

where ĤKS represents the one-electron Hamiltonian and the Kohn-Sham orbital

energies are represented by εi. Thus there is a transformation of interacting

system to a noninteracting system, in which electrons move in an effective poten-

tial veff (r). The universal functional FHK can be written using Eq. (2.13) and

Eq. (2.8) as,

FHK [ρ] = Ts[ρ] + J [ρ] + Exc[ρ], (2.15)

where J [ρ] is classical Coulomb energy term and it is defined as,

J [ρ] =
1

2

∫∫
ρ(r)ρ(r′)

|r− r′| drdr
′. (2.16)
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Exc[ρ] is exchange-correlation energy with the definition given as,

Exc[ρ] = (Te[ρ]− Ts[ρ]) + (Vee[ρ]− J [ρ]). (2.17)

The kinetic correlations which are ignored in Ts[ρ], are included in the exchange-

correlation energy. The exchange-correlation energy also contains the non-classical

part of the electron-electron interaction energy. By substituting Eq. (2.15) in the

total energy functional (Eq. (2.7)), the Kohn-Sham energy functional is obtained

as

EKS[ρ] =

∫
ρ(r)v(r)dr + Ts[ρ] + J [ρ] + Exc[ρ]. (2.18)

Now minimizing the Kohn-Sham energy functional EKS[ρ] with respect to density

ρ(r), under the constraint
∫
ρ(r)dr = N , we get the Euler-Lagrange equation as

µ = v(r) +
δTs[ρ]

δρ(r)
+
δJ [ρ]

δρ(r)
+
δExc[ρ]

δρ(r)
. (2.19)

µ is the chemical potential of the reference system. This should coincide with the

chemical potential of the interacting system. Using equations (2.10) and (2.19),

one can define the KS effective potential as

veff (r) = v(r) +
δJ [ρ]

δρ(r)
+
δExc[ρ]

δρ(r)
,

= v(r) +

∫
ρ(r′)

|r − r′|
dr′ + vxc(r), (2.20)
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where the exchange-correlation potential vxc(r) is defined as

vxc(r) =
δExc[ρ]

δρ(r)
. (2.21)

Electrons move in an effective potential veff (r), which depends on the classical

Coulomb potential, exchange-correlation potential, and the external potential

Vext(r) in the Kohn-sham formalism. The total energy of the system can be

written as

E[ρ] =
N∑
i=1

εi −
1

2

∫
ρ(r)ρ(r′)

|r − r′|
drdr′ + Exc[ρ]−

∫
ρ(r)vxc(r)dr (2.22)

As veff (r) depends on the density ρ(r) through the classical Coulomb potential

and exchange-correlation potential vxc(r), which in turn depend on the ψi(r),

only self-consistently the solution of Eq. (2.14) and Eq. (2.11) can be obtained.

For a given nuclear configuration, we start with some trial charge density and

calculate veff (r) in order to solve these equations. The Kohn-Sham equations

are solved then to get ψi’s, and the new charge density ρ(r) is obtained. untill

the old and new charge densities become same or the change in energies obtained

in two consecutive iterations is below a predefined tolerance the same process is

repeated iteratively. Thus the

The Kohn-Sham solutions would lead to the exact ground state energy, if the

exact forms of Exc[ρ] were known. Thus in principle, the Kohn-Sham approach

is exact. When we have to decide on an explicit form for the functional which

is unknown for the exchange-correlation energy (Exc), the approximation only

enters then. Therefore to find better and better approximations to the exchange-

correlation energy is the cental goal of modern density-functional theory.
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2.3.3 The exchange-correlation functional

The local density approximation (LDA) [190], the simplest approximation for

Exc was introduced by Kohn and Sham. The main idea of this approximation

is to construct the exchange-correlation energy for an electronic system having

an inhomogeneous density to be composed of locally homogeneous regions. The

expression of the exchange-correlation energy given as

ELDA
xc [ρ] =

∫
ρ(r)εxc(ρ(r))dr, (2.23)

where εxc(ρ(r)) is the exchange-correlation energy per particle of a homogeneous

electron gas with density ρ(r). The corresponding exchange-correlation potential

is,

vLDAxc (ρ(r)) =
δELDA

xc [ρ]

δρ(r)
= εxc[ρ(r)] + ρ(r)

∂εLDAxc [ρ]

∂ρ
. (2.24)

Again, εxc(ρ(r)) can be separated into exchange and correlation contributions

εxc(ρ) = εx(ρ) + εc(ρ). (2.25)

By the Hartree-Fock approximation for a homogeneous electron gas, the exchange

part can be calculated as given in Ashcroft and Mermin [191].

εx(ρ) = −3

4

( 3

π

)1/3

ρ(r)1/3. (2.26)

There is no such an explicit functional form to express the correlation part εc(ρ).

From the highly accurate quantum Monte Carlo calculations of Ceperly and

Alder [192], numerical values are known only. This has been fitted to analyt-
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ical forms by Vosko, Wilk and Nusair [193] and Perdew and Zunger [194]. In

most of the current electronic structure calculations these are used

One can write the extension of LDA for spin-polarized systems with charge

densities ρ↑(r) and ρ↓(r), (for up and down spin electrons respectively)

ELSDA
xc = −3

2

( 3

4π

)1/3
∫ [

ρ↑(r)4/3 + ρ↓(r)4/3
]
dr

+

∫
ρ(r)εc

(
ρ↑(r), ρ↓(r)

)
dr. (2.27)

This is mentioned as local spin density approximation (LSDA). Here εc

(
ρ↑(r), ρ↓(r)

)
is the correlation energy per electron in a homogeneous electron gas.

It seems from the above discussion, that LDA should be a good approxima-

tion for the slowly varying electron density ρ(r). It produces good geometries for

covalent, ionic, or metallic systems. But the band gaps in semiconductors and

insulators are underestimated by LDA. In case of strongly correlated systems,

specially for Mott insulators it can’t reproduce the properties also. For improve-

ment of LDA intense efforts have been devoted. One of the straightforward cor-

rection to the LDA is, construction of an exchange-correlation functional based

on electron density as well as its gradient. This approximation is well-known as

generalized gradient approximation (GGA) [195, 196].

EGGA
xc [ρ↑, ρ↓] =

∫
drρ(r)εxc(ρ(r))Fxc(ρ↑, ρ↓, |∇ρ↑|, |∇ρ↓|, . . .), (2.28)

where Fxc is dimensionless and is chosen by a predefined set of criteria. De-

pending on the form of the function Fxc a large number of distinct GGA func-

tionals are found . The Perdew-Burke-Ernzerhof functional (PBE) [197] and the

Perdew-Wang functional (PW91) [198] are two most widely used functionals in
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the literature.

2.4 The Plane wave basis set

In practice, the KS orbitals are expanded in terms of some basis functions. For

periodic systems, the most common approach to solve the KS equations is to

expanded in plane wave basis sets. The plane wave expansion of the KS orbitals

can be written as follows [199].

ψi(r) =
1√
Ω

∑
q

ci,qe
i(q.r), (2.29)

where Ω is the volume of the crystal composed of Ncell primitive cells each of

volume Ωcell. The ci,q are the expansion coefficients of the wave function in the

basis of orthonormal plane wave, denoted by φq(r), where φq(r) = 〈r|q〉 satisfy

〈q′|q〉 = δq,q′ . As plane waves are orthonormal, on expansion of the KS equations

upon this basis set transformed into a simple matrix eigenvalue problem. Another

advantage of plane waves is as they are no biased to a particular atom, all region in

the space are treated on as equal footing and the calculations do not involve errors

coming for a basis set superposition issue. The Hellman-Feynman theorem can

be applied directly to calculate atomic forces as plane wave basis is independent

of atomic position.

Now inserting the plane wave expansion of ψi(r) in Eq. (2.14), and taking

inner product with |q′〉,

∑
q

〈q′| Ĥeff |q〉 ci,q = εi
∑
q

〈q′|q〉 ci,q = εici,q′ . (2.30)
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The matrix element of the kinetic energy operator can be written as

〈q′| − 1

2
∇2 |q〉 =

1

2
|q|2δq,q′ . (2.31)

As the effective potential veff has the periodicity of the lattice, so it can be

expressed as a sum of the Fourier components.

veff (r) =
∑
m

veff (Gm)exp(iGm.r), (2.32)

where Gm are the reciprocal lattice vectors and Veff (Gm) represent the Fourier

components of veff (r).

veff (G) =
1

Ωcell

∫
Ωcell

Veff (r)exp(−iG.r)dr. (2.33)

Thus the matrix element of veff can be written as

〈q′| veff |q〉 =
∑
m

veff (Gm)δq′−q,Gm . (2.34)

The nonzero matrix elements of the veff are only found when q and q′ differ by

a reciprocal lattice vector Gm. Assuming q = k+Gm and q′ = k+Gm′ for any

given k, the Schrödinger-like equation is given by

∑
m

〈k +Gm′ |Ĥeff |k +Gm〉 ci,m(k) = εici,m′(k), (2.35)

∑
m

[
|k +Gm|2δm,m′ + veff (Gm −G′m)

]
ci,m(k) = εi(k)ci,m′(k). (2.36)

The equation 2.36 is the basic Schrödinger-like equation for a periodic crystal
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expanded with a plane wave basis set. For a given k, eigenfunctions of the

Eq. (2.35) are given by Eq. (2.29), with the sum over q restricted to q = k+Gm.

Hence

ψi,k(r) =
1√
Ω

∑
m

ci,m exp (i(k +Gm) · r),

= exp (ik · r)
1√
Ncell

ui,k(r), (2.37)

where

ui,k(r) =
1√
Ωcell

∑
m

ci,m exp (iGm · r); Ω = NcellΩcell.

This is the well known Bloch’s theorem. The periodicity of the crystal is carried

by ui,k(r) here . For each k, the allowed reciprocal vectors G are infinite. Hence,

in principle infinite number of plane waves are required to represent the wave

functions with infinite accuracy. However, for the plane waves the coefficient

ci,m(k) with small kinetic energy are typically given more importance than those

with large kinetic energy. Hence the plane wave basis set can be truncated with

including only plane waves with kinetic energies less than a predefined energy

cutoff Ecut,

1

2
|k +G|2 ≤ Ecut. (2.38)

Some inaccuracies may be introduced by employment a finite basis set. So ap-

propriate convergence tests have to be performed in order to find out Ecut value

which is sufficiently large for computing the property of interest with required

accuracy.
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2.5 The pseudopotential theory

The physical and chemical properties of crystals mostly depend on a very good ap-

proximation only on the distribution of the valence electrons. In chemical bonds,

the core electrons do not participate and around the nuclei they are strongly

localized. On the other hand, a large number of plane wave basis functions are

required to describe the deeply bound core electrons. This increases the computa-

tional cost. In The pseudopotential approximation [200–202] the electronic wave

functions can be expanded using a much smaller number of plane waves. The

screened and weaker pseudopotential replaces the strong ionic potential here. The

chemically active valence electrons are considered explicitly only in this approach.

Here the inert core electron are eliminated within the “frozen-core approxima-

tion”. All the quantum-mechanical and electrostatic interactions of the valence

electrons with the cores, like the nuclear Coulomb attraction screened by the core

electrons, Pauli repulsion, and exchange and correction between core and valence

electrons, are accounted for by the pseudopotential which depends on angular

momentum.

The concept of pseudopotentials is shown in Figure. 2.1(a). Here true valence

wave function Ψ is peaked far away from the nucleus (dashed curve). Near the

nucleus it has strong oscillations. This ensures it is orthogonal to the core states.

High energy cutoffs are demanded by the description of these nodes by plane wave.

Within the core region the true valence wave function Ψ does not contribute

significantly. It can be approximated by a smooth and nodeless “pseudo-wave

function” Ψps. The core region is defined by a cut-off radius rc. This includes

all the nodes of the all-electron valence wave functions. So Ψps is constructed in

such a way that outside the core radius, it matches with the true valence wave
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Figure 2.1: (a) Schematic diagram of all-electron (solid lines) and pseudoelectron
(dashed lines) potentials and their corresponding wave functions. The radius at
which pseudoelectron and all-electron values match is indicated rc (b) Oxygen 2p
radial wave function (solid line) and corresponding norm-conserving [206] (dot-
ted line) and ultrasoft [207] (dashed line) pseudo wave functions. The figure is
reproduced from Ref. [207]

function and inside the core radius, it can smoothen the strong oscillations.

The pseudopotential Vps is defined as the effective potential corresponding to

the pseudo wave function Ψps within the core region. There are several schemes

for construction of pseudopotentials proposed by various authors e.g. Troullier

and Martins [203, 204], Kerker [205], Hamann, Schlüter, and Chiang [206], Van-

derbilt [207], Goedecker-Teter-Hutter [208]. In general, pseudopotentials can be

formed in the following manner.

(i) For a chosen electronic configuration of the atom, the eigenvalues of the

pseudo-wave functions and true wave functions should be identical.

(ii)Outside a cutoff radius rc, both wave functions should be identical.

(iii) The pseudo-wave function should be nodeless. (iv) At rc the logarithmic

derivative of both the wave functions should agree .
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“norm-conserving” pseudopotentials are a special class of pseudopotentials, where

within the core region, the norm of the pseudo-wave function equals the norm of

the all electron wave function. More accuracy and good transferability properties

have been found in “norm-conserving” pseudopotentials. This pseudopotential

formed in one environment (usually the atom) is able to give faithful description

of the valence properties in different chemical environments.

Good transferability has the requirement that the core radius rc to be just

larger than the position of the outermost maximum of the true wave function.

This is the main constraint with the norm-conserving pseudopotentials. This is

because of the fact that, the pseudo wave function can only then reproduce the

charge distribution of the true wave function. For example, rc is smaller for the

2p state compared to the 3p stat. Because there is no state with the same angular

momentum for 2p state to which it has to be orthogonal. So the pseudo wave

function for 2p state is similar to the all-electron wave function (Fig. 2.1(b)) as

inside the core radius, it has to match the charge corresponding to the all-electron

wave function. Near the core A 2p state is more strongly peaked in comparison

to the 3p state. As a consequence, a large number of plane waves are required

for the sharp peak of 2p state for its accurate representation in comparison to

the 3p state. The same pattern is true for d states of the second-row transition

metals. Therefore, for elements having strongly localized orbitals like transition

metals and rare-earth elements, the resulting norm-conserving pseudopotentials

have smaller value of the cut-off radius rc and so require large plane wave basis

sets. The required computational time and efforts thus increased for this. By

relaxing the norm-conservation condition, Vanderbilt [207, 209] showed that this

problem can be solved. This greatly reduced the cutoff of energy as a large

value of cut-off radius rc could be used. Within the core region, the pseudo wave
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Figure 2.2: Schematic representation of the PAW transformation. The auxiliary
wave function is constructed from the full wave function by subtracting the os-
cillatory part close to an atom and replacing it by a smooth function. Figure is
adopted from reference [210]

function Ψps can be made much softer. However this results in a charge deficit in

the core region. To compensate for this charge deficit, augmentation charges are

introduced in the core region. Augmentation charges are defined as the charge

density difference between true and pseudo-wave functions. The core radius rc

can now be chosen quite large independently of the position of the maximum

of the true wave function. To restore the charge distribution of the true wave

function accurately, a small cutoff radius must be used for the augmentation

charges only. These pseudopotentials are called as ultra-soft pseudopotentials.

2.5.1 Projector Augmented Wave method (PAW)

All information on the full wave function close to the nuclei is lost in the pseu-

dopotential method. This is a major drawback of this method. The calculation

of certain properties, such as hyperfine parameters can be influenced by this.

In 1994 the PAW method was developed by Blöchl [211]. In principle it

is a frozen-core all electron method. In this method, the advantage and accu-

racy of all-electron methods is combined with pseudopotential methods which

are computationally less expensive. Kresse and Joubert in 1999 [212] derived its

close connection to the ultra-soft pseudopotential. The PAW method is based
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on the division of the whole space Ωw into distinct regions: a collection of non-

overlapping spherical regions (the augmentation spheres) around each atom Ωa

and the remainder, the interstitial region Ω1.

Ωw = Ω1 +
⋃
a

Ωa. (2.39)

The plane wave basis sets are ideal for the interstitial region Ω1. But these

are difficult to use to describe the wave function in the augmentation spheres. In

order to circumvent this problem, auxiliary smooth wave functions Ψ̃i(r) can be

by introduced. These Ψ̃i(r) can be obtained from the all-electron wave function

Ψi(r) via an invertible linear transformation T .

|Ψi〉 = T |Ψ̃i〉 , (2.40)

where i is composite index for band, k, and spin. This gives the transformed KS

equations,

ĤKS |Ψi〉 = εi |Ψi〉 ⇒ ĤKST |Ψ̃i〉 = εiT |Ψ̃i〉 . (2.41)

T †ĤKST |Ψ̃i〉 = T †T εi |Ψ̃i〉 . (2.42)

Auxiliary wave functions are found by solving Eq. (2.42) and then transform-

ing them back to true wave function using Eq. (2.40). In each atomic region the

operator T modifies the smooth auxiliary wave function, such that the resulting

all-electron wave functions can have the correct nodal structures. The operator
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T can be written as,

T = 1 +
∑
a

T a, (2.43)

where T a is the transformation centered on atom a and it has no effect outside a

certain atom specific augmentation region that is defined by |r −Ra| < rac . R
a

specifies the position of atom a here. Thus outside the augmentation spheres,

the auxiliary and all-electron wave functions are identical. The cutoff region of

radius rac should be chosen in a manner such that between the augmentation

spheres there are no overlaps. The true wave function Ψn
AE can be expanded

in terms of partial waves φal inside the augmentation spheres. One can define a

corresponding auxiliary smooth partial wave φ̃al for each of these partial waves,

and can be written as,

|φal 〉 = (1 + T a) |φ̃al 〉 . (2.44)

T a |φ̃al 〉 = |φai 〉 − |φ̃al 〉 . (2.45)

Hence the local operator T a adds the difference between the true and auxiliary

partial wave functions for every atom. This is schematically depicted in Figure

2.2. By calculating the expectation value of the operator in terms of either the

true or auxiliary wave function we can evaluate any physical quantity.

〈A〉 =
∑
n

fn 〈Ψi|A |Ψi〉 =
∑
n

fn 〈Ψ̃i| T †AT |Ψ̃i〉 , (2.46)

Here fn represents the occupation number of the valence states. Thus the PAW
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method is not any traditional pseudopotential method, rather it is an all-electron

method. It uses information of full potential and density. The converged results

of the PAW method is independent of a reference system like an isolated atom.

no transferability error is found here and the high spin atoms can be efficiently

described using PAW meyhod.

2.5.2 van der Waals corrections

It is well known that the long-range electron correlation that are responsible for

the van der Waals (vdW) interactions2. can not be described by the popular DFT

functionals like LDA or GGA. The dispersion interactions can not be captured by

standard exchange-correlation functionals. They are viewed as non-local electron

correlations. An accurate estimation of vdW forces in conjunction with DFT

functionals is not trivial and is still a matter of discussion. Grimme [213–215]

proposed one of the dispersion-corrected DFT approach. It is known as DFT-D2

(or DFT-D) method. For accounting medium and long-distance dispersive forces,

a semi-emperical attractive term is added with the DFT energy here. Hence total

energy is now written as

Etot = EDFT + Edisp, (2.47)

Here EDFT presents the DFT total energy which is calculated for a given exchange-

correlation functional and Edisp presents a pair-wise semi-empirical dispersion

2van der Waals forces is a general term which include the forces between (1) two permanent
dipoles (Keesom force), (2) a permanent dipole and a corresponding induced dipole (Debye
force) (3) two instantaneously induced dipoles (dispersion force). In this thesis van der Waals
forces and dispersion forces as synonyms are used.
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correction given by

Edisp = −s6

Nat−1∑
i=1

Nat∑
j=i+1

Cij
6

R6
ij,
fdamp(Rij, R

ij
0 ). (2.48)

Here Nat represents the number of atoms in the system, s6 is a global scaling

factor which depends on the exchange-correlation functional. Here Cij
6 ’s are the

dispersion coefficients for the atom-pair ij and Rij is the interatomic distance.

In case of a pair of different elements, the value of Cij
6 ’s is determined by the

geometric mean of the coefficients of individual elements. fdamp is a damping

function which determines the range of the dispersion correction. It avoids diver-

gence of the R6
ij term at small distances and double-counting effects of correlation

at intermediate distance.

fdamp(Rij, R
ij
0 ) =

1

1 + exp (−d(Rij/sr,nR
ij
0 − 1))

, (2.49)

Here Rij
0 is cutoff radius which is taken as the average of the empirical atomic vdW

radii for the atom pair. The steepness of the damping function is determined by

the global constant d. (the higher the value of d, the closer it is to a step function).

sr,n is a scaling factor which determines the range of interaction covered by the

given DFT exchange-correlation. In the DFT-D2 method, in the DFT part we

used the PBE exchange correlation functional and the value of s6 is taken as 0.75.

We considered pair interactions up to a radius of 8 Å and used the default values

of other parameters given in VASP [216–218] in all our calculation.

There is one another approach, where the dispersion forces are treated within

the DFT framework, by incorporation of a non-local correlation functional. Dis-

persion forces originate due to interactions between multipole moments arising
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out of fluctuations of charge density around the atoms. In DFT-D2 method,

through a semi-empirical approach only dipole-dipole interaction is included.

Here the higher order interactions are neglected. A method which calculates

the dispersion energy solely based on the electron density was proposed by Dion

et al., [219, 220]. In this method, the exchange-correlation energy Exc is calcu-

lated as

Exc = EGGA
x + ELDA

c + Enl
c , (2.50)

Here EGGA
x is the exchange energy in the revPBE approximation [221], ELDA

c is

the local correlation energy which is calculated within LDA, and Enl
c represents

the non-local term describing the dispersion energy. It can be calculated as

Enl
c [ρ] =

∫
dr1dr2ρ(r1)φ(r1, r2)ρ(r2), (2.51)

The kernel φ(r1, r2) is dependent on the distance |r1 − r2|, charge density ρ and

its gradient [220]. This method is known as van der Waals density functional

(vdW-DF) method. It adds the description of dispersion interactions within the

DFT formalism and self-consistently calculates the correlation of all ranges. In

this method, dispersion effects are included naturally via the charge density and

are independent of the parameters. This is the biggest advantage of vdW-DF

over DFT-D2. The vdW-DF method improves the bond lengths of the dispersion

bonded systems significantly in comparison to the LDA or GGA results. But

vdW-DF overestimates the long range dispersion interactions and gives bond

lengths with large value in comparison to experimental data [222, 223] for some

materials (e.g., graphene, systems with hydrogen bonds). Although dispersion

effects are purely correlational in nature, somehow in the dispersion regime, the
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exchange part of revPBE used to produce repulsive interaction . Hence large

intermolecular binding distances and inaccurate binding energies are given by

the exchange part of revPBE. Lee et al. [224] proposed a second version of the

van der Waals density functional to circumvent this problem. They incorporated

a less repulsive exchange functional (rPW86 [225]) in this approach. It is known

as the vdW-DF2 method. This method has been found to give more appropriate

results for a large number of materials. Later several other vdW functionals

have also been proposed for improving the performance of the dispersion bonded

systems such as optB88-vdW, optPBE-vdW, vdW-DF2C09x, vdW-DFC09x etc.

Delailed comparative studies of these methods for a number of materials are

given in Ref. [223, 226, 227]. We have performed all calculations using VASP

where these methods have been implemented by J. Klimes [222, 223] using the

algorithms of Roman-Perez et at. [228]. More details about the methods have

been given in Ref. [219, 220, 224].

2.6 Calculation of properties beyond electronic

energies

2.6.1 Geometry optimization

The main agenda of geometry optimization is to find out the lowest energy struc-

ture of a system from an arbitrary starting geometry. The motion of the nuclei

and the electrons can be separated within Born-Oppenheimer approximation.

So a geometry optimization is performed in a two step process, (i) For a given

geometry, the self consistent electronic calculation, (ii) the ionic relaxation of

the nuclei according to the Hellmann-Feynman theorem [229]. The Hellmann-

109



Feynman force acting on the I th atom can be written as

FI = −∂Etotal
∂RI

= −
[∂EN
∂RI

+
∂E

∂RI

]
. (2.52)

RI ’s represents the position of the I th atom. EN and E are the energies for

nucleus and electron respectively. The forces coming from the electrons F e on

the I th nuclei can be written as

F e
I = − ∂

∂RI

〈Ψs|Ĥe|Ψs〉

= −
〈

Ψs

∣∣∣∂Ĥe

∂RI

∣∣∣Ψs

〉
−
〈 ∂Ψs

∂RI

∣∣∣Ĥe

∣∣∣Ψs

〉
−
〈

Ψs

∣∣∣Ĥe

∣∣∣ ∂Ψs

∂RI

〉
. (2.53)

As Ψs is an eigenfunction of Ĥe,

F e
I = −

〈
Ψs

∣∣∣∂Ĥe

∂RI

∣∣∣Ψs

〉
− E

〈 ∂Ψs

∂RI

∣∣∣Ψs

〉
− E

〈
Ψs

∣∣∣ ∂Ψs

∂RI

〉
,

= −
〈

Ψs

∣∣∣∂Ĥe

∂RI

∣∣∣Ψs

〉
− E ∂

∂RI

〈Ψs|Ψs〉 . (2.54)

Ψs are normalized 〈Ψs|Ψs〉 = 1 and thus last term in the above Eq. (2.54)

vanishes. Then total force on the I th atom thus becomes

FI = −∂EN
∂RI

−
〈

Ψs

∣∣∣∂Ĥe

∂RI

∣∣∣Ψs

〉
. (2.55)

Hence we can calculate the forces on the nuclei using Eq. (2.55). In order to

move the nuclei towards the local minimum, the optimization techniques such as

the steepest descent (SD) or conjugate gradient (CD) method can be used, once

the forces are known. Hence a new nuclear configuration will be generated. In

the new nuclear configuration the same process (electronic self-consistent cycle)

will be repeated to calculate the forces using Eq. (2.55). The nuclei are moved
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again to new positions, based on the new forces. until the force on each atom

becomes below a predefined threshold value, this process is continued. The nuclei

reach an equilibrium configuration, which is a local minimum of their potential

energy surface (PES)3. at the end of this process,

2.6.2 Finding the minimum energy structure of clusters

Global minimization of gas phase clusters

The optimization technique described above describes only the nearest local min-

imum on PES. One has to scan the whole PES and should compare the energies

of all the minima, to obtain the global minimum of the PES. As the number of

local minima increases exponentially with the number of atoms in the cluster,

the task becomes non-trivial. So a systematic search scheme has to be used for

reducing unnecessary scan of higher energy local minima (poor sampling regions).

Evolutionary algorithm or genetic algorithm is one such technique. It is imple-

mented in USPEX [230–233]. The basic idea of the algorithm is to start with a

set of initial structures and then evolve them using operators like heredity, mu-

tation etc. For good initial guesses, usually the initial structures are formed by

applying possible point group symmetries for a given size P of the cluster to ran-

domly produced atomic coordinates. These initial structures are relaxed to their

nearest local minima using a local optimization technique (steepest descent (SD)

or conjugate gradient (CG)) later. The energies of all the optimized structures

are then compared. A certain number of worst (with high energy) structures are

rejected among the relaxed structures. The remaining structures play the role

of parents in the creation of the next generation structures. By applying the

3A potential energy surface describe the energy of system as a function of all nuclei config-
uration in a 3P − 6 dimensional space.
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heredity, atomic permutation, soft-mutation, and mutation operators [231, 232],

the new generation is produced . Heredity produces new structures by match-

ing slices (chosen in random direction and with random positions) of the parent

structures. A certain fraction of the new generation is generated with mutation

by changing the positions of some atoms in random manner. Atoms are moved

along the eigenvectors of the softest normal mode of vibrations in soft-mutation

operator. These low frequency modes are associated with the low curvature of

PES. The structures obtained by these variational operations are then optimized

to their nearest local minima. As a consequence, new structures are obtained

those were separated by barriers on the PES. A certain number of optimized

structures of this generation are considered as parents for the next generation.

This cycle continues until the lowest energy structures of a given number of gen-

erations turn out to be the same. The best structure is obtained at the end of

these cycles, as calculated global minimum of the cluster of size P .

Structure optimization of supported clusters: A random rotation tech-

nique

The clusters can land on the substrate at all possible positions and in all possible

orientations randomly as discussed in section 1.1.5, in LECBD experiments. To

mimic this process we consider the special symmetry points as the bonding sites

on a given surface. A number of orientations of the cluster at each site were

considerd. Assuming an incoming cluster as a rigid body, we place its center of

mass (CM) at some height (h) above the special symmetry points of the surface.

The height h value is usually taken as the sum of the covalent radii of the two

adjacent surface and cluster atoms or little higher value than the sum. By rotating

the cluster around its CM using Euler angles, we generated different orientations.
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In LECBD experiments clusters have small impact energies as mentioned earlier.

The incoming cluster does not dissociate on its impact with the substrate as its

kinetic energy is small enough. We can take the simplified view that the cluster

is stationary and its structure is relaxed on the substrate. Due to small impact

energy, it is assumed that cluster lands with zero kinetic energy.

It we take RI are the coordinates of the cluster atoms, the new rotated coor-

dinates R′I can be found by,

R′I = ARI (2.56)

A =

 cos(ψ) cos(φ)− cos(θ) sin(φ) sin(ψ) cos(ψ) sin(φ) + cos(θ) cos(φ) sin(ψ) sin(ψ) sin(θ)

− sin(ψ) cos(φ)− cos(θ) sin(φ) cos(ψ) − sin(ψ) sin(φ) + cos(θ) cos(φ) cos(ψ) cos(ψ) sin(θ)

sin(θ) sin(φ) − sin(θ) cos(φ) cos(θ)

 ,
where A is the matrix [234] for transforming the coordinates RI to new rotated

coordinates R′I . The Euler angles (φ, θ, ψ) are the sequences of three elemental

rotations about the axes of the coordinate system. At first a cluster is rotated

about the z-axis with an angle φ, the second rotation is done by an angle θ

about the intermediate x-axis which is changed due to first rotation. The last

rotation is performed by an angle ψ about the new z-axis as changed due to

last two rotations. The allowed values of φ, θ and ψ are [0, 2π], [0, π] and [0, 2π]

respectively. These angles have been chosen from uniform random distributions

among the allowed values. We get a particular orientation of the cluster from

each triplet (φ, θ, ψ). All these initial configurations is relaxed to the nearest

local minimum. We determine the most preferred structure of the adsorbed

cluster by comparing the adsorption energies (defined later) of all the optimized

configurations.
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2.6.3 Molecular dynamics simulations

All the methods, mentioned above are applicable to systems at zero tempera-

ture. But in experiments dynamics of nuclei play an important role to determine

the properties of the system as these are performed at finite temperatures. By

performing Molecular dynamics (MD) simulations [235–238] we can study the

dynamics of the nuclei. Here we can follow the trajectories of the nuclei at finite

temperatures. In this method the nuclei are assumed to be classical particles

and their motions are described by the Newtonian mechanics. By integrating

the classical equations of motion of the nuclei, their equilibrium and dynamic

properties are studied in this method. Treating the nuclei as classical particles

is a very good approximation (except for the light elements). Because at room

temperature atoms have large mass and their de Broglie wavelengths (λ ∼ 0.1 Å)

are much smaller than the interatomic distances (of the order of a few Å).

For a set of nuclei having an interaction energy E({RJ}) the basic equations

of motion are written as

MIR̈I = −∂E({RJ})
∂RI

= FI({RJ}). (2.57)

These equations are integrated using discrete time steps numerically. At the

end of a small time step, we can predict the new nuclei positions and velocities

using approximate numerical methods. The atomic forces are recalculated at the

new positions and another step in time is made. In a typical simulation, this

procedure is repeated many thousands of times. We used the most widely used

Verlet algorithm in our MD simulations. No explicit velocities is used in the

Verlet algorithm. It only requires force at time t0 and the positions at time t0

and t0 + ∆t respectively to get the position of every particle at time t0 + ∆t. For
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this reason it is very straightforward method along with a modest requirement of

storage. Using the Taylor expansion the position RI(t0 + ∆t) can be expanded

as

RI(t0 + ∆t) = RI(to) +UI(to)∆t+
FI(to)

2M
(∆t)2 +

...
RI(to)

(∆t)3

6
+O(∆t)4.

Similarly,

RI(t0 −∆t) = RI(to)−UI(to)∆t+
FI(to)

2M
(∆t)2 −

...
RI(to)

(∆t)3

6
+O(∆t)4,

where UI(to) is the velocity of I th particle at time t0. Combining the above

equations, we can write

RI(t0 + ∆t) = 2RI(to)−RI(t0 −∆t) +
FI(t0)

M
∆t2. (2.58)

In a similar manner we can calculate the velocities at time t0

UI(t0) =
RI(t0 + ∆t)−RI(t0 −∆t)

2∆t
+O(∆t4). (2.59)

Once we know the positions at RI(to) and RI(t0 − ∆t), we can determine the

positions at subsequent time intervals. The error in the estimation of new posi-

tions is only O(∆t4) in Verlet algorithm . The total energy is conserved and for

long runs the simulations remain stable inspite of the fact that the equations are

only approximate for any finite ∆t.

The forces on the nuclei are determined by the electron-nuclei and nuclei -

nuclei interactions. The electrons stay in their instantaneous ground state as

the nuclei move in Born-Oppenheimer approximation. The Hellmann-Feynman
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theorem (2.55) can be used to calculate the forces on the nuclei. The total

energy of the system of nuclei and electrons using the Kohn-sham formalism can

be written as

EKS
tot [ρ](R) =

∫
ρ(r)v(r)dr + Ts[ρ] + J [ρ] + Exc[ρ] + Vnn(R). (2.60)

The forces can be determined as

FI = −∂E
KS
tot [ρ](R)

∂RI

= −
∫
ρ(r)

∂v(r)

∂RI

dr − ∂Vnn(R)

∂RI

. (2.61)

Hence at each time step of the MD simulation, to determine the potential v(r),

we have to solve an electronic problem for a given nuclei configuration. The total

force on I th atom is calculated using Eq. (2.61) later. This approach is known

as Born-Oppenheimer molecular dynamics (BOMD). We can generate a number

of time-correlated points which are trajectory of each particle in the phase-space

using Eq. (2.58). The average kinetic energy of the system can be written using

the equipartition theorem as,

Nf

2
kBT =

〈1

2
MIṘ

2
I

〉
, (2.62)

Here Nf (Nf = 3P − 3 for a system with a fixed total momentum) is the degrees

of freedom. Using velocities of the atoms we can calculate the instantaneous

temperature .

T (t) =
P∑
I=1

MIṘ
2
I(t)

kBNf

. (2.63)
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Molecular dynamics at constant temperature

The total energy of the system is conserved as mentioned above. So there is a

fluctuation of kinetic energy as well as the instantaneous temperature around

their average values of the system. The MD simulations of this type generates a

microcanonical (NVE) ensemble. To replicate the real experiments more faith-

fully, MD simulation at constant temperature would be more practical. One

approach to control the temperature is the extended system dynamics where

the physical system is attached to a fictitious thermostat widely known as Nośe

Hoove thermostat [239–243]. An additional fictitious degree of freedom s (cor-

responding to the thermostat) is added to the physical system in this approach.

The total energy of the physical system is now allowed to fluctuate by a ther-

mal contact with the thermostat. But the total energy of the extended system

is still conserved. It has been shown [239] that this extended system produces

a canonical ensemble in the physical system, due to exchange of heat between

the physical system and the fictitious degree of freedom. The fictitious mass Q

associated with the degree of freedom s controls the coupling between the two

systems. The time step of the physical system ∆t is unequal to the time step of

the extended system ∆t′′. It is scaled according to ∆t = ∆t′′/s. The temperature

of the system is related to the average value of the kinetic energy. By controlling

the velocity, a temperature control can be achieved. The velocity of the physical

system UI can be controlled by the variable length of the physical time step as

UI = dRI/dt = sdR′′I/dt
′′ = sU ′′I . Here U ′′I is velocity in the extended system.

RI and R′′I are the positions of the particles in physical and extended system

respectively with RI = R′′I . More details about this method can be obtained in

Ref. [239, 240]
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Figure 2.3: Schematic 1D energy profile showing minimum energy path (MEP)
which connect two local minima A and B separated by a transition state X† [244].

2.6.4 Nudged elastic band method

An important problem in condensed matter physics and in theoretical chemistry

is to find out a minimum energy path (MEP) between two local minima of the

PES. This has been shown in Fig. 2.3 schematically. Here energy of the system

is plotted against the reaction path. In 1 dimension, roughly a MEP can be

defined as a line connecting two local minima (A and B) which pass through

a transition state (X†) of the PES. In a multidimensional space, MEP is the

line which connects local minima passing through the saddle point (SP). The

energy at the SP is the potential energy maximum along the MEP. It is the

minimum energy which is known as the activation energy is required for the

reaction to take place. In plane-wave DFT calculations the most widely used

method for finding MEP and the activation barrier is the nudged elastic band

(NEB) method [245]. In this method, The MEP is obtained by generating a set
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of images (different configurations) of the system between the initial and final

states. Al these images are connected through fictitious springs which mimic an

elastic band. Optimization of this band with involving minimization of the forces

on the images gives a MEP between A and B.

Let us take an elastic band hasM+1 images which are denoted as [X0,X1,X2, . . . ,XM ].

Successive images are connected through springs of force constant k1, k2, . . . , kM−1.

Different atomic configurations Xm = {Rm
I , I = 1, . . . , P} are described by dif-

ferent image. The two end points X0 and XM are kept fixed during the opti-

mization. These are the initial and final states (correspond to the local minima A

and B respectively). The rest M − 1 intermediate images are adjusted regarding

the optimization of the elastic band. To calculate the force acting on the system

(called as true force), DFT is used for each image.

F t
m = −∇Etot(Xm). (2.64)

The spring forces are calculated as

F s
m = km+1(Xm+1 −Xm)− km(Xm −Xm−1). (2.65)

A local tangent at an image m is a unit vector τ̂m = τm/|τm| which points along

the line defined by the two adjacent images Xm+1 and Xm−1. τm. This can be

calculated by the bisection of the two unit vector as

τm =
Xm −Xm−1

|Xm −Xm−1|
+
Xm+1 −Xm

|Xm+1 −Xm|
. (2.66)

In NEB method, the optimization [246, 247] of the band is achieved through a

force projection scheme where the spring forces do not interfere with the conver-
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Figure 2.4: DFT calculations of the MEP for CH4 dissociative adsorption on
the Ir(111) surface. A comparison between a regular NEB calculation and a
CI-NEB calculation, both involving 8 movable images. The regular NEB results
in a low resolution of images near the SP, and underestimates the activation
energy. The CI-NEB put one of the images at saddle point giving accurate
energy barriers [246].

gence of the elastic band. The total force acting on an image is the sum of the

true force perpendicular to the local tangent and spring forces along the local

tangent in this method. Hence the total force acting on an image m is shown as

Fm = F t
m|⊥ + F s

m|‖,

= −[∇Etot(Xm)− (∇Etot(Xm) · τ̂m)τ̂m] + (F s
m · τ̂m)τ̂m. (2.67)

In this projection scheme, the spacings between the images along the band is

controlled by the parallel spring force components and perpendicular true force

components direct the elastic band towards the MEP. The other components of

the forces (F t
m|‖ and F s

m|⊥) are ignored here. Then an optimization algorithm

is used to relax the M − 1 images according to the forces in Eq.(2.67). All the

images are optimized simultaneously. Thus we can obtain new position as well as

new forces for the images. As tt is an iterative scheme, so the same cycle will be
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repeated till the perpendicular components of true force becomes zero (or below

a pre-defined tolerance).

An elastic band is optimized to the MEP and the position of the SP is inter-

polated as shown in Fig. 2.4. The energy barrier can be calculated by comparing

the energies of the initial local minimum (A) and SP. But in various cases, the

resolution of MEP obtained by NEB method is not good near the SP. As a re-

sult, the energy barriers obtained with inaccuracy. A small modification was

introduced in NEB to get rid of this problem. This is known as climbing image

nudged elastic band method (CI-NEB) [246]. Here, one identifies an image with

the highest energy (mmax) after few iterations with the regular NEB. Then this

image is made to move uphill in energy along the elastic band by removing the

spring forces entirely. Then the force on this image is calculated as

Fmmax = −∇Etot(Xmmax) + 2(∇Etot(Xmmax) · τ̂mmax)τ̂mmax . (2.68)

The climbing image will have the perpendicular component of true force and

negative of parallel component of true force, which will drag it uphill towards

the SP. The climbing image converges to the SP when the forces are converged.

The CI-NEB brings one of the images right to the SP giving the accurate energy

barrier. The more details are found in Ref. [246, 247].

2.6.5 Bader charges

Charge transfer between atoms are often used to understand the properties of

molecules and materials. However the DFT methods give the electronic charge

distribution and we need some special techniques to determine the charge transfer

between atoms. The Bader scheme [104] is purely based on the topology of the
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electronic charge density ρ(r), with a definite value at each point in space inside a

molecule or a material. All the information about the atoms, bonds and structure

of the system are carried by the topology of the charge density. The critical points

ρ(rc) (CP) of the charge density correspond to the maximum, minimum or the

saddle point of the charge density distribution and satisfy the following equation

∇ρ(rc) = 0. (2.69)

In the neighborhood of a CP, the behavior of the density ρ is obtained by a Taylor

series expansion about rc. One can obtain a real and symmetric Hessian matrix

of ρ by neglecting the higher order terms. Then it is diagonalized to obtain a set

of eigenvectors and corresponding eigenvalues. The eigenvalues correlate with the

principal curvature of ρ(r) at the CP while the eigenvectors correspond to the

related axes. Each CP can be labeled by (ω, σ), where ω (rank) is the number of

non-zero curvatures and σ (signature) is the sum of signs of the curvatures. For

a stable CP in 3 dimension, ω = 3. There are four possible CP’s of rank 3.

• (3,−3), when all curvatures of ρ(r) are < 0, and ρ(r) is found with a local

maximum at rc.

• (3,−1), when 2 curvatures are negative and ρ(r) is a maximum at rc in the

plane defined by these two axes. The third axis has positive curvature and

ρ(r) is minimum at rc along the axis perpendicular to the plane defined by

other axes with positive curvature.

• (3,+3), when all curvatures are positive and ρ(r) has a local minimum at

rc.

One can calculate the trajectories of ∇ρ known as the gradient paths. It can
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be obtained by following way. One can calculate the gradient vector of ρ at some

arbitrary point r0 and move a distance ∆r in the direction of vector ∇ρ(r0). This

is repeated until the path generated here, ends. In this process one can obtain

all the trajectories of the ∇ρ, that represent the gradient vector field of the

charge density for a fixed configuration of the nucleus. All trajectories originate

or found to be terminated at a CP where ∇ρ = 0, which also applies to any point

at infinity. A schematic phase diagram of trajectories in the neighborhood of a

CP is illustrated in figure. 2.5. In 1 dimension, ρ has a maximum at the (1,-1)

CP and two gradient vectors terminate here. At a (1,+1) CP, ρ has a minimum

and two gradient vectors originate here. Similarly in 2dimension, at a (2,-2) CP,

all trajectories of ∇ρ terminate. At a (2,+2) CP these trajectories originate.

(2,0) CP is quite interesting, with eigenvalues of opposite sign (σ = 0) and ρ has

the saddle point at the CP. In this case, the two trajectories associated with the

axis of negative curvature terminate at the CP, where two trajectories associated

with the positive curvature will originate at the CP. All other trajectories formed

by the linear combination of the the associated eigenvectors ignore the CP. In 3

dimension, a (3,-1) CP has two negative eigenvalues and one positive eigenvalue.

Trajectories associated with the pair of negative eigenvalues as well as trajectories

obtained from the linear combination of associated eigenvectors terminate at the

CP defining a surface. Two trajectories associated with the positive curvature

originate at the CP. The charge density has a maximum in the surface at the CP

and along the perpendicular axis it has a minimum at the same point. In similar

manner, all trajectories terminate at the (3,-3) CP corresponding to one of the

nuclei of the system. The region of space traveled by all the trajectories which

end at a particular nucleus is known as the basin of attraction for the nucleus

(also known as Bader volumes). As all (3,-3) CP’s correspond to the position of
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the nuclei, space of any molecular charge distribution can be separated to disjoint

regions (basins). These basins are partitioned by the interatomic surfaces which

terminate at the (3,-1) CP’s. The boundary of basins of the nuclei is defined

by the interatomic surface S(r). This interatomic surface satisfies the following

constraint

∇ρ(r) · n̂(r) = 0 for all the points on the surface S(r), (2.70)

Here n̂(r) represents the unit vector which is perpendicular to the surface at each

point r. Hence the interatomic surface is also called as the zero-flux surface.

We can summarize, the main idea as the division of the space of the molec-

ular charge distribution in terms of Bader volumes. Each Bader volume contain

a single charge density maximum mostly at a nucleus. These volumes are parti-

tioned by a surface on which charge density is minimum normal to the surface.

The charge which is enclosed within a Bader volume is approximated as the elec-

tronic charge of the enclosed atom. So the electronic charge of an atom within

the molecule or a material can be calculated by integrating the charge density

within the Bader volume. One can calculate the charge transfer to/from that

atom in the system by subtracting this electronic charge of an atom within the

molecule from the charge of the isolated atom, . More details about the method

are found in Ref. [248–251].

2.6.6 Calculation of phonons

In condensed matter, such as solids and some liquids, a phonon is known as

collective excitation in a periodic elastic arrangement of atoms or molecules. It

is a quantum mechanical description of an elementary vibrational motion where
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uniform oscillation at a single frequency of a lattice of atoms or molecules is

found. Quantization of energy and specific heat of solid was introduced by Ein-

stein AND Debye. Theory of phonons give accurate information on the force

constants, piezoelectric constants, static dielectric constants, electron-phonon in-

teractions etc. In Born-Oppenheimer approximation, the total energy can be

viewed as a function of the positions of the nuclei E(Ri). There are two ap-

proaches in the calculation of phonons using first-principles theory.

(1) Direct calculation of total energy as a function of the positions of the atoms

(frozen phonon method)

(2) Perturbative approach involving calculations of the derivative of energy (re-

sponse function method)

Frozen phonon method

In frozen phonon method, a small, but finite perturbation is frozen in the system,

and the total energy and forces are calculated for the nuclei “frozen” at positions

RI .

• In this method the forces between every atom in the crystal is found and

the force constant matrix of the crystal has been constructed. This force

constant matrix then allows us to calculate the normal modes of at any

particular wavevector, q.

• To calculate the forces caused by an atom i, we displace atom i, and then

use DFT to calculate the forces on every atom using the Hellman-Feynman

theorem.
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The force constant is defined as

CI,α;J,β ≈ −
∆FI,α
∆RJ,β

(2.71)

and dynamical matrix DI,α;J,β is computed from the force constant matrix

as

DI,α;J,β = CI,α;J,β
1√

MIMJ

(2.72)

• By diagonalization of the dynamical matrix, phonon frequencies and eigen-

vectors are obtained .

Advantage and disadvantages of frozen phonon method

It is generally quicker and computationally cheaper than the Linear Response

method.

In frozen-Phonon Method large super cells are required for accurate calcu-

lation of the force constant matrix. The periodic boundary conditions involved

in DFT calculations cause problems for the frozen phonon method. During the

displacement of one atom in a small unit cell forces are generated on all the atoms

in the same unit cell. For periodic boundary condition, the forces are also created

but also on the periodic images of these atoms.

Density functional perturbation theory

In perturbation theory the hamiltonian Ĥ0 + λ∆Ĥ is systematically expanded

as in powers of the perturbation. The first order term depends on unperturbed

wavefunctions and ∆Ĥ to the first-order are given as the generalized force on an
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atom. The second derivatives of ground state energy with respect to the per-

turbation are required to obtain the interatomic force constants (IFCs). This is

nuclear displacements, which can be calculated using electronic structure meth-

ods efficiently. This is given by

∂2E(R)

∂RI∂RJ

=

∫
∂n(r)

∂RJ

∂V[R](r)

∂RI

dr + δIJ

∫
n(r)

∂2V[R](r)

∂RI∂RJ

dr +
∂2EN

∂RI∂RJ

(2.73)

The linear response of the charge density with respect to atomic positions can be

calculated as:

∂n(r)

∂RI

= 4Re

N/2∑
n=1

ψ∗n(r)
∂ψn(r)

∂RI

(2.74)

The derivatives of KS orbitals, ∂ψn(r)
∂RI

are calculated as:

(HSCF − εn)
∂ψn(r)

∂RI

=

(
∂VSCF (r)

∂RI

− ∂εn
∂RI

)
ψn(r) (2.75)

with first-order derivative of self-consistent potential given as:

∂VSCF (r)

∂RI

=
∂V[R](r)

∂RI

+ e2

∫
1

|r− r′|
∂n(r′)

∂RI

dr′ +

∫
δυxc
δn(r′)

∂n(r′)

∂RI

dr′ (2.76)

∂εn
∂RI

= 〈ψn|
∂VSCF
∂RI

|ψn〉 (2.77)

The above equations form a set of self-consistent set of equations to calculate

response to an external perturbation, Vext . By employing efficient iterative tech-

niques like conjugate gradients or the steepest descents, the linear system can be
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solved. These calculations can be carried out to get phonon dispersion curves for

any material, and it agrees nearly with experiments. Other information obtained

from the phonon calculations are phonon density of states and electron-phonon

coupling.

2.6.7 Magneto crystalline anisotropy (MCA)

Spin orbit coupling (SOC) is the origin of the MCA. it is a quantum effect with

relativistic origin which destroyes the rotational invariance of the spin quantiza-

tion axis. So the energy of the system becomes dependent on the direction of the

spin with respect to the crystallographic axes, when the SOC is included in it.

The fully relativistic Hamiltonian can be written as the sum

H = HNR + δH(1) + δH(2) + ... (2.78)

on the non-relativistic Hamiltonian

HNR =
1

2m

(
p− e

c
A

)2

+ eφ (2.79)

and relativistic corrections with different orders of magnitude with respect to 1/c.

The popularly known Zeeman term is found here as the first-order correction

term. It is used to describe the interaction of particle spin moment with external

magnetic field B = ∇×A :

δH(1) = HZeeman = µBσ.B. (2.80)

Here µB = e~/2mc is the Bohr magneton. The electron is found here with intrin-

sic magnetic (spin) moment µBσ which has no relation with its orbital motion,

128



which is interacting with the magnetic field. The second-order terms represent

the mass-velocity correction, the Darwin shift and the spin-orbit coupling (SOC)

term.

δH(2) = HMass−velocity +HDarwin +HSOC

= − p4

8m3c2
+

e~2

8m2c2
∆φ+

e~
4m2c2

(∇φ× p).σ (2.80)

In spin index,the first two terms become diagonal and hence they are mentioned

as scalar-relativistic corrections. whereas the non-diagonal characteristics are

present in SOC term. It couples the orbital degrees of freedom and electron spin

and playes the main role as the origin of magneto-crystalline anisotropy (MCA).

Spin-orbit coupling for a spherically-symmetric field

The spin-orbit coupling (SOC), can be viewed as an interaction of the spin mo-

ment with the magnetic field, which is felt by the moving electron. Usually SOC

lifts degeneracy by splitting the energy states (typically of the order of few to

few hundred meV). These states are degenerate in case of a non-relativistic de-

scription. The SOC term can be written in an atom with a spherically-symmetric

potential φ(r), as

HSOC =
e~

4m2c2
(∇φ× p).σ =

~
4m2c2

1

r

dV

dr
(r× p).σ = ξ(r)L.S (2.81)

Here V = eφ represents electron potential energy, L = (r × p)/~ and S = σ/2

denote the orbital and spin momentum operators respectively. And
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ξ(r) =
~2

2m2c2

1

r

dV

dr
(2.82)

is the so-called SOC strength constant which increases with atomic number Z

of the element. It has the following expression for non zero angular momentum

states in hydrogen like atos

ξ(r) =
~2

2m2c2

1

r

dV

dr
=

mc2(Zα)4

4n3l(l + 1/2)(l + 1)
(2.83)

α is the fine structure constant. The SOC instigates physical phenomena, like

magneto-crystalline anisotropy, the Rashba effect, and it playes crucial role in

topological insulators, which have drawn a lot of attraction for their fascinating

physics and potential applications in spintronics [252]. The total energy of the

system is dependent on the orientation of spin moment with respect to the crys-

tallographic axis, If SOC is included. Physically, this difference arises for the

crystal field that supports the orbital motion of the electron along the preferred

direction.

Using 〈r|iλ〉 = Riλ(r).Yi(λθ, φ) where Riλ(r) and Yiλ(θ, φ) are the radical and

spherical harmonic functions, respectively. The matrix elements of SOC potential

can be written as

V SOC
iλσ,jµσ′ = ξiλµ〈λσ|L.S|µσ′〉δij = ξiλµ〈λ|L|µ〉〈σ|S|σ′〉δij (2.84)

where λand µ are the angular parts of the atomic orbital.
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Methods for calculating MCA

Several different methods are found in the literature to calculate the MCA :

i) self-consistent method [253], ii) force theorem scheme [254], iii) perturbation

treatment [255, 256], iv) Bruno formula [257] and v) other methods like, for large-

scale systems empirical Neel-like model [258] and torque method [259] for systems

having uniaxial symmetry.

Self-consistent method

Self-consistent scheme is based on a direct calculation of the total energy differ-

ence of the two different orientations of spin magnetization in prsence of spin-

orbit coupling. This is included in the K-S equations in the presence of the

self-consistent full-relativistic potential. It has the form

MCA = Etot[m̂1]− Etot[m̂2] (2.85)

Here m̂1 and m̂2 are the two different orientations of magnetization. This method

is exact and straightforward in principle. But usually it requires a long self-

consistent filed (SCF) loop which implies the diagonalization of large matrices

including SOC. So it is very much computationally demanding and called as

“brute force method”. The SCF with SOC is hard to converge as a well-converged

charge density or potential is required here. Hence it is a challenging method of

calculation MCA for large systems.

Force theorem

MCA is defined as the fully relativistic total energy difference between two dif-

ferent magnetization directions. Like the case of 3d systems, if the modifica-
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tion of the potential induced SOC is small, the so-called force theorem (FT)

[254, 260, 261] is applied. The MCA is considered as the band energy differ-

ence (not the total energy difference) obtained after a one-step diagonalization of

the full SOC included Hamiltonian, starting from a pre converged self-consistent

scalar relativistic (without SOC) density/potential. The difference in band en-

ergy between two spin directions m̂1 and m̂2 can be written as,

MCAFT = Eband[m̂1]− Eband[m̂2] =

∫ E1
F

En1(E)dE −
∫ E2

F

En1(E)dE (2.86)

Here n1(E) and n2(E) represent the density of states and E1
F and E2

F are the

Fermi level of the configurations m̂1 and m̂2 respectively. The Fermi levels are

obtained by the condition on the total numbers of electrons N in the system :

N =

∫ E1
F

n1(E)dE =

∫ E2
F

n1(E)dE (2.87)

It should be mentioned that, using FT method not only computational cost

can be saved significantly, but it is numerically very stable also. Because the self-

consistent effect including SOC is ignored here. So only one iteration is required

for the perturbed systems.
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Figure 2.5: Phase portraits. A pair of gradient paths terminates or originates
respectively, at the CP for a 1D maximum or minimum. In 2D, all of the gradient
paths in a plane terminates or originates, at the maximum or minimum (CP) re-
spectively. At (2,0) CP, a pair of paths originates at the CP, (positive curvature),
and another pair terminates at the CP (negative curvature). All other gradient
paths avoid the CP. A 3D display of a (3, 1) CP shows the set of trajectories
that terminate at the CP and define a surface and the unique pair that originates
there and defines a line [104].

133



CHAPTER3
Adsorption of TaSi16 cluster on HOPG

3.1 Motivation

The initial motivation of the studies on transition metal doped silicon clusrter

came from the discovery of carbon fullerenes. Questions were asked whether

fullerens made by Si would also be stable, and could be used as building blocks to

synthesize novel materials. Unlike C, as sp2 hybridization in Si is not favorable,

hollow Si cages were found to be unstable. But very interestingly when a Si

cage encapsulates a transition Metal (TM) atom, it becomes stable. Over the

last couple of decades TM encapsulating silicon cage clusters have been studied

extensively [3, 51, 52, 61, 78, 95, 262].

Hiura et al.[61] showed experimentally, that for a particular TM atom, TMSin

cluster of a fixed size is more stable compared to its neighbors. As an example,

WSi12 was found to be the most stable cluster in the WSin series. According

to their suggestion the relative stability of these clusters is determined by the

so-called 18-electron rule of the organometallic chemistry. The assumption was

that each Si atom donates one electron to the central TM atom and clusters

135



with 18 valence electrons on the TM atom were more stable. The WSi12 cluster

follows this rule. Khanna and co-workers claimed CrSi12[79] and FeSi10[85] to

be the most stable clusters in the respective TMSin series over limited ranges of

size. Notably, both these clusters nominally satisfy the 18-electron rule. In mass

abundance experiments of Koyasu et al., ScSi16, TiSi16, and VSi+16 were found to

be most abundant among the anion, neutral, and cation clusters respectively[63].

This opened a new line of argument which claimed that TMSin clusters follow

electron-counting rules much like the shell models in simple metal clusters. Sen

and Mitas and Guo et al. pointed out that simple electron-counting rules are not

generally valid[75, 78].

Though the origin of enhanced stability of certain TMSin clusters remains a

matter of debate, what is definitely established is that there are some clusters with

enhanced stability. For example, experiments from Nakajimas group established

that TaSi+16 is more stable than neighboring sizes, and this was rationalized by

the electron-counting rule (20- electron filled shell)[98].

As is clear, numerous studies, both theoretical and experimental, have ad-

dressed fundamental properties of TMSin clusters in the gas phase. There were

no studies trying to use them in applications, or studying their properties after

deposition on a substrate, often a precondition for application. The first such

attempt has come from Nakajimas group. In a recent experiment, they have

deposited stable TaSi+16 clusters on a highly oriented pyrolytic graphite (HOPG)

substrate[4].

The main motivation in this set of experiments was to explore formation of as-

semblies of TaSi16 on the HOPG substrate. Structure and electronic properties of

the deposited clusters were studied using scanning tunneling microscopy (STM),

X-ray photo emission spectroscopy (XPS), and ultra-violet photo emission spec-
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troscopy (UPS) probes. While STM gives information about atomic structure,

XPS and UPS probe energies of the core and valence electron levels, respectively.

STM and XPS measurements were performed both on the as-deposited samples

and after heating them at 400 and 720 K. In order to check the so-called super-

atomic character of TaSi16, they also studied reaction of the deposited clusters

with oxygen.

After deposition, the clusters retained their metal-enclosing cage structures

and formed small islands. The height of the islands was found to be about

1 nm in STM experiments, which indicates a one-layer thickness. Based on the

XPS results, in the as-deposited clusters, the Si cage was inferred to be highly

symmetric. Individual clusters were discernible at 400 K also. There were some

shifts in the XPS peaks found after heating at 720 K. This was presumed to be

because of partial coalescence of the clusters or coalescence between the clusters

and the HOPG substrate. Any definite peaks in the valence electron levels were

not found in UPS spectra. This was supposed to be due to rapid transition of the

cluster between close-lying isomers with quiet different electronic structures. The

clusters showed considerable resistance to oxidation establishing their chemical

stability. In the reaction with oxygen, the Si cage reacted more readily than the

encapsulated Ta atoms, indicating that the cage structures were still maintained.

While these experiments provided a lot of information on the behavior of

TaSi16 clusters deposited on HOPG, it is important to recall that none of these

provides microscopic insights. In order to have a microscopic picture of the sys-

tem one needs atomistic calculations. Therefore, in order to better understand

this important cluster-substrate system, and to further qualify the reported ex-

perimental results, we have performed first-principles calculations on free and

HOPG-deposited TaSi16 clusters using density functional theory (DFT) [263].
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One difference with the experiments, however, is that we study deposition of

neutral clusters, while in experiments cation clusters were deposited. We avoid

study of cation clusters due to technical reasons. First, we cannot strictly ensure

that the electron is removed from the cluster. Second, plane wave DFT codes

cannot deal with charged systems. A compensating uniform background charge

is introduced. Energy convergence with respect to cell size is slow in such cases.

In any case, HOPG being a good electrical conductor, the charge on the cluster

before deposition is perhaps not important, and hence, studying an overall neu-

tral system is appropriate. We confirm many of the conclusions derived from the

experiments, but there are some differences too. Therefore, these calculations

complement the experimental studies.

3.2 Computational methods

All calculations were performed within the framework of plane wave DFT as im-

plemented in the VASP code[216, 217, 264–266]. An energy cutoff of 600 eV

was used for the plane wave basis set. Interaction between the valence elec-

trons and the ion cores was represented by the projector augmented wave (PAW)

potentials[211]. Brillouin zone integrations were performed with the Γ-point only

both for isolated clusters and HOPG supported clusters.

A global search were performed to find out minimum energy structure of

isolated Tasi16 cluster using evolutionary algorithm. We used USPEX[230–233]

code for this global search. The initial population was generated in a completely

random manner, without any constraint on point group symmetry. Population in

each subsequent generation was produced through the application of variational

operations of heredity, mutation, and soft mutation[232]. A population size of
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34 was maintained in each generation. The fitness criterion for choosing the

best structures was the energy of the clusters. Calculation was continued up

to a maximum of 25 generations subject to the condition that, if the energy of

the best structure did not change over 17 successive generations, it would be

stopped. Energies were calculated using the plane wave PAW method within the

DFT using the VASP code. The clusters were placed inside a box whose size was

generated automatically by USPEX. For each structure, energy calculations in

VASP were performed at five increasing levels of accuracy in terms of both the

force convergence criterion and energy cutoff. For the first two levels, the energy

cutoff was determined by the ENMAX of the POTCAR files (245 eV). For the

next three levels it was 320 eV. For the first level the force convergence criterion

was 0.2 eV/Å, for the next two levels it was 0.01 eV/Å, and in the final level

it was 0.001 eV/Å. The global search was performed using the spin-unpolarized

PBE-GGA exchange-correlation functional. At the end of the global search we

collected the best structure from each generation. These structures were further

optimized using the vdW-DF2 functional in a spin-polarized calculation. The

vdW-DF2 functional was used because this functional is used for study of TaSi16

on graphite. Use of vdW-DF2 is necessitated by the fact that graphite is not

described well by the local density (LDA) or semilocal (GGA) approximations

in DFT. We discuss this in next section. For the reoptimization calculation,

the energy cutoff was set at 600 eV and the force convergence criterion was 0.001

eV/Å. We reoptimized each of the structures selected from USPEX in the doublet,

quartet, and sextet spin states. Sometimes, different initial structures converged

to the same final structure after relaxation. For every structure the doublet state

was found to have the lowest energy.

The HOPG surface was represented by a repeated slab geometry. The graphite
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slab in the simulation cell contained three carbon layers with a vacuum layer of

25 Å separating two successive slabs. Each layer was in the shape of a rhombus

with sides of 14.88 Å. Such a large surface supercell ensures that the distance

between the cluster in the simulation cell and its periodic images is at least 12

Å so that there are no interactions between them. Carbon atoms in the two

top layers were fully relaxed while the bottom layer of atoms was kept fixed to

simulate a bulk-like termination.

For the study of reaction with oxygen molecules, we used both the PBE and

vdW-DF2 functionals. We got qualitatively same results in the two methods.

All other parameters were the same as stated above. For the finite-temperature

molecular dynamics (MD) calculations, the temperature was fixed by a Nose -

Hoover thermostat[239–243]. Two carbon layers were used in order to reduce

computational costs. The Verlet algorithm was used to integrate the equations

of motion of the ions. Other parameters were the same as in zero-temperature

calculations. As mentioned earlier, MD calculations were performed at 400 and

700 K as the deposited clusters were heated to these two temperatures. At 400

K, a time step of 2 fs was used, and at 700 K the time step was set at 1.5 fs due

to faster motion of the ions.

3.3 Results and discussions

3.3.1 Bulk graphite

As LDA and GGA functionals do not incorporate dispersion interactions, which

is necessary for studying graphite system we used methods that incorporate these

by incorporating van der Walls correction. In particular, DFT-D2, vdW-DF, and

vdW-DF2 were used. All are discussed earlier in previous chapter. For DFT-D2
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we used the PBE exchange-correlation. The cutoff distance was kept at 10 Åfor

pairwise interactions. We used the default C6 parameter values given in VASP.

We have calculated in plane lattice constant (a), interplanar spacing (c) co-

hesive energy (Ec), and interlayer binding energy (EB) using different methods.

The values of these quantities along with the experimental results are given in

table 3.1 The Ec and EB are defined as

Ec = NCEC − ET (graphite) (3.1)

Here NC is the total number of C atom in bulk graphite. EC is the energy of an

isolated C atom. ET (graphite) represents total energy of bulk graphite.

EB = 2ET (graphene)− ET (graphite) (3.2)

Here ET (graphene) is the total energy of a single graphene sheet.

Functionals a(Å) c(Å) Ec (eV/atom) EB (meV/atom)

Experimental 2.46[267] 3.35[267] 7.37[268] 52± 5[269]
LDA 2.45 3.32 9.00 23.40

PBE-GGA 2.47 4.34 7.99 1.08
DFT-D2 2.46 3.26 8.09 49.98
vdW-DF 2.48 3.63 7.52 53.641
vdW-DF2 2.48 3.55 7.50 51.739

Table 3.1: Properties of bulk graphite for different exchange correlation function-
als

LDA gives good results for a and c values in comparison with experiments.

But the LDA values for Ec and EB do not agree with experiments. Though the

local and semi-local approximations in DFT do not describe dispersion forces

binding successive layers in graphite, for LDA it is a lucky coincidence of getting

the c value closed to the experiment. The PBE-GGA[197] functional works well
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for a but performs very poorly for c and EB. DFT-D2 gives good resuts for a,

but c is underestimated. DFT-D2 does better than LDA and PBE for EB. The

nonlocal correlation functional vdW-DF performs well for a but overestimates c

by nearly 9%. Ec and EB are reproduced well. The vdW-DF2 method corrects

the overestimation in c and produces all quantities in reasonable agreement with

experiment.

3.4 Structure of Isolated TaSi16 Clusters

(a) Lowest energy doublet structure for
TaSi16 cluster with vDW-DF2

(b) Lowest energy doublet structure for
TaSi16 cluster without vDW-DF2

1

Figure 3.1: Ground state optimized structures for TaSi16 from same initial struc-
ture with different exchange correlation

The lowest energy structure we obtained using the vdW-DF2 method is shown

in Fig. 3.1(a). The Ta atom is enclosed within an almost symmetric Si cage. The

average nearest neighbour Si-Si distance in this structure is 2.4 Å. This is very

close to the bulk Si-Si distance of 2.35 Å. The Ta-Si distances vary between

2.84 Å and 2.93 Å. These are slightly larger than the sum of their covalent radii,

2.49 Å. This structure is similar to the slightly distorted D4d structure reported

by Lopez et al. [270]. However, in their PBE-GGA calculations, this was 40
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meV higher than the ground state which had a C3v symmetry. In fact starting

from the same initial structure obtained after global search, after reoptimization

with PBE-GGA without vdW-DF2, we got the lowest energy structure not at all

with D4d symmetry. It looks rather the ground state C3v structure reported by

Lopez et al. The C3v structure is 1.14 eV higher in vdW-DF2. This structure is

shown in Fig. 3.1(b). Our calculated ground state structure shown in Fig3.1 (a)

also looks similar as the converged structure reported by Guo et al.[271] . Guo et

al. started relaxing with initial structure of TaSi16 cluster with C4v point group

symmetry. In their structure optimization they have included the relativistic

effects.

All the higher energy isomers within 1 eV of the ground state are shown in Fig3.2.

It is interesting to note that in all of these the Ta atom is encapsulated within

a Si cage. In fact, we did not find any isomer with an exohedral Ta up to 2 eV

from the ground state. These are shown in Appendix.
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3.4.1 Magnetic moment and charge transfer of ground

state TaSi16

We have extended our works to study the superatomic behaviour of TaSi16 cluster

supported on HOPG, so we took the re-optimized structure with vdW-DF2. As

vdW-DF2 gives reasonable results for graphite for its in-plane lattice constant

inter planer spacing etc. discussed earlier, We have confined the calculation of

magnetic moment, charge transfer between atoms in the cluster and cluster with

the substrate for the lowest energy isomer with vdW-DF2 only.

The magnetic moment for lowest energy structure of TaSi16 cluster was found as

0.99µB. The isolated Ta atom has three unpaired electrons. But in the TaSi16

cluster the moment of the central Ta atom is delocalized. Thus, the moment

is quenched partially due to bond formation with the Si cage. Si being more

electronegative than Ta. This may involve some charge transfer between the

central Ta atom to the Si cage. To get a quantitative estimate we calculated

Bader[104] charges on all atoms. We find a charge transfer of 1.1e (e is the

electronic charge) from central Ta atom to the Si cage. Hence the Ta atom has a

slightly positive charge in the cluster. This result agrees with the fact mentioned

by Shibuta et al.[4]. In their XPS measurements, the Si 2p3/2 core level was

found to be nearly at the same energy (99.08 eV) as in bulk Si (99.2 eV). The

Ta 4f7/2 level is at 0.6 eV higher binding energy (BE) compared to the bulk.

Since the core-level BE is expected to shift by 1 eV for a charge transfer of e

neglecting screening effects, this indicated transfer of 0.6e from Ta to the Si cage.

Our calculations are in rough agreement with this. This small amount of charge,

distributed over 16 Si atoms, does not cause any appreciable shift of the Si 2p

core level BE. They found a single energy location for the Si 2p3/2 peak from all
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             E= 0.4729 eV             E= 0.4730 eV           E= 0.70382 eV

         E= 0.70383 eV          E= 0.7040 eV             E= 0.83665 eV    

                 E= 0.8712 eV                 E= 0.9308 eV                 E= 0.9840 eV

Figure 3.2: Structures of isolated globally optimized Tasi16 cluster with energy
level upto 1 eV higher from ground state, calculated including vDW-DF2.
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the atoms suggesting that all the Si atoms are in similar chemical environments.

In other words, the Si cage around the central Ta atom is highly symmetric. This

is consistent with our calculated ground-state structure.

3.5 Adsorption of TaSi16 on HOPG

3.5.1 Structure of deposited TaSi16 clusters

  

Figure 3.3: Relaxed structure of deposited Tasi16 cluster on HOPG

We deposit only the ground state structure of the gas phase TaSi16 cluster on

HOPG. We restrict our studies only to the lowest energy isomer mainly due to

computational costs. Since the cluster-substrate interaction is weak, as we estab-

lish in the following discussion, we believe the gas phase structure and properties

of the all isomers would be preserved after deposition.

Energetic stability of a cluster at different points on a substrate can be evalu-

ated in various ways. Which one of these is relevant will depend on the way one

explores the system experimentally. The cohesive energy Ecoh of the deposited

cluster along with the substrate is defined as

Ecoh = nSiESi + ETa +NCEC − ET (cl/graphite) (3.3)
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Here nSi is the number of Si atoms in the cluster which is 16 in our case. NC

is the total number of C atoms in the graphite layers. ESi, ETa and EC are the

energies of isolated Si, Ta and C atoms respectively. ET (cl/graphite) is the total

energy of TaSi16 adsorbed graphite slab. The adsorption energy Ea is defined as

the energy gained due to adsorption of a gas phase cluster on the substrate and

is given by

Ea = ET (cl) + ET (graphite)− ET (cl/graphite) (3.4)

Here ET (cl) is the total energy of the gas phase TaSi16 cluster at its local minimum

of structure. ET (graphite) is the total energy of the graphite slab. The desorption

energy of a cluster Ed, defined as the minimum energy required to desorb it after

adsorption on the substrate is defined as

Ed = Edist
T (cl) + ET (graphite)− ET (cl/graphite) (3.5)

Here Edist
T (cl) is the total energy of the isolated TaSi16 cluster in the shape it

takes after deposition on the sub- strate. Since we are depositing a single isomer,

we will use only Ea to understand its relative stability at different adsorption

sites and in different orientations. Ecoh and Ed will necessarily follow the same

trend.

The relaxed structure of the deposited TaSi16 cluster on HOPG is almost same

as that of the free cluster before deposition on substrate. It is shown in Fig3.3

The distortion is negligible.

Comparing Figure 3.1 and Figure 3.3, it is clear that the Ta encapsulated 16

atoms caged Si cluster maintains its gas phase structure even after deposition on

HOPG and even the shape of the cage remains same as before deposition like
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Figure 3.1. The distortion from the D4d cage structure too negligible to detect

by eye estimation. We have calculated the energy of the deposited cluster in the

shape it takes after adsorbed on HOPG. It is 4.5 meV higher than the isolated

cluster before deposition. In the distorted cluster the average Si-Si bond length is

2.35 Å and the Ta-Si bond length ranges from 2.85 Å to 2.97 Å, which is almost

same as in the gas phase Figure 3.1.

3.5.2 Comparative study of TaSi16 cluster at different site

on HOPG

  

β site: A Carbon atom with no C atom directly below it in 2nd layer  

α site: 

α site

β site

Hollow site 

Bridge 

site

Hollow site: No Carbon atom (Centre of the hexagon )

Bridge site: The mid point of the connecting line of  α and β site  

A Carbon atom that has another C atom below it in the 2nd layer

Figure 3.4: Special symmetry points on HOPG
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In LECBD experiments, clusters land on the substrate randomly so that they

can approach the substrate at any point and in any random orientation. To

mimic this process we have used the random rotation method in case of surface

supported clusters. TaSi16 clusters are placed above the special symmetry sites

α, β, hollow and bridge on HOPG. Theses are shown in Figure 3.4.

At each site a number of random orientations of the clusters are considered.

The shortest C-Si distance in the initial structures is kept greater than the sum

of their covalent radii. The random orientations of the cluster are generated by

treating it as a rigid body, and choosing the Euler angles of rotation randomly.

We have taken four different random orientations at each point. This gives us

sixteen initial configurations of the cluster on the substrate. Given the large size

of the cluster, and the consequent large lateral size of the substrate, we could not

explore more initial structures due to computational limitations. All the initial

structures are relaxed to their nearest local minima using VASP as discussed

earlier. We present the adsorption energies of TaSi16 in all sixteen structures

obtained from the random initial structures in Table 3.2. Some important points

to be noted are, i) Ea’s of all the structures are rather small, all less than an eV;

ii) Ea’s are all quite close, the difference being from a few meV’s to a hundred

meV; iii) the second structure at the β site has the highest Ea among these.

We would like to mention that orientation of the TaSi16 cluster in structure 2

at the β site is not the same as that in structure 2 at the other sites, as these

orientations are generated completely randomly. This is true for all orientations.

Now we discuss properties of the deposited cluster in its highest Ea structure.

The relalexed structure of TaSi16 adsorbed on HOPG with highest Ea is shown

in Figure 3.5.
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Table 3.2: Adsorption energies of a TaSi16 cluster on HOPG in different struc-
tures.

Site Orientation Ea(eV ) Ed(eV )

α 1 0.852 0.862

2 0.824 0.831

3 0.729 0.745

4 0.721 0.733

β 1 0.854 0.865

2 0.872 0.877

3 0.741 0.760

4 0.743 0.754

Hollow 1 0.866 0.868

2 0.785 0.795

3 0.743 0.757

4 0.714 0.723

Bridge 1 0.861 0.862

2 0.758 0.767

3 0.736 0.752

4 0.740 0.746

Figure 3.5: Adsorbed TaSi16 on HOPG at β site with highest Ea.
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3.5.3 Properties of adsorbed TaSi16 cluster on HOPG with

highest Ea

We found the minimum Si-C distance to be 3.43 Å which is larger than the sum

of the covalent radii of the carbon and silicon atom which is around

1.84 Å. A small adsorption energy and a large Si-C distance confirms that there

is no chemical bond formation between the cluster and the graphite surface. The

cluster is thus physisorbed. This is interesting because one would generally expect

C and Si atoms to form strong covalent bonds. But the π electrons on a graphite

surface do not do so.

The magnetic moment on the deposited cluster system turned out to be

0.99µB, same as the free cluster. Since graphite is non-magnetic, this suggests

that the spin moment of the free cluster remains undisturbed, and the moment

should be localized on the cluster. This also indicates that there is no charge

transfer between the cluster and the HOPG substrate. In order to confirm the

last point we calculated Bader charges on all the atoms. There is negligible charge

transfer (0.02 e, e is electronic charge ) from the cluster to the substrate. We

also plot an iso-surface of the spin density in the system as shown in Figure 3.6

Figure 3.6: Spin density isosurface in TaSi16 cluster deposited on HOPG.
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Clearly, the spin is localized on the cluster. These findings are consistent

with a physisorption scenario. More importantly, these are consistent with the

experimental observations as Shibuta et al. as they found the binding energy

of the Si 2p3/2 core level in the HOPG deposited TaSi16 cluster to be very close

to that in the bulk Si indicating a very small charge transfer from the cluster

to the substrate. One difference should be indicated here. Our calculations are

for a single cluster on the substrate, while the measurements are for an island of

clusters. Yet, one can assume that the qualitative picture remains the same in

the two cases.

In order to ascertain this point further, we analyze the charge density difference

(∆ρ) of the cluster- HOPG system. (∆ρ) is defined as follows.

∆ρ(~r) = ρcl/graphite(~r)− (ρcl(~r) + ρgraphite(~r)) (3.6)

“ρ” s are the charge density of the respective systems. Any chemical bond be-

tween the cluster and the substrate atoms would show up as additional charge

density in their intervening region. We plot a ∆ρ isosurface in Figure 3.7(a) for

an isovalue 0.06 e/bohr3. For comparison, a total charge density isosurface for

the cluster-graphite system at the same value is shown in Figure 3.7(b).

Clearly, no isosurface is seen in Figure 3.7 (a). A ∆ρ isosurface shows up

between the cluster and the substrate only for values as small as 10−5 e/bohr3.

This confirms that there are no cluster substrate chemical bonds. This is interest-

ing because one would generally expect C and Si atoms to form strong covalent

bonds. But the π electrons on a graphite surface do not do so. The height of

the cluster, measured as the distance between the top layer carbon atom and the
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(a)

(b)

Figure 3.7: Isosurface plots for (a) ∆ρ and (b) total charge density with isovalue
0.06 e/bohr3.

highest Si atom, was found to be 1.12 nm, the same as in the experiments[4].

Thus, our calculations confirm the experimental claim that the islands are one

cluster layer in thickness.

153



3.5.4 Structural and chemical stability:Reaction with oxy-

gen

Shibuta et al.[4] studied the reaction of TaSi+16 with oxygen, for establishing its

stable superatomic character. Reaction of the cluster with oxygen, and any oxide

formation, interpreted through core-level XPS spectra. TaSi16 showed substantial

resistance toward reaction with oxygen. No changes in the core-level BE were

observed below an oxygen exposure of 104 L (1 L (Langmuir) = exposure at

10−6 Torr for 1 second). At 5 × 1010 L, the Si 2p and Ta 4f peaks stay at their

original energies, but additional peaks appear at higher BE for both components

indicating oxide formation. The Si 2p peak evolves more rapidly than the Ta 4f

peak indicating that Si atoms react with oxygen more easily.

We have repeated this in our calculations. Since the deposited clusters es-

sentially have the same structure and electronic properties as the free ones, we

performed these calculations on free, isolated TaSi16 clusters to reduce the com-

putational costs. Oxygen molecules were brought close to different faces of the Si

cage. Several such initial structures were generated, keeping the Si-O larger than

the sum of their covalent radii in each case. We have performed the spin polarized

calculation in doublet quartet and sextet spin states. All these structures were

then relaxed to their nearest local minima.

In all relaxed structures some of the O2 molecules dissociate, and the oxygen

atoms get bonded to the nearby Si atoms forming their oxide, but did not find

an oxygen atom getting inside the cage and forming an oxide of Ta. The above

feature was found true for all spin states. In fact, we have checked the reaction

of O2 with the cluster both in PBE-GGA and with vdW-DF2. In both case the

dissociated oxygen atoms get attached to the Si atoms and not with the central
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Ta atom.

We could not perform any calculation by inserting even a single O2 molecule

inside the cage. As there were no suitable position for the O2 molecule such

that the O-Ta and O-Si bond lengths are a little bit greater than sum of their

respective covalent radii.

Figure 3.8: Initial structure for reaction with Oxygen

Figure 3.9: Relaxed structure after oxygen atoms get attached with the cluster

We performed one calculation with the TaSi16 cluster deposited on HOPG

with O2 molecules in one face of the cluster. We choose the surface such that

Oxygen molecules could not come close to the C atoms as we wanted to observe

how the cluster reacts with the Oxygen molecules after deposited on the substrate.
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Figure 3.10: Relaxed structure of deposited cluster on HOPG including reaction
with Oxygen

From Fig 3.9 and Fig 3.10 it is found that some of the Oxygen molecules

dissociated and made bonds with the Si atoms and the central Ta atom did

not get oxidized. The cluster also maintains its basic cage structure but it gets

distorted markedly as mentioned in the experiment by Shibuta et al.

3.5.5 Finite temperature behavior:Molecular dynamics sim-

ulation

After heating the deposited cluster system at 700 K for 16 hours, Shibuta et al[4]

observed a shift of the Si 2p core level to a slightly higher biding energy, while

the Ta 4f binding energy remained almost unchanged. This was interpreted as a

change in the silicon cage structure, perhaps due coalescence of the clusters, or

partial coalescence of the cluster with the HOPG substrate. After heating at 400

K, individual clusters were still discernible. In order to have a microscopic insight

into how the deposited clusters behave at finite temperatures, we performed a

molecular dynamics of the system at 400 K and 700 K. Since we have a single

cluster in our simulation cell, it is obviously not possible to study coalescence of
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clusters. But any coalescence of the cluster with the HOPG substrate will be

observable. Whether the Ta atom is enclosed inside the Si cage, even if there is

any cluster-substrate coalescence, will also be clear. In addition, how or whether

the clusters diffuse on the substrate will be visible.

We started the MD calculations from the lowest energy structure for the

adsorbed cluster. For 400 K temperature we continued the ab initio molecular

dynamics calculation up to 10 ps. During this simulation we found that the Ta

encapsulated 16 atom Si cluster is vibrating on the HOPG. But it never diffused

on the substrate. The structure becomes distorted at different time steps but it

always maintained its cage structure with keeping Ta atom in the almost center

of the cage formed by 16 Si atoms. The shape of the deposited cluster changes

very rapidly and it never turned to a different isomer atleast upto 10 ps.

For MD simulation at 700 K we found the same behaviour of the deposited

cluster as that at 400 K. We have continued our calculation upto 9 ps. The

cluster maintains its cage structure here also with some distortion. The Si-Si

bond lengths as well as the Ta-Si bond lengths were fluctuating more rapidly

than 400 K.

From the ab initio molecular dynamics calculation at both the temperatures it

is found that the TaSi16 cluster maintains its metal encapsulating framework even

at high temperature. According to Shibuta et al. after heating at temperature

around 400 K the individuality of the TaSi16 remained discernible in the STM

images for the aggregated islands on HOPG. For both the temperatures the

deposited cluster on HOPG maintained its basic cage structure with distortion.

This behaviour agrees with the fact reported by Nakajima et al. that after heating

at a temperature near 700 K the Si 2p level slightly shifted toward the higher

binding energy (99.5 eV) and asymmetrically broadened on the higher BE side.
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But the shape of Ta 4f level was almost unchanged.

Energy barrier between two lowest energy configurations: CI-NEB

method

There was little diffusion of the cluster at either temperature over this time

scale. This is surprising because a physisorbed cluster having weak binding to

the substrate may diffuse easily. It was difficult for us to continue ab initio MD

calculations beyond picosecond time scales for such a large system. Instead, we

try to estimate the diffusion time scale by assuming an activated behavior so

that the rate of diffusion is given by the Arrhenius equation Aexp(−∆/KBT ).

Here, ∆ is the energy barrier and A is the attempt frequency. We estimate the

energy barrier between the two lowest energy configurations of the cluster on

the substrate using the climbing image nudged elastic band (CI-NEB) method as

mentioned in chapter 2.

In our CI-NEB calculation we have taken the initial configuration as with

highest Ea and final configuration as second highest Ea as mentioned in table

3.2. We have taken 4 images between initial and final structures. Due to high

computational costs we could not perform the CI-NEB calculation with HOPG

supported TaSi16 cluster with large number of images. Our estimate of the barrier

∆ = 1.42 eV as shown in Fig3.11. Assuming a typical value of 1014 for A, the

crossover rate is found to be 5 × 103 s−1 at 700 K. This suggests a diffusion time

scale of a few tenths of a millisecond. Though out of the reach of ab initio MD

calculations, this is clearly within experimental time scales, and so aggregation

of clusters was observed. More importantly, there was no coalescence between

the cluster and the substrate. Therefore, changes seen in the XPS spectra are

either due to intercluster coalescence or distortions in the shape of the individual
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Figure 3.11: Energy barrier from CI-NEB calculation

clusters.

Absence of transition to other isomers, at least over a time scale of picosec-

onds, has some bearing on a speculation in Shibuta et al.s paper. Absence of a

definite peak in UPS spectra was surmised to be due to rapid transition between

different isomers, in analogy with VSi+16[70]. While we rule out transition between

isomers, we offer an explanation for the lack of UPS peaks based on our MD re-

sults. The central idea is that the distortions in the cluster structure at finite

temperature cause enough change in the energies of the valence electron levels

for any UPS peaks to get washed out. By following the energy of the highest

occupied molecular orbital (HOMO) level of the TaSi 16 cluster during the MD

simulations we find that it can change by as much as 1 eV. Variations of the

HOMO energy with time at both temperatures are shown in Fig3.12. Perhaps

this large variation in the HOMO (and other valence levels) is responsible for

absence of any distinct peaks in UPS.
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Figure 3.12: Variation of HOMO energy of deposited TaSi 16 cluster at (a) 400
K and (b) 700 K.

3.6 Conclusions

We have studied free and HOPG-supported TaSi16 cluster using DFT methods

deriving fresh physical insights into this system in light of the recent experiments

by Shibuta et al. For the first time, a global search for the ground-state structure

of the neutral TaSi16 cluster is performed. A symmetric structure of the Si16

cage encapsulating the Ta atom explains why only a single core-level peak is

observed for all the Si atoms, while a small charge transfer from Ta to the Si

atoms explains why there is little shift in the Si core-level energies. Energetics

of TaSi16 on HOPG and charge density isosurface plots suggest that the cluster

is physisorbed. There is little change in either the geometric or the electronic

structure of the cluster after deposition. This is an ideal situation for forming

self-assemblies of the deposited clusters. Reaction of the cluster with O2 molecules

is also studied in a limited way. Ab initio MD simulations at finite temperatures

show that the deposited cluster does not transform to other isomers up to 700 K
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and there is no coalescence between the cluster and the substrate. Rather, the

vibrations of the cluster around its lowest energy structure is sufficient to cause

changes in the energy position of HOMO and other valence levels so that no peaks

are observed in UPS. While our calculations validate some of the conclusions in

ref [4], they suggest different atomistic details for some others. Therefore, these

two studies complement each other and together provide valuable information on

this important system.
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CHAPTER4
Designing of rare earth free permanent

magnet:Insights from small Co cluster

4.1 Motivation

For modern society, high performance permanent magnets are very important

key technology . These form essential parts in various devices in a wide range

of applications. These include hybrid and electric cars, wind turbines, motors in

many household appliances, satellite communications systems[272] and magnetic

data storage systems. Because of supply risk and increasing demand of rare

earth (RE) elements Dy, Tb, Nd, Eu, Yb; which used in formation of permanent

magnets, there is an urgent drive to design permanent magnets without RE

elements.

The most widely used permanent magnets (PM) in present day applications

are Nd2Fe14B and SmCo type alloys, SmCo5 in particular. NdFeB magnets are

used in modern acoustic transducers which are used in speakers, consumer elec-

tronic devices, cell phones, cars etc. NdFeB magnets are necessary for eco-friendly
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transport and sustainable energy production. NdFeB magnets have also been

used in hard disk drives. SmCo magnets are well known for their use in musi-

cal instruments like electric guiters and headphones. These are widely used in

high-end electric motors used in the more competitive classes in slotcar racing,

turbomachinary etc.

These are distinguished by (i) the high magnetic field they can create and

(ii) their high resistance to opposing magnetic fields. A high spontaneous mag-

netization and high magneto-crystalline anisotropy or magnetic anisotropy en-

ergy(MAE) are the main required criteria for an efficient PM. Generally they

are required to have large Curie temperature (Tc), large saturation magnetiza-

tion (Ms), and large coercivity (Hc). The last two properties are conveniently

expressed together in what is called the energy product or (BH)max. Large coer-

civity is a result of large anisotropy energy[272].

Nd2Fe14B has an energy product of 512 kJ/m3. SmCo-type magnets have

energy product of 294 kJ/m3 , and a large Tc in excess of 800◦ C. But as they

are more expensive so there is a search for alternative ways to form permanent

magnets without RE.

Among the RE-free hard magnets currently in use are FePt, CoPt and HfCo

alloys[113]. However, Pt and Hf are also very expensive metals, and so there is a

search for less expensive alternatives. Some theoretical modeling has played an

important role in such searches. The works by Burkert et al.[119], and Delczeg-

Czirjak et al.[123] are mentioned in chapter 1. Reichel et al.[126] have shown

in their experiments that doping of C in FeCo alloy allows for thick films for

obtaining large MAE.

El-Gendy et al.[5] synthesized cobalt-carbide nano-particles by wet chemical

means that had MAE values close to 100 eV/Co (0.75 MJ/m3), significantly
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larger than that of bulk hcp Co. These had a blocking temperature of 571 K,

and Tc equal to 650 K, both much higher than room temperature. An even larger

MAE of 4.6 MJ/m3 was found in CoFe2C nano-particles, a value comparable to

that of the Nd-based 2-14-1 alloy[145]. Such large increases in MAE in nanoscale

systems is interesting, and opens a practical way of designing permanent magnets

without RE elements.

After the encouraging experimental findings, one requires fundamental under-

standing of the factors that control MAE in these systems in order to design new

materials. Islam and Khanna addressed this issue in their work on Co4A2 (A=C,

Si) clusters[6]. They found large enhancement of MAE compared to bulk Co in

Co4C2 and Co4Si2 clusters, and their assemblies. They mentioned several factors

as probable causes for increase in MAE. These are: (i) larger orbital moment

compared to bulk, (ii) increase in the spin moment on the Co atoms, (iii) mixing

between Co d and the p states of the A atoms. But, no further analysis for this

was presented.

Given this state of affairs, we addressed the following questions. Are C and

Si the best dopants, or there are other dopants that lead to larger MAE in

Co clusters? Do heavier dopant atoms (Ge, for example), due to their larger

spin-orbit coupling compared to C and Si, produce higher MAE? Which factors,

among the three mentioned above, affect MAE most significantly? Once an

understanding of these basic issues are put on a firm basis, this can then be used

in design of new systems, whether at the nano scale or in the bulk.

For this purpose we study structural and magnetic properties of Co4A2 clus-

ters, where A is one of the following elements from group 14 and 15: C, Si, Ge,

N, P and As. We present the details of our work and our major conclusions in

the following sections.
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4.2 Computational methods

All calculations were performed within the framework of plane wave DFT as

implemented in the VASP code[216, 217, 264–266]. Projector augmented wave

(PAW) potentials [211] represented the interaction between the valence electrons

and the ion cores. To identify the low energy structures for Co4, Co6 and Co4A2

clusters at first a global search was performed employing an evolutionary algo-

rithm. The USPEX[230–232] code was used for this. The initial population

for each cluster species was generated without any constraint on point group

(PG) symmetry, i.e., coordinates of the cluster atoms were generated in a com-

pletely random manner. Population in each subsequent generation was produced

through the application of variational operations of heredity, mutation, and soft

mutation[232]. A population size of 12 (10 for Co4) was maintained in each gen-

eration. The fitness criterion for choosing the best structures was the energy of

the clusters. Calculation was continued up to a maximum of 25 generations (15

for Co4) subject to the condition that, if the energy of the best structure was un-

changed over a predecided number of successive generations, it would be stopped.

This number was initially set equal to the number of atoms in the clusters, i.e.,

6. However, this gave a relatively small number of distinct structures in case of

Si, Ge, N and As, and was, therefore, was increased to 10.

The energies of these clusters were calculated using DFT. Clusters were placed

inside a box whose size was generated by USPEX automatically. A minimum vac-

uum length of 15 Å was enforced on all sides of the cluster to nullify the interaction

of a cluster with its periodic image. Using the Γ-point only, the Brillouin zone in-

tegrations were performed. For each structure, energy calculations in VASP were

performed at five increasing levels of accuracy in terms of both the kinetic energy
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cutoff and force convergence criterion. For the first two levels, the kinetic energy

cutoff was determined by the ENMAX of the POTCAR files of Co (268 eV).

For the next three levels it was 320 eV. For the first level the force convergence

criterion was 0.2 eV/Å. For the next three levels it was 0.1 eV/Å, and in the final

level it was 0.01 eV/Å. This global search was performed using the spin-polarized

PBE-GGA exchange-correlation functional[197]. After finishing the global search

with, the best structure from each generation were collected. These structures

were again optimized using PBE-GGA in a spin-polarized calculation. For this

re-optimization calculation, the kinetic energy cutoff was set at 600 eV and the

force convergence criterion was 0.001 eV/Å. The re-optimization of the structures

which were selected from USPEX, were performed in all possible spin states from

Sz = 0 to 6, or even higher in some cases, where Sz is the z-component of spin,

and is equal to half the difference between the number of up and down spin elec-

trons, the usual convention in DFT. Also, Sz corresponds to a spin moment of

MS = 2Sz , where the factor 2 is the gyromagnetic ratio, g.

For calculating MAEs, the energies of the clusters with various orientations

of the spin moment were calculated with adding the spin-orbit coupling term

in the Hamiltonian. The details are mentioned in chapter 2. A spherical polar

coordinate system was considered in which the x and z axes coincide with those of

our cubic supercell. The polar angle θ and azimuthal angle φ for the spin direction

were varied in the intervals [0,π] and [0,2π] respectively. 11 values each for θ and

φ giving a total of 121 directions were taken. Energies of a cluster was calculated

with the spins pointing along each of these directions. The magnetic easy axis is

designated as the direction for which the energy is lowest. The direction giving

the highest energy is designated as the hard axis. Difference in energy between

these two spin directions is the measure of MAE.
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Energy of a cluster in presence of spin-orbit coupling was calculated using

two different methods. In the first method, charge density and wave functions

were read in from a previously converged calculation without spin-orbit coupling.

The charge density was kept unchanged during the calculation of total energy

in presence of the spin-orbit term. In the second method, total energy was cal-

culated by performing a fully self-consistent calculation, i.e., the charge density

was varied, and energy was optimized in presence of the spin-orbit coupling term.

More details about treatment of spin-orbit coupling within PAW formalism can

be found in reference[273]. For a few clusters, the self-consistent method failed

in presence of the spin-orbit term. In cases that both the methods worked, they

gave the same result.

4.3 Results and discussions

4.3.1 Pure Co4 and Co6 clusters

In case of pure Co4 and Co6 ground state structure, our results agrees well with

previously reported results. Two lowest energy structures and spin states for

both Co4 and Co6 are shown in Figure 4.1.

Co4 turns out to have a little distorted tetrahedral structure having D2d PG

symmetry with MS = 10 µB. PG symmetry of the clusters are determined by

the VMD software[274]. This result agrees with the reported results of Datta et

al.[275] who also found a magnetic moment of 10 µB in the ground state of Co4.

But they did not report any distortions from the tetrahedral symmetry. The next

higher energy cluster is a planar rhombus with D2h PG symmetry also with MS

= 10 µB. This is 0.075 eV higher than the ground state.

The ground state of Co6 cluster was found with octahedron(Oh) PG symmetry.
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a) Co4 

0.0 eV, M=11

D2d, MAE=23.15 K

0.075 eV, M=11

D2h, MAE=65.35 K

b) Co6

0.0 eV, M=15

Oh, MAE=0.22 K

1.1 eV, M=15

D3h, MAE=64.74 K

Figure 4.1: Two lowest energy Co4 and Co6 clusters obtained from global search.

It’s magnetic moment was found as 14 µB. This is in agreement with the results

of Datta et al.[275]. However, like them, no cluster with MS = 12 µB was found

close to the ground state. The next isomer was is 1.1 eV higher which has D3h

PG symmetry and magnetic moment 14 µB as shown in Figure 4.1(b).

4.4 Doped Co clusters

As mentioned earlier, the doped clusters are also obtained by global search. The

group 14 elements doped clusters are discussed first followed by group 15. All

doped clusters within ∼ 0.5 eV of the ground state for each species are discussed

here.
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Co4C2

      

0.0 eV, Ms=4 μB

Cs, MAE=24.64 K

0.220 eV, Ms=4 μB

Cs, MAE=12.13 K 0.230 eV, Ms=2 μB

Cs, MAE=28.41 K

0.243 eV, Ms=4 μB

C2, MAE=28.08 K

0.448 eV, Ms=0 μB

Cs , MAE=48.34 K

Figure 4.2: Globally optimized Co4C2 clusters:upto ∼ 0.5 eV

4.4.1 Co4 doped with group 14 elements

The ground state structure of Co4C2 has been found to have Cs PG symmetry,

and MS = 4 µB. The next higher energy cluster has magnetic moment MS = 4

µB in Cs symmetry but with very different arrangement of the atoms from the

ground state. This is 0.22 eV higher than the ground state. The second higher

energy cluster is nearly degenerate with the previous one, 0.23 eV higher than the

ground state, has the same Cs symmetry as the ground state and arrangment of

atoms almost same as the ground state, but has magnetic moment 2 µB. The next

cluster is at 0.243 eV from the ground state, has MS = 4 µB and C2 symmetry.

The next one is 0.448 eV higher than the ground state, and is a singlet in Cs

symmetry. Four more clusters within ∼ 0.6 eV of the ground state have been

obtained. Co4Si2 has D2h PG symmetry in the ground state, as shown in Figure

4.3 and with MS = 6 µB. The next higher energy cluster is also with magnetic

moment 6 µB and is 0.106 eV above the ground state, but with PG symmetry

D4h. The next isomer is also a D4h structure, 0.439 eV higher than ground state,

and with MS = 4 µB. Rest of the clusters we obtained are more than 0.5 eV

higher than the ground state. With doping group 14 Ge element, Co4Ge2 also

has a D4h structure in its ground state as was obtained from global search, and
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Co4Si2

0.0 eV, Ms=6 μB

D2h, MAE=49.92 K

0.106 eV, Ms=6 μB

D4h, MAE=35.12 K
0.439 eV, Ms=4 μB

D4h, MAE=42.25 K

Figure 4.3: Globally optimized Co4Si2 clusters:upto ∼ 0.5 eV

Co4Ge2

0.0 eV, Ms=6 μB

D4h, MAE=33.87 K

0.354 eV,  Ms=6 μB

Cs, MAE=69.41 K
0.472 eV,  Ms=6 μB

C2v, MAE=62.58 K

Figure 4.4: Globally optimized Co4Ge2 clusters:upto ∼ 0.5 eV

with MS = 6 µB. The next higher energy cluster with energy 0.354 eV higher

than ground state also has magnetic moment 6 µB but has Cs symmetry. The

next is also in MS = 6 µB state, 0.472 eV higher and with C2v PG symmetry.

4.4.2 Doped with group 15 elements

The globally optimized ground state Co4N2 cluster has Cs PG symmetry and MS

= 8 µB as shown in Figure 4.5. The interesting fact here is the two N atoms

attach as a dimer to the Co4 cluster, which is in a tetrahedral structure, in the

ground state. In fact, except for the next higher energy cluster, with the C2v PG
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Co4N2

0.0 eV, Ms=8 μB

Cs, MAE=28.18 K

0.139 eV, Ms=6 μB

C2v, MAE=48.62 K

    

0.248 eV, Ms=8 μB

Cs, MAE=51.92 K

0.280 eV, Ms=8 μB

Cs, MAE=31.11 K
0.404 eV, Ms=8 μB

C2v, MAE=17.37 K

0.449  eV,  Ms=6 μB

C2v, MAE=60.67 K

Figure 4.5: Globally optimized Co4N2 clusters:upto ∼ 0.5 eV

symmetry and MS = 6 µB, all other structures shown in Figure 4.5 maintain this

structural pattern. This could be due strong N-N triple bond in an N2 dimer.

It is energetically favorable for it to attach to Co4 as a single unit rather than

bonding dissociatively. In the third high energy cluster, the N2 dimer attaches to

a planar Co4 cluster in rhombus structure. It has Cs PG symmetry and magnetic

moment 8 µB. The next one again has Cs PG symmetry and MS = 8 µB, but

the N2 dimer now attaches to a tetrahedral Co4 motif. In case of the two next

higher energy isomers, N2 dimer attaches to distorted Co4 tetrahedra, and both

the N atoms are bonded to Co atoms. Both structures have C2v symmetry. They

are 0.404 and 0.449 eV above the ground state, and have MS = 8 µB and MS =

6 µB respectively.

The ground state for Co4P2 was found a C2v structure with magnetic moment

6 µB as shown in Figure 4.6. The next isomer is 0.041 eV above the ground state

and has MS = 8 µB was found with C2v PG symmetry but with different atomic
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Co4P2

0.0 eV, Ms=6 μB

C2v, MAE=35.12 K
0.041 eV, Ms=8 μB

C2v, MAE=5.57 K
0.082 eV, Ms=6 μB

C1, MAE=26.13 K
0.110 eV, Ms=6 μB

D4h, MAE=19.41 K

0.198 eV, Ms=8 μB

Cs, MAE=44.47 K

0.450 eV, Ms=0 μB
C2v, MAE=17.5 K

0.459 eV, Ms=4 μB

Cs, MAE=29.14 K

Figure 4.6: Globally optimized Co4P2 clusters:upto ∼ 0.5 eV

arrangement from the lowest energy structure. The next one is a C1 and with

magnetic moment 6 µB. It is 0.082 eV higher in energy. The fourth and the fifth

ones are MS = 6 µB and MS = 8 µB having D4h and Cs symmetry respectively.

They are 0.11 and 0.198 eV above the ground state respectively. The last two

clusters are 0.45 eV above the ground state, are with 0 magnetic moment and

MS = 4 µB with C2v and Cs PG symmetry respectively.

Co4As2

0.0 eV, Ms=8 μB

D4h, MAE=50.14 K

0.034 eV, Ms= 8μB

C2v, MAE=16.28 K

   

0.142 eV, Ms=6 μB

C2v, MAE=39.32 K
0.244 eV, Ms=8 μB

Cs, MAE=70.36 K
0.485 eV, Ms=2 μB

Cs, MAE=38.59 K

Figure 4.7: Globally optimized Co4As2 clusters:upto ∼ 0.5 eV

The next group 15 elements As when doped with Co, the globally optimized

lowest energy isomer of Co4As2 was found with magnetic moment 8 µB and it is
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with PG D4h. The next one is also one with MS = 8 µB, and is 0.034 eV higher

than the ground state. It has PG symmetry C2V . The third one is a C2v, MS =

6 µB and 0.142 eV from the ground state. The fourth one has again magnetic

moment 8 µB and has a Cs PG symmetry. It is 0.244 eV from the ground state.

The last cluster is a Cs with magnetic moment 2 µB and is 0.485 eV above the

ground state as shown in Figure 4.7.

It is observed that all the doped clusters have lower spin moments in their

respective ground states compared to the Co4 cluster mentioned in earlier section

4.3.1. Bonding with non-magnetic dopants is responsible for reduction in mo-

ments. C leads to the largest decrease in magnetic moment, for N and As it was

obtained as smallest. In comparison with the Co6 cluster, Co4A2 clusters can be

treated as two Co atoms being replaced by non magnetic atoms. It was found

the magnetic moments in these Co4A2 clusters are much lower than that in the

pure Co6 cluster as shown in Figure 4.1(b).

4.4.3 Discussions on MAE:search for trends

After obtaining the ground states for each of the species, the MAEs were calcu-

lated for all of them. The main goal is to find any patterns in MAE based on

the non magnetic dopant A atom. The ground state Co4C2 cluster has a MAE

of 24.64 K as shown in Figure 4.2. This mtches with the results of Islam and

Khanna [6]. Their reported MAE is for a completely different structure and spin

state. For dopants from group 14, Co4Si2 and Co4Ge2 have MAEs of 49.92 K

and 33.87 K in their respective ground states respectively. Islam and Khanna

[6] has reported an anisotropy of 40.34 K for Co4Si2 , but their structure is very

different.

For the group 15 elements, the Co4N2 cluster has been found the ground state
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with MAE of 28.18 K. Co4P2 with 35.12 K and for Co4As2 the MAE is 50.14 K

respectively as shown in Figure 4.6 and and 4.7 respectively.

The calculated MAE values for the ground state Co4 and Co6 clusters are

23.2 K and 0.22 K respectively as depicted in Figure 4.1. Hence it is clear that

all the doped clusters have larger MAE compared to Co4.

However, the broad picture is that there are no trends in the MAE of these

clusters depending on the group or period to which the dopant atoms belong. As a

summary it is found that Group 15 elements N and P lead to similar MAE values

as group 14 elements C and Ge respectively and Si has MAE value comparable

to As. The Co4C2 has the lowest MAE among all the clusters in their ground

states.

As no pattern has been found in the MAE of the ground state clusters, MAE

of few higher energy isomers for each dopant were calculated.MAE values for

clusters having energy upto 0.5 eV from the ground state isomer of each species

have been mentioned in previous sections. The higher energy clusters for Co4C2

have MAEs 12.13, 28.41, 28.08 and 48.34 K respectively. Thus, while one of the

clusters has very low MAE, one has MAE as large as that of Co4Si2. In case

of Co4Si2 , both the higher energy clusters have lower MAEs compared to the

ground state.Co4Ge2 is showing different feature, the two higher energy clusters

have higher MAEs: 69.41 K and 62.58 K. Those are enough higher values than

the MAE of the ground state cluster. Higher energy Co4N2 clusters show an

intersting MAE values. Some of them have much larger MAE than the ground

state: 48.62, 51.92 and 60.67 K; there is one that has a much lower MAE: 17.37

K. In case of Co4P2, most of the higher energy clusters have lower MAE than

the ground state. One of these is as low as 5.57 K. Only one cluster, with Cs PG

symmetry, at 0.198 eV, has a higher MAE of 44.47 K. For Co4As2 one of the higher
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energy clusters has a higher MAE as 70.36 K compared to the ground state. The

other three have lower MAEs. Hence no correlations was found between MAEs

and the dopant type even in the higher energy clusters.

4.4.4 Central question:Which is(are) responsible factor(s)

for controlling the MAE value?

As no straight forward pattern for MAE values of Co4A2 clusters has been found,

the central question arises as which one(s) among spin and orbital moments,

HOMO-LUMO gap and d-p mixing is/are the most significant determinant(s)

of MAE. For addressing the question, MAE of large number of clusters (total

60 clusters, incluing the isomers with energy upto 0.5 eV as mentioned in the

previous sections) from each species were calculated.

Role of predicted entities for controlling calculated MAE values in

Co4A2 clusters

For defining the degree of mixing between the Co d and dopant p states, at first

it has to be noted that all the frontier orbitals are dominated by the Co d states.

There are small contributions from the dopant p states. The mixing parameter

is defined here as

Mdp =
cd − cp
cd + cp

(4.1)

Here cd is noted as the sum of weights of the Co d orbitals to the highest occupied

and lowest unoccupied molecular orbitals (HOMO and LUMO). cp is the sum of

weights of the dopant p states to the same orbitals. In the calculations with
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plane wave basis, contribution of a particular atomic orbital (AO) to a molecular

orbital (MO) is obtained by projecting the MO onto a spherical harmonic Yl
m,

which is finite within a sphere of a certain predefined radius centered on the

corresponding atom, and has the same (l, m) as the AO. The way it is defined,

Mdp is a real number in the range [0, 1]: 0 indicates equal d and p contributions,

while 1 would mean no contributions from the p states. So Larger d-p mixing

would lead to smaller values of Mdp according to the relation 5.1.

To determine the role of spin magnetic moments, the sum of the absolute

values of the spin moments on all the atoms (
∑

i |mi|, where mi is the spin

moment on the i-th atom in the cluster). Spin moment on a particular atom is

defined as the difference be- tween the total up and down spin electron densities

with a sphere around that atom. As spheres cannot fill space, these atomic

spheres should either leave voids or overlap with neighboring ones. Thus the sum

of atomic spins either leads to an underestimation or overestimation of the total

moment. In this case, there is an underestimation. But fortunately that does not

change the qualitative picture at the end of these analyses. It is important to

take
∑

i |mi| rather than the total spin of the cluster. As MAE originates from

spin-orbit coupling, is essentially an atomic property, and depends on the spin

on each individual atom rather than their mutual orientation.

To determine the role of orbital moment the quantity

∆L = Σi|Leasy − Lhard|i

in which Leasy,i and Lhard,i are the orbital moments on the i-th atom when spins

are aligned along the easy and the hard axes respectively, is considered. This

consideration is important because Bruno has suggested that in 3d transition
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metal systems, MAE can be expressed as λ
4
|Leasy −Lhard|[257], λ being the spin-

orbit coupling constant of the atom as discussed in the method chapter.

Scatter plots:Visualization of MAE as functions of different parameters

To address this central question which is/are the controlling factor/factors of

MAE of a cluster, scatter plots on different planes defined by two of the four

factors (HOMO-LUMO gap, Mdp,
∑

i |mi|, ∆L) have been shown.
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Figure 4.8: MAE in HOMO-LUMO gap - ∆L plane

Figure 4.8 shows the all Co4A2 clusters and their MAEs in the HOMO-LUMO
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gap-∆L plane. The color bar in the right is the MAE values in K. Different

symbols have been used for different doping elements. On this plane, clusters

with larger MAE are clearly separated to the low gap region. Low MAE clusters

appear mostly in the lower half-plane, whereas high MAE clusters also appear

towards the high ∆L region.
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Figure 4.9: MAE in
∑

i |mi| - HOMO-LUMO gap plane

In the
∑

i |mi| - gap plane as shown in Figure 4.9 most of the the high valued

MAE clusters are found in the lower right i.e., high
∑

i |mi| - low gap quadrant.

While some clusters with lower MAE also appear in this quadrant, most low MAE
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clusters are located in the left half-plane and upper half-plane corresponding to

either low
∑

i |mi| or large HOMO-LUMO gap. Hence a positive correlation

between MAE and
∑

i |mi| has been found . Also, smaller HOMO-LUMO gaps

lead to larger MAE values here.
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Figure 4.10: MAE in HOMO-LUMO gap - Mdp plane

Figure 4.10 shows the distribution of clusters and their MAEs in the gap-Mdp

plane. However, all large MAE valued clusters appear in the left half-pane. Thus

smaller HOMO-LUMO gaps lead to larger MAE as same as earlier pictures.

Figure 4.11 shows that most of the high MAE clusters are found in the high-
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Figure 4.11: MAE in
∑

i |mi| - ∆L plane

spin value the plane. Thus, again a positive correlation between MS and MAE

has been observed. Here most of the high MAE valued clusters also have larger

∆L.

In Figure 4.12, which represents MAE in
∑

i |mi| - Mdp plane, most of the

clusters are located in the upper half of the
∑

i |mi| - Mdp, irrespective of their

MAE values. There are only three clusters in the lower halves. Of the clusters

in the upper half planes, most of them appear close to Mdp = 1. This indicates

that mixing between d and p sates are small in all clusters.
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Figure 4.12: MAE in
∑

i |mi| - Mdp plane

Here, in Figure 4.13, the locations of the clusters are same as Figure 4.12. As

most of the clusters, irrespective of their MAE values, are closed to Mdp = 1, so

it indicates that the degree of mixing is not a direct determinant of MAE in these

clusters.

In summary, it is found that, HOMO-LUMO gap plays a determining role,

smaller values leading to larger MAE. Also a larger value of ∆L helps to have a

higher MAE. There is a strong positive correlation between
∑

i |mi| and MAE.

The higher
∑

i |mi| regions are more crowded with Co4A2 clusters as depicted in
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Figure 4.13: MAE in ∆L - Mdp plane

the scatter plots. The role of Mdp in MAE values is not very clear and probably

it is not an important entity for controlling MAE of Co4A2 clusters.
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A few more analysis with HOMO-LUMO gap and
∑

i |mi|:The most

important determinant of MAE

The fact that MAE is mostly determined by
∑

i |mi| and HOMO-LUMO gap can

be justified from a perturbative approach. Since the spin-orbit coupling constant

is small for 3d elements (in comparison with RE elements), compared to other

energy scales, one can take it as a perturbation in the full Hamiltonian. First

non-vanishing contributions come from the second order terms[255, 276, 277].

Change in ground state energy is given by the expression[276]

∆2 = −λ2
∑
o,u

|〈o|−→σ .
−→
L |u〉|2

εu − εo
(4.2)

Here o and u represent the occupied and unoccupied states respectively, and εo

and εu are their energies. MAE is dependent both on λ, and the matrix element of

the operator −→σ .
−→
L between occupied and unoccupied states, and hence depends

on the nature of these states as well. It is perhaps due to this reason that Co6

has such a small MAE in its ground state. However, it is intersting that there is

a positive correlation between MAE and
∑

i |mi|. MAE and inverse of the gap

in a large number of cases in a fully self-consistent treatment of the spinorbit

coupling term.

4.5 Conclusions

From self-consistent DFT calculations we find the ground state, and a large num-

ber of low energy structures and spin states for pure Co4, Co6 and Co4A2 clusters

have been found. To our knowledge, ours is the first work reporting such re-
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sults. We then calculate MAE of these clusters, and show that there is no simple

relation between the MAE of Co4A2 clusters, and the dopant atom A. Rather,

irrespective of the dopant, or even in pure Co clusters, MAE is determined by the

sum of the absolute values of the magnetic moments on all the atoms, and the

HOMO-LUMO gap of the cluster, MAE bearing an approximately linear corre-

lation with
(
∑

i |mi|)2
gap

. This is shown in our paper [278] A larger ∆L also supports

a larger MAE.

As already indicated before, the analysis we attempted here is of a statistical

nature, but the sample size is relatively small. Still, the trends we find in the

scatter plots convincingly point towards the above conclusion. On general physi-

cal grounds, particularly in view of Burkert et al.s work, who based their analysis

on perturbative arguments, we can expect this to hold true for larger systems as

well, whether at the nanometer or bulk scale. A further test and use of the these

ideas will be in case of designing novel nano-scale permanent magnets.
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CHAPTER5
Electronic and magnetic properties of

polar oxide surface:Emergence of 2DEG

5.1 Motivation

In recent years polar oxides as well as it’s surface have received increasing atten-

tion, due to their novel applications in various devices as well as from a funda-

mental perspective properties[279]. The polar oxide surfaces are interesting for

fundamental issues regarding their stability, their surface atomic configurations

(relaxations, reconstructions, non-stoichiometry, etc)[147]. The specificity comes

from the combined effect of orientation and termination which is responsible for

the existence of a macroscopic polarization along the surface normal and a surface

instability of electrostatic origin.

Beryllium oxide (BeO) is the only alkaline-earth oxide which crystalizes in the

hexagonal wurtzite structure[280] at room temperature, whereas the other oxides

in this family have the rock salt structure. For the BeO system, it has a hexag-

onal phase of wurtzite (WZ), cubic phase of zinc blende (ZB), and cubic phase
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with the rock salt structure. Among them, WZ BeO is the most stable[280] one.

BeO has drawn much attention due to its outstanding properties, such as high

hardness[281], high melting point and outstanding radiation resistance[282]. It

is widely used in many high-performance semiconductor parts due to its good

thermal conductivity[283] and good electrical resistivity[284]. It is also used as a

structural ceramic for high-performance microwave devices, vacuum tubes, mag-

netrons, and gas lasers. The large band gap of BeO, which is almost 10.6 eV[285],

makes it very useful for application in optoelectronic devices[286].

ZnO is an important and widely used polar oxide semiconductor with a direct

band gap Eg=3.44 eV [150]. It is used in window layers in photo voltaic de-

vices, varistors for voltage-surge protection, UV absorbers, gas sensors, catalytic

devices etc but it has various novel applications like transparent field effect tran-

sistors, UV laser diodes, memristors,in high-temperature high-field electronics.

It has large electronic applications as passive components for studying the topics

related to transparent conducting oxide films to be used for photovoltaics and

displays. From experimental works it has been found that ZnO thin films can be

reached to the level of active semiconductor grade [151, 152] as mentioned earlier.

Two dimensional electron gas (2DEG) has useful applications in high elec-

tron mobility transistor (HEMT) type field effect devices[163] as mentioned in

chapter 1. Two-dimensional electron systems (2DESs) at the interfaces of po-

lar superlattices of TMOs have been studied extensively over the last decade

with several experimental and theoretical works particularly on SrTiO3/LaAlO3

interfaces [164–172]. In recent experiments 2DEGs have been investigated at

ZnO/Zn(Mg)O hetero structure [153–162].

All these studies are mostly done on shuffle surface of wurtzite BeO and ZnO

interfaced with some other materials. Here the glide surfaces of BeO and ZnO
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have been studied using DFT.

5.2 Computational methods

All calculations were performed within the framework of plane wave DFT as im-

plemented in the VASP code[216, 217, 264–266]. The projector augmented wave

(PAW) potentials[211] represented the interaction between the ion cores and the

valence electrons.

To determine optimized lattice constants of bulk BeO and its surface structure,

kinetic energy cut off were taken as 563 eV.Brillouin zone integrations were per-

formed with 7×7×4 K points by using gamma-centered grid, and for surface it

was 7×7×1. Energy convergence criterion was 10−5 eV. The force convergence

criterion during structural relaxation was kept as 0.001eV/Å on every atom.

In case of wurtzite ZnO bulk calculation the kinetic energy cutoff has been kept

as 600 eV with K-mesh as 8×8×6 Monkhorst-Pack formalism. As Zn contains 3d

electrons, so only DFT with LDA or GGA underestimates the experimental value

of band gap largely. In our calculation we have checked for it with LDA calcu-

lation without U parameter and it is found as 0.809 eV where the experimental

value is 3.44 eV [287]. To improve the band gap we invoked the U correction on

Zn atoms. We took GGA+U calculation with U value as 5 eV.

5.3 Results and discussions

5.3.1 Bulk BeO and ZnO

We have found the optimized lattice constants a and c for wurtzite bulk BeO

using different exchange-correlation functional. The table is attached below.
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Table 5.1: Optimized lattice parameters of wurtzite BeO estimated using differ-
ent exchange correlation energy functionals

Method a Å c Å

Experimental 2.698 [288] 4.377 [288]

LDA 2.674 4.344

GGA-PBE 2.711 4.400

GGA-PW91 2.660 4.425

From the above results it is found that LDA underestimates both the lattice

constants and PBE-GGA[197] overestimates them in small amount. We have

chosen the lattice constants according to PBE-GGA in further calculations. As

PW91 underestimates a and overestimates c, so to keep c/a ratio closed to the

experimental value we have chosen PBE-GGA. The bond lengths are shown in

figure 5.1 For this bulk BeO the electronic structre calculation gives a band gap

of 7.41 eV. The experimental value of band gap is 10.5 eV. [289]

  

(a) (b)

Figure 5.1: (a)Atomic and (b) electronic structure of wurtzite BeO. Green sphere
represents Be atom and red sphere represents O atom.

For wurtzite ZnO fron GGA+U calculation, with U value as 5 eV for Zn

comming we got the in plane lattice parameter a=3.243 Å and out plane lattice

constant c=5.198 A and the band gap is 1.43 eV. The experimental values of a
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and c are 3.249 Å and 5.201 Å [290]. The atomic and electronic structures are

shown below.

  

Figure 5.2: (a)Atomic and (b) electronic structure of wurtzite ZnO. Purple sphere
represents Be atom and red sphere represents O atom.

5.3.2 Electronic structure of glide surface of BeO and ZnO

As shown in the wurtzite bulk unit cell atomic structure, there are two kinds of

bonds. One perpendicular to the xy plane and other one is slanted. The shuffle

and glide surface atomic structures are shown in case of BeO along 0001 direction.

Here we have shown 1×1×3 supercell of wurtzite BeO glide surface.

We have performed the electronic structure calculations for BeO glide surface

with 1×1×3 super cell. As the unit cell contains 2 Be and 2 O atoms , so in

this super cell there are 6 Be and 6 O atoms. We have relaxed the structure by

keeping a vacuum of 10.84Å on top O atom. Relaxed structure of glide surface

remains almost same as that of initial structure shown in figure 5.4.

The electronic structure calculation of the relaxed structure of glide BeO

surface in figure 5.4 (b) is found metallic as shown in figure 5.5. For spin polarized

calculation, the relaxed glide surface, was found with energy 0.374 eV lower than
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1.67Å1.65Å 1.67Å
1.65Å

(a) (b)

Figure 5.3: Bulk like Atomic structure of (a) glide and (b) shuffle surface of
1×1×3 wurtzite BeO.

the spin unpolarized one. We have found the relaxed glide surface has a finite

magnetization 1.51 µB.

For ZnO also the relaxed atomic structure of glide surface remains almost

same as initial bulk like one as shown below. The glide surface of ZnO is also

metallic like BeO in both the spin unpolarized and spin polarized calculation. In

case of ZnO the spin polarized relaxed structure is lower in energy by 0.641 eV

than the spin unpolarized relaxed structure. We have found a magnetic moment

1.4508 µB in spin polarized ZnO glice surface.

192



                 (a) (b)
 

Figure 5.4: (a) Bulk like structure, (b) relaxed structure of (0001) glide surface
of BeO.

5.3.3 Bulk insulator to surface metal transition:cleaving

of crystal

Electronic and magnetic properties of cleaved BeO glide plane

We analyze this bulk insulator to surface metal transition as a function of distance

of separation at the plane that cleaves the bulk crystal into surfaces, and calculate

the electronic structure with gradually increasing distance of separation. We have

kept the atomic positions in 1×1×3 super cell of BeO glide surface as bulk like

and increased the vacuum level (denoted as dvac on top O atom (O6) in figure

5.8). c0 is noted as 3 times the bulk unit cell c value. For this 1×1×3 super

cell, ie 13.2Å. Hence the distance between the slab and it’s periodic image has

been increased gradually with increasing of vacuum thickness above the slab.

The vacuum thickness is defined as dvac, dvac=c-c0. The slabs with various dvac

are shown in figure 5.9 In each case we have found the band gap (Eg) decreases
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Figure 5.5: Electronic structure of BeO glide surface obtained using (a) spin
unpolarized and (b) spin polarized calculation respectively. The same colour has
been used for a band of states spin up (solid lines) and spin down (dashed lines)
channels for (b). Green solid line parallel to X axis represents Fermi level.

from the bulk value gradually and at a certain vacuum level it becomes metallic.

Evolution of elctronic structure with various dvac is shown in figure 5.10. From

figure 5.10 panel (e) it is found, that the system becomes just metallic when dvac

value equals 1Å, and with dvac value 1.2Å, magnetization appears in the surface as

shown in panel(f) of figure S7. With increasing vacuum thickness, magnetization

value was increased after the critical value of dvac 1Å and becomes saturated at

2Å, shown in figure 5.11.

Emergence of 2DEG at glide surface of BeO

As mentioned earlier, that at some critical distance between the bottom Be atom

(Be1 in figure 5.8(a)) and it’s periodic image, the insulating system turns out to

be metallic, and the first lowest energy conduction band crossed Fermi level by

decreasing the band gap gradually, we have plotted the 2d contour of the charge

density for this particular band in figure 5.12. We have plotted the charge density

194



  

(a) (b)

Figure 5.6: (a) Bulk like structure, (b) relaxed structure of (0001) glide surface
of ZnO.

in two dimension for the planes in the region between the top O atom and the

periodic image of the bottom Be atom. We have taken the top O atom (O6) at

the center of the plane containing it assuming this plane has z-coordinate zero.

Now we move toward the periodic image of Be1 atom, along z axis, perpendicular

to the plane containing O6, . We have found the distribution of charge density

at different parallel planes, all are perpendicular to z axis. When the distance

between Be1 and its periodic image is just c0, ie dvac=0.0Å, all electrons are

gathered in the central O atom (O6) for the plane, as we move towards the image
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Figure 5.7: Electronic structure of ZnO glide surface obtained using (a) spin
unpolarized and (b) spin polarized calculation respectively. The same colour has
been used for a band of states spin up (solid lines) and spin down (dashed lines)
channels for (b). Green solid line parallel to X axis represents Fermi level.
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Figure 5.8: Labeling of atoms and dvac for BeO 1×1×3 glide BeO surface
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Figure 5.9: Cleaving across (0001) plane achieved with gradual increment in
distance between the slab and its periodic image(vacuum thickness) maintaining
the bulk structure.

Be atom, there is no existence of electron gas in an intermediate parallel plane.

It has been spread with very little amount only in the plane containing image Be

atom, as shown in figure S12. Now as we gradually increased the dvac value from

0 to 0.2Å and so on shown in figure S6, we have found the electron density has

been spread not only in the Be1 containing plane, but some intermediate planes

between the O6 and image of Be1 atom containing plane. The two dimensional

distribution of electron density for the lowest energy conduction band has been

depicted in figure 5.12 with dvac=0.6Å.

O6 is responsible for metallicity and magnetism in glide BeO surface

Metallicity and magnetism is mainly coming from terminal O atom (O6). It is

clear from the projected density of state plot for down spin channel in figure

5.13. Metallic contribution is mainly coming from terminal O atom, clear from
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Figure 5.10: Evolution of electronic structure during cleavage of BeO at basal
glide plane: Origin of 2DEG
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Figure 5.11: Emergence of metallicity and magnetization upon cleavage as seen
in (a) band gap (Eg) and (b) magnetization (M) with interplanar separation at
cleavage dvac as defined in figure 5.8 (a)

down spin channel and for up spin very small contribution from terminal Be atom

(Be1), as shown in panel (a) in figure 5.14. So the surface atoms are responsible

for metallic character of BeO glide plane. From the isosurface of spin density

plot it is more clear that the terminal O6 atom is responsible for the magnetism

in the glide surface as shown in figure 5.15 . To check whether this magnetization

occurs due to Stoner instability we performed spin unpolarized calculation for

relaxing the oxygen terminated BeO glide surface. We found peak near Fermi

level in total density of states profile as shown in figure 5.13(b). From figure 5.13

it is clear that the peak near Fermi level occurs due to terminal O atom (O6).

The Be atoms did not contribute for this Stoner instability shown clearly from

figure 5.16
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Internal electric field from planar averaged potential:origin of metal-

licity

From the figure 5.17 we have seen the electrons associated with O6 atom has

the highest planar average potential energy and for the Be1 atom these are with

lowest planar average potential energy. This leads to polar catastrophe in the

BeO glide surface, the valance bands in bulk crosses the Fermi level in the glide

surface, and the system becomes metallic. There is no constant value of vacuum

potential energy for the electrons. It will feel a change in potential energy in

vacuum region and towards right the potential energy is lower than left, as a

result electrons moving towards positive z direction and 2DEG is formed.

Magnetoelectric effect in glide BeO surface

To check the effect of electric field on the magnetization at BeO glide surface we

add a saw-tooth potential as a function of z, and simulated effects of an electric

field as implemented in QUANTUM ESPRESSO [291] package. Field strength

varying from 0.0 V/Å to 1 V/Å in the intervals of 0.01 V/Å. Electric field was

applied at the middle of the vacuum with dipole correction to eliminate the effects

of periodic boundary condition of the BeO slab. From the slope of figure 5.18 we

have calculated the magneto electric coupling coefficient(α). It is defined as

α = µ0
∆M

∆E
(5.1)

µ0 is the vacuum permeability: 4π × 10−7Newton/Amp2 M magnetization (mag-

netic moment per unit volume) E Applied electric field. We have found α as 2.97

ps/meter which is comparable to the magneto electric coupling coefficient of a fa-

mous magneto electric compound Cr2O3, which has the value 4.31 ps/meter[292]
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in bulk.

Electronic and magnetic properties of cleaved ZnO glide plane

Like wurtzite BeO, the electronic structure of cleaved ZnO glide surfaces have

been studied with increasing the dvac gradually and keeping the atomic position

as bulk. The band gap was decreased gradullay like BeO as the lowest energy

conduction band comes towards the Fermi level. For a critical value of dvac the

ZnO glide surface becomes metallic and magnetization apperas. It is clearly

shown in figure 5.19 The variation of band gap and magnetization with dvac is

shown in figure 5.20

Emergence of 2DEG at glide surface of ZnO

Like BeO glide surface, emergence of 2DEG is also in case of ZnO. It is depicted

in figure 5.21 with dvac=0.6Å.

Regarding magnetization in glide ZnO surface

Like BeO glide plane in case of ZnO O6 is responsible for metallicity and mag-

netism. It is clear in the figure 5.22 (a) and (c). Like BeO stoner instability is

also found here.

Planar averaged potential for ZnO glide surface

We have found the same pattern of planar averaged potential of glide ZnO surface.

The electrons in the vacuum feel a force along c axis and emergence of 2DEG

have been found.
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Magnetoelectric effect in ZnO glide surface

On applying perpendicular electric fileld in the vacuum region as saw tooth po-

tential, the absolute magnetization value was varing with amplitude of electric

field in case of glide ZnO also.

5.4 Conclusions

We have thoroughly studied the glide surface of wurtzite BeO and ZnO within

the framework of DFT. In both caes these are found metallic with emergence of

2DEG. The magnetization was also appeared here, where in bulk both are insu-

lating and non magnetic. Moreover the linear relationship of appreciable linear

magneto electric properties made these systems more intersting. The calculated

value of magnetoelectric coupling coefficient is near about the bulk Cr2O3. These

2DEG, magnetization and magneto electric coupling effect are useful in various

devices. For this the stability of this glide system should be studied , which are

done later.
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                   (a)

                                 (b)

                                 (c)

Figure 5.12: Contour plots of charge density of the lowest energy conduction
band with dvac=0.6Å, in (a) plane containing O6.(b) intermediate plane between
O6 and periodic image of Be1 (c) plane containing periodic image of Be1.
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Figure 5.13: Projected density of states of the relaxed structure of (0001) glide
surface of BeO showing contribution of O atoms (a) spin polarized with down
spin channel (b) spin unpolarized. The vertical dashed line indicates the Fermi
level.
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Figure 5.14: Projected density of states.Upper panels (a) and (b) are for up spin
channel with contributions from all Be and all O atoms respectively.Lower panel
(c) for down spin channel with Be contributions. The dashed blue line indicates
the Fermi level.
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Figure 5.15: Isosurface of spin density of BeO slab terminated with glide surfaces.
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Figure 5.16: Density of states projected on the orbitals of Be atoms.
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Figure 5.18: Magnetoelectric effect evident in linear variation in magnetization
at (0001) glide surface of BeO in response to electric field perpendicular to the
surface.
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Figure 5.19: Evolution of electronic structure during cleavage of ZnO at basal
glide plane: Origin of 2DEG
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Figure 5.20: Emergence of metallicity and magnetization upon cleavage as seen
in (a) band gap (Eg) and (b) magnetization (M) with interplanar separation at
cleavage dvac.
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                                (b)

                                  (c)

Figure 5.21: Contour plots of charge density of the lowest energy conduction
band with dvac=0.6Å, in (a) plane containing O6.(b) intermediate plane between
O6 and periodic image of Zn1 (c) plane containg periodic image of Zn1.
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Figure 5.22: Projected density of states of the relaxed structure of (0001) glide
surface of ZnO showing contribution of O atoms (a) spin polarized with down
spin channel (b) spin unpolarized. The vertical dashed line indicates the Fermi
level.(c) Spin density iso surface for ZnO glide surface.
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Figure 5.23: Planar averaged potential of ZnO along c axis with dipole correction
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Figure 5.24: Magnetoelectric behaviour ZnO glide plane.
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CHAPTER6
Studies on dynamical stability of glide

BeO and ZnO surfaces

6.1 Motivation

In the study of glide surfaces of wurtzite BeO and ZnO in chapter 5, we have found

metallization with emergence of 2DEG. Now to check the dynamical stability of

the glide BeO and ZnO surfaces we have further performed phonon calculations

with this surfaces within the framework of DFPT as described in chapter 2.

6.2 Dynamical stability BeO glide surface

We found 1×1×3 BeO glide surface is higher in energy by 7.75 eV with respect to

bulk. We analyzed the structural stability of the glide surface through determina-

tion of their phonon spectra. We determine dynamical matrices and phonons at

wave-vectors on a 2 × 2 × 1 mesh in the BZ using DFT linear response (QUAN-

TUM ESPRESSO [291] implementation based on Greens function). From these,

dynamical matrices and phonons at arbitrary wave vectors are obtained using
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Fourier interpolation.

6.2.1 Phonon dispersion of BeO glide surface

We have found BeO 1×1×3 glide surface is strucrally unstable. It is clear from the

phonon dispersion as shown in figure 6.1. There are 3 unstable modes depicted in

the phonon dipersion plot. Among them at M point the imaginary frequency has

maximum with value 346i cm−1. The other two unstable modes have significant

imaginary values at M and K points. To get rid of the M-point instability, we
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Figure 6.1: (a) Phonon dispersion of (0001) glide surface of BeO shown in Figure
5.4(a). (b) visualization of highest imaginary modes at M point, showing lattice
instabilities at M point that would cause its reconstruction.

relaxed a 2×1×1 super cell of initial 1×1×3 glide surface. On freezing the eigen-

displacements of the highest unstable mode at M-point of the 1×1×3 glide surface

we obtained a distorted structure with Be-O bonds lengths changed associated
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(a) (b)

Figure 6.2: Reconstructed structure of 2×1×1 supercell of BeO (0001) glide
surface of figure 5.4 (a) with eigen displacements for unstable mode at M point,
initial (a) and relaxed (b).

with surface atoms as shown in figure 6.2. The distorted relaxed structure, as

shown in figure 6.2(b) is lower in energy by 1.373 eV with respect to the twice

undistorted 1 × 1 × 3 structure (5.4 (a)). The distorted system is metallic as

shown in figure 6.3 but non magnetic. With this reconstructed structure of BeO

glide surface we have further studied phonon dispersion to check it’s dynamical

stability. There is one unstable mode for this reconstructed structure as shown

in figure 6.4 Maximum value of imaginary frequency is found here at S point.

Its value is 259i cm−1. We relaxed again the 2 × 2 × 1 super cell of earlier

reconstructed structure. Eventually we have performed 4 × 2 × 1 super cell of

initial 1 × 1 × 3 structure , no of atoms here 8 times the initial one. After

freezing the eigen-displacements of the unstable mode at S-point of the earlier

reconstructed glide surface we obtained a distorted structure as depicted in figure
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Figure 6.3: Electronic structure of reconstructed 2 × 1 × 1 supercell BeO glide
surface (as shown in figure 6.2 (b))

 Γ X S Y  Γ S
-300

0

300

600

900

F
re

q
u
en

cy
 (

cm
-1

)

Figure 6.4: Phonon dispersion of reconstructed 2 × 1 × 1 supercell BeO glide
surface (as shown in figure 6.2(b))
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(a) (b)

Figure 6.5: Reconstructed structure of 2× 2× 1 supercell BeO glide surface (as
shown in figure 6.2 (b) with eigen displacements for imaginary mode at S point).
Panel (a) and (b) for initial and relaxed structure respectively.

6.5 This reconstructed structure is also metallic and it is lower in energy by 9.515

eV lower than 8 times of unreconstructed 1 × 1 × 3 BeO glide surface. In this

case we have found spin polarized and spin unpolarized reconstructed structure

with almost same energy and both are metallic, shown in figure

6.3 Dynamical stability of ZnO glide surface

Like BeO we have performed some calculation to understand the dynamical sta-

bility of ZnO glide surface. Like BeO glide surface, ZnO glide surface was also

found with dynamically unstable. We have seen there are 4 imaginary modes

with two of almost same value. Here also the highest imaginary frequency found
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Figure 6.6: Electronic structure of 2 × 2 × 1 reconstructed glide surface of BeO
(shown in figure 6.5(b)), calculated with (a) spin-independent and (b) spin-
dependent DFT respectively.

at M high symmetry point and it has the value 161.30i cm−1. To get rid of this
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Figure 6.7: Phonon dispersion of ZnO 1×1×3 glide surface(as shown in figure
5.6(b))

M point instability we followed the same treatment done with BeO. The bond

lengths of the surface atoms changed. This reconstructed relaxed surface is also

metallic as found in the electronic structure shown in figure 6.9 The reconstructed

relaxed 2×1×1 structure is almost 2 eV lower than the unreconstructed one.
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Figure 6.8: 2×1×1 reconstruction of (0001) glide surface of ZnO (shown in figure
5.6(b)), structuure before (a) and after (b) relaxation.
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Figure 6.9: Electronic structure of Zno 2×1×1 reconstructed glide surface (shown
in figure 6.8(b)).
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6.4 Conclusion

The study of dynamical stability using the phonon dispersion of the glide surface

of wwurtzite BeO and ZnO was showing a competition between structural insta-

bility and instability to form 2DEG. The reconstructed surface with lower energy

remains metallic, and there was presence and absence of magnetism alternatively

in the ground state at least for two consecutive reconstruction.The reconstruced

glide surface becomes more and more stable as we increase its dimension in the

x-y plane. We found the 4×2 reconstruced surface is more than 9 e lower than the

unreconstructed in case of BeO and also metallic with some magnetism. Usually

polar surface with non vanishing dipole moments is unstable, but here stability

is found in a polar surface by increasing it in x-y dimension. We checked this

metallicity as well as presence of 2DEG is not dependent on the thickness of the

slab along z direction. We have checked all our studies in case of ZnO glide sur-

face also, and found the same characteristic as BeO glide surface. In this detailed

study we have found the glide surface is metallic with magnetism, where the bulk

material is polar insulator.
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CHAPTER7
Summary and future outlook

This thesis composed of three projects. The first two are on atomic cluster

systems and the third one involves studies on polar oxide surfaces. All of them are

studied incorporating first principles density functional theory (DFT) calculation.

7.1 TaSi16 on HOPG: A DFT study

In this project extensive studies of electronic structure of HOPG supported TaSi16

cluster has been performed. For computational cost a single structure has been

deposited. After checking the chemical stability and molecular dynamics simu-

lation, it was found that it is physisorbed and the cage structure distorted but

it never broke. It can be predicted that these properties will remain same when

more number of clusters will be deposited. So this can be taken as ideal system

for self assembly of deposited cluster system which is used in cluster assembled

material. Here due to weak interaction of cluster and substrate the properties

of isolated clusters remains almost same after adsorbed on HOPG. Hence the

next work can be performed by changing the central Ta atom with V with DFT

calculatuon, as they are in same group in periodic table. For deposited TaSi16,
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the experimental studies are already there. If the DFT results from V doped

systems are similar as Ta doped systems, without experimental evidence of de-

posited V doped Si cluster, it can be predicted that if the central atom is from

same group the supported cluster will behave in similar manner. If the V doped

system behaves differently, then it will also very intersting to study further.

7.2 Desigining of RE free PM: Insights from

small Co clusters

In this section of the thesis, the importance of various quantites like HOMO-

LUMO gap, mixing, magnetic moment etc. has been demonstrated predicting

them as possible responsible parameters for determining the MAE in doped Co

cluter systems. We have studied with total 60 doped Co clusters by taking

10 of each dpoing elements. Incidentally mixing was not found as an important

parameter for controlling the MAE of doped Co cluster systems. We checked with

non magnetic doping elements from group 14 and group 15 and “which element is

doped with the Co cluster”, this fact did not play any role in controlling the MAE

values. The amount of mixing was found also insignificant in determination of

MAE. The next work can be a checking whether mixing playes any important role

while doping with non magnetic elements from other group. From these results

a machine learning study can be done taking the parameters as descriptors and

study further for other cluster systems with different sizes and changing the Co

atom to another magnetic elements.
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7.3 Emergence of 2DEG in polar oxide surfaces

Glide surfaces of wurtzite BeO and ZnO have been studied extensively. Insulator

to metal transition has been found with emergence of 2DEG in both cases. Strong

magneto electric coupling found interstingly. These systems can be used further

in spintronics. Most importantly the metallicity in the glide surfaces is found

with surface reconstruction. The reconstructed surfaces are dynamically stable

than the un reconstructed one, but metallic.

BeO is a rather large band gap insulator. It will be interesting to consider its

solid solution with ZnO and its surface, substitution at the surface to control and

achieve these unusual properties of 2DEG and magneto electric effect in a robust

way so that they could be useful in a number of applications from catalysis to

sensors.
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APPENDIXA
Adsorption of TaSi16 cluster on HOPG
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Figure A.1: Structures of isolated globally optimized Tasi16 cluster with energy
larger than 1 eV from ground state, calculated including vDW-DF2.
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• In case of  transition-metal-doped Silicon clusters, the properties can be tuned by changing the doping 

element as studied extensively over last 2-3 decades both theoretically and experimentally. We have 

studied here Ta doped Si16 cage clusters starting from a systematic global search of ground state structure.  

With the isolated ground state structure further studies have been done by checking its stability after 

reaction with Oxygen. Adsorption of TaSi16 cluster on graphite was studied  using DFT. These calculations 
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