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Summary

In this thesis, we deal with two problems. In the first problem (chapter 2), we focus on

conformal field theories (CFTs) where we deal with a novel method to compute correla-

tors in a certain class of two-dimensional CFTs — Wess-Zumino-Witten (WZW) models.

In the second problem (chapter 3), we prove certain analyticity properties in closed super-

string field theory (SFT). Both the problems are introduced and the motivations behind

these studies are discussed in chapter 1.

In chapter 2, we consider the construction of genus zero correlators of S U(N)k WZW

models involving two Kac-Moody primaries in the fundamental and two in the anti-

fundamental representation from modular averaging of the contribution of the vacuum

conformal block. We perform the averaging by two prescriptions — averaging over

the stabiliser group associated with the correlator and averaging over the entire modu-

lar group. For the first method, in cases where we find the orbit of the vacuum conformal

block to be finite, modular averaging reproduces the exact result for the correlators. In

other cases, we perform the modular averaging numerically, the results are in agreement

with the exact answers. Construction of correlators from averaging over whole of the

modular group is more involved. Here, we find some examples where modular averag-

ing does not reproduce the correlator. We find a close relationship between the modular

averaging sums of the theories related by level-rank duality. We establish a one to one

correspondence between elements of the orbits of the vacuum conformal blocks of dual

theories. The contributions of paired terms to their respective correlators are simply re-

1



2 Summary

lated. One consequence of this is that the ratio between the OPE coefficients associated

with dual correlators can be obtained analytically without performing the sums involved

in the modular averagings. The pairing of terms in the modular averaging sums for dual

theories suggests an interesting connection between level-rank duality and semi-classical

holographic computations of the correlators in the theories.

In chapter 3, we consider the off-shell momentum space Green’s functions in closed su-

perstring field theory. Recently in [23], the off-shell Green’s functions — after explicitly

removing contributions of massless states — have been shown to be analytic on a domain

(to be called the LES domain) in complex external momenta variables. Analyticity of off-

shell Green’s functions in local QFTs without massless states in the primitive domain is a

well-known result. Use of complex Lorentz transformations and Bochner’s tube theorem

allow us to extend the LES domain to a larger subset of the primitive domain. For the 2-,

3- and 4-point functions, the full primitive domain is recovered. For the 5-point function,

we are not able to obtain the full primitive domain analytically, only a large part of it is

recovered. While this problem arises also for higher-point functions, it is expected to be

only a technical issue.

We discuss the future directions in chapter 4.
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1 Introduction

The Standard Model is a remarkably successful theory. It is a quantum theory describing

the electromagnetic, weak and the strong interactions in nature. Its biggest shortcoming

lies in its inability to describe gravity in the quantum regime. Furthermore, the con-

stituents of dark matter and their interactions remain poorly understood, making it clear

that there is much physics beyond Standard Model. String theory has the promise to pro-

vide a quantum theory of gravity unifying all forces of nature [1–4]. It is a theory of

interacting strings and other extended objects like D-branes. Its spectrum always con-

tains a massless spin-2 state whose low energy interactions are as in general relativity.

String perturbation theory is known to be ultraviolet finite. At present, the most promis-

ing direction to connect string theory with nature is by compactifying ten dimensional

string theories on six dimensional Calabi-Yau manifolds. Much progress has taken place

in this direction, and this remains an active area of research. Furthermore, the techniques

of perturbative quantum field theory fail in the case of strong interactions (QCD) at low

energies. However, a close cousin of QCD, i.e. N = 4 supersymmetric Yang-Mills theory

in four dimensions at strong coupling can be understood via its string theory dual due to a

mathematical correspondence [5,6]. This has given hope that string theory can shed light

on strong dynamics.

Conformal field theories (CFTs) are central to the research in string theory. String world-

sheet dynamics is described by two-dimensional CFTs. Furthermore, the AdS/CFT cor-

respondence enables the study of (D + 1)-dimensional gravitational dynamics via D-

7



8 Introduction

dimensional CFTs. CFTs also describe the universality classes of statistical models at

their critical point. CFTs are quantum field theories that have symmetry under confor-

mal transformations (which include scaling) of space-time [7, 8]. In CFTs, the product

of two operators located at distinct nearby points can be expanded as a convergent linear

sum of operators located at a single point, known as operator product expansion (OPE).

Schematically,

Oi(x)O j(y) =
∑

k

Ck
i j(x − y)Ok(y) , (1.1)

where Ck
i j(x − y) are complex-valued functions. Due to this, correlators in CFTs can be

expressed as a sum over contributions of primary operators (which are characterized by

their conformal dimensions) running in the intermediate channel. Each of these con-

tributions is fixed (up to a coefficient) by conformal symmetry which is known as the

conformal block corresponding to the primary operator. The coefficients are related to the

three-point coefficients that encode interactions. The associativity of the operator algebra

implies that the operators can be permuted inside a correlator which is known as the cross-

ing symmetry. In the bootstrap approach, we invoke crossing symmetry to solve for CFT

data i.e., operator dimensions, three-point coefficients. Particularly in two dimensions,

CFTs have infinite local symmetries that enable us to bootstrap solvable models, e.g.,

rational CFTs which have finite number of primary operators. Classification of all two-

dimensional CFTs and relating them to three-dimensional quantum gravity via AdS/CFT

correspondence are active areas of research.

Besides the world-sheet formulation, string theory can also be formulated along the lines

of a quantum field theory. This formulation is known as string field theory, which is

a quantum field theory with countable infinite number of fields
{
φα(k)

}
and non-local

interaction vertices, whose action is directly written in momentum space [9–19]. The

field contents and vertices are so chosen that it can reproduce perturbative amplitudes

of string theory. Furthermore, using standard quantum field theory techniques like mass

renormalization and shift of vacuum one can deal with the infrared divergences of string
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amplitudes (i.e., S-matrix elements) in string field theory. For closed superstring field

theory (SFT), after the Lorentz covariant gauge fixing the action has the following general

form in a background with D non-compact space-time dimensions [18].

S =

∫
dDk

(2π)Dφ
α(k)Kαβ(k)φβ(−k)

+
∑

n

∫
dDk1

(2π)D · · ·
dDkn

(2π)D (2π)Dδ(D)(k1 + · · · + kn)

× V (n)
α1...αn

(k1, . . . , kn) × φα1(kn) · · · φαn(kn) ,

(1.2)

where Kαβ(k) is the kinetic operator (typically quadratic in momenta), and the interaction

vertices V (n)
α1...αn(k1, . . . , kn) have non-local behaviour i.e., as one or few ki approach infinity

the dominant factor in a vertex takes the form e−ci jki·k j for some matrix ci j with large

positive eigen values. This formulation also enables us to prove important properties,

e.g., unitarity, crossing symmetry of superstring amplitudes [20–23].

Now let us discuss the problems addressed in this thesis in more detail. Chapter 2 deals

with the first problem which is on CFT and a duality. The bootstrap [24, 25] serves as an

extremely useful tool in the study of conformal field theories (see [26–29] for reviews).

An interesting direction of study is its interplay with duality symmetries. For example,

in [30] it was found that S-duality invariant points of N = 4 supersymmetric Yang-Mills

saturate the bootstrap bounds on the anomalous dimensions of low twist non-BPS opera-

tors, in [31] it was found that crossing has interesting implications for the structure of the

S-matrix in Chern Simons theories with matter. Recently, a rather simple proposal has

been put forward to generate crossing symmetric genus zero correlation functions in two

dimensional conformal field theories [32]. We construct correlation functions in S U(N)k

Wess-Zumino-Witten (WZW) models1 using the proposal and examine level-rank duality

of the models in this context. WZW models are 2d CFTs having currents that are con-

formal chiral primaries of dimension one. The non-abelian current (Kac-Moody) algebra

1We provide the necessary details of S U(N)k WZW models at the beginning of section 2.2 of chapter 2.



10 Introduction

is an affine Lie algebra associated with a semisimple Lie group2. This algebra generates

the spectrum of the theory which contains conformal Kac-Moody primaries transforming

under that Lie group. WZW models have wide applications in various contexts including

non-abelian bosonization in 2d [33], description of bosonic string theory on AdS3 [34],

description of 2d black holes in string theory [35].

In two dimensions, crossing together with modular invariance has provided strong con-

straints from the early days [36–45]. For some recent developments in 2D bootstrap

see [46–66], and in particular [67–73] for work on theories with currents. The basic idea

in [32] is to make use of transformation properties of conformal blocks under crossing

to arrive at crossing symmetric candidate correlation functions. Correlation functions are

generated by starting from a seed contribution (as given by the contributions of conformal

blocks of some primaries of low dimension running in the intermediate channel) and sum-

ming over the orbit of the seed under crossing transformations to obtain a crossing sym-

metric candidate correlation function. In two dimensions, crossing symmetry acts as the

modular group on conformal blocks. Thus the sum over the orbit of the seed contribution

corresponds to “modular averaging" 3. It was shown in [32] that modular averaging can be

used to successfully compute genus zero four-point functions of minimal models. Mod-

ular averaging has appeared in the physics literature in the context of three-dimensional

quantum gravity and is often referred to as Farey tail sums (see e.g. [75–81]). It was

argued in [32] that terms that arise from the orbit of the seed contribution would arise

naturally in a semiclassical holographic AdS 3 dual computation of the CFT correlator.

In chapter 2, we consider the construction of genus zero correlators of S U(N)k WZW

models involving two Kac-Moody primaries in the fundamental and two in the anti-

fundamental representation from modular averaging of the contribution of the vacuum

conformal block. We perform the averaging by two prescriptions — averaging over

the stabiliser group associated with the correlator and averaging over the entire modu-
2In our case the Lie group will be S U(N).
3This is very similar in spirit to the proposal of [74] to compute partition functions from vacuum char-

acters.
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lar group. For the first method, in cases where we find the orbit of the vacuum conformal

block to be finite, modular averaging reproduces the exact result for the correlators. In

other cases, we perform the modular averaging numerically, the results are in agreement

with the exact answers. Construction of correlators from averaging over whole of the

modular group is more involved. Here, we find some examples where modular averag-

ing does not reproduce the correlator. We find a close relationship between the modular

averaging sums of the theories related by level-rank duality. We establish a one to one

correspondence between elements of the orbits of the vacuum conformal blocks of dual

theories. The contributions of paired terms to their respective correlators are simply re-

lated. One consequence of this is that the ratio between the OPE coefficients associated

with dual correlators can be obtained analytically without performing the sums involved

in the modular averagings. The pairing of terms in the modular averaging sums for dual

theories suggests an interesting connection between level-rank duality and semi-classical

holographic computations of the correlators in the theories.

The second problem that we deal with in this thesis is discussed in chapter 3, which is on

certain analyticity properties in SFT. In [23] de Lacroix, Erbin and Sen (LES) showed that

the infrared safe part4 of the off-shell amputated n-point Green’s function G(p1, . . . , pn)

in SFT as a function of (n − 1)D complex variables (taking into account the momentum

conservation for external ingoing D-momenta p1, . . . , pn:
∑n

a=1 pa = 0) is analytic on a

domain (LES domain). On the other hand in local quantum field theories without mass-

less particles, the off-shell amputated n-point Green’s function G(p1, . . . , pn) is known to

be analytic on a domain called the primitive domain [82–86]. This result follows from

causality constraints on the position space Green’s functions in a local QFT and rep-

resenting the momentum space Green’s functions as Fourier transforms of the position

space correlators5. The primitive domain contains the LES domain as a proper subset. In

4We precisely define it at the beginning of chapter 3.
5But the lack of a position space description of closed superstring field theory forces us to work directly

in the momentum space.
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several complex variables, the analyticity domain cannot be arbitrary6. For example, the

shape of the primitive domain allows the actual domain of holomorphy of G(p1, . . . , pn)

to be larger than itself (e.g. [87, 88]). This can be used to prove various analyticity prop-

erties [89–96] of the S-matrix of QFTs, since the S-matrix is defined as the on-shell con-

nected amputated n-point Green’s function for n ≥ 3. These properties are to be read

as the artifact of the shape of the primitive domain, irrespective of the functional form

of G(p1, . . . , pn) which is defined on it. In particular, the derivations [88–90]7 of certain

analyticity properties [89, 90, 97, 98] of the S-matrix use the information of only the LES

domain as a subregion of the primitive domain.

From [23] we already know that the infrared safe part of the off-shell amputated n-point

Green’s function in SFT is analytic on the LES domain. Hence [23] basically established

that in superstring theory any possible departure from those analyticity properties of the

full S-matrix that rely only on the LES domain is entirely due to the presence of massless

states. This is also true for local QFTs that have massless states. Thus, with respect to

the aforenamed analytic properties [89, 90, 97, 98], the S-matrix of the superstring theory

displays similar behaviour to that of a standard local QFT with massless particles. In local

QFTs without massless states, analyticity properties [91–96] of the S-matrix rely on the

properties of the primitive domain that are not restricted to its LES subregion. We know

that local QFTs with massless states could possibly deviate from these properties for their

full S-matrix. However, any such departures are entirely due to the presence of massless

states, i.e. the infrared safe parts of respective amplitudes in local QFTs with massless

states must satisfy all these analyticity properties. At this stage, it is natural to ask that

whether the infrared safe part of the S-matrix of the superstring theory (despite having

non-local vertices) satisfies the last-mentioned analyticity properties, or not. They satisfy

them, only if the relevant part of the off-shell amputated n-point Green’s function in SFT

6General properties of the theory of functions of several complex variables have been briefly discussed
in appendix B.1.

7For example, [88] recovered the JLD domain, [89] proved the crossing symmetry of the 2→ 2 scatter-
ing amplitudes.
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can be shown to be analytic on the full primitive domain extending the LES domain.

In chapter 3, we show that the use of complex Lorentz transformations and Bochner’s

tube theorem allow us to extend the LES domain holomorphically to a larger subset of

the primitive domain. For the 2-, 3- and 4-point functions, the full primitive domain is

recovered. For the 5-point function, we are not able to obtain the full primitive domain

analytically, only a large part of it is recovered. While this problem arises also for higher-

point functions, it is expected to be only a technical issue.

We discuss the future directions of the two aforementioned problems in chapter 4. In

appendices A and B we provide supplementary materials for the chapters 2 and 3 respec-

tively.





2 Crossing, Modular Averages and

N ↔ k in WZW Models

Correlators of S U(N)k Wess-Zumino-Witten models have been well studied starting from

the seminal work of [37], where four-point functions involving two Kac-Moody primaries

in the fundamental and two in the anti-fundamental representation of S U(N) were com-

puted.

Recently, a novel proposal to compute correlators has been put forward in [32], by the

method of “modular averaging” (we will review this in detail in section 2.1). In this chap-

ter, we will analyse four-point WZW correlators involving two Kac-Moody primaries in

the fundamental and two in the anti-fundamental representation of S U(N) (same as those

studied in [37]) using modular averaging. We carry out the averaging by two methods

— averaging over the stabiliser subgroup of the correlator and over the entire modular

group, mostly focussing on the first one (we review these prescriptions in section 2.1).

For averaging performed using the stabilser group, we find that the correlators can be

constructed from modular averaging of the contribution of the vacuum block in all the

cases we examine. Primary examples of models where the sums can be done exactly are

models with N = k (the orbits for these models are finite). For models where we have

not been able to show that the orbit is finite, we consider examples with specific values

of N and k, and perform the averaging numerically. On the other hand, construction of

correlators from averaging over whole of the modular group is more involved. Here, we

15
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find some examples where modular averaging does not reproduce the correlator.

An interesting feature of WZW models is level-rank duality [99]. Dual primary fields

under N ↔ k are related by transposition of the Young tableaux of their representations.

The correlators considered in this chapter are the simplest related to each other by this

duality. From the point of view of modular averaging, both N and k simply appear as

parameters in the matrices associated with the action of the modular group on the con-

formal blocks. Thus modular averaging puts N and k on a more equal footing; one can

hope that writing correlators as modular averages can reveal various aspects of level-rank

duality. This expectation is borne out. We establish a one to one correspondence between

elements of the orbits of the vacuum conformal blocks of dual theories. The contribu-

tions of paired terms to their respective correlators are simply related. This allows us to

obtain the ratio between the OPE coefficients associated with dual correlators analytically

without performing the sums involved in the modular averagings. The pairing of terms

also indicates that holographic computations can make some properties of the level-rank

duality manifest.

This chapter is organised as follows. In section 2.1, we briefly review some basic ingredi-

ents that will be necessary for our analysis. In section 2.2 (and appendix A.1) we obtain

the transformation properties of the conformal blocks of the correlators under the action

of the modular group. In section 2.3 (and appendices A.3, A.4) we compute correlators

by modular averaging. In section 2.4, we examine level-rank duality.

2.1 Review

We start by recalling some basic facts about four-point functions in two dimensional con-

formal field theories. We then go on to describe the proposal of [32] to construct crossing

symmetric correlation functions from modular averaging.

The four-point correlator of operators O1, O2, O3 and O4 in 2D CFTs on the Riemann
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sphere can be written as the product of a factor that determines its transformation prop-

erties under global conformal transformations and a function of a conformally invariant

cross-ratio. It will be our convention to take

〈O1(z1, z̄1)O2(z2, z̄2)O3(z3, z̄3)O4(z4, z̄4)〉 = G0
(
za, z̄a

)
G1234(x, x̄) (2.1)

with

G0
(
za, z̄a

)
=

∏
a<b

(
zµab

ab · z̄
µ̄ab
ab

)
, (2.2)

where zab = za − zb (a, b = 1. .4), µab = ( 1
3

∑4
c=1 hc) − ha − hb (hi being the dimensions of

the operators Oi) and the cross-ratio

x =
z12z34

z14z32
. (2.3)

Conformal transformations can be used to set z2 to 0 and z3 to 1 and set z4 to infinity,

the coordinate z1 then corresponds to the cross-ratio. Thus the cross-ratio space is the

Riemann sphere with three punctures.

Correlators in two dimensional CFTs can be constructed from holomorphic and antiholo-

morophic conformal blocks. Although correlators need to be single valued functions of

the cross-ratio space1, there is no such requirement on the conformal blocks. Conformal

blocks have monodromies in the cross-ratio space. Thus it is natural to consider confor-

mal blocks as functions in the universal covering space of the cross-ratio space. This is

H+ = {u + iv | v > 0 and u, v ∈ R}, the upper half plane2. The elliptic lambda function

λ(τ) =

(
θ2(τ)
θ3(τ)

)4

, (2.4)

where τ = u + iv provides a surjective map (x = λ(τ)) from H+ to the cross-ratio space

1We will be dealing with bosonic operators.
2The observation that conformal blocks should be single-valued on the upper half plane was made

in [101], where an elliptic recursion representation was obtained for them.
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[100]. PS L(2,Z) action on the upper half plane has a close connection to the map. Under

the action of the generators of the modular group

T : τ→ τ + 1 and S : τ→ −
1
τ
, (2.5)

images in the cross-ratio space have rather simple transformations

T · x =
x

x − 1
and S · x = 1 − x. (2.6)

Furthermore, the function λ(τ) is invariant under the normal subgroup Γ(2) of PS L(2,Z):

λ(γτ) = λ(τ), ∀γ ∈ Γ(2). (2.7)

Thus, the condition that correlators have to be single valued in the cross-ratio space trans-

lates to invariance under Γ(2) in H+.

At this stage, it is natural to seek for the interpretation of the action of the entire PS L(2,Z)

on the correlators in the CFT. For this, one has to look at crossing symmetry. For a general

ordering of the operators, we define

〈Op(zp, z̄p)Oq(zq, z̄q)Or(zr, z̄r)Os(zs, z̄s)〉 = G0
(
za, z̄a

)
Gpqrs(xpqrs, x̄pqrs), (2.8)

with G0 as defined in (2.2) and

xpqrs =
zpqzrs

zpszrq
. (2.9)

Note that with this we have x = x1234, where x is the cross-ratio introduced in (2.3). Our

choice of G0 is invariant under permutations of the operators {Oa(za)} inside the correlator

thus crossing symmetry reduces to the statement that Gabcd(xabcd) is invariant under action

of the same permutation on {a, b, c, d} in both the subscripts. Permutations that leave the
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cross ratio x invariant yield:

G1234(x, x̄) = G2143(x, x̄) = G3412(x, x̄) = G4321(x, x̄). (2.10)

On the other hand, permutations which act non-trivially on the cross-ratio3 give

G1234(x, x̄) = G1243(
x

x − 1
,

x̄
x̄ − 1

) = G3241(
1

1 − x
,

1
1 − x̄

) = G3214(
1
x
,

1
x̄

)

= G4231(1 − x, 1 − x̄) = G4213(
x − 1

x
,

x̄ − 1
x̄

).
(2.11)

The arguments of the functions in (2.11) can be related by the actions of S and T as given

in (2.6). The actions are isomorphic to the anharmonic group, S 3. This is precisely equal

to PS L(2,Z)/Γ(2). Thus crossing symmetry and single valuedness4 together specify the

full PS L(2,Z) action on the correlators. Combining (2.6),(2.10) and (2.11) they can be

written in a very compact form [32]:

~G(γτ, γτ̄) = σ(γ) · ~G(τ, τ̄), γ ∈ PS L(2,Z) (2.12)

where

~G = (G1234(τ, τ̄),G2134(τ, τ̄),G4132(τ, τ̄),G1432(τ, τ̄),G2431(τ, τ̄),G4231(τ, τ̄))t (2.13)

and σ(γ) are the six dimensional matrices associated with the linear representation of

3These relations differ from the ones in [32] since our choice for the cross-ratio x is different.
4Recall that correlators need to be invariant under Γ(2) so that they are single valued.
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PS L(2,Z)/Γ(2) = S 3 with

σ(S ) =



0 0 0 0 0 1

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

1 0 0 0 0 0



and σ(T ) =



0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0



. (2.14)

We note that there is further simplification when all or some of the operators Oa are

identical. For instance, in the case that all the four operators are identical ~G has only one

independent component. Equation (2.12) requires it to be a modular invariant scalar.

Modular averaging can be used to obtain solutions of equations of the form of (2.12). The

general structure of four-point functions in a CFT gives fiducial functions over which the

averaging can be performed. Conformal invariance implies that the stripped correlators

in (2.8) can be written as a sum over contributions associated with conformal primaries

(φk):

Gpqrs(y, ȳ) =
∑

k

COpOqφkCOrOsφk × yhφk−
H

3 ȳh̄φk−
H̄

3 Fφk
pqrs(y, ȳ), (2.15)

where COpOqφk , COrOsφk are three point structure constants, H = (hp + hq + hr + hs) and

H̄ = (h̄p + h̄q + h̄r + h̄s). The functions Fφk
pqrs(y, ȳ) are analytic at y, ȳ = 0 and Fφk

pqrs(0, 0) =

1. It will be our convention to call {yhφk−
H

3 ȳh̄φk−
H̄

3 Fφk
pqrs(y, ȳ)} as the conformal block cor-

responding to primary φk. These can be further factorized into holomorphic and anti-

holomorchic conformal blocks for each φk. Given the form of (2.15), in the limit of y→ 0

the stripped correlator is well approximated by including contributions from the low lying

primaries that appear in the sum i.e.

Gpqrs(y, ȳ) ≈ Glight
pqrs(y, ȳ) =

∑
k≤kmax

COpOqφkCOrOsφk × yhφk−
H

3 ȳh̄φk−
H̄

3 Fφk
pqrs(y, ȳ) for y→ 0.

(2.16)
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where the sum now runs over primaries which have weights less than or equal to (hkmax , h̄kmax).

The simplest approximation is to keep only the primary with the lowest weight. Refer-

ence [32] proposed that modular averaging of ~Glight can be used to construct candidate

CFT correlators which satisfy the requirements single-valuedness and crossing.

~Gcandidate(τ, τ̄) = N−1 ·
∑

γ∈PS L(2,Z)

σ−1(γ) · ~Glight(γτ, γτ̄), (2.17)

whereN is a normalisation which can be determined from the τ→ i∞ (y→ 0) behaviour

of ~G(τ, τ̄). In general, the sum in (2.17) is difficult to perform and might even need regu-

larisation. The complications associated with dealing with a sum involving vector valued

modular objects can be ameliorated for correlators with identical operators. As described

earlier, in the presence of identical operators, various components of ~G (as defined in

(2.13)) become related - the vector space effectively collapses to a lower dimensional

one. As a result, the subgroup of PS L(2,Z) that leaves any particular component of the

vector inert under action of σ(γ) is enhanced5. If the subgroup associated with the com-

ponent Ga in the collapsed vector space is Γa, a natural candidate Ga can be constructed

by defining

Gcandidate
a (τ, τ̄) = N−1 ·

∑
γ∈Γa

Glight
a (γτ, γτ̄). (2.18)

The above program to obtain CFT correlators was implemented for minimal models in

[32]. It was found that for a large number of them, the candidate correlators did match

with the exact ones by taking only the contribution of the Virasoro vacuum block while

constructing Glight
a - the lightest block served the purpose.

5In the case that all the operators are distinct, this subgroup is Γ(2) for all the components.
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2.2 S U(N)k WZW Model: Conformal Blocks, Actions

of S and T

As mentioned in the introduction, our focus will be on WZW correlators involving two

Kac-Moody primaries in the fundamental and two in the anti-fundamental representa-

tion. In this section, we will obtain the transformation properties of the conformal blocks

associated with the correlators under the action of crossing.

We begin by recalling some basic facts about the correlators (our discussion follows that

of [7, 8, 37, 38]) and in the process set up our notation. The S U(N) WZW model at level

k on the two sphere is described by the action:

S WZW
k [g] =

k
16π

∫
d2z Tr(∂µg−1∂µg) −

ik
24π

∫
B

d3~X εαβγTr(g−1∂αgg−1∂βgg−1∂γg),

k = 1, 2, ..
(2.19)

where g(z, z̄) is a matrix valued bosonic field which takes values in the group S U(N). The

second term is an integral over the three ball B, whose boundary is the two sphere. The

pre-factors of the two terms in the action are chosen so that theory is conformal at the

quantum level. The action enjoys an S U(N)(z) × S U(N)(z̄) invariance. The associated

currents are

j(z) ≡ −k(∂zg)g−1, j̄(z̄) ≡ kg−1(∂z̄g) (2.20)

which can be expanded in terms of the generators of S U(N) as

j(z) =
∑

a
ja(z)ta, j̄(z̄) =

∑
a

j̄a(z̄)ta. (2.21)

The Laurent series expansion coefficients of the currents together with the Virasoro gen-

erators generate two copies of the Kac-Moody algebra at level k.

Kac-Moody primaries serve as the highest weight states in the theory. For the (N, k) theory
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the spectrum of Kac-Moody primaries consists operators transforming in all representa-

tions of S U(N) which have integrable Young tableaux i.e. those in which the number of

columns is at most k. The conformal dimension of a Kac-Moody primary transforming in

a representation R is

hR =
C(R)

2(k + N)
, (2.22)

where C(R) is the quadratic Casimir of the representation.

We will follow the notation of [37] and denote a fundamental Kac-Moody primary by

g β
α (z, z̄), where α is a fundamental index of the S U(N) left and β is a fundamental index of

the S U(N) right. On the other hand, an anti-fundamental will be denoted by g−1σ
ρ , where

where ρ is an anti-fundamental index of the S U(N) right and σ is an anti-fundamental

index of the S U(N) left. The conformal dimension of these fields can be easily obtained

from (2.22)

hg = hg−1 =
N2 − 1

2N(k + N)
. (2.23)

For correlators involving two fundamentals and two anti-fundamentals, primaries that run

in the intermediate channels will be as per the fusion rules

g × g−1 = 1 + θ, g × g = ξ + χ, g−1 × g−1 = ξ + χ, (2.24)

where 1 is the identity field, θ the adjoint, ξ the antisymmetric and χ the symmetric. The

associated dimensions are

h1 = 0, hθ =
N

N + k
, hξ =

(N − 2)(N + 1)
N(N + k)

and hχ =
(N + 2)(N − 1)

N(N + k)
. (2.25)

Our main interest will be the correlator

〈gg−1g−1g〉 ≡ 〈gα1
β1(z1, z̄1) · g−1

β2

α2(z2, z̄2) · g−1
β3

α3(z3, z̄3) · gα4
β4(z4, z̄4)〉 (2.26)

Recall that as per our conventions α1, α4 are S U(N) left fundamental indices, α2, α3 are
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S U(N) left anti-fundamental indices, β1, β4 are S U(N) right fundamental indices, β2, β3

are S U(N) right anti-fundamental indices. We will be eventually interested in making

choices for the indices such that the correlator contains two pairs of identical operators

so that we can carry out modular averaging as per the prescription in (2.18). For this we

need the conformal blocks associated with the correlator and their transformations under

the modular group.

The correlator has been studied in detail in [37]. We briefly describe their analysis adopt-

ing the discussion to our conventions. First, we define the stripped correlator Gβ1α2α3β4
α1β2β3α4

(x, x̄)

as in (2.1)

〈gg−1g−1g〉 =
(∏

a<b

zµab
ab z̄µ̄ab

ab

)
Gβ1α2α3β4
α1β2β3α4

(x, x̄), (2.27)

where x is the cross-ratio defined in (2.3). Invariance of the correlator under S U(N) left

and right implies

Gβ1α2α3β4
α1β2β3α4

(x, x̄) =
∑

A,B=1,2

(IA)(ĪB)GAB(x, x̄), (2.28)

where

I1 = δα2
α1
δα3
α4
, Ī1 = δ

β1
β2
δ
β4
β3
, I2 = δα3

α1
δα2
α4

and Ī2 = δ
β1
β3
δ
β4
β2
. (2.29)

One then imposes the Knizhnik-Zamolodchikov (KZ) equations on the correlator. The KZ

equations are a consequence of the Kac-Moody symmetries. For a correlator involving

Kac-Moody primaries φi, transforming in the representations Ri they are

[
∂zi −

1
k + N

∑
j,i

∑
a ta

Ri
⊗ ta

R j

zi − z j

]
〈φ1(z1, z̄1) · · · φn(zn, z̄n)〉 = 0, ∀ i, (2.30)

where ta
Ri

are S U(N) generators in the representation Ri. Similar set of equations hold

in the anti-holomorphic coordinates. Imposing them on the correlator (2.26) yields the

following equations for the matrix GAB defined in (2.28).

∂G
∂x

=

[1
x

P +
1

x − 1
Q
]
G and

∂G
∂x̄

= G
[1

x̄
Pt +

1
x̄ − 1

Qt
]
, (2.31)
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where the matrices P and Q are given by

P = −
1

N(k + N)


2(N2−1)

3 N

0 −N2+2
3

 and Q = −
1

N(k + N)

−
N2+2

3 0

N 2(N2−1)
3

 . (2.32)

The general solution to these equations takes the form

GAB(x, x̄) = Xi jF i
A(x)F j

B(x̄), (2.33)

where the indices i, j run over the primaries in the intermediate channel. These are the

identity (1) and the adjoint (θ) fields. F i
A(x) are the conformal blocks

F1
1 (x) = x−

4hg
3 (1 − x)hθ−

4hg
3 F

(
1
k̃
,−

1
k̃

; 1 −
N
k̃

; x
)
,

F1
2 (x) =

1
k

x1−
4hg

3 (1 − x)hθ−
4hg

3 F
(
1 +

1
k̃
, 1 −

1
k̃

; 2 −
N
k̃

; x
)
,

Fθ
1(x) = xhθ−

4hg
3 (1 − x)hθ−

4hg
3 F

(
N
k̃
−

1
k̃
,

N
k̃

+
1
k̃

; 1 +
N
k̃

; x
)
,

Fθ
2(x) = −Nxhθ−

4hg
3 (1 − x)hθ−

4hg
3 F

(
N
k̃
−

1
k̃
,

N
k̃

+
1
k̃

;
N
k̃

; x
)
, (2.34)

where k̃ = k + N and F(a, b, c; x) is the Gauss hypergeometric function6. We define the

holomorphic and the anti-holomorphic blocks:

F 1(x) = I1F1
1 (x) + I2F1

2 (x) (2.35)

F̄ 1(x̄) = Ī1F1
1 (x̄) + Ī2F1

2 (x̄) (2.36)

F θ(x) = I1Fθ
1(x) + I2Fθ

2(x) (2.37)

F̄ θ(x̄) = Ī1Fθ
1(x̄) + Ī2Fθ

2(x̄). (2.38)

With this, the correlator factorises into holomorphic and anti-holomorphic parts:

Gβ1α2α3β4
α1β2β3α4

(x, x̄) = Xi jF
i(x)F̄ j(x̄). (2.39)

6Our conventions for the definition of the Gauss hypergeometric function will be same as that of [102].



26 Crossing, Modular Averages and N ↔ k in WZW Models

As discussed in section 2.1, general correlators transform as a six dimensional modular

vector under the action of the modular group. Just as in the correlator described above,

there are two holomorphic and two anti-holomorphic blocks associated with each corre-

lator. This implies that the vector valued modular form requires 24 coefficients for its

specification. This number is large even if one wants to carry out modular averaging as

per (2.17) numerically. Luckily, one can simplify the computation by exploiting the fact

that (2.39) implies that the Xi j are independent of the S U(N) left and right tensor indices.

We will make choices for these so that the correlator has two pairs of identical operators

i.e. we will take α1 = α4, β1 = β4, α2 = α3, β2 = β3. With this we have

I1 = I2 ≡ I and Ī1 = Ī2 ≡ Ī. (2.40)

As a result, the six dimensional vector space collapses to a three dimensional one (after

use of equation (2.10)):

~G =
(
Gβ1α2α2β1
α1β2β2α1

(τ, τ̄),Gβ1α2α1β2
α1β2β1α2

(τ, τ̄),Gβ1α1α2β2
α1β1β2α2

(τ, τ̄)
)
, (2.41)

its transformations under the modular group as given by (2.12) reduces to

~G(T · τ,T · τ̄) = σ(T ) · ~G(τ, τ̄),

~G(S · τ, S · τ̄) = σ(S ) · ~G(τ, τ̄),
(2.42)

where

σ(T ) =


0 1 0

1 0 0

0 0 1

 , σ(S ) =


1 0 0

0 0 1

0 1 0

 . (2.43)

We list the conformal blocks associated with the three correlators in (2.41) and their trans-

formation properties under the modular group in appendix A.1.

We will primarily perform the modular averaging as per the algorithm in (2.18) (although



2.2 S U(N)k WZW Model: Conformal Blocks, Actions of S and T 27

also briefly consider averaging as per the prescription in (2.17) in appendix A.4). For the

representation of PS L(2,Z) generated by the matrices in (2.43), it is easy to see that the

vector (1, 0, 0) is left invariant by the subgroup generated by the actions of S and T 2. This

is called the theta group [103]. This subgroup is an index 3 subgroup of PS L(2,Z) which

contains Γ(2) as an index 2 normal subgroup. In order to carry out the modular averaging

as per (2.18), we require the actions of the elements of this subgroup on the conformal

blocks associated with the stripped correlator Gβ1α2α2β1
α1β2β2α1

(τ, τ̄). These blocks are

H1(x) = IF1
1 (x) + IF1

2 (x)

H θ(x) = IFθ
1(x) + IFθ

2(x), (2.44)

with I and Ī as defined in (2.40).

The transformation properties of these blocks under S and T 2 can be obtained from ap-

pendix A.1. The action of T 2 is given by

H i
(
T 2.x

)
= H j (x) M ji(T 2), (2.45)

where

M(T 2) = e−i4π(N2−1)/3Nk̃

1 0

0 ei2πN/k̃

 . (2.46)

The action of S is given by

H i (S .x) = H j (x) M ji(S ), (2.47)

where

M(S ) =

 −
k̃Γ(N/k̃)Γ(k/k̃)
Γ(1/k̃)Γ(−1/k̃) −

NΓ2(N/k̃)
Γ(N/k̃−1/k̃)Γ(N/k̃+1/k̃)

−
Γ2(k/k̃)

NΓ(k/k̃−1/k̃)Γ(k/k̃+1/k̃)
k̃Γ(N/k̃)Γ(k/k̃)
Γ(1/k̃)Γ(−1/k̃)

 . (2.48)

Successive actions of M(T 2) and M(S ) can be used to obtain the action of any element

γ of the theta subgroup of the modular group on H i(x), we shall denote the associated
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matrix by M(γ). With the definitions in (2.44), the most general form of solutions to the

KZ equations with two identical operators can be written as

Gβ1α2α2β1
α1β2β2α1

(x, x̄) = Xi jH
i(x)H̄ j(x̄). (2.49)

Under the action of an element γ of the theta subgroup, the matrix X transforms as

X → M(γ)XM†(γ). (2.50)

We note that under composition

M(γ2.γ1) = M(γ1).M(γ2). (2.51)

2.3 Correlators from Modular Averaging

Having obtained the transformation properties of the conformal blocks we now turn to

constructing correlators from modular averaging. In this section, we will carry out the

modular averaging as per the prescription in (2.18). As described in the previous section,

we will focus on the correlator (2.26) after making choices for S U(N) left and right in-

dices so that two pairs of operators are identical. Glight will be taken to be the contribution

of the vacuum conformal block, as in [32] we will refer to this as the seed contribution.

The transformation (2.50) of the matrix X implies that one can write the result of modular

averaging as

Xav = N−1 ·
∑
γ∈ Γ

M(γ) ·Cseed · M(γ)†, (2.52)

where we have used Γ to denote the theta subgroup and

Cseed =

1 0

0 0

 . (2.53)
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The normalization constant N is determined by demanding [X]11 = 1, so that the x → 0

behaviour of the correlator is correct. For comparison we record the (exact)result of [37]:

XKZ =

1 0

0 Γ(N/k̃−1/k̃)Γ(N/k̃+1/k̃)Γ2(1−N/k̃)
N2Γ(1−N/k̃+1/k̃)Γ(1−N/k̃−1/k̃)Γ2(N/k̃)

 . (2.54)

Before carrying out the sum in explicit examples, let us discuss some generalities. Any

element of Γ can be expressed as

γ = T 2n1S T 2n2S · · · S T 2nk , (2.55)

for some choice of integers ni (see e.g. [7]). Since we are dealing with a normalised sum,

the sum can be reduced to be over the orbit of Cseed. Given this, our interest shall be in

γ whose action will generate distinct elements. In this context, note that for all (N, k)

the action of M(T 2) on Cseed is trivial. Also, in the representations under consideration

(which are given in (2.46)), T 2 has finite order. Thus, all distinct M(γ) can be generated

by considering non-negative values of ni upto the order of T 2. Furthermore, for M(γ)

of the form eiα1, its action (2.50) on any X is trivial. We define m(N, k) as the smallest

positive integer such that

M(T 2m(N,k)) ∝ 1. (2.56)

With this, given the trivial actions described above, a list of γs whose actions contain the

orbit of Cseed can be constructed by considering 1 and all elements of the form

γ = S T 2r1S · · · S T 2r` , (2.57)

with ` taking values over natural numbers, ri = 1 · · · (m − 1) for i = 1 · · · (` − 1) and

r` = 0 · · · (m − 1). We define the length of an element in the list to be the value of `

associated with it (and denote it as `(γ)). 1 is defined to be the element of zero length.
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The composition rule (2.51) implies

M(γ) = M(T 2r`)M(S ) · · ·M(S )M(T 2r1)M(S ). (2.58)

If the stabilser of Cseed under the action Cseed → M(γ) ·Cseed ·M(γ)† has finite index, then

the sum reduces to a finite number of terms. Otherwise, one has to deal with an infinite

sum. We begin by discussing some models in which the stabiliser is of finite index.

Models with N = k are particularly simple. For N = k, the actions of S and T as given by

(2.48) and (2.46) can be written as

M(S ) =

 sin π
2k −k cos π

2k

−1
k cos π

2k − sin π
2k

 , M(T 2) = e−
2πi
3 . (N2−1)

N2

1 0

0 −1

 . (2.59)

Note that M(T 4) ∝ 1, thus the highest power of T that needs to be included while gener-

ating the matrices M(γ) in the list in (2.57) is T 2. Let us start by discussing a particular

example.

N = 3, k = 3 : For N = 3, k = 3, the matrices M(S ) and M(T 2) are

M(S ) =


1
2 −3

√
3

2

− 1
2
√

3
−1

2

 , M(T 2) = e−
16πi
27

 1 0

0 −1

 (2.60)

The orbit of Cseed consists of three matrices. It is generated by the action of 1, S and S T 2.

We tabulate the results of these actions in Table 2.1. The normalised sum over the orbit

(2.52) reproduces the KZ result.
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γ M(γ) ·Cseed · M(γ)†

1

1 0

0 0


S


1
4 − 1

4
√

3

− 1
4
√

3
1
12


S T 2


1
4

1
4
√

3

1
4
√

3
1
12


Xav

1 0

0 1
9


Table 2.1: Orbit of the vacuum block for N = 3, k = 3

For general values N (= k), one can show that the orbit of Cseed is finite by taking repeated

products of the matrices M(S ) and M(T 2). The orbit is the set

{  sin2 α −1
k sinα cosα

−1
k sinα cosα 1

k2 cos2 α


}

(2.61)

where α =
π(2s+1)

2k with s = 0 · · · (k − 1) for k odd, and α = πs
2k with s = 0 · · · (2k − 1) for k

even (we derive this in appendix A.2).

The sums over the orbits can be performed using the identities

k−1∑
s=0

sin2 π(2s + 1)
2k

=
k
2

=

k−1∑
s=0

cos2 π(2s + 1)
2k

,

k−1∑
s=0

sin
π(2s + 1)

k
= 0

for k odd and
2k−1∑
s=0

sin2 πs
2k

= k =

2k−1∑
s=0

cos2 πs
2k
,

2k−1∑
s=0

sin
πs
k

= 0
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for k even. Normalising the sum, one finds

Xav =

1 0

0 1/k2

 , (2.62)

which is in agreement with (2.54).

We now turn to models with N , k models with finite orbits. For k = 1 and any finite N

the actions of S and T 2 as given by (2.48) and (2.46) take the identity block to a multiple

of itself. Thus the adjoint block decouples and upon modular averaging the correlator is

given by |F 1
1 (τ)|2, in keeping with [37]. Next, we discuss two models: N = 4, k = 2 and

N = 2, k = 4. These examples will reappear in our discussion of the properties of modular

averaging under interchange of N and k in section 2.4.

N = 4, k = 2: For N = 4, k = 2 we note that M(T 6) ∝ 1. The orbit of Cseed consists of

four matrices. It is generated by the action of 1, S , S T 2 and S T 4. The normalised sum

over the orbit (2.52) reproduces the KZ result which is 1
16 3√2

.

N = 2, k = 4: For N = 2, k = 4 we note that M(T 6) ∝ 1. The orbit of Cseed consists of

four matrices. It is generated by the action of 1, S , S T 2 and S T 4. The normalised sum

over the orbit (2.52) reproduces the KZ result which is 1
2 3√4

.

Finally, we present some models whose orbits do not seem to be finite. We will analyse

the models numerically. As described in our general discussion in the beginning of the

section, a list of γs whose actions contain the orbit of Cseed can be obtained by considering

elements of the form (2.57). To implement the numerics, we will organise the sum over

the actions of the elements of the list in terms of the length of the elements. We define7

Xav(`max) = N(`max)−1 ·

′∑
`(γ)≤`max

M(γ) ·Cseed · M(γ)†, (2.63)

where the primed sum indicates that we include distinct elements of the orbit of Cseed in

7Our implementation of the numerics is similar to [32].
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the sum. The normalisation constantN(`max) is determined by requiring Xav
11(`max) = 1, so

that the x→ 0 behaviour of the correlator is correctly reproduced at every value of `max.

N = 2, k = 3: For N = 2, k = 3, we have performed sum in (2.63) upto `max = 9. This

involves 429226 distinct contributions to the sum. We find Xav
22(9) = 0.29863, which is in

good agreement with the exact result (2.54), XKZ
22 ≈ 0.29831. The off diagonal entries of

Xav(9) are of the order of 10−13. Figure 2.1 shows our results for Xav
22(`max) as a function

of `max. Note that Xav
22(`max) approaches the exact result in an oscillatory manner. Prior

to normalisation of the sum, both the (1, 1)-element as well as the (2, 2)-element of the

matrix have approximately linear growths (all terms in the sum make positive definite

contributions to these elements). However, as exhibited by the plot, the ratio of the two

quantities (which is Xav
22(`max)) tends to a constant. Off-diagonal entries are small as a

result of phase cancellations.

1 2 3 4 5 6 7 8 9
ℓmax

0.27

0.28

0.29

0.30

0.31

0.32

X22
av(ℓmax )

Figure 2.1: Orange dots show Xav
22(`max) in the range [0.268, 0.320] plotted against `max.

Blue horizontal line at 0.29831 represents XKZ
22 .

N = 3, k = 2: For N = 3, k = 2, we have performed sum in (2.63) upto `max = 9. This

involves 429226 distinct contributions to the sum. We find Xav
22(9) = 0.0932166, which

is in good agreement with the exact result (2.54), XKZ
22 ≈ 0.0931172. The off diagonal

entries of Xav(9) are of the order of 10−14. Figure 2.2 shows our results for Xav
22(`max) as a

function of `max. As in the previous example, Xav
22(`max) approaches the exact result in an
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oscillatory manner. Other features of the numerics are also similar 8.

1 2 3 4 5 6 7 8 9
ℓmax

0.085

0.090

0.095

0.100

X22
av(ℓmax )

Figure 2.2: Orange dots show Xav
22(`max) in the range [0.084, 0.100] plotted against `max.

Blue horizontal line at 0.0931172 represents XKZ
22 .

N = 4, k = 3: For N = 4, k = 3, we have performed sum in (2.63) upto `max = 8. This

involves 2338785 distinct contributions to the sum. We find Xav
22(8) = 0.0592407, which

is in good agreement with the exact result (2.54), XKZ
22 ≈ 0.0591147. The off diagonal

entries of Xav(8) are of the order of 10−14. Figure 2.3 shows our results for Xav
22(`max) as a

function of `max.

1 2 3 4 5 6 7 8
ℓmax

0.045

0.050

0.055

0.060

0.065

X22
av(ℓmax )

Figure 2.3: Orange dots show Xav
22(`max) in the range [0.0425, 0.0650] plotted against `max.

Blue horizontal line at 0.0591147 represents XKZ
22 .

N = 3, k = 4: For N = 3, k = 4, we have performed sum in (2.63) upto `max = 8. This

involves 2338785 distinct contributions to the sum. We find Xav
22(8) = 0.117725, which is

in good agreement with the exact result (2.54), XKZ
22 ≈ 0.117474. The off diagonal entries

8This is also true for all models that we study numerically.
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of Xav(8) are of the order of 10−14. Figure 2.4 shows our results for Xav
22(`max) as a function

of `max.

1 2 3 4 5 6 7 8
ℓmax

0.09

0.10

0.11

0.12

0.13

X22
av(ℓmax )

Figure 2.4: Orange dots show Xav
22(`max) in the range [0.084, 0.130] plotted against `max.

Blue horizontal line at 0.117474 represents XKZ
22 .

It is interesting to ask whether it is possible to develop an understanding of the nature of

the orbit associated with the (N, k) model and at what value of ` it terminates (if at all).

We have developed a systematic algorithm for this purpose, we discuss this in appendix

A.6.

As the values of N and k are increased the numerics can become quite involved. Getting

accurate results might require large values of `max. Models with (N, k) equals to (5, 6) and

(6, 5) provide examples of this. We discuss them in appendix A.3.

Large N: It is interesting to consider the large N limit of the system, this can be interesting

from the point of view of holography. For finite k, the matrices M(S ) and M(T 2) have

following 1
N expansions upto order 1

N2 .

M(S ) =


1
k +

π2(k2−1)
6kN2 −N + π2

6N −
k

3N2

(
π2k + 3kψ(2)(1)

)
(−1 + 1

k2 ) 1
N −1

k −
π2(k2−1)

6kN2

 , (2.64)
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M(T 2) =



e
2πi
3 −

4πk
3N

e
πi
6 −

4π
9N2

{
(2(−1)2/3π−

3(−1)1/6)k2 + 3(−1)1/6} 0

0
e

2πi
3 +

2πk
3N

e
πi
6 −

2π
9N2

{
((−1)2/3π+

3(−1)1/6)k2 + 6(−1)1/6}


,

(2.65)

where ψ(m)(z) = dm+1

dzm+1 lnΓ(z) is the Polygamma function. We have performed modular

averaging using above matrices and obtained the associated correlators (it is not possible

to carry out the sums analytically, we have performed them making specific choices of N

and k with (N � k) using the numerical recipe described in the first part of this section).

The agreement with the results of KZ is good even for low values of `.

The results the for k = 2, 3 at `max = 1, 2 are summarised in figures 2.5, 2.6.

100 150 200 250 300 350 400
N

0.00002

0.00004

0.00006

0.00008

X22
av

Figure 2.5: Plot for k = 2. Red dots show Xav
22(1) while blue dots show Xav

22(2) in the range
[0, 0.0000965] plotted against N. Green dots represent XKZ

22 against N.

100 150 200 250 300 350 400
N

0.00005

0.00010

0.00015

X22
av

Figure 2.6: Plot for k = 3. Red dots show Xav
22(1) while blue dots show Xav

22(2) in the range
[0, 0.0001750] plotted against N. Green dots represent XKZ

22 against N.
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The results indicate that one can obtain correlators by taking the large N limit of the

matrices M(S ) and M(T 2) (even working at low `). This hints that low ` terms should be

the most relevant in the context of semi-classical holography.

Finally, we have also considered the prescription for constructing correlators by averaging

over the whole PS L(2,Z) (2.17). This involves averaging over a vector and hence is

more complicated. We briefly present our results on this in appendix A.4 and leave more

detailed explorations for the future.

In summary, in all the cases that we have examined, modular averaging over the theta

subgroup successfully reproduces the result of [37]. The correlators can be considered

as extremal in the sense of [32]. For extremal correlators, modular averaging sums can

be thought of as providing an alternate prescription for their computation. Next, we will

examine the properties of these sums involved under interchange of N and k.

2.4 N ↔ k in Modular Averages

As described in the introduction, an interesting property of WZW models is level-rank

duality. In this section, we will show that there is a simple one to one correspondence

between individual terms in the modular averaging sums for correlators in the (N, k) and

(k,N) theories.

We will be simultaneously dealing with the (N, k) and (k,N) theories in this section, let

us begin by introducing notation adapted for the purpose. We will include labels in the

matrices (2.46) and (2.48) which generate the actions of S and T 2, to indicate the theory

they belong to.

MN,k(T 2) = e−i4π(N2−1)/3Nk̃

1 0

0 ei2πN/k̃

 ≡ eiα(N,k)

1 0

0 eiφ(N,k)

 (2.66)
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and

MN,k(S ) =

 −
k̃Γ(N/k̃)Γ(k/k̃)
Γ(1/k̃)Γ(−1/k̃) −

NΓ2(N/k̃)
Γ(N/k̃−1/k̃)Γ(N/k̃+1/k̃)

−
Γ2(k/k̃)

NΓ(k/k̃−1/k̃)Γ(k/k̃+1/k̃)
k̃Γ(N/k̃)Γ(k/k̃)
Γ(1/k̃)Γ(−1/k̃)

 ≡
as(N, k) bs(N, k)

cs(N, k) ds(N, k)

 . (2.67)

We note that ds(N, k) = −as(N, k) and bs(N, k).cs(N, k) = 1 + as(N, k).ds(N, k). Also,

as(N, k) and the product bs(N, k).cs(N, k) are symmetric under the interchange of N and k,

i.e.

as(N, k) = as(k,N), ds(N, k) = ds(k,N), bs(N, k).cs(N, k) = bs(k,N).cs(k,N).

(2.68)

Recall that the matrices given in (2.58) provide a list whose actions contain the orbit of

Cseed. We will denote the matrices in the list by

M`
N,k(r1, r2 · · · , r`) ≡ M`

N,k(ri) ≡ MN,k(T 2r`)MN,k(S ) · · ·MN,k(S )MN,k(T 2r1)MN,k(S ).

(2.69)

Note that with this M`
N,k(ri) is a function of r1, r2 · · · rl; with ri = 1 · · · (m(N, k) − 1) for

i = 1 · · · (` − 1) and r` = 0 · · · (m(N, k) − 1) with m(N, k) as defined in (2.56). We define

M0
N,k to be the identity matrix. We now introduce another set of matrices

M̃`
N,k(p1, p2 · · · , p`) ≡ M̃`

N,k(pi) ≡ MN,k(T−2p`)MN,k(S ) · · ·MN,k(S )MN,k(T−2p1)MN,k(S ).

(2.70)

M̃`
N,k(pi) is a function of p1, p2 · · · pl; with pi = 1 · · · (m(N, k) − 1) for i = 1 · · · (` − 1) and

p` = 0 · · · (m(N, k) − 1). We will define M̃0
N,k to be the identity matrix.

At any given length `, the set of matrices generated from the action of M`
N,k(ri) on Cseed is

exactly same as the set generated from the action of M̃`
N,k(pi) on Cseed i.e.

{
M`

N,k(ri)CseedM†`
N,k(ri); ri = 1 · · · (m(N, k) − 1) for i = 1 · · · (` − 1), r` = 0 · · · (m(N, k) − 1)

}
=

{
M̃`

N,k(pi)CseedM̃†`
N,k(pi); pi = 1 · · · (m(N, k) − 1) for i = 1 · · · (` − 1), p` = 0 · · · (m(N, k) − 1))

}
.
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(2.71)

This is a consequence of the fact that for any X following equality (between sets) holds

{
MN,k(T 2r)XM†

N,k(T
2r); r = 0 · · · (m(N, k) − 1)

}
=

{
MN,k(T−2p)XM†

N,k(T
−2p); p = 0 · · · (m(N, k) − 1)

}
(2.72)

Given the equivalence in (2.71), while carrying out modular averaging, either set can

be used to generate the sum over the orbit of Cseed. While establishing the relationship

between the modular averages in the (N, k) and (k,N) theories, it will be useful to generate

the orbit for the (N, k) theory using the M`
N,k matrices and for the (k,N) theory using M̃`

k,N

matrices. The essential point will be to establish that the actions of the two matrices9

M`
N,k(r1, r2 · · · r`) and M̃`

k,N(r1, r2 · · · r`) (2.73)

on Cseed are closely related. Let us begin by looking at the general from of the matrices

M`
N,k(r1, r2 · · · r`) and M̃`

N,k(r1, r2 · · · r`) . As shown in appendix A.5, they can be written as

M`
N,k(r1, · · · r`) = exp

(
iα(N, k)(

∑
ri)

)  a`N,k(r1, · · · r`) bs(N, k)b`N,k(r1, · · · r`)

cs(N, k)c`N,k(r1, · · · r`) d`N,k(r1, · · · r`)


(2.74)

M̃`
N,k(r1, · · · r`) = exp

(
−iα(N, k)(

∑
ri)

)  ã`N,k(r1, · · · r`) bs(N, k)b̃`N,k(r1, · · · r`)

cs(N, k)c̃`N,k(r1, · · · r`) d̃`N,k(r1, · · · r`),


(2.75)

with the functions appearing above obeying the relationships

ã`k,N(r1, · · · r`) = a`N,k(r1, · · · r`), b̃`k,N(r1, · · · r`) = b`N,k(r1, · · · r`),

c̃`k,N(r1, · · · r`) = c`N,k(r1, · · · r`), d̃`k,N(r1, · · · r`) = d`N,k(r1, · · · r`). (2.76)

9Note since gcd(k + N,N) = gcd(k,N) = gcd(k + N, k), m(N, k) = m(k,N). This implies that the
arguments of M`

N,k and M̃`
k,N take the same values.
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Now, let us discuss the implications of these relations for modular averages. As mentioned

before, we will generate the orbit of the (N, k) theory using the matrices M`
N,k and the

(k,N) theory using the M̃`
k,N matrices. Firstly, note that (2.74) and (2.75) imply that any

duplications in the action of M`
N,k on Cseed implies a duplication in the action of M̃`

k,N on

Cseed and vice versa10 i.e.

M`
N,k(ri)CseedM†`

N,k(ri) = M`
N,k(si)CseedM†`

N,k(si)⇐⇒ M̃`
k,N(ri)CseedM̃†`

k,N(ri) = M̃`
k,N(si)CseedM̃†`

k,N(si)

(2.77)

Furthermore, we have

M`
N,k(ri)CseedM†`

N,k(ri)
∣∣∣
11

= M̃`
k,N(ri)CseedM̃†`

k,N(ri)
∣∣∣
11

(2.78)

and

c2
s(k,N)M`

N,k(ri)CseedM†`
N,k(ri)

∣∣∣
22

= c2
s(N, k)M̃`

k,N(ri)CseedM̃†`
k,N(ri)

∣∣∣
22
. (2.79)

With this11, it is natural to pair the matrix

M`
N,k(ri)CseedM†`

N,k(ri)

in the orbit of Cseed of the (N, k) theory with the matrix

M̃`
k,N(ri)CseedM̃†`

k,N(ri)

in the orbit of Cseed of the (k,N) theory. This establishes our one to one correspondence

between the terms that appear in the modular averaging sums of the two theories. Note

that (2.78) implies that the normalisations of both the sums are equal. With this, (2.79)

10This together with (2.71) explains why the number of duplicates for theories related under N ↔ k were
same in our numerical analysis in section 2.3.

11It is easy to check that these relationships hold for the (4,2) and (2,4) models (which have finite orbits).
For other models we have checked them numerically.
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implies that the all paired terms in the sums contribute to the sums with the ratio

c2
s(N, k)

c2
s(k,N)

. (2.80)

Of course, since the ratio is same for all the pairs, from the point of view of modular

averaging one can trivially write the relation (even without performing the sums)

Xav(N, k)
∣∣∣
22

Xav(k,N)
∣∣∣
22

=
c2

s(N, k)
c2

s(k,N)
=

k2Γ4
(
k/k̃

)
Γ2

(
N/k̃ − 1/k̃

)
Γ2

(
N/k̃ + 1/k̃

)
N2Γ2

(
k/k̃ − 1/k̃

)
Γ2

(
k/k̃ + 1/k̃

)
Γ4

(
N/k̃

) . (2.81)

One can check by making use of gamma function identities that this is indeed consistent

with the KZ result (2.54). Thus, the one to one correspondence between the terms in

the two sums has given us relations between OPE coefficients in the theories (as OPE

coefficients can be obtained by taking the small cross-ratio limit of the expressions of the

correlators in terms of conformal blocks).

It is natural to ask if the one to one correspondence between the terms in the modular av-

eraging sums in the two theories has any physical interpretation. In this context, we note

that it was argued in [32] that for “heavy operators" the modular averaging for genus zero

correlators can be interpreted as a semiclassical AdS 3 dual computation. More specifi-

cally, if the operator dimensions are of the order of the central charge (c) of the theory but

less than c/12 then the bulk path integral has saddles corresponding to geodesic propaga-

tion of heavy particles between the operator insertion points in the boundary [106–115].

Performing the sum over the saddles incorporating the back reaction of the heavy particle

geodesics on the geometry and exchange of light primaries, yields the sum over modular

channels. But, the operators considered in this chapter cannot be made heavy in the semi-

classical limit, since hg/c ∼ 1/Nk. One possibility is that the situation is similar to [74]

where the topological sectors for the saddle point sum was as given in the semi classical

limit even in the quantum regime. In any case, a computation similar to ours for operators

satisfying the heavy operator criterion should help reveal how level-rank duality works
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from a holographic point of view.

2.5 Conclusions

In this chapter, we have analysed correlators involving two fundamentals and two anti-

fundamentals in S U(N)k WZW theories using modular averaging. After determining the

transformations of the conformal blocks under S and T transformations, correlators were

expressed as sum of the action of the elements of the theta subgroup of PS L(2,Z) on the

vacuum block. We found that for all models with N = k the orbit of the vacuum block

is finite and modular averaging reproduces the correlators correctly. In models where

we were unable to characterise the orbit we performed the sums numerically; modular

averaging successfully reproduced the correlators, providing strong evidence that the cor-

relators examined in this chapter are extremal in the sense of [32]. We also considered

construction of correlators from averaging over the entire modular group. This is more

involved. Here we have found examples where the averaging does not reproduce the cor-

relator (see appendix A.4). Interestingly, [32] argues that it is the modular averaging over

the theta subgroup that has a direct interpretation in the holographic context.

We have found a close relationship between modular averaging for correlators involving

fundamentals and anti-fundamentals in the (N, k) and (k,N) theories. In section 2.4, we

established a one to one correspondence between the orbits of the vacuum conformal

blocks of the two theories. The contributions of the paired terms to their respective sums

were given by a ratio of elements of braids matrices in the theories. This allowed us to

obtain a simple relationship between OPE coefficients.



3 Analyticity of Off-shell Green’s

Functions in Superstring Field Theory

The study of analytic properties of amplitudes has led to the understanding of various

aspects of QFTs. There is much less literature on the analytic properties of amplitudes

in string theory. The focus of this chapter will be to obtain the primitive domain (defined

in section 3.1.1) of analyticity of the off-shell amputated Green’s functions in closed su-

perstring field theory (SFT). The analyticity on the primitive domain is useful to derive

analytic properties of superstring amplitudes, similar to the case of a local QFT.

Off-shell momentum space amputated n-point Green’s function1 in SFT is defined by

usual momentum space Feynman rules [18, 20]2. It can be computed by summing over

connected Feynman diagrams with n amputated external legs carrying ingoing D-momenta

p1, . . . , pn. SFT contains massless states. We consider the off-shell n-point Green’s func-

tion G(p1, . . . , pn) in SFT after explicitly removing contributions coming from one or

more massless internal propagators (for more details, see [23]). That is, the relevant part

of the perturbative expansion of the off-shell n-point Green’s function keeps only those

Feynman diagrams that do not contain any internal line corresponding to a massless par-

ticle. We call this part of the off-shell Green’s function as the infrared safe part3. In [23]

1Hereafter Green’s functions will always refer to momentum space amputated Green’s functions.
2The general form of its action has been given in (1.2).
3Hereafter off-shell Green’s functions in SFT will refer to this part of respective off-shell Green’s func-

tions in SFT, if not explicitly stated. This part of the off-shell Green’s functions — when all the external
particles are massless — precisely gives the vertices of the Wilsonian effective field theory of massless
fields, obtained by integrating out the massive fields in superstring theory [18, 117].

43
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de Lacroix, Erbin and Sen (LES) showed that the infrared safe part of the off-shell n-point

Green’s function G(p1, . . . , pn) in SFT as a function of (n−1)D complex variables (taking

into account the momentum conservation
∑n

a=1 pa = 0 for external momenta) is analytic

on a domain which we call as the LES domain (reviewed in section 3.1.2). At the heart of

this result, it has been proven that each of the relevant Feynman diagrams F(p1, . . . , pn)

has an integral representation in terms of loop integrals as presented below, whenever the

external momenta lie on the LES domain.

F(p1, . . . , pn) =

∫
L∏

r=1

dDkr

(2π)D

f (k1, . . . , kL; p1, . . . , pn)∏I
s=1

((
`s({kr}; {pa})

)2
+ m2

s

) . (3.1)

The above analytic function F multiplied by a factor of (2π)Dδ(D)(p1 + · · · + pn) gives the

usual Feynman diagram. Equation (3.1) represents an n-legged L-loop graph with I in-

ternal lines, where kr is a loop momentum, `s is the momentum of the internal line with

mass ms (, 0)4, and f is a regular function whenever its arguments take finite complex

values. The function f contains the product of the vertex factors associated with the ver-

tices of the graph, as well as possible momentum dependence from the numerators of the

internal propagators. The momentum `s of an internal line is usually a linear combination

of the loop momenta and the external momenta. Due to certain non-local properties of

the vertices in SFT, the graph is manifestly UV finite as long as for each r, k0
r integration

contour ends at ±i∞, and ki
r, i = 1, . . . , (D − 1) integration contours end at ±∞. The

prescription for the loop integration contours has been given as follows [20]. At origin,

i.e. pa = 0 ∀a = 1, . . . , n each loop energy integral is to be taken along the imaginary axis

from −i∞ to i∞ and each spatial component of loop momenta is to be taken along the real

axis from −∞ to∞. With this, F(0,. . . ,0) has been shown to be finite as all the poles of the

integrand in any complex kµr plane are at a finite distance away from the loop integration

contour. As we vary the external momenta from the origin to other complex values if

some of such poles approach the kµr contour, the contour has to be bent away from those

4In our notation, `2
s = −(`0

s )2 +
∑D−1

i=1 (`i
s)

2 for each s = 1, . . . ,I.
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poles keeping its ends fixed at ±i∞ for loop energies and ±∞ for loop momenta. It has

been shown that there exists a path inside the LES domain connecting the origin to any

other point p ≡ (p1, . . . , pn) of the LES domain such that when we vary external momenta

from origin to that point p along that path, the loop integration contours in any graph can

be deformed away avoiding poles of the integrand which approach them [23]. Hence the

integral representation (3.1) for F(p1, . . . , pn) when the external momenta lie on the LES

domain is well defined where the poles of the integrand are at a finite distance away from

the (deformed)loop integration contours.

In this chapter, we aim to generalize the result of [23] by showing that the infrared safe

part of the off-shell n-point Green’s function in SFT is analytic on a larger domain than

the LES domain. As will be reviewed in section 3.1.2, the analyticity property of the off-

shell Green’s functions in SFT is invariant under the action of a D-dimensional complex

Lorentz transformation on all the external momenta. Thus the off-shell Green’s functions

in SFT are also analytic at points that are obtained by the action of such transformations

on points in the LES domain [23]. We consider LES domain adjoining these new points.

The primitive domain essentially contains the union of a certain family of convex tube

domains. We call such tubes as the primitive tubes. Within each such primitive tube, we

identify a connected tube which is also contained in the LES domain and its shape allows

us to carry out a holomorphic extension to its convex hull inside the corresponding prim-

itive tube, due to a classic theorem by Bochner [116]. The domain thus found may still

be smaller. We explicitly work out the cases of the three-, four- and five-point functions

to determine whether such convex hulls fully obtain respective primitive tubes, or not.

The extension to the primitive domain is trivial for the two-point function. In the case

of three-point function, indeed such extensions yield all the 6 possible primitive tubes.

Also for the four-point function, by such extensions all the 32 possible primitive tubes

are obtained. Whereas for the five-point function, out of 370 possible primitive tubes,

for 350 of them we are able to show that such extensions obtain each of them fully. The

technique that we employ for aforesaid checks seems difficult to implement analytically
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for the remaining 20 primitive tubes whose shapes are complicated. This technical dif-

ficulty is a feature of the higher point functions as well. However in any case, our work

establishes that based on a geometric consideration only, the LES domain is holomor-

phically extended inside all the primitive tubes. This extension does not depend on the

details of the Green’s functions. Thus with respect to all the analyticity properties of the

S-matrix which can be obtained from this extended domain5, superstring theory behaves

like a standard local QFT that has massless states.

We organize the chapter as follows. In section 3.1, we briefly review certain properties of

the primitive domain and the LES domain which are useful for our purpose. In section

3.2, we start with the general scheme to extend the LES domain holomorphically. We

apply this scheme to the case of the three-point function in section 3.2.1. In section 3.2.2

(and appendix B.6) we deal with the case of the four-point function, and in section 3.2.3

the case of five-point function. We discuss certain real limits within each of the primitive

tubes in section 3.3. As our analysis uses properties of the theory of functions of several

complex variables, we discuss them in appendix B.1.

3.1 Review

In this section we review certain properties of the two domains, namely the primitive

domain and the LES domain which will be useful for our analysis. Both the domains are

domains in the complex manifold C(n−1)D given by p1 + · · ·+ pn = 0. The origin of C(n−1)D

which is given by pa = 0 ∀a = 1, . . . , n will be denoted by O. We count pa as positive if

ingoing, negative otherwise. We shall use Minkowski metric with mostly plus signature.

5Note that for the 2-, 3- and 4-point functions, the extended domain is equal to the primitive domain.
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3.1.1 The primitive domain

The primitive domainD is given by

D =

{
p ≡ (p1, . . . , pn) :

∑n

a=1
pa = 0 and for each I ∈ ℘

∗

(X)

either, Im PI , 0, (Im PI)2 ≤ 0 or, Im PI = 0, −P2
I < M2

I

}
,

(3.2)

where X = {1, . . . , n} is the set of first n natural numbers. ℘
∗

(X) = {I ( X, except ∅} is

the collection of all non-empty proper subsets of X. PI is defined to be equal to
∑

a∈I pa.

MI is the threshold of production of any (multi-particle) state in a channel containing the

external states in the set {pa, a ∈ I}, i.e. MI is the invariant threshold mass for producing

any set of intermediate states in the collision of particles carrying total momentum PI .

Clearly, O ∈ D. Primitive domain is star-shaped with respect to O, i.e. the straight line

segment connecting O and any point p ∈ D which is given by
{
tp : t ∈ [0, 1]

}
lie entirely

inside D. Hence the primitive domain is path-connected as any two points p(1), p(2) ∈ D

can be connected via the straight line segments p(1)O and Op(2). Furthermore primitive

domain is simply connected, i.e. any closed curve within D can be continuously shrunk

to the point O, which is a property of a star-shaped domain.

Primitive domain essentially contains the union of a family of mutually disjoint tube6

domains denoted by {Tλ, λ ∈ Λ(n)} [85, 87, 118, 119]. Any member Tλ of this family will

be called a primitive tube. To describe this family of tubes the following definitions are

needed. We consider the space Rn−1 of n real variables s1, . . . , sn linked by the relation

s1 + · · · + sn = 0. We define S I =
∑

a∈I sa for each I ∈ ℘
∗

(X). The family of planes

{S I = 0, I ∈ ℘
∗

(X)} (where the planes S I = 0 and S X\I = 0 are identical) divides the

above space Rn−1 into open convex cones7 with common apex at the origin. Any such

6A subset of Cm is called a tube if it is equal to Rm + iA for some subset A of Rm where m is a given
natural number. A is called the base of the tube.

7A subset A of Rm is called a cone if any point p ∈ A =⇒ αp ∈ A ∀α > 0.
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cone will be called a cell, γλ. Within a cell each S I is of definite sign λ(I). Thus a cell can

be written as

γ
λ

=

{
s ∈ Rn−1 : λ(I)S I > 0 ∀I ∈ ℘

∗

(X)
}
, (3.3)

where λ : ℘
∗

(X)→ {−1, 1} is a sign-valued map with the following properties.

(i) ∀I ∈ ℘
∗

(X) λ(I) = −λ(X \ I),

(ii) ∀I, J ∈ ℘
∗

(X) with I ∩ J = ∅ and λ(I) = λ(J) λ(I ∪ J) = λ(I) = λ(J) .

(3.4)

The first property is compatible with s1+· · ·+sn = 0 and the second property is compatible

with S I∪J = S I + S J whenever I ∩ J = ∅. Λ(n) denotes the collection of all possible maps

λ satisfying above properties. Corresponding to each cell γλ, now we associate an open

convex tube domain Tλ (primitive tube) given by8

Tλ =

{
p ≡ (p1, . . . , pn) :

∑n

a=1
pa = 0, λ(I)Im PI ∈ V+ ∀I ∈ ℘

∗

(X)
}

= R(n−1)D + iCλ ,

Cλ =

{
Im p ∈ R(n−1)D : λ(I)Im PI ∈ V+ ∀I ∈ ℘

∗

(X)
}
,

(3.5)

where V+ is the open forward lightcone in RD. Cλ is the conical base of the tube Tλ.

Although the primitive domain is non-convex the primitive tubes Tλ are convex (see ap-

pendix B.2). Hence each tube Tλ is path-connected as the entire straight line segment

p(1) p(2) connecting any two points p(1), p(2) ∈ Tλ is contained in the tube Tλ.

8With i =
√
−1.
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3.1.2 The LES domain

The LES domain is given by

D′ =

{
p ≡ (p1, . . . , pn) : ∀a Im pµa = 0, µ , 0, 1;

∑n

a=1
pa = 0 and for each I ∈ ℘

∗

(X)

either, Im PI , 0, (Im PI)2 ≤ 0 or, Im PI = 0, −P2
I < M2

I

}
,

(3.6)

where all the Im pa thereby Im PI are allowed to lie only on the two dimensional Lorentzian

plane9 p0 − p1. Clearly O ∈ D′ and the LES domain D′ is contained in the primitive do-

mainD.

In [23] it has been argued that the domain of holomorphy of the n-point Green’s function

G(p1, . . . , pn) in SFT is a connected region in C(n−1)D containing the origin, and it is in-

variant under the action of Lorentz transformations Λ̃ with complex parameters, i.e. Λ̃ is

any complex matrix satisfying Λ̃TηΛ̃ = η for η being the Minkowski metric in RD. We

call the set of such matrices the complex Lorentz group, L. In general, the action of a

complex Lorentz transformation Λ̃ is defined on the complex manifold C(n−1)D taking a

point to another point of the same manifold given by

(p1, . . . , pn) 7−→ (Λ̃p1, . . . , Λ̃pn) , (3.7)

which we abbreviate as p 7→ Λ̃p. Note that the same Λ̃ acts on all pa.

As as consequence, the result of [23] automatically generalizes to a larger domain than

the LES domainD′, i.e. G(p) is analytic on the domain D̃′ given by

D̃′ =

{
Λ̃p : p ∈ D′, Λ̃ ∈ L

}
. (3.8)

Clearly D̃′ ⊃ D′, since L contains the identity matrix. Hereafter we refer D̃′ as the LES

9By a two dimensional Lorentzian plane we refer to any two dimensional plane in RD which contains
the p0-axis.
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domain.

3.2 Extension of the LES domain D̃′

We identify a family of tubes lying inside the primitive tube Tλ which is a convex tube

domain (described by equation (3.5) in section 3.1.1) such that any member of the family

is also contained in the LES domain D̃′ (described in section 3.1.2). Any member of this

family is convex and it can be characterized by a set of D − 2 angles ~θ which specifies

a two dimensional Lorentzian plane p0 − p~θ10 with ~θ = 0 specifying the p0 − p1 plane.

Hence we denote a member by T ~θ
λ . The convex tube T ~θ

λ is given by

T
~θ
λ =

{
p ≡ (p1, . . . , pn) : ∀a Im pa ∈ p0 − p~θ plane;

∑n

a=1
pa = 0,

and λ(I)Im PI ∈ V+ ∀I ∈ ℘
∗

(X)
}

= R(n−1)D + iC~θλ ,

C
~θ
λ =

{
(Im p1, . . . , Im pn) on manifold

∑n

a=1
Im pa = 0 such that

∀a Im pa ∈ p0 − p~θ plane and λ(I)Im PI ∈ V+ ∀I ∈ ℘
∗

(X)
}
,

(3.9)

where the base C~θλ is a subset of R(n−1)D. Any such tube T ~θ
λ can be obtained by acting a

real rotation on the tube T ~θ=0
λ .

Clearly
⋃

~θ T
~θ
λ lies inside the primitive tubeTλ as well as it is contained in the LES domain

D̃′. Now
⋃

~θ T
~θ
λ is a tube given by R(n−1)D + i(

⋃
~θ C

~θ
λ). Although each tube T ~θ

λ is convex

10Here the axis p~θ lies in the subspace RD−1 of points (p1, . . . , pD−1). It can be specified by a point on
the unit sphere S D−2 in RD−1. With a set of D − 2 angles (θ1, . . . , θD−2) ≡ ~θ where 0 ≤ θ1, . . . , θD−3 ≤ π and
0 ≤ θD−2 < 2π, the axis p~θ can be explicitly written as

p~θ = (cos θ1, sin θ1 cos θ2, sin θ1 sin θ2 cos θ3, . . . , sin θ1 · · · sin θD−3 cos θD−2) .
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(see appendix B.2) the tube
⋃

~θ T
~θ
λ is non-convex11 (see appendix B.3). However the tube⋃

~θ T
~θ
λ is path-connected (see appendix B.4).

We apply Bochner’s tube theorem [116, 120]12 on the connected tube (
⋃

~θ T
~θ
λ )13. The

theorem states that any open connected tube Rm + iA has a holomorphic extension14 to the

domain Rm + iCh(A) where Ch(A) is the smallest convex set containing the set A, called

the convex hull of A.

By the above application, since
⋃

~θ C
~θ
λ is non-convex we always have a holomorphic ex-

tension of
⋃

~θ T
~θ
λ to a domain given by R(n−1)D + iCh(

⋃
~θ C

~θ
λ). Furthermore Cλ contains

Ch(
⋃

~θ C
~θ
λ) since Cλ is a convex cone containing

⋃
~θ C

~θ
λ. In subsequent subsections, we

deal with the explicit cases of the three-, four- and five-point functions, where up to the

four-point function we obtain that for each Cλ such extension yields the full of Cλ, i.e.

Ch(
⋃

~θ C
~θ
λ) = Cλ, and for five-point function we obtain subcases in which we are able to

prove this equality.

For the two-point function (i.e. n = 2), Tλ =
⋃

~θ T
~θ
λ . That is, whenever p ∈ Tλ, Im p1

(= −Im p2) lies on some two dimensional Lorentzian plane.

Remarks

The properties of the tube
⋃

~θ T
~θ
λ as a domain in several complex variables have been used

here to extend it holomorphically. From the work of [23], we know that all the relevant

Feynman diagrams (those which do not have any internal line of a massless particle) in

the perturbative expansion of the n-point Green’s function are analytic in the common

tube
⋃

~θ T
~θ
λ . Hence our extension of

⋃
~θ T

~θ
λ is valid to all orders in perturbation theory.

11⋃
~θ T

~θ
λ is non-convex when n > 2.

12In [120] it has been stated as the ‘convex tube theorem’ at the end of its third section. This version of
the theorem is suitable for our purpose.

13This tube can be thickened in order to make it open (see appendix B.5).
14By a holomorphic extension Ω′ of a domain Ω in Cm we mean any larger domain Ω′ containing Ω, with

the property that all the functions which are holomorphic on Ω are also holomorphic on Ω′.
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A proper application of Bochner’s tube theorem requires us to thicken the connected tube⋃
~θ T

~θ
λ in order to make it open. But the thickened tubes (as in appendix B.5) are not iden-

tical for all the Feynman diagrams. However the intersection of all these thickened tubes

corresponding to distinct diagrams certainly contains
⋃

~θ T
~θ
λ . We consider any relevant

Feynman diagram. The corresponding thickened tube can be holomorphically extended

to its convex hull due to Bochner’s tube theorem. This extended domain contains the

tube Ch(
⋃

~θ T
~θ
λ ) = R(n−1)D + iCh(

⋃
~θ C

~θ
λ). Clearly, Ch(

⋃
~θ T

~θ
λ ) lies in the intersection of all

such extensions corresponding to distinct diagrams since Ch(
⋃

~θ T
~θ
λ ) only includes con-

vex combinations of points from
⋃

~θ T
~θ
λ . Hence Ch(

⋃
~θ T

~θ
λ ) is the domain where all the

relevant Feynman diagrams (at all orders in perturbation theory) are analytic.

3.2.1 Three-point function

For three-point function, we have n = 3 and the sign-valued maps λ(I) (described by

equation (3.4)) can be given explicitly as follows. In this case, the primitive domain D

essentially contains the union of 6 mutually disjoint tubes denoted by {T (3)±
a , a = 1, 2, 3}

and these primitive tubes are given by15

T (3)±
a =

{
p ∈ C2D : Im p ∈ C(3)±

a

}
, (3.10)

where p = (p1, p2, p3) is linked by p1 + p2 + p3 = 0. Their conical bases are defined by

C(3)+
a = −C(3)−

a =

{
Im p : Im pb, Im pc ∈ V+

}
, (3.11)

where (abc) = permutation of (123). In order to define each of the above conesC(3)+
a (C(3)−

a ),

we require a certain pair of imaginary external momenta which (or their negative) are

specified to be in the open forward lightcone V+. For a given conical base, this in turn

15Primitive tubes are generally defined in (3.5). Here, an additional superscript (3) in the notations for the
tubes stands for the 3-point function.
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fixes all other Im PI to be in specific lightcone16.

The cones (3.11) reside on the manifold Im p1 + Im p2 + Im p3 = 0. In order to assign

coordinates to the points in C(3)+
a , let us choose {Im pb, Im pc} as our set of basis vectors.

On the other hand, for C(3)−
a , let us choose {−Im pb,−Im pc} as our basis. With this, any

of the above cones is contained in a R2D and is of the following common form

C(3) =

{
~Q = (Pα, Pβ) : Pα, Pβ ∈ V+

}
, (3.12)

where any ~Q ∈ C(3) can be written as a D × 2 matrix given by

~Q =



P0
α P0

β

P1
α P1

β

...
...

PD−1
α PD−1

β


, (3.13)

with conditions P0
r > +

√∑D−1
i=1 (Pi

r)2 ∀r = α, β ensuring that both the columns belong to

the forward lightcone V+. Hence given a ~Q, the quantities P0
r −

√∑
i(Pi

r)2, r = α, β are

a pair of positive numbers. Furthermore, the two columns of ~Q in general do not lie on a

same two dimensional Lorentzian plane.

Now we consider cones C(3)~θ containing points ~̃Q where both the columns not only belong

to V+ but also lie on a same two dimensional Lorentzian plane p0 − p~θ characterized by a

~θ. We shall show that taking points from these cones for various ~θ, a convex combination

of them represents given ~Q in (3.13). This will complete the proof of Ch(
⋃

~θ C
(3)~θ) = C(3),

since we already have C(3) ⊃ Ch(
⋃

~θ C
(3)~θ) as discussed right above the remarks in section

3.2.

16For n = 3, the total number of possible PI = 23 − 2 = 6.
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We consider two points ~̃Q1 ∈ C
(3)~θ1 and ~̃Q2 ∈ C

(3)~θ2 given by

~̃Q1 = 2



P0
α − ε ε

P1
α 0
...

...

PD−1
α 0


, ~̃Q2 = 2



ε P0
β − ε

0 P1
β

...
...

0 PD−1
β


, (3.14)

where we take any ε satisfying 0 < ε < min
{
P0

r −

√∑D−1
i=1 (Pi

r)2, r = α, β
}

so that for each

r = α, β we have P0
r − ε > +

√∑D−1
i=1 (Pi

r)2. Both the columns of ~̃Q1 lie on a same two

dimensional Lorentzian plane p0 − p~θ1 where also the first column Pα of ~Q in (3.13) lies.

Similarly, both the columns of ~̃Q2 lie on the two dimensional Lorentzian plane where Pβ

lies. Now it is easy to check that the following relation holds

~̃Q1

2
+
~̃Q2

2
= ~Q . (3.15)

Equation (3.15) establishes that each of the 6 primitive tubes given in (3.10) can be ob-

tained as holomorphic extension of a tube where the latter is contained in the LES domain

D̃′.

3.2.2 Four-point function

For four-point function, we have n = 4 and the maps λ(I) (described by equation (3.4)) can

be given explicitly as follows. In this case, the primitive domain D essentially contains

the union of 32 mutually disjoint tubes denoted by {T (4)±
a , T (4)±

ab , 1 ≤ a, b ≤ 4, a , b}17

and these primitive tubes are given by [85, 87]

T (4)±
a =

{
p ∈ C3D : Im p ∈ C(4)±

a

}
, T

(4)±
ab =

{
p ∈ C3D : Im p ∈ C(4)±

ab

}
, (3.16)

17Here a superscript (4) in the notations for the tubes stands for the 4-point function.
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where p = (p1, . . . , p4) is linked by p1 + · · · + p4 = 0. Their conical bases are defined by

C(4)+
a = −C(4)−

a =

{
Im p : Im pb, Im pc, Im pd ∈ V+

}
,

C
(4)+
ab = −C

(4)−
ab =

{
Im p : −Im pb, Im (pb + pc), Im (pb + pd) ∈ V+

}
,

(3.17)

where (abcd) = permutation of (1234). Note that in order to describe each of the above

cones we require a certain set of three Im PI each of which (or its negative) is specified to

be in the open forward lightcone V+. For a given conical base, this in turn fixes all other

Im PI to be in specific lightcone18 (see appendix B.6).

The cones (3.17) reside on the manifold Im p1 + · · · + Im p4 = 0. Due to this link we can

choose any three linear combinations of Im p1, . . . , Im p4 which are linearly independent

as our set of basis vectors, to describe a given cone. In particular as our basis, we choose

{Im pb, Im pc, Im pd} for the cones C(4)+
a , whereas we choose {−Im pb,−Im pc,−Im pd}

for the cones C(4)−
a . Besides, as our basis, we choose {−Im pb, Im (pb + pc), Im (pb + pd)}

for the cones C(4)+
ab

19, whereas we choose {Im pb,−Im (pb + pc),−Im (pb + pd)} for the

cones C(4)−
ab . With this, any of the above cones is contained in a R3D and is of the following

common form

C(4) =

{
~Q = (Pα, Pβ, Pγ) : Pα, Pβ, Pγ ∈ V+

}
, (3.18)

where any ~Q ∈ C(4) can be written as a D × 3 matrix given by

~Q =



P0
α P0

β P0
γ

P1
α P1

β P1
γ

...
...

...

PD−1
α PD−1

β PD−1
γ


, (3.19)

with conditions P0
r > +

√∑D−1
i=1 (Pi

r)2 ∀r = α, β, γ ensuring that each of the columns

18For n = 4, the total number of possible PI = 24 − 2 = 14.
19Instead, one can choose {Im pb, Im pc, Im pd} as the basis to describe points in any of the cones C(4)+

ab .
This change of basis is a linear invertible transformation and the work of this section 3.2.2 can be recast in
this new basis (e.g., see appendix B.6).
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belong to the forward lightcone V+. Hence given a ~Q the quantities P0
r −

√∑
i(Pi

r)2, r =

α, β, γ are three positive numbers. Furthermore the columns of ~Q in general do not lie on

a same two dimensional Lorentzian plane.

Now we consider cones C(4)~θ containing points ~̃Q where all the three columns not only

belong to V+ but also lie on the same two dimensional Lorentzian plane p0 − p~θ char-

acterized by a ~θ. We shall show that taking points from these cones for various ~θ, a

convex combination of them represents given ~Q in (3.19). This will complete the proof

of Ch(
⋃

~θ C
(4)~θ) = C(4), since we already have C(4) ⊃ Ch(

⋃
~θ C

(4)~θ) as discussed right above

the remarks in section 3.2.

We consider three points ~̃Q1 ∈ C
(4)~θ1 , ~̃Q2 ∈ C

(4)~θ2 and ~̃Q3 ∈ C
(4)~θ3 given by

~̃Q1 = 3



P0
α − ε ε/2 ε/2

P1
α 0 0
...

...
...

PD−1
α 0 0


, ~̃Q2 = 3



ε/2 P0
β − ε ε/2

0 P1
β 0

...
...

...

0 PD−1
β 0


,

~̃Q3 = 3



ε/2 ε/2 P0
γ − ε

0 0 P1
γ

...
...

...

0 0 PD−1
γ


,

(3.20)

where we take any ε satisfying 0 < ε < min
{
P0

r −

√∑D−1
i=1 (Pi

r)2, r = α, β, γ
}

so that for

each r = α, β, γ we have P0
r − ε > +

√∑D−1
i=1 (Pi

r)2. All the three columns of ~̃Q1 lie on a

same two dimensional Lorentzian plane p0 − p~θ1 where also the first column Pα of ~Q in

(3.19) lies. Similarly, all the columns of ~̃Q2 lie on the two dimensional Lorentzian plane

where Pβ lies, and all the columns of ~̃Q3 lie on the two dimensional Lorentzian plane
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where Pγ lies. Now it is easy to check that the following relation holds

~̃Q1

3
+
~̃Q2

3
+
~̃Q3

3
= ~Q . (3.21)

Equation (3.21) establishes that each of the 32 primitive tubes given in (3.16) can be

obtained as holomorphic extension of a tube where the latter is contained in the LES

domain D̃′.

3.2.3 Five-point function

For five-point function, we have n = 5 and in this case the primitive domainD essentially

contains the union of 370 mutually disjoint tubes whose conical bases are given by [85]20

C(5)+
a = −C(5)−

a =

{
Im p : Im pb, Im pc, Im pd, Im pe ∈ V+

}
,

C
(5)+
ab = −C

(5)−
ab =

{
Im p : −Im pb, Im (pb + pc), Im (pb + pd), Im (pb + pe) ∈ V+

}
,

C
′(5)+
ab = −C

′(5)−
ab =

{
Im p : Im (pa + pc), Im (pa + pd), Im (pa + pe),

Im (pb + pc), Im (pb + pd), Im (pb + pe) ∈ V+

}
,

C
(5)+
ab,c = −C

(5)−
ab,c =

{
Im p : Im pc, −Im (pb + pc), Im (pb + pd), Im (pb + pe) ∈ V+

}
,

C
′(5)+
ab,c = −C

′(5)−
ab,c =

{
Im p : −Im (pb + pc), Im (pa + pc), Im (pb + pd), Im (pb + pe) ∈ V+

}
,

C
(5)+
a,bc = −C

(5)−
a,bc =

{
Im p : Im pd, Im pe, Im (pa + pb), Im (pa + pc) ∈ V+

}
,

(3.22)

where (abcde) = permutation of (12345) and Im p = (Im p1, . . . , Im p5) is linked by the

relation Im p1 + · · · + Im p5 = 0. Due to this link we can choose any four linear com-

binations of Im p1, . . . , Im p5 which are linearly independent as our set of basis vectors,

to describe a cone which is given from the above list (3.22). Hence any of these cones is

contained in a R4D with a choice for a basis.

20Here a superscript (5) in the notations for the cones stands for the 5-point function. And following [85]
we use a prime only to distinguish between two classes of cones having same indices (ab) or (ab, c).
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We note that in order to describe each of the cones in (3.22) except the cones C′(5)+
ab , C′(5)−

ab ,

we require a certain set of four Im PI each of which (or its negative) is specified to be in the

open forward lightcone V+. This in turn fixes all other Im PI to be in specific lightcone21.

Now we confine ourselves to these cones which are 350 in numbers22. To describe any

of these cones we choose the corresponding certain set of four Im PI as our basis (in a

similar manner to the cases of the three-point and four-point functions, as demonstrated

in detail in the sections 3.2.1, and 3.2.2 respectively). With this, any of these cones is of

the following common form

C(5) =

{
~Q = (Pα, Pβ, Pγ, Pδ) : Pα, Pβ, Pγ, Pδ ∈ V+

}
, (3.23)

where any ~Q ∈ C(5) can be written as a D × 4 matrix given by

~Q =



P0
α P0

β P0
γ P0

δ

P1
α P1

β P1
γ P1

δ

...
...

...
...

PD−1
α PD−1

β PD−1
γ PD−1

δ


, (3.24)

with conditions P0
r > +

√∑D−1
i=1 (Pi

r)2 ∀r = α, β, γ, δ. Given a ~Q as in (3.24) it can now

be represented as the following convex combination.

~̃Q1

4
+
~̃Q2

4
+
~̃Q3

4
+
~̃Q4

4
= ~Q , (3.25)

21For n = 5, the total number of possible PI = 25 − 2 = 30.
22Each of C′(5)+

ab and C′(5)−
ab is symmetric under the interchange of a, b which is evident from (3.22). Hence

they are 20 in total.
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where ~̃Qr, r = 1, . . . , 4 are given by

~̃Q1 = 4



P0
α − ε ε/3 ε/3 ε/3

P1
α 0 0 0
...

...
...

...

PD−1
α 0 0 0


, ~̃Q2 = 4



ε/3 P0
β − ε ε/3 ε/3

0 P1
β 0 0

...
...

...
...

0 PD−1
β 0 0


,

~̃Q3 = 4



ε/3 ε/3 P0
γ − ε ε/3

0 0 P1
γ 0

...
...

...
...

0 0 PD−1
γ 0


, ~̃Q4 = 4



ε/3 ε/3 ε/3 P0
δ − ε

0 0 0 P1
δ

...
...

...
...

0 0 0 PD−1
δ


,

(3.26)

where we take any ε satisfying the condition: 0 < ε < min
{
P0

r −

√∑D−1
i=1 (Pi

r)2, r =

α, β, γ, δ
}
.

Equation (3.25) establishes that each of the primitive tubes described by (3.22) except the

ones whose conical bases are C′(5)+
ab , C′(5)−

ab can be obtained as holomorphic extension of a

tube where the latter is contained in the LES domain D̃′.

The above technique has limitations. Following difficulty arrises when we consider the

remaining 20 cones which are given by C′(5)+
ab , C′(5)−

ab . To describe points in C′(5)+
ab let us

choose the set

{
Im (pa + pc), Im (pa + pd), Im (pa + pe), Im (pb + pc)

}

as our basis, and to describe points in C̃′(5)−
ab let us choose the set

{
− Im (pa + pc), −Im (pa + pd), −Im (pa + pe), −Im (pb + pc)

}
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as our basis. With this any of the cones C′(5)+
ab , C′(5)−

ab is of the following common form

C′(5) =

{
~Q = (Pα, Pβ, Pγ, Pδ) : Pα, Pβ, Pγ, Pδ, (Pβ + Pδ − Pα) and (Pγ + Pδ − Pα) ∈ V+

}
.

(3.27)

Due to additional constraints on the linear combinations (Pβ + Pδ−Pα) and (Pγ + Pδ−Pα)

the technique which we have employed in earlier cases seems difficult to implement here

analytically, in order to check the validity of Ch(
⋃

~θ C
′(5)~θ) = C′(5). Here each cone C′(5)~θ is

to be obtained from C′(5) by putting further restrictions on its points ~Q = (Pα, Pβ, Pγ, Pδ)

so that ∀r = α, β, γ, δ Pr lies on the two dimensional Lorentzian plane p0 − p~θ. That

is, it is difficult to find a set of points ~̃Qr, r = 1, . . . ,m for some m23, each of which

has four columns satisfying the six conditions as stated in (3.27) and furthermore all the

four columns lie on a two dimensional Lorentzian plane, in such a way that a convex

combination of these m points produce a general point ~Q in (3.27). As an illustration we

work with one of these 20 problematic cones in appendix B.7 (in which case, as a trial we

take m = 4).

3.3 Limits within Tλ

In section 3.2, we have shown that for an n-point Green’s function and given any λ from

the possible set Λ(n), the tube
⋃

~θ T
~θ
λ has holomorphic extension inside the primitive tube

Tλ where the former tube is contained in the LES domain D̃′.

As per the equations (3.6) and (3.8), if we take the limit Im PI → 0, Im PI ∈ T
~θ
λ for

a collection of subsets {I} ⊂ ℘
∗

(X), the n-point Green’s function G(p) in SFT is finite

whenever we restrict their real parts by −P2
I < M2

I for each I belonging to that collection

{I}. Here Re PJ are kept arbitrary for all J ∈ ℘
∗

(X) \ {I}. In fact, for a given collection

{I} by taking such limits within T ~θ
λ for any ~θ and restricting corresponding real parts, we

23Here m ≤ 4D + 1, due to Carathéodory’s theorem: if A is a non-empty subset of Rq, then any point of
the convex hull of A is representable as a convex combination of at most q + 1 points of A.
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reach to same value G(p) for all ~θ. Now that
⋃

~θ T
~θ
λ has an unique holomorphic extension

given by Ch(
⋃

~θ T
~θ
λ ) ⊂ Tλ, we reach to above value G(p) in the limit Im PI → 0, Im PI ∈

Ch(
⋃

~θ T
~θ
λ ) with above constraints on the real parts.

Evidently the family of holomorphic functions {Gλ(p), λ ∈ Λ(n)}24 defined on the family

of mutually disjoint tubes {Ch(
⋃

~θ T
~θ
λ ), λ ∈ Λ(n)} coincide on a real domain R given by

R =

{
p ≡ (p1, . . . , pn) :

∑n

a=1
pa = 0 and ∀I ∈ ℘

∗

(X) − P2
I < M2

I

}
. (3.28)

3.4 Conclusions

In this chapter, we have shown that for any n-point Green’s function in superstring field

theory, the LES domain D̃′ due to its shape always admits a holomorphic extension within

the primitive domain D where the latter is basically the union of the convex primitive

tubes. In the process we have found that the LES domain D̃′ contains a non-convex

connected tube within each convex primitive tube. The former tube being non-convex

allows to include all the new points from its convex hull which is the set of all convex

combinations of points in that tube. The convex tube thus obtained is a holomorphic

extension of the former non-convex tube due to a classic theorem by Bochner, and lies

inside the corresponding primitive tube.

Up to the four-point function such extension yields the full of the primitive domain. We

have proved this result, in section 3.2.1 for the three-point function obtaining all the 6

primitive tubes, and in section 3.2.2 for the four-point function obtaining all the 32 prim-

itive tubes. The appropriate real limits within those tubes in both cases are also attained

(as discussed in section 3.3).

In section 3.2.3, we are able to show that for the five-point function such extension yields

the full of 350 primitive tubes out of 370 primitive tubes which are possible in this case.

24Here Gλ(p) denotes the analytic continuation of G(p) defined on
⋃
~θ T

~θ
λ to the domain Ch(

⋃
~θ T

~θ
λ ).
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The technique employed in this section can not be applied (as it is) for the remaining 20

primitive tubes, their shape being complicated. However within all these 370 extensions

inside respective primitive tubes (obtaining 350 of them fully) the appropriate real limits

are attained (as discussed in section 3.3). The difficulty arising for the 20 primitive tubes

has been demonstrated in appendix B.7 which is a generic feature for all higher-point

functions as well. We expect it to be only a technical issue.

As a consequence, our result shows that with respect to all the analyticity properties of the

S-matrix which can be obtained relying on above extended domain inside the primitive

domain, the infrared safe part of the S-matrix of superstring theory has similar behaviour

to that of a standard local QFT. Any non-analyticity of the full S-matrix of SFT is entirely

due to the presence of massless states — which is also the case for a standard local QFT.

The current approach is perturbative (because it uses Feynman diagrams) whereas the

original proof of primitive analyticity for local QFTs is non-perturbative. Thus superstring

amplitudes might also have potential singularities on the primitive domain arising from

non-perturbative effects. Local QFTs are free from those. Furthermore, in local QFTs the

following estimate holds on a primitive tube Tλ for each truncated cone Kr ⊂ Cλ ∪ {0}25.

∣∣∣G (Re p + iIm p)
∣∣∣ ≤ A

(1+ ‖ Re p ‖)m

‖ Im p ‖l
∀ Re p ∈ R(n−1)D, Im p ∈ Kr \ {0} , (3.29)

where the numbers A,m, l > 0 depend on Kr [82]26. This is guaranteed as the off-shell

n-point Green’s function in a local QFT is equal to the Fourier-Laplace transform of some

generalized function (more precisely, a tempered distribution) which is a position space

correlator, and the analyticity of the off-shell Green’s function on a primitive tube follows

from causality constraints on the position space correlators. Equation (3.29) is a place

25A cone has been generally defined in footnote 7. Given a cone K and a positive number r, a truncated
cone is defined as (using ‖ v ‖ to denote the Euclidean norm of v):

Kr = {v ∈ K : ‖ v ‖≤ r} .

26
∣∣∣z∣∣∣ denotes the modulus of a complex number z.
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where superstring field theory could differ since typically its non-local vertices prevent us

from defining position space correlators.





4 Outlook

The work described in this thesis opens up several novel directions for research. We begin

by listing some specific directions that we feel are interesting:

– In chapter 2, our focus was on correlators in S U(N)k WZW models involving two

fundamentals and two anti-fundamentals only. We have proven that the modular

averagings for these correlators in the (N, k) and (k,N) theories are related. A pre-

scription relating general correlators of WZW models under level-rank duality has

been given in [99]. The braid matrices of the theories for general correlators have

been related in [104, 105]. It will be interesting to study the implications of these

relations for modular averaging in more general correlators.

– As discussed in the later part of section 2.4 of chapter 2, we believe that our results

give a strong hint that holographic computations can make various aspects of level-

rank duality in WZW models manifest. A first step in this direction can be to

consider correlators of heavy operators in the theories and analyse their conformal

blocks in the semi-classical limit.

– In appendix A.4, the construction of correlators by averaging over the whole PS L(2,Z)

following (2.17) involves averaging over a vector. Here we have scanned correlators

for low values of (N, k) and have found examples for which the modular averaging

despite being crossing symmetric does not reproduce the correlator. Increasing N

and k makes the numerics quite involved, we leave this for future work. Answering
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that whether the crossing symmetric modular averagings correspond to any CFT

correlators or not would also be interesting.

– Chapter 3 proves the analyticity of the infrared safe part of off-shell 2-, 3- and 4-

point Green’s functions in SFT on the full primitive domain, at all orders in pertur-

bation theory. We expect it to be true for higher-point functions as well. Obtaining

the envelope of holomorphy of the primitive domain (as posed in [88]) still remains

a challenging open question. Answering this potentially may lead to new dispersion

relations in local QFTs, as well as SFT owing to our results.

– The difficulty arising for the twenty primitive tubes in the case for the five-point

function has been demonstrated in appendix B.7. This is a generic feature that

arises for all higher-point functions, in the course of determining whether or not the

application of Bochner’s tube theorem yields certain primitive tubes fully. Solving

this may require numerical analysis. We leave this for future work.

– Whether the momentum space results in [23, 123] can be inverted to extract infor-

mation on position space Green’s functions in SFT remains an interesting question.

Following up on these directions will certainly strengthen our understanding of CFTs and

string field theory. This in turn can have an impact on the more challenging goals such

as completion of the AdS/CFT dictionary and a non-perturbative understanding of string

theory. Of course, the ultimate goal is to connect these ideas to observations.



Appendix A.

A.1 Conformal Blocks and Their Transformations:

In this appendix, we list the conformal blocks associate with the following three correla-

tors1

〈gα1
β1(z1, z̄1) · g−1

β2

α2(z2, z̄2) · g−1
β3

α3(z3, z̄3) · gα4
β4(z4, z̄4)〉 (A.1)

〈gα1
β1(z1, z̄1) · g−1

β2

α2(z2, z̄2) · gα4
β4(z3, z̄3) · g−1

β3

α3(z4, z̄4)〉 (A.2)

〈gα1
β1(z1, z̄1) · gα4

β4(z2, z̄2) · g−1
β2

α2(z3, z̄3) · g−1
β3

α3(z4, z̄4)〉 (A.3)

and their transformation properties under the modular tranformations (after the identifi-

cation (2.40) described in section 2.2). We will refer to the correlators listed above as the

first, second and third correlators. Blocks and their transformation matrices will be given

subscripts to indicate the correlator they belong to.

For the first correlator

〈gα1
β1(z1, z̄1) · g−1

β2

α2(z2, z̄2) · g−1
β3

α3(z3, z̄3) · gα4
β4(z4, z̄4)〉

1The other three independent correlators in (2.13) are related to these by the interchange I1 ↔ I2. Thus
they can be easily obtained from the data in this appendix.

67



68

the holomorphic conformal blocks2 are

F 1
(1)(x) = I1F1

(1)1(x) + I2F1
(1)2(x),

F θ
(1)(x) = I1Fθ

(1)1(x) + I2Fθ
(1)2(x), (A.4)

where

F1
(1)1(x) = x−

4hg
3 (1 − x)hθ−

4hg
3 F

(
1
k̃
,−

1
k̃

; 1 −
N
k̃

; x
)
,

F1
(1)2(x) =

1
k

x1−
4hg

3 (1 − x)hθ−
4hg

3 F
(
1 +

1
k̃
, 1 −

1
k̃

; 2 −
N
k̃

; x
)
,

Fθ
(1)1(x) = xhθ−

4hg
3 (1 − x)hθ−

4hg
3 F

(
N
k̃
−

1
k̃
,

N
k̃

+
1
k̃

; 1 +
N
k̃

; x
)
,

Fθ
(1)2(x) = −Nxhθ−

4hg
3 (1 − x)hθ−

4hg
3 F

(
N
k̃
−

1
k̃
,

N
k̃

+
1
k̃

;
N
k̃

; x
)
. (A.5)

The holomorphic blocks for the correlator

〈gα1
β1(z1, z̄1) · g−1

β2

α2(z2, z̄2) · gα4
β4(z3, z̄3) · g−1

β3

α3(z4, z̄4)〉

are

F 1
(2)(x) = I1F1

(2)1(x) + I2F1
(2)2(x),

F θ
(2)(x) = I1Fθ

(2)1(x) + I2Fθ
(2)2(x), (A.6)

where

F1
(2)1(x) = x−

4hg
3 (1 − x)hχ−

4hg
3 F

(
1
k̃
, 1 −

N
k̃

+
1
k̃

; 1 −
N
k̃

; x
)
,

F1
(2)2(x) = −

1
k

x1−
4hg

3 (1 − x)hχ−
4hg

3 F
(
1 +

1
k̃
, 1 −

N
k̃

+
1
k̃

; 2 −
N
k̃

; x
)
,

Fθ
(2)1(x) = xhθ̂−

4hg
3 (1 − x)hχ−

4hg
3 F

(
1 +

1
k̃
,

N
k̃

+
1
k̃

; 1 +
N
k̃

; x
)
,

2The blocks for this correlator have already been discussed in the main text. We rewrite them here with
the subscript convention discussed above, so as to have a consistent notation for this appendix.
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Fθ
(2)2(x) = −Nxhθ̂−

4hg
3 (1 − x)hχ−

4hg
3 F

(
1
k̃
,

N
k̃

+
1
k̃

;
N
k̃

; x
)
. (A.7)

The holomorphic blocks for the correlator

〈gα1
β1(z1, z̄1) · gα4

β4(z2, z̄2) · g−1
β2

α2(z3, z̄3) · g−1
β3

α3(z4, z̄4)〉

are

F
ξ

(3)(x) = I1Fξ
(3)1(x) + I2Fξ

(3)2(x),

F
χ

(3)(x) = I1Fχ
(3)1(x) + I2Fχ

(3)2(x), (A.8)

where

Fξ
(3)1(x) = xhξ−

4hg
3 (1 − x)hθ̂−

4hg
3 F

(
1 −

1
k̃
,

N
k̃
−

1
k̃

; 1 −
2
k̃

; x
)
,

Fξ
(3)2(x) = −xhξ−

4hg
3 (1 − x)hθ̂−

4hg
3 F

(
−

1
k̃
,

N
k̃
−

1
k̃

; 1 −
2
k̃

; x
)
,

Fχ
(3)1(x) = xhχ−

4hg
3 (1 − x)hθ̂−

4hg
3 F

(
1 +

1
k̃
,

N
k̃

+
1
k̃

; 1 +
2
k̃

; x
)
,

Fχ
(3)2(x) = xhχ−

4hg
3 (1 − x)hθ̂−

4hg
3 F

(
1
k̃
,

N
k̃

+
1
k̃

; 1 +
2
k̃

; x
)
. (A.9)

With the choices for tensor indices as in (2.40), we will denote the holomorphic blocks of

the three correlators byH i
(q)(x) with q = 1, 2, 3 i.e.

H1
(1)(x) = IF1

(1)1(x) + IF1
(1)2(x),

H θ
(1)(x) = IFθ

(1)1(x) + IFθ
(1)2(x),

H1
(2)(x) = IF1

(2)1(x) + IF1
(2)2(x),

H θ
(2)(x) = IFθ

(2)1(x) + IFθ
(2)2(x),

H
ξ
(3)(x) = IFξ

(3)1(x) + IFξ
(3)2(x),

H
χ
(3)(x) = IFχ

(3)1(x) + IFχ
(3)2(x). (A.10)
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We note that with I1 = I2 the three correlators are equal to those in (2.41).

The actions of T and S on these can be computed using the following identities of hyper-

geometric functions [102].

F(a, b; c; z) =(1 − z)c−a−bF(c − a, c − b; c; z),

F(a, b; c;
z

z − 1
) =(1 − z)aF(a, c − b; c; z) = (1 − z)bF(c − a, b; c; z),

F(a, b; c; 1 − z) =
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

F(a, b; a + b − c + 1; z)

+
Γ(c)Γ(a + b − c)

Γ(a)Γ(b)
zc−a−bF(c − a, c − b; c − a − b + 1; z).

(A.11)

F(a, b; c; 1 − z) =
Γ(c)Γ(a + b − c)

Γ(a)Γ(b)
zc−a−b(1 − z)1−cF(1 − b, 1 − a; 1 + c − a − b, z)

+
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

(1 − z)1−cF(1 + b − c, 1 + a − c; 1 + a + b − c; z)(A.12)

Action of T : The action of T on the blocksH i
(1)(x) are given by

H i
(1) (T.x) = H

j
(2) (x) M(1) ji(T ), (A.13)

where

M(1)(T ) = (−1)−2(N2−1)/3Nk̃

1 0

0 (−1)N/k̃

 . (A.14)

The action of T on the blocksH i
(2)(x) are given by

H i
(2) (T.x) = H

j
(1) (x) M(2) ji(T ), (A.15)

where

M(2)(T ) = (−1)−2(N2−1)/3Nk̃

1 0

0 (−1)N/k̃

 . (A.16)
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The action of T on the blocksH i
(3)(x) are given by

H i
(3) (T.x) = H

j
(3) (x) M(3) ji(T ), (A.17)

where

M(3)(T ) = −(−1)(N2−3N−4)/3Nk̃

1 0

0 −(−1)2/k̃

 . (A.18)

Action of S : The action of S on the blocksH i
(1)(x) are given by

H i
(1) (S .x) = H

j
(1) (x) M(1) ji(S ), (A.19)

where

M(1)(S ) =

 −
k̃Γ(N/k̃)Γ(k/k̃)
Γ(1/k̃)Γ(−1/k̃) −

NΓ2(N/k̃)
Γ(N/k̃−1/k̃)Γ(N/k̃+1/k̃)

−
Γ2(k/k̃)

NΓ(k/k̃−1/k̃)Γ(k/k̃+1/k̃)
k̃Γ(N/k̃)Γ(k/k̃)
Γ(1/k̃)Γ(−1/k̃)

 . (A.20)

The action of S on the blocksH i
(2)(x) are given by

H i
(2) (S .x) = H

j
(3) (x) M(2) ji(S ), (A.21)

where

M(2)(S ) =


Γ(k/k̃)Γ(2/k̃)

Γ(1/k̃)Γ(k/k̃+1/k̃)
NΓ(N/k̃)Γ(2/k̃)

Γ(1/k̃)Γ(N/k̃+1/k̃)
Γ(k/k̃)Γ(−2/k̃)

Γ(k/k̃−1/k̃)Γ(−1/k̃) −
NΓ(N/k̃)Γ(−2/k̃)

Γ(N/k̃−1/k̃)Γ(−1/k̃)

 . (A.22)

The action of S on the blocksH i
(3)(x) are given by

H i
(3) (S .x) = H

j
(2) (x) M(3) ji(S ), (A.23)

where

M(3)(S ) =


2Γ(−2/k̃)Γ(N/k̃)

Γ(−1/k̃)Γ(N/k̃−1/k̃)
2Γ(2/k̃)Γ(N/k̃)

Γ(1/k̃)Γ(N/k̃+1/k̃)
Γ(1−2/k̃)Γ(−N/k̃)
Γ(−1/k̃)Γ(k/k̃−1/k̃)

Γ(1+2/k̃)Γ(−N/k̃)
Γ(1/k̃)Γ(k/k̃+1/k̃)

 . (A.24)
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A.2 Generators of the orbit for N = k theories

In this appendix, we show that for general values of N(= k) the orbit of Cseed is as given in

(2.61). We will do this by showing that the orbit can in effect be generated by considering

the action of matrices of the form

 sinα −k cosα

−1
k cosα − sinα

 , (A.25)

on Cseed, where α =
π(2s+1)

2k with s = 0 · · · (k−1) for k odd, and α = πs
2k with s = 0 · · · (2k−1)

for k even. It is easy to check that the actions of these matrices on Cseed indeed generates

the orbits described in (2.61). We begin by noting that for M(γ) of the form

M(γ) ≡

aγ bγ

cγ dγ

 ,
its action on Cseed yields |aγ|

2 aγc∗γ

a∗γcγ |cγ|
2

 . (A.26)

Thus, the result of the action only depends on aγ and cγ (and is independent of bγ and dγ).

Furthermore, since (A.26) is quadratic in aγ and cγ, elements of the orbit are only sensitive

to their relative sign. Thus deformations of M(γ)s which modify bγ, dγ and the relative

sign between aγ, cγ keep their actions on Cseed unchanged. We will use such deformations

to show that the orbit is in effect generated by the matrices given in (A.25). Let us start by

considering the first few matrices in the list (2.58) of M(γ) (for theories with N = k). In

what follows, we will use the symbol ‘∼’ to denote a deformation of a matrix M(γ) which

keeps its action on Cseed unchanged.

M(1) =

1 0

0 1

 ∼
1 0

0 −1

 =

 sin πk
2k −k cos πk

2k

−1
k cos πk

2k − sin πk
2k

 ;
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M(S ) =

 sin π
2k −k cos π

2k

−1
k cos π

2k − sin π
2k

 ;

M(S T 2) =

 sin π
2k −k cos π

2k

1
k cos π

2k sin π
2k

 ∼
 sin π(2k−1)

2k −k cos π(2k−1)
2k

−1
k cos π(2k−1)

2k − sin π(2k−1)
2k

 ;

M(S T 2S ) =

 sin π(2−k)
2k −k cos π(2−k)

2k

−1
k cos π(2−k)

2k − sin π(2−k)
2k

 ∼
 sin π(2+k)

2k −k cos π(2+k)
2k

−1
k cos π(2+k)

2k − sin π(2+k)
2k

 ;

M(S T 2S T 2) =

− cos 2π
2k −k sin 2π

2k

1
k sin 2π

2k − cos 2π
2k

 ∼
 sin π(3k−2)

2k −k cos π(3k−2)
2k

−1
k cos π(3k−2)

2k − sin π(3k−2)
2k


∼

 sin π(k−2)
2k −k cos π(k−2)

2k

−1
k cos π(k−2)

2k − sin π(k−2)
2k

 ;

M(S T 2S T 2S ) =

− sin 3π
2k k cos 3π

2k

1
k cos 3π

2k sin 3π
2k

 ∼
 sin 3π

2k −k cos 3π
2k

−1
k cos 3π

2k − sin 3π
2k

 .
Proceeding as above, all the M(γ) can be brought to the form in (A.25) by making use of

the identities

 sin β −k cos β

−1
k cos β − sin β

 .
1 0

0 −1

 .
 sinα −k cosα

−1
k cosα − sinα

 =

 sin(α + β − π
2 ) −k cos(α + β − π

2 )

−1
k cos(α + β − π

2 ) − sin(α + β − π
2 )


and  sinα −k cosα

−1
k cosα − sinα

 ∼
 sin (α + π) −k cos (α + π)

−1
k cos (α + π) − sin (α + π)


for any angle α and β.
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For completeness, we provide the orbit the N(= k) = 2 theory. It can easily be checked

that this is same as that given by the matrices in (2.61). For N = 2, k = 2 the matrices

M(S ) and M(T 2) are

M(S ) =


1
√

2
−
√

2

− 1
2
√

2
− 1
√

2

 , M(T 2) = e−
iπ
2

1 0

0 −1

 . (A.27)

The orbit of Cseed consists of four matrices. It is generated by the action of 1, S , S T 2 and

S T 2S . We tabulate the results of these actions in Table A.1. The normalised sum over the

orbit (2.52) reproduces the KZ result.

γ M(γ) ·Cseed · M(γ)†

1

1 0

0 0


S


1
2 −1

4

−1
4

1
8


S T 2


1
2

1
4

1
4

1
8


S T 2S

0 0

0 1
4


Xav

1 0

0 1
4


Table A.1: Orbit of the vacuum block for N = 2, k = 2

A.3 Further numerical examples

Here we provide a couple of examples where the numerics are quite involved as discussed

at the end of section 2.3.
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N = 5, k = 6: For N = 5, k = 6, the value of m(5, 6) as defined in (2.56) is 11. Thus

with each increment in `max by 1, there is approximately a tenfold increase in the number

of new terms added to the sum (2.63). With the available computing resources we have

performed the sum upto `max = 6. This involves 1193006 distinct contributions to the sum.

We find Xav
22(6) = 0.026177, alongside we note the exact result (2.54), XKZ

22 ≈ 0.0405346.

The off diagonal entries of Xav(6) are of the order of 10−14. Figure A.1 shows our results

for Xav
22(`max) as a function of `max, all qualitative features of the numerics are same as

those in the examples discussed in section 2.3.

1 2 3 4 5 6
ℓmax

0.05

0.10

0.15

0.20

X22
av(ℓmax )

Figure A.1: Orange dots show Xav
22(`max) in the range [0.005, 0.225] plotted against `max.

Blue horizontal line at 0.0405346 represents XKZ
22 .

N = 6, k = 5: For N = 6, k = 5, the value of m(6, 5) as defined in (2.56) is 11. Thus

similarly, with each increment in `max by 1, there is approximately a tenfold increase in

the number of new terms added to the sum (2.63). With the available computing resources

we have performed the sum upto `max = 6. This involves 1193006 distinct contributions

to the sum. We find Xav
22(6) = 0.0177022, alongside we note the exact result (2.54),

XKZ
22 ≈ 0.0274114. The off diagonal entries of Xav(6) are of the order of 10−14. Figure A.2

shows our results for Xav
22(`max) as a function of `max. All the features of the numerics are

similar to the previous example.
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1 2 3 4 5 6
ℓmax

0.02

0.04

0.06

0.08

0.10

0.12

0.14

X22
av(ℓmax )

Figure A.2: Orange dots show Xav
22(`max) in the range [0.000, 0.150] plotted against `max.

Blue horizontal line at 0.0274114 represents XKZ
22 .

A.4 Averaging over all of PS L(2,Z)

In this appendix, we briefly discuss the construction of correlator from averaging over the

full modular group. To implement the prescription (2.17), the six holomorphic blocks in

(A.10) of the three correlators in (2.41) can be put in a six dimensional row:

~H(τ) =

(
H1

(1)(τ),H θ
(1)(τ),H1

(2)(τ),H θ
(2)(τ),H ξ

(3)(τ),Hχ
(3)(τ)

)
. (A.28)

On this, T and S act as

H i(T.τ) = H j(τ)M ji(T ) and H i(S .τ) = H j(τ)M ji(S ) (A.29)

with

M(T ) =


0 M(1)(T ) 0

M(2)(T ) 0 0

0 0 M(3)(T )

 and M(S ) =


M(1)(S ) 0 0

0 0 M(2)(S )

0 M(3)(S ) 0

 ,
(A.30)
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where the two dimensional matrices (M(i)(T ) and M(i)(S )) are as defined in appendix A.1.

The light contribution as defined in (2.16) can be taken as

Glight
B (τ, τ̄) = CB

i(B) j(B)H
i(B)(τ)H̄ j(B)(τ̄), B = 1, 2, 3 , (A.31)

where repeated indices are summed over with i(1), j(1) ∈ {1, 2}, i(2), j(2) ∈ {3, 4} and

i(3), j(3) ∈ {5, 6},

CB =

1 0

0 0

 , B = 1, 2, 3 . (A.32)

Under the action γ ∈ PS L(2,Z),

CB
i(B) j(B)H

i(B)(τ)H̄ j(B)(τ̄)→M(γ)ki(B)CB
i(B) j(B)M(γ)†j(B)lH

k(τ)H̄ l(τ̄) . (A.33)

For each γ we arrange the three 6 × 6 matrices

σ−1(γ)ABM(γ)ki(B)CB
i(B) j(B)M(γ)†j(B)l , A = 1, 2, 3 , (A.34)

in a three dimensional column ~X(γ). The sum (2.17) then reads

~Xav = N−1 ·
∑

γ∈PS L(2,Z)

~X(γ) , (A.35)

where the normalisation N is the (1, 1) element of
[∑

γ
~X(γ)

]1. Hence the candidate for

the vector-valued modular function (2.41) is given by

[~Xav]A
klH

k(τ)H̄ l(τ̄), A = 1, 2, 3 . (A.36)

To incorporate the distinct contributions ~X(γ) to the sum (A.35), elements γ are arranged

in a list similar to (2.57) where we replace all T 2ri by T ri , and m denotes the smallest

positive integer such that

M(T m) ∝ 1 .
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We perform the sum (A.35) taking distinct contributions of elements γ of all lengths upto

a maximum value `max:

~Xav(`max) = N(`max)−1 ·

′∑
`(γ)≤`max

~X(γ) , (A.37)

where the primed sum indicates that distinct elements are added. Our results are as follows

N = 2, k = 2: For N = 2, k = 2, the sum (A.37) is finite and consists of six distinct

contributions, reproducing the KZ result,
[~Xav]1

22 = 1
4 .

N = 2, k = 4: For N = 2, k = 4, the sum (A.37) is finite and consists of four distinct

contributions, reproducing the KZ result,
[~Xav]1

22 = 1
2 3√4

.

N = 2, k = 3: For N = 2, k = 3, the sum (A.37) seems to be infinite. We have performed

the sum upto `max = 6. This invloves 83651 distinct contributions to the sum. We find[~Xav]1
22(6) = 0.296026, which is in good agreement with the KZ result. Figure A.3 shows

our results for
[~Xav]1

22(`max) as a function of `max.

1 2 3 4 5 6
ℓmax

0.26

0.28

0.30

0.32

0.34

0.36

0.38

[X
av
]22
1

(ℓmax )

Figure A.3: Orange dots show
[~Xav]1

22(`max) in the range [0.245, 0.390] plotted against
`max. Blue horizontal line at 0.29831 represents the KZ result.

Finally, let us discuss some examples where modular averaging does not yield the corre-

lator.

N = 3, k = 2: For N = 3, k = 2, the sum (A.37) seems to be infinite. We have performed

the sum upto `max = 6. This invloves 664111 distinct contributions to the sum. We find
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[~Xav]1
22(6) = 0.151496, which is not in agreement with the KZ result, although crossing

symmetric. Figure A.4 shows our results for
[~Xav]1

22(`max) as a function of `max.

1 2 3 4 5 6
ℓmax

0.10

0.12

0.14

0.16

0.18

0.20

[X
av
]22
1

(ℓmax )

Figure A.4: Red dots show
[~Xav]1

22(`max) in the range [0.08, 0.20] plotted against `max.
Blue horizontal line at 0.0931172 represents the KZ result.

N = 4, k = 2: For N = 4, k = 2, the sum (A.37) seems to be infinite. We have performed

the sum upto `max = 8. This invloves 69219 distinct contributions to the sum. We find[~Xav]1
22(8) = 0.111064, which is not in agreement with the KZ result, although crossing

symmetric. Figure A.5 shows our results for
[~Xav]1

22(`max) as a function of `max.

1 2 3 4 5 6 7 8
ℓmax

0.06

0.08

0.10

0.12

[X
av
]22
1

(ℓmax )

Figure A.5: Red dots show
[~Xav]1

22(`max) in the range [0.045, 0.130] plotted against `max.
Blue horizontal line at 0.0496063 represents the KZ result.

Thus while summing over the entire modular group we have found examples where the

averaging does not reproduce the correlator. We note that, [32] argues that it is the mod-

ular averaging over the theta subgroup that has a direct interpretation in the holographic

context.
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Increasing N and k makes the numerics quite involved, we leave this for future work.

A.5 The matrices M`
N,k and M̃`

N,k

In this appendix, we obtain the general form of the matrices M`
N,k and M̃`

N,k. We then

use these to derive the relations given in (2.76). The elements of matrices M`
N,k can be

computed recursively in ` using their defining equation in (2.69)

M`+1
N,k (r1, · · · r`+1) = M(T 2r`+1)M(S )M`

N,k(r1, · · · r`). (A.38)

This gives the following relations for the functions that appear in (2.74)

a`+1
N,k (r1, · · · r`+1) = as(N, k)a`N,k(r1 · · · r`) + bs(N, k)cs(N, k)c`N,k(r1 · · · r`)

b`+1
N,k (r1, · · · r`+1) = as(N, k)b`N,k(r1 · · · r`) + d`N,k(r1 · · · r`)

c`+1
N,k (r1, · · · r`+1) = eir`+1φ(N,k)

(
ds(N, k)c`N,k(r1 · · · r`) + a`N,k(r1 · · · r`)

)
d`+1

N,k (r1, · · · r`+1) = eir`+1φ(N,k)
(
ds(N, k)d`N,k(r1 · · · r`) + bs(N, k)cs(N, k)b`N,k(r1 · · · r`)

)

Similarly, the matrices M̃`
N,k can be computed recursively in ` using their defining equation

in (2.70)

M̃`+1
N,k (r1, · · · r`+1) = M(T−2r`+1)M(S )M̃`

N,k(r1, · · · r`). (A.39)

This gives following relations for the functions that appear in (2.75)

ã`+1
N,k (r1, · · · r`+1) = as(N, k)ã`N,k(r1 · · · r`) + bs(N, k)cs(N, k)c̃`N,k(r1 · · · r`)

b̃`+1
N,k (r1, · · · r`+1) = as(N, k)b̃`N,k(r1 · · · r`) + d̃`N,k(r1 · · · r`)

c̃`+1
N,k (r1, · · · r`+1) = e−ir`+1φ(N,k)

(
ds(N, k)c̃`N,k(r1 · · · r`) + ã`N,k(r1 · · · r`)

)
d̃`+1

N,k (r1, · · · r`+1) = e−ir`+1φ(N,k)
(
ds(N, k)d̃`N,k(r1 · · · r`) + bs(N, k)cs(N, k)b̃`N,k(r1 · · · r`)

)
.
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Now, making use of relations in (2.68) and the fact that3

eirφ(N,k) = e−irφ(k,N) for any integer r, (A.40)

it is easy to see that ã`k,N(ri), b̃`k,N(ri), c̃`k,N(ri), d̃`k,N(ri) have exactly the same recurrence re-

lations as a`N,k(ri), b`N,k(ri), c`N,k(ri), d`N,k(ri). Given that they have same initial values, hence

the equalities in (2.76).

A.6 Truncation of Sums

The sum in (2.63) terminates after a (lowest) value `0
max if the actions of γs in the list (2.57)

with `(γ) > `0
max do not generate new elements of the orbit of Cseed, i.e. the orbit is finite.

Note that if there is an ` such that no new terms are generated, higher values of ` also do

not generate new terms in the orbit (with this the value of the sum in (2.63) at higher `max

does not change). Thus comparison of the terms generated at a certain ` with the ones at

lower ` can be used to determine the cases with finite orbit. It is possible to implement

this consideration at each point in the (N, k) lattice (of course the non-trivial cases are

for N, k ≥ 2). Before discussing the details, we summarise our results. Truncations start

from `0
max = 1. Here, it is possible to determine analytically the values of (N, k) for which

the truncations occur - (3, 3), (2, 4) and (4, 2) are the only points where the modular sum

truncates at `0
max = 1. For higher values of `, except for cases with N = k we have not

been able to carry out a general analysis so as to determine the points in the (N, k) lattice

for which truncations occur (the results for N = k are given in section 2.3, recall that all

these models exhibit truncation). For N , k we have implemented the above algorithm

numerically, and found that upto ` = 5, for points in the (N, k) lattice with N, k ≤ 6 (and

N , k) there are no truncations.

The details of the analysis are as follows. We recall (A.26). The action of 1 on Cseed is

3Recall that φ(N, k) = 2πN
k+N .
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given by 1 0

0 0

 . (A.41)

The actions of γs of `(γ) = 1 on Cseed are given by

 a2
S aS cS e−

i2πNr1
k̃

aS cS e
i2πNr1

k̃ c2
S

 , (A.42)

for r1 = 0, · · · , (m(N, k) − 1). Here aS is the 1-1 entry of the matrix M(S ) (see for e.g

(2.67)). Clearly the phases at the off-diagonal entries are the m(N, k)-th roots of unity,

hence all distinct and add up to zero. The actions of γs of `(γ) = 2 on Cseed are given by4

 1 − 2a2
S + 2a4

S − 2a2
S (a2

S − 1) cos(2πNr1
k̃ ) aS cS e−

i2πNr2
k̃ (1 − e−

i2πNr1
k̃ )

(
a2

S − (a2
S − 1)e

i2πNr1
k̃

)
aS cS e

i2πNr2
k̃ (1 − e

i2πNr1
k̃ )

(
a2

S − (a2
S − 1)e−

i2πNr1
k̃

)
2a2

S c2
S
(
1 − cos( 2πNr1

k̃ )
)

 ,
(A.43)

for r1 = 1, · · · , (m(N, k)−1) and r2 = 0, · · · , (m(N, k)−1). Comparing with the structure of

the terms generated at length zero (A.41) and one (A.42), we see that truncation requires

that the following equality necessarily holds for all r1 = 1 · · · (m(N, k) − 1).

cos(
2πNr1

k̃
) =

2a2
s − 1
a2

S

. (A.44)

Hence necessarily a2
S ≥

1
4 , which holds only when (N, k) lies on the line N = 2 or k = 2

or at the point (3, 3). Furthermore at any (N, k) the r.h.s. of (A.44) is fixed which restricts

the number of values r1 can take. This in turn gives a necessary condition for the possible

values for m(N, k): it must be 2 or 3. Hence (2, 2), (3, 3), (2, 4) and (4, 2) models are the

only ones which satisfy this criterion. Going through each of these possibilities case by

case one finds that truncation and `0
max = 1 occurs for (3, 3), (2, 4) and (4, 2). Similar

considerations necessary to determine truncations at higher ` are more involved (except

for the cases with N = k); we have implemented them numerically and found for points

4After using bS cS = 1 + aS dS and dS = −aS .
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in the (N, k) lattice with N, k ≤ 6 (and N , k), there are no truncations upto ` = 5.





Appendix B.

B.1 Several complex variables

The theory of functions of several complex variables (SCV) has key differences (known

as Hartogs’s phenomena) than the more familiar case of a single complex variable. For

a systematic exposition to the methods of SCV and their various applications to QFT,

see [82, 121]. Here we discuss one key difference that lies at the heart of our analysis in

chapter 3.

A domain Ω in m complex variables (z1, . . . , zm) is an open and connected subset of Cm1.

A function is said to be holomorphic (or analytic) on Ω if it is holomorphic with respect

to each variable z j separately, with the other variables kept fixed inside Ω. The set of

all functions which are holomorphic on a given Ω will be denoted by H(Ω). By a holo-

morphic extension Ω′ of a given Ω we mean any larger domain Ω′ containing Ω, with

the property that any f ∈ H(Ω) can be analytically continued to Ω′. The existence of

a holomorphic extension is a property of a given domain irrespective of the functions

that are analytic on it. The largest possible holomorphic extension of a given domain is

called the envelope of holomorphy. Note that a few but not all of the functions in H(Ω)

may be analytically continued to an even larger domain than the envelope of holomorphy.

Given a particular function f we sometimes ask what is the largest domain where f can

1However in chapter 3, the word ‘domain’ has been used in slightly general sense and whenever neces-
sary we have explicitly used the phrase ‘open and connected’ instead of using ‘domain’.
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be continued analytically. This largest domain is known as the domain of holomorphy of

f .

In one complex variable, every domain is a domain of holomorphy of some function

i.e., there always exists a function on the domain which cannot be continued outside it.

However, in several complex variables this is not true. For example, any function f which

is analytic on the following domain in two complex variables

Ω(2) =

{
(z1, z2) : |z1| < 1,

1
2
< |z2| < 1

}
∪

{
(z1, z2) :

1
2
< |z1| < 1, |z2| < 1

}
(B.1)

can be analytically continued to the domain

Ω′(2) =

{
(z1, z2) : |z1| < 1, |z2| < 1

}
. (B.2)

The analytic continuation can be explicitly given as

F(z1, z2) =
1

2πi

∮
C1

dξ1
1

2πi

∮
C2

dξ2
f (ξ1, ξ2)

(ξ1 − z1)(ξ2 − z2)
, (B.3)

where C1 = {ξ1 : |ξ1| = 1 − δ1}, C2 = {ξ2 : |ξ2| = 1 − δ2} are anticlockwise contours and

δ1, δ2 are two arbitrarily small positive numbers. By definition f (ξ1, ξ2) is analytic in each

variable when the other one is held fixed so that (ξ1, ξ2) ∈ Ω(2). Therefore two successive

applications of Cauchy integral formula yield that F(z1, z2) = f (z1, z2) whenever (z1, z2) ∈

Ω(2), proving the claim that F is the analytic continuation of f .

One such non-trivial extension theorem for SCV that has immense application in QFT is

Bogoliubov’s edge-of-the-wedge theorem (see, [82, 120, 122]). For our purpose, we use

Bochner’s tube theorem [116] which states that any domain of form Rm + iA, A ⊂ Rm

(called a tube) has a holomorphic extension to Rm + iCh(A) where Ch(A) is the smallest

convex set containing the set A (called the convex hull of A). That is, we need to adjoin

all possible finite convex combinations of points taken from the tube. In general, a finite
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convex combination of points xi taken from a set A i.e., a point of the form
∑r

i=1 tixi, ti ≥

0,
∑

i ti = 1 does not belong to the same set A.

B.2 Convexity of Tλ, T
~θ
λ

The tube Tλ (described by equation (3.5)) is convex [91]. We derive it as follows. We

take any m points p(1), . . . , p(m) ∈ Tλ and consider the convex combination q =
∑m

r=1 tr p(r)

where each tr ≥ 0 and
∑m

r=1 tr = 1. Now if q ∈ Tλ then Tλ is convex.

Clearly
∑n

a=1 qa = 0. We define QI =
∑

a∈I qa for each I ∈ ℘
∗

(X). Hence we get QI =∑m
r=1 trP

(r)
I where for each r we have P(r)

I =
∑

a∈I p(r)
a . We also have λ(I)Im P(r)

I ∈ V+ since

p(1), . . . , p(m) ∈ Tλ. Therefore λ(I)Im QI =
∑m

r=1 trλ(I)Im P(r)
I ∈ V+. Hence q ∈ Tλ. This

proves the convexity of Tλ.

Taking any m points p(1), . . . , p(m) ∈ T
~θ
λ (described by equation (3.9)), now we show that

the convex combination q =
∑m

r=1 tr p(r) belongs to T ~θ
λ . In present case, since for each

r = 1, . . . ,m the Im p(r)
a ∀a, in turn all Im P(r)

I lie on the two dimensional Lorentzian plane

p0− p~θ, therefore we get that the Im QI for all I including singletons lie on the same plane

p0 − p~θ. Hence T ~θ
λ is convex following similar steps to the above case.

B.3 Nonconvexity of
⋃
~θ T

~θ
λ

We take a point p(1) = (p(1)
1 , . . . , p(1)

n ) ∈ T ~θ=0
λ . Hence Im p(1)

a ∀a = 1, . . . , n lie on the

two dimensional Lorentzian plane p0 − p1. Now suppose the point p(2) is obtained by

acting a real rotation2 on the point p(1) so that Im p(2)
a ∀a = 1, . . . , n now lie on the two

dimensional Lorentzian plane p0 − p2. Hence p(2) ∈ T
~θ2
λ where ~θ2 characterizes the two

dimensional Lorentzian plane p0 − p2. Now for the point q = 1
2 p(1) + 1

2 p(2) which is

2In equation (3.7), we have defined actions of complex Lorentz transformations which include real
rotations.
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the mid-point of the straight line segment connecting the two points p(1), p(2) we have

Im qa ∀a = 1, . . . , n lying on the two dimensional Lorentzian plane p0 − p~θ3 where the

p~θ3-axis lies on the two dimensional plane p1 − p2 making an angle 450 with the positive

p2-axis. Hence the point q ∈ T
~θ3
λ . However we can change Im p(2)

1 little bit, keeping all

real parts and Im p(2)
a , a = 2, . . . , n unchanged to obtain a new point p̃(2) such that p̃(2) still

belongs to T ~θ2
λ

3. Consequently we get two points p(1) ∈ T
~θ=0
λ and p̃(2) ∈ T

~θ2
λ , for which

the mid-point of the straight line segment connecting them is given by q̃ = 1
2 p(1) + 1

2 p̃(2).

Although Im q̃a ∀a = 2, . . . , n lie on the two dimensional Lorentzian plane p0 − p~θ3 , the

D-momenta Im q̃1 = 1
2 p(1)

1 + 1
2 p̃(2)

1 does not lie on the two dimensional Lorentzian plane

p0 − p~θ3 anymore. Hence q̃ <
⋃

~θ T
~θ
λ . In other words,

⋃
~θ T

~θ
λ is non-convex.

To see this, let us take {p1, . . . , pn−1} as our basis to describe points on the complex man-

ifold p1 + · · · + pn = 0. A generic point p = (p1, . . . , pn−1) on this manifold can be

represented by an unique D × (n − 1) matrix where the a-th column represent the D-

momenta pa. Since each T ~θ
λ thereby

⋃
~θ T

~θ
λ reside on this manifold now the imaginary

parts of the points p(1), p(2), p̃(2), q and q̃ can be represented in terms of D × (n − 1)

3In support of this see appendix B.5.
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matrices as follows4.

p(1) =



p0
1 p0

2 · · · p0
n−1

p1
1 p1

2 · · · p1
n−1

0 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0



, p(2) =



p0
1 p0

2 · · · p0
n−1

0 0 · · · 0

p1
1 p1

2 · · · p1
n−1

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0



, p̃(2) =



p0
1 p0

2 · · · p0
n−1

0 0 · · · 0

p̃1
1 p1

2 · · · p1
n−1

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0



,

q =



p0
1 p0

2 · · · p0
n−1

1
2 p1

1
1
2 p1

2 · · ·
1
2 p1

n−1

1
2 p1

1
1
2 p1

2 · · ·
1
2 p1

n−1

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0



, q̃ =



p0
1 p0

2 · · · p0
n−1

1
2 p1

1
1
2 p1

2 · · ·
1
2 p1

n−1

1
2 p̃1

1
1
2 p1

2 · · ·
1
2 p1

n−1

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0



.

(B.4)

Clearly all the columns of Im q lie on the two dimensional Lorentzian plane p0 − p~θ3

where the p~θ3-axis lies on the two dimensional plane p1 − p2 making an angle 450 with

the positive p2-axis. It is also evident that the first column of Im q̃ does not lie on the two

dimensional Lorentzian plane p0 − p~θ3 although all the other columns of Im q̃ lie on it.

B.4 Path-connectedness of
⋃
~θ T

~θ
λ

We take any two points p(1), p(2) ∈
⋃

~θ T
~θ
λ . To show that the tube

⋃
~θ T

~θ
λ is path-connected

it is sufficient to find a path connecting the points p(1), p(2) staying inside the tube
⋃

~θ T
~θ
λ .

Let p(1) ∈ T
~θ1
λ and p(2) ∈ T

~θ2
λ for some ~θ1, ~θ2. Now if ~θ1 = ~θ2 (= ~θ, say) then p(1), p(2)

4For notational simplicity, we omit the prefix ‘Im’ in all the entries in the equation (B.4) however the
entries should be understood as respective imaginary parts.
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belong to the same tube T ~θ
λ . Since the tube T ~θ

λ is convex (see appendix B.2) the straight

line segment connecting p(1), p(2) lies entirely inside T ~θ
λ . Now we consider the case when

~θ1 , ~θ2. In this case p(1) = (p(1)
1 , . . . , p(1)

n ), where all the Im p(1)
a thereby Im P(1)

I lie on the

two dimensional Lorentzian plane p0 − p~θ1 . We consider the point p̃(1) = (p̃(1)
1 , . . . , p̃(1)

n ) ∈

C(n−1)D given by

∀a Im p̃(1)0
a = Im p(1)0

a ; Im p̃(1)i
a = 0, i = 1, . . . ,D − 1;

Re p̃(1)µ
a = Re p(1)µ

a , µ = 0, . . . ,D − 1 ,
(B.5)

where we switch off only the Im p(1)i
a , i = 1, . . . ,D−1 components ∀a in p(1) to obtain the

point p̃(1). As the Im p(1)0
a component remains unaltered ∀a the point p̃(1) ∈ T

~θ
λ for all ~θ. In

particular p̃(1) belongs to both the tubes T ~θ1
λ and T ~θ2

λ . Hence T ~θ1
λ being a convex tube the

straight line segment p(1) p̃(1) connecting p(1), p̃(1) lies entirely inside T ~θ1
λ , and T ~θ2

λ being

a convex tube the straight line segment p̃(1) p(2) connecting p̃(1), p(2) lies entirely inside

T
~θ2
λ . Joining these two segments we get a path connecting p(1), p(2) staying inside the

tube
⋃

~θ T
~θ
λ . This completes the proof.

To see that p̃(1) ∈ T
~θ
λ for all ~θ, let us consider P̃(1)

I =
∑

a∈I p̃(1)
a for an arbitrary non-empty

proper subset I of X. Therefore we have Im P̃(1)
I =

∑
a∈IIm p̃(1)

a and it is timelike because

(
Im P̃(1)

I
)2

= −
(∑

a∈I
Im p̃(1)0

a
)2

+
∑D−1

i=1

(∑
a∈I

Im p̃(1)i
a

)2

= −
(∑

a∈I
Im p(1)0

a
)2
< 0 .

(B.6)

Furthermore Im P̃(1)
I and Im P(1)

I belong to the same lightcone because of the following

Im P̃(1)0
I =

∑
a∈I

Im p̃(1)0
a =

∑
a∈I

Im p(1)0
a = Im P(1)0

I =⇒ sgn
(
Im P̃(1)0

I
)

= sgn
(
Im P(1)0

I
)
.

(B.7)
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B.5 Thickening of
⋃
~θ T

~θ
λ

As mentioned at the beginning of chapter 3, the work of [23] showed that at any point p

belonging to the LES domain D′ all the relevant Feynman diagrams5 in the perturbative

expansion of an n-point Green’s function in SFT are analytic. Any such Feynman diagram

at the point p has an integral representation in terms of loop integrals where the poles of

the integrand are at finite distance away from any of the loop integration contours. As

per the discussion around equation (3.8), the above statement also holds for any point p

belonging to the LES domain D̃′.

Hence for any p ∈
⋃

~θ T
~θ
λ (thereby Im p ∈

⋃
~θ C

~θ
λ ⊂ R

(n−1)D) we can allow a small open

ballBIm p in R(n−1)D centered at Im p such that for any point p′ ∈ BIm p the aforementioned

poles of the integrand are still at a finite distance away from the loop integration contours

in a given Feynman diagram [23]. Consequently, the same integral representation in terms

of loop integrals holds at any of the new points p′. Therefore, by allowing such open balls

for each p ∈
⋃

~θ T
~θ
λ we can make

⋃
~θ T

~θ
λ open, in which the given Feynman diagram still

remains analytic. In this way,
⋃

~θ T
~θ
λ can be thickened individually for all the relevant

Feynman diagrams (at all orders in perturbation theory).

B.6 The cone C(4)+
12

The cone C(4)+
12 taken from the list (3.17) can be written as

C
(4)+
12 =

{
Im p : −Im p2, Im (p2 + p3), Im (p2 + p4) ∈ V+

}
. (B.8)

5As per the discussion at the beginning of chapter 3, diagrams that do not have any massless internal
propagator are only relevant.
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C
(4)+
12 resides on the manifold Im p1 + · · · + Im p4 = 0. Here we show how specifying

Im p2 in V−6, and Im (p2 + p3) and Im (p2 + p4) in V+ in turn determine the sign-valued

map λ(I) (described by equation (3.4)) uniquely. Now we consider the following set of

seven Im PI

{
Im p2, Im p3, Im p4, Im (p2+ p3), Im (p2+ p4), Im (p3+ p4), Im (p2+ p3+ p4)

}
. (B.9)

We want to see that for any Im p inside the cone C(4)+
12 in which lightcone each element of

the above set lies. Knowing this, similar information for any other possible Im PI can be

determined using the relation Im p1 + · · ·+ Im p4 = 0. Now the following information can

be obtained since for any Im p ∈ C(4)+
12 we have −Im p2, Im (p2 + p3), Im (p2 + p4) ∈ V+.

Im p3 = −Im p2 + Im (p2 + p3) ∈ V+,

Im p4 = −Im p2 + Im (p2 + p4) ∈ V+,

Im (p3 + p4) = Im p3 + Im p4 ∈ V+,

Im (p2 + p3 + p4) = −Im p2 + Im (p2 + p3) + Im (p2 + p4) ∈ V+ .

(B.10)

Hence the signs λ(I) corresponding to the cone C(4)+
12 is now known for any non-empty

proper subset I of {1, . . . , 4}.

In section 3.2.2, with {−Im p2, Im (p2 + p3), Im (p2 + p4)} as our basis, points in the

cone C(4)+
12 have been described. However any point in C(4)+

12 can uniquely be written

in a new basis given by {Im p2, Im p3, Im p4} since such a change of basis is a linear

transformation L with det(L) = −1. This transformation law can be stated as: any point

~Q = (Pα, Pβ, Pγ) written in the basis {−Im p2, Im (p2 + p3), Im (p2 + p4)} can be written

as L ~Q = (−Pα, Pα + Pβ, Pα + Pβ) in basis {Im p2, Im p3, Im p4}.

6V−(= −V+) is the open backward lightcone in RD.



B.6 The cone C(4)+
12 93

Hence the point ~Q in the cone C(4)+
12 as given in (3.19) in the new basis reads as

L ~Q =



−P0
α P0

α + P0
β P0

α + P0
γ

−P1
α P1

α + P1
β P1

α + P1
γ

...
...

...

−PD−1
α PD−1

α + PD−1
β PD−1

α + PD−1
γ


, (B.11)

with conditions P0
r > +

√∑D−1
i=1 (Pi

r)2 ∀r = α, β, γ. And the points in (3.20) in the new

basis read as

L ~̃Q1 = 3



−P0
α + ε P0

α − ε/2 P0
α − ε/2

−P1
α P1

α P1
α

...
...

...

−PD−1
α PD−1

α PD−1
α


, L ~̃Q2 = 3



−ε/2 P0
β − ε/2 ε

0 P1
β 0

...
...

...

0 PD−1
β 0


,

L ~̃Q3 = 3



−ε/2 ε P0
γ − ε/2

0 0 P1
γ

...
...

...

0 0 PD−1
γ


,

(B.12)

where ε satisfies the condition: 0 < ε < min
{
P0

r −

√∑D−1
i=1 (Pi

r)2, r = α, β, γ
}
. Clearly

above points L ~Q, L ~̃Q1, L ~̃Q2 and L ~̃Q3 written in the basis {Im p2, Im p3, Im p4} are

consistent with (B.10). Furthermore each columns of L ~̃Q1 lie on the same two dimen-

sional Lorentzian plane where Pα lies. Similarly all the columns of L ~̃Q2 lie on the two

dimensional Lorentzian plane where Pβ lies, and all the columns of L ~̃Q3 lie on the two

dimensional Lorentzian plane where Pγ lies. Now it is easy to check that the following

relation holds
L ~̃Q1

3
+
L ~̃Q2

3
+
L ~̃Q3

3
= L ~Q . (B.13)

Which depicts nothing but the linearity of L on (3.21).
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B.7 Difficulty arising for C′(5)+
12

Consider a 5-point function, i.e. n = 5. We take the following conditions which describe

one of the 20 problematic cones, C′(5)+
12 .

Im (p1 + p3), Im (p1 + p4), Im (p2 + p3), Im (p2 + p4) ∈ V+,

− Im (p1 + p3 + p4), −Im (p2 + p3 + p4) ∈ V+ .

(B.14)

Above conditions in turn imply that Im p1, Im p2 ∈ V+ and Im p3, Im p4 ∈ V−.

In this case, we choose
{
Im p1, Im p2,−Im p3,−Im p4

}
as our basis to assign coordinates

to the points in the cone C′(5)+
12 . The goal is to find P1, P2, P3, P4 ∈ V+, in terms of

which we can decompose a generic point
(
Im p1, Im p2,−Im p3,−Im p4

)
in the cone

in a convex combination of several points. Each of the terms in the decomposition should

be in
⋃

~θ C
′(5)+,~θ
12 .

Consider the following decomposition in a sum of four terms,

(
Im p1, Im p2,−Im p3,−Im p4

)
=

(
α1P1, α2P1, α3P1, α4P1

)
+

(
β1P2, β2P2, β3P2, β4P2

)
+

(
γ1P3, γ2P3, γ3P3, γ4P3

)
+

(
δ1P4, δ2P4, δ3P4, δ4P4

)
,

(B.15)

where αr, βr, γr, δr, r = 1, . . . , 4 all are real and non-negative. The conditions imposed by

(B.14) imply for αr,

α1 ≥ α3, α4 ; α1 ≤ α3 + α4 ; α2 ≥ α3, α4 ; α2 ≤ α3 + α4 . (B.16)

Exactly the same conditions should hold for βr, γr and δr as well. Note that in case of

equality we can stay within the cone using ε prescription for the p0 components. For

example, suppose we have,

α1 = α3 ; β1 > β3 ; γ1 > γ3 ; δ1 > δ3 , (B.17)
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and all other inequalities (strictly) as in (B.16), without loss of generality. Then we can

write the r.h.s. of (B.15) as

(
α1P1 + τε̄, α2P1, α3P1, α4P1

)
+

(
β1P2 − τε̄, β2P2, β3P2, β4P2

)
+

(
γ1P3, γ2P3, γ3P3, γ4P3

)
+

(
δ1P4, δ2P4, δ3P4, δ4P4

)
,

(B.18)

where

0 < τ < min
{
β1 − β3, β1 − β4

}
;

ε̄ ≡



ε

0

0
...

0


, 0 < ε < min

{
P0

r − |
~Pr|, r = 1, . . . , 4

}
. (B.19)

Clearly P2 −
τ
β1
ε̄, P2 −

τ
β1−β3

ε̄, P2 −
τ

β1−β4
ε̄ ∈ V+ since τ

β1
, τ
β1−β3

, τ
β1−β4

< 1. Hence for each

term in (B.18), we remain inside the cone C̃′+12.

Now for each term in the decomposition (B.15), evidently all the four columns lie on a

two dimensional Lorentzian plane. We need to solve for P1, P2, P3, P4 by inverting the

following matrix equation,



α1 β1 γ1 δ1

α2 β2 γ2 δ2

α3 β3 γ3 δ3

α4 β4 γ4 δ4





P1

P2

P3

P4


=



Im p1

Im p2

−Im p3

−Im p4


. (B.20)

If we find that all the Pr are in V+, then the proof is done and we can say that C′(5)+
12 =

Ch
(⋃

~θ C
′(5)+,~θ
12

)
. But subject to conditions (B.16), solving (B.20) seems to be difficult

analytically.
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[14] B. Zwiebach, âĂIJOriented open - closed string theory revisited,âĂİ Annals Phys.
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JHEP 1602, 087 (2016) doi:10.1007/JHEP02(2016)087 [arXiv:1508.05387 [hep-

th]].



Bibliography 99

[18] C. de Lacroix, H. Erbin, S.P. Kashyap, A. Sen and M. Verma, “Closed Super-

string Field Theory and its Applications,” Int. J. Mod. Phys. A 32 (2017) 1730021

[arXiv:1703.06410].

[19] H. Erbin, “String Field Theory A Modern Introduction," Lecture Notes in Physics,

Springer (2021).

[20] R. Pius and A. Sen, “Cutkosky rules for superstring field theory,” JHEP 10 (2016)

024 [Erratum ibid. 1809 (2018) 122] [arXiv:1604.01783].
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https://doi.org/10.1007/BF01018410.

[96] B.V. Medvedev, V.P. Pavlov, M.K. Polivanov and A.D. Sukhanov, “Analytic prop-

erties of multiparticle production amplitudes,” Theor. Math. Phys. 59, 427âĂŞ440
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