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Summary

The thesis starts with studying one infrared property of quantum gravity S-matrices and

ends with some prediction of gravitational memory for scattering of astrophysical objects

which can be experimentally tested by space-based gravitational wave detector in near

future. In this thesis we discuss the following developments in the classical and quantum

soft photon and soft graviton theorem:

• We explain Sen’s covariantization technique for deriving soft photon and soft gravi-

ton theorem in general spacetime dimensions. Then we discuss some infrared issues

in four spacetime dimensions for deriving soft theorem from S-matrix analysis.

• We describe how to take the classical limit of soft theorem and relate it to the long-

wavelength electromagnetic and gravitational waveform. From these understand-

ings and some naive physical assumptions, we predict the subleading soft factor in

four spacetime dimensions.

• By direct S-matrix analysis in D=4, using a particular kind of infrared regularisa-

tion, we derive subleading soft theorem for loop amplitudes which turns out to be

logarithmic in the energy of the soft particle and in classical limit this result agrees

with the earlier prediction.

• Finally by independent classical analysis we derive long-wavelength / large retarded

time electromagnetic and gravitational waveform and prove it’s relation with soft

factors in four spacetime dimensions.
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1 Soft theorem in general

spacetime dimensions

In a generic theory of quantum electrodynamics or quantum theory of gravity, soft pho-

ton/graviton theorem gives an amplitude with a set of finite energy external particles

(hard particles) with arbitrary mass and spin and one or more low energy external pho-

tons/gravitons (soft photons/gravitons), in terms of the amplitude without the low en-

ergy photons/gravitons [1–18, 43–49, 100, 101]. Though most of the derivations are done

for specific theories, here in this chapter we describe a prescription pioneered by Sen

[100, 101], which do not assume any particular theory.

1.1 Sen’s Covariantization prescription for one soft pho-

ton/graviton

In this section we describe the covariantization prescription developed by Sen [100, 101]

and carried forward in [11, 15, 17] for deriving subleading soft theorem for one external

soft particle (photon/ graviton) for a generic theory of quantum electrodynamics or quan-

tum gravity. We combine soft photon and graviton within a single soft field and at the

end from the final soft theorem result we can extract soft photon or soft graviton theorem

unambiguously [17]. The steps for covariantization are as follows:

17



18 Soft theorem in general spacetime dimensions

• Consider a generic theory of quantum gravity in D non-compact spacetime dimen-

sions which can have U(1) gauge symmetry and assumed to be UV complete and

background independent. Suppose the theory is described in terms of U(1) gauge

invariant and general coordinate invariant 1PI effective action having arbitrary num-

ber of fields with arbitrary mass and spin.

• Expand the 1PI effective action in powers of all the fields of the theory including

photon and graviton field about their vacuum expectation values so that one point

function of the fluctuation of any field vanishes.

• Now gauge fix the action using Lorentz covariant gauge fixing condition. The prop-

agators computed from this gauge fixed action have only simple poles at it’s renor-

malised mass square values. Use this gauge fixed action to derive the Feynman

rules for vertices associated with only finite energy particles (hard particles).

• The gauge fixed action is Lorentz invariant but not manifestly U(1) gauge invariant

or general coordinate invariant. Now we covariantize the action with respect to

soft photon and soft graviton background1. Broadly this covariantization means

replacing the flat metric by the metric associated with soft graviton background

and replace the ordinary spacetime derivative by covariant derivative containing

soft photon field, spin connection and/or Christoffel connection associated with soft

graviton background.

• We need to add the action for soft photon and soft graviton fields which are needed

for deriving propagators for soft particles and the vertices describing interactions

between soft particles2. We also need to include generic non-minimal coupling

terms in the action describing non-minimal interactions between soft photon/graviton

1If we consider superstring field theory as the quantum theory of gravity then covariantization with re-
spect to soft graviton field means deforming the background target space metric used for constructing world-
sheet CFT by the soft graviton mode (which is a marginal deformation). Now the background independence
tells that these two different super-string field theories are related to each other by field redefinition [109].

2This would be important in proving multiple soft photon/graviton theorem, but not necessary for prov-
ing single soft photon/graviton theorem.



1.1 Sen’s Covariantization prescription for one soft photon/graviton 19

field and finite energy fields3.

• Now we derive the Feynman rules for the vertices describing interactions between

finite energy particles and soft photons or/and gravitons from the full covariantized

action after adding the non-minimal contributions described above.

• Now after having all the ingredients we have to compute tree level amplitude for

a scattering event associated with arbitrary number of finite energy particles and

one soft photon/graviton and expand the amplitude in terms of the energy of the

soft photon/graviton to relate it to the amplitude without soft photon/graviton. This

gives the soft theorem to all loop order in perturbation theory.

We shall use the reduced Planck unit 8πG = c = ~ = 1 and the Minkowski metric is

mostly positive in our convention. All our finite energy fields carry tangent space indices

such that both bosons and fermions can be analysed at one go. We shall use a, b, c, d, · · ·

as tangent space indices, µ, ν, ρ, σ, · · · as curved space indices and all the indices will be

lowered or raised by Minkwoski metric η. {Φα} will represent the set of fields present in

the theory (given as 1PI effective action) which belongs to some reducible representation

of the Lorentz group SO(1, D-1)4. Here α index in the superscript represents different

fields as well as spin and/or polarisation indices of any one of the fields. The external soft

photon field will be denoted by Aµ(x) and external soft graviton field will be denoted by

S µν(x). They have the following plane wave modes:

Aµ(x) = εµ(k) eik.x , kµεµ = 0 , (1.1.1)

S µν(x) = εµν(k) eik.x , εµν η
µν = 0 , kµεµν = kνεµν = 0. (1.1.2)

3For example soft photon field can couple to finite energy fields via field strength and soft graviton field
can couple to finite energy fields via Riemann tensor and its various combinations.

4Though super-string field theory (a candidate of quantum theory of gravity) has infinite number of fields
but if we are interested in studying a scattering event at some energy scale we can always integrate out all
the massive fields with masses greater than the energy scale as they can not be produced in the scattering
event. So in that sense at any energy scale we always have finite number of fields in the 1PI effective action.
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The background metric associated with one soft graviton mode is given by,

gµν = ηµν + 2S µν, with S µν = S νµ , ηµνS µν = 0 (1.1.3)

Correspondingly the vielbeins are,

ea
µ = δa

µ + S a
µ + · · · , Eµ

a = δµa − S µ
a + · · · . (1.1.4)

Above we have chosen the soft graviton field as symmetric and traceless, so that
√
−det(g) =

1 in the covariantized action. For proving single soft theorem upto subleading order, we

only need to keep terms linear in soft photon/graviton field and also terms upto one deriva-

tive on soft photon/graviton field. We combine soft photon and graviton field within a

single soft field as ξr ≡ (εµ, εµν).

Suppose under global U(1) transformation some real component field Φα transforms as

Φα →
[
exp(iQθ)

] β
α Φβ, where θ is the U(1) global transformation parameter and Q is

the generator of global U(1) transformation on real component field Φα
5. Then the co-

variantization procedure suggests to replace a set of ordinary derivatives operating on Φα

by,

∂a1∂a2 ...∂amΦα → Eµ1
a1

Eµ2
a2
· · · Eµm

am
Dµ1 Dµ2 · · · Dµm Φα, (1.1.5)

where

DµΦα = ∂µΦα − iQα
βAµ Φβ +

1
2
ωab
µ (Σab)α β Φβ . (1.1.6)

Here Σab is the spin angular momenta, normalised by specifying it’s operation on a co-

5Usually complex fields have U(1) global charge but since we are considering gravity and gauge theory
together working in terms of real field components are easier. For example in place of a complex scalar
field we will work with two real scalar fields considering them in a two component vector which rotates
under SO(2) and Q is the generator of SO(2) transformation.
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variant vector field φd as,

(Σab)c
d φd =

(
δa

cη
bd − δb

cη
ad)φd (1.1.7)

and ωab
µ is the spin connection defined upto first order in S µν as,

ωab
µ = ∂bS a

µ − ∂aS b
µ . (1.1.8)

Similarly two covariant derivatives operating on a field can be expressed upto terms linear

in soft field and only one derivative on the soft field as,

DµDνΦα = ∂µ(DνΦα) − iQα
βAµ(DνΦβ) +

1
2
ω ab
µ (Σab)α β(DνΦβ) − Γρµν∂ρΦα

= ∂µ∂νΦα − iQα
β∂µAνΦβ − iQα

β (
Aµ∂νΦβ + Aν∂µΦβ

)
+

1
2
ω ab
µ (Σab)α β∂νΦβ +

1
2
ω ab
ν (Σab)α β∂µΦβ − Γρµν∂ρφα + · · · (1.1.9)

where

Γρµν =
(
∂µS ρ

ν + ∂νS ρ
µ − ∂

ρS µν

)
+ terms quadratic in S µν . (1.1.10)

The terms represented by ” · · · ” in eq.(1.1.9) are either quadratic in the soft fields (would

be important in proving double soft theorem) or contains more than one derivative on the

soft field (would be important in proving soft theorem at sub-subleading order) would

not play any role in proving subleading soft theorem for one soft particle. Also the last

term containing Christoffel connection will not contribute to our analysis following the

argument given in the appendix of [101].

We shall follow the convention that all the particles are ingoing and in all the Feynman

diagrams the thick lines represent hard particles and thin line represents combined soft

particle. To determine the vertices containing two finite energy particles and one soft
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particle we need to covariantize the following quadratic part of the 1PI effective action:

S (2) =
1
2

∫
dDq1

(2π)D

dDq2

(2π)D Φα(q1) Kαβ(q2) Φβ(q2) (2π)Dδ(D)(q1 + q2) .(1.1.11)

Here Φα(q) is the Fourier transform of the field Φα(x) and if Φα is a Grassmann even field

then the kinetic operator satisfies,

Kαβ(q) = Kβα(−q) . (1.1.12)

If Φα is a Grassmann odd field then the right hand side of (1.1.12) should contain an

extra negative sign but final soft theorem result will be independent of this. The full

renormalized propagator for a finite energy particle with momentum qµ and renormalised

mass M is given by,

DF(q)αβ ≡ i K−1
αβ (q) ≡ (q2 + M2)−1 Ξαβ(q) , (1.1.13)

From the invariance of the action S (2) under global U(1) transformationΦα → [exp (iQθ)]α β Φβ,

the kinetic operator needs to satisfy

Q α
γ K

γβ + Kαγ Q β
γ = 0. (1.1.14)

In index free matrix notation this relation translates to,

QTK + KQ = 0. (1.1.15)

This imposes the following condition on the numerator of the propagator defined in

(1.1.13),

Q Ξ + Ξ QT = 0. (1.1.16)

The vertex describing the minimal interaction between two finite energy particles and one
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soft particle with polarisation and momentum (ξ, k) upto linear order in soft momentum,

can be read off from the following covariantized part of the action(1.1.11),

S (3) =
1
2

∫
dDq1

(2π)D

dDq2

(2π)D (2π)Dδ(D)(q1 + q2 + k)

Φα(q1)
[
− εµ

∂Kαγ(q2)
∂q2µ

Q β
γ −

1
4

(kµεν + kνεµ)
∂2Kαγ(q2)
∂q2µ∂q2ν

Q β
γ

− εµνqν2
∂Kαβ(q2)
∂q2µ

+
1
2

(kbεaµ − kaεbµ)
∂Kαγ(q2)
∂q2µ

(Σab)γ β

]
Φβ(q2) .

(1.1.17)

First, third, and fourth terms within the square bracket above directly follows from covari-

antization of single derivative on Φβ withinKαβ(q2) following eq.(1.1.6) multiplied by in-

verse vielbein. The second term within the square bracket follows from covariantization

of two derivative on Φβ within Kαβ(q2) due to the second term in the r.h.s. of eq.(1.1.9).

With S (3) one needs to add non-minimal part of the action describing interaction between

two finite energy particles and one soft photon coupled via field strength6,

S
(3)
≡

1
2

∫
dDq1

(2π)D

dDq2

(2π)D (2π)Dδ(D)(q1 + q2 + k) Fµν(k) Φα(q1) Cαβ,µν(q2) Φβ(q2)

(1.1.18)

where

Fµν(k) = i
[
kµεν(k) − kνεµ(k)

]
and Cαβ,µν(q) is a generic non-minimal coupling7. From the global U(1) invariance and

symmetry of the action, C has to satisfy the following properties for grassmann even field

Φα ,

Q α
γ C

γβ,µν(q2) + Cαγ,µν(q2) Q β
γ = 0 (1.1.19)

6 We can add similar non-minimal action for soft graviton as well, but this kind of interaction will not
affect single soft graviton theorem upto subleading order as it involved Riemann tensor of soft graviton
field, which generates vertex quadratic in soft graviton momentum [11].

7An example of such kind of non-minimal coupling in spinor QED is ψ̄γµνFµνψ where Cµν ∼ γµν =
i
4 [γµ, γν]
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Cαβ,µν(q2) = − Cαβ,νµ(q2) (1.1.20)

Cαβ,µν(q2) = Cβα,µν(−q1 − k). (1.1.21)

If Φα is a Grassmann odd field then the r.h.s. of the last equation above sould have an

extra minus sign.

Γ(3)
p

α

ξ k

−p− k

β

Figure 1.1: 1PI vertex describing interection between two finite energy particles and one
soft particle. Figure adopted from [17].

The expression of the 1PI vertex for Fig.(1.1) is derived from (1.1.17) and (1.1.18) after

symmetrization in α, β,

Γ(3)αβ(ξ, k; p,−p − k)

= +
i
2

[
εµ(k)

∂Kαγ(−p − k)
∂pµ

Q β
γ − εµ(k)

∂Kβγ(p)
∂pµ

Q α
γ −

1
4

(kµεν + kνεµ)
∂2Kαγ(−p − k)

∂pµ∂pν
Q β
γ

−
1
4

(kµεν + kνεµ)
∂2Kβγ(p)
∂pµ∂pν

Q α
γ + i (kµεν − kνεµ) Cαβ,µν(−p − k) + i (kµεν − kνεµ)Cβα,µν(p)

−εµν(k)(p + k)ν
∂Kαβ(−p − k)

∂pµ
− εµν(k)pν

∂Kβα(p)
∂pµ

−
1
2

(kbεaµ − kaεbµ)
∂Kαγ(−p − k)

∂pµ
(Σab)γ β +

1
2

(kbεaµ − kaεbµ)
∂Kβγ(p)
∂pµ

(Σab)γ α

]
. (1.1.22)

After using the relations (1.1.12),(1.1.1),(1.1.2), (1.1.21),(1.1.15) and doing Taylor series
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expansion in kµ, upto linear order in kµ we get the following index free form of Γ(3),

Γ(3)(ξ, k; p,−p − k)

= i
[

+ εµ
∂K(−p)
∂pµ

Q +
1
2
εµkν

∂2K(−p)
∂pµ∂pν

Q + i (kµεν − kνεµ) Cµν(−p)

− εµνpν
∂K(−p)
∂pµ

+
1
2
εbµka

∂K(−p)
∂pµ

(Σab) −
1
2
εbµka (Σab)T ∂K(−p)

∂pµ
−

1
2
εµνpνkρ

∂2K(−p)
∂pµ∂pρ

]
.

(1.1.23)

Γ̃
ξ

k

q1
α1

·
·
·
qN

αN

Figure 1.2: Amputated Greens function of N number of finite energy particles and one soft
particle. This Feynman diagram represents sum over all the Feynman diagrams leaving
the diagrams where the soft particle is attached to some external leg. Figure adopted
from [17].

The amputated Greens function of N number of finite energy particles and one soft par-

ticle in Fig.(1.2) is evaluated by covariantizing the N particle amputated Greens function

Γ(q1, q2, · · · , qN) with respect to soft particle(photon/graviton) background. Since the di-

agram Γ̃ does not have any scalar propagator which contributes inverse power in soft

momentum, it starts contributing from subleading order in soft momentum expansion. So

we need the leading contribution in soft momentum from this diagram,

Γ̃(ξ, k; q1, q2, · · · , qN) = −

N∑
i=1

{ N∏
j=1
j,i

εα j

}
εαi

[
Q αi
βi
εµ(k)

∂

∂qiµ
+ εµν(k)δαi

βi
qνi

∂

∂qiµ

]
Γα1···βi···αN (q1, ..., qN) ,

(1.1.24)
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where εαi(qi) denotes the polarization tensor of the i’th finite energy particle. Note that

both Γ̃ and Γ are distributions of momenta as in our notation Γ̃ contains (2π)Dδ(D)(q1 +

· · · + qN + k) and Γ contains (2π)Dδ(D)(q1 + · · · + qN).

1.2 Steps for evaluating Feynman diagrams

Here we describe five steps which one have to follow consecutively to evaluate the Feyn-

man diagrams.

1. First write down the contribution of any Feynman diagram using the vertices and

propagators derived in §1.1 and multiply the polarisation tensor of finite energy

particles from the left.

2. Now use the following relations and their momentum derivatives to move (Σab) and

(Σab)T to the possible extreme right position,

(Σab)T K(−p) = −K(−p) (Σab) + pa∂K(−p)
∂pb

− pb∂K(−p)
∂pa

, (1.2.25)

(Σab) Ξ(−p) = − Ξ(−p) (Σab)T − pa∂Ξ(−p)
∂pb

+ pb∂Ξ(−p)
∂pa

.(1.2.26)

The above relations follow from the Lorentz covariance ofK andΞ. Similarly move

the U(1) charge matrix Q to the possible extreme right using (1.1.15), (1.1.16),

(1.1.20) and their momentum derivative relations.

3. Now Taylor expandK , Ξ and Γα1,··· ,αN in powers of soft momenta kµ and keep terms

up to the required order.

4. Now move the momentum derivative from K to Ξ to the maximal possible extent

using the following relations which directly follows from eq.(1.1.13),

∂K(−p)
∂pµ

Ξ(−p) = − K(−p)
∂Ξ(−p)
∂pµ

+ 2ipµ (1.2.27)
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∂Ξ(−p)
∂pµ

K(−p) = −Ξ(−p)
∂K(−p)
∂pµ

+ 2ipµ . (1.2.28)

∂2K(−p)
∂pµ∂pν

Ξ(−p) = 2iηµν −
∂K(−p)
∂pµ

∂Ξ(−p)
∂pν

−
∂K(−p)
∂pν

∂Ξ(−p)
∂pµ

− K(−p)
∂2Ξ(−p)
∂pµ∂pν

.

(1.2.29)

5. In the final step use the on-shell condition for finite energy particle,

εT (p)K(−p) = 0. (1.2.30)

1.3 Subleading soft theorem for one external soft pho-

ton/graviton

Γ(3) Γ

ǫi, pi

ξ k

pi + k

ǫ1, p1

ǫN , pN

·
·
·

Figure 1.3: Diagram representing sum over all possible Feynman diagrams where the soft
particle is attached to some external leg via Γ(3). Figure adopted from [17].

The diagram in Fig.1.3 starts contributing at leading order since it contains a nearly on-

shell propagator which contributes inverse power in soft momentum. On the other hand

the diagram in Fig.1.4 starts contributing at subleading order relative to the contribution

from Fig.1.3. Following the steps described in §1.2 we can evaluate the diagrams. Here

we are giving the final expressions, for intermediate steps the reader can look into the

references [17,101]. The N-particle amputated Greens function after stripping out the i’th
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finite energy particle polarisation tensor is denoted by,

Γ(i)αi(pi) ≡

{ N∏
j=1
j,i

ε j,α j(p j)
}
Γα1α2···αN (p1, · · · , pN) . (1.3.31)

The contribution of Fig.(1.3) turns out to be,

Ai = {pi · k}−1
[
εµpµi ε

T
i QT

i Γ
(i)(pi) + εµpµi kρ εT

i QT
i
∂Γ(i)(pi)
∂piρ

+ (εµkν − ενkµ) εT
i N

µν
(i) (−pi) Γ(i)(pi)

+ εµνpµi pνi ε
T
i Γ

(i)(pi) + εµνpµi pνi kρ ε
T
i
∂Γ(i)(pi)
∂piρ

+ εbµpµi ka ε
T
i (Σab

i )T Γ(i)(pi)
]
. (1.3.32)

where,

N
µν
(i) (−pi) =

i
4
∂Ki(−pi)
∂piν

∂Ξi(−pi)
∂piµ

QT
i +

1
2
C
µν
(i)(−pi)Ξi(−pi) , (1.3.33)

· · ·

ǫ1, p1

ǫ2, p2
ǫN , pN

ξ k

Γ̃

Figure 1.4: Diagram representing sum over all possible Feynman diagrams where the soft
particle is not attached to any external leg. Figure adopted from [17].

Contribution of Fig.(1.4) directly follows from (1.1.24),

B = −

N∑
i=1

[
εµ(k) εT

i QT
i
∂Γ(i)(pi)
∂piµ

+ εµν(k)pνi ε
T
i
∂Γ(i)(pi)
∂piµ

]
. (1.3.34)

Now
N∑

i=1
Ai + B will give the full (N + 1) point amplitude in terms of N point amplitude.



1.3 Subleading soft theorem for one external soft photon/graviton 29

Hence the subleading soft theorem for one soft particle turns out to be:

Γ(N+1)(ξ, k; {εi, pi })

=

N∑
i=1

{pi · k}−1 εT
i

{
εµpµi QT

i + εµνpµi pνi
}
Γ(i)(pi)

+

N∑
i=1

{pi · k}−1 εµkρ εT
i QT

i

{
pµi

∂

∂piρ
− pρi

∂

∂piµ

}
Γ(i)(pi)

+

N∑
i=1

{pi · k}−1 εbµpµi ka ε
T
i

{
pb

i
∂

∂pia
− pa

i
∂

∂pib
+ (Σab

i )T

}
Γ(i)(pi)

+

N∑
i=1

{pi · k}−1 (εµkν − ενkµ) εT
i N

µν
(i) (−pi) Γ(i)(pi) . (1.3.35)

From here, we can recover the single soft photon theorem upto subleading order after

setting the polarization tensor for graviton to zero. If the external finite energy particles

are charge eigenstates of U(1) charge generator Q i.e. Qεi = qiεi then the subleading soft

photon theorem takes the standard form of "Low’s subleading soft photon theorem" [45],

Γ(N+1)(ε, k; {εi, pi})

=

N∑
i=1

[
qi
εµpµi
pi · k

+ qi
εµkρ
pi · k

{
pµi

∂

∂piρ
− pρi

∂

∂piµ

} ]
Γ(N)({εi, pi})

+

N∑
i=1

1
pi · k

(εµkν − ενkµ) εT
i N

µν
(i) (−pi) Γ(i)(pi) . (1.3.36)

In the above equation second line of r.h.s is the general structure of non-universal term

appearing in the subleading order of soft photon theorem. This non-universal term in soft

photon theorem has been explored in [97] for some particular examples of non-minimal

couplings in effective field theories of QED..

Similarly by setting the polarization vector of photon to be zero in expression(1.3.35) we

recover "Cachazo-Strominger subleading soft graviton theorem" [7].

Γ(N+1)(ε, k; {εi, pi})
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=

N∑
i=1

εT
i

[
εµνpµi pνi

pi · k
+
εbµpµi ka

pi · k

{
pb

i
∂

∂pia
− pa

i
∂

∂pib
+ (Σab

i )T

} ]
Γ(i)(pi)

(1.3.37)

Above in the subleading soft factor the full expression within curly bracket represents

transpose of total angular momentum of i’th finite energy particle,

jab
i ≡ pb

i
∂

∂pia
− pa

i
∂

∂pib
+ Σab

i . (1.3.38)

1.4 Sub-subleading soft graviton theorem and sublead-

ing multiple soft graviton theorem

In this section we explain what extra ingredients we need to prove the sub-subleading soft

graviton theorem and subleading multiple soft graviton theorem for a generic theory of

quantum gravity and then directly state the results.

1.4.1 Sub-subleading soft theorem for one external soft graviton

For proving sub-subleading soft graviton theorem we have to compute the same two dia-

grams in Fig.1.3 and 1.4 but now to one higher order in soft momentum expansion. For

this we need two extra ingredients [11] :

1. In the covariantization procedure of quadratic part of 1PI action, now we need to

include contribution of two new terms with eq.(1.1.17), which are quadratic in soft

momentum. One comes from covariantizing two derivatives operating on Φβ: co-

variantization of ∂µ∂νΦβ gives additional term 1
2∂(µω

ab
ν) (Σab)β γΦγ. Another new

contribution comes from covariantizing three derivatives operating on Φβ: covari-

antization of ∂µ∂ν∂ρΦβ gives additional term −∂(ρΓ
σ
µν)∂σΦβ.
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2. In the quadratic order in soft momentum we need to add a generic coupling term

contribute to Γ(3)(ε, k; p,−p − k) describing non-minimal interaction between two

finite energy particles and one soft graviton via Riemann tensor. We consider the

general form of the non-minimal action with specific soft graviton momentum k,

S
(3)
gr =

1
2

∫
dDq1

(2π)D

dDq2

(2π)D (2π)Dδ(D)(q1 + q2 + k) Rµνρσ(k) Φα(q1)Bαβ,µνρσ(q2)φβ(q2)

(1.4.39)

where Rµνρσ(k) is the Fourier transform of linearised Riemann tensor given as,

Rµνρσ(k) = εµρkνkσ − εµσkνkρ − ενρkσkµ + ενσkµkρ (1.4.40)

and Bαβ,µνρσ(q) is a generic function of momentum, spin of finite energy particles.

Here B satisfies Bαβ,µνρσ(q2) = Bβα,µνρσ(−q2 − k).

Including the above two new kind of contributions and following the steps described in

§1.2, the sub-subleading contribution turns out to be [11]:

∆(sub)2−leading Γ
(N+1)(ε, k; {εi, pi})

=
1
2

N∑
i=1

εackbkd

pi · k
εT

i

[
pb

i
∂

∂pia
− pa

i
∂

∂pib
+ (Σab

i )T

] [
pd

i
∂

∂pic
− pc

i
∂

∂pid
+ (Σcd

i )T

]
Γ(i)(pi)

+
1
2

N∑
i=1

1
pi · k

Rµρνσ(k) εT
i N

µρνσ
(i) (−pi) Γ(i)(pi) (1.4.41)

where

N
µρνσ
(i) (−pi) =

i
3

pνi
∂Ki(−pi)
∂piµ

∂2Ξi(−pi)
∂piρ∂piσ

−
i
6

pρi
∂2Ki(−pi)
∂piµ∂piν

∂Ξi(−pi)
∂piσ

+
i
4
∂Ki(−pi)
∂piµ

∂Ξi(−pi)
∂piρ

(Σνσi )T −
1
4

(Σµρi )T (Σνσi )T + iBµρνσ(i) (−pi) Ξi(−pi)

(1.4.42)
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The second line of r.h.s in eq.(1.4.41) represents the non-universal term appearing in the

sub-subleading order of soft graviton theorem. For various effective theory of quantum

gravity with non-minimal couplings the non-universal part has been tested explicitly [11,

97].

1.4.2 Subleading multiple soft graviton theorem

For proving double soft graviton theorem we need two new kind of vertices besides the

vertices available for proving single soft graviton theorem. It turns out that the ingredients

needed for proving single and double soft graviton theorem is enough for proving multiple

soft graviton theorem though the proof is much more involved [15]. The two new kind of

vertices are

1. We need to evaluate a four point 1PI vertex Γ(4) describing interaction between

two finite energy particles and two soft gravitons. This vertex can be derived from

the covariantization of quadratic part of 1PI effective action S (2) with background

metric gµν = ηµν + 2S µν + 2S µρS
ρ
ν, but now one has to keep terms upto quadratic

order in soft graviton field S µν.

2. There are possible Feynman diagrams containing three graviton vertex V (3) of which

one graviton is virtual and connected to a finite energy leg by vertex Γ(3). This

three graviton vertex along with graviton propagator can be worked out from the

Einstein-Hilbert action for the soft graviton metric.

We have to evaluate four kinds of diagrams for extracting subleading multiple soft factor:

• Diagrams where all the soft gravitons are connected to finite energy particle lines by

Γ(3) vertices. These diagrams start contributing from leading order in soft momenta

expansion.



1.4 Sub-subleading soft graviton theorem and subleading multiple soft graviton theorem 33

• Diagrams where one soft graviton is connected directly to the N-point amputated

Greens function through Γ̃ and the rest of the soft gravitons are connected to fi-

nite energy particle lines by Γ(3) vertices. These diagrams start contributing at the

subleading order in soft momenta expansion.

• Diagrams where two soft gravitons are connected to a finite energy line via vertex

Γ(4) and the rest of the soft gravitons are connected to finite energy particle lines

by Γ(3) vertices. These diagrams start contributing at the subleading order in soft

momenta expansion.

• Diagrams where two soft gravitons are connected to a scalar line via three gravi-

ton vertex V (3) - graviton propagator -vertex Γ(3) and the rest of the soft gravitons

are connected to finite energy particle lines by Γ(3) vertices. These diagrams start

contributing at the subleading order in soft momenta expansion.

For M number of soft gravitons with polarisations and momenta {εr(kr), kr} the subleading

multiple soft graviton theorem becomes [15]:

Γ(N+M)({εr, kr} , {εi, pi}
)

=

{ N∏
i=1

εi,αi

} [ { M∏
r=1

S (0)
r

}
Γα1···αN +

M∑
s=1

{ M∏
r=1
r,s

S (0)
r

} [
S (1)

s Γ
]α1···αN

+

M∑
r,u=1
r<u

{ M∏
s=1

s,r,u

S (0)
r

} { N∑
j=1

1
p j · (kr + ku)

M
(
p j; εr, kr; εu, ku

)}
Γα1···αN

]
(1.4.43)

where S (0)
r is the leading soft factor for r′th graviton

S (0)
r =

N∑
i=1

εr,µνpµi pνi
pi · kr

, (1.4.44)

S (1)
r is the subleading soft factor for r′th graviton

[
S (1)

r Γ
]α1···αN

=

N∑
i=1

εr,bµpµi kra

pi · kr

{
pb

i
∂Γα1···αN

∂pia
− pa

i
∂Γα1···αN

∂pib
+ (Σab

i )βi
αi Γα1···βi···αN

}
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(1.4.45)

andM
(
p j; εr, kr; εu, ku

)
is the contact term receives contribution from the last two kind of

diagrams described above and the expression of it is as follows:

M
(
p j; εr, kr; εu, ku

)
= (p j · kr)−1 (p j · ks)−1

[
− (kr · ks) (p j · εr · p j) (p j · εs · p j) + 2(p j · ks) (p j · εr · p j) (p j · εs · kr)

+ 2(p j · kr) (p j · εs · p j) (p j · εr · ks) − 2(p j · kr) (p j · ks) (p j · εr · εs · p j)
]

+ (kr · ks)−1
[
− (ks · εr · εs · p j) (ks · p j) − (kr · εs · εr · p j) (kr · p j)

+ (ks · εr · εs · p j) (kr · p j) + (kr · εs · εr · p j) (ks · p j) − (εr,ρσ ε
ρσ
s )(kr · p j)(ks · p j)

− 2(p j · εr · ks)(p j · εs · kr) + (p j · εs · p j)(ks · εr · ks) + (p j · εr · p j) (kr · εs · kr)
]
.

(1.4.46)

An explicit derivation of subleading multiple soft theorem for arbitrary number of external

soft photons and gravitons are given in [17].
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1.5 Infrared issues and validity of the assumptions

Figure 1.5: Possible one loop diagram contributing to amputated Green’s function Γ̃ can
produce soft factor in the denominator. In the diagram thick lines represent finite energy
particles and thin line represents photon/graviton.

Deriving soft theorem from Sen’s covariantization procedure assumes that the soft mo-

mentum in the denominator comes only from propagators and not from 1PI vertices. Now

here we will show that in D = 4 this assumption breaks down. Consider the one loop dia-

gram in Fig.1.5 which is one of the diagrams contributing to amputated Green’s function

Γ̃ in Fig.1.2. We have assumed that the contribution of Γ̃ starts at the subleading order.

But when the loop momentum in Fig.1.5 becomes of the same order as the external soft

momentum, each of the scalar propagators with momenta pa + `, pa + ` + k and pb − `

contributes one soft momentum in the denominator. There are also two powers of soft mo-

mentum in the denominator due to virtual soft particle propagator. Now in D non-compact

spacetime dimensions the loop integration involved
∫

dD`, so in the specified region of

integration net power of soft momentum is D − 5. Hence in D = 4 Fig.1.5 contributes

one power of soft momentum in the denominator, violating the assumption described in

the beginning of the section. So our soft photon/graviton theorem upto subleading order

is valid for loop amplitudes in D ≥ 5 and only at tree level in D=4.

A similar kind of analysis has been performed in [11] and [15] which tell us that sub-
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subleading soft graviton theorem is valid for loop amplitudes in D ≥ 5 and subleading

multiple soft graviton theorem is valid for loop amplitudes in D ≥ 6.



2 Classical limit of soft theorem

Although soft theorem is a relation between quantum scattering amplitudes – amplitudes

with soft photon or graviton to amplitudes without soft photon or graviton – one can also

relate soft theorem to classical scattering amplitudes. Ref. [19] produced a more direct re-

lation between soft theorem and classical scattering in generic space-time dimensions by

directly taking the classical limit of a quantum scattering amplitude. This relates various

terms in soft theorem to appropriate terms in the radiative part of the electromagnetic and

gravitational fields in classical scattering in generic space-time dimensions. Reversing the

logic, one can use the classical scattering data to give an alternative definition of the soft

factors.

We start with multiple soft graviton theorem and then demand that a large number of low

energy gravitons should come out from the scattering process so that we can declare the

coherent state of the large number of gravitons as gravity wave. This is known as the

classical limit and in this limit, it turns out that masses of the scattered objects are large

in the Planck unit. Here we also assume that the energy loss due to gravitational radiation

is small compare to the energy of the objects participated in the scattering process. This

leads to probe scatterer limit or large impact parameter limit for a two-body scattering

and the wavelength of gravitational radiation has to be large compared to the character-

istic length scale of scattering. After this analysis, we show that in general spacetime

dimensions, the long wavelength gravitational waveform is proportional to the single soft

graviton factor when we replace the asymptotic trajectory of the scattered object in the

37



38 Classical limit of soft theorem

classical angular momentum part.

Since classical scattering is well defined even in four space-time dimensions, one can hope

to use the classical definition of soft factors to understand soft theorem in four dimensions.

Since in higher dimensions, the soft theorem expresses the low frequency radiative part

of the electromagnetic and gravitational fields in terms of momenta and angular momenta

of incoming and outgoing finite energy particles, the naive guess will be that the same

formula will continue to hold in four dimensions. However in carrying out this procedure

we encounter an obstacle [20, 33]. As we have seen in the last chapter, the subleading

terms in the soft theorem contain a factor of angular momentum jµν of the individual

particles involved in the scattering (e.g. look back to eq.(1.3.37)), with the classical orbital

angular momentum given by xµpν − xνpµ, where xµ(τ) and pµ(τ) label the asymptotic

coordinates and momenta of the particle as a function of the proper time. In dimensions

larger than four, pµ approaches a constant and xµ approaches the form cµ + α pµ τ with

constant cµ and α as τ → ∞. Therefore jµν is independent of τ as τ → ∞ and we can

use the asymptotic value of jµν computed this way to evaluate the soft factor. However in

four space-time dimensions the long range gravitational and / or electromagnetic forces

acting on the particles produce an additional term of the form bµ ln τ in the expression

for xµ. This gives a logarithmically divergent term of the form (bµpν − bνpµ) ln τ in the

expression for jµν, making the subleading soft factor divergent.

Since we do not expect the radiative component of the metric or gauge fields to diverge

in classical scattering in four space-time dimensions, this suggests that the divergence in

the subleading soft factor is a breakdown of the power series expansion in the energy ω

of the soft particle. Therefore the soft factor must contain non-analytic terms in ω. The

natural guess is that the soft factor at the subleading order is given by replacing the factors

of ln τ in the naive expression by lnω−1. This has been tested in [20] by considering

several examples of classical scattering in four space-time dimensions.1 In this chapter

1The existence of various logarithmic terms in classical scattering has been known earlier [110–113].
Soft theorem provides a systematic procedure for computing the coefficient of the logarithmic term in the
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we consider a general scattering process where all particles involved in the scattering have

masses of the same order, and then determine the logarithmic terms in the classical soft

factor using the ln τ→ lnω−1 replacement rule.

The organisation of this chapter is as follows. In §2.1 we describe how to take classical

limit of leading multiple soft photon theorem and determine electromagnetic radiation

from classical scattering of charged objects. Then we will explain how this analysis can

be extended for deriving gravitational radiation from multiple soft graviton theorem. §2.2

describes the analysis of the logarithmic terms in D=4 in the subleading soft expansion

for general classical scattering.

2.1 Classical electromagnetic and gravitational radia-

tion from soft theorem

Consider a scattering event where N number of finite energy charged particles are involved

with charges and momenta {qa, pa} for a = 1, · · ·N, with the convention that momenta and

charges are positive for ingoing particles and negative for outgoing particles. Suppose in

this scattering event total M number of soft photons are coming out with polarisation and

momenta {εr, kr} for r = 1, · · · ,M. Then up to leading order in soft momenta expansion

the (N + M) point amplitude is related to N point amplitude as [2, 17],

Γ(N+M)({εr, kr} , {εa, pa, qa}
)

=

{ M∏
r=1

S (0)
em(εr, kr)

}
Γ(N)({εa, pa, qa}

)
(2.1.1)

where

S (0)
em(εr, kr) =

N∑
a=1

qa
εr,µpµa
pa · kr

(2.1.2)

For deriving long wavelength classical EM radiation from soft photon theorem we are

closely following reference [19]. Now the differential cross-section for M number of soft

subleading soft factor without detailed knowledge of the forces responsible for the scattering.



40 Classical limit of soft theorem

photon emission all having polarisation ε and energy between ω to ω(1 + δ) within solid

angle ∆Ω is given by,

∆σ =
AM

M!
×

∣∣∣∣Γ(N)
∣∣∣∣2 (2.1.3)

where

A =
ωD−2 ωδ ∆Ω

(2π)D−1

1
2ω

∣∣∣∣S (0)
em(ε, k)

∣∣∣∣2 . (2.1.4)

Now for a classical electromagnetic scattering, the scattered objects must have charges

large in the unit of
√
α, where α is the fine structure constant. Also, only if a large

number of photons come out from the scattering event, we can declare the coherent state

of photons as an electromagnetic wave. Let us suppose that qa ∼ q is large, in that case

A ∼ q2 is also large for fixed ω , δ and ∆Ω. So for a classical scattering with a large value

of A we can maximize ∆σ w.r.t M to find out the number of soft photon emission at the

peak of the distribution.

d
(

ln∆σ
)

dM
= 0

⇒ M ' A (2.1.5)

Total energy carried by the soft photons in this bin,

Mω = Aω =
ωD−1 δ ∆Ω

2D(π)D−1

∣∣∣∣S (0)
em(ε, k)

∣∣∣∣2 (2.1.6)

Now independently for this classical scattering process, we can compute the electromag-

netic energy from the long wave-length electromagnetic gauge field. Here we first show

how the Fourier transform in time variable of the gauge field is directly proportional to soft

photon factor. Then we compute the energy of EM radiation and show it’s equivalence

with the expression (2.1.6).
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Let us consider Maxwell’s equation in Lorentz gauge:

�Aµ(x) = − jµ(x), � ≡ ηαβ ∂α ∂β , (2.1.7)

where jµ(x) is the EM current density determined in terms of the trajectory of scattered

objects. Then the retarded gauge field solution is given by

Aµ(x) = −

∫
dDy Gr(x, y) jµ(y) , (2.1.8)

where Gr(x, y) is the retarded Green’s function:

Gr(x, y) =

∫
dD`

(2π)D ei`.(x−y) 1

(`0 + iε)2 − ~̀2
. (2.1.9)

Now performing Fourier transformation in time variable we get,

Ãµ(ω, ~x) ≡

∫
dt eiωt Aµ(t, ~x)

= −

∫
dDy jµ(y)

∫
dD−1`

(2π)D−1 eiωy0+i~̀.(~x−~y) 1

(ω + iε)2 − ~̀2
. (2.1.10)

For large |~x|, we can evaluate this integral using a saddle point approximation as follows

[19]. Defining ~̀‖ and ~̀⊥ as components of ~̀ along ~x−~y and transverse to ~x−~y respectively,

we get

Ãµ(ω, ~x) = −

∫
dDy jµ(y)

∫
dD−2`⊥
(2π)D−2

d`‖
2π

eiωy0+i`‖ |~x−~y| 1

(ω + iε)2 − `2
‖
− ~̀2
⊥

. (2.1.11)

First consider the case ω > 0. We now close the `‖ integration contour in the upper half

plane, picking up residue at the pole at
√

(ω + iε)2 − ~̀2
⊥. This gives

Ãµ(ω, ~x) = i
∫

dDy jµ(y)
∫

dD−2`⊥
(2π)D−2 eiωy0+i |~x−~y|

√
(ω+iε)2−~̀2

⊥
1

2
√

(ω + iε)2 − ~̀2
⊥

. (2.1.12)
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For large |~x−~y| the exponent is a rapidly varying function of ~̀⊥ and therefore we can carry

out the integration over ~̀⊥ using saddle point approximation. The saddle point is located

at ~̀⊥ = 0. Expanding the exponent to order ~̀2
⊥ and carrying out gaussian integration over

~̀
⊥ we get:

Ãµ(ω, ~x) ' i N eiωR
∫

dDy eik.y jµ(y) (2.1.13)

where we have made the approximation |~x| >> |~y| and defined k ≡ −ω(1, n̂), n̂ ≡

~x/|~x|, R ≡ |~x| for outgoing EM radiation2. Here N is given by,

N =

(
ω

2πiR

) (D−2)
2 1

2ω
(2.1.14)

At leading order the asymptotic trajectory of the ingoing/outgoing objects as proper time

σ→ ±∞,

rµa(σ) = Vµ
aσ + · · · (2.1.15)

where Vµ
a is the four velocity of a′th particle. The asymptotic value of EM current density

is,

jµ(y) =
∑
a∈in

∫ 0

−∞

dσ qaVµ
a δ

(D)(y − Vaσ) +
∑
a∈out

∫ ∞

0
dσ qaVµ

a δ
(D)(y − Vaσ)

(2.1.16)

where qa is the EM charge of a’th particle. Then substituting in eq.(2.1.13) and perform-

ing the σ integration we get,

Ãµ(ω, ~x) = iNeiωR

[∑
a∈in

qa
Vaµ

ik · Va
−

∑
a∈out

qa
Vaµ

ik · Va

]

= NeiωR
N∑

a=1

qa
paµ

pa · k
(2.1.17)

2Since we are following the convention that momenta of outgoing particles carries an extra negative sign
so momentum for outgoing EM radiation k ≡ −ω(1, n̂).
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where pµa = ηamaVµ
a with ηa = ±1 for incoming/outgoing particles and we are follow-

ing the convention that charges carrie extra negative sign for outgoing particles. Hence

comparing with the expression of the leading soft factor for one soft photon emission in

eq.(2.1.2) we get,

εµÃµ(ω, ~x) = NeiωR S (0)
em(ε, k) (2.1.18)

In [19] the above relation has been extended and tested for a classical scattering process

up to subleading order when energy loss due to EM radiation is small compared to the

energy of each individual particles. In that limit the non-universal term appeared in the

subleading soft photon theorem (the second line in the r.h.s. of eq.(1.3.36) ) turns out to

be small relative to the universal piece with the angular momenta operator replaced by

classical angular momenta of finite energy particles.

Now we will use the expression (2.1.18) to compute energy of EM radiation along n̂

direction around a solid angle ∆Ω within energy range ω to ω(1 + δ). Since at large

distance from the source the radiation looks like plane wave and we are only interested to

find out the radiation with particular polarisation ε, we can treat εµAµ(t, ~x) as a scalar field

for ~x = Rn̂. If we denote the radial coordinate along n̂ at a large distance from scattering

center as z = n̂ · ~x, then the relevant part of φ̃(ω, ~x) follows from eq.(2.1.18),

φ̃(ω, ~x) ≡ Neiωz S (0)
em(ε, k) (2.1.19)

where

φ(t, ~x) =

∫ ∞

−∞

dω
2π

e−iωt φ̃(ω, ~x). (2.1.20)

Energy-momentum tensor for the scalar field is:

T µν(x) = ∂µφ∂νφ −
1
2
ηµν∂ρφ∂ρφ (2.1.21)
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The energy radiated per unit area along n̂ direction computed for the scalar field form

(2.1.19) turns out to be,

∫
dz T zt =

∫ ∞

0

dω
π
ω2 |N|2

∣∣∣∣S (0)
em(ε, k)

∣∣∣∣2 (2.1.22)

Now the area corresponding to solid angle ∆Ω is RD−2∆Ω. So the energy of EM radia-

tion along n̂ direction around a solid angle ∆Ω within energy range ω to ω(1 + δ) and

polarisation ε is,

ωδ

π
ω2 |N|2

∣∣∣∣S (0)
em(ε, k)

∣∣∣∣2 × RD−2∆Ω (2.1.23)

Now substituting the expression of N from eq.(2.1.14) in the above expression, we get a

perfect agreement with the expression in (2.1.6).

Analogously we start with subleading multiple soft graviton theorem expression in eq.(1.4.43)

and take the classical limit to derive long wavelength gravitational waveform [19]. Here

we will be brief and only discuss the key points in the analysis.

• Here classical limit corresponds to mass/energy of the objects participating in the

scattering event being large in Planck mass unit. This implies a large number of

gravitons come out from the scattering process and we can declare the coherent

state of the large number of gravitons as gravitational wave.

• We also need to ensure that the total energy of gravitational radiation must be small

compared to the energy of individual particles involved in the scattering process.

This can be achieved for a 2 → 2 scattering process if we consider the impact

parameter is large or consider the probe scatterer limit (one of the objects is heavy

compare to other in the initial state).

• In the classical limit the angular momentum operator jµνa in eq.(1.3.38) have to

replace by i Jµνa , where Jµνa is the classical angular momentum determined in terms
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of the trajectory and intrinsic spin of a’th particle.

jµνa → i Jµνa = i(xµa pνa − xνa pµa) + Σµνa (2.1.24)

• In the classical and soft limit described above, the contact term containing M in

eq.(1.4.43) turns out to be suppressed relative to the other subleading part contain-

ing classical angular momenta. So we will drop the contact term for our classical

analysis. In this classical soft limit, the multiple soft factor for M number of soft

graviton emission takes form,

M∏
r=1

S gr(εr, kr) (2.1.25)

where

S gr(εr, kr) =
∑

a

εr,µνpµa pνa
pa · kr

+ i
∑

a

εr,µνpνakrρJρµa

pa · kr
. (2.1.26)

Now performing analogous study as like the soft photon emission, here we get the fol-

lowing relation for the trace reversed metric fluctuation [19],

∫ ∞

−∞

dt eiωt εµνeµν(t, ~x) = N eiωR S gr(ε, k) (2.1.27)

where the deviation of metric from Minkowski metric is defined by hµν(x) ≡ 1
2

(
gµν(x)−ηµν

)
and the trace reversed metric is defined by eµν(x) ≡ hµν(x) − 1

2hρρ(x)ηµν.

2.2 Classical soft factor in D=4

The goal of this section will be to calculate the logarithmic terms in the soft factors in

four space-time dimensions by examining them in the classical limit.

In dimensions larger than 4, the soft factors for photons and gravitons are given respec-
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tively by

S em =
∑

a

εµpµa
pa.k

qa + i
∑

a

qa
εµkρJρµa

pa.k
, (2.2.1)

and

S gr =
∑

a

εµνpµa pνa
pa.k

+ i
∑

a

εµνpνakρJρµa

pa.k
. (2.2.2)

Here the sum over a runs over all the incoming and outgoing particles, and qa, pa and

Ja denote the charge, momentum and angular momentum of the a-th particle, counted

with positive sign for an ingoing particle and negative sign for an outgoing particle. S em

may also contain a non-universal term at the subleading order. For S-matrix elements

in quantum theory, Ja is a differential operator involving derivatives with respect to the

external momenta. However in the classical limit in which the external finite energy

states are macroscopic, Ja represents the classical angular momenta carried by the external

particles. In this limit the soft factors describe the radiative part of the low frequency

electromagnetic and gravitational fields during a classical scattering [19] as described in

(2.1.18) and (2.1.27).

In applying (2.2.1), (2.2.2) to four dimensional theories, the complication arises from the

contribution to Jµνa from the orbital angular momentum. They are computed from the form

of the asymptotic trajectories:

rµa(σ) = ηa
1

ma
pµa σ + cµa ln |σ| + · · · , (2.2.3)

where ηa is positive for incoming particles and negative for outgoing particles, ma is the

mass of the a-th particle and the proper time σ is large and negative for incoming particles

and large and positive for outgoing particles. The term proportional to ln |σ| represents the

effect of long range electromagnetic and/or gravitational interaction between the particles.

This gives, for large |σ|,

Jµνa ' rµa(σ)pνa − rνa(σ)pµa + spin = (cµa pνa − cνa pµa) ln |σ| + · · · . (2.2.4)
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Here and in the following we shall use the convention that when a variable is followed

by an argument (σ) it denotes the value of the variable at proper time σ, but when a vari-

able is written without an argument, we take it to be its σ independent asymptotic value.

Therefore in (2.2.3), (2.2.4) the pµa’s denote the asymptotic values of pµa, reflecting the fact

that the difference between pµa(σ) = maηadrµa/dσ and pµa approaches zero asymptotically.

Analysis of [20] indicates that if we substitute (2.2.4) into (2.2.1) and (2.2.2) and replace

ln |σ| by lnω−1 – where ω = k0 is the frequency of the outgoing soft radiation – we can

recover the logarithmic terms in the soft factors up to overall phases. This gives, up to

overall phases:

S em =
∑

a

εµpµa
pa.k

qa + i lnω−1
∑

a

qa
εµkρ(c

ρ
a pµa − cµa pρa)
pa.k

, (2.2.5)

and

S gr =
∑

a

εµνpµa pνa
pa.k

+ i lnω−1
∑

a

εµνpνakρ(c
ρ
a pµa − cµa pρa)

pa.k
. (2.2.6)

Note that although S em may contain a non-universal term at the subleading order, the term

proportional to lnω−1 comes from orbital angular momentum and is universal.

Irrespective of what forces are operative during the scattering, the coefficient cµa are deter-

mined only by the long range forces acting on the incoming and the outgoing particles.

These will be taken to be electromagnetic and / or gravitational interaction. We shall now

compute cµa due to electromagnetic and gravitational interactions. We know from explicit

comparison with known results that in the case of scattering via electromagnetic interac-

tions there are no additional phases in the soft factor, but in the case of gravitational long

range interaction there is an additional phase reflecting the effect of backscattering of the

soft photon or soft graviton in the background gravitational field [110, 112, 113]. This

phase will also be determined below.
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2.2.1 Effect of electromagnetic interactions

We shall first study the effect of logarithmic correction to the trajectory due to long range

electromagnetic interaction. For this we need to compute the gauge potential A(b)
µ (x) at

space-time point x due to particle b. We have

A(b)
µ (x) =

1
2π

∫
dσηb qb Vbµ(σ) δ+(−(x− rb(σ))2), Vµ

b (σ) ≡
drbµ(σ)

dσ
' ηb

pµb
mb

, (2.2.7)

where δ+ denotes the usual Dirac delta function with the understanding that we have

to choose the zero of the argument for which x0 > r0
b(σ). Vb denotes the asymptotic

four velocity of the b-th particle. In evaluating (2.2.7) we shall ignore the logarithmic

corrections to the trajectory and take rb(σ) ' Vb σ. This gives, using V2
b = −1,

δ+(−(x−rb(σ))2) = δ+(−x2+2 Vb.xσ+σ2+· · · ) '
1

2|Vb.x + σ|
δ(σ+Vb.x+

√
(Vb.x)2 + x2) ,

(2.2.8)

where the sign in front of the square root has been chosen to ensure that x0 > x0
b(σ) at the

solution. Substituting this into (2.2.7) we get

A(b)
µ (x) '

1
4π

ηb qbVbµ√
(Vb.x)2 + x2

. (2.2.9)

From this we calculate

F(b)
µν (x) = ∂µA(b)

ν (x) − ∂νA(b)
µ (x) ' −

ηb qb

4π
xµVbν − xνVbµ

{(Vb.x)2 + x2}3/2
. (2.2.10)

At the location ra = Vaσ = −Va|σ|ηa of the a-th particle we get, using V2
a = −1

F(b)
µν (ra(σ)) ' ηa ηb

qb

4πσ2

VaµVbν − VaνVbµ

{(Vb.Va)2 − 1}3/2
. (2.2.11)

Now the a-th particle will feel the field produced by the b-th particle if either both a-th

and the b-th particle are outgoing or if both particles are ingoing. Therefore the equation
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of motion for the a-th particle takes the form

dpaµ(σ)
dσ

= qa

∑
b,a

ηaηb=1

F(b)
µν (ra(σ)) Vν

a(σ) '
1
σ2

∑
b,a

ηaηb=1

ηa ηb
qaqb

4π
Va.VbVaµ + Vbµ

{(Vb.Va)2 − 1}3/2
. (2.2.12)

On the other hand we have

dpaµ(σ)
dσ

=
ma

ηa

d2raµ

dσ2 = −
ma

ηa

caµ

σ2 , (2.2.13)

where in the last step we used (2.2.3). Comparing (2.2.12), (2.2.13) we get

cµa = −
1

ma

∑
b,a

ηaηb=1

ηb
qaqb

4π
Va.VbVµ

a + Vµ
b

{(Vb.Va)2 − 1}3/2
= −

∑
b,a

ηaηb=1

qaqb

4π
m2

b pa.pb pµa + m2
am2

b pµb
{(pb.pa)2 − m2

am2
b}

3/2
,

(2.2.14)

and

cµa pνa − cνa pµa = −
∑

b,a
ηaηb=1

qaqb

4π
m2

am2
b {p

µ
b pνa − pνb pµa}

{(pb.pa)2 − m2
am2

b}
3/2

. (2.2.15)

Eqs.(2.2.5) and (2.2.6) now give3

S em =
∑

a

εµpµa
pa.k

qa − i lnω−1
∑

a

qa εµkρ
pa.k

∑
b,a

ηaηb=1

qaqb

4π
m2

am2
b {p

ρ
b pµa − pµb pρa}

{(pb.pa)2 − m2
am2

b}
3/2

, (2.2.16)

and

S gr =
∑

a

εµνpµa pνa
pa.k

− i lnω−1
∑

a

εµνpνakρ
pa.k

∑
b,a

ηaηb=1

qaqb

4π
m2

am2
b {p

ρ
b pµa − pµb pρa}

{(pb.pa)2 − m2
am2

b}
3/2

. (2.2.17)

3Note that even if we assume that the logarithmic corrections to the trajectories are generated predomi-
nantly by electromagnetic interaction, the resulting acceleration can generate logarithmic corrections to the
gravitational radiation during the scattering.
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2.2.2 Effect of gravitational interactions

Let us now suppose that the logarithmic correction to the trajectories arise due to gravi-

tational interaction. We introduce the graviton field hµν and its trace reversed version eµν

via the equations

hµν ≡ (gµν − ηµν)/2, eµν = hµν −
1
2
ηµν h ρ

ρ . (2.2.18)

Then the analog of (2.2.7) for the gravitational field produced at x due to the b-th particle

is

e(b)
µν (x) =

1
2π

∫
dσmb Vbµ(σ) Vbν(σ) δ+(−(x − rb(σ))2) . (2.2.19)

Using rb(σ) = Vb σ + · · · we get the analog of (2.2.9)

e(b)
µν (x) '

1
4π

mb Vbµ Vbν√
(Vb.x)2 + x2

. (2.2.20)

The associated Christoffel symbol is given by, in the weak field approximation,

Γ(b)α
ρτ (x) = −

mb

4π
1

{(Vb.x)2 + x2}3/2
ηαµ

[{
VbµVbτ +

1
2
ηµτ

} {
xρ + Vb.x Vbρ

}
+

{
VbµVbρ +

1
2
ηµρ

}
{xτ + Vb.x Vbτ} −

{
VbρVbτ +

1
2
ηρτ

} {
xµ + Vb.x Vbµ

}]
.(2.2.21)

From this we can write down the equation of motion of the a-th particle

d2rαa (σ)
dσ2 = −

∑
b,a

ηaηb=1

Γ(b)α
ρτ (ra(σ)) Vρ

a (σ) Vτ
a (σ) (2.2.22)

' −ηa
1

4πσ2

∑
b,a

ηaηb=1

mb
1

{(Vb.Va)2 − 1}3/2

[
−

1
2

Vα
a +

1
2

Vα
b

{
2(Vb.Va)3 − 3Vb.Va

}]
.
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On the other hand using (2.2.3) the left hand side is given by −cαa/σ
2. This gives

cαa = ηa
1

4π

∑
b,a

ηaηb=1

mb
1

{(Vb.Va)2 − 1}3/2

{
−

1
2

Vα
a +

1
2

Vα
b

(
2(Vb.Va)3 − 3Vb.Va

)}
, (2.2.23)

and

cρa pµa − cµa pρa =
1

8πσ2

∑
b,a

ηaηb=1

ma mb
1

{(Vb.Va)2 − 1}3/2
(Vρ

b Vµ
a − Vµ

b Vρ
a )

{
2(Vb.Va)3 − 3Vb.Va

}
=

1
8π

∑
b,a

ηaηb=1

pb.pa

{(pb.pa)2 − m2
am2

b}
3/2

(pρb pµa − pµb pρa)
{
2(pb.pa)2 − 3m2

am2
b

}
.

(2.2.24)

Substituting this into (2.2.5) and (2.2.6) we get,4 up to overall phases:

S em =
∑

a

εµpµa
pa.k

qa +
i

8π
lnω−1

∑
a

qa εµkρ
pa.k

∑
b,a

ηaηb=1

pb.pa

{(pb.pa)2 − m2
am2

b}
3/2

(pρb pµa − pµb pρa)

×
{
2(pb.pa)2 − 3m2

am2
b

}
, (2.2.25)

and

S gr =
∑

a

εµνpµa pνa
pa.k

+
i

8π
lnω−1

∑
a

εµνpνakρ
pa.k

∑
b,a

ηaηb=1

pb.pa

{(pb.pa)2 − m2
am2

b}
3/2

(pρb pµa − pµb pρa)

×
{
2(pb.pa)2 − 3m2

am2
b

}
. (2.2.26)

In this case we expect the wave-form of the gauge field / metric to also have an additional

phase factor reflecting the effect of the gravitational drag on the soft particle due to the

other particles. For this let us characterize the asymptotic trajectory of the soft particle as

xµ(τ) = nµ τ + mµ ln |τ| , (2.2.27)

4Even if the logarithmic correction to the trajectory is generated by gravitational interaction, the particles
can emit electromagnetic waves. This happens for example if we have a scattering of a charged particle and
a neutral particle.
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where τ is the affine parameter associated with the trajectory, n = (1, n̂) is a null vector

along the asymptotic direction of motion of the soft particle and mµ is a four vector to be

determined. Now substituting (2.2.27) into the equation of motion

d2xµ

dτ2 = −Γµνρ
dxν

dτ
dxρ

dτ
, (2.2.28)

and using the form (2.2.21) of Γµνρ, we get the following expression for mµ by comparing

the 1/τ2 terms on the two sides of the equations of motion:

mα = −
1

4π

∑
b

ηb=−1

mb

|n.Vb|
3 Vα

b (Vb.n)3 =
1

4π

∑
b

ηb=−1

mb Vα
b = −

1
4π

∑
b

ηb=−1

pαb . (2.2.29)

Now eliminating τ in terms of t ≡ x0 using (2.2.27), we can express (2.2.27) as

xi = nit + (mi − nim0) ln |t| + finite . (2.2.30)

Therefore if we denote by k = (k0, k) = −ω(1, n̂) the four momentum of the soft particle,

the overall − sign reflecting the fact that it is an outgoing particle, the wave-function of

the particle will be proportional to

exp
[
−i~k.

{
~x − n̂t − (~m − n̂ m0) ln |t|

}]
= exp[−iωt + iωn̂.~x] exp[i(~k.~m + ωm0) ln |t|] .

(2.2.31)

The second factor can be regarded as an additional infrared divergent contribution to the

soft factor. Using |t| ∼ R where R is the distance of the soft particle from the scattering

center, and eq.(2.2.29), we can express the second factor in (2.2.31) as

exp[ik.m ln R] = exp

− i
4π

ln R
∑

b
ηb=−1

k.pb

 . (2.2.32)

Since this is a pure phase it does not affect the flux. However it does produce observable

effect on the electromagnetic / gravitational wave-form [33].
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It follows from the analysis of [110,112,113] that the effect of gravitational backscattering

of the soft photon / graviton actually converts ln R in (2.2.32) to ln(Rω). This has been

reviewed in [20]. It is natural to absorb this multiplicative factor in the wave-form into

the definition of the soft factors. Expanding the exponential in a power series, picking

up the term of order ω ln(ωR) in the expansion, and multiplying this by the leading soft

factor, we get additional contributions to the soft photon and soft graviton factor at the

subleading order

i
4π

(
lnω−1 + ln R−1

)
S (0)

em

∑
b

ηb=−1

k.pb, and
i

4π

(
lnω−1 + ln R−1

)
S (0)

gr

∑
b

ηb=−1

k.pb .

(2.2.33)

Adding these to (2.2.25) and (2.2.26) we get the net soft factors to be

S em =
∑

a

εµpµa
pa.k

qa +
i

4π

(
lnω−1 + ln R−1

) ∑
b

ηb=−1

k.pb

∑
a

εµpµa
pa.k

qa

+
i

8π
lnω−1

∑
a

qa εµkρ
pa.k

∑
b,a

ηaηb=1

pb.pa

{(pb.pa)2 − m2
am2

b}
3/2

(pρb pµa − pµb pρa)
{
2(pb.pa)2 − 3m2

am2
b

}
,

(2.2.34)

and

S gr =
∑

a

εµνpµa pνa
pa.k

+
i

4π

(
lnω−1 + ln R−1

) ∑
b

ηb=−1

k.pb

∑
a

εµνpµa pνa
pa.k

+
i

8π
lnω−1

∑
a

εµνpνakρ
pa.k

∑
b,a

ηaηb=1

pb.pa

{(pb.pa)2 − m2
am2

b}
3/2

(pρb pµa − pµb pρa)
{
2(pb.pa)2 − 3m2

am2
b

}
.

(2.2.35)

2.2.3 Effect of electromagnetic and gravitational interactions

We now combine the results of last two subsections to write down the general expression

for the soft factor when both gravitational interaction and electromagnetic interactions
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are responsible for the logarithmic corrections to the trajectory. The logarithmic terms get

added up, yielding the results:

S em =
∑

a

εµpµa
pa.k

qa +
i

4π

(
lnω−1 + ln R−1

) ∑
b

ηb=−1

k.pb

∑
a

εµpµa
pa.k

qa

−i lnω−1
∑

a

qa εµkρ
pa.k

∑
b,a

ηaηb=1

qaqb

4π
m2

am2
b {p

ρ
b pµa − pµb pρa}

{(pb.pa)2 − m2
am2

b}
3/2

+
i

8π
lnω−1

∑
a

qa εµkρ
pa.k

∑
b,a

ηaηb=1

pb.pa

{(pb.pa)2 − m2
am2

b}
3/2

(pρb pµa − pµb pρa)
{
2(pb.pa)2 − 3m2

am2
b

}
,

(2.2.36)

and

S gr =
∑

a

εµνpµa pνa
pa.k

+
i

4π

(
lnω−1 + ln R−1

) ∑
b

ηb=−1

k.pb

∑
a

εµνpµa pνa
pa.k

−i lnω−1
∑

a

εµν pνa kρ
pa.k

∑
b,a

ηaηb=1

qaqb

4π
m2

am2
b {p

ρ
b pµa − pµb pρa}

{(pb.pa)2 − m2
am2

b}
3/2

+
i

8π
lnω−1

∑
a

εµνpνakρ
pa.k

∑
b,a

ηaηb=1

pb.pa

{(pb.pa)2 − m2
am2

b}
3/2

(pρb pµa − pµb pρa)
{
2(pb.pa)2 − 3m2

am2
b

}
.

(2.2.37)

Note that the soft factors given in (2.2.36) and (2.2.37) depend only on the charges and

momenta carried by the external states. Therefore these can be reinterpreted as multi-

plicative soft factors in the full quantum theory – since there is no angular momentum

there is no derivative with respect to the external momenta. In the next chapter we shall

carry out some explicit quantum computations to examine to what extent this holds.
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spacetime dimensions from S-matrix

analysis

Scattering amplitude in four spacetime dimensions for a theory with massless particles is

infrared divergent. So from the perspective of soft theorem it was not a priori clear how to

interpret a relation whose both sides are divergent [40,66,69,114]. Here in this chapter we

analyse directly the quantum subleading soft factor by considering one loop scattering of

charged scalar fields in the presence of gravitational and electromagnetic interaction. The

difference with the previous analysis, e.g. in [66], is that we do not insist on a power series

expansion in ω and calculating the coefficients of the power series expansion. Instead we

allow for possible non-analytic terms of order lnω−1 in the soft expansion. This analysis

yields results consistent with the classical results, although the quantum results contain

additional real part which we interpret as the result of back reaction of the radiation on

the motion of the particles.

In Chapter-1 we gave a general derivation of soft theorem including loop corrections

as long as 1PI vertices do not generate soft factor in the denominator [11, 15, 17, 101].

Now one could ask to what extent we could derive the soft factors in D=4, using the

result of [11, 15, 17, 101]. To this end we note that there are two distinct sources of

logarithmic terms in the soft theorem. The first is the region of integration in which the

55
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loop momentum is large compared to the energy of the external soft particle. In this region

we expect the arguments of [11,15,101] to be valid, and we find that the contribution from

this region can indeed be obtained by applying the usual soft operator on the amplitude

without the soft graviton. The other source is the region of integration in which the loop

momentum is small compared to the external soft momentum. The contribution from this

region cannot be derived using the usual soft theorem, and need to be computed explicitly.

The chapter is organized as follows. §3.1 describes some general strategy for dealing with

the infrared divergent part of the S-matrix and extracting the quantum soft factor by mak-

ing use of momentum conservation. §3.2 describes one loop quantum computation of the

logarithmic terms in the soft photon theorem in scalar quantum electrodynamics (scalar

QED). §3.3 describes a similar computation in the soft graviton theorem in a theory of

charge neutral scalars interacting with the gravitational field. In §3.4 we consider charged

scalars interacting via both gravitational and electromagnetic interaction, and determine

the one loop contribution to the quantum soft graviton factor due to electromagnetic in-

teraction and one loop contribution to the quantum soft photon factor due to gravitational

interaction. In§3.5 we briefly sketch the derivation of multiple soft photon theorem up to

subleading order in D=4. §3.6 contains a summary and a discussion of our results where

we also discuss various special cases of our classical result.

3.1 How to treat momentum conservation and infrared

divergences

In quantum theory, single soft theorem is expected to relate an amplitude Γ(n,1) with n finite

energy external states carrying momenta p1, · · · pn and one soft particle of momentum k

to an amplitude Γ(n) with just n finite energy external states carrying momenta p1, · · · pn.
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This relation takes the form

Γ(n,1)(p1, · · · pn, k) ' S (ε, k; {pa})Γ(n)(p1, · · · pn) , (3.1.1)

where S (ε, k; {pa}) is the soft factor S em or S gr. There is however a potential problem.

While the amplitude Γ(n,1) has momentum conservation
∑

a pa + k = 0, the amplitude Γ(n)

has momentum conservation
∑

a pa = 0. Therefore we cannot keep the pa’s and k as

independent variables in (3.1.1). Usually this problem is overcome by including the mo-

mentum conserving delta-functions in the definition of the amplitudes Γ(n,1) and Γ(n) and

treating (3.1.1) as a relation between distributions. The soft factor S (ε, k; {pa}) appearing

in (3.1.1) is treated as a differential operator that also acts on the delta function and gener-

ates the Taylor series expansion of δ (
∑

a pa + k) in power series of the momentum k of the

soft particle. The subleading term in this expansion, given by kµ{∂/∂pµb}δ (
∑

a pa) for any

b, is included in the full subleading soft theorem in dimensions D > 4. However since in

D = 4 we only analyze subleading terms containing lnω−1 factors, the term proportional

to derivative of the delta function will not appear in our analysis.

In four space-time dimensions there are additional issues due to infrared divergence. Both

the amplitudes Γ(n,1) and Γ(n) have infrared divergences which can be represented as over-

all multiplicative factors multiplying infrared finite amplitudes. For electromagnetic in-

teractions these factors are common and can be factored out of the amplitudes but for

gravity there is a residual infrared divergent factor in Γ(n,1) besides the ones that appear in

Γ(n). In any case we shall denote by exp[K] the infrared divergent factor of Γ(n) and define

regulated amplitudes via the relation:

Γ(n) = exp[K]Γ(n)
reg, Γ(n,1) = exp[K]Γ(n,1)

reg . (3.1.2)

K is in general a function of the momenta pa of the finite energy particles. This makes Γ(n)
reg

free from infrared divergences, but Γ(n,1)
reg still contains some residual infrared divergences



58 Subleading soft theorem in four spacetime dimensions from S-matrix analysis

for gravitational interaction. Eq.(3.1.1) is now replaced by1

Γ(n,1)
reg (p1, · · · pn, k) ' S (ε, k; {pa})Γ(n)

reg(p1, · · · pn) . (3.1.3)

The residual infrared divergences in Γ(n,1)
reg will be reflected in the infrared divergent con-

tributions to S (ε, k; {pa}).

There is however a potential ambiguity in the definition of Γ(n,1)
reg and hence of S (ε, k; {pa}).

This is due to the fact that in the definition of K we can add a term of the form Q.
∑

a pa

for any vector Q (which could be a function of the pa’s) since by the momentum conserv-

ing delta function in Γ(n),
∑

a pa vanishes. However addition of such a term changes the

definition of Γ(n,1)
reg in (3.1.2) by a multiplicative factor of exp[k.Q] since the momentum

conserving delta function in Γ(n,1) gives k +
∑

a pa = 0. This has the effect of multiplying

S (ε, k; {pa}) by exp[k.Q]. Expanding exp(k.Q) as (1 + k.Q) we see that the the additional

contribution appears at the subleading order, and has the form of k.Q multiplying the lead-

ing soft factor. It does not affect the lnω−1 terms that we are after since the leading soft

factor has no lnω−1 term and Q is ω independent. However this can affect the genuine

infrared divergent terms proportional to ln R in the expression for Γ(n,1)
reg , since in the def-

inition of Q we can include terms proportional to ln R. Choosing Q = −U ln R for some

vector U constructed from the pa’s amounts to having an additive contribution to S (1) of

the form

− ln R k.U S (0)(ε, k; {pa}) . (3.1.4)

3.2 Soft photon theorem in scalar QED

Consider a theory containing a U(1) gauge field Aµ and n scalars φ1, · · · φn of masses

m1, · · ·mn and carrying U(1) charges q1, · · · qn, satisfying
∑n

a=1 qa = 0. We further assume

1The situation here is somewhat different from the one in [66]. Since the logarithmic term in S (ε, k; {pa})
that we are after is being represented as a multiplicative factor instead of a differential operator, the infrared
divergent factor on the right hand side can be moved past S to the extreme left.
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pa
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Figure 3.1: One loop contribution to Γ(n,1) involving internal photon line connecting two
different legs. The thick lines represent scalar particles and the thin lines carrying the
symbol γ represent photons. There are other diagrams related to this by permutations of
the external scalar particles.
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k
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γ
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· · ·

γ γ
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γ γ
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k

· · ·

γ

Figure 3.2: One loop contribution to Γ(n,1) involving internal photon line connecting two
different points on the same leg. There are other diagrams related to this by permutations
of the external scalar particles. In the last term the + on the scalar line represents a
counterterm associated with mass renormalization that has to be adjusted to cancel the
net contribution proportional to 1/(pa.k)2.
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pa

` →

pa − `

pb

pb + `

· · ·

γ

Figure 3.3: One loop contribution to Γ(n). There are other diagrams related to this by
permutations of the external scalar particles.

that there is a non-derivative contact interaction between the n-scalars. Then the relevant

part of the action takes the form

∫
d4x

[
−

1
4

FµνFµν −

n∑
a=1

{
(∂µφ∗a + iqaAµφ

∗
a)(∂µφa − iqaAµφa) + m2

aφ
∗
aφa

}
+λ φ1 · · · φn + λ φ∗1 · · · φ

∗
n

]
. (3.2.1)

We consider in this theory an amplitude with one external outgoing photon of momentum

k and n external states corresponding to the fields φ1, · · · φn, carrying momenta p1, · · · pn.

All momenta are counted as positive if ingoing so that if the a-th particle is outgoing it will

have negative p0
a. Our goal will be to analyze this amplitude at one loop order, involving

an internal photon connecting two matter lines. The relevant diagrams have been shown

in Figs. 3.1 and 3.2. We denote by Γ(n,1) the sum over tree and one loop contribution to

this amplitude. Γ(n) will denote the amplitude without the external soft photon to one loop

order. One loop contribution to Γ(n) has been shown in Fig. 3.3.

In our analysis we shall ignore graphs with self energy insertions on external legs and

assume that we follow on-shell renormalization so that the mass parameters appearing in

the tree level propagators are the physical masses. The wave-function renormalization of

the external scalars cancel between Γ(n) and Γ(n,1).

We shall use Feynman gauge and decompose the photon propagator of momentum `,
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connecting the leg a to the leg b for b , a, with ` flowing from the a-th leg to the b-th leg,

as [108]

− i
ηµν

`2 − iε
= −

i
`2 − iε

{
Kµν

(ab) + Gµν
(ab)

}
(3.2.2)

where,

Kµν
(ab) = `µ`ν

(2pa − `).(2pb + `)
(2pa.` − `2 + iε)(2pb.` + `2 − iε)

, Gµν
(ab) = ηµν − Kµν

(ab) . (3.2.3)

Note that pa and pb refer to the external momenta flowing into the legs a and b, and

not necessarily the momenta of the lines to which the photon propagator attaches (which

may have additional contribution from external soft momentum, e.g. in Figs. 3.1(a)). `

denotes the momentum flowing from leg a to leg b. For a = b we do not carry out any

decomposition.

Since the K-photon polarization is proportional to `µ`ν, it is pure gauge. This allows us to

sum over K-photon insertions using Ward identities

−i
p2

c + m2
c
`µ i qc (2pcµ + `µ)

−i
(pc + `)2 + m2

c
= −qc

[
−i

(pc + `)2 + m2
c
−

−i
p2

c + m2
c

]
, (3.2.4)

and

qc
[
i qc ε.(2pc + 2` + k) − i qc ε.(2pc + k)

]
− 2 i q2

c ε.` = 0 , (3.2.5)

whose diagrammatic representations have been shown in Fig. 3.4. Sum over all insertions

of the K-photons to either Γ(n) or Γ(n,1) produces an exponential factor [108]

exp

i ∑
a<b

qa qb

∫
d4`

(2π)4

1
`2 − iε

(2pa − `).(2pb + `)
(2pa.` − `2 + iε)(2pb.` + `2 − iε)

 . (3.2.6)

Therefore we may write

Γ(n) = exp [Kem]
{
Γ(n)

tree + Γ(n)
G

}
, Γ(n,1) = exp [Kem]

{
Γ(n,1)

tree + Γ(n,1)
G + Γ(n,1)

self

}
,
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⇑
= f fpc

`

− ,

γγ
γ

+ +−

k

`

= 0f f
⇑

γ

γ

γ

γ

γ

γ

Figure 3.4: Diagrammatic representations of (3.2.4) and (3.2.5). The arrow on the photon
line represents that the polarization of the photon is taken to be equal to the momentum
entering the vertex. The circle denotes a simple vertex −qc with the polarization of the
incoming photon stripped off.

Kem ≡
i
2

∑
a,b
b,a

qa qb

∫
d4`

(2π)4

1
`2 − iε

(2pa − `).(2pb + `)
(2pa.` − `2 + iε)(2pb.` + `2 − iε)

, (3.2.7)

where Γ(n)
G and Γ(n,1)

G are computed by replacing the internal photons by the G-photons in

Figs. 3.3 and 3.1 respectively and Γ(n,1)
self denotes the sum of diagrams in Fig. 3.2 for which

we use the full photon propagator. Therefore a relation of the form Γ(n,1) = S emΓ
(n) takes

the form

Γ(n,1)
tree + Γ(n,1)

G + Γ(n,1)
self = S em

{
Γ(n)

tree + Γ(n)
G

}
. (3.2.8)

Now it is easy to see that Fig. 3.3 vanishes when we replace the internal photon by G-

photon. Therefore Γ(n)
G = 0, and we have:2

Γ(n)
tree + Γ(n)

G = Γ(n)
tree = i λ . (3.2.9)

If we write S em = S (0)
em + S (1)

em where S (0)
em is the leading soft factor

∑n
a=1 qa ε.pa/k.pa and

S (1)
em is the subleading multiplicative factor containing logarithmic terms, then eq.(3.2.8)

can be written as

Γ(n,1)
tree + Γ(n,1)

G + Γ(n,1)
self = iλ

n∑
a=1

qa
ε.pa

k.pa
+ iλ S (1)

em , (3.2.10)

2Note that we are not explicitly writing the momentum conserving delta function, but are implicitly
assuming that both sides of (3.2.8) are multiplied by the appropriate delta functions. We also implicitly
assume that the delta function δ(

∑
a pa + k) on the left hand side has been expanded in a power series in k.
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to one loop order. Now Γ(n,1)
tree is equal to the first term on the right hand side up to terms

involving Taylor series expansion of the momentum conserving delta function in powers

of k, but the latter are subleading contributions without any logarithmic terms and can be

ignored in our analysis. Therefore (3.2.10) can be rewritten as:

Γ(n,1)
self + Γ(n,1)

G = iλ S (1)
em . (3.2.11)

This is a simple algorithm for determination of S (1)
em.

Therefore we need to focus on the evaluation of the one loop contribution to Γ(n,1)
G and

Γ(n,1)
self by summing the diagrams in Figs. 3.1 and 3.2, with the internal photon replaced by

G-photon in Fig. 3.1. We first consider the diagrams in Fig. 3.1. It is easy to see that the

G-photon contribution to Fig. 3.1(c) vanishes. Therefore we need to focus on Figs, 3.1(a)

and (b). The contribution from Fig. 3.1(a) is given by

I1 = λ q2
a qb

ε.pa

k.pa

∫
d4`

(2π)4

[
2k.(2pb + `) −

2k.` (2pa − `).(2pb + `)
(2pa.` − `2 + iε)

]
×

1
`2 − iε

1
2pa.(k − `) + (k − `)2 − iε

1
2pb.` + `2 − iε

,(3.2.12)

and the contribution from Fig. 3.1(b) is given by

I2 = −λ q2
a qb

∫
d4`

(2π)4

[
2ε.(2pb + `) −

2ε.` (2pa − `).(2pb + `)
(2pa.` − `2 + iε)

]
×

1
`2 − iε

1
2pa.(k − `) + (k − `)2 − iε

1
2pb.` + `2 − iε

.(3.2.13)

Both I1 and I2 are infrared finite since for small ` the integrands diverge as 1/`3. The

terms involving logarithm of k come from the region of ` integration where the compo-

nents |`µ| are large compared to ω ≡ k0 but small compared to the pa’s. In this range we

can approximate I1 and I2 as

I1 ' −λ q2
a qb

ε.pa

k.pa

∫
reg

d4`

(2π)4

[
k.pb −

k.` pa.pb

pa.` + iε

]
1

`2 − iε
1

pa.` + iε
1

pb.` − iε
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pa

k

`f
−

· · ·

γ

γ

Figure 3.5: Sum of the first four diagrams in Fig. 3.2 with ε replaced by k.

= −λ q2
aqb

ε.pa

k.pa

[
k.pb + pa.pb kµ

∂

∂pµa

] ∫
reg

d4`

(2π)4

1
`2 − iε

1
pa.` + iε

1
pb.` − iε

,

(3.2.14)

and

I2 ' λ qa qaqb

∫
reg

d4`

(2π)4

[
ε.pb −

ε.` pa.pb

pa.` + iε

]
1

`2 − iε
1

pa.` + iε
1

pb.` − iε

= λ q2
aqb

[
ε.pb + pa.pb ε

µ ∂

∂pµa

] ∫
reg

d4`

(2π)4

1
`2 − iε

1
pa.` + iε

1
pb.` − iε

,(3.2.15)

where the subscript reg indicates that the integration needs to be carried out over the

region where |`µ| is large compared to ω but small compared to the energies of the finite

energy particles. Adding I1 and I2 and summing over a, b we get the total contribution

to Γ(n,1)
G to one loop order:

Γ(n,1)
G = −λ

∑
a,b
b,a

(qa)2qb

[
ε.pa

k.pa
k.pb +

ε.pa

k.pa
pa.pb kµ

∂

∂pµa
− ε.pb − pa.pb ε

µ ∂

∂pµa

]
∫

reg

d4`

(2π)4

1
`2 − iε

1
pa.` + iε

1
pb.` − iε

= −λ
∑

a,b
b,a

(qa)2 qb
εµkν
pa.k

{
pµa

∂

∂paν
− pνa

∂

∂paµ

}∫
reg

d4`

(2π)4

1
`2 − iε

pa.pb

(pa.` + iε) (pb.` − iε)
.

(3.2.16)

The contribution to Γ(n,1)
self from Fig. 3.2 can be analyzed using the following indirect

method. First of all we note that the net dependence on ε and k from the first four di-
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agrams must be of the form ε.pa f (pa.k) for some function f . To determine f , we can set

ε = k and sum over all insertions of the external photon using the Ward identities shown

in Fig. 3.4. The final result, given in Fig. 3.5, has the form:

C1

pa.k
, (3.2.17)

for some constant C1. Therefore we get

pa.k f (pa.k) =
C1

pa.k
⇒ f (pa.k) =

C1

(pa.k)2 . (3.2.18)

The fifth and sixth diagrams also have the form

C2

(pa.k)2 and
C3

(pa.k)2 , (3.2.19)

for appropriate constants C2 and C3. Now since we are using on-shell renormalization

the counterterm proportional to C3 is to be adjusted precisely so that the net contribution

proportional to 1/(pa.k)2 vanishes. Therefore we must choose C3 = −C1 − C2, and the

total contribution to Γ(n,1)
self from all the diagrams in Fig. 3.2 vanishes. We have verified this

by explicitly computing the Feynman diagrams in Fig. 3.2.

From (3.2.11) we now see that the net contribution to the logarithmic terms in S (1)
em is

obtained by dividing Γ(n,1)
G given in (3.2.16) by i λ. This can be written as

S (1)
em =

∑
c

qc
εµkν
pc.k

{
pµc

∂

∂pcν
− pνc

∂

∂pcµ

}
Kreg

em , (3.2.20)

where Kreg
em is the factor Kem defined in (3.2.7) with the understanding that integration

over the loop momentum ` will run over the range where |`µ| is larger than ω but small

compared to the momenta of the finite energy external states:

Kreg
em ≡

i
2

∑
a,b
b,a

qa qb

∫
reg

d4`

(2π)4

1
`2 − iε

(2pa − `).(2pb + `)
(2pa.` − `2 + iε)(2pb.` + `2 − iε)

. (3.2.21)
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So essentially we need to evaluate Kreg
em . For this we need to evaluate the integral:3

Iab ≡

∫
reg

d4`

(2π)4

1
`2 − iε

1
pa.` + iε

1
pb.` − iε

(3.2.22)

= −
1

EaEb

∫
reg

d3`

(2π)3

∫ ∞

−∞

d`0

2π
1

(`0 − |~̀| + iε)(`0 + |~̀| − iε)

1

`0 − ~va.~̀ − iε

1

`0 − ~vb.~̀ + iε
,

where Ea = p0
a, Eb = p0

b, ~va = ~pa/Ea and ~vb = ~pb/Eb. In writing down the above equation

we have assumed that Ea and Eb are positive, i.e. both lines represent incoming states.

The integrand has simple poles at,

`0 = (|~̀| − iε) , −(|~̀| − iε) , (~va.~̀ + iε) , (~vb.~̀ − iε) . (3.2.23)

So now if we close the contour in the lower half plane we have to take the pole contribu-

tions from `0 = (|~̀| − iε) and `0 = (~vb.~̀ − iε). This gives

Iab =
i

EaEb

∫
reg

d3~̀

(2π)3

1

2|~̀|

1

|~̀| − ~va.~̀

1

|~̀| − ~vb.~̀

+
i

EaEb

∫
reg

d3~̀

(2π)3

1

(~vb.~̀)2 − |~̀|2

1

(~vb − ~va).~̀ − iε
. (3.2.24)

Note that we have removed the iε’s from the denominators that never vanish.

Let us first analyze the second term. Since the result should be Lorentz invariant, it should

not depend on the chosen frame. For simplicity choose a frame in which ~vb and ~va are

along the positive z-axis with |~vb| > |~va|. Denoting by θ the angle between ~̀ and the z-axis,

we can express the second term in (3.2.24) as

I′ab =
i

EaEb(2π)2

1
|~va − ~vb|

∫
reg

d|~̀|

|~̀|

∫ 1

−1
d(cosθ)

1
|~vb|

2cos2θ − 1
1

cosθ − iε
.(3.2.25)

Without the iε piece of the last term the integral vanishes since the integrand is an odd

3Since the `µ integration runs over a limited range, one might wonder why we are choosing the `0

integration range from −∞ to ∞. To this end, note that once we have imposed the range restriction on |~̀|,
we can let the `0 integral in (3.2.22) run over the entire real axis since the regions outside the allowed range
do not generate any logarithmic contribution.



3.2 Soft photon theorem in scalar QED 67

function of cos θ. However the imaginary part of the last term makes the integral non-

vanishing. Using 1/(x − iε) = iπδ(x) + P(1/x) in the integral, and using the fact that the

value of |~̀| for which our approximation of the integrand is valid ranges from ω to some

finite energy, we get,

I′ab '
1

4π EaEb
lnω−1 1

|~va − ~vb|
=

1
4π

lnω−1 1√
(pa.pb)2 − m2

am2
b

, (3.2.26)

where in the intermediate stage we used |~pa||~pb| = |~pa.~pb|, since ~pa and ~pb are parallel.

If both the legs a and b are outgoing instead of ingoing, then Ea and Eb are negative and

the signs of the iε in the last two terms in (3.2.22) are reversed. But this can be brought

back to the form given in (3.2.22) by making a change of variables `µ → −`µ. Therefore

the net result for the residue at `0 = ~vb.~̀ − iε will continue to be described by (3.2.26).

Finally if one of the momenta is outgoing and the other is ingoing, then both the iε’s in

the last two terms of (3.2.22) come with the same sign. By changing variables from `µ to

−`µ if necessary, we can ensure that both the poles are in the upper half plane and close

the contour to the lower half plane. In this case there will be no analog of the contribution

given in (3.2.26).

We now turn to the contribution from the first term on the right hand side of (3.2.24),

which we will call I′′ab. We will again evaluate this integral in the frame in which ~va and

~vb are parallel to the z-axis with |~vb| > |~va|. We get

I′′ab =
i

EaEb

∫
reg

d3~l
(2π)3

1

2|~l|

1

|~l| − ~va.~l

1

|~l| − ~vb.~l

=
i

8π2EaEb
lnω−1

∫ 1

−1
d(cosθ)

1
vb − va

[
vb

1 − vb cos θ
−

va

1 − va cos θ

]
=

i
8π2 lnω−1 1

|~pb|Ea − |~pa|Eb
ln

[
(Ea − |~pa|)(Eb + |~pb|)
(Ea + |~pa|)(Eb − |~pb|)

]

= −
i

8π2 lnω−1 1√
(pa.pb)2 − p2

a p2
b

ln


pa.pb +

√
(pa.pb)2 − p2

a p2
b

pa.pb −

√
(pa.pb)2 − p2

a p2
b

 .(3.2.27)
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It is easy to check that the form of the contribution remains unchanged even when both

legs are outgoing or one leg is incoming and the other leg is outgoing.

Combining these results we get

Kreg
em =

i
2

∑
a,b
b,a

qa qb
1

4π
lnω−1 pa.pb√

(pa.pb)2 − p2
a p2

b

δηaηb,1 −
i

2π
ln


pa.pb +

√
(pa.pb)2 − p2

a p2
b

pa.pb −

√
(pa.pb)2 − p2

a p2
b


 .

(3.2.28)

Using (3.2.20) we can now write down the expression for the logarithmic term in the

subleading soft factor S (1)
em

−
i

4π
lnω−1

n∑
a=1

∑
b,a

ηaηb=1

q2
a qb

εµ kρ
pa.k

m2
am2

b

[
pµa pρb − pµb pρa

][
(pa.pb)2 − m2

am2
b

]3/2

−
1

8π2 lnω−1
∑

a,b
b,a

q2
a qb ln


pa.pb +

√
(pa.pb)2 − p2

a p2
b

pa.pb −

√
(pa.pb)2 − p2

a p2
b

 p2
a p2

b

{(pa.pb)2 − p2
a p2

b}
3/2

{
−ε.pb +

ε.pa

k.pa
k.pb

}

+
1

4π2 lnω−1
∑

a,b
b,a

q2
aqb

pa.pb

(pa.pb)2 − p2
a p2

b

{
−ε.pb +

ε.pa

k.pa
k.pb

}
. (3.2.29)

The term in the first line agrees with the classical expression for S (1)
em given by the second

term of (2.2.16). The rest of the contribution is extra.

We have also checked that (3.2.29) holds if instead of scalars we have interacting fermions.

This confirms that the logarithmic correction to the soft factor is independent of the spin

of the particle.

We end this section by making some observation on the results derived above:

1. Suppose we assume the validity of the naive version of the subleading soft photon

theorem:4

Γ(n,1) = {S (0)
em + Ŝ (1)

em}Γ
(n) , (3.2.30)

4Since the presence of the logarithmic term makes the finite part ambiguous, we consider only the
logarithmic terms in the subleading factor.
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where the ‘hat’ on S (1) denotes that we are using the differential operator form that

arises in the quantum theory:

S (0)
em =

∑
a

qa
ε.pa

pa.k
, Ŝ (1)

em =
∑

a

qa
εµkν
pa.k

{
pµa

∂

∂paν
− pνa

∂

∂paµ

}
. (3.2.31)

Then using (3.2.7) and the fact that Γ(n)
G vanishes at one loop order, we get

Γ(n,1)
tree + Γ(n,1)

self + Γ(n,1)
G = S (0)

emΓ
(n)
tree + {Ŝ (1)

emKem}Γ
(n)
tree + Ŝ (1)

emΓ
(n)
tree . (3.2.32)

Using Γ(n)
tree = i λ, using (3.2.10) to replace the left hand side, and throwing away

terms like Ŝ (1)
emΓ

(n)
tree which vanishes, we get

S (1)
em = Ŝ (1)

em Kem . (3.2.33)

In the definition of Kem the integration over loop momentum runs over all range and

we have an infrared divergence from the region of small `. However if we make

an ad hoc restriction that the loop momentum integral will run in the range much

larger than the energy ω of the external soft photon, then Kem reduces to Kreg
em de-

fined in (3.2.21) and we recover the correct logarithmic terms in S (1)
em as given in

(3.2.20). This suggests an ad hoc rule for computing the logarithmic terms in the

soft expansion in quantum theory – begin with the usual soft expansion and explic-

itly evaluate the action of the differential operator on the amplitude, restricting the

region of loop momentum integration to lie in a range larger than the soft momenta

but smaller than the momenta of the finite energy particles. With hindsight, this

prescription can be justified by noting that the general arguments of [11, 101], that

assumes existence of 1PI effective action with no powers of soft momenta coming

from the vertices, breaks down for the contribution where the loop momentum is

smaller than the external soft momenta. On the other hand we do not expect any

large contribution from the region of integration where the loop momentum is of



70 Subleading soft theorem in four spacetime dimensions from S-matrix analysis

the order of the external momenta or larger.

This argument also suggests that although we have carried out the explicit calcu-

lation only at one loop order, the result may be valid to all orders in perturbation

theory, since Kem is known to be valid to all orders in perturbation theory [108].

2. The second observation concerns the relation between the classical and the quantum

results. As already noted, compared to the classical result that agrees with the first

line of (3.2.29), the quantum result found here has an extra term given in the second

and third line of (3.2.29). If however we replace in (3.2.22) the Feynman propagator

for the photon by the retarded propagator, we get only the contribution from the first

line of (3.2.29), since the contribution from the pole at `2 = 0 can then be avoided

by appropriate choice of contour. Therefore at least for the soft photon theorem in

quantum electrodynamics, the rule for relating the quantum and the classical result

seems to be to replace the Feynman propagator of the photon in the loop in the

quantum result by retarded propagator.

We shall now write down the results for the other cases and test if the generalization of

observation 1 works. We shall also explore if the results satisfy the generalization of

observation 2.

3.3 Soft graviton theorem in gravitational scattering

We now turn to the analysis of the soft graviton theorem in the scattering of scalar parti-

cles, interacting via gravity, to one loop order. The action is taken to be

∫
d4x

√
− det g

[
1

16πG
R −

n∑
a=1

{
gµν ∂µφ∗a ∂νφa + m2

aφ
∗
aφa

}
+ λ φ1 · · · φn + λ φ∗1 · · · φ

∗
n

]
.

(3.3.1)

Even though in this case we could take the scalar fields to be real, we have kept them

complex in order to extend the analysis to the case where the scalars have both electro-
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magnetic and gravitational interaction. As in §3.2, we shall postulate a relation of the

form

Γ(n,1) =
{
S (0)

gr + S (1)
gr

}
Γ(n) , (3.3.2)

and try to determine the logarithmic terms in S (1)
gr by comparing the two sides up to one

loop order.

We shall carry out our computation in the de Donder gauge in which the propagator of a

graviton of momentum ` is given by:

−
i

`2 − iε
1
2

(
ηµρηνσ + ηµσηνρ − ηµνηρσ

)
. (3.3.3)

For our analysis we also need the vertices involving the graviton. The scalar-scalar-

graviton vertex, with the scalars carrying ingoing momenta p1, p2 and the graviton carry-

ing ingoing momentum −p1 − p2 and Lorentz index (µν), is given by

− i κ
[
p1µp2ν + p1νp2µ − ηµν(p1.p2 − m2)

]
, (3.3.4)

where κ =
√

8πG = 1 in our convention. The vertex involving two scalars carrying

ingoing momenta p1, p2, and two gravitons carrying ingoing momenta k1, k2 and Lorentz

indices (αβ) and (µν) is given by5

2 i κ2
[
− ηαµ ηβν p1.p2 +

1
2
ηαβ ηµν p1.p2 − ηαβ p1µp2ν − ηµν p1αp2β

+ 2 ηαµ
{
p1βp2ν + p2βp1ν

}
+ m2 (ηµαηνβ −

1
2
ηµνηαβ)

]
.

(3.3.5)

If we label the ingoing graviton momenta by k1, k2 and k3 = −k1 − k2 and the Lorentz

indices carried by them by (µα), (νβ) and (σγ) respectively, then the 3-graviton vertex

5In writing this and other vertices we already include the symmetry factor related to exchange of iden-
tical particles. Therefore if we were to use this vertex to compute tree level two graviton, two scalar
amplitude, no further symmetry factor is necessary.
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· · · · · ·

ggg
g

ggggg

Figure 3.6: This diagram shows various vertices induced from the action (3.3.1) that are
needed for our computation. Here the thinner lines carrying the symbol g denote gravitons
and the thicker lines denote scalars.

takes the form:

i κ
[ (

k1.k2ηµαηνσηβγ + k2.k1ηνβηµσηαγ + k1.k3ηµαηνσηβγ

+ k3.k1ησγηµνηαβ + k2.k3ηνβηµσηαγ + k3.k2ησγηµνηαβ
)

− 2
(
k1σk2γηµνηαβ + k2µk3αηνσηβγ + k3νk1βηµσηαγ

)
− 4

(
k1.k2 + k2.k3 + k3.k1

)
ηανηβσηγµ

+
(
k1.k2ηµνηαβησγ + k2.k3ηνσηβγηµα + k3.k1ηµσηαγηνβ

)
+ 2

(
k1σk2µηανηβγ + k2µk3νησαηγβ + k3νk1σηµβηαγ

+ k2σk1νηµβηαγ + k3µk2σηνγηβα + k1νk3µησβηγα
)

−
1
2
(
k1.k2 + k2.k3 + k3.k1

)
ηµαηνβησγ

]
. (3.3.6)

In (3.3.5) and (3.3.6) it is understood that the vertices need to be symmetrized under the

exchange of the pair of Lorentz indices carried by each external graviton, e.g. µ↔ ν and

α ↔ β in (3.3.5) and µ ↔ α, ν ↔ β and σ ↔ γ in (3.3.6). Even though (3.3.6) has a

complicated form, we shall need the form of the vertex when one of the external momenta

(say k3) is small compared to the others. In this limit it simplifies.

The vertex where a graviton carrying Lorentz index (µν) attaches to n scalar fields is given

by:

iκλ ηµν . (3.3.7)

The vertex where two gravitons carrying Lorentz index (µν) and (ρσ) attach to n scalar
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pa

← `

pa + `

pb

pb − `

· · ·

g

Figure 3.7: Diagram contributing to Γ(n).

· · ·

g

Figure 3.8: Another diagram contributing to Γ(n). We can also have a diagram where
both ends of the internal graviton are attached to the n-scalar vertex, but this vanishes in
dimensional regularization and so we have not displayed them.

fields is given by:

− i κ2λ
(
ηµνηρσ − ηµρηνσ − ηµσηνρ

)
. (3.3.8)

We also need the vertex containing two scalars and three gravitons for evaluating the fifth

diagram of Fig. 3.10. However even without knowing the form of this vertex one can see

that this diagram does not generate contributions proportional to lnω−1. Therefore we

have not written down the expression for this vertex.

We can use these vertices to compute one loop contribution to the n scalar amplitude

Γ(n) and n-scalar and one soft graviton amplitude Γ(n,1). At one loop order Γ(n) receives

contribution from diagrams shown in Fig. 3.7 that are analogous to Fig. 3.3 with the

internal photon replaced by a graviton. There are also some additional diagrams shown in

Fig. 3.8.

The relevant diagrams for Γ(n,1) include the analogs Figs. 3.1 and 3.2 with all photons

replaced by gravitons. This have been shown in Figs. 3.9 and 3.10. However there are

also some extra diagrams that we shall list below:

1. There are diagrams where the external graviton couples to the internal graviton via
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pa

k pa + k
← `

pa + k + `

pb

pb − `

· · ·

(a)

g
g

pa

k ← `

pa + k + `

pb

pb − `

· · ·

(b)

gg

pa

k
pa + q
← q

pa + k + q

pb

pb − q

· · ·

(c)

g

g

Figure 3.9: One loop contribution to Γ(n,1) involving internal graviton line connecting two
different legs. The thicker lines represent scalar particles and the thinner lines represent
gravitons.

pa

k
`

· · ·

g g
pa

k
`

· · ·

g
g pa

k `

· · ·

g g

pa

k `

· · ·

g g

pa

k
j̀ijih

· · ·

g
g

pa

k j̀iihj
· · ·

g g

pa

k

· · ·

g

Figure 3.10: One loop contribution to Γ(n,1) involving internal graviton line connecting
two different points on the same leg.
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pa pb

· · ·

k

` k − `

pa + ` pb + k − `

g g
g

pa pb

· · ·

k
`

k − `
pa + `

g
gg

· · ·

g
g

g

· · ·

g

g g

· · ·

g

g
g

Figure 3.11: Diagrams involving 3-graviton vertex.

· · ·

g
g

· · ·

g g

· · ·

g g

· · ·

gg

Figure 3.12: Diagrams where the internal graviton attaches to the n-point vertex.

the cubic coupling (3.3.6). Examples of these are shown in Fig. 3.11.

2. There are diagrams where one end of the internal graviton attaches to the n-scalar

vertex via the coupling (3.3.7). These have been shown in Figs. 3.12.

3. There are diagrams where the external graviton attaches to the scalar n-point vertex

via the coupling (3.3.7) or (3.3.8). These have been shown in Fig. 3.13. The first

diagram can be made to vanish by taking the external graviton polarization to be

traceless: ε ρ
ρ = 0. The second diagram has no logarithmic terms. Therefore we

shall ignore these diagrams in subsequent discussions.

4. There are diagrams of the type shown in Fig. 3.14 where two ends of the internal

graviton attach to the n-scalar vertex. In dimensional regularization these diagrams

vanish. Therefore we shall ignore these diagrams in our analysis.



76 Subleading soft theorem in four spacetime dimensions from S-matrix analysis

· · ·

g
g

· · ·

g
g

Figure 3.13: Diagrams where the external graviton attaches to the n-point vertex. The first
diagram vanishes if we take the external graviton polarization to be traceless. The second
diagram has no logarithmic terms.

· · ·

g
g

· · ·

g

g

Figure 3.14: Diagrams where both ends of the internal graviton attach to the n-point
vertex. In dimensional regularization these diagrams vanish. Even if we use momentum
cut-off, these diagrams cannot have any contribution proportional to lnω−1 since the soft
momentum k does not flow through any loop.

Our analysis of these diagrams will proceed as in §3.2, but there will be some important

differences that we shall point out below. For an internal graviton of momentum `, whose

two ends are attached to two scalar lines a and b with ` flowing from the leg b towards the

leg a, as in Figs. 3.7, 3.9, the analog of Grammer-Yennie decomposition of the graviton

propagator will be taken to be

Gµν,ρσ
(ab) (`, pa, pb) =

(
ηµρηνσ + ηµσηνρ − ηµνηρσ

)
− Kµν,ρσ

(ab) (`, pa, pb) , (3.3.9)

Kµν,ρσ
(ab) (`, pa, pb) = C(`, pa, pb)

[
(pa + `)µ`ν + (pa + `)ν`µ

] [
(pb − `)ρ`σ + (pb − `)σ`ρ

]
,

where

C(`, pa, pb) =
(−1)

{pa.(pa + `) − iε} {pb.(pb − `) − iε}{ `.(` + 2pa) − iε} {`.(` − 2pb) − iε}[
2(pa.pb)2 − p2

a p2
b − `

2(pa.pb) − 2(pa.pb)(pa.`) + 2(pa.pb)(pb.`)
]
. (3.3.10)

If one end of an internal graviton is attached to the n-scalar vertex and the other end is
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attached to the a’th scalar leg as in Figs. 3.8, 3.12, with ` flowing from the vertex towards

the a’th leg, we express the propagator as:

−
i

`2 − iε
1
2

{
Gµν,ρσ

(a) (`, pa) + Kµν,ρσ
(a) (`, pa)

}
, (3.3.11)

where

Gµν,ρσ
(a) (`, pa) =

(
ηµρηνσ + ηµσηνρ − ηµνηρσ

)
− Kµν,ρσ

(a) (`, pa) , (3.3.12)

Kµν,ρσ
(a) (`, pa) = C̃(`, pa)

[
(pa + `)µ`ν + (pa + `)ν`µ

]
ηρσ , (3.3.13)

and

C̃(`, pa) = −
2 pa.(pa − `)

{pa.(pa + `) − iε} { `.(` + 2pa) − iε}
. (3.3.14)

For internal gravitons whose one end is attached to a 3-graviton vertex instead of a scalar,

as in Fig 3.11, we do not carry out any Grammer-Yennie decomposition.

The decomposition into G and K-gravitons is not arbitrary but has been chosen to ensure

two properties:

1. The K-graviton polarization, being proportional to `, is pure gauge and allows us to

sum over K-graviton insertions using Ward identities. The relevant Ward identities

have been shown in Fig. 3.15, with the quantity A(p, k, `, ξ, ζ) is given by

A(p, k, `, ξ, ζ) = 2 i ξ.p ζµν
[
2 (2 pµ + `µ) kν + 2 kµkν − ηµν

{
k.(2p + `) + k2

}]
+2 i ξ.(k + `) ζµν

[
− 2 pµ (p + `)ν + ηµν {p.(p + `) + m2}

]
+2 i (ξαkβ + ξβkα) ζµν

[
ηαµ ηβν p.(p + k + `) −

1
2
ηαβ ηµν p.(p + k + `)

+ηαβ pµ (p + k + `)ν + ηµν pα (p + k + `)β − 2 ηαµ pβ(p + k + `)ν

−2 ηαµ pν(p + k + `)β + m2
(
ηµα ηνβ −

1
2
ηµν ηαβ

) ]
. (3.3.15)

Due to this additional term, the sum over K-gravitons will leave behind some resid-
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⇑
= f fpc →

↑

k

− ,

gg g g

+ +−
pc →

` ↓

k ↑

= A(pc, k, `, ξ, ζ)i i
⇑
g

g

g

g

g

g

Figure 3.15: Analog of Fig. 3.4 for gravity. The arrow on the graviton line represents that
the polarization of the graviton carrying momentum k is taken to be equal to ξµkν + ξνkµ.
The polarization of the graviton carrying momentum k is taken to be ζρσ. In the first
diagram the circle on the left denotes a vertex −2 ξ.(pc + k) while the circle on the right
denotes a vertex −2 ξ.pc. A(pc, k, `, ξ, ζ) appearing on the right hand side of the second
diagram is given in eq.(3.3.15).

ual terms that will be discussed below.

2. In any one loop diagram contributing to the amplitude Γ(n) without external soft

graviton, the result vanishes if we replace the internal graviton by G-graviton.

With this convention the K-graviton contribution to Fig. 3.7 for gravity can be computed

as in §3.2, leading to a contribution of the form iλKgr to Γ(n), where Kgr is the gravitational

counterpart of Kem. The relevant part of the expression for Kgr will be described later. The

K-graviton contribution to Fig. 3.8 can be carried out similarly, leading to an expression of

the form iλK̃gr. K̃gr has no infrared divergence and we shall not write down its expression

explicitly although it is straightforward to do so. The G-graviton contributions to Fig. 3.7

and 3.8 vanish by construction. Therefore the net contribution to Γ(n) to one loop order

may be written as iλ exp[Kgr + K̃gr].

The K-graviton contributions to Figs. 3.9 and 3.12 may be evaluated similarly, with the

factorized term giving iλ S (0)
gr exp[Kgr + K̃gr]. There are however some left-over terms

arising as follows:
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h h
· · · · · ·

pa pa
k

g
g

g

Figure 3.16: Figure illustrating the difference in the factorized K-graviton contribution to
Γ(n) and Γ(n+1).

1. As shown in Fig. 3.15, in the sum over K-graviton insertions in Γ(n,1) there is a

residual contribution A that comes from lack of complete cancellation among terms

where a K-graviton is inserted to the two sides of a scalar-scalar-graviton vertex and

into the scalar-scalar-graviton vertex.

2. As explained in the caption of Fig. 3.15, the circled vertices are momentum depen-

dent. Therefore the two circled vertices shown in Fig. 3.16 are not the same, one

carries a factor of ξ.pa while the other carries a factor of ξ.(pa + k). The left hand

figure is relevant for Γ(n) while the right-hand figure is relevant for Γ(n,1). Therefore,

even after factoring out exp[Kgr + K̃em] factor multiplying Γ(n), we are left with an

additional contribution to Γ(n,1) from sum over K-gravitons that must be accounted

for.

We shall denote the sum of these two types of residual contributions as Γ(n,1)
residual. The

G-graviton contributions to Figs. 3.9 and 3.12 will be denoted by Γ(n,1)
G and the net con-

tribution from Fig. 3.10 will be called Γ(n,1)
self . Finally the contribution to the diagrams in

Fig. 3.11 involving 3-graviton coupling will be denoted by Γ(n,1)
3−graviton. In principle we

should also include the contributions from Fig. 3.13 and Fig. 3.14, but we ignore them

since they do not generate logarithmic terms. In this case the analog of (3.2.11) takes the

form:

Γ(n,1)
self + Γ(n,1)

G + Γ(n,1)
3−graviton + Γ(n,1)

residual = iλ S (1)
gr . (3.3.16)

We shall now briefly describe how we evaluate these contributions and then give the final



80 Subleading soft theorem in four spacetime dimensions from S-matrix analysis

result. First let us consider Γ(n,1)
residual. This receives contribution from Fig. 3.9 and Fig. 3.12.

As explained above, there are two kinds of terms: one due to the right hand side of the

second figure of Fig. 3.15, and the other due to the momentum dependence of the circled

vertices in Fig. 3.15. It turns out that the residual part of the K-graviton contribution

from Fig. 3.12 does not have any logarithmic term. On the other hand the residual part of

the K-graviton contribution from Fig. 3.9 receives logarithmic contribution only from the

region where the loop momentum is large compared to ω. The result takes the form:

Γ(n,1)
residual = −(iλ)

i
2

n∑
a=1

n∑
b=1
b,a

[
2(pa.pb)2−p2

a p2
b
] pa.ε.pa

p2
a

∫
reg

d4l
(2π)4

1[
pa.l − iε

] [
pb.l + iε

] [
l2 − iε

] .
(3.3.17)

This contribution may be evaluated following a procedure similar to the one used in §3.2.

Contribution to Γ(n,1)
3−graviton arises from the five diagrams in Fig. 3.11, but only the first

two give terms proportional to lnω−1. Individually these diagrams suffer from collinear

divergence from region of integration where the momenta of the internal gravitons become

parallel to that of the external graviton, but these divergences cancel in the sum over such

graphs after using momentum conservation. Therefore we always work with sum of these

diagrams. The net contribution from these diagrams receive logarithmic contribution from

two regions – one where the loop momentum is large compared to ω and the other where

the loop momentum is small compared to ω. We shall analyze the contribution from

the region of small loop momentum later. Contribution from the region where the loop

momentum is large compared to ω may be approximated as

− (iλ)
i
4

n∑
a=1

n∑
b=1
b,a

∫
reg

d4`

(2π)4

1[
pa.` − iε

] [
pb.` + iε

] [
`2 − iε

]
[
−8 (pa.ε.pb) (pa.pb) + 2 (pa.ε.pa) p2

b + 2 (pb.ε.pb) p2
a − 2

{
2(pa.pb)2 − p2

a p2
b
} `.ε.`

`2 − iε

]
−(iλ)

i
2

n∑
a=1

∫
reg

d4`

(2π)4

1[
pa.` − iε

]2

1[
`2 − iε

] [
− 2 p2

a (pa.ε.pa) +
(p2

a)2

pa.` − iε
(pa.ε.`)

]
.

(3.3.18)
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In arriving at this result we have used integration by parts and also conservation of total

momentum
∑n

a=1 pa = 0. We have also used the fact that in the expression for the graviton

propagator carrying momentum (k− `) in the second diagram of Fig .3.11, we can use the

identity
1

(k − `)2 − iε
=

2`.k
{(k − `)2 − iε}{`2 − iε}

+
1

`2 − iε
, (3.3.19)

and ignore the contribution from the (`2−iε)−1 term, since the expression for the amplitude

involving this term has no k-dependent denominator and therefore cannot have a lnω−1

term.6 Similar manipulations will be used in other terms as well.

Contribution to Γ(n,1)
self given in Fig. 3.10 may be analyzed following the argument given

below (3.2.16). We assume a general form εµνpµa pνa f (pa.k) for this amplitude based on

Lorentz invariance and replace εµν by ξµkν + ξνkµ for an arbitrary vector ξ satisfying k.ξ =

0. Then the amplitude reduces to 2 pa.ξ pa.k f (pa.k). On the other hand the diagrams in

Fig. 3.10 for this choice of polarization may be evaluated using the Ward identity given

in Fig. 3.15. Due to the presence of the non-vanishing right-hand side in Fig. 3.15, the

result does not vanish. Comparing this with the expected result 2 pa.ξ pa.k f (pa.k), we

can compute f (pa.k) and hence Γ(n,1)
self . It turns out that it receives logarithmic contribution

from region of integration where the loop momentum is large compared to ω. The result

is:

Γ(n,1)
self = −(iλ)

i
2

n∑
a=1

p2
a pa.ε.pa

∫
reg

d4`

(2π)4

1[
pa.` − iε

]2 [
`2 − iε

] . (3.3.20)

This cancels the term in the last line of (3.3.18).

One loop contribution from the diagrams involving G-gravitons in Figs. 3.9 and 3.12

may be evaluated following the procedure described in §3.2. We find that the G-graviton

contribution to Fig. 3.12 has no logarithmic contribution. Therefore we are left with the

G-graviton contributions to Fig. 3.9. These diagrams have the same structure as in scalar

QED and can be evaluated similarly. As in the case of scalar QED, these diagrams receive

6This manipulation can be carried out only for terms containing at least two powers of ` in the numerator
so that each of the terms in (3.3.19) generates infrared finite integral.
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significant contribution only from the region where the loop momentum is large compared

to ω and small compared to the momenta of finite energy particles. The net logarithmic

contributions from these diagrams is given by

Γ(n,1)
G = −(iλ)

i
2

n∑
a=1

n∑
b=1
b,a

∫
d4l

(2π)4

1[
pa.l − iε

] [
pb.l + iε

] [
l2 − iε

]
[
8(pa.pb) (pa.ε.pb) − 2p2

b (pa.ε.pa) −
[
2(pa.pb)2 − p2

a p2
b
] (

pa.ε.pa

p2
a

+ 2
pa.ε.l
pa.l

) ]
+(iλ)

i
2

( pa.ε.pa

pa.k

) ∫
d4l

(2π)4

1[
pa.l − iε

] [
pb.l + iε

] [
l2 − iε

][
4(pa.pb) (pb.k) −

[
2(pa.pb)2 − p2

a p2
b
] k.l

pa.l

]
. (3.3.21)

The total logarithmic terms in Γ(n,1)
G , Γ(n,1)

self , Γ(n,1)
residual and Γ(n,1)

3−graviton from the region of inte-

gration where the loop momentum is large compared to ω, can be expressed as7

(iλ) Ŝ (1)
gr Kreg

gr , (3.3.22)

where Ŝ (1)
gr is the quantum subleading soft graviton operator

Ŝ (1)
gr =

∑
a

εµρpρakν
pa.k

{
pµa

∂

∂paν
− pνa

∂

∂paµ

}
, (3.3.23)

and

Kreg
gr ≡

i
2

∑
a,b
b,a

{
(pa.pb)2 −

1
2

p2
a p2

b

} ∫
reg

d4`

(2π)4

1
`2 − iε

1
(pa.` − iε) (pb.` + iε)

. (3.3.24)

Kreg
gr is the analog of Kreg

em for gravitational scattering, namely it is the factor that appears

in the exponent of the soft factor in the scattering of n scalars, with the understanding

that the integration over loop momentum is restricted to the region larger than ω. We

7It is natural to conjecture that this pattern continues to hold also for subsubleading soft graviton the-
orem, i.e. the universal part of the subsubleading contribution is given by the action of the subsubleading
soft graviton operator Ŝ (2)

gr acting on exp[Kreg
gr ]. But we have not verified this by explicit computation.
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note however that the full expression for Kgr has more terms – (3.3.24) already involves

an approximation that the loop momentum is small compared to the energies of external

lines since this is the region that generates lnω−1 terms. Explicit evaluation gives the

following expression for the terms involving lnω−1:

Kreg
gr =

i
2

∑
a,b
b,a

1
4π

lnω−1

{
(pa.pb)2 − 1

2 p2
a p2

b

}
√

(pa.pb)2 − p2
a p2

b

δηaηb,1 −
i

2π
ln


pa.pb +

√
(pa.pb)2 − p2

a p2
b

pa.pb −

√
(pa.pb)2 − p2

a p2
b


 .

(3.3.25)

At this stage the only remaining terms are the contributions to Γ(n,1)
3−graviton from regions of

loop momentum integration where the loop momentum is small compared to ω. These

come from the first two diagrams in Fig. 3.11. In the first diagram there are two relevant

regions: when ` is small and when k − ` is small, but they are related to each other by

` → k − ` and a ↔ b symmetry. In the second diagram the relevant region is when ` is

small. The net contribution from these regions may be approximated by

λ

n∑
a=1

n∑
b=1

∫
d4`

(2π)4

1[
2k.` − `2 + iε

] [
pa.` − iε

] [
`2 − iε

][2(pa.ε.pb) (pa.k)− 2(pb.ε.pb)
(pa.k)2

pb.k

]
,

(3.3.26)

with the understanding that the integration over ` runs in the region where the components

of ` are small compared to ω. The result may be expressed as

iλ (lnω−1 + ln R−1)

 i
4π

∑
b

ηb=−1

k.pb

∑
a

εµνpµa pνa
pa.k

+
1

8π2

∑
a

εµνpµa pνa
pa.k

∑
b

pb.k ln
m2

b

(pb.k̂)2

 ,
(3.3.27)

where 1/R is an infrared lower cut-off on momentum integration and k̂ = −k/ω = (1, n̂).

Adding (3.3.22) to (3.3.27) and dividing by iλ we get the terms involving lnω−1 and ln R

in S (1)
gr :

S (1)
gr = Ŝ (1)

gr Kreg
gr
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+
1

4π
(lnω−1 + ln R−1)

i
∑

b
ηb=−1

k.pb

∑
a

εµνpµa pνa
pa.k

+
1

2π

∑
a

εµνpµa pνa
pa.k

∑
b

pb.k ln
m2

b

(pb.k̂)2

 .
(3.3.28)

3.4 Generalizations

In this section we shall consider the case where the scalars interact via both electromag-

netic and gravitational interaction via the action:

∫
d4x

√
− det g

[
−

1
4

FµνFµν +
1

16πG
R −

n∑
a=1

{
gµν(∂µφ∗a + iqaAµφ

∗
a)(∂νφa − iqaAνφa)

+m2
aφ
∗
aφa

}
+ λ φ1 · · · φn + λ φ∗1 · · · φ

∗
n

]
. (3.4.1)

For this analysis we need two new vertices, the graviton-photon-photon vertex and the

graviton-photon-scalar-scalar vertex. If the graviton carries an ingoing momentum q and

Lorentz index (ρσ), and the two photons carry ingoing momenta k1 and k2 and Lorentz

indices µ and ν respectively, then the graviton-photon-photon vertex is given by:

−i κ
[
ηρσ

(
− k1.k2 ηµν + k1νk2µ

)
+ ηµν

(
k1ρk2σ + k2ρk1σ

)
+ k1.k2

(
ηµρηνσ + ηµσηνρ

)
−

(
k1σk2µηρν + k2σk1νηρµ + k1ρk2µησν + k2ρk1νησµ

)]
. (3.4.2)

On the other hand the vertex with a pair of scalars carrying charges q, −q and momenta p1

and p2, a graviton carrying Lorentz indices (µν) and momentum k1 and a photon carrying

Lorentz index ρ and momentum k2, all counted ingoing, is given by

− i κ q
[
ηµρ(p1 − p2)ν + ηνρ(p1 − p2)µ − ηµν(p1 − p2)ρ

]
. (3.4.3)

In this theory we shall analyze the extra terms in both the soft graviton theorem and the

soft photon theorem.
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Figure 3.17: Contribution to soft graviton amplitude due to internal photon whose two
ends are connected to two different scalar lines. Here the thickest lines denote scalars,
lines of medium thickness carrying the symbol g denote gravitons and the thin lines car-
rying the symbol γ denote photons.
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Figure 3.18: One loop contribution to soft graviton amplitude involving internal photon
line connecting two points on the same leg.

There are two other vertices that are needed for our analysis. For example the sixth dia-

gram of Fig. 3.18 needs the vertex containing two scalars, two photons and one graviton,

whereas the sixth diagram of Fig. 3.23 requires the two scalar, two graviton and one pho-

ton vertex. However even without knowing the form of these vertices one can see that

these diagrams do not generate contributions proportional to lnω−1. Therefore we have

not written down the expressions for these vertices.
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· · ·

γ γ
g

· · ·

γ
γ

g

· · ·

g

γ

γ

Figure 3.19: Diagrams containing graviton-photon-photon vertex that contribute to the
soft photon contribution to the soft graviton theorem.

+ +−

k

`

= 0f f
⇑

γ γγ

g gg

Figure 3.20: The Ward identity for the photon in the presence of a graviton-scalar-scalar
vertex.

3.4.1 Soft graviton theorem

We first consider the soft graviton theorem. In this case besides the contributions analyzed

in §3.3, we also have the diagrams of Fig. 3.17 and Fig. 3.18, obtained by replacing, in

the diagrams in §3.2, the external photon by a graviton but keeping the internal line as a

photon. We also have an additional set of diagrams shown in Fig. 3.19 where the external

graviton connects to the internal photon. Diagrams in which the external graviton attaches

to the n-scalar vertex vanish for ε ρ
ρ = 0 and have not been displayed. We carry out

Grammer-Yennie decomposition for the internal photons in Fig. 3.17 following (3.2.3),

but not for diagrams of the form shown in Fig. 3.18 and Fig. 3.19. The sum over K-

photons factorize as in §3.2 and gives the factor of exp[Kem] that cancels between Γ(n)

and Γ(n,1). In this case there is no residual contribution since the analog of Fig. 3.4 holds

with the upper photon in the second identity replaced by a graviton (see Fig. 3.20). This

leads to the analog of (3.2.11) with an additional contribution to the left hand side given

by diagrams of the form shown in Fig. 3.19. Denoting this contribution by Γ(n,1)
γγg we arrive
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at the relation

Γ(n,1)
self + Γ(n,1)

G + Γ(n,1)
γγg = i λ S (1)

gr , (3.4.4)

with the understanding that both sides represent contributions in addition to what already

appear in (3.3.16). None of the terms have any infrared divergence, and therefore there

are no logarithmic terms from the region of integration in which the loop momentum is

small compared to ω. We shall describe below the organization of the various terms and

then state the final result:

1. One can analyze Γ(n,1)
self represented by the graphs in Fig. 3.18 by following the pro-

cedure described below (3.2.16). We replace the external graviton polarization by

a pure gauge form (ξµkν + ξνkµ) and apply Ward identity to evaluate the sum over

the graphs in Fig. 3.18. In this case the Ward identity has an additional contribution

as shown in the right hand side of the second diagram in Fig. 3.21. It turns out

however that its contribution to the amplitude does not have any logarithmic term.

Therefore Γ(n,1)
self does not generate any logarithmic contribution.

2. Γ(n,1)
γγg receives contribution proportional to lnω−1 from the first two diagrams of

Fig. 3.19, from the region where the loop momentum is large compared to ω.

3. Finally, the G-photon contribution Γ(n,1)
G from the first two diagrams in Fig. 3.17

also has terms proportional to lnω−1 from the region where the loop momentum is

large compared to ω.

The net logarithmic contribution from Γ(n,1)
γγg and Γ(n,1)

G is given by:

(iλ) Ŝ (1)
gr Kreg

em . (3.4.5)

After removing the i λ factor, we have to add this to (3.3.28) to get the total logarithmic
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⇑
= f fpc →
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Figure 3.21: Analog of Fig. 3.4 for graviton in the presence of a photon. The graviton
carries a polarization (ξµ`ν + ξν`µ) and the photon carries a polarization ε. The circled
vertex has been explained in the caption of Fig. 3.15.

contribution to S (1)
gr :

S (1)
gr = Ŝ (1)

gr

(
Kreg

em + Kreg
gr

)
+

1
4π

(lnω−1 + ln R−1)

i
∑

b
ηb=−1

k.pb

∑
a

εµνpµa pνa
pa.k

+
1

2π

∑
a

εµνpµa pνa
pa.k

∑
b

pb.k ln
m2

b

(pb.k̂)2

 .
(3.4.6)

This reproduces terms proportional to lnω−1 in the sum of (3.6.6) and (3.6.7) after using

(3.2.28) and (3.3.25).

3.4.2 Soft photon theorem

Next we shall consider the soft photon theorem. In this case we have all the diagrams

considered in §3.2, but also extra diagrams where the internal photon of Figs. 3.1 and 3.2

is replaced by an internal graviton, as shown in Figs. 3.22 and 3.23, and two additional

sets of diagrams: one where one end of the internal graviton connects to the external

photon as in Fig. 3.24 and the other where one end of the internal graviton is attached

to the n-scalar vertex as in Fig. 3.25. There is also an additional diagram obtained by
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Figure 3.22: One loop contribution to soft photon amplitude involving internal graviton
line connecting two different legs.
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Figure 3.23: Diagrams in which the external photon and both ends of the internal graviton
attach to the same scalar leg.
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Figure 3.24: Diagrams involving graviton-photon-photon vertex that need to be included
in computing the soft graviton contribution to the soft photon theorem.
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Figure 3.25: Diagrams with external soft photon and an internal graviton where the inter-
nal graviton attaches to the n-point vertex.
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replacing in the first diagram of Fig. 3.14 the external graviton by the external photon, but

this vanishes in dimensional regularization.

We shall analyze the diagrams in Figs. 3.22 and 3.25 using Grammer-Yennie decomposi-

tion for the internal graviton following the rules described in (3.3.9)-(3.3.14). The result

of summing over K-gravitons in Γ(n,1) will generate the factor of exp[Kgr + K̃gr] which can-

cels a similar factor in the expression of Γ(n). However there will be residual part that will

be left over due to non-cancellation of the sum over K-graviton insertions reflected in the

right-hand side of Fig. 3.21. Another residual contribution arises due to the momentum

dependence of the circled vertices; as illustrated in Fig, 3.16, the factorized contribution

of K-gravitons for Γ(n) and Γ(n,1) differ. The only difference in the present case is that the

external graviton carrying momentum k in Fig. 3.16 is replaced by an external photon.

As in §3.3, we shall denote these residual contributions in the sum over K-gravitons by

Γ(n,1)
residual. The G-graviton contribution to Figs. 3.22 and 3.25 will be denoted by Γ(n,1)

G . The

contribution from diagrams involving the coupling of graviton to photon, as shown in

Fig. 3.24, will be denoted by Γ(n,1)
γγg , and the contributions from Fig. 3.23 will be denoted

by Γ(n,1)
self . Then the generalization of (3.2.11) takes the form:

Γ(n,1)
self + Γ(n,1)

G + Γ(n,1)
γγg + Γ(n,1)

residual = i λ S (1)
gr , (3.4.7)

again with the understanding that both sides represent additional contribution besides

those described in §3.2.

Analysis of various terms on the left hand side of (3.4.7) goes as follows:

1. Γ(n,1)
self can be shown to vanish using the same argument given below (3.2.16). In

this case the relevant Ward identities given in Figs. 3.4 and 3.20 do not have any

left-over extra contributions.

2. It turns out that Γ(n,1)
residual, given by the left-over contribution after summing over K-

graviton insertions in Figs. 3.22 and 3.25, does not receive any logarithmic terms
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either from the region of loop momentum integration small compared to ω or from

regions of loop momentum integration large compared to ω.

3. Γ(n,1)
G receives contributions proportional to lnω−1 only from the G-graviton contri-

bution to Fig. 3.22, from region of integration where the loop momentum is larger

than ω.

4. The individual diagrams contributing to Γ(n,1)
γγg have collinear divergence from the

region where the momenta of the internal graviton and photon are parallel to the

momentum of the external photon. This cancels in the sum over all diagrams in

Fig. 3.24. The second and third diagrams of Fig. 3.24 each has contribution propor-

tional to lnω−1 from the region of integration where the loop momentum is large

compared to ω, but the sum of these contributions vanishes. Finally, Γ(n,1)
γγg receives

contributions proportional to lnω−1 from the first two diagrams in Fig. 3.24, from

the region where the momentum of the internal graviton is smaller than ω.

The net logarithmic contribution from the region of integration where the loop momentum

is larger than ω is given by

i λ Ŝ (1)
em Kreg

gr . (3.4.8)

On the other hand the contribution to Γ(n,1)
γγg from the small loop momentum region is given

by:

i λ (lnω−1+ln R−1)

 i
4π

∑
b

ηb=−1

k.pb

∑
a

εµpµa
pa.k

qa +
1

8π2

n∑
a=1

qaεµpµa
pa.k

n∑
b=1

(pb.k) ln
(
−p2

b

(pb.k̂)2

) .
(3.4.9)

One difference from the previous diagrams of this type, e.g. the ones shown in Fig. 3.11,

is that the divergent contribution comes only from the region where the internal graviton

momentum becomes small, and not when the internal photon momentum becomes small.

This reflects the fact that while photons feel the long range gravitational force due to other

particles, the graviton, being charge neutral, does not feel any long range Coulomb force.
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After removing the i λ factors from (3.4.8) and (3.4.9), we have to add them to (3.2.20) to

get the total soft factor S (1)
em. This gives

S (1)
em = Ŝ (1)

em

(
Kreg

em + Kreg
gr

)
+(lnω−1 + ln R−1)

 i
4π

∑
b

ηb=−1

k.pb

∑
a

εµpµa
pa.k

qa +
1

8π2

n∑
a=1

qaεµpµa
pa.k

n∑
b=1

(pb.k) ln
(
−p2

b

(pb.k̂)2

) .
(3.4.10)

This reproduces terms proportional to lnω−1 in the sum of (3.6.4) and (3.6.5) after using

the explicit forms of Kreg
em and Kreg

gr given in (3.2.28) and (3.3.25).

3.5 Steps to derive subleading multiple soft photon

theorem

In this section summarising our learnings from §3.2 we will derive double soft photon

theorem. Then we will see that we can very easily extend our analysis to multiple soft

photon case and directly write down the result of multiple soft photon theorem up to

subleading order. Sum over the tree and one loop diagrams with two external photons with

momenta k1 and k2 will be denoted by Γ(n,2) and Γ(n) will denote the amplitude without

any soft photon up to one loop order. We will consider the momenta k1 and k2 are softer

in the same rate as denoted by kµ1 = ωnµ1 and kµ2 = τωnµ2, where τ is an O(1) dimensionless

parameter and nµ1, n
µ
2 are unit null vectors.

• The KG decomposition performed in eq.(3.2.3) also works for diagrams contain-

ing two external photons attached with a scalar line with two three point vertices

and analysis directly follows from Fig.3.4. One can also verify that the same KG

decomposition works when both the external photons are attached to a scalar line

via two scalar, two photon vertex. This is diagrammatically shown in Fig.3.26.
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Figure 3.26: The diagram shows that even in presence of the vertex with two external
photon connecting to a scalar line K-G decomposition works similar to Figure(3.4). Here
the photon line with arrow represents K-photon and the vertex with circle is the same as
described in Figure(3.4).

Therefore we can write,

Γ(n) = exp
[
Kem

] {
Γ(n)

tree + Γ(n)
G

}
, Γ(n,2) = exp

[
Kem

] {
Γ(n,2)

tree + Γ(n,2)
G + Γ(n,2)

sel f

}
(3.5.11)

where Γ(n)
tree represents n-scalar tree level amplitude, Γ(n)

G represents one loop n-scalar

amplitude with virtual G-photon, Γ(n,2)
tree represents n-scalar, two photon tree-level

amplitude, Γ(n,2)
G represents n-scalar, two photon one loop amplitude with virtual

G-photon and Γ(n,2)
sel f represents all set of one loop diagrams where both ends of the

virtual photon are connected to same scalar line.

• The diagrams contributing to Γ(n,2)
sel f have to be computed with full photon propagator.

But following the logic of §3.2 they can not contribute to the subleading order8.

• In §3.2 we have seen that contribution from the diagrams with G-photon propagator

connecting scalars with momenta pa and pb vanishes. Which implies one loop n-

scalar amplitude Γ(n)
G vanishes and the contribution from the diagrams in Fig.3.27

also vanishes.

8In double soft photon theorem subleading order is of order lnω
ω

.
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Figure 3.27: One loop contribution to Γ(n,2)
G involving internal G-photon line connecting

two different legs and for diagram-(a),(b),(c): both the external photons are inside the
virtual photon propagator and for diagram-(d): one photon is inside the virtual photon
propagator and the other is connected to some different leg. The thick lines represent
scalar particles and the thin lines carrying symbol γ represent photons. There are other
diagrams related to this by permutaions of scalar lines and exchange of k1 ↔ k2.

• Now for tree amplitude leading double soft theorem takes form,

Γ(n,2)
tree = (iλ)

( n∑
a=1

qa
ε1 · pa

pa.k1

) ( n∑
b=1

qb
ε2 · pb

pb.k2

)
. (3.5.12)

Substituting this result in eq.(3.5.11) and following the arguments above the algo-

rithm for determining subleading double soft photon factor S (1)
double,

Γ(n,2)
G = iλ S (1)

double (3.5.13)
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Figure 3.28: One loop contribution to Γ(n,2)
G involving internal G-photon line connecting

two different legs and no external photon is inside the virtual photon propagator. The thick
lines represent scalar particles and the thin lines carrying symbol γ represent photons.
There are other diagrams related to this by permutaions of scalar lines and exchange of
k1 ↔ k2. For diagram-(b) one don’t need to include diagrams with k1 ↔ k2 exchange.

where in Γ(n,2)
G we only need to analyse the contribution from diagrams in Fig.3.28,3.29,3.30,3.31

and extract order lnω
ω

contribution.

All the diagrams in Fig.3.28 with G-photon propagator are IR finite but contributes to

O
(
ω−1 lnω

)
order in the integration region |ω| << |`µ| << |pµa |, |p

µ
b |. Contribution from

Fig.3.28(a) in this regulated region of integration,

(Ia) ' −λq3
aqb

ε1.pa

pa.k1

ε2.pa

pa.(k1 + k2)

∫
reg

d4`

(2π)4

1
`2 − iε

1
pa.` + iε

1
pb.` − iε[

pb.(k1 + k2) − `.(k1 + k2)
pa.pb

pa.` + iε

]
(3.5.14)
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Figure 3.29: One loop contribution to Γ(n,2)
G involving internal G-photon line connecting

two different legs and one external photon is inside the virtual photon propagator. The
thick lines represent scalar particles and the thin lines carrying symbol γ represent pho-
tons. There are other diagrams related to this by permutaions of scalar lines and exchange
of k1 ↔ k2.

Contribution from Fig.3.28(b) in the regulated region of integration,

(Ib) ' −λq2
aq2

b
ε1.pa

pa.k1

ε2.pb

pb.k2

∫
reg

d4`

(2π)4

1
`2 − iε

1
pa.` + iε

1
pb.` − iε[

pb.k1 + pa.k2 − pa.pb
`.k1

pa.` + iε
− pa.pb

`.k2

pb.` − iε

]
(3.5.15)

Contribution from Fig.3.28(c) in the regulated region of integration,

(Ic) ' λq2
aq2

b
ε1.pa

pa.k1

∫
reg

d4`

(2π)4

1
`2 − iε

1
pa.` + iε

1
pb.` − iε
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Figure 3.30: One loop contribution to Γ(n,2)
G involving internal G-photon line connecting

two different legs and (a)both the external photons attached to the virtual photon propaga-
tor with two scalar-two photon vertices, (b)both the external photons connected to a scalar
line by two scalar-two photon vertex outside the virtual G-photon propagator. There are
other diagrams related to this by permutaions of scalar lines.

Figure 3.31: One loop contribution to Γ(n,2)
G involving internal G-photon line connecting

two different legs and one of the external photon connecting to some different leg where
the virtual photon propagator is not connected. The thick lines represent scalar particles
and the thin lines carrying symbol γ represent photons. There are other diagrams related
to this by permutaions of scalar lines and exchange of k1 ↔ k2.

[
ε2.pb − ε2.`

pa.pb

pa.` + iε

]
(3.5.16)

Contribution from Fig.3.28(d) in the regulated region of integration,

(Id) ' λq2
aq2

b
ε1.pa

pa.k1

∫
reg

d4`

(2π)4

1
`2 − iε

1
pa.` + iε

1
pb.` − iε
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[
ε2.pa − ε2.`

pa.pb

pb.` − iε

]
(3.5.17)

Now summing over pair a, b for the contributions (Ia), (Ic) with permutations of a ↔ b

and (ε1, k1)↔ (ε2, k2), we get

I = −λ

n∑
a=1

n∑
b=1
b,a

[
qa
ε2.pa

pa.k2
qa
ε1µk1ν

pa.k1

(
pµa

∂

∂paν
− pνa

∂

∂paµ

)
+ qa

ε1.pa

pa.k1
qa
ε2µk2ν

pa.k2

(
pµa

∂

∂paν
− pνa

∂

∂paµ

)]

× qaqb

∫
reg

d4`

(2π)4

1
`2 − iε

1
pa.` + iε

1
pb.` − iε

pa · pb (3.5.18)

Summing over pair a, b for the contributions (Ib) with permutation of a ↔ b and (Id)

with permutations of a↔ b and (ε1, k1)↔ (ε2, k2), we get

I′ = −λ

n∑
a=1

n∑
b=1
b,a

[
qb
ε2.pb

pb.k2
qa
ε1µk1ν

pa.k1

(
pµa

∂

∂paν
− pνa

∂

∂paµ

)
+ qa

ε1.pa

pa.k1
qb
ε2µk2ν

pb.k2

(
pµb

∂

∂pbν
− pνb

∂

∂pbµ

)]

× qaqb

∫
reg

d4`

(2π)4

1
`2 − iε

1
pa.` + iε

1
pb.` − iε

pa · pb (3.5.19)

In the regulated region of integration |ω| << |`µ| << |pµa |, |p
µ
b |, contributions from the

diagrams in Fig.3.29 appears in order ω−1. So for extracting order lnω
ω

contribution we can

ignore the contributions from this diagrams. For example diagram-3.29(a) contribution in

the regulated region of integration turns out:

(IIa) ' λq3
aqb (ε2.pa)

ε1.pa

pa.k1

∫
reg

d4`

(2π)4

1
`2 − iε

1
(pa.` + iε)2

1
pb.` − iε

×

[
pb.k1 − k1.`

pa.pb

pa.` + iε

]
∼ O(ω−1)

Similarly we can ignore the contribution from the diagrams in Fig.3.30 as they contribute

in order O(lnω) in the regulated region of integration. As argued above contribution

from diagrams in Fig.3.27 vanishes when we evaluated them with G-photon propagator.

The contribution from diagrams in Fig.3.31 can be easily read off from single soft pho-
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ton theorem analysis following §3.2 and they contribute in lnω
ω

order. Contribution from

diagrams-3.31(a) and 3.31(b) after summing over a, b, c with all possible permutations of

(a, b, c) and (ε1, k1)↔ (ε2, k2) turns out:

I′′ ' −λ

n∑
c=1

n∑
a=1
a,c

n∑
b=1

b,c,a

[
qc
ε2.pc

pc.k2
qa
ε1µk1ν

pa.k1

(
pµa

∂

∂paν
− pνa

∂

∂paµ

)
+ qc

ε1.pc

pc.k1
qa
ε2µk2ν

pa.k2

(
pµa

∂

∂paν
− pνa

∂

∂paµ

)]

× qaqb

∫
reg

d4`

(2π)4

1
`2 − iε

1
pa.` + iε

1
pb.` − iε

pa · pb (3.5.20)

Now summing I, I′ and I′′ we get the O(ω−1 lnω) contribution of Γ(n,2)
G ,

Γ(n,2)
G = −λ

n∑
c=1

n∑
a=1

n∑
b=1
b,a

[
qc
ε2.pc

pc.k2
qa
ε1µk1ν

pa.k1

(
pµa

∂

∂paν
− pνa

∂

∂paµ

)
+ qc

ε1.pc

pc.k1
qa
ε2µk2ν

pa.k2

(
pµa

∂

∂paν
− pνa

∂

∂paµ

)]

× qaqb

∫
reg

d4`

(2π)4

1
`2 − iε

1
pa.` + iε

1
pb.` − iε

pa · pb (3.5.21)

Hence from eq.(3.5.13) one can read off the form of subleading double soft photon factor,

S (1)
double =

n∑
c=1

n∑
a=1

[
qc
ε2.pc

pc.k2
qa
ε1µk1ν

pa.k1

(
pµa

∂

∂paν
− pνa

∂

∂paµ

)
+ qc

ε1.pc

pc.k1
qa
ε2µk2ν

pa.k2

(
pµa

∂

∂paν
− pνa

∂

∂paµ

)]
Kreg

em

(3.5.22)

where Kreg
em expression is given in eq.(3.2.28).

From our experience of the derivation of double soft photon theorem now we can easily

guess the form of multiple soft photon theorem. One observation is that for m number

of soft photons the one loop diagrams having one or more soft photons attached inside

the virtual G-photon propagator will not contribute to subleading order. This observation

suggests that we can derive subleading multiple soft photon theorem following the strat-

egy of [15, 17]. For m number of soft photons, the subleading multiple soft photon factor
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turns out to be:

S (1)
multiple =

m∑
i=1

{ m∏
j=1
j,i

n∑
c=1

qc
ε j.pc

pc.k j

} n∑
a=1

qa
εiµkiν

pa.ki

(
pµa

∂

∂paν
− pνa

∂

∂paµ

)
Kreg

em (3.5.23)

Now after substituting Kreg
em from eq.(3.2.28) in the above equation we find that the sub-

leading multiple soft photon theorem becomes of order O
(
ω−m+1 lnω

)
.

3.6 Summary and analysis of the results

In this section we shall summarize the results of this chapter and then discuss various

aspects of the results. Finally we shall consider some special limits and compare with

known results. We shall use ~ = c = 8πG = 1 units.

3.6.1 Summary of the results

In order to give a uniform treatment of the classical soft photon and soft graviton theorem,

we shall denote by φ(~x, t) the radiative part of the metric or electromagnetic field at a point

~x at time t for a scattering event around the origin. For electromagnetic field, φ can be

directly identified with the gauge field. For the gravitational field we define

hµν = (gµν − ηµν)/2, eµν = hµν −
1
2
ηµν h ρ

ρ , (3.6.1)

and take φ to be eµν. For both electromagnetism and gravity we define classical soft factor

S (ε, k) in D space-time dimensions via the relation:

∫
dt eiωt ε.φ(~x, t) = eiωR

(
ω

2πiR

)(D−2)/2 1
2ω

S (ε, k)

= −
i

4πR
eiωR S (ε, k) for D = 4 , (3.6.2)
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where ε is the polarization tensor of the soft particle so that ε.φ = εµAµ for gauge fields

and εµνeµν for gravity, and

k = −ω(1, n̂), n̂ ≡ ~x/|~x|, R = |~x| . (3.6.3)

On the other hand the quantum soft factor S (ε, k) is the ratio of an amplitude with an

outgoing soft photon or graviton with momentum k and polarization ε and an amplitude

without such a soft particle. It was shown in [19] that in the classical limit the quantum

soft factor reduces to the classical soft factor for D > 4. Our interest will be in analyzing

the situation in D = 4.

We consider the scattering of n particles carrying electric charges {qa} and momenta {pa}

for a = 1, · · · n. In our convention the momenta / charges carry extra minus sign if they

are outgoing. The particles are taken to interact via electromagnetic and gravitational

interactions besides other short range interactions whose nature we need not know. The

symbol ηa takes value +1 (−1) if the a-th particle is ingoing (outgoing). Then the classical

result for the soft photon factor S em(ε, k), containing terms of order ω−1 and ln ω−1, is9

S em =
∑

a

εµpµa
pa.k

qa − i lnω−1
∑

a

qa εµkρ
pa.k

∑
b,a

ηaηb=1

qaqb

4π
m2

am2
b {p

ρ
b pµa − pµb pρa}

{(pb.pa)2 − m2
am2

b}
3/2

+
i

4π
(lnω−1 + ln R−1)

∑
b

ηb=−1

k.pb

∑
a

εµpµa
pa.k

qa

+
i

8π
lnω−1

∑
a

qa εµkρ
pa.k

∑
b,a

ηaηb=1

pb.pa

{(pb.pa)2 − m2
am2

b}
3/2

(pρb pµa − pµb pρa)
{
2(pb.pa)2 − 3m2

am2
b

}
.

(3.6.4)

Since for real polarization the subleading contribution is purely imaginary, it does not af-

9In this and subsequent expressions R arises as an infrared cut-off. For the classical result the ln R
terms arise due to long range gravitational force on the soft photon or graviton during its journey from
the scattering center to the detector over a distance R. For the quantum part, the natural infrared cut-off is
provided by the resolution of the detector. For a detector placed at a distance R from the scattering center,
the best energy resolution possible is of order 1/R. Therefore it is again natural to take R as the infrared
regulator.
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fect the flux to this order. However the flux for circular polarization and / or the wave-form

of the electromagnetic field do receive subleading contribution. An identical situation pre-

vails for gravity.

The quantum result for S em has additional terms:10

∆S em =
1

16π2 lnω−1
∑

a

qa
εµkν
pa.k

{
pµa

∂

∂paν
− pνa

∂

∂paµ

}
∑
b,a


{
2 qaqb pa.pb + 2 (pa.pb)2 − p2

a p2
b

}
√

(pa.pb)2 − p2
a p2

b

ln


pa.pb +

√
(pa.pb)2 − p2

a p2
b

pa.pb −

√
(pa.pb)2 − p2

a p2
b




+
1

8π2 (lnω−1 + ln R−1)
∑

a

qaεµpµa
pa.k

∑
b

(pb.k) ln
(

m2
b

(pb.k̂)2

)
. (3.6.5)

The classical results are universal, independent of the theory and the nature of external

particles. We expect that the quantum results are also universal, but we have derived them

by working with one loop amplitudes in scalar QED coupled to gravity. It is easy to

check that (3.6.4), (3.6.5) are invariant under gauge transformation εµ → εµ + ξ kµ for any

constant ξ.

As will be discussed in §3.6.2, the quantum correction (3.6.5) should not be directly

added to (3.6.4) and substituted into (3.6.2) to compute the radiative component of the

classical electromagnetic field. Rather, when the contribution (3.6.5) is small compared

to (3.6.4), we can substitute (3.6.4) into (3.6.2) to compute the classical electromagnetic

field produced by a scattering event.

As discussed in §3.1, the quantum results are ambiguous and are defined up to addition of

a term to S em of the form ln R−1 k.U S (0)
em where S (0)

em is the leading soft factor given by the

first term on the right hand side of (3.6.4) and U is a vector constructed out of the pa’s. By

choosing U = (8π2)−1 ∑
b pb ln(m2

b/µ
2), we can replace the ln m2

b term in the coefficient of

10Note however that when we express the results in terms of the frequency / wavelength of the soft photon
/ graviton and momenta of the finite energy particles, neither the classical nor the quantum result has any
power of ~. We shall discuss later the conditions under which we expect the quantum results to be small
compared to the classical results.
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ln R−1 in the last line of (3.6.5) by ln µ2 for any mass parameter µ. This makes manifest

the fact that the coefficient is not divergent in the mb → 0 limit. The coefficient of lnω−1

cannot be changed this way, but in this case the finiteness of mb → 0 limit follows as a

consequence of cancellation between the second and third line of (3.6.5) and momentum

conservation.

If we want to consider the situation where we ignore the effect of gravity, then we need to

set the terms proportional to lnω−1 that are linear in qc’s to zero. On the other hand if we

want to consider the situation where we ignore the effect of electromagnetic interaction

between the particles during scattering (but still use electromagnetic interaction to com-

pute soft photon emission process), we have to set the terms proportional to lnω−1 that

are cubic in the qc’s to zero.

The classical result for soft graviton factor takes the form

S gr =
∑

a

εµνpµa pνa
pa.k

− i lnω−1
∑

a

εµνpνakρ
pa.k

∑
b,a

ηaηb=1

qaqb

4π
m2

am2
b {p

ρ
b pµa − pµb pρa}

{(pb.pa)2 − m2
am2

b}
3/2

+
i

4π
(lnω−1 + ln R−1)

∑
b

ηb=−1

k.pb

∑
a

εµνpµa pνa
pa.k

+
i

8π
lnω−1

∑
a

εµνpνakρ
pa.k

∑
b,a

ηaηb=1

pb.pa

{(pb.pa)2 − m2
am2

b}
3/2

(pρb pµa − pµb pρa)
{
2(pb.pa)2 − 3m2

am2
b

}
.

(3.6.6)

The quantum result has additional terms

∆S gr =
1

16π2 lnω−1
∑

a

εµρpρakν
pa.k

{
pµa

∂

∂paν
− pνa

∂

∂paµ

}
∑
b,a


{
2 qaqb pa.pb + 2 (pa.pb)2 − p2

a p2
b

}
√

(pa.pb)2 − p2
a p2

b

ln


pa.pb +

√
(pa.pb)2 − p2

a p2
b

pa.pb −

√
(pa.pb)2 − p2

a p2
b




+
1

8π2 (lnω−1 + ln R−1)
∑

a

εµνpµa pνa
pa.k

∑
b

pb.k ln
m2

b

(pb.k̂)2
, (3.6.7)
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where k̂ = −k/ω = (1, n̂). Again the classical results are valid universally. The quantum

results are obtained from one loop calculation in scalar QED coupled to gravity, but we

expect them to be universal. As in the case of (3.6.5), the ln m2
b term in the coefficient of

ln R−1 in the last line of (3.6.7) can be replaced by ln µ2 by exploiting the ambiguity in

the definition of the soft factor discussed in §3.1. One can check that (3.6.6), (3.6.7) are

invariant under gauge transformations εµν → εµν + ξµkν + ξνkµ for any constant vector ξµ.

If we want to consider the situation where we ignore the effect of electromagnetic inter-

actions, then we need to set the terms proportional to lnω−1 that are quadratic in qc’s to

zero. On the other hand if we want to consider the situation where we ignore the effect of

gravitational interaction between the particles during scattering (but still use gravitational

interaction to compute soft graviton emission process), we have to set the qc independent

terms in the coefficient of lnω−1 to zero.

3.6.2 Discussion of results

First we shall briefly outline how these results are derived. The classical results (3.6.4)

and (3.6.6) are the result of direct application of classical soft theorem to subleading or-

der. As described in [20], the soft factor involves orbital angular momenta of initial and

final particles and these diverge logarithmically in the elapsed time τ in four dimensions

due to the long range gravitational / electromagnetic force on the incoming and outgo-

ing particles that generates a term proportional to ln |τ| in the trajectory. We follow the

prescription of [20] of replacing ln |τ| by lnω−1 to arrive at the first and third lines of the

classical results (3.6.4), (3.6.6) in the last chapter. The second lines of (3.6.4) and (3.6.6)

arise from additional phases that are not directly determined by soft theorem. They rep-

resent the effect of long range gravitational force on the outgoing soft photon or graviton

which causes the soft particle to slow down and also backscatter.

Quantum results are the result of direct one loop computation in a field theory of multiple
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charged scalars, coupled to electromagnetic and gravitational fields. We simply evaluate

the order ω−1 and lnω−1 terms in the scattering amplitude of multiple finite energy scalars

and an outgoing soft photon or graviton of energy ω, and express this as the product of

the amplitude without the soft photon or graviton and a multiplicative factor that we call

the soft factor. The latter is given by the sum of (3.6.4) and (3.6.5) for soft photon and the

sum of (3.6.6) and (3.6.7) for the soft graviton. Even though the S-matrix elements with

and without the soft particle are infrared divergent, much of this cancels when we take the

ratio of the two. The remaining infrared divergent part is regulated by the infra-red length

cut-off R and is responsible for the terms proportional to ln R in these expressions. This is

related to the quantity σ′n introduced in [66].

The different terms proportional to lnω−1 in (3.6.4), (3.6.5) and in (3.6.6), (3.6.7) have

different origin. We shall explain them in the context of the soft graviton factor, but the

case of soft photon factor is very similar.

1. We begin with the classical result (3.6.6). The term proportional to qaqb in the first

line represents the effect of late time gravitational radiation due to the late time

acceleration of the particles via long range electromagnetic interaction. The term in

the last line of (3.6.6) represents the effect of late time gravitational radiation due

to the late time acceleration of the particles via long range gravitational interaction.

We expect the scale of these logarithms to be set by the largest length scale involved

in the classical scattering process, e.g. the typical distance of closest approach

between the particles involved in the scattering. This is taken to be larger than or

of the order of the Schwarzschild radii of the particles and much larger than the

Compton wave-lengths of the particles involved in the scattering. In the quantum

one loop computation both these terms arise from the region of loop momentum

integration where the loop momentum is large compared to ω but small compared

to the energies of the other particles. In this case the scale of these logarithms is

again set by the largest length scale involved in the quantum scattering which is
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the inverse of the typical energy carried by the finite energy external states. For

one loop result to be reliable, this needs to be taken to be large compared to the

Schwarzschild radii of these particles.

2. The term in the second line of (3.6.6) proportional to (lnω−1 + ln R−1) represents the

effect of gravitational drag on the soft graviton due to the other finite energy parti-

cles in the final state. This has the effect of causing a time delay, represented by the

ln R−1 term, for the soft graviton to travel to a distance R. This also has the effect of

inducing backscattering of the soft graviton, represented by the lnω−1 term. In the

quantum computation these terms arise from region of loop momentum integration

where the loop momentum is smaller than ω and larger than the infrared cut-off

R−1. This term has appeared e.g. in [110,112,113]. As mentioned in footnote 9, the

scale of these logarithms is set by the effective infrared cut-off, e.g. the distance R

to the detector for the classical scattering and the resolution of the detector for the

quantum scattering. The latter in turn has a lower limit set by R−1 since we cannot

measure the energy of the outgoing particle with an accuracy better than R−1 if the

detector is placed at a distance R from the scattering center.

3. We emphasize that the classical results are obtained by replacing in the classical soft

theorem the logarithmically divergent terms by lnω−1 and not by direct calculation

of electromagnetic and gravitational radiation during classical scattering. In special

cases the equivalence of these two procedures was tested in [20] by direct classical

computation. In principle similar tests can be done for the general formulae (3.6.4)

and (3.6.6), but we have not done this.

4. We now turn to the additional terms (3.6.7) that arise in the quantum computation.

First note that both these terms are real for real polarizations unlike the classical

result where the coefficients of lnω−1 terms are imaginary for real polarizations.

The terms in the first two lines come from regions of loop momentum integration

where the loop momentum is large compared to ω but small compared to the ener-
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gies of the other particles, while the term in the third line arise from region of loop

momentum integration where the loop momentum is small compared to ω and large

compared to the infrared cut-off R−1.

5. In the quantum computation the terms that arise from loop momenta large compared

to ω, namely the terms in the first and third line of (3.6.6) and the first two lines

of (3.6.7), can be generated using a simple algorithm. As discussed earlier, the

amplitude without the soft graviton has an infrared divergent factor multiplying

it. Let us call this the IR factor. If in the integration over loop momenta of this

IR factor we restrict the loop momentum integration to be large compared to ω and

apply the usual subleading soft differential operator that arises in higher dimensions

to this IR factor, we recover precisely the results given in the first and third line of

(3.6.6) and the first two lines of (3.6.7). The rest of the contribution that arises from

integration region where the loop momentum is small compared to ω cannot be

recovered this way. This indicates that the general argument of [11, 101], based on

general coordinate invariance of 1PI effective action and power counting assuming

that loops do not generate inverse power of soft momentum, remain valid in four

dimensions as well as long as the loop momentum is large compared to the external

soft momentum.

Since the real infrared divergent part of the amplitude reflects the effect of real graviton

emission, our interpretation of the extra contributions (3.6.7) in the quantum theory is

that they reflect the effect of backreaction of soft radiation on the classical trajectories.

To this end note that the validity of the classical limit described in [19] requires that the

total energy carried by soft radiation should remain small compared to the energies of the

finite energy objects taking part in the scattering. Here ‘soft radiation’ represents those

particles which are not included in the sum over a in (3.6.6). Therefore we should expect

that the extra terms arising in the quantum theory should be small in the limit when the

total energy carried by the soft radiation is small.
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In order to test this hypothesis we need to consider a scattering where the energy carried

away by soft radiation remains small compared to the energies of finite energy objects.

One way to achieve this is to consider scattering at large impact parameter so that each

incoming particle gets deflected by a small amount and the energy radiated during this

process remains small. In this case the momenta {pa} come in approximately equal and

opposite pairs – the incoming and the corresponding outgoing particle. Now in eq.(3.6.7)

the last term changes sign under pb → −pb and also under pa → −pa. This shows that

it is small for small deflection scattering. The first term on the right hand side of (3.6.7)

changes sign under (pb, qb) → −(pb, qb) and also under (pa, qa) → −(pa, qa), due to the

argument of the log getting inverted under each of these operations. This shows that the

terms approximately cancel making the result small. There is one exception to this that

arises when qb = −qa, pb ' −pa, i.e. the pairs (a, b) represent the incoming and the

corresponding outgoing particle. In this case there is no other term that cancels this since

the sum does not include the b = a term, and we need to explicitly evaluate this and show

that it vanishes. This can be checked explicitly by first evaluating the derivatives in the

second line of (3.6.7), then setting pb = −pa + ε and then carefully evaluating the result

in the ε → 0 limit. Even though individual terms diverge in the ε → 0 limit, a careful

analysis shows that the result vanishes. This confirms that quantum corrections are small

in this limit.

Another situation discussed in [19], where the radiated energy remains small compared

to the energies of the hard particles, is the probe limit in which one of the particles has a

large mass M and the other particles are lighter carrying energy small compared to M. We

shall now verify that in this case too the quantum corrections (3.6.7) are small compared

to the classical result (3.6.6). For this we shall work in a frame in which the heavy particle

is initially at rest, and using gauge invariance choose the polarization tensor ε to have only

spatial components. After the scattering the heavy particle acquires a momentum but it is

small compared to M. In this case the dominant contribution to (3.6.6), of order M, comes

from choosing a to be one of the light particles and b to be the heavy particle in the second
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and third line of (3.6.6). However in the quantum correction (3.6.7) similar contribution

cancels between the choice of b as the initial state heavy particle and the final state heavy

particle, and we do not get any contribution proportional to M. This again shows that

quantum corrections are small compared to the classical result in this limit.

We must emphasize however that the quantum analysis is carried out for single soft gravi-

ton emission. If we want to relate the quantum result to the radiative component of the

classical gravitational field as in [19], then we need to first consider multiple soft graviton

emission and then take the classical limit. The analysis of [19] relied on the fact that the

soft factors associated with different bins in the phase space are independent of each other,

i.e. the probability of emitting certain number of soft particles in one bin does not depend

on how many soft particles are emitted in the other bin. This independence breaks down

when the total energy carried by the soft particles becomes comparable to the energies of

the hard particles – precisely when the quantum correction (3.6.7) becomes comparable

to the classical result (3.6.6). Therefore we should not use (3.6.7) to modify the classical

result (3.6.6). Instead we should use the smallness of (3.6.7) as a test of when the classical

result (3.6.6) is valid. An identical discussion holds for electromagnetism11.

3.6.3 Special cases

As a special case we can consider the situation described in [33] where a neutral massive

object of mass M at rest decays into a heavy object of mass M0 ' M and a set of neutral

light objects carrying mass ma << M and momentum pa = −ea(1, ~βa) with ea << M for

a = 1, · · ·N. Our goal will be to write down the classical soft graviton factor for this case.

We shall take the polarization tensor of the soft graviton to have components only along

the spatial direction, since the result for the other components may be found by using

invariance under the gauge transformation εµν → εµν + ξµkν + ξνkµ for any vector ξ. If we

denote the momentum carried by final state heavy object of mass M0 by pN+1, then we

11For subleading multiple soft photon theorem we tried to give a sketch of proof in §3.5.
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have p0
N+1 ' −M0 and |pi

N+1| << M0. Examining (3.6.6) with qa = qb = 0 we see that

dominant term proportional to lnω−1 comes from the terms where we choose b = N + 1

and a labels any of the N finite energy states. Using the relation e2
a = m2

a/(1 − ~β
2
a), the net

contribution takes the form:

i
4π

lnω−1 M0

N∑
a=1

ea
εi jβaiβa j

1 − n̂.~βa

+
i

8π
lnω−1 M0

N∑
a=1

ea
εi jβaiβa j

1 − n̂.~βa

(−ea)(2e2
a − 3m2

a)
(e2

a − m2
a)3/2

=
i

8π
lnω−1 M0

N∑
a=1

ea
εi jβaiβa j

1 − n̂.~βa

2~β3
a + 1 − 3~β2

a

|~βa|
3

+ · · · , (3.6.8)

where · · · contain terms without a factor of M0 and are therefore smaller in the limit of

large M0. This agrees with the results of [33]. As discussed in [33], this produces a late

time tail in the gravitational wave-form that falls off as inverse power of time.

Note that when all the final state light particles are massless, so that |~βa| = 1 for 1 ≤ a ≤ N,

the expression (3.6.8) vanishes. This would be the situation during binary black hole

merger when the final state particles are only gravitons. However since in such processes

the radiation carries away an appreciable fraction of the mass of the parent system, the · · ·

terms in (3.6.8) could be significant even though their contribution will be suppressed by

the ratio of the total energy carried away by radiation to the mass of the parent system. We

shall now evaluate the result without making any approximation. In this case in the sum

over a and b in (3.6.6), either a or b (or both) represents a massless particle. Recalling

that when pa and pb are both outgoing then pa.pb is negative, we can express the terms in

(3.6.6) proportional to lnω−1 as

i
4π

lnω−1
N+1∑
a=1

εi j pai pa j +
i

4π
lnω−1

N+1∑
a=1

εi j pai

N+1∑
b=1
b,a

pb j = 0 , (3.6.9)

where in the last step we have used conservation of spatial momentum
∑N+1

b=1 pb j = 0.

Therefore we see that even without making any approximation, the coefficient of the

lnω−1 term in the classical soft graviton factor continues to vanish.
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Another special case we can consider is when a charge neutral object of mass M at rest

breaks apart into two charge neutral objects of masses m1 and m2, spatial momenta ~p and

−~p and energies e1 =

√
m2

1 + ~p2 and e2 =

√
~p2 + m2

2. In this case if we take the polariza-

tion tensor of the soft graviton to have components only along the spatial direction, then

the contribution from the initial state to (3.6.6) vanishes and we need to only compute

the contribution from a pair of final states. This can be easily evaluated and the terms

proportional to lnω−1 take the form

i
8π

lnω−1 εi j pi p j (e1 + e2)
{

1
e1 − n̂.~p

+
1

e2 + n̂.~p

}
×

[
e1e2 + ~p2

{(e1e2 + ~p2)2 − m2
1m2

2}
3/2

{
2(e1e2 + ~p2)2 − 3m2

1m2
2

}
− 2

]
. (3.6.10)

Next special case we shall analyze is that of scattering of massless particles, again fo-

cussing on the classical result (3.6.6). Defining

P ≡
∑
ηa=1

pa = −
∑
ηa=−1

pa , (3.6.11)

and the fact that pa.pb is negative for ηaηb = 1, we can express the term proportional to

lnω−1 in (3.6.6) for massless particles as

−
i

2π
lnω−1 k.P

∑
a

ηa=1

εµνpµa pνa
pa.k

+
i

2π
lnω−1 εµνPµPν . (3.6.12)

Note that this involves only the momenta of the initial state particles and is insensitive to

the momenta of the final state particles. This asymmetry is related to the fact that in our

analysis we are considering soft particle only in the final state and not in the initial state.

More generally one can show that for a general scattering process involving both massive

and massless particles, the terms proportional to lnω−1 in the classical formula (3.6.6)

is not sensitive to the details of the final state massless particles except through overall

momentum conservation. To see this let us first consider terms that could involve a final
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state massless particle momenta and the initial state momenta. These come from choosing

a to be an initial state and b to be a final state massless state in the term in the second line

of (3.6.6). The net contribution from such terms is given by

i
4π

lnω−1
∑

b massless
b=−1

k.pb

∑
a

ηa=1

εµνpµa pνa
k.pa

= −
i

4π
lnω−1 k.(P − Pmassive)

∑
a

ηa=1

εµνpµa pνa
k.pa

, (3.6.13)

where −P denotes total outgoing momentum as defined in (3.6.11) and −Pmassive denotes

the total outgoing momentum carried by the massive particles. Therefore this does not

depend explicitly on the momenta of the outgoing massless states except through mo-

mentum conservation.

Next we consider terms that involve a pair of final state momenta at least one of which

is massless. This term receives contribution from all three lines on the right hand side of

(3.6.6) with the restriction ηa = 1, ηb = 1, and either ma or mb or both zero. Therefore the

term proportional to qaqb vanishes. Also the coefficient of lnω−1 in the summand in the

last two lines simplifies to

i
4π
εµνpµa pνa

pa.k
pb.k −

i
4π
εµνpµa pνa

pa.k
pb.k +

i
4π

εµν pµa pνb . (3.6.14)

In the first term the sum over a and b includes the term where b = a, but in the second

and the third term the sum excludes the b = a term. Therefore the first two terms almost

cancel, leaving behind a contribution where we set b = a. This left over contribution

i
4π εµνpµa pνa can now be added to the last term to include in the sum over a or b also the

contribution where b = a. The net contribution from the terms where either a or b or both

represent massless state is then

i
4π

lnω−1
∑

a,b;ηa=ηb=−1
either a or b massless

εµν pµa pνb . (3.6.15)
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This can be rewritten as

i
4π

lnω−1εµν

 ∑
a,b;ηa=ηb=−1

pµa pνb −
∑

a,b;ηa=ηb=−1
a and b massive

pµa pνb

 =
i

4π
lnω−1εµν

(
PµPν − Pµ

massivePν
massive

)
.

(3.6.16)

This also does not depend on the details of the momenta of massless final state particles

except for the total momentum carried by these particles.



4 Classical soft theorem in four

spacetime dimensions

Classical soft graviton theorem in four space-time dimensions determines the gravita-

tional wave-form emitted during a scattering process at late and early retarded time, in

terms of the four momenta of the ingoing and outgoing objects. As discussed in the

last two chapters, this result was conjectured earlier by taking the classical limit of the

quantum soft graviton theorem, and making some assumption about how to deal with the

infrared divergences of the soft factor.

Our goal in this chapter will be to prove the classical soft graviton theorem in four space-

time dimensions directly in the classical theory. In particular we prove the following

result. Let us consider a scattering process in which a set of m objects carrying four mo-

menta p′1, · · · , p′m come together, scatter via some (unknown) interactions and disperse

as n objects carrying momenta p1, · · · , pn. The special case m = 1 will describe an ex-

plosion in which a single bound system fragments into many objects, including radiation.

We shall choose the origin of the space-time coordinate system so that the scattering takes

place within a finite neighbourhood of the origin. Let us also suppose that we have a grav-

itational wave detector placed at a faraway point ~x, and define

R = |~x|, n̂ =
~x
R
, n = (1, n̂) . (4.0.1)

115
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We shall consider the limit of large R and analyze only the terms of order 1/R in the

gravitational wave-form. We define the retarded time at the detector:

u ≡ t − R + 2 G ln R
n∑

b=1

pb.n . (4.0.2)

Here t − R is the usual retarded time and the 2 G ln R
∑n

b=1 pb.n takes into account the

effect of the long range gravitational force on the gravitational wave as it travels from the

scattering center to the detector. G denotes the Newton’s constant. We have used units

in which the velocity of light c has been set equal to 1, – this is the unit we shall use

throughout the chapter. We also define the deviation of the metric gµν from flat metric via:

hµν ≡ (gµν − ηµν)/2, eµν ≡ hµν −
1
2
ηµν η

ρσ hρσ . (4.0.3)

Let us first assume that the objects do not carry charge so that gravity is the only long

range force acting on the objects at late and early time, although during the scattering

they may undergo complicated interactions. Then at late and early retarded time, our

result for the gravitational wave-form at the detector is given by:

eµν(t,R, n̂) =
2 G
R

− n∑
a=1

pµa pνa
1

n.pa
+

m∑
a=1

p′µa p′νa
1

n.p′a


−

4 G2

R u


n∑

a=1

n∑
b=1
b,a

pa.pb

{(pa.pb)2 − p2
a p2

b}
3/2

{
3
2

p2
a p2

b − (pa.pb)2
}

nρpµa
n.pa

(pρb pνa − pνb pρa)

−

n∑
b=1

pb.n

 n∑
a=1

1
pa.n

pµa pνa −
m∑

a=1

1
p′a.n

p′µa p′νa


 + O(u−2) , as u→ ∞

eµν(t,R, n̂) =
4 G2

R u

[ m∑
a=1

m∑
b=1
b,a

p′a.p
′
b

{(p′a.p
′
b)2 − p′2a p′2b }

3/2

{
3
2

p′2a p′2b − (p′a.p
′
b)2

}

×
nρp′µa
n.p′a

(p′ρb p′νa − p′νb p′ρa )
]

+ O(u−2) , as u→ −∞ ,(4.0.4)

where O(u−2) includes terms of order u−2 ln |u|. The term on the right hand side of the first

line represents a constant jump in hµν during the passage of the gravitational wave, and is
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known as the memory effect [23–29,115–117]. This is related to the leading soft theorem

[30]. The terms of order 1/u are related to logarithmic corrections to the subleading soft

theorem. These have been verified in various examples via explicit calculations [110,

118, 119]. The sum over a in (4.0.4) also includes the contribution from finite frequency

radiation emitted during the scattering.

As already discussed in [16,33], in case of decay (m = 1), if at most one of the final objects

is massive and the rest are massless, including radiation, then the terms proportional to

1/u in the expression for eµν cancel. This will be the case for binary black hole merger

where the initial state is a single bound system, and the final state consists of a single

massive black hole and gravitational radiation. Therefore absence of 1/u tails in such

decays can be taken as a test of general theory of relativity.

If the objects participating in the scattering process are charged, with the incoming objects

carrying charges q′1, · · · , q
′
m and outgoing objects carrying charges q1, · · · , qn, then there

are further corrections to (4.0.4) due to long range electromagnetic forces between the

incoming and the outgoing objects. These corrections have been given in (4.3.30).

A similar result can be given for the profile of the electromagnetic vector potential aµ at

the detector at late and early retarded time. The results are given in (4.3.23), (4.3.24).

Although these results derived in this chapter independently, they have been conjectured

earlier from soft graviton theorem following the chain of arguments given in the last two

chapters. Emboldened by the success of these arguments, we describe in §4.4 a new

conjecture for terms of order u−2 ln |u| at late and early retarded time. These have been

given in (4.4.7), (4.4.8) and (4.4.9). We have done a numerical estimate of this new tail

memory in §4.5 for various astrophysical scattering processes.
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4.1 Some useful results

In this section we shall review some simple mathematical results that will be useful for

our analysis.

4.1.1 Different Fourier transforms

We shall deal with functions of four variables x ≡ (t, ~x) ≡ (x0, x1, x2, x3) describing the

space-time coordinates. Given any such function F(x), we shall introduce the following

different kinds of Fourier transforms:

F̂(k) ≡
∫

d4x e−ik.x F(t, ~x), F̄(t,~k) ≡
∫

d3x e−i~k.~x F(t, ~x), F̃(ω, ~x) ≡
∫

dt eiωt F(t, ~x) .

(4.1.1)

The inverse relations are

F(t, ~x) =

∫
d4k

(2π)4 eik.x F̂(k), F(t, ~x) =

∫
d3k

(2π)3 ei~k.~x F̄(t,~k), F(t, ~x) =

∫
dω
2π

e−iωt F̃(ω, ~x) .

(4.1.2)

Note that we are using the convention k.x ≡ ηµνkµxν = −k0x0 + ~k.~x.

4.1.2 Radiative field at large distance

Let us consider a differential equation of the form:

�F(x) = − j(x), � ≡ ηαβ ∂α ∂β , (4.1.3)

where j(x) is some given function. The retarded solution to this equation is given by

F(x) = −

∫
d4y Gr(x, y) j(y) , (4.1.4)
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where Gr(x, y) is the retarded Green’s function:

Gr(x, y) =

∫
d4`

(2π)4 ei`.(x−y) 1

(`0 + iε)2 − ~̀2
. (4.1.5)

Using (4.1.1) we get

F̃(ω, ~x) = −

∫
d4y j(y)

∫
d3`

(2π)3 eiωy0+i~̀.(~x−~y) 1

(ω + iε)2 − ~̀2
. (4.1.6)

For large |~x|, we can evaluate this integral using a saddle point approximation as follows

[19]. Defining ~̀‖ and ~̀⊥ as components of ~̀ along ~x−~y and transverse to ~x−~y respectively,

we get

F̃(ω, ~x) = −

∫
d4y j(y)

∫
d2`⊥
(2π)2

d`‖
2π

eiωy0+i`‖ |~x−~y| 1

(ω + iε)2 − `2
‖
− ~̀2
⊥

. (4.1.7)

First consider the case ω > 0. We now close the `‖ integration contour in the upper half

plane, picking up residue at the pole at
√

(ω + iε)2 − ~̀2
⊥. This gives

F̃(ω, ~x) = i
∫

d4y j(y)
∫

d2`⊥
(2π)2 eiωy0+i |~x−~y|

√
(ω+iε)2−~̀2

⊥
1

2
√

(ω + iε)2 − ~̀2
⊥

. (4.1.8)

For large |~x−~y| the exponent is a rapidly varying function of ~̀⊥ and therefore we can carry

out the integration over ~̀⊥ using saddle point approximation. The saddle point is located

at ~̀⊥ = 0. Expanding the exponent to order ~̀2
⊥ and carrying out gaussian integration over

~̀
⊥ we get:

F̃(ω, ~x) = i
∫

d4y j(y) eiωy0+i (ω+iε) |~x−~y| ω + iε
2 π i |~x − ~y|

1
2(ω + iε)

'
1

4πR
eiωR

∫
d4y e−ik.y j(y) ,

(4.1.9)

where we have made the approximation |~x| >> |~y|, and,

k ≡ ω(1, n̂), n̂ ≡ ~x/|~x|, R ≡ |~x| . (4.1.10)
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A similar analysis can be carried out for ω < 0, leading to the same final expression.

Using (4.1.1), eq.(4.1.9) may be written as

F̃(ω, ~x) '
1

4πR
eiωR ĵ(k) . (4.1.11)

This is a known formula (see e.g. [120]), but the derivation given above also gives its

limitations. In arriving at the right hand side of (4.1.9) we used the approximation |~x| >>

|~y|. Therefore in the integration over ~y there is a natural infrared cut-off given by |~x| = R.

If the y integral is convergent then there is no need of such a cut-off, but in case the y

integral diverges from the large y region, we need to explicitly impose the cut-off. We can

implement the cut-off by putting a cut-off on y0, since typically the source j(y) will have

support inside the light-cone |~y| ≤ |y0| for large y. For example, for positive y0 we can

implement the infrared cut-off by adding to k0 an imaginary part iΛR−1 for some fixed

number Λ. In that case for y0 << R/Λ this additional factor has no effect on (4.1.9), but for

y0 >> R/Λ there is an exponential suppression factor that cuts off the integration over y.

For negative y0 the corresponding modification of k corresponds to adding an imaginary

part −iΛR−1 to k0.

4.1.3 Late and early time behaviour from Fourier transformation

In our analysis we shall encounter functions F̃(ω, ~x) that are non-analytic as ω → 0, –

having singularities either of the form 1/ω or of the form lnω. On general grounds we

expect these singular small ω behaviour to be related to the behaviour of F(t, ~x) as t →

±∞. We shall now determine the precise correspondence between the small ω behaviour

of F̃(ω, ~x) and large |t| behaviour of F(t, ~x). Since the analysis will be carried out at fixed

~x, we shall not display the ~x dependence of various quantities in subsequent discussions.

First we shall consider singularities of the form 1/ω for small ω. For this consider a
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function of the form:

F̃(ω) = C eiωφ 1
ω

f (ω) . (4.1.12)

Here C and φ are constants that could depend on ~x. f (ω) is a function of ω that is smooth

at ω = 0 with f (0) = 1 and falls off sufficiently fast as ω → ∞ so as to make the Fourier

integral over ω well defined. Our final result will not depend on f (ω), but for definiteness

we shall choose

f (ω) =
1

ω2 + 1
. (4.1.13)

This gives

F(t) =

∫
dω
2π

e−iωtF̃(ω) = C
∫

dω
2π

e−iωu 1
ω

f (ω), u ≡ t − φ . (4.1.14)

In order to define the integral around ω = 0, we need to choose an appropriate iε prescrip-

tion. However since 1/(ω+ iε) and 1/(ω− iε) differ by a term proportional to δ(ω), whose

Fourier transform is a u independent constant, the difference will not be of interest to us.

For definiteness , we shall work with 1/(ω + iε). Then we have

F(t) = C
1

2π

∫
dω e−iωu 1

ω + iε
f (ω) = −i C H(u) + O(e−u) , (4.1.15)

where H is the Heaviside step function. This result is obtained by closing the contour in

the lower (upper) half plane for positive (negative) u, and picking up the residues at the

poles. The order e−u contribution comes from the residues at the poles of f (ω). The step

function H(u) gives a jump in eµν between u → −∞ and u → ∞, leading to the memory

effect [23–26].

Let us now turn to the Fourier transform of the logarithmic terms. We consider functions

of the form:

F̃(ω) = C eiωφ lnω f (ω) . (4.1.16)

Again we need to consider the different iε prescriptions, and this time the difference be-
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tween the two choices is not trivial. Therefore we consider1

F±(t) = C
∫

dω
2π

e−iωt eiωφ ln(ω ± iε) f (ω) = C
∫

dω
2π

e−iωu ln(ω ± iε) f (ω) . (4.1.17)

For u > 0 we can close the contour in the lower half plane. In this case F− gets contri-

bution only from the poles of f (ω) and therefore is suppressed by factors of e−u. Sim-

ilarly for u < 0, F+ is suppressed by powers of e−u. Furthermore, using ln(ω + iε) =

ln(ω − iε) + 2 π i H(−ω), we have

F+ − F− = i C
∫ 0

−∞

dω e−iωu f (ω) ' −
C
u
, for u→ ±∞ . (4.1.18)

Using these results we get

F+ ≡ C
∫

dω
2π

e−iωu ln(ω + iε) f (ω)→



−
C
u

for u→ ∞,

0 for u→ −∞,

F− ≡ C
∫

dω
2π

e−iωu ln(ω − iε) f (ω)→



0 for u→ ∞,

C
u

for u→ −∞.

(4.1.19)

Next we shall consider the integrals:

G± ≡ C
∫

dω
2π

e−iωu ω {ln(ω ± iε)}2 f (ω) . (4.1.20)

As before, G+ vanishes for large negative u and G− vanishes for large positive u up to

1If F(t) is real, we must have from (4.1.1) F̂(ω) = F̂(−ω)∗. Now since ln(−ω + iε)∗ = ln(−ω − iε) =

ln(ω + iε) − iπ, we see that ln(ω + iε) is not a good candidate for F̃(ω). This can be rectified by averaging
over ln(ω+ iε) and ln(−ω− iε). However since the two differ by a constant, whose Fourier transform, being
proportional to δ(u), does not affect the behaviour at large |u|, we shall ignore this complication. A similar
remark holds for ln(ω − iε).
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exponentially suppressed corrections. Furthermore we have

G+ −G− = 4 π i C
∫ 0

−∞

dω
2π

e−iωu ω {ln(ω − iε) + iπ} f (ω)

= −4 πC
d

du

∫ 0

−∞

dω
2π

e−iωu {ln(ω − iε) + iπ} f (ω) . (4.1.21)

Changing integration variable to v = ω u we can express this as

G+ −G− = −2 C
d

du

[
u−1

∫ 0

−∞×sign u
dv e−iv {ln(v − iε) − ln u + iπ} f (v/u)

]
= −2 C

d
du

[
−i u−1 ln u + O(u−1)

]
= −2 i C u−2 ln |u| + O(u−2) . (4.1.22)

This gives

G+ ≡ C
∫

dω
2π

e−iωu ω{ln(ω + iε)}2 f (ω)→



− 2 i C u−2 ln |u| for u→ ∞,

0 for u→ −∞,

G− ≡ C
∫

dω
2π

e−iωu ω{ln(ω − iε)}2 f (ω)→



0 for u→ ∞,

2 i C u−2 ln |u| for u→ −∞ ,

(4.1.23)

up to corrections of order u−2.

Finally we consider the integral:

H ≡ C
∫

dω
2π

e−iωu ω ln(ω + iε) ln(ω − iε) f (ω) . (4.1.24)

For evaluating this we use the result:

G+ + G− − 2 H = C
∫

dω
2π

e−iωu ω {ln(ω + iε) − ln(ω − iε)}2 f (ω)



124 Classical soft theorem in four spacetime dimensions

= − 2 πC
∫ 0

−∞

dω e−iωu ω f (ω) = O(u−2) . (4.1.25)

Using (4.1.23) we now get:

H ≡ C
∫

dω
2π

e−iωu ω ln(ω + iε) ln(ω − iε) f (ω)→



− i C u−2 ln |u| for u→ ∞ ,

i C u−2 ln |u| for u→ −∞ .

(4.1.26)

4.2 Proof of classical soft graviton theorem

We consider a scattering event in asymptotically flat space-time in which m objects car-

rying masses {m′a}, four velocities {v′a} and four momenta {p′a = m′a v′a} for 1 ≤ a ≤ m

come close, undergo complicated interactions, and disperse as n objects carrying masses

{ma}, four velocities {va} and four momenta {pa} for 1 ≤ a ≤ n. We do not assume that

the interactions are weak, and they could involve exchange of energy and other quantum

numbers, fusion and splitting. Our goal will be to compute the gravitational wave-form

emitted during this scattering event at early and late retarded time. As discussed in §4.1.3,

this is related to the behaviour of the Fourier transform of the wave-form in the low fre-

quency limit.

Since we shall be interested in the long wavelength gravitational waves emitted by the

system, we can represent the leading contribution to the energy momentum tensor of the

incoming and outgoing objects by the energy momentum tensor of point particles, and

include the effect of internal structure of the objects by adding subleading contributions

involving higher derivative terms [121–129]. In fact, to the order at which we shall be

working, it will be sufficient to keep just the leading term. For this reason, we shall

henceforth refer to the incoming and outgoing objects as particles.
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The strategy we shall follow will be to iteratively solve the coupled equations of motion of

matter and gravity using Feynman diagram like techniques. This method has been widely

used in recent years [112, 113, 130–132], most notably in [120, 133–135]. However the

main difference between our approach and the earlier ones is in setting up the boundary

conditions. In the usual approach we set the initial condition and evolve the system using

the equations of motion, computing both the trajectories and the emitted radiation during

this process. In our approach we take the initial and final momenta as given, but allow the

interactions during the scattering to be arbitrary. Therefore while solving the equations

we need to evolve the initial particle trajectories forward in time and the final particle

trajectories backward in time, and compute the net gravitational wave emitted during the

scattering.

For simplicity, in this section we shall consider the situation where the particles are un-

charged so that there are no long range electromagnetic interactions between the asymp-

totic particles. The effect of such interactions will be incorporated in §4.3.4.

4.2.1 General set-up

We choose the origin of the space-time coordinate system to be somewhere within the

region where the scattering takes place and denote by R a large but finite region of space-

time so that the non-trivial part of the scattering occurs within the region R. In particular

we shall choose R to be sufficiently large so that outside the region R the only interaction

that exists between the particles is the long range gravitational interaction. This has been

shown in Fig. 4.1. We shall denote by L the linear size of R and analyze gravitational

radiation at retarded time u for |u| >> L.

We define:

hµν =
1
2

(gµν − ηµν), eµν = hµν −
1
2
ηµν η

ρσhρσ ⇔ hµν = eµν −
1
2
ηµν η

ρσeρσ . (4.2.1)
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r1
r2

r′1r′2

R

Figure 4.1: A scattering process in which the particles interact strongly inside the region
R via some unspecified forces, but outside the region R the only force operative between
the particles is the long range gravitational force.

We denote by Xa(σ) for 1 ≤ a ≤ n the outgoing particle trajectories parametrized by

the proper time2 σ in the range 0 ≤ σ < ∞, with σ = 0 labelling the point where the

trajectory exits the region R. Similarly X′a(σ) for 1 ≤ a ≤ m will denote the incoming

particle trajectories parametrized by the proper time σ in the range −∞ < σ ≤ 0, with

σ = 0 labelling the point where the trajectory enters the region R. We now consider the

Einstein’s action coupled to these particles:

S =
1

16πG

∫
d4x

√
− det g R −

n∑
a=1

∫ ∞

0
dσma

{
−gµν(X(σ))

dXµ
a

dσ
dXν

a

dσ

}1/2

−

m∑
a=1

∫ 0

−∞

dσm′a

{
−gµν(X′(σ))

dX′µa
dσ

dX′νa
dσ

}1/2

. (4.2.2)

Note that we have included in the action the contribution only from part of the particle

trajectories that lie outside the region R. We shall argue later that this action is sufficient

for determining the gravitational wave-form at late and early time. We now derive the

equations of motion for eµν by extremizing the action (4.2.2) with respect to eµν. This

takes the form: √
− det g

(
Rµν −

1
2

gρσRρσ gµν
)

= 8 πG T Xµν , (4.2.3)

2More precisely, σ is a parameter labelling the trajectory, that is set equal to the proper time after
deriving the equations of motion.
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where,

T Xµν ≡

n∑
a=1

ma

∫ ∞

0
dσδ(4)(x−Xa(σ))

dXµ
a

dσ
dXν

a

dσ
+

m∑
a=1

m′a

∫ 0

−∞

dσδ(4)(x−X′a(σ))
dX′µa
dσ

dX′νa
dσ

.

(4.2.4)

Note the factor of
√
− det g and the raised indices on the left hand side of (4.2.3) – this

makes the right hand side independent of the metric. After imposing the de Donder gauge:

ηµν∂µhνλ −
1
2
∂λ

(
ηρσhρσ

)
= 0 ⇔ ηµν ∂µ eνλ = 0 , (4.2.5)

and expanding the left hand side of (4.2.3) in power series in hµν, we can express the

equations of motion of the metric as:

ηαµ ηβν ηρσ∂ρ∂σeαβ = −8 πG T µν(x), T µν ≡ T Xµν + T hµν , (4.2.6)

where T hµν denotes the gravitational stress tensor, defined as what we obtain by taking all

eαβ dependent terms on the left hand side of (4.2.3), except the terms linear in eαβ, to the

right hand side and dividing it by 8 πG. In all subsequent equations, the indices will be

raised and lowered by ηµν.

Our goal is to compute eµν(t, ~x) at a point far away from the scattering center. We shall

label ~x as R n̂ where n̂ is a unit vector and R ≡ |~x|. It follows from (4.1.4) and (4.1.11) that

the retarded solution to (4.2.6) is given by [19]3

ẽµν(ω,R, n̂) =
2 G
R

eiωR T̂µν(k) + O(R−2) , (4.2.7)

where

T̂µν(k) ≡
∫

d4x e−ik.x Tµν(x) , (4.2.8)

3(4.2.7) can also be written as

eµν(t,R, n̂) =
2 G
R

T̄µν(t − R,~k) + O(R−2) .
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is the Fourier transform of Tµν(x) in all the variables and k = ω(1, n̂) as defined in (4.1.10).

Therefore we need to compute T̂µν(k). Furthermore, it follows from the analysis of §4.1.3

that to extract the late and early time behaviour of eµν(t, ~x) we need to examine the non-

analytic part of ẽµν(ω,R, n̂) as a function of ω – in particular terms of order 1/ω and lnω.

For this, we can restrict the integration over x in (4.2.8) to outside the region R, since

integration over a finite region of space-time will give an infrared finite contribution and

cannot generate a singularity as ω → 0. This justifies the omission of the contribution to

the action (4.2.2) from particle trajectories inside the region R.

We shall compute T̂µν by solving the following equations iteratively:

T µν(x) = T Xµν(x) + T hµν(x),

T Xµν(x) ≡
n∑

a=1

ma

∫ ∞

0
dσδ(4)(x − Xa(σ))

dXµ
a

dσ
dXν

a

dσ

+

m∑
a=1

m′a

∫ 0

−∞

dσδ(4)(x − X′a(σ))
dX′µa
dσ

dX′νa
dσ

,

� eµν = −8 πG Tµν ≡ −8 πG ηµα ηνβ Tαβ ,

d2Xµ
a

dσ2 = −Γµνρ(X(σ))
dXν

a

dσ
dXρ

a

dσ
,

d2X′µa
dσ2 = −Γµνρ(X

′(σ))
dX′νa
dσ

dX′ρa
dσ

, (4.2.9)

with boundary conditions:

Xµ
a (σ = 0) = rµa , lim

σ→∞

dXµ
a

dσ
= vµa =

1
ma

pµa, X′µa (σ = 0) = r′µa , lim
σ→−∞

dX′µa
dσ

= v′µa =
1

m′a
p′µa .

(4.2.10)

Here Γµνρ denotes the Christoffel symbol constructed from the metric ηµν+2 hµν. ra denotes

the point where the trajectory of the a-th outgoing particle intersects the boundary of

R and r′a denotes the point where the trajectory of the a-th incoming particle intersects

the boundary of R. T h is the stress tensor of gravity, as defined below (4.2.6). hµν and

hence eµν is required to satisfy retarded boundary condition. The starting solution for the
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iteration is taken to be

eµν = 0, Xµ
a (σ) = rµa + vµa σ = rµa +

1
ma

pµa σ, X′µa (σ) = r′µa + v′µa σ = r′µa +
1

m′a
p′µa σ .

(4.2.11)

We can give a uniform treatment of the incoming and the outgoing particles by defining:

Xµ
a+n(σ) = X′µa (−σ), ma+n = m′a, vµa+n = −v′µa , rµa+n = r′µa , pµa+n = −p′µa ,

for 1 ≤ a ≤ m . (4.2.12)

In this case we can express (4.2.9) and (4.2.10) as:

T µν(x) = T Xµν(x) + T hµν(x),

T Xµν(x) ≡
m+n∑
a=1

ma

∫ ∞

0
dσδ(4)(x − Xa(σ))

dXµ
a

dσ
dXν

a

dσ

�eµν = −8 πG Tµν,
d2Xµ

a

dσ2 = −Γµνρ(X(σ))
dXν

a

dσ
dXρ

a

dσ
, for 1 ≤ a ≤ m + n ,

(4.2.13)

and

Xµ
a (σ = 0) = rµa , lim

σ→∞

dXµ
a

dσ
= vµa =

1
ma

pµa, for 1 ≤ a ≤ m + n . (4.2.14)

Also the starting solution (4.2.11) for iteration may be written as

eµν = 0, Xµ
a (σ) = rµa + vµa σ = rµa +

1
ma

pµa σ, for 1 ≤ a ≤ m + n . (4.2.15)

From now on we shall follow this convention, with the understanding that the sum over a

always runs from 1 to (m + n) unless stated otherwise.
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4.2.2 Leading order contribution

At the leading order in the expansion in powers of G, T hµν vanishes, and we have:

T̂ µν(k) = T̂ Xµν(k) =

∫
d4x e−ik.x

m+n∑
a=1

ma

∫ ∞

0
dσδ(4)(x − Xa(σ))

dXµ
a

dσ
dXν

a

dσ

=

m+n∑
a=1

ma

∫ ∞

0
dσ e−ik.X(σ) dXµ

a

dσ
dXν

a

dσ
, (4.2.16)

where, as mentioned earlier, we have restricted the region of integration over x to outside

the region R. Using the leading order solution (4.2.15) we get

T̂ µν(k) =

m+n∑
a=1

ma

∫ ∞

0
dσ e−ik.(va σ+ra) vµavνa =

m+n∑
a=1

ma
1

i(k.va − iε)
e−ik.ra vµavνa

=

m+n∑
a=1

pµa pνa e−ik.ra
1

i(k.pa − iε)
. (4.2.17)

The iε prescription is obtained by noting that addition of a small negative imaginary part

to k.va makes the σ integrals convergent. Therefore the poles must be in the upper half

k.va plane.

Since we are looking for terms that are singular at ω→ 0, i.e. kµ → 0, we can replace the

e−ik.ra factors by 1. This gives the leading soft factor associated with the memory effect.

4.2.3 First order correction to the gravitational field

We now turn to the next order contribution. We first solve for eµν satisfying the third

equation in (4.2.13) as

êµν(k) = −8 πG Gr(k) T̂µν(k) = −8 πG
m+n∑
a=1

paµ paν e−ik.ra Gr(k)
1

i(k.pa − iε)
,

Gr(k) ≡
1

(k0 + iε)2 − ~k2
. (4.2.18)
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One comment is in order here. The expression (4.2.16) for T̂ µν(k), which we are using

in (4.2.18), ignores the contribution from the region of integration R. This was justified

earlier since we were computing the singular part of T̂µν. However, now we need the

contribution to êµν from the full T̂µν since our goal will be to use this to compute T h
µν, and

also to compute the corrections to the particle trajectories, which, in turn, give corrections

to T X
µν. Once we compute these, we use (4.2.7) to compute ẽµν. At this stage, we can

again restrict the integration region to outside R while taking the Fourier transform to

compute the corrected T̂µν. To address this issue, we first analyze the possible correction

δT X
µν to T X

µν due to gravitational fields generated from inside R. Since in four space-time

dimensions the retarded Green’s function has support on the future light-cone, the field

sourced by energy momentum tensor inside R will have support on the future light-cone

emerging from points inside R. These intersect the time-like trajectories of the outgoing

(or incoming) particles emerging from R only within a distance of order L – the size of R.

Therefore δT X
µν is affected only in this region. Since integration over this region will not

produce a singular contribution to T̂ X
µν(k) in the ω → 0 limit, this effect may be ignored.

However the gravitational field produced from the sources inside R could give significant

contribution to T h, since we are not assuming the interactions inside R to be weak. We

take this into account by regarding the contribution to êµν(k) = −8 πG Gr(k)T̂µν(k) from

inside the region R as a flux of finite wavelength gravitational waves produced by Tµν(x)

inside R, and include this in the sum over a. Therefore the outgoing momenta {pa} not

only will include finite mass particles, but also the finite wave-length ‘massless gravitons’

emitted during the scattering process.

Using (4.2.18) we can calculate, at the next order,

e(b)
µν (x) = −8 πG

∫
d4`

(2π)4 ei`.(x−rb)Gr(`) pbµ pbν
1

i(`.pb − iε)
,

h(b)
µν (x) = −8 πG

∫
d4`

(2π)4 ei`.(x−rb)Gr(`)
{

pbµ pbν −
1
2

p2
b ηµν

}
1

i(`.pb − iε)
,(4.2.19)
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where e(b)
µν is the gravitational field due to the b-th particle. This gives

Γ(b)µ
νρ (x) = ηµα

{
∂ν h(b)

αρ + ∂ρ h(b)
αν − ∂α h(b)

νρ

}
= −8 πG

∫
d4`

(2π)4 ei`.(x−rb) Gr(`)
1

(`.pb − iε)

[ {
`νpµb pbρ + `ρpµb pbν − `

µpbνpbρ

}
−

1
2

p2
b

{
`νδ

µ
ρ + `ρδ

µ
ν − `

µ ηνρ
} ]
. (4.2.20)

These results will be used for two purposes. We shall substitute (4.2.20) into the last

equation in (4.2.13) to compute the correction to the outgoing particle trajectories and

hence to T X
µν. We shall also use (4.2.19) to compute the leading contribution to T h

µν.

Note that e(b)
µν (x) given in (4.2.19) satisfies:

∂µeµν =

m+n∑
b=1

∂µ e(b)µν(x) = −8 πG
m+n∑
b=1

∫
d4`

(2π)4 ei`.(x−rb)Gr(`) pνb . (4.2.21)

As long as we restrict the integration range of ` to values for which `.(rc − ra) is small for

every pair a, c, we can take e−i`.rb to be approximately independent of b, and the right hand

side of (4.2.21) vanishes due to momentum conservation law
∑m+n

b=1 pµb = 0. Therefore eµν

at this order satisfies the de Donder gauge condition:

∂µeµν = 0 . (4.2.22)

At the next order there is apparent violation of this condition due to the `.rb factors coming

from the expansion of the exponential factor. This can be compensated by some boundary

terms on ∂R coming from integration inside the region R [21], but since these terms will

not contribute to the singular terms that are of interest to us, we shall ignore them.

In the next two subsections we shall compute the correction to T̂ X and T̂ h using these

results. It is also possible to argue that in order to calculate the logarithmic terms of

interest, we can stop at this order. The natural dimensionless expansion parameter is

GMω where M denotes the typical energy of the incoming / outgoing particles. Since the
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leading term (4.2.17) is of order 1/ω, the subleading corrections that we shall compute

will be of order ω0 multiplied by powers of lnω. Higher order terms will involve higher

powers of ω and will not be needed for our analysis.

4.2.4 Subleading contribution to the matter stress tensor

We begin by computing correction to the particle trajectory (4.2.15). Let Yµ
a denote the

correction:

Xµ
a (σ) = vµa σ + rµa + Yµ

a (σ) . (4.2.23)

Then Yµ
a satisfies the differential equation and boundary conditions:

d2Yµ
a

dσ2 = −Γµνρ(va σ + ra) vνa vρa, Yµ
a → 0 as σ→ 0,

dYµ
a

dσ
→ 0 as σ→ ∞ , (4.2.24)

where4

Γµνρ =

m+n∑
b=1
b,a

Γ(b)µ
νρ , (4.2.25)

captures the effect of the gravitational field produced by all particles other than a. Some

of these terms must vanish, e.g. the gravitational field produced by an outgoing particle

should not affect an incoming particle. This however will follow automatically from the

equations that we shall derive, and need not be imposed externally. Integrating (4.2.24)

we get
dYµ

a (σ)
dσ

=

∫ ∞

σ

dσ′ Γµνρ(va σ
′ + ra) vνa vρa , (4.2.26)

and

Yµ
a (σ) =

∫ σ

0
dσ′

∫ ∞

σ′
dσ′′ Γµνρ(va σ

′′ + ra) vνa vρa . (4.2.27)

4The self-force effects [136] will not be important at this order.
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Substituting (4.2.23) into (4.2.16) we get T̂ Xµν to subleading order:

T̂ Xµν(k) =

m+n∑
a=1

ma

∫ ∞

0
dσ e−ik.(va σ+ra) {1 − ik.Ya(σ)}

{
vµa +

dYµ
a

dσ

}{
vνa +

dYν
a

dσ

}
=

m+n∑
a=1

ma

∫ ∞

0
dσ e−ik.(va σ+ra)

[
vµavνa − ik.Ya(σ) vµavνa +

dYµ
a

dσ
vνa + vµa

dYν
a

dσ

]
. (4.2.28)

Using (4.2.26), (4.2.27), we can express this as,

T̂ Xµν(k) =

m+n∑
a=1

ma

∫ ∞

0
dσ e−ik.(va σ+ra)

[
vµavνa − ikρ

∫ σ

0
dσ′

∫ ∞

σ′
dσ′′ Γραβ(va σ

′′ + ra)vαavβa vνa vµa

+

∫ ∞

σ

dσ′ Γµαβ(va σ
′ + ra) vαavβa vνa +

∫ ∞

σ

dσ′ Γναβ(va σ
′ + ra) vαavβa vµa

]
. (4.2.29)

Substituting (4.2.20) and (4.2.25) into (4.2.29), and dropping the leading term given in

(4.2.17), we get the first order correction to T̂ X:

∆T̂ Xµν(k) = −8 πG
m+n∑
a=1

∑
b,a

ma

∫
d4`

(2π)4

1
`.pb − iε

Gr(`)
[ ∫ ∞

0
dσ

∫ σ

0
dσ′

∫ ∞

σ′
dσ′′

e−i k.vaσ ei`.vaσ
′′
{
− i va.pb (2k.pb va.` − k.` va.pb) +

i
2

p2
b(2k.va va.` − k.` v2

a)
}

vνa vµa

+

∫ ∞

0
dσ

∫ ∞

σ

dσ′ e−i k.vaσ ei`.vaσ
′

{
2 `.va va.pb

(
vνa pµb + vµa pνb

)
− (va.pb)2

(
`µvνa + `νvµa

)
−2 `.va p2

b vµa vνa +
1
2

v2
a p2

b

(
`µvνa + `νvµa

)}]
e−ik.ra−i`.(rb−ra) . (4.2.30)

After carrying out the integrations over σ,σ′, σ′′, and using pµa = mavµa, we get

∆T̂ Xµν(k) = −8 πG
m+n∑
a=1

∑
b,a

∫
d4`

(2π)4

1
`.pb − iε

Gr(`) e−ik.ra−i`.(rb−ra)

[(
2 pa.pb k.pb pa.` − k.` (pa.pb)2 − p2

b pa.k pa.` +
1
2

k.` p2
a p2

b

)
pνa pµa

1
`.pa

1
k.pa

1
(` − k).pa

−

{
2 pa.pb `.pa

(
pνa pµb + pµa pνb

)
− (pa.pb)2

(
`µpνa + `νpµa

)
− 2 p2

b `.pa pµa pνa

+
1
2

p2
a p2

b

(
`µpνa + `νpµa

)}
×

1
`.pa

1
(` − k).pa

]
. (4.2.31)
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For |rµa − rµb | ∼ L, the ultraviolet divergence in the integration over ` is cut-off at L−1 due

to the oscillatory phase factor e−i`.(rb−ra).

In order to evaluate the integral, we need to determine the iε prescription for the poles in

(4.2.31). The iε prescription for the 1/`.pb term has already been determined before. Sim-

ilarly, since the 1/`.pa factor comes from an integral in (4.2.30) of the form
∫ ∞
σ′

dσ′′ ei`.vaσ
′′

or
∫ ∞
σ

dσ′ ei`.vaσ
′

, the iε prescription will be to replace 1/`.pa by 1/(`.pa + iε). The 1/k.pa

factor comes from an integral of the form
∫ ∞

0
dσ e−ik.vaσ, and the iε prescription will be

to replace 1/k.pa by 1/(k.pa − iε). Finally, the 1/(` − k).pa factor in (4.2.31) arises from

an integral of the form
∫ ∞

0
dσ ei(`−k).vaσ, and the correct iε prescription for this term is

1/((` − k).pa + iε). Therefore, (4.2.31) should be written as

∆T̂ Xµν(k) = −8 πG
m+n∑
a=1

∑
b,a

∫
d4`

(2π)4

1
`.pb − iε

Gr(`) e−ik.ra−i`.(rb−ra)

[(
2 pa.pb k.pb pa.` − k.` (pa.pb)2 − p2

b pa.k pa.` +
1
2

k.` p2
a p2

b

)
pνa pµa

×
1

`.pa + iε
1

k.pa − iε
1

(` − k).pa + iε

−

{
2 pa.pb `.pa

(
pνa pµb + pµa pνb

)
− (pa.pb)2

(
`µpνa + `νpµa

)
− 2 p2

b `.pa pµa pνa +
1
2

p2
a p2

b

(
`µpνa + `νpµa

)}
×

1
`.pa + iε

1
(` − k).pa + iε

]
. (4.2.32)

Since we are interested in the singular term proportional to lnω, we can simplify the

analysis of the integral as follows. Since the expression is Lorentz covariant, we could

evaluate it in a special frame in which pa and pb have only third component of spatial

momenta. Let us denote by `⊥ = (`1, `2) the transverse component of `. Now since pa.`

and pb.` are both linear in `0 and `3, we can use pa.` and pb.` as independent variables

instead of `0 and `3. Then, if we ignore the poles of Gr(`), we see that we have one pole in

the pb.` plane and two poles on the same side of the real axis in the pa.` plane. Therefore

we can deform the pa.` and pb.` integration contours away from the poles. However due
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to the presence of the Gr(`) factor there are also poles at

(`0 + iε + `3)(`0 + iε − `3) = `2
⊥ . (4.2.33)

Therefore, for small but fixed `⊥, if we deform the (`0 + `3) contour to a distance of order

|`⊥| away from the origin, a pole will approach the origin within a distance of order | `⊥|

in the complex (`0 − `3) plane. The integration contour could then be pinched between

this pole and one of the poles of the (`.pa + iε)−1{(` − k).pa + iε}−1(`.pb − iε)−1 factor.

However it is clear that in the complex `0 and complex `3 plane, the integration contour

can be deformed so that the contour maintains a minimum distance of order |`⊥| from all

the poles, which themselves are situated within a distance of order |`⊥| of the origin. This

shows that while estimating the integrand to examine possible sources of singularity of the

integral, we can take all the components of ` to be of order `⊥ and need not worry about

the regions where one or more components are smaller than the others. Since for `µ ∼ `⊥

the integration measure gives a factor of |`⊥|4, we see that in order to get a logarithmic

correction, the integrand must be of order |`⊥|−4.

We now note that in both terms the integrand of (4.2.32) grow as |`⊥|−3 for |`µ| ∼ |`⊥| << ω

and therefore there are no logarithmic corrections from this region. For |rµb − rµa |−1 ∼

L−1 >> |`µ| >> ω we can replace (k − `).pa by −`.pa, and drop the e−i`.(rb−ra) factor. In

this case the integrand is of order |`⊥|−4 and the integral could have logarithmic contri-

butions. To compute this, we note that in this region of integration the integral may be

approximated as

∆T̂ Xµν(k) ' −8 πG
∑

a

∑
b,a

∫
d4`

(2π)4

1
`.pb − iε

Gr(`) e−ik.ra

[(
2 pa.pb k.pb pa.` − k.` (pa.pb)2 − p2

b pa.k pa.` +
1
2

k.` p2
a p2

b

)
pνa pµa

1
(`.pa + iε)2

1
k.pa − iε

−

{
2 pa.pb `.pa

(
pνa pµb + pµa pνb

)
− (pa.pb)2

(
`µpνa + `νpµa

)
− 2 p2

b `.pa pµa pνa

+
1
2

p2
a p2

b

(
`µpνa + `νpµa

)}
×

1
(`.pa + iε)2

]
. (4.2.34)
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It will be understood that in this integral the integration over ~̀⊥ is restricted to the region

L−1 >> |~̀⊥| >> ω. Since for fixed ~̀⊥, the integration over `0 and `3 are finite, we do not

need to impose separate cut-off on the `0 and `3 integrals. All the terms in (4.2.34) can be

expressed in terms of the basic integral

∫
d4`

(2π)4

1
`.pb − iε

Gr(`)
1

(`.pa + iε)2 `α = −
∂

∂pαa
Jab , (4.2.35)

where

Jab =

∫
d4`

(2π)4

1
`.pb − iε

Gr(`)
1

`.pa + iε
. (4.2.36)

It has been shown in appendix 4.6.1 that Jab vanishes when a represents an incoming

particle and b represents an outgoing particle or vice versa. On the other hand when a and

b are both ingoing particles or both outgoing particles, we have, from (4.6.6),

Jab =
1

4π
ln{L(ω + iεηa)}

1√
(pa.pb)2 − p2

a p2
b

, (4.2.37)

where ηa is a number that takes value 1 for outgoing particles (1 ≤ a ≤ n) and −1 for

incoming particles (n + 1 ≤ a ≤ m + n).5 Using (4.2.37) we can express (4.2.35) as

∫
d4`

(2π)4

1
`.pb − iε

Gr(`)
1

(`.pa + iε)2 `α (4.2.38)

= −
1

4π
ln{L(ω + iεηa)}

∂

∂pαa

1√
(pa.pb)2 − p2

a p2
b

= −
1

4π
ln{L(ω + iεηa)}

p2
b paα − pa.pb pbα

{(pa.pb)2 − p2
a p2

b}
3/2

.

We now use this to evaluate the right hand side of (4.2.34). We can also replace eik.ra by 1

since the difference is higher order in the small ω limit. This gives

∆T̂ Xµν(k) = 2 G
m+n∑
a=1

∑
b,a

ηaηb=1

ln{L(ω + iεηa)}
{(pa.pb)2 − p2

a p2
b}

3/2

[
k.pb

k.pa
pµa pνa pa.pb

{
3
2

p2
a p2

b − (pa.pb)2
}

+
1
2

pµa pνa p2
a (p2

b)2 − {pµa pνb + pνa pµb} pa.pb

{
3
2

p2
a p2

b − (pa.pb)2
} ]

. (4.2.39)

5This is opposite to the convention used in the earlier chapters.
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The constraint ηaηb = 1 means that the sum over b runs over incoming particles if a rep-

resents an incoming particle and runs over outgoing particles if a represents an outgoing

particle.

4.2.5 Subleading contribution from the gravitational stress ten-

sor

Let us now turn to the computation of T hµν defined via (4.2.6). A detailed calculation

shows that to quadratic order in hµν, it has the form:

8πG T hµν = −2
[1
2
∂µhαβ∂νhαβ + hαβ∂µ∂νhαβ − hαβ∂ν∂βh µ

α − hαβ∂µ∂βh ν
α + hαβ∂α∂βhµν

+ ∂βhνα∂βh µ
α − ∂

βhαν∂αh µ
β

]
+ hµν∂ρ∂ρh − 2 hµρ∂

σ∂σhνρ − 2 hνρ∂
σ∂σhµρ

+ ηµν
[3
2
∂ρhαβ∂ρhαβ + 2hαβ∂ρ∂ρhαβ − ∂βhαρ∂αhβρ

]
+ h

[
∂ρ∂ρhµν −

1
2
∂ρ∂ρh ηµν

]
,

(4.2.40)

where we have used de Donder gauge condition to simplify the expression. To the order

that we shall be working, this is allowed due to the observation made below (4.2.21). This

expression differs from some of the more standard expressions given e.g. in [137], since

we have defined 8 πG T hµν as the collection of the quadratic terms in the expansion of

−
√
− det g (Rµν − gµνR/2). As already mentioned, all indices in (4.2.40) are raised and

lowered using the flat metric η.

We shall manipulate (4.2.40) by expressing hαβ in the momentum space as given in

(4.2.19). This gives a general expression of the form:

T̂ hµν(k) = −8 πG
∑
a,b

e−ik.ra

∫
d4`

(2π)4 ei`.(ra−rb) Gr(k − `)Gr(`)
1

pb.` − iε
1

pa.(k − `) − iε

×
{
pbαpbβ −

1
2

p2
bηαβ

}
F µν,αβ,ρσ(k, `)

{
paρpaσ −

1
2

p2
aηρσ

}
, (4.2.41)
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where,

F µν,αβ,ρσ(k, `)

= 2
[1
2
`µ(k − `)νηραησβ + (k − `)µ(k − `)νηραησβ − (k − `)ν(k − `)βηραησµ

−(k − `)µ(k − `)βηραησν + (k − `)α(k − `)βηρµησν + (k − `).` ηβνηαρησµ

−`ρ(k − `)αηβνησµ −
1
2

(k − `)2ηαµηβνηρσ + ηαµηβρηνσ(k − `)2 + ηανηβρηµσ(k − `)2
]

−ηµν
[3
2

(k − `).` ηραησβ + 2(k − `)2ηραησβ − `σ(k − `)αηρβ
]

−ηαβ(k − `)2ηρµησν +
1
2
ηαβ(k − `)2ηρσηµν . (4.2.42)

In the `µ → 0 limit the integrand diverges as |`µ|−4 and therefore the integral has log-

arithmic infrared divergence. As discussed below (4.1.11), the lower cut-off on the `µ

integral in this case is provided by R−1 where R is the distance to the detector (measured

in flat metric). Formally, this can be achieved by adding to k0 = ω a small imaginary part

proportional to R−1.

Now in (4.2.41) the Gr(`) Gr(k − `) factor takes the form:

Gr(`) Gr(k − `) =
1

(`0 + iε)2 − ~̀2

1

(k0 − `0 + iε)2 − (~k − ~̀)2
. (4.2.43)

As a result the poles of the two denominators in the `0 plane are on the opposite sides of

the integration contour lying along the real axis. We shall express this as:

Gr(`)∗Gr(k − `) − 2 i π δ(`2)
{
H(`0) − H(−`0)

}
Gr(k − `) , (4.2.44)

where H is the Heaviside step function. In this case in the first term the poles in both

factors are in the upper half `0 plane. This allows us to deform the `0 contour away from

these poles till we hit the zeros of the other denominators. In particular, following the

argument given in the paragraph containing (4.2.33), one can argue that for |`⊥| > ω,

we can deform the contours such that it maintains a distance of order `⊥ from all the
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poles. We shall show in appendix 4.6.2 that the contribution from the terms proportional

to δ(`2) in (4.2.44) represents the contribution to T̂ µν from the gravitational radiation (real

gravitons) emitted during the scattering. Since this contribution has already been included

by including the radiation contribution in the sum over a, we shall not discuss them any

further in this section.

We shall now analyze possible logarithmic contribution to (4.2.41) with Gr(`) replaced

by Gr(`)∗. These can arise from three regions: R−1 << |kµ − `µ| << ω, R−1 << |`µ| << ω

and L−1 >> |`µ| >> ω. Since each term in (4.2.42) has at least one power of (k − `), one

finds by simple power counting that there is no logarithmic contribution from the region

R−1 << |kµ − `µ| << ω. For R−1 << |`µ| << ω the integrand has four powers of ` in

the denominator and could give logarithmic contribution. In this region we can replace

the integrand by its leading term in the ` → 0 limit. In particular F µν
αβ;ρσ(k, `) may be

approximated as

F
µν
αβ;ρσ(k, `) ' 2 kµ kν ηαρ ηβσ − 2 kν kβ ηρα δµσ − 2 kµ kβ ηρα δνσ + 2kα kβ δµρδ

ν
σ , (4.2.45)

where we have used kρkρ = 0. A further simplification is possible by noting that even-

tually we shall use the T̂ hµν(k) computed from (4.2.41) to calculate its contribution to

subleading correction to asymptotic ẽµν via (4.2.7). Since ẽµν is determined only up to a

gauge transformation

ẽµν → ẽµν + kµξν + kνξµ − k.ξ ηµν , (4.2.46)

for any vector ξ, addition of a similar term to T̂ h
µν and hence to F µν

αβ;ρσ(k, `) will not have

any effect of ẽµν. Using this we can simplify (4.2.45) to:

F
µν
αβ;ρσ(k, `) ' −2 kσ kβ ηρα ηµν + 2 kα kβ δµρδ

ν
σ . (4.2.47)
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We can also make the approximations:

1
pa.(k − `) − iε

'
1

pa.k − iε
, Gr(`)∗ =

1

(`0 − iε)2 − ~̀2
,

Gr(k − `) =
1

(k0 − `0 + iε)2 − (~k − ~̀)2
'

1
2(k.` + iεω)

'
1

2(k.` + iε)
. (4.2.48)

Substituting these into (4.2.41), we get the logarithmic contribution from the R−1 <<

|`µ| << ω region, denoted by T̂ (1)µν(k):

T̂ (1)µν(k) = 8πG
m+n∑

a,b=1

1
pa.k − iε

∫
d4`

(2π)4

1
k.` + iε

1
pb.` − iε

1

(`0 − iε)2 − ~̀2{
pa.pb k.pa k.pb η

µν −
1
2

p2
b (k.pa)2 ηµν − (k.pb)2 pµa pνa

}
. (4.2.49)

This integral, called K′b in (4.6.10), has been evaluated in (4.6.11), and gives:

∫
d4`

(2π)4

1
k.` + iε

1
pb.` − iε

1

(`0 − iε)2 − ~̀2
=

1
4π

δηb,1 ln{(ω + iε)R}
1

k.pb
. (4.2.50)

Using this, we get:

T̂ (1)µν(k) = 2 G ln{(ω + iε)R}
m+n∑
a=1

n∑
b=1

1
pa.k − iε

1
pb.k − iε{

pa.pb k.pa k.pb η
µν −

1
2

p2
b (k.pa)2 ηµν − (k.pb)2 pµa pνa

}
. (4.2.51)

The terms proportional to pa.k pb.k and (k.pa)2 inside the curly bracket cancel the denom-

inator factor of k.pa, and the result vanishes by momentum conservation after summing

over a. Therefore we have

T̂ (1)µν(k) = −2 G ln{(ω + iε)R}
m+n∑
a=1

n∑
b=1

pb.k
pa.k − iε

pµa pνa . (4.2.52)

Next we turn to the contribution from the region L−1 >> |`µ| >> ω. Simple power

counting shows that the integrand goes as |`|−4 in this region. Therefore, in order to
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extract the logarithmic term, we need to keep only the leading term in the integrand for

large `µ. In particular, in the expression for F µν,αβ,ρσ(k, `), we need to keep only quadratic

terms in `. Therefore we need to evaluate the integral:

I
αβ
ab ≡

∫
d4`

(2π)4 ei`.(ra−rb) Gr(k − `)Gr(`)∗
1

pb.` − iε
1

pa.(` − k) + iε
`α `β . (4.2.53)

Using L−1 >> |`µ| >> ω, we can further approximate (4.2.53) by

I
αβ
ab '

∫
d4`

(2π)4

1

{(`0 − iε)2 − ~̀2}2

1
pb.` − iε

1
pa.` + iε

`α`β

=
1
2

∫
d4`

(2π)4

∂

∂`α

 1

(`0 − iε)2 − ~̀2

 1
pb.` − iε

1
pa.` + iε

`β

= −
1
2

∫
d4`

(2π)4

1

(`0 − iε)2 − ~̀2

1
pb.` − iε

1
pa.` + iε

{
ηαβ −

pαa`
β

pa.` + iε
−

pαb`
β

pb.` − iε

}
= −

1
2

{
ηαβ + pαa

∂

paβ
+ pαb

∂

∂pbβ

}∫
d4`

(2π)4

1

(`0 − iε)2 − ~̀2

1
pa.` + iε

1
pb.` − iε

.(4.2.54)

In the third step we have carried out an integration by parts.6 We can now evaluate the

integral using the result for Jab given in (4.6.1). The result vanishes when a represents an

ingoing particle and b represents an outgoing particle or vice versa. When both particles

are ingoing or both particles are outgoing, the result is given in (4.6.6). This gives

Iαβab ' −
1

8π
ln{L (ω + iεηa)}

{
ηαβ + pαa

∂

paβ
+ pαb

∂

∂pbβ

}
1√

(pa.pb)2 − p2
a p2

b

= −
1

8π
ln{L (ω + iεηa)}

1{
(pa.pb)2 − p2

a p2
b

}3/2

×
[
ηαβ{(pa.pb)2 − p2

a p2
b} + p2

a pαb pβb + p2
b pαa pβa − pa.pb (pαa pβb + pβa pαb )

]
.(4.2.55)

Note that the result diverges for a = b. This can be traced to the fact that if we replace

the pa.(` − k) + iε factor in the denominator of (4.2.53) by pa.` + iε from the beginning,

6This can be justified as follows. First, following arguments similar to the one given below (4.2.32),
we can consider the integration region to be ω << |`⊥| << L−1, without any restriction on `0 and `3.
Integration by parts will then give boundary contributions from |`⊥| = ω and |`⊥| = L−1. These involve
angular integration and do not generate any logarithmic terms.
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then for b = a the contour is pinched by the poles from both sides with separation of

order ε, and we shall get a divergence in the ε → 0 limit. This shows that for a = b we

have to be more careful in evaluating the integral. We proceed by working with (4.2.53)

without making any approximation at the beginning. If we work in the rest frame of pa,

then we can evaluate the `0 integral by closing the contour in the lower half plane, picking

the residue at `0 = 0 for outgoing pa = pb and at `0 = k0 for incoming pa = pb. Let us

for definiteness consider the case where the particle is outgoing, so that we pick up the

residue from the pole at `0 = 0. This reduces the integral to

Iαβaa = −2 π i
1
p0

a

1
pa.k − iε

∫
d3`

(2π)4

1
~̀2

1
~̀2 − 2~k.~̀ − iε

`α `β . (4.2.56)

Since this is potentially linearly divergent from the region of large |~̀|, we expand the inte-

grand in power series expansion in inverse powers of `, keeping up to the first subleading

term:

Iαβaa ' −2 π i
1
p0

a

1
pa.k − iε

∫
d3`

(2π)4

1
~̀2

 1
~̀2

+
2~k.~̀

(~̀2)2

 `α `β . (4.2.57)

The leading linearly divergent term, where we pick the `α`β term from the numerator,

represents the usual infinite self energy of a classical point particle, and is regulated by

the intrinsic size of the particle. In any case, this does not lead to any logarithmic terms.

The potentially logarithmically divergent subleading contribution actually vanishes by

~̀ → −~̀ symmetry since it has to be evaluated at `0 = 0. Therefore we conclude that Iαβaa

does not have any logarithmic correction. A similar analysis can be carried out for the

incoming particles, leading to the same conclusion.

Substituting (4.2.55) into (4.2.41) for a , b, we get the logarithmic contribution to T̂ hµν(k)

from the region ω << |`µ| << L−1, which we shall denote by T̂ (2)µν(k):

T̂ (2)µν(k) = G
m+n∑
a=1

ln{L(ω + iεηa)}
m+n∑
b=1

b,a,ηaηb=1

1
{(pa.pb)2 − p2

a p2
b}

3/2

[
− pµb pνb (p2

a)2 (p2
b)

+{pµa pνb + pνa pµb} pa.pb

{
3
2

p2
a p2

b − (pa.pb)2
} ]

. (4.2.58)
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4.2.6 Gravitational wave-form at early and late time

Adding (4.2.17), (4.2.39), (4.2.52) and (4.2.58) we get the net logarithmic contribution to

T̂ µν(k) to the subleading order in the small ω expansion:7

T̂ µν(k)

=

n∑
a=1

pµa pνa
1

i(k.pa − iε)
−

m∑
a=1

p′µa p′νa
1

i(k.p′a + iε)

+ 2 G ln{L(ω + iε)}
n∑

a=1

n∑
b=1
b,a

pa.pb

{(pa.pb)2 − p2
a p2

b}
3/2

{
3
2

p2
a p2

b − (pa.pb)2
}

kρpµa
k.pa

(pρb pνa − pνb pρa)

+ 2 G ln{L(ω − iε)}
m∑

a=1

m∑
b=1
b,a

p′a.p
′
b

{(p′a.p
′
b)2 − p′2a p′2b }

3/2

{
3
2

p′2a p′2b − (p′a.p
′
b)2

}
kρp′µa
k.p′a

(p′ρb p′νa − p′νb p′ρa )

− 2 G ln{(ω + iε)R}
n∑

b=1

pb.k

 n∑
a=1

1
pa.k − iε

pµa pνa −
m∑

a=1

1
p′a.k − iε

p′µa p′νa

 . (4.2.59)

In (4.2.59) we can replace k by ω n with n = (1, n̂). Comparing the second and last line of

(4.2.59) we see that the term proportional to ln R exponentiates to a multiplicative factor

of

exp

−2 iωG ln R
n∑

b=1

pb.n

 . (4.2.60)

Using (4.2.7), (4.1.15) and (4.1.19) we get the late and early time behaviour of the gravi-

tational wave-form:

eµν(t,R, n̂) =
2 G
R

− n∑
a=1

pµa pνa
1

n.pa
+

m∑
a=1

p′µa p′νa
1

n.p′a


−

4 G2

R u


n∑

a=1

n∑
b=1
b,a

pa.pb

{(pa.pb)2 − p2
a p2

b}
3/2

{
3
2

p2
a p2

b − (pa.pb)2
}

nρpµa
n.pa

(pρb pνa − pνb pρa)

−

n∑
b=1

pb.n

 n∑
a=1

1
pa.n

pµa pνa −
m∑

a=1

1
p′a.n

p′µa p′νa


 , as u→ ∞ ,

eµν(t,R, n̂) =
4 G2

R u

[ m∑
a=1

m∑
b=1
b,a

p′a.p
′
b

{(p′a.p
′
b)2 − p′2a p′2b }

3/2

{
3
2

p′2a p′2b − (p′a.p
′
b)2

}
7The quantum computation of [16] gave rise to additional terms in the soft factor, but they do not seem

to play any role in the classical gravitational wave-form found here.
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×
nρp′µa
n.p′a

(p′ρb p′νa − p′νb p′ρa )
]
, as u→ −∞ , (4.2.61)

where, from (4.1.14) and (4.2.7), (4.2.60),

u = t − R + 2 G ln R
n∑

b=1

pb.n . (4.2.62)

In (4.2.61) we have adjusted the overall additive constant in the expression for eµν such

that it vanishes in the far past.

4.3 Generalizations

In this section we shall derive the classical soft photon theorem. We shall also generalize

the soft graviton theorem to include the effect of electromagnetic interactions among the

incoming and the outgoing particles. In order to simplify our formulæ we shall drop the

regulator factors of ei`.(ra−rb), eik.ra etc., with the understanding that momentum integrals

have an upper cut-off L−1 and a lower cut-off R−1.

4.3.1 Soft photon theorem with electromagnetic interactions

As in §4.2, we consider a scattering event in asymptotically flat space-time in which m

particles carrying masses {m′a; 1 ≤ a ≤ m}, four velocities {v′a}, four momenta {p′a = m′a v′a}

and charges {q′a} come close, undergo interactions, and disperse as n particles carrying

masses {ma; 1 ≤ a ≤ n}, four velocities {va}, four momenta {pa} and charges {qa}. Our goal

will be to compute the early and late time electromagnetic wave-form emitted during this

scattering event. In this section we shall proceed by ignoring the gravitational interaction

between the particles, but this will be included in §4.3.2. Since the analysis proceeds as

in §4.2, we shall be brief, pointing out only the main differences. In particular, as in §4.2,

we can treat the incoming particles as outgoing particles with four velocities {−v′a}, four
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momenta {−p′a} and charges {−q′a}. This allows us to drop the sum over incoming particles

by extending the sum over a from 1 to m + n.

In the Lorentz gauge ηαβ∂αaβ = 0, the equations replacing (4.2.13) are:

jµ(x) =
∑

a

qa

∫
dσδ(4)(x−Xa(σ))

dXµ
a

dσ
, � aµ = − jµ, ma

d2Xµ
a

dσ2 = qaFµ
ν(Xa(σ))

dXν
a

dσ
.

(4.3.1)

We introduce the Fourier transforms via:

aµ(x) =

∫
d4k

(2π)4 eik.x âµ(k), jµ(x) =

∫
d4k

(2π)4 eik.x ĵµ(k) . (4.3.2)

This gives:

ĵµ(k) =

∫
d4x e−ik.x jµ(x) =

∑
a

qa

∫
dσ e−ik.X(σ) dXµ

a

dσ
. (4.3.3)

The generalization of (4.2.7) for the asymptotic electromagnetic field is:

ãµ(ω,R, n̂) =
1

4πR
eiωR ĵµ(k) + O(R−2) . (4.3.4)

We proceed to find iterative solutions to (4.3.1) in a power series expansion in the charges,

beginning with the leading order solution for Xµ given in (4.2.11). Substituting this into

(4.3.3) we find the leading order expression for ĵµ(k):

ĵµ(k) =

m+n∑
a=1

qa pµa
1

i(k.pa − iε)
. (4.3.5)

This is the leading soft factor. Using this we can get the analogs of (4.2.19) and (4.2.20):

a(b)
µ (x) = −

∫
d4`

(2π)4 ei`.x Gr(`)qb pbµ
1

i(`.pb − iε)
, (4.3.6)

F(b)
νρ (x) = ∂ν a(b)

ρ − ∂ρ a(b)
ν = −

∫
d4`

(2π)4 ei`.x Gr(`)
qb

(`.pb − iε)
(`νpbρ − `ρpbν) , (4.3.7)

where a(b)
µ and F(b)

µν denote the gauge field and field strength produced by the b-th particle.
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The analogs of (4.2.26), (4.2.27) take the form:

dYµ
a (σ)
dσ

= −
qa

ma

∫ ∞

σ

dσ′ Fµ
ν(va σ

′ + ra) vνa , (4.3.8)

and

Yµ
a (σ) = −

qa

ma

∫ σ

0
dσ′

∫ ∞

σ′
dσ′′ Fµ

ν(va σ
′′ + ra) vνa . (4.3.9)

Using these results we can proceed as in §4.2.4 to compute the next order correction

∆ ĵµ(k) to ĵµ(k). Since the analysis is identical to those in §4.2.4 we only quote the analog

of (4.2.32):

∆ ĵµ(k) =

m+n∑
a=1

m+n∑
b=1
b,a

q2
aqb

∫
d4`

(2π)4

1
`.pb − iε

Gr(`)
[
kρ

1
(k − `).pa − iε

1
k.pa − iε

1
`.pa + iε

× (`νpbρ − `ρpbν) pνa pµa

−
1

(k − `).pa − iε
1

`.pa + iε
(`νpµb − `

µpbν)pνa

]
. (4.3.10)

This can be evaluated exactly as in §4.2.4, leading to the final result analogous to (4.2.39):

∆ ĵµ(k) =
1

4π
ln(ω + iε)

n∑
a=1

n∑
b=1
b,a

q2
aqb p2

a p2
b

1
{(pa.pb)2 − p2

a p2
b}

3/2

kρ

k.pa

{
pbρpµa − paρpµb

}
+

1
4π

ln(ω − iε)
m∑

a=1

m∑
b=1
b,a

q′2a q′b p′2a p′2b
1

{(p′a.p
′
b)2 − p′2a p′2b }

3/2

kρ

k.p′a

{
p′bρp′µa − p′aρp′µb

}
.

(4.3.11)

4.3.2 Gravitational contribution to the soft photon theorem

We shall now study the effect of gravitational interaction on the soft photon theorem. This

modifies the last two equations in (4.3.1) as follows. First of all the equation for aµ get

modified to:

∂ν
( √
− det ggνρgµσFρσ

)
= − jµ . (4.3.12)
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Using Lorentz gauge condition ηρσ∂ρaσ = 0, this may be written as

ηµν ηρσ ∂ρ ∂σ aν = − jµ − jµh , (4.3.13)

where

jµh ≡ ∂ν
{
ηαβ hαβ ηνρηµσFρσ − 2 (hνρηµσ + ηνρhµσ) Fρσ

}
+ higher order terms . (4.3.14)

The equation for Xµ is modified to:

ma
d2Xµ

a

dσ2 = qaFµ
ν(Xa(σ))

dXν
a

dσ
− ma Γ

µ
νρ(Xa(σ))

dXν
a

dσ
dXρ

a

dσ
. (4.3.15)

We shall now expand the above equations in powers of hαβ and then raise and lower all

indices by the flat metric η. We begin with the analysis of (4.3.15). To the order that we

are working, we can study the effect of the two terms on the right hand side of (4.3.15)

separately. The effect of the first term on ĵµ has already been analyzed in §4.3.1. The

effect of the second term on T̂ X
µν has been studied in §4.2.4, but this can be easily extended

to ĵµ. The additional contribution to ĵµ is given by:

∆(1) ĵµ (k) = −8πG
m+n∑
a=1

m+n∑
b=1
b,a

qa

∫
d4`

(2π)4 Gr(`)
1

` · pb − iε−
{
2k · pb ` · pa pa · pb − k · ` (pa · pb)2

− 1
2

(
2k · pa ` · pa − k · ` p2

a

)
p2

b

}
pµa[

k · pa − iε
] [

(k − `) · pa − iε
] [
` · pa + iε

]
+

2pµb` · pa pa · pb − `
µ (pa · pb)2

− 1
2

(
2pµa ` · pa − `

µ p2
a

)
p2

b[
(k − `) · pa − iε

] [
` · pa + iε

]  . (4.3.16)

This integral can be evaluated as in §4.2.4 and yields the result:

∆(1) ĵµ (k)
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= − G log(ω + iε)
n∑

a=1

n∑
b=1
b,a

qa
kρ

k · pa

pa · pb{
(pa · pb)2

− p2
a p2

b

} 3
2

(
pµa pρb − pρa pµb

) {
2 (pa · pb)2

− 3p2
a p2

b
}

− G log(ω − iε)
m∑

a=1

m∑
b=1
b,a

q′a
kρ

k · p′a

p′a · p
′
b{(

p′a · p
′
b

)2
− p′2a p′2b

} 3
2

(
p′µa p′ρb − p′ρa p′µb

) {
2
(
p′a · p

′
b
)2
− 3p′2a p′2b

}
.

(4.3.17)

We now turn to the evaluation of jµh given in (4.3.14). Using the expressions for hµν and

Fµν given in (4.2.19) and (4.3.7), we get:

ĵµh (k) = 8πG
m+n∑

a,b=1

qb

∫
d4`

(2π)4 Gr (`) Gr (k − `)
1[

` · pa − iε
] [

(k − `) · pb − iε
]F µ (k, `) ,

(4.3.18)

where

F µ ≡ pµb
{
p2

a k.(k − `) − 2 pa.(k − `) pa.k
}

+ (kµ − `µ)
{
2 k.pa pa.pb − p2

a k.pb

}
+ pµa {2 pa.(k − `) k.pb − 2 k.(k − `) pa.pb} . (4.3.19)

We shall analyze this by expressing Gr(`) Gr(k − `) as in (4.2.44). The term proportional

to δ(`2) can be analyzed as in appendix 4.6.2, and one can show that in this case there is

no contribution from this term. This gives

ĵµh (k) = 8πG
m+n∑

a,b=1

qb

∫
d4`

(2π)4 Gr (`)∗Gr (k − `)
1[

` · pa − iε
] [

(k − `) · pb − iε
]F µ (k, `) .

(4.3.20)

This integral could give logarithmic contributions from three regions: R−1 << |`µ| << ω,

R−1 << |kµ − `µ| << ω and ω << |`µ| << L−1. However, since F ν vanishes as k − ` → 0,

there is no logarithmic divergence from the R−1 << |kµ − `µ| << ω region. Furthermore,

since F ν does not have any quadratic term in `, this rules out logarithmic contribution

from the region ω << |`µ| << L−1. Therefore the only possible source of logarithmic
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divergence is the region R−1 << |`µ| << ω. In this region,

F ν ' − 2
{
(k · pa)2 pνb − k · pa k · pb pνa

}
. (4.3.21)

We have ignored the terms proportional to kν because such terms can be removed by

gauge transformation aµ → aµ + ∂µφ for appropriate function φ. We can now evaluate the

logarithmic contribution to the integral using the method described below (4.2.47), and

the result is

ĵµh(k) = − 2 G ln(ω + iε)
n∑

a=1

k.pa

 n∑
b=1

qb pµb
1

k.pb
−

m∑
b=1

q′b p′µb
1

k.p′b

 , (4.3.22)

after using charge conservation
∑m+n

b=1 qb = 0.

4.3.3 Electromagnetic wave-form at early and late time

Adding (4.3.5), (4.3.11), (4.3.17) and (4.3.22), and using k = ω n and (4.3.4), (4.1.15),

(4.1.19) we get

4 πR aµ(t,R, n̂) ' −

n∑
a=1

qa pµa
1

n.pa
+

m∑
a=1

q′a p′µa
1

n.p′a

+
1
u

[
−

1
4π

n∑
a=1

n∑
b=1
b,a

q2
aqb p2

a p2
b

1
{(pa.pb)2 − p2

a p2
b}

3/2

nρ

n.pa

{
pbρpµa − paρpµb

}
+ G

n∑
a=1

n∑
b=1
b,a

qa
nρ

n · pa

pa · pb{
(pa · pb)2

− p2
a p2

b

} 3
2

(
pµa pρb − pρa pµb

) {
2 (pa · pb)2

− 3p2
a p2

b
}

+ 2 G
n∑

a=1

n.pa

{ n∑
b=1

qb pµb
1

n.pb
−

m∑
b=1

q′b p′µb
1

n.p′b

}]
, as u→ ∞ , (4.3.23)

and

4 πR aµ(t,R, n̂) '
1
u

[
1

4π

m∑
a=1

m∑
b=1
b,a

q′2a q′b p′2a p′2b
1

{(p′a.p
′
b)2 − p′2a p′2b }

3/2

nρ

n.p′a

{
p′bρp′µa − p′aρp′µb

}
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−G
m∑

a=1

m∑
b=1
b,a

q′a
nρ

n · p′a

p′a · p
′
b{(

p′a · p
′
b

)2
− p′2a p′2b

} 3
2

(
p′µa p′ρb − p′ρa p′µb

) {
2
(
p′a · p

′
b
)2
− 3p′2a p′2b

}]
,

as u→ −∞ . (4.3.24)

This gives the wave-form of the electromagnetic field at early and late time. The term on

the right hand side of the first line gives the constant shift in the vector potential, and is

responsible for electromagnetic memory [50–52]. The rest of the terms are tail terms.

4.3.4 Electromagnetic contribution to the soft graviton theorem

We shall now analyze the effect of electromagnetic interaction on the soft graviton theo-

rem. This affects our earlier analysis of soft graviton theorem in two ways. First of all,

the Lorentz force on the outgoing and incoming particles changes the particle trajectories,

producing an additional contribution to T̂ Xµν. Analysis of this follows the same procedure

that led to (4.2.32), (4.3.16), and the final result is given by:

∆(1)T̂ µν(k) =

m+n∑
a=1

m+n∑
b=1
b,a

qaqb

∫
d4`

(2π)4

1
`.pb − iε

Gr(`)

[
1

(k − `).pa − iε
1

k.pa − iε
1

`.pa + iε
(pa.` k.pb − k.` pa.pb) pµa pνa

−
1

(k − `).pa − iε
1

`.pa + iε
(pa.` pµb − `

µ pa.pb) pνa

−
1

(k − `).pa − iε
1

`.pa + iε
(pa.` pνb − `

ν pa.pb) pµa

]
. (4.3.25)

Evaluation of this using the method described below (4.2.32), gives

∆(1)T̂ µν(k) =
1

4π
ln{L (ω + iε)}

n∑
a=1

n∑
b=1
b,a

qaqb
1

{(pa.pb)2 − p2
a p2

b}
3/2

[
k.pb

k.pa
p2

a p2
b pµa pνa

+ p2
b pa.pb pµa pνa − p2

a p2
b (pµa pνb + pνa pµb)

]
+

1
4π

ln{L (ω − iε)}
m∑

a=1

m∑
b=1
b,a

q′aq′b
1

{(p′a.p
′
b)2 − p′2a p′2b }

3/2

[
k.p′b
k.p′a

p′2a p′2b p′µa p′νa
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+ p′2b p′a.p
′
b p′µa p′νa − p′2a p′2b (p′µa p′νb + p′νa p′µb )

]
. (4.3.26)

Second, there is an additional contribution to the stress tensor due to the electromagnetic

field. Using the form of the electromagnetic field produced by the charged particle as

given in (4.3.7), this additional contribution takes the form:

∆(2)T̂ µν(k) =

∫
d4x e−ik.x

[
ηµρ ηνσ ηαβ Fρα Fσβ −

1
4
ηµν ηρσ ηαβ Fρα Fσβ

]
+ higher order terms

'

m+n∑
a=1

m+n∑
b=1

qaqb

∫
d4`

(2π)4

1
`.pb − iε

1
(k − `).pa − iε

Gr(`) Gr(k − `)[
`µ(k − `)ν pa.pb − `

µpνa pb.(k − `) − pµb (k − `)ν `.pa + pµb pνa `.(k − `)

−
1
2
ηµν {`.(k − `) pa.pb − `.pa (k − `).pb}

]
. (4.3.27)

We shall analyze this by expressing Gr(`) Gr(k − `) as in (4.2.44). The term proportional

to δ(`2) can be analyzed as in appendix 4.6.2, and one can show that the contribution

from this term can be interpreted as the soft graviton emission from electromagnetic wave

produced during scattering. Since this is included in the sum over a in the soft factor,

we do not need to include its contribution. This allows us to replace Gr(`) by Gr(`)∗ in

(4.3.27). Since each term in the numerator of the integrand carries a factor of ` and a

factor of (k− `), there is no logarithmic contribution from the |`µ| << ω and |kµ− `µ| << ω

regions. Therefore we focus on the |`µ| >> ω region, and analyze the contribution using

(4.2.53), (4.2.55). The final result is:

∆(2)T̂ µν(k) = −
1

4π
ln(ω + iε)

n∑
a=1

n∑
b=1
b,a

qaqb pa.pb
1

{(pa.pb)2 − p2
a p2

b}
3/2

pµa(p2
b pνa − pa.pb pνb)

−
1

4π
ln(ω − iε)

m∑
a=1

m∑
b=1
b,a

q′aq′b p′a.p
′
b

1
{(p′a.p

′
b)2 − p′2a p′2b }

3/2
p′µa (p′2b p′νa − p′a.p

′
b p′νb )

−
1

4π
ln(ω + iε)

n∑
a=1

n∑
b=1
b,a

qaqb
1

{(pa.pb)2 − p2
a p2

b}
1/2

pµb pνa
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−
1

4π
ln(ω − iε)

m∑
a=1

m∑
b=1
b,a

q′aq′b
1

{(p′a.p
′
b)2 − p′2a p′2b }

1/2
p′µb p′νa . (4.3.28)

Adding (4.3.26) and (4.3.28) we get the net electromagnetic contribution to the soft gravi-

ton theorem:

∆(1)T̂ µν(k) + ∆(2)T̂ µν(k)

=
1

4π
ln(ω + iε)

n∑
a=1

n∑
b=1
b,a

qaqb
p2

a p2
b

{(pa.pb)2 − p2
a p2

b}
3/2

[
k.pb

k.pa
pµa pνa − pµa pνb

]

+
1

4π
ln(ω − iε)

m∑
a=1

m∑
b=1
b,a

q′aq′b
p′2a p′2b

{(p′a.p
′
b)2 − p′2a p′2b }

3/2

[
k.p′b
k.p′a

p′µa p′νa − p′µa p′νb

]
.

(4.3.29)

From (4.2.7), (4.1.19), we can read out the additional contribution to the gravitational

wave-form at early and late retarded time due to electromagnetic interactions:

∆em eµν → −
G

2πR u

n∑
a=1

n∑
b=1
b,a

qaqb
1

{(pa.pb)2 − p2
a p2

b}
3/2

[
k.pb

k.pa
p2

a p2
b pµa pνa − p2

a p2
b pµa pνb

]
as u→ ∞,

→
G

2πR u

m∑
a=1

m∑
b=1
b,a

q′aq′b
1

{(p′a.p
′
b)2 − p′2a p′2b }

3/2

[
k.p′b
k.p′a

p′2a p′2b p′µa p′νa − p′2a p′2b p′µa p′νb

]
as u→ −∞. (4.3.30)

4.4 New conjectures at the subsubleading order

Emboldened by the success of soft theorem in correctly predicting the tail of the gravi-

tational wave-form at the subleading order, we shall now propose new conjectures at the

subsubleading order. It is known that in quantum gravity, the subsubleading soft factors

are not universal. Nevertheless there are some universal terms that we could utilize [11].

These are terms that are quadratic in the orbital angular momenta. Our goal will be to

make use of these universal terms to arrive at new conjectures on the late and early time
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tail of gravitational radiation. The non-universal terms do not involve orbital angular mo-

menta and therefore do not have logarithmic divergences. Hence they will not affect our

analysis.

Using the relation between quantum soft factors and classical gravitational wave-forms

derived in [19], and ignoring the non-universal terms, we can write down the following

form of the gravitational wave-form to subsubleading order:8

ẽµν(ω, ~x) =
2 G
R

eiωR exp

−2 i G ln{R(ω + iε)}
n∑

b=1

pb.k


×

m+n∑
a=1

[
−i

pµa pνa
pa.k

−
1

pa.k
Jρ(ν

a pµ)
a kρ +

i
2

1
pa.k

kρ kσ Jµρa Jνσa

]
, (4.4.1)

where k has been defined in (4.1.10) and Jρσa is the sum of the orbital and spin angular

momenta of the a-th external particle:

Jρσa = Xρ
a pσa − Xσ

a pρa + Σρσa . (4.4.2)

The second term in the last line of (4.4.1) differs by a sign from the expressions used e.g.

in [19]. This can be traced to the fact that in [19] we treated the charges / momenta /

angular momenta carried by ingoing particles as positive and of the outgoing particles as

negative, whereas here we are following the opposite convention. Following (4.2.12), the

spin Σ′µνa for incoming particles are given by:

Σ′µνa = −Σ
µν
a+n for 1 ≤ a ≤ m . (4.4.3)

The phase factor exp
[
−2 i G ln{R(ω + iε)}

∑n
b=1 pb.k

]
in (4.4.1) is not determined by soft

theorem, but is determined by independent computation [110–112], and is consistent with

the term in the last line of (4.2.59). Due to the long range gravitational force between the

outgoing / incoming particles, Xρ
a has logarithmic corrections at late / early time [20],

8A non-trivial test of this formula for the scattering of massless particles can be found in [118].
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leading to [16]

Xρ
a pσa − Xσ

a pρa = −G
∑

b,a
ηaηb=1

ln |σa|
pb.pa

{(pb.pa)2 − p2
a p2

b}
3/2

(pρb pσa − pσb pρa)
{
2(pb.pa)2 − 3p2

a p2
b

}
+ (rρa pσa − rσa pρa) , (4.4.4)

where σa denotes the proper time of the a-th particle, and ra is the constant that appeared

in (4.2.23). The contribution proportional to ln |σa| arises from the correction term Ya in

(4.2.23). The conjecture of [16,20] was that the ln |σa| factor should be replaced by lnω−1

in (4.4.1). After including the iε prescription described in this chapter, this conjecture

translates to the rule that in (4.4.1), Jρσa should be replaced by:

Jρσa = G
∑

b,a
ηaηb=1

ln(ω + iεηa)
pb.pa

{(pb.pa)2 − p2
a p2

b}
3/2

(pρb pσa − pσb pρa)
{
2(pb.pa)2 − 3p2

a p2
b

}
+ (rρa pσa − rσa pρa) + Σρσa . (4.4.5)

We now substitute (4.4.5) into (4.4.1) and expand the expression in powers ofω, including

the exp
[
−2 i G ln{R(ω + iε)}

∑n
b=1 pb.k

]
term. Terms proportional to ln(ω ± iε) reproduce

correctly (4.2.59). We shall focus on terms proportional to ω(lnω)2. In the ω space these

terms are subdominant compared to the order ω0 terms that we have left out from the

subleading terms in the gravitational wave-form. However after Fourier transformation,

polynomials in ω produce local terms in time, while terms involving lnω produce tail

terms that survive at late and early retarded time. Therefore the corrections to (4.2.61)

at late and early time will be dominated by the terms proportional to ω(lnω)2 in the

expression for ẽµν. The order ω0 terms may have other observational signature, e.g. the

spin memory discussed in [32].

Expanding (4.4.1) in powers of ω, with Jρσa given by (4.4.5), we get the corrections pro-
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portional to ω(lnω)2. These take the form:

∆subsubleading ẽµν

= eiωR−2 iωG ln R
∑n

d=1 pd .n i
G3

R
ω

[
4 {ln(ω + iε)}2

n∑
b=1

pb.n
n∑

c=1

pc.n
m+n∑
a=1

pµa pνa
pa.n

+4 ln(ω + iε)
n∑

c=1

pc.n
m+n∑
a=1

m+n∑
b=1

b,a,ηaηb=1

ln(ω + iεηa)
1

pa.n
pa.pb

{(pa.pb)2 − p2
a p2

b}
3/2

{2(pa.pb)2 − 3p2
a p2

b}{n.pb pµa pνa − n.pa pµa pνb}

+

m+n∑
a=1

m+n∑
b=1

b,a,ηaηb=1

m+n∑
c=1

c,a,ηaηc=1

{ln(ω + iεηa)}2
1

pa.n
pa.pb

{(pa.pb)2 − p2
a p2

b}
3/2

{2(pa.pb)2 − 3p2
a p2

b}
pa.pc

{(pa.pc)2 − p2
a p2

c}
3/2 {2(pa.pc)2 − 3p2

a p2
c}

{n.pb pµa − n.pa pµb} {n.pc pνa − n.pa pνc}
]
. (4.4.6)

Using (4.1.23), (4.1.26), we now get,

∆subsubleading eµν →


u−2 ln |u| Fµν as u→ ∞

u−2 ln |u|Gµν as u→ −∞
, (4.4.7)

where

Fµν = 2
G3

R

[
4

n∑
b=1

pb.n
n∑

c=1

pc.n

 n∑
a=1

pµa pνa
pa.n

−

m∑
a=1

p′µa p′νa
p′a.n


+4

n∑
c=1

pc.n
n∑

a=1

n∑
b=1
b,a

1
pa.n

pa.pb

{(pa.pb)2 − p2
a p2

b}
3/2
{2(pa.pb)2 − 3p2

a p2
b}{n.pb pµa pνa − n.pa pµa pνb}

+2
n∑

c=1

pc.n
m∑

a=1

m∑
b=1
b,a

1
p′a.n

p′a.p
′
b

{(p′a.p
′
b)2 − p′2a p′2b }

3/2
{2(p′a.p

′
b)2 − 3p′2a p′2b }{n.p

′
b p′µa p′νa − n.p′a p′µa p′νb }

+

n∑
a=1

n∑
b=1
b,a

n∑
c=1
c,a

1
pa.n

pa.pb

{(pa.pb)2 − p2
a p2

b}
3/2
{2(pa.pb)2 − 3p2

a p2
b}

pa.pc

{(pa.pc)2 − p2
a p2

c}
3/2

{2(pa.pc)2 − 3p2
a p2

c}{n.pb pµa − n.pa pµb} {n.pc pνa − n.pa pνc}
]
, (4.4.8)
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and

Gµν = −2
G3

R

[
2

n∑
c=1

pc.n
m∑

a=1

m∑
b=1
b,a

1
p′a.n

p′a.p
′
b

{(p′a.p
′
b)2 − p′2a p′2b }

3/2
{2(p′a.p

′
b)2 − 3p′2a p′2b }

{n.p′b p′µa p′νa − n.p′a p′µa p′νb }

−

m∑
a=1

m∑
b=1
b,a

m∑
c=1
c,a

1
p′a.n

p′a.p
′
b

{(p′a.p
′
b)2 − p′2a p′2b }

3/2
{2(p′a.p

′
b)2 − 3p′2a p′2b }

p′a.p
′
c

{(p′a.p′c)2 − p′2a p′2c }3/2

{2(p′a.p
′
c)

2 − 3p′2a p′2c }{n.p
′
b p′µa − n.p′a p′µb } {n.p

′
c p′νa − n.p′a p′νc }

]
. (4.4.9)

One can check that in case of binary black hole merger, regarded as a process in which a

single massive object decays into a massive object and many massless particles (gravita-

tional waves), Fµν and Gµν vanish.

One could attempt to prove these results following the same procedure employed in this

chapter. For this we need to iteratively solve the equations of motion to one order higher

than what has been done in this chapter. Terms of order ω lnω would also receive con-

tributions from the expansion of the factors of eik.ra in various expressions in this chapter,

e.g. in (4.2.32), to first order in k, and will therefore depend on the additional data {ra}.

However the ω(lnω)2 terms given in (4.4.6) do not suffer from any such ambiguity [138].

It may be possible to find higher order generalization of these results using the exponen-

tiated soft factor discussed in [61, 103, 104, 129, 139].

4.5 Numerical estimate

Before concluding the chapter, we shall give estimates of the coefficient of the 1/u term

in (4.0.4) in some actual physical processes.

1. Hypervelocity stars: When a binary star system comes close to the supermassive

black hole at the center of the milky way, often one of them gets captured by the

black hole and the other escapes with a high velocity, producing a hypervelocity star
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[140]. This can be taken as a two body decay of a single bound object. Using the

mass of the central black hole to be of order 105 M�, the mass of the hypervelocity

star to be of order M�, its velocity to be of order 3 × 10−3c, and the distance of the

earth from the galactic center to be of order 25000 light-years, one can estimate

the coefficient of the 1/u term in (4.0.4) to be of order 10−22 days. The minimum

value of u needed for (4.0.4) to hold – namely when the kinetic energy dominates

the gravitational potential energy [33] – in this case is about a day. This gives a

strain of order 10−22, which is at the edge of the detection sensitivity of the future

space-based gravitational wave detectors.

2. Core collapse supernova: This case was already discussed in [33]. During this

process the residual neutron star often gets a high velocity kick which could be

of the order of 1000 km/sec, balanced by ejected matter in opposite direction at a

speed up to 5000 km/sec. [141]. Taking the neutron star to have a mass of order

M� and the supernova to be in our galaxy so that its distance from the earth is of

the order of 105 light years, the coefficient of the 1/u term was computed to be of

order 10−22 sec. The minimum value of u for which the asymptotic formula holds

was found to be of order 1 sec. Therefore the strain at this time will be of order

10−22, which is at the edge of the detection limit of the current gravitational wave

detectors.

3. Binary black hole merger: As already pointed out, for binary black hole merger,

the coefficient of the 1/u term vanishes due to cancellation between various terms.

However the individual terms in (4.0.4) have the same order of magnitude as the

memory effect when the asymptotic formula can be trusted, which is of the order of

the light crossing time of the horizon. Therefore the observation of the memory ef-

fect without observation of the 1/u tail is a prediction of general theory of relativity

that can be tested in future gravitational wave experiments.

4. Bullet cluster: The bullet cluster [142] consists of a pair of galaxy clusters, each
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with mass of about 1014M� [143], passing through each other at a speed of about

10−2 c. The system is situated at a distance of about 4 × 109 light-years from the

earth. Using this data we get the coefficient of the 1/u term in (4.0.4) to be of

the order of 10−6 year. The retarded time u for this system, – the time that has

elapsed since the centres of the two clusters passed each other, – is about 1.5 × 108

years. This gives the current value of the strain produced by the bullet cluster in

our neighbourhood to be about 10−14. While this is much larger than the sensitivity

of the current gravitational wave detectors, what the latter detect is not the strain

but the change in the strain – more precisely its second u derivative that enters the

expression for the Riemann tensor. For the bullet cluster this is too small an effect

to be observed by the conventional gravitational wave detectors.

4.6 Appendices

4.6.1 Evaluation of some integrals

In this appendix we shall review the evaluation of several integrals following [16].

We begin with the integral

Jab =

∫
d4`

(2π)4

1
`.pb − iε

Gr(`)
1

(` − k).pa + iε
'

∫
d4`

(2π)4

1
`.pb − iε

1

(`0 + iε)2 − ~̀2

1
`.pa + iε

,

(4.6.1)

with the understanding that the integration over ` is restricted to the region L−1 >> |~̀⊥| >>

ω. Simple power counting, together with the contour deformation arguments given in the

paragraph containing (4.2.33), then shows that the logarithmic contribution can come only

from the region |`µ| ∼ |`⊥| for all µ. However, since the `0 and `3 integrals converge for

fixed `⊥, we shall take the range of these integrals to be unrestricted.

First consider the case where a represents an incoming particle and b represents an out-
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going particle. In this case p0
a = −p′0a−n < 0 and p0

b > 0. In the `0 plane the poles of Gr(`)

are in the lower half plane, and the zeroes of `.pa + iε and `.pb − iε are also in the lower

half plane. Therefore we can close the `0 integration contour in the upper half plane and

the integral vanishes.

If a represents an outgoing particle and b represents an incoming particle, then the zeroes

of `.pa + iε and `.pb − iε are in the upper half plane. Therefore the `0 integral does

not vanish automatically. We can evaluate this by choosing a special frame in which pa

and −pb both carry spatial momenta along the third direction, with velocities βa and βb

respectively. Then the integral takes the form:

∫
d4`

(2π)4

1
p0

a p0
b

1
`0 − βa`3 − iε1

1
`0 − βb `3 − iε2

1

(`0 + iε)2 − ~̀2
(4.6.2)

= i
∫

d3`

(2π)3

1
p0

a p0
b

1
(βa − βb)`3 + i(ε1 − ε2)

− 1

(1 − β2
a)(`3)2 + ~̀2

⊥

+
1

(1 − β2
b)(`3)2 + ~̀2

⊥

 ,
where `⊥ ≡ (`1, `2). In the second step we have evaluated the `0 integral by closing its

integration contour in the upper half plane. Since βa, βb ≤ 1, the denominators of the

terms inside the square bracket never vanish and we have dropped the iε factors in that

term. If we now express {(βa−βb) `3+i(ε1−ε2)}−1 as a sum of its principal value and a term

proportional to δ((βa−βb) `3), then the contribution to the integral from the principle value

term vanishes due to `3 → −`3 symmetry. The term proportional to δ((βa − βb) `3) forces

`3 to vanish, in which case the two terms inside the square bracket cancel. Therefore Jab

vanishes also in this case.

If a and b both refer to outgoing particles, then the zero of `.pa + iε is in the upper

half plane and the zero of `.pb − iε is in the lower half plane. Therefore if we close the

contour in the upper half plane so as to avoid contribution from the residues at the poles

of Gr(`), we only pick up the residue at `.pa + iε = 0. If we choose a frame in which

pa = p0
a(1, 0, 0, βa) and pb = p0

b(1, 0, 0, βb), then the pole is at `0 = βa`
3 + iε, and the
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resulting integrand takes the form

− i
∫

d3`

(2π)3

1
p0

a p0
b

1
(βa − βb) `3 + iε

1
(1 − β2

a)(`3)2 + `2
⊥

. (4.6.3)

If we express ((βa−βb) `3 + iε)−1 term as a sum of its principal value and −iπδ((βa−βb) `3),

then the contribution from the principal value part vanishes due to `3 → −`3 symmetry.

The term proportional to δ((βa − βb) `3) forces `3 to vanish. Integration over `⊥ ≡ (`1, `2)

in the range ω << |`⊥| << L−1 now generates a factor of 2π ln(ω L)−1. This gives

Jab =
1

4π
ln(ω L)

1
p0

a p0
b

1
|βa − βb|

=
1

4π
ln(ω L)

1√
(pa.pb)2 − p2

a p2
b

, (4.6.4)

where in the last step we have reexpressed the result in the covariant form.

If a and b both refer to incoming particles, then the zero of `.pa + iε is in the lower half

plane and the zero of `.pb− iε is in the upper half plane. Therefore if we close the contour

in the upper half plane, we only pick up the residue at `.pb − iε = 0. The integral can be

evaluated similarly using the same frame as used above and yields the same result (4.6.4).

We can also determine the iε prescription for the lnω term by noting that in (4.6.1), the

factor

{(k − `).pa − iε}−1 = {−p0
aω + ~pa.~k − `.pa − iε}−1 (4.6.5)

preserves the iε prescription under addition of a positive (negative) imaginary part toω for

positive (negative) p0
a. Therefore the singularity in the complex ω plane must be located

in the lower (upper) half plane for positive (negative) p0
a. This shows that lnω in (4.6.4)

stands for ln(ω + iεηa) where ηa = 1 for outgoing particles and ηa = −1 for incoming

particles. The final result may be written as:

Jab =
1

4π
δηa,ηb ln{(ω + i ε ηa)L}

1√
(pa.pb)2 − p2

a p2
b

. (4.6.6)
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Next we consider the integral:

Kb ≡ 2
∫

d4`

(2π)4 Gr(k − `)
1

pb.` − iε
Gr(`) '

∫
d4`

(2π)4

1
k.` + iε

1
pb.` − iε

1

(`0 + iε)2 − ~̀2
,

(4.6.7)

with ω providing the upper cut-off to the integral and R−1 providing the lower cut-off. The

last expression is obtained by making the approximation |`µ| << ω since the logarithmic

contribution arises from this region. This integral has the same structure as (4.6.1) with

pa replaced by k and can be evaluated similarly. There are however a few differences:

1. Due to the changes in the cut-off, ln(ω L) factor in (4.6.4) will be replaced by

− ln(ωR).

2. The iε prescription for the integral can be determined by noting that in the expres-

sion for Gr(k − `) = {(k0 − `0 + iε)2 − (~k − ~̀)2}−1 in (4.6.7), if we add a positive

imaginary part to k0 = ω then it does not change the iε prescription for the poles,

but adding a negative imaginary part will change the iε prescription. Therefore the

factors of lnω will correspond to ln(ω + iε).

3. Since k represents an outgoing momentum, it follows from the arguments given

below (4.6.2) that in order for the integral in (4.6.7) to be non-vanishing, pb must

also represent an outgoing momentum.

4. Since k2 = 0, the denominator factor in (4.6.6) simplifies to

√
(k.pb)2 − k2 p2

b = −k.pb , (4.6.8)

with the minus sign arising from the fact that when k and pb both represent outgoing

momenta, k.pb is negative.

With these ingredients we can express the final result for Kb as:

Kb =
1

4π
δηb,1 ln{(ω + iε) R}

1
k.pb

. (4.6.9)
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Finally we shall analyze the integral

K′b ≡ 2
∫

d4`

(2π)4 Gr(k − `)
1

pb.` − iε
Gr(`)∗ '

∫
d4`

(2π)4

1
k.` + iε

1
pb.` − iε

1

(`0 − iε)2 − ~̀2
,

(4.6.10)

with ω providing the upper cut-off to the integral and R−1 providing the lower cut-off.

To evaluate this integral, note that (K′b)∗ is formally equal to Kb with (k, pb) replaced by

(−k,−pb). The latter result can be read out for those of Jab with incoming momenta. This

gives

K′b =
1

4π
δηb,1 ln{(ω + iε) R}

1
k.pb

. (4.6.11)

4.6.2 Contribution from real gravitons

In the analysis in §4.2.5, we had left out the contribution of the second term of (4.2.44) in

(4.2.41). This is given by:

T̂ µν
extra(k) = 16 i π2 G

∑
a,b

∫
d4`

(2π)4 Gr(k − `)δ(`2)
{
H(`0) − H(−`0)

}
1

pb.` − iε
1

pa.(k − `) − iε
F µν,αβ,ρσ(k, `)

{
pbαpbβ −

1
2

p2
bηαβ

} {
paρpaσ −

1
2

p2
aηρσ

}
,

(4.6.1)

where F µν,αβ,ρσ(k, `) has been defined in (4.2.42), and it is understood that the integration

over the momenta `µ is restricted to the range much below the cut-off L−1, so that we can

drop the exponential factors of e−ik.ra and ei`.(ra−rb) that regulate the ultraviolet divergence

in (4.2.41). We shall now analyze possible logarithmic contributions to this term from

different regions of integration.

First of all, since each term in F µν,αβ,ρσ(k, `) defined in (4.2.42) has a factor of (k − `), a

simple power counting shows that there are no logarithmic contributions from the re-

gion |kµ − `µ| << ω. Therefore we need to analyze contributions from the regions

R−1 << |`µ| << ω and ω << |`µ| << L−1. Power counting shows that in order to an-
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alyze logarithmic contribution from the region R−1 << |`µ| << ω, we can replace the

numerator by its ` → 0 limit. Therefore we need to analyze an integral of the form

E0 =

∫
d4`

(2π)4

1
pb.` − iε

1
pa.(k − `) − iε

Gr(k − `)δ(`2)
{
H(`0) − H(−`0)

}
. (4.6.2)

This can be reexpressed as:

E0 =
1

2πi

∫
d4`

(2π)4

1
pb.` − iε

1
pa.(k − `) − iε

Gr(k − `) {Gr(`)∗ −Gr(`)} . (4.6.3)

For |`µ| << ω the contribution reduces to one of the integrals defined in (4.6.7) or (4.6.10)

and can be evaluated using (4.6.9) or (4.6.11). The result vanishes due to the cancellation

between the contributions coming from the Gr(`) and Gr(`)∗ terms. Therefore there is no

logarithmic contribution from the |`µ| << ω region.

We now focus on the region |`µ| >> ω. Power counting shows that the integral has

linear divergence in this region. So we have to evaluate it carefully by keeping also the

subleading terms in this limit. First let us consider the subleading contribution arising

from the terms in F µν,αβ,ρσ(k, `) that are linear in `. These involve integrals of the form:

E1 =

∫
d4`

(2π)4

1
pb.` − iε

1
pa.(k − `) − iε

Gr(k − `)δ(`2)
{
H(`0) − H(−`0)

}
`κ . (4.6.4)

In the region |`µ| >> ω, we can approximate the integral as:

E1 ' −

∫
d4`

(2π)4

1
pb.` − iε

1
pa.` + iε

1
2k.` − iε`0 δ(`

2)
{
H(`0) − H(−`0)

}
`κ . (4.6.5)

Now, since δ(`2) factor puts the momentum ` on-shell, pa.` and pb.` never vanish in the

integration region of interest and therefore we can drop the iε factors.9 k.` can vanish

only when ` is parallel to k, but by examining the numerator factor (4.2.42) we find that

9The only exception is when pa and / or pb represents a massless particle and ` becomes parallel to
pa and / or pb producing a collinear divergence; but such divergences are known to cancel in gravitational
theories [144].



4.6 Appendices 165

there are always additional suppression factors in this limit that kill potential singularity

at k.` = 0. Therefore the iε`0 factor can be dropped from this term as well. For example

the presence of a pa.k or pa.` factor in the numerator will mean that the ratio pa.k/pa.` or

pa.`/pa.` becomes a independent in the limit when ` is parallel to k, and the result then

vanishes after summing over a using momentum conservation
∑

a pa = 0. A similar result

holds for terms proportional to pb.k or pb.`. Also, a combination of terms of the form

kµξν + ξνkµ − k.ξ ηµν will produce a term in the gravitational wave-form that is pure gauge

and therefore can be removed. Therefore we can remove such terms appearing at the level

of the integrand itself. Once the iε factors are removed from all the denominators, the

integrand of (4.6.5) becomes an odd function of ` and therefore vanishes after integration

over `.

We now turn to the contribution from terms in F µν,αβ,ρσ(k, `) that are quadratic in `. The

corresponding integrals take the form:

E2 =

∫
d4`

(2π)4

1
pb.` − iε

1
pa.(k − `) − iε

Gr(k − `) δ(`2)
{
H(`0) − H(−`0)

}
`κ`τ . (4.6.6)

This has potential linear divergence from the region |`µ| >> ω. Therefore we need to

expand the (pa.(k − `) − iε)−1 factor in powers of pa.k to the first subleading order:

1
pa.(k − `) − iε

= −
1

pa.` + iε
−

pa.k
(pa.` + iε)2 . (4.6.7)

We can argue as before that due to the presence of the δ(`2) factor we can drop all the iε

factors in the denominator. In this case the contribution from the last term in (4.6.7) to the

integral (4.6.6) vanishes by ` → −` symmetry. On the other hand, when we substitute the

first term on the right hand side of (4.6.7) into (4.6.6), the integrand is an even function of

`. In this case terms proportional to H(`0) and −H(−`0) give identical contributions, and

we get:

E2 ' −

∫
d4`

(2π)4

1
pb.` − iε

1
pa.` + iε

1
k.` − iε

δ(`2) H(`0) `κ`τ . (4.6.8)
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Note that we have kept the iε factors even though the presence of δ(`2) makes them irrel-

evant.

Now from (4.6.1) and (4.2.42) we see that the indices κ and τ must either be free indices

µ, ν, or be contracted with the index of pa or pb, or be contracted with each other. If they

are contracted with each other then we have a factor of `2 and the contribution vanishes

due to the δ(`2) factor. If any one of them is contracted with pb, then we have a factor

of pb.` in the numerator that kills the denominator factor of pb.` − iε. After summing

over b and using momentum conservation law
∑

b pb = 0, this contribution also vanishes.

A similar argument can be given for terms where either `κ or `τ is contracted with pa.

The only term that survives is where (κ, τ) take values (µ, ν). Using this we can bring the

contribution to (4.6.1) to the form

T̂ µν
extra =

G
π2

∫ {
d4` δ(`2)H(`0)

}  m+n∑
a,b=1

1
(pa.` − iε) (pb.` + iε)


{

(pa.pb)2 −
1
2

p2
a p2

b

}
`µ`ν

i(k.` − iε)
.

(4.6.9)

We shall now show that this contribution can be interpreted as the effect of soft emission

from the gravitational radiation produced during the scattering, and is therefore already

accounted for when we include in the sum over a in the soft factor the contribution from

the gravitational radiation produced during the scattering. For this we note that the flux

of radiation in a phase space volume δ(`2) H(`0) d4` carrying polarization εµν is given by

G
π2

{
d4` δ(`2)H(`0)

} m+n∑
a=1

pρa pσa
pa.` − iε


m+n∑

b=1

pκb pτb
pb.` + iε

 (εκτ)∗ερσ . (4.6.10)

This equation can be derived by using the relation between the leading soft factor (4.2.17)

and the flux of radiation [19]. In this case the first factor inside the curly bracket gives

the phase space volume, and the rest of the factors gives the flux of radiation produced

in the scattering. Since we shall be interested in only the total flux, we can sum over
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polarizations using the formula

∑
ε

(εκτ)∗ερσ =
1
2

(
ηκρητσ + ηκσητρ − ηκτηρσ

)
, (4.6.11)

yielding the standard result for the total flux of gravitational radiation given e.g. in

eq.(10.4.22) of [137]:

G
π2

{
d4` δ(`2)H(`0)

} m+n∑
a=1

pρa pσa
pa.` − iε


m+n∑

b=1

pκb pτb
pb.` + iε

 1
2

(
ηκρητσ + ηκσητρ − ηκτηρσ

)
.

(4.6.12)

The leading soft theorem (4.2.17), applied to this radiation flux, now shows that the contri-

bution to the T̂ µν due to the radiation is obtained by multiplying (4.6.12) by −i/(`.k − iε)

and integrating over `. This gives the net leading contribution to the soft factor due to

radiation to be

T̂ Rµν =
G
π2

∫ {
d4` δ(`2)H(`0)

}  m+n∑
a,b=1

1
(pa.` − iε) (pb.` + iε)


{

(pa.pb)2 −
1
2

p2
a p2

b

}
`µ`ν

i(k.` − iε)
.

(4.6.13)

This agrees with (4.6.9), showing that the extra contribution (4.6.1) is already accounted

for by including in the sum over a in the soft factor the contribution due to radiation.10

4.6.3 Position space analysis of T̂ Xµν

In §4.2, §4.3 we have carried out our analysis in momentum space. This has the advantage

that the expressions we obtain are similar to the ones that appear in the evaluation of

Feynman diagrams, and various general techniques developed for computing amplitudes

in quantum field theory may find applications here. Nevertheless it is instructive to see

how some of these computations can also be performed directly in position space. In

this appendix we shall show how to carry out the analysis of sections §4.2.3 and §4.2.4

10As in [19], this can also be expressed as angular integrals over appropriate functions of the radiative
gravitational field and its derivatives, but we shall not describe this here.
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directly in position space.

Our first task will be to compute the gravitational fields produced by the incoming and

outgoing particles during a scattering, and study their effect on the motion of the other

particles. At the leading order, the incoming and outgoing particle trajectories are given

by (4.2.11), or equivalently (4.2.15). Using retarded Green’s function in flat space-time,

we get the following expression for the gravitational field produced by the b-th particle

on the forward light-cone of the trajectory of the particle [16]:

e(b)
µν (x) = 2 G mb

vbµvbν√
(vb.x)2 + x2

, h(b)
µν = e(b)

µν −
1
2
ηµν e(b)ρ

ρ . (4.6.1)

The associated Christoffel symbol is given by, in the weak field approximation,

Γ(b)α
ρτ (x) = −2 G mb

1
{(vb.x)2 + x2}3/2

ηαµ
[{

vbµvbτ +
1
2
ηµτ

} {
xρ + vb.x vbρ

}
+

{
vbµvbρ +

1
2
ηµρ

}
{xτ + vb.x vbτ} −

{
vbρvbτ +

1
2
ηρτ

} {
xµ + vb.x vbµ

}]
. (4.6.2)

Since the field has support on the forward light-cone of the trajectory, it follows that

in sufficiently far future and far past of the scattering event, the outgoing particles are

affected by the gravitational field of the outgoing particles and the incoming particles are

affected by the gravitational field of the incoming particles.

Let Yµ
a denote the correction to the particle trajectory (4.2.15) due to the gravitational field

produced by the other particles:

Xµ
a (σ) = vµa σ + rµa + Yµ

a (σ) . (4.6.3)

We shall use the compact notation described in (4.2.12), and define ηa to be a number

that takes value 1 for outgoing particles (1 ≤ a ≤ n) and −1 for incoming particles
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(n + 1 ≤ a ≤ m + n). Then Yµ
a satisfies the differential equation and boundary conditions:

d2Yµ
a

dσ2 = −Γµνρ(va σ + ra) vµa vνa, Yµ
a → 0 as σ→ 0,

dYµ
a

dσ
→ 0 as σ→ ∞ , (4.6.4)

where

Γµνρ =

m+n∑
b=1

b,a,ηaηb=1

Γ(b)µ
νρ . (4.6.5)

The constraint ηaηb = 1 reflects that the outgoing particles are affected by the gravitational

field of the outgoing particles and the incoming particles are affected by the gravitational

field of the incoming particles. Using (4.6.2), (4.6.4) and (4.6.5) we get, forσ >> |ra| ∼ L:

d2Yα
a (σ)

dσ2 '
2 G
σ2

m+n∑
b=1

b,a,ηaηb=1

mb
1

{(vb.va)2 − 1}3/2

[
−

1
2

vαa +
1
2

vαb
{
2(vb.va)3 − 3vb.va

}]
. (4.6.6)

This gives

dYα
a (σ)
dσ

' −
2 G
σ

m+n∑
b=1

b,a,ηaηb=1

mb
1

{(vb.va)2 − 1}3/2

[
−

1
2

vαa +
1
2

vαb
{
2(vb.va)3 − 3vb.va

}]
.

(4.6.7)

Now in (4.2.28) we have the expression for T̂ X
µν to subleading order:

T̂ Xµν(k) =

m+n∑
a=1

ma

∫ ∞

0
dσ e−ik.(va σ+ra)

[
vµavνa − ik.Ya(σ) vµavνa +

dYµ
a

dσ
vνa + vµa

dYν
a

dσ

]
. (4.6.8)

As discussed below (4.2.17), the integration over σ is made well defined by replacing ω

by ω+ iε for outgoing particles and by ω− iε for incoming particles. We now manipulate

the second term by writing

e−ik.(va σ+ra) =
i

k.va

d
dσ

e−ik.(va σ+ra) (4.6.9)

and integrating over σ by parts. The boundary term at infinity vanishes due to the replace-

ment of ω by ω + iεηa, while the boundary term at σ = 0 gives a finite contribution in the



170 Classical soft theorem in four spacetime dimensions

ω→ 0 limit and is not of interest to us. With this (4.6.8) can be expressed as

T̂ Xµν(k) =

m+n∑
a=1

ma

∫ ∞

0
dσ e−ik.(va σ+ra)

[
vµavνa −

1
k.va

k.
dYa

dσ
vµavνa +

dYµ
a

dσ
vνa + vµa

dYν
a

dσ

]
.

(4.6.10)

After integration over σ the first term gives the leading term. In the other terms we can

substitute the expression (4.6.7) for dYa/dσ. Since the integrand is proportional to 1/σ

in the range L << σ << ω−1, we get contribution proportional to ln((ω + iεηa)−1/L).

Therefore, with the help of (4.6.7), the logarithmic correction to T̂ X, given by the last

three terms in (4.6.10), takes the form:

∆T̂ Xµν(k) = 2 G
m+n∑
a=1

ma ln{L(ω + iεηa)}
m+n∑
b=1

b,a,ηaηb=1

mb
1

{(vb.va)2 − 1}3/2[
−

vµavνa
k.va

kα

{
−

1
2

vαa +
1
2

vαb
{
2(vb.va)3 − 3vb.va

}}
+

{
−

1
2

vµa +
1
2

vµb
{
2(vb.va)3 − 3vb.va

}}
vνa

+

{
−

1
2

vνa +
1
2

vνb
{
2(vb.va)3 − 3vb.va

}}
vµa

]
. (4.6.11)

After using the relations pa = mava and some simplification we get:

∆T̂ Xµν(k) = 2 G
m+n∑
a=1

ln{L(ω + iεηa)}
m+n∑
b=1

b,a,ηaηb=1

1
{(pa.pb)2 − p2

a p2
b}

3/2

×

[
k.pb

k.pa
pµa pνa pa.pb

{
3
2

p2
a p2

b − (pa.pb)2
}

+
1
2

pµa pνa p2
a (p2

b)2 − {pµa pνb + pνa pµb} pa.pb

{
3
2

p2
a p2

b − (pa.pb)2
} ]

.(4.6.12)

This is in perfect agreement with (4.2.39).



5 Outlook and open questions

In this thesis, we tried to develop a comprehensive understanding of soft photon and

soft graviton theorem from the study of quantum S-matrix as well as from classical elec-

tromagnetic and gravitational waveform analysis. We started the thesis by describing

a general prescription for deriving soft photon/graviton theorem for a generic theory of

QED/quantum gravity. Then we show that some of the assumptions of this general pre-

scription break down in D=4. Also, the S-matrix is IR divergent in four spacetime dimen-

sions. Due to all these subtleties, before deriving the soft factor in D=4 from the study

of S-matrix, we tried to develop an understanding of the soft factor for the classical scat-

tering process. Studying the classical limit of soft photon and soft graviton theorem in

generic spacetime dimensions, we are able to relate long-wavelength electromagnetic and

gravitational waveform to the soft factors derived from S-matrix. Assuming the validity

of these relations in D=4 and studying asymptotic trajectories of scattered particles, we

conjectured the form of subleading soft factors in four spacetime dimensions. Then by

direct analysis of one loop S-matrix by some specific way of removing IR divergences,

we reproduced the classical soft factors conjectured earlier with some additional quantum

terms. Finally, we have given an independent derivation of the long-wavelength elec-

tromagnetic and gravitational waveform for a classical scattering process in D=4, which

predicts some new kind of electromagnetic and gravitational tail memory. We also gave

some numerical estimation of gravitational tail memory following from the soft graviton

theorem which could be tested in the near future. Here in this final chapter, our main

intention would be to point out some open directions which one needs to pursue to get a

171
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complete understanding of this subject. We describe these future directions in the follow-

ing three sections.

5.1 Soft theorem from S-matrix analysis

• We can ask the question whether Sen’s covariantization procedure can be general-

izable in non-abelian gauge field background. It seems that the generalization is

pretty straight forward like the U(1) gauge field case and we can derive soft gluon

theorem up to subleading order for one external soft gluon [9,64,65,72,73,145] in

generic spacetime dimensions (for loop amplitude in D > 4). But if we try to derive

multiple soft gluon theorem, it turns out that the ingredients one has to prove double

soft gluon theorem [13] is not enough for proving multiple soft gluon theorem even

at leading order in contrast with the proof of multiple soft graviton theorem given

in §1.4.2. The key difference is that three gluon vertex is linear in gluon momenta

and four gluon vertex is independent of gluon momenta while three, four,... gravi-

ton vertices are quadratic in graviton momenta. As an example, all the diagrams

in Fig.5.1 contribute to the leading soft gluon theorem for four external gluons1. It

seems that for large number of external gluons the diagrams contributing to leading

soft gluon theorem is exponentially large and we don’t have a proper understanding

of how to analyze compactly and get a closed-form expression. But possibly in the

classical limit all the contact terms appearing from three and four gluon interaction

vertices drop out and we can make sense of classical soft gluon theorem [146].

1If we try to prove multiple soft gluon theorem in pure YM theory with external finite energy particles
are also gluons, then colour ordering would be important. For a particular colour ordering, the appearence
of contact terms depends on whether the soft gluons are in adjacent legs or non-adjacent legs.
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Figure 5.1: Possible set of diagrams contributing to leading soft gluon theorem for four
external gluons. There are also diagrams where different gluons connected to different
finite energy particle legs. In the diagrams, thick lines represent finite energy particles
and thin lines represent soft gluons.

• Can we use the Grammer-Yennie decomposition in QCD [147] for studying soft

gluon theorem for loop amplitudes in D=4, following Chapter-3 [16]? Here our

naive understanding is that at one loop, the leading soft gluon factor will be loop

corrected and produce O(lnω/ω) term at leading order. On the other hand, the soft

graviton theorem receives loop correction in subleading order and produce O(lnω)

term [16]. With this understanding, it will be interesting to test the double copy

relation in the soft limit at one-loop level [148]. Also performing an analogous

classical analysis for Yang-Mills theory, as we performed for gravity [22], we can

test the classical double copy relation from the classical soft expansion perspective

in four spacetime dimensions2.

2At D > 4 this has been tested in [146].
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• In §4.4 we have conjectured new gravitational tail memory, where the gravitational

waveform goes like u−2 ln u at large retarded time u → ±∞. From the S-matrix

analysis using Grammer-Yennie treatment, we expect the corresponding soft factor

can be derived performing two loop calculations and extracting the coefficient of

ω(lnω)2. Some preliminary analysis suggests that in the regions where two loop

integrals contribute to ω(lnω)2, the integrals break into a product of two one loop

integrals. So generalization of Chapter-3 at two loop order may be enough to extract

this part of sub-subleading soft graviton factor.

• As we already explained, in four spacetime dimensions the S-matrix turns out to

be IR divergent when massless particles run in the loop. Instead of making each of

the S-matrices IR finite in the soft theorem analysis, we remove the same divergent

factors from both the S-matrices and then extract the soft factors [16]. But we can

ask whether we can study soft theorem in terms of IR finite S-matrices. There

are some constructions of IR finite S-matrices [149–151], which could be helpful

along this directions. For the Faddeev-Kulish kind of S-matrices without any cutoff,

the leading soft theorem vanishes but from the physical point of view we know

the existence of leading memory. So it is not yet clear how this kind of IR finite

S-matrices can help to address the problem of deriving soft theorem from loop

amplitudes.

5.2 Classical limit of soft theorem in D=4

Here we try to point out one problem in our understanding of the classical limit of the

soft theorem in four spacetime dimensions. For simplicity, we are considering subleading

multiple soft photon theorem given in eq.(3.5.23). In the classical limit, the multiple soft
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photon factor for M number of external soft photons takes form,

M∏
r=1

{
1
ω

Ŝ (0)(εr, nr) + i lnω Ŝ (ln)
cl (εr, nr) + lnω Ŝ (ln)

qm (εr, nr)
}

(5.2.1)

where

Ŝ (0)(εr, nr) =
∑

a

εr,µpµa
pa · nr

qa

Ŝ (ln)
cl (εr, nr) =

∑
a

qa εr,µnrρ
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ηaηb=1

qaqb

4π
m2

am2
b {p
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b pµa − pµb pρa}
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3/2

Ŝ (ln)
qm (εr, nr) = −

1
16π2

∑
a

qa
εr,µnrν

pa · nr

{
pµa

∂

∂paν
− pνa

∂

∂paµ

}
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b,a

 {2 qaqb pa.pb}√
(pa.pb)2 − p2

a p2
b

ln


pa.pb +

√
(pa.pb)2 − p2

a p2
b

pa.pb −

√
(pa.pb)2 − p2

a p2
b


(5.2.2)

Here kµr ≡ ωnµr and all the soft factors given above are real for real polarisation of soft

photons. Ŝ (0) represents the leading soft factor, Ŝ (ln)
cl represents the classical subleading

soft factor and Ŝ (ln)
qm represents the quantum subleading soft factor after stripping out the

ω dependence. Now if following §2.1, we compute energy for a large number of photon

radiation from soft theorem and compare it with the energy computed from the electro-

magnetic waveform, we get:

{
εµÃµ(ω, ~x)

} {
ενÃν(−ω, ~x)

}
=

(
1

4πR

)2 ∣∣∣∣∣∣ 1
ω

Ŝ (0)(ε, n) + i lnω Ŝ (ln)
cl (ε, n) + lnω Ŝ (ln)

qm (ε, n)

∣∣∣∣∣∣2
(5.2.3)

On the other hand by direct classical calculations of electromagnetic waveform in §4.3.1

we get,

εµÃµ(ω, ~x) =
1

4πR
eiωR

[
1
ω

Ŝ (0)(ε, n) + i lnω Ŝ (ln)
cl (ε, n)

]
(5.2.4)
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where R ≡ n̂ · ~x and kµ = ω(1, n̂). Now only when Ŝ (ln)
qm (ε, n) = 0, the equations (5.2.3) and

(5.2.4) agrees. We have verified that in the limit of low momentum transfer in a 2 → 2

scattering Ŝ (ln)
qm (ε, n) is suppressed with respect to Ŝ (ln)

cl (ε, n). So we can make sense of the

equivalence of this two equations for these kinds of scattering process. But if we consider

a hard scattering process where momentum transfer is large, then eq.(5.2.3) and eq.(5.2.4)

are not consistent with each other. But it may happen that the assumptions made in §2.1

break down for hard scattering process. Till now we don’t have a better understanding to

resolve this discrepency.

5.3 Extending the derivation of gravitational tail mem-

ory in higher order

In §4.4 we have conjectured sub-subleading gravitational tail memory, where the gravita-

tional waveform goes like u−2 ln u at large retarded time u→ ±∞. In principle we can ver-

ify this by calculating the corrected trajectory of the scattered objects to one higher order

and finding the corresponding gravitational waveform at O(G3) by extending the analysis

of Chapter-4. If the objects involved in the scattering have intrinsic spin then the effect

of their spins will appear at O(u−2) tail memory. It would be interesting to work out the

spin-dependent memory3. We can also ask whether we can generalize our prescription of

deriving classical soft theorem to arbitrary (sub)n-leading order to extract O(u−n(ln u)n−1)

gravitational memory. The brute-force strategy could be the following [138]:

Suppose that the asymptotic trajectory of a’th particle is given by,

Xµ
a (σ) = rµa + vµaσ + Yµ

a (σ) (5.3.5)

3Though the full O(u−2) tail memory is a little ambiguous but possibly we can compute the spin-
dependent part unambiguously.



5.3 Extending the derivation of gravitational tail memory in higher order 177

with correction to straight line trajectory expanded as:

Yµ
a (σ) = ∆(sub)0Yµ

a (σ) + ∆(sub)Yµ
a (σ) + ∆(sub)2Yµ

a (σ) + · · · (5.3.6)

Then with this correction of trajectory the Fourier transform of the total (matter + gravi-

tational) energy-momentum tensor can be expanded as:

T̂µν(k) = ∆(sub)0T̂µν(k) + ∆(sub)T̂µν(k) + ∆(sub)2T̂µν(k) + · · · (5.3.7)

And corresponding trace reversed metric fluctuation expansion:

eµν(x) = ∆(sub)0eµν(x) + ∆(sub)eµν(x) + ∆(sub)2eµν(x) + · · · (5.3.8)

where

∆(sub)r eµν(x) = − 8πG
∫

d4`

(2π)4 Gr(`) ei`·x ∆(sub)r T̂µν(`) (5.3.9)

for r = 0, 1, 2, · · · . Now to derive ∆(sub)r Yµ
a (σ) we need to solve geodesic equation in the

background metric
r−1∑
s=0
∆(sub)seµν. Then knowing the trajectory of the particles upto (sub)r

order and background metric upto (sub)r−1 order we can compute ∆(sub)r T̂µν(k). Finally

substituting in eq.(5.3.9) and performing the integration, in principle we can evaluate

∆(sub)r eµν(x) at large distance from scattering center and large retarded time.

In §4.4 and §4.5 we have seen that for a scattering process with at most one massive

particle in the final state (e.g. black hole merger) the subleading and sub-subleading

gravitational tail memory vanishes. It would be a useful prediction (if true) if we can show

that all order gravitational tail memory vanishes for such kinds of scattering processes.
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Soft theorem is the infrared property of scattering amplitude with low energy photons and

gravitons in external states. In a quantum theory of gravity, soft graviton theorem gives

an amplitude with a set of finite energy external particles (hard particles) and one or more

low energy external gravitons (soft gravitons), in terms of the amplitude without the low

energy gravitons [1–18]. However when we take the classical limit, there is a different

manifestation of the same theorem – it determines the low frequency component of the

gravitational wave-form produced during a scattering process in terms of the momenta

and spin of the incoming and outgoing objects, without any reference to the interactions

responsible for the scattering [19–22], which is also related to the classical gravitational

memory [23–33]. Recently people have interpreted soft graviton theorem as a Ward iden-

tity of the symmetry of asymptotically flat spacetime [6,30,34–42]. The inter-connection

between these three subjects made the infrared structure of gravitational physics much

more interesting. An analogous inter-connection has been established between soft pho-

ton theorem [1–4, 43–49], electromagnetic memory [50–53] and Ward identity for large

gauge symmetry [54–63].

In last few years a large group of people have derived soft theorem from direct analysis

of amplitudes in field theory and string theory [5, 7–9, 11–15, 64–105]. There are general

arguments establishing their validity in any space-time dimensions in any theory as long

as one maintains the relevant gauge symmetries – general coordinate invariance for soft

graviton theorem and U(1) gauge invariance for soft photon theorem. What makes it

9
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a theorem is that the soft factors are universal (independent of the theory) up to some

specific order of expansion in soft momenta. For example, soft photon theorem is only

universal in leading order i.e. the leading soft factor only depends on the charges and

momenta of external finite energy particles and no other information of the theory. At

subleading order soft photon factor has a universal part along with a theory dependent

piece due to non-minimal coupling of field strength with finite energy particles [17]. Soft

graviton theorem is universal up to subleading order and non-universal terms appear at

sub-subleading order due to non-minimal coupling of finite energy particles with Riemann

tensor [11].

Very recently Sen has developed a covariantization prescription [101] for deriving single

soft graviton theorem for a generic theory of quantum gravity which is valid to all orders

of perturbation theory for non-compact spacetime dimensions greater than four and valid

in tree level for four-dimensional spacetime. The basic idea is that we have to start with

a general coordinate invariant one particle irreducible(1PI) effective action of a generic

theory of quantum gravity(assumed to be UV complete and background independent).

Now the full quantum corrected S-matrix of any scattering process can be obtained just

by computing tree-level diagrams using Feynman rules derived from the 1PI effective

action. To get the Feynman rules associated with the vertices involving soft gravitons

we need to covariantize the 1PI effective action with respect to soft graviton background

and include possible all non-minimal couplings associated with soft graviton with other

particles.

In [15] we derived subleading multiple soft graviton theorem for a generic theory of quan-

tum gravity generalizing Sen’s covariantization prescription when all the external gravi-

tons are soft at the same rate (simultaneous limit). Here it turns out that the ingredients

needed to prove double soft graviton theorem is enough for deriving multiple soft graviton

theorem up to subleading order though the derivation is much more involved. Multiple

soft factors can be divided into two parts. For M number of soft graviton scattering the
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first part can be written as a multiplication of (M − 1) number of leading soft factor and

one subleading soft factor which are fixed from single soft graviton theorem. The sec-

ond part we call contact term which comes from the diagrams involving three graviton

self-interaction and two gravitons two finite energy particles interaction vertices and the

structure of this part is fixed from double soft graviton theorem. In [106], using Cachazo-

He-Yuan (CHY) prescription [107] we derived multiple soft graviton theorem for Einstein

gravity at tree level which agrees with our more general result of [15].

In [17] we generalized Sen’s covariantization prescription in a background involving soft

photon and soft graviton simultaneously and derived multiple soft photon-graviton the-

orem up to subleading order. Here we fixed the structure of non-universal term in the

subleading order of single soft photon theorem for a theory with photon field coupled

to any arbitrary field with arbitrary spin in all possible minimal and non-minimal ways.

Considering some specific kind of non-minimal coupling terms appeared in effective field

theory literature we determined the form of the non-universal piece of subleading soft

factor and compared it with earlier results. The interesting feature in our multiple soft

photon-graviton theorem result is that once we fix the non-universal term in the single

soft photon theorem it determines all the terms in multiple soft photon-graviton theorem

result and no other new kind of non-universal term appears. Here the contact term re-

ceives contribution from the process of soft graviton splitting into two soft photons and

this contribution turns out to be spacetime dimension dependent.

In four spacetime dimensions, the S-matrix of a theory involving massless particles is

IR divergent. So studying soft photon or graviton theorem in terms of IR divergent S-

matrix is ambiguous [66]. But since soft theorem relates two S-matrices, we don’t need

to make individual S-matrices IR-finite but factored out the same IR divergent pieces from

both the S-matrices and cancel it from both sides of soft theorem expression. In the case

of spinor QED, Grammer and Yennie proposed a prescription for factoring out the IR-
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divergent part of the S-matrix by dividing the photon propagator into two pieces called

G-photon and K-photon propagators [108]. The division is made in such a way that any

loop diagram computed with K-photon propagator contains the full IR-divergent part and

the same diagram computed with G-photon propagator is IR-finite.

In [16] we used Grammer-Yennie treatment to derive loop corrected subleading soft pho-

ton and graviton theorem. Evaluating loop amplitudes we found that soft factor in sub-

leading order is logarithmic in the energy of external soft photon/graviton. This logarith-

mic soft factor is universal and independent of the spin of external finite energy parti-

cles and up to subleading order in soft momenta, the logarithmic term is one loop exact.

In [16] we divided the logarithmic terms of soft photon theorem into two parts according

to whether the contribution comes from massive particle propagator or massless photon

propagator while evaluating loop integrals. The first part is called classical logarithmic

term which takes care of the electromagnetic radiation coming out from a scattering pro-

cess due to early and late time acceleration of charged particles as an effect of long-range

electromagnetic force produced by other charged particles. We have also verified this

from independent classical calculations. The other part is called quantum logarithmic

term, interpreted as the effect of back-reaction due to soft radiation energy loss on the

classical trajectories of the charged particles. This quantum term is suppressed relative to

the classical term when the total energy loss in electromagnetic radiation is small.

Generalizing Grammer-Yennie technique to perturbative gravity in [16] we derived the

logarithmic terms in subleading soft graviton theorem for loop amplitudes. Here one part

of the classical logarithmic term represents gravitational radiation for deceleration or ac-

celeration of hard particles due to long-range gravitational attraction by other particles at

late time. Another part of the classical logarithmic term represents the backscattering ef-

fect of the external soft graviton with the background geometry produced by finite energy

particles. Here the backscattering term in loop amplitude arises from the extra infrared

divergent part in (N + 1) particle amplitude relative to N particle amplitude. This is eval-
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uated using IR-cutoff R given by the distance of scattering center from detector position.

Here we also have a quantum part of logarithmic soft factor interpreted as the effect of

backreaction on the trajectory of finite energy particles due to soft gravitational radiation

energy loss.

In [19] Laddha and Sen extracted large wavelength gravitational waveform studying the

classical limit of soft graviton theorem. Here classical limit means a large number of

gravitons should come out from a scattering process so that the coherent state of a large

number of gravitons can be declared as gravity wave. This requires that the masses of the

scattered objects have to be large in Planck mass unit. Here the soft limit means that the

energy loss due to gravitational radiation has to be small compared to the energy of the

objects that participated in the scattering process. This leads to probe scatterer limit or

large impact parameter limit for a two-body scattering and the wavelength of gravitational

radiation has to be large compared to the characteristic length scale of scattering.

In four spacetime dimensions performing Fourier transformation of the soft factor in soft

energy variable one extracts gravitational memory. The leading soft graviton factor pre-

dicts a DC Christodoulou memory effect corresponding to the permanent displacement

between the mirrors of a gravitational wave detector. Our logarithmic soft factor predicts

a tail memory [22, 33], which tells that if we wait for a long time after the peak of grav-

itational waveform passes, we will not only get a permanent shift but it will have larger

shift initially and with increasing time the mirrors will settle to their permanent shifted

position predicted by Christodoulou. For an asymmetric explosion of type-II supernova

(1987A), we have estimated the order of magnitude of displacement between the mirrors

divided by the initial distance between the mirrors, which turns out in the order of 10−22

– which is in the edge of LIGO resolution but expected to be observed in eLISA. We also

determined order of magnitude of strain in GW detector for bullet cluster scattering and

hyper velocity star production [22].

Recently in [22] we have given a general proof of the relationship between long-wavelength
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gravitational waveform and the soft graviton factor [16] in four spacetime dimensions

analogous to the result proved in higher spacetime dimensions [21]. To show the equiv-

alence, we have to iteratively solve liniarized Einstein equation to derive background

metric and geodesic equation to get asymptotic trajectory. At this stage, we observed a

mapping between classical waveform calculation with the one-loop scattering matrix cal-

culations and we expect that our prescription is quite simple to generalize for computing

higher order memory effects. Emboldened by the success of soft theorem in correctly

predicting the tail of the gravitational wave-form at the subleading order, we conjectured

a new tail memory at the sub-subleading order [22].

The organization of the thesis is as followed,

• In Chapter 1 we describe a general prescription of deriving soft photon and soft

graviton theorem for a generic theory of quantum electrodynamics and quantum

gravity. Using this prescription we derive single soft photon and soft graviton theo-

rem up to subleading order and will state the result of sub-subleading soft graviton

theorem and subleading multiple soft graviton theorem. Then we show how some

of the assumptions in this prescription break down in four spacetime dimensions.

• In Chapter 2 we explain how to take the classical limit of multiple soft photon and

soft graviton theorem. From the classical limit of the soft theorem, we predict long

wavelength electromagnetic and gravitational waveform. From the understanding

of soft theorem in D>4 and asymptotic trajectory of particles in D=4 here we give

the classical subleading soft factor in D=4 which is logarithmic in soft energy.

• We devote Chapter 3 for the derivation of subleading soft photon and soft graviton

theorem for loop amplitudes in four spacetime dimensions. Then we briefly sketch

the strategy for deriving subleading multiple soft photon theorem in D=4.

• Chapter 4 is solely devoted for deriving low frequency electromagnetic and gravita-

tional waveform for a general classical scattering process. Using this we determine
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the electromagnetic and gravitational wave-form emitted during a scattering pro-

cess at late and early retarded time, in terms of the charges and four momenta of

the ingoing and outgoing objects. As an amusement here we have performed some

numerical estimation of gravitational memory for various astrophysical scattering

processes.

• In chapter 5 we will conclude the thesis with some future directions.
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