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Abstract

Nonclassicality and entanglement are two important features exhibited by continuous
variable quantum states. This thesis is centered on the connection between nonclassical-
ity and entanglement in the context of continuous variable quantum systems. Evidently,
nonclassicality is a prerequisite for entanglement. The connection between the two has
been well explored in the context of Gaussian states, namely in the context of squeezing
nonclassicality. We study the connection in the context of other well known nonclassicali-
ties, namely nonclassical photon number statistics and antibunching. By definition, every
classical state is a convex sum of coherent states, and hence is separable. Nonclassicality
does not imply entanglement, but every entangled state is nonclassical. Negativity under
Partial Transpose (NPT) implies nonclassicality, but Positivity under Partial Transpose
(PPT) by itself does not indicate that the state is classical or separable. A PPT state
can be separable or entangled, can be classical or nonclassical.

Chapter 1 is primarily introductory in nature, bringing forth the various concepts
involved in the theory of entanglement, both in the finite dimensional situation as well as
in the infinite dimensional case of continuous variable systems. It is expository in nature
and collects some of the techniques useful later in the thesis.

In Chapter 2 we bring forth a relationship between nonclassicality and entanglement.
The problem of studying the interrelationship between nonclassicality and entanglement
is tied to the fact that there is no simple test which can conclude in a definite manner if a
given generic mixed state is classical or not, and there is no single test which can answer
with certainty if a mixed state is entangled or separable. However, in very special or
specific cases one can make definitive statements. For states of a single mode of radiation
which are diagonal in the Fock basis, the issue of classicality /nonclassicality has been
settled. This is possible thanks to the result of the classical Stieltjes moment problem
[170]. We bring out the possibility of using such nonclassical (non-Gaussian) resources to

generate useful entanglement. With a product state of the form ﬁi(gb) = p9 ® 10)5(0| as
of a beamsplitter is shown to be NPT whenever

(ab)
out

the photon number distribution (PND) statistics {p(n,)} associated with the mixed state

p\@ of the input a-mode is antibunched or otherwise nonclassical, i.e., if {p(n,)} fails to

input, the output two-mode state p,

respect any one of an infinite sequence of necessary and sufficient classicality conditions.
(ab)

out 11 this kind of situations.

(ab) (ab)

out - out

We establish the equivalence of classicality and PPT of p

Thus NPT is a necessary and sufficient test of entanglement of p Furthermore p_ is
shown to be distillable if 5(*) is antibunched or violates any one of an infinite sequence of
three term classicality conditions. We also discuss the issue of distillability arising from

an intrinsically higher order violation of classicality. This is the only second instance in



continuous variable entanglement theory where NPT has turned out to be a necessary
and sufficient criterion for entanglement, the earlier instance being that of two-mode
Gaussian states. A preliminary version of these results is found in [194]. We attempt to
estimate the entanglement of formation (EOF) of entangled states generated in the above
manner. We evaluate both upper and lower bounds on EOF for very special examples.
Our principal tool in this scheme is the fact that average entanglement does not increase
under local operations and classical communications (LOCC). The general idea used has
been to project out the state into 2 x 2 subspaces, and then use Wootter’s formula for
the entanglement of formation of a two-qubit system to estimate the entanglement; such
a process is clearly an LOCC. However, a drawback with such a scheme is the fact that
one cannot estimate more than one ebit of entanglement even from a highly entangled
state. For the simple example of an entangled state generated by passing through a 50:50
beamsplitter an arbitrary mixture of the ground state and n*® Fock state on Alice’s side,
with Bob’s side in the ground state, we give a distillation procedure whereby we distill
more entanglement than given by lower bound for EOF in [76]. We extend these ideas to
entangled states generated from PND’s which correspond to a very special superposition
of coherent states, and we demonstrate distillation procedures which distill well above
one ebit of entanglement. We also indicate the possibility of using the Terhal-Vollbrect
formula [69,76] in estimating entanglement, in a more general context, using a truncation
scheme.

The study undertaken in Chapter 2 is continued in Chapter 3 from a more general
perspective. We describe a single test which, if successful, is able to simultaneously es-
tablish both the nonclassicality and NPT entanglement of a given two-mode state. We
extend the notion of antibunching to two-mode systems through the Mandel matrix con-
struct, and show that nonclassicality at this level naturally separates into two distinct
kinds, Type I and Type II, depending on whether the sub Poissonian statistics is visible
or not at a single-mode level. The “Type” of a nonclassical state is invariant under the
action of every U(2) beamsplitter. A state could go from separable to entangled under
beamsplitter action, but its Type is invariant. Type II states are special in the sense that
one may pass such states through any U(2) beamsplitter, even then can never detect
antibunching locally i.e., in a single-mode. We construct examples of both types. We
introduce a beamsplitter invariant definition for the Mandel parameter, extended to the
case of two-mode systems through the nonpositivity of the Mandel matrix. That we are
able to do so is because the Mandel matrix transforms covariantly under beamsplitter
action. However, we find that the two-mode Mandel parameter can take values less than
—1, as compared to the Mandel parameter in the single-mode case. This feature seems

to expose the limitation of the beamsplitter as an entangling device, as there are en-



tangled states that the beamsplitter cannot produce. The two-mode Mandel parameter
is relevant only within the Type under consideration. We explore the production of bi-
partite entanglement from separable nonclassical states by beamsplitters, we trace back
the entanglement to the nonclassicality involved, and we illustrate this aspect through
several examples. We demonstrate distillable entanglement in this context. We extend
these ideas to the case of generating tripartite entanglement through generalised beam-
splitters, and examine their detection through simple moment-based tests which trace
back the entanglement to a particular type of nonclassicality. We also demonstrate the
possibility of generating genuine tripartite entanglement from two-mode Mandel type
nonclassicality.

In Chapter 4 the EOF of an arbitrary two-mode Gaussian state is computed. In this
context, we bring out the intimate connection between the two-mode squeeze parameter
as a measure of the strength of nonclassicality and alternatively as a measure of entan-
glement. Apart from a conjecture, our analysis rests on two main ingredients. One of
them is a four-parameter canonical form we develop for the covariance matrix, one of
these parameters, the squeeze parameter, acting as a measure of EOF. The other is the
generalisation of the EPR correlation used in the work of Giedke et al [70] to noncom-
muting variables. The conjecture is in respect of an extremal property of this correlation
[327].

In Chapter 5 we study the compatibility conditions between the (global) spectrum
and the spectra of the individual modes of a general n-mode Gaussian state. We present
an elementary proof for the compatibility conditions, making optimal use of beamsplitter
and two-mode squeezing transformations. An unexpected bye-product of our elementary
approach is the result that every two-mode Gaussian state is uniquely determined, modulo
local transformations, by its global spectrum and local spectra, a property shared not
even by a pair of qubits [18].

In Chapter 6 we obtain the operator-sum representation of all the quantum limited
single-mode Bosonic Gaussian channels. The analysis lends insight into how certain
unphysical processes such as the transposition map, or scaling of the Weyl-ordered char-
acteristic function, or a combination of both can be rendered physical through a thresh-
old Gaussian noise. The motive here is to bring out this aspect in a transparent manner
through the operator-sum representation. We have that the scaling of the diagonal weight
function and scaling of the Husimi @ function correspond to physical processes. As will
be seen in the following Chapter, the fact that scaling of the () function is physical is
of critical relevance when one defines a measure of non-Gaussianity for quantum states.
This Chapter further explores the notion of nonclassicality breaking and the notion of

entanglement breaking in light of the operator-sum representation.



Having brought out the connection between nonclassicality and entanglement, and
having exposed nonclassicality as a resource, it is useful to understand this resource as
being Gaussian and non-Gaussian. Chapters 2 and 3 primarily dealt with non-Gaussian
states and the nonclassicality associated with them, but Chapters 4, 5, and 6, dealt with
Gaussian states and issues regarding them. In Chapter 7 we bring out the essential
difference between these two very different resources through the consideration of cumu-
lants. Since the higher order cumulants defined through an s-ordered quasi-probability is
independant of the ordering parameter s and hence is intrinsic to the state, every non van-
ishing cumulant of order greater than two serves as an indicator of non-Gaussianity. We
introduce a new measure for non-Gaussianity based on the negentropy of the Q) function.
We show that our measure satisfies some of the requirements that a good non-Gaussianity
measure should satisfy, especially the invariance of the measure under uniform scaling
of the ) function. The scale invariance of the measure is demanded by the fact that
scaling of the @) function is a valid physical transformation as shown in Chapter 6. The
measure is well supported by the fact that the Marcinkiewicz theorem holds for phase
space distributions too [358]. We analytically evaluate this non-Gaussianity measure for
mixed entangled states generated by passing the photon-added thermal state through a
U(2) beamsplitter, the ancilla being in the ground state. We find for these examples
that the non-Gaussianity as evaluated by our measure, is independent of temperature,
which is a direct manifestation of scale invariance. That we are able to evaluate the non-
Gaussianity for these mixed entangled states is because of the invariance of the measure
under passive transformations. We also evaluate the measure for the phase averaged co-
herent state. In a recent work [361, 362|, Genoni et al introduced distance based measures
of non-Gaussianity of a state through the Hilbert-Schmidt distance and relative entropy
defined at the density operator level. We compare their measure with ours for the simple
example of the photon-added thermal state [216].

Finally we conclude with some remarks and discuss possible future directions of re-
search, particularly in the context of the use of non-Gaussian resources in quantum

information processing.
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Basic [deas

1.1 Introduction

The state of a quantum mechanical system S is described by a density operator p acting
on a Hilbert space H. The system in consideration specifies the dimension of the Hilbert

space. The operator p, satisfies the following three defining properties :
p=pt, Trp=1, p>0. (1.1)

A pure state is described by a normalised (unit) vector |¥) in the Hilbert space H, and

the density operator corresponding to |¥) is given by
p= ). (1.2)

Clearly, distinct vectors in the Hilbert space do not correspond to distinct states. All
unit vectors in ‘H which differ from one another by phase factors, represent one and the
same state. In other words, states are represented by an equivalence class of unit vectors
of the Hilbert space. It is clear that the state p in Eq. (1.2), satisfies the three defining
requirements in Eq. (1.1).

The most general state of a quantum mechanical system S is described by a ‘mixed’

state p, which is a convex combination of pure states, i.e.,
p=> pelUR)(Tkl, pe >0, > pr=1 (1.3)
k k

The quantum state space thus forms a convex set in which pure states correspond to

the case when all but one of the pg’s are zero. The pure states satisfy the additional
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requirement

~9 ~
p°=p, (1.4)
and correspond to the extremal points of the convex state space. They cannot be realised
as nontrivial convex combinations of other states. While Trp? = 1 for pure states, mixed

states satisfy
Trp® < 1, (1.5)

and correspond to non extremal points of the convex state space.

The probabilities pi’s and the ensemble realisation in Eq. (1.3) are in general asso-
ciated with a preparation procedure. The nontriviality of the ensemble realisation arises
from the fact that the |¥g)’s need not be orthogonal, or even linearly independent, and
that the set of ensembles realising a given mixed state p is a huge family [1]. A prepara-
tion procedure yields an ensemble realisation for p, but given a p it is impossible to tell
which preparation procedure it was derived from.

The natural objects of interest are the expectation values of observables. Observables

in quantum theory are represented by hermitian operators Q,
Q=3 Xl®)(®i| =) AP, D P=1, (1.6)

and P;’s are projection operators obeying P;P; = 6;;P;. The {\;} are interpreted as
the outcome or eigenvalue of an experiment corresponding to the observable Q, and
{|®;)} as the corresponding eigenstates. The eigenvalues \; are real, but can be negative.
The expectation value of an observable Q) with respect to a pure state |U) is given by

Q) = (U|Q|W). In the case of a mixed state p, the expectation value is given by

(Q) = Tr(2p) = > pr{TrlQTy). (1.7)
k

The expectation value <Q> is interpreted as the average value of the observable €2 over
repeated trials of the experiment, with the same state p prepared each time.

Though the average value of the outcome is calculated as in Eq. (1.7), a particular
trial yields a particular eigenvalue A; as the outcome of the experiment. The probability

of occurance g¢; of the ith outcome corresponding to the eigenvalue \; is given by

gi = Te(Pip) = Y pi{WUk| B[ Wy). (1.8)
K
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Given a particular outcome i, the state of the system after measurement is no more
represented by p, but collapses to the corresponding eigenstate of the observed eigenvalue,
i =P (1.9)
v(Pip)

This is the Von Neumann collapse postulate. Since the given state has collapsed into a
particular eigenstate of the observable, it is no more useful in the study of the properties
of the original state. Thus for a new trial, one has to repeat the preparation procedure to
obtain the p, and rerun the experiment. Such a measurement scheme is called as the Von
Neumann projective measurement, and the probabilities ¢; are called the Von Neumann

projection valued measure.
To summarise, the density operator p completely specifies all the properties of the

system. All expectation values of all possible experimental observables Q) are captured

by p.

1.2 Composite systems

Consider a bipartite system S which consists of subsystems A and B. Let H4 and Hp
denote the Hilbert spaces of the subsystems, then the Hilbert space of the total system
is the tensor product Hg = Ha ® Hp of the Hilbert spaces of the subsystems. Let the
dimension of H4 be m, and that of Hp be n. Let {|1;)} form an ONB in H 4, and {|¢4)}
an ONB in Hp. Then any pure state |¥) of the combined system can be written as

©) =) cjaltys) @ a). (1.10)

j7a

A pure state |¥) of the bipartite system S is said to be a product state if and only if the
expansion coefficients c¢j, have the product form cjo, = 2;¥yq, i.e., the m x n coefficient
matrix c¢ is the outer product of two vectors. Any state |¥) which cannot be written in

the product form

W) # ) ®19), (1.11)
is said to be entangled.

Theorem 1.1 Given a state |¥) in the tensor product space Hg = Ha ® Hp, it can
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always be written in the form [2]

) = Y VA @1¢)),  where
7j=1

r < min(m,n), Z)\ =1, (1.12)

and {|¢';)} and {|¢';)} are vectors from an ONB in H4 and Hp respectively.

Proof: This can easily be seen from the singular value decomposition of the ¢ matrix,

ie.,
c—d =VWT, (1.13)

where V' and W correspond to independent local unitary change of basis in H4 and Hp

respectively, i.e.,
'%) Z Viels),  1d's) Z aplPa)- (1.14)

V and W are chosen such that ¢’ is diagonal.

The integer r is known as the Schmidt rank of |¥). The Schmidt rank r, and the
Schmidt coefficients {\;}, constitute the local invariants of the state. It is clear that for
product states the Schmidt rank is one. The Schmidt rank r, of a given bipartite pure
state |W), is thus an entanglement witness of the state.

The notion of entanglement for the case of mixed states is much more subtle. As we
have already seen in Eq. (1.3), any mixed state of the bipartite system A + B can be

written as
pap = Y plUR) (T,
k

e > 0, Zpkzl. (1.15)
k

A state pap is said to be separable, if there exists an ensemble realisation {|Uy), px} of
pAB, such that all the |Wy)’s are product states [3], i.e.,

PAB = ZPkﬁAk ® PBE, (1.16)
i



Chapter 1. Basic Ideas

where the p.’s are positive, and pax’s and ppi’s are density operators of subsystems A
and B respectively. Without loss of generality, these density operators can be chosen
to correspond to pure states. Stated differently, any convex sum of product states is by
definition a separable state, and separable states constitute a convex subset of the convex
state space. Any state which cannot be written as a convex sum of product states is said
to be entangled. The subtle part of the definition stems from the fact that one has to run,
in principle, through all possible decompositions of a state to conclude if it is separable

or not.

1.2.1 Partial trace

Consider a bipartite system in the state pap. Suppose we are interested in the subsystem
A alone, i.e., we are interested in measurement of a local observable Q4 which acts only
on the Hilbert space Ha. The action of such an observable is described by the operator
QA ® 1 p on the extended Hilbert space Hg = Ha ® Hp. Using the resolution of identity
in the B subsystem with the choice of an ONB {|¢,)} € Hp, the expectation value of
the A subsystem observable 4 is

Tr(Qa @ Igpag) = TraTrp(Qa @ Ippag)
= > (] @ (¢alQa ® Lppasltn) @ |¢a)
ko
= TrA(QAﬁA), where
pa = Trppap =Y (balpanlda)- (1.17)
o
Clearly, pa is an operator on the Hilbert space H 4. The trace operation executed only on
the B subsystem is called partial trace, and the resulting p4 is called the reduced density
operator of subsystem A. It is clear that partial trace preserves the defining requirements
on a density operator. The notions indicated above hold irrespective of whether p4p was
pure or mixed. Every observable of subsystem A sees the state pap as if it were the state
pa. Clearly, partial trace of pure bipartite states leads to either pure or mixed states
of the subsystem. If we begin with a bipartite pure entangled state, the partial traced
state of the subsystem is definitely mixed, and the matrix rank of the reduced state is
the Schmidt rank of the initial bipartite pure entangled state. Thus, partial trace can be
viewed as an entanglement witness for bipartite pure entangled states. The concept of
partial trace also renders another explanation to the origin of mixed states, i.e., through
the process of considering evolutions in composite systems and then discarding one of the

subsystems, we are able to generate mixed states of a subsystem. The notion of mixed
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states was earlier considered through the notion of a preparation procedure.

1.2.2 Positive Operator Valued Measure

The notion of Positive Operator Valued Measure (POVM) is the generalisation of the Von
Neumann measurement scheme, and is easily understood in the context of measurement
in composite systems.

Consider a system A with Hilbert space H 4, to be in the state p4, and an auxiliary
system B with Hilbert space Hp, to be in the state pp. Then the state of the combined

system is

A~

ps = pa®pp, where
(ﬁA®ﬁB)ma,nB = (ﬁA)mn(ﬁB)aﬁ' (118)

A Von Neumann measurement on the combined system system is represented by projec-

tion operators

PP;=6;P;, Y Pi=1. (1.19)
4

The probability of the ith outcome of such a test given that the state of the combined
system is in pg ® pp is,

6 =TrP(pa®pB) = D (Pans(PA)mn(PB)as: (1.20)

ma,ns

This can be equivalently written as

g = Tra(M;pa), where

(Ml)mn = Z(Pi)moz,nﬁ(ﬁB)aﬁ’ (1.21)
af

and {M;} are operators on the Hilbert space H4 of the A subsystem. The hermitian

nonnegative operators M; which need not commute clearly satisfy
> M;=1. (1.22)
i

Each member of the set {M;} is called a positive operator valued measure (POVM) [4, 5],
since each M; is a positive operator by construction. The main difference between a Von

Neumann type measurement and a POVM is that the M; are not projection operators
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and the number of outcomes is independent of the dimensionality of the Hilbert space

H 4. The probability of the ith outcome is now given by
4 = Te(Mip), (1.23)

as compared to Von Neumann Tr(P;p). We have removed the subscript A to indicate the
comparison at system level. The Von Neumann collapse postulate holds, except that the
state of the subsystem after the measurement is the partial trace of the collapsed state

of the composite system.

1.3 Quantum Dynamics

Consider a system with Hilbert space H. The set of all density operators p acting on H is
a subset of the set of all linear operators acting on H. The set of all linear transformations
on ‘H forms a vector space. If H is n dimensional, then this new vector space is clearly
n? dimensional. Quantum evolutions are linear transformations on the linear operators
acting on H. Linear transformations on this new vector space are called linear maps to
distinguish them from linear operators on H. They are sometimes called super-operators.

It would seem that any linear map acting on the density operator p, and preserves the
three defining properties of density operators in Eq. (1.1), is a valid quantum evolution.
This is not so! Further conditions beyond (1.1) arise from looking at composite systems.
Suppose we were dealing with only closed systems, then any map which preserves the
defining properties of the density operators would have appeared physical. Since we may
be a part of a larger system but observing only our system locally, it becomes imperative
that the map under consideration takes valid density operators of the extended system to
valid density operators. Thus one is lead to consider what are called completely positive

maps.

1.3.1 Completely positive maps

Consider a bipartite system S with Hilbert space Hg = Hao® Hp. A linear map A acting
on the space of operators acting on H 4 can be extended to act on the space of operators
acting on Hg through the definition of the map A ® 1,,, where 1,, is the identity map on
subsystem B, i.e., the map A acts only on the A subsystem, but leaves the B subsystem
as it is. Every possible choice of Hp gives us a possible extension of the above kind for A.
A map A is said to be completely positive if it is positive for all such possible extensions.
By positive we mean that it takes valid density operators acting on Hg to valid density

operators acting on Hg. The subtle part of the definition stems from the fact that one
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has to in principle run over all possible extensions specified by the choices of Hpg, to
conclude if a given positive map A is completely positive or not. We have the following

important result :

Theorem 1.2 The action of any trace-preserving completely positive map A on a density

operator p can always be written in the following form :

Ap) =D WapWi, > Wiw, =1. (1.24)

«

We don t give the proof here, but a heuristic way to see this is as follows. Let {|¢;)} and
{|¢a)} be a set of ONB in H4 and Hp respectively. Suppose that the density operator
of the bipartite system is initially in the state

pa ®10)E(0], (1.25)

where |0)p denotes a pure state in the B subsystem. Evolve the state unitarily in the

combined system so that
pa @ 0B (0] = U(pa ®[0)p(0)UT. (1.26)
Now performing a partial trace over the B system Hilbert space yields

pa = Trp(U(pa®|0)pp(0)UT
= > (6alU(pa @10)55{0NUT|6a)

«

= > (¢alU10)5 pa 5OUT|¢a). (1.27)
If we denote
W, = (04|U|0) g, (1.28)
then we can express p'; as
Pa=> WapaW]. (1.29)
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It follows from the unitarity of U that

D WiWa = > 50U"¢a)(alU0)5

« «

= pOUTU|0)g = 1L 4. (1.30)

Thus we have two ways of picturing completely positive maps [6-9].

e Every trace preserving completely positive linear map A, has an operator sum

representation as in Eq. (1.24).

e Every trace preserving completely positive linear map A, has an unitary represen-
tation as in Eq. (1.27).

What we have just demonstrated is that an unitary representation of a completely positive
map can in fact be viewed as an operator sum representation. The nontrivial part of the
theorems is that every trace-preserving completely positive map can be obtained in this
manner. A simple way to understanding this aspect is by reasoning that any reasonable
evolution should be accomplished as a unitary (hamiltonian) evolution on a larger system.
It is useful to note that in the unitary realization one begins with a product state of the
combined system, and a pure state for the B subsystem proves sufficient. It is clear from
the definition and Eq. (1.24) that the set of all trace preserving completely positive maps

form a convex set.

1.4 Detecting entanglement

One of the foremost problems of quantum information theory has been the development
of tools for detection of entanglement. Since a given density operator pap of a bipartite
system S, has infinitely many decompositions [1|, and since we cannot possibly run
through all of them to see if pap is separable, it is imperative that we devise efficient
methods of detecting entanglement. Bell inequalities provide us with sufficient criteria
for entanglement, and entropy based inequalities can also detect entanglement in suitable
cases. These are scalar manifestations of entanglement, which has its roots at the density
operator level. Since we only measure scalar quantities in the laboratory, the scalar
manifestations of entanglement are crucial from an experimental point of view. From a
theoretical perspective, the scalar manifestation of entanglement is intimately connected
to the theory of positive maps which has a direct bearing on the concept of entanglement.

We briefly discuss these ideas below.
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1.4.1 Entropic inequalities

Entropic inequalities originate from the observation that there is more information in
an entangled state viewed as a whole than viewed as aggregate of information in the
subsystems. A simple example such as a maximally entangled state in 2 x 2 dimensions
illustrates this. The state when viewed in 2 x 2 dimensions as a whole is a pure state,
but when we look at the state of either of the subsystems the state is a random mixture
proportional to the identity operator. Thus from either of the subsystems we gain no
knowledge of the state. Such a qualitative feature can be made quantitative through

entropic inequalities such as

S(pa) < S(pas), S(pB) < S(pas), (1.31)

where S(p) = —Tr(plogy p) is the Von Neumann entropy of a state p. Any separable
state obey the inequalities, but entangled states need not [10-13]. The idea is easily

generalised to entropic inequalities such as those based on Renyi quantum entropies.

1.4.2 Majorisation

Majorisation is a technique that helps us compare two vector quantities. In the context of
classical probability theory, it becomes useful when we compare two discrete probability
distributions. Based on majorisation, we may be able to conclude if one probability
distribution is more ‘spread out’ than the other, or in other words if one probability
distribution is more ‘disordered’ than the other. We now state the definition [14, 15].
Let © = (z1,22, - ,xp) and y = (y1,¥2, -+ ,Yn) be two vector quantities, arranged
in the nondecreasing order, i.e., x1 < 29 < --- <z, and y; < ys < ---y,. Then we say

x <y (z is majorised by y) if and only if
k k
Z.%’j > Zyj, V k<n, and
j=1 j=1

dapo= >y (1.32)
i=1 j=1

That majorisation captures the disorderliness is seen through its implication on en-
tropy. Let the vectors z and y denote two probability distributions and let x < 1,
then H({z;}) > H({vy;}), where H(.) is the Shannon entropy [14, 16]. The majorisation
relation is more fundamental in capturing disorderliness, in the sense that the entropic

inequality can be seen to follow as a consequence of the majorisation relation.

10
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As already mentioned, entangled states have more information when seen as a whole
rather than in their parts. This statement is made mathematically precise through the

following majorisation relation :

Theorem 1.3 If a bipartite mized state pap is separable and pa and pp are the reduced

density matrices of the subsystems A and B, then
Npap) = Mpa), and Npap) < A(pB). (1.33)

Here, X(pag), Npa), and X(pp), constitute the eigenvalues of pap, pa, and pp, arranged

in the nondecreasing order [17].

The above majorisation relation can be violated if the state pap is entangled. Clearly,
entropic inequalities such as Eq. (1.31) are implied by the majorisation relation in Eq.
(1.33).

Majorisation relations are not only useful in detecting entanglement, but appear in
more general scenarios such as when we are dealing with quantum evolutions. The Schur-
Horn lemma plays a pivotal role in this [14, 15]. We will discuss more of the majorisation

relations in Chapter 5, where we study compatibility relations for Gaussian states [18].

1.4.3 Bell’s inequalities

Bell inequalities arose initially from the study of quantum theory from the perspective of
classical probability theory. One of the profound implications of quantum theory is that it
gives rise to new possibilities in the correlation of distant events that cannot be explained
by classical local models. Bell observed that there is an upper bound on the correlation
of distant events as explained by a classical local model, and that quantum mechanics
could violate it [19]. It was evident that any such violation was easily explained through
entanglement. We now have the well established fact that violation of any of the Bell
type inequalities is a clear manifestation of entanglement. Here we briefly discuss one
such inequality, namely the Clauser-Horne- Shimony-Holt (CHSH) inequality [20].

The CHSH inequality refers to correlation experiments involving two dicotomic ob-
servables at two sites. The observed values of each of these observables can be taken to
be 1. Let the observables in the Alice’s side be denoted A; and A, and those on Bob’s
side By and By. The outcomes of the experiment in each trial is denoted by a1, as and
b1, bs respectively. Define the correlation function between two observables A and B, A

on Alice’s side and B on Bob’s side, as

E(A, B) = (ab), (1.34)

11
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which is the average value of the correlation over repeated trials. Then the CHSH in-

equality reads as
‘B‘ = ’E(Al,Bl) + E(Al,BQ) + E(AQ,Bl) — E(A27BQ)’ < 2. (135)

This can be easily seen from the fact that for a given trial B is 42, hence the average is
always less than or equal to 2.

The quantum mechanical version of the CHSH inequality for 2x2 dimensional systems
is easily stated through the definition of the Bell-CHSH observable

~ ~

B=a;-0® (bi+by)-0+ay-0® (b —by)-o. (1.36)

Here a1, as, by and by are arbitrary unit vectors in R3, a-0 = Z?Zl a;o;, and o; are the
Pauli matrices. Any a - o corresponds to a spin observable with eigenvalues +1. With

this definition the CHSH inequality for a bipartite 2 x 2 dimensional system reads as
Tr(pB) < 2. (1.37)

The constraint imposed by the above equation is not generally obeyed by quantum me-
chanical systems. For instance, for the choice of the various unit vectors, each separated
by angle of 22.5 degrees and with the singlet chosen as the state, Tr(pB) = 2v/2 [5], clearly
a violation of the CHSH bound implied by a local classical model. An upper bound on
the maximum possible expectation value of the Bell-CHSH observable was obtained by
Cirelson to be 2y/2 [21]. The remarkable aspect of the inequality is that experiments con-
firmed the violation [22], in complete agreement with quantum mechanical predictions,
thus demonstrating entanglement. This inequality can be extended to more observables
on each side 23] in a bipartite setup, and to more number of parties [24]. Violation in
the latter case will indicate presence of multipartite entanglement. The Bell inequalities
are only one of the ways to detect entanglement, and they are not very powerful in the
sense that there are inseparable states obeying the Bell inequalities [3, 25]. That is, there
is entanglement that is not detected through violation of Bell inequalities. See [26] for a

review.

1.4.4 Positive maps

The theory of positive maps is an inescapable ingredient in the theory of entanglement.
The first use of them was demonstrated by Peres in [27]. He observed that a separa-

ble state remains a state (positive) if subjected to partial transposition (PT). A crucial

12
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observation by the Horodecki’s that partial transpose is a positive map but not a com-
pletely positive one, led to the exploration of the intimate connection between the theory
of entanglement and positive maps [28]. Earlier in Eq. (1.24), we had introduced the
notion of completely positive map. We noted that a linear map A is completely positive
if and only if the extended map A ® 11, is positive for all n. We now introduce the notion
of positive but non completely positive maps. We say that a linear map A is positive but
not completely positive if A takes density operators to density operators, but it has an
extension which fails to do so.

Let the map A act on operators on Hilbert space H 4, and let its extension act on
operators on the Hilbert space Hg = H4 ® Hp. Suppose the extended map given by
A ® 1, does not take positive operators on Hg to positive operators on Hg, but the
map A takes positive operators on H 4 to positive operators on H 4. Then the map A is
said to be positive but not completely positive. Such a map could be tool a in detecting
entanglement in bipartite systems specified by the Hilbert space Hg = Ha ® Hp. If such

a map acts on a separable state pap on Hg, we have the following to be true:

(A@1,)(pas) = (A@1n)> pepar® bk
B

= ZpkA(ﬁAk) ® ppr > 0. (1.38)
%

This follows from the linearity and positivity of the map A. On the other hand, if the

extended map acted on an entangled state, it could lead to the following possibility :

(A Ln)(pas) = (A@ 1) prbask)
k

= > p(A®1n)(pank) 2 0. (1.39)
k

This possibility arises because the map A is not completely positive. Thus a positive
but not completely positive map helps us detect entanglement! We have the following

important theorem |[28] :

Theorem 1.4 Let pap act on the Hilbert space Hs = Hao® Hp. Then pap is separable
if and only if for every positive map A on H 4, the operator

(A® 1,)(paB) (1.40)

15 posilive.

We now give a brief discussion on positive maps. It is convenient to go to an indexed

13
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notation to describe them. The three defining properties of a density operator in this

notation are

Prs = P:ra prsx:xs >0, prr=1 (141)

Summation over repeated indices is implied as usual. Any linear positive map A takes

valid density operators to valid density operators. Such a map can be expressed as

A p— il
Prist = Nyt s prs: (1.42)
The hermiticity requirement of p’ demands that
Norror = v (1.43)
trace preservation of p’ demands that
Aprt s = Ops, (1.44)
and preservation of positivity implies that

Prig@iTy >0 = Ny psprstiizg > 0. (1.45)

From spectral resolution of p, it is sufficient to consider positivity requirement on any of

its projectors, hence we only require
Nprgr rsTriTsryyys > 0. (1.46)
Let us define a new matrix M by permuting the indices of A :
Aprgrps = My grs. (1.47)
The hermiticity condition in Eq. (1.43) now reads
Myrps = My o (1.48)

i.e., the matrix M is hermitian. Hence we have the spectral resolution

Mr/r,s’s = Z )‘afr/r(a){sk’s(a)' (149)

14
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Rewriting the positivity requirement of p' in Eq. (1.45) in terms of the matrix M, we

have
x:/y:Mr/r,s/sxs’y& (1.50)

which means that the matrix M is positive on product vectors. With this, any positive

linear map reads as

p;/S/ = M'r"'r‘,s'spf's
= Z )\afr’r(a)prsf;k’sa (Oé) =
7= 3 aé(@)if(@). (5D

The eigenvalues {\,} need not be positive, since our only requirement was positivity M
on product vectors. A completely positive map is a positive map as in Eq. (1.51) where

all its eigenvalues, i.e., its {\,} are positive [29-31].

1.4.5 Entanglement Witness

The convex structure of the state space and the convex structure of the set of all separable
states for a given bipartite system enable us employ the ideas known in the context of
convex sets to distinguish entangled states from separable ones. The simple idea that
a convex set and a point lying outside it can always be separated by a hyper plane
is manifested in the context of state space as an entanglement witness. The following

theorem due to Horodecki’s captures this idea [28].

Theorem 1.5 A state pap acting on the Hilbert space Ha @ Hp is separable if and only
if

Tr(Apap) > 0 (1.52)

for every hermitian operator A satisfying Tr(AP@Q) > 0, where P and Q are projections

operating on H 4 and Hp respectively.

The implication of the theorem is that if a state pap satisfies the inequality
Tr(Apag) <0 (1.53)

for such hermitian A which is positive on product vectors, we definitely know that the

state p4p was entangled. Any A which is positive semidefinite will not serve our purpose

15
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in detecting entanglement, as such an operator would be positive on entangled states
too. Thus the operator A though positive on product vectors, has to be necessarily
indefinite to detect entanglement of some states. Thus, if such a witness A were to
detect entanglement of a state pap, the state pap is a point lying outside the convex
set of separable states, and the numerical matrix determined by Ais a hyper plane
separating this point from the convex subset of separable states. The observation that
any entanglement witness is a hermitian operator which is positive on product vectors
but not positive definite, reminds us of the defining property of a positive map in Eq.
(1.51). In other words, we have an isomorphism between positive but not completely
positive maps and entanglement witnesses [32]. The first use of an entanglement witness
was in [3|, where the flip operator V served as an entanglement witness. It is easy to
check for systems of 2 x 2 dimensions that the flip operator defined in the standard basis
is the M matrix corresponding to partial transpose. It is useful to note that any Bell

observable B as in Eq. (1.36) can also be viewed as an entanglement witness.

1.4.6 Partial Transpose

The partial transpose test is a classic example of the application of the theory of positive
maps in detecting entanglement. Partial transpose was initially introduced by Peres in
[27] to detect entanglement. It is defined as follows. Consider the matrix elements of a
state pap of a bipartite system specified by the Hilbert space Hg of m x n dimensions,

ie.,

Pic,js = (Vi ® (PalpaBlvVj) @ [0g). (1.54)

The partial transposed matrix pL% is defined through its matrix elements thus:
~PT ~
Pia,jp = Pip.j.a: (1.55)

Such an operation is easily seen in its matrix form. The state pap of the m x n system

can be written as

An - Ain
PAB = S : (1.56)
Aml o Amm

i.e., as an m x m array of n x n matrices A;; acting on the second Hilbert space Hp. The

whole matrix is defined by the matrix elements {Aij}a 5 = Pia,jp- Then partial transpose

16
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is simply the transposition of the {4;;} matrices.

Al e A,
s = L : (1.57)
Ay o A

Under partial transpose a separable state goes to a valid state, i.e.,

Pk =D Prpar ® Phy = > Pkpar © Py, > 0. (1.58)
K K

Since every pp, is a valid state, ph %5 is a valid state. An entangled state under partial
transposition can result in a non positive operator. Thus partial transpose detects en-
tanglement. Even though the operation is basis dependent, the conclusions are not. We

have the following theorem for lower dimensional composite systems [28] :

Theorem 1.6 A state pap of a 2®2 or 2R3 system is separable if and only if its partial

transposition is a positive operator.

1.4.7 Reduction Criterion

Yet another example of a positive map that is not completely positive is the reduction

map. Consider the map
A(p) =1 —p. (1.59)

This maps is clearly positive, since the eigenvalues of a density operator are positive and
less than one. Now consider the extension of this map to composite systems. A separable

state satisfies the following inequalities :
1®pp—pap >0, pa®L —pap >0, (1.60)

but entangled states need not. Here p4 and pp are the partially traced versions of
pap for Bob’s and Alice’s subsystems respectively. The above two conditions are jointly
called the reduction criterion [33]. The reduction inequalities in Eq. (1.60) imply the
majorisation inequalities in Eq. (1.33), and consequently imply the entropic inequalities
in Eq. (1.31) [34]. It is known that the reduction criterion is weaker than partial transpose
test in detecting entanglement, i.e., there are entangled states that partial transpose
can detect, but reduction criterion cannot [33]. Thus, entanglement criteria defined

through the reduction map, majorisation, and entropic inequalities, are all weaker than
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partial transpose in detecting entanglement. It is also known that more general entropic
inequalities other than that stated in Eq. (1.31) are implied by the reduction criteria
[35].

We now digress to introduce the important notion of distillability before continuing
the discussion on positive maps. This digression is useful, as both the partial transpose

map and the reduction criterion are intimately connected to the concept of distillation.

1.5 Distillation

A central aspect of quantum information theory is transmission of quantum information,
i.e., transmission of quantum states through quantum channels. The whole idea rests
largely on the teleportation protocol [36] which consumes a maximally entangled state in
the process of transmitting a qubit from Alice’s side to Bob’s side. Anything less than
a maximally entangled state results in the loss of fidelity of the transmission. Thus a
primary resource for achieving a perfect teleportation is a shared maximally entangled
state. Thus arises the need for creating maximally entangled states starting with lesser
entangled states. The aim of a distillation or purification procedure is to extract from
a large ensemble of low fidelity EPR, pairs a smaller sub-ensemble of high fidelity EPR
pairs, using only local operations and classical communication (LOCC); these may then
be used for faithful teleportation [37-39].

We begin by illustrating a purification procedure in the context of pure states, and
then extend it to mixed states, before considering formal definitions. We stick to 2 x 2
dimensional systems for the sake of simplicity.

Suppose Alice and Bob share two copies of an entangled state |1) which is not max-

imally entangled, i.e.,

V) @[Y) = (a|0)al0)p+ V1 —a?|1)all)p) ®
(a]0) 4/ [0) 5 + V1 —a2[1) 4/ [1) 1), (1.61)

where |0) and 1) are the eigenstates of the o, operator, and A and A’ refer to the Alice’s

side particles, and B and B’ to Bob’s. Expanding the above, we have

)@ ) = a®0)4l0)5[0)a[0)p + (1 —a®)[1)all)p|)a|l)p +

\/iam ’0>A‘O>B’1>A"1>B’;—§’1>A‘1>B‘O>A"O>B' (162)

for the state of the two pairs. Now let Bob make a local measurement for the z-component

of the spin. He can get either 2, -2, or zero. Suppose the result is zero, then Bob informs

18



Chapter 1. Basic Ideas

Alice over phone and they decide by mutual consent to retain the state, else they decide

to discard the state. The probability of such an outcome is 2a2(1 — a?). The resultant

state after the experiment is the term indicated in the square bracket :
10)410)B[1) ar[1) B +[1) 4|1) B|0) 4|0)

1) = 7% : (1.63)

The subscript r denotes that the state is a result of local measurement. Suppose we do

the following renaming, i.e., [0")4 = [0)4[1)ar, [1)4 = [1)4]0)as, |0} = |0)5|1)5, and
1Y = |1)B|0)p, the state that Alice and Bob share is then a singlet. Such procedure
of generating the maximally entangled state is inefficient in the sense that we may end
up losing part of the entanglement the parties initially shared through our very act of
discarding some of the outcomes. But the method gets more and more efficient as Alice
and Bob apply such a protocol collectively to more and more pairs. It was shown in [38]

that Alice and Bob can obtain n singlets from & |1)’s with the ratio approaching

lim — = E([9)) = —a?logya® — (1 — a?)logy(1 — a?). (1.64)
nk—oo k
E(|1)) is the entropy of entanglement and equals the Shannon entropy of the squares of
the Schmidt coefficients of |¢)
Distillation procedures in the context of mixed states are more sophisticated. For the
sake of simplicity we outline a procedure illustrated in [40]; it captures the essence of
distillation in the context of mixed states. Suppose Alice and Bob share two copies of

the mixed state

pap = flo")aple" |+ 1 = HY)apW™], (1.65)
where |¢T)4p and |¢)7) ap are Bell states defined as

~ 100)aB + [11) 4B
= 7 ,
~ [01)aB +[10) 4B
= 7 .

19" )aB

") aB

(1.66)

Unless f = %, the state is inseparable. This can be seen for example through the partial
transpose test. The aim here is to increase the fraction f of |¢p™)ap(¢™| through some
local operations and decisions taken through mutual consent arrived at through classical
communication. To this end, they perform a bilateral local CNOT operation, i.e., CNOT

operations performed on pairs AA’ and BB’. Such an operation is clearly local across
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the Alice and Bob divide. The action of such an operation is summarised below.

0F) aBloT)ars — |67 ) apld ™) arpr,
W) aBlo ) am — W) aBlY ) arpy,
6) aBlY ) arm — [67) Bl ) arpy,
W) Bl ) arp — W) aBléd ™) arpr (1.67)

After this local operation the state Alice and Bob share is

papae = (o)A@ + 1 — )N ap@ ) @ |6 ap (07| +
FA =)o ap@™ |+ [T ) ap@t]) @ W) arp (W7, (1.68)

Now they perform local z-component measurements on the A’ and B’ particles. If they
get the results to be correlated, they decide to retain the remaining pair, else they discard
the remaining pair. The success probability is given by f2+ (1 — f )2, and they share the

state

1

m(ﬁ@ﬂw@ﬂ + (1= )W) as(@t)). (1.69)

Pap =
The fraction f' = f2/(f2+ (1 — f)?) > f for f > 1/2. The procedure is clearly lossy as
in the case of pure states in that we may lose entanglement in some of the outcomes. But
given a sufficiently large initial ensemble we can, with a finite probability at every step,
tend towards a higher fidelity of the desired pure maximally entangled state by iterating
this procedure. Alice and Bob can, at the end of the procedure, distill a smaller ensemble
of pairs with entanglement fidelity f arbitrarily close to unity [40]. These pairs can then
be used for faithful teleportation. Distillation procedures in the context of mixed states
were initially described in [37].

A careful analysis of a general distillation procedure tells us that there are three
aspects to it, namely, local general measurements, classical communication, and post-
selection.

Local general measurements : These are the most general possible measurements
performed on the Alice’s and Bob’s side. They are described by two sets of operators A;

and B; which satisfy the completeness relations

d»oAla; =1, Y Bip;=1 (1.70)

7 7

They can be realised by appending additional systems locally, evolving them together,
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and then performing joint measurements locally. Under these actions, a shared state

evolves as

pap — Y A; @ BipapAl @ B (1.71)
ij
Such a procedure is clearly local.
Classical communication : This simply means that while performing the local general
measurements, Alice’s and Bob’s actions can be correlated through mutual consent ar-

rived at through communication over the phone, in which case, the evolution is described
by

pap — Y A @ BipapAl ® B]. (1.72)
i
This describes a combination of both local general measurement and classical communi-
cation.
Post-selection : This is the procedure by which Alice and Bob choose to retain certain
outcomes of the local general measurement subject to classical communication. Suppose
they retained the state corresponding to the i*® and j* local outcomes, the resultant

state is

A ® Bj/A)ABA;L ® B;

. (1.73)
Te(A; ® BjpapAl © B))

The denominator in Eq. (1.73) ensures the normalisation [41-44].

Any manipulation involving the above three procedures is succinctly called as local
operation and classical communication (LOCC). Clearly any LOCC operation described
by Eq. (1.71), is a completely positive map as in Eq. (1.49), but each of the W’s are in
tensor product form A; ® B;. Thus, any LOCC can be thought of as a separable super
operator acting on pap. It is known that every LOCC can be represented by a separable
super operator, but not every separable super operator is an LOCC [44].

To summarise, a purification or distillation procedure is essentially one of extracting
singlets from multiple copies of shared entangled states through LOCC. A state is said
to be distillable if one can actually distill, using a pre-agreed protocol, pure singlets from
multiple copies of the state. However such a definition may appear imprecise from the
implementation point of view, since the set the of all LOCC available to the two parties
is truely enormous.

It was shown in [45] that every entangled state of a 2 x 2 dimensional system is distil-
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lable. The idea is that even if an entangled state in 2 x 2 dimensions had singlet fraction
1
92
state with singlet fraction greater than

less than =, it can always be converted by LOCC, .i.e., a local filtering operation, to a

1
2
scribed in [39], could be used for further distillation. A tangible criterion for distillability
follows from this fact [45].

and, consequently, the recursion protocol de-

Theorem 1.7 A state pap is distillable if and only if, for some two dimensional projec-
tors P and @, and for some n, the state P ® Qﬁ%gP ® @ is entangled.

Thus, projecting out the given n copies of the state pap into a 2 x 2 dimensional
subspace, and demonstrating entanglement in that subspace, amounts to showing the
distillability of the state in contention.

An implication of this definition is that states which are positive under partial trans-
pose (PPT) cannot be distilled by LOCC. This can for example be seen from the fact
if a state is PPT, then n copies of the state is also PPT, and LOCC doesn’t take PPT
states outside the set of PPT states, i.e., LOCC is a PPT-preserving operation. Thus if

pap = D Ai®@BipapAl @Bl then

K2

A N T

pin = Y Ae@BlpipAl e BT (1.74)
)

If ﬁig is positive, ﬁlfg is also positive, since it is derived by the action of a completely
positive map on ﬁljg. Thus, negativity under partial transpose (NPT) is a necessary
condition for distillability. It is known that any state that violates the reduction criteria
in Eq. (1.60) is distillable [33].

Having introduced the useful concept of distillation or purification, and having shown
that negativity under partial transposition is a necessary condition for distillability, an
immediate question that arises is the following. Are there entangled states that are
nondistillable? A immediate way of answering this question is by answering the following
simpler question. Are there entangled states that are PPT? The answer to this was given
by the Horodecki’s in [45, 46]. There they constructed states that are entangled but PPT.
Such states were called bound entangled, meaning one cannot distill any entanglement
from them. To detect entanglement in states that are PPT is a nontrivial task, since we
need to devise methods that are ‘stronger’ that partial transpose. This has led the search

for stronger criteria in detecting entanglement. We discuss some of them below.
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1.5.1 Range Criterion

The range criterion is a useful tool to detect entanglement, particularly in cases where
partial transpose fails. The statement of the criterion is summarised in the following

theorem.

Theorem 1.8 If a state pap acting on the space Hap is separable, then there exists a
family of product vectors |1;) ® |¢pa) such that,

(1) they span the range of pap,

(i) the vectors {|1;) ® |¢(’;>}f:1 span the range of phL (where x denotes complex

conjugation in the basis in which partial transposition was performed).

In [46], the range criterion was applied to detect entanglement in a PPT state. Conse-
quently, it led to the elegant construction of UPB’s (Unextendible Product Basis) in [47].
These are a set of product orthogonal vectors in H 4p that has fewer elements than the
dimension of the space, but there does not exist any product vector orthogonal to all of
them. Thus, a UPB is a partial basis that cannot be completed into a product basis. A

simple example of such a UPB for a 3 ® 3 dimensional system is

[Yo) = —=0) @ (10) = 1)), [¢2) = %I% @ (11) = 12)),
1

5

1
|¢1>=E(IO>—I1>)®I2>, |¢3>=\/§(I1>—I2>)®IO>,
|a) = é(l0> +11) +12) @ (10) + 1) + [2)). (1.75)

Given a UPB, it is easy to construct bound entangled states. Consider the projector

4
Pypp =Y i) (Wil, (1.76)
=0
now construct the state
. 1
PAB = Z(ﬂ - PUPB)- (1.77)

The range of pap contains no product vectors, otherwise one would have been able to
extend the product basis. Clearly ﬁig is positive, i.e., pap is PPT. The state pap is thus
PPT entangled, and hence bound entangled. The range criteria as a tool was successfully

extended to the case of continuous variables in [48], to detect bound entanglement.
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1.5.2 Non-decomposable maps

The presence of PPT bound entanglement necessitates the definition of decomposable
and non-decomposable positive maps. A positive map is said to be decomposable, if it

can be represented in the form

where A(lj p and A% p are completely positive maps, o denotes composition, and " denotes
the transposition map. Clearly, a decomposable map acting on a composite system is
no stronger than partial transpose in detecting entanglement. It turns out that in 2 ® 2
and 2 x 3 dimensional systems, every positive map is decomposable [49, 50]. Thus
positivity under partial transpose turns out to be a necessary and sufficient condition
for entanglement in these systems, as indicated earlier. However, in higher dimensional
systems there are positive maps that cannot be decomposed as above. Any map that
cannot be written as in Eq. (1.78), is said to be a non-decomposable map. Clearly, non-
decomposable maps can potentially detect entanglement that partial transpose cannot.
Thus the study of non-decomposable maps has turned out to be an integral part of
entanglement theory. Examples of such maps can be found in [6, 51-54|. In [51], it was
demonstrated that given a UPB one could construct a non-decomposable map.

There seems to be no simple universal way of showing a positive map to be non-
decomposable. One possible way is to construct a PPT state, and then show that the
map detects entanglement in the PPT state, thus establishing that the map is indecom-
posable. This particular route to demonstrating non-decomposability has led to search

for systematically characterising PPT states [55, 56].

1.5.3 Uncertainty relations

The technique of detecting entanglement through uncertainty relations is based on the
fact that separable states, in addition to obeying the general uncertainty principle which
arise from non-commutativity of operators, have to obey additional constraints simply
arising from the fact that they are separable. Such a technique, though initially intro-
duced in the context of continuous variable systems [57, 58|, has been successfully used to
detect entanglement in finite dimensional systems [59-61]. Such a technique is powerful
as it detects even bound entanglement [60, 61]. We will discuss these ideas later when

we deal with continuous variable entanglement.
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1.6 Measures of Entanglement

Since entanglement is a fundamental resource in quantum information science, it is im-
portant that one is able to quantify it. Any measure of entanglement has to meet some
desirable physical requirements. Some reasonable requirements are enumerated below
[37, 41].

(i) For any separable state as in Eq. (1.16), which does not have any entanglement,

the measure of entanglement E should be zero:
() = 0. (1.79)

(ii) The second requirement concerns the invariance of the entanglement measure
under simple local unitary transformations, since such a transformation amounts to a
change of basis locally and hence can be undone locally in a deterministic manner. Any

local unitary operation should not be able to change the quantity of entanglement shared :
E(pap) = E(Ua @ UppapUl @ UL). (1.80)

(iii) The third requirement states that the average entanglement should not increase
under local operations, classical communications, and post-selection (Eq. (1.72)), since if
the converse was possible, it would mount to creating entanglement from less entangled
states through local operations alone. It is true that through appropriate post-selection,
we are able to extract pure state singlets by LOCC as shown in Eq. (1.73), but we
are able to do so only at the cost of discarding other outcomes. Thus, on the average
entanglement does not increase. Suppose given the state pap we get the post-selected

states ﬁiA p with probability p;, we then require

E(paB) 2 szE(ﬁfAB)- (1.81)

(2

(iv) Finally one would require that the measure of entanglement is additive. Given
two entangled bipartite states p; and po with the combined system in p; ® po we would

like to have
E(pr @ p2) = E(p1) + E(p2). (1.82)

For bipartite pure states there is a unique measure of entanglement. Given a bipartite
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pure state in the Schmidt form
U)ap =Y VAilti)a ® |¢i)s, (1.83)
i
the unique measure of its entanglement is

E(|W) p) ZA logy i, (1.84)

the Shannon entropy of the squares of the Schmidt coefficients. It is the Von Neumann
entropy of the reduced density matrix of either subsystem. The uniqueness of the measure
follows from the fact that given k copies of the state |¥) one can distill n copies of singlets
and, conversely, given n copies of singlets one can produce k copies of the given state.
However, such a reversible transformation is to be understood in the sense of the limit

k,n — oo [38]. With this interconvertibility available, we have

E(|®)ap) = KE(|S) ), (1.85)

where |S) ap is the singlet state. The interconvertibility implies that

ok
E(|\IJ>AB)zmlklglooE (1S) aB) Z)\logQ)\ (1.86)

By convention, one takes E(|S)ap) to be one [37, 62]. This measure which is called the
entropy of entanglement or simply entanglement, ranges from zero for a product state to

log,d for maximally entangled states in d ® d dimensions.

1.6.1 Entanglement of Formation

Having defined a unique measure of entanglement for bipartite pure states, it is now
possible to extend this measure to define a good measure for the case of bipartite mixed
states. As indicated earlier, the set of ensembles ¢ = {p;, iy 5} realising a given mixed
state pap is an infinitely huge family [1]. Keeping this fact in mind, the definition for

the entanglement measure for the case of bipartite mixed states is defined as
E(pap) = min Y pE(plyp). (1.87)
6 .
7
The minimisation has to be carried out with respect to the possible ensemble decomposi-

tions. Clearly, any separable state has an entanglement measure zero by definition. The
above measure is called the Entanglement of Formation (EOF). The EOF satisfies the
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first three requirements required of a good measure. The regularised version of the EOF
is defined as [63, 64]
E(p3}
Ee(pap) = lim 2\P4B) (1.58)

n—oo n

the entanglement cost of p4p. By definition the entanglement cost of a state is expected
to be lesser than its EOF, since a minimisation over a much larger ensemble set is to be
carried out. In case the EOF of a state is additive, then its entanglement cost E. is equal
to its EOF. It is now known that EOF is in general not additive [65, 66].

The EOF of a state is in general very hard to evaluate. It is thus remarkable that
Wootters was able to provide a closed form expression for the EOF of an arbitrary two
qubit state [67, 68]. The other cases where closed form expressions have been found are
those states with a high degree of symmetry [69-72]. We will come back to this measure

when we discuss the EOF for two-mode Gaussian states.

1.6.2 Distillable entanglement

This is the amount of pure state entanglement that can be distilled from multiple copies
of a given entangled mixed state through LOCC. There are no hard and fast rules as
to how one goes about it. Distillable entanglement, as a measure of entanglement, is
protocol dependent. Given n copies of the shared entangled mixed state pap, where
n is very large, if one is able to extract m copies of pure state singlets by LOCC, the

distillable entanglement is defined as

D(pap) = lim 2. (1.89)

n—oo N

Fundamental prototypes of various protocols were initially introduced in [37]. As in-
dicated earlier, not all entangled states are distillable, thus for bound entangled states
distillable entanglement is zero. Distillable entanglement as a measure of entanglement is
however useful in the sense that it actually gives an estimate of the useful entanglement
one can harvest from multiple copies of a given state through LOCC. This measure being
protocol dependant, is not unique. As an example in the case of two qubits, the one way

hashing protocol gives a finite yield with
~ 1 S(pan). (1.90)

where S(pap) is the Von Neumann entropy of the state pap. In comparison, the recursion

protocol similar to the one discussed in Section 1.5, gives almost a zero yield [37]. It
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is known that any distillable entanglement is a lower bound on the entanglement of

formation [37].

1.6.3 Distance based measures

This category of measures arise from the convex structure of state space. We know that
the set all states in a given bipartite system form a convex set, so does the set of all
separable states of that system. And clearly, the set of all separable states form a subset
in the state space. Thus one can talk of distance between the given entangled state and
a separable state. Let S be the set of all separable states. The measure of entanglement

for a given state & is defined as

E(6) =min D(5||p), (1.91)

PES
where D is any measure of distance (not necessarily a metric) between the two density
operators ¢ and p, such that it satisfies the requirements put forth above. One measure

which satisfies the first three requirements is based on the quantum relative entropy
defined as

D(11p) = S(6117) = Trfé(Ins — np). (1.92)

The quantum relative entropy is not symmetric and does not satisfy the triangle inequal-
ity required of a metric. One could have defined the measure with & and p interchanged,
however in such a case, pure entangled states have infinite measure of entanglement,
which is not desirable. It is known that for pure bipartite states, the relative entropy
of entanglement is the Von Neumann reduced entropy [41, 42]. The relative entropy
of entanglement has been evaluated for Bell diagonal states, however a closed form ex-
pression is not known in the case of general two qubit mixed states. It is known that
the relative entropy of entanglement is not additive [71], that it is always less than the
entanglement of formation [42], and that it is an upper bound on the distillable entangle-
ment, thus a lower bound on the entanglement of formation [42, 73]. While in the case
of pure states one can distill as much entanglement as is present, the mixed state sce-
nario is different. One cannot distill all the entanglement that is present. The existence
of bound entanglement is a manifestation of this aspect. This has led to consideration
of thermodynamical analogies in the context of mixed state entanglement [42, 62, 74].
Other distance measures such as the Bures metric have also been analogously extended

to define entanglement measures [42].
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1.6.4 Negativity

Most of the measures of entanglement discussed above are hard to compute for an arbi-
trary mixed entangled state. Especially, the entanglement of formation and the relative
entropy of entanglement require an optimisation procedure, which is in general not easy.
Thus it is useful to have a practical measure which is easily calculable. The negativity or
the logarithmic negativity is one such measure. The negativity for a bipartite state pap

is defined as

~PT
) ~1
N(pag) = 7”’”‘3'2'1 ; (1.93)

where ||.||; denotes the trace norm. The trace norm for a hermitian operator is the
sum of the absolute values of its eigenvalues. Thus N (pap) is simply the sum of negative
eigenvalues of pfL. Given negativity, we can define yet another measure of entanglement,

the logarithmic negativity which is defined as

Ex(pap) = logy||phE| - (1.94)

The logarithmic negativity satisfies the last three of the requirements required of a good
measure of entanglement. It is local unitary invariant, does not increase under LOCC,
and is additive. However, since it is based on partial transpose, it fails to measure en-
tanglement in bound entangled states [75]. In a similar fashion, one can define calculable

measures of entanglement based on negativity based on other positive maps [76, 77].

1.7 Continuous variables

In the earlier Sections, our concern was systems described by finite dimensional Hilbert
spaces. We now consider extension of some of these ideas to the case of continuous
variable systems. Such a study is neccesitated by the very nature of the current avail-
able technology. One approach towards practical implementation of the fundamental
ideas of quantum information processing has been through the currently available quan-
tum optical technology. Many fundamental aspects of quantum information theory have
already been demonstrated in various labs, essentially through quantum optical technol-
ogy [78-111|. Entanglement or EPR correlation was initially demonstrated in [78, 79].
Teleportation in the continuous variable context was initially discussed in [82] and then
demonstrated in [83]. It was subsequently reported in other experiments [85, 86, 88—
90, 92, 93]. Continuous variable dense coding has been reported in [96, 103-105]. En-

tanglement of the polarisation degree of freedom of photons was established in [84-87].
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In [85] two qubit entanglement was demonstrated, and in [87] three qubit entanglement.
In [86] teleportation of a single photon’s polarisation state was reported. Coherent state
based key distribution was reported in [97-100]. Other experiments that report contin-
uous variable entanglement are found in [80, 81, 91, 94, 95, 101, 102, 107, 108, 111].
In [94] atomic ensemble entanglement was reported, and in [95, 101, 111] multipartite
entanglement was reported. In [109, 110] teleportation between light and matter was
reported.

A fundamental attribute to most of the above mentioned experiments has been the
use of nonclassical resources. It is well known that states of radiation, naturally divide
into classical and nonclassical types [112], nonclassicality being more fundamental than
entanglement in the sense that it is a prerequisite for entanglement [113—-115]. A primary
reason for the possibility of many experiments in the context of quantum information the-
ory has been the availability of nonclassical resources, primarily in the form of quadrature
squeezing [116-135]. It is well known that this kind of nonclassicality, when processed ap-
propriately with the help of passive devices like beamsplitters, can create entanglement,
particularly in Gaussian states [113-115, 136-140]. Squeezing has been, and continues to
be studied as a resource in the context of continuous variable entanglement.

Bearing in mind this technological scenario, a study of entanglement from the per-
spective of quantum states of radiation becomes desirable. Any such study requires one
to deal with a system of quantum harmonic oscillators, systems whose Hilbert spaces are
infinite dimensional. The potential role of such systems in quantum information theory
have been explored in [141-163]. In [141] the issue of encoding a qubit in an oscillator
was discussed, and the possibility of using coherent states to carry out quantum com-
putational tasks was discussed in [164]. Such a study showed the possibility of using
continuous variable set up to do quantum information tasks carried out on finite dimen-
sional systems. In [142] the possibility of key distribution using squeezed states was
discussed. In [143, 147, 148| quantum cryptography with Gaussian states was analysed.
Multipartite entanglement and its potential use in quantum networks were considered in
[144, 145, 150, 154-156]. In [151] universal quantum computation based on continuous
variable cluster states using linear optics and homodyne measurement was explored. In
[152] the problem of quantum state engineering was considered. In [146, 149, 157-159]
continuous variable Gaussian channels were studied. In [161, 162, 165, 166] the possibil-
ity of generating entanglement in nanomechanical oscillators was explored; such systems
are also modelled as a system of quantum harmonic oscillators. Thus it is natural to
undertake the study of entanglement in the context of continuous variables.

The simplest study of entanglement in the context of bipartite continuous variable

systems is the study of two-oscillator systems. For this bipartite continuous variable
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system S = A+ B, subsystems A and B consists of a single quantum harmonic oscillator
each. The total system S is specified by respective annihilation and creation operator
pairs a', @, and BT, b acting on the Hilbert spaces H® and H’. Their only non-vanishing

commutators are
la,a'] = [b,bl] = 1. (1.95)

The Fock or photon number states for the two modes provide a natural set of ONB’s for

H® and H® respectively. They are given as,

) = (n))"7*@")" [0y,
m) = (m))"2H ™[0y, ,
n,m = 0,1,2,... (1.96)

Then the product states |n,m) = |n), ® |m), form an ONB for H® @ H® [167]. This
description is easily extended to multipartite continuous variable systems through intro-

duction of additional creation and annihilation operator pairs.

1.7.1 Quasi-probabilities

When dealing with quantum mechanics of continuous variables, i.e., radiation field modes,
it is useful to go over to their description in the language of quasi-probabilities. A state
of a quantum mechanical system described by a density operator p can be equivalently
described in the language of their s-ordered quasi-probabilities in a complete manner. The
s-ordered quasi-probabilities capture all the statistical information present in the density
operator p. In this set up a density operator p is mapped into a quasi-probability, and
the observables to corresponding ordered functions in phase space. Considering a single-
mode for simplicity, the s-ordered quasi-probability corresponding to a state p is defined

as

Wy(a,s) = Tr( (pT' (e, 5)), where,
T(as) = 1 [ Désexplag — a"9)d%6,  and
D) = exp(afs*—a§+§s\§r ) (1.97)

D(¢&, s) is the displacement operator corresponding to a given s, and « is the phase space

variable which is denoted as o = %.

The three defining properties of a density operator given in Eq. (1.1) transcribe into the

The parameter s takes the values —1 < s < 1.
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following requirements on the s-ordered quasi-probability :

Pl=p & Wylas)=W;(as),
0

& Tr(pp) >0 /Wp(a,s)Wp/(a, —s)d*a > 0. (1.98)

The first requirement demands that the s-ordered quasi-probability is normalised to one
with respect to integration over the phase space, while the second demands that it be
real. For the third requirement to be satisfied one has to in principle check for positivity
of the trace inner product of the given density operator p with respect to all valid density
operators p’, which amounts to checking for positivity of the overlap integral of the given
s-ordered quasi-probability with respect to all valid (—s)-ordered quasi-probabilities. The
defining requirements at the density operator level doesn’t enforce pointwise positivity of
the s-ordered quasi-probability, further, a valid s-ordered quasi-probability can be highly
singular.

Objects of interest are the expectation values of observables with respect to the given
density operator p. Given an observable Q, assume that it possesses an s-ordered power

series expansion

Q= i (s){a'ma™}s, (1.99)

nm:

where {a!"a™}, is the s-ordered product given by
~tn am 1 T *n _m g2
{a"a"}s = — [ T(a,s)a™a™d (1.100)
™
then the expectation value (Q) is given by
Tr(pQ)) = /Q(a, —8)W,(a, s)d*a, where

Qa,—s) = Z Qo (—8)a* ™™, (1.101)

n,m=0

Evaluating expectation values of s-ordered operators with respect to a density operator
p corresponds to evaluating the function €2 which is obtained from Q simply by replacing
{af"a™}, by o*"a™, and then evaluating its overlap integral with the s-ordered quasi-

probability W,(«, s) corresponding to the state p. Conversely, any observable Q) can be
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written as

Q- % / Qa, s)T(a, s)d%a. (1.102)

The s-ordered quasi-probabilities enables us to recast quantum mechanics in the language

of statistical mechanics. Given an observable €, we have an s-ordered weight function
Q(a, —s), which captures the content of Q) for each —1 < s < 1.

The more familiar s-ordered quasi-probabilities are Sudarshan’s ¢ function corre-

sponding to s = 1, the Wigner function corresponding to s = 0, and the Husimi or @

function corresponding to s = —1. The notion of s-ordered quasi-probability can be

easily extended to the multi-mode case as well [167-169].

1.7.2 Sudarshan’s ¢ function

It turns out that any density operator corresponding to a single mode of radiation field
can always be expanded as

d?z

o= [ ol (1.103)

where ¢,(2) = W,(z,1), and |z) is the coherent state. This is called as the diagonal
representation. It is remarkable that every density operator can be expanded diagonally
in the coherent state basis. This has been possible because of the over completeness of the
coherent state basis [112]. This representation enables one to evaluate ensemble averages
of normally ordered operators. Normal ordering corresponds to shifting all the creation
operators to the left and all the annihilation operators to the right. The useful concept
that arises out of this representation is the notions of classicality and nonclassicality.
If ¢,(z) corresponding to a density operator p is pointwise nonnegative in the complex
plane, then the density operator is a convex combination of coherent states. Since the
coherent states are the most elementary of all quantum mechanical states exhibiting
classical behaviour, any state that can be written as a convex combination of these

elementary states is deemed classical. We have,
$p(2) >0 for all z € C = pis classical. (1.104)

Any state which cannot be written so is deemed nonclassical. This definition is readily
extended to the multi-mode case. Not all states are classical, and in fact the ¢ function
can be highly singular. For the Fock states |n), the diagonal function ¢,(z) turns out to

be n'"" derivative of the delta function. We will make extensive use of nonclassicality in
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the context of entanglement in bipartite continuous variable systems.

1.7.3 Nonclassicality

One of the primary concerns in quantum optics over the years has been nonclassicality.
This notion has been explored in various ways and its manifestations detailed [170—
192]. Physical manifestations such as photon number oscillations have been explored
in [170, 175, 178, 181, 183, 193]. More recently, nonclassicality has been viewed as a
resource for entanglement [113-115, 137-139, 171, 194].

An important concern in the study of nonclassicality is in respect of the methods
employed to detect nonclassicality. We briefly describe one of the techniques. Suppose

we have the operator

F(a',a) =) cyaa’. (1.105)
]

Define the positive operator FTF and normal order it to obtain : FTF :. Then the

expectation value of this normal ordered operator in a state p is
i 5. Fr d*z SN
(F'F:)=Tr(p: F'F:) = Tgbp(z)]F(z ,2)|°. (1.106)

Calculating (: FTF :) is equivalent to evaluating the phase space average of a pointwise
positive function |F(z*,z)|? with respect to ¢p(2). Thus if the expectation value of a
positive normal ordered operator with respect to a state turns out to be negative, then
we can surely conclude that the state was nonclassical. However if the expectation value
turns out to be positive, we cannot conclude that the state was classical. In principle,
one has to run over all possible positive functions over the phase space to test if a state
is classical or not.

The method outlined above has been discussed and used in [170, 182, 186, 189-191].
The idea can be further extended through the use of positive polynomials which are not
sum of squares of other polynomials [191]. It is useful to note that there is no conclusive
test for nonclassicality, of an arbitrary mixed state. There are however two exceptions,
namely single-mode Gaussians [185] and single-mode phase invariant states [170].

Another important aspect in the study of nonclassicality has been its quantification.
Measures of nonclassicality have been discussed in [171, 173, 174, 177, 188, 195-198|.
Distance based measures were discussed in [173, 188, 195, 196], where the measure of
nonclassicality was defined as the least ‘distance’ of a nonclassical state with respect to

the set of all classical states. The distance based measures are in general hard to evaluate
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because of the inherent minimisation procedure involved in the definition. In [174, 177] a
measure based on the smoothening of the ¢ function was defined. One can go from the ¢
function to any s-ordered quasi-probability through a Gaussian convolution parametrised
by 7. The point 7. at which the resultant quasi-probability is just about a true probability
gives us a measure of nonclassicality. In [197, 198| a measure of nonclassicality based on
Hudson’s theorem was defined. Hudson’s theorem says that the only pure state whose
Wigner function is positive is a Gaussian state [199]. This fact indicates that any measure
that captures the negativity of the Wigner function is a measure of nonclassicality of the
state. More recently, in [171] a measure of nonclassicality inspired from an entanglement
point of view was defined. Nonclassicality of a single-mode state was defined as the
maximal bipartite entanglement it can produce when coupled with additional classical

resources and passed through a 50:50 beamsplitter.

1.7.4 The Wigner function

The Wigner function is the s-ordered quasi-probability corresponding to s = 0. It is
obtained by convoluting the ¢ with a particular Gaussian weight function. Thus, in
principle, it is not as singular as the ¢ function, but nevertheless it can be pointwise non-
positive in phase space. In this description, density operators are put in correspondence

with real valued functions over the phase space through the rule

1 ) .
W,(q,p) = - /dQ'(q —¢'|plg + ¢'Yexp(2i¢'p). (1.107)

We recall that o = q:;%p . We may write W,(q,p) as W,(&) for convenience [200, 201],
where ¢ is the pair {¢,p}. The Wigner description offers several advantages, from the
theoretical and experimental perspectives. It turns out to be convenient in the context
of unitary evolution of states under the action quadratic hamiltonians. Given the uni-
tary operator U(S) corresponding to a quadratic hamiltonian which is captured by a

symplectic group element S € Sp(2n, R), a state evolves as
p— p =U(S)pU(S)". (1.108)
This transformation takes a very simple form in the Wigner description :
S p— P =US)pUS) & Wy(€) = Wy(€) = W,(S7¢). (1.109)

That is, W, (S§) = W,(&) for every canonical transformation S € Sp(2n,R). That
is, the Wigner function transforms as a Sp(2n, R) scalar field [202]. This is also true
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of inhomogeneous linear canonical transformations involving phase space translations as
well.

The Wigner function is also important from an experimental perspective, as it can be
directly measured in a lab. The Wigner function by definition, is the expectation value
of the displaced parity operator with respect to the given density operator[169], and thus
can be observed in a laboratory. Indeed, the Wigner function of various quantum states
of radiation have been reported [203-215].

1.7.5 The Q function

The @ function corresponds to the quasi-probability with order parameter s = —1 For a

state p of a single-mode of radiation field it is defined as

Qo) = (alp|ey). (1.110)

It is thus pointwise nonnegative in the complex plane, being the expectation value of a
coherent state on a positive semidefinite density operator p. Thus it is a true probability
distribution. However it should be noted that not all valid probability distributions are
valid @ functions. The quantum mechanical uncertainty principle places severe restric-
tions on probability distributions which qualify to be valid @ functions. The advantage
of working with them is that one will deal only with true probabilities. We will consider

them in more detail in Chapter 7 where we discuss non-Gaussianity [216].

1.8 Detection of Entanglement

Detecting entanglement in continuous variables has been an important pursuit, as meth-
ods employed in the case of finite dimensions cannot always be extended in a naive
manner. Among tests based on positive maps, only the partial transpose test and reduc-
tion criterion have been extended [57, 217]. However, inseparability criteria (inequalities)
defined through EPR-like operators based on the quadratic moments, initially introduced
in [58], are effective in detecting entanglement in continuous variables. These inequal-
ities are derived from first principles as consequences of separability. The uncertainty
principle places certain restrictions on the moments, and all states have to obey the
uncertainty principle [218]. However, separable states have to obey further constraints,
which can be taken as inseparability criteria. Simple examples of such constraints are
the Bell type inequalities, violation of which have been observed in entangled Gaussian
states [219, 220].
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1.8.1 Bell’s inequalities

The Bell type inequalities as in Eq. (1.36) are extended to the continuous variable case
through the definition of the parity operator. The parity operator takes the role of the
spin observable, and the role of ‘direction’ of the spin observable is taken by displacement

in phase space. The parity operator II(§) for N modes is given as
T(§) = @ T(&) = 9, Di(&) (~1) " DI(&). (L111)

where D;(&;) is the phase space displacement operator of the i*" mode, defined in Eq.
(1.97). It happens that the expectation value of the parity operator II(§) with a given
state p gives its Wigner function [168, 169] :

W, (&) = Te(PIL(E)). (1.112)

Hence, the expectation value of the parity operator on simple states such as Gaussian

states is easily evaluated. In [219] the Bell operator
B = T1(0,0) +TI(0, 8) + TI(a,0) — T(a, §) (1.113)

was considered, where «, and 3 are phase space displacements on the two modes. Separa-
ble continuous variable states have to satisfy the inequality |B| < 2. It was demonstrated
in [219] that the two-mode squeezed vacuum clearly violated this inequality. This idea
was further generalised to the multi-mode case in [221].

Another equivalent approach towards Bell inequalities in continuous variable systems
was given in [220]. This was done through the extension of the spin operators to infinite
dimensions through a direct sum of the spin—% Pauli operators. In this set up, the Pauli

spin operators 6., 61, and 6~ are given by

6. =(-1)" ¢t=5"

il2n><2n+1l- (1.114)
n=0

It is easy to see that the pseudo-spin operators defined above, satisfy the SU(2) algebra
required of spin—% operators. It is now easy to extend the Bell-CHSH inequalities in
Eq. (1.36) to the continuous variable case. In [220] such an extension was done, and
the entanglement in two-mode squeezed vacuum was demonstrated. The role of Bell’s

inequalities in detecting entanglement is also discussed in [222-225].
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1.8.2 Partial transpose

We have already seen in Eq. (1.109) that the Wigner function transforms as a scalar field
under the action of symplectic group elements corresponding to evolution under quadratic
hamiltonians. The transpose map and the partial transpose map also take a geometric
form in the Wigner description. For a single mode of radiation field, it follows from
the definition of the Wigner function that transpose operation on the density operator
is equivalent to complex conjugation of the elements of the density matrix in position
representation, which transcribes faithfully into momentum reversal operation in the

Wigner description :

T: Wyle,p) — Wo(a,p) = Wylg, —p) = W,(A€),
A = diag(l,—1) = os. (1.115)

This amounts to a mirror reflection which inverts the p coordinate, leaving the ¢ coordi-
nate unchanged. The transpose map takes density operators to density operators, but is
unphysical as seen in Section 1.4.6. For a bipartite system of two modes of radiation field,
partial transposition amounts to inverting the p coordinate for one of the subsystems.

Its action on the Wigner function is given by

PT: Wp(quay(]b,pb) — Wp(qa,pa,qb,pb)
= Wy(da;,Pa: @ —1p)- (1.116)

Though the partial transpose, as a map, is given by an elegant transformation with
regard to the Wigner function, its usefulness as an entanglement witness is manifest
only when we are able to test a phase space distribution for its Wigner quality. That
is, one has to answer the question as to when is a function in phase space a Wigner
function. Such a question was initially raised in the limited context of Gaussian Wigner
functions in [201], and fully answered in [226] in that context. This was possible because
of the Williamson’s theorem [226]. This consequently led to the demonstration of partial
transpose as an effective entanglement criterion in the case of two-mode Gaussians [57].
In general, one can test for entanglement in a limited manner through the manifestation
of partial transpose on moments.

Given a state p(®) of a bipartite system of two modes of radiation field, a test for
entanglement in p(%) through partial transpose would be to test for negativity of p(@0) 7T
A direct approach would be to test for violation of positivity of the diagonals of p(* 7" in
some orthogonal basis pertaining to the composite system Hilbert space H* ® H®. Such

an effort may be tedious while one is dealing with continuous variable systems. A simpler
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practical approach, but limited in scope, would be to test for violation of positivity of
paPT by taking its expectation value with a positive operator. Such a test may not in
principle capture the negativity of p(*»F7 in its entirety, but may prove to be useful in
certain contexts. An immediate requirement of the procedure demands the systematic

construction of positive operators acting on H® @ H®. Given an operator

n= Z Cikima @k bIp™, (1.117)
jkim

the operator n'n is positive by construction. A simple test for violation of positivity of
pPT s to then check if

(a (a PT
Tr(p T (i) = Te(p*) (n'n)" ) < 0. (1.118)

To this end, we need to know how partial transpose acts on an ordered monomial
(at &k&TpdqlA)“lA)mlA)T”lA)s). Since the creation and annihilation operators b and b are real,
transposition on Bob’s side alone amounts to hermitian conjugation of operators on Bob’s
side. We have

(&Tj&dep&QBTleBTTBS)PT - (dedk&Tpdqusgrnggl). (1.119)

As a simple example demonstrating the effectiveness of the procedure occurs in the case
of two-mode Gaussians. The violation of partial transpose at the level of variance matrix
corresponding to 1y being quadratic in the annihilation and creation operators of the
two modes, turns out to be a both necessary and sufficient test for entanglement [57].

We shall see later how this procedure can be effective in more general contexts [227-229].

1.8.3 Inseparability criteria through uncertainty relations

This method of detecting entanglement in continuous variable systems is based on the fact
that expectation values of nonlocal operators pertaining to the composite system have
to obey additional constraints for separable states in addition to the usual uncertainty
principle. As a simple example, consider the pair of EPR like operators &, —Zp and p,+pp.
The sum of the variances of these two operators goes to zero for maximally entangled
states. Such a state may appear unphysical though, but for the two-mode squeezed
vacuum the total variance rapidly tends to zero with increasing degree of squeezing. And

this state approaches the maximally entangled state as the squeeze parameter grows.
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However for a separable state, assuming that the first moments were zero, we have

(Za = 2)%) + ((Pa + P)°) =
sz’@i)i + Zpi@“z%)i -2 sz‘@a%(ib)i

. 2 pilda): +lZpi<ﬁz>i + 222 Pi{Pa)i(By):

S B - )+ - )
+imwm—@m+jmwm—@m+

Z;z‘(@a% —(@)1)" + Xfpi(<ﬁa>i + (py)i)? > 2. (1.120)

Such a criterion was effectively used in [58, 230] to demonstrate entanglement in two-mode
Gaussian states. The EPR uncertainty relation in Eq. (1.120) also becomes useful in
evaluating the EOF of two-mode symmetric Gaussian states. This method was extended
to the multi-mode scenario in [231]. Similar techniques, based on the uncertainties on
moments were used in the case of finite dimensional systems to detect entanglement
[59-61], and later extended to continuous variable systems in [232].

Positive maps on matriz of moments: This technique was recently introduced in [233].
It enables us to apply the positive maps familiar from the context of finite dimensional
systems to detect entanglement in continuous variable systems through the matrix of
moments. Any moment matrix generated by tensoring operators belonging to the indi-
vidual systems is separable on separable states, thus inseparability of the moment matrix
implies entanglement for the state. As a simple example, for two pairs of operators fl, fg

on Alice’s side, and g1, go on Bob’s side, the matrix of moments formed by the tensored

set (f191, f192, f201. f232), i.e.,

(figt) (o) (hhat)  (ffog
(Ff9.000  (FB)  (Fifaded)  (Fifo3
<Af2Aflg%> <f2Af1Agng> <Af22g%> < 22g1g
<f2f1g2§]1> <f2f1§]%> <f22§]2g1> < 223

2
) 1.121
| (1.121)

is separable for separable states. This method enables us to indirectly (directly) use the

theory of positive maps to detect entanglement in continuous variable systems.
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1.9 (Gaussian states

Gaussian states form an integral part of quantum information theory in the context
of continuous variables. Initially they were studied in the context of radiation fields
in quantum optics [185, 201, 202, 226, 234-240]. Much of the study was devoted to
characterising them through the variance matrix and the exploration of nonclassicality of
these states which was primarily in the form of squeezing. But with the development of
quantum information theory the focus has shifted to the study of entanglement in these
states [57, 58, 70, 136, 138, 140, 143, 144, 147-150, 156-159, 217, 241-271]. Teleporation,
the fundamental protocol of quantum information theory has been achieved using them
[83, 88-90, 96, 97, 103]. This has lead to the exploration of Gaussian states in a major
way.

We review, very briefly, some of these developments. The potential role of Gaus-
sian states in quantum information processes was initially realised in [82] in the form of
teleportation. The entanglement involved in this protocol was first pointed out in [105].
Subsequently, the detection of entanglement of these states was completely characterised
in [58, 272]. The effective use of the variance matrix formalism in the context of bipartite
entanglement was initially carried out in [57], and this was possible because Gaussian
states are completely specified by their variance matrix. The primary tool is the effective
use of uncertainty principle in characterising them [192, 202, 218, 226]. The Williamson
theorem has a fundamental role to play in this context [192, 202, 226, 272, 273|.

In [241] a family of bound entangled Gaussian states was constructed, and in [217]
the issue of distillability was solved: it was shown that every NPT Gaussian state is
distillable. Purification of Gaussian states has been discussed in [259, 268, 271]. In
[242], the issue of bipartite separability in the multi-mode case was completely solved.
The various possible situations that could arise with regard to separability in tripartite
systems was discussed in [243|. Entanglement in multipartite Gaussians was studied in
[249, 250]. It was found that in special cases Gaussian multipartite entanglement can be
reduced to two-mode Gaussian entanglements using local operations alone.

The role of squeezing in generating entanglement in these states was discussed. in
[136-138, 140|, and some of the special properties of Gaussian states were discussed in
[244, 246, 252, 253|. In [244, 246] it was found that Gaussian states cannot be distilled
with Gaussian operations alone, and in [252] it was shown that the optimal cloning of
Gaussian states required additional non-Gaussian resources. Some of the extremal prop-
erties of Gaussian states were discussed in [253]. One particular such extremal property
helped solve the problem of determining the entanglement of formation in symmetric

Gaussian states [70]. We will have more to say on this later in the thesis. Lower bounds
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on the entanglement of formation of general bipartite Gaussian states was obtained in
[262].

The determination of entanglement in bipartite Gaussian states through purity mea-
surements was discussed in [248, 261, 263|. Such a study brought out the possibility of
characterising Gaussian states through both global and local purities. Properties such as
the loss of entanglement in evolution was discussed in [137, 260, 274].

Gaussian channels have been discussed in [149, 157, 269]. A definition for the most
general Gaussian channel was given in [157]. The quantum channel capacity defined
through coherent information was evaluated for a certain class of Gaussian channels in
[158, 159].

The possibility of assessing the entanglement in two-mode Gaussian states using local
parity measurements and classical communication was discussed in [247]. It was shown
that given sufficiently large number of copies of a Gaussian state, its entanglement and
the state itself can be characterised completely by LOCC!

The concept of entanglement monogamy [275, 276] was extended to the Gaussian case
in [254, 255], and monogamy relations were established. In [251] the variance matrix set
up was discussed from the perspective of convex sets, and numerical routines were set
up to generate entanglement witnesses. More detailed reviews on Gaussian states can be
found in [256-258|.

We now describe the basic formalism for handling Gaussian states and their transfor-

mation, with particular attention to nonclassicality and entanglement.

1.9.1 Nonclassicality in Gaussians

Nonclassicality in Gaussian states primarily occurs in the form of quadrature squeezing.
This quantum optical concept was initially explored in [185, 192, 237-240, 277, 278]. An
elegant definition for squeezing through the variance matrix formalism was given in [192].
We briefly review this work.

Since zero-mean Gaussian states are completely specified by their variance matrix,
we begin by giving the basic setup of variance matrix, first from the perspective of
nonclassicality, and later we give the description from the entanglement perspective.

Consider an n mode quantum system with annihilation operators a;, d}, i=12...,n,

obeying the standard boson commutation relations

(aj, af] = o5, [ag,ax] = [al, af] =0, (1.122)
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or equivalently

G, %) = ik, [dj,dx] = [pj, r] = 0, where
g = YR G G (1.123)

YTV V2

al

It is convenient to arrange the hermitian ¢;, p; and the a;, &; in 2n component column

vector forms:

q1 aq

SO I B B (1.124)
D1 aq
Pn al,

The ‘vectors’ é (©) and é (") are related by a fixed numerical unitary matrix T

£ = TE where

1 (1 i1
r = ﬁ(n _“1>. (1.125)

The canonical commutation relations among the mode operators can now be succinctly

written as
[€§r)7 A](;)] - Zﬁ]lm [é‘;C)a A](CC)] = szk,
i,7 = 1,2,...,2n, (1.126)

where the 2n x 2n dimensional matrices $ and X are given in block form by

0 1 1 0
g:(_]l 0), 2:(0 _1>' (1.127)
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We define the 2n x 2n real variance matrix V(") for a state j by
T 1 ~pllr) p(r)T
Vi = STe(p{gE0), (1.128)

where {.,.} is the anticommutator. We can alternatively arrive at the variance matrix

by taking the expectation value of the positive operator é(r)é(T)T, ie.,
EVEOT) — Tr(pE0E0T) — v 1 Lg

We can write the variance matrix in an n x n block form as

v Vi VW,
b vs )’
. 1, o
M)y = (Gidk) (Vo) = §<{QJ,pk}>, (V3)1, = (PjPk),
5k = 1,2,....n. (1.129)

The matrix V; gives the correlations among the ¢’s, V3 gives those among the p’s, and V5
the correlations between the ¢’s and p’s. For a state p with non zero mean ((£("))) # 0,
the variance matrix is defined by simply replacing é(r) by Aé(”) = é(r) — <§(r)>. Such a
replacement corresponds to a rigid translation in phase space by amount —(é (7")>, imple-
mented by the displacement operator D(—(£(M)).

The complex form of the variance matrix V(¢) is generated by taking the expectation

value of the positive operator f(c)f(cﬁ, ie.,

(£@E@TY = V(C)+%E, where
ve — py®rt (1.130)

Writing in n X n block form, we have
V(C) _ A B :
B* A*
* 1 ~ ~ A
Ajp = Ay =5a5.a(}), Bjx = By = (ajan). (1.131)
By definition, V(") is symmetric positive definite, this also implies that V(¢ is complex

hermitian positive definite. It also implies that A is hermitian, and B is symmetric. We

have the following relations between the blocks of the variance matrix in its real and
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complex forms:

1

A=+ Va+i(Vy = W)l
1

B = §[V1 — Vs +i(Vy + Va)J;
1

V1=§(

1@:%(A-A*-B+B*),

A+ A* + B+ BY),

1
Va=5(A+ 4"~ B-B). (1.132)

Uncertainty principle: Given a real symmetric positive definite 2n x 2n matrix V"),
it has to satisfy additional requirements to qualify as a variance matrix derived from a
quantum mechanical state. The additional requirements are succinctly captured by the

uncertainty principle [192]:
7 %g > 0. (1.133)

The above condition is both necessary and sufficient to validate a given symmetric positive
definite matrix V(") as the variance matrix of some quantum state. The necessity of the
condition follows from definition but the sufficiency part, which is nontrivial, follows
from the use of Williamson theorem [272, 273]. In the case of Gaussian probability
distributions this uncertainty principle on the variance matrix is both necessary and
sufficient condition to qualify the probability as a Wigner distribution|226], since in this
case the variance matrix completely specifies the quantum state. This is no longer true
in more general contexts [279].

Unitary evolution: Unitary evolution of the mode operators under a quadratic hamilto-

nian corresponds to a symplectic transformation on the column vector é ().

U = exp(—iH)= Utény = Sg)é(r), where
H = Z hg.z)éj(r)é](;), and
.k

S e Sp@n,R), ie, SPSTT =g (1.134)

Under such a unitary evolution, the vector é (©) transforms as

~

€0 @' — e gl pslirt, (1.135)
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Given a state p with variance matrix V"), under time evolution by a quadratic hamilto-
nian the variance matrix evolves through a congruence by the symplectic transformation

corresponding to the hamiltonian :
po— F=UE)HuEn) =
v oy = g0y sMT g e §p(2n, R). (1.136)
We have removed the subscript H for brevity. Similarly, the complex form of the variance

matrix evolves as
v© o yie) = gloylgr gl — pgtipt, (1.137)

The symplectic group: The defining property of matrices comprising the symplectic group
Sp(2n, R) is

ST e Sp(2n, R) & S pstT = g, (1.138)

The group is characterised by n(2n + 1) generators, of which n? generators are compact
generators and total photon number. The remaining n(n+ 1) generators are noncompact,
and do not conserve the total photon number. The hermitian quadratic hamiltonians

which correspond to the compact generators can be taken to be

1
~(ala; +aal), j=1,2,...m

1o 4

Z(a}ak + aLa]),

i

Z(ajak—akaj), j<k=2...n. (1.139)

They commute with the total photon number
n
N =Y alay, (1.140)
j=1

and the unitary operators generated by them correspond to passive systems which pre-
serve classicality. The remaining n(n + 1) linearly independent hermitian quadratic non-

compact generators can be given by

(afal —ara;), j<k=12,....n (1.141)
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The maximal compact subgroup of Sp(2n, R) denoted by K(n) is generated by the n?

compact generators, and is given by

SO(X,Y) = ( _); ; ) (1.142)

where X and Y are real n X n matrices obeying
XxT4yyT =1, xy?=vxT. (1.143)
It is easy to see that
SOX, V)SOT(X v)=1, SY(X, V)85V (X,Y) =4 (1.144)

Such a matrix is both orthogonal and symplectic in 2n dimensions. Going over to the

complex form, we have

S(C)(X,Y) = Fs(r)(X,Y)I‘T = ( g U(*)* > _ S(c)(U)’

U = X—iy, UU' =1, (1.145)

That is X — Y (and hence X 4 iY’) is a unitary matrix. Thus the maximal compact

subgroup K (n) of Sp(2n, R) is isomorphic to U(n). In other words,
K(n) =50(2n) N Sp(2n,R) = U(n). (1.146)

An interesting property of K (n) is that it acts transitively on the phase space unit sphere
S(Zn—l) )

Theorem 1.9 A wvariance matriz is squeezed if and only if
My < L
1w <3, (1.147)
where 1(V ")) is the least eigenvalue of the variance matriz V") [192].

One is able make this statement because of the transitive action of K(n) on the unit

2n—1)

sphere S( , though one cannot in general diagonalise a given V(") by K (n) rotations

[192].
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1.9.2 Entanglement in Gaussians

We now revise our notation into one which is useful in describing entanglement in multi-
mode Gaussian states. The earlier notation was useful from the perspective of passive
devices, and hence nonclassicality as the action of any passive device is compactly de-
scribed as a unitary transformation on the annihilation operators. With entanglement in
perspective, it is useful to make a modewise grouping of the canonical variables.
Consider a bipartite system consisting of n modes, with m modes in possession of

Alice and the remaining n — m modes in Bob’s possession. We introduce the following

notation :
é(a) = (q15ﬁ15q25ﬁ2a"'7(jm7pm);
EO = (Gutts Pt 1y Gt 2s Pras2s -« + Gy P );
£ = (E@,€M), (1.148)

The commutation relations are given in a compact form as

€0 &5l = iQ0p, a,f =1,2,...,2n, (1.149)
where
J 0 0
J ...
L . 0 1
o . . -1 0
00 . . . J

Clearly, a canonical transformation S satisfies
SQsT = Q. (1.151)

Suppose that the state has a nonzero mean. Then we can define the translated operators

AE=¢— (é), in which case, the variance matrix is defined as

({A,, Ads)) = Tr({AE,, Adg)p) = Vag. (1.152)
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The uncertainty principle is now stated as
V+%on. (1.153)
We have the following theorem with regard to bipartite separability.

Theorem 1.10 A necessary and sufficient condition for separability of a Gaussian state
described by the variance matriz V is [280],

1
V> SS5.80 @58,
Se € Sp(2m,R), S, € Sp(2n—2m,R). (1.154)

The inequality simply states that the variance matrix of a separable state is always greater
than that of a pure product Gaussian state. In other words, a separable state can be
made classical by local unitary canonical transformations. Such a thing is impossible if
the Gaussian state was entangled across the a-b divide [26].

Partial transpose: As stated already in Section 1.8.2, partial transpose acts on the Wigner
function as momentum reversal on Bob’s side. Under partial transpose, the variance
matrix of a multipartite state across a bipartite cut, undergoes the change V — V=
ANV A where

A = diag(ll, 11, ety 1m, 1m§ 1m+1, _1m+1, HRN 1n, _1n)- (]_]_55)

We can now implement partial transpose on the variance matrix and test for entan-
glement. In addition to the uncertainty principle, the variance matrix of a separable state

has to obey

. ) Q4 0
V>0, V=AVN, Q= A4 . (1.156)
2 0 QBa

This can be alternatively stated as

. i i Q4 0
V4+-0>0 Q=ANON, Q:( A ) (1.157)

0 —-Qp,

N | .

A variance matrix is said to be PPT, if it satisfies the above inequality.

Of particular interest are two-mode Gaussian states, whose variance matrix in block
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form is given by

= AC 1.158
- CT B ? ( )

where A, B, and C are 2 x 2 matrices. Such variance matrices can be brought to the
following canonical form using local symplectic transformations, i.e., using the action of
Slocal € Sp(2,R) @ Sp(2, R) :

0 C1 0
0 0
V=V = “ 2 (1.159)
(&1 0 b 0
0 (&) 0

It turns out that in the two-mode case, PPT is a necessary and sufficient criterion for

separability, and is stated in a local invariant form as [57]

1 ? 1
detAdetB + (Z - \detC’\) —Tr(AJCIBJCTT) > Z(detA + detB)
1
& 4(ab — c})(ab — 3) > (a® +b*) + 2lerca| — ~ (1.160)

It is useful to note that Gaussian states with det(C) > 0 are separable.
In the case of symmetric two-mode Gaussian states specified by parameters a, b = a

c1 and c9, it is possible to solve for the entanglement of formation. It is given by [70]

(&) = e (A)logley (A)] — e (A)logle—(A)],  where
. = (A3 +A3),
A = 2v/(a—c1)a+c). (1.161)

The function f is a convex and decreasing function of A. We will study the EOF of

general two-mode Gaussian states in Chapter 4.

1.9.3 Gaussian completely positive maps—Gaussian channels

A Gaussian completely positive map (or Gaussian channel) is any completely positive map
which takes Gaussian states to Gaussian states. It was discussed initially in [149, 157], and
more recently in [158, 159, 281-288]. In [158, 159, 281, 284, 286| single-mode Gaussian
channels were discussed and classified, and issues regarding their channel capacity were

studied. More recently multi-mode Gaussian channels have been classified in [287, 288|.
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Gaussian channels can be realised very much in the form of Eq. (1.26) and Eq. (1.27).
But now one has to be careful to maintain the Gaussian character of the state. Given
a Gaussian state p, a simple way to generate the most general Gaussianity preserving
map is to couple the given state to an auxiliary or ancilla Gaussian state, then evolve
them together with a unitary evolution corresponding to the most general Gaussian
preserving unitary, i.e., the unitary operator in this case consists of unitaries generated
from canonical transformations corresponding to a symplectic group element and an
arbitrary phase space translation, then trace away the auxiliary system. Clearly, all
the operations done are canonical Gaussianity preserving operations. Thus the resultant
state is Gaussian for every Gaussian input. The variance matrix of the resultant state is

related to the variance matrix of the input state in the following way :

V- XTvx 4y,
X,Y € R72n, (1.162)

Clearly, X acts on the variance matrix through congruence and Y is the additional noise
matrix. Here X and Y are chosen so that the uncertainty principle is respected. We will
have more to say on them in Chapter 6, where we derive the Kraus representation for a

class of single-mode Gaussian channels.
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Nonclassical photon statistics and entanglement

2.1 Introduction

In this Chapter we explore the relation between entanglement and nonclassicality. Non-
classicality and entanglement are two important features exhibited by continuous vari-
able states. It is well known that nonclassicality is a prerequisite for entanglement. Two
canonical manifestations of nonclassicality have been extensively studied in the quantum
optics context: (1) squeezing [116-135], and (2) antibunching or sub-Poissonian fluc-
tuation, which is a particular manifestation of nonclassical photon statistics [289-323];
these are respectively nonclassicalities of the phase-sensitive and phase-insensitive types.
Whereas the former has been well explored as a source of entanglement in the context of
Gaussian states, the same cannot be said in respect of the latter.

Recalling the definition of nonclassicality in Eq. (1.104), every classical state is a
convex sum of coherent states, and hence separable. In general, nonclassicality does
not imply entanglement, but there is a useful connection between nonclassicality and
inseparability, and the beam splitter plays an important role as a bridge between these
two attributes. The seminal work of Asboth et al. [171] shows that the output state ﬁg‘fl?
of a beamsplitter represented by a unitary operator U, whose input is a product state
ﬁi(sb) = 5@ @10),(0], is entangled if and only if the single-mode state p(*) at the input is
nonclassical. [Thus any measure of entanglement of the output state in this configuration

is a computable measure of nonclassicality, the entanglement potential (EP) of 5(®)].

For states of the form ﬁ((:l? = Up' @ [0),(0|U*, entanglement in ﬁgﬁ) is clearly
dictated by the nonclassicality of 5(*. Thus to test for entanglement of ﬁgﬁ), one has

to conclusively answer the question as to whether a given state p(%) of a single mode
of radiation field is classical or not. Furthermore, given the fact that negativity under
partial transpose (NPT) is a prerequisite for distillability [45], an issue of interest is as

to when is ﬁg?ll? NPT, and if so, is it distillable. If one is able to answer some of these
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(ab)

out » then one may proceed further to address

(ab)
out

qualitative aspects of the entanglement of p
quantitative aspects like the measure or content of entanglement in p, . We attempt to
answer these questions for a special class of states.

For the states p(® of the a-mode which are diagonal in the standard Fock basis and
hence phase invariant, the issue of classicality /nonclassicality has already been settled
[170], thanks to the Steiltjes moment problem [324]. We exploit this result to advantage.
To begin with, we briefly review the earlier work in [170]. We introduce the notion of
phase-insensitive nonclassicality and the classification of states that it leads to. This
leads to demonstration of the the equivalence of the issue of classicality /nonclassicality
of the phase invariant states to a Steiltjes moment problem.

We then briefly describe the two equivalent approaches in the description of the
problem; one through the factorial moments {~,,}, and the other through the photon
number distribution or PND sequence {g,}. We discuss two equivalent approaches to
application of partial transpose in the context of continuous variables, firstly through its
direct execution on the state through a chosen basis set, and then in a slightly indirect
way through its manifestation on the moments using the technique introduced in Section
1.8.2.

This is followed by a brief discussion of the SU(2) beamsplitter which serves our
purpose as an entangling device. We show that with ﬁi(gb) = p\% @ ]0)43(0| as input,
the two-mode state after the beam splitter is definitely NPT if 5(® is nonclassical of
the phase-insensitive type. That is, the output two-mode state is NPT if any one of a
sequence of classicality conditions on the PND sequence {¢,} is violated. We bring out

(ab)
out

the complete equivalence between PPT of j, and classicality of 5(9), thus proving that

for this restricted class, NPT is a necessary and sufficient criterion for entanglement.
(ab)

o is distillable if 5(®) violates any one of the three

Having done so, we show that p
term classicality conditions we derive, or if 5@ is antibunched. The establishment of
the equivalence of inseparability and NPT of ﬁgﬁ), ensures negativity as a good measure
of entanglement in this context. We establish simple upper and lower bounds on the
entanglement of formation (EOF) for two simple cases of nonclassical PND. For the
simple case of p(* being a mixture of the ground state and the n'™ Fock state, we show
that we can distill more entanglement than indicated by a lower bound for EOF in
[76, 325], which is based on the Terhal-Vollbrect formula [69], which returns the EOF

exactly for isotropic states.
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2.2 Phase-insensitive nonclassicality for a single mode of ra-
diation field

Consider a single mode of quantised radiation field, with creation and annihilation op-
erators a', G obeying the standard commutation relation [@,a'] = 1. A general state of
the field is described by a density operator p which is hermitian nonnegative and has
unit trace. According to the diagonal representation theorem [112], it can be expanded

diagonally in the coherent state basis as

22
p) = [ 220 20}l (21)

the integration being done over the entire complex plane. Here |z,) is the coherent state

defined as the eigenvector of a; expanded over the Fock basis it reads

1 S
|2a) = exp <—§]2a\2> nzo \/HW“' (2.2)

The weight function ¢(z,) is real on account of hermiticity of 5(*), and normalised to

unit integral on account of unit trace of p(® :

22
[ o) -1 2.3)

™

However it need not be pointwise positive on the complex plane (phase space). This fact
leads to the classification of states as classical and nonclassical. States whose ¢(z,) is
pointwise positive are said to be classical, and any state described by a ¢(z,) which is
not pointwise positive is deemed nonclassical.

With z, = re?, in general ¢(z,) depends on both r and §. However for a special
class of states, states which are invariant under evolution by the hamiltonian a'a, ¢(z,)
is a function of |z,| alone. These states are diagonal in the Fock basis and are said to be
phase-insensitive. The diagonal weight ¢(z,) describing such a state is radially symmetric
in the complex plane and this radial dependence of ¢(z,) alone is sufficient to describe

the state completely. We denote this family of states by D, and its elements by ﬁ%) eD:

P =S pm)ny(nl, Y pn)=1, p(n)=>0,
n=0 n=0

[oe) I'I’L
p(n) = (nlp@n) = / ALP()e 2, n=0,1,2,...
0 n.
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where
?(20) = ¢(|za]?) = 20P (1), /OO dI,P(I,) =1. (2.4)
0

Here I, = |z,]?>. The above relation is invertible, and P(I,) can be written in terms of
the p(n)’s:

P(l,) = el /0 h dKA(K)Jo(2VKI),

M) = Y (R (25)
n=0 ’

where Jy is the Bessel function of order zero [170]. This invertible relationship implies

every state ﬁ%) in the family D is completely specified by the radial weight P(I,).
Alternatively, one can view these states from the perspective of observables. Any

hermitian observable can always be written as a function of @ and &' in normal ordered

form, F(af,a). Tts expectation value in the state p\@ is given by
(F(a'a)) = Tr(pF(al,a)

2Z
_ / dwagb(za)F(z;, ). (2.6)

If in particular F(a',a) is phase insensitive, i.e., F(a',a) = G(a'a), then its expectation
value does not require all the information in ¢(z,), a simpler phase averaged distribution
P(I) suffices:

F(ate™ ae™@) = F(a',a) Va € [0,27) =
00 11
(F(a'a)) = / dI,P(I)F(I2,12),
0

2m de 1 ;
P = [ gt

/OodIaP(Ia) = 1L (2.7)
0

We can regard P(I,) as the real marginal radial distribution obtained from the complete
®(z,). Every phase-insensitive observable sees only the diagonal element of @ in the
Fock basis. This leads us to define the photon number distribution or PND of a state
as these diagonal entries p(n). The PND sequence {p(n)} of a state is defined through

phase averaging the state, which amounts to simply dropping the off-diagonal elements
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of p(*) in the Fock basis:
A(a) i0ata s(a) —ifata
0 — e Ve do
= > p(n)n)(nl,
n=0

> pn) = 1, p(n)>0. (2.8)
n=0

With the two quantities ¢(z,) and P(I,), one can set up a three-fold classification of

nonclassicality of states:

P\ classical < ¢(za), P(I,) > 0;
P\ weakly nonclassical < ¢(z,)

P\ strongly nonclassical < ¢(z,) (2.9)

But when one is dealing with phase-invariant states ﬁ%) i.e., a PND {p(n)} or alterna-
tively only with phase-insensitive observables, the following classification of nonclassical-

ity suffices:

P9 classical < P(I,) > 0;
A9 nonclassical < P(I,) # 0. (2.10)

Genuinely classical states cannot be distinguished from weakly nonclassical states at the

phase insensitive level.

2.2.1 Phase-insensitive nonclassicality and moments

Given a phase-invariant state, it is useful to ask if it is classical or not, i.e., if its corre-
sponding P(I,) is pointwise positive or not. Clearly, P(I,) is function on the real axis
with the parameter I, going from zero to infinity. A simple test of positivity of P(I,)
will be to take its overlap with a finite degree polynomial f(I,) which is itself pointwise

positive in the real axis, and see if the overlap is positive, i.e.,

PU) =0 = [ dnPu)fm) 20,
0

o0
fla) = D ed" >0, 0<1, < 0. (2.11)

n=0
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The overlap integral returning a negative value would imply that P(I,) could not have
been pointwise positive and hence that the state in consideration was nonclassical. Thus
every positive polynomial f(1,) results in a necessary condition for classicality. It is useful
to note that the function f(I,) being pointwise positive does not require the coefficients
in its expansion to be positive. A simple example is the case of square of a polynomial
which has coefficients of both signs in its expansion.

There are several signatures of phase-insensitive nonclassicality. The most familiar is
the Mandel’s criterion, which distinguishes between super and sub-Poissonian PND’s. A

state with a sub-Poissonian PND is said to be antibunched. For an antibunched state

(AN —(N2) = (N2) = (N)” = (W)

— /OO dI,P(I,) (1, — (1))
0
— (AIG)Q <0, where

/0 h dI,P(I)(I) = > np(n)=(N,), and

n=0
/oo dI,P(I,)(I, + 1), = ian(n) = (N2, (2.12)
0 n=0

indicating that P(I,) # 0.
Clearly, Egs. (2.11) and (2.12) are indicative of the fact that classicality /nonclassicality

of a state ﬁ%) is a statement on the moments of its corresponding P(1,). For a classical

,6%1), its corresponding P(1,) is a well defined probability distribution, and the set of all
its moments completely specifies it. We note in the present context that a complete set
of necessary and sufficient conditions expressing the content of the classicality condition
P(I,) > 0 is the Stieltjes moment problem [170, 324]. The pointwise positivity of P(l,)

is completely captured in its moments (factorial moments) which are defined as
oo
Y = (@™ma™) = / dI,P (1)1
0

= > = Z!m—)!p(n +m),
=0

=0,1,2,.... (2.13)

3

3

Given the factorial moments,

Theorem 2.1 The necessary and sufficient conditions for a state ﬁ%) specified by facto-

57



Chapter 2. Nonclassical photon statistics and entanglement

rial moments {y,} to be classical is

MWN >0, MWN >0, N=0,1,2,..., where
Y0 71 Y2 YN
M) 7'1 Y2 V3 0 UN+1 _ and
YN  YN4+1 YN42 0 2N
a! V2 V3 Tt YN+l
~ 72 73 Y4 o YN+2
M — _ * ) (2.14)
IYN+1 YN+2 TYN+3 - Y2N+1

Proof: The necessity part of the theorem follows from taking expectation value of a
pointwise positive polynomial over [0,00) with P(1,). For example, consider the polyno-
mial f1(I,) = 27]:7:0 eI, where ¢, are arbitrary real coefficients. If P(I) is pointwise

nonnegative, we will expect ((fl(Ia))2>P > 0. That is

(hL))p =

CmCn (I;n+n>7>
0

CmCnYm+n
0

Il
M= 2= £ 1=

CanngL) >0

m,n=0

= MW >0 for every N. (2.15)

Similarly, defining the polynomial fy(I,) = ZQLO d,I} and evaluating the expectation

value of the nonnegative quantity I, (f2(Z, a))Z with respect to a pointwise positive function
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P(I), we have

N

<Ia(f2(Ia))2>P = Z dmdn<Ign+n+1>p

m,n=0

N
= Z dpm, dn'7m+n+1

m,n=0
N
m,n=0

= MW >0 for every N. (2.16)

Thus nonnegativity of P(I,) implies that M) and M) are positive semidefinite for
every N. The sufficiency follows from the fact that every pointwise positive polynomial
f(Is) over [0,00) can always be written in terms of two perfect square polynomials as
[324]

Fa) = (f1(1a))* + La(f2(La))*. (2.17)

A simple subset of classicality conditions on the PND is given by the positivity of
2 x 2 sub-matrices (principal minors) of either M) or M), That is

( Y2m Ym—+m/ > >0, ( Y2n+1 Yn+4+n'+1 > >0. (218)

Ym—+m' Yom! Yn4n/+1 Yon/4+1

The violation of the inequality for the choice m = 0 and m’ = 1 corresponds to the
Mandel’s criterion encountered earlier in Eq. (2.12). Any classicality condition, involving
the 7’s can be deemed global in {p(n)} in the sense that they involves all the p(n)’s in
its description.

An equivalent approach to the problem is through the definition of the auxiliary
distribution P(I,) = P(Iy)e '*. It is clear that if P(I,) is pointwise positive, so is
P(I,)e . We have the following equivalence :

Classical PND < P(I,) >0 < P(I,) > 0. (2.19)

In contrast to the factorial moments, the moments of P(I,) are well defined even if P(I,)
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is not a well defined probability distribution, i.e.,

gn =nlp(n) = /000 dI,P(I)I",
P(l,) = P(l)e . (2.20)

So it is now possible to redefine the classicality requirement of ﬁ%) as the requirement

of having 75(1'@) to be well defined probability distribution. The necessary and sufficient
conditions on P(I,) to be true probability can now be cast in terms of moments g, of

P(I,). Given the moment sequence {g,},

Theorem 2.2 The necessary and sufficient conditions on the PND sequence {q,} in
order that the associated distribution P(I,) be a true probability distribution over [0, 00)

are

LM >0, LW >0, N=0,1,2,..., where
q0 q1 q2 qN
q1 q2 q3 ot dN+41
L) — _ , and
gN 4N+1 gN42 92N
q1 q2 q3 ot 4N+1
~ q2 q3 44 ot 4N42
pm_| (2:21)
gN+1 4N+2 4N+3 0 @2N+1

This means that L) and L) are positive semidefinite for all N. The proof is analogous
to the previous case.

A simple necessary condition on classicality of a PND {p(n)} is a three term classi-
cality condition, which is derived from the positivity requirement of any of the principal
2 x 2 minors of L) and L&), That is,

( dom m+m’ > >0, ( q2n+1 An+n'+1 ) >0. (222)

qm+m/ qom! dn+n/+1 qon/+1

At the next level in the hierarchy we get a five term local condition by requiring the
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diagonal 3 x 3 blocks of L") and LM to be positive semidefinite, i.e.,

gn—2 Qn—1 An
Ay = dn—1 dn dn+1 >0 (223)
dn gn+1  4n+2

An interesting situation that arises naturally in this context is that all the three term
conditions contained in A,, could be satisfied but still A,, need not be positive semidefinite.
Such a situation becomes interesting in the context of distillability which we discuss later.
Any classicality condition involving the moments of P(I,) can be deemed local in {p(n)}
to the conditions in terms of the factorial moments, as the former involve only a finite
number of ¢,’s in their description.

To summarise, we have described two equivalent approaches in describing phase-
insensitive nonclassicality, both of them leading to necessary and sufficient conditions
on the PND {p(n)}. In the next Section we demonstrate how we could extract useful
entanglement from a nonclassical PND. We convert the failure of the conditions given in
Eq. (2.14) and Eq. (2.2) into witnessing of NPT entanglement.

2.3 Entanglement, Partial Transpose and Nonclassicality

We now turn to the partial transpose (PT) operation. The density matrix pap of a
bipartite system S = A + B is an operator on the tensor product Hilbert space Hg =
Ha ® Hp. Any density operator pap obeys three defining conditions: pi‘B = pPAB,
Trpap = 1, and pap > 0. With respect to chosen orthonormal bases (ONB) {|j)},
{|a)} for H4 and Hp respectively, the product states {|j,a) = [j)®}|a)} give an ONB
for H4 ® Hp. The partial transpose of p4p is the operator ﬁﬁg on H4 ® Hp defined in
this ONB by the rule

(j, ol pl Bk, B) = (4, Blpaslk, o). (2.24)

The above definition of partial transpose is tied to the given choices of ONB’s in H 4 and
‘Hpg, but the question of whether ﬁﬁg is a valid density operator or not is independent of
this choice.
In general ﬁﬁg could fail to be positive, and the key result is: if ﬁﬁg is not positive, then
phL is definitely an entangled state. In this case we may say that ph% is negative under
partial transpose (NPT).

Any test which establishes the nonpositivity of ﬁljg will suffice to reach the conclusion
that pap is entangled. We may for instance be able to find an operator A of the total

system S such that the ‘expectation value’ of the positive operator AtAin ﬁﬁg is negative.
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In that case we can conclude,

Tr(,é]jgfﬁfl) < 0, for some A
=  pap entangled. (2.25)

Alternatively, and in a sense more directly, we may be able to find some principal sub-
matrix of the matrix ((j, a|p4 5|k, B)) representing ph%, i.e., a sub-matrix formed by
intersections of any subset of rows of this matriz and the corresponding columns, such

that this sub-matrix is not positive definite. Then again we can conclude,

Some principal submatrix of ph5 # 0

= pap entangled. (2.26)

We will use both strategies in the sequel.

Our aim is to connect presence of entanglement directly and transparently to non-
classicality, atleast for a class of states of the radiation field. We therefore specialise the
subsystem a and b to be two distinct mutually orthogonal single mode radiation fields,
with respective creation and annihilation operator pairs af, @ and Z;T, b acting on Hilbert
spaces H®, H®, the only non vanishing commutators being [, a'] = [l;, BT] = 1. The Fock

or photon number states for the two modes provide ONB’s for H?, H’ respectively,
In) = (n)"2@""0)a, |m) = (m)T2BN"|0),, nom = 0,1,2,...,  (2.27)

and the product states |n,m) = |n), ® |m); form an ONB for H® ® H’. For definiteness
and convenience we will implement the PT operation in the Fock or photon number basis,
so that the transition p@ — pEPT g defined by,

@) |, m). (2.28)

(n'm/ | [n,m) = (n,mlp
Then we easily find
Tr (plVPTaligkptlymy = Tr (plPatigkpimyhy. (2.29)

The key point here is that in the Fock basis the operators i), b are represented by real
matrices, so the transposition operation for the matrix of bitp™ coincides with hermitian

conjugation. This result will be very useful in the sequel [227, 228|.
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2.4 Conversion of nonclassicality into entanglement — the

Beamsplitter

We begin by recalling the action of a general linear lossless optical element on any input
state of two mode a-b radiation field. Such an element is determined by some matrix
u(f, ¢,m) of the unitary unimodular groups SU(2) [326],

(2.30)

e cosf  esinf
u(0, ¢, m) = (

—e Mgsinh e cos b

[More generally, including an overall phase, we have a matrix of U(2)]. The action of this
optical element or gadget on the mode operators is by unitary operator U(6, ¢,n) on the

two-mode Hilbert space H* @ H’:
) . (2.31)

>
[w P

U(8,6,n) ( ) U0, 6.m) " =u(®,¢,n) (

U(f,¢,n) can be written in the following form

ue,o,n = e_i(¢_")i3e_iGEQe_i(¢+")L3, where
o 1 o ~
oo Losth st
2 22,(a b—ab"),
~ 1 PN
Ly = §(aTa—bTb). (2.32)

Such a transformation preserves the canonical commutation relations. The case of 50:50
beamsplitter (B-S) corresponds to § = w/4, ¢ = n = 0, with Uy = e "1l2 for the

corresponding unitary operator, in which case the mode operators transform as

Upaly ™t = —a+ b), UphlUp™t = —5b-a),
1 5 - 1 -
Uy taly = —=(a—b), Uy 'bUy=—=(b+a). (2.33)

We will use only such a B-S for the purpose of demonstration, but our results hold for
the general U(2) beamsplitter. In Fig. (2.1) we give a schematic depiction of the action
of a 50:50 beamsplitter.

63



Chapter 2. Nonclassical photon statistics and entanglement
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Figure 2.1: The action of a 50:50 beamsplitter on the mode operators.

2.5 The case of phase-insensitive nonclassicality

In this Section we demonstrate through selected tests, the equivalence of phase-insensitive
nonclassicality at the input to the violation of positivity under partial transpose for the
output state. We follow our first strategy, Eq. (2.25), to demonstrate the equivalence.
Let us take the input state to be in the product form,

(ab .

) = 5 @ [0y 0], (2.34)
with the b-mode in the vacuum state. After passing through the beamsplitter, we have

the output state

(ab ~(ab) rr—
Pl = Uopls" UG (2.35)
We now perform the PT operation on the state ﬁg?ll? leading to operator ﬁg‘fﬁ)PT, and test
for its positive semidefiniteness. Making the choice
N
A=>"cpamh", (2.36)
n=0
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and taking the expectation value of At A with respect to the partially transposed output

state, we have
Tr(pla 7T ATA) = 3 e (ol atmanbimir). (2.37)
n,m=0

The expectation values of operators on the partially transposed state can now be related

to expectation values of operators on ﬁ(“), ie.,
T i) = TGl

— (pl(gb) U laTm ann pm UO)

1 al LN AL M, Am
= S D@ -8 @ - 5" @ +0h @+ ")
= 2zm1+znT1‘(ﬁ(“) flmtm)glmtn)), (2.38)

Here we have used the fact that the b-mode is in the ground state initially. Thus we have

N
TEITAR) = Y e Tamanimin)
n,m=0
N
— m A m+n) ~(m+n
= Z 22sznTr(p( @) gtm+n)g(m+n))
n,m=0
Yok e
B g—mm 92n 7m+n(ﬂ(a))
n,m=0
N e e
n,m=0
which implies that if M) (5(@)) # 0, then definitely pgﬁ PT # 0. Similarly for the choice
N ~
A=Y dpa" o, (2.40)
n=0
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we have

A(ab)PTATA)

out

which implies that if M) (5(®)) # 0, then definitely

Z d d T 0617«3: PT T(m+1) (n+1)bT(m+1)Bn)
n,m=0
N
Z dQ—dTT( (a) t(m+n+1) » (m+n+1))
n,m= 02 2
N
Ay, dn A(a
Z 92m+1 92n+1 Y ()
n,m=0
N
dy  d, -~ .
> 92m+1 92nt1 M) (0), (241)

n,m=0

~(ab)PT

Pout 2 0. Thus if the input in

the a-mode p(@ possesses any form of phase-insensitive nonclassicality, the output of the

beamsplitter is NPT entangled. In particular if the input is antibunched, the output is

NPT entangled.

2.6 The case of general nonclassical PND

Consider a state diagonal in the Fock basis which is completely determined by its PND

probabilities {p(n)},

Now pass the two-mode state

through a beamsplitter. The output two-mode state is

(ab) _

pout - Uop(r(f)U -

1

Py = Zp (2.42)
) = 05 @ 10y (0], (2.43)
Uo Zp )"10,0)(0,0/(a)" Uy
2£%T+wﬂammmm+@"
Z p(n)n! i |r,n —r)(s,n — s ‘ (2.44)
2n o0 Vrl(n—r)lsl(n — s)!
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The general matrix element of this density matrix is

(n+ m)lp(n + m)

ontm/p I/ Inlm!

’ ~ b
(' | | m) = 8

(2.45)

The partially transposed output state is given by

n
(ab)PT p ’I’L' |T‘,TL—S><S,TL—’I“|
Pt Z o D : (2.46)

20V =r)lsl(n — 5)!

therefore the matrix elements of ﬁgﬁ)PT are given by
(' m 1pE " nym) = 6 ,— Inim
) out n +m,n+m 2n+m' n/|m1|n|m'
qn+m'
= 5n/7m/,n7m . (247)

on+m’ \/n/\m/ \nm)

We note that [)(ab)PT commutes with the difference operator N, — Nb, ie.,

out
% o\ A(ab)PT A(ab)PT ;x> Y
(Na - Nb) Pout = Pout (N - Nb)
_ Zp Z (s—i—r—n)\r,n—sﬂs,n—r\‘ (2.48)
2" o' Vrl(n—r)lsl(n — s)!
Thus the operator ﬁg‘fﬂ)PT is simply a direct sum of operators, each specified by the energy

difference §. Thus § can be employed to label these invariant subspaces :
(ab) ~(ab)PT (5
Pc(;lllt Z @ c(;lllt (2.49)

A test for entanglement would be to look for violation of positivity in any of these
subspaces.

It is clear that 6 can take both negative and positive values. We define ¢ to be
positive if the b-mode has more number of photons. The matrix elements of ﬁg?j?PT in

the subspace specified by ¢ is given by

(n' 0" +0pL i+ 8) = (0 + 6,0 [pL T In + 6,n)
= Inin’ +6 (2.50)

i i ificati : ~(ab)PT(6) . .
With a slight modification of notation let us denote by pg ¢ the restriction of j
to the subspace N, — N, = 8 > 0, and by p( b)PT(~9)

out

(ab)PT
out

the restriction to Nb —N,=6>0.
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With the definition of the matrix elements, it is easy to see that the operators ﬁg‘fﬁ)PT(é)
(ab) PT(—5) . .
and Py ¢ for a given choice of § are
ﬁ(ab)PT(‘S) _ Z qn—l—n/—f—&’n o+ 5> <7”L, n+ 5‘
out B ntn'+8 /() I I’
- 2 VR0 + 8)nl(n + 6)!
A(ab)PT(-6) Z C]n+n/+5|n +4,n ><’I’L + 9, ’I’L| (2 51)
out - +n/ 45 AT T T .
- 2ntn'+3, /n/1(n" 4 6)Inl(n + 6)!
With the appropriate choices of basis vectors, both of them are given by
~(ab)PT(£6)  _ dia 1 "
Port S o
a5 45+1 45+2 -+ 45N
4s+1 46+2 45+3 -+ 95+N+1
: X
45+N  46+N+1 4d5+N+2 - d54+2N
) 1
diag = . (2.52)
2"t3 . /nl(n + 0)!
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In particular, for the choice of § = 0 and 1, we have

a . 1
A0~ g LY

"n'l
q0 q1 q2 - 4N
q1 q2 qs3 - gN+1
. 1
diag <2nn!> ,
gN 4N+1 gN+2 .- Q2N
ﬁ(ab)PT(l) — diag 1 »
o 275 /0 (0§ 1)!
q1 q2 q3 - gN+1
q2 q3 44 -« gN+2
X

gN+1 4N+2 4N+3 -+ (q2N+1

diag ( - ! ) . (2.53)
22 /nl(n + 1)!

It is clear from Eqs. (2.52) and (2.53) that positivity of any ﬁgﬁ?PT(‘S) is subsumed in
. . (ab)PT(0) __ (ab)PT(1) . .
the positivity of either gy, Or Doyt , depending on whether § is even or odd,

which is in turn equivalent to the positivity of L) or L&) for arbitrary N. Taking into
account all N, we have the following equivalence

LM >0 and L) >0 < pEPT > g

LM %0 or I 20 o plFT %, (2.54)

out

Our conclusions may be summarised in the following theorem :

(ab)

Theorem 2.3 With p,~ = ﬁg) ® |0)p5(0| as input to a beamsplitter, the output two-
(a)

mode state is NPT entangled if the phase-insensitive py’ at the input is nonclassical. If

the output is PPT, then it is separable, and the input ﬁ%) 15 classical.

It follows that PPT bound entangled state can never arise at the output of the beam-

splitter in this situation. Stated differently

Theorem 2.4 For states of the form ﬁ(ab) U ([)%) ® [0)45(0]) Uyt, the partial trans-

out —

pose map proves to be a necessary and sufficient test for entanglement.
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(ab) PT (ab)

Proof: If p,,/" ~ is not positive, then pg

hand by the equivalence that we have established above if p

is NPT and hence entangled. On the other
(ab) PT
out

then both L) and L) are positive definite for arbitrary N, and hence p
by Theorem (2.2). It follows that ﬁ(ab) is classical, and hence separable.

out

is positive semidefinite,
(ab)

in

is classical

Corollary 2.1 For states of the form [)(()?3) = Up (ﬁ%) @ |aypplal) Uyt, where |a) is a
coherent state, partial transpose gives a necessary and sufficient test for entanglement.

That s, states of this form can never be PPT bound entangled.

Proof: If ﬁg) was classical, the output is classical, and hence separable. On the other
hand if ,6%1) is nonclassical, the output is definitely NPT entangled, as may be seen by
carrying out partial transpose test in the b-mode with respect to the displaced Fock basis
of the b-mode as compared to the standard Fock basis in the earlier case.

The proof outlined above can be easily translated to the case of general beamsplitter
represented by an element of U(2), even though we have demonstrated the proof only in
the case of the 50:50 beamsplitter. The result in this Section is remarkable in the sense
that one has been able to relate matrix conditions on nonclassicality to matrix conditions
on the violation of positivity under partial transpose in a transparent manner. This is
a manifest example in continuous variable entanglement theory where partial transpose

has proved to capture entanglement completely, in a non-Gaussian context.

2.7 Nonclassical PND and distillable entanglement

Having produced NPT entangled output, it is pertinent to ask if the output is distillable,
NPT being a necessary condition for distillability [45]. In this Section we demonstrate
that ﬁgﬁ) is distillable if the a-mode input state ,6%1) violates one of the three term local
classicality conditions. The strategy we use is the one outlined in [45], where distillability
is defined in the following terms. A state p is distillable if and only if, for some two
dimensional projectors P, Q and for some number n, the 2 x 2 state P ® Qp®"P @ Q
18 entangled. Such a definition is well motivated from the fact that for 2 x 2 systems,

there are well defined protocols to distill entanglement from every entangled state [37].
(ab)

In our case we show one copy distillability by projecting the output state p,,, into an
appropriate 2 x 2 subspace.
Consider the following 2 x 2 dimensional projectors
P® Q= (In)(n|+ |m)(m|), ® (|n + §)(n + 8| + |m + 6)(m + 6]),. (2.55)
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In this 2 x 2 subspace, the partially transposed output reads as

P Qﬁgﬁ)PT PRQ = D Q2n+s  9nt+m+s D, where
dn+m+5 P2m+s

1
2"+% n!(n—i—é)! 0
D = 0 2 ) . (2.56)

)
2m+§‘/m!(m+%)!

in this particular subspace is clearly determined by the

three term classicality condition on the a-mode input state ﬁ%).

(ab)PT
out

Clearly the positivity of p

Theorem 2.5 The output ,af,‘ff? = Uy (ﬁg) ® |0)45(0]) Uyt is one-copy distillable if ﬁ%),

fully specified by the PND {p(n)}, violates any one of the local three term classicality

conditions.

Though we have demonstrated distillability through the violation of a local three term
classicality conditions on {p(n)}, the issue of distillability is much richer. There are states
which respect all local three-term classicality conditions, but are nevertheless nonclassical
by violation of a higher order nonclassicality condition, say a five term local classicality
condition. Though such a violation would imply the violation of positivity of ﬁg‘fﬁ), this

violation is not captured by a simple rank 2 state as earlier, indicating room for further

exploration of the issue of distillability in the present context.

2.8 Distillable entanglement from antibunching

In the previous Section, we discussed the issue of distillability arising from the violation
of a classicality condition in {p(n)} which is local in n. In this Section,

we explore the possibility of distillable entanglement through the violation of three-
term classicality condition in {~,}. Since antibunching is a viable resource within cur-
rent technology, we explore the possibility of extracting distillable entanglement from
antibunching, violation of a classicality condition involving -, for n = 0,1,2. The proof
is then extended to more general nonclassicality conditions involving three ~,’s. Our
strategy is as follows. For a given ﬁg), we initially assume that none of the three term
conditions on {p(n)} is violated. We show that such a state can never be antibunched.
Hence at least one three term conditions in {p(n)} has to be violated for ﬁ%) to be
antibunched, implying distillable entanglement at the output.

Our idea is to use the relation between the factorial moments {v,} and the PND
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probabilities {p(n)} stated in Eq. (2.13):

o0

= i ) = $ Gt (2.57)

n! n!

It is easy to see that the most general {q,} which meets all the three-term classicality

conditions is

) b2 2b3 9 3b4
=a, =0, = a1—, = 0] —, = azo50q—
40 a1 q2 1 43 20173 44 3020173
—9 po1 b
""" n = Q105 -0 20‘? 1an—17"',
a>0, b>0, aj 21, j=1,2,3,---. (2.58)

Clearly, b = 0 if and only if ﬁg) =10)(0|, and all the a;’s are unity for a coherent state.

It is readily verified that all the local three-term conditions are satisfied. It is useful to

define the sequence of numbers {\,} as functions of the a’s:

2
=1 XN=ai, \=mmaj, -,

With this definition, it is easy to see that the set of inequalities on {\,}
)\nfrJrl)\rfl > Anfr)\r (260)

is equivalent to the set of all three-term classicality conditions on {g,}. We can now

write

oo bn+2 )\n o )\n

'70'72_'7%: n [( Hv )+
a n:

n=0
S vt hrt = A h) [ — = (2.61)
— n—r+1A\r—1 n—r/\r (’I’L — ’I“)!’I“! (TL —rt 1)'(7“ — 1)' . .
r<3g

Clearly y9y2 — 73 is positive if all the local three term conditions are satisfied. Thus a
state cannot satisfy all the local three term classicality conditions on {g,} and still be
antibunched. If a PND is antibunched, it definitely violates at least one of the three
term classicality conditions. Hence the output generated from the beamsplitter from an

antibunched ﬁg) is necessarily distillable.

(ab)
out

Theorem 2.6 The output p,,, = Up (ﬁ%) ® [0)45(0]) Uyt is distillable if ﬁg), specified
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by the PND {p(n)}, is antibunched.

The proof can be extended along similar lines to demonstrate distillable entanglement

from violation of any three-term classicality condition in the factorial moments {7, }.

2.9 Bounds on the EOF

It is well known that determining the EOF of a given state is an extremely difficult
problem even in the finite dimensional case. Only in very special cases has one been
able to solve for a closed form expression [67, 69-72] for EOF. In the continuous variable
context progress has been achieved only in the case of two-mode Gaussian states [70, 327].
The issue of establishing bounds on the EOF for finite dimensional systems has been
discussed in [76, 328-330]. In [328] the possibility of establishing bounds on EOF directly
from experiments has been discussed. An analytic expression for a lower bound on the
entanglement of formation for arbitrary m ® n dimensional systems is given in [76, 325].
In [330] an improvement over the lower bound in [76, 325] is demonstrated. However this
improvement holds only in the context of 4 ® n dimensional systems.

Our motivation here is to establish simple lower and upper bounds on the EOF
on a class of entangled non-Gaussian states that could arise from a nonclassical PND.
Our guiding principle tool is the fact that the average entanglement does not increase
under LOCC [37]. Such an approach has already been used to estimate entanglement in
continuous variable states [262, 331]. In [262] the estimation was done at the phase space
level, and in [331] at the configuration space level. However the estimation in [331], being
tied to the Wootters formula, has a drawback that it cannot estimate more than one ebit
of entanglement, even if more was present. We work with the Fock basis since it seems
to be the most appropriate choice in the present context.

Our scheme of things is as follows. By restricting ourselves to local Von Neumann
measurements we evaluate the entanglement in each of the orthogonal subspaces. These
subspaces are the probable outcomes of the local measurements, the average gives us a
lower bound on the entanglement of formation. That we are able to calculate the entan-
glement in each of these subspaces is ensured by a careful choice of local measurements,
so as to ensure that the outcome is a pure entangled state. We explore this procedure
firstly on a finite dimensional entangled state generated from a mixture of the ground
state and the n'® Fock state by coupling to an auxiliary mode in the ground state and
passing through a 50:50 beamsplitter. In the process we explicitly demonstrate that we
can distill more amount of entanglement for the cases n > 6 than given by the lower
bound on EOF in [76], which uses the Terhal-Vollbrect formula [69], and is calculated
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using the trace norm of the state subjected to either partial transpose or the realignment
criterion [75, 332, 333]. We then go on to establish bounds on the EOF of a class of
genuine continuous variable entangled states generated from a PND corresponding to a
special superposition of coherent states, where we are able to provide an analytic expres-
sion. That we are able to do so, is again due to a careful choice of local measurement
observables. Such an evaluation does not involve any optimisation whatsoever in terms
of the choice of the local measurements involved or of additional improvements based on
classical communication if possible, but it is nevertheless a reasonable estimate from a
more practical point of view when one is dealing with such states. In the more general
context, we outline a possible method which uses the Terhal-Vollbrect formula [69, 76],
to establish lower bounds on the EOF. Before proceeding any further, it is appropriate

to discuss negativity in our context, which will prove useful in our analysis later.

2.9.1 Negativity

As noted in Section 1.6.4, the logarithmic negativity E(pap) of a state pap is [75]

E(pan) = logs||papl|. (2.62)
where ||pfL]|| is the trace norm of pL%:

1645l = 1+ 2N (p5)- (2.63)
N (phE) is the absolute value of the sum of the negative eigenvalues of 4%, the negativity

of pap. For a state of the form

Pt = Uo by ® [0)e (0] Uy (2.64)

where Uy corresponds to the unitary action of a 50:50 beamsplitter, we have already seen
(ab)P

out T splits into a direct sum of

in Eq. (2.49) that the partially transposed matrix p

operators, labelled by 9, the number difference :

ﬁ(()ﬁ)PT _ Z @ﬁgﬁ)PT(é)- (2.65)
s

Thus, for a mixture ﬁg) truncated at the k*® Fock state,
k

P9 =3 p(n)ln)(nl, (2.66)

n=1

74



Chapter 2. Nonclassical photon statistics and entanglement

(ab)PT

out splits into a direct sum of finite number of operators,

the operator p

(ab (ab 0)
out)PT Z ©® out)PT( (267)
o=—k

The negativity is therefore simply given by

N bPT N bPT N bPT bPTzS
1pL8FT)| = Z LR PTO| = || plet) H+22H pLUIrTO) (2.68)
o=—k

Each of the ﬁgﬁ) () is seen to be a matrix whose entries below the anti-diagonal vanish,

the dimension of the matrix itself decreasing with increasing 6. Thus one sees immediately
5@ t)PT(5)
ou

the truncated form) fails to be positive, contribute to the negativity of p

that it is only those p s for which the corresponding L*) or L(*) (appropriate for
5 COFT For the
out

simple example of an entangled state generated from a nonclassical PND consisting of a

mixture of the ground state and the n*® Fock state at the input,

P = (1= p)[0)(0] +pln){n, (2.69)

(ab)

the output state p, is

(2.70)

~(ab) p = n!\r,n — r>(s,n _ S‘
out. = (1 —p)[00)(00] + — :
Pout, = (1= p)|00)(00) 2n r,szz(] Vsl (n —r)l(n — s)!

For this state the negativity is calculated to be

(ab)PT
19511 = £(p)
2

(5 ](1)) oG e

We note that for this kind of mixture, the realigned norm [332, 333] is same as negativity :

IR = 1155977 = £(p). (2.72)
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(ab)

out ) 1S the realigned [332, 333] version of poyt. This can be seen for example

Here R(p -
~(ab
) .

from the matrix elements of R(fg,

~(a p n n
(R(pt()ul‘?))ij,kl = (1= D)00,i+k0i+h,j+1 + 5y Otk Oi+hj+ ( L ) ( l ) (2.73)

We will use Eq. (2.72) in evaluating bounds on the entanglement of formation of states
of this kind.

2.9.2 Example a

In this Section, we discuss the bounds on entanglement of formation of the states already
defined in Eq. (2.70). It is also useful to note that the negativity f(p) of this state
is a monotonically increasing convex function of p. The monotonicity can be seen, for
instance, from physical requirements such as avoiding the possibility of generating more
entanglement by mixing lesser amount of a nonclassical state with the ground state. The
convexity of the function f(p) follows from the convexity of negativity [75]. Given the
negativity of a two-mode state, a lower bound on the entanglement of formation can be

evaluated [76]. In the example we have considered this lower bound is given by

EL(p) > Hy(v(f(p)) + (1 = 4(f(p)))loga(n),
4n
f(p) €1, s

n+1
> 80 () — (n 4 1) +logalm + 1),

S € 1= 1)

where

2

1
1(f(p) = m[\/f(p) +y/n(n+1-f(p))" (2.74)

Note that for n = 1 the Wootters formula already gives the exact entanglement of for-
mation.
A simple upper bound on the entanglement of formation for states (2.70) is obtained

by evaluating the expected entanglement in the spectral basis of pout, and we have

Eup(Piut) = — 3 [Z ( . >log2< . ) - 2"n] - (2.75)
r=0
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We now give a simple method which gives us an alternative lower bound on EOF for
these states. Our method is based on the non-increase of EOF under LOCC. Our choice

of the local measurement observable for both Alice’s and Bob’s side is of the form

@)

2010) (0] + A > 1)

j=1
= MNFo+ M\ Py (276)

For brevity, we denote the collapse of the state into the subspace Py as the event 0. and
the collapse into the subspace P, by n., where ¢ could be either Alice or Bob. In such
a scenario, there are four possible outcomes for this local measurement done on both
Alice’s and Bob’s side: 0,0y, 0414, 1405, and ngng. Denoting the probability of possible
outcomes by p;; = Tr(ﬁg?ﬁ)]% ® Pj), with i and j denoting the possible outcomes on

Alice’s and Bob’s sides, we have

Po,0, = (1—p),

poanb - pnaob - o

Prony = %§<Z>:p<1—%>. (2.77)

We end up with a product state in the outcomes corresponding to 0,0y, 0,14, and 1,0,

however we end up with a pure entangled state

nany L nl nllr,n —r)(s,n — s|

Pout = 5= .
o 2n 1r7s:1 Vrlsl(n —r)l(n — s)!

(2.78)

corresponding to the ngn; outcome. Hence the average entanglement of po,¢ subjected

to such a local measurement scheme is simply given by

~(ab 1 ANa
EL(p) = p (1 - 2n1> E(poui™)
n

e B o

For the cases n = 1 and n = 2, such a distillation procedure does not yield any entan-

glement. However for the cases n > 3, it is easy to see that the lower bound given by

E, (ﬁgﬁ)) performs marginally better than Ej, (ﬁ(a?) for small values of p. This can be

ou
(ab)
out

seen, for instance, by the fact that Ej,(ps, ) as a function of p is linear monotonically
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25 T T ] |
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p

Figure 2.2: The case n = 6. Line 3 denotes the upper bound E,p(fous), line 2 the lower bound
Ei, (pout), and the curve 1 the lower bound Ej, (pout)

increasing in p, however Ell(ﬁ(()?ll?) is a monotonically increasing convex function of f(p)

by construction, while f(p) is a monotonically increasing convex function of p. Thus
By, (ﬁ(ab)) is a monotonically increasing convex function of p. This simply means that for

out
small values of p, E, (ﬁ(()i?) > Ey, (ﬁgﬁ?), the range of values of p for which this is true be-

ing determined by n. What we actually observe is that for n = 6, Ej, (ﬁg‘fﬁ)) > Ey, (ﬁg‘fﬂ))
for most of values of p except in a small region close to 1. However for n = 7 we observe
that Ej, (ﬁgﬁ)) > Ell(ﬁgﬁ)) for all values of p. This is illustrated in Figure (2.2) and
Figure (2.3). Another useful observation is that Ej, (ﬁ(()i?) tends to Eyp (ﬁgﬁ)) for larger
n. This can be seen from the fact that the mixture in /3(()?11? is almost bi-orthogonal for
large n, with the overlap in each of the local modes going as 2%, indicating that we can

distill as much of the entanglement that is present [74].

2.9.3 Example b

We now establish bounds on another class of continuous variable states by extending the
ideas of the previous example. These are states that arise from phase averaging of states

of the form

—_

1 - T T
W (a)) = \/—N . (wn)"[(wn)" @), (2.80)

r—=
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Entanglement

Figure 2.3: The case n = 7. Line 3 denotes the upper bound E,p(fous), line 2 the lower bound
Ei, (pout), and the curve 1 the lower bound Ej, (pout)

where w,, is the primitive n'" root of unity and |(w,)"a) is the coherent state with dis-
placement (wy,)"«, and N is the appropriate normalisation. These states can be generated

through nonlinear optical processes [180, 181|. With the use of the identity

Z(wn)jk = n if j =0modn,

k=0
= 0 otherwise, (2.81)

we can rewrite the state as

nk—l—n—l
U, (a) nk+n-—1). 2.82
o \/_ Z Y coEl ) (282
Denoting |a|? by A, the state after phase averaging is
)\nkJrn 1
r[nk +n —1)(nk +n—1]. (2.83)

A(a _ioo
(A,m) N; nk+n —1)!
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On combining this state with the ground state of an auxiliary b-mode and then passing

through a 50:50 beamsplitter, we have

)\nk-ﬁ-n—l 1

~(ab) A _ i =
Pout ( 7”) N kzo (nk: +n— 1)! 2nk+n71 X

nkJanl (nk+n—Dlr,nk+n—1—-r)(s,nk+n—1-—s|

Vrlslnk +n—1—7)(nk+n—1-s)!

(2.84)

r,s=0
The local measurement observable we choose on both Alice’s and Bob’s side is of the
form

n—1

0= Z%Z]nn—i—ﬂ(nn—i—r\. (2.85)
~k=0 0

r=

For outcomes k1, ko respectively on Alice’s and Bob’s side, the resultant state upto

normalisation is given by

P, ® Pu,p (A, )Py, @ P.,, where

n—1 n—1
P, ® P, = Z Ink1 +r)(nky + 7| ® Z |nke + 1) (nkg + 7. (2.86)
r=0 r=0

The total number of photons in this subspace can vary from n(k; + K2) to n(k1 + k2) +
2(n — 1) The fact that ﬁ%) (A, n) has nonvanishing projectors only for photon numbers of
the form nk +n — 1 implies

n(ky + K2) <nk+n—1<n(k + ke) +2(n—1) (2.87)

for the permitted values of k, for given ki, ko. It is easy to see that the only possible
solution to this constraint is k = k1 + k2. This means that for a given outcome k1, ko, the
pure entangled state in pout (A, n) corresponding to nk +mn — 1 with k = k1 + ko photons
is singled out. Now for a fixed total number of photons nk + n — 1, the possible values
for (k1,kK2) are (k,0), (k—1,1), ---, (0,k) Given the outcomes corresponding to ,, on
Alice’s side and ., on Bob’s side, the photon number on Alice’s side can run from nr;
to nk1; + (n — 1) and similarly on Bob’s side run from nkg + (n — 1) to nkg. Thus the
resultant state corresponding to the outcome ~,, on Alice’s side and ~,, on Bob’s side is

the pure state

n—1

VvV (n(k1 + k2) +n —1)!
[(k1,K2)) ; N 7"1)'(71/:2 e T Ink1 +r,nke +n—1—1).(2.88)
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Thus, for a given k, the possible states after the local measurement are

W)(O’ k)>’ |¢(1ak—1)>’ T |¢(k’0)> (289)

Computation of average entanglement after the measurement, which is by definition the
entanglement distilled by this protocol, is facilitated by the following facts. Firstly, each
|t(k1, k2)) is already in the Schmidt form. Secondly, these |(k1, K2))’s are biorthogonal
[334]. Thus the entanglement distilled is

Euy(nk+n—1) =

nkin=l 1 nk+n—1
B Z 2nk+n—1 X

r=0 r

1 nk+n-—1
10g2 2nk+n—1 r

K 1 ok +n—1
Z 2nk+n71
=0

_l’_

X

—0 P nr+d

1 S nk+n—1

1 — . 2.90

Thus the total average entanglement harvested over all possible photon number is
0 nk+n—1
50 1 A
Ei(pout (\,n)) = N; h i L (k0 = 1), (2.91)

Clearly E;(5”2)(\,n)) is a lower bound on the EOF of 5"2 (X, n).

out

A simple upper bound on the entanglement of formation of ﬁ(ab)()\, n) is obtained by

out

evaluating the average entanglement in its spectral basis, and is given by

(ab) 1 &, p\nktn—l
Eup(Pout (A1) = N ];) (nk+n— 1)|E(nkz +n—1),
where
Enk+n—-1)=
nk4n—1
_ Z [2% ( nk+rn_1 )] o [2% ( nk+rn—1 )] Cow

In Figure (2.4), we plot the lower and upper bounds El([)(ab)()\, n)) and

out
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1.5 e

Entanglement
=
|

05 i

Figure 2.4: The curves 1 and 2 correspond to the lower and upper bounds for the case n = 2,
the curves 3 and 4 correspond to the lower and upper bounds for the case n = 3, and the curves
5 and 6 correspond to the lower and upper bounds for the case n = 4

Eup(ﬁ(()(fll?()\,n)) for the cases n =2, n =3, and n = 4.

We now discuss a more general method which establishes lower bounds using LOCC
and the Terhal-Vollbrect formula. In most of the practical situations such as in [312, 318,
319, 322|, the probabilities of the PND vanish for larger n. In such a case, one can do a
truncation to evaluate a lower bound based on [76].

A truncation corresponds to a LOCC. To see this suppose the input on Alice’s side is

59 = S sl nl 2.9
n=1
Let
Tr(,é(()ﬁ)Pk(@Pk) = 1—¢, where
k
Pe o= ) liil. (2.94)
=0

Since € is a decreasing function of k, we can choose a value of k£ to achieve any small
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(ab)

€ > 0. The truncated version of p, . is

Jab)(tr) 1
€

ot =7k ® Pt Py @ P). (2.95)

The state ﬁgﬁ)(tr) is the 0,0, outcome corresponding to the measurement of the local

observable
k [e%s)
Ao D> I+ Ak > il (2.96)
i=0 i=k+1

on both Alice’s and Bob’s side. Since negativity is an entanglement monotone under
LOCC [75], we have

NS = (1= N (5T, (2.97)
A lower bound on the EOF of ﬁg‘fﬁ) is now simply given by
~(ab ~(ab)PT ~(ab)(tr
E(psl) = FIN (o ™)) = FI(1 = 9N (o), (2.98)

where F(.) is the Terhal-Vollbrect formula [76]. The last inequality follows from the fact

that F'(.) is a monotonically increasing function of its argument.

2.10 Conclusions

To conclude, we have demonstrated the effectiveness of partial transpose in the study of
entanglement of a family of non-Gaussian continuous variable states. We have presented
partial results on distillability of these states. We have demonstrated distillable entan-
glement from violation of three term conditions both on {p(n)} and {v,}, particularly
from an antibunched input. We have evaluated both upper and lower bounds on the
entanglement of formation of a family of non-Gaussian continuous variable states. We
have illustrated the possibility of going beyond the Terhal-Vollbrect formula in estimating
entanglement through a careful choice of local observables to be measured. However, our
analysis relies on partial transpose, and hence cannot answer issues in respect of PPT

bound entangled states.
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Nonclassicality, Mandel classification, and

entanglement

3.1 Introduction

In the preceding Chapter quantum optical nonclassicality in single-mode fields was stud-
ied from the perspective of entanglement. In the case of phase invariant states, the non-
classicality was completely determined by the photon number distribution [170]. This
was possible due to the connection with the classical Stieltjes moment problem [170, 324].
It was shown that if a phase-invariant single-mode state is coupled to a second mode in
vacuum or some coherent state and then passed through a U(2) beamsplitter, the re-
sulting two-mode output state shows NPT entanglement [27] precisely when the input
single-mode is quantum optically nonclassical. The signatures of the two, nonclassicality
and entanglement, coincided exactly [194].

In this Chapter, we continue this exploration further. We begin with the study of
nonclassicality of two-mode states and its potential to generate entanglement, our study
being now restricted by the absence of results such as the result of the Stieltjes moment
problem. We begin with the description of a single test, which if successful, is able to
simultaneously establish both the nonclassicality and NPT entanglement of a given two-
mode state. We then turn to Mandel matrix analysis of the two-mode fields and show that
nonclassicality at this level naturally separates into distinct Types I and II, depending
on whether the sub-Poissonian statistics is visible or not at a single-mode level. We then
present three interesting examples of two-mode states to illustrate the idea. The first is a
study of two-mode states obtained in the previous Chapter from single-mode states, the
second and third are independently constructed. Along the way we develop a test at the
Mandel matrix level to see whether the beamsplitter action on an initially non-entangled

two-mode nonclassical state results in NPT entanglement, and apply it to the second
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family of states. The third family is built upon the extensively studied squeezed vacuum
states for one and two modes, where we bring out some of their nonintuitive features. We
extend the method developed for single-mode states to two-mode states and construct
NPT entanglement tests to test for entanglement when a two-mode nonclassical state is
coupled to a third mode in vacuum and the result is passed through a ‘U(3) beamsplitter’.
The discussion and test is again at the Mandel matrix level and the test is illustrated
with two families of states as examples. We show the possibility of generating genuine
tripartite entanglement from two-mode Mandel type nonclassicality. We then extend the
notion of Mandel’s ) parameter to two modes. Based on the Mandel matrix construct,
the Mandel parameters Q1 and Qo are introduced to help differentiate the Type I and
Type II states and gauge their Mandel level nonclassicality, and interesting possibilities

are discussed.

3.2 Two-mode fields — Entanglement test, and Mandel clas-

sification

Our emphasis here is in new features encountered in the states of a two-mode system.
The modes will be called the a-mode and the b-mode, with operator pairs @, a’ and b, bf
obeying the commutation relations in Eq. (1.95). Some general points can be made right
away.

Since we have a two-mode system, apart from examining whether a given state p(®)
is quantum optically (QO-cl) or quantum optically nonclassical (QO-noncl), we can also
ask whether it is entangled, and if so whether it is NPT type, distillable, etc. The
latter questions become meaningful in the two-mode case. In fact we will develop an
interesting criterion which can be witness simultaneously for QO-nonclassicality as well
as entanglement of the NPT type.

With respect to the action of the beamsplitters representing general elements u € U(2)
in the manner of Eq. (2.31), we note the following. Action by a beamsplitter is both
nonlocal, in that the modes a and b get linearly mixed, and passive, as N, + N, is
conserved; since annihilation operators go to linear combinations of annihilation operators
under this action, coherent states go into coherent states. Convex sums of coherent
states go to convex sums of coherent states, and thus such action preserves the QO-
cl or QO-noncl nature of a state 5% [335]. On the other hand, while a QO-cl state
has no entanglement, a QQO-noncl state may possess entanglement or may be separable:
entangled states are a proper subset of QO-noncl states. Thus beamsplitter action can

cause a transition from a QO-noncl separable state to a QO-noncl entangled state, in
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which case we can further enquire into the nature of the entanglement so obtained. This
50 of Bq. (2.44).

was in fact the case in the transition from p(a ) of Eq. (2.43) to Pyt
As mentioned earlier, there is no generalisation of the results of the classical Stieltjes

moment problem which can be used for two-mode systems, their PND’s, etc. Therefore

to study aspects of two-mode nonclassicality to an admittedly limited degree.

3.2.1 Nonclassicality and entanglement — a direct connection

A general two-mode state p(%) possesses the diagonal coherent state representation

~(a d?z, d*z
plab) — / / 2 (202 )22 (3.1)

in terms of the two-mode (product) coherent states |z4,2p). Of interest to us is a test

which simultaneously establishes both QO-nonclassicality of 5% and its NPT entangle-
ment.

To this end, we set up an infinite matrix N with operator entries Njk,lm where j, k,l,m
run over the range 0,1,2,--- independently. The pair jk denotes a ‘row index’ and takes
in sequence the values 00; 10, 01; 20, 11, 02; 30,21, 12,03; - - - . Similarly the ‘column index’

pair also takes these same values in the same sequence. We define the entries of N thus:

Nikim = NleJk = alipthalpm, (3.2)
Clearly N = ((Njklm)> is a ‘hermitian’ matrix of operator entries. Note that these
entries are in normal-ordered form. Starting with the diagonal representation (3.1), for
any set of complex coefficients {c;;} and the associated positive semidefinite operator

ij,lm C;kNjk,lmclma we always have:

Te(pY D lNjpamenn) = Te(0P (Y ejpa? )1 (D cimd'™))

Jk,m ik Ilm

d*z, d?
// - ﬁgb (za» 2p) |chmz 22 > 0. (3.3)

This is because we have here the expectation value of a positive semidefinite hermitian

operator. On the other hand, if we pass to the partial transpose p@PT of jab)  py
performing transposition only in the space of states of the b-mode, this will amount to
everywhere replacing bT75™ by bT™b/ | since in the Fock basis b and b are real [27, 57, 227].
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Thus for the same positive semidefinite operator as in Eq. (3.3) we have

Te(p“OFT Y " Nk mem) = Te(p Y~ ab™al bt e
Jk,m Jk,m

d?z, d?z .
// —qu (zas 2p |chmz 2™ 2. (3.4)

Notice the difference in the integrands of the last integrals in Eqs. (3.3) and (3.4); the
ab)PT

latter integral is sure to be positive if p( is a possible state, otherwise it could be
negative.
Thus we arrive at a single test for QO-nonclassicality and NPT entanglement of 5(@).

The above expression being negative implies two things simultaneously:

(i) ¢(za, 2) # 0, hence p(@ is QO — noncl;
(ii) pPT £ 0, and hence p'®) is NPT entangled. (3.5)

This interesting result is an indication of the possibility, in suitable circumstances, of
bringing the characterisations of QO-nonclassicality and entanglement for the two-mode

fields rather close to one another.

3.2.2 Mandel matrix

In Section 2.2.1, we introduced the concept of phase-insensitive nonclassicality for a
single-mode radiation field. Of relevance were the matrix elements of operators conserving
the number of photons. Generalising this concept to two-mode systems, if one is interested

ab)

only in the total number conserving matrix elements, then given a p(%) it suffices to work

with the state PS:) ) obtained from 5% by phase averaging:

S(ab) / 40 ig(N,+ 1) plab) g=i6(No+ )
Pp = o
0 T
A%z, A%z,
= —0P Ia7[7 as as )
[ P (L 1,6 0 1)
Lo = |z’ I =|nl*, 0=argz)z,
g’ -
P, 1,0) = / Y zue™ 2. (3.6)
0

This state is clearly number conserving:

PN+ Ny = (N, + Ny)ple?,

p(ab

(n m/‘ ’nm> = Oy "+m/ n+m<n m/‘P(ab ’nm> (37)

87



Chapter 3. Nonclassicality, Mandel classification, and entanglement

Since P(I,,Iy,0) is the (real) diagonal representation weight of ﬁgb), we have this QO-

classification:

P(I,, 1,,0) > 0 < p% is QO-cl,

P(Io, 1,0) 0 < 5% is QO-noncl. (3.8)

Now we present the two-mode generalisation of the Mandel matrix and the associated
classification of states [187, 336]. We consider only states ﬁgb) conserving, i.e., commuting
with, N,+N,. Let us first develop the two-mode analogue of the Mandel criterion. Define

a column and row vector with number conserving operator entries as follows:

. af & atb . . .
= = T: TA AT
C <3T>®<3> ia , C <Na bla a'b Nb>. (3.9)

With their help next define a 5 x 5 matrix with operator entries and which is ‘hermitian’
like N in Eq. (3.2), and also ‘positive definite”:

()08

1 N, ba ath N

N, N2 Npta N.,a'b NN,

= | a'b a'bN, afbbla (afh)2 afbN, | . (3.10)
bfa bfan, (bTa)2 blaath btan,

» NyN, Npbta  Nyafb  (N)?

Given a state ﬁ%b), we get the 5 x 5 numerical hermitian matrix ¥ by taking entrywise

expectation values of the opertors in i], and the numerical matrix so obtained is clearly

hermitian positive semidefinite :

. 1 Ct 1 (Ch
S=®)=Tr(pW | . = - Y. )>o0. 3.11
(%) =Tr(bp (c CCT>) <<C> ochy ) = (310)
We define the two-mode Mandel matriz for the state ﬁ%b) by replacing CCT in Eq. (3.11)

by its normal ordered expression (entries of C and CT are already in the normal ordered
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form) :
B = :CCt:,
1 Ct
M(z) ~(ab) - T ~(ab) . :
(PD ) r(pD o B )

(1 I, Ve JTTe" Ib>.
x | VI Tpe? (3.12)

The superscript 2 indicates that we are dealing with a two-mode state, and this Mandel
matrix is 5 x 5 hermitian but not necessarily positive semidefinite.

Another useful construct is the 2 x 2 Mandel matrix associated with a general single-
mode obtained as linear combination of the modes a and b, calculated again in the state

ﬁgb). The definition of the annihilation operatorA of such a mode and then of its Mandel
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matrix are:

A= aa+ pb, o + 18] = 1;
(21 5(a). _ 1 (A A)

= . (3.13)

wias) = (5 )e (0

The dependence of A on «, 3 is left implicit. The superscript (2,1) at the start of the
above equations indicates that we are dealing with a general single-mode Mandel matrix
obtained from the two-mode Mandel matrix for the a — b system in the state pg) ), by
focussing on the particular linear combination A of @ and b. Tt turns out that for two-
mode states both M@ (p (ab)) and M 1)(p(ab ;a, 3) are important.

The two-mode definitions of Mandel-type nonclassicality, sub-Poissonian statistics

(sub-PS), super-Poissonian statistics (super-PS), etc are now as follows :

{p (ab) . is QO-cl < P(IcuIba ) > 0}
= {MP(p (ab)) >0 & ﬁgb)has super-PS};
M (p ab)) 20 = {pp (“)is QO-noncl, has sub-PS}. (3.14)

In the definition of super-PS, we used Eq. (3.12). The sub-PS case can be usefully
separated into two types, depending on whether or not the nonpositivity of the 5 x 5

matrix M ?) (ﬁ%b)) is visible already at the single-mode level for some choice of coefficients
a, 3. Thus we define:

ﬁ%b) has Type I sub-PS <« M(Q’”(pﬁb), ,8) 2 0 for some a, f3;

A has Type I sub-PS & M@V (5.0, 8) > 0 for all o, 3,

M@ () # 0. (3.15)
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The physical meaning is that in Type I sub-PS, the Mandel level of QQO-nonclassicality
is easy to detect already in terms of a suitable single-mode combination; while in Type
IT sub-PS, such nonclassicality is hidden or intrinsically two-mode in character.

For calculational purposes one can pass from the 5 x 5 Mandel matrix M () (ﬁgb)) to

a slightly simpler 4 x 4 matrix as follows. From Eq. (3.12),

(a a1 OF 1 ¢t
M (p") = ﬂ®ﬁ<é B>):<c B>’

c = T(EWe), B=Tr(p" B). (3.16)

(When necessary the state will be indicated as argument of C, B). Then it is easy to see
that

MOy >0 & T=B-CC >0,
MOy 20 < T #0. (3.17)

Thus the 4 x 4 matrix I determines whether we have super-PS or sub-PS. For the separa-

tion of the latter into Type I and Type II, we have for any complex 2-vector ¢ = ( zl )
2

ST MED () 0 B)p =
b1 + ¢2CTebo(ax, B)* + |a o (e, B) T (v, B). (3.18)

So we are able to say, given M) (ﬁgb)) 20:

Type IPS & wo(a,ﬁ)TFwo(a,ﬂ) < 0 for some «, 3;
Type ITPS & Tﬁo(a,ﬁ)TFwo(a,ﬂ) >0 for all o, 5. (3.19)

Indeed we easily find from Eqs. (3.13, 3.17) that
det M3V (5, §) = (e, ) Tho (e, 3). (3-20)

We will apply these definitions and classification of QQO-nonclassicality to several families
of states and examine the possible conversion of nonclassicality to entanglement in the

next Section.
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3.3 Some examples of two-mode states and their properties

We have seen in Section 2.6 that a single-mode QO-noncl state, when combined with
a second mode in vacuum (or in a coherent state) and passed through a beamsplitter,
always results at the output in a two-mode state exhibiting NPT entanglement. We study

these two-mode states in the spirit of the preceding Section as a first example.

3.3.1 Example (a)

The two-mode state in question is given in Eq. (2.44). It is reasonable that its 5 x 5

Mandel matrix is obtainable from the 2x 2 Mandel matrix associated with the single-mode

input state ﬁ%). Straightforward calculation shows that :

A — T @100 (O0[}U(w) ™!, ueU(2):
MY = W)t MO EW (w),

1 0 0 0 0
W(U) - * * * * )
0 unun u21u11 u11u21 u21u21
W)W (u) = L. (3.21)

Next using (3.13) we can immediately obtain the general single-mode projection of this

two-mode Mandel matrix:

M(Q’l)(ﬁgb);&,ﬁ) _ Y(a,ﬁ)TW(u)TM(l)(ﬁg))W(U)Y(O"ﬁ)

1 0 1 0
— M ~(a) ,
(o \5!2> “””(o !5\2>

& = ur e + uo. (3.22)

From these expressions and from the results of Section 2.6, we find that the two-mode
states produced from single-mode states in the above manner have the following signifi-

cant properties:

(1) ﬁg) has QO-noncl PND = ﬁ%b) has NPT entanglement;
(74) ﬁg) has super-PS = ﬁgb) has super-PS;
(vit) ﬁ%) has sub-PS = ﬁgb) has Type T sub-PS,
M(Q’l)(pgb); a, 3) 2 0 for every a, (3. (3.23)
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Clearly only properties (ii) and (#i7) involve the Mandel matrix analysis; and it is signifi-
cant that in property (éii), every single-mode combination of the modes a and b displays
sub-PS. Thus in the latter circumstance, we can say it is not just easy, but actually very

easy, to detect the Mandel kind of QQO-noncl of ﬁ%b). To these statements we can add the

following: states ﬁ%b) obtained from states ﬁ%) in the manner of Eq. (3.21) can never
display Type II sub-PS; and any sub-PS in ﬁg) leads to both Type I sub-PS and NPT

entanglement in ﬁ%b) .

3.3.2 Example (b)

Hereafter we consider directly given two-mode states ﬁgb), as opposed to the previous

example. In case such a state is QO-noncl, even if it is of product or separable form, its
passage through a U(2) BS could result in an entangled state. We first set up the general
framework to examine this, then illustrate it by an interesting example. For simplicity
we use an elementary 50:50 BS rather than one corresponding to a general u € U(2).

We choose the U(2) element and corresponding unitary operator action as follows:

. T . T
u0:%<_11 1>€U(2)1U0_1< T)UO ZUQ< T). (3.24)

At the operator level, action by conjugation on C, CT, B of Eqs. (3.9, 3.12) is:

S
[w P
>
[P

U560 = Vol, Oy 10 = GV, 05 BO, = VoBVY

1 1 1 1
. . 1 1 -1 1 (3.25)
= U ®ug= = )
’ o 1 -1 11
1 -1 -1 1
Then if a state ﬁ%b) is transformed by this BS action to
8D = 00" U5, (3.26)
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the change in the Mandel matrix is given by a transformation using Vj:

M(Q)([;gb)) _ ( é C; > —
:
)
(10 Iel 10
L0 W% C B o vl )’

~1 (ab 1 C,T ~ (ab
M) = ( o B > =0 (
C' = WO, B'=V,BV{. (3.27)

Q=
Uj) Q>

Thus I is related to I" by congruence:

I'=B —-C'CT=V,TV{. (3.28)
To test next whether p/ gb) is NPT entangled, we pass to its partial transpose p’ gb)PT
and evaluate the ‘expectation value’ of a suitably chosen nonnegative hermitian oper-
ator with respect to it. If this turns out to be negative, then p’ gb) is definitely NPT
entangled. To construct such a test which involves as closely as possible the use of

My gb)), hence of M®?) (ﬁgb)), we should use a ‘matrix of operators’ similar in struc-
1\ (et oo . | |

ture to ( & ) , i.e, making up a ‘hermitian nonnegative’ matrix of operator

entries, such that when the partial transpose operation is switched from p’ %b)PT to this

‘matrix’, we obtain essentially the expectation values of C,Ct and B in s gb). We have

seen in the passage from Eq. (3.3) to Eq. (3.4) that the PT operation converts b/Tb* to

l;le;j, and BDFT to bEHIT. Keeping these motivations and facts in mind we construct a
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5 x 5 matrix of operators as follows:

ata
. Al . . ot an
E=| 7 |, Bt = (am ab alht bTb) -
ab
bib
. PT ~
1) (1 B (vt (oo
E N C B oY /)’
ata 0 ath 0
. 0 0 0 0
vy o= | . L . (329
bfa 0 ata+bb+1 t
0 0 ath bib

We see that in the process of expressing the various operators involved in normal ordered

form, an additional piece Y linear in the entries of C appears. Then a test for NPT

entanglement of p/ gb) is to evaluate

a ~ v (a N PT
Te(p WOFT [ (1 bt )) = Tr(p @ 1 (1 ET) )
E E
0 0O 0 0 0
0
= M@ EY) +

0
0 Yy’
0

a0 o4 0

0 0 0 0

Yy = , . (3.30)
cy 0 Cl+Cy+1 O
0 0 o cr

and see if this matrix is indefinite. The 5 x 5 matrix here is, by Eq. (3.27), a congruence

transformation applied to the initial state Mandel matrix M2 (ﬁ%b)) plus a 4 x 4 piece
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coming from Y, namely it is:

1 0 el 1 0 0 0 1 CTvt
+ = . (3.31)
0 V C B 0 Vi 0 Y’ Vol VoBVY +Y’

Therefore by Eq. (3.17) the positivity or otherwise of the matrix (3.30) is equivalent to

the positivity or otherwise of either of the two following 4 x 4 matrices at the level of I':

Q L+ ViY'Vy,
VoQveh = WwIve +Y. (3.32)

Nonpositivity of either £ or VOQVOT is proof of NPT entanglement of p’ (ab). There is
some difference between the Mandel level QQO-nonclassicality test for pﬁ) ) and the above
developed NPT entanglement test for 5’ |, / (ab) , the two being related but not identical. This
is to be expected since, as mentioned, entangled states are a subset of QO-noncl states,
and NPT states are a further subset.

We now illustrate the above scheme using an interesting family of states which is
analytically quite simple. We begin with the family of two-mode pure states of infinite

Schmidt rank,

o0

1,2 "
) = e 2N " —n,n), pec, (3.33)
n=0 \/m
form the density matrix p(®) = |u)(u|, and pass to pg) ) via Eq. (3.6):
A ab _AZ |n ny(n,n|, A= |u>>0. (3.34)

This is clearly separable though not of product form. For the Mandel matrix analysis,
|pe) (| and ﬁ%b) are equivalent.

The matrices C, CT, B, T involved in M2 (ﬁgb)) are easy to calculate since we have

~

(@ta) = (b'b) = A, (af%a?) = (b12p%) = A2, (3.35)
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We thus have:

A A2 0 0 A2+ A
2
o 0 B 0 A2 4+ ) 0 0 ’
0 0 0 A2+ A 0
A PRIEEDY 0 0 A2
0 0 0 A
0 M+ 0 0
r— N (3.36)
0 0 A4+ 0
A 0 0 0

The eigenvalues of T being A(A + 1), A(A 4+ 1), A\, —A, it follows that the state p(a )
(3.34) is QO-noncl. To find its type we compute

bo(a, B) Teo(a, B) = 2|a*|B°A(\ +2) > 0, (3.37)

so these states display hidden or Type II- sub-PS.
In passing we note that the state p(® of mode a obtained from Eq. (3.34) by tracing

over b alone is

- AT
,037) = Trpr = Z |n aaf (3.38)

for which the diagonal weight P(1,) is

P(1,) =0(I, — \). (3.39)

Partial trace over a gives exactly similar results for mode b. Thus both ﬁg) and ;3%) are
QO-cl, with their PND coinciding exactly with that of a coherent state.

Now we pass the two-mode state ﬁ%b) of Eq. (3.34) through the BS Uy of Eq. (3.24);

the resulting p' 7 (ab)
P %tb) _ Uof)%b)f]’l

= AZ( ) (@ —b)"10.0)(0,0/(a” ~ )" (3.40)

To apply the NPT entanglement test based on Eq. (3.32) it is convenient to examine
VoQQVyl. Combining Eqs. (3.27, 3.36) we find the matrices IV, Y’ associated with p’ (ab)
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to be
I+ A 0 0 —1x2
0 2 —IN2- 0
Fl _ ‘/OF‘/OT — 12 ) 21
0 —3AZ—X LN 0
1,2 142
—3A 0 0 AT+ A
A0 0 0
0 0 0 0
Y = (3.41)
0 0 2x+1 0
0 0 0 A
Therefore according to Eq. (3.32) we have to test the positivity or otherwise of
‘/OQ‘/(]T _ %F‘/(]T + YI
FAZ+2) 0 0 —IA2
0 A2 —3A2 = A 0
= 25 Ly (3.42)
0“2 14241 0
—1N2 0 0 FAZ 42X

The (2, 3) submatrix here is indefinite as it has determinant —%)\2. This establishes that

0 %b) of Eq. (3.40) is NPT entangled. The emphasis here was to show that the entangle-

ment produced by BS action can indeed be witnessed by the Mandel matriz construct.
Going back to the expression in Eq. (3.40), the terms for n = 0 and n = 1 are

respectively :

e=*10,0)(0,0];

212,00~ 10,2)({2,0] — (0.2)), (3.43)

giving the matrix elements

.~ (ab _
(Plg ))00,00 =e€ )‘;

R N . . A
(P’ %b))zo,zo = (Pl gb))oz,oz = —(Pl %b))m,oz = —(P' %b))ozpo = 56 A, (3.44)
One also obtains from the n = 2 term in Eq. (3.40) the matrix element

- (a A
(p/g)b))gg 29 = —€ )‘. (3.45)

If we now consider the partial transpose of p’ gb) and look at the 00 — 22 subspace of

98



Chapter 3. Nonclassicality, Mandel classification, and entanglement

dimension two, we have

A
~/ (ab)PT . I -3
pnrT e A( L ) (3.46)
-3 X
Thus, as the determinant is negative in this subspace, p g) has an eigenvector of

the form «|0,0) + [3|2,2) with a negative eigenvalue. This demonstrates that the NPT
entanglement of p' (a ) in Eq. (3.40) is distillable [37].

3.3.3 Example (c)

The third example is built upon the two-mode squeezed (vacuum) states. For both
single and multi-mode cases these states have been studied extensively in the literature
[187, 237, 238]. Here we take them up in the context of the viewpoints of Sections 3.1, 3.2
and 3.3, in particular the Mandel level study of QO-nonclassicality. First we assemble the
definition and important properties of a single (a) mode squeezed vacuum state. Such
a state is obtained by applying a unitary (scaling) operator involving the exponential
of a complex combination of a2 and a2 to the Fock vacuum, and is parametrised by a

complex variable £ = & + i€, or an equivalent complex variable w :
1, . o
W) = exp{ (¢a™ — £7a*)}|0)a

n+12
= (1-|wP Z / W™ 2n),,

w = S tanh(]/2). (3.47)

€]

Since only even photon number states are present, the probabilities p(1), p(3), p(5), - -
in the PND vanish, which is immediate evidence that these states are QO-noncl. Some

important expectation values are:

(W@ (w)a',a, No, N2, %%, a®} o' (w)) =

{0, 0, S?, S?(5% +207?), S?*(25% + C?), |§|
S = sinh(|¢]/2), C = cosh(|¢]/2). (3.48)
The 2 x 2 Mandel matrix for the state is thus:
1 52
1) (1,,(a) _
(| (w))) ( §2 (282 + C?) ) ;
det MO (|9 @ (W) = 8252 +C?) >0, (3.49)
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where S and C are given in Eq. (3.48). Thus these states have super-PS, and the
QO-nonclassicality does not show up at the Mandel level.
For two modes we take the product of two such states, with independent complex

£, or w,w':

@) (w,w")) = @ (W) @ [ (W) (3.50)

The second factor obviously involves an exponential in b2 and b2 applied to |0);. This
two-mode pure state is clearly also QO-noncl, but it is a manifest product state of Schmidt
rank one. Unlike Eq. (3.49), however, now the QO-nonclassicality shows up at the Mandel
level. The 5 x 5 Mandel matrix for the state (3.50) is easily found using Eqs. (3.48) and

their analogues for the b-mode:

T
MO (0, ))) = ( L )

CT:<52 0 0 5'2),

5%(25% + C?) 0 0 S25"2
B 0 5282 emsCs'c! 0
0 e~msCs'C’ 525’2 0 ’
52512 0 0 512(25/2+C/2)
n = arg¢¢* (3.51)

Here S" and C' are defined as in Eq. (3.48) but in terms of ¢’. The 4 x 4 matrix I of Eq.
(3.17) is:

S%(S? + C?) 0 0 0
0 525'2 nsCs'c’ 0
I = . ‘ . (3.52)
0 e MSCS'C! 828" 0
0 0 0 S'2(8"2 4-C"?)

The eigenvalues of I' are S?(S2+C?), S2(S2+C"?), SS'(SS'+CC") and SS'(SS'—CC").
Assuming that &, & are both non vanishing, the last eigenvalue is negative, leading by
Eq. (3.17) to the conclusion that

M@ ({9 (w,w"))) # 0 or that the state |1)(*) (w,w’)) has sub-PS. This is an interesting
and somewhat nonintuitive result since we have seen in Eq. (3.49) that each factor in
the product state |1/(®) (w,w’)) has super-PS. We must now see whether it is Type I or
Type II. For this we must compute the ‘expectation value’ of I' in Eq. (3.52) for the
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four-component column vector 1y («, 3) as required by Eq. (3.19):

Yola, B) To(a, B) =
(Ja2S? + [B]2S)? + |a|*S?C? + |B[*S2C"™ + 2SCS'C'R(e™(a* B)?)
> (laf?$? + [825")? + (|a[*SC — |B]>S'C")* > 0, (3.53)

since R(e(a*B)?) > —|al?|B)?. It follows that the sub-PS of the product state |(%®) (w,
w')) is of Type II, it is hidden or intrinsic as in the state in Eq. (3.34). That it is Type
I1 is consistent with the fact that the individual states |1/(*) (w)) and [1)(®) (w')) are both
super-PS.

It was noted above that the two-mode state [)(%) (w,w’)) is both pure and of Schmidt
rank one. The result of action by the BS Uy of Eq. (3.24) on it is seen upon inspection

and without any calculations to be an entangled (pure) state:
~ ~ 1 1 o o N
Uol(® (w, ')} = Uoexp{; (€61 — €°6%) + (€ - €5)}0110,0)

= exp{g (€(af — 51 — €@~ B) + (€T +51)2 — €@ + )0, 0) (359
This is because the final unitary operator acting on |0,0) is clearly not the tensor product
of individual unitary operators acting separately on the two modes. On account of this
simplicity in this sense of the initial state [1)(*?) (w, w’)), there is no need to apply after the
BS action the Mandel level NPT entanglement test developed in connection with Example
(b). Tt is of course important that the states |)(*)(w)), [¢® (w’)) in the initial product
are both QO-noncl. A two-mode pure product QO-cl state is necessarily a product of
single-mode coherent states, and the product structure is maintained by BS action in this

case because the factors are coherent states.

3.4 From two-mode nonclassicality to three-mode entangle-

ment

We have studied the possibility of a U(2) beamsplitter converting a two-mode QO-noncl
separable state into an entangled one since for such systems both nonclassicality and
entanglement are meaningful concepts. Now we present a treatment of two-mode states
analogous to that given in Section 2.6 for single-mode systems. That is, we couple

a given two-mode state ﬁ%b) to a third c-mode in vacuum, pass such an input state
ﬁi(sbc) through a ‘U(3) beamsplitter’, and obtain a three-mode output state ﬁg?ﬁc). We

then test whether this shows NPT entanglement as a consequence of Mandel type QO-

101



Chapter 3. Nonclassicality, Mandel classification, and entanglement

nonclassicality initially present in ﬁgb), the partial transpose operation being applied to
the c-mode.

We begin with ﬁgb) for which M (2)( plab )) possibly shows QO-nonclassicality. We take

a third ¢-mode in vacuum and have an input three-mode state

(ab A(ab)

P = ps? @ [0)ec (0], (3.55)
strictly analogous to Eq. (2.43). To a general matrix u € U(3) we associate a passive
‘beamsplitter’ which unitarily mixes the annihilation operators of the three modes in a
manner analogous to Eq. (2.31), now conserving N, + Ny + N, [337]. In the three-mode

Hilbert space this beamsplitter v acts through an unitary operator U , and we have

Ulp U2 U3
T Uy uzy ugy | €UB) — U: UU=0U"=1

Uu31 U2 U33

i a at at
ul b |0t = b|, U ot (U t=d4T] b |,
¢ ¢ &t et
i i at at
Ut b |U = b |, U Y| ot |U=w| b |,
¢ ¢ et &t
UN,+Ny+N.) = (No+Ny+N)U. (3.56)

Therefore upon passage through this ‘beamsplitter’ the state in Eq. (3.55) changes to

~(abc 2 ~(abe) 7y —1 ~(ab) N —
P = Up" 0= = U (" @ [0)ec (O} (3.57)

To test this output state for NPT entanglement, we apply the partial transpose to the

c-mode and then evaluate the ‘expectation value’ of a suitably chosen hermitian nonneg-
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ative operator:

A =  «ap+orac+ obé + asatel + asbiel
Tr([)(()iic)PTATA) = o Xa,
X o= mEETT o1\ ((1oae be atet et ) ag
atet a1
biet a=| ay |.(3.58)
ac Qg
bé oy

The 5 x 5 hermitian matrix X, constructed by taking entrywise expectation values as
defined, is expected to be related to the input Mandel matrix M2 (ﬁ%b)). Developing it

we find
1 PT
s (1 ac be atel BTéT)
a'c

ptet =

afe _
bte D+ : ,
éth

N

. [ ata+eéte+1 bta
afb bib+éfe+1

> <dT 3T>: +(1+6T6)<(1) g) (3.59)

[y PN
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Using this in Eq. (3.58) we have after implementing the conjugation U‘l(- . )U

1 . .

X = T i (1 da @y ate b%/):)
yie
&t
oty

+Tr(pig” : ,
0 0 0 Py
0

a’ Uil U2 .

Ny a

b = U1 U22 i (3.60)
¢ Uzl U32

Here the fact that the c-mode is initially in vacuum has been used, and the appearance
of the extra Z, Z' terms is a result of normal ordering similar to the presence of ¥ in

Eq. (3.29). One can now disentangle the u-dependences and express the result in terms
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of M@ (5% and ¢ = Te(p\2? ¢ -

X = WM?EE"wwh + ,
ZI
1 0 0 0 0
0 < ujy > U3y  Us2 ) < Uy > ( Uzp Uz )
Wi(u) = 0 Uy Uy
0 U12 N Ul U12
u3; U3z
0 U22 U1  U22
Z' = Tr(p(ﬁb)Z),
Z’ _ U1 U2 : ? aT bT uTl u§1
ug21 U2 b u’l‘2 u§2

0

. 3.61
1 ) (361
If this matrix X, dependent on ﬁgb) and u € U(3), is indefinite, the NPT entangled
(abe

out

A A 1
+(1 4 (ujyal + u5eb') (ugpé + ugyb)) < 0

nature of p ) of Eq. (3.57) follows. Of course this can happen only if p D ) is QO-noncl,
(at the level of its Mandel matrix), since the ‘U(3) beamsplitter’ U would map any QO-cl
input into similar output.

As illustrations of this general procedure we consider two simple examples. The first
is a two-mode state with only a finite number of photons, so that its QO-nonclassicality
is a foregone conclusion :

A(ab)

p,q,r >0 p+qg+r=1. (3.62)

This is separable, though not a product state. The only non vanishing expectation values
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needed to construct its Mandel matrix are

(@'a) = 2p+q, (b'0) =2r +¢, (a"%a%) = 2p,
(atab'd) = ¢, (b120%) = 2r. (3.63)

Therefore the Mandel matrix is

1 q+2p 0 0 q+2r
q+2p 2p 0 0 q
MO = 0 0 ¢ 0 0 (3.64)
0 0 0 ¢ 0
q-+2r q 0 0 2r

The determinants of various nontrivial 2 x 2 submatrices, the one nontrivial 3 x 3 sub-
matrix, and finally of M) (ﬁgb)) itself, are (indicating the submatrices by the relevant

rows and columns) :

(1,2) : 2p—(q+2p)% (1,5): 2r —(¢+2r)% (2,5): 4pr — ¢
(1,2,5) : ¢* —4dpr;
detM@ (55") = ¢*(¢* — 4pr). (3.65)

One can easily imagine situations for which the (1,2) and (1,5) submatrices become
indefinite, for instance ¢ close to unity and p,r close to zero. In any case, since the
(2,5) subdeterminant is opposite in sign to the (1,2,5) subdeterminant and to the full
determinant, the state in Eq. (3.62) is always QO-noncl at the Mandel matrix level.
The type of sub-PS can be determined easily. From Eq. (3.64) we find the 4 x 4

matrix I' to be

b 0 0 ¢g—(q+2p)(qg+2r)
_— 0 qg 0 0 |
0 0 ¢ 0
q—(¢+2p)(g+2r) 0 O )
ba = 2p—(q+2p)°, & =2r—(2r+q?> (3.66)
Therefore also
Yo(a, B) (e, B) =
2plo|! + 4qlal?|B1” + 2r|B* — ((q + 2p)|ef* + (¢ + 2r)|B]*)*. (3.67)
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For a« = 1, # = 0 this becomes d,; for « =0, § =1 it is §,. We now consider p running

over its range [0, 1] in successive portions and see what conclusions can be drawn :

p=0 qg=0 = O =-2; ¢>0 = 9, <0;
1 2
0<p<§: 0o>0 = 2p—(p—r+1)">0 =
(p—7rP+1-2r<0 = 2r>1 = §&<0;
6a=0 = (p—r)’+1-2r=0 = p#r,
2r>1 = 0, <0;
1 1
p=3: ¢=0 = p=r=g, da=0=0
q>0 = 6§, <0;
1
§<p§1: 2p>1 = 6, <0. (3.68)

Thus in every situation except p =r = %, q = 0, either 9, or J; is negative. In this one

exceptional case we find from Eq. (3.67):

p=r=g5 a=0: vo(05)Tyn(a,B) = ~2al’5 (3.69)

which is negative for «, 5 # 0. This establishes that for the state (3.62) the sub-PS is of
Type L

Now we couple this state to the third c-mode in vacuum, and pass it through a partic-
ular U(3) beamsplitter, namely a 50 : 50 beamsplitter acting on the b and ¢ modes alone.
The final output state is calculated using Eq. (3.57), and to test its NPT entanglement
we need to calculate the matrix X of Eq. (3.61) involving the M ®) (ﬁgb)) term and the
added Z’ term. The choice of u € U(3), the resulting W (u), and the two terms making
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up X are as follows.

1
N A R
0 —1/f 1/v2
1 0 0
00 —1/x/§ 0
W = [0oo0 o0 _1/2
00 0 _1/\/_
00 0 —1/2
1 0 —r—gq/2 0 —-r—gq/2
W () MO (W ()t = -r—q/2 0 r/2 0 "2 |
0 0 0 : q/2 0
“roa/z 0 r/2. .0 /2
g <2p+3q/2+r+1 0 > -
0 q+2r+1

The dotted lines in (3.70) indicate where the 2 x 2 block Z’ has to be added to this box.
Leaving out the trivial second and fourth rows and columns as they do not couple to any

others, the determinants of the various 2 x 2 and the one 3 x 3 submatrix in X are:

(1,3): /2= (q/2+7)% (1,5): 5r/24q+1—(q/2+7)%
(3,5): r(g+2r+1)/2; (1,3,5): (¢+2r+1)(r/2— (g/2 +1)%). (3.71)

Comparing Egs. (3.65) and (3.71) we see: whenever the QO-nonclassicality of pgb)
manifests itself in the (1,5) submatrix of M (2)(A% )) being indefinite, simultaneously

the 3-mode state [)(()iic)

indefinite (1,2) submatrix in M) (p (ab)) Eq. (3.65), then by suitably altering the U(3)
(abe)

out

displays NPT entanglement. If one had on the other hand an

. In both situations,

(abe)

out

element u in Eq. (3.70) we could achieve NPT entanglement of p,
(ab)

the signatures of QO-nonclassicality in p,” and of NPT entanglement in p coincide.
The second example to illustrate the ideas of this Section is similar in structure to

example (3.34) of the preceding Section, but its properties differ in certain details. For a
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nonnegative real parameter 1 we define the separable state
OO 2n

A(ab Z

\n ny(n,n|, (3.72)

where C' = Coshn, S = Sinh 7 and ¢ = tanh 7. Clearly, the case n = 0 corresponds to the
two-mode vacuum, and so we are interested in the parameter range 0 < 1 < oco. Using
the elementary sums

© 2n

Z(n or n?) (72771)' = gS or 2(5 +n0C), (3.73)
n=0

the nonzero expectation values needed for the Mandel matrix are:

(@tbtab) = g(n +1). (3.74)
Therefore we have
t t
1 z 0 0 z
T dn-t) 0 0 Fmn+t)
M2(p%) =1 o 0 I(n +t) 0 0 : (3.75)
0 0 0 I(n+t) 0
T o Am+) 0 0 Tn—1)

Leaving out the third and fourth rows and columns, the remaining 2 x 2 submatrix

determinants are:

(1,2) and (1,5) : g(%—t) (2,5) : —”Tgt. (3.76)

The combination @ — t decreases monotonically from 0 to —1 as 7 runs from zero to

infinity. therefore the state (3.72) is QO-noncl for all n > 0. To determine its Type we
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compute I' and its ‘expectation value’ in ¢g(a, ) :

=t 0 0 &+t
o 7 0 n+t 0 0
1 0 0 n+t 0 ’
e+t 0 0 k-t
n,n
Yo(a, B) Ty(a, B) = 1 @—t+2|a|2|ﬁ|2(77+3t)}- (3.77)

At both a =1, § =0 and @ = 0, § = 1 the last expression is negative, so the state
(3.72) is QO-noncl Type I sub-PS. In this context we note that the single-mode state @

obtained from (3.72) by tracing over b alone is

sa) 1i 772n,> (n| (3.78)
Po T e '

and this has the Mandel matrix and determinant

1 nt
MO@E) = ( ’ )
i T 4 —1)
det MM (p\)) = g(%—t)<0. (3.79)

The properties of ﬁg) are identical. Thus in contrast to the state (3.34), here both ﬁ(a)

D
and ﬁ(Db) are QO-noncl, accompanying the Type I nature of [)%b).
We now apply the NPT entanglement test outlined in Egs. (3.58, 3.60, 3.61). The

necessary expressions are:

1 0 -z 0 -
0 Zn+t) 0 0 0
WM W@t = | =% 0 fh-t 0 Hh-b |
0 0 0 I +1t) 0
“H 0 f-n 0 1)
1+3 0
7' = 5 L (3.80)
0 1+ %

According to Eq. (3.61), the 2 x 2 matrix Z’ has to be ‘added’ at the lower right hand
corner of the 5 x 5 matrix, thus leading to X of Eq. (3.61). Then the positivity or
otherwise of X has to be examined. However, even without taking account of Z’, the
(1,3) subdeterminant of X is {§(# — t), which is negative. This establishes the NPT
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- (abe)

out

in this example, being ‘caused’ by the same expression 25 — ¢

entanglement of p .

whose negativity led to p(a ) being QO-noncl in Eq. (3.76).

3.4.1 Genuine tripartite entanglement from Mandel nonclassicality

In this Section, we demonstrate the possibility of generating genuine residual tripartite
entanglement from two-mode Mandel type nonclassicality. The entanglement so produced
is residual in the sense of [275], whereby the end result is a tripartite state similar to the
GHZ state, such that it has no bipartite entanglement when any one of the three modes
is traced away. We demonstrate this using the state considered in example (b) of Section
3.3, where it was used to demonstrate Type-II sub-PS. Pass the state

~(ab) _
7Y ® 10)ee(0] = AZ yn MYab ab (s 1] @ [0)ee (0], (3.81)

through a 50:50 b — ¢ beamsplitter, whose action on the mode operators b and ¢ is

e\ A 1 11 é
U<B>U1:ﬁ<—11><6>' (3.82)

The resulting state is

~(abe)
out

-~ U(*‘“” ® |o>cc<0|>

= —/\Z o |’n>aa<n\ ® (0" + 1[0, 0)p 4c(0,0|(b + &)"

_ _AZ Al'n! Z 7,1 — 7)pe bels, n — 5| (3.83)

TSO\/’I“"I’L—’I“ n—s)'

(abe)

out 1S separable in the a/bc cut. However it is entangled in both

Clearly the state p
the ¢/ab cut and b/ac cuts as we show below. As a test for NPT entanglement in the

c¢/ab cut, we evaluate the expectation value of a suitably chosen positive operator on the

partially transposed output ﬁgﬁc)PT the partial transpose being effected on the ¢ mode.
For the choice
A= co+ erbe + oala, (3.84)

the test for entanglement would be to check for violation of positivity of

Tr(p T A A) = v (%) (AT A)"T). (3.85)

out out
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~ A PT
The positivity or otherwise of Tr(pgiic) (ATA)" ") is equivalent to the positivity or other-

wise of

(abe)

out

X =Tr(p bie  bibete bfeafa |). (3.86)

ata afabet afaata

Using the beamsplitter relation and the fact that initially the ¢ mode is in the ground

state, we have

1 A A
PR D% T(AZ+N) | 20 (3.87)
A SZ+N) AT+

N[

(abe)

In particular, the (2,3) submatrix of X is not positive semidefinite, thus g,

is entangled
across the ¢/ab cut. It is easy to see that a similar test with the same choice of 121, except
that now the partial transpose is done on the b mode, yields the conclusion that the state
pgut <) is entangled across the b/ac cut. Thus we have demonstrated bipartite entanglement
in a tripartite setup.

Now to show that the entanglement is genuine tripartite, ‘residual’ in the sense of

[275], we have the following.

(ab) 5() > )6 0 (7|

Pout = Tre(p Out Z ~ (n—r)l’
~(ac) abc )\ n' = ‘T>c c(r‘

Pt = Ty () Jaa \TZO =)l

p( ) _ Ty (p(abc)) S i A" i |7, 1 — 7Y be(s,n — s (3.88)
out a\Fout on gl ] . .

Both ﬁ(ab) and ﬁ(ac) are manifestly separable. It may not be obvious at first glance

that ﬁg%;tis separ(;]l;le, but a closer look shows that ﬁgﬁ) can be written in the following
alternate form:
X \n
o) = TS Xy o] © [0)eclO)U (3.50)

n=0

where U corresponds to a 50:50 b-c beamsplitter. The output is a classical state passed
through a 50:50 b-c beamsplitter. Thus the state ﬁ(bc) is classical and hence separable.

out

An interesting question in the present context is the possibility of extension of monogamy

112



Chapter 3. Nonclassicality, Mandel classification, and entanglement

relations to this non-Gaussian case [254, 255, 275, 276].

3.5 Mandel Parameter

In Section 3.2.2, we had introduced the Mandel matrix construct and outlined the possible
classification of states it leads to. It is desirable that we are able to gauge the Mandel
type nonclassicality through the definition of a numerical measure. In the case of a
single-mode radiation field, such a quantity was defined by Mandel in [295] through the
Q@ parameter. We attempt to extend this definition to the case of two modes. A useful
requirement of any such measure would be its invariance under beamsplitter action, as
beamsplitter by itself does not produce nonclassicality, but rather transforms one form
of nonclassicality to another, thus leaving invariant any reasonable quantitative measure
of nonclassicality. Keeping this requirement in mind, we define the two-mode Mandel

parameter as

Q= DL (3.90)
2((ata) + (b))

where T is the 4 x 4 matrix defined from the two-mode Mandel matrix M ®?) (ﬁ%b)) in

Eq. (3.17), and [|.|| is the trace norm. In our case, since I' is a hermitian matrix

by definition, the trace norm is simply the sum of the absolute values of its eigenvalues.

Thus our definition for the two-mode Mandel parameter is simply the sum of the negative

eigenvalues of I' divided by the total energy of the system. From Eq. (3.27) and Eq.

(3.28), we know that under the action of a beamsplitter
-1 =vrvt, (3.91)

where V = v ®@ u*, uw € U(2). Clearly the trace norm [|[I'|| and trace Tr(I') are both
unitarily invariant, thus invariant under the action of a beamsplitter. The total energy
is clearly also invariant under beamsplitter action. Thus our definition for the two-
mode Mandel parameter given by Q5 is manifestly beamsplitter action invariant. By
definition it is zero for classical states, but can be non-zero for nonclassical states. As a
simple example, for the case of two-mode product Fock states, Qo = —1. It is nonzero
negative for states either with Type I or Type II nonclassicality. The two-mode Mandel
parameter Q2 can be useful in gauging the two mode Mandel nonclassicality only within
the respective types, as the ‘“Type’ is invariant under beamsplitter action.

To maintain the distinction between the two types, it is useful to introduce the single-

mode Mandel parameter Q7 defined at the two mode level. From Eq. (3.13), it is easy

113



Chapter 3. Nonclassicality, Mandel classification, and entanglement

to see that we can define 1 to be

_ (ARA?) (A4
Q1= i) : (3.92)

It clear that the least possible value @)1 can take is —1. Clearly for Type II states, Q1
is positive but ) is negative, .i.e., one can never choose a linear combination of the
annihilation operators of the two modes to achieve ()1 to be negative. On the other hand
for Type I states, one can always choose a particular (atleast one) linear combination of
the annihilation operators of the two modes to make )1 negative.

To be more precise, it is useful to define Q", which is the minimum possible value
@1 can take for a given two-mode state, the minimum being taken over all the possible
linear combinations of the annihilation operators of the two modes under U(2). With the
definition of Q" it is clear that for Type II states, Qo is negative but Q" is positive.
On the other hand for Type I states, both Q2 and Q1" are negative.

Having thus introduced Q" it is possible to classify states in the following manner.
(i) States with Q1™ > 0 and Qo = 0.
(ii) States with Q™™ > 0 but Q2 < 0.
(iii) States with both Q™ < 0 and Q3 < 0.
For states denoted by (iii), a further sub-classification is possible:
(iiia) States with Q1" < Q.
(iiib) States with Qo < Q™.

States classified as (i), show no two-mode Mandel type nonclassicality, Type II states
come under (ii), and Type I states under (iii). Type I states can be further classified as
(iiia) or (iiib).

All classical states are examples for states classified as (i). As simple examples for
(ii), we consider states given as example (b) and example (c¢) in Section 3.3. These are
Type II states, and thus are examples for (ii). From Eq. (3.35) and Eq. (3.36), it is easy
to see that for the state (example (b)) given in Eq. (3.34), Q2 = —1/2, and for the state
(example (c)) in Eq. (3.50), Q2 = SS'(SS" — CC')/(S? 4+ S"), which is greater than
—1/2. At equal squeezings at both ends, ()2 takes the value —1/2. Furthermore from
Eq. (3.53), we see that the state in example (c) goes over to being a sample for (i) from

(ii), when the squeeze parameter at one of the ends goes to zero.

114



Chapter 3. Nonclassicality, Mandel classification, and entanglement

All Type I states such as example (a) of Section 3.3 are examples for states classified
as (iii). The subclassification into (iiia) and (iiib) is a bit subtle, nevertheless we provide
examples for both. As an example for (iiia), we consider the product of a Fock state at

the a-mode and a coherent state at the b-mode.

[¥) = n) ® |B). (3.93)

For this state, the I’ matrix is diagonal with the diagonal entries given by {—n,n|5[?,
n|B|?,0}. Thus Qs for this state is
-n
Qy=—5 > —1. (3.94)
n+16/"
On the other hand, the single-mode Mandel parameter ()1 for the a-mode is —1. Thus
QM < Qy for this case.

As an example for (iiib), we consider the state in Eq. (3.72) of Section 3.4. For this
state it is easy to see from Eqgs. (3.77) and (3.74) that Q2 = —1/2, however the expression
for ) for an arbitrary value of « and 3 is, by Eqgs. (3.77) and (3.74),

¢0(a,ﬁ)TF1/)0(a,ﬂ) 1 n

A T E—t+2\al2]ﬁ\2(n+3t)}. (3.95)

The minimum possible value for ()1 is when « or (3 is zero, i.e.,

: 1 n 1 n 1
=t = 1} > —— 3.96
@ 2+ C2 2 ' SinhnCoshn = 2 (3.96)
Another interesting example for (iiib) is the class of states [, ), obtained as an equal

superposition of product Fock states with total number equal to n:

|4 (3.97)

1 n
= 7n+1rz::0|r,n—r>.
For the cases n = 1,2,3,4 the numerically evaluated values of ()2 are respectively —1,
—1.085, —1.123, —1.143. However () is obviously bounded from below by —1. Thus
Q2 < Q™ for this example. Incidently, another interesting aspect should be noted,
namely that ()2 can take values less than —1 in comparison with )1 which cannot. An
interesting aspect of these states is that they do not arise from beamsplitters, as entangled
states, produced from product Fock states, with the exception of the case n = 1. Indeed,
the value of the two-mode Mandel parameter () falling below —1 is precisely a signature

of this aspect.
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3.6 Concluding remarks

In this work, we have made an attempt to bring the notions of nonclassicality of two-mode
states and entanglement as close as possible. We have given a transparent connection
between normal ordering and NPT entanglement in the context of continuous variables.
We have considered generalisation of the Mandel criterion to two-mode systems through
the Mandel matrix construct, and exploited it to analyse entanglement. Such a construc-
tion leads to a natural classification of states as Type I and Type II. Type II states are
special in the sense that their antibunching cannot be detected locally, i.e., through any
single-mode process. We have considered several examples to illustrate this classification.
We have shown the possibility of demonstrating NPT entanglement through the Mandel
matrix construct. It is also shown that the demonstrated entanglement could as well be
distilled. We have extended this idea to the tripartite case, where we have demonstrated
through simple examples that the entanglement could be traced back to the Mandel ma-
trix. We have introduced the two-mode Mandel parameter ()2, through the I' matrix
construct, and discussed interesting situations that could arise in the case of two modes,
by contrasting the value of ()2 with that of the single-mode Mandel parameter Q)1. We
have demonstrated the ability of the two-mode Mandel parameter Q5 to detect entan-
glement that cannot arise from beamsplitters. We hope that the perspective developed

here will help further interesting developments and generalisations.
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Entanglement of Formation for Gaussian states

4.1 Introduction

Entanglement is an essential resource for many quantum information processing tasks,
and hence it is important to be able to quantify this resource. In Section 1.6, we outlined
a set of demands, that any good measure of entanglement should satisfy. In the case of bi-
partite pure states, the demands lead to a simple and unique measure for this resource: it
is the von Neumann entropy of either subsystem [62, 338, 339]. For mixed states however,
many different entanglement measures have been explored [340], and there is no measure
which justifies itself to be unique. Of these measures, the entanglement of formation
(EOF) [37] is the most natural extension of the pure state measure of entanglement, to
the case of mixed states. To recall the definition of EOF in Eq. (1.87), the EOF for a

bipartite state p(%) is defined as an infimum :
EOF (p“?) = inf { > p; () | 9" = pjlubj) (Wil } - (4.1)
J J

The infimum is to be taken over all possible ensemble realizations of the given mixed
state p(?) as convex sum of pure states, and FE(;) = S(trg[[v;)(¢;]]), where S(-) is the
von Neumann entropy. The regularised version of EOF is the entanglement cost [37, 63].
EOF has been computed in closed form for arbitrary two-qubit states [67], and for highly
symmetric states like the isotropic states [69] and the Werner states [71].

The role of Gaussian states in quantum information theory has already been outlined
in Section 1.9. Their use in teleportation [83, 84] and quantum cryptography [97] has
been demonstrated. Questions related to their separability [57, 58, 241, 242| and distil-
lability [217] have been resolved. More recently, analytic expression for their EOF has
been obtained in the symmetric case[70]. This notable achievement seems to be the first

computation of EOF for states of infinite rank. These authors exploit a certain extremal-
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ity that the two-mode-squeezed vacuum enjoys in respect of the Einstein-Podolsky-Rosen
(EPR) correlation [341] on the one hand and entanglement on the other.

An interesting Gaussian-state-specific generalisation of EOF, the Gaussian entangle-
ment of formation, has also been explored [342]. But the EOF of asymmetric Gaussian
state has remained an open problem [343] in spite of considerable effort [344]|. Naturally,
the problem of EOF for general (asymmetric) Gaussian states should be solved before the
important issue of additivity of entanglement for Gaussian states could be addressed [342].

In this work we compute, under a conjecture, the EOF for arbitrary two-mode Gaus-
sian states. Our analysis rests on two principal ingredients. The first one is a four-
parameter canonical form we develop for the covariance matrix; one of these parameters,
the squeeze parameter, proves to be a measure of EOF. The second one is a family of
generalised EPR correlations for noncommuting pairs of nonlocal variables; this family
is indexed by a continuous parameter 6. And the conjecture is in respect of an extremal

property of this generalised EPR correlation.

4.2 Canonical Form for Covariance Matrix

Given a two-mode Gaussian state, with the mode on Alice’s side described by canonical
quadrature variables Z,, p, and that on Bob’s side by &3, pp, we can assume without loss
of generality that the first moments of all four variables vanish [57, 70]. Such a zero-mean

Gaussian state is fully described by the covariance matrix [57, 70]

afn 0 Gk, 0
—19-1 _n—1

Ve = 1 0 a ‘B 'n 0 Bk, ’ (42)
2 | Bk, 0 a~1pm 0

0 -3k, 0 afB~tm

where the phase space variables are assumed to be arranged in the order (x4, pa, Zp, Db)
= &, and we have retained through the parameters «, > 0 the freedom of independent
local unitary (i.e., symplectic) scalings on the Alice’s and Bob’s sides. This freedom will
be used shortly.

Note that Vi is left with no correlation between the ‘spatial’ variables Z,, Z; and the

‘momentum’ variables p,, pp. Thus it is sometimes convenient to view Vg as the direct
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sum of 2 X 2 matrices:

Vo =Xag® Pa,
an k o | atn =k
Xe :g [ k oz_fm » Fo= BT [ —k omIL) ] . (4:3)
x P

Let |¥,) denote the standard two-mode-squeezed vacuum state with squeeze param-
eter r. It takes the Schmidt form in the standard Fock basis:

[e.e] o0
;) = ch|n>A ®n)p = ch|n,n> )
n=0 n=0
¢, = tanh"r/coshr. (4.4)

Denoting by E, the entanglement of |¥,), we have
E, = cosh?rlogy (cosh?r) — sinh?r log, (sinh?r) . (4.5)
The covariance matrix of |¥,) has the form

Vo, = Xv, ® Py, ,

X\I/T = 1 © s ) P\I/r = 1 ¢ K )
2|18 C 21 -5 C
C = cosh2r, S=sinh2r. (4.6)

Proposition 4.1 Given a two-mode covariance matrixz Vg, the local scale parameters «,

0B can be so chosen that Vg gets recast in the form

C +uc? 0 S+ucs 0
Vb:l 0 CH+uvc? 0 —S —wes
2 | S+ucs 0 C +us? 0 '
0 —-S—wves 0 C+vs?
C = cosh2rg, S =sinh2rg; ¢ =cosby, s =sinfy. (4.7)

Note: We will call Vjy the canonical form of a two-mode covariance matrix; our results
below will justify this elevated status. We assume without loss of generality n > m or,
equivalently, 0 < 0y < w/4. For a given Vi there will be two solutions for the above form.

Canonical form will always refer to the one with the smaller squeeze parameter r, which
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is ensured by the restriction
tan @y > tanhrg . (4.8)

This condition proves central to our analysis. Its origin may be appreciated by inverse
two-mode-squeezing the Gaussian state Vj until it becomes just separable, and noting
that there exists a range of further squeezing in which the mized Gaussian state remains

separable before becoming inseparable again. The parameters u, v > 0.

Theorem 4.1 The essence of the canonical form is that Vi differs from the covariance
matriz of a two-mode-squeezed vacuum |V,.) by a positive matriz which is a direct sum
of two singular 2 x 2 matrices which are, modulo signature of the off-diagonal elements,

multiples of one another.

Proof: The canonical form demands, as a necessary condition, that «, 3, and r be chosen

to meet
det(Xg — Xy,) =0, det(Pg— Py,)=0. (4.9)

These being two constraints on three parameters, one will expect to get a one-parameter
family of solutions to these constraints. For each such solution we may denote the vector
annihilated by the singular matrix X¢ — Xy, by (sinf, — cos#), and that annihilated by
Pg — Py, by (sinf', cos#'). The canonical form corresponds to that solution for which
0 = 0; it is this degenerate value that equals 6y of the canonical form.

That there exists such a degenerate value can be seen as follows. We may fix the scale
parameter « through o = \/m—/n, and then solve Eqs. (4.9) for § and r, the smaller r
being the relevant one. We will find # = 7/4 and 6 < 7/4 in this case. On the other
hand if we take o = y/n/m and then solve Egs. (4.9), we will find ' = 7/4 and 6 < 7/4.
It follows from continuity that there exists an intermediate value aq for the parameter
a, in the range \/m/n < a < \/n/m, for which §' = 6 (< 7/4 since n > m). And this
yields the canonical form.

Viewed alternatively, the canonical form places the following two requirements on the

scale factors «, 3:

detXg —1/4  tr(o3Xq)
detPg —1/4  tr(o3Pg)’
det(Xg — 03Pgos) =0, (4.10)

where o3 is the diagonal Pauli matrix. These are simultaneous equations in «, 3, and
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solving these equations yields, in terms of n, m, k;, k,, the values of o, 3 corresponding
to the canonical form.

Two special cases may be noted. If m = n we have a = 1 (since \/n/m = \/m/n),
and hence 8 = \/(n — ky)/(n — k), so that the canonical squeeze parameter rq is given
by e™?0 = \/(n — k;)(n — kp), reproducing the results of Ref.[70]. The parameter 6
always equals 7/4 in this (symmetric) case. On the other hand, if k, = k, = k, the

canonical form corresponds to & = 3 = 1, and one obtains rg by simply solving

det n— C?shQTO k — sinh2rq 0, (4.11)
k — sinh2rq m — cosh2rq

which yields this closed-form expression for rg:

—k*+1
cosh(2n —2rg) = o i ,
Vit mP — 1)
+on (n+m) + 2k

(§

(4.12)

Vim+n)? — 4k?

4.3 Generalised EPR Correlation

To proceed further, we need to generalise the familiar EPR correlation in Eq. (1.120)[70].
Given any bipartite state |¢), define

Ty = sinfI,— cosb iy,
pg = sinfp, + cosbpy,
Ao() = (Bl(&0)*|00) + (¥1(D0)°[¢)) - (4.13)

In defining Ap(¢)) we have assumed (1p|Zg|1p) = 0 = (|pg|)); if this is not the case then
g and pg in Ag(¢)) should be replaced by &g — (1h|Z9]0)) and pg — (1h|pg|th) respectively.
Clearly, the usual EPR correlation in Eq. (1.120)[70] corresponds to § = 7/4. While
Tr/4, Pr/a commute, the generalised EPR (nonlocal) variables &g, pg do not commute,

and hence the name generalised EPR correlation for Ag(¥,.); indeed, we have
[fg, ]59] = —icos20. (4.14)
For the two-mode-squeezed vacuum |¥,) the generalised EPR correlation reads

Ag(¥,) = cosh 2r — sin 20 sinh 2r . (4.15)
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Let us combine the quadrature variables of the oscillators of Alice and Bob into boson
operators @ = (&4 4 ipa)/V2 and b = (&, + ipp)/v2. Then, Ag(1)) has this expression

quadratic in the boson variables :

Ag() = (W|Agle)),
Ag = 1+2sin’0ata + 2cos?0b'h
—2cosfsinf(ab+ a'b') . (4.16)

We may call Ay the generalised EPR operator.

The entanglement of ¥,. monotonically increases with increasing value of the squeezing
parameter r. In order that Ag(¥,) be useful as an entanglement measure of ¥, it should,
for fixed value of 0, decrease with increasing r. The restriction tan# > tanhr, encoun-
tered earlier in Eq. (4.8) from a different perspective, simply ensures this. Through the
monotonic relationship (3) between r and E,, we will view this constraint as a restriction
on the allowed range of values of 6, for a fixed value of entanglement.

Given a squeezed state |¥,), let us denote by |¥!) the state obtained from |¥,) by
independent local canonical transformations [57] S, S, € Sp(2, R) acting respectively on
the oscillators of Alice and Bob.

Proposition 4.2 We have Ag(V)) > Ag(¥,.), VO in the range 1 > tanf > tanhr and
for all S,, Sy € Sp(2, R).

Proof: Clearly,

Ap(T) = % { cosh 2r[sin? 0 tr(S,ST) + cos 0 tr(SyST)
— sin 26 sinh 27 tr (035,03S7) }. (4.17)

If et are the singular values of S, and e* those of S, then

tr(S,ST) = 2cosh2y,,
tr(SeSY) = 2cosh2y,, and
tr(03S,03S1) < 2cosh(vq + 7). (4.18)

Thus the difference A(v,, 1) = Ag(P]) — Ag(¥,.) obeys

A(Ya, ) > cosh2r[sin’ @(cosh 2y, — 1) + cos? #(cosh 2, — 1) ]
— sin 26 sinh 27| cosh(y, + ) — 1] (4.19)
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It is easily seen that A(vg, 7p) is expremal at v, = v, = 0 corresponding to the standard
squeezed state |W,.). To show that this extremum is indeed minimum, we note that the
determinant of the Hessian matrix of the right hand side, evaluated at v, = 0 = 7, is
proportional to sin 26 cosh 2r —sinh 27, and hence is positive if and only if tan 6 > tanhr.

Once again we see a role for the requirement tanf > tanhr. Let the equivalence
Vo ~ Vj denote the fact that the corresponding Gaussian states are connected by a local
canonical transformation. The fact that M = Vj— Vi, > 0 implies Ag, (pv,) > Ay (ry)-

In view of Proposition 6.2, this implies
Ao, (pve) = Aoy (pviy) = Aoy (P4,) = cosh 2rg — sin 26 sinh 2r, (4.20)

for any Gaussian state Vi connected to Vg by local canonical transformation. This assigns

an alternative meaning to the canonical parameter rg:

Proposition 4.3 Given a Gaussian state described by Vg ~ Vy, the canonical squeeze

parameter rq is the smallest r for which the matriz inequality Vo — Vyr > 0 s true.

It is well known that the two-mode-squeezed vacuum has several extremal properties
of interest to entanglement [70, 253]. It seems that this state enjoys one more such

distinction, this time in respect of our generalised EPR, correlation.

Conjecture 4.1 Among all bipartite states of fixed entanglement numerically equalling
E,., and for every 0 in the range tanhr < tan, the two-mode-squeezed vacuum |V,) yields
the least value for the generalised EPR correlation Ag(-). In other words, no state |1)
with entanglement E(|v)) < E, can yield a generalised EPR correlation Ng(v) < Ag(¥,),
for any 0 in the range tanf > tanhr

The special case § = 7/4 is the basis of the important work of Ref.[70]. Hence the
present assertion can be viewed as a generalisation of their Proposition 1. The original
EPR correlation A, /4(-) continuously decreases to zero with increasing entanglement.
But this is not true of the generalised EPR correlation Ag(-).

Let us denote by ry the value of r determined by a given value of 8 through the
equation tan # = tanhr, and let 0, denote the value of 6 so determined by r. Then, for

a given numerical E,., the relevant range for 6 in Conjecture 1 is 6, < 0 < 7/4.

Proposition 4.4 The generalised EPR correlation Ag(-) obeys the basic inequality Ag(-) >
cos 20. The two-mode-squeezed vacuum saturates this inequality if and only if the squeeze

parameter r respects tanhr = tan 6.
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Proof: 1t is clear that the relations tanf = tanhr, sin20 = tanh2r, and cos20 =
(cosh 2r)~! are equivalent to one another, and so also are the inequalities tan § > tanhr,
sin 20 > tanh 2r, and cos 20 < (cosh 2r)~. Now consider the transformation (a, b) —
U(r)(a, b)U(r)" where U(r) = exp{r(a'bt — ab) } is the unitary two-mode-squeeze oper-

ation:
a — acoshr — bl sinhr, b— bcoshr — al sinhr. (4.21)
This implies the following transformation for the anticommutator {i), BT} = bbT + bTh:

o e 1 .
{b,6"Y — (bfb—ata)+ 5({&,&*} + {b,b"}) cosh 2r
— (ab+ a'b") sinh 2r
= cosh2r Ag,, 6, = arctan(tanhr). (4.22)

Since {b, b1} > 1, so is also its unitary transform cosh 2r Ag, . That is, Ay, > (cosh2r)~! =
cos 20,..

Thus, saturation of the inequality A, (¢') > cos 26, is equivalent to the condition
(1h|{b,bTY|9p) = 1, where [¢//) = U(r)|4)). A pure state which satisfies (¢|{b,b'}[y)) = 1,
is of the form [1) = |¢)q ® |0)y, where |¢), is any vector in Alice’s Hilbert space H®. It
follows that states saturating the inequality Ag, (p) > cos 26, constitute the set { p(®) =
U(r)p'® @ [0)pp(0|U ()T}, where p(@) is any (pure or mixed) state of Alice’s oscillator.
Finally, Conjecture 6.1 claims that among all these states saturating this inequality the
two-mode-squeezed vacuum |¥,,), corresponding to the choice p( = |0),,(0], has the

least entanglement.

4.4 Entanglement of Formation

With the canonical form and the generalised EPR correlations in hand, we are now fully

equipped to compute the EOF of an arbitrary two-mode Gaussian state.

Proposition 4.5 Given an inseparable zero-mean two-mode Gaussian state py, with co-
variance matrixz Vo specified in the canonical form by w, v, 6y and ro with u, v > 0 and

0 < tanhry < tanfy < 1, its EOF equals E,,, the entanglement of the squeezed vacuum
[Wry)-

Proof: The fact that M = Vp — Vg, > 0 guaranties that py, can be realized as a convex

sum of displaced versions D(§)|V,,) of the squeezed vacuum states |¥,,), all of which
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have the same entanglement E,, as |[¥,,):

iy ~ [ EDEI) (W, D) exp(~ 5670 ), (1.23)

Here D(§) is the unitary phase space displacement operator. The rank of M equals 2,
and both M ~! and the two-dimensional integral refer to the restriction of the phase space
variable £ to the range of M.

Since a specific ensemble realization with average entanglement E,, is exhibited,
EOF(py,) < E,,- On the other hand, evaluation of the generalised EPR correlation
Ag(pyy) = tr (Agpvo), for the particular value of § occurring in V shows that Ag, (pv,) =
cosh 2r¢ — sin 26y sinh 2rg. And by Conjecture 6.1, this implies EOF (py;,) > E,,. We
have thus proved EOF(py,) = Ey,.

An attractive feature of the canonical form of the covariance matrix is that the two-

mode-squeezing U(r) acts on it in a covariant or form-preserving manner.
Proposition 4.6 Under the two-mode-squeezing transformation U(r) we have

Vo(ro, 0, u,v)  — Vo(rg, 00,4/, 0");

sinh 2r 4+ cosh 2r sin 26

cosh 27 + sin 26, sinh 2r’

(u';v") = (u, v) x (cosh 2r + sin 26, sinh 2r). (4.24)

ro =170+ T, sin 26, =

This is easily verified by direct computation. While the canonical squeeze parameter
ro simply gets translated by r, the parameters u and v get scaled by a common factor.
If we define rg,, T, through tan 6y = tanhrg, and tan 6}, = tanh e the transformation
law for 0 takes the form of translation: Toy =Ty + T

As a consequence of this covariance, the convex decomposition which minimizes
the average entanglement goes covariantly to such a decomposition under two-mode-
squeezing: the minimal decomposition commutes with squeezing. This implies, in par-
ticular, the following simple behaviour of EOF under squeezing: E,, — E, 4.

Finally, the just separable Gaussian states on the separable-inseparable boundary,
correspond to the canonical form with rog = 0[57]. As was to be expected, the condition

(4.8) places no restriction on 6y in this case.
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spectra for n-mode Gaussian states

5.1 Introduction

The quantum marginal problem has attracted considerable interest in quantum infor-
mation theory [17, 34, 345-351]. Given a multipartite system, it asks: what kind of
spectra for the subsystem density operators are consistent with a given spectrum for the
density operator of the full system? The Gaussian quantum marginal problem (detailed
below) has been solved recently [285, 352] (As noted in Ref.[352], the three-mode case
was known earlier [254]). Our approach to this problem makes effective use of beam split-
ter and two-mode squeezing transformations. In the case of two modes it is shown that
every Gaussian state is uniquely determined, modulo local canonical transformations, by
its global spectrum and local spectra; in particular, the entanglement is fully determined
by these spectra.

Consider a Gaussian state of a system of n-modes, represented by density operator p.
The mean values of the position and momentum variables ¢;, p; have no role to play in
our considerations, and so we assume that these mean values vanish. Such a zero-mean
Gaussian state is fully described by its 2n x 2n covariance matrix V.

The reduced state p; of the 7™ mode, obtained by tracing out from  all other modes,
is also a zero-mean Gaussian state. With the phase space variables assumed arranged in
the order qi,p1; q2,P2; - ; qn,pn the ™ 2 x 2 block along the leading diagonal of V/
represents precisely the covariance matrix of the reduced state p;. Through (independent)
local canonical transformations € Sp(2, R) on each mode we make all the 2 x 2 blocks
along the diagonal of V multiples of identity. The covariance matrix of the j* mode will
then be of the form diag(mj,m;). It corresponds to a thermal state, with temperature

T'(m;) which is a monotone increasing function of m;. Being thermal, p; has the spectral
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resolution p; = [1 — &(m;)] > pe o &(mj)"*|njk)(njx| . The parameter {(m;) is another
monotone increasing function of m;, and |nj;)’s are the energy eigenstates of the gt
oscillator. Clearly, the eigenvalue spectra of the p;’s are determined by, and determine,
the local spectral parameters m;.

Using an appropriate (nonlocal) canonical transformation S € Sp(2n, R) the covari-
ance matrix V can be decoupled and brought into the canonical form V(©) of independent
oscillators in thermal states [57]: v = gy sT =diag(k1,K1; K2,K2; *** ; Kny Kn). The

associated density operator 59 thus has the spectral decomposition
n [e.e]
= H [1—&(x;) Zf )" ¥ i) (- (5.1)
j=1 k=0

Since 59 and the original j are unitarily related, the spectrum of j is the same as that
of [3(0)_ It is clear that this global spectrum and the n-tuple of global spectral parameters
(K1,K2, - ,Kn) determine each other.

We may now ask what are the constraints connecting the global spectrum of a Gaus-
sian state to its local spectra. In view of the invertible relationships just noted this
Gaussian quantum marginal problem is equivalent to seeking the compatibility constraints
between the global spectral parameters { x; } and the local spectral parameters {m; }.

Interestingly, the answer can be given in the form of necessary and sufficient conditions.

Theorem 5.1 Let m = (my,mg,ms,--+ ,my) and & = (K1, K2, -+ ,Kky) be the local and
global spectral parameters of an n-mode Gaussian state, written in nondecreasing order.

These are compatible iff
k k
Zm]-ZZ/{]-, k=1,2,---.n, (5.2)
j=1 j=1
n—1 n—1
—ijgﬁn—z,%j. (5.3)
j=1 J=1

Remarks: What this claim means can be clarified by stating it in two parts. Suppose
a Gaussian state is given. Its local spectral parameters mq,mso,--- ,m,, and global
spectral parameters k1, kK2, - , K, are certain to meet these inequalities (with k1 > 1).
Conversely, given a set of local and global spectral parameters meeting these inequalities
(with k1 > 1), we can certainly construct a physical Gaussian state with these parameters.

The first part of the theorem was essentially proved by Hiroshima [285]. But the full
theorem in this form was formulated by Eisert et al. [352] who presented an inductive proof

for the second part. Our proof of both parts will be seen to be constructive, consistent
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with the elementary nature of the theorem, and it rests in an essential manner on a fuller
appreciation of the two-mode situation.

Given two vectors m, Kk € R", we will say x dominates m if m and &, after their
components are rearranged in the nondecreasing order, obey the set of n + 1 inequali-
ties (5.2), (5.3). This definition is such that permutation of the components of m or k
does not affect dominance. Thus (9,7,8,6,12,11,10) is dominated by (5,2,18,4,1,12,3),
since (1,2,3,4,5,12,18) manifestly dominates (6,7,8,9,10,11,12). Further, dominance
so defined is transitive: x dominates m, and m dominates m/, together imply x dominates
m'.

In the Schur-Horn case [353] wherein m corresponds to the diagonal entries of a
hermitian matrix and  to its eigenvalues, the last inequality in (5.2) becomes an equality.

It is clear that (5.3) is subsumed by (5.2) in that case.

5.2 The two-mode case

This case is of interest in its own right. Further, it possesses an aspect which seems to be
unique, not shared by any other system. Finally, our analysis of the n-mode case relies
critically on repeated applications of the two-mode result. Hence we begin with a direct

proof of the theorem in the two-mode case.

Lemma 5.1 The parameters my < mo and 1 < k1 < K9 are compatible for two-mode

Gaussian states iff

my +mo > K1 + Ko,

mo — My S K9 — KR1. (54:)

Note that the condition m; > k1 is subsumed by (5.4).
Proof of Lemma: The covariance matrix can, through local unitary (canonical) trans-
formation € Sp(2, R) x Sp(2, R), be brought to the form

(5.5)
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The global spectral parameters k1, ko are related to the local my, msy through the sym-

plectic invariants [57]

1
§tr QVQTV) = K2+ K3 =m? +m3 + 2k k,,
detV = (k1k2)? = (mimg — E2)(mimy — kg) (5.6)

These immediately imply

Kiky < mima,
KT+ K3 > mi+mi, if kyky, > 0,
K+ RS < mi4+md if kk, <0, (5.7)

equality in the first inequality holding if k, = 0 = k,. These inequalities imply

kg — K1 > mg—mi, when kg k, >0,

ky+ K1 < mg+my, when kyk, <O. (5.8)

This much is immediate from the symplectic invariants. What remain to be proved are :
k2 — k1 > mg —mq when kyk, <0 and k2 + k1 > mo + my when k k, > 0.
To prove these we reinterpret (5.6) as simultaneous expressions for kg, k, in terms of

R1, K235 M1, M2

kaky = [(Ki +3) — (mi +m3)]/2, (5.9)
1
2, 1.2 2.2 2.2 122
ky +ky = . [mim; — kiky + Kk, |. (5.10)

It is clear that real solutions for k, and k, will exist iff k2 + k2" > “2| kyky, | . That is,
iff

mimsog — ’kzkp‘ Z R1KR9. (5.11)
With use of (5.9) for k;kp, this last condition reads

kg — K1 > mg—mi, when kg k, <0,

ko + k1 < mg+mq, when kyk, > 0. (5.12)

Proof of the Lemma is thus complete.
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Two types of simple transformations on any pair of modes characterised by annihi-
lation operators a;, a; deserve particular mention; they play a key role in our proof of
the theorem. The first, Sy, corresponds to the compact transformations a; — cosf a; +
sinf ay, ap — —sinfa; + cosf ay, and therefore is represented by Sy = cost og @ oo +
sinficy ® o9 € Sp(4,R), 0 < 0 < 2w, where o( is the 2 X 2 unit matrix and oy
is the antisymmetric Pauli matrix. Physically, Sy is a beam splitter with transmitiv-

ity cos?f. The second one, Sy, is moncompact and corresponds to squeezing transfor-

mations a; — coshpa; + sinhua%, ar — cosh payp + sinh,ua;-,
S, = coshpoyg® og+sinhpoy ® oz € Sp(4,R), 0 < p < oo.

It is easily verified that when the covariance matrix V, Eq. (5.5), has k, = k; = k,

and is represented by

it can be diagonalised by the beam splitter transformation V' — SQVSOT , with 6 fixed
through tan 20 = 2k/(mg — mq). And kg + k1 will precisely equal mg + m; in this case.
Similarly, if k, = —k, = k > 0, then V is diagonalised by the squeezing transformation
V — SMVSMT, with tanh 2u = 2k/(mg + mq), and one will find k3 — kK1 = mg — my in
this case.

Conversely, suppose we start with the canonical form V) = diag (k1,k1; K2,K2),
and we wish to achieve through symplectic congruence V0 — SV ST § ¢ Sp(4, R),
a covariance matrix with diagonals mqy,mo. If m; < mq are such that ms < ko and
Ko + K1 = mo +my, such a redistribution of k1, Ko among my, mo can always be achieved
through a beam splitter transformation Syp. Under Sy we have my + my = ks + k1 and
mg —mq = cos 20 (ke — k1). On the other hand, if ms > k9 and kg — K1 = My — My,
so that x; and ko are enhanced by equal amounts to mj, meo, this can be achieved
through a squeezing transformation S,. Under S, we have ms — m; = k2 — k1 and
ma +mq = cosh 2u (ko + K1).

Our Lemma is similar to Lemma 5 of Ref.[352], but our proof is direct and con-
structive. There is an important distinction in content as well: while theirs claims that
me — my = Ko — k1 iff mo = Ko and m; = ki, we have just demonstrated that if
mg —my = kg — K1 then mg + my could equal cosh 2u (ke + k1) for any 0 < p < oo, not
just u = 0. Indeed, this distinction is central to Stage 2 of our proof of the second part
of the main theorem, the part which distinguishes the present symplectic situation from
the Schur-Horn case.

Returning to Eq.(5.10), if we are given values for the expressions ‘a? + b?’ and
“ab’ with a? + b* > 2|ab|, the solution for (a,b) is unique [(a,b) and (b,a) are not
distinct solutions for our purpose|. This innocent looking observation leads to a surprising

conclusion.

Proposition 5.1 Specification of the local and global spectra of a two-mode Gaussian
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state determines uniquely the state itself, modulo local unitary transformations.

States of a pair of qubits share a similarity with two-mode Gaussian states in impor-
tant respects. For instance, positivity under partial transpose is a necessary and sufficient
condition for separability and nondistillability in both cases. But a statement analogous

to the above proposition is not true for a pair of qubits!

5.3 Proof of main theorem

Assume we are given a (zero-mean) Gaussian state, or equivalently, an acceptable co-
variance matrix V, the 2 x 2 blocks along the leading diagonal of V' being of the
form diag(m;,m;). The global spectral parameters {x; } are immediately defined by
V [57, 192]. It is assumed that m = (my,ma,---my) and kK = (K1,K2, - ,Kp) are ar-
ranged in nondecreasing order. Let P, denote the product kiko--- Kk, and let P, =
mimg---my. Clearly, P, = detV < P, equality holding iff V is diagonal, i.e., iff
m; = Kj, j = 1,2,--- ,n. Our task is to prove that x dominates m.

Choose a pair 1 < j < k < n such that the 2 x 2 block (in the off-diagonal location)
connecting the j* and k" modes is nonzero. We can arrange (through local rotations)
this block to be diagonal. Let us ‘diagonalise’ this 4 x 4 part of the covariance matrix
using an appropriate two-mode canonical transformation € Sp(4, R), so that m; and my,
are transformed to m; and my respectively, the other diagonal parameters remaining
unaffected.

It is be noted that the new m dominates the original m. That this is so follows, in the
case k < m, from the facts m; < m; and m; +my < m;+my. In the case k = n it follows
from the additional fact that if my is less that my it is so by a magnitude which does
not exceed the magnitude by which 7 is less than m; (my — m; > my —m;). Further,
mjmy, < m;jm.

Denote by m’ the new diagonal m-parameters arranged in nondecreasing order by
correspondingly permuting the oscillators. Since m;m; < m;jmy we have P, < P,.

For purpose of clarity, let us carry out this process one more time. The parameters
m’ will then go to m” dominating m/, with B,,» < P, . It follows from the transmitivity
of dominance that m” dominates m.

It is now clear that when this process is iterated, m goes through a sequence of
intermediate values, the value at every stage dominating the previous value, and corre-
spondingly P, steadily decreasing, until P,, reaches P or, equivalently, until V' becomes

diagonal. This completes proof of the first part of the theorem.
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The elementary nature of our proof may be compared with that of Ref.[285]. P,
played the role of ‘profit function” monitoring progress of this diagonalisation process.

To prove the second part assume, conversely, that we are given the global and local
spectral parameters k, m € R™. Assume that these are compatible: i.e., k dominates m,
with k1 > 1. Our task is to construct a Gaussian state with these properties. In other
words we have to present a canonical transformation S € Sp(2n, R) which acting on a
covariance matrix V = diag(ki, k1 ; K2,K2; -+ ; Kn, kn) Will produce a covariance matrix
SV ST with the target diagonal values m. We build such an S as a product of n — 1
specific two-mode transformations, evolving m(®) = k successively through a sequence of

n—1)

intermediates m™M, m® ... to finally m! = m. Tt will be manifestly clear that m®*)

dominates m**+1) at each stage. For clarity, this process is implemented through four

elementary stages.

5.3.1 Stage 1
0) _

x dominates m, we have m; > m;’ = k;. Suppose m; = mgo
(0))

€1 > 0 (one will move to the next step if m; = my

© > myp. Carry out a beam splitter transformation Sy between the first

J1
and j;*™ mode so that the corresponding diagonal elements (mgo),mg?)) get redistributed

to (mgo) + el,mg.?) —€) = (ml,mg?) — €1), with no change in the other diagonal en-

0) — )

Since m + e,
. Let 71 be the least integer < n

such that m

tries: m® = (mgo),mgo),--- ,mgz())) — m) = (ml,méo),--- ,mf) — €1, ’mglo)) =
(1711,mgl),m:(,’1 e ,mg)).

We can repeat this process. Let mqy = mgl) + €. By hypothesis es > 0 (this is so even
if j; had equalled 2). Assume e5 > 0 (if €2 = 0, one moves to the next step). Let jo be
(1)
J2
any smaller|. Carry out a beam splitter transformation on the 2°¢ and jgh modes so that
the corresponding diagonal elements (mgl),mg)) get redistributed to (mz,m(.l) —€9) to

J2
produce m®, leaving the other diagonals unaffected.

the smallest integer < n such that m;.’ > mqy [Clearly, jo can be as small as j;, but not

If we are able to repeat this process only £ times we have, at the end of it,

m® = (my,ma, - meml) ml, - m), (5.13)

with my) <mj, Vl+1<j<n-1,and mg) = m%o) = K,. What we have done so far
is identical to what one would have done in the Schur-Horn situation. Clearly, the beam
splitter transformations carried out so far affected neither the sum of the diagonal entries
of m{) nor its n' entry. Consequently, the difference mslk) — Z;L;ll mgk) has remained

the same for all 0 < k < /.
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5.3.2 Stage 2

Define §(F) = 2?21 m; — 2?21 m&k). It is clear that 6*%) = 6@ for k =1,2,---,1. In

the Schur-Horn situation §(9) vanishes by hypothesis. We will now employ two-mode
squeezing transformations S, to rectify this ‘departure’ from the Schur-Horn situation.

We know that 60 = §(0) is nonnegative. Assume 6 > 0 ( if 6 = 0, one will
move directly to Stage 4, as will become evident below). Define ¢y, = mypyq — mgﬁl.
Assume 60 > 2¢,,y ( if this is not the case one will move to Stage 3). Carry out a

two-mode squeezing transformation S, between the (¢ + 1)th and n'" modes, raising the
(0) () (0)

corresponding diagonal entries m,,, mn” = mp’ = K, by equal magnitude to mygyq,
m,(f ) + €441 with no change in the other diagonal entries, so that
(41
mtY = (my, - ,mgﬂ,m,f,” ) mtD),
m&”l) = my), Vi+2<j<n-1,
ngrl) = mg) + €p41 = Kp + €p41- (5.14)

We can now repeat this kind of two-mode squeezing transformation between the (¢ + 2)™
mode and the n'" mode, and so on. Assume we are able to carry out this process only r

times. We will have, at the end of it,

m(é‘i"f‘) — (m17 P 7m£+7‘7 méﬁ—t’?l’ e 7m1(1£+7‘))’
mg.“r) = mg.g), Vi+r+1<j<n-—1,
m) = ke + o+ 4 €rprs (5.15)

so that 0+ = 6O) — 2(eyy + €pyo + -+ + €r4y). Clearly, 0 < 6+ < 2¢py, 1 =
2(mpgrr1 — mﬁt:zl) (the last inequality encodes the fact that we could not carry out the

Stage 2 operation one more time).

5.3.3 Stage 3

Assume 64+ > 0 (if §¢+7) = 0, we move directly to Stage 4). Carry out a two-

mode canonical transformation between the (¢ + r + 1)™ mode and the n*® mode, taking

. . . 14 14 4
the corresponding diagonal entries mé :ﬁl, m&z ) to Mpyry1 = mé ++r21 + €r4¢041 and

(C+r+1) _ o (+r)

mn + ot — €r+0+1 respectively, leaving the other diagonals invariant,
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so that we have

Crtl C4r+1 Crtl
m+r+1) (mq, -, me+r+1,m,§+r+2 )’... ,msl+r+ )),
m§€+r+1) = mi<mj, Vi+r+2<j<n-—1,

i m{HY = Z m;. (5.16)

J=l+r+2 J=l+r+2

i.e., the situation in respect of the remaining n — (£ +r + 1) (or n — £ — r if §¢+7) = 0)
modes is precisely of the Schur-Horn type, suggesting that we deploy the beam splitter

transformation n — [l —r —2 (or n—[—r — 1) times.

5.3.4 Stage 4

Note that at the end of Stage 3 we have m(H ) larger than m,, precisely by the sum
of the amounts by which méi_t’_’:rll_:j, for 1 <j<n—/{—r—2 areless than my,414;.
Therefore, for each value of j in this range, we effect a beam splitter transformation
(e+r+1)
l+r+1+47

down by an equal amount. It is clear that at the end

connecting the (£ + 7+ 1+ 7)™ mode to the n*» mode, raising m
(E+r+1+7)

to m; and
correspondingly pulling my,
of these n — ¢ —r —2 (or n— ¢ —r — 1) redistributions, the diagonals will be precisely m.
That is, m(™~1 = m. This completes proof of the theorem.

We have taken maximal advantage of the simpler two-mode transformations Sg, S,,.
The former was deployed r times in Stage 1 and n —¢—7r —2 (or n — ¢ —r — 1) times in
Stage 4, and the latter £ times in Stage 2. The more general two-mode transformation
was deployed (at the most) once in Stage 3.

As illustration, and for comparison with Ref.[352], we apply our procedure to the
example noted after the statement of the theorem. The difference between 2]7.:1 m; = 63
and Z;Zl kj = 45 indicates the amount of squeezing that will have to be deployed at
Stages 3 and 4. We have m(®) = x = (1,2,3,4,5,12,18); m(Y = (6,2,3,4,5,7,18);
m® = (6,7,3,4,5,2,18); m®) = (6,7,8,4,5,2,23); m® = (6,7,8,9,5,2,26); m® =
(6,7,8,9,10,2,21); and m(® = (6,7,8,9,10,11,12) = m. The number of two-mode
transformations required at the four stages are 2, 1, 1, and 2 respectively. Note that mk)
dominates m*tV for k=0,1,--- ,5.
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Operator-sum representation for Bosonic

(Gaussian channels

6.1 Introduction

Gaussian states are fully specified by their first and second moments. Since the first
moments play no significant role in our study, we may assume that they vanish (this
can indeed be ensured using the unitary Weyl-Heisenberg displacement operators), so
that a Gaussian state for our purpose is fully described by its covariance matrix [192,
202, 226, 354|. The symplectic group of real linear canonical transformations (acting
through its unitary metaplectic representation) and the Weyl-Heisenberg group of phase
space translations are the only unitary evolutions which preserve Gaussianity, and these
groups are generated by hermitian Hamiltonians which are respectively quadratic and
linear in the creation and annihilation operators [192, 202, 226].

Any physical evolution that maps an input Gaussian state to a Gaussian state at
the output is a Gaussian channel. In other words, Gaussian channels are those trace
preserving completely positive (CP) maps which image every input Gaussian state into
a Gaussian state at the output. The feasibility of processing information using Gaussian
channels was originally explored in [355, 356]. More recently, the problem of evaluating
the classical capacity of Gaussian channels was addressed in [141, 149, 282], and the
quantum capacities in [157, 159, 281, 283, 284]. In particular, the classical capacity of
the attenuator channel was evaluated in [282|, and the quantum capacity of a class of
channels was studied in [159]. A systematic study of the structure of the family of all
Gaussian channels has been carried out in [158, 286288, 357|; single-mode Gaussian
channels have been classified in [158, 286], and the case of multimodes in [287, 288, 357].

Gaussian channels may be realized as Gaussianity preserving unitaries on a suitably

135



Chapter 6. Operator-sum representation for Bosonic Gaussian channels

enlarged system :
pa— pa=Trp (Uap (pa © pp) Ulp) (6.1)

Here pp is a Gaussian state of the ancilla B, and U 4p is a linear canonical transformation
on the enlarged composite system consisting of the system of interest A and the ancilla
B. That all Gaussian channels can indeed be realized in this manner has been shown by
the work of Holevo and coauthors [158, 286, 288, 357].

It is clear that the most general trace-preserving linear map 2 which takes Gaus-
sian characteristic functions to Gaussian, taking states with vanishing first moments to
ones with vanishing first moments, are necessarily of the form Q : x(§) — X/(é“) =
X (X¢) exp[—%gTYg], where X, Y are real matrices with Y = Y7 > 0. And X,Y need
to obey an appropriate matrix inequality to ensure that the trace-preserving map € is
completely positive [157, 159, 358, 359]. For a given X, the minimal Y, say Yj, meeting
this inequality represents the threshold Gaussian noise that needs to be added to x(X¢)
to make atonement for the failure of X to be a symplectic matrix, and thus rendering the
map completely positive; if X happens to be a symplectic matrix, then the corresponding
minimal Yy = 0.

Now, given a Gaussian channel 2 we can construct, ‘quite cheaply’, an entire fam-
ily of Gaussian channels by simply preceding and following € with unitary (symplec-
tic) Gaussian channels U(S7),U(S2) corresponding respectively to symplectic matrices
S1, S9. Therefore in classifying Gaussian channels it is sufficient to classify these orbits
or double cosets and, further, we may identify each orbit with the ‘simplest’ looking

representative element of that orbit (the canonical form). Since
1
U($1)QU(S2) + x(€) = X(S2X 51 €) exp[— €7 STV S1¢), (6.2)

the task actually reduces to enumeration of the orbits of (X,Y") under the transformation
(X,Y) = (X', Y) = (82X Sy, STYS)).

The injection of an arbitrary amount of classical (Gaussian) noise into the state is
obviously a Gaussian channel: x (&) — x(&) exp[—2£7¢], a > 0. Tt is called the classi-
cal noise channel. Now, given a Gaussian channel we may follow it up with a classical
noise channel to obtain another Gaussian channel. A Gaussian channel will be said to be
quantum-limited if it cannot be realized as another Gaussian channel followed by a clas-
sical noise channel. Conversely, the most general Gaussian channel is a quantum-limited
Gaussian channel followed by a classical noise channel, and it follows that quantum-
limited channels are the primary objects which need to be classified into orbits.

In the single-mode case where X,Y are 2 x 2 matrices, S1,52 € Sp(2, R) can be so
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chosen that X' equals a multiple of identity, a multiple of o3, or (I + ¢3)/2 while ¥’
equals a multiple of identity or (14+o3)/2. Thus the canonical form of a Gaussian channel
X, Y is fully determined by the rank and determinant of X,Y and we have the following

classification of quantum-limited bosonic Gaussian channels [158, 286]

D(k;0) : X = —ko3, Yy = (1+ &)1, k> 0;
Ci(k;0) : X = k1, Yo=(1-r>1,0< k<1
Ca(k;0) : X = k1, Yo = (k2 -1, k> 1;
A1(0) : X =0, Yp = 1; (6.3)
As(0) : X =(1+o03)/2, Yo =1;
B2(0) : X =1, Yo =0;
B1(0) : X =1, Yy =0.

It may be noted that the quantum-limited end of both the B; and Bs families is the
trivial identity channel.

By following the above listed quantum-limited channels by injection of classical noise
of magnitude a we get respectively D(k;a), C1(k;a), Ca(k;a), Ai(a), A2(a), and Ba(a);
the last case Bj(a) is special in that it is obtained from B;(0) by injection of noise into
Just one quadrature: x (&) — x(§) exp[—%gT(]l + 03)&].

It is clear in the case of D(k;0) that X = —ko3 corresponds to (scaled) phase con-
jugation or matrix transposition of the density operator. And the phase conjugation is
the most famous among positive maps which are not CP [27, 28, 57]; it is the injection
of additional classical noise of magnitude (not less than) 1 + x2, represented by Y, that
mends it into a CP map.

It is well known that every trace-preserving completely positive map has an operator-

sum representation of the form
pop =Y WapWi Y Wi, =1, (6.4)
(0% o

often called Kraus representation [7|. It may be noted, however, that this representation
appears as Theorem 4 of a much earlier work of Sudarshan et al [31]. It has been presented
also by Choi [6], apparently independently. Mathematicians seem to view it as a direct
and immediate consequence of the dilation theorem of Stinespring [9].

In this Chapter we obtain the operator-sum representation of all the quantum limited
single-mode Bosonic Gaussian channels. Our analysis lends insight into how unphysical
processes such as the transposition map, or the scaling of Weyl-ordered characteristic

function, or a combination of both can be rendered physical through a threshold Gaussian
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noise. The motive here is to bring out this aspect in a transparent manner through the
operator-sum representation. We have that scaling of the diagonal weight function and
scaling of the Husimi @) function correspond to physical processes. As will be seen in the
following Chapter, the fact that scaling of the () function is physical is of critical relevance
when one defines a measure of non-Gaussianity for quantum states. This Chapter further
explores the notion of nonclassicality breaking and the notion of entanglement breaking
in light of the operator-sum representation.

We begin with the illustration a general scheme for computation of Kraus operators,
and this scheme applies uniformly to all quantum-limited Gaussian channels. This scheme
takes particular advantage of the fact that the symplectic two-mode transformation which
realizes the channel in the sense of (6.1) does not couple, in the Holevo canonical form,
the position variables with the momentum variables. With the ancilla mode assumed to
be in its vacuum state initially, it turns out that the Kraus operators for each channel
can be simply read off from the matrix elements of the appropriate two-mode metaplectic
operator. Even though the single-quadrature classical noise channels Bj(a), a # 0 [B1(0)
is the identity channel| are not quantum-limited, we deal with them briefly just to bring

out the fact that this case too is obedient to our general computational scheme.

6.2 Kraus representation: Some general considerations

Given density operator p(®) describing the state of a single-mode radiation field, the

action of a quantum-limited Gaussian channel takes it to [158, 286]
"(a a a ab)t
p @ = Try (U (o' @ [0)y,(0]) U)). (6.5)

Here |0) is the vacuum state of the ancilla mode b, and U@ is the unitary operator
corresponding to a suitable two-mode linear canonical transformation. It is convenient

to perform the partial trace in the Fock basis of mode . We have

P = DU (0 @ 10)u(0) U Tle)
L

= > (U “o), oy (0]T ) Ty, . (6.6)
14

Clearly, ,(¢|U@)|0), is an operator acting on the Hilbert space of mode a. The last

expression thus leads us to the Kraus representation of the channel [7]:

p—p' =Y Wep W, We = (U |0). (6.7)
4
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It follows that once the Fock basis matrix elements of U(@) are known, the Kraus opera-
tors T, can be easily read off. Let (m1ms|U(@|nins) = CM1™2 be the matrix elements
of U®) in the two-mode Fock basis. Since the ancilla mode b is assumed to be in the

vacuum state, the W;’s are obtained by setting ns = 0 and mgy = £:

Z Cof Ima ) (- (6.8)

ni,m1=0

Now, in evaluating C}11 "2 it proves useful to employ a resolution of identity in the

position basis [205]:

Cgﬁ{;u = <m1m2|U(ab)|n1n2>
:/ dxlde(mlmQ|x1x2>(x1x2|U(“b)|n1n2>. (69)

Under conjugation by U(@®) the quadrature variables ¢;,p; (j = 1,2) undergo a linear
canonical transformation S € Sp(4, R), of which U(®) is the (metaplectic) unitary rep-
resentation [192]. Let us assume that this canonical transformation does not mix the

position variables with the momentum variables. That is,
a4y _ pylanT a4y {yab) — (hl (T ’
42 42 ) 42
Py gt (Pr) pen = (Pr) = -7 (P (6.10)
2 2 2 p2

where M is a real non-singular 2 x 2 matrix. This assumption that our S € Sp(4, R) has
the direct sum structure S = M @ (M ~1)T will prove to be of much value in our analysis.
We have

nin2

Cormime / dxldxz<m1m2’x1x2><x1x2’[](ab)‘n1n2>

— 00

_ / dy dm (myma|T1.29) P, ()1, ()

—00

~ / Ay oy, (1), (22) s () toms (), (6.11)

— 00

where (z1, z,) is linearly related to (1, z9) through M. These wavefunctions are the

familiar Hermite functions, the Fock states in the position representation. The above
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integral may be evaluated using the generating function for Hermite polynomials [205] :

7T71/4 g2
p(z) = \/2"—71'6 H,(z)
7.[.71/4 an

= Tgmew <—%[(w Ny zQ])

Inserting in Eq. (6.11) the generating function for each of the four wavefunctions we have

(6.12)

z:O.

1 g™ gmz2 gm gn2
Chny® = = F 6.13
ning gl mymy] 8771 1 3772 2 32?1 92 n2 (21725277717772) 1,70’ ( )
where

o0 1
F(z1,22,m,m2) = 77_1/ dzy dxg exp {—5[(% —mvV2)? + (22 — 12V2)?

— 00

+(@h = V2 + (ah — V2t i~ - )f . (6.14)

The Gaussian integration over the variables x1 and xo can be easily carried out to obtain
F(21,22,m1,7m2), and from F(z1,22,m1,72) we may readily obtain C}'1"2, and hence the
Kraus operators. This is the general scheme we will employ in what follows to obtain

Kraus representation for quantum-limited Gaussian channels of the various families.

6.3 Phase conjugation or transposition channel D(x), k >0

We now use the above scheme to evaluate a set of Kraus operators representing the
phase conjugation channel. The metaplectic unitary operator U(@®) appropriate for this
case induces on the quadrature operators of the bipartite phase space a linear canonical

transformation corresponding to the following S € Sp(4, R)[158]:

sinh 0 cosh 0
g _ 0 —sinh p . 0 cosh p . (6.15)
cosh i 0 sinh 0

0 cosh p 0 —sinh
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Written in detail, the phase space variables undergo, under the action of this channel,

(@h)
qs
<1> (1:> ( 71) <1>’
Py Py P2

Mo (—sinhu co§hu>. (6.16)
coshp  —sinhp

the transformation

It is seen that the above S is indeed of the form S = M @& (M~1)T € Sp(4, R), and does
not mix the position variables with the momentum variables, and so our general scheme
above readily applies.

It is clear from the structure of S that the parameter p is related to « in D(k) through
k= —sinh > 0, so that cosh p = v/s2 + 1. Thus (6.14) translates, for the present case,

to the following expression :

o0 1
F(z1,20,m,m2) = 77_1/ dzy dxo eXp{ - 5[(951 —mv2)? + (22 — 12V2)?

—00
+(—ray + V14 K220 — 21V2)2 + (V14 K221 — KTy — 22V/2)?
—n%—n;—z%—zg]}. (6.17)

Performing the Gaussian integrals in 1 and x we obtain
F(z1,22,m,m2) = (V1+£2) " exp {( V14 k72" mny — z122)
(VT4 ) mz + ) | (6.18)

To obtain the matrix elements C][L7? we need to carry out the procedure indicated
in Eq. (6.13). This may be done in two steps. We begin by rewriting the function
F(Zla 22,11, 772) as

F(z1,z0,m1,m2) = (VK2 + 1) exp { 2[(V14 &2ty — (V14 572) 71y
(VI A2+ (VIR ) (619)

Performing the z9 and 79 differentiations respectively ny and mq times on F'(z1, 22,71, 12),
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we obtain

(VI8 = (V14572 x
(V14 &2ty + (V1+kK2)712]™F = GF. (6.20)

The remaining differentiations can be carried out using the Leibniz rule. Since we finally
set 21, 22,m1,m2 = 0, and since F(0) = 1, the only terms that could possibly survive are

necessarily of the form

O VIR ™y — (VIF R 8 2

ony"t 021"

(V1452 + (V14 62) )™, (6.21)

To evaluate the above expression we set = (VK2 +1)"'n — (V1 +x2)"1z and y =
(V14 £72)"In + (V1 + Kx2)7 121, and compute

(V1482710 + (V145727 19,™ x
[—(V1+£72)710, + (V1 +K2)719, )™ 2™ y™2|, 0. (6.22)

Straight forward algebra leads, in view of Eq. (6.13), to

2 ni mi . .
077317:7212 _ (\/ 1+ k& Z anc mlC /1 + K,Q)—(ml-i-j—r)( /1 4+ KQ)—(m—j—i—r)

n1'n2'm1'm2 —0 r—0

X (_1)7711 - ng!mg!ém,rﬂ 5m2,n1—j+m1—r . (623)

The Kraus operators Wy, denoted Ty(k) in this case, are obtained from these matrix

elements by setting no = 0 and mg = £. Since no =0 = r,j = 0, we have,

L) = (Vize 3 WEATVIER YR

| |
1M =0 nyimsu:

5£,n1+m1(_1)m1 ’m1><n1‘ (6.24)

We set ny + m1 = £ and denote n; = n, leading to

l
Te(k) = V1+ k2) 12 V1+ 827V 4 k2)" )

n=

0
VEIC, 16— n)(n|, £=0,1,2,--- (6.25)
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as our final form for the Kraus operators of the phase conjugation channel. We note that
the Ty(k)’s are real and manifestly trace-orthogonal: tr(Ty(k)T,(k)) = 0 if £ # ¢

6.3.1 The dual of D(k)

As is well known (and also obvious), if a set of Kraus operators {W;} describes the
completely positive map ® : p — ,0’ => WpW,', then the dual map P : p — p' =
S, Wi pWy, described by the dual or adjoint set of operators {Wg }, is also completely
positive. It is clear that the dual map @ is unital or trace-preserving according as ® is
trace-preserving or unital.

For the present case of D(k), it is readily verified that the Kraus operators {Ty(k)} pre-
sented in (6.25) meet 3,7, (x)Ty(x) = 1, consistent with the expected trace-preserving
nature of p — p' = >, Ty(k) pT¢' (k). But the phase conjugation channel is not unital

in general, for we have

> Ty(k) T (k) = 6721, (6.26)
)4

We may say that it is ‘almost unital’ to emphasise the minimal nature of the failure: the
unit element is taken by the channel into a scalar multiple of itself. However, the scale

2 can not be transformed away by absorbing x~! into the Kraus operators, for

factor Kk~
the Kraus operators so modified would not then respect the trace-preserving property of
the map.

It is thus of interest to understand the nature of the unital channel described by the

set of Kraus operators {Ty(x)'}. We have

)4
To(w) = (VI+) T 3 (V14 (V14572 I n) (¢ -
n=0
0
= (VI Y (Vs W w2\ €= )
n’'=¢
4
= (V1+) DY (V2 4+ 1) (V1 + 572G |- n)(n]
n=0
= w My (kY. (6.27)

Thus the dual {T;(x)!} differs from the original {T;(k)} in two elementary aspects. The
multiplicative factor k! is the same for all Kraus operators, independent of ¢. Thus the
only significant difference is change in the argument of T}, from x to x~!. We conclude
that the ‘dual’ channel whose Kraus operators are /ng(/s:)T is the (trace-preserving) phase

conjugation channel D(k~1). We have thus proved
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Theorem 6.1 While the Kraus operators {Ty(r)} describe D(k), the ‘dual’ channel de-
scribed by Kraus operators {kTy(k)1} is the trace-preserving phase conjugation channel

D(k~1) with reciprocal scale parameter.
6.3.2 Action of the Kraus operators
The expected or defining action of the phase conjugation channel on the characteristic

function is [158] :

xw (&) = xaw (€) = xw(—r€") exp[—(1+ #)[¢[*/2]. (6.28)

It is of interest to understand how the ‘antilinear’ phase conjugation (§ — £*) action of
this channel on the characteristic function emerges from the linear action of the Kraus
operators. To this end, it is sufficient to establish such an action on the ‘characteristic
function’ corresponding to the operators |n)(m/|, for arbitrary pairs of integers n, m > 0.

The ‘characteristic function’ of |n)(m| is given by [169]

XW ny(m| (§) = (m[D(§)[n)

l
= €L ) expl-[€2/2) for n > m,
[
- %(@minanfnﬂﬂz) exp[—[¢[*/2 for n < m. (6.29)

Assuming n > m, the action of the phase conjugation channel on the operator |n)(m| is

ZT( |n m|TT( ) = 1_}_,{ Z 1_{_5 (n+m)( /1+K_2)7(227n7m) x
ViC, iC,y ye — ) —ml. (6.30)

Denoting n =m + 6 and £ — n = A, we have

ZTZ i+ ) (m|T) () = (1 + £ 7H(V1 + £2) "+ (V14 5-2)70

X (A m At )I(L+ r2)
X;) V(m + 8)mIN(\ +6)!

I+ ] (6.31)

The manner in which D(k), matrix transposition accompanied by threshold Gaussian
noise exp[—(1+ x2)[£|?/2], acts as a channel may now be appreciated. Every operator M
can be written in the Kronecker delta basis {|7){({|} as M = 3_, ,c;e|5)(¢|. The coefficient
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matrix C associated with |5)(3|, for instance, is ¢, = d5j0¢3, with non-zero entry only

at the lower-diagonal location (5,3) marked ® in the matrix below.

O O O O O o O
O O O O O o o
o o ®W o o o X
o 0o 0o o o X o
o O O O fh o o
O O O X © o o
O O X ©O o o o
O X O O o o o

On transposition this entry moves to the upper-diagonal location (3,5) marked @, and the
threshold noise then spreads it along the parallel upper diagonal (3+r,5+7), =3 < r < o0
marked x.

Let the Weyl-ordered characteristic function tr(D(€)|m-+d)(m|) where D(¢) = exp[¢af—
&*a] is the displacement operator, be denoted XW m+-)(m|(§), and that of the output
S22 0 Te(k)|m + 6)(m|Ty (k)T be denoted XW\lm+5>(m\(£)' Then we have from Eq. (6.31)

XVW oy (m) (€) = (1 + 52 T (V1 4+ 62) "m0 (V1 4 572) 70

o0

A+m+0)(1+ k2>
x g) Vm + 6)lmIN (X +0)!

2y~ 1, [€[2/2
_ (A +~r7)e (V1T r2)-@m) (/11 - 2)=

(m +96)Im!

e R R () (632
A=0

(A+4[D(E)IN)

where we used (6.29), the Fock basis representation of the displacement operator. While
no ‘phase conjugation’ is manifest as yet, we expect from Eq. (6.28) that the channel

should take the characteristic function of |m + d)(m| to

1

Wb (€) = (DR ) exp | =51+ e

= (m + 3ID(RE" )" exp |~ 51+ Rl

— e e e |- (34 1] e3)
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Thus the problem reduces to one of establishing equality of XXI/V\m +6)(m (£) in (6.32) and
X;{,‘mm(m‘(g) in (6.33). That is, it remains to prove

m!

m + 6!

1 €12/2 &

= ey AT )
m+ m =0

()\+m+6)
(A +0)!

(KE) LS, (K*|€1?) exp [—(1/2 + k?)[€?]

L3(1¢1%), (6.34)

for all m, 6 > 0 [the case of |m)(m + J| can be handled similarly].
Since the associated Laguerre functions form a complete orthonormal set, we may

expand the LHS of Eq. (6. 34) in the Laguerre basis. That is, we multiply both sides of

Eq. (6.34) by (€)°L3(|¢?) e™ 9 and evaluate the overlap integrals. We use the following

two standard results : (i) orthogonality relation among Laguerres, and (ii) the overlap
between a Laguerre and a scaled Laguerre function [360] :

e e e g gale? = “E s,

[ 9 0+ 5! _o2\m (4 1 )4
/O e~ e L8, (P € LA dle? = e = ﬁnlﬂgil )
, t(t—n*—1)

Here F[-] is the hypergeometric function. In our case t = ? + 1, which implies that the
last argument of F[-] in Eq. (6.35) is zero, and thereby F[-] = 1. Performing the overlap
integrals, we obtain for the left and right hand sides of (6.34)

(m+£+9)! el
Vi /(m+5)'m| (1 _{_Kl?)m+5+5+1 ’

!
RHS = M (1 /1 + Hz)f(2+2m+5) (+ /1 + K—2)7(2€+5). (6.36)
24/ (m + 6)m!

LHS =

These two expressions obviously equal one another for all /. We have thus established Eq.
(6.34), and the fact that the Kraus operators indeed effect the ‘completely positive phase

conjugation’ operation, transforming the characteristic function as expected in (6.28).

Theorem 6.2 The scaled phase conjugation transformation xw(§) — X’W(g) =
w(—r&*) exp[—(1 + /12)@] is, in view of the threshold noise exp[—(1 + x2)[£]?/2] a

completely positive map, and is implemented linearly by the Kraus operators {Ty(k)} in
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Eq. (6.25).

The phase conjugation channel has an interesting property in respect of classical-
ity /nonclassicality of the output states. We may say a channel is nonclassicality breaking
if the output of the channel is classical for every input state. That is, if the normal-ordered
characteristic function yx ]/V(f) of the output, related to the Weyl-ordered characteristic
function (&) of (6.28) through x () = xyp(€) exp[|€]?/2], is such that its Fourier
transform, called the diagonal ‘weight’ function ¢(«) [112], is a genuine probability den-
sity.

Now, Eq. (6.28) written in terms of the normal-ordered characteristic function reads

XN (E) = X (&) = xw(—rE") exp[—r7|€7[2/2]
= xa(—£KE"), (6.37)

where x4(€) = xn (&) exp[—|£|?] is the antinormal-ordered characteristic function corre-
sponding to the ) or Husimi distribution.

Under Fourier transformation this important relation (6.37), namely X]’V(g) = xa(—r&),
reads that the output diagonal weight function qb/(a) evaluated at « equals the input Q(«)
evaluated at x~'o*. Thus ¢ () is a genuine probability density for every input state,

and we have
D(H) : ¢in(a) - ¢0ut(04) = H_zQin(H_loé*)- (6.38)

Since the Q-distribution of a density operator is given by Q(a) = (a|p|a), it is a genuine

probability distribution for all states including nonclassical states. We have thus proved

Theorem 6.3 The phase conjugation channel is a nonclassicality breaking channel.

6.3.3 Entanglement breaking property

It is known that the phase conjugating channel is entanglement breaking [361, 362|. It is
also known that every entanglement breaking channel has a description in terms of rank
one Kraus operators [363]. We demonstrate these aspects using our Kraus operators
(T}

The Kraus operators Ty(k) presented in (6.25) are not of unit rank; indeed, rank
Te(k) =€+ 1, £ =0,1,2,---. We noted immediately following (6.25) that Tj(k) are
trace-orthogonal. In the generic case, trace-orthogonality requirement would render the
Kraus operators unique, but this is not true with the present situation. The reason is
that all these trace-orthogonal Ty (k)’s have the same Frobenius norm: tr (Ty(k)Ty(k)") =
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(1 4+ x2)~!, independent of £. Thus the set {7/} defined through T} (k) = 3=, Up Ty (k),
for any unitary matrix (Up.) will be a set of trace-orthogonal Kraus operators describing
the same channel as the original trace-orthogonal set {Ty(k)}.

More generally, and independent of trace-orthogonality, the map p — p/ =
Yoa Toz(m)pToiT(/{) describes the same channel as p — p' =3, Tg(li)pTJ(I{) if the matrix
U connecting the sets {Ty(x)} and {T.. ()} is an isometry [6, 364] :

To(k) = > UTy(k), Y UaUfy = b4

= 3" Tuw) p T (k) = Y Tak) pT 1 (). (6.39)
l «@

If the index set a is continuous, as in the case below, then )  is to be understood, of
course, as an integral. Now, the matrix elements between coherent states |a) and Fock

states |k) define such an isometry

ot

Uta = (f|ar) = eXp[—IOZIQ/?]\/—E- (6.40)

The resulting new Kraus operators T, (k) are

VG, (V14 )™ (V1472 =y

M~

(V142

£=0 n=0
a2 o0 14 K _1an K —1a l—n
ST iy ) e el
(=0 n=0 o

N 7\/11 —5lo/V1+a3){a’/V1+ k2, Va el (6.41)

It is manifest that rank TO/{(H) = 1 for all a € C, the complex plane, showing that the
phase conjugation channel is indeed entanglement breaking. However {T.(x)} are not
trace-orthogonal even though {7;(k)} from which the former are constructed were trace-
orthogonal. This is due to the fact that the isometry U defined in (6.40) is not an unitary,
which in turn is a consequence of the overcompleteness of the coherent states.

This brings us to another aspect of D(k). In terms of these new Kraus operators the
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phase conjugation channel D(k) reads

pop =t [EaTi) T )

:ﬂ1(1+n2)1/d2aQ((\/1+/€2)104*)\04/\/1+n_2>(a/\/1+/§_2]. (6.42)

Thus the diagonal weight function of the output state of the channel is the Q-distribution
of the input state p: @out = £ 2Qin (kK 'a*). We may combine this result with the earlier

one on rank one Kraus operators to state

Theorem 6.4 The diagonal weight of the output of the quantum-limited phase conjuga-
tion channel is essentially the Q-distribution of the input state. The channel D(k) is not

only classicality breaking, but also entanglement breaking.

The diagonal weight of the output state at « is the @Q-distribution of the input state
evaluated at x~'a*. Since Q(a) > 0 for all a and for any p, the channel is nonclassicality
breaking. The intimate relationship between this result and the earlier one on nonclassi-
cality breaking may be noted. While the former followed directly from the behaviour of

the characteristic function, the present one required consideration of the Kraus operators.

6.4 Beamsplitter/attenuator channel Ci(x), 0 <k < 1

The two-mode unitary operator corresponding to the beamsplitter channel induces the
following symplectic transformation on the quadrature operators of the bipartite phase
space [158]:

cos 0 —sin@ 0
g _ 0 cos 6 0 —sin6 ‘ (6.43)
sin 0 0 cos 0

0 sin 0 0 cos 6

Note that S is a direct sum of identical two-dimensional rotations: as in the case of
D(k), the position and momentum operators are not mixed by this transformation. The

position variables transform as

a2 D) a2 —sinf cosf a2
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and, consequently, the momentum variables as

) () e (7) - (1), -
Do D2 p2 p2

It is evident from S that the parameter  in C; (k) is related to 6 through cos @ = &, sinf =
V1 — k2. The function F(z1, 29,71,72) of (6.14) for the present case is given by

F(z1,22,m1,m2) = exp [772(\/ 1— k221 4+ K29) + (k2 — V1 — K2 2’2)] ) (6.46)

As in the previous case of D(k), the differentiation on F'(z1, 22,171, 72) can be performed

in a straight forward manner to obtain the matrix elements of the unitary operator [326],

leading to
1 ni  ne i
mim. o n n ) no—j  mi—r+j / 2 27
Cn1%122 - o T ol | IZZICT QCJ(_1)2]K1 ]( 1_I{)
Tn1:M2:1M1:M29. —0 j—=0
X m1!m2! 5m2,r+j 5m1,n1+n27r7j- (647)

Now, to obtain the Kraus operators from these matrix elements we set, as in the case of
D(k), ng =0 and mg = £. Setting ne =0 = j =0, and we have
o0

By(r) = > /mHC (V1= w2 KM m)(m 4], £=0,1,2, (6.48)

m=0

as the Kraus operators of the beamsplitter or quantum-limited attenuator channel. It
is easy to see that the Kraus operators are real and pairwise trace-orthogonal, as in the
case of D(k).

6.4.1 Action of the Kraus operators

Recall that the beamsplitter channel induces the following transformation on the char-

acteristic function [158]:

xw () = xw'(€) = xw (k&) exp[—(1 —x?)[¢[*/2]
= xw (1 &) exp[r*|¢* /2] exp[—[¢[*/2)]. (6.49)

Thus the normal ordered characteristic function x (&) transforms as

XN (€) = xw(€) exp([€2/2) — xn (&) = xn (K E). (6.50)
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Since x n(§) and the diagonal weight ¢(«) form a Fourier transform pair, it is immediately
seen that ¢(a) gets simply scaled under the action of the Ci (k) channel: ¢(a) — ¢ (a) =
Kk 2p(k1a) [365].

It is instructive to bring out this fact from the perspective of the Kraus operators.

Since every state p can be expressed through a diagonal ‘weight’ ¢(«) as [112]

p=n! [ as(@a)lal (6.51)

to exhibit the action of the channel on an arbitrary state it is sufficient to consider its

action on a generic coherent state. We have

a\—>ZBg )] ) ( a\BT()

— 1_’{ |Oé|) *\Mm ne_‘a|2
= Z (k™)™ (ka)" —==[m)(n], (6.52)
m!n!
=0 m=0n=0
where we used the fact that the operator
Z Bu(r)|m){n| B} (r)
mln{m,n} ,
> VmCrCr (1=K R m — £y (n — ). (6.53)
Carrying out the summations in Eq. (6.52), one finds [366]
ZBz )a)(a|B) (k) = |ka)(kal. (6.54)
With this the action of the channel C; (k) reads
p = o' =t [as(@la)ima
= 771/-{2/d2a¢(/£1a)|a>(a|, (6.55)
which means
Ci(k) + ¢la) = K 2¢ (k') (6.56)

We have thus proved in the Kraus representation
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Theorem 6.5 The scaling ¢,(a) — (;5;)(04) =Kk 2¢,(k1a), 0 < k < 1, is a completely
positive map whose Kraus decomposition is given by {By(k)} of (6.48).

As an immediate consequence we have
Corollary 6.1 The beamsplitter channel cannot generate or destroy nonclassicality.

Proof: By definition a state is classical if and only if its diagonal weight function ¢(«) is
pointwise nonnegative everywhere in the complex plane [112]. Since a pointwise positive
function goes to a pointwise positive function under the above scaling transformation,
it follows that a classical state (and a classical state alone) is taken to a classical state

under the action of the (quantum-limited) attenuator channel.

6.4.2 The issue of Entanglement breaking

It is known that the beamsplitter channel is not entanglement breaking [361]. It should
thus be possible, as it is obligatory, to demonstrate that this channel cannot be repre-
sented using a set of rank one Kraus operators. We begin by noting that in the limiting
case k = 0, all our Kraus operators By(0) are of rank one. Indeed, (B(0))mn = 0moone-
This singular limit corresponds to the quantum-limited .A4; channel which is known to be
entanglement breaking. We consider therefore the nontrivial case xk # 0. It is manifestly
clear that rank By(k) = oo for all £ (for k # 0). If we represent this channel using another
set of Kraus operators {Brl(/s;)}, then these new operators should necessarily be in the
support of the set of operators {By(x)}. Thus a necessary condition that one is able to
represent the channel {By(k)} using rank one Kraus operators is that there be (sufficient
number of)) rank one operators in the support of {By(x)}. It turns out that there is not

even one rank one operator in this support. Indeed, a much stronger result is true.

Theorem 6.6 : There exists no finite rank operator in the support of the set {By(k)}, k #
0.

Proof follows immediately from the structure of the By(k)’s : By(k) is diagonal, and the
mn™ entry of By(x) is nonzero iff n = m 4 ¢. Any matrix in the linear span of {By(x)}
is of the form M =", c¢/By(k), and is upper diagonal. Let N be the smallest ¢ for which
the c-number coefficient ¢; # 0. Let M be the matrix obtained from the upper-diagonal
M by deleting the first N columns. Clearly, rank M = rank M. Further, the diagonal
entries of the upper triangular M are all nonzero, being the nonzero entries of By (k).
Now, the rank of an upper triangular matrix is not less than that of its diagonal part.

Thus, rank M is not less than rank By (k) = oo, thus completing the proof.
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6.5 Amplifier channel Cy(k), k > 1

The two-mode metaplectic unitary operator describing a single-mode quantum-limited
amplifier channel corresponds to the following symplectic transformation on the mode

operators [158] :

cosh v 0 sinh v 0
g - . 0 cosh v 0 —sinh v . (6.57)
sinh v 0 cosh v 0
0 —sinh v 0 cosh v

As in the earlier two cases of D(k) and C;(k), the position and momentum variables do

not mix under the action of Cy(k). The position variables transform as

@y C]1: o () 2 CO.ShI/ —sinhv Q1 , (6.59)
42 d q2 —sinhv  coshv g2

and the momentum variables transform according to M ~!. Thus the parameter x in
Co(k) is related to the two-mode squeeze parameter v through x = coshv. The function

F(z1,22,m1,m2) in (6.14) is readily computed to be

F(z1,z0,m,1m2) = k™ " exp {ff_l(mzl +m222) + (V1= K72)(mn2 — 2122)} . (6.59)

As in the earlier cases of D(k) and Cy(k), the differentiation on F'(z1, z2,1m1,72) can be
performed to obtain the matrix elements of the unitary operator corresponding to the
symplectic S in (6.57). We obtain, after some algebra patterned after the earlier two

cases,

1 n2  mi

K .
omime = ——— nlmol Yy > CC (1) (V1= R 2T X
Vnilnglmalms! =0 5=0

(’k':_l)n2+j_r5n1,r+j 5m2,n2+m1—7"—j . (660)

The Kraus operators are obtained from C}11""? by setting ny = 0, and mg = £. Setting

ng =0 = r =0, and we have

*12\/m+ﬁcg( 1= r- >£(n*1)m\m+€>(m\, 0=0,1,2,- (6.61)

as the Kraus operators of the quantum-limited amplifier channel Cy(k), k > 1 [367].
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6.5.1 Duality between the attenuator family C,(-) and the amplifier
family Cy()

The Kraus operators A¢(k), £ > 1 of the amplifier channel C2(x) have an interesting dual
relationship to the Kraus operators By(k~!), K > 1 of the attenuator channel Ci(x~1).
While Y207 Al(k)A¢(r) = 1, & > 1 and 3222, Bl (v")By(x') = 1, ' < 1, consistent
with the trace-preserving property of Ca(x) and Cy(x"), we have

> Au(r)Af(r) = k721,

=0

> " Bu(k")Bl(x") = (v') 7?1 (6.62)
(=0

Thus the (trace-preserving) families C; and Cy are not unital. But they are ‘almost
unital’, for the failure to be unital is by just a scalar factor. This shows that the family
{kA(r)T, K > 1} and the family {/ﬁ:l_lBg(lﬁl,)T, k' < 1} too describe trace-preserving
CP maps, and we may ask what these ‘new’ channels stand for.

The meaning of these channels may be easily seen by considering the adjoints A,(x)T, & >

1 of the Kraus operators of the amplifier channel :

A()! = w132 G, (V=5 2) W mim + 4
m=0
=k 1Bk (6.63)

Thus {kAs(x)!}, & > 1 are the Kraus operators of the beamsplitter channel C;(x') with
' = k! < 1. Similarly it can be seen that {x By(k' )}, k" < 1 represents the amplifier
channel Cy(k) with x = (k' )~! > 1. Thus we have

Theorem 6.7 The amplifier family Co(r) and the attenuator family C1(k~1), k > 1 are

mutually dual: their Kraus operators are connected through the adjoint operation.

6.5.2 Action of the Kraus operators

Under the action of the amplifier channel Ca(x) the Weyl-ordered characteristic function

transforms as follows, and this may be identified with the very definition of the channel:

Xw () — xw (€) = xw (k&) exp[—(r? - 1)|€]*/2]. (6.64)
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Given a Weyl-ordered characteristic function xw (), the corresponding antinormal or-

dered characteristic function corresponding to the @-distribution is [169]

xa(§) = xw(&) exp[—[¢*/2]. (6.65)

Therefore the channel action Eq. (6.64), written in terms of x 4(€), reads

xXa(€) = xa(€) = xa(k ). (6.66)

That is, x4(&) simply scales under the action of the amplifier channel, a fact that should
be profitably compared with the scaling behaviour (6.50) for the attenuator channel.
Since x 4(§) and the Q- function form a Fourier transform pair, the action of the amplifier
channel is fully described as a scaling transformation of the Q-function: Q(a) — Q' (a) =
k2Q(k1a), k > 1 [368].

It is instructive to see in some detail how our Kraus operators A,(x) bring out this

behaviour. Given a state

p= Z [n)(n|p|m)(m Z Prm|n) (m (6.67)

n,m=0 n,m=0

its corresponding @ function is [169]

Qyfe) = (alpia) =expl-la?) 30 L, (6.69)

n,m=0

To see the action of the linear map Co(k) on an arbitrary p, it is sufficient to exhibit its

action on the operators |n)(m/|, for all n,m > 0. We have

ZAK )n) (m| A (r)

(n m) — Kk
_ LRI & 2)Z\/(n+g)!\/(m+g)!‘n+£><m+£]. (6.69)

Y v
nim. 1—0

Thus, under the action of the channel Ca(k), p goes to

, K (n+m) .
K2 Z Prm \/L Z (1 Vi + 0O (m+ 0! n +€)(m +¢]. (6.70)

n,m=0
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The @ function of the resultant or output state p' is

, —(n+m) o — k2
0} = wel-lal] 3 pan’s i @) )" (Z“gi,)%ﬁf)
n,m=0 ' ! /=0 ’
el al] T M
_ p[-| ”n;o T P
= k2Q(rk ta). (6.71)

We thus conclude

Theorem 6.8 The scaling Q,(a) — Qp/(a) =k 2Q,(kta), 0 < k71 < 1, is a com-
pletely positive map whose Kraus decomposition is given by {Ay(k)}.

This result may be compared with Theorem 6 for the C;(-) family of channels.
The amplifier channel has the following property in respect of nonclassicality of the

output states :
Corollary 6.2 The amplifier channel cannot generate nonclassicality.

Proof: By Eq. (6.64), the normal ordered characteristic function transforms as follows

Ca(k) = xn(€) — xn(€) = xw (k) exp [~ (k2 — 2)[¢[2/2]. (6.72)

This may be rewritten in the suggestive form

XN (€) = xn(€) = xw(KE) exp[—(k* — 1)|¢]]. (6.73)

Fourier transforming, we see that the diagonal weight ¢ («) of the output state is the
convolution of the (scaled) input diagonal weight with a Gaussian (corresponding to the
last factor), and hence it is pointwise nonnegative whenever the input diagonal weight

¢(a) is pointwise nonnegative.

Remark: We are not claiming that the amplifier channel cannot destroy nonclassicality
[compare the structure of Corollary 2 with that of Corollary 1 following Theorem 6].
Indeed, it is easy to show that nonclassicality of every Gaussian state will be destroyed
by any Co(k) with £ > /2 [184, 367-369]. Tt is also easy to show that there are states
whose nonclassicality will survive Ca(k) even for arbitrarily large ~ [184, 367, 368]. To
see this, note first of all, that any state p whose Q-function Q(«) = («a|p|e) vanishes for
some « is necessarily nonclassical. The assertion simply follows from the fact that under

the scaling Q(a) — £ 2Q (k1) a zero ag of Q(a) goes to a zero at kap.
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Remark on entanglement breaking: It is well known that the quantum-limited
amplifier channel is not entanglement breaking [361]. It may be pointed out in passing
that this fact follows also from the structure of our Kraus operators {Ay(x)}. Since
these operators coincide with the transpose of the beamsplitter channel Kraus operators
{By(k~1)}, apart from a f-independent multiplicative factor, there exists no finite rank
operator in the support of the set of operators {A4y(x)}. In particular, there are no rank
one operators in the support of {Ay(x)}. Hence, C2(k) is not an entanglement breaking

channel.

6.6 The Singular case A,

We now consider briefly As, the last of the quantum limited Bosonic Gaussian chan-
nels. The two-mode metaplectic unitary operator representing A5 produces a symplectic

transformation on the quadrature variables which does not mix the position variables

o) = ()= ()
() = () - ()
Mo (g ) (6.74)

Therefore, our general scheme applies to this case as well. Unlike in the earlier cases of

with the momentum variables [158] :

R
[ ORI

~
I

N~ =~

D(k), Ci(k), and Ca(k), in the present case it turns out to be more convenient to evaluate

the matrix elements of U(@®) in a mixed basis :
i = (my|(q|U“Y ng)|na). (6.75)

Here |q) labels the position basis of the ancilla mode. With this mixed choice, the Kraus

operators are labelled by a continuous index ‘q’, and are given by

Ve = (qlU“P)0) = Y Crtfima)(m ], (6.76)

mi,ni
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where

ety = [ darfomslan) o (@ o) o)
= /dq1<m1!q1>(q,q1 —q|n1,0). (6.77)

Here we have used, as in the earlier cases, the action of the unitary operator in the position
eigenstates of the two-mode system. Employing the position space wavefunctions of the

Fock states, we have

7T73/4 2 (-a)? &
Cgiloq = \/mHm (Q)e 2 /d(hHml (QI)G 2 2. (6.78)
The above integral is easily evaluated [370], and we have
o—1/4
Coy' = q"™ Hy, (q) exp[—3¢* /4]

n10 \/m
= (ma1lq/v2)(gIn1), (6.79)

where |q/+/2) is the coherent state |a) for & = ¢/+/2, and the purpose of the round bracket
being to distinguish the same from the position eigenket |¢/+/2). With this notation the

Kraus operators are
Vo = la/V2) (gl. (6.80)

That the trace-preserving condition on the Kraus operators is satisfied emerges from the
fact that the position kets are complete: [ dg VqTVq = [dqlg){q| =1 .

To connect these Kraus operators V; to the action of the channel in the phase space
picture, we examine the behaviour of an arbitrary pure state |1) under passage through
the channel. We have

Ay i p= )y — p' = / dq |4/v/2) {al) (0la) (/v
- / dg 19(q) 2 |a/v/3) (/v
- / dgdp [W(@)126() lla +ipl/V2) (g +ipl/V2.  (6.81)

The last expression is already in the ‘diagonal’ form in the coherent states basis, with
1v(q)[?0(p), o = (q + ip)/v/2 forming the diagonal weight function ¢(a). It follows by
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convexity that for an arbitrary input state p the output of the channel is given by

/

p =t [ dasta)la)al, 6(@) = alola) 5 (682

. . . . 140
It is seen that this transformation is the same as xw(§) — xw <% 5) exp[—|€[%/2],
the expected behaviour of the characteristic function under passage through A [371].
The above results can be alternatively understood through the action of the channel

in the Fock basis. Under passage through the channel,

)| = [ dqVimmV]

_ / dqla/v'2) {aln)(mlq) (a/ /2]
a—1/2

= [ df ——H
q\/2"+mn!m! "

for all n, m. The outcome for an arbitrary input state p follows by linearity, and we have

(@) Him(q) e |a/v2) (a/V2, (6.83)

Theorem 6.9 The channel As is both nonclassicality breaking and entanglement break-

mng.

Proof: We note from Eq. (6.80) that the Kraus operators are already in rank one form,
thereby showing that the channel is entanglement breaking. And from Eq. (6.82) we see
that the output of the channel, for every input state p, supports a diagonal representation
with nonnegative weight (¢|p|q) 6(p) > 0, for all @ = (¢+ip)/v/2, showing that the output

is classical for all input states.

6.7 Single Quadrature classical noise channel 5B;(a), a > 0

The channel Bj(a), whose action is to simply inject Gaussian noise of magnitude a into
one quadrature of the oscillator, and is not quantum limited. It can be realized in the

form
Bi(a) : p—p' :% [ da exvl=/a) Dla/V2) oDV, (65)

where D(a)’s are the unitary displacement operators. B1(a) is thus a case of the so-called

random unitary channels [364], a convex sum of unitary channels. The continuum

Zy = (na)"Y* exp|—2/2a] D(q/V2) (6.85)
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are the Kraus operators of this realization. The quantum-limited end of By (a) is obviously
the identity channel, corresponding to a — 0 [limg_o/7Ta " exp|—q¢?/a] = &(¢), and
Zg—o = identity]. One may assume a = 1 without loss of generality. The reason we
present a brief treatment of this channel here is just to demonstrate that this case too
subjects itself to our general scheme.

The two-mode metaplectic unitary operator representing B; produces a symplectic
transformation on the quadrature variables which, as in the earlier cases of D(k), Ci(k),

Cs(k), and Ay, does not mix the position variables with the momentum variables [158]:
qq (h/ .y q1 7
D) D) q2
1 -1
M = . (6.86)
0 1

And py,ps transform according to (M ~—1)T.

As in the immediate previous case As, the matrix elements of U(%®) are

Cmd = (ma|(g|UY |n1) |ng), (6.87)

ning

where |g)’s are the position eigenvectors. In view of this the Kraus operators are labelled

by a continuous index ‘g’ and are given by

(qU0y = D Crlima)(nal, (6.88)

mi,m1

where

ety = [ davfomslan) o (@ o) 0

= /dQ1<m1|CJ1><C]1 - q,q|n1,0). (6.89)

Here we made the two-mode metaplectic unitary operator act on the position basis.
To evaluate the Kraus operator, it is sufficient to evaluate the matrix elements
g3/4 a? i (-)?

Ot = Jgmmm g ) G0 (@ = O Hm(g)em=e™ 72 (6.90)
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The above integral can be readily performed [372], and we obtain

1/4 q2 q2 ml' —q mem 2
07771111(10 =7 / e 2 |e 4 71—1' <E> Lrnnlliml (q /2)

= 7r71/4e*§(m1\D(q/\/§)]n1> = Z,. (6.91)

We have thus recovered (6.85), but staying entirely within our general scheme.

6.8 Summary

We have obtained operator-sum representations for all single-mode Bosonic Gaussian
channels presented in their respective canonical forms. Evidently, the operator-sum rep-
resentation of a channel not in the canonical form follows by adjoining of appropriate
unitary Gaussian evolutions before and after the channel. The Kraus operators were
obtained from the matrix elements of the two-mode metaplectic unitary operator which
effects the channel action on a single mode. The two-mode symplectic transformation in
each case did not mix the position and momentum variables and this fact proved valuable
for our study. The Kraus operators for the quantum-limited channels except the singular
case were found to have a simple and sparse structure in the Fock basis.

It was shown that the phase conjugation channels D(x) and D(k~ 1) are dual to one
another, and the attenuator and the amplifier families Ci(k) and Co(k™ 1), kK < 1 are
mutually dual. The channels D(k), C1(k), and C2(k) were found to be almost unital; in
the sense that the unit operator was taken to a scalar times the unit operator.

In the case of the phase conjugation channel, the action in phase space was brought out
explicitly through the action of the Kraus operators on the Fock basis. The attenuator
channel resulted in the scaling of the diagonal weight function ¢(«) and the amplifier
channel resulted in the scaling of the Husimi @-function as expected. Further, the output
of the channel with respect to classicality /nonclassicality was studied. It was found that
the phase conjugation channel D(k) and the singular channel A5 are classicality breaking
while the attenuator channel C;(k) and the amplifier channel Co(k) do not generate
nonclassicality.

The Kraus operators of the phase conjugation channel was brought to a rank one
form, thereby explicitly bringing out the entanglement breaking nature of this channel.
It was further shown that there is no finite rank operator in the support of the Kraus op-
erators of either the amplifier or the attenuator channel, and this explicitly demonstrates
that the quantum-limited attenuator and the amplifier families of channels are not entan-

glement breaking. The Kraus operators of the singular channel A5 was also obtained in
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the rank one form thereby manifestly showing that this channel is entanglement breaking.

Note: A more detailed analysis on the operator-sum representation of single-mode
Bosonic Gaussian channels can be found at [373]. This includes an analysis on fixed
points, an analysis on interrupted evolution, a proof of the extremality of all quantum
limited single-mode Gaussian channels, and the operator-sum representation of composite

channels.
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A measure of non-Gaussianity for quantum states

7.1 Introduction

Quantum information theory of continuous variable systems has been actively pursued in
recent years, especially in the context of Gaussian states [245, 256, 258|. Such states are
the ones which occur naturally in most experimental situations, particularly in quantum
optics. While these states live in an infinite-dimensional Hilbert space, they are remark-
ably easy to handle since they are fully described by their covariance matrix (and first
moments). Further, their evolution under quadratic hamiltonians is easily cast in the lan-
guage of symplectic groups and (classical) phase space[57, 226, 280]. The fundamental
protocol of quantum teleportation has been achieved using these states[36, 83|. How-
ever, there are situations wherein one deals with (nonclassical) non-Gaussian resources
to generate entanglement [130, 170, 171, 186, 194, 318, 319, 374]. They arise naturally
in nonlinear evolutions like passage through a Kerr medium [375, 376].

It has been shown recently that teleportation fidelities can be improved with the use
of non-Gaussian resources [377]. It is thus important that one is able to quantify the
non-Gaussianity of such resources. Effort in this direction has been initiated in some
recent publications [378-380].

From the perspective of classical probability theory, Gaussian distributions are those
probability distributions which are completely specified by their first and second mo-
ments; all their higher-order moments are determined by these lower-order moments.
Non-Gaussian probabilities do not enjoy this special property. An easier, and possibly
more effective, way to distinguish the two is through cumulants: every non-vanishing
cumulant of order greater than two serves as an indicator of non-Gaussianity of the
probability distribution under consideration [381, 382].

The purpose of any good measure of non-Gaussianity in the context of classical prob-

ability theory is thus to capture the essence of the non-vanishing higher-order cumulants.
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A non-Gaussianity measure should thus manifestly depend on the higher-order cumu-
lants. Yet another desirable feature one would like to have is tnvariance of the measure
under scaling. Ultimately, non-Gaussianily measure is a quantitative statement of the
departure of the shape of a probability distribution from Gaussian. But uniform scaling of
all the variables of a probability distribution does not alter the ‘shape’ of the distribution,
and hence it should not affect its non-Gaussianity.

The notion of non-Gaussianity can be extended to a quantum mechanical state
through its definition on the associated ) function, a member of the one-parameter
family of s-ordered quasi-probabilities [168|. That this is an appropriate route is en-
dorsed by the fact that the Marcinkiewicz theorem [see below| holds for the s-ordered
quasi-probabilities as well. It turns out that the cumulants of order greater than 2 for
the various s-ordered quasi-probabilities corresponding to a fixed state p are independent
of s, indicating that the higher order cumulants are intrinsic to the state. Moreover,
all higher-order cumulants of order greater than 2 vanish identically for Gaussian states.
Thus any non-vanishing higher-order cumulant of the quasi-probability indicates non-
Gaussianity of the state, and this conclusion is independent of the ordering parameter
s.

The above considerations will suggest that any good measure of non-Gaussianity rel-
evant in the context of classical probability theory can, with suitable modification, lead
to a good measure of non-Gaussianity of quantum mechanical states, provided a state is
identified through its @ function ( For a brief review on such measures in classical proba-
bility theory, see [382]). The purpose of such a quantum measure would be to capture the
essence of the non-vanishing higher-order cumulants of the ) function associated with
the state. And invariance of the measure under an overall scaling of the @) function is a
desirable feature worth insisting on. The desirability for scale invariance is endorsed by
the fact that scaling of the @) function is physical as shown in the preceding Chapter.

In this chapter we motivate and present such a measure of non-Gaussianity of quan-
tum states. Our measure is based on the Wehrl entropy [383], the quantum analogue
of differential entropy [384] well-known from the context of classical information theory
of continuous variables [Differential entropy itself is a generalisation of Shannon entropy
from discrete to continuous variables].

The photon-added thermal states[182] play a key role in our considerations. These
nonclassical states have been generated experimentally [320-323]. Their special impor-
tance to the present work arises from the fact that the ) functions of these states are
scaled versions of those of the Fock states, and therefore one will expect any good measure
of non-Gaussianity to return the same values for both classes of states.

The plan of the Chapter is as follows. We begin with a brief introduction to moments
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and cumulants, and recall two well-known theorems in the context of these notions. The
one-parameter family of s-ordered quasi-probabilities corresponding to quantum density
operators is then briefly discussed, with particular emphasis on the @ function, we then
review the relationship between differential entropy and the Kullback-Leibler distance of
classical probability theory. We then review briefly the Wehrl entropy [383] and some of its
properties. In the preceding Chapter, we already showed that scaling of the @ function
is physical. With these preparations, we introduce our non-Gaussianity measure and
explore some of its important properties, including its invariance under uniform scaling of
the underlying phase space. We then evaluate this measure for three families of quantum
states, and we compare our measure with two other measures of non-Gaussianity available

in the literature. Finally we end with some concluding remarks.

7.2 Moments and cumulants

For a multivariate probability distribution P(x), where x = (x1, 22, -+ ,x,) € R", the
characteristic function x(£), £ € R™, is given by the Fourier transform of P(x)[381]:

(&) = / "z () explit - ]

-3 (I e,

mi1mz---mn \k=1

(xay? i) = /d"x ztay? - aP(x) . (7.1)
It follows from the invertibility of Fourier transformation that the characteristic function
retains all the information contained in the probability distribution. The characteristic

function is often called the moment generating function, since one obtains from it all the

moments of the underlying probability distribution through this compact expression :

mime o aMny “ dm -
(@2 2l <kH —d(igk)mk> X(6)le=o (72)

Another equivalent description of a probability distribution is through the cumulant
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generating function. This is defined through the logarithm of the characteristic function

(i)™
- (H ( mi[ > ’Ym1,m2,---7mn7 (73)
mima---Mn

or, equivalently, through
x(§) = exp(I'()) - (7.4)

From Eq. (7.3), it is easy to see that the cumulants v, ms ... m, can be expressed as

n

n dme
TYma,ma,e my = (]}_Il W) F(é) |§:0 . (75)

Thus, the cumulants are related to I'(:) in precisely the same way as the moments are
related to x(-). The set of all moments (] 25" - - - 2/") gives a complete characterisation
of a probability distribution P(x), and the same is true of the set of all cumulants
Ymi,ma,-- mn as well. Indeed, one can describe one set in terms of the other [324, 381, 385].

With these notations and definitions on hand, we now recall two important results

from classical probability theory.

Theorem 7.1 The cumulant generating function of a Gaussian probability distribution

in n variables is a multinomial of degree equal to 2 [381].

Theorem 7.2 (Marcinkiewicz Theorem). If the cumulant generating function of a (nor-
malised) function in n variables is a multinomial of finite degree greater than 2, then
the function will not be point wise non-negative, and hence will fail to be a probability
distribution [386, 387].

Theorem 1 is a statement of the fact that a Gaussian probability is fully determined
by its moments of order < 2; all the higher-order cumulants are identically zero for a
Gaussian probability. Theorem 2 is a much stronger statement. It implies that any true
probability distribution other than the Gaussian distribution has a cumulant generating
function which cannot truncate at any (finite) order. That is, a non-Gaussian probability
distribution has non-vanishing cumulants of arbitrarily high order. We note in passing
that non-vanishing cumulants of order greater than 2 serve as indicators of the non-

Gaussianity of the underlying probability.
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7.3 Quasi-probabilities and the QQ function

A state of a quantum mechanical system specified by density operator p can be faithfully
described by any member of the one-parameter family of s-ordered quasi-probability
distributions —1 < s < 1[168]. In other words, an s-ordered quasi-probability captures all
the information present in the density operator p. However, it is not a genuine probability
distribution in general; in particular, it is not point wise non-negative. The prefix quasi
underscores precisely this aspect. Nevertheless, the s-ordered family of quasi-probability
distributions gives us a framework wherein one could give a phase space description of
quantum mechanical systems in the language of classical probability theory.

To recollect Section 1.7, for a quantum state describing the radiation field of n modes
(n oscillators) the characteristic function of the s-ordered quasi-probability, for any —1 <
s <1, is defined through [168]

Xo(€: ) = expl S |el?] Tr(6D(E)) (7.6)

where £ = (£1,&2,--+,&,) € C", and D(§) is the n-mode (phase space) displacement

operator :

D() = exp|> (&al —€ay)]. (7.7)

J

The s-ordered quasi-probability itself is just the Fourier transform of this characteristic

function x,(&, s):

Wila,9)= = [ expl 3 (@36 - i) e o) [] (75)

J

Here a; and &; are the annihilation and creation operators of the jth mode, a; repre-
sents the (c-number) phase space variables ¢;, p; corresponding to the jth mode through
a; = (g5 + ipj)/ﬁ, and o = (aq, 9, ,ay) € C". The particular cases s = —1,0,1
correspond, respectively, to the better known @ function, the Wigner function, and the
P function.

The @ function corresponding to a density operator p has a particularly simple ex-

pression in terms of coherent state projections:

Qpl) = {alpla), aecr. (7.9)

It may be noted that the @ function is manifestly nonnegative for all « € C™.
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Reality of W,(a, s) is equivalent to hermiticity of the density operator p, and the fact

that p is of unit trace faithfully transcribes to
— [ Wyla,s)d*a=1. (7.10)

While these two properties hold for every s-ordered quasi-probability, point wise non
negativity for all states is a distinction which applies to the @) function alone. In other
words, the Q function is a genuine probability distribution; every other W,(a; s) is only
a quasi-probability. Gaussian pure states are the only pure states for which the Wigner
function is a classical probability [199]; in the case of P function, the coherent states are
the only pure state with this property.

However, not every probability distribution is a ¢ function. This is evident, for
instance, from the obvious fact that Q(a) <1, Ya € C™.

The next result captures, in a concise form, the manner in which members of the
one-parameter family of s-ordered quasi-probabilities W (v, s) differ from one another

for a given state p.

Theorem 7.3 Only the second order cumulants of the quasi-probability of a given state
depend on the order parameter s; all the other cumulants are independent of the quasi-

probability under consideration.

This result is already familiar in the case of a single-mode radiation field [375]. But the
proof is, as outlined below, immediate in the multi-mode case as well. The characteristic
functions of a state p for two different values of the order parameter s; and so are

obviously related in the following manner [168]:

Xo(€:51) = exp (51— 52)[€]) Xp(&: 52) (7.11)

On taking logarithm of both sides to obtain the corresponding cumulant generating func-

tions we have
l0gXo (€, 51) = (51 — 52)[€]* + g, (€, 52) -
That is,
Tp(€,51) = (51— s2)[€° + Tp(€, 52). (7.12)

Thus the cumulant generating function for different s-ordered quasi-probabilities differ

only in second order, completing proof of the theorem.
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In these equations |¢|? stands, as usual, for Z;‘:l |§j|2. As an immediate consequence

of this theorem we have

Theorem 7.4 For no quasi-probability can the cumulant generating function be a multi-

nomial of finite order > 2.

Proof: Since the @ function, for every state p, is a genuine probability distribution,
it follows from the Marcinkiewicz theorem that the cumulant generating function of
@ cannot be a multinomial of finite order > 2. Since the different s-ordered quasi-
probabilities differ only in second-order cumulants, this conclusion holds for all s-ordered
quasi-probabilities, thus proving the theorem.

We conclude this Section with the following remarks. The above considerations show
that quasi-probabilities fail to be true probabilities only in this limited sense: they differ
from genuine probabilities only in cumulants of order two. The distributions, however,
can be quite different from classical probabilities, particularly for s > 0, and they can
become as subtle as Fourier transform of exp [oy?], ¢ > 0, a Gaussian with the wrong
signature for the variance.

Since the higher-order cumulants, which should play an essential role in any reasonable
definition of non-Gaussianity measure, do not depend on the value of the parameter s,
they may be viewed as attributes intrinsic to the state under consideration; we may

therefore use any convenient quasi-probability to capture their essence.

7.4 Differential entropy and the Kullback-Leibler distance

The role of Shannon entropy of probability distributions over discrete random variables
is taken over by differential entropy in the case of continuous variables. Given a multi-
variate probability distribution P(x) in n variables (x1,z2,--- ,x,) € R", the associated
differential entropy H(P(z)) is defined by [384]

H(P(z)) = — / "2 P(x)log P(x). (7.13)

But unlike the Shannon entropy, the differential entropy can be negative. This is manifest,

for instance, for uniform distribution over a region of less than unit volume in R".
Among all the probability distributions with a fixed set of first and second moments,

the Gaussian probability distribution has the maximum differential entropy [384]. This

fact may be used to modify differential entropy to result in a non-negative quantity

J(P(z)) = H(Pg(x)) — H(P(x)) . (7.14)
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Here Pg(x) is the Gaussian probability distribution with the same first and second mo-
ments as the given probability distribution P(z).

It may be recalled that Kullback-Leibler distance between two probabilities P;(x)
and P5(z) is defined as the difference of their differential entropies [384] :

S(Pi(2)[|P2(x)) = H(P2(z)) — H(Pi(z))
= —/Pl(x)log(Pl(x))dnx

+ / Pa(a)log(Py(x))d"z . (7.15)

Thus J(P(z)) can be regarded as the Kullback-Leibler distance between the given prob-
ability P(z) and the associated Gaussian distribution Pg(z):

J(P(z)) = S(Pg(x)[|P(x)) . (7.16)

J(P(z)) is sometimes known by the name negentropy.

7.5 Wehrl entropy

Wehrl entropy [383, 388] may be viewed as the extension of differential entropy to the
quantum mechanical context, but the Wehrl entropy has interesting properties which dis-
tinguish it from differential entropy. The distinction arises from the fact that while every
() function certainly qualifies to be a classical probability distribution, every classical
probability is not a @) function. The uncertainty principle has a fundamental role to play
in this aspect [383]. The potential use of Wehrl entropy as a measure of the ‘coherent’
component of a state has been discussed in Ref[389]. And its possible role in defining an
entanglement measure has also been explored [390, 391].

For a state p describing n modes of radiation field, the Wehrl entropy is defined as

(@) = ~ [ [[daQualozQya), (7.17)

where Q, () is the @ function corresponding to p. This definition may be compared with
that of differential entropy; the role of P(x) in differential entropy is played by Q,(«) in
Wehrl entropy.

However, in contradistinction to differential entropy, the Wehrl entropy is always
positive. This is an immediate consequence of the fact that the @ function is bounded

from above by unity. It turns out that the Wehrl entropy is always greater than or equal
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to unity [392]; indeed, it attains its least value of unity for the coherent states and only
for these states. This property can be thought of as a manifestation of the uncertainty
principle, which the coherent states saturate. Further, the Wehrl entropy is always greater

than the von Neumann entropy [383]:

Hi(p) > S(p) = ~Tr(plog p) (7.18)

While the von Neumann entropy is zero for pure states, we have just noted that the
Wehrl entropy Hyy(p) is greater than or equal to unity for all states. Several aspects of
the Wehrl entropy have been explored in Ref. [389].

7.6 A non-Gaussianity measure for quantum states

As is well-known, a quantum state p is said to be Gaussian iff the associated Wigner
distribution is Gaussian. This will suggest that the non-Gaussianity of a state is coded
into the non-vanishing cumulants of order > 2 of the Wigner function. Since the Wigner
and @ functions are related by convolution by a Gaussian, the ) function of a state
is Gaussian iff the Wigner function is, and the non-Gaussianity should thus be found
coded in the higher-order cumulants of the @) function as well. The consistency of these
statements is ensured by the fact that the higher-order cumulants are the same for the
Wigner and the @ functions [Indeed, as we have shown earlier, the higher-order cumulants
are intrinsic to the state, and hence are the same for all s-ordered quasi-probabilities].

Non-Gaussianity can thus be described using either the Wigner function or the Q
function. The fact that the @) function is everywhere non-negative, rendering it a genuine
probability in the classical sense, makes it our preferred choice. We employ therefore the
Wehrl entropy to capture the essence of the higher-order cumulants.

Given a state p, our measure of non-Gaussianity N'(p) is defined as the difference of

two Wehrl entropies:
N(p) = Hw(pa) — Hw(p)- (7.19)

Here Hyy(p) is the Wehrl entropy of the given state p and Hyy (pg) is the Wehrl entropy
of the Gaussian state p¢ that has the same first and second moments as p. Since N (p)
measures the departure of the Wehrl entropy of p from that of its Gaussian partner jg,
it can be viewed as a quantum Kullback-Leibler distance. N(p) could also be viewed as
a relative Wehrl entropy. But we prefer to call it simply a non-Gaussianity measure.

This measure of non-Gaussianity enjoys several interesting properties. We will now
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list some of them :

(i) N(p) > 0, equality holding iff p is Gaussian.
Proof: This is a restatement of the fact that the Wehrl entropy of a Gaussian state is
greater than that of all states with the same first and second moments as the Gaussian
[384].

(i) M(p) is invariant under phase space displacements :
N(p)=N(D(pDE)"). (7.20)

Proof: Let D(€) p D(€)T be denoted, for brevity, by p’. The @ function of j’ is related

to that of p in this simple manner :

Qpr(a) = Qpla—¢). (7.21)

That is, displacement D(§) acts as a rigid translation in phase space [192, 383, 392]. Thus
it has no effect on the Wehrl entropy of any state, and hence leaves N (p) invariant for
every state.
(iii) M (p) is invariant under passage through any passive linear system.

Proof: A passive linear system is represented by a n X n unitary matrix U. It maps a
coherent state |«) into a new coherent state |o) = |U «) [192, 383, 392|, where o € C™ is
to be viewed as a column vector. Let Uy be the unitary operator in the n-mode Hilbert
space which represents the passive linear system labelled by the matrix U. Let us denote
by p’ the transformed state Uy /31]5 at the output of this passive system. Then the

output @ function is related to the input @ function in this manner:

Qu(a) = QU a) =Q,(Uta). (7.22)

That is, the action of a passive linear system is a rigid SO(2n) rotation in the 2n-
dimensional phase space. It follows immediately that this transformation does not change
the Wehrl entropy of any state, and hence does not affect N (p).

Remark: While in the single-mode case of two-dimensional phase space all proper ro-
tations are canonical transformations, this is not true in the multi-mode case. That is,
Sp(2n, R)NSO(2n) is a proper subgroup of SO(2n) isomorphic to U(n), the n?-parameter

2 — n)-parameter

group of n x n unitary matrices, whereas SO(2n) is a much larger (2n
group [192]. Only those phase space rotations which are elements of this intersection act
as unitary transformations in the Hilbert space of n oscillators.

(iv) M(p) is invariant under a uniform phase space scaling A defined at the level of
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the @ function in the following manner :

A Qp(a) = Qula) = A"Q(\a). (7.23)

Proof: Under this uniform phase space scaling of the ) function, the Wehrl entropy
changes by a simple additive part that is independent of the state:

Holp) = = [ Qaiosue) [] o,

~ b [, (2,00 [T,
j=1

= Hw(p) —2nlogX. (7.24)

Note that in arriving at the last equation we have made a change of variables in the
integral and made use of the normalisation of the @) function. Now it trivially follows
from this result that AV (p), being a difference of two Wehrl entropies, remains invariant.
Remark: While the above conclusion holds mathematically for all A > 0, the scaled
Q@ function fails to be a physical @ function if A > 1. Therefore we restrict this scale
parameter to the physically relevant range 0 < A < 1. This may be seen from the analysis
in Section 6.5.

(v) N(p) is additive on tensor product states:
N(p1 @ p2) = N(p1) + N(p2) . (7.25)

Proof: Under tensor product the @) functions go as product probabilities by definition.
This is true of their associated Gaussian probabilities as well.

(vi) For a bipartite state of the form p = p, ® pg, where pg is a Gaussian state
N(p) = N(pa ® pc) = N(pa) - (7.26)
Proof: From (v) we have
N(p) = N(pa ® pc) = N(pa) + N (pc) -
and from (i)
N(pa) + N(pc) = N (pa) - (7.27)

(vii) For a bipartite state of the form pou = Uy (pa ® |a)(ar|) AJ, where U represents
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a passive linear system and |a) is a coherent state, we have
N(pout) = N (pa) - (7.28)
Proof: From (iii) we have
N (pout) = N Uy (pa ® ) (o)) UJ)) = N (pa @ |a)(al).
We have from (v)
N(pa ® la)(al) = N(pa) + N (la)(al) .

Since the coherent state | is Gaussian, we have from (i)

N(pa) + N (la)(al) = N (pa) - (7.29)

This result is useful in evaluating the non-Gaussianity of bipartite states produced

by the action of beamsplitters, as we shall illustrate in the next Section.

7.6.1 Shape criterion for good measure of non-Gaussianity

Properties (ii), (iii), and (iv) deal with transformations which do not change the shape
of the @ functions. Since non-Gaussianity is a quantitative statement regarding the
departure of the shape of the ) function from Gaussian, it will appear that any good
measure of non-Gaussianity should return the same value for all states connected by these
transformations. In particular, two quantum states whose @) functions are related by a
uniform scaling of all the phase space coordinates should be assigned the same amount of
non-Gaussianity. We will call this the shape criterion, and we have seen that our measure

N (p) meets this requirement.

7.7 Examples

In this Section we evaluate our non-Gaussianity measure N(p) for three families of states,
namely the Fock states, the photon-added thermal states, and the phase-averaged coher-
ent states of a single-mode of radiation. While the first two families consist of nonclassical

states, the third one is a family of classical states.
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7.7.1 Photon number states

The @ function of the Fock state (energy eigenstate) p = |m)(m/| of the oscillator is given

by the phase space distribution

2m
Q@) = 2T exp(faf?) (7.30)

whose only non-vanishing moment of order < 2 is (|a|*) = Tr(paa’) = m + 1. The
phase space average <|a|2> is with respect to the probability distribution @),y () and,
by definition, it equals the (quantum) expectation value of the associated anti-normally
ordered operator aaf. The Gaussian state which has the same moments of order < 2 as
Pimy = Im)(m| is clearly the thermal state with mean photon number () = (a'a) = m.

The @ function of such a thermal state pg is given by

_ 1 o S\
Qcla) = O exp (— )+ 1) , () =m. (7.31)

The Wehrl entropy corresponding to pg is easily computed :

Hw(pe) = 1+log(l+(R))
= 1+log(14m). (7.32)

The Wehrl entropy of the photon number state p = |m)(m]| is

Hw (Pjmy) = —% /dZOéQm(Oé)lOng)(Oé)- (7.33)

This can be computed explicitly by going to the polar coordinates, and one obtains [389)]

Hw (pmy) = 1+ m+logm! —mi(m+1),
= 1
bm+1)=) + =7, (7.34)
k=1
where ¢(m) is the digamma function, and v = 0.5772--- is the Euler constant. Hence

the non-Gaussianity of the photon number state p = |m)(m] is

N(pmy) = Hw(pc) — Hw(pjm)),
= In(m+1) —m —logm! + my(m + 1). (7.35)

In Figure (7.1) we have plotted this non-Gaussianity as a function of the photon
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number m. It is clear that the non-Gaussianity of |m) increases monotonically with the
photon number m, and goes to oo as m tends to co. That this was to be expected can be
seen as follows. For large m values ¢»(m + 1) ~ In(m + 1), and logm! ~ mlogm — m, and
hence N(p}y) ~ log(m 4+ 1). We shall be returning to this result in the next Section.
Now consider a bipartite state of two modes with one mode in the Fock state and the
other in the vacuum. Non-Gaussianity of this product state is the same as that of the
Fock state, and this follows from Eq. (7.26) . Let this bipartite state be passed through
a beamsplitter. The state at the output will be entangled due to the nonclassicality of
the Fock state[171, 194], but in view of Eq. (7.28), this two-mode state will have the

same non-Gaussianity as the original single-mode Fock state.

7.7.2 Photon-added thermal states

In this subsection we evaluate the non-Gaussianity of the photon-added thermal state
(PATS) [182]. The PATS is defined through

p=Ca"pa™, (7.36)

where C'is the normalisation constant which ensures Tr (p) = 1, and pyy, is the thermal

state given by

- hw
A1 k . _ W
pon = (1—2) S ok k(K] @ = exp [ kT} | (7.37)
n=0
One can alternatively define the PATS through parametric differentiation :
O i =N
p= — T 2T |k) (k| . (7.38)
k=0
PATS are thus parametrised by two parameters: 0 < z < 1, and m = 0,1,2,--- . The

limit * — 0 corresponds to Fock states, and the limit m — 0 corresponds to thermal
states.

We may note that PATS (with m > 1) is nonclassical for all values of z [194]. Indeed,
it violates a three-term classicality condition [170].

The @ function of PATS can be easily calculated and is given by

(1 _ x)erl

— *expl—(1 — z)|al?]. (7.39)

QERrs(@) = o

It is evident that the Q function of the PATS is a scaled version of the Q function of the
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Fock state:

Qbara(a) = NQu(Aa), A=VI-a. (7.40)

Since our measure of non-Gaussianity respects the shape criterion put forward in the
previous Section, it is immediate that the non-Gaussianity of the PATS is the same as

that of the photon number state:

N = In(m +1) — m — logm! + myp(m + 1)
= N(m)- (7.41)

It is worth emphasising here that the PATS is a special state with regard to the
question of verifying whether a given measure of non-Gaussianity is a good measure, i.e.,
whether it satisfies the shape criterion. The test is as simple as checking whether the
measure in question evaluated for the PATS is independent of the temperature parameter

X or not.
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Figure 7.1: Variation of N'(p) with number of photons m for the Fock state p = |m){m]|.

Finally we consider, as in the previous Subsection, a bipartite state of two modes,
with one mode in the PATS ﬁgi’;f% and the other in the vacuum state. Let us pass this
two-mode state through a beamsplitter. That the state at the output of the beamsplitter
is entangled follows from the nonclassicality of the PATS[171, 194]. It follows from Eq.
(7.28) that non-Gaussianity of this entangled state is the same as that of the PATS, and
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N(p)

Figure 7.2: Variation of N'(p) with energy |3?| for the phase-averaged coherent state.

hence is fully determined by m.
We have already noted that PATS violates a three-term classicality condition. This
implies that the output state is entangled [194].

7.7.3 Phase-averaged coherent states

As our final example, we evaluate the non-Gaussianity for the phase-averaged coherent

states. Given a coherent state |3) its phase-averaged version is

a6
p = [ 5 ewl-i0ala) 58] explifalal
S 2n
= (-8 3 D . (7.42)
n=0 '

Since pjg is a convex sum of Fock states, its () function is a corresponding convex sum:

o Lo

QY(a) = exp[~(la® + 8]

n=0

— exp[—(jaf* + 8] o(2lal1B) (7.43)

nin!

where Ip(.) is the modified Bessel function of integral order zero. The only non-zero

moment of order < 2 is (|z]?) = Tr(pgaa’) =1+ |8]%. The associated Gaussian prob-
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Figure 7.3: Variation of d1(p) as a function of the Boltzmann parameter « for the photon-added
thermal state.

ability ng ‘(a) that has the same first and second moments is thus the thermal state
with average photon number (2) = |8]>. As we have shown earlier in Eq. (7.32), the
Wehrl entropy of this Gaussian state is Hw(ﬁlg‘) = 1+ log(1 +|A]*). To compute the
Wehrl entropy corresponding to the original phase-averaged coherent state, however, we
resort to numerical evaluation. In Figure (7.2) we present the non-Gaussianity of || as
a function of |3|?, the energy of the state. It is seen to be a monotone increasing function
of |B[2.

Note that the phase-averaged coherent states are classical since they are, by definition,
convex sums of coherent states. Thus if a bipartite state consisting of a phase-averaged
coherent state in one mode and vacuum in the other is passed through a beamsplitter,
the two-mode mixed state at the output will remain separable (since the phase-averaged
coherent state is classical [194]), with the same non-Gaussianity as the original phase-

averaged coherent state.

7.8 Comparison with other measures

In this Section we compare our non-Gaussianity measure A (p) with two non-Gaussianity

measures which have been proposed recently.
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d, (P)

Figure 7.4: Variation of d2(p) as a function of the Boltzmann parameter x for the photon-added
thermal state.

7.8.1 Measure based on Hilbert-Schmidt distance

Genoni et al [378], have proposed a non-Gaussianity measure based on the Hilbert-

Schmidt distance. They define non-Gaussianity of a state p as

o Tr[(p— 7))
0 == 7.44
where 7 is the Gaussian state with the same first and second moments as p. Let us
compare this measure with ours in the specific case of the PATS ﬁgz%%. In Figure (7.3)

we plot d; (ﬁgﬁ{%) as a function of the Boltzmann parameter x, for fixed value of m = 1.

It is seen that 0; (ﬁgxlﬁg), for m = 1, is not a constant but varies with the temperature
parameter x. This shows that this measure of Genoni et al. does not satisfy our shape
criterion.

Another interesting difference appears when one compares our measure N (p) with
01(p) in the case of the photon number states p = |m)(m|. As we have shown ear-
lier [see Figure (7.1)], our measure monotonically increases with the photon number m
and tends to infinity as m tends to infinity. In contrast, as Genoni et al. have shown and

emphasised [378], their measure d;(p) saturates at the value 1.

180



Chapter 7. A measure of non-Gaussianity for quantum states

7.8.2 Measure based on quantum relative entropy

Genoni et al. [379] have proposed, in a subsequent paper, a second measure of non-
Gaussianity, this one based on quantum relative entropy. They define non-Gaussianity

of a state p as
52(p) = S(7) — S(7), (7.45)

where S(-) is the von Neumann entropy of the state in question and 7 is the Gaussian
state with the same first and second moments as the given state p.

At first sight it would seem that do(p) and our measure N'(p) are very similar, the only
difference being that p is replaced by Q,(2) and that the trace operation in the formula
for the von Neumann entropy is replaced in our measure by a phase space integral. A
closer look reveals that this is not the case; d2(p) does not reduce to N (p) under this
kind of ‘quantum-classical correspondence’. And dy(p) and N (p) turn out to be quite
different entities.

A qualitative difference between d5(p) and N(p) becomes manifest when one compares
these two measures in the context of a pure state. As the von Neumann entropy of a
pure state is zero, d2(p) reduces to S(7), the von Neumann entropy of the Gaussian state
with the same first and second moments as p. In other words d2(p) does not consult, in
the case of pure states, moments or cumulants of p of order higher than 2. Consequently,
all pure states which have the same set of first and second moments but differ in higher
moments will get assigned the same non-Gaussianity d2(p). This is not the case with our
measure N(p).

To bring out a second qualitative difference we check if d3(p) satisfies the shape
criterion. To this end we ask if d5(p) will ascribe the same amount of non-Gaussianity
to the PATS and the photon number state, i.e., , whether d2(p) evaluated for the PATS

p; ALF% is independent of the temperature parameter . We find that this is not the case.

This is shown in Figure (7.4) wherein we present 52(p£,AT%) for fixed value m =1, as a
function of x.

We conclude this Section with a further remark. With reference to Figures (7.3)
and (7.4), while the non-Gaussianity measures 51(p£3AT%) and 52(p§3AT%) for fixed m,
vary with the temperature (or scale) parameter x, thus failing the shape criterion, the
variation is not monotone. The significance of the temperatures at which these measures

assume their respective minimum values is not clear.
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7.9 Concluding remarks

We have presented a measure of non-Gaussianity of quantum states based on the
function. In doing so we have been guided by the fundamental principle that any measure
of non-Gaussianity is an attempt to make a quantitative statement on the departure of
the shape of the @ function from Gaussian, and the measure must therefore remain
invariant under all transformations which do not change the shape of the @) function.

Uniform scaling of all the phase space coordinates at the level of the ) function
has proved to be an important shape preserving transformation, and our shape criterion
demands that non-Gaussianity of the photon-added thermal states should be independent
of temperature.

We have explored various properties our measure which meets the shape criterion.
We have presented analytical and numerical results on the non-Gaussianity of a few
families of quantum states. We have also compared our measure with other measures of
non-Gaussianity available in the literature.

Our measure N (p) meets the shape criterion which, in our opinion, should be re-
spected by every good measure of non-Gaussianity. We hasten to add, however, that
this is not the only measure that meets this criterion. For instance, if v(2") is an appro-
priate linear combination of the cumulants of order 2n, and ) an appropriate linear
combination of the cumulants of order 2, it is clear that the ratio between (2% and
the n'™ power of 4(?) will meet this criterion, for every n > 2. Our choice N(p) has the
attraction of being immediately related to well-known entities like the Wehrl entropy and
Kullback-Leibler distance.

In the case of classical probability defined on a 2n dimensional space C™, one would
have required the non-Gaussianity measure to be invariant under the full Euclidean group
consisting of translations and all SO(2n) rotations. In the case of phase space, SO(2n)
rotations which fall outside the subgroup Sp(2n,R) N SO(2n) are unphysical, and hence
the restriction to this subgroup of passive linear systems.

Our shape criterion rests on the invariance semi-group of @) functions which is different
from the invariance semi-group of the Gaussian family of states — operations which map
Gaussian states into Gaussians. The latter semigroup includes the full Sp(2n,R), and
not just the intersection subgroup Sp(2n, R) NSO(2n). It further includes a whole family

of completely positive maps known as Gaussian channels.
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Discussion

Quantum information theory in the context of continuous variables, has been primarily
explored in Gaussian states. Two immediate reasons for this has been the fact that they
have been produced in many laboratories across the world and are experimentally viable,
and secondly that their characterisation has been relatively easy in the sense that their
variance matrix tells everything about them [226]. The notion of nonclassicality as well
as entanglement in their context is by and large well understood [57, 192]. This is not
so for non-Gaussian states. The characterisation of non-Gaussian states through their
moments is an on going study in quantum optics and any progress in quantum optics is
based on our progress with regard to the theory of moments. A classic example of this
has been the case of states of a single-mode of radiation field which are diagonal in the
Fock basis. The characterisation of these states in terms of moments has been found to
be equivalent to the Stieltjes moment problem [170]. We, in our present work, have made
an attempt to make use of this knowledge. A possible future program would be to find
possible continuous variable systems which can be mapped to well studied problems in
the context of classical probability theory, and if such a thing has been carried out, then
see if it helps us understand entanglement. We might attempt this bearing in mind that
the theory of moments tells us of some practical limitations, and an example of such is
as implied by the Marcinkiewicz theorem [375].

Another area of possible exploration is the extension of the use known positive maps
to the continuous variable case. Only the partial transpose map and the reduction map
have been extended [57, 217]. Recent methods, illustrated in [233] give us a window to
this aspect. The direct extension of positive maps is still a problem though. The current
knowledge seems to be nascent regarding this issue.

The problem of separability /entanglement has been settled for the case of multi-mode
Gaussians [242]. We, in our work, have settled this issue for a restricted class of non-

Gaussian states. But, the issue of separability/entanglement is still open in the more
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general context. One major tool has been the use of uncertainty relations [57, 58, 230].
Such relations have been seen to be strong enough in certain contexts to detect bound
entanglement [60, 61, 241]. Such a study has been by and large restricted to the level
of the variance matrix. Recently in [232], a more general approach was devised. Further
exploration along these lines would be of great interest.

One of the foremost problems in quantum information theory has been the estimation
of entanglement. In the continuous variable case, the EOF has been evaluated for the
case of two-mode Gaussians. But for the general multi-mode Gaussian case, there is not
yet a coherent understanding of entanglement. Extremal properties of Gaussian states
have already played their role in the two-mode case, but a deeper exploration of such
properties in the multi-mode context is much awaited. In the non-Gaussian case, the
problem is even more intruiging by the very lack of our understanding with regard to
these states. We have in our work, outlined a possible context dependant procedure,
which estimates entanglement in very special non-Gaussian states, but a more general
approach is much awaited Recent methods outlined in [328], tell us of the possibility of
estimating entanglement with incomplete knowledge of the state. It would be of great
interest to extend these ideas to the non-Gaussian continuous variable state.

A primary concern in this work, has been the study on nonclassicality, and its re-
lationship to entanglement. The squeezing nonclassicality, a nonclassicality associated
with Gaussian states, has been well explored as a resource in the context of quantum
information processing. The same cannot be said of other available nonclassicalities. The
potential role of the other non-Gaussian nonclassicalities is yet to be realised. Recently,
exploration in these lines have started emerging[377, 393, 394], the advantages are also

being spelt out. More exploration needs to be done along these directions.
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