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Abstra
tNon
lassi
ality and entanglement are two important features exhibited by 
ontinuousvariable quantum states. This thesis is 
entered on the 
onne
tion between non
lassi
al-ity and entanglement in the 
ontext of 
ontinuous variable quantum systems. Evidently,non
lassi
ality is a prerequisite for entanglement. The 
onne
tion between the two hasbeen well explored in the 
ontext of Gaussian states, namely in the 
ontext of squeezingnon
lassi
ality. We study the 
onne
tion in the 
ontext of other well known non
lassi
ali-ties, namely non
lassi
al photon number statisti
s and antibun
hing. By de�nition, every
lassi
al state is a 
onvex sum of 
oherent states, and hen
e is separable. Non
lassi
alitydoes not imply entanglement, but every entangled state is non
lassi
al. Negativity underPartial Transpose (NPT) implies non
lassi
ality, but Positivity under Partial Transpose(PPT) by itself does not indi
ate that the state is 
lassi
al or separable. A PPT state
an be separable or entangled, 
an be 
lassi
al or non
lassi
al.Chapter 1 is primarily introdu
tory in nature, bringing forth the various 
on
eptsinvolved in the theory of entanglement, both in the �nite dimensional situation as well asin the in�nite dimensional 
ase of 
ontinuous variable systems. It is expository in natureand 
olle
ts some of the te
hniques useful later in the thesis.In Chapter 2 we bring forth a relationship between non
lassi
ality and entanglement.The problem of studying the interrelationship between non
lassi
ality and entanglementis tied to the fa
t that there is no simple test whi
h 
an 
on
lude in a de�nite manner if agiven generi
 mixed state is 
lassi
al or not, and there is no single test whi
h 
an answerwith 
ertainty if a mixed state is entangled or separable. However, in very spe
ial orspe
i�
 
ases one 
an make de�nitive statements. For states of a single mode of radiationwhi
h are diagonal in the Fo
k basis, the issue of 
lassi
ality/non
lassi
ality has beensettled. This is possible thanks to the result of the 
lassi
al Stieltjes moment problem[170℄. We bring out the possibility of using su
h non
lassi
al (non-Gaussian) resour
es togenerate useful entanglement. With a produ
t state of the form ρ̂
(ab)
in = ρ̂(a) ⊗ |0〉bb〈0| asinput, the output two-mode state ρ̂(ab)

out of a beamsplitter is shown to be NPT wheneverthe photon number distribution (PND) statisti
s {p(na)} asso
iated with the mixed state
ρ̂(a) of the input a-mode is antibun
hed or otherwise non
lassi
al, i.e., if {p(na)} fails torespe
t any one of an in�nite sequen
e of ne
essary and su�
ient 
lassi
ality 
onditions.We establish the equivalen
e of 
lassi
ality and PPT of ρ̂(ab)

out in this kind of situations.Thus NPT is a ne
essary and su�
ient test of entanglement of ρ̂(ab)
out . Furthermore ρ̂(ab)

out isshown to be distillable if ρ̂(a) is antibun
hed or violates any one of an in�nite sequen
e ofthree term 
lassi
ality 
onditions. We also dis
uss the issue of distillability arising froman intrinsi
ally higher order violation of 
lassi
ality. This is the only se
ond instan
e in5




ontinuous variable entanglement theory where NPT has turned out to be a ne
essaryand su�
ient 
riterion for entanglement, the earlier instan
e being that of two-modeGaussian states. A preliminary version of these results is found in [194℄. We attempt toestimate the entanglement of formation (EOF) of entangled states generated in the abovemanner. We evaluate both upper and lower bounds on EOF for very spe
ial examples.Our prin
ipal tool in this s
heme is the fa
t that average entanglement does not in
reaseunder lo
al operations and 
lassi
al 
ommuni
ations (LOCC). The general idea used hasbeen to proje
t out the state into 2 × 2 subspa
es, and then use Wootter's formula forthe entanglement of formation of a two-qubit system to estimate the entanglement; su
ha pro
ess is 
learly an LOCC. However, a drawba
k with su
h a s
heme is the fa
t thatone 
annot estimate more than one ebit of entanglement even from a highly entangledstate. For the simple example of an entangled state generated by passing through a 50:50beamsplitter an arbitrary mixture of the ground state and nth Fo
k state on Ali
e's side,with Bob's side in the ground state, we give a distillation pro
edure whereby we distillmore entanglement than given by lower bound for EOF in [76℄. We extend these ideas toentangled states generated from PND's whi
h 
orrespond to a very spe
ial superpositionof 
oherent states, and we demonstrate distillation pro
edures whi
h distill well aboveone ebit of entanglement. We also indi
ate the possibility of using the Terhal-Vollbre
tformula [69,76℄ in estimating entanglement, in a more general 
ontext, using a trun
ations
heme.The study undertaken in Chapter 2 is 
ontinued in Chapter 3 from a more generalperspe
tive. We des
ribe a single test whi
h, if su

essful, is able to simultaneously es-tablish both the non
lassi
ality and NPT entanglement of a given two-mode state. Weextend the notion of antibun
hing to two-mode systems through the Mandel matrix 
on-stru
t, and show that non
lassi
ality at this level naturally separates into two distin
tkinds, Type I and Type II, depending on whether the sub Poissonian statisti
s is visibleor not at a single-mode level. The �Type� of a non
lassi
al state is invariant under thea
tion of every U(2) beamsplitter. A state 
ould go from separable to entangled underbeamsplitter a
tion, but its Type is invariant. Type II states are spe
ial in the sense thatone may pass su
h states through any U(2) beamsplitter, even then 
an never dete
tantibun
hing lo
ally i.e., in a single-mode. We 
onstru
t examples of both types. Weintrodu
e a beamsplitter invariant de�nition for the Mandel parameter, extended to the
ase of two-mode systems through the nonpositivity of the Mandel matrix. That we areable to do so is be
ause the Mandel matrix transforms 
ovariantly under beamsplittera
tion. However, we �nd that the two-mode Mandel parameter 
an take values less than
−1, as 
ompared to the Mandel parameter in the single-mode 
ase. This feature seemsto expose the limitation of the beamsplitter as an entangling devi
e, as there are en-6



tangled states that the beamsplitter 
annot produ
e. The two-mode Mandel parameteris relevant only within the Type under 
onsideration. We explore the produ
tion of bi-partite entanglement from separable non
lassi
al states by beamsplitters, we tra
e ba
kthe entanglement to the non
lassi
ality involved, and we illustrate this aspe
t throughseveral examples. We demonstrate distillable entanglement in this 
ontext. We extendthese ideas to the 
ase of generating tripartite entanglement through generalised beam-splitters, and examine their dete
tion through simple moment-based tests whi
h tra
eba
k the entanglement to a parti
ular type of non
lassi
ality. We also demonstrate thepossibility of generating genuine tripartite entanglement from two-mode Mandel typenon
lassi
ality.In Chapter 4 the EOF of an arbitrary two-mode Gaussian state is 
omputed. In this
ontext, we bring out the intimate 
onne
tion between the two-mode squeeze parameteras a measure of the strength of non
lassi
ality and alternatively as a measure of entan-glement. Apart from a 
onje
ture, our analysis rests on two main ingredients. One ofthem is a four-parameter 
anoni
al form we develop for the 
ovarian
e matrix, one ofthese parameters, the squeeze parameter, a
ting as a measure of EOF. The other is thegeneralisation of the EPR 
orrelation used in the work of Giedke et al [70℄ to non
om-muting variables. The 
onje
ture is in respe
t of an extremal property of this 
orrelation[327℄.In Chapter 5 we study the 
ompatibility 
onditions between the (global) spe
trumand the spe
tra of the individual modes of a general n-mode Gaussian state. We presentan elementary proof for the 
ompatibility 
onditions, making optimal use of beamsplitterand two-mode squeezing transformations. An unexpe
ted bye-produ
t of our elementaryapproa
h is the result that every two-mode Gaussian state is uniquely determined, modulolo
al transformations, by its global spe
trum and lo
al spe
tra, a property shared noteven by a pair of qubits [18℄.In Chapter 6 we obtain the operator-sum representation of all the quantum limitedsingle-mode Bosoni
 Gaussian 
hannels. The analysis lends insight into how 
ertainunphysi
al pro
esses su
h as the transposition map, or s
aling of the Weyl-ordered 
har-a
teristi
 fun
tion, or a 
ombination of both 
an be rendered physi
al through a thresh-old Gaussian noise. The motive here is to bring out this aspe
t in a transparent mannerthrough the operator-sum representation. We have that the s
aling of the diagonal weightfun
tion and s
aling of the Husimi Q fun
tion 
orrespond to physi
al pro
esses. As willbe seen in the following Chapter, the fa
t that s
aling of the Q fun
tion is physi
al isof 
riti
al relevan
e when one de�nes a measure of non-Gaussianity for quantum states.This Chapter further explores the notion of non
lassi
ality breaking and the notion ofentanglement breaking in light of the operator-sum representation. 7



Having brought out the 
onne
tion between non
lassi
ality and entanglement, andhaving exposed non
lassi
ality as a resour
e, it is useful to understand this resour
e asbeing Gaussian and non-Gaussian. Chapters 2 and 3 primarily dealt with non-Gaussianstates and the non
lassi
ality asso
iated with them, but Chapters 4, 5, and 6, dealt withGaussian states and issues regarding them. In Chapter 7 we bring out the essentialdi�eren
e between these two very di�erent resour
es through the 
onsideration of 
umu-lants. Sin
e the higher order 
umulants de�ned through an s-ordered quasi-probability isindependant of the ordering parameter s and hen
e is intrinsi
 to the state, every non van-ishing 
umulant of order greater than two serves as an indi
ator of non-Gaussianity. Weintrodu
e a new measure for non-Gaussianity based on the negentropy of the Q fun
tion.We show that our measure satis�es some of the requirements that a good non-Gaussianitymeasure should satisfy, espe
ially the invarian
e of the measure under uniform s
alingof the Q fun
tion. The s
ale invarian
e of the measure is demanded by the fa
t thats
aling of the Q fun
tion is a valid physi
al transformation as shown in Chapter 6. Themeasure is well supported by the fa
t that the Mar
inkiewi
z theorem holds for phasespa
e distributions too [358℄. We analyti
ally evaluate this non-Gaussianity measure formixed entangled states generated by passing the photon-added thermal state through a
U(2) beamsplitter, the an
illa being in the ground state. We �nd for these examplesthat the non-Gaussianity as evaluated by our measure, is independent of temperature,whi
h is a dire
t manifestation of s
ale invarian
e. That we are able to evaluate the non-Gaussianity for these mixed entangled states is be
ause of the invarian
e of the measureunder passive transformations. We also evaluate the measure for the phase averaged 
o-herent state. In a re
ent work [361, 362℄, Genoni et al introdu
ed distan
e based measuresof non-Gaussianity of a state through the Hilbert-S
hmidt distan
e and relative entropyde�ned at the density operator level. We 
ompare their measure with ours for the simpleexample of the photon-added thermal state [216℄.Finally we 
on
lude with some remarks and dis
uss possible future dire
tions of re-sear
h, parti
ularly in the 
ontext of the use of non-Gaussian resour
es in quantuminformation pro
essing.

8
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1Basi
 Ideas
1.1 Introdu
tionThe state of a quantum me
hani
al system S is des
ribed by a density operator ρ̂ a
tingon a Hilbert spa
e H. The system in 
onsideration spe
i�es the dimension of the Hilbertspa
e. The operator ρ̂, satis�es the following three de�ning properties :

ρ̂ = ρ̂†, Tr ρ̂ = 1, ρ̂ ≥ 0. (1.1)A pure state is des
ribed by a normalised (unit) ve
tor |Ψ〉 in the Hilbert spa
e H, andthe density operator 
orresponding to |Ψ〉 is given by
ρ̂ = |Ψ〉〈Ψ|. (1.2)Clearly, distin
t ve
tors in the Hilbert spa
e do not 
orrespond to distin
t states. Allunit ve
tors in H whi
h di�er from one another by phase fa
tors, represent one and thesame state. In other words, states are represented by an equivalen
e 
lass of unit ve
torsof the Hilbert spa
e. It is 
lear that the state ρ̂ in Eq. (1.2), satis�es the three de�ningrequirements in Eq. (1.1).The most general state of a quantum me
hani
al system S is des
ribed by a `mixed'state ρ̂, whi
h is a 
onvex 
ombination of pure states, i.e.,

ρ̂ =
∑

k

pk|Ψk〉〈Ψk|, pk > 0,
∑

k

pk = 1. (1.3)The quantum state spa
e thus forms a 
onvex set in whi
h pure states 
orrespond tothe 
ase when all but one of the pk's are zero. The pure states satisfy the additional
1



Chapter 1. Basi
 Ideasrequirement
ρ̂2 = ρ̂, (1.4)and 
orrespond to the extremal points of the 
onvex state spa
e. They 
annot be realisedas nontrivial 
onvex 
ombinations of other states. While Trρ̂2 = 1 for pure states, mixedstates satisfy

Trρ̂2 < 1, (1.5)and 
orrespond to non extremal points of the 
onvex state spa
e.The probabilities pk's and the ensemble realisation in Eq. (1.3) are in general asso-
iated with a preparation pro
edure. The nontriviality of the ensemble realisation arisesfrom the fa
t that the |Ψk〉's need not be orthogonal, or even linearly independent, andthat the set of ensembles realising a given mixed state ρ̂ is a huge family [1℄. A prepara-tion pro
edure yields an ensemble realisation for ρ̂, but given a ρ̂ it is impossible to tellwhi
h preparation pro
edure it was derived from.The natural obje
ts of interest are the expe
tation values of observables. Observablesin quantum theory are represented by hermitian operators Ω̂,
Ω̂ =

∑

i

λi|Φi〉〈Φi| =
∑

i

λiPi,
∑

i

Pi = 11, (1.6)and Pi's are proje
tion operators obeying PiPj = δijPi. The {λi} are interpreted asthe out
ome or eigenvalue of an experiment 
orresponding to the observable Ω̂, and
{|Φi〉} as the 
orresponding eigenstates. The eigenvalues λi are real, but 
an be negative.The expe
tation value of an observable Ω̂ with respe
t to a pure state |Ψ〉 is given by
〈Ω̂〉 = 〈Ψ|Ω̂|Ψ〉. In the 
ase of a mixed state ρ̂, the expe
tation value is given by

〈Ω̂〉 = Tr(Ω̂ρ̂) =
∑

k

pk〈Ψk|Ω̂|Ψk〉. (1.7)The expe
tation value 〈Ω̂〉 is interpreted as the average value of the observable Ω̂ overrepeated trials of the experiment, with the same state ρ̂ prepared ea
h time.Though the average value of the out
ome is 
al
ulated as in Eq. (1.7), a parti
ulartrial yields a parti
ular eigenvalue λi as the out
ome of the experiment. The probabilityof o

uran
e qi of the ith out
ome 
orresponding to the eigenvalue λi is given by
qi = Tr(Piρ̂) =

∑

k

pk〈Ψk|Pi|Ψk〉. (1.8)2



Chapter 1. Basi
 IdeasGiven a parti
ular out
ome i, the state of the system after measurement is no morerepresented by ρ̂, but 
ollapses to the 
orresponding eigenstate of the observed eigenvalue,
ρ̂′ =

Piρ̂Pi

Tr(Piρ̂)
. (1.9)This is the Von Neumann 
ollapse postulate. Sin
e the given state has 
ollapsed into aparti
ular eigenstate of the observable, it is no more useful in the study of the propertiesof the original state. Thus for a new trial, one has to repeat the preparation pro
edure toobtain the ρ̂, and rerun the experiment. Su
h a measurement s
heme is 
alled as the VonNeumann proje
tive measurement, and the probabilities qi are 
alled the Von Neumannproje
tion valued measure.To summarise, the density operator ρ̂ 
ompletely spe
i�es all the properties of thesystem. All expe
tation values of all possible experimental observables Ω̂ are 
apturedby ρ̂.1.2 Composite systemsConsider a bipartite system S whi
h 
onsists of subsystems A and B. Let HA and HBdenote the Hilbert spa
es of the subsystems, then the Hilbert spa
e of the total systemis the tensor produ
t HS = HA ⊗ HB of the Hilbert spa
es of the subsystems. Let thedimension of HA be m, and that of HB be n. Let {|ψj〉} form an ONB in HA, and {|φα〉}an ONB in HB. Then any pure state |Ψ〉 of the 
ombined system 
an be written as

|Ψ〉 =
∑

j,α

cjα|ψj〉 ⊗ |φα〉. (1.10)A pure state |Ψ〉 of the bipartite system S is said to be a produ
t state if and only if theexpansion 
oe�
ients cjα have the produ
t form cjα = xjyα, i.e., the m × n 
oe�
ientmatrix c is the outer produ
t of two ve
tors. Any state |Ψ〉 whi
h 
annot be written inthe produ
t form
|Ψ〉 6= |ψ〉 ⊗ |φ〉, (1.11)is said to be entangled.Theorem 1.1 Given a state |Ψ〉 in the tensor produ
t spa
e HS = HA ⊗ HB, it 
an

3



Chapter 1. Basi
 Ideasalways be written in the form [2℄
|Ψ〉 =

r
∑

j=1

√

λj |ψ′
j〉 ⊗ |φ′j〉, where

r ≤ min(m,n), λj > 0,
∑

j

λj = 1, (1.12)and {|ψ′
j〉} and {|φ′j〉} are ve
tors from an ONB in HA and HB respe
tively.Proof : This 
an easily be seen from the singular value de
omposition of the c matrix,i.e.,

c→ c′ = V cW T , (1.13)where V and W 
orrespond to independent lo
al unitary 
hange of basis in HA and HBrespe
tively, i.e.,
|ψ′

k〉 =
∑

j

V ∗
jk|ψj〉, |φ′β〉 =

∑

α

W ∗
αβ |φα〉. (1.14)

V and W are 
hosen su
h that c′ is diagonal.The integer r is known as the S
hmidt rank of |Ψ〉. The S
hmidt rank r, and theS
hmidt 
oe�
ients {λi}, 
onstitute the lo
al invariants of the state. It is 
lear that forprodu
t states the S
hmidt rank is one. The S
hmidt rank r, of a given bipartite purestate |Ψ〉, is thus an entanglement witness of the state.The notion of entanglement for the 
ase of mixed states is mu
h more subtle. As wehave already seen in Eq. (1.3), any mixed state of the bipartite system A + B 
an bewritten as
ρ̂AB =

∑

k

pk|Ψk〉〈Ψk|,

pk > 0,
∑

k

pk = 1. (1.15)A state ρ̂AB is said to be separable, if there exists an ensemble realisation {|Ψk〉, pk} of
ρ̂AB , su
h that all the |Ψk〉's are produ
t states [3℄, i.e.,

ρ̂AB =
∑

k

pkρ̂Ak ⊗ ρ̂Bk, (1.16)
4



Chapter 1. Basi
 Ideaswhere the pk's are positive, and ρ̂Ak's and ρ̂Bk's are density operators of subsystems Aand B respe
tively. Without loss of generality, these density operators 
an be 
hosento 
orrespond to pure states. Stated di�erently, any 
onvex sum of produ
t states is byde�nition a separable state, and separable states 
onstitute a 
onvex subset of the 
onvexstate spa
e. Any state whi
h 
annot be written as a 
onvex sum of produ
t states is saidto be entangled. The subtle part of the de�nition stems from the fa
t that one has to run,in prin
iple, through all possible de
ompositions of a state to 
on
lude if it is separableor not.1.2.1 Partial tra
eConsider a bipartite system in the state ρ̂AB. Suppose we are interested in the subsystem
A alone, i.e., we are interested in measurement of a lo
al observable Ω̂A whi
h a
ts onlyon the Hilbert spa
e HA. The a
tion of su
h an observable is des
ribed by the operator
Ω̂A ⊗ 11B on the extended Hilbert spa
e HS = HA ⊗HB . Using the resolution of identityin the B subsystem with the 
hoi
e of an ONB {|φα〉} ∈ HB , the expe
tation value ofthe A subsystem observable Ω̂A is

Tr(Ω̂A ⊗ 11B ρ̂AB) = TrATrB(Ω̂A ⊗ 11B ρ̂AB)

=
∑

k,α

〈ψk| ⊗ 〈φα|Ω̂A ⊗ 11B ρ̂AB|ψk〉 ⊗ |φα〉

= TrA(Ω̂Aρ̂A), where

ρ̂A = TrB ρ̂AB =
∑

α

〈φα|ρ̂AB |φα〉. (1.17)Clearly, ρ̂A is an operator on the Hilbert spa
e HA. The tra
e operation exe
uted only onthe B subsystem is 
alled partial tra
e, and the resulting ρ̂A is 
alled the redu
ed densityoperator of subsystem A. It is 
lear that partial tra
e preserves the de�ning requirementson a density operator. The notions indi
ated above hold irrespe
tive of whether ρ̂AB waspure or mixed. Every observable of subsystem A sees the state ρ̂AB as if it were the state
ρ̂A. Clearly, partial tra
e of pure bipartite states leads to either pure or mixed statesof the subsystem. If we begin with a bipartite pure entangled state, the partial tra
edstate of the subsystem is de�nitely mixed, and the matrix rank of the redu
ed state isthe S
hmidt rank of the initial bipartite pure entangled state. Thus, partial tra
e 
an beviewed as an entanglement witness for bipartite pure entangled states. The 
on
ept ofpartial tra
e also renders another explanation to the origin of mixed states, i.e., throughthe pro
ess of 
onsidering evolutions in 
omposite systems and then dis
arding one of thesubsystems, we are able to generate mixed states of a subsystem. The notion of mixed5
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 Ideasstates was earlier 
onsidered through the notion of a preparation pro
edure.1.2.2 Positive Operator Valued MeasureThe notion of Positive Operator Valued Measure (POVM) is the generalisation of the VonNeumann measurement s
heme, and is easily understood in the 
ontext of measurementin 
omposite systems.Consider a system A with Hilbert spa
e HA, to be in the state ρ̂A, and an auxiliarysystem B with Hilbert spa
e HB, to be in the state ρ̂B. Then the state of the 
ombinedsystem is
ρ̂S = ρ̂A ⊗ ρ̂B , where

(ρ̂A ⊗ ρ̂B)mα,nβ = (ρ̂A)mn(ρ̂B)αβ . (1.18)A Von Neumann measurement on the 
ombined system system is represented by proje
-tion operators
PiPj = δijPj ,

∑

i

Pi = 11. (1.19)The probability of the ith out
ome of su
h a test given that the state of the 
ombinedsystem is in ρ̂A ⊗ ρ̂B is,
qi = Tr[Pi(ρ̂A ⊗ ρ̂B)] =

∑

mα,nβ

(Pj)mα,nβ(ρ̂A)mn(ρ̂B)αβ . (1.20)This 
an be equivalently written as
qi = TrA(Miρ̂A), where

(Mi)mn =
∑

αβ

(Pi)mα,nβ(ρ̂B)αβ, (1.21)and {Mi} are operators on the Hilbert spa
e HA of the A subsystem. The hermitiannonnegative operators Mi whi
h need not 
ommute 
learly satisfy
∑

i

Mi = 11. (1.22)Ea
h member of the set {Mi} is 
alled a positive operator valued measure (POVM) [4, 5℄,sin
e ea
h Mi is a positive operator by 
onstru
tion. The main di�eren
e between a VonNeumann type measurement and a POVM is that the Mi are not proje
tion operators6
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 Ideasand the number of out
omes is independent of the dimensionality of the Hilbert spa
e
HA. The probability of the ith out
ome is now given by

qi = Tr(Miρ̂), (1.23)as 
ompared to Von Neumann Tr(Piρ̂). We have removed the subs
ript A to indi
ate the
omparison at system level. The Von Neumann 
ollapse postulate holds, ex
ept that thestate of the subsystem after the measurement is the partial tra
e of the 
ollapsed stateof the 
omposite system.1.3 Quantum Dynami
sConsider a system with Hilbert spa
e H. The set of all density operators ρ̂ a
ting on H isa subset of the set of all linear operators a
ting on H. The set of all linear transformationson H forms a ve
tor spa
e. If H is n dimensional, then this new ve
tor spa
e is 
learly
n2 dimensional. Quantum evolutions are linear transformations on the linear operatorsa
ting on H. Linear transformations on this new ve
tor spa
e are 
alled linear maps todistinguish them from linear operators on H. They are sometimes 
alled super-operators.It would seem that any linear map a
ting on the density operator ρ̂, and preserves thethree de�ning properties of density operators in Eq. (1.1), is a valid quantum evolution.This is not so! Further 
onditions beyond (1.1) arise from looking at 
omposite systems.Suppose we were dealing with only 
losed systems, then any map whi
h preserves thede�ning properties of the density operators would have appeared physi
al. Sin
e we maybe a part of a larger system but observing only our system lo
ally, it be
omes imperativethat the map under 
onsideration takes valid density operators of the extended system tovalid density operators. Thus one is lead to 
onsider what are 
alled 
ompletely positivemaps.1.3.1 Completely positive mapsConsider a bipartite system S with Hilbert spa
e HS = HA⊗HB . A linear map Λ a
tingon the spa
e of operators a
ting on HA 
an be extended to a
t on the spa
e of operatorsa
ting on HS through the de�nition of the map Λ⊗ 11n, where 11n is the identity map onsubsystem B, i.e., the map Λ a
ts only on the A subsystem, but leaves the B subsystemas it is. Every possible 
hoi
e of HB gives us a possible extension of the above kind for Λ.A map Λ is said to be 
ompletely positive if it is positive for all su
h possible extensions.By positive we mean that it takes valid density operators a
ting on HS to valid densityoperators a
ting on HS. The subtle part of the de�nition stems from the fa
t that one7
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 Ideashas to in prin
iple run over all possible extensions spe
i�ed by the 
hoi
es of HB , to
on
lude if a given positive map Λ is 
ompletely positive or not. We have the followingimportant result :Theorem 1.2 The a
tion of any tra
e-preserving 
ompletely positive map Λ on a densityoperator ρ̂ 
an always be written in the following form :
Λ(ρ̂) =

∑

α

Wαρ̂W
†
α,

∑

α

W †
αWα = 11. (1.24)We don t give the proof here, but a heuristi
 way to see this is as follows. Let {|ψj〉} and

{|φα〉} be a set of ONB in HA and HB respe
tively. Suppose that the density operatorof the bipartite system is initially in the state
ρ̂A ⊗ |0〉BB〈0|, (1.25)where |0〉B denotes a pure state in the B subsystem. Evolve the state unitarily in the
ombined system so that̂

ρA ⊗ |0〉BB〈0| → U(ρ̂A ⊗ |0〉BB〈0|)U †. (1.26)Now performing a partial tra
e over the B system Hilbert spa
e yields
ρ̂′A = TrB(U(ρ̂A ⊗ |0〉BB〈0|)U †

=
∑

α

〈φα|U(ρ̂A ⊗ |0〉BB〈0|)U †|φα〉

=
∑

α

〈φα|U |0〉B ρ̂A B〈0|U †|φα〉. (1.27)If we denote
Wα = 〈φα|U |0〉B , (1.28)then we 
an express ρ̂′A as
ρ̂′A =

∑

α

Wαρ̂AW
†
α. (1.29)

8



Chapter 1. Basi
 IdeasIt follows from the unitarity of U that
∑

α

W †
αWα =

∑

α

B〈0|U †|φα〉〈φα|U |0〉B

= B〈0|U †U |0〉B = 11A. (1.30)Thus we have two ways of pi
turing 
ompletely positive maps [6�9℄.
• Every tra
e preserving 
ompletely positive linear map Λ, has an operator sumrepresentation as in Eq. (1.24).
• Every tra
e preserving 
ompletely positive linear map Λ, has an unitary represen-tation as in Eq. (1.27).What we have just demonstrated is that an unitary representation of a 
ompletely positivemap 
an in fa
t be viewed as an operator sum representation. The nontrivial part of thetheorems is that every tra
e-preserving 
ompletely positive map 
an be obtained in thismanner. A simple way to understanding this aspe
t is by reasoning that any reasonableevolution should be a

omplished as a unitary (hamiltonian) evolution on a larger system.It is useful to note that in the unitary realization one begins with a produ
t state of the
ombined system, and a pure state for the B subsystem proves su�
ient. It is 
lear fromthe de�nition and Eq. (1.24) that the set of all tra
e preserving 
ompletely positive mapsform a 
onvex set.1.4 Dete
ting entanglementOne of the foremost problems of quantum information theory has been the developmentof tools for dete
tion of entanglement. Sin
e a given density operator ρ̂AB of a bipartitesystem S, has in�nitely many de
ompositions [1℄, and sin
e we 
annot possibly runthrough all of them to see if ρ̂AB is separable, it is imperative that we devise e�
ientmethods of dete
ting entanglement. Bell inequalities provide us with su�
ient 
riteriafor entanglement, and entropy based inequalities 
an also dete
t entanglement in suitable
ases. These are s
alar manifestations of entanglement, whi
h has its roots at the densityoperator level. Sin
e we only measure s
alar quantities in the laboratory, the s
alarmanifestations of entanglement are 
ru
ial from an experimental point of view. From atheoreti
al perspe
tive, the s
alar manifestation of entanglement is intimately 
onne
tedto the theory of positive maps whi
h has a dire
t bearing on the 
on
ept of entanglement.We brie�y dis
uss these ideas below.

9
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 Ideas1.4.1 Entropi
 inequalitiesEntropi
 inequalities originate from the observation that there is more information inan entangled state viewed as a whole than viewed as aggregate of information in thesubsystems. A simple example su
h as a maximally entangled state in 2 × 2 dimensionsillustrates this. The state when viewed in 2 × 2 dimensions as a whole is a pure state,but when we look at the state of either of the subsystems the state is a random mixtureproportional to the identity operator. Thus from either of the subsystems we gain noknowledge of the state. Su
h a qualitative feature 
an be made quantitative throughentropi
 inequalities su
h as
S(ρ̂A) ≤ S(ρ̂AB), S(ρ̂B) ≤ S(ρ̂AB), (1.31)where S(ρ̂) = −Tr(ρ̂ log2 ρ̂) is the Von Neumann entropy of a state ρ̂. Any separablestate obey the inequalities, but entangled states need not [10�13℄. The idea is easilygeneralised to entropi
 inequalities su
h as those based on Renyi quantum entropies.1.4.2 MajorisationMajorisation is a te
hnique that helps us 
ompare two ve
tor quantities. In the 
ontext of
lassi
al probability theory, it be
omes useful when we 
ompare two dis
rete probabilitydistributions. Based on majorisation, we may be able to 
on
lude if one probabilitydistribution is more `spread out' than the other, or in other words if one probabilitydistribution is more `disordered' than the other. We now state the de�nition [14, 15℄.Let x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) be two ve
tor quantities, arrangedin the nonde
reasing order, i.e., x1 ≤ x2 ≤ · · · ≤ xn and y1 ≤ y2 ≤ · · · yn. Then we say

x ≺ y (x is majorised by y) if and only if
k
∑

j=1

xj ≥
k
∑

j=1

yj, ∀ k ≤ n, and

n
∑

j=1

xj =
n
∑

j=1

yj. (1.32)That majorisation 
aptures the disorderliness is seen through its impli
ation on en-tropy. Let the ve
tors x and y denote two probability distributions and let x ≺ y,then H({xi}) ≥ H({yi}), where H(.) is the Shannon entropy [14, 16℄. The majorisationrelation is more fundamental in 
apturing disorderliness, in the sense that the entropi
inequality 
an be seen to follow as a 
onsequen
e of the majorisation relation. 10



Chapter 1. Basi
 IdeasAs already mentioned, entangled states have more information when seen as a wholerather than in their parts. This statement is made mathemati
ally pre
ise through thefollowing majorisation relation :Theorem 1.3 If a bipartite mixed state ρ̂AB is separable and ρ̂A and ρ̂B are the redu
eddensity matri
es of the subsystems A and B, then
λ(ρ̂AB) ≺ λ(ρ̂A), and λ(ρ̂AB) ≺ λ(ρ̂B). (1.33)Here, λ(ρ̂AB), λ(ρ̂A), and λ(ρ̂B), 
onstitute the eigenvalues of ρ̂AB, ρ̂A, and ρ̂B, arrangedin the nonde
reasing order [17℄.The above majorisation relation 
an be violated if the state ρ̂AB is entangled. Clearly,entropi
 inequalities su
h as Eq. (1.31) are implied by the majorisation relation in Eq.(1.33).Majorisation relations are not only useful in dete
ting entanglement, but appear inmore general s
enarios su
h as when we are dealing with quantum evolutions. The S
hur-Horn lemma plays a pivotal role in this [14, 15℄. We will dis
uss more of the majorisationrelations in Chapter 5, where we study 
ompatibility relations for Gaussian states [18℄.1.4.3 Bell's inequalitiesBell inequalities arose initially from the study of quantum theory from the perspe
tive of
lassi
al probability theory. One of the profound impli
ations of quantum theory is that itgives rise to new possibilities in the 
orrelation of distant events that 
annot be explainedby 
lassi
al lo
al models. Bell observed that there is an upper bound on the 
orrelationof distant events as explained by a 
lassi
al lo
al model, and that quantum me
hani
s
ould violate it [19℄. It was evident that any su
h violation was easily explained throughentanglement. We now have the well established fa
t that violation of any of the Belltype inequalities is a 
lear manifestation of entanglement. Here we brie�y dis
uss onesu
h inequality, namely the Clauser-Horne- Shimony-Holt (CHSH) inequality [20℄.The CHSH inequality refers to 
orrelation experiments involving two di
otomi
 ob-servables at two sites. The observed values of ea
h of these observables 
an be taken tobe ±1. Let the observables in the Ali
e's side be denoted A1 and A2, and those on Bob'sside B1 and B2. The out
omes of the experiment in ea
h trial is denoted by a1, a2 and

b1, b2 respe
tively. De�ne the 
orrelation fun
tion between two observables A and B, Aon Ali
e's side and B on Bob's side, as
E(A,B) = 〈ab〉, (1.34)11
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 Ideaswhi
h is the average value of the 
orrelation over repeated trials. Then the CHSH in-equality reads as
|B| = |E(A1, B1) +E(A1, B2) + E(A2, B1) − E(A2, B2)| ≤ 2. (1.35)This 
an be easily seen from the fa
t that for a given trial B is ±2, hen
e the average isalways less than or equal to 2.The quantum me
hani
al version of the CHSH inequality for 2×2 dimensional systemsis easily stated through the de�nition of the Bell-CHSH observable

B̂ = â1 · σ ⊗ (b̂1 + b̂2) · σ + â2 · σ ⊗ (b̂1 − b̂2) · σ. (1.36)Here â1, â2, b̂1 and b̂2 are arbitrary unit ve
tors in R3, â · σ =
∑3

i=1 aiσi, and σi are thePauli matri
es. Any â · σ 
orresponds to a spin observable with eigenvalues ±1. Withthis de�nition the CHSH inequality for a bipartite 2 × 2 dimensional system reads as
Tr(ρ̂B̂) ≤ 2. (1.37)The 
onstraint imposed by the above equation is not generally obeyed by quantum me-
hani
al systems. For instan
e, for the 
hoi
e of the various unit ve
tors, ea
h separatedby angle of 22.5 degrees and with the singlet 
hosen as the state, Tr(ρ̂B̂) = 2

√
2 [5℄, 
learlya violation of the CHSH bound implied by a lo
al 
lassi
al model. An upper bound onthe maximum possible expe
tation value of the Bell-CHSH observable was obtained byCirelson to be 2

√
2 [21℄. The remarkable aspe
t of the inequality is that experiments 
on-�rmed the violation [22℄, in 
omplete agreement with quantum me
hani
al predi
tions,thus demonstrating entanglement. This inequality 
an be extended to more observableson ea
h side [23℄ in a bipartite setup, and to more number of parties [24℄. Violation inthe latter 
ase will indi
ate presen
e of multipartite entanglement. The Bell inequalitiesare only one of the ways to dete
t entanglement, and they are not very powerful in thesense that there are inseparable states obeying the Bell inequalities [3, 25℄. That is, thereis entanglement that is not dete
ted through violation of Bell inequalities. See [26℄ for areview.1.4.4 Positive mapsThe theory of positive maps is an ines
apable ingredient in the theory of entanglement.The �rst use of them was demonstrated by Peres in [27℄. He observed that a separa-ble state remains a state (positive) if subje
ted to partial transposition (PT). A 
ru
ial12
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 Ideasobservation by the Horode
ki's that partial transpose is a positive map but not a 
om-pletely positive one, led to the exploration of the intimate 
onne
tion between the theoryof entanglement and positive maps [28℄. Earlier in Eq. (1.24), we had introdu
ed thenotion of 
ompletely positive map. We noted that a linear map Λ is 
ompletely positiveif and only if the extended map Λ⊗11n is positive for all n. We now introdu
e the notionof positive but non 
ompletely positive maps. We say that a linear map Λ is positive butnot 
ompletely positive if Λ takes density operators to density operators, but it has anextension whi
h fails to do so.Let the map Λ a
t on operators on Hilbert spa
e HA, and let its extension a
t onoperators on the Hilbert spa
e HS = HA ⊗ HB . Suppose the extended map given by
Λ ⊗ 11n, does not take positive operators on HS to positive operators on HS , but themap Λ takes positive operators on HA to positive operators on HA. Then the map Λ issaid to be positive but not 
ompletely positive. Su
h a map 
ould be tool a in dete
tingentanglement in bipartite systems spe
i�ed by the Hilbert spa
e HS = HA ⊗HB. If su
ha map a
ts on a separable state ρ̂AB on HS, we have the following to be true :

(Λ ⊗ 11n)(ρ̂AB) = (Λ ⊗ 11n)
∑

k

pkρ̂Ak ⊗ ρ̂Bk

=
∑

k

pkΛ(ρ̂Ak) ⊗ ρ̂Bk ≥ 0. (1.38)This follows from the linearity and positivity of the map Λ. On the other hand, if theextended map a
ted on an entangled state, it 
ould lead to the following possibility :
(Λ ⊗ 11n)(ρ̂AB) = (Λ ⊗ 11n)(

∑

k

pkρ̂ABk)

=
∑

k

pk(Λ ⊗ 11n)(ρ̂ABk) 6≥ 0. (1.39)This possibility arises be
ause the map Λ is not 
ompletely positive. Thus a positivebut not 
ompletely positive map helps us dete
t entanglement! We have the followingimportant theorem [28℄ :Theorem 1.4 Let ρ̂AB a
t on the Hilbert spa
e HS = HA ⊗HB. Then ρ̂AB is separableif and only if for every positive map Λ on HA, the operator
(Λ ⊗ 11n)(ρ̂AB) (1.40)is positive.We now give a brief dis
ussion on positive maps. It is 
onvenient to go to an indexed13
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 Ideasnotation to des
ribe them. The three de�ning properties of a density operator in thisnotation are
ρrs = ρ∗sr , ρrsx

∗
rxs ≥ 0 , ρrr = 1. (1.41)Summation over repeated indi
es is implied as usual. Any linear positive map Λ takesvalid density operators to valid density operators. Su
h a map 
an be expressed as

Λ : ρ̂→ ρ̂′

ρ
′

r′s′ = Λr′s′,rs ρrs. (1.42)The hermiti
ity requirement of ρ̂′ demands that
Λs′r′,sr = Λ∗

r′s′,rs, (1.43)tra
e preservation of ρ̂′ demands that
Λr′r′,rs = δrs, (1.44)and preservation of positivity implies that

ρ′r′s′x
∗
r′xs′ ≥ 0 ⇒ Λr′s′,rsρrsx

∗
r′xs′ ≥ 0. (1.45)From spe
tral resolution of ρ̂, it is su�
ient to 
onsider positivity requirement on any ofits proje
tors, hen
e we only require

Λr′s′,rsx
∗
r′xs′y

∗
rys ≥ 0. (1.46)Let us de�ne a new matrix M by permuting the indi
es of Λ :

Λr′s′,rs = Mr′r,s′s. (1.47)The hermiti
ity 
ondition in Eq. (1.43) now reads
Mr′r,s′s = M∗

s′s,r′r, (1.48)i.e., the matrix M is hermitian. Hen
e we have the spe
tral resolution
Mr′r,s′s =

∑

α

λαξr′r(α)ξ∗s′s(α). (1.49)
14
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 IdeasRewriting the positivity requirement of ρ̂′ in Eq. (1.45) in terms of the matrix M , wehave
x∗r′y

∗
rMr′r,s′sxs′ys, (1.50)whi
h means that the matrix M is positive on produ
t ve
tors. With this, any positivelinear map reads as

ρ
′

r′s′ = Mr′r,s′sρrs

=
∑

α

λαξr′r(α)ρrsξ
∗
s′s, (α) ⇒

ρ̂′ =
∑

α

λαξ̂(α)ρ̂ξ̂†(α). (1.51)The eigenvalues {λα} need not be positive, sin
e our only requirement was positivity Mon produ
t ve
tors. A 
ompletely positive map is a positive map as in Eq. (1.51) whereall its eigenvalues, i.e., its {λα} are positive [29�31℄.1.4.5 Entanglement WitnessThe 
onvex stru
ture of the state spa
e and the 
onvex stru
ture of the set of all separablestates for a given bipartite system enable us employ the ideas known in the 
ontext of
onvex sets to distinguish entangled states from separable ones. The simple idea thata 
onvex set and a point lying outside it 
an always be separated by a hyper planeis manifested in the 
ontext of state spa
e as an entanglement witness. The followingtheorem due to Horode
ki's 
aptures this idea [28℄.Theorem 1.5 A state ρ̂AB a
ting on the Hilbert spa
e HA ⊗HB is separable if and onlyif
Tr(Âρ̂AB) ≥ 0 (1.52)for every hermitian operator Â satisfying Tr(ÂP̂⊗Q̂) ≥ 0, where P̂ and Q̂ are proje
tionsoperating on HA and HB respe
tively.The impli
ation of the theorem is that if a state ρ̂AB satis�es the inequality
Tr(Âρ̂AB) < 0 (1.53)for su
h hermitian Â whi
h is positive on produ
t ve
tors, we de�nitely know that thestate ρ̂AB was entangled. Any Â whi
h is positive semide�nite will not serve our purpose15
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 Ideasin dete
ting entanglement, as su
h an operator would be positive on entangled statestoo. Thus the operator Â though positive on produ
t ve
tors, has to be ne
essarilyinde�nite to dete
t entanglement of some states. Thus, if su
h a witness Â were todete
t entanglement of a state ρ̂AB , the state ρ̂AB is a point lying outside the 
onvexset of separable states, and the numeri
al matrix determined by Â is a hyper planeseparating this point from the 
onvex subset of separable states. The observation thatany entanglement witness is a hermitian operator whi
h is positive on produ
t ve
torsbut not positive de�nite, reminds us of the de�ning property of a positive map in Eq.(1.51). In other words, we have an isomorphism between positive but not 
ompletelypositive maps and entanglement witnesses [32℄. The �rst use of an entanglement witnesswas in [3℄, where the �ip operator V̂ served as an entanglement witness. It is easy to
he
k for systems of 2× 2 dimensions that the �ip operator de�ned in the standard basisis the M matrix 
orresponding to partial transpose. It is useful to note that any Bellobservable B̂ as in Eq. (1.36) 
an also be viewed as an entanglement witness.1.4.6 Partial TransposeThe partial transpose test is a 
lassi
 example of the appli
ation of the theory of positivemaps in dete
ting entanglement. Partial transpose was initially introdu
ed by Peres in[27℄ to dete
t entanglement. It is de�ned as follows. Consider the matrix elements of astate ρ̂AB of a bipartite system spe
i�ed by the Hilbert spa
e HS of m× n dimensions,i.e.,
ρ̂iα,jβ = 〈ψi| ⊗ 〈φα|ρ̂AB|ψj〉 ⊗ |φβ〉. (1.54)The partial transposed matrix ρ̂PT

AB is de�ned through its matrix elements thus :
ρ̂PT

iα,jβ = ρ̂iβ,j,α. (1.55)Su
h an operation is easily seen in its matrix form. The state ρ̂AB of the m× n system
an be written as
ρ̂AB =







A11 · · · A1m

. · · · .

Am1 · · · Amm






, (1.56)i.e., as an m×m array of n×n matri
es Aij a
ting on the se
ond Hilbert spa
e HB . Thewhole matrix is de�ned by the matrix elements {Aij}αβ = ρiα,jβ. Then partial transpose

16
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 Ideasis simply the transposition of the {Aij} matri
es.
ρ̂PT

AB =







AT
11 · · · AT

1m

. · · · .

AT
m1 · · · AT

mm






. (1.57)Under partial transpose a separable state goes to a valid state, i.e.,

ρ̂PT
AB =

∑

k

pkρ̂Ak ⊗ ρ̂T
Bk =

∑

k

pkρ̂Ak ⊗ ρ̂∗Bk ≥ 0. (1.58)Sin
e every ρ̂∗Bk is a valid state, ρ̂PT
AB is a valid state. An entangled state under partialtransposition 
an result in a non positive operator. Thus partial transpose dete
ts en-tanglement. Even though the operation is basis dependent, the 
on
lusions are not. Wehave the following theorem for lower dimensional 
omposite systems [28℄ :Theorem 1.6 A state ρ̂AB of a 2⊗2 or 2⊗3 system is separable if and only if its partialtransposition is a positive operator.1.4.7 Redu
tion CriterionYet another example of a positive map that is not 
ompletely positive is the redu
tionmap. Consider the map
Λ(ρ̂) = 11 − ρ̂. (1.59)This maps is 
learly positive, sin
e the eigenvalues of a density operator are positive andless than one. Now 
onsider the extension of this map to 
omposite systems. A separablestate satis�es the following inequalities :

11 ⊗ ρ̂B − ρ̂AB ≥ 0, ρ̂A ⊗ 11 − ρ̂AB ≥ 0, (1.60)but entangled states need not. Here ρ̂A and ρ̂B are the partially tra
ed versions of
ρ̂AB for Bob's and Ali
e's subsystems respe
tively. The above two 
onditions are jointly
alled the redu
tion 
riterion [33℄. The redu
tion inequalities in Eq. (1.60) imply themajorisation inequalities in Eq. (1.33), and 
onsequently imply the entropi
 inequalitiesin Eq. (1.31) [34℄. It is known that the redu
tion 
riterion is weaker than partial transposetest in dete
ting entanglement, i.e., there are entangled states that partial transpose
an dete
t, but redu
tion 
riterion 
annot [33℄. Thus, entanglement 
riteria de�nedthrough the redu
tion map, majorisation, and entropi
 inequalities, are all weaker than17
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 Ideaspartial transpose in dete
ting entanglement. It is also known that more general entropi
inequalities other than that stated in Eq. (1.31) are implied by the redu
tion 
riteria[35℄.We now digress to introdu
e the important notion of distillability before 
ontinuingthe dis
ussion on positive maps. This digression is useful, as both the partial transposemap and the redu
tion 
riterion are intimately 
onne
ted to the 
on
ept of distillation.1.5 DistillationA 
entral aspe
t of quantum information theory is transmission of quantum information,i.e., transmission of quantum states through quantum 
hannels. The whole idea restslargely on the teleportation proto
ol [36℄ whi
h 
onsumes a maximally entangled state inthe pro
ess of transmitting a qubit from Ali
e's side to Bob's side. Anything less thana maximally entangled state results in the loss of �delity of the transmission. Thus aprimary resour
e for a
hieving a perfe
t teleportation is a shared maximally entangledstate. Thus arises the need for 
reating maximally entangled states starting with lesserentangled states. The aim of a distillation or puri�
ation pro
edure is to extra
t froma large ensemble of low �delity EPR pairs a smaller sub-ensemble of high �delity EPRpairs, using only lo
al operations and 
lassi
al 
ommuni
ation (LOCC); these may thenbe used for faithful teleportation [37�39℄.We begin by illustrating a puri�
ation pro
edure in the 
ontext of pure states, andthen extend it to mixed states, before 
onsidering formal de�nitions. We sti
k to 2 × 2dimensional systems for the sake of simpli
ity.Suppose Ali
e and Bob share two 
opies of an entangled state |ψ〉 whi
h is not max-imally entangled, i.e.,
|ψ〉 ⊗ |ψ〉 = (α|0〉A|0〉B +

√

1 − α2|1〉A|1〉B) ⊗
(α|0〉A′ |0〉B′ +

√

1 − α2|1〉A′ |1〉B′), (1.61)where |0〉 and 1〉 are the eigenstates of the σz operator, and A and A′ refer to the Ali
e'sside parti
les, and B and B′ to Bob's. Expanding the above, we have
|ψ〉 ⊗ |ψ〉 = α2|0〉A|0〉B |0〉A′ |0〉B′ + (1 − α2)|1〉A|1〉B |1〉A′ |1〉B′ +

√
2α
√

1 − α2

[ |0〉A|0〉B |1〉A′ |1〉B′ + |1〉A|1〉B |0〉A′ |0〉B′√
2

] (1.62)for the state of the two pairs. Now let Bob make a lo
al measurement for the z-
omponentof the spin. He 
an get either 2, �2, or zero. Suppose the result is zero, then Bob informs18
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 IdeasAli
e over phone and they de
ide by mutual 
onsent to retain the state, else they de
ideto dis
ard the state. The probability of su
h an out
ome is 2α2(1 − α2). The resultantstate after the experiment is the term indi
ated in the square bra
ket :
|ψr〉 =

|0〉A|0〉B |1〉A′ |1〉B′ + |1〉A|1〉B |0〉A′ |0〉B′√
2

. (1.63)The subs
ript r denotes that the state is a result of lo
al measurement. Suppose we dothe following renaming, i.e., |0′〉A = |0〉A|1〉A′ , |1′〉A = |1〉A|0〉A′ , |0′〉B = |0〉B |1〉′B , and
|1′〉B = |1〉B |0〉B′ , the state that Ali
e and Bob share is then a singlet. Su
h pro
edureof generating the maximally entangled state is ine�
ient in the sense that we may endup losing part of the entanglement the parties initially shared through our very a
t ofdis
arding some of the out
omes. But the method gets more and more e�
ient as Ali
eand Bob apply su
h a proto
ol 
olle
tively to more and more pairs. It was shown in [38℄that Ali
e and Bob 
an obtain n singlets from k |ψ〉's with the ratio approa
hing

lim
n,k→∞

n

k
= E(|ψ〉) = −α2log2α

2 − (1 − α2)log2(1 − α2). (1.64)
E(|ψ〉) is the entropy of entanglement and equals the Shannon entropy of the squares ofthe S
hmidt 
oe�
ients of |ψ〉Distillation pro
edures in the 
ontext of mixed states are more sophisti
ated. For thesake of simpli
ity we outline a pro
edure illustrated in [40℄; it 
aptures the essen
e ofdistillation in the 
ontext of mixed states. Suppose Ali
e and Bob share two 
opies ofthe mixed state

ρ̂AB = f |φ+〉AB〈φ+| + (1 − f)|ψ+〉AB〈ψ+|, (1.65)where |φ+〉AB and |ψ+〉AB are Bell states de�ned as
|φ+〉AB =

|00〉AB + |11〉AB√
2

,

|ψ+〉AB =
|01〉AB + |10〉AB√

2
. (1.66)Unless f = 1

2 , the state is inseparable. This 
an be seen for example through the partialtranspose test. The aim here is to in
rease the fra
tion f of |φ+〉AB〈φ+| through somelo
al operations and de
isions taken through mutual 
onsent arrived at through 
lassi
al
ommuni
ation. To this end, they perform a bilateral lo
al CNOT operation, i.e., CNOToperations performed on pairs AA′ and BB′. Su
h an operation is 
learly lo
al a
ross19
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 Ideasthe Ali
e and Bob divide. The a
tion of su
h an operation is summarised below.
|φ+〉AB |φ+〉A′B′ → |φ+〉AB |φ+〉A′B′ ,

|ψ+〉AB |φ+〉A′B′ → |ψ+〉AB |ψ+〉A′B′ ,

|φ+〉AB |ψ+〉A′B′ → |φ+〉AB |ψ+〉A′B′ ,

|ψ+〉AB |ψ+〉A′B′ → |ψ+〉AB |φ+〉A′B′ . (1.67)After this lo
al operation the state Ali
e and Bob share is
ρ̂ABA′B′ = (f2|φ+〉AB〈φ+| + (1 − f)2|ψ+〉AB〈ψ+|) ⊗ |φ+〉A′B′〈φ+| +

f(1 − f)(|φ+〉AB〈φ+| + |ψ+〉AB〈ψ+|) ⊗ |ψ+〉A′B′〈ψ+|. (1.68)Now they perform lo
al z-
omponent measurements on the A′ and B′ parti
les. If theyget the results to be 
orrelated, they de
ide to retain the remaining pair, else they dis
ardthe remaining pair. The su

ess probability is given by f2 +(1 − f)2, and they share thestate
ρ̂′AB =

1

f2 + (1 − f)2
(f2|φ+〉AB〈φ+| + (1 − f)2|ψ+〉AB〈ψ+|). (1.69)The fra
tion f ′ = f2/(f2 + (1 − f)2) > f for f > 1/2. The pro
edure is 
learly lossy asin the 
ase of pure states in that we may lose entanglement in some of the out
omes. Butgiven a su�
iently large initial ensemble we 
an, with a �nite probability at every step,tend towards a higher �delity of the desired pure maximally entangled state by iteratingthis pro
edure. Ali
e and Bob 
an, at the end of the pro
edure, distill a smaller ensembleof pairs with entanglement �delity f arbitrarily 
lose to unity [40℄. These pairs 
an thenbe used for faithful teleportation. Distillation pro
edures in the 
ontext of mixed stateswere initially des
ribed in [37℄.A 
areful analysis of a general distillation pro
edure tells us that there are threeaspe
ts to it, namely, lo
al general measurements, 
lassi
al 
ommuni
ation, and post-sele
tion.Lo
al general measurements : These are the most general possible measurementsperformed on the Ali
e's and Bob's side. They are des
ribed by two sets of operators Aiand Bj whi
h satisfy the 
ompleteness relations

∑

i

A†
iAi = 11,

∑

i

B†
jBj = 11. (1.70)They 
an be realised by appending additional systems lo
ally, evolving them together,20
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 Ideasand then performing joint measurements lo
ally. Under these a
tions, a shared stateevolves as
ρ̂AB →

∑

ij

Ai ⊗Bj ρ̂ABA
†
i ⊗B†

j . (1.71)Su
h a pro
edure is 
learly lo
al.Classi
al 
ommuni
ation : This simply means that while performing the lo
al generalmeasurements, Ali
e's and Bob's a
tions 
an be 
orrelated through mutual 
onsent ar-rived at through 
ommuni
ation over the phone, in whi
h 
ase, the evolution is des
ribedby
ρ̂AB →

∑

i

Ai ⊗Biρ̂ABA
†
i ⊗B†

i . (1.72)This des
ribes a 
ombination of both lo
al general measurement and 
lassi
al 
ommuni-
ation.Post-sele
tion : This is the pro
edure by whi
h Ali
e and Bob 
hoose to retain 
ertainout
omes of the lo
al general measurement subje
t to 
lassi
al 
ommuni
ation. Supposethey retained the state 
orresponding to the ith and jth lo
al out
omes, the resultantstate is
Ai ⊗Bj ρ̂ABA

†
i ⊗B†

j

Tr(Ai ⊗Bj ρ̂ABA
†
i ⊗B†

j )
. (1.73)The denominator in Eq. (1.73) ensures the normalisation [41�44℄.Any manipulation involving the above three pro
edures is su

in
tly 
alled as lo
aloperation and 
lassi
al 
ommuni
ation (LOCC). Clearly any LOCC operation des
ribedby Eq. (1.71), is a 
ompletely positive map as in Eq. (1.49), but ea
h of the W 's are intensor produ
t form Ai ⊗ Bj . Thus, any LOCC 
an be thought of as a separable superoperator a
ting on ρ̂AB. It is known that every LOCC 
an be represented by a separablesuper operator, but not every separable super operator is an LOCC [44℄.To summarise, a puri�
ation or distillation pro
edure is essentially one of extra
tingsinglets from multiple 
opies of shared entangled states through LOCC. A state is saidto be distillable if one 
an a
tually distill, using a pre-agreed proto
ol, pure singlets frommultiple 
opies of the state. However su
h a de�nition may appear impre
ise from theimplementation point of view, sin
e the set the of all LOCC available to the two partiesis truely enormous.It was shown in [45℄ that every entangled state of a 2×2 dimensional system is distil-21
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 Ideaslable. The idea is that even if an entangled state in 2× 2 dimensions had singlet fra
tionless than 1
2 , it 
an always be 
onverted by LOCC, .i.e., a lo
al �ltering operation, to astate with singlet fra
tion greater than 1

2 and, 
onsequently, the re
ursion proto
ol de-s
ribed in [39℄, 
ould be used for further distillation. A tangible 
riterion for distillabilityfollows from this fa
t [45℄.Theorem 1.7 A state ρ̂AB is distillable if and only if, for some two dimensional proje
-tors P and Q, and for some n, the state P ⊗Qρ̂⊗n
ABP ⊗Q is entangled.Thus, proje
ting out the given n 
opies of the state ρ̂AB into a 2 × 2 dimensionalsubspa
e, and demonstrating entanglement in that subspa
e, amounts to showing thedistillability of the state in 
ontention.An impli
ation of this de�nition is that states whi
h are positive under partial trans-pose (PPT) 
annot be distilled by LOCC. This 
an for example be seen from the fa
tif a state is PPT, then n 
opies of the state is also PPT, and LOCC doesn't take PPTstates outside the set of PPT states, i.e., LOCC is a PPT-preserving operation. Thus if

ρ̂
′

AB =
∑

i

Ai ⊗Biρ̂ABA
†
i ⊗B†

i , then

ρ̂
′PT
AB =

∑

i

Ai ⊗BT
i ρ̂

PT
ABA

†
i ⊗B†T

i . (1.74)If ρ̂PT
AB is positive, ρ̂′PT

AB is also positive, sin
e it is derived by the a
tion of a 
ompletelypositive map on ρ̂PT
AB. Thus, negativity under partial transpose (NPT) is a ne
essary
ondition for distillability. It is known that any state that violates the redu
tion 
riteriain Eq. (1.60) is distillable [33℄.Having introdu
ed the useful 
on
ept of distillation or puri�
ation, and having shownthat negativity under partial transposition is a ne
essary 
ondition for distillability, animmediate question that arises is the following. Are there entangled states that arenondistillable? A immediate way of answering this question is by answering the followingsimpler question. Are there entangled states that are PPT? The answer to this was givenby the Horode
ki's in [45, 46℄. There they 
onstru
ted states that are entangled but PPT.Su
h states were 
alled bound entangled, meaning one 
annot distill any entanglementfrom them. To dete
t entanglement in states that are PPT is a nontrivial task, sin
e weneed to devise methods that are `stronger' that partial transpose. This has led the sear
hfor stronger 
riteria in dete
ting entanglement. We dis
uss some of them below.

22
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 Ideas1.5.1 Range CriterionThe range 
riterion is a useful tool to dete
t entanglement, parti
ularly in 
ases wherepartial transpose fails. The statement of the 
riterion is summarised in the followingtheorem.Theorem 1.8 If a state ρ̂AB a
ting on the spa
e HAB is separable, then there exists afamily of produ
t ve
tors |ψj〉 ⊗ |φα〉 su
h that,(i) they span the range of ρ̂AB,(ii) the ve
tors {|ψj〉 ⊗ |φ∗α〉}k
i=1 span the range of ρ̂PT

AB (where ∗ denotes 
omplex
onjugation in the basis in whi
h partial transposition was performed).In [46℄, the range 
riterion was applied to dete
t entanglement in a PPT state. Conse-quently, it led to the elegant 
onstru
tion of UPB's (Unextendible Produ
t Basis) in [47℄.These are a set of produ
t orthogonal ve
tors in HAB that has fewer elements than thedimension of the spa
e, but there does not exist any produ
t ve
tor orthogonal to all ofthem. Thus, a UPB is a partial basis that 
annot be 
ompleted into a produ
t basis. Asimple example of su
h a UPB for a 3 ⊗ 3 dimensional system is
|ψ0〉 =

1√
2
|0〉 ⊗ (|0〉 − |1〉), |ψ2〉 =

1√
2
|2〉 ⊗ (|1〉 − |2〉),

|ψ1〉 =
1√
2
(|0〉 − |1〉) ⊗ |2〉, |ψ3〉 =

1√
2
(|1〉 − |2〉) ⊗ |0〉,

|ψ4〉 =
1

3
(|0〉 + |1〉 + |2〉) ⊗ (|0〉 + |1〉 + |2〉). (1.75)Given a UPB, it is easy to 
onstru
t bound entangled states. Consider the proje
tor

PUPB =

4
∑

i=0

|ψi〉〈ψi|, (1.76)now 
onstru
t the state
ρ̂AB =

1

4
(11 − PUPB). (1.77)The range of ρ̂AB 
ontains no produ
t ve
tors, otherwise one would have been able toextend the produ
t basis. Clearly ρ̂PT

AB is positive, i.e., ρ̂AB is PPT. The state ρ̂AB is thusPPT entangled, and hen
e bound entangled. The range 
riteria as a tool was su

essfullyextended to the 
ase of 
ontinuous variables in [48℄, to dete
t bound entanglement.
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 Ideas1.5.2 Non-de
omposable mapsThe presen
e of PPT bound entanglement ne
essitates the de�nition of de
omposableand non-de
omposable positive maps. A positive map is said to be de
omposable, if it
an be represented in the form
Λ = Λ1

CP + Λ2
CP ◦ T, (1.78)where Λ1

CP and Λ2
CP are 
ompletely positive maps, ◦ denotes 
omposition, and T denotesthe transposition map. Clearly, a de
omposable map a
ting on a 
omposite system isno stronger than partial transpose in dete
ting entanglement. It turns out that in 2 ⊗ 2and 2 × 3 dimensional systems, every positive map is de
omposable [49, 50℄. Thuspositivity under partial transpose turns out to be a ne
essary and su�
ient 
onditionfor entanglement in these systems, as indi
ated earlier. However, in higher dimensionalsystems there are positive maps that 
annot be de
omposed as above. Any map that
annot be written as in Eq. (1.78), is said to be a non-de
omposable map. Clearly, non-de
omposable maps 
an potentially dete
t entanglement that partial transpose 
annot.Thus the study of non-de
omposable maps has turned out to be an integral part ofentanglement theory. Examples of su
h maps 
an be found in [6, 51�54℄. In [51℄, it wasdemonstrated that given a UPB one 
ould 
onstru
t a non-de
omposable map.There seems to be no simple universal way of showing a positive map to be non-de
omposable. One possible way is to 
onstru
t a PPT state, and then show that themap dete
ts entanglement in the PPT state, thus establishing that the map is inde
om-posable. This parti
ular route to demonstrating non-de
omposability has led to sear
hfor systemati
ally 
hara
terising PPT states [55, 56℄.1.5.3 Un
ertainty relationsThe te
hnique of dete
ting entanglement through un
ertainty relations is based on thefa
t that separable states, in addition to obeying the general un
ertainty prin
iple whi
harise from non-
ommutativity of operators, have to obey additional 
onstraints simplyarising from the fa
t that they are separable. Su
h a te
hnique, though initially intro-du
ed in the 
ontext of 
ontinuous variable systems [57, 58℄, has been su

essfully used todete
t entanglement in �nite dimensional systems [59�61℄. Su
h a te
hnique is powerfulas it dete
ts even bound entanglement [60, 61℄. We will dis
uss these ideas later whenwe deal with 
ontinuous variable entanglement.
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 Ideas1.6 Measures of EntanglementSin
e entanglement is a fundamental resour
e in quantum information s
ien
e, it is im-portant that one is able to quantify it. Any measure of entanglement has to meet somedesirable physi
al requirements. Some reasonable requirements are enumerated below[37, 41℄.(i) For any separable state as in Eq. (1.16), whi
h does not have any entanglement,the measure of entanglement E should be zero :
E(ρ̂sep

AB) = 0. (1.79)(ii) The se
ond requirement 
on
erns the invarian
e of the entanglement measureunder simple lo
al unitary transformations, sin
e su
h a transformation amounts to a
hange of basis lo
ally and hen
e 
an be undone lo
ally in a deterministi
 manner. Anylo
al unitary operation should not be able to 
hange the quantity of entanglement shared :
E(ρ̂AB) = E(UA ⊗ UB ρ̂ABU

†
A ⊗ U †

B). (1.80)(iii) The third requirement states that the average entanglement should not in
reaseunder lo
al operations, 
lassi
al 
ommuni
ations, and post-sele
tion (Eq. (1.72)), sin
e ifthe 
onverse was possible, it would mount to 
reating entanglement from less entangledstates through lo
al operations alone. It is true that through appropriate post-sele
tion,we are able to extra
t pure state singlets by LOCC as shown in Eq. (1.73), but weare able to do so only at the 
ost of dis
arding other out
omes. Thus, on the averageentanglement does not in
rease. Suppose given the state ρ̂AB we get the post-sele
tedstates ρ̂i
AB with probability pi, we then require

E(ρ̂AB) ≥
∑

i

piE(ρ̂i
AB). (1.81)(iv) Finally one would require that the measure of entanglement is additive. Giventwo entangled bipartite states ρ̂1 and ρ̂2 with the 
ombined system in ρ̂1 ⊗ ρ̂2 we wouldlike to have

E(ρ̂1 ⊗ ρ̂2) = E(ρ̂1) + E(ρ̂2). (1.82)For bipartite pure states there is a unique measure of entanglement. Given a bipartite
25
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 Ideaspure state in the S
hmidt form
|Ψ〉AB =

∑

i

√

λi|ψi〉A ⊗ |φi〉B , (1.83)the unique measure of its entanglement is
E(|Ψ〉AB) = −

∑

i

λilog2λi, (1.84)the Shannon entropy of the squares of the S
hmidt 
oe�
ients. It is the Von Neumannentropy of the redu
ed density matrix of either subsystem. The uniqueness of the measurefollows from the fa
t that given k 
opies of the state |Ψ〉 one 
an distill n 
opies of singletsand, 
onversely, given n 
opies of singlets one 
an produ
e k 
opies of the given state.However, su
h a reversible transformation is to be understood in the sense of the limit
k, n → ∞ [38℄. With this inter
onvertibility available, we have

nE(|Ψ〉AB) = kE(|S〉AB), (1.85)where |S〉AB is the singlet state. The inter
onvertibility implies that
E(|Ψ〉AB) = lim

n,k→∞
k

n
E(|S〉AB) = −

∑

i

λilog2λi. (1.86)By 
onvention, one takes E(|S〉AB) to be one [37, 62℄. This measure whi
h is 
alled theentropy of entanglement or simply entanglement, ranges from zero for a produ
t state to
log2d for maximally entangled states in d⊗ d dimensions.1.6.1 Entanglement of FormationHaving de�ned a unique measure of entanglement for bipartite pure states, it is nowpossible to extend this measure to de�ne a good measure for the 
ase of bipartite mixedstates. As indi
ated earlier, the set of ensembles ε = {pi, ρ̂

i
AB} realising a given mixedstate ρ̂AB is an in�nitely huge family [1℄. Keeping this fa
t in mind, the de�nition forthe entanglement measure for the 
ase of bipartite mixed states is de�ned as

E(ρ̂AB) = min
ε

∑

i

piE(ρ̂i
AB). (1.87)The minimisation has to be 
arried out with respe
t to the possible ensemble de
omposi-tions. Clearly, any separable state has an entanglement measure zero by de�nition. Theabove measure is 
alled the Entanglement of Formation (EOF). The EOF satis�es the26
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 Ideas�rst three requirements required of a good measure. The regularised version of the EOFis de�ned as [63, 64℄
Ec(ρ̂AB) = lim

n→∞
E(ρ̂⊗n

AB)

n
, (1.88)the entanglement 
ost of ρ̂AB . By de�nition the entanglement 
ost of a state is expe
tedto be lesser than its EOF, sin
e a minimisation over a mu
h larger ensemble set is to be
arried out. In 
ase the EOF of a state is additive, then its entanglement 
ost Ec is equalto its EOF. It is now known that EOF is in general not additive [65, 66℄.The EOF of a state is in general very hard to evaluate. It is thus remarkable thatWootters was able to provide a 
losed form expression for the EOF of an arbitrary twoqubit state [67, 68℄. The other 
ases where 
losed form expressions have been found arethose states with a high degree of symmetry [69�72℄. We will 
ome ba
k to this measurewhen we dis
uss the EOF for two-mode Gaussian states.1.6.2 Distillable entanglementThis is the amount of pure state entanglement that 
an be distilled from multiple 
opiesof a given entangled mixed state through LOCC. There are no hard and fast rules asto how one goes about it. Distillable entanglement, as a measure of entanglement, isproto
ol dependent. Given n 
opies of the shared entangled mixed state ρ̂AB, where

n is very large, if one is able to extra
t m 
opies of pure state singlets by LOCC, thedistillable entanglement is de�ned as
D(ρ̂AB) = lim

n→∞
m

n
. (1.89)Fundamental prototypes of various proto
ols were initially introdu
ed in [37℄. As in-di
ated earlier, not all entangled states are distillable, thus for bound entangled statesdistillable entanglement is zero. Distillable entanglement as a measure of entanglement ishowever useful in the sense that it a
tually gives an estimate of the useful entanglementone 
an harvest from multiple 
opies of a given state through LOCC. This measure beingproto
ol dependant, is not unique. As an example in the 
ase of two qubits, the one wayhashing proto
ol gives a �nite yield with

m

n
≈ 1 − S(ρ̂AB), (1.90)where S(ρ̂AB) is the Von Neumann entropy of the state ρ̂AB. In 
omparison, the re
ursionproto
ol similar to the one dis
ussed in Se
tion 1.5, gives almost a zero yield [37℄. It27
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 Ideasis known that any distillable entanglement is a lower bound on the entanglement offormation [37℄.1.6.3 Distan
e based measuresThis 
ategory of measures arise from the 
onvex stru
ture of state spa
e. We know thatthe set all states in a given bipartite system form a 
onvex set, so does the set of allseparable states of that system. And 
learly, the set of all separable states form a subsetin the state spa
e. Thus one 
an talk of distan
e between the given entangled state anda separable state. Let S be the set of all separable states. The measure of entanglementfor a given state σ̂ is de�ned as
E(σ̂) = min

ρ̂∈S
D(σ̂||ρ̂), (1.91)where D is any measure of distan
e (not ne
essarily a metri
) between the two densityoperators σ̂ and ρ̂, su
h that it satis�es the requirements put forth above. One measurewhi
h satis�es the �rst three requirements is based on the quantum relative entropyde�ned as

D(σ̂||ρ̂) = S(σ̂||ρ̂) = Tr[ˆ̂σ(lnσ̂ − lnρ̂)]. (1.92)The quantum relative entropy is not symmetri
 and does not satisfy the triangle inequal-ity required of a metri
. One 
ould have de�ned the measure with σ̂ and ρ̂ inter
hanged,however in su
h a 
ase, pure entangled states have in�nite measure of entanglement,whi
h is not desirable. It is known that for pure bipartite states, the relative entropyof entanglement is the Von Neumann redu
ed entropy [41, 42℄. The relative entropyof entanglement has been evaluated for Bell diagonal states, however a 
losed form ex-pression is not known in the 
ase of general two qubit mixed states. It is known thatthe relative entropy of entanglement is not additive [71℄, that it is always less than theentanglement of formation [42℄, and that it is an upper bound on the distillable entangle-ment, thus a lower bound on the entanglement of formation [42, 73℄. While in the 
aseof pure states one 
an distill as mu
h entanglement as is present, the mixed state s
e-nario is di�erent. One 
annot distill all the entanglement that is present. The existen
eof bound entanglement is a manifestation of this aspe
t. This has led to 
onsiderationof thermodynami
al analogies in the 
ontext of mixed state entanglement [42, 62, 74℄.Other distan
e measures su
h as the Bures metri
 have also been analogously extendedto de�ne entanglement measures [42℄.
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 Ideas1.6.4 NegativityMost of the measures of entanglement dis
ussed above are hard to 
ompute for an arbi-trary mixed entangled state. Espe
ially, the entanglement of formation and the relativeentropy of entanglement require an optimisation pro
edure, whi
h is in general not easy.Thus it is useful to have a pra
ti
al measure whi
h is easily 
al
ulable. The negativity orthe logarithmi
 negativity is one su
h measure. The negativity for a bipartite state ρ̂ABis de�ned as
N (ρ̂AB) =

||ρ̂PT
AB ||1 − 1

2
, (1.93)where ||.||1 denotes the tra
e norm. The tra
e norm for a hermitian operator is thesum of the absolute values of its eigenvalues. Thus N (ρ̂AB) is simply the sum of negativeeigenvalues of ρ̂PT

AB . Given negativity, we 
an de�ne yet another measure of entanglement,the logarithmi
 negativity whi
h is de�ned as
EN (ρ̂AB) = log2||ρ̂PT

AB ||1. (1.94)The logarithmi
 negativity satis�es the last three of the requirements required of a goodmeasure of entanglement. It is lo
al unitary invariant, does not in
rease under LOCC,and is additive. However, sin
e it is based on partial transpose, it fails to measure en-tanglement in bound entangled states [75℄. In a similar fashion, one 
an de�ne 
al
ulablemeasures of entanglement based on negativity based on other positive maps [76, 77℄.1.7 Continuous variablesIn the earlier Se
tions, our 
on
ern was systems des
ribed by �nite dimensional Hilbertspa
es. We now 
onsider extension of some of these ideas to the 
ase of 
ontinuousvariable systems. Su
h a study is ne

esitated by the very nature of the 
urrent avail-able te
hnology. One approa
h towards pra
ti
al implementation of the fundamentalideas of quantum information pro
essing has been through the 
urrently available quan-tum opti
al te
hnology. Many fundamental aspe
ts of quantum information theory havealready been demonstrated in various labs, essentially through quantum opti
al te
hnol-ogy [78�111℄. Entanglement or EPR 
orrelation was initially demonstrated in [78, 79℄.Teleportation in the 
ontinuous variable 
ontext was initially dis
ussed in [82℄ and thendemonstrated in [83℄. It was subsequently reported in other experiments [85, 86, 88�90, 92, 93℄. Continuous variable dense 
oding has been reported in [96, 103�105℄. En-tanglement of the polarisation degree of freedom of photons was established in [84�87℄.29
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 IdeasIn [85℄ two qubit entanglement was demonstrated, and in [87℄ three qubit entanglement.In [86℄ teleportation of a single photon's polarisation state was reported. Coherent statebased key distribution was reported in [97�100℄. Other experiments that report 
ontin-uous variable entanglement are found in [80, 81, 91, 94, 95, 101, 102, 107, 108, 111℄.In [94℄ atomi
 ensemble entanglement was reported, and in [95, 101, 111℄ multipartiteentanglement was reported. In [109, 110℄ teleportation between light and matter wasreported.A fundamental attribute to most of the above mentioned experiments has been theuse of non
lassi
al resour
es. It is well known that states of radiation, naturally divideinto 
lassi
al and non
lassi
al types [112℄, non
lassi
ality being more fundamental thanentanglement in the sense that it is a prerequisite for entanglement [113�115℄. A primaryreason for the possibility of many experiments in the 
ontext of quantum information the-ory has been the availability of non
lassi
al resour
es, primarily in the form of quadraturesqueezing [116�135℄. It is well known that this kind of non
lassi
ality, when pro
essed ap-propriately with the help of passive devi
es like beamsplitters, 
an 
reate entanglement,parti
ularly in Gaussian states [113�115, 136�140℄. Squeezing has been, and 
ontinues tobe studied as a resour
e in the 
ontext of 
ontinuous variable entanglement.Bearing in mind this te
hnologi
al s
enario, a study of entanglement from the per-spe
tive of quantum states of radiation be
omes desirable. Any su
h study requires oneto deal with a system of quantum harmoni
 os
illators, systems whose Hilbert spa
es arein�nite dimensional. The potential role of su
h systems in quantum information theoryhave been explored in [141�163℄. In [141℄ the issue of en
oding a qubit in an os
illatorwas dis
ussed, and the possibility of using 
oherent states to 
arry out quantum 
om-putational tasks was dis
ussed in [164℄. Su
h a study showed the possibility of using
ontinuous variable set up to do quantum information tasks 
arried out on �nite dimen-sional systems. In [142℄ the possibility of key distribution using squeezed states wasdis
ussed. In [143, 147, 148℄ quantum 
ryptography with Gaussian states was analysed.Multipartite entanglement and its potential use in quantum networks were 
onsidered in[144, 145, 150, 154�156℄. In [151℄ universal quantum 
omputation based on 
ontinuousvariable 
luster states using linear opti
s and homodyne measurement was explored. In[152℄ the problem of quantum state engineering was 
onsidered. In [146, 149, 157�159℄
ontinuous variable Gaussian 
hannels were studied. In [161, 162, 165, 166℄ the possibil-ity of generating entanglement in nanome
hani
al os
illators was explored; su
h systemsare also modelled as a system of quantum harmoni
 os
illators. Thus it is natural toundertake the study of entanglement in the 
ontext of 
ontinuous variables.The simplest study of entanglement in the 
ontext of bipartite 
ontinuous variablesystems is the study of two-os
illator systems. For this bipartite 
ontinuous variable30
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 Ideassystem S = A+B, subsystems A and B 
onsists of a single quantum harmoni
 os
illatorea
h. The total system S is spe
i�ed by respe
tive annihilation and 
reation operatorpairs â†, â, and b̂†, b̂ a
ting on the Hilbert spa
es Ha and Hb. Their only non-vanishing
ommutators are
[â, â†] = [b̂, b̂†] = 11. (1.95)The Fo
k or photon number states for the two modes provide a natural set of ONB's for

Ha and Hb respe
tively. They are given as,
|n〉 = (n!)−1/2(â†)

n|0〉a ,
|m〉 = (m!)−1/2(b̂†)

m|0〉b ,
n,m = 0, 1, 2, . . . (1.96)Then the produ
t states |n,m〉 ≡ |n〉a ⊗ |m〉b form an ONB for Ha ⊗ Hb [167℄. Thisdes
ription is easily extended to multipartite 
ontinuous variable systems through intro-du
tion of additional 
reation and annihilation operator pairs.1.7.1 Quasi-probabilitiesWhen dealing with quantum me
hani
s of 
ontinuous variables, i.e., radiation �eld modes,it is useful to go over to their des
ription in the language of quasi-probabilities. A stateof a quantum me
hani
al system des
ribed by a density operator ρ̂ 
an be equivalentlydes
ribed in the language of their s-ordered quasi-probabilities in a 
omplete manner. The

s-ordered quasi-probabilities 
apture all the statisti
al information present in the densityoperator ρ̂. In this set up a density operator ρ̂ is mapped into a quasi-probability, andthe observables to 
orresponding ordered fun
tions in phase spa
e. Considering a single-mode for simpli
ity, the s-ordered quasi-probability 
orresponding to a state ρ̂ is de�nedas
Wρ(α, s) = Tr(ρ̂T̂ (α, s)), where,

T̂ (α, s) =
1

π

∫

D(ξ, s)exp(αξ∗ − α∗ξ)d2ξ, and

D(ξ, s) = exp(â†ξ∗ − âξ +
1

2
s|ξ|2). (1.97)

D(ξ, s) is the displa
ement operator 
orresponding to a given s, and α is the phase spa
evariable whi
h is denoted as α = q+ip√
2
. The parameter s takes the values −1 ≤ s ≤ 1.The three de�ning properties of a density operator given in Eq. (1.1) trans
ribe into the31
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 Ideasfollowing requirements on the s-ordered quasi-probability :
Tr(ρ̂) = 1 ⇔

∫

Wρ(α, s)d
2α = 1,

ρ̂† = ρ̂ ⇔ Wρ(α, s) = W ∗
ρ (α, s),

ρ̂ ≥ 0 ⇔ Tr(ρ̂ρ̂′) ≥ 0 ⇔
∫

Wρ(α, s)Wρ′(α,−s)d2α ≥ 0. (1.98)The �rst requirement demands that the s-ordered quasi-probability is normalised to onewith respe
t to integration over the phase spa
e, while the se
ond demands that it bereal. For the third requirement to be satis�ed one has to in prin
iple 
he
k for positivityof the tra
e inner produ
t of the given density operator ρ̂ with respe
t to all valid densityoperators ρ̂′, whi
h amounts to 
he
king for positivity of the overlap integral of the given
s-ordered quasi-probability with respe
t to all valid (−s)-ordered quasi-probabilities. Thede�ning requirements at the density operator level doesn't enfor
e pointwise positivity ofthe s-ordered quasi-probability, further, a valid s-ordered quasi-probability 
an be highlysingular.Obje
ts of interest are the expe
tation values of observables with respe
t to the givendensity operator ρ̂. Given an observable Ω̂, assume that it possesses an s-ordered powerseries expansion

Ω̂ =

∞
∑

n,m=0

Ωn,m(s){â†nâm}s, (1.99)where {â†nâm}s is the s-ordered produ
t given by
{â†nâm}s =

1

π

∫

T̂ (α, s)α∗nαmd2α, (1.100)then the expe
tation value 〈Ω̂〉 is given by
Tr(ρ̂Ω̂) =

∫

Ω(α,−s)Wρ(α, s)d
2α, where

Ω(α,−s) =

∞
∑

n,m=0

Ωn,m(−s)α∗nαm. (1.101)Evaluating expe
tation values of s-ordered operators with respe
t to a density operator
ρ̂ 
orresponds to evaluating the fun
tion Ω whi
h is obtained from Ω̂ simply by repla
ing
{â†nâm}s by α∗nαm, and then evaluating its overlap integral with the s-ordered quasi-probability Wρ(α, s) 
orresponding to the state ρ̂. Conversely, any observable Ω̂ 
an be32
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 Ideaswritten as
Ω̂ =

1

π

∫

Ω(α, s)T̂ (α, s)d2α. (1.102)The s-ordered quasi-probabilities enables us to re
ast quantum me
hani
s in the languageof statisti
al me
hani
s. Given an observable Ω̂, we have an s-ordered weight fun
tion
Ω(α,−s), whi
h 
aptures the 
ontent of Ω̂ for ea
h −1 ≤ s ≤ 1.The more familiar s-ordered quasi-probabilities are Sudarshan's φ fun
tion 
orre-sponding to s = 1, the Wigner fun
tion 
orresponding to s = 0, and the Husimi or Qfun
tion 
orresponding to s = −1. The notion of s-ordered quasi-probability 
an beeasily extended to the multi-mode 
ase as well [167�169℄.1.7.2 Sudarshan's φ fun
tionIt turns out that any density operator 
orresponding to a single mode of radiation �eld
an always be expanded as

ρ̂ =

∫

d2z

π
φρ(z)|z〉〈z|, (1.103)where φρ(z) = Wρ(z, 1), and |z〉 is the 
oherent state. This is 
alled as the diagonalrepresentation. It is remarkable that every density operator 
an be expanded diagonallyin the 
oherent state basis. This has been possible be
ause of the over 
ompleteness of the
oherent state basis [112℄. This representation enables one to evaluate ensemble averagesof normally ordered operators. Normal ordering 
orresponds to shifting all the 
reationoperators to the left and all the annihilation operators to the right. The useful 
on
eptthat arises out of this representation is the notions of 
lassi
ality and non
lassi
ality.If φρ(z) 
orresponding to a density operator ρ̂ is pointwise nonnegative in the 
omplexplane, then the density operator is a 
onvex 
ombination of 
oherent states. Sin
e the
oherent states are the most elementary of all quantum me
hani
al states exhibiting
lassi
al behaviour, any state that 
an be written as a 
onvex 
ombination of theseelementary states is deemed 
lassi
al. We have,

φρ(z) ≥ 0 for all z ∈ C ⇒ ρ̂ is classical. (1.104)Any state whi
h 
annot be written so is deemed non
lassi
al. This de�nition is readilyextended to the multi-mode 
ase. Not all states are 
lassi
al, and in fa
t the φ fun
tion
an be highly singular. For the Fo
k states |n〉, the diagonal fun
tion φρ(z) turns out tobe nth derivative of the delta fun
tion. We will make extensive use of non
lassi
ality in33
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 Ideasthe 
ontext of entanglement in bipartite 
ontinuous variable systems.1.7.3 Non
lassi
alityOne of the primary 
on
erns in quantum opti
s over the years has been non
lassi
ality.This notion has been explored in various ways and its manifestations detailed [170�192℄. Physi
al manifestations su
h as photon number os
illations have been exploredin [170, 175, 178, 181, 183, 193℄. More re
ently, non
lassi
ality has been viewed as aresour
e for entanglement [113�115, 137�139, 171, 194℄.An important 
on
ern in the study of non
lassi
ality is in respe
t of the methodsemployed to dete
t non
lassi
ality. We brie�y des
ribe one of the te
hniques. Supposewe have the operator
F (â†, â) =

∑

ij

cij â
†j âi. (1.105)De�ne the positive operator F †F and normal order it to obtain : F †F :. Then theexpe
tation value of this normal ordered operator in a state ρ̂ is

〈: F †F :〉 = Tr(ρ̂ : F †F :) =

∫

d2z

π
φρ(z)|F (z∗, z)|2. (1.106)Cal
ulating 〈: F †F :〉 is equivalent to evaluating the phase spa
e average of a pointwisepositive fun
tion |F (z∗, z)|2 with respe
t to φρ(z). Thus if the expe
tation value of apositive normal ordered operator with respe
t to a state turns out to be negative, thenwe 
an surely 
on
lude that the state was non
lassi
al. However if the expe
tation valueturns out to be positive, we 
annot 
on
lude that the state was 
lassi
al. In prin
iple,one has to run over all possible positive fun
tions over the phase spa
e to test if a stateis 
lassi
al or not.The method outlined above has been dis
ussed and used in [170, 182, 186, 189�191℄.The idea 
an be further extended through the use of positive polynomials whi
h are notsum of squares of other polynomials [191℄. It is useful to note that there is no 
on
lusivetest for non
lassi
ality, of an arbitrary mixed state. There are however two ex
eptions,namely single-mode Gaussians [185℄ and single-mode phase invariant states [170℄.Another important aspe
t in the study of non
lassi
ality has been its quanti�
ation.Measures of non
lassi
ality have been dis
ussed in [171, 173, 174, 177, 188, 195�198℄.Distan
e based measures were dis
ussed in [173, 188, 195, 196℄, where the measure ofnon
lassi
ality was de�ned as the least `distan
e' of a non
lassi
al state with respe
t tothe set of all 
lassi
al states. The distan
e based measures are in general hard to evaluate34
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 Ideasbe
ause of the inherent minimisation pro
edure involved in the de�nition. In [174, 177℄ ameasure based on the smoothening of the φ fun
tion was de�ned. One 
an go from the φfun
tion to any s-ordered quasi-probability through a Gaussian 
onvolution parametrisedby τ . The point τc at whi
h the resultant quasi-probability is just about a true probabilitygives us a measure of non
lassi
ality. In [197, 198℄ a measure of non
lassi
ality based onHudson's theorem was de�ned. Hudson's theorem says that the only pure state whoseWigner fun
tion is positive is a Gaussian state [199℄. This fa
t indi
ates that any measurethat 
aptures the negativity of the Wigner fun
tion is a measure of non
lassi
ality of thestate. More re
ently, in [171℄ a measure of non
lassi
ality inspired from an entanglementpoint of view was de�ned. Non
lassi
ality of a single-mode state was de�ned as themaximal bipartite entanglement it 
an produ
e when 
oupled with additional 
lassi
alresour
es and passed through a 50:50 beamsplitter.1.7.4 The Wigner fun
tionThe Wigner fun
tion is the s-ordered quasi-probability 
orresponding to s = 0. It isobtained by 
onvoluting the φ with a parti
ular Gaussian weight fun
tion. Thus, inprin
iple, it is not as singular as the φ fun
tion, but nevertheless it 
an be pointwise non-positive in phase spa
e. In this des
ription, density operators are put in 
orresponden
ewith real valued fun
tions over the phase spa
e through the rule
Wρ(q, p) =

1

π

∫

dq′〈q − q′|ρ̂|q + q′〉exp(2iq′p). (1.107)We re
all that α = q+ip√
2
. We may write Wρ(q, p) as Wρ(ξ) for 
onvenien
e [200, 201℄,where ξ is the pair {q, p}. The Wigner des
ription o�ers several advantages, from thetheoreti
al and experimental perspe
tives. It turns out to be 
onvenient in the 
ontextof unitary evolution of states under the a
tion quadrati
 hamiltonians. Given the uni-tary operator U(S) 
orresponding to a quadrati
 hamiltonian whi
h is 
aptured by asymple
ti
 group element S ∈ Sp(2n,R), a state evolves as

ρ̂→ ρ̂′ = U(S)ρ̂U(S)†. (1.108)This transformation takes a very simple form in the Wigner des
ription :
S : ρ̂→ ρ̂′ = U(S)ρ̂U(S)† ⇔Wρ(ξ) →Wρ′(ξ) = Wρ(S

−1ξ). (1.109)That is, Wρ′(Sξ) = Wρ(ξ) for every 
anoni
al transformation S ∈ Sp(2n,R). Thatis, the Wigner fun
tion transforms as a Sp(2n,R) s
alar �eld [202℄. This is also true35
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 Ideasof inhomogeneous linear 
anoni
al transformations involving phase spa
e translations aswell.The Wigner fun
tion is also important from an experimental perspe
tive, as it 
an bedire
tly measured in a lab. The Wigner fun
tion by de�nition, is the expe
tation valueof the displa
ed parity operator with respe
t to the given density operator[169℄, and thus
an be observed in a laboratory. Indeed, the Wigner fun
tion of various quantum statesof radiation have been reported [203�215℄.1.7.5 The Q fun
tionThe Q fun
tion 
orresponds to the quasi-probability with order parameter s = −1 For astate ρ̂ of a single-mode of radiation �eld it is de�ned as
Qρ(α) = 〈α|ρ̂|α〉. (1.110)It is thus pointwise nonnegative in the 
omplex plane, being the expe
tation value of a
oherent state on a positive semide�nite density operator ρ̂. Thus it is a true probabilitydistribution. However it should be noted that not all valid probability distributions arevalid Q fun
tions. The quantum me
hani
al un
ertainty prin
iple pla
es severe restri
-tions on probability distributions whi
h qualify to be valid Q fun
tions. The advantageof working with them is that one will deal only with true probabilities. We will 
onsiderthem in more detail in Chapter 7 where we dis
uss non-Gaussianity [216℄.1.8 Dete
tion of EntanglementDete
ting entanglement in 
ontinuous variables has been an important pursuit, as meth-ods employed in the 
ase of �nite dimensions 
annot always be extended in a naivemanner. Among tests based on positive maps, only the partial transpose test and redu
-tion 
riterion have been extended [57, 217℄. However, inseparability 
riteria (inequalities)de�ned through EPR-like operators based on the quadrati
 moments, initially introdu
edin [58℄, are e�e
tive in dete
ting entanglement in 
ontinuous variables. These inequal-ities are derived from �rst prin
iples as 
onsequen
es of separability. The un
ertaintyprin
iple pla
es 
ertain restri
tions on the moments, and all states have to obey theun
ertainty prin
iple [218℄. However, separable states have to obey further 
onstraints,whi
h 
an be taken as inseparability 
riteria. Simple examples of su
h 
onstraints arethe Bell type inequalities, violation of whi
h have been observed in entangled Gaussianstates [219, 220℄.
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 Ideas1.8.1 Bell's inequalitiesThe Bell type inequalities as in Eq. (1.36) are extended to the 
ontinuous variable 
asethrough the de�nition of the parity operator. The parity operator takes the role of thespin observable, and the role of `dire
tion' of the spin observable is taken by displa
ementin phase spa
e. The parity operator Π(ξ) for N modes is given as
Π(ξ) = ⊗N

i=1Πi(ξi) = ⊗N
i=1Di(ξi)(−1)n̂iD†

i (ξi), (1.111)where Di(ξi) is the phase spa
e displa
ement operator of the ith mode, de�ned in Eq.(1.97). It happens that the expe
tation value of the parity operator Π(ξ) with a givenstate ρ̂ gives its Wigner fun
tion [168, 169℄ :
Wρ(ξ) = Tr(ρ̂Π(ξ)). (1.112)Hen
e, the expe
tation value of the parity operator on simple states su
h as Gaussianstates is easily evaluated. In [219℄ the Bell operator

B = Π(0, 0) + Π(0, β) + Π(α, 0) − Π(α, β) (1.113)was 
onsidered, where α, and β are phase spa
e displa
ements on the two modes. Separa-ble 
ontinuous variable states have to satisfy the inequality |B| ≤ 2. It was demonstratedin [219℄ that the two-mode squeezed va
uum 
learly violated this inequality. This ideawas further generalised to the multi-mode 
ase in [221℄.Another equivalent approa
h towards Bell inequalities in 
ontinuous variable systemswas given in [220℄. This was done through the extension of the spin operators to in�nitedimensions through a dire
t sum of the spin-12 Pauli operators. In this set up, the Paulispin operators σ̂z, σ̂+, and σ̂− are given by
σ̂z = (−1)n̂, σ̂+ = σ̂−† =

∞
∑

n=0

|2n〉〈2n + 1|. (1.114)It is easy to see that the pseudo-spin operators de�ned above, satisfy the SU(2) algebrarequired of spin-12 operators. It is now easy to extend the Bell-CHSH inequalities inEq. (1.36) to the 
ontinuous variable 
ase. In [220℄ su
h an extension was done, andthe entanglement in two-mode squeezed va
uum was demonstrated. The role of Bell'sinequalities in dete
ting entanglement is also dis
ussed in [222�225℄.
37



Chapter 1. Basi
 Ideas1.8.2 Partial transposeWe have already seen in Eq. (1.109) that the Wigner fun
tion transforms as a s
alar �eldunder the a
tion of symple
ti
 group elements 
orresponding to evolution under quadrati
hamiltonians. The transpose map and the partial transpose map also take a geometri
form in the Wigner des
ription. For a single mode of radiation �eld, it follows fromthe de�nition of the Wigner fun
tion that transpose operation on the density operatoris equivalent to 
omplex 
onjugation of the elements of the density matrix in positionrepresentation, whi
h trans
ribes faithfully into momentum reversal operation in theWigner des
ription :
T : Wρ(q, p) → W

′

ρ(q, p) = Wρ(q,−p) = Wρ(Λξ),

Λ = diag(1,−1) = σ3. (1.115)This amounts to a mirror re�e
tion whi
h inverts the p 
oordinate, leaving the q 
oordi-nate un
hanged. The transpose map takes density operators to density operators, but isunphysi
al as seen in Se
tion 1.4.6. For a bipartite system of two modes of radiation �eld,partial transposition amounts to inverting the p 
oordinate for one of the subsystems.Its a
tion on the Wigner fun
tion is given by
PT : Wρ(qa, pa, qb, pb) → W

′

ρ(qa, pa, qb, pb)

= Wρ(qa, pa, qb,−pb). (1.116)Though the partial transpose, as a map, is given by an elegant transformation withregard to the Wigner fun
tion, its usefulness as an entanglement witness is manifestonly when we are able to test a phase spa
e distribution for its Wigner quality. Thatis, one has to answer the question as to when is a fun
tion in phase spa
e a Wignerfun
tion. Su
h a question was initially raised in the limited 
ontext of Gaussian Wignerfun
tions in [201℄, and fully answered in [226℄ in that 
ontext. This was possible be
auseof the Williamson's theorem [226℄. This 
onsequently led to the demonstration of partialtranspose as an e�e
tive entanglement 
riterion in the 
ase of two-mode Gaussians [57℄.In general, one 
an test for entanglement in a limited manner through the manifestationof partial transpose on moments.Given a state ρ̂(ab) of a bipartite system of two modes of radiation �eld, a test forentanglement in ρ̂(ab) through partial transpose would be to test for negativity of ρ̂(ab)PT .A dire
t approa
h would be to test for violation of positivity of the diagonals of ρ̂(ab)PT insome orthogonal basis pertaining to the 
omposite system Hilbert spa
e Ha ⊗Hb. Su
han e�ort may be tedious while one is dealing with 
ontinuous variable systems. A simpler38
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 Ideaspra
ti
al approa
h, but limited in s
ope, would be to test for violation of positivity of
ρ̂(ab)PT by taking its expe
tation value with a positive operator. Su
h a test may not inprin
iple 
apture the negativity of ρ̂(ab)PT in its entirety, but may prove to be useful in
ertain 
ontexts. An immediate requirement of the pro
edure demands the systemati

onstru
tion of positive operators a
ting on Ha ⊗Hb. Given an operator

η =
∑

jklm

cjklmâ
†j âkb̂†l b̂m, (1.117)the operator η†η is positive by 
onstru
tion. A simple test for violation of positivity of

ρ̂(ab)PT is to then 
he
k if
Tr(ρ̂(ab)PT (η†η)) = Tr(ρ̂(ab)(η†η)

PT
) < 0. (1.118)To this end, we need to know how partial transpose a
ts on an ordered monomial

(â†j âkâ†pâq b̂†lb̂mb̂†r b̂s). Sin
e the 
reation and annihilation operators b̂† and b̂ are real,transposition on Bob's side alone amounts to hermitian 
onjugation of operators on Bob'sside. We have
(â†j âkâ†pâq b̂†lb̂mb̂†r b̂s)PT = (â†j âkâ†pâq b̂†sb̂r b̂†mb̂l). (1.119)As a simple example demonstrating the e�e
tiveness of the pro
edure o

urs in the 
aseof two-mode Gaussians. The violation of partial transpose at the level of varian
e matrix
orresponding to η†η being quadrati
 in the annihilation and 
reation operators of thetwo modes, turns out to be a both ne
essary and su�
ient test for entanglement [57℄.We shall see later how this pro
edure 
an be e�e
tive in more general 
ontexts [227�229℄.1.8.3 Inseparability 
riteria through un
ertainty relationsThis method of dete
ting entanglement in 
ontinuous variable systems is based on the fa
tthat expe
tation values of nonlo
al operators pertaining to the 
omposite system haveto obey additional 
onstraints for separable states in addition to the usual un
ertaintyprin
iple. As a simple example, 
onsider the pair of EPR like operators x̂a−x̂b and p̂a+p̂b.The sum of the varian
es of these two operators goes to zero for maximally entangledstates. Su
h a state may appear unphysi
al though, but for the two-mode squeezedva
uum the total varian
e rapidly tends to zero with in
reasing degree of squeezing. Andthis state approa
hes the maximally entangled state as the squeeze parameter grows.
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 IdeasHowever for a separable state, assuming that the �rst moments were zero, we have
〈(x̂a − x̂b)

2〉 + 〈(p̂a + p̂b)
2〉 =

∑

i

pi〈x̂2
a〉i +

∑

i

pi〈x̂2
b〉i − 2

∑

i

pi〈x̂a〉i〈x̂b〉i

+
∑

i

pi〈p̂2
a〉i +

∑

i

pi〈p̂2
b〉i + 2

∑

i

pi〈p̂a〉i〈p̂b〉i

=
∑

i

pi(〈x̂2
a〉i − 〈x̂a〉2i ) +

∑

i

pi(〈p̂2
a〉i − 〈p̂a〉2i )

+
∑

i

pi(〈x̂2
b〉i − 〈x̂b〉2i ) +

∑

i

pi(〈p̂2
b〉i − 〈p̂b〉2i ) +

∑

i

pi(〈x̂a〉i − 〈x̂b〉i)2 +
∑

i

pi(〈p̂a〉i + 〈p̂b〉i)2 ≥ 2. (1.120)Su
h a 
riterion was e�e
tively used in [58, 230℄ to demonstrate entanglement in two-modeGaussian states. The EPR un
ertainty relation in Eq. (1.120) also be
omes useful inevaluating the EOF of two-mode symmetri
 Gaussian states. This method was extendedto the multi-mode s
enario in [231℄. Similar te
hniques, based on the un
ertainties onmoments were used in the 
ase of �nite dimensional systems to dete
t entanglement[59�61℄, and later extended to 
ontinuous variable systems in [232℄.Positive maps on matrix of moments : This te
hnique was re
ently introdu
ed in [233℄.It enables us to apply the positive maps familiar from the 
ontext of �nite dimensionalsystems to dete
t entanglement in 
ontinuous variable systems through the matrix ofmoments. Any moment matrix generated by tensoring operators belonging to the indi-vidual systems is separable on separable states, thus inseparability of the moment matriximplies entanglement for the state. As a simple example, for two pairs of operators f̂1, f̂2on Ali
e's side, and ĝ1, ĝ2 on Bob's side, the matrix of moments formed by the tensoredset (f̂1ĝ1, f̂1ĝ2, f̂2ĝ1, f̂2ĝ2), i.e.,
M =













〈f̂2
1 ĝ

2
1〉 〈f̂2

1 ĝ1ĝ2〉 〈f̂1f̂2ĝ
2
1〉 〈f̂1f̂2ĝ1ĝ2〉

〈f̂2
1 ĝ2ĝ1〉 〈f̂2

1 ĝ
2
2〉 〈f̂1f̂2ĝ2ĝ1〉 〈f̂1f̂2ĝ

2
2〉

〈f̂2f̂1ĝ
2
1〉 〈f̂2f̂1ĝ1ĝ2〉 〈f̂2

2 ĝ
2
1〉 〈f̂2

2 ĝ1ĝ2〉
〈f̂2f̂1ĝ2ĝ1〉 〈f̂2f̂1ĝ

2
2〉 〈f̂2

2 ĝ2ĝ1〉 〈f̂2
2 ĝ

2
2〉













, (1.121)is separable for separable states. This method enables us to indire
tly (dire
tly) use thetheory of positive maps to dete
t entanglement in 
ontinuous variable systems.
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 Ideas1.9 Gaussian statesGaussian states form an integral part of quantum information theory in the 
ontextof 
ontinuous variables. Initially they were studied in the 
ontext of radiation �eldsin quantum opti
s [185, 201, 202, 226, 234�240℄. Mu
h of the study was devoted to
hara
terising them through the varian
e matrix and the exploration of non
lassi
ality ofthese states whi
h was primarily in the form of squeezing. But with the development ofquantum information theory the fo
us has shifted to the study of entanglement in thesestates [57, 58, 70, 136, 138, 140, 143, 144, 147�150, 156�159, 217, 241�271℄. Teleporation,the fundamental proto
ol of quantum information theory has been a
hieved using them[83, 88�90, 96, 97, 103℄. This has lead to the exploration of Gaussian states in a majorway.We review, very brie�y, some of these developments. The potential role of Gaus-sian states in quantum information pro
esses was initially realised in [82℄ in the form ofteleportation. The entanglement involved in this proto
ol was �rst pointed out in [105℄.Subsequently, the dete
tion of entanglement of these states was 
ompletely 
hara
terisedin [58, 272℄. The e�e
tive use of the varian
e matrix formalism in the 
ontext of bipartiteentanglement was initially 
arried out in [57℄, and this was possible be
ause Gaussianstates are 
ompletely spe
i�ed by their varian
e matrix. The primary tool is the e�e
tiveuse of un
ertainty prin
iple in 
hara
terising them [192, 202, 218, 226℄. The Williamsontheorem has a fundamental role to play in this 
ontext [192, 202, 226, 272, 273℄.In [241℄ a family of bound entangled Gaussian states was 
onstru
ted, and in [217℄the issue of distillability was solved: it was shown that every NPT Gaussian state isdistillable. Puri�
ation of Gaussian states has been dis
ussed in [259, 268, 271℄. In[242℄, the issue of bipartite separability in the multi-mode 
ase was 
ompletely solved.The various possible situations that 
ould arise with regard to separability in tripartitesystems was dis
ussed in [243℄. Entanglement in multipartite Gaussians was studied in[249, 250℄. It was found that in spe
ial 
ases Gaussian multipartite entanglement 
an beredu
ed to two-mode Gaussian entanglements using lo
al operations alone.The role of squeezing in generating entanglement in these states was dis
ussed. in[136�138, 140℄, and some of the spe
ial properties of Gaussian states were dis
ussed in[244, 246, 252, 253℄. In [244, 246℄ it was found that Gaussian states 
annot be distilledwith Gaussian operations alone, and in [252℄ it was shown that the optimal 
loning ofGaussian states required additional non-Gaussian resour
es. Some of the extremal prop-erties of Gaussian states were dis
ussed in [253℄. One parti
ular su
h extremal propertyhelped solve the problem of determining the entanglement of formation in symmetri
Gaussian states [70℄. We will have more to say on this later in the thesis. Lower bounds41
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 Ideason the entanglement of formation of general bipartite Gaussian states was obtained in[262℄.The determination of entanglement in bipartite Gaussian states through purity mea-surements was dis
ussed in [248, 261, 263℄. Su
h a study brought out the possibility of
hara
terising Gaussian states through both global and lo
al purities. Properties su
h asthe loss of entanglement in evolution was dis
ussed in [137, 260, 274℄.Gaussian 
hannels have been dis
ussed in [149, 157, 269℄. A de�nition for the mostgeneral Gaussian 
hannel was given in [157℄. The quantum 
hannel 
apa
ity de�nedthrough 
oherent information was evaluated for a 
ertain 
lass of Gaussian 
hannels in[158, 159℄.The possibility of assessing the entanglement in two-mode Gaussian states using lo
alparity measurements and 
lassi
al 
ommuni
ation was dis
ussed in [247℄. It was shownthat given su�
iently large number of 
opies of a Gaussian state, its entanglement andthe state itself 
an be 
hara
terised 
ompletely by LOCC!The 
on
ept of entanglement monogamy [275, 276℄ was extended to the Gaussian 
asein [254, 255℄, and monogamy relations were established. In [251℄ the varian
e matrix setup was dis
ussed from the perspe
tive of 
onvex sets, and numeri
al routines were setup to generate entanglement witnesses. More detailed reviews on Gaussian states 
an befound in [256�258℄.We now des
ribe the basi
 formalism for handling Gaussian states and their transfor-mation, with parti
ular attention to non
lassi
ality and entanglement.1.9.1 Non
lassi
ality in GaussiansNon
lassi
ality in Gaussian states primarily o

urs in the form of quadrature squeezing.This quantum opti
al 
on
ept was initially explored in [185, 192, 237�240, 277, 278℄. Anelegant de�nition for squeezing through the varian
e matrix formalism was given in [192℄.We brie�y review this work.Sin
e zero-mean Gaussian states are 
ompletely spe
i�ed by their varian
e matrix,we begin by giving the basi
 setup of varian
e matrix, �rst from the perspe
tive ofnon
lassi
ality, and later we give the des
ription from the entanglement perspe
tive.Consider an nmode quantum system with annihilation operators âj, â†j , j = 1, 2, . . . , n,obeying the standard boson 
ommutation relations
[âj , â

†
k] = δjk , [âj , âk] = [â†j , â

†
k] = 0, (1.122)
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 Ideasor equivalently
[q̂j, p̂k] = iδjk , [q̂j, q̂k] = [p̂j , p̂k] = 0, where

âj =
q̂j + ip̂j√

2
, â†j =

q̂j − ip̂j√
2

. (1.123)It is 
onvenient to arrange the hermitian q̂j, p̂j and the âj , â†j in 2n 
omponent 
olumnve
tor forms :
ξ̂(r) =











































q̂1

.

.

.

q̂n

p̂1

.

.

.

p̂n











































, ξ̂(c) =











































â1

.

.

.

ân

â†1
.

.

.

â†n











































. (1.124)
The `ve
tors' ξ̂(c) and ξ̂(r) are related by a �xed numeri
al unitary matrix Γ

ξ̂(c) = Γξ̂(r), where

Γ =
1√
2

(

11 i11

11 −i11

)

. (1.125)The 
anoni
al 
ommutation relations among the mode operators 
an now be su

in
tlywritten as
[ξ̂

(r)
j , ξ̂

(r)
k ] = iβjk, [ξ̂

(c)
j , ξ̂

(c)
k ] = iΣjk,

i, j = 1, 2, . . . , 2n, (1.126)where the 2n× 2n dimensional matri
es β and Σ are given in blo
k form by
β =

(

0 11

−11 0

)

, Σ =

(

11 0

0 −11

)

. (1.127)
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 IdeasWe de�ne the 2n× 2n real varian
e matrix V (r) for a state ρ̂ by
V

(r)
jk =

1

2
Tr(ρ̂{ξ̂(r)j ξ̂

(r)T
k }), (1.128)where {., .} is the anti
ommutator. We 
an alternatively arrive at the varian
e matrixby taking the expe
tation value of the positive operator ξ̂(r)ξ̂(r)T , i.e.,

〈ξ̂(r)ξ̂(r)T 〉 = Tr(ρ̂ ξ̂(r)ξ̂(r)T ) = V (r) +
i

2
β.We 
an write the varian
e matrix in an n× n blo
k form as

V (r) =

(

V1 V2

V T
2 V3

)

,

(V1)jk = 〈q̂j q̂k〉, (V2)jk =
1

2
〈{q̂j , p̂k}〉, (V3)jk = 〈p̂j p̂k〉,

j, k = 1, 2, . . . , n . (1.129)The matrix V1 gives the 
orrelations among the q̂'s, V3 gives those among the p̂'s, and V2the 
orrelations between the q̂'s and p̂'s. For a state ρ̂ with non zero mean (〈ξ̂(r)〉) 6= 0,the varian
e matrix is de�ned by simply repla
ing ξ̂(r) by ∆ξ̂(r) = ξ̂(r) − 〈ξ̂(r)〉. Su
h arepla
ement 
orresponds to a rigid translation in phase spa
e by amount −〈ξ̂(r)〉, imple-mented by the displa
ement operator D(−〈ξ̂(r)〉).The 
omplex form of the varian
e matrix V (c) is generated by taking the expe
tationvalue of the positive operator ξ̂(c)ξ̂(c)†, i.e.,
〈ξ̂(c)ξ̂(c)†〉 = V (c) +

1

2
Σ, where

V (c) = ΓV (r)Γ†. (1.130)Writing in n× n blo
k form, we have
V (c) =

(

A B

B∗ A∗

)

,

Ajk = A∗
kj =

1

2
〈{âj , â

†
k}〉, Bjk = Bkj = 〈âj âk〉. (1.131)By de�nition, V (r) is symmetri
 positive de�nite, this also implies that V (c) is 
omplexhermitian positive de�nite. It also implies that A is hermitian, and B is symmetri
. Wehave the following relations between the blo
ks of the varian
e matrix in its real and

44



Chapter 1. Basi
 Ideas
omplex forms :
A =

1

2
[V1 + V3 + i(V T

2 − V2)],

B =
1

2
[V1 − V3 + i(V T

2 + V2)];

V1 =
1

2
(A+A∗ +B +B∗),

V2 =
i

2
(A−A∗ −B +B∗),

V3 =
1

2
(A+A∗ −B −B∗). (1.132)Un
ertainty prin
iple : Given a real symmetri
 positive de�nite 2n × 2n matrix V (r),it has to satisfy additional requirements to qualify as a varian
e matrix derived from aquantum me
hani
al state. The additional requirements are su

in
tly 
aptured by theun
ertainty prin
iple [192℄ :
V (r) +

i

2
β ≥ 0. (1.133)The above 
ondition is both ne
essary and su�
ient to validate a given symmetri
 positivede�nite matrix V (r) as the varian
e matrix of some quantum state. The ne
essity of the
ondition follows from de�nition but the su�
ien
y part, whi
h is nontrivial, followsfrom the use of Williamson theorem [272, 273℄. In the 
ase of Gaussian probabilitydistributions this un
ertainty prin
iple on the varian
e matrix is both ne
essary andsu�
ient 
ondition to qualify the probability as a Wigner distribution[226℄, sin
e in this
ase the varian
e matrix 
ompletely spe
i�es the quantum state. This is no longer truein more general 
ontexts [279℄.Unitary evolution : Unitary evolution of the mode operators under a quadrati
 hamilto-nian 
orresponds to a symple
ti
 transformation on the 
olumn ve
tor ξ̂(r) :

U = exp(−iH) ⇒ U †ξ̂(r)U = S
(r)
H ξ̂(r), where

H =
∑

j,k

h
(r)
jk ξ̂

(r)
j ξ̂

(r)
k , and

S
(r)
H ∈ Sp(2n,R), i.e., S

(r)
H βS

(r)T
H = β. (1.134)Under su
h a unitary evolution, the ve
tor ξ̂(c) transforms as

ξ̂(c) → ξ̂′
(c)

= S
(c)
H ξ̂(c), S

(c)
H = ΓS

(r)
H Γ†. (1.135)
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 IdeasGiven a state ρ̂ with varian
e matrix V (r), under time evolution by a quadrati
 hamilto-nian the varian
e matrix evolves through a 
ongruen
e by the symple
ti
 transformation
orresponding to the hamiltonian :
ρ̂ → ρ̂′ = U(S(r))ρ̂U(S(r))

† ⇒
V (r) → V ′(r) = S(r)V (r)S(r)T , S(r) ∈ Sp(2n,R). (1.136)We have removed the subs
ript H for brevity. Similarly, the 
omplex form of the varian
ematrix evolves as

V (c) → V ′(c) = S(c)V (c)S(c)†, S(c) = ΓS(r)Γ†. (1.137)The symple
ti
 group : The de�ning property of matri
es 
omprising the symple
ti
 group
Sp(2n,R) is

S(r) ∈ Sp(2n,R) ⇔ S(r)βS(r)T = β. (1.138)The group is 
hara
terised by n(2n+ 1) generators, of whi
h n2 generators are 
ompa
tgenerators and total photon number. The remaining n(n+1) generators are non
ompa
t,and do not 
onserve the total photon number. The hermitian quadrati
 hamiltonianswhi
h 
orrespond to the 
ompa
t generators 
an be taken to be
1

4
(â†j âj + âj â

†
j), j = 1, 2, . . . , n;

1

4
(â†j âk + â†kâj),

i

4
(â†j âk − â†kâj), j < k = 2, . . . , n. (1.139)They 
ommute with the total photon number

N̂ =

n
∑

j=1

â†j âj , (1.140)and the unitary operators generated by them 
orrespond to passive systems whi
h pre-serve 
lassi
ality. The remaining n(n+ 1) linearly independent hermitian quadrati
 non-
ompa
t generators 
an be given by
1

4
(â†j â

†
k + âkâj),

i

4
(â†j â

†
k − âkâj), j ≤ k = 1, 2, . . . , n. (1.141)46
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 IdeasThe maximal 
ompa
t subgroup of Sp(2n,R) denoted by K(n) is generated by the n2
ompa
t generators, and is given by
S(r)(X,Y ) =

(

X Y

−Y X

)

, (1.142)where X and Y are real n× n matri
es obeying
XXT + Y Y T = 11, XY T = Y XT . (1.143)It is easy to see that

S(r)(X,Y )S(r)T (X,Y ) = 11, S(r)(X,Y )βS(r)T (X,Y ) = β. (1.144)Su
h a matrix is both orthogonal and symple
ti
 in 2n dimensions. Going over to the
omplex form, we have
S(c)(X,Y ) = ΓS(r)(X,Y )Γ† =

(

U 0

0 U∗

)

= S(c)(U),

U = X − iY, UU † = 11, (1.145)That is X − iY (and hen
e X + iY ) is a unitary matrix. Thus the maximal 
ompa
tsubgroup K(n) of Sp(2n,R) is isomorphi
 to U(n). In other words,
K(n) = SO(2n) ∩ Sp(2n,R) = U(n). (1.146)An interesting property of K(n) is that it a
ts transitively on the phase spa
e unit sphere

S(2n−1).Theorem 1.9 A varian
e matrix is squeezed if and only if
l(V (r)) <

1

2
, (1.147)where l(V (r)) is the least eigenvalue of the varian
e matrix V (r) [192℄.One is able make this statement be
ause of the transitive a
tion of K(n) on the unitsphere S(2n−1), though one 
annot in general diagonalise a given V (r) by K(n) rotations[192℄.
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 Ideas1.9.2 Entanglement in GaussiansWe now revise our notation into one whi
h is useful in des
ribing entanglement in multi-mode Gaussian states. The earlier notation was useful from the perspe
tive of passivedevi
es, and hen
e non
lassi
ality as the a
tion of any passive devi
e is 
ompa
tly de-s
ribed as a unitary transformation on the annihilation operators. With entanglement inperspe
tive, it is useful to make a modewise grouping of the 
anoni
al variables.Consider a bipartite system 
onsisting of n modes, with m modes in possession ofAli
e and the remaining n −m modes in Bob's possession. We introdu
e the followingnotation :
ξ̂(a) = (q̂1, p̂1, q̂2, p̂2, . . . , q̂m, p̂m);

ξ̂(b) = (q̂m+1, p̂m+1, q̂m+2, p̂m+2, . . . , q̂n, p̂n);

ξ̂ = (ξ̂(a), ξ̂(b)). (1.148)The 
ommutation relations are given in a 
ompa
t form as
[ξ̂α, ξ̂β] = iΩαβ, α, β = 1, 2, . . . , 2n, (1.149)where

Ω =























J 0 . . . 0

0 J . . . 0

. . . .

. . . .

. . . .

0 0 . . . J























, J =

(

0 1

−1 0

)

. (1.150)
Clearly, a 
anoni
al transformation S satis�es

SΩST = Ω. (1.151)Suppose that the state has a nonzero mean. Then we 
an de�ne the translated operators
∆ξ̂ = ξ̂ − 〈ξ̂〉, in whi
h 
ase, the varian
e matrix is de�ned as

〈{∆ξ̂α,∆ξ̂β}〉 = Tr({∆ξ̂α,∆ξ̂β}ρ̂) = Vαβ. (1.152)
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 IdeasThe un
ertainty prin
iple is now stated as
V +

i

2
Ω ≥ 0. (1.153)We have the following theorem with regard to bipartite separability.Theorem 1.10 A ne
essary and su�
ient 
ondition for separability of a Gaussian statedes
ribed by the varian
e matrix V is [280℄,

V ≥ 1

2
SaS

T
a ⊕ SbS

T
b ,

Sa ∈ Sp(2m,R), Sb ∈ Sp(2n − 2m,R). (1.154)The inequality simply states that the varian
e matrix of a separable state is always greaterthan that of a pure produ
t Gaussian state. In other words, a separable state 
an bemade 
lassi
al by lo
al unitary 
anoni
al transformations. Su
h a thing is impossible ifthe Gaussian state was entangled a
ross the a-b divide [26℄.Partial transpose : As stated already in Se
tion 1.8.2, partial transpose a
ts on the Wignerfun
tion as momentum reversal on Bob's side. Under partial transpose, the varian
ematrix of a multipartite state a
ross a bipartite 
ut, undergoes the 
hange V → Ṽ =

Λ′V Λ′, where
Λ = diag(11, 11, · · · , 1m, 1m; 1m+1,−1m+1, · · · , 1n,−1n). (1.155)We 
an now implement partial transpose on the varian
e matrix and test for entan-glement. In addition to the un
ertainty prin
iple, the varian
e matrix of a separable statehas to obey
Ṽ +

i

2
Ω ≥ 0, Ṽ = Λ′V Λ′, Ω =

(

ΩA 0

0 ΩB,

)

. (1.156)This 
an be alternatively stated as
V +

i

2
Ω̃ ≥ 0, Ω̃ = Λ′ΩΛ′, Ω̃ =

(

ΩA 0

0 −ΩB,

)

. (1.157)A varian
e matrix is said to be PPT, if it satis�es the above inequality.Of parti
ular interest are two-mode Gaussian states, whose varian
e matrix in blo
k
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 Ideasform is given by
V =

(

A C

CT B

)

, (1.158)where A, B, and C are 2 × 2 matri
es. Su
h varian
e matri
es 
an be brought to thefollowing 
anoni
al form using lo
al symple
ti
 transformations, i.e., using the a
tion of
Slocal ∈ Sp(2, R) ⊕ Sp(2, R) :

V → V0 =













a 0 c1 0

0 a 0 c2

c1 0 b 0

0 c2 0 b













. (1.159)It turns out that in the two-mode 
ase, PPT is a ne
essary and su�
ient 
riterion forseparability, and is stated in a lo
al invariant form as [57℄
detAdetB +

(

1

4
− |detC|

)2

− Tr(AJCJBJCTJ) ≥ 1

4
(detA+ detB)

⇔ 4(ab− c21)(ab− c22) ≥ (a2 + b2) + 2|c1c2| −
1

4
. (1.160)It is useful to note that Gaussian states with det(C) ≥ 0 are separable.In the 
ase of symmetri
 two-mode Gaussian states spe
i�ed by parameters a, b = a,

c1 and c2, it is possible to solve for the entanglement of formation. It is given by [70℄
f(∆) = c+(∆)log[c+(∆)] − c−(∆)log[c−(∆)], where

C± = (∆− 1
2 ± ∆

1
2 )

2
,

∆ = 2
√

(a− c1)(a+ c2). (1.161)The fun
tion f is a 
onvex and de
reasing fun
tion of ∆. We will study the EOF ofgeneral two-mode Gaussian states in Chapter 4.1.9.3 Gaussian 
ompletely positive maps�Gaussian 
hannelsA Gaussian 
ompletely positive map (or Gaussian 
hannel) is any 
ompletely positive mapwhi
h takes Gaussian states to Gaussian states. It was dis
ussed initially in [149, 157℄, andmore re
ently in [158, 159, 281�288℄. In [158, 159, 281, 284, 286℄ single-mode Gaussian
hannels were dis
ussed and 
lassi�ed, and issues regarding their 
hannel 
apa
ity werestudied. More re
ently multi-mode Gaussian 
hannels have been 
lassi�ed in [287, 288℄.50
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 IdeasGaussian 
hannels 
an be realised very mu
h in the form of Eq. (1.26) and Eq. (1.27).But now one has to be 
areful to maintain the Gaussian 
hara
ter of the state. Givena Gaussian state ρ̂, a simple way to generate the most general Gaussianity preservingmap is to 
ouple the given state to an auxiliary or an
illa Gaussian state, then evolvethem together with a unitary evolution 
orresponding to the most general Gaussianpreserving unitary, i.e., the unitary operator in this 
ase 
onsists of unitaries generatedfrom 
anoni
al transformations 
orresponding to a symple
ti
 group element and anarbitrary phase spa
e translation, then tra
e away the auxiliary system. Clearly, allthe operations done are 
anoni
al Gaussianity preserving operations. Thus the resultantstate is Gaussian for every Gaussian input. The varian
e matrix of the resultant state isrelated to the varian
e matrix of the input state in the following way :
V → XTV X + Y,

X, Y ∈ R2n×2n. (1.162)Clearly, X a
ts on the varian
e matrix through 
ongruen
e and Y is the additional noisematrix. Here X and Y are 
hosen so that the un
ertainty prin
iple is respe
ted. We willhave more to say on them in Chapter 6, where we derive the Kraus representation for a
lass of single-mode Gaussian 
hannels.
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2Non
lassi
al photon statisti
s and entanglement
2.1 Introdu
tionIn this Chapter we explore the relation between entanglement and non
lassi
ality. Non-
lassi
ality and entanglement are two important features exhibited by 
ontinuous vari-able states. It is well known that non
lassi
ality is a prerequisite for entanglement. Two
anoni
al manifestations of non
lassi
ality have been extensively studied in the quantumopti
s 
ontext: (1) squeezing [116�135℄, and (2) antibun
hing or sub-Poissonian �u
-tuation, whi
h is a parti
ular manifestation of non
lassi
al photon statisti
s [289�323℄;these are respe
tively non
lassi
alities of the phase-sensitive and phase-insensitive types.Whereas the former has been well explored as a sour
e of entanglement in the 
ontext ofGaussian states, the same 
annot be said in respe
t of the latter.Re
alling the de�nition of non
lassi
ality in Eq. (1.104), every 
lassi
al state is a
onvex sum of 
oherent states, and hen
e separable. In general, non
lassi
ality doesnot imply entanglement, but there is a useful 
onne
tion between non
lassi
ality andinseparability, and the beam splitter plays an important role as a bridge between thesetwo attributes. The seminal work of Asboth et al. [171℄ shows that the output state ρ̂(ab)

outof a beamsplitter represented by a unitary operator U , whose input is a produ
t state
ρ̂
(ab)
in = ρ̂(a) ⊗|0〉bb〈0|, is entangled if and only if the single-mode state ρ̂(a) at the input isnon
lassi
al. [Thus any measure of entanglement of the output state in this 
on�gurationis a 
omputable measure of non
lassi
ality, the entanglement potential (EP) of ρ̂(a)℄.For states of the form ρ̂

(ab)
out = Uρ̂(a) ⊗ |0〉bb〈0|U †, entanglement in ρ̂

(ab)
out is 
learlydi
tated by the non
lassi
ality of ρ̂(a). Thus to test for entanglement of ρ̂(ab)
out , one hasto 
on
lusively answer the question as to whether a given state ρ̂(a) of a single modeof radiation �eld is 
lassi
al or not. Furthermore, given the fa
t that negativity underpartial transpose (NPT) is a prerequisite for distillability [45℄, an issue of interest is asto when is ρ̂(ab)

out NPT, and if so, is it distillable. If one is able to answer some of these52



Chapter 2. Non
lassi
al photon statisti
s and entanglementqualitative aspe
ts of the entanglement of ρ̂(ab)
out , then one may pro
eed further to addressquantitative aspe
ts like the measure or 
ontent of entanglement in ρ̂(ab)

out . We attempt toanswer these questions for a spe
ial 
lass of states.For the states ρ̂(a) of the a-mode whi
h are diagonal in the standard Fo
k basis andhen
e phase invariant, the issue of 
lassi
ality/non
lassi
ality has already been settled[170℄, thanks to the Steiltjes moment problem [324℄. We exploit this result to advantage.To begin with, we brie�y review the earlier work in [170℄. We introdu
e the notion ofphase-insensitive non
lassi
ality and the 
lassi�
ation of states that it leads to. Thisleads to demonstration of the the equivalen
e of the issue of 
lassi
ality/non
lassi
alityof the phase invariant states to a Steiltjes moment problem.We then brie�y des
ribe the two equivalent approa
hes in the des
ription of theproblem; one through the fa
torial moments {γm}, and the other through the photonnumber distribution or PND sequen
e {qn}. We dis
uss two equivalent approa
hes toappli
ation of partial transpose in the 
ontext of 
ontinuous variables, �rstly through itsdire
t exe
ution on the state through a 
hosen basis set, and then in a slightly indire
tway through its manifestation on the moments using the te
hnique introdu
ed in Se
tion1.8.2.This is followed by a brief dis
ussion of the SU(2) beamsplitter whi
h serves ourpurpose as an entangling devi
e. We show that with ρ̂
(ab)
in = ρ̂(a) ⊗ |0〉bb〈0| as input,the two-mode state after the beam splitter is de�nitely NPT if ρ̂(a) is non
lassi
al ofthe phase-insensitive type. That is, the output two-mode state is NPT if any one of asequen
e of 
lassi
ality 
onditions on the PND sequen
e {qn} is violated. We bring outthe 
omplete equivalen
e between PPT of ρ̂(ab)

out and 
lassi
ality of ρ̂(a), thus proving thatfor this restri
ted 
lass, NPT is a ne
essary and su�
ient 
riterion for entanglement.Having done so, we show that ρ̂(ab)
out is distillable if ρ̂(a) violates any one of the threeterm 
lassi
ality 
onditions we derive, or if ρ̂(a) is antibun
hed. The establishment ofthe equivalen
e of inseparability and NPT of ρ̂(ab)

out , ensures negativity as a good measureof entanglement in this 
ontext. We establish simple upper and lower bounds on theentanglement of formation (EOF) for two simple 
ases of non
lassi
al PND. For thesimple 
ase of ρ̂(a) being a mixture of the ground state and the nth Fo
k state, we showthat we 
an distill more entanglement than indi
ated by a lower bound for EOF in[76, 325℄, whi
h is based on the Terhal-Vollbre
t formula [69℄, whi
h returns the EOFexa
tly for isotropi
 states.
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Chapter 2. Non
lassi
al photon statisti
s and entanglement2.2 Phase-insensitive non
lassi
ality for a single mode of ra-diation �eldConsider a single mode of quantised radiation �eld, with 
reation and annihilation op-erators â†, â obeying the standard 
ommutation relation [â, â†] = 11. A general state ofthe �eld is des
ribed by a density operator ρ̂ whi
h is hermitian nonnegative and hasunit tra
e. A

ording to the diagonal representation theorem [112℄, it 
an be expandeddiagonally in the 
oherent state basis as
ρ̂(a) =

∫

d2za
π

φ(za)|za〉〈za|, (2.1)the integration being done over the entire 
omplex plane. Here |za〉 is the 
oherent statede�ned as the eigenve
tor of â; expanded over the Fo
k basis it reads
|za〉 = exp

(

−1

2
|za|2

) ∞
∑

n=0

za
n

√
n!
|n〉a. (2.2)The weight fun
tion φ(za) is real on a

ount of hermiti
ity of ρ̂(a), and normalised tounit integral on a

ount of unit tra
e of ρ̂(a) :

∫

d2za
π

φ(za) = 1. (2.3)However it need not be pointwise positive on the 
omplex plane (phase spa
e). This fa
tleads to the 
lassi�
ation of states as 
lassi
al and non
lassi
al. States whose φ(za) ispointwise positive are said to be 
lassi
al, and any state des
ribed by a φ(za) whi
h isnot pointwise positive is deemed non
lassi
al.With za = reiθ, in general φ(za) depends on both r and θ. However for a spe
ial
lass of states, states whi
h are invariant under evolution by the hamiltonian â†â, φ(za)is a fun
tion of |za| alone. These states are diagonal in the Fo
k basis and are said to bephase-insensitive. The diagonal weight φ(za) des
ribing su
h a state is radially symmetri
in the 
omplex plane and this radial dependen
e of φ(za) alone is su�
ient to des
ribethe state 
ompletely. We denote this family of states by D, and its elements by ρ̂(a)
D ∈ D :

ρ̂
(a)
D =

∞
∑

n=0

p(n)|n〉〈n|, .

∞
∑

n=0

p(n) = 1, p(n) ≥ 0,

p(n) = 〈n|ρ̂(a)|n〉 =

∫ ∞

0
dIaP(Ia)e

−Ia
In
a

n!
, n = 0, 1, 2, . . .
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Chapter 2. Non
lassi
al photon statisti
s and entanglementwhere
φ(za) = φ(|za|2) = 2πP(Ia),

∫ ∞

0
dIaP(Ia) = 1. (2.4)Here Ia = |za|2. The above relation is invertible, and P(Ia) 
an be written in terms ofthe p(n)'s :

P(Ia) = eIa

∫ ∞

0
dKΛ(K)J0(2

√
KI),

Λ(K) =
∞
∑

n=0

(−K)n
p(n)

n!
, (2.5)where J0 is the Bessel fun
tion of order zero [170℄. This invertible relationship impliesevery state ρ̂(a)

D in the family D is 
ompletely spe
i�ed by the radial weight P(Ia).Alternatively, one 
an view these states from the perspe
tive of observables. Anyhermitian observable 
an always be written as a fun
tion of â and â† in normal orderedform, F (â†, â). Its expe
tation value in the state ρ̂(a) is given by
〈F (â†â)〉 = Tr(ρ̂(a)F (â†, â)

=

∫

d2za
π

φ(za)F (z∗a, za). (2.6)If in parti
ular F (â†, â) is phase insensitive, i.e., F (â†, â) = G(â†â), then its expe
tationvalue does not require all the information in φ(za), a simpler phase averaged distribution
P(I) su�
es :

F (â†eiα, âe−iα) = F (â†, â) ∀ α ∈ [0, 2π) ⇒

〈F (â†â)〉 =

∫ ∞

0
dIaP(Ia)F (I

1
2
a , I

1
2
a ),

P(Ia) =

∫ 2π

0

dθ

2π
φ(I

1
2
a e

iθ),

∫ ∞

0
dIaP(Ia) = 1. (2.7)We 
an regard P(Ia) as the real marginal radial distribution obtained from the 
omplete

φ(za). Every phase-insensitive observable sees only the diagonal element of ρ̂(a) in theFo
k basis. This leads us to de�ne the photon number distribution or PND of a stateas these diagonal entries p(n). The PND sequen
e {p(n)} of a state is de�ned throughphase averaging the state, whi
h amounts to simply dropping the o�-diagonal elements
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lassi
al photon statisti
s and entanglementof ρ̂(a) in the Fo
k basis :
ρ̂(a) →

∫

eiθâ†âρ̂(a)e−iθâ†âdθ

=

∞
∑

n=0

p(n)|n〉〈n|,

∞
∑

n=0

p(n) = 1, p(n) ≥ 0. (2.8)With the two quantities φ(za) and P(Ia), one 
an set up a three-fold 
lassi�
ation ofnon
lassi
ality of states :
ρ̂(a) classical ⇔ φ(za), P(Ia) ≥ 0;

ρ̂(a) weakly nonclassical ⇔ φ(za) 6≥ 0, P(Ia) ≥ 0;

ρ̂(a) strongly nonclassical ⇔ φ(za) 6≥ 0, P(Ia) 6≥ 0. (2.9)But when one is dealing with phase-invariant states ρ̂(a)
D i.e., a PND {p(n)} or alterna-tively only with phase-insensitive observables, the following 
lassi�
ation of non
lassi
al-ity su�
es :

ρ̂(a) classical ⇔ P(Ia) ≥ 0;

ρ̂(a) nonclassical ⇔ P(Ia) 6≥ 0. (2.10)Genuinely 
lassi
al states 
annot be distinguished from weakly non
lassi
al states at thephase insensitive level.2.2.1 Phase-insensitive non
lassi
ality and momentsGiven a phase-invariant state, it is useful to ask if it is 
lassi
al or not, i.e., if its 
orre-sponding P(Ia) is pointwise positive or not. Clearly, P(Ia) is fun
tion on the real axiswith the parameter Ia going from zero to in�nity. A simple test of positivity of P(Ia)will be to take its overlap with a �nite degree polynomial f(Ia) whi
h is itself pointwisepositive in the real axis, and see if the overlap is positive, i.e.,
P(Ia) ≥ 0 ⇒

∫ ∞

0
dIaP(Ia)f(Ia) ≥ 0,

f(Ia) =
∞
∑

n=0

cnIa
n ≥ 0, 0 ≤ Ia ≤ ∞. (2.11)
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lassi
al photon statisti
s and entanglementThe overlap integral returning a negative value would imply that P(Ia) 
ould not havebeen pointwise positive and hen
e that the state in 
onsideration was non
lassi
al. Thusevery positive polynomial f(Ia) results in a ne
essary 
ondition for 
lassi
ality. It is usefulto note that the fun
tion f(Ia) being pointwise positive does not require the 
oe�
ientsin its expansion to be positive. A simple example is the 
ase of square of a polynomialwhi
h has 
oe�
ients of both signs in its expansion.There are several signatures of phase-insensitive non
lassi
ality. The most familiar isthe Mandel's 
riterion, whi
h distinguishes between super and sub-Poissonian PND's. Astate with a sub-Poissonian PND is said to be antibun
hed. For an antibun
hed state
〈∆N̂a〉

2 − 〈N̂a〉 = 〈N̂2
a 〉 − 〈N̂a〉

2 − 〈N̂a〉

=

∫ ∞

0
dIaP(Ia)(Ia − 〈Ia〉)2

= (∆Ia)
2 ≤ 0, where

∫ ∞

0
dIaP(Ia)(Ia) =

∞
∑

n=0

np(n) = 〈N̂a〉, and

∫ ∞

0
dIaP(Ia)(Ia + 1)Ia =

∞
∑

n=0

n2p(n) = 〈N̂2
a 〉, (2.12)indi
ating that P(Ia) 6≥ 0.Clearly, Eqs. (2.11) and (2.12) are indi
ative of the fa
t that 
lassi
ality/non
lassi
alityof a state ρ̂(a)

D is a statement on the moments of its 
orresponding P(Ia). For a 
lassi
al
ρ̂
(a)
D , its 
orresponding P(Ia) is a well de�ned probability distribution, and the set of allits moments 
ompletely spe
i�es it. We note in the present 
ontext that a 
omplete setof ne
essary and su�
ient 
onditions expressing the 
ontent of the 
lassi
ality 
ondition

P(Ia) ≥ 0 is the Stieltjes moment problem [170, 324℄. The pointwise positivity of P(Ia)is 
ompletely 
aptured in its moments (fa
torial moments) whi
h are de�ned as
γm = 〈â†mâm〉 =

∫ ∞

0
dIaP(Ia)I

m
a

=

∞
∑

n=0

(n+m)!

n!
p(n+m) ,

m = 0, 1, 2, . . . . (2.13)Given the fa
torial moments,Theorem 2.1 The ne
essary and su�
ient 
onditions for a state ρ̂(a)
D spe
i�ed by fa
to-
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al photon statisti
s and entanglementrial moments {γn} to be 
lassi
al is
M (N) ≥ 0, M̃ (N) ≥ 0, N = 0, 1, 2, . . . , where

M (N) =













γ0 γ1 γ2 · · · γN

γ1 γ2 γ3 · · · γN+1...
γN γN+1 γN+2 · · · γ2N













, and

M̃ (N) =













γ1 γ2 γ3 · · · γN+1

γ2 γ3 γ4 · · · γN+2...
γN+1 γN+2 γN+3 · · · γ2N+1













. (2.14)Proof : The ne
essity part of the theorem follows from taking expe
tation value of apointwise positive polynomial over [0,∞) with P(Ia). For example, 
onsider the polyno-mial f1(Ia) =
∑N

n=0 cnI
n
a , where cn are arbitrary real 
oe�
ients. If P(I) is pointwisenonnegative, we will expe
t 〈(f1(Ia))

2〉P ≥ 0. That is
〈(f1(Ia))

2〉P =

N
∑

m,n=0

cmcn〈Im+n
a 〉P

=

N
∑

m,n=0

cmcnγm+n

=

N
∑

m,n=0

cmcnM
(N)
mn ≥ 0

⇒ M (N) ≥ 0 for every N. (2.15)Similarly, de�ning the polynomial f2(Ia) =
∑N

n=0 dnI
n
a and evaluating the expe
tationvalue of the nonnegative quantity Ia(f2(Ia))

2 with respe
t to a pointwise positive fun
tion
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P(I), we have

〈Ia(f2(Ia))
2〉P =

N
∑

m,n=0

dmdn〈Im+n+1
a 〉P

=

N
∑

m,n=0

dmdnγm+n+1

=

N
∑

m,n=0

dmdnM̃
(N)
mn ≥ 0

⇒ M̃ (N) ≥ 0 for every N. (2.16)Thus nonnegativity of P(Ia) implies that M (N) and M̃ (N) are positive semide�nite forevery N . The su�
ien
y follows from the fa
t that every pointwise positive polynomial
f(Ia) over [0,∞) 
an always be written in terms of two perfe
t square polynomials as[324℄

f(Ia) = (f1(Ia))
2 + Ia(f2(Ia))

2. (2.17)A simple subset of 
lassi
ality 
onditions on the PND is given by the positivity of
2 × 2 sub-matri
es (prin
ipal minors) of either M (N) or M̃ (N). That is

(

γ2m γm+m′

γm+m′ γ2m′

)

≥ 0,

(

γ2n+1 γn+n′+1

γn+n′+1 γ2n′+1

)

≥ 0 . (2.18)The violation of the inequality for the 
hoi
e m = 0 and m′ = 1 
orresponds to theMandel's 
riterion en
ountered earlier in Eq. (2.12). Any 
lassi
ality 
ondition, involvingthe γ's 
an be deemed global in {p(n)} in the sense that they involves all the p(n)'s inits des
ription.An equivalent approa
h to the problem is through the de�nition of the auxiliarydistribution P̃(Ia) = P(Ia)e
−Ia . It is 
lear that if P(Ia) is pointwise positive, so is

P(Ia)e
−Ia . We have the following equivalen
e :

Classical PND ⇔ P(Ia) ≥ 0 ⇔ P̃(Ia) ≥ 0. (2.19)In 
ontrast to the fa
torial moments, the moments of P̃(Ia) are well de�ned even if P(Ia)
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lassi
al photon statisti
s and entanglementis not a well de�ned probability distribution, i.e.,
qn = n!p(n) =

∫ ∞

0
dIaP̃(Ia)I

n
a ,

P̃(Ia) = P(Ia)e
−Ia . (2.20)So it is now possible to rede�ne the 
lassi
ality requirement of ρ̂(a)

D as the requirementof having P̃(Ia) to be well de�ned probability distribution. The ne
essary and su�
ient
onditions on P̃(Ia) to be true probability 
an now be 
ast in terms of moments qn of
P̃(Ia). Given the moment sequen
e {qn},Theorem 2.2 The ne
essary and su�
ient 
onditions on the PND sequen
e {qn} inorder that the asso
iated distribution P̃(Ia) be a true probability distribution over [0,∞)are

L(N) ≥ 0, L̃(N) ≥ 0, N = 0, 1, 2, . . . , where

L(N) =













q0 q1 q2 · · · qN

q1 q2 q3 · · · qN+1...
qN qN+1 qN+2 · · · q2N













, and

L̃(N) =













q1 q2 q3 · · · qN+1

q2 q3 q4 · · · qN+2...
qN+1 qN+2 qN+3 · · · q2N+1













. (2.21)
This means that L(N) and L̃(N) are positive semide�nite for all N . The proof is analogousto the previous 
ase.A simple ne
essary 
ondition on 
lassi
ality of a PND {p(n)} is a three term 
lassi-
ality 
ondition, whi
h is derived from the positivity requirement of any of the prin
ipal
2 × 2 minors of L(N) and L̃(N). That is,

(

q2m qm+m′

qm+m′ q2m′

)

≥ 0,

(

q2n+1 qn+n′+1

qn+n′+1 q2n′+1

)

≥ 0 . (2.22)At the next level in the hierar
hy we get a �ve term lo
al 
ondition by requiring the
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lassi
al photon statisti
s and entanglementdiagonal 3 × 3 blo
ks of L(N) and L̃(N) to be positive semide�nite, i.e.,
An =







qn−2 qn−1 qn

qn−1 qn qn+1

qn qn+1 qn+2






≥ 0 (2.23)An interesting situation that arises naturally in this 
ontext is that all the three term
onditions 
ontained in An 
ould be satis�ed but still An need not be positive semide�nite.Su
h a situation be
omes interesting in the 
ontext of distillability whi
h we dis
uss later.Any 
lassi
ality 
ondition involving the moments of P̃(Ia) 
an be deemed lo
al in {p(n)}to the 
onditions in terms of the fa
torial moments, as the former involve only a �nitenumber of qn's in their des
ription.To summarise, we have des
ribed two equivalent approa
hes in des
ribing phase-insensitive non
lassi
ality, both of them leading to ne
essary and su�
ient 
onditionson the PND {p(n)}. In the next Se
tion we demonstrate how we 
ould extra
t usefulentanglement from a non
lassi
al PND. We 
onvert the failure of the 
onditions given inEq. (2.14) and Eq. (2.2) into witnessing of NPT entanglement.2.3 Entanglement, Partial Transpose and Non
lassi
alityWe now turn to the partial transpose (PT) operation. The density matrix ρ̂AB of abipartite system S = A + B is an operator on the tensor produ
t Hilbert spa
e HS =

HA ⊗ HB . Any density operator ρ̂AB obeys three de�ning 
onditions : ρ̂†AB = ρ̂AB,
Tr ρ̂AB = 1, and ρ̂AB ≥ 0. With respe
t to 
hosen orthonormal bases (ONB) {|j〉},
{|α〉} for HA and HB respe
tively, the produ
t states {|j, α〉 ≡ |j〉⊗}|α〉} give an ONBfor HA ⊗HB. The partial transpose of ρ̂AB is the operator ρ̂PT

AB on HA ⊗HB de�ned inthis ONB by the rule
〈j, α|ρ̂PT

AB |k, β〉 = 〈j, β|ρ̂AB |k, α〉. (2.24)The above de�nition of partial transpose is tied to the given 
hoi
es of ONB's in HA and
HB , but the question of whether ρ̂PT

AB is a valid density operator or not is independent ofthis 
hoi
e.In general ρ̂PT
AB 
ould fail to be positive, and the key result is : if ρ̂PT

AB is not positive, then
ρ̂PT

AB is de�nitely an entangled state. In this 
ase we may say that ρ̂PT
AB is negative underpartial transpose (NPT).Any test whi
h establishes the nonpositivity of ρ̂PT

AB will su�
e to rea
h the 
on
lusionthat ρ̂AB is entangled. We may for instan
e be able to �nd an operator Â of the totalsystem S su
h that the `expe
tation value' of the positive operator Â†Â in ρ̂PT
AB is negative.61
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lassi
al photon statisti
s and entanglementIn that 
ase we 
an 
on
lude,
Tr (ρ̂PT

ABÂ
†Â) < 0, for some Â

=⇒ ρ̂AB entangled. (2.25)Alternatively, and in a sense more dire
tly, we may be able to �nd some prin
ipal sub-matrix of the matrix (〈j, α|ρ̂PT
AB |k, β〉) representing ρ̂PT

AB, i.e., a sub-matrix formed byinterse
tions of any subset of rows of this matrix and the 
orresponding 
olumns, su
hthat this sub-matrix is not positive de�nite. Then again we 
an 
on
lude,
Some principal submatrix of ρ̂PT

AB 6≥ 0

⇒ ρ̂AB entangled. (2.26)We will use both strategies in the sequel.Our aim is to 
onne
t presen
e of entanglement dire
tly and transparently to non-
lassi
ality, atleast for a 
lass of states of the radiation �eld. We therefore spe
ialise thesubsystem a and b to be two distin
t mutually orthogonal single mode radiation �elds,with respe
tive 
reation and annihilation operator pairs â†, â and b̂†, b̂ a
ting on Hilbertspa
es Ha, Hb, the only non vanishing 
ommutators being [â, â†] = [b̂, b̂†] = 11. The Fo
kor photon number states for the two modes provide ONB's for Ha, Hb respe
tively,
|n〉 = (n!)−1/2(â†)

n|0〉a , |m〉 = (m!)−1/2(b̂†)
m|0〉b , n,m = 0, 1, 2, . . . , (2.27)and the produ
t states |n,m〉 ≡ |n〉a ⊗ |m〉b form an ONB for Ha ⊗Hb. For de�nitenessand 
onvenien
e we will implement the PT operation in the Fo
k or photon number basis,so that the transition ρ̂(ab) → ρ̂(ab)PT is de�ned by,

〈n′
m

′ |ρ̂(ab)PT |n,m〉 ≡ 〈n′
,m|ρ̂(ab)|n,m′〉. (2.28)Then we easily �nd

Tr (ρ̂(ab)PT â†j âk b̂†lb̂m) = Tr (ρ̂(ab)â†j âkb̂†mb̂l). (2.29)The key point here is that in the Fo
k basis the operators b̂, b̂† are represented by realmatri
es, so the transposition operation for the matrix of b̂†lb̂m 
oin
ides with hermitian
onjugation. This result will be very useful in the sequel [227, 228℄.
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al photon statisti
s and entanglement2.4 Conversion of non
lassi
ality into entanglement � theBeamsplitterWe begin by re
alling the a
tion of a general linear lossless opti
al element on any inputstate of two mode a-b radiation �eld. Su
h an element is determined by some matrix
u(θ, φ, η) of the unitary unimodular groups SU(2) [326℄,

u(θ, φ, η) =

(

eiφ cos θ eiη sin θ

−e−iη sin θ e−iφ cos θ

) (2.30)[More generally, in
luding an overall phase, we have a matrix of U(2)℄. The a
tion of thisopti
al element or gadget on the mode operators is by unitary operator U(θ, φ, η) on thetwo-mode Hilbert spa
e Ha ⊗Hb :
U(θ, φ, η)

(

â

b̂

)

U(θ, φ, η)−1 = u(θ, φ, η)

(

â

b̂

)

. (2.31)
U(θ, φ, η) 
an be written in the following form

U(θ, φ, η) = e−i(φ−η)L̂3e−iθL̂2e−i(φ+η)L̂3 , where

L̂2 =
1

2i
(â†b̂− âb̂†),

L̂3 =
1

2
(â†â− b̂†b̂). (2.32)Su
h a transformation preserves the 
anoni
al 
ommutation relations. The 
ase of 50:50beamsplitter (B-S) 
orresponds to θ = π/4, φ = η = 0, with U0 = e−i π

4
L̂2 for the
orresponding unitary operator, in whi
h 
ase the mode operators transform as

U0âU0
−1 =

1√
2
(â+ b̂) , U0b̂U0

−1 =
1√
2
(b̂− â) ,

U0
−1âU0 =

1√
2
(â− b̂) , U0

−1b̂U0 =
1√
2
(b̂+ â) . (2.33)We will use only su
h a B-S for the purpose of demonstration, but our results hold forthe general U(2) beamsplitter. In Fig. (2.1) we give a s
hemati
 depi
tion of the a
tionof a 50:50 beamsplitter.
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â

b̂

b̂−â√
2

â+b̂√
2

Figure 2.1: The a
tion of a 50:50 beamsplitter on the mode operators.2.5 The 
ase of phase-insensitive non
lassi
alityIn this Se
tion we demonstrate through sele
ted tests, the equivalen
e of phase-insensitivenon
lassi
ality at the input to the violation of positivity under partial transpose for theoutput state. We follow our �rst strategy, Eq. (2.25), to demonstrate the equivalen
e.Let us take the input state to be in the produ
t form,
ρ̂
(ab)
in = ρ̂(a) ⊗ |0〉bb〈0|, (2.34)with the b-mode in the va
uum state. After passing through the beamsplitter, we havethe output state
ρ̂
(ab)
out = U0ρ̂

(ab)
in U−1

0 . (2.35)We now perform the PT operation on the state ρ̂(ab)
out leading to operator ρ̂(ab)PT

out , and testfor its positive semide�niteness. Making the 
hoi
e
Â =

N
∑

n=0

cnâ
nb̂n, (2.36)
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lassi
al photon statisti
s and entanglementand taking the expe
tation value of Â†Â with respe
t to the partially transposed outputstate, we have
Tr(ρ̂

(ab)PT
out Â†Â) =

N
∑

n,m=0

c ∗mcnTr(ρ̂
(ab)PT
out â†mânb̂†mb̂n). (2.37)The expe
tation values of operators on the partially transposed state 
an now be relatedto expe
tation values of operators on ρ̂(a), i.e.,

Tr(ρ̂
(ab)PT
out â†mânb̂†mb̂n) = Tr(ρ̂

(ab)
out â

†mânb̂†nb̂m)

= Tr(ρ̂
(ab)
in U−1

0 â†mânb̂†nb̂mU0)

=
1

22m+2n
Tr(ρ̂

(ab)
in (â† − b̂†)

m
(â− b̂)

n
(â† + b̂†)

n
(â+ b̂)

m
)

=
1

22m+2n
Tr(ρ̂(a)â†(m+n)â(m+n)). (2.38)Here we have used the fa
t that the b-mode is in the ground state initially. Thus we have

Tr(ρ̂
(ab)PT
out Â†Â) =

N
∑

n,m=0

c ∗mcnTr(ρ̂
(ab)PT
out â†mânb̂†mb̂n)

=

N
∑

n,m=0

c ∗m
22m

cn
22n

Tr(ρ̂(a)â†(m+n)â(m+n))

=
N
∑

n,m=0

c ∗m
22m

cn
22n

γm+n(ρ̂(a))

=

N
∑

n,m=0

c ∗m
22m

cn
22n

M (N)
mn (ρ̂(a)), (2.39)whi
h implies that ifM (N)(ρ̂(a)) 6≥ 0, then de�nitely ρ̂(ab)PT
out 6≥ 0. Similarly for the 
hoi
e

Â =

N
∑

n=0

dnâ
(n+1)b̂n, (2.40)
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s and entanglementwe have
Tr(ρ̂

(ab)PT
out Â†Â) =

N
∑

n,m=0

d ∗
mdnTr(ρ̂

(ab)PT
out â†(m+1)â(n+1)b̂†(m+1)b̂n)

=

N
∑

n,m=0

d ∗
m

22m

dn

22n
Tr(ρ̂(a)â†(m+n+1)â(m+n+1))

=
N
∑

n,m=0

d ∗
m

22m+1

dn

22n+1
γm+n(ρ̂(a))

=
N
∑

n,m=0

d ∗
m

22m+1

dn

22n+1
M̃ (N)

mn (ρ̂(a)), (2.41)whi
h implies that if M̃ (N)(ρ̂(a)) 6≥ 0, then de�nitely ρ̂(ab)PT
out 6≥ 0. Thus if the input inthe a-mode ρ̂(a) possesses any form of phase-insensitive non
lassi
ality, the output of thebeamsplitter is NPT entangled. In parti
ular if the input is antibun
hed, the output isNPT entangled.2.6 The 
ase of general non
lassi
al PNDConsider a state diagonal in the Fo
k basis whi
h is 
ompletely determined by its PNDprobabilities {p(n)},

ρ̂
(a)
D =

∞
∑

n=0

p(n)|n〉〈n| . (2.42)Now pass the two-mode state
ρ̂
(ab)
in = ρ̂

(a)
D ⊗ |0〉bb〈0| , (2.43)through a beamsplitter. The output two-mode state is

ρ̂
(ab)
out = U0ρ̂

(a)
in U0

−1 = U0

∞
∑

n=0

p(n)

n!
(â†)

n|0, 0〉〈0, 0|(â)nU0
−1

=
∞
∑

n=0

p(n)

2nn!
(â† + b̂†)

n|0, 0〉〈0, 0|(â + b̂)
n

=

∞
∑

n=0

p(n)n!

2n

n
∑

r,s=0

|r, n − r〉〈s, n− s|
√

r!(n− r)!s!(n − s)!
. (2.44)
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Chapter 2. Non
lassi
al photon statisti
s and entanglementThe general matrix element of this density matrix is
〈n′
,m

′ |ρ̂(ab)
out |n,m〉 = δn′+m′ ,n+m

(n+m)!p(n +m)

2n+m
√
n′ !m′ !n!m!

. (2.45)The partially transposed output state is given by
ρ̂
(ab)PT
out =

∞
∑

n=0

p(n)n!

2n

n
∑

r,s=0

|r, n − s〉〈s, n− r|
√

r!(n− r)!s!(n − s)!
, (2.46)therefore the matrix elements of ρ̂(ab)PT

out are given by
〈n′
,m

′ |ρ̂(ab)PT
out |n,m〉 = δn′+m,n+m′

qn+m′

2n+m′√
n′ !m′ !n!m!

= δn′−m′ ,n−m

qn+m′

2n+m′√
n′ !m′ !n!m!

. (2.47)We note that ρ̂(ab)PT
out 
ommutes with the di�eren
e operator N̂a − N̂b, i.e.,

(N̂a − N̂b) ρ̂
(ab)PT
out = ρ̂

(ab)PT
out (N̂a − N̂b)

=
∞
∑

n=0

p(n)n!

2n

n
∑

r,s=0

(s+ r − n)|r, n − s〉〈s, n− r|
√

r!(n− r)!s!(n − s)!
. (2.48)Thus the operator ρ̂(ab)PT

out is simply a dire
t sum of operators, ea
h spe
i�ed by the energydi�eren
e δ. Thus δ 
an be employed to label these invariant subspa
es :
ρ̂
(ab)PT
out =

∑

δ

⊕ρ̂(ab)PT (δ)
out . (2.49)A test for entanglement would be to look for violation of positivity in any of thesesubspa
es.It is 
lear that δ 
an take both negative and positive values. We de�ne δ to bepositive if the b-mode has more number of photons. The matrix elements of ρ̂(ab)PT

out inthe subspa
e spe
i�ed by δ is given by
〈n′
, n

′
+ δ|ρ̂(ab)PT

out |n, n+ δ〉 = 〈n′
+ δ, n

′ |ρ̂(ab)PT
out |n+ δ, n〉

=
qn+n′+δ

2n+n′+δ
√

n
′
!(n

′
+ δ)!n!(n + δ)!

. (2.50)With a slight modi�
ation of notation let us denote by ρ̂(ab)PT (δ)
out the restri
tion of ρ̂(ab)PT

outto the subspa
e N̂a − N̂b = δ ≥ 0, and by ρ̂(ab)PT (−δ)
out the restri
tion to N̂b − N̂a = δ ≥ 0.67



Chapter 2. Non
lassi
al photon statisti
s and entanglementWith the de�nition of the matrix elements, it is easy to see that the operators ρ̂(ab)PT (δ)
outand ρ̂(ab)PT (−δ)

out for a given 
hoi
e of δ are
ρ̂
(ab)PT (δ)
out =

∑

n,n′

qn+n
′
+δ|n

′
, n

′
+ δ〉〈n, n + δ|

2n+n′+δ
√

n′ !(n′ + δ)!n!(n + δ)!
,

ρ̂
(ab)PT (−δ)
out =

∑

n,n′

qn+n′+δ|n
′
+ δ, n

′〉〈n+ δ, n|
2n+n′+δ

√

n
′
!(n

′
+ δ)!n!(n + δ)!

. (2.51)With the appropriate 
hoi
es of basis ve
tors, both of them are given by
ρ̂
(ab)PT (±δ)
out = diag

(

1

2n
′
+ δ

2

√

n′ !(n′ + δ)!

)

×


















qδ qδ+1 qδ+2 .. qδ+N .

qδ+1 qδ+2 qδ+3 .. qδ+N+1 ....
qδ+N qδ+N+1 qδ+N+2 .. qδ+2N .... ...



















×

diag

(

1

2n+ δ
2

√

n!(n + δ)!

)

. (2.52)
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Chapter 2. Non
lassi
al photon statisti
s and entanglementIn parti
ular, for the 
hoi
e of δ = 0 and 1, we have
ρ̂
(ab)PT (0)
out = diag

(

1

2n′
n′ !

)

×


















q0 q1 q2 .. qN .

q1 q2 q3 .. qN+1 ....
qN qN+1 qN+2 .. q2N .... ...



















diag

(

1

2nn!

)

,

ρ̂
(ab)PT (1)
out = diag

(

1

2n′+ 1
2

√

n′ !(n′ + 1)!

)

×


















q1 q2 q3 .. qN+1 .

q2 q3 q4 .. qN+2 ....
qN+1 qN+2 qN+3 .. q2N+1 .... ...



















×

diag

(

1

2n+ 1
2

√

n!(n + 1)!

)

. (2.53)It is 
lear from Eqs. (2.52) and (2.53) that positivity of any ρ̂(ab)PT (δ)
out is subsumed inthe positivity of either ρ̂(ab)PT (0)

out or ρ̂(ab)PT (1)
out , depending on whether δ is even or odd,whi
h is in turn equivalent to the positivity of L(N) or L̃(N) for arbitrary N . Taking intoa

ount all N , we have the following equivalen
e

L(N) ≥ 0 and L̃(N) ≥ 0 ⇔ ρ̂
(ab)PT
out ≥ 0,

L(N) 6≥ 0 or L̃(N) 6≥ 0 ⇔ ρ̂
(ab)PT
out 6≥ 0. (2.54)Our 
on
lusions may be summarised in the following theorem :Theorem 2.3 With ρ̂(ab)

in = ρ̂
(a)
D ⊗ |0〉bb〈0| as input to a beamsplitter, the output two-mode state is NPT entangled if the phase-insensitive ρ̂(a)

D at the input is non
lassi
al. Ifthe output is PPT, then it is separable, and the input ρ̂(a)
D is 
lassi
al.It follows that PPT bound entangled state 
an never arise at the output of the beam-splitter in this situation. Stated di�erentlyTheorem 2.4 For states of the form ρ̂

(ab)
out = U0 (ρ̂

(a)
D ⊗ |0〉bb〈0|) U−1

0 , the partial trans-pose map proves to be a ne
essary and su�
ient test for entanglement. 69
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lassi
al photon statisti
s and entanglementProof : If ρ̂(ab)PT
out is not positive, then ρ̂(ab)

out is NPT and hen
e entangled. On the otherhand by the equivalen
e that we have established above if ρ̂(ab)PT
out is positive semide�nite,then both L(N) and L̃(N) are positive de�nite for arbitrary N , and hen
e ρ̂(ab)

in is 
lassi
alby Theorem (2.2). It follows that ρ̂(ab)
out is 
lassi
al, and hen
e separable.Corollary 2.1 For states of the form ρ̂

(ab)
out = U0 (ρ̂

(a)
D ⊗ |α〉bb〈α|) U−1

0 , where |α〉 is a
oherent state, partial transpose gives a ne
essary and su�
ient test for entanglement.That is, states of this form 
an never be PPT bound entangled.Proof : If ρ̂(a)
D was 
lassi
al, the output is 
lassi
al, and hen
e separable. On the otherhand if ρ̂(a)

D is non
lassi
al, the output is de�nitely NPT entangled, as may be seen by
arrying out partial transpose test in the b-mode with respe
t to the displa
ed Fo
k basisof the b-mode as 
ompared to the standard Fo
k basis in the earlier 
ase.The proof outlined above 
an be easily translated to the 
ase of general beamsplitterrepresented by an element of U(2), even though we have demonstrated the proof only inthe 
ase of the 50:50 beamsplitter. The result in this Se
tion is remarkable in the sensethat one has been able to relate matrix 
onditions on non
lassi
ality to matrix 
onditionson the violation of positivity under partial transpose in a transparent manner. This isa manifest example in 
ontinuous variable entanglement theory where partial transposehas proved to 
apture entanglement 
ompletely, in a non-Gaussian 
ontext.2.7 Non
lassi
al PND and distillable entanglementHaving produ
ed NPT entangled output, it is pertinent to ask if the output is distillable,NPT being a ne
essary 
ondition for distillability [45℄. In this Se
tion we demonstratethat ρ̂(ab)
out is distillable if the a-mode input state ρ̂(a)

D violates one of the three term lo
al
lassi
ality 
onditions. The strategy we use is the one outlined in [45℄, where distillabilityis de�ned in the following terms. A state ρ̂ is distillable if and only if, for some twodimensional proje
tors P , Q and for some number n, the 2 × 2 state P ⊗ Qρ̂⊗nP ⊗ Qis entangled. Su
h a de�nition is well motivated from the fa
t that for 2 × 2 systems,there are well de�ned proto
ols to distill entanglement from every entangled state [37℄.In our 
ase we show one 
opy distillability by proje
ting the output state ρ̂(ab)
out into anappropriate 2 × 2 subspa
e.Consider the following 2 × 2 dimensional proje
tors

P ⊗Q = (|n〉〈n| + |m〉〈m|)a ⊗ (|n+ δ〉〈n + δ| + |m+ δ〉〈m + δ|)b. (2.55)
70



Chapter 2. Non
lassi
al photon statisti
s and entanglementIn this 2 × 2 subspa
e, the partially transposed output reads as
P ⊗Q ρ̂

(ab)PT
out P ⊗Q = D

(

q2n+δ qn+m+δ

qn+m+δ q2m+δ

)

D, where

D =







1

2n+ δ
2

q

n!(n+ δ
2
)!

0

0 1

2m+ δ
2

q

m!(m+ δ
2
)!






. (2.56)Clearly the positivity of ρ̂(ab)PT

out in this parti
ular subspa
e is 
learly determined by thethree term 
lassi
ality 
ondition on the a-mode input state ρ̂(a)
D .Theorem 2.5 The output ρ̂(ab)

out = U0 (ρ̂
(a)
D ⊗ |0〉bb〈0|) U−1

0 is one-
opy distillable if ρ̂(a)
D ,fully spe
i�ed by the PND {p(n)}, violates any one of the lo
al three term 
lassi
ality
onditions.Though we have demonstrated distillability through the violation of a lo
al three term
lassi
ality 
onditions on {p(n)}, the issue of distillability is mu
h ri
her. There are stateswhi
h respe
t all lo
al three-term 
lassi
ality 
onditions, but are nevertheless non
lassi
alby violation of a higher order non
lassi
ality 
ondition, say a �ve term lo
al 
lassi
ality
ondition. Though su
h a violation would imply the violation of positivity of ρ̂(ab)

out , thisviolation is not 
aptured by a simple rank 2 state as earlier, indi
ating room for furtherexploration of the issue of distillability in the present 
ontext.2.8 Distillable entanglement from antibun
hingIn the previous Se
tion, we dis
ussed the issue of distillability arising from the violationof a 
lassi
ality 
ondition in {p(n)} whi
h is lo
al in n. In this Se
tion,we explore the possibility of distillable entanglement through the violation of three-term 
lassi
ality 
ondition in {γn}. Sin
e antibun
hing is a viable resour
e within 
ur-rent te
hnology, we explore the possibility of extra
ting distillable entanglement fromantibun
hing, violation of a 
lassi
ality 
ondition involving γn for n = 0, 1, 2. The proofis then extended to more general non
lassi
ality 
onditions involving three γn's. Ourstrategy is as follows. For a given ρ̂(a)
D , we initially assume that none of the three term
onditions on {p(n)} is violated. We show that su
h a state 
an never be antibun
hed.Hen
e at least one three term 
onditions in {p(n)} has to be violated for ρ̂(a)

D to beantibun
hed, implying distillable entanglement at the output.Our idea is to use the relation between the fa
torial moments {γn} and the PND71



Chapter 2. Non
lassi
al photon statisti
s and entanglementprobabilities {p(n)} stated in Eq. (2.13) :
γn =

∞
∑

n=0

(n+m)!

n!
p(n+m) =

∞
∑

n=0

qn+m

n!
. (2.57)It is easy to see that the most general {qn} whi
h meets all the three-term 
lassi
ality
onditions is

q0 = a, q1 = b, q2 = α1
b2

a
, q3 = α2α

2
1

b3

a2
, q4 = α3α

2
2α

3
1

b4

a3

. . . . . qn = αn−1α
2
n−1 · · ·αn−2

2 αn−1
1

bn

an−1
, · · · ,

a > 0, b > 0, αj ≥ 1, j = 1, 2, 3, · · · . (2.58)Clearly, b = 0 if and only if ρ̂(a)
D = |0〉〈0|, and all the αj's are unity for a 
oherent state.It is readily veri�ed that all the lo
al three-term 
onditions are satis�ed. It is useful tode�ne the sequen
e of numbers {λn} as fun
tions of the α's :
λ0 = 1 λ1 = α1, λ2 = α2α

2
1, · · · ,

λn = (αnα
2
n−1 · · ·αn−1

2 αn
1 ), · · · (2.59)With this de�nition, it is easy to see that the set of inequalities on {λn}

λn−r+1λr−1 ≥ λn−rλr (2.60)is equivalent to the set of all three-term 
lassi
ality 
onditions on {qn}. We 
an nowwrite
γ0γ2 − γ2

1 =

∞
∑

n=0

bn+2

an

[

(λn+1 − λn)

n!
+

∑

r< n
2

(λn−r+1λr−1 − λn−rλr)

(

1

(n− r)!r!
− 1

(n− r + 1)!(r − 1)!

)



 . (2.61)Clearly γ0γ2 − γ2
1 is positive if all the lo
al three term 
onditions are satis�ed. Thus astate 
annot satisfy all the lo
al three term 
lassi
ality 
onditions on {qn} and still beantibun
hed. If a PND is antibun
hed, it de�nitely violates at least one of the threeterm 
lassi
ality 
onditions. Hen
e the output generated from the beamsplitter from anantibun
hed ρ̂(a)

D is ne
essarily distillable.Theorem 2.6 The output ρ̂(ab)
out = U0 (ρ̂

(a)
D ⊗ |0〉bb〈0|) U−1

0 is distillable if ρ̂(a)
D , spe
i�ed72
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lassi
al photon statisti
s and entanglementby the PND {p(n)}, is antibun
hed.The proof 
an be extended along similar lines to demonstrate distillable entanglementfrom violation of any three-term 
lassi
ality 
ondition in the fa
torial moments {γn}.2.9 Bounds on the EOFIt is well known that determining the EOF of a given state is an extremely di�
ultproblem even in the �nite dimensional 
ase. Only in very spe
ial 
ases has one beenable to solve for a 
losed form expression [67, 69�72℄ for EOF. In the 
ontinuous variable
ontext progress has been a
hieved only in the 
ase of two-mode Gaussian states [70, 327℄.The issue of establishing bounds on the EOF for �nite dimensional systems has beendis
ussed in [76, 328�330℄. In [328℄ the possibility of establishing bounds on EOF dire
tlyfrom experiments has been dis
ussed. An analyti
 expression for a lower bound on theentanglement of formation for arbitrary m⊗ n dimensional systems is given in [76, 325℄.In [330℄ an improvement over the lower bound in [76, 325℄ is demonstrated. However thisimprovement holds only in the 
ontext of 4 ⊗ n dimensional systems.Our motivation here is to establish simple lower and upper bounds on the EOFon a 
lass of entangled non-Gaussian states that 
ould arise from a non
lassi
al PND.Our guiding prin
iple tool is the fa
t that the average entanglement does not in
reaseunder LOCC [37℄. Su
h an approa
h has already been used to estimate entanglement in
ontinuous variable states [262, 331℄. In [262℄ the estimation was done at the phase spa
elevel, and in [331℄ at the 
on�guration spa
e level. However the estimation in [331℄, beingtied to the Wootters formula, has a drawba
k that it 
annot estimate more than one ebitof entanglement, even if more was present. We work with the Fo
k basis sin
e it seemsto be the most appropriate 
hoi
e in the present 
ontext.Our s
heme of things is as follows. By restri
ting ourselves to lo
al Von Neumannmeasurements we evaluate the entanglement in ea
h of the orthogonal subspa
es. Thesesubspa
es are the probable out
omes of the lo
al measurements, the average gives us alower bound on the entanglement of formation. That we are able to 
al
ulate the entan-glement in ea
h of these subspa
es is ensured by a 
areful 
hoi
e of lo
al measurements,so as to ensure that the out
ome is a pure entangled state. We explore this pro
edure�rstly on a �nite dimensional entangled state generated from a mixture of the groundstate and the nth Fo
k state by 
oupling to an auxiliary mode in the ground state andpassing through a 50:50 beamsplitter. In the pro
ess we expli
itly demonstrate that we
an distill more amount of entanglement for the 
ases n > 6 than given by the lowerbound on EOF in [76℄, whi
h uses the Terhal-Vollbre
t formula [69℄, and is 
al
ulated73
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lassi
al photon statisti
s and entanglementusing the tra
e norm of the state subje
ted to either partial transpose or the realignment
riterion [75, 332, 333℄. We then go on to establish bounds on the EOF of a 
lass ofgenuine 
ontinuous variable entangled states generated from a PND 
orresponding to aspe
ial superposition of 
oherent states, where we are able to provide an analyti
 expres-sion. That we are able to do so, is again due to a 
areful 
hoi
e of lo
al measurementobservables. Su
h an evaluation does not involve any optimisation whatsoever in termsof the 
hoi
e of the lo
al measurements involved or of additional improvements based on
lassi
al 
ommuni
ation if possible, but it is nevertheless a reasonable estimate from amore pra
ti
al point of view when one is dealing with su
h states. In the more general
ontext, we outline a possible method whi
h uses the Terhal-Vollbre
t formula [69, 76℄,to establish lower bounds on the EOF. Before pro
eeding any further, it is appropriateto dis
uss negativity in our 
ontext, whi
h will prove useful in our analysis later.2.9.1 NegativityAs noted in Se
tion 1.6.4, the logarithmi
 negativity E(ρ̂AB) of a state ρ̂AB is [75℄
E(ρ̂AB) = log2||ρ̂PT

AB ||, (2.62)where ||ρ̂PT
AB || is the tra
e norm of ρ̂PT

AB :
||ρ̂PT

AB || = 1 + 2N (ρ̂PT
AB). (2.63)

N (ρ̂PT
AB) is the absolute value of the sum of the negative eigenvalues of ρ̂PT

AB, the negativityof ρ̂AB . For a state of the form
ρ̂
(ab)
out = U0 ρ̂

(a)
D ⊗ |0〉bb〈0|U−1

0 , (2.64)where U0 
orresponds to the unitary a
tion of a 50:50 beamsplitter, we have already seenin Eq. (2.49) that the partially transposed matrix ρ̂
(ab)PT
out splits into a dire
t sum ofoperators, labelled by δ, the number di�eren
e :

ρ̂
(ab)PT
out =

∑

δ

⊕ρ̂(ab)PT (δ)
out . (2.65)Thus, for a mixture ρ̂(a)

D trun
ated at the kth Fo
k state,
ρ̂
(a)
D =

k
∑

n=1

p(n)|n〉〈n|, (2.66)
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lassi
al photon statisti
s and entanglementthe operator ρ̂(ab)PT
out splits into a dire
t sum of �nite number of operators,

ρ̂
(ab)PT
out =

+k
∑

δ=−k

⊕ρ̂(ab)PT (δ)
out . (2.67)The negativity is therefore simply given by

||ρ̂(ab)PT
out || =

+k
∑

δ=−k

||ρ̂(ab)PT (δ)
out || = ||ρ̂(ab)PT (0)

out || + 2
+k
∑

δ=1

||ρ̂(ab)PT (δ)
out ||. (2.68)Ea
h of the ρ̂(ab)PT (δ)

out is seen to be a matrix whose entries below the anti-diagonal vanish,the dimension of the matrix itself de
reasing with in
reasing δ. Thus one sees immediatelythat it is only those ρ̂(ab)PT (δ)
out 's for whi
h the 
orresponding L(k) or L̃(k) (appropriate forthe trun
ated form) fails to be positive, 
ontribute to the negativity of ρ̂(ab)PT

out . For thesimple example of an entangled state generated from a non
lassi
al PND 
onsisting of amixture of the ground state and the nth Fo
k state at the input,
ρ̂(a) = (1 − p)|0〉〈0| + p|n〉〈n|, (2.69)the output state ρ̂(ab)

out is
ρ̂
(ab)
out = (1 − p)|00〉〈00| + p

2n

n
∑

r,s=0

n!|r, n − r〉〈s, n− s|
√

r!s!(n− r)!(n − s)!
. (2.70)For this state the negativity is 
al
ulated to be

||ρ̂(ab)PT
out || = f(p)

=
p

2n





n
∑

r=0

√

√

√

√

(

n

r

)





2

− p

2n−1
+

√

(1 − p)2 + 4
( p

2n

)2
. (2.71)We note that for this kind of mixture, the realigned norm [332, 333℄ is same as negativity :

||R(ρ̂
(ab)
out )|| = ||ρ̂(ab)PT

out || = f(p). (2.72)
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Chapter 2. Non
lassi
al photon statisti
s and entanglementHere R(ρ̂
(ab)
out ) is the realigned [332, 333℄ version of ρ̂out. This 
an be seen for examplefrom the matrix elements of R(ρ̂

(ab)
out ) :

(R(ρ̂
(ab)
out ))ij,kl = (1 − p)δ0,i+kδi+k,j+l +

p

2n
δn,i+kδi+k,j+l

√

√

√

√

(

n

k

)(

n

l

)

. (2.73)We will use Eq. (2.72) in evaluating bounds on the entanglement of formation of statesof this kind.2.9.2 Example aIn this Se
tion, we dis
uss the bounds on entanglement of formation of the states alreadyde�ned in Eq. (2.70). It is also useful to note that the negativity f(p) of this stateis a monotoni
ally in
reasing 
onvex fun
tion of p. The monotoni
ity 
an be seen, forinstan
e, from physi
al requirements su
h as avoiding the possibility of generating moreentanglement by mixing lesser amount of a non
lassi
al state with the ground state. The
onvexity of the fun
tion f(p) follows from the 
onvexity of negativity [75℄. Given thenegativity of a two-mode state, a lower bound on the entanglement of formation 
an beevaluated [76℄. In the example we have 
onsidered this lower bound is given by
El1(ρ̂

(ab)
out ) ≥ H2(γ(f(p))) + (1 − γ(f(p)))log2(n),

f(p) ∈ [1,
4n

n+ 1
],

≥ log2(n)

n− 1
(f(p) − (n+ 1)) + log2(n + 1),

f(p) ∈ [
4n

n+ 1
, (n+ 1)],where

γ(f(p)) =
1

(n+ 1)2
[
√

f(p) +
√

n(n+ 1 − f(p))]
2
. (2.74)Note that for n = 1 the Wootters formula already gives the exa
t entanglement of for-mation.A simple upper bound on the entanglement of formation for states (2.70) is obtainedby evaluating the expe
ted entanglement in the spe
tral basis of ρ̂out, and we have

Eup(ρ̂
(ab)
out ) = − p

2n

[

n
∑

r=0

(

n

r

)

log2

(

n

r

)

− 2nn

]

. (2.75)
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lassi
al photon statisti
s and entanglementWe now give a simple method whi
h gives us an alternative lower bound on EOF forthese states. Our method is based on the non-in
rease of EOF under LOCC. Our 
hoi
eof the lo
al measurement observable for both Ali
e's and Bob's side is of the form
Ô = λ0|0〉〈0| + λn

n
∑

j=1

|j〉〈j|

= λ0P0 + λnPn. (2.76)For brevity, we denote the 
ollapse of the state into the subspa
e P0 as the event 0c andthe 
ollapse into the subspa
e Pn by nc, where c 
ould be either Ali
e or Bob. In su
ha s
enario, there are four possible out
omes for this lo
al measurement done on bothAli
e's and Bob's side: 0a0b, 0anb, na0b, and nanb. Denoting the probability of possibleout
omes by pij = Tr(ρ̂
(ab)
out Pi ⊗ Pj), with i and j denoting the possible out
omes onAli
e's and Bob's sides, we have

p0a0b
= (1 − p),

p0anb
= pna0b

=
p

2n
,

pnanb
=

p

2n

n−1
∑

r=1

(

n

r

)

= p

(

1 − 1

2n−1

)

. (2.77)We end up with a produ
t state in the out
omes 
orresponding to 0a0b, 0anb, and na0b,however we end up with a pure entangled state
ρ̂nanb
out =

1

2n−1

n−1
∑

r,s=1

n!|r, n− r〉〈s, n− s|
√

r!s!(n− r)!(n− s)!
. (2.78)
orresponding to the nanb out
ome. Hen
e the average entanglement of ρ̂out subje
tedto su
h a lo
al measurement s
heme is simply given by

El2(ρ̂
(ab)
out ) = p

(

1 − 1

2n−1

)

E(ρ̂nanb
out )

= −p
(

1 − 1

2n−1

)

[

n−1
∑

r=1

(

1

2n − 2

(

n

r

))

log2

(

1

2n − 2

(

n

r

))]

. (2.79)For the 
ases n = 1 and n = 2, su
h a distillation pro
edure does not yield any entan-glement. However for the 
ases n ≥ 3, it is easy to see that the lower bound given by
El2(ρ̂

(ab)
out ) performs marginally better than El1(ρ̂

(ab)
out ) for small values of p. This 
an beseen, for instan
e, by the fa
t that El2(ρ̂

(ab)
out ) as a fun
tion of p is linear monotoni
ally77
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Figure 2.2: The 
ase n = 6. Line 3 denotes the upper bound Eup(ρ̂out), line 2 the lower bound
El2(ρ̂out), and the 
urve 1 the lower bound El1(ρ̂out)in
reasing in p, however El1(ρ̂

(ab)
out ) is a monotoni
ally in
reasing 
onvex fun
tion of f(p)by 
onstru
tion, while f(p) is a monotoni
ally in
reasing 
onvex fun
tion of p. Thus

El1(ρ̂
(ab)
out ) is a monotoni
ally in
reasing 
onvex fun
tion of p. This simply means that forsmall values of p, El2(ρ̂

(ab)
out ) > El1(ρ̂

(ab)
out ), the range of values of p for whi
h this is true be-ing determined by n. What we a
tually observe is that for n = 6, El2(ρ̂

(ab)
out ) > El1(ρ̂

(ab)
out )for most of values of p ex
ept in a small region 
lose to 1. However for n = 7 we observethat El2(ρ̂

(ab)
out ) > El1(ρ̂

(ab)
out ) for all values of p. This is illustrated in Figure (2.2) andFigure (2.3). Another useful observation is that El2(ρ̂

(ab)
out ) tends to Eup(ρ̂

(ab)
out ) for larger

n. This 
an be seen from the fa
t that the mixture in ρ̂(ab)
out is almost bi-orthogonal forlarge n, with the overlap in ea
h of the lo
al modes going as 1

2n , indi
ating that we 
andistill as mu
h of the entanglement that is present [74℄.2.9.3 Example bWe now establish bounds on another 
lass of 
ontinuous variable states by extending theideas of the previous example. These are states that arise from phase averaging of statesof the form
|Ψn(α)〉 =

1√
N

n−1
∑

r=0

(ωn)r|(ωn)rα〉, (2.80)
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Figure 2.3: The 
ase n = 7. Line 3 denotes the upper bound Eup(ρ̂out), line 2 the lower bound
El2(ρ̂out), and the 
urve 1 the lower bound El1(ρ̂out)where ωn is the primitive nth root of unity and |(ωn)rα〉 is the 
oherent state with dis-pla
ement (ωn)rα, and N is the appropriate normalisation. These states 
an be generatedthrough nonlinear opti
al pro
esses [180, 181℄. With the use of the identity

n−1
∑

k=0

(ωn)jk = n if j ≡ 0modn,

= 0 otherwise, (2.81)we 
an rewrite the state as
|Ψn(α)〉 =

1√
N

∞
∑

k=0

αnk+n−1

√

(nk + n− 1)!
|nk + n− 1〉. (2.82)Denoting |α|2 by λ, the state after phase averaging is

ρ̂
(a)
D (λ, n) =

1

N

∞
∑

k=0

λnk+n−1

(nk + n− 1)!
|nk + n− 1〉〈nk + n− 1|. (2.83)
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Chapter 2. Non
lassi
al photon statisti
s and entanglementOn 
ombining this state with the ground state of an auxiliary b-mode and then passingthrough a 50:50 beamsplitter, we have
ρ̂
(ab)
out (λ, n) =

1

N

∞
∑

k=0

λnk+n−1

(nk + n− 1)!

1

2nk+n−1
×

nk+n−1
∑

r,s=0

(nk + n− 1)!|r, nk + n− 1 − r〉〈s, nk + n− 1 − s|
√

r!s!(nk + n− 1 − r)!(nk + n− 1 − s)!
. (2.84)The lo
al measurement observable we 
hoose on both Ali
e's and Bob's side is of theform

Ô =

∞
∑

κ=0

γκ

n−1
∑

r=0

|nκ+ r〉〈nκ+ r|. (2.85)For out
omes κ1, κ2 respe
tively on Ali
e's and Bob's side, the resultant state uptonormalisation is given by
Pκ1 ⊗ Pκ2 ρ̂

(ab)
out (λ, n)Pκ1 ⊗ Pκ2 , where

Pκ1 ⊗ Pκ2 =
n−1
∑

r=0

|nκ1 + r〉〈nκ1 + r| ⊗
n−1
∑

r=0

|nκ2 + r〉〈nκ2 + r|. (2.86)The total number of photons in this subspa
e 
an vary from n(κ1 + κ2) to n(κ1 + κ2) +

2(n− 1) The fa
t that ρ̂(a)
D (λ, n) has nonvanishing proje
tors only for photon numbers ofthe form nk + n− 1 implies

n(κ1 + κ2) ≤ nk + n− 1 ≤ n(κ1 + κ2) + 2(n − 1) (2.87)for the permitted values of k, for given κ1, κ2. It is easy to see that the only possiblesolution to this 
onstraint is k = κ1+κ2. This means that for a given out
ome κ1, κ2, thepure entangled state in ρ̂out(λ, n) 
orresponding to nk+ n− 1 with k = κ1 + κ2 photonsis singled out. Now for a �xed total number of photons nk + n − 1, the possible valuesfor (κ1, κ2) are (k, 0), (k − 1, 1), · · · , (0, k) Given the out
omes 
orresponding to γκ1 onAli
e's side and γκ2 on Bob's side, the photon number on Ali
e's side 
an run from nκ1to nκ1 + (n − 1) and similarly on Bob's side run from nκ2 + (n − 1) to nκ2. Thus theresultant state 
orresponding to the out
ome γκ1 on Ali
e's side and γκ2 on Bob's side isthe pure state
|ψ(κ1, κ2)〉 ∝

n−1
∑

r=0

√

(n(κ1 + κ2) + n− 1)!
√

(nκ1 + r)!(nκ2 + n− 1 − r)!
|nκ1 + r, nκ2 + n− 1 − r〉.(2.88)80



Chapter 2. Non
lassi
al photon statisti
s and entanglementThus, for a given k, the possible states after the lo
al measurement are
|ψ(0, k)〉, |ψ(1, k − 1)〉, · · · , |ψ(k, 0)〉. (2.89)Computation of average entanglement after the measurement, whi
h is by de�nition theentanglement distilled by this proto
ol, is fa
ilitated by the following fa
ts. Firstly, ea
h

|ψ(κ1, κ2)〉 is already in the S
hmidt form. Se
ondly, these |ψ(κ1, κ2)〉's are biorthogonal[334℄. Thus the entanglement distilled is
Eav(nk + n− 1) =

−
nk+n−1
∑

r=0

[

1

2nk+n−1

(

nk + n− 1

r

)]

×

log2

[

1

2nk+n−1

(

nk + n− 1

r

)]

+

k
∑

r=0

[

1

2nk+n−1

n−1
∑

d=0

(

nk + n− 1

nr + d

)]

×

log2

[

1

2nk+n−1

n−1
∑

d=0

(

nk + n− 1

nr + d

)]

. (2.90)Thus the total average entanglement harvested over all possible photon number is
El(ρ̂

(ab)
out (λ, n)) =

1

N

∞
∑

k=0

λnk+n−1

(nk + n− 1)!
Eav(nk + n− 1). (2.91)Clearly El(ρ̂

(ab)
out (λ, n)) is a lower bound on the EOF of ρ̂(ab)

out (λ, n).A simple upper bound on the entanglement of formation of ρ̂(ab)
out (λ, n) is obtained byevaluating the average entanglement in its spe
tral basis, and is given by

Eup(ρ̂
(ab)
out (λ, n)) =

1

N

∞
∑

k=0

λnk+n−1

(nk + n− 1)!
E(nk + n− 1),where

E(nk + n− 1) =

−
nk+n−1
∑

r=0

[

1

2nk+n−1

(

nk + n− 1

r

)]

log2

[

1

2nk+n−1

(

nk + n− 1

r

)]

. (2.92)In Figure (2.4), we plot the lower and upper bounds El(ρ̂
(ab)
out (λ, n)) and 81
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Figure 2.4: The 
urves 1 and 2 
orrespond to the lower and upper bounds for the 
ase n = 2,the 
urves 3 and 4 
orrespond to the lower and upper bounds for the 
ase n = 3, and the 
urves
5 and 6 
orrespond to the lower and upper bounds for the 
ase n = 4

Eup(ρ̂
(ab)
out (λ, n)) for the 
ases n = 2, n = 3, and n = 4.We now dis
uss a more general method whi
h establishes lower bounds using LOCCand the Terhal-Vollbre
t formula. In most of the pra
ti
al situations su
h as in [312, 318,319, 322℄, the probabilities of the PND vanish for larger n. In su
h a 
ase, one 
an do atrun
ation to evaluate a lower bound based on [76℄.A trun
ation 
orresponds to a LOCC. To see this suppose the input on Ali
e's side is

ρ̂
(a)
D =

∞
∑

n=1

p(n)|n〉〈n|. (2.93)Let
Tr(ρ̂

(ab)
out Pk ⊗ Pk) = 1 − ǫ, where

Pk =

k
∑

i=0

|i〉〈i|. (2.94)Sin
e ǫ is a de
reasing fun
tion of k, we 
an 
hoose a value of k to a
hieve any small
82
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ǫ > 0. The trun
ated version of ρ̂(ab)

out is
ρ̂
(ab)(tr)
out =

1

1 − ǫ
(Pk ⊗ Pkρ̂

(ab)
out Pk ⊗ Pk). (2.95)The state ρ̂(ab)(tr)

out is the 0a0b out
ome 
orresponding to the measurement of the lo
alobservable
λ0

k
∑

i=0

|i〉〈i| + λk

∞
∑

i=k+1

|i〉〈i| (2.96)on both Ali
e's and Bob's side. Sin
e negativity is an entanglement monotone underLOCC [75℄, we have
N (ρ̂

(ab)PT
out ) ≥ (1 − ǫ)N (ρ̂

(ab)PT (tr)
out ). (2.97)A lower bound on the EOF of ρ̂(ab)

out is now simply given by
E(ρ̂

(ab)
out ) ≥ F (N (ρ̂

(ab)PT
out )) ≥ F [(1 − ǫ)N (ρ̂

(ab)(tr)
out )], (2.98)where F (.) is the Terhal-Vollbre
t formula [76℄. The last inequality follows from the fa
tthat F (.) is a monotoni
ally in
reasing fun
tion of its argument.2.10 Con
lusionsTo 
on
lude, we have demonstrated the e�e
tiveness of partial transpose in the study ofentanglement of a family of non-Gaussian 
ontinuous variable states. We have presentedpartial results on distillability of these states. We have demonstrated distillable entan-glement from violation of three term 
onditions both on {p(n)} and {γn}, parti
ularlyfrom an antibun
hed input. We have evaluated both upper and lower bounds on theentanglement of formation of a family of non-Gaussian 
ontinuous variable states. Wehave illustrated the possibility of going beyond the Terhal-Vollbre
t formula in estimatingentanglement through a 
areful 
hoi
e of lo
al observables to be measured. However, ouranalysis relies on partial transpose, and hen
e 
annot answer issues in respe
t of PPTbound entangled states.
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3Non
lassi
ality, Mandel 
lassi�
ation, andentanglement
3.1 Introdu
tionIn the pre
eding Chapter quantum opti
al non
lassi
ality in single-mode �elds was stud-ied from the perspe
tive of entanglement. In the 
ase of phase invariant states, the non-
lassi
ality was 
ompletely determined by the photon number distribution [170℄. Thiswas possible due to the 
onne
tion with the 
lassi
al Stieltjes moment problem [170, 324℄.It was shown that if a phase-invariant single-mode state is 
oupled to a se
ond mode inva
uum or some 
oherent state and then passed through a U(2) beamsplitter, the re-sulting two-mode output state shows NPT entanglement [27℄ pre
isely when the inputsingle-mode is quantum opti
ally non
lassi
al. The signatures of the two, non
lassi
alityand entanglement, 
oin
ided exa
tly [194℄.In this Chapter, we 
ontinue this exploration further. We begin with the study ofnon
lassi
ality of two-mode states and its potential to generate entanglement, our studybeing now restri
ted by the absen
e of results su
h as the result of the Stieltjes momentproblem. We begin with the des
ription of a single test, whi
h if su

essful, is able tosimultaneously establish both the non
lassi
ality and NPT entanglement of a given two-mode state. We then turn to Mandel matrix analysis of the two-mode �elds and show thatnon
lassi
ality at this level naturally separates into distin
t Types I and II, dependingon whether the sub-Poissonian statisti
s is visible or not at a single-mode level. We thenpresent three interesting examples of two-mode states to illustrate the idea. The �rst is astudy of two-mode states obtained in the previous Chapter from single-mode states, these
ond and third are independently 
onstru
ted. Along the way we develop a test at theMandel matrix level to see whether the beamsplitter a
tion on an initially non-entangledtwo-mode non
lassi
al state results in NPT entanglement, and apply it to the se
ond84



Chapter 3. Non
lassi
ality, Mandel 
lassi�
ation, and entanglementfamily of states. The third family is built upon the extensively studied squeezed va
uumstates for one and two modes, where we bring out some of their nonintuitive features. Weextend the method developed for single-mode states to two-mode states and 
onstru
tNPT entanglement tests to test for entanglement when a two-mode non
lassi
al state is
oupled to a third mode in va
uum and the result is passed through a `U(3) beamsplitter'.The dis
ussion and test is again at the Mandel matrix level and the test is illustratedwith two families of states as examples. We show the possibility of generating genuinetripartite entanglement from two-mode Mandel type non
lassi
ality. We then extend thenotion of Mandel's Q parameter to two modes. Based on the Mandel matrix 
onstru
t,the Mandel parameters Q1 and Q2 are introdu
ed to help di�erentiate the Type I andType II states and gauge their Mandel level non
lassi
ality, and interesting possibilitiesare dis
ussed.3.2 Two-mode �elds � Entanglement test, and Mandel 
las-si�
ationOur emphasis here is in new features en
ountered in the states of a two-mode system.The modes will be 
alled the a-mode and the b-mode, with operator pairs â, â† and b̂, b̂†obeying the 
ommutation relations in Eq. (1.95). Some general points 
an be made rightaway.Sin
e we have a two-mode system, apart from examining whether a given state ρ̂(ab)is quantum opti
ally (QO-
l) or quantum opti
ally non
lassi
al (QO-non
l), we 
an alsoask whether it is entangled, and if so whether it is NPT type, distillable, et
. Thelatter questions be
ome meaningful in the two-mode 
ase. In fa
t we will develop aninteresting 
riterion whi
h 
an be witness simultaneously for QO-non
lassi
ality as wellas entanglement of the NPT type.With respe
t to the a
tion of the beamsplitters representing general elements u ∈ U(2)in the manner of Eq. (2.31), we note the following. A
tion by a beamsplitter is bothnonlo
al, in that the modes a and b get linearly mixed, and passive, as N̂a + N̂b is
onserved; sin
e annihilation operators go to linear 
ombinations of annihilation operatorsunder this a
tion, 
oherent states go into 
oherent states. Convex sums of 
oherentstates go to 
onvex sums of 
oherent states, and thus su
h a
tion preserves the QO-
l or QO-non
l nature of a state ρ̂(ab) [335℄. On the other hand, while a QO-
l statehas no entanglement, a QO-non
l state may possess entanglement or may be separable:entangled states are a proper subset of QO-non
l states. Thus beamsplitter a
tion 
an
ause a transition from a QO-non
l separable state to a QO-non
l entangled state, in85



Chapter 3. Non
lassi
ality, Mandel 
lassi�
ation, and entanglementwhi
h 
ase we 
an further enquire into the nature of the entanglement so obtained. Thiswas in fa
t the 
ase in the transition from ρ̂
(ab)
in of Eq. (2.43) to ρ̂(ab)

out of Eq. (2.44).As mentioned earlier, there is no generalisation of the results of the 
lassi
al Stieltjesmoment problem whi
h 
an be used for two-mode systems, their PND's, et
. Thereforeto study aspe
ts of two-mode non
lassi
ality to an admittedly limited degree.3.2.1 Non
lassi
ality and entanglement � a dire
t 
onne
tionA general two-mode state ρ̂(ab) possesses the diagonal 
oherent state representation
ρ̂(ab) =

∫ ∫

d2za
π

d2zb
π

φ(za, zb)|za, zb〉〈za, zb| (3.1)in terms of the two-mode (produ
t) 
oherent states |za, zb〉. Of interest to us is a testwhi
h simultaneously establishes both QO-non
lassi
ality of ρ̂(ab) and its NPT entangle-ment.To this end, we set up an in�nite matrix N̂ with operator entries N̂jk,lm where j, k, l,mrun over the range 0, 1, 2, · · · independently. The pair jk denotes a `row index' and takesin sequen
e the values 00; 10, 01; 20, 11, 02; 30, 21, 12, 03; · · · . Similarly the `
olumn index'pair also takes these same values in the same sequen
e. We de�ne the entries of N̂ thus :
N̂jk,lm = N̂ †

lm,jk = â†j b̂†kâlb̂m. (3.2)Clearly N̂ =
((

N̂jk,lm

)) is a `hermitian' matrix of operator entries. Note that theseentries are in normal-ordered form. Starting with the diagonal representation (3.1), forany set of 
omplex 
oe�
ients {cjk} and the asso
iated positive semide�nite operator
∑

jk,lm c∗jkN̂jk,lmclm, we always have :
Tr(ρ̂(ab)

∑

jk,lm

c∗jkN̂jk,lmclm) = Tr(ρ̂(ab)(
∑

jk

cjkâ
j b̂k)†(

∑

lm

clmâ
lb̂m))

=

∫ ∫

d2za
π

d2zb
π

φ(za, zb)|
∑

lm

clmz
l
az

m
b |2 ≥ 0. (3.3)This is be
ause we have here the expe
tation value of a positive semide�nite hermitianoperator. On the other hand, if we pass to the partial transpose ρ̂(ab)PT of ρ̂(ab), byperforming transposition only in the spa
e of states of the b-mode, this will amount toeverywhere repla
ing b̂†j b̂m by b̂†mb̂j, sin
e in the Fo
k basis b̂† and b̂ are real [27, 57, 227℄.
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Chapter 3. Non
lassi
ality, Mandel 
lassi�
ation, and entanglementThus for the same positive semide�nite operator as in Eq. (3.3) we have
Tr(ρ̂(ab)PT

∑

jk,lm

c∗jkN̂jk,lmclm) = Tr(ρ̂(ab)
∑

jk,lm

c∗jkâ
†j b̂†mâlb̂kclm)

=

∫ ∫

d2za
π

d2zb
π

φ(za, zb) |
∑

lm

clmz
l
az

∗m
b |2. (3.4)Noti
e the di�eren
e in the integrands of the last integrals in Eqs. (3.3) and (3.4); thelatter integral is sure to be positive if ρ̂(ab)PT is a possible state, otherwise it 
ould benegative.Thus we arrive at a single test for QO-non
lassi
ality and NPT entanglement of ρ̂(ab).The above expression being negative implies two things simultaneously :

(i) φ(za, zb) 6≥ 0, hence ρ̂(ab) is QO − noncl;

(ii) ρ̂(ab)PT 6≥ 0, and hen
e ρ̂(ab) is NPT entangled. (3.5)This interesting result is an indi
ation of the possibility, in suitable 
ir
umstan
es, ofbringing the 
hara
terisations of QO-non
lassi
ality and entanglement for the two-mode�elds rather 
lose to one another.3.2.2 Mandel matrixIn Se
tion 2.2.1, we introdu
ed the 
on
ept of phase-insensitive non
lassi
ality for asingle-mode radiation �eld. Of relevan
e were the matrix elements of operators 
onservingthe number of photons. Generalising this 
on
ept to two-mode systems, if one is interestedonly in the total number 
onserving matrix elements, then given a ρ̂(ab) it su�
es to workwith the state ρ̂(ab)
D obtained from ρ̂(ab) by phase averaging :

ρ̂
(ab)
D =

∫ 2π

0

dθ

2π
eiθ(N̂a+N̂b)ρ̂(ab)e−iθ(N̂a+N̂b)

=

∫

d2za
π

d2zb
π

P (Ia, Ib, θ)|za, zb〉〈za, zb|,

Ia = |za|2, Ib = |zb|2, θ = argz∗azb,

P (Ia, Ib, θ) =

∫ 2π

0

dθ′

2π
φ(zae

−iθ′ , zbe
−iθ′). (3.6)This state is 
learly number 
onserving :

ρ̂
(ab)
D (N̂a + N̂b) = (N̂a + N̂b)ρ̂

(ab)
D ,

〈n′m′|ρ̂(ab)
D |nm〉 = δn′+m′,n+m〈n′m′|ρ̂(ab)|nm〉. (3.7)87
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lassi
ality, Mandel 
lassi�
ation, and entanglementSin
e P (Ia, Ib, θ) is the (real) diagonal representation weight of ρ̂(ab)
D , we have this QO-
lassi�
ation :

P (Ia, Ib, θ) ≥ 0 ⇔ ρ̂
(ab)
D is QO-
l,

P (Ia, Ib, θ) 6≥ 0 ⇔ ρ̂
(ab)
D is QO-non
l. (3.8)Now we present the two-mode generalisation of the Mandel matrix and the asso
iated
lassi�
ation of states [187, 336℄. We 
onsider only states ρ̂(ab)

D 
onserving, i.e., 
ommutingwith, N̂a+N̂b. Let us �rst develop the two-mode analogue of the Mandel 
riterion. De�nea 
olumn and row ve
tor with number 
onserving operator entries as follows :
Ĉ =

(

â†

b̂†

)

⊗
(

â

b̂

)

=













N̂a

â†b̂

b̂†â

N̂b













, Ĉ† =
(

N̂a b̂†â â†b̂ N̂b

)

. (3.9)With their help next de�ne a 5× 5 matrix with operator entries and whi
h is `hermitian'like N̂ in Eq. (3.2), and also `positive de�nite':
Σ̂ =

(

1

Ĉ

)

(

1 Ĉ†
)

=

(

1 Ĉ†

Ĉ ĈĈ†

)

=

















1 N̂a b̂†â â†b̂ N̂b

N̂a N̂2
a N̂ab̂

†â N̂aâ
†b̂ N̂aN̂b

â†b̂ â†b̂N̂a â†b̂b̂†â (â†b̂)2 â†b̂N̂b

b̂†â b̂†âN̂a (b̂†â)2 b̂†ââ†b̂ b̂†âN̂b

N̂b N̂bN̂a N̂bb̂
†â N̂bâ

†b̂ (N̂b)
2

















. (3.10)
Given a state ρ̂(ab)

D , we get the 5 × 5 numeri
al hermitian matrix Σ by taking entrywiseexpe
tation values of the opertors in Σ̂, and the numeri
al matrix so obtained is 
learlyhermitian positive semide�nite :
Σ = 〈Σ̂〉 = Tr(ρ̂

(ab)
D

(

1 Ĉ†

Ĉ ĈĈ†

)

) =

(

1 〈Ĉ†〉
〈Ĉ〉 〈ĈĈ†〉

)

≥ 0 . (3.11)We de�ne the two-mode Mandel matrix for the state ρ̂(ab)
D by repla
ing ĈĈ† in Eq. (3.11)by its normal ordered expression (entries of Ĉ and Ĉ† are already in the normal ordered
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B̂ = : ĈĈ† :,

M (2)(ρ̂
(ab)
D ) = Tr(ρ̂

(ab)
D

(

1 Ĉ†

Ĉ B̂

)

)

=

















1 〈â†â〉 〈b̂†â〉 〈â†b̂〉 〈b̂†b̂〉
〈â†â〉 〈â†2â2〉 〈â†b̂†â2〉 〈â†2âb̂〉 〈â†b̂†âb̂〉
〈â†b̂〉 〈â†2âb̂〉 〈â†b̂†âb̂〉 〈â†2b̂2〉 〈â†b̂†b̂2〉
〈b̂†â〉 〈â†b̂†â2〉 〈b̂†2â2〉 〈â†b̂†âb̂〉 〈b̂†2âb̂〉
〈b̂†b̂〉 〈â†b̂†âb̂〉 〈b̂†2âb̂〉 〈â†b̂†b̂2〉 〈b̂†2b̂2〉

















=

∫ ∞

0
dIa

∫ ∞

0
dIb

∫ 2π

0

dθ

2π
P (Ia, Ib, θ)

×

















1

Ia√
IaIbe

iθ

√
IaIbe

−iθ

Ib

















(

1 Ia
√
IaIbe

−iθ
√
IaIbe

iθ Ib

)

. (3.12)
The supers
ript 2 indi
ates that we are dealing with a two-mode state, and this Mandelmatrix is 5 × 5 hermitian but not ne
essarily positive semide�nite.Another useful 
onstru
t is the 2× 2 Mandel matrix asso
iated with a general single-mode obtained as linear 
ombination of the modes a and b, 
al
ulated again in the state
ρ̂
(ab)
D . The de�nition of the annihilation operatorÂ of su
h a mode and then of its Mandel
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Â = αâ+ βb̂, |α|2 + |β|2 = 1;

M (2,1)(ρ̂
(ab)
D ;α, β) =

(

1 〈Â†Â〉
〈Â†Â〉 〈Â†2Â2〉

)

= Y (α, β)†M (2)(ρ
(ab)
D )Y (α, β),

Y (α, β) =

















1 0

0

0 ψ0(α, β)

0

0

















,

ψ0(α, β) =

(

α

β

)

⊗
(

α∗

β∗

)

=













αα∗

αβ∗

βα∗

ββ∗













. (3.13)The dependen
e of Â on α, β is left impli
it. The supers
ript (2, 1) at the start of theabove equations indi
ates that we are dealing with a general single-mode Mandel matrixobtained from the two-mode Mandel matrix for the a − b system in the state ρ̂(ab)
D , byfo
ussing on the parti
ular linear 
ombination Â of â and b̂. It turns out that for two-mode states both M (2)(ρ̂

(ab)
D ) and M (2,1)(ρ̂

(ab)
D ;α, β) are important.The two-mode de�nitions of Mandel-type non
lassi
ality, sub-Poissonian statisti
s(sub-PS), super-Poissonian statisti
s (super-PS), et
 are now as follows :

{ρ̂(ab)
D is QO-
l ⇔ P (Ia, Ib, θ) ≥ 0}

⇒ {M (2)(ρ̂
(ab)
D ) ≥ 0 ⇔ ρ̂

(ab)
D has super-PS};

M (2)(ρ̂
(ab)
D ) 6≥ 0 ⇔ {ρ̂(ab)

D is QO-non
l, has sub-PS}. (3.14)In the de�nition of super-PS, we used Eq. (3.12). The sub-PS 
ase 
an be usefullyseparated into two types, depending on whether or not the nonpositivity of the 5 × 5matrixM (2)(ρ̂
(ab)
D ) is visible already at the single-mode level for some 
hoi
e of 
oe�
ients

α, β. Thus we de�ne :
ρ̂
(ab)
D has Type I sub-PS ⇔ M (2,1)(ρ̂

(ab)
D ;α, β) 6≥ 0 for some α, β;

ρ̂
(ab)
D has Type II sub-PS ⇔ M (2,1)(ρ̂

(ab)
D ;α, β) ≥ 0 for all α, β,

M (2)(ρ̂
(ab)
D ) 6≥ 0. (3.15)90
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lassi
ality, Mandel 
lassi�
ation, and entanglementThe physi
al meaning is that in Type I sub-PS, the Mandel level of QO-non
lassi
alityis easy to dete
t already in terms of a suitable single-mode 
ombination; while in TypeII sub-PS, su
h non
lassi
ality is hidden or intrinsi
ally two-mode in 
hara
ter.For 
al
ulational purposes one 
an pass from the 5× 5 Mandel matrix M (2)(ρ̂
(ab)
D ) toa slightly simpler 4 × 4 matrix as follows. From Eq. (3.12),

M (2)(ρ̂
(ab)
D ) = Tr(ρ̂

(ab)
D

(

1 Ĉ†

Ĉ B̂

)

) =

(

1 C†

C B

)

,

C = Tr(ρ̂
(ab)
D Ĉ), B = Tr(ρ̂

(ab)
D B̂). (3.16)(When ne
essary the state will be indi
ated as argument of C,B). Then it is easy to seethat

M (2)(ρ̂
(ab)
D ) ≥ 0 ⇔ Γ = B − CC† ≥ 0 ,

M (2)(ρ̂
(ab)
D ) 6≥ 0 ⇔ Γ 6≥ 0. (3.17)Thus the 4×4 matrix Γ determines whether we have super-PS or sub-PS. For the separa-tion of the latter into Type I and Type II, we have for any 
omplex 2-ve
tor φ =

(

φ1

φ2

)

φ†M (2,1)(ρ̂
(ab)
D ;α, β)φ =

|φ1 + φ2C
†ψ0(α, β)|2 + |φ2|2ψ0(α, β)†Γψ0(α, β). (3.18)So we are able to say, given M (2)(ρ̂

(ab)
D ) 6≥ 0 :Type I PS ⇔ ψ0(α, β)†Γψ0(α, β) < 0 for some α, β;Type II PS ⇔ ψ0(α, β)†Γψ0(α, β) ≥ 0 for all α, β. (3.19)Indeed we easily �nd from Eqs. (3.13, 3.17) that

detM (2,1)(ρ̂(ab);α, β) = ψ0(α, β)†Γψ0(α, β). (3.20)We will apply these de�nitions and 
lassi�
ation of QO-non
lassi
ality to several familiesof states and examine the possible 
onversion of non
lassi
ality to entanglement in thenext Se
tion.
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ality, Mandel 
lassi�
ation, and entanglement3.3 Some examples of two-mode states and their propertiesWe have seen in Se
tion 2.6 that a single-mode QO-non
l state, when 
ombined witha se
ond mode in va
uum (or in a 
oherent state) and passed through a beamsplitter,always results at the output in a two-mode state exhibiting NPT entanglement. We studythese two-mode states in the spirit of the pre
eding Se
tion as a �rst example.3.3.1 Example (a)The two-mode state in question is given in Eq. (2.44). It is reasonable that its 5 × 5Mandel matrix is obtainable from the 2×2 Mandel matrix asso
iated with the single-modeinput state ρ̂(a)
D . Straightforward 
al
ulation shows that :

ρ̂
(ab)
D = Û(u){ρ̂(a)

D ⊗ |0〉bb〈0|}Û (u)−1, u ∈ U(2) :

M (2)(ρ̂
(ab)
D ) = W (u)†M (1)(ρ̂

(a)
D )W (u),

W (u) =

(

1 0 0 0 0

0 u∗11u11 u∗21u11 u∗11u21 u∗21u21

)

,

W (u)W (u)† = I2×2. (3.21)Next using (3.13) we 
an immediately obtain the general single-mode proje
tion of thistwo-mode Mandel matrix :
M (2,1)(ρ̂

(ab)
D ;α, β) = Y (α, β)†W (u)†M (1)(ρ̂

(a)
D )W (u)Y (α, β)

=

(

1 0

0 |ξ|2

)

M (1)(ρ̂
(a)
D )

(

1 0

0 |ξ|2

)

,

ξ = u11α+ u22β. (3.22)From these expressions and from the results of Se
tion 2.6, we �nd that the two-modestates produ
ed from single-mode states in the above manner have the following signi�-
ant properties :
(i) ρ̂

(a)
D has QO-non
l PND ⇒ ρ̂

(ab)
D has NPT entanglement;

(ii) ρ̂
(a)
D has super-PS ⇒ ρ̂

(ab)
D has super-PS;

(iii) ρ̂
(a)
D has sub-PS ⇒ ρ̂

(ab)
D has Type I sub-PS,

M (2,1)(ρ
(ab)
D ;α, β) 6≥ 0 for every α, β. (3.23)
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ality, Mandel 
lassi�
ation, and entanglementClearly only properties (ii) and (iii) involve the Mandel matrix analysis; and it is signi�-
ant that in property (iii), every single-mode 
ombination of the modes a and b displayssub-PS. Thus in the latter 
ir
umstan
e, we 
an say it is not just easy, but a
tually veryeasy, to dete
t the Mandel kind of QO-non
l of ρ̂(ab)
D . To these statements we 
an add thefollowing: states ρ̂(ab)

D obtained from states ρ̂(a)
D in the manner of Eq. (3.21) 
an neverdisplay Type II sub-PS; and any sub-PS in ρ̂(a)
D leads to both Type I sub-PS and NPTentanglement in ρ̂(ab)

D .3.3.2 Example (b)Hereafter we 
onsider dire
tly given two-mode states ρ̂(ab)
D , as opposed to the previousexample. In 
ase su
h a state is QO-non
l, even if it is of produ
t or separable form, itspassage through a U(2) BS 
ould result in an entangled state. We �rst set up the generalframework to examine this, then illustrate it by an interesting example. For simpli
itywe use an elementary 50:50 BS rather than one 
orresponding to a general u ∈ U(2).We 
hoose the U(2) element and 
orresponding unitary operator a
tion as follows :

u0 =
1√
2

(

1 1

−1 1

)

∈ U(2) : Û−1
0

(

â â†

b̂ b̂†

)

Û0 = u0

(

â â†

b̂ b̂†

)

. (3.24)At the operator level, a
tion by 
onjugation on Ĉ, Ĉ†, B̂ of Eqs. (3.9, 3.12) is :
Û−1

0 ĈÛ0 = V0Ĉ, Û
−1
0 Ĉ†Û0 = Ĉ†V T

0 , Û
−1
0 B̂Û0 = V0B̂V

T
0 ,

V0 = u0 ⊗ u0 =
1

2













1 1 1 1

−1 1 −1 1

−1 −1 1 1

1 −1 −1 1













. (3.25)Then if a state ρ̂(ab)
D is transformed by this BS a
tion to

ρ̂′ (ab)
D = Û0ρ̂

(ab)
D Û−1

0 , (3.26)
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lassi
ality, Mandel 
lassi�
ation, and entanglementthe 
hange in the Mandel matrix is given by a transformation using V0 :
M (2)(ρ̂

(ab)
D ) =

(

1 C†

C B

)

→

M (2)(ρ̂′ (ab)
D ) =

(

1 C ′†

C ′ B′

)

= Tr(ρ̂′ (ab)
D

(

1 Ĉ†

Ĉ B̂

)

)

=

(

1 0

0 V0

)(

1 C†

C B

)(

1 0

0 V T
0

)

,

C ′ = V0C, B
′ = V0BV

T
0 . (3.27)Thus Γ′ is related to Γ by 
ongruen
e :

Γ′ = B′ − C ′C ′† = V0ΓV
T
0 . (3.28)To test next whether ρ̂′ (ab)

D is NPT entangled, we pass to its partial transpose ρ̂′ (ab)PT
Dand evaluate the `expe
tation value' of a suitably 
hosen nonnegative hermitian oper-ator with respe
t to it. If this turns out to be negative, then ρ̂′ (ab)

D is de�nitely NPTentangled. To 
onstru
t su
h a test whi
h involves as 
losely as possible the use of
M (2)(ρ̂′ (ab)

D ), hen
e of M (2)(ρ̂
(ab)
D ), we should use a `matrix of operators' similar in stru
-ture to ( 1

Ĉ

)

(

1 Ĉ†
) , i.e, making up a `hermitian nonnegative' matrix of operatorentries, su
h that when the partial transpose operation is swit
hed from ρ̂′ (ab)PT

D to this`matrix', we obtain essentially the expe
tation values of Ĉ, Ĉ† and B̂ in ρ̂′ (ab)
D . We haveseen in the passage from Eq. (3.3) to Eq. (3.4) that the PT operation 
onverts b̂j†b̂k to

b̂k†b̂j , and b̂j b̂k† to b̂k b̂j†. Keeping these motivations and fa
ts in mind we 
onstru
t a
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5 × 5 matrix of operators as follows :

Ê =













â†â

â†b̂†

âb̂

b̂†b̂













, Ê† =
(

â†â âb̂ â†b̂† b̂†b̂
)

→

{(

1

Ê

)

(

1 Ê†
)

}PT

=

(

1 Ĉ†

Ĉ B̂

)

+

(

0 0

0 Ŷ

)

,

Ŷ =













â†â 0 â†b̂ 0

0 0 0 0

b̂†â 0 â†â+ b̂†b̂+ 1 b̂†â

0 0 â†b̂ b̂†b̂













. (3.29)We see that in the pro
ess of expressing the various operators involved in normal orderedform, an additional pie
e Ŷ linear in the entries of Ĉ appears. Then a test for NPTentanglement of ρ̂′ (ab)
D is to evaluate

Tr(ρ̂′ (ab)PT
D

(

1

Ê

)

(

1 Ê†
)

) = Tr(ρ̂′ (ab)
D

{(

1

Ê

)

(

1 Ê†
)

}PT
)

= M (2)(ρ̂′ (ab)
D ) +





























0
... 0 0 0 0

· · · · · · · · · · · · · · ·
0

...
0

...
0

... Y ′

0
...





























Y ′ =













C ′
1 0 C ′

2 0

0 0 0 0

C ′
3 0 C ′

1 + C ′
4 + 1 C ′

3

0 0 C ′
2 C ′

4













, (3.30)and see if this matrix is inde�nite. The 5× 5 matrix here is, by Eq. (3.27), a 
ongruen
etransformation applied to the initial state Mandel matrix M (2)(ρ̂
(ab)
D ) plus a 4 × 4 pie
e
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oming from Ŷ , namely it is :
(

1 0

0 V0

)(

1 C†

C B

)(

1 0

0 V T
0

)

+

(

0 0

0 Y ′

)

=

(

1 C†V T
0

V0C V0BV
T
0 + Y ′

)

. (3.31)Therefore by Eq. (3.17) the positivity or otherwise of the matrix (3.30) is equivalent tothe positivity or otherwise of either of the two following 4× 4 matri
es at the level of Γ :
Ω = Γ + V T

0 Y
′V0 ,

V0ΩV
T
0 = V0ΓV

T
0 + Y ′. (3.32)Nonpositivity of either Ω or V0ΩV

T
0 is proof of NPT entanglement of ρ̂′ (ab)

D . There issome di�eren
e between the Mandel level QO-non
lassi
ality test for ρ̂(ab)
D and the abovedeveloped NPT entanglement test for ρ̂′ (ab)

D , the two being related but not identi
al. Thisis to be expe
ted sin
e, as mentioned, entangled states are a subset of QO-non
l states,and NPT states are a further subset.We now illustrate the above s
heme using an interesting family of states whi
h isanalyti
ally quite simple. We begin with the family of two-mode pure states of in�niteS
hmidt rank,
|µ〉 = e−

1
2
|µ|2

∞
∑

n=0

µn

√
n!
|n, n〉, µ ∈ C, (3.33)form the density matrix ρ̂(ab) = |µ〉〈µ|, and pass to ρ̂(ab)

D via Eq. (3.6) :
ρ̂
(ab)
D = e−λ

∞
∑

n=0

λn

n!
|n, n〉〈n, n|, λ = |µ|2 ≥ 0. (3.34)This is 
learly separable though not of produ
t form. For the Mandel matrix analysis,

|µ〉〈µ| and ρ̂(ab)
D are equivalent.The matri
es C, C†, B, Γ involved in M (2)(ρ̂

(ab)
D ) are easy to 
al
ulate sin
e we have

〈â†â〉 = 〈b̂†b̂〉 = λ, 〈â†2â2〉 = 〈b̂†2b̂2〉 = λ2. (3.35)
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C =













λ

0

0

λ













, B =













λ2 0 0 λ2 + λ

0 λ2 + λ 0 0

0 0 λ2 + λ 0

λ2 + λ 0 0 λ2













;

Γ =













0 0 0 λ

0 λ2 + λ 0 0

0 0 λ2 + λ 0

λ 0 0 0













. (3.36)The eigenvalues of Γ being λ(λ + 1), λ(λ + 1), λ, −λ, it follows that the state ρ̂(ab)
D in(3.34) is QO-non
l. To �nd its type we 
ompute

ψ0(α, β)†Γψ0(α, β) = 2|α|2|β|2λ(λ+ 2) ≥ 0, (3.37)so these states display hidden or Type II- sub-PS.In passing we note that the state ρ̂(a) of mode a obtained from Eq. (3.34) by tra
ingover b alone is
ρ̂
(a)
D = Trbρ̂

(ab)
D = e−λ

∞
∑

n=0

λn

n!
|n〉aa〈n|, (3.38)for whi
h the diagonal weight P (Ia) is

P (Ia) = δ(Ia − λ). (3.39)Partial tra
e over a gives exa
tly similar results for mode b. Thus both ρ̂(a)
D and ρ̂(b)

D areQO-
l, with their PND 
oin
iding exa
tly with that of a 
oherent state.Now we pass the two-mode state ρ̂(ab)
D of Eq. (3.34) through the BS Û0 of Eq. (3.24);the resulting ρ̂′ (ab)

D is
ρ̂′ (ab)

D = Û0ρ̂
(ab)
D Û−1

0

= e−λ
∞
∑

n=0

(

λ

4

)n 1

n!3
(â†2 − b̂†2)n|0, 0〉〈0, 0|(â2 − b̂2)n. (3.40)To apply the NPT entanglement test based on Eq. (3.32) it is 
onvenient to examine

V0ΩV
T
0 . Combining Eqs. (3.27, 3.36) we �nd the matri
es Γ′, Y ′ asso
iated with ρ̂′ (ab)

D
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Γ′ = V0ΓV

T
0 =













1
2λ

2 + λ 0 0 −1
2λ

2

0 1
2λ

2 −1
2λ

2 − λ 0

0 −1
2λ

2 − λ 1
2λ

2 0

−1
2λ

2 0 0 1
2λ

2 + λ













Y ′ =













λ 0 0 0

0 0 0 0

0 0 2λ+ 1 0

0 0 0 λ













. (3.41)Therefore a

ording to Eq. (3.32) we have to test the positivity or otherwise of
V0ΩV

T
0 = V0ΓV

T
0 + Y ′

=













1
2λ

2 + 2λ 0 0 −1
2λ

2

0 1
2λ

2 −1
2λ

2 − λ 0

0 −1
2λ

2 − λ 1
2λ

2 + 2λ+ 1 0

−1
2λ

2 0 0 1
2λ

2 + 2λ













(3.42)The (2, 3) submatrix here is inde�nite as it has determinant −1
2λ

2. This establishes that
ρ̂′ (ab)

D of Eq. (3.40) is NPT entangled. The emphasis here was to show that the entangle-ment produ
ed by BS a
tion 
an indeed be witnessed by the Mandel matrix 
onstru
t.Going ba
k to the expression in Eq. (3.40), the terms for n = 0 and n = 1 arerespe
tively :
e−λ|0, 0〉〈0, 0|;
λ

2
e−λ(|2, 0〉 − |0, 2〉)(〈2, 0| − 〈0, 2|), (3.43)giving the matrix elements

(ρ̂′ (ab)
D )00,00 = e−λ;

(ρ̂′ (ab)
D )20,20 = (ρ̂′ (ab)

D )02,02 = −(ρ̂′ (ab)
D )20,02 = −(ρ̂′ (ab)

D )02,20 =
λ

2
e−λ. (3.44)One also obtains from the n = 2 term in Eq. (3.40) the matrix element

(ρ̂′ (ab)
D )22,22 =

λ2

8
e−λ. (3.45)If we now 
onsider the partial transpose of ρ̂′ (ab)

D and look at the 00 − 22 subspa
e of98
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ρ̂′ (ab)PT

D → e−λ

(

1 −λ
2

−λ
2

λ2

8

)

. (3.46)Thus, as the determinant is negative in this subspa
e, ρ̂′ (ab)PT
D has an eigenve
tor ofthe form α|0, 0〉 + β|2, 2〉 with a negative eigenvalue. This demonstrates that the NPTentanglement of ρ̂′ (ab)

D in Eq. (3.40) is distillable [37℄.3.3.3 Example (
)The third example is built upon the two-mode squeezed (va
uum) states. For bothsingle and multi-mode 
ases these states have been studied extensively in the literature[187, 237, 238℄. Here we take them up in the 
ontext of the viewpoints of Se
tions 3.1, 3.2and 3.3, in parti
ular the Mandel level study of QO-non
lassi
ality. First we assemble thede�nition and important properties of a single (a) mode squeezed va
uum state. Su
ha state is obtained by applying a unitary (s
aling) operator involving the exponentialof a 
omplex 
ombination of â†2 and â2 to the Fo
k va
uum, and is parametrised by a
omplex variable ξ = ξ1 + iξ2 or an equivalent 
omplex variable ω :
|ψ(a)(ω)〉 = exp{1

4
(ξâ†2 − ξ∗â2)}|0〉a

= (1 − |ω|2) 1
4

∞
∑

n=0

√

Γ(n+ 1/2)

n!
√
π

ωn |2n〉a,

ω =
ξ

|ξ| tanh(|ξ|/2). (3.47)Sin
e only even photon number states are present, the probabilities p(1), p(3), p(5), · · ·in the PND vanish, whi
h is immediate eviden
e that these states are QO-non
l. Someimportant expe
tation values are :
〈ψ(a)(ω)|{â†, â, N̂a, N̂

2
a , â

†2â2, â2}|ψ(a)(ω)〉 =

{0, 0, S2, S2(S2 + 2C2), S2(2S2 + C2),
ξ

|ξ| },

S = sinh(|ξ|/2), C = cosh(|ξ|/2). (3.48)The 2 × 2 Mandel matrix for the state is thus :
M (1)(|ψ(a)(ω)〉) =

(

1 S2

S2 S2(2S2 + C2)

)

,

detM (1)(|ψ(a)(ω)〉) = S2(S2 + C2) ≥ 0, (3.49)99
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ation, and entanglementwhere S and C are given in Eq. (3.48). Thus these states have super-PS, and theQO-non
lassi
ality does not show up at the Mandel level.For two modes we take the produ
t of two su
h states, with independent 
omplex
ξ, ξ′ or ω, ω′ :

|ψ(ab)(ω, ω′)〉 = |ψ(a)(ω)〉 ⊗ |ψ(b)(ω′)〉. (3.50)The se
ond fa
tor obviously involves an exponential in b̂†2 and b̂2 applied to |0〉b. Thistwo-mode pure state is 
learly also QO-non
l, but it is a manifest produ
t state of S
hmidtrank one. Unlike Eq. (3.49), however, now the QO-non
lassi
ality shows up at the Mandellevel. The 5× 5 Mandel matrix for the state (3.50) is easily found using Eqs. (3.48) andtheir analogues for the b-mode :
M (2)(|ψ(ab)(ω, ω′)〉) =

(

1 C†

C B

)

,

C† =
(

S2 0 0 S′2
)

,

B =













S2(2S2 + C2) 0 0 S2S′ 2

0 S2S′ 2 eiηSCS′C ′ 0

0 e−iηSCS′C ′ S2S′ 2 0

S2S′ 2 0 0 S′ 2(2S′ 2 + C ′ 2)













,

η = argξ′ξ∗ (3.51)Here S′ and C ′ are de�ned as in Eq. (3.48) but in terms of ξ′. The 4× 4 matrix Γ of Eq.(3.17) is :
Γ =













S2(S2 +C2) 0 0 0

0 S2S′ 2 eiηSCS′C ′ 0

0 e−iηSCS′C ′ S2S ′2 0

0 0 0 S′ 2(S′ 2 +C ′ 2)













. (3.52)The eigenvalues of Γ are S2(S2+C2), S′2(S′2+C ′2), SS′(SS′+CC ′) and SS′(SS′−CC ′).Assuming that ξ, ξ′ are both non vanishing, the last eigenvalue is negative, leading byEq. (3.17) to the 
on
lusion that
M (2)(|ψ(ab)(ω, ω′)〉) 6≥ 0 or that the state |ψ(ab)(ω, ω′)〉 has sub-PS. This is an interestingand somewhat nonintuitive result sin
e we have seen in Eq. (3.49) that ea
h fa
tor inthe produ
t state |ψ(ab)(ω, ω′)〉 has super-PS. We must now see whether it is Type I orType II. For this we must 
ompute the `expe
tation value' of Γ in Eq. (3.52) for the100
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omponent 
olumn ve
tor ψ0(α, β) as required by Eq. (3.19) :
ψ0(α, β)†Γψ0(α, β) =

(|α|2S2 + |β|2S′2)2 + |α|4S2C2 + |β|4S′2C ′2 + 2SCS′C ′ℜ(eiη(α∗β)2)

≥ (|α|2S2 + |β|2S′2)2 + (|α|2SC − |β|2S′C ′)2 > 0, (3.53)sin
e ℜ(eiη(α∗β)2) ≥ −|α|2|β|2. It follows that the sub-PS of the produ
t state |ψ(ab)(ω,

ω′)〉 is of Type II, it is hidden or intrinsi
 as in the state in Eq. (3.34). That it is TypeII is 
onsistent with the fa
t that the individual states |ψ(a)(ω)〉 and |ψ(b)(ω′)〉 are bothsuper-PS.It was noted above that the two-mode state |ψ(ab)(ω, ω′)〉 is both pure and of S
hmidtrank one. The result of a
tion by the BS Û0 of Eq. (3.24) on it is seen upon inspe
tionand without any 
al
ulations to be an entangled (pure) state :
Û0|ψ(ab)(ω, ω′)〉 = Û0exp{1

4
(ξâ†2 − ξ∗â2) +

1

4
(ξ′b̂†2 − ξ′∗b̂2)}Û−1

0 |0, 0〉

= exp{1

8
(ξ(â† − b̂†)2 − ξ∗(â− b̂)2) +

1

8
(ξ′(â† + b̂†)2 − ξ′∗(â+ b̂)2)}|0, 0〉. (3.54)This is be
ause the �nal unitary operator a
ting on |0, 0〉 is 
learly not the tensor produ
tof individual unitary operators a
ting separately on the two modes. On a

ount of thissimpli
ity in this sense of the initial state |ψ(ab)(ω, ω′)〉, there is no need to apply after theBS a
tion the Mandel level NPT entanglement test developed in 
onne
tion with Example(b). It is of 
ourse important that the states |ψ(a)(ω)〉, |ψ(b)(ω′)〉 in the initial produ
tare both QO-non
l. A two-mode pure produ
t QO-
l state is ne
essarily a produ
t ofsingle-mode 
oherent states, and the produ
t stru
ture is maintained by BS a
tion in this
ase be
ause the fa
tors are 
oherent states.3.4 From two-mode non
lassi
ality to three-mode entangle-mentWe have studied the possibility of a U(2) beamsplitter 
onverting a two-mode QO-non
lseparable state into an entangled one sin
e for su
h systems both non
lassi
ality andentanglement are meaningful 
on
epts. Now we present a treatment of two-mode statesanalogous to that given in Se
tion 2.6 for single-mode systems. That is, we 
ouplea given two-mode state ρ̂(ab)

D to a third c-mode in va
uum, pass su
h an input state
ρ̂
(abc)
in through a `U(3) beamsplitter', and obtain a three-mode output state ρ̂(abc)

out . Wethen test whether this shows NPT entanglement as a 
onsequen
e of Mandel type QO-101
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lassi
ality initially present in ρ̂(ab)
D , the partial transpose operation being applied tothe c-mode.We begin with ρ̂(ab)

D for whi
hM (2)(ρ̂
(ab)
D ) possibly shows QO-non
lassi
ality. We takea third c-mode in va
uum and have an input three-mode state

ρ̂
(abc)
in = ρ̂

(ab)
D ⊗ |0〉cc〈0|, (3.55)stri
tly analogous to Eq. (2.43). To a general matrix u ∈ U(3) we asso
iate a passive`beamsplitter' whi
h unitarily mixes the annihilation operators of the three modes in amanner analogous to Eq. (2.31), now 
onserving N̂a + N̂b + N̂c [337℄. In the three-modeHilbert spa
e this beamsplitter u a
ts through an unitary operator Û , and we have

u =







u11 u12 u13

u21 u22 u23

u31 u32 u33






∈ U(3) → Û : Û †Û = Û Û † = 1,

Û







â

b̂

ĉ






Û−1 = u†







â

b̂

ĉ






, Û







â†

b̂†

ĉ†






Û−1 = uT







â†

b̂†

ĉ†






,

Û−1







â

b̂

ĉ






Û = u







â

b̂

ĉ






, Û−1







â†

b̂†

ĉ†






Û = u∗







â†

b̂†

ĉ†






,

Û(N̂a + N̂b + N̂c) = (N̂a + N̂b + N̂c)Û . (3.56)Therefore upon passage through this `beamsplitter' the state in Eq. (3.55) 
hanges to
ρ̂
(abc)
out = Û ρ̂

(abc)
in Û−1 = Û{ρ̂(ab)

D ⊗ |0〉cc〈0|}Û−1. (3.57)To test this output state for NPT entanglement, we apply the partial transpose to the
c-mode and then evaluate the `expe
tation value' of a suitably 
hosen hermitian nonneg-
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A = α0 + α1âĉ+ α2b̂ĉ+ α3â

†ĉ† + α4b̂
†ĉ† :

Tr(ρ̂
(abc)PT
out A†A) = α†Xα,

X = Tr(ρ̂
(abc)PT
out

















1

â†ĉ†

b̂†ĉ†

âĉ

b̂ĉ

















(

1 âĉ b̂ĉ â†ĉ† b̂†ĉ†
)

);

α =

















α0

α1

α2

α3

α4

















. (3.58)
The 5 × 5 hermitian matrix X, 
onstru
ted by taking entrywise expe
tation values asde�ned, is expe
ted to be related to the input Mandel matrix M (2)(ρ̂

(ab)
D ). Developing itwe �nd















































1

â†ĉ†

b̂†ĉ†

âĉ

b̂ĉ

















(

1 âĉ b̂ĉ â†ĉ† b̂†ĉ†
)































PT

=

:

















1

â†ĉ

b̂†ĉ

ĉ†â

ĉ†b̂

















(

1 ĉ†â ĉ†b̂ â†ĉ b̂†ĉ
)

: +





























0 0 0

0 0 0

0 0 0

......... 0 0

0 0

0 0

· · · · · · · · · · · · · · ·
0 0 0

0 0 0

...... Ẑ





























,

Ẑ =

(

â†â+ ĉ†ĉ+ 1 b̂†â

â†b̂ b̂†b̂+ ĉ†ĉ+ 1

)

= :

(

â

b̂

)

(

â† b̂†
)

:
+ (1 + ĉ†ĉ)

(

1 0

0 1

)

. (3.59)
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ation, and entanglementUsing this in Eq. (3.58) we have after implementing the 
onjugation Û−1(· · · )Û :
X = Tr(ρ̂

(ab)
D :

















1

â′†ĉ′

b̂′†ĉ′

ĉ′†â′

ĉ′†b̂′

















(

1 ĉ′†â′ ĉ′†b̂′ â′†ĉ′ b̂′†ĉ′
)

:)

+ Tr(ρ̂
(ab)
D





























0 0 0

0 0 0

0 0 0

......... 0 0

0 0

0 0

· · · · · · · · · · · · · · ·
0 0 0

0 0 0

...... Ẑ ′





























,

Ẑ ′ = :

(

â′

b̂′

)

(

â′† b̂′†
)

:
+ (1 + ĉ′†ĉ′)

(

1 0

0 1

)

,







â′

b̂′

ĉ′






=







u11 u12

u21 u22

u31 u32







(

â

b̂

)

. (3.60)Here the fa
t that the 
-mode is initially in va
uum has been used, and the appearan
eof the extra Ẑ, Ẑ ′ terms is a result of normal ordering similar to the presen
e of Ŷ inEq. (3.29). One 
an now disentangle the u-dependen
es and express the result in terms
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(ab)
D ) and C = Tr(ρ̂

(ab)
D Ĉ) :

X = W (u)M (2)(ρ̂
(ab)
D )W (u)† +





























0 0 0

0 0 0

0 0 0

......... 0 0

0 0

0 0

· · · · · · · · · · · · · · ·
0 0 0

0 0 0

...... Z ′





























,

W (u) =

































1
... 0 0

... 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0

0

...... (

u∗11
u∗21

)

(

u31 u32

) ...... (

u∗12
u∗22

)

(

u31 u32

)

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0

0

...... u∗31

(

u11 u12

u21 u22

) ...... u∗32

(

u11 u12

u21 u22

)

































,

Z ′ = Tr(ρ̂
(ab)
D Ẑ ′),

Ẑ ′ =

(

u11 u12

u21 u22

)

:

(

â

b̂

)

(

â† b̂†
)

:
(

u∗11 u∗21
u∗12 u∗22

)

+(1 + (u∗31â
† + u∗32b̂

†)(u31â + u32b̂))

(

1 0

0 1

)

. (3.61)If this matrix X, dependent on ρ̂
(ab)
D and u ∈ U(3), is inde�nite, the NPT entanglednature of ρ̂(abc)

out of Eq. (3.57) follows. Of 
ourse this 
an happen only if ρ̂(ab)
D is QO-non
l,(at the level of its Mandel matrix), sin
e the `U(3) beamsplitter' Û would map any QO-
linput into similar output.As illustrations of this general pro
edure we 
onsider two simple examples. The �rstis a two-mode state with only a �nite number of photons, so that its QO-non
lassi
alityis a foregone 
on
lusion :

ρ̂
(ab)
D = p|2, 0〉〈2, 0| + q|1, 1〉〈1, 1| + r|0, 2〉〈0, 2|,

p, q, r ≥ 0 p+ q + r = 1. (3.62)This is separable, though not a produ
t state. The only non vanishing expe
tation values
105
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ality, Mandel 
lassi�
ation, and entanglementneeded to 
onstru
t its Mandel matrix are
〈â†â〉 = 2p+ q, 〈b̂†b̂〉 = 2r + q, 〈â†2â2〉 = 2p,

〈â†âb̂†b̂〉 = q, 〈b̂†2b̂2〉 = 2r. (3.63)Therefore the Mandel matrix is
M (2)(ρ̂

(ab)
D ) =

















1 q + 2p 0 0 q + 2r

q + 2p 2p 0 0 q

0 0 q 0 0

0 0 0 q 0

q + 2r q 0 0 2r

















. (3.64)
The determinants of various nontrivial 2 × 2 submatri
es, the one nontrivial 3 × 3 sub-matrix, and �nally of M (2)(ρ̂

(ab)
D ) itself, are (indi
ating the submatri
es by the relevantrows and 
olumns) :

(1, 2) : 2p − (q + 2p)2; (1, 5) : 2r − (q + 2r)2; (2, 5) : 4pr − q2;

(1, 2, 5) : q2 − 4pr;

detM (2)(ρ̂
(ab)
D ) = q2(q2 − 4pr). (3.65)One 
an easily imagine situations for whi
h the (1, 2) and (1, 5) submatri
es be
omeinde�nite, for instan
e q 
lose to unity and p, r 
lose to zero. In any 
ase, sin
e the

(2, 5) subdeterminant is opposite in sign to the (1, 2, 5) subdeterminant and to the fulldeterminant, the state in Eq. (3.62) is always QO-non
l at the Mandel matrix level.The type of sub-PS 
an be determined easily. From Eq. (3.64) we �nd the 4 × 4matrix Γ to be
Γ =













δa 0 0 q − (q + 2p)(q + 2r)

0 q 0 0

0 0 q 0

q − (q + 2p)(q + 2r) 0 0 δb













,

δa = 2p − (q + 2p)2 , δb = 2r − (2r + q)2. (3.66)Therefore also
ψ0(α, β)†Γψ0(α, β) =

2p|α|4 + 4q|α|2|β|2 + 2r|β|4 − ((q + 2p)|α|2 + (q + 2r)|β|2)2. (3.67)106
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lassi
ality, Mandel 
lassi�
ation, and entanglementFor α = 1, β = 0 this be
omes δa; for α = 0, β = 1 it is δb. We now 
onsider p runningover its range [0, 1] in su

essive portions and see what 
on
lusions 
an be drawn :
p = 0 : q = 0 ⇒ δb = −2; q > 0 ⇒ δa < 0;

0 < p <
1

2
: δa > 0 ⇒ 2p− (p− r + 1)2 ≥ 0 ⇒

(p− r)2 + 1 − 2r < 0 ⇒ 2r > 1 ⇒ δb < 0;

δa = 0 ⇒ (p− r)2 + 1 − 2r = 0 ⇒ p 6= r,

2r > 1 ⇒ δb < 0;

p =
1

2
: q = 0 ⇒ p = r =

1

2
, δa = δb = 0;

q > 0 ⇒ δa < 0;
1

2
< p ≤ 1 : 2p > 1 ⇒ δa < 0. (3.68)Thus in every situation ex
ept p = r = 1

2 , q = 0, either δa or δb is negative. In this oneex
eptional 
ase we �nd from Eq. (3.67) :
p = r =

1

2
, q = 0 : ψ0(α, β)†Γψ0(α, β) = −2|α|2|β|2, (3.69)whi
h is negative for α, β 6= 0. This establishes that for the state (3.62) the sub-PS is ofType I.Now we 
ouple this state to the third c-mode in va
uum, and pass it through a parti
-ular U(3) beamsplitter, namely a 50 : 50 beamsplitter a
ting on the b and c modes alone.The �nal output state is 
al
ulated using Eq. (3.57), and to test its NPT entanglementwe need to 
al
ulate the matrix X of Eq. (3.61) involving the M (2)(ρ̂

(ab)
D ) term and theadded Z ′ term. The 
hoi
e of u ∈ U(3), the resulting W (u), and the two terms making

107



Chapter 3. Non
lassi
ality, Mandel 
lassi�
ation, and entanglementup X are as follows.
u =







1 0 0

0 1/
√

2 1/
√

2

0 −1/
√

2 1/
√

2






∈ U(3);

W (u) =

















1 0 0 0 0

0 0 −1/
√

2 0 0

0 0 0 0 −1/2

0 0 0 −1/
√

2 0

0 0 0 0 −1/2

















;

W (u)M (2)(ρ̂
(ab)
D )W (u)† =























1 0 −r − q/2 0 −r − q/2

0 q/2 0 0 0

−r − q/2 0 r/2 0 r/2

. . .

0 0 0 . q/2 0

−r − q/2 0 r/2 . 0 r/2























;

Z ′ =

(

2p+ 3q/2 + r + 1 0

0 q + 2r + 1

)

. (3.70)The dotted lines in (3.70) indi
ate where the 2× 2 blo
k Z ′ has to be added to this box.Leaving out the trivial se
ond and fourth rows and 
olumns as they do not 
ouple to anyothers, the determinants of the various 2 × 2 and the one 3 × 3 submatrix in X are :
(1, 3) : r/2 − (q/2 + r)2; (1, 5) : 5r/2 + q + 1 − (q/2 + r)2;

(3, 5) : r(q + 2r + 1)/2; (1, 3, 5) : (q + 2r + 1)(r/2 − (q/2 + r)2). (3.71)Comparing Eqs. (3.65) and (3.71) we see: whenever the QO-non
lassi
ality of ρ̂(ab)
Dmanifests itself in the (1, 5) submatrix of M (2)(ρ̂

(ab)
D ) being inde�nite, simultaneouslythe 3-mode state ρ̂(abc)

out displays NPT entanglement. If one had on the other hand aninde�nite (1, 2) submatrix in M (2)(ρ̂
(ab)
D ), Eq. (3.65), then by suitably altering the U(3)element u in Eq. (3.70) we 
ould a
hieve NPT entanglement of ρ̂(abc)

out . In both situations,the signatures of QO-non
lassi
ality in ρ̂(ab)
D and of NPT entanglement in ρ̂(abc)

out 
oin
ide.The se
ond example to illustrate the ideas of this Se
tion is similar in stru
ture toexample (3.34) of the pre
eding Se
tion, but its properties di�er in 
ertain details. For a
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lassi
ality, Mandel 
lassi�
ation, and entanglementnonnegative real parameter η we de�ne the separable state
ρ̂
(ab)
D =

1

C

∞
∑

n=0

η2n

(2n)!
|n, n〉〈n, n|, (3.72)where C = Cosh η, S = Sinh η and t = tanh η. Clearly, the 
ase η = 0 
orresponds to thetwo-mode va
uum, and so we are interested in the parameter range 0 < η < ∞. Usingthe elementary sums

∞
∑

n=0

(n or n2)
η2n

(2n)!
=
η

2
S or

η

4
(S + η C), (3.73)the nonzero expe
tation values needed for the Mandel matrix are :

〈â†â〉 = 〈b̂†b̂〉 =
η

2
t;

〈â†2â2〉 = 〈b̂†2b̂2〉 =
η

4
(η − t);

〈â†b̂†âb̂〉 =
η

4
(η + t). (3.74)Therefore we have

M2(ρ̂ab
D ) =

















1 ηt
2 0 0 ηt

2
ηt
2

η
4 (η − t) 0 0 η

4 (η + t)

0 0 η
4 (η + t) 0 0

0 0 0 η
4 (η + t) 0

ηt
2

η
4 (η + t) 0 0 η

4 (η − t)

















. (3.75)
Leaving out the third and fourth rows and 
olumns, the remaining 2 × 2 submatrixdeterminants are :

(1, 2) and (1, 5) :
η

4
(
η

C2
− t); (2, 5) : −η

3t

4
. (3.76)The 
ombination η

C2 − t de
reases monotoni
ally from 0 to −1 as η runs from zero toin�nity. therefore the state (3.72) is QO-non
l for all η > 0. To determine its Type we
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ompute Γ and its `expe
tation value' in ψ0(α, β) :
Γ =

η

4













η
C2 − t 0 0 η

C2 + t

0 η + t 0 0

0 0 η + t 0
η

C2 + t 0 0 η
C2 − t,













,

ψ0(α, β)†Γψ0(α, β) =
η

4
{ η

C2
− t+ 2|α|2|β|2(η + 3t)}. (3.77)At both α = 1, β = 0 and α = 0, β = 1 the last expression is negative, so the state(3.72) is QO-non
l Type I sub-PS. In this 
ontext we note that the single-mode state ρ̂(a)obtained from (3.72) by tra
ing over b alone is

ρ̂
(a)
D =

1

C

∞
∑

n=0

η2n

(2n)!
|n〉aa〈n|, (3.78)and this has the Mandel matrix and determinant

M (1)(ρ̂
(a)
D ) =

(

1 ηt
2

ηt
2

η
4 (η − t)

)

,

detM (1)(ρ̂
(a)
D ) =

η

4
(
η

C2
− t) < 0. (3.79)The properties of ρ̂(b)

D are identi
al. Thus in 
ontrast to the state (3.34), here both ρ̂(a)
Dand ρ̂(b)

D are QO-non
l, a

ompanying the Type I nature of ρ̂(ab)
D .We now apply the NPT entanglement test outlined in Eqs. (3.58, 3.60, 3.61). Thene
essary expressions are :

W (u)M (2)(ρ̂(ab))W (u)† =

















1 0 −ηt
4 0 −ηt

4

0 η
8 (η + t) 0 0 0

−ηt
4 0 η

16(η − t) 0 η
16 (η − t)

0 0 0 η
8 (η + t) 0

−ηt
4 0 η

16(η − t) 0 η
16 (η − t)

















,

Z ′ =

(

1 + 3ηt
4 0

0 1 + ηt
2

)

. (3.80)A

ording to Eq. (3.61), the 2 × 2 matrix Z ′ has to be `added' at the lower right hand
orner of the 5 × 5 matrix, thus leading to X of Eq. (3.61). Then the positivity orotherwise of X has to be examined. However, even without taking a

ount of Z ′, the
(1, 3) subdeterminant of X is η

16( η
C2 − t), whi
h is negative. This establishes the NPT110
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lassi�
ation, and entanglemententanglement of ρ̂(abc)
out in this example, being `
aused' by the same expression η

C2 − twhose negativity led to ρ̂(ab)
D being QO-non
l in Eq. (3.76).3.4.1 Genuine tripartite entanglement from Mandel non
lassi
alityIn this Se
tion, we demonstrate the possibility of generating genuine residual tripartiteentanglement from two-mode Mandel type non
lassi
ality. The entanglement so produ
edis residual in the sense of [275℄, whereby the end result is a tripartite state similar to theGHZ state, su
h that it has no bipartite entanglement when any one of the three modesis tra
ed away. We demonstrate this using the state 
onsidered in example (b) of Se
tion3.3, where it was used to demonstrate Type-II sub-PS. Pass the state

ρ̂
(ab)
D ⊗ |0〉cc〈0| = e−λ

∞
∑

n=0

λn

n!
|n, n〉ab ab〈n, n| ⊗ |0〉cc〈0|, (3.81)through a 50:50 b− c beamsplitter, whose a
tion on the mode operators b̂ and ĉ is

Û

(

ĉ

b̂

)

Û−1 =
1√
2

(

1 1

−1 1

)(

ĉ

b̂

)

. (3.82)The resulting state is
ρ̂
(abc)
out = Û(ρ̂

(ab)
D ⊗ |0〉cc〈0|)Û−1

= e−λ
∞
∑

n=0

λn

2nn!
|n〉aa〈n| ⊗ (b̂† + ĉ†)

n|0, 0〉bc bc〈0, 0|(b̂ + ĉ)
n

= e−λ
∞
∑

n=0

λnn!

2n
|n〉aa〈n|

n
∑

r,s=0

|r, n − r〉bc bc〈s, n− s|
√

r!(n− r)!s!(n− s)!
. (3.83)Clearly the state ρ̂(abc)

out is separable in the a/bc 
ut. However it is entangled in boththe c/ab 
ut and b/ac 
uts as we show below. As a test for NPT entanglement in the
c/ab 
ut, we evaluate the expe
tation value of a suitably 
hosen positive operator on thepartially transposed output ρ̂(abc)PT

out , the partial transpose being e�e
ted on the c mode.For the 
hoi
e
Â = c0 + c1b̂ĉ+ c2â

†â, (3.84)the test for entanglement would be to 
he
k for violation of positivity of
Tr(ρ̂

(abc)PT
out Â†Â) = Tr(ρ̂

(abc)
out (Â†Â)

PT
). (3.85)111
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ality, Mandel 
lassi�
ation, and entanglementThe positivity or otherwise of Tr(ρ̂
(abc)
out (Â†Â)

PT
) is equivalent to the positivity or other-wise of

X = Tr(ρ̂
(abc)
out







1 b̂ĉ† â†â

b̂†ĉ b̂†b̂ĉ†ĉ b̂†ĉâ†â

â†â â†âb̂ĉ† â†ââ†â






). (3.86)Using the beamsplitter relation and the fa
t that initially the c mode is in the groundstate, we have

X =







1 1
2λ λ

1
2λ

1
4λ

2 1
2 (λ2 + λ)

λ 1
2(λ2 + λ) λ2 + λ






6≥ 0. (3.87)In parti
ular, the (2,3) submatrix ofX is not positive semide�nite, thus ρ̂(abc)

out is entangleda
ross the c/ab 
ut. It is easy to see that a similar test with the same 
hoi
e of Â, ex
eptthat now the partial transpose is done on the b mode, yields the 
on
lusion that the state
ρ̂
(abc)
out is entangled a
ross the b/ac 
ut. Thus we have demonstrated bipartite entanglementin a tripartite setup.Now to show that the entanglement is genuine tripartite, `residual' in the sense of[275℄, we have the following.

ρ̂
(ab)
out = Trc(ρ̂

(abc)
out ) = e−λ

∞
∑

n=0

λnn!

2n
|n〉a a〈n|

n
∑

r=0

|r〉b b〈r|
r!(n− r)!

,

ρ̂
(ac)
out = Trb(ρ̂

(abc)
out ) = e−λ

∞
∑

n=0

λnn!

2n
|n〉a a〈n|

n
∑

r=0

|r〉c c〈r|
r!(n− r)!

,

ρ̂
(bc)
out = Tra(ρ̂

(abc)
out ) == e−λ

∞
∑

n=0

λnn!

2n

n
∑

r,s=0

|r, n − r〉bc bc〈s, n− s|
√

r!(n− r)!s!(n− s)!
. (3.88)Both ρ̂

(ab)
out and ρ̂

(ac)
out are manifestly separable. It may not be obvious at �rst glan
ethat ρ̂(bc)

out is separable, but a 
loser look shows that ρ̂(bc)
out 
an be written in the followingalternate form :

ρ̂
(bc)
out = e−λU(

∞
∑

n=0

λn

n!
|n〉b b〈n| ⊗ |0〉cc〈0|)U−1, (3.89)where U 
orresponds to a 50:50 b-c beamsplitter. The output is a 
lassi
al state passedthrough a 50:50 b-c beamsplitter. Thus the state ρ̂(bc)

out is 
lassi
al and hen
e separable.An interesting question in the present 
ontext is the possibility of extension of monogamy112
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lassi�
ation, and entanglementrelations to this non-Gaussian 
ase [254, 255, 275, 276℄.3.5 Mandel ParameterIn Se
tion 3.2.2, we had introdu
ed the Mandel matrix 
onstru
t and outlined the possible
lassi�
ation of states it leads to. It is desirable that we are able to gauge the Mandeltype non
lassi
ality through the de�nition of a numeri
al measure. In the 
ase of asingle-mode radiation �eld, su
h a quantity was de�ned by Mandel in [295℄ through the
Q parameter. We attempt to extend this de�nition to the 
ase of two modes. A usefulrequirement of any su
h measure would be its invarian
e under beamsplitter a
tion, asbeamsplitter by itself does not produ
e non
lassi
ality, but rather transforms one formof non
lassi
ality to another, thus leaving invariant any reasonable quantitative measureof non
lassi
ality. Keeping this requirement in mind, we de�ne the two-mode Mandelparameter as

Q2 =
Tr(Γ) − ||Γ||

2(〈â†â〉 + 〈b̂†b̂〉)
, (3.90)where Γ is the 4 × 4 matrix de�ned from the two-mode Mandel matrix M (2)(ρ̂

(ab)
D ) inEq. (3.17), and ||.|| is the tra
e norm. In our 
ase, sin
e Γ is a hermitian matrixby de�nition, the tra
e norm is simply the sum of the absolute values of its eigenvalues.Thus our de�nition for the two-mode Mandel parameter is simply the sum of the negativeeigenvalues of Γ divided by the total energy of the system. From Eq. (3.27) and Eq.(3.28), we know that under the a
tion of a beamsplitter

Γ → Γ′ = V ΓV T , (3.91)where V = u ⊗ u∗, u ∈ U(2). Clearly the tra
e norm ||Γ|| and tra
e Tr(Γ) are bothunitarily invariant, thus invariant under the a
tion of a beamsplitter. The total energyis 
learly also invariant under beamsplitter a
tion. Thus our de�nition for the two-mode Mandel parameter given by Q2 is manifestly beamsplitter a
tion invariant. Byde�nition it is zero for 
lassi
al states, but 
an be non-zero for non
lassi
al states. As asimple example, for the 
ase of two-mode produ
t Fo
k states, Q2 = −1. It is nonzeronegative for states either with Type I or Type II non
lassi
ality. The two-mode Mandelparameter Q2 
an be useful in gauging the two mode Mandel non
lassi
ality only withinthe respe
tive types, as the `Type' is invariant under beamsplitter a
tion.To maintain the distin
tion between the two types, it is useful to introdu
e the single-mode Mandel parameter Q1 de�ned at the two mode level. From Eq. (3.13), it is easy113
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lassi
ality, Mandel 
lassi�
ation, and entanglementto see that we 
an de�ne Q1 to be
Q1 =

〈Â†2Â2〉 − 〈Â†Â〉2

〈Â†Â〉
. (3.92)It 
lear that the least possible value Q1 
an take is −1. Clearly for Type II states, Q1is positive but Q2 is negative, .i.e., one 
an never 
hoose a linear 
ombination of theannihilation operators of the two modes to a
hieve Q1 to be negative. On the other handfor Type I states, one 
an always 
hoose a parti
ular (atleast one) linear 
ombination ofthe annihilation operators of the two modes to make Q1 negative.To be more pre
ise, it is useful to de�ne Qmin

1 , whi
h is the minimum possible value
Q1 
an take for a given two-mode state, the minimum being taken over all the possiblelinear 
ombinations of the annihilation operators of the two modes under U(2). With thede�nition of Qmin

1 , it is 
lear that for Type II states, Q2 is negative but Qmin
1 is positive.On the other hand for Type I states, both Q2 and Qmin

1 are negative.Having thus introdu
ed Qmin
1 , it is possible to 
lassify states in the following manner.(i) States with Qmin

1 ≥ 0 and Q2 = 0.(ii) States with Qmin
1 ≥ 0 but Q2 < 0.(iii) States with both Qmin

1 < 0 and Q2 < 0.For states denoted by (iii), a further sub-
lassi�
ation is possible :(iiia) States with Qmin
1 ≤ Q2.(iiib) States with Q2 ≤ Qmin

1 .States 
lassi�ed as (i), show no two-mode Mandel type non
lassi
ality, Type II states
ome under (ii), and Type I states under (iii). Type I states 
an be further 
lassi�ed as(iiia) or (iiib).All 
lassi
al states are examples for states 
lassi�ed as (i). As simple examples for(ii), we 
onsider states given as example (b) and example (
) in Se
tion 3.3. These areType II states, and thus are examples for (ii). From Eq. (3.35) and Eq. (3.36), it is easyto see that for the state (example (b)) given in Eq. (3.34), Q2 = −1/2, and for the state(example (
)) in Eq. (3.50), Q2 = SS′(SS′ − CC ′)/(S2 + S′2), whi
h is greater than
−1/2. At equal squeezings at both ends, Q2 takes the value −1/2. Furthermore fromEq. (3.53), we see that the state in example (
) goes over to being a sample for (i) from(ii), when the squeeze parameter at one of the ends goes to zero.
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Chapter 3. Non
lassi
ality, Mandel 
lassi�
ation, and entanglementAll Type I states su
h as example (a) of Se
tion 3.3 are examples for states 
lassi�edas (iii). The sub
lassi�
ation into (iiia) and (iiib) is a bit subtle, nevertheless we provideexamples for both. As an example for (iiia), we 
onsider the produ
t of a Fo
k state atthe a-mode and a 
oherent state at the b-mode.
|ψ〉 = |n〉 ⊗ |β〉. (3.93)For this state, the Γ matrix is diagonal with the diagonal entries given by {−n, n|β|2,

n|β|2, 0}. Thus Q2 for this state is
Q2 =

−n
n+ |β|2

≥ −1. (3.94)On the other hand, the single-mode Mandel parameter Q1 for the a-mode is −1. Thus
Qmin

1 ≤ Q2 for this 
ase.As an example for (iiib), we 
onsider the state in Eq. (3.72) of Se
tion 3.4. For thisstate it is easy to see from Eqs. (3.77) and (3.74) that Q2 = −1/2, however the expressionfor Q1 for an arbitrary value of α and β is, by Eqs. (3.77) and (3.74),
ψ0(α, β)†Γψ0(α, β)

〈Â†Â〉
=

1

2t
{ η

C2
− t+ 2|α|2|β|2(η + 3t)}. (3.95)The minimum possible value for Q1 is when α or β is zero, i.e.,

Qmin
1 =

1

2t
{ η

C2
− t} =

1

2
{ η

SinhηCoshη
− 1} ≥ −1

2
. (3.96)Another interesting example for (iiib) is the 
lass of states |ψn〉, obtained as an equalsuperposition of produ
t Fo
k states with total number equal to n :

|ψn〉 =
1√
n+ 1

n
∑

r=0

|r, n− r〉. (3.97)For the 
ases n = 1, 2, 3, 4 the numeri
ally evaluated values of Q2 are respe
tively −1,
−1.085, −1.123, −1.143. However Q1 is obviously bounded from below by −1. Thus
Q2 < Qmin

1 for this example. In
idently, another interesting aspe
t should be noted,namely that Q2 
an take values less than −1 in 
omparison with Q1 whi
h 
annot. Aninteresting aspe
t of these states is that they do not arise from beamsplitters, as entangledstates, produ
ed from produ
t Fo
k states, with the ex
eption of the 
ase n = 1. Indeed,the value of the two-mode Mandel parameter Q2 falling below −1 is pre
isely a signatureof this aspe
t. 115



Chapter 3. Non
lassi
ality, Mandel 
lassi�
ation, and entanglement3.6 Con
luding remarksIn this work, we have made an attempt to bring the notions of non
lassi
ality of two-modestates and entanglement as 
lose as possible. We have given a transparent 
onne
tionbetween normal ordering and NPT entanglement in the 
ontext of 
ontinuous variables.We have 
onsidered generalisation of the Mandel 
riterion to two-mode systems throughthe Mandel matrix 
onstru
t, and exploited it to analyse entanglement. Su
h a 
onstru
-tion leads to a natural 
lassi�
ation of states as Type I and Type II. Type II states arespe
ial in the sense that their antibun
hing 
annot be dete
ted lo
ally, i.e., through anysingle-mode pro
ess. We have 
onsidered several examples to illustrate this 
lassi�
ation.We have shown the possibility of demonstrating NPT entanglement through the Mandelmatrix 
onstru
t. It is also shown that the demonstrated entanglement 
ould as well bedistilled. We have extended this idea to the tripartite 
ase, where we have demonstratedthrough simple examples that the entanglement 
ould be tra
ed ba
k to the Mandel ma-trix. We have introdu
ed the two-mode Mandel parameter Q2, through the Γ matrix
onstru
t, and dis
ussed interesting situations that 
ould arise in the 
ase of two modes,by 
ontrasting the value of Q2 with that of the single-mode Mandel parameter Q1. Wehave demonstrated the ability of the two-mode Mandel parameter Q2 to dete
t entan-glement that 
annot arise from beamsplitters. We hope that the perspe
tive developedhere will help further interesting developments and generalisations.
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4Entanglement of Formation for Gaussian states
4.1 Introdu
tionEntanglement is an essential resour
e for many quantum information pro
essing tasks,and hen
e it is important to be able to quantify this resour
e. In Se
tion 1.6, we outlineda set of demands, that any good measure of entanglement should satisfy. In the 
ase of bi-partite pure states, the demands lead to a simple and unique measure for this resour
e: itis the von Neumann entropy of either subsystem [62, 338, 339℄. For mixed states however,many di�erent entanglement measures have been explored [340℄, and there is no measurewhi
h justi�es itself to be unique. Of these measures, the entanglement of formation(EOF) [37℄ is the most natural extension of the pure state measure of entanglement, tothe 
ase of mixed states. To re
all the de�nition of EOF in Eq. (1.87), the EOF for abipartite state ρ̂(ab) is de�ned as an in�mum :

EOF (ρ̂(ab)) ≡ inf {
∑

j

pjE(ψj) | ρ̂(ab) =
∑

j

pj |ψj〉〈ψj | } . (4.1)The in�mum is to be taken over all possible ensemble realizations of the given mixedstate ρ̂(ab) as 
onvex sum of pure states, and E(ψj) ≡ S(trB [|ψj〉〈ψj |]), where S(·) is thevon Neumann entropy. The regularised version of EOF is the entanglement 
ost [37, 63℄.EOF has been 
omputed in 
losed form for arbitrary two-qubit states [67℄, and for highlysymmetri
 states like the isotropi
 states [69℄ and the Werner states [71℄.The role of Gaussian states in quantum information theory has already been outlinedin Se
tion 1.9. Their use in teleportation [83, 84℄ and quantum 
ryptography [97℄ hasbeen demonstrated. Questions related to their separability [57, 58, 241, 242℄ and distil-lability [217℄ have been resolved. More re
ently, analyti
 expression for their EOF hasbeen obtained in the symmetri
 
ase [70℄. This notable a
hievement seems to be the �rst
omputation of EOF for states of in�nite rank. These authors exploit a 
ertain extremal-117



Chapter 4. Entanglement of Formation for Gaussian statesity that the two-mode-squeezed va
uum enjoys in respe
t of the Einstein-Podolsky-Rosen(EPR) 
orrelation [341℄ on the one hand and entanglement on the other.An interesting Gaussian-state-spe
i�
 generalisation of EOF, the Gaussian entangle-ment of formation, has also been explored [342℄. But the EOF of asymmetri
 Gaussianstate has remained an open problem [343℄ in spite of 
onsiderable e�ort [344℄. Naturally,the problem of EOF for general (asymmetri
) Gaussian states should be solved before theimportant issue of additivity of entanglement for Gaussian states 
ould be addressed [342℄.In this work we 
ompute, under a 
onje
ture, the EOF for arbitrary two-mode Gaus-sian states. Our analysis rests on two prin
ipal ingredients. The �rst one is a four-parameter 
anoni
al form we develop for the 
ovarian
e matrix; one of these parameters,the squeeze parameter, proves to be a measure of EOF. The se
ond one is a family ofgeneralised EPR 
orrelations for non
ommuting pairs of nonlo
al variables; this familyis indexed by a 
ontinuous parameter θ. And the 
onje
ture is in respe
t of an extremalproperty of this generalised EPR 
orrelation.4.2 Canoni
al Form for Covarian
e MatrixGiven a two-mode Gaussian state, with the mode on Ali
e's side des
ribed by 
anoni
alquadrature variables x̂a, p̂a and that on Bob's side by x̂b, p̂b, we 
an assume without lossof generality that the �rst moments of all four variables vanish [57, 70℄. Su
h a zero-meanGaussian state is fully des
ribed by the 
ovarian
e matrix [57, 70℄
VG =

1

2













αβn 0 βkx 0

0 α−1β−1n 0 −β−1kp

βkx 0 α−1βm 0

0 −β−1kp 0 αβ−1m













, (4.2)where the phase spa
e variables are assumed to be arranged in the order (xa, pa, xb, pb)

≡ ξ, and we have retained through the parameters α, β > 0 the freedom of independentlo
al unitary (i.e., symple
ti
) s
alings on the Ali
e's and Bob's sides. This freedom willbe used shortly.Note that VG is left with no 
orrelation between the `spatial' variables x̂a, x̂b and the`momentum' variables p̂a, p̂b. Thus it is sometimes 
onvenient to view VG as the dire
t
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Chapter 4. Entanglement of Formation for Gaussian statessum of 2 × 2 matri
es :
VG = XG ⊕ PG ,

XG = β
2

[

αn kx

kx α−1m

]

, PG = β−1

2

[

α−1n −kp

−kp αm

]

. (4.3)Let |Ψr〉 denote the standard two-mode-squeezed va
uum state with squeeze param-eter r. It takes the S
hmidt form in the standard Fo
k basis :
|Ψr〉 =

∞
∑

n=0

cn|n〉A ⊗ |n〉B ≡
∞
∑

n=0

cn|n, n〉 ,

cn = tanhnr/ cosh r . (4.4)Denoting by Er the entanglement of |Ψr〉, we have
Er = cosh2r log2(cosh

2r) − sinh2r log2(sinh2r) . (4.5)The 
ovarian
e matrix of |Ψr〉 has the form
VΨr = XΨr ⊕ PΨr ,

XΨr =
1

2

[

C S

S C

]

, PΨr =
1

2

[

C −S
−S C

]

,

C ≡ cosh 2r, S ≡ sinh 2r . (4.6)Proposition 4.1 Given a two-mode 
ovarian
e matrix VG, the lo
al s
ale parameters α,
β 
an be so 
hosen that VG gets re
ast in the form

V0 =
1

2













C + u c2 0 S + u cs 0

0 C + v c2 0 −S − v cs

S + u cs 0 C + u s2 0

0 −S − v cs 0 C + v s2













,

C ≡ cosh 2r0, S ≡ sinh 2r0; c ≡ cos θ0, s ≡ sin θ0 . (4.7)Note : We will 
all V0 the 
anoni
al form of a two-mode 
ovarian
e matrix; our resultsbelow will justify this elevated status. We assume without loss of generality n ≥ m or,equivalently, 0 < θ0 ≤ π/4. For a given VG there will be two solutions for the above form.Canoni
al form will always refer to the one with the smaller squeeze parameter r, whi
h
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Chapter 4. Entanglement of Formation for Gaussian statesis ensured by the restri
tion
tan θ0 ≥ tanh r0 . (4.8)This 
ondition proves 
entral to our analysis. Its origin may be appre
iated by inversetwo-mode-squeezing the Gaussian state V0 until it be
omes just separable, and notingthat there exists a range of further squeezing in whi
h the mixed Gaussian state remainsseparable before be
oming inseparable again. The parameters u, v ≥ 0.Theorem 4.1 The essen
e of the 
anoni
al form is that V0 di�ers from the 
ovarian
ematrix of a two-mode-squeezed va
uum |Ψr0〉 by a positive matrix whi
h is a dire
t sumof two singular 2 × 2 matri
es whi
h are, modulo signature of the o�-diagonal elements,multiples of one another.Proof : The 
anoni
al form demands, as a ne
essary 
ondition, that α, β, and r be 
hosento meet

det(XG −XΨr) = 0 , det(PG − PΨr) = 0 . (4.9)These being two 
onstraints on three parameters, one will expe
t to get a one-parameterfamily of solutions to these 
onstraints. For ea
h su
h solution we may denote the ve
torannihilated by the singular matrix XG −XΨr by (sin θ, − cos θ), and that annihilated by
PG − PΨr by (sin θ

′
, cos θ

′
). The 
anoni
al form 
orresponds to that solution for whi
h

θ
′
= θ; it is this degenerate value that equals θ0 of the 
anoni
al form.That there exists su
h a degenerate value 
an be seen as follows. We may �x the s
aleparameter α through α =

√

m/n, and then solve Eqs. (4.9) for β and r, the smaller rbeing the relevant one. We will �nd θ = π/4 and θ′
< π/4 in this 
ase. On the otherhand if we take α =

√

n/m and then solve Eqs. (4.9), we will �nd θ′
= π/4 and θ < π/4.It follows from 
ontinuity that there exists an intermediate value α0 for the parameter

α, in the range √m/n < α <
√

n/m, for whi
h θ′
= θ (< π/4 sin
e n > m). And thisyields the 
anoni
al form.Viewed alternatively, the 
anoni
al form pla
es the following two requirements on thes
ale fa
tors α, β :

detXG − 1/4

detPG − 1/4
=

tr(σ3XG)

tr(σ3PG)
,

det(XG − σ3PGσ3) = 0 , (4.10)where σ3 is the diagonal Pauli matrix. These are simultaneous equations in α, β, and120



Chapter 4. Entanglement of Formation for Gaussian statessolving these equations yields, in terms of n, m, kx, kp, the values of α, β 
orrespondingto the 
anoni
al form.Two spe
ial 
ases may be noted. If m = n we have α = 1 (sin
e √n/m =
√

m/n),and hen
e β =
√

(n− kp)/(n − kx), so that the 
anoni
al squeeze parameter r0 is givenby e−2r0 =
√

(n− kx)(n − kp), reprodu
ing the results of Ref. [70℄. The parameter θ0always equals π/4 in this (symmetri
) 
ase. On the other hand, if kx = kp = k, the
anoni
al form 
orresponds to α = β = 1, and one obtains r0 by simply solving
det

[

n− cosh2r0 k − sinh2r0

k − sinh2r0 m− cosh2r0

]

= 0 , (4.11)whi
h yields this 
losed-form expression for r0 :
cosh(2η − 2r0) =

nm− k2 + 1
√

(n+m)2 − 4k2)
,

e±2η ≡ (n+m) ± 2k
√

(m+ n)2 − 4k2
. (4.12)4.3 Generalised EPR CorrelationTo pro
eed further, we need to generalise the familiar EPR 
orrelation in Eq. (1.120) [70℄.Given any bipartite state |ψ〉, de�ne

x̂θ = sin θ x̂a − cos θ x̂b ,

p̂θ = sin θ p̂a + cos θ p̂b ,

Λθ(ψ) = 〈ψ|(x̂θ)
2|ψ〉 + 〈ψ|(p̂θ)

2|ψ〉 . (4.13)In de�ning Λθ(ψ) we have assumed 〈ψ|x̂θ|ψ〉 = 0 = 〈ψ|p̂θ|ψ〉; if this is not the 
ase then
x̂θ and p̂θ in Λ̂θ(ψ) should be repla
ed by x̂θ − 〈ψ|x̂θ|ψ〉 and p̂θ − 〈ψ|p̂θ|ψ〉 respe
tively.Clearly, the usual EPR 
orrelation in Eq. (1.120) [70℄ 
orresponds to θ = π/4. While
x̂π/4, p̂π/4 
ommute, the generalised EPR (nonlo
al) variables x̂θ, p̂θ do not 
ommute,and hen
e the name generalised EPR 
orrelation for Λ̂θ(Ψr); indeed, we have

[x̂θ, p̂θ] = −i cos 2θ. (4.14)For the two-mode-squeezed va
uum |Ψr〉 the generalised EPR 
orrelation reads
Λθ(Ψr) = cosh 2r − sin 2θ sinh 2r . (4.15)
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Chapter 4. Entanglement of Formation for Gaussian statesLet us 
ombine the quadrature variables of the os
illators of Ali
e and Bob into bosonoperators â = (x̂a + ip̂a)/
√

2 and b̂ = (x̂b + ip̂b)/
√

2. Then, Λθ(ψ) has this expressionquadrati
 in the boson variables :
Λθ(ψ) = 〈ψ|Λ̂θ|ψ〉,

Λ̂θ = 1 + 2sin2θ â†â+ 2cos2θ b̂†b̂

− 2 cos θ sin θ(âb̂+ â†b̂†) . (4.16)We may 
all Λ̂θ the generalised EPR operator.The entanglement of Ψr monotoni
ally in
reases with in
reasing value of the squeezingparameter r. In order that Λθ(Ψr) be useful as an entanglement measure of Ψr it should,for �xed value of θ, de
rease with in
reasing r. The restri
tion tan θ ≥ tanh r, en
oun-tered earlier in Eq. (4.8) from a di�erent perspe
tive, simply ensures this. Through themonotoni
 relationship (3) between r and Er, we will view this 
onstraint as a restri
tionon the allowed range of values of θ, for a �xed value of entanglement.Given a squeezed state |Ψr〉, let us denote by |Ψ′
r〉 the state obtained from |Ψr〉 byindependent lo
al 
anoni
al transformations [57℄ Sa, Sb ∈ Sp(2, R) a
ting respe
tively onthe os
illators of Ali
e and Bob.Proposition 4.2 We have Λθ(Ψ

′
r) ≥ Λθ(Ψr), ∀ θ in the range 1 ≥ tan θ ≥ tanh r andfor all Sa, Sb ∈ Sp(2, R).Proof : Clearly,

Λθ(Ψ
′
r) =

1

2
{ cosh 2r[ sin2 θ tr(SaS

T
a ) + cos2 θ tr(SbS

T
b ) ]

− sin 2θ sinh 2r tr (σ3Saσ3S
T
b ) }. (4.17)If e±γa are the singular values of Sa, and e±γb those of Sb, then

tr(SaS
T
a ) = 2 cosh 2γa,

tr(SaS
T
b ) = 2 cosh 2γb, and

tr(σ3Saσ3S
T
b ) ≤ 2 cosh(γa + γb). (4.18)Thus the di�eren
e ∆(γa, γb) ≡ Λθ(Ψ
′
r) − Λθ(Ψr) obeys

∆(γa, γb) ≥ cosh 2r[ sin2 θ(cosh 2γa − 1) + cos2 θ(cosh 2γb − 1) ]

− sin 2θ sinh 2r[ cosh(γa + γb) − 1 ]. (4.19)
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Chapter 4. Entanglement of Formation for Gaussian statesIt is easily seen that ∆(γa, γb) is expremal at γa = γb = 0 
orresponding to the standardsqueezed state |Ψr〉. To show that this extremum is indeed minimum, we note that thedeterminant of the Hessian matrix of the right hand side, evaluated at γa = 0 = γb, isproportional to sin 2θ cosh 2r− sinh 2r, and hen
e is positive if and only if tan θ ≥ tanh r.On
e again we see a role for the requirement tan θ ≥ tanh r. Let the equivalen
e
VG ∼ V0 denote the fa
t that the 
orresponding Gaussian states are 
onne
ted by a lo
al
anoni
al transformation. The fa
t thatM ≡ V0−VΨr0

≥ 0 implies Λθ0(ρV0) ≥ Λθ0(Ψr0).In view of Proposition 6.2, this implies
Λθ0(ρVG

) ≥ Λθ0(ρV0) ≥ Λθ0(Ψr0) = cosh 2r0 − sin 2θ sinh 2r0, (4.20)for any Gaussian state VG 
onne
ted to V0 by lo
al 
anoni
al transformation. This assignsan alternative meaning to the 
anoni
al parameter r0 :Proposition 4.3 Given a Gaussian state des
ribed by VG ∼ V0, the 
anoni
al squeezeparameter r0 is the smallest r for whi
h the matrix inequality VG − VΨ′
r
≥ 0 is true.It is well known that the two-mode-squeezed va
uum has several extremal propertiesof interest to entanglement [70, 253℄. It seems that this state enjoys one more su
hdistin
tion, this time in respe
t of our generalised EPR 
orrelation.Conje
ture 4.1 Among all bipartite states of �xed entanglement numeri
ally equalling

Er, and for every θ in the range tanh r ≤ tan θ, the two-mode-squeezed va
uum |Ψr〉 yieldsthe least value for the generalised EPR 
orrelation Λθ(·). In other words, no state |ψ〉with entanglement E(|ψ〉) ≤ Er 
an yield a generalised EPR 
orrelation Λθ(ψ) < Λθ(Ψr),for any θ in the range tan θ ≥ tanh rThe spe
ial 
ase θ = π/4 is the basis of the important work of Ref. [70℄. Hen
e thepresent assertion 
an be viewed as a generalisation of their Proposition 1. The originalEPR 
orrelation Λπ/4(·) 
ontinuously de
reases to zero with in
reasing entanglement.But this is not true of the generalised EPR 
orrelation Λθ(·).Let us denote by rθ the value of r determined by a given value of θ through theequation tan θ = tanh r, and let θr denote the value of θ so determined by r. Then, fora given numeri
al Er, the relevant range for θ in Conje
ture 1 is θr ≤ θ ≤ π/4.Proposition 4.4 The generalised EPR 
orrelation Λθ(·) obeys the basi
 inequality Λθ(·) ≥
cos 2θ. The two-mode-squeezed va
uum saturates this inequality if and only if the squeezeparameter r respe
ts tanh r = tan θ. 123



Chapter 4. Entanglement of Formation for Gaussian statesProof : It is 
lear that the relations tan θ = tanh r, sin 2θ = tanh 2r, and cos 2θ =

( cosh 2r )−1 are equivalent to one another, and so also are the inequalities tan θ ≥ tanh r,
sin 2θ ≥ tanh 2r, and cos 2θ ≤ ( cosh 2r )−1. Now 
onsider the transformation (â, b̂) →
U(r)(â, b̂)U(r)† where U(r) = exp{ r(â†b̂† − âb̂) } is the unitary two-mode-squeeze oper-ation :

â→ â cosh r − b̂† sinh r, b̂→ b̂ cosh r − â† sinh r. (4.21)This implies the following transformation for the anti
ommutator {b̂, b̂†} ≡ b̂b̂† + b̂†b̂ :
{b̂, b̂†} → ( b̂†b̂− â†â ) +

1

2
({â, â†} + {b̂, b̂†}) cosh 2r

− ( âb̂+ â†b̂† ) sinh 2r

= cosh 2r Λ̂θr
, θr ≡ arctan(tanh r). (4.22)Sin
e {b̂, b̂†} ≥ 1, so is also its unitary transform cosh 2r Λ̂θr

. That is, Λ̂θr
≥ ( cosh 2r )−1 =

cos 2θr.Thus, saturation of the inequality Λθr
(ψ′) ≥ cos 2θr is equivalent to the 
ondition

〈ψ|{b̂, b̂†}|ψ〉 = 1, where |ψ′〉 = U(r)|ψ〉. A pure state whi
h satis�es 〈ψ|{b̂, b̂†}|ψ〉 = 1,is of the form |ψ〉 = |φ〉a ⊗ |0〉b, where |φ〉a is any ve
tor in Ali
e's Hilbert spa
e Hb. Itfollows that states saturating the inequality Λθr
(ρ̂) ≥ cos 2θr 
onstitute the set { ρ̂(ab) =

U(r)ρ̂(a) ⊗ |0〉bb〈0|U(r)† }, where ρ̂(a) is any (pure or mixed) state of Ali
e's os
illator.Finally, Conje
ture 6.1 
laims that among all these states saturating this inequality thetwo-mode-squeezed va
uum |Ψrθ
〉, 
orresponding to the 
hoi
e ρ̂(a) = |0〉aa〈0|, has theleast entanglement.4.4 Entanglement of FormationWith the 
anoni
al form and the generalised EPR 
orrelations in hand, we are now fullyequipped to 
ompute the EOF of an arbitrary two-mode Gaussian state.Proposition 4.5 Given an inseparable zero-mean two-mode Gaussian state ρV0 with 
o-varian
e matrix V0 spe
i�ed in the 
anoni
al form by u, v, θ0 and r0 with u, v ≥ 0 and

0 < tanh r0 ≤ tan θ0 ≤ 1, its EOF equals Er0 , the entanglement of the squeezed va
uum
|Ψr0〉.Proof : The fa
t that M ≡ V0 − VΨr0

≥ 0 guaranties that ρV0 
an be realized as a 
onvexsum of displa
ed versions D(ξ)|Ψr0〉 of the squeezed va
uum states |Ψr0〉, all of whi
h124



Chapter 4. Entanglement of Formation for Gaussian stateshave the same entanglement Er0 as |Ψr0〉 :
ρV0 ∼

∫

d2ξD(ξ)|Ψr0〉〈Ψr0 |D†(ξ) exp(−1

2
ξTM−1ξ). (4.23)Here D(ξ) is the unitary phase spa
e displa
ement operator. The rank of M equals 2,and bothM−1 and the two-dimensional integral refer to the restri
tion of the phase spa
evariable ξ to the range of M .Sin
e a spe
i�
 ensemble realization with average entanglement Er0 is exhibited,EOF(ρV0) ≤ Er0 . On the other hand, evaluation of the generalised EPR 
orrelation

Λθ(ρV0) = tr (Λ̂θρV0), for the parti
ular value of θ o

urring in V0 shows that Λθ0(ρV0) =

cosh 2r0 − sin 2θ0 sinh 2r0. And by Conje
ture 6.1, this implies EOF(ρV0) ≥ Er0 . Wehave thus proved EOF(ρV0) = Er0 .An attra
tive feature of the 
anoni
al form of the 
ovarian
e matrix is that the two-mode-squeezing U(r) a
ts on it in a 
ovariant or form-preserving manner.Proposition 4.6 Under the two-mode-squeezing transformation U(r) we have
V0(r0, θ0, u, v) → V0(r

′
0, θ

′
0, u

′, v′) ;

r′0 = r0 + r, sin 2θ′0 =
sinh 2r + cosh 2r sin 2θ0
cosh 2r + sin 2θ0 sinh 2r

,

(u′, v′) = (u, v) × (cosh 2r + sin 2θ0 sinh 2r). (4.24)This is easily veri�ed by dire
t 
omputation. While the 
anoni
al squeeze parameter
r0 simply gets translated by r, the parameters u and v get s
aled by a 
ommon fa
tor.If we de�ne rθ0 , rθ′0 through tan θ0 ≡ tanh rθ0 and tan θ′0 ≡ tanh rθ′0 , the transformationlaw for θ0 takes the form of translation: rθ′0 = rθ0 + r.As a 
onsequen
e of this 
ovarian
e, the 
onvex de
omposition whi
h minimizesthe average entanglement goes 
ovariantly to su
h a de
omposition under two-mode-squeezing: the minimal de
omposition 
ommutes with squeezing. This implies, in par-ti
ular, the following simple behaviour of EOF under squeezing: Er0 → Er0+r.Finally, the just separable Gaussian states on the separable-inseparable boundary,
orrespond to the 
anoni
al form with r0 = 0 [57℄. As was to be expe
ted, the 
ondition(4.8) pla
es no restri
tion on θ0 in this 
ase.
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5Compatibility 
onditions on lo
al and globalspe
tra for n-mode Gaussian states
5.1 Introdu
tionThe quantum marginal problem has attra
ted 
onsiderable interest in quantum infor-mation theory [17, 34, 345�351℄. Given a multipartite system, it asks: what kind ofspe
tra for the subsystem density operators are 
onsistent with a given spe
trum for thedensity operator of the full system? The Gaussian quantum marginal problem (detailedbelow) has been solved re
ently [285, 352℄ (As noted in Ref. [352℄, the three-mode 
asewas known earlier [254℄). Our approa
h to this problem makes e�e
tive use of beam split-ter and two-mode squeezing transformations. In the 
ase of two modes it is shown thatevery Gaussian state is uniquely determined, modulo lo
al 
anoni
al transformations, byits global spe
trum and lo
al spe
tra; in parti
ular, the entanglement is fully determinedby these spe
tra.Consider a Gaussian state of a system of n-modes, represented by density operator ρ̂.The mean values of the position and momentum variables qj, pj have no role to play inour 
onsiderations, and so we assume that these mean values vanish. Su
h a zero-meanGaussian state is fully des
ribed by its 2n × 2n 
ovarian
e matrix V .The redu
ed state ρ̂j of the jth mode, obtained by tra
ing out from ρ̂ all other modes,is also a zero-mean Gaussian state. With the phase spa
e variables assumed arranged inthe order q1, p1 ; q2, p2 ; · · · ; qn, pn the jth 2 × 2 blo
k along the leading diagonal of Vrepresents pre
isely the 
ovarian
e matrix of the redu
ed state ρ̂j . Through (independent)lo
al 
anoni
al transformations ∈ Sp(2, R) on ea
h mode we make all the 2 × 2 blo
ksalong the diagonal of V multiples of identity. The 
ovarian
e matrix of the jth mode willthen be of the form diag(mj ,mj). It 
orresponds to a thermal state, with temperature
T (mj) whi
h is a monotone in
reasing fun
tion of mj. Being thermal, ρ̂j has the spe
tral126
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onditions on lo
al and global spe
tra for n-mode Gaussianstatesresolution ρ̂j = [1 − ξ(mj)]
∑∞

k=0 ξ(mj)
njk |njk〉〈njk| . The parameter ξ(mj) is anothermonotone in
reasing fun
tion of mj, and |njk〉's are the energy eigenstates of the jthos
illator. Clearly, the eigenvalue spe
tra of the ρ̂j's are determined by, and determine,the lo
al spe
tral parameters mj .Using an appropriate (nonlo
al) 
anoni
al transformation S ∈ Sp(2n,R) the 
ovari-an
e matrix V 
an be de
oupled and brought into the 
anoni
al form V (0) of independentos
illators in thermal states [57℄: V (0) = SV ST =diag(κ1, κ1 ; κ2, κ2 ; · · · ; κn, κn). Theasso
iated density operator ρ̂(0) thus has the spe
tral de
omposition

ρ̂(0) =
n
∏

j=1

[1 − ξ(κj)]
∞
∑

k=0

ξ(κj)
njk |njk〉〈njk|. (5.1)Sin
e ρ̂(0) and the original ρ̂ are unitarily related, the spe
trum of ρ̂ is the same as thatof ρ̂(0). It is 
lear that this global spe
trum and the n-tuple of global spe
tral parameters

(κ1, κ2, · · · , κn) determine ea
h other.We may now ask what are the 
onstraints 
onne
ting the global spe
trum of a Gaus-sian state to its lo
al spe
tra. In view of the invertible relationships just noted thisGaussian quantum marginal problem is equivalent to seeking the 
ompatibility 
onstraintsbetween the global spe
tral parameters {κj } and the lo
al spe
tral parameters {mj }.Interestingly, the answer 
an be given in the form of ne
essary and su�
ient 
onditions.Theorem 5.1 Let m = (m1,m2,m3, · · · ,mn) and κ = (κ1, κ2, · · · , κn) be the lo
al andglobal spe
tral parameters of an n-mode Gaussian state, written in nonde
reasing order.These are 
ompatible i�
k
∑

j=1

mj ≥
k
∑

j=1

κj , k = 1, 2, · · · , n , (5.2)
mn −

n−1
∑

j=1

mj ≤ κn −
n−1
∑

j=1

κj . (5.3)Remarks : What this 
laim means 
an be 
lari�ed by stating it in two parts. Supposea Gaussian state is given. Its lo
al spe
tral parameters m1,m2, · · · ,mn, and globalspe
tral parameters κ1, κ2, · · · , κn are 
ertain to meet these inequalities (with κ1 ≥ 1).Conversely, given a set of lo
al and global spe
tral parameters meeting these inequalities(with κ1 ≥ 1), we 
an 
ertainly 
onstru
t a physi
al Gaussian state with these parameters.The �rst part of the theorem was essentially proved by Hiroshima [285℄. But the fulltheorem in this form was formulated by Eisert et al. [352℄ who presented an indu
tive prooffor the se
ond part. Our proof of both parts will be seen to be 
onstru
tive, 
onsistent127
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onditions on lo
al and global spe
tra for n-mode Gaussianstateswith the elementary nature of the theorem, and it rests in an essential manner on a fullerappre
iation of the two-mode situation.Given two ve
tors m, κ ∈ Rn, we will say κ dominates m if m and κ, after their
omponents are rearranged in the nonde
reasing order, obey the set of n + 1 inequali-ties (5.2), (5.3). This de�nition is su
h that permutation of the 
omponents of m or κdoes not a�e
t dominan
e. Thus (9, 7, 8, 6, 12, 11, 10) is dominated by (5, 2, 18, 4, 1, 12, 3),sin
e (1, 2, 3, 4, 5, 12, 18) manifestly dominates (6, 7, 8, 9, 10, 11, 12). Further, dominan
eso de�ned is transitive: κ dominates m, andm dominates m′, together imply κ dominates
m′. In the S
hur-Horn 
ase [353℄ wherein m 
orresponds to the diagonal entries of ahermitian matrix and κ to its eigenvalues, the last inequality in (5.2) be
omes an equality.It is 
lear that (5.3) is subsumed by (5.2) in that 
ase.5.2 The two-mode 
aseThis 
ase is of interest in its own right. Further, it possesses an aspe
t whi
h seems to beunique, not shared by any other system. Finally, our analysis of the n-mode 
ase relies
riti
ally on repeated appli
ations of the two-mode result. Hen
e we begin with a dire
tproof of the theorem in the two-mode 
ase.Lemma 5.1 The parameters m1 ≤ m2 and 1 ≤ κ1 ≤ κ2 are 
ompatible for two-modeGaussian states i�

m1 +m2 ≥ κ1 + κ2,

m2 −m1 ≤ κ2 − κ1. (5.4)Note that the 
ondition m1 ≥ κ1 is subsumed by (5.4).Proof of Lemma : The 
ovarian
e matrix 
an, through lo
al unitary (
anoni
al) trans-formation ∈ Sp(2, R) × Sp(2, R), be brought to the form
V =













m1 0 kx 0

0 m1 0 kp

kx 0 m2 0

0 kp 0 m2













. (5.5)
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Chapter 5. Compatibility 
onditions on lo
al and global spe
tra for n-mode GaussianstatesThe global spe
tral parameters κ1, κ2 are related to the lo
al m1, m2 through the sym-ple
ti
 invariants [57℄
1

2
tr (ΩV ΩTV ) = κ2

1 + κ2
2 = m2

1 +m2
2 + 2kxkp,

detV = (κ1κ2)
2 = (m1m2 − k2

x)(m1m2 − k2
p). (5.6)These immediately imply

κ1κ2 ≤ m1m2,

κ2
1 + κ2

2 ≥ m2
1 +m2

2, if kxkp ≥ 0,

κ2
1 + κ2

2 ≤ m2
1 +m2

2, if kxkp ≤ 0, (5.7)equality in the �rst inequality holding if kx = 0 = kp. These inequalities imply
κ2 − κ1 ≥ m2 −m1, when kxkp ≥ 0,

κ2 + κ1 ≤ m2 +m1, when kxkp ≤ 0. (5.8)This mu
h is immediate from the symple
ti
 invariants. What remain to be proved are :
κ2 − κ1 ≥ m2 −m1 when kxkp ≤ 0 and κ2 + κ1 ≥ m2 +m1 when kxkp ≥ 0.To prove these we reinterpret (5.6) as simultaneous expressions for kx, kp in terms of
κ1, κ2; m1, m2 :

kxkp = [ (κ2
1 + κ2

2) − (m2
1 +m2

2) ]/2, (5.9)
k2

x + k2
p =

1

m1m2
[m2

1m
2
2 − κ2

1κ
2
2 + k2

xk
2
p ]. (5.10)It is 
lear that real solutions for kx and kp will exist i� ` k2

x + k2
p ' ≥ ` 2| kxkp | '. That is,i�

m1m2 − | kxkp | ≥ κ1κ2. (5.11)With use of (5.9) for kxkp, this last 
ondition reads
κ2 − κ1 ≥ m2 −m1, when kxkp ≤ 0,

κ2 + κ1 ≤ m2 +m1, when kxkp ≥ 0. (5.12)Proof of the Lemma is thus 
omplete.
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Chapter 5. Compatibility 
onditions on lo
al and global spe
tra for n-mode GaussianstatesTwo types of simple transformations on any pair of modes 
hara
terised by annihi-lation operators aj , ak deserve parti
ular mention; they play a key role in our proof ofthe theorem. The �rst, Sθ, 
orresponds to the 
ompa
t transformations aj → cos θ aj +

sin θ ak, ak → − sin θ aj + cos θ ak, and therefore is represented by Sθ = cos θ σ0 ⊗ σ0 +

sin θ iσ2 ⊗ σ0 ∈ Sp(4, R), 0 ≤ θ < 2π, where σ0 is the 2 × 2 unit matrix and σ2is the antisymmetri
 Pauli matrix. Physi
ally, Sθ is a beam splitter with transmitiv-ity cos2 θ. The se
ond one, Sµ, is non
ompa
t and 
orresponds to squeezing transfor-mations aj → cosh µaj + sinhµa†k, ak → coshµak + sinhµa†j , and is represented by
Sµ = coshµσ0 ⊗ σ0 + sinhµσ1 ⊗ σ3 ∈ Sp(4, R), 0 ≤ µ <∞.It is easily veri�ed that when the 
ovarian
e matrix V , Eq. (5.5), has kp = kx ≡ k,it 
an be diagonalised by the beam splitter transformation V → SθV S

T
θ , with θ �xedthrough tan 2θ = 2k/(m2 −m1). And κ2 + κ1 will pre
isely equal m2 +m1 in this 
ase.Similarly, if kp = −kx = k > 0, then V is diagonalised by the squeezing transformation

V → SµV S
T
µ , with tanh 2µ = 2k/(m2 + m1), and one will �nd κ2 − κ1 = m2 −m1 inthis 
ase.Conversely, suppose we start with the 
anoni
al form V (0) = diag (κ1,κ1; κ2,κ2),and we wish to a
hieve through symple
ti
 
ongruen
e V (0) → SV (0)ST , S ∈ Sp(4, R),a 
ovarian
e matrix with diagonals m1,m2. If m1 < m2 are su
h that m2 < κ2 and

κ2 +κ1 = m2 +m1, su
h a redistribution of κ1, κ2 among m1, m2 
an always be a
hievedthrough a beam splitter transformation Sθ. Under Sθ we have m2 +m1 = κ2 + κ1 and
m2 −m1 = cos 2θ (κ2 − κ1). On the other hand, if m2 > κ2 and κ2 − κ1 = m2 −m1,so that κ1 and κ2 are enhan
ed by equal amounts to m1, m2, this 
an be a
hievedthrough a squeezing transformation Sµ. Under Sµ we have m2 − m1 = κ2 − κ1 and
m2 +m1 = cosh 2µ (κ2 + κ1).Our Lemma is similar to Lemma 5 of Ref. [352℄, but our proof is dire
t and 
on-stru
tive. There is an important distin
tion in 
ontent as well: while theirs 
laims that
m2 − m1 = κ2 − κ1 i� m2 = κ2 and m1 = κ1, we have just demonstrated that if
m2 −m1 = κ2 − κ1 then m2 +m1 
ould equal cosh 2µ (κ2 + κ1) for any 0 ≤ µ <∞, notjust µ = 0. Indeed, this distin
tion is 
entral to Stage 2 of our proof of the se
ond partof the main theorem, the part whi
h distinguishes the present symple
ti
 situation fromthe S
hur-Horn 
ase.Returning to Eq. (5.10), if we are given values for the expressions ` a2 + b2 ' and` ab ' with a2 + b2 ≥ 2| ab |, the solution for (a, b) is unique [ (a, b) and (b, a) are notdistin
t solutions for our purpose ℄. This inno
ent looking observation leads to a surprising
on
lusion.Proposition 5.1 Spe
i�
ation of the lo
al and global spe
tra of a two-mode Gaussian130



Chapter 5. Compatibility 
onditions on lo
al and global spe
tra for n-mode Gaussianstatesstate determines uniquely the state itself, modulo lo
al unitary transformations.States of a pair of qubits share a similarity with two-mode Gaussian states in impor-tant respe
ts. For instan
e, positivity under partial transpose is a ne
essary and su�
ient
ondition for separability and nondistillability in both 
ases. But a statement analogousto the above proposition is not true for a pair of qubits!5.3 Proof of main theoremAssume we are given a (zero-mean) Gaussian state, or equivalently, an a

eptable 
o-varian
e matrix V , the 2 × 2 blo
ks along the leading diagonal of V being of theform diag(mj,mj). The global spe
tral parameters {κj } are immediately de�ned by
V [57, 192℄. It is assumed that m = (m1,m2, · · ·mn) and κ = (κ1, κ2, · · · , κn) are ar-ranged in nonde
reasing order. Let Pκ denote the produ
t κ1κ2 · · ·κn and let Pm =

m1m2 · · ·mn. Clearly, Pκ = detV ≤ Pm, equality holding i� V is diagonal, i.e., i�
mj = κj , j = 1, 2, · · · , n. Our task is to prove that κ dominates m.Choose a pair 1 ≤ j < k ≤ n su
h that the 2 × 2 blo
k (in the o�-diagonal lo
ation)
onne
ting the jth and kth modes is nonzero. We 
an arrange (through lo
al rotations)this blo
k to be diagonal. Let us `diagonalise' this 4 × 4 part of the 
ovarian
e matrixusing an appropriate two-mode 
anoni
al transformation ∈ Sp(4, R), so that mj and mkare transformed to m̃j and m̃k respe
tively, the other diagonal parameters remaininguna�e
ted.It is be noted that the new m dominates the original m. That this is so follows, in the
ase k < n, from the fa
ts m̃j < mj and m̃j +m̃k ≤ mj +mk. In the 
ase k = n it followsfrom the additional fa
t that if m̃k is less that mk it is so by a magnitude whi
h doesnot ex
eed the magnitude by whi
h m̃j is less than mj (m̃k − m̃j ≥ mk −mj). Further,
m̃jm̃k < mjmk.Denote by m′ the new diagonal m-parameters arranged in nonde
reasing order by
orrespondingly permuting the os
illators. Sin
e m̃jm̃k < mjmk we have Pm′ < Pm.For purpose of 
larity, let us 
arry out this pro
ess one more time. The parameters
m′ will then go to m′′ dominating m′, with Pm′′ < Pm′ . It follows from the transmitivityof dominan
e that m′′ dominates m.It is now 
lear that when this pro
ess is iterated, m goes through a sequen
e ofintermediate values, the value at every stage dominating the previous value, and 
orre-spondingly Pm steadily de
reasing, until Pm rea
hes Pκ or, equivalently, until V be
omesdiagonal. This 
ompletes proof of the �rst part of the theorem.
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Chapter 5. Compatibility 
onditions on lo
al and global spe
tra for n-mode GaussianstatesThe elementary nature of our proof may be 
ompared with that of Ref. [285℄. Pmplayed the role of `pro�t fun
tion' monitoring progress of this diagonalisation pro
ess.To prove the se
ond part assume, 
onversely, that we are given the global and lo
alspe
tral parameters κ, m ∈ Rn. Assume that these are 
ompatible: i.e., κ dominates m,with κ1 ≥ 1. Our task is to 
onstru
t a Gaussian state with these properties. In otherwords we have to present a 
anoni
al transformation S ∈ Sp(2n,R) whi
h a
ting on a
ovarian
e matrix V = diag(κ1, κ1 ; κ2, κ2 ; · · · ; κn, κn) will produ
e a 
ovarian
e matrix
SV ST with the target diagonal values m. We build su
h an S as a produ
t of n − 1spe
i�
 two-mode transformations, evolving m(0) ≡ κ su

essively through a sequen
e ofintermediates m(1), m(2), · · · to �nally m(n−1) = m. It will be manifestly 
lear that m(k)dominates m(k+1) at ea
h stage. For 
larity, this pro
ess is implemented through fourelementary stages.5.3.1 Stage 1Sin
e m(0) ≡ κ dominates m, we have m1 ≥ m

(0)
1 = κ1. Suppose m1 = m

(0)
1 + ǫ1,

ǫ1 > 0 (one will move to the next step if m1 = m
(0)
1 ). Let j1 be the least integer < nsu
h that m(0)

j1
≥ m1. Carry out a beam splitter transformation Sθ between the �rstand j1th mode so that the 
orresponding diagonal elements (m

(0)
1 ,m

(0)
j1

) get redistributedto (m
(0)
1 + ǫ1,m

(0)
ji

− ǫ1) = (m1,m
(0)
j1

− ǫ1), with no 
hange in the other diagonal en-tries: m(0) = (m
(0)
1 ,m

(0)
2 , · · · ,m(0)

n ) → m(1) = (m1,m
(0)
2 , · · · ,m(0)

j1
− ǫ1, · · · ,m(0)

n ) ≡
(m1,m

(1)
2 ,m

(1)
3 , · · · ,m(1)

n ).We 
an repeat this pro
ess. Let m2 = m
(1)
2 + ǫ2. By hypothesis ǫ2 ≥ 0 (this is so evenif j1 had equalled 2). Assume ǫ2 > 0 (if ǫ2 = 0, one moves to the next step). Let j2 bethe smallest integer < n su
h that m(1)

j2
≥ m2 [Clearly, j2 
an be as small as j1, but notany smaller℄. Carry out a beam splitter transformation on the 2nd and jth2 modes so thatthe 
orresponding diagonal elements (m
(1)
2 ,m

(1)
j2

) get redistributed to (m2,m
(1)
j2

− ǫ2) toprodu
e m(2), leaving the other diagonals una�e
ted.If we are able to repeat this pro
ess only ℓ times we have, at the end of it,
m(ℓ) = (m1,m2, · · · ,mℓ;m

(ℓ)
ℓ+1,m

(ℓ)
ℓ+2, · · · ,m(ℓ)

n ), (5.13)with m(ℓ)
j < mj , ∀ ℓ+ 1 ≤ j ≤ n − 1, and m(l)

n = m
(0)
n = κn. What we have done so faris identi
al to what one would have done in the S
hur-Horn situation. Clearly, the beamsplitter transformations 
arried out so far a�e
ted neither the sum of the diagonal entriesof m(·) nor its nth entry. Consequently, the di�eren
e m(k)

n −∑n−1
j=1 m

(k)
j has remainedthe same for all 0 ≤ k ≤ ℓ. 132



Chapter 5. Compatibility 
onditions on lo
al and global spe
tra for n-mode Gaussianstates5.3.2 Stage 2De�ne δ(k) =
∑n

j=1mj −
∑n

j=1m
(k)
j . It is 
lear that δ(k) = δ(0), for k = 1, 2, · · · , l. Inthe S
hur-Horn situation δ(0) vanishes by hypothesis. We will now employ two-modesqueezing transformations Sµ to re
tify this `departure' from the S
hur-Horn situation.We know that δ(ℓ) = δ(0) is nonnegative. Assume δ(0) > 0 ( if δ(0) = 0, one willmove dire
tly to Stage 4, as will be
ome evident below). De�ne ǫℓ+1 = mℓ+1 − m

(ℓ)
ℓ+1.Assume δ(ℓ) ≥ 2ǫℓ+1 ( if this is not the 
ase one will move to Stage 3). Carry out atwo-mode squeezing transformation Sµ between the (ℓ+ 1)th and nth modes, raising the
orresponding diagonal entries m(ℓ)

ℓ+1, m(ℓ)
n = m

(0)
n = κn by equal magnitude to mℓ+1,

m
(ℓ)
n + ǫℓ+1 with no 
hange in the other diagonal entries, so that

m(ℓ+1) = (m1, · · · ,mℓ+1,m
(ℓ+1)
ℓ+2 , · · · ,m(ℓ+1)

n ),

m
(ℓ+1)
j = m

(ℓ)
j , ∀ ℓ+ 2 ≤ j ≤ n− 1,

m(ℓ+1)
n = m(ℓ)

n + ǫℓ+1 = κn + ǫℓ+1. (5.14)We 
an now repeat this kind of two-mode squeezing transformation between the (ℓ+ 2)thmode and the nth mode, and so on. Assume we are able to 
arry out this pro
ess only rtimes. We will have, at the end of it,
m(ℓ+r) = (m1, · · · ,mℓ+r,m

(ℓ+r)
ℓ+r+1, · · · ,m(ℓ+r)

n ),

m
(ℓ+r)
j = m

(ℓ)
j , ∀ ℓ+ r + 1 ≤ j ≤ n− 1,

m(ℓ+r)
n = κn + ǫℓ+1 + ǫℓ+2 + · · · + ǫℓ+r, (5.15)so that δ(ℓ+r) = δ(0) − 2(ǫℓ+1 + ǫℓ+2 + · · · + ǫℓ+r). Clearly, 0 ≤ δ(ℓ+r) < 2ǫℓ+r+1 =

2(mℓ+r+1 −m(ℓ+r)
ℓ+r+1) (the last inequality en
odes the fa
t that we 
ould not 
arry out theStage 2 operation one more time).5.3.3 Stage 3Assume δ(ℓ+r) > 0 ( if δ(ℓ+r) = 0, we move dire
tly to Stage 4). Carry out a two-mode 
anoni
al transformation between the (ℓ+ r + 1)th mode and the nth mode, takingthe 
orresponding diagonal entries m(ℓ+r)

ℓ+r+1, m(ℓ+r)
n to mℓ+r+1 = m

(ℓ+r)
ℓ+r+1 + ǫr+ℓ+1 and

m
(ℓ+r+1)
n = m

(ℓ+r)
n + δ(ℓ+r) − ǫr+ℓ+1 respe
tively, leaving the other diagonals invariant,
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Chapter 5. Compatibility 
onditions on lo
al and global spe
tra for n-mode Gaussianstatesso that we have
m(ℓ+r+1) = (m1, · · · ,mℓ+r+1,m

(ℓ+r+1)
ℓ+r+2 , · · · ,m(ℓ+r+1)

n ),

m
(ℓ+r+1)
j = mℓ

j < mj, ∀ ℓ+ r + 2 ≤ j ≤ n− 1,
n
∑

j=ℓ+r+2

m
(ℓ+r+1)
j =

n
∑

j=ℓ+r+2

mj. (5.16)i.e., the situation in respe
t of the remaining n − (ℓ + r + 1) (or n − ℓ− r if δ(ℓ+r) = 0)modes is pre
isely of the S
hur-Horn type, suggesting that we deploy the beam splittertransformation n− l − r − 2 (or n− l − r − 1 ) times.5.3.4 Stage 4Note that at the end of Stage 3 we have m(ℓ+r+1)
n larger than mn pre
isely by the sumof the amounts by whi
h m(ℓ+r+1)

ℓ+r+1+j, for 1 ≤ j ≤ n − ℓ − r − 2, are less than mℓ+r+1+j.Therefore, for ea
h value of j in this range, we e�e
t a beam splitter transformation
onne
ting the (ℓ+ r + 1 + j)th mode to the nth mode, raising m
(ℓ+r+1)
ℓ+r+1+j to mj and
orrespondingly pulling m(ℓ+r+1+j)

n down by an equal amount. It is 
lear that at the endof these n− ℓ− r− 2 (or n− ℓ− r− 1) redistributions, the diagonals will be pre
isely m.That is, m(n−1) = m. This 
ompletes proof of the theorem.We have taken maximal advantage of the simpler two-mode transformations Sθ, Sµ.The former was deployed r times in Stage 1 and n− ℓ− r− 2 (or n− ℓ− r− 1) times inStage 4, and the latter ℓ times in Stage 2. The more general two-mode transformationwas deployed (at the most) on
e in Stage 3.As illustration, and for 
omparison with Ref. [352℄, we apply our pro
edure to theexample noted after the statement of the theorem. The di�eren
e between∑7
j=1mj = 63and ∑7

j=1 κj = 45 indi
ates the amount of squeezing that will have to be deployed atStages 3 and 4. We have m(0) ≡ κ = (1, 2, 3, 4, 5, 12, 18); m(1) = (6, 2, 3, 4, 5, 7, 18);
m(2) = (6, 7, 3, 4, 5, 2, 18); m(3) = (6, 7, 8, 4, 5, 2, 23); m(4) = (6, 7, 8, 9, 5, 2, 26); m(5) =

(6, 7, 8, 9, 10, 2, 21); and m(6) = (6, 7, 8, 9, 10, 11, 12) = m. The number of two-modetransformations required at the four stages are 2, 1, 1, and 2 respe
tively. Note that m(k)dominates m(k+1), for k = 0, 1, · · · , 5.
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6Operator-sum representation for Bosoni
Gaussian 
hannels
6.1 Introdu
tionGaussian states are fully spe
i�ed by their �rst and se
ond moments. Sin
e the �rstmoments play no signi�
ant role in our study, we may assume that they vanish (this
an indeed be ensured using the unitary Weyl-Heisenberg displa
ement operators), sothat a Gaussian state for our purpose is fully des
ribed by its 
ovarian
e matrix [192,202, 226, 354℄. The symple
ti
 group of real linear 
anoni
al transformations (a
tingthrough its unitary metaple
ti
 representation) and the Weyl-Heisenberg group of phasespa
e translations are the only unitary evolutions whi
h preserve Gaussianity, and thesegroups are generated by hermitian Hamiltonians whi
h are respe
tively quadrati
 andlinear in the 
reation and annihilation operators [192, 202, 226℄.Any physi
al evolution that maps an input Gaussian state to a Gaussian state atthe output is a Gaussian 
hannel. In other words, Gaussian 
hannels are those tra
epreserving 
ompletely positive (CP) maps whi
h image every input Gaussian state intoa Gaussian state at the output. The feasibility of pro
essing information using Gaussian
hannels was originally explored in [355, 356℄. More re
ently, the problem of evaluatingthe 
lassi
al 
apa
ity of Gaussian 
hannels was addressed in [141, 149, 282℄, and thequantum 
apa
ities in [157, 159, 281, 283, 284℄. In parti
ular, the 
lassi
al 
apa
ity ofthe attenuator 
hannel was evaluated in [282℄, and the quantum 
apa
ity of a 
lass of
hannels was studied in [159℄. A systemati
 study of the stru
ture of the family of allGaussian 
hannels has been 
arried out in [158, 286�288, 357℄; single-mode Gaussian
hannels have been 
lassi�ed in [158, 286℄, and the 
ase of multimodes in [287, 288, 357℄.Gaussian 
hannels may be realized as Gaussianity preserving unitaries on a suitably
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Chapter 6. Operator-sum representation for Bosoni
 Gaussian 
hannelsenlarged system :
ρA → ρ

′

A = TrB (UAB (ρA ⊗ ρB)U †
AB

)

. (6.1)Here ρB is a Gaussian state of the an
illa B, and UAB is a linear 
anoni
al transformationon the enlarged 
omposite system 
onsisting of the system of interest A and the an
illaB. That all Gaussian 
hannels 
an indeed be realized in this manner has been shown bythe work of Holevo and 
oauthors [158, 286, 288, 357℄.It is 
lear that the most general tra
e-preserving linear map Ω whi
h takes Gaus-sian 
hara
teristi
 fun
tions to Gaussian, taking states with vanishing �rst moments toones with vanishing �rst moments, are ne
essarily of the form Ω : χ(ξ) → χ
′
(ξ) =

χ(Xξ) exp[−1
2ξ

TY ξ], where X,Y are real matri
es with Y = Y T ≥ 0. And X,Y needto obey an appropriate matrix inequality to ensure that the tra
e-preserving map Ω is
ompletely positive [157, 159, 358, 359℄. For a given X, the minimal Y , say Y0, meetingthis inequality represents the threshold Gaussian noise that needs to be added to χ(Xξ)to make atonement for the failure of X to be a symple
ti
 matrix, and thus rendering themap 
ompletely positive; if X happens to be a symple
ti
 matrix, then the 
orrespondingminimal Y0 = 0.Now, given a Gaussian 
hannel Ω we 
an 
onstru
t, `quite 
heaply', an entire fam-ily of Gaussian 
hannels by simply pre
eding and following Ω with unitary (symple
-ti
) Gaussian 
hannels U(S1), U(S2) 
orresponding respe
tively to symple
ti
 matri
es
S1, S2. Therefore in 
lassifying Gaussian 
hannels it is su�
ient to 
lassify these orbitsor double 
osets and, further, we may identify ea
h orbit with the `simplest' lookingrepresentative element of that orbit (the 
anoni
al form). Sin
e

U(S1)ΩU(S2) : χ(ξ) → χ(S2XS1 ξ) exp[−1

2
ξTST

1 Y S1ξ], (6.2)the task a
tually redu
es to enumeration of the orbits of (X,Y ) under the transformation
(X,Y ) → (X

′
, Y

′
) = (S2XS1, S

T
1 Y S1).The inje
tion of an arbitrary amount of 
lassi
al (Gaussian) noise into the state isobviously a Gaussian 
hannel : χ(ξ) → χ(ξ) exp[−a

2ξ
T ξ], a > 0. It is 
alled the 
lassi-
al noise 
hannel. Now, given a Gaussian 
hannel we may follow it up with a 
lassi
alnoise 
hannel to obtain another Gaussian 
hannel. A Gaussian 
hannel will be said to bequantum-limited if it 
annot be realized as another Gaussian 
hannel followed by a 
las-si
al noise 
hannel. Conversely, the most general Gaussian 
hannel is a quantum-limitedGaussian 
hannel followed by a 
lassi
al noise 
hannel, and it follows that quantum-limited 
hannels are the primary obje
ts whi
h need to be 
lassi�ed into orbits.In the single-mode 
ase where X,Y are 2 × 2 matri
es, S1, S2 ∈ Sp(2, R) 
an be so136



Chapter 6. Operator-sum representation for Bosoni
 Gaussian 
hannels
hosen that X ′ equals a multiple of identity, a multiple of σ3, or (11 + σ3)/2 while Y ′equals a multiple of identity or (11+σ3)/2. Thus the 
anoni
al form of a Gaussian 
hannel
X,Y is fully determined by the rank and determinant of X,Y and we have the following
lassi�
ation of quantum-limited bosoni
 Gaussian 
hannels [158, 286℄

D(κ; 0) : X = −κσ3, Y0 = (1 + κ2)11, κ > 0;

C1(κ; 0) : X = κ11, Y0 = (1 − κ2)11, 0 ≤ κ ≤ 1;

C2(κ; 0) : X = κ11, Y0 = (κ2 − 1)11, κ ≥ 1;

A1(0) : X = 0, Y0 = 11;

A2(0) : X = (11 + σ3)/2, Y0 = 11;

B2(0) : X = 11, Y0 = 0;

B1(0) : X = 11, Y0 = 0.

(6.3)
It may be noted that the quantum-limited end of both the B1 and B2 families is thetrivial identity 
hannel.By following the above listed quantum-limited 
hannels by inje
tion of 
lassi
al noiseof magnitude a we get respe
tively D(κ; a), C1(κ; a), C2(κ; a), A1(a), A2(a), and B2(a);the last 
ase B1(a) is spe
ial in that it is obtained from B1(0) by inje
tion of noise intojust one quadrature : χ(ξ) → χ(ξ) exp[−a

4ξ
T (11 + σ3)ξ].It is 
lear in the 
ase of D(κ; 0) that X = −κσ3 
orresponds to (s
aled) phase 
on-jugation or matrix transposition of the density operator. And the phase 
onjugation isthe most famous among positive maps whi
h are not CP [27, 28, 57℄; it is the inje
tionof additional 
lassi
al noise of magnitude (not less than) 1 + κ2, represented by Y0, thatmends it into a CP map.It is well known that every tra
e-preserving 
ompletely positive map has an operator-sum representation of the form

ρ→ ρ
′
=
∑

α

Wα ρW
†
α,

∑

α

W †
αWα = 11, (6.4)often 
alled Kraus representation [7℄. It may be noted, however, that this representationappears as Theorem 4 of a mu
h earlier work of Sudarshan et al [31℄. It has been presentedalso by Choi [6℄, apparently independently. Mathemati
ians seem to view it as a dire
tand immediate 
onsequen
e of the dilation theorem of Stinespring [9℄.In this Chapter we obtain the operator-sum representation of all the quantum limitedsingle-mode Bosoni
 Gaussian 
hannels. Our analysis lends insight into how unphysi
alpro
esses su
h as the transposition map, or the s
aling of Weyl-ordered 
hara
teristi
fun
tion, or a 
ombination of both 
an be rendered physi
al through a threshold Gaussian137



Chapter 6. Operator-sum representation for Bosoni
 Gaussian 
hannelsnoise. The motive here is to bring out this aspe
t in a transparent manner through theoperator-sum representation. We have that s
aling of the diagonal weight fun
tion ands
aling of the Husimi Q fun
tion 
orrespond to physi
al pro
esses. As will be seen in thefollowing Chapter, the fa
t that s
aling of the Q fun
tion is physi
al is of 
riti
al relevan
ewhen one de�nes a measure of non-Gaussianity for quantum states. This Chapter furtherexplores the notion of non
lassi
ality breaking and the notion of entanglement breakingin light of the operator-sum representation.We begin with the illustration a general s
heme for 
omputation of Kraus operators,and this s
heme applies uniformly to all quantum-limited Gaussian 
hannels. This s
hemetakes parti
ular advantage of the fa
t that the symple
ti
 two-mode transformation whi
hrealizes the 
hannel in the sense of (6.1) does not 
ouple, in the Holevo 
anoni
al form,the position variables with the momentum variables. With the an
illa mode assumed tobe in its va
uum state initially, it turns out that the Kraus operators for ea
h 
hannel
an be simply read o� from the matrix elements of the appropriate two-mode metaple
ti
operator. Even though the single-quadrature 
lassi
al noise 
hannels B1(a), a 6= 0 [B1(0)is the identity 
hannel℄ are not quantum-limited, we deal with them brie�y just to bringout the fa
t that this 
ase too is obedient to our general 
omputational s
heme.6.2 Kraus representation: Some general 
onsiderationsGiven density operator ρ(a) des
ribing the state of a single-mode radiation �eld, thea
tion of a quantum-limited Gaussian 
hannel takes it to [158, 286℄
ρ

′(a) = Trb(U (ab) (ρ(a) ⊗ |0〉bb〈0|)U (ab)†). (6.5)Here |0〉b is the va
uum state of the an
illa mode b, and U (ab) is the unitary operator
orresponding to a suitable two-mode linear 
anoni
al transformation. It is 
onvenientto perform the partial tra
e in the Fo
k basis of mode b. We have
ρ

′(a) =
∑

ℓ

b〈ℓ|U (ab) (ρ(a) ⊗ |0〉bb〈0|)U (ab) †|ℓ〉b

=
∑

ℓ

b〈ℓ|U (ab)|0〉b ρ(a)
b〈0|U (ab) †|ℓ〉b . (6.6)Clearly, b〈ℓ|U (ab)|0〉b is an operator a
ting on the Hilbert spa
e of mode a. The lastexpression thus leads us to the Kraus representation of the 
hannel [7℄ :

ρ→ ρ
′(a) =

∑

ℓ

Wℓ ρ
(a)W †

ℓ , Wℓ = b〈ℓ|U (ab)|0〉b. (6.7)138



Chapter 6. Operator-sum representation for Bosoni
 Gaussian 
hannelsIt follows that on
e the Fo
k basis matrix elements of U (ab) are known, the Kraus opera-tors Wℓ 
an be easily read o�. Let 〈m1m2|U (ab)|n1n2〉 ≡ Cm1m2
n1n2

be the matrix elementsof U (ab) in the two-mode Fo
k basis. Sin
e the an
illa mode b is assumed to be in theva
uum state, the Wℓ's are obtained by setting n2 = 0 and m2 = ℓ :
Wℓ =

∞
∑

n1,m1=0

Cm1ℓ
n10

|m1〉〈n1|. (6.8)Now, in evaluating Cm1m2
n1n2

it proves useful to employ a resolution of identity in theposition basis [205℄ :
Cm1m2

n1n2
= 〈m1m2|U (ab)|n1n2〉

=

∫ ∞

−∞
dx1dx2〈m1m2|x1x2〉〈x1x2|U (ab)|n1n2〉. (6.9)Under 
onjugation by U (ab) the quadrature variables qj, pj (j = 1, 2) undergo a linear
anoni
al transformation S ∈ Sp(4, R), of whi
h U (ab) is the (metaple
ti
) unitary rep-resentation [192℄. Let us assume that this 
anoni
al transformation does not mix theposition variables with the momentum variables. That is,

(

q1
q2

)

→ U (ab)†
(

q1
q2

)

U (ab) =

(

q
′

1

q
′

2

)

= M

(

q1

q2

)

,

(

p1

p2

)

→ U (ab)†
(

p1

p2

)

U (ab) =

(

p
′

1

p
′

2

)

= (M−1)T

(

p1

p2

)

, (6.10)where M is a real non-singular 2× 2 matrix. This assumption that our S ∈ Sp(4, R) hasthe dire
t sum stru
ture S = M ⊕ (M−1)T will prove to be of mu
h value in our analysis.We have
Cm1m2

n1n2
=

∫ ∞

−∞
dx1dx2〈m1m2|x1x2〉〈x1x2|U (ab)|n1n2〉

=

∫ ∞

−∞
dx1dx2〈m1m2|x1x2〉ψn1(x

′
1)ψn2(x

′
2)

=

∫ ∞

−∞
dx1dx2ψ

∗
m1

(x1)ψ
∗
m2

(x2)ψn1(x
′
1)ψn2(x

′
2), (6.11)where (x

′

1, x
′

2) is linearly related to (x1, x2) through M . These wavefun
tions are thefamiliar Hermite fun
tions, the Fo
k states in the position representation. The above
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Chapter 6. Operator-sum representation for Bosoni
 Gaussian 
hannelsintegral may be evaluated using the generating fun
tion for Hermite polynomials [205℄ :
ψn(x) =

π−1/4

√
2nn!

e−x2
Hn(x)

=
π−1/4

√
n!

∂n

∂zn
exp

(

−1

2
[(x− z

√
2)2 − z2]

)

∣

∣

∣

z=0
. (6.12)Inserting in Eq. (6.11) the generating fun
tion for ea
h of the four wavefun
tions we have

Cm1m2
n1n2

=
1√

n1!n2!m1!m2!

∂m1

∂ηm1
1

∂m2

∂ηm2
2

∂n1

∂zn1
1

∂n2

∂zn2
2

F (z1, z2, η1, η2)
∣

∣

∣

z1,z2,η1,η2=0
, (6.13)where

F (z1, z2, η1, η2) = π−1

∫ ∞

−∞
dx1 dx2 exp

{

−1

2
[(x1 − η1

√
2)2 + (x2 − η2

√
2)2

+(x′1 − z1
√

2)2 + (x′2 − z2
√

2)2 − η2
1 − η2

2 − z2
1 − z2

2 ]
}

. (6.14)The Gaussian integration over the variables x1 and x2 
an be easily 
arried out to obtain
F (z1, z2, η1, η2), and from F (z1, z2, η1, η2) we may readily obtain Cm1m2

n1n2
, and hen
e theKraus operators. This is the general s
heme we will employ in what follows to obtainKraus representation for quantum-limited Gaussian 
hannels of the various families.6.3 Phase 
onjugation or transposition 
hannel D(κ), κ ≥ 0We now use the above s
heme to evaluate a set of Kraus operators representing thephase 
onjugation 
hannel. The metaple
ti
 unitary operator U (ab) appropriate for this
ase indu
es on the quadrature operators of the bipartite phase spa
e a linear 
anoni
altransformation 
orresponding to the following S ∈ Sp(4, R)[158℄ :

S =













sinhµ 0 cosh µ 0

0 − sinhµ 0 cosh µ

coshµ 0 sinhµ 0

0 coshµ 0 − sinhµ













. (6.15)
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Chapter 6. Operator-sum representation for Bosoni
 Gaussian 
hannelsWritten in detail, the phase spa
e variables undergo, under the a
tion of this 
hannel,the transformation
(

q1
q2

)

→
(

q
′

1

q
′

2

)

= M

(

q1

q2

)

,

(

p1

p2

)

→
(

p
′

1

p
′

2

)

= (M−1)T

(

p1

p2

)

,

M =

(

− sinhµ cosh µ

coshµ − sinhµ

)

. (6.16)It is seen that the above S is indeed of the form S = M ⊕ (M−1)T ∈ Sp(4, R), and doesnot mix the position variables with the momentum variables, and so our general s
hemeabove readily applies.It is 
lear from the stru
ture of S that the parameter µ is related to κ in D(κ) through
κ = − sinhµ > 0, so that coshµ =

√
κ2 + 1. Thus (6.14) translates, for the present 
ase,to the following expression :

F (z1, z2, η1, η2) = π−1

∫ ∞

−∞
dx1 dx2 exp

{

− 1

2
[(x1 − η1

√
2)2 + (x2 − η2

√
2)2

+(−κx1 +
√

1 + κ2 x2 − z1
√

2)2 + (
√

1 + κ2 x1 − κx2 − z2
√

2)2

− η2
1 − η2

2 − z2
1 − z2

2 ]

}

. (6.17)Performing the Gaussian integrals in x1 and x2 we obtain
F (z1, z2, η1, η2) = (

√

1 + κ2)−1 exp{(
√

1 + κ−2)−1(η1η2 − z1z2)

+(
√

1 + κ2)−1(η1z2 + η2z1)
}

. (6.18)To obtain the matrix elements Cm1m2
n1n2

we need to 
arry out the pro
edure indi
atedin Eq. (6.13). This may be done in two steps. We begin by rewriting the fun
tion
F (z1, z2, η1, η2) as
F (z1, z2, η1, η2) = (

√

κ2 + 1)−1 exp{ z2[(√1 + κ2)−1η1 − (
√

1 + κ−2)−1z1]

+η2[(
√

1 + κ−2)−1η1 + (
√

1 + κ2)−1z1]
}

. (6.19)Performing the z2 and η2 di�erentiations respe
tively n2 andm2 times on F (z1, z2, η1, η2),
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Chapter 6. Operator-sum representation for Bosoni
 Gaussian 
hannelswe obtain
[(
√

1 + κ2)−1η1 − (
√

1 + κ−2)−1z1]
n2 ×

[(
√

1 + κ−2)−1η1 + (
√

1 + κ2)−1z1]
m2F ≡ GF. (6.20)The remaining di�erentiations 
an be 
arried out using the Leibniz rule. Sin
e we �nallyset z1, z2, η1, η2 = 0, and sin
e F (0) = 1, the only terms that 
ould possibly survive arene
essarily of the form

∂m1

∂ηm1
1

∂n1

∂zn1
1

[(
√

1 + κ2)−1η1 − (
√

1 + κ−2)−1z1]
n2 ×

[(
√

1 + κ−2)−1η1 + (
√

1 + κ2)−1z1]
m2 . (6.21)To evaluate the above expression we set x = (

√
κ2 + 1)−1η1 − (

√
1 + κ−2)−1z1 and y =

(
√

1 + κ−2)−1η1 + (
√

1 + κ2)−1z1, and 
ompute
[(
√

1 + κ2)−1∂x + (
√

1 + κ−2)−1∂y]
m1 ×

[−(
√

1 + κ−2)−1∂x + (
√

1 + κ2)−1∂y]
n1 xn2 ym2 |x,y=0. (6.22)Straight forward algebra leads, in view of Eq. (6.13), to

Cm1m2
n1n2

=
(
√

1 + κ2)−1

√
n1!n2!m1!m2!

n1
∑

j=0

m1
∑

r=0

n1Cj
m1Cr (−

√

1 + κ−2)−(m1+j−r) (
√

1 + κ2)−(n1−j+r)

× (−1)m1−r n2!m2!δn2,r+j δm2,n1−j+m1−r . (6.23)The Kraus operators Wℓ, denoted Tℓ(κ) in this 
ase, are obtained from these matrixelements by setting n2 = 0 and m2 = ℓ. Sin
e n2 = 0 ⇒ r, j = 0, we have,
Tℓ(κ) = (

√

1 + κ2)−1
∞
∑

n1,m1=0

(
√

1 + κ2)−n1(−
√

1 + κ−2)−m1
√
ℓ!√

n1!m1!
×

δℓ,n1+m1(−1)m1 |m1〉〈n1|. (6.24)We set n1 +m1 = ℓ and denote n1 = n, leading to
Tℓ(κ) = (

√

1 + κ2)−1
ℓ
∑

n=0

(
√

1 + κ2)−n(
√

1 + κ−2)−(ℓ−n) ×
√

ℓCn|ℓ− n〉〈n|, ℓ = 0, 1, 2, · · · (6.25)
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Chapter 6. Operator-sum representation for Bosoni
 Gaussian 
hannelsas our �nal form for the Kraus operators of the phase 
onjugation 
hannel. We note thatthe Tℓ(κ)'s are real and manifestly tra
e-orthogonal : tr(Tℓ(κ)
†Tℓ ′ (κ)) = 0 if ℓ 6= ℓ

′ .6.3.1 The dual of D(κ)As is well known (and also obvious), if a set of Kraus operators {Wℓ} des
ribes the
ompletely positive map Φ : ρ → ρ
′

=
∑

ℓWℓρWℓ
†, then the dual map Φ̃ : ρ → ρ

′
=

∑

ℓWℓ
†ρWℓ, des
ribed by the dual or adjoint set of operators {W †

ℓ }, is also 
ompletelypositive. It is 
lear that the dual map Φ̃ is unital or tra
e-preserving a

ording as Φ istra
e-preserving or unital.For the present 
ase ofD(κ), it is readily veri�ed that the Kraus operators {Tℓ(κ)} pre-sented in (6.25) meet ∑ℓ Tℓ
†(κ)Tℓ(κ) = 11, 
onsistent with the expe
ted tra
e-preservingnature of ρ → ρ

′
=
∑

ℓ Tℓ(κ) ρTℓ
†(κ). But the phase 
onjugation 
hannel is not unitalin general, for we have

∑

ℓ

Tℓ(κ)Tℓ
†(κ) = κ−211. (6.26)We may say that it is `almost unital' to emphasise the minimal nature of the failure : theunit element is taken by the 
hannel into a s
alar multiple of itself. However, the s
alefa
tor κ−2 
an not be transformed away by absorbing κ−1 into the Kraus operators, forthe Kraus operators so modi�ed would not then respe
t the tra
e-preserving property ofthe map.It is thus of interest to understand the nature of the unital 
hannel des
ribed by theset of Kraus operators {Tℓ(κ)

†}. We have
Tℓ(κ)

† = (
√

1 + κ2)−1
ℓ
∑

n=0

(
√

1 + κ2)−n (
√

1 + κ−2)−(ℓ−n)
√

ℓCn|n〉〈ℓ− n|

= (
√

1 + κ2)−1
0
∑

n′=ℓ

(
√

1 + κ2)−(ℓ−n′)(
√

1 + κ−2)−n′
√

ℓCℓ−n′ |ℓ− n′〉〈n′|

= (
√

1 + κ2)−1
ℓ
∑

n=0

(
√

κ2 + 1)−(ℓ−n) (
√

1 + κ−2)−n
√

ℓCn|ℓ− n〉〈n|

= κ−1Tℓ(κ
−1). (6.27)Thus the dual {Tℓ(κ)

†} di�ers from the original {Tℓ(κ)} in two elementary aspe
ts. Themultipli
ative fa
tor κ−1 is the same for all Kraus operators, independent of ℓ. Thus theonly signi�
ant di�eren
e is 
hange in the argument of Tℓ, from κ to κ−1. We 
on
ludethat the `dual' 
hannel whose Kraus operators are κTℓ(κ)
† is the (tra
e-preserving) phase
onjugation 
hannel D(κ−1). We have thus proved 143
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 Gaussian 
hannelsTheorem 6.1 While the Kraus operators {Tℓ(κ)} des
ribe D(κ), the `dual' 
hannel de-s
ribed by Kraus operators {κTℓ(κ)
†} is the tra
e-preserving phase 
onjugation 
hannel

D(κ−1) with re
ipro
al s
ale parameter.6.3.2 A
tion of the Kraus operatorsThe expe
ted or de�ning a
tion of the phase 
onjugation 
hannel on the 
hara
teristi
fun
tion is [158℄ :
χW (ξ) → χ

′

W (ξ) = χW (−κ ξ∗) exp[−(1 + κ2)|ξ|2/2]. (6.28)It is of interest to understand how the `antilinear' phase 
onjugation (ξ → ξ∗) a
tion ofthis 
hannel on the 
hara
teristi
 fun
tion emerges from the linear a
tion of the Krausoperators. To this end, it is su�
ient to establish su
h an a
tion on the `
hara
teristi
fun
tion' 
orresponding to the operators |n〉〈m|, for arbitrary pairs of integers n, m ≥ 0.The `
hara
teristi
 fun
tion' of |n〉〈m| is given by [169℄
χW |n〉〈m|(ξ) ≡ 〈m|D(ξ)|n〉

=

√

m!

n!
(−ξ∗)n−mLn−m

m (|ξ|2) exp[−|ξ|2/2] for n ≥ m,

=

√

n!

m!
(ξ)m−nLm−n

n (|ξ|2) exp[−|ξ|2/2 for n ≤ m. (6.29)Assuming n ≥ m, the a
tion of the phase 
onjugation 
hannel on the operator |n〉〈m| is
∞
∑

ℓ=0

Tℓ(κ)|n〉〈m|T †
ℓ (κ) = (1 + κ2)−1

∞
∑

ℓ=n

(
√

1 + κ2)−(n+m) (
√

1 + κ−2)−(2ℓ−n−m) ×
√

ℓCn
ℓCm |ℓ− n〉〈ℓ−m|. (6.30)Denoting n = m+ δ and ℓ− n = λ, we have

∞
∑

ℓ=0

Tℓ(κ)|m+ δ〉〈m|T †
ℓ (κ) = (1 + κ2)−1(

√

1 + κ2)−(2m+δ)(
√

1 + κ−2)−δ

×
∞
∑

λ=0

(λ+m+ δ)!(1 + κ−2)−λ

√

(m+ δ)!m!λ!(λ + δ)!
|λ〉〈λ+ δ|. (6.31)The manner in whi
h D(κ), matrix transposition a

ompanied by threshold Gaussiannoise exp[−(1+κ2)|ξ|2/2], a
ts as a 
hannel may now be appre
iated. Every operator M
an be written in the Krone
ker delta basis {|j〉〈ℓ|} asM =

∑

j,ℓ cjℓ|j〉〈ℓ|. The 
oe�
ient144
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 Gaussian 
hannelsmatrix C asso
iated with |5〉〈3|, for instan
e, is cj,k = δ5jδℓ3, with non-zero entry onlyat the lower-diagonal lo
ation (5, 3) marked ⊗ in the matrix below.
































0 0 × 0 0 0 0 0 · · ·
0 0 0 × 0 0 0 0 · · ·
0 0 0 0 ⊕ 0 0 0 · · ·
0 0 0 0 0 × 0 0 · · ·
0 0 ⊗ 0 0 0 × 0 · · ·
0 0 0 0 0 0 0 × · · ·
0 0 0 0 0 0 0 0 ×... ... ... ... ... ... ... ... ...

































.

On transposition this entry moves to the upper-diagonal lo
ation (3, 5) marked ⊕, and thethreshold noise then spreads it along the parallel upper diagonal (3+r, 5+r), −3 ≤ r <∞marked ×.Let the Weyl-ordered 
hara
teristi
 fun
tion tr(D(ξ)|m+δ〉〈m|) whereD(ξ) = exp[ξa†−
ξ∗a] is the displa
ement operator, be denoted χW |m+δ〉〈m|(ξ), and that of the output
∑∞

ℓ=0 Tℓ(κ)|m+ δ〉〈m|Tℓ(κ)
† be denoted χW

′

|m+δ〉〈m|(ξ). Then we have from Eq. (6.31)
χW

′

|m+δ〉〈m|(ξ) = (1 + κ2)−1(
√

1 + κ2)−(2m+δ)(
√

1 + κ−2)−δ

×
∞
∑

λ=0

(λ+m+ δ)!(1 + κ−2)−λ

√

(m+ δ)!m!λ!(λ + δ)!
〈λ+ δ|D(ξ))|λ〉

=
(1 + κ2)−1e−|ξ|2/2

√

(m+ δ)!m!
(
√

1 + κ2)−(2m+δ)(
√

1 + κ−2)−δ

×
∞
∑

λ=0

(1 + κ−2)−λ (λ+m+ δ)!

(λ+ δ)!
ξδLδ

λ(|ξ|2), (6.32)where we used (6.29), the Fo
k basis representation of the displa
ement operator. Whileno `phase 
onjugation' is manifest as yet, we expe
t from Eq. (6.28) that the 
hannelshould take the 
hara
teristi
 fun
tion of |m+ δ〉〈m| to
χ

′′

W |m+δ〉〈m|(ξ) = 〈m|D(−κξ∗)|m+ δ〉 exp

[

−1

2
(1 + κ2)|ξ|2

]

= 〈m+ δ|D(κξ∗)|m〉∗ exp

[

−1

2
(1 + κ2)|ξ|2

]

=

√

m!

m+ δ!
(κξ)δLδ

m(κ2|ξ|2) exp

[

−
(

1

2
+ κ2

)

|ξ|2
]

. (6.33)
145



Chapter 6. Operator-sum representation for Bosoni
 Gaussian 
hannelsThus the problem redu
es to one of establishing equality of χ ′

W |m+δ〉〈m|(ξ) in (6.32) and
χ

′′

W |m+δ〉〈m|(ξ) in (6.33). That is, it remains to prove
√

m!

m+ δ!
(κξ)δLδ

m(κ2|ξ|2) exp
[

−(1/2 + κ2)|ξ|2
]

=
(1 + κ2)−1e−|ξ|2/2

√

(m+ δ)!m!

∞
∑

λ=0

(1 + κ−2)−λ(
√

1 + κ2)−(2m+δ)(
√

1 + κ−2)−δ

× (λ+m+ δ)!

(λ+ δ)!
ξδLδ

λ(|ξ|2), (6.34)for all m, δ ≥ 0 [the 
ase of |m〉〈m+ δ| 
an be handled similarly℄.Sin
e the asso
iated Laguerre fun
tions form a 
omplete orthonormal set, we mayexpand the LHS of Eq. (6.34) in the Laguerre basis. That is, we multiply both sides ofEq. (6.34) by (ξ∗)δLδ
ℓ(|ξ|2) e−

|ξ|2

2 and evaluate the overlap integrals. We use the followingtwo standard results : (i) orthogonality relation among Laguerres, and (ii) the overlapbetween a Laguerre and a s
aled Laguerre fun
tion [360℄ :
∫ ∞

0
e−|ξ|2 |ξ|2δLδ

n(|ξ|2)Lδ
m(|ξ|2)d|ξ|2 =

(n+ δ)!

n!
δn,m.

∫ ∞

0
e−t|ξ|2 |ξ|2δLδ

m(η2|ξ|2)Lδ
ℓ(|ξ|2)d|ξ|2 =

(m+ ℓ+ δ)!

m!ℓ!

(t− η2)m (t− 1)ℓ

tm+ℓ+δ+1
×

F

[

−m,−ℓ;−m− ℓ− δ,
t(t− η2 − 1)

(t− 1)(t− η2)

]

. (6.35)Here F [·] is the hypergeometri
 fun
tion. In our 
ase t = η2 + 1, whi
h implies that thelast argument of F [·] in Eq. (6.35) is zero, and thereby F [·] = 1. Performing the overlapintegrals, we obtain for the left and right hand sides of (6.34)LHS =
(m+ ℓ+ δ)!

ℓ!
√

(m+ δ)!m!

κ2ℓ+δ

(1 + κ2)m+ℓ+δ+1
,RHS =

(m+ ℓ+ δ)!

ℓ!
√

(m+ δ)!m!
(
√

1 + κ2)−(2+2m+δ) (
√

1 + κ−2)−(2ℓ+δ). (6.36)These two expressions obviously equal one another for all ℓ. We have thus established Eq.(6.34), and the fa
t that the Kraus operators indeed e�e
t the `
ompletely positive phase
onjugation' operation, transforming the 
hara
teristi
 fun
tion as expe
ted in (6.28).Theorem 6.2 The s
aled phase 
onjugation transformation χW (ξ) → χ
′

W (ξ) =

χW (−κ ξ∗) exp[−(1 + κ2) |ξ|
2

2 ] is, in view of the threshold noise exp[−(1 + κ2)|ξ|2/2] a
ompletely positive map, and is implemented linearly by the Kraus operators {Tℓ(κ)} in146



Chapter 6. Operator-sum representation for Bosoni
 Gaussian 
hannelsEq. (6.25).The phase 
onjugation 
hannel has an interesting property in respe
t of 
lassi
al-ity/non
lassi
ality of the output states. We may say a 
hannel is non
lassi
ality breakingif the output of the 
hannel is 
lassi
al for every input state. That is, if the normal-ordered
hara
teristi
 fun
tion χ
′

N (ξ) of the output, related to the Weyl-ordered 
hara
teristi
fun
tion χ
′

W (ξ) of (6.28) through χ
′

N (ξ) = χ
′

W (ξ) exp[|ξ|2/2], is su
h that its Fouriertransform, 
alled the diagonal `weight' fun
tion φ(α) [112℄, is a genuine probability den-sity.Now, Eq. (6.28) written in terms of the normal-ordered 
hara
teristi
 fun
tion reads
χN (ξ) → χ

′

N (ξ) = χW (−κξ∗) exp[−κ2|ξ∗|2/2]
= χA(−κξ∗), (6.37)where χA(ξ) = χN (ξ) exp[−|ξ|2] is the antinormal-ordered 
hara
teristi
 fun
tion 
orre-sponding to the Q or Husimi distribution.Under Fourier transformation this important relation (6.37), namely χ ′

N (ξ) = χA(−κξ∗),reads that the output diagonal weight fun
tion φ ′
(α) evaluated at α equals the input Q(α)evaluated at κ−1α∗. Thus φ ′

(α) is a genuine probability density for every input state,and we have
D(κ) : φin(α) → φout(α) = κ−2Qin(κ−1α∗). (6.38)Sin
e the Q-distribution of a density operator is given by Q(α) = 〈α|ρ|α〉, it is a genuineprobability distribution for all states in
luding non
lassi
al states. We have thus provedTheorem 6.3 The phase 
onjugation 
hannel is a non
lassi
ality breaking 
hannel.6.3.3 Entanglement breaking propertyIt is known that the phase 
onjugating 
hannel is entanglement breaking [361, 362℄. It isalso known that every entanglement breaking 
hannel has a des
ription in terms of rankone Kraus operators [363℄. We demonstrate these aspe
ts using our Kraus operators

{Tℓ(κ)}.The Kraus operators Tℓ(κ) presented in (6.25) are not of unit rank; indeed, rank
Tℓ(κ) = ℓ + 1, ℓ = 0, 1, 2, · · · . We noted immediately following (6.25) that Tℓ(κ) aretra
e-orthogonal. In the generi
 
ase, tra
e-orthogonality requirement would render theKraus operators unique, but this is not true with the present situation. The reason isthat all these tra
e-orthogonal Tℓ(κ)'s have the same Frobenius norm: tr (Tℓ(κ)Tℓ(κ)

†) =147



Chapter 6. Operator-sum representation for Bosoni
 Gaussian 
hannels
(1 + κ2)−1, independent of ℓ. Thus the set {T ′

r } de�ned through T ′

r (κ) =
∑

ℓ UℓrTℓ(κ),for any unitary matrix (Uℓr) will be a set of tra
e-orthogonal Kraus operators des
ribingthe same 
hannel as the original tra
e-orthogonal set {Tℓ(κ)}.More generally, and independent of tra
e-orthogonality, the map ρ→ ρ
′
=

∑

α T
′

α(κ)ρT
′†

α (κ) des
ribes the same 
hannel as ρ→ ρ
′
=
∑

ℓ Tℓ(κ)ρT
†
ℓ (κ) if the matrix

U 
onne
ting the sets {Tℓ(κ)} and {T ′

α(κ)} is an isometry [6, 364℄ :
T

′

α(κ) =
∑

α

UℓαTℓ(κ),
∑

α

UℓαU
∗
rα = δℓr

⇒
∑

ℓ

Tℓ(κ) ρT
†
ℓ (κ) =

∑

α

T
′

α(κ) ρT
′†
α(κ). (6.39)If the index set α is 
ontinuous, as in the 
ase below, then ∑α is to be understood, of
ourse, as an integral. Now, the matrix elements between 
oherent states |α〉 and Fo
kstates |k〉 de�ne su
h an isometry

Uℓα ≡ 〈ℓ|α〉 = exp[−|α|2/2] α
ℓ

√
ℓ!
. (6.40)The resulting new Kraus operators T ′

α(κ) are
T

′

α(κ) = e−
|α|2

2

∞
∑

ℓ=0

αℓ

√
ℓ!
Tℓ(κ)

= e−
|α|2

2

∞
∑

ℓ=0

αℓ

√
ℓ!

(
√

1 + κ2)−1
ℓ
∑

n=0

√

ℓCn (
√

1 + κ2)−n (
√

1 + κ−2)−(ℓ−n)|ℓ− n〉〈n|

= e−
|α|2

2

∞
∑

ℓ=0

(
√

1 + κ2)−1
ℓ
∑

n=0

[(
√

1 + κ2)−1α]n [(
√

1 + κ−2)−1α]ℓ−n

√

(ℓ− n)!n!
|ℓ− n〉〈n|

=
1√

1 + κ2
|α/
√

1 + κ−2〉〈α∗/
√

1 + κ2|, ∀α ∈ C. (6.41)It is manifest that rank T ′

α(κ) = 1 for all α ∈ C, the 
omplex plane, showing that thephase 
onjugation 
hannel is indeed entanglement breaking. However {T ′

α(κ)} are nottra
e-orthogonal even though {Tℓ(κ)} from whi
h the former are 
onstru
ted were tra
e-orthogonal. This is due to the fa
t that the isometry U de�ned in (6.40) is not an unitary,whi
h in turn is a 
onsequen
e of the over
ompleteness of the 
oherent states.This brings us to another aspe
t of D(κ). In terms of these new Kraus operators the
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 Gaussian 
hannelsphase 
onjugation 
hannel D(κ) reads
ρ→ ρ

′
= π−1

∫

d2αT
′

α(κ) ρT
′ †

α (κ)

= π−1(1 + κ2)−1

∫

d2αQ((
√

1 + κ2)−1α∗)|α/
√

1 + κ−2〉〈α/
√

1 + κ−2|. (6.42)Thus the diagonal weight fun
tion of the output state of the 
hannel is the Q-distributionof the input state ρ : φout = κ−2Qin(κ−1α∗). We may 
ombine this result with the earlierone on rank one Kraus operators to stateTheorem 6.4 The diagonal weight of the output of the quantum-limited phase 
onjuga-tion 
hannel is essentially the Q-distribution of the input state. The 
hannel D(κ) is notonly 
lassi
ality breaking, but also entanglement breaking.The diagonal weight of the output state at α is the Q-distribution of the input stateevaluated at κ−1α∗. Sin
e Q(α) ≥ 0 for all α and for any ρ, the 
hannel is non
lassi
alitybreaking. The intimate relationship between this result and the earlier one on non
lassi-
ality breaking may be noted. While the former followed dire
tly from the behaviour ofthe 
hara
teristi
 fun
tion, the present one required 
onsideration of the Kraus operators.6.4 Beamsplitter/attenuator 
hannel C1(κ), 0 < κ < 1The two-mode unitary operator 
orresponding to the beamsplitter 
hannel indu
es thefollowing symple
ti
 transformation on the quadrature operators of the bipartite phasespa
e [158℄ :
S =













cos θ 0 − sin θ 0

0 cos θ 0 − sin θ

sin θ 0 cos θ 0

0 sin θ 0 cos θ













. (6.43)Note that S is a dire
t sum of identi
al two-dimensional rotations: as in the 
ase of
D(κ), the position and momentum operators are not mixed by this transformation. Theposition variables transform as

(

q1
q2

)

→
(

q
′

1

q
′

2

)

= M

(

q1

q2

)

=

(

cos θ sin θ

− sin θ cos θ

) (

q1

q2

) (6.44)
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 Gaussian 
hannelsand, 
onsequently, the momentum variables as
(

p1

p2

)

→
(

p
′

1

p
′

2

)

= (M−1)T

(

p1

p2

)

= M

(

p1

p2

)

. (6.45)It is evident from S that the parameter κ in C1(κ) is related to θ through cos θ = κ, sin θ =√
1 − κ2. The fun
tion F (z1, z2, η1, η2) of (6.14) for the present 
ase is given by

F (z1, z2, η1, η2) = exp
[

η2(
√

1 − κ2 z1 + κz2) + η1(κz1 −
√

1 − κ2 z2)
]

. (6.46)As in the previous 
ase of D(κ), the di�erentiation on F (z1, z2, η1, η2) 
an be performedin a straight forward manner to obtain the matrix elements of the unitary operator [326℄,leading to
Cm1m2

n1n2
=

1√
n1!n2!m1!m2!

n1
∑

r=0

n2
∑

j=0

n1Cr
n2Cj (−1)n2−j κn1−r+j (

√

1 − κ2)
r+n2−j

× m1!m2! δm2,r+j δm1,n1+n2−r−j. (6.47)Now, to obtain the Kraus operators from these matrix elements we set, as in the 
ase of
D(κ), n2 = 0 and m2 = ℓ. Setting n2 = 0 ⇒ j = 0, and we have

Bℓ(κ) =
∞
∑

m=0

√

m+ℓCℓ (
√

1 − κ2)ℓ κm|m〉〈m+ ℓ|, ℓ = 0, 1, 2, · · · (6.48)as the Kraus operators of the beamsplitter or quantum-limited attenuator 
hannel. Itis easy to see that the Kraus operators are real and pairwise tra
e-orthogonal, as in the
ase of D(κ).6.4.1 A
tion of the Kraus operatorsRe
all that the beamsplitter 
hannel indu
es the following transformation on the 
har-a
teristi
 fun
tion [158℄ :
χW (ξ) → χW

′(ξ) = χW (κ ξ) exp[−(1 − κ2)|ξ|2/2]
= χW (κ ξ) exp[κ2|ξ|2/2] exp[−|ξ|2/2]. (6.49)Thus the normal ordered 
hara
teristi
 fun
tion χN (ξ) transforms as

χN (ξ) ≡ χW (ξ) exp(|ξ|2/2) → χ
′

N (ξ) = χN (κ ξ). (6.50)
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Chapter 6. Operator-sum representation for Bosoni
 Gaussian 
hannelsSin
e χN (ξ) and the diagonal weight φ(α) form a Fourier transform pair, it is immediatelyseen that φ(α) gets simply s
aled under the a
tion of the C1(κ) 
hannel : φ(α) → φ
′
(α) =

κ−2φ(κ−1α) [365℄.It is instru
tive to bring out this fa
t from the perspe
tive of the Kraus operators.Sin
e every state ρ 
an be expressed through a diagonal `weight' φ(α) as [112℄
ρ = π−1

∫

d2αφ(α)|α〉〈α|, (6.51)to exhibit the a
tion of the 
hannel on an arbitrary state it is su�
ient to 
onsider itsa
tion on a generi
 
oherent state. We have
|α〉〈α| →

∞
∑

ℓ=0

Bℓ(κ)|α〉〈α|B†
ℓ (κ)

=

∞
∑

ℓ=0

∞
∑

m=0

∞
∑

n=0

((1 − κ2)|α|2)ℓ
ℓ!

(κα∗)m(κα)n
e−|α|2
√
m!n!

|m〉〈n|, (6.52)where we used the fa
t that the operator
|m〉〈n| →

∞
∑

ℓ=0

Bℓ(κ)|m〉〈n|B†
ℓ (κ)

=

min{m,n}
∑

ℓ=0

√

mCℓ
nCℓ (1 − κ2)

ℓ
κm+n−2ℓ|m− ℓ〉〈n− ℓ|. (6.53)Carrying out the summations in Eq. (6.52), one �nds [366℄

∞
∑

ℓ=0

Bℓ(κ)|α〉〈α|B†
ℓ (κ) = |κα〉〈κα|. (6.54)With this the a
tion of the 
hannel C1(κ) reads

ρ → ρ
′
= π−1

∫

d2αφ(α)|κα〉〈κα|

= π−1κ−2

∫

d2αφ(κ−1α)|α〉〈α|, (6.55)whi
h means
C1(κ) : φ(α) → κ−2φ

(

κ−1α
)

. (6.56)We have thus proved in the Kraus representation 151
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 Gaussian 
hannelsTheorem 6.5 The s
aling φρ(α) → φ
′

ρ(α) = κ−2φρ(κ
−1α), 0 < κ < 1, is a 
ompletelypositive map whose Kraus de
omposition is given by {Bℓ(κ)} of (6.48).As an immediate 
onsequen
e we haveCorollary 6.1 The beamsplitter 
hannel 
annot generate or destroy non
lassi
ality.Proof : By de�nition a state is 
lassi
al if and only if its diagonal weight fun
tion φ(α) ispointwise nonnegative everywhere in the 
omplex plane [112℄. Sin
e a pointwise positivefun
tion goes to a pointwise positive fun
tion under the above s
aling transformation,it follows that a 
lassi
al state (and a 
lassi
al state alone) is taken to a 
lassi
al stateunder the a
tion of the (quantum-limited) attenuator 
hannel.6.4.2 The issue of Entanglement breakingIt is known that the beamsplitter 
hannel is not entanglement breaking [361℄. It shouldthus be possible, as it is obligatory, to demonstrate that this 
hannel 
annot be repre-sented using a set of rank one Kraus operators. We begin by noting that in the limiting
ase κ = 0, all our Kraus operators Bℓ(0) are of rank one. Indeed, (Bℓ(0))mn = δm0δnℓ.This singular limit 
orresponds to the quantum-limited A1 
hannel whi
h is known to beentanglement breaking. We 
onsider therefore the nontrivial 
ase κ 6= 0. It is manifestly
lear that rank Bℓ(κ) = ∞ for all ℓ (for κ 6= 0). If we represent this 
hannel using anotherset of Kraus operators {B ′

r (κ)}, then these new operators should ne
essarily be in thesupport of the set of operators {Bℓ(κ)}. Thus a ne
essary 
ondition that one is able torepresent the 
hannel {Bℓ(κ)} using rank one Kraus operators is that there be (su�
ientnumber of) rank one operators in the support of {Bℓ(κ)}. It turns out that there is noteven one rank one operator in this support. Indeed, a mu
h stronger result is true.Theorem 6.6 : There exists no �nite rank operator in the support of the set {Bℓ(κ)}, κ 6=
0.Proof follows immediately from the stru
ture of the Bℓ(κ)'s : B0(κ) is diagonal, and the
mnth entry of Bℓ(κ) is nonzero i� n = m+ ℓ. Any matrix in the linear span of {Bℓ(κ)}is of the formM =

∑

ℓ cℓBℓ(κ), and is upper diagonal. Let N be the smallest ℓ for whi
hthe c-number 
oe�
ient cℓ 6= 0. Let M̃ be the matrix obtained from the upper-diagonal
M by deleting the �rst N 
olumns. Clearly, rank M̃ = rank M . Further, the diagonalentries of the upper triangular M̃ are all nonzero, being the nonzero entries of BN (κ).Now, the rank of an upper triangular matrix is not less than that of its diagonal part.Thus, rank M̃ is not less than rank BN (κ) = ∞, thus 
ompleting the proof.
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Chapter 6. Operator-sum representation for Bosoni
 Gaussian 
hannels6.5 Ampli�er 
hannel C2(κ), κ ≥ 1The two-mode metaple
ti
 unitary operator des
ribing a single-mode quantum-limitedampli�er 
hannel 
orresponds to the following symple
ti
 transformation on the modeoperators [158℄ :
S =













cosh ν 0 sinh ν 0

0 cosh ν 0 − sinh ν

sinh ν 0 cosh ν 0

0 − sinh ν 0 cosh ν













. (6.57)As in the earlier two 
ases of D(κ) and C1(κ), the position and momentum variables donot mix under the a
tion of C2(κ). The position variables transform as
(

q1
q2

)

→
(

q
′

1

q
′

2

)

= M

(

q1

q2

)

=

(

cosh ν − sinh ν

− sinh ν cosh ν

) (

q1

q2

)

, (6.58)and the momentum variables transform a

ording to M−1. Thus the parameter κ in
C2(κ) is related to the two-mode squeeze parameter ν through κ = cosh ν. The fun
tion
F (z1, z2, η1, η2) in (6.14) is readily 
omputed to be

F (z1, z2, η1, η2) = κ−1 exp
{

κ−1(η1z1 + η2z2) + (
√

1 − κ−2)(η1η2 − z1z2)
}

. (6.59)As in the earlier 
ases of D(κ) and C1(κ), the di�erentiation on F (z1, z2, η1, η2) 
an beperformed to obtain the matrix elements of the unitary operator 
orresponding to thesymple
ti
 S in (6.57). We obtain, after some algebra patterned after the earlier two
ases,
Cm1m2

n1n2
=

κ−1

√
n1!n2!m1!m2!

n1!m2!

n2
∑

r=0

m1
∑

j=0

n2Cr
m1Cj (−1)r (

√

1 − κ−2)r+m1−j ×

(κ−1)n2+j−rδn1,r+j δm2,n2+m1−r−j . (6.60)The Kraus operators are obtained from Cm1m2
n1n2

by setting n2 = 0, and m2 = ℓ. Setting
n2 = 0 ⇒ r = 0, and we have

Aℓ(κ) = κ−1
∞
∑

m=0

√

m+ℓCℓ

(
√

1 − κ−2
)ℓ

(κ−1)m|m+ ℓ〉〈m|, ℓ = 0, 1, 2, · · · (6.61)as the Kraus operators of the quantum-limited ampli�er 
hannel C2(κ), κ > 1 [367℄.153



Chapter 6. Operator-sum representation for Bosoni
 Gaussian 
hannels6.5.1 Duality between the attenuator family C1(·) and the ampli�erfamily C2(·)The Kraus operators Aℓ(κ), κ > 1 of the ampli�er 
hannel C2(κ) have an interesting dualrelationship to the Kraus operators Bℓ(κ
−1), κ > 1 of the attenuator 
hannel C1(κ

−1).While ∑∞
ℓ=0A

†
ℓ(κ)Aℓ(κ) = 11, κ > 1 and ∑∞

ℓ=0B
†
ℓ (κ

′
)Bℓ(κ

′
) = 11, κ

′
< 1, 
onsistentwith the tra
e-preserving property of C2(κ) and C1(κ

′
), we have

∞
∑

ℓ=0

Aℓ(κ)A
†
ℓ(κ) = κ−211,

∞
∑

ℓ=0

Bℓ(κ
′
)B†

ℓ (κ
′
) = (κ

′
)−211. (6.62)Thus the (tra
e-preserving) families C1 and C2 are not unital. But they are `almostunital', for the failure to be unital is by just a s
alar fa
tor. This shows that the family

{κAℓ(κ)
†, κ > 1} and the family {κ ′−1

Bℓ(κ
′
)†, κ

′
< 1} too des
ribe tra
e-preservingCP maps, and we may ask what these `new' 
hannels stand for.The meaning of these 
hannels may be easily seen by 
onsidering the adjoints Aℓ(κ)

†, κ >

1 of the Kraus operators of the ampli�er 
hannel :
Aℓ(κ)

† = κ−1
∞
∑

m=0

√

m+ℓCℓ

(
√

1 − κ−2
)ℓ
κ−m|m〉〈m+ ℓ|

= κ−1Bℓ(κ
−1) (6.63)Thus {κAℓ(κ)

†}, κ > 1 are the Kraus operators of the beamsplitter 
hannel C1(κ
′
) with

κ
′
= κ−1 < 1. Similarly it 
an be seen that {κ ′

Bℓ(κ
′
)†}, κ ′

< 1 represents the ampli�er
hannel C2(κ) with κ = (κ
′
)−1 > 1. Thus we haveTheorem 6.7 The ampli�er family C2(κ) and the attenuator family C1(κ

−1), κ > 1 aremutually dual: their Kraus operators are 
onne
ted through the adjoint operation.6.5.2 A
tion of the Kraus operatorsUnder the a
tion of the ampli�er 
hannel C2(κ) the Weyl-ordered 
hara
teristi
 fun
tiontransforms as follows, and this may be identi�ed with the very de�nition of the 
hannel :
χW (ξ) → χ

′

W (ξ) = χW (κ ξ) exp [−(κ2 − 1)|ξ|2/2]. (6.64)
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Chapter 6. Operator-sum representation for Bosoni
 Gaussian 
hannelsGiven a Weyl-ordered 
hara
teristi
 fun
tion χW (ξ), the 
orresponding antinormal or-dered 
hara
teristi
 fun
tion 
orresponding to the Q-distribution is [169℄
χA(ξ) = χW (ξ) exp [−|ξ|2/2]. (6.65)Therefore the 
hannel a
tion Eq. (6.64), written in terms of χA(ξ), reads
χA(ξ) → χ

′

A(ξ) = χA(κ ξ). (6.66)That is, χA(ξ) simply s
ales under the a
tion of the ampli�er 
hannel, a fa
t that shouldbe pro�tably 
ompared with the s
aling behaviour (6.50) for the attenuator 
hannel.Sin
e χA(ξ) and the Q- fun
tion form a Fourier transform pair, the a
tion of the ampli�er
hannel is fully des
ribed as a s
aling transformation of the Q-fun
tion : Q(α) → Q
′
(α) =

κ−2Q(κ−1α), κ > 1 [368℄.It is instru
tive to see in some detail how our Kraus operators Aℓ(κ) bring out thisbehaviour. Given a state
ρ =

∞
∑

n,m=0

|n〉〈n|ρ|m〉〈m| =
∞
∑

n,m=0

ρnm|n〉〈m|, (6.67)its 
orresponding Q fun
tion is [169℄
Qρ(α) = 〈α|ρ|α〉 = exp[−|α|2]

∞
∑

n,m=0

(α∗)n√
n!

(α)m√
m!

ρnm. (6.68)To see the a
tion of the linear map C2(κ) on an arbitrary ρ, it is su�
ient to exhibit itsa
tion on the operators |n〉〈m|, for all n,m ≥ 0. We have
|n〉〈m| →

∞
∑

ℓ=0

Aℓ(κ)|n〉〈m|A†
ℓ(κ)

= κ−2 (κ)−(n+m)

√
n!m!

∞
∑

ℓ=0

(1 − κ−2)ℓ

ℓ!

√

(n+ ℓ)!
√

(m+ ℓ)!|n+ ℓ〉〈m+ ℓ|. (6.69)Thus, under the a
tion of the 
hannel C2(κ), ρ goes to
ρ

′
= κ−2

∞
∑

n,m=0

ρnm
κ−(n+m)

√
n!m!

∞
∑

ℓ=0

(1 − κ−2)ℓ

ℓ!

√

(n+ ℓ)!
√

(m+ ℓ)! |n + ℓ〉〈m+ ℓ|. (6.70)
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Chapter 6. Operator-sum representation for Bosoni
 Gaussian 
hannelsThe Q fun
tion of the resultant or output state ρ ′ is
〈α|ρ ′ |α〉 = κ−2 exp[−|α|2]

∞
∑

n,m=0

ρnm
κ−(n+m)

√
n!m!

(α∗)n(α)m

( ∞
∑

ℓ=0

(1 − κ−2)ℓ

ℓ!
|α|2ℓ

)

= κ−2 exp[−|κ−1α|2]
∞
∑

n,m=0

(κ−1α∗)n√
n!

(κ−1α)m√
m!

ρnm

= κ−2Q(κ−1α). (6.71)We thus 
on
ludeTheorem 6.8 The s
aling Qρ(α) → Qρ ′ (α) = κ−2Qρ(κ
−1α), 0 < κ−1 < 1, is a 
om-pletely positive map whose Kraus de
omposition is given by {Aℓ(κ)}.This result may be 
ompared with Theorem 6 for the C1(·) family of 
hannels.The ampli�er 
hannel has the following property in respe
t of non
lassi
ality of theoutput states :Corollary 6.2 The ampli�er 
hannel 
annot generate non
lassi
ality.Proof : By Eq. (6.64), the normal ordered 
hara
teristi
 fun
tion transforms as follows

C2(κ) : χN (ξ) → χ
′

N (ξ) = χW (κξ) exp [−(κ2 − 2)|ξ|2/2]. (6.72)This may be rewritten in the suggestive form
χN (ξ) → χ

′

N (ξ) = χN (κξ) exp[−(κ2 − 1)|ξ|2]. (6.73)Fourier transforming, we see that the diagonal weight φ (α) of the output state is the
onvolution of the (s
aled) input diagonal weight with a Gaussian (
orresponding to thelast fa
tor), and hen
e it is pointwise nonnegative whenever the input diagonal weight
φ(α) is pointwise nonnegative.Remark : We are not 
laiming that the ampli�er 
hannel 
annot destroy non
lassi
ality[
ompare the stru
ture of Corollary 2 with that of Corollary 1 following Theorem 6℄.Indeed, it is easy to show that non
lassi
ality of every Gaussian state will be destroyedby any C2(κ) with κ ≥

√
2 [184, 367�369℄. It is also easy to show that there are stateswhose non
lassi
ality will survive C2(κ) even for arbitrarily large κ [184, 367, 368℄. Tosee this, note �rst of all, that any state ρ whose Q-fun
tion Q(α) = 〈α|ρ|α〉 vanishes forsome α is ne
essarily non
lassi
al. The assertion simply follows from the fa
t that underthe s
aling Q(α) → κ−2Q(κ−1α) a zero α0 of Q(α) goes to a zero at κα0. 156



Chapter 6. Operator-sum representation for Bosoni
 Gaussian 
hannelsRemark on entanglement breaking : It is well known that the quantum-limitedampli�er 
hannel is not entanglement breaking [361℄. It may be pointed out in passingthat this fa
t follows also from the stru
ture of our Kraus operators {Aℓ(κ)}. Sin
ethese operators 
oin
ide with the transpose of the beamsplitter 
hannel Kraus operators
{Bℓ(κ

−1)}, apart from a ℓ-independent multipli
ative fa
tor, there exists no �nite rankoperator in the support of the set of operators {Aℓ(κ)}. In parti
ular, there are no rankone operators in the support of {Aℓ(κ)}. Hen
e, C2(κ) is not an entanglement breaking
hannel.6.6 The Singular 
ase A2We now 
onsider brie�y A2, the last of the quantum limited Bosoni
 Gaussian 
han-nels. The two-mode metaple
ti
 unitary operator representing A2 produ
es a symple
ti
transformation on the quadrature variables whi
h does not mix the position variableswith the momentum variables [158℄ :
(

q1
q2

)

→
(

q
′

1

q
′

2

)

= M

(

q1

q2

)

,

(

p1

p2

)

→
(

p
′

1

p
′

2

)

= (M−1)T

(

p1

p2

)

,

M =

(

0 1

1 −1

)

. (6.74)Therefore, our general s
heme applies to this 
ase as well. Unlike in the earlier 
ases of
D(κ), C1(κ), and C2(κ), in the present 
ase it turns out to be more 
onvenient to evaluatethe matrix elements of U (ab) in a mixed basis :

Cm1q
n1n2

= 〈m1|〈q|U (ab)|n1〉|n2〉. (6.75)Here |q〉 labels the position basis of the an
illa mode. With this mixed 
hoi
e, the Krausoperators are labelled by a 
ontinuous index `q', and are given by
Vq = 〈q|U (ab)|0〉 =

∑

m1,n1

Cm1q
n10 |m1〉〈n1|, (6.76)
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Chapter 6. Operator-sum representation for Bosoni
 Gaussian 
hannelswhere
Cm1q

n10
=

∫

dq1〈m1|q1〉〈q1|〈q|U (ab)|n1〉|0〉

=

∫

dq1〈m1|q1〉〈q, q1 − q|n1, 0〉. (6.77)Here we have used, as in the earlier 
ases, the a
tion of the unitary operator in the positioneigenstates of the two-mode system. Employing the position spa
e wavefun
tions of theFo
k states, we have
Cm1q

n10 =
π−3/4

√
2n1+m1n1!m1!

Hn1(q)e
− q2

2

∫

dq1Hm1(q1)e
− (q1−q)2

2
− q21

2 . (6.78)The above integral is easily evaluated [370℄, and we have
Cm1q

n10
=

π−1/4

√
2n1+m1n1!m1!

qm1Hn1(q) exp[−3q2/4]

= 〈m1|q/
√

2)〈q|n1〉, (6.79)where |q/√2) is the 
oherent state |α〉 for α = q/
√

2, and the purpose of the round bra
ketbeing to distinguish the same from the position eigenket |q/√2〉. With this notation theKraus operators are
Vq = |q/

√
2) 〈q|. (6.80)That the tra
e-preserving 
ondition on the Kraus operators is satis�ed emerges from thefa
t that the position kets are 
omplete : ∫ dq V †

q Vq =
∫

dq|q〉〈q| = 11 .To 
onne
t these Kraus operators Vq to the a
tion of the 
hannel in the phase spa
epi
ture, we examine the behaviour of an arbitrary pure state |ψ〉 under passage throughthe 
hannel. We have
A2 : ρ = |ψ〉〈ψ| → ρ

′
=

∫

dq |q/
√

2) 〈q|ψ〉〈ψ|q〉 (q/
√

2|

=

∫

dq |ψ(q)|2 |q/
√

2) (q/
√

2|

=

∫

dq dp |ψ(q)|2δ(p) |[q + ip]/
√

2) ([q + ip]/
√

2|. (6.81)The last expression is already in the `diagonal' form in the 
oherent states basis, with
|ψ(q)|2δ(p), α = (q + ip)/

√
2 forming the diagonal weight fun
tion φ(α). It follows by
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Chapter 6. Operator-sum representation for Bosoni
 Gaussian 
hannels
onvexity that for an arbitrary input state ρ the output of the 
hannel is given by
ρ

′
= π−1

∫

d2αφ(α) |α〉〈α|, φ(α) = 〈q|ρ|q〉 δ(p). (6.82)It is seen that this transformation is the same as χW (ξ) → χW

(

(11+σ3)
2 ξ

)

exp[−|ξ|2/2],the expe
ted behaviour of the 
hara
teristi
 fun
tion under passage through A2 [371℄.The above results 
an be alternatively understood through the a
tion of the 
hannelin the Fo
k basis. Under passage through the 
hannel,
|n〉〈m| →

∫

dqVq|n〉〈m|V †
q

=

∫

dq |q/
√

2) 〈q|n〉〈m|q〉 (q/
√

2|

=

∫

dq
π−1/2

√
2n+mn!m!

Hn(q)Hm(q) e−q2 |q/
√

2) (q/
√

2|, (6.83)for all n,m. The out
ome for an arbitrary input state ρ follows by linearity, and we haveTheorem 6.9 The 
hannel A2 is both non
lassi
ality breaking and entanglement break-ing.Proof : We note from Eq. (6.80) that the Kraus operators are already in rank one form,thereby showing that the 
hannel is entanglement breaking. And from Eq. (6.82) we seethat the output of the 
hannel, for every input state ρ, supports a diagonal representationwith nonnegative weight 〈q|ρ|q〉 δ(p) ≥ 0, for all α = (q+ip)/
√

2, showing that the outputis 
lassi
al for all input states.6.7 Single Quadrature 
lassi
al noise 
hannel B1(a), a ≥ 0The 
hannel B1(a), whose a
tion is to simply inje
t Gaussian noise of magnitude a intoone quadrature of the os
illator, and is not quantum limited. It 
an be realized in theform
B1(a) : ρ→ ρ

′
=

1√
πa

∫

dq exp[−q2/a]D(q/
√

2) ρD(q/
√

2)†, (6.84)where D(α)'s are the unitary displa
ement operators. B1(a) is thus a 
ase of the so-
alledrandom unitary 
hannels [364℄, a 
onvex sum of unitary 
hannels. The 
ontinuum
Zq ≡ (πa)−1/4 exp[−2/2a]D(q/

√
2) (6.85)159



Chapter 6. Operator-sum representation for Bosoni
 Gaussian 
hannelsare the Kraus operators of this realization. The quantum-limited end of B1(a) is obviouslythe identity 
hannel, 
orresponding to a → 0 [lima→0
√
πa

−1
exp[−q2/a] = δ(q), and

Zq=0 = identity℄. One may assume a = 1 without loss of generality. The reason wepresent a brief treatment of this 
hannel here is just to demonstrate that this 
ase toosubje
ts itself to our general s
heme.The two-mode metaple
ti
 unitary operator representing B1 produ
es a symple
ti
transformation on the quadrature variables whi
h, as in the earlier 
ases of D(κ), C1(κ),
C2(κ), and A2, does not mix the position variables with the momentum variables [158℄ :

(

q1
q2

)

→
(

q
′

1

q
′

2

)

= M

(

q1

q2

)

,

M =

(

1 −1

0 1

)

. (6.86)And p1, p2 transform a

ording to (M−1)T .As in the immediate previous 
ase A2, the matrix elements of U (ab) are
Cm1q

n1n2
= 〈m1|〈q|U (ab)|n1〉|n2〉, (6.87)where |q〉's are the position eigenve
tors. In view of this the Kraus operators are labelledby a 
ontinuous index `q' and are given by

〈q|U (ab)|0〉 =
∑

m1,n1

Cm1q
n10

|m1〉〈n1|, (6.88)where
Cm1q

n10
=

∫

dq1〈m1|q1〉〈q1|〈q|U (ab)|n1〉|0〉

=

∫

dq1〈m1|q1〉〈q1 − q, q|n1, 0〉. (6.89)Here we made the two-mode metaple
ti
 unitary operator a
t on the position basis.To evaluate the Kraus operator, it is su�
ient to evaluate the matrix elements
Cn1q

m10 =
π−3/4

√
2n1+m1n1!m1!

e−
q2

2

∫

dq1Hn1(q1 − q)Hm1(q1)e
− q21

2 e−
(q1−q)2

2 . (6.90)
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Chapter 6. Operator-sum representation for Bosoni
 Gaussian 
hannelsThe above integral 
an be readily performed [372℄, and we obtain
Cn1q

m10 = π−1/4e−
q2

2

[

e−
q2

4

√

m1!

n1!

(−q√
2

)n1−m1

Ln1−m1
m1

(q2/2)

]

≡ π−1/4e−
q2

2 〈m1|D(q/
√

2)|n1〉 = Zq. (6.91)We have thus re
overed (6.85), but staying entirely within our general s
heme.6.8 SummaryWe have obtained operator-sum representations for all single-mode Bosoni
 Gaussian
hannels presented in their respe
tive 
anoni
al forms. Evidently, the operator-sum rep-resentation of a 
hannel not in the 
anoni
al form follows by adjoining of appropriateunitary Gaussian evolutions before and after the 
hannel. The Kraus operators wereobtained from the matrix elements of the two-mode metaple
ti
 unitary operator whi
he�e
ts the 
hannel a
tion on a single mode. The two-mode symple
ti
 transformation inea
h 
ase did not mix the position and momentum variables and this fa
t proved valuablefor our study. The Kraus operators for the quantum-limited 
hannels ex
ept the singular
ase were found to have a simple and sparse stru
ture in the Fo
k basis.It was shown that the phase 
onjugation 
hannels D(κ) and D(κ−1) are dual to oneanother, and the attenuator and the ampli�er families C1(κ) and C2(κ
−1), κ < 1 aremutually dual. The 
hannels D(κ), C1(κ), and C2(κ) were found to be almost unital; inthe sense that the unit operator was taken to a s
alar times the unit operator.In the 
ase of the phase 
onjugation 
hannel, the a
tion in phase spa
e was brought outexpli
itly through the a
tion of the Kraus operators on the Fo
k basis. The attenuator
hannel resulted in the s
aling of the diagonal weight fun
tion φ(α) and the ampli�er
hannel resulted in the s
aling of the Husimi Q-fun
tion as expe
ted. Further, the outputof the 
hannel with respe
t to 
lassi
ality/non
lassi
ality was studied. It was found thatthe phase 
onjugation 
hannel D(κ) and the singular 
hannel A2 are 
lassi
ality breakingwhile the attenuator 
hannel C1(κ) and the ampli�er 
hannel C2(κ) do not generatenon
lassi
ality.The Kraus operators of the phase 
onjugation 
hannel was brought to a rank oneform, thereby expli
itly bringing out the entanglement breaking nature of this 
hannel.It was further shown that there is no �nite rank operator in the support of the Kraus op-erators of either the ampli�er or the attenuator 
hannel, and this expli
itly demonstratesthat the quantum-limited attenuator and the ampli�er families of 
hannels are not entan-glement breaking. The Kraus operators of the singular 
hannel A2 was also obtained in161



Chapter 6. Operator-sum representation for Bosoni
 Gaussian 
hannelsthe rank one form thereby manifestly showing that this 
hannel is entanglement breaking.Note : A more detailed analysis on the operator-sum representation of single-modeBosoni
 Gaussian 
hannels 
an be found at [373℄. This in
ludes an analysis on �xedpoints, an analysis on interrupted evolution, a proof of the extremality of all quantumlimited single-mode Gaussian 
hannels, and the operator-sum representation of 
omposite
hannels.
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7A measure of non-Gaussianity for quantum states
7.1 Introdu
tionQuantum information theory of 
ontinuous variable systems has been a
tively pursued inre
ent years, espe
ially in the 
ontext of Gaussian states [245, 256, 258℄. Su
h states arethe ones whi
h o

ur naturally in most experimental situations, parti
ularly in quantumopti
s. While these states live in an in�nite-dimensional Hilbert spa
e, they are remark-ably easy to handle sin
e they are fully des
ribed by their 
ovarian
e matrix (and �rstmoments). Further, their evolution under quadrati
 hamiltonians is easily 
ast in the lan-guage of symple
ti
 groups and (
lassi
al) phase spa
e [57, 226, 280℄. The fundamentalproto
ol of quantum teleportation has been a
hieved using these states [36, 83℄. How-ever, there are situations wherein one deals with (non
lassi
al) non-Gaussian resour
esto generate entanglement [130, 170, 171, 186, 194, 318, 319, 374℄. They arise naturallyin nonlinear evolutions like passage through a Kerr medium [375, 376℄.It has been shown re
ently that teleportation �delities 
an be improved with the useof non-Gaussian resour
es [377℄. It is thus important that one is able to quantify thenon-Gaussianity of su
h resour
es. E�ort in this dire
tion has been initiated in somere
ent publi
ations [378�380℄.From the perspe
tive of 
lassi
al probability theory, Gaussian distributions are thoseprobability distributions whi
h are 
ompletely spe
i�ed by their �rst and se
ond mo-ments; all their higher-order moments are determined by these lower-order moments.Non-Gaussian probabilities do not enjoy this spe
ial property. An easier, and possiblymore e�e
tive, way to distinguish the two is through 
umulants: every non-vanishing
umulant of order greater than two serves as an indi
ator of non-Gaussianity of theprobability distribution under 
onsideration [381, 382℄.The purpose of any good measure of non-Gaussianity in the 
ontext of 
lassi
al prob-ability theory is thus to 
apture the essen
e of the non-vanishing higher-order 
umulants.163



Chapter 7. A measure of non-Gaussianity for quantum statesA non-Gaussianity measure should thus manifestly depend on the higher-order 
umu-lants. Yet another desirable feature one would like to have is invarian
e of the measureunder s
aling. Ultimately, non-Gaussianity measure is a quantitative statement of thedeparture of the shape of a probability distribution from Gaussian. But uniform s
aling ofall the variables of a probability distribution does not alter the `shape' of the distribution,and hen
e it should not a�e
t its non-Gaussianity.The notion of non-Gaussianity 
an be extended to a quantum me
hani
al statethrough its de�nition on the asso
iated Q fun
tion, a member of the one-parameterfamily of s-ordered quasi-probabilities [168℄. That this is an appropriate route is en-dorsed by the fa
t that the Mar
inkiewi
z theorem [see below℄ holds for the s-orderedquasi-probabilities as well. It turns out that the 
umulants of order greater than 2 forthe various s-ordered quasi-probabilities 
orresponding to a �xed state ρ̂ are independentof s, indi
ating that the higher order 
umulants are intrinsi
 to the state. Moreover,all higher-order 
umulants of order greater than 2 vanish identi
ally for Gaussian states.Thus any non-vanishing higher-order 
umulant of the quasi-probability indi
ates non-Gaussianity of the state, and this 
on
lusion is independent of the ordering parameter
s. The above 
onsiderations will suggest that any good measure of non-Gaussianity rel-evant in the 
ontext of 
lassi
al probability theory 
an, with suitable modi�
ation, leadto a good measure of non-Gaussianity of quantum me
hani
al states, provided a state isidenti�ed through its Q fun
tion ( For a brief review on su
h measures in 
lassi
al proba-bility theory, see [382℄ ). The purpose of su
h a quantum measure would be to 
apture theessen
e of the non-vanishing higher-order 
umulants of the Q fun
tion asso
iated withthe state. And invarian
e of the measure under an overall s
aling of the Q fun
tion is adesirable feature worth insisting on. The desirability for s
ale invarian
e is endorsed bythe fa
t that s
aling of the Q fun
tion is physi
al as shown in the pre
eding Chapter.In this 
hapter we motivate and present su
h a measure of non-Gaussianity of quan-tum states. Our measure is based on the Wehrl entropy [383℄, the quantum analogueof di�erential entropy [384℄ well-known from the 
ontext of 
lassi
al information theoryof 
ontinuous variables [Di�erential entropy itself is a generalisation of Shannon entropyfrom dis
rete to 
ontinuous variables℄.The photon-added thermal states [182℄ play a key role in our 
onsiderations. Thesenon
lassi
al states have been generated experimentally [320�323℄. Their spe
ial impor-tan
e to the present work arises from the fa
t that the Q fun
tions of these states ares
aled versions of those of the Fo
k states, and therefore one will expe
t any good measureof non-Gaussianity to return the same values for both 
lasses of states.The plan of the Chapter is as follows. We begin with a brief introdu
tion to moments164



Chapter 7. A measure of non-Gaussianity for quantum statesand 
umulants, and re
all two well-known theorems in the 
ontext of these notions. Theone-parameter family of s-ordered quasi-probabilities 
orresponding to quantum densityoperators is then brie�y dis
ussed, with parti
ular emphasis on the Q fun
tion, we thenreview the relationship between di�erential entropy and the Kullba
k-Leibler distan
e of
lassi
al probability theory. We then review brie�y the Wehrl entropy [383℄ and some of itsproperties. In the pre
eding Chapter, we already showed that s
aling of the Q fun
tionis physi
al. With these preparations, we introdu
e our non-Gaussianity measure andexplore some of its important properties, in
luding its invarian
e under uniform s
aling ofthe underlying phase spa
e. We then evaluate this measure for three families of quantumstates, and we 
ompare our measure with two other measures of non-Gaussianity availablein the literature. Finally we end with some 
on
luding remarks.7.2 Moments and 
umulantsFor a multivariate probability distribution P(x), where x = (x1, x2, · · · , xn) ∈ Rn, the
hara
teristi
 fun
tion χ(ξ), ξ ∈ Rn, is given by the Fourier transform of P(x) [381℄ :
χ(ξ) =

∫

dnxP(x) exp[ iξ · x ]

=
∑

m1m2···mn

(

n
∏

k=1

(iξk)
mk

mk!

)

〈xm1
1 xm2

2 · · · xmn
n 〉 ,

〈xm1
1 xm2

2 · · · xmn
n 〉 =

∫

dnxxm1
1 xm2

2 · · · xmn
n P(x) . (7.1)It follows from the invertibility of Fourier transformation that the 
hara
teristi
 fun
tionretains all the information 
ontained in the probability distribution. The 
hara
teristi
fun
tion is often 
alled the moment generating fun
tion, sin
e one obtains from it all themoments of the underlying probability distribution through this 
ompa
t expression :

〈xm1
1 xm2

2 · · · xmn
n 〉 =

(

n
∏

k=1

dmk

d(iξk)
mk

)

χ(ξ) |ξ=0 . (7.2)Another equivalent des
ription of a probability distribution is through the 
umulant
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Chapter 7. A measure of non-Gaussianity for quantum statesgenerating fun
tion. This is de�ned through the logarithm of the 
hara
teristi
 fun
tion
Γ(ξ) = logχ(ξ)

=
∑

m1m2···mn

(

n
∏

k=1

(iξk)mk

mk!

)

γm1,m2,··· ,mn , (7.3)or, equivalently, through
χ(ξ) = exp(Γ(ξ)) . (7.4)From Eq. (7.3), it is easy to see that the 
umulants γm1,m2,··· ,mn 
an be expressed as

γm1,m2,··· ,mk
=

(

n
∏

k=1

dmk

d(iξk)
mk

)

Γ(ξ) |ξ=0 . (7.5)Thus, the 
umulants are related to Γ(·) in pre
isely the same way as the moments arerelated to χ(·). The set of all moments 〈xm1
1 xm2

2 · · · xmn
n 〉 gives a 
omplete 
hara
terisationof a probability distribution P(x), and the same is true of the set of all 
umulants

γm1,m2,··· ,mn as well. Indeed, one 
an des
ribe one set in terms of the other [324, 381, 385℄.With these notations and de�nitions on hand, we now re
all two important resultsfrom 
lassi
al probability theory.Theorem 7.1 The 
umulant generating fun
tion of a Gaussian probability distributionin n variables is a multinomial of degree equal to 2 [381℄.Theorem 7.2 (Mar
inkiewi
z Theorem). If the 
umulant generating fun
tion of a (nor-malised) fun
tion in n variables is a multinomial of �nite degree greater than 2, thenthe fun
tion will not be point wise non-negative, and hen
e will fail to be a probabilitydistribution [386, 387℄.Theorem 1 is a statement of the fa
t that a Gaussian probability is fully determinedby its moments of order ≤ 2 ; all the higher-order 
umulants are identi
ally zero for aGaussian probability. Theorem 2 is a mu
h stronger statement. It implies that any trueprobability distribution other than the Gaussian distribution has a 
umulant generatingfun
tion whi
h 
annot trun
ate at any (�nite) order. That is, a non-Gaussian probabilitydistribution has non-vanishing 
umulants of arbitrarily high order. We note in passingthat non-vanishing 
umulants of order greater than 2 serve as indi
ators of the non-Gaussianity of the underlying probability.
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Chapter 7. A measure of non-Gaussianity for quantum states7.3 Quasi-probabilities and the Q fun
tionA state of a quantum me
hani
al system spe
i�ed by density operator ρ̂ 
an be faithfullydes
ribed by any member of the one-parameter family of s-ordered quasi-probabilitydistributions −1 ≤ s < 1 [168℄. In other words, an s-ordered quasi-probability 
aptures allthe information present in the density operator ρ̂. However, it is not a genuine probabilitydistribution in general; in parti
ular, it is not point wise non-negative. The pre�x quasiunders
ores pre
isely this aspe
t. Nevertheless, the s-ordered family of quasi-probabilitydistributions gives us a framework wherein one 
ould give a phase spa
e des
ription ofquantum me
hani
al systems in the language of 
lassi
al probability theory.To re
olle
t Se
tion 1.7, for a quantum state des
ribing the radiation �eld of n modes(n os
illators) the 
hara
teristi
 fun
tion of the s-ordered quasi-probability, for any −1 ≤
s ≤ 1, is de�ned through [168℄

χρ(ξ, s) = exp[
s

2
|ξ|2 ] Tr(ρ̂D(ξ)) , (7.6)where ξ = (ξ1, ξ2, · · · , ξn) ∈ Cn, and D(ξ) is the n-mode (phase spa
e) displa
ementoperator :

D(ξ) = exp[
∑

j

(ξj â
†
j − ξ∗âj) ] . (7.7)The s-ordered quasi-probability itself is just the Fourier transform of this 
hara
teristi
fun
tion χρ(ξ, s) :

Wρ(α, s)=
1

πn

∫

exp[
∑

j

(α∗
jξj − αjξ

∗
j ) ]χρ(ξ, s)

∏

j

d2ξj . (7.8)Here âj and â†j are the annihilation and 
reation operators of the jth mode, αj repre-sents the (
-number) phase spa
e variables qj, pj 
orresponding to the jth mode through
αj = (qj + ipj)/

√
2, and α = (α1, α2, · · · , αn) ∈ Cn. The parti
ular 
ases s = −1, 0, 1
orrespond, respe
tively, to the better known Q fun
tion, the Wigner fun
tion, and the

P fun
tion.The Q fun
tion 
orresponding to a density operator ρ̂ has a parti
ularly simple ex-pression in terms of 
oherent state proje
tions :
Qρ(α) = 〈α|ρ|α〉, α ∈ Cn . (7.9)It may be noted that the Q fun
tion is manifestly nonnegative for all α ∈ Cn. 167



Chapter 7. A measure of non-Gaussianity for quantum statesReality of Wρ(α, s) is equivalent to hermiti
ity of the density operator ρ̂, and the fa
tthat ρ̂ is of unit tra
e faithfully trans
ribes to
1

πn

∫

Wρ(α, s)d
2α = 1 . (7.10)While these two properties hold for every s-ordered quasi-probability, point wise nonnegativity for all states is a distin
tion whi
h applies to the Q fun
tion alone. In otherwords, the Q fun
tion is a genuine probability distribution; every other Wρ(α; s) is onlya quasi-probability. Gaussian pure states are the only pure states for whi
h the Wignerfun
tion is a 
lassi
al probability [199℄; in the 
ase of P fun
tion, the 
oherent states arethe only pure state with this property.However, not every probability distribution is a Q fun
tion. This is evident, forinstan
e, from the obvious fa
t that Q(α) ≤ 1, ∀α ∈ Cn.The next result 
aptures, in a 
on
ise form, the manner in whi
h members of theone-parameter family of s-ordered quasi-probabilities Wρ(α, s) di�er from one anotherfor a given state ρ̂.Theorem 7.3 Only the se
ond order 
umulants of the quasi-probability of a given statedepend on the order parameter s; all the other 
umulants are independent of the quasi-probability under 
onsideration.This result is already familiar in the 
ase of a single-mode radiation �eld [375℄. But theproof is, as outlined below, immediate in the multi-mode 
ase as well. The 
hara
teristi
fun
tions of a state ρ̂ for two di�erent values of the order parameter s1 and s2 areobviously related in the following manner [168℄ :

χρ(ξ, s1) = exp
(

(s1 − s2)|ξ|2
)

χρ(ξ, s2) . (7.11)On taking logarithm of both sides to obtain the 
orresponding 
umulant generating fun
-tions we have
logχρ(ξ, s1) = (s1 − s2)|ξ|2 + logχρ(ξ, s2) .That is,

Γρ(ξ, s1) = (s1 − s2)|ξ|2 + Γρ(ξ, s2) . (7.12)Thus the 
umulant generating fun
tion for di�erent s-ordered quasi-probabilities di�eronly in se
ond order, 
ompleting proof of the theorem. 168



Chapter 7. A measure of non-Gaussianity for quantum statesIn these equations |ξ|2 stands, as usual, for∑n
j=1 |ξj|2. As an immediate 
onsequen
eof this theorem we haveTheorem 7.4 For no quasi-probability 
an the 
umulant generating fun
tion be a multi-nomial of �nite order > 2.Proof : Sin
e the Q fun
tion, for every state ρ, is a genuine probability distribution,it follows from the Mar
inkiewi
z theorem that the 
umulant generating fun
tion of

Q 
annot be a multinomial of �nite order > 2. Sin
e the di�erent s-ordered quasi-probabilities di�er only in se
ond-order 
umulants, this 
on
lusion holds for all s-orderedquasi-probabilities, thus proving the theorem.We 
on
lude this Se
tion with the following remarks. The above 
onsiderations showthat quasi-probabilities fail to be true probabilities only in this limited sense: they di�erfrom genuine probabilities only in 
umulants of order two. The distributions, however,
an be quite di�erent from 
lassi
al probabilities, parti
ularly for s > 0, and they 
anbe
ome as subtle as Fourier transform of exp [σ y2 ], σ > 0, a Gaussian with the wrongsignature for the varian
e.Sin
e the higher-order 
umulants, whi
h should play an essential role in any reasonablede�nition of non-Gaussianity measure, do not depend on the value of the parameter s,they may be viewed as attributes intrinsi
 to the state under 
onsideration; we maytherefore use any 
onvenient quasi-probability to 
apture their essen
e.7.4 Di�erential entropy and the Kullba
k-Leibler distan
eThe role of Shannon entropy of probability distributions over dis
rete random variablesis taken over by di�erential entropy in the 
ase of 
ontinuous variables. Given a multi-variate probability distribution P(x) in n variables (x1, x2, · · · , xn) ∈ Rn, the asso
iateddi�erential entropy H(P(x)) is de�ned by [384℄
H(P(x)) = −

∫

dnxP(x)logP(x) . (7.13)But unlike the Shannon entropy, the di�erential entropy 
an be negative. This is manifest,for instan
e, for uniform distribution over a region of less than unit volume in Rn.Among all the probability distributions with a �xed set of �rst and se
ond moments,the Gaussian probability distribution has the maximum di�erential entropy [384℄. Thisfa
t may be used to modify di�erential entropy to result in a non-negative quantity
J(P(x)) = H(PG(x)) −H(P(x)) . (7.14)169



Chapter 7. A measure of non-Gaussianity for quantum statesHere PG(x) is the Gaussian probability distribution with the same �rst and se
ond mo-ments as the given probability distribution P(x).It may be re
alled that Kullba
k-Leibler distan
e between two probabilities P1(x)and P2(x) is de�ned as the di�eren
e of their di�erential entropies [384℄ :
S(P1(x)||P2(x)) = H(P2(x)) −H(P1(x))

= −
∫

P1(x)log(P1(x))d
nx

+

∫

P2(x)log(P2(x))d
nx . (7.15)Thus J(P(x)) 
an be regarded as the Kullba
k-Leibler distan
e between the given prob-ability P (x) and the asso
iated Gaussian distribution PG(x) :

J(P(x)) = S(PG(x)||P(x)) . (7.16)
J(P(x)) is sometimes known by the name negentropy.7.5 Wehrl entropyWehrl entropy [383, 388℄ may be viewed as the extension of di�erential entropy to thequantum me
hani
al 
ontext, but the Wehrl entropy has interesting properties whi
h dis-tinguish it from di�erential entropy. The distin
tion arises from the fa
t that while every
Q fun
tion 
ertainly quali�es to be a 
lassi
al probability distribution, every 
lassi
alprobability is not a Q fun
tion. The un
ertainty prin
iple has a fundamental role to playin this aspe
t [383℄. The potential use of Wehrl entropy as a measure of the `
oherent'
omponent of a state has been dis
ussed in Ref [389℄. And its possible role in de�ning anentanglement measure has also been explored [390, 391℄.For a state ρ̂ des
ribing n modes of radiation �eld, the Wehrl entropy is de�ned as

HW (ρ̂) = −
∫

∏

d2αjQρ(α)logQρ(α) , (7.17)where Qρ(α) is the Q fun
tion 
orresponding to ρ̂. This de�nition may be 
ompared withthat of di�erential entropy; the role of P(x) in di�erential entropy is played by Qρ(α) inWehrl entropy.However, in 
ontradistin
tion to di�erential entropy, the Wehrl entropy is alwayspositive. This is an immediate 
onsequen
e of the fa
t that the Q fun
tion is boundedfrom above by unity. It turns out that the Wehrl entropy is always greater than or equal170



Chapter 7. A measure of non-Gaussianity for quantum statesto unity [392℄; indeed, it attains its least value of unity for the 
oherent states and onlyfor these states. This property 
an be thought of as a manifestation of the un
ertaintyprin
iple, whi
h the 
oherent states saturate. Further, the Wehrl entropy is always greaterthan the von Neumann entropy [383℄ :
HW (ρ̂) ≥ S(ρ̂) = −Tr(ρ̂ log ρ̂) . (7.18)While the von Neumann entropy is zero for pure states, we have just noted that theWehrl entropy HW (ρ̂) is greater than or equal to unity for all states. Several aspe
ts ofthe Wehrl entropy have been explored in Ref. [389℄.7.6 A non-Gaussianity measure for quantum statesAs is well-known, a quantum state ρ̂ is said to be Gaussian i� the asso
iated Wignerdistribution is Gaussian. This will suggest that the non-Gaussianity of a state is 
odedinto the non-vanishing 
umulants of order > 2 of the Wigner fun
tion. Sin
e the Wignerand Q fun
tions are related by 
onvolution by a Gaussian, the Q fun
tion of a stateis Gaussian i� the Wigner fun
tion is, and the non-Gaussianity should thus be found
oded in the higher-order 
umulants of the Q fun
tion as well. The 
onsisten
y of thesestatements is ensured by the fa
t that the higher-order 
umulants are the same for theWigner and the Q fun
tions [Indeed, as we have shown earlier, the higher-order 
umulantsare intrinsi
 to the state, and hen
e are the same for all s-ordered quasi-probabilities℄.Non-Gaussianity 
an thus be des
ribed using either the Wigner fun
tion or the Qfun
tion. The fa
t that the Q fun
tion is everywhere non-negative, rendering it a genuineprobability in the 
lassi
al sense, makes it our preferred 
hoi
e. We employ therefore theWehrl entropy to 
apture the essen
e of the higher-order 
umulants.Given a state ρ̂, our measure of non-Gaussianity N (ρ̂) is de�ned as the di�eren
e oftwo Wehrl entropies :
N (ρ̂) = HW (ρ̂G) −HW (ρ̂) . (7.19)Here HW (ρ̂) is the Wehrl entropy of the given state ρ̂ and HW (ρ̂G) is the Wehrl entropyof the Gaussian state ρ̂G that has the same �rst and se
ond moments as ρ̂. Sin
e N (ρ̂)measures the departure of the Wehrl entropy of ρ̂ from that of its Gaussian partner ρ̂G,it 
an be viewed as a quantum Kullba
k-Leibler distan
e. N (ρ̂) 
ould also be viewed asa relative Wehrl entropy. But we prefer to 
all it simply a non-Gaussianity measure.This measure of non-Gaussianity enjoys several interesting properties. We will now171



Chapter 7. A measure of non-Gaussianity for quantum stateslist some of them :(i) N (ρ̂) ≥ 0, equality holding i� ρ̂ is Gaussian.Proof : This is a restatement of the fa
t that the Wehrl entropy of a Gaussian state isgreater than that of all states with the same �rst and se
ond moments as the Gaussian[384℄.(ii) N (ρ̂) is invariant under phase spa
e displa
ements :
N (ρ̂) = N (D(ξ) ρ̂ D(ξ)† ) . (7.20)Proof : Let D(ξ) ρ̂ D(ξ)† be denoted, for brevity, by ρ̂ ′. The Q fun
tion of ρ̂ ′ is relatedto that of ρ̂ in this simple manner :
Qρ ′(α) = Qρ(α− ξ) . (7.21)That is, displa
ement D(ξ) a
ts as a rigid translation in phase spa
e [192, 383, 392℄. Thusit has no e�e
t on the Wehrl entropy of any state, and hen
e leaves N (ρ̂) invariant forevery state.(iii) N (ρ̂) is invariant under passage through any passive linear system.Proof : A passive linear system is represented by a n × n unitary matrix U . It maps a
oherent state |α〉 into a new 
oherent state |α′〉 = |U α〉 [192, 383, 392℄, where α ∈ Cn isto be viewed as a 
olumn ve
tor. Let ÛU be the unitary operator in the n-mode Hilbertspa
e whi
h represents the passive linear system labelled by the matrix U . Let us denoteby ρ̂ ′ the transformed state ÛU ρ̂ Û †

U at the output of this passive system. Then theoutput Q fun
tion is related to the input Q fun
tion in this manner :
Qρ′(α) = Qρ(U

−1α) = Qρ(U
†α) . (7.22)That is, the a
tion of a passive linear system is a rigid SO(2n) rotation in the 2n-dimensional phase spa
e. It follows immediately that this transformation does not 
hangethe Wehrl entropy of any state, and hen
e does not a�e
t N (ρ̂).Remark : While in the single-mode 
ase of two-dimensional phase spa
e all proper ro-tations are 
anoni
al transformations, this is not true in the multi-mode 
ase. That is,

Sp(2n,R)∩SO(2n) is a proper subgroup of SO(2n) isomorphi
 to U(n), the n2-parametergroup of n × n unitary matri
es, whereas SO(2n) is a mu
h larger (2n2 − n)-parametergroup [192℄. Only those phase spa
e rotations whi
h are elements of this interse
tion a
tas unitary transformations in the Hilbert spa
e of n os
illators.(iv) N (ρ̂) is invariant under a uniform phase spa
e s
aling λ de�ned at the level of
172



Chapter 7. A measure of non-Gaussianity for quantum statesthe Q fun
tion in the following manner :
λ : Qρ(α) → Qρ′(α) = λ2nQ(λα) . (7.23)Proof : Under this uniform phase spa
e s
aling of the Q fun
tion, the Wehrl entropy
hanges by a simple additive part that is independent of the state :

HW (ρ̂) = − 1

πn

∫

Qρ(α)logQρ(α)

n
∏

j=1

d2αj

→ − 1

πn

∫

λ2nQρ(λα)log (λ2nQρ(λα) )

n
∏

j=1

d2αj

= HW (ρ̂) − 2n log λ . (7.24)Note that in arriving at the last equation we have made a 
hange of variables in theintegral and made use of the normalisation of the Q fun
tion. Now it trivially followsfrom this result that N (ρ̂), being a di�eren
e of two Wehrl entropies, remains invariant.Remark : While the above 
on
lusion holds mathemati
ally for all λ > 0, the s
aled
Q fun
tion fails to be a physi
al Q fun
tion if λ > 1. Therefore we restri
t this s
aleparameter to the physi
ally relevant range 0 < λ ≤ 1. This may be seen from the analysisin Se
tion 6.5.(v) N (ρ̂) is additive on tensor produ
t states :

N (ρ̂1 ⊗ ρ̂2) = N (ρ̂1) + N (ρ̂2) . (7.25)Proof : Under tensor produ
t the Q fun
tions go as produ
t probabilities by de�nition.This is true of their asso
iated Gaussian probabilities as well.(vi) For a bipartite state of the form ρ̂ = ρ̂a ⊗ ρ̂G, where ρ̂G is a Gaussian state
N (ρ̂) = N (ρ̂a ⊗ ρ̂G) = N (ρ̂a) . (7.26)Proof : From (v) we have
N (ρ̂) = N (ρ̂a ⊗ ρ̂G) = N (ρ̂a) + N (ρ̂G) .and from (i)

N (ρ̂a) + N (ρ̂G) = N (ρ̂a) . (7.27)(vii) For a bipartite state of the form ρ̂out = ÛU (ρ̂a ⊗ |α〉〈α|) Û †
U , where U represents173



Chapter 7. A measure of non-Gaussianity for quantum statesa passive linear system and |α〉 is a 
oherent state, we have
N (ρ̂out) = N (ρ̂a) . (7.28)Proof : From (iii) we have

N (ρ̂out) = N (UU (ρ̂a ⊗ |α〉〈α|)U†
U ) = N (ρ̂a ⊗ |α〉〈α|) .We have from (v)

N (ρ̂a ⊗ |α〉〈α|) = N (ρ̂a) + N (|α〉〈α|) .Sin
e the 
oherent state |α〉 is Gaussian, we have from (i)
N (ρ̂a) + N (|α〉〈α|) = N (ρ̂a) . (7.29)This result is useful in evaluating the non-Gaussianity of bipartite states produ
edby the a
tion of beamsplitters, as we shall illustrate in the next Se
tion.7.6.1 Shape 
riterion for good measure of non-GaussianityProperties (ii), (iii), and (iv) deal with transformations whi
h do not 
hange the shapeof the Q fun
tions. Sin
e non-Gaussianity is a quantitative statement regarding thedeparture of the shape of the Q fun
tion from Gaussian, it will appear that any goodmeasure of non-Gaussianity should return the same value for all states 
onne
ted by thesetransformations. In parti
ular, two quantum states whose Q fun
tions are related by auniform s
aling of all the phase spa
e 
oordinates should be assigned the same amount ofnon-Gaussianity. We will 
all this the shape 
riterion, and we have seen that our measure

N (ρ̂) meets this requirement.7.7 ExamplesIn this Se
tion we evaluate our non-Gaussianity measure N (ρ̂) for three families of states,namely the Fo
k states, the photon-added thermal states, and the phase-averaged 
oher-ent states of a single-mode of radiation. While the �rst two families 
onsist of non
lassi
alstates, the third one is a family of 
lassi
al states.
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Chapter 7. A measure of non-Gaussianity for quantum states7.7.1 Photon number statesThe Q fun
tion of the Fo
k state (energy eigenstate) ρ̂ = |m〉〈m| of the os
illator is givenby the phase spa
e distribution
Q|m〉(α) =

|α|2m

m!
exp(−|α|2) , (7.30)whose only non-vanishing moment of order ≤ 2 is 〈|α|2〉 = Tr(ρ̂ââ†) = m + 1. Thephase spa
e average 〈|α|2〉 is with respe
t to the probability distribution Q|m〉(α) and,by de�nition, it equals the (quantum) expe
tation value of the asso
iated anti-normallyordered operator ââ†. The Gaussian state whi
h has the same moments of order ≤ 2 as

ρ̂|m〉 = |m〉〈m| is 
learly the thermal state with mean photon number 〈n̂〉 ≡ 〈â†â〉 = m.The Q fun
tion of su
h a thermal state ρ̂G is given by
QG(α) =

1

〈n̂〉 + 1
exp

(

− |α|2
〈n̂〉 + 1

)

, 〈n̂〉 = m. (7.31)The Wehrl entropy 
orresponding to ρG is easily 
omputed :
HW (ρ̂G) = 1 + log(1 + 〈n̂〉)

= 1 + log(1 +m) . (7.32)The Wehrl entropy of the photon number state ρ̂ = |m〉〈m| is
HW (ρ̂|m〉) = − 1

π

∫

d2αQ|m〉(α)logQ|m〉(α) . (7.33)This 
an be 
omputed expli
itly by going to the polar 
oordinates, and one obtains [389℄
HW (ρ̂|m〉) = 1 +m+ logm! −mψ(m+ 1),

ψ(m+ 1) =
m
∑

k=1

1

k
− γ , (7.34)where ψ(m) is the digamma fun
tion, and γ = 0.5772 · · · is the Euler 
onstant. Hen
ethe non-Gaussianity of the photon number state ρ̂ = |m〉〈m| is

N (ρ̂|m〉) = HW (ρ̂G) −HW (ρ̂|m〉),

= ln(m+ 1) −m− logm! +mψ(m+ 1). (7.35)In Figure (7.1) we have plotted this non-Gaussianity as a fun
tion of the photon175



Chapter 7. A measure of non-Gaussianity for quantum statesnumber m. It is 
lear that the non-Gaussianity of |m〉 in
reases monotoni
ally with thephoton number m, and goes to ∞ as m tends to ∞. That this was to be expe
ted 
an beseen as follows. For large m values ψ(m+ 1) ∼ ln(m+ 1), and logm! ∼ mlogm−m, andhen
e N (ρ̂|m〉) ∼ log(m+ 1). We shall be returning to this result in the next Se
tion.Now 
onsider a bipartite state of two modes with one mode in the Fo
k state and theother in the va
uum. Non-Gaussianity of this produ
t state is the same as that of theFo
k state, and this follows from Eq. (7.26) . Let this bipartite state be passed througha beamsplitter. The state at the output will be entangled due to the non
lassi
ality ofthe Fo
k state [171, 194℄, but in view of Eq. (7.28), this two-mode state will have thesame non-Gaussianity as the original single-mode Fo
k state.7.7.2 Photon-added thermal statesIn this subse
tion we evaluate the non-Gaussianity of the photon-added thermal state(PATS) [182℄. The PATS is de�ned through
ρ̂ = C â†mρ̂thâ

m , (7.36)where C is the normalisation 
onstant whi
h ensures Tr (ρ̂) = 1, and ρ̂th is the thermalstate given by
ρ̂th = (1 − x)

∞
∑

n=0

xk|k〉〈k| ; x = exp

[

−~ω

kT

]

. (7.37)One 
an alternatively de�ne the PATS through parametri
 di�erentiation :
ρ̂ =

(1 − x)m+1

m!

dm

dxm

∞
∑

k=0

xk|k〉〈k| . (7.38)PATS are thus parametrised by two parameters: 0 ≤ x < 1, and m = 0, 1, 2, · · · . Thelimit x → 0 
orresponds to Fo
k states, and the limit m → 0 
orresponds to thermalstates.We may note that PATS (with m ≥ 1) is non
lassi
al for all values of x [194℄. Indeed,it violates a three-term 
lassi
ality 
ondition [170℄.The Q fun
tion of PATS 
an be easily 
al
ulated and is given by
Q

(m,x)
PATS(α) =

(1 − x)m+1

m!
|α|2mexp[−(1 − x)|α|2] . (7.39)It is evident that the Q fun
tion of the PATS is a s
aled version of the Q fun
tion of the176



Chapter 7. A measure of non-Gaussianity for quantum statesFo
k state :
Q

(m,x)
PATS(α) = λ2Q|m〉(λα), λ =

√
1 − x . (7.40)Sin
e our measure of non-Gaussianity respe
ts the shape 
riterion put forward in theprevious Se
tion, it is immediate that the non-Gaussianity of the PATS is the same asthat of the photon number state :

N( ρ̂
(m,x)
PATS ) = ln(m+ 1) −m− logm! +mψ(m+ 1)

= N(ρ̂|m〉) . (7.41)It is worth emphasising here that the PATS is a spe
ial state with regard to thequestion of verifying whether a given measure of non-Gaussianity is a good measure, i.e.,whether it satis�es the shape 
riterion. The test is as simple as 
he
king whether themeasure in question evaluated for the PATS is independent of the temperature parameter
x or not.

 0

 0.5

 1

 1.5

 2

 0  10  20  30  40  50

N
(ρ

)

mFigure 7.1: Variation of N (ρ) with number of photons m for the Fo
k state ρ = |m〉〈m|.Finally we 
onsider, as in the previous Subse
tion, a bipartite state of two modes,with one mode in the PATS ρ̂(m,x)
PATS and the other in the va
uum state. Let us pass thistwo-mode state through a beamsplitter. That the state at the output of the beamsplitteris entangled follows from the non
lassi
ality of the PATS [171, 194℄. It follows from Eq.(7.28) that non-Gaussianity of this entangled state is the same as that of the PATS, and177



Chapter 7. A measure of non-Gaussianity for quantum states
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|β|2Figure 7.2: Variation of N (ρ) with energy |β2| for the phase-averaged 
oherent state.hen
e is fully determined by m.We have already noted that PATS violates a three-term 
lassi
ality 
ondition. Thisimplies that the output state is entangled [194℄.7.7.3 Phase-averaged 
oherent statesAs our �nal example, we evaluate the non-Gaussianity for the phase-averaged 
oherentstates. Given a 
oherent state |β〉 its phase-averaged version is
ρ̂|β| ≡

∫

dθ

2π
exp[−i θ â†â ] |β〉〈β| exp[ i θ â†â ]

= exp(−|β|2)
∞
∑

n=0

|β|2n

n!
|n〉〈n| . (7.42)Sin
e ρ̂|β| is a 
onvex sum of Fo
k states, its Q fun
tion is a 
orresponding 
onvex sum :

Q|β|(α) = exp[−(|α|2 + |β|2)]
∞
∑

n=0

|α|2n|β|2n

n!n!

= exp[−(|α|2 + |β|2)]I0(2|α||β|) , (7.43)where I0(.) is the modi�ed Bessel fun
tion of integral order zero. The only non-zeromoment of order ≤ 2 is 〈|z|2〉 = Tr(ρ̂|β|ââ†) = 1 + |β|2. The asso
iated Gaussian prob-178
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xFigure 7.3: Variation of δ1(ρ̂) as a fun
tion of the Boltzmann parameter x for the photon-addedthermal state.ability Q
|β|
G (α) that has the same �rst and se
ond moments is thus the thermal statewith average photon number 〈n̂〉 = |β|2. As we have shown earlier in Eq. (7.32), theWehrl entropy of this Gaussian state is HW (ρ̂

|β|
G ) = 1 + log(1 + |β|2). To 
ompute theWehrl entropy 
orresponding to the original phase-averaged 
oherent state, however, weresort to numeri
al evaluation. In Figure (7.2) we present the non-Gaussianity of ρ̂|β| asa fun
tion of |β|2, the energy of the state. It is seen to be a monotone in
reasing fun
tionof |β|2.Note that the phase-averaged 
oherent states are 
lassi
al sin
e they are, by de�nition,
onvex sums of 
oherent states. Thus if a bipartite state 
onsisting of a phase-averaged
oherent state in one mode and va
uum in the other is passed through a beamsplitter,the two-mode mixed state at the output will remain separable (sin
e the phase-averaged
oherent state is 
lassi
al [194℄), with the same non-Gaussianity as the original phase-averaged 
oherent state.7.8 Comparison with other measuresIn this Se
tion we 
ompare our non-Gaussianity measure N (ρ̂) with two non-Gaussianitymeasures whi
h have been proposed re
ently.
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Chapter 7. A measure of non-Gaussianity for quantum states

 0

 1

 2

 3

 4

 5

 0  0.2  0.4  0.6  0.8  1

δ 2
 (

ρ)

xFigure 7.4: Variation of δ2(ρ̂) as a fun
tion of the Boltzmann parameter x for the photon-addedthermal state.7.8.1 Measure based on Hilbert-S
hmidt distan
eGenoni et al [378℄, have proposed a non-Gaussianity measure based on the Hilbert-S
hmidt distan
e. They de�ne non-Gaussianity of a state ρ̂ as
δ1(ρ̂) =

Tr[(ρ̂− τ̂)2]

2Tr(ρ̂2)
, (7.44)where τ̂ is the Gaussian state with the same �rst and se
ond moments as ρ̂. Let us
ompare this measure with ours in the spe
i�
 
ase of the PATS ρ̂(m,x)

PATS. In Figure (7.3)we plot δ1(ρ̂(m,x)
PATS) as a fun
tion of the Boltzmann parameter x, for �xed value of m = 1.It is seen that δ1(ρ̂(m,x)

PATS), for m = 1, is not a 
onstant but varies with the temperatureparameter x. This shows that this measure of Genoni et al. does not satisfy our shape
riterion.Another interesting di�eren
e appears when one 
ompares our measure N (ρ̂) with
δ1(ρ̂) in the 
ase of the photon number states ρ̂ = |m〉〈m|. As we have shown ear-lier [see Figure (7.1)℄, our measure monotoni
ally in
reases with the photon number mand tends to in�nity as m tends to in�nity. In 
ontrast, as Genoni et al. have shown andemphasised [378℄, their measure δ1(ρ̂) saturates at the value 1

2 .
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Chapter 7. A measure of non-Gaussianity for quantum states7.8.2 Measure based on quantum relative entropyGenoni et al. [379℄ have proposed, in a subsequent paper, a se
ond measure of non-Gaussianity, this one based on quantum relative entropy. They de�ne non-Gaussianityof a state ρ̂ as
δ2(ρ̂) = S(τ̂ ) − S(ρ̂), (7.45)where S(·) is the von Neumann entropy of the state in question and τ̂ is the Gaussianstate with the same �rst and se
ond moments as the given state ρ̂.At �rst sight it would seem that δ2(ρ̂) and our measure N (ρ̂) are very similar, the onlydi�eren
e being that ρ̂ is repla
ed by Qρ(z) and that the tra
e operation in the formulafor the von Neumann entropy is repla
ed in our measure by a phase spa
e integral. A
loser look reveals that this is not the 
ase; δ2(ρ̂) does not redu
e to N (ρ̂) under thiskind of `quantum-
lassi
al 
orresponden
e'. And δ2(ρ̂) and N (ρ̂) turn out to be quitedi�erent entities.A qualitative di�eren
e between δ2(ρ̂) and N(ρ̂) be
omes manifest when one 
omparesthese two measures in the 
ontext of a pure state. As the von Neumann entropy of apure state is zero, δ2(ρ̂) redu
es to S(τ̂ ), the von Neumann entropy of the Gaussian statewith the same �rst and se
ond moments as ρ̂. In other words δ2(ρ̂) does not 
onsult, inthe 
ase of pure states, moments or 
umulants of ρ̂ of order higher than 2. Consequently,all pure states whi
h have the same set of �rst and se
ond moments but di�er in highermoments will get assigned the same non-Gaussianity δ2(ρ). This is not the 
ase with ourmeasure N (ρ̂).To bring out a se
ond qualitative di�eren
e we 
he
k if δ2(ρ̂) satis�es the shape
riterion. To this end we ask if δ2(ρ̂) will as
ribe the same amount of non-Gaussianityto the PATS and the photon number state, i.e., , whether δ2(ρ) evaluated for the PATS

ρ̂
(m,x)
PATS is independent of the temperature parameter x. We �nd that this is not the 
ase.This is shown in Figure (7.4) wherein we present δ2(ρ̂(m,x)

PATS), for �xed value m = 1, as afun
tion of x.We 
on
lude this Se
tion with a further remark. With referen
e to Figures (7.3)and (7.4), while the non-Gaussianity measures δ1(ρ̂(m,x)
PATS) and δ2(ρ̂

(m,x)
PATS), for �xed m,vary with the temperature (or s
ale) parameter x, thus failing the shape 
riterion, thevariation is not monotone. The signi�
an
e of the temperatures at whi
h these measuresassume their respe
tive minimum values is not 
lear.
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Chapter 7. A measure of non-Gaussianity for quantum states7.9 Con
luding remarksWe have presented a measure of non-Gaussianity of quantum states based on the Qfun
tion. In doing so we have been guided by the fundamental prin
iple that any measureof non-Gaussianity is an attempt to make a quantitative statement on the departure ofthe shape of the Q fun
tion from Gaussian, and the measure must therefore remaininvariant under all transformations whi
h do not 
hange the shape of the Q fun
tion.Uniform s
aling of all the phase spa
e 
oordinates at the level of the Q fun
tionhas proved to be an important shape preserving transformation, and our shape 
riteriondemands that non-Gaussianity of the photon-added thermal states should be independentof temperature.We have explored various properties our measure whi
h meets the shape 
riterion.We have presented analyti
al and numeri
al results on the non-Gaussianity of a fewfamilies of quantum states. We have also 
ompared our measure with other measures ofnon-Gaussianity available in the literature.Our measure N (ρ̂) meets the shape 
riterion whi
h, in our opinion, should be re-spe
ted by every good measure of non-Gaussianity. We hasten to add, however, thatthis is not the only measure that meets this 
riterion. For instan
e, if γ(2n) is an appro-priate linear 
ombination of the 
umulants of order 2n, and γ(2) an appropriate linear
ombination of the 
umulants of order 2, it is 
lear that the ratio between γ(2n) andthe nth power of γ(2) will meet this 
riterion, for every n ≥ 2. Our 
hoi
e N (ρ̂) has theattra
tion of being immediately related to well-known entities like the Wehrl entropy andKullba
k-Leibler distan
e.In the 
ase of 
lassi
al probability de�ned on a 2n dimensional spa
e Cn, one wouldhave required the non-Gaussianity measure to be invariant under the full Eu
lidean group
onsisting of translations and all SO(2n) rotations. In the 
ase of phase spa
e, SO(2n)rotations whi
h fall outside the subgroup Sp(2n,R) ∩ SO(2n) are unphysi
al, and hen
ethe restri
tion to this subgroup of passive linear systems.Our shape 
riterion rests on the invarian
e semi-group ofQ fun
tions whi
h is di�erentfrom the invarian
e semi-group of the Gaussian family of states � operations whi
h mapGaussian states into Gaussians. The latter semigroup in
ludes the full Sp(2n,R), andnot just the interse
tion subgroup Sp(2n,R)∩SO(2n). It further in
ludes a whole familyof 
ompletely positive maps known as Gaussian 
hannels.
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8Dis
ussion
Quantum information theory in the 
ontext of 
ontinuous variables, has been primarilyexplored in Gaussian states. Two immediate reasons for this has been the fa
t that theyhave been produ
ed in many laboratories a
ross the world and are experimentally viable,and se
ondly that their 
hara
terisation has been relatively easy in the sense that theirvarian
e matrix tells everything about them [226℄. The notion of non
lassi
ality as wellas entanglement in their 
ontext is by and large well understood [57, 192℄. This is notso for non-Gaussian states. The 
hara
terisation of non-Gaussian states through theirmoments is an on going study in quantum opti
s and any progress in quantum opti
s isbased on our progress with regard to the theory of moments. A 
lassi
 example of thishas been the 
ase of states of a single-mode of radiation �eld whi
h are diagonal in theFo
k basis. The 
hara
terisation of these states in terms of moments has been found tobe equivalent to the Stieltjes moment problem [170℄. We, in our present work, have madean attempt to make use of this knowledge. A possible future program would be to �ndpossible 
ontinuous variable systems whi
h 
an be mapped to well studied problems inthe 
ontext of 
lassi
al probability theory, and if su
h a thing has been 
arried out, thensee if it helps us understand entanglement. We might attempt this bearing in mind thatthe theory of moments tells us of some pra
ti
al limitations, and an example of su
h isas implied by the Mar
inkiewi
z theorem [375℄.Another area of possible exploration is the extension of the use known positive mapsto the 
ontinuous variable 
ase. Only the partial transpose map and the redu
tion maphave been extended [57, 217℄. Re
ent methods, illustrated in [233℄ give us a window tothis aspe
t. The dire
t extension of positive maps is still a problem though. The 
urrentknowledge seems to be nas
ent regarding this issue.The problem of separability/entanglement has been settled for the 
ase of multi-modeGaussians [242℄. We, in our work, have settled this issue for a restri
ted 
lass of non-Gaussian states. But, the issue of separability/entanglement is still open in the more183



Chapter 8. Dis
ussiongeneral 
ontext. One major tool has been the use of un
ertainty relations [57, 58, 230℄.Su
h relations have been seen to be strong enough in 
ertain 
ontexts to dete
t boundentanglement [60, 61, 241℄. Su
h a study has been by and large restri
ted to the levelof the varian
e matrix. Re
ently in [232℄, a more general approa
h was devised. Furtherexploration along these lines would be of great interest.One of the foremost problems in quantum information theory has been the estimationof entanglement. In the 
ontinuous variable 
ase, the EOF has been evaluated for the
ase of two-mode Gaussians. But for the general multi-mode Gaussian 
ase, there is notyet a 
oherent understanding of entanglement. Extremal properties of Gaussian stateshave already played their role in the two-mode 
ase, but a deeper exploration of su
hproperties in the multi-mode 
ontext is mu
h awaited. In the non-Gaussian 
ase, theproblem is even more intruiging by the very la
k of our understanding with regard tothese states. We have in our work, outlined a possible 
ontext dependant pro
edure,whi
h estimates entanglement in very spe
ial non-Gaussian states, but a more generalapproa
h is mu
h awaited Re
ent methods outlined in [328℄, tell us of the possibility ofestimating entanglement with in
omplete knowledge of the state. It would be of greatinterest to extend these ideas to the non-Gaussian 
ontinuous variable state.A primary 
on
ern in this work, has been the study on non
lassi
ality, and its re-lationship to entanglement. The squeezing non
lassi
ality, a non
lassi
ality asso
iatedwith Gaussian states, has been well explored as a resour
e in the 
ontext of quantuminformation pro
essing. The same 
annot be said of other available non
lassi
alities. Thepotential role of the other non-Gaussian non
lassi
alities is yet to be realised. Re
ently,exploration in these lines have started emerging[377, 393, 394℄, the advantages are alsobeing spelt out. More exploration needs to be done along these dire
tions.
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