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AbstratNonlassiality and entanglement are two important features exhibited by ontinuousvariable quantum states. This thesis is entered on the onnetion between nonlassial-ity and entanglement in the ontext of ontinuous variable quantum systems. Evidently,nonlassiality is a prerequisite for entanglement. The onnetion between the two hasbeen well explored in the ontext of Gaussian states, namely in the ontext of squeezingnonlassiality. We study the onnetion in the ontext of other well known nonlassiali-ties, namely nonlassial photon number statistis and antibunhing. By de�nition, everylassial state is a onvex sum of oherent states, and hene is separable. Nonlassialitydoes not imply entanglement, but every entangled state is nonlassial. Negativity underPartial Transpose (NPT) implies nonlassiality, but Positivity under Partial Transpose(PPT) by itself does not indiate that the state is lassial or separable. A PPT statean be separable or entangled, an be lassial or nonlassial.Chapter 1 is primarily introdutory in nature, bringing forth the various oneptsinvolved in the theory of entanglement, both in the �nite dimensional situation as well asin the in�nite dimensional ase of ontinuous variable systems. It is expository in natureand ollets some of the tehniques useful later in the thesis.In Chapter 2 we bring forth a relationship between nonlassiality and entanglement.The problem of studying the interrelationship between nonlassiality and entanglementis tied to the fat that there is no simple test whih an onlude in a de�nite manner if agiven generi mixed state is lassial or not, and there is no single test whih an answerwith ertainty if a mixed state is entangled or separable. However, in very speial orspei� ases one an make de�nitive statements. For states of a single mode of radiationwhih are diagonal in the Fok basis, the issue of lassiality/nonlassiality has beensettled. This is possible thanks to the result of the lassial Stieltjes moment problem[170℄. We bring out the possibility of using suh nonlassial (non-Gaussian) resoures togenerate useful entanglement. With a produt state of the form ρ̂
(ab)
in = ρ̂(a) ⊗ |0〉bb〈0| asinput, the output two-mode state ρ̂(ab)

out of a beamsplitter is shown to be NPT wheneverthe photon number distribution (PND) statistis {p(na)} assoiated with the mixed state
ρ̂(a) of the input a-mode is antibunhed or otherwise nonlassial, i.e., if {p(na)} fails torespet any one of an in�nite sequene of neessary and su�ient lassiality onditions.We establish the equivalene of lassiality and PPT of ρ̂(ab)

out in this kind of situations.Thus NPT is a neessary and su�ient test of entanglement of ρ̂(ab)
out . Furthermore ρ̂(ab)

out isshown to be distillable if ρ̂(a) is antibunhed or violates any one of an in�nite sequene ofthree term lassiality onditions. We also disuss the issue of distillability arising froman intrinsially higher order violation of lassiality. This is the only seond instane in5



ontinuous variable entanglement theory where NPT has turned out to be a neessaryand su�ient riterion for entanglement, the earlier instane being that of two-modeGaussian states. A preliminary version of these results is found in [194℄. We attempt toestimate the entanglement of formation (EOF) of entangled states generated in the abovemanner. We evaluate both upper and lower bounds on EOF for very speial examples.Our prinipal tool in this sheme is the fat that average entanglement does not inreaseunder loal operations and lassial ommuniations (LOCC). The general idea used hasbeen to projet out the state into 2 × 2 subspaes, and then use Wootter's formula forthe entanglement of formation of a two-qubit system to estimate the entanglement; suha proess is learly an LOCC. However, a drawbak with suh a sheme is the fat thatone annot estimate more than one ebit of entanglement even from a highly entangledstate. For the simple example of an entangled state generated by passing through a 50:50beamsplitter an arbitrary mixture of the ground state and nth Fok state on Alie's side,with Bob's side in the ground state, we give a distillation proedure whereby we distillmore entanglement than given by lower bound for EOF in [76℄. We extend these ideas toentangled states generated from PND's whih orrespond to a very speial superpositionof oherent states, and we demonstrate distillation proedures whih distill well aboveone ebit of entanglement. We also indiate the possibility of using the Terhal-Vollbretformula [69,76℄ in estimating entanglement, in a more general ontext, using a trunationsheme.The study undertaken in Chapter 2 is ontinued in Chapter 3 from a more generalperspetive. We desribe a single test whih, if suessful, is able to simultaneously es-tablish both the nonlassiality and NPT entanglement of a given two-mode state. Weextend the notion of antibunhing to two-mode systems through the Mandel matrix on-strut, and show that nonlassiality at this level naturally separates into two distintkinds, Type I and Type II, depending on whether the sub Poissonian statistis is visibleor not at a single-mode level. The �Type� of a nonlassial state is invariant under theation of every U(2) beamsplitter. A state ould go from separable to entangled underbeamsplitter ation, but its Type is invariant. Type II states are speial in the sense thatone may pass suh states through any U(2) beamsplitter, even then an never detetantibunhing loally i.e., in a single-mode. We onstrut examples of both types. Weintrodue a beamsplitter invariant de�nition for the Mandel parameter, extended to thease of two-mode systems through the nonpositivity of the Mandel matrix. That we areable to do so is beause the Mandel matrix transforms ovariantly under beamsplitteration. However, we �nd that the two-mode Mandel parameter an take values less than
−1, as ompared to the Mandel parameter in the single-mode ase. This feature seemsto expose the limitation of the beamsplitter as an entangling devie, as there are en-6



tangled states that the beamsplitter annot produe. The two-mode Mandel parameteris relevant only within the Type under onsideration. We explore the prodution of bi-partite entanglement from separable nonlassial states by beamsplitters, we trae bakthe entanglement to the nonlassiality involved, and we illustrate this aspet throughseveral examples. We demonstrate distillable entanglement in this ontext. We extendthese ideas to the ase of generating tripartite entanglement through generalised beam-splitters, and examine their detetion through simple moment-based tests whih traebak the entanglement to a partiular type of nonlassiality. We also demonstrate thepossibility of generating genuine tripartite entanglement from two-mode Mandel typenonlassiality.In Chapter 4 the EOF of an arbitrary two-mode Gaussian state is omputed. In thisontext, we bring out the intimate onnetion between the two-mode squeeze parameteras a measure of the strength of nonlassiality and alternatively as a measure of entan-glement. Apart from a onjeture, our analysis rests on two main ingredients. One ofthem is a four-parameter anonial form we develop for the ovariane matrix, one ofthese parameters, the squeeze parameter, ating as a measure of EOF. The other is thegeneralisation of the EPR orrelation used in the work of Giedke et al [70℄ to nonom-muting variables. The onjeture is in respet of an extremal property of this orrelation[327℄.In Chapter 5 we study the ompatibility onditions between the (global) spetrumand the spetra of the individual modes of a general n-mode Gaussian state. We presentan elementary proof for the ompatibility onditions, making optimal use of beamsplitterand two-mode squeezing transformations. An unexpeted bye-produt of our elementaryapproah is the result that every two-mode Gaussian state is uniquely determined, moduloloal transformations, by its global spetrum and loal spetra, a property shared noteven by a pair of qubits [18℄.In Chapter 6 we obtain the operator-sum representation of all the quantum limitedsingle-mode Bosoni Gaussian hannels. The analysis lends insight into how ertainunphysial proesses suh as the transposition map, or saling of the Weyl-ordered har-ateristi funtion, or a ombination of both an be rendered physial through a thresh-old Gaussian noise. The motive here is to bring out this aspet in a transparent mannerthrough the operator-sum representation. We have that the saling of the diagonal weightfuntion and saling of the Husimi Q funtion orrespond to physial proesses. As willbe seen in the following Chapter, the fat that saling of the Q funtion is physial isof ritial relevane when one de�nes a measure of non-Gaussianity for quantum states.This Chapter further explores the notion of nonlassiality breaking and the notion ofentanglement breaking in light of the operator-sum representation. 7



Having brought out the onnetion between nonlassiality and entanglement, andhaving exposed nonlassiality as a resoure, it is useful to understand this resoure asbeing Gaussian and non-Gaussian. Chapters 2 and 3 primarily dealt with non-Gaussianstates and the nonlassiality assoiated with them, but Chapters 4, 5, and 6, dealt withGaussian states and issues regarding them. In Chapter 7 we bring out the essentialdi�erene between these two very di�erent resoures through the onsideration of umu-lants. Sine the higher order umulants de�ned through an s-ordered quasi-probability isindependant of the ordering parameter s and hene is intrinsi to the state, every non van-ishing umulant of order greater than two serves as an indiator of non-Gaussianity. Weintrodue a new measure for non-Gaussianity based on the negentropy of the Q funtion.We show that our measure satis�es some of the requirements that a good non-Gaussianitymeasure should satisfy, espeially the invariane of the measure under uniform salingof the Q funtion. The sale invariane of the measure is demanded by the fat thatsaling of the Q funtion is a valid physial transformation as shown in Chapter 6. Themeasure is well supported by the fat that the Marinkiewiz theorem holds for phasespae distributions too [358℄. We analytially evaluate this non-Gaussianity measure formixed entangled states generated by passing the photon-added thermal state through a
U(2) beamsplitter, the anilla being in the ground state. We �nd for these examplesthat the non-Gaussianity as evaluated by our measure, is independent of temperature,whih is a diret manifestation of sale invariane. That we are able to evaluate the non-Gaussianity for these mixed entangled states is beause of the invariane of the measureunder passive transformations. We also evaluate the measure for the phase averaged o-herent state. In a reent work [361, 362℄, Genoni et al introdued distane based measuresof non-Gaussianity of a state through the Hilbert-Shmidt distane and relative entropyde�ned at the density operator level. We ompare their measure with ours for the simpleexample of the photon-added thermal state [216℄.Finally we onlude with some remarks and disuss possible future diretions of re-searh, partiularly in the ontext of the use of non-Gaussian resoures in quantuminformation proessing.

8



Contents
1 Basi Ideas 11.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Composite systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.2.1 Partial trae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.2.2 Positive Operator Valued Measure . . . . . . . . . . . . . . . . . . 61.3 Quantum Dynamis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.3.1 Completely positive maps . . . . . . . . . . . . . . . . . . . . . . . 71.4 Deteting entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91.4.1 Entropi inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 101.4.2 Majorisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101.4.3 Bell's inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.4.4 Positive maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121.4.5 Entanglement Witness . . . . . . . . . . . . . . . . . . . . . . . . . 151.4.6 Partial Transpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161.4.7 Redution Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 171.5 Distillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181.5.1 Range Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231.5.2 Non-deomposable maps . . . . . . . . . . . . . . . . . . . . . . . . 241.5.3 Unertainty relations . . . . . . . . . . . . . . . . . . . . . . . . . . 241.6 Measures of Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . 251.6.1 Entanglement of Formation . . . . . . . . . . . . . . . . . . . . . . 261.6.2 Distillable entanglement . . . . . . . . . . . . . . . . . . . . . . . . 271.6.3 Distane based measures . . . . . . . . . . . . . . . . . . . . . . . . 281.6.4 Negativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291.7 Continuous variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291.7.1 Quasi-probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 311.7.2 Sudarshan's φ funtion . . . . . . . . . . . . . . . . . . . . . . . . . 331.7.3 Nonlassiality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341.7.4 The Wigner funtion . . . . . . . . . . . . . . . . . . . . . . . . . . 351.7.5 The Q funtion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361.8 Detetion of Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . 361.8.1 Bell's inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371.8.2 Partial transpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381.8.3 Inseparability riteria through unertainty relations . . . . . . . . . 391.9 Gaussian states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41i



Contents1.9.1 Nonlassiality in Gaussians . . . . . . . . . . . . . . . . . . . . . . 421.9.2 Entanglement in Gaussians . . . . . . . . . . . . . . . . . . . . . . 481.9.3 Gaussian ompletely positive maps�Gaussian hannels . . . . . . . 502 Nonlassial photon statistis and entanglement 522.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522.2 Phase-insensitive nonlassiality for a single mode of radiation �eld . . . . 542.2.1 Phase-insensitive nonlassiality and moments . . . . . . . . . . . . 562.3 Entanglement, Partial Transpose and Nonlassiality . . . . . . . . . . . . 612.4 Conversion of nonlassiality into entanglement � the Beamsplitter . . . . 632.5 The ase of phase-insensitive nonlassiality . . . . . . . . . . . . . . . . . 642.6 The ase of general nonlassial PND . . . . . . . . . . . . . . . . . . . . . 662.7 Nonlassial PND and distillable entanglement . . . . . . . . . . . . . . . 702.8 Distillable entanglement from antibunhing . . . . . . . . . . . . . . . . . 712.9 Bounds on the EOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732.9.1 Negativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742.9.2 Example a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762.9.3 Example b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782.10 Conlusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833 Nonlassiality, Mandel lassi�ation, and entanglement 843.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843.2 Two-mode �elds � Entanglement test, and Mandel lassi�ation . . . . . 853.2.1 Nonlassiality and entanglement � a diret onnetion . . . . . . . 863.2.2 Mandel matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873.3 Some examples of two-mode states and their properties . . . . . . . . . . . 923.3.1 Example (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923.3.2 Example (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 933.3.3 Example () . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 993.4 From two-mode nonlassiality to three-mode entanglement . . . . . . . . 1013.4.1 Genuine tripartite entanglement from Mandel nonlassiality . . . 1113.5 Mandel Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1133.6 Conluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1164 Entanglement of Formation for Gaussian states 1174.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1174.2 Canonial Form for Covariane Matrix . . . . . . . . . . . . . . . . . . . . 1184.3 Generalised EPR Correlation . . . . . . . . . . . . . . . . . . . . . . . . . 121ii



Contents4.4 Entanglement of Formation . . . . . . . . . . . . . . . . . . . . . . . . . . 1245 Compatibility onditions on loal and global spetra for n-mode Gaus-sian states 1265.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1265.2 The two-mode ase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1285.3 Proof of main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1315.3.1 Stage 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1325.3.2 Stage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1335.3.3 Stage 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1335.3.4 Stage 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1346 Operator-sum representation for Bosoni Gaussian hannels 1356.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1356.2 Kraus representation: Some general onsiderations . . . . . . . . . . . . . 1386.3 Phase onjugation or transposition hannel D(κ), κ ≥ 0 . . . . . . . . . . 1406.3.1 The dual of D(κ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1436.3.2 Ation of the Kraus operators . . . . . . . . . . . . . . . . . . . . . 1446.3.3 Entanglement breaking property . . . . . . . . . . . . . . . . . . . 1476.4 Beamsplitter/attenuator hannel C1(κ), 0 < κ < 1 . . . . . . . . . . . . . 1496.4.1 Ation of the Kraus operators . . . . . . . . . . . . . . . . . . . . . 1506.4.2 The issue of Entanglement breaking . . . . . . . . . . . . . . . . . 1526.5 Ampli�er hannel C2(κ), κ ≥ 1 . . . . . . . . . . . . . . . . . . . . . . . 1536.5.1 Duality between the attenuator family C1(·) and the ampli�er fam-ily C2(·) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1546.5.2 Ation of the Kraus operators . . . . . . . . . . . . . . . . . . . . . 1546.6 The Singular ase A2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1576.7 Single Quadrature lassial noise hannel B1(a), a ≥ 0 . . . . . . . . . . . 1596.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1617 A measure of non-Gaussianity for quantum states 1637.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1637.2 Moments and umulants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1657.3 Quasi-probabilities and the Q funtion . . . . . . . . . . . . . . . . . . . . 1677.4 Di�erential entropy and the Kullbak-Leibler distane . . . . . . . . . . . 1697.5 Wehrl entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1707.6 A non-Gaussianity measure for quantum states . . . . . . . . . . . . . . . 1717.6.1 Shape riterion for good measure of non-Gaussianity . . . . . . . . 174iii



Contents7.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1747.7.1 Photon number states . . . . . . . . . . . . . . . . . . . . . . . . . 1757.7.2 Photon-added thermal states . . . . . . . . . . . . . . . . . . . . . 1767.7.3 Phase-averaged oherent states . . . . . . . . . . . . . . . . . . . . 1787.8 Comparison with other measures . . . . . . . . . . . . . . . . . . . . . . . 1797.8.1 Measure based on Hilbert-Shmidt distane . . . . . . . . . . . . . 1807.8.2 Measure based on quantum relative entropy . . . . . . . . . . . . . 1817.9 Conluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1828 Disussion 183

iv



List of Figures
2.1 The ation of a 50:50 beamsplitter on the mode operators. . . . . . . . . 642.2 The ase n = 6. Line 3 denotes the upper bound Eup(ρ̂out), line 2 thelower bound El2(ρ̂out), and the urve 1 the lower bound El1(ρ̂out) . . . . . 782.3 The ase n = 7. Line 3 denotes the upper bound Eup(ρ̂out), line 2 thelower bound El2(ρ̂out), and the urve 1 the lower bound El1(ρ̂out) . . . . . 792.4 The urves 1 and 2 orrespond to the lower and upper bounds for the ase

n = 2, the urves 3 and 4 orrespond to the lower and upper bounds forthe ase n = 3, and the urves 5 and 6 orrespond to the lower and upperbounds for the ase n = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 827.1 Variation of N (ρ) with number of photons m for the Fok state ρ =

|m〉〈m|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1777.2 Variation of N (ρ) with energy |β2| for the phase-averaged oherent state. 1787.3 Variation of δ1(ρ̂) as a funtion of the Boltzmann parameter x for thephoton-added thermal state. . . . . . . . . . . . . . . . . . . . . . . . . . 1797.4 Variation of δ2(ρ̂) as a funtion of the Boltzmann parameter x for thephoton-added thermal state. . . . . . . . . . . . . . . . . . . . . . . . . . 180

v



List of Publiations
1 Generation of Distillable Entanglement From Nonlassial Photon Statistis (Inpreparation), the preliminary version is found in : J. Solomon Ivan, N. Mukunda,and R. Simon, Generation of NPT Entanglement from Nonlassial Photon Statis-tis, quant-ph/0603255.2 J. Solomon Ivan, S. Chaturvedi, E. Erolessi, G. Marmo, G. Morandi, N. Mukunda,R. Simon Entanglement and nonlassiality for multi-mode radiation �eld states,arXiv:1009.6104. (Aepted in PRA)3 J. Solomon Ivan and R. Simon, Entanglement of Formation for Gaussian states,quant-ph/0808.1658 (Submitted to PRL).4 J. Solomon Ivan and R. Simon, Compatability onditions on loal and global spetrafor n-mode Gaussian states, quant-ph/0812.2805.5 J. Solomon Ivan, Krishnakumar Sabapathy, and R. Simon, Operator-sum represen-tation for Bosoni Gaussian hannels, arXiv:1012.4266.6 J. Solomon Ivan, M. Sanjay Kumar, and R. Simon, A measure of non-Gaussianityof quantum states, quant-ph/0812.2800 (Submitted to PRA).



1Basi Ideas
1.1 IntrodutionThe state of a quantum mehanial system S is desribed by a density operator ρ̂ atingon a Hilbert spae H. The system in onsideration spei�es the dimension of the Hilbertspae. The operator ρ̂, satis�es the following three de�ning properties :

ρ̂ = ρ̂†, Tr ρ̂ = 1, ρ̂ ≥ 0. (1.1)A pure state is desribed by a normalised (unit) vetor |Ψ〉 in the Hilbert spae H, andthe density operator orresponding to |Ψ〉 is given by
ρ̂ = |Ψ〉〈Ψ|. (1.2)Clearly, distint vetors in the Hilbert spae do not orrespond to distint states. Allunit vetors in H whih di�er from one another by phase fators, represent one and thesame state. In other words, states are represented by an equivalene lass of unit vetorsof the Hilbert spae. It is lear that the state ρ̂ in Eq. (1.2), satis�es the three de�ningrequirements in Eq. (1.1).The most general state of a quantum mehanial system S is desribed by a `mixed'state ρ̂, whih is a onvex ombination of pure states, i.e.,

ρ̂ =
∑

k

pk|Ψk〉〈Ψk|, pk > 0,
∑

k

pk = 1. (1.3)The quantum state spae thus forms a onvex set in whih pure states orrespond tothe ase when all but one of the pk's are zero. The pure states satisfy the additional
1



Chapter 1. Basi Ideasrequirement
ρ̂2 = ρ̂, (1.4)and orrespond to the extremal points of the onvex state spae. They annot be realisedas nontrivial onvex ombinations of other states. While Trρ̂2 = 1 for pure states, mixedstates satisfy

Trρ̂2 < 1, (1.5)and orrespond to non extremal points of the onvex state spae.The probabilities pk's and the ensemble realisation in Eq. (1.3) are in general asso-iated with a preparation proedure. The nontriviality of the ensemble realisation arisesfrom the fat that the |Ψk〉's need not be orthogonal, or even linearly independent, andthat the set of ensembles realising a given mixed state ρ̂ is a huge family [1℄. A prepara-tion proedure yields an ensemble realisation for ρ̂, but given a ρ̂ it is impossible to tellwhih preparation proedure it was derived from.The natural objets of interest are the expetation values of observables. Observablesin quantum theory are represented by hermitian operators Ω̂,
Ω̂ =

∑

i

λi|Φi〉〈Φi| =
∑

i

λiPi,
∑

i

Pi = 11, (1.6)and Pi's are projetion operators obeying PiPj = δijPi. The {λi} are interpreted asthe outome or eigenvalue of an experiment orresponding to the observable Ω̂, and
{|Φi〉} as the orresponding eigenstates. The eigenvalues λi are real, but an be negative.The expetation value of an observable Ω̂ with respet to a pure state |Ψ〉 is given by
〈Ω̂〉 = 〈Ψ|Ω̂|Ψ〉. In the ase of a mixed state ρ̂, the expetation value is given by

〈Ω̂〉 = Tr(Ω̂ρ̂) =
∑

k

pk〈Ψk|Ω̂|Ψk〉. (1.7)The expetation value 〈Ω̂〉 is interpreted as the average value of the observable Ω̂ overrepeated trials of the experiment, with the same state ρ̂ prepared eah time.Though the average value of the outome is alulated as in Eq. (1.7), a partiulartrial yields a partiular eigenvalue λi as the outome of the experiment. The probabilityof ourane qi of the ith outome orresponding to the eigenvalue λi is given by
qi = Tr(Piρ̂) =

∑

k

pk〈Ψk|Pi|Ψk〉. (1.8)2



Chapter 1. Basi IdeasGiven a partiular outome i, the state of the system after measurement is no morerepresented by ρ̂, but ollapses to the orresponding eigenstate of the observed eigenvalue,
ρ̂′ =

Piρ̂Pi

Tr(Piρ̂)
. (1.9)This is the Von Neumann ollapse postulate. Sine the given state has ollapsed into apartiular eigenstate of the observable, it is no more useful in the study of the propertiesof the original state. Thus for a new trial, one has to repeat the preparation proedure toobtain the ρ̂, and rerun the experiment. Suh a measurement sheme is alled as the VonNeumann projetive measurement, and the probabilities qi are alled the Von Neumannprojetion valued measure.To summarise, the density operator ρ̂ ompletely spei�es all the properties of thesystem. All expetation values of all possible experimental observables Ω̂ are apturedby ρ̂.1.2 Composite systemsConsider a bipartite system S whih onsists of subsystems A and B. Let HA and HBdenote the Hilbert spaes of the subsystems, then the Hilbert spae of the total systemis the tensor produt HS = HA ⊗ HB of the Hilbert spaes of the subsystems. Let thedimension of HA be m, and that of HB be n. Let {|ψj〉} form an ONB in HA, and {|φα〉}an ONB in HB. Then any pure state |Ψ〉 of the ombined system an be written as

|Ψ〉 =
∑

j,α

cjα|ψj〉 ⊗ |φα〉. (1.10)A pure state |Ψ〉 of the bipartite system S is said to be a produt state if and only if theexpansion oe�ients cjα have the produt form cjα = xjyα, i.e., the m × n oe�ientmatrix c is the outer produt of two vetors. Any state |Ψ〉 whih annot be written inthe produt form
|Ψ〉 6= |ψ〉 ⊗ |φ〉, (1.11)is said to be entangled.Theorem 1.1 Given a state |Ψ〉 in the tensor produt spae HS = HA ⊗ HB, it an

3



Chapter 1. Basi Ideasalways be written in the form [2℄
|Ψ〉 =

r
∑

j=1

√

λj |ψ′
j〉 ⊗ |φ′j〉, where

r ≤ min(m,n), λj > 0,
∑

j

λj = 1, (1.12)and {|ψ′
j〉} and {|φ′j〉} are vetors from an ONB in HA and HB respetively.Proof : This an easily be seen from the singular value deomposition of the c matrix,i.e.,

c→ c′ = V cW T , (1.13)where V and W orrespond to independent loal unitary hange of basis in HA and HBrespetively, i.e.,
|ψ′

k〉 =
∑

j

V ∗
jk|ψj〉, |φ′β〉 =

∑

α

W ∗
αβ |φα〉. (1.14)

V and W are hosen suh that c′ is diagonal.The integer r is known as the Shmidt rank of |Ψ〉. The Shmidt rank r, and theShmidt oe�ients {λi}, onstitute the loal invariants of the state. It is lear that forprodut states the Shmidt rank is one. The Shmidt rank r, of a given bipartite purestate |Ψ〉, is thus an entanglement witness of the state.The notion of entanglement for the ase of mixed states is muh more subtle. As wehave already seen in Eq. (1.3), any mixed state of the bipartite system A + B an bewritten as
ρ̂AB =

∑

k

pk|Ψk〉〈Ψk|,

pk > 0,
∑

k

pk = 1. (1.15)A state ρ̂AB is said to be separable, if there exists an ensemble realisation {|Ψk〉, pk} of
ρ̂AB , suh that all the |Ψk〉's are produt states [3℄, i.e.,

ρ̂AB =
∑

k

pkρ̂Ak ⊗ ρ̂Bk, (1.16)
4



Chapter 1. Basi Ideaswhere the pk's are positive, and ρ̂Ak's and ρ̂Bk's are density operators of subsystems Aand B respetively. Without loss of generality, these density operators an be hosento orrespond to pure states. Stated di�erently, any onvex sum of produt states is byde�nition a separable state, and separable states onstitute a onvex subset of the onvexstate spae. Any state whih annot be written as a onvex sum of produt states is saidto be entangled. The subtle part of the de�nition stems from the fat that one has to run,in priniple, through all possible deompositions of a state to onlude if it is separableor not.1.2.1 Partial traeConsider a bipartite system in the state ρ̂AB. Suppose we are interested in the subsystem
A alone, i.e., we are interested in measurement of a loal observable Ω̂A whih ats onlyon the Hilbert spae HA. The ation of suh an observable is desribed by the operator
Ω̂A ⊗ 11B on the extended Hilbert spae HS = HA ⊗HB . Using the resolution of identityin the B subsystem with the hoie of an ONB {|φα〉} ∈ HB , the expetation value ofthe A subsystem observable Ω̂A is

Tr(Ω̂A ⊗ 11B ρ̂AB) = TrATrB(Ω̂A ⊗ 11B ρ̂AB)

=
∑

k,α

〈ψk| ⊗ 〈φα|Ω̂A ⊗ 11B ρ̂AB|ψk〉 ⊗ |φα〉

= TrA(Ω̂Aρ̂A), where

ρ̂A = TrB ρ̂AB =
∑

α

〈φα|ρ̂AB |φα〉. (1.17)Clearly, ρ̂A is an operator on the Hilbert spae HA. The trae operation exeuted only onthe B subsystem is alled partial trae, and the resulting ρ̂A is alled the redued densityoperator of subsystem A. It is lear that partial trae preserves the de�ning requirementson a density operator. The notions indiated above hold irrespetive of whether ρ̂AB waspure or mixed. Every observable of subsystem A sees the state ρ̂AB as if it were the state
ρ̂A. Clearly, partial trae of pure bipartite states leads to either pure or mixed statesof the subsystem. If we begin with a bipartite pure entangled state, the partial traedstate of the subsystem is de�nitely mixed, and the matrix rank of the redued state isthe Shmidt rank of the initial bipartite pure entangled state. Thus, partial trae an beviewed as an entanglement witness for bipartite pure entangled states. The onept ofpartial trae also renders another explanation to the origin of mixed states, i.e., throughthe proess of onsidering evolutions in omposite systems and then disarding one of thesubsystems, we are able to generate mixed states of a subsystem. The notion of mixed5



Chapter 1. Basi Ideasstates was earlier onsidered through the notion of a preparation proedure.1.2.2 Positive Operator Valued MeasureThe notion of Positive Operator Valued Measure (POVM) is the generalisation of the VonNeumann measurement sheme, and is easily understood in the ontext of measurementin omposite systems.Consider a system A with Hilbert spae HA, to be in the state ρ̂A, and an auxiliarysystem B with Hilbert spae HB, to be in the state ρ̂B. Then the state of the ombinedsystem is
ρ̂S = ρ̂A ⊗ ρ̂B , where

(ρ̂A ⊗ ρ̂B)mα,nβ = (ρ̂A)mn(ρ̂B)αβ . (1.18)A Von Neumann measurement on the ombined system system is represented by proje-tion operators
PiPj = δijPj ,

∑

i

Pi = 11. (1.19)The probability of the ith outome of suh a test given that the state of the ombinedsystem is in ρ̂A ⊗ ρ̂B is,
qi = Tr[Pi(ρ̂A ⊗ ρ̂B)] =

∑

mα,nβ

(Pj)mα,nβ(ρ̂A)mn(ρ̂B)αβ . (1.20)This an be equivalently written as
qi = TrA(Miρ̂A), where

(Mi)mn =
∑

αβ

(Pi)mα,nβ(ρ̂B)αβ, (1.21)and {Mi} are operators on the Hilbert spae HA of the A subsystem. The hermitiannonnegative operators Mi whih need not ommute learly satisfy
∑

i

Mi = 11. (1.22)Eah member of the set {Mi} is alled a positive operator valued measure (POVM) [4, 5℄,sine eah Mi is a positive operator by onstrution. The main di�erene between a VonNeumann type measurement and a POVM is that the Mi are not projetion operators6



Chapter 1. Basi Ideasand the number of outomes is independent of the dimensionality of the Hilbert spae
HA. The probability of the ith outome is now given by

qi = Tr(Miρ̂), (1.23)as ompared to Von Neumann Tr(Piρ̂). We have removed the subsript A to indiate theomparison at system level. The Von Neumann ollapse postulate holds, exept that thestate of the subsystem after the measurement is the partial trae of the ollapsed stateof the omposite system.1.3 Quantum DynamisConsider a system with Hilbert spae H. The set of all density operators ρ̂ ating on H isa subset of the set of all linear operators ating on H. The set of all linear transformationson H forms a vetor spae. If H is n dimensional, then this new vetor spae is learly
n2 dimensional. Quantum evolutions are linear transformations on the linear operatorsating on H. Linear transformations on this new vetor spae are alled linear maps todistinguish them from linear operators on H. They are sometimes alled super-operators.It would seem that any linear map ating on the density operator ρ̂, and preserves thethree de�ning properties of density operators in Eq. (1.1), is a valid quantum evolution.This is not so! Further onditions beyond (1.1) arise from looking at omposite systems.Suppose we were dealing with only losed systems, then any map whih preserves thede�ning properties of the density operators would have appeared physial. Sine we maybe a part of a larger system but observing only our system loally, it beomes imperativethat the map under onsideration takes valid density operators of the extended system tovalid density operators. Thus one is lead to onsider what are alled ompletely positivemaps.1.3.1 Completely positive mapsConsider a bipartite system S with Hilbert spae HS = HA⊗HB . A linear map Λ atingon the spae of operators ating on HA an be extended to at on the spae of operatorsating on HS through the de�nition of the map Λ⊗ 11n, where 11n is the identity map onsubsystem B, i.e., the map Λ ats only on the A subsystem, but leaves the B subsystemas it is. Every possible hoie of HB gives us a possible extension of the above kind for Λ.A map Λ is said to be ompletely positive if it is positive for all suh possible extensions.By positive we mean that it takes valid density operators ating on HS to valid densityoperators ating on HS. The subtle part of the de�nition stems from the fat that one7



Chapter 1. Basi Ideashas to in priniple run over all possible extensions spei�ed by the hoies of HB , toonlude if a given positive map Λ is ompletely positive or not. We have the followingimportant result :Theorem 1.2 The ation of any trae-preserving ompletely positive map Λ on a densityoperator ρ̂ an always be written in the following form :
Λ(ρ̂) =

∑

α

Wαρ̂W
†
α,

∑

α

W †
αWα = 11. (1.24)We don t give the proof here, but a heuristi way to see this is as follows. Let {|ψj〉} and

{|φα〉} be a set of ONB in HA and HB respetively. Suppose that the density operatorof the bipartite system is initially in the state
ρ̂A ⊗ |0〉BB〈0|, (1.25)where |0〉B denotes a pure state in the B subsystem. Evolve the state unitarily in theombined system so that̂

ρA ⊗ |0〉BB〈0| → U(ρ̂A ⊗ |0〉BB〈0|)U †. (1.26)Now performing a partial trae over the B system Hilbert spae yields
ρ̂′A = TrB(U(ρ̂A ⊗ |0〉BB〈0|)U †

=
∑

α

〈φα|U(ρ̂A ⊗ |0〉BB〈0|)U †|φα〉

=
∑

α

〈φα|U |0〉B ρ̂A B〈0|U †|φα〉. (1.27)If we denote
Wα = 〈φα|U |0〉B , (1.28)then we an express ρ̂′A as
ρ̂′A =

∑

α

Wαρ̂AW
†
α. (1.29)

8



Chapter 1. Basi IdeasIt follows from the unitarity of U that
∑

α

W †
αWα =

∑

α

B〈0|U †|φα〉〈φα|U |0〉B

= B〈0|U †U |0〉B = 11A. (1.30)Thus we have two ways of pituring ompletely positive maps [6�9℄.
• Every trae preserving ompletely positive linear map Λ, has an operator sumrepresentation as in Eq. (1.24).
• Every trae preserving ompletely positive linear map Λ, has an unitary represen-tation as in Eq. (1.27).What we have just demonstrated is that an unitary representation of a ompletely positivemap an in fat be viewed as an operator sum representation. The nontrivial part of thetheorems is that every trae-preserving ompletely positive map an be obtained in thismanner. A simple way to understanding this aspet is by reasoning that any reasonableevolution should be aomplished as a unitary (hamiltonian) evolution on a larger system.It is useful to note that in the unitary realization one begins with a produt state of theombined system, and a pure state for the B subsystem proves su�ient. It is lear fromthe de�nition and Eq. (1.24) that the set of all trae preserving ompletely positive mapsform a onvex set.1.4 Deteting entanglementOne of the foremost problems of quantum information theory has been the developmentof tools for detetion of entanglement. Sine a given density operator ρ̂AB of a bipartitesystem S, has in�nitely many deompositions [1℄, and sine we annot possibly runthrough all of them to see if ρ̂AB is separable, it is imperative that we devise e�ientmethods of deteting entanglement. Bell inequalities provide us with su�ient riteriafor entanglement, and entropy based inequalities an also detet entanglement in suitableases. These are salar manifestations of entanglement, whih has its roots at the densityoperator level. Sine we only measure salar quantities in the laboratory, the salarmanifestations of entanglement are ruial from an experimental point of view. From atheoretial perspetive, the salar manifestation of entanglement is intimately onnetedto the theory of positive maps whih has a diret bearing on the onept of entanglement.We brie�y disuss these ideas below.

9



Chapter 1. Basi Ideas1.4.1 Entropi inequalitiesEntropi inequalities originate from the observation that there is more information inan entangled state viewed as a whole than viewed as aggregate of information in thesubsystems. A simple example suh as a maximally entangled state in 2 × 2 dimensionsillustrates this. The state when viewed in 2 × 2 dimensions as a whole is a pure state,but when we look at the state of either of the subsystems the state is a random mixtureproportional to the identity operator. Thus from either of the subsystems we gain noknowledge of the state. Suh a qualitative feature an be made quantitative throughentropi inequalities suh as
S(ρ̂A) ≤ S(ρ̂AB), S(ρ̂B) ≤ S(ρ̂AB), (1.31)where S(ρ̂) = −Tr(ρ̂ log2 ρ̂) is the Von Neumann entropy of a state ρ̂. Any separablestate obey the inequalities, but entangled states need not [10�13℄. The idea is easilygeneralised to entropi inequalities suh as those based on Renyi quantum entropies.1.4.2 MajorisationMajorisation is a tehnique that helps us ompare two vetor quantities. In the ontext oflassial probability theory, it beomes useful when we ompare two disrete probabilitydistributions. Based on majorisation, we may be able to onlude if one probabilitydistribution is more `spread out' than the other, or in other words if one probabilitydistribution is more `disordered' than the other. We now state the de�nition [14, 15℄.Let x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) be two vetor quantities, arrangedin the nondereasing order, i.e., x1 ≤ x2 ≤ · · · ≤ xn and y1 ≤ y2 ≤ · · · yn. Then we say

x ≺ y (x is majorised by y) if and only if
k
∑

j=1

xj ≥
k
∑

j=1

yj, ∀ k ≤ n, and

n
∑

j=1

xj =
n
∑

j=1

yj. (1.32)That majorisation aptures the disorderliness is seen through its impliation on en-tropy. Let the vetors x and y denote two probability distributions and let x ≺ y,then H({xi}) ≥ H({yi}), where H(.) is the Shannon entropy [14, 16℄. The majorisationrelation is more fundamental in apturing disorderliness, in the sense that the entropiinequality an be seen to follow as a onsequene of the majorisation relation. 10



Chapter 1. Basi IdeasAs already mentioned, entangled states have more information when seen as a wholerather than in their parts. This statement is made mathematially preise through thefollowing majorisation relation :Theorem 1.3 If a bipartite mixed state ρ̂AB is separable and ρ̂A and ρ̂B are the redueddensity matries of the subsystems A and B, then
λ(ρ̂AB) ≺ λ(ρ̂A), and λ(ρ̂AB) ≺ λ(ρ̂B). (1.33)Here, λ(ρ̂AB), λ(ρ̂A), and λ(ρ̂B), onstitute the eigenvalues of ρ̂AB, ρ̂A, and ρ̂B, arrangedin the nondereasing order [17℄.The above majorisation relation an be violated if the state ρ̂AB is entangled. Clearly,entropi inequalities suh as Eq. (1.31) are implied by the majorisation relation in Eq.(1.33).Majorisation relations are not only useful in deteting entanglement, but appear inmore general senarios suh as when we are dealing with quantum evolutions. The Shur-Horn lemma plays a pivotal role in this [14, 15℄. We will disuss more of the majorisationrelations in Chapter 5, where we study ompatibility relations for Gaussian states [18℄.1.4.3 Bell's inequalitiesBell inequalities arose initially from the study of quantum theory from the perspetive oflassial probability theory. One of the profound impliations of quantum theory is that itgives rise to new possibilities in the orrelation of distant events that annot be explainedby lassial loal models. Bell observed that there is an upper bound on the orrelationof distant events as explained by a lassial loal model, and that quantum mehanisould violate it [19℄. It was evident that any suh violation was easily explained throughentanglement. We now have the well established fat that violation of any of the Belltype inequalities is a lear manifestation of entanglement. Here we brie�y disuss onesuh inequality, namely the Clauser-Horne- Shimony-Holt (CHSH) inequality [20℄.The CHSH inequality refers to orrelation experiments involving two diotomi ob-servables at two sites. The observed values of eah of these observables an be taken tobe ±1. Let the observables in the Alie's side be denoted A1 and A2, and those on Bob'sside B1 and B2. The outomes of the experiment in eah trial is denoted by a1, a2 and

b1, b2 respetively. De�ne the orrelation funtion between two observables A and B, Aon Alie's side and B on Bob's side, as
E(A,B) = 〈ab〉, (1.34)11



Chapter 1. Basi Ideaswhih is the average value of the orrelation over repeated trials. Then the CHSH in-equality reads as
|B| = |E(A1, B1) +E(A1, B2) + E(A2, B1) − E(A2, B2)| ≤ 2. (1.35)This an be easily seen from the fat that for a given trial B is ±2, hene the average isalways less than or equal to 2.The quantum mehanial version of the CHSH inequality for 2×2 dimensional systemsis easily stated through the de�nition of the Bell-CHSH observable

B̂ = â1 · σ ⊗ (b̂1 + b̂2) · σ + â2 · σ ⊗ (b̂1 − b̂2) · σ. (1.36)Here â1, â2, b̂1 and b̂2 are arbitrary unit vetors in R3, â · σ =
∑3

i=1 aiσi, and σi are thePauli matries. Any â · σ orresponds to a spin observable with eigenvalues ±1. Withthis de�nition the CHSH inequality for a bipartite 2 × 2 dimensional system reads as
Tr(ρ̂B̂) ≤ 2. (1.37)The onstraint imposed by the above equation is not generally obeyed by quantum me-hanial systems. For instane, for the hoie of the various unit vetors, eah separatedby angle of 22.5 degrees and with the singlet hosen as the state, Tr(ρ̂B̂) = 2

√
2 [5℄, learlya violation of the CHSH bound implied by a loal lassial model. An upper bound onthe maximum possible expetation value of the Bell-CHSH observable was obtained byCirelson to be 2

√
2 [21℄. The remarkable aspet of the inequality is that experiments on-�rmed the violation [22℄, in omplete agreement with quantum mehanial preditions,thus demonstrating entanglement. This inequality an be extended to more observableson eah side [23℄ in a bipartite setup, and to more number of parties [24℄. Violation inthe latter ase will indiate presene of multipartite entanglement. The Bell inequalitiesare only one of the ways to detet entanglement, and they are not very powerful in thesense that there are inseparable states obeying the Bell inequalities [3, 25℄. That is, thereis entanglement that is not deteted through violation of Bell inequalities. See [26℄ for areview.1.4.4 Positive mapsThe theory of positive maps is an inesapable ingredient in the theory of entanglement.The �rst use of them was demonstrated by Peres in [27℄. He observed that a separa-ble state remains a state (positive) if subjeted to partial transposition (PT). A ruial12



Chapter 1. Basi Ideasobservation by the Horodeki's that partial transpose is a positive map but not a om-pletely positive one, led to the exploration of the intimate onnetion between the theoryof entanglement and positive maps [28℄. Earlier in Eq. (1.24), we had introdued thenotion of ompletely positive map. We noted that a linear map Λ is ompletely positiveif and only if the extended map Λ⊗11n is positive for all n. We now introdue the notionof positive but non ompletely positive maps. We say that a linear map Λ is positive butnot ompletely positive if Λ takes density operators to density operators, but it has anextension whih fails to do so.Let the map Λ at on operators on Hilbert spae HA, and let its extension at onoperators on the Hilbert spae HS = HA ⊗ HB . Suppose the extended map given by
Λ ⊗ 11n, does not take positive operators on HS to positive operators on HS , but themap Λ takes positive operators on HA to positive operators on HA. Then the map Λ issaid to be positive but not ompletely positive. Suh a map ould be tool a in detetingentanglement in bipartite systems spei�ed by the Hilbert spae HS = HA ⊗HB. If suha map ats on a separable state ρ̂AB on HS, we have the following to be true :

(Λ ⊗ 11n)(ρ̂AB) = (Λ ⊗ 11n)
∑

k

pkρ̂Ak ⊗ ρ̂Bk

=
∑

k

pkΛ(ρ̂Ak) ⊗ ρ̂Bk ≥ 0. (1.38)This follows from the linearity and positivity of the map Λ. On the other hand, if theextended map ated on an entangled state, it ould lead to the following possibility :
(Λ ⊗ 11n)(ρ̂AB) = (Λ ⊗ 11n)(

∑

k

pkρ̂ABk)

=
∑

k

pk(Λ ⊗ 11n)(ρ̂ABk) 6≥ 0. (1.39)This possibility arises beause the map Λ is not ompletely positive. Thus a positivebut not ompletely positive map helps us detet entanglement! We have the followingimportant theorem [28℄ :Theorem 1.4 Let ρ̂AB at on the Hilbert spae HS = HA ⊗HB. Then ρ̂AB is separableif and only if for every positive map Λ on HA, the operator
(Λ ⊗ 11n)(ρ̂AB) (1.40)is positive.We now give a brief disussion on positive maps. It is onvenient to go to an indexed13



Chapter 1. Basi Ideasnotation to desribe them. The three de�ning properties of a density operator in thisnotation are
ρrs = ρ∗sr , ρrsx

∗
rxs ≥ 0 , ρrr = 1. (1.41)Summation over repeated indies is implied as usual. Any linear positive map Λ takesvalid density operators to valid density operators. Suh a map an be expressed as

Λ : ρ̂→ ρ̂′

ρ
′

r′s′ = Λr′s′,rs ρrs. (1.42)The hermitiity requirement of ρ̂′ demands that
Λs′r′,sr = Λ∗

r′s′,rs, (1.43)trae preservation of ρ̂′ demands that
Λr′r′,rs = δrs, (1.44)and preservation of positivity implies that

ρ′r′s′x
∗
r′xs′ ≥ 0 ⇒ Λr′s′,rsρrsx

∗
r′xs′ ≥ 0. (1.45)From spetral resolution of ρ̂, it is su�ient to onsider positivity requirement on any ofits projetors, hene we only require

Λr′s′,rsx
∗
r′xs′y

∗
rys ≥ 0. (1.46)Let us de�ne a new matrix M by permuting the indies of Λ :

Λr′s′,rs = Mr′r,s′s. (1.47)The hermitiity ondition in Eq. (1.43) now reads
Mr′r,s′s = M∗

s′s,r′r, (1.48)i.e., the matrix M is hermitian. Hene we have the spetral resolution
Mr′r,s′s =

∑

α

λαξr′r(α)ξ∗s′s(α). (1.49)
14



Chapter 1. Basi IdeasRewriting the positivity requirement of ρ̂′ in Eq. (1.45) in terms of the matrix M , wehave
x∗r′y

∗
rMr′r,s′sxs′ys, (1.50)whih means that the matrix M is positive on produt vetors. With this, any positivelinear map reads as

ρ
′

r′s′ = Mr′r,s′sρrs

=
∑

α

λαξr′r(α)ρrsξ
∗
s′s, (α) ⇒

ρ̂′ =
∑

α

λαξ̂(α)ρ̂ξ̂†(α). (1.51)The eigenvalues {λα} need not be positive, sine our only requirement was positivity Mon produt vetors. A ompletely positive map is a positive map as in Eq. (1.51) whereall its eigenvalues, i.e., its {λα} are positive [29�31℄.1.4.5 Entanglement WitnessThe onvex struture of the state spae and the onvex struture of the set of all separablestates for a given bipartite system enable us employ the ideas known in the ontext ofonvex sets to distinguish entangled states from separable ones. The simple idea thata onvex set and a point lying outside it an always be separated by a hyper planeis manifested in the ontext of state spae as an entanglement witness. The followingtheorem due to Horodeki's aptures this idea [28℄.Theorem 1.5 A state ρ̂AB ating on the Hilbert spae HA ⊗HB is separable if and onlyif
Tr(Âρ̂AB) ≥ 0 (1.52)for every hermitian operator Â satisfying Tr(ÂP̂⊗Q̂) ≥ 0, where P̂ and Q̂ are projetionsoperating on HA and HB respetively.The impliation of the theorem is that if a state ρ̂AB satis�es the inequality
Tr(Âρ̂AB) < 0 (1.53)for suh hermitian Â whih is positive on produt vetors, we de�nitely know that thestate ρ̂AB was entangled. Any Â whih is positive semide�nite will not serve our purpose15



Chapter 1. Basi Ideasin deteting entanglement, as suh an operator would be positive on entangled statestoo. Thus the operator Â though positive on produt vetors, has to be neessarilyinde�nite to detet entanglement of some states. Thus, if suh a witness Â were todetet entanglement of a state ρ̂AB , the state ρ̂AB is a point lying outside the onvexset of separable states, and the numerial matrix determined by Â is a hyper planeseparating this point from the onvex subset of separable states. The observation thatany entanglement witness is a hermitian operator whih is positive on produt vetorsbut not positive de�nite, reminds us of the de�ning property of a positive map in Eq.(1.51). In other words, we have an isomorphism between positive but not ompletelypositive maps and entanglement witnesses [32℄. The �rst use of an entanglement witnesswas in [3℄, where the �ip operator V̂ served as an entanglement witness. It is easy tohek for systems of 2× 2 dimensions that the �ip operator de�ned in the standard basisis the M matrix orresponding to partial transpose. It is useful to note that any Bellobservable B̂ as in Eq. (1.36) an also be viewed as an entanglement witness.1.4.6 Partial TransposeThe partial transpose test is a lassi example of the appliation of the theory of positivemaps in deteting entanglement. Partial transpose was initially introdued by Peres in[27℄ to detet entanglement. It is de�ned as follows. Consider the matrix elements of astate ρ̂AB of a bipartite system spei�ed by the Hilbert spae HS of m× n dimensions,i.e.,
ρ̂iα,jβ = 〈ψi| ⊗ 〈φα|ρ̂AB|ψj〉 ⊗ |φβ〉. (1.54)The partial transposed matrix ρ̂PT

AB is de�ned through its matrix elements thus :
ρ̂PT

iα,jβ = ρ̂iβ,j,α. (1.55)Suh an operation is easily seen in its matrix form. The state ρ̂AB of the m× n systeman be written as
ρ̂AB =







A11 · · · A1m

. · · · .

Am1 · · · Amm






, (1.56)i.e., as an m×m array of n×n matries Aij ating on the seond Hilbert spae HB . Thewhole matrix is de�ned by the matrix elements {Aij}αβ = ρiα,jβ. Then partial transpose

16



Chapter 1. Basi Ideasis simply the transposition of the {Aij} matries.
ρ̂PT

AB =







AT
11 · · · AT

1m

. · · · .

AT
m1 · · · AT

mm






. (1.57)Under partial transpose a separable state goes to a valid state, i.e.,

ρ̂PT
AB =

∑

k

pkρ̂Ak ⊗ ρ̂T
Bk =

∑

k

pkρ̂Ak ⊗ ρ̂∗Bk ≥ 0. (1.58)Sine every ρ̂∗Bk is a valid state, ρ̂PT
AB is a valid state. An entangled state under partialtransposition an result in a non positive operator. Thus partial transpose detets en-tanglement. Even though the operation is basis dependent, the onlusions are not. Wehave the following theorem for lower dimensional omposite systems [28℄ :Theorem 1.6 A state ρ̂AB of a 2⊗2 or 2⊗3 system is separable if and only if its partialtransposition is a positive operator.1.4.7 Redution CriterionYet another example of a positive map that is not ompletely positive is the redutionmap. Consider the map
Λ(ρ̂) = 11 − ρ̂. (1.59)This maps is learly positive, sine the eigenvalues of a density operator are positive andless than one. Now onsider the extension of this map to omposite systems. A separablestate satis�es the following inequalities :

11 ⊗ ρ̂B − ρ̂AB ≥ 0, ρ̂A ⊗ 11 − ρ̂AB ≥ 0, (1.60)but entangled states need not. Here ρ̂A and ρ̂B are the partially traed versions of
ρ̂AB for Bob's and Alie's subsystems respetively. The above two onditions are jointlyalled the redution riterion [33℄. The redution inequalities in Eq. (1.60) imply themajorisation inequalities in Eq. (1.33), and onsequently imply the entropi inequalitiesin Eq. (1.31) [34℄. It is known that the redution riterion is weaker than partial transposetest in deteting entanglement, i.e., there are entangled states that partial transposean detet, but redution riterion annot [33℄. Thus, entanglement riteria de�nedthrough the redution map, majorisation, and entropi inequalities, are all weaker than17



Chapter 1. Basi Ideaspartial transpose in deteting entanglement. It is also known that more general entropiinequalities other than that stated in Eq. (1.31) are implied by the redution riteria[35℄.We now digress to introdue the important notion of distillability before ontinuingthe disussion on positive maps. This digression is useful, as both the partial transposemap and the redution riterion are intimately onneted to the onept of distillation.1.5 DistillationA entral aspet of quantum information theory is transmission of quantum information,i.e., transmission of quantum states through quantum hannels. The whole idea restslargely on the teleportation protool [36℄ whih onsumes a maximally entangled state inthe proess of transmitting a qubit from Alie's side to Bob's side. Anything less thana maximally entangled state results in the loss of �delity of the transmission. Thus aprimary resoure for ahieving a perfet teleportation is a shared maximally entangledstate. Thus arises the need for reating maximally entangled states starting with lesserentangled states. The aim of a distillation or puri�ation proedure is to extrat froma large ensemble of low �delity EPR pairs a smaller sub-ensemble of high �delity EPRpairs, using only loal operations and lassial ommuniation (LOCC); these may thenbe used for faithful teleportation [37�39℄.We begin by illustrating a puri�ation proedure in the ontext of pure states, andthen extend it to mixed states, before onsidering formal de�nitions. We stik to 2 × 2dimensional systems for the sake of simpliity.Suppose Alie and Bob share two opies of an entangled state |ψ〉 whih is not max-imally entangled, i.e.,
|ψ〉 ⊗ |ψ〉 = (α|0〉A|0〉B +

√

1 − α2|1〉A|1〉B) ⊗
(α|0〉A′ |0〉B′ +

√

1 − α2|1〉A′ |1〉B′), (1.61)where |0〉 and 1〉 are the eigenstates of the σz operator, and A and A′ refer to the Alie'sside partiles, and B and B′ to Bob's. Expanding the above, we have
|ψ〉 ⊗ |ψ〉 = α2|0〉A|0〉B |0〉A′ |0〉B′ + (1 − α2)|1〉A|1〉B |1〉A′ |1〉B′ +

√
2α
√

1 − α2

[ |0〉A|0〉B |1〉A′ |1〉B′ + |1〉A|1〉B |0〉A′ |0〉B′√
2

] (1.62)for the state of the two pairs. Now let Bob make a loal measurement for the z-omponentof the spin. He an get either 2, �2, or zero. Suppose the result is zero, then Bob informs18



Chapter 1. Basi IdeasAlie over phone and they deide by mutual onsent to retain the state, else they deideto disard the state. The probability of suh an outome is 2α2(1 − α2). The resultantstate after the experiment is the term indiated in the square braket :
|ψr〉 =

|0〉A|0〉B |1〉A′ |1〉B′ + |1〉A|1〉B |0〉A′ |0〉B′√
2

. (1.63)The subsript r denotes that the state is a result of loal measurement. Suppose we dothe following renaming, i.e., |0′〉A = |0〉A|1〉A′ , |1′〉A = |1〉A|0〉A′ , |0′〉B = |0〉B |1〉′B , and
|1′〉B = |1〉B |0〉B′ , the state that Alie and Bob share is then a singlet. Suh proedureof generating the maximally entangled state is ine�ient in the sense that we may endup losing part of the entanglement the parties initially shared through our very at ofdisarding some of the outomes. But the method gets more and more e�ient as Alieand Bob apply suh a protool olletively to more and more pairs. It was shown in [38℄that Alie and Bob an obtain n singlets from k |ψ〉's with the ratio approahing

lim
n,k→∞

n

k
= E(|ψ〉) = −α2log2α

2 − (1 − α2)log2(1 − α2). (1.64)
E(|ψ〉) is the entropy of entanglement and equals the Shannon entropy of the squares ofthe Shmidt oe�ients of |ψ〉Distillation proedures in the ontext of mixed states are more sophistiated. For thesake of simpliity we outline a proedure illustrated in [40℄; it aptures the essene ofdistillation in the ontext of mixed states. Suppose Alie and Bob share two opies ofthe mixed state

ρ̂AB = f |φ+〉AB〈φ+| + (1 − f)|ψ+〉AB〈ψ+|, (1.65)where |φ+〉AB and |ψ+〉AB are Bell states de�ned as
|φ+〉AB =

|00〉AB + |11〉AB√
2

,

|ψ+〉AB =
|01〉AB + |10〉AB√

2
. (1.66)Unless f = 1

2 , the state is inseparable. This an be seen for example through the partialtranspose test. The aim here is to inrease the fration f of |φ+〉AB〈φ+| through someloal operations and deisions taken through mutual onsent arrived at through lassialommuniation. To this end, they perform a bilateral loal CNOT operation, i.e., CNOToperations performed on pairs AA′ and BB′. Suh an operation is learly loal aross19



Chapter 1. Basi Ideasthe Alie and Bob divide. The ation of suh an operation is summarised below.
|φ+〉AB |φ+〉A′B′ → |φ+〉AB |φ+〉A′B′ ,

|ψ+〉AB |φ+〉A′B′ → |ψ+〉AB |ψ+〉A′B′ ,

|φ+〉AB |ψ+〉A′B′ → |φ+〉AB |ψ+〉A′B′ ,

|ψ+〉AB |ψ+〉A′B′ → |ψ+〉AB |φ+〉A′B′ . (1.67)After this loal operation the state Alie and Bob share is
ρ̂ABA′B′ = (f2|φ+〉AB〈φ+| + (1 − f)2|ψ+〉AB〈ψ+|) ⊗ |φ+〉A′B′〈φ+| +

f(1 − f)(|φ+〉AB〈φ+| + |ψ+〉AB〈ψ+|) ⊗ |ψ+〉A′B′〈ψ+|. (1.68)Now they perform loal z-omponent measurements on the A′ and B′ partiles. If theyget the results to be orrelated, they deide to retain the remaining pair, else they disardthe remaining pair. The suess probability is given by f2 +(1 − f)2, and they share thestate
ρ̂′AB =

1

f2 + (1 − f)2
(f2|φ+〉AB〈φ+| + (1 − f)2|ψ+〉AB〈ψ+|). (1.69)The fration f ′ = f2/(f2 + (1 − f)2) > f for f > 1/2. The proedure is learly lossy asin the ase of pure states in that we may lose entanglement in some of the outomes. Butgiven a su�iently large initial ensemble we an, with a �nite probability at every step,tend towards a higher �delity of the desired pure maximally entangled state by iteratingthis proedure. Alie and Bob an, at the end of the proedure, distill a smaller ensembleof pairs with entanglement �delity f arbitrarily lose to unity [40℄. These pairs an thenbe used for faithful teleportation. Distillation proedures in the ontext of mixed stateswere initially desribed in [37℄.A areful analysis of a general distillation proedure tells us that there are threeaspets to it, namely, loal general measurements, lassial ommuniation, and post-seletion.Loal general measurements : These are the most general possible measurementsperformed on the Alie's and Bob's side. They are desribed by two sets of operators Aiand Bj whih satisfy the ompleteness relations

∑

i

A†
iAi = 11,

∑

i

B†
jBj = 11. (1.70)They an be realised by appending additional systems loally, evolving them together,20



Chapter 1. Basi Ideasand then performing joint measurements loally. Under these ations, a shared stateevolves as
ρ̂AB →

∑

ij

Ai ⊗Bj ρ̂ABA
†
i ⊗B†

j . (1.71)Suh a proedure is learly loal.Classial ommuniation : This simply means that while performing the loal generalmeasurements, Alie's and Bob's ations an be orrelated through mutual onsent ar-rived at through ommuniation over the phone, in whih ase, the evolution is desribedby
ρ̂AB →

∑

i

Ai ⊗Biρ̂ABA
†
i ⊗B†

i . (1.72)This desribes a ombination of both loal general measurement and lassial ommuni-ation.Post-seletion : This is the proedure by whih Alie and Bob hoose to retain ertainoutomes of the loal general measurement subjet to lassial ommuniation. Supposethey retained the state orresponding to the ith and jth loal outomes, the resultantstate is
Ai ⊗Bj ρ̂ABA

†
i ⊗B†

j

Tr(Ai ⊗Bj ρ̂ABA
†
i ⊗B†

j )
. (1.73)The denominator in Eq. (1.73) ensures the normalisation [41�44℄.Any manipulation involving the above three proedures is suintly alled as loaloperation and lassial ommuniation (LOCC). Clearly any LOCC operation desribedby Eq. (1.71), is a ompletely positive map as in Eq. (1.49), but eah of the W 's are intensor produt form Ai ⊗ Bj . Thus, any LOCC an be thought of as a separable superoperator ating on ρ̂AB. It is known that every LOCC an be represented by a separablesuper operator, but not every separable super operator is an LOCC [44℄.To summarise, a puri�ation or distillation proedure is essentially one of extratingsinglets from multiple opies of shared entangled states through LOCC. A state is saidto be distillable if one an atually distill, using a pre-agreed protool, pure singlets frommultiple opies of the state. However suh a de�nition may appear impreise from theimplementation point of view, sine the set the of all LOCC available to the two partiesis truely enormous.It was shown in [45℄ that every entangled state of a 2×2 dimensional system is distil-21



Chapter 1. Basi Ideaslable. The idea is that even if an entangled state in 2× 2 dimensions had singlet frationless than 1
2 , it an always be onverted by LOCC, .i.e., a loal �ltering operation, to astate with singlet fration greater than 1

2 and, onsequently, the reursion protool de-sribed in [39℄, ould be used for further distillation. A tangible riterion for distillabilityfollows from this fat [45℄.Theorem 1.7 A state ρ̂AB is distillable if and only if, for some two dimensional proje-tors P and Q, and for some n, the state P ⊗Qρ̂⊗n
ABP ⊗Q is entangled.Thus, projeting out the given n opies of the state ρ̂AB into a 2 × 2 dimensionalsubspae, and demonstrating entanglement in that subspae, amounts to showing thedistillability of the state in ontention.An impliation of this de�nition is that states whih are positive under partial trans-pose (PPT) annot be distilled by LOCC. This an for example be seen from the fatif a state is PPT, then n opies of the state is also PPT, and LOCC doesn't take PPTstates outside the set of PPT states, i.e., LOCC is a PPT-preserving operation. Thus if

ρ̂
′

AB =
∑

i

Ai ⊗Biρ̂ABA
†
i ⊗B†

i , then

ρ̂
′PT
AB =

∑

i

Ai ⊗BT
i ρ̂

PT
ABA

†
i ⊗B†T

i . (1.74)If ρ̂PT
AB is positive, ρ̂′PT

AB is also positive, sine it is derived by the ation of a ompletelypositive map on ρ̂PT
AB. Thus, negativity under partial transpose (NPT) is a neessaryondition for distillability. It is known that any state that violates the redution riteriain Eq. (1.60) is distillable [33℄.Having introdued the useful onept of distillation or puri�ation, and having shownthat negativity under partial transposition is a neessary ondition for distillability, animmediate question that arises is the following. Are there entangled states that arenondistillable? A immediate way of answering this question is by answering the followingsimpler question. Are there entangled states that are PPT? The answer to this was givenby the Horodeki's in [45, 46℄. There they onstruted states that are entangled but PPT.Suh states were alled bound entangled, meaning one annot distill any entanglementfrom them. To detet entanglement in states that are PPT is a nontrivial task, sine weneed to devise methods that are `stronger' that partial transpose. This has led the searhfor stronger riteria in deteting entanglement. We disuss some of them below.

22



Chapter 1. Basi Ideas1.5.1 Range CriterionThe range riterion is a useful tool to detet entanglement, partiularly in ases wherepartial transpose fails. The statement of the riterion is summarised in the followingtheorem.Theorem 1.8 If a state ρ̂AB ating on the spae HAB is separable, then there exists afamily of produt vetors |ψj〉 ⊗ |φα〉 suh that,(i) they span the range of ρ̂AB,(ii) the vetors {|ψj〉 ⊗ |φ∗α〉}k
i=1 span the range of ρ̂PT

AB (where ∗ denotes omplexonjugation in the basis in whih partial transposition was performed).In [46℄, the range riterion was applied to detet entanglement in a PPT state. Conse-quently, it led to the elegant onstrution of UPB's (Unextendible Produt Basis) in [47℄.These are a set of produt orthogonal vetors in HAB that has fewer elements than thedimension of the spae, but there does not exist any produt vetor orthogonal to all ofthem. Thus, a UPB is a partial basis that annot be ompleted into a produt basis. Asimple example of suh a UPB for a 3 ⊗ 3 dimensional system is
|ψ0〉 =

1√
2
|0〉 ⊗ (|0〉 − |1〉), |ψ2〉 =

1√
2
|2〉 ⊗ (|1〉 − |2〉),

|ψ1〉 =
1√
2
(|0〉 − |1〉) ⊗ |2〉, |ψ3〉 =

1√
2
(|1〉 − |2〉) ⊗ |0〉,

|ψ4〉 =
1

3
(|0〉 + |1〉 + |2〉) ⊗ (|0〉 + |1〉 + |2〉). (1.75)Given a UPB, it is easy to onstrut bound entangled states. Consider the projetor

PUPB =

4
∑

i=0

|ψi〉〈ψi|, (1.76)now onstrut the state
ρ̂AB =

1

4
(11 − PUPB). (1.77)The range of ρ̂AB ontains no produt vetors, otherwise one would have been able toextend the produt basis. Clearly ρ̂PT

AB is positive, i.e., ρ̂AB is PPT. The state ρ̂AB is thusPPT entangled, and hene bound entangled. The range riteria as a tool was suessfullyextended to the ase of ontinuous variables in [48℄, to detet bound entanglement.
23



Chapter 1. Basi Ideas1.5.2 Non-deomposable mapsThe presene of PPT bound entanglement neessitates the de�nition of deomposableand non-deomposable positive maps. A positive map is said to be deomposable, if itan be represented in the form
Λ = Λ1

CP + Λ2
CP ◦ T, (1.78)where Λ1

CP and Λ2
CP are ompletely positive maps, ◦ denotes omposition, and T denotesthe transposition map. Clearly, a deomposable map ating on a omposite system isno stronger than partial transpose in deteting entanglement. It turns out that in 2 ⊗ 2and 2 × 3 dimensional systems, every positive map is deomposable [49, 50℄. Thuspositivity under partial transpose turns out to be a neessary and su�ient onditionfor entanglement in these systems, as indiated earlier. However, in higher dimensionalsystems there are positive maps that annot be deomposed as above. Any map thatannot be written as in Eq. (1.78), is said to be a non-deomposable map. Clearly, non-deomposable maps an potentially detet entanglement that partial transpose annot.Thus the study of non-deomposable maps has turned out to be an integral part ofentanglement theory. Examples of suh maps an be found in [6, 51�54℄. In [51℄, it wasdemonstrated that given a UPB one ould onstrut a non-deomposable map.There seems to be no simple universal way of showing a positive map to be non-deomposable. One possible way is to onstrut a PPT state, and then show that themap detets entanglement in the PPT state, thus establishing that the map is indeom-posable. This partiular route to demonstrating non-deomposability has led to searhfor systematially haraterising PPT states [55, 56℄.1.5.3 Unertainty relationsThe tehnique of deteting entanglement through unertainty relations is based on thefat that separable states, in addition to obeying the general unertainty priniple whiharise from non-ommutativity of operators, have to obey additional onstraints simplyarising from the fat that they are separable. Suh a tehnique, though initially intro-dued in the ontext of ontinuous variable systems [57, 58℄, has been suessfully used todetet entanglement in �nite dimensional systems [59�61℄. Suh a tehnique is powerfulas it detets even bound entanglement [60, 61℄. We will disuss these ideas later whenwe deal with ontinuous variable entanglement.
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Chapter 1. Basi Ideas1.6 Measures of EntanglementSine entanglement is a fundamental resoure in quantum information siene, it is im-portant that one is able to quantify it. Any measure of entanglement has to meet somedesirable physial requirements. Some reasonable requirements are enumerated below[37, 41℄.(i) For any separable state as in Eq. (1.16), whih does not have any entanglement,the measure of entanglement E should be zero :
E(ρ̂sep

AB) = 0. (1.79)(ii) The seond requirement onerns the invariane of the entanglement measureunder simple loal unitary transformations, sine suh a transformation amounts to ahange of basis loally and hene an be undone loally in a deterministi manner. Anyloal unitary operation should not be able to hange the quantity of entanglement shared :
E(ρ̂AB) = E(UA ⊗ UB ρ̂ABU

†
A ⊗ U †

B). (1.80)(iii) The third requirement states that the average entanglement should not inreaseunder loal operations, lassial ommuniations, and post-seletion (Eq. (1.72)), sine ifthe onverse was possible, it would mount to reating entanglement from less entangledstates through loal operations alone. It is true that through appropriate post-seletion,we are able to extrat pure state singlets by LOCC as shown in Eq. (1.73), but weare able to do so only at the ost of disarding other outomes. Thus, on the averageentanglement does not inrease. Suppose given the state ρ̂AB we get the post-seletedstates ρ̂i
AB with probability pi, we then require

E(ρ̂AB) ≥
∑

i

piE(ρ̂i
AB). (1.81)(iv) Finally one would require that the measure of entanglement is additive. Giventwo entangled bipartite states ρ̂1 and ρ̂2 with the ombined system in ρ̂1 ⊗ ρ̂2 we wouldlike to have

E(ρ̂1 ⊗ ρ̂2) = E(ρ̂1) + E(ρ̂2). (1.82)For bipartite pure states there is a unique measure of entanglement. Given a bipartite
25



Chapter 1. Basi Ideaspure state in the Shmidt form
|Ψ〉AB =

∑

i

√

λi|ψi〉A ⊗ |φi〉B , (1.83)the unique measure of its entanglement is
E(|Ψ〉AB) = −

∑

i

λilog2λi, (1.84)the Shannon entropy of the squares of the Shmidt oe�ients. It is the Von Neumannentropy of the redued density matrix of either subsystem. The uniqueness of the measurefollows from the fat that given k opies of the state |Ψ〉 one an distill n opies of singletsand, onversely, given n opies of singlets one an produe k opies of the given state.However, suh a reversible transformation is to be understood in the sense of the limit
k, n → ∞ [38℄. With this interonvertibility available, we have

nE(|Ψ〉AB) = kE(|S〉AB), (1.85)where |S〉AB is the singlet state. The interonvertibility implies that
E(|Ψ〉AB) = lim

n,k→∞
k

n
E(|S〉AB) = −

∑

i

λilog2λi. (1.86)By onvention, one takes E(|S〉AB) to be one [37, 62℄. This measure whih is alled theentropy of entanglement or simply entanglement, ranges from zero for a produt state to
log2d for maximally entangled states in d⊗ d dimensions.1.6.1 Entanglement of FormationHaving de�ned a unique measure of entanglement for bipartite pure states, it is nowpossible to extend this measure to de�ne a good measure for the ase of bipartite mixedstates. As indiated earlier, the set of ensembles ε = {pi, ρ̂

i
AB} realising a given mixedstate ρ̂AB is an in�nitely huge family [1℄. Keeping this fat in mind, the de�nition forthe entanglement measure for the ase of bipartite mixed states is de�ned as

E(ρ̂AB) = min
ε

∑

i

piE(ρ̂i
AB). (1.87)The minimisation has to be arried out with respet to the possible ensemble deomposi-tions. Clearly, any separable state has an entanglement measure zero by de�nition. Theabove measure is alled the Entanglement of Formation (EOF). The EOF satis�es the26



Chapter 1. Basi Ideas�rst three requirements required of a good measure. The regularised version of the EOFis de�ned as [63, 64℄
Ec(ρ̂AB) = lim

n→∞
E(ρ̂⊗n

AB)

n
, (1.88)the entanglement ost of ρ̂AB . By de�nition the entanglement ost of a state is expetedto be lesser than its EOF, sine a minimisation over a muh larger ensemble set is to bearried out. In ase the EOF of a state is additive, then its entanglement ost Ec is equalto its EOF. It is now known that EOF is in general not additive [65, 66℄.The EOF of a state is in general very hard to evaluate. It is thus remarkable thatWootters was able to provide a losed form expression for the EOF of an arbitrary twoqubit state [67, 68℄. The other ases where losed form expressions have been found arethose states with a high degree of symmetry [69�72℄. We will ome bak to this measurewhen we disuss the EOF for two-mode Gaussian states.1.6.2 Distillable entanglementThis is the amount of pure state entanglement that an be distilled from multiple opiesof a given entangled mixed state through LOCC. There are no hard and fast rules asto how one goes about it. Distillable entanglement, as a measure of entanglement, isprotool dependent. Given n opies of the shared entangled mixed state ρ̂AB, where

n is very large, if one is able to extrat m opies of pure state singlets by LOCC, thedistillable entanglement is de�ned as
D(ρ̂AB) = lim

n→∞
m

n
. (1.89)Fundamental prototypes of various protools were initially introdued in [37℄. As in-diated earlier, not all entangled states are distillable, thus for bound entangled statesdistillable entanglement is zero. Distillable entanglement as a measure of entanglement ishowever useful in the sense that it atually gives an estimate of the useful entanglementone an harvest from multiple opies of a given state through LOCC. This measure beingprotool dependant, is not unique. As an example in the ase of two qubits, the one wayhashing protool gives a �nite yield with

m

n
≈ 1 − S(ρ̂AB), (1.90)where S(ρ̂AB) is the Von Neumann entropy of the state ρ̂AB. In omparison, the reursionprotool similar to the one disussed in Setion 1.5, gives almost a zero yield [37℄. It27



Chapter 1. Basi Ideasis known that any distillable entanglement is a lower bound on the entanglement offormation [37℄.1.6.3 Distane based measuresThis ategory of measures arise from the onvex struture of state spae. We know thatthe set all states in a given bipartite system form a onvex set, so does the set of allseparable states of that system. And learly, the set of all separable states form a subsetin the state spae. Thus one an talk of distane between the given entangled state anda separable state. Let S be the set of all separable states. The measure of entanglementfor a given state σ̂ is de�ned as
E(σ̂) = min

ρ̂∈S
D(σ̂||ρ̂), (1.91)where D is any measure of distane (not neessarily a metri) between the two densityoperators σ̂ and ρ̂, suh that it satis�es the requirements put forth above. One measurewhih satis�es the �rst three requirements is based on the quantum relative entropyde�ned as

D(σ̂||ρ̂) = S(σ̂||ρ̂) = Tr[ˆ̂σ(lnσ̂ − lnρ̂)]. (1.92)The quantum relative entropy is not symmetri and does not satisfy the triangle inequal-ity required of a metri. One ould have de�ned the measure with σ̂ and ρ̂ interhanged,however in suh a ase, pure entangled states have in�nite measure of entanglement,whih is not desirable. It is known that for pure bipartite states, the relative entropyof entanglement is the Von Neumann redued entropy [41, 42℄. The relative entropyof entanglement has been evaluated for Bell diagonal states, however a losed form ex-pression is not known in the ase of general two qubit mixed states. It is known thatthe relative entropy of entanglement is not additive [71℄, that it is always less than theentanglement of formation [42℄, and that it is an upper bound on the distillable entangle-ment, thus a lower bound on the entanglement of formation [42, 73℄. While in the aseof pure states one an distill as muh entanglement as is present, the mixed state se-nario is di�erent. One annot distill all the entanglement that is present. The existeneof bound entanglement is a manifestation of this aspet. This has led to onsiderationof thermodynamial analogies in the ontext of mixed state entanglement [42, 62, 74℄.Other distane measures suh as the Bures metri have also been analogously extendedto de�ne entanglement measures [42℄.
28



Chapter 1. Basi Ideas1.6.4 NegativityMost of the measures of entanglement disussed above are hard to ompute for an arbi-trary mixed entangled state. Espeially, the entanglement of formation and the relativeentropy of entanglement require an optimisation proedure, whih is in general not easy.Thus it is useful to have a pratial measure whih is easily alulable. The negativity orthe logarithmi negativity is one suh measure. The negativity for a bipartite state ρ̂ABis de�ned as
N (ρ̂AB) =

||ρ̂PT
AB ||1 − 1

2
, (1.93)where ||.||1 denotes the trae norm. The trae norm for a hermitian operator is thesum of the absolute values of its eigenvalues. Thus N (ρ̂AB) is simply the sum of negativeeigenvalues of ρ̂PT

AB . Given negativity, we an de�ne yet another measure of entanglement,the logarithmi negativity whih is de�ned as
EN (ρ̂AB) = log2||ρ̂PT

AB ||1. (1.94)The logarithmi negativity satis�es the last three of the requirements required of a goodmeasure of entanglement. It is loal unitary invariant, does not inrease under LOCC,and is additive. However, sine it is based on partial transpose, it fails to measure en-tanglement in bound entangled states [75℄. In a similar fashion, one an de�ne alulablemeasures of entanglement based on negativity based on other positive maps [76, 77℄.1.7 Continuous variablesIn the earlier Setions, our onern was systems desribed by �nite dimensional Hilbertspaes. We now onsider extension of some of these ideas to the ase of ontinuousvariable systems. Suh a study is neesitated by the very nature of the urrent avail-able tehnology. One approah towards pratial implementation of the fundamentalideas of quantum information proessing has been through the urrently available quan-tum optial tehnology. Many fundamental aspets of quantum information theory havealready been demonstrated in various labs, essentially through quantum optial tehnol-ogy [78�111℄. Entanglement or EPR orrelation was initially demonstrated in [78, 79℄.Teleportation in the ontinuous variable ontext was initially disussed in [82℄ and thendemonstrated in [83℄. It was subsequently reported in other experiments [85, 86, 88�90, 92, 93℄. Continuous variable dense oding has been reported in [96, 103�105℄. En-tanglement of the polarisation degree of freedom of photons was established in [84�87℄.29



Chapter 1. Basi IdeasIn [85℄ two qubit entanglement was demonstrated, and in [87℄ three qubit entanglement.In [86℄ teleportation of a single photon's polarisation state was reported. Coherent statebased key distribution was reported in [97�100℄. Other experiments that report ontin-uous variable entanglement are found in [80, 81, 91, 94, 95, 101, 102, 107, 108, 111℄.In [94℄ atomi ensemble entanglement was reported, and in [95, 101, 111℄ multipartiteentanglement was reported. In [109, 110℄ teleportation between light and matter wasreported.A fundamental attribute to most of the above mentioned experiments has been theuse of nonlassial resoures. It is well known that states of radiation, naturally divideinto lassial and nonlassial types [112℄, nonlassiality being more fundamental thanentanglement in the sense that it is a prerequisite for entanglement [113�115℄. A primaryreason for the possibility of many experiments in the ontext of quantum information the-ory has been the availability of nonlassial resoures, primarily in the form of quadraturesqueezing [116�135℄. It is well known that this kind of nonlassiality, when proessed ap-propriately with the help of passive devies like beamsplitters, an reate entanglement,partiularly in Gaussian states [113�115, 136�140℄. Squeezing has been, and ontinues tobe studied as a resoure in the ontext of ontinuous variable entanglement.Bearing in mind this tehnologial senario, a study of entanglement from the per-spetive of quantum states of radiation beomes desirable. Any suh study requires oneto deal with a system of quantum harmoni osillators, systems whose Hilbert spaes arein�nite dimensional. The potential role of suh systems in quantum information theoryhave been explored in [141�163℄. In [141℄ the issue of enoding a qubit in an osillatorwas disussed, and the possibility of using oherent states to arry out quantum om-putational tasks was disussed in [164℄. Suh a study showed the possibility of usingontinuous variable set up to do quantum information tasks arried out on �nite dimen-sional systems. In [142℄ the possibility of key distribution using squeezed states wasdisussed. In [143, 147, 148℄ quantum ryptography with Gaussian states was analysed.Multipartite entanglement and its potential use in quantum networks were onsidered in[144, 145, 150, 154�156℄. In [151℄ universal quantum omputation based on ontinuousvariable luster states using linear optis and homodyne measurement was explored. In[152℄ the problem of quantum state engineering was onsidered. In [146, 149, 157�159℄ontinuous variable Gaussian hannels were studied. In [161, 162, 165, 166℄ the possibil-ity of generating entanglement in nanomehanial osillators was explored; suh systemsare also modelled as a system of quantum harmoni osillators. Thus it is natural toundertake the study of entanglement in the ontext of ontinuous variables.The simplest study of entanglement in the ontext of bipartite ontinuous variablesystems is the study of two-osillator systems. For this bipartite ontinuous variable30



Chapter 1. Basi Ideassystem S = A+B, subsystems A and B onsists of a single quantum harmoni osillatoreah. The total system S is spei�ed by respetive annihilation and reation operatorpairs â†, â, and b̂†, b̂ ating on the Hilbert spaes Ha and Hb. Their only non-vanishingommutators are
[â, â†] = [b̂, b̂†] = 11. (1.95)The Fok or photon number states for the two modes provide a natural set of ONB's for

Ha and Hb respetively. They are given as,
|n〉 = (n!)−1/2(â†)

n|0〉a ,
|m〉 = (m!)−1/2(b̂†)

m|0〉b ,
n,m = 0, 1, 2, . . . (1.96)Then the produt states |n,m〉 ≡ |n〉a ⊗ |m〉b form an ONB for Ha ⊗ Hb [167℄. Thisdesription is easily extended to multipartite ontinuous variable systems through intro-dution of additional reation and annihilation operator pairs.1.7.1 Quasi-probabilitiesWhen dealing with quantum mehanis of ontinuous variables, i.e., radiation �eld modes,it is useful to go over to their desription in the language of quasi-probabilities. A stateof a quantum mehanial system desribed by a density operator ρ̂ an be equivalentlydesribed in the language of their s-ordered quasi-probabilities in a omplete manner. The

s-ordered quasi-probabilities apture all the statistial information present in the densityoperator ρ̂. In this set up a density operator ρ̂ is mapped into a quasi-probability, andthe observables to orresponding ordered funtions in phase spae. Considering a single-mode for simpliity, the s-ordered quasi-probability orresponding to a state ρ̂ is de�nedas
Wρ(α, s) = Tr(ρ̂T̂ (α, s)), where,

T̂ (α, s) =
1

π

∫

D(ξ, s)exp(αξ∗ − α∗ξ)d2ξ, and

D(ξ, s) = exp(â†ξ∗ − âξ +
1

2
s|ξ|2). (1.97)

D(ξ, s) is the displaement operator orresponding to a given s, and α is the phase spaevariable whih is denoted as α = q+ip√
2
. The parameter s takes the values −1 ≤ s ≤ 1.The three de�ning properties of a density operator given in Eq. (1.1) transribe into the31



Chapter 1. Basi Ideasfollowing requirements on the s-ordered quasi-probability :
Tr(ρ̂) = 1 ⇔

∫

Wρ(α, s)d
2α = 1,

ρ̂† = ρ̂ ⇔ Wρ(α, s) = W ∗
ρ (α, s),

ρ̂ ≥ 0 ⇔ Tr(ρ̂ρ̂′) ≥ 0 ⇔
∫

Wρ(α, s)Wρ′(α,−s)d2α ≥ 0. (1.98)The �rst requirement demands that the s-ordered quasi-probability is normalised to onewith respet to integration over the phase spae, while the seond demands that it bereal. For the third requirement to be satis�ed one has to in priniple hek for positivityof the trae inner produt of the given density operator ρ̂ with respet to all valid densityoperators ρ̂′, whih amounts to heking for positivity of the overlap integral of the given
s-ordered quasi-probability with respet to all valid (−s)-ordered quasi-probabilities. Thede�ning requirements at the density operator level doesn't enfore pointwise positivity ofthe s-ordered quasi-probability, further, a valid s-ordered quasi-probability an be highlysingular.Objets of interest are the expetation values of observables with respet to the givendensity operator ρ̂. Given an observable Ω̂, assume that it possesses an s-ordered powerseries expansion

Ω̂ =

∞
∑

n,m=0

Ωn,m(s){â†nâm}s, (1.99)where {â†nâm}s is the s-ordered produt given by
{â†nâm}s =

1

π

∫

T̂ (α, s)α∗nαmd2α, (1.100)then the expetation value 〈Ω̂〉 is given by
Tr(ρ̂Ω̂) =

∫

Ω(α,−s)Wρ(α, s)d
2α, where

Ω(α,−s) =

∞
∑

n,m=0

Ωn,m(−s)α∗nαm. (1.101)Evaluating expetation values of s-ordered operators with respet to a density operator
ρ̂ orresponds to evaluating the funtion Ω whih is obtained from Ω̂ simply by replaing
{â†nâm}s by α∗nαm, and then evaluating its overlap integral with the s-ordered quasi-probability Wρ(α, s) orresponding to the state ρ̂. Conversely, any observable Ω̂ an be32



Chapter 1. Basi Ideaswritten as
Ω̂ =

1

π

∫

Ω(α, s)T̂ (α, s)d2α. (1.102)The s-ordered quasi-probabilities enables us to reast quantum mehanis in the languageof statistial mehanis. Given an observable Ω̂, we have an s-ordered weight funtion
Ω(α,−s), whih aptures the ontent of Ω̂ for eah −1 ≤ s ≤ 1.The more familiar s-ordered quasi-probabilities are Sudarshan's φ funtion orre-sponding to s = 1, the Wigner funtion orresponding to s = 0, and the Husimi or Qfuntion orresponding to s = −1. The notion of s-ordered quasi-probability an beeasily extended to the multi-mode ase as well [167�169℄.1.7.2 Sudarshan's φ funtionIt turns out that any density operator orresponding to a single mode of radiation �eldan always be expanded as

ρ̂ =

∫

d2z

π
φρ(z)|z〉〈z|, (1.103)where φρ(z) = Wρ(z, 1), and |z〉 is the oherent state. This is alled as the diagonalrepresentation. It is remarkable that every density operator an be expanded diagonallyin the oherent state basis. This has been possible beause of the over ompleteness of theoherent state basis [112℄. This representation enables one to evaluate ensemble averagesof normally ordered operators. Normal ordering orresponds to shifting all the reationoperators to the left and all the annihilation operators to the right. The useful oneptthat arises out of this representation is the notions of lassiality and nonlassiality.If φρ(z) orresponding to a density operator ρ̂ is pointwise nonnegative in the omplexplane, then the density operator is a onvex ombination of oherent states. Sine theoherent states are the most elementary of all quantum mehanial states exhibitinglassial behaviour, any state that an be written as a onvex ombination of theseelementary states is deemed lassial. We have,

φρ(z) ≥ 0 for all z ∈ C ⇒ ρ̂ is classical. (1.104)Any state whih annot be written so is deemed nonlassial. This de�nition is readilyextended to the multi-mode ase. Not all states are lassial, and in fat the φ funtionan be highly singular. For the Fok states |n〉, the diagonal funtion φρ(z) turns out tobe nth derivative of the delta funtion. We will make extensive use of nonlassiality in33



Chapter 1. Basi Ideasthe ontext of entanglement in bipartite ontinuous variable systems.1.7.3 NonlassialityOne of the primary onerns in quantum optis over the years has been nonlassiality.This notion has been explored in various ways and its manifestations detailed [170�192℄. Physial manifestations suh as photon number osillations have been exploredin [170, 175, 178, 181, 183, 193℄. More reently, nonlassiality has been viewed as aresoure for entanglement [113�115, 137�139, 171, 194℄.An important onern in the study of nonlassiality is in respet of the methodsemployed to detet nonlassiality. We brie�y desribe one of the tehniques. Supposewe have the operator
F (â†, â) =

∑

ij

cij â
†j âi. (1.105)De�ne the positive operator F †F and normal order it to obtain : F †F :. Then theexpetation value of this normal ordered operator in a state ρ̂ is

〈: F †F :〉 = Tr(ρ̂ : F †F :) =

∫

d2z

π
φρ(z)|F (z∗, z)|2. (1.106)Calulating 〈: F †F :〉 is equivalent to evaluating the phase spae average of a pointwisepositive funtion |F (z∗, z)|2 with respet to φρ(z). Thus if the expetation value of apositive normal ordered operator with respet to a state turns out to be negative, thenwe an surely onlude that the state was nonlassial. However if the expetation valueturns out to be positive, we annot onlude that the state was lassial. In priniple,one has to run over all possible positive funtions over the phase spae to test if a stateis lassial or not.The method outlined above has been disussed and used in [170, 182, 186, 189�191℄.The idea an be further extended through the use of positive polynomials whih are notsum of squares of other polynomials [191℄. It is useful to note that there is no onlusivetest for nonlassiality, of an arbitrary mixed state. There are however two exeptions,namely single-mode Gaussians [185℄ and single-mode phase invariant states [170℄.Another important aspet in the study of nonlassiality has been its quanti�ation.Measures of nonlassiality have been disussed in [171, 173, 174, 177, 188, 195�198℄.Distane based measures were disussed in [173, 188, 195, 196℄, where the measure ofnonlassiality was de�ned as the least `distane' of a nonlassial state with respet tothe set of all lassial states. The distane based measures are in general hard to evaluate34



Chapter 1. Basi Ideasbeause of the inherent minimisation proedure involved in the de�nition. In [174, 177℄ ameasure based on the smoothening of the φ funtion was de�ned. One an go from the φfuntion to any s-ordered quasi-probability through a Gaussian onvolution parametrisedby τ . The point τc at whih the resultant quasi-probability is just about a true probabilitygives us a measure of nonlassiality. In [197, 198℄ a measure of nonlassiality based onHudson's theorem was de�ned. Hudson's theorem says that the only pure state whoseWigner funtion is positive is a Gaussian state [199℄. This fat indiates that any measurethat aptures the negativity of the Wigner funtion is a measure of nonlassiality of thestate. More reently, in [171℄ a measure of nonlassiality inspired from an entanglementpoint of view was de�ned. Nonlassiality of a single-mode state was de�ned as themaximal bipartite entanglement it an produe when oupled with additional lassialresoures and passed through a 50:50 beamsplitter.1.7.4 The Wigner funtionThe Wigner funtion is the s-ordered quasi-probability orresponding to s = 0. It isobtained by onvoluting the φ with a partiular Gaussian weight funtion. Thus, inpriniple, it is not as singular as the φ funtion, but nevertheless it an be pointwise non-positive in phase spae. In this desription, density operators are put in orrespondenewith real valued funtions over the phase spae through the rule
Wρ(q, p) =

1

π

∫

dq′〈q − q′|ρ̂|q + q′〉exp(2iq′p). (1.107)We reall that α = q+ip√
2
. We may write Wρ(q, p) as Wρ(ξ) for onveniene [200, 201℄,where ξ is the pair {q, p}. The Wigner desription o�ers several advantages, from thetheoretial and experimental perspetives. It turns out to be onvenient in the ontextof unitary evolution of states under the ation quadrati hamiltonians. Given the uni-tary operator U(S) orresponding to a quadrati hamiltonian whih is aptured by asympleti group element S ∈ Sp(2n,R), a state evolves as

ρ̂→ ρ̂′ = U(S)ρ̂U(S)†. (1.108)This transformation takes a very simple form in the Wigner desription :
S : ρ̂→ ρ̂′ = U(S)ρ̂U(S)† ⇔Wρ(ξ) →Wρ′(ξ) = Wρ(S

−1ξ). (1.109)That is, Wρ′(Sξ) = Wρ(ξ) for every anonial transformation S ∈ Sp(2n,R). Thatis, the Wigner funtion transforms as a Sp(2n,R) salar �eld [202℄. This is also true35



Chapter 1. Basi Ideasof inhomogeneous linear anonial transformations involving phase spae translations aswell.The Wigner funtion is also important from an experimental perspetive, as it an bediretly measured in a lab. The Wigner funtion by de�nition, is the expetation valueof the displaed parity operator with respet to the given density operator[169℄, and thusan be observed in a laboratory. Indeed, the Wigner funtion of various quantum statesof radiation have been reported [203�215℄.1.7.5 The Q funtionThe Q funtion orresponds to the quasi-probability with order parameter s = −1 For astate ρ̂ of a single-mode of radiation �eld it is de�ned as
Qρ(α) = 〈α|ρ̂|α〉. (1.110)It is thus pointwise nonnegative in the omplex plane, being the expetation value of aoherent state on a positive semide�nite density operator ρ̂. Thus it is a true probabilitydistribution. However it should be noted that not all valid probability distributions arevalid Q funtions. The quantum mehanial unertainty priniple plaes severe restri-tions on probability distributions whih qualify to be valid Q funtions. The advantageof working with them is that one will deal only with true probabilities. We will onsiderthem in more detail in Chapter 7 where we disuss non-Gaussianity [216℄.1.8 Detetion of EntanglementDeteting entanglement in ontinuous variables has been an important pursuit, as meth-ods employed in the ase of �nite dimensions annot always be extended in a naivemanner. Among tests based on positive maps, only the partial transpose test and redu-tion riterion have been extended [57, 217℄. However, inseparability riteria (inequalities)de�ned through EPR-like operators based on the quadrati moments, initially introduedin [58℄, are e�etive in deteting entanglement in ontinuous variables. These inequal-ities are derived from �rst priniples as onsequenes of separability. The unertaintypriniple plaes ertain restritions on the moments, and all states have to obey theunertainty priniple [218℄. However, separable states have to obey further onstraints,whih an be taken as inseparability riteria. Simple examples of suh onstraints arethe Bell type inequalities, violation of whih have been observed in entangled Gaussianstates [219, 220℄.

36



Chapter 1. Basi Ideas1.8.1 Bell's inequalitiesThe Bell type inequalities as in Eq. (1.36) are extended to the ontinuous variable asethrough the de�nition of the parity operator. The parity operator takes the role of thespin observable, and the role of `diretion' of the spin observable is taken by displaementin phase spae. The parity operator Π(ξ) for N modes is given as
Π(ξ) = ⊗N

i=1Πi(ξi) = ⊗N
i=1Di(ξi)(−1)n̂iD†

i (ξi), (1.111)where Di(ξi) is the phase spae displaement operator of the ith mode, de�ned in Eq.(1.97). It happens that the expetation value of the parity operator Π(ξ) with a givenstate ρ̂ gives its Wigner funtion [168, 169℄ :
Wρ(ξ) = Tr(ρ̂Π(ξ)). (1.112)Hene, the expetation value of the parity operator on simple states suh as Gaussianstates is easily evaluated. In [219℄ the Bell operator

B = Π(0, 0) + Π(0, β) + Π(α, 0) − Π(α, β) (1.113)was onsidered, where α, and β are phase spae displaements on the two modes. Separa-ble ontinuous variable states have to satisfy the inequality |B| ≤ 2. It was demonstratedin [219℄ that the two-mode squeezed vauum learly violated this inequality. This ideawas further generalised to the multi-mode ase in [221℄.Another equivalent approah towards Bell inequalities in ontinuous variable systemswas given in [220℄. This was done through the extension of the spin operators to in�nitedimensions through a diret sum of the spin-12 Pauli operators. In this set up, the Paulispin operators σ̂z, σ̂+, and σ̂− are given by
σ̂z = (−1)n̂, σ̂+ = σ̂−† =

∞
∑

n=0

|2n〉〈2n + 1|. (1.114)It is easy to see that the pseudo-spin operators de�ned above, satisfy the SU(2) algebrarequired of spin-12 operators. It is now easy to extend the Bell-CHSH inequalities inEq. (1.36) to the ontinuous variable ase. In [220℄ suh an extension was done, andthe entanglement in two-mode squeezed vauum was demonstrated. The role of Bell'sinequalities in deteting entanglement is also disussed in [222�225℄.
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Chapter 1. Basi Ideas1.8.2 Partial transposeWe have already seen in Eq. (1.109) that the Wigner funtion transforms as a salar �eldunder the ation of sympleti group elements orresponding to evolution under quadratihamiltonians. The transpose map and the partial transpose map also take a geometriform in the Wigner desription. For a single mode of radiation �eld, it follows fromthe de�nition of the Wigner funtion that transpose operation on the density operatoris equivalent to omplex onjugation of the elements of the density matrix in positionrepresentation, whih transribes faithfully into momentum reversal operation in theWigner desription :
T : Wρ(q, p) → W

′

ρ(q, p) = Wρ(q,−p) = Wρ(Λξ),

Λ = diag(1,−1) = σ3. (1.115)This amounts to a mirror re�etion whih inverts the p oordinate, leaving the q oordi-nate unhanged. The transpose map takes density operators to density operators, but isunphysial as seen in Setion 1.4.6. For a bipartite system of two modes of radiation �eld,partial transposition amounts to inverting the p oordinate for one of the subsystems.Its ation on the Wigner funtion is given by
PT : Wρ(qa, pa, qb, pb) → W

′

ρ(qa, pa, qb, pb)

= Wρ(qa, pa, qb,−pb). (1.116)Though the partial transpose, as a map, is given by an elegant transformation withregard to the Wigner funtion, its usefulness as an entanglement witness is manifestonly when we are able to test a phase spae distribution for its Wigner quality. Thatis, one has to answer the question as to when is a funtion in phase spae a Wignerfuntion. Suh a question was initially raised in the limited ontext of Gaussian Wignerfuntions in [201℄, and fully answered in [226℄ in that ontext. This was possible beauseof the Williamson's theorem [226℄. This onsequently led to the demonstration of partialtranspose as an e�etive entanglement riterion in the ase of two-mode Gaussians [57℄.In general, one an test for entanglement in a limited manner through the manifestationof partial transpose on moments.Given a state ρ̂(ab) of a bipartite system of two modes of radiation �eld, a test forentanglement in ρ̂(ab) through partial transpose would be to test for negativity of ρ̂(ab)PT .A diret approah would be to test for violation of positivity of the diagonals of ρ̂(ab)PT insome orthogonal basis pertaining to the omposite system Hilbert spae Ha ⊗Hb. Suhan e�ort may be tedious while one is dealing with ontinuous variable systems. A simpler38



Chapter 1. Basi Ideaspratial approah, but limited in sope, would be to test for violation of positivity of
ρ̂(ab)PT by taking its expetation value with a positive operator. Suh a test may not inpriniple apture the negativity of ρ̂(ab)PT in its entirety, but may prove to be useful inertain ontexts. An immediate requirement of the proedure demands the systemationstrution of positive operators ating on Ha ⊗Hb. Given an operator

η =
∑

jklm

cjklmâ
†j âkb̂†l b̂m, (1.117)the operator η†η is positive by onstrution. A simple test for violation of positivity of

ρ̂(ab)PT is to then hek if
Tr(ρ̂(ab)PT (η†η)) = Tr(ρ̂(ab)(η†η)

PT
) < 0. (1.118)To this end, we need to know how partial transpose ats on an ordered monomial

(â†j âkâ†pâq b̂†lb̂mb̂†r b̂s). Sine the reation and annihilation operators b̂† and b̂ are real,transposition on Bob's side alone amounts to hermitian onjugation of operators on Bob'sside. We have
(â†j âkâ†pâq b̂†lb̂mb̂†r b̂s)PT = (â†j âkâ†pâq b̂†sb̂r b̂†mb̂l). (1.119)As a simple example demonstrating the e�etiveness of the proedure ours in the aseof two-mode Gaussians. The violation of partial transpose at the level of variane matrixorresponding to η†η being quadrati in the annihilation and reation operators of thetwo modes, turns out to be a both neessary and su�ient test for entanglement [57℄.We shall see later how this proedure an be e�etive in more general ontexts [227�229℄.1.8.3 Inseparability riteria through unertainty relationsThis method of deteting entanglement in ontinuous variable systems is based on the fatthat expetation values of nonloal operators pertaining to the omposite system haveto obey additional onstraints for separable states in addition to the usual unertaintypriniple. As a simple example, onsider the pair of EPR like operators x̂a−x̂b and p̂a+p̂b.The sum of the varianes of these two operators goes to zero for maximally entangledstates. Suh a state may appear unphysial though, but for the two-mode squeezedvauum the total variane rapidly tends to zero with inreasing degree of squeezing. Andthis state approahes the maximally entangled state as the squeeze parameter grows.
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Chapter 1. Basi IdeasHowever for a separable state, assuming that the �rst moments were zero, we have
〈(x̂a − x̂b)

2〉 + 〈(p̂a + p̂b)
2〉 =

∑

i

pi〈x̂2
a〉i +

∑

i

pi〈x̂2
b〉i − 2

∑

i

pi〈x̂a〉i〈x̂b〉i

+
∑

i

pi〈p̂2
a〉i +

∑

i

pi〈p̂2
b〉i + 2

∑

i

pi〈p̂a〉i〈p̂b〉i

=
∑

i

pi(〈x̂2
a〉i − 〈x̂a〉2i ) +

∑

i

pi(〈p̂2
a〉i − 〈p̂a〉2i )

+
∑

i

pi(〈x̂2
b〉i − 〈x̂b〉2i ) +

∑

i

pi(〈p̂2
b〉i − 〈p̂b〉2i ) +

∑

i

pi(〈x̂a〉i − 〈x̂b〉i)2 +
∑

i

pi(〈p̂a〉i + 〈p̂b〉i)2 ≥ 2. (1.120)Suh a riterion was e�etively used in [58, 230℄ to demonstrate entanglement in two-modeGaussian states. The EPR unertainty relation in Eq. (1.120) also beomes useful inevaluating the EOF of two-mode symmetri Gaussian states. This method was extendedto the multi-mode senario in [231℄. Similar tehniques, based on the unertainties onmoments were used in the ase of �nite dimensional systems to detet entanglement[59�61℄, and later extended to ontinuous variable systems in [232℄.Positive maps on matrix of moments : This tehnique was reently introdued in [233℄.It enables us to apply the positive maps familiar from the ontext of �nite dimensionalsystems to detet entanglement in ontinuous variable systems through the matrix ofmoments. Any moment matrix generated by tensoring operators belonging to the indi-vidual systems is separable on separable states, thus inseparability of the moment matriximplies entanglement for the state. As a simple example, for two pairs of operators f̂1, f̂2on Alie's side, and ĝ1, ĝ2 on Bob's side, the matrix of moments formed by the tensoredset (f̂1ĝ1, f̂1ĝ2, f̂2ĝ1, f̂2ĝ2), i.e.,
M =













〈f̂2
1 ĝ

2
1〉 〈f̂2

1 ĝ1ĝ2〉 〈f̂1f̂2ĝ
2
1〉 〈f̂1f̂2ĝ1ĝ2〉

〈f̂2
1 ĝ2ĝ1〉 〈f̂2

1 ĝ
2
2〉 〈f̂1f̂2ĝ2ĝ1〉 〈f̂1f̂2ĝ

2
2〉

〈f̂2f̂1ĝ
2
1〉 〈f̂2f̂1ĝ1ĝ2〉 〈f̂2

2 ĝ
2
1〉 〈f̂2

2 ĝ1ĝ2〉
〈f̂2f̂1ĝ2ĝ1〉 〈f̂2f̂1ĝ

2
2〉 〈f̂2

2 ĝ2ĝ1〉 〈f̂2
2 ĝ

2
2〉













, (1.121)is separable for separable states. This method enables us to indiretly (diretly) use thetheory of positive maps to detet entanglement in ontinuous variable systems.
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Chapter 1. Basi Ideas1.9 Gaussian statesGaussian states form an integral part of quantum information theory in the ontextof ontinuous variables. Initially they were studied in the ontext of radiation �eldsin quantum optis [185, 201, 202, 226, 234�240℄. Muh of the study was devoted toharaterising them through the variane matrix and the exploration of nonlassiality ofthese states whih was primarily in the form of squeezing. But with the development ofquantum information theory the fous has shifted to the study of entanglement in thesestates [57, 58, 70, 136, 138, 140, 143, 144, 147�150, 156�159, 217, 241�271℄. Teleporation,the fundamental protool of quantum information theory has been ahieved using them[83, 88�90, 96, 97, 103℄. This has lead to the exploration of Gaussian states in a majorway.We review, very brie�y, some of these developments. The potential role of Gaus-sian states in quantum information proesses was initially realised in [82℄ in the form ofteleportation. The entanglement involved in this protool was �rst pointed out in [105℄.Subsequently, the detetion of entanglement of these states was ompletely haraterisedin [58, 272℄. The e�etive use of the variane matrix formalism in the ontext of bipartiteentanglement was initially arried out in [57℄, and this was possible beause Gaussianstates are ompletely spei�ed by their variane matrix. The primary tool is the e�etiveuse of unertainty priniple in haraterising them [192, 202, 218, 226℄. The Williamsontheorem has a fundamental role to play in this ontext [192, 202, 226, 272, 273℄.In [241℄ a family of bound entangled Gaussian states was onstruted, and in [217℄the issue of distillability was solved: it was shown that every NPT Gaussian state isdistillable. Puri�ation of Gaussian states has been disussed in [259, 268, 271℄. In[242℄, the issue of bipartite separability in the multi-mode ase was ompletely solved.The various possible situations that ould arise with regard to separability in tripartitesystems was disussed in [243℄. Entanglement in multipartite Gaussians was studied in[249, 250℄. It was found that in speial ases Gaussian multipartite entanglement an beredued to two-mode Gaussian entanglements using loal operations alone.The role of squeezing in generating entanglement in these states was disussed. in[136�138, 140℄, and some of the speial properties of Gaussian states were disussed in[244, 246, 252, 253℄. In [244, 246℄ it was found that Gaussian states annot be distilledwith Gaussian operations alone, and in [252℄ it was shown that the optimal loning ofGaussian states required additional non-Gaussian resoures. Some of the extremal prop-erties of Gaussian states were disussed in [253℄. One partiular suh extremal propertyhelped solve the problem of determining the entanglement of formation in symmetriGaussian states [70℄. We will have more to say on this later in the thesis. Lower bounds41



Chapter 1. Basi Ideason the entanglement of formation of general bipartite Gaussian states was obtained in[262℄.The determination of entanglement in bipartite Gaussian states through purity mea-surements was disussed in [248, 261, 263℄. Suh a study brought out the possibility ofharaterising Gaussian states through both global and loal purities. Properties suh asthe loss of entanglement in evolution was disussed in [137, 260, 274℄.Gaussian hannels have been disussed in [149, 157, 269℄. A de�nition for the mostgeneral Gaussian hannel was given in [157℄. The quantum hannel apaity de�nedthrough oherent information was evaluated for a ertain lass of Gaussian hannels in[158, 159℄.The possibility of assessing the entanglement in two-mode Gaussian states using loalparity measurements and lassial ommuniation was disussed in [247℄. It was shownthat given su�iently large number of opies of a Gaussian state, its entanglement andthe state itself an be haraterised ompletely by LOCC!The onept of entanglement monogamy [275, 276℄ was extended to the Gaussian asein [254, 255℄, and monogamy relations were established. In [251℄ the variane matrix setup was disussed from the perspetive of onvex sets, and numerial routines were setup to generate entanglement witnesses. More detailed reviews on Gaussian states an befound in [256�258℄.We now desribe the basi formalism for handling Gaussian states and their transfor-mation, with partiular attention to nonlassiality and entanglement.1.9.1 Nonlassiality in GaussiansNonlassiality in Gaussian states primarily ours in the form of quadrature squeezing.This quantum optial onept was initially explored in [185, 192, 237�240, 277, 278℄. Anelegant de�nition for squeezing through the variane matrix formalism was given in [192℄.We brie�y review this work.Sine zero-mean Gaussian states are ompletely spei�ed by their variane matrix,we begin by giving the basi setup of variane matrix, �rst from the perspetive ofnonlassiality, and later we give the desription from the entanglement perspetive.Consider an nmode quantum system with annihilation operators âj, â†j , j = 1, 2, . . . , n,obeying the standard boson ommutation relations
[âj , â

†
k] = δjk , [âj , âk] = [â†j , â

†
k] = 0, (1.122)
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Chapter 1. Basi Ideasor equivalently
[q̂j, p̂k] = iδjk , [q̂j, q̂k] = [p̂j , p̂k] = 0, where

âj =
q̂j + ip̂j√

2
, â†j =

q̂j − ip̂j√
2

. (1.123)It is onvenient to arrange the hermitian q̂j, p̂j and the âj , â†j in 2n omponent olumnvetor forms :
ξ̂(r) =











































q̂1

.
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q̂n

p̂1
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p̂n











































, ξ̂(c) =











































â1
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â†n











































. (1.124)
The `vetors' ξ̂(c) and ξ̂(r) are related by a �xed numerial unitary matrix Γ

ξ̂(c) = Γξ̂(r), where

Γ =
1√
2

(

11 i11

11 −i11

)

. (1.125)The anonial ommutation relations among the mode operators an now be suintlywritten as
[ξ̂

(r)
j , ξ̂

(r)
k ] = iβjk, [ξ̂

(c)
j , ξ̂

(c)
k ] = iΣjk,

i, j = 1, 2, . . . , 2n, (1.126)where the 2n× 2n dimensional matries β and Σ are given in blok form by
β =

(

0 11

−11 0

)

, Σ =

(

11 0

0 −11

)

. (1.127)
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Chapter 1. Basi IdeasWe de�ne the 2n× 2n real variane matrix V (r) for a state ρ̂ by
V

(r)
jk =

1

2
Tr(ρ̂{ξ̂(r)j ξ̂

(r)T
k }), (1.128)where {., .} is the antiommutator. We an alternatively arrive at the variane matrixby taking the expetation value of the positive operator ξ̂(r)ξ̂(r)T , i.e.,

〈ξ̂(r)ξ̂(r)T 〉 = Tr(ρ̂ ξ̂(r)ξ̂(r)T ) = V (r) +
i

2
β.We an write the variane matrix in an n× n blok form as

V (r) =

(

V1 V2

V T
2 V3

)

,

(V1)jk = 〈q̂j q̂k〉, (V2)jk =
1

2
〈{q̂j , p̂k}〉, (V3)jk = 〈p̂j p̂k〉,

j, k = 1, 2, . . . , n . (1.129)The matrix V1 gives the orrelations among the q̂'s, V3 gives those among the p̂'s, and V2the orrelations between the q̂'s and p̂'s. For a state ρ̂ with non zero mean (〈ξ̂(r)〉) 6= 0,the variane matrix is de�ned by simply replaing ξ̂(r) by ∆ξ̂(r) = ξ̂(r) − 〈ξ̂(r)〉. Suh areplaement orresponds to a rigid translation in phase spae by amount −〈ξ̂(r)〉, imple-mented by the displaement operator D(−〈ξ̂(r)〉).The omplex form of the variane matrix V (c) is generated by taking the expetationvalue of the positive operator ξ̂(c)ξ̂(c)†, i.e.,
〈ξ̂(c)ξ̂(c)†〉 = V (c) +

1

2
Σ, where

V (c) = ΓV (r)Γ†. (1.130)Writing in n× n blok form, we have
V (c) =

(

A B

B∗ A∗

)

,

Ajk = A∗
kj =

1

2
〈{âj , â

†
k}〉, Bjk = Bkj = 〈âj âk〉. (1.131)By de�nition, V (r) is symmetri positive de�nite, this also implies that V (c) is omplexhermitian positive de�nite. It also implies that A is hermitian, and B is symmetri. Wehave the following relations between the bloks of the variane matrix in its real and
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Chapter 1. Basi Ideasomplex forms :
A =

1

2
[V1 + V3 + i(V T

2 − V2)],

B =
1

2
[V1 − V3 + i(V T

2 + V2)];

V1 =
1

2
(A+A∗ +B +B∗),

V2 =
i

2
(A−A∗ −B +B∗),

V3 =
1

2
(A+A∗ −B −B∗). (1.132)Unertainty priniple : Given a real symmetri positive de�nite 2n × 2n matrix V (r),it has to satisfy additional requirements to qualify as a variane matrix derived from aquantum mehanial state. The additional requirements are suintly aptured by theunertainty priniple [192℄ :
V (r) +

i

2
β ≥ 0. (1.133)The above ondition is both neessary and su�ient to validate a given symmetri positivede�nite matrix V (r) as the variane matrix of some quantum state. The neessity of theondition follows from de�nition but the su�ieny part, whih is nontrivial, followsfrom the use of Williamson theorem [272, 273℄. In the ase of Gaussian probabilitydistributions this unertainty priniple on the variane matrix is both neessary andsu�ient ondition to qualify the probability as a Wigner distribution[226℄, sine in thisase the variane matrix ompletely spei�es the quantum state. This is no longer truein more general ontexts [279℄.Unitary evolution : Unitary evolution of the mode operators under a quadrati hamilto-nian orresponds to a sympleti transformation on the olumn vetor ξ̂(r) :

U = exp(−iH) ⇒ U †ξ̂(r)U = S
(r)
H ξ̂(r), where

H =
∑

j,k

h
(r)
jk ξ̂

(r)
j ξ̂

(r)
k , and

S
(r)
H ∈ Sp(2n,R), i.e., S

(r)
H βS

(r)T
H = β. (1.134)Under suh a unitary evolution, the vetor ξ̂(c) transforms as

ξ̂(c) → ξ̂′
(c)

= S
(c)
H ξ̂(c), S

(c)
H = ΓS

(r)
H Γ†. (1.135)
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Chapter 1. Basi IdeasGiven a state ρ̂ with variane matrix V (r), under time evolution by a quadrati hamilto-nian the variane matrix evolves through a ongruene by the sympleti transformationorresponding to the hamiltonian :
ρ̂ → ρ̂′ = U(S(r))ρ̂U(S(r))

† ⇒
V (r) → V ′(r) = S(r)V (r)S(r)T , S(r) ∈ Sp(2n,R). (1.136)We have removed the subsript H for brevity. Similarly, the omplex form of the varianematrix evolves as

V (c) → V ′(c) = S(c)V (c)S(c)†, S(c) = ΓS(r)Γ†. (1.137)The sympleti group : The de�ning property of matries omprising the sympleti group
Sp(2n,R) is

S(r) ∈ Sp(2n,R) ⇔ S(r)βS(r)T = β. (1.138)The group is haraterised by n(2n+ 1) generators, of whih n2 generators are ompatgenerators and total photon number. The remaining n(n+1) generators are nonompat,and do not onserve the total photon number. The hermitian quadrati hamiltonianswhih orrespond to the ompat generators an be taken to be
1

4
(â†j âj + âj â

†
j), j = 1, 2, . . . , n;

1

4
(â†j âk + â†kâj),

i

4
(â†j âk − â†kâj), j < k = 2, . . . , n. (1.139)They ommute with the total photon number

N̂ =

n
∑

j=1

â†j âj , (1.140)and the unitary operators generated by them orrespond to passive systems whih pre-serve lassiality. The remaining n(n+ 1) linearly independent hermitian quadrati non-ompat generators an be given by
1

4
(â†j â

†
k + âkâj),

i

4
(â†j â

†
k − âkâj), j ≤ k = 1, 2, . . . , n. (1.141)46



Chapter 1. Basi IdeasThe maximal ompat subgroup of Sp(2n,R) denoted by K(n) is generated by the n2ompat generators, and is given by
S(r)(X,Y ) =

(

X Y

−Y X

)

, (1.142)where X and Y are real n× n matries obeying
XXT + Y Y T = 11, XY T = Y XT . (1.143)It is easy to see that

S(r)(X,Y )S(r)T (X,Y ) = 11, S(r)(X,Y )βS(r)T (X,Y ) = β. (1.144)Suh a matrix is both orthogonal and sympleti in 2n dimensions. Going over to theomplex form, we have
S(c)(X,Y ) = ΓS(r)(X,Y )Γ† =

(

U 0

0 U∗

)

= S(c)(U),

U = X − iY, UU † = 11, (1.145)That is X − iY (and hene X + iY ) is a unitary matrix. Thus the maximal ompatsubgroup K(n) of Sp(2n,R) is isomorphi to U(n). In other words,
K(n) = SO(2n) ∩ Sp(2n,R) = U(n). (1.146)An interesting property of K(n) is that it ats transitively on the phase spae unit sphere

S(2n−1).Theorem 1.9 A variane matrix is squeezed if and only if
l(V (r)) <

1

2
, (1.147)where l(V (r)) is the least eigenvalue of the variane matrix V (r) [192℄.One is able make this statement beause of the transitive ation of K(n) on the unitsphere S(2n−1), though one annot in general diagonalise a given V (r) by K(n) rotations[192℄.
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Chapter 1. Basi Ideas1.9.2 Entanglement in GaussiansWe now revise our notation into one whih is useful in desribing entanglement in multi-mode Gaussian states. The earlier notation was useful from the perspetive of passivedevies, and hene nonlassiality as the ation of any passive devie is ompatly de-sribed as a unitary transformation on the annihilation operators. With entanglement inperspetive, it is useful to make a modewise grouping of the anonial variables.Consider a bipartite system onsisting of n modes, with m modes in possession ofAlie and the remaining n −m modes in Bob's possession. We introdue the followingnotation :
ξ̂(a) = (q̂1, p̂1, q̂2, p̂2, . . . , q̂m, p̂m);

ξ̂(b) = (q̂m+1, p̂m+1, q̂m+2, p̂m+2, . . . , q̂n, p̂n);

ξ̂ = (ξ̂(a), ξ̂(b)). (1.148)The ommutation relations are given in a ompat form as
[ξ̂α, ξ̂β] = iΩαβ, α, β = 1, 2, . . . , 2n, (1.149)where

Ω =























J 0 . . . 0

0 J . . . 0

. . . .

. . . .

. . . .

0 0 . . . J























, J =

(

0 1

−1 0

)

. (1.150)
Clearly, a anonial transformation S satis�es

SΩST = Ω. (1.151)Suppose that the state has a nonzero mean. Then we an de�ne the translated operators
∆ξ̂ = ξ̂ − 〈ξ̂〉, in whih ase, the variane matrix is de�ned as

〈{∆ξ̂α,∆ξ̂β}〉 = Tr({∆ξ̂α,∆ξ̂β}ρ̂) = Vαβ. (1.152)
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Chapter 1. Basi IdeasThe unertainty priniple is now stated as
V +

i

2
Ω ≥ 0. (1.153)We have the following theorem with regard to bipartite separability.Theorem 1.10 A neessary and su�ient ondition for separability of a Gaussian statedesribed by the variane matrix V is [280℄,

V ≥ 1

2
SaS

T
a ⊕ SbS

T
b ,

Sa ∈ Sp(2m,R), Sb ∈ Sp(2n − 2m,R). (1.154)The inequality simply states that the variane matrix of a separable state is always greaterthan that of a pure produt Gaussian state. In other words, a separable state an bemade lassial by loal unitary anonial transformations. Suh a thing is impossible ifthe Gaussian state was entangled aross the a-b divide [26℄.Partial transpose : As stated already in Setion 1.8.2, partial transpose ats on the Wignerfuntion as momentum reversal on Bob's side. Under partial transpose, the varianematrix of a multipartite state aross a bipartite ut, undergoes the hange V → Ṽ =

Λ′V Λ′, where
Λ = diag(11, 11, · · · , 1m, 1m; 1m+1,−1m+1, · · · , 1n,−1n). (1.155)We an now implement partial transpose on the variane matrix and test for entan-glement. In addition to the unertainty priniple, the variane matrix of a separable statehas to obey
Ṽ +

i

2
Ω ≥ 0, Ṽ = Λ′V Λ′, Ω =

(

ΩA 0

0 ΩB,

)

. (1.156)This an be alternatively stated as
V +

i

2
Ω̃ ≥ 0, Ω̃ = Λ′ΩΛ′, Ω̃ =

(

ΩA 0

0 −ΩB,

)

. (1.157)A variane matrix is said to be PPT, if it satis�es the above inequality.Of partiular interest are two-mode Gaussian states, whose variane matrix in blok
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Chapter 1. Basi Ideasform is given by
V =

(

A C

CT B

)

, (1.158)where A, B, and C are 2 × 2 matries. Suh variane matries an be brought to thefollowing anonial form using loal sympleti transformations, i.e., using the ation of
Slocal ∈ Sp(2, R) ⊕ Sp(2, R) :

V → V0 =













a 0 c1 0

0 a 0 c2

c1 0 b 0

0 c2 0 b













. (1.159)It turns out that in the two-mode ase, PPT is a neessary and su�ient riterion forseparability, and is stated in a loal invariant form as [57℄
detAdetB +

(

1

4
− |detC|

)2

− Tr(AJCJBJCTJ) ≥ 1

4
(detA+ detB)

⇔ 4(ab− c21)(ab− c22) ≥ (a2 + b2) + 2|c1c2| −
1

4
. (1.160)It is useful to note that Gaussian states with det(C) ≥ 0 are separable.In the ase of symmetri two-mode Gaussian states spei�ed by parameters a, b = a,

c1 and c2, it is possible to solve for the entanglement of formation. It is given by [70℄
f(∆) = c+(∆)log[c+(∆)] − c−(∆)log[c−(∆)], where

C± = (∆− 1
2 ± ∆

1
2 )

2
,

∆ = 2
√

(a− c1)(a+ c2). (1.161)The funtion f is a onvex and dereasing funtion of ∆. We will study the EOF ofgeneral two-mode Gaussian states in Chapter 4.1.9.3 Gaussian ompletely positive maps�Gaussian hannelsA Gaussian ompletely positive map (or Gaussian hannel) is any ompletely positive mapwhih takes Gaussian states to Gaussian states. It was disussed initially in [149, 157℄, andmore reently in [158, 159, 281�288℄. In [158, 159, 281, 284, 286℄ single-mode Gaussianhannels were disussed and lassi�ed, and issues regarding their hannel apaity werestudied. More reently multi-mode Gaussian hannels have been lassi�ed in [287, 288℄.50



Chapter 1. Basi IdeasGaussian hannels an be realised very muh in the form of Eq. (1.26) and Eq. (1.27).But now one has to be areful to maintain the Gaussian harater of the state. Givena Gaussian state ρ̂, a simple way to generate the most general Gaussianity preservingmap is to ouple the given state to an auxiliary or anilla Gaussian state, then evolvethem together with a unitary evolution orresponding to the most general Gaussianpreserving unitary, i.e., the unitary operator in this ase onsists of unitaries generatedfrom anonial transformations orresponding to a sympleti group element and anarbitrary phase spae translation, then trae away the auxiliary system. Clearly, allthe operations done are anonial Gaussianity preserving operations. Thus the resultantstate is Gaussian for every Gaussian input. The variane matrix of the resultant state isrelated to the variane matrix of the input state in the following way :
V → XTV X + Y,

X, Y ∈ R2n×2n. (1.162)Clearly, X ats on the variane matrix through ongruene and Y is the additional noisematrix. Here X and Y are hosen so that the unertainty priniple is respeted. We willhave more to say on them in Chapter 6, where we derive the Kraus representation for alass of single-mode Gaussian hannels.
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2Nonlassial photon statistis and entanglement
2.1 IntrodutionIn this Chapter we explore the relation between entanglement and nonlassiality. Non-lassiality and entanglement are two important features exhibited by ontinuous vari-able states. It is well known that nonlassiality is a prerequisite for entanglement. Twoanonial manifestations of nonlassiality have been extensively studied in the quantumoptis ontext: (1) squeezing [116�135℄, and (2) antibunhing or sub-Poissonian �u-tuation, whih is a partiular manifestation of nonlassial photon statistis [289�323℄;these are respetively nonlassialities of the phase-sensitive and phase-insensitive types.Whereas the former has been well explored as a soure of entanglement in the ontext ofGaussian states, the same annot be said in respet of the latter.Realling the de�nition of nonlassiality in Eq. (1.104), every lassial state is aonvex sum of oherent states, and hene separable. In general, nonlassiality doesnot imply entanglement, but there is a useful onnetion between nonlassiality andinseparability, and the beam splitter plays an important role as a bridge between thesetwo attributes. The seminal work of Asboth et al. [171℄ shows that the output state ρ̂(ab)

outof a beamsplitter represented by a unitary operator U , whose input is a produt state
ρ̂
(ab)
in = ρ̂(a) ⊗|0〉bb〈0|, is entangled if and only if the single-mode state ρ̂(a) at the input isnonlassial. [Thus any measure of entanglement of the output state in this on�gurationis a omputable measure of nonlassiality, the entanglement potential (EP) of ρ̂(a)℄.For states of the form ρ̂

(ab)
out = Uρ̂(a) ⊗ |0〉bb〈0|U †, entanglement in ρ̂

(ab)
out is learlyditated by the nonlassiality of ρ̂(a). Thus to test for entanglement of ρ̂(ab)
out , one hasto onlusively answer the question as to whether a given state ρ̂(a) of a single modeof radiation �eld is lassial or not. Furthermore, given the fat that negativity underpartial transpose (NPT) is a prerequisite for distillability [45℄, an issue of interest is asto when is ρ̂(ab)

out NPT, and if so, is it distillable. If one is able to answer some of these52



Chapter 2. Nonlassial photon statistis and entanglementqualitative aspets of the entanglement of ρ̂(ab)
out , then one may proeed further to addressquantitative aspets like the measure or ontent of entanglement in ρ̂(ab)

out . We attempt toanswer these questions for a speial lass of states.For the states ρ̂(a) of the a-mode whih are diagonal in the standard Fok basis andhene phase invariant, the issue of lassiality/nonlassiality has already been settled[170℄, thanks to the Steiltjes moment problem [324℄. We exploit this result to advantage.To begin with, we brie�y review the earlier work in [170℄. We introdue the notion ofphase-insensitive nonlassiality and the lassi�ation of states that it leads to. Thisleads to demonstration of the the equivalene of the issue of lassiality/nonlassialityof the phase invariant states to a Steiltjes moment problem.We then brie�y desribe the two equivalent approahes in the desription of theproblem; one through the fatorial moments {γm}, and the other through the photonnumber distribution or PND sequene {qn}. We disuss two equivalent approahes toappliation of partial transpose in the ontext of ontinuous variables, �rstly through itsdiret exeution on the state through a hosen basis set, and then in a slightly indiretway through its manifestation on the moments using the tehnique introdued in Setion1.8.2.This is followed by a brief disussion of the SU(2) beamsplitter whih serves ourpurpose as an entangling devie. We show that with ρ̂
(ab)
in = ρ̂(a) ⊗ |0〉bb〈0| as input,the two-mode state after the beam splitter is de�nitely NPT if ρ̂(a) is nonlassial ofthe phase-insensitive type. That is, the output two-mode state is NPT if any one of asequene of lassiality onditions on the PND sequene {qn} is violated. We bring outthe omplete equivalene between PPT of ρ̂(ab)

out and lassiality of ρ̂(a), thus proving thatfor this restrited lass, NPT is a neessary and su�ient riterion for entanglement.Having done so, we show that ρ̂(ab)
out is distillable if ρ̂(a) violates any one of the threeterm lassiality onditions we derive, or if ρ̂(a) is antibunhed. The establishment ofthe equivalene of inseparability and NPT of ρ̂(ab)

out , ensures negativity as a good measureof entanglement in this ontext. We establish simple upper and lower bounds on theentanglement of formation (EOF) for two simple ases of nonlassial PND. For thesimple ase of ρ̂(a) being a mixture of the ground state and the nth Fok state, we showthat we an distill more entanglement than indiated by a lower bound for EOF in[76, 325℄, whih is based on the Terhal-Vollbret formula [69℄, whih returns the EOFexatly for isotropi states.
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Chapter 2. Nonlassial photon statistis and entanglement2.2 Phase-insensitive nonlassiality for a single mode of ra-diation �eldConsider a single mode of quantised radiation �eld, with reation and annihilation op-erators â†, â obeying the standard ommutation relation [â, â†] = 11. A general state ofthe �eld is desribed by a density operator ρ̂ whih is hermitian nonnegative and hasunit trae. Aording to the diagonal representation theorem [112℄, it an be expandeddiagonally in the oherent state basis as
ρ̂(a) =

∫

d2za
π

φ(za)|za〉〈za|, (2.1)the integration being done over the entire omplex plane. Here |za〉 is the oherent statede�ned as the eigenvetor of â; expanded over the Fok basis it reads
|za〉 = exp

(

−1

2
|za|2

) ∞
∑

n=0

za
n

√
n!
|n〉a. (2.2)The weight funtion φ(za) is real on aount of hermitiity of ρ̂(a), and normalised tounit integral on aount of unit trae of ρ̂(a) :

∫

d2za
π

φ(za) = 1. (2.3)However it need not be pointwise positive on the omplex plane (phase spae). This fatleads to the lassi�ation of states as lassial and nonlassial. States whose φ(za) ispointwise positive are said to be lassial, and any state desribed by a φ(za) whih isnot pointwise positive is deemed nonlassial.With za = reiθ, in general φ(za) depends on both r and θ. However for a speiallass of states, states whih are invariant under evolution by the hamiltonian â†â, φ(za)is a funtion of |za| alone. These states are diagonal in the Fok basis and are said to bephase-insensitive. The diagonal weight φ(za) desribing suh a state is radially symmetriin the omplex plane and this radial dependene of φ(za) alone is su�ient to desribethe state ompletely. We denote this family of states by D, and its elements by ρ̂(a)
D ∈ D :

ρ̂
(a)
D =

∞
∑

n=0

p(n)|n〉〈n|, .

∞
∑

n=0

p(n) = 1, p(n) ≥ 0,

p(n) = 〈n|ρ̂(a)|n〉 =

∫ ∞

0
dIaP(Ia)e

−Ia
In
a

n!
, n = 0, 1, 2, . . .
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Chapter 2. Nonlassial photon statistis and entanglementwhere
φ(za) = φ(|za|2) = 2πP(Ia),

∫ ∞

0
dIaP(Ia) = 1. (2.4)Here Ia = |za|2. The above relation is invertible, and P(Ia) an be written in terms ofthe p(n)'s :

P(Ia) = eIa

∫ ∞

0
dKΛ(K)J0(2

√
KI),

Λ(K) =
∞
∑

n=0

(−K)n
p(n)

n!
, (2.5)where J0 is the Bessel funtion of order zero [170℄. This invertible relationship impliesevery state ρ̂(a)

D in the family D is ompletely spei�ed by the radial weight P(Ia).Alternatively, one an view these states from the perspetive of observables. Anyhermitian observable an always be written as a funtion of â and â† in normal orderedform, F (â†, â). Its expetation value in the state ρ̂(a) is given by
〈F (â†â)〉 = Tr(ρ̂(a)F (â†, â)

=

∫

d2za
π

φ(za)F (z∗a, za). (2.6)If in partiular F (â†, â) is phase insensitive, i.e., F (â†, â) = G(â†â), then its expetationvalue does not require all the information in φ(za), a simpler phase averaged distribution
P(I) su�es :

F (â†eiα, âe−iα) = F (â†, â) ∀ α ∈ [0, 2π) ⇒

〈F (â†â)〉 =

∫ ∞

0
dIaP(Ia)F (I

1
2
a , I

1
2
a ),

P(Ia) =

∫ 2π

0

dθ

2π
φ(I

1
2
a e

iθ),

∫ ∞

0
dIaP(Ia) = 1. (2.7)We an regard P(Ia) as the real marginal radial distribution obtained from the omplete

φ(za). Every phase-insensitive observable sees only the diagonal element of ρ̂(a) in theFok basis. This leads us to de�ne the photon number distribution or PND of a stateas these diagonal entries p(n). The PND sequene {p(n)} of a state is de�ned throughphase averaging the state, whih amounts to simply dropping the o�-diagonal elements
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Chapter 2. Nonlassial photon statistis and entanglementof ρ̂(a) in the Fok basis :
ρ̂(a) →

∫

eiθâ†âρ̂(a)e−iθâ†âdθ

=

∞
∑

n=0

p(n)|n〉〈n|,

∞
∑

n=0

p(n) = 1, p(n) ≥ 0. (2.8)With the two quantities φ(za) and P(Ia), one an set up a three-fold lassi�ation ofnonlassiality of states :
ρ̂(a) classical ⇔ φ(za), P(Ia) ≥ 0;

ρ̂(a) weakly nonclassical ⇔ φ(za) 6≥ 0, P(Ia) ≥ 0;

ρ̂(a) strongly nonclassical ⇔ φ(za) 6≥ 0, P(Ia) 6≥ 0. (2.9)But when one is dealing with phase-invariant states ρ̂(a)
D i.e., a PND {p(n)} or alterna-tively only with phase-insensitive observables, the following lassi�ation of nonlassial-ity su�es :

ρ̂(a) classical ⇔ P(Ia) ≥ 0;

ρ̂(a) nonclassical ⇔ P(Ia) 6≥ 0. (2.10)Genuinely lassial states annot be distinguished from weakly nonlassial states at thephase insensitive level.2.2.1 Phase-insensitive nonlassiality and momentsGiven a phase-invariant state, it is useful to ask if it is lassial or not, i.e., if its orre-sponding P(Ia) is pointwise positive or not. Clearly, P(Ia) is funtion on the real axiswith the parameter Ia going from zero to in�nity. A simple test of positivity of P(Ia)will be to take its overlap with a �nite degree polynomial f(Ia) whih is itself pointwisepositive in the real axis, and see if the overlap is positive, i.e.,
P(Ia) ≥ 0 ⇒

∫ ∞

0
dIaP(Ia)f(Ia) ≥ 0,

f(Ia) =
∞
∑

n=0

cnIa
n ≥ 0, 0 ≤ Ia ≤ ∞. (2.11)
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Chapter 2. Nonlassial photon statistis and entanglementThe overlap integral returning a negative value would imply that P(Ia) ould not havebeen pointwise positive and hene that the state in onsideration was nonlassial. Thusevery positive polynomial f(Ia) results in a neessary ondition for lassiality. It is usefulto note that the funtion f(Ia) being pointwise positive does not require the oe�ientsin its expansion to be positive. A simple example is the ase of square of a polynomialwhih has oe�ients of both signs in its expansion.There are several signatures of phase-insensitive nonlassiality. The most familiar isthe Mandel's riterion, whih distinguishes between super and sub-Poissonian PND's. Astate with a sub-Poissonian PND is said to be antibunhed. For an antibunhed state
〈∆N̂a〉

2 − 〈N̂a〉 = 〈N̂2
a 〉 − 〈N̂a〉

2 − 〈N̂a〉

=

∫ ∞

0
dIaP(Ia)(Ia − 〈Ia〉)2

= (∆Ia)
2 ≤ 0, where

∫ ∞

0
dIaP(Ia)(Ia) =

∞
∑

n=0

np(n) = 〈N̂a〉, and

∫ ∞

0
dIaP(Ia)(Ia + 1)Ia =

∞
∑

n=0

n2p(n) = 〈N̂2
a 〉, (2.12)indiating that P(Ia) 6≥ 0.Clearly, Eqs. (2.11) and (2.12) are indiative of the fat that lassiality/nonlassialityof a state ρ̂(a)

D is a statement on the moments of its orresponding P(Ia). For a lassial
ρ̂
(a)
D , its orresponding P(Ia) is a well de�ned probability distribution, and the set of allits moments ompletely spei�es it. We note in the present ontext that a omplete setof neessary and su�ient onditions expressing the ontent of the lassiality ondition

P(Ia) ≥ 0 is the Stieltjes moment problem [170, 324℄. The pointwise positivity of P(Ia)is ompletely aptured in its moments (fatorial moments) whih are de�ned as
γm = 〈â†mâm〉 =

∫ ∞

0
dIaP(Ia)I

m
a

=

∞
∑

n=0

(n+m)!

n!
p(n+m) ,

m = 0, 1, 2, . . . . (2.13)Given the fatorial moments,Theorem 2.1 The neessary and su�ient onditions for a state ρ̂(a)
D spei�ed by fato-
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Chapter 2. Nonlassial photon statistis and entanglementrial moments {γn} to be lassial is
M (N) ≥ 0, M̃ (N) ≥ 0, N = 0, 1, 2, . . . , where

M (N) =













γ0 γ1 γ2 · · · γN

γ1 γ2 γ3 · · · γN+1...
γN γN+1 γN+2 · · · γ2N













, and

M̃ (N) =













γ1 γ2 γ3 · · · γN+1

γ2 γ3 γ4 · · · γN+2...
γN+1 γN+2 γN+3 · · · γ2N+1













. (2.14)Proof : The neessity part of the theorem follows from taking expetation value of apointwise positive polynomial over [0,∞) with P(Ia). For example, onsider the polyno-mial f1(Ia) =
∑N

n=0 cnI
n
a , where cn are arbitrary real oe�ients. If P(I) is pointwisenonnegative, we will expet 〈(f1(Ia))

2〉P ≥ 0. That is
〈(f1(Ia))

2〉P =

N
∑

m,n=0

cmcn〈Im+n
a 〉P

=

N
∑

m,n=0

cmcnγm+n

=

N
∑

m,n=0

cmcnM
(N)
mn ≥ 0

⇒ M (N) ≥ 0 for every N. (2.15)Similarly, de�ning the polynomial f2(Ia) =
∑N

n=0 dnI
n
a and evaluating the expetationvalue of the nonnegative quantity Ia(f2(Ia))

2 with respet to a pointwise positive funtion
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Chapter 2. Nonlassial photon statistis and entanglement
P(I), we have

〈Ia(f2(Ia))
2〉P =

N
∑

m,n=0

dmdn〈Im+n+1
a 〉P

=

N
∑

m,n=0

dmdnγm+n+1

=

N
∑

m,n=0

dmdnM̃
(N)
mn ≥ 0

⇒ M̃ (N) ≥ 0 for every N. (2.16)Thus nonnegativity of P(Ia) implies that M (N) and M̃ (N) are positive semide�nite forevery N . The su�ieny follows from the fat that every pointwise positive polynomial
f(Ia) over [0,∞) an always be written in terms of two perfet square polynomials as[324℄

f(Ia) = (f1(Ia))
2 + Ia(f2(Ia))

2. (2.17)A simple subset of lassiality onditions on the PND is given by the positivity of
2 × 2 sub-matries (prinipal minors) of either M (N) or M̃ (N). That is

(

γ2m γm+m′

γm+m′ γ2m′

)

≥ 0,

(

γ2n+1 γn+n′+1

γn+n′+1 γ2n′+1

)

≥ 0 . (2.18)The violation of the inequality for the hoie m = 0 and m′ = 1 orresponds to theMandel's riterion enountered earlier in Eq. (2.12). Any lassiality ondition, involvingthe γ's an be deemed global in {p(n)} in the sense that they involves all the p(n)'s inits desription.An equivalent approah to the problem is through the de�nition of the auxiliarydistribution P̃(Ia) = P(Ia)e
−Ia . It is lear that if P(Ia) is pointwise positive, so is

P(Ia)e
−Ia . We have the following equivalene :

Classical PND ⇔ P(Ia) ≥ 0 ⇔ P̃(Ia) ≥ 0. (2.19)In ontrast to the fatorial moments, the moments of P̃(Ia) are well de�ned even if P(Ia)
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Chapter 2. Nonlassial photon statistis and entanglementis not a well de�ned probability distribution, i.e.,
qn = n!p(n) =

∫ ∞

0
dIaP̃(Ia)I

n
a ,

P̃(Ia) = P(Ia)e
−Ia . (2.20)So it is now possible to rede�ne the lassiality requirement of ρ̂(a)

D as the requirementof having P̃(Ia) to be well de�ned probability distribution. The neessary and su�ientonditions on P̃(Ia) to be true probability an now be ast in terms of moments qn of
P̃(Ia). Given the moment sequene {qn},Theorem 2.2 The neessary and su�ient onditions on the PND sequene {qn} inorder that the assoiated distribution P̃(Ia) be a true probability distribution over [0,∞)are

L(N) ≥ 0, L̃(N) ≥ 0, N = 0, 1, 2, . . . , where

L(N) =













q0 q1 q2 · · · qN

q1 q2 q3 · · · qN+1...
qN qN+1 qN+2 · · · q2N













, and

L̃(N) =













q1 q2 q3 · · · qN+1

q2 q3 q4 · · · qN+2...
qN+1 qN+2 qN+3 · · · q2N+1













. (2.21)
This means that L(N) and L̃(N) are positive semide�nite for all N . The proof is analogousto the previous ase.A simple neessary ondition on lassiality of a PND {p(n)} is a three term lassi-ality ondition, whih is derived from the positivity requirement of any of the prinipal
2 × 2 minors of L(N) and L̃(N). That is,

(

q2m qm+m′

qm+m′ q2m′

)

≥ 0,

(

q2n+1 qn+n′+1

qn+n′+1 q2n′+1

)

≥ 0 . (2.22)At the next level in the hierarhy we get a �ve term loal ondition by requiring the
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Chapter 2. Nonlassial photon statistis and entanglementdiagonal 3 × 3 bloks of L(N) and L̃(N) to be positive semide�nite, i.e.,
An =







qn−2 qn−1 qn

qn−1 qn qn+1

qn qn+1 qn+2






≥ 0 (2.23)An interesting situation that arises naturally in this ontext is that all the three termonditions ontained in An ould be satis�ed but still An need not be positive semide�nite.Suh a situation beomes interesting in the ontext of distillability whih we disuss later.Any lassiality ondition involving the moments of P̃(Ia) an be deemed loal in {p(n)}to the onditions in terms of the fatorial moments, as the former involve only a �nitenumber of qn's in their desription.To summarise, we have desribed two equivalent approahes in desribing phase-insensitive nonlassiality, both of them leading to neessary and su�ient onditionson the PND {p(n)}. In the next Setion we demonstrate how we ould extrat usefulentanglement from a nonlassial PND. We onvert the failure of the onditions given inEq. (2.14) and Eq. (2.2) into witnessing of NPT entanglement.2.3 Entanglement, Partial Transpose and NonlassialityWe now turn to the partial transpose (PT) operation. The density matrix ρ̂AB of abipartite system S = A + B is an operator on the tensor produt Hilbert spae HS =

HA ⊗ HB . Any density operator ρ̂AB obeys three de�ning onditions : ρ̂†AB = ρ̂AB,
Tr ρ̂AB = 1, and ρ̂AB ≥ 0. With respet to hosen orthonormal bases (ONB) {|j〉},
{|α〉} for HA and HB respetively, the produt states {|j, α〉 ≡ |j〉⊗}|α〉} give an ONBfor HA ⊗HB. The partial transpose of ρ̂AB is the operator ρ̂PT

AB on HA ⊗HB de�ned inthis ONB by the rule
〈j, α|ρ̂PT

AB |k, β〉 = 〈j, β|ρ̂AB |k, α〉. (2.24)The above de�nition of partial transpose is tied to the given hoies of ONB's in HA and
HB , but the question of whether ρ̂PT

AB is a valid density operator or not is independent ofthis hoie.In general ρ̂PT
AB ould fail to be positive, and the key result is : if ρ̂PT

AB is not positive, then
ρ̂PT

AB is de�nitely an entangled state. In this ase we may say that ρ̂PT
AB is negative underpartial transpose (NPT).Any test whih establishes the nonpositivity of ρ̂PT

AB will su�e to reah the onlusionthat ρ̂AB is entangled. We may for instane be able to �nd an operator Â of the totalsystem S suh that the `expetation value' of the positive operator Â†Â in ρ̂PT
AB is negative.61



Chapter 2. Nonlassial photon statistis and entanglementIn that ase we an onlude,
Tr (ρ̂PT

ABÂ
†Â) < 0, for some Â

=⇒ ρ̂AB entangled. (2.25)Alternatively, and in a sense more diretly, we may be able to �nd some prinipal sub-matrix of the matrix (〈j, α|ρ̂PT
AB |k, β〉) representing ρ̂PT

AB, i.e., a sub-matrix formed byintersetions of any subset of rows of this matrix and the orresponding olumns, suhthat this sub-matrix is not positive de�nite. Then again we an onlude,
Some principal submatrix of ρ̂PT

AB 6≥ 0

⇒ ρ̂AB entangled. (2.26)We will use both strategies in the sequel.Our aim is to onnet presene of entanglement diretly and transparently to non-lassiality, atleast for a lass of states of the radiation �eld. We therefore speialise thesubsystem a and b to be two distint mutually orthogonal single mode radiation �elds,with respetive reation and annihilation operator pairs â†, â and b̂†, b̂ ating on Hilbertspaes Ha, Hb, the only non vanishing ommutators being [â, â†] = [b̂, b̂†] = 11. The Fokor photon number states for the two modes provide ONB's for Ha, Hb respetively,
|n〉 = (n!)−1/2(â†)

n|0〉a , |m〉 = (m!)−1/2(b̂†)
m|0〉b , n,m = 0, 1, 2, . . . , (2.27)and the produt states |n,m〉 ≡ |n〉a ⊗ |m〉b form an ONB for Ha ⊗Hb. For de�nitenessand onveniene we will implement the PT operation in the Fok or photon number basis,so that the transition ρ̂(ab) → ρ̂(ab)PT is de�ned by,

〈n′
m

′ |ρ̂(ab)PT |n,m〉 ≡ 〈n′
,m|ρ̂(ab)|n,m′〉. (2.28)Then we easily �nd

Tr (ρ̂(ab)PT â†j âk b̂†lb̂m) = Tr (ρ̂(ab)â†j âkb̂†mb̂l). (2.29)The key point here is that in the Fok basis the operators b̂, b̂† are represented by realmatries, so the transposition operation for the matrix of b̂†lb̂m oinides with hermitianonjugation. This result will be very useful in the sequel [227, 228℄.
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Chapter 2. Nonlassial photon statistis and entanglement2.4 Conversion of nonlassiality into entanglement � theBeamsplitterWe begin by realling the ation of a general linear lossless optial element on any inputstate of two mode a-b radiation �eld. Suh an element is determined by some matrix
u(θ, φ, η) of the unitary unimodular groups SU(2) [326℄,

u(θ, φ, η) =

(

eiφ cos θ eiη sin θ

−e−iη sin θ e−iφ cos θ

) (2.30)[More generally, inluding an overall phase, we have a matrix of U(2)℄. The ation of thisoptial element or gadget on the mode operators is by unitary operator U(θ, φ, η) on thetwo-mode Hilbert spae Ha ⊗Hb :
U(θ, φ, η)

(

â

b̂

)

U(θ, φ, η)−1 = u(θ, φ, η)

(

â

b̂

)

. (2.31)
U(θ, φ, η) an be written in the following form

U(θ, φ, η) = e−i(φ−η)L̂3e−iθL̂2e−i(φ+η)L̂3 , where

L̂2 =
1

2i
(â†b̂− âb̂†),

L̂3 =
1

2
(â†â− b̂†b̂). (2.32)Suh a transformation preserves the anonial ommutation relations. The ase of 50:50beamsplitter (B-S) orresponds to θ = π/4, φ = η = 0, with U0 = e−i π

4
L̂2 for theorresponding unitary operator, in whih ase the mode operators transform as

U0âU0
−1 =

1√
2
(â+ b̂) , U0b̂U0

−1 =
1√
2
(b̂− â) ,

U0
−1âU0 =

1√
2
(â− b̂) , U0

−1b̂U0 =
1√
2
(b̂+ â) . (2.33)We will use only suh a B-S for the purpose of demonstration, but our results hold forthe general U(2) beamsplitter. In Fig. (2.1) we give a shemati depition of the ationof a 50:50 beamsplitter.
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Chapter 2. Nonlassial photon statistis and entanglement
â

b̂

b̂−â√
2

â+b̂√
2

Figure 2.1: The ation of a 50:50 beamsplitter on the mode operators.2.5 The ase of phase-insensitive nonlassialityIn this Setion we demonstrate through seleted tests, the equivalene of phase-insensitivenonlassiality at the input to the violation of positivity under partial transpose for theoutput state. We follow our �rst strategy, Eq. (2.25), to demonstrate the equivalene.Let us take the input state to be in the produt form,
ρ̂
(ab)
in = ρ̂(a) ⊗ |0〉bb〈0|, (2.34)with the b-mode in the vauum state. After passing through the beamsplitter, we havethe output state
ρ̂
(ab)
out = U0ρ̂

(ab)
in U−1

0 . (2.35)We now perform the PT operation on the state ρ̂(ab)
out leading to operator ρ̂(ab)PT

out , and testfor its positive semide�niteness. Making the hoie
Â =

N
∑

n=0

cnâ
nb̂n, (2.36)
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Chapter 2. Nonlassial photon statistis and entanglementand taking the expetation value of Â†Â with respet to the partially transposed outputstate, we have
Tr(ρ̂

(ab)PT
out Â†Â) =

N
∑

n,m=0

c ∗mcnTr(ρ̂
(ab)PT
out â†mânb̂†mb̂n). (2.37)The expetation values of operators on the partially transposed state an now be relatedto expetation values of operators on ρ̂(a), i.e.,

Tr(ρ̂
(ab)PT
out â†mânb̂†mb̂n) = Tr(ρ̂

(ab)
out â

†mânb̂†nb̂m)

= Tr(ρ̂
(ab)
in U−1

0 â†mânb̂†nb̂mU0)

=
1

22m+2n
Tr(ρ̂

(ab)
in (â† − b̂†)

m
(â− b̂)

n
(â† + b̂†)

n
(â+ b̂)

m
)

=
1

22m+2n
Tr(ρ̂(a)â†(m+n)â(m+n)). (2.38)Here we have used the fat that the b-mode is in the ground state initially. Thus we have

Tr(ρ̂
(ab)PT
out Â†Â) =

N
∑

n,m=0

c ∗mcnTr(ρ̂
(ab)PT
out â†mânb̂†mb̂n)

=

N
∑

n,m=0

c ∗m
22m

cn
22n

Tr(ρ̂(a)â†(m+n)â(m+n))

=
N
∑

n,m=0

c ∗m
22m

cn
22n

γm+n(ρ̂(a))

=

N
∑

n,m=0

c ∗m
22m

cn
22n

M (N)
mn (ρ̂(a)), (2.39)whih implies that ifM (N)(ρ̂(a)) 6≥ 0, then de�nitely ρ̂(ab)PT
out 6≥ 0. Similarly for the hoie

Â =

N
∑

n=0

dnâ
(n+1)b̂n, (2.40)
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Chapter 2. Nonlassial photon statistis and entanglementwe have
Tr(ρ̂

(ab)PT
out Â†Â) =

N
∑

n,m=0

d ∗
mdnTr(ρ̂

(ab)PT
out â†(m+1)â(n+1)b̂†(m+1)b̂n)

=

N
∑

n,m=0

d ∗
m

22m

dn

22n
Tr(ρ̂(a)â†(m+n+1)â(m+n+1))

=
N
∑

n,m=0

d ∗
m

22m+1

dn

22n+1
γm+n(ρ̂(a))

=
N
∑

n,m=0

d ∗
m

22m+1

dn

22n+1
M̃ (N)

mn (ρ̂(a)), (2.41)whih implies that if M̃ (N)(ρ̂(a)) 6≥ 0, then de�nitely ρ̂(ab)PT
out 6≥ 0. Thus if the input inthe a-mode ρ̂(a) possesses any form of phase-insensitive nonlassiality, the output of thebeamsplitter is NPT entangled. In partiular if the input is antibunhed, the output isNPT entangled.2.6 The ase of general nonlassial PNDConsider a state diagonal in the Fok basis whih is ompletely determined by its PNDprobabilities {p(n)},

ρ̂
(a)
D =

∞
∑

n=0

p(n)|n〉〈n| . (2.42)Now pass the two-mode state
ρ̂
(ab)
in = ρ̂

(a)
D ⊗ |0〉bb〈0| , (2.43)through a beamsplitter. The output two-mode state is

ρ̂
(ab)
out = U0ρ̂

(a)
in U0

−1 = U0

∞
∑

n=0

p(n)

n!
(â†)

n|0, 0〉〈0, 0|(â)nU0
−1

=
∞
∑

n=0

p(n)

2nn!
(â† + b̂†)

n|0, 0〉〈0, 0|(â + b̂)
n

=

∞
∑

n=0

p(n)n!

2n

n
∑

r,s=0

|r, n − r〉〈s, n− s|
√

r!(n− r)!s!(n − s)!
. (2.44)
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Chapter 2. Nonlassial photon statistis and entanglementThe general matrix element of this density matrix is
〈n′
,m

′ |ρ̂(ab)
out |n,m〉 = δn′+m′ ,n+m

(n+m)!p(n +m)

2n+m
√
n′ !m′ !n!m!

. (2.45)The partially transposed output state is given by
ρ̂
(ab)PT
out =

∞
∑

n=0

p(n)n!

2n

n
∑

r,s=0

|r, n − s〉〈s, n− r|
√

r!(n− r)!s!(n − s)!
, (2.46)therefore the matrix elements of ρ̂(ab)PT

out are given by
〈n′
,m

′ |ρ̂(ab)PT
out |n,m〉 = δn′+m,n+m′

qn+m′

2n+m′√
n′ !m′ !n!m!

= δn′−m′ ,n−m

qn+m′

2n+m′√
n′ !m′ !n!m!

. (2.47)We note that ρ̂(ab)PT
out ommutes with the di�erene operator N̂a − N̂b, i.e.,

(N̂a − N̂b) ρ̂
(ab)PT
out = ρ̂

(ab)PT
out (N̂a − N̂b)

=
∞
∑

n=0

p(n)n!

2n

n
∑

r,s=0

(s+ r − n)|r, n − s〉〈s, n− r|
√

r!(n− r)!s!(n − s)!
. (2.48)Thus the operator ρ̂(ab)PT

out is simply a diret sum of operators, eah spei�ed by the energydi�erene δ. Thus δ an be employed to label these invariant subspaes :
ρ̂
(ab)PT
out =

∑

δ

⊕ρ̂(ab)PT (δ)
out . (2.49)A test for entanglement would be to look for violation of positivity in any of thesesubspaes.It is lear that δ an take both negative and positive values. We de�ne δ to bepositive if the b-mode has more number of photons. The matrix elements of ρ̂(ab)PT

out inthe subspae spei�ed by δ is given by
〈n′
, n

′
+ δ|ρ̂(ab)PT

out |n, n+ δ〉 = 〈n′
+ δ, n

′ |ρ̂(ab)PT
out |n+ δ, n〉

=
qn+n′+δ

2n+n′+δ
√

n
′
!(n

′
+ δ)!n!(n + δ)!

. (2.50)With a slight modi�ation of notation let us denote by ρ̂(ab)PT (δ)
out the restrition of ρ̂(ab)PT

outto the subspae N̂a − N̂b = δ ≥ 0, and by ρ̂(ab)PT (−δ)
out the restrition to N̂b − N̂a = δ ≥ 0.67



Chapter 2. Nonlassial photon statistis and entanglementWith the de�nition of the matrix elements, it is easy to see that the operators ρ̂(ab)PT (δ)
outand ρ̂(ab)PT (−δ)

out for a given hoie of δ are
ρ̂
(ab)PT (δ)
out =

∑

n,n′

qn+n
′
+δ|n

′
, n

′
+ δ〉〈n, n + δ|

2n+n′+δ
√

n′ !(n′ + δ)!n!(n + δ)!
,

ρ̂
(ab)PT (−δ)
out =

∑

n,n′

qn+n′+δ|n
′
+ δ, n

′〉〈n+ δ, n|
2n+n′+δ

√

n
′
!(n

′
+ δ)!n!(n + δ)!

. (2.51)With the appropriate hoies of basis vetors, both of them are given by
ρ̂
(ab)PT (±δ)
out = diag

(

1

2n
′
+ δ

2

√

n′ !(n′ + δ)!

)

×


















qδ qδ+1 qδ+2 .. qδ+N .

qδ+1 qδ+2 qδ+3 .. qδ+N+1 ....
qδ+N qδ+N+1 qδ+N+2 .. qδ+2N .... ...



















×

diag

(

1

2n+ δ
2

√

n!(n + δ)!

)

. (2.52)
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Chapter 2. Nonlassial photon statistis and entanglementIn partiular, for the hoie of δ = 0 and 1, we have
ρ̂
(ab)PT (0)
out = diag

(

1

2n′
n′ !

)

×


















q0 q1 q2 .. qN .

q1 q2 q3 .. qN+1 ....
qN qN+1 qN+2 .. q2N .... ...



















diag

(

1

2nn!

)

,

ρ̂
(ab)PT (1)
out = diag

(

1

2n′+ 1
2

√

n′ !(n′ + 1)!

)

×


















q1 q2 q3 .. qN+1 .

q2 q3 q4 .. qN+2 ....
qN+1 qN+2 qN+3 .. q2N+1 .... ...



















×

diag

(

1

2n+ 1
2

√

n!(n + 1)!

)

. (2.53)It is lear from Eqs. (2.52) and (2.53) that positivity of any ρ̂(ab)PT (δ)
out is subsumed inthe positivity of either ρ̂(ab)PT (0)

out or ρ̂(ab)PT (1)
out , depending on whether δ is even or odd,whih is in turn equivalent to the positivity of L(N) or L̃(N) for arbitrary N . Taking intoaount all N , we have the following equivalene

L(N) ≥ 0 and L̃(N) ≥ 0 ⇔ ρ̂
(ab)PT
out ≥ 0,

L(N) 6≥ 0 or L̃(N) 6≥ 0 ⇔ ρ̂
(ab)PT
out 6≥ 0. (2.54)Our onlusions may be summarised in the following theorem :Theorem 2.3 With ρ̂(ab)

in = ρ̂
(a)
D ⊗ |0〉bb〈0| as input to a beamsplitter, the output two-mode state is NPT entangled if the phase-insensitive ρ̂(a)

D at the input is nonlassial. Ifthe output is PPT, then it is separable, and the input ρ̂(a)
D is lassial.It follows that PPT bound entangled state an never arise at the output of the beam-splitter in this situation. Stated di�erentlyTheorem 2.4 For states of the form ρ̂

(ab)
out = U0 (ρ̂

(a)
D ⊗ |0〉bb〈0|) U−1

0 , the partial trans-pose map proves to be a neessary and su�ient test for entanglement. 69



Chapter 2. Nonlassial photon statistis and entanglementProof : If ρ̂(ab)PT
out is not positive, then ρ̂(ab)

out is NPT and hene entangled. On the otherhand by the equivalene that we have established above if ρ̂(ab)PT
out is positive semide�nite,then both L(N) and L̃(N) are positive de�nite for arbitrary N , and hene ρ̂(ab)

in is lassialby Theorem (2.2). It follows that ρ̂(ab)
out is lassial, and hene separable.Corollary 2.1 For states of the form ρ̂

(ab)
out = U0 (ρ̂

(a)
D ⊗ |α〉bb〈α|) U−1

0 , where |α〉 is aoherent state, partial transpose gives a neessary and su�ient test for entanglement.That is, states of this form an never be PPT bound entangled.Proof : If ρ̂(a)
D was lassial, the output is lassial, and hene separable. On the otherhand if ρ̂(a)

D is nonlassial, the output is de�nitely NPT entangled, as may be seen byarrying out partial transpose test in the b-mode with respet to the displaed Fok basisof the b-mode as ompared to the standard Fok basis in the earlier ase.The proof outlined above an be easily translated to the ase of general beamsplitterrepresented by an element of U(2), even though we have demonstrated the proof only inthe ase of the 50:50 beamsplitter. The result in this Setion is remarkable in the sensethat one has been able to relate matrix onditions on nonlassiality to matrix onditionson the violation of positivity under partial transpose in a transparent manner. This isa manifest example in ontinuous variable entanglement theory where partial transposehas proved to apture entanglement ompletely, in a non-Gaussian ontext.2.7 Nonlassial PND and distillable entanglementHaving produed NPT entangled output, it is pertinent to ask if the output is distillable,NPT being a neessary ondition for distillability [45℄. In this Setion we demonstratethat ρ̂(ab)
out is distillable if the a-mode input state ρ̂(a)

D violates one of the three term loallassiality onditions. The strategy we use is the one outlined in [45℄, where distillabilityis de�ned in the following terms. A state ρ̂ is distillable if and only if, for some twodimensional projetors P , Q and for some number n, the 2 × 2 state P ⊗ Qρ̂⊗nP ⊗ Qis entangled. Suh a de�nition is well motivated from the fat that for 2 × 2 systems,there are well de�ned protools to distill entanglement from every entangled state [37℄.In our ase we show one opy distillability by projeting the output state ρ̂(ab)
out into anappropriate 2 × 2 subspae.Consider the following 2 × 2 dimensional projetors

P ⊗Q = (|n〉〈n| + |m〉〈m|)a ⊗ (|n+ δ〉〈n + δ| + |m+ δ〉〈m + δ|)b. (2.55)
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Chapter 2. Nonlassial photon statistis and entanglementIn this 2 × 2 subspae, the partially transposed output reads as
P ⊗Q ρ̂

(ab)PT
out P ⊗Q = D

(

q2n+δ qn+m+δ

qn+m+δ q2m+δ

)

D, where

D =







1

2n+ δ
2

q

n!(n+ δ
2
)!

0

0 1

2m+ δ
2

q

m!(m+ δ
2
)!






. (2.56)Clearly the positivity of ρ̂(ab)PT

out in this partiular subspae is learly determined by thethree term lassiality ondition on the a-mode input state ρ̂(a)
D .Theorem 2.5 The output ρ̂(ab)

out = U0 (ρ̂
(a)
D ⊗ |0〉bb〈0|) U−1

0 is one-opy distillable if ρ̂(a)
D ,fully spei�ed by the PND {p(n)}, violates any one of the loal three term lassialityonditions.Though we have demonstrated distillability through the violation of a loal three termlassiality onditions on {p(n)}, the issue of distillability is muh riher. There are stateswhih respet all loal three-term lassiality onditions, but are nevertheless nonlassialby violation of a higher order nonlassiality ondition, say a �ve term loal lassialityondition. Though suh a violation would imply the violation of positivity of ρ̂(ab)

out , thisviolation is not aptured by a simple rank 2 state as earlier, indiating room for furtherexploration of the issue of distillability in the present ontext.2.8 Distillable entanglement from antibunhingIn the previous Setion, we disussed the issue of distillability arising from the violationof a lassiality ondition in {p(n)} whih is loal in n. In this Setion,we explore the possibility of distillable entanglement through the violation of three-term lassiality ondition in {γn}. Sine antibunhing is a viable resoure within ur-rent tehnology, we explore the possibility of extrating distillable entanglement fromantibunhing, violation of a lassiality ondition involving γn for n = 0, 1, 2. The proofis then extended to more general nonlassiality onditions involving three γn's. Ourstrategy is as follows. For a given ρ̂(a)
D , we initially assume that none of the three termonditions on {p(n)} is violated. We show that suh a state an never be antibunhed.Hene at least one three term onditions in {p(n)} has to be violated for ρ̂(a)

D to beantibunhed, implying distillable entanglement at the output.Our idea is to use the relation between the fatorial moments {γn} and the PND71



Chapter 2. Nonlassial photon statistis and entanglementprobabilities {p(n)} stated in Eq. (2.13) :
γn =

∞
∑

n=0

(n+m)!

n!
p(n+m) =

∞
∑

n=0

qn+m

n!
. (2.57)It is easy to see that the most general {qn} whih meets all the three-term lassialityonditions is

q0 = a, q1 = b, q2 = α1
b2

a
, q3 = α2α

2
1

b3

a2
, q4 = α3α

2
2α

3
1

b4

a3

. . . . . qn = αn−1α
2
n−1 · · ·αn−2

2 αn−1
1

bn

an−1
, · · · ,

a > 0, b > 0, αj ≥ 1, j = 1, 2, 3, · · · . (2.58)Clearly, b = 0 if and only if ρ̂(a)
D = |0〉〈0|, and all the αj's are unity for a oherent state.It is readily veri�ed that all the loal three-term onditions are satis�ed. It is useful tode�ne the sequene of numbers {λn} as funtions of the α's :
λ0 = 1 λ1 = α1, λ2 = α2α

2
1, · · · ,

λn = (αnα
2
n−1 · · ·αn−1

2 αn
1 ), · · · (2.59)With this de�nition, it is easy to see that the set of inequalities on {λn}

λn−r+1λr−1 ≥ λn−rλr (2.60)is equivalent to the set of all three-term lassiality onditions on {qn}. We an nowwrite
γ0γ2 − γ2

1 =

∞
∑

n=0

bn+2

an

[

(λn+1 − λn)

n!
+

∑

r< n
2

(λn−r+1λr−1 − λn−rλr)

(

1

(n− r)!r!
− 1

(n− r + 1)!(r − 1)!

)



 . (2.61)Clearly γ0γ2 − γ2
1 is positive if all the loal three term onditions are satis�ed. Thus astate annot satisfy all the loal three term lassiality onditions on {qn} and still beantibunhed. If a PND is antibunhed, it de�nitely violates at least one of the threeterm lassiality onditions. Hene the output generated from the beamsplitter from anantibunhed ρ̂(a)

D is neessarily distillable.Theorem 2.6 The output ρ̂(ab)
out = U0 (ρ̂

(a)
D ⊗ |0〉bb〈0|) U−1

0 is distillable if ρ̂(a)
D , spei�ed72



Chapter 2. Nonlassial photon statistis and entanglementby the PND {p(n)}, is antibunhed.The proof an be extended along similar lines to demonstrate distillable entanglementfrom violation of any three-term lassiality ondition in the fatorial moments {γn}.2.9 Bounds on the EOFIt is well known that determining the EOF of a given state is an extremely di�ultproblem even in the �nite dimensional ase. Only in very speial ases has one beenable to solve for a losed form expression [67, 69�72℄ for EOF. In the ontinuous variableontext progress has been ahieved only in the ase of two-mode Gaussian states [70, 327℄.The issue of establishing bounds on the EOF for �nite dimensional systems has beendisussed in [76, 328�330℄. In [328℄ the possibility of establishing bounds on EOF diretlyfrom experiments has been disussed. An analyti expression for a lower bound on theentanglement of formation for arbitrary m⊗ n dimensional systems is given in [76, 325℄.In [330℄ an improvement over the lower bound in [76, 325℄ is demonstrated. However thisimprovement holds only in the ontext of 4 ⊗ n dimensional systems.Our motivation here is to establish simple lower and upper bounds on the EOFon a lass of entangled non-Gaussian states that ould arise from a nonlassial PND.Our guiding priniple tool is the fat that the average entanglement does not inreaseunder LOCC [37℄. Suh an approah has already been used to estimate entanglement inontinuous variable states [262, 331℄. In [262℄ the estimation was done at the phase spaelevel, and in [331℄ at the on�guration spae level. However the estimation in [331℄, beingtied to the Wootters formula, has a drawbak that it annot estimate more than one ebitof entanglement, even if more was present. We work with the Fok basis sine it seemsto be the most appropriate hoie in the present ontext.Our sheme of things is as follows. By restriting ourselves to loal Von Neumannmeasurements we evaluate the entanglement in eah of the orthogonal subspaes. Thesesubspaes are the probable outomes of the loal measurements, the average gives us alower bound on the entanglement of formation. That we are able to alulate the entan-glement in eah of these subspaes is ensured by a areful hoie of loal measurements,so as to ensure that the outome is a pure entangled state. We explore this proedure�rstly on a �nite dimensional entangled state generated from a mixture of the groundstate and the nth Fok state by oupling to an auxiliary mode in the ground state andpassing through a 50:50 beamsplitter. In the proess we expliitly demonstrate that wean distill more amount of entanglement for the ases n > 6 than given by the lowerbound on EOF in [76℄, whih uses the Terhal-Vollbret formula [69℄, and is alulated73



Chapter 2. Nonlassial photon statistis and entanglementusing the trae norm of the state subjeted to either partial transpose or the realignmentriterion [75, 332, 333℄. We then go on to establish bounds on the EOF of a lass ofgenuine ontinuous variable entangled states generated from a PND orresponding to aspeial superposition of oherent states, where we are able to provide an analyti expres-sion. That we are able to do so, is again due to a areful hoie of loal measurementobservables. Suh an evaluation does not involve any optimisation whatsoever in termsof the hoie of the loal measurements involved or of additional improvements based onlassial ommuniation if possible, but it is nevertheless a reasonable estimate from amore pratial point of view when one is dealing with suh states. In the more generalontext, we outline a possible method whih uses the Terhal-Vollbret formula [69, 76℄,to establish lower bounds on the EOF. Before proeeding any further, it is appropriateto disuss negativity in our ontext, whih will prove useful in our analysis later.2.9.1 NegativityAs noted in Setion 1.6.4, the logarithmi negativity E(ρ̂AB) of a state ρ̂AB is [75℄
E(ρ̂AB) = log2||ρ̂PT

AB ||, (2.62)where ||ρ̂PT
AB || is the trae norm of ρ̂PT

AB :
||ρ̂PT

AB || = 1 + 2N (ρ̂PT
AB). (2.63)

N (ρ̂PT
AB) is the absolute value of the sum of the negative eigenvalues of ρ̂PT

AB, the negativityof ρ̂AB . For a state of the form
ρ̂
(ab)
out = U0 ρ̂

(a)
D ⊗ |0〉bb〈0|U−1

0 , (2.64)where U0 orresponds to the unitary ation of a 50:50 beamsplitter, we have already seenin Eq. (2.49) that the partially transposed matrix ρ̂
(ab)PT
out splits into a diret sum ofoperators, labelled by δ, the number di�erene :

ρ̂
(ab)PT
out =

∑

δ

⊕ρ̂(ab)PT (δ)
out . (2.65)Thus, for a mixture ρ̂(a)

D trunated at the kth Fok state,
ρ̂
(a)
D =

k
∑

n=1

p(n)|n〉〈n|, (2.66)
74



Chapter 2. Nonlassial photon statistis and entanglementthe operator ρ̂(ab)PT
out splits into a diret sum of �nite number of operators,

ρ̂
(ab)PT
out =

+k
∑

δ=−k

⊕ρ̂(ab)PT (δ)
out . (2.67)The negativity is therefore simply given by

||ρ̂(ab)PT
out || =

+k
∑

δ=−k

||ρ̂(ab)PT (δ)
out || = ||ρ̂(ab)PT (0)

out || + 2
+k
∑

δ=1

||ρ̂(ab)PT (δ)
out ||. (2.68)Eah of the ρ̂(ab)PT (δ)

out is seen to be a matrix whose entries below the anti-diagonal vanish,the dimension of the matrix itself dereasing with inreasing δ. Thus one sees immediatelythat it is only those ρ̂(ab)PT (δ)
out 's for whih the orresponding L(k) or L̃(k) (appropriate forthe trunated form) fails to be positive, ontribute to the negativity of ρ̂(ab)PT

out . For thesimple example of an entangled state generated from a nonlassial PND onsisting of amixture of the ground state and the nth Fok state at the input,
ρ̂(a) = (1 − p)|0〉〈0| + p|n〉〈n|, (2.69)the output state ρ̂(ab)

out is
ρ̂
(ab)
out = (1 − p)|00〉〈00| + p

2n

n
∑

r,s=0

n!|r, n − r〉〈s, n− s|
√

r!s!(n− r)!(n − s)!
. (2.70)For this state the negativity is alulated to be

||ρ̂(ab)PT
out || = f(p)

=
p

2n





n
∑

r=0

√

√

√

√

(

n

r

)





2

− p

2n−1
+

√

(1 − p)2 + 4
( p

2n

)2
. (2.71)We note that for this kind of mixture, the realigned norm [332, 333℄ is same as negativity :

||R(ρ̂
(ab)
out )|| = ||ρ̂(ab)PT

out || = f(p). (2.72)
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Chapter 2. Nonlassial photon statistis and entanglementHere R(ρ̂
(ab)
out ) is the realigned [332, 333℄ version of ρ̂out. This an be seen for examplefrom the matrix elements of R(ρ̂

(ab)
out ) :

(R(ρ̂
(ab)
out ))ij,kl = (1 − p)δ0,i+kδi+k,j+l +

p

2n
δn,i+kδi+k,j+l

√

√

√

√

(

n

k

)(

n

l

)

. (2.73)We will use Eq. (2.72) in evaluating bounds on the entanglement of formation of statesof this kind.2.9.2 Example aIn this Setion, we disuss the bounds on entanglement of formation of the states alreadyde�ned in Eq. (2.70). It is also useful to note that the negativity f(p) of this stateis a monotonially inreasing onvex funtion of p. The monotoniity an be seen, forinstane, from physial requirements suh as avoiding the possibility of generating moreentanglement by mixing lesser amount of a nonlassial state with the ground state. Theonvexity of the funtion f(p) follows from the onvexity of negativity [75℄. Given thenegativity of a two-mode state, a lower bound on the entanglement of formation an beevaluated [76℄. In the example we have onsidered this lower bound is given by
El1(ρ̂

(ab)
out ) ≥ H2(γ(f(p))) + (1 − γ(f(p)))log2(n),

f(p) ∈ [1,
4n

n+ 1
],

≥ log2(n)

n− 1
(f(p) − (n+ 1)) + log2(n + 1),

f(p) ∈ [
4n

n+ 1
, (n+ 1)],where

γ(f(p)) =
1

(n+ 1)2
[
√

f(p) +
√

n(n+ 1 − f(p))]
2
. (2.74)Note that for n = 1 the Wootters formula already gives the exat entanglement of for-mation.A simple upper bound on the entanglement of formation for states (2.70) is obtainedby evaluating the expeted entanglement in the spetral basis of ρ̂out, and we have

Eup(ρ̂
(ab)
out ) = − p

2n

[

n
∑

r=0

(

n

r

)

log2

(

n

r

)

− 2nn

]

. (2.75)
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Chapter 2. Nonlassial photon statistis and entanglementWe now give a simple method whih gives us an alternative lower bound on EOF forthese states. Our method is based on the non-inrease of EOF under LOCC. Our hoieof the loal measurement observable for both Alie's and Bob's side is of the form
Ô = λ0|0〉〈0| + λn

n
∑

j=1

|j〉〈j|

= λ0P0 + λnPn. (2.76)For brevity, we denote the ollapse of the state into the subspae P0 as the event 0c andthe ollapse into the subspae Pn by nc, where c ould be either Alie or Bob. In suha senario, there are four possible outomes for this loal measurement done on bothAlie's and Bob's side: 0a0b, 0anb, na0b, and nanb. Denoting the probability of possibleoutomes by pij = Tr(ρ̂
(ab)
out Pi ⊗ Pj), with i and j denoting the possible outomes onAlie's and Bob's sides, we have

p0a0b
= (1 − p),

p0anb
= pna0b

=
p

2n
,

pnanb
=

p

2n

n−1
∑

r=1

(

n

r

)

= p

(

1 − 1

2n−1

)

. (2.77)We end up with a produt state in the outomes orresponding to 0a0b, 0anb, and na0b,however we end up with a pure entangled state
ρ̂nanb
out =

1

2n−1

n−1
∑

r,s=1

n!|r, n− r〉〈s, n− s|
√

r!s!(n− r)!(n− s)!
. (2.78)orresponding to the nanb outome. Hene the average entanglement of ρ̂out subjetedto suh a loal measurement sheme is simply given by

El2(ρ̂
(ab)
out ) = p

(

1 − 1

2n−1

)

E(ρ̂nanb
out )

= −p
(

1 − 1

2n−1

)

[

n−1
∑

r=1

(

1

2n − 2

(

n

r

))

log2

(

1

2n − 2

(

n

r

))]

. (2.79)For the ases n = 1 and n = 2, suh a distillation proedure does not yield any entan-glement. However for the ases n ≥ 3, it is easy to see that the lower bound given by
El2(ρ̂

(ab)
out ) performs marginally better than El1(ρ̂

(ab)
out ) for small values of p. This an beseen, for instane, by the fat that El2(ρ̂

(ab)
out ) as a funtion of p is linear monotonially77
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Figure 2.2: The ase n = 6. Line 3 denotes the upper bound Eup(ρ̂out), line 2 the lower bound
El2(ρ̂out), and the urve 1 the lower bound El1(ρ̂out)inreasing in p, however El1(ρ̂

(ab)
out ) is a monotonially inreasing onvex funtion of f(p)by onstrution, while f(p) is a monotonially inreasing onvex funtion of p. Thus

El1(ρ̂
(ab)
out ) is a monotonially inreasing onvex funtion of p. This simply means that forsmall values of p, El2(ρ̂

(ab)
out ) > El1(ρ̂

(ab)
out ), the range of values of p for whih this is true be-ing determined by n. What we atually observe is that for n = 6, El2(ρ̂

(ab)
out ) > El1(ρ̂

(ab)
out )for most of values of p exept in a small region lose to 1. However for n = 7 we observethat El2(ρ̂

(ab)
out ) > El1(ρ̂

(ab)
out ) for all values of p. This is illustrated in Figure (2.2) andFigure (2.3). Another useful observation is that El2(ρ̂

(ab)
out ) tends to Eup(ρ̂

(ab)
out ) for larger

n. This an be seen from the fat that the mixture in ρ̂(ab)
out is almost bi-orthogonal forlarge n, with the overlap in eah of the loal modes going as 1

2n , indiating that we andistill as muh of the entanglement that is present [74℄.2.9.3 Example bWe now establish bounds on another lass of ontinuous variable states by extending theideas of the previous example. These are states that arise from phase averaging of statesof the form
|Ψn(α)〉 =

1√
N

n−1
∑

r=0

(ωn)r|(ωn)rα〉, (2.80)
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Figure 2.3: The ase n = 7. Line 3 denotes the upper bound Eup(ρ̂out), line 2 the lower bound
El2(ρ̂out), and the urve 1 the lower bound El1(ρ̂out)where ωn is the primitive nth root of unity and |(ωn)rα〉 is the oherent state with dis-plaement (ωn)rα, and N is the appropriate normalisation. These states an be generatedthrough nonlinear optial proesses [180, 181℄. With the use of the identity

n−1
∑

k=0

(ωn)jk = n if j ≡ 0modn,

= 0 otherwise, (2.81)we an rewrite the state as
|Ψn(α)〉 =

1√
N

∞
∑

k=0

αnk+n−1

√

(nk + n− 1)!
|nk + n− 1〉. (2.82)Denoting |α|2 by λ, the state after phase averaging is

ρ̂
(a)
D (λ, n) =

1

N

∞
∑

k=0

λnk+n−1

(nk + n− 1)!
|nk + n− 1〉〈nk + n− 1|. (2.83)

79



Chapter 2. Nonlassial photon statistis and entanglementOn ombining this state with the ground state of an auxiliary b-mode and then passingthrough a 50:50 beamsplitter, we have
ρ̂
(ab)
out (λ, n) =

1

N

∞
∑

k=0

λnk+n−1

(nk + n− 1)!

1

2nk+n−1
×

nk+n−1
∑

r,s=0

(nk + n− 1)!|r, nk + n− 1 − r〉〈s, nk + n− 1 − s|
√

r!s!(nk + n− 1 − r)!(nk + n− 1 − s)!
. (2.84)The loal measurement observable we hoose on both Alie's and Bob's side is of theform

Ô =

∞
∑

κ=0

γκ

n−1
∑

r=0

|nκ+ r〉〈nκ+ r|. (2.85)For outomes κ1, κ2 respetively on Alie's and Bob's side, the resultant state uptonormalisation is given by
Pκ1 ⊗ Pκ2 ρ̂

(ab)
out (λ, n)Pκ1 ⊗ Pκ2 , where

Pκ1 ⊗ Pκ2 =
n−1
∑

r=0

|nκ1 + r〉〈nκ1 + r| ⊗
n−1
∑

r=0

|nκ2 + r〉〈nκ2 + r|. (2.86)The total number of photons in this subspae an vary from n(κ1 + κ2) to n(κ1 + κ2) +

2(n− 1) The fat that ρ̂(a)
D (λ, n) has nonvanishing projetors only for photon numbers ofthe form nk + n− 1 implies

n(κ1 + κ2) ≤ nk + n− 1 ≤ n(κ1 + κ2) + 2(n − 1) (2.87)for the permitted values of k, for given κ1, κ2. It is easy to see that the only possiblesolution to this onstraint is k = κ1+κ2. This means that for a given outome κ1, κ2, thepure entangled state in ρ̂out(λ, n) orresponding to nk+ n− 1 with k = κ1 + κ2 photonsis singled out. Now for a �xed total number of photons nk + n − 1, the possible valuesfor (κ1, κ2) are (k, 0), (k − 1, 1), · · · , (0, k) Given the outomes orresponding to γκ1 onAlie's side and γκ2 on Bob's side, the photon number on Alie's side an run from nκ1to nκ1 + (n − 1) and similarly on Bob's side run from nκ2 + (n − 1) to nκ2. Thus theresultant state orresponding to the outome γκ1 on Alie's side and γκ2 on Bob's side isthe pure state
|ψ(κ1, κ2)〉 ∝

n−1
∑

r=0

√

(n(κ1 + κ2) + n− 1)!
√

(nκ1 + r)!(nκ2 + n− 1 − r)!
|nκ1 + r, nκ2 + n− 1 − r〉.(2.88)80



Chapter 2. Nonlassial photon statistis and entanglementThus, for a given k, the possible states after the loal measurement are
|ψ(0, k)〉, |ψ(1, k − 1)〉, · · · , |ψ(k, 0)〉. (2.89)Computation of average entanglement after the measurement, whih is by de�nition theentanglement distilled by this protool, is failitated by the following fats. Firstly, eah

|ψ(κ1, κ2)〉 is already in the Shmidt form. Seondly, these |ψ(κ1, κ2)〉's are biorthogonal[334℄. Thus the entanglement distilled is
Eav(nk + n− 1) =

−
nk+n−1
∑

r=0

[

1

2nk+n−1

(

nk + n− 1

r

)]

×

log2

[

1

2nk+n−1

(

nk + n− 1

r

)]

+

k
∑

r=0

[

1

2nk+n−1

n−1
∑

d=0

(

nk + n− 1

nr + d

)]

×

log2

[

1

2nk+n−1

n−1
∑

d=0

(

nk + n− 1

nr + d

)]

. (2.90)Thus the total average entanglement harvested over all possible photon number is
El(ρ̂

(ab)
out (λ, n)) =

1

N

∞
∑

k=0

λnk+n−1

(nk + n− 1)!
Eav(nk + n− 1). (2.91)Clearly El(ρ̂

(ab)
out (λ, n)) is a lower bound on the EOF of ρ̂(ab)

out (λ, n).A simple upper bound on the entanglement of formation of ρ̂(ab)
out (λ, n) is obtained byevaluating the average entanglement in its spetral basis, and is given by

Eup(ρ̂
(ab)
out (λ, n)) =

1

N

∞
∑

k=0

λnk+n−1

(nk + n− 1)!
E(nk + n− 1),where

E(nk + n− 1) =

−
nk+n−1
∑

r=0

[

1

2nk+n−1

(

nk + n− 1

r

)]

log2

[

1

2nk+n−1

(

nk + n− 1

r

)]

. (2.92)In Figure (2.4), we plot the lower and upper bounds El(ρ̂
(ab)
out (λ, n)) and 81
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Figure 2.4: The urves 1 and 2 orrespond to the lower and upper bounds for the ase n = 2,the urves 3 and 4 orrespond to the lower and upper bounds for the ase n = 3, and the urves
5 and 6 orrespond to the lower and upper bounds for the ase n = 4

Eup(ρ̂
(ab)
out (λ, n)) for the ases n = 2, n = 3, and n = 4.We now disuss a more general method whih establishes lower bounds using LOCCand the Terhal-Vollbret formula. In most of the pratial situations suh as in [312, 318,319, 322℄, the probabilities of the PND vanish for larger n. In suh a ase, one an do atrunation to evaluate a lower bound based on [76℄.A trunation orresponds to a LOCC. To see this suppose the input on Alie's side is

ρ̂
(a)
D =

∞
∑

n=1

p(n)|n〉〈n|. (2.93)Let
Tr(ρ̂

(ab)
out Pk ⊗ Pk) = 1 − ǫ, where

Pk =

k
∑

i=0

|i〉〈i|. (2.94)Sine ǫ is a dereasing funtion of k, we an hoose a value of k to ahieve any small
82



Chapter 2. Nonlassial photon statistis and entanglement
ǫ > 0. The trunated version of ρ̂(ab)

out is
ρ̂
(ab)(tr)
out =

1

1 − ǫ
(Pk ⊗ Pkρ̂

(ab)
out Pk ⊗ Pk). (2.95)The state ρ̂(ab)(tr)

out is the 0a0b outome orresponding to the measurement of the loalobservable
λ0

k
∑

i=0

|i〉〈i| + λk

∞
∑

i=k+1

|i〉〈i| (2.96)on both Alie's and Bob's side. Sine negativity is an entanglement monotone underLOCC [75℄, we have
N (ρ̂

(ab)PT
out ) ≥ (1 − ǫ)N (ρ̂

(ab)PT (tr)
out ). (2.97)A lower bound on the EOF of ρ̂(ab)

out is now simply given by
E(ρ̂

(ab)
out ) ≥ F (N (ρ̂

(ab)PT
out )) ≥ F [(1 − ǫ)N (ρ̂

(ab)(tr)
out )], (2.98)where F (.) is the Terhal-Vollbret formula [76℄. The last inequality follows from the fatthat F (.) is a monotonially inreasing funtion of its argument.2.10 ConlusionsTo onlude, we have demonstrated the e�etiveness of partial transpose in the study ofentanglement of a family of non-Gaussian ontinuous variable states. We have presentedpartial results on distillability of these states. We have demonstrated distillable entan-glement from violation of three term onditions both on {p(n)} and {γn}, partiularlyfrom an antibunhed input. We have evaluated both upper and lower bounds on theentanglement of formation of a family of non-Gaussian ontinuous variable states. Wehave illustrated the possibility of going beyond the Terhal-Vollbret formula in estimatingentanglement through a areful hoie of loal observables to be measured. However, ouranalysis relies on partial transpose, and hene annot answer issues in respet of PPTbound entangled states.
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3Nonlassiality, Mandel lassi�ation, andentanglement
3.1 IntrodutionIn the preeding Chapter quantum optial nonlassiality in single-mode �elds was stud-ied from the perspetive of entanglement. In the ase of phase invariant states, the non-lassiality was ompletely determined by the photon number distribution [170℄. Thiswas possible due to the onnetion with the lassial Stieltjes moment problem [170, 324℄.It was shown that if a phase-invariant single-mode state is oupled to a seond mode invauum or some oherent state and then passed through a U(2) beamsplitter, the re-sulting two-mode output state shows NPT entanglement [27℄ preisely when the inputsingle-mode is quantum optially nonlassial. The signatures of the two, nonlassialityand entanglement, oinided exatly [194℄.In this Chapter, we ontinue this exploration further. We begin with the study ofnonlassiality of two-mode states and its potential to generate entanglement, our studybeing now restrited by the absene of results suh as the result of the Stieltjes momentproblem. We begin with the desription of a single test, whih if suessful, is able tosimultaneously establish both the nonlassiality and NPT entanglement of a given two-mode state. We then turn to Mandel matrix analysis of the two-mode �elds and show thatnonlassiality at this level naturally separates into distint Types I and II, dependingon whether the sub-Poissonian statistis is visible or not at a single-mode level. We thenpresent three interesting examples of two-mode states to illustrate the idea. The �rst is astudy of two-mode states obtained in the previous Chapter from single-mode states, theseond and third are independently onstruted. Along the way we develop a test at theMandel matrix level to see whether the beamsplitter ation on an initially non-entangledtwo-mode nonlassial state results in NPT entanglement, and apply it to the seond84



Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglementfamily of states. The third family is built upon the extensively studied squeezed vauumstates for one and two modes, where we bring out some of their nonintuitive features. Weextend the method developed for single-mode states to two-mode states and onstrutNPT entanglement tests to test for entanglement when a two-mode nonlassial state isoupled to a third mode in vauum and the result is passed through a `U(3) beamsplitter'.The disussion and test is again at the Mandel matrix level and the test is illustratedwith two families of states as examples. We show the possibility of generating genuinetripartite entanglement from two-mode Mandel type nonlassiality. We then extend thenotion of Mandel's Q parameter to two modes. Based on the Mandel matrix onstrut,the Mandel parameters Q1 and Q2 are introdued to help di�erentiate the Type I andType II states and gauge their Mandel level nonlassiality, and interesting possibilitiesare disussed.3.2 Two-mode �elds � Entanglement test, and Mandel las-si�ationOur emphasis here is in new features enountered in the states of a two-mode system.The modes will be alled the a-mode and the b-mode, with operator pairs â, â† and b̂, b̂†obeying the ommutation relations in Eq. (1.95). Some general points an be made rightaway.Sine we have a two-mode system, apart from examining whether a given state ρ̂(ab)is quantum optially (QO-l) or quantum optially nonlassial (QO-nonl), we an alsoask whether it is entangled, and if so whether it is NPT type, distillable, et. Thelatter questions beome meaningful in the two-mode ase. In fat we will develop aninteresting riterion whih an be witness simultaneously for QO-nonlassiality as wellas entanglement of the NPT type.With respet to the ation of the beamsplitters representing general elements u ∈ U(2)in the manner of Eq. (2.31), we note the following. Ation by a beamsplitter is bothnonloal, in that the modes a and b get linearly mixed, and passive, as N̂a + N̂b isonserved; sine annihilation operators go to linear ombinations of annihilation operatorsunder this ation, oherent states go into oherent states. Convex sums of oherentstates go to onvex sums of oherent states, and thus suh ation preserves the QO-l or QO-nonl nature of a state ρ̂(ab) [335℄. On the other hand, while a QO-l statehas no entanglement, a QO-nonl state may possess entanglement or may be separable:entangled states are a proper subset of QO-nonl states. Thus beamsplitter ation anause a transition from a QO-nonl separable state to a QO-nonl entangled state, in85



Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglementwhih ase we an further enquire into the nature of the entanglement so obtained. Thiswas in fat the ase in the transition from ρ̂
(ab)
in of Eq. (2.43) to ρ̂(ab)

out of Eq. (2.44).As mentioned earlier, there is no generalisation of the results of the lassial Stieltjesmoment problem whih an be used for two-mode systems, their PND's, et. Thereforeto study aspets of two-mode nonlassiality to an admittedly limited degree.3.2.1 Nonlassiality and entanglement � a diret onnetionA general two-mode state ρ̂(ab) possesses the diagonal oherent state representation
ρ̂(ab) =

∫ ∫

d2za
π

d2zb
π

φ(za, zb)|za, zb〉〈za, zb| (3.1)in terms of the two-mode (produt) oherent states |za, zb〉. Of interest to us is a testwhih simultaneously establishes both QO-nonlassiality of ρ̂(ab) and its NPT entangle-ment.To this end, we set up an in�nite matrix N̂ with operator entries N̂jk,lm where j, k, l,mrun over the range 0, 1, 2, · · · independently. The pair jk denotes a `row index' and takesin sequene the values 00; 10, 01; 20, 11, 02; 30, 21, 12, 03; · · · . Similarly the `olumn index'pair also takes these same values in the same sequene. We de�ne the entries of N̂ thus :
N̂jk,lm = N̂ †

lm,jk = â†j b̂†kâlb̂m. (3.2)Clearly N̂ =
((

N̂jk,lm

)) is a `hermitian' matrix of operator entries. Note that theseentries are in normal-ordered form. Starting with the diagonal representation (3.1), forany set of omplex oe�ients {cjk} and the assoiated positive semide�nite operator
∑

jk,lm c∗jkN̂jk,lmclm, we always have :
Tr(ρ̂(ab)

∑

jk,lm

c∗jkN̂jk,lmclm) = Tr(ρ̂(ab)(
∑

jk

cjkâ
j b̂k)†(

∑

lm

clmâ
lb̂m))

=

∫ ∫

d2za
π

d2zb
π

φ(za, zb)|
∑

lm

clmz
l
az

m
b |2 ≥ 0. (3.3)This is beause we have here the expetation value of a positive semide�nite hermitianoperator. On the other hand, if we pass to the partial transpose ρ̂(ab)PT of ρ̂(ab), byperforming transposition only in the spae of states of the b-mode, this will amount toeverywhere replaing b̂†j b̂m by b̂†mb̂j, sine in the Fok basis b̂† and b̂ are real [27, 57, 227℄.
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Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglementThus for the same positive semide�nite operator as in Eq. (3.3) we have
Tr(ρ̂(ab)PT

∑

jk,lm

c∗jkN̂jk,lmclm) = Tr(ρ̂(ab)
∑

jk,lm

c∗jkâ
†j b̂†mâlb̂kclm)

=

∫ ∫

d2za
π

d2zb
π

φ(za, zb) |
∑

lm

clmz
l
az

∗m
b |2. (3.4)Notie the di�erene in the integrands of the last integrals in Eqs. (3.3) and (3.4); thelatter integral is sure to be positive if ρ̂(ab)PT is a possible state, otherwise it ould benegative.Thus we arrive at a single test for QO-nonlassiality and NPT entanglement of ρ̂(ab).The above expression being negative implies two things simultaneously :

(i) φ(za, zb) 6≥ 0, hence ρ̂(ab) is QO − noncl;

(ii) ρ̂(ab)PT 6≥ 0, and hene ρ̂(ab) is NPT entangled. (3.5)This interesting result is an indiation of the possibility, in suitable irumstanes, ofbringing the haraterisations of QO-nonlassiality and entanglement for the two-mode�elds rather lose to one another.3.2.2 Mandel matrixIn Setion 2.2.1, we introdued the onept of phase-insensitive nonlassiality for asingle-mode radiation �eld. Of relevane were the matrix elements of operators onservingthe number of photons. Generalising this onept to two-mode systems, if one is interestedonly in the total number onserving matrix elements, then given a ρ̂(ab) it su�es to workwith the state ρ̂(ab)
D obtained from ρ̂(ab) by phase averaging :

ρ̂
(ab)
D =

∫ 2π

0

dθ

2π
eiθ(N̂a+N̂b)ρ̂(ab)e−iθ(N̂a+N̂b)

=

∫

d2za
π

d2zb
π

P (Ia, Ib, θ)|za, zb〉〈za, zb|,

Ia = |za|2, Ib = |zb|2, θ = argz∗azb,

P (Ia, Ib, θ) =

∫ 2π

0

dθ′

2π
φ(zae

−iθ′ , zbe
−iθ′). (3.6)This state is learly number onserving :

ρ̂
(ab)
D (N̂a + N̂b) = (N̂a + N̂b)ρ̂

(ab)
D ,

〈n′m′|ρ̂(ab)
D |nm〉 = δn′+m′,n+m〈n′m′|ρ̂(ab)|nm〉. (3.7)87



Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglementSine P (Ia, Ib, θ) is the (real) diagonal representation weight of ρ̂(ab)
D , we have this QO-lassi�ation :

P (Ia, Ib, θ) ≥ 0 ⇔ ρ̂
(ab)
D is QO-l,

P (Ia, Ib, θ) 6≥ 0 ⇔ ρ̂
(ab)
D is QO-nonl. (3.8)Now we present the two-mode generalisation of the Mandel matrix and the assoiatedlassi�ation of states [187, 336℄. We onsider only states ρ̂(ab)

D onserving, i.e., ommutingwith, N̂a+N̂b. Let us �rst develop the two-mode analogue of the Mandel riterion. De�nea olumn and row vetor with number onserving operator entries as follows :
Ĉ =

(

â†

b̂†

)

⊗
(

â

b̂

)

=













N̂a

â†b̂

b̂†â

N̂b













, Ĉ† =
(

N̂a b̂†â â†b̂ N̂b

)

. (3.9)With their help next de�ne a 5× 5 matrix with operator entries and whih is `hermitian'like N̂ in Eq. (3.2), and also `positive de�nite':
Σ̂ =

(

1

Ĉ

)

(

1 Ĉ†
)

=

(

1 Ĉ†

Ĉ ĈĈ†

)

=

















1 N̂a b̂†â â†b̂ N̂b

N̂a N̂2
a N̂ab̂

†â N̂aâ
†b̂ N̂aN̂b

â†b̂ â†b̂N̂a â†b̂b̂†â (â†b̂)2 â†b̂N̂b

b̂†â b̂†âN̂a (b̂†â)2 b̂†ââ†b̂ b̂†âN̂b

N̂b N̂bN̂a N̂bb̂
†â N̂bâ

†b̂ (N̂b)
2

















. (3.10)
Given a state ρ̂(ab)

D , we get the 5 × 5 numerial hermitian matrix Σ by taking entrywiseexpetation values of the opertors in Σ̂, and the numerial matrix so obtained is learlyhermitian positive semide�nite :
Σ = 〈Σ̂〉 = Tr(ρ̂

(ab)
D

(

1 Ĉ†

Ĉ ĈĈ†

)

) =

(

1 〈Ĉ†〉
〈Ĉ〉 〈ĈĈ†〉

)

≥ 0 . (3.11)We de�ne the two-mode Mandel matrix for the state ρ̂(ab)
D by replaing ĈĈ† in Eq. (3.11)by its normal ordered expression (entries of Ĉ and Ĉ† are already in the normal ordered
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Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglementform) :
B̂ = : ĈĈ† :,

M (2)(ρ̂
(ab)
D ) = Tr(ρ̂

(ab)
D

(

1 Ĉ†

Ĉ B̂

)

)

=

















1 〈â†â〉 〈b̂†â〉 〈â†b̂〉 〈b̂†b̂〉
〈â†â〉 〈â†2â2〉 〈â†b̂†â2〉 〈â†2âb̂〉 〈â†b̂†âb̂〉
〈â†b̂〉 〈â†2âb̂〉 〈â†b̂†âb̂〉 〈â†2b̂2〉 〈â†b̂†b̂2〉
〈b̂†â〉 〈â†b̂†â2〉 〈b̂†2â2〉 〈â†b̂†âb̂〉 〈b̂†2âb̂〉
〈b̂†b̂〉 〈â†b̂†âb̂〉 〈b̂†2âb̂〉 〈â†b̂†b̂2〉 〈b̂†2b̂2〉

















=

∫ ∞

0
dIa

∫ ∞

0
dIb

∫ 2π

0

dθ

2π
P (Ia, Ib, θ)

×

















1

Ia√
IaIbe

iθ

√
IaIbe

−iθ

Ib

















(

1 Ia
√
IaIbe

−iθ
√
IaIbe

iθ Ib

)

. (3.12)
The supersript 2 indiates that we are dealing with a two-mode state, and this Mandelmatrix is 5 × 5 hermitian but not neessarily positive semide�nite.Another useful onstrut is the 2× 2 Mandel matrix assoiated with a general single-mode obtained as linear ombination of the modes a and b, alulated again in the state
ρ̂
(ab)
D . The de�nition of the annihilation operatorÂ of suh a mode and then of its Mandel
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Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglementmatrix are :
Â = αâ+ βb̂, |α|2 + |β|2 = 1;

M (2,1)(ρ̂
(ab)
D ;α, β) =

(

1 〈Â†Â〉
〈Â†Â〉 〈Â†2Â2〉

)

= Y (α, β)†M (2)(ρ
(ab)
D )Y (α, β),

Y (α, β) =

















1 0

0

0 ψ0(α, β)

0

0

















,

ψ0(α, β) =

(

α

β

)

⊗
(

α∗

β∗

)

=













αα∗

αβ∗

βα∗

ββ∗













. (3.13)The dependene of Â on α, β is left impliit. The supersript (2, 1) at the start of theabove equations indiates that we are dealing with a general single-mode Mandel matrixobtained from the two-mode Mandel matrix for the a − b system in the state ρ̂(ab)
D , byfoussing on the partiular linear ombination Â of â and b̂. It turns out that for two-mode states both M (2)(ρ̂

(ab)
D ) and M (2,1)(ρ̂

(ab)
D ;α, β) are important.The two-mode de�nitions of Mandel-type nonlassiality, sub-Poissonian statistis(sub-PS), super-Poissonian statistis (super-PS), et are now as follows :

{ρ̂(ab)
D is QO-l ⇔ P (Ia, Ib, θ) ≥ 0}

⇒ {M (2)(ρ̂
(ab)
D ) ≥ 0 ⇔ ρ̂

(ab)
D has super-PS};

M (2)(ρ̂
(ab)
D ) 6≥ 0 ⇔ {ρ̂(ab)

D is QO-nonl, has sub-PS}. (3.14)In the de�nition of super-PS, we used Eq. (3.12). The sub-PS ase an be usefullyseparated into two types, depending on whether or not the nonpositivity of the 5 × 5matrixM (2)(ρ̂
(ab)
D ) is visible already at the single-mode level for some hoie of oe�ients

α, β. Thus we de�ne :
ρ̂
(ab)
D has Type I sub-PS ⇔ M (2,1)(ρ̂

(ab)
D ;α, β) 6≥ 0 for some α, β;

ρ̂
(ab)
D has Type II sub-PS ⇔ M (2,1)(ρ̂

(ab)
D ;α, β) ≥ 0 for all α, β,

M (2)(ρ̂
(ab)
D ) 6≥ 0. (3.15)90



Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglementThe physial meaning is that in Type I sub-PS, the Mandel level of QO-nonlassialityis easy to detet already in terms of a suitable single-mode ombination; while in TypeII sub-PS, suh nonlassiality is hidden or intrinsially two-mode in harater.For alulational purposes one an pass from the 5× 5 Mandel matrix M (2)(ρ̂
(ab)
D ) toa slightly simpler 4 × 4 matrix as follows. From Eq. (3.12),

M (2)(ρ̂
(ab)
D ) = Tr(ρ̂

(ab)
D

(

1 Ĉ†

Ĉ B̂

)

) =

(

1 C†

C B

)

,

C = Tr(ρ̂
(ab)
D Ĉ), B = Tr(ρ̂

(ab)
D B̂). (3.16)(When neessary the state will be indiated as argument of C,B). Then it is easy to seethat

M (2)(ρ̂
(ab)
D ) ≥ 0 ⇔ Γ = B − CC† ≥ 0 ,

M (2)(ρ̂
(ab)
D ) 6≥ 0 ⇔ Γ 6≥ 0. (3.17)Thus the 4×4 matrix Γ determines whether we have super-PS or sub-PS. For the separa-tion of the latter into Type I and Type II, we have for any omplex 2-vetor φ =

(

φ1

φ2

)

φ†M (2,1)(ρ̂
(ab)
D ;α, β)φ =

|φ1 + φ2C
†ψ0(α, β)|2 + |φ2|2ψ0(α, β)†Γψ0(α, β). (3.18)So we are able to say, given M (2)(ρ̂

(ab)
D ) 6≥ 0 :Type I PS ⇔ ψ0(α, β)†Γψ0(α, β) < 0 for some α, β;Type II PS ⇔ ψ0(α, β)†Γψ0(α, β) ≥ 0 for all α, β. (3.19)Indeed we easily �nd from Eqs. (3.13, 3.17) that

detM (2,1)(ρ̂(ab);α, β) = ψ0(α, β)†Γψ0(α, β). (3.20)We will apply these de�nitions and lassi�ation of QO-nonlassiality to several familiesof states and examine the possible onversion of nonlassiality to entanglement in thenext Setion.
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Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglement3.3 Some examples of two-mode states and their propertiesWe have seen in Setion 2.6 that a single-mode QO-nonl state, when ombined witha seond mode in vauum (or in a oherent state) and passed through a beamsplitter,always results at the output in a two-mode state exhibiting NPT entanglement. We studythese two-mode states in the spirit of the preeding Setion as a �rst example.3.3.1 Example (a)The two-mode state in question is given in Eq. (2.44). It is reasonable that its 5 × 5Mandel matrix is obtainable from the 2×2 Mandel matrix assoiated with the single-modeinput state ρ̂(a)
D . Straightforward alulation shows that :

ρ̂
(ab)
D = Û(u){ρ̂(a)

D ⊗ |0〉bb〈0|}Û (u)−1, u ∈ U(2) :

M (2)(ρ̂
(ab)
D ) = W (u)†M (1)(ρ̂

(a)
D )W (u),

W (u) =

(

1 0 0 0 0

0 u∗11u11 u∗21u11 u∗11u21 u∗21u21

)

,

W (u)W (u)† = I2×2. (3.21)Next using (3.13) we an immediately obtain the general single-mode projetion of thistwo-mode Mandel matrix :
M (2,1)(ρ̂

(ab)
D ;α, β) = Y (α, β)†W (u)†M (1)(ρ̂

(a)
D )W (u)Y (α, β)

=

(

1 0

0 |ξ|2

)

M (1)(ρ̂
(a)
D )

(

1 0

0 |ξ|2

)

,

ξ = u11α+ u22β. (3.22)From these expressions and from the results of Setion 2.6, we �nd that the two-modestates produed from single-mode states in the above manner have the following signi�-ant properties :
(i) ρ̂

(a)
D has QO-nonl PND ⇒ ρ̂

(ab)
D has NPT entanglement;

(ii) ρ̂
(a)
D has super-PS ⇒ ρ̂

(ab)
D has super-PS;

(iii) ρ̂
(a)
D has sub-PS ⇒ ρ̂

(ab)
D has Type I sub-PS,

M (2,1)(ρ
(ab)
D ;α, β) 6≥ 0 for every α, β. (3.23)
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Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglementClearly only properties (ii) and (iii) involve the Mandel matrix analysis; and it is signi�-ant that in property (iii), every single-mode ombination of the modes a and b displayssub-PS. Thus in the latter irumstane, we an say it is not just easy, but atually veryeasy, to detet the Mandel kind of QO-nonl of ρ̂(ab)
D . To these statements we an add thefollowing: states ρ̂(ab)

D obtained from states ρ̂(a)
D in the manner of Eq. (3.21) an neverdisplay Type II sub-PS; and any sub-PS in ρ̂(a)
D leads to both Type I sub-PS and NPTentanglement in ρ̂(ab)

D .3.3.2 Example (b)Hereafter we onsider diretly given two-mode states ρ̂(ab)
D , as opposed to the previousexample. In ase suh a state is QO-nonl, even if it is of produt or separable form, itspassage through a U(2) BS ould result in an entangled state. We �rst set up the generalframework to examine this, then illustrate it by an interesting example. For simpliitywe use an elementary 50:50 BS rather than one orresponding to a general u ∈ U(2).We hoose the U(2) element and orresponding unitary operator ation as follows :

u0 =
1√
2

(

1 1

−1 1

)

∈ U(2) : Û−1
0

(

â â†

b̂ b̂†

)

Û0 = u0

(

â â†

b̂ b̂†

)

. (3.24)At the operator level, ation by onjugation on Ĉ, Ĉ†, B̂ of Eqs. (3.9, 3.12) is :
Û−1

0 ĈÛ0 = V0Ĉ, Û
−1
0 Ĉ†Û0 = Ĉ†V T

0 , Û
−1
0 B̂Û0 = V0B̂V

T
0 ,

V0 = u0 ⊗ u0 =
1

2













1 1 1 1

−1 1 −1 1

−1 −1 1 1

1 −1 −1 1













. (3.25)Then if a state ρ̂(ab)
D is transformed by this BS ation to

ρ̂′ (ab)
D = Û0ρ̂

(ab)
D Û−1

0 , (3.26)
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Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglementthe hange in the Mandel matrix is given by a transformation using V0 :
M (2)(ρ̂

(ab)
D ) =

(

1 C†

C B

)

→

M (2)(ρ̂′ (ab)
D ) =

(

1 C ′†

C ′ B′

)

= Tr(ρ̂′ (ab)
D

(

1 Ĉ†

Ĉ B̂

)

)

=

(

1 0

0 V0

)(

1 C†

C B

)(

1 0

0 V T
0

)

,

C ′ = V0C, B
′ = V0BV

T
0 . (3.27)Thus Γ′ is related to Γ by ongruene :

Γ′ = B′ − C ′C ′† = V0ΓV
T
0 . (3.28)To test next whether ρ̂′ (ab)

D is NPT entangled, we pass to its partial transpose ρ̂′ (ab)PT
Dand evaluate the `expetation value' of a suitably hosen nonnegative hermitian oper-ator with respet to it. If this turns out to be negative, then ρ̂′ (ab)

D is de�nitely NPTentangled. To onstrut suh a test whih involves as losely as possible the use of
M (2)(ρ̂′ (ab)

D ), hene of M (2)(ρ̂
(ab)
D ), we should use a `matrix of operators' similar in stru-ture to ( 1

Ĉ

)

(

1 Ĉ†
) , i.e, making up a `hermitian nonnegative' matrix of operatorentries, suh that when the partial transpose operation is swithed from ρ̂′ (ab)PT

D to this`matrix', we obtain essentially the expetation values of Ĉ, Ĉ† and B̂ in ρ̂′ (ab)
D . We haveseen in the passage from Eq. (3.3) to Eq. (3.4) that the PT operation onverts b̂j†b̂k to

b̂k†b̂j , and b̂j b̂k† to b̂k b̂j†. Keeping these motivations and fats in mind we onstrut a
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Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglement
5 × 5 matrix of operators as follows :

Ê =













â†â

â†b̂†

âb̂

b̂†b̂













, Ê† =
(

â†â âb̂ â†b̂† b̂†b̂
)

→

{(

1

Ê

)

(

1 Ê†
)

}PT

=

(

1 Ĉ†

Ĉ B̂

)

+

(

0 0

0 Ŷ

)

,

Ŷ =













â†â 0 â†b̂ 0

0 0 0 0

b̂†â 0 â†â+ b̂†b̂+ 1 b̂†â

0 0 â†b̂ b̂†b̂













. (3.29)We see that in the proess of expressing the various operators involved in normal orderedform, an additional piee Ŷ linear in the entries of Ĉ appears. Then a test for NPTentanglement of ρ̂′ (ab)
D is to evaluate

Tr(ρ̂′ (ab)PT
D

(

1

Ê

)

(

1 Ê†
)

) = Tr(ρ̂′ (ab)
D

{(

1

Ê

)

(

1 Ê†
)

}PT
)

= M (2)(ρ̂′ (ab)
D ) +





























0
... 0 0 0 0

· · · · · · · · · · · · · · ·
0

...
0

...
0

... Y ′

0
...





























Y ′ =













C ′
1 0 C ′

2 0

0 0 0 0

C ′
3 0 C ′

1 + C ′
4 + 1 C ′

3

0 0 C ′
2 C ′

4













, (3.30)and see if this matrix is inde�nite. The 5× 5 matrix here is, by Eq. (3.27), a ongruenetransformation applied to the initial state Mandel matrix M (2)(ρ̂
(ab)
D ) plus a 4 × 4 piee
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Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglementoming from Ŷ , namely it is :
(

1 0

0 V0

)(

1 C†

C B

)(

1 0

0 V T
0

)

+

(

0 0

0 Y ′

)

=

(

1 C†V T
0

V0C V0BV
T
0 + Y ′

)

. (3.31)Therefore by Eq. (3.17) the positivity or otherwise of the matrix (3.30) is equivalent tothe positivity or otherwise of either of the two following 4× 4 matries at the level of Γ :
Ω = Γ + V T

0 Y
′V0 ,

V0ΩV
T
0 = V0ΓV

T
0 + Y ′. (3.32)Nonpositivity of either Ω or V0ΩV

T
0 is proof of NPT entanglement of ρ̂′ (ab)

D . There issome di�erene between the Mandel level QO-nonlassiality test for ρ̂(ab)
D and the abovedeveloped NPT entanglement test for ρ̂′ (ab)

D , the two being related but not idential. Thisis to be expeted sine, as mentioned, entangled states are a subset of QO-nonl states,and NPT states are a further subset.We now illustrate the above sheme using an interesting family of states whih isanalytially quite simple. We begin with the family of two-mode pure states of in�niteShmidt rank,
|µ〉 = e−

1
2
|µ|2

∞
∑

n=0

µn

√
n!
|n, n〉, µ ∈ C, (3.33)form the density matrix ρ̂(ab) = |µ〉〈µ|, and pass to ρ̂(ab)

D via Eq. (3.6) :
ρ̂
(ab)
D = e−λ

∞
∑

n=0

λn

n!
|n, n〉〈n, n|, λ = |µ|2 ≥ 0. (3.34)This is learly separable though not of produt form. For the Mandel matrix analysis,

|µ〉〈µ| and ρ̂(ab)
D are equivalent.The matries C, C†, B, Γ involved in M (2)(ρ̂

(ab)
D ) are easy to alulate sine we have

〈â†â〉 = 〈b̂†b̂〉 = λ, 〈â†2â2〉 = 〈b̂†2b̂2〉 = λ2. (3.35)
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Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglementWe thus have :
C =













λ

0

0

λ













, B =













λ2 0 0 λ2 + λ

0 λ2 + λ 0 0

0 0 λ2 + λ 0

λ2 + λ 0 0 λ2













;

Γ =













0 0 0 λ

0 λ2 + λ 0 0

0 0 λ2 + λ 0

λ 0 0 0













. (3.36)The eigenvalues of Γ being λ(λ + 1), λ(λ + 1), λ, −λ, it follows that the state ρ̂(ab)
D in(3.34) is QO-nonl. To �nd its type we ompute

ψ0(α, β)†Γψ0(α, β) = 2|α|2|β|2λ(λ+ 2) ≥ 0, (3.37)so these states display hidden or Type II- sub-PS.In passing we note that the state ρ̂(a) of mode a obtained from Eq. (3.34) by traingover b alone is
ρ̂
(a)
D = Trbρ̂

(ab)
D = e−λ

∞
∑

n=0

λn

n!
|n〉aa〈n|, (3.38)for whih the diagonal weight P (Ia) is

P (Ia) = δ(Ia − λ). (3.39)Partial trae over a gives exatly similar results for mode b. Thus both ρ̂(a)
D and ρ̂(b)

D areQO-l, with their PND oiniding exatly with that of a oherent state.Now we pass the two-mode state ρ̂(ab)
D of Eq. (3.34) through the BS Û0 of Eq. (3.24);the resulting ρ̂′ (ab)

D is
ρ̂′ (ab)

D = Û0ρ̂
(ab)
D Û−1

0

= e−λ
∞
∑

n=0

(

λ

4

)n 1

n!3
(â†2 − b̂†2)n|0, 0〉〈0, 0|(â2 − b̂2)n. (3.40)To apply the NPT entanglement test based on Eq. (3.32) it is onvenient to examine

V0ΩV
T
0 . Combining Eqs. (3.27, 3.36) we �nd the matries Γ′, Y ′ assoiated with ρ̂′ (ab)

D
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Γ′ = V0ΓV

T
0 =













1
2λ

2 + λ 0 0 −1
2λ

2

0 1
2λ

2 −1
2λ

2 − λ 0

0 −1
2λ

2 − λ 1
2λ

2 0

−1
2λ

2 0 0 1
2λ

2 + λ













Y ′ =













λ 0 0 0

0 0 0 0

0 0 2λ+ 1 0

0 0 0 λ













. (3.41)Therefore aording to Eq. (3.32) we have to test the positivity or otherwise of
V0ΩV

T
0 = V0ΓV

T
0 + Y ′

=













1
2λ

2 + 2λ 0 0 −1
2λ

2

0 1
2λ

2 −1
2λ

2 − λ 0

0 −1
2λ

2 − λ 1
2λ

2 + 2λ+ 1 0

−1
2λ

2 0 0 1
2λ

2 + 2λ













(3.42)The (2, 3) submatrix here is inde�nite as it has determinant −1
2λ

2. This establishes that
ρ̂′ (ab)

D of Eq. (3.40) is NPT entangled. The emphasis here was to show that the entangle-ment produed by BS ation an indeed be witnessed by the Mandel matrix onstrut.Going bak to the expression in Eq. (3.40), the terms for n = 0 and n = 1 arerespetively :
e−λ|0, 0〉〈0, 0|;
λ

2
e−λ(|2, 0〉 − |0, 2〉)(〈2, 0| − 〈0, 2|), (3.43)giving the matrix elements

(ρ̂′ (ab)
D )00,00 = e−λ;

(ρ̂′ (ab)
D )20,20 = (ρ̂′ (ab)

D )02,02 = −(ρ̂′ (ab)
D )20,02 = −(ρ̂′ (ab)

D )02,20 =
λ

2
e−λ. (3.44)One also obtains from the n = 2 term in Eq. (3.40) the matrix element

(ρ̂′ (ab)
D )22,22 =

λ2

8
e−λ. (3.45)If we now onsider the partial transpose of ρ̂′ (ab)

D and look at the 00 − 22 subspae of98



Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglementdimension two, we have
ρ̂′ (ab)PT

D → e−λ

(

1 −λ
2

−λ
2

λ2

8

)

. (3.46)Thus, as the determinant is negative in this subspae, ρ̂′ (ab)PT
D has an eigenvetor ofthe form α|0, 0〉 + β|2, 2〉 with a negative eigenvalue. This demonstrates that the NPTentanglement of ρ̂′ (ab)

D in Eq. (3.40) is distillable [37℄.3.3.3 Example ()The third example is built upon the two-mode squeezed (vauum) states. For bothsingle and multi-mode ases these states have been studied extensively in the literature[187, 237, 238℄. Here we take them up in the ontext of the viewpoints of Setions 3.1, 3.2and 3.3, in partiular the Mandel level study of QO-nonlassiality. First we assemble thede�nition and important properties of a single (a) mode squeezed vauum state. Suha state is obtained by applying a unitary (saling) operator involving the exponentialof a omplex ombination of â†2 and â2 to the Fok vauum, and is parametrised by aomplex variable ξ = ξ1 + iξ2 or an equivalent omplex variable ω :
|ψ(a)(ω)〉 = exp{1

4
(ξâ†2 − ξ∗â2)}|0〉a

= (1 − |ω|2) 1
4

∞
∑

n=0

√

Γ(n+ 1/2)

n!
√
π

ωn |2n〉a,

ω =
ξ

|ξ| tanh(|ξ|/2). (3.47)Sine only even photon number states are present, the probabilities p(1), p(3), p(5), · · ·in the PND vanish, whih is immediate evidene that these states are QO-nonl. Someimportant expetation values are :
〈ψ(a)(ω)|{â†, â, N̂a, N̂

2
a , â

†2â2, â2}|ψ(a)(ω)〉 =

{0, 0, S2, S2(S2 + 2C2), S2(2S2 + C2),
ξ

|ξ| },

S = sinh(|ξ|/2), C = cosh(|ξ|/2). (3.48)The 2 × 2 Mandel matrix for the state is thus :
M (1)(|ψ(a)(ω)〉) =

(

1 S2

S2 S2(2S2 + C2)

)

,

detM (1)(|ψ(a)(ω)〉) = S2(S2 + C2) ≥ 0, (3.49)99



Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglementwhere S and C are given in Eq. (3.48). Thus these states have super-PS, and theQO-nonlassiality does not show up at the Mandel level.For two modes we take the produt of two suh states, with independent omplex
ξ, ξ′ or ω, ω′ :

|ψ(ab)(ω, ω′)〉 = |ψ(a)(ω)〉 ⊗ |ψ(b)(ω′)〉. (3.50)The seond fator obviously involves an exponential in b̂†2 and b̂2 applied to |0〉b. Thistwo-mode pure state is learly also QO-nonl, but it is a manifest produt state of Shmidtrank one. Unlike Eq. (3.49), however, now the QO-nonlassiality shows up at the Mandellevel. The 5× 5 Mandel matrix for the state (3.50) is easily found using Eqs. (3.48) andtheir analogues for the b-mode :
M (2)(|ψ(ab)(ω, ω′)〉) =

(

1 C†

C B

)

,

C† =
(

S2 0 0 S′2
)

,

B =













S2(2S2 + C2) 0 0 S2S′ 2

0 S2S′ 2 eiηSCS′C ′ 0

0 e−iηSCS′C ′ S2S′ 2 0

S2S′ 2 0 0 S′ 2(2S′ 2 + C ′ 2)













,

η = argξ′ξ∗ (3.51)Here S′ and C ′ are de�ned as in Eq. (3.48) but in terms of ξ′. The 4× 4 matrix Γ of Eq.(3.17) is :
Γ =













S2(S2 +C2) 0 0 0

0 S2S′ 2 eiηSCS′C ′ 0

0 e−iηSCS′C ′ S2S ′2 0

0 0 0 S′ 2(S′ 2 +C ′ 2)













. (3.52)The eigenvalues of Γ are S2(S2+C2), S′2(S′2+C ′2), SS′(SS′+CC ′) and SS′(SS′−CC ′).Assuming that ξ, ξ′ are both non vanishing, the last eigenvalue is negative, leading byEq. (3.17) to the onlusion that
M (2)(|ψ(ab)(ω, ω′)〉) 6≥ 0 or that the state |ψ(ab)(ω, ω′)〉 has sub-PS. This is an interestingand somewhat nonintuitive result sine we have seen in Eq. (3.49) that eah fator inthe produt state |ψ(ab)(ω, ω′)〉 has super-PS. We must now see whether it is Type I orType II. For this we must ompute the `expetation value' of Γ in Eq. (3.52) for the100



Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglementfour-omponent olumn vetor ψ0(α, β) as required by Eq. (3.19) :
ψ0(α, β)†Γψ0(α, β) =

(|α|2S2 + |β|2S′2)2 + |α|4S2C2 + |β|4S′2C ′2 + 2SCS′C ′ℜ(eiη(α∗β)2)

≥ (|α|2S2 + |β|2S′2)2 + (|α|2SC − |β|2S′C ′)2 > 0, (3.53)sine ℜ(eiη(α∗β)2) ≥ −|α|2|β|2. It follows that the sub-PS of the produt state |ψ(ab)(ω,

ω′)〉 is of Type II, it is hidden or intrinsi as in the state in Eq. (3.34). That it is TypeII is onsistent with the fat that the individual states |ψ(a)(ω)〉 and |ψ(b)(ω′)〉 are bothsuper-PS.It was noted above that the two-mode state |ψ(ab)(ω, ω′)〉 is both pure and of Shmidtrank one. The result of ation by the BS Û0 of Eq. (3.24) on it is seen upon inspetionand without any alulations to be an entangled (pure) state :
Û0|ψ(ab)(ω, ω′)〉 = Û0exp{1

4
(ξâ†2 − ξ∗â2) +

1

4
(ξ′b̂†2 − ξ′∗b̂2)}Û−1

0 |0, 0〉

= exp{1

8
(ξ(â† − b̂†)2 − ξ∗(â− b̂)2) +

1

8
(ξ′(â† + b̂†)2 − ξ′∗(â+ b̂)2)}|0, 0〉. (3.54)This is beause the �nal unitary operator ating on |0, 0〉 is learly not the tensor produtof individual unitary operators ating separately on the two modes. On aount of thissimpliity in this sense of the initial state |ψ(ab)(ω, ω′)〉, there is no need to apply after theBS ation the Mandel level NPT entanglement test developed in onnetion with Example(b). It is of ourse important that the states |ψ(a)(ω)〉, |ψ(b)(ω′)〉 in the initial produtare both QO-nonl. A two-mode pure produt QO-l state is neessarily a produt ofsingle-mode oherent states, and the produt struture is maintained by BS ation in thisase beause the fators are oherent states.3.4 From two-mode nonlassiality to three-mode entangle-mentWe have studied the possibility of a U(2) beamsplitter onverting a two-mode QO-nonlseparable state into an entangled one sine for suh systems both nonlassiality andentanglement are meaningful onepts. Now we present a treatment of two-mode statesanalogous to that given in Setion 2.6 for single-mode systems. That is, we ouplea given two-mode state ρ̂(ab)

D to a third c-mode in vauum, pass suh an input state
ρ̂
(abc)
in through a `U(3) beamsplitter', and obtain a three-mode output state ρ̂(abc)

out . Wethen test whether this shows NPT entanglement as a onsequene of Mandel type QO-101



Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglementnonlassiality initially present in ρ̂(ab)
D , the partial transpose operation being applied tothe c-mode.We begin with ρ̂(ab)

D for whihM (2)(ρ̂
(ab)
D ) possibly shows QO-nonlassiality. We takea third c-mode in vauum and have an input three-mode state

ρ̂
(abc)
in = ρ̂

(ab)
D ⊗ |0〉cc〈0|, (3.55)stritly analogous to Eq. (2.43). To a general matrix u ∈ U(3) we assoiate a passive`beamsplitter' whih unitarily mixes the annihilation operators of the three modes in amanner analogous to Eq. (2.31), now onserving N̂a + N̂b + N̂c [337℄. In the three-modeHilbert spae this beamsplitter u ats through an unitary operator Û , and we have

u =







u11 u12 u13

u21 u22 u23

u31 u32 u33






∈ U(3) → Û : Û †Û = Û Û † = 1,

Û







â

b̂

ĉ






Û−1 = u†







â

b̂

ĉ






, Û







â†

b̂†

ĉ†






Û−1 = uT







â†

b̂†

ĉ†






,

Û−1







â

b̂

ĉ






Û = u







â

b̂

ĉ






, Û−1







â†

b̂†

ĉ†






Û = u∗







â†

b̂†

ĉ†






,

Û(N̂a + N̂b + N̂c) = (N̂a + N̂b + N̂c)Û . (3.56)Therefore upon passage through this `beamsplitter' the state in Eq. (3.55) hanges to
ρ̂
(abc)
out = Û ρ̂

(abc)
in Û−1 = Û{ρ̂(ab)

D ⊗ |0〉cc〈0|}Û−1. (3.57)To test this output state for NPT entanglement, we apply the partial transpose to the
c-mode and then evaluate the `expetation value' of a suitably hosen hermitian nonneg-

102



Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglementative operator :
A = α0 + α1âĉ+ α2b̂ĉ+ α3â

†ĉ† + α4b̂
†ĉ† :

Tr(ρ̂
(abc)PT
out A†A) = α†Xα,

X = Tr(ρ̂
(abc)PT
out

















1

â†ĉ†

b̂†ĉ†

âĉ

b̂ĉ

















(

1 âĉ b̂ĉ â†ĉ† b̂†ĉ†
)

);

α =

















α0

α1

α2

α3

α4

















. (3.58)
The 5 × 5 hermitian matrix X, onstruted by taking entrywise expetation values asde�ned, is expeted to be related to the input Mandel matrix M (2)(ρ̂

(ab)
D ). Developing itwe �nd















































1

â†ĉ†

b̂†ĉ†

âĉ

b̂ĉ

















(

1 âĉ b̂ĉ â†ĉ† b̂†ĉ†
)































PT

=

:

















1

â†ĉ

b̂†ĉ

ĉ†â

ĉ†b̂

















(

1 ĉ†â ĉ†b̂ â†ĉ b̂†ĉ
)

: +





























0 0 0

0 0 0

0 0 0

......... 0 0

0 0

0 0

· · · · · · · · · · · · · · ·
0 0 0

0 0 0

...... Ẑ





























,

Ẑ =

(

â†â+ ĉ†ĉ+ 1 b̂†â

â†b̂ b̂†b̂+ ĉ†ĉ+ 1

)

= :

(

â

b̂

)

(

â† b̂†
)

:
+ (1 + ĉ†ĉ)

(

1 0

0 1

)

. (3.59)
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Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglementUsing this in Eq. (3.58) we have after implementing the onjugation Û−1(· · · )Û :
X = Tr(ρ̂

(ab)
D :

















1

â′†ĉ′

b̂′†ĉ′

ĉ′†â′

ĉ′†b̂′

















(

1 ĉ′†â′ ĉ′†b̂′ â′†ĉ′ b̂′†ĉ′
)

:)

+ Tr(ρ̂
(ab)
D





























0 0 0

0 0 0

0 0 0

......... 0 0

0 0

0 0

· · · · · · · · · · · · · · ·
0 0 0

0 0 0

...... Ẑ ′





























,

Ẑ ′ = :

(

â′

b̂′

)

(

â′† b̂′†
)

:
+ (1 + ĉ′†ĉ′)

(

1 0

0 1

)

,







â′

b̂′

ĉ′






=







u11 u12

u21 u22

u31 u32







(

â

b̂

)

. (3.60)Here the fat that the -mode is initially in vauum has been used, and the appearaneof the extra Ẑ, Ẑ ′ terms is a result of normal ordering similar to the presene of Ŷ inEq. (3.29). One an now disentangle the u-dependenes and express the result in terms
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(ab)
D ) and C = Tr(ρ̂

(ab)
D Ĉ) :

X = W (u)M (2)(ρ̂
(ab)
D )W (u)† +





























0 0 0

0 0 0

0 0 0

......... 0 0

0 0

0 0

· · · · · · · · · · · · · · ·
0 0 0

0 0 0

...... Z ′





























,

W (u) =

































1
... 0 0

... 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0

0

...... (

u∗11
u∗21

)

(

u31 u32

) ...... (

u∗12
u∗22

)

(

u31 u32

)

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0

0

...... u∗31

(

u11 u12

u21 u22

) ...... u∗32

(

u11 u12

u21 u22

)

































,

Z ′ = Tr(ρ̂
(ab)
D Ẑ ′),

Ẑ ′ =

(

u11 u12

u21 u22

)

:

(

â

b̂

)

(

â† b̂†
)

:
(

u∗11 u∗21
u∗12 u∗22

)

+(1 + (u∗31â
† + u∗32b̂

†)(u31â + u32b̂))

(

1 0

0 1

)

. (3.61)If this matrix X, dependent on ρ̂
(ab)
D and u ∈ U(3), is inde�nite, the NPT entanglednature of ρ̂(abc)

out of Eq. (3.57) follows. Of ourse this an happen only if ρ̂(ab)
D is QO-nonl,(at the level of its Mandel matrix), sine the `U(3) beamsplitter' Û would map any QO-linput into similar output.As illustrations of this general proedure we onsider two simple examples. The �rstis a two-mode state with only a �nite number of photons, so that its QO-nonlassialityis a foregone onlusion :

ρ̂
(ab)
D = p|2, 0〉〈2, 0| + q|1, 1〉〈1, 1| + r|0, 2〉〈0, 2|,

p, q, r ≥ 0 p+ q + r = 1. (3.62)This is separable, though not a produt state. The only non vanishing expetation values
105



Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglementneeded to onstrut its Mandel matrix are
〈â†â〉 = 2p+ q, 〈b̂†b̂〉 = 2r + q, 〈â†2â2〉 = 2p,

〈â†âb̂†b̂〉 = q, 〈b̂†2b̂2〉 = 2r. (3.63)Therefore the Mandel matrix is
M (2)(ρ̂

(ab)
D ) =

















1 q + 2p 0 0 q + 2r

q + 2p 2p 0 0 q

0 0 q 0 0

0 0 0 q 0

q + 2r q 0 0 2r

















. (3.64)
The determinants of various nontrivial 2 × 2 submatries, the one nontrivial 3 × 3 sub-matrix, and �nally of M (2)(ρ̂

(ab)
D ) itself, are (indiating the submatries by the relevantrows and olumns) :

(1, 2) : 2p − (q + 2p)2; (1, 5) : 2r − (q + 2r)2; (2, 5) : 4pr − q2;

(1, 2, 5) : q2 − 4pr;

detM (2)(ρ̂
(ab)
D ) = q2(q2 − 4pr). (3.65)One an easily imagine situations for whih the (1, 2) and (1, 5) submatries beomeinde�nite, for instane q lose to unity and p, r lose to zero. In any ase, sine the

(2, 5) subdeterminant is opposite in sign to the (1, 2, 5) subdeterminant and to the fulldeterminant, the state in Eq. (3.62) is always QO-nonl at the Mandel matrix level.The type of sub-PS an be determined easily. From Eq. (3.64) we �nd the 4 × 4matrix Γ to be
Γ =













δa 0 0 q − (q + 2p)(q + 2r)

0 q 0 0

0 0 q 0

q − (q + 2p)(q + 2r) 0 0 δb













,

δa = 2p − (q + 2p)2 , δb = 2r − (2r + q)2. (3.66)Therefore also
ψ0(α, β)†Γψ0(α, β) =

2p|α|4 + 4q|α|2|β|2 + 2r|β|4 − ((q + 2p)|α|2 + (q + 2r)|β|2)2. (3.67)106



Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglementFor α = 1, β = 0 this beomes δa; for α = 0, β = 1 it is δb. We now onsider p runningover its range [0, 1] in suessive portions and see what onlusions an be drawn :
p = 0 : q = 0 ⇒ δb = −2; q > 0 ⇒ δa < 0;

0 < p <
1

2
: δa > 0 ⇒ 2p− (p− r + 1)2 ≥ 0 ⇒

(p− r)2 + 1 − 2r < 0 ⇒ 2r > 1 ⇒ δb < 0;

δa = 0 ⇒ (p− r)2 + 1 − 2r = 0 ⇒ p 6= r,

2r > 1 ⇒ δb < 0;

p =
1

2
: q = 0 ⇒ p = r =

1

2
, δa = δb = 0;

q > 0 ⇒ δa < 0;
1

2
< p ≤ 1 : 2p > 1 ⇒ δa < 0. (3.68)Thus in every situation exept p = r = 1

2 , q = 0, either δa or δb is negative. In this oneexeptional ase we �nd from Eq. (3.67) :
p = r =

1

2
, q = 0 : ψ0(α, β)†Γψ0(α, β) = −2|α|2|β|2, (3.69)whih is negative for α, β 6= 0. This establishes that for the state (3.62) the sub-PS is ofType I.Now we ouple this state to the third c-mode in vauum, and pass it through a parti-ular U(3) beamsplitter, namely a 50 : 50 beamsplitter ating on the b and c modes alone.The �nal output state is alulated using Eq. (3.57), and to test its NPT entanglementwe need to alulate the matrix X of Eq. (3.61) involving the M (2)(ρ̂

(ab)
D ) term and theadded Z ′ term. The hoie of u ∈ U(3), the resulting W (u), and the two terms making
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Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglementup X are as follows.
u =







1 0 0

0 1/
√

2 1/
√

2

0 −1/
√

2 1/
√

2






∈ U(3);

W (u) =

















1 0 0 0 0

0 0 −1/
√

2 0 0

0 0 0 0 −1/2

0 0 0 −1/
√

2 0

0 0 0 0 −1/2

















;

W (u)M (2)(ρ̂
(ab)
D )W (u)† =























1 0 −r − q/2 0 −r − q/2

0 q/2 0 0 0

−r − q/2 0 r/2 0 r/2

. . .

0 0 0 . q/2 0

−r − q/2 0 r/2 . 0 r/2























;

Z ′ =

(

2p+ 3q/2 + r + 1 0

0 q + 2r + 1

)

. (3.70)The dotted lines in (3.70) indiate where the 2× 2 blok Z ′ has to be added to this box.Leaving out the trivial seond and fourth rows and olumns as they do not ouple to anyothers, the determinants of the various 2 × 2 and the one 3 × 3 submatrix in X are :
(1, 3) : r/2 − (q/2 + r)2; (1, 5) : 5r/2 + q + 1 − (q/2 + r)2;

(3, 5) : r(q + 2r + 1)/2; (1, 3, 5) : (q + 2r + 1)(r/2 − (q/2 + r)2). (3.71)Comparing Eqs. (3.65) and (3.71) we see: whenever the QO-nonlassiality of ρ̂(ab)
Dmanifests itself in the (1, 5) submatrix of M (2)(ρ̂

(ab)
D ) being inde�nite, simultaneouslythe 3-mode state ρ̂(abc)

out displays NPT entanglement. If one had on the other hand aninde�nite (1, 2) submatrix in M (2)(ρ̂
(ab)
D ), Eq. (3.65), then by suitably altering the U(3)element u in Eq. (3.70) we ould ahieve NPT entanglement of ρ̂(abc)

out . In both situations,the signatures of QO-nonlassiality in ρ̂(ab)
D and of NPT entanglement in ρ̂(abc)

out oinide.The seond example to illustrate the ideas of this Setion is similar in struture toexample (3.34) of the preeding Setion, but its properties di�er in ertain details. For a
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Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglementnonnegative real parameter η we de�ne the separable state
ρ̂
(ab)
D =

1

C

∞
∑

n=0

η2n

(2n)!
|n, n〉〈n, n|, (3.72)where C = Cosh η, S = Sinh η and t = tanh η. Clearly, the ase η = 0 orresponds to thetwo-mode vauum, and so we are interested in the parameter range 0 < η < ∞. Usingthe elementary sums

∞
∑

n=0

(n or n2)
η2n

(2n)!
=
η

2
S or

η

4
(S + η C), (3.73)the nonzero expetation values needed for the Mandel matrix are :

〈â†â〉 = 〈b̂†b̂〉 =
η

2
t;

〈â†2â2〉 = 〈b̂†2b̂2〉 =
η

4
(η − t);

〈â†b̂†âb̂〉 =
η

4
(η + t). (3.74)Therefore we have

M2(ρ̂ab
D ) =

















1 ηt
2 0 0 ηt

2
ηt
2

η
4 (η − t) 0 0 η

4 (η + t)

0 0 η
4 (η + t) 0 0

0 0 0 η
4 (η + t) 0

ηt
2

η
4 (η + t) 0 0 η

4 (η − t)

















. (3.75)
Leaving out the third and fourth rows and olumns, the remaining 2 × 2 submatrixdeterminants are :

(1, 2) and (1, 5) :
η

4
(
η

C2
− t); (2, 5) : −η

3t

4
. (3.76)The ombination η

C2 − t dereases monotonially from 0 to −1 as η runs from zero toin�nity. therefore the state (3.72) is QO-nonl for all η > 0. To determine its Type we
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Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglementompute Γ and its `expetation value' in ψ0(α, β) :
Γ =

η

4













η
C2 − t 0 0 η

C2 + t

0 η + t 0 0

0 0 η + t 0
η

C2 + t 0 0 η
C2 − t,













,

ψ0(α, β)†Γψ0(α, β) =
η

4
{ η

C2
− t+ 2|α|2|β|2(η + 3t)}. (3.77)At both α = 1, β = 0 and α = 0, β = 1 the last expression is negative, so the state(3.72) is QO-nonl Type I sub-PS. In this ontext we note that the single-mode state ρ̂(a)obtained from (3.72) by traing over b alone is

ρ̂
(a)
D =

1

C

∞
∑

n=0

η2n

(2n)!
|n〉aa〈n|, (3.78)and this has the Mandel matrix and determinant

M (1)(ρ̂
(a)
D ) =

(

1 ηt
2

ηt
2

η
4 (η − t)

)

,

detM (1)(ρ̂
(a)
D ) =

η

4
(
η

C2
− t) < 0. (3.79)The properties of ρ̂(b)

D are idential. Thus in ontrast to the state (3.34), here both ρ̂(a)
Dand ρ̂(b)

D are QO-nonl, aompanying the Type I nature of ρ̂(ab)
D .We now apply the NPT entanglement test outlined in Eqs. (3.58, 3.60, 3.61). Theneessary expressions are :

W (u)M (2)(ρ̂(ab))W (u)† =

















1 0 −ηt
4 0 −ηt

4

0 η
8 (η + t) 0 0 0

−ηt
4 0 η

16(η − t) 0 η
16 (η − t)

0 0 0 η
8 (η + t) 0

−ηt
4 0 η

16(η − t) 0 η
16 (η − t)

















,

Z ′ =

(

1 + 3ηt
4 0

0 1 + ηt
2

)

. (3.80)Aording to Eq. (3.61), the 2 × 2 matrix Z ′ has to be `added' at the lower right handorner of the 5 × 5 matrix, thus leading to X of Eq. (3.61). Then the positivity orotherwise of X has to be examined. However, even without taking aount of Z ′, the
(1, 3) subdeterminant of X is η

16( η
C2 − t), whih is negative. This establishes the NPT110



Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglemententanglement of ρ̂(abc)
out in this example, being `aused' by the same expression η

C2 − twhose negativity led to ρ̂(ab)
D being QO-nonl in Eq. (3.76).3.4.1 Genuine tripartite entanglement from Mandel nonlassialityIn this Setion, we demonstrate the possibility of generating genuine residual tripartiteentanglement from two-mode Mandel type nonlassiality. The entanglement so produedis residual in the sense of [275℄, whereby the end result is a tripartite state similar to theGHZ state, suh that it has no bipartite entanglement when any one of the three modesis traed away. We demonstrate this using the state onsidered in example (b) of Setion3.3, where it was used to demonstrate Type-II sub-PS. Pass the state

ρ̂
(ab)
D ⊗ |0〉cc〈0| = e−λ

∞
∑

n=0

λn

n!
|n, n〉ab ab〈n, n| ⊗ |0〉cc〈0|, (3.81)through a 50:50 b− c beamsplitter, whose ation on the mode operators b̂ and ĉ is

Û

(

ĉ

b̂

)

Û−1 =
1√
2

(

1 1

−1 1

)(

ĉ

b̂

)

. (3.82)The resulting state is
ρ̂
(abc)
out = Û(ρ̂

(ab)
D ⊗ |0〉cc〈0|)Û−1

= e−λ
∞
∑

n=0

λn

2nn!
|n〉aa〈n| ⊗ (b̂† + ĉ†)

n|0, 0〉bc bc〈0, 0|(b̂ + ĉ)
n

= e−λ
∞
∑

n=0

λnn!

2n
|n〉aa〈n|

n
∑

r,s=0

|r, n − r〉bc bc〈s, n− s|
√

r!(n− r)!s!(n− s)!
. (3.83)Clearly the state ρ̂(abc)

out is separable in the a/bc ut. However it is entangled in boththe c/ab ut and b/ac uts as we show below. As a test for NPT entanglement in the
c/ab ut, we evaluate the expetation value of a suitably hosen positive operator on thepartially transposed output ρ̂(abc)PT

out , the partial transpose being e�eted on the c mode.For the hoie
Â = c0 + c1b̂ĉ+ c2â

†â, (3.84)the test for entanglement would be to hek for violation of positivity of
Tr(ρ̂

(abc)PT
out Â†Â) = Tr(ρ̂

(abc)
out (Â†Â)

PT
). (3.85)111



Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglementThe positivity or otherwise of Tr(ρ̂
(abc)
out (Â†Â)

PT
) is equivalent to the positivity or other-wise of

X = Tr(ρ̂
(abc)
out







1 b̂ĉ† â†â

b̂†ĉ b̂†b̂ĉ†ĉ b̂†ĉâ†â

â†â â†âb̂ĉ† â†ââ†â






). (3.86)Using the beamsplitter relation and the fat that initially the c mode is in the groundstate, we have

X =







1 1
2λ λ

1
2λ

1
4λ

2 1
2 (λ2 + λ)

λ 1
2(λ2 + λ) λ2 + λ






6≥ 0. (3.87)In partiular, the (2,3) submatrix ofX is not positive semide�nite, thus ρ̂(abc)

out is entangledaross the c/ab ut. It is easy to see that a similar test with the same hoie of Â, exeptthat now the partial transpose is done on the b mode, yields the onlusion that the state
ρ̂
(abc)
out is entangled aross the b/ac ut. Thus we have demonstrated bipartite entanglementin a tripartite setup.Now to show that the entanglement is genuine tripartite, `residual' in the sense of[275℄, we have the following.

ρ̂
(ab)
out = Trc(ρ̂

(abc)
out ) = e−λ

∞
∑

n=0

λnn!

2n
|n〉a a〈n|

n
∑

r=0

|r〉b b〈r|
r!(n− r)!

,

ρ̂
(ac)
out = Trb(ρ̂

(abc)
out ) = e−λ

∞
∑

n=0

λnn!

2n
|n〉a a〈n|

n
∑

r=0

|r〉c c〈r|
r!(n− r)!

,

ρ̂
(bc)
out = Tra(ρ̂

(abc)
out ) == e−λ

∞
∑

n=0

λnn!

2n

n
∑

r,s=0

|r, n − r〉bc bc〈s, n− s|
√

r!(n− r)!s!(n− s)!
. (3.88)Both ρ̂

(ab)
out and ρ̂

(ac)
out are manifestly separable. It may not be obvious at �rst glanethat ρ̂(bc)

out is separable, but a loser look shows that ρ̂(bc)
out an be written in the followingalternate form :

ρ̂
(bc)
out = e−λU(

∞
∑

n=0

λn

n!
|n〉b b〈n| ⊗ |0〉cc〈0|)U−1, (3.89)where U orresponds to a 50:50 b-c beamsplitter. The output is a lassial state passedthrough a 50:50 b-c beamsplitter. Thus the state ρ̂(bc)

out is lassial and hene separable.An interesting question in the present ontext is the possibility of extension of monogamy112



Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglementrelations to this non-Gaussian ase [254, 255, 275, 276℄.3.5 Mandel ParameterIn Setion 3.2.2, we had introdued the Mandel matrix onstrut and outlined the possiblelassi�ation of states it leads to. It is desirable that we are able to gauge the Mandeltype nonlassiality through the de�nition of a numerial measure. In the ase of asingle-mode radiation �eld, suh a quantity was de�ned by Mandel in [295℄ through the
Q parameter. We attempt to extend this de�nition to the ase of two modes. A usefulrequirement of any suh measure would be its invariane under beamsplitter ation, asbeamsplitter by itself does not produe nonlassiality, but rather transforms one formof nonlassiality to another, thus leaving invariant any reasonable quantitative measureof nonlassiality. Keeping this requirement in mind, we de�ne the two-mode Mandelparameter as

Q2 =
Tr(Γ) − ||Γ||

2(〈â†â〉 + 〈b̂†b̂〉)
, (3.90)where Γ is the 4 × 4 matrix de�ned from the two-mode Mandel matrix M (2)(ρ̂

(ab)
D ) inEq. (3.17), and ||.|| is the trae norm. In our ase, sine Γ is a hermitian matrixby de�nition, the trae norm is simply the sum of the absolute values of its eigenvalues.Thus our de�nition for the two-mode Mandel parameter is simply the sum of the negativeeigenvalues of Γ divided by the total energy of the system. From Eq. (3.27) and Eq.(3.28), we know that under the ation of a beamsplitter

Γ → Γ′ = V ΓV T , (3.91)where V = u ⊗ u∗, u ∈ U(2). Clearly the trae norm ||Γ|| and trae Tr(Γ) are bothunitarily invariant, thus invariant under the ation of a beamsplitter. The total energyis learly also invariant under beamsplitter ation. Thus our de�nition for the two-mode Mandel parameter given by Q2 is manifestly beamsplitter ation invariant. Byde�nition it is zero for lassial states, but an be non-zero for nonlassial states. As asimple example, for the ase of two-mode produt Fok states, Q2 = −1. It is nonzeronegative for states either with Type I or Type II nonlassiality. The two-mode Mandelparameter Q2 an be useful in gauging the two mode Mandel nonlassiality only withinthe respetive types, as the `Type' is invariant under beamsplitter ation.To maintain the distintion between the two types, it is useful to introdue the single-mode Mandel parameter Q1 de�ned at the two mode level. From Eq. (3.13), it is easy113



Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglementto see that we an de�ne Q1 to be
Q1 =

〈Â†2Â2〉 − 〈Â†Â〉2

〈Â†Â〉
. (3.92)It lear that the least possible value Q1 an take is −1. Clearly for Type II states, Q1is positive but Q2 is negative, .i.e., one an never hoose a linear ombination of theannihilation operators of the two modes to ahieve Q1 to be negative. On the other handfor Type I states, one an always hoose a partiular (atleast one) linear ombination ofthe annihilation operators of the two modes to make Q1 negative.To be more preise, it is useful to de�ne Qmin

1 , whih is the minimum possible value
Q1 an take for a given two-mode state, the minimum being taken over all the possiblelinear ombinations of the annihilation operators of the two modes under U(2). With thede�nition of Qmin

1 , it is lear that for Type II states, Q2 is negative but Qmin
1 is positive.On the other hand for Type I states, both Q2 and Qmin

1 are negative.Having thus introdued Qmin
1 , it is possible to lassify states in the following manner.(i) States with Qmin

1 ≥ 0 and Q2 = 0.(ii) States with Qmin
1 ≥ 0 but Q2 < 0.(iii) States with both Qmin

1 < 0 and Q2 < 0.For states denoted by (iii), a further sub-lassi�ation is possible :(iiia) States with Qmin
1 ≤ Q2.(iiib) States with Q2 ≤ Qmin

1 .States lassi�ed as (i), show no two-mode Mandel type nonlassiality, Type II statesome under (ii), and Type I states under (iii). Type I states an be further lassi�ed as(iiia) or (iiib).All lassial states are examples for states lassi�ed as (i). As simple examples for(ii), we onsider states given as example (b) and example () in Setion 3.3. These areType II states, and thus are examples for (ii). From Eq. (3.35) and Eq. (3.36), it is easyto see that for the state (example (b)) given in Eq. (3.34), Q2 = −1/2, and for the state(example ()) in Eq. (3.50), Q2 = SS′(SS′ − CC ′)/(S2 + S′2), whih is greater than
−1/2. At equal squeezings at both ends, Q2 takes the value −1/2. Furthermore fromEq. (3.53), we see that the state in example () goes over to being a sample for (i) from(ii), when the squeeze parameter at one of the ends goes to zero.
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Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglementAll Type I states suh as example (a) of Setion 3.3 are examples for states lassi�edas (iii). The sublassi�ation into (iiia) and (iiib) is a bit subtle, nevertheless we provideexamples for both. As an example for (iiia), we onsider the produt of a Fok state atthe a-mode and a oherent state at the b-mode.
|ψ〉 = |n〉 ⊗ |β〉. (3.93)For this state, the Γ matrix is diagonal with the diagonal entries given by {−n, n|β|2,

n|β|2, 0}. Thus Q2 for this state is
Q2 =

−n
n+ |β|2

≥ −1. (3.94)On the other hand, the single-mode Mandel parameter Q1 for the a-mode is −1. Thus
Qmin

1 ≤ Q2 for this ase.As an example for (iiib), we onsider the state in Eq. (3.72) of Setion 3.4. For thisstate it is easy to see from Eqs. (3.77) and (3.74) that Q2 = −1/2, however the expressionfor Q1 for an arbitrary value of α and β is, by Eqs. (3.77) and (3.74),
ψ0(α, β)†Γψ0(α, β)

〈Â†Â〉
=

1

2t
{ η

C2
− t+ 2|α|2|β|2(η + 3t)}. (3.95)The minimum possible value for Q1 is when α or β is zero, i.e.,

Qmin
1 =

1

2t
{ η

C2
− t} =

1

2
{ η

SinhηCoshη
− 1} ≥ −1

2
. (3.96)Another interesting example for (iiib) is the lass of states |ψn〉, obtained as an equalsuperposition of produt Fok states with total number equal to n :

|ψn〉 =
1√
n+ 1

n
∑

r=0

|r, n− r〉. (3.97)For the ases n = 1, 2, 3, 4 the numerially evaluated values of Q2 are respetively −1,
−1.085, −1.123, −1.143. However Q1 is obviously bounded from below by −1. Thus
Q2 < Qmin

1 for this example. Inidently, another interesting aspet should be noted,namely that Q2 an take values less than −1 in omparison with Q1 whih annot. Aninteresting aspet of these states is that they do not arise from beamsplitters, as entangledstates, produed from produt Fok states, with the exeption of the ase n = 1. Indeed,the value of the two-mode Mandel parameter Q2 falling below −1 is preisely a signatureof this aspet. 115



Chapter 3. Nonlassiality, Mandel lassi�ation, and entanglement3.6 Conluding remarksIn this work, we have made an attempt to bring the notions of nonlassiality of two-modestates and entanglement as lose as possible. We have given a transparent onnetionbetween normal ordering and NPT entanglement in the ontext of ontinuous variables.We have onsidered generalisation of the Mandel riterion to two-mode systems throughthe Mandel matrix onstrut, and exploited it to analyse entanglement. Suh a onstru-tion leads to a natural lassi�ation of states as Type I and Type II. Type II states arespeial in the sense that their antibunhing annot be deteted loally, i.e., through anysingle-mode proess. We have onsidered several examples to illustrate this lassi�ation.We have shown the possibility of demonstrating NPT entanglement through the Mandelmatrix onstrut. It is also shown that the demonstrated entanglement ould as well bedistilled. We have extended this idea to the tripartite ase, where we have demonstratedthrough simple examples that the entanglement ould be traed bak to the Mandel ma-trix. We have introdued the two-mode Mandel parameter Q2, through the Γ matrixonstrut, and disussed interesting situations that ould arise in the ase of two modes,by ontrasting the value of Q2 with that of the single-mode Mandel parameter Q1. Wehave demonstrated the ability of the two-mode Mandel parameter Q2 to detet entan-glement that annot arise from beamsplitters. We hope that the perspetive developedhere will help further interesting developments and generalisations.
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4Entanglement of Formation for Gaussian states
4.1 IntrodutionEntanglement is an essential resoure for many quantum information proessing tasks,and hene it is important to be able to quantify this resoure. In Setion 1.6, we outlineda set of demands, that any good measure of entanglement should satisfy. In the ase of bi-partite pure states, the demands lead to a simple and unique measure for this resoure: itis the von Neumann entropy of either subsystem [62, 338, 339℄. For mixed states however,many di�erent entanglement measures have been explored [340℄, and there is no measurewhih justi�es itself to be unique. Of these measures, the entanglement of formation(EOF) [37℄ is the most natural extension of the pure state measure of entanglement, tothe ase of mixed states. To reall the de�nition of EOF in Eq. (1.87), the EOF for abipartite state ρ̂(ab) is de�ned as an in�mum :

EOF (ρ̂(ab)) ≡ inf {
∑

j

pjE(ψj) | ρ̂(ab) =
∑

j

pj |ψj〉〈ψj | } . (4.1)The in�mum is to be taken over all possible ensemble realizations of the given mixedstate ρ̂(ab) as onvex sum of pure states, and E(ψj) ≡ S(trB [|ψj〉〈ψj |]), where S(·) is thevon Neumann entropy. The regularised version of EOF is the entanglement ost [37, 63℄.EOF has been omputed in losed form for arbitrary two-qubit states [67℄, and for highlysymmetri states like the isotropi states [69℄ and the Werner states [71℄.The role of Gaussian states in quantum information theory has already been outlinedin Setion 1.9. Their use in teleportation [83, 84℄ and quantum ryptography [97℄ hasbeen demonstrated. Questions related to their separability [57, 58, 241, 242℄ and distil-lability [217℄ have been resolved. More reently, analyti expression for their EOF hasbeen obtained in the symmetri ase [70℄. This notable ahievement seems to be the �rstomputation of EOF for states of in�nite rank. These authors exploit a ertain extremal-117



Chapter 4. Entanglement of Formation for Gaussian statesity that the two-mode-squeezed vauum enjoys in respet of the Einstein-Podolsky-Rosen(EPR) orrelation [341℄ on the one hand and entanglement on the other.An interesting Gaussian-state-spei� generalisation of EOF, the Gaussian entangle-ment of formation, has also been explored [342℄. But the EOF of asymmetri Gaussianstate has remained an open problem [343℄ in spite of onsiderable e�ort [344℄. Naturally,the problem of EOF for general (asymmetri) Gaussian states should be solved before theimportant issue of additivity of entanglement for Gaussian states ould be addressed [342℄.In this work we ompute, under a onjeture, the EOF for arbitrary two-mode Gaus-sian states. Our analysis rests on two prinipal ingredients. The �rst one is a four-parameter anonial form we develop for the ovariane matrix; one of these parameters,the squeeze parameter, proves to be a measure of EOF. The seond one is a family ofgeneralised EPR orrelations for nonommuting pairs of nonloal variables; this familyis indexed by a ontinuous parameter θ. And the onjeture is in respet of an extremalproperty of this generalised EPR orrelation.4.2 Canonial Form for Covariane MatrixGiven a two-mode Gaussian state, with the mode on Alie's side desribed by anonialquadrature variables x̂a, p̂a and that on Bob's side by x̂b, p̂b, we an assume without lossof generality that the �rst moments of all four variables vanish [57, 70℄. Suh a zero-meanGaussian state is fully desribed by the ovariane matrix [57, 70℄
VG =

1

2













αβn 0 βkx 0

0 α−1β−1n 0 −β−1kp

βkx 0 α−1βm 0

0 −β−1kp 0 αβ−1m













, (4.2)where the phase spae variables are assumed to be arranged in the order (xa, pa, xb, pb)

≡ ξ, and we have retained through the parameters α, β > 0 the freedom of independentloal unitary (i.e., sympleti) salings on the Alie's and Bob's sides. This freedom willbe used shortly.Note that VG is left with no orrelation between the `spatial' variables x̂a, x̂b and the`momentum' variables p̂a, p̂b. Thus it is sometimes onvenient to view VG as the diret
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Chapter 4. Entanglement of Formation for Gaussian statessum of 2 × 2 matries :
VG = XG ⊕ PG ,

XG = β
2

[

αn kx

kx α−1m

]

, PG = β−1

2

[

α−1n −kp

−kp αm

]

. (4.3)Let |Ψr〉 denote the standard two-mode-squeezed vauum state with squeeze param-eter r. It takes the Shmidt form in the standard Fok basis :
|Ψr〉 =

∞
∑

n=0

cn|n〉A ⊗ |n〉B ≡
∞
∑

n=0

cn|n, n〉 ,

cn = tanhnr/ cosh r . (4.4)Denoting by Er the entanglement of |Ψr〉, we have
Er = cosh2r log2(cosh

2r) − sinh2r log2(sinh2r) . (4.5)The ovariane matrix of |Ψr〉 has the form
VΨr = XΨr ⊕ PΨr ,

XΨr =
1

2

[

C S

S C

]

, PΨr =
1

2

[

C −S
−S C

]

,

C ≡ cosh 2r, S ≡ sinh 2r . (4.6)Proposition 4.1 Given a two-mode ovariane matrix VG, the loal sale parameters α,
β an be so hosen that VG gets reast in the form

V0 =
1

2













C + u c2 0 S + u cs 0

0 C + v c2 0 −S − v cs

S + u cs 0 C + u s2 0

0 −S − v cs 0 C + v s2













,

C ≡ cosh 2r0, S ≡ sinh 2r0; c ≡ cos θ0, s ≡ sin θ0 . (4.7)Note : We will all V0 the anonial form of a two-mode ovariane matrix; our resultsbelow will justify this elevated status. We assume without loss of generality n ≥ m or,equivalently, 0 < θ0 ≤ π/4. For a given VG there will be two solutions for the above form.Canonial form will always refer to the one with the smaller squeeze parameter r, whih
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Chapter 4. Entanglement of Formation for Gaussian statesis ensured by the restrition
tan θ0 ≥ tanh r0 . (4.8)This ondition proves entral to our analysis. Its origin may be appreiated by inversetwo-mode-squeezing the Gaussian state V0 until it beomes just separable, and notingthat there exists a range of further squeezing in whih the mixed Gaussian state remainsseparable before beoming inseparable again. The parameters u, v ≥ 0.Theorem 4.1 The essene of the anonial form is that V0 di�ers from the ovarianematrix of a two-mode-squeezed vauum |Ψr0〉 by a positive matrix whih is a diret sumof two singular 2 × 2 matries whih are, modulo signature of the o�-diagonal elements,multiples of one another.Proof : The anonial form demands, as a neessary ondition, that α, β, and r be hosento meet

det(XG −XΨr) = 0 , det(PG − PΨr) = 0 . (4.9)These being two onstraints on three parameters, one will expet to get a one-parameterfamily of solutions to these onstraints. For eah suh solution we may denote the vetorannihilated by the singular matrix XG −XΨr by (sin θ, − cos θ), and that annihilated by
PG − PΨr by (sin θ

′
, cos θ

′
). The anonial form orresponds to that solution for whih

θ
′
= θ; it is this degenerate value that equals θ0 of the anonial form.That there exists suh a degenerate value an be seen as follows. We may �x the saleparameter α through α =

√

m/n, and then solve Eqs. (4.9) for β and r, the smaller rbeing the relevant one. We will �nd θ = π/4 and θ′
< π/4 in this ase. On the otherhand if we take α =

√

n/m and then solve Eqs. (4.9), we will �nd θ′
= π/4 and θ < π/4.It follows from ontinuity that there exists an intermediate value α0 for the parameter

α, in the range √m/n < α <
√

n/m, for whih θ′
= θ (< π/4 sine n > m). And thisyields the anonial form.Viewed alternatively, the anonial form plaes the following two requirements on thesale fators α, β :

detXG − 1/4

detPG − 1/4
=

tr(σ3XG)

tr(σ3PG)
,

det(XG − σ3PGσ3) = 0 , (4.10)where σ3 is the diagonal Pauli matrix. These are simultaneous equations in α, β, and120



Chapter 4. Entanglement of Formation for Gaussian statessolving these equations yields, in terms of n, m, kx, kp, the values of α, β orrespondingto the anonial form.Two speial ases may be noted. If m = n we have α = 1 (sine √n/m =
√

m/n),and hene β =
√

(n− kp)/(n − kx), so that the anonial squeeze parameter r0 is givenby e−2r0 =
√

(n− kx)(n − kp), reproduing the results of Ref. [70℄. The parameter θ0always equals π/4 in this (symmetri) ase. On the other hand, if kx = kp = k, theanonial form orresponds to α = β = 1, and one obtains r0 by simply solving
det

[

n− cosh2r0 k − sinh2r0

k − sinh2r0 m− cosh2r0

]

= 0 , (4.11)whih yields this losed-form expression for r0 :
cosh(2η − 2r0) =

nm− k2 + 1
√

(n+m)2 − 4k2)
,

e±2η ≡ (n+m) ± 2k
√

(m+ n)2 − 4k2
. (4.12)4.3 Generalised EPR CorrelationTo proeed further, we need to generalise the familiar EPR orrelation in Eq. (1.120) [70℄.Given any bipartite state |ψ〉, de�ne

x̂θ = sin θ x̂a − cos θ x̂b ,

p̂θ = sin θ p̂a + cos θ p̂b ,

Λθ(ψ) = 〈ψ|(x̂θ)
2|ψ〉 + 〈ψ|(p̂θ)

2|ψ〉 . (4.13)In de�ning Λθ(ψ) we have assumed 〈ψ|x̂θ|ψ〉 = 0 = 〈ψ|p̂θ|ψ〉; if this is not the ase then
x̂θ and p̂θ in Λ̂θ(ψ) should be replaed by x̂θ − 〈ψ|x̂θ|ψ〉 and p̂θ − 〈ψ|p̂θ|ψ〉 respetively.Clearly, the usual EPR orrelation in Eq. (1.120) [70℄ orresponds to θ = π/4. While
x̂π/4, p̂π/4 ommute, the generalised EPR (nonloal) variables x̂θ, p̂θ do not ommute,and hene the name generalised EPR orrelation for Λ̂θ(Ψr); indeed, we have

[x̂θ, p̂θ] = −i cos 2θ. (4.14)For the two-mode-squeezed vauum |Ψr〉 the generalised EPR orrelation reads
Λθ(Ψr) = cosh 2r − sin 2θ sinh 2r . (4.15)
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Chapter 4. Entanglement of Formation for Gaussian statesLet us ombine the quadrature variables of the osillators of Alie and Bob into bosonoperators â = (x̂a + ip̂a)/
√

2 and b̂ = (x̂b + ip̂b)/
√

2. Then, Λθ(ψ) has this expressionquadrati in the boson variables :
Λθ(ψ) = 〈ψ|Λ̂θ|ψ〉,

Λ̂θ = 1 + 2sin2θ â†â+ 2cos2θ b̂†b̂

− 2 cos θ sin θ(âb̂+ â†b̂†) . (4.16)We may all Λ̂θ the generalised EPR operator.The entanglement of Ψr monotonially inreases with inreasing value of the squeezingparameter r. In order that Λθ(Ψr) be useful as an entanglement measure of Ψr it should,for �xed value of θ, derease with inreasing r. The restrition tan θ ≥ tanh r, enoun-tered earlier in Eq. (4.8) from a di�erent perspetive, simply ensures this. Through themonotoni relationship (3) between r and Er, we will view this onstraint as a restritionon the allowed range of values of θ, for a �xed value of entanglement.Given a squeezed state |Ψr〉, let us denote by |Ψ′
r〉 the state obtained from |Ψr〉 byindependent loal anonial transformations [57℄ Sa, Sb ∈ Sp(2, R) ating respetively onthe osillators of Alie and Bob.Proposition 4.2 We have Λθ(Ψ

′
r) ≥ Λθ(Ψr), ∀ θ in the range 1 ≥ tan θ ≥ tanh r andfor all Sa, Sb ∈ Sp(2, R).Proof : Clearly,

Λθ(Ψ
′
r) =

1

2
{ cosh 2r[ sin2 θ tr(SaS

T
a ) + cos2 θ tr(SbS

T
b ) ]

− sin 2θ sinh 2r tr (σ3Saσ3S
T
b ) }. (4.17)If e±γa are the singular values of Sa, and e±γb those of Sb, then

tr(SaS
T
a ) = 2 cosh 2γa,

tr(SaS
T
b ) = 2 cosh 2γb, and

tr(σ3Saσ3S
T
b ) ≤ 2 cosh(γa + γb). (4.18)Thus the di�erene ∆(γa, γb) ≡ Λθ(Ψ
′
r) − Λθ(Ψr) obeys

∆(γa, γb) ≥ cosh 2r[ sin2 θ(cosh 2γa − 1) + cos2 θ(cosh 2γb − 1) ]

− sin 2θ sinh 2r[ cosh(γa + γb) − 1 ]. (4.19)
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Chapter 4. Entanglement of Formation for Gaussian statesIt is easily seen that ∆(γa, γb) is expremal at γa = γb = 0 orresponding to the standardsqueezed state |Ψr〉. To show that this extremum is indeed minimum, we note that thedeterminant of the Hessian matrix of the right hand side, evaluated at γa = 0 = γb, isproportional to sin 2θ cosh 2r− sinh 2r, and hene is positive if and only if tan θ ≥ tanh r.One again we see a role for the requirement tan θ ≥ tanh r. Let the equivalene
VG ∼ V0 denote the fat that the orresponding Gaussian states are onneted by a loalanonial transformation. The fat thatM ≡ V0−VΨr0

≥ 0 implies Λθ0(ρV0) ≥ Λθ0(Ψr0).In view of Proposition 6.2, this implies
Λθ0(ρVG

) ≥ Λθ0(ρV0) ≥ Λθ0(Ψr0) = cosh 2r0 − sin 2θ sinh 2r0, (4.20)for any Gaussian state VG onneted to V0 by loal anonial transformation. This assignsan alternative meaning to the anonial parameter r0 :Proposition 4.3 Given a Gaussian state desribed by VG ∼ V0, the anonial squeezeparameter r0 is the smallest r for whih the matrix inequality VG − VΨ′
r
≥ 0 is true.It is well known that the two-mode-squeezed vauum has several extremal propertiesof interest to entanglement [70, 253℄. It seems that this state enjoys one more suhdistintion, this time in respet of our generalised EPR orrelation.Conjeture 4.1 Among all bipartite states of �xed entanglement numerially equalling

Er, and for every θ in the range tanh r ≤ tan θ, the two-mode-squeezed vauum |Ψr〉 yieldsthe least value for the generalised EPR orrelation Λθ(·). In other words, no state |ψ〉with entanglement E(|ψ〉) ≤ Er an yield a generalised EPR orrelation Λθ(ψ) < Λθ(Ψr),for any θ in the range tan θ ≥ tanh rThe speial ase θ = π/4 is the basis of the important work of Ref. [70℄. Hene thepresent assertion an be viewed as a generalisation of their Proposition 1. The originalEPR orrelation Λπ/4(·) ontinuously dereases to zero with inreasing entanglement.But this is not true of the generalised EPR orrelation Λθ(·).Let us denote by rθ the value of r determined by a given value of θ through theequation tan θ = tanh r, and let θr denote the value of θ so determined by r. Then, fora given numerial Er, the relevant range for θ in Conjeture 1 is θr ≤ θ ≤ π/4.Proposition 4.4 The generalised EPR orrelation Λθ(·) obeys the basi inequality Λθ(·) ≥
cos 2θ. The two-mode-squeezed vauum saturates this inequality if and only if the squeezeparameter r respets tanh r = tan θ. 123



Chapter 4. Entanglement of Formation for Gaussian statesProof : It is lear that the relations tan θ = tanh r, sin 2θ = tanh 2r, and cos 2θ =

( cosh 2r )−1 are equivalent to one another, and so also are the inequalities tan θ ≥ tanh r,
sin 2θ ≥ tanh 2r, and cos 2θ ≤ ( cosh 2r )−1. Now onsider the transformation (â, b̂) →
U(r)(â, b̂)U(r)† where U(r) = exp{ r(â†b̂† − âb̂) } is the unitary two-mode-squeeze oper-ation :

â→ â cosh r − b̂† sinh r, b̂→ b̂ cosh r − â† sinh r. (4.21)This implies the following transformation for the antiommutator {b̂, b̂†} ≡ b̂b̂† + b̂†b̂ :
{b̂, b̂†} → ( b̂†b̂− â†â ) +

1

2
({â, â†} + {b̂, b̂†}) cosh 2r

− ( âb̂+ â†b̂† ) sinh 2r

= cosh 2r Λ̂θr
, θr ≡ arctan(tanh r). (4.22)Sine {b̂, b̂†} ≥ 1, so is also its unitary transform cosh 2r Λ̂θr

. That is, Λ̂θr
≥ ( cosh 2r )−1 =

cos 2θr.Thus, saturation of the inequality Λθr
(ψ′) ≥ cos 2θr is equivalent to the ondition

〈ψ|{b̂, b̂†}|ψ〉 = 1, where |ψ′〉 = U(r)|ψ〉. A pure state whih satis�es 〈ψ|{b̂, b̂†}|ψ〉 = 1,is of the form |ψ〉 = |φ〉a ⊗ |0〉b, where |φ〉a is any vetor in Alie's Hilbert spae Hb. Itfollows that states saturating the inequality Λθr
(ρ̂) ≥ cos 2θr onstitute the set { ρ̂(ab) =

U(r)ρ̂(a) ⊗ |0〉bb〈0|U(r)† }, where ρ̂(a) is any (pure or mixed) state of Alie's osillator.Finally, Conjeture 6.1 laims that among all these states saturating this inequality thetwo-mode-squeezed vauum |Ψrθ
〉, orresponding to the hoie ρ̂(a) = |0〉aa〈0|, has theleast entanglement.4.4 Entanglement of FormationWith the anonial form and the generalised EPR orrelations in hand, we are now fullyequipped to ompute the EOF of an arbitrary two-mode Gaussian state.Proposition 4.5 Given an inseparable zero-mean two-mode Gaussian state ρV0 with o-variane matrix V0 spei�ed in the anonial form by u, v, θ0 and r0 with u, v ≥ 0 and

0 < tanh r0 ≤ tan θ0 ≤ 1, its EOF equals Er0 , the entanglement of the squeezed vauum
|Ψr0〉.Proof : The fat that M ≡ V0 − VΨr0

≥ 0 guaranties that ρV0 an be realized as a onvexsum of displaed versions D(ξ)|Ψr0〉 of the squeezed vauum states |Ψr0〉, all of whih124



Chapter 4. Entanglement of Formation for Gaussian stateshave the same entanglement Er0 as |Ψr0〉 :
ρV0 ∼

∫

d2ξD(ξ)|Ψr0〉〈Ψr0 |D†(ξ) exp(−1

2
ξTM−1ξ). (4.23)Here D(ξ) is the unitary phase spae displaement operator. The rank of M equals 2,and bothM−1 and the two-dimensional integral refer to the restrition of the phase spaevariable ξ to the range of M .Sine a spei� ensemble realization with average entanglement Er0 is exhibited,EOF(ρV0) ≤ Er0 . On the other hand, evaluation of the generalised EPR orrelation

Λθ(ρV0) = tr (Λ̂θρV0), for the partiular value of θ ourring in V0 shows that Λθ0(ρV0) =

cosh 2r0 − sin 2θ0 sinh 2r0. And by Conjeture 6.1, this implies EOF(ρV0) ≥ Er0 . Wehave thus proved EOF(ρV0) = Er0 .An attrative feature of the anonial form of the ovariane matrix is that the two-mode-squeezing U(r) ats on it in a ovariant or form-preserving manner.Proposition 4.6 Under the two-mode-squeezing transformation U(r) we have
V0(r0, θ0, u, v) → V0(r

′
0, θ

′
0, u

′, v′) ;

r′0 = r0 + r, sin 2θ′0 =
sinh 2r + cosh 2r sin 2θ0
cosh 2r + sin 2θ0 sinh 2r

,

(u′, v′) = (u, v) × (cosh 2r + sin 2θ0 sinh 2r). (4.24)This is easily veri�ed by diret omputation. While the anonial squeeze parameter
r0 simply gets translated by r, the parameters u and v get saled by a ommon fator.If we de�ne rθ0 , rθ′0 through tan θ0 ≡ tanh rθ0 and tan θ′0 ≡ tanh rθ′0 , the transformationlaw for θ0 takes the form of translation: rθ′0 = rθ0 + r.As a onsequene of this ovariane, the onvex deomposition whih minimizesthe average entanglement goes ovariantly to suh a deomposition under two-mode-squeezing: the minimal deomposition ommutes with squeezing. This implies, in par-tiular, the following simple behaviour of EOF under squeezing: Er0 → Er0+r.Finally, the just separable Gaussian states on the separable-inseparable boundary,orrespond to the anonial form with r0 = 0 [57℄. As was to be expeted, the ondition(4.8) plaes no restrition on θ0 in this ase.
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5Compatibility onditions on loal and globalspetra for n-mode Gaussian states
5.1 IntrodutionThe quantum marginal problem has attrated onsiderable interest in quantum infor-mation theory [17, 34, 345�351℄. Given a multipartite system, it asks: what kind ofspetra for the subsystem density operators are onsistent with a given spetrum for thedensity operator of the full system? The Gaussian quantum marginal problem (detailedbelow) has been solved reently [285, 352℄ (As noted in Ref. [352℄, the three-mode asewas known earlier [254℄). Our approah to this problem makes e�etive use of beam split-ter and two-mode squeezing transformations. In the ase of two modes it is shown thatevery Gaussian state is uniquely determined, modulo loal anonial transformations, byits global spetrum and loal spetra; in partiular, the entanglement is fully determinedby these spetra.Consider a Gaussian state of a system of n-modes, represented by density operator ρ̂.The mean values of the position and momentum variables qj, pj have no role to play inour onsiderations, and so we assume that these mean values vanish. Suh a zero-meanGaussian state is fully desribed by its 2n × 2n ovariane matrix V .The redued state ρ̂j of the jth mode, obtained by traing out from ρ̂ all other modes,is also a zero-mean Gaussian state. With the phase spae variables assumed arranged inthe order q1, p1 ; q2, p2 ; · · · ; qn, pn the jth 2 × 2 blok along the leading diagonal of Vrepresents preisely the ovariane matrix of the redued state ρ̂j . Through (independent)loal anonial transformations ∈ Sp(2, R) on eah mode we make all the 2 × 2 bloksalong the diagonal of V multiples of identity. The ovariane matrix of the jth mode willthen be of the form diag(mj ,mj). It orresponds to a thermal state, with temperature
T (mj) whih is a monotone inreasing funtion of mj. Being thermal, ρ̂j has the spetral126



Chapter 5. Compatibility onditions on loal and global spetra for n-mode Gaussianstatesresolution ρ̂j = [1 − ξ(mj)]
∑∞

k=0 ξ(mj)
njk |njk〉〈njk| . The parameter ξ(mj) is anothermonotone inreasing funtion of mj, and |njk〉's are the energy eigenstates of the jthosillator. Clearly, the eigenvalue spetra of the ρ̂j's are determined by, and determine,the loal spetral parameters mj .Using an appropriate (nonloal) anonial transformation S ∈ Sp(2n,R) the ovari-ane matrix V an be deoupled and brought into the anonial form V (0) of independentosillators in thermal states [57℄: V (0) = SV ST =diag(κ1, κ1 ; κ2, κ2 ; · · · ; κn, κn). Theassoiated density operator ρ̂(0) thus has the spetral deomposition

ρ̂(0) =
n
∏

j=1

[1 − ξ(κj)]
∞
∑

k=0

ξ(κj)
njk |njk〉〈njk|. (5.1)Sine ρ̂(0) and the original ρ̂ are unitarily related, the spetrum of ρ̂ is the same as thatof ρ̂(0). It is lear that this global spetrum and the n-tuple of global spetral parameters

(κ1, κ2, · · · , κn) determine eah other.We may now ask what are the onstraints onneting the global spetrum of a Gaus-sian state to its loal spetra. In view of the invertible relationships just noted thisGaussian quantum marginal problem is equivalent to seeking the ompatibility onstraintsbetween the global spetral parameters {κj } and the loal spetral parameters {mj }.Interestingly, the answer an be given in the form of neessary and su�ient onditions.Theorem 5.1 Let m = (m1,m2,m3, · · · ,mn) and κ = (κ1, κ2, · · · , κn) be the loal andglobal spetral parameters of an n-mode Gaussian state, written in nondereasing order.These are ompatible i�
k
∑

j=1

mj ≥
k
∑

j=1

κj , k = 1, 2, · · · , n , (5.2)
mn −

n−1
∑

j=1

mj ≤ κn −
n−1
∑

j=1

κj . (5.3)Remarks : What this laim means an be lari�ed by stating it in two parts. Supposea Gaussian state is given. Its loal spetral parameters m1,m2, · · · ,mn, and globalspetral parameters κ1, κ2, · · · , κn are ertain to meet these inequalities (with κ1 ≥ 1).Conversely, given a set of loal and global spetral parameters meeting these inequalities(with κ1 ≥ 1), we an ertainly onstrut a physial Gaussian state with these parameters.The �rst part of the theorem was essentially proved by Hiroshima [285℄. But the fulltheorem in this form was formulated by Eisert et al. [352℄ who presented an indutive prooffor the seond part. Our proof of both parts will be seen to be onstrutive, onsistent127



Chapter 5. Compatibility onditions on loal and global spetra for n-mode Gaussianstateswith the elementary nature of the theorem, and it rests in an essential manner on a fullerappreiation of the two-mode situation.Given two vetors m, κ ∈ Rn, we will say κ dominates m if m and κ, after theiromponents are rearranged in the nondereasing order, obey the set of n + 1 inequali-ties (5.2), (5.3). This de�nition is suh that permutation of the omponents of m or κdoes not a�et dominane. Thus (9, 7, 8, 6, 12, 11, 10) is dominated by (5, 2, 18, 4, 1, 12, 3),sine (1, 2, 3, 4, 5, 12, 18) manifestly dominates (6, 7, 8, 9, 10, 11, 12). Further, dominaneso de�ned is transitive: κ dominates m, andm dominates m′, together imply κ dominates
m′. In the Shur-Horn ase [353℄ wherein m orresponds to the diagonal entries of ahermitian matrix and κ to its eigenvalues, the last inequality in (5.2) beomes an equality.It is lear that (5.3) is subsumed by (5.2) in that ase.5.2 The two-mode aseThis ase is of interest in its own right. Further, it possesses an aspet whih seems to beunique, not shared by any other system. Finally, our analysis of the n-mode ase reliesritially on repeated appliations of the two-mode result. Hene we begin with a diretproof of the theorem in the two-mode ase.Lemma 5.1 The parameters m1 ≤ m2 and 1 ≤ κ1 ≤ κ2 are ompatible for two-modeGaussian states i�

m1 +m2 ≥ κ1 + κ2,

m2 −m1 ≤ κ2 − κ1. (5.4)Note that the ondition m1 ≥ κ1 is subsumed by (5.4).Proof of Lemma : The ovariane matrix an, through loal unitary (anonial) trans-formation ∈ Sp(2, R) × Sp(2, R), be brought to the form
V =













m1 0 kx 0

0 m1 0 kp

kx 0 m2 0

0 kp 0 m2













. (5.5)
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Chapter 5. Compatibility onditions on loal and global spetra for n-mode GaussianstatesThe global spetral parameters κ1, κ2 are related to the loal m1, m2 through the sym-pleti invariants [57℄
1

2
tr (ΩV ΩTV ) = κ2

1 + κ2
2 = m2

1 +m2
2 + 2kxkp,

detV = (κ1κ2)
2 = (m1m2 − k2

x)(m1m2 − k2
p). (5.6)These immediately imply

κ1κ2 ≤ m1m2,

κ2
1 + κ2

2 ≥ m2
1 +m2

2, if kxkp ≥ 0,

κ2
1 + κ2

2 ≤ m2
1 +m2

2, if kxkp ≤ 0, (5.7)equality in the �rst inequality holding if kx = 0 = kp. These inequalities imply
κ2 − κ1 ≥ m2 −m1, when kxkp ≥ 0,

κ2 + κ1 ≤ m2 +m1, when kxkp ≤ 0. (5.8)This muh is immediate from the sympleti invariants. What remain to be proved are :
κ2 − κ1 ≥ m2 −m1 when kxkp ≤ 0 and κ2 + κ1 ≥ m2 +m1 when kxkp ≥ 0.To prove these we reinterpret (5.6) as simultaneous expressions for kx, kp in terms of
κ1, κ2; m1, m2 :

kxkp = [ (κ2
1 + κ2

2) − (m2
1 +m2

2) ]/2, (5.9)
k2

x + k2
p =

1

m1m2
[m2

1m
2
2 − κ2

1κ
2
2 + k2

xk
2
p ]. (5.10)It is lear that real solutions for kx and kp will exist i� ` k2

x + k2
p ' ≥ ` 2| kxkp | '. That is,i�

m1m2 − | kxkp | ≥ κ1κ2. (5.11)With use of (5.9) for kxkp, this last ondition reads
κ2 − κ1 ≥ m2 −m1, when kxkp ≤ 0,

κ2 + κ1 ≤ m2 +m1, when kxkp ≥ 0. (5.12)Proof of the Lemma is thus omplete.
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Chapter 5. Compatibility onditions on loal and global spetra for n-mode GaussianstatesTwo types of simple transformations on any pair of modes haraterised by annihi-lation operators aj , ak deserve partiular mention; they play a key role in our proof ofthe theorem. The �rst, Sθ, orresponds to the ompat transformations aj → cos θ aj +

sin θ ak, ak → − sin θ aj + cos θ ak, and therefore is represented by Sθ = cos θ σ0 ⊗ σ0 +

sin θ iσ2 ⊗ σ0 ∈ Sp(4, R), 0 ≤ θ < 2π, where σ0 is the 2 × 2 unit matrix and σ2is the antisymmetri Pauli matrix. Physially, Sθ is a beam splitter with transmitiv-ity cos2 θ. The seond one, Sµ, is nonompat and orresponds to squeezing transfor-mations aj → cosh µaj + sinhµa†k, ak → coshµak + sinhµa†j , and is represented by
Sµ = coshµσ0 ⊗ σ0 + sinhµσ1 ⊗ σ3 ∈ Sp(4, R), 0 ≤ µ <∞.It is easily veri�ed that when the ovariane matrix V , Eq. (5.5), has kp = kx ≡ k,it an be diagonalised by the beam splitter transformation V → SθV S

T
θ , with θ �xedthrough tan 2θ = 2k/(m2 −m1). And κ2 + κ1 will preisely equal m2 +m1 in this ase.Similarly, if kp = −kx = k > 0, then V is diagonalised by the squeezing transformation

V → SµV S
T
µ , with tanh 2µ = 2k/(m2 + m1), and one will �nd κ2 − κ1 = m2 −m1 inthis ase.Conversely, suppose we start with the anonial form V (0) = diag (κ1,κ1; κ2,κ2),and we wish to ahieve through sympleti ongruene V (0) → SV (0)ST , S ∈ Sp(4, R),a ovariane matrix with diagonals m1,m2. If m1 < m2 are suh that m2 < κ2 and

κ2 +κ1 = m2 +m1, suh a redistribution of κ1, κ2 among m1, m2 an always be ahievedthrough a beam splitter transformation Sθ. Under Sθ we have m2 +m1 = κ2 + κ1 and
m2 −m1 = cos 2θ (κ2 − κ1). On the other hand, if m2 > κ2 and κ2 − κ1 = m2 −m1,so that κ1 and κ2 are enhaned by equal amounts to m1, m2, this an be ahievedthrough a squeezing transformation Sµ. Under Sµ we have m2 − m1 = κ2 − κ1 and
m2 +m1 = cosh 2µ (κ2 + κ1).Our Lemma is similar to Lemma 5 of Ref. [352℄, but our proof is diret and on-strutive. There is an important distintion in ontent as well: while theirs laims that
m2 − m1 = κ2 − κ1 i� m2 = κ2 and m1 = κ1, we have just demonstrated that if
m2 −m1 = κ2 − κ1 then m2 +m1 ould equal cosh 2µ (κ2 + κ1) for any 0 ≤ µ <∞, notjust µ = 0. Indeed, this distintion is entral to Stage 2 of our proof of the seond partof the main theorem, the part whih distinguishes the present sympleti situation fromthe Shur-Horn ase.Returning to Eq. (5.10), if we are given values for the expressions ` a2 + b2 ' and` ab ' with a2 + b2 ≥ 2| ab |, the solution for (a, b) is unique [ (a, b) and (b, a) are notdistint solutions for our purpose ℄. This innoent looking observation leads to a surprisingonlusion.Proposition 5.1 Spei�ation of the loal and global spetra of a two-mode Gaussian130



Chapter 5. Compatibility onditions on loal and global spetra for n-mode Gaussianstatesstate determines uniquely the state itself, modulo loal unitary transformations.States of a pair of qubits share a similarity with two-mode Gaussian states in impor-tant respets. For instane, positivity under partial transpose is a neessary and su�ientondition for separability and nondistillability in both ases. But a statement analogousto the above proposition is not true for a pair of qubits!5.3 Proof of main theoremAssume we are given a (zero-mean) Gaussian state, or equivalently, an aeptable o-variane matrix V , the 2 × 2 bloks along the leading diagonal of V being of theform diag(mj,mj). The global spetral parameters {κj } are immediately de�ned by
V [57, 192℄. It is assumed that m = (m1,m2, · · ·mn) and κ = (κ1, κ2, · · · , κn) are ar-ranged in nondereasing order. Let Pκ denote the produt κ1κ2 · · ·κn and let Pm =

m1m2 · · ·mn. Clearly, Pκ = detV ≤ Pm, equality holding i� V is diagonal, i.e., i�
mj = κj , j = 1, 2, · · · , n. Our task is to prove that κ dominates m.Choose a pair 1 ≤ j < k ≤ n suh that the 2 × 2 blok (in the o�-diagonal loation)onneting the jth and kth modes is nonzero. We an arrange (through loal rotations)this blok to be diagonal. Let us `diagonalise' this 4 × 4 part of the ovariane matrixusing an appropriate two-mode anonial transformation ∈ Sp(4, R), so that mj and mkare transformed to m̃j and m̃k respetively, the other diagonal parameters remaininguna�eted.It is be noted that the new m dominates the original m. That this is so follows, in thease k < n, from the fats m̃j < mj and m̃j +m̃k ≤ mj +mk. In the ase k = n it followsfrom the additional fat that if m̃k is less that mk it is so by a magnitude whih doesnot exeed the magnitude by whih m̃j is less than mj (m̃k − m̃j ≥ mk −mj). Further,
m̃jm̃k < mjmk.Denote by m′ the new diagonal m-parameters arranged in nondereasing order byorrespondingly permuting the osillators. Sine m̃jm̃k < mjmk we have Pm′ < Pm.For purpose of larity, let us arry out this proess one more time. The parameters
m′ will then go to m′′ dominating m′, with Pm′′ < Pm′ . It follows from the transmitivityof dominane that m′′ dominates m.It is now lear that when this proess is iterated, m goes through a sequene ofintermediate values, the value at every stage dominating the previous value, and orre-spondingly Pm steadily dereasing, until Pm reahes Pκ or, equivalently, until V beomesdiagonal. This ompletes proof of the �rst part of the theorem.
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Chapter 5. Compatibility onditions on loal and global spetra for n-mode GaussianstatesThe elementary nature of our proof may be ompared with that of Ref. [285℄. Pmplayed the role of `pro�t funtion' monitoring progress of this diagonalisation proess.To prove the seond part assume, onversely, that we are given the global and loalspetral parameters κ, m ∈ Rn. Assume that these are ompatible: i.e., κ dominates m,with κ1 ≥ 1. Our task is to onstrut a Gaussian state with these properties. In otherwords we have to present a anonial transformation S ∈ Sp(2n,R) whih ating on aovariane matrix V = diag(κ1, κ1 ; κ2, κ2 ; · · · ; κn, κn) will produe a ovariane matrix
SV ST with the target diagonal values m. We build suh an S as a produt of n − 1spei� two-mode transformations, evolving m(0) ≡ κ suessively through a sequene ofintermediates m(1), m(2), · · · to �nally m(n−1) = m. It will be manifestly lear that m(k)dominates m(k+1) at eah stage. For larity, this proess is implemented through fourelementary stages.5.3.1 Stage 1Sine m(0) ≡ κ dominates m, we have m1 ≥ m

(0)
1 = κ1. Suppose m1 = m

(0)
1 + ǫ1,

ǫ1 > 0 (one will move to the next step if m1 = m
(0)
1 ). Let j1 be the least integer < nsuh that m(0)

j1
≥ m1. Carry out a beam splitter transformation Sθ between the �rstand j1th mode so that the orresponding diagonal elements (m

(0)
1 ,m

(0)
j1

) get redistributedto (m
(0)
1 + ǫ1,m

(0)
ji

− ǫ1) = (m1,m
(0)
j1

− ǫ1), with no hange in the other diagonal en-tries: m(0) = (m
(0)
1 ,m

(0)
2 , · · · ,m(0)

n ) → m(1) = (m1,m
(0)
2 , · · · ,m(0)

j1
− ǫ1, · · · ,m(0)

n ) ≡
(m1,m

(1)
2 ,m

(1)
3 , · · · ,m(1)

n ).We an repeat this proess. Let m2 = m
(1)
2 + ǫ2. By hypothesis ǫ2 ≥ 0 (this is so evenif j1 had equalled 2). Assume ǫ2 > 0 (if ǫ2 = 0, one moves to the next step). Let j2 bethe smallest integer < n suh that m(1)

j2
≥ m2 [Clearly, j2 an be as small as j1, but notany smaller℄. Carry out a beam splitter transformation on the 2nd and jth2 modes so thatthe orresponding diagonal elements (m
(1)
2 ,m

(1)
j2

) get redistributed to (m2,m
(1)
j2

− ǫ2) toprodue m(2), leaving the other diagonals una�eted.If we are able to repeat this proess only ℓ times we have, at the end of it,
m(ℓ) = (m1,m2, · · · ,mℓ;m

(ℓ)
ℓ+1,m

(ℓ)
ℓ+2, · · · ,m(ℓ)

n ), (5.13)with m(ℓ)
j < mj , ∀ ℓ+ 1 ≤ j ≤ n − 1, and m(l)

n = m
(0)
n = κn. What we have done so faris idential to what one would have done in the Shur-Horn situation. Clearly, the beamsplitter transformations arried out so far a�eted neither the sum of the diagonal entriesof m(·) nor its nth entry. Consequently, the di�erene m(k)

n −∑n−1
j=1 m

(k)
j has remainedthe same for all 0 ≤ k ≤ ℓ. 132



Chapter 5. Compatibility onditions on loal and global spetra for n-mode Gaussianstates5.3.2 Stage 2De�ne δ(k) =
∑n

j=1mj −
∑n

j=1m
(k)
j . It is lear that δ(k) = δ(0), for k = 1, 2, · · · , l. Inthe Shur-Horn situation δ(0) vanishes by hypothesis. We will now employ two-modesqueezing transformations Sµ to retify this `departure' from the Shur-Horn situation.We know that δ(ℓ) = δ(0) is nonnegative. Assume δ(0) > 0 ( if δ(0) = 0, one willmove diretly to Stage 4, as will beome evident below). De�ne ǫℓ+1 = mℓ+1 − m

(ℓ)
ℓ+1.Assume δ(ℓ) ≥ 2ǫℓ+1 ( if this is not the ase one will move to Stage 3). Carry out atwo-mode squeezing transformation Sµ between the (ℓ+ 1)th and nth modes, raising theorresponding diagonal entries m(ℓ)

ℓ+1, m(ℓ)
n = m

(0)
n = κn by equal magnitude to mℓ+1,

m
(ℓ)
n + ǫℓ+1 with no hange in the other diagonal entries, so that

m(ℓ+1) = (m1, · · · ,mℓ+1,m
(ℓ+1)
ℓ+2 , · · · ,m(ℓ+1)

n ),

m
(ℓ+1)
j = m

(ℓ)
j , ∀ ℓ+ 2 ≤ j ≤ n− 1,

m(ℓ+1)
n = m(ℓ)

n + ǫℓ+1 = κn + ǫℓ+1. (5.14)We an now repeat this kind of two-mode squeezing transformation between the (ℓ+ 2)thmode and the nth mode, and so on. Assume we are able to arry out this proess only rtimes. We will have, at the end of it,
m(ℓ+r) = (m1, · · · ,mℓ+r,m

(ℓ+r)
ℓ+r+1, · · · ,m(ℓ+r)

n ),

m
(ℓ+r)
j = m

(ℓ)
j , ∀ ℓ+ r + 1 ≤ j ≤ n− 1,

m(ℓ+r)
n = κn + ǫℓ+1 + ǫℓ+2 + · · · + ǫℓ+r, (5.15)so that δ(ℓ+r) = δ(0) − 2(ǫℓ+1 + ǫℓ+2 + · · · + ǫℓ+r). Clearly, 0 ≤ δ(ℓ+r) < 2ǫℓ+r+1 =

2(mℓ+r+1 −m(ℓ+r)
ℓ+r+1) (the last inequality enodes the fat that we ould not arry out theStage 2 operation one more time).5.3.3 Stage 3Assume δ(ℓ+r) > 0 ( if δ(ℓ+r) = 0, we move diretly to Stage 4). Carry out a two-mode anonial transformation between the (ℓ+ r + 1)th mode and the nth mode, takingthe orresponding diagonal entries m(ℓ+r)

ℓ+r+1, m(ℓ+r)
n to mℓ+r+1 = m

(ℓ+r)
ℓ+r+1 + ǫr+ℓ+1 and

m
(ℓ+r+1)
n = m

(ℓ+r)
n + δ(ℓ+r) − ǫr+ℓ+1 respetively, leaving the other diagonals invariant,
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Chapter 5. Compatibility onditions on loal and global spetra for n-mode Gaussianstatesso that we have
m(ℓ+r+1) = (m1, · · · ,mℓ+r+1,m

(ℓ+r+1)
ℓ+r+2 , · · · ,m(ℓ+r+1)

n ),

m
(ℓ+r+1)
j = mℓ

j < mj, ∀ ℓ+ r + 2 ≤ j ≤ n− 1,
n
∑

j=ℓ+r+2

m
(ℓ+r+1)
j =

n
∑

j=ℓ+r+2

mj. (5.16)i.e., the situation in respet of the remaining n − (ℓ + r + 1) (or n − ℓ− r if δ(ℓ+r) = 0)modes is preisely of the Shur-Horn type, suggesting that we deploy the beam splittertransformation n− l − r − 2 (or n− l − r − 1 ) times.5.3.4 Stage 4Note that at the end of Stage 3 we have m(ℓ+r+1)
n larger than mn preisely by the sumof the amounts by whih m(ℓ+r+1)

ℓ+r+1+j, for 1 ≤ j ≤ n − ℓ − r − 2, are less than mℓ+r+1+j.Therefore, for eah value of j in this range, we e�et a beam splitter transformationonneting the (ℓ+ r + 1 + j)th mode to the nth mode, raising m
(ℓ+r+1)
ℓ+r+1+j to mj andorrespondingly pulling m(ℓ+r+1+j)

n down by an equal amount. It is lear that at the endof these n− ℓ− r− 2 (or n− ℓ− r− 1) redistributions, the diagonals will be preisely m.That is, m(n−1) = m. This ompletes proof of the theorem.We have taken maximal advantage of the simpler two-mode transformations Sθ, Sµ.The former was deployed r times in Stage 1 and n− ℓ− r− 2 (or n− ℓ− r− 1) times inStage 4, and the latter ℓ times in Stage 2. The more general two-mode transformationwas deployed (at the most) one in Stage 3.As illustration, and for omparison with Ref. [352℄, we apply our proedure to theexample noted after the statement of the theorem. The di�erene between∑7
j=1mj = 63and ∑7

j=1 κj = 45 indiates the amount of squeezing that will have to be deployed atStages 3 and 4. We have m(0) ≡ κ = (1, 2, 3, 4, 5, 12, 18); m(1) = (6, 2, 3, 4, 5, 7, 18);
m(2) = (6, 7, 3, 4, 5, 2, 18); m(3) = (6, 7, 8, 4, 5, 2, 23); m(4) = (6, 7, 8, 9, 5, 2, 26); m(5) =

(6, 7, 8, 9, 10, 2, 21); and m(6) = (6, 7, 8, 9, 10, 11, 12) = m. The number of two-modetransformations required at the four stages are 2, 1, 1, and 2 respetively. Note that m(k)dominates m(k+1), for k = 0, 1, · · · , 5.
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6Operator-sum representation for BosoniGaussian hannels
6.1 IntrodutionGaussian states are fully spei�ed by their �rst and seond moments. Sine the �rstmoments play no signi�ant role in our study, we may assume that they vanish (thisan indeed be ensured using the unitary Weyl-Heisenberg displaement operators), sothat a Gaussian state for our purpose is fully desribed by its ovariane matrix [192,202, 226, 354℄. The sympleti group of real linear anonial transformations (atingthrough its unitary metapleti representation) and the Weyl-Heisenberg group of phasespae translations are the only unitary evolutions whih preserve Gaussianity, and thesegroups are generated by hermitian Hamiltonians whih are respetively quadrati andlinear in the reation and annihilation operators [192, 202, 226℄.Any physial evolution that maps an input Gaussian state to a Gaussian state atthe output is a Gaussian hannel. In other words, Gaussian hannels are those traepreserving ompletely positive (CP) maps whih image every input Gaussian state intoa Gaussian state at the output. The feasibility of proessing information using Gaussianhannels was originally explored in [355, 356℄. More reently, the problem of evaluatingthe lassial apaity of Gaussian hannels was addressed in [141, 149, 282℄, and thequantum apaities in [157, 159, 281, 283, 284℄. In partiular, the lassial apaity ofthe attenuator hannel was evaluated in [282℄, and the quantum apaity of a lass ofhannels was studied in [159℄. A systemati study of the struture of the family of allGaussian hannels has been arried out in [158, 286�288, 357℄; single-mode Gaussianhannels have been lassi�ed in [158, 286℄, and the ase of multimodes in [287, 288, 357℄.Gaussian hannels may be realized as Gaussianity preserving unitaries on a suitably
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Chapter 6. Operator-sum representation for Bosoni Gaussian hannelsenlarged system :
ρA → ρ

′

A = TrB (UAB (ρA ⊗ ρB)U †
AB

)

. (6.1)Here ρB is a Gaussian state of the anilla B, and UAB is a linear anonial transformationon the enlarged omposite system onsisting of the system of interest A and the anillaB. That all Gaussian hannels an indeed be realized in this manner has been shown bythe work of Holevo and oauthors [158, 286, 288, 357℄.It is lear that the most general trae-preserving linear map Ω whih takes Gaus-sian harateristi funtions to Gaussian, taking states with vanishing �rst moments toones with vanishing �rst moments, are neessarily of the form Ω : χ(ξ) → χ
′
(ξ) =

χ(Xξ) exp[−1
2ξ

TY ξ], where X,Y are real matries with Y = Y T ≥ 0. And X,Y needto obey an appropriate matrix inequality to ensure that the trae-preserving map Ω isompletely positive [157, 159, 358, 359℄. For a given X, the minimal Y , say Y0, meetingthis inequality represents the threshold Gaussian noise that needs to be added to χ(Xξ)to make atonement for the failure of X to be a sympleti matrix, and thus rendering themap ompletely positive; if X happens to be a sympleti matrix, then the orrespondingminimal Y0 = 0.Now, given a Gaussian hannel Ω we an onstrut, `quite heaply', an entire fam-ily of Gaussian hannels by simply preeding and following Ω with unitary (symple-ti) Gaussian hannels U(S1), U(S2) orresponding respetively to sympleti matries
S1, S2. Therefore in lassifying Gaussian hannels it is su�ient to lassify these orbitsor double osets and, further, we may identify eah orbit with the `simplest' lookingrepresentative element of that orbit (the anonial form). Sine

U(S1)ΩU(S2) : χ(ξ) → χ(S2XS1 ξ) exp[−1

2
ξTST

1 Y S1ξ], (6.2)the task atually redues to enumeration of the orbits of (X,Y ) under the transformation
(X,Y ) → (X

′
, Y

′
) = (S2XS1, S

T
1 Y S1).The injetion of an arbitrary amount of lassial (Gaussian) noise into the state isobviously a Gaussian hannel : χ(ξ) → χ(ξ) exp[−a

2ξ
T ξ], a > 0. It is alled the lassi-al noise hannel. Now, given a Gaussian hannel we may follow it up with a lassialnoise hannel to obtain another Gaussian hannel. A Gaussian hannel will be said to bequantum-limited if it annot be realized as another Gaussian hannel followed by a las-sial noise hannel. Conversely, the most general Gaussian hannel is a quantum-limitedGaussian hannel followed by a lassial noise hannel, and it follows that quantum-limited hannels are the primary objets whih need to be lassi�ed into orbits.In the single-mode ase where X,Y are 2 × 2 matries, S1, S2 ∈ Sp(2, R) an be so136



Chapter 6. Operator-sum representation for Bosoni Gaussian hannelshosen that X ′ equals a multiple of identity, a multiple of σ3, or (11 + σ3)/2 while Y ′equals a multiple of identity or (11+σ3)/2. Thus the anonial form of a Gaussian hannel
X,Y is fully determined by the rank and determinant of X,Y and we have the followinglassi�ation of quantum-limited bosoni Gaussian hannels [158, 286℄

D(κ; 0) : X = −κσ3, Y0 = (1 + κ2)11, κ > 0;

C1(κ; 0) : X = κ11, Y0 = (1 − κ2)11, 0 ≤ κ ≤ 1;

C2(κ; 0) : X = κ11, Y0 = (κ2 − 1)11, κ ≥ 1;

A1(0) : X = 0, Y0 = 11;

A2(0) : X = (11 + σ3)/2, Y0 = 11;

B2(0) : X = 11, Y0 = 0;

B1(0) : X = 11, Y0 = 0.

(6.3)
It may be noted that the quantum-limited end of both the B1 and B2 families is thetrivial identity hannel.By following the above listed quantum-limited hannels by injetion of lassial noiseof magnitude a we get respetively D(κ; a), C1(κ; a), C2(κ; a), A1(a), A2(a), and B2(a);the last ase B1(a) is speial in that it is obtained from B1(0) by injetion of noise intojust one quadrature : χ(ξ) → χ(ξ) exp[−a

4ξ
T (11 + σ3)ξ].It is lear in the ase of D(κ; 0) that X = −κσ3 orresponds to (saled) phase on-jugation or matrix transposition of the density operator. And the phase onjugation isthe most famous among positive maps whih are not CP [27, 28, 57℄; it is the injetionof additional lassial noise of magnitude (not less than) 1 + κ2, represented by Y0, thatmends it into a CP map.It is well known that every trae-preserving ompletely positive map has an operator-sum representation of the form

ρ→ ρ
′
=
∑

α

Wα ρW
†
α,

∑

α

W †
αWα = 11, (6.4)often alled Kraus representation [7℄. It may be noted, however, that this representationappears as Theorem 4 of a muh earlier work of Sudarshan et al [31℄. It has been presentedalso by Choi [6℄, apparently independently. Mathematiians seem to view it as a diretand immediate onsequene of the dilation theorem of Stinespring [9℄.In this Chapter we obtain the operator-sum representation of all the quantum limitedsingle-mode Bosoni Gaussian hannels. Our analysis lends insight into how unphysialproesses suh as the transposition map, or the saling of Weyl-ordered harateristifuntion, or a ombination of both an be rendered physial through a threshold Gaussian137



Chapter 6. Operator-sum representation for Bosoni Gaussian hannelsnoise. The motive here is to bring out this aspet in a transparent manner through theoperator-sum representation. We have that saling of the diagonal weight funtion andsaling of the Husimi Q funtion orrespond to physial proesses. As will be seen in thefollowing Chapter, the fat that saling of the Q funtion is physial is of ritial relevanewhen one de�nes a measure of non-Gaussianity for quantum states. This Chapter furtherexplores the notion of nonlassiality breaking and the notion of entanglement breakingin light of the operator-sum representation.We begin with the illustration a general sheme for omputation of Kraus operators,and this sheme applies uniformly to all quantum-limited Gaussian hannels. This shemetakes partiular advantage of the fat that the sympleti two-mode transformation whihrealizes the hannel in the sense of (6.1) does not ouple, in the Holevo anonial form,the position variables with the momentum variables. With the anilla mode assumed tobe in its vauum state initially, it turns out that the Kraus operators for eah hannelan be simply read o� from the matrix elements of the appropriate two-mode metapletioperator. Even though the single-quadrature lassial noise hannels B1(a), a 6= 0 [B1(0)is the identity hannel℄ are not quantum-limited, we deal with them brie�y just to bringout the fat that this ase too is obedient to our general omputational sheme.6.2 Kraus representation: Some general onsiderationsGiven density operator ρ(a) desribing the state of a single-mode radiation �eld, theation of a quantum-limited Gaussian hannel takes it to [158, 286℄
ρ

′(a) = Trb(U (ab) (ρ(a) ⊗ |0〉bb〈0|)U (ab)†). (6.5)Here |0〉b is the vauum state of the anilla mode b, and U (ab) is the unitary operatororresponding to a suitable two-mode linear anonial transformation. It is onvenientto perform the partial trae in the Fok basis of mode b. We have
ρ

′(a) =
∑

ℓ

b〈ℓ|U (ab) (ρ(a) ⊗ |0〉bb〈0|)U (ab) †|ℓ〉b

=
∑

ℓ

b〈ℓ|U (ab)|0〉b ρ(a)
b〈0|U (ab) †|ℓ〉b . (6.6)Clearly, b〈ℓ|U (ab)|0〉b is an operator ating on the Hilbert spae of mode a. The lastexpression thus leads us to the Kraus representation of the hannel [7℄ :

ρ→ ρ
′(a) =

∑

ℓ

Wℓ ρ
(a)W †

ℓ , Wℓ = b〈ℓ|U (ab)|0〉b. (6.7)138



Chapter 6. Operator-sum representation for Bosoni Gaussian hannelsIt follows that one the Fok basis matrix elements of U (ab) are known, the Kraus opera-tors Wℓ an be easily read o�. Let 〈m1m2|U (ab)|n1n2〉 ≡ Cm1m2
n1n2

be the matrix elementsof U (ab) in the two-mode Fok basis. Sine the anilla mode b is assumed to be in thevauum state, the Wℓ's are obtained by setting n2 = 0 and m2 = ℓ :
Wℓ =

∞
∑

n1,m1=0

Cm1ℓ
n10

|m1〉〈n1|. (6.8)Now, in evaluating Cm1m2
n1n2

it proves useful to employ a resolution of identity in theposition basis [205℄ :
Cm1m2

n1n2
= 〈m1m2|U (ab)|n1n2〉

=

∫ ∞

−∞
dx1dx2〈m1m2|x1x2〉〈x1x2|U (ab)|n1n2〉. (6.9)Under onjugation by U (ab) the quadrature variables qj, pj (j = 1, 2) undergo a linearanonial transformation S ∈ Sp(4, R), of whih U (ab) is the (metapleti) unitary rep-resentation [192℄. Let us assume that this anonial transformation does not mix theposition variables with the momentum variables. That is,

(

q1
q2

)

→ U (ab)†
(

q1
q2

)

U (ab) =

(

q
′

1

q
′

2

)

= M

(

q1

q2

)

,

(

p1

p2

)

→ U (ab)†
(

p1

p2

)

U (ab) =

(

p
′

1

p
′

2

)

= (M−1)T

(

p1

p2

)

, (6.10)where M is a real non-singular 2× 2 matrix. This assumption that our S ∈ Sp(4, R) hasthe diret sum struture S = M ⊕ (M−1)T will prove to be of muh value in our analysis.We have
Cm1m2

n1n2
=

∫ ∞

−∞
dx1dx2〈m1m2|x1x2〉〈x1x2|U (ab)|n1n2〉

=

∫ ∞

−∞
dx1dx2〈m1m2|x1x2〉ψn1(x

′
1)ψn2(x

′
2)

=

∫ ∞

−∞
dx1dx2ψ

∗
m1

(x1)ψ
∗
m2

(x2)ψn1(x
′
1)ψn2(x

′
2), (6.11)where (x

′

1, x
′

2) is linearly related to (x1, x2) through M . These wavefuntions are thefamiliar Hermite funtions, the Fok states in the position representation. The above
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Chapter 6. Operator-sum representation for Bosoni Gaussian hannelsintegral may be evaluated using the generating funtion for Hermite polynomials [205℄ :
ψn(x) =

π−1/4

√
2nn!

e−x2
Hn(x)

=
π−1/4

√
n!

∂n

∂zn
exp

(

−1

2
[(x− z

√
2)2 − z2]

)

∣

∣

∣

z=0
. (6.12)Inserting in Eq. (6.11) the generating funtion for eah of the four wavefuntions we have

Cm1m2
n1n2

=
1√

n1!n2!m1!m2!

∂m1

∂ηm1
1

∂m2

∂ηm2
2

∂n1

∂zn1
1

∂n2

∂zn2
2

F (z1, z2, η1, η2)
∣

∣

∣

z1,z2,η1,η2=0
, (6.13)where

F (z1, z2, η1, η2) = π−1

∫ ∞

−∞
dx1 dx2 exp

{

−1

2
[(x1 − η1

√
2)2 + (x2 − η2

√
2)2

+(x′1 − z1
√

2)2 + (x′2 − z2
√

2)2 − η2
1 − η2

2 − z2
1 − z2

2 ]
}

. (6.14)The Gaussian integration over the variables x1 and x2 an be easily arried out to obtain
F (z1, z2, η1, η2), and from F (z1, z2, η1, η2) we may readily obtain Cm1m2

n1n2
, and hene theKraus operators. This is the general sheme we will employ in what follows to obtainKraus representation for quantum-limited Gaussian hannels of the various families.6.3 Phase onjugation or transposition hannel D(κ), κ ≥ 0We now use the above sheme to evaluate a set of Kraus operators representing thephase onjugation hannel. The metapleti unitary operator U (ab) appropriate for thisase indues on the quadrature operators of the bipartite phase spae a linear anonialtransformation orresponding to the following S ∈ Sp(4, R)[158℄ :

S =













sinhµ 0 cosh µ 0

0 − sinhµ 0 cosh µ

coshµ 0 sinhµ 0

0 coshµ 0 − sinhµ













. (6.15)
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Chapter 6. Operator-sum representation for Bosoni Gaussian hannelsWritten in detail, the phase spae variables undergo, under the ation of this hannel,the transformation
(

q1
q2

)

→
(

q
′

1

q
′

2

)

= M

(

q1

q2

)

,

(

p1

p2

)

→
(

p
′

1

p
′

2

)

= (M−1)T

(

p1

p2

)

,

M =

(

− sinhµ cosh µ

coshµ − sinhµ

)

. (6.16)It is seen that the above S is indeed of the form S = M ⊕ (M−1)T ∈ Sp(4, R), and doesnot mix the position variables with the momentum variables, and so our general shemeabove readily applies.It is lear from the struture of S that the parameter µ is related to κ in D(κ) through
κ = − sinhµ > 0, so that coshµ =

√
κ2 + 1. Thus (6.14) translates, for the present ase,to the following expression :

F (z1, z2, η1, η2) = π−1

∫ ∞

−∞
dx1 dx2 exp

{

− 1

2
[(x1 − η1

√
2)2 + (x2 − η2

√
2)2

+(−κx1 +
√

1 + κ2 x2 − z1
√

2)2 + (
√

1 + κ2 x1 − κx2 − z2
√

2)2

− η2
1 − η2

2 − z2
1 − z2

2 ]

}

. (6.17)Performing the Gaussian integrals in x1 and x2 we obtain
F (z1, z2, η1, η2) = (

√

1 + κ2)−1 exp{(
√

1 + κ−2)−1(η1η2 − z1z2)

+(
√

1 + κ2)−1(η1z2 + η2z1)
}

. (6.18)To obtain the matrix elements Cm1m2
n1n2

we need to arry out the proedure indiatedin Eq. (6.13). This may be done in two steps. We begin by rewriting the funtion
F (z1, z2, η1, η2) as
F (z1, z2, η1, η2) = (

√

κ2 + 1)−1 exp{ z2[(√1 + κ2)−1η1 − (
√

1 + κ−2)−1z1]

+η2[(
√

1 + κ−2)−1η1 + (
√

1 + κ2)−1z1]
}

. (6.19)Performing the z2 and η2 di�erentiations respetively n2 andm2 times on F (z1, z2, η1, η2),
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Chapter 6. Operator-sum representation for Bosoni Gaussian hannelswe obtain
[(
√

1 + κ2)−1η1 − (
√

1 + κ−2)−1z1]
n2 ×

[(
√

1 + κ−2)−1η1 + (
√

1 + κ2)−1z1]
m2F ≡ GF. (6.20)The remaining di�erentiations an be arried out using the Leibniz rule. Sine we �nallyset z1, z2, η1, η2 = 0, and sine F (0) = 1, the only terms that ould possibly survive areneessarily of the form

∂m1

∂ηm1
1

∂n1

∂zn1
1

[(
√

1 + κ2)−1η1 − (
√

1 + κ−2)−1z1]
n2 ×

[(
√

1 + κ−2)−1η1 + (
√

1 + κ2)−1z1]
m2 . (6.21)To evaluate the above expression we set x = (

√
κ2 + 1)−1η1 − (

√
1 + κ−2)−1z1 and y =

(
√

1 + κ−2)−1η1 + (
√

1 + κ2)−1z1, and ompute
[(
√

1 + κ2)−1∂x + (
√

1 + κ−2)−1∂y]
m1 ×

[−(
√

1 + κ−2)−1∂x + (
√

1 + κ2)−1∂y]
n1 xn2 ym2 |x,y=0. (6.22)Straight forward algebra leads, in view of Eq. (6.13), to

Cm1m2
n1n2

=
(
√

1 + κ2)−1

√
n1!n2!m1!m2!

n1
∑

j=0

m1
∑

r=0

n1Cj
m1Cr (−

√

1 + κ−2)−(m1+j−r) (
√

1 + κ2)−(n1−j+r)

× (−1)m1−r n2!m2!δn2,r+j δm2,n1−j+m1−r . (6.23)The Kraus operators Wℓ, denoted Tℓ(κ) in this ase, are obtained from these matrixelements by setting n2 = 0 and m2 = ℓ. Sine n2 = 0 ⇒ r, j = 0, we have,
Tℓ(κ) = (

√

1 + κ2)−1
∞
∑

n1,m1=0

(
√

1 + κ2)−n1(−
√

1 + κ−2)−m1
√
ℓ!√

n1!m1!
×

δℓ,n1+m1(−1)m1 |m1〉〈n1|. (6.24)We set n1 +m1 = ℓ and denote n1 = n, leading to
Tℓ(κ) = (

√

1 + κ2)−1
ℓ
∑

n=0

(
√

1 + κ2)−n(
√

1 + κ−2)−(ℓ−n) ×
√

ℓCn|ℓ− n〉〈n|, ℓ = 0, 1, 2, · · · (6.25)
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Chapter 6. Operator-sum representation for Bosoni Gaussian hannelsas our �nal form for the Kraus operators of the phase onjugation hannel. We note thatthe Tℓ(κ)'s are real and manifestly trae-orthogonal : tr(Tℓ(κ)
†Tℓ ′ (κ)) = 0 if ℓ 6= ℓ

′ .6.3.1 The dual of D(κ)As is well known (and also obvious), if a set of Kraus operators {Wℓ} desribes theompletely positive map Φ : ρ → ρ
′

=
∑

ℓWℓρWℓ
†, then the dual map Φ̃ : ρ → ρ

′
=

∑

ℓWℓ
†ρWℓ, desribed by the dual or adjoint set of operators {W †

ℓ }, is also ompletelypositive. It is lear that the dual map Φ̃ is unital or trae-preserving aording as Φ istrae-preserving or unital.For the present ase ofD(κ), it is readily veri�ed that the Kraus operators {Tℓ(κ)} pre-sented in (6.25) meet ∑ℓ Tℓ
†(κ)Tℓ(κ) = 11, onsistent with the expeted trae-preservingnature of ρ → ρ

′
=
∑

ℓ Tℓ(κ) ρTℓ
†(κ). But the phase onjugation hannel is not unitalin general, for we have

∑

ℓ

Tℓ(κ)Tℓ
†(κ) = κ−211. (6.26)We may say that it is `almost unital' to emphasise the minimal nature of the failure : theunit element is taken by the hannel into a salar multiple of itself. However, the salefator κ−2 an not be transformed away by absorbing κ−1 into the Kraus operators, forthe Kraus operators so modi�ed would not then respet the trae-preserving property ofthe map.It is thus of interest to understand the nature of the unital hannel desribed by theset of Kraus operators {Tℓ(κ)

†}. We have
Tℓ(κ)

† = (
√

1 + κ2)−1
ℓ
∑

n=0

(
√

1 + κ2)−n (
√

1 + κ−2)−(ℓ−n)
√

ℓCn|n〉〈ℓ− n|

= (
√

1 + κ2)−1
0
∑

n′=ℓ

(
√

1 + κ2)−(ℓ−n′)(
√

1 + κ−2)−n′
√

ℓCℓ−n′ |ℓ− n′〉〈n′|

= (
√

1 + κ2)−1
ℓ
∑

n=0

(
√

κ2 + 1)−(ℓ−n) (
√

1 + κ−2)−n
√

ℓCn|ℓ− n〉〈n|

= κ−1Tℓ(κ
−1). (6.27)Thus the dual {Tℓ(κ)

†} di�ers from the original {Tℓ(κ)} in two elementary aspets. Themultipliative fator κ−1 is the same for all Kraus operators, independent of ℓ. Thus theonly signi�ant di�erene is hange in the argument of Tℓ, from κ to κ−1. We onludethat the `dual' hannel whose Kraus operators are κTℓ(κ)
† is the (trae-preserving) phaseonjugation hannel D(κ−1). We have thus proved 143



Chapter 6. Operator-sum representation for Bosoni Gaussian hannelsTheorem 6.1 While the Kraus operators {Tℓ(κ)} desribe D(κ), the `dual' hannel de-sribed by Kraus operators {κTℓ(κ)
†} is the trae-preserving phase onjugation hannel

D(κ−1) with reiproal sale parameter.6.3.2 Ation of the Kraus operatorsThe expeted or de�ning ation of the phase onjugation hannel on the harateristifuntion is [158℄ :
χW (ξ) → χ

′

W (ξ) = χW (−κ ξ∗) exp[−(1 + κ2)|ξ|2/2]. (6.28)It is of interest to understand how the `antilinear' phase onjugation (ξ → ξ∗) ation ofthis hannel on the harateristi funtion emerges from the linear ation of the Krausoperators. To this end, it is su�ient to establish suh an ation on the `harateristifuntion' orresponding to the operators |n〉〈m|, for arbitrary pairs of integers n, m ≥ 0.The `harateristi funtion' of |n〉〈m| is given by [169℄
χW |n〉〈m|(ξ) ≡ 〈m|D(ξ)|n〉

=

√

m!

n!
(−ξ∗)n−mLn−m

m (|ξ|2) exp[−|ξ|2/2] for n ≥ m,

=

√

n!

m!
(ξ)m−nLm−n

n (|ξ|2) exp[−|ξ|2/2 for n ≤ m. (6.29)Assuming n ≥ m, the ation of the phase onjugation hannel on the operator |n〉〈m| is
∞
∑

ℓ=0

Tℓ(κ)|n〉〈m|T †
ℓ (κ) = (1 + κ2)−1

∞
∑

ℓ=n

(
√

1 + κ2)−(n+m) (
√

1 + κ−2)−(2ℓ−n−m) ×
√

ℓCn
ℓCm |ℓ− n〉〈ℓ−m|. (6.30)Denoting n = m+ δ and ℓ− n = λ, we have

∞
∑

ℓ=0

Tℓ(κ)|m+ δ〉〈m|T †
ℓ (κ) = (1 + κ2)−1(

√

1 + κ2)−(2m+δ)(
√

1 + κ−2)−δ

×
∞
∑

λ=0

(λ+m+ δ)!(1 + κ−2)−λ

√

(m+ δ)!m!λ!(λ + δ)!
|λ〉〈λ+ δ|. (6.31)The manner in whih D(κ), matrix transposition aompanied by threshold Gaussiannoise exp[−(1+κ2)|ξ|2/2], ats as a hannel may now be appreiated. Every operator Man be written in the Kroneker delta basis {|j〉〈ℓ|} asM =

∑

j,ℓ cjℓ|j〉〈ℓ|. The oe�ient144



Chapter 6. Operator-sum representation for Bosoni Gaussian hannelsmatrix C assoiated with |5〉〈3|, for instane, is cj,k = δ5jδℓ3, with non-zero entry onlyat the lower-diagonal loation (5, 3) marked ⊗ in the matrix below.
































0 0 × 0 0 0 0 0 · · ·
0 0 0 × 0 0 0 0 · · ·
0 0 0 0 ⊕ 0 0 0 · · ·
0 0 0 0 0 × 0 0 · · ·
0 0 ⊗ 0 0 0 × 0 · · ·
0 0 0 0 0 0 0 × · · ·
0 0 0 0 0 0 0 0 ×... ... ... ... ... ... ... ... ...

































.

On transposition this entry moves to the upper-diagonal loation (3, 5) marked ⊕, and thethreshold noise then spreads it along the parallel upper diagonal (3+r, 5+r), −3 ≤ r <∞marked ×.Let the Weyl-ordered harateristi funtion tr(D(ξ)|m+δ〉〈m|) whereD(ξ) = exp[ξa†−
ξ∗a] is the displaement operator, be denoted χW |m+δ〉〈m|(ξ), and that of the output
∑∞

ℓ=0 Tℓ(κ)|m+ δ〉〈m|Tℓ(κ)
† be denoted χW

′

|m+δ〉〈m|(ξ). Then we have from Eq. (6.31)
χW

′

|m+δ〉〈m|(ξ) = (1 + κ2)−1(
√

1 + κ2)−(2m+δ)(
√

1 + κ−2)−δ

×
∞
∑

λ=0

(λ+m+ δ)!(1 + κ−2)−λ

√

(m+ δ)!m!λ!(λ + δ)!
〈λ+ δ|D(ξ))|λ〉

=
(1 + κ2)−1e−|ξ|2/2

√

(m+ δ)!m!
(
√

1 + κ2)−(2m+δ)(
√

1 + κ−2)−δ

×
∞
∑

λ=0

(1 + κ−2)−λ (λ+m+ δ)!

(λ+ δ)!
ξδLδ

λ(|ξ|2), (6.32)where we used (6.29), the Fok basis representation of the displaement operator. Whileno `phase onjugation' is manifest as yet, we expet from Eq. (6.28) that the hannelshould take the harateristi funtion of |m+ δ〉〈m| to
χ

′′

W |m+δ〉〈m|(ξ) = 〈m|D(−κξ∗)|m+ δ〉 exp

[

−1

2
(1 + κ2)|ξ|2

]

= 〈m+ δ|D(κξ∗)|m〉∗ exp

[

−1

2
(1 + κ2)|ξ|2

]

=

√

m!

m+ δ!
(κξ)δLδ

m(κ2|ξ|2) exp

[

−
(

1

2
+ κ2

)

|ξ|2
]

. (6.33)
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Chapter 6. Operator-sum representation for Bosoni Gaussian hannelsThus the problem redues to one of establishing equality of χ ′

W |m+δ〉〈m|(ξ) in (6.32) and
χ

′′

W |m+δ〉〈m|(ξ) in (6.33). That is, it remains to prove
√

m!

m+ δ!
(κξ)δLδ

m(κ2|ξ|2) exp
[

−(1/2 + κ2)|ξ|2
]

=
(1 + κ2)−1e−|ξ|2/2

√

(m+ δ)!m!

∞
∑

λ=0

(1 + κ−2)−λ(
√

1 + κ2)−(2m+δ)(
√

1 + κ−2)−δ

× (λ+m+ δ)!

(λ+ δ)!
ξδLδ

λ(|ξ|2), (6.34)for all m, δ ≥ 0 [the ase of |m〉〈m+ δ| an be handled similarly℄.Sine the assoiated Laguerre funtions form a omplete orthonormal set, we mayexpand the LHS of Eq. (6.34) in the Laguerre basis. That is, we multiply both sides ofEq. (6.34) by (ξ∗)δLδ
ℓ(|ξ|2) e−

|ξ|2

2 and evaluate the overlap integrals. We use the followingtwo standard results : (i) orthogonality relation among Laguerres, and (ii) the overlapbetween a Laguerre and a saled Laguerre funtion [360℄ :
∫ ∞

0
e−|ξ|2 |ξ|2δLδ

n(|ξ|2)Lδ
m(|ξ|2)d|ξ|2 =

(n+ δ)!

n!
δn,m.

∫ ∞

0
e−t|ξ|2 |ξ|2δLδ

m(η2|ξ|2)Lδ
ℓ(|ξ|2)d|ξ|2 =

(m+ ℓ+ δ)!

m!ℓ!

(t− η2)m (t− 1)ℓ

tm+ℓ+δ+1
×

F

[

−m,−ℓ;−m− ℓ− δ,
t(t− η2 − 1)

(t− 1)(t− η2)

]

. (6.35)Here F [·] is the hypergeometri funtion. In our ase t = η2 + 1, whih implies that thelast argument of F [·] in Eq. (6.35) is zero, and thereby F [·] = 1. Performing the overlapintegrals, we obtain for the left and right hand sides of (6.34)LHS =
(m+ ℓ+ δ)!

ℓ!
√

(m+ δ)!m!

κ2ℓ+δ

(1 + κ2)m+ℓ+δ+1
,RHS =

(m+ ℓ+ δ)!

ℓ!
√

(m+ δ)!m!
(
√

1 + κ2)−(2+2m+δ) (
√

1 + κ−2)−(2ℓ+δ). (6.36)These two expressions obviously equal one another for all ℓ. We have thus established Eq.(6.34), and the fat that the Kraus operators indeed e�et the `ompletely positive phaseonjugation' operation, transforming the harateristi funtion as expeted in (6.28).Theorem 6.2 The saled phase onjugation transformation χW (ξ) → χ
′

W (ξ) =

χW (−κ ξ∗) exp[−(1 + κ2) |ξ|
2

2 ] is, in view of the threshold noise exp[−(1 + κ2)|ξ|2/2] aompletely positive map, and is implemented linearly by the Kraus operators {Tℓ(κ)} in146



Chapter 6. Operator-sum representation for Bosoni Gaussian hannelsEq. (6.25).The phase onjugation hannel has an interesting property in respet of lassial-ity/nonlassiality of the output states. We may say a hannel is nonlassiality breakingif the output of the hannel is lassial for every input state. That is, if the normal-orderedharateristi funtion χ
′

N (ξ) of the output, related to the Weyl-ordered harateristifuntion χ
′

W (ξ) of (6.28) through χ
′

N (ξ) = χ
′

W (ξ) exp[|ξ|2/2], is suh that its Fouriertransform, alled the diagonal `weight' funtion φ(α) [112℄, is a genuine probability den-sity.Now, Eq. (6.28) written in terms of the normal-ordered harateristi funtion reads
χN (ξ) → χ

′

N (ξ) = χW (−κξ∗) exp[−κ2|ξ∗|2/2]
= χA(−κξ∗), (6.37)where χA(ξ) = χN (ξ) exp[−|ξ|2] is the antinormal-ordered harateristi funtion orre-sponding to the Q or Husimi distribution.Under Fourier transformation this important relation (6.37), namely χ ′

N (ξ) = χA(−κξ∗),reads that the output diagonal weight funtion φ ′
(α) evaluated at α equals the input Q(α)evaluated at κ−1α∗. Thus φ ′

(α) is a genuine probability density for every input state,and we have
D(κ) : φin(α) → φout(α) = κ−2Qin(κ−1α∗). (6.38)Sine the Q-distribution of a density operator is given by Q(α) = 〈α|ρ|α〉, it is a genuineprobability distribution for all states inluding nonlassial states. We have thus provedTheorem 6.3 The phase onjugation hannel is a nonlassiality breaking hannel.6.3.3 Entanglement breaking propertyIt is known that the phase onjugating hannel is entanglement breaking [361, 362℄. It isalso known that every entanglement breaking hannel has a desription in terms of rankone Kraus operators [363℄. We demonstrate these aspets using our Kraus operators

{Tℓ(κ)}.The Kraus operators Tℓ(κ) presented in (6.25) are not of unit rank; indeed, rank
Tℓ(κ) = ℓ + 1, ℓ = 0, 1, 2, · · · . We noted immediately following (6.25) that Tℓ(κ) aretrae-orthogonal. In the generi ase, trae-orthogonality requirement would render theKraus operators unique, but this is not true with the present situation. The reason isthat all these trae-orthogonal Tℓ(κ)'s have the same Frobenius norm: tr (Tℓ(κ)Tℓ(κ)

†) =147



Chapter 6. Operator-sum representation for Bosoni Gaussian hannels
(1 + κ2)−1, independent of ℓ. Thus the set {T ′

r } de�ned through T ′

r (κ) =
∑

ℓ UℓrTℓ(κ),for any unitary matrix (Uℓr) will be a set of trae-orthogonal Kraus operators desribingthe same hannel as the original trae-orthogonal set {Tℓ(κ)}.More generally, and independent of trae-orthogonality, the map ρ→ ρ
′
=

∑

α T
′

α(κ)ρT
′†

α (κ) desribes the same hannel as ρ→ ρ
′
=
∑

ℓ Tℓ(κ)ρT
†
ℓ (κ) if the matrix

U onneting the sets {Tℓ(κ)} and {T ′

α(κ)} is an isometry [6, 364℄ :
T

′

α(κ) =
∑

α

UℓαTℓ(κ),
∑

α

UℓαU
∗
rα = δℓr

⇒
∑

ℓ

Tℓ(κ) ρT
†
ℓ (κ) =

∑

α

T
′

α(κ) ρT
′†
α(κ). (6.39)If the index set α is ontinuous, as in the ase below, then ∑α is to be understood, ofourse, as an integral. Now, the matrix elements between oherent states |α〉 and Fokstates |k〉 de�ne suh an isometry

Uℓα ≡ 〈ℓ|α〉 = exp[−|α|2/2] α
ℓ

√
ℓ!
. (6.40)The resulting new Kraus operators T ′

α(κ) are
T

′

α(κ) = e−
|α|2

2

∞
∑

ℓ=0

αℓ

√
ℓ!
Tℓ(κ)

= e−
|α|2

2

∞
∑

ℓ=0

αℓ

√
ℓ!

(
√

1 + κ2)−1
ℓ
∑

n=0

√

ℓCn (
√

1 + κ2)−n (
√

1 + κ−2)−(ℓ−n)|ℓ− n〉〈n|

= e−
|α|2

2

∞
∑

ℓ=0

(
√

1 + κ2)−1
ℓ
∑

n=0

[(
√

1 + κ2)−1α]n [(
√

1 + κ−2)−1α]ℓ−n

√

(ℓ− n)!n!
|ℓ− n〉〈n|

=
1√

1 + κ2
|α/
√

1 + κ−2〉〈α∗/
√

1 + κ2|, ∀α ∈ C. (6.41)It is manifest that rank T ′

α(κ) = 1 for all α ∈ C, the omplex plane, showing that thephase onjugation hannel is indeed entanglement breaking. However {T ′

α(κ)} are nottrae-orthogonal even though {Tℓ(κ)} from whih the former are onstruted were trae-orthogonal. This is due to the fat that the isometry U de�ned in (6.40) is not an unitary,whih in turn is a onsequene of the overompleteness of the oherent states.This brings us to another aspet of D(κ). In terms of these new Kraus operators the
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Chapter 6. Operator-sum representation for Bosoni Gaussian hannelsphase onjugation hannel D(κ) reads
ρ→ ρ

′
= π−1

∫

d2αT
′

α(κ) ρT
′ †

α (κ)

= π−1(1 + κ2)−1

∫

d2αQ((
√

1 + κ2)−1α∗)|α/
√

1 + κ−2〉〈α/
√

1 + κ−2|. (6.42)Thus the diagonal weight funtion of the output state of the hannel is the Q-distributionof the input state ρ : φout = κ−2Qin(κ−1α∗). We may ombine this result with the earlierone on rank one Kraus operators to stateTheorem 6.4 The diagonal weight of the output of the quantum-limited phase onjuga-tion hannel is essentially the Q-distribution of the input state. The hannel D(κ) is notonly lassiality breaking, but also entanglement breaking.The diagonal weight of the output state at α is the Q-distribution of the input stateevaluated at κ−1α∗. Sine Q(α) ≥ 0 for all α and for any ρ, the hannel is nonlassialitybreaking. The intimate relationship between this result and the earlier one on nonlassi-ality breaking may be noted. While the former followed diretly from the behaviour ofthe harateristi funtion, the present one required onsideration of the Kraus operators.6.4 Beamsplitter/attenuator hannel C1(κ), 0 < κ < 1The two-mode unitary operator orresponding to the beamsplitter hannel indues thefollowing sympleti transformation on the quadrature operators of the bipartite phasespae [158℄ :
S =













cos θ 0 − sin θ 0

0 cos θ 0 − sin θ

sin θ 0 cos θ 0

0 sin θ 0 cos θ













. (6.43)Note that S is a diret sum of idential two-dimensional rotations: as in the ase of
D(κ), the position and momentum operators are not mixed by this transformation. Theposition variables transform as

(

q1
q2

)

→
(

q
′

1

q
′

2

)

= M

(

q1

q2

)

=

(

cos θ sin θ

− sin θ cos θ

) (

q1

q2

) (6.44)
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Chapter 6. Operator-sum representation for Bosoni Gaussian hannelsand, onsequently, the momentum variables as
(

p1

p2

)

→
(

p
′

1

p
′

2

)

= (M−1)T

(

p1

p2

)

= M

(

p1

p2

)

. (6.45)It is evident from S that the parameter κ in C1(κ) is related to θ through cos θ = κ, sin θ =√
1 − κ2. The funtion F (z1, z2, η1, η2) of (6.14) for the present ase is given by

F (z1, z2, η1, η2) = exp
[

η2(
√

1 − κ2 z1 + κz2) + η1(κz1 −
√

1 − κ2 z2)
]

. (6.46)As in the previous ase of D(κ), the di�erentiation on F (z1, z2, η1, η2) an be performedin a straight forward manner to obtain the matrix elements of the unitary operator [326℄,leading to
Cm1m2

n1n2
=

1√
n1!n2!m1!m2!

n1
∑

r=0

n2
∑

j=0

n1Cr
n2Cj (−1)n2−j κn1−r+j (

√

1 − κ2)
r+n2−j

× m1!m2! δm2,r+j δm1,n1+n2−r−j. (6.47)Now, to obtain the Kraus operators from these matrix elements we set, as in the ase of
D(κ), n2 = 0 and m2 = ℓ. Setting n2 = 0 ⇒ j = 0, and we have

Bℓ(κ) =
∞
∑

m=0

√

m+ℓCℓ (
√

1 − κ2)ℓ κm|m〉〈m+ ℓ|, ℓ = 0, 1, 2, · · · (6.48)as the Kraus operators of the beamsplitter or quantum-limited attenuator hannel. Itis easy to see that the Kraus operators are real and pairwise trae-orthogonal, as in thease of D(κ).6.4.1 Ation of the Kraus operatorsReall that the beamsplitter hannel indues the following transformation on the har-ateristi funtion [158℄ :
χW (ξ) → χW

′(ξ) = χW (κ ξ) exp[−(1 − κ2)|ξ|2/2]
= χW (κ ξ) exp[κ2|ξ|2/2] exp[−|ξ|2/2]. (6.49)Thus the normal ordered harateristi funtion χN (ξ) transforms as

χN (ξ) ≡ χW (ξ) exp(|ξ|2/2) → χ
′

N (ξ) = χN (κ ξ). (6.50)
150



Chapter 6. Operator-sum representation for Bosoni Gaussian hannelsSine χN (ξ) and the diagonal weight φ(α) form a Fourier transform pair, it is immediatelyseen that φ(α) gets simply saled under the ation of the C1(κ) hannel : φ(α) → φ
′
(α) =

κ−2φ(κ−1α) [365℄.It is instrutive to bring out this fat from the perspetive of the Kraus operators.Sine every state ρ an be expressed through a diagonal `weight' φ(α) as [112℄
ρ = π−1

∫

d2αφ(α)|α〉〈α|, (6.51)to exhibit the ation of the hannel on an arbitrary state it is su�ient to onsider itsation on a generi oherent state. We have
|α〉〈α| →

∞
∑

ℓ=0

Bℓ(κ)|α〉〈α|B†
ℓ (κ)

=

∞
∑

ℓ=0

∞
∑

m=0

∞
∑

n=0

((1 − κ2)|α|2)ℓ
ℓ!

(κα∗)m(κα)n
e−|α|2
√
m!n!

|m〉〈n|, (6.52)where we used the fat that the operator
|m〉〈n| →

∞
∑

ℓ=0

Bℓ(κ)|m〉〈n|B†
ℓ (κ)

=

min{m,n}
∑

ℓ=0

√

mCℓ
nCℓ (1 − κ2)

ℓ
κm+n−2ℓ|m− ℓ〉〈n− ℓ|. (6.53)Carrying out the summations in Eq. (6.52), one �nds [366℄

∞
∑

ℓ=0

Bℓ(κ)|α〉〈α|B†
ℓ (κ) = |κα〉〈κα|. (6.54)With this the ation of the hannel C1(κ) reads

ρ → ρ
′
= π−1

∫

d2αφ(α)|κα〉〈κα|

= π−1κ−2

∫

d2αφ(κ−1α)|α〉〈α|, (6.55)whih means
C1(κ) : φ(α) → κ−2φ

(

κ−1α
)

. (6.56)We have thus proved in the Kraus representation 151



Chapter 6. Operator-sum representation for Bosoni Gaussian hannelsTheorem 6.5 The saling φρ(α) → φ
′

ρ(α) = κ−2φρ(κ
−1α), 0 < κ < 1, is a ompletelypositive map whose Kraus deomposition is given by {Bℓ(κ)} of (6.48).As an immediate onsequene we haveCorollary 6.1 The beamsplitter hannel annot generate or destroy nonlassiality.Proof : By de�nition a state is lassial if and only if its diagonal weight funtion φ(α) ispointwise nonnegative everywhere in the omplex plane [112℄. Sine a pointwise positivefuntion goes to a pointwise positive funtion under the above saling transformation,it follows that a lassial state (and a lassial state alone) is taken to a lassial stateunder the ation of the (quantum-limited) attenuator hannel.6.4.2 The issue of Entanglement breakingIt is known that the beamsplitter hannel is not entanglement breaking [361℄. It shouldthus be possible, as it is obligatory, to demonstrate that this hannel annot be repre-sented using a set of rank one Kraus operators. We begin by noting that in the limitingase κ = 0, all our Kraus operators Bℓ(0) are of rank one. Indeed, (Bℓ(0))mn = δm0δnℓ.This singular limit orresponds to the quantum-limited A1 hannel whih is known to beentanglement breaking. We onsider therefore the nontrivial ase κ 6= 0. It is manifestlylear that rank Bℓ(κ) = ∞ for all ℓ (for κ 6= 0). If we represent this hannel using anotherset of Kraus operators {B ′

r (κ)}, then these new operators should neessarily be in thesupport of the set of operators {Bℓ(κ)}. Thus a neessary ondition that one is able torepresent the hannel {Bℓ(κ)} using rank one Kraus operators is that there be (su�ientnumber of) rank one operators in the support of {Bℓ(κ)}. It turns out that there is noteven one rank one operator in this support. Indeed, a muh stronger result is true.Theorem 6.6 : There exists no �nite rank operator in the support of the set {Bℓ(κ)}, κ 6=
0.Proof follows immediately from the struture of the Bℓ(κ)'s : B0(κ) is diagonal, and the
mnth entry of Bℓ(κ) is nonzero i� n = m+ ℓ. Any matrix in the linear span of {Bℓ(κ)}is of the formM =

∑

ℓ cℓBℓ(κ), and is upper diagonal. Let N be the smallest ℓ for whihthe c-number oe�ient cℓ 6= 0. Let M̃ be the matrix obtained from the upper-diagonal
M by deleting the �rst N olumns. Clearly, rank M̃ = rank M . Further, the diagonalentries of the upper triangular M̃ are all nonzero, being the nonzero entries of BN (κ).Now, the rank of an upper triangular matrix is not less than that of its diagonal part.Thus, rank M̃ is not less than rank BN (κ) = ∞, thus ompleting the proof.
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Chapter 6. Operator-sum representation for Bosoni Gaussian hannels6.5 Ampli�er hannel C2(κ), κ ≥ 1The two-mode metapleti unitary operator desribing a single-mode quantum-limitedampli�er hannel orresponds to the following sympleti transformation on the modeoperators [158℄ :
S =













cosh ν 0 sinh ν 0

0 cosh ν 0 − sinh ν

sinh ν 0 cosh ν 0

0 − sinh ν 0 cosh ν













. (6.57)As in the earlier two ases of D(κ) and C1(κ), the position and momentum variables donot mix under the ation of C2(κ). The position variables transform as
(

q1
q2

)

→
(

q
′

1

q
′

2

)

= M

(

q1

q2

)

=

(

cosh ν − sinh ν

− sinh ν cosh ν

) (

q1

q2

)

, (6.58)and the momentum variables transform aording to M−1. Thus the parameter κ in
C2(κ) is related to the two-mode squeeze parameter ν through κ = cosh ν. The funtion
F (z1, z2, η1, η2) in (6.14) is readily omputed to be

F (z1, z2, η1, η2) = κ−1 exp
{

κ−1(η1z1 + η2z2) + (
√

1 − κ−2)(η1η2 − z1z2)
}

. (6.59)As in the earlier ases of D(κ) and C1(κ), the di�erentiation on F (z1, z2, η1, η2) an beperformed to obtain the matrix elements of the unitary operator orresponding to thesympleti S in (6.57). We obtain, after some algebra patterned after the earlier twoases,
Cm1m2

n1n2
=

κ−1

√
n1!n2!m1!m2!

n1!m2!

n2
∑

r=0

m1
∑

j=0

n2Cr
m1Cj (−1)r (

√

1 − κ−2)r+m1−j ×

(κ−1)n2+j−rδn1,r+j δm2,n2+m1−r−j . (6.60)The Kraus operators are obtained from Cm1m2
n1n2

by setting n2 = 0, and m2 = ℓ. Setting
n2 = 0 ⇒ r = 0, and we have

Aℓ(κ) = κ−1
∞
∑

m=0

√

m+ℓCℓ

(
√

1 − κ−2
)ℓ

(κ−1)m|m+ ℓ〉〈m|, ℓ = 0, 1, 2, · · · (6.61)as the Kraus operators of the quantum-limited ampli�er hannel C2(κ), κ > 1 [367℄.153



Chapter 6. Operator-sum representation for Bosoni Gaussian hannels6.5.1 Duality between the attenuator family C1(·) and the ampli�erfamily C2(·)The Kraus operators Aℓ(κ), κ > 1 of the ampli�er hannel C2(κ) have an interesting dualrelationship to the Kraus operators Bℓ(κ
−1), κ > 1 of the attenuator hannel C1(κ

−1).While ∑∞
ℓ=0A

†
ℓ(κ)Aℓ(κ) = 11, κ > 1 and ∑∞

ℓ=0B
†
ℓ (κ

′
)Bℓ(κ

′
) = 11, κ

′
< 1, onsistentwith the trae-preserving property of C2(κ) and C1(κ

′
), we have

∞
∑

ℓ=0

Aℓ(κ)A
†
ℓ(κ) = κ−211,

∞
∑

ℓ=0

Bℓ(κ
′
)B†

ℓ (κ
′
) = (κ

′
)−211. (6.62)Thus the (trae-preserving) families C1 and C2 are not unital. But they are `almostunital', for the failure to be unital is by just a salar fator. This shows that the family

{κAℓ(κ)
†, κ > 1} and the family {κ ′−1

Bℓ(κ
′
)†, κ

′
< 1} too desribe trae-preservingCP maps, and we may ask what these `new' hannels stand for.The meaning of these hannels may be easily seen by onsidering the adjoints Aℓ(κ)

†, κ >

1 of the Kraus operators of the ampli�er hannel :
Aℓ(κ)

† = κ−1
∞
∑

m=0

√

m+ℓCℓ

(
√

1 − κ−2
)ℓ
κ−m|m〉〈m+ ℓ|

= κ−1Bℓ(κ
−1) (6.63)Thus {κAℓ(κ)

†}, κ > 1 are the Kraus operators of the beamsplitter hannel C1(κ
′
) with

κ
′
= κ−1 < 1. Similarly it an be seen that {κ ′

Bℓ(κ
′
)†}, κ ′

< 1 represents the ampli�erhannel C2(κ) with κ = (κ
′
)−1 > 1. Thus we haveTheorem 6.7 The ampli�er family C2(κ) and the attenuator family C1(κ

−1), κ > 1 aremutually dual: their Kraus operators are onneted through the adjoint operation.6.5.2 Ation of the Kraus operatorsUnder the ation of the ampli�er hannel C2(κ) the Weyl-ordered harateristi funtiontransforms as follows, and this may be identi�ed with the very de�nition of the hannel :
χW (ξ) → χ

′

W (ξ) = χW (κ ξ) exp [−(κ2 − 1)|ξ|2/2]. (6.64)
154



Chapter 6. Operator-sum representation for Bosoni Gaussian hannelsGiven a Weyl-ordered harateristi funtion χW (ξ), the orresponding antinormal or-dered harateristi funtion orresponding to the Q-distribution is [169℄
χA(ξ) = χW (ξ) exp [−|ξ|2/2]. (6.65)Therefore the hannel ation Eq. (6.64), written in terms of χA(ξ), reads
χA(ξ) → χ

′

A(ξ) = χA(κ ξ). (6.66)That is, χA(ξ) simply sales under the ation of the ampli�er hannel, a fat that shouldbe pro�tably ompared with the saling behaviour (6.50) for the attenuator hannel.Sine χA(ξ) and the Q- funtion form a Fourier transform pair, the ation of the ampli�erhannel is fully desribed as a saling transformation of the Q-funtion : Q(α) → Q
′
(α) =

κ−2Q(κ−1α), κ > 1 [368℄.It is instrutive to see in some detail how our Kraus operators Aℓ(κ) bring out thisbehaviour. Given a state
ρ =

∞
∑

n,m=0

|n〉〈n|ρ|m〉〈m| =
∞
∑

n,m=0

ρnm|n〉〈m|, (6.67)its orresponding Q funtion is [169℄
Qρ(α) = 〈α|ρ|α〉 = exp[−|α|2]

∞
∑

n,m=0

(α∗)n√
n!

(α)m√
m!

ρnm. (6.68)To see the ation of the linear map C2(κ) on an arbitrary ρ, it is su�ient to exhibit itsation on the operators |n〉〈m|, for all n,m ≥ 0. We have
|n〉〈m| →

∞
∑

ℓ=0

Aℓ(κ)|n〉〈m|A†
ℓ(κ)

= κ−2 (κ)−(n+m)

√
n!m!

∞
∑

ℓ=0

(1 − κ−2)ℓ

ℓ!

√

(n+ ℓ)!
√

(m+ ℓ)!|n+ ℓ〉〈m+ ℓ|. (6.69)Thus, under the ation of the hannel C2(κ), ρ goes to
ρ

′
= κ−2

∞
∑

n,m=0

ρnm
κ−(n+m)

√
n!m!

∞
∑

ℓ=0

(1 − κ−2)ℓ

ℓ!

√

(n+ ℓ)!
√

(m+ ℓ)! |n + ℓ〉〈m+ ℓ|. (6.70)
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Chapter 6. Operator-sum representation for Bosoni Gaussian hannelsThe Q funtion of the resultant or output state ρ ′ is
〈α|ρ ′ |α〉 = κ−2 exp[−|α|2]

∞
∑

n,m=0

ρnm
κ−(n+m)

√
n!m!

(α∗)n(α)m

( ∞
∑

ℓ=0

(1 − κ−2)ℓ

ℓ!
|α|2ℓ

)

= κ−2 exp[−|κ−1α|2]
∞
∑

n,m=0

(κ−1α∗)n√
n!

(κ−1α)m√
m!

ρnm

= κ−2Q(κ−1α). (6.71)We thus onludeTheorem 6.8 The saling Qρ(α) → Qρ ′ (α) = κ−2Qρ(κ
−1α), 0 < κ−1 < 1, is a om-pletely positive map whose Kraus deomposition is given by {Aℓ(κ)}.This result may be ompared with Theorem 6 for the C1(·) family of hannels.The ampli�er hannel has the following property in respet of nonlassiality of theoutput states :Corollary 6.2 The ampli�er hannel annot generate nonlassiality.Proof : By Eq. (6.64), the normal ordered harateristi funtion transforms as follows

C2(κ) : χN (ξ) → χ
′

N (ξ) = χW (κξ) exp [−(κ2 − 2)|ξ|2/2]. (6.72)This may be rewritten in the suggestive form
χN (ξ) → χ

′

N (ξ) = χN (κξ) exp[−(κ2 − 1)|ξ|2]. (6.73)Fourier transforming, we see that the diagonal weight φ (α) of the output state is theonvolution of the (saled) input diagonal weight with a Gaussian (orresponding to thelast fator), and hene it is pointwise nonnegative whenever the input diagonal weight
φ(α) is pointwise nonnegative.Remark : We are not laiming that the ampli�er hannel annot destroy nonlassiality[ompare the struture of Corollary 2 with that of Corollary 1 following Theorem 6℄.Indeed, it is easy to show that nonlassiality of every Gaussian state will be destroyedby any C2(κ) with κ ≥

√
2 [184, 367�369℄. It is also easy to show that there are stateswhose nonlassiality will survive C2(κ) even for arbitrarily large κ [184, 367, 368℄. Tosee this, note �rst of all, that any state ρ whose Q-funtion Q(α) = 〈α|ρ|α〉 vanishes forsome α is neessarily nonlassial. The assertion simply follows from the fat that underthe saling Q(α) → κ−2Q(κ−1α) a zero α0 of Q(α) goes to a zero at κα0. 156



Chapter 6. Operator-sum representation for Bosoni Gaussian hannelsRemark on entanglement breaking : It is well known that the quantum-limitedampli�er hannel is not entanglement breaking [361℄. It may be pointed out in passingthat this fat follows also from the struture of our Kraus operators {Aℓ(κ)}. Sinethese operators oinide with the transpose of the beamsplitter hannel Kraus operators
{Bℓ(κ

−1)}, apart from a ℓ-independent multipliative fator, there exists no �nite rankoperator in the support of the set of operators {Aℓ(κ)}. In partiular, there are no rankone operators in the support of {Aℓ(κ)}. Hene, C2(κ) is not an entanglement breakinghannel.6.6 The Singular ase A2We now onsider brie�y A2, the last of the quantum limited Bosoni Gaussian han-nels. The two-mode metapleti unitary operator representing A2 produes a sympletitransformation on the quadrature variables whih does not mix the position variableswith the momentum variables [158℄ :
(

q1
q2

)

→
(

q
′

1

q
′

2

)

= M

(

q1

q2

)

,

(

p1

p2

)

→
(

p
′

1

p
′

2

)

= (M−1)T

(

p1

p2

)

,

M =

(

0 1

1 −1

)

. (6.74)Therefore, our general sheme applies to this ase as well. Unlike in the earlier ases of
D(κ), C1(κ), and C2(κ), in the present ase it turns out to be more onvenient to evaluatethe matrix elements of U (ab) in a mixed basis :

Cm1q
n1n2

= 〈m1|〈q|U (ab)|n1〉|n2〉. (6.75)Here |q〉 labels the position basis of the anilla mode. With this mixed hoie, the Krausoperators are labelled by a ontinuous index `q', and are given by
Vq = 〈q|U (ab)|0〉 =

∑

m1,n1

Cm1q
n10 |m1〉〈n1|, (6.76)
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Chapter 6. Operator-sum representation for Bosoni Gaussian hannelswhere
Cm1q

n10
=

∫

dq1〈m1|q1〉〈q1|〈q|U (ab)|n1〉|0〉

=

∫

dq1〈m1|q1〉〈q, q1 − q|n1, 0〉. (6.77)Here we have used, as in the earlier ases, the ation of the unitary operator in the positioneigenstates of the two-mode system. Employing the position spae wavefuntions of theFok states, we have
Cm1q

n10 =
π−3/4

√
2n1+m1n1!m1!

Hn1(q)e
− q2

2

∫

dq1Hm1(q1)e
− (q1−q)2

2
− q21

2 . (6.78)The above integral is easily evaluated [370℄, and we have
Cm1q

n10
=

π−1/4

√
2n1+m1n1!m1!

qm1Hn1(q) exp[−3q2/4]

= 〈m1|q/
√

2)〈q|n1〉, (6.79)where |q/√2) is the oherent state |α〉 for α = q/
√

2, and the purpose of the round braketbeing to distinguish the same from the position eigenket |q/√2〉. With this notation theKraus operators are
Vq = |q/

√
2) 〈q|. (6.80)That the trae-preserving ondition on the Kraus operators is satis�ed emerges from thefat that the position kets are omplete : ∫ dq V †

q Vq =
∫

dq|q〉〈q| = 11 .To onnet these Kraus operators Vq to the ation of the hannel in the phase spaepiture, we examine the behaviour of an arbitrary pure state |ψ〉 under passage throughthe hannel. We have
A2 : ρ = |ψ〉〈ψ| → ρ

′
=

∫

dq |q/
√

2) 〈q|ψ〉〈ψ|q〉 (q/
√

2|

=

∫

dq |ψ(q)|2 |q/
√

2) (q/
√

2|

=

∫

dq dp |ψ(q)|2δ(p) |[q + ip]/
√

2) ([q + ip]/
√

2|. (6.81)The last expression is already in the `diagonal' form in the oherent states basis, with
|ψ(q)|2δ(p), α = (q + ip)/

√
2 forming the diagonal weight funtion φ(α). It follows by
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Chapter 6. Operator-sum representation for Bosoni Gaussian hannelsonvexity that for an arbitrary input state ρ the output of the hannel is given by
ρ

′
= π−1

∫

d2αφ(α) |α〉〈α|, φ(α) = 〈q|ρ|q〉 δ(p). (6.82)It is seen that this transformation is the same as χW (ξ) → χW

(

(11+σ3)
2 ξ

)

exp[−|ξ|2/2],the expeted behaviour of the harateristi funtion under passage through A2 [371℄.The above results an be alternatively understood through the ation of the hannelin the Fok basis. Under passage through the hannel,
|n〉〈m| →

∫

dqVq|n〉〈m|V †
q

=

∫

dq |q/
√

2) 〈q|n〉〈m|q〉 (q/
√

2|

=

∫

dq
π−1/2

√
2n+mn!m!

Hn(q)Hm(q) e−q2 |q/
√

2) (q/
√

2|, (6.83)for all n,m. The outome for an arbitrary input state ρ follows by linearity, and we haveTheorem 6.9 The hannel A2 is both nonlassiality breaking and entanglement break-ing.Proof : We note from Eq. (6.80) that the Kraus operators are already in rank one form,thereby showing that the hannel is entanglement breaking. And from Eq. (6.82) we seethat the output of the hannel, for every input state ρ, supports a diagonal representationwith nonnegative weight 〈q|ρ|q〉 δ(p) ≥ 0, for all α = (q+ip)/
√

2, showing that the outputis lassial for all input states.6.7 Single Quadrature lassial noise hannel B1(a), a ≥ 0The hannel B1(a), whose ation is to simply injet Gaussian noise of magnitude a intoone quadrature of the osillator, and is not quantum limited. It an be realized in theform
B1(a) : ρ→ ρ

′
=

1√
πa

∫

dq exp[−q2/a]D(q/
√

2) ρD(q/
√

2)†, (6.84)where D(α)'s are the unitary displaement operators. B1(a) is thus a ase of the so-alledrandom unitary hannels [364℄, a onvex sum of unitary hannels. The ontinuum
Zq ≡ (πa)−1/4 exp[−2/2a]D(q/

√
2) (6.85)159



Chapter 6. Operator-sum representation for Bosoni Gaussian hannelsare the Kraus operators of this realization. The quantum-limited end of B1(a) is obviouslythe identity hannel, orresponding to a → 0 [lima→0
√
πa

−1
exp[−q2/a] = δ(q), and

Zq=0 = identity℄. One may assume a = 1 without loss of generality. The reason wepresent a brief treatment of this hannel here is just to demonstrate that this ase toosubjets itself to our general sheme.The two-mode metapleti unitary operator representing B1 produes a sympletitransformation on the quadrature variables whih, as in the earlier ases of D(κ), C1(κ),
C2(κ), and A2, does not mix the position variables with the momentum variables [158℄ :
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(
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= M

(
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. (6.86)And p1, p2 transform aording to (M−1)T .As in the immediate previous ase A2, the matrix elements of U (ab) are
Cm1q

n1n2
= 〈m1|〈q|U (ab)|n1〉|n2〉, (6.87)where |q〉's are the position eigenvetors. In view of this the Kraus operators are labelledby a ontinuous index `q' and are given by

〈q|U (ab)|0〉 =
∑

m1,n1

Cm1q
n10

|m1〉〈n1|, (6.88)where
Cm1q

n10
=

∫

dq1〈m1|q1〉〈q1|〈q|U (ab)|n1〉|0〉

=

∫

dq1〈m1|q1〉〈q1 − q, q|n1, 0〉. (6.89)Here we made the two-mode metapleti unitary operator at on the position basis.To evaluate the Kraus operator, it is su�ient to evaluate the matrix elements
Cn1q
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π−3/4
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2n1+m1n1!m1!

e−
q2
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− q21
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Chapter 6. Operator-sum representation for Bosoni Gaussian hannelsThe above integral an be readily performed [372℄, and we obtain
Cn1q

m10 = π−1/4e−
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[
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(−q√
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]

≡ π−1/4e−
q2

2 〈m1|D(q/
√

2)|n1〉 = Zq. (6.91)We have thus reovered (6.85), but staying entirely within our general sheme.6.8 SummaryWe have obtained operator-sum representations for all single-mode Bosoni Gaussianhannels presented in their respetive anonial forms. Evidently, the operator-sum rep-resentation of a hannel not in the anonial form follows by adjoining of appropriateunitary Gaussian evolutions before and after the hannel. The Kraus operators wereobtained from the matrix elements of the two-mode metapleti unitary operator whihe�ets the hannel ation on a single mode. The two-mode sympleti transformation ineah ase did not mix the position and momentum variables and this fat proved valuablefor our study. The Kraus operators for the quantum-limited hannels exept the singularase were found to have a simple and sparse struture in the Fok basis.It was shown that the phase onjugation hannels D(κ) and D(κ−1) are dual to oneanother, and the attenuator and the ampli�er families C1(κ) and C2(κ
−1), κ < 1 aremutually dual. The hannels D(κ), C1(κ), and C2(κ) were found to be almost unital; inthe sense that the unit operator was taken to a salar times the unit operator.In the ase of the phase onjugation hannel, the ation in phase spae was brought outexpliitly through the ation of the Kraus operators on the Fok basis. The attenuatorhannel resulted in the saling of the diagonal weight funtion φ(α) and the ampli�erhannel resulted in the saling of the Husimi Q-funtion as expeted. Further, the outputof the hannel with respet to lassiality/nonlassiality was studied. It was found thatthe phase onjugation hannel D(κ) and the singular hannel A2 are lassiality breakingwhile the attenuator hannel C1(κ) and the ampli�er hannel C2(κ) do not generatenonlassiality.The Kraus operators of the phase onjugation hannel was brought to a rank oneform, thereby expliitly bringing out the entanglement breaking nature of this hannel.It was further shown that there is no �nite rank operator in the support of the Kraus op-erators of either the ampli�er or the attenuator hannel, and this expliitly demonstratesthat the quantum-limited attenuator and the ampli�er families of hannels are not entan-glement breaking. The Kraus operators of the singular hannel A2 was also obtained in161



Chapter 6. Operator-sum representation for Bosoni Gaussian hannelsthe rank one form thereby manifestly showing that this hannel is entanglement breaking.Note : A more detailed analysis on the operator-sum representation of single-modeBosoni Gaussian hannels an be found at [373℄. This inludes an analysis on �xedpoints, an analysis on interrupted evolution, a proof of the extremality of all quantumlimited single-mode Gaussian hannels, and the operator-sum representation of ompositehannels.
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7A measure of non-Gaussianity for quantum states
7.1 IntrodutionQuantum information theory of ontinuous variable systems has been atively pursued inreent years, espeially in the ontext of Gaussian states [245, 256, 258℄. Suh states arethe ones whih our naturally in most experimental situations, partiularly in quantumoptis. While these states live in an in�nite-dimensional Hilbert spae, they are remark-ably easy to handle sine they are fully desribed by their ovariane matrix (and �rstmoments). Further, their evolution under quadrati hamiltonians is easily ast in the lan-guage of sympleti groups and (lassial) phase spae [57, 226, 280℄. The fundamentalprotool of quantum teleportation has been ahieved using these states [36, 83℄. How-ever, there are situations wherein one deals with (nonlassial) non-Gaussian resouresto generate entanglement [130, 170, 171, 186, 194, 318, 319, 374℄. They arise naturallyin nonlinear evolutions like passage through a Kerr medium [375, 376℄.It has been shown reently that teleportation �delities an be improved with the useof non-Gaussian resoures [377℄. It is thus important that one is able to quantify thenon-Gaussianity of suh resoures. E�ort in this diretion has been initiated in somereent publiations [378�380℄.From the perspetive of lassial probability theory, Gaussian distributions are thoseprobability distributions whih are ompletely spei�ed by their �rst and seond mo-ments; all their higher-order moments are determined by these lower-order moments.Non-Gaussian probabilities do not enjoy this speial property. An easier, and possiblymore e�etive, way to distinguish the two is through umulants: every non-vanishingumulant of order greater than two serves as an indiator of non-Gaussianity of theprobability distribution under onsideration [381, 382℄.The purpose of any good measure of non-Gaussianity in the ontext of lassial prob-ability theory is thus to apture the essene of the non-vanishing higher-order umulants.163



Chapter 7. A measure of non-Gaussianity for quantum statesA non-Gaussianity measure should thus manifestly depend on the higher-order umu-lants. Yet another desirable feature one would like to have is invariane of the measureunder saling. Ultimately, non-Gaussianity measure is a quantitative statement of thedeparture of the shape of a probability distribution from Gaussian. But uniform saling ofall the variables of a probability distribution does not alter the `shape' of the distribution,and hene it should not a�et its non-Gaussianity.The notion of non-Gaussianity an be extended to a quantum mehanial statethrough its de�nition on the assoiated Q funtion, a member of the one-parameterfamily of s-ordered quasi-probabilities [168℄. That this is an appropriate route is en-dorsed by the fat that the Marinkiewiz theorem [see below℄ holds for the s-orderedquasi-probabilities as well. It turns out that the umulants of order greater than 2 forthe various s-ordered quasi-probabilities orresponding to a �xed state ρ̂ are independentof s, indiating that the higher order umulants are intrinsi to the state. Moreover,all higher-order umulants of order greater than 2 vanish identially for Gaussian states.Thus any non-vanishing higher-order umulant of the quasi-probability indiates non-Gaussianity of the state, and this onlusion is independent of the ordering parameter
s. The above onsiderations will suggest that any good measure of non-Gaussianity rel-evant in the ontext of lassial probability theory an, with suitable modi�ation, leadto a good measure of non-Gaussianity of quantum mehanial states, provided a state isidenti�ed through its Q funtion ( For a brief review on suh measures in lassial proba-bility theory, see [382℄ ). The purpose of suh a quantum measure would be to apture theessene of the non-vanishing higher-order umulants of the Q funtion assoiated withthe state. And invariane of the measure under an overall saling of the Q funtion is adesirable feature worth insisting on. The desirability for sale invariane is endorsed bythe fat that saling of the Q funtion is physial as shown in the preeding Chapter.In this hapter we motivate and present suh a measure of non-Gaussianity of quan-tum states. Our measure is based on the Wehrl entropy [383℄, the quantum analogueof di�erential entropy [384℄ well-known from the ontext of lassial information theoryof ontinuous variables [Di�erential entropy itself is a generalisation of Shannon entropyfrom disrete to ontinuous variables℄.The photon-added thermal states [182℄ play a key role in our onsiderations. Thesenonlassial states have been generated experimentally [320�323℄. Their speial impor-tane to the present work arises from the fat that the Q funtions of these states aresaled versions of those of the Fok states, and therefore one will expet any good measureof non-Gaussianity to return the same values for both lasses of states.The plan of the Chapter is as follows. We begin with a brief introdution to moments164



Chapter 7. A measure of non-Gaussianity for quantum statesand umulants, and reall two well-known theorems in the ontext of these notions. Theone-parameter family of s-ordered quasi-probabilities orresponding to quantum densityoperators is then brie�y disussed, with partiular emphasis on the Q funtion, we thenreview the relationship between di�erential entropy and the Kullbak-Leibler distane oflassial probability theory. We then review brie�y the Wehrl entropy [383℄ and some of itsproperties. In the preeding Chapter, we already showed that saling of the Q funtionis physial. With these preparations, we introdue our non-Gaussianity measure andexplore some of its important properties, inluding its invariane under uniform saling ofthe underlying phase spae. We then evaluate this measure for three families of quantumstates, and we ompare our measure with two other measures of non-Gaussianity availablein the literature. Finally we end with some onluding remarks.7.2 Moments and umulantsFor a multivariate probability distribution P(x), where x = (x1, x2, · · · , xn) ∈ Rn, theharateristi funtion χ(ξ), ξ ∈ Rn, is given by the Fourier transform of P(x) [381℄ :
χ(ξ) =

∫

dnxP(x) exp[ iξ · x ]

=
∑

m1m2···mn
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∏

k=1

(iξk)
mk
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2 · · · xmn
n 〉 ,
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1 xm2

2 · · · xmn
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1 xm2

2 · · · xmn
n P(x) . (7.1)It follows from the invertibility of Fourier transformation that the harateristi funtionretains all the information ontained in the probability distribution. The harateristifuntion is often alled the moment generating funtion, sine one obtains from it all themoments of the underlying probability distribution through this ompat expression :
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χ(ξ) |ξ=0 . (7.2)Another equivalent desription of a probability distribution is through the umulant
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Chapter 7. A measure of non-Gaussianity for quantum statesgenerating funtion. This is de�ned through the logarithm of the harateristi funtion
Γ(ξ) = logχ(ξ)

=
∑

m1m2···mn

(

n
∏

k=1

(iξk)mk

mk!

)

γm1,m2,··· ,mn , (7.3)or, equivalently, through
χ(ξ) = exp(Γ(ξ)) . (7.4)From Eq. (7.3), it is easy to see that the umulants γm1,m2,··· ,mn an be expressed as

γm1,m2,··· ,mk
=

(

n
∏

k=1

dmk

d(iξk)
mk

)

Γ(ξ) |ξ=0 . (7.5)Thus, the umulants are related to Γ(·) in preisely the same way as the moments arerelated to χ(·). The set of all moments 〈xm1
1 xm2

2 · · · xmn
n 〉 gives a omplete haraterisationof a probability distribution P(x), and the same is true of the set of all umulants

γm1,m2,··· ,mn as well. Indeed, one an desribe one set in terms of the other [324, 381, 385℄.With these notations and de�nitions on hand, we now reall two important resultsfrom lassial probability theory.Theorem 7.1 The umulant generating funtion of a Gaussian probability distributionin n variables is a multinomial of degree equal to 2 [381℄.Theorem 7.2 (Marinkiewiz Theorem). If the umulant generating funtion of a (nor-malised) funtion in n variables is a multinomial of �nite degree greater than 2, thenthe funtion will not be point wise non-negative, and hene will fail to be a probabilitydistribution [386, 387℄.Theorem 1 is a statement of the fat that a Gaussian probability is fully determinedby its moments of order ≤ 2 ; all the higher-order umulants are identially zero for aGaussian probability. Theorem 2 is a muh stronger statement. It implies that any trueprobability distribution other than the Gaussian distribution has a umulant generatingfuntion whih annot trunate at any (�nite) order. That is, a non-Gaussian probabilitydistribution has non-vanishing umulants of arbitrarily high order. We note in passingthat non-vanishing umulants of order greater than 2 serve as indiators of the non-Gaussianity of the underlying probability.
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Chapter 7. A measure of non-Gaussianity for quantum states7.3 Quasi-probabilities and the Q funtionA state of a quantum mehanial system spei�ed by density operator ρ̂ an be faithfullydesribed by any member of the one-parameter family of s-ordered quasi-probabilitydistributions −1 ≤ s < 1 [168℄. In other words, an s-ordered quasi-probability aptures allthe information present in the density operator ρ̂. However, it is not a genuine probabilitydistribution in general; in partiular, it is not point wise non-negative. The pre�x quasiundersores preisely this aspet. Nevertheless, the s-ordered family of quasi-probabilitydistributions gives us a framework wherein one ould give a phase spae desription ofquantum mehanial systems in the language of lassial probability theory.To reollet Setion 1.7, for a quantum state desribing the radiation �eld of n modes(n osillators) the harateristi funtion of the s-ordered quasi-probability, for any −1 ≤
s ≤ 1, is de�ned through [168℄

χρ(ξ, s) = exp[
s

2
|ξ|2 ] Tr(ρ̂D(ξ)) , (7.6)where ξ = (ξ1, ξ2, · · · , ξn) ∈ Cn, and D(ξ) is the n-mode (phase spae) displaementoperator :

D(ξ) = exp[
∑

j

(ξj â
†
j − ξ∗âj) ] . (7.7)The s-ordered quasi-probability itself is just the Fourier transform of this harateristifuntion χρ(ξ, s) :

Wρ(α, s)=
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πn

∫

exp[
∑
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(α∗
jξj − αjξ

∗
j ) ]χρ(ξ, s)

∏

j

d2ξj . (7.8)Here âj and â†j are the annihilation and reation operators of the jth mode, αj repre-sents the (-number) phase spae variables qj, pj orresponding to the jth mode through
αj = (qj + ipj)/

√
2, and α = (α1, α2, · · · , αn) ∈ Cn. The partiular ases s = −1, 0, 1orrespond, respetively, to the better known Q funtion, the Wigner funtion, and the

P funtion.The Q funtion orresponding to a density operator ρ̂ has a partiularly simple ex-pression in terms of oherent state projetions :
Qρ(α) = 〈α|ρ|α〉, α ∈ Cn . (7.9)It may be noted that the Q funtion is manifestly nonnegative for all α ∈ Cn. 167



Chapter 7. A measure of non-Gaussianity for quantum statesReality of Wρ(α, s) is equivalent to hermitiity of the density operator ρ̂, and the fatthat ρ̂ is of unit trae faithfully transribes to
1

πn

∫

Wρ(α, s)d
2α = 1 . (7.10)While these two properties hold for every s-ordered quasi-probability, point wise nonnegativity for all states is a distintion whih applies to the Q funtion alone. In otherwords, the Q funtion is a genuine probability distribution; every other Wρ(α; s) is onlya quasi-probability. Gaussian pure states are the only pure states for whih the Wignerfuntion is a lassial probability [199℄; in the ase of P funtion, the oherent states arethe only pure state with this property.However, not every probability distribution is a Q funtion. This is evident, forinstane, from the obvious fat that Q(α) ≤ 1, ∀α ∈ Cn.The next result aptures, in a onise form, the manner in whih members of theone-parameter family of s-ordered quasi-probabilities Wρ(α, s) di�er from one anotherfor a given state ρ̂.Theorem 7.3 Only the seond order umulants of the quasi-probability of a given statedepend on the order parameter s; all the other umulants are independent of the quasi-probability under onsideration.This result is already familiar in the ase of a single-mode radiation �eld [375℄. But theproof is, as outlined below, immediate in the multi-mode ase as well. The harateristifuntions of a state ρ̂ for two di�erent values of the order parameter s1 and s2 areobviously related in the following manner [168℄ :

χρ(ξ, s1) = exp
(

(s1 − s2)|ξ|2
)

χρ(ξ, s2) . (7.11)On taking logarithm of both sides to obtain the orresponding umulant generating fun-tions we have
logχρ(ξ, s1) = (s1 − s2)|ξ|2 + logχρ(ξ, s2) .That is,

Γρ(ξ, s1) = (s1 − s2)|ξ|2 + Γρ(ξ, s2) . (7.12)Thus the umulant generating funtion for di�erent s-ordered quasi-probabilities di�eronly in seond order, ompleting proof of the theorem. 168



Chapter 7. A measure of non-Gaussianity for quantum statesIn these equations |ξ|2 stands, as usual, for∑n
j=1 |ξj|2. As an immediate onsequeneof this theorem we haveTheorem 7.4 For no quasi-probability an the umulant generating funtion be a multi-nomial of �nite order > 2.Proof : Sine the Q funtion, for every state ρ, is a genuine probability distribution,it follows from the Marinkiewiz theorem that the umulant generating funtion of

Q annot be a multinomial of �nite order > 2. Sine the di�erent s-ordered quasi-probabilities di�er only in seond-order umulants, this onlusion holds for all s-orderedquasi-probabilities, thus proving the theorem.We onlude this Setion with the following remarks. The above onsiderations showthat quasi-probabilities fail to be true probabilities only in this limited sense: they di�erfrom genuine probabilities only in umulants of order two. The distributions, however,an be quite di�erent from lassial probabilities, partiularly for s > 0, and they anbeome as subtle as Fourier transform of exp [σ y2 ], σ > 0, a Gaussian with the wrongsignature for the variane.Sine the higher-order umulants, whih should play an essential role in any reasonablede�nition of non-Gaussianity measure, do not depend on the value of the parameter s,they may be viewed as attributes intrinsi to the state under onsideration; we maytherefore use any onvenient quasi-probability to apture their essene.7.4 Di�erential entropy and the Kullbak-Leibler distaneThe role of Shannon entropy of probability distributions over disrete random variablesis taken over by di�erential entropy in the ase of ontinuous variables. Given a multi-variate probability distribution P(x) in n variables (x1, x2, · · · , xn) ∈ Rn, the assoiateddi�erential entropy H(P(x)) is de�ned by [384℄
H(P(x)) = −

∫

dnxP(x)logP(x) . (7.13)But unlike the Shannon entropy, the di�erential entropy an be negative. This is manifest,for instane, for uniform distribution over a region of less than unit volume in Rn.Among all the probability distributions with a �xed set of �rst and seond moments,the Gaussian probability distribution has the maximum di�erential entropy [384℄. Thisfat may be used to modify di�erential entropy to result in a non-negative quantity
J(P(x)) = H(PG(x)) −H(P(x)) . (7.14)169



Chapter 7. A measure of non-Gaussianity for quantum statesHere PG(x) is the Gaussian probability distribution with the same �rst and seond mo-ments as the given probability distribution P(x).It may be realled that Kullbak-Leibler distane between two probabilities P1(x)and P2(x) is de�ned as the di�erene of their di�erential entropies [384℄ :
S(P1(x)||P2(x)) = H(P2(x)) −H(P1(x))

= −
∫

P1(x)log(P1(x))d
nx

+

∫

P2(x)log(P2(x))d
nx . (7.15)Thus J(P(x)) an be regarded as the Kullbak-Leibler distane between the given prob-ability P (x) and the assoiated Gaussian distribution PG(x) :

J(P(x)) = S(PG(x)||P(x)) . (7.16)
J(P(x)) is sometimes known by the name negentropy.7.5 Wehrl entropyWehrl entropy [383, 388℄ may be viewed as the extension of di�erential entropy to thequantum mehanial ontext, but the Wehrl entropy has interesting properties whih dis-tinguish it from di�erential entropy. The distintion arises from the fat that while every
Q funtion ertainly quali�es to be a lassial probability distribution, every lassialprobability is not a Q funtion. The unertainty priniple has a fundamental role to playin this aspet [383℄. The potential use of Wehrl entropy as a measure of the `oherent'omponent of a state has been disussed in Ref [389℄. And its possible role in de�ning anentanglement measure has also been explored [390, 391℄.For a state ρ̂ desribing n modes of radiation �eld, the Wehrl entropy is de�ned as

HW (ρ̂) = −
∫

∏

d2αjQρ(α)logQρ(α) , (7.17)where Qρ(α) is the Q funtion orresponding to ρ̂. This de�nition may be ompared withthat of di�erential entropy; the role of P(x) in di�erential entropy is played by Qρ(α) inWehrl entropy.However, in ontradistintion to di�erential entropy, the Wehrl entropy is alwayspositive. This is an immediate onsequene of the fat that the Q funtion is boundedfrom above by unity. It turns out that the Wehrl entropy is always greater than or equal170



Chapter 7. A measure of non-Gaussianity for quantum statesto unity [392℄; indeed, it attains its least value of unity for the oherent states and onlyfor these states. This property an be thought of as a manifestation of the unertaintypriniple, whih the oherent states saturate. Further, the Wehrl entropy is always greaterthan the von Neumann entropy [383℄ :
HW (ρ̂) ≥ S(ρ̂) = −Tr(ρ̂ log ρ̂) . (7.18)While the von Neumann entropy is zero for pure states, we have just noted that theWehrl entropy HW (ρ̂) is greater than or equal to unity for all states. Several aspets ofthe Wehrl entropy have been explored in Ref. [389℄.7.6 A non-Gaussianity measure for quantum statesAs is well-known, a quantum state ρ̂ is said to be Gaussian i� the assoiated Wignerdistribution is Gaussian. This will suggest that the non-Gaussianity of a state is odedinto the non-vanishing umulants of order > 2 of the Wigner funtion. Sine the Wignerand Q funtions are related by onvolution by a Gaussian, the Q funtion of a stateis Gaussian i� the Wigner funtion is, and the non-Gaussianity should thus be foundoded in the higher-order umulants of the Q funtion as well. The onsisteny of thesestatements is ensured by the fat that the higher-order umulants are the same for theWigner and the Q funtions [Indeed, as we have shown earlier, the higher-order umulantsare intrinsi to the state, and hene are the same for all s-ordered quasi-probabilities℄.Non-Gaussianity an thus be desribed using either the Wigner funtion or the Qfuntion. The fat that the Q funtion is everywhere non-negative, rendering it a genuineprobability in the lassial sense, makes it our preferred hoie. We employ therefore theWehrl entropy to apture the essene of the higher-order umulants.Given a state ρ̂, our measure of non-Gaussianity N (ρ̂) is de�ned as the di�erene oftwo Wehrl entropies :
N (ρ̂) = HW (ρ̂G) −HW (ρ̂) . (7.19)Here HW (ρ̂) is the Wehrl entropy of the given state ρ̂ and HW (ρ̂G) is the Wehrl entropyof the Gaussian state ρ̂G that has the same �rst and seond moments as ρ̂. Sine N (ρ̂)measures the departure of the Wehrl entropy of ρ̂ from that of its Gaussian partner ρ̂G,it an be viewed as a quantum Kullbak-Leibler distane. N (ρ̂) ould also be viewed asa relative Wehrl entropy. But we prefer to all it simply a non-Gaussianity measure.This measure of non-Gaussianity enjoys several interesting properties. We will now171



Chapter 7. A measure of non-Gaussianity for quantum stateslist some of them :(i) N (ρ̂) ≥ 0, equality holding i� ρ̂ is Gaussian.Proof : This is a restatement of the fat that the Wehrl entropy of a Gaussian state isgreater than that of all states with the same �rst and seond moments as the Gaussian[384℄.(ii) N (ρ̂) is invariant under phase spae displaements :
N (ρ̂) = N (D(ξ) ρ̂ D(ξ)† ) . (7.20)Proof : Let D(ξ) ρ̂ D(ξ)† be denoted, for brevity, by ρ̂ ′. The Q funtion of ρ̂ ′ is relatedto that of ρ̂ in this simple manner :
Qρ ′(α) = Qρ(α− ξ) . (7.21)That is, displaement D(ξ) ats as a rigid translation in phase spae [192, 383, 392℄. Thusit has no e�et on the Wehrl entropy of any state, and hene leaves N (ρ̂) invariant forevery state.(iii) N (ρ̂) is invariant under passage through any passive linear system.Proof : A passive linear system is represented by a n × n unitary matrix U . It maps aoherent state |α〉 into a new oherent state |α′〉 = |U α〉 [192, 383, 392℄, where α ∈ Cn isto be viewed as a olumn vetor. Let ÛU be the unitary operator in the n-mode Hilbertspae whih represents the passive linear system labelled by the matrix U . Let us denoteby ρ̂ ′ the transformed state ÛU ρ̂ Û †

U at the output of this passive system. Then theoutput Q funtion is related to the input Q funtion in this manner :
Qρ′(α) = Qρ(U

−1α) = Qρ(U
†α) . (7.22)That is, the ation of a passive linear system is a rigid SO(2n) rotation in the 2n-dimensional phase spae. It follows immediately that this transformation does not hangethe Wehrl entropy of any state, and hene does not a�et N (ρ̂).Remark : While in the single-mode ase of two-dimensional phase spae all proper ro-tations are anonial transformations, this is not true in the multi-mode ase. That is,

Sp(2n,R)∩SO(2n) is a proper subgroup of SO(2n) isomorphi to U(n), the n2-parametergroup of n × n unitary matries, whereas SO(2n) is a muh larger (2n2 − n)-parametergroup [192℄. Only those phase spae rotations whih are elements of this intersetion atas unitary transformations in the Hilbert spae of n osillators.(iv) N (ρ̂) is invariant under a uniform phase spae saling λ de�ned at the level of
172



Chapter 7. A measure of non-Gaussianity for quantum statesthe Q funtion in the following manner :
λ : Qρ(α) → Qρ′(α) = λ2nQ(λα) . (7.23)Proof : Under this uniform phase spae saling of the Q funtion, the Wehrl entropyhanges by a simple additive part that is independent of the state :

HW (ρ̂) = − 1

πn

∫

Qρ(α)logQρ(α)

n
∏

j=1

d2αj

→ − 1

πn

∫

λ2nQρ(λα)log (λ2nQρ(λα) )

n
∏

j=1

d2αj

= HW (ρ̂) − 2n log λ . (7.24)Note that in arriving at the last equation we have made a hange of variables in theintegral and made use of the normalisation of the Q funtion. Now it trivially followsfrom this result that N (ρ̂), being a di�erene of two Wehrl entropies, remains invariant.Remark : While the above onlusion holds mathematially for all λ > 0, the saled
Q funtion fails to be a physial Q funtion if λ > 1. Therefore we restrit this saleparameter to the physially relevant range 0 < λ ≤ 1. This may be seen from the analysisin Setion 6.5.(v) N (ρ̂) is additive on tensor produt states :

N (ρ̂1 ⊗ ρ̂2) = N (ρ̂1) + N (ρ̂2) . (7.25)Proof : Under tensor produt the Q funtions go as produt probabilities by de�nition.This is true of their assoiated Gaussian probabilities as well.(vi) For a bipartite state of the form ρ̂ = ρ̂a ⊗ ρ̂G, where ρ̂G is a Gaussian state
N (ρ̂) = N (ρ̂a ⊗ ρ̂G) = N (ρ̂a) . (7.26)Proof : From (v) we have
N (ρ̂) = N (ρ̂a ⊗ ρ̂G) = N (ρ̂a) + N (ρ̂G) .and from (i)

N (ρ̂a) + N (ρ̂G) = N (ρ̂a) . (7.27)(vii) For a bipartite state of the form ρ̂out = ÛU (ρ̂a ⊗ |α〉〈α|) Û †
U , where U represents173



Chapter 7. A measure of non-Gaussianity for quantum statesa passive linear system and |α〉 is a oherent state, we have
N (ρ̂out) = N (ρ̂a) . (7.28)Proof : From (iii) we have

N (ρ̂out) = N (UU (ρ̂a ⊗ |α〉〈α|)U†
U ) = N (ρ̂a ⊗ |α〉〈α|) .We have from (v)

N (ρ̂a ⊗ |α〉〈α|) = N (ρ̂a) + N (|α〉〈α|) .Sine the oherent state |α〉 is Gaussian, we have from (i)
N (ρ̂a) + N (|α〉〈α|) = N (ρ̂a) . (7.29)This result is useful in evaluating the non-Gaussianity of bipartite states produedby the ation of beamsplitters, as we shall illustrate in the next Setion.7.6.1 Shape riterion for good measure of non-GaussianityProperties (ii), (iii), and (iv) deal with transformations whih do not hange the shapeof the Q funtions. Sine non-Gaussianity is a quantitative statement regarding thedeparture of the shape of the Q funtion from Gaussian, it will appear that any goodmeasure of non-Gaussianity should return the same value for all states onneted by thesetransformations. In partiular, two quantum states whose Q funtions are related by auniform saling of all the phase spae oordinates should be assigned the same amount ofnon-Gaussianity. We will all this the shape riterion, and we have seen that our measure

N (ρ̂) meets this requirement.7.7 ExamplesIn this Setion we evaluate our non-Gaussianity measure N (ρ̂) for three families of states,namely the Fok states, the photon-added thermal states, and the phase-averaged oher-ent states of a single-mode of radiation. While the �rst two families onsist of nonlassialstates, the third one is a family of lassial states.
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Chapter 7. A measure of non-Gaussianity for quantum states7.7.1 Photon number statesThe Q funtion of the Fok state (energy eigenstate) ρ̂ = |m〉〈m| of the osillator is givenby the phase spae distribution
Q|m〉(α) =

|α|2m

m!
exp(−|α|2) , (7.30)whose only non-vanishing moment of order ≤ 2 is 〈|α|2〉 = Tr(ρ̂ââ†) = m + 1. Thephase spae average 〈|α|2〉 is with respet to the probability distribution Q|m〉(α) and,by de�nition, it equals the (quantum) expetation value of the assoiated anti-normallyordered operator ââ†. The Gaussian state whih has the same moments of order ≤ 2 as

ρ̂|m〉 = |m〉〈m| is learly the thermal state with mean photon number 〈n̂〉 ≡ 〈â†â〉 = m.The Q funtion of suh a thermal state ρ̂G is given by
QG(α) =

1

〈n̂〉 + 1
exp

(

− |α|2
〈n̂〉 + 1

)

, 〈n̂〉 = m. (7.31)The Wehrl entropy orresponding to ρG is easily omputed :
HW (ρ̂G) = 1 + log(1 + 〈n̂〉)

= 1 + log(1 +m) . (7.32)The Wehrl entropy of the photon number state ρ̂ = |m〉〈m| is
HW (ρ̂|m〉) = − 1

π

∫

d2αQ|m〉(α)logQ|m〉(α) . (7.33)This an be omputed expliitly by going to the polar oordinates, and one obtains [389℄
HW (ρ̂|m〉) = 1 +m+ logm! −mψ(m+ 1),

ψ(m+ 1) =
m
∑

k=1

1

k
− γ , (7.34)where ψ(m) is the digamma funtion, and γ = 0.5772 · · · is the Euler onstant. Henethe non-Gaussianity of the photon number state ρ̂ = |m〉〈m| is

N (ρ̂|m〉) = HW (ρ̂G) −HW (ρ̂|m〉),

= ln(m+ 1) −m− logm! +mψ(m+ 1). (7.35)In Figure (7.1) we have plotted this non-Gaussianity as a funtion of the photon175



Chapter 7. A measure of non-Gaussianity for quantum statesnumber m. It is lear that the non-Gaussianity of |m〉 inreases monotonially with thephoton number m, and goes to ∞ as m tends to ∞. That this was to be expeted an beseen as follows. For large m values ψ(m+ 1) ∼ ln(m+ 1), and logm! ∼ mlogm−m, andhene N (ρ̂|m〉) ∼ log(m+ 1). We shall be returning to this result in the next Setion.Now onsider a bipartite state of two modes with one mode in the Fok state and theother in the vauum. Non-Gaussianity of this produt state is the same as that of theFok state, and this follows from Eq. (7.26) . Let this bipartite state be passed througha beamsplitter. The state at the output will be entangled due to the nonlassiality ofthe Fok state [171, 194℄, but in view of Eq. (7.28), this two-mode state will have thesame non-Gaussianity as the original single-mode Fok state.7.7.2 Photon-added thermal statesIn this subsetion we evaluate the non-Gaussianity of the photon-added thermal state(PATS) [182℄. The PATS is de�ned through
ρ̂ = C â†mρ̂thâ

m , (7.36)where C is the normalisation onstant whih ensures Tr (ρ̂) = 1, and ρ̂th is the thermalstate given by
ρ̂th = (1 − x)

∞
∑

n=0

xk|k〉〈k| ; x = exp

[

−~ω

kT

]

. (7.37)One an alternatively de�ne the PATS through parametri di�erentiation :
ρ̂ =

(1 − x)m+1

m!

dm

dxm

∞
∑

k=0

xk|k〉〈k| . (7.38)PATS are thus parametrised by two parameters: 0 ≤ x < 1, and m = 0, 1, 2, · · · . Thelimit x → 0 orresponds to Fok states, and the limit m → 0 orresponds to thermalstates.We may note that PATS (with m ≥ 1) is nonlassial for all values of x [194℄. Indeed,it violates a three-term lassiality ondition [170℄.The Q funtion of PATS an be easily alulated and is given by
Q

(m,x)
PATS(α) =

(1 − x)m+1

m!
|α|2mexp[−(1 − x)|α|2] . (7.39)It is evident that the Q funtion of the PATS is a saled version of the Q funtion of the176



Chapter 7. A measure of non-Gaussianity for quantum statesFok state :
Q

(m,x)
PATS(α) = λ2Q|m〉(λα), λ =

√
1 − x . (7.40)Sine our measure of non-Gaussianity respets the shape riterion put forward in theprevious Setion, it is immediate that the non-Gaussianity of the PATS is the same asthat of the photon number state :

N( ρ̂
(m,x)
PATS ) = ln(m+ 1) −m− logm! +mψ(m+ 1)

= N(ρ̂|m〉) . (7.41)It is worth emphasising here that the PATS is a speial state with regard to thequestion of verifying whether a given measure of non-Gaussianity is a good measure, i.e.,whether it satis�es the shape riterion. The test is as simple as heking whether themeasure in question evaluated for the PATS is independent of the temperature parameter
x or not.
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Chapter 7. A measure of non-Gaussianity for quantum states
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ρ̂|β| ≡

∫

dθ

2π
exp[−i θ â†â ] |β〉〈β| exp[ i θ â†â ]

= exp(−|β|2)
∞
∑

n=0

|β|2n

n!
|n〉〈n| . (7.42)Sine ρ̂|β| is a onvex sum of Fok states, its Q funtion is a orresponding onvex sum :

Q|β|(α) = exp[−(|α|2 + |β|2)]
∞
∑

n=0

|α|2n|β|2n

n!n!

= exp[−(|α|2 + |β|2)]I0(2|α||β|) , (7.43)where I0(.) is the modi�ed Bessel funtion of integral order zero. The only non-zeromoment of order ≤ 2 is 〈|z|2〉 = Tr(ρ̂|β|ââ†) = 1 + |β|2. The assoiated Gaussian prob-178



Chapter 7. A measure of non-Gaussianity for quantum states

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.2  0.4  0.6  0.8  1

δ 1
 (

ρ)

xFigure 7.3: Variation of δ1(ρ̂) as a funtion of the Boltzmann parameter x for the photon-addedthermal state.ability Q
|β|
G (α) that has the same �rst and seond moments is thus the thermal statewith average photon number 〈n̂〉 = |β|2. As we have shown earlier in Eq. (7.32), theWehrl entropy of this Gaussian state is HW (ρ̂

|β|
G ) = 1 + log(1 + |β|2). To ompute theWehrl entropy orresponding to the original phase-averaged oherent state, however, weresort to numerial evaluation. In Figure (7.2) we present the non-Gaussianity of ρ̂|β| asa funtion of |β|2, the energy of the state. It is seen to be a monotone inreasing funtionof |β|2.Note that the phase-averaged oherent states are lassial sine they are, by de�nition,onvex sums of oherent states. Thus if a bipartite state onsisting of a phase-averagedoherent state in one mode and vauum in the other is passed through a beamsplitter,the two-mode mixed state at the output will remain separable (sine the phase-averagedoherent state is lassial [194℄), with the same non-Gaussianity as the original phase-averaged oherent state.7.8 Comparison with other measuresIn this Setion we ompare our non-Gaussianity measure N (ρ̂) with two non-Gaussianitymeasures whih have been proposed reently.
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Chapter 7. A measure of non-Gaussianity for quantum states
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δ1(ρ̂) =

Tr[(ρ̂− τ̂)2]

2Tr(ρ̂2)
, (7.44)where τ̂ is the Gaussian state with the same �rst and seond moments as ρ̂. Let usompare this measure with ours in the spei� ase of the PATS ρ̂(m,x)

PATS. In Figure (7.3)we plot δ1(ρ̂(m,x)
PATS) as a funtion of the Boltzmann parameter x, for �xed value of m = 1.It is seen that δ1(ρ̂(m,x)

PATS), for m = 1, is not a onstant but varies with the temperatureparameter x. This shows that this measure of Genoni et al. does not satisfy our shaperiterion.Another interesting di�erene appears when one ompares our measure N (ρ̂) with
δ1(ρ̂) in the ase of the photon number states ρ̂ = |m〉〈m|. As we have shown ear-lier [see Figure (7.1)℄, our measure monotonially inreases with the photon number mand tends to in�nity as m tends to in�nity. In ontrast, as Genoni et al. have shown andemphasised [378℄, their measure δ1(ρ̂) saturates at the value 1

2 .
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Chapter 7. A measure of non-Gaussianity for quantum states7.8.2 Measure based on quantum relative entropyGenoni et al. [379℄ have proposed, in a subsequent paper, a seond measure of non-Gaussianity, this one based on quantum relative entropy. They de�ne non-Gaussianityof a state ρ̂ as
δ2(ρ̂) = S(τ̂ ) − S(ρ̂), (7.45)where S(·) is the von Neumann entropy of the state in question and τ̂ is the Gaussianstate with the same �rst and seond moments as the given state ρ̂.At �rst sight it would seem that δ2(ρ̂) and our measure N (ρ̂) are very similar, the onlydi�erene being that ρ̂ is replaed by Qρ(z) and that the trae operation in the formulafor the von Neumann entropy is replaed in our measure by a phase spae integral. Aloser look reveals that this is not the ase; δ2(ρ̂) does not redue to N (ρ̂) under thiskind of `quantum-lassial orrespondene'. And δ2(ρ̂) and N (ρ̂) turn out to be quitedi�erent entities.A qualitative di�erene between δ2(ρ̂) and N(ρ̂) beomes manifest when one omparesthese two measures in the ontext of a pure state. As the von Neumann entropy of apure state is zero, δ2(ρ̂) redues to S(τ̂ ), the von Neumann entropy of the Gaussian statewith the same �rst and seond moments as ρ̂. In other words δ2(ρ̂) does not onsult, inthe ase of pure states, moments or umulants of ρ̂ of order higher than 2. Consequently,all pure states whih have the same set of �rst and seond moments but di�er in highermoments will get assigned the same non-Gaussianity δ2(ρ). This is not the ase with ourmeasure N (ρ̂).To bring out a seond qualitative di�erene we hek if δ2(ρ̂) satis�es the shaperiterion. To this end we ask if δ2(ρ̂) will asribe the same amount of non-Gaussianityto the PATS and the photon number state, i.e., , whether δ2(ρ) evaluated for the PATS

ρ̂
(m,x)
PATS is independent of the temperature parameter x. We �nd that this is not the ase.This is shown in Figure (7.4) wherein we present δ2(ρ̂(m,x)

PATS), for �xed value m = 1, as afuntion of x.We onlude this Setion with a further remark. With referene to Figures (7.3)and (7.4), while the non-Gaussianity measures δ1(ρ̂(m,x)
PATS) and δ2(ρ̂

(m,x)
PATS), for �xed m,vary with the temperature (or sale) parameter x, thus failing the shape riterion, thevariation is not monotone. The signi�ane of the temperatures at whih these measuresassume their respetive minimum values is not lear.
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Chapter 7. A measure of non-Gaussianity for quantum states7.9 Conluding remarksWe have presented a measure of non-Gaussianity of quantum states based on the Qfuntion. In doing so we have been guided by the fundamental priniple that any measureof non-Gaussianity is an attempt to make a quantitative statement on the departure ofthe shape of the Q funtion from Gaussian, and the measure must therefore remaininvariant under all transformations whih do not hange the shape of the Q funtion.Uniform saling of all the phase spae oordinates at the level of the Q funtionhas proved to be an important shape preserving transformation, and our shape riteriondemands that non-Gaussianity of the photon-added thermal states should be independentof temperature.We have explored various properties our measure whih meets the shape riterion.We have presented analytial and numerial results on the non-Gaussianity of a fewfamilies of quantum states. We have also ompared our measure with other measures ofnon-Gaussianity available in the literature.Our measure N (ρ̂) meets the shape riterion whih, in our opinion, should be re-speted by every good measure of non-Gaussianity. We hasten to add, however, thatthis is not the only measure that meets this riterion. For instane, if γ(2n) is an appro-priate linear ombination of the umulants of order 2n, and γ(2) an appropriate linearombination of the umulants of order 2, it is lear that the ratio between γ(2n) andthe nth power of γ(2) will meet this riterion, for every n ≥ 2. Our hoie N (ρ̂) has theattration of being immediately related to well-known entities like the Wehrl entropy andKullbak-Leibler distane.In the ase of lassial probability de�ned on a 2n dimensional spae Cn, one wouldhave required the non-Gaussianity measure to be invariant under the full Eulidean grouponsisting of translations and all SO(2n) rotations. In the ase of phase spae, SO(2n)rotations whih fall outside the subgroup Sp(2n,R) ∩ SO(2n) are unphysial, and henethe restrition to this subgroup of passive linear systems.Our shape riterion rests on the invariane semi-group ofQ funtions whih is di�erentfrom the invariane semi-group of the Gaussian family of states � operations whih mapGaussian states into Gaussians. The latter semigroup inludes the full Sp(2n,R), andnot just the intersetion subgroup Sp(2n,R)∩SO(2n). It further inludes a whole familyof ompletely positive maps known as Gaussian hannels.
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8Disussion
Quantum information theory in the ontext of ontinuous variables, has been primarilyexplored in Gaussian states. Two immediate reasons for this has been the fat that theyhave been produed in many laboratories aross the world and are experimentally viable,and seondly that their haraterisation has been relatively easy in the sense that theirvariane matrix tells everything about them [226℄. The notion of nonlassiality as wellas entanglement in their ontext is by and large well understood [57, 192℄. This is notso for non-Gaussian states. The haraterisation of non-Gaussian states through theirmoments is an on going study in quantum optis and any progress in quantum optis isbased on our progress with regard to the theory of moments. A lassi example of thishas been the ase of states of a single-mode of radiation �eld whih are diagonal in theFok basis. The haraterisation of these states in terms of moments has been found tobe equivalent to the Stieltjes moment problem [170℄. We, in our present work, have madean attempt to make use of this knowledge. A possible future program would be to �ndpossible ontinuous variable systems whih an be mapped to well studied problems inthe ontext of lassial probability theory, and if suh a thing has been arried out, thensee if it helps us understand entanglement. We might attempt this bearing in mind thatthe theory of moments tells us of some pratial limitations, and an example of suh isas implied by the Marinkiewiz theorem [375℄.Another area of possible exploration is the extension of the use known positive mapsto the ontinuous variable ase. Only the partial transpose map and the redution maphave been extended [57, 217℄. Reent methods, illustrated in [233℄ give us a window tothis aspet. The diret extension of positive maps is still a problem though. The urrentknowledge seems to be nasent regarding this issue.The problem of separability/entanglement has been settled for the ase of multi-modeGaussians [242℄. We, in our work, have settled this issue for a restrited lass of non-Gaussian states. But, the issue of separability/entanglement is still open in the more183



Chapter 8. Disussiongeneral ontext. One major tool has been the use of unertainty relations [57, 58, 230℄.Suh relations have been seen to be strong enough in ertain ontexts to detet boundentanglement [60, 61, 241℄. Suh a study has been by and large restrited to the levelof the variane matrix. Reently in [232℄, a more general approah was devised. Furtherexploration along these lines would be of great interest.One of the foremost problems in quantum information theory has been the estimationof entanglement. In the ontinuous variable ase, the EOF has been evaluated for thease of two-mode Gaussians. But for the general multi-mode Gaussian ase, there is notyet a oherent understanding of entanglement. Extremal properties of Gaussian stateshave already played their role in the two-mode ase, but a deeper exploration of suhproperties in the multi-mode ontext is muh awaited. In the non-Gaussian ase, theproblem is even more intruiging by the very lak of our understanding with regard tothese states. We have in our work, outlined a possible ontext dependant proedure,whih estimates entanglement in very speial non-Gaussian states, but a more generalapproah is muh awaited Reent methods outlined in [328℄, tell us of the possibility ofestimating entanglement with inomplete knowledge of the state. It would be of greatinterest to extend these ideas to the non-Gaussian ontinuous variable state.A primary onern in this work, has been the study on nonlassiality, and its re-lationship to entanglement. The squeezing nonlassiality, a nonlassiality assoiatedwith Gaussian states, has been well explored as a resoure in the ontext of quantuminformation proessing. The same annot be said of other available nonlassialities. Thepotential role of the other non-Gaussian nonlassialities is yet to be realised. Reently,exploration in these lines have started emerging[377, 393, 394℄, the advantages are alsobeing spelt out. More exploration needs to be done along these diretions.
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