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Abstra
tLiquid 
rystalline states of matter provide a useful testing ground for statisti-
al me
hani
al theories of ordered states, sin
e a variety of ordered phases 
an bea

essed in experiments and 
omputer simulations. They also 
onstitute simplemodel systems for studying the interplay between internal stru
ture and an exter-nally imposed �ow, thus illuminating rheologi
al studies of a large 
lass of 
omplex�uids.In this thesis, we study some problems in the stati
s and dynami
s of nemati
liquid 
rystals. Nemati
s, typi
ally formed in solution by rod-like mole
ules withan aspe
t ratio whi
h deviates su�
iently from unity, exhibit orientational order inthe absen
e of translational order. Su
h orientational order is quanti�ed througha tra
eless, symmetri
 tensor Qαβ. The free energy whi
h quanti�es the 
ost ofdeformations is the Ginzburg-Landau-de Gennes (GLdG) free energy fun
tional,obtained via a gradient expansion in Q.This thesis studies two broad 
lasses of problems using the GLdG approa
h.The �rst 
lass deals with the stati
 properties of the isotropi
-nemati
 interfa
e.The problem of interfa
e stru
ture for the nemati
 is parti
ularly interesting sin
eit provides a simple illustration of how the stru
ture of an interfa
e 
an di�ersubstantially from stru
ture in the bulk.The se
ond 
lass of problems involves the study of the dynami
s of Qαβ for anemati
 �uid in an external shear �ow. Our study of the dynami
s of Qαβ impa
tsexperiments on the �ow behaviour of �uids with orientational order, a prototypi-
al model for the understanding of 
omplex �uid rheology, in parti
ular of 
haosasso
iated with unsteady rheologi
al response or �rheo
haos�. Su
h rheo
haos is a
onsequen
e of 
onstitutive and not 
onve
tive non-linearities, originating in the
oupling of the �ow to stru
tural or orientational variables des
ribing the lo
alstate of the �uidA powerful approa
h to understanding 
omplex spatio-temporal dynami
s isbased on the study of 
oupled map latti
es, a numeri
al s
heme in whi
h mapspla
ed on the sites of a latti
e evolve both via lo
al dynami
s as well as through
ouplings to neighbouring sites. However, the utility of this methodology in aspe
i�
 
ontext is often severely limited by the availability of lo
al maps able to
omprehensively des
ribe the spatially uniform 
ase. In this thesis, we dis
uss this6



requirement in the 
ontext of a model for rheo
haos, proposing a lo
al map as wellas a 
oupled map des
ription of the regular and 
haoti
 states obtained in shearednemati
s.The thesis is organized as follows. In the �rst 
hapter, the Introdu
tion, webrie�y review the GLdG order parameter theory of the isotropi
-nemati
 transi-tion. We survey the literature whi
h deals with the isotropi
-nemati
 interfa
eand brie�y des
ribe methodologies for studying the rheology of 
omplex �uids, inparti
ular nematogeni
 �uids. The results presented in the 
hapters whi
h followare summarized in more detail below, 
hapterwise. Finally, we end this thesis witha 
on
lusion and point to further work.Isotropi
-Nemati
 interfa
e with Planar An
horingIn the se
ond 
hapter of this thesis we revisit the 
lassi
 problem of the stru
ture ofthe isotropi
-nemati
 interfa
e within Ginzburg-Landau-de Gennes theory, re�ningprevious analyti
 treatments of biaxiality at the interfa
e. We present resultsfor the uniaxial and biaxial pro�les, spe
ialized to the 
ase of planar an
horing,showing how a term in the Euler-Lagrange equations negle
ted in previous work
ontributes substantially to determining the stru
ture of the interfa
e. We useresults from a fast and highly a

urate spe
tral 
ollo
ation s
heme for the solutionof the Landau-Ginzburg-de Gennes equations to test these analyti
 results. In
omparison to earlier work, we obtain improved agreement with numeri
s for boththe uniaxial and biaxial pro�les, with our results being in
reasingly a

urate as κis redu
ed. We also provide a

urate asymptoti
 results for the de
ay of the S and
T order parameters deep into the nemati
 and isotropi
 phases.Isotropi
-Nemati
 Interfa
e with an Oblique An
horing ConditionIn the third 
hapter of this thesis, we study the 
ase where a general an
horing
ondition is imposed on the nemati
 side of the interfa
e, reprodu
ing results ofprevious work in the limit in whi
h this an
horing 
ondition redu
es to the planaror homoeotropi
 
ase. Our approa
h uses variational methods, based on physi-
ally motivated and 
omputationally �exible variational pro�les for uniaxial andbiaxial order, as well as for the variation of the angle between the nemati
 axis7



and the 
oordinate normal to the interfa
e. Results from our analysis are 
om-pared to numeri
al results obtained from a dire
t numeri
al minimization of theGinzburg-Landau-de Gennes free energy. While spatial variations of the uniaxialand biaxial order parameters are approximately 
on�ned to the neighbourhoodof the interfa
e, nemati
 elasti
ity requires that the dire
tor orientation interpo-late smoothly between planar an
horing at the lo
ation of the interfa
e and theimposed boundary 
ondition at in�nity. Our variational results are in 
lose agree-ment with numeri
al results as well as results from mole
ular simulations. Ourmethods a

ess the nontrivial stru
ture of the biaxiality at the interfa
e in
ludingthe large tail towards the isotropi
 side and the 
hange in the sign of the biaxialorder parameter a
ross the interfa
e. This approa
h also 
aptures the inversion ofthe pro�le of biaxiality as the elasti
 
oe�
ient L2 
rosses zero.Lo
al Map Des
ription of Nemati
 Liquid CrystalsIn 
hapter four of this thesis, we propose and study a lo
al map 
apable of des
rib-ing the full variety of dynami
al states, ranging from regular to 
haoti
, obtainedwhen a nemati
 liquid 
rystal is subje
ted to a steady shear �ow. The map isformulated in terms of a quaternion parametrization of rotations of the lo
al framedes
ribed by the axes of the nemati
 dire
tor, subdire
tor and the joint normal tothese, with two additional s
alars des
ribing the strength of ordering. Our modelyields kayaking, wagging, tumbling, aligned and 
oexisten
e states, in agreementwith previous formulations based on 
oupled ordinary di�erential equations. Thephase diagram we obtain using our methods 
ontains all non-trivial dynami
alstates obtained in previous work. Moreover, it 
losely resembles, even at thequantitative level, phase diagrams obtained in previous work whi
h used ordinarydi�erential equations formulated in 
ontinuous time. Our approa
h makes an ex-tension to the 
ase in whi
h the shear rate is periodi
ally modulated, possible.Our work thus supplies a 
ru
ial ingredient required for the 
onstru
tion of 
ou-pled map latti
e approa
hes to the spatio-temporal aspe
ts of rheologi
al 
haos,a problem 
urrently at the boundaries of our understanding of the dynami
s of
omplex �uids.
8



A Coupled Map Latti
e Model of Rheologi
al Chaos.In 
hapter �ve of this thesis we devise and study a 
oupled map latti
e model for anematogeni
 �uid in a passive shear �ow. We begin with a lo
al map whi
h 
ontainsall the states predi
ted using a ODE-based methodology. We then 
ouple thesemaps together spatially, using standard te
hniques, in one and two dimensions.Our results provide eviden
e for spatially and temporally uniform states, as well asstates whi
h are spatially uniform but temporally periodi
. In a restri
ted regime ofparameter spa
e, we �nd eviden
e for spatio-temporally 
haoti
 behaviour, whi
hwe 
hara
terize in detail. We obtain a phase diagram in the spa
e of the 
oupling
onstant for the spatial 
oupling of sites as well as a paramter whi
h enters ourmap, illustrating how the di�erent spatio-temporal phases are 
onne
ted to ea
hother. Previous work on rheo
haos has been based on methodologies whi
h usepartial di�erential equations, whi
h are then solved (typi
ally in one dimension) inthe passive adve
tion approximation. Our results here obtain the same states foundin approa
hes whi
h use PDE's, but allow a numeri
ally tra
table extension to twoand higher dimensions. Our results for this model indi
ate that behaviour in theone dimensional and two dimensional 
ases are qualitatively similar, although thelarger number of neighbours in two dimensions suppresses spatial irregularity. Wehave 
he
ked that our results are qualitatively similar for di�erent 
hoi
es of spatial
oupling s
hemes. Our results in
lude the 
omplete 
hara
terization of phases andthe phase diagram as well as the demonstration of spatio-temporal intermitten
yin this system. More 
entrally, our work shows that 
oupled map latti
e models ofrheologi
al 
haos 
an provide a

urate yet 
omputationally tra
table des
riptionsof the steady state behaviour of driven 
omplex �uids.List of publi
ations/preprints1 Regular and Chaoti
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-Nemati
 Interfa
e with Planar An
hor-ing. 9



S. M. Kamil, A. K. Bhatta
harjee, R. Adhikari and Gautam I. MenonPhys. Rev. E 80, 041705(2009)(http://arxiv.org/abs/0906.2899)3 The isotropi
-nemati
 interfa
e with an oblique an
horing 
ondi-tion.S. M. Kamil, A. K. Bhatta
harjee, R. Adhikari and Gautam I. MenonThe Journal of Chemi
al Physi
s, 131, 174701(2009)(http://arxiv.org/abs/0908.2517)4 A Coupled Map Latti
e Model for Rheologi
al Chaos in ShearedNemati
 Liquid Crystals.S.M. Kamil, Gautam I. Menon and Sudeshna SinhaChaos 20 043123 (2010)(http://arxiv.org/abs/1005.2041)

10



Contents
I Biaxiality at the Isotropi
-Nemati
 Interfa
e 11 Introdu
tion 21.1 Soft Matter Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Order Parameter Des
ription of Nemati
s . . . . . . . . . . . . . . . 71.3 Ginzburg-Landau Des
ription of the Isotropi
-Nemati
 Transitions . 71.3.1 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . 81.3.2 Free Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 81.4 The Ginzburg-Landau-de Gennes Approa
h to the Isotropi
-Nemati
Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91.5 Properties of the Isotropi
-Nemati
 Transition . . . . . . . . . . . . 111.6 An
horing at Surfa
es and Interfa
es . . . . . . . . . . . . . . . . . 111.7 The Isotropi
-Nemati
 Interfa
e . . . . . . . . . . . . . . . . . . . . 121.7.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . 121.7.2 Results of this thesis: Stati
 Behaviour . . . . . . . . . . . . 141.7.3 A Note Con
erning Conventions . . . . . . . . . . . . . . . . 152 Biaxiality at the Isotropi
-Nemati
 Interfa
e with Planar An
hor-ing 172.1 The de Gennes result for the Nemati
-Isotropi
 interfa
e . . . . . . 172.2 Equation for Isotropi
-Nemati
 Interfa
e with Planar an
horing . . 182.3 Con
lusion and Results . . . . . . . . . . . . . . . . . . . . . . . . . 263 The Isotropi
-Nemati
 Interfa
e with an Oblique An
horing Con-dition 283.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283.2 The Ginzburg-Landau-de Gennes Equations . . . . . . . . . . . . . 313.3 Interfa
e stru
ture for Planar and Homoeotropi
 An
horing . . . . . 333.3.1 Homeotropi
 Alignment . . . . . . . . . . . . . . . . . . . . 343.3.2 Planar Alignment . . . . . . . . . . . . . . . . . . . . . . . . 343.4 Numeri
al Minimization of the Ginzburg-Landau-de Gennes FreeEnergy for the Interfa
e Problem . . . . . . . . . . . . . . . . . . . 35i



Contents3.5 Variational Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.6 Numeri
al Methodology for the Variational Solution . . . . . . . . . 383.6.1 Results from the Numeri
al and Variational Minimization:
κ > 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393.6.2 Results from the Numeri
al and Variational Minimization:
κ < 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423.7 Asymptoti
 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 483.8 Summary and Con
lusions . . . . . . . . . . . . . . . . . . . . . . . 49II Latti
e Models For Rheologi
al Chaos in Sheared Ne-mati
s 514 Introdu
tion to Rheology of Nemati
s 524.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524.1.1 Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524.1.2 Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534.1.3 The Stress-Strain-rate relation and Vis
osity . . . . . . . . . 574.2 Non-Newtonian Fluids . . . . . . . . . . . . . . . . . . . . . . . . . 594.3 Constitutive Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 634.3.1 A Simple Equation for a Vis
oelasti
 Material . . . . . . . . 634.3.2 Linear Rheology . . . . . . . . . . . . . . . . . . . . . . . . . 664.3.3 Nonlinear rheology . . . . . . . . . . . . . . . . . . . . . . . 684.4 Wormlike Mi
elles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684.4.1 A Constitutive equation for giant mi
elles . . . . . . . . . . 734.5 Shear banding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734.6 Rheologi
al Chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754.6.1 Models for Rheologi
al 
haos . . . . . . . . . . . . . . . . . . 774.7 Hydrodynami
s of Nemati
 Fluids . . . . . . . . . . . . . . . . . . . 794.8 Coupled Map Latti
es . . . . . . . . . . . . . . . . . . . . . . . . . 804.9 Summary of Work on Rheo
haos . . . . . . . . . . . . . . . . . . . 825 Regular and Chaoti
 States in a Lo
al Map Des
ription of ShearedNemati
 Liquid Crystals 845.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84ii



Contents5.2 Equation of Motion for Nemati
s . . . . . . . . . . . . . . . . . . . 855.3 Nematodynami
s and Quaternion Algebras . . . . . . . . . . . . . . 865.3.1 Orthogonal Tensor Basis . . . . . . . . . . . . . . . . . . . . 875.3.2 Quaternion . . . . . . . . . . . . . . . . . . . . . . . . . . . 885.3.3 Relation to the Rotation . . . . . . . . . . . . . . . . . . . . 885.3.4 Relation to Euler angle . . . . . . . . . . . . . . . . . . . . . 895.3.5 Quaternions and the Alignment Tensor . . . . . . . . . . . . 895.3.6 Dynami
al Equation for the Alignment Tensor . . . . . . . . 905.4 Lo
al Map in terms of Quaternions . . . . . . . . . . . . . . . . . . 915.5 Numeri
al Pro
edures and Results . . . . . . . . . . . . . . . . . . . 925.5.1 Numeri
al Methods . . . . . . . . . . . . . . . . . . . . . . . 925.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 935.6 Dis
ussion and Con
lusion . . . . . . . . . . . . . . . . . . . . . . . 996 A Coupled Map Latti
e Model for Rheologi
al Chaos in ShearedNemati
 Liquid Crystals 1026.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026.2 A Lo
al Map for Nematodynami
s . . . . . . . . . . . . . . . . . . 1066.2.1 Equation of Motion for Nemati
s . . . . . . . . . . . . . . . 1066.2.2 Dynami
s of Sheared Nemati
s from a Lo
al Map . . . . . . 1086.2.3 Phase Behaviour of the Lo
al Map . . . . . . . . . . . . . . 1096.3 Coupled Maps for Nematodynami
s . . . . . . . . . . . . . . . . . . 1116.4 The One-dimensional Coupled Map Latti
e . . . . . . . . . . . . . . 1136.4.1 Lo
al dynami
s . . . . . . . . . . . . . . . . . . . . . . . . . 1156.4.2 Spatio-temporal 
oheren
e and dynami
s . . . . . . . . . . . 1166.5 The Two-dimensional Coupled Map Latti
e . . . . . . . . . . . . . . 1196.5.1 Lo
al temporal behaviour . . . . . . . . . . . . . . . . . . . 1266.5.2 Spatio-temporal behaviour . . . . . . . . . . . . . . . . . . . 1266.6 Quantifying Spatio-Temporal Complexity . . . . . . . . . . . . . . . 1296.7 Con
lusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1357 Con
lusions 139
iii



List of Figures
1.1 (a) Mole
ular stru
ture of 5CB, (b) Benzene-hexa-n-alkanoate deriva-tives, (
) Banana-shaped mole
ules. Figure adapted fromhttp://dept.kent.edu/spie/liquid
rystals/maintypes.html . . . . . . 31.2 (a) Isotropi
 and (b) nemati
 phases of anisotropi
 mole
ules . . . . 31.3 S
hemati
 of (a) Free energy as a fun
tion of the s
alar order param-eter at di�erent temperatures above and below the isotropi
-nemati
transition and (b) S
alar order parameter minimizing the free energyas a fun
tion of temperature. . . . . . . . . . . . . . . . . . . . . . . 51.4 (a) Distribution of mole
ular orientation on the unit sphere, (b) Dis-tribution fun
tion for a uniaxial nemati
 (
) Distribution fun
tionfor a biaxial nemati
. Bottom �gure shows examples of mole
ulesshowing uniaxial and biaxial phases. (Bottom �gure taken from M.Lehmann and J. Seltmann, Beilstein J. Org. Chem. 2009, 5, No.73. doi:10.3762/bjo
.5.73) . . . . . . . . . . . . . . . . . . . . . . . 62.1 A 
omparison of the terms (2+κ)

(3+2κ)
∂2
zT (dark line) and κ

(3+2κ)
∂2
zS (lightline) obtained within the PSW solution to the GLdG equations, fora κ value of 18.0. The PSW approximation 
onsists of ignoring the

(2+κ)
(3+2κ)

∂2
zT term in 
omparison to the κ

(3+2κ)
∂2
zS term. Both terms,however, are of 
omparable magnitude. . . . . . . . . . . . . . . . . 19

iv



List of Figures2.2 Biaxial and uniaxial pro�les for κ = 0(a), 0.4(b), 4(c) and 18.0(d),
omparing results from our numeri
al 
omputations (×), with ouranalyti
 formula (dashed line) and the formula of PSW (solid line).The main �gure shows the biaxial pro�le whereas the inset showsthe uniaxial pro�le. In (a), for κ = 0, the solution has T = 0, withthe S pro�le exa
tly given by the tanh form. In (b), for κ = 0.4, the
omputed biaxial pro�le (T) (main panel) is �t remarkably well byour analyti
 form, whereas the PSW approximation tends to overes-timate the peak value. The uniaxial (S) pro�le is shown in the insetof (a); here the results obtained by us and by PSW are identi
aland the �t to a tanh pro�le is a

urate over the entire region. In(
) (main panel), for κ = 4.0, the numeri
al data are �t well by theanalyti
 forms, parti
ularly away from the main peak, yielding es-sentially exa
t agreement deep into the isotropi
 and nemati
 sides.The PSW approximation is still an overestimate to the peak value,and also di�ers sharply in relation to the numeri
al data deep intothe isotropi
 side. The inset shows the uniaxial (S) pro�le for this
ase. In (d) (main panel), for κ = 18.0, the PSW form appears to�t the peak better for larger κ, but again fails to 
apture the de
aytowards the isotropi
 side. . . . . . . . . . . . . . . . . . . . . . . . 212.3 A 
omparison of the results of our analyti
 
al
ulation to pro�les of
T obtained from a density fun
tional 
al
ulation for the isotropi
-nemati
 interfa
e. Pro�les obtained for two values of κ, κ = 5.8 (for
z < 0) and κ = 0.69 (for z > 0) are shown. The larger κ valueessentially �ts the T pro�le exa
tly on the isotropi
 side, whereasthe smaller κ value provides an a

urate �t on the nemati
 side.The inset shows the S pro�le obtained from the density fun
tional
al
ulation, together with an optimum �t varying the value of lc . . 22

v



List of Figures3.1 The interfa
e geometry and the 
oordinate system used in this 
hap-ter. Note that the nemati
 dire
tor makes an angle θ with respe
t tothe z− axis dire
tion. This angle is �xed at in�nity to θ = θe . It 
anbe 
hosen to vary between θe = 0 (homoeotropi
 an
horing at in�n-ity) and θe = 90◦ (planar an
horing at in�nity). The isotropi
 phaseis favoured, through boundary 
onditions, as z → −∞, whereas thenemati
 phase is favoured for z → ∞. The plane of the interfa
e isthe x− y plane, shown by ABCD in the �gure, whereas the dire
toris 
on�ned to the EFGH plane as shown. The origin is denoted by O. 293.2 Pro�les of the biaxial (T ) (main �gure) and uniaxial (S) order (in-set) parameter as a fun
tion of the 
oordinate z a
ross the interfa
e,for planar an
horing and κ = 4 as obtained from a dire
t numer-i
al minimization of the LGdG fun
tional (solid line). The resultsobtained from an spe
tral 
ollo
ation method are shown as points. 363.3 The main panel in (a) and (b) illustrates the pro�les of the biaxial(T ) order parameter as a fun
tion of the 
oordinate z a
ross theinterfa
e, 
omputed by dire
t numeri
al minimization of the LGdGfun
tional for systems of size L = 50 and 1290, for the parametervalues (a) κ = 8, θe = 30, (b) κ = 8, θe = 60. The insets to (a), (b)show the 
orresponding pro�les for S. The main panel in (
) and (d)shows the s
aled pro�les for θ for the same parameter values as in (a)and (b). The insets to (
) and (d) show the 
orresponding uns
aledpro�les for θ. N and I refer to nemati
 and isotropi
 respe
tively. . 403.4 Main �gure: Pro�les of the angle θ des
ribing the orientation ofthe lo
al dire
tor �eld as a fun
tion of the 
oordinate z a
ross theinterfa
e for a system of size L = 125, as obtained from a dire
tnumeri
al minimization of the LGdG fun
tional (solid line) and fromthe variational 
al
ulation des
ribed in the text (point). These areshown for parameter values (a) κ = 8, θe = 30, and (b) κ = 8, θe =

60. The inset labeled (i) in ea
h sub-�gure shows the 
orrespondingpro�le of S, whereas the inset labeled (ii) shows the pro�le of T . Nand I refer to nemati
 and isotropi
, respe
tively. . . . . . . . . . . 41
vi



List of Figures3.5 The angle pro�le θ(z), for di�erent systems sizes L = 50, 125 and
256, illustrating the 
onvergen
e to the value of 90◦ at the interfa
e.The parameters are κ = 8 and the asymptoti
 an
horing angle is
θe = 30◦. As the system size in
reases, note that the variation atthe interfa
e be
omes smoother. The value of the an
horing angleat the interfa
e is somewhat smaller than 90◦ for small system sizesbut asymptotes to this value as L goes to in�nity. . . . . . . . . . 433.6 The variation of the variational parameters a (a), b (b) and c (
)with system size L, together with the variation of the variationalangle p (d), plotted for κ = 1. Note that these parameters qui
kly
onverge to their L→ ∞ values 
orresponding to the 
ase of planaran
horing. In all 
ases the parameter p appears to 
onverge to theasymptoti
 value of 90◦ as the system size is in
reased. . . . . . . . 443.7 The variation of the S and T , for system size L = 125, plotted for
κ = −1, with an oblique an
horing angle of 30◦. Our results are
onsistent with T = 0 for homoeotropi
 an
horing. . . . . . . . . . 453.8 Plot of the angle s
aled to its minimum value for ea
h system size(L = 125, 258 and 516, against z/L for κ = −1 and an asymptoti
,oblique an
horing angle of 30◦. The inset shows the bare angles as afun
tion of z for these di�erent system sizes. Note that the ex
ellentdata 
ollapse indi
ates that angle pro�les in the 
ase of L2 < 0 s
alein the same way as the L2 > 0 
ase, with a homoeotropi
 an
horingbeing favoured at the interfa
e. . . . . . . . . . . . . . . . . . . . . 463.9 Main Panel: Pro�le of T , the biaxial order parameter, for κ = −1,in the two extreme 
ases of planar (0◦) and homoeotropi
 (90◦)an
horing. Note that the pro�le of T is inverted with respe
t topro�les obtained for κ > 0, with the minimum appearing on theisotropi
 side of the interfa
e. Inset: The pro�le of S, 
onsistentwith a tanh form. Data are 
omputed for L = 50. While the pro�leof T is non-zero for planar an
horing, biaxiality vanishes for thehomoeotropi
 an
horing 
ase. . . . . . . . . . . . . . . . . . . . . . 474.1 Components of the stress tensor, a
ting on a small 
ube of material 534.2 Transformation of the displa
ement ve
tor upon a deformation . . 54vii



List of Figures4.3 Shear deformations of a blo
k of material . . . . . . . . . . . . . . . 544.4 Extensional deformations, illustrating the de�nitions of λ1, λ2 and λ3 554.5 Depi
tion of �ow and shear stresses in the Couette geometry, whena �uid is pla
ed between two plates, with the upper plate beingmoves at a 
onstant velo
ity . . . . . . . . . . . . . . . . . . . . . . 574.6 Shear stress vs Shear Rate for two �uids, with the linearity indi
at-ing regimes of 
onstant vis
o
ity. Figure from Rheology of ComplexFluids ,Abhijit P.; Krishnan, J. Murali; Kumar, P. B. Sunil (Eds.)Springer (2010). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594.7 S
hemati
 of the �ow relation (stress vs shear rate) illustrating non-Newtonian behaviour Figure from Rheology of Complex Fluids, J.Murali Krishnan et al. . . . . . . . . . . . . . . . . . . . . . . . . . 614.8 Pipkin's diagram, with the y axis showing the Weissenberg numberand the x-axis showing the Deborah number. Regimes of non-linearand linear vis
oelasti
ity as well as of regimes of vis
ometri
 �owand rubber elasti
ity are shown. Figure from Phan Thein N Under-standing Vis
oelasti
ity, Springer (2002) . . . . . . . . . . . . . . . 624.9 Dependen
e of the 
umulative deformation on time . . . . . . . . . 654.10 Cross-se
tion and side-view of a worm-like mi
elle. Figure takenfrom http://
eb.
am.a
.uk . . . . . . . . . . . . . . . . . . . . . . . 694.11 S
hemati
 phase diagram for self assembly of ioni
 amphiphiles intogiant mi
elles and related stru
tures.The verti
al axis representsvolume fra
tion Φ of amphiphile; the horizontal is the ratio Cs/Cof added salt. Figure taken from Ref. [23℄. . . . . . . . . . . . . . . 704.12 Elasti
 moduli G′/G0 and G”/G0 as fun
tion of the angular fre-quen
y for temperatures 
omprised between 20 and 45 degree Centi-grade. G0 is the elasti
 modulus and the angular frequen
y ω isnormalized by the relaxation time of the �uid. Data are for theCPCl-NaSal wormlike mi
elles in water (0.5 M NaCl) at 
 = 12 wtand are reprodu
ed from Ref. [15℄. The solid lines 
orrespond toMaxwellian vis
oelasti
 behavior. . . . . . . . . . . . . . . . . . . . 71
viii



List of Figures4.13 Flow 
urves for reptation-rea
tion model:solid line, by solution ofEq.4.45. dashed line, with additional quasi-newtonian stress 
al
ulated,dotted-line, top-jumping shear-banded solution. Figure from M. E. Catesand S. Fielding, Advan
es in Physi
s 55, 799-879 (2006) . . . . . . . 744.14 The metastable bran
h of the �ow 
urve of 1.35wt.% CTAT. mea-sured under 
onditions of 
ontroled stress. Figure from R. Bandy-opadhyay and A. K. Sood, Europhys Lett 56 447-453 (2001) . . . . 774.15 The time-dependent relaxation of stress in 1.35wt.% CTAT, on sub-je
ting the sample to a 
onstant step-strain rate of 100s−1 Figurefrom R. Bandyopadhyay and A. K. Sood, Europhys Lett 56 447-453(2001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785.1 The phase diagram of steady states in our model, illustrating regimesin whi
h the following steady states are obtained for a generi
 ini-tial 
ondition: an aligned state denoted as `A', a tumbling statelabelled as `T', a wagging state `W', a kayak-tumbling state `KT', akayak-wagging state denoted by `KW' and a 
omplex state denotedas `C'. This phase diagram 
losely resembles phase diagrams plottedin Refs. [113℄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 945.2 The sequen
e of three main panels shows the power spe
trum asso-
iated with states in the regimes labelled (a) T and (b) W in thephase diagram of Fig. 5.1. The topmost panel (
) shows a mixedstate (M) (not shown separately in Fig. 5.1), asso
iated with theboundary between W and T The inset labelled (i) in all these pan-els shows typi
al plots of the time-dependen
e of the z-
omponentof the dire
tor nz and the angle φ made by the proje
tion of thedire
tor on the x − y plane with the x− axis. The insets labelled(ii) in all these panels show the traje
tory in the s1 − s2 plane. . . 95
ix



List of Figures5.3 The sequen
e of three main panels shows the power spe
trum asso-
iated with states in the regimes labelled (a) KT (kayak-tumbling),(b) KW (kayak-wagging) and (
) C (
omplex or 
haoti
) in the phasediagram of Fig. 5.1. The inset labelled (i) in all these panels showstypi
al plots of the time-dependen
e of the z-
omponent of the di-re
tor nz and the angle φ made by the proje
tion of the dire
tor onthe x−y plane with the x− axis. The insets labelled (ii) in all thesepanels show the traje
tory in the s1 − s2 plane. . . . . . . . . . . . 965.4 Bifur
ation diagram obtained for a generi
 initial 
ondition by vary-ing λk at �xed γ̇ = 4.0, showing (a) nz and (b) a Poin
are se
tionof s1 (with s2 �xed at the midpoint of the s2 range) at ea
h pointin the bifur
ation diagram. . . . . . . . . . . . . . . . . . . . . . . 985.5 The two upper panels (a)(ii) and (b)(ii) show the power spe
trumof s1 against frequen
y f on a semi-log plot for states 
orrespondingto a representative point in the regimes labelled (a) T and (b) C(
omplex or 
haoti
) in the phase diagram of Fig. 5.1. We 
hoose
γ̇ to vary periodi
ally with frequen
y ωa, su
h that ωa = 2π∆ and
γ1 = 0.1. The lower panel, labelled (a)(i) and (b)(i) in both 
asesshow the unperturbed power spe
trum. The frequen
y peaks indi-
ated in (a)(i), the system without periodi
 for
ing, are indexed asfollows: 1 = 0.729 (the fundamental frequen
y), 2 = 1.456 (twi
ethe fundamental frequen
y) and 3 = 2.174 (three times the funda-mental frequen
y). The fundamental frequen
y of the applied signalis shown as 4 = 0.184. The primed peaks indi
ated in (a)(ii) are
ombinations of the intrinsi
 frequen
y and the frequen
y of the ap-plied signal and indexed as follows: 1′ = 1 - 4′, 2′ = 2 - 4′, 1′′ = 1+ 4′. Note that the broad-band stru
ture of the power spe
trum inb(i) remains inta
t when the for
ing is applied. . . . . . . . . . . . 100

x



List of Figures6.1 Phase diagram for dynami
al behaviour in the lo
al map de�nedthrough Eqns.6.6, with the parameter λk plotted on the x axis and
γ̇ on the y axis. Here T denotes the tumbling state, W the waggingstate, KT the kayak-tumbling, KW the kayak-wagging state, A thealigned state and C the state in whi
h 
omplex dynami
s is seen.These states are dis
ussed further in the text. . . . . . . . . . . . . 1106.2 Phase diagram summarizing the lo
al dynami
al behaviour of thespatially 
oupled one-dimensional system, with λk plotted on the xaxis and γ̇ on the y axis. As before, T denotes the tumbling state, Wthe wagging state, KT the kayak-tumbling, KW the kayak-waggingstate, A the aligned state and C the state of 
omplex dynami
s. Thespatial 
oupling 
onstant ǫ = 0.1 (a) and 0.5 (b), for a ring of 200latti
e points. The lo
ation of the states in the phase diagram islargely similar to that of Fig. 6.1 with the ex
eption that, at isolatedpoints, mainly within the KT phase, one sees 
omplex behaviour.The regime in the phase diagram o

upied by the C phase shrinksas the 
oupling 
onstant ǫ is in
reased. . . . . . . . . . . . . . . . . 1146.3 Lo
al dynami
s in a ring of 200 latti
e points, with 
oupling ǫ = 0.1,showing the temporal evolution of s1, s2 and nz. These are displayedfor (a) s1 ,s2 and nz with (a) λk = 0.9 and γ̇ = 5.0 (b) λk = 1.1 and
γ̇ = 5.0, and (
) λk = 0.9 and γ̇ = 4.0. These states are all drawnfrom the T and W parts of the lo
al phase diagram. Note that
nz = 0 in all these states whereas s1 and s2 are periodi
 fun
tionsof time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1166.4 Lo
al dynami
s in a ring of 200 latti
e points, with 
oupling ǫ = 0.1,showing the temporal evolution of s1, s2 and nz. These are displayedfor for (a) λk = 0.9 and γ̇ = 2.0 (b) λk = 1.1 and γ̇ = 2.0, and (
)
λk = 1.4 and γ̇ = 2.0. These points are drawn from the KT andKW part of the lo
al phase diagram and represent states in whi
hthe dire
tor exhibits out-of-plane �u
tuations i.e. nz 6= 0. However,
s1 and s2 
ontinue to exhibit regular, periodi
 os
illations. . . . . . 117

xi



List of Figures6.5 Lo
al dynami
s of a ring of 200 latti
e points, with λk = 1.2 and
γ̇ = 4.0, showing the time evolution of s1, s2 and nz. These areshown for (a) ǫ = 0.5 (b) ǫ = 0.15 and (
) ǫ = 0.1, illustratingbehaviour in the 
omplex or C regime. Note that regular time-periodi
 behaviour is favoured at large values of the spatial 
oupling
onstant ǫ, following an initial transient. . . . . . . . . . . . . . . . 1186.6 Log-Log plot of the Fourier transform vs. frequen
y, for (a) λk =

1.17, (b) λk = 1.20 and (
) λk = 1.24. Here ǫ = 0.1 and γ̇ = 4.0.The latti
e is a ring of 200 sites. Note that for λk = 1.17 (thewagging region), the regular os
illations show up as a delta fun
tionin the fourier transform. In the C or 
omplex region, a smoothdistribution of frequen
ies is seen, with a 1/f 2 fallo�. . . . . . . . . 1196.7 Average deviation from the mean value for ǫ = 0.1 (a) and ǫ = 0.5(b), with λk on the x-axis and γ̇ on the y axis. Note that large�u
tuations (roughness) are seen in the KW and C regions. Thesedata are for the 1-d system wiith the number of sites N = 200 andparameters as indi
ated on the �gure. . . . . . . . . . . . . . . . . . 1206.8 Density plot of order parameter part of shear stress. Here λk = 1.1,
γ̇ =4.0 and ǫ = 0.1 (a) and 0.5 (b). Time steps (running from topto bottom) are on the y-axis, and the latti
e site index (i = 1, 200)is on the x-axis. These �gures represent spa
e-uniform and time-periodi
 states, obtained using parameter values 
orresponding tothe T region of the phase diagram. . . . . . . . . . . . . . . . . . . 1216.9 Density plot of order parameter part of shear stress. Here λk = 1.17,
γ̇ =4.0 and ǫ = 0.1 (a) and 0.5 (b). Time steps (running from top tobottom) are on the y-axis, and the latti
e site index (i = 1, 200) ison the x-axis. These �gures represent spa
e non-uniform and time-periodi
 states, obtained using parameter values 
orresponding tothe KW region of the phase diagram . . . . . . . . . . . . . . . . . 122

xii



List of Figures6.10 Density plot of order parameter part of shear stress. Here λk = 1.20,
γ̇ =4.0 and ǫ = 0.1 (a) and 0.5 (b). Time steps (running from top tobottom) are on the y-axis, and the latti
e site index (i = 1, 200) ison the x-axis. These �gures illustrate how time-periodi
 regions areinterspersed with domains of �xed point behaviour, reminis
ent ofspatiotemporal intermitten
y. The parameter values 
orrespondingto the C region of the phase diagram, in a regime where the 
haosis weak. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1236.11 Density plot of order parameter part of shear stress. Here λk = 1.24,
γ̇ =4.0 and ǫ = 0.1 (a) and 0.5 (b). Time steps (running from topto bottom) are on the y-axis, and the latti
e site index (i = 1, 200)is on the x-axis. These �gures illustrate non-uniform, time-varyingstates 
hara
teristi
 of spatio-temporally 
haoti
 behaviour. Theparameter values 
orrespond to the C region of the phase diagram,in a regime where the 
haos is strong. Note that larger values of ǫlead to larger and more uniform spatial stru
tures. . . . . . . . . . . 1246.12 Density plot of order parameter part of shear stress. Here λk = 1.24,
γ̇ =3.0 and ǫ = 0.1 (a) and 0.5 (b). Time steps (running from topto bottom) are on the y-axis, and the latti
e site index (i = 1, 200)is on the x-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1256.13 Temporal evolution of s1, s2 and nz in a two dimensional latti
e ofsize 102 × 102, with ǫ = 0.1, for (a) λk = 1.17 and γ̇ = 4.0 (b)
λk = 1.20 and γ̇ = 4.0 (
) λk = 1.24 and γ̇ = 4.0. All these statepoints are drawn from the C region of the lo
al phase diagram. Notethe existen
e of temporally intermittent behavior, analysed in termsof its frequen
y spe
trum in Fig. 6.14. . . . . . . . . . . . . . . . . 1276.14 Log-Log plot of the absolute value of the Fourier transform of thestress vs. frequen
y ω, for (a) λk = 1.17, (b) λk = 1.20 and (
) λk =

1.24. Here ǫ = 0.1 and γ̇ = 4.0. The latti
e 
ontains 100×100 sites.Note the relatively smooth ba
kground, indi
ating the presen
e of a
ontinuous set of frequen
ies. The fall-o� is 
onsistent with a 1/ω2behaviour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
xiii



List of Figures6.15 Average deviation d (see text) from the mean value of a0 for ǫ =0.1(a) and ǫ = 0.5(b). The quantity λk is plotted on the x-axis and
γ̇on the y-axis. The latti
e is a 100 × 100-site latti
e. Note thatthis roughness is largest in the KT, KW and C regions, espe
iallyfor large values of γ̇. As ǫ is in
reased, the roughness de
reases, asin
reasing spatial homogeneity is promoted. . . . . . . . . . . . . . 1306.16 (a) A 
olor plot of order parameter part of shear stress. The quan-tities λk = 1.25, γ̇ =4.0 and ǫ = 0.1. The time t is plotted on they-axis, whi
h depi
ts the time evolution of the stress 
omputed onone row (x-axis) of the 100 × 100 latti
e. (b) shows a snap shot ofthe full latti
e at an intermediate time step. . . . . . . . . . . . . . 1316.17 Value of stress of one row of the latti
e at one instant of time on the
y axis as a fun
tion of the 
oupling strength ǫ on the x axis. Notethat the broad spe
trum of lo
al stress values seen at small valuesof the 
oupling 
ontra
t to an essentially unique value at large ǫ. . . 1326.18 Plots of the Lyapunov exponents obtained from our 
al
ulation (seetext) for di�erent system sizes as a fun
tion of the 
oupling 
onstant.The �gures represent (a) the �rst Lyapunov exponent λ1 (b) these
ond Lyapunov exponent λ2 
) the third Lyapunov exponent λ3d) the fourth Lyapunov exponent λ4. Note that all these exponentstend to zero from below in the limit of large system size. Hen
e,in
reasing the 
oupling between sites has the e�e
t of redu
ing themagnitude of the negative Lyapunov exponent. . . . . . . . . . . . 1336.19 Plot of the number of positive Lyapunov Exponents (left) and Kaplan-Yorke Lyapunov dimension (right) for di�erent system sizes, for 
ou-pling strengths : (a) ǫ = 0.1 and (b) ǫ = 0.05. . . . . . . . . . . . . 1356.20 Plot of the KS Entropy for di�erent system sizes, for 
oupling strength
ǫ = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xiv



List of Tables

xv



Part IBiaxiality at the Isotropi
-Nemati
Interfa
e

1



1Introdu
tion
1.1 Soft Matter SystemsSoft 
ondensed matter physi
s deals with systems in whi
h 
hara
teristi
 energys
ales for some 
lasses of stru
tural deformations are 
omparable to kBT . Su
hsystems in
lude 
olloids, polymer solutions, emulsions, foams, surfa
tant solutions,powders and a several other examples. The following materials familiar from dailylife qualify as soft 
ondensed matter: polymer gels (Jello), emulsions (mayonnaise),vis
oelasti
 detergent solutions (shampoo), fat 
rystal networks (margarine), 
on-
entrated 
olloids (paint), polymer solutions (multigrade engine oil) and lyotropi
liquid 
rystals (su
h as the slime 
reated when a bar of soap is left in a pool ofwater).Liquid 
rystals 
onstitute an extensively studied example of soft matter. Theliquid-
rystalline state of matter is a state intermediate between a 
rystalline solidand a liquid. This state of matter has been the subje
t of mu
h resear
h sin
e itsdis
overy by the Austrian botanist Reinitzer at the end of 19th 
entury. Apart fromits te
hnologi
al importan
e in devi
es and displays, the study of liquid 
rystalshas stimulated 
onsiderable progress in the understanding of subje
ts as diverseas the rheologi
al behaviour of 
omplex �uids, the existen
e of novel defe
t states,the presen
e of unusual orders and many others. Nemati
 liquid 
rystals, typi
allyformed in suspensions of rod-like mole
ules whose aspe
t ratio deviates su�
ientlyfrom unity, exhibit orientational order in the absen
e of translational order[39, 25,78℄. An example of a mole
ule whi
h exhibits a liquid 
rystalline phase is shownin Fig. 1.1, together with its phase diagram. Liquid 
rystals 
an be divided into2



Chapter 1. Introdu
tion
(a) (b) (
)Figure 1.1: (a) Mole
ular stru
ture of 5CB, (b) Benzene-hexa-n-alkanoate deriva-tives, (
) Banana-shaped mole
ules. Figure adapted fromhttp://dept.kent.edu/spie/liquid
rystals/maintypes.html

(a) (b)Figure 1.2: (a) Isotropi
 and (b) nemati
 phases of anisotropi
 mole
uleslyotropi
 and thermotropi
, depending on the parameter whose variation drives thephase transition. In lyotropi
 systems, su
h as a hard rod mixture, the variableis the 
on
entration, whereas in the thermotropi
 
ase, illustrated in Fig. 1.2, thetunable variable is the temperature.Liquid 
rystals are 
omposed of long, rod-like mole
ules. In the isotropi
 �uidphase, the orientation and positions of mole
ules are random. In the nemati
 phase,the positions of mole
ules are still random, but their long axes are oriented, onaverage, along a spe
i�
 dire
tion spe
i�ed by a unit ve
tor n 
alled the dire
tor.Nemati
s are often 
onveniently idealized as being 
omposed of mole
ules whi
h areup-down symmetri
. Thus, a ve
tor order parameter appropriate for des
ribing,say, a spin system, is inappropriate here, sin
e only an axis is pi
ked out in the3



Chapter 1. Introdu
tionnemati
ally ordered state and not a dire
tion i.e. the state has the symmetry
n ≡ −n. Sin
e the order parameter must be 
ovariant under 
hanges of 
oordinatesystem used to des
ribe it, it must transform as a s
alar, ve
tor or tensor quantity.In Fig. 1.4 the distribution of the long axis of the mole
ule ν is shown. Thelong axis is 
on�ned within the 
ones AOB and A′OB′. The average distributionof the long axis is along the z axis, de�ning the dire
tor n̂. Sin
e the mole
ulehas up-down symmetry −n̂ is an equivalent 
hoi
e. Thus the order parameterdes
ribing this phase should be invariant with respe
t to n̂ going to −n̂.The z 
omponent of the long axis of the mole
ules ν as shown in Fig. 1.4(a),is equal to cos ϑ, where ϑ is the angle between the Z axis and the ve
tor ν. If theproje
tion of the mole
ule on the XY plane makes an angle φ from the X axis, theother two 
omponents νx and νy are given by sinϑ cos φ and sinϑ sin φ respe
tively.The state of the alignment of the rods 
an be des
ribed by a distribution fun
tion
f(ϑ, φ) dΩ giving the probability of �nding an orientation of the rod within a smallsolid angle dΩ = sin ϑ dϑ dφ around the dire
tion (ϑ, φ)).The distribution of the proje
tion of the long axis of mole
ules on th XY planemay be asymmetri
 about the Z axis, as shown in Fig. 1.4(
). In this 
ase one
an asso
iate one more ve
tor m̂ along the maximum of the distribution of theproje
tions, shown by the line MM' in Fig. 1.4(
). This phase is 
alled a biaxialphase. For a rod-like mole
ule whi
h is symmetri
 about its long axis, this is notan allowable distribution in the absen
e of any symmetry breaking. However, su
ha distribution fun
tion obtains in the presen
e of suitable external �elds su
h asthe magneti
 �eld or a �ow �eld whi
h introdu
es an additional dire
tion into theproblem, breaking orientational symmetry about the dire
tor axis. In the 
ase ofmole
ules whi
h have an extra axis, su
h as the blo
k-shaped mole
ules shown atthe bottom of Fig. 1.4, a biaxial phase 
an be obtained in the absen
e of su
h�elds.If this distribution is symmetri
, then the distribution fun
tion f(ϑ, φ) ≡ f(ϑ)does not depend on φ. From the up-down symmetry of the mole
ule, f(ϑ) =

f(π − ϑ).While the most 
omplete 
hara
terization of the orientational order uses thefull fun
tion f(ϑ), it 
an also be spe
i�ed using one or a few of the moments of
4
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(a) (b)Figure 1.3: S
hemati
 of (a) Free energy as a fun
tion of the s
alar order parameterat di�erent temperatures above and below the isotropi
-nemati
 transition and (b)S
alar order parameter minimizing the free energy as a fun
tion of temperature.this distribution fun
tion. The �rst idea would be to use the average
〈cosϑ〉 = 〈ν.n̂〉 =

∫
f(ϑ) cosϑ dΩ, (1.1)However, sin
e f(ϑ) = f(π − ϑ) the integral vanishes identi
ally and there isno dipole moment. The �rst multipole whi
h gives a non-trivial answer is thequadrupole, i.e.

S =
1

2
〈(3 cos2 ϑ− 1)〉 =

∫
f(ϑ)

1

2
(3 cos2 ϑ− 1) dΩ (1.2)If f(ϑ) is strongly peaked around ϑ = 0 and ϑ = π (all the mole
ules are parallel),

cos ϑ = ±1 and S = 1. If f(ϑ) is strongly peaked around ϑ = π/2 (all the mole
ulesare perpendi
ular to Z axis), S = −1
2
. In the isotropi
 
ase the orientation israndom. Hen
e, f(ϑ) is independent of ϑ and the average value of cos2 ϑ = 1

3
⇒

S = 0. Thus S is a parameter whi
h 
an 
hara
terize the nemati
 and isotropi
phases separately.
5
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Figure 1.4: (a) Distribution of mole
ular orientation on the unit sphere, (b) Dis-tribution fun
tion for a uniaxial nemati
 (
) Distribution fun
tion for a biaxialnemati
. Bottom �gure shows examples of mole
ules showing uniaxial and biaxialphases. (Bottom �gure taken from M. Lehmann and J. Seltmann, Beilstein J. Org.Chem. 2009, 5, No. 73. doi:10.3762/bjo
.5.73) 6



Chapter 1. Introdu
tion1.2 Order Parameter Des
ription of Nemati
sIn its most general form, the order parameter of a liquid 
rystal is given by
Qij =

V

N

N∑

α=1

(ναi ν
α
j − 1

3
δij)δ(x − xα), (1.3)where να is an unit ve
tor pointing along the long axis of the mole
ule α, lo
atedat the lo
ation xα, V is the total volume and N is the total number of mole
ules.By de�nition the order parameter is symmetri
 and tra
e less. In a 
o-ordinatesystem with one axis along the dire
tor the matrix is diagonal

〈Q〉 =




2
3
s 0 0

0 −1
3
s+ η 0

0 0 −1
3
s− η


 (1.4)If η is nonzero, 〈Q〉 is biaxial and there are two preferred dire
tions.We 
an reparameterise the Q in the following way

〈Q〉 =




S 0 0

0 −1
2
(S − T ) 0

0 0 −1
2
(S + T )


 ≡ 3

2
S(nn− 1

3
I) +

1

2
T (mm− ll) (1.5)If T = 0 the system is uniaxial, with a prin
ipal axis of alignment n, and S =

2
3
〈P2(cos θ)〉. For T 6= 0 the system is biaxial, with m and l the major and minoraxes of alignment in the plane normal to n.1.3 Ginzburg-Landau Des
ription of the Isotropi
-Nemati
 TransitionsThe des
ription of the early stages of phase-ordering upon quen
hes from theisotropi
 phase, the properties of nemati
 droplets within the isotropi
 phase andthe stru
ture of the isotropi
-nemati
 interfa
e are all problems whi
h require thatnemati
 and isotropi
 phases be treated within the same framework. The inho-mogeneous order parameter 
on�gurations obtained in these 
ases are weighted by7
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tionthe Ginzburg-Landau-de Gennes (GLdG) free energy, obtained via a gradient ex-pansion in Q in whi
h only low-order symmetry allowed terms are retained[39, 38℄.To 
onstru
t the GLdG free energy, we enumerate the symmetries of the prob-lem.1.3.1 SymmetriesTwo relevent symmetries of the problem are1. (La
k of) Inversion symmetry. Consider a uniaxial state:
Q =




S 0 0

0 −1
2
S 0

0 0 −1
2
S


 (Prolate uniaxial) (1.6)Under 
hange of sign

−Q =




−S 0 0

0 1
2
S 0

0 0 1
2
S


 (oblate uniaxial) (1.7)Hen
e the degree of order is qualitatively di�erent under the transformation

Q → −Q, thus permitting odd invariants in the free energy.2. In a homogeneous and isolated system the dire
tion of nemati
 dire
tor isarbitrary. This implies that the free energy is rotationally invariant. Be
ause
Q is a dyad of unit ve
tors whi
h rotate as usual, it behaves like a tensorunder rotation.

Qαβ → RαλRβρQλρ (1.8)For this transformation the free energy should remain invariant. For a 3Dtensor Q, there are two non-trivial invariants, TrQ2 and TrQ3.1.3.2 Free EnergyWith the above symmetries and invariants, the free energy is
fL =

1

2
A(t− T ∗) TrQ2 +

1

3
B TrQ3 +

1

4
C (TrQ2)2 (1.9)8
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tionInserting the general form of Q, Eq. (1.22).
fL = F1 + F2 (1.10)with

F1 =
3

4
A(t− T ∗) S2 +

1

4
B S3 +

9

16
C S4 (1.11)

F2 =
1

4
T 2[A(t− T ∗) − 2B S +

1

6
C T 2] +

1

16
C T 4 (1.12)

fL =
3

4
A(t−T ∗) S2 +

1

4
B S3 +

9

16
C S4 +

1

4
T 2[A(t−T ∗)−2B S+

1

6
C T 2]+

1

16
C T 4(1.13)For equilibrium one has to �nd the minima of fL as a fun
tion of S and T . F1gives minima at t > T ∗, for B S negative and T = 0, due to the 
ubi
 term. Withthese 
onditions F2 is positive, so the system is stable for T 6= 0. It is, in fa
t, auniaxial state. Considering T = 0 and minimising with respe
t to S, we obtain

(
∂F1

∂S

)

T=0

= 0 → Sc =

{
0
1

3C
(−B +

√
B2 − 24A C)

(1.14)On lowering the temperature, the free energies of the isotropi
 and uniaxial statebe
ome equal at Sc. At this point the system makes a �rst order phase transitionto the nemati
 state. The values are
Sc = −2B

9C
, ∆t = TIN − T ∗ =

B2

27AC
(1.15)1.4 The Ginzburg-Landau-de Gennes Approa
h tothe Isotropi
-Nemati
 TransitionTo re
apitulate, nemati
 order is quanti�ed through a tra
eless, symmetri
 tensor

Qαβ de�ned at every point in spa
e[39, 53℄. In the (biaxial) nemati
 phase, theorder parameter is
Qαβ =

3S

2

(
nαnβ −

1

3
δαβ

)
+
T

2
(lαlβ −mαmβ) (1.16)

9



Chapter 1. Introdu
tionwhere the dire
tor n is de�ned as the normalized eigenve
tor 
orresponding tothe largest eigenvalue of Q, the subdire
tor l is asso
iated with the sub-leadingeigenvalue, and their mutual normal m is obtained from n × l. The quantities Sand T represent the strength of uniaxial and biaxial ordering: |S| 6= 0, T = 0 isthe uniaxial nemati
 whereas S, T 6= 0 with T < 3S de�nes the biaxial 
ase[39℄.The biaxial nemati
 arises when the mole
ule has two distin
t axes of symmetry.Alternatively, it 
an also arise when an additional dire
tion, su
h as that imposedby a shear �ow, is imposed on the system, even for mole
ules whi
h are uniaxiallysymmetri
.The Ginzburg-Landau-de Gennes free energy fun
tional F = Fh + Fel [38℄ isobtained from a lo
al expansion in powers of rotationally invariant 
ombinationsof the order parameter Q(x, t),
Fh[Q] =

1

2
A TrQ2 +

1

3
B TrQ3 +

1

4
C (TrQ2)2 + E ′ (TrQ3)2 . . . , (1.17)The restri
tion to the terms shown above are su�
ient to yield a �rst-order tran-sition between isotropi
 and nemati
 phases as well as a stable biaxial phase,obtained when E ′ 6= 0[53℄.To this lo
al free energy, non-lo
al terms arising from rotationally invariant
ombinations of gradients of the order parameter must be added. The 
hoi
e ofthe following two lowest-order gradient terms is 
ommon[38, 104, 105℄:

Fel[∂Q] =
1

2
L1(∂αQβγ)(∂αQβγ) +

1

2
L2(∂αQαβ)(∂γQβγ), (1.18)where α, β, γ denote the Cartesian dire
tions in the lo
al frame, and L1 and L2represent the elasti
 
ost for distortions in Q[53℄. The fa
t that there are onlytwo terms whi
h appear to this order implies that only two of the three Frank
onstants are independent. The limit in whi
h L2 = 0, or of zero elasti
 anisotropy
orresponds to the 
ase in whi
h all Frank 
onstants are equal. The relationshipbetween L1 and L2 and the Frank 
onstants K1, K2 and K3 are the following:

K1 = K3 = 9/4(2L1 + L2)S
2 and K2 = 9/2L1S

2[39, 53℄. Note that κ = L2/L1negative is allowed, although κ < 1.5 must be satis�ed to ensure positivity of theelasti
 
onstants. be satis�ed to ensure positivity of the elasti
 
onstants. TheFrank 
onstants are the elasti
 
onstants for a liquid 
rystal whi
h a

ount for the10



Chapter 1. Introdu
tionfree energy penalty for 
reating an inhomogeneous dire
tor 
on�guration. K1 isrelated to the twist of the nemati
 dire
tor, i.e. 
on�gurations in whi
h neighboringmole
ules are for
ed to be angled with respe
t to one another, rather than aligned.
K2 is related to splay, where bending o

urs perpendi
ular to the dire
tor and
K3 is related to bend of the material. These 
onstants are named after Frederi
kCharles Frank , who pioneered the elasti
 
ontinuum theory of liquid 
rystals.In the free energy density of Eq. 1.17, A = A0(1 − T/T ∗), where T ∗ denotesthe temperature that represents the limit of super
ooling in mean �eld theory.From the inequality 1

6
(TrQ2)3 ≥ (TrQ3)2, higher powers of TrQ3 
an be ex
ludedfor the des
ription of the uniaxial phase. Thus the uniaxial 
ase is des
ribed by

E ′ = 0 whereas E ′ 6= 0 for the biaxial phase. We will assume that E ′ = 0, thusensuring that the stable ordered phase is the uniaxial nemati
. For nemati
 rod-like mole
ules B < 0 whereas for dis
-like mole
ules, B > 0; for 
on
reteness, wewill assume B < 0 here. The quantity C must be positive to ensure stability andboundedness of the free energy in both the isotropi
 and nemati
 phases.1.5 Properties of the Isotropi
-Nemati
 TransitionThe �rst order isotropi
 to uniaxial nemati
 transition at the 
riti
al value S = Scis thus obtained from,
A =

3

4
CS2

c (1.19)
B = −9

2
CSc. (1.20)We have 
hosen the values B = −0.5, C = 2.67 and A = B2/27C, thus enfor
ingphase 
oexisten
e between an isotropi
 and uniaxial nemati
 phase [53℄, in ourdis
ussion for the isotropi
-nemati
 interfa
e.1.6 An
horing at Surfa
es and Interfa
esNemati
 ordering is strongly in�uen
ed by 
on�ning walls and surfa
es, whi
himpose a preferred orientation or �an
horing 
ondition� on the nemati
 state. Su
ha preferred orientation yields an an
horing angle, de�ned as the angle made by the11



Chapter 1. Introdu
tiondire
tor in the immediate neighbourhood of the surfa
e with the surfa
e normal.An
horing normal to the surfa
e is termed as homoeotropi
, whereas an
horing inthe plane of the surfa
e is termed as planar. The general 
ase is that of obliquean
horing.As is the 
ase with surfa
es, the interfa
e between a nemati
 and its isotropi
phase 
an also favour a parti
ular an
horing. The problem of interfa
e stru
turefor the nemati
 is parti
ularly interesting sin
e it illustrates how the stru
turein the interfa
ial region 
an di�er substantially from stru
ture in the bulk. It isknown, for example, that a region proximate to the interfa
e 
an exhibit biaxialitywithin the LGdG theory, even if the stable nemati
 phase is pure uniaxial[105℄,provided planar an
horing is enfor
ed. Su
h biaxiality is absent if the an
horing ishomoeotropi
[38℄. These two limits, of homoeotropi
 and planar an
horing, leadto interfa
e pro�les of S and T whi
h vary only in the vi
inity of the interfa
e, aswell as orientations whi
h are uniform a
ross the interfa
e[38℄.Can oblique an
horing be stabilized, within GLdG theory, at the interfa
e be-tween a bulk uniaxial nemati
 and its isotropi
 phase? Suppose we introdu
eboundary 
onditions that impose a spe
i�ed oblique orientation deep into the ne-mati
 phase, where the magnitude of the order parameter is saturated. The ques-tion, then, is whether su
h an imposed orientation is relaxed to a preferred valuein the vi
inity of the interfa
e. The di�
ulties with this problem stem from thefa
t that 
hanges in the lo
al frame orientation on the nemati
 side of the interfa
e
ome with an elasti
 
ost arising out of nemati
 elasti
ity. This is an e�e
t sensi-tive, in prin
iple, to system dimensions, sin
e gradients 
an be smoothed out byallowing the 
hanges to o

ur over the system size. While this 
ost 
an be redu
edby suppressing the order parameter amplitudes in regions where order parameterphases vary strongly, the pre
ise way in whi
h this might happen, if at all, is anopen question.1.7 The Isotropi
-Nemati
 Interfa
e1.7.1 Previous WorkThe isotropi
-nemati
 transition is weakly �rst order. Hen
e, it is reasonablethat its 
entral features 
an be adequately explained by Landau-de Gennes theory12
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tion[24℄. The study of the isotropi
-nemati
 interfa
e was initiated in an insightfulpaper by de Gennes, who introdu
ed a simple uniaxial ansatz for the tensor orderparameter Qαβ whi
h des
ribes nemati
 order [38℄. The de Gennes ansatz is exa
tin the absen
e of elasti
 anisotropy. However, the des
ription of the interfa
e in thepresen
e of su
h anisotropy poses a formidable analyti
 and numeri
al problem,sin
e the partial di�erential equations for the �ve independent 
omponents of Qαβ
ontain non-linear 
ouplings, while Qαβ is itself 
onstrained by symmetry and therequirement that its tra
e vanish.Popa-Nita, Slu
kin and Wheeler (PSW) [105℄ studied the I-N interfa
e in
orpo-rating elasti
 anisotropy in the limit of planar an
horing, adapting a parametriza-tion introdu
ed by Sen and Sullivan[119℄. In this parametrization, the prin
ipalaxes of Qαβ remain �xed in spa
e, and the problem redu
es to the solution of two
oupled non-linear partial di�erential equations in the dimension perpendi
ular tothe interfa
e. These equations represent the variation of the amplitude of uniaxialand biaxial ordering a
ross the interfa
e. PSW showed that the solutions of theseequations exhibited biaxiality in a region about the interfa
e [105℄. The uniaxialorder parameter (S) was adequately represented by a tanh pro�le, as in the origi-nal 
al
ulation of de Gennes, while the biaxial order parameter (T) exhibited more
omplex behaviour, peaking towards the isotropi
 side and with a trough on thenemati
 side. The biaxial pro�le was also shown to have a long tail towards theisotropi
 side, a feature hard to anti
ipate on physi
al grounds.Popa-Nita, Slu
kin and Wheeler (PSW)[105℄ also 
ommented on the 
ase ofoblique an
horing, studying this problem numeri
ally within a GLdG approa
h.They used a set of variables ηs and µs introdu
ed in Ref. [119℄. Although thefo
us of their study was the emergen
e of biaxiality at the interfa
e with a planaran
horing 
ondition, PSW remarked, based on their numeri
al studies, that if theasymptoti
 orientation of the dire
tor in the nemati
 phase was set to any valueother than 90◦ (planar an
horing) or 0 (homoeotropi
 an
horing) for large z, then
ηs and µs approa
hed this value with non-zero slope. PSW thus 
on
luded thatthere 
ould be no stable an
horing if the orientation of the dire
tor in the nemati
phase was neither planar nor homoeotropi
, but oblique. The pre
ise nature ofthe resulting state obtained upon applying an oblique an
horing 
ondition was notaddressed by PSW[104, 105℄.Density fun
tional 
al
ulations on hard-rod systems using Onsager's theory ap-13
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tionplied to the free isotropi
-nemati
 interfa
e indi
ate that the minimum surfa
e freeenergy is obtained when the rods lie parallel to the isotropi
-nemati
 interfa
e, the
ase of planar an
horing[91, 5℄. Mole
ular simulations of a system of hard ellip-soids, in whi
h an an
horing energy �xes the dire
tor orientation in the nemati
phase at a variety of angles, indi
ate that the isotropi
-nemati
 interfa
e favoursplanar an
horing. These simulations, and a mean-�eld 
al
ulation based on theOnsager fun
tional, �nd that the angle pro�le is approximately linear as one movesaway from the boundary 
ondition imposed by the wall at one end of the simula-tion box[134, 129℄. These results, in parti
ular 
on
erning the stability of planaran
horing, are 
onsistent with those from other treatments[12, 32, 31, 4, 130℄.However, several other papers indi
ate spe
i�
 regimes in whi
h homoeotropi
 oroblique an
horing may be stable. Moore and M
Mullen[94℄ numeri
ally evaluatethe inhomogeneous grand potential within a spe
i�
 approximation s
heme �nd-ing that planar an
horing is preferred at the interfa
e for long sphero
ylinders, butoblique or homoeotropi
 an
horing may be an energeti
ally favourable alternativefor smaller aspe
t ratios. Holyst and Poniewierski study su
h hard sphero
ylindersin the Onsager limit, noting that oblique an
horing is favoured over a 
onsider-able range of aspe
t ratios[63℄. Finally, experiments provide eviden
e for bothoblique[46℄ and planar an
horing[86℄, with ele
trostati
 e�e
ts possibly favouringoblique an
horing.1.7.2 Results of this thesis: Stati
 BehaviourIn Chapter 2 we extend the 
al
ulation of biaxiality in the 
ase of planar an
hor-ing in several new ways. First, we show that terms dropped by PSW in theirsimpli�
ation of the Ginzburg-Landau-de Gennes (GLdG) equations are, in fa
t,
omparable in magnitude to the terms they retain, espe
ially for small values of
κ = L2/L1, the ratio of the 
oe�
ients of the two lowest-order gradient terms inthe GLdG expansion. Thus, a more a

urate treatment of the interfa
e requiresthat these terms be retained. The resulting equations have 
losed form solutionsin terms of hypergeometri
 fun
tions. We show that su
h solutions provide a bet-ter des
ription of the numeri
al data than the original 
al
ulation of PSW. Weben
hmark our analyti
 results through an a

urate numeri
al pro
edure, basedon a Chebyshev polynomial expansion, for the study of these equations. 14



Chapter 1. Introdu
tionIn the third 
hapter we present numeri
al and analyti
 results for uniaxialand biaxial orders at the isotropi
-nemati
 interfa
e within Ginzburg-Landau-deGennes theory, in the situation where an oblique an
horing 
ondition is imposedasymptoti
ally on the nemati
 side of the interfa
e, reprodu
ing results of previ-ous work when this 
ondition redu
es to planar or homeotropi
 an
horing. We
onstru
t physi
ally motivated and 
omputationally �exible variational pro�lesfor uniaxial and biaxial orders, 
omparing our variational results to numeri
alresults obtained from a minimization of the Ginzburg-Landau-de Gennes free en-ergy. While spatial variations of the s
alar uniaxial and biaxial order parametersare 
on�ned to the neighborhood of the interfa
e, nemati
 elasti
ity requires thatthe dire
tor orientation interpolate linearly between either planar or homeotropi
an
horing at the lo
ation of the interfa
e and the imposed boundary 
ondition atin�nity. The sele
tion of planar or homeotropi
 an
horing at the interfa
e is gov-erned by the sign of the Ginzburg-Landau-de Gennes elasti
 
oe�
ient L2. Ourvariational 
al
ulations are in 
lose agreement with our numeri
s and agree quali-tatively with results from density fun
tional theory and mole
ular simulation.1.7.3 A Note Con
erning ConventionsAs mentioned earlier, we parameterise the Q order parameter in the following way
〈Q〉 =




S 0 0

0 −1
2
(S − T ) 0

0 0 −1
2
(S + T )


 ≡ 3

2
S(nn − 1

3
I) +

1

2
T (mm− ll) (1.21)The quantities S and T are related to the amounts of uniaxial and biaxial orderrespe
tively. We will follow this labeling 
onvention in Chapters 2 and 3 whi
hfollow.However, an alternative labeling 
onvention is often used, in terms of whi
h

〈Q〉 =




s1 0 0

0 −1
2
(s1 − s2) 0

0 0 −1
2
(s1 + s2)


 ≡ 3

2
s1(nn−1

3
I)+

1

2
s2(mm−ll) (1.22)Here s1 and s2 repla
e S and T notationally, while retaining the same physi
al15
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tionmeaning. This 
onvention is used in Chapters 5 and 6, in 
onformity with the vastliterature on the dynami
s of nemati
 liquid 
rystals. The use of ea
h 
onventionshould be 
lear from the 
ontext.

16



2Biaxiality at the Isotropi
-Nemati
Interfa
e with Planar An
horing
2.1 The de Gennes result for the Nemati
-Isotropi
interfa
eAssuming that biaxiality was absent and that the orientation of the dire
tor re-mained �xed a
ross the interfa
e, de Gennes provided a 
omparison of the freeenergy for the 
ases of planar and homeotropi
 an
horing. In both the 
ases one
an write the free energy as follows.

FP,H =

∫ ∞

−∞
dz

[
Fb + ξ2

P,H

(
dS

dz

)2
]
, (2.1)where the subs
ripts P and H denote planar and homeotropi
 an
horing respe
-tively, and Fb is the bulk free energy in both 
ases. We have ξ2

P = 3
4
(3L1 + 1

2
L2)and ξ2

H = 3
4
(3L1 + 2L2) For L2 > 0, ξP < ξH. Minimizing the above equation

2ξ2
P,H

d2S

dz2
=
∂Fb
∂S

. (2.2)This equation has a �rst integral given by
ξ2
P,H

(
dS

dz

)2

= Fb(S) (2.3)
17



Chapter 2. Biaxiality at the Isotropi
-Nemati
 Interfa
e with Planar An
horingThe integration 
onstant must vanish, sin
e both dS/dz and Fb are zero far fromthe transition layer. Inserting this result into Eq. 2.1, we get
FP,H = 2

∫ ∞

−∞
ξ2
P,H

dS

dz
dS = 2ξP,H

∫ Sc

0

[Fb(S)]1/2 dS (2.4)Thus, ξP < ξH ⇒ FP < FH . de Gennes was able thus to 
al
ulate whi
h an
horingwould prevail under the appropriate 
onditions.2.2 Equation for Isotropi
-Nemati
 Interfa
e withPlanar an
horingWe begin with the GLdG expansion of the free energy for a general Qαβ

F =

∫
dzdx⊥[

1

2
ATrQ2 +

1

3
BTrQ3 +

1

4
C(TrQ2)2

+
1

2
L1(∂αQβγ)(∂αQβγ) +

1

2
L2(∂αQαγ)(∂βQβγ)]. (2.5)Here A,B and C are expansion parameters, while L1, L2 are elasti
 
onstants.We 
hoose B = −0.5, C = 2.67 and A = B2/27C, thus enfor
ing phase 
oex-isten
e between an isotropi
 and uniaxial nemati
 phase [53℄. The interfa
e istaken to be �at and in�nitely extended in the x − y plane. The spatial vari-ation of the order parameter only o

urs along the z dire
tion[119℄. We s
ale

Qαβ → Qαβ/Sc where Sc = −2B
9C
, F → 16

9CS4
c
F , and measure lengths in units of

lc =
√

54C(L1 + 2L2/3)/B2; we 
hoose L1 = 10−6 in our numeri
s and obtain L2from our 
hoi
e of κ. In the 
ase of planar an
horing, the ordering at in�nity ispurely uniaxial and taken to be along the x axis. In this 
ase, as shown by Senand Sullivan, uniaxial and biaxial order vary only with z and the prin
ipal axes ofthe Q tensor remain �xed in spa
e. The form of Q is then
Q =



S 0 0

0 1
2
(−S + T ) 0

0 0 −1
2
(S + T )


 . (2.6)Inserting this form of Q into the free energy and performing the minimization18
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Figure 2.1: A 
omparison of the terms (2+κ)
(3+2κ)

∂2
zT (dark line) and κ

(3+2κ)
∂2
zS (lightline) obtained within the PSW solution to the GLdG equations, for a κ value of18.0. The PSW approximation 
onsists of ignoring the (2+κ)

(3+2κ)
∂2
zT term in 
ompar-ison to the κ

(3+2κ)
∂2
zS term. Both terms, however, are of 
omparable magnitude.
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horingyields [105℄
(6 + κ)

(3 + 2κ)
∂2
zS +

κ

(3 + 2κ)
∂2
zT = 4S − 12S2 + 8S3 + 4T 2 +

8ST 2

3
, (2.7)

κ

(3 + 2κ)
∂2
zS +

(2 + κ)

(3 + 2κ)
∂2
zT =

4

3
T + 8ST +

8T 3

9
+

8S2T

3
. (2.8)Popa-Nita, Slu
kin and Wheeler now make several approximations to Eqs. 2.7and 2.8 to solve them. First, in Eq. 2.7, all terms in T are dropped, sin
e S istypi
ally mu
h larger than T . The resulting equation for S is solved by the tanhfun
tion. In Eq. 2.8, PSW drop the (2+κ)

(3+2κ)
∂2
zT term while retaining κ

(3+2κ)
∂2
zS. Atest of self-
onsisten
y of this approximation is the 
omparison of the magnitude ofthese terms within the theory. Fig. 2.1 shows the terms (2+κ)

(3+2κ)
∂2
zT (dark line) and

κ
(3+2κ)

∂2
zS (light line) 
omputed through the PSW solution. As 
an be seen fromthe �gure these terms only di�er by a fa
tor of order unity. Deep into the isotropi
side, the term ignored by PSW ex
eeds the value of the term retained. Thus, whilethe PSW approa
h leads to a straightforward algebrai
 relation between T and S,a more a

urate method would be to retain the partial derivative term as well,requiring that we solve a partial di�erential equation as opposed to an algebrai
one.Our approa
h to this problem uses the same approximations as PSW for Eq. 2.7.We thus take

S =
Sc
2

[
1 + tanh(

z√
2ξ

)

]
, (2.9)where ξ =

√
1+κ/6
1+2κ/3

. Inserting this in equation (2.8), s
aling z by √
2ξ, rede�ningthe resulting quantity as z again, and dropping the nonlinear term, we obtain,

∂2
zT = 2β[tanh2(z) + 8 tanh(z) + 9]T +

κ

2 + κ
tanh(z)[1 + tanh(z)][1 − tanh(z)].(2.10)with β = 6+κ

3(2+κ)
.The solution of the equation 
onsists of a homogeneous part Th and a parti
ular

20
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Figure 2.2: Biaxial and uniaxial pro�les for κ = 0(a), 0.4(b), 4(c) and 18.0(d),
omparing results from our numeri
al 
omputations (×), with our analyti
 formula(dashed line) and the formula of PSW (solid line). The main �gure shows thebiaxial pro�le whereas the inset shows the uniaxial pro�le. In (a), for κ = 0, thesolution has T = 0, with the S pro�le exa
tly given by the tanh form. In (b),for κ = 0.4, the 
omputed biaxial pro�le (T) (main panel) is �t remarkably wellby our analyti
 form, whereas the PSW approximation tends to overestimate thepeak value. The uniaxial (S) pro�le is shown in the inset of (a); here the resultsobtained by us and by PSW are identi
al and the �t to a tanh pro�le is a

urateover the entire region. In (
) (main panel), for κ = 4.0, the numeri
al data are�t well by the analyti
 forms, parti
ularly away from the main peak, yieldingessentially exa
t agreement deep into the isotropi
 and nemati
 sides. The PSWapproximation is still an overestimate to the peak value, and also di�ers sharplyin relation to the numeri
al data deep into the isotropi
 side. The inset shows theuniaxial (S) pro�le for this 
ase. In (d) (main panel), for κ = 18.0, the PSW formappears to �t the peak better for larger κ, but again fails to 
apture the de
aytowards the isotropi
 side. 21
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Figure 2.3: A 
omparison of the results of our analyti
 
al
ulation to pro�les of Tobtained from a density fun
tional 
al
ulation for the isotropi
-nemati
 interfa
e.Pro�les obtained for two values of κ, κ = 5.8 (for z < 0) and κ = 0.69 (for z > 0)are shown. The larger κ value essentially �ts the T pro�le exa
tly on the isotropi
side, whereas the smaller κ value provides an a

urate �t on the nemati
 side. Theinset shows the S pro�le obtained from the density fun
tional 
al
ulation, togetherwith an optimum �t varying the value of lcpart Tp where Th = C1y1(z) + C2y2(z) and
y1(z) =

(1 − tanh(z)

2

)3
√
β(1 + tanh(z)

2

)−√
β

2F1[a1, b1, c1,
1 − tanh(z)

2
]

y2(z) =
(1 − tanh(z)

2

)−3
√
β(1 + tanh(z)

2

)√β
2F1[a2, b2, c2,

1 + tanh(z)

2
].(2.11)Here a1 = 1

2
+ 2

√
β +

√
1+8β
2

; b1 = 1
2

+ 2
√
β −

√
1+8β
2

; c1 = 1 + 6
√
β; a2 =

1
2
− 2

√
β −

√
1+8β
2

; b2 = 1
2
− 2

√
β +

√
1+8β
2

and c2 = 1 + 2
√
β. The fun
tion 2F1 isa hypergeometri
 fun
tion and C1 and C2 are �xed by boundary 
onditions.The parti
ular solution takes the form

Tp(z) = [−y1(z)I2(z) + y2(z)I1(z)] /W (z), (2.12)22
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horingwhere the Wronskian W (z) = W = y1(dy2/dz) − y2(dy1/dz), where
I1(z) =

2κ

2 + κ

∞∑

m=0

(a1)m(b1)m
(c1)mm!

t1+m+3
√
β(1 − t)1−

√
β
(
− 2

2 +m+ 2
√
β

+
m+ 4

√
β

(2 +m+ 2
√
β)(1 +m+ 3

√
β)

2F1[1, 2 +m+ 2
√
β, 2 +m+ 3

√
β, t]

)(2.13)
I2(z) =

2κ

2 + κ

∞∑

n=0

(a2)n(b2)n
(c2)nn!

t1+n+
√
β

1 (1 − t1)
1−3

√
β
(
− 2

2 + n− 2
√
β

+
n+ 4

√
β

(2 + n− 2
√
β)(1 + n+

√
β)

2F1[1, 2 + n− 2
√
β, 2 + n+

√
β, t1]

)
.(2.14)The Po
hhammer symbol (a)n whi
h enters above is de�ned via (a)n = a(a +

1)(a+ 2) . . . (a+n− 1). Here t = [1− tanh(z)]/2 and t1 = [1 + tanh(z)]/2 and theresult for I1(z) and I2(z) is obtained by expanding the hypergeometri
 fun
tionsin Eqns. 2.11 in a power series and integrating term-by-term[3℄. Note that thesolutions of the homogeneous part diverge asymptoti
ally. Thus, for the boundary
ondition T = 0 at z = ±∞ the only physi
al solution is the parti
ular one.Eq. 2.12 is thus the key analyti
al result of this 
hapter, des
ribing the variationof biaxiality a
ross the interfa
e. In our numeri
al evaluations, we sum the seriesfor I1(z) and I2(z), retaining as many terms as are required to ensure 
onvergen
e.The series in I2 
onverges very fast (only 3 terms need be retained for good results)whereas the series in I1 
onverges more slowly and around 9 terms must be retainedfor 
onvergen
e. To 
onvert these into physi
al units, we must undo the sequen
eof length transformations, repla
ing z → z/(
√

2ξlc).An asymptoti
 analysis of these equations is possible: for z → −∞, S and Tare small. The tanh pro�le for S 
an be approximated as 1
2
(1+ tanh( z√

2ξ
)) → e

2z√
2ξwhile Eq. (2.8) takes the form 2ξ2∂2

zT = 4βT − ( 2κ
2+κ

)e
2 z√

2ξ with β = 6+κ
3(2+κ)

. Thus
∂2
zT = 4

3
(3+2κ)
(2+κ)

T − 2κ(3+2κ)
(2+κ)(6+κ)

e
2 z√

2ξ with asymptoti
 solution
T ∼ e

q

4(3+2κ)
3(2+κ)

z
, z → −∞, (2.15)23
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e with Planar An
horinga result in perfe
t a

ord with the 
omputed forms of T deep into the isotropi
phase. Note that T > S and (S+T )/2 > S as one moves deeper into the isotropi
side. This implies that the prin
ipal order parameter is negative as pointed out inRef. [105℄, where this result was obtained numeri
ally.As z → ∞, an alternative asymptoti
 expansion 
an be derived by taking
S = 1 − 1

2
e−bz with b = 2

√
3+2κ
6+κ

. We then obtain
T ∼ e

−2
q

3+2κ
6+κ

z
, z → ∞, (2.16)in agreement with our numeri
al results. Popa-Nita, Slu
kin and Wheeler providean analysis of the asymptoti
s in the spe
i�
 limit that κ → ∞. However, ourresults 
annot be dire
tly translated to this limit, sin
e we assume a tanh pro�leof S; this approximation be
omes in
reasingly ina

urate for larger κ (see below).Our numeri
al results are obtained using a spe
tral 
ollo
ation method [128℄,applied to our knowledge for the �rst time to the GLdG equations. In the spe
tral
ollo
ation, the solution is expanded in an orthogonal basis of Chebyshev poly-nomials in a bounded interval. Di�erentiation operators 
onstru
ted from thisChebyshev interpolant are spe
trally a

urate, in the sense that the error van-ishes exponentially in the number of retained polynomials. The interpolant is
onstru
ted so as to satisfy Diri
hlet boundary 
onditions. Though the physi
alproblem is for an unbounded interval, our numeri
al approximation of a boundedinterval gives ex
ellent results sin
e all variation in the order parameters is re-stri
ted to the region proximate to the interfa
e.Spe
i�
ally, we solve the equations of equilibrium

(A+ CTrQ2)Qαβ(x, t) +B Q2
αβ(x, t) = L1∇2Qαβ(x, t) + L2 ∇α(∇γQβγ(x, t))(2.17)by transforming to a basis {ai} whi
h enfor
es symmetry and tra
elessness, as

Qαβ =
∑5

i=1 aiT
i
αβ, where, T1 =

√
3
2
ẑẑ ,T2 =

√
1
2
(x̂ x̂− ŷ ŷ),T3 =

√
2 x̂ ŷ ,T4 =

√
2 x̂ ẑ , T5 =

√
2 ŷ ẑ . Overbars indi
ate tra
eless symmetri
 parts. We thusobtain �ve simultaneous partial di�erential equations for the ai, whi
h are steady-states of the time-dependent equations we have obtained earlier [17℄. Note spe
if-i
ally that we make no symmetry-based ansatz for the 
omponents of Qαβ . The24
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-Nemati
 Interfa
e with Planar An
horingambiguity of the sign of T in the uniaxial phase, or whenever the ordering of thesub-leading eigenvalues 
hanges, is resolved by requiring solutions to be smoothover the 
omputational domain.The spe
tral 
ollo
ation redu
es these di�erential equations to non-linear al-gebrai
 equations. We solve them using a relaxation method from a well-
hoseninitial 
ondition, relaxing till the di�erential 
hange in su

essive iterations is lessthan 10−5. Spe
tral 
onvergen
e to ma
hine a

ura
y is obtained by retaining 128Chebyshev modes, as we have 
he
ked by an expli
it 
al
ulation. To 
ompare withanalyti
al and density fun
tional results, the solution at the Chebyshev nodes isinterpolated using bary
entri
 interpolation without 
ompromising spe
tral a

u-ra
y. The DMSUITE library is used for the numeri
al implementation [132℄.Our results are summarized in Fig. 2.2 and Fig. 2.3. The main panel of Fig. 2.2(a), obtained by solving Eq. 2.7 and 2.8 for a value of κ = 0.0, shows the biaxialitypro�le obtained using our numeri
al spe
tral s
heme (
rosses), as 
ompared to theanalyti
 result of T = 0. The uniaxiality pro�le shown in the inset is exa
tly thetanh pro�le obtained by de Gennes. This limit provides a simple test of our numer-i
al methods, sin
e the solution to Eqs. 2.7 and 2.8 in this limit is exa
t. Fig. 2.2(b) shows the biaxiality pro�le obtained using our spe
tral s
heme (
rosses), as
ompared to the analyti
 results derived here (dashed line) and results obtainedby PSW (solid line) for a value of κ = 0.4. As 
an be seen, the numeri
al data are�t remarkably well by the analyti
 forms, whereas the PSW approximation tendsto overestimate the peak value. The inset to Fig. 2.2 (b) shows the uniaxial (S)pro�le, obtained numeri
ally as well as in our analyti
 
al
ulation; here the resultsobtained by us and by PSW are identi
al. The �t to a tanh pro�le is a

urate overthe entire region.The main panel of Fig. 2.2 (
) shows the biaxiality pro�le obtained using ourspe
tral s
heme (
rosses), as 
ompared to the analyti
 results derived here (dashedline) and results obtained by PSW (solid line) for a value of κ = 4. Again thenumeri
al data are �t well by the analyti
 forms, parti
ularly away from the mainpeak, yielding essentially exa
t agreement deep into the isotropi
 and nemati
sides. The PSW approximation is still an overestimate to the peak value, and alsodi�ers sharply in relation to the numeri
al data deep into the isotropi
 side. Theinset to Fig. 2.2 (
) shows the uniaxial (S) pro�le for this 
ase. Fig. 2.2 (d) showsthe biaxiality pro�le obtained using our spe
tral s
heme (
rosses), as 
ompared to25



Chapter 2. Biaxiality at the Isotropi
-Nemati
 Interfa
e with Planar An
horingthe analyti
 results derived here (dashed line) and results obtained by PSW (solidline) for a value of κ = 18. For these - and larger - values of κ, our analyti
 �tsdi�er noti
eably from the numeri
al data. The PSW form appears to �t better forlarger κ, although we believe that this is fortuitous. It appears that the prin
ipalerror arises from our approximation of the S pro�le as a tanh form. For large κ,this approximation is less a

urate.Fig. 2.3 
ompares the results of our analyti
 
al
ulation to pro�les of T ob-tained from a density fun
tional 
al
ulation for the isotropi
-nemati
 interfa
e[31℄ a method whi
h provides an alternative, more mole
ular approa
h to thisproblem[134℄. We have taken numeri
al data for uniaxial and biaxial pro�les ob-tained in Ref. [31℄, varying the free parameters Sc, lc and κ in our solutions tillan optimal �t is obtained. The values of Sc and lc 
an be obtained from �ts to
S; thus only κ need be varied to represent the T pro�le. Fig. 2.3 shows pro�lesobtained for two values of κ: κ = 5.8 (for z < 0) and κ = 0.69 (for z > 0).The larger κ value �ts the pro�le very 
losely on the isotropi
 side, whereas thesmaller κ value provides an a

urate �t on the nemati
 side. An alternative den-sity fun
tional approa
h (Ref. [122℄) yield pro�les whi
h 
an also be �t very wellon the nemati
 side by our methods, although the �t towards the isotropi
 sideis of redu
ed quality. It does not seem possible to �t the 
omplete pro�le using asingle value of κ. This 
ould have been anti
ipated on physi
al grounds sin
e thedensity fun
tional theory yields a density di�eren
e between 
oexisting isotropi
and nemati
 phases. The elasti
 
oe�
ients L1 and L2 whi
h enter our 
al
ulationdo in prin
iple 
ontain a density dependen
e whi
h we ignore here.2.3 Con
lusion and ResultsIn 
on
lusion, we have presented results for the uniaxial and biaxial pro�les, in the
ase of planar an
horing, for the 
lassi
 problem of the stru
ture of the isotropi
-nemati
 interfa
e within Ginzburg-Landau-de Gennes theory. Our work re�nesprevious analyti
 treatments of biaxiality at the interfa
e. We have implementeda highly a

urate spe
tral 
ollo
ation s
heme for the solution of the Landau-Ginzburg-de Gennes equations and used this numeri
al s
heme in our tests ofthe analyti
 results. 26
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-Nemati
 Interfa
e with Planar An
horingIn 
omparison to earlier work, we obtain improved agreement with numeri
s forboth the uniaxial and biaxial pro�les, with our results being in
reasingly a

urateas the anisotropy is redu
ed. We also provide a

urate asymptoti
 results for thede
ay of the S and T order parameters deep into the nemati
 and isotropi
 phases.Our 
al
ulated pro�les show a pleasing 
onsisten
y with pro�les obtained fromdensity fun
tional approa
hes. Further extensions of these numeri
al and analyti
methods to the 
ase of an intermediate an
horing 
ondition far from the interfa
eare 
urrently under way.

27



3The Isotropi
-Nemati
 Interfa
e with anOblique An
horing Condition
3.1 Introdu
tionIn this 
hapter we study the isotropi
-nemati
 interfa
e within GLdG theory inthe 
ase where an oblique an
horing 
ondition is imposed on the nemati
 state farfrom the lo
ation of the interfa
e. For a �at interfa
e, the 
omponents of Q 
andepend only on the 
oordinate perpendi
ular to the interfa
e. We assume thatthis 
oordinate is aligned along the z axis, as shown in Fig. 3.1, whi
h de�nes thegeometry we work with in this 
hapter. We work at phase 
oexisten
e, imposingboundary 
onditions �xing the isotropi
 phase at z = −∞ and the nemati
 phaseat z =∞. The 
omponents of Q as z → ∞ are 
hosen so that S is �xed to its valueat 
oexisten
e Sc, while the axis of the nemati
 is aligned along a spe
i�ed (oblique)dire
tion. The 
oexisting states must be separated by an interfa
e in whi
h orderparameters rise from zero on the isotropi
 side of the interfa
e to saturated, non-zero values on the nemati
 side. Sin
e the two free energy minimum states aredegenerate in the bulk, the position of the interfa
e is arbitrary and 
an be �xed,for 
on
reteness, at z = 0 in the in�nite system. However, there are subtleties.Provided all 
omponents of Q vary substantially only in the neighbourhood of theinterfa
e, the interfa
e 
an be lo
ated through several, largely equivalent 
riteria.However, if variations of Q are not 
on�ned to a region proximate to the interfa
ebut depend on the system size L irrespe
tive of how large L is, the very isolationof an interfa
e from the bulk is ill-de�ned. As indi
ated earlier, it is this situation28
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Figure 3.1: The interfa
e geometry and the 
oordinate system used in this 
hapter.Note that the nemati
 dire
tor makes an angle θ with respe
t to the z− axisdire
tion. This angle is �xed at in�nity to θ = θe . It 
an be 
hosen to vary between
θe = 0 (homoeotropi
 an
horing at in�nity) and θe = 90◦ (planar an
horing atin�nity). The isotropi
 phase is favoured, through boundary 
onditions, as z →
−∞, whereas the nemati
 phase is favoured for z → ∞. The plane of the interfa
eis the x− y plane, shown by ABCD in the �gure, whereas the dire
tor is 
on�nedto the EFGH plane as shown. The origin is denoted by O.
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-Nemati
 Interfa
e with an Oblique An
horingConditionwhi
h obtains in the 
ase of oblique an
horing and the L→ ∞ limit must be takenwith 
are.The 
entral results of this 
hapter are the following: A numeri
al minimizationof the GLdG free energy whi
h imposes a spe
i�
 oblique an
horing 
ondition onthe system deep into the nemati
 while �xing the interfa
e lo
ation at the originshows that the elements of Q vary with spa
e even far away from the interfa
e, al-beit slowly. Only in the limit of homoeotropi
 or planar an
horing is the variationof Q 
on�ned to a �nite region. This variation in the 
ase of oblique an
horing 
an,however, be split into hydrodynami
 and non-hydrodynami
 
omponents. Generi-
ally, the variation of the non-hydrodynami
 
omponents, su
h as the magnitudesof S and T , are 
on�ned to a �nite region, independent of the system size L, if L islarge enough. However, the orientation of the nemati
 dire
tor varies in spa
e: ifthe asymptoti
 value of the nemati
 order parameter at L represents uniaxial or-dering along an oblique axis, the dire
tor orientation interpolates linearly betweeneither a 90◦ value preferred at the lo
ation of the interfa
e (planar an
horing)or a 0◦ value (homoeotropi
 an
horing), and the value imposed by the boundary
ondition at L. Whether planar or a homeoetropi
 an
horing is preferred at theinterfa
e depends on the sign of the se
ond of the elasti
 
oe�
ients in the GLdGexpansion, the L2 term, as initially shown by de Gennes[38℄.Our results are 
onsistent with the qualitative observations of PSW, but pro-vide a detailed quantitative analysis in the 
ase of oblique an
horing. We s
aleangle pro�les 
omputed for di�erent values of the system size L onto a universal
urve, indi
ating a linear pro�le. In the limit that L → ∞, the slope with whi
hthe phase varies vanishes as 1/L, so that the total energy 
ost for elasti
 distortionsof the nemati
 �eld ∼
∫

(∇θ)2dz ∼ L(∆θ)2/L2 ∼ 1/L, thus vanishing in the ther-modynami
 limit. Thus, the isotropi
-nemati
 interfa
e with an oblique an
horing
onstraint imposed on the nemati
 side 
an be regarded as being marginally sta-ble, as opposed to unstable, provided the thermodynami
 limit is taken with 
are.We demonstrate that suitably 
hosen, �exible variational 
hoi
es for the uniaxialand biaxial pro�les 
an 
apture the variation of 
omponents of the Q tensor as afun
tion of spa
e. These variational pro�les are obtained by generalizing resultsfrom a 
al
ulation of biaxial and uniaxial order parameter pro�les in the planar
ase. These pro�les are ben
hmarked against numeri
al 
al
ulations.The outline of the 
hater is the following. In Se
tion 1.4, we brie�y reviewed30
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-Nemati
 Interfa
e with an Oblique An
horingConditionaspe
ts of the Landau-Ginzburg-de Gennes transition whi
h will be required inour analysis. In Se
tion 3.2 we obtain the equations representing the variationalminimum of the GLdG free energy, in a basis adapted to the symmetry of theproblem. Se
tion 3.3 des
ribes solutions to these equations, as appropriate to the
ases of planar and homoeotropi
 an
horing. The 
lassi
 tanh pro�le obtained byde Gennes is an exa
t representation of the interfa
e in the limit of homoeotropi
an
horing as well as when the L2 elasti
 
onstant vanishes, in whi
h 
ase theinterfa
e is stable for any an
horing 
ondition. In Se
tion 3.4 we present ournumeri
al approa
h to the problem of interfa
e stru
ture, showing how numeri
allyexa
t pro�les for the variation of S, T and θ 
an be obtained within the frameworkof a minimization of the full GLdG free energy, subje
t only to the 
ondition thatan interfa
e is for
ed into the system.In Se
tion 3.5, we des
ribe our variational approa
h to this problem, motivatingthe 
hoi
e of a three-parameter variational ansatz inspired by the approximatesolution due to Popa-Nita, Slu
kin and Wheeler. We show that this variationalansatz 
aptures the features of the solution in both the extreme 
ases of planarand homoeotropi
 an
horing, and is �exible enough to des
ribe the intermediateregime as well. In Se
tion 3.6, we des
ribe our methods of minimization for thevariational problem and our results for L2 > 0 and L2 < 0. We des
ribe how ournumeri
al and variational 
al
ulations 
an be used to provide an a

urate pi
tureof the interfa
e with an oblique an
horing 
ondition In Se
tion 3.7 we presentasymptoti
 results for the variation of S, T and θ 
lose to the bulk nemati
 state.Se
tion 3.8 
ontains our 
on
lusions.3.2 The Ginzburg-Landau-de Gennes EquationsThe dire
tor n, sub-dire
tor l and their joint normal m together de�ne a frame.We de�ne z as the dire
tion perpendi
ular to the interfa
e. The �xed orientationof the nemati
 axis at z → ∞ 
an be used to de�ne a plane, the xz plane. Fromsymmetry, and following the arguments of Sen and Sullivan, the nemati
 dire
tormust always remain in this plane[119℄. Thus, the spatial dependen
e of the frameorientation 
an only 
ome from the variation of a single tilt angle θ, whi
h ismeasured between the z axis and n, as shown in Fig. 3.1. 31
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-Nemati
 Interfa
e with an Oblique An
horingConditionSin
e we assume a �at interfa
e, the 
omponents of Q are fun
tions only of z.The tensor Q n the lo
al frame de�ned by the prin
ipal axes, is diagonal and givenby
Q =




−(S + T )/2 0 0

0 −(S − T )/2 0

0 0 S


 (3.1)Transforming to the spa
e-�xed frame (the laboratory frame), by rotation throughthe appropriate angle θ yields

Qθ =




−1
2
(S + T ) cos2 θ + S sin2 θ 0 −1

4
(3S + T ) sin 2θ

0 −(S − T )/2 0

−1
4
(3S + T ) sin 2θ 0 −1

2
(S + T ) sin2 θ + S cos2 θ


 .(3.2)Inserting this tensor form into the elasti
 free energy Fel[Q] yields the elasti

ontribution to the free energy

Fgθ =
(12 + 5κ+ 3κ cos(2θ))(∂zS)2 + 4κ sin2(θ)∂zS∂zT + 2

(
2 + κ sin2(θ)

)
(∂zT )2

8(3 + 2κ)

−2κ sin(2θ)(3S + T ) (∂zS − ∂zT ) ∂zθ

8(3 + 2κ)
+

(2 + κ)(3S + T )2(∂zθ)
2

4(3 + 2κ)
, (3.3)Note that this 
ontribution must vanish if S, T and θ are uniform.The bulk free energy 
ontribution Fh[Q] is un
hanged, as a 
onsequen
e of thefa
t that the Landau term is 
onstru
ted from rotationally invariant terms in theorder parameter. It then takes the form

Fh[Q] =
1

3
(3S2 + T 2) − 2(S3 − ST 2) +

1

9
(9S4 + 6S2T 2 + T 4). (3.4)The Euler-Lagrange equation for the angle �eld, with θ′ = dθ/dz, is

−κ sin(2θ)(3S + T )(S ′′ − T ′′) + (2(2 + κ)(3S + T )2θ′)′ = 0, (3.5)where the primes indi
ate derivatives with respe
t to z.First, note that for κ = 0 (i.e. no elasti
 anisotropy) the above equation hasonly the solution θ′ = 0, implying that θ is 
onstant. A similar situation holdsfor the spe
ial θ values θ = 0, 90◦, for whi
h again the only solution has θ′ = 0.32
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-Nemati
 Interfa
e with an Oblique An
horingConditionThus, in these spe
ial limits, the angle θ remains �xed throughout the system.These results are, of 
ourse, 
onsistent with the result that planar (θ = 90◦) andhomoeotropi
 (θ = 0) an
horing 
onditions yield a well-de�ned interfa
e. Also,provided elasti
 anisotropy is absent, one 
an 
ontinue to de�ne a stable interfa
efor an arbitrary θ, sin
e θ sti
ks to its asymptoti
 value throughout.Finally, we note that on
e S and T are saturated, S ′ = T ′ = S ′′ = T ′′ = 0, andthus θ′ = 
onstant, yielding a linear variation of θ with z.For 
ompleteness, the full set of Euler-Lagrange equations representing theminimization of the GLdG equations are, in addition to the θ equation above
−
(

(κ cos(2θ) + 6 + 3κ) (3S + T )

6 + 4κ

)
θ′2 +

(
κ(4 + 3κ+ κ cos(2θ)) sin(θ)2

4 (6 + 7κ + 2κ2)

)
T ′′

+

(
96 + 88κ+ 19κ2 + 12κ(2 + κ) cos(2θ) + κ2 cos(4θ)

16 (6 + 7κ+ 2κ2)

)
S ′′ = 2S − 6S2 + 4S3 + 2T 2 + 4S

T 2

3(3.6)
(

32 + 24κ+ 3κ2 − 4κ(2 + κ) cos(2θ) + κ2 cos(4θ)

16 (6 + 7κ+ 2κ2)

)
T ′′ +

κ(4 + 3κ+ κ cos(2θ)) sin(θ)2S ′′

4 (6 + 7κ+ 2κ2)

+
(κ cos(2θ) − 2 − κ)(3S + T )θ′2

6 + 4κ
=

2

3
T + 4ST +

4

9
T 3 +

4

3
S2T(3.7)3.3 Interfa
e stru
ture for Planar and Homoeotropi
An
horingThis se
tion brie�y reviews the methodology for the solution of interfa
ial stru
turein the 
ases of homoeotropi
 and planar alignment[38℄. While the exa
t solutionin the 
ase of homoetropi
 alignment, as originally proposed by de Gennes, moti-vates the 
anoni
al tanh form for the uniaxial order parameter, the more 
omplexsituation of planar an
horing requires the simultaneous solution of equations ofmotion for both S and T , in addition to the equation for θ[105℄. We dis
uss howthe Popa-Nita, Slu
kin and Wheeler solution[105℄ of the planar 
ase 
an be gener-alized, in a variational sense, to the more general problem of an oblique an
horing33
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ondition.3.3.1 Homeotropi
 AlignmentThe equation of motion for homoeotropi
 boundary 
onditions is easily obtainedby setting θ = 0, in the de�ning equations above. This immediately yields,
1

2
∂2
zS = S − 3S2 + 2S3 + T 2 +

2ST 2

3
, (3.8)

1

2(3 + 2κ)
∂2
zT =

1

3
T + 2ST +

2T 3

9
+

2S2T

3
. (3.9)It is easy to see that these equations have the solutions

S =
1

2
(1 + tanh(

z√
2
)), T = 0; (3.10)Here the treatment of de Gennes is exa
t.3.3.2 Planar AlignmentThe 
ase of planar alignment follows from setting θ = 90◦ in the Euler-Lagrangeequations. This then yields the following set of 
oupled partial di�erential equa-tions for the S and T order parameters,

(6 + κ)

(3 + 2κ)
∂2
zS +

κ

(3 + 2κ)
∂2
zT = 4S − 12S2 + 8S3 + 4T 2 +

8ST 2

3
, (3.11)

κ

(3 + 2κ)
∂2
zS +

(2 + κ)

(3 + 2κ)
∂2
zT =

4

3
T + 8ST +

8T 3

9
+

8S2T

3
. (3.12)In the zeroth order aproximation we drop terms in T as in the solution of the�rst equation. This then yields S = Sc

2
(1+tanh( z√

2ξ
)) where ξ =

√
1+k/6
1+2k/3

. Puttingthis in equation (3.12), s
aling z again with √
2ξ and negle
ting the nonlinear term,

34
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e with an Oblique An
horingConditionwe get the following equation.
∂2
zT = 2β(tanh2(z) + 8 tanh(z) + 9)T

+
κ

2 + κ
tanh(z)(1 + tanh(z))(1 − tanh(z)), (3.13)with β = 6+κ

3(2+κ)
.The PSW approximation now 
onsists of dropping the ∂2

zT term, yielding thealgebrai
 equation
2β(tanh2(z)+8 tanh(z)+9)T = − κ

2 + κ
tanh(z)(1+tanh(z))(1−tanh(z)), (3.14)whi
h then immediately yields

T = − κ

2β(2 + κ)

tanh(z)(1 + tanh(z))(1 − tanh(z))

(tanh2(z) + 8 tanh(z) + 9)
. (3.15)We have re
ently suggested an improvement to these results, motivated by our testsof the self-
onsisten
y of the PSW approximations[66℄. These tests indi
ate thatthe ∂2

zT term dropped by PWS should be retained for a more a

urate des
riptionof the interfa
e. Our analyti
 results for this 
ase, expressed as a sum over hyper-geometri
 fun
tions, agree well with numeri
al solutions of the GLdG equationsand represent a signi�
ant improvement over the PSW solution, parti
ularly in the
ase of small κ.3.4 Numeri
al Minimization of the Ginzburg-Landau-de Gennes Free Energy for the Interfa
e Prob-lemOur numeri
al results for the isotropi
-nemati
 interfa
e with an oblique an
hor-ing 
ondition are obtained from a dire
t minimization of the Ginzburg-Landau-deGennes fun
tional, with boundary 
onditions whi
h ensure the presen
e of theinterfa
e as well as impose the required an
horing 
ondition on the θ �eld. Ournumeri
al methodology is the following: De�ning a system size L, we dis
retizethe one-dimensional (z) 
oordinate into N points, de�ning δ = L/N . We use,35
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Figure 3.2: Pro�les of the biaxial (T ) (main �gure) and uniaxial (S) order (inset)parameter as a fun
tion of the 
oordinate z a
ross the interfa
e, for planar an-
horing and κ = 4 as obtained from a dire
t numeri
al minimization of the LGdGfun
tional (solid line). The results obtained from an spe
tral 
ollo
ation methodare shown as points.typi
ally, N = 1001. The values of the �elds S, T and θ at ea
h of these points isvaried so as to minimize the 
ombined integrals of Eq. 3.3 and Eq. 3.4.To do this, we perform a straightforward evaluation of the integral using thetrapezoidal rule, repla
ing derivative terms in the integrand by the �nite di�eren
eapproximants. Thus, the gradient term dS/dz ≃ [S(i+ 1) − S(i)] /δ. We have alsoused a variable dis
retization in some of our 
al
ulations, to assess the a

ura
yof our results, sampling with 
losely spa
ed points in the vi
inity of the interfa
ewhere the variation of S and T is largest. We impose boundary 
onditions on
S, T and θ, by �xing the values at the two extreme boundaries to their valuesin the isotropi
 (S = 0, T = 0) limit, with θ arbitrary, and in the nemati
 limit36
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e with an Oblique An
horingCondition(S = 1, T = 0, θ = θe).The lo
ation of the interfa
e is �xed at the 
entre, by imposing S = 1/2 atthe 
entral site. In prin
iple, in a system of �nite size L, our methods yield a
onstrained minimum for the following reason: The elasti
 energy on the nemati
side is minimized by allowing the nemati
 region to expand as far as possible,e�e
tively for
ing the interfa
e to invade the isotropi
 side. However, as dis
ussedabove, in the thermodynami
 limit L → ∞, this elasti
 energy 
ost redu
es as
1/L, vanishing in the thermodynami
 limit where a stable interfa
e is obtained.Alternatively, one 
an think of this in terms of adding a lo
alized pinning potentialwith strength vanishing as L → ∞, whi
h serves only to stabilize the lo
ation ofthe interfa
e.This relatively simple approa
h yields results of very high quality, as we have
he
ked by a dire
t 
omparison to exa
t results for the planar an
horing 
ase aswell as to numeri
al 
al
ulations using spe
tral methods in the 
ase of planaran
horing. We have used the minimization routines (NMinimize) in Mathemati
ato �nd the stationary values of S,T and θ whi
h minimize the free energy subje
tto the applied boundary 
onditions. This routine sele
ts the most appropriatemethodology from a variety of minimization te
hniques available, iterating till ana

ura
y between su

essive iterations of 1 part in 108 is obtained.As a test of the quality of the minimization methodology whi
h will be usedin this 
hapter, we show in Fig. 3.2, pro�les of the biaxial (T ) (main �gure) anduniaxial (S) order (inset) parameter as a fun
tion of the 
oordinate z a
ross theinterfa
e, as 
omputed by the numeri
al spe
tral methodology of Ref. [66℄ and theminimization te
hnique des
ribed above, for the 
ase of planar an
horing i.e. θe =

90◦, with κ = 4. Results obtained from the numeri
al minimization of the LGdGfun
tional are shown as the solid line whereas results from the spe
tral 
ollo
ations
heme of Ref. [66℄ are shown as points. These 
oin
ide to high a

ura
y.3.5 Variational MethodClearly, the solution of the full set of equations for S, T and θ given above is aformidable problem. Our approa
h to this problem therefore pro
eeds throughthe 
onstru
tion of simple, physi
ally motivated variational 
hoi
es for θ(z), S(z)37
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-Nemati
 Interfa
e with an Oblique An
horingConditionand T (z). This 
hoi
e is made keeping in mind that requirement that the resultsshould be 
onsistent with 
omputations in the simpler θ = 0, 90◦ limits, where theangular variation is absent and the de Gennes solution and the PSW solution areobtained, respe
tively.Our approa
h begins by assuming a pro�le of the form
S =

1

2
(1 + tanh(az)) and T = −b tanh(cz)

(1 + tanh(cz))(1 − tanh(cz))

tanh2(cz) + 8 tanh(cz) + 9
.(3.16)together with the assumption that the theta variation 
an be �tted to a simplyparametrizable fun
tion. We have examined a variety of su
h fun
tions for the
ase of planar an
horing, in
luding (a) θ = 90◦ − 2ψ

L
z for z > 0, 90◦ for z < 0,(b) θ = 90◦ − ψ

2
(1 + tanh(a1z)) whi
h implies that at z = ∞, θ = 90◦ − ψ and at

z = −∞, θ = 90◦, (
) θ = 90◦ − ψ
2
(1 + tanh(a1z)) whi
h implies that at z = ∞,

θ = 90◦ − ψ and at z = −∞, θ = 90◦, (d) θ = ψ
2
(1 + tanh(a1z)) (e) θ = ψ

2L
z + ψ/2and (f) θ = p + ψ

2
(1 + tanh(a1z)).Our best results are obtained with the variational form

θ = p+ ψ
z

L
(3.17)subje
t to a 
onstraint p+ ψ = θL where θL is the value of angle at L, the systemsize. It will be our intention to take the L→ ∞ limit later.Note that the 
hoi
e p = 90◦, ψ = 0, a = 1, b = κ

2β(2+κ)
re
overs the pro�leof PSW for the planar 
ase. The parameter values ψ = 0, b = 0 generate the deGennes solution. Thus, the two extreme limits of the variation of the an
horingangle 
an be obtained with the appropriate 
hoi
e of parameter values in thevariational form 
hosen above. These 
an be simply generalized to the 
ase ofhomoeotropi
 an
horing.3.6 Numeri
al Methodology for the Variational So-lutionThese variational ansätze for S and T are inserted into the form for the free energy,whi
h is then minimized with respe
t to the parameters a, b, c, and p. This min-38
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-Nemati
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e with an Oblique An
horingConditionimization is 
arried out using Mathemati
a. We use the "Nelder-Mead" methodfor the minimization of a fun
tion of n variables. This is a dire
t sear
h methodwhi
h uses an initial 
hoi
e of n+ 1 ve
tors whi
h form the verti
es of a polytopein n−dimensions and a methodology for 
hanging the verti
es of this polytopeiteratively. The pro
ess is assumed to have 
onverged if the di�eren
e between thebest fun
tion values in the new and old polytope, as well as the distan
e betweenthe new best point and the old best point, are less than preset values, typi
ally ofthe order of 10−10.To eliminate problems arising from an in
orre
t 
hoi
e of initial values, wehave 
omputed the minima for about 100 separate initial 
onditions and 
hosen theparameter values 
orresponding to the least value of the free energy from these. Ourresults for the minimization have been 
ross
he
ked using the di�erential evolutionmethod, a simple sto
hasti
 fun
tion minimizer.3.6.1 Results from the Numeri
al and Variational Minimiza-tion: κ > 0In Fig. 3.3, the main panel and inset of (a) and (b) shows pro�les of the biaxial(T ) and uniaxial (S) order parameter as a fun
tion of the 
oordinate z a
ross theinterfa
e. We show the T pro�le in the main panel for systems of size L = 50, 1290and parameter values (a) κ = 8, θe = 30, and (b) κ = 8, θe = 60. N and I in the�gure refer to nemati
 and isotropi
 respe
tively. The insets to (a) and (b) showthe 
orresponding pro�les for S. We note that for larger an
horing angles, the Tpro�le 
onverges faster as a fun
tion of system size than for smaller angles; 
ontrastthe behavior for θe = 30o and θe = 60o in the �gure. The pro�les are qualitativelysimilar to pro�les obtained for the θe = 90o degree, and asymptoti
ally mat
hthis pro�le as L → ∞. These are 
omputed by dire
t numeri
al minimization ofthe LGdG fun
tional, via the methodology des
ribed in the previous se
tion. Weallowed θ on the isotropi
 side to vary, �nding that the free energy minimum wasobtained when θ was stu
k to the value it attained at the lo
ation of the interfa
e.This value is somewhat smaller than 90◦ for small system sizes but asymptotes tothis value as L goes to in�nity.In Fig. 3.3, in the insets to (
) and (d), we show the uns
aled pro�le of
θ, the angle des
ribing the orientation of the lo
al dire
tor �eld as a fun
tion of39
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Figure 3.3: The main panel in (a) and (b) illustrates the pro�les of the biaxial (T )order parameter as a fun
tion of the 
oordinate z a
ross the interfa
e, 
omputed bydire
t numeri
al minimization of the LGdG fun
tional for systems of size L = 50and 1290, for the parameter values (a) κ = 8, θe = 30, (b) κ = 8, θe = 60. Theinsets to (a), (b) show the 
orresponding pro�les for S. The main panel in (
) and(d) shows the s
aled pro�les for θ for the same parameter values as in (a) and (b).The insets to (
) and (d) show the 
orresponding uns
aled pro�les for θ. N and Irefer to nemati
 and isotropi
 respe
tively. 40
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oordinate z a
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e for asystem of size L = 125, as obtained from a dire
t numeri
al minimization of theLGdG fun
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al
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z a
ross the interfa
e, as obtained from our numeri
al minimization. We showdata for systems of size L = 125, 258, 516 and 1290, and for parameter values (a)
κ = 8, θe = 30, and (b) κ = 8, θe = 60. The main panel, in both 
ases, plotsthe same data as a fun
tion of the s
aled 
oordinate z/L on the x−axis and thequantity (θ − θe)/(θmax − θe) on the y−axis , thus normalizing the value to itsmaximum. This produ
es high quality 
ollapse of the data, indi
ating that theangle pro�le is linear on the nemati
 side, interpolating linearly between its valueat the interfa
e to the an
hored value of θe at z = L. Also, as the system sizeis in
reased, the value at the interfa
e (z = 0), approa
hes 90◦, indi
ating thatan
horing at the interfa
e is always planar in the asymptoti
 limit.In Fig. 3.4 we show the 
omparison between the 
omputed 3-parameter varia-tional pro�le for the angle θ as a fun
tion of the 
oordinate z a
ross the interfa
e,for a system of size L = 125, as obtained from a dire
t numeri
al minimization ofthe LGdG fun
tional (solid line) and the variational 
al
ulation des
ribed in thetext (point). These are shown for parameter values (a) κ = 8, θe = 30 and (b)
κ = 8, θe = 60. The inset labeled (i) in ea
h sub-�gure shows the 
orrespond-ing pro�le of S, whereas the inset labeled (ii) shows the pro�le of T . Note thatthe variational result 
oin
ides with the result obtained from a dire
t numeri
alminimization to high a

ura
y. As the system size is in
reased, the value of θ atthe interfa
e approa
hes 90◦ within both the variational and the dire
t numeri
alminimization approa
hes, as indi
ated in Fig. 3.5.Fig. 3.6 shows the variational parameters a (a), b (b) and c (
) as a fun
tionof system size L, together with the variation of the variational angle p (d), plottedfor κ = 1. These parameters 
onverge to their L→ ∞ values 
orresponding to the
ase of planar an
horing. In all 
ases the parameter p 
onverges to the asymptoti
value of 90◦ as the system size is in
reased, 
onsistent with planar an
horing.3.6.2 Results from the Numeri
al and Variational Minimiza-tion: κ < 0Stability imposes the requirement that 3+2κ > 0, but does not 
onstrain the signof κ (or, equivalently L2), apart from this requirement. In this se
tion we explorethe 
onsequen
es of a negative value for L2.We �nd that, 
onsistent with de Gennes' predi
tion, a negative L2 ( or κ) 
on-42
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 an
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-Nemati
 Interfa
e with an Oblique An
horingConditionsistent with stability favours homoeotropi
 an
horing at the interfa
e, in 
ontrastto the 
ase of positive L2. Thus, the biaxiality T generi
ally vanishes as L → ∞,whereas S assumes the 
anoni
al tanh form obtained by de Gennes. This 
an beseen from Fig. 3.7 whi
h shows the variation of S and T , for L = 125, plotted for
κ = −1. The an
horing at L is set to an oblique angle of 30◦. The S and T pro�lesare 
onsistent with T = 0 for homoeotropi
 an
horing.The preferen
e for homoeotropi
 an
horing 
an be seen from Fig. 3.8 whi
hshows the dire
tor tilt angle s
aled to its minimum value for ea
h system size(L = 125, 258 and 516, against z/L for κ = −1, where an asymptoti
, obliquean
horing angle of 30◦ is imposed on the system at L. The inset shows the bareangles as a fun
tion of z for these di�erent system sizes. The ex
ellent data 
ollapseindi
ates that angle pro�les in the 
ase of L2 < 0 s
ale in the same way as the
L2 > 0 
ase, ex
ept that homoeotropi
 an
horing is favoured in this 
ase.Finally, in Fig. 3.9, we show, in the main �gure, the pro�le of T , the biaxialorder parameter, for κ = −1, in the two extreme 
ases of planar (0◦) and ho-moeotropi
 (90◦) an
horing, with L = 50. Importantly, the pro�le of T is invertedwith respe
t to pro�les obtained for κ > 0, with the minimum appearing on theisotropi
 side of the interfa
e rather than the nemati
 side, as earlier. The pro�leof S is 
onsistent with a tanh form. While the pro�le of T is non-zero for planaran
horing, biaxiality vanishes for the homoeotropi
 an
horing 
ase.These results are 
onsistent with the general trends observed in the 
ase of
κ > 0, with the di�eren
e that homoeotropi
, rather than planar, an
horing ispreferred on
e κ turns negative.3.7 Asymptoti
 SolutionWe 
an use our ansatz for S and T to 
he
k the self-
onsisten
y of our 
onje
turedbehaviour for θ. Our 
hosen forms imply S = 1 − e−2az and T = −be−2az deepinto the nemati
 phase, as z → ∞. Then S ′ = 2ae−2az , T ′ = 2abe−2az and
S ′′ = −4a2e−2az , T ′′ = −4a2be−2az . Inserting these into the equation for θ asbelow,

4(2 + κ) (3S ′ + T ′) θ′ − κ sin(2θ)(S ′′ − T ′′),+2(2 + κ)(3S + T )θ′′ = 0, (3.18)48
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-Nemati
 Interfa
e with an Oblique An
horingConditionwe get
8(2 + κ) (3 + b) ae−2azθ′ + κ sin(2θ)(1 − b)a2e−2az + 6(2 + κ)θ′′ = 0. (3.19)As z → ∞, this equation redu
es to θ′′ = 0. Thus, θ should have a linear pro�lein this asymptoti
 limit, taking the form

θ = p+ ψ
z

L
. (3.20)We 
an also 
ompute 
orre
tions to this pro�le for z → ∞−. Let us now expandabout the z = ∞ limit, in whi
h 
ase θ′′ = 0. Thus,

θ′

sin(2θ)
=

−κa(1 − b)

2(2 + κ)(3 + b)
. (3.21)Integrating the left-hand side of this equation, we obtain

1

2
ln tan(θ) − lnC =

−κa(1 − b)z

2(2 + κ)(3 + b)
, (3.22)whi
h has a solution θ = tan−1[Ce

−κa(1−b)z
(2+κ)(3+b) ]. It 
an be seen that this will vanish asz goes to ∞ and is, in e�e
t, negligible apart from a region 
lose to the interfa
e,at z = 0.3.8 Summary and Con
lusionsIn this 
hapter, we have presented our results for the problem of the isotropi
-nemati
 interfa
e within Ginzburg-Landau-de Gennes theory, for the 
ase in whi
han oblique an
horing 
ondition is imposed on the system asymptoti
ally on thenemati
 side, keeping the interfa
e pinned at the origin. In this 
ase, we �ndthat nemati
 elasti
ity di
tates that the nemati
 orientation interpolates smoothlybetween a value of 90◦ at the interfa
e (planar an
horing) to the an
hored valueat the boundary on the nemati
 side when κ > 0. Thus, the preferred value of thean
horing angle at the interfa
e is 90◦ in this 
ase. The 
ase κ < 0 with κ satisfyingthe stability requirement κ > −1.5 leads to stable homoeotropi
 an
horing at theinterfa
e, as predi
ted by de Gennes. 49



Chapter 3. The Isotropi
-Nemati
 Interfa
e with an Oblique An
horingConditionWe have used simple variationally based des
riptions of the stru
ture of theinterfa
e, with our methods 
apturing essential features of interfa
e stru
ture, bothqualitatively and quantitatively, for the 
ase of oblique an
horing. Our methodsa

ess the non-trivial stru
ture of biaxiality at the interfa
e, in
luding the largetail towards the isotropi
 side and the 
hange in the sign of the biaxial orderparameter a
ross the interfa
e. Our approa
h also 
aptures the inversion of thepro�le of biaxiality as κ 
rosses zero.The results presented here are broadly 
onsistent with results from densityfun
tional approa
hes, mole
ular simulations and approa
hes based on the Onsagerfun
tional, but ne
essitate fewer approximations, trun
ations or assumptions aboutspe
i�
 model systems. Thus, 
oarse-grained approa
hes based on the Ginzburg-Landau-de Gennes fun
tional provide a powerful methodology for understandinggeneri
 features of the isotropi
-nemati
 interfa
e.
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Part IILatti
e Models For Rheologi
alChaos in Sheared Nemati
s
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4Introdu
tion to Rheology of Nemati
s
4.1 Introdu
tionComplex �uids are internally stru
tured, possesing a ma
romole
ular ar
hite
-ture whi
h leads to a 
oupling between su
h stru
ture and an imposed �ow. Therheologi
al properties of 
omplex �uids have been studied extensively for thisreason[60, 35, 106℄. The goal of theoreti
al rheology is to relate deformation historyto ma
ros
opi
 properties of the material by developing 
onstitutive equations thatrelate stress within the material to its deformation history. Constitutive equationstogether with mass and momentum 
onservation 
an be used to predi
t the �owof the material.4.1.1 StressA 
entral role in the study of rheology is played by a tensor �eld σij , de�ned at allpoints within the medium and 
alled the stress. The stress σij (Fig. 4.1) is de�nedin terms of the 
omponent in the j-th dire
tion of the for
e per unit area exertedon an in�nitesimal surfa
e element with normal in the i-th dire
tion. Thus, thefor
e per unit area in the j-th dire
tion is given by

Fi = σijnj (4.1)where nj is a unit ve
tor normal to the surfa
e Su
h for
es 
ause deformations inelasti
 media and �ow in �uid media.
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Figure 4.1: Components of the stress tensor, a
ting on a small 
ube of material4.1.2 StrainThe deformation indu
ed by σ is manifest in a strain (or strain history) of themedium. For an elasti
 medium, assuming a �xed referen
e state, the deviationsfrom that state are parametrized in terms of a displa
ement ve
tor at every point inspa
e. Sin
e a uniform translation of the material 
osts no energy, the only energy
ost must be asso
iated with a gradient in the deformation �eld. This deformationde�nes a tensor �eld, 
alled the strain tensor. For solid media, the stress tensor isassumed to be a fun
tion of the deformation gradient tensor or strain tensor with(within linear elasti
ity), a fourth order tensor 
onne
ting stress and strain. Thisis just the 
ontinuum version of Hooke's law. For �uid media, no single referen
estate exists and �uid stresses arise from the relative motion of adja
ent parts ofthe �uid.
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tion to Rheology of Nemati
sDeformation gradient tensorConsider a material in whi
h a ve
tor r′ 
onne
ts two points in the medium attime t′. This displa
ement ve
tor is 
hanged to r in the time interval between t′and a later time t, as shown in Fig. 4.2. This leads to stresses in the medium.The ve
tor r' is rotated and stret
hed as a result of the deformation. Theinverse of the deformation tensor F , i.e. F−1, is de�ned through
t’ t

r’

r

A’
A

B’ B

Figure 4.2: Transformation of the displa
ement ve
tor upon a deformation
F−1
ij =

∂rj
∂r′i

(4.2)whi
h illustrates how 
omponents of the displa
ement tensor vary with the defor-mation. Fig. 4.3 shows how the 
omponents of F−1 are 
onstru
ted for simple
Figure 4.3: Shear deformations of a blo
k of materialshear, in whi
h elements retain their volume but 
hange in shape. This is given by54



Chapter 4. Introdu
tion to Rheology of Nemati
sthe tensor 
omponents in matrix form,
F−1 =




1 0 0

γ 1 0

0 0 1


 (4.3)Fig. 4.4 shows the 
ase of extensional deformation, for whi
h the inverse ofdeformation tensor is given by

F−1 =



λ1 0 0

0 λ2 0

0 0 λ3


 (4.4)If the material is in
ompressible, so that the volume is un
hanged by deforma-tion, then λ1λ2λ3 = 1. More generally, for any volume preserving deformation,

det F−1 = 1 (4.5)

Figure 4.4: Extensional deformations, illustrating the de�nitions of λ1, λ2 and λ3In general, the tensor F−1(t, t′) 
arries the time indi
es t and t′, sin
e it de-s
ribes the deformation that a material parti
le undergoes between the past time
t′, and the present time t. F−1(t, t′) is thus the 
umulative deformation that o

ursbetween time t′ and t.
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sVelo
ity gradient tensorIf we take the time derivative of F−1, from Eq. 4.2
∂

∂t
F−1 =

∂ṙ

∂r′
=
∂r

∂r′
· ∂ṙ
∂r

= F−1 · ∇v. (4.6)where ∇v is the velo
ity gradient tensor. For simple shear as shown in Fig. 4.3 itis given by
∇v =




0 0 0

γ̇ 0 0

0 0 0


 (4.7)and for extensional �ow , as shown in Fig. 4.4 is given by

∇v =



λ̇1 0 0

0 λ̇2 0

0 0 λ̇3


 (4.8)For in
ompressible �ow ∇ · v = 0.Finger TensorIt might have been thought that σij = σij(F

−1) would uniquely spe
ify the stressfor deformed elasti
 media. However, 
onstraints su
h as frame invarian
e indi
atethat the stress in elasti
 media must depend on the following 
ombination, 
alledthe Finger tensor,
C−1 ≡

(
F−1

)T · F−1 (4.9)or its time derivative, in the 
ase of �uid media. For vis
oelasti
 media, whi
hbehave like elasti
 solids at short times and like �uids at long times, the stressmust be a fun
tion of both the �nger tensor and its time derivative, in su
h as wayas to yield the right behavior in these two extreme limits.For the 
ase of simple shear C is given by
C−1 =




1 + γ2 γ 0

γ 1 0

0 0 1


 (4.10)
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sThe rate of 
hange of the Finger tensor is related to velo
ity gradient as follows
Ċ−1 = (∇v)T · C−1 + C−1 · ∇v (4.11)

Figure 4.5: Depi
tion of �ow and shear stresses in the Couette geometry, when a�uid is pla
ed between two plates, with the upper plate being moves at a 
onstantvelo
ity
4.1.3 The Stress-Strain-rate relation and Vis
osityThe relation between su
h velo
ity gradients and the internal stress tensor is fun-damental to the theory of �uid me
hani
s and takes the form

σij = f(∇kvl) (4.12)In general the stress tensor and the velo
ity gradients are 
onne
ted through afourth order tensor i.e. σij = λijkl∇kvl. However, symmetries and physi
al argu-ments 
an be used to greatly redu
e the number of independent 
omponents of
λijkl. For an in
ompressible �uid system, only one su
h 
omponent survives. It is
alled the shear vis
osity.A Newtonian liquid satis�es the 
onstitutive equation

σij = 2ηΓij, (4.13)
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tion to Rheology of Nemati
swhere Γij is the symmetri
 part of the velo
ity gradient tensor
Γij = (∂ivj + ∂jvi)/2. (4.14)and η is the shear vis
osity. The antisymmetri
 part of the velo
ity gradient tensoris 
alled the vorti
ity. The vorti
ity is related to the angular velo
ity of the �uid.The state-of-stress, or total stress, τ is the stress tensor plus a pressure 
ontri-bution:

τij = σij − pδij (4.15)Tensors that are proportional to δ are 
alled isotropi
. For an in
ompressiblematerial, only gradients of p a�e
t �uid motion. Thus a 
onstant isotropi
 tensorof arbitrary magnitude 
an be added to τ without a�e
ting the physi
s. Thus, σijis determined only up to an additive isotropi
 term. Hen
e the stress free state isequivalent to the state of isptropi
 stress. This is why only the stress di�eren
e,
σ11 − σ22 , and not σ11 and σ22 separately, 
an be measured in simple shear.The 
onstitutive relation in a �uid 
onne
ts stress and strain rate. In generalsu
h a relationship involves memory terms i.e the instantaneous stress is deter-mined by the time history of the strain rate. For a Newtonian �uid, it is assumedthat su
h a history dependen
e is absent. Thus, in general, while

σij(t) =

∫ t

−∞
dt′G(t− t′)γ̇(t′) (4.16)for a Newtonian �uid, the kernel G(t−t′) = ηδ(t−t′). In addition, for a Newtonian�uid, it is also required that the two normal stress di�eren
es N1 = σxx − σyy and

N2 = σyy − σzz vanish for pure shear �ow.The physi
al pi
ture for the shear vis
osity η, is the following. Consider twoplates separated by a distan
e d when pla
ed parallel to ea
h other (Couette ge-ometry), and 
ontaining a �uid (Fig. 4.5). The upper plate is moved at a 
onstantvelo
ity, indu
ing a 
onstant veo
ity gradient between the top plate and the bot-tom plate, if the velo
ity gradient is not large enough to signi�
antly perturb the�uid. Then, there is a for
e per unit area on the upper plate a
ting to retard itsmotion. The shear vis
osity de�nes the proportionality of this stress to the velo
itygradient. 58
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Figure 4.6: Shear stress vs Shear Rate for two �uids, with the linearity indi
atingregimes of 
onstant vis
o
ity. Figure from Rheology of Complex Fluids ,Abhijit P.;Krishnan, J. Murali; Kumar, P. B. Sunil (Eds.) Springer (2010).4.2 Non-Newtonian FluidsFor a Newtonian �uid, the shear vis
osity is a 
onstant independent of the velo
itygradient, equivalently the shear rate. Thus a plot of shear stress vs. shear rateyields a straight line, whose slope is the shear vis
osity. The role of the bulkvis
osity µ is usually ignored, sin
e the approximation of an in
ompressible �uidis valid in most 
ases of interest to the soft matter physi
ist. 59
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tion to Rheology of Nemati
sA non-Newtonian �uid exhibits a deviation from this linear relationship be-tween stress and strain, with the vis
osity de
reasing at large shear rates (shearthinning) or in
reasing at large shear rates (shear thi
kening). Su
h non-Newtonianbehaviour arises as a 
onsequen
e of the 
oupling of internal mi
rostru
ture to the�ow and 
an be 
hara
terized in terms of two dimensionless quantities, the Weis-senberg and Deborah numbers.A rough 
ategorisation of non-Newtonian �uid behaviour for 
onvenien
e is asfollows1. The stress σ at a point only depends on the instantaneous value of the shearrate γ̇ at that point. One 
an give various name to these material like purelyvis
ous, inelasti
, time-independent or generalized Newtonian �uids(GNF).2. The Stress σ depends on the duration of shearing as well as on the magnitudeof γ̇. Su
h �uids are known as time-dependent �uids.3. The stress σ shows both vis
ous and elasti
 behaviour. For instan
e, this
lass of materials shows partial elasti
 re
overy, re
oil, 
reep et
. They are
alled vis
o-elasti
 or elasti
o-vis
ous.The 
lassi�
ation s
heme is arbitrary and most real materials display a 
ombina-tion of two or even all these di�erent features under appropriate 
ir
umstan
es.Figure 4.7 shows the �ow relation for some 
ommon non-Newtonian �uids.For �uids with a 
hara
teristi
 time s
ale λ, pla
ed in a �ow with a 
hara
ter-isti
 shear rate γ̇ and a 
hara
teristi
 frequen
y ω, or 
hara
teristi
 time T , twodimensionless groups 
an be formedDeborah number De = λω or λ/T,Weissenberg number Wi = λγ̇ (4.17)The Deborah number, the ratio between the �uid relaxation time and the �ow
hara
teristi
 time, represents the transient nature of the �ow relative to the �uidtime s
ale. If the observation time s
ale is large (small De number), the materialresponses like a �uid. If it is small (large De number), the response is solid-like.From this point of view, there is no fundamental di�eren
e between solids and60
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Figure 4.7: S
hemati
 of the �ow relation (stress vs shear rate) illustrating non-Newtonian behaviour Figure from Rheology of Complex Fluids, J. Murali Krishnanet al.liquids; it is only a matter of time s
ale. In the limit, when De = 0 one has aNewtonian liquid, and when De = ∞, an elasti
 solid.The Weissenberg number 
ompares the elasti
 for
es to the vis
ous e�e
ts.One 
an have a �ow with small Wi number and very large De number, and vi
eversa. One 
an �nd signi�
ant non-Newtonian behaviour in a large Wi number�ow. Therefore, the 
onstitutive equation must 
ontain non-Newtonian physi
s.A guide for the right 
hoi
e of 
onstitutive equations 
an be �nd with the help ofPipkin's diagram (Pipkin and Tauner [103℄). 61
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Figure 4.8: Pipkin's diagram, with the y axis showing the Weissenberg numberand the x-axis showing the Deborah number. Regimes of non-linear and linearvis
oelasti
ity as well as of regimes of vis
ometri
 �ow and rubber elasti
ity areshown. Figure from Phan Thein N Understanding Vis
oelasti
ity, Springer (2002)
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tion to Rheology of Nemati
s4.3 Constitutive ModellingIn isothermal �ow the 
onservation of energy is not relevant. Conservation ofmass and 
onservation of momentum form four balan
e equations. The number ofvariables in question are ten: three velo
ity, one pressure and six independent stress
omponents due to 
onservation of angular momentum. Thus one need six extraequations to form a well posed mathemati
al problem. A rheologi
al equation ofstate provides the missing information by 
onne
ting the stress and the kinemati
s.There are two di�erent approa
hes for 
onstitutive modelling, the 
ontinuumapproa
h and the mi
ros
opi
 approa
h. In the 
ontinuum approa
h the relevantvariables are identi�ed, and are related in a frame work that ensures invarian
eunder a 
hange of frames. Di�erent restri
tions are then imposed to simplify the
onstitutive equation.In the mi
rostru
ture approa
h, one postulates a physi
al model of the mi-
rostru
ture representing the material. Solving the deformation at that level usingwell-tested physi
al prin
iples (Newton's laws, 
onservation laws, et
.) allows theaverage stress and strain to be related, produ
ing a 
onstitutive equation.In the 
ontinuum approa
h one is usually left with a general 
onstitutive equa-tions, whi
h may have some undetermined fun
tions or fun
tionals. The detailsof these fun
tions or fun
tionals may be furnished by a relevant experiment. Inthe mi
rostru
ture approa
h, the 
onstitutive equations be
ome more spe
i�
 andtherefore more relevant to the material in the question.4.3.1 A Simple Equation for a Vis
oelasti
 MaterialFor elasti
 materials, the simplest 
onstitutive equation is given by
σij = GC−1

ij (4.18)as is easily veri�ed using Eq. 4.10. The above equation 
an also be a 
onstitutiveequation for vis
oelasti
 simple �uids in rapid deformations.For slow deformations, the 
ontribution to the stress of strain in
rements o
-
uring in the remote past must be weighted less than than those o

uring in there
ent past. Fig. 4.9 illustrates the dependen
e of the 
umulative deformation on63
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stime. If one weights ea
h strain in
rement by exp ((t′ − t)/λ), where t is the 
ur-rent time and t′ is the past time, and λ the relaxation time, the in
rement in thestress is given by
dσ12 = Ge(t

′−t)/λγ̇(t′)dt′ (4.19)Hen
e the shear stress is given by integrating the expression
σ12 = G

∫ t

−∞
e(t−t

′)/λγ̇(t′)dt′ = G

∫ t

−∞

1

λ
e(t−t

′)/λγ(t′, t)dt′ (4.20)The last term of the Eq. 4.20 is due to integrating by part and γ(t, t′) is the shearstrain that a

umulated between times, t′ and t.
γ(t, t′) =

∫ t

t′
γ̇(t

′′
) dt

′′ (4.21)In tensorial form Eq. 4.20 is given by
σ = G

∫ t

−∞

1

λ
e(t

′−t)/λC−1(t, t′) dt′. (4.22)Equation 4.22 is known as the Lodge equation. In a very fast deformation, thestrain is imposed just before the present time, t. Then, C−1 is independent of t′.Therefore C−1 is a 
onstant and Eq. 4.22 re
overs the elasti
 limit.
σij = GC−1

ij (4.23)On the other hand, if the deformation is very slow then C−1 is a small perturbationfrom δij. From Eq. 4.10, one 
an write
C−1
ij = δij + 2(t− t′)Γij . (4.24)Then Eq. 4.22 gives,
σij = Gδij + 2GλΓij (4.25)Thus, apart from an isotropi
 term, the stress tensor is 2ηΓij, where the vis
osity

η = Gλ. This re
overs the Newtonian limit.
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Figure 4.9: Dependen
e of the 
umulative deformation on timeThe di�erential version of the Lodge equation is given by
σ̇ −∇vT · σ − σ · ∇v +

1

λ
σ =

G

λ
δ (4.26)whi
h is 
alled the upper-
onve
ted Maxwell equation (Eq. 4.26) The vis
osity insimple shear predi
ted by the Lodge equation is given by

η =
σ12

γ̇
=
G

γ̇

∫ t

−∞

1

λ
e(t−t

′)/λ γ̇(t− t′) dt′ = Gλ (4.27)Thus there is no shear thinning and η is 
onstant.The �rst normal stress di�eren
e, N1 = σ11 − σ22 
an be easily 
al
ulated. Forsimple shear C−1
11 − C−1

22 = γ2 = γ̇2(t − t′)2. Inserting this in the Lodge equationgives,
N1 = 2Gλ2γ̇2 (4.28)Thus Ψ1 = N1/γ̇

2 = 2ηλ. From this one 
an 
al
ulate the relaxation time. N2 =

σ22 − σ33 is zero sin
e C−1
22 − C−1

33 = 0.For the Newtonian �uid all normal stress di�eren
es are zero. The Lodgeequation predi
ts, qualitatively, the non-Newtonian phenomena of rod-
limbing,extrudate swell and the presen
e of spinning �ows su
h as the tubeless siphon.
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sThe Upper Conve
ted Maxwell (UCM) equation 
an also be written as follows.
σ̇ − ΩT · σ − σ · Ω − ΓT · σ − σ · Γ +

1

λ
σ =

G

λ
δ (4.29)where Ω and Γ are the antisymmetri
 and symmetri
 part of ∇v the velo
itygradient tensor.A related model equation for nona�ne motion is given by Johnson and Segal-man, as is known as the Johnson-Segalman model equation. This is

σ̇ − (ΩT · σ + σ · Ω) − a(ΓT · σ + σ · Γ) +
1

λ
σ =

G

λ
δ (4.30)where a is 
alled the slippage parameter. This parameter is set to unity in the 
aseof the upper 
onve
ted Maxwell model.4.3.2 Linear RheologyThe 
on
ept of linear vis
oelasti
ity originated with Maxwell, who proposed

dσ

dt
= G

dγ

dt
− σ

λ
, (4.31)where σ is the (one-dimensional) stress, γ is the (one-dimensional) strain, G isthe modulus of elasti
ity and λ is a time 
onstant. This is easily obtained fromEq. 4.26. Note that when the relaxation time is zero, keeping η = λG 
onstant,the Newtonian model is re
overed. When the relaxation time is in�nitely large, afurther integration yields the Hookean model.Somer years later, Meyer introdu
ed the equation

σ = Gγ + η
dγ

dt
, (4.32)Note that both the Maxwell and Meyer des
riptions indi
ate that the stress de-pends only on the instantaneous strain rate and its time derivative. Boltzmann
riti
ised the la
k of generality in these models, proposing instead that the stressat the 
urrent time depends not only on the 
urrent strain but on the past strainsas well.It was assumed that a strain at a distant past 
ontributes less to the stress than66
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sa more re
ent strain. This is the familiar 
on
ept of fading memory. Furthermore,linear superposition was assumed. Supposing that strain between times t′ and
t′ + dt′, say dγ(t′), 
ontributes G(t− t′)dγ(t′) to the stress, then the total stress attime t is

σ(t) =

∫ t

−∞
G(t− t′)dγ(t′) =

∫ t

∞
G(t− t′)γ̇(t′)dt′ (4.33)Here, G(t) is a de
reasing fun
tion of time, the relaxation modulus, and γ̇ is theshear rate.The three-dimensional version of this relation is

σij(t) = 2

∫ t

∞
G(t− t′)Γij(t

′)dt′ (4.34)Linearity, 
ombined with time-translational invarian
e of material properties, re-quires that
σxy = σyx = G(t− t′)γ (4.35)all other deviatori
 
omponents of σij vanish, at linear order in γ, by symmetry.Os
illatory �owThe 
ase of an os
illatory �ow is often studied. In this 
ase γ(t) = γ0e

iωt (takingthe real part whenever appropriate). Substituting this in the above equation givesafter trivial manipulation
σxy = γ0e

iωtG∗(ω) (4.36)where G∗(ω) = iω
∫∞
0
G(t)eiωtdt. The 
omplex modulus G∗(ω) = G′(ω) + iG′′(ω),where G′ and G′′ are the real and imaginary part of G∗(ω).The linear Maxwell model.The simplest imaginable G(t) takes the form, G(t) = G0exp(−t/τM ). When the
omplex modulus is written as G = G′ + iG′′ it 
an be seen that G 
onsists of a
omponent whi
h is in phase with the strain and one whi
h is out of phase. Thein phase part, G′ , is known as the storage or elasti
 modulus and the out of phasepart, G′′ , is the loss or dissipative modulus.A perfe
tly elasti
 solid of modulus G0 would have G′ = G0 and G′′ = 0. In the
ase of a vis
ous liquid with vis
osity η then G′ = 0 and G′′ = ωη sin
e σxy is in67
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sphase with the shear rate. For a vis
oelasti
 material both G′ and G′′ are fun
tionsof the applied frequen
y,ω. In general, the loss modulus dominates at low frequen-
ies, while the elasti
 modulus dominates at high frequen
ies. The material 
rossesover from vis
ous behaviour to elasti
 behaviour at some intermediate frequen
ywhere G′ = G′′ .For the Maxwell model, where G(t) = G0exp(−t/τM ), 
hara
terised by a re-laxation time, τM , the 
omplex modulus is
G′(ω) = G0

ω2τ 2
M

1 + ω2τ 2
M

G′′(ω) = G0
ωτM

1 + ω2τ 2
M

(4.37)4.3.3 Nonlinear rheologyNonlinear rheology addresses the response of a system to �nite or large stresses.In this 
ase the superposition prin
iple assumed in linear response, does not hold.The range of independent measurements is thus mu
h wider. Nonlinear versionsexist of the step-strain and step-stress response measurements. For os
illatorymeasurements in whi
h either stress or strain os
illate sinusoidally, the indu
edstrain or stress will have a more 
ompli
ated waveform in the non-linear regime.
σxy = G(t− t′; γ)γ (4.38)if G(t− t′; γ) = G(t− t′)h(γ), the system is 
alled `fa
torable'.4.4 Wormlike Mi
ellesAmphiphili
 mole
ules in water have a tenden
y to self-assemble by aggregatingreversibly into larger obje
ts. The simplest of these is a spheri
al aggregate 
alled a`mi
elle'. For geometri
al reasons, a spheri
al mi
elle is self limiting in size, unlessthe solution 
ontains oil that 
an �ll any hole in the middle.At the 
riti
al mi
elle 
on
entration or CMC [64℄ mi
elles proliferate abruptly.By adding salt one 
an 
hange the shape of the mi
elles. The most stable lo-
al pa
king of amphiphili
 mole
ules leads to an evolution from spheri
al mi
ellestowards a 
ylindri
al shape; see Fig. 4.10. The transition from spheri
al to 
ylin-dri
al shapes begins with mi
elles elongating into a short 
ylindri
al body with68
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shemispheri
al end 
aps. The body then in
reases in size and eventually be
omesvery long.The resulting giant mi
elles soon ex
eed the persisten
e length, of a few hundredmi
rons, at whi
h thermal motion over
omes lo
al rigidity. Su
h giant mi
ellesresemble a �exible polymer 
hain. After 
rossing the overlap threshold, these
hainlike obje
ts entangle but remain in an isotropi
 phase with no long-rangeorientational order. Su
h giant mi
elles are often referred to as �worm-like mi
elles�or �living polymers�.At very high 
on
entrations, orientational ordering 
an arise, as 
an positionalordering, giving for example a hexagonal array of in�nite straight 
ylinders[23℄.A phase diagram is given in Fig. 4.11. A number of re
ent review arti
les areavailable on the rheology of worm like mi
elles. [8, 137, 44, 23, 136, 115, 89℄.
Figure 4.10: Cross-se
tion and side-view of a worm-like mi
elle. Figure taken fromhttp://
eb.
am.a
.ukWithin a mean �eld theory [118, 95℄ the free energy in terms of c(N) the numberdensity of aggregates 
ontaining N amphiphiles or monomers is given by

βF =
∑

N

c(N)[ln c(N) + βE] + F0(φ) (4.39)where β = 1/kBT ; E is the energy of two end 
aps per 
hain and c ln c 
omes frommixing of mi
elles of di�erent length. F0(φ) 
ontains ex
luded volume intera
tionsand solvent terms represented via the volume fra
tion φ, with
φ = νC = ν0

∑

N

Nc(N), (4.40)where ν0 is the mole
ular volume of the amphiphiles and C their total 
on
entra-tion. 69



Chapter 4. Introdu
tion to Rheology of Nemati
s

Figure 4.11: S
hemati
 phase diagram for self assembly of ioni
 amphiphiles intogiant mi
elles and related stru
tures.The verti
al axis represents volume fra
tion
Φ of amphiphile; the horizontal is the ratio Cs/C of added salt. Figure taken fromRef. [23℄.Minimizing this free energy at �xed φ gives the distribution

c(N) ∝ exp

[
−N
N̂

]
; N̂ ≃ φ1/2 exp

[
βE

2

] (4.41)Experimental estimates of overlap volume fra
tion indi
ate that they are in therange of 0.005 − 5% and E ∼ 10 − 20kBT . 70
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Figure 4.12: Elasti
 moduli G′/G0 and G”/G0 as fun
tion of the angular frequen
yfor temperatures 
omprised between 20 and 45 degree Centigrade. G0 is the elasti
modulus and the angular frequen
y ω is normalized by the relaxation time of the�uid. Data are for the CPCl-NaSal wormlike mi
elles in water (0.5 M NaCl) at 
 =12 wt and are reprodu
ed from Ref. [15℄. The solid lines 
orrespond to Maxwellianvis
oelasti
 behavior.The observation whi
h attra
ted rheologi
al interest in wormlike mi
elle so-lutions was that their linear vis
oelasti
 response 
an often be quite a

uratelymodeled by a Maxwell model with just one or two relaxation times[16, 111, 110℄.Over two de
ades, Cates and others have developed 
onstitutive models whi
h pro-vide ex
ellent agreement with the measured linear vis
oelasti
 response of wormlikemi
elles [19, 54, 22℄.In the model of Cates, it is assumed that there are two distin
t relaxation me
h-anisms for wormlike mi
elles. These are: (i) a break up of the wormlike mi
ellewith the 
hain breaking at any point along the length with equal probability and,(ii) the reptation of the mi
elle through the 
on�nement tube. These two me
ha-nism have 
hara
teristi
 time s
ales τbr and τrep for breaking and reptation. In thefast breaking limit, where the break-up time is mu
h shorter than the reptationtime, i.e. τbr ≪ τrep, the Cates model [125℄ predi
ts Maxwellian behaviour of these71
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sworm-like mi
elles with a Maxwell relaxation time τm = (τbrτrep)
1/2. A 
omparisonof the Maxwell model with experiment is given in the �gure (4.12).The Maxwell model �t is best for wormlike mi
elles in 
on
entrated solution.For low 
on
entration before overlaping regime, wormlike mi
elles show shear thi
k-ening behaviour and a Maxwell �t is poor, as indi
ated in referen
e [108℄.Cates and Candau [22℄ developed a s
aling for the relaxation time, elasti
modulus(G0) and zero shear rate vis
osity (η0) with volume fra
tion φ of surfa
tant.These predi
t

τm = (τbrτrep)
1/2 ∼ φ1.5, (4.42)as well as

G0 ∼ φ2, (4.43)and
η0 = G0τm ∼ φ3.5, (4.44)The predi
ted s
aling behaviour is in very good agreement with experimental re-sults [13℄. In wormlike mi
elles whi
h exhibit some degree of bran
hing or in thepresen
e of strongly binding 
ounterions, the s
aling of vis
osity and relaxationtime break down but the modulus 
ontinues to follow the quadrati
 s
aling withvolume fra
tion [120, 121, 109, 114℄The e�e
t of salt 
on
entration on the rheology of wormlike mi
elles solutions
an be quite 
omplex. The vis
osity and relaxation time are often non-monotoni
fun
tions of salt 
on
entration [111, 120, 121, 34℄. Granek and Cates [54℄ showedthat the high frequen
y deviations 
an be explained by Rouse-like relaxation modesand primitive path �u
tuations along the mi
elle 
hain.The linear behaviour agrees well with the Maxwell model at higher 
on
en-trations of surfa
tant. The break up time τbr roughly 
orresponds to the angu-lar frequen
y at whi
h the data deviates from the predi
tion of the single modeMaxwell model[77℄ and has been found to lie between several tens of millise
ondsto several hundred millise
onds [76℄. Kern et al. [77℄ show that the number ofentanglements per wormlike mi
elle 
an be approximated by the inverse of thehigh frequen
y minimum in the normalised storage modulus.

72
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s4.4.1 A Constitutive equation for giant mi
ellesCates has developed a 
onstitutive equation for giant mi
elles in referen
e [20℄,whi
h we reprodu
e here for 
ompleteness. This model is the extension of thereptation model of Doi and Edwards for polymers, with the dynami
s of breakingand fusion of giant mi
elles in
orporated and is 
alled a reptation-rea
tion model.The 
onstitutive equation for this model is the following
σij =

15

4
G0

[
Wij −

δij
3

]

Wij =

∫ t

−∞
B(ν(t′)) exp

[
−
∫ t

t′
D(ν(t

′′
))dt

′′

]
S̃(F tt′

mn) dt
′

ν(t) = WijΓij

S̃ =

〈
FikukFjlul
|Fimum|

〉

0

(4.45)where Wij = 〈uiuj〉 is the se
ond moment of the distribution at time t of the unitorientation ve
tor ui for tube segments. This is the same as in the 
ase of polymers.The new features of Eq. 4.45 are B and D, whi
h are the birth rate and death ratesfor tube segment due to the rea
tion model. They 
an be well approximated for
ν > 0 by D = 1/τ + ν , B = 1/τ and for ν < 0, D = 1/τ , B = 1/τ − ν. Fij isthe deformation. In the linear vis
oelasti
 limit Eq. 4.45 redu
es to the Maxwellmodel. The solution of Eq. 4.45 in terms of the predi
ted �ow 
urves is given inFig. 4.13, taken from referen
e [23℄.In the nonlinear rheology of worm like mi
elles, one interesting phenomenon isthat of shear banding, reviewed in the following referen
es: Refs. [47, 40, 96, 73℄.4.5 Shear bandingIn worm like mi
elles above a 
ertain strain rate γ̇p, the shear stress σ attains aplateau value σ = σp. This plateau value is maintained at this level for at least twode
ades in γ̇ ≥ γ̇p. The normal stress di�eren
e N1 however, 
ontinues to in
rease.This represents shear thinning of a quite drasti
 kind.For a shear thinning system su
h as this, it is now understood that the systemforms shear bands. These bands 
omprise layers of �uid with unequal strain rates73
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Figure 4.13: Flow 
urves for reptation-rea
tion model:solid line, by solution ofEq.4.45. dashed line, with additional quasi-newtonian stress 
al
ulated,dotted-line, top-jumping shear-banded solution. Figure from M. E. Cates and S. Fielding,Advan
es in Physi
s 55, 799-879 (2006)but equal stress. The bands 
an form in the vorti
ity dire
tion (vorti
ity banding)or in the gradient dire
tion (gradient banding), in whi
h the normals to the bandsare along the velo
ity gradient dire
tion. (Banding in the velo
ity dire
tion is alsoa possibility.)This is an instability with the following origin: the �ow 
urve σ(γ̇) is a nonmonotoni
 
urve with in
reasing and de
reasing bran
hes. After attaining a max-imum stress σp in homogeneous �ow, the stress de
reases, attaining a minima andthen starts to in
rease linearly again. Flow is unstable on the de
reasing bran
hand thus be
omes inhomogeneous, separating into a high shear rate and a lowshear rate bran
h. This hydrodynami
al instability 
an be avoided if we take agap in the Couette geometry whi
h is smaller than minimum wave length of the�u
tuations. It is then possible to tra
e the full non-monotoni
 
urve.
74
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tion to Rheology of Nemati
s4.6 Rheologi
al ChaosNew experiments with enhan
ed spatial and temporal resolution in
reasingly showthat shear banded systems 
an exhibit 
omplex dynami
s. Unusual dynami
alsteady states are generi
ally obtained in the non-linear �ow behaviour of 
om-plex �uids driven out of equilibrium[87, 21, 116, 41, 59, 92℄. When su
h �uids aresheared uniformly, the shear stress σ is typi
ally regular at very small shear rates γ̇.However, at larger shear rates the response is often unsteady, exhibiting os
illationsin spa
e and time as a prelude to intermitten
y and 
haos [11, 108, 10, 52, 33℄.In this non-linear regime, 
omplex �uids under shear exhibit a variety of insta-bilities, in
luding instabilities to �shear banded� states[124, 90, 125, 98, 96, 47℄.Su
h banded states arise from an underlying multi-valued 
onstitutive relation
onne
ting the stress and the shear rate, and are often obtained as a pre
ursor tospatio-temporal intermitten
y and 
haoti
 behaviour in �ow response[13, 83, 14,18, 133, 57, 45, 84, 117℄.Su
h rheologi
al 
haos must be a 
onsequen
e of 
onstitutive non-linearities,sin
e Reynolds numbers asso
iated with the �ow are too small for 
onve
tive non-linearities to be important[96, 47℄. Su
h 
onstitutive non-linearities originate inthe non-trivial internal stru
ture of the �uid and its 
oupling to the �ow. Re
entrheologi
al studies of living polymers obtain an os
illatory stress response to steadyshear at shear rates above a threshold value[11, 108, 10, 52℄. Su
h an os
illatoryresponse turns 
haoti
 at still larger shear rates[11, 108, 10, 52℄.Although a very large number of experiments on instabilities and �rheologi
al
haos� exist, we will 
on
entrate on des
ribing the work of Sood and 
ollaboratorsat the Indian Institute of S
ien
e, Bangalore over the past de
ade. Sood and
ollaborators have pioneered studies of the rheologi
al behaviour in the worm-likemi
ellar system formed by the surfa
tant CTAT at low 
on
entrations. In Fig. 4.14the graph between shear stress σxy and γ̇, the �ow relation, is shown (
f. Ref. [108℄).The behaviour in the plateau region exhibits remarkable properties. On applyinga shear rate 
hosen in the plateau region of the �ow 
urve, the stress instead ofde
aying to a steady state, os
illates in time, as shown in Fig. 4.15, with both aregular and irregular 
omponent. These os
illations are not transient.Sood and 
ollaborators[11℄ provide a detailed analysis of the os
illatory signalof stress, �nding that the signal shows attributes of low dimensional 
haos. To do75
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sthis, a number N of m dimensional ve
tors ~Xi = (σi, σi+L, . . . , σi+(m−1)L), where Lis the delay time, are formed from the time series of the stress signal. A embeddingtheorem of Takens ensures that the dynami
s of the original system is representedby F : ~Xi → ~Xi+1, provided that m, the embedding dimension, is 
hosen 
orre
tly.One 
al
ulates the 
orrelation integral C(R), de�ned in an m-dimensional phasespa
e, as C(R) = limN→∞
1
N2

∑N
1,j=1H(R−| ~Xi− ~Xj |), where H(x) is the Heavisidefun
tion.For small R, C(R) is known to s
ale as C(R) ∼ Rν where ν, the 
orelationdimension, gives useful information about the lo
al stru
ture of the attra
tor. Theexponent ν is obtained as a fun
tion of log(R) from the plot of log[C(R)] versus

log(R). A plateau in the plot of ν versus log(R) gives the 
orre
t ν for a 
hosendimension m. The minimum value of m for whi
h the ν saturates is the 
orre
tvalue of m to rpresent the system. Furthermore, if ν < m, then the signal is dueto deterministi
 
haos rather than to random noise.Sood and 
ollaborators found ν = 2.8 and m = 4, showing that the signalexhibits low dimensional 
haos. Bandyopadhyay and Sood [10℄ also found that,with in
reasing shear rate, the 
orrelation dimension ν, the embedding dimension
m and the Lyapunov exponent all in
rease, showing in
reased 
omplexity in thedynami
s. In Ref. [52℄ the authors found that adding salt to wormlike mi
ellesleads to a 
oupling of �ow and 
on
entration. In this regime they observe thatthe plateau found in the shear thinning region of the �ow 
urve attains a slope, aspredi
ted by theory [48℄.To 
on�rm this, Sood and 
ollaborators have performed small angle light s
at-tering (SALS) measurements on the sample, in parallel with simultaneous stressrelaxation measurement. A butter�y pattern in the intensity of the s
attered lightis found, 
on�rming the presen
e of 
on
entration-�ow 
oupling. These authorsalso found that the signal of the stress in the shear thinning region of the �ow 
urveshows Type II intermitten
y, leading to a 
haoti
 signal on in
reasing the shearrate further. The SALS also gives a strong indi
ation that the system is at thethreshold of nemati
 ordering. The signal in orientation �u
tuations is 
orrelatedwith the stress relaxation signal, whi
h be
ome 
haoti
 on in
reasing the shearrate further.In Ref. [51℄, the authors perform a "Granger 
ausality test" on the time seriesof stress and orientation, �nding that the orientation �u
tuations have a strong76
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sin�uen
e on stress �u
tuations. It has been argued that a hydrodynami
 des
rip-

Figure 4.14: The metastable bran
h of the �ow 
urve of 1.35wt.% CTAT. measuredunder 
onditions of 
ontroled stress. Figure from R. Bandyopadhyay and A. K.Sood, Europhys Lett 56 447-453 (2001)tion of this behaviour requires 
oupling the internal orientational state of su
h apolymeri
 �uid to the �ow. This motivates the study of the problem addressedin the next two 
hapters. This is the model problem of the spatio-temporal de-s
ription of an orientable �uid, su
h as a nemati
 liquid 
rystal, pla
ed in a simplesteady shear �ow[61, 42, 43℄.4.6.1 Models for Rheologi
al 
haosThere is a substantial body of previous work on the dynami
al states of 
omplex�uids under shear. A model due to Fielding and Olmsted expresses the stressas a fun
tion of a mi
rostru
tural parameter 
hosen, for illustrative purposes, tobe the mi
ellar length, whi
h itself evolves in response to the shear rate. Themi
rostru
tural parameter yields a vis
oelasti
 
ontribution to the stress, over andabove the regular �uid 
ontribution[49℄. Fielding and Olmsted show that their77



Chapter 4. Introdu
tion to Rheology of Nemati
s

Figure 4.15: The time-dependent relaxation of stress in 1.35wt.% CTAT, on sub-je
ting the sample to a 
onstant step-strain rate of 100s−1 Figure from R. Bandy-opadhyay and A. K. Sood, Europhys Lett 56 447-453 (2001)model exhibits spatio-temporal rheo
haos. Aradian and Cates have proposed aone-dimensional model for the instabilities of a shear-banding �uid system, writingdown an equation for the time-variation of the shear stress whi
h depends both onthe instantaneous value of the strain rate as well as on the previous history of thestress[9℄. This single non-lo
al equation 
an be 
ast as two 
oupled lo
al equations,one for the stress as well as another for a �memory� term, arising out of the singleequation for the stress evolution. This simple model yields regimes of periodi
 aswell as 
haoti
 behaviour[9℄.Both these models assume simpli�ed s
alar des
riptions of the internal mi-
rostru
ture. A re
ent, 
omprehensive study of a shear-banding interfa
e by Field-ing and Olmsted, based on the di�usive Johnson-Segalman (DJS) model, showsthat the intera
tion of multiple shear bands 
an yield a time-dependent stressresponse possessing attributes of low-dimensional 
haos[50℄. However, su
h ap-proa
hes do not examine how su
h a stress response might arise from an under-lying mi
ros
opi
 equation of motion. Re
ent work by Chakraborty, Dasgupta78
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sand Sood on a one-dimensional model for nemati
 rheo
haos extends the model ofRefs. [26, 37℄ by in
orporating hydrodynami
s, �nding stable shear banding as wellas the 
oexisten
e of banded and spatio-temporally 
haoti
 states[27℄. Further, theDJS model is derivable as a spe
i�
 limit of their model, in whi
h the equation forthe order-parameter part of the stress is linearised about the isotropi
 limit.4.7 Hydrodynami
s of Nemati
 FluidsThere are several methods to derive the hydrodynami
s of nemati
s. These the-ories in general follow from the general frame work of 
lassi
al linear irreversiblethermodynami
s as dis
ussed, for example, by de Groot and Mazur[55℄.In general, the entropy produ
tion in the system is 
al
ulated from the lo-
al 
onservation laws and the assumption of lo
al thermodynami
 equilibrium, interms of the relevant 
oarse-grained hydrodynami
 variables, in
luding the orienta-tion tensor qαβ. in this derivation it is assumed that we 
an de�ne thermodynami
squantities as an average over a length s
ale large with respe
t to mi
ros
opi
 lengthsand small with respe
t to the length s
ales of typi
al gradients 
hara
teristi
 ofthe non-equilibrium pro
esses[99, 100, 79℄.These quantities are then assumed to obey standard thermodynami
 relations.One identi�es the relevant thermodynami
 for
es and �uxes in the system from the
onjugate pairs that appear in the entropy produ
tion relation. Di�erent 
hoi
esof �uxes and for
es may be 
onvenient for di�erent appli
ations [39℄. The systemis assumed very 
lose to equilibrium so that we may expand the �uxes linearlyin the for
es. Finally, from the resulting for
e-�ux relation, one uses 
onservationlaws to obtain the equations of motion for Qαβ(r, t) and v(r,t).The equations for a nemati
 liquid 
rystal in terms of the order parameter Qhave been derived by Olmsted in his thesis. To zeroth order the equations are asfollows. We de�ne the free energy from
F =

∫
(Fb + Fg) dr. (4.46)and the mole
ular �eld

Φαβ = − δF
δQαβ

(4.47)79



Chapter 4. Introdu
tion to Rheology of Nemati
sWith these,
(∂t + v · ∇)Qαβ = (∇v)

αγ
Qγβ −Qαγ(∇v)

γβ
+ β1(̂∇v)αβ +

1

β2
Φ̂αβ (4.48)

(∂t + v · ∇)vα = ∂γσαγ , (4.49)where
σαβ = σ̂αβ + σαβ + σdαβ − pδαβ (4.50)
σ̂αβ = β3(̂∇v)αβ − β1Φ̂αβ (4.51)
σαβ = Φ̂αγQγβ −QαγΦ̂γβ (4.52)

σdαβ ≡ παρµ∂βQρµ, πγαβ ≡ − δF
δ∂γQαβ

(4.53)The underline implies the antisymmetri
 part of the tensor and thêsymbol requiresthat we 
onsider the symmetri
 tra
e less part of the tensor.There are other approa
hes to the same problem, in
luding the Poisson bra
ketmethod and mole
ular model approa
hes su
h as the one of Doi and Edwards. Amole
ular model, due to Hess and 
o-workers obtains the related equation of motion
dQ

dt
− 2Ω̂ · Q − 2σ′Γ̂ · Q + τ−1

Q Φ = −
√

2
τap
τa

Γ. (4.54)This equation is derived for parti
les of spheroidal shape. These redu
e to rods ofnegligible diameter at σ′ = 0; we will use σ′ = 0 in all our numeri
al 
al
ulation.This 
hoi
e ensures that the two equations of motion above for the order parameter
oin
ide.If the non linear part of the Φ is dropped, then σ̂αβ 
an be repla
ed in pla
e of
Q in the equation 4.48. This re
overs the Johnson-Segalman model.4.8 Coupled Map Latti
esCoupled map latti
es (CML) are basi
 models for the time evolution of nonlinearsystems whi
h are extended in spa
e or involve many individual units. A CML isa dis
rete time dynami
al system generated by a mapping a
ting on real (ve
tor)sequen
es. The 
hara
teristi
 features of 
oupled map latti
es are 80
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• They obey dis
rete time dynami
s
• They possess a dis
rete nature of the underlying spa
e (latti
e or network)
• The lo
al variables 
onsist of real numbers or real ve
torsThe typi
al and most studied example is the model introdu
ed by Kaneko in 1983.It is given by the following iterations

ut+1
s = (1 − ǫ)f(uts) +

ǫ

2
{f(uts−1) + f(uts+1)} t ∈ N, ǫ ∈ [0, 1] (4.55)where uts ∈ R and f is a real map.The 
on�gurations {uts} may represent the spatial pro�le of a 
hemi
al 
on-
entration, of a population density, of a velo
ity �eld et
. In these 
ases, the
on�gurations are bounded sequen
es, sometimes �nite or periodi
. Some sys-tems may require unbounded 
on�gurations, for example the Frenkel-Kontorovamodel [30℄. CMLs were independently introdu
ed by K. Kaneko, R Kapral and S.Kuzentsov in 1983-84 [68, 69, 131, 75, 80, 81℄. A 
omprehensive set of results forCML's 
an be found in Refs. [36, 1, 2, 29℄.The dynami
s of a CML is governed by two 
ompeting terms. One is an indi-vidual nonlinear rea
tion represented by f , while the se
ond is a spatial intera
tion(
oupling) with variable intensity ǫ. In the basi
 model, the intera
tion is a 
on-volution operator whi
h represents a di�usive 
oupling. This simple formulationmakes the 
oupled map latti
d a paradigm of nonlinear spatially extended dynam-i
al systems. In parti
ular, CMLs are spe
ially designed to fa
ilitate 
omputersimulations over large spa
e-time domains. The simulations exhibit a extraordi-nary variety of behaviours upon 
hanges in the lo
al map and in the intera
tion.This diverse phenomenology motivates the appli
ation of CML to the simulationof real systems. (For instan
e, a re
ent spe
ta
ular appli
ation 
an be found in
loud simulations by CML's in Ref. [93℄).The dynami
s of spatially extended systems is traditionally des
ribed by partialdi�erential equations (PDEs). CMLs provide simpler models where one 
an usu-ally safely assume that dynami
s of lo
al 
omponents of the �eld (lo
al dynami
ssystems or lo
al maps) is well known, enabling the isolation of the e�e
ts of spatialintera
tions. CMLs are, in a sense, ideal models for 
omputer simulations sin
ethey are dis
rete in spa
e. Therefore, they allow a dire
t numeri
al simulation81



Chapter 4. Introdu
tion to Rheology of Nemati
swithout the requirement for the 
omplex dis
retization s
hemes required for thesolution of PDEs. This 
ru
ial feature of CML was used extensively by Kaneko,who produ
ed a large variety of numeri
al studies of CML, providing visualiza-tions of a large number of spatio-temporal patterns exhibiting di�erent regimes ofdynami
s [69, 72℄.4.9 Summary of Work on Rheo
haosIn the �fth 
hapter we propose and study a lo
al map 
apable of des
ribing thefull variety of dynami
al states, ranging from regular to 
haoti
, obtained when anemati
 liquid 
rystal is subje
ted to a steady shear �ow. We have explored manyalternative formulation of the map and dis
ussed there problems. In parti
ular wehave dis
uss the map in terms of a quaternion parametrization of rotations of thelo
al frame des
ribed by the axes of the nemati
 dire
tor, subdire
tor, and the jointnormal to these, with two additional s
alars des
ribing the strength of ordering.Our model yields kayaking, wagging, tumbling, aligned, and 
oexisten
e states, a
-
ommodated in a phase diagram whi
h 
losely resembles phase diagrams obtainedusing representations of the dynami
s whi
h are based on ordinary di�erentialequations. We also study the behaviour of the map under periodi
 perturbationsof the shear rate. Su
h a map 
an serve as a building blo
k for the 
onstru
tion oflatti
e models of the 
omplex spatiotemporal states predi
ted for sheared nemati
s.In the sixth 
hapter, we propose a 
oupled map latti
e (CML) model for su
h
omplex spatio-temporal behaviour in a passively sheared nemati
 liquid 
rystal,using lo
al maps 
onstru
ted so as to a

urately des
ribe the spatially homoge-neous 
ase. Su
h lo
al maps are 
oupled di�usively to nearest and next nearestneighbours to mimi
 the e�e
ts of spatial gradients in the underlying equationsof motion. We investigate the dynami
al steady states obtained as parameters inthe map and the strength of the spatial 
oupling are varied, studying lo
al tempo-ral properties at a single site as well as spatio-temporal features of the extendedsystem. Our methods reprodu
e the full range of spatio-temporal behaviour seenin earlier one-dimensional studies based on partial di�erential equations. We re-port results for both the one and two-dimensional 
ases, showing that spatial 
ou-pling favours uniform or periodi
ally time-varying states, as intuitively expe
ted.82
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sWe demonstrate and 
hara
terise regimes of spatio-temporal intermitten
y out ofwhi
h 
haos develops. Our work suggests that su
h simpli�ed latti
e representa-tions of the spatio-temporal dynami
s of 
omplex �uids under shear may provideuseful insights as well as fast and numeri
ally tra
table alternatives to 
ontinuumrepresentations.

83



5Regular and Chaoti
 States in a Lo
alMap Des
ription of Sheared Nemati
Liquid Crystals
5.1 Introdu
tionRe
ent rheologi
al studies of �living polymers�, solutions of worm-like mi
elles inwhi
h the energies for s
ission and re
ombination are thermally a

essible, obtainan os
illatory response to steady shear at low shear rates whi
h turns 
haoti
 atlarger shear rates[11, 52℄. It has been argued that a hydrodynami
 des
riptionof this behaviour requires a �eld des
ribing the lo
al orientation of the polymer,motivating a treatment of the problem of an orientable �uid, su
h as a nemati
, ina uniform shear �ow[61, 42, 43℄.Nonlinear relaxation equations for the symmetri
, tra
eless se
ond rank ten-sor Q 
hara
terising lo
al order in a sheared nemati
 have been derived [61, 42,43, 62, 102, 82, 97, 126℄. Assuming spatial uniformity, a system of 5 
oupledordinary di�erential equations (ODEs) for the 5 independent 
omponents of Qin a suitable tensor basis is obtained. Solving this system of equations yieldsa 
omplex phase diagram admitting many states � aligned, tumbling, wagging,kayak-wagging, kayak-tumbling and 
haoti
 � as fun
tions of the shear rate γ̇and a phenomenologi
al relaxation time whi
h is a parameter in the equations ofmotion[112, 113, 56℄. Re
ent work adds spatial variations: numeri
al studies ofthe partial di�erential equations thus obtained yield a phase diagram 
ontaining84
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 States in a Lo
al Map Des
ription of ShearedNemati
 Liquid Crystalsspatio-temporally regular, intermittent and 
haoti
 states[26, 37℄.The degrees of freedom whi
h enter a 
oarse-grained des
ription of an ori-entable �uid are mesos
opi
. Spatio-temporal stru
ture arises from the 
oupling oflo
ally ordered regions, through pro
esses su
h as mole
ular di�usion, �ow-indu
eddissipation and adve
tion. A powerful approa
h to understanding 
omplex spatio-temporal dynami
s is based on the study of 
oupled map latti
es, a numeri
als
heme in whi
h maps pla
ed on the sites of a latti
e evolve both via lo
al dynam-i
s as well as through 
ouplings to neighbouring sites[1℄. However, the utility ofthis methodology in a spe
i�
 
ontext is often severely limited by the availabilityof lo
al maps able to des
ribe the spatially uniform 
ase. This 
hapter addressesthis requirement in the 
ontext of a model for rheo
haos, proposing the �rst lo
almap des
ription of the regular and 
haoti
 states obtained in sheared nemati
s.5.2 Equation of Motion for Nemati
sThe hydrodynami
 equation of motion for nemati
s has been presented in theprevious 
hapter, in the form of Eqns. 4.48. Sin
e our results will be 
omparedwith the work of Hess and 
ollaborators in Ref. [113℄, we will use their notation.The equation of motion used by Hess and 
o-workers (Eq. 5.1) is 
losely relatedto the equation of motion of Eq. 4.48. The di�eren
e is that Eqn. 5.1 is derivedfor parti
les of spheroidal shape. This shape redu
es to the shape of a rod withnegligible diameter at σ′ = 0. We will use σ′ = 0 in all our numeri
al 
al
ulations.We will also negle
t spatial variation sin
e our interest is in the 
onstru
tion ofa lo
al map for nematodynami
s. Extensions to models with spatial 
oupling willbe dis
ussed in the following 
hapter.De�ning b̂ := 1
2
(b + bT ) − 1

3
(trb)δ to be the symmetri
-tra
eless part of these
ond-rank tensor b, the equation of motion for Q in a passive velo
ity �eld is,in the notations of Refs. [61, 113℄:

dQ

dt
− 2Ω̂ · Q − 2σ′Γ̂ ·Q + τ−1

Q Φ = −
√

2
τap
τa

Γ (5.1)where the tensor Ω = 1
2
((∇v)T −∇v), Γ = 1

2
((∇v)T +∇v) and ∇v is the velo
itygradient tensor, with v = γ̇yex, where ex is a unit ve
tor in the x− dire
tion. The85
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 States in a Lo
al Map Des
ription of ShearedNemati
 Liquid Crystalsvelo
ity is along the x dire
tion, the velo
ity gradient is along the y dire
tion, while
z is the vorti
ity dire
tion. The quantities τa > 0 and τap are phenomenologi
alquantities related to relaxation times, σ′ des
ribes the 
hange of alignment 
ausedby Γ and Φ = ∂φ/∂Q, with φ(Q) = 1

2
AQ : Q − 1

3

√
6B(Q · Q) : Q + 1

4
C(Q : Q)2.The notation Q : Q represents QijQji, with repeated indi
es summed over. Here

A = A0(1 − T ∗/T ), and B and C are 
onstrained by the 
onditions A0 > 0,
B > 0, C > 0 and B2 > 9

2
A0C.S
aling t = t∗τa/Ak, v = v∗Ak/τa and a = a∗ak, Eqn. (6.2) 
an be written indimensionless form,

dQ∗

dt∗
−2Ω̂∗.Q∗−2σ′Γ̂∗.Q∗+(θQ∗−3

√
6Q̂∗.Q∗+2(Q∗ : Q∗)Q∗) =

√
3

2
λkΓ

∗ (5.2)where Ak = A0(1 − T ∗/Tk) = 2B2/9C, ak = aeq(Tk) = 2B/3C is the (nonzero)equilibrium value of the s
alar order parameter a at the transition temperature Tk,
λk = −2

3

√
3 τap

τaak
and θ = (1 − T ∗

T
)/(1 − T ∗

Tk
) is the redu
ed temperature.5.3 Nematodynami
s and Quaternion AlgebrasThere is, in general, no systemati
 pro
edure for the 
onstru
tion of su
h maps.However, it is reasonable to require that any su
h map should a

urately reprodu
ethe full variety of states obtained through the study of the 
orresponding ODEs.It should also enable useful physi
al insights through a sensible 
hoi
e of physi
alvariables. One obvious possibility is simply the dis
retization of the governingODEs. Su
h a 
hoi
e of variables, however, is not parti
ularly illuminating as theseequations are formulated in terms of the 
omponents of Q in a spe
i�
 spa
e-�xedtensor basis, rather than in terms of variables more natural to the problem.We have thus explored an alternative formulation of this problem, 
onstru
tinga lo
al map in terms of quaternion variables. These variables en
ode the dynam-i
s of the orthogonal set of axes asso
iated with the eigenve
tors of Q, i.e. thedire
tor, sub-dire
tor and the joint normal to these. Our approa
h in
orporatesbiaxiality, is formulated in terms of physi
ally a

essible variables and is 
ompu-tationally straightforward to implement. Our results, summarized in the phasediagram of Fig. 5.1, are in good agreement with previous work based on ODEs86
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 States in a Lo
al Map Des
ription of ShearedNemati
 Liquid Crystals[113℄, but provide an e�
ient alternative to su
h methods. (As is 
ommon inhigh dimensional 
omplex systems, there is the possibility of 
oexisten
e of dif-ferent dynami
al states; our phase diagram shows the dominant attra
tor of thedynami
s.)5.3.1 Orthogonal Tensor BasisOne way to expand the alignment tensor way is as follows,
Q =

4∑

k=0

akT
k, (5.3)with

T0 =
√

3/2êzez, T1 =
√

1/2(exex − eyey),

T2 =
√

2êxey, T3 =
√

2êxez, T4 =
√

2êyez. (5.4)where Tk's are the orthogonal basis tensor
⇒ Ti : Tk = δik. (5.5)The dynami
al equation for the alignment tensor in shear �ow is given by [113℄

ȧ0 = −(θ − 3a0 + 2a2)a0 − 3(a2
1 + a2

2) +
3

2
(a2

3 + a2
4) −

3

2

√
3σ′γ̇a2,

ȧ1 = −(θ + 6a0 + 2a2)a1 + γ̇a2 +
3

2

√
3(a2

3 − a2
4),

ȧ2 = −(θ + 6a0 + 2a2)a2 − γ̇a1 + 3
√

3a3a4 +

√
3

2
λkγ̇ −

1

3

√
3σ′γ̇a0,

ȧ3 = −(θ − 3a0 + 2a2)a3 +
1

2
γ̇(σ′ + 1)a4 + 3

√
3(a1a3 + a2a4),

ȧ4 = −(θ − 3a0 + 2a2)a4 +
1

2
γ̇(σ′ − 1)a3 + 3

√
3(a2a3 − a1a4), (5.6)where a2 = a0

2 + a1
2 + a2

2 + a3
2 + a4

2, This parameterization suits PDE-basednumeri
al approa
hes but the physi
al interpretation of the results dire
tly in thesevariables is more problemati
. We thus address the problem of the dynami
s of theorientation tensor by posing the problem in terms of a map involving quaternionvariables. 87
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 States in a Lo
al Map Des
ription of ShearedNemati
 Liquid Crystals5.3.2 QuaternionDe�nitionQuaternions are members of an algebra with parameters (e0, e1, e2, e3) ∈ R, repre-sented as
q = {e0 + e1i+ e2j + e3k} (5.7)where addition is de�ned by

{e0+e1i+e2j+e3k}+{b0+b1i+b2j+b3k} = (e0+b0)+(e1+b1)i+(e2+b2)j+(e3+b3)k,(5.8)and multipli
ation with q1 = b0 + b1i+ b2j + b3k

q.q1 = (e0.b0 − e1.b1 − e2.b2 − e3.b3)

+(e2.b3 − e3.b2 + e0.b1 + e1.b0)i

+(e3.b1 − e1.b3 + e0.b2 + e2.b0)j

+(e3.b1 − e1.b3 + e0.b3 + e3.b0)k (5.9)Using the distributive law and then applying the law
i2 = j2 = k2 = ijk = −1, . (5.10)and

ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j. (5.11)The unit quaternion is de�ned as e20 + e21 + e22 + e23 = 15.3.3 Relation to the RotationA Rotation matrix represented in terms of quaternion parameters is given by
A =



e20 + e21 − e22 − e23 2(e1e2 + e0e3) 2(e1e3 − e0e2)

2(e1e2 − e0e3) e20 − e21 + e22 − e23 2(e2e3 − e0e1)

2(e1e3 + e0e2) 2(e2e3 − e0e1) e20 − e21 − e22 + e23


 (5.12)
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 States in a Lo
al Map Des
ription of ShearedNemati
 Liquid CrystalsOne 
an transform from spa
e 
oordinates to body �xed axes by the equation
x′ = Ax, with the 
onstraint e20 + e21 + e22 + e23 = 15.3.4 Relation to Euler angleIn the 
onvention we are using, the relation between the quaternion parameter andEuler angles are given by

e0 = cos
ψ + φ

2
cos

θ

2

e1 = cos
ψ − φ

2
sin

θ

2

e2 = cos
ψ − φ

2
sin

θ

2

e3 = cos
ψ + φ

2
cos

θ

2
(5.13)It is 
lear from these relations that there is no ambiguity in the value of quaternionparameter at θ = 0, orπ. Moreover it is very easy to 
he
k numeri
al errors.5.3.5 Quaternions and the Alignment TensorAs dis
ussed above, the Q tensor admits the following parametrization: Qij =

3s1
2

(
ninj − 1

3
δij
)

+ s2
2

(mimj − lilj), where s1 and s2 represent the magnitude ofthe ordering along n (the dire
tor) and m (the subdire
tor), with n and m unitve
tors and l = n × m. The dynami
s of Q thus involves both the dynami
s ofthe frame de�ned by n,m and l as well as the dynami
s of s1 and s2.The frame dynami
s 
an be represented in many equivalent ways, su
h asthrough 
oordinate matri
es, axis-angle or Euler angle representations. However,the 
oordinate matrix representation requires a large number of parameters, theaxis-angle representation su�ers from redundan
y and the use of the Euler-anglerepresentation is marred by the �gimbal-lo
k� problem[6℄. Our parametrization ofthe frame dynami
s uses quaternion variables, providing an elegant, 
ompa
t andnumeri
ally stable alternative to these representations.Equations for ṅ, ṁ and l̇ as well as for the order parameter amplitudes ṡ1and ṡ2 
an be derived by 
onsidering a referen
e frame in whi
h the dire
tor andsubdire
tor are stationary (body frame). In the body frame, denoted by primed89
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 States in a Lo
al Map Des
ription of ShearedNemati
 Liquid Crystalsve
tors, the dire
tor 
an be 
hosen to be n′ = (1, 0, 0), the subdire
tor to be
m′ = (0, 1, 0), with l′ = (0, 0, 1). The transformation matrix A whi
h mapsve
tors from the lab frame to the body frame, 
an be de�ned in terms of quaternionparameters (e0, . . . , e3) 
onstrained by e20 + e21 + e22 + e23 = 1. This transformationmatrix has the form
A =




nx ny nz

mx my mz

lx ly lz


 =



e20 + e21 − e22 − e23 2(e1e2 + e0e3) 2(e1e3 − e0e2)

2(e1e2 − e0e3) e20 − e21 + e22 − e23 2(e2e3 − e0e1)

2(e1e3 + e0e2) 2(e2e3 − e0e1) e20 − e21 − e22 + e23


5.3.6 Dynami
al Equation for the Alignment TensorWe now dis
uss the equation for the alignment tensor in terms of quaternions.Putting σ′ = 0 in the above equations we get,

ṡ1 =
1

6
(9

√
6 s2

1 − 18 s3
1 − 3

√
6 s2

2 + 2 s1 (−3 s2
2 − 3 θ) + 3

√
6 nx ny γ̇ λk)

ṡ2 = −3
√

6 s1 s2 − 3 s2
1 s2 − s2 (s2

2 + θ) −
√

3

2
(lx ly −mx my) γ̇ λk

ė0 =
1

4
γ̇ e3+

1

4

√
3

2
γ̇ (−(ly mx + lx my) e1

s2

+
2 (ly nx + lx ny) e2

3 s1 + s2

+
2 (my nx +mx ny) e3

−3 s1 + s2

) λk
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ė3 = −1

4
γ̇ e0 +

1

4

√
3

2
γ̇ (−2 (my nx +mx ny) e0

−3 s1 + s2
−2 (ly nx + lx ny) e1

3 s1 + s2
−(ly mx + lx my) e2

s2
) λk(5.14)where nx , my , mx , my , lx and ly are 
omponents of the dire
tor and subdire
torand l = n ×m. These are given in terms of quaternion parameters as follows

nx = e20 + e21 − e22 − e23, ny = 2(e1e2 + e0e3), mx = 2(e1e2 − e0e3),

my = e20 − e21 + e22 − e23, and lx = 2(e1e3 + e0e2), ly = 2(e2e3 − e0e1)For illustration, a rigid body rotated with 
onstant angular velo
ity is representedby the equations
ė0 =

1

4
γ̇e3, ė1 =

1

4
γ̇e2, ė2 = −1

4
γ̇e1, ė3 = −1

4
γ̇e0. (5.15)5.4 Lo
al Map in terms of QuaternionsThe quantities n = (nx, ny, nz),m = (mx, my, mz) and l = (lx, ly, lz) are easilyobtained using this mapping, yielding ODE's for the parameters s1, s2, e0, e1, e2, e3.These are 
onverted into a map using a �rst-order Euler s
heme. After ea
h dis
retetime step, we renormalise the quaternion variable. Choosing σ′ and θ equal to zerofor all the results reported here in 
ommon with earlier work, our map is then
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s1
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t+ ∆

(
1

6
{9

√
6 s2

1 − 18 s3
1 − 3

√
6 s2

2 − 6 s1 s
2
2 + 3

√
6 nx ny γ̇ λk}

)t

s2
t+1 = s2

t+ ∆
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)t (5.16)5.5 Numeri
al Pro
edures and Results5.5.1 Numeri
al MethodsWe 
hoose ∆ = 0.01 for all our 
al
ulations. (The phase boundaries shown inFig. 5.1 exhibit a weak dependen
e on ∆t. However, provided ∆t is 
hosen smallenough, this dependen
e may be negle
ted.) The supers
ript `t' indi
ates that the92
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al Map Des
ription of ShearedNemati
 Liquid Crystalsvalues of the variables are taken at the t'th dis
rete time step These equations areapparently singular in the three limits s2 → 0,3s1 + s2 → 0 and 3s1 − s2 → 0,when denominators 
ontaining these quantities approa
h zero. This happens atisolated points in the dynami
al evolution of the map, when the system is renderede�e
tively uniaxial, as a 
onsequen
e of eigenvalues along two orthogonal axesbe
oming degenerate. We deal with this in two ways. First, we 
an set theseterms the denominator to a small 
onstant whenever they rea
h a preset value
lose to zero, so that these terms never a
tually 
ross zero. Alternatively, we mayuse the freedom to 
hoose the degenerate eigenve
tors in su
h a way as to 
an
el theterm whi
h vanishes in the denominator. In pra
ti
e, both s
hemes give equivalentresults. We also note that the systems is always e�e
tively biaxial due to the shear.The 
ontrol parameters are the dimensionless shear rate γ̇ and λk. In pla
eof the 5 
oupled ODE's used in the 
onventional parametrization of the dynami
sof Q, we have 6 equations 
onstrained by the normalization requirement, thereby
onserving the number of degrees of freedom.In our numeri
al analysis of the map, we start typi
ally from random initial
onditions, omitting su�
ient transients (∼ 105 time steps) to ensure that theasymptoti
 attra
tor of the dynami
s is rea
hed. Our analysis in
ludes inspe
tionof the (i) power spe
trum, (ii) phase portraits, (iii) bifur
ation diagrams and (iv)time series of the di�erent relevant variables.5.5.2 ResultsFigs. 5.2 and 5.3 show the variety of states obtained in our numeri
al 
al
ulations.Ea
h sub-�gure, labelled as Figs. 5.2 (a) - (
) and Figs. 5.3 (a)-(
), has thefollowing stru
ture: The �rst inset, labelled (i) for all �gures, des
ribes the timedependen
e of nz, the z-
omponent of the dire
tor, and the angle φ made by theproje
tion of the dire
tor on the x − y plane with the x− axis. The se
ond inset,labelled (ii) for all �gures, plots the quantities measuring the amount of orderingalong dire
tor and sub-dire
tor against ea
h other, providing the attra
tor of thesystem in the s1 − s2 plane for a generi
 initial 
ondition. The main panel in ea
hof the sub-�gures shows the power spe
trum of s1, ln(|A(f)|2) against frequen
y fon a semi-log plot.The following states are easily identi�ed: (I) An Aligned state denoted as `A'93
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Figure 5.1: The phase diagram of steady states in our model, illustrating regimesin whi
h the following steady states are obtained for a generi
 initial 
ondition:an aligned state denoted as `A', a tumbling state labelled as `T', a wagging state`W', a kayak-tumbling state `KT', a kayak-wagging state denoted by `KW' and a
omplex state denoted as `C'. This phase diagram 
losely resembles phase diagramsplotted in Refs. [113℄.
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Figure 5.2: The sequen
e of three main panels shows the power spe
trum asso
iatedwith states in the regimes labelled (a) T and (b) W in the phase diagram ofFig. 5.1. The topmost panel (
) shows a mixed state (M) (not shown separatelyin Fig. 5.1), asso
iated with the boundary between W and T The inset labelled (i)in all these panels shows typi
al plots of the time-dependen
e of the z-
omponentof the dire
tor nz and the angle φ made by the proje
tion of the dire
tor on the
x− y plane with the x− axis. The insets labelled (ii) in all these panels show thetraje
tory in the s1 − s2 plane.
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Figure 5.3: The sequen
e of three main panels shows the power spe
trum asso
iatedwith states in the regimes labelled (a) KT (kayak-tumbling), (b) KW (kayak-wagging) and (
) C (
omplex or 
haoti
) in the phase diagram of Fig. 5.1. Theinset labelled (i) in all these panels shows typi
al plots of the time-dependen
e ofthe z-
omponent of the dire
tor nz and the angle φ made by the proje
tion of thedire
tor on the x − y plane with the x− axis. The insets labelled (ii) in all thesepanels show the traje
tory in the s1 − s2 plane.
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al Map Des
ription of ShearedNemati
 Liquid Crystalsin the phase-diagram of Fig. 5.1, but omitted, for brevity, from the states shownin Fig. 5.2 and Fig. 5.3. In the aligned state, neither the frame orientation, nor s1and s2, vary in time. The dire
tor is aligned with the �ow at a �xed angle; (II)A Tumbling state, in whi
h the dire
tor lies in the shear plane (the xy plane)and rotates about the vorti
ity dire
tion (the z axis). Fig. 5.2(a)(i) indi
ates thatthis state is a stable in-plane state, sin
e the z-
omponent of the dire
tor is zero.Also, the angle made by the proje
tion of the dire
tor on the x-y plane variessmoothly between π/2 and -π/2. Fig. 5.2(a)(ii) shows the periodi
 
hara
ter ofthis state. This state is labelled as `T' in the phase-diagram of Fig.5.1; (III) AWagging state, in whi
h the dire
tor lies in the shear plane, but os
illates betweentwo values. Note that Fig. 5.2 (b)(i) indi
ates that this state is a stable in-planestate. Also, the dire
tor os
illates ba
k and forth in-plane as indi
ated in Fig. 5.2(b)(ii). Fig. 5.2 (b) shows that this state is a periodi
 state with sharp delta-fun
tion peaks in the power spe
trum. These states are denoted as `W' in thephase-diagram in Fig.5.1.In addition to the states des
ribed above, we obtain (IV) A Kayak-Tumblingstate, equivalent to the tumbling state, but in whi
h the dire
tor is out of theshear plane. Thus, as shown in Fig. 5.3(a) nz 6= 0 and the proje
tion of thedire
tor on the xy plane rotates through a full 
y
le. Su
h states are temporallyperiodi
, as shown in Fig. 5.3(a); the regular 
y
les evident in the map of s1 vs.
s2 (Fig. 5.3(a)(ii)) is a further indi
ation of periodi
 behaviour. These states arenoted as `KT' in the phase-diagram of Fig. 5.1; (V) A Kayak-Wagging statewhere, as in KT, the dire
tor is out of plane, but the proje
tion of the dire
tor onthe shear plane os
illates between two values. The properties of su
h states areillustrated in Fig. 5.3(b). Su
h states are again temporally periodi
. The 
y
li
traje
tory of the system in the s1 − s2 plane (Fig. 5.3(b)(ii)) further 
on�rms su
hperiodi
 behaviour. These states are denoted by `KW' in the phase-diagram ofFig. 5.1; (VI) A Mixed state, typi
ally found 
lose to the boundaries betweenwagging and tumbling states, whose properties are illustrated in Fig. 5.2(
). Insu
h states, the dire
tor exhibits both os
illation and 
omplete rotations. Powerspe
tra obtained at the boundaries of this phase, for example near λk = 0.99 and
γ̇ = 4.0, have a broad range of frequen
ies, and, (VII) A Complex state, in whi
hthe dire
tor lies out of the shear plane but both os
illates and rotates. The 
omplexphase exhibits 
haoti
 behaviour, as 
an be seen in Fig. 5.3(
). Note that the delta97
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Figure 5.4: Bifur
ation diagram obtained for a generi
 initial 
ondition by varying
λk at �xed γ̇ = 4.0, showing (a) nz and (b) a Poin
are se
tion of s1 (with s2 �xedat the midpoint of the s2 range) at ea
h point in the bifur
ation diagram.fun
tion peaks in the power spe
trum exhibited by the periodi
 states dis
ussedearlier have broadened into a 
ontinuum of frequen
ies. The plot of s1 vs. s2displays no regular stru
ture. These state are noted as `C' in the phase-diagramin Fig.5.1. In addition to these states, we also obtain a log rolling state in whi
hthe dire
tor is perpendi
ular to the shear plane (not shown).The range of dynami
al states manifest in this problem is 
learly evident in thebifur
ation diagram of Fig. 5.4 whi
h shows a 
ut in the phase diagram at �xed
γ̇ = 4.0, varying λk. Su
h a 
ut interse
ts KT, T, W, KW, C and A states in thephase diagram. For spe
i�
ity we show the quantities nz and the Poin
are se
tionof s1. It is 
learly evident from Fig. 5.4 that nz = 0 for the T, W and A states,while the KT, KW and C states are out-of-plane states with nz 6= 0. Further, the
s1 se
tion, shows a �xed point for the aligned state, regular 
y
les for the KT, T98
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al Map Des
ription of ShearedNemati
 Liquid CrystalsW and KW states and irregular (
haoti
) behavior for the C state.Finally, we investigate the behaviour of this dynami
al system to a 
lass ofperiodi
 perturbations 
onstru
ted by taking γ̇ = γ̇0 + γ̇1 sin (ωat), with t taken indis
rete time and ωa representing the angular frequen
y of the applied for
ing. This
orresponds to the experimental situation in whi
h the steady shear is modulatedby a small (γ̇1 ≪ 1) amplitude periodi
 perturbation. If γ̇0 were stri
tly zero, thiswould be the 
ase of purely os
illatory shear. We 
hoose ωa to be small, so thatsteady state is easily a
hieved. We have also investigated the e�e
ts of periodi
variation of λk, �nding behaviour similar to that des
ribed below.Our results are summarized in Fig. 5.5 whi
h show the power spe
trum of
s1, ln(|A(f)|2) against frequen
y f on a semi-log plot. Data for the states labelled(a) T and (b) C in the phase diagram of Fig. 5.1 are shown. For 
omparison, weshow the unperturbed power spe
trum in the lower panel of ea
h �gure. Note thatthe introdu
tion of the time modulation adds an additional periodi
 
omponentto the signal in the 
ase of the periodi
 states, su
h as the T state. The powerspe
trum shows several harmoni
s of the intrinsi
 and driving frequen
ies as well aslinear 
ombinations of these frequen
ies, 
onsistent with the inherent non-linearityof this system. The peaks in the power spe
trum are indexed as shown in the�gure. For the state labelled (C) (
omplex or 
haoti
), the power spe
trum showsbroad-band stru
ture as before, indi
ating that the periodi
 driving does not serveto stabilize order. These statements remain roughly independent of the amplitudeof the periodi
 perturbation, provided it is not large enough that nearby states inthe phase diagram are a

essed. The generi
 features des
ribed above 
ontinuesto hold in the other regions of the phase diagram.5.6 Dis
ussion and Con
lusionAradian and Cates have re
ently studied a minimal model for rheo
haos in shear-thi
kening �uids, using equations whi
h des
ribe a shear-banding system 
oupledto a retarded stress response[9℄. These authors 
onne
t their model system to amodi�ed Fitzhugh-Nagumo model, a dynami
al system with a variety of interest-ing and 
omplex phases. Fielding and Olmsted study instabilities in shear-thinning�uids, where the instability originates in the multi-bran
hed 
hara
ter of the 
on-99
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Figure 5.5: The two upper panels (a)(ii) and (b)(ii) show the power spe
trum of s1against frequen
y f on a semi-log plot for states 
orresponding to a representativepoint in the regimes labelled (a) T and (b) C (
omplex or 
haoti
) in the phasediagram of Fig. 5.1. We 
hoose γ̇ to vary periodi
ally with frequen
y ωa, su
hthat ωa = 2π∆ and γ1 = 0.1. The lower panel, labelled (a)(i) and (b)(i) in both
ases show the unperturbed power spe
trum. The frequen
y peaks indi
ated in(a)(i), the system without periodi
 for
ing, are indexed as follows: 1 = 0.729 (thefundamental frequen
y), 2 = 1.456 (twi
e the fundamental frequen
y) and 3 =2.174 (three times the fundamental frequen
y). The fundamental frequen
y of theapplied signal is shown as 4 = 0.184. The primed peaks indi
ated in (a)(ii) are
ombinations of the intrinsi
 frequen
y and the frequen
y of the applied signal andindexed as follows: 1′ = 1 - 4′, 2′ = 2 - 4′, 1′′ = 1 + 4′. Note that the broad-bandstru
ture of the power spe
trum in b(i) remains inta
t when the for
ing is applied.
100



Chapter 5. Regular and Chaoti
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al Map Des
ription of ShearedNemati
 Liquid Crystalsstitutive relation[49℄. Chakrabarty et al. report a study of the PDE's des
ribingthe dynami
s of Q, 
hara
terizing spatio-temporal routes to 
haoti
 behaviourin sheared nemati
s [26℄. All these studies allow for spatial variation - althoughrestri
ted so far to the one-dimensional 
ase - whereas our lo
al map des
ribesthe spatially uniform situation. However, the dynami
al system we study is ob-tained dire
tly from the underlying dynami
s, in 
ontrast to the approa
hes ofRefs. [9, 49℄. Whether 
oupling maps of the sort we 
onstru
t permits a 
ompletedes
ription of the spatio-temporal stru
ture obtained in Ref. [26℄ remains to beseen.In 
on
lusion, we have proposed a lo
al map des
ribing the variety of dynami-
al states obtained in a model for sheared nemati
s. Our phase diagram, Fig. 5.1,
ontains all non-trivial dynami
al states obtained in previous work. It also 
loselyresembles, even quantitatively, phase diagrams obtained in previous work whi
hused ordinary di�erential equations formulated in 
ontinuous time. We have alsostudied the behaviour of the map under parametri
 os
illations of the shear rate,a physi
al situation not addressed earlier. Our work thus supplies a 
ru
ial ingre-dient in the 
onstru
tion of 
oupled map latti
e approa
hes to the spatio-temporalaspe
ts of rheologi
al 
haos, a problem 
urrently at the boundaries of our under-standing of the dynami
s of 
omplex �uids.
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6A Coupled Map Latti
e Model forRheologi
al Chaos in Sheared Nemati
Liquid Crystals
6.1 Introdu
tionUnusual dynami
al steady states are obtained in a large number of experiments on
omplex �uids driven out of equilibrium[87, 21, 116, 41, 59, 92℄. When su
h �uidsare sheared uniformly, the shear stress σ is typi
ally regular at very small shearrates γ̇. However, at larger shear rates the response is often unsteady, exhibitingos
illations in spa
e and time as a prelude to intermitten
y and 
haos [11, 108, 10,52, 33℄. In this non-linear regime, 
omplex �uids under shear exhibit a variety ofinstabilities, in
luding instabilities to �shear banded� states[124, 90, 125, 98, 96, 47℄.Su
h banded states arise from an underlying multi-valued 
onstitutive relation
onne
ting the stress and the shear rate, and are often obtained as a pre
ursor tospatio-temporal intermitten
y and 
haoti
 behaviour in �ow response[13, 83, 14,18, 133, 57, 45, 84, 117℄.Su
h rheologi
al 
haos must be a 
onsequen
e of 
onstitutive non-linearities,sin
e Reynolds numbers asso
iated with the �ow are too small for 
onve
tive non-linearities to be important[96, 47℄. Su
h 
onstitutive non-linearities originate inthe non-trivial internal stru
ture of the �uid and its 
oupling to the �ow. Re
entrheologi
al studies of �living polymers� obtain an os
illatory stress response tosteady shear at shear rates above a threshold value[11, 108, 10, 52℄. Su
h an102



Chapter 6. A Coupled Map Latti
e Model for Rheologi
al Chaos in ShearedNemati
 Liquid Crystalsos
illatory response turns 
haoti
 at still larger shear rates[11, 108, 10, 52℄. It hasbeen argued that a hydrodynami
 des
ription of this behaviour requires 
ouplingthe internal orientational state of su
h a polymeri
 �uid to the �ow, motivating thestudy of the problem addressed in this 
hapter[26, 37℄. This is the model problemof the spatio-temporal des
ription of an orientable �uid, su
h as a nemati
 liquid
rystal, pla
ed in a simple steady shear �ow[61, 42, 43℄.There is a substantial body of previous work on the dynami
al states of 
omplex�uids under shear. A model due to Fielding and Olmsted expresses the stressas a fun
tion of a mi
rostru
tural parameter 
hosen, for illustrative purposes, tobe the mi
ellar length, whi
h itself evolves in response to the shear rate. Themi
rostru
tural parameter yields a vis
oelasti
 
ontribution to the stress, over andabove the regular �uid 
ontribution[49℄. Fielding and Olmsted show that theirmodel exhibits spatio-temporal rheo
haos. Aradian and Cates have proposed aone-dimensional model for the instabilities of a shear-banding �uid system, writingdown an equation for the time-variation of the shear stress whi
h depends both onthe instantaneous value of the strain rate as well as on the previous history of thestress[9℄. This single non-lo
al equation 
an be 
ast as two 
oupled lo
al equations,one for the stress as well as another for a �memory� term, arising out of the singleequation for the stress evolution. This simple model yields regimes of periodi
 aswell as 
haoti
 behaviour[9℄.Both these models assume simpli�ed s
alar des
riptions of the internal mi-
rostru
ture. A re
ent, 
omprehensive study of a shear-banding interfa
e by Field-ing and Olmsted, based on the di�usive Johnson-Segalman (DJS) model, showsthat the intera
tion of multiple shear bands 
an yield a time-dependent stressresponse possessing attributes of low-dimensional 
haos[50℄. However, su
h ap-proa
hes do not examine how su
h a stress response might arise from an under-lying mi
ros
opi
 equation of motion. Re
ent work by Chakraborty, Dasguptaand Sood on a one-dimensional model for nemati
 rheo
haos extends the model ofRefs. [26, 37℄ by in
orporating hydrodynami
s, �nding stable shear banding as wellas the 
oexisten
e of banded and spatio-temporally 
haoti
 states[27℄. Further, theDJS model is derivable as a spe
i�
 limit of their model, in whi
h the equation forthe order-parameter part of the stress is linearized about the isotropi
 limit.In this 
hapter, we present results from a 
omprehensive study of a simple
oupled map latti
e model for rheologi
al 
haos, as appropriate to nemati
 systems103



Chapter 6. A Coupled Map Latti
e Model for Rheologi
al Chaos in ShearedNemati
 Liquid Crystalsunder steady shear. Our lo
al �mi
rostru
tural� variable represents the orientationand degree of 
oarse-grained order of nemati
 mole
ules in the �ow, as in the workof Refs. [27, 26, 37℄. We 
ompute the 
ontribution to shear stresses arising fromthe evolution of this lo
al variable, showing how uniform, periodi
 and spatio-temporally 
haoti
 behaviour in this quantity 
an be a

essed.The use of 
oupled map latti
es to represent, at a 
oarse-grained level, behav-ior of intrinsi
ally non-linear dynami
al systems 
oupled in spa
e is at least twode
ades old[1℄. Coupled map latti
es provide relatively simple models wheneverit 
an be assumed that the dynami
s 
an be naturally de
oupled into a dominantlo
al dynami
s representing behaviour at a single point in spa
e (or small 
oarse-grained region) and a spatial 
oupling term whi
h 
onne
ts this lo
al dynami
sweakly a
ross spatial lo
ations. The 
oupling term idealizes gradient terms in theunderlying 
ontinuum equation of motion. Coupled map latti
es are well-suited for
omputer simulations, sin
e they are naturally dis
rete in spa
e and time. (Experi-mental data are, in fa
t, 
lose to the CML situation, sin
e any real-life measurementrequires dis
rete sampling of the underlying time evolution and every experimenthas some minimum threshold for spatial dis
rimination, providing a latti
e s
ale.)Coupled map latti
es have been used with su

ess by several authors in the studyof phase-ordering problems as well as in a host of other appli
ations[101, 1℄.We begin by 
onstru
ting a lo
al map for nemati
s under shear, obtained bydis
retizing a set of 
oupled ordinary di�erential equations (ODE's) des
ribingthe 
ontinuous time, spatially lo
al version of this dynami
s. These lo
al equationshave been shown to exhibit periodi
 and regular regimes as well as 
haoti
 regimes.We ben
hmark this map through a detailed 
omparison to the results from thestudy of the ODE system, showing that the qualitative and quantitative aspe
tsof the phase diagram in this single site limit are rendered a

urately. We thengeneralize this to the spatially 
oupled 
ase by 
onne
ting nearest neighbour mapsin a spe
i�ed manner. The shear enters at the level of the lo
al map, whereit is spe
i�ed in terms of a single parameter. We take the point of view thatthe 
omplexity of the spatio-temporal behavior in the physi
al problem 
an be
aptured by the most elementary version of spatial 
oupling, whi
h, for simpli
ityand following virtually all work on 
oupled map latti
es, we take to be di�usive[1,135℄.This lo
al map is shown, in agreement with previous work, to exhibit a large104



Chapter 6. A Coupled Map Latti
e Model for Rheologi
al Chaos in ShearedNemati
 Liquid Crystalsnumber of 
omplex phases, in
luding uniform (�ow aligning in the nemati
), tum-bling, kayaking and 
haoti
 phases, in addition to phases whi
h 
ombine one orthe other of these attributes[112, 113℄. While the nemati
 responds to the �uidthrough �ow alignment as well as rea
tive and dissipative terms in the equation ofmotion, we make the approximation of ignoring the ba
k-rea
tion of 
hanges in ne-mati
 order on the �uid. Thus, our approa
h omits the hydrodynami
 intera
tion,sin
e we assume that the �ow always remains passive. This is a major assumption.However, it does have the virtue that a variety of spatio-temporal phenomena withrelevan
e to both the experiments as well as to earlier modeling exer
ises 
an bedemonstrated to exist in this simple system and are amenable to analysis.Our se
ond approximation is that we study, for the most part, simple di�usive
ouplings between sites, ignoring the adve
tive terms. Consistent with this, we usesimple periodi
 boundary 
onditions on the lo
al �eld. (We would otherwise havehad to implement a more 
omplex Lees-Edwards boundary 
ondition on the �eldsand ensure an appropriate an
horing 
ondition at the boundaries[88℄.) Thus, inour model, the shear enters the lo
al dynami
s but its e�e
ts are ignored at largers
ales. We also thus negle
t the several non-linear, anisotropi
 spatial 
ouplingterms whi
h are in
luded in 
ontinuum formulations of nematodynami
s whi
h gobeyond the simplest one-Frank-
onstant approximation. We pursue this line ofinvestigation be
ause our interest is spe
i�
ally in the e�e
ts of in
luding spatial
ouplings into a model whi
h provides an a

urate des
ription of the temporalbehavior of sheared nemati
s assuming spatial behavior to be uniform. We believe� and in some 
ases have tested this assumption � that in
orporating the simplestform of spatial 
oupling should be su�
ient for us to be able to explore the fullspatio-temporal 
omplexity of the sheared nemati
 problem.The outline of this 
hapter is the following: Se
tion II outlines our numeri
almethods for the 
onstru
tion of the lo
al map. We begin by providing the lo
alequation of motion for a passively sheared �uid of nematogens, following the workof Refs. [112, 113℄. To enfor
e symmetry and tra
elessness, it is 
ustomary toproje
t these (tensor) equations onto a suitable tensor basis. We then 
onstru
t,through a simple Euler dis
retization, a map within this basis, showing that it 
anbe used to obtain all the states obtained by ODE-based methods for this problem.The following se
tion, Se
tion III, des
ribes the 
onstru
tion of the 
oupled maplatti
e, illustrating how the lo
al maps 
onstru
ted in Se
tion II 
an be 
oupled105



Chapter 6. A Coupled Map Latti
e Model for Rheologi
al Chaos in ShearedNemati
 Liquid Crystalsin spa
e, in both one and two dimensions. Se
tion IV des
ribes our results inthe one-dimensional 
ase, examining the e�e
ts of spatial 
oupling in both regularand 
omplex regions of the lo
al map. Se
tion V des
ribes our results for thetwo-dimensional 
ase, studying, as in the one-dimensional 
ase, the behaviour inboth regular and 
omplex regimes of the lo
al phase diagram. Se
tion VI 
ontainsa dis
ussion of our results as they relate to a quanti�
ation of spatio-temporal
omplexity in our model, while Se
tion VII 
ontains the 
on
lusions of this study.6.2 A Lo
al Map for Nematodynami
sWe begin with the 
ontinuum equations of motion for a nemati
 in a spe
i�ed �ow�eld. These equations use the tensor representation of the order parameter in anemati
. In thermal equilibrium, su
h order parameter 
on�gurations are weightedby a Landau-Ginzburg-de Gennes free energy. In a spe
i�
 Cartesian tensor basis,these equations, in the approximation that spatial �u
tuations in nemati
 order areabsent, 
an be 
ast in terms of equations of motion for �ve expansion 
oe�
ients,
orresponding to the �ve independent parameters 
hara
terizing a real symmet-ri
 tra
eless tensor. These equations of motion, whi
h are ordinary di�erentialequations (ODE's), are re
ast as a map, as shown below.We have explored alternative 
onstru
tions for su
h a lo
al map in Ref. [67℄,where we studied a quaternion representation of the lo
al orientational degrees offreedom. We tried several methods for 
oupling su
h �quaternion maps� in spa
e,to mimi
 the spatial 
oupling term in the CML formulation. However, be
ausethe lo
al frame 
an vary from site to site, there seems to be no straight-forwardway to generate su
h terms without involving 
onsiderable analyti
 
omplexity.Thus, we work with a simpler lo
al map, derived from the ODE's in a Cartesianrepresentation, in this 
hapter. In
orporating spatial 
oupling appear to be easiestin this version of the model.6.2.1 Equation of Motion for Nemati
sThe derivation of the nonlinear relaxation equations for the symmetri
, tra
elessse
ond rank tensor Q 
hara
terizing lo
al order in a sheared nemati
 is availablein earlier work [61, 42, 43, 62, 102, 82, 97, 107, 123, 58, 126℄. The order parameter106



Chapter 6. A Coupled Map Latti
e Model for Rheologi
al Chaos in ShearedNemati
 Liquid Crystalsis often 
onveniently expressed as
Qαβ =

3s1

2

(
nαnβ −

1

3
δαβ

)
+
s2

2
(lαlβ −mαmβ) , (6.1)where the dire
tor n is de�ned as the normalized eigenve
tor 
orresponding tothe largest eigenvalue of Q, the subdire
tor l is asso
iated with the sub-leadingeigenvalue, and their mutual normal m is obtained from n × l. The quantities s1and s2 represent the strength of uniaxial and biaxial ordering: |s1| 6= 0, s2 = 0 isthe uniaxial nemati
 whereas s1, s2 6= 0 with s2 < 3s1 de�nes the biaxial 
ase[39℄.De�ning b̂ := 1

2
(b + bT ) − 1

3
(trb)δ to be the symmetri
-tra
eless part of these
ond-rank tensor b, the equation of motion for Q in a velo
ity �eld is [61, 113℄:

dQ

dt
− 2Ω̂ · Q − 2σ′Γ̂ · Q + τ−1

Q Φ = −
√

2
τap
τa

Γ, (6.2)where the tensor Ω = 1
2
((∇v)T −∇v), Γ = 1

2
((∇v)T +∇v) and ∇v is the velo
itygradient tensor, with v = γ̇yex, where ex is a unit ve
tor in the x− dire
tion. Thevelo
ity is along the x dire
tion, the velo
ity gradient is along the y dire
tion, while

z is the vorti
ity dire
tion. The quantities τa > 0 and τap are phenomenologi
alrelaxation times, σ′ des
ribes the 
hange of alignment 
aused by Γ and Φ =

∂φ/∂Q, with the free energy φ(Q) given by
φ(Q) =

1

2
AQ : Q − 1

3

√
6B(Q · Q) : Q +

1

4
C(Q : Q)2. (6.3)If the spatial variation is also taken into a

ount, ∇2Q and∇∇·Q, as well as higherorder terms, should also be in
luded in the above expression. Su
h gradient termsare weighted by 
oe�
ients L1, L2 and L3, yielding the three Frank elasti
 
onstantsof the nemati
 state. The notation Q : Q represents QijQji, with repeated indi
essummed over. Here A = A0(1 − T ∗/T ), and B and C are 
onstrained by the
onditions A0 > 0, B > 0, C > 0 and B2 > 9

2
A0C.The symmetri
 tra
eless alignment tensor Q has �ve independent 
omponents.Assuming spatial uniformity, so that gradients of the Q tensor 
an be dropped, asystem of 5 
oupled ordinary di�erential equations (ODEs) for the 5 independent
omponents of Q 
an be obtained with the 
hoi
e of a suitable tensor basis. Choos-107



Chapter 6. A Coupled Map Latti
e Model for Rheologi
al Chaos in ShearedNemati
 Liquid Crystalsing the standard orthonormalized Cartesian tensor basis leads to the expansion
Q =

4∑

k=0

akT
k, (6.4)with

T0 =
√

3/2êzez, T1 =
√

1/2(exex − eyey),

T2 =
√

2êxey, T3 =
√

2êxez, T4 =
√

2êyez. (6.5)6.2.2 Dynami
s of Sheared Nemati
s from a Lo
al MapWe work in the tensor basis des
ribed above, representing the equations of motionof Eq. 6.2 in terms of the 
oupled equations of motion for the �ve 
oe�
ients
a0 . . . a4. The problem of representing the time updates in terms of a lo
al map ismost easily approa
hed by 
onsidering the lowest order Euler dis
retization of theunderlying di�erential equations. (There are alternative methods of 
onstru
tingmaps from lo
al dynami
s governed by ODE's, in
luding strobos
opi
 methodsand methods whi
h use Poin
are se
tions; however, the 
hoi
e we have made is thesimplest given the variety and 
omplexity of the dynami
al states we would like todes
ribe.)S
aling parameters as in Ref. [112, 113℄, and making the same 
hoi
e of numer-i
al values as in Ref. [26, 37℄, we obtain the following map

f0(a
t
0) = a0

t+ ∆

(
−(2a2 − 3a0)a0 − 3(a2

1 + a2
2) +

3

2
(a2

3 + a2
4)

)t

f1(a1
t) = a1

t+ ∆

(
−(2a2 + 6a0)a1 + γ̇a2 +

3

2

√
3(a2

3 − a2
4)

)t

f2(a2
t) = a2

t+ ∆

(
−(2a2 + 6a0)a2 − γ̇a1 + 3

√
3a3a4 +

√
3

2
λkγ̇

)t

f3(a3
t) = a3

t+ ∆

(
− (2a2 − 3a0)a3 +

1

2
γ̇a4 + 3

√
3(a1a3 + a2a4)

)t

f4(a4
t) = at4+ ∆

(
− (2a2 − 3a0)a4 −

1

2
γ̇a3 + 3

√
3(a2a3 − a1a4)

)t

. (6.6)
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Chapter 6. A Coupled Map Latti
e Model for Rheologi
al Chaos in ShearedNemati
 Liquid CrystalsHere t indi
ates dis
rete time steps, and {.}t denotes the value of the quantity
{.} at time step t. All the fun
tions f denote the lo
ally updated value of theirargument at a time step (t+ 1). For the purely lo
al map, fi(ati) ≡ at+1

i ; however,for the 
oupled map, the value of fi(ati) is 
omputed as an intermediate step,prior to the di�usive step whi
h yields the �nal quantity at+1
i . The quantity a2 =

a2
0 + a2

1 + a2
2 + a2

3 + a2
4.We 
hoose the time step to be small, ensuring the stability of the Euler dis-
retization s
heme; spe
i�
ally, ∆ = 0.01 for all our 
al
ulations. Our approa
hthus 
ontrasts to approa
hes in whi
h the dis
rete spa
e-time update rules are
hosen su
h that they represent a regime in whi
h standard Euler dis
retizationof the governing equations breaks down, yielding a 
omplex bifur
ation stru
turewhi
h 
an be argued to resemble one or the other physi
al behaviour. Here, ourapproa
h is to render the lo
al physi
s, in parti
ular the topology of the 
omplexphase diagram with its many non-trivial phases, as a

urately as possible. (Ouressential simpli�
ations enter our representation of the non-lo
al terms, in
orpo-rated so as to represent the physi
s of the spatially 
oupled 
ase.) We have 
he
kedthat 
hanging ∆ by upto an order of magnitude does not a�e
t our results. Thus,the qualitative dynami
s, whi
h is 
omplex in state spa
e and parameter spa
e, is
ompletely robust in the range of ∆ 
hosen for this study. Our 
hoi
e of parame-ters implies that the system in the absen
e of shear is at the limit of metastabilityof the isotropi
 phase. Our 
hoi
e of the value for ∆ 
aptures all the features ofthe full lo
al phase diagram obtained in Refs. [112, 113℄.The order parameter part of the stress is proportional to 
ontributions fromthe Landau-de Gennes free energy as well as from the gradient terms, whi
h werepresent through the spatial 
oupling term in the 
oupled map latti
e. This isobtained as des
ribed in the following se
tions.6.2.3 Phase Behaviour of the Lo
al MapExamining the dynami
al steady states of this map at a large number of pointsin the spa
e spanned by (γ̇, λk) yields a 
omplex phase diagram admitting manystates � aligned, tumbling, wagging, kayak-wagging, kayak-tumbling and 
haoti
 �as fun
tions of the shear rate γ̇ and a phenomenologi
al relaxation time λk whi
his a parameter in the equations of motion[112, 113, 56℄. Fig. (6.1) exhibits the109



Chapter 6. A Coupled Map Latti
e Model for Rheologi
al Chaos in ShearedNemati
 Liquid Crystalsdynami
al states found in the map for the un
oupled 
ase, in terms of a phasediagram in the quantities λk and γ̇. Su
h a phase diagram bears 
onsiderable sim-ilarities to phase diagrams obtained by other authors in the PDE representation;see, for example, Fig. 7 of Ref. [113℄.

Figure 6.1: Phase diagram for dynami
al behaviour in the lo
al map de�nedthrough Eqns.6.6, with the parameter λk plotted on the x axis and γ̇ on the yaxis. Here T denotes the tumbling state, W the wagging state, KT the kayak-tumbling, KW the kayak-wagging state, A the aligned state and C the state inwhi
h 
omplex dynami
s is seen. These states are dis
ussed further in the text.The states in this phase diagram are labeled as follows: The �rst is the statelabeled A, whi
h is theAligned state, where all dynami
s 
eases, and the dire
toris aligned at an angle to the �ow. In the standard Couette geometry, the velo
ity�eld and the velo
ity gradient form a plane, 
alled the vorti
ity plane. In our 
ase,this is the x− y plane. If the dire
tor lies in the vorti
ity plane and rotates aboutan axis (the z−axis) perpendi
ular to this plane, the dynami
al state is 
alleda Tumbling state. The tumbling state is denoted by T in the phase diagramof Fig. (6.1). If the dire
tor, while lying in the plane, exe
utes os
illations, thedynami
al state is 
alled a Wagging state. The wagging state is represented inthe lo
al phase diagram by the symbol W .If the dire
tor rotates and os
illates, moving out of the vorti
ity plane, thedynami
al states are 
alledKayak-Tumbling andKayak-Wagging respe
tively.They are represented as KT and KW in the lo
al phase diagram. If the dynami
sis a mixture of 
omplex intermittent behaviour and 
oexisting attra
tors, the state110



Chapter 6. A Coupled Map Latti
e Model for Rheologi
al Chaos in ShearedNemati
 Liquid Crystalsis 
alled Complex and is represented by C in the phase diagram. Clearly theinteresting region in the phase diagram lies in and near the region labeled C.Fig. 6.1 is obtained in the following way. The phase-spa
e of the γ̇ and λkvariables is gridded and an initial random initial 
ondition 
hosen at ea
h point.After the passage of an initial transient state, the system goes to dynami
al at-tra
tors, ranging from simple spatiotemporal �xed points to 
omplex intermittentbehaviour. These dynami
al attra
tors are identi�ed with one of the states de-s
ribed above, i.e. A,K, T,KW,KT or C. In some regimes, one sees a 
oexisten
eof states i.e. KT and T and KW and W i.e. di�erent initial 
onditions 
an giverise to di�erent asymptoti
 behaviour in the long time limit.Near the phase boundary of KW, one obtains isolated points whi
h show 
om-plex behavior for generi
 initial 
onditions. However, 
hoosing a point in the 
losevi
inity of su
h points generi
ally produ
es KW states. Thus, su
h C points areisolated. However, deep into the KW phase any su
h 
omplex behavior is found tobe purely an initial transient, with the state settling down to KW in the long-timelimit.6.3 Coupled Maps for Nematodynami
sOur spatially 
oupled model is built up from the lo
al maps given in Eq. 6.6. Thesemaps are pla
ed on the sites of a regular latti
e in one and two dimensions and
an be 
oupled via several di�erent 
oupling s
hemes, as des
ribed below. Thegeneralization to arbitrary dimensions as well as di�erent 
oupling s
hemes is astraightforward one.For a one dimensional latti
e, with sites indexed by the label i, the �ve variables(a0(i) . . . a4(i)) on ea
h latti
e site evolve in dis
rete time t as:
φi = φ′

i +
1

3
ǫ
(
φti+1 + φti−1 − 2φti

)
, (6.7)where φ ∈ (at+1

0 , at+1
1 , at+1

2 , at+1
3 , at+1

4 ) and φ′ ∈ (f0(a
t
0), f1(a

t
1), f2(a

t
2), f3(a

t
3), f4(a

t
4)) .Hereǫis a 
oupling 
onstant whi
h is 
hosen to take values between 0 and 3/2.For the two dimensional 
ase we 
onsider a square latti
e with site index (i, j)and with the set of �ve variables (a0(i, j), a1(i, j), a2(i, j), a3(i, j), a4(i, j)) on111
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e Model for Rheologi
al Chaos in ShearedNemati
 Liquid Crystalsea
h latti
e point at time-step t evolving in time as :
φi,j = φ′

i,j +
1

6
ǫ
(
φti+1,j + φti−1,j + φti,j+1 + φti,j−1

)

+
1

12
ǫ
(
φti+1,j+1 + φti−1,j−1 + φti−1,j+1 + φti+1,j−1

)
− ǫφti,j, (6.8)where φ ∈ (at+1

0 , at+1
1 , at+1

2 , at+1
3 , at+1

4 ) and φ′ ∈ (f0(a
t
0), f1(a

t
1), f2(a

t
2), f3(a

t
3), f4(a

t
4)) ,and ǫ is a 
oupling 
onstant having value between 0 and 1. The 
hoi
e of thenumeri
al 
oe�
ients 1/6 and 1/12 in the 
oe�
ients of the nearest and next-nearest neighbour terms are standard 
hoi
es in the CML literature. They repre-sent 
hoi
es of latti
e dis
retization whi
h are as 
lose as possible to the 
ontinuumlimit.The lo
al value of the shear stress (σxy)i,j at the (two-dimensional) site (i, j)is obtained from the following de�nition.Stri
tly speaking, the quantity de�ned isproportional to the stress. In parti
ular, it is multiplied by an overall multipli
ativefa
tor involving λk; see Eqn. A.1 of Ref. [112℄:

(σxy)i,j = (σ′
xy)i,j +

√
2

6
ǫ
(
φi+1,j + φi−1,j + φi,j+1 + φi,j−1

)

+

√
2

12
ǫ
(
φi+1,j+1 + φi−1,j−1 + φi−1,j+1 + φi+1,j−1

)
−

√
2ǫφi,j ,(6.9)where (σ′

xy)i,j is given by
(σ′

xy)i,j = (2
√

2a2a
2 − 6

√
6(a3a4/2 − (a2a0/

√
3)))i,j, (6.10)and φ = a2.The de�nition for the one-dimensional 
ase follows from:

(σxy)i = (σ′
xy)i +

√
2

3
ǫ
(
φi+1 + φi−1 − 2φi

)
, (6.11)where (σ′

xy)i is given by
(σ′

xy)i = (2
√

2a2a
2 − 6

√
6(a3a4/2 − (a2a0/

√
3)))i, (6.12)and φ = a2. 112



Chapter 6. A Coupled Map Latti
e Model for Rheologi
al Chaos in ShearedNemati
 Liquid CrystalsWe have also experimented with other 
hoi
es of the update rule. While theupdate rule of Eq. 6.7 
an be termed as the pre-update rule, in whi
h the termson the right hand side are 
al
ulated using the variables at time t, one 
ouldalternatively use the post-update rule, in whi
h the di�usive terms on the righthand-side are 
al
ulated using the variables at time t + 1. We have 
he
ked thatvarying this 
hoi
e of update rule does not a�e
t our results. In the equationfor the two-dimensional update, (Eq. 6.8), we have 
he
ked that dropping thenext-nearest neighbour term also does not a�e
t our results signi�
antly. Thus, avariety of possible update s
hemes appear to yield 
onsistent results for the spatio-temporal behaviour of our 
oupled map latti
e, underlining the generi
 nature ofour results.Finally, we stress one important feature of our approa
h. We work with lo
almaps whi
h are obtained by Euler dis
retization of the governing equations, in alimit in whi
h su
h dis
retization is stable. Thus, we are assured that the lo
alphysi
s is rendered a

urately, an important 
onsideration given the 
omplexityof the lo
al phase diagram. However, our 
ru
ial approximations are made at thelevel of the spatial 
oupling terms where we ignore the e�e
ts of the shear at s
alesbeyond that of the lo
al map, repla
ing the required 
onve
tive term by a simpledi�usive term. In addition, while the derivative terms involving L2 and higherorder terms 
onventionally retained in the Landau-Ginzburg-de Gennes expansionare highly anisotropi
 and non-linear, we negle
t all su
h terms, proposing thatboth the regular and spatio-temporally 
omplex behaviour of interest to us 
an beobtained by in
orporating the simplest form of (di�usive) spatial 
oupling in our
oupled map latti
e.6.4 The One-dimensional Coupled Map Latti
eIn this se
tion, we des
ribe our results for the one-dimensional 
ase, 
on
entratingon the e�e
ts of the inter-site 
oupling, both within and outside the regime labelledC in the phase diagram.
113
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 Liquid Crystals

Figure 6.2: Phase diagram summarizing the lo
al dynami
al behaviour of thespatially 
oupled one-dimensional system, with λk plotted on the x axis and γ̇on the y axis. As before, T denotes the tumbling state, W the wagging state,KT the kayak-tumbling, KW the kayak-wagging state, A the aligned state and Cthe state of 
omplex dynami
s. The spatial 
oupling 
onstant ǫ = 0.1 (a) and0.5 (b), for a ring of 200 latti
e points. The lo
ation of the states in the phasediagram is largely similar to that of Fig. 6.1 with the ex
eption that, at isolatedpoints, mainly within the KT phase, one sees 
omplex behaviour. The regime inthe phase diagram o

upied by the C phase shrinks as the 
oupling 
onstant ǫ isin
reased.
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al Chaos in ShearedNemati
 Liquid Crystals6.4.1 Lo
al dynami
sFig. (6.2) shows the dynami
al phases exhibited by a generi
 site randomly 
hosenfrom the one dimensional ring. The sites are 
oupled a

ording to the s
heme givenin Eq. 6.8, with 
oupling 
onstant ǫ = 0.1 (a) and ǫ = 0.5 (b).It is evident from 
omparisons with Fig. (6.1) that the lo
al dynami
s of ageneri
 site in the 
oupled system is similar to the un
oupled 
ase. This indi
atesthat spatial 
oupling does not alter the nature of the lo
al dynami
s qualitatively.The most signi�
ant in�uen
e of spatial 
oupling o

urs near the C region, whi
happear to be somewhat broadened with spatial 
oupling, while the 
oexisten
eregimes are redu
ed in size. In addition, the fairly uniform KT state is now �stud-ded� with points displaying 
omplex behaviour. This indi
ates 
oexisten
e of 
om-plex and KT behaviour, with 
ertain initial states leading to 
omplex dynami
s,while others lead to a uniform KT state. (It is di�
ult to determine whether the
omplex behaviour we see is a very long transient or true asymptoti
 behaviour.)The tumbling T and wagging W regions, however, are very stable.Lo
al behaviour of regular regionsFigs. (6.3)-(6.4) show the value of the s
alar order parameter s1, the biaxialityparameter s2 and the z 
omponent of the dire
tor n. Fig. (6.3) is obtained usingparameter values appropriate to the T and W regions of the lo
al phase diagram,with a 
oupling 
onstant ǫ = 0.1. This displays 
ompletely regular behaviour,with these quantities varying periodi
ally keeping the dire
tor in the vorti
ityplane. Fig. (6.4) is obtained using parameter values appropriate to the KT andKW regions of the lo
al phase diagram and indi
ate that the dire
tor 
an now�u
tuate out of plane whereas all quantities vary smoothly and periodi
ally. Thelo
al time period T (γ̇) with whi
h these quantities os
illate is found to be inverselyproportional to shear rate, with T ∼ 1
γ̇
, as γ̇ is varied a
ross the T and KT regionsof the phase diagram.Lo
al Dynami
s in the Complex RegionThe lo
al behaviour in the 
omplex region, denoted by C in the lo
al phase dia-gram, is exhibited in Fig. (6.5), whi
h shows s1 and s2 and nz. The results suggest115
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Figure 6.3: Lo
al dynami
s in a ring of 200 latti
e points, with 
oupling ǫ = 0.1,showing the temporal evolution of s1, s2 and nz. These are displayed for (a) s1 ,s2and nz with (a) λk = 0.9 and γ̇ = 5.0 (b) λk = 1.1 and γ̇ = 5.0, and (
) λk = 0.9and γ̇ = 4.0. These states are all drawn from the T and W parts of the lo
alphase diagram. Note that nz = 0 in all these states whereas s1 and s2 are periodi
fun
tions of time.that the sites display intermittent behaviour. These results are obtained for param-eter values at the boundary of the 
omplex region and the kayak-wagging region,with paramters γ̇ = 4.0 and λk = 1.2. In part (a), the 
oupling 
onstant ǫ= 0.5,in part (b) ǫ = 0.15 and in part (
) ǫ = 0.1. All of these show qualitatively sim-ilar temporally intermittent behaviour. The fourier transform of the time seriesof stress 
al
ulated at a generi
 site and plotted on a doubly logarithmi
 s
ale isshown in Fig. (6.6). The spe
trum in (
) of Fig. (6.6) �ts the relation P (f) ∼ 1/f 2.6.4.2 Spatio-temporal 
oheren
e and dynami
sIn order to quantify the degree of spatial 
oheren
e, we 
al
ulate the followingquantity for the one-dimensional latti
e:
d =

√√√√ 1

NT

T∑

t=1

N∑

i=1

(at0(i) − at)2, (6.13)116
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Figure 6.4: Lo
al dynami
s in a ring of 200 latti
e points, with 
oupling ǫ = 0.1,showing the temporal evolution of s1, s2 and nz. These are displayed for for (a)
λk = 0.9 and γ̇ = 2.0 (b) λk = 1.1 and γ̇ = 2.0, and (
) λk = 1.4 and γ̇ = 2.0.These points are drawn from the KT and KW part of the lo
al phase diagramand represent states in whi
h the dire
tor exhibits out-of-plane �u
tuations i.e.
nz 6= 0. However, s1 and s2 
ontinue to exhibit regular, periodi
 os
illations.where

at =
1

N

N∑

i=1

at0(i). (6.14)We have 
al
ulate su
h a spatial 
oheren
e parameter for one spe
i�
 
omponentof the ve
tor (a0, . . . , a4); however, qualitatively similar results are obtained forother 
omponents as well as for the full lo
al stress, in the C region. When dtends to zero the degree of syn
hronization of the lo
al variables is very high. Onthe other hand large d indi
ates low spatial syn
hronization, arising from a widedistribution of values of the lo
al variables in the latti
e. This quantity thus servesas a global order parameter 
hara
terizing the smoothness of the spatial patternsexhibited by the evolution of the map.Fig. (6.7) shows the time average of the deviation < d > of a0 from the averagevalue a0. To 
ompute this, we �rst 
al
ulate the instantaneous deviation d viaEqs. (6.14) and (6.13), and then �nd the long-time average of this quantity. Thespatial pro�le of the regular region with low < d > is 
hara
terised either by117
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Figure 6.5: Lo
al dynami
s of a ring of 200 latti
e points, with λk = 1.2 and
γ̇ = 4.0, showing the time evolution of s1, s2 and nz. These are shown for (a)
ǫ = 0.5 (b) ǫ = 0.15 and (
) ǫ = 0.1, illustrating behaviour in the 
omplex or Cregime. Note that regular time-periodi
 behaviour is favoured at large values ofthe spatial 
oupling 
onstant ǫ, following an initial transient.spatiotemporal �xed behaviour with all sites aligned, or spatial uniformity andtemporal periodi
ity. There are also 
ases in the regular region where the sites,though not 
ompletely syn
hronized in spa
e, are nevertheless phase syn
hronized.Spatio-temporal dynami
s in the regular regionFig. (6.8) displays the spa
e-time plot for γ̇ = 4, λk = 1.1 and 
oupling 
onstant
ǫ = 0.1 (a) and 0.5 (b). The x-axis displays the latti
e index and time is shownon y-axis, in
reasing from top to bottom. The pro�le is not spatially uniform andperiodi
 in time for very weak 
oupling. As the 
oupling is in
reased, the systema
quires spatial 
oheren
e and temporal periodi
ity.Spatio-temporal dynami
s in the 
omplex regionThe spatiotemporal behaviour of a representative 
ase in the C or 
omplex regionis displayed in Fig. (6.9), where γ̇ = 4, λk = 1.17 and 
oupling 
onstant ǫ = 0.1 (a)and 0.5 (b). It is evident that the spa
e-time pro�le splits into bands, i.e. 
lusters of118
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Figure 6.6: Log-Log plot of the Fourier transform vs. frequen
y, for (a) λk = 1.17,(b) λk = 1.20 and (
) λk = 1.24. Here ǫ = 0.1 and γ̇ = 4.0. The latti
e is a ringof 200 sites. Note that for λk = 1.17 (the wagging region), the regular os
illationsshow up as a delta fun
tion in the fourier transform. In the C or 
omplex region,a smooth distribution of frequen
ies is seen, with a 1/f 2 fallo�.syn
hronized sites, where the lo
al dynami
s is either �xed (blue) or time-periodi
(stripes). As we in
rease λk (with γ̇ = 4) in Figs. (6.9 - 6.11) the length s
ale ofthe spatio-temporally intermittent pattern in
reases, �nally yielding to the alignedregion. This progression from frozen lo
alized kinks/domains of �xed points inthe spatial ba
kground of time-periodi
 behaviour, to infe
tive bursts bearing thesignature of spatiotemporal intermitten
y, is seen in many systems [36, 70, 71℄,and often arises from a 
ompetition of �xed point patterns and time-periodi
 andquasi-periodi
 patterns.6.5 The Two-dimensional Coupled Map Latti
eIn this se
tion, we investigate the phenomenology of two-dimensional systems ex-hibiting nemati
 rheo
haos, arguing that it is important to gain intuition aboutthe di�eren
es and similarities in the spatiotemporal dynami
s arising in higherdimensional models vis-a-vis one-dimensional models. While one-dimensional sys-tems have been investigated fairly extensively, very little work des
ribes the be-119
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Figure 6.7: Average deviation from the mean value for ǫ = 0.1 (a) and ǫ = 0.5 (b),with λk on the x-axis and γ̇ on the y axis. Note that large �u
tuations (roughness)are seen in the KW and C regions. These data are for the 1-d system wiith thenumber of sites N = 200 and parameters as indi
ated on the �gure.
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Figure 6.8: Density plot of order parameter part of shear stress. Here λk = 1.1, γ̇=4.0 and ǫ = 0.1 (a) and 0.5 (b). Time steps (running from top to bottom) areon the y-axis, and the latti
e site index (i = 1, 200) is on the x-axis. These �guresrepresent spa
e-uniform and time-periodi
 states, obtained using parameter values
orresponding to the T region of the phase diagram.
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Figure 6.9: Density plot of order parameter part of shear stress. Here λk = 1.17,
γ̇ =4.0 and ǫ = 0.1 (a) and 0.5 (b). Time steps (running from top to bottom) areon the y-axis, and the latti
e site index (i = 1, 200) is on the x-axis. These �guresrepresent spa
e non-uniform and time-periodi
 states, obtained using parametervalues 
orresponding to the KW region of the phase diagram
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Figure 6.10: Density plot of order parameter part of shear stress. Here λk = 1.20,
γ̇ =4.0 and ǫ = 0.1 (a) and 0.5 (b). Time steps (running from top to bottom) areon the y-axis, and the latti
e site index (i = 1, 200) is on the x-axis. These �guresillustrate how time-periodi
 regions are interspersed with domains of �xed pointbehaviour, reminis
ent of spatiotemporal intermitten
y. The parameter values
orresponding to the C region of the phase diagram, in a regime where the 
haosis weak.
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Figure 6.11: Density plot of order parameter part of shear stress. Here λk = 1.24,
γ̇ =4.0 and ǫ = 0.1 (a) and 0.5 (b). Time steps (running from top to bottom) areon the y-axis, and the latti
e site index (i = 1, 200) is on the x-axis. These �g-ures illustrate non-uniform, time-varying states 
hara
teristi
 of spatio-temporally
haoti
 behaviour. The parameter values 
orrespond to the C region of the phasediagram, in a regime where the 
haos is strong. Note that larger values of ǫ leadto larger and more uniform spatial stru
tures.
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Figure 6.12: Density plot of order parameter part of shear stress. Here λk = 1.24,
γ̇ =3.0 and ǫ = 0.1 (a) and 0.5 (b). Time steps (running from top to bottom) areon the y-axis, and the latti
e site index (i = 1, 200) is on the x-axis.
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al Chaos in ShearedNemati
 Liquid Crystalshaviour of two-dimensional systems due, largely, to the prohibitive 
omputational
osts involved in studying PDEs with two-dimensional spatial extent. Coupledmap latti
e methods provide an alternative way of addressing higher-dimensionalsystems, at far less attendant 
omputational 
ost.6.5.1 Lo
al temporal behaviourIn the regular regions of the phase diagram, 
orresponding to the T,W, KT andKW states, the temporal behavior is very similar to that of the one dimensional
ase and is thus not shown separately. We thus 
on
entrate on behavior in the
omplex or C region. Representative data showing the lo
al temporal dynami
sof the 
omplex region is given in Fig (6.13). They show 
haoti
 behaviour, andthere appears to be no qualitative di�eren
e between the one dimensional and twodimensional latti
e 
ases. As in the one-dimensional latti
e, in
reased 
ouplingstrengths suppress the 
haoti
 region. The log-log plot of the fourier transform isshown in Fig. (6.14); a similar �t to P (f) ∼ f−2 of the frequen
y spe
trum of thestress 
an be obtained, as in the one-dimensional 
ase.6.5.2 Spatio-temporal behaviourTo quantify the degree of spatial 
oheren
e in 2-dimensional latti
es we 
al
u-late the quantity, generalizing from the one-dimensional 
ase studied in an earlierse
tion:
d =

√√√√ 1

N1N2T

T∑

t=1

N1,N2∑

i,j=1

(at0(i, j) − at)2, (6.15)with
a =

1

N1N2

N1,N2∑

i,j=1

a0(i, j). (6.16)Again, as in the 1-dimensional 
ase, when d tends to zero the degree of syn
hro-nization of the lo
al variables is very high. On the other hand large d indi
ates lowspatial syn
hronization, and arises from a wide distribution of values of the lo
alvariables in the latti
e.Fig. (6.15) shows the spa
e-time average of the deviation de�ned in Eqn. (6.15).The panel (a) displays results for ǫ = 0.1 and the panel (b) for ǫ = 0.5. It is 
lear126
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Figure 6.13: Temporal evolution of s1, s2 and nz in a two dimensional latti
e ofsize 102 × 102, with ǫ = 0.1, for (a) λk = 1.17 and γ̇ = 4.0 (b) λk = 1.20 and
γ̇ = 4.0 (
) λk = 1.24 and γ̇ = 4.0. All these state points are drawn from the Cregion of the lo
al phase diagram. Note the existen
e of temporally intermittentbehavior, analysed in terms of its frequen
y spe
trum in Fig. 6.14.
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Figure 6.14: Log-Log plot of the absolute value of the Fourier transform of thestress vs. frequen
y ω, for (a) λk = 1.17, (b) λk = 1.20 and (
) λk = 1.24. Here
ǫ = 0.1 and γ̇ = 4.0. The latti
e 
ontains 100 × 100 sites. Note the relativelysmooth ba
kground, indi
ating the presen
e of a 
ontinuous set of frequen
ies.The fall-o� is 
onsistent with a 1/ω2 behaviour.that higher 
oupling strengths make the system more uniform in spa
e. Also, itappears that the regions with kayak-tumbling, kayak-wagging and 
omplex lo
aldynami
al behaviour show more deviation in the spatial pro�le, exhibiting morespatial inhomogeneity.Regular regimeIn this se
tion we dis
uss the spatial pro�le of our 
oupled map latti
e in twodimensions. As in the one-dimensional 
ase, we start with random initial 
onditionsand analyze the spa
e pro�le after omitting a transient regime. We analyse thedensity plots of the shear stress 
ontribution to the order parameter, in di�erentdynami
al regions. Considering the spa
e-time behaviour of the system in theregular region, with lo
al dynami
s belonging to the aligned, wagging, tumblingand kayak-tumbling region, reveals spatially uniformity states whi
h are periodi
ityin time. These are 
losely related to the states obtained in the oine-dimensional
ase and are not dis
ussed further here, as we will 
on
entrate on results obtained128
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al Chaos in ShearedNemati
 Liquid Crystalsin the physi
ally more interesting C regime.Complex regimeThe 
on�gurations in Figs. (6.16) is from the 
omplex region. When the 
ouplingbe
omes very large, one obtains spatially uniform states. In Fig. 6.17, we have
hosen points (a) and (b) from the KT region of the lo
al phase diagram and (
)from the C dynami
al region. After leaving 104 transient steps , we have plottedone row of a 100×100 latti
e at a single time instant. On the x axis we plot ǫ andon the y axis we plot the stress at 100 points of the latti
e at one time step. It isevident that for high 
oupling strength ǫ, the system goes to a spa
e-syn
hronizedstate. For low 
oupling 
onstants, on the other hand, there is a typi
ally widedistribution of stress values at di�erent sites, indi
ating spatial inhomogeneity.6.6 Quantifying Spatio-Temporal ComplexityIn this se
tion, we report results quantifying spatio-temporal 
omplexity in the one-dimensional 
oupled map latti
e spe
i�ed in Eq. 6.6. To understand the nature ofthe 
omplex behaviour represented in the phase diagram, we perform 
al
ulationsof the spe
trum of Lyapunov exponents. These are shown in Fig. 6.18. We �rst
hoose several values of the parameters λk and γ̇ within the 
omplex region andevolve the 
oupled map. After waiting for an initial number of time steps toeliminate transients, we 
al
ulate the Ja
obian matrix at ea
h time step. Wethen 
onsider a small deviation from the attra
tor and iteratively multiply thisdeviation by the Ja
obian, orthonormalizing this ve
tor at ea
h time step. Fromthis we 
al
ulate the Lyapunov exponent, using the method des
ribed in Ref. [85℄.These results are illustrated in Fig. 6.18, whi
h exhibits the values of the �rstfour Lyapunov exponents, 
omputed for parameter values λk and γ̇ for systemsizes L = 3, 10, 50 and 100, as a fun
tion of the 
oupling 
onstant ǫ. Our results,following the data shown in these �gures, are the following. Qualitatively, inthe 
omplex regime, the �rst Lyapunov exponent is always positive, even as thesystem size and the spatial 
oupling are in
reased. The lo
al value of this exponentis also positive. This value de
reases further with spatial 
oupling but remainspositive. Roughly speaking, larger latti
e sizes show larger values for this exponent,129
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Figure 6.15: Average deviation d (see text) from the mean value of a0 for ǫ = 0.1(a)and ǫ = 0.5(b). The quantity λk is plotted on the x-axis and γ̇on the y-axis. Thelatti
e is a 100 × 100-site latti
e. Note that this roughness is largest in the KT,KW and C regions, espe
ially for large values of γ̇. As ǫ is in
reased, the roughnessde
reases, as in
reasing spatial homogeneity is promoted.
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Figure 6.16: (a) A 
olor plot of order parameter part of shear stress. The quantities
λk = 1.25, γ̇ =4.0 and ǫ = 0.1. The time t is plotted on the y-axis, whi
h depi
tsthe time evolution of the stress 
omputed on one row (x-axis) of the 100 × 100latti
e. (b) shows a snap shot of the full latti
e at an intermediate time step.
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Figure 6.17: Value of stress of one row of the latti
e at one instant of time on the
y axis as a fun
tion of the 
oupling strength ǫ on the x axis. Note that the broadspe
trum of lo
al stress values seen at small values of the 
oupling 
ontra
t to anessentially unique value at large ǫ.
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Figure 6.18: Plots of the Lyapunov exponents obtained from our 
al
ulation (seetext) for di�erent system sizes as a fun
tion of the 
oupling 
onstant. The �guresrepresent (a) the �rst Lyapunov exponent λ1 (b) the se
ond Lyapunov exponent λ2
) the third Lyapunov exponent λ3 d) the fourth Lyapunov exponent λ4. Note thatall these exponents tend to zero from below in the limit of large system size. Hen
e,in
reasing the 
oupling between sites has the e�e
t of redu
ing the magnitude ofthe negative Lyapunov exponent.
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onsistent with results from the one-dimensional PDE 
al
ulation. These valuesappear to saturate for small 
oupling values but de
rease for larger values of thespatial 
oupling.The se
ond and higher order Lyapunov exponents, in our 
al
ulation, are smalland negative for the smallest latti
e sizes, but move to values that are 
lose to zeroas the latti
e size is in
reased. At small 
ouplings, for the larger latti
es, this valueis positive but goes negative as the 
oupling strength is in
reased. Thus, the datafor the Lyapunov exponents are 
onsistent with the general 
on
lusion that goingto larger latti
e sizes stabilizes 
haos, whereas in
reasing the 
oupling betweensites suppresses 
omplex spatial behaviour. The 
lustering of Lyapunov exponentsaround zero in the large system size limit is 
onsistent with the emergen
e ofspatio-temporal intermitten
y on large s
ales [28, 7, 65℄.Kaplan-Yorke Lyapunov Dimension: J. Kaplan and J. A. Yorke [74℄ have
onje
tured that the dimension of a strange attra
tor 
an be approximated from thespe
trum of Lyapunov exponents. Su
h a dimension has been 
alled the Kaplan-Yorke (or Lyapunov) dimension, and it has been shown that this dimension is
lose to other dimensions su
h as the box-
ounting, information, and 
orrelationdimensions for typi
al strange attra
tors (Frederi
kson et al. 1983). We 
al
u-lated the Kaplan-Yorke Lyapunov Dimension, de�ned in terms of the Lyapunovexponents λi, i = 1, 2, . . .N (where the subs
ript labeling the λ's is 
hosen so that
λ1 ≥ λ2, λ3, . . . λN) as:

DL = k +

∑k
i=1 λi

|λk+1|
. (6.17)Here, k is the maximum value of i, su
h that λ1 + λ2 · · ·+ λk > 0.From Fig. 6.19, it appears that both the number of positive Lyapunov ex-ponents, as well as the Kaplan-Yorke (Lyapunov) dimension, s
ale linearly within
reasing system size, i.e. they are �extensive quantities�. We thus 
on
lude thatup to the system sizes we explore, the 
haos is extensive [127℄. It is also evidentthat both the Kaplan-Yorke dimension and the number of positive Lyapunov ex-ponents de
rease with in
reasing ǫ. This again unders
ores the regularizing e�e
tof 
oupling intera
tions whi
h indu
e spatial 
orrelations, in e�e
t redu
ing thedimensionality of the system. We have also estimated the Kolmogorov-Sinai (KS)entropy, de�ned as the sum of positive exponents, and observed that this too showsa linear in
rease with system size. 134
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rease with in
reasingsystem size (see Fig. 6.20).6.7 Con
lusionsIn summary, this 
hapter presents a study of a 
oupled map latti
e model 
on-stru
ted to study spatio-temporal aspe
ts of rheologi
al 
haos in sheared nemati
solutions. Our study was based on the 
onstru
tion of a lo
al map 
apable of135
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e Model for Rheologi
al Chaos in ShearedNemati
 Liquid Crystalsreprodu
ing the physi
s of the spatially un
oupled (equivalently, uniform) limit,in
luding the large variety of phases and the 
omplex phase diagram obtainedfor that 
ase. Su
h maps are pla
ed on a regular latti
e and 
oupled di�usivelythrough a variety of 
oupling s
hemes, thus representing the e�e
ts of 
ouplingthese degrees of freedom in spa
e.Our general approa
h to the problem of spatio-temporal aspe
ts of rheologi
al
haos in sheared nemati
s 
an be des
ribed in the following way: We �ben
hmark�our lo
al map against ODE solutions, requiring that our 
hoi
e of dis
retizationmaintain the basi
 phase behaviour and phase diagram found in the ODE 
ase.We then use this lo
al map as an ingredient in the 
onstru
tion of a 
oupled maplatti
e. Our prin
ipal approximations in this 
onstru
tion are our representation ofthe spatial 
oupling in simple terms, in that we ignore both the 
onve
tive e�e
tsof the shear as well as anisotropies arising from allowed elasti
 
ouplings in the freeenergy. Cru
ially, we stress that we are not solving a (dis
retized) version of thenon-linear 
oupled PDE's of the original 
ontinuum problem. We study, instead, afar simpler dis
rete-spa
e problem, one in whi
h only the simplest spatial 
ouplingsare retained. This approa
h is 
onsistent with our intuition that spatio-temporal
omplexity in this problem should be understood as arising from spatially 
oupling,in a straightforward, minimal manner, a lo
al degree of freedom with the requisite
omplex dynami
s.Our approximations, though severe, nevertheless 
onstitute a powerful enoughapproa
h to the original problem to yield, on their own, a ri
h spe
trum of spa-tiotemporal patterns, going far beyond the temporal diversity obtained in earlierstudies of the lo
al behavior. A deeper understanding of pattern formation ispossible in our approa
h, as the emergent dynami
s is naturally de
omposed into
omponents in�uen
ed by the lo
al behaviour and those arising from 
oupling in-tera
tions. Thus, though our model is simple and 
onstru
tive, it 
lari�es theemergen
e of a wide range of spatiotemporal patterns in this system.Our studies of the 
oupled map in both one and two dimensions indi
atesthat regimes of regular behaviour largely exhibit spa
e-uniform and time-periodi
states, with the 
oupled dynami
s roughly following the un
oupled 
ase. We haveanalysed the dynami
al behaviour of the two quantities whi
h 
hara
terize lo
alorder in the nemati
, the uniaxial s1 and the biaxial s2 order parameters, examiningtheir time evolution in the di�erent states. 136
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e Model for Rheologi
al Chaos in ShearedNemati
 Liquid CrystalsIn 
ontrast, in the 
omplex or C region of the lo
al phase diagram, su
h 
ou-pling leads to states that exhibit spatio-temporal intermitten
y and 
haos. Wehave 
hara
terized su
h states by examining the Lyapunov spe
tra as well as thefrequen
y dependen
e of the time series of physi
al quantities su
h as the stress.We �nd eviden
e for a broad, power-law distribution of time-s
ales in the problem.Further, in the 
omplex region, one often sees a 
oexisten
e of regular (lamina)and 
haoti
 regimes as a prelude to fully developed 
haos in whi
h dynami
al �u
-tuations o

ur independently from site to site. In some regimes, periodi
 bandsimmersed in a more 
omplex, �u
tuating ba
kground are obtained, suggestive ofthe possibility of transient shear bands stabilized by the dynami
s, a feature alsopresent in ODE-based studies of this problem[26, 37, 27℄. The basi
 s
ale of these
omplex dynami
al patterns is alterable by 
hanging the 
oupling 
onstant, in-di
ative of self-similarity in the spatio-temporally intermittent 
ase. At very largevalues of the 
oupling 
onstant, the spa
e pro�le is expe
ted to be
ome uniform;however, for small and intermediate values of this 
oupling 
onstant, the spe
trumof Lyapunov exponents merges to zero, 
onsistent with our observation of generi
spatio-temporal intermitten
y in the weak 
oupling 
ase.We have experimented with using spatial 
oupling terms whi
h represent theadve
tive e�e
ts of the shear �ow, 
oupled to �xed boundary 
onditions wherethe orientation and magnitude of the order parameter are �xed at the boundary.Su
h terms appear, at small amplitude, to mainly distort the sorts of dynami
alstru
tures obtained for the symmetri
 
oupling state and seem to evolve smoothlyfrom them.The usefulness of 
oupled map latti
e representations of the spatio-temporaldynami
s of systems exhibiting 
haos in their lo
al dynami
s is that su
h represen-tations often provide both useful physi
al insights as well as are 
omputationallyeasier to simulate than their PDE versions. In that sense, the problem of rheo
haosin sheared nemati
s o�ers an ideal setting for CML methods, sin
e the lo
al dynam-i
s of the sheared nemati
 is highly non-trivial, exhibiting a variety of temporallyperiodi
 as well as 
haoti
 states. As shown here, the variety of non-trivial spatio-temporal behaviour exhibited by sheared nemati
s is very largely a 
onsequen
e ofsimply 
oupling these dynami
al degrees of freedom in spa
e. The physi
s appearssubstantially independent of how pre
isely this spatial 
oupling is done, with thesimple latti
e model with parallel update exhibiting virtually all the behaviour of137
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e Model for Rheologi
al Chaos in ShearedNemati
 Liquid Crystalsthe more 
omplex and 
omputationally intensive studies of the appropriate PDE's.This, together with the spe
i�
 results presented in this 
hapter for our 
oupledmap approa
h to rheo
haos in sheared nemati
s, is our 
entral 
on
lusion.Further, order-parameter-based models, su
h as the one des
ribed in this 
hap-ter and in the work of Refs. [27, 26, 37℄, 
ontain essential non-linear terms in thefree energy. It is these terms that are responsible for the non-trivial lo
al dy-nami
s 
aptured in our lo
al map as well as in the 
oupled map latti
e. Ref. [27℄emphasizes the role of �additional 
omplex 
olle
tive dynami
s� arising from su
hnonlinearities whi
h is not 
aptured in the DJS model but is relevant to the qual-itative nature of the intermittent and 
haoti
 behaviour seen in this system. Su
hnon-linearities are naturally a

ounted for in our approa
h.Our study of the spatio-temporal dynami
s of sheared nemati
s using CMLmethods possibly represents the �rst extension of su
h methods to the problemof rheo
haos. In 
ontrast to previous work based on ODE's whi
h studied onlythe one-dimensional 
ase, it is relatively easy to extend our CML methodology tohigher dimensions, even to the experimentally relevant three-dimensional 
ase. Itwould be interesting to see how, if at all, hydrodynami
 e�e
ts 
an be in
orporatedin models of this type. Whether other experimental systems of sheared 
omplex�uids whi
h exhibiting rheo
haos 
an be fruitfully analysed using similar 
oupledmap approa
hes remains to be seen.
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7Con
lusions
The work des
ribed in this thesis has dealt with some problems in the stati
s anddynami
s of nemati
 liquid 
rystals. These problems fell into two broad 
lasses.The �rst 
lass dealt with the stati
 properties of the isotropi
-nemati
 interfa
e.The se
ond 
lass of problems involved the study of the dynami
s of the orderparameter for a nemati
 liquid 
rystal in an external shear �ow.In our study of the isotropi
-nemati
 interfa
e, results were derived for theuniaxial and biaxial pro�les, spe
ialized to the 
ase of planar an
horing. We showedhow a term in the Euler-Lagrange equations negle
ted in previous work 
ontributessubstantially to determining the stru
ture of the interfa
e. Our approa
h yielded
lose agreement with numeri
s for both the uniaxial and biaxial pro�les. We alsostudied the 
ase where a general an
horing 
ondition is imposed on the nemati
 sideof the interfa
e. We used variational methods in our analysis, showing that whilespatial variations of the uniaxial and biaxial order parameters are approximately
on�ned to the neighbourhood of the interfa
e, nemati
 elasti
ity requires that thedire
tor orientation interpolate smoothly between planar an
horing at the lo
ationof the interfa
e and the imposed boundary 
ondition at in�nity. Our variationalresults were shown to agree well with numeri
al results as well as results frommole
ular simulations.The a

ura
y of these results relied on the 
areful 
hoi
e of an appropriatevariational fun
tion, powerful enough to des
ribe the variation of the strength ofuniaxial and biaxial orders a
ross the interfa
e as well as the spatial variation of thedire
tor �eld. Similar variational methodologies should be useful in other 
ontextswhere both uniaxial and biaxial orders might be expe
ted to vary strongly in spa
e,139



Chapter 7. Con
lusionsin
luding 
lose to surfa
es or in the presen
e of external �elds.In our study of the sheared nemati
, we proposed and studied a lo
al map
apable of des
ribing the full variety of dynami
al states, ranging from regular to
haoti
, obtained when a nemati
 liquid 
rystal is subje
ted to a steady shear �ow.The map was formulated in terms of a quaternion parametrization of rotations ofthe lo
al frame des
ribed by the axes of the nemati
 dire
tor, subdire
tor and thejoint normal to these, with two additional s
alars des
ribing the strength of or-dering. Our model yielded kayaking, wagging, tumbling, aligned and 
oexisten
estates, in agreement with previous formulations based on 
oupled ordinary di�eren-tial equations. We then went on to dis
uss and study a 
oupled map latti
e modelfor a nematogeni
 �uid in a passive shear �ow. Our results provided eviden
e forspatially and temporally uniform states, as well as states whi
h are spatially uni-form but temporally periodi
. We demonstrated the presen
e of spatio-temporally
haoti
 behaviour in some regimes, and a detailed 
hara
terization of su
h behaviorwas provided.The work des
ribed in this thesis shows that 
oupled map latti
e models ofrheologi
al 
haos 
an provide a

urate yet 
omputationally tra
table des
riptionsof the steady states of a prototypi
al driven 
omplex �uids. This work provides the�rst example of 
oupled-map latti
e methods applied to the problem of rheo
haos.One might expe
t that CML models 
ould provide helpful insights into the dynam-i
al behaviour of other driven 
omplex �uids known to exhibit 
haoti
 behaviourat low Reynolds number. This would be a fruitful dire
tion for future work.
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