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ABSTRACT

The variation of the measured BY — B_g mixing phase 5/¢; in b — cés and
b — sqq (where ¢ = u,d, s) modes is regarded as a possible probe of New
Physics. It has been speculated that this discrepancy is a signal of New
Physics. Within the Standard Model the amplitude for modes involving
b — s transitions, get contributions from two amplitudes with different weak
phases. Unless the contribution from one of the amplitudes is negligible,
one would expect some discrepancy between the various measurements. Es-
timates of this discrepancy using hadronic assumptions have indicated that

the sign of the discrepancy within SM is opposite to the observed value.

We demonstrate using a model independent approach that the deviation in
measured BY —B_g mixing phase caused by pollution from another amplitude,
within the Standard Model, is always less in magnitude, and has the same
sign as the weak phase of the polluting amplitude. The exception is to have
large destructive interference between the two amplitudes. We show that any
deviation larger than a few degrees is only possible if the observed decay rate
results from fine tuned cancellations between significantly larger quark level
amplitudes. These simple observations have very significant consequences for

signals of New Physics.

One of the eligible New Physics candidate is the leptoquark model. Lepto-
quarks are hypothetical gauge particles which can be either scalar or vector.
These particles allow having tree level transitions from a quark to lepton or
vice versa which are not permitted in the standard model. In our work, upper
bounds at the weak scale are obtained for all A\;;\;;, type product couplings of
leptoquark model which may affect K0 — KO | BY — B_dO and B? — B_g mixing.

For BY— BY we use both Amp and sin(23) where as for BY— B0 we use Amp,



and sin(2f;,) constraints. For K — KO we use the results on Amy and ex.
Due to the presence of large theoretical uncertainties, ¢’/ is not considered
in our analysis. The relevant mixing correlated leptonic and semileptonic de-
cay channels are also presented in the analysis. We constrain all the possible
product couplings in this sector, including some which were not considered
earlier. The constraints obtained for the leptonic and semi-leptonic decay
modes are much tighter than the bounds obtained from mixing for most of
the cases. We also present the bounds on the real and imaginary parts of
AX which carry the information of the phase of new physics. This is a new

observation, not considered in earlier literature.
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CHAPTER 1

CP VIOLATION IN THE STANDARD
MODEL

1.1 INTRODUCTION

Discrete symmetries like C (charge conjugation), P (parity or space reflec-
tion) and T (time reversal) have played a very important role in the un-
derstanding of elementary particle interaction. C and P are conserved in
strong and electromagnetic processes, but violated in weak decays. For sev-
eral years it was believed that the product CP and T were conserved in all
kinds of interactions. It was only in 1964, Christenson, Cronin, Fitch and
Turlay [1] showed for the first time through their famous experiment in the
neutral kaon decays that CP, like parity, was also not a good symmetry of
nature. This surprising effect is a manifestation of indirect CP violation. The
mass eigenstates K g of the neutral kaon system are the admixture of the
flavour eigenstates K° and K9. The CP violation occurs due to the fact that
K. s are not eigenstates of the CP operator. In particular, the K7, state is
governed by the CP-odd eigenstate, but also has a tiny admixture of the CP-
even eigenstate, which may decay through CP-conserving interactions into
the 77~ final state. It was only in 1999 that the NA48 (CERN) [2] and
KTeV (FNAL) [3] collaborations first time observed the direct CP violation
which arises directly at the decay-amplitude level. A year later, in 2000 the
CPLEAR experiment [4] reported the first direct evidence of T violation in
the neutral-kaon system. However, CPT still remains conserved as expected
from the Lorentz invariance of quantum field theories.

1



2 CP Violation in the Standard Model

In 2001, CP violation was finally observed outside the Kaon system, in
BY — J/¥Ks mode by the BaBar [5] and Belle [6] collaborations. This
is an example of mixing-induced CP violation. It is observed in the interfer-
ence between B} — J/9Kg and BY — J/¢Kg decay processes. Three years
later, in 2004, direct CP violation was also detected in B — 7t KT decays
[7].

In the Standard Model (SM), the phenomenon of CP violation can be accom-
modated in an efficient way through a complex phase. This phase enters in
the coupling constants which describe the weak charge-changing transitions
of quarks. These couplings are described by the unitary 3 x 3 Cabibbo-
Kobayashi-Maskawa (CKM) [8], [9] matrix. Most of the CP-violating pa-
rameters observed at a level higher than 30 are consistent with the CKM
mechanism till date. That is why it is believed that probably CKM phase is
the dominant source of CP violation in low-energy flavour-changing neutral
current processes. But CKM mechanism fails to explain the baryon asym-
metry observed in the universe. It cannot give any explanation to the strong
CP problem. Moreover, the observation of the neutrino masses indicates that
there should definitely be an origin of CP lying beyond the SM. It raises the
question of having CP violation in the neutrino sector and its connection
with the quark-flavour physics. All these problems suggest new sources of
CP-violation, which may come from different new physics (NP) models like
supersymmetry (SUSY), leftright-symmetric models, models with extra Z’
bosons, extra dimensions, little Higgs or leptoquarks for example.

In this chapter, we first discuss about the CP violation scenario in the SM.
It involves a discussion of the CKM mechanism and how CP violation is
introduced in the quark sector through it. This is followed by a presentation
of different parametrizations of the CKM matrix. Subsequently we have a
brief discussion on the unitarity triangle (UT) and it’s parameters. Next we
discuss about the global fits to indicate why the CKM matrix is considered
as the dominant source of CP violation in the SM. We finally conclude this
chapter with a discussion of the fact that SM is not sufficient enough to
explain nature completely and it is therefore necessary to continue with the
search for NP. Part of this chapter has been reproduced from the standard
references [10], [11] and [12].
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1.2 CP VIOLATION IN THE STANDARD MODEL

In the framework of the SM, the quark Yukawa interaction is given by [10],

_re

Yukawa

= YAQL 6Dk, + Y IQL,0UL, + hec. (1.1)

J

where Q1 = (gé) is the left-handed quark doublet of SU(2),. Uk, D% are the
L

right-handed up and down type quark singlets respectively. ¢ is the scalar
doublet and & = —iTo0* where 75 is the standard Pauli matrix. The index
I denotes interaction eigenstates and 7,5 = 1,2,3 are the flavor index. Y™
and Y¢ are the Yukawa coupling matrices. it has been shown [13] that CP
violation in SM can be incorporated if and only if

Im(det[Y4Y 9 yuy 1)) £ 0. (1.2)

It can be explained with a simple argument why CP violation is related to
the complex Yukawa couplings. The hermiticity of the Lagrangian demands
that Lyuawa has its terms in pairs of the form

Yiithridtr; + Y;;Tﬁ_RWWLm
whereas under CP transformation operator,
E¢¢Rj < ¢_Rj¢T¢Li7

but the coefficients, Y;; and Y;j, remain unchanged. This means that Lyvuawa

is symmetric under CP only if Vi; = V7.

After spontaneously broken symmetry from SU(2);, x U(1)y — U(1)em, the
quarks acquire their mass terms from the Yukawa interactions in Eq. (1.1),

_‘C(]]W = (Md)ijDiiDéj + (Mu)Z]UI{ZU]I%j + h.c.
where M, = \%Yq and ¢ receives a vacuum expectation value (VEV), (¢) =
(i) We can always find two unitary matrices V,; and V,r such that

V2

‘/qLMqVqTR = M;iiag (q = u, d)?
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with M qdiag as a diagonal and real mass matrix. The quark mass eigenstates
are then identified as

qri = Var)isa;  ari = Var)ijag;  (q = u,d).

Following this formalism the charged current interactions for quark can be
written in the mass basis as:

L0 = Ly (Vi Vi )id, W + e,

V2

This 3 x 3 unitary matrix,
V=V, V), (VVi=1), (1.3)

is the CKM mixing matrix for quarks [9], [8]. The elements of V' are written
as follows:

Vud Vus Vub
V= Ve Ves Vo |- (1.4)
Viae Vis Vi

In the SM, with 3 generations, the CKM matrix can be parametrized by 9
parameters, however, 5 of the phases can be absorbed or changed at will by
rephasing the quarks fields. Therefore the number of physical parameters
in V is only 4. An 3 x 3 orthogonal matrix is parametrized by 3 rotation
angles. An unitary matrix is the complex extension of an orthogonal matrix.
Therefore out of 4 parameters of V, 3 should be identified as the rotational
angles. The remaining parameter is the physical Kobayashi-Maskawa phase
0 which is the single source of CP violation in the quark sector of the Stan-
dard Model [9].

In order to determine the magnitudes |V;;| of the elements of the CKM ma-
trix, the following tree-level processes may be used [11]:

e From nuclear beta decays and neutron decays |V,4| can be obtained.
e K — wl v decays can give the information about |V,

e v production of charm off valence d quarks give |V,



1.3 Parametrizations of the CKM matrix 5

e |V.s| can be obtained from the charm-tagged W decays (as well as v
production and semileptonic D decays).

e Exclusive and inclusive b — cl~v decays give |V
e Exclusive and inclusive b — ul~v decays constrain |V|.
e 7 — bl~v processes constrain |Vj|.

If we use the corresponding experimental information, together with the
CKM unitarity condition, and assume that there are only three generations,
we arrive at the following 90% C.L. limits for the |V;;| [14], [15], [16], [17]:

0.97419 4+ 0.00022  0.2257 £ 0.0010  0.00359 & 0.00016
V=1 0225640.0010 0.97334+0.00023  0.04157:9010
0.00874+0:00026 (0407 + 0.0010  0.999133+0-000041
(1.5)

1.3 PARAMETRIZATIONS OF THE CKM MATRIX

One has the freedom to rephase any of the five quark fields out of the six,
leaving the physically observable quantities invariant under this rephasing.
This gives us the opportunity to change the overall phase of any row or
column of the CKM matrix without changing it’s physics context. It gives
us the freedom to constrain up to five matrix elements to be real or else to
fix their phase in any desirable way. But one must be very careful not to
implicitly fix the phase of any quartet while choosing any phase convention
of the CKM matrix [12]. The quartet is defined as

Qaiﬁj = VaiVﬁjVJjVEm

where o # 8 and 7 # j. As we have seen in last section that with 3 Euler
angles and 1 complex phase, we can parametrize CKM matrix completely, but
we still have the option to choose which axes to use for our rotations and in
what order to perform them. This choice leads us to no less than 36 distinct
but equivalent parametrizations for three generations [18]. However, the two
most popular parametrization of CKM matrix, the standard parametrization
[19] and the Wolfenstein parametrization [20] are discussed below.
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1.3.1 STANDARD PARAMETRIZATION

The so called standard parametrization of CKM matrix was introduced by
Chau and Keung [19]. This parametrization is followed by the particle data
group. In this parametrization,

0

C12C13 512€13 S13€
_ i6 i6
V = | —S12C23 — C12523513€ C12C23 — 512523513€ sascis |, (1.6)
5 5
$12823 — C12C23513€" —C12523 — S12C23513€" C23C13

where ¢;; = cosf;; and s;; = sin 6;;. In this parametrization only four matrix
elements are chosen to be real and only one physical phase appears. The s;;
are related to directly measurable quantities,

S13 = \Vub\
S12 =~ |Vus|
Sa3 &~ |Vl

1.3.2 WOLFENSTEIN PARAMETRIZATION

In 1983 it was realized that bottom quark decays predominantly to the charm
quark, i.e. |Vg| > |Vip|. Then it was noticed by Wolfenstein that |V,| ~
|Vus|?. He introduced a parametrization which holds unitarity approximately.
Since then it has become very popular. In this parametrization,

1— 132 -1y A AN (p — i)
V= =A4+3A2N[1=2(p+in)] 1—2IX7— 1N (1+442) AN? (1.7)
ANL— (1= 3N (p+in)] —AN 4+ FAM[1 —2(p+in)] 1-— 342\
+0O(\9).

The parameter A ~ 0.22 serves as an expansion parameter and A ~ 1 as
|Vi| ~ |Vus|®. p and 7 should be smaller than one as |Vip|/|V| ~ A/2. V
may be further expanded to a higher power of A\ in case one wants to ob-
tain a better approximation to unitarity. Two more generalized Wolfenstein
parameters can be introduced following [21] as,

p <1 — %)\2) ., M=7 (1 — %v) . (1.8)

p
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This parametrization is very important as it gives insights to the experimen-
tal information like |V,s| < 1, |Vip| ~ [Vis]? and |Vi| < |Vip|. The unitarity
property of the CKM matrix can also be checked through this parametriza-
tion. The relation between standard parametrization and Wolfenstein param-
etrization can be depicted by the following relations [21]:

S12. = A,
S23 — A/\Q, (19)
size 0 = AN} (p —in).

We can always define a CP violating quantity which is independent of dif-
ferent parametrizations of the CKM matrix V. The Jarlskog parameter, Jep
[13], can be interpreted as a measure of the strength of CP violation in the
SM and is defined as,

JCP - |Im(‘/;a‘/jﬁviﬁvja)|a (Z 7& ja «@ 7£ 6)
In terms of the explicit parametrizations given above, we have,
JCP = 0120230%3812823813 sin § ~ )\GAzn.

If we translate Eq. (1.2) in the mass basis, we obtain the necessary and
sufficient condition for CP violation in the quark sector of the SM (we define
Ami; = mi —m3):

AmZ Am?, Am2, Ami Ami,Am?2, Jcp # 0. (1.10)

Eq. (1.10) gives the following requirements on the SM in order that it violates
CP:

1. Within each quark sector, there should be no mass degeneracy.

2. None of the three mixing angles should be zero or 7/2.

3. The phase should be neither 0 nor 7.

1.4 THE UNITARITY TRIANGLES OF THE CKM MATRIX

We obtain a set of 12 equations, consisting of 6 normalization and 6 orthog-
onality relations using the unitarity property of the CKM matrix VIV =
1 = VVT. These 6 different orthogonality relations can be depicted through
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(p. N)

Vid Mib Vid Mb Ru R

W B W B

Ved Vb (0, 0) (1,0)
(@ (b)

Figure 1.1: (a)Unitarity triangle depicted by Eq. (1.13), (b) Rescaled unitar-
ity triangle.

6 different triangles in the complex plane [22]. Each of these triangles has
the same area, 2A = Jop [23]. The orthogonality of different columns of the
CKM matrix leads us to the following three relations:

VuaVis + VeV, +VidVi, = 0, (1.11)
VasVip + Ves Vi + VisVyy, = 0, (1.12)
VaaVap + VeaVa + ViaVy = 0, (1.13)

whereas orthogonality of different rows of the CKM matrix gives us the fol-
lowing relations:

VadVoy + VusVis + VViy = 0, (1.14)
VeaVig + VesVis + VaVy, = 0, (1.15)

It can be noticed that among these six relations, only in Eq. (1.13) and
Eq. (1.16), all three sides are of comparable magnitude of the O(\?), while
in the remaining relations, one side is suppressed with respect to the others
by factors of O(A?) or O(A?). It is the convention that the triangle described
by Eq. (1.13) is called the “unitarity triangle” shown in fig. 1.1(a).

The unitarity triangle (UT) derived from Eq. (1.13) is rescaled further by
choosing a phase convention such that (V.4V) is real, and dividing the
lengths of all sides by |V.4V_;|. This new phase convention helps to align
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one side of the triangle on the real axis, while division of all the lengths by
|VeaV;| makes the length of this side 1. It is shown in fig. 1.1(b). The form
of the triangle remains unchanged. Two vertices of the rescaled unitarity
triangle are thus fixed at (0,0) and (1,0). The coordinates of the remain-
ing vertex correspond to the Wolfenstein parameters (p,7). Depicting the
rescaled unitarity triangle in the (p,7) plane, the lengths of the two complex
sides are

Vud Vub
VeaVe

ViaViy
VeaVen

SN S A

R, =

=/(1=p2+7. (117

The three angles of the unitarity triangle are defined as follows [24]:

a = arg [—%] , [ =arg [—#] , Y= arg [—%] . (1.18)
ua ¥ yb tb cavch

These three angles and sides of the rescaled unitary triangle are physical
quantities and can be independently measured by different CP asymmetries
in B decays. It is also useful to define the two small angles of triangles
referred by Eq. (1.12) and Eq. (1.11):

VisVi,

1.19
VesVa (149

Bs = arg [—

Ves Vi
] , Px = arg [——Cd} )

VsV

It is important to notice that the angle 5, and §, are directly related to the
complex weak-phases of the CKM matrix elements V4, Vi, and Vi, respec-
tively in the following fashion:

Via = [Viale ™, Vi = |Viple™,  Vig = [Vi|e ™. (1.20)

It is important to measure all the UT parameters to understand SM better.
Two groups CKM-fitter and UT-fit have performed a global analysis to con-
vert experimental data into contours in the p —7 plane. Their main object is
to over-constrain the UT as much as possible. They mainly use semi-leptonic
b — ul~ v, cl"v; decays and Bg — B_g, (¢ — d, s) mixing to determine the UT
sides R, and R; respectively by fixing two circles in the p — i plane. They
use the information of the indirect CP violation in the neutral kaon system
described by ex and transform it into a hyperbola. They also use the direct
measurement of sin 23 with the help of BY — J/#Kg modes. In Fig. (1.2),
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Figure 1.2: Analyses of the CKMfitter and UTfit collaborations [15, 17].

we show examples of the comprehensive analyses of the UT that are per-
formed (and continuously updated) by the CKM Fitter Group [15] and the
UTfit collaboration [17].

1.5 BEYOND SM

The Standard Model however successful it might be, is not the end of the
story. It is at best an effective theory, valid up to some high energy scale,
which can at most be the Planck scale Mp;, ~ 10'%GeV. There are enough
reasons to suspect that some new physics will appear much before the Planck
scale. The reasons are as follows.

e In SM, Higgs self energy correction from fermion loop, gauge boson
loop or Higgs loop receives quadratic divergences which do not depend
on the mass of the Higgs scalar mg [25]. This indicates that mg is an
unnatural parameter of the SM and it is not protected by any symmetry
of the SM. However, the requirement of perturbative unitarity in the
amplitude WHW~ — WHW™ restricts mg < O(1TeV) [26]. These
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quadratic divergences depend on the loop momenta p? ~ A% where A is
the cut-off scale up to which SM is an adequate description of Nature.
One could always renormalize such quadratic divergences away in the
same way logarithmic divergences are disposed of. In that case, the
residual correction to Higgs self energy due to fermion loop would be
o< 3%, where Ay is the coupling constant for the Yukawa interaction
term of the Lagrangian. If it is believed that SM is a part of the
more fundamental theory like Grand Unification Model (GUT) which
unifies strong and electroweak forces in it at a energy scale My ~ 106
GeV, there will exist some fermions whose masses will be o< M. The
loop corrections to the scalar mass square dm% due to these fermion-
antifermion pairs will be then oc M. In this scenario, it requires an
unnatural amount of fine tuning between the bare scalar mass squared
m3, and the renormalization dmg in order to keep the renormalized
mass squared mg = mg, + omg less than a (TeV)?. There are many
approaches to solve this fine-tuning problem: Supersymmetry (SUSY)
is one of the possible candidate for it. SUSY has all the SM particles
in it. In addition, for each SM fermion and vector boson SUSY has a
corresponding new particle. SUSY requires at least two complex scalar
doublets to give masses to its particles. The large radiative corrections
due to these new particles cancel the corrections coming from the SM
fields. The other NP candidates which shed some light on this problem
are Technicolour, where the Higgs is assumed to be a composite of
two fermions; Models with compactified extra dimensions, where the
Planck scale is lowered to a few TeV by appealing to the fact that
gravity is weak not because of a large Planck mass but due to a small
intercept of higher dimensional gravitational wave function with our
physical world; Little Higgs models, where the Higgs is constructed as
a pseudo-Goldstone boson and hence has its mass is protected.

e There are 19 free parameters in the SM, which is a large number for
any fundamental theory: the six quark masses, three lepton masses,
three CKM mixing angles, one CKM CP-violating phase, three gauge
couplings (U(1), SU(2), SU(3)), one QCD vacuum angle 6gcp, One
Higgs quadratic coupling and one Higgs self coupling. It is hoped that
a more fundamental theory might relate some of them.

e As in the SM the three gauge couplings do not unify, SM cannot lead
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to a unified theory of strong and electroweak interactions. This is an
aesthetic objection, but Supersymmetry provides a nice way to gauge
coupling unification and hence a Grand Unified Theory (GUT). Lepto-
quark based models, where a lepton can directly transform into quark
and vice-versa at tree level is one of the GUT inspired models, which
can solve this problem.

e Experimental observation of neutrino mass and oscillations cannot be
accounted for in the SM. One has to introduce the neutrino masses by
hand.

We expect that any theory which tries to answer these fundamental problems
should leave some low-energy signatures. In the 4th chapter we discuss one
such NP model based on the leptoquarks.



CHAPTER 2

PARAMETRIZATION INDEPENDENT
STUDIES OF NEUTRAL B MESON
DECAYS

2.1 INTRODUCTION

The two B Factories PEP-II and KEK-B were designed to have peak lumi-
nosities 3 x 1033cm 257! and 1 x 10**cm~2s7! respectively. PEP-II, however,
reached design luminosity in a remarkably short time, and before shutting
down, it exceeded its design performance by a factor of three. KEK-B,
with a more ambitious design objective, has also exceeded its design perfor-
mance, and currently operates at even higher luminosity. The accumulation
of all these events allow precision measurements of exclusive B meson decays.
These measurements indicate subtle discrepancies between some experimen-
tal data and theoretical predictions within the standard model, though at
present error bars are still large to come to any concrete conclusion. These
discripencies are quite puzzling and it is difficult to ignore them.

One of such puzzles involve the weak phase f = arg (—V.4V/ViaV,;) which
is defined via the CKM matrix element V;y = |Vi4e?’. This phase can be
extracted either from the tree-dominated b — cés , e.g. B — J/¥Kg or
penguin-dominated b — sqq, e.g. B — ¢Kg modes. The two determinations
should be same in the SM, but would differ, if new physics contributions
modify the penguin dominated decay amplitudes. For several years a large
deviation AS = S;;5 — Ses has been measured where S; has been defined in

13
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Eq. (2.24) in Section (2.3.1). Several studies have been done to estimate the
penguin pollution in the b — c¢s trees and the tree pollution in the b — sqgq
penguins using various QCD based models and SU(3) based models. How-
ever, these studies [27], [28], [29], [30] are unable to produce the observed
effect. For most of the cases, these studies indicate that the sign of the dis-
crepancy within SM is opposite to the observed value. It has become one
of the most challenging puzzle in B-physics to provide convincing arguments
regarding the nature of this discrepancy and whether it can be regarded as
an unambiguous signal of NP. In this chapter we have tried to answer these
questions.

First we discuss about the parametrization of the most general amplitude
for b — G transition modes where ¢ is either d or s quark, then we present a
quick review about the progress of the SM estimation of these modes. Finally
we discuss in details about our own method to try to solve this puzzle.

2.2 PARAMETRIZING THE AMPLITUDE

The most general amplitude for b — g transition modes where g is either d
or s quark may be written as [31],

AP = A0, 4 Acg€10, + A0y, (2.1)

where v, = Vi Vj, with j = u, c or ¢ are the product of CKM matrix elements
and A;, and J,, are the amplitudes and strong phases associated with the
CKM factor vj,. The unitarity property of CKM matrix gives us a relation
Uyq + Ueq + 11y = 0. Using this property we can eliminate any one of the vj,
from Eq. (2.1) and express it in terms of only two independent contributions
having different weak phases.

In SM, within the framework of Wolfenstein parametrization [20] the various
v;, are expressed up to order O(A%) as follows:

Voo = A)\Q(l—%)\z),

Vea = —AN, (2.2)
Vys = A)\4(p+in),
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vaa = AN (p+in) (1 - ;) (2.3)
v = —AN (1 - (% —p— in))\2),

2

W= (1 5o

In the above parametrization it is clear that v.; and v.; are real at least to
order O()\G). The weak phase arising from v, and v,4 are represented by the
familiar unitary triangle angle v, where

Vtd

VuadVy
v = arg [—d—“*b] ~ 607 . (2.4)
‘/Cd cb

The weak phase of vy is the well known phase 3, where [32]
‘/c *
[ = arg {—d—cf] = (21.1 £0.9)°. (2.5)
Vid tb
The weak phase of v, is represented by s, where

VisVi, 0.061°
B, = arg [——t*] = 1.045°" ) 0ero - (2.6)
‘/cs‘/'cb 0.057

Since v, is almost real, the amplitude A7 may be rewritten in terms of only
one non-zero weak phase, by eliminating either v,, or vy, using the unitarity
condition. This results in a choice of two different ways to parametrize the
b — g amplitude.

The elimination of v, leads to the amplitude being expressed in terms of the
weak phase v independent of ¢, since v, and v,q have the same weak phase.
We can write,

AT — (Acqemcq — Atqei‘sfq)ch + (Auqeié“q — Atqei‘stq)vuq. (2.7)
The amplitude may then be re-expressed as follows:

AT — 19 [al, + b e™ae™], (2.8)
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itq

af = |eg| @) = |veg| | A€ — Arge

q ) (2.9)
bg = |Vug b; = |Vyq] ’Auqeia“q — Atqei‘;tq‘ ) (2.10)

Here, ©; is an overall strong phase which cannot be detected experimentally;
we hence set it to be zero. This fact will become clear once we write down the
observables in the next section (Sec. 2.3) and find that no observable depends
on ©. d, is the relative strong phase difference between a; and ). At this
stage we emphasize an essential difference between our parametrization for
q = s or ¢ =d: the negative sign of v.q is absorbed into the definition of 0,
for convenience.

Similarly the elimination of v,, leads us to parametrization, the details of
which depend on whether ¢ = s or ¢ = d. We first consider ¢ = s, this
results in the [, parametrization. Here we can write,

145HE = (Acsei5cs — Auseiéus)vcs + (Atseiats - Ausewus)vtu‘?' (211)

This amplitude may also be re-expressed as follows:

AP i8S [a; + bgeiégei,ﬁs] : (2.12)
CL; = |ch| &; = |ch| ‘Acseiécs - Ausei(sus ) (213)
W = o] B = Jugs| | Asse™®s — Ayge?®=| . (2.14)

We will set ©f = 0 for the same reasons we set ©; = 0 above. ¢] is the
relative strong phase difference between a! and b.. Note that a negative sign
originating from v, has been absorbed in the definition of 67 for convenience.
Interestingly, one may also note that the magnitudes of l;; and IS; are same.
The elimination of v,, for ¢ = d results in the amplitude:

APl — (Aege®t — A€o 4+ (Age®d — Ayae®@)vyg, (2.15)
which is re-expressed as,

Ab—d 19 [a2+bgei626iﬁ}7 (2.16)
af = |vea| @) = |vea] [Acae”t — Auae™] (2.17)

by = |vul 132 = | U4 |Atd6i§td — Audei‘;“d} . (2.18)
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We have thus demonstrated how the amplitudes for b — 5 or b — d may be
expressed as a sum of two contributions, one with zero weak phase and the
other with a chosen weak phase that is either 3, or v for b — 3, and S or v
for b — d.

We consider the decay By — f,, which results from an underlying b — g
quark level process, where g could be either s quark or d quark. From the
above arguments it is easy to conclude that the amplitude A, for such a
decay, can be expressed in a parametrization independent way, in terms of
two contributing amplitudes as follows:

Ay = ag + bgeea, (2.19)

where a, and b, are the magnitudes of the two contributions, ¢, is the cor-
responding strong phase difference, and ¢, is the weak phase. The weak
phase ¢, can be chosen from two different values, which define the choice of
parametrization. Once the parametrization is chosen, ¢, has the same value
for all possible final states which result from the same underlying quark level
process b — 5 or b — d. The values of aq, by and 4, however, depend on the
decay mode.

aq can be either aj or aj; b, can be either b} or b} depending on the two
parametrization and ¢, can be v or ;. Assuming the CPT invariance, the
amplitude for the CP conjugate mode can be written as:

A, = a, +belrei, (2.20)

For simplification of notation we assume that A,, A,, a, and b, are normal-
ized by the total decay width of BY. This will not change the Physics.

2.3 (OBSERVABLES AND VARIABLES

2.3.1 OBSERVABLES

The time dependent decay rate of BY to a mode f;(or f,) can be written as

L(BY(t) — fi) oc Bi(1 + C;cos(AMt) — S; sin(AMt)), (2.21)
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where B; is the branching ratio, C; is the direct CP asymmetry arising from
the fact that |A;| # |A;] and S; is the time dependent CP asymmetry which
arises from the interference between the decay. This three quantities are
observables and can be expressed as

Ay + A2

B, = % = af + b? + 2a;b; cos ¢ cos 0;, (2.22)
Ai 2 _ E 2 —2 1[?1 i i 5@

c - | |2 \_!2 _ “2aibisin gsin oy (2.23)

Si = /1 —C?sin2p>. (2.24)

Im(e*%ﬁA;E)
|AllA;]

with

sin 287 = — (2.25)

The phase 3 in S; comes from B) — gg mixing box diagrams.

2.3.2 EXTRACTION OF 23™me

Within the SM, S can not be extracted experimentally due to the pollution
through the phase difference between A; and A;. As a result, S; provides
a measurement of sin23"*. Further extraction of 25* gives a two fold
ambiguity (26>, m — 20*). Therefore we get a four fold ambiguity in the

difference between the two values of 25™* as (j: (207 — 2B5°), £ F

(207 + 265“"“‘)) which can be measured using two different modes f; and

f2. However, we will only be interested in the principal value 23;"***, obtained
from sin 23/"*, so as to have a well defined value of the difference. This value
of the difference is denoted by 2w and is defined as

2w = 201 — 2B, (2.26)

The two modes fi; and fo are chosen such that 5 > [y«. This choice
results in 2w always being positive.



2.4 Standard Model analysis 19

2.3.3 VARIABLES

The phase difference between A; and A, is defined as 7;, i.e.,

n = arg A; — arg A;. (2.27)
Hence, AfA; = |A||A;le”™: and the expression for sin 28 from Eq. (2.25)
implies that n; = 28 — 28. n; is thus the deviation of 23"* from 28. w
can now be expressed in terms of 7, 2 as

2W="mn; — M. (2.28)

We have three observables B;, C;, S; and five variables a;, b;, 6;,7; and ¢. It
implies the number of independent variables is only two. The choice of these
two independent variables is completely in our hand. From Egs. (2.19) -
(2.20) and Egs. (2.22) - (2.24), a;,b; and §; can be expressed in terms of
B;, C;, S; and n;, ¢ as

2 = 2Sf’Tg(bQ—,/1_c,?cos(m—2¢>)), (2.29)
.- 2fTi2¢<1—\/1—C’fcos(m)), (2.30)

tand; = Cising (2.31)

cosp — /1 — C2cos(n; — )

Before we discuss about our analysis in Sec. (2.5), we present a brief summary
of the bounds obtained from SM analysis in the tree and penguin sector in
the next section.

2.4 STANDARD MODEL ANALYSIS

The decay mode b — c¢s e.g. B — J/1Kg has been regarded as the golden
mode for extracting the standard-model parameter sin 2/ [33]. The penguin
pollution in this mode is only of the order of 5% and hence almost negligi-
ble. On the other hand, the b — sqq e.g. B — ¢Kg is penguin dominated
and hence there is a large possibility that it can receive a contribution from
beyond SM physics. The theoretical estimation of these penguin dominated
modes have been progressed mainly in two different directions. Firstly, sev-
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eral studies have been done to include QCD corrections based on different
hadronic assumptions e.g QCD factorization(QCDF), Soft Collinear Effec-
tive Theory(SCET) and Perturbative QCD(PQCD). Secondly SU(3) flavour
symmetry between s and d quarks has been used to constrain the penguin
dominated modes. Here we present a very brief summary of all these con-
straints.

Mode | QCDF bound SCET bound PQCD bound
K 0.02 £ 0.01 0.02 £ 0.01
[35] - [36]
n'Ks 0.01 £0.01 | —0.019 +0.008, Sol-I
—0.010 £ 0.010, Sol-II
[37] [28] -
K 0.07+0:02 0.077 £ 0.030 0.05379-92
[29] [28] 38], [39]
K —0.0810:% 0.18710:50
[29] - [38], [39]
wKg 0.13 4+ 0.08 0.1537003
[29] - [38], [39]

Table 2.1: Constraints on AS; from QCDF, SCET, PQCD.

For BY — f; decay, a parameter 7; can be defined from Eq. (2.7) as [34],

(Auge™s — Asge™) AL
(Acqeiécq - -Atqei(;tq) - OOQA_ZC’ (232)

. Uy,
riezéz — q

Ueq

where ¢; is the strong phase. Expanding Eq. (2.25) in terms of the small
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ratio r;,

sin 2™ = sin 20 + 2r; cos d; cos 23 sin 7, (2.33)
C; = —2r;sind;sin~y. (2.34)

In the limit of negligible r;, sin 23™ = sin 2 and C; = 0. If the direct CP
asymmetry C; is found to be non-zero experimentally, it would establish the
fact that r; dependent terms are important. The quantity AS; = S5 — Sees
can be written as

AS; = sin 2[5 — sin 252, (2.35)

sqq ccs

Without going into the detail discussion of different hadronic assumptions,
we present a summary of the predicted AS; by different QCD based models
like QCDF, SCET and PQCD for different penguin dominated modes in Ta-
ble. (2.1).

AS = 0 modes are related to AS = 1 modes by SU(3) flavour symmetry,
and using this symmetry the bounds on r; can be obtained as [40],

R+ N Bf, AS = 0)
;< ., R<A , , 2.36
nETh >l F a5 = (2.36)

where ny are numerical coefficients,

N (12 n AP+ 15 nsAG))

2= — — (2.37)
(14(BY = KO + |A(BY - yKO)[")
and -~
N= -2 0225 2.38
A7 (2.38)

The sum over f in Eq. (2.37) is a sum over all the amplitudes of 797%, 7%,
7%, mm,n'n’,nm’ modes. In the limit in which small amplitudes 1nv01v1ng
the spectator quarks may be neglected, 7y, 7%’ and nn’ amplitudes can
be ignored . The bound on R is thus in general better, if the sum is over
a smaller set of modes f’. Furthermore, all the branching ratios f’ in the
bound need to be measured to have the best bound. Using branching ratios
of mon,n'n', 7°7°, 7% nm,m’, Ryk, < 0.116 [40]. Using QCDF predicted
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branching ratios, R, x, < 0.045 [37]. The bound on R, k, < 0.088 using
SCET predicted branching ratios [28]. Bounds on ¢Kg, K KK modes are
not good [41], [42], [43]. The bounds on rg+x-xo < 1.02,rk x.x, < 0.31
[42], [43]. Performing a global fit to experimental data, SU(3) prediction for
sin 20755 = —0.81 £0.03 which is far away from the measured experimental

value [42], [44].

The experimental values of AS; are found negative in most of the cases as can
be seen from Fig. (2.1). These values are less than the theoretically predicted
values also. Presently the error in these experimental values are in such a
regime that the tree pollutions in different b — sqg modes with ¢ — d, s
can not be neglected any more. Even with the SU(3) approach, at present,
only upper limits are available for many of the branching ratios that enter
into Eq. (2.36). That is why these bounds obtained from the SU(3) analysis
are probably a significant overestimate and will improve with further data.
Hence, in both approaches, the theoretical bounds will be more robust with
further availability of the experimental data.

In the next section we present a completely different approach based on ge-
ometrical interpretation to argue whether the discrepancies in the measured
values of AS; can be an indication of NP or not.

2.5 RELATION BETWEEN w AND ¢

We want to find a relation between w and ¢. Eq. (2.28) depicts that w and
n’s are related to each other. Using this fact we first try to obtain a relation
between n and ¢ which finally leads to a relation between w and ¢. The first
thing which can be noticed is how sign of 1 depends on sign of ¢ and then
how amplitude of 7 depends on amplitude of ¢. In this section we present a
geometric approach, though we have verified all the results numerically. The
simplicity of the arguments is the real beauty of this approach.

2.5.1 RELATION BETWEEN SIGN OF 717 AND ¢

A; and A, are represented geometrically. Given values of a;, b;, 6; and ¢, | A;]
and |4;| are as shown in the Fig. 2.2. For the purpose of illustration first
we choose 0; > 0 and ¢ > 0. a; is represented by QV, and b: is represented
by SV or PV depending on the phase §; + ¢ or d; — ¢, resulting into the
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Figure 2.1: sin 23" = sin 2™ from the HFAG collaboration [32].
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Figure 2.2: The amplitudes A; and A; in terms of a; and b; for the case ¢ > 0
and 9; > 0.

amplitude A; and A; respectively. It may be noted that the same values of
|Ai|, |A;] and 7; can be obtained using different values of a;, b;, 6; and ¢.
The set of points for which this is possible is obtained by moving the point
V' along the bisector to SP, since SV and PV are both b;, they must always
be equal. It is hence essential to express all quantities in terms of irreducible
variables.

In Fig. 2.2(a) we choose ¢; to lie in the range between 0 and 7/2. Clearly
n; is always positive (if ¢ > 0) irrespective of the values of the amplitudes
a; and b;. If §; is increased beyond 7/2, at some critical value of §; = d,
n; becomes 0. This is expressed in Fig. 2.2(b). This critical value §¢ can be
easily derived from Eq. (2.31) substituting 7; = 0 and the expression for it is

tan 6¢ = Cisiné (2.39)

cosqb(l — \/@)

If §; is increased further beyond df the sign of 7, depends on the relative
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magnitudes of a; and b;; n; < 0 if b; < a; (Fig. 2.2(c) ) and n; > 0 if b; > q;
( Fig. 2.2(d) ). Tt is easy to generalize to the cases where both ¢; and ¢ can
be positive or negative. Note that from Eq. (2.23), if ¢; and ¢ have the same
sign then C; < 0, else C; > 0.

0¢ lies in the range 7/2 to 7 for C; < 0 and —7 to —x/2 for C; > 0. Here
we want to mention that ¢f is strictly not defined for C; = 0, but may be
taken to have any value between 7/2 and 7. And Fig. 2.2(b) and Fig. 2.2(c)
do not apply to the case where C; = 0, as only two values of d; are allowed,
it can be either 0 or 7. Hence, we conclude that 7; always has the same sign
as ¢ if |6;| < |0¢]. The weak phase ¢ is fixed by the parametrization chosen
within SM and is same for all modes. Hence as long as |0;] < |d¢| for each
mode f;, the sign of ¢ and n; must be same for all modes.

2.5.2 RELATION BETWEEN MAGNITUDE OF 1) AND ¢

Next, we want to see how the magnitude of n; depends on magnitude of ¢,
when the magnitude of the strong phase is constrained to be less than J¢, i.e.

Cases for ¢ > 0: To start with, let us consider ¢ > 0. The magnitude of n
depends on both §; and ¢. |4;| itself can be either less than ¢ or larger than
¢. Further, 9; can be both positive and negative. We thus require a case by
case study depending on the value of §;. The three possible cases that need
individual consideration are shown in Fig 2.3.

Fig. 2.3(a) represents the case with positive J; greater than ¢, i.e. 0 < ¢ <
0; < o¢. Using simple geometry it is easy to deduce that

20 =n; + (G — G (2.40)

In Eq. (2.23), since the amplitudes a;, b; and the branching ratio B; are all
positive quantities, it is clear that for this case (0 < ¢ < §; < &%), C; < 0.
Eq. (2.23) also in turn implies that |4;| < [A;], if C; < 0. Tt is then easy to
prove that if |A;| < |4;], || < |G| must hold. Before we present the proof
we focus on Fig. 2.4(a) and 2.4(b). Fig. 2.4(a) is a repetition of Fig. 2.3(a)
with only the essential labels retained. In Fig. 2.4(b) the triangle AQV P of
Fig. 2.4(a) is flipped to triangle AQV P’. In AQSP,
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_ |4,
n+¢—C=2¢

(b) P

Figure 2.3: Case ¢ > 0 and —0f < ¢; < 6f. The amplitudes A; and A; in
terms of a; and b;. The three possible cases need individual consideration. In
cases (a) and (b) we consider ¢ < |0| where as in case (c) we consider |§| < ¢.
The two cases requiring different treatment for ¢ < |4], i.e. 0 < ¢; < ¢ and
0 < §; < §¢ are considered in (a) and (b) respectively.

|A;| < |4 = ZQP'S < ZQSP'.
- (LQP'V + LVSP) < ZQSV + LVSP').
Further, VS=VP =0b = JLVSP =/VP'S.
Hence, ZQP'V < ZQSV or |G| < |l

It is proved that |G| < |¢| for 0 < ¢ < §; < 6¢. From Eq. (2.40), hence it
can be concluded that for the case under consideration n; < 2¢.

The next case, —0f < ¢; < 0 is depicted in Fig. 2.3(b). For this case n; and
¢ are related by

20 =1 — G+ G- (2.41)
Using Eq. (2.23) and logic similar to the case above, it is easy to see that
0 < C; is implying that |A;] < |A;]. Thus, |¢;| < || must hold, as can
be seen by a proof analogous to the above. Hence, it can be deduced that
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(a)

Figure 2.4: For |A4;] > |A;], (a) before flipping AQVP, (b) after flipping
AQVP to AQVP'.

1; < 2¢ even when —d;7 < 9; < 0 as long as ¢ is positive.

The case of Fig. 2.3(c), when |§;| < ¢ is simpler to deal with as it does not
depend on the sign of d;. It is easy to see that for this case

20 = n; + G + G- (2.42)

Hence, n; < 2¢ for this case as well. Having considered all the three possible
cases for 0 < ¢ and |6;] < §f we can conclude that 0 < n; < 2¢.

Cases for ¢ < 0:

The different cases for ¢ < 0 can be treated in a way that is essentially sim-
ilar to those for 0 < ¢. However, we discuss these cases in some detail for
establishing the completeness of our conclusion. Moreover, due to the neg-
ative value of ¢ complications arise, that warrant a detailed consideration.
To begin with, since ¢ is negative, it is easy to see from Fig. 2.5 that n; < 0
as well. Hence we need to consider |¢| and |n;| to follow an approach that
is analogous to the one used for 0 < ¢. Further, the direct CP-asymmetry
C; has opposite sign when compared to the corresponding cases for 0 < ¢.
Also, Egs. (2.19) and (2.20) imply that |A;| and |E’ switch. The flip in the
positions of |A;| and |E‘ can be seen when comparing Fig. 2.5 with Fig. 2.3.

Fig. 2.5(a) represents the case ¢ < 0 < ¢; < 6f. It is easy to conclude that for
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Figure 2.5: Case ¢ < 0 and —0f < ¢; < 6f. The amplitudes A; and A; in
terms of a; and b;.

this case, 2 |¢| = |n;|+{;—¢. Since, ¢ < 0and 0 < §;, C; must be positive, i.e.
0 < C;, implying that |A4;| < |A;|. Following an approach identical to the one
introduced for the case of Fig. 2.3(a) in Fig. 2.4, we conclude that |(;| < |G-
Hence, |n;| < 2]¢| for ¢ <0 < §; < §¢. We next consider Fig. 2.5(b), where
§¢ < 0; < ¢ < 0. For this case, 2|¢| = |ns| + ¢ — ¢. Here, C; < 0, as
both ¢ < 0 and &; < 0 imply that |4;] < |A] and || < |G]. We hence
conclude that |n;| < |¢|. We finally consider the case when |d;| < |¢| but ¢
itself is negative. This case is straightforward; since, 2 |¢| = |n;| + ¢ + G, we
easily conclude that |n;] < 2|¢|. It can be concluded that even for each of
the ¢ < 0 sub-cases, |n;| < 2@, though within the SM, the weak phase ¢ is
always positive as mentioned earlier.

2.5.3 (CONCLUSION OF THIS SECTION
As a conclusion of this section it can be stated that,
1. n; always has the same sign as of ¢ if |6;] < |65].

2. |nil <£21g).
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Combining these two solutions, the constraints are

0;] < 65| = 0 < <29, (2.43)
10; > [65] = m <0 orm; > 2¢. (2.44)

2.6 CONSTRAINTS ON 7); AND 203

The present world average value of sin25™*(b — cés) = 0.67 £ 0.02, The
measured values of sin 24™*(b — sgq) are given in fig. (2.1). The modes f;
and f are chosen in such a way that the estimated values of 2w’s are always
positive. These values are listed in Table. (2.2).

£ can be chosen in three possible ways, it can be either greater than both of

pees  Brees or in between them or less than both of them. In Table. (2.3) we
consider these three cases with the possible sub cases depending on the value
of ¢ = 7 parametrization to obtain bounds on 7y, 72 and 2. In Table. (2.4)
the bounds are given for ¢ = [, parametrization.

2.7 A;S AS A FUNCTION OF 7;

(2, 2) A (@1,91)  (22,0) A (=1",0)

Figure 2.6: In (a) geometric representation of Eq. (2.8) with ¢ = ~
parametrization and in (b) geometric representation of Eq. (2.12) with ¢ = S
parametrization.

Fig. 2.6(a) and Fig. 2.6(b) are the geometrical representation of Eq. (2.8)
with ¢ = ~ parametrization and Eq. (2.12) with ¢ = f, parametrization
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S f 2w A2w

b — ccs oK"Y 15.96° | +11.02°
—11.67°

b — ccs n' K° 5.91° | +5.21°
KsKsKg | b— ces | 5.66° | £14.75°
b — ccs K" 7.32° | £12.04°
b — ccs W Kg 9.38% | +12.45°
—24.53°

b — ces wKg 15.32° | £15.67°
b — ccs f°Kg 2.20° | +8.05°
—9.48°

b — ccs f2Ks 13.38° | £37.21°
b — ccs fxKs | 30.53° | £32.79°
b—ces | m'n0Kg | 73.40° | £28.74°
b—ces | nrm Kg | 41.49° | £19.34°
KTK-K | b— ces | 13.02° | £7.19°
KTK-K' | 77~ Kg | 54.51° | £20.61°
KsKsKg | mtn Kg | 47.16° | +24.56°
KTK-KY n' K° 18.93° | +8.62°

Table 2.2: Estimated 2w and its error A2w values from Fig. (2.1)
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respectively. The co-ordinates (z),y]) and (25, y5) and I’ can be solvable as a
function of A;s and aj, b, and ¢§;. Similarly we can solve for the co-ordinates
(1,v]), (z%,94) and I’ as a function of A;s and af,b] and §]. Following
Egs. (2.29) - (2.31), a?, V7, tan ¢, and af?, bf?, tan ! can be expressed as a
function of only 7;, as B; and C; are observables and ¢ is known experimen-
tally. This straight-forwardly leads to express A; and A = |, — d,] in terms

of A., A, and ;.

0 <2y n2 bound 71 bound £ bound
pyrers < I m<m < | < 2w | <0 2B77¢4% < 2B;
prrers < B 0<2y
pggrees < II n2 <0 < | <0 0<m < 2p5rees < 26 < 2878
B < prrees m < 2y 2w;
B < | @) |0 < m2 <[]0 <2 < 2w < 28774 — 29 < 2B < 2B37°%;
pyrees < m < 2y 2y = 2w; 27;
ﬂ{neas
OIb) | 0 < m2 < | 2y —2w < | 29 < mp < | 287098 — 2y — 2w < 23 < 28795 — 27;
2y<m n2 < 27; 27 + 2w;
Mi(c) | 0 < 2y < | 2y <y 2w 42y < 28 < 2B3%°%° — 27;
n2 <m 153

Table 2.3: Constraints on 7; and 2/ for the + parametrization.

2.7.1 SOLUTION OF A; AND A IN 7 PARAMETRIZATION

From Fig. 2.6(a),

A2 = (g = 1)+
A = (h+ 1) +F,
2 2
Al = (2 —24)" + (v —w1)”, (2.45)
@ = (@ -1 g
b = (@ + 1)+

A% = a” + % — 23V cos b (2.46)
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0< 285 n2 bound n1 bound 3 bound

preas < I n2 <m <0< 26 n2 < —2w m <0 267 <28
Bree <
preas < I(a) [ n2 <0< <2Bs | 12 <28 —2w | 0<nm <285 2B — 265 < 28
/8 < 51”6(18

II(b) [ 72 <0<28:<m | 28s —2w < m2 | 26s <1 < 2w | 28775 <28 < 2B77°%° — 20;
B < | IM(a) | 0< 2 <285 <m 0<mn2<2Bs 2w <m 2pB5r¢s — 2B, < 2B < 28504
/Béneas <
ﬂ{neas -

ImI(b) | 0<28:s <m2 <m1 2Bs < m2 2w+28s <m 2B < 2B5°° — 205

Table 2.4: Constraints on n; and 24 for [, parametrization.

Considering the present experimental data, it is a valid assumption to as-
sume the direct CP asymmetry C; = 0 which is used to plot Fig. 2.7. C; =0
implies either 6, = 0 or 0] = m. Eq. (2.46) follows d; = 0 has two sub-cases

I = :I:@. These cases are discussed in details in this subsection.

Case-I (a):- 0/ =0 and ' = (d’;B’)
Eqns. (2.45) - (2.46)leads to

, @+
Ty = 5 s
n o= 0,
AZ_AQ
.,L,/Q — u AC’
2 — IY)
.A2 .,42 (A/ I;/)2 2 %
D= o2 (LT AT , 2.47
N Sl (247)
) ~1 2_8/ 2 3
A = i[Qd’b’Jr—(aAf‘ AA‘E)} ,
@)
A 4 A2 — 417
_ —1 U C
A = o [

Case-I (b):- /=0 and I' = (b'—a’)

2
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In this case,

33

1
, 1
N2 22

—H)1

(2.48)

~Y B/
q = 220
2
Yy, = 0,
2 42
Ty = Ai‘ A:
206 — @)
A2 — A2 (V)
vy = i[u“?-( ; <A
200 —a')
R 1
R A1 2_b/ 2\, 2
At — :|:|:2d/b/_|_(a"’4u AAc>i| 7
(@~ b)
A2 4+ A2 — 47
_ -1 U c
A = cos [ AN ]

Finally in both of the sub-cases for §; = 0, the values of A; and A remain

same.

Case-II :- 9/ =7 and ' = (?z’—2|—l3’)

In this case,

2 3

(2.49)

r (b/_d,)
1’1 - 2 )
y, = 0,
2 42
g _ AA
2(a’ + )
A2
A2 — A2 (@ + 1)
I 2 U c
y2 - :i:|:Ac ( 2(&’{»?)/) >] )
4 i{_%ﬁ,%muﬁ+&Ag
(@ + 1)
A+ A2 — 417
_ -1 U c
A = cos [ SAA }

These are the possible cases for v parametrization. The cases for 5, parametriza-

q{
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tion are discussed in the next subsection.

2.7.2 SOLUTION OF A; AND A IN 3, PARAMETRIZATION

Fig. 2.6(b)follows:

A2 = (@ -+
2 2
A = (ah =)+ (v — ),
AP = (2 + 1)+ (2.50)
Q= (2 =)+,
b = @+
2 A2 112 oArpr ’
4" =a"= + b —2a"b" cosd". (2.51)

The C; = 0 cases are discussed below.

Case-IV (a):- 9/ =0 and I’ = @)

2

From Egs.(2.50)-(2.51),

A E)I
= _—(a + )’
2
v o= 0
, A2 — A2 — 'l
1‘2 — N y
2a’
1
A% — A2 4+ g 2.2
vy = i[Ai—( u 2&j+a )] , (2.52)

~ Bl %

A = i[Aier’Q—g(Ai—Asz&”)} ,
A% + A% — d’2]
oA A

A = cos’l[

Case-IV (b):- 8/ =0 and I" = (i,”;m).




2.7 A;s as a function of n; 35

In this case,

: (@' +b")
2

ZL'I = y
vy = 0,
, A - A2 o'l
.T2 — - N y
2a"
1
A2 — A2 4+ 2.2
vy = i[Ai—( e ¢ H , (2.53)

N|=

A::4ﬁ+W—%£—ﬁ+Wﬂ,
A% + A% — d’q
2A,A.

A = cos_l[

Finally in both of the sub-cases for 4] = 0, the value of A; and A remain
same.

Case-V :- 0/ =

For this case,

po_ @b
= 5 ,
o = (b’_&,)
1 9 ’
y1 = 0,
A2 — A2+ a'l
Po= Tu T 2.54
xQ 2&, Y ( )
1
AZ_A2+&12 2.3
o :|I|:./42—< U c )] 7
y2 U 2&,

N 1
. b 2
A = i[AZer’QJrg(Aﬁ—Aerd’?)] ,
A2 4 A2 — "
il

A = cos’l[

In Fig. 2.7, the values of A; are plotted as a function of A, and A, for six
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n=>5 n =10
3 8
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A =06 1
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Figure 2.7: Values of A; and A = |§, — d.| as a function of A, and A, for
C; = 0. A; are normalized such that, if 4, = 0 and A, = 0, A, would
be unity. The allowed values are bounded by the curves for A = 0, 7. The

unlabelled parabolic curves represent A = 7, % and %.

fixed values of n; for C; = 0.

2.8 ANALYSIS OF THE BOUNDS

2.8.1 f1— (b—ccs), f» = (b— 3qq)

In b — ¢&5 channel, tree contributions dominate over the penguin, which
leads to the constraint A. > A, ;. In b — 355 channel only penguin diagram
contributes, it does not lead to any such constraint. From Fig. 2.7, it is
clear that large n > 0 (of the order of 5°) is easily obtained by having only
A, sizeable but A. > A, only for negative n; cases. This immediately
rules out all the cases except Case I of Table. (2.3) and Table. (2.4). In
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these cases, 1; is negative, but 7y < —2w. The estimated values of 2w’s
are given in Table. (2.2), though A2w’s are very large, still for most of the
cases, the central value of 2w > 5°. Following Fig. 2.7, it can be seen that
for Case I, this large negative value of ny requires the square of quark level
amplitudes |A.|* (| A,|°) and | A,)* which are at least 10 times larger than
the observed branching ratio. Eq. (2.7) or Eq. (2.11) implies that these large
quark level amplitudes have to be fine tuned such a way that they produce
A5 of the order one. It becomes extremely difficult to fine tune in such
a fashion to explain all the channels within SM. Hence, none of the cases
can be accommodated within the SM, unless one requires that the observed
branching ratios result from considerable fine tuned cancellations of quark
level amplitudes.

2.8.2 fi — (b—3qq), f» — (b — cC3)

According to the previous logic, in this case A, > A, ; demands negative 7.
This automatically rules out the Case III of Table. (2.3) and Table. (2.4).
Case I is also not relevant as 75 < —2w. Hence, this case is also ruled
out according to the same logic discussed in the previous case. Case II
of Table. (2.3) and Case II(a) and II(b) of Table. (2.4) are allowed. The
constraints obtained from Case II(a) and II(b) of Table. (2.4) are tighter
than their counterparts of Table. (2.3).

2.8.3 f1 — (E%gqlﬁ),fé — (B%EQQ%)

In this case none of the 1 belongs to b — ¢@5. ¢ and ¢, can be either same
quarks or different quarks. Case III(b) and III(c) of Table. (2.3) are natu-
rally ruled out as it is expected that v ~ 60°. Case I of both Table. (2.3)
and Table. (2.4) and Case III(a) and III(b) of Table. (2.4) are ruled out due
to my < —2w, 2w < n; and 2w + 25, < n; constraints respectively. Case 11,
III(a) of Table. (2.3) and Case II(a), II(b) of Table. (2.4) are allowed by the
present experimental data. In this case also, constraints obtained from [,
parametrization is better than the ones from ~ parametrization.

The above discussion clearly indicates that in all cases a large value of 2w
must correspond to a large n for at least one of the modes being compared.
The values of the amplitudes A,, A. and A; and their relative strong phases
are depicted in Fig. 2.7. It is easy to conclude from Fig. 2.7 that in all cases,
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the amplitudes A,, A. and A; must be large and destructively interfere in
order to obtain negative n larger than a few degrees. A scenario of large
destructive interferences among the different contributions seems unnatural.
It may be noted that within the same mode it is not possible to change the
relative strengths of the amplitudes A,, A. and A; by rescattering, since
by definition they are distinct amplitudes corresponding to v,, v. and v,
respectively. Given our relatively successful understanding of B; decay am-
plitudes, it seems unlikely that our estimates for the contributing amplitudes
of an individual mode (excluding coupled channel final state interactions) are
incorrect by a factor of 3 or more; it is even more unlikely that large enough
strong phases are generated so as to result in fine tuned cancellations of these
large amplitudes. One may finally, consider the possibility of large coupled
channel rescattering effects. In such a case, one can fine tune the individual
contributions for each mode. However, note that large 1 necessities a large
contribution from A; and at least one of A, or A.. In modes that can be
coupled by rescattering, a large deviation 1 must be compensated by a mode
that has reduced contribution from A; and an enhanced contribution to A,
and A.. Significantly larger data samples would shed light on whether such a
scenario is plausible. Large coupled channel effects would require unnatural
fine-tuning of amplitudes, and large coupled channel effects are not expected
theoretically.

To conclude, without making any hadronic model assumptions, we have
shown that it would be impossible to explain within SM a large discrep-
ancy in the B} — BY mixing phase measured using various modes. The only
possibility to forgo this conclusion is to accept that the observed branch-
ing ratios result from rather fine-tuned cancellations of significantly larger
amplitudes.



CHAPTER 3

STANDARD MODEL SCENARIO OF
MIXING AND RARE PROCESSES

3.1 INTRODUCTION

The neutral meson mixing, such as K% — K9, BY — B_g, BY — B_S and D° — DO
play a very crucial role to test the SM. In 1955 Gell-Mann and Pais proposed
the neutral kaon mixing for the first time [45]. Later in 1964, CP violation,
one of the most pioneering discovery in particle physics was observed for the
first time in the neutral kaon system [1]. This triumph continued through the
observation of the BY — BY mixing in 1986 [46], BY — BY mixing in 2006 [47]
and D° — DO mixing in 2007 [48]. Thanks to the two B factories and CDF,
DO collaborations, many important constraints on the CKM parameters are
now known.

On the other hand, the neutral meson mixing provides an ideal place to ex-
plore new physics beyond the SM. The mixing is caused by flavor-changing
neutral current (FCNC) transitions and only occurs via loops in the frame-
work of the SM. The dominant contribution to the mixing comes from the
box diagrams. That is why these box diagrams can be very sensitive to the
new physics effects.

In the next chapter, we discuss a NP model related to leptoquarks. In that
chapter, an analysis of the neutral K and B mesons mixing is done in the
presence of this NP model. In chapter 4 constraints on the NP are given for
the mixing correlated leptonic and semileptonic decays of neutral K and B

39
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mesons. Before presenting the NP model scenario, in this chapter we briefly
summarize the status of the these neutral mesons mixing and their leptonic
and semileptonic decays within the SM. The standard reference for these
analysis is [49]. For ready references, in this chapter we have reproduced the
SM scenario of the relevant mixing and decay analysis mainly from [49].

3.2 NEUTRAL-MESON MIXING

We denote the neutral meson by P° and its anti-meson by P%. P represents
any one of the K° D" By, BY. PY and PO can oscillate between themselves
before decaying. In the Wigner-Weisskopf approximation, the two component
wave function of an oscillating and decaying beam, in its rest frame can be
written as

(1)) = ¥a(t)|P°) + ¢a(t)[ P), (3.1)

where t is the proper time. The Schrodinger equation for this wave function

can be written as
d [ Ri1 Rio ) (@/)1)
- - 3.2
"t (1/)2) ( Ro1 Rao () (32)

As the neutral-mesons both oscillate and decay, the matrix R is not Hermi-
tian. It can be written as

R=M - %r, (3.3)
with

M = M, (3.4)

r = 1t

Y

M and T are associated with (P°, P%) « (P9, P°) transitions via off-shell
(dispersive), and on-shell (absorptive) intermediate states, respectively. Di-
agonal elements of M and I are associated with the flavor-conserving tran-
sitions P° — P° and P9 — P9, while off-diagonal elements are associated
with the flavor-changing transitions P° — P9. If the two eigenstates of R
are denoted be Py and P;, the mixing parameters can be defined as,

Am = my—myp, (3.6)
Al = FH—FL,
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where my and my correspond to the masses of Py and Pj respectively.
'y, 'y correspond to the decay widths of Py and P; respectively. The
convention is that the mass difference Am is always positive. The sign of
AT is fixed through experiments. The mixing in the K° - K9, BY - BY and
BY - BY sectors is discussed below.

3.2.1 MIiIXING IN NEUTRAL KAON SYSTEM

K° and K are the flavour eigenstates in the SM. Following the convention
(CP|K®) = |f0>), the CP eigenstates K and K5 are defined as [49]

Ky = —(K'+ K", CP|Ky) = |Ky), (3.8)

Sl

1
V2

The physical states K and Kg are the admixtures of K; and Ko,

-0

Ky=—(K°-K), CP|K3) = —|Ks). (3.9)

i K, + &K, i K; +&eK,
S:—’ L:—'
VI+]E]? VI+[E]P

The parameter € is very small. It is not a physical parameter as it depends

(3.10)

on the the phase convention chosen for K° and e

Two pion final states are CP even state and three pion final states are CP
odd state. As K and K both consist of K; and K5, they decay to 3w via K>
and 27 via Ky component. The physical parameter i is the measurement
of the “indirect CP violation”. It is defined as

A(KL — (71'71')]:0)

Ex = , 3.11
K7 AKg = (7m)1—0) (3:11)
It can also be written as,
exp(im/4)
= ————2 (ImMi5 + 26ReM;5) , 3.12
K= oA M ( 12 + 28 12) (3.12)
where A
£ = 000 (3.13)

~ ReA,
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Figure 3.1: Box diagram of neutral kaon mixing.

with Ay = A(K — (77)7-0) and AM denoting the K — Kg mass difference.
The off-diagonal element M5 in the neutral K-meson mass matrix represents
K°(5d) — K (sd) mixing. It is given by

Imp My, = (K | Mo (AS = 2)| K, (3.14)

where Heg(AS = 2) is the effective Hamiltonian for the AS = 2 transitions
and my is the K-meson mass.

To lowest order these transitions are induced through the box diagrams shown
in Fig. (3.1). Including QCD corrections, the effective low energy Hamilto-
nian, to be derived from these diagrams, can be written as [50]:

_ G?
Ha > = —1671;2 M, [N2miSo(e) + Afn2So(e) + 22 AimsSo (e, 1)) X
~2/9 o’ (1)

where \; = V;iV,,. Using unitarity relation A, +A.+ A = 0, A, is replaced in

terms of A\. and \;. Eq. (3.15) is valid for scales p below the charm threshold
e = O(m,). In this case H5 =2 consists of a single four-quark operator

Q(AS = 2) = (3d)y_a(3d)y_a, (3.16)

Functions like Sy(z;) where i = u,¢,t and Sp(z.,x;) are the basic loop con-
tributions from the box diagrams without QCD correction. The expressions
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for these are as follows:

dr; — 1122 + 22 32dlna m?
So(xz;) = L L — L , P = 3.17
o(:) A1 — 1;)?2 21— 23" T M3, (8.17)
Ty 3x; 322 In x,

(3.18)

.T_C B 4(1 - I’t) B 4(1 - I’t)g ’

Short-distance QCD effects are included in the correction factors 7y, 12, 13
and in the explicitly as-dependent terms in Eq. (3.15). The scale dependence
and renormalization scheme dependence of a,(p) and J3 should cancel with
the scale dependence and renormalization scheme dependence of the hadronic
matrix element. In the NDR scheme J; = 1.895. The NLO values of the
QCD factors 7, , 72 and n3 are given as follows [51], [52]:

mo=1384£0.20, 1o=057£0.01, 1 =047£0.04  (3.19)

The renormalization group invariant parameter By can be defined as

(3)
Bi = Bi(p) [af” (Mﬂ_w [1 + %475”) Js] (3.20)
(K5 a(5d)y 4 K°) = = Bye) Fimiy (3.21)

We have used the value of By = 0.86 & 0.14 £ 0.06 given in [15] in our
calculation. Using Eq. (3.15) one finds
G2
My = 5 Fie Bemic M, [X2miSo(e) + A naSo(e) + 20N 1350 (e, 1) ]
(3.22)
where Fr = 159.8 + 1.4 4 0.44 [54] is the K-meson decay constant.

The last term in Eq. (3.12) can be neglected as compared to other uncer-
tainties for example By, as it constitutes at most a 2% correction to eg.
Substituting Eq. (3.22) into Eq. (3.12), it can be written as

e = C.BglmA {ReA: [m1So(x.) — n3So(xe, 21)] — ReAimaSo(x4) } exp(in/4),
(3.23)
where the unitarity relation ImA} = Tm)\; is used and Re\;/ReX. = O(A\?) is
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Figure 3.2: Box diagram of neutral B-meson mixing.

neglected in the evaluation of Im(AfAf). The numerical constant C. is given
by

T 6V2rrAM
The value of measured AMj is (5.31 £0.01) x 103ps™! [54].

= 3.78 x 10*. (3.24)

3.2.2 MIXING IN NEUTRAL B-MESON

The strength of Bg — EZ mixing, where ¢ = d, s is described by
AM, = 2|M;3], (3.25)

the mass difference between the mass eigenstates in the BY — ES system and

the BY — FS system, respectively. In this case the off-diagonal term My of
the neutral B-meson mass matrix is given by

—=0
2mp, M3 | = |(B,|Her(AB = 2)|BY)|. (3.26)

These mixings are induced by the box diagrams shown in fig. (3.2). The
effective Hamiltonian, valid for the scales u, = O(my), can be written in the

=0 ..
case of BY — B, mixing as

_ G3 . —6/23 al?
M = MR (ViVia) i) [0 ()] [1+—(“b>J5 .

1672 47
XQ(AB =2) + h.c. (3.27)
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Here
Q(AB =2) = (bd)y_(bd)v_4 (3.28)

and np = 0.55 £ 0.01 [52] is the short distance QCD correction factor.

Js = 1.627 in the NDR scheme. In the case of B? — ES mixing one should
simply replace d — s in Eq. (3.27) and Eq. (3.28) with all other quantities
unchanged. Due to CKM suppression, for neutral B-meson box diagrams,
the charm quark and charm-top quark contribution terms are negligible com-
pared to the top quark contribution. The Bp,_ term is defined as,

(%)
—6/23 g
By, = By, (1) [a® (0] " |1+ #Js)] (3.29)
=0, 7 - 8
(B (a)v—a(ba)v-a|BY) = > B, ()3, m3, (3.30)

where Fp, is the B;-meson decay constant. Using Eq. (3.27) one finds

G2
AM, = 6—7TF2anBq(BBqF§q)M5VSO(xt)\th\Q, (3.31)
which implies
2

\/BBdFBd

AM,; = 0.50/ps x

][] 2] o

200 MeV | |170 GeV 88 x 103 L0.55
and
AM, = 15.1 /ps x | Y201, [ ) 1 Vil P GRS
s = /P 240 MeV | |170 GeV 0040 | Los5] =

For our calculation, we have used [15], [53],

Fg,/Bp, = (0.228+0.033)GeV, (3.34)
Fp.\/Bg.limgcp = (0.245 4 0.02179055) GeV . (3.35)
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3.3 NEUTRAL MESON MIXING CORRELATED DECAY

Various leptonic and semileptonic decay couplings of neutral K and B mesons
are related to the couplings of the KO — KO, Bg — B_g mixing respectively.
Bounds can be obtained for the same CKM matrix elements from both mixing
and correlated decays. In this section we discuss about the SM scenario of
those correlated leptonic and semileptonic decays.

3.3.1 NEUTRAL KAON DECAY

° KL — [T~

The decay K; — IT1~, where | = e, u , proceeds through loop dia-
grams. In the SM, the dominant contributions to this decay come from
the W box and Z penguin diagrams. In addition, it receives long dis-
tance contributions from the two-photon intermediate states, which are
difficult to calculate reliably. But the SM predicted terms are one order
off from the NP terms. That is why we have neglected these terms in
our calculation. At next-to-leading order, the effective Hamiltonian for
K — U1~ can be written as

Gr « )
off = ——=—5—(VoaVeaYnr + Vi VY sd)v (1D A+ h.c.
Hest \/§2Wsin2@w( o VedYnL +ViViaY (x1))(3d)y—a(ll)y—a+ h.c
(3.36)
The function Y (x;) is given by Y (z;) ~ 1.03Yy(x), where
T |x—4 3
Y == 1 .
o(z) slz—1F @172 og(x) (3.37)

The renormalized group (RG) expression Yy, represents the charm
contribution. It has two parts, one coming from the Z penguin and the
other coming from the box diagrams. The detail expressions are given
in [55].

o K; — mlete~

The effective Hamiltonian for K; — 7’e*e™ at scales u < m, is given
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as follows:

6,7V

Het (K — n'ete) = %VJSVM[Z [2i(1) + Tyi(1)] Qi+Tyra(Mw) Q7]
i=1

(3.38)
where the operators (); are given explicitly as follows:
Current—Current :

Q1 = (Saup)v-a (Usda)v-a4, (3.39)
Q2 = (Su)v-a (ud)yv-a. (3.40)
QCD—Penguins :
Qs = (sd)v-a Z (@q)v-a (3.41)
q=u,d,s
Qi = (Sads)v-a Z (@390)v-a; (3.42)
q=u,d,s
@5 = (5d)v-a Z (@q)v+a, (3.43)
q=u,d,s
Qs = (Sads)v-a Z (@pda)v+a- (3.44)
q=u,d,s
Electroweak—Penguins :
Q= 5 Gdva Y e (@) (3.45)
7 = 5 8dvoa €q (49)v+4, :
q=u,d,s
3
Qs = 9 (gadﬁ)V—A Zd 6q(§5qfx>v+Aa (3-46)
q=u,d,s
3
Qo = 5 (Gdv-a D e@@v-a, (3.47)
q=u,d,s
3 _
Qo = 2 (Sadg)v-a Z eq (739a)v—a- (3.48)

q=u,d,s
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and

Qw = (3d)v_a(ee)v, (3.49)
Qra = (3d)v-a(ee)a. (3.50)

Here, e, denotes the electrical quark charges reflecting the electroweak origin
of Q7,...,Q10 and «a, § are the colour indices. V(A) stands for the Lorentz
structure y#(y#+°).

The Wilson coefficient (WC) functions z;(x) and y;(u) were calculated in-
cluding the complete next-to-leading order (NLO) corrections in [56, 57, 58].
The details of these calculations can be found there and in the review [50].
These WCs describe the strength with which a given operator enters the
Hamiltonian. The WCs are controlled by the renormalization group equa-
tions, and their values at a high energy scale (typically My ) is supplied.
They include all the perturbative corrections to the operators in question.
The nonperturbative part comes in evaluating the matrix elements of the
operators (); between initial and final states. The regularization scale p is an
arbitrary point (of the order m,) that separates the high-energy perturba-
tive corrections and the low-energy nonperturbative contributions. The final
result, theoretically, should not depend on .

Three different type of contributions: CP conserving, indirectly CP violating
and directly CP violating type can contribute in K9 — 7%*(~. The estima-
tion of the CP conserving part is very difficult as it can only be done outside
the perturbative framework. The SM estimations give:

(0.3 - 1.8) x 10712 [59]
Br(Ky, — meTe )eons & { 4.0 x 10712 [60] (3.51)
(5+5) x 10712 [61].
The SM estimation of indirectly CP violating branching ratio [62], [63] is

Br(Kp — 7’ete )inair < 1.6 x 10712, (3.52)
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and the directly CP violating branching ratio [49] is

(4.542.6) x 1072 Scanning

(4.2+1.4) x 107"  Gaussian, (3.53)

Br(K, — n’ete )ar = {

3.3.2 Bg MESON DECAY

The B meson decay is controlled by an effective Hamiltonian of the form
Hepr = E Z VérmCi ) Oi (1), (3.54)

where O; are the relevant local operators which govern the decays in question.
Vi ieas represents the CKM factors. Below we show six classes of operators
which play the dominant role in the phenomenology of weak decays and
mixing. We assume the charged current decay b — ¢ of a B meson. The
subscripts 1 and 8 denote whether the currents are in singlet-singlet or octet-
octet combination of colour SU(3).

Current-Current:

01 = (Eb)&V_A (EC)&V—A; (355)
0Oy = (Eb)l,V—A (EC)LV,A. (356)

Only a typical combination Sc is shown; there may be other combinations.

QCD Penguins:

Os4) = (55)1(8),V—A2(59)1(8),\/—,4, (3.57)
q

Os) = (gb)l(s),v—AZ(GQ)1(8),V+A- (3.58)

q

The sum runs over all the lighter flavours (u, d, s, ¢).
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Electroweak Penguins:

3 _
Org) = 2 (5b>1(8),V—AZeq (QQ)I(S),V-i-Aa (3.59)
q
3
Og10) = 3 (5D)1(8),v—4 Zeq(§Q)1(8),v—A- (3.60)
q
Magnetic Penguins:
e
O7y, = @mbEU“”(1+75)bFW, (3.61)
Osc = %mbgaaﬂ”(u%)mﬂbﬁa;y. (3.62)

Here o and 3 are colour indices and 7 are the SU(3) generators.

Semileptonic Operators:

OgV = (8[))17\/_14(56)‘/, (363)
OlOA = (8[))17‘/,,4(56)14 (364)

These operators also contribute to the leptonic decays. Again, this basis is
for the SM only.

e Leptonic decays By — 1]~

The decay B, — [Tl~, where ¢ = d or s and | = e, u or 7, pro-
ceeds through loop diagrams. In the SM, the dominant contribution
to this decay comes from the W box and Z penguin diagrams. A sig-
nificant contribution to this decay is made by the top quark in the
loop. At low energies (of order my), the decay can be described by a
local (bq)(Il) coupling. These kind of couplings can appear through the
effective Hamiltonian which is similar to the one given in Eq. (3.54).
The branching fraction is given by
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G2
Br(B) = 1T17) = 8—;f§q73qm%q (1—

4ml le O£|2

)[|

+< 4ml>| oy (3.65)

In the SM C’”’ and C’g arise from penguin diagram with physical and
non-physical neutral scalar exchange, and are suppressed by a factor
(my/Myw)?. The decay rate is controlled by the coefficient

aVipVig
\/§7T sin® 6,

where sin® 8, is the weak mixing angle. the expression for Y (z;) is given
in Eq. (3.37). For different lepton flavour the SM branching fractions

[Clilsn Y(zy) (3.66)

are [64]
Br(B) —ete”) ~ O(107'),
Br(BY — ptp”) ~ 010719,
Br(BY — " 17) ~ O(107%).
Br(B? —efe”) ~ O(1071%), (3.67)
Br(B) = p ™) = O(1077),
Br(B! = 7tr7) ~ O(107)

These numbers show that purely leptonic decays are too rare to be
observed unless they are significantly enhanced by new physics.

e Semileptonic decays

The semileptonic inclusive decays B — X 4071, originating from the
parton level process b — s(d)I*1~, can be calculated using the effective
Hamiltonian formalism. The amplitude reads
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\/§GF04

A(B = X,I717) Vi Vi CM TSt bilyl + CroSty bl sl

205 myszio™ Lol (3.68)
q

where ¢? is the momentum transferred to the lepton pair. In addition
to the RG evolutions of C7; and (g at the weak scale, the WCs C?f f
and C¢// contain, the mixing effects with operators O1_g (for Cy) and
Oy and Og (for C7); hence the superscript. There is also a sizeable
long-distance contribution coming from B — K® and ¢ — 111,
where 1) is a generic vector cc state.

For the semileptonic decays, we use

(N(p2)[57"b|M(p1)) = P“Fi(¢?) + qﬂ% (Fo(¢®) — Fi(d),
(p(p2;€)| Vi F Ay |Bs(pr)) = m[—iV(QQ)awage*”Paqﬁ
+£A40(q*) (P - q)e;, £ Ar(@®)(€" - p1) Py
+A_(¢*)(€" - p1)gu] (3.69)

where M may be By or By and N may be 7° or K. The mp, and
mg are the meson masses, p;(p2) is the momentum of the initial (final)
meson, € is the polarization vector of the vector meson ¢, P = p; + po,
q =11 =2 Vi = ©Wqis Ay = @@V, Aox and Fryjo)(g®) are
the form factors. The values of these form factors are taken from [65],
[66].



CHAPTER 4

CONSTRAINING SCALAR
LEPTOQUARKS FROM THE K AND
B SECTORS

4.1 INTRODUCTION

The SU(3)¢ x SU(2), x U(1)y standard model (SM) is the most elegant
model which describes the phenomenology of the elementary particles in a
very comprehensive way, but apparently in all probability, it is just an ef-
fective theory valid up to a scale which is much below the Planck scale.
Though most of the data from the two B-factories BaBar and Belle have
been well explained by the SM, bits and pieces of it still remain under shade
and probably needs the attention of some new physics models to be fully
understood. Hopefully these new physics (NP) models can be explored in
the Large Hadron Collider (LHC) as they may be in the range of a few hun-
dreds of GeV. Direct production of new particles will definitely signal NP;
while it is an interesting problem to find out what type of NP is there (com-
monly known as the ‘inverse problem’), it is also well-known that indirect
data from low-energy experiments will help to pin down the exact structure
of NP, including its flavour sector. The low-energy data, in particular the
data coming from the B factories as well as from CDF, D@, LHCb (and also
from the general purpose ATLAS and CMS experiments) are going to play
a crucial role in that.

In B system, from last few years experimental data indicate some subtle in-

53
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consistency with the SM predicted values. Though the error bars are still
large to draw any definite conclusion but we have reasons to be hopeful.
There are already some interesting hints; just to name a few [32]: (i) the ab-
normally high branching ratios (BR) for the generic channels B — 'K, nK*;
(ii) the direct CP-asymmetry in B — 777~ as found by Belle; (iii) the dis-
crepancy in the extracted value of sin(23) from B} — J/¢Kg and By — ¢Kg;
(iv) the anomalous direct CP-asymmetries in B — mK decays; (v) the large
mixing phase in BY — B_g mixing; (vi) the fraction of longitudinally polarised
final states in channels like B — ¢ K* and B — pK™; (vii) the larger branch-
ing fraction of BT — 77v compared to the SM expectation; and (viii) the
discrepancy in the extracted values of V,,;, from inclusive and exclusive modes.
However, one must not be over-enthusiastic since most of these channels are
nonleptonic and QCD uncertainties are yet to be fully understood. But one
may hope for more such anomalies from leptonic and hadronic B-factories.
For the K system, the nonleptonic channels are extremely difficult for any
systematic analysis of NP effects [67], but for the first time we are having
precise data (or bound) on leptonic and semileptonic K decay channels from
Brookhaven and Da®ne. It is always better to be ready for any unexpected
result. A major motivation for this study is the B? physics that is going to be
probed at LHC-b, and even at CMS or ATLAS during the low-luminosity run
of the LHC. The leptonic and semileptonic decays are comparatively cleaner
than their nonleptonic counterparts. If all, or most, of them survive the test
of time and attain more significance, this will indicate a new physics whose
flavour sector is definitely of the non-minimal flavour violating (NMFV) type.

One of the eligible NMFV NP candidate is the leptoquark (LQ) model. Clas-
sically, in the SM, quark and lepton fields are introduced as independent
fields. But in the quantum theory, for each generation, the contribution to
the hypercharge triangle anomaly coming from the quarks and the leptons
are exactly equal in magnitude and opposite in sign, and they cancel each
other. This inspires to have a possible SM extension, where quarks and lep-
tons can directly interact with each other. These kinds of interactions can
be mediated through leptoquarks, which can come from Grand Unified the-
ory (GUT) inspired models. These lepto-quarks can come from Pati-Salam
type SU(4) [68], [69] or SU(5) [70] based unified models. Some string theory
inspired models [71], [72] based on Egs group can also introduce leptoquarks.
Extensive studies have been done on the technicolor based leptoquark models
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(73], [74], [75], [76]. Composite models of quarks and leptons [77], [78], [79],
[80], [81] can also form leptoquarks.

Leptoquarks are some hypothetical gauge particles which can be either scalar
or vector. These particles allow to have a tree level transition from a quark
to lepton or vice versa. These kinds of interactions are absent in the SM.
Leptoquarks usually carry both baryon number and lepton number. They
may or may not conserve these two numbers. Baryon and lepton number
violating leptoquarks become very massive, of the O(10'GeV) to avoid pro-
ton decay or large Majorana neutrino masses, and these are of no interest to
us. (There are exceptions; one can construct models where LQs violate both
B and L and yet do not mediate proton decay. These LQs can be light. For
example, see [82].) On the other hand we can have both baryon and lepton
number conserving leptoquarks whose masses can be of the O(100GeV). In
this chapter we discuss the phenomenology of only those models that con-
serve both B and L; one can find extensive discussions on these models in
[83, 84, 85]. Vector LQs, as well as some gauge-nonsinglet scalar ones, cou-
ple to neutrinos, and their couplings should be very tightly constrained from
neutrino mass and mixing data.

Another phenomenological motivation for a LQ model is that this is one of
the very few models (R-parity violating supersymmetry is another) where
the neutral meson mixing diagram gets a new contribution to the absorptive
part. Due to this, the width difference AI' in the B system enhances[86],
whereas in more popular NP models it can only decrease [87]. The NP also
changes the CP-violating phase in By — J/#¢. This helps reducing the ten-
sion [88] of SM expectation and the Tevatron data on the CP-violating phase
and width difference for Bi,.

All flavour-changing observables constrain the product of at least two differ-
ent LQ couplings, one linked with the parent flavour and another with the
daughter flavour. The product couplings may be complex and it is generally
impossible to absorb the phase just by a simple redefinition of the LQ field.
We use the data from K°— K9, B — B9 and B} — BY mixing to constrain the
relevant product couplings, generically denoted as A\. For the B system, we
use the data on AM,, and the mixing phase sin(2/,), and for the K system,
we use AMyg and €. We do not discuss other CP violating parameters like
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¢’ /e, since that has large theoretical uncertainties. We also discuss the corre-
lated leptonic and semileptonic decays, i.e., the decays mediated by the same
LQ couplings. While decays to most of the semileptonic channels have been
observed, the clean leptonic channels only have an upper bound for almost
all the cases, except the already observed leptonic decays Ky, — eTe™, utpu~.
Note that the decay modes containing only leptons in the final states give
more robust bounds compared to those which contains only hadrons in the
final states.

A similar exercise have also been undertaken in [83, 71, 73, 89, 90]. We update
these bounds with new data from the B factories and other collider exper-
iments. In particular, in the subsequent sections, all the previous bounds
that we quote have been taken from [83]. The D° — DO system has not been
considered due to the large theoretical uncertainties and dominance of long-
distance contributions. Leptonic and semileptonic D and D, decays have
been used to put constraints on LQs that couple to the up-type quarks. In
particular, LQ contribution might be interesting to explain the D, leptonic
decay anomaly [82, 91, 92]. The couplings that we constrain are generically
of the type A;;\%,, where the k-th quark flavour changes to the j-th, but
there is no flavour change in the lepton sector. One can, in principle, con-
sider flavour changes in the lepton sector too; that kind of analysis is done
in [93]. However, if one has a v7 pair in the final state, as in K, — 7°vp,
there is a chance that lepton flavour is also violated.

The couplings, which are in general complex, may be constrained from a
combined study of CP-conserving and CP-violating observables. For neutral
mesons, these mean AM as well as e and sin(25,5). However, for most of the
cases, the leptonic and semileptonic decay channels provide the better bound.
The analysis has been done keeping both the SM and LQ contributions, which
keeps the possibility of a destructive intereference, and hence larger possible
values of