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Abstract

The variation of the measured B0
d − B0

d mixing phase β/φ1 in b → ccs and

b → sqq (where q = u, d, s) modes is regarded as a possible probe of New

Physics. It has been speculated that this discrepancy is a signal of New

Physics. Within the Standard Model the amplitude for modes involving

b→ s transitions, get contributions from two amplitudes with different weak

phases. Unless the contribution from one of the amplitudes is negligible,

one would expect some discrepancy between the various measurements. Es-

timates of this discrepancy using hadronic assumptions have indicated that

the sign of the discrepancy within SM is opposite to the observed value.

We demonstrate using a model independent approach that the deviation in

measured B0
d−B0

d mixing phase caused by pollution from another amplitude,

within the Standard Model, is always less in magnitude, and has the same

sign as the weak phase of the polluting amplitude. The exception is to have

large destructive interference between the two amplitudes. We show that any

deviation larger than a few degrees is only possible if the observed decay rate

results from fine tuned cancellations between significantly larger quark level

amplitudes. These simple observations have very significant consequences for

signals of New Physics.

One of the eligible New Physics candidate is the leptoquark model. Lepto-

quarks are hypothetical gauge particles which can be either scalar or vector.

These particles allow having tree level transitions from a quark to lepton or

vice versa which are not permitted in the standard model. In our work, upper

bounds at the weak scale are obtained for all λijλik type product couplings of

leptoquark model which may affect K0 −K0 , B0
d −B0

d and B0
s −B0

s mixing.

For B0
d−B0

d we use both ∆mB and sin(2β) where as for B0
s−B0

s we use ∆mBs



x

and sin(2βs) constraints. For K0 −K0 we use the results on ∆mK and εK .

Due to the presence of large theoretical uncertainties, ε′/ε is not considered

in our analysis. The relevant mixing correlated leptonic and semileptonic de-

cay channels are also presented in the analysis. We constrain all the possible

product couplings in this sector, including some which were not considered

earlier. The constraints obtained for the leptonic and semi-leptonic decay

modes are much tighter than the bounds obtained from mixing for most of

the cases. We also present the bounds on the real and imaginary parts of

λλ which carry the information of the phase of new physics. This is a new

observation, not considered in earlier literature.
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Chapter 1

CP Violation in the Standard

Model

1.1 Introduction

Discrete symmetries like C (charge conjugation), P (parity or space reflec-
tion) and T (time reversal) have played a very important role in the un-
derstanding of elementary particle interaction. C and P are conserved in
strong and electromagnetic processes, but violated in weak decays. For sev-
eral years it was believed that the product CP and T were conserved in all
kinds of interactions. It was only in 1964, Christenson, Cronin, Fitch and
Turlay [1] showed for the first time through their famous experiment in the
neutral kaon decays that CP, like parity, was also not a good symmetry of
nature. This surprising effect is a manifestation of indirect CP violation. The
mass eigenstates KL,S of the neutral kaon system are the admixture of the
flavour eigenstates K0 and K0. The CP violation occurs due to the fact that
KL,S are not eigenstates of the CP operator. In particular, the KL state is
governed by the CP-odd eigenstate, but also has a tiny admixture of the CP-
even eigenstate, which may decay through CP-conserving interactions into
the π+π− final state. It was only in 1999 that the NA48 (CERN) [2] and
KTeV (FNAL) [3] collaborations first time observed the direct CP violation
which arises directly at the decay-amplitude level. A year later, in 2000 the
CPLEAR experiment [4] reported the first direct evidence of T violation in
the neutral-kaon system. However, CPT still remains conserved as expected
from the Lorentz invariance of quantum field theories.

1



2 CP Violation in the Standard Model

In 2001, CP violation was finally observed outside the Kaon system, in
B0

d → J/ψKS mode by the BaBar [5] and Belle [6] collaborations. This
is an example of mixing-induced CP violation. It is observed in the interfer-
ence between B0

d → J/ψKS and B0
d → J/ψKS decay processes. Three years

later, in 2004, direct CP violation was also detected in B0
d → π±K∓ decays

[7].

In the Standard Model (SM), the phenomenon of CP violation can be accom-
modated in an efficient way through a complex phase. This phase enters in
the coupling constants which describe the weak charge-changing transitions
of quarks. These couplings are described by the unitary 3 × 3 Cabibbo-
Kobayashi-Maskawa (CKM) [8], [9] matrix. Most of the CP-violating pa-
rameters observed at a level higher than 3σ are consistent with the CKM
mechanism till date. That is why it is believed that probably CKM phase is
the dominant source of CP violation in low-energy flavour-changing neutral
current processes. But CKM mechanism fails to explain the baryon asym-

metry observed in the universe. It cannot give any explanation to the strong
CP problem. Moreover, the observation of the neutrino masses indicates that
there should definitely be an origin of CP lying beyond the SM. It raises the
question of having CP violation in the neutrino sector and its connection
with the quark-flavour physics. All these problems suggest new sources of
CP-violation, which may come from different new physics (NP) models like
supersymmetry (SUSY), leftright-symmetric models, models with extra Z ′

bosons, extra dimensions, little Higgs or leptoquarks for example.

In this chapter, we first discuss about the CP violation scenario in the SM.
It involves a discussion of the CKM mechanism and how CP violation is
introduced in the quark sector through it. This is followed by a presentation
of different parametrizations of the CKM matrix. Subsequently we have a
brief discussion on the unitarity triangle (UT) and it’s parameters. Next we
discuss about the global fits to indicate why the CKM matrix is considered
as the dominant source of CP violation in the SM. We finally conclude this
chapter with a discussion of the fact that SM is not sufficient enough to
explain nature completely and it is therefore necessary to continue with the
search for NP. Part of this chapter has been reproduced from the standard
references [10], [11] and [12].



1.2 CP violation in the standard model 3

1.2 CP violation in the standard model

In the framework of the SM, the quark Yukawa interaction is given by [10],

−Lq
Yukawa = Y d

ijQ
I
LiφD

I
Rj + Y u

ijQ
I
Liφ̃U

I
Rj + h.c. (1.1)

where QI
L =

(UI
L

DI
L

)

is the left-handed quark doublet of SU(2)L. U
I
R, D

I
R are the

right-handed up and down type quark singlets respectively. φ is the scalar
doublet and φ̃ = −iτ2φ∗ where τ2 is the standard Pauli matrix. The index
I denotes interaction eigenstates and i, j = 1, 2, 3 are the flavor index. Y u

and Y d are the Yukawa coupling matrices. it has been shown [13] that CP
violation in SM can be incorporated if and only if

Im(det[Y dY d†, Y uY u†]) 6= 0. (1.2)

It can be explained with a simple argument why CP violation is related to
the complex Yukawa couplings. The hermiticity of the Lagrangian demands
that LYukawa has its terms in pairs of the form

YijψLiφψRj + Y ∗
ijψRjφ

†ψLi,

whereas under CP transformation operator,

ψLiφψRj ↔ ψRjφ
†ψLi,

but the coefficients, Yij and Y
∗
ij , remain unchanged. This means that LYukawa

is symmetric under CP only if Yij = Y ∗
ij .

After spontaneously broken symmetry from SU(2)L × U(1)Y → U(1)em, the
quarks acquire their mass terms from the Yukawa interactions in Eq. (1.1),

−Lq
M = (Md)ijDI

LiD
I
Rj + (Mu)ijU I

LiU
I
Rj + h.c.

where Mq =
v√
2
Y q and φ receives a vacuum expectation value (VEV), 〈φ〉 =

(

0
v√
2

)

. We can always find two unitary matrices VqL and VqR such that

VqLMqV
†
qR =Mdiag

q (q = u, d),
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with Mdiag
q as a diagonal and real mass matrix. The quark mass eigenstates

are then identified as

qLi = (VqL)ijq
I
Lj, qRi = (VqR)ijq

I
Rj (q = u, d).

Following this formalism the charged current interactions for quark can be
written in the mass basis as:

−Lq
W± =

g√
2
uLiγ

µ(VuLV
†
dL)ijdLjW

+
µ + h.c.

This 3× 3 unitary matrix,

V = VuLV
†
dL, (V V † = 1), (1.3)

is the CKM mixing matrix for quarks [9], [8]. The elements of V are written
as follows:

V =





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



 . (1.4)

In the SM, with 3 generations, the CKM matrix can be parametrized by 9
parameters, however, 5 of the phases can be absorbed or changed at will by
rephasing the quarks fields. Therefore the number of physical parameters
in V is only 4. An 3 × 3 orthogonal matrix is parametrized by 3 rotation
angles. An unitary matrix is the complex extension of an orthogonal matrix.
Therefore out of 4 parameters of V, 3 should be identified as the rotational
angles. The remaining parameter is the physical Kobayashi-Maskawa phase
δ which is the single source of CP violation in the quark sector of the Stan-
dard Model [9].

In order to determine the magnitudes |Vij| of the elements of the CKM ma-
trix, the following tree-level processes may be used [11]:

• From nuclear beta decays and neutron decays |Vud| can be obtained.

• K → πl−ν decays can give the information about |Vus|.

• ν production of charm off valence d quarks give |Vcd|.
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• |Vcs| can be obtained from the charm-tagged W decays (as well as ν
production and semileptonic D decays).

• Exclusive and inclusive b→ cl−ν decays give |Vcb|.

• Exclusive and inclusive b→ ul−ν decays constrain |Vub|.

• t→ bl−ν processes constrain |Vtb|.

If we use the corresponding experimental information, together with the
CKM unitarity condition, and assume that there are only three generations,
we arrive at the following 90% C.L. limits for the |Vij| [14], [15], [16], [17]:

V =





0.97419± 0.00022 0.2257± 0.0010 0.00359± 0.00016
0.2256± 0.0010 0.97334± 0.00023 0.0415+0.0010

−0.0011

0.00874+0.00026
−0.00037 0.0407± 0.0010 0.999133+0.000044

−0.000043



 .

(1.5)

1.3 Parametrizations of the CKM matrix

One has the freedom to rephase any of the five quark fields out of the six,
leaving the physically observable quantities invariant under this rephasing.
This gives us the opportunity to change the overall phase of any row or
column of the CKM matrix without changing it’s physics context. It gives
us the freedom to constrain up to five matrix elements to be real or else to
fix their phase in any desirable way. But one must be very careful not to
implicitly fix the phase of any quartet while choosing any phase convention
of the CKM matrix [12]. The quartet is defined as

Qαiβj ≡ VαiVβjV
∗
αjV

∗
βi,

where α 6= β and i 6= j. As we have seen in last section that with 3 Euler
angles and 1 complex phase, we can parametrize CKMmatrix completely, but
we still have the option to choose which axes to use for our rotations and in
what order to perform them. This choice leads us to no less than 36 distinct
but equivalent parametrizations for three generations [18]. However, the two
most popular parametrization of CKM matrix, the standard parametrization
[19] and the Wolfenstein parametrization [20] are discussed below.
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1.3.1 Standard parametrization

The so called standard parametrization of CKM matrix was introduced by
Chau and Keung [19]. This parametrization is followed by the particle data
group. In this parametrization,

V =





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13



 , (1.6)

where cij ≡ cos θij and sij ≡ sin θij . In this parametrization only four matrix
elements are chosen to be real and only one physical phase appears. The sij
are related to directly measurable quantities,

s13 = |Vub|
s12 ≈ |Vus|
s23 ≈ |Vcb|

1.3.2 Wolfenstein parametrization

In 1983 it was realized that bottom quark decays predominantly to the charm
quark, i.e. |Vcb| ≫ |Vub|. Then it was noticed by Wolfenstein that |Vcb| ∼
|Vus|2. He introduced a parametrization which holds unitarity approximately.
Since then it has become very popular. In this parametrization,

V =





1− 1
2λ

2 − 1
8λ

4 λ Aλ3(ρ− iη)
−λ+ 1

2A
2λ5[1− 2(ρ+ iη)] 1− 1

2λ
2 − 1

8λ
4(1 + 4A2) Aλ2

Aλ3[1− (1− 1
2λ

2)(ρ+ iη)] −Aλ2 + 1
2Aλ

4[1− 2(ρ+ iη)] 1− 1
2A

2λ4



(1.7)

+O(λ6).

The parameter λ ≈ 0.22 serves as an expansion parameter and A ∼ 1 as
|Vcb| ∼ |Vus|2. ρ and η should be smaller than one as |Vub|/|Vcb| ∼ λ/2. V
may be further expanded to a higher power of λ in case one wants to ob-
tain a better approximation to unitarity. Two more generalized Wolfenstein
parameters can be introduced following [21] as,

ρ ≡ ρ

(

1− 1

2
λ2
)

, η ≡ η

(

1− 1

2
λ2
)

. (1.8)
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This parametrization is very important as it gives insights to the experimen-
tal information like |Vus| ≪ 1, |Vcb| ∼ |Vus|2 and |Vub| ≪ |Vcb|. The unitarity
property of the CKM matrix can also be checked through this parametriza-
tion. The relation between standard parametrization andWolfenstein param-
etrization can be depicted by the following relations [21]:

s12 = λ,

s23 = Aλ2, (1.9)

s13e
−iδ = Aλ3(ρ− iη).

We can always define a CP violating quantity which is independent of dif-
ferent parametrizations of the CKM matrix V . The Jarlskog parameter, JCP

[13], can be interpreted as a measure of the strength of CP violation in the
SM and is defined as,

JCP = |Im(ViαVjβV iβV jα)|, (i 6= j, α 6= β).

In terms of the explicit parametrizations given above, we have,

JCP = c12c23c
2
13s12s23s13 sin δ ≃ λ6A2η.

If we translate Eq. (1.2) in the mass basis, we obtain the necessary and
sufficient condition for CP violation in the quark sector of the SM (we define
∆m2

ij ≡ m2
i −m2

j):

∆m2
tc∆m

2
tu∆m

2
cu∆m

2
bs∆m

2
bd∆m

2
sdJCP 6= 0. (1.10)

Eq. (1.10) gives the following requirements on the SM in order that it violates
CP:

1. Within each quark sector, there should be no mass degeneracy.
2. None of the three mixing angles should be zero or π/2.
3. The phase should be neither 0 nor π.

1.4 The unitarity triangles of the CKM matrix

We obtain a set of 12 equations, consisting of 6 normalization and 6 orthog-
onality relations using the unitarity property of the CKM matrix V †V =
1 = V V †. These 6 different orthogonality relations can be depicted through
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(0, 0)

uRV

V

ud Vub
*

cd Vcb
*

γ

α

β γ

α

β

(ρ, η)

(1, 0)

_ _

Vtd Vtb
* Rt

(a) (b)

Figure 1.1: (a)Unitarity triangle depicted by Eq. (1.13), (b) Rescaled unitar-
ity triangle.

6 different triangles in the complex plane [22]. Each of these triangles has
the same area, 2A = JCP [23]. The orthogonality of different columns of the
CKM matrix leads us to the following three relations:

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0, (1.11)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0, (1.12)

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0, (1.13)

whereas orthogonality of different rows of the CKM matrix gives us the fol-
lowing relations:

VudV
∗
cd + VusV

∗
cs + VubV

∗
cb = 0, (1.14)

VcdV
∗
td + VcsV

∗
ts + VcbV

∗
tb = 0, (1.15)

VudV
∗
td + VusV

∗
ts + VubV

∗
tb = 0, (1.16)

It can be noticed that among these six relations, only in Eq. (1.13) and
Eq. (1.16), all three sides are of comparable magnitude of the O(λ3), while
in the remaining relations, one side is suppressed with respect to the others
by factors of O(λ2) or O(λ4). It is the convention that the triangle described
by Eq. (1.13) is called the “unitarity triangle” shown in fig. 1.1(a).

The unitarity triangle (UT) derived from Eq. (1.13) is rescaled further by
choosing a phase convention such that (VcdV

∗
cb) is real, and dividing the

lengths of all sides by |VcdV ∗
cb|. This new phase convention helps to align
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one side of the triangle on the real axis, while division of all the lengths by
|VcdV ∗

cb| makes the length of this side 1. It is shown in fig. 1.1(b). The form
of the triangle remains unchanged. Two vertices of the rescaled unitarity
triangle are thus fixed at (0,0) and (1,0). The coordinates of the remain-
ing vertex correspond to the Wolfenstein parameters (ρ, η). Depicting the
rescaled unitarity triangle in the (ρ, η) plane, the lengths of the two complex
sides are

Ru ≡
∣

∣

∣

∣

VudVub
VcdVcb

∣

∣

∣

∣

=
√

ρ2 + η2, Rt ≡
∣

∣

∣

∣

VtdVtb
VcdVcb

∣

∣

∣

∣

=
√

(1− ρ)2 + η2. (1.17)

The three angles of the unitarity triangle are defined as follows [24]:

α ≡ arg

[

− VtdV
∗
tb

VudV ∗
ub

]

, β ≡ arg

[

−VcdV
∗
cb

VtdV ∗
tb

]

, γ ≡ arg

[

−VudV
∗
ub

VcdV ∗
cb

]

. (1.18)

These three angles and sides of the rescaled unitary triangle are physical
quantities and can be independently measured by different CP asymmetries
in B decays. It is also useful to define the two small angles of triangles
referred by Eq. (1.12) and Eq. (1.11):

βs ≡ arg

[

−VtsV
∗
tb

VcsV ∗
cb

]

, βK ≡ arg

[

− VcsV
∗
cd

VusV ∗
ud

]

. (1.19)

It is important to notice that the angle β, γ and βs are directly related to the
complex weak-phases of the CKM matrix elements Vtd, Vub and Vts respec-
tively in the following fashion:

Vtd = |Vtd|e−iβ, Vub = |Vub|e−iγ , Vts = |Vts|e−iβs . (1.20)

It is important to measure all the UT parameters to understand SM better.
Two groups CKM-fitter and UT-fit have performed a global analysis to con-
vert experimental data into contours in the ρ−η plane. Their main object is
to over-constrain the UT as much as possible. They mainly use semi-leptonic
b→ ul−νl, cl

−νl decays and B
0
q −B0

q , (q → d, s) mixing to determine the UT
sides Ru and Rt respectively by fixing two circles in the ρ − η plane. They
use the information of the indirect CP violation in the neutral kaon system
described by ǫK and transform it into a hyperbola. They also use the direct
measurement of sin 2β with the help of B0

d → J/ψKS modes. In Fig. (1.2),
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Figure 1.2: Analyses of the CKMfitter and UTfit collaborations [15, 17].

we show examples of the comprehensive analyses of the UT that are per-
formed (and continuously updated) by the CKM Fitter Group [15] and the
UTfit collaboration [17].

1.5 Beyond SM

The Standard Model however successful it might be, is not the end of the
story. It is at best an effective theory, valid up to some high energy scale,
which can at most be the Planck scale MPL ≈ 1019GeV. There are enough
reasons to suspect that some new physics will appear much before the Planck
scale. The reasons are as follows.

• In SM, Higgs self energy correction from fermion loop, gauge boson
loop or Higgs loop receives quadratic divergences which do not depend
on the mass of the Higgs scalar mS [25]. This indicates that mS is an
unnatural parameter of the SM and it is not protected by any symmetry
of the SM. However, the requirement of perturbative unitarity in the
amplitude W+W− → W+W− restricts mS < O(1TeV) [26]. These
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quadratic divergences depend on the loop momenta p2 ∼ Λ2 where Λ is
the cut-off scale up to which SM is an adequate description of Nature.
One could always renormalize such quadratic divergences away in the
same way logarithmic divergences are disposed of. In that case, the
residual correction to Higgs self energy due to fermion loop would be
∝ m2

fλ
2
f , where λf is the coupling constant for the Yukawa interaction

term of the Lagrangian. If it is believed that SM is a part of the
more fundamental theory like Grand Unification Model (GUT) which
unifies strong and electroweak forces in it at a energy scale MU ∼ 1016

GeV, there will exist some fermions whose masses will be ∝ MU . The
loop corrections to the scalar mass square δm2

S due to these fermion-
antifermion pairs will be then ∝ M2

U . In this scenario, it requires an
unnatural amount of fine tuning between the bare scalar mass squared
m2

S,0 and the renormalization δm2
S in order to keep the renormalized

mass squared m2
S = m2

S,0 + δm2
S less than a (TeV)2. There are many

approaches to solve this fine-tuning problem: Supersymmetry (SUSY)
is one of the possible candidate for it. SUSY has all the SM particles
in it. In addition, for each SM fermion and vector boson SUSY has a
corresponding new particle. SUSY requires at least two complex scalar
doublets to give masses to its particles. The large radiative corrections
due to these new particles cancel the corrections coming from the SM
fields. The other NP candidates which shed some light on this problem
are Technicolour, where the Higgs is assumed to be a composite of
two fermions; Models with compactified extra dimensions, where the
Planck scale is lowered to a few TeV by appealing to the fact that
gravity is weak not because of a large Planck mass but due to a small
intercept of higher dimensional gravitational wave function with our
physical world; Little Higgs models, where the Higgs is constructed as
a pseudo-Goldstone boson and hence has its mass is protected.

• There are 19 free parameters in the SM, which is a large number for
any fundamental theory: the six quark masses, three lepton masses,
three CKM mixing angles, one CKM CP-violating phase, three gauge
couplings (U(1), SU(2), SU(3)), one QCD vacuum angle θQCD, 0ne
Higgs quadratic coupling and one Higgs self coupling. It is hoped that
a more fundamental theory might relate some of them.

• As in the SM the three gauge couplings do not unify, SM cannot lead
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to a unified theory of strong and electroweak interactions. This is an
aesthetic objection, but Supersymmetry provides a nice way to gauge
coupling unification and hence a Grand Unified Theory (GUT). Lepto-
quark based models, where a lepton can directly transform into quark
and vice-versa at tree level is one of the GUT inspired models, which
can solve this problem.

• Experimental observation of neutrino mass and oscillations cannot be
accounted for in the SM. One has to introduce the neutrino masses by
hand.

We expect that any theory which tries to answer these fundamental problems
should leave some low-energy signatures. In the 4th chapter we discuss one
such NP model based on the leptoquarks.



Chapter 2

Parametrization Independent

Studies of Neutral B Meson

Decays

2.1 Introduction

The two B Factories PEP-II and KEK-B were designed to have peak lumi-
nosities 3× 1033cm−2s−1 and 1× 1034cm−2s−1 respectively. PEP-II, however,
reached design luminosity in a remarkably short time, and before shutting
down, it exceeded its design performance by a factor of three. KEK-B,
with a more ambitious design objective, has also exceeded its design perfor-
mance, and currently operates at even higher luminosity. The accumulation
of all these events allow precision measurements of exclusive B meson decays.
These measurements indicate subtle discrepancies between some experimen-
tal data and theoretical predictions within the standard model, though at
present error bars are still large to come to any concrete conclusion. These
discripencies are quite puzzling and it is difficult to ignore them.

One of such puzzles involve the weak phase β ≡ arg (−VcdV ∗
cb/VtdV

∗
tb) which

is defined via the CKM matrix element Vtd = |Vtd|eiβ. This phase can be
extracted either from the tree-dominated b → ccs , e.g. B → J/ψKS or
penguin-dominated b→ sqq, e.g. B → φKS modes. The two determinations
should be same in the SM, but would differ, if new physics contributions
modify the penguin dominated decay amplitudes. For several years a large
deviation ∆S ≡ Ssqq − Sccs has been measured where Si has been defined in

13
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Eq. (2.24) in Section (2.3.1). Several studies have been done to estimate the
penguin pollution in the b→ ccs trees and the tree pollution in the b→ sqq
penguins using various QCD based models and SU(3) based models. How-
ever, these studies [27], [28], [29], [30] are unable to produce the observed
effect. For most of the cases, these studies indicate that the sign of the dis-
crepancy within SM is opposite to the observed value. It has become one
of the most challenging puzzle in B-physics to provide convincing arguments
regarding the nature of this discrepancy and whether it can be regarded as
an unambiguous signal of NP. In this chapter we have tried to answer these
questions.

First we discuss about the parametrization of the most general amplitude
for b→ q transition modes where q is either d or s quark, then we present a
quick review about the progress of the SM estimation of these modes. Finally
we discuss in details about our own method to try to solve this puzzle.

2.2 Parametrizing the amplitude

The most general amplitude for b → q transition modes where q is either d
or s quark may be written as [31],

Ab→q=Auqe
iδuqvuq +Acqe

iδcqvcq +Atqe
iδtqvtq, (2.1)

where vjq = V ∗
jbVjq with j = u, c or t are the product of CKM matrix elements

and Ajq and δjq are the amplitudes and strong phases associated with the
CKM factor vjq. The unitarity property of CKM matrix gives us a relation
vuq + vcq + vtq = 0. Using this property we can eliminate any one of the vjq
from Eq. (2.1) and express it in terms of only two independent contributions
having different weak phases.

In SM, within the framework of Wolfenstein parametrization [20] the various
vjq are expressed up to order O(λ6) as follows:

vcs = Aλ2
(

1− 1

2
λ2
)

,

vcd = −Aλ3, (2.2)

vus = Aλ4(ρ+ iη),
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vud = Aλ3(ρ+ iη)
(

1− λ2

2

)

, (2.3)

vts = −Aλ2
(

1− (
1

2
− ρ− iη)λ2

)

,

vtd = Aλ3
(

1−
(

1− λ2

2

)

(ρ+ iη)
)

.

In the above parametrization it is clear that vcs and vcd are real at least to
order O(λ6). The weak phase arising from vus and vud are represented by the
familiar unitary triangle angle γ, where

γ ≡ arg

[

−VudV
∗
ub

VcdV ∗
cb

]

≈ 60o . (2.4)

The weak phase of vtd is the well known phase β, where [32]

β ≡ arg

[

−VcdV
∗
cb

VtdV ∗
tb

]

= (21.1± 0.9)o. (2.5)

The weak phase of vts is represented by βs, where

βs ≡ arg

[

−VtsV
∗
tb

VcsV ∗
cb

]

= 1.045o+0.061o

−0.057o . (2.6)

Since vcq is almost real, the amplitude Ab→q may be rewritten in terms of only
one non-zero weak phase, by eliminating either vuq or vtq using the unitarity
condition. This results in a choice of two different ways to parametrize the
b→ q amplitude.

The elimination of vtq leads to the amplitude being expressed in terms of the
weak phase γ independent of q, since vus and vud have the same weak phase.
We can write,

Ab→q = (Acqe
iδcq −Atqe

iδtq)vcq + (Auqe
iδuq −Atqe

iδtq)vuq. (2.7)

The amplitude may then be re-expressed as follows:

Ab→q = eiΘ
′
q
[

a′q + b′qe
iδ′qeiγ

]

, (2.8)
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a′q = |vcq| â′q = |vcq|
∣

∣Acqe
iδcq −Atqe

iδtq
∣

∣ , (2.9)

b′q = |vuq| b̂′q = |vuq|
∣

∣Auqe
iδuq −Atqe

iδtq
∣

∣ . (2.10)

Here, Θ′
q is an overall strong phase which cannot be detected experimentally;

we hence set it to be zero. This fact will become clear once we write down the
observables in the next section (Sec. 2.3) and find that no observable depends
on Θ′

q. δ
′
q is the relative strong phase difference between a′q and b′q. At this

stage we emphasize an essential difference between our parametrization for
q = s or q = d: the negative sign of vcd is absorbed into the definition of δ′d
for convenience.

Similarly the elimination of vuq leads us to parametrization, the details of
which depend on whether q = s or q = d. We first consider q = s, this
results in the βs parametrization. Here we can write,

Ab→s = (Acse
iδcs −Ause

iδus)vcs + (Atse
iδts −Ause

iδus)vts. (2.11)

This amplitude may also be re-expressed as follows:

Ab→s = eiΘ
′′
s
[

a′′s + b′′se
iδ′′seiβs

]

, (2.12)

a′′s = |vcs| â′′s = |vcs|
∣

∣Acse
iδcs −Ause

iδus
∣

∣ , (2.13)

b′′s = |vts| b̂′′s = |vts|
∣

∣Atse
iδts −Ause

iδus
∣

∣ . (2.14)

We will set Θ′′
s = 0 for the same reasons we set Θ′

q = 0 above. δ′′s is the
relative strong phase difference between a′′s and b

′′
s. Note that a negative sign

originating from vts has been absorbed in the definition of δ′′s for convenience.
Interestingly, one may also note that the magnitudes of b̂′s and b̂′′s are same.
The elimination of vuq for q = d results in the amplitude:

Ab→d = (Acde
iδcd −Aude

iδud)vcd + (Atde
iδtd −Aude

iδud)vtd, (2.15)

which is re-expressed as,

Ab→d = eiΘ
′′
d

[

a′′d + b′′de
iδ′′deiβ

]

, (2.16)

a′′d = |vcd| â′′d = |vcd|
∣

∣Acde
iδcd −Aude

iδud
∣

∣ , (2.17)

b′′d = |vtd| b̂′′d = |vtd|
∣

∣Atde
iδtd −Aude

iδud
∣

∣ . (2.18)
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We have thus demonstrated how the amplitudes for b→ s or b→ d may be
expressed as a sum of two contributions, one with zero weak phase and the
other with a chosen weak phase that is either βs or γ for b → s, and β or γ
for b→ d.

We consider the decay B0
d → fq, which results from an underlying b → q

quark level process, where q could be either s quark or d quark. From the
above arguments it is easy to conclude that the amplitude Aq for such a
decay, can be expressed in a parametrization independent way, in terms of
two contributing amplitudes as follows:

Aq = aq + bqe
iδqeiφq , (2.19)

where aq and bq are the magnitudes of the two contributions, δq is the cor-
responding strong phase difference, and φq is the weak phase. The weak
phase φq can be chosen from two different values, which define the choice of
parametrization. Once the parametrization is chosen, φq has the same value
for all possible final states which result from the same underlying quark level
process b→ s or b→ d. The values of aq, bq and δq, however, depend on the
decay mode.

aq can be either a′q or a′′q; bq can be either b′q or b′′q depending on the two
parametrization and φq can be γ or βs. Assuming the CPT invariance, the
amplitude for the CP conjugate mode can be written as:

Aq = aq + bqe
iδqe−iφq . (2.20)

For simplification of notation we assume that Aq, Aq, aq and bq are normal-

ized by the total decay width of B0
d. This will not change the Physics.

2.3 Observables and Variables

2.3.1 Observables

The time dependent decay rate of B0
d to a mode fi(or fq) can be written as

Γ(B0
d(t) → fi) ∝ Bi(1 + Ci cos(∆Mt)− Si sin(∆Mt)), (2.21)
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where Bi is the branching ratio, Ci is the direct CP asymmetry arising from
the fact that |Ai| 6= |Ai| and Si is the time dependent CP asymmetry which
arises from the interference between the decay. This three quantities are
observables and can be expressed as

Bi =
|Ai|2 + |Ai|2

2
= a2i + b2i + 2aibi cosφ cos δi, (2.22)

Ci =
|Ai|2 − |Ai|2
|Ai|2 + |Ai|2

=
−2aibi sinφ sin δi

Bi

, (2.23)

Si =
√

1− C2
i sin 2β

meas

i . (2.24)

with

sin 2βmeas

i = −Im(e−2iβA∗
iAi)

|Ai||Ai|
, (2.25)

The phase β in Si comes from B0
d −B0

d mixing box diagrams.

2.3.2 Extraction of 2βmeas

Within the SM, β can not be extracted experimentally due to the pollution
through the phase difference between Ai and Ai. As a result, Si provides
a measurement of sin 2βmeas

i . Further extraction of 2βmeas
i gives a two fold

ambiguity (2βmeas
i , π − 2βmeas

i ). Therefore we get a four fold ambiguity in the

difference between the two values of 2βmeas as
(

± (2βmeas
1 − 2βmeas

2 ),±π ∓

(2βmeas
1 + 2βmeas

2 )
)

which can be measured using two different modes f1 and

f2. However, we will only be interested in the principal value 2βmeas
i , obtained

from sin 2βmeas
i , so as to have a well defined value of the difference. This value

of the difference is denoted by 2ω and is defined as

2ω = 2βmeas

1 − 2βmeas

2 . (2.26)

The two modes f1 and f2 are chosen such that βmeas

1 > βmeas

2 . This choice

results in 2ω always being positive.
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2.3.3 Variables

The phase difference between Ai and Ai is defined as ηi, i.e.,

ηi = argAi − argAi. (2.27)

Hence, A∗
iAi = |Ai||Ai|e−iηi and the expression for sin 2βmeas

i from Eq. (2.25)
implies that ηi = 2βmeas

i − 2β. ηi is thus the deviation of 2βmeas
i from 2β. ω

can now be expressed in terms of η1,2 as

2ω = η1 − η2. (2.28)

We have three observables Bi, Ci, Si and five variables ai, bi, δi, ηi and φ. It
implies the number of independent variables is only two. The choice of these
two independent variables is completely in our hand. From Eqs. (2.19) -
(2.20) and Eqs. (2.22) - (2.24), ai, bi and δi can be expressed in terms of
Bi, Ci, Si and ηi, φ as

a2i =
Bi

2 sin2 φ

(

1−
√

1− C2
i cos(ηi − 2φ)

)

, (2.29)

b2i =
Bi

2 sin2 φ

(

1−
√

1− C2
i cos(ηi)

)

, (2.30)

tan δi =
Ci sinφ

cosφ−
√

1− C2
i cos(ηi − φ)

. (2.31)

Before we discuss about our analysis in Sec. (2.5), we present a brief summary
of the bounds obtained from SM analysis in the tree and penguin sector in
the next section.

2.4 Standard Model analysis

The decay mode b→ ccs e.g. B0
d → J/ψKS has been regarded as the golden

mode for extracting the standard-model parameter sin 2β [33]. The penguin
pollution in this mode is only of the order of 5% and hence almost negligi-
ble. On the other hand, the b → sqq e.g. B0

d → φKS is penguin dominated
and hence there is a large possibility that it can receive a contribution from
beyond SM physics. The theoretical estimation of these penguin dominated
modes have been progressed mainly in two different directions. Firstly, sev-
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eral studies have been done to include QCD corrections based on different
hadronic assumptions e.g QCD factorization(QCDF), Soft Collinear Effec-
tive Theory(SCET) and Perturbative QCD(PQCD). Secondly SU(3) flavour
symmetry between s and d quarks has been used to constrain the penguin
dominated modes. Here we present a very brief summary of all these con-
straints.

Mode QCDF bound SCET bound PQCD bound

φKS 0.02± 0.01 0.02± 0.01
[35] - [36]

η′KS 0.01± 0.01 −0.019± 0.008, Sol-I
−0.010± 0.010, Sol-II

[37] [28] -

π0KS 0.07+0.05
−0.04 0.077± 0.030 0.053+0.02

−0.03

[29] [28] [38], [39]

ρ0KS −0.08+0.08
−0.12 0.187+0.10

−0.06

[29] - [38], [39]

ωKS 0.13± 0.08 0.153+0.03
−0.07

[29] - [38], [39]

Table 2.1: Constraints on ∆Si from QCDF, SCET, PQCD.

For B0
d → fi decay, a parameter ri can be defined from Eq. (2.7) as [34],

rie
iδi =

∣

∣

∣

∣

vuq
vcq

∣

∣

∣

∣

(Auqe
iδuq −Atqe

iδtq)

(Acqeiδcq −Atqeiδtq)
≈ 0.02

Au
i

Ac
i

, (2.32)

where δi is the strong phase. Expanding Eq. (2.25) in terms of the small
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ratio ri,

sin 2βmeas = sin 2β + 2ri cos δi cos 2β sin γ, (2.33)

Ci = −2ri sin δi sin γ. (2.34)

In the limit of negligible ri, sin 2β
meas = sin 2β and Ci = 0. If the direct CP

asymmetry Ci is found to be non-zero experimentally, it would establish the
fact that ri dependent terms are important. The quantity ∆Si ≡ Ssqq − Sccs

can be written as
∆Si = sin 2βmeas

sqq − sin 2βmeas

ccs . (2.35)

Without going into the detail discussion of different hadronic assumptions,
we present a summary of the predicted ∆Si by different QCD based models
like QCDF, SCET and PQCD for different penguin dominated modes in Ta-
ble. (2.1).

∆S = 0 modes are related to ∆S = 1 modes by SU(3) flavour symmetry,
and using this symmetry the bounds on ri can be obtained as [40],

ri ≤
R+ λ

2

1−R , R ≤ λ
∑

f ′

|nf ′ |
√

Bf ′(∆S = 0)

Bf (∆S = 1)
, (2.36)

where nf ′ are numerical coefficients,

R2 ≡
λ2
(

|
∑

f nfA(f)|2 + |
∑

f nfA(f)|
2
)

(

|A(B0 → η′K0)|2 + |A(B0 → η′K0)|2
) (2.37)

and

λ = −V
∗
cbVcd
V ∗
cbVcs

≈ 0.225. (2.38)

The sum over f in Eq. (2.37) is a sum over all the amplitudes of π0π0, π0η,
π0η′, ηη, η′η′, ηη′ modes. In the limit in which small amplitudes involving
the spectator quarks may be neglected, π0η, π0η′ and ηη′ amplitudes can
be ignored . The bound on R is thus in general better, if the sum is over
a smaller set of modes f ′. Furthermore, all the branching ratios f ′ in the
bound need to be measured to have the best bound. Using branching ratios
of π0η, η′η′, π0π0, π0η′, ηη, ηη′, Rη′Ks < 0.116 [40]. Using QCDF predicted
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branching ratios, Rη′Ks < 0.045 [37]. The bound on Rη′Ks < 0.088 using
SCET predicted branching ratios [28]. Bounds on φKS, KKK modes are
not good [41], [42], [43]. The bounds on rK+K−K0 < 1.02, rKsKsKs < 0.31
[42], [43]. Performing a global fit to experimental data, SU(3) prediction for
sin 2βmeas

π0Ks
= −0.81± 0.03 which is far away from the measured experimental

value [42], [44].

The experimental values of ∆Si are found negative in most of the cases as can
be seen from Fig. (2.1). These values are less than the theoretically predicted
values also. Presently the error in these experimental values are in such a
regime that the tree pollutions in different b → sqq modes with q → d, s
can not be neglected any more. Even with the SU(3) approach, at present,
only upper limits are available for many of the branching ratios that enter
into Eq. (2.36). That is why these bounds obtained from the SU(3) analysis
are probably a significant overestimate and will improve with further data.
Hence, in both approaches, the theoretical bounds will be more robust with
further availability of the experimental data.

In the next section we present a completely different approach based on ge-
ometrical interpretation to argue whether the discrepancies in the measured
values of ∆Si can be an indication of NP or not.

2.5 Relation between ω and φ

We want to find a relation between ω and φ. Eq. (2.28) depicts that ω and
η’s are related to each other. Using this fact we first try to obtain a relation
between η and φ which finally leads to a relation between ω and φ. The first
thing which can be noticed is how sign of η depends on sign of φ and then
how amplitude of η depends on amplitude of φ. In this section we present a
geometric approach, though we have verified all the results numerically. The
simplicity of the arguments is the real beauty of this approach.

2.5.1 Relation between sign of η and φ

Ai and Ai are represented geometrically. Given values of ai, bi, δi and φ, |Ai|
and |Ai| are as shown in the Fig. 2.2. For the purpose of illustration first

we choose δi > 0 and φ > 0. ~ai is represented by QV , and ~bi is represented
by SV or PV depending on the phase δi + φ or δi − φ, resulting into the
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sin(2βeff) ≡ sin(2φe
1
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Figure 2.1: sin 2βeff ≡ sin 2βmeas from the HFAG collaboration [32].
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Figure 2.2: The amplitudes Ai and Ai in terms of ai and bi for the case φ > 0
and δi > 0.

amplitude Ai and Ai respectively. It may be noted that the same values of
|Ai|, |Ai| and ηi can be obtained using different values of ai, bi, δi and φ.
The set of points for which this is possible is obtained by moving the point
V along the bisector to SP , since SV and PV are both bi, they must always
be equal. It is hence essential to express all quantities in terms of irreducible
variables.

In Fig. 2.2(a) we choose δi to lie in the range between 0 and π/2. Clearly
ηi is always positive (if φ > 0) irrespective of the values of the amplitudes
ai and bi. If δi is increased beyond π/2, at some critical value of δi = δci ,
ηi becomes 0. This is expressed in Fig. 2.2(b). This critical value δci can be
easily derived from Eq. (2.31) substituting ηi = 0 and the expression for it is

tan δci =
Ci sinφ

cosφ
(

1−
√

1− C2
i

) . (2.39)

If δi is increased further beyond δci the sign of ηi depends on the relative
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magnitudes of ai and bi; ηi < 0 if bi < ai (Fig. 2.2(c) ) and ηi > 0 if bi > ai
( Fig. 2.2(d) ). It is easy to generalize to the cases where both δi and φ can
be positive or negative. Note that from Eq. (2.23), if δi and φ have the same
sign then Ci < 0, else Ci > 0.

δci lies in the range π/2 to π for Ci < 0 and −π to −π/2 for Ci > 0. Here
we want to mention that δci is strictly not defined for Ci = 0, but may be
taken to have any value between π/2 and π. And Fig. 2.2(b) and Fig. 2.2(c)
do not apply to the case where Ci = 0, as only two values of δi are allowed,
it can be either 0 or π. Hence, we conclude that ηi always has the same sign
as φ if |δi| ≤ |δci |. The weak phase φ is fixed by the parametrization chosen
within SM and is same for all modes. Hence as long as |δi| ≤ |δci | for each
mode fi, the sign of φ and ηi must be same for all modes.

2.5.2 Relation between magnitude of η and φ

Next, we want to see how the magnitude of ηi depends on magnitude of φ,
when the magnitude of the strong phase is constrained to be less than δci , i.e.
|δi| < δci .

Cases for φ > 0: To start with, let us consider φ > 0. The magnitude of η
depends on both δi and φ. |δi| itself can be either less than φ or larger than
φ. Further, δi can be both positive and negative. We thus require a case by
case study depending on the value of δi. The three possible cases that need
individual consideration are shown in Fig 2.3.

Fig. 2.3(a) represents the case with positive δi greater than φ, i.e. 0 ≤ φ ≤
δi ≤ δci . Using simple geometry it is easy to deduce that

2φ = ηi + ζi − ζi. (2.40)

In Eq. (2.23), since the amplitudes ai, bi and the branching ratio Bi are all
positive quantities, it is clear that for this case (0 ≤ φ ≤ δi ≤ δci ), Ci < 0.
Eq. (2.23) also in turn implies that |Ai| < |Ai|, if Ci < 0. It is then easy to
prove that if |Ai| < |Ai|, |ζi| < |ζi| must hold. Before we present the proof
we focus on Fig. 2.4(a) and 2.4(b). Fig. 2.4(a) is a repetition of Fig. 2.3(a)
with only the essential labels retained. In Fig. 2.4(b) the triangle △QV P of
Fig. 2.4(a) is flipped to triangle △QV P ′. In △QSP ′,
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Figure 2.3: Case φ > 0 and −δci < δi < δci . The amplitudes Ai and Ai in
terms of ai and bi. The three possible cases need individual consideration. In
cases (a) and (b) we consider φ ≤ |δ| where as in case (c) we consider |δ| < φ.
The two cases requiring different treatment for φ ≤ |δ|, i.e. 0 ≤ δi ≤ δci and
0 ≤ δi ≤ δci are considered in (a) and (b) respectively.

|Ai| < |Ai| ⇒ ∠QP ′S < ∠QSP ′.

∴ (∠QP ′V + ∠V SP ) < ∠QSV + ∠V SP ′).

Further, V S = V P ′ = bi ⇒ ∠V SP ′ = ∠V P ′S.

Hence, ∠QP ′V < ∠QSV or |ζi| < |ζi|.

It is proved that |ζi| < |ζi| for 0 ≤ φ ≤ δi ≤ δci . From Eq. (2.40), hence it
can be concluded that for the case under consideration ηi ≤ 2φ.

The next case, −δci ≤ δi ≤ 0 is depicted in Fig. 2.3(b). For this case ηi and
φ are related by

2φ = ηi − ζi + ζi. (2.41)

Using Eq. (2.23) and logic similar to the case above, it is easy to see that
0 < Ci is implying that |Ai| < |Ai|. Thus, |ζi| < |ζi| must hold, as can
be seen by a proof analogous to the above. Hence, it can be deduced that
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Figure 2.4: For |Ai| > |Ai|, (a) before flipping ∆QVP, (b) after flipping
∆QVP to ∆QVP′.

ηi ≤ 2φ even when −δci ≤ δi ≤ 0 as long as φ is positive.

The case of Fig. 2.3(c), when |δi| < φ is simpler to deal with as it does not
depend on the sign of δi. It is easy to see that for this case

2φ = ηi + ζi + ζi. (2.42)

Hence, ηi ≤ 2φ for this case as well. Having considered all the three possible
cases for 0 < φ and |δi| ≤ δci we can conclude that 0 ≤ ηi ≤ 2φ.

Cases for φ < 0:

The different cases for φ < 0 can be treated in a way that is essentially sim-
ilar to those for 0 < φ. However, we discuss these cases in some detail for
establishing the completeness of our conclusion. Moreover, due to the neg-
ative value of φ complications arise, that warrant a detailed consideration.
To begin with, since φ is negative, it is easy to see from Fig. 2.5 that ηi < 0
as well. Hence we need to consider |φ| and |ηi| to follow an approach that
is analogous to the one used for 0 < φ. Further, the direct CP-asymmetry
Ci has opposite sign when compared to the corresponding cases for 0 < φ.
Also, Eqs. (2.19) and (2.20) imply that |Ai| and

∣

∣Ai

∣

∣ switch. The flip in the

positions of |Ai| and
∣

∣Ai

∣

∣ can be seen when comparing Fig. 2.5 with Fig. 2.3.

Fig. 2.5(a) represents the case φ ≤ 0 ≤ δi ≤ δci . It is easy to conclude that for
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Figure 2.5: Case φ < 0 and −δci < δi < δci . The amplitudes Ai and Ai in
terms of ai and bi.

this case, 2 |φ| = |ηi|+ζ i−ζi. Since, φ < 0 and 0 < δi, Ci must be positive, i.e.
0 < Ci, implying that |Ai| < |Ai|. Following an approach identical to the one
introduced for the case of Fig. 2.3(a) in Fig. 2.4, we conclude that |ζi| < |ζi|.
Hence, |ηi| ≤ 2 |φ| for φ ≤ 0 ≤ δi ≤ δci . We next consider Fig. 2.5(b), where
δci ≤ δi ≤ φ ≤ 0. For this case, 2 |φ| = |ηi| + ζi − ζi. Here, Ci < 0, as
both φ < 0 and δi < 0 imply that |Ai| ≤ |Ai| and |ζi| < |ζi|. We hence
conclude that |ηi| ≤ |φ|. We finally consider the case when |δi| ≤ |φ| but φ
itself is negative. This case is straightforward; since, 2 |φ| = |ηi|+ ζi + ζi, we
easily conclude that |ηi| ≤ 2 |φ|. It can be concluded that even for each of
the φ < 0 sub-cases, |ηi| ≤ 2 |φ|, though within the SM, the weak phase φ is
always positive as mentioned earlier.

2.5.3 Conclusion of this section

As a conclusion of this section it can be stated that,

1. ηi always has the same sign as of φ if |δi| ≤ |δci |.

2. |ηi| ≤ 2 |φ|.
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Combining these two solutions, the constraints are

|δi| < |δci | ⇒ 0 ≤ ηi ≤ 2φ, (2.43)

|δi| > |δci | ⇒ ηi < 0 or ηi > 2φ. (2.44)

2.6 Constraints on ηi and 2β

The present world average value of sin 2βmeas(b → ccs) = 0.67 ± 0.02, The
measured values of sin 2βmeas(b → sqq) are given in fig. (2.1). The modes f1
and f2 are chosen in such a way that the estimated values of 2ω’s are always
positive. These values are listed in Table. (2.2).

β can be chosen in three possible ways, it can be either greater than both of
βmeas
1 , βmeas

2 or in between them or less than both of them. In Table. (2.3) we
consider these three cases with the possible sub cases depending on the value
of φ = γ parametrization to obtain bounds on η1, η2 and 2β. In Table. (2.4)
the bounds are given for φ = βs parametrization.

2.7 Ajs as a function of ηi

b̂′

â′

Au

δ′

At

(l′, 0)
(−l′, 0)

Ac

(x2, y2) (x1, y1)

∆

(a)

b̂′′Au

At

(l′′, 0)

Ac

(x2, y2)

â′′(x1, y1)

(−l′′, 0)

∆

δ′′

(b)

Figure 2.6: In (a) geometric representation of Eq. (2.8) with φ = γ
parametrization and in (b) geometric representation of Eq. (2.12) with φ = βs
parametrization.

Fig. 2.6(a) and Fig. 2.6(b) are the geometrical representation of Eq. (2.8)
with φ = γ parametrization and Eq. (2.12) with φ = βs parametrization
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f1 f2 2ω ∆2ω

b→ ccs φK0 15.96o +11.02o

−11.67o

b→ ccs η′K0 5.91o ±5.21o

KSKSKS b→ ccs 5.66o ±14.75o

b→ ccs π0K0 7.32o ±12.04o

b→ ccs ρ0KS 9.38o +12.45o

−24.53o

b→ ccs ωKS 15.32o ±15.67o

b→ ccs f 0KS 5.20o +8.05o

−9.48o

b→ ccs f2KS 13.38o ±37.21o

b→ ccs fXKS 30.53o ±32.79o

b→ ccs π0π0KS 73.40o ±28.74o

b→ ccs π+π−KS 41.49o ±19.34o

K+K−K0 b→ ccs 13.02o ±7.19o

K+K−K0 π+π−KS 54.51o ±20.61o

KSKSKS π+π−KS 47.16o ±24.56o

K+K−K0 η′K0 18.93o ±8.62o

Table 2.2: Estimated 2ω and its error ∆2ω values from Fig. (2.1)
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respectively. The co-ordinates (x′1, y
′
1) and (x′2, y

′
2) and l

′ can be solvable as a
function of Ajs and a

′
i, b

′
i and δ

′
i. Similarly we can solve for the co-ordinates

(x′′1, y
′′
1), (x′′2, y

′′
2) and l′′ as a function of Ajs and a′′i, b

′′
i and δ′′i . Following

Eqs. (2.29) - (2.31), a′2i , b
′2
i , tan δ

′
i and a

′′2
i , b

′′2
i , tan δ

′′
i can be expressed as a

function of only ηi, as Bi and Ci are observables and φ is known experimen-
tally. This straight-forwardly leads to express At and ∆ ≡ |δc − δu| in terms
of Ac, Au and ηi.

0 < 2γ η2 bound η1 bound β bound

βmeas
2 ≤

βmeas
1 ≤ β

I η2 ≤ η1 ≤
0 ≤ 2γ

η2 ≤ −2ω; η1 ≤ 0 2βmeas
1 ≤ 2β;

βmeas
2 ≤

β ≤ βmeas
1

II η2 ≤ 0 ≤
η1 ≤ 2γ

η2 ≤ 0 0 ≤ η1 ≤
2ω;

2βmeas
2 ≤ 2β ≤ 2βmeas

1 ;

β ≤
βmeas
2 ≤

βmeas
1

III(a) 0 ≤ η2 ≤
η1 ≤ 2γ

0 ≤ η2 ≤
2γ − 2ω;

2ω ≤ η1 ≤
2γ;

2βmeas
1 − 2γ ≤ 2β ≤ 2βmeas

2 ;

III(b) 0 ≤ η2 ≤
2γ ≤ η1

2γ − 2ω ≤
η2 ≤ 2γ;

2γ ≤ η1 ≤
2γ + 2ω;

2βmeas
1 − 2γ − 2ω ≤ 2β ≤ 2βmeas

1 − 2γ;

III(c) 0 ≤ 2γ ≤
η2 ≤ η1

2γ ≤ η2; 2ω + 2γ ≤
η1;

2β ≤ 2βmeas
2 − 2γ;

Table 2.3: Constraints on ηi and 2β for the γ parametrization.

2.7.1 Solution of At and ∆ in γ parametrization

From Fig. 2.6(a),

A2
c = (x′2 − l′)

2
+ y′22 ,

A2
u = (x′2 + l′)

2
+ y′22 ,

A2
t = (x′2 − x′1)

2
+ (y′2 − y′1)

2
, (2.45)

â′2 = (x′1 − l′)
2
+ y′21 ,

b̂′2 = (x′1 + l′)
2
+ y′21 ,

4l′2 = â′2 + b̂′2 − 2â′b̂′ cos δ′. (2.46)
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0 < 2βs η2 bound η1 bound β bound

βmeas
2 ≤

βmeas
1 ≤ β

I η2 ≤ η1 ≤ 0 ≤ 2βs η2 ≤ −2ω η1 ≤ 0 2βmeas
1 ≤ 2β

βmeas
2 ≤

β ≤ βmeas
1

II(a) η2 ≤ 0 ≤ η1 ≤ 2βs η2 ≤ 2βs − 2ω 0 ≤ η1 ≤ 2βs 2βmeas
1 − 2βs ≤ 2β

II(b) η2 ≤ 0 ≤ 2βs ≤ η1 2βs − 2ω ≤ η2 2βs ≤ η1 ≤ 2ω 2βmeas
2 ≤ 2β ≤ 2βmeas

1 − 2βs

β ≤
βmeas
2 ≤

βmeas
1

III(a) 0 ≤ η2 ≤ 2βs ≤ η1 0 ≤ η2 ≤ 2βs 2ω ≤ η1 2βmeas
2 − 2βs ≤ 2β ≤ 2βmeas

2

III(b) 0 ≤ 2βs ≤ η2 ≤ η1 2βs ≤ η2 2ω + 2βs ≤ η1 2β ≤ 2βmeas
2 − 2βs

Table 2.4: Constraints on ηi and 2β for βs parametrization.

Considering the present experimental data, it is a valid assumption to as-
sume the direct CP asymmetry Ci = 0 which is used to plot Fig. 2.7. Ci = 0
implies either δ′i = 0 or δ′i = π. Eq. (2.46) follows δ′i = 0 has two sub-cases

l′ = ± (â′−b̂′)
2

. These cases are discussed in details in this subsection.

Case-I (a):- δ′i = 0 and l′ = (â′−b̂′)
2

Eqns. (2.45) - (2.46)leads to

x′1 = −(â′ + b̂′)

2
,

y′1 = 0,

x′2 =
A2

u −A2
c

2(â′ − b̂′)
,

y′2 = ±
[

A2
c −

(A2
u −A2

c − (â′ − b̂′)
2

2(â′ − b̂′)

)

2
]

1
2

, (2.47)

At = ±
[

2â′b̂′ +
(â′A2

u − b̂′A2
c)

(â′ − b̂′)

]

1
2

,

∆ = cos−1
[A2

u +A2
c − 4l′2

2AuAc

]

.

Case-I (b):- δ′i = 0 and l′ = (b̂′−â′)
2
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In this case,

x′1 =
(â′ + b̂′)

2
,

y′1 = 0,

x′2 =
A2

u −A2
c

2(b̂′ − â′)
,

y′2 = ±
[

A2
c −

(A2
u −A2

c − (b̂′ − â′)
2

2(b̂′ − â′)

)

2
]

1
2

, (2.48)

At = ±
[

2â′b̂′ +
(â′A2

u − b̂′A2
c)

(â′ − b̂′)

]

1
2

,

∆ = cos−1
[A2

u +A2
c − 4l′2

2AuAc

]

.

Finally in both of the sub-cases for δ′i = 0, the values of At and ∆ remain
same.

Case-II :- δ′i = π and l′ = (â′+b̂′)
2

In this case,

x′1 =
(b̂′ − â′)

2
,

y′1 = 0,

x′2 =
A2

u −A2
c

2(â′ + b̂′)
,

y′2 = ±
[

A2
c −

(A2
u −A2

c − (â′ + b̂′)
2

2(â′ + b̂′)

)

2
]

1
2

, (2.49)

At = ±
[

− 2â′b̂′ +
(â′A2

u + b̂′A2
c)

(â′ + b̂′)

]

1
2

,

∆ = cos−1
[A2

u +A2
c − 4l′2

2AuAc

]

.

These are the possible cases for γ parametrization. The cases for βs parametriza-
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tion are discussed in the next subsection.

2.7.2 Solution of At and ∆ in βs parametrization

Fig. 2.6(b)follows:

A2
c = (x′′2 − l′′)

2
+ y′′22 ,

A2
u = (x′′2 − x′′1)

2
+ (y′′2 − y′′1)

2
,

A2
t = (x′′2 + l′′)

2
+ y′′22 , (2.50)

â′′2 = (x′′1 − l′′)
2
+ y′′21 ,

b̂′′2 = (x′′1 + l′′)
2
+ y′′21 ,

4l′′2 = â′′2 + b̂′′2 − 2â′′b̂′′ cos δ′′. (2.51)

The Ci = 0 cases are discussed below.

Case-IV (a):- δ′′i = 0 and l′′ = (â′′−b̂′′)
2

.

From Eqs.(2.50)-(2.51),

x′′1 = −(â′′ + b̂′′)

2
,

y′′1 = 0,

x′′2 =
A2

u −A2
c − â′′b̂′′

2â′′
,

y′′2 = ±
[

A2
u −

(A2
u −A2

c + â′′2

2â′′

)
2
]

1
2

, (2.52)

At = ±
[

A2
u + b̂′′2 − b̂′′

â′′
(A2

u −A2
c + â′′2)

]

1
2

,

∆ = cos−1
[A2

u +A2
c − â′′2

2AuAc

]

.

Case-IV (b):- δ′′i = 0 and l′′ = (b̂′′−â′′)
2

.
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In this case,

x′′1 =
(â′′ + b̂′′)

2
,

y′′1 = 0,

x′′2 = −A2
u −A2

c − â′′b̂′′

2â′′
,

y′′2 = ±
[

A2
u −

(A2
u −A2

c + â′′2

2â′′

)
2
]

1
2

, (2.53)

At = ±
[

A2
u + b̂′′2 − b̂′′

â′′
(A2

u −A2
c + â′′2)

]

1
2

,

∆ = cos−1
[A2

u +A2
c − â′′2

2AuAc

]

.

Finally in both of the sub-cases for δ′′i = 0, the value of At and ∆ remain
same.

Case-V :- δ′′i = π

For this case,

l′′ =
(â′′ + b̂′′)

2
,

x′′1 =
(b̂′′ − â′′)

2
,

y′′1 = 0,

x′′2 = −A2
u −A2

c + â′′b̂′′

2â′′
, (2.54)

y′′2 = ±
[

A2
u −

(A2
u −A2

c + â′′2

2â′′

)
2
]

1
2

,

At = ±
[

A2
u + b̂′′2 +

b̂′′

â′′
(A2

u −A2
c + â′′2)

]

1
2

,

∆ = cos−1
[A2

u +A2
c − â′′2

2AuAc

]

.

In Fig. 2.7, the values of At are plotted as a function of Ac and Au for six
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Figure 2.7: Values of At and ∆ ≡ |δu − δc| as a function of Au and Ac for
Ci = 0. Aj are normalized such that, if Au = 0 and At = 0, Ac would
be unity. The allowed values are bounded by the curves for ∆ = 0, π. The
unlabelled parabolic curves represent ∆ = π

2
, π

3
and π

6
.

fixed values of ηi for Ci = 0.

2.8 Analysis of the bounds

2.8.1 f1 → (b→ ccs), f2 → (b→ sqq)

In b → ccs channel, tree contributions dominate over the penguin, which
leads to the constraint Ac > Au,t. In b→ sss channel only penguin diagram
contributes, it does not lead to any such constraint. From Fig. 2.7, it is
clear that large η > 0 (of the order of 5o) is easily obtained by having only
Au sizeable but Ac > Au,t only for negative η1 cases. This immediately
rules out all the cases except Case I of Table. (2.3) and Table. (2.4). In
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these cases, η1 is negative, but η2 ≤ −2ω. The estimated values of 2ω’s
are given in Table. (2.2), though ∆2ω’s are very large, still for most of the
cases, the central value of 2ω > 5o. Following Fig. 2.7, it can be seen that
for Case I, this large negative value of η2 requires the square of quark level
amplitudes |Ac|2 (|Au|2) and |At|2 which are at least 10 times larger than
the observed branching ratio. Eq. (2.7) or Eq. (2.11) implies that these large
quark level amplitudes have to be fine tuned such a way that they produce
Ab→s of the order one. It becomes extremely difficult to fine tune in such
a fashion to explain all the channels within SM. Hence, none of the cases
can be accommodated within the SM, unless one requires that the observed
branching ratios result from considerable fine tuned cancellations of quark
level amplitudes.

2.8.2 f1 → (b→ sqq), f2 → (b→ ccs)

According to the previous logic, in this case Ac > Au,t demands negative η2.
This automatically rules out the Case III of Table. (2.3) and Table. (2.4).
Case I is also not relevant as η2 ≤ −2ω. Hence, this case is also ruled
out according to the same logic discussed in the previous case. Case II
of Table. (2.3) and Case II(a) and II(b) of Table. (2.4) are allowed. The
constraints obtained from Case II(a) and II(b) of Table. (2.4) are tighter
than their counterparts of Table. (2.3).

2.8.3 f1 → (b→ sq1q1), f2 → (b→ sq2q2)

In this case none of the η belongs to b → ccs. q1 and q2 can be either same
quarks or different quarks. Case III(b) and III(c) of Table. (2.3) are natu-
rally ruled out as it is expected that γ ∼ 60o. Case I of both Table. (2.3)
and Table. (2.4) and Case III(a) and III(b) of Table. (2.4) are ruled out due
to η2 ≤ −2ω, 2ω ≤ η1 and 2ω + 2βs ≤ η1 constraints respectively. Case II,
III(a) of Table. (2.3) and Case II(a), II(b) of Table. (2.4) are allowed by the
present experimental data. In this case also, constraints obtained from βs
parametrization is better than the ones from γ parametrization.

The above discussion clearly indicates that in all cases a large value of 2ω
must correspond to a large η for at least one of the modes being compared.
The values of the amplitudes Au, Ac and At and their relative strong phases
are depicted in Fig. 2.7. It is easy to conclude from Fig. 2.7 that in all cases,
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the amplitudes Au, Ac and At must be large and destructively interfere in
order to obtain negative η larger than a few degrees. A scenario of large
destructive interferences among the different contributions seems unnatural.
It may be noted that within the same mode it is not possible to change the
relative strengths of the amplitudes Au, Ac and At by rescattering, since
by definition they are distinct amplitudes corresponding to vu, vc and vt
respectively. Given our relatively successful understanding of Bd decay am-
plitudes, it seems unlikely that our estimates for the contributing amplitudes
of an individual mode (excluding coupled channel final state interactions) are
incorrect by a factor of 3 or more; it is even more unlikely that large enough
strong phases are generated so as to result in fine tuned cancellations of these
large amplitudes. One may finally, consider the possibility of large coupled
channel rescattering effects. In such a case, one can fine tune the individual
contributions for each mode. However, note that large η necessities a large
contribution from At and at least one of Au or Ac. In modes that can be
coupled by rescattering, a large deviation η must be compensated by a mode
that has reduced contribution from At and an enhanced contribution to Au

and Ac. Significantly larger data samples would shed light on whether such a
scenario is plausible. Large coupled channel effects would require unnatural
fine-tuning of amplitudes, and large coupled channel effects are not expected
theoretically.

To conclude, without making any hadronic model assumptions, we have
shown that it would be impossible to explain within SM a large discrep-
ancy in the B0

d −B0
d mixing phase measured using various modes. The only

possibility to forgo this conclusion is to accept that the observed branch-
ing ratios result from rather fine-tuned cancellations of significantly larger
amplitudes.



Chapter 3

Standard Model Scenario of

Mixing and Rare Processes

3.1 Introduction

The neutral meson mixing, such as K0−K0, B0
d −B0

d , B
0
s −B0

s and D0−D0

play a very crucial role to test the SM. In 1955 Gell-Mann and Pais proposed
the neutral kaon mixing for the first time [45]. Later in 1964, CP violation,
one of the most pioneering discovery in particle physics was observed for the
first time in the neutral kaon system [1]. This triumph continued through the

observation of the B0
d −B0

d mixing in 1986 [46], B0
s −B0

s mixing in 2006 [47]
and D0 −D0 mixing in 2007 [48]. Thanks to the two B factories and CDF,
D0 collaborations, many important constraints on the CKM parameters are
now known.

On the other hand, the neutral meson mixing provides an ideal place to ex-
plore new physics beyond the SM. The mixing is caused by flavor-changing
neutral current (FCNC) transitions and only occurs via loops in the frame-
work of the SM. The dominant contribution to the mixing comes from the
box diagrams. That is why these box diagrams can be very sensitive to the
new physics effects.

In the next chapter, we discuss a NP model related to leptoquarks. In that
chapter, an analysis of the neutral K and B mesons mixing is done in the
presence of this NP model. In chapter 4 constraints on the NP are given for
the mixing correlated leptonic and semileptonic decays of neutral K and B

39
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mesons. Before presenting the NP model scenario, in this chapter we briefly
summarize the status of the these neutral mesons mixing and their leptonic
and semileptonic decays within the SM. The standard reference for these
analysis is [49]. For ready references, in this chapter we have reproduced the
SM scenario of the relevant mixing and decay analysis mainly from [49].

3.2 Neutral-Meson Mixing

We denote the neutral meson by P 0 and its anti-meson by P 0. P 0 represents
any one of the K0, D0, B0

d , B
0
s . P

0 and P 0 can oscillate between themselves
before decaying. In theWigner-Weisskopf approximation, the two component
wave function of an oscillating and decaying beam, in its rest frame can be
written as

|ψ(t)〉 = ψ1(t)|P 0〉+ ψ2(t)|P 0〉, (3.1)

where t is the proper time. The Schrodinger equation for this wave function
can be written as

i
d

dt

(

ψ1

ψ2

)

=

(

R11 R12

R21 R22

)(

ψ1

ψ2

)

(3.2)

As the neutral-mesons both oscillate and decay, the matrix R is not Hermi-
tian. It can be written as

R = M− i

2
Γ, (3.3)

with

M = M†, (3.4)

Γ = Γ†, (3.5)

M and Γ are associated with (P 0, P 0) ↔ (P 0, P 0) transitions via off-shell
(dispersive), and on-shell (absorptive) intermediate states, respectively. Di-
agonal elements of M and Γ are associated with the flavor-conserving tran-
sitions P 0 → P 0 and P 0 → P 0, while off-diagonal elements are associated
with the flavor-changing transitions P 0 → P 0. If the two eigenstates of R
are denoted be PH and PL, the mixing parameters can be defined as,

∆m ≡ mH −mL, (3.6)

∆Γ ≡ ΓH − ΓL, (3.7)
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where mH and mL correspond to the masses of PH and PL respectively.
ΓH ,ΓL correspond to the decay widths of PH and PL respectively. The
convention is that the mass difference ∆m is always positive. The sign of
∆Γ is fixed through experiments. The mixing in the K0 - K0, B0

d - B0
d and

B0
s - B0

s sectors is discussed below.

3.2.1 Mixing in Neutral Kaon system

K0 and K
0
are the flavour eigenstates in the SM. Following the convention

(CP |K0〉 = |K0〉), the CP eigenstates K1 and K2 are defined as [49]

K1 =
1√
2
(K0 +K

0
), CP |K1〉 = |K1〉, (3.8)

K2 =
1√
2
(K0 −K

0
), CP |K2〉 = −|K2〉. (3.9)

The physical states KL and KS are the admixtures of K1 and K2,

KS =
K1 + εK2
√

1+ | ε |2
, KL =

K2 + εK1
√

1+ | ε |2
. (3.10)

The parameter ε is very small. It is not a physical parameter as it depends

on the the phase convention chosen for K0 and K
0
.

Two pion final states are CP even state and three pion final states are CP
odd state. As KL and KS both consist of K1 and K2, they decay to 3π via K2

and 2π via K1 component. The physical parameter εK is the measurement
of the “indirect CP violation”. It is defined as

εK =
A(KL → (ππ)I=0)

A(KS → (ππ)I=0)
, (3.11)

It can also be written as,

εK =
exp(iπ/4)√

2∆MK

(ImM12 + 2ξReM12) , (3.12)

where

ξ =
ImA0

ReA0

(3.13)
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Figure 3.1: Box diagram of neutral kaon mixing.

with A0 ≡ A(K → (ππ)I=0) and ∆MK denoting theKL−KS mass difference.
The off-diagonal elementM12 in the neutral K-meson mass matrix represents

K0(sd)−K
0
(sd) mixing. It is given by

2mKM
∗
12 = 〈K0|Heff(∆S = 2)|K0〉, (3.14)

where Heff(∆S = 2) is the effective Hamiltonian for the ∆S = 2 transitions
and mK is the K-meson mass.

To lowest order these transitions are induced through the box diagrams shown
in Fig. (3.1). Including QCD corrections, the effective low energy Hamilto-
nian, to be derived from these diagrams, can be written as [50]:

H∆S=2
eff =

G2
F

16π2
M2

W

[

λ2cη1S0(xc) + λ2tη2S0(xt) + 2λcλtη3S0(xc, xt)
]

×

×
[

α(3)
s (µ)

]−2/9

[

1 +
α
(3)
s (µ)

4π
J3

]

Q(∆S = 2) + h.c. (3.15)

where λi = V ∗
isVid. Using unitarity relation λu+λc+λt = 0, λu is replaced in

terms of λc and λt. Eq. (3.15) is valid for scales µ below the charm threshold
µc = O(mc). In this case H∆S=2

eff consists of a single four-quark operator

Q(∆S = 2) = (sd)V−A(sd)V−A, (3.16)

Functions like S0(xi) where i = u, c, t and S0(xc, xt) are the basic loop con-
tributions from the box diagrams without QCD correction. The expressions
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for these are as follows:

S0(xi) =
4xi − 11x2i + x3i

4(1− xi)2
− 3x3i ln xi

2(1− xi)3
, xi =

m2
i

M2
W

, (3.17)

S0(xc, xt) = xc

[

ln
xt
xc

− 3xt
4(1− xt)

− 3x2t ln xt
4(1− xt)2

]

, (3.18)

Short-distance QCD effects are included in the correction factors η1, η2, η3
and in the explicitly αs-dependent terms in Eq. (3.15). The scale dependence
and renormalization scheme dependence of αs(µ) and J3 should cancel with
the scale dependence and renormalization scheme dependence of the hadronic
matrix element. In the NDR scheme J3 = 1.895. The NLO values of the
QCD factors η1 , η2 and η3 are given as follows [51], [52]:

η1 = 1.38± 0.20, η2 = 0.57± 0.01, η3 = 0.47± 0.04. (3.19)

The renormalization group invariant parameter BK can be defined as

BK = BK(µ)
[

α(3)
s (µ)

]−2/9

[

1 +
α
(3)
s (µ)

4π
J3

]

(3.20)

〈K0|(sd)V−A(sd)V−A|K0〉 ≡ 8

3
BK(µ)F

2
Km

2
K (3.21)

We have used the value of BK = 0.86 ± 0.14 ± 0.06 given in [15] in our
calculation. Using Eq. (3.15) one finds

M12 =
G2

F

12π2
F 2
KBKmKM

2
W

[

λ∗c
2η1S0(xc) + λ∗t

2η2S0(xt) + 2λ∗cλ
∗
tη3S0(xc, xt)

]

,

(3.22)
where FK = 159.8± 1.4± 0.44 [54] is the K-meson decay constant.

The last term in Eq. (3.12) can be neglected as compared to other uncer-
tainties for example BK , as it constitutes at most a 2% correction to εK .
Substituting Eq. (3.22) into Eq. (3.12), it can be written as

εK = CεBKImλt {Reλc [η1S0(xc)− η3S0(xc, xt)]− Reλtη2S0(xt)} exp(iπ/4),
(3.23)

where the unitarity relation Imλ∗c = Imλt is used and Reλt/Reλc = O(λ4) is
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Figure 3.2: Box diagram of neutral B-meson mixing.

neglected in the evaluation of Im(λ∗cλ
∗
t ). The numerical constant Cε is given

by

Cε =
G2

FF
2
KmKM

2
W

6
√
2π2∆MK

= 3.78× 104 . (3.24)

The value of measured ∆MK is (5.31± 0.01)× 10−3ps−1 [54].

3.2.2 Mixing in Neutral B-meson

The strength of B0
q −B

0

q mixing, where q = d, s is described by

∆Mq = 2|M (q)
12 |, (3.25)

the mass difference between the mass eigenstates in the B0
d −B

0

d system and

the B0
s − B

0

s system, respectively. In this case the off-diagonal term M12 of
the neutral B-meson mass matrix is given by

2mBq |M (q)
12 | = |〈B0

q|Heff(∆B = 2)|B0
q 〉|. (3.26)

These mixings are induced by the box diagrams shown in fig. (3.2). The
effective Hamiltonian, valid for the scales µb = O(mb), can be written in the

case of B0
d −B

0

d mixing as

H∆B=2
eff =

G2
F

16π2
M2

W (V ∗
tbVtd)

2 ηBS0(xt)
[

α(5)
s (µb)

]−6/23

[

1 +
α
(5)
s (µb)

4π
J5

]

×

×Q(∆B = 2) + h.c. (3.27)
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Here
Q(∆B = 2) = (bd)V−A(bd)V−A (3.28)

and ηB = 0.55 ± 0.01 [52] is the short distance QCD correction factor.

J5 = 1.627 in the NDR scheme. In the case of B0
s − B

0

s mixing one should
simply replace d → s in Eq. (3.27) and Eq. (3.28) with all other quantities
unchanged. Due to CKM suppression, for neutral B-meson box diagrams,
the charm quark and charm-top quark contribution terms are negligible com-
pared to the top quark contribution. The BBq term is defined as,

BBq = BBq(µ)
[

α(5)
s (µ)

]−6/23

[

1 +
α
(5)
s (µ)

4π
J5

]

(3.29)

〈B0

q|(bq)V−A(bq)V−A|B0
q 〉 ≡

8

3
BBq(µ)F

2
Bq
m2

Bq
, (3.30)

where FBq is the Bq-meson decay constant. Using Eq. (3.27) one finds

∆Mq =
G2

F

6π2
ηBmBq(BBqF

2
Bq
)M2

WS0(xt)|Vtq|2, (3.31)

which implies

∆Md = 0.50/ps×
[

√

BBd
FBd

200 MeV

]2
[

mt(mt)

170 GeV

]1.52 [ |Vtd|
8.8× 10−3

]

[ ηB
0.55

]

(3.32)

and

∆Ms = 15.1/ps×
[

√

BBsFBs

240 MeV

]2
[

mt(mt)

170 GeV

]1.52 [ |Vts|
0.040

]

[ ηB
0.55

]

. (3.33)

For our calculation, we have used [15], [53],

FBd

√

BBd
= (0.228± 0.033)GeV , (3.34)

FBs

√

BBs|JLQCD = (0.245± 0.021+0.003
−0.002)GeV . (3.35)
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3.3 Neutral Meson Mixing Correlated decay

Various leptonic and semileptonic decay couplings of neutralK and B mesons
are related to the couplings of the K0 − K0, B0

q − B0
q mixing respectively.

Bounds can be obtained for the same CKMmatrix elements from both mixing
and correlated decays. In this section we discuss about the SM scenario of
those correlated leptonic and semileptonic decays.

3.3.1 Neutral Kaon decay

• KL → l+l−

The decay KL → l+l−, where l = e, µ , proceeds through loop dia-
grams. In the SM, the dominant contributions to this decay come from
the W box and Z penguin diagrams. In addition, it receives long dis-
tance contributions from the two-photon intermediate states, which are
difficult to calculate reliably. But the SM predicted terms are one order
off from the NP terms. That is why we have neglected these terms in
our calculation. At next-to-leading order, the effective Hamiltonian for
KL → l+l− can be written as

Heff = −GF√
2

α

2π sin2 ΘW

(V ∗
csVcdYNL+V

∗
tsVtdY (xt))(sd)V−A(ll)V−A+h.c.

(3.36)
The function Y (xt) is given by Y (xt) ≈ 1.03Y0(x), where

Y0(x) =
x

8

[

x− 4

x− 1
+

3x

(x− 1)2
log(x)

]

(3.37)

The renormalized group (RG) expression YNL represents the charm
contribution. It has two parts, one coming from the Z penguin and the
other coming from the box diagrams. The detail expressions are given
in [55].

• KL → π0e+e−

The effective Hamiltonian for KL → π0e+e− at scales µ < mc is given
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as follows:

Heff(KL → π0e+e−) =
GF√
2
V ∗
usVud[

6,7V
∑

i=1

[zi(µ) + τyi(µ)]Qi+τy7A(MW )Q7A] ,

(3.38)
where the operators Qi are given explicitly as follows:

Current–Current :

Q1 = (sαuβ)V−A (uβdα)V−A, (3.39)

Q2 = (su)V−A (ud)V−A. (3.40)

QCD–Penguins :

Q3 = (sd)V−A

∑

q=u,d,s

(qq)V−A, (3.41)

Q4 = (sαdβ)V−A

∑

q=u,d,s

(qβqα)V−A, (3.42)

Q5 = (sd)V−A

∑

q=u,d,s

(qq)V+A, (3.43)

Q6 = (sαdβ)V−A

∑

q=u,d,s

(qβqα)V+A. (3.44)

Electroweak–Penguins :

Q7 =
3

2
(sd)V−A

∑

q=u,d,s

eq (qq)V+A, (3.45)

Q8 =
3

2
(sαdβ)V−A

∑

q=u,d,s

eq(qβqα)V+A, (3.46)

Q9 =
3

2
(sd)V−A

∑

q=u,d,s

eq(qq)V−A, (3.47)

Q10 =
3

2
(sαdβ)V−A

∑

q=u,d,s

eq (qβqα)V−A. (3.48)
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and

Q7V = (sd)V−A(ee)V , (3.49)

Q7A = (sd)V−A(ee)A. (3.50)

Here, eq denotes the electrical quark charges reflecting the electroweak origin
of Q7, . . . , Q10 and α, β are the colour indices. V (A) stands for the Lorentz
structure γµ(γµγ5).

The Wilson coefficient (WC) functions zi(µ) and yi(µ) were calculated in-
cluding the complete next-to-leading order (NLO) corrections in [56, 57, 58].
The details of these calculations can be found there and in the review [50].
These WCs describe the strength with which a given operator enters the
Hamiltonian. The WCs are controlled by the renormalization group equa-
tions, and their values at a high energy scale (typically MW ) is supplied.
They include all the perturbative corrections to the operators in question.
The nonperturbative part comes in evaluating the matrix elements of the
operators Qi between initial and final states. The regularization scale µ is an
arbitrary point (of the order mc) that separates the high-energy perturba-
tive corrections and the low-energy nonperturbative contributions. The final
result, theoretically, should not depend on µ.

Three different type of contributions: CP conserving, indirectly CP violating
and directly CP violating type can contribute in K0

L → π0l+l−. The estima-
tion of the CP conserving part is very difficult as it can only be done outside
the perturbative framework. The SM estimations give:

Br(KL → π0e+e−)cons ≈







(0.3− 1.8)× 10−12 [59]
4.0× 10−12 [60]
(5± 5)× 10−12 [61].

(3.51)

The SM estimation of indirectly CP violating branching ratio [62], [63] is

Br(KL → π0e+e−)indir ≤ 1.6× 10−12, (3.52)
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and the directly CP violating branching ratio [49] is

Br(KL → π0e+e−)dir =

{

(4.5± 2.6)× 10−12 Scanning
(4.2± 1.4)× 10−12 Gaussian,

(3.53)

3.3.2 B0
q Meson decay

The B meson decay is controlled by an effective Hamiltonian of the form

Heff =
GF√
2

∑

i

V i
CKMCi(µ)Oi(µ), (3.54)

where Oi are the relevant local operators which govern the decays in question.
V i
CKM represents the CKM factors. Below we show six classes of operators

which play the dominant role in the phenomenology of weak decays and
mixing. We assume the charged current decay b → c of a B meson. The
subscripts 1 and 8 denote whether the currents are in singlet-singlet or octet-
octet combination of colour SU(3).

Current-Current:

O1 = (cb)8,V−A (sc)8,V−A, (3.55)

O2 = (cb)1,V−A (sc)1,V−A. (3.56)

Only a typical combination sc is shown; there may be other combinations.

QCD Penguins:

O3(4) = (sb)1(8),V−A

∑

q

(qq)1(8),V−A, (3.57)

O5(6) = (sb)1(8),V−A

∑

q

(qq)1(8),V+A. (3.58)

The sum runs over all the lighter flavours (u, d, s, c).
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Electroweak Penguins:

O7(8) =
3

2
(sb)1(8),V−A

∑

q

eq (qq)1(8),V+A, (3.59)

O9(10) =
3

2
(sb)1(8),V−A

∑

q

eq(qq)1(8),V−A. (3.60)

Magnetic Penguins:

O7γ =
e

8π2
mbsσ

µν(1 + γ5)bFµν , (3.61)

O8G =
g

8π2
mbsασ

µν(1 + γ5)T
a
αβbβG

a
µν . (3.62)

Here α and β are colour indices and T a are the SU(3) generators.

Semileptonic Operators:

O9V = (db)1,V−A(ee)V , (3.63)

O10A = (db)1,V−A(ee)A (3.64)

These operators also contribute to the leptonic decays. Again, this basis is
for the SM only.

• Leptonic decays B0
q → l+l−

The decay Bq → l+l−, where q = d or s and l = e, µ or τ , pro-
ceeds through loop diagrams. In the SM, the dominant contribution
to this decay comes from the W box and Z penguin diagrams. A sig-
nificant contribution to this decay is made by the top quark in the
loop. At low energies (of order mb), the decay can be described by a
local (bq)(ll) coupling. These kind of couplings can appear through the
effective Hamiltonian which is similar to the one given in Eq. (3.54).
The branching fraction is given by
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Br(B0
q → l+l−) =

G2
F

8π
f 2
Bq
τBqm

3
Bq

√

(1− 4m2
l

m2
Bq

)[|C ll
P − 2ml

mBq

C ll
A|2

+

(

1− 4m2
l

m2
Bq

)

|C ll′
P |2] (3.65)

In the SM C ll′
P and C ll

P arise from penguin diagram with physical and
non-physical neutral scalar exchange, and are suppressed by a factor
(mb/MW )2. The decay rate is controlled by the coefficient

[C ll
A]SM =

αVtbV
∗
tq√

8π sin2 θw
Y (xt) (3.66)

where sin2 θw is the weak mixing angle. the expression for Y (xt) is given
in Eq. (3.37). For different lepton flavour the SM branching fractions
are [64]

Br(B0
d → e+e−) ≈ O(10−14),

Br(B0
d → µ+µ−) ≈ O(10−10),

Br(B0
d → τ+τ−) ≈ O(10−8).

Br(B0
s → e+e−) ≈ O(10−13), (3.67)

Br(B0
s → µ+µ−) ≈ O(10−9),

Br(B0
s → τ+τ−) ≈ O(10−7).

These numbers show that purely leptonic decays are too rare to be
observed unless they are significantly enhanced by new physics.

• Semileptonic decays

The semileptonic inclusive decays B → Xs,dl
+l−, originating from the

parton level process b→ s(d)l+l−, can be calculated using the effective
Hamiltonian formalism. The amplitude reads
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A(B → Xsl
+l−) =

√
2GFα

π
VtbV

∗
ts[C

eff
9 sLγ

µbLlγµl + C10sLγ
µbLlγµγ5l

−2Ceff
7 mbsLiσ

µν qν
q2
bRlγµl], (3.68)

where q2 is the momentum transferred to the lepton pair. In addition
to the RG evolutions of C7 and C9 at the weak scale, the WCs Ceff

7

and Ceff
9 contain, the mixing effects with operators O1−6 (for C9) and

O2 and O8 (for C7); hence the superscript. There is also a sizeable
long-distance contribution coming from B → K(∗)ψ and ψ → l+l−,
where ψ is a generic vector cc state.

For the semileptonic decays, we use

〈N(p2)|sγµb|M(p1)〉 = P µF1(q
2) + qµ

m2
B −m2

K

q2
(

F0(q
2)− F1(q

2)
)

,

〈φ(p2, ǫ)| Vµ ∓ Aµ |Bs(p1)〉 =
1

mBs +mφ

[−iV (q2)εµναβǫ
∗νPαqβ

±A0(q
2)(P · q)ǫ∗µ ± A+(q

2)(ǫ∗ · p1)Pµ

±A−(q
2)(ǫ∗ · p1)qµ] (3.69)

where M may be Bd or Bs and N may be π0 or K0. The mBs and
mφ are the meson masses, p1(p2) is the momentum of the initial (final)
meson, ǫ is the polarization vector of the vector meson φ, P = p1 + p2,
q = p1 − p2, Vµ = q2γµq1, Aµ = q2γµγ5q1. V , A0,± and F(1/0)(q

2) are
the form factors. The values of these form factors are taken from [65],
[66].



Chapter 4

Constraining Scalar

Leptoquarks from the K and

B Sectors

4.1 Introduction

The SU(3)C × SU(2)L × U(1)Y standard model (SM) is the most elegant
model which describes the phenomenology of the elementary particles in a
very comprehensive way, but apparently in all probability, it is just an ef-
fective theory valid up to a scale which is much below the Planck scale.
Though most of the data from the two B-factories BaBar and Belle have
been well explained by the SM, bits and pieces of it still remain under shade
and probably needs the attention of some new physics models to be fully
understood. Hopefully these new physics (NP) models can be explored in
the Large Hadron Collider (LHC) as they may be in the range of a few hun-
dreds of GeV. Direct production of new particles will definitely signal NP;
while it is an interesting problem to find out what type of NP is there (com-
monly known as the ‘inverse problem’), it is also well-known that indirect
data from low-energy experiments will help to pin down the exact structure
of NP, including its flavour sector. The low-energy data, in particular the
data coming from the B factories as well as from CDF, DØ, LHCb (and also
from the general purpose ATLAS and CMS experiments) are going to play
a crucial role in that.

In B system, from last few years experimental data indicate some subtle in-

53
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consistency with the SM predicted values. Though the error bars are still
large to draw any definite conclusion but we have reasons to be hopeful.
There are already some interesting hints; just to name a few [32]: (i) the ab-
normally high branching ratios (BR) for the generic channels B → η′K, ηK∗;
(ii) the direct CP-asymmetry in B0

d → π+π− as found by Belle; (iii) the dis-
crepancy in the extracted value of sin(2β) fromB0

d → J/ψKS andBd → φKS;
(iv) the anomalous direct CP-asymmetries in B → πK decays; (v) the large
mixing phase in B0

s −B0
s mixing; (vi) the fraction of longitudinally polarised

final states in channels like B → φK∗ and B → ρK∗; (vii) the larger branch-
ing fraction of B+ → τ+ν compared to the SM expectation; and (viii) the
discrepancy in the extracted values of Vub from inclusive and exclusive modes.
However, one must not be over-enthusiastic since most of these channels are
nonleptonic and QCD uncertainties are yet to be fully understood. But one
may hope for more such anomalies from leptonic and hadronic B-factories.
For the K system, the nonleptonic channels are extremely difficult for any
systematic analysis of NP effects [67], but for the first time we are having
precise data (or bound) on leptonic and semileptonic K decay channels from
Brookhaven and DaΦne. It is always better to be ready for any unexpected
result. A major motivation for this study is the B0

s physics that is going to be
probed at LHC-b, and even at CMS or ATLAS during the low-luminosity run
of the LHC. The leptonic and semileptonic decays are comparatively cleaner
than their nonleptonic counterparts. If all, or most, of them survive the test
of time and attain more significance, this will indicate a new physics whose
flavour sector is definitely of the non-minimal flavour violating (NMFV) type.

One of the eligible NMFV NP candidate is the leptoquark (LQ) model. Clas-
sically, in the SM, quark and lepton fields are introduced as independent
fields. But in the quantum theory, for each generation, the contribution to
the hypercharge triangle anomaly coming from the quarks and the leptons
are exactly equal in magnitude and opposite in sign, and they cancel each
other. This inspires to have a possible SM extension, where quarks and lep-
tons can directly interact with each other. These kinds of interactions can
be mediated through leptoquarks, which can come from Grand Unified the-
ory (GUT) inspired models. These lepto-quarks can come from Pati-Salam
type SU(4) [68], [69] or SU(5) [70] based unified models. Some string theory
inspired models [71], [72] based on E6 group can also introduce leptoquarks.
Extensive studies have been done on the technicolor based leptoquark models
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[73], [74], [75], [76]. Composite models of quarks and leptons [77], [78], [79],
[80], [81] can also form leptoquarks.

Leptoquarks are some hypothetical gauge particles which can be either scalar
or vector. These particles allow to have a tree level transition from a quark
to lepton or vice versa. These kinds of interactions are absent in the SM.
Leptoquarks usually carry both baryon number and lepton number. They
may or may not conserve these two numbers. Baryon and lepton number
violating leptoquarks become very massive, of the O(1015GeV) to avoid pro-
ton decay or large Majorana neutrino masses, and these are of no interest to
us. (There are exceptions; one can construct models where LQs violate both
B and L and yet do not mediate proton decay. These LQs can be light. For
example, see [82].) On the other hand we can have both baryon and lepton
number conserving leptoquarks whose masses can be of the O(100GeV). In
this chapter we discuss the phenomenology of only those models that con-
serve both B and L; one can find extensive discussions on these models in
[83, 84, 85]. Vector LQs, as well as some gauge-nonsinglet scalar ones, cou-
ple to neutrinos, and their couplings should be very tightly constrained from
neutrino mass and mixing data.

Another phenomenological motivation for a LQ model is that this is one of
the very few models (R-parity violating supersymmetry is another) where
the neutral meson mixing diagram gets a new contribution to the absorptive
part. Due to this, the width difference ∆Γ in the Bs system enhances[86],
whereas in more popular NP models it can only decrease [87]. The NP also
changes the CP-violating phase in Bs → J/ψφ. This helps reducing the ten-
sion [88] of SM expectation and the Tevatron data on the CP-violating phase
and width difference for Bs.

All flavour-changing observables constrain the product of at least two differ-
ent LQ couplings, one linked with the parent flavour and another with the
daughter flavour. The product couplings may be complex and it is generally
impossible to absorb the phase just by a simple redefinition of the LQ field.
We use the data from K0−K0, B0

s −B0
s and B0

d−B0
d mixing to constrain the

relevant product couplings, generically denoted as λλ. For the B system, we
use the data on ∆Md,s and the mixing phase sin(2βd,s), and for theK system,
we use ∆MK and εK . We do not discuss other CP violating parameters like
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ε′/ε, since that has large theoretical uncertainties. We also discuss the corre-
lated leptonic and semileptonic decays, i.e., the decays mediated by the same
LQ couplings. While decays to most of the semileptonic channels have been
observed, the clean leptonic channels only have an upper bound for almost
all the cases, except the already observed leptonic decays KL → e+e−, µ+µ−.
Note that the decay modes containing only leptons in the final states give
more robust bounds compared to those which contains only hadrons in the
final states.

A similar exercise have also been undertaken in [83, 71, 73, 89, 90]. We update
these bounds with new data from the B factories and other collider exper-
iments. In particular, in the subsequent sections, all the previous bounds
that we quote have been taken from [83]. The D0 −D0 system has not been
considered due to the large theoretical uncertainties and dominance of long-
distance contributions. Leptonic and semileptonic D and Ds decays have
been used to put constraints on LQs that couple to the up-type quarks. In
particular, LQ contribution might be interesting to explain the Ds leptonic
decay anomaly [82, 91, 92]. The couplings that we constrain are generically
of the type λijλ

∗
ik, where the k-th quark flavour changes to the j-th, but

there is no flavour change in the lepton sector. One can, in principle, con-
sider flavour changes in the lepton sector too; that kind of analysis is done
in [93]. However, if one has a νν pair in the final state, as in KL → π0νν,
there is a chance that lepton flavour is also violated.

The couplings, which are in general complex, may be constrained from a
combined study of CP-conserving and CP-violating observables. For neutral
mesons, these mean ∆M as well as ǫK and sin(2βd,s). However, for most of the
cases, the leptonic and semileptonic decay channels provide the better bound.
The analysis has been done keeping both the SM and LQ contributions, which
keeps the possibility of a destructive intereference, and hence larger possible
values of the LQ amplitudes, open.

4.2 Leptoquark

The leptoquark model by the Buchmuller, Ruckl and Wyler (BRW) [89]
assumes that leptoquark interactions respect the SU(3)C × SU(2)L ×U(1)Y
symmetry of the Standard Model. The stability of the proton in nature
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requires the leptoquarks to obey the conservation of the lepton and baryon
numbers. Leptoquarks couple either to left-handed or to right-handed leptons
and quarks (coupling to both type of electrons would mediate rare decays [90]
which are not observed). We focus on the scalar LQ model, which conserves
both B and L. The relevant part of the Lagrangian [83] can be written as

LS = { (λLS0q
c
Liσ2lL + λRS0u

c
ReR)S

†
0 + λRS̃0

d
c

ReRS̃
†
0 + (λLS 1

2

uRlL+

λRS 1
2

qLiσ2eR)S
†
1
2

+ λLS̃ 1
2

dRlLS̃
†
1
2

+ λLS1q
c
Liσ2σ

alL · Sa
1
† }+ h.c.

(4.1)
where (S0, S̃0), (S 1

2
, S̃ 1

2
), and Sa

1 (a = 1, 2, 3) represent the SU(2) singlet,

doublet, and triplet LQs respectively. λij is the coupling strength of a lep-
toquark to an i-th generation lepton and a j-th generation quark, which is
in general complex. σ’s are the Pauli spin matrices. Note that all the four
terms that couple a neutrino with a LQ can have potential constraints on
neutrino mass and mixing. For example, S̃ 1

2
can generate the observed neu-

trino mixing pattern through a type-II seesaw mechanism [94, 95]. However,
the constraints also depend on the vacuum expectation value of a higher-
representation scalar field. That is why we show the non-neutrino constraints
for these couplings too, keeping in mind that the neutrino constraints may
be stronger.

In this work, we focus only on those processes that involve down-type quarks.
Thus, there is no way to constrain λRS0 and λLS 1

2

from these processes. In

fact, these two sets of coupling can be constrained from processes like D0-D0

mixing and ℓi → ℓj + γ. The latter can be constrained from neutrino mixing
too, but as we have just mentioned, the limits would depend on other model
parameters. We constrain only five types of scalar LQ couplings here: λLS0 ,
λRS̃0

, λRS 1
2

, λLS̃ 1
2

and λLS1 . The charges and isospin quantum numbers of

different type of LQs are summarized in Table. (4.1), for scalar type LQ only.
The possible couplings for each LQ with the leptons (e represents the charged
leptons and ν represents the neutrinos) and quarks (u represents up-type of
quarks and d represents down type of quarks) are shown in the fourth column
of Table. (4.1).

While we have not explicitly shown the generation indices in eq. (4.1), it is
assumed that the LQs can couple with fermions from two different genera-
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T3 Q Coupling

S0 0 -1/3 eLuL eRuR νLdL

S̃0 0 -4/3 eRdR

S1/2

− 1/2

1/2

− 5/3

− 2/3

eRuL eLuR
eRdL νLuR

S̃1/2

− 1/2

1/2

− 2/3

1/3

eLdR
νLdR

S1

− 1

0

1

− 4/3

− 1/3

2/3

eLdL
eLuL νLdL
νLuL

Table 4.1: Leptoquark classification according to the Buchmuller-Ruckl-
Wyler model.

tions. There is another approach which we should mention here. If we start
with the assumption that we have single non zero coupling, we can generate
the other couplings following two other way:

• Lets start with a single non zero coupling at high scale and we can
generate other non-zero couplings at low scale by RG running from
high scale to low scale ( more precisely writing Renormalizing Group
(RG) equation for a coupling and following the perturbative unitarity
condition, we can generate rest of the couplings). This is a standard
practice followed in R-parity violating SUSY.

• There is another approach. Suppose we start with λ33. If we assume
that the quark states are not the physical states, but rather the weak
eigenstates, one can rotate the weak basis and get some λ23 or λ13 type
coupling. This will be the same λ, multiplied by some unknown num-
ber, less than 1. This multiplicative number is unknown because we do
not know the matrix that rotates the down quark basis as this matrix
need not be the CKM. This is the approach one has to follow if one
assume that LQs couple to a single generation only, either 3rd or 1st
or 2nd.
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In SM, when we rotate uL and dL states from weak to mass basis
by rotation matrices UL and DL respectively we get the CKM matrix
as VCKM = UL

†DL . We know only this product. VCKM is not a unit
matrix tells us that these two bases are not parallel or aligned i.e. there
is a misalignment and only that can be measured, not the individual
rotation matrices. A charged current process has uL on one side and
dL on the other, so it measures the CKM elements. This is just like
the SM. For neutral currents, we have two down-type mass matrices.
For CKM, the GIM mechanism operates. It may not be true for some
new physics, but whatever it might be, it is not CKM. Since we take
only one coupling at a time (one product to be precise), the unitarity
check is not at all needed. The CKM matrix does not say anything
about the rotation matrices of the right-chiral quark sector whereas
our Lagrangian involves right-chiral quarks also.

• In our work, we have started with the Lagrangian which is defined
in the mass basis itself. Of course, all couplings are arbitrary then,
and this might appear to be pathological, but the SM with 12 Yukawa
couplings is no less pathological. Now, if we define two couplings to
start with, say λ33 and λ23, then we can of course put a well-defined
and meaningful limit on their product, say from b → sτ+τ . There is
absolutely no ambiguity in this. Davidson et al. has also followed the
same approach.

Thus, we will assume that whatever couplings are nonzero, are so in the phys-
ical basis of the quark fields, and the phase is arbitrary and not a function
of the CKM parameters.

Leptoquarks appear naturally in many substructure models [96]. This is not
surprising: if a constituent particle of a Standard Model fermion carries quark
or lepton number, then a composite quark can turn into a composite lepton
or vice-versa by exchanging the appropriate constituents. The bound state
consisting of the exchanged constituents would be a leptoquark. This sug-
gests that leptoquarks in composite models can naturally induce interactions
where flavour or generation numbers are conserved overall, but separately
violated in the quark and lepton sector.

The direct production limits depend on the LQ model, as well as the SM
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fermions these LQs can couple to. The best limits are as follows [54]:
mLQ > 256, 316, 229 GeV for 1st, 2nd, and 3rd generation LQs respectively
when they are pair produced, and mLQ > 298, 73 GeV for 1st and 2nd gen-
eration LQs when there is single production. These are the absolute lower
bounds at 95% CL, but the constraints are tighter if the LQ coupling to
the SM fermions, denoted here by λ, is large. For example, if λ is of the
order of the electromagnetic coupling, the first generation LQs were found
to have a limit of 275-325 GeV by both the HERA experiments [97]. For
even larger couplings (λ = 0.2-0.5 and above) the LEP experiments exclude
a much wider mass range [98], but such strong couplings are already almost
ruled out if LQ signals are to be observed at the LHC.

The present-day limits for pair-produced LQs are due to the Tevatron exper-
iments [99]. The first generation LQs are searched in 2e+2j or 1e+2j+MET
channel; the second generation ones are in 2µ+2j or 1µ+2j+MET channel;
and the third generation ones are in 2τ+2b or 2b+MET channel. The details
of these analysis are given in the original papers [100].

The production of LQ states, either single, associated with a lepton (from
qg → LQ + ℓ), or in pair, from qq, gg → LQ + LQ, has been studied in
detail; for example, the reader may look at [95, 101, 102, 103]. At

√
s = 14

TeV, the cross-section of pair production of scalar leptoquarks is about 1 pb
[103]. While this goes down significantly for the initial LHC run of

√
s = 7

TeV, one expects to see LQ signals upto mLQ = 500 GeV even with 5 fb−1 of
luminosity. The cross-section for single production depends on the value of
λ. For λ =

√
4πα, the electric charge, the cross-section for LQ plus charged

lepton production is about 100 fb for mLQ = 500 GeV. The cross-section is
proportional to λ2, so we expect events even with

√
s = 7 TeV and λ ≈ 0.05.

Obviously, for smaller values of λ, pair production will be more favoured,
and we expect the preliminary run of LHC to establish a limit of the order
of 500 GeV.

In this analysis, we will use a somewhat conservative reference mass value of
300 GeV for every LQ state, independent of the quantum numbers and gen-
eration. The bounds on the product couplings scale as m2

LQ, so the bounds
that we show should be multiplied by (300/mLQ)

2.
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4.3 Relevant Expressions

4.3.1 Neutral meson mixing

In Chapter 3, we have already discussed the neutral meson mixing within
the SM. In this chapter we discuss how NP affects the neutral meson mixing.
We represent the neutral mesons in general by M0 and M0, with the valence
quark content qd and qd respectively. For B0

d − B0
d and K0 − K0 cases, q

can be either b or s. For Bs system, q is replaced by b and d is by s. The
off-diagonal element in the 2× 2 effective Hamiltonian causes the M0 −M0

mixing. The mass difference between the two mass eigenstates ∆M is given
by (following the convention of [104])

∆m = 2|M12|, (4.2)

with the approximation |M12| ≫ |Γ12|. However, this is true for the B system
only. Let the SM amplitude be

|MSM
12 | exp(−2iθSM) (4.3)

where θSM = β(φ1) for the B
0
d − B0

d system and approximately zero for the
K0 −K0 (and also for B0

s −B0
s ) system.

If we have n number of NP amplitudes with weak phases θn, one can write

M12 = |MSM
12 | exp(−2iθSM) +

n
∑

i=1

|M i
12| exp(−2iθi). (4.4)

This immediately gives the effective mixing phase θeff as

θeff =
1

2
arctan

|MSM
12 | sin(2θSM) +

∑

i |M i
12| sin(2θi)

|MSM
12 | cos(2θSM) +

∑

i |M i
12| cos(2θi)

, (4.5)
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and the mass difference between the mass eigenstates as

∆m = 2[|MSM
12 |2 +

∑

i

|M i
12|2

+ 2|MSM
12 |

∑

i

|M i
12| cos 2(θSM − θi)

+ 2
∑

i

∑

j>i

|M j
12||M i

12| cos 2(θj − θi)]
1/2. (4.6)

These are the necessary basic formulae. The main task is to find M i
12 and θi.

For theK0−K0 system [105], |Γ12| is non-negligible, and hence in this system

∆m = 2 Re

[

(M12 −
i

2
Γ12)(M

∗
12 −

i

2
Γ∗
12)

]1/2

,

∆Γ = −4 Im

[

(M12 −
i

2
Γ12)(M

∗
12 −

i

2
Γ∗
12)

]1/2

, (4.7)

so that ∆m = −(1/2)∆Γ. Since the dominant decay is to the I = 0 final
state, Im Γ12 can be neglected and the expressions for

∆m = 2 Re M12, ∆Γ = 2 Re Γ12. (4.8)

The CP-violating parameter εK is given by

|εK | =
1

2
√
2

Im M12

Re M12

, (4.9)

which can be written as

|εK | =
1√
2

Im M12

∆mK

. (4.10)

Note that Re M12 has both short-distance (SD) and long-distance (LD) con-
tributions. The LD contribution is not calculable; whereas the SD part can
be estimated from box amplitude. This is the reason to choose the experi-
mental value of ∆mK in the denominator of eq. (4.10).
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For K0 −K0 system, the short-distance SM amplitude is

MSM
12 ≡ 〈K0|Heff |K0〉

2mK

≈ G2
F

6π2
(VcdV

∗
cs)

2ηKmKf
2
KBKm

2
WS0(xc), (4.11)

where generically xj = m2
j/m

2
W , fK is the K meson decay constant. ηK (also

called ηcc in the literature) and BK parametrize the short- and the long-
distance QCD corrections respectively. The tiny top-quark loop dependent
part responsible for CP violation has been neglected. The function S0 is
given by

S0(x) =
4x− 11x2 + x3

4(1− x)2
− 3x3 ln x

2(1− x)3
. (4.12)

For the B0
q −B0

q system (q = d for B0
d −B0

d and q = s for B0
s −B0

s ), we have
an analogous equation, dominated by the top quark loop:

MSM
12 ≡

〈B0
q |Heff |B0

q 〉
2mBq

=
G2

F

6π2
(VtqV

∗
tb)

2ηBqmBqf
2
Bq
BBqm

2
WS0(xt). (4.13)

In the presence of NP, the general ∆F = 2 effective Hamiltonian can be
written as

H∆F=2
eff =

5
∑

i=1

ci(µ)Oi(µ) +
3
∑

i=1

c̃i(µ)Õi(µ) +H.c. (4.14)

where µ is the regularization scale, and

O1 = (qγµPLd)1(qγµPLd)1,

O2 = (qPRd)1(qPRd)1,

O3 = (qPRd)8(qPRd)8,

O4 = (qPLd)1(qPRd)1,

O5 = (qPLd)8(qPRd)8, (4.15)
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where q is either b or s for B0
d − B0

d and K0 − K0, where as for B0
s − B0

s ,
q is replaced by b and d is by s and PR(L) = (1 + (−)γ5)/2. The subscripts
1 and 8 indicate whether the currents are in color-singlet or in color-octet
combination. The Õis are obtained from corresponding Ois by replacing
L ↔ R. The Wilson coefficients ci at q

2 = m2
W include NP effects, coming

from the couplings and the internal propagators. However, for most of the NP
models, and certainly for the case we are discussing here, the NP particles are
heavier than mW and hence the running of the coefficients between mW and
µ = O(mb) are controlled by the SM Hamiltonian alone. In other words, NP
determines only the boundary conditions of the renormalization group (RG)
equations. For the evolution of these coefficients down to the low-energy
scale, we follow Ref.[106], which uses, for B0

q − B0
q mixing, µ = mb = 4.6

GeV and for K0 −K0 mixing µ = 2.0 GeV. The expectation values of these
operators between M0 and M0 at the scale µ are analogous to those as given
in [107].

4.3.2 Leptonic and Semileptonic Decays

For almost all the cases, the SM leptonic decay widths for neutral mesons
are way too small to be taken into account, and we can safely saturate the
present bound with the NP amplitude alone, except for the KL sector. For
example, the branching ratio of Bs → µ+µ− is about 3.4× 10−9 and that of
Bd → µ+µ− is about 1.0 × 10−10 in the SM, while the experimental limits
are at the ballpark of 4-6×10−8. Another exception is the B− → l−ν decay,
which proceeds through the annihilation channel in the SM:

Br(B− → l−ν) =
1

8π
G2

FmBm
2
l f

2
B|Vub|2τB

(

1− m2
l

m2
B

)2

, (4.16)

where τB is the lifetime of the B meson.

For the semileptonic decays, we use the following standard convention [108],
given for the B → K(∗)ℓ+ℓ− transition:
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〈K(p2)|bγµs|B(p1)〉 = PµF1(q
2) + qµ

m2
B −m2

K

q2
(

F0(q
2)− F1(q

2)
)

,

〈K∗(p2, ǫ)|bγµ(1∓ γ5)s |B(p1)〉 = ∓iqµ
2mK∗

q2
ǫ∗.q

[

A3(q
2)− A0(q

2)
]

±iǫ∗µ(mB +mK∗)A1(q
2)

∓ i

mB +mK∗
Pµ(ǫ

∗.q)A2(q
2)

−εµναβǫ∗νpα2 qβ
2V (q2)

mB +mK∗
, (4.17)

where P = p1 + p2, and q = p1 − p2. The pole dominance ensures that
A3(0) = A0(0), and A3(q

2) can be expressed in terms of A1 and A2.

4.4 Constraints on the leptoquark couplings

4.4.1 From neutral meson mixing

Consider the neutral meson M0 ≡ qjqk. The oscillation can have a new LQ
mediated amplitude, with i-type leptons and some scalar LQs in the box, as
shown in Fig. (4.1). The amplitude is proportional to (λ∗ikλij)

2. We consider,
as in the standard practice, a hierarchical coupling scheme, so that we may
consider only two LQ couplings to be nonzero at the most. Also, we consider
any one type of LQ to be present at the same time. This keeps the discussion
simple and the numerical results easily tractable; however, this may not be
the case where we have some high-energy texture of the couplings and there
can be a number of nonzero couplings at the weak scale.

For the LQ box, one must consider the same type of lepton flowing inside
the box if we wish to restrict the number of LQ couplings to 2. The effective
Hamiltonian contains the operator Õ1, defined as

Õ1 =
[

bγµPRd
]

1

[

bγµPRd
]

1
, (4.18)

(where the subscript 1 indicates the SU(3)c singlet nature of the current),
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Figure 4.1: Leptoquark contributions to M0 −M0 mixing.

and is given by

HLQ =
(λ∗ikλiq)

2

128π2

[

c1
m2

LQ

{

I

(

ml
2

m2
LQ

)}

+
c2
m2

LQ

]

Õ1 , (4.19)

where c1 = 1, c2 = 0 for S0, S̃0 and S 1
2
, c1 = c2 = 1 for S̃ 1

2
, and c1 = 4,

c2 = 1 for S1. Therefore, if we are allowed to neglect the SM, the limits on
the product couplings for (λLS0 , λRS̃0

, λRS1/2
), λLS̃1/2

, and λLS1 should be at

the ratio of 1 : 1√
2
: 1√

5
. The operator Õ1 is multiplicatively renormalized and

the LQ couplings are those obtained at the weak scale. The function I(x),
defined as

I(x) =
1− x2 + 2x log x

(1− x)3
, (4.20)

is always very close to I(0) = 1; note that we have taken all LQs to be
degenerate at 300 GeV.

4.4.2 From Leptonic and Semileptonic Decays

The LQ couplings which may contribute to K0 −K0, B0
d −B0

d and B0
s −B0

s

mixing should also affect various LQ-mediated semileptonic (b → d(s)l+l−,
s → dl+l−) and purely leptonic (B0

d(s) → l+l−, K0 → l+l−) decays. The

estimated BRs of leptonic flavour conserving ∆B(S) = 1 processes within
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Interaction 4-fermion vertex Fierz-transformed vertex

(λLS0
qcLiσ2lL + λRS0

uc
ReR)S†

0 G(d
c
LνL)(νLd

c
L)

1
2
G(d

c
Lγ

µdcL)(νLγµνL)

λRS̃o
d
c
ReRS̃†

0 G(d
c
ReR)(eRdcR) 1

2
G(d

c
RγµdcR)(eRγµeR)

(λLS1/2
uRlL + λRS1/2

qLiσ2eR)S†
1/2

G(dLeR)(eRdL)
1
2
G(dLγµdL)(eRγµeR)

λLS̃1/2
dRlLS̃

†
1/2

G(dRνL)(νLdR) 1
2
G(dRγµdR)(νLγµνL)

G(dReL)(eLdR) 1
2
G(dRγµdR)(eLγµeL)

λLS1
qcLiσ2~σlL · ~S†

1 G(νLd
c
L)

1
2
G(d

c
Lγ

µdcL)(νLγµνL)

2G(d
c
LeL)(eLd

c
L) G(d

c
Lγ

µdcL)(eLγµeL)

Table 4.2: Effective four-fermion operators for scalar leptoquarks. G generi-
cally stands for λ2/m2

LQ.

SM are very small compared to their experimental numbers or upper bounds,
except for KL → e+e−, µ+µ−. Therefore it is quite reasonable to ignore the
SM effects for these channels while constraining the LQ couplings. For these
mixing correlated decays, the final state leptons must be of the same flavour.
The leptonic decay modes are theoretically clean and free from any hadronic
uncertainties. The semileptonic modes have the usual form-factor uncertain-
ties, and the SM contribution cannot be neglected here.

To construct four-fermion operators from λ type couplings which mediate
leptonic and semileptonic B and K decays, one needs to integrate out the
LQ field. The effective 4-fermi Hamiltonians and vertices which are related
to the mixing is given in Table 4.2. The vertices show that the limits coming
from leptonic or semileptonic decays will be highly correlated. For charged
leptons in the final state, one can constrain RS̃0, RS 1

2
, LS̃ 1

2
, or LS1 type

LQs. The bounds for the first three will be the same, which is just twice that
of LS1. Similarly, if we have neutrinos in the final state, LS0, LS̃ 1

2
, or LS1

type LQ couplings are bounded, all limits being the same.

The product LQ coupling may in general be complex. If we neglect the SM,
there is no scope of CP violation and the data constrains only the magnitude
of the product, so if we wish, we can take the product to be real. In fact,
if we assume CP invariance, KS decay channels to ℓ+i ℓ

−
i constrain only the
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real part of the product couplings, and KL constrains the imaginary part.
For the processes where the SM contribution cannot be neglected, we have
saturated the difference between the highest experimental prediction and the
lowest SM expectation with an incoherently summed LQ amplitude. For a
quick reference, the data on the leptonic and semileptonic channels is shown
in Tables 4.3 and 4.4. Note that these bounds are almost free from QCD
uncertainties except for the decay constants of the mesons, and hence are
quite robust. There are other semileptonic channels which we do not show
here, e.g., B → K∗νν, because they yield less severe bounds.

Mode Branching ratio Mode Branching ratio

KS → e+e− < 9× 10−9 KS → µ+µ− < 3.2× 10−7

KL → e+e− 9+6
−4 × 10−12 KL → µ+µ− (6.84± 0.11)× 10−9

Bd → µ+µ− < 1.0× 10−8 Bd → µ+µ− < 1.0× 10−8

Bd → τ+τ− < 4.1× 10−3 Bs → e+e− < 5.4× 10−5

Bs → µ+µ− < 3.3× 10−8

Table 4.3: Branching ratios for some leptonic decays of K and B mesons [54].
The limits are at 90% confidence level. The SM expectation is negligible.

From the decay width of Bd(s)(K
0) → l−l+

• B0
q → l+l−

We get the following constraints from B0
q → l+l− decay:

|λlq
RS̃o

λl3
∗

RS̃o
| < 2

√

FB0
q
m̃2

o,

|λlqRS1/2
λl3

∗
RS1/2

| < 2
√

FB0
q
m2

1/2, (4.21)
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Mode Branching ratio SM expectation

KS → π0e+e− 3.0+1.5
−1.2 × 10−9 2.1× 10−10

KS → π0µ+µ− 2.9+1.5
−1.2 × 10−9 4.8× 10−10

KL → π0e+e− < 2.8× 10−10 2.4× 10−11

KL → π0µ+µ− < 3.8× 10−10 4.4× 10−12

KL → π0νν < 6.7× 10−8 (2.8± 0.6)× 10−11

K+ → π+νν (17.3+11.5
−10.5)× 10−11 (8.5± 0.7)× 10−11

K+ → π+e+e− (2.88± 0.13)× 10−7 (2.74± 0.23)× 10−7

K+ → π+µ+µ− (8.1± 1.4)× 10−8 (6.8± 0.6)× 10−8

Bd → π0e+e− < 1.4× 10−7 3.3× 10−8

Bd → π0µ+µ− < 1.8× 10−7 3.3× 10−8

Bd → K0e+e− (1.3+1.6
−1.1)× 10−7 2.6× 10−7

Bd → K0µ+µ− (5.7+2.2
−1.8)× 10−7 (3.3± 0.7)× 10−7

Bd → K∗µ+µ− (1.06± 0.17)× 10−6 (1.0± 0.4)× 10−6

Bd → K∗e+e− 1.39× 10−6 (1.3± 0.4)× 10−6

Bd → π0νν < 2.2× 10−4 (8.5± 3.5)× 10−8

Bd → K0νν < 1.6× 10−4 (1.35± 0.35)× 10−5

Bd → K∗0νν < 1.2× 10−4 3.8× 10−6

B+ → π+e+e− < 8.0× 10−6 (2.03± 0.23)× 10−8

B+ → π+µ+µ− < 6.9× 10−6 (2.03± 0.23)× 10−8

B+ → π+νν < 100× 10−6 (9.7± 2.1)× 10−6

B+ → K+e+e− < 1.25× 10−5 6.0× 10−7

B+ → K+µ+µ− < 8.3× 10−6 6.0× 10−7

B+ → K+∗νν < 8.0× 10−5 (12.0± 4.4)× 10−6

B+ → K+νν < 14× 10−6 (4.5± 0.7)× 10−6

Bs → φµ+µ− (1.44± 0.57)× 10−6 1.6× 10−6

Bs → φνν < 5.4× 10−3 (13.9± 5.0)× 10−6

Table 4.4: Branching ratios for some semileptonic K and B decays [54, 109, 110, 111, 112]. The

limits are at 90% confidence level. Also shown are the central values for the SM. For the SM expectations

shown with an error margin, we have taken the lowest possible values, so that the LQ bounds are most

conservative. The systematic and statistical errors have been added in quadrature.
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|λlq
LS̃1/2

λl3
∗

LS̃1/2
| < 2

√

FB0
q
m2

1̃/2
, (4.22)

|λlqLS1
λl3

∗
LS1

| <
√

FB0
q
m2

1,

where,

FB0
q

=
1

F ′
B0

q

Br
(

B0
q → l+l−

)

,

F ′
B0

q
=

1

32π
fB0

q
τB0

q
M3

B0
q
ml

√

1− 4
m2

l

M2
B0

q

. (4.23)

q is d for B0
d and s for B0

s . fB0
q
, τB0

q
and MB0

q
are the decay constant,

lifetime and the mass of B0
q respectively. ml represents the mass of the

lepton.

• K0
S(L) → l+l−

We get the following constraints from K0
S(L) → l+l− decay:

Real(Img)|λl2
RS̃o

λl1
∗

RS̃o
| < 2

√

FK0
S(L)

m̃2
o,

Real(Img)|λl2RS1/2
λl1

∗
RS1/2

| < 2
√

FK0
S(L)

m2
1/2,

Real(Img)|λl2
LS̃1/2

λl1
∗

LS̃1/2
| < 2

√

FK0
S(L)

m2
1̃/2
, (4.24)

Real(Img)|λl2LS1
λl1

∗
LS1

| <
√

FK0
S(L)

m2
1,

where,

FK0
S(L)

=
1

F ′
K0

S(L)

Br
(

K0
S(L) → l+l−

)

,

F ′
K0

S(L)
=

1

16π
fK0τK0

S(L)
M3

K0
S(L)

ml

√

1− 4
m2

l

M2
K0

. (4.25)

fK0 and τK0
S(L)

are the decay constant and lifetime ofK0
S(L) respectively.

MK0 is the mass of K0. Note that KL has a lifetime two orders of
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magnitude larger than that of KS and hence the bounds coming from
KL decays are going to be tighter by that amount.

4.5 Numerical Inputs

The numerical inputs have been taken from various sources and listed in
Table 4.5. We use the BSW form factors [108] with a simple pole dominance,
and the relevant form factors at zero momentum transfer q2 = 0 are taken
as follows [113]:

FB→K
0 (0) = FB→K

1 (0) = 0.38 , FB→π
0 (0) = FB→π

1 (0) = 0.33 ,

B → K∗ : V (0) = 0.37 , A1(0) = A2(0) = 0.33 , A0(0) = 0.32 , (4.26)

while we take FK→π
0 (0) = 0.992. This is not incompatible with the lattice

QCD result of 0.9560(84) [114]. The theoretical uncertainty comes mostly
from the form factors, but is never more than 10% for the LQ coupling
bounds. The bounds are not a sensitive function of the exact values of the
form factors, and remain more or less the same even when one uses the light-
cone form factors.

The mass differences ∆M are all pretty well-measured; for consistency, we
use the UTfit values [16]. We use sin(2βd) as measured in the charmonium
channel [32]. The SM prediction is taken from the measurement of the UT
sides only since that is least likely to be affected by new physics. (However,
this need not be true always. For example, if there is a new physics con-
tributing in the B0

d − B0
d mixing amplitude, the extracted value of Vtd may

not be equal to its SM value.) For βs, which is defined as arg(−VtsV ∗
tb/VcsV

∗
cb),

the errors are asymmetric:

βs =
(

0.47+0.13
−0.21

)

∪
(

1.09+0.21
−0.13

)

, (4.27)

which we show in a symmetrized manner. The decay constants fBd,s
are

taken from [15] as a lattice average of various groups. The same holds for
fB

√
BB and ξ, defined as ξ = fBs

√

BBs/fBd

√

BBd
, whose value we take to

be 1.258± 0.020± 0.043.
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Observable Value Observable Value

∆mK 5.301× 10−3 ps−1 |εK | (2.228± 0.011)× 10−3

∆mBd
(0.507± 0.005) ps−1 BK 0.75± 0.07

∆mBs (17.77± 0.12) ps−1 ηBK
1.38± 0.53

ηBBd
(BBs )

0.55± 0.01 fK 160 MeV

sin(2βd)exp 0.668± 0.028 fBs (228± 17) MeV

sin(2βd)SM 0.731± 0.038 fBs/fBd
(1.199± 0.008± 0.023)

(βs)exp (0.43± 0.17) ∪ (1.13± 0.17) fBs

√

BBs (257± 6± 21) MeV

Table 4.5: Input parameters. For the form factors, see text.

4.6 Analysis

4.6.1 Neutral Meson Mixing

While our bounds are shown in Table 4.6 following the procedure outlined
in Section 4.4.1, let us try to understand the origin of these bounds.

Take Figure 4.2 (a) as an example, which shows the bounds on the real and
imaginary parts of λi1λ

∗
i2. This is shown for the triplet LQ S1; all LQs pro-

duce a similar diagram, with the limits properly scaled. To get an idea of
the scaling, one may again look at Table 4.6, and scale accordingly.

For the K system, we use ∆MK and |εK | as the constraints. The SM part
is assumed to be dominated by the short-distance contributions only. Note
the spoke-like structure; this is because |εK | gives a very tight constraint on
Im(M12) and only those points are chosen for which (λλ∗)2 is almost real.
However, as we will see later, all the bounds except those for the LS0 type
LQs will be superseded by those coming from leptonic and semileptonic K
decays; however, i = 3 bounds will stand.

A similar analysis is shown for the B0
d − B0

d system in Figure 4.2 (b) and
Table 4.6. Note that the bounds on the real and the imaginary parts of any
product coupling are almost the same. This is, of course, no numerical acci-
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dent. To understand this, let us analyse the origin of these bounds. There
are two main constraints for the Bd system: ∆Md and sin(2βd). There will
be a region, centred around the origin of Re(λλ)−Im(λλ) plane (since ∆Md

can be explained by the SM alone), where |λλ| is small and the phase can
be arbitrary. At the 1σ level, this region appears to be small, because the
measured value of sin(2βd) from the charmonium channels is just barely com-
patible with that obtained from a measurement of the sides of the unitarity
triangles. The region expands if we take the error bars to be larger. This
is the SM-dominated region, where LQ creeps in to whatever place is left
available. Any analysis, taking both SM and LQ but assuming incoherent
sum of amplitudes, should generate this region only.

However, there is always scope for fully constructive or destructive interfer-
ence between SM and any NP. Consider a situation where the LQ contribu-
tion is large, so large that even after a destructive interference with the SM
amplitude, enough is left to saturate ∆Md. This LQ-dominated region (this
is true for all NP models in general) gives us the bounds, and in the limit
where the SM can be neglected, the bounds on Re(λλ) are almost the same
as on Im(λλ). The alignment of the fourfold symmetric structure is different
from Figure 4.2 (b) because of the sizable value of sin(2βd).
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Figure 4.2: (a) Allowed parameter space for λi1λ
∗
i2 for λLS1 type couplings.

(b) The same for λi1λ
∗
i3.
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Process LQ Type Real Real part Img part |λλ∗|

& indices Only of Complex of Complex

K0 −K0 LS0, RS̃0, RS 1

2

0.008 0.008 0.008 0.008

(i1)(i2)∗ LS̃ 1

2

0.0055 0.0055 0.0055 0.0055

LS1 0.0036 0.0036 0.0036 0.0036

B0
d −B0

d LS0, RS̃0, RS 1

2

0.009 0.022 0.022 0.027

(i1)(i3)∗ LS̃ 1

2

0.0063 0.016 0.016 0.019

LS1 0.004 0.010 0.010 0.012

B0
s −B0

s LS0, RS̃0, RS 1

2

0.05 0.13 0.13 0.18

(i2)(i3)∗ LS̃ 1

2

0.034 0.09 0.09 0.13

LS1 0.02 0.06 0.06 0.08

Table 4.6: Bounds from the neutral meson mixing. The third column shows
the bounds when the couplings are assumed to be real. The last three
columns are for complex couplings.
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The limits for the Bs system are shown in Figure 4.3. Note that the origin
is excluded at the 1σ level; this is due to the large observed values of βs:
βs = (25± 10)◦ ∪ (65± 10)◦ in the first quadrant and a mirror image in the
second quadrant.

The magnitude of the product is bounded to be less than 0.08 at the 1σ
level for the triplet LQ, and scaled according to Table 4.6. For i = 2, the
relevant coupling mediates the leptonic decay Bs → µ+µ− and semileptonic
Bd → K(∗)µ+µ− decays. We will see in the next part, just like the K system,
that the constraints coming from such decays are much stronger. The same
observation is true for i = 1. Again, only for λLS0 type couplings, there is no
leptonic or semileptonic contributions (the down-type quark current couples
with the neutrino current only), and the bounds coming from the mixing
stand. Thus, for i = 1, 2 and any other LQ except S0, it is extremely im-
probable that the LQ contribution explains the large mixing phase.

What happens for i = 3? This will mediate the decays Bs → τ+τ− and
B → Xsτ

+τ−. While there is no data on these channels yet, we may have
a consistency check with the lifetime of Bs. This tells us that couplings
as large as 0.05 are allowed, but the decay Bs → τ+τ− should be close to
the discovery limit. This will be an interesting channel to explore at the
LHC. There is an exception: if we consider λLS0 type couplings, neutrinos
flow inside the box, and then we have final-state neutrinos, and not τ leptons.

Note that the box diagram with leptoquarks and leptons has a nonzero ab-
sorptive part, which is responsible for the corresponding correlated decays.
This affects the width differences ∆Γd,s. As has been shown in [86], NP that
contributes to ∆Γ may enhance the mixing phase in the B0

s − B0
s box, con-

trary to the Grossman theorem [87], which tells that the mixing phase in the
Bs system must decrease due to NP if there is no absorptive amplitude in
the box diagram. The effect on ∆Γd/Γd is negligible; with the bounds that
we get here, it is never more than 1%, or even less (note that [86] uses a LQ
mass of 100 GeV and we need to scale their results). For Bs, ∆Γs/Γs may go
up to 30% without significantly enhancing the leptonic branching ratios like
Bs → τ+τ−, and one can also get a significant nonzero phase in the B0

s −B0
s

mixing that is indicated by the present experiments [88].
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KL(S) Decay Coupling |λλ∗| Bd(s) Decay Coupling |λλ∗|

KS → e+e− (12)(11)∗ 1.8× 10−1 Bd → µ+µ− (21)(23)∗ 2.8× 10−3

KS → µ+µ− (22)(21)∗ 5.5× 10−3 Bd → τ+τ− (31)(33)∗ 1.2× 10−1

KL → e+e− (12)(11)∗ 2.4× 10−4 Bs → µ+µ− (22)(23)∗ 4.3× 10−3

KL → µ+µ− (22)(21)∗ 6.4× 10−6

Table 4.7: Bounds from the correlated leptonic KL(S) and Bd(s) decays. The

LQs are either of RS̃0, RS 1
2
, or LS̃ 1

2
type. For LS1 type LQ, the bounds are

half of that shown here.
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Figure 4.3: (a) Allowed parameter space for λi2λ
∗
i3 (b) The reach for the

angle βs. For more details, see text.

4.6.2 Leptonic and Semileptonic Decays

We have assumed only two LQ couplings to be present simultaneously, with
identical lepton indices. Thus we will be interested only in lepton flavour
conserving processes. A similar analysis was done in [115] for vector LQs.
Our bounds are shown in Table 4.7 and Table 4.8.
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Decay channel Coupling |λλ∗| Decay channel Coupling |λλ∗|

KS → π0e+e− (11)(12)∗ 2.8× 10−3 KL → π0e+e− (11)(12)∗ 2.8× 10−5

KS → π0µ+µ− (21)(22)∗ 4.6× 10−3 KL → π0µ+µ− (21)(22)∗ 5.9× 10−5

K+ → π+e+e− (11)(12)∗ 1.2× 10−3 K+ → π+µ+µ− (21)(22)∗ 9.5× 10−4

KL → π0νν (i1)(i2)∗ 4.6× 10−4

Bd → π0e+e− (11)(13)∗ 1.1× 10−3 B+ → π+e+e− (11)(13)∗ 5.0× 10−4

Bd → π0µ+µ− (21)(23)∗ 1.2× 10−3 B+ → π+µ+µ− (21)(23)∗ 4.6× 10−4

Bd → K0e+e− (12)(13)∗ 3.6× 10−4 B+ → K+e+e− (12)(13)∗ 7.0× 10−3

Bd → K∗e+e− (12)(13)∗ 9.7× 10−4 Bd → K∗µ+µ− (22)(23)∗ 1.1× 10−3

Bd → K0µ+µ− (22)(23)∗ 1.5× 10−3 B+ → K+µ+µ− (22)(23)∗ 5.6× 10−3

Bd → π0νν (i1)(i3)∗ 4.4× 10−2 B+ → π+νν (i1)(i3)∗ 2.0× 10−2

Bd → K0νν (i2)(i3)∗ 2.6× 10−2 B+ → K+νν (i2)(i3)∗ 6.5× 10−3

Bd → K0∗νν (i2)(i3)∗ 1.5× 10−2 B+ → K+∗νν (i2)(i3)∗ 1.2× 10−2

Bs → φµ+µ− (22)(23)∗ 7.9× 10−4 Bs → φνν (i2)(i3)∗ 9.1× 10−2

Table 4.8: Bounds from the correlated semileptonic B and K decays. The
LQs are either of RS̃0, RS 1

2
, or LS̃ 1

2
type. For LS1 type LQ, the bounds are

half of that shown here. For the final state neutrino channels, the LQ can be
LS0, LS̃ 1

2
, or LS1 type, all giving the same bound.
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Apart from the leptonic KL decays, the SM amplitudes can be neglected as a
first approximation. Thus, one may saturate the experimental bounds with
the LQ amplitude alone. This generates most of the numbers in Table 4.7.
ForKL decays, we consider the SM part too, and add the amplitudes incoher-
ently. Note that KL decays only constrain the imaginary part of the LQ cou-
pling. This can be understood as follows. Consider the decay KL → µ+µ−.
While in the limit of CP invariance, one can write KL = (K0−K0)/

√
2, it is

λ21λ
∗
22 that mediates K0 decay and λ∗21λ22 that mediates K0 decay. Taking

the combination, the imaginary part of the coupling is responsible for KL

decays, and the real part is responsible for KS decays. As mentioned ear-
lier, Bs → τ+τ− does not have a limit yet, but the SM expectation is about
O(10−6), and if |λ32λ33| ∼ 10−2, one expects the BR to be of the order of
4× 10−5.

For the channel K+ → π+νν, the outgoing neutrino can have any flavour,
and so the bound is valid for i = 1, 2, 3. However, these bounds are valid
when one can have a neutrino in the final state, i.e., for LQs of the L cate-
gory, which couple with lepton doublets.

Semileptonic decays give the best bounds, but they are the least robust one,
considering the uncertainty in the form factors. While we take the BSW form
factors [108], the lattice QCD or light-cone sum rules based form factors may
change the final results by at most 10%. To be conservative, we saturate the
difference between the SM prediction and the maximum of the data by LQ
contributions.

Let us just say a few words about B− → τ−ν. In the SM, the branch-
ing ratio can be worked out from Eq. (4.16) and is (9.3+3.4

−2.3) × 10−5, where
the major sources of uncertainty are |Vub| and fB. The observed number,
(14.3± 3.7)× 10−5 [32] is a bit above the SM prediction. The tension can be
alleviated with LS0 or LS1 type leptoquarks; the necessary combination is
λ31λ

∗
33, and the bounds that we have obtained on this particular combination

in Table 4.10 can easily jack up the branching ratio to the observed level. A
similar exercise has been done for the leptonic Ds decays in [91].

We have summarized our bounds in Tables 4.9, 4.10, and 4.11. These tables
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LQ indices Previous This analysis

type Bound From Mixing From Decay

Real part Imag. part Channel Bound

LS0 (i1)(i2)∗ 1.8× 10−4 8× 10−3 8× 10−3 KL → π0νν 4 .6 × 10−4

RS̃0, (11)(12)∗ 2.7× 10−3 8× 10−3 8× 10−3 K+ → π+e+e− 1 .2 × 10−3

KL → π0e+e− (2 .8 × 10−5 )

RS1/2 (21)(22)∗ 5.4× 10−5 8× 10−3 8× 10−3 K+ → π+µ+µ− 9 .5 × 10−4

KL → µ+µ− 6 .4 × 10−6

(31)(32)∗ 0.018 8 × 10−3 8 × 10−3 — —

(11)(12)∗ 1.8× 10−4 5.6× 10−3 5.6× 10−3 K+ → π+e+e− 1 .2 × 10−3

KL → π0e+e− (2 .8 × 10−5 )

LS̃1/2 (21)(22)∗ 1.8× 10−4 5.6× 10−3 5.6× 10−3 K+ → π+µ+µ− 9 .5 × 10−4

KL → µ+µ− (6 .4 × 10−6 )

(31)(32)∗ 5.4× 10−5 5.6× 10−3 5.6× 10−3 KL → π0νν 4 .6 × 10−4

(11)(12)∗ 1.8× 10−4 3.6× 10−3 3.6× 10−3 K+ → π+e+e− 6 .0 × 10−4

KL → π0e+e− (1 .4 × 10−5 )

LS1 (21)(22)∗ 2.7× 10−5 3.6× 10−3 3.6× 10−3 K+ → π+µ+µ− 4 .8 × 10−4

KL → µ+µ− (3 .2 × 10−6 )

(31)(32)∗ 1.8× 10−4 3.6× 10−3 3.6× 10−3 KL → π0νν 4 .6 × 10−4

Table 4.9: Bounds coming from K0 − K0 mixing and correlated decays.
The better bounds have been emphasized. Note that KS decays constrain
Re (λi1λ

∗
i2) while K

+ decays constrain only the magnitudes; however, in view
of a tight constraint on the imaginary part, the bound from K+ decay can
be taken to be on the real part of the product coupling. Here and in the next
two tables, all numbers in the “Previous bound” column are taken from [83],
with scaling the LQ mass to 300 GeV.
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LQ indices Previous This analysis

type Bound From Mixing From Decay

Real part Imag. part Channel Bound

LS0 (i1)(i3)∗ 0.036 0.022 0.022 B+ → π+νν 2 .0 × 10−2

RS̃0, (11)(13)∗ 0.054 0.022 0.022 B+ → π+e+e− 5 .0 × 10−4

RS1/2 (21)(23)∗ 7.2× 10−3 0.022 0.022 B+ → π+µ+µ− 4 .6 × 10−4

(31)(33)∗ 0.054 0.022 0.022 Bd → τ+τ− 1.2× 10−1

(11)(13)∗ 0.054 0.016 0.016 B+ → π+e+e− 5 .0 × 10−4

LS̃1/2 (21)(23)∗ 7.2× 10−3 0.016 0.016 B+ → π+µ+µ− 4 .6 × 10−4

(31)(33)∗ 0.054 0.016 0.016 B+ → π+νν 2.0× 10−2

(11)(13)∗ 0.036 0.010 0.010 B+ → π+e+e− 2 .5 × 10−4

LS1 (21)(23)∗ 3.6× 10−3 0.010 0.010 B+ → π+µ+µ− 2 .3 × 10−4

(31)(33)∗ 0.027 0.010 0.010 Bd → τ+τ− 6 .2 × 10−2

Table 4.10: Bounds coming from B0
d−B0

d mixing and correlated decays. The
better bounds have been emphasized.



4.6 Analysis 81

LQ indices Previous This analysis

type Bound From Mixing From Decay

Real part Imag. part Channel Bound

LS0 (i2)(i3)∗ 0.36 0.13 0.13 B+ → K+νν 6 .5 × 10−3

RS̃0, (12)(13)∗ 5.4× 10−3 0.13 0.13 Bd → K0e+e− 3 .6 × 10−4

RS1/2 (22)(23)∗ 7.2× 10−3 0.13 0.13 Bd → K∗µ+µ− 1 .1 × 10−3

(32)(33)∗ .09 0.13 0.13 — —

(12)(13)∗ 5.4× 10−3 0.09 0.09 Bd → K0e+e− 3 .6 × 10−4

LS̃1/2 (22)(23)∗ 7.2× 10−3 0.09 0.09 Bd → K∗µ+µ− 1 .1 × 10−3

(32)(33)∗ 0.054 0.09 0.09 B+ → K+νν 9 .3 × 10−3

(12)(13)∗ 2.7× 10−3 0.06 0.06 Bd → K0e+e− 1 .8 × 10−4

LS1 (22)(23)∗ 3.6× 10−3 0.06 0.06 Bd → K∗µ+µ− 5 .5 × 10−4

(32)(33)∗ 0.045 0.06 0.06 B+ → K+νν 6 .5 × 10−3

Table 4.11: Bounds coming from B0
s −B0

s mixing and correlated decays. The
better bounds have been emphasized.
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contain no new information, but just shows the best bound for a given LQ
type and a given set of indices. They further show that
(i) Except for R-type LQs with indices (31)(33), semileptonic, and in a few
cases leptonic, decays give the best constraints. In most of the cases they
are one or more orders of magnitude stronger than those coming from the
mixing, so with those LQs, one should not expect much discernible effects
from CP asymmetries.
(ii) While the bounds coming from decays are only on the magnitude of
the product couplings, information on the complex weak phases of these
couplings must come from mixing data, unless one makes a careful study of
semileptonic CP asymmetries.

4.7 Summary and Conclusions

In this work we have computed the bounds on several scalar leptoquark cou-
pling combinations coming from M0 − M0 mixing as well as leptonic and
semileptonic decays. Though such an analysis is not new, we have imple-
mented several features in this analysis which were not been taken into ac-
count in earlier studies. Apart from the improved data on the B system, we
have also used the data on CP violating phases, and obtained nontrivial con-
straints on the real and imaginary parts of the couplings. We note that for
the gauge-singlet LQ S0 with λLS0 type couplings, it is possible to alleviate
the mild tension between the measured and predicted values of sin(2βd), as
well as to explain the large mixing phase in the Bs system. For this type of
LQs, there are no modifications in leptonic or semileptonic channels, unless
we consider final-state neutrinos.

For all other type of LQs, leptonic and semileptonic decays provide the better
constraints (the exceptions are final-state τ channels). We do not expect
any effects on nonleptonic final states like those coming from, say, R-parity
violating supersymmetry with λ′ type couplings. While the bounds coming
from the leptonic channels are quite robust (apart from the mild uncertainty
in the meson decay constants), those coming from semileptonic decays have
an inherent uncertainty of the order of 10-15%, whose origin is the imprecise
nature of the form factors.



Chapter 5

Summary

5.1 Conclusion

This thesis is based on some phenomenological aspects of B-physics. In this
chapter we summarize the thesis and point out the main results of our work.
In Chapter 1, we discuss how CP violation in the quark sector is introduced in
the SM through the CKMmechanism; which processes should be examined to
acquire information about the CKM matrix elements; how CKM matrix can
be parametrized. We discuss two popular parametrizations of CKM matrix:
(i) Standard parametrization and (ii) Wolfenstein Parametrization. This is
followed by a detailed discussion of the unitarity triangle and its parameters.
We discuss how experiments and global fits are indicating that the CKM
matrix is the dominant source of CP violation in the SM. We conclude this
chapter indicating some of the reasons to suspect that SM is insufficient to
explain nature completely and we probably need some new physics to under-
stand it better.

In Chapter 2, we present one of the most exciting puzzles of B physics in
a model independent way: The variation of the measured B0

d − B0
d mixing

phase β/φ1 in b → ccs and b → sqq (where q = u, d, s) modes is regarded
as a possible probe of New Physics. Within the Standard Model, the am-
plitude for modes involving b→ s transitions receive contributions from two
amplitudes with different weak phases. Unless one of the amplitudes is negli-
gible, some deviation is in fact expected. Estimates of this discrepancy using
hadronic assumptions, however, are unable to produce the observed effect;
indeed, the sign of the discrepancy within SM is opposite to the observed

83
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value. Convincing arguments regarding the true nature of this discrepancy
are lacking. In light of this, the relevant question is “Under what conditions
can this discrepancy be regarded as an unambiguous signal of NP?” In this
thesis we address this question using a model independent approach.

We demonstrate that the deviation in the measured β/φ1, within the SM,
due to pollution from another amplitude, is not only always less than the
weak phase of the polluting amplitude, but also has always the same sign as
the weak phase of the polluting amplitude. The only exception is to have
large destructive interference between the two amplitudes. Without making
any hadronic model-based assumptions, we examine the conditions under
which such a destructive interference is possible within the SM. We find that
a deviation larger than a few degrees is possible only if the observed decay
rates result from fine-tuned cancellations between amplitudes whose squares
are at least an order of magnitude larger than the decay rates themselves.
This can be tested at near-future Super-B factories.

In Chapter 3, we discuss various phenomenological aspects of K and B mesons
within SM. This forms the basis for the calculation in Chapter 4. We ad-
dress the neutral K0 − K0, B0

d − B0
d and B0

s − B0
s mixing in this chapter.

The SM scenario of neutral K and B mesons mixing correlated leptonic and
semileptonic decays are presented after that.

In Chapter 4, we discuss the Lepto-Quark Model which is one of the promis-
ing candidates for a NP model. Our model is based on the scalar type
of leptoquarks with baryon and lepton number conserving renormalizable
couplings, consistent with the symmetries of the SM. At low energies, lepto-
quarks could induce two-lepton two-quark interactions, like those mediated
by the electroweak four-fermion vertices. This suggests that the leptoquark
Yukawa coupling-squared (≡ λ2), divided by the mass-squared (≡ m2

lq) is at
least as small as the weak coupling GF .

In this work we compute the bounds on the product couplings of the type λλ
coming from K0−K0, B0

d−B0
d and B

0
s−B0

s mixing. Though such an analysis
is not new, we implement several features in this analysis which were not
taken care in earlier studies. Previously there was a lower limit only on ∆mBs .
Here we use the current bound on it and sin 2βs limit also. We consider the
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exact expression for the box amplitude taking all possible processes, including
the one from the SM. The possibility that the LQ product couplings may be
complex is also considered. The analysis is done assuming all leptoquarks
are degenerate at 300 GeV. The interference between charge (-1/3) LQ and
charge (-4/3) LQ for S1 and charge (1/3) LQ and charge (-2/3) LQ for S̃1/2 are
considered here. Similar assumption is taken for the same type of couplings.
We consider that only one LQ is present at a time. The constraints obtained
for the leptonic and semi leptonic decay modes are much tighter than the
bounds obtained from mixing. We find that a number of them have better
bounds from their previous bounds. We present the bounds on the real
and imaginary parts of λλ which carry the information of the phase of new
physics. This is a new observation which was not taken into account earlier.
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[106] D. Bećirević et al. Nucl. Phys. B 634, 105 (2002).

[107] J.P. Saha and A. Kundu, Phys. Rev. D 70, 096002 (2004).

[108] M. Wirbel, B. Stech and M. Bauer, Z-Physics C 29, 637 (1985).

[109] A. Ishikawa et al. [Belle Collaboration], Phys. Rev. Lett. 96, 251801
(2006); J.T. Wei et al. [Belle Collboration], Phys. Rev. Lett. 103, 171801
(2009).

[110] B. Aubert et al. [Babar Collaboration], Phys. Rev.D73, 092001 (2006);
Phys. Rev. D79, 031102 (2009).

[111] F. Ambrosino et al. [KLOE Collaboration], Phys. Lett. B672, 203
(2009).

[112] H. Miyake, arXiv:1003.0164[hep-ex].



94 Bibliography

[113] A. Ali, G. Kramer and C.-D. Lü, Phys. Rev. D58, 094009 (1998).
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