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Abstra
tComplex systems, whether integrated 
ir
uits, food webs, transportation networks,so
ial systems, or the bio
hemi
al intera
tome of a living 
ell, all behave in waysthat 
annot be fully explained by analyzing their 
onstituent parts in isolation. Un-derstanding the emergent behavior of su
h nonlinear systems, whi
h is more thanjust an aggregate of the properties of their 
omponents, require novel integrativeapproa
hes. Many of these systems 
an be represented as networks, 
onsistingof a large number of nodes 
onne
ted via dire
ted or undire
ted links. The re-
ent dis
overy of the existen
e of universal prin
iples underlying these 
omplexnetworks that o

ur a
ross widely di�ering domains in the biologi
al, so
ial andte
hnologi
al arenas have spurred the interest of physi
ists in trying to understandsu
h prin
iples using te
hniques from statisti
al physi
s and non-linear dynami
s.In this thesis we look at how the stru
ture of a network, as 
hara
terized by the
onne
tion topology, governs its dynami
al behavior, and 
onversely, how the dy-nami
al pro
esses taking pla
e on the network a�e
ts its stru
ture (e.g., stability
onsiderations 
onstraining the evolution of the network towards spe
i�
 topolo-gies). In parti
ular, we fo
us on modularity, i.e., the existen
e of groups whosenodes are more densely 
onne
ted to ea
h other than to nodes in other groups, andhierar
hy, i.e., the nested arrangement of 
onne
tion topology into several layers.Both of these mesos
opi
 organizational stru
tures are observed in many 
omplexnetworks that o

ur in reality.We begin with a short overview of the physi
s of 
omplex networks in Chap-ter 1. In the �rst few se
tions, we introdu
e important 
on
epts and de�nitionsthat are used throughout the thesis. This is followed by a brief dis
ussion of someof the 
ommonly used network models found in the literature. Next, we analyzea simple model of modular random networks in Chapter 2 and show that it hasstru
tural properties similar to many real-world networks. We also examine the ef-fe
t of modular stru
ture on dynami
s o

urring over the network by studying thephenomena of syn
hronization, di�usion and spin-ordering on the network model.We show that for all these di�erent varieties of dynami
al pro
esses modularitygives rise to the same 
hara
teristi
 signature of multiple distin
t time s
ales. InChapter 3, we explore how modularity 
an arise in networks as an out
ome ofevolution in the presen
e of multiple 
o-existing 
onstraints. As an example, we6



demonstrate the emergen
e of modular organization upon simultaneous optimiza-tion of several stru
tural and dynami
al 
onstraints to whi
h many real networksare subje
t. The minimal number of su
h 
onstraints is found to be three, e.g.,minimizing (a) average path length, (b) total number of links, and (
) probabilityof lo
al instability. The well-known 
onne
tion topologies of star, 
hain and ran-dom networks appear as limiting 
ases when one of these 
onstraints is relaxed. InChapter 4, we introdu
e a model for hierar
hi
al random networks and analyzethe e�e
t of having multiple stru
tural levels (or hierar
hies) on di�erent dynami-
al pro
esses. In general, making the previously introdu
ed modular network morehierar
hi
al, has e�e
ts similar to in
reasing the number of stru
tural modules. Weshow that a generalization of the evolutionary model for modularity introdu
ed inthe pre
eding 
hapter 
an also give rise to simple hierar
hi
al ordering in a net-work. In Chapter 5, we show that the modular stru
ture of networks o

urringin reality 
an be un
overed from empiri
al data, namely the dynami
al time-seriesobtained from the 
omponent nodes. In parti
ular, we have analyzed the personalties between individuals in primate troops, in terms of allogrooming behavior, inorder to dedu
e their so
ial organization. Next, we re
onstru
t the network of in-tera
tions among sto
ks in the Indian �nan
ial market by using spe
tral te
hniqueson the 
ross-
orrelations in their pri
e variations. We identify modules 
orrespond-ing to groups of strongly intera
ting sto
ks. Using a multi-fa
tor model, we showthat the emergen
e of su
h stru
tures is an out
ome of relatively stronger mutualintera
tions between nodes belonging to the same business se
tor, as 
ompared totheir sus
eptibility to 
ommon signals that a�e
t the entire market. In Chapter 6we look at the reverse problem of how network stru
ture re�e
ts the dynami
s orfun
tion of the system. We analyze the somati
 neuronal network of the nematodeC. elegans, the only organism whose entire nervous system has been 
ompletelymapped. We demonstrate that the network stru
ture 
annot be fully explainedon the basis of ex
lusively stru
tural 
onsiderations, e.g., minimization of wiring
ost or maximization of 
ommuni
ation e�
ien
y, and give examples of how thefun
tional role of the system as an information pro
essor in a noisy environment
an result in spe
i�
 stru
tural patterns. Finally, in Chapter 7, we 
on
lude witha general overview of our results on how the dynami
s o

urring on a networkis governed by spe
i�
 stru
tural features of the system, and in turn, a�e
ts theevolution of ubiquitous stru
tural patterns su
h as modularity and hierar
hy. 7
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1Introdu
tion
In re
ent years, there has been a growing interest in the study of 
omplex systemswhi
h pervade all of s
ien
e, from 
ell biology to e
ology, and from 
omputer s
i-en
e to so
iology [1, 2℄. Instead of being a simple aggregation of a limited set oflinearly intera
ting units, most real world systems are made up of large number of
omponents, or agents, whi
h intera
t in su
h a way that their 
olle
tive behav-ior is not a simple 
ombination of the individual properties of their 
omponents.Su
h emergen
e of system-level features is one of the 
hara
teristi
 indi
ators of a
omplex system. Moreover, these systems are often seen to be self-organized as aresult of mutual intera
tions between their 
omponents rather than being orderedby some external agen
y. Consequently, understanding the behavior of su
h a sys-tem requires integrative approa
hes. One must understand not only the behaviorof its parts, but also, how they a
t together to give rise to the 
olle
tive behaviorof the whole. One way of des
ribing 
omplex systems is modeling them mathe-mati
ally by using the framework of networks. In this approa
h, one fo
uses onlyon the topology of intera
tions between the elements, providing a systems-levelperspe
tive to the example under study [3, 4℄. Su
h an analysis helps to reveal theuniversal prin
iples underlying their organization and fun
tion, despite the great
omplexity and variety of these systems [5, 6℄.In this 
hapter, we introdu
ed the relevant 
on
epts and de�nitions from net-work s
ien
e that we shall be using throughout the thesis. In Se
. 1.1, we �rstde�ne a set of terms to des
ribe the 
omplex networks and models to study su
hsystems. In Se
. 1.2, we give a brief overview of several types of 
omplex networksseen in real-world. In Se
. 1.3, the measurable properties of networks, su
h as,1
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tionpath length, 
lustering and degree distribution, are introdu
ed. This is followedby Se
. 1.4, in whi
h we dis
uss models used for des
ribing and analyzing 
omplexnetworks that are already extant in the literature. Finally, in Se
. 1.6, we presentan overview of the thesis, and the prin
ipal results of ea
h 
hapter.1.1 Complex networksThe di�erent 
omponents or intera
ting units of a 
omplex system when des
ribedas a network, are represented by nodes or verti
es, and the intera
tions or 
onne
-tions between the units are represented by edges or links between pairs of nodes.Su
h networks provide a 
on
ise mathemati
al representation of the topology ofintera
tions between the 
omponents. Thus, understanding how so
ial, biolog-i
al, and e
onomi
 systems work may often depend partially on understandingtheir patterns of intera
tions, i.e., the underlying networks. The graph theoreti
alframework has provided the potential synergies among resear
hers a
ross di�erentmultidis
iplinary �elds to 
ome and work together to solve apparently unrelatedproblems.Network ar
hite
ture may have important fun
tional 
onsequen
es for the wholesystem. For example, the topology of the network 
ontrols the rate at whi
h in-formation or diseases propagate through it [7, 8℄, its robustness under atta
k orfailure of individual 
omponents [9℄, as well as, adaptation and learning pro
esseson it [10℄. Re
ent work has pointed out the 
ru
ial role played by the networkstru
ture in determining the emergen
e of 
olle
tive dynami
al behavior, su
h as,syn
hronization of nodal a
tivity. Hen
e, studying these patterns of intera
tionsbetween the 
omponents of a 
omplex system 
an lead to a better understand-ing of its dynami
al and fun
tional behavior, in addition to throwing light on theevolutionary me
hanism leading to it.There are several reasons for the emergen
e and rapid development of this �eld.Many of the insights and advan
es in this �eld are due to the re
ent availabilityof large quantities of high resolution data from di�erent systems. Obtaining su
hempiri
al data has be
ome possible be
ause of te
hnologi
al advan
es. For exam-ple, the network of so
ial intera
tions among individuals 
an be 
onstru
ted frominformation about the 
alls they make using their mobile phones [11℄, leading to
2
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A B CFigure 1.1: Representations of regular graph models: Nodes on (A) a 1-dimensionallatti
e, (B) a 2-dimensional latti
e, and, (C) a Bethe latti
e or Cayley tree with nearestneighbor 
onne
tions.better understanding of human so
ial dynami
s. There has also been remarkablein
rease in 
omputational power, using whi
h regularities and patterns in largedata-sets 
an be determined. Another reason for the involvement of a large num-ber of physi
ists in this �eld is that, statisti
al physi
s and non-linear dynami
s 
anbe used to develop methods and te
hniques for analyzing and modeling 
omplexnetworks [12, 13℄.The traditional approa
h in physi
s for des
ribing an intera
ting system isto use a latti
e embedded in d-dimensional spa
e. Ea
h elements of the systemis lo
ated on a latti
e site and intera
ts with neighboring sites within a range
r (= 1, 2, · · · ). On su
h a regular network, all nodes have the same number ofneighbors (= (2r)d), where r is the range of intera
tion and d is the dimensionof the spa
e on whi
h the latti
e is embedded [Fig. 1.1℄. Another 
ommonly usedgraph in the literature is the Cayley tree or Bathe latti
e, where ea
h node hasthe same number of neighbors but there are no 
y
les in the stru
ture. At theother extreme, we have the homogeneous random graph (also referred to as Erdos-Renyi or ER graphs) where the edges between any pair of nodes are randomlypla
ed with probability p. However, networks o

urring in the world around ushave stru
tures that o

ur between these extremes and have properties that oftendi�er remarkably from both regular and random graphs [Fig. 1.2℄.

3
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tion1.2 Examples of 
omplex networksThe empiri
al data for 
onne
tivity in real-world 
omplex networks span severaldis
iplines. For the purpose of summarization, we loosely divide them into four 
at-egories: biologi
al networks, so
ial networks, te
hnologi
al networks and �nan
ialnetworks.Biologi
al networksA number of biologi
al systems 
an be usefully represented as networks. Examplesof su
h networks o

ur at many di�erent length s
ales. At the mole
ular level,protein stru
ture 
an be 
onsidered as a network where the residue atoms of twoamino a
ids are said to be 
onne
ted if the Eu
lidean distan
e between them is lessthan a threshold, so that there is a signi�
ant van der Waals intera
tion betweenthem [14℄. On a slightly large length s
ale, we have the example of intra-
ellularsignaling networks that allow extra-
ellular stimuli at 
ell surfa
e re
eptors to berelayed to the nu
leus by a sequen
e of enzyme 
atalyzed rea
tions [15℄. Su
h anetwork allows the 
ell to respond to spe
i�
 stimuli with appropriate a
tions, su
has 
ell division, apoptosis, et
. Another example of an intra-
ellular network thatis de�ned in terms of the existen
e of physi
al 
onta
ts between the 
onstituentsof the network (rather than fun
tional relations), is the protein intera
tion net-work [16, 17℄. At the inter-
ellular s
ale, the most prominent example is that ofneuronal networks, involved in pro
essing information vital to the survival of theorganism. Here, the nodes are neurons, and the links are ele
tri
al (gap jun
tion)or 
hemi
al (synapse) 
onne
tions [18℄. At even larger length s
ales, there aree
ologi
al networks su
h as food webs [19℄, where the links 
orrespond to trophi
relations between spe
ies (represented by the nodes).So
ial networksSo
ial networks are probably the earliest empiri
al networks that have been ana-lyzed in detail. Mu
h prior to the re
ent ex
itement (starting from 1998) amongphysi
ists about networks, so
iologists had been 
onstru
ting networks of so
ial
onta
ts within small groups (su
h as ties of friendship within a s
hool) in orderto understand how and why relations that de�ne a so
iety develop [23℄. However,4
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Figure 1.2: Examples of 
omplex networks: (A) Internet at the Autonomous Serverlevel [20℄, (B) Food web at East River Valley [21℄ (nodes: spe
ies, links: trophi
 relation),and (C) Metaboli
 network of E. 
oli [22℄ (nodes: metabolite, links: rea
tion).su
h studies 
ould not be extended to groups ex
eeding a few tens of individu-als owing to limitations in the way data was 
olle
ted, e.g., using questionnaires.With the advent of online sites, su
h as Fa
ebook, Orkut, et
., where informationabout links between di�erent individuals 
an be ele
troni
ally gathered, it is nowpossible to study 
onta
t networks in populations numbering thousands or more.Moreover, su
h data also allows us to see how patterns in so
ial ties develop overtime [24℄. Similar detailed analysis has also been done for friendship networks, re-
onstru
ted on the basis of frequen
y and duration of mobile phone 
onversationsbetween individuals subs
ribing to the same phone 
ompany [11℄. The availabilityof large 
omputer databases have also allowed looking at other relational networks5
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tionbetween people, su
h as those formed by 
ollaborations between authors of s
ien-ti�
 papers [25℄.Te
hnologi
al networks: Information transmission & Resour
e trans-portationOne of the networks that has been the subje
t of numerous studies in re
ent times isthe Internet, whi
h is 
omposed of servers around the world ex
hanging enormousvolumes of information pa
kets regularly [26℄. It 
an be studied at the level ofindividual routers, i.e., spe
ial purpose 
omputers on the network that 
ontrol themovement of data. Alternatively, it 
an be analyzed at the level of autonomoussystems (AS), i.e., groups of 
omputers within whi
h 
ommuni
ation is handled bya lo
al internal network, but between AS, data is transmitted over the Internet.This physi
al network forms the ba
kbone of another te
hnologi
al graph, theWorld Wide Web [5℄. This is a network of web-pages whi
h are linked together byhyper-links from one page to another.Another 
lass of te
hnologi
al networks is that formed by networks whi
h al-low transportation, either of resour
es or of people. One of the most importantexamples is the ele
tri
al power grid, whose nodes are generators, transformersand substations that are linked together by high-voltage transmission lines [27℄.This network has been the fo
us of several studies whi
h look at how lo
al fail-ures 
an lead to 
as
ading failures resulting in overall or global 
atastrophi
 break-downs. Transportation networks 
an also be de�ned in terms of the distin
t modesby whi
h movement of individuals o

ur between di�erent geographi
al lo
ations.The nodes are 
ities and towns, while the links may 
orrespond to highways andsmaller roads (for the road transportation network [28℄), trains (for the railwaynetwork [29℄) or �ights (for the airline network [30℄).Finan
ial networksIn the �nan
ial domain, one has the s
ope of looking at di�erent types of net-works in
luding �ow systems, su
h as the 
redit transfer network between banks,where the nodes are �nan
ial institutions that are linked by ex
hange of loansand debts [31℄. Other examples in
lude the graph of intera
ting sto
ks, where twosto
ks in a �nan
ial market are 
onne
ted if their pri
e �u
tuations are signi�-6
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antly 
orrelated [32℄. This network has often been used for the 
lassi�
ation ofsto
ks into di�erent business se
tors and the identi�
ation of unrelated sto
ks forthe purpose of portfolio management [33℄.1.3 Fundamental network 
on
eptsGraph theory is the natural framework for the exa
t mathemati
al treatment of
omplex networks. Formally, a 
omplex network 
an be represented as a graphwhi
h is de�ned in terms of a set of N verti
es (or nodes) and E edges (or links).Every edge 
orresponds to a spe
i�
 pair of nodes in the graph. We shall use theterms network and graph inter
hangeably in this thesis.Adja
en
y MatrixAny two nodes that are joined by a link are referred to as being adja
ent orneighboring. A 
omplete des
ription of the 
onne
tion topology of a graph isprovided by a tabulation of every 
onne
ted pair of nodes in it. Alternatively, thisinformation 
an be gleaned from its adja
en
y matrix. A matrix A = {aij}N×N is
alled the adja
en
y matrix of a graph G with N nodes, if the elements of A havethe following property:
aij =

{

1 if nodes i and j are adja
ent in G,
0 otherwise. (1.1)This matrix is symmetri
 if the network is undire
ted, i.e., if a link between nodes

i and j exists, so does a link between j and i. On the other hand, if the network isdire
ted, i.e., ea
h link has an asso
iated dire
tion, then the matrix is asymmetri
.1.3.1 Measures for 
omplex networksVarious properties of the 
onne
tion topology for a 
omplex network 
an be usedto 
hara
terize the system. Indeed, many lo
al and global measures have beenintrodu
ed in the literature over the years, in order to unveil the organizationalprin
iples of networks. Below, we des
ribe some of the most 
ommonly used mea-sures. 7
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tionDegreeThe simplest lo
al 
hara
teristi
 of a node i is its degree, ki, whi
h is the total num-ber of 
onne
tions it has to other nodes. It 
an be 
al
ulated from the adja
en
ymatrix as
ki =

N
∑

j=1

Aij . (1.2)In the 
ase of dire
ted networks, the number of in
oming (outgoing) edges of avertex is 
alled its in-degree (out-degree). The mean degree 〈k〉 is the average of
ki over all nodes i = 1, . . . , N in the graph. In an undire
ted graph, ea
h edge
ontributes to the degree of two nodes, so that 〈k〉 = 2E

N
, where E and N are thetotal number of links and nodes in the network, respe
tively. A node whose degreeis signi�
antly large 
ompared to the average degree of the network is termed asa hub. A fully 
onne
ted graph of N nodes with ki = N − 1 ∀i is 
alled a 
lique.Most real-world networks are sparse su
h that their average degree is mu
h smaller
ompared to the 
orresponding 
lique [3, 4℄.Degree distributionAlthough degree is a lo
al parameter, we 
an obtain information about the globaltopology of the network by looking at its degree distribution, pk, whi
h is the setof probabilities that a vertex has degree k = 1, 2, . . . , N − 1. A network havinga narrow degree distribution with a well de�ned mean and a small varian
e indi-
ates that all its nodes are similar in terms of stru
tural importan
e, and that thenetwork 
an be well des
ribed by its average properties. However, many networkso

urring in reality are 
hara
terized by a degree distribution whi
h de
ays as apower law:

pk ∼ k−γ , (1.3)with an exponent γ whose value is typi
ally seen to range between 2 and 3. Thus,there is a signi�
antly high probability of observing verti
es with large degreerelative to the network size [34℄. The power-law distribution implies that there isno 
hara
teristi
 s
ale for the degree of the nodes, so that this 
lass of networks isalso termed as s
ale-free networks. In addition to power laws, degree distributionsthat follow trun
ated power law or exponential distributions are also observed in8
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tionmany networks o

urring in nature and so
iety [35℄.Path lengthA global measure of a network is provided by the shortest path length or distan
ebetween any pairs of nodes i and j. This is de�ned as the number of links thatmust be traversed to go from one node to another using the shortest route. Theaverage of shortest path lengths over all pairs of nodes in the graph, also knownas the 
hara
teristi
 path length, is an indi
ator of 
ompa
tness of the network. Itis de�ned as
ℓ =

1
1
2
N(N − 1)

∑

i≥j

dij, (1.4)where dij is the shortest path length from vertex i to j and N is the number ofnodes in the network. However, if the network 
onsists of dis
onne
ted parts, theabove de�nition gives in�nite ℓ. To avoid this problem one 
an de�ne ℓ on su
hnetworks to be the harmoni
 mean of the shortest distan
e between all pairs:
E ≡ ℓ−1 ≡ 1

1
2
N(N − 1)

∑

i>j

1

dij
. (1.5)This is also termed as e�
ien
y of the network and is a measure of the speed withwhi
h information propagates over the network [36℄.Most real-world networks have been seen to exhibit the small world property,whi
h is related to the observation that one 
an rea
h a given node from the othernodes in a very small number of steps, on average. In re
ent years, the term small-world e�e
t has taken on a more pre
ise meaning: networks are said to show thesmall-world e�e
t if ℓ s
ales logarithmi
ally or slower with network size for �xedmean degree, 〈k〉 [4℄.DiameterAnother related measure for 
ompa
tness of the network is its diameter D, whi
his de�ned as the longest of all the shortest paths in the network.

D = max{dij}, ∀ i-j pairs of shortest paths. (1.6)
9
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tionNetwork N 〈k〉 ℓ CProtein intera
tion 2115 2.12 6.80 0.071Physi
s 
o-authorship 52909 9.27 6.19 0.56Internet 10679 5.98 3.31 0.39Marine food web 135 4.43 2.05 0.23Table 1.1: Properties of some real-world 
omplex networks: size (N), average degree(〈k〉), 
hara
teristi
 path length (ℓ) and average 
lustering 
oe�
ient (C). (From Ref. [4℄)As the diameter and 
hara
teristi
 path length are related properties, sometimethese measures are used inter
hangeably to measure the network 
ompa
tness.ClusteringMany real networks have been shown to have a signi�
ant transitivity in the patternof their 
onne
tions, su
h that, if the pairs of nodes i, j are 
onne
ted and the pair
j, k are also 
onne
ted, then so is the pair i, k. This is equivalent to having asigni�
antly high frequen
y of triangular stru
tures in the network [37℄. In su
h
ir
umstan
es, the nodes of the network are said to be 
lustered. The 
ompa
tnessof the lo
al neighborhood for a node i is measured by the 
lustering index:

Ci =
2Ei

ki(ki − 1)
, (1.7)where, Ei is the number of edges among the ki neighbors of node i. Note that,

Ci = 1 if the neighbors of node i are fully interlinked, and Ci = 0 if none ofits neighboring nodes share any links with ea
h other. The average 
lustering
oe�
ient for the entire network, C, is de�ned as the average of Ci over all thenodes in the network, i.e., C = 1
N

∑N
i=1 Ci.This average 
lustering 
oe�
ient is a measure of the �
liquishness" or lo
al
ompa
tness of a network. For di�erent real networks, C takes values whi
h areorders of magnitude larger than that of an equivalent random graph with thesame number of nodes and edges. If, in addition to the small world property, anetwork also possesses a high 
lustering 
oe�
ient C, then it is termed as a small-world network (SWN). Many of the real world network are seen to belong to this
lass [37, 38℄. 10
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tion1.4 Models of 
omplex networksOne way of understanding 
omplex networks observed in nature and so
iety is to
onstru
t a minimal model that exhibits properties whi
h are similar to those ofempiri
al networks. Su
h a network model 
an help to explain pro
esses by whi
hsu
h systems evolve and also shed light on the fun
tion of the network. Further,a network model 
an be used for studying the dynami
s on su
h networks, e.g.,to understand how the pro
esses of syn
hronization and di�usion are a�e
ted bydi�erent network topologies [39, 40℄.1.4.1 Erdos-Renyi random networkThe earliest mathemati
ally analyzed non-trivial network model in the literatureis that for an ensemble of homogeneous random graphs introdu
ed by Erdos andRenyi [41℄. Starting from a set of N dis
onne
ted nodes, ea
h pair of nodes is
onne
ted with a probability p. This simple model leads to a surprising list ofproperties, many of whi
h 
an be 
omputed exa
tly in the limit of large N . Fora sparse graph, if the average number of edges in the graph is a fra
tion p of the
N(N − 1)/2 possible edges, then the average degree

〈k〉 =
2E

N
= p(N − 1). (1.8)The degree distribution 
an also be 
omputed, with the probability of a vertexhaving degree k being

pk =

(

n

k

)

pk(1 − p)n−k ≃ 〈k〉k exp−〈k〉

k!
. (1.9)The approximate equality, i.e., binomial distribution being approximated by aPoisson distribution, be
omes exa
t in the asymptoti
 limit of large network size.These graph are therefore also known as Poisson random graph.The expe
ted stru
ture of the random graph varies with the 
onne
tion prob-ability p. For p = 0, there are no edges and the graph is termed an empty graph,whereas for p = 1, all possible edges exist and we get a 
omplete graph. As pin
reases from 0, the edges join nodes together to form 
omponents, i.e., subsets of11
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tionnodes that are 
onne
ted by paths through the network. Erdos and Renyi demon-strated that the random graph undergoes a phase transition at a 
riti
al value of
pc = 1/N , from a low-density state in whi
h there are few edges and all 
ompo-nents are small to a high-density state in whi
h an extensive [i.e., O(n)℄ fra
tionof all nodes are joined together in a single giant 
omponent. This 
omponent isa set of mutually rea
hable nodes, whereas the remainder of the nodes o

upysmaller 
omponents. With in
reasing p, the giant 
omponent 
aptures more andmore nodes of the graph. Another important feature is the o

urren
e of a se
ond
onne
tivity transition at pc1 = ln N/N . For p > pc1, all sites belong to a single
omponent (in the limit N → ∞), while for p < pc1 disjoint 
lusters 
an exist.These graphs have a low 
lustering 
oe�
ient as the probability of 
onne
tionbetween two nodes is p regardless of whether they have a 
ommon neighbor or not.Hen
e,

C = p =
〈k〉

N − 1
, (1.10)whi
h goes to zero as N−1 in the limit of large system size [37℄. To get an idea ofthe average path length for the graph, note that the mean number of neighbors ata distan
e ℓ away from a vertex in a random graph is 〈k〉ℓ, so that the value of ℓneeded to en
ompass the entire network is 〈k〉ℓ ≃ N . Thus a typi
al 
hara
teristi
distan
e for the network is

ℓ = log N/ log〈k〉. (1.11)This s
aling is mu
h slower than that of a d-dimensional regular latti
e where
ℓ ∼ N1/d. If the growth of ℓ(N) is slower than any positive power of N , it isreferred to as small-world e�e
t [42℄.The ease of analysis for random graphs has proven to be very useful in the earlydevelopment of the �eld. Although the average path length s
ales logarithmi
allywith graph size and therefore, shows the small-world e�e
t, in almost all otherrespe
ts the properties of random graphs do not mat
h those of networks in thereal world. Their degree distribution is Poisson, whereas most real-world graphsseem to exhibit broader degree distributions. Also, the random graph la
ks 
learlyde�ned 
ommunities and the 
lustering 
oe�
ient is usually far smaller than thatin 
omparable real-world graphs. The basi
 Erdos-Renyi model has been extendedin several ways, e.g., to exhibit a power law degree distribution pattern [43, 25℄.

12
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        p=1

Figure 1.3: The Watts-Strogatz (WS) small-world network model, seen as an interpo-lation between a regular and a random network.However, these models do not des
ribe how real-world properties evolve dynam-i
ally, thus making them less useful in understanding the pro
esses of networkformation in the real world.1.4.2 Watts-Strogatz small-world networkSo
ial networks often show a high tenden
y of being transitive, that is two peoplewho are friends have a high probability of having one or more mutual friends.This kind of 
lustering is not seen in random graphs, as mentioned previously.In 1998, Watts and Strogatz proposed a me
hanism for generating small-worldnetworks with high 
lustering [37℄. This model is often termed as the WS-modeland the generative me
hanism is as follows: A regular network is �rst 
onstru
tedby arranging N nodes on a 1−d periodi
 latti
e. Ea
h vertex is 
onne
ted to
k = 2z nearest neighbors within the range z, so that all nodes have the sameinitial degree. Next, one goes through ea
h edge, and with rewiring probability p,deta
hes the far side of the edge and re
onne
ts it to a randomly 
hosen vertex(ex
luding self and multiple 
onne
tions).Changing the rewiring probability p allows us to investigate the transition froma regular graph (p = 0) to a random graph (p = 1) (Fig. 1.3). Let us 
onsider �rstthe limit p = 0, where the network is regular and arranged on a ring. The shortest13
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tionaverage path length for this system is ℓ ∼ N/4z for large N , and this grows linearlywith N . The 
lustering 
oe�
ient Creg = (3z − 3)/(4z − 2) is 
onstant and tendsto 3/4 for large z. This large value indi
ates the presen
e of a signi�
ant numberof triangular stru
tures in the network. On the other hand, for p = 1 we have therandom graph for whi
h ℓ ∼ lnN/ ln z and C ∼ 2z/N → 0 as N in
reases. In theWS model, by 
hanging the rewiring probability one �nds that there is a broadrange of p, where ℓ ≈ ℓrand and C = Creg. Thus, globally the network has thesmall-world property of a random graph, while lo
ally it is 
lustered like a regulargraph. This is be
ause the diameter ℓ drops rapidly when p in
reases, as addingeven a few short-
uts during the rewiring pro
ess redu
es the average distan
ebetween any pair of nodes signi�
antly. However, the 
lustering 
oe�
ient
C =

3(k − 1)

2(2k − 1)
(1 − p)3, (1.12)of the network de
reases very slowly with in
reasing p [44℄.The WS-model was one of the �rst models that 
ould explain the 
o-existen
eof high 
lustering and small-world e�e
ts. Further, this model introdu
ed the
on
ept of physi
al distan
e 
onstraints in network formation. For example, it iseasy to form a link between nodes whi
h are geographi
ally 
lose to ea
h other.Although other variations of the WS network have been proposed, in all thesemodels the signature of a physi
al d-dimensional latti
e is still observed, so that,short
uts o

ur with higher probability between nodes that are physi
ally 
loser.However, the 
onventional WS model does not exhibit a broad degree distribution,and the dis
overy of this latter feature in several real-world networks led to thenext breakthrough in the physi
s of 
omplex networks [34, 45℄.1.4.3 Barabasi-Albert s
ale-free networkFirst proposed to explain the degree distribution in 
itation networks [46℄, the ideaof preferential atta
hment has been redis
overed re
ently by A-L. Barabasi and R.Albert (BA) in a network model that shows broad degree distributions des
ribedby a power law [34℄. They showed that the s
ale-free nature of these networks 
anoriginate from two generi
 features seen in many real-world networks,1. Growth: Networks are open systems with the number of nodes growing with14
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tiontime (i.e., N in
reases), and2. Preferential atta
hment : New nodes in the graph are not 
onne
ted randomlybut preferentially atta
h to existing nodes whi
h have high degree, therebymaking the degree of the latter even higher. This pro
ess is sometimes re-ferred to as the ri
h getting ri
her phenomenon.If Π, the probability that the new node will be 
onne
ted to node i, dependslinearly on the degree ki of node i, i.e.,
Π(ki) =

ki
∑

j kj
, (1.13)then, it was shown that the model network evolves into a system with a s
ale-invariant degree distribution having an exponent γ = 3.As the degree distribution of the preferential atta
hment models mat
h withthose o

urring in real-world graphs, it suggests that real networks might have beengenerated by similar pro
esses. However, many networks in nature with a broaddegree distribution show deviations from a pure power-law, typi
ally exhibiting anexponential 
uto� at high degrees:

pk = k−γφ(k/ξ) (1.14)where φ(k/ξ) is the 
uto� at some s
ale. In the 
ontext of the growing BA model,this phenomenon 
an be explained due to aging and saturation e�e
ts that limit thenumber of links a node 
an a
quire. Thus, the preferential atta
hment fun
tion,
Π(ki) is nonlinear, following Π(ki) = f(ki)/

∑

j f(kj), where f(k) is an arbitraryfun
tion, resulting in deviations from the power-law [47℄.The average path length ℓ of the BA network (γ = 3) grows as
ℓ(N) ∼ ln(N)

ln ln(N)
(1.15)with N slower than ln N , whi
h is also termed as ultra-small-world e�e
t [48℄. Thisindi
ates that the heterogeneous s
ale-free topology is more e�
ient in bringingthe nodes 
loser than the homogeneous topology of random network. Other s
ale-free networks with 2 < γ < 3 have a mu
h smaller diameter, with ℓ ∼ ln ln(N),15



Chapter 1. Introdu
tionwhile for networks with γ > 3, the shortest path length ℓ ∼ ln(N) [49℄. The
lustering 
oe�
ient of the BA model de
reases with the network size, followingapproximately a power law, C ∼ N−0.75. While being slower than the 1/N de
ayobserved for C in random graphs, this is still di�erent from the behavior of small-world network models and real world networks, where C is independent of N [3℄.Further there is a strong 
orrelation between age and degree in this model whi
his rarely seen in real-world systems. Moreover, only linear preferential atta
hmentgives a power-law degree distribution, that brings into question the general validityof this pro
ess.1.5 Importan
e of mesos
opi
 organization in 
om-plex networksIt has now been known for some time that the topologi
al stru
ture of a network
an a�e
t the fun
tion of the system [6℄. E.g., it has been shown that the 
onne
-tion ar
hite
ture has important 
onsequen
es on the fun
tional robustness of thenetwork and its response to external perturbations [50℄. This has led to a series ofstudies pointing to the 
ru
ial role played by the network topology in determiningthe emergen
e of 
olle
tive dynami
al behavior [39, 40℄, su
h as syn
hronization,di�usion, the spreading of 
ontagion su
h as epidemi
s, information and rumors,et
. To study this we need to go beyond the properties of single nodes and pairsof nodes, and 
onsider the mesos
opi
 properties of networks (i.e., properties ofgroups or lo
al 
lusters in the network).MotifsNetwork motifs are patterns (sub-graphs) that o

ur within a network mu
h moreoften than expe
ted in 
orresponding randomized versions. Most networks studiedin biology, e
ology and other �elds have been found to show a small set of networkmotifs whi
h o

ur again and again. Ea
h 
lass of networks seems to display its ownset of 
hara
teristi
 motifs, e.g., motifs that are 
ommonly seen in food webs aredistin
t from the motifs seen in the geneti
 networks of di�erent spe
ies. However,similar motifs are found in networks that have similar fun
tion, su
h as informationpro
essing, even though they des
ribe elements as di�erent as biomole
ules within16



Chapter 1. Introdu
tiona 
ell and synapti
 
onne
tions between neurons. These small 
ir
uits therefore 
anbe 
onsidered as simple building blo
ks from whi
h the network is 
omposed [51℄.ModularityLooking beyond small mi
ro-level motifs, it has been observed that, at the meso-s
opi
 level many of the networks in real-world have modular stru
ture [52℄. Mod-ules or 
ommunities are subnetworks within the network, where 
onne
tions aremore frequent between nodes within the same subnetwork than between nodes ofdi�erent subnetworks. The presen
e of modular stru
ture may also alter the way inwhi
h dynami
al pro
esses (e.g., spreading pro
esses, syn
hronization) unfold onthe network. With this realization many of re
ent studies have fo
used on modelsof modular networks and their inter-relation with the dynami
al pro
esses takingpla
e on the network [53℄.Hierar
hyFurther, these networks have also been shown to have hierar
hi
al organization,i.e., they are 
omposed of su

essive inter
onne
ted layers or inter-nested 
ommu-nities [54℄. Hierar
hy des
ribes the organization of elements in a network: hownodes link to ea
h other to form 
ommunities and how 
ommunities are joined toform the entire network. E.g., the metaboli
 network of several organisms 
an beorganized into highly 
onne
ted modules that hierar
hi
ally 
ombine into largerunits [55℄. The observed hierar
hy also 
oin
ides with known metaboli
 fun
tions,indi
ating that there may be a fun
tional basis for su
h meso-level organization.1.6 Overview of thesisThe aim of the present thesis is to look at the mesos
opi
 organization of 
omplexnetworks. This is viewed from three perspe
tives: (i) the stru
tural propertiesof su
h an organization, (ii) their role in dynami
al pro
esses de�ned on su
hnetworks, and (iii) the possible origin and evolution of su
h stru
tures. These are
omplemented by empiri
al analysis of networks o

urring in reality that showsimilar organizational features.
17



Chapter 1. Introdu
tionIn Chapter 2, we investigate the stru
tural and dynami
al 
onsequen
es ofmodular organization in networks. Using a simple model, we show that small-world networks 
an arise as an immediate result of modular 
on�guration. Wedemonstrate a distin
t dynami
al signature for su
h modular networks, namely, theexisten
e of multiple 
hara
teristi
 time s
ales in pro
esses as di�erent as syn
hro-nization, di�usion and spin-ordering. The di
hotomy between fast intra-modulardynami
s and slow inter-modular dynami
s is dire
tly related to the topologi
alstru
ture of the model through the spe
tral properties of the network Lapla
ian.By verifying the existen
e of similar features in the empiri
ally determined 
orti
o-
orti
al networks in 
at and ma
aque brains, we propose that the modular networkmodel may better represent 
ertain natural systems reported to have small-worldproperties [56, 57℄.To understand the pro
ess by whi
h networks evolve towards modular organi-zation, we note that they are subje
t to multiple stru
tural and fun
tional 
on-straints. In Chapter 3, we 
onsider the parti
ular examples of (i) minimizing theaverage path length, (ii) minimizing the total number of links, while (iii) maximiz-ing robustness against perturbations in node a
tivity. We show that the optimalnetwork satisfying these three 
onstraints is modular, 
hara
terized by the exis-ten
e of multiple sub-networks sparsely 
onne
ted to ea
h other. In addition, thesemodules have distin
t hubs resulting in an overall heterogeneous degree distribu-tion, as seen in many real networks [58℄.In addition to the existen
e of modular stru
tures, several networks in naturealso have these modules arranged in a hierar
hi
al fashion. Therefore, we next
onsider a model for su
h hierar
hi
al modular networks in Chapter 4. We showthat a s
aling relation between the 
lustering and degree of the nodes is not a ne
-essary property of su
h networks, 
ontrary to what has been 
laimed re
ently. Weinvestigate the dynami
al properties of su
h networks, in parti
ular, the stabilityof (i) equilibria of network dynami
s, and (ii) syn
hronized a
tivity. For both these
ases, we �nd that in
reasing modularity or the number of hierar
hi
al levels tendto in
rease the probability of instability. As both hierar
hy and modularity areseen in natural systems, whi
h ne
essarily have to be robust against environmental�u
tuations, we show using a generalization of the model used in Chapter 3, how
onstraints on 
ommuni
ation e�
ien
y and maximum degree 
an result in theemergen
e of hierar
hi
al stru
tures [59℄. 18



Chapter 1. Introdu
tionAfter having analyzed network models for understanding the dynami
al 
onse-quen
es of modularity and hierar
hy in the pre
eding 
hapters, in Chapter 5 we
onsider how their existen
e in 
omplex systems o

urring in reality, 
an be un-
overed from a knowledge of the 
olle
tive dynami
s of the 
omponent nodes. We�rst demonstrate the possibility of re
onstru
ting a network through an analysis ofthe time-series data of its 
omponents, by using the behavioral data of individualsbelonging to a troupe of ma
aque monkeys. To re
onstru
t a mu
h more 
omplexnetwork from dynami
al information about its 
omponents, we 
onsider the exam-ple of �nan
ial markets. These 
omplex systems have many intera
ting elements(traders and sto
ks) and exhibit large �u
tuations in their asso
iated observableproperties, su
h as sto
k pri
e or market index. By analyzing the 
ross-
orrelationmatrix of sto
k pri
e �u
tuations through spe
tral te
hniques, we reveal the under-lying network of intera
tions between sto
ks in di�erent markets. We observe theexisten
e of modules whi
h approximately 
orrespond to spe
i�
 business se
tors.Using a multi-fa
tor model, we suggest that the gradual emergen
e of modules, in-di
ating the strengthening over time of dire
t intera
tions between related sto
ks,is a signature of market development [33℄.In Chapter 6, we 
onsider the reverse problem, i.e., we try to understand thefun
tional signi�
an
e (arising out of the dynami
al 
onsequen
es) of the observedstru
tural features. As an example, we 
onsider the somati
 nervous system ofthe nematode C. elegans. We determine the stru
tural modules of the neuronalnetwork, and show that su
h an organization 
an only be explained if one 
onsider
onstraints that are possibly related to the information pro
essing fun
tion of thesystem apart form stati
 
onsiderations. A detailed analysis of the intra-moduledegree and parti
ipation 
oe�
ient allows us to identify key neurons involved ininformation pro
essing tasks whi
h are veri�ed from earlier reports of experimentalstudies. We also show that the existen
e of a hierar
hi
al stru
ture in the nervoussystem has the fun
tional bene�t of redu
ing di�usive spread of a
tivity throughoutthe network (thus, a
ting as a noise �lter), while maintaining high 
ommuni
atione�
ien
y between neurons [60℄.We 
on
lude with a general dis
ussion on how the dynami
s o

urring on anetwork is governed by mesos
opi
 stru
tural features of the system, and in turn,a�e
ts the evolution of ubiquitous stru
tural patterns, su
h as modularity andhierar
hy. 19



2Modularity in 
omplex networks
In many natural situations, dynami
s at the lo
al level may o

ur over a verydi�erent time-s
ale 
ompared to pro
esses at the global level. Su
h a temporalseparation is often desirable fun
tionally, e.g., for information pro
essing in thebrain. It requires syn
hrony between lo
al areas pro
essing spe
i�
 stimuli [61℄,but, global or very large s
ale syn
hrony is 
onsidered to be pathologi
al, as inepilepsy [62℄. Many systems in nature have network des
riptions, with the 
onne
-tion topology playing a 
ru
ial role in determining their dynami
al behavior [12℄.Therefore, it is of 
onsiderable interest to understand how the stru
tural organiza-tion in 
omplex networks 
an give rise to dynami
s at multiple dis
rete time-s
ales.As dis
ussed in Chapter 1, a large 
lass of networks in nature have also beenreported to be small-world networks (SWN) [37℄, whi
h are 
hara
terized by the
oexisten
e of very high 
lustering among neighboring nodes and short averagepath length. The 
lustered stru
ture of SWN distinguishes them from networkswith �small-world property� [38℄, whose average path length in
reases slower thanany polynomial fun
tion of the system size. This latter feature is seen in randomgraphs, as well as, in most 
omplex networks [4℄. SWN have been reported ina variety of 
ontexts, in
luding the brain [63℄, human so
iety [64℄ and 
ellularmetabolism [65℄. Several models for SWN have been proposed [66℄, beginningwith a simple interpolation s
heme between regular and random stru
ture throughrewiring of links (the WS model) [37℄ [Fig. 2.1 (a)℄.In this 
hapter, we relate the independent properties of dynami
al time-s
aleseparation and the 
lustered small-world property of many 
omplex networks, withthe 
ru
ial observation that su
h systems often manifest modular stru
ture [67℄.20



Chapter 2. Modularity in 
omplex networksModules are de�ned as subnetworks 
omprising of nodes 
onne
ted to ea
h otherwith a density signi�
antly higher than that of the entire network. Modular stru
-tures have been observed in a wide variety of 
ontexts, from 
ellular metabolism [68℄and signalling [69℄ to so
ial 
ommunities [70℄, internet [71℄ and foodwebs [19℄. Ourresults, therefore, suggest that the large number of instan
es of SWN in the realworld is related to the ubiquity of modular stru
tures in 
omplex systems.In Se
. 2.1, we introdu
e a simple model of modular networks. In Se
. 2.2, weshow that these networks exhibit all the stru
tural 
hara
teristi
s of SWN. Su
hmodular networks, in sharp 
ontrast to previous models of SWN, exhibit distin
ttime-s
ale separation in their dynami
s, 
orresponding to fast intra-modular andslow inter-modular pro
esses. In Se
. 2.3, we show the universality of this be-havior by using three very di�erent types of dynami
s, viz., (i) the ordering ofspins through ex
hange intera
tions, (ii) syn
hronization among relaxation os
illa-tors and (iii) di�usion. In all 
ases, the modular 
on�guration allows 
oordinationwithin lo
al 
lusters to o

ur mu
h more rapidly than global ordering. The o

ur-ren
e of multiple dis
rete times
ales in su
h a wide variety of systems highlightsthe role of modularity in the dynami
s on 
omplex networks. In Se
. 2.4, we showthat these multiple times
ales 
an be related to the Lapla
ian spe
tra of the net-work. We 
on
lude by dis
ussing in Se
. 2.5 how identifying modular stru
turesis 
ru
ial for designing intelligent intervention strategies for 
omplex systems, e.g.,
ontrolling epidemi
s.2.1 Modular random networks: A modelThe network model 
onsidered in this 
hapter follows dire
tly from the de�nitionof modular networks and 
onsists of N nodes arranged into m modules (similar tothe 
onstru
tion used, e.g., in Ref [52℄). Ea
h module 
ontains the same numberof randomly 
onne
ted nodes [Fig. 2.1(b)℄. The 
onne
tion probability betweennodes belonging to the same module is ρi, and for those belonging to di�erentmodules is ρo. Thus, one of the key parameters de�ning the model is the ratioof inter- to intra-modular 
onne
tivity ρo

ρi
= r ∈ [0, 1]. For r → 0, the networkgets fragmented into isolated 
lusters, while as r → 1, the network approa
hes ahomogeneous or Erdos-Renyi (ER) random network. The other parameter that

21



Chapter 2. Modularity in 
omplex networks

Figure 2.1: S
hemati
 diagrams of (left) Watts-Strogatz model and (right) modularnetwork, with modules in the latter indi
ated by broken 
ir
les.together with r 
ompletely de�nes the modular network is its average degree (i.e.,the number of links per node),
〈k〉 =

ρi

m
[(N − m) + rN(m − 1)] . (2.1)2.2 Stati
 properties of modular networksTo look at the stru
tural properties of the model, we �rst 
onsider the 
ommu-ni
ation e�
ien
y E for the entire system. This is a measure of the informationpropagation speed over the network and is de�ned as [36℄,

E ≡ ℓ−1 ≡ 1
1
2
N(N − 1)

∑

i>j

1

dij

, (2.2)where, dij is the shortest distan
e between nodes i and j. Note that, E is related tothe harmoni
 mean distan
e, ℓ, whi
h is a measure of the average path length. Wealso quantify the 
lustering within lo
al neighborhoods by measuring the 
oe�
ient
C = (1/N)

∑

i 2ni/ki(ki−1), where ki and ni are the degree and the number of linksbetween the neighbors of node i, respe
tively. For the modular random network,
C = ρi(d

2
1 + (m − 1)d2

2) + (m − 1)ρo(2d1d2 + (m − 2)d2
2), (2.3)where, d1 = (N

m
− 1)ρi/〈k〉 and d2 = N

m
ρo/〈k〉 are the probabilities that a node hasa neighbor in the same or a di�erent module, respe
tively. Thus, if the number of22
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Figure 2.2: Communi
ation e�
ien
y E (empty 
ir
le) and 
lustering 
oe�
ient C(�lled 
ir
le) for (a) modular random network with m = 16 modules as a fun
tion of r and(b) Watts-Strogatz (WS) network as a fun
tion of rewiring probability p (N = 512 and
〈k〉 = 14). The data points are obtained by averaging over 100 realizations. Error barsare in all 
ases smaller than the symbols used. (
) The variation of modularity measure,
QM , with r for modular random networks (solid line) and with p for WS network (brokenline). The dotted line indi
ates QM = 0.7 and its interse
tion with the other two 
urvesgives a pair of r and p values at whi
h we 
an 
ompare the two model networks.modules is large then, 
lustering is high at low values of r. As r is in
reased in ourmodel, we observe an in
rease in E while simultaneously C de
reases [Fig. 2.2 (a)℄.The small-world property is asso
iated with high values of both E and C, whi
his indeed what is observed in our model for an intermediate range of r, exa
tly asin the WS model [Fig. 2.2 (b)℄.Next, we 
hara
terize the model using a measure of modularity, Q [72℄. For agiven partition of the nodes of a network into m modules,

Q ≡
m

∑

s=1

[

ls
L
−

(

ds

2L

)2
]

, (2.4)where the total number of links in the network is L, and ls and ds are the linksbetween nodes and the total degree of all nodes belonging to module s, respe
-tively. The largest modularity that is obtained from all possible partitions of the23



Chapter 2. Modularity in 
omplex networksnetwork is denoted by QM = max{Q}. A high value for QM is a ne
essary but notsu�
ient 
ondition for a network to be modular, as there 
an be various regulargraphs having high QM value for whi
h the modules 
annot be identi�ed unam-biguously [73, 74℄. In parti
ular, for the WS small-world model, 
al
ulating QMyields high values although the modules are not de�ned in an unique manner. For aWS network de�ned on a ring of N nodes (ea
h 
onne
ted to 2z nearest neighbors)where a fra
tion p of the links have been rewired,
Q = (1 − p)

(

2N − zm − m

2N
− 1

m

)

. (2.5)Here, the existen
e of m modules of equal size n = N/m were assumed for the
al
ulation of Q. The maximum value QM = (1 − p)
[

1 −
√

2(z + 1)/N
]

, o

ursfor m∗ =
√

2N
z+1

and 
an be very high for low p. Similar high values of QM areobtained for modular random networks at low r, the modularity measure for su
ha system with N nodes being
Q =

(m − 1)[N(1 − r) − m]

m[N(1 − r + rm) − m]
. (2.6)Unlike the WS model, here the modules are pre-de�ned and Q does not needto be maximized with respe
t to di�erent 
hoi
es for partitioning the network.Fig. 2.2 (
) shows the variation of Q with r and p for the two 
lasses of small-worldnetwork models.Note that, WS networks are parametrized with respe
t to the rewiring prob-ability p, while modular random networks are de�ned in terms of r, the ratio ofinter- to intra-modular 
onne
tivity. Therefore, in order to 
ir
umvent the di�-
ulty in dire
tly 
omparing these two types of networks, in subsequent work wehave 
onsidered networks having the same N , 〈k〉 and Q. We observe that it isdi�
ult to di�erentiate between WS and modular random networks from theirstru
tural information only, by using any of the 
ommonly used stati
 measures.For example, on applying the k-
lique (
omplete subgraphs with k nodes) per
o-lation 
luster te
hnique used for dete
ting overlapping 
ommunities [75, 76℄, wefound large 
lusters to appear in both types of networks. This is be
ause the lo
allink density in both systems are mu
h higher than their overall 
onne
tivity. 24



Chapter 2. Modularity in 
omplex networksOther measures su
h as betweenness 
entrality (BC), edge 
lustering (EC), et
.,also gave similar results for the two network models. The betweenness 
entralityof an edge (i.e., link) is de�ned as the number of shortest paths between pairsof verti
es that go through it. If there are more than one shortest path betweena pair of verti
es, ea
h path is given equal weight su
h that the total weight ofall the paths is unity. The edges with maximum betweenness often a
t as thebridges between di�erent 
ommunity. So by removing the edges with maximumbetweenness 
entrality the modular stru
ture 
an be determined [52℄. We �nd thatthis is indeed what happen for modular network. However, for Watts-Strogatz(WS) network, the short
uts or rewired links also have high edge betweenness.Thus, the above algorithm whi
h removes edges with high betweenness 
entrality
ause the removal of these short
uts, so that only the regular 
hain stru
ture is left(Fig. 2.3). When further links are removed then the 
hain stru
ture is divided intogroup of nodes (whi
h are roughly of equal size). Hen
e, applying this method todetermine modules in a network gives 
ommunity stru
ture in both the 
ases.Instead of BC, other parameters like edge 
lustering 
an also be used to deter-mine the modular stru
ture in a network [77℄. Edge 
lustering is de�ned, analogousto the node-
lustering 
oe�
ient, as the ratio of the number of triangles to whi
ha given edge belongs to the total number of potential triangles that might in
ludeit given the degrees of the adja
ent nodes. More formally, for the edge 
onne
tingnode i to node j, the edge 
lustering 
oe�
ient is
C

(3)
ij =

z
(3)
ij + 1min(ki − 1, kj − 1)

,where z
(3)
ij is the number of triangles to whi
h that edge belong and min(ki − 1, kj − 1)is the maximal possible number of triangles. As edges that link di�erent 
ommuni-ties are unlikely to belong to many short loops, these edges have low EC. Therefore,removing the edges with low EC will reveal the 
ommunity stru
ture as disjointsubsets if the underlying network stru
ture is modular. However, in a WS networkthe short
uts have low EC, and hen
e the algorithm of removing low EC links willagain remove the short
uts resulting in a latti
e stru
ture. As above, on furtherremoval of links, the 
hain stru
ture gets disrupted into disjoint groups of nodes.Hen
e, the WS network also appears to have a 
ommunity stru
ture. 25
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omplex networks
Removal of high BC or 

low EC edges

Emergence of Modules

Figure 2.3: S
hemati
 diagram showing the e�e
t of removing edges with high between-ness 
entrality (BC) or low edge 
lustering (EC). For both WS (left) and modular (right)networks, the system gets divided into isolated 
ommunities (groups of nodes).2.3 Dynami
s on modular networksSo far we had been 
onsidering ex
lusively the stru
tural aspe
ts of small worldnetworks. However, apart from topologi
al stru
ture, networks are often asso
i-ated with 
ertain dynami
s [6℄. As dynami
s is often 
ru
ial for the fun
tioning ofmany systems, we now examine very di�erent dynami
s on network models havingthe 
lustered small-world property. These dynami
s range from nonlinear inter-a
tions (representative of 
olle
tive ordering in a network) to strongly nonlinearlo
al dynami
s at ea
h node (as in relaxation os
illators) with di�usive 
oupling.26
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A

B

Figure 2.4: S
hemati
 diagram of (a) global ordering (M = 1, Mm = 1) and (b)modular ordering (M = 0, Mm = 1) in a modular network of Ising spins.2.3.1 Spin-Spin intera
tion dynami
sWe �rst 
onsider the e�e
t of modular organization on the emergen
e of 
olle
tivebehavior, a simple model of whi
h is the ordering of Ising spins arranged on anetwork. This system is des
ribed by the Hamiltonian,
H = −

∑

i,j

Jijσiσj , (2.7)where, σi, σj = ±1 are spins pla
ed on nodes i, j, and Jij is the ferromagneti

oupling between them (= J > 0 if i, j are 
onne
ted and 0 otherwise). Start-ing from an initial random 
on�guration of spins on a modular random networkwith average degree 〈k〉, the system is allowed to evolve to its ground state us-ing Glauber dynami
s. It 
orresponds to a globally ordered state [Fig. 2.4 (a)℄ if
T < Tc(= 〈k〉), the mean-�eld 
riti
al temperature measured in units of J/kB (kB:Boltzmann 
onstant). We observe that the time (τgm) needed for magnetization
M =

∑N
i=1 σi/N to rea
h its high asymptoti
 value, diverges as r de
reases. Thisis be
ause, at low r, the system remains for a long time in a state of modularordering [Fig. 2.4 (b)℄, where the spins in ea
h module are ordered but aligned inopposite dire
tions in di�erent modules resulting in an absen
e of global ordering.The lo
al order parameter, modular magnetization Mm = m

N
〈|

∑

i∈k σk
i |〉, where

σk
i is the i−th spin in the k-th module and the averaging is over all modules, ex-hibits 
onvergen
e to its asymptoti
 value over a time-s
ale τmm, whi
h is almost27
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Figure 2.5: The two time-s
ales 
orresponding to lo
al ordering within a module (τmm)and global ordering over the entire network (τgm) for a modular random network of Isingspins (m = 16) at T = 6 as a fun
tion of r. (In all 
ases N = 512, 〈k〉 = 14).independent of r.Fig. 2.5 shows the existen
e of two time-s
ales whi
h diverge at low r indi
at-ing the ordering pro
ess within modules to be mu
h faster 
ompared to betweenmodules. At low temperatures, as the spins within ea
h module get ordered, dif-ferent modules may get aligned in opposite dire
tions. To a
hieve global order,some of the modules need to turn all their spins, a pro
ess that has a 
onsiderableenergy barrier. To 
ross this with thermal energy takes extremely long times, re-sulting in divergen
e of τgm. A similar investigation of the WS network shows onlyglobal ordering, with τgm diverging as p de
reases. Related dynami
al pro
esseswhere the appearan
e of distin
t time-s
ale events as a 
onsequen
e of modularnetwork stru
ture have important fun
tional signi�
an
e, in
lude the adoption ofinnovations [78℄, spread of epidemi
s [8℄ and 
onsensus formation [79℄.2.3.2 Syn
hronizationNext, we 
ompare the dynami
s of syn
hronization in modular random and WSnetworks. We 
onsider a population of N 
oupled relaxation os
illators (des
ribed
28
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Figure 2.6: Time evolution of (top) the fra
tion of syn
hronized nodes fsync and (bot-tom) the number of syn
hronized 
lusters for ER random, WS small-world (p = 0.2) andmodular random networks (r = 0.02). For all 
ases, N = 512 and 〈k〉 = 14. Unlikethe ER and WS networks, the syn
hronization in modular networks (m = 16) o

ur intwo distin
t steps. Lo
al syn
hronization within nodes belonging to the same moduleis a
hieved relatively fast and is then followed by global syn
hronization. The two times
ales 
orresponding to syn
hronization within modules (tms) and syn
hronization overthe entire network (tgs) are shown in the magni�ed view (inset).by a fast variable x and a slow variable y) whi
h evolve as
ẋi = c

[

yi − xi +
x3

i

3

]

+

N
∑

j=1

Kij

ki
(xj − xi); (2.8)

ẏi =
−xi

c
. (2.9)Here, c is the ratio between time-s
ales of x and y. Kij = κAij is the 
ouplingbetween a 
onne
ted pair of os
illators with strength κ, and A is the network ad-ja
en
y matrix, i.e., Aij = 1 if i, j are 
onne
ted and 0 otherwise. For networksof simple os
illator models, the approa
h to syn
hronization exhibits temporallyvarying patterns that are intrinsi
ally related to the underlying 
onne
tion topol-ogy [53℄.We have analyzed the time-evolution to syn
hronization (i.e., xi = x, yi = y, ∀i)of these strongly non-linear os
illators using the pair-
orrelation fun
tion between29
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Figure 2.7: (a) Comparison of syn
hronization between modular random networks(m = 16) and WS networks of relaxation os
illators (Eq. 2.9) with c = 2 and κ = 1.5.(N = 512, 〈k〉 = 14). In modular networks, the two time s
ales 
orresponding to intra-modular (tms) and global or inter-modular (tgs) syn
hronization are shown as a fun
tionof r. The WS model exhibits only the time-s
ale 
orresponding to global syn
hronization(inset). Averaging has been done over random initial values and network realizations.(b) The Lapla
ian spe
tral gap between the m-th and (m + 1)-th eigenvalues in
reaseswith de
reasing r, shown for di�erent system sizes with the number of modules m = 16.os
illator phase angles θ [= arctan(y/x)℄, ρij(t) = 〈cos[θi(t) − θj(t)]〉, where 〈. . . 〉is an average over random initial 
onditions. By introdu
ing a threshold T , the
orrelation matrix is 
onverted into a dynami
 
onne
tivity matrixDt(T ) (Dij = 1,if ρij > T , and = 0, otherwise). The ratio of non-zero elements of D to the totalnumber of elements gives the fra
tion of syn
hronized nodes, fsync, whi
h in
reasesto 1 with time as the system 
onverges to global syn
hronization. Conversely, thenumber of distin
t syn
hronized 
ommunities (i.e., the dis
onne
ted 
lusters in D)de
reases from N to 1 (Fig. 2.6).As expe
ted, we observe global syn
hronization to be extremely rapid in ERrandom networks, while, for WS networks it o

urs relatively slowly. By 
ontrast,in random modular networks, the syn
hronization o

urs over two distin
t time-s
ales, as re�e
ted by the o

urren
e of a plateau with non-zero values of the twosyn
hronization measures, fsync and number of syn
hronized 
lusters. At the rel-atively shorter time s
ale of tms, dis
onne
ted 
lusters are observed to form in D
orresponding to the stru
tural modules of the network. Thus, lo
al syn
hroniza-tion among the nodes belonging to the same module is a
hieved relatively qui
kly.30
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omplex networksGlobal syn
hronization is a slower pro
ess, o

urring over a time-s
ale tgs, withthe syn
hronized 
lusters remaining fairly stable in the intervening time-period.Fig. 2.7(a) shows the variation of these two time-s
ales with r, 
onverging whenthe network be
omes homogeneous (as r → 1).In the real world, for many systems the 
oupling strength between nodes withinthe same module may di�er signi�
antly from that between nodes belonging todi�erent modules. For example, a re
ent study of tie strengths in mobile 
ommu-ni
ation networks [11℄ observed that links 
onne
ting di�erent 
ommunities tendto be weaker than links between members of the same 
ommunity, supporting awell-known hypothesis for so
ial networks [80℄. Hen
e we look at the e�e
t ofdi�erent strengths for inter-modular 
oupling (κinter) and intra-modular 
oupling(κintra) on the syn
hronization behavior of os
illators on a modular network. Asthe inter-modular 
oupling strength be
omes weaker relative to the intra-modular
oupling, we observe the time-s
ales for modular and global syn
hronization to di-verge (Fig. 2.8, a). Thus, in real systems where inter-
ommunity ties are relativelyweaker, the time-s
ale separation between lo
al and global events will be even moreprominent. On the other hand, as the inter-modular 
oupling strength be
omeslarge, the two time-s
ales gradually 
onverge. As expe
ted, at very large values ofthe ratio κinter : κintra, global and modular syn
hronization o

ur simultaneously.We have also looked at the more general 
ase of syn
hronization in the presen
eof delays in the 
oupling [39℄. Even in the presen
e of delays, we observe distin
ttime-s
ales for modular and global events. If δt represents the delay period (i.e.,the time required for signals to travel from one node to another through a link),the 
oupling terms of Eq (2.8) be
ome:
N

∑

j=1

Kij

ki

[xj(t − δt) − xi(t)]. (2.10)For 
onstant delay (i.e., δt = 
onstant, for all pairs of 
onne
ted nodes), we observein Fig. 2.8 (b) that the time required for modular syn
hronization (τms) is shorterthan that required for global syn
hronization (τgs), although in general both arelonger than their 
orresponding values in the absen
e of any delay (δt = 0). Wealso 
onsider the 
ase where 
oupling delays are random and 
hosen from an uni-form distribution. As in the 
ase of 
oupling strengths κ, the delays may di�er for31
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Figure 2.8: (a) Dependen
e of the two time-s
ales 
orresponding to modular (tms)and global syn
hronization (tgs) on the ratio of the inter and intra modular 
ouplingstrengths (κinter/κintra). (b) The two syn
hronization time-s
ales shown as a fun
tion ofa 
onstant delay δt between any pair of 
onne
ted os
illators. (
) Variation of tms and
tgs with random inter-modular 
oupling delays, that are distributed uniformly between
[0, δtmax]. In this 
ase, there is no delay for intra-modular 
ouplings. Note that, Tosc isthe time-period for an un
oupled relaxation os
illator. (In all 
ases N = 512, 〈k〉 = 14,
m = 16 and r = 0.02).
onne
tions between nodes belonging to the same module as opposed to those be-longing to di�erent modules. For example, this may arise if nodes within a moduleare geographi
ally 
loser to ea
h other, relative to nodes in other modules. There-fore, we look at the 
ase when there is no 
oupling delay within a module, while,the delay for 
onne
tions between os
illators in di�erent modules is distributedover the interval [0, δtmax]. In Fig. 2.8 (
), we observe that as in the 
ase of 
on-stant delay, the inter-modular syn
hronization takes signi�
antly longer time thanintra-modular syn
hronization, emphasizing the generality of our results.2.3.3 Di�usionThe existen
e of su
h distin
t time-s
ales as a 
onsequen
e of modular stru
turealso appears in other dynami
al pro
esses, e.g., di�usion. Consider a dis
reterandom walk on a network, where the walker moves from one node to a randomly
hosen neighboring node at ea
h time step. We analyze the time-evolution of thedi�usion pro
ess by obtaining the distribution of �rst passage times for random32
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Figure 2.9: The distribution of �rst passage times (FPT) for di�usion pro
ess amongthe nodes in modular (m = 16, r = 0.02) and ER random networks. When the sour
eand the target nodes belong to the same module, the FPT has a mu
h higher probabilityof being small than when the nodes belong to di�erent modules. The distribution ofFPT for a homogeneous random network is also shown for 
omparison. This indi
atesthe existen
e of two distin
t time s
ales for random spreading in modular networks, thedi�usive pro
ess within a module taking pla
e mu
h faster 
ompared to di�usion betweenmodules. For all networks, N = 512 and 〈k〉 = 14.walkers to rea
h a target node in the modular random network, starting from asour
e node [81℄. Fig. 2.9 shows that this distribution di�ers quite signi�
antlydepending on whether the target node belongs to the same module as the sour
enode or in a di�erent module. This again suggests two distin
t time-s
ales, withintra-modular di�usion o

urring mu
h faster than inter-modular di�usion. Thisis 
onsistent with the results of Refs. [71, 82℄ where the degree of isolation ofa module was assessed by 
omparing the parti
ipation of its nodes in di�erentdi�usion modes, using the internet as an example.2.4 Linearized dynami
s: Lapla
ian analysisTo understand the existen
e of two distin
t time s
ales in a modular network, we
onsider the linearized dynami
s around the syn
hronized state,
dθi

dt
= − κ

ki

∑

j

Lijθj , (∀i = 1, . . . , N) (2.11)
33
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Figure 2.10: Rank index i plotted against the inverse of the 
orresponding eigenvalueof the Lapla
ian matrix L for modular random network (m = 16) at di�erent r (A-C)
ompared with that of WS network at di�erent p (D-F), indi
ating the existen
e of adistin
t spe
tral gap in the former at low r (N = 512, 〈k〉 = 14).where L is the Lapla
ian matrix of the network, with Lii = ki and Lij = −Aij

(i 6= j). Solving in terms of the normal modes ϕi(t), we get
ϕi(t) =

∑

j

Bijθj = ϕi(0) exp−λit, (2.12)where λi are the eigenvalues of L
′

= D
−1

L (D being a diagonal matrix with
Dii = ki), and B is the matrix of its eigenve
tors. All the eigenvalues are real as
L

′ is related to the symmetri
 normalized Lapla
ian L = D
1

2L
′

D
−1

2 through asimilarity transformation. Any di�eren
e in the time s
ales of the di�erent modesis manifested as gaps in the spe
trum of L , revealing di�erent topologi
al s
alesof the network. The mode 
orresponding to the smallest eigenvalue is asso
i-ated with global syn
hronization, while other modes provide information aboutsyn
hronization within di�erent groups of os
illators. We observe a gap in theLapla
ian spe
trum for modular random networks that in
reases with de
reasingvalue of r [Fig. 2.10 (A-C)℄ indi
ating that the very di�erent time-s
ales for syn-
hronization at the global and lo
al levels originate from the modular organization34



Chapter 2. Modularity in 
omplex networksof the network stru
ture. This is further supported by the absen
e of a similargap in the Lapla
ian spe
tra for WS networks, shown at di�erent values of p inFig. 2.10 (D-F).To relate this analysis with the di�usion pro
ess, we note that the transitionprobability from node i to j at ea
h step of the random walk is Pij = Aij/ki.This transition matrix P is related to the normalized Lapla
ian of the network as
L = I − D

1

2PD
−1

2 , where I is the identity matrix [71℄. The eigenvalues of P areall real, the largest being 1 while the others are related to the di�erent di�usiontimes
ales. As in the syn
hronization example, the spe
trum of P for modularrandom network exhibits a gap re�e
ting the existen
e of distin
t times
ales inthe system. Note that, although the above result stri
tly applies only when linearapproximation is valid, we observe the property of time-s
ale separation predi
tedfor modular networks to be a mu
h more general phenomenon. In parti
ular, thestrong nonlinear intera
tions of the Ising model 
annot be even approximatelytreated by the Lapla
ian analysis. Nevertheless, we see almost identi
al behaviorfor all three pro
esses, indi
ating the universality of the dynami
al signature ofmodular networks.2.4.1 Lapla
ian analysis of 
orti
al networksIn order to provide empiri
al eviden
e for the above distin
tion between dynami
albehavior of the di�erent small-world models, we have 
onsidered the 
onne
tivitydata for 
orti
al areas in the brains of the 
at [83℄ and the ma
aque [84℄. Su
hnetworks have been reported to have small-world stru
tural properties [63℄. Aspreviously mentioned, lo
al syn
hronization within a 
luster has fun
tional impor-tan
e in the brain, whereas global 
oheren
e of a
tivity may be undesirable. Thetheoreti
al arguments given above would, therefore, imply a modular stru
turalorganization for the 
onne
tions between the 
orti
al areas. This would be visiblymanifested through the existen
e of gaps in the Lapla
ian spe
tra of the empiri
alnetworks, whi
h is indeed what we observe [Fig. 2.11℄. This strongly suggests thatat least some of the empiri
ally observed small-world networks that o

ur in na-ture may be organized in a modular fashion, and thus, have signi�
antly di�erentdynami
al behavior from the WS or related models.
35
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Figure 2.11: The adja
en
y matrix showing 
onne
tions between di�erent 
orti
al areasin the 
at (top left, N = 65) and ma
aque (top right, N = 47) 
erebral 
ortex. The brokenlines indi
ate 
lusters of 
orti
al areas (labelled I-IV ) that are densely 
onne
ted withinthemselves. This stru
tural division re�e
ts, to some extent, the fun
tional segregationamong the di�erent 
orti
al areas (e.g., visual, somatosensory, et
.). The rank-ordered re-
ipro
al eigenvalues of the 
orresponding Lapla
ian matri
es (bottom) show well-de�nedspe
tral gaps, 
onsistent with the existen
e of a modular stru
ture for the 
orti
o-
orti
alnetworks.2.5 Dis
ussionIn this 
hapter, we have shown that modular networks, where links within ea
hmodule are mu
h more numerous than those between di�erent modules, 
an exhibitall the stru
tural features asso
iated with small-world networks even in the absen
eof a regular latti
e substrate. By using a simple model, where nodes 
onne
t to ea
hother at random within ea
h 
ommunity, we show that a modular organization 
angive rise to stati
 properties (su
h as 
lustering or 
ommuni
ation e�
ien
y) almostidenti
al to the widely-used WS model for small-world networks [56℄. Note that, itis the modular organization whi
h is 
ru
ial here, as the network stru
ture withinea
h module is irrelevant for our 
on
lusions to be valid. Su
h modularity may arisein nature through multi-
onstraint optimization to whi
h most networks o

urring36



Chapter 2. Modularity in 
omplex networksin the real world are subje
ted [85℄. This is dis
ussed in detail in Chapter 3 of thisthesis. The dynami
al behavior of modular networks exhibits the striking featureof multiple, distinguishable time-s
ales 
orresponding to (a) fast intra-modular and(b) slow inter-modular pro
esses, whi
h is quite di�erent from the behavior seenin WS model of small-world networks.Empiri
al eviden
e for su
h behavior in 
orti
o-
orti
al networks indi
ate thatseveral systems for whi
h small-world properties have been reported may indeedhave modular organization with the asso
iated dynami
al signature. The in
reas-ing re
ognition that small-world networks underlie pro
esses of vital importan
eto so
iety, su
h as epidemi
s spreading through a few long-range links (e.g., theairline network that is instrumental in spreading a disease like SARS [86℄), makesit of vital importan
e to understand the stru
tural topology of a network thatis responsible for the SW property. As di�erent stru
tures 
an result in distin
t
olle
tive dynami
al behavior, it is important to go beyond ma
ros
opi
 measures(su
h as average path length) and fo
us on the underlying arrangement of inter-a
tions in su
h networks. This is essential for intelligent intervention to prevent alo
al problem from rapidly evolving into a global threat as a result of un
ontrolledspreading through the network.

37



3Evolution of modular networks
As modular stru
tures are ubiquitous in 
omplex networks, it is of immense interestto understand how su
h systems 
an evolve towards a modular 
on�guration. Inmany of these networks, there is a signi�
ant presen
e of hubs, i.e., nodes with largedegree or number of 
onne
tions to other nodes. Hubs are 
ru
ial for linking thenodes in real networks, whi
h have extremely sparse 
onne
tivity, with the proba-bility C of 
onne
tion between any pair of nodes varying between 10−1 and 10−8 [4℄.By 
ontrast, random networks with su
h small C are almost always dis
onne
ted.Hubs 
an also lead to the �small-world� e�e
t [37℄ by redu
ing the average pathlength of the network. We note that most modular systems are subje
t to multiplestru
tural and fun
tional 
onstraints. Examples of su
h 
onstraints in
lude theminimization of average path length, as well as, the total number of links, whilemaximizing robustness against perturbations in node a
tivity. In this 
hapter, weshow that the optimal networks whi
h satisfy all these three 
onstraints are 
har-a
terized by the existen
e of multiple modules sparsely 
onne
ted to ea
h other.In addition, these modules have distin
t hubs resulting in an overall heterogeneousdegree distribution.The majority of previous studies on modular networks have been 
on
ernedwith methods to identify 
ommunity stru
ture [52℄. There have been relativelyfew attempts to explain the potentially more interesting question of how and whymodularity emerges in 
omplex networks. Most su
h attempts are based on thenotion of evolutionary pressure, where a system is driven by the need to adapt toa 
hanging environment [87, 88℄. However, su
h explanations involve 
ompli
atedadaptive me
hanisms, in whi
h the environment itself is assumed to 
hange in a38



Chapter 3. Evolution of modular networksmodular fashion. Further, adaptation might de
rease 
onne
tivity through biasedsele
tion of sparse networks, whi
h eventually results in disruption of the networkwith the modules be
oming isolated nodes [87℄ or dis
onne
ted parts [89℄. Morere
ently, a so
ial network model has shown the emergen
e of isolated 
ommunitiesthrough the rearrangement of links to form groups with homogeneous opinion [90℄.A 
ru
ial limitation of these studies is that they almost always fo
us on a singleperforman
e parameter. However, in reality, most networks have to optimize be-tween several, often 
on�i
ting, 
onstraints. While stru
tural 
onstraints, su
h aspath length, had been the fo
us of initial work by network resear
hers, there hasbeen a growing realization that most networks have dynami
s asso
iated with theirnodes [12℄. The robustness of network behavior is often vital to the e�
ient fun
-tioning of many systems, and also imposes an important 
onstraint on networks.Therefore, the role played by dynami
al 
onsiderations in determining the topo-logi
al properties of a network is a 
hallenging and important question that opensup new possibilities for explaining observed features of 
omplex networks [91℄.In Se
. 3.1, we propose a simple model for the emergen
e of modularity innetworks as an optimal solution for satisfying a minimal set of stru
tural andfun
tional 
onstraints. We expli
itly show this by performing a multi-
onstraintoptimization with simulated annealing in Se
. 3.2. In Se
. 3.3, we show that whilerobustness is indeed ne
essary, it is not enough by itself to generate modularity,
ontrary to what is generally believed. We end the 
hapter with a dis
ussion inSe
. 3.4, on how these modular networks are also stru
turally robust with respe
tto simultaneous targeted and random atta
ks.3.1 Constraints on networksCostNetworks are subje
t to 
ertain stru
tural 
onstraints. One of the stru
tural 
on-straint is the need to save resour
es, manifested in minimizing link 
ost, i.e., the
ost involved in building and maintaining ea
h link in a network [92℄. This resultsin the network having a small total number of links, L.
39



Chapter 3. Evolution of modular networksE�
ien
yHowever, su
h a pro
edure runs 
ounter to another important 
onsideration ofredu
ing the average path length ℓ, whi
h improves the network e�
ien
y byin
reasing 
ommuni
ation speed among the nodes [36℄.The 
on�i
t between the above two 
riteria 
an be illustrated through theexample of airline transportation networks. Although, fastest 
ommuni
ation (i.e.,small ℓ) will be a
hieved if every airport is 
onne
ted to every other through dire
t�ights, su
h a system is prohibitively expensive as every route involves some 
ostin maintaining it. In reality, therefore, one observes the existen
e of airline hubs,whi
h a
t as transit points for passengers arriving from and going to other airports.StabilityAnother important 
onstraint is to de
rease the instability of dynami
al statesasso
iated with the network. We investigate the dynami
al stability of a network
omposed of N nodes, whi
h are self regulating when isolated, by measuring thegrowth rate of a small perturbation x about an equilibrium state of the networkdynami
s. Although the system 
an be nonlinear in general, the dynami
s of su
hperturbations are des
ribed by a linear system of 
oupled di�erential equations
ẋi =

∑N
j=1 Jijxj . The stability of the equilibrium is then determined by the largestreal part λmax of the eigenvalues for the matrix J representing the intera
tionsamong the nodes. The perturbation de
ays if λmax < 0, and in
reases otherwise,at a rate proportional to |λmax|. Thus, minimizing λmax makes the equilibrium lessunstable, whi
h is important for many systems in
luding e
ologi
al networks [93℄.Here Jii = −1 ∀i su
h that we only 
onsider instability indu
ed through networkintera
tions. The o�-diagonal matrix elements Jij(∼ AijWij) in
lude informationabout both the topologi
al stru
ture of the network, given by the adja
en
y matrix

A (Aij is 1, if nodes i, j are 
onne
ted, and 0, otherwise; Aii = 0 ∀i), as well as, thedistribution of intera
tion strengths Wij between nodes. In our simulations, Wijhas a Gaussian distribution with zero mean and varian
e σ2; however, a nonzeromean does not qualitatively 
hange our results. For an Erdos-Renyi (ER) randomnetwork, J is a sparse random matrix, with λmax ∼ √
NCσ2 − 1, a

ording to theMay-Wigner theorem [93℄. Therefore, in
reasing the system size N , 
onne
tivity Cor intera
tion strength σ, results in instability of the network. This result has been40



Chapter 3. Evolution of modular networksshown to be remarkably robust with respe
t to various generalizations [94, 95, 96℄.Further, for uniform 
oupling strength, λmax is inversely related to the epidemi
propagation threshold for the network [97℄, and hen
e, minimizing λmax also makesthe network more robust against spreading of infe
tion.3.2 Modularity through multi-
onstraint optimiza-tion3.2.1 Minimum link-
ost 
onstraint (L = N − 1)For ER random networks, although ℓ is low, L is high be
ause of the requirement toensure that the network is 
onne
ted: L > N lnN [42℄. Introdu
ing the 
onstraintof link 
ost (i.e., minimizing L) while requiring low average path length ℓ, leadsto a starlike 
onne
tion topology (Fig. 3.1C). A star network has a single hub towhi
h all other nodes are 
onne
ted, there being no other links. Its average degree
〈k〉 ≈ 2 is non extensive with system size, and is mu
h smaller than a 
onne
tedrandom network, where 〈k〉 ∼ ln N . However, su
h starlike networks are extremelyunstable with respe
t to dynami
al perturbations in the a
tivity of their nodes.The probability of dynami
al instability in random networks in
reases only withaverage degree (λmax ∼ √

〈k〉, sin
e 〈k〉 = NC), while for star networks it in
reaseswith the largest degree, and hen
e the size of the network itself (λmax ∼ √
N). Toextend this for the 
ase of weighted networks we look at the largest eigenvalue of

J, λmax = −1 +
√

∑N
i=2 J1iJi1, the hub being labeled as node 1. The stability ofthe weighted star network is governed by ∑N

i=2 J1iJi1, whi
h is the displa
ementdue to a 1-dimensional random walk of N − 1 steps whose lengths are produ
ts ofpairs of random numbers 
hosen from a Normal (0, σ2) distribution.Simulated annealingTo obtain networks whi
h satisfy the dynami
al as well as the stru
tural 
onstraintswe perform optimization using simulated annealing, with a network having Nnodes and N − 1 unweighted links (the smallest number that keeps the network
41
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Figure 3.1: The optimized network stru
tures for a system with N = 64 nodes and
L = N − 1, at di�erent values of α: (A) 0.4, (B) 0.775 and (C) 1. For α = 0 the optimalnetwork is a 1-dim 
hain. (Bottom) The modularity Qs of the optimized network fordi�erent α, when ea
h module is a 
ommunity de�ned in the strong sense. The transitionto star 
on�guration o

urs around α ≃ 0.8, as observed in the variation of degree entropy
H with α.
onne
ted). Having �xed L, the energy fun
tion to be minimized is de�ned as

E(α) = αℓ + (1 − α)λmax,where the parameter α ∈ [0, 1] denotes the relative importan
e of the path length
onstraint over the 
ondition for redu
ing dynami
al instability. Rewiring is at-tempted at ea
h step and is (i) reje
ted if the updated network is dis
onne
ted, (ii)a

epted if δE = Efinal −Einitial < 0, and (iii) if δE > 0, then a

epted with prob-ability p = exp(−δE/T ), where T is the �temperature�. The initial temperaturewas 
hosen in su
h a way that energeti
ally unfavorable moves had 80% 
han
eof being a

epted. After ea
h monte 
arlo step (N updates) the temperature wasredu
ed by 1% and iterated till there was no 
hange in the energy for 20 su

essivemonte 
arlo steps. For ea
h value of α, the optimized network with lowest E wasobtained from 100 realizations. 42



Chapter 3. Evolution of modular networksEmergen
e of modular 
on�gurationAs 
an be seen from Fig. 3.1, modularity emerges when the system tries to satisfythe twin 
onstraints of minimizing ℓ as well as λmax. When α is very high (∼ 0.8)su
h that the instability 
riterion be
omes less important, the system shows a tran-sition to a starlike 
on�guration with a single hub. However, as α is de
reased,the instability of the hub makes the star network less preferable and for interme-diate values of α, the optimal network gets divided into modules, as seen fromthe measure of network modularity, Q [98℄. To obtain a robust partitioning of thenetwork, we 
onsider modules to be 
ommunities de�ned in the strong sense, i.e.,ea
h node i belonging to a 
ommunity has more 
onne
tions with nodes withinthe 
ommunity than with the rest of the network [77℄. The resulting modularitymeasure Qs is high for a modular network, whereas for homogeneous, as well as,for starlike networks, Qs = 0. To determine the 
ommunities, we1. Compute the betweenness measure for all edges and remove the one withhighest s
ore:2. (a) if it results in splitting the network (or subnetwork) into 
ommunitiesin the strong sense, then the resulting Qs is 
omputed;(b) if not, we go ba
k to step (1) and remove the edge with the next highests
ore.The pro
ess is 
arried out iteratively until all edges of the network have been
onsidered. Note that, in step (2a), 
he
king whether the splitting results in 
om-munities in the strong sense is 
onsidered with respe
t to the full network. Weveri�ed these results by also 
al
ulating Qs with the network modules determinedthrough sto
hasti
 extremal optimization [99℄. The transition between modularand star stru
tures is further emphasised in the behavior of the degree entropyde�ned as
H =

N−1
∑

k

pk log pk, (3.1)where pk is the probability of a node having degree k. The network entropy pro-vides an average measure of the network's heterogeneity, sin
e it measures thediversity of the link distribution [100℄. Two extreme 
ases are the maximal valueand the minimal one. The maximum value is Hmax = log(N − 1) obtained for43
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Figure 3.2: Probability distribution of λmax for a 
lustered star network (N = 256, L =
15N) with di�erent numbers of modules, m. Modules of equal size are 
onne
ted by singlelink between respe
tive hubs. Link weights Wij follow a Normal (0, σ2) distribution with
σ2 = 0.018. (Inset) Probability of stability [P (λmax < 0)℄ varying with σ2. In
reasing
m results in the transition to instability o

urring at higher σ2, implying that networkstability in
reases with modularity.
pk = 1

N−1
∀k = 1, 2, · · · , N − 1 and minimum value Hmin = 0 o

urs when

pk = 0, · · · , 1, · · · , 0. The emergen
e of a dominant hub at a 
riti
al value of
α is marked by H redu
ing to a low value.Why modular 
on�guration evolves?To understand why modular networks emerge on simultaneous optimization ofstru
tural and fun
tional 
onstraints we look at the 
hange in stability that o

urswhen a star network is split into m modules, the modules being 
onne
ted throughlinks between their hubs. The largest eigenvalue for the entire system of N nodes isthe same as that for ea
h isolated module, λmax ∼ √

N/m, as the additional e�e
tof the few intermodular links is negligible. At the same time, the in
rease in theaverage path length ℓ with m is almost insigni�
ant. Therefore, by dividing thenetwork into a 
onne
ted set of small modules, ea
h of whi
h is a star subnetwork,the instability of the entire network de
reases signi�
antly while still satisfying thestru
tural 
onstraints.
44
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Figure 3.3: Probability distribution of λmax for 
lustered star networks (N = 256, L =
15N) having four modules with di�erent types of intermodular 
onne
tivities (A), (B) and(C), whi
h are represented s
hemati
ally here. Link weights Wij have a Normal (0, σ2)distribution with σ2 = 0.018.3.2.2 Relaxing the link-
ost 
onstraint (L > N − 1)The above results were obtained for a spe
i�
 value of L (= N − 1). We nowrelax the 
onstraint on link 
ost and allow a larger number of links than thatstri
tly ne
essary to keep the network 
onne
ted. The larger L is manifestedas random links between nonhub nodes, resulting in higher 
lustering within thenetwork. Even for su
h 
lustered star networks, λmax in
reases with size as√N , andtherefore, their instability is redu
ed by imposing a modular stru
ture (Fig. 3.2).The e�e
t of in
reasing the number of modules, m, on the dynami
al stability ofa network 
an be observed from the stability-instability transition that o

urs onin
reasing the network parameter σ keeping N, C �xed. The 
riti
al value at whi
hthe transition to instability o

urs, σc, in
reases with m (Fig. 3.2, inset) while ℓdoes not 
hange signi�
antly. This signi�es that even for large L, networks satisfythe stru
tural and fun
tional 
onstraints by adopting a modular 
on�guration.As L is in
reased, we observe that the additional links in the optimized networko

ur between modules, in preferen
e to, between nodes in the same module. Tosee why the network prefers the former 
on�guration, we 
onsider three di�erenttypes of intermodular 
onne
tions: (A) only the hub nodes of di�erent modules45
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Figure 3.4: Probability distribution of λmax for random networks (N = 256, L = 15N)as a fun
tion of the number of modules, m, whi
h are 
onne
ted to ea
h other by singlelinks. Link weights Wij follow Normal (0, σ2) distribution with σ2 = 0.03. The insetshows the probability of stability [P (λmax < 0)℄ varying with σ2. In
reasing m resultsin transition to instability at lower σ2, indi
ating that in
reasing modularity de
reasesstability for random networks.are 
onne
ted, (B) nonhub nodes of one module 
an 
onne
t to the hub of anothermodule, and (C) nonhub nodes of di�erent modules are 
onne
ted. Arrangement(B) where intermodular 
onne
tions that link to hubs of other modules a
tuallyin
rease the maximum degree in the modules, making this arrangement more un-stable than (A). On the other hand, (C) 
onne
tions between nonhub nodes ofdi�erent modules not only de
rease the instability (Fig. 3.3), but also redu
e ℓ.As a result, the optimal network will always prefer this arrangement (C) of largenumber of random intermodular 
onne
tions over other topologies for large L.3.3 Robustness and modularityOur observation that both stru
tural and dynami
al 
onstraints are ne
essary formodularity to emerge runs 
ounter to the general belief that modularity ne
essar-ily follows from the requirement of robustness alone, as modules are thought tolimit the e�e
ts of lo
al perturbations in a network. To further demonstrate thatthe three 
onstraints are the minimal required for a network to adopt a modular46
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Figure 3.5: S
hemati
 diagram indi
ating the types of optimal networks obtained bysatisfying di�erent 
onstraints. Ea
h vertex represents networks obtained by satisfying apair of 
onstraints indi
ated on the two sides of the triangle that meet at that vertex. Notethat, modular networks emerge by optimizing all three 
onstraints, viz., 
ost, e�
ien
yand stability, indi
ated by the three arms of the triangle.
on�guration, we remove the hub from a 
lustered star while ensuring that the net-work is still 
onne
ted. This 
orresponds to the absen
e of the link 
ost 
onstraintaltogether and the optimal graph is now essentially a random network.To see why modularity is no longer observed in this 
ase, we 
onsider thestability of an ER random network on whi
h a modular stru
ture has been imposed.A network of N nodes is divided into m modules, 
onne
ted to ea
h other witha few intermodular links. We then 
onsider the stability-instability transition ofnetworks for in
reasing m, with the average degree, 〈k〉 kept �xed. Although fromthe May-Wigner theorem, it may be naively expe
ted that σc ≃ 1/
√

〈k〉 is 
onstantw.r.t. m, we a
tually observe that in
reasing m de
reases stability (Fig. 3.4). Thisis be
ause when a network of size N is split into m modules, the stability ofthe entire network is de
ided by that of the most unstable module, ignoring thesmall additional e�e
t of intermodular 
onne
tions. Thus, the stability of the47



Chapter 3. Evolution of modular networksentire network is de
ided by randomly drawing m values from the distribution of
λmax for the modules. Therefore, for modular networks it is more likely that apositive λmax will o

ur, than for the 
ase of a homogeneous random network ofsize N [101℄. The de
rease of stability with modularity for random networks showsthat, in general, it is not ne
essary that modularity is always stabilizing and resultsin a robust network, as has sometimes been 
laimed [87℄.3.4 Dis
ussionIn this 
hapter we have shown that modules of inter
onne
ted nodes 
an arise asa result of optimizing between multiple stru
tural and fun
tional 
onstraints. Inparti
ular, we show that, by minimizing link 
ost as well as path length, whilesimultaneously in
reasing robustness to dynami
al perturbations, a network willevolve to a 
on�guration having multiple modules 
hara
terized by hubs, that are
onne
ted to ea
h other (Fig. 3.5). At the limit of extremely small L (total num-ber of links in the network), this results in bimodal degree distribution, that hasbeen previously shown to be robust with respe
t to both targeted and random re-moval of nodes [102℄. Therefore, not only are su
h modular networks dynami
allyless unstable, but they are also robust with respe
t to stru
tural perturbations.In general, on allowing larger L, the optimized networks show heterogeneous de-gree distribution that has been observed in a large 
lass of networks o

urring inthe natural and so
ial world, in
luding those termed as s
ale-free networks [3℄.Thus, our results provide a glimpse into how the topologi
al stru
ture of 
omplexnetworks 
an be related to fun
tional and evolutionary 
onsiderations.

48



4Hierar
hi
al organization in 
omplexnetworks
Complex networks exhibit many 
ommon organizational features at the mesos
opi
level. Apart from modularity, whi
h has been dis
ussed in the previous 
hapters,many systems also show hierar
hi
al ordering of their nodes. In other words, theyare 
omposed of su

essive layers of inter
onne
ted or nested 
ommunities. Su
hstru
tural hierar
hy not only des
ribes how nodes link to form 
ommunities, butalso, how 
ommunities join with ea
h other to form the entire network whi
h mayexhibit multiple levels of larger meso-level stru
tures, su
h as meta-modules. Inthe literature, often the terms hierar
hy and modularity are used inter-
hangeably,although, as shown in Fig. 4.1, they represent distin
t properties of the network.This 
onfusion in usage 
ould have stemmed from the fa
t that these two propertiesare found to 
oexist in many networks o

urring in real life [55, 103, 69, 19℄, in-
luding te
hnologi
al networks su
h as the Internet [8, 71℄ and biologi
al networks,like that of 
orti
al areas in the mammalian brain [104℄.As dis
ussed in the previous 
hapters, most 
omplex systems seen in real lifealso have asso
iated dynami
s [12℄. The stru
tural properties of su
h networkshave been sought to be linked with their dynami
al behavior [6, 105℄. In this 
on-ne
tion, one of the questions of obvious signi�
an
e is whether there is a relationbetween the stability of the system dynami
s (with respe
t to small perturbationsin the variables des
ribing the state of the nodes) and the spe
i�
 topologi
al ar-rangement of 
onne
tions in the network. Su
h robustness is ne
essary if 
omplexsystems are to survive in the noisy environment that 
hara
terizes the real world.49
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al organization in 
omplex networks
l=2

l=3

l=4

l=1Figure 4.1: S
hemati
 diagrams of (left) a modular network, with modules demar
atedby broken 
ir
les, and (right) a hierar
hi
al network with 4 levels, ea
h indi
ated by alevel number l.It has sometimes been argued that, networks with larger number of nodes, linksand stronger inter-
onne
tions are more stable [106℄. On the other hand, theo-reti
al results on the stability of model networks, e.g., the May-Wigner theorem,suggest the opposite [93℄. However, as these results are based on the study ofnetworks whose 
onne
tion topology shows none of the stru
tures that are seenin real life networks, in parti
ular, modularity and hierar
hy, it is of interest tosee whether introdu
ing hierar
hi
al organization and modular stru
tures 
an re-veal limitations in the validity of May-Wigner theorem. We study this problemby proposing a network model that exhibits both these properties and observingthe lo
al stability of the system dynami
s with respe
t to perturbations. We also
onsider the stability of syn
hronization over the network, as the issue of networksyn
hronization has assumed importan
e in re
ent years, owing to its 
onne
tionwith, e.g., brain dynami
s [104℄.In Se
. 4.1, we des
ribe earlier models that have been proposed to des
ribe hier-ar
hi
al organization in networks, in parti
ular, the Ravasz-Barabasi deterministi
model [107℄. In Se
. 4.2, we propose an alternate model that allows a detailedstudy of the relation between dynami
al stability and hierar
hi
al modular orga-nization of the network. We also show that the o

urren
e of a s
aling relationbetween 
lustering and degree of the nodes 
annot be 
onsidered as a signaturefor the existen
e of hierar
hi
al modular stru
ture. This is 
ontrary to what hasbeen 
laimed in Ref. [107℄ and ta
itly assumed in many subsequent studies [108℄.In Se
. 4.3 we observe that both hierar
hy and modularity a
tually in
rease the50
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al organization in 
omplex networks
(a) n=0, N=5
(b) n=1, N=25 (
) n=2, N=125Figure 4.2: The Ravaz-Barabasi model of hierar
hi
al s
ale-free network showing the�rst three steps in an iterative 
onstru
tion pro
edure leading to hierar
hi
al networkstru
ture. (a) A fully 
onne
ted 
luster 
onsisting of N = 5 nodes, (b) a network with

N = 25 nodes, and (
) a network with N = 125 nodes. (From Ref. [107℄)instability 
ompared to an equivalent random network. This may appear 
ounter-intuitive as both these stru
tural properties are observed in networks o

urring innature, whi
h ne
essarily have to be robust to survive environmental �u
tuations.However, as noted in the pre
eding 
hapter, the emergen
e of modular stru
tures
an be understood as a response to multiple (and often 
on�i
ting) 
onstraintsimposed on su
h networks [85℄. In Se
. 4.4, we dis
uss how these observations
an be extended to explain the emergen
e of hierar
hi
al organization in networks.We 
on
lude with a short dis
ussion of the importan
e of 
onstraints related tophysi
al spa
e on whi
h networks are embedded in Se
. 4.5.4.1 Hierar
hi
al networks: Ravasz-Barabasi modelOne of the most 
ited models for hierar
hi
al modular networks is a deterministi
model proposed by Ravasz and Barabasi (RB) [107℄. This model generates a set51



Chapter 4. Hierar
hi
al organization in 
omplex networksof inter-nested modules in a hierar
hi
al fashion using a deterministi
 pro
edurethat has both high 
lustering (be
ause of the modular nature of the network atthe most fundamental level) and a s
ale-free degree-distribution.This model is 
onstru
ted as follows: Initially, a fully 
onne
ted 
luster of �venodes is 
onstru
ted (Fig. 4.2 a). Next, four repli
as of this hypotheti
al moduleare generated and the four external nodes of the repli
ated 
lusters are 
onne
tedto the 
entral node of the old 
luster, obtaining a large 25-node module (Fig. 4.2 b).Subsequently, four repli
as of this 25-node module are generated, and the 16 pe-ripheral nodes are 
onne
ted to the 
entral node of the old module (Fig. 4.2 
),obtaining a new module of 125 nodes. These repli
ations and 
onne
tion steps arerepeated, in
reasing the number of nodes in the system by a fa
tor of �ve at ea
hiteration.In the RB model, a s
aling relation is observed between the 
lustering 
oe�
ientof a node C and its number of 
onne
tions (i.e., degree) k:
C(k) ∼ k−1. (4.1)Similar relations were also observed in several real networks, su
h as the web ofsemanti
 
onne
tions between two English words whi
h are synonyms [107℄. Thiso

urren
e of the s
aling relation between 
lustering and degree of the nodes ina network has often been taken as a signature for the existen
e of hierar
hi
almodular stru
ture in that network. However, re
ently, this s
aling relation wasshown to be a
tually an out
ome of degree-
orrelation bias in the usual de�nitionof 
lustering 
oe�
ient [109℄.It 
an be easily seen that this s
aling relation is not a ne
essary indi
ator forthe existen
e of either modularity or hierar
hy. For example, 
onsider a modularnetwork 
onsisting of N nodes and m modules of equal size. Let ea
h node havedegree k, with the links initially o

urring ex
lusively between nodes belonging tothe same module (i.e., the modules are isolated from ea
h other). To make thenetwork 
onne
ted we rewire a small fra
tion of the links keeping the degree ofea
h node �xed. Plotting 
lustering as a fun
tion of degree for this network willonly show verti
al spread of points at a single node degree value. Let us 
onsideranother example, this time a hierar
hi
al stru
ture, viz., the Cayley tree with bbran
hes at ea
h vertex. Again, it is easy to see that the 
lustering versus degree52
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Figure 4.3: S
hemati
 diagram of the hierar
hi
al modular network model (left) withthe modules o

urring at the various hierar
hi
al levels (l) indi
ated by broken lines, andthe 
orresponding adja
en
y matrix (right) where ρ1 indi
ates the density of 
onne
tionswithin and, ρl+1, between the di�erent modules at ea
h level l.
urve will not show the 
hara
teristi
 s
aling seen for the RB model. In fa
t, in thenext se
tion, we show that even for networks where both hierar
hy and modularityare present, it is not ne
essary that this s
aling relation between 
lustering andnode degree will hold.4.2 Hierar
hi
al modular networks: A modelHere we propose a general model for networks having modular as well as hierar
hi-
al stru
ture. Let us begin with a modular network 
onsisting of m modules, ea
h
ontaining n nodes. The 
onne
tivity (i.e., the probability of a link between anypair of nodes) within ea
h module is ρ1, while the 
onne
tivity between modulesis ρ2 (≤ ρ1). We now introdu
e hierar
hy by adding another set of m modules(ea
h having n nodes) with the same ρ1 and ρ2. The nodes belonging to thesetwo di�erent sets of modules are now 
onne
ted, but with a probability ρ3 (≤ ρ2).The resulting network has 2nm nodes and l = 2 hierar
hi
al levels (Fig. 4.3). Toin
rease the number of hierar
hi
al levels to l = 3, we add a similar network with
2nm nodes to the existing network and, as above, add links between these two net-works with a probability ρ4 (≤ ρ3). Thus, to get a network with l = h hierar
hi
allevels, the above pro
edure is repeated h − 1 times. The �nal network 
ontains
M = 2h−1m number of modules. Note that, all 
onne
tions between nodes aremade randomly. To redu
e the number of model parameters, we assume that the
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onne
tivities ρ1, . . . , ρh+1 are related as:
ρ2

ρ1
=

ρ3

ρ2
= · · · =

ρh+1

ρh
= r, (4.2)where, 0 ≤ r ≤ 1, the ratio of inter-modular 
onne
tions between two su

essivehierar
hi
al levels, is a 
ontrol parameter. By varying r, one 
an swit
h betweenisolated modular (r = 0) and homogeneous random (r = 1) networks, with inter-mediate values of r giving hierar
hi
al modular networks. We 
ompare betweennetworks having di�erent number of hierar
hi
al levels h, keeping the total numberof modules M and average degree 〈k〉 �xed.To 
onsider the e�e
t of hierar
hy in isolation, while keeping modularity �xed(e.g., as measured by the Newman modularity measure Q [72℄), we use a variant ofthe above model, where, ρ1 = 
onstant, while other 
onne
tivities are still relatedby

ρ3

ρ2
= · · · =

ρh+1

ρh
= r. (4.3)This implies that the average number of intra-modular (〈kintra〉) and inter-modular(〈kinter〉) 
onne
tions per node are also 
onstant 1.The sto
hasti
 
onstru
tion pro
edure of this network, along with the abilityto vary modularity (by 
hanging r) independently of the number of hierar
hi
allevels (h), makes it an extremely general model. In addition, as it is hierar
hi
alby 
onstru
tion, we 
an show that the 
riterion suggested in Ref. [107℄, namely,the s
aling relation between 
lustering and degree, is not a ne
essary 
onditionfor the existen
e of hierar
hi
al modularity. As shown in Fig. 4.4 (left), when themodules are random networks, the s
aling relation is 
learly absent for our modelnetwork. To 
ounter the possible argument that this failure of the relation is dueto the non-s
ale-free degree distribution, we have also 
onsidered the 
ase whereea
h of the modules is a BA network. For the entire network, although the inter-modular 
onne
tions are made randomly, the degree distribution is still s
ale-free.Even for this 
ase, a 
lear s
aling relation between 
lustering and degree is absent(Fig. 4.4 (right)).1Note that, 〈kintra〉 = ρ1

(

N
M

− 1
), and

〈kinter〉 = Nρ2

[

(m−1)
M

+ r
(

1
2

)h−1
+ · · · + rh−2

(

1
2

)2
+ rh−1

(

1
2

)

].
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Figure 4.4: Clustering 
oe�
ient Ci of the i-th node as a fun
tion of its degree ki for thehierar
hi
al modular network model proposed here, where ea
h module at l = 1 is (left) arandom ER network and (right) a s
ale-free BA network. The di�erent symbols indi
atenetworks with di�ering total number of hierar
hi
al levels, h. For both types of networks,the total number of nodes is N = 8192 with average intra-modular degree, 〈kintra〉 = 10,inter-modular degree, 〈kinter〉 = 5, and the ratio of inter-modular 
onne
tions betweentwo su

essive hierar
hi
al levels, r = 0.1. Note that, in neither 
ase is a s
aling relationobserved between Ci and ki, although the modules are arranged in a hierar
hi
al mannerby 
onstru
tion.4.3 Dynami
s on hierar
hi
al networks4.3.1 Linear Stability of EquilibriaTo look at the e�e
t of hierar
hy on network dynami
s, we 
onsider the linearstability of an arbitrarily 
hosen equilibrium state for a set of 
oupled di�erentialequations de�ning the time-evolution of the system. For a network of N nodes,a dynami
al variable xi is asso
iated with ea
h node i. The state of the system,
x, 
an be 
hara
terized by ẋ = f(x), where f is a general nonlinear fun
tion. Toinvestigate the stability around an arbitrary �xed point x

∗ (i.e., f(x)|x∗ = 0), we
he
k whether a small perturbation δx about x
∗ grows or de
ays with time. Thisperturbation evolves as

˙δx = Jx, (4.4)where, J is the Ja
obian matrix representing the intera
tions among the nodes:
Jij = ∂fi/∂xj |x∗ . As we are interested in the instability indu
ed through the
onne
tions of the network, rather than the intrinsi
 instability of individual un-
onne
ted nodes, we 
an (without mu
h loss of generality) set the diagonal element
Jii = −1. This implies that, in the absen
e of any 
onne
tions, the nodes are self-55
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Figure 4.5: (Left) Probability distribution for the largest real part of the eigenvaluesof the Ja
obian J , as a fun
tion of total number of hierar
hi
al levels, h (the intera
tionstrength parameter, σ2 = 0.05). (Right) Probability of stability for a hierar
hi
al mod-ular network as a fun
tion of σ2, with di�erent symbols 
orresponding to di�ering totalnumber of hierar
hi
al levels h. Link weights are 
hosen from a normal(0, σ2) distribu-tion. For all 
ases, the network 
onsists of N = 256 nodes with average intra-modulardegree, 〈kintra〉 = 10, inter-modular degree, 〈kinter〉 = 5, and the ratio of inter-modular
onne
tions between two su

essive hierar
hi
al levels, r = 0.1. At all hierar
hi
al levels
l > 1, the network is split into two sub-networks. At l = 1, ea
h subnetwork is splitinto m modules (l = 0). Thus, N = 256 nodes are divided equally among 2h−1m = 16modules, with the four 
urves 
orresponding to (�) h = 4, m = 2, (▽) h = 3, m = 4, (⋄)
h = 2, m = 8, and (◦) h = 1, m = 16. Note that, in
reasing h 
auses the transition toinstability to o

ur at a smaller value of σ2, implying that in
reasing hierar
hy in
reasesinstability.regulating, i.e., the �xed point x

∗ is stable. The behavior of the perturbation isdetermined by the largest real part, λmax, of the eigenvalues of J. If λmax > 0, aninitially small perturbation will grow exponentially with time, and the system willbe rapidly dislodged from the equilibrium state x
∗.The relation between the dynami
al properties and the stati
 stru
ture of thenetwork is provided by its adja
en
y matrix A (with Aij = 1, if nodes i and j are
onne
ted, and 0 otherwise). There is a dire
t 
orresponden
e between the natureof the matri
es J (spe
ifying the dynami
al behavior of perturbation) and A (whi
hdetermines the stru
ture of the underlying dire
ted network), be
ause Aij = 0implies Jij = 0. In our model, we have generated Jij by randomly 
hoosing the non-zero elements from a Gaussian distribution with zero mean and varian
e σ2. ForErdos-Renyi (ER) random networks, J is an unstru
tured random matrix and thelargest real part of its eigenvalues, λmax ∼ √

Nρσ2 −1, where ρ is the 
onne
tivityof the network, and σ measures the dispersion of intera
tion strengths [93℄. When56
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hi
al organization in 
omplex networksany of the parameters, N , ρ, or σ, is in
reased, there is a transition from stabilityto instability. The 
riti
al value at whi
h the transition to instability o

urs is
σc ∼ 1/

√
Nρ. This result, implying that 
omplexity promotes instability, has beenshown to be remarkably robust with respe
t to various generalizations [94, 95, 96,110℄.Here, using the above formalism, we examine the e�e
t of hierar
hy on thestability of equilibria when one of the network parameters (namely, σ) is varied.We study the 
riti
al value at whi
h the transition to instability o

urs, σc, as afun
tion of the total number of hierar
hi
al levels, h, keeping the total number ofmodules M �xed. We �nd that, with in
reasing h, the distribution of λmax shiftstowards more positive values (Fig. 4.5, left). As the system be
omes unstable when

λmax > 0, it follows that the probability of stability for the network de
reases within
reasing number of hierar
hi
al levels (Fig. 4.5, right).4.3.2 Syn
hronizationIt is of interest to look not only at the stability of equilibria for network dynami
s,but also at the stability of syn
hronized a
tivity in networks. Let us 
onsider anetwork of N identi
al os
illators. The time-evolution of this 
oupled dynami
alsystem is des
ribed by:
ẋi = F(xi) + ǫ

n
∑

j=1

LijH(xj). (4.5)Here, xi is a variable asso
iated with node i; F and H are evolution and outputfun
tions, respe
tively; ǫ is the strength of 
oupling; and L is the Lapla
ian matrix,de�ned as: Lii = ki, the degree of node i, Lij = −1 if nodes i and j are 
onne
ted,
0 otherwise. It has been shown that the linear stability of the syn
hronized state
xs (=x1 = . . . = xN ) 
an be determined by diagonalizing the variational equation(Eq. 4.5) into N blo
ks of the form, ẏi = [DF (s)+ǫλiDH(s)]yi, where yi representdi�erent modes of perturbation from the syn
hronized state. This is also referredto as the master stability equation [105℄. These equations have the same formbut di�erent e�e
tive 
ouplings αi = ǫλi. The syn
hronized state is stable, i.e.,the maximum Lyapunov exponent is in general negative, only within a boundedinterval [αA, αB] [111℄. Let the eigenvalues of the Lapla
ian matrix be arranged57
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Figure 4.6: (Left) Probability distribution of eigenvalues of the Lapla
ian L, as afun
tion of the total number of hierar
hi
al levels, h (r = 0.1). (Right) The ratio ofthe largest eigenvalue (λN ) to the se
ond smallest eigenvalue (λ2) as a fun
tion of r,the ratio of inter-modular 
onne
tions between two su

essive hierar
hi
al levels, withdi�erent symbols 
orresponding to di�ering total number of hierar
hi
al levels h. Forall 
ases, the network 
onsists of N = 256 nodes with average intra-modular degree,
〈kintra〉 = 10 and inter-modular degree, 〈kinter〉 = 5. At all hierar
hi
al levels l > 1, thenetwork is split into two sub-networks. At l = 1, ea
h subnetwork is split into m modules(l = 0). Thus, N = 256 nodes are divided equally among 2h−1m = 16 modules, with thefour 
urves 
orresponding to (�) h = 4, m = 2, (▽) h = 3, m = 4, (⋄) h = 2, m = 8,and (◦) h = 1, m = 16. Note that, in
reasing the number of hierar
hi
al levels leads todivergen
e of the eigenratio, implying that syn
hronization be
omes harder to a
hieve.as 0 = λ1 < λ2 ≤ · · · ≤ λn. Then, requiring all e�e
tive 
ouplings to lie withinthe interval αA < ǫλ2 ≤ · · · ≤ ǫλN < αB, implies that a syn
hronized state islinearly stable, if and only if, λN/λ2 < αB/αA. Thus, a network having a smallereigenratio λN/λ2, is more likely to show stable syn
hronized a
tivity.Here, we obtain the eigenvalues of the Lapla
ian L for a hierar
hi
al modularnetwork (Fig. 4.6, left) and observe the eigenratio λN/λ2 as a fun
tion of ratio ofthe inter-modular 
onne
tions between two su

essive hierar
hi
al levels, r, and thetotal number of hierar
hi
al levels, h. First, keeping the number of hierar
hi
allevels �xed, we vary the parameter r. We �nd that with de
reasing r, i.e., asthe number of 
onne
tions between two su

essive hierar
hi
al levels de
rease, theinstability of the syn
hronized state in
reases. Next, keeping the total number ofmodules �xed we in
rease the number of hierar
hi
al levels (h) in the network.Fig. 4.6 (right) shows that as the number of hierar
hal levels of the network isin
reased, λ2 de
reases, resulting in an in
reasing eigenratio. Thus, arranging themodules of a network in a hierar
hi
al fashion also makes a network di�
ult to
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Level 3Central Node

Level 2Level 1

Figure 4.7: S
hemati
 diagram of an optimal tree stru
ture with minimum average pathlength, where the highest degree (kmax = 3) of the network is �xed. The 
entral nodeand the three di�erent levels (l = 1, 2, 3) indi
ate a hierar
hi
al organization.syn
hronize.4.4 Evolution of hierar
hy in 
omplex networksIn the pre
eding 
hapter we have shown using a model, how modular network
an emerge in the real world through multi-
onstraint optimization. In this se
-tion, we generalize this model to understand how optimizing for 
ertain 
oexisting
onstraints on system performan
e 
an lead to hierar
hi
al 
on�guration of thenetwork.The network 
onstraints 
onsider here are similar to the ones in the previous
hapter:1. Minimizing the average path length: This is essential for rapid transportationof resour
es or propagation of information within a network. Further, in thepresen
e of noisy information 
hannels, signals are likely to be degradedduring transit between nodes. In su
h a system, redu
ing the average pathlength of the network will also in
rease the robustness of the system.2. Minimizing the total number of links in the system: Generally, ea
h link in59



Chapter 4. Hierar
hi
al organization in 
omplex networksa system has some asso
iated resour
e 
ost. Thus, a network having a largenumber of links will in
ur a high 
ost in terms of overheads for maintainingthe 
onne
tions.3. Minimizing the largest degree (kmax) of the network: This is asso
iated withredu
ing 
ongestion in any node, a 
riterion that is important in transporta-tion and information networks. E.g., in information transfer networks like theInternet, unless the maximum degree is limited within a reasonable bound,the hub nodes are likely to get 
logged with in
oming pa
kets. In so
ial net-works, this is related to the limited attention that ea
h individual 
an givetowards maintaining ea
h additional so
ial tie owing to time 
onstraints. Inaddition, for general dynami
al systems, de
rease in kmax is asso
iated within
reasing linear stability for the network dynami
s.As simultaneously optimizing a network for all three of the above 
onstraintsis a di�
ult problem, we �rst 
onsider a network having N nodes and N − 1links (the minimum number required to maintain 
onne
tivity) that automati
allysatis�es the 
onstraint of minimum link 
ost. We simplify the problem further by
onsidering the largest degree of the network, kmax, to be �xed, and seek to obtainthe tree stru
ture whi
h has minimum average path length. Su
h a network 
an be
onstru
ted as follows: (i) 
hoose a node to be the 
entral node for the network andatta
h kmax nodes to it. Thus, there will be kmax nodes in the �rst layer whi
h arelo
ated unit distan
e from the 
entral node, (ii) add kmax − 1 nodes to ea
h of thenodes in the �rst layer, (iii) 
ontinue this pro
edure until the pres
ribed numberof nodes in the network is a
hieved. In su
h a network all the nodes ex
ept thosein the outer layer have degree kmax.To prove that the above algorithm generates a network whi
h has the shortestaverage path length for a given value of kmax we use the method of indu
tion. Fora network with kmax +1 nodes, the algorithm generates a star 
on�guration wherethe 
entral node is 
onne
ted to the other kmax nodes. This has, by 
onstru
tion,the least average path length (≃ 2) among all possible network 
on�gurations withthe same number of nodes and links. Thus, for the set of kmax nodes belonging tothe �rst layer (l = 1) of the model network, the algorithm guarantees the shortestaverage path length. Let us now 
onsider nodes belonging to layers beyond the�rst one. If two nodes, i and j, are at same level n, then the distan
e between60
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al organization in 
omplex networksthese two nodes is given by
d(i, j) = 2 + d(p(i), p(j)), (4.6)where p(i) and p(j) are the parents of nodes i and j respe
tively, i.e., the nodesin level n − 1 to whi
h i and j are 
onne
ted. It is obvious that if d(p(i), p(j))is minimum, so is d(i, j), as the in
rement of 2 is the least possible length [=

d(i, p(i)) + d(j, p(j))℄ that one needs to add to the distan
e between the parents of
i and j to obtain d(i, j).Let us next 
onsider the 
ase when the nodes are not at same level, e.g., letnode i be at level m and node j be at level n < m. Thus, the shortest distan
ebetween the jth node and a node in level m is m − n. Therefore, the distan
ebetween nodes i and j is given by

d(i, j) = (m − n) + d(pm−n(i), j). (4.7)where (pm−n(i) is a (m − n)-th grandparent of node i, whi
h o

urs in the level
m − (m − n) = n. As the nodes pm−n(i) and j o

ur at the same n-th level,for whi
h d(pm−n(i), j) has been shown to be minimal by the argument in theprevious paragraph, d(i, j) is minimum even when they belong to di�erent levels.Thus, the network 
onstru
ted by the algorithm proposed above will have theminimum average path length for a �xed maximum degree among all possiblenetwork 
on�guration with same number of nodes and links (Fig. 4.7).We now 
al
ulate how the number of levels in the hierar
hi
al tree is related tothe maximum degree kmax. The total number of nodes in a model network with rlevels, 
onstru
ted a

ording to the above algorithm, is given by,

f(kmax, r) = 1 + kmax + kmax(kmax − 1) + · · ·+ kmax(kmax − 1)r−1

=
kmax(kmax − 1)r − 2

kmax − 2
. (4.8)Thus, the total number of nodes in the network, N , will be bounded by f(kmax, r) ≤

N ≤ f(kmax, r − 1). For large r and kmax, we 
an repla
e the above relation withan equality, giving r = log N
log(kmax−1)

. This expression for the number of hierar
hi
allevels, r, expressed in terms of network size and maximum degree 
an be 
onsidered61
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Figure 4.8: Variation of the largest degree, kmax, for the optimal network with theparameter α for a network with N = 256.as a measure of the average path length for the network. Thus, the 
onstraint ofminimizing the path length is seen to be equivalent to a 
onstraint di
tating theminimization of the number of levels.So far, we had been 
onsidering the simple problem of a network with �xedlargest degree kmax. To 
onstru
t networks that simultaneously satisfy the 
on-straints on minimum number of levels and least maximum degree, we de�ne a 
ost(or energy) fun
tion in terms of r and kmax:
E = αkmax + (1 − α)

log N

log(kmax − 1)
. (4.9)Here, the parameter α ∈ [0, 1] determines the relative importan
e of the 
onstrainton largest degree with respe
t to that on the number of hierar
hi
al levels. Forany spe
i�ed value of α, the optimal network is the one whi
h has minimum E.Note that, for a network with �xed N , as r is expressed in terms of kmax, the 
ostis ex
lusively a fun
tion of the largest degree. Therefore, to obtain the minima of

E, we 
an di�erentiate it with respe
t to kmax and by equating the result to 0, weobtain the following impli
it relation for the optimal value of kmax:
(1 − α)

α
log N = (kmax − 1) [log(kmax − 1)]2 . (4.10)Thus, for a given N and α, using the above relation we 
an obtain the kmax for a62
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hi
al organization in 
omplex networksnetwork whi
h is the optimal 
on�guration that simultaneously satis�es the 
on-strains spe
i�ed above. Fig. 4.8 indi
ates that as α → 0, the optimal network hasa star 
on�guration, while for α = 1, it is a 1-dimensional 
hain. At intermediatevalues of α, the network will resemble the hierar
hi
al 
on�guration s
hemati
allyshown in Fig. 4.7.4.5 Dis
ussionIn Chapter 2, we have shown that modularity in random networks leads to higherprobability of instability for the equilibria of the network dynami
s. The workpresented here is an extension and generalization of the above result, demonstratingthat in
reased number of hierar
hi
al levels also tend to destabilize these equilibria.Moreover, the same phenomena is observed for the stability of syn
hronized a
tivityin a network with respe
t to both in
reasing modularity, as well as, hierar
hy. Thisraises the question of how 
an systems with hierar
hi
al modular stru
tures existin nature, where they have to be robust enough to survive 
onstant environmental�u
tuations. To answer this, we note that many 
onstraints operate on networkso

urring in real life, su
h as, the minimization of (a) resour
e 
ost for maintaininglinks and (b) the time required for 
ommuni
ating between nodes, in addition to(
) the linear instability of equilibria, whi
h together 
an make modular networksthe optimal 
on�guration [85℄.However, while this 
an explain the ubiquity of modularity, it does not answerthe question of why hierar
hi
al organization is so 
ommon in nature. The fa
tthat tree-like networks with extensive rami�
ations o

ur so often in the 
ontextof resour
e transport (e.g., the 
ir
ulatory system in plants and animals), suggeststhat additional 
onstraints related to the fun
tional goal of maintaining steady �owat high �ux may be at work in this 
ase. One su
h 
onstraint is the need to redu
e
ongestion at any point in the system, whi
h is equivalent to minimizing the largestdegree in the network. We have shown that introdu
ing this 
onstraint, 
an lead tonetworks with hierar
hi
al organization, when operating in 
onjun
tion with thepreviously introdu
ed 
onstraints on resour
e 
ost for links, and 
ommuni
ationtime between nodes. Another possible 
andidate for a 
onstraint that may giverise to non-trivial mesos
opi
 organization is the need to minimize wiring 
ost, the
63
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hi
al organization in 
omplex networkstotal geographi
 length for all links in the network [92℄. This is appli
able whenthe network is embedded on physi
al (as opposed to topologi
al) spa
e, so thatthe wiring 
ost 
an been de�ned as the sum of the Eu
lidean distan
es betweenall 
onne
ted pairs of nodes. As many of the networks that show hierar
hi
alorganization (su
h as the Internet and the network of 
orti
al areas in the brain)indeed o

ur on a physi
al spa
e, with the geographi
 link 
ost being related tothe metri
 distan
e between nodes, this is a possibility that is worth pursuing.
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5Inferring network stru
ture fromdynami
s
Having analyzed several network models for understanding the dynami
al 
onse-quen
es of modularity and hierar
hy, in this 
hapter we 
onsider how their existen
ein real-world 
omplex systems 
an be inferred from the knowledge of dynami
s ofthe 
omponent nodes. We �rst demonstrate the possibility of re
onstru
ting net-works through an analysis of the temporal information on intera
tions between its
omponents, by using the behavioral data of individuals belonging to a troop ofma
aque monkeys. This example shows that the knowledge of dynami
s of a sys-tem 
an reveal its underlying modular network stru
ture, whi
h has been veri�edby later �eld observations. To re
onstru
t a mu
h larger network from the time-series data of its 
omponents, we 
onsider the example of �nan
ial markets. These
omplex systems have many intera
ting elements and exhibit large �u
tuations intheir asso
iated observable properties, su
h as sto
k pri
e or market index.In Se
. 5.1 we analyze the stru
ture of a bonnet ma
aque so
ial organization.Using data on their grooming and approa
h behavior, we determine the networkof intera
tions between the individuals 
omprising a troop. We �rst show thatgrooming frequen
y, grooming time and approa
h frequen
y between ea
h pair, allhave exponential distributions. We were able to determine the distin
t groups inthe so
ial network of female ma
aques, whereas that for the males do not show anysu
h unambiguous stru
ture. Next, we 
onsider the Seyfarth model, a theoreti
almodel for reprodu
ing the patterns of so
ial behavior observed in a primate troop.We verify the e�
a
y of the model in explaining the observed group behavior and65



Chapter 5. Inferring network stru
ture from dynami
slook at possible 
ausative fa
tors behind female grooming intera
tion.In Se
. 5.2, by analyzing the 
ross-
orrelation matrix of sto
k pri
e �u
tuationsthrough spe
tral te
hniques, we reveal the underlying network of intera
tions be-tween sto
ks in di�erent markets. We �nd that emerging markets (e.g., NSE ofIndia) exhibit stronger 
orrelations 
ompared to developed markets (e.g., NYSE ofUSA). In Se
. 5.3, we show through a simple multi-fa
tor model, that most of theobserved 
orrelations among sto
ks in emerging markets are due to e�e
ts 
ommonto the entire market (e.g., external signals su
h are news breaks or intrinsi
 globalsignals su
h as market indi
es). Coversely, 
orrelations arising through dire
t inter-a
tions between related sto
ks (e.g., between those belonging to the same businessse
tor) are weak. Our results suggest that the emergen
e of an internal stru
ture,
omprising multiple groups of strongly 
oupled 
omponents, is a signature of mar-ket evolution. This work also has rami�
ations for other similar 
omplex systemsthat develop over time, as our analysis provides tools for distinguishing dynami
al
orrelations that arise as a result of mutual intera
tions between nodes, as opposedto those arising through a 
ommon response to a global signal.5.1 Determining the so
ial organization of BonnetMa
aques5.1.1 So
ial stru
ture in primatesPrimates are among the most so
ial of all mammalian spe
ies, bonding togetherfor the purpose of survival. Su
h bonding between pairs of individuals is extremelyimportant in terms of in
reasing the 
ohesiveness of the group. This has imme-diate relevan
e in making the group more e�e
tive in gathering food, prote
tingthemselves from predators, and, other fun
tions that are vital for survival. Thus,the pattern and quality of so
ial intera
tions among the individuals have a dire
timpa
t on the fun
tional properties of the system. Primates do not intera
t atrandom but rather has 
ertain 
hara
teristi
 patterns of so
ial behavior. Thesemay be invariant with respe
t to group size, age, 
omposition and habitat quality.Indeed, su
h patterns de�ne the stru
ture of so
ial organization in the spe
ies.A 
ommonly observed behavior that is often used to infer su
h patterns is that66
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sof grooming between individuals. As opposed to 
on�i
t or aggressive behavior,grooming is indi
ative of 
ooperative behavior. In addition to its bene�t in remov-ing e
to-parasites, grooming results in the formation and fostering of a�liativerelationships between individuals that 
ould help them in other spheres of a
tivity,su
h as building a 
oalition against a third (possibly more powerful) individual.Another 
ommon so
ial intera
tion among primates that is indi
ative of therelative status of two individuals is their behavior when one animal approa
hesthe other. It is seen that the aggressive approa
h of one individual is re
ipro
atedby the retreat of the other individual, a pattern that is almost invariant over timefor the pair involved. As the dire
tion of su
h approa
h-retreat intera
tions isrelatively stable over time, one 
an therefore de�ne relative dominan
e betweenthe two individuals. Moreover, these dominan
e relations are also transitive, i.e.,if A is dominant to B and B is dominant to C, A is invariably dominant to C. Thus,the members of a primate troop 
an be arranged in a linear dominan
e hierar
hy,with a rank asso
iated with ea
h individual. Usually, �eld studies 
on
entrate onthe so
ial intera
tions between members of the same sex in a troop, as male-femaleintera
tions involve additional fa
tors. Thus, the data for so
ial intera
tions in agroup of primates is 
olle
ted for the two subsets: one of all female members andthe other of all male members.To understand grooming behavior, simple mathemati
al models of intera
tionsbetween individuals in a group have been proposed. These intera
tions de�nethe so
ial network of the primate troop. R. M. Seyfarth has introdu
ed one su
htheoreti
al model to understand 
ertain features that are 
ommonly observed inthe grooming behavior of adult female primates a
ross several spe
ies, viz., (i)higher ranked individuals re
eive more grooming than others, and, (ii) majority ofgrooming o

urs between individuals of adja
ent rank. Using this model, whereevery individual follows the same strategy in 
hoosing grooming partners, Seyfarthhas shown that relatively 
omplex features of so
ial behavior 
an be explained interms of simple prin
iples governing the a
tions of individuals.5.1.2 Bonnet Ma
aquesIn the work reported here, we shall be fo
using on one parti
ular primate spe
ies,the bonnet ma
aque (Ma
a
a radiata), whi
h is the most 
ommonly observed pri-67
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smate in peninsular India. Members of this spe
ies usually live in large troops
ontaining multiple males and females of 8 to 60 individuals, where the adult indi-viduals develop strong a�liative relationships with ea
h other [112℄. Female bonnetma
aques usually remain with the group in whi
h they are born throughout theirlives. As adults they form stable matrilineal dominan
e hierar
hies, with daugh-ters having dominan
e ranks just below those of their mothers. Among sisters,dominan
e is ordered in a reverse 
hronologi
al order, with the youngest being themost dominant. The 
lose a�liative relations between females is demonstratedthrough high levels of allogrooming 1 ex
hanged between both geneti
ally relatedand unrelated individuals a
ross the dominan
e hierar
hy.In 
ontrast to females, adult (as well as juvenile) bonnet ma
aque males usuallyemigrate from the troops in whi
h they were born. Another marked di�eren
efrom the females is that adult males form unstable dominan
e hierar
hies. Bydire
t aggression and formation of 
oalitions, ma
aque males may move up fromlow ranks o

upied while very young to relatively high positions when they aremature and in peak physi
al 
ondition. Conversely, older ma
aque males may slipdown the hierar
hy to lower ranks. Although, just as their female 
ounterparts,ma
aque males also demonstrate high levels of allogrooming and other a�liativebehavior towards ea
h other, in marked 
ontrast to females, there is absen
e ofany 
orrelation between individual dominan
e ranks and the levels of a�liativebehavior displayed or re
eived.5.1.3 Des
ription of the datasetThe analysis presented here is based on data a
quired in the �eld by the groupof Prof. Anindya Sinha (NIAS, Bangalore) through demographi
 monitoring andbehavioral observations on a troop of bonnet ma
aques inhabiting 1 square km ofdry de
iduous s
rubland and mixed forests in the GKVK 
ampus of the Universityof Agri
ultural S
ien
es in Bangalore, India. The original observations were 
arriedout for over 1200 hours on two troops o

upying adja
ent overlapping home rangesduring Mar
h 1993-September 1995. We have sele
ted the larger of these twogroups for our analysis, whi
h 
onsisted of 12 adult males and 11 adult females.Data 
olle
ted in
lude information about (i) allogrooming frequen
y GF (measured1Grooming performed by one individual on another is 
alled allogrooming 68
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Figure 5.1: The so
ial network of (a) female and (b) male members of the bonnetma
aque troop, where the intera
tion strength between ea
h pair of individuals is deter-mined by their 
orresponding grooming frequen
y (GF).for every pair of giving and re
eiving individuals as grooming bouts/hour), (ii)allogrooming time GT (measured for the pair of giving and re
eiving individualsin terms of hours) and (iii) approa
h frequen
y AF (measured as the number ofapproa
hes initiated by one individual towards another per hour).5.1.4 Distribution of intera
tion strengthsWe have 
onstru
ted the network of so
ial intera
tions in the ma
aque troop byusing the data des
ribed above, where nodes represent the individual members, andlinks represent the relation between them in terms of GF, GT or AF (Fig. 5.1).Note that, the network is dire
ted as, in general, the relation between a pair ofindividuals is not symmetri
. For example, the time spent by individual i ingrooming individual j may not equal the time j spends in grooming i. Ea
h linkof the network has an asso
iated weight, wij, whi
h is proportional to GF, GT orAF, depending on whi
h relation is being used to 
onstru
t the so
ial network.We �rst 
onsider the distribution of weights in the links of the network. Formany 
omplex networks o

urring in the real world, this distribution is seen tohave either a power-law (e.g., in air-transportation network), or a log-normal (e.g.,in the international trade network) nature. This is indi
ative of signi�
ant levels69
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Figure 5.2: The distribution of intera
tion strengths, de�ned in terms of (a) groomingfrequen
y (GF), (b) grooming time (GT), and (
) approa
h frequen
y (AF), for both thefemale and male ma
aque so
ial networks. The data indi
ates an exponential nature forall three distribution.of heterogeneity in the intera
tion strengths of the network. For so
ial networks,quantifying the strength of intera
tions is often not possible, whi
h makes the de-termination of the link weight distribution for su
h systems a very di�
ult problem.Fortunately, in the 
ase of ma
aque so
ial network, the intera
tion strengths 
anbe quanti�ed in terms of their grooming and approa
h behavior. Fig 5.2 indi
atesthat for both the male and female networks, the strength distribution seems tode
ay exponentially. The impli
ation of relative homogeneity in the link weightssuggests that this so
ial network is very di�erent in this respe
t from the networksmentioned above. Moreover, the relatively fast de
ay in the distribution of linkweights for the males indi
ates a weaker degree of so
ial intera
tions among themas 
ompared to the females.5.1.5 Community stru
ture in ma
aque so
ial networkWe next test the utility of a network des
ription in allowing us to infer the existen
eof subsets whose members are strongly bound to ea
h other. This is possiblethrough the determination of 
ommunity stru
ture in the network and verifying itwith empiri
ally observed behavior. We have attempted partitioning the networkinto several 
losely knit 
ommunities (or modules) using GF, GT and AF. The
ommunity in a weighted network is de�ned as a group of nodes that are stronglyinter
onne
ted, i.e., have links among themselves with higher weights, as 
ompared70
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sTable 5.1: Modular de
omposition of the male and female bonnet ma
aque so
ial net-works, indi
ating the membership of individuals in di�erent modules. Ea
h individualis indi
ated by a number that 
orresponds to its rank in the linear dominan
e hierar-
hy, with `1' 
orresponding to the most dominant. The number of 
ommunities obtainedis indi
ated by m, whereas the maximum modularity of the empiri
al network and the
orresponding randomized network is represented by Q and Qrand respe
tively.Gender Type Q m Qrand Modular identityFemale GF 0.121 2 0.081±0.017 (1 2 3 4 5 10) (6 7 8 9 11)GT 0.140 2 0.098±0.021 (1 2 3 4 5 10) (6 7 8 9 11)AF 0.110 2 0.073±0.020 (1 2 3 4 5 10) (6 7 8 9 11)Male GF 0.085 2 0.130±0.025 (1 2 3 4 9 12) (5 6 7 8 10 11)GT 0.165 4 0.137±0.024 (1 2 3) (4 5) (6 8 10) (7 9 11 12)AF 0.240 4 0.143±0.025 (1 2 3 6 7) (4 5 8) (9 11) (10 12)
to links with other nodes whi
h belong outside the 
ommunity. We determine themodules by obtaining the optimal partitioning of the network, that 
orrespondsto the partition having the maximum value of the modularity measure Q [98℄.Table 5.1 indi
ates the di�erent 
ommunity stru
tures obtained for both the maleand female ma
aque network by applying this method.For the female ma
aques, the 
ommunities determined from the three di�erentso
ial networks (de�ned in terms of GF, GT and AF) are identi
al, indi
ating thatthis modular stru
ture is signi�
ant and might be observed in other so
ial behavior.This is veri�ed by subsequent �eld observations 
arried out at a later period (endof 1995) when it was seen that the female ma
aques had split into two distin
ttroops, with the membership of ea
h exa
tly mat
hing the results of our networkanalysis. However, for male ma
aques, the modular de
omposition yields di�erent
ommunities a

ording to the type of so
ial network used. To 
he
k the statisti
alsigni�
an
e of the determined 
ommunity stru
ture, we 
ompare the partitioningof the empiri
al network with its randomized version. The randomized networksare obtained by shu�ing the weights of the links. The average Qrand for 100 su
hrealizations is 
ompared with the Q of the empiri
al network. The result againsuggests that, while the modular de
omposition of the female network is indeedsigni�
ant, this is not so for the male network.
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Figure 5.3: Relation between the rank of a ma
aque with (a) grooming re
eived, Gr,(b) grooming given, Gg, and (
) the ratio Gr/Gg.5.1.6 From individual strategy to so
ial behaviorIn this se
tion we fo
us ex
lusively on the female members of the troop, as theirdominan
e hierar
hy is stable unlike that for the males. Here, we investigate howthe observed intera
tion stru
ture 
an arise from a 
ommon set of strategies orprin
iples governing the sele
tion of intera
tion partner, that are followed by ea
hindividual member of the troop. Using our data, we test the theoreti
al modelproposed by Seyfarth for des
ribing so
ial behavior in monkeys.Seyfarth modelIn this model, a number of adult females are arranged in a linear rank order thatde�nes priority of a

ess to resour
es. Some of the individuals are related to ea
hother in terms of 
ommon an
estry. Every individual follows the same behavioralstrategy, viz., distribute half of their grooming among 
lose relatives (kin), and,the other half among unrelated animals in dire
t proportion to their ranks (withthe most dominant animal getting top preferen
e). Using this strategy, everyindividual is allowed to intera
t with others, ea
h pursuing her goal within the
onstraints imposed by 
ompetition. After a period of intera
tions, the pattern72
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RankFigure 5.4: Relation between the rank of a ma
aque with (a) the frequen
y of approa
hre
eived per hour, Ar and (b) the frequen
y of approa
h initiated per hour, Ag.of grooming behavior is obtained whi
h is then 
ompared with data from a
tualgroups. Simulations of the model show that the network stru
ture 
onstru
ted onthe basis of the intera
tions are relatively una�e
ted by variation in the number ofkin, group size, the amount of time available for grooming, or the relative strengthof an individual's attra
tion to kin and her attra
tion to those of higher status.Testing the Seyfarth modelWe have tried to verify the basi
 prin
iples of the Seyfarth model by testing it usingthe bonnet ma
aque dataset. We �rst 
al
ulate the grooming given and re
eivedby ea
h ma
aque. For an individual i, the grooming re
eived is the weighted in-degree, Gr
i =

∑

j wij , while the grooming given is the weighted out-degree Gg
i =

∑

i wij . We �nd that, apart from the highest ranked ma
aque, grooming re
eivedby all other individuals is approximately the same (Fig. 5.3). This is in signi�
ant
ontrast to the predi
tion of the Seyfarth model, a

ording to whi
h the groomingre
eived should in
rease with rank. Next, we look at the variation of groominggiven by the ma
aque with its rank. Ex
ept for the two highest ranked ma
aques,
Gg de
reases with rank, indi
ating the 
ompetition among individuals. By plottingthe ratio of grooming re
eived to the grooming given by a ma
aque, Gr/Gg, alongwith its rank, we show that: (i) for the upper part of the dominan
e hierar
hythere is a positive 
orrelation, but (ii) for lower ranking females, the 
orrelation73
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Rank differenceFigure 5.5: Relation between rank di�eren
e of ma
aque with (a) average groomingre
eived, 〈Gr〉, from low rank individual and (b) average grooming given, 〈Gg〉, to thelow rank individual. The 
urves are the best �t for the data and indi
ate negative
orrelation.between rank and Gr/Gg is not obvious.Next, we look at a di�erent type of so
ial intera
tion, namely the frequen
yof approa
h behavior between individuals. In Fig. 5.4, we plot the number oftimes an individual is approa
hed per hour, Ar, against its rank and �nd them tobe un
orrelated. However, when we plot the frequen
y of approa
hes initiated perhour, Ag, against the rank of the individual, we �nd signi�
ant positive 
orrelation.This indi
ates that the higher ranking females approa
h most other members ofthe group, but the reverse does not happen.Next, we test the re
ipro
ity assumption of Seyfarth model in the grooming be-havior of ma
aque, a

ording to whi
h ea
h individual regardless of its own rankalways tries to groom the highest ranked individual who is available. Here, we testit against an alternative hypothesis, that an individual may 
hoose a groomingpartner who is ranked higher a

ording to the pre
eding strategy, but, 
hoosesrandomly when the available partners are all ranked lower than it. In Fig. 5.5, weplot the amount of grooming re
eived by a higher ranked individual from a lowerranked partner, against their rank di�eren
e. We 
ompare this to the groominggiven by a higher ranked individual to a lower ranked partner. In both of these
ases, we �nd that as the rank di�eren
e in
reases, the amount of grooming de-
reases. However, grooming re
eived by a higher ranked individual from one at a74
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distFigure 5.6: Relation between the kinship distan
e, Kdist, between ma
aque individualswith (a) average grooming, 〈G〉, and (b) average rank di�eren
e, Rdist.lower rank shows a steeper de
ay 
ompared to the 
orresponding data for groom-ing given. This indi
ates that during the quest for grooming partners, a ma
aqueindividual may be using the following guiding prin
iples: (i) rank is more impor-tant while grooming a higher ranked individual, but (ii) it is less signi�
ant whengrooming a lower ranked ma
aque. This indi
ates the non-re
ipro
al nature ofso
ial ties in this system.Finally, we look at the role of kinship distan
e between individuals on the bon-net ma
aque grooming behavior. To de�ne the kinship distan
e, we �rst 
onstru
tthe family tree, whi
h is a 
hart representing relationships between individuals interms of 
ommon an
estry. The path length between two individuals on this tree isde�ned as the kinship distan
e (Kdist) between them. Thus, the distan
e betweenmother and daughter is 1, whereas the distan
e between sisters is 2 and so on.We plot the average grooming between pairs of individuals against their kinshipdistan
e in Fig. 5.6. Our results suggest that, grooming de
reases as the kinshipdistan
e in
reases. Thus distan
e between kin does matter in ma
aques when
hoosing a grooming partner. However, the in
rease in kinship distan
e betweentwo individuals is also asso
iated with a 
orresponding in
rease in rank di�eren
e,

Rdist. Thus, whether the in
rease in average grooming is ex
lusively an out
omeof the in
rease in Kdist needs to be investigated further.
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ture from dynami
s5.2 Re
onstru
ting the internal stru
ture of a �-nan
ial marketIn order to re
onstru
t a mu
h larger network from the time-series data of its
omponents, we now 
onsider the example of �nan
ial markets. By analyzingthe 
ross-
orrelation matrix C of sto
k pri
e �u
tuations in the National Sto
kEx
hange (NSE) of India, we un
over the stru
ture of intera
tions between thesto
ks that are traded in that market.5.2.1 Finan
ial market: A 
omplex systemFinan
ial markets 
an be 
onsidered as 
omplex systems having many intera
tingelements and exhibiting large �u
tuations in their asso
iated observable properties,su
h as sto
k pri
e or market index [113, 114℄. The state of the market is governedby intera
tions among its 
omponents, whi
h 
an be either traders or sto
ks. Inaddition, market a
tivity is also in�uen
ed signi�
antly by the arrival of externalinformation. Statisti
al properties of sto
k pri
e �u
tuations and 
orrelations be-tween pri
e movements of di�erent sto
ks have been analyzed by physi
ists in orderto understand and model �nan
ial market dynami
s [115, 116℄. The �u
tuationdistribution of sto
k pri
es is found to follow a power law with exponent α ∼ 3, theso-
alled �inverse 
ubi
 law� [117, 118℄. This property is quite robust, and has beenseen in developed as well as emerging markets [85℄. On the other hand, it is not yetknown whether the 
ross-
orrelation behavior between sto
k pri
e �u
tuations hasa similar universal nature. Although the existen
e of 
olle
tive modes have beeninferred from the study of market dynami
s, su
h studies have ex
lusively fo
usedon developed markets, in parti
ular, the New York Sto
k Ex
hange (NYSE).To un
over the stru
ture of intera
tions among the elements in a �nan
ial mar-ket, physi
ists primarily fo
us on the spe
tral properties of the 
orrelation matrix ofsto
k pri
e movements. Pioneering studies investigated whether the properties ofthe empiri
al 
orrelation matrix di�ered from those of a random matrix that wouldhave been obtained had the pri
e movements been un
orrelated [119, 120℄. Su
hdeviations from the predi
tions of random matrix theory (RMT) 
an provide 
luesabout the underlying intera
tions between various sto
ks. It was observed that,
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ture from dynami
swhile the bulk of the eigenvalue distribution for the 
orrelation matrix of NYSE andTokyo Sto
k Ex
hange follow the spe
trum predi
ted by RMT [119, 120, 121, 122℄,the few largest eigenvalues deviate signi�
antly from this. The largest eigenvaluehas been identi�ed as representing the in�uen
e of the entire market, 
ommonfor all sto
ks, whereas, the remaining large eigenvalues are asso
iated with thedi�erent business se
tors, as indi
ated by the 
omposition of their 
orrespondingeigenve
tors [123, 121℄. The intera
tion stru
ture of sto
ks in NYSE have beenre
onstru
ted using �ltering te
hniques implementing matrix de
omposition [124℄or maximum likelihood 
lustering [125℄.While it is generally believed that sto
k pri
es in emerging markets tend to berelatively more 
orrelated than the developed ones [126℄, there have been very fewstudies of the former in terms of analyzing the spe
tral properties of 
orrelationmatri
es [127, 110, 128, 129℄. Here, we analyze the 
ross-
orrelations among sto
ksin the Indian �nan
ial market, one of the largest emerging markets in the world.5.2.2 The �nan
ial market dataThe National Sto
k Ex
hange (NSE) is the largest sto
k market in India. Wehave 
onsidered the daily 
losing pri
e data of 201 sto
ks (see Table I) traded inNSE from Jan 1996 to May 2006, whi
h 
orresponds to 2607 days. This data isobtained from the NSE web-site [130℄. The sele
ted sto
ks were traded over theentire period 1996-2006 and had the minimum number of missing data points (i.e.,days for whi
h no pri
e data is available). For 
omparison we also 
onsider thedaily 
losing pri
e of 434 sto
ks of NYSE belonging to the S&P 500 index overthe same period as the Indian data. However, the total number of working days isslightly di�erent, viz., 2622 days. This data was obtained from the Yahoo! Finan
ewebsite [131℄. In all our analysis, while 
omparing with the NSE data, we haveused multiple random samples of 201 sto
ks ea
h, from the set of 434 NYSE sto
ks.5.2.3 The Return Cross-Correlation MatrixTo observe 
orrelation between the pri
e movements of di�erent sto
ks, we �rstmeasure the pri
e �u
tuations su
h that the result is independent of the s
aleof measurement. If Pi(t) is pri
e of the sto
k i = 1, . . . , N at time t, then the77
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Figure 5.7: The probability density fun
tion of the elements of the 
orrelation matrix
C for 201 sto
ks in the NSE of India and NYSE for the period Jan 1996-May 2006. Themean value of elements of C for NSE and NYSE, 〈Cij〉, are 0.22 and 0.20 respe
tively.(logarithmi
) pri
e return of the ith sto
k over a time interval ∆t is de�ned as

Ri(t, ∆t) ≡ ln Pi(t + ∆t) − ln Pi(t). (5.1)As di�erent sto
ks have varying levels of volatility (measured by the standarddeviation of its returns) we de�ne the normalized return,
ri(t, ∆t) ≡ Ri − 〈Ri〉

σi

, (5.2)where σi ≡
√

〈R2
i 〉 − 〈Ri〉2, is the standard deviation of Ri and 〈. . .〉 representstime average over the period of observation. We then 
ompute the equal time
ross-
orrelation matrix C, whose element

Cij ≡ 〈rirj〉, (5.3)represents the 
orrelation between returns for sto
ks i and j. By 
onstru
tion, Cis symmetri
 with Cii = 1 and Cij has a value in the domain [−1, 1]. Fig. 5.7 showsthat, on the average 
orrelation among sto
ks in NSE is larger 
ompared to thesto
ks in NYSE. This supports the general belief that developing markets tend tobe more 
orrelated than developed ones. To understand the reason behind thisex
ess 
orrelation, we perform an eigenvalue analysis of the 
orrelation matrix.
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s5.2.4 Spe
tral properties of 
orrelation matrixIf the N return time series of length T are mutually un
orrelated, then the resultingrandom 
orrelation matrix is 
alled a Wishart matrix, whose statisti
al propertiesare well known [132℄. In the limit N → ∞, T → ∞, su
h that Q ≡ T/N ≥ 1, theeigenvalue distribution of this random 
orrelation matrix is given by
Prm(λ) =

Q

2π

√

(λmax − λ)(λ − λmin)

λ
, (5.4)for λmin ≤ λ ≤ λmax and, 0 otherwise. The bounds of the distribution are given by

λmax,min = [1 ± (1/
√

Q)]2. We now 
ompare this with the statisti
al properties ofthe empiri
al 
orrelation matrix for the NSE. In the NSE data, there are N = 201sto
ks ea
h 
ontaining T = 2606 returns; as a result Q = 12.97. Therefore, itfollows that, in the absen
e of any 
orrelation among the sto
ks, the distributionshould be bounded between λmin = 0.52 and λmax = 1.63. As observed in devel-oped markets [119, 120, 121, 122℄, the bulk of the eigenvalue spe
trum P (λ) forthe empiri
al 
orrelation matrix is in agreement with the properties of a random
orrelation matrix spe
trum Prm(λ), but a few of the largest eigenvalues deviatesigni�
antly from the RMT bound (Fig. 5.8).However, the number of these deviating eigenvalues are relatively few for NSE
ompared to NYSE. We verify that, these outliers are not an artifa
t of the �nitelength of the observation period, by randomly shu�ing the return time series forea
h sto
k, and then re-
al
ulating the resulting 
orrelation matrix. The eigenvaluedistribution for this surrogate matrix mat
hes exa
tly with the random matrixspe
trum Prm(λ), indi
ating that the outliers are not due to �measurement noise�but are genuine indi
ators of 
orrelated movement among the sto
ks. Therefore,by analyzing the deviating eigenvalues, we may be able to obtain an understandingof the stru
ture of intera
tions between the sto
ks in the market.Properties of the �deviating� eigenvaluesThe largest eigenvalue λ0 for the NSE 
ross-
orrelation matrix is more than 28times greater than the maximum predi
ted by RMT. This is 
omparable to NYSE,where λ0 is about 26 times greater than the random matrix upper bound. Upontesting with syntheti
 US data 
ontaining same number of missing data points as79
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Figure 5.8: The probability density fun
tion of the eigenvalues of the 
orrelation matrix
C for NSE (left) and NYSE (right). For 
omparison, the theoreti
al distribution predi
tedby Eq. (5.4) is shown using broken 
urves, whi
h overlaps with the distribution obtainedfrom the surrogate 
orrelation matrix generated by randomly shu�ing ea
h time series.In both �gures, the inset shows the largest eigenvalue.in the Indian market, we observed that λ0 remains almost un
hanged 
omparedto the value obtained from the original US data. The 
orresponding eigenve
torshows a relatively uniform 
omposition, with all sto
ks 
ontributing to it and allelements having the same sign (Fig. 5.9, a). As this is indi
ative of a 
ommon fa
torthat a�e
ts all the sto
ks with the same bias, the largest eigenvalue is asso
iatedwith the market mode, i.e., the 
olle
tive response of the entire market to externalinformation [119, 121℄.Of more interest for understanding the market stru
ture are the intermediateeigenvalues, i.e., those o

urring between the largest eigenvalue and the bulk of thedistribution predi
ted by RMT. For the NYSE, it was shown that 
orrespondingeigenve
tors of these eigenvalues are lo
alized, i.e., only a small number of sto
ks,belonging to similar or related businesses, 
ontribute signi�
antly to ea
h of thesemodes [123, 121℄. However, for NSE, although the Te
hnology and the IT & Tele-
om sto
ks are dominant 
ontributors to the eigenve
tor 
orresponding to the thirdlargest eigenvalue, a dire
t inspe
tion of eigenve
tor 
omposition does not yield astraightforward interpretation in terms of a related group of sto
ks 
orrespondingto any parti
ular eigenvalue (Fig. 5.9). This implies that distin
t groups, whosemembers are mutually 
orrelated in their pri
e movement, do exist in NYSE, whiletheir existen
e is far less 
lear in NSE.To obtain a quantitative measure of the number of sto
ks 
ontributing to a giveneigenmode, we 
al
ulate the inverse parti
ipation ratio (IPR), de�ned for the ktheigenve
tor as Ik ≡

∑N
i=1[uki]

4, where uki are the 
omponents of eigenve
tor k. An80
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Figure 5.9: The absolute values of the eigenve
tor 
omponents ui(λ) of sto
k i 
or-responding to the four largest eigenvalues of C for NSE. The sto
ks i are arranged bybusiness se
tors separated by broken lines. A: Automobile & transport, B: Finan
ial,C: Te
hnology D: Energy, E: Basi
 materials, F: Consumer goods, G: Consumer dis
re-tionary, H: Industrial, I: IT & Tele
om, J: Servi
es, K: Health
are & Pharma
euti
al, L:Mis
ellaneous.eigenve
tor having 
omponents with equal value, i.e., uki = 1/
√

N for all i, has
Ik = 1/N . We �nd this to be approximately true for the eigenve
tor 
orrespondingto the largest eigenvalue, whi
h represents the market mode. To see how di�erentsto
ks 
ontribute to the remaining eigenve
tors, we note that if a single sto
k hada dominant 
ontribution in any eigenve
tor, e.g., uk1 = 1 and uki = 0 for i 6= 1,then Ik = 1 for that eigenve
tor. Thus, IPR gives the re
ipro
al of the number ofeigenve
tor 
omponents (and therefore, sto
ks) with signi�
ant 
ontribution.On the other hand, the average value of Ik, for eigenve
tors of a random 
or-relation matrix obtained by randomly shu�ing the time series of ea
h sto
k, is
〈I〉 = 3/N ≈ 1.49 × 10−2. Fig. 5.10 shows that the eigenvalues belonging to thebulk of the spe
trum indeed have this value of IPR. But at the lower and higherend of eigenvalues, both the US and Indian markets show deviations, suggestingthe existen
e of lo
alized modes. However, these deviations are mu
h less signi�-
ant and fewer in number in the latter 
ompared to the former. This implies thatdistin
t groups, whose members are mutually 
orrelated in their pri
e movement,do exist in NYSE, while their existen
e is far less 
lear in NSE.In order to graphi
ally present the intera
tion stru
ture of the sto
ks in NSE,we use a method suggested by Mantegna [113℄ to transform the 
orrelation between81
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Figure 5.10: Inverse parti
ipation ratio as a fun
tion of eigenvalue for the 
orrelationmatrix C of NSE (left) and NYSE (right). The broken line indi
ates the average valueof 〈I〉 = 1.49 × 10−2 for the eigenve
tors of a matrix 
onstru
ted by randomly shu�ingea
h of the N time series.sto
ks into distan
es to produ
e a 
onne
ted network in whi
h 
o-moving sto
ksare 
lustered together. The distan
e dij between two sto
ks i and j are 
al
ulatedfrom the 
ross-
orrelation matrix C, a

ording to dij =
√

2(1 − Cij). These areused to 
onstru
t a minimum spanning tree, whi
h 
onne
ts all the N nodes ofa network with N − 1 edges su
h that the total sum of the distan
e betweenevery pair of nodes, ∑

i,j dij, is minimum. For the NYSE, su
h a 
onstru
tion hasbeen shown to 
luster together sto
ks belonging to the same business se
tor [32℄.However, as seen in Fig. 5.11, for the NSE, su
h a method fails to 
learly segregateany of the business se
tors. Instead, sto
ks belonging to very di�erent se
tors areequally likely to be found within ea
h 
luster. This suggests that the market modeis dominating over all intra-se
tor intera
tions.5.2.5 Filtering the data using spe
tral statisti
sThe above analysis suggests the existen
e of a market-indu
ed 
orrelation a
rossall sto
ks, whi
h makes it di�
ult to observe the 
orrelations that might be due tointera
tions between sto
ks belonging to the same se
tor. Therefore, we now usea �ltering method to remove market mode, as well as the random noise [124℄. The
orrelation matrix is �rst de
omposed as
C =

N−1
∑

i=0

λiuiu
T
i , (5.5)
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PajekFigure 5.11: The minimum spanning tree 
onne
ting 201 sto
ks of NSE. The node
olors indi
ate the business se
tor to whi
h a sto
k belongs.where λi are the eigenvalues of C sorted in des
ending order and ui are 
orre-sponding eigenve
tors. As only the eigenve
tors 
orresponding to the few largesteigenvalues are believed to 
ontain information on signi�
antly 
orrelated sto
kgroups, the 
ontribution of the intra-group 
orrelations to the C matrix 
an bewritten as a partial sum of λαuαu
T
α , where α is the index of the 
orrespondingeigenvalue. Thus, the 
orrelation matrix 
an be de
omposed into three parts,
orresponding to the market, group and random 
omponents:

C = C
market + C

group + C
random

= λ0u0u
T
0 +

Ng
∑

i=1

λiuiu
T
i +

N−1
∑

i=Ng+1

λiuiu
T
i , (5.6)
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Figure 5.12: The distribution of elements of 
orrelation matrix 
orresponding to themarket, Cmarket, the group, Cgroup, and the random intera
tion, Crandom. For NSE (left)
Ng = 5 whereas for NYSE (right) Ng = 10. The short tail for the distribution of the
C

group elements in NSE indi
ates that the 
orrelation generated by mutual intera
tionamong sto
ks is relatively weak.where, Ng is the number of eigenvalues (other than the largest one) whi
h deviatesfrom the bulk of the eigenvalue spe
trum. For NSE we have 
hosen Ng = 5.However, the exa
t value of this 
hoi
e is not 
ru
ial as small 
hanges in Ng do notalter the results, the error involved being limited to the eigenvalues 
losest to thebulk that have the smallest 
ontribution to C
group.Fig. 5.12 shows the result of de
omposing the 
orrelation matrix into the three
omponents, for both the Indian and US markets. Compared to the latter, thedistribution of matrix elements of C

group in the former shows a signi�
antly trun-
ated tail. This indi
ates that intra-group 
orrelations are not prominent in NSE,whereas they are 
omparable with the overall market 
orrelations in NYSE. Itfollows that the 
olle
tive behavior in the Indian market is dominated by exter-nal information that a�e
ts all sto
ks. Correspondingly, 
orrelations generated byintera
tions between sto
ks, as would be the 
ase for sto
ks in a given businessse
tor, are mu
h weaker, and hen
e, su
h 
orrelated se
tors would be di�
ult toobserve.5.2.6 The network of sto
k intera
tionsWe indeed �nd this to be true when we use the information in the group 
orrelationmatrix to 
onstru
t the network of intera
ting sto
ks [124℄. The adja
en
y matrix
A of this network is generated from the group 
orrelation matrix C

group by usinga threshold cth su
h that Aij = 1 if Cgroup
ij > cth, and Aij = 0 otherwise. Thus,84
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PajekFigure 5.13: The stru
ture of intera
tion network in the Indian �nan
ial market atthreshold c∗ = 0.09. The left 
luster 
omprises of mostly Te
hnology sto
ks, while themiddle 
luster is 
omposed almost entirely of Health
are & Pharma
euti
al sto
ks. By
ontrast, the 
luster on the right is not dominated by any parti
ular se
tor. The nodelabels indi
ate the business se
tor to whi
h a sto
k belongs and are as spe
i�ed in the
aption to Fig 5.9.a pair of sto
ks are 
onne
ted if the group 
orrelation 
oe�
ient Cgroup
ij is largerthan a preassigned threshold value, cth. To determine an appropriate 
hoi
e of

cth = c∗ we observe the number of isolated 
lusters (a 
luster being de�ned as agroup of 
onne
ted nodes) in the network for a given cth. We found this number tobe mu
h less in NSE 
ompared to that observed in NYSE for any value of cth [124℄.Fig. 5.13 shows the resultant network for c∗ = 0.09, for whi
h the largest numberof isolated 
lusters of sto
ks are obtained. The network has 52 nodes and 298links partitioned into 3 isolated 
lusters. From these 
lusters, only two businessse
tors 
an be properly identi�ed, namely the Te
hnology and the Pharma
euti
alse
tors. The fa
t that the majority of the NSE sto
ks 
annot be arranged intowell-segregated groups re�e
ting business se
tors illustrates our 
on
lusion thatintra-group intera
tion is mu
h weaker than the market-wide 
orrelation in theIndian market.When the intera
tion networks between sto
ks are generated for the two peri-ods, they show less distin
tion into 
learly de�ned se
tors than was obtained withthe data for the entire period. This is possibly be
ause the shorter data sets 
reatelarger �u
tuations in the 
orrelation values, thereby making it di�
ult to segregatethe existing market se
tors. However, we do observe that, using the same thresholdvalue for generating networks in the two periods yield, for the later period, iso-lated 
lusters that are distinguishable into distin
t sub-
lusters 
onne
ted to ea
h85
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ture from dynami
sother via a few links only, whereas in the earlier period the 
lusters are mu
h morehomogeneous. This implies that as the Indian market is evolving, the intera
tionsbetween sto
ks are tending to get arranged into 
learly identi�able groups. Wepropose that su
h stru
tural re-arrangement in the intera
tions is a hallmark ofemerging markets as they evolve into developed ones.5.3 Model of Market Dynami
sTo understand the relation between the intera
tion stru
ture among sto
ks andthe eigenvalues of the 
orrelation matrix, we perform a multivariate time seriesanalysis using a simple two-fa
tor model of market dynami
s. We assume thatthe normalized return at time t of the ith sto
k from the kth business se
tor 
anbe de
omposed into (i) a market fa
tor rm(t), that 
ontains information or signal
ommon to all sto
ks, (ii) a se
tor fa
tor rk
g (t), representing e�e
ts ex
lusive tosto
ks in the kth se
tor, and (iii) an idiosyn
rati
 term, ηi(t), whi
h 
orrespondsto random variations unique for that sto
k. Thus,

rk
i (t) = βirm(t) + γk

i rk
g (t) + σiηi(t), (5.7)where βi, γk

i and σi represent relative strengths of the three terms mentioned above,respe
tively. For simpli
ity, these strengths are assumed to be time independent.We 
hoose rm(t), rk
g (t) and ηi(t) from a zero mean and unit varian
e Gaussian dis-tribution. We further assume that the normalized returns ri, also follow Gaussiandistribution with zero mean and unit varian
e. Although the empiri
ally observedreturn distributions have power law tails, as these distributions are not Levy sta-ble, they will 
onverge to Gaussian if the returns are 
al
ulated over su�
ientlylong intervals. The assumption of unit varian
e for the returns ensures that therelative strengths of the three terms will follow the relation:

βi
2 + (γk

i )2 + σi
2 = 1. (5.8)As a result, for ea
h sto
k we 
an assign σi and γi independently, and obtain βifrom Eq. (5.8). We 
hoose σi and γi from a uniform distribution having width δand 
entered about the mean values σ and γ, respe
tively. 86
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Figure 5.14: The variation of the largest (top) and se
ond largest (bottom) eigenvaluesof the 
orrelation matrix of simulated return in the two-fa
tor model (Eq. 5.7) with themodel parameters γ and σ (
orresponding to strength of the se
tor and idiosyn
rati
e�e
ts, respe
tively). The matrix is 
onstru
ted for N = 200 sto
ks ea
h with returntime series of length T = 2000 days. We assume there to be 10 se
tors, ea
h having 20sto
ks.We now simulate an arti�
ial market with N sto
ks belonging to K se
tors bygenerating time series of length T for returns rk
i from the above model. These Kse
tors are 
omposed of n1, n2, . . . , nK sto
ks su
h that n1 + n2 + · · · + nK = N .The 
olle
tive behavior is then analysed by 
onstru
ting the resultant 
orrelationmatrix C and obtaining its eigenvalues. Our aim is to relate the spe
tral propertiesof C with the underlying stru
ture of the market given by the relative strengthof the fa
tors. We �rst 
onsider the simple 
ase, where the 
ontribution due tomarket fa
tor is negle
ted, i.e., βi = 0 for all i, and the strength of se
tor fa
toris equal for all sto
ks within a se
tor, i.e., γk

i = γk, is independent of i. In this
ase, the spe
trum of the 
orrelation matrix is 
omposed of K large eigenvalues,
1 + (nj − 1)(γj)2, where j = 1 . . .K, and N −K small eigenvalues, 1− (γj)2, ea
h87
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swith degenera
y nj −1, where j = 1 . . .K [133℄. Now, we 
onsider nonzero marketfa
tor whi
h is equal for all sto
ks i.e., βi = β for all i, and the strength of se
torfa
tor is also same for all sto
ks, i.e., γk
i = γ (independent of i and k). In this 
asetoo, there are K large eigenvalues and N − K small eigenvalues. Our numeri
alsimulations suggest that the largest and the se
ond largest eigenvalues are

λ0 ∼ Nβ2,

λ1 ∼ nl(1 − β2), (5.9)respe
tively, where nl is the size of the largest se
tor, while the N − K smalldegenerate eigenvalues are 1−β2−γ2. We now 
hoose the strength γk
i and σi froma uniform distribution with mean γ and σ respe
tively and with width δ = 0.05.Fig. 5.14 shows the variation of the largest and se
ond largest eigenvalues with σand γ. The strength of the market fa
tor is determined from Eq.5.8.Note that, de
reasing the strength of the se
tor fa
tor relative to the marketfa
tor results in de
reasing the se
ond largest eigenvalue λ1. As Q = T/N is �xed,the RMT bounds for the bulk of the eigenvalue distribution, [λmin, λmax], remainun
hanged. Therefore, a de
rease in λ1 implies that the large intermediate eigen-values o

ur 
loser to the bulk of the spe
trum predi
ted by RMT, as is seen in the
ase of NSE. The analysis of the model supports our hypothesis that the spe
tralproperties of the 
orrelation matrix for the NSE are 
onsistent with a market inwhi
h the e�e
t of information 
ommon for all sto
ks (i.e., the market mode) isdominant, resulting in all sto
ks exhibiting a signi�
ant degree of 
orrelation.5.4 Dis
ussionIn this 
hapter, we have re
onstru
ted networks from two types of empiri
al data.First, we have analyzed the stru
ture of bonnet ma
aque so
ial organization asan example of a so
ial network. We determine the intera
tion network by usingdata on grooming behavior, an a�liative intera
tion that is frequently observedbetween primate individuals. We show that weights of the links in this network(i.e., grooming strength) has an exponential distribution, indi
ating that the in-tera
tions in su
h a so
ial network is very di�erent from other real-world 
omplexnetworks. This may be due to the limited time for performing spe
i�
 a
ts that88
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onstrains the intera
tion behavior of the agents in a so
ial network. Further, thefemale ma
aque network shows a distin
t and unambiguous 
ommunity stru
ture,with the di�erent 
ommunities mat
hing exa
tly with the splitting of the troopobserved in a subsequent �eld study. In order to understand how relatively simpleprin
iples governing the strategy of individuals for sele
ting intera
tion partnersmay be used to explain the 
omplex so
ial stru
ture of non-human primate groups,we 
onsider the Seyfarth model. By using the bonnet ma
aque data, we testedthe basi
 prin
iples of the model, whi
h gives a set of strategi
 rules that governsthe intera
tions of ea
h individual. Based on our results, we have indi
ated howthese prin
iples 
an be possibly modi�ed so that the model 
an better representthe patterns of so
ial behavior in the bonnet ma
aque.Next, we analyze the market intera
tion stru
ture and demonstrate that thesto
ks in an emerging market are mu
h more 
orrelated than in developed mar-kets. Although, the bulk of the eigenvalue spe
trum of the 
orrelation matrix ofsto
ks C in an emerging market is similar to that observed for developed markets,the number of eigenvalues deviating from the upper bound predi
ted by randommatrix theory are smaller in number. Further, most of the observed 
orrelationsamong sto
ks is found to be due to e�e
ts 
ommon to the entire market, whereas
orrelations due to intera
tions between sto
ks belonging to the same businessse
tor are weak. This dominan
e of the market mode relative to modes arisingthrough intera
tions between sto
ks makes an emerging market appear more 
or-related than developed markets. Using a simple two-fa
tor model, we show thata market fa
tor, that is dominant relative to the se
tor fa
tor, results in spe
tralproperties similar to that observed empiri
ally for the Indian market. Our studyhelps in understanding the evolution of markets as 
omplex systems, suggestingthat strong intera
tions may emerge within groups of sto
ks as a market evolvesover time. How su
h self-organization o

urs and its relation to other 
hangesthat a market undergoes during its development, e.g., large in
reases in transa
-tion volume, is a question worth pursuing in the future with the tools available tophysi
ists.This 
hapter also makes a signi�
ant point regarding the physi
al understand-ing of markets as 
omplex dynami
al systems. In re
ent times, the role of theintera
tion stru
ture within a market in governing its overall dynami
al propertieshas 
ome under in
reasing s
rutiny. However, su
h intra-market intera
tions a�e
t89
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ture from dynami
svery weakly 
ertain market properties, whi
h is underlined by the observation ofidenti
al �u
tuation behaviour in markets having very di�erent intera
tion stru
-tures, viz., NYSE and NSE [85, 134℄. For the purpose of explaining features su
has the pri
e �u
tuation distribution, the system 
an be 
onsidered to be a singlehomogeneous entity responding only to external signals. This suggests that theearlier approa
h for studying �nan
ial markets that ignored their internal stru
-ture and 
onsidered pri
es to be essentially exe
uting random walks in responseto independent external sho
ks [135℄, may still be 
onsidered to be a

urate forexplaining market �u
tuation phenomena. In other words, 
omplex intera
tingsystems like �nan
ial markets 
an have simple mean �eld-like des
ription for someof their properties.

90



6Role of network stru
ture in systemfun
tion
6.1 Introdu
tionThe relatively simple nervous systems of invertebrate organisms provide vital in-sights into how nerve 
ells integrate sensory information from the environment, re-sulting in a 
oordinated response. Analysing the intermediate or mesos
opi
 levelof organization in su
h systems is a 
ru
ial step in understanding how mi
ro-levela
tivity of single neurons and their intera
tions eventually result in ma
ro-levelbehavior of the organism [136℄. The nematode Caenorhabditis elegans is a modelorganism on whi
h su
h an analysis 
an be performed, as its entire neuronal wiringlayout has been 
ompletely mapped [18℄. This information enables one to tra
e infull the 
ourse of a
tivity along the neuronal network, from sensory stimulation tomotor response [137℄. We study its somati
 nervous system, 
omprising 282 neu-rons that 
ontrol all a
tivity ex
ept the pharyngeal movements. This 
an lead to anunderstanding of the 
ommand and 
ontrol pro
esses o

urring at the mesos
opi
level that produ
e spe
i�
 fun
tional responses, in
luding avoidan
e behavior andmovement along a 
hemi
al gradient. The neuron lo
ations as well as their 
on-ne
tions being 
ompletely determined by the geneti
 program, are invariant a
rossindividual organisms. Further, unlike in higher organisms, the 
onne
tions do not
hange with time in the adult nematode. In 
ombination with the possibility of ex-perimenting on the role of single neurons in di�erent fun
tional modalities, theseinvarian
es allow one to uniquely identify the important neurons in the system91



Chapter 6. Role of network stru
ture in system fun
tionhaving spe
i�
 behavioral tasks.The re
ent developments in the theory of 
omplex graphs has made availablemany analyti
al tools for studying biologi
al networks [4, 3℄. The initial emphasiswas on developing gross ma
ros
opi
 des
riptions of su
h systems using measuressu
h as average path length between nodes of the network, the 
lustering amongnodes and the degree sequen
es. However, su
h global 
hara
terizations of sys-tems ignore signi�
ant lo
al variations in the 
onne
tion topology that are oftenfun
tionally important. Therefore, investigating the network at a mesos
opi
 levelwhi
h 
onsider the broad patterns in the inhomogeneous distribution of 
onne
-tions, may reveal vital 
lues about the working of an organism that 
ould be hiddenin a global analysis. Further, these large-s
ale features help in understanding how
oordination and integration o

urs a
ross di�erent parts of the system, in 
ontrastto a study of mi
ros
opi
 patterns 
omprising only a few neurons, e.g., motifs [138℄.The existen
e of modules, marked by the o

urren
e of groups of densely 
on-ne
ted nodes with relatively fewer 
onne
tions between these groups [52℄, providesa natural meso-level des
ription of many 
omplex systems [67℄. Modular orga-nization in the brains of di�erent spe
ies have been observed, both in fun
tionalnetworks derived from EEG/MEG and fMRI experiments and in stru
tural net-works obtained from tra
ing anatomi
al 
onne
tions [139℄. The fun
tionally de-�ned networks, where di�erent brain areas, ea
h of whi
h 
omprise a large numberof lo
alized groups of neurons, are 
onsidered to be linked if they are simultaneouslya
tive, have been shown to be modular for both human [140℄ and non-human [141℄subje
ts. Tra
t-tra
ing studies in the brains of 
at [83℄ and ma
aque [142℄ havealso revealed a modular layout in the stru
tural inter-
onne
tions between di�erentbrain areas. However, as neurons are the essential building blo
ks of the nervoussystem, ideally one would like to explore the network of inter
onne
tions betweenthese most basi
 elements. In the extremely 
ompli
ated mammalian brains, it isso far only possible to analyze su
h networks for extremely limited regions thatdo not give a pi
ture of how the system behaves as a whole [143℄. The relativesimpli
ity of the nervous system of C. elegans allows a detailed analysis of the net-work, de�ned in terms of both ele
tri
al (gap jun
tional) and 
hemi
al (synapti
)
onne
tions between the neurons (Fig. 6.1).The ubiquity of modularity in brain networks leads to the obvious questionabout how to explain the evolution of su
h a stru
tural organization [58℄. One92
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Figure 6.1: (a) S
hemati
 diagram of C. elegans, indi
ating the di�erent ganglia. (Inset)S
hemati
 representation of 
onne
tivity between the neurons, partitioned into a strongly
onne
ted 
omponent (SCC), an in-
omponent (IN), and an out-
omponent (OUT). Adire
ted path exists from any neuron in IN to any neuron in OUT through neurons inSCC, all of whose members 
an be rea
hed from ea
h other. The large SCC suggests thatit is possible to transfer signals between almost all neurons of the network. The IN andOUT 
omponents have only 1.5% and 0.5%, respe
tively, of the 279 
onne
ted neuronsin the somati
 nervous system. (b, 
) The 
onne
tivity matrix 
orresponding to the (b)Synapti
 and (
) Gap-jun
tional 
onne
tions between the somati
 system neurons. In all�gures, the partition symbols 
orrespond to (G1) Anterior, (G2) Dorsal, (G3) Lateral,(G4) Ventral, (G5) Retrovesi
ular, (G6) Posterolateral, (G7) Preanal, (G8) Dorsore
taland (G9) Lumbar ganglion, and (G10) the Ventral 
ord.possible reason for the existen
e of modular ar
hite
ture is that they may re-sult in low average path length (whi
h is asso
iated with high e�
ien
y of signal
ommuni
ation) and high 
lustering (that allows lo
al segregation of informationpro
essing) in networks [56℄. An alternative possibility is that segregation of neu-rons into spatially lo
alized 
ommunities minimizes the total 
ost asso
iated withthe wiring length (the physi
al distan
e spanned by 
onne
tions between neurons).This 
ost arises from resour
es asso
iated with fa
tors su
h as wiring volume aswell as metabolism required for maintenan
e and propagation of signals a
ross long93



Chapter 6. Role of network stru
ture in system fun
tiondistan
es [144℄. Developmental 
onstraints, su
h as the lineage relations betweendi�erent neurons may also play an important role in determining the network topol-ogy [145℄. In addition, the existen
e of empiri
ally determined 
ir
uits responsiblefor spe
i�
 fun
tions (su
h as, movement asso
iated with exploratory behavior,egg laying, et
.) in the C. elegans nervous system, raises the intriguing possibilitythat stru
turally de�ned modules are asso
iated with de�nite fun
tional roles [146℄.The invariant neuronal 
onne
tivity pro�le of C. elegans allows us to explore the
ontributions of the above mentioned stru
tural, developmental and fun
tional
onstraints in governing the mesos
opi
 organization of the nervous system.In Se
. 6.2, we begin our analysis of the organization of the C. elegans nervoussystem by identifying stru
turally de�ned modules in the network of neurons linkedby synapses and gap-jun
tions. Next, we investigate whether the observed modu-lar stru
ture 
an be explained by using arguments based on universal prin
iples.Su
h 
riteria, whi
h in
lude minimizing the 
ost asso
iated with neuronal 
onne
-tions [144, 147℄ and their geneti
 en
oding [148℄, or, de
reasing the signal propa-gation path [149, 150℄, have re
ently been proposed to explain observed patternsof neuronal position and 
onne
tivity. We determine the role of physi
al proximitybetween a pair of neurons in de
iding the 
onne
tion stru
ture, by investigatingthe 
orrelation between their spatial positions and their modular membership. Wealso 
ompare these modules with the existing 
lassi�
ation of the nematode ner-vous system into several ganglia, as the latter have been di�erentiated in termsof anatomi
al lo
alization of their 
onstituent neurons. Results from the aboveanalysis suggests that resour
e 
onstraints su
h as wiring 
ost 
annot be the solede
iding fa
tor governing the observed meso-level organization. We also show thatthe modules 
annot be only a result of the 
ommon lineage of their member nodes.It is natural to expe
t that the stru
ture of the nervous system is optimizedto rapidly pro
ess signals from the environment so that the organism 
an takeappropriate a
tion for its survival [151℄. By looking at the deviation betweenthe a
tual network and a system optimized for maximal 
ommuni
ation e�
ien
yin 
onjun
tion with minimum wiring 
ost, we infer the existen
e of additionalfun
tional 
onstraints related to pro
essing of information (i.e., other than simplesignal transmission). This is further supported by the observation of relativelyhigh 
lustering in C. elegans neuronal network as 
ompared to other informationnetworks (e.g., ele
troni
 logi
 
ir
uits [152℄). As 
lustering in
reases the wiring94
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ture in system fun
tion
ost, while not assisting e�
ient 
ommuni
ation, its presen
e in a system that hasevolved under intense 
ompetition for survival may imply a key role for 
lusteringin pro
essing information. By looking at the 
orrelation between lo
al as well asglobal 
onne
tivity pro�les with individual node 
hara
teristi
s, we observe thatthe nematode nervous system is signi�
antly di�erent from designed systems, in-
luding other information networks o

urring in the te
hnologi
al domain, e.g., theinternet. Further, in 
ontrast to previous observations on the similarity betweenbiologi
al signalling networks having di�erent origins [153, 154℄, we �nd that theC. elegans neuronal network has properties distin
t from at least one other bio-logi
al network that is involved in signalling tasks, namely the protein intera
tionnetwork [155, 156℄.Thus, the analysis of the network at the mesos
opi
 level provides an appro-priate framework for identifying the roles that di�erent 
lasses of 
onstraints (de-velopmental, stru
tural and fun
tional) play in determining the organization of anervous system. It also allows us to infer the existen
e of 
riteria related to pro-
essing of information governing the observed modular ar
hite
ture in C. elegansneuronal inter-
onne
tions. Our results provide the means for identifying neuronshaving key roles in the behavioral performan
e of the organism ex
lusively fromanatomi
al information about their stru
tural 
onne
tivity. Our results 
an helpexperimentalists in fo
using their attention to a sele
t group of neurons whi
h mayplay a vital part in some, as yet undetermined, fun
tion.In Se
. 6.3, we investigate the hierar
hi
al organization of the nematode neu-ronal network. We fo
us on the possible fun
tional advantages of hierar
hi
alstru
ture and investigate its role in information pro
essing. We show that the
ore-periphery stru
ture of the network exhibits eviden
e of hierar
hi
al ordering.By using a simple model for su
h networks, we see that su
h stru
tures leads tosigni�
ant redu
tion in the spread of lo
al a
tivity throughout the network whilemaintaining the 
ommuni
ation e�
ien
y almost un
hanged.6.2 Modularity in the C.elegans nervous systemIn order to investigate the modular organization of a network, we need to �rst iden-tify the modules. We perform this on the C. elegans neuronal network by 
arrying
95



Chapter 6. Role of network stru
ture in system fun
tionout an optimal partitioning of the network, whi
h 
orresponds to the maximumvalue of modularity parameter, Q. We use the generalization of a method intro-du
ed in Refs. [157, 158℄. For a dire
ted and weighted network, the modularity
an be de�ned as
QW ≡ 1

LW

∑

i,j

[

Wij −
sin

i sout
j

LW

]

δcicj
, (6.1)where, LW =

∑

i,j Wij is the sum of weights of all links in the network (Wij is theweight of the link from neuron j to neuron i), and the weighted in-degree and out-degree of node i are given by sin
i =

∑

j Wij and sout
i =

∑

j Wji, respe
tively. Theoptimal partitioning of the network is the one whi
h maximizes the modularitymeasure Q (or QW ). We obtain this by �rst de�ning a modularity matrix B,
Bij = Wij −

sin
i sout

j

LW
. (6.2)To split the network, the eigenve
tors 
orresponding to the largest positive eigen-value of the symmetri
 matrix (B + B

T) is 
al
ulated and the 
ommunities areassigned based on the signs for the elements of the eigenve
tor. A repeated bise
-tion method is then used to su

essively divide the obtained groups. The pro
essterminates when further division does not in
rease the modularity of the network.We have 
onsidered di�erent 
ases 
orresponding to the di�erent types of neu-ronal 
onne
tions (viz., gap jun
tion, synapti
 and their 
ombination) and thenature of su
h 
onne
tions (viz., weighted or unweighted by the number of ea
htype of 
onne
tion). While the gap jun
tional network is undire
ted, both thesynapti
 as well as the 
ombined network is dire
ted. For ea
h type of network,the maximum modularity value QM and the number of partitions for whi
h thisvalue is obtained, are given in Table 6.1. While using only the gap jun
tions frag-ment the network into as many as 15 modules, when we 
onsider either synapsesalone or the 
ombination of both types of 
onne
tions, the number of modulesobtained is mu
h less. In the remainder of this 
hapter, we have 
onsidered the
ombined network of synapses and gap jun
tions, unless otherwise stated. Thisis a weighted network where the link weights 
orrespond to the total number ofsynapti
 and gap jun
tion 
onne
tions from one neuron to another.The high value of QM and dense inter-
onne
tivity within modules (Fig. 6.2(left)) suggest that the network has a modular organization. We further validate96
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Figure 6.2: (Left) Matrix representing the average 
onne
tion density between neuronso

urring within modules and those in di�erent modules. The �gure indi
ates that neu-rons within a module are densely inter
onne
ted 
ompared to the overall 
onne
tivityin the network. (Right) The modules are de
omposed a

ording to the di�erent neurontypes 
omprising them. The �gure shows that the modules are not simply 
omposed ofa single type of neuron.our results by 
onsidering the modularity of randomized versions of the network(keeping degree of ea
h node �xed). The average modularity of these randomizednetworks is 
onsiderably lower then the empiri
al network. We have also analyzedthe 
omposition of the di�erent modules in terms of distin
t neuron types (viz.sensory, motor, interneuron and other). Fig. 6.2 (right) shows that none of themodules are ex
lusively 
omposed of a single type, although motor neurons dotend to dominate one module.6.2.1 Modules and spatial lo
alizationTo understand why modular stru
tures have evolved in the neuronal network, we
onsider the relation between the optimal partition and the spatial lo
alizationof neurons in ea
h module. This will help us to understand whether 
onstraintsrelated to the physi
al distan
e between neurons, su
h as wiring length optimiza-tion, di
tate the topologi
al organization of the network. Note that, wiring 
osthas already been shown to be the de
isive fa
tor for neuron positions in the bodyof C. elegans [144, 147℄. Thus, a plausible hypothesis is that, if most neuronal97
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Figure 6.3: The position of neuronal 
ell bodies along the longitudinal axis of the C.elegans body plan is shown, with the verti
al o�set and 
olor indi
ating the module towhi
h a neuron belongs. The mean and standard deviation of neuronal positions forea
h module is also indi
ated, suggesting relative absen
e of spatial lo
alization in themodules.
onne
tions o

ur within a groups of neurons, all of whom are physi
ally adja
ent,then this will signi�
antly de
rease the wiring 
ost. This will be manifested, interms of 
onne
tivity, as a module of the network. Therefore, it suggests that ea
hmodule will mostly 
omprise of neurons whi
h are in 
lose physi
al proximity.Fig. 6.3 indi
ates the spatial position of the 
ell body of ea
h neuron on thenematode body (along the longitudinal axis), that belong to the di�erent modules.It shows that, while a large fra
tion of the neurons belonging to the same moduledo indeed have their 
ell bodies 
lose to ea
h other, there is absen
e of any 
orre-lation between the modules and a spe
i�
 physi
al lo
ation on the nematode bodyaxis. This is brought out by the large standard deviations for the distribution ofpositions of the module 
omponents. Had wiring length minimization been thedominant fa
tor governing the 
onne
tivity, we would have expe
ted the modulesto be spatially segregated, as in that 
ase, most of the 
onne
tions need to spanonly short distan
es.Our 
on
lusion that wiring 
ost 
annot be the prin
ipal 
riterion determiningnetwork topology is further supported by an analysis of the 
onne
tivity in thedi�erent ganglia. The nine di�erent ganglia of the nematode nervous system, inaddition to the ventral 
ord, are de�ned in terms of physi
al proximity of their
omponent neurons. Thus, a tenden
y to minimize the total 
onne
tion length98



Chapter 6. Role of network stru
ture in system fun
tionTable 6.1: The modularity of the network is measured using the parameter Q, whi
hrequires a knowledge of the partitions or 
ommunities whi
h divide the network. Weobtain the modularity measure, Qg, on assuming the 
ommunities to 
orrespond to theganglia. Its positive values indi
ate that neurons in the same ganglion have high den-sity of inter-
onne
tions. We have also obtained Q by determining the modules of thenetwork using a spe
tral method, the 
orresponding values being indi
ated by QM . Therelatively high values of QM 
ompared to Qg, indi
ates that the ganglia do not mat
hwith this optimal partitioning of the network. Both measures, Qg and QM , as well asthe number of modules, nM , have been obtained for both unweighted and weighted net-works 
onsisting of either gap jun
tions or synapses or both. We 
al
ulate the overlapbetween the ganglioni
 and the optimal partition of the network using the normalizedmutual information index, I. For the 
ase of perfe
t mat
h between the two, the index,
I = 1, whereas if they are independent of ea
h other, I = 0. The measured values of
I indi
ate that the overlap between the di�erent modules and the anatomi
ally de�nedganglia is not signi�
ant. The modular nature of the somati
 nervous system is empha-sised by 
omparing the empiri
al network with networks obtained by randomizing the
onne
tions, keeping the degree of ea
h neuron �xed. The mean and standard deviationof the modularity Qrand

M and the 
orresponding number of partitions mrand
M are shownfor both weighted and unweighted networks, and for the di�erent types of 
onne
tions.For all 
ases, the randomized networks show a signi�
antly lower modularity than theempiri
al network.Network Unweighted Weighted

Qg QM mM NMI Qg QM mM NMIGap Jn 0.2069 0.6297 11 0.3264 0.1700 0.6566 15 0.3473Synapti
 0.1487 0.3491 2 0.2572 0.2106 0.4720 4 0.3137Combined 0.1687 0.3776 3 0.3057 0.2031 0.4910 6 0.3763between neurons would imply that su
h ganglia would be distinguished by havinga signi�
antly high density of 
onne
tions between their 
onstituent neurons. We,therefore, verify whether the 
onne
tivity inside ea
h ganglion is high 
ompared tothe 
orresponding randomized networks. This is done by measuring the modularityvalue Qg, with ea
h ganglion assumed to be a true network module. We �nd that,although Qg is nonzero whi
h indi
ates that the neurons inside a ganglia do indeedhave a higher 
onne
tion density than the overall network, it is not as high as themaximum QM possible, obtained for the optimal partition (Table 6.1). We havealso 
al
ulated the normalized mutual information index, NMI, to measure theoverlap between the optimal partitioning of the network into modules and thedi�erent ganglia. Note that, in the 
ase of perfe
t mat
h, NMI = 1, while it is
0, if there is no mat
h. The low values for NMI given in Table 6.1 suggest that99
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ture in system fun
tionthe 
omposition of the di�erent ganglia is quite distin
t from that of the modulesfor the optimal partitioning of the neuronal network. This is shown expli
itly inFig. 6.4 (a), indi
ating that most ganglia are 
omposed of neurons belonging tomany di�erent modules.We have used this modular de
omposition spe
trum of ea
h ganglion (i.e., thedistribution of the neurons of the ganglion into the m di�erent modules of theoptimal partition) to de�ne a metri
 for inter-ganglioni
 distan
e in an abstra
t
m-dimensional �modular� spa
e. Thus, if two ganglia have a similar modular de-
omposition pro�le, then they are 
lose to ea
h other in the �modular� spa
e andhave low modular distan
e (Fig. 6.4, b). This is then 
ompared with the physi
aldistan
e between ganglia, measured as the average separation between the 
ell bod-ies of all pairs of neurons i and j, where i, j belong to di�erent ganglia (Fig. 6.4, 
).The 
omparison of the two matri
es shows that there are indeed 
ertain similari-ties between these two di�erent 
on
epts of distan
e. For example, the �ve ganglialo
ated in the head (G1-G5) 
luster together, as do the three lo
ated towards thetail (G7-G9). This observation is in a

ord with previous reports whi
h use thenotion of wiring 
ost for explaining (to a 
ertain extent) the observed relative po-sitions of the ganglia. However, when we 
onsider the 
orresponding dendrogramsthat indi
ate the relative 
loseness of the di�erent ganglia in physi
al spa
e andin �modular� spa
e, we observe signi�
ant di�eren
es between the two: gangliawhi
h are 
lose to ea
h other in physi
al spa
e may not be neighbors in terms oftheir modular spe
tra. This reiterates our previous 
on
lusion that wiring 
ostminimization, whi
h is related to the physi
al distan
e between neurons, is not adominant fa
tor governing the organization of C. elegans somati
 nervous system.6.2.2 Modules and 
ell lineageAs developmental pro
esses are believed to play a signi�
ant role in determiningthe stru
ture of the nervous system, we also 
onsider the alternative hypothesisthat the stru
tural modules re�e
t a 
lustering of neurons that are related in termsof their lineage. Lineage of a 
ell is the pattern of su

essive 
ellular divisions thato

ur during its development. This is invariant in C. elegans, allowing one totra
e the individual developmental history of ea
h 
ell in order to identify the
ell-autonomous me
hanisms and 
ell-
ell intera
tions. We measure the average100
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Figure 6.4: (a) Neurons belonging to di�erent ganglia are de
omposed a

ording to theirmodular membership. The height of ea
h bar in the histogram 
orresponds to the overlapbetween the ganglia and the modules, 
al
ulated as the fra
tion of neurons that are
ommon to a parti
ular ganglion and a spe
i�
 module. (b) The matrix representing theaverage modular distan
e between the di�erent ganglia, as 
al
ulated from the modularde
omposition spe
trum of ea
h ganglion. The 
orresponding dendrogram indi
ates the
loseness between di�erent ganglia in the abstra
t 6-dimensional �modular" spa
e. (
)The matrix of physi
al distan
es between the ganglia is shown for 
omparison with (b),
al
ulated as the average distan
e between neurons belonging to the di�erent ganglia.The 
orresponding dendrogram indi
ates the 
loseness between ganglia a

ording to thegeographi
al nearness of their 
onstituent neurons in the nematode body. The di�eren
eindi
ates that the ganglia whi
h are geographi
ally 
lose may not be neighbors in termsof their modular spe
tra.
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Figure 6.5: The matrix representing the average lineage distan
e between neuronso

urring within the same module and those belonging to di�erent modules. The �gureindi
ates that neurons o

urring in the same module have only a slightly lower lineagedistan
e as 
ompared to that between neurons o

urring in di�erent modules.relatedness measure of neurons within and between modules. Fig 6.5 suggeststhat there is no signi�
ant segregation between the modules in terms of the lineageof their 
onstituent neurons. Indeed, even 
oarse distin
tions su
h as AB andnon-AB lineage neurons are not apparent from the modular division. A detailedview of the relatedness between ea
h pair of neurons (�gure not shown) indi
atesthat, while in ea
h module there are subgroups of 
losely related neurons, di�erentsubgroups within the same module may be very far from ea
h other in the lineagetree. Conversely, neurons o

urring in di�erent modules 
an have small distan
e interms of lineage. This suggests that developmental 
onstraints do not 
ompletelydi
tate the 
onne
tion stru
ture of the neuronal network. The fa
t that C. elegansneurons are largely non-
lonally derived from many di�erent parent 
ells [159℄ maypartly explain this la
k of 
orrelation between lineage de�ned in terms of 
ommonan
estry and modules de�ned in terms of density of inter-
onne
tions.6.2.3 Modules and fun
tional 
ir
uitsNext, we look at the overlap of seven previously identi�ed fun
tional 
ir
uits ofC. elegans with the stru
tural modules. Note that, if a signi�
ant 
orrelation is102
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Figure 6.6: Neurons belonging to di�erent fun
tional 
ir
uits are de
omposed a

ordingto their modular membership. The height of ea
h bar in the histogram 
orresponds tothe overlap between the modules and fun
tional 
ir
uits (F1) me
hanosensation, (F2) egglaying, (F3) thermotaxis, (F4) 
hemosensation, (F5) feeding, (F6) exploration and (F7)tap withdrawal. The overlap is measured in terms of the fra
tion of neurons 
ommonto a parti
ular fun
tional 
ir
uit and a spe
i�
 module. The 
orresponding dendrogramrepresents the 
loseness between di�erent fun
tional 
ir
uits in the abstra
t 6-dimensional�modular" spa
e.observed between the two, then it may suggest means of identifying neurons re-sponsible for 
ertain fun
tions from the information about the 
onne
tion topologyof the network. Fun
tional 
ir
uits are subsets of neurons whi
h are believed toplay a vital role in performing a spe
i�
 task, and are obtained by observing ab-normal behavior of the organism when the neurons are individually removed fromthe nematode nervous system (e.g., by laser ablation). We 
onsider the fun
tional
ir
uits for (F1) me
hanosensation [160, 161, 162℄, (F2) egg laying [163, 164℄, (F3)thermotaxis [165℄, (F4) 
hemosensation [166℄, (F5) feeding [167, 160, 18℄, (F6)exploration [167, 160, 18℄ and (F7) tap withdrawal [168, 161℄.Fig. 6.6 shows the modular de
omposition of ea
h fun
tional 
ir
uit. The 
or-responding dendrogram 
lusters the 
ir
uits, in terms of the similarity in theirmodular spe
tra. We note that the 
ir
uits for 
hemosensation, feeding and ex-ploration are 
lustered together. This is 
onsistent with the fa
t that most of theneurons belonging to the feeding and exploration 
ir
uits are involved in 
hemosen-sation. However, none of the neurons in the feeding 
ir
uit are 
ommon to those103
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ture in system fun
tionin the exploration 
ir
uit, although F6 is 
loser to F5 in terms of their modularspe
tra (distan
e = 0.18 ) than it is to F4 (distan
e =0.26 ) of whi
h F6 is a sub-set. This implies that these two 
ir
uits F5 and F6 are strongly 
onne
ted, therebyindi
ating the inter-relation of the 
orresponding fun
tions. Indeed the feeding be-havior of C.elegans is known to be regulated in a 
ontext-dependent manner by itsnervous system whi
h integrates external signals, su
h as, the availability of foodand the nutritional status of the animal, to dire
t an appropriate response [169℄.The mode of lo
omotion is also determined by the quality of food [170℄. It isapparent that, integration of multiple behaviours is essential to feeding regula-tion [171℄, su
h as avoidan
e of high CO2 
on
entrations by satiated animals [172℄.Furthermore, F2 is seen to be 
loser to these 
ir
uits, whi
h is signi�
ant in lightof previous experimental observation that presen
e of food (as dete
ted through
hemosensory neurons) modulates the egg-laying rate in C. elegans [162, 173℄.6.2.4 Fun
tional role of di�erent neuronsIn this subse
tion, we establish the fun
tional importan
e of spe
i�
 neurons byinvestigating the role played by them within their module, and 
ompare it withtheir role in the entire network. To parametrise this, we use (i) the parti
ipation
oe�
ient, P , whi
h is a measure of how dispersed the 
onne
tions of a node areamong the di�erent modules, and, (ii) the within-module degree, z, that indi
atesthe number of 
onne
tions a node has to other members of its module. For ea
hnode i, we 
an de�ne its parti
ipation 
oe�
ient Pi as
Pi = 1 −

m
∑

s=1

(

κi
s

ki

)2

, (6.3)where κi
s is the number of links to nodes in module s ki =

∑

s κi
s is its degree. Thus,the parti
ipation 
oe�
ient of a node is ∼ 1 if its links are uniformly distributedamong all modules and = 0 if it only links to nodes within its own module. Thewithin-module degree, z, distinguishes nodes that play the role of hubs in theirown module from non-hub and peripheral nodes. For the i-th node, it is de�nedas

zi =
κi

si
− 〈κj

si
〉j∈si

√

〈(κj
si)2〉j∈si

− 〈κj
si〉2j∈si

, (6.4)
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ture in system fun
tionwhere κi
s is as de�ned above and the average 〈· · · 〉j∈s is performed over all nodesin the module s.A node having a low within-module degree is 
alled a non-hub node (z < 0.7).Su
h nodes 
an be further 
lassi�ed a

ording to their fra
tion of 
onne
tions withother modules, whi
h following Ref. [156℄ are 
lassi�ed as: (R1) ultra-peripheralnodes (P ≤ 0.05), having 
onne
tions only within their module, (R2) peripheralnodes (0.05 < P ≤ 0.62), whi
h have a majority of their links within their module,(R3) satellite 
onne
tors (0.62 < P ≤ 0.8), with many links 
onne
ting nodesoutside their modules and (R4) kinless hubs (P > 0.8), whi
h form links uniformlya
ross the network. Hubs, i.e., nodes having a large number of 
onne
tions tonodes within their module (z ≥ 0.7), are further sub-divided a

ording to theirparti
ipation 
oe�
ient into (R5) provin
ial hubs (P ≤ 0.3), with most 
onne
tionswithin their module, (R6) 
onne
tor hubs (0.3 < P ≤ 0.75), with a signi�
antfra
tion of links distributed among many modules and (R7) global hubs (P >

0.75), whi
h 
onne
t homogeneously to all modules. This 
lassi�
ation allows usto distinguish nodes a

ording to their di�erent roles as brought out by their intra-modular and inter-modular 
onne
tivity patterns.We will now use the above methodology on the C. elegans network in orderto identify neurons that play a vital role in 
oordinating a
tivity through shar-ing information (either lo
ally within their 
ommunity or globally over the entirenetwork). Fig. 6.7 shows the 
omparison between the empiri
al network and a
orresponding randomized network (obtained by keeping the degree of ea
h node�xed). We immediately noti
e that the randomized network does not have anynodes having the roles R1 and R5, indi
ating that the modular nature of theoriginal network has been lost. In fa
t, in the randomized system, most nodeshave higher parti
ipation 
oe�
ient, with a large majority being satellite 
onne
-tors (R3). More interesting is the fa
t that, the empiri
al neural network doesnot posses any neuron having the global roles played by R4 and R7, whereas therandomized network does. This implies that modular identity in the C. elegansneuronal network is very pronoun
ed.It is possible to relate the intra- and inter-modular 
onne
tivity patterns of aneuron with its role in the fun
tioning of the worm nervous system. For example,neurons having the role of provin
ial hubs may be involved in lo
al 
oordinationof neural a
tivity, while, the 
onne
tor hubs may be responsible for integration of105
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Figure 6.7: (Left) The within module degree z-s
ore of ea
h neuron in the empiri
alneuronal network is shown against the 
orresponding parti
ipation 
oe�
ient P . Thewithin module degree measures the 
onne
tivity of a node to other nodes within its ownmodule, while the parti
ipation 
oe�
ient measures its 
onne
tivity with neurons in theentire network. (Right) The 
orresponding result for a randomized version of the C. ele-gans network where the degree of ea
h neuron is kept un
hanged is also shown. Neuronsbelonging to the di�erent regions in the P − z spa
e are 
ategorised as: (gray) �ultra-peripheral nodes,� i.e., nodes with all their links within their module, (blue) �peripheralnodes,� i.e., nodes with most links within their module, (pink) �nonhub 
onne
tor nodes,�i.e., nodes with many links to other modules, (green) �nonhub kinless nodes,� i.e., nodeswith links homogeneously distributed among all modules, (yellow) �provin
ial hubs,� i.e.,hub nodes with the vast majority of links within their module, (red) �
onne
tor hubs,�i.e., hubs with many links to most of the other modules, and (white) �global hubs,� i.e.,hubs with links homogeneously distributed among all modules. The neurons o

urringas 
onne
tor hubs are identi�ed in the �gure. Most of these neurons o

ur in di�er-ent fun
tional 
ir
uits indi
ating the 
lose relation between fun
tional importan
e and
onne
tivity pattern of individual neurons.lo
al a
tivities to produ
e a 
oherent response of the entire system. This hypothesisis supported by the observation that, all 
ommand interneurons (of the 
lass AVA,AVB, AVD, AVE, PVC), whi
h 
ontrol forward and ba
kward lo
omotion of theworm by regulating motor output, play the role of 
onne
tor hubs. In fa
t, outof the 23 neurons in the 
lass R6, 20 are known to belong to di�erent fun
tional
ir
uits. Among the rest, although DVA is not part of any known 
ir
uit, ithas re
ently been identi�ed as being involved in me
hanosensory response. In its106



Chapter 6. Role of network stru
ture in system fun
tionabsen
e, the frequen
y and magnitude of the tap-indu
ed reversal as well as thea

eleration magnitude is diminished [168℄. The two remaining neurons, AVKLand SMBVL, have not been impli
ated so far in any known fun
tional 
ir
uit.However, their o

urren
e in this 
lass suggests that they may be important forsome, as yet unknown, fun
tion. This is a potentially interesting predi
tion thatmay be veri�ed in the laboratory.The signi�
an
e of these results is underlined by a 
omparison with the ran-domized network. For instan
e, in the random realization shown in Fig. 6.7 (b),of the 49 neurons playing the role of 
onne
tor or global hubs, less than half (viz.,23) a
tually belong to any of the known fun
tional 
ir
uits. The appearan
e ofmost of the 
ommand interneurons in the high-z region of both the empiri
al andrandomized networks indi
ates that their high overall degree is responsible for theirobserved role of �
onne
ting hubs".We now turn to the 28 neurons whi
h play the role of provin
ial hubs. Half ofall the inhibitory D-
lass motorneurons (viz., DD1-DD3 and VD1-VD6) are foundto belong to this 
lass. This is signi�
ant as these neurons have already beenimpli
ated in the ability of the worm to initiate ba
kward motion. While theyalso 
ontribute to forward lo
omotion, previous experiments have shown that theyare not 
ru
ial for it [174℄. This �ts with our hypothesis that, R5 neurons areimportant for lo
al 
oordination but may not be 
ru
ial for the global integrationof a
tivity. A pair of ex
itatory B-
lass motorneurons that sustain 
oordinatedforward lo
omotion in the worm also appear as provin
ial hubs. Of the remain-ing R5 neurons, 9 have been previously identi�ed to belong to various fun
tional
ir
uits. It will be interesting to verify the fun
tional relevan
e of the remaining8 neurons (OLLL/R, RMDVL/R, SMDVR, RIH, RMDDL/R) in the laboratory.Thus, overall, we �nd a very good 
orrelation between the 
onne
tivity patternand the fun
tional importan
e of di�erent neurons.An analysis of neurons having di�erent roles in terms of their membership in thedi�erent ganglia indi
ates that the lateral ganglion provides the majority of neuronsa
ting as 
onne
tor hubs (R6). This is 
onsistent with an earlier study [175℄ wherethis ganglion was found to a
t as the link between the neuronal groups responsiblefor sensory pro
essing and motor response. The 
orresponding randomized net-work, while also showing many neurons from the lateral ganglion, have signi�
antrepresentation from other ganglia too (e.g., the retrovesi
ular ganglion). 107
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ture in system fun
tionWe have also 
arried out an analysis of the probability of 
onne
tions betweenneurons having di�erent roles, relative to the randomized network, in an attempt to
ompare with other networks whi
h are involved in transportation and informationpropagation. However, we do not �nd any signi�
ant overlap of the nematodenervous system with networks in either of these two 
lasses, suggesting that the C.elegans neuronal network does not belong ex
lusively to either 
lass of networks.This assumes signi�
an
e in light of re
ent work distinguishing information (orsignalling) networks, su
h as the Internet and protein intera
tome, on the onehand, and transportation networks, su
h as metaboli
 and airport networks, onthe other, into two 
lasses [156℄.6.2.5 Wiring 
ost vs 
ommuni
ation e�
ien
yIn this subse
tion, we investigate 
ertain global properties of the C. elegans neuralnetwork in order to determine its di�eren
es with other 
lasses of networks. Wealso seek to as
ertain the possible 
onstraints whi
h might have given rise to theobserved network topology.We have already shown that wiring 
ost minimization, is at best, only a partialdetermining fa
tor for network stru
ture in this system. A re
ent study [149℄ has
laimed that neuronal networks minimize the length of pro
essing paths (i.e., theaverage number of links 
onne
ting any given pair of neurons) rather than mini-mizing the total wiring length or the average physi
al distan
e between 
onne
tedneurons. Thus, we now look at the 
ommuni
ation e�
ien
y of the network, asmeasured by the harmoni
 average network path length between all pairs of neu-rons. As in
reasing the e�
ien
y inevitably results in in
reasing the wiring 
ost,we analyze how the performan
e of the network as an information propagation sys-tem 
ompetes with the resour
e 
ost involved in setting up the required number of
onne
tions. This 
ost is measured as the Eu
lidean length between the 
ell bod-ies of all 
onne
ted pairs of neurons (
orresponding to the dedi
ated-wire modelof Ref. [144℄). It has been shown that the positions of the subset of sensory andmotor neurons dire
tly 
onne
ted to sensory organs and mus
les, respe
tively, 
anbe determined quite a

urately by minimizing their total wiring 
ost [147℄. As ourfo
us is on the 
onne
tion stru
ture of the neuronal network, we keep the neuronpositions �xed and, thus, our study does not 
onsider the wiring 
ost involved in108
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Figure 6.8: The variation of 
ommuni
ation e�
ien
y, E, as a fun
tion of the wiring
ost (de�ned using the �dedi
ated-wire" model) in the ensemble of random networkswith degree sequen
e identi
al to the C. elegans neuronal network. The trend indi
atesa trade-o� between in
reasing 
ommuni
ation e�
ien
y and de
reasing wiring 
ost. The
orresponding values for the empiri
al network is indi
ated by a 
ross. The s
hemati
�gures shown above the main panel indi
ate the type of networks obtained in the limiting
ases when only one of the two 
onstraints are satis�ed. (Inset) The 
ommuni
atione�
ien
y of randomized networks as a fun
tion of the wiring 
ost 
al
ulated a

ording tothe �
ommon-wire" model. The values for the empiri
al network are indi
ated as before.In both �gures, error bars indi
ate the standard deviations 
al
ulated for 103 randomrealizations. We observe that the empiri
al network is suboptimal in terms of wiring 
ostand 
ommuni
ation e�
ien
y, suggesting the presen
e of other 
onstraints governing thenetwork organization.
onne
ting neurons to sensory organs and mus
les. By randomizing the networkkeeping the degree of ea
h node �xed, we 
an 
onstru
t systems having a spe
i�edwiring 
ost, and then measure its 
ommuni
ation e�
ien
y. This analysis repro-du
es the expe
ted result that de
reasing the wiring 
ost of the network 
auses ade
line in its performan
e in terms of information propagation. However, we notethat the empiri
al network has a wiring 
ost mu
h higher than one would expe
tfor the 
orresponding 
ommuni
ation e�
ien
y.As most of the neurons in C. elegans have at most one or two pro
esses, onwhi
h all the synapses and gap jun
tions with other neurons are made, the earlier109
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ture in system fun
tionde�nition of wiring 
ost as the sum of all Eu
lidean distan
es between 
onne
ted
ell bodies may be a gross over-estimate of the a
tual wiring 
ost. Thus, we 
on-sider an alternative measure, where, the wiring 
ost for 
onne
ting to a spe
i�
neuron is taken to be the Eu
lidean length between the neuron's 
ell body andthose of the farthest neurons it is 
onne
ted to. The simple one-dimensional sim-pli�
ation of the C. elegans body that we have used here ignores distan
e along thetransverse plane. Thus, this measure is a
tually an under-estimate of the a
tualwiring 
ost, and should provide an insightful 
omparison with the above measureobtained from the dedi
ated-wire model. Fig.6.8 shows that wiring 
ost in
reaseswith 
ommuni
ation e�
ien
y for the randomized networks, whi
h is qualitativelysimilar to the relation obtained using the pre
eding de�nition for wiring 
ost. Inthis 
ase also, we �nd that the empiri
al C. elegans network has a mu
h lower e�-
ien
y than would be expe
ted from its wiring 
ost alone. This observation suggeststhe presen
e of other 
onstraints, possibly related to information pro
essing, thatare responsible for the observed global properties of the network.6.2.6 Possible existen
e of information pro
essing 
onstraintIn this subse
tion, we explore further the possibility that the additional 
onstraintsgoverning the topologi
al stru
ture of C. elegans nervous system may be relatedto information pro
essing, rather than 
onstraints arising from information (orsignal) propagation, whi
h are quanti�ed by measuring 
ommuni
ation e�
ien
y.The property of information pro
essing, i.e., the a
tive transformation of signalsinto responses, di�erentiates the neuronal network from other well-studied net-works where e�
ien
y is of paramount importan
e, su
h as the internet and air-port transportation network. While fast 
ommuni
ation of information betweendi�erent neurons is 
ertainly an important fun
tional 
riterion, we explore the pos-sibility that the neuronal network may be di�erent from networks whi
h are onlyoptimized for maximum 
ommuni
ation e�
ien
y.First, we look at the overall network stru
ture, by de
omposing the network intoa strongly 
onne
ted 
omponent (SCC), within whi
h it is possible to visit any nodefrom any other node using dire
ted links, an inward 
omponent (IN) and outward
omponent (OUT), 
onsisting of nodes from whi
h the SCC 
an be visited or whi
h
an be visited for the SCC, respe
tively, but not vi
e versa. In addition, there are110
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Figure 6.9: (Left) The average betweenness 
entrality, 〈BC〉, and (right) the averagenearest neighbor degree, 〈knn〉 of ea
h node as a fun
tion of its total degree, 〈k〉 =
〈kin + kout〉. Betweenness 
entrality is a measure of how frequently a parti
ular nodeis used when a signal is being sent between any pair of nodes in the network using theshortest path. In 
ase of the internet, BC of nodes in
reases with its degree whi
h issought to be linked with its information transport property. In C. elegans, although BCin
reases with degree, this in
rease is not signi�
ant when 
ompared to the randomizedversion of the network. In the 
ase of the relation between the average 
onne
tivity ofnearest neighbors of a node with its total degree k, we note that for both the internet andprotein intera
tion network, knn de
reases with k as a power law. This means that low
onne
tivity nodes have high degree nodes as their neighbors and vi
e-versa. However, inthe 
ase of C. elegans, this relation is not very apparent and insigni�
ant in 
omparisonwith the randomized version of the network. In both �gures, error bars indi
ate thestandard deviations 
al
ulated for 103 random realizations. These results suggest thatthe C.elegans network forms a 
lass distin
t from the 
lass of networks optimized onlyfor signal propagation.
omponents dis
onne
ted from the SCC, i.e., nodes whi
h 
annot be visited fromSCC nor 
an any visits be made to SCC from there (Fig. 6.1). A 
omparison ofthe C. elegans neuronal network with a similar de
omposition of the WWW [176℄reveals that while in the latter the di�erent 
omponents are approximately of equalsize, the SCC of the nervous system 
omprises almost the entire network. Thus,any node 
an, in prin
iple, a�e
t any other node in the nervous system, suggestingthe importan
e of feedba
k 
ontrol for information pro
essing.Next, we 
onsider the relation between two fundamental properties of the net-work: the degree of nodes and their Betweenness Centrality (BC), whi
h 
har-111
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ture in system fun
tiona
terizes the importan
e of a node in information propagation over the network.The Betweenness Centrality of a node i is de�ned as the fra
tion of shortest pathsbetween all pairs of nodes in the network that pass through i [177℄. We observethat for both the C. elegans neuronal network and its randomized versions, thedegree of a node and its BC are strongly 
orrelated, i.e., highly 
onne
ted nodesare also the most 
entral (Fig. 6.9, left). This is similar to what has been observedin the internet [178℄, where the highest degree nodes are also those with the high-est betweenness [179℄, but in sharp 
ontrast to the airport transportation network,where non-hub nodes (low degree) may have very large BC [180℄.However, the C. elegans neuronal network di�ers from both the internet andthe protein intera
tion network (PIN), whose primary fun
tion is to allow signalpropagation between nodes, in terms of the variation of the degree of a node iwith the average degree of its neighboring nodes, 〈knn〉. While in the internet andPIN, 〈knn〉 de
ays as a power law with node degree, in the neuronal network, thisdependen
e is very weak (Fig 6.9, right). This implies that unlike the internet andPIN, the C. elegans nervous system does not have multiple star-like subnetworks.Further, it is signi�
antly di�erent from the airport transportation network, wherethe high degree nodes are 
losely 
onne
ted among themselves showing an assor-tative behavior [30℄. Thus, we believe that these results strengthen our 
laim thatthere are additional 
onstraints governing the nervous system 
onne
tion topologyin C. elegans, whi
h are unrelated to wiring 
ost, lineage or 
ommuni
ation e�-
ien
y. As the prin
ipal fun
tion of the system is to pro
ess information, this leadsus to 
onje
ture that it is this that provides the additional 
onstraints leading tothe observed organization of the nematode neuronal network. We further explorethis possibility using a simple model of hierar
hi
al networks in the next se
tion.6.3 Role of hierar
hi
al organization in neuronalnetworksAs seen from the pre
eding analysis, it seems that the primary fun
tional role ofnervous system is to pro
ess information about the sensory environment so as toallow the organism to a
t appropriately for survival. Apart from the speed of signalpropagation between various elements of the nervous system, the survival su

ess112
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ture in system fun
tionTable 6.2: The average dire
ted path length within and between the sub-populations ofsensory, motor and inter-neurons (ℓ) and the 
orresponding fra
tion of neuronal pairs forwhi
h a dire
ted path does not exist (F∞) are 
ompared with the randomized versionsof the network. The 
olumns and rows indi
ate the neuronal types for the pre- and post-synapti
 ends of a pair, respe
tively. The empiri
al network shows a relatively higher
onne
tivity from sensory to both inter- and motor neurons, and from inter- to motorneurons, as 
ompared to the reverse dire
tions. For random networks, the average valueis shown with the standard deviation given in parenthesis.Neuron Empiri
al networkSensory Motor Inter
ℓ F∞ ℓ F∞ ℓ F∞Sensory 3.46 10.24 4.75 27.96 3.37 23.04Motor 3.00 1.87 3.79 20.88 2.74 15.72Inter 2.86 5.88 4.05 24.31 2.72 18.96Neuron Randomized networkSensory Motor Inter
ℓ F∞ ℓ F∞ ℓ F∞Sensory 3.05 ± 0.03 9.37 ± 0.69 3.38 ± 0.04 24.43 ± 0.90 2.90 ± 0.03 22.25 ± 0.58Motor 2.83 ± 0.02 2.12 ± 0.52 3.16 ± 0.03 18.10 ± 0.83 2.68 ± 0.02 15.91 ± 0.42Inter 2.64 ± 0.02 6.03 ± 0.40 2.97 ± 0.03 21.53 ± 0.77 2.50 ± 0.02 19.06 ± 0.33of an organism in the wild is 
ru
ially dependent on the spe
i�
ity of responseto the relayed stimulus. This latter 
riterion is ne
essary for the robustness ofinterpretation and pro
essing of sensory information. It requires a high degreeof 
ontrol and 
oordination of a
tivity in the network, in order to 
hannel thesignals through a limited part of the system, and preventing a lo
al stimulationfrom spreading into an overall ex
itation of the entire system. A simple s
hemafor a nervous system of an organism that has to exe
ute a number of behavioraltasks would be one having a parallel set of neurons arranged into several levels.This 
onstitutes a hierar
hi
al system, ea
h element of whi
h is unambiguouslyassigned to a distin
t layer of a given rank [181℄. The original notion of hierar
hi
alinformation pro
essing, e.g., that proposed by Hubel and Wiesel to explain theprogressive in
rease in 
omplexity of the re
eptive �eld properties in the visual
ortex [182, 183℄, had suggested a simple feed-forward s
heme.To 
ompare this simpli�ed system with the a
tual neuronal network, we �rstfo
us on the dire
tionality of 
onne
tions between the di�erent neuron types,viz., sensory, motor and inter-neurons. As gap jun
tional 
onne
tions are undi-re
ted and 
ommuni
ation through them is mu
h slower than that via 
hemi
alsynapse [184℄, we have initially 
onsidered only the synapti
 network for our anal-113
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Figure 6.10: (Left) S
atter plot of the net di�eren
e between in
oming and outgoingsynapti
 
onne
tions of a neuron as a fun
tion of its total synapti
 degree. Di�erentneuron types, viz., sensory, motor, inter, motor-sensory and motor-inter, are indi
atedby di�erent symbols. The sensory and motor neurons have relatively higher out- andin-degrees respe
tively, whereas inter-neurons do not show any 
onsistent pattern. Thisis 
onsistent with the overall dire
ted nature of information �ow from sensory to motorlayers as expe
ted in a neuronal network. (Right) Gap-jun
tional degree as a fun
tionof the total synapti
 degree, indi
ating that neurons with large number of synapses alsohave many gap jun
tional 
onne
tions.ysis. Table 6.3 shows the average length, ℓ, of dire
ted paths within and betweenthe di�erent 
ategories of neurons, as well, as the fra
tion of neurons (F∞) of agiven type that are unrea
hable from other neurons in the same or di�erent 
ate-gory. We observe that there is indeed an asymmetry in these properties of dire
tedpaths between the di�erent neuronal types, indi
ating a preferred dire
tion of in-formation �ow from sensory to motor neurons via inter-neurons. However, there isfar more 
onne
tivity in the reverse dire
tion than would be expe
ted for a simplehierar
hi
al system having a feed-forward ar
hite
ture.These reverse (or feedba
k) 
onne
tions are presumably responsible for the
ontrol of motor response, as well as, for the various kinds of asso
iative and non-asso
iative learning reported for C. elegans [185℄. To explore in detail the feedba
k
onne
tivity, we re-
al
ulate F∞ from motor to sensory neurons after removingthe inter-
onne
tions among the motor neurons. The in
rease in the unrea
hablefra
tion from ∼ 28% to ∼ 66% indi
ates that, the feedba
k from motor to sensoryneurons o

ur pre-dominantly through a few key motor neurons whi
h send 
on-114
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tions to various inter- and sensory neurons, and to whi
h other motor neuronsare 
onne
ted. In addition, if we also remove the dire
t feedba
k 
onne
tions fromthe motor to sensory neurons, as well as, the inter-
onne
tions among the sensoryneurons, the 
orresponding F∞ in
reases to 71.6%. This suggests that these short-
uts from motor to sensory neurons are not essential for feedba
k 
ommuni
ation,be
ause the dominant 
ontribution to the reverse �ow of information from theoutput to input layers is through inter-neurons.Another feature of the empiri
al network that suggests it does not follow astri
tly hierar
hi
al s
heme having a sequen
e of several 
learly de�ned levels be-tween the input and output layers, is the existen
e of dire
t links from sensoryto motor neurons. Sensory neurons have short dire
ted paths to almost all motorand inter-neurons, with only the neurons AINL, PVDR, SDQR and DVB beingunrea
hable from any sensory neuron. The shortest dire
ted path length to a mo-tor or inter-neuron from at least one sensory neuron (if a path exists) does notex
eed 3, with 111 paths of length 1, 66 having length 2 and 8 having length 3.This is 
onsistent with the fa
t that C. elegans neurons do not, in general, useregenerative a
tion potentials to 
ommuni
ate with ea
h other, whi
h implies thatsignals will dissipate in transit unless the neurons are 
onne
ted via short paths.The dire
tionality of the empiri
al network 
an be explained to an extent asan out
ome of the degree sequen
e of the di�erent 
ategories of neurons. Thisis done by 
omparing with the degree-
onserved random networks, whi
h showsimilar asymmetry in the dire
ted 
onne
tivity between the various neuronal types.This suggests that the di�eren
es in the in-degree and out-degree between sensory,motor and inter-neurons a

ount for most of the variation in ℓ and F∞ seen in thea
tual data. Fig 6.10 (left) expli
itly shows that the sensory and motor neuronsdi�er from ea
h other in having relatively higher number of outgoing and in
oming
onne
tions, respe
tively. In 
ontrast, inter-neurons do not show any spe
i�
 biasin terms of in-degree and out-degree. Moreover, we �nd that, neurons having highsynapti
 degree also tend to have high gap-jun
tional degree (Fig. 6.10, right).6.3.1 Core-periphery organization of the nervous systemThe above analysis suggests that the organization of the C. elegans neuronal net-work is mu
h more 
omplex than that of a simple feed-forward information pro
ess-115
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OUTIN

Figure 6.11: S
hemati
 diagram showing the k-
ore de
omposition of a dire
ted net-work. The k-
ore of a graph is de�ned as the largest subgraph where every node hasat least k links. For ea
h 
hoi
e of k, we determine the k-
ores by iteratively pruningall nodes with degree lower than k and the links asso
iated with them. For dire
tednetworks, the k-
ore obtained is di�erent depending on whether one is 
onsidering thein-degree or the out-degree of the nodes.ing network. The relatively high density of re
urrent 
onne
tions among the inter-neurons (Cinter−inter = 0.068, 
ompared to Csensory−sensory ≈ Cmotor−motor = 0.026)suggests that the empiri
al network may have a hierar
hi
al arrangement 
onsist-ing of a densely 
onne
ted 
ore 
omprising mostly inter-neurons and a sparsely
onne
ted periphery whi
h is populated predominantly by sensory and motor neu-rons. To establish this, we analyze the network using k-
ore de
omposition. The
k-
ore of a graph is de�ned as the largest subgraph where every node has at least
k links. For ea
h 
hoi
e of k, we determine the k-
ore by iteratively pruning allnodes with degree lower than k and their asso
iated links. For a dire
ted network,the k-
ore obtained depends on whether one is 
onsidering the in-degree or theout-degree of the nodes. Thus, ea
h node of the in-degree k-
ore of a graph hasat least k in
oming links and ea
h node of the out-degree k-
ore of a graph has atleast k outgoing links (Fig. 6.11).Our results show that there is indeed a set of inter-nested 
ores in the C.elegans nervous system, going upto 7 orders for 
ores de�ned in terms of out-degree. The 
omposition of the 
ores a

ording to di�erent neuron types is evenmore illuminating (Fig. 6.12 A,B). While the innermost 
ore de�ned in terms ofin-degree 
onsist almost entirely of motor and inter-neurons, those de�ned in termsof out-degree are dominated by sensory and inter-neurons. The interse
tion of theinnermost 
ores for in- and out-degree has 25 neurons, 
omprising of one sensory(AQR), two motor (RIML/R) and 22 inter-neurons. While RIML/R belong to116
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Figure 6.12: (A, B) The distribution of di�erent neuronal types among the di�erent
ores for the in
oming (A) and outgoing (B) synapti
 
onne
tions. The fra
tion of motorneurons in
reases while that of sensory neurons de
reases with in
reasing in-degree 
oreorder. Conversely, the out-degree inner 
ores exhibit high representation of sensory neu-rons and a 
orresponding low fra
tion of motor neurons. Inter-neurons are 
onsistentlywell-represented in both in- and out-degree 
ores of higher order. (C, D) The averagebetweenness 
entrality of all neurons (�lled 
ir
les) in the di�erent 
ores of in
oming (C)and outgoing (D) synapti
 
onne
tions. For both types of 
ores, the in
rease of BC with
ore order k is signi�
antly higher than that for the degree-
onserved randomized versionof the empiri
al network (shown using broken 
urve).the fun
tional 
ir
uit responsible for thermotaxis in the worm, the role of AQRis less 
lear, although it has been impli
ated in so
ial versus solitary feeding inthe worm [186℄. Among the inter-neurons, 12 belong to the di�erent fun
tional
ir
uits. Of the remaining neurons, DVA and AVKL has already been found to be
onne
tor hubs from our pre
eding analysis. Indeed, there is a signi�
ant overlapof the neurons o

urring in the interse
tion of the innermost 
ores for in- and out-degree with those that play the role of 
onne
tors in the network (both hub andnon-hub), with 84% of these neurons belonging to either the R3 or the R6 
lasses asde�ned previously. Thus, the di�erent modules of the nematode nervous system,whi
h have relatively low inter-
onne
tion between them, 
ommuni
ate mostly vianeurons belonging to the innermost 
ore.The fun
tional signi�
an
e of the inner 
ore neurons is also shown by the in-
reasing betweenness 
entrality (BC) of neurons with 
ore order (Fig. 6.12 C,D).This indi
ates that most of the shortest paths between pairs of neurons pass117
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ture in system fun
tionthrough the neurons belonging to the innermost 
ores. As BC is related to degree,whi
h is used for performing 
ore-de
omposition, this relation is not entirely unex-pe
ted. However, the random networks generated by preserving degree sequen
eshow a 
onsistently lower BC at any given 
ore order 
ompared to the empiri
alnetwork, suggesting that the presen
e of neurons with high 
entrality is signi�-
ant. This may have fun
tional importan
e in terms of information pro
essing,with all signals being 
hannelled through a small group of �
ore� neurons insteadof propagating through several distin
t pathways between the sensory organs andmus
les.6.3.2 Hierar
hi
al stru
ture and noise �lteringIt is important to 
onsider why a nervous system as simple as that of C. elegans re-quires 
entralized pro
essing, when, in prin
iple, a set of semi-independent parallelpathways (e.g., re�ex ar
s) 
onne
ting dedi
ated sensory and motor neurons viaspe
i�
 interneurons, 
ould have also been viable. To understand the advantagesof the former model of information pro
essing, we propose the hypothesis thatit redu
es the un
ontrolled spreading of ex
itation globally through the network(as would have been the 
ase for a non-hierar
hi
al network) while having highe�
ien
y for signal propagation between any pair of neurons. As C. elegans usesgraded potential neurons, the transfer of a
tivity is well des
ribed by a di�usivepro
ess. We therefore use di�usion to measure the extent of passive spreadingof ex
itation in the network by 
onsidering the eigenvalues of the 
orrespondingLapla
ian matrix.For a di�usion pro
ess, the mixing rate is de�ned as ν = ln µ−1, where
µ = max{1 − λ2, λN − 1}, (6.5)and λ1 . . . λN are the eigenvalues of the normalized lapla
ian matrix L . The mix-ing rate is faster in networks where the eigenvalues of L are 
on
entrated 
loseto 1. A 
omparison of the spe
tral distribution for the Lapla
ian of the empiri
alnetwork with that of the degree-
onserved randomized ensemble (Fig. 6.13) showsthat the smallest non-zero eigenvalue is three times larger in the latter. As thiseigenvalue is related to the inverse of the dominant time-s
ale for di�usion, it sug-118
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Figure 6.13: The distribution of eigenvalues for the normalized Lapla
ian L, of theC. elegans neuronal network (solid) 
ompared with that of degree-
onserved randomizedversions of the empiri
al network (broken), obtained by averaging over 103 realizations.(Inset) Rank-ordered eigenvalues of the empiri
al (
ir
le) and degree-
onserved random-ized network (diamond). While, the eigenvalues in the bulk of the distribution are 
om-parable, the smallest eigenvalues that are related to the dominant time-s
ale for di�usionover the system, are signi�
antly lower for the empiri
al network, suggesting a slowerrate of di�usion in the latter.gests that ex
itation spreads in the empiri
al network mu
h more slowly 
omparedto the randomized network, although the 
ommuni
ation e�
ien
y of the two are
omparable, the di�eren
e in the 
orresponding values of E being less than 10%.It is possible that the hierar
hi
al 
ore-periphery organization of network enablesrapid motor response to a sensory stimulus, without resulting in global ex
itationof the network. The latter 
riterion is important be
ause pro
essing of information(i.e., �
omputation�) in neuronal networks is believed to involve a highly 
ontrolledsequen
e of 
hanges in the a
tivation state of individual neurons [187℄.To establish the above hypothesis, we propose a model network having a 
ore-periphery hierar
hi
al organization. Using this model we study the role of a 
en-tralized stru
ture in redu
ing un
ontrolled spreading of a
tivation in the networkwithout redu
ing the overall e�
ien
y in responding to stimulus. In our model, Nnodes are divided into l levels of equal size N/l. The nodes in the innermost (1st)level are densely 
onne
ted among themselves with a 
onne
tion density ρ1. Thesu

essive l − 1 levels are less densely 
onne
ted, with the density of 
onne
tions119
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Figure 6.14: (Left) S
hemati
 representation of the 
onne
tivity stru
ture of the model,with (Right) the 
orresponding adja
en
y matrix indi
ating the non-uniform 
onne
tiondensities for the di�erent levels (l = 1, . . . , 4). Darkest shade represents the highest
onne
tion density. (C, D) Core-de
omposition of the model reveals its 
ore-peripheryorganization with (C) fra
tion of nodes in ea
h 
ore of order k and the (D) 
onne
tiondensity at ea
h 
ore, in
reasing with k. The network models having l = 2, 5 and 6 levelsshow qualitatively similar variation with k as 
ompared to the synapti
 in-degree andout-degree 
ores of the empiri
al network. The 
urves shown for the model are averagesover 100 realizations for ea
h value of l with N = 240 and q = 1.9. The 〈k〉 = 9.36 ofthe model is 
hosen so that the 
onne
tivity of the model and the empiri
al network aresame.S
hemati
 diagram of a network model with dense inner 
ore stru
ture. (Right)The adja
en
y matrix of the model network, with the 
olor of ea
h region representingthe 
onne
tion density there. Darker shades represent higher 
onne
tion densities.between nodes in the level i, ρl < · · · < ρi · · · < ρ1 (Fig. 6.14 A,B). For simpli
-ity, we 
onsider the ratio of densities between subsequent levels to be 
onstant:
ρ1

ρ2

= ρ2

ρ3

= · · · =
ρl−1

ρl
= q. Thus, by varying q, the density of 
onne
tions in thedi�erent levels 
an be 
hanged. When q = 1, the system is a homogeneous randomnetwork, while for q > 1 it has a 
ore-periphery stru
ture with an inter-nestedarrangement of densely 
onne
ted layers.By 
onstru
tion, the inter-
onne
tion density is highest among the nodes inthe �
entral kernel" of the network, and gradually de
reases outward. The modelnetwork has a 
ore-periphery organization similar to that of the nematode network,as observed by performing a k-
ore de
omposition and 
omparing the 
onne
tiondensities between the two systems for ea
h 
ore order. Fig. 6.14 (C,D) shows themodel network for two di�erent values of l (number of levels) at a given value of

q (the ratio of 
onne
tion densities between subsequent levels). For small l, thenetwork is relatively undi�erentiated. With in
reasing l, the hierar
hi
al stru
ture120
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Figure 6.15: The relative e�
ien
y E and mixing rate ν of the 
ore-periphery modelhaving di�erent number of levels (A: l = 2, B: l = 4, C: l = 5 and D: l = 6) shown as afun
tion of the relative density between su

essive levels, q. For larger number of levels,the mixing rate de
reases sharply with q, while the relative e�
ien
y remains almostun
hanged. In all 
ases N = 240, 〈k〉 = 20. Note the very di�erent value of y-axis usedin �gures (A-D). It indi
ates that as the 
ore stru
ture of the network model is in
reasethe relative 
hange in ν is more than the 
hange in E.be
omes prominent, as seen in the in
reasing 
onne
tion density for su

essivelyhigher order 
ores.We now 
onsider how 
ore-periphery hierar
hi
al organization a�e
ts di�usivespreading and 
ommuni
ation e�
ien
y in the system. Fig. 6.15 shows the vari-ation of the s
aled e�
ien
y E/Er, as well as, the s
aled mixing rate ν/νr, bothmeasurables being s
aled with respe
t to randomized networks, as a fun
tion of qfor model networks with di�erent number of levels l. For large l, there is a rapidin
rease in the time required to di�use a
ross the entire network with in
reasing
q, although the 
ommuni
ation e�
ien
y remains almost 
onstant. This impliesthat, a network having a prominent 
ore (i.e., large q) and a hierar
hi
al stru
-ture with many levels (large l) is e�e
tive in redu
ing un
ontrolled spreading ofex
itation through the system without sa
ri�
ing the rapid 
ommuni
ation speedbetween nodes involved in information pro
essing. It supports our hypothesis thatthe hierar
hi
al 
ore-periphery organization of the C. elegans nervous system is re-sponsible for the signi�
ant di�eren
e in the di�usive time-s
ales for the empiri
aland randomized networks. 121
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ture in system fun
tion6.4 Dis
ussionIn this 
hapter, we have 
arried out a detailed analysis of the mesos
opi
 stru
-ture in the 
onne
tion topology of the C. elegans neuronal network. Inferring theorganizing prin
iples underlying the network may give us an understanding of theway in whi
h an organism makes sense of the external world. We have fo
usedprimarily on the existen
e of modules, i.e., groups of neurons having higher 
on-ne
tion density among themselves than with neurons in other groups. Presen
e ofsu
h mesos
opi
 organization naturally prompts us to ask the reasons behind theevolution of these features in the network.There have been re
ent attempts at explaining neuronal position and stru
turallayout of the network by using stati
 
onstraints, su
h as wiring e
onomy and 
om-muni
ation path minimization. Although we �nd that membership of neurons inspe
i�
 modules are 
orrelated with their physi
al nearness, the empiri
al networkis sub-optimal in terms of both the above-mentioned 
onstraints. By 
omparingthe system with other 
omplex networks that have been either designed or haveevolved for rapid transportation while being subje
t to wiring e
onomy, we �ndthat the C. elegans nervous system stands apart as a distin
t 
lass. This suggeststhat the prin
ipal fun
tion of neuronal networks, viz., the pro
essing of informa-tion, distinguishes it from the other networks 
onsidered, and plays a vital rolein governing its arrangement. Considering the importan
e of this 
onstraint inensuring the survival of an organism, it is natural that this should be key to theorganizing prin
iples underlying the design of the network. The intimate relationbetween fun
tion and stru
ture of the nervous system is further brought out by ouruse of stru
tural analysis to distinguish neurons that are 
riti
al for the survivalof the organism. In addition to identifying neurons that have been already empiri-
ally impli
ated in di�erent fun
tions (whi
h serve as a veri�
ation of our method),we also predi
t several neurons whi
h 
an be potentially 
ru
ial for 
ertain, as yetunidenti�ed, fun
tions.When we 
ompare the nervous system of C. elegans with the brains of higherorganisms, we observe the modular organization of the latter to be more promi-nent [188℄. For example, the network of 
orti
al areas in the 
at and ma
aquebrains exhibit distin
t modules [104, 56℄, with ea
h module being identi�ed withspe
i�
 fun
tions [189, 63℄. A possible reason for the relatively weak modular stru
-122
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ture in system fun
tionture in the nematode 
ould be due to the existen
e of extended pro
esses for theneurons of C. elegans. Many of these span almost the entire body length, an e�e
tthat is enhan
ed by the approximately linear nature of the nematode body plan.As a result, 
onne
tions are not 
onstrained by the physi
al distan
e between somaof the neurons, as would be the 
ase in mammalian brains. It is apparent thatsu
h 
onstraints on the geographi
al distan
e spanned by links between nodes (viz.,
ost of wiring length) 
an give rise to 
lustering of 
onne
tions among physi
allyadja
ent elements. In addition, the small nervous system of C. elegans, 
ompris-ing only 302 neurons, la
ks redundan
y. Therefore, individual neurons may oftenhave to perform a set of tasks whi
h in higher organisms are performed by severaldi�erent neurons. Thus, fun
tional modularity is less prominent in the nematode,as some neurons belong to multiple behavioral 
ir
uits.Another prin
ipal distin
tion between the C. elegans nervous system and thebrains of higher organisms su
h as human beings, is the relative high 
onne
tivityin the former (the 
onne
tion density being C ∼ 0.1). By 
ontrast, the 
onne
tan
efor human brain is around 10−6 [190℄, whi
h leads us to the question of how 
om-muni
ation e�
ien
y 
an remain high in su
h a sparsely 
onne
ted network. It ispossible that the more intri
ate hierar
hi
al and modular stru
tures seen in thebrains of higher organisms is a response to the above problem. The fa
t that therate at whi
h the number of neurons N in
rease a
ross spe
ies, is not mat
hedby a 
orresponding in
rease in the number of links (whi
h in
reases slower than
N2) implies the existen
e of 
onstraints on the latter, whi
h is a resour
e 
ost inaddition to the earlier mentioned 
ost of wiring length.The fun
tion of information pro
essing implies an underlying hierera
hy, thatimposes a dire
tion to the �ow of signals in the system, from the input to theoutput. In real networks, this hierar
hi
al s
heme 
an be obs
ured by the pres-en
e of feedba
k and 
onne
tions that span several levels. In parti
ular, for C.elegans, we �nd that it is di�
ult to distinguish its somati
 nervous system froman unstru
tured network by analysing the properties of dire
ted paths between thesensory, inter and motor neurons. However, the inherent stru
ture of the networkis manifested as a sequen
e of nested 
ores of su

essively higher inter-
onne
tiondensities. Our results showing in
reasing 
entrality for higher order 
ores, as wellas, the varying 
omposition of the in- and out-degree 
ores in terms of di�erentneuronal types, reveal the hierar
hi
al nature of the system whi
h is impli
it in123



Chapter 6. Role of network stru
ture in system fun
tionthe 
ore-periphery organization.Many 
omplex networks o

urring in nature are often referred to as havinghierar
hi
al stru
ture, although, there are no generally a

epted measure of thedegree of hierar
hy present in a system. This is partly be
ause hierar
hy 
an havedi�erent 
onnotations. E.g., while some studies 
onsider the presen
e of inter-nested modules to be the signature of hierar
hi
al organization [107, 191, 192, 188,59℄, other papers have 
onsidered the presen
e of distin
t layers in a network to beessential for the existen
e of hierar
hy [193, 54, 194℄. In the present paper, in thespirit of neuronal information pro
essing, we adopt the usage of hierar
hy in thesense of multiple levels of pro
essing, with information �owing from the sensory(input) to the motor (output) layer through inter-neurons.We propose that a hierar
hi
al network, whi
h has a dense 
ore and an overallsparse stru
ture, possesses high 
ommuni
ation e�
ien
y, and at the same time,relatively low di�usion rate, implying that neuronal networks have evolved subje
tto the 
onstraint that a stimulation should not result in non-spe
i�
 global a
ti-vation of the network. This requires that while 
ommuni
ation between a givenpair of neurons should be fast, enabling a rapid response to sensory stimulus, itshould also be robust to environmental and internal noise, so that perturbations
an remain lo
alized in the system, preventing indis
riminate a
tivation of the en-tire network from a spe
i�
 stimulus. The above analysis suggests that informationdoes not di�use passively throughout the network, but is guided towards a 
entralgroup of densely inter
onne
ted neurons, where it is pro
essed and appropriate
ommands are sent to motor-neurons for initiating mus
ular a
tion.
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7Con
lusions
Physi
ists look for universal prin
iples that are valid a
ross many di�erent sys-tems, often spanning several length or time s
ales. While the domain of physi
alsystems has often o�ered examples of su
h widely appli
able `laws', so
ial, e
o-nomi
 and biologi
al phenomena tended to be, until quite re
ently, less fertile interms of generating similar universalities. However, this situation has 
hanged af-ter the study of 
omplex networks emerged into prominen
e. While the existen
eof 
omplex networks in various domains has been known for some time, the re
entex
itement among physi
ists has to do with the dis
overy of 
ertain key universalprin
iples governing the behavior of systems whi
h had previously been 
onsideredvery di�erent from ea
h other.7.1 Stru
ture of networksComplex networks exhibit a variety of stru
tural features. One of the most intrigu-ing properties of many networks observed in nature and so
iety is the o

urren
e ofmodular stru
ture. Su
h stru
tural modularity may also be 
onne
ted to fun
tionalmodules, whi
h are independent subsystems responsible for di�erent tasks, as seenin many biologi
al systems. Another ubiquitous property of 
omplex networks isthe o

urren
e of �small-world" behavior along with high 
lustering between thenodes. Both modularity and 
lustered small-world properties have been observedin a wide range of networks, from those involved in metabolism and signalling inbiologi
al 
ells, to the set of 
orti
o-
orti
al 
onne
tions in the brain, intera
tionsin so
ial groups, the internet and food webs. In this thesis, we have shown that125



Chapter 7. Con
lusionsthe above properties, previously 
onsidered to be independent, are in fa
t relatedto ea
h other. This shows how the mesos
opi
 organization of a network 
an haveunexpe
ted 
onsequen
es for its global features.7.2 Dynami
s on networksNetworks often have asso
iated dynami
s, with variables asso
iated with ea
h nodeevolving over time. Examples in
lude, the variation in the populations of di�erentspe
ies in an e
ologi
al network, the 
hanging metabolite 
on
entrations in 
el-lular networks, et
. Thus, fo
us of re
ent work in the area of 
omplex networkshas shifted from purely stru
tural aspe
ts of the 
onne
tion topology to investigat-ing their role in determining the dynami
al behavior of the network. It has beenfound that spe
i�
 stru
tural properties of networks 
an have novel fun
tional
onsequen
es, e.g., the absen
e of threshold for the propagation of epidemi
s ins
ale-free networks. In this thesis, we have not only looked at how network stru
-ture a�e
ts dynami
s, and hen
e its fun
tion, but also the reverse problem of howfun
tional 
riteria 
an 
onstrain the topologi
al properties of a network. In par-ti
ular, we have investigated (i) how mesos
opi
 features, su
h as modular andhierar
hi
al organization, a�e
t the nature of dynami
s on the network, and (ii)how dynami
al 
onsiderations 
onstrain the network stru
ture, su
h that it evolvestowards a modular or a hierar
hi
ally ordered 
on�guration.7.3 From stru
ture to dynami
sWe have shown that the dynami
al behavior of modular networks are strikingly dif-ferent from previously proposed small world network (SWN) models, su
h as, theWatts-Strogatz model. Modularity results in time-s
ale separation between fastintra-modular and slow inter-modular pro
esses. As dynami
s at the lo
al andglobal levels have di�erent 
onsequen
es in most natural systems, the temporalseparation between pro
esses o

urring at di�erent s
ales, through modular orga-nization, highlights the importan
e of su
h network stru
tures. We have demon-strated the universality of this dynami
al signature of modular networks with threevery di�erent pro
esses: (i) spin ordering, (ii) syn
hronization among non-linear126



Chapter 7. Con
lusionsos
illators, and (iii) di�usion. We have also shown this dynami
al signature ofmodular networks in the 
orti
o-
orti
al networks for 
at and ma
aque. This sug-gests that many of the reported SWNs in nature are possibly better representedby a modular network model. We have also investigated the 
onne
tion betweenstru
tural features and fun
tional obje
tives of the somati
 nervous system for thenematode C. elegans. A

ording to our results, the anatomi
al stru
ture of theneuronal network 
an be only partly explained by stati
 
riteria, su
h as, wiring
ost minimization and maximum 
ommuni
ation e�
ien
y. This indi
ates the ex-isten
e of other important 
onstraints, possibly related to the fun
tional task ofinformation pro
essing, that determine the wiring diagram of the nervous system.We have shown that the network 
an be de
omposed into modules, whi
h 
an bepartially 
orrelated with fun
tional 
ir
uits. Further, the nervous system has ahierar
hi
al 
ore-periphery organization, with inner 
ores having higher density of
onne
tions. We have shown that su
h an ar
hite
ture redu
es the un
ontrolledspreading of a
tivity in the network, thus a
ting as a noise �lter, while retaininghigh 
ommuni
ation e�
ien
y.7.4 From dynami
s to stru
tureWe have also 
onsidered how the existen
e of various stru
tural features in real-world 
omplex systems 
an be un
overed from the knowledge of 
olle
tive dynami
sof the nodes. We have re
onstru
ted the network of so
ial intera
tions in a troopof bonnet ma
aques by analyzing their allogrooming behavior. This allows usto obtain an understanding of so
ial organization in primates using observationaldata, the equivalent of whi
h would be very di�
ult to obtain for human groups.We have also examined whether the 
omplex features of so
ial behavior 
an beexplained in terms of basi
 prin
iples governing individual intera
tions, using asimple theoreti
al model proposed by Seyfarth. Next, we have investigated thenetwork stru
ture of intera
tions between sto
ks in �nan
ial markets. By analyzingthe 
ross-
orrelation matrix of pri
e �u
tuations among sto
ks in the NationalSto
k Ex
hange (NSE) of India, we show that this emergingmarket exhibits strong
orrelations 
ompared to developed markets, su
h as the New York Sto
k Ex
hange(NYSE). We have shown this to be due to the dominant in�uen
e of a 
ommon
127



Chapter 7. Con
lusionsmarket mode on the di�erent sto
k pri
es. In 
omparison, intera
tions betweenrelated sto
ks, e.g., those belonging to the same business se
tor, are mu
h weaker.This la
k of distin
t se
tor identity in emerging markets is expli
itly shown byre
onstru
ting the network of mutually intera
ting sto
ks. We have shown this tobe a result of the relative weakness of intra-se
tor intera
tions, 
ompared to theresponse to signals 
ommon to the entire market, by modeling sto
k pri
e dynami
swith a two-fa
tor model. Our results suggest that the emergen
e of a 
omplexinternal stru
ture, 
omprising multiple groups of strongly 
oupled 
omponents, isa signature of market development.7.5 Evolution of robust networksMost networks around us did not originate in the form we see them today, buthave emerged through a pro
ess of gradual evolution. We have shown using modelsthe evolution of some of the 
ommonly observed stru
tural features in naturallyo

urring networks. For this, we have taken into a

ount the fa
t that, most su
hsystems have to optimize between several, often 
on�i
ting, 
onstraints, whi
h maybe stati
, as well as, dynami
al in nature. In parti
ular, most networks need to havehigh 
ommuni
ation e�
ien
y and low 
onne
tivity, while being stable with respe
tto dynami
al perturbations in the nodes. Our results show that, the simultaneousoptimization of all three 
onstraints 
an result in networks with modular stru
ture,where ea
h module possesses a prominent hub. As these evolved systems alsoexhibit heterogeneous degree distribution, our �ndings have impli
ations for a widerange of systems in the biologi
al and te
hnologi
al domains where similar featureshave been observed.
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