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In this thesis we show how two dimensional Parametrized field theories constitute
"perfect" toy models for Loop Quantum Gravity. We quantize two dimensional
massless scalar field theories on a Minkowskian cylinder and on a Minkowskian
plane, and show how various aspects of Loop quantization e.g. construction of
quantum observables, determination of physical Hilbert space and emergence of
discrete spacetime can be explicitly illustrated within these models. We also
demonstrate how loop quantized parametrized field theories are quantum theo-
ries capturing non-perturbative aspects of two dimensional quantum Black-Holes.
The thesis is essentially divided into two parts. In the first part we present a
polymer quantization of a parametrized scalar field theory on 2 dimensional flat
cylinder. Both the matter fields as well as the embedding variables are quantized
in LQG type 'polymer' representations. The quantum constraints are solved via
group averaging techniques and, analogous to the case of spatial geometry in LQG.
the smooth (flat) spacetime geometry is replaced by a discrete quantum structure.
An overcomplete set of Dirac observables, consisting of (a) (exponentials of) the
standard free scalar field creation- annihilation modes and (b) canonical transfor-
mations corresponding to conformal isometries, are represented as operators on
the physical Hilbert space. None of these constructions suffer from any of the
'triangulation' dependent choices which arise in treatments of LQG. In contrast to
the standard Fock quantization, the non- Fock nature of the representation ensures
that the group of conformal isometries as well as that of the gauge transformations
generated by the constraints are represented in an anomaly free manner. Semiclas-
sical states can be analysed at the gauge invariant level. It is shown that 'physical
weaves' necessarily underly such states and that such states display semiclassical-
ity with respect to, at most, a countable subset of the (uncountably large) set of

observables of type (a).
In the second part we present a polymer (loop ) quantization of a two dimensional
theory of dilatonic gravity known as the CGHS model. We recast the theory as a

parametrized free field theory on a flat 2-dimensional spacetime and quantize the
resulting phase space using techniques of loop quantization. The resulting (kine-
matical) Hilbert space admits a unitary representation of the spacetime diffeomor-
phism group. We obtain the complete spectrum of the theory using a technique



known as group averaging and perform quantization of Dirac observables on the
resulting Hilbert space. Finally we argue that the algebra of Dirac observables get
deformed in the quantum theory. We than tackle the problem of time. Combin-
ing the ideas from parametrized field theory with certain relational observables,
evolution is defined in the quantum theory in the Heisenberg picture. Finally the
dilaton field is quantized on the physical Hilbert space which carries information
about quantum geometry.
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Introd uction

The program of canonical quantization of gravity underwent a revolution in the
early 80's When Ashtekar re-expressed the fundamental geometrodynamical vari-
able (gab, pab) in terms of a complex 5l(2, C) connection, AC,a and a canonically
conjugate 5l(2, C) densitized triad Ef'b [7]. The constraints of the canonical grav-
ity took on enormously simple form as certain lower order polynomials in the
connection and the triad. This led to a renewed hope that the constraint quanti-
zation of canonical gravity when expressed in terms of the complexified Asthekar
variables could be carried out successfully. The real advancement in the quantum
theory came when Rovelli and Smolin quantized the algebra generated by Wilson
loops (Path ordered exponential of connection integrated around a loop) and triads
on certain square-integrable functions of loops [41]. Even formal solutions to the
Hamiltonian constraint were computed in [13].
However the program of canonical quantization using complex Ashtekar variables
suffered a major setback on account of what are known as reality conditions. In
order to recover real theory from the complexified phase space one has to impose
certain constraints known as reality conditions on the canonical data. These con-
straints are second class and non-polynomial in basic variables. 'Whence it seemed
like one was replacing the non-polynomiality of constraints in geometrodynamics
by equally complicated reality conditions in connection dynamics.
One way to sidestep the issue of reality conditions was suggested by Barbero who

introduced real SU(2) valued connection and its conjugate triad as canonical vari-
ables on the real section of the complexified Ashtekar phase space [9]. Although
the (density one) Hamiltonian constraint when expressed in terms of these real



variables was once again non-polynomial and as complicated as the geometro-
dynamical Hamiltonian constraint, one could now use the ideas from Gauge theo-

ries to quantize gravity.
The key idea underlying Loop Quantum Gravity (LQG) ([54], [5]) is to quantize
the Poisson *-algebra generated by holonomies of real Ashtekar-Barbero connec-
tions along paths and surface integrals of real densitized triads called fluxes. As
the definitions of these "elementary variables" do not require any fixed spatial ge-
ometry, spatial diffeomorphisms act as outer automorphisms on this algebra. Also
note that, given any functional on the phase space it can be approximated up
to arbitrary precision by holonomies around infinitesimally small loops and fluxes
through infinitesimally small surfaces.
Quantization of the resulting Lie-algebra, known as ACZ (Ashtekar-Corichi-Zapata)
algebra proceeds via G S construction where the G S state w is a spatial diffeo-
morphism invariant state. One of the remarkable facts about this state is it's
uniqueness under certain technical but physically well-motivated assumptions [36].
The states of the resulting Hilbert space Hw are labelled by graphs whose trans-
formation under a diffeomorphism results in unitary implementation of the spatial
diffeomorphisms on the Hilbert space. The flux fields are represented as unbounded
self-adjoint operators on Hw and have a pure point spectrum. As a result of which
the spectra of geometric operators like area, volume, and length are discrete. At
least at the kinematical level (i.e. before implementing the constraints) this is a
concrete realization of the idea of Quantum geometry [4].
Thus the kinematical structure of LQG is tight and well under control, however it
is at the level of dynamics and representation of observables that need for radical
ideas have emerged .
• As the unitary operators representing finite spatial diffeomorphisms are not
weakly continuous due to the non-separability of the Hilbert space, the genera-
tors of infinitesimal diffeomorphisms, which would correspond to the quantization
of the diffeomorphism constraint is not well defined on Hw. Whence although
there is a proposed definition of quantized Hamiltonian constraint E[N] on Hw,

the full Dirac algebra of constraints cannot be realized on Hw.1 Thus it is not clear
whether LQG is generally-covariant in the sense of admitting a representation of

1It certainly cannot be realized on the space of diffeomorphism invariant states Hdij j as
Hamiltonian constraint is not well defined on it.



the algebra of constraints .
• Although H[N] is not well defined on diffeomorphism-invariant states (i.e. it
maps a state in Hdiff to a distribution not belonging to Hdiff), the commutator
[H[N], H[M]] can be shown to vanish on Hdiff. However checking whether the
classical limit of H[N] is the classical Hamiltonian constraint has remained out of
reach. (See [54] for details.)
In order to cure the above problems, a Master constraint program [171 which re-
places the Dirac algebra by a true Lie algebra consisting of certain quadratic com-
bination of constraints has been proposed. However unlike the Dirac algebra which
has a clear spacetime interpretation as the algebra of hypersurface deformations
l28], the Master constraint algebra admits no such interpretation. We emphasize
that one of the major obstacle in realizing Dirac algebra (or the associated group
thereof) on Hw is its non-Lie algebraic nature .
• Now we come to the issue of defining observables. It is a generic problem in
canonical gravity that (in spatially compact case) there aren't any observables in
the theory. However even at the kinematical level, trying to promote a generic
functional on phasespace to operator on Hw is ambiguous due to the following
reason. In LQG only certain non- local functionals of the connection, namely the
holonomies around spatial loops, can be promoted to quantum operators rather
than the connection itself. 2 As a result, all questions of interest (including that
of the quantum dynamics defined by the Hamiltonian constraint which is a local
function of the connection and triad,) need to be phrased in terms of holonomy
operators. Since holonomy operators associated with close by loops have actions
unrelated by any sort of continuity, this leads to a situation where a choice of a
subset of the uncountable set of all holonomy operators (or equivalently, the spatial
loops labelling them) becomes necessary. We shall loosely refer to such choices as
"triangulation" choices since, often, the family of loops is chosen to lie on some set
of triangulations of the spatial manifold. Since there seems to be no natural choice
independent of the intuition of the researcher, this leads to proposals which may
be seen as radical or ad- hoc depending on ones taste.

2The reason for this is the lack of regularity in the action of the holonomy operators: while,
classically, the connection at a point can be obtained from the holonomy of a loop containing the
point in the limit that the loop is infinitesimally small, the limit of the corresponding operators
does not exist in the LQG representation.



Even if the issues stated above were resolved, one would be led to the follow-
ing speculative questions.

• Even though at the kinematical level, quantum geometry is discrete, is there any
sense in which the physical states of LQG define a "discrete" spacetime, and if so,
how does a smooth continuum structure emerge from it?

• Canonical quantum gravity is known to suffer from the well-known problem of
time. Even if the solution to the Hamiltonian constraints (or the Master con-
straint) were found, how would one extract notion of evolution from it. Is the
notion of "time" evolution discrete as observed in certain mini-superspace models
or is it continuous.?

• One of the generic predictions of quantum (semi-classical) gravity is Hawking
radiation emitted by Black Holes. Any theory of quantum gravity is expected to

reproduce the thermal spectrum in the appropriate limit. Can one ask questions
pertaining to Hawking radiation starting from the state space of LQG?

In this thesis we show that two-dimensional Parametrized field theories(PFTs)
[30]offer 'perfect' toy models in which the issues related to the constraint algebra
and the triangulation dependence of the observables can be resolved and questions
stated above can be asked in a precise fashion.

Let us briefly outline the reasons as to why we call two-dimensional PFTs per-
fect 'toy' models.

1. In two-dimensional parametrized field theory, the Dirac algebra of constraints

is a true-Lie algebra. Whence one can aspire to find a loop-type represen-
tation of an appropriate algebra which also admits the representation of the
Dirac algebra or the associated Lie-group. This directly leads to a construc-
tion of physical Hilbert space which is so far unavailable in LQG.

2. Unlike gravity, it is straightforward to isolate the true degrees of freedom of
a PFT from the pure gauge degrees of freedom. Whence one has a complete
set of observables available at one's disposal. Thus one can try to quantize
these observables on the physical Hilbert space, and see if they suffer from



3. The problem of time shows up even in PFT once one has solved all the
constraints. Thus one can try to define a notion of evolution using certain
Relational observables and check if this evolution is discrete or continuous.

4. A state in the physical Hilbert space of PFT encodes information about
the spacetime geometry. Thus the questions pertaining to discreteness of
(spacetime) geometry can be posed precisely in this model.

5. Two-dimensional PFT on R2 is canonically equivalent to a two-dimensional
dilatonic theory of gravity known as the CGHS model. This model, at its
classical level admits 2-d Black holes as solutions. Also at semi-classical
level, it is known that these black holes Hawking radiate. So if one quantizes
the CGHS model (or the corresponding PFT) using LQG techniques, one
potentially has a framework where non-perturbative issues like singularity
resolution as well as semi-classical issues such as Hawking radiation can be
analyzed in loop quantized field theories.

The outline of this thesis is as follows.
After giving a brief introduction to PFT in arbitrary dimensions and Loop quanti-
zation in chapter 2, In chapter 3 we study massless parametrized scalar field theory
on 51 x R. Points 1,2 and 4 mentioned above are addressed in this chapter.
In chapter 4, we polymer quantize the CGHS model re-casted as a PFT on a
Minkowskian plane. To draw contrast from the previous chapter, where the Dirac
observables are quantized in a triangulation independent manner, we perform a
more "traditional" (triangulation-dependent) quantization of Dirac observables in
chapter 4. However we show that, contrary to the naive expectation, such opera-
tors can still be well defined on physical Hilbert space. In chapter 5, we define the
notion of evolution of certain relational observables on physical Hilbert space and
address the point 3. Finally we define an operator corresponding to the dilaton
field and complete the framework in which the question raised in point 5 above can
be asked. We end the thesis with discussion of certain open issues and conclusions.



Introduction to Parametrized field theory
and Polymer quantization

In this chapter we review classical parametrized scalar field theory(PFT) on d + 1
dimensional flat space-time [26]. We will first define the Lagrangian for PFT and
than pass onto the Hamiltonian framework. After introducing the constraint sur-
face and the reduced phase space, we will define a complete set of Dirac observables
for the theory.
We then review basics of Loop Quantum Gravity(LQG) and loop quantization

of (non-gravitational) field theories. After reviewing the kinematical structure of
LQG, we extract out certain bare essentials which underlie loop quantization of
any field theory.

Consider a free massive scalar field theory on (d + 1)-dimensional Minkowski space-
time (M,1]). The action is given by,



where (XO, ... , Xd) are inertial co-ordinates on M. Clearly, the space of solutions
of this theory does not admit an action of the group of diffeomorphisms of M,
Diff(M). i.e. if tpo is a solution to,

then for an arbitrary diffeomorphism j E Dij j(M), tpo 0 j is not a solution to
(2.2), unless f is an isometry of fl. The basic idea behind PFT is to enlarge the
space of solutions of the given field theory, so that the enlarged solution space
admi ts an action of Diff( M). This can be achieved as follows.
Parameterize XIJ. by arbitrary co-ordinates xC< on M. In terms of these arbitrary
co-ordinates, the action So[tp] becomes,

So[tp] = ~ J ddXJg(X(x))[gc<I3(X(x))oc«tpoX)(x)ol3(tpoX)(x) - m2(tpoX)2(x)]

(2.3)
. (()) _ ax" aXI/where gc<13X x - ax'" xf3 flIJ.v,

The action for PFT is obtained by considering the inertial co-ordinates XJJ as
dynamical variables (along with the scalar field 'I/J = tp 0 X).

This action is clearly invariant under arbitrary change of the co-ordinates xC<. More
precisely, we can show that 'IIj E Di j j (M),

(This is simply because the original action is unchanged by a diffeomorphism acting
on both the metric and the scalar field). Whence the solution space of PFT will
admit an action of Diff(M).
The equation of motion for 'I/J is simply the KG equation in arbitrary co-ordinates.



where TJ.w = -2g~~ OSPFT.
09/"1/

As is well known, (2.7) is automatically satisfied when 'l/J satisfies (2.6). This implies
that the d+ 1 scalars X j.t are undetermined functions on M. This d+ 1-functions

worth of gauge is a consequence of diffeomorphism invariance of SPFT'

Set XO = t and {xa} = {t, xa; a = 1, ... , d}. In order to derive the canonical action
for PFT, we restrict our attention to those Xa(t, xa),s such that for a fixed t, Xa

define a smooth space-like (w.r. t TJ) embedding of a 3-manifold ~ in M. 1

This means that for a fixed t, the functions {xa(xa)} are such that the symmetric
form,

is a Riemann metric on ~. Also let nj.t denote the unit time-like normal to X(~).

A d+1 decomposition of SPFT w..r.t "time" t leads to the following canonical form
of the action

¢(x) = cp(X(x))
1f¢(x) = VCinj.toj.t¢(x)

and the quadruple of scalar densities I1j.t(x) on ~ are canonically conjugate to Xj.t.
Nj.t are a quadruple of scalar fields on ~ and are Lagrange multipliers associated
with the constraints Hw

1In what follows, we do not assume any topological restrictions on 2:. Such specifications
are necessary to rigorously derive the symplectic structure of PFT [26]. However, as we will be
eventually dealing with much simpler two-dimensional theories, we will completely ignore the
analytic and topological subtleties associated with higher dimensional PFTs in this chapter.



where Xa
p,

some detaiL

1 7f2
Ht := -"2vq( : + qabfJa¢fJb¢ + m2¢2)nJ,L + 7f</>fJa¢X:

qabXb'rJJ,LV' We now describe the resulting phase space of PFT in

As is well known, the phase space r</> of scalar field theory on (M, 'rJ) is a linear
space co-ordinatized by the solutions <p to the Klein-Gordon equation, It can be
equivalently characterized as the vector space of all the Cauchy data (¢, 7f</» defined
in (2.10) on any Cauchy slice ~ through M, The symplectic form on r0 is gi\'en
by,

D</> = 1o¢ 1\ 07f </>

The phase space of PFT can be obtained by adding all space-like embeddings X
and their conjugate momenta IT to r</> and by imposing suitable constraints which
ensure that the embedding degrees of freedom are pure gauge [26],
More precisely. denoting the space of all space-like embeddings along with their
conjugate momenta by T*[ 2 The phase-space of PFT is given by,

The constraints that must be imposed on r are given in (2.12), The constraint sur-
face r defined by HJ,L(x) ~ 0 \:Jx E ~ is co-ordinatized by (¢, 7f</>, XJ,L, -Ht(cb, 7frj;' X)),

It can be shown that [26] under certain mild restrictions, r is a sub-manifold of
r, We now list several facts about r without proving any of them, Details can be
found in ([26], [23], [24], [27]),

• Let <p satisfy Klein-Gordon equation on M and let A ~ X)" be a curve in the

2There are good reasons for this notation, The space of all space-like embeddings E is an
infinite dimensional manifold modeled on some Banach space, The conjugate momenta IT are
sections of the cotangent bundle T* E, Details can be found in [26],



where dot denotes derivative w.r.t A.
• Conversely if (¢, Kep, X) satisfies (2.16) then it defines a unique solution to the
Klein-Gordon equation.

• The Hamiltonian vector fields XH[N] of the smeared constraints
H[N] = J H{I(x)N{I(x) is tangential to tv N{I.

• The constraints form a closed Poisson algebra,

We now introduce the notion of reduced phase space. But before that, we will
define the gauge orbits in the constraint surface. Consider the following automor-
phism Pxx' on the linear space rep. Start with an initial data (¢, Jrep) on a Cauchy
slice X (~), determine the corresponding space-time solution <p, and determine the
corresponding Cauchy data on XI(~). One can use this automorphism to deter-
mine gauge orbits as follows.

Given a point (¢, Jrep, X) in the constraint surface, the gauge orbit r(ep,'ff<j)'X) passing
through that point, is given by

The tangent space at any point on r(ep,'ffep,X) is spanned by the Hamiltonian vector
fields of H[N] VN, whence they are the gauge orbits. Note how the dynamical
trajectory of a given Cauchy data along any foliation of M(by space-like slices)
is contained in f. Thus each gauge orbit corresponds to a distinct solution to
the Klein-Gordon equation. This is one of the primary reasons why PFTs are
such good toy models for gravity for as in the case of gravity notion of gauge and
evolution become intertwined.
These orbits define an obvious equivalence relation between different points of t.
The space of equivalence classes define the reduced phase space of the theory.



We can associate an observable 0<p with any solution to the Klein-Gordon equation
as follows [26]. Let ((, 7],X, II) E f. Let (¢,7r¢) be the Cauchy data corresponding
to <p on X, then

where <; is the solution corresponding to the cauchy data (J,7ra) on X.
This is an observable as the Klein-Gordon inner product is invariant under deforma-
tions of the hyper-surface. Unlike an observable in ordinary gauge theories where
there exists a true Hamiltonian, the Dirac observables of PFT do not "evolve".
Whence in they are more commonly known as perennials. Note that the observ-

abIes associated with exp(ik· X)I k = (ko = Vk2 + m2, k) are nothing but Fourier
modes ak evaluated at a given point in phase-space. The Dirac observables satisfy
the following properties which are straightforward to prove.

• Given two observables 0<p, 0" a0<p + bo, is an observable for any real numbers a,
b.
• Poisson bracket between two observables in an observable, whence the set of all
such observables form a closed Poisson algebra.

• Given two observables 0<p, 0, corresponding to two distinct solutions <p, <;, there
exists a solution f2 such that (f2, <p - <;) i- 0, whence o{!will take distinct values on
the two gauge orbits which correspond to <p and <;. Thus the set of all observables
separate the points of reduced phase space.



2.3 Basics of Polymer quantization

In the remaining part of this chapter we review basics of Loop Quantum Gray-
ity(LQG) and loop quantization of (non-gravitational) field theories, and extract
out certain bare essentials which underlie loop quantization of any field theory.

We start with classical canonical theory of gravity formulated in terms of smooth
connections A on a principal SU(2)-bundle P, over a 3-dimensional manifold ~ and
smooth sections E of associated vector bundle of su(2)-valued vector densities of
weight one. The pair (A, E) co-ordinatizes the phase-space of general relativity
with the fundamental Poisson bracket being,

One then constructs a Poisson *-algebra U (defined below) generated by holonomies
and fluxes gi,"en by,

he [A] = Pexp( - Ie A)

ES,n[E] = Is( *E)jnj

where nj is su(2)-valued scalar of compact support on S.
Two properties of these elementary variables are worth noting .
• Holonomies are covariant objects under the action of local SU (2)-gauge transfor-
mations and spatial difleomorphisms. The reason for latter being, one has not used
any background structure (e.g. some fiducial spatial metric) for its construction .
• Although ES,n[E] are not SU(2) gauge-covariant, interesting gauge-inyariant ge-
ometrical objects like length, area and volume of compact sub-manifolds can be
constructed out of them. Also as we will see shortly, they do behave covariantly
under action of spatial diffeomorphisms.

An arbitrary element of U generated only by holonomies is known as cylindrical
function and is based on (piecewise-analytic) graph I with finite number of edges
and vertices.



where 1"1 is a complex valued function on 5U(2)IE("()I. The space of all cylindrical

functions based on a graph ry is denoted as Cyl'Y' and the *-algebra of cylindrical
functions is denoted by Cyl = U'YCyl'Y' where the union is over all piece-wise
analytic graphs with finite number of edges and vertices. Note that involution in
this case is simply complex conjugation.
Each of the fluxes, XS,n act as derivations on Cyl via the Poisson bracket relations,

The space of all such derivations will be denoted by Vec. The property which S
ensures that XS,n is a derivation is the fact that number of points in which ry ti
transversally intersects S is finite. This requires S to be semi-analytic and ori- s;
entable.3. a

Finally we are in a position to define the Poisson algebra which is quantized in
LQG.

U := Cyl x Vec with a Lie bracket defined by,

[(F'Y[A],XS,n), (F~,[A],Xs"n')] = (Xs,nF~,[A] -Xs',n,F'Y[A], [XS.n,XS',n']) (2.24) w
A

(F'Y[A], XS,n)* = (F "I [A], X S,n)

with F'Y[A] F'Y[A]* and XS,nF'[A] = Xs,nF[A].
Now consider the free tensor algebra EBn Tn(u) modulo the 2-sided ideal gener-
ated by elements of the type u ® v - v ® u - [u, v] for any u,v in U. We denote
this algebra by U. An abstract algebra isomorphic to thus constructed associative
algebra is the quantum algebra which is to be represented on some Hilbert space.
With slight abuse of notation, we will denote this abstract algebra also as U and

its generators by F'Y1 XS,n.

3Roughly speaking semi-analyticity of a surface means analyticity except for on some curves
which in turn have to be piecewise analytic



2.3.2 Action of fibrewise automorphisms and base-space au-

tomorphisms on U

The group Dif f(2:,) of semi-analytic diffeomorphisms on 2:,can be naturally rep-
resented as outer automorphisms on U. Let ¢ E Dif f(2:,),

A A

aepF"( = Fep-l("()
A A

aepXs,n = Xep-l(S),noep

Similarly the group Fun(2:"SU(2)) (this is a group under point-wise multiplica-
tion) of local gauge transformations act as outer-automorphisms on U. For the
sake of simplicity, we display its action on holonomy operators he rather then an

arbitrary cylindrical function. Let 9 E Fun(2:" SU(2)),

aiLe = g(e(O))heg(e(l))
agXS,n = Xs,n9

where ng(x) = Adg(x) (ni(x)Ti).
Although in this thesis our main focus will be on the space-time-diffeomorphisms,
it is important to note that in loop formulation, when dealing with a generally co-

variant theory of connections, the entire group of bundle automorphisms (by which
we mean the semi-direct product of Dif f(2:,), Fun(2:" SU(2))) can be represented
as outer automorphisms on the quantum algebra. This group is the kinematical
gauge group of the canonical gravity.

Before passing onto the representation theory of U, we note the following .
• The Abelian *-algebra Cyl is naturally embedded into U via F"([A] ----7 (F"(,O).-----
We will denote the image of this embedding by Cyl .
• Cyl can be completed (in the sup-norm) to a C*-algebra Cyl whose spectrum
is known as the space of generalized connections, A, and is the space of groupoid
homomorphisms from P to SU(2). (P is the path groupoid of 2:,.) Note that any
smooth connection is an element of A via holonomy-functional.



• Any cylindrical function on the space of smooth connections can be uniquely
extended to a function on A. Whence any F-y can be identified with a functional
on the space of generalized connections.
The Hilbert space on which 71 is represented faithfully is obtained using the GNS
construction. The underlying idea of GNS construction is that, given a state4 on
71, one obtains (7-i.w, 7rw, Dw). Here 7-i.w is the Hilbert space on which 7rw is the
representation of 71, and Dw is a vector in 7-i.w, which coincides with w when viewed
as a state(via expectation value) on 71.
The key idea underlying loop representation is to work with a state which IS 10-

variant under the action of the kinematical gauge group . This ensures that the
gauge group is represented unitarily on 7-i.w' In the case of theory of connections

on a spatial manifold of dimension 2': 3, such a state is unique [36], and is given
by,

w(F-y) = FA:dp,o(A)F-y(A)
w(XS,n) = 0

where we have identified F-y with a cylindrical function (of the generalized connec-
tions) .
~lO is the measure on A which can be identified with product of a finite number of
copies of Haar measure. Owing to the translation-invariance of the Haar measure
one can show that w is invariant under the action of bundle automorphisms.
The corresponding pre-Hilbert space is the space of finite linear span of elements
of CiJl (or equivalently cylindrical functions on A.) The inner-product is giyen by,

The Cauchy completion of the pre-Hilbert space w.r.t the above inner product
is 7-i.w' A useful set of basis-states in 7-i.w are known as spin-network states and

are defined as follows. Let s = b3, m. ii) be a triple containing a graph ,a
set J = {je}eEE("() of irreducible representation of S (2) with one representation
assigned to each edge, and the sets n1 = {me}eEE("(), ii = {ne}eEE("() labeling
matrix elements of the representation. s is known as a spin-network and there is

4 A state on a unital *-algebra A is linear functional w : A --> C which satisfies, w(a*) = w(a).
w(a*a) 2': 0, and w(I) = 1 where I is the unit of A.



an injection from the set of all spin-networks to a set of orthonormal basis-states
in riw

s ~ Ts(A) = TIeEEl!) v'dJ:"(je(A(e))menJ
< Ts, Ts' >Hw = 5s,s'

As the set of all graphs embedded in ~ is uncountable, so is the set of all spin-
networks which implies riw is non-separable.5

Finally the representation of U is as follows.

7fw(P-y)F~,(A) = F-yAF~,(A)
7fw (Xs,n)F~, (A) = Xs,nF~, (A)

The unitary representation of spatial diffeomorphisms and local gauge transforma-

tions is,
U( ¢)F-y(A)
V(g)F-y(A)

F<t>-ll!) (A) V¢ E Dif f(~)
F-y(Ag)V 9 E Fun(~, SU(2))

This in a nutshell is the kinematical setup underlying LQG. That the require-
ment of (spatial)-diffeomorphism invariance leads to a quantum configuration space
A with surprisingly simpler topological and measure theoretic properties (as com-
pared to the configuration space A of gauge theories on a fixed background) is
certainly remarkable. One can now build operators corresponding to geometrical
quantities, such as area, volume and length of sub~manifolds from the self-adjoint
operators XS,n. These operators turn out to be densely-defined self-adjoint oper-
ators on riw. Their spectra are discrete(pure point) and provide the first hints of
the underlying discrete nature of quantum geometry [4].
We now pass over to the construction of difFeomorphism-invariant Hilbert space.6

The method used to obtain the Hilbert space of diffeomorphism-invariant states
(1{dij j) is known as Refined algebraic quantization(RAQ) [37], which we summarise

5 A Hilbert space is separable iff it admits a countable, orthonormal basis.
6The local SU(2)-gauge transformations can be moded out in a variety of ways [54]. The

resulting Hilbert space is a subspace of rlw spanned by gauge-invariant cylindrical functions.
But as this gauge group is irrelevant from the point of view of PFT, we refrain from giving any
details here.



below.

Let D be a dense subspace of Hw generated by finite span of spin-network states.
Let D* be its algebraic dual. The idea is to look for elements of D*7 which satisfy,

where f E D*.

In RAQ framework, the space of diffeomorphism invariant-states is the image of
an anti-linear map [6],

known as the rigging map. Rigging map is required to satisfy the following prop-
erties.

(7](\lJ))[\lJ] ~ 0 V\lJ E D

O'7](\lJ) = 7]( O\lJ)

for any operator 0 acting on Hw that satisfies U(¢)OU(¢-l)
representation of 0 on D*.

The inner product on Im(7]) C D* is given by,

A simple analysis shows that the image of the Rigging map contains distributions
of the following form

7](ls » = 7][8] L < s'l

where we have denoted a spin-network state T8 by a ket Is >. The sum on the
R.H.S is over all spin-networks which can be obtained from s via an action of
some ¢ E Dif fCE) are diff-invariant. Here 7][8] is any positive real number which
is constant along the orbit is]. However in order to show that 7] satisfies eq.2 in
(2.35), one needs a more explicit form of the Rigging map.
In the present case, one avenue for constructing the Rigging map is offered by a
technique called group averaging. The idea is to start with a state (say a spin-
network state Is » in Hw and sum over all the states obtained by applying the

7Note that the reason we are not looking for diffeomorphism-invariant states in Hw is because
there aren't any (except the constant vector 1)



entire diffeomorphism group to the given state. The distribution so obtained will
be trivially diffeomorphism-invariant. However averaging over Dif f(2:,) is subtle

due to the following reason.
Given a graph { , there are infinitely many diffeomorphisms of 2:, which will keep

{ invariant, and the sum L¢EDif f('L.) < ¢ . sl diverges. Whence one has to divide
out the isotropy group of each graph.
The renormalized Rigging map (derived in [6]) is given by,

77(ls » = 77[sJ L L < sIU(¢')U(¢)
¢EDif![orcs)]('L.) ¢'EGS((,))

where, {(s) is a graph associated to sand ')'(s) is its maximal analytic extension.8

Dif f[i(s)J (2:,) is the set of diffeomorphisms, each element of which maps {(s) to
some distinct graph.

eSb) is the symmetry group of { which keeps { invariant but necessarily per-
mutes the edges.
Several comments are in order.
• The rigging map defined above, satisfies eq.2 in (2.35) only for the so-called
strongly diffeomorphism-invariant observables, i.e. those operators on rC which
satisfy U(¢)OU(¢-l) = O. This is a huge drawback as the only densely-defined
strongly diff-invariant observable is the volume operator. (As such it can be easily
shown that strongly diff-invariant operators cannot depend on connection).

• The numbers 77[s] are completely arbitrary and thus there is an infinite parameter
worth of ambiguity in the construction of the rigging map.

• Only working with strongly diffeomorphism-invariant operators lead to super-
selection sectors in Hw (with each sector being labeled by a given maximally an-
alytically extended graph). It is not clear if all the interesting physics can be
recovered by only working in a given super-selected sector.

8 A maximal analytic extension of a graph 'Yis a graph generated by maximal analytic extension
of the edges of 'Y.



Vie now turn to a very brief and qualitative discussion of quantization of Hamil-
tonian constraint in LQG. Our purpose here is to only note certain important
features of the Hamiltonian constraint and so we do not provide any detailed ex-
pressions in this section. All the details can be found in references.
In a remarkable series of papers titled quantum spin dynamics ([51]. [52]. [47],
[48], [49], [50]), Thiemann proposed a definition of Hamiltonian constraint oper-
ator (H[NJ). This operator turned out to be a densely-defined diffeomorphism-
covariant operator on 'Hw. One of the remarkable properties of this operator is
that it is independent of any choice triangulation of the spatial manifold. This
is certainly apriori unexpected as any classical functional of connection, will be
promoted to an operator in quantum theory by expressing connection in terms of
holonomies around small loops. In the case of integrated functions, like the Hamil-
tonian constraint. this would imply a choice of the triangulation of E. Generically
this triangulation dependence can not be removed by any limiting procedure. How-
ever in the case of the Hamiltonian constraint, it is possible to define a limiting
procedure and obtain a manifestly regularization independent operator.

• H[N] is necessarily graph-changing. Given a spin-network state Is > it maps it
to a linear combination of spin-network states with corresponding spin-networks
having a different graph then ,( s).
• H[N] (or more appropriately its dual) does not preserve 'Hdiff. However the
commutator [ H[N], H[A1] ] vanishes on diffeomorphism-invariant states. This
hints at the anomaly freeness of the quantum constraint algebra. Graph-changing
nature of the operator is crucial to this property.
• Precisely due to the graph-changing nature of the constraint, its semi-classical
limi t has remained elusive. As all the semi-classical states constructed so far in
LQG are only suitable for graph-preserving operators. This also means that it is
not at all clear if the quantum constraint algebra reduces to the Dirac-algebra in
classical limit.
• The space of solutions to the Wheeler-Dewitt equation H[N]'l! 0 V"V has so
far remained elusive.
Some recent progress in defining quantum dynamics in LQG involves replacing the
infinite number of Hamiltonian constraints (H[N] V N) with a single constraint



called the Master constraint such that the algebra generated by the Master con-
straint and the diffeomorphism constraints is a true Lie algebra [17]. In this thesis,
we will be working with two-dimensional generally covariant field theories, where
the constraint algebra is already a true Lie-algebra. So we will not use the Master
constraint ideas to solve the quantum constraints.

We now turn to loop or what is commonly known as polymer quantization of non-
gravitational field theories. As we saw in last section, the central idea behind LQG
is to choose a suitable sub-algebra U of the Poisson-algebra of functions on the
phase space such that spatial diffeomorphisms (as well as SU(2) gauge transforma-
tions) act as automorphisms on U. Then there exists a unique representation of this
algebra on a Hilbert space 7-C such that spatial diffeomorphisms are represented
unitarily on 7-C. The states of this Hilbert space are labeled by graphs. Whence
the fundamental excitations of geometry are one dimensional (polymer like), and
the underlying manifold E is replaced by arbitrary graphs. Thus from the quantum
geometry point of view, matter fields can have support only on graphs.
Polymer quantization of a matter field theory is a background independent (in the
sense that the Hilbert space admits a unitary action of spatial difleomorphisms
of E) quantization such that the fundamental excitations of the matter field have
support only on graphs. For gauge fields this means, working with the holonomy-
flux algebra similar to the holonomy-flux algebra of gravity. In the case of a theory
of real scalar field f, the quantization proceeds as follows [7].
Let V be a set consisting of finite number of points on E, V = (Pl, ... ,Pn). Con-
sider the vector space Cy1v generated by finite linear combinations of functions of
the following type,

where A (Al, ... , An) is an n-tuple of arbitrary real numbers. Cy1v is an Abelian
*-algebra. Finally we can define the vector space of all cylindrical functions as,



Let 1["<jJ be momentum conjugate to ¢. As 1["<jJ are scalar densities on weight one,
following functionals do not require any background structure in their definition,

where g is any test-function with suitable fall-off or boundary conditions.
1["I [g] acts as derivation on Cyl via,

X1rj[gjNv,>,(J) = i L ().,(Pj)g(pj))Nv,>:(J)
PjEV

Note that, spatial difI"eomorphisms act as outer automorphisms on the Poisson
algebra generated by cylindrical functions and smeared momenta, as

cx<jJ(Nv,>:(J)) = N<jJ-l (V),>:(J)
cx<jJ ( 1["I [g]) = 1["I [g 0 ¢]

Vvecan construct an abstract *-algebra Uf similar to the one constructed for gravity
in the previous section. The background independent quantum field theory IS

obtained by using following positive linear functional for GNS construction.

1 if ).,j = 0 Vj

o otherwise

WI is clearly background independent in the sense that wf(cx<jJ(a)) = wf(a) Vrjy E

DiffeE).
The resulting GNS Hilbert space is a cauchy completion of finite linear span of the

cylindrical functions Nv,>:. The inner product being given by,



Polymer quantization of PFT on 51 x R

This chapter is devoted to an application of canonical Loop Quantum Gravity
(LQG) techniques to the quantization of a two dimensional Parametrized field
theory on a flat two-dimensional spacetime. Let us briefly recall the idea behind
parametrizing a field theory from the previous chapter. PFT offers an elegant
description of free scalar field evolution on arbitrary (and in general curved) foli-
ations of the background spacetime by treating the 'embedding variables' which
describe the foliation as dynamical variables to be varied in the action in addition
to the scalar field. Specifically, let X A = (T, X) denote embedding coordinates
on 2 dimensional flat spacetime. In PFT, XA are parametrized by a new set of
arbitrary coordinates xO: = (t, x) such that for fixed t, the embedding variables
X A (t, x) define a spacelike Cauchy slice of flat spacetime. General covariance of
PFT ensues from the arbitrary choice of xO: and implies that in its canonical de-
scription, evolution from one slice of an arbitrary foliation to another is generated
by constraints. \t\Thile 2 dimensional PFT has been quantized in a Fock represen-
tation for the matter fields in References [29, 58], here we are interested in the
construction of an LQG type representation for both the embedding as well as the
matter fields.

As we noticed in the introduction, one of the major open issues in LQG is the ar-
bitrary choices of triangulation of the spatial manifold, which generically underlies
any operator of interest that depends on the connection. In this chapter we present
a 'perfect' toy model in which an LQG type of quantization can be constructed



which is free from any triangulation ambiguities. Specifically, we construct, in a
triangulation independent manner: an appropriate kinematic 'holonomy' algebra
and its LQG type 'polymer' representation on a kinematic Hilbert space 7-{kin,

a representation on 7-{kin of both (the finite transformations generated by) the
constraints and an over- complete set of gauge invariant observables, the group
averaging map [37, 6] and the physical state space 7-{phys which naturally inherits
a representation of the Dirac observables from that on 7-{kin .

The above quantization of PFT offers an arena in which proposals for quan-
tum dynamics developed for LQG may be tested against the manifestly triangu-
lation/regularization free group averaging techniques used in this work. Further,
semiclassical issues can be examined at the physical state level since both 7-{phys

and representation of an overcomplete set of Dirac observables thereon, are avail-
able. This is in contrast to LQG wherein most current proposals are defined on
7-{kin with the hope that they may still be useful at the physical state level. Again,
since the quantization here admits a representation of Dirac observables on 7-{kin

as well as 7-{phys, it offers a useful testing ground for proposed constructions of
semiclassical states in LQG. Finally, since PFT also admits the usual Fock space
quantization of the scalar field [29, 58], this can be compared with the "polymer"
quantization presented here. This comparison is useful for similar 'graviton from
LQG' issues [61] in canonical LQG.

The layout of the chapter is as follows. Section 3.2 contains a brief review of
classical PFT on 51 x R. Details may be found in [30]. In section 3.3, 7-{kin is

constructed as the tensor product of Hilbert spaces for the matter and embedding
sectors, each of 'which supports a polymer representation of suitably defined LQG-
type operators. It is shown that 7-{kin also supports a unitary representation of the
finite canonical transformations generated by the constraints. In section 3.4 an
overcomplete set of gauge invariant (Dirac) observables corresponding to (a) ex-
ponentials of the standard mode functions of the free scalar field on fiat spacetime
and (b) conformal isometries, are promoted to operators on 7-{kin' These operators
commute with those corresponding to finite gauge transformations. In section 3.5,
the physical state space, 7-{phys, is constructed through group averaging techniques
[37, 6]. Ambiguities in the group averaging map are systematically reduced by
requiring commutativity with the Dirac observables and superselection sectors are
described, each of which provide a cyclic, non- seperable representation of the alge-



bra generated by the gauge invariant operators of section 3.4. Section 3.6 is devoted
to a preliminary discussion of semiclassical issues. It is shown that, at most, only
a countable subset of the overcomplete (and uncountable) set of Dirac observables
of type (a) can be approximated by semiclassical states in Hphys. Further, it is
shown that any such state must be characterized by a suitably defined "physical"
weave. Two issues (connected with the 51 spatial topology and the treatment of
zero modes) are addressed in section 3.7 Section 3.8 contains a discussion of our
results as well as of open issues.

In the interests of brevity, we shall refrain from providing detailed proofs where
such proofs are straightforward. Some Lemmas are proved in the Appendices A-
D. The dimensions of various quantities and our choice of units are displayed in
Appendix E.

3.2 Classical PFT on Sl x R.

We provide a brief review of classical 2 dimensional PFT. In sections 3.2.1 and
3.2.2 we shall implicitly assume that the spatial topology is that of a circle. The
consequences of this non-trivial spatial topology on the formalism will be made
explicit in section 3.2.3.

The action for a free scalar field f on a fixed flat 2 dimensional spacetime in terms
of global inertial coordinates X A, A = 0, 1 is

where the Minkowski metric in inertial coordinates, 1]AB, is diagonal with entries
(-1, 1). If instead, we use coordinates xCI< , ex = 0, 1 (so that X A are' parameterized'
by xU, XA = XA(xCl<)), we have



where gQ(3 = ryABaQX Aa(3X Band g denotes the determinant of gQ(3. The action for
PFT is obtained by considering the right hand side of (3.2) as a functional, not
only of cjJ, but also of XA(x) i.e. XA(x) are considered as 2 new scalar fields to be
varied in the action (gQ(3 is a function of XA(x)). Thus

Note that 5 P FT is a diffeomorphism invariant functional of the scalar fields f, X A.

Variation of f yields the equation of motion aQ(./ggQ(3a(3f) = 0, which is just the
fiat spacetime equation ryABaAaBf = 0 written in the coordinates xQ. On varying
XA, one obtains equations which are satisfied ifryABaAaBf = O. This implies that
XA(x) are undetermined functions (subject to the condition that determinant of
aQX A is non- vanishing). This 2 functions- worth of gauge is a refiection of the 2
dimensional diffeomorphism invariance of 5PFT. Clearly the dynamical content of
5PFT is the same as that of 50; it is only that the diffeomorphism invariance of
5P FT naturally allows a description of the standard free field dynamics dictated
by 50 on o,Tbitmry foliations of the fixed fiat spacetime.

In the previous subsection, X A (x) had a dual interpretation - one as dynamical
variables to be varied in the action, and the other as inertial coordinates on a fiat
spacetime. In what follows we shall freely go between these two interpretations.

We set XO = t and {xQ} = {t,x}. We restrict attention to XA(xQ) such that
for any fixed t, XA(t, xa) describe an embedded spacelike hypersurface in the 2
dimensional fiat spacetime (it is for this reason that X A(X) are called embedding
variables in the literature). This means that, for fixed t, the functions XA(x) must
be such that the symmmetric form qab defined by

is an 1 dimensional Riemannian metric. This follows from the fact that qab(X) is
the induced metric on the hypersurface in the fiat spacetime defined by X A (x) at
fixed t.



A 1+1 decomposition of SPFT with respect to the time 't', leads to its Hamil-

tonian form:

Here 71 f is the momentum conjugate to the scalar field f, ITA are the momenta
conjugate to the embedding variables X A, N A are Lagrange multipliers for the
first class constraints HA. It turns out that the motions on phase space generated
by the 'smeared' constraints, J d2x(NA HA) correspond to scalar field evolution
along arbitrary foliations of the fiat spacetime, each choice of foliation being in
correspondence with a choice of multipliers NA. Since the constraints are first
class they also generate gauge transformations, and as in General Relativity, the
notions of gauge and evolution are intertwined.

Since free scalar field theory in 2 dimensions finds its simplest expression in
terms of left and right movers, it is useful to make a point canonical transformation
to light cone embedding variables X±(x) := T(x) ± X(x) (here we have set XO =
T, Xl = X). Denoting the conjugate embedding momenta by IT±(x), and setting
H± = Ho ± HI, the action takes the form

where N± are the new Lagrange multipliers appropriate to H±. Explicitly, the
constraints H± are given by

I ote that while X±(x), f(x) transform as scalars under spatial coordinate transfor-
mations, IT±, 7If' N± transform as scalar densities (or equivalently as spatial vector
fields).

The Poisson brackets between various fields are given by,

{f(x),7If(x')} = 5(x, x'),
{X±(x), IT±(x')} = 5(x, x'),



To complete the transition to variables closely related to the left and right
movers of free scalar field theory [30], we perform a canonical transformation on
the matter variables. (1,1rj) ~ (Y+, Y-). Here Y±(x) = 1rj(x) ±f'(x) (strictly
speaking this transformation is not invertible when the spatial topology is Sl due
to the existence of zero modes; we shall return to this issue in section 3.3). The
Poisson brackets between the scalar densities, Y±, are given by,

{Y±(x), Y±(x')}
{Y'f(x), Y±(x')}

±[Ox6(x, x') - ox,6(x', x)]
o.

{H±[N±], H±[M±]}

{H±[N±], H'f[M'f]}

Here £N denotes the Lie derivative with respect to the 1 dimensional spatial
vector field with component N(x) in the coordinate system 'x'. The action of
the constraints on the phase space variables can be expressed as follows. Let
<I>±= (y± IT ) we have, ±,

{<I>±(x), H±[N±] }
{<I>'f(x), H±[N±] }

Thus, on the set of variables <I>±,infintesmal gauge transformations act as dif-
feomorphisms on Sl and there is a split of the constraints and the phase space

\Oariables into commuting '+' and '-' parts which correspond to the usual right and
left moving sectors of free scalar field theory. The action of the constraints on the
embedding variables X±(x) preserves this split:

{X±(x), H±[N±]}

{X'f(x), H±[N±]}

(3.13)

(3.14)



Indeed, the above equations seem to indicate that infinitesimal gauge transforma-
tions, once again, act as diffeomorphisms on Sl; however, as we shall see in the
next subsection, this interpretation is not strictly true for equations (3.13), (3.14)
due to the non- existence of global, single valued coordinates on Sl.

3.2.3 Consequences of spatial topology = 51.

Sl does not admit a global single valued coordinate system. However, at the
cost of introd ucing appropriate periodic/quasi periodic boundary conditions on the
fields we may choose x to be the standard angular coordinate, x E [0,271] with the
identification x = ° rv X = 271. The Minkowskian coordinates X A = (T, X) in the
action (3.1) are chosen so that T E (-00,00) ,X E (-00,00) with the identifications
X rv X + 271. The above specifications on x, X imply the following conditions on
the canonical embedding variables and the Lagrange multipliers:
(i) X±(271) - X±(O) = ±271.

(ii) Any two sets of embedding data (xt(x), X1(x)) and (Xi(x), Xi(x)) are to be
identified if there exists an integer m such that xt(x) = Xi(x)+2m71 'II x E [0,271]
and X1(x) = Xi(x) - 2m71 'II x E [0,271].
(iii) II±(x), N±(x) and their spatial derivatives to all orders, as well as the spatial
derivatives to all orders of the embedding coordinates X±(x) are periodic on [0,271]
"vith period 271. This follows from the 1+1 Hamiltonian decomposition of (3.3) and
the fact that ~~: in equation (3.4) is single valued on Sl x R.
An additional "non-degeneracy" condition arises from (3.4):
(iv)±(X±Y > 0.

Since f in (3.1) is a single valued function on Sl x R, it follows that the matter
phase space variables, (1,71f) and their spatial derivatives to all orders are also
periodic functions on [0,271]. Note also that the delta function 5(x, y) in (3.8),
(3.9) is periodic in both its arguments.

Whereas equation (3.12) implies that finite gauge transformations act on (II±, y±)
as spatial diffeomorphisms on Sl, as remarked earlier the case of the embedding



variables X± is more subtle as X± are not single valued fields on Sl by virtue
of (i), section 3.2.3. Therefore, evolution of X± under the flow generated by the
constraints is better understood in terms of transformations on the uni'"ersal cover
of Sl as follows.

Unwind Sl to its universal cover R. Quasi-periodic boundary conditions obeyed
by the embed dings suggest that their extension to R satisfies:

where x E [0,211"] and n E Z. The vector fields N± (x) on Sl extend to periodic
vector fields N"t;;t on R so that N"t;;t(x + 2n11") = N±(x), x E [0,211"]. Let the 1
parameter family of (periodic) diffeomorphisms of R generated by N"t;;t be denoted
by <p[N"t;;t, t]. And let ¢[N"t;;t, t](x) E R be the image of x E [0,211"] under 9 ["V"t;;t, t].
Then it is straightforward to check that the finite transformations generated by
the constraints on X±(x) are labelled by ¢[N"t;;t, t] and act as follows:

(G:cb[N';'t.t]X±) (x)

(G:riJ[N';'t,tJX'f) (x)

X"t;;t(¢[N"t;;t, t](x)) 't/ x E [0,211"]

X'f(x) 't/ x E [0,211"]

Here G:riJ[N';'t.tj is the flow generated by Hamiltonian vector field of H±[N±].
It is also straightforward to see that the action of finite gauge transformations

on the phase space variables <I>± E {Y±, I1±} can equally well be written in terms
of the action of the periodic diffeomorphisms ¢[N"t;;t, t] on the periodic extensions

<I>~xtas
( G:cp[N';'t .t] <I>±) (x)
(G:riJ[N';'t ,t]<I>'f) (x)

<I>~xt(¢[N"t;;t, t](x)) 't/ x E [0,211"]
<I>'f(x) 't/ x E [0,211"]

Here <I>~xt(x + 2n11") = <I>±(x) 't/x E [0,211"], n E Z.
Since ¢[N"t;;t, t], 't/(N"t;;t, t) range over all periodic diffeomorphisms of R con-

nected to identity, we label every finite gauge transformation by a pair of such
diffeomorphisms (dJ+, ¢-) so that the Hamiltonian flows generated by H± are de-
noted by G:¢±. To summarise: Let \lJ±(x) E (X±(x), I1±(x), Y±(x)) and let its
appropriate quasiperiodic/periodic extension on R be \lJ~xt. Then we ha\'e that,



(a¢± 'lJ±)(x)
(a¢± 'lJ'F)(x)

'lJ~xt (¢±(x))
'lJ'F(x).

Equations (3.18) imply a left representation of the group of periodic diffeomor-
phisms of R by the Hamiltionian flows corresponding to finite gauge transforma-
tions:

a¢~a¢~

a¢~a¢f

(3.19)

(3.20)

We emphasize that the extended fields are only formal constructs which are
useful for interpreting gauge transformations in terms periodic diffeomorphisms of
R. The spatial slice is always 51 coordinatized by x E [0, 27f] with boundary points
identified.

Since finite gauge transformations act as periodic diffeomorphisms of R, it follows,

directly, that the integral over x E [0, 27f] of any periodic scalar density constructed
solely from the phase space variables, is an observable.

An analysis of the Hamiltonian equations [30] shows that the relation be-
tween solutions !(X+, X-) of the flat spacetime wave equation and canonical data
(Y±, X±) on the constraint surface is

Here! is evaluated at the spacetime point (X+, X-) defined by the canonical data.
Recall that any solution !(X+, X-) to the free scalar field equation is of the form

!(X+ X-) q P (X+ + X-) ~ i ( -inX+ -inX-)
, = V2K+ V2K + 6 - aC+)ne +aC-)ne -C.C,27f 27f 2 47fn

n=l

(3.22)
where c.c. stands for 'complex conjugate'. Equations (3.21) and (3.22) yield an
interpretation for the Dirac observables constructed below.



a = 1dxY±(x)einX±(x) n E Z n> 0(±)n "
Sl

(and their complex conjugates, a(±)n,) are Dirac observables which correspond to
the mode functions a(±)n of equation (3.22). These observables form the (Poisson)
algebra,

{ a(±)n, a(±)m *} = -47fin6n,m,
{a(±)n, a(±)m} = 0,

{a(±)n*,a(±)m*} = O.

The Dirac 0bservables corresponding to right-moving sector (a( +)m, a( +)n *) Poisson
commute with the observables corresponding to the left moving sector (a( _ )m, a(-)n *).

The quantities q, p in equation (3.22) are referred to as zero modes of the scalar
field and are also realizable as Dirac observables which are canonically conjugate
to each other [30]. Indeed, it is straightforward to see from (3.21), (3.22) that p

corresponds to p := JS1 dxY+(x) = JS1 dxY-(x). However, the degree of freedom
corresponding to q is absent in the phase space coordinates (X±, II±. y±) as a
result of y± containing only derivatives of f (see equation (3.21)).

Our aim in this work is to construct a triangulation independent polymer quan-
tization of a generally covariant field theoretic model. Issues related to the con- t

struction of zero modes (which are anyway mechanical as opposed to field theoretic
degrees of freedom) as Dirac observables serve to distract from this aim. Hence
we shall switch off the zero modes by setting q = p = O. Since q and pare
canonically conjugate, this can be done consistently. In the free scalar field action 1
(3.1) this corresponds to limiting the space of all scalar fields by the conditions a

q = vk JS1 dX f(T = 0, X) = 0 and p = vk JS1 dX8f~X) = O. In the canonical
description of PFT in terms of (II±, X±, Y±), since q does not appear, we only



Since, as can easily be checked, p commutes with (II±, X±, y±) as well as the
constraints (3.10), it is consistent to impose (3.25).

To summarize: The system we consider in this work is PFT on 51 x R with the
zero modes switched off. The phase space variables are (II±, X±, y±) subject to
the conditions of section 3.2.3. The symplectic structure is given by (3.8) and (3.9)
and the constraints by (3.10). The degrees of freedom of the theory reside entirely
in the mode coefficients a(±)n, a(±)n * (3.22) which are expressed as the functions
a(±)n, a(±)n on phase space via (3.23).

Free scalar field theory in 1+1 dimensions (3.1) is conformally invariant. It turns
out that the generators of conformal isometries in free scalar field theory are ex-
pressible as Dirac observables in PFT(for details, see Reference [30]). Consider the
conformal isometry generated by the conformal Killing field 0 on the Minkowskian
cylinder. Let 0 have the components (U+(X+), U-(X-)) in the (X+, X-) coor-

dinate system. U± are periodic functions of X± by virtue of the fact that 0 is
smooth vector field on the flat spacetime 51 x R These components of 0 natu-
rally correspond to the functions (U+(X+(x)), U-(X-(x))) on the phase space of

PFT. The Dirac observable in PFT corresponding to the generator of conformal
transformations in free scalar field theory associated with 0 is given by

These observables generate a Poisson algebra isomorphic to that of the commutator
algebra of conformal Killing fields:

{II± [U±], II± [V±]} = II[[V, U]±]
{II±[U±], II'F[V'F]} = O.



Chapter 3. Polymer quantization of PFT on 51 x R

Here [V, U]± refer to the ± components of the commutator of the spacetime vector
fields 0.17, i.e. [V. U]± = V± g~: - U± ~i:. [V, U]± define functions of the
embedding variables X± (x) in the manner described above.

Note that these observables are weakly equivalent, via the constraints (3.10) to
quadratic combinations of the mode functions [30]. In the standard Fock represen-
tation of quantum theory (see for e.g. Reference [29]), these quadratic combinations
are nothing but the generators of the Virasoro algebra.

As we shall see, the polymer quantization of PFT provides a representation for
the finite canonical transformations generated by II±[U±]. For future reference.

it is straightforward to check that the Hamiltonian flow, Ct(I1±[U±],t)generated by
II±[U±] leaves the matter sector of phase space untouched and acts on the embed-
ding variables X± as

Here ¢CrJ.t)denotes the one parameter family of conformal isometries generated
by the conformal Killing field 0 on spacetime. ¢(rJ,t) maps the spacetime point
(X+, X-) to ¢(rJ.t)X± and hence maps the spatial slice defined by the canonical
data X±(x) to the new slice (and hence the new canonical data) (¢(rJ.t)X±) (x).
¢(rJ,t) ranges over all conformal isometries connected to identity. Any such con-
formal isometry ¢c is specified by a pair of functions ¢; so that ¢c(X+, X-) :=

(¢t(X+), ¢;;(X-)). Invertibilty of ¢c together with connectedness with identity
implies that

an
st2

d¢;
dX± > 0,

and the cylindrical topology of spacetime implies that

Je
cla

the
Thus, we may denote the Hamiltonian flows which generate conformal isometries che
by Ct¢cor, without loss of generality, by Ct¢"twith Ct¢"tacting trivially on the =f che
sector. thE

To summarise:Ct9"t leave the matter variables untouched, so that to

chc:



Further, SInce II±[U±] are observables which commute strongly with the con-
straints, the corresponding Hamiltonian flows are gauge invariant. This translates
to the condition that for all

a</>t 0 a</>+

a</>t 0 a</>-

a</>+ 0 a</>t

a</>~ 0 a</>t

3.3 Polymer Quantum Kinematics.

As in LQG, the polymer quantization is based on suitably defined "holonomies"
and the polymer Hilbert space is spanned by suitably defined "charge network"
tates. In view of the correspondence between finite gauge transformations and

periodic diffeomorphisms of R, it is useful to to define periodic and quasiperiodic
extensions of charge network labels. Hence we define the following.

Definition 1 : A charge-network s is specified by the labels (rt( s), (jell"" je,,))
consisting of a graph I( s) (by which we mean a finite collection of closed, non-
oyerlapping(except in boundary points) intervals which cover [0, 27f]) and 'charges'
je E R assigned to each interval e. (Note that je = 0 is allowed.) Equivalence
cla es of charge- networks are defined as follows. The graph I is said to be finer
than graph I iff every edge of I is identical to, or composed of, edges in Il The
charge- network Sl is said to be finer than s iff (a) (Sl) is finer than I( s) (b) the
charge labels of identical edges in I( s), I( Sl) are identical and the charge labels of
the edges of I(SI) which compose to yield an edge of I(s) are identical and equal
to that of their union in I(s). Two charge- networks are equivalent if there exists a
charge- network finer than both. Hence we can represent each equiyalence class by



a unique representative S such that no two adjacent edges have the same charge.
However. unless otherwise mentioned, S will not necessarily denote this unique
choice.
Definition 2: The periodic extension of the charge- network S to R is denoted by
Sext and defined as follows.

Given a graph r as in Definition 1 above, TNb) denotes the translation of r
by 2N7I, i.e. TNb) lies in [2N7I, 2(N + 1)71]. We define the extension of r to R as

rext = UNEZ TNb)· The restriction of rext to any interval I c R is denoted by

rextlI so that rextI rO,27f] = r'
Given a charge network s = b(s), (jell ···,jeJ), Sext is specified by the graph

r(sext) := r(s)ext b(s)ext denotes the extension of r(s) to R) and charge labels
for each edge of r(sext) which are such that TNb(s)) c r(sext) has the same set
of charges which are on f. Thus

1. On any closed interval IN = [2N7I, 2(N + 1)71], NEZ, r(Sext)IIN IS

naturally isomorphic to r( s).

2. The set of charges on r(Sext)IIN is (jell ... ,jeJ.
We refer to Sextl[O,27f] as the restriction of Sext to [0,271] so that SextlrO,27f] S.

Definition 3: The quasi- periodic extension of the charge- network S to R is de-

noted by Sext and defined as follows. Given a charge network S = b(s), (jel' .... jeJ),
Sext is specified by the graph r(sext) := r(s)ext and charge labels for each edge of
r(sexd which are such that TNb(s)) C r(sext) has the set of charges which are on
r augmented by 2N7I. Thus

1. On any closed interval IN = [2N7I, 2(N + 1)71], NEZ, r(Sext)IIN IS
naturally isomorphic to r( s).

2. The set of charges on r(Sext)IIN is (jel + 2N7I, ... ,jen + 2N7I).

Definition 4: The action of periodic diffeomorphisms with period 271 on rext, Sext, Se:r1

may be defined as follows. Any periodic diffeomorphism ¢ of R commutes with the
271 translations, TN. Hence its natural action ¢bext) on the extension rext of graph

r preserves periodicity i.e. (¢bext) I [O,27f] )ext = ¢bext) . Let the edge ¢(e) E cbbext)
be the image, by ¢ of the edge e E rext. The action of ¢ on the extensions Sext, Sext
is defined by

(i) mapping the underlying graph r(s)ext to ¢b(s)ext)



(ii) labelling the edge ¢(e) E ¢(ry(s)ext) by the same charge as the edge e E 'Y(s)ext
so that k</J(e)= ke·

Denote the resulting periodic/ quasiperiodic charge networks on R by ¢(Sext) / cp( Sext)

The elementary variables which generate the *-Poisson algebra are, X+ (x), Ts+ [IT+J,
X-(x),Ts-[IT_]. Here Ts±[IT±] are the holonomy- type functions associated with
the charge networks s±, and are given by

± ± i ± ±{X (0), Ts± [IT±]} {X (21r), Ts± [IT±]} = -"2 (k ± + k ± )Ts± [IT±J,
ej en±

(3.35)
where the last Poisson bracket uses the periodicity of delta function. The *-
relations are given by

(X±(x))* = X±(x) V x E [0,21r]
Ts± [IT±]* = T-s± [IT±J, -s± = (ry(s±), (-k±±, ... , -k±± ))

ej en±

The action of finite gauge transformations on these elementary functions IS as
follows(we only analyze the right-moving sector; the analysis of the left moving
sector is identical).

From equation (3.18) we have,



It is straightforward to check, using the periodicity of ¢+, II+, S~xt and the various
definitions in section 3.3.1 that

Finite gauge transformations act on X± as in equations (3.16), (3.18). To sum-
marise. under finite gauge transformations the generators of the Poisson algebra
transform as:

X±(y±) ± 27f N±

if (¢±)(x) = y± + 27fN± y± E [0.27f]

a¢± (Ts± [II±])

a¢'f (Ts± [II±])

Denote the kinematic Hilbert space for the ± embedding sectors by 'H.~. 'H.~ is the *_ I

closure of the span of the orthonormal basis of embedding 'charge network states'. tha
Each such state is labelled by a charge network s± and denoted by Ts±. 1 The

inner product is Un

where 6S±.S'± is a Kronecker delta function which is unity when the t"vo charge
networks are equivalent and vanishes otherwise.

The .±. sector operators corresponding to the elementary functions of the pre-
vious section are denoted by X± (x), t±. t± acts on the charge network states

as:

where s± + Sl± is the charge network obtained by choosing its underlying graph to
be finer than ,),(s±), ,),(S±/) dividing ,),(s±), ,),(Sl±) and assigning charge k;± + k;,±



to e± n e'± where e± E ,(s±), e'± E ,(st)·
The action of X± (x) is:

Ax,s± := nk:± Ts± if x E Interior(ey±), 1 S J± S n±
J±

'- ~(k±± + k±± )Ts± if x E ey± n et±+l) 1 S J± S (n± - 1)
eJ± e(l+l)±

The last two equations, (3.44), implement the boundary condition X± (27T) -
X±(O) = ±27T (see (i) of section 3.2.3.)

It is straightforward to check that equations (3.41),(3.42),(3.43),(3.44) provide a
representation of the Poisson bracket algebra (3.35) so that quantum commutators
equal in times the Poisson brackets. It is also straightforward to verify that the
*- relations (3.36) on X±(x), Ts± are implemented by the inner product (3.40) so
that X±(x) are self adjoint and Ts± are unitary.

Since the Hamiltonian flows of a¢± (3.18) are real, the corresponding quantum
operators {;(cP±) must be unitary. Equations (3.18), (3.19) imply that this unitary

representation must satisfy

{;±(cPt) {;±(cP~) = {;± (cPt 0 cP~)
(;±(cP±)X±(x){;±(cP±)-l = X±(y±) ± 27TN±

UA±("'±)TAS± UA±(",±)-l = T'f' 'f' ¢±(S±)extl[O,27fJ·



where (])±(x) = y± + 27fN±, with y± E [0,27f] and N± E Z.
We define the action of [; (¢±) to be

The appearance of the quasi-periodic extensions S~xt of the charge networks s±

(see Definition 3, section 3.3.1) in the first equation above may be anticipated from
the quasi- periodic nature of the embedding variables X±(x) (3.15). Unitarityof
[;± (¢±) follows straightforwardly:

< T"'(-±)I ' T<1>(-±)1 >'I' S]ext [0.2,,] S2ext [0.2,,1

O"'±(-±)I ±(-±)I 'Ij O±'I' S]ext 10.2..)' <1J S2ext 10,2..1

where we have used the fact that two charge-networks are equal on [.o,27f] iff their
extensions are equal.

From equation (3.46) and Definitions 3,4 of section 3.3.1, it follows that I-

T ± ±-
<p] (<1>2(S±ext)I[0.2"I)extl[0.2,,]

T<1>f(<1>~(s;xt))llo.2..)

T(<t>fo<t>~ )(s;xt)l[o,2,,]

A ± ± ±U (¢l 0 ¢2 )Ts±,

thus \"erifying the first relation in (3.45).
\"ext. \ye turn to the second relation of (3.45). Vie sketch the proof for the .~:

sector; the proof for the '-' sector is on similar lines. From (3.46) and (3 ..t2) we

ha\"e that:



A (A.+) 1(-+ I ) = Ay+,s+ + 21fN+,
X, 'f' - Sext [0,2"1

which via equation (3.42) obtains the desired result.
Finally, we turn to the last relation of (3.45). Once again, we sketch the proof

for the '+' sector; the '-' sector proof follows analogously. We want to show that

Since charge network states form an orthonormal basis in the Hilbert space, it
follows that (3.51) is equivalent to the condition that \;1st, st

0</;-1 (51 )ext ,Sext +</;-1 (52 )ext

0(51 )ext ,<j;(sextl+(S2 )ext

O(SI )ext,</;(sext)+(S2)e3"1

OS1,</;(Sext)llo,2trI+S2 ,

The *- Algebra is generated by the operators corresponding to the classical holonomies
H/s± [Y±] which are defined as

M/s±[Y±] = exp[i L l-;± 1± Y±].
e±EE(-y(s±» e



Here s± := {,(s±), (l±±, ... , l±± ) } are charge- networks. The algebra for the
ej e ±

holonomy operators is the anal;g of the Weyl algebra for linear quantum fields.
Similar to that case, we need to first evaluate the Poisson brackets,

{Le± r;± fe± Y±, Lel± l~± fed y±} , between the exponents of pairs of classical
holonomies and then use the Baker- Campbell- Hausdorff Lemma [38] to define
the algebra on the holonomy operators in quantum theory.

Let /'l,e be the characteristic function associated with a closed interval e and
denote the beginning and final points of e by b( e) and f (e) so that

1 if x E Interior( e)
~ if x = b(e) or f(e)

~ if x = 0 and f (e) = 27f

~ if x = 27f and b( e) = o.

Here, equations (3.57) follow from the periodicity of the delta function.
equation (3.9) it follows that

± L l;±l~±a(e±, el±).
e±,e'±

W(S±)W(SI±) = exp[=f~a(s±, SI±)]W(S± + Sd),
W(s±)* = W( -s±),



with a(e, e') defined through equations (3.59) and (3.58). From the second equation
of (3.9), it follows that the '+' and '-' holonomy operators commute, so that, once
again, these sectors can be treated independently.

It is convenient to define the quantum theory through the Gelfand- Naimark -
Segal (GNS) construction 162]. The explicit operator action on the basis of charge
network states is provided after we present the GNS state.

We define the GNS states wt on the ± holonomy algebras by specifying their
action on the holonomy operators as follows:

Here '0' is the trivial charge network which may be represented by graph ,( 0) con-
sisting of the single edge e = [0,2n] with vanishing charge l; = 0. The Kronecker
delta function 6s±,o is unity iff s± = 0 and vanishes otherwise. It follows from the
GNS construction that the corresponding G IS Hilbert spaces 'H.t are spanned by
charge network states denoted by W(s±). The inner product is

Here, as for the embedding sector, s± + s'± is defined as in (3.41).2

It is straightforward to check, explicitly, that equation (3.65) provides a rep-
resentation for the first equation of (3.61). Verification of the second equation of

2While our notation uses charge network labels, the operators W(s±) and states vV(s±) only
depend on the equivalence classes of labels. See also Footnote 1 in this regard.



Equation (3.66) follows straightforwardly from (3.64),(3.65). One needs to use the
identity dS±.-SI±+S"± = dS±+SI±,SIl± and the easily verifiable fact that a(s±. S'±) is
bilinear and antisymmetric in its arguments.

Since y± are periodic scalar densities, under finite gauge transformations their
holonomies transform in a similar manner to those of the embedding momenta.
Specifically, equation (3.18) in conjunction with the periodicity of ¢±, Y±. S;xt and
the various definitions of section 3.3.1, imply that

It is straightforward to see (either explicitly from equation (3.62) or abstractly str
using the fact that the periodicity of (/)±, Y±, S;xt implies that one is effectiYely Th
restricting attention to diffeomorphisms, graphs, charge networks and holonomies Su(
on 51) that the

Equations (3.65) and (3.68) imply that the Hamiltonian flow of (3.67) induces an
automorphism of the Weyl algebra of holonomies. Note also that equation (3.63)
is invariant under the action of this automorphism. This directly implies that
the group of finite gauge transformations is unitarily represented in the quantum
theory. Let these unitary operators be denoted, as in the embedding sector, by
(;±(¢±). Their explicit action on the charge network basis can be defined from the
GNS construction to be

U~±(A-±)W(s±) '- W((A-±)( ±)I )(J.J (J.J Sext [O,27r] .



The kinematic Hilbert space Hkin is the product of the Hilbert spaces H~n with

'}-{~n is spanned by an orthonormal basis of equivalence classes of charge net-
work states of the form Ts± ® W(SI±) with s± = {,),(s±), (k±±, ... , k±± )}, Sd =

e1 en±

b(S'±), (l~±, ... , I~± )}.
e1 e ±

The results of the previous subsections show that Hkin supports a *- represen-

tation of the *- algebras for the matter and embedding degrees of freedom. as well
as a unitary representation of finite gauge transformations.

Consider, as above, the state Ts± ® VV (Sl±). The equivalence relation between
charge networks is defined in Definition 1, section 3.3.1. Using this equivalence, it is
traightforward to see that we can al'ways choose s±, Sl± such that ,),(s±) = (Sl±).

Then each edge e± of ')'(s±) is labelled by a pair of real charges (k-;-, 1-;-). ;\ ote that

uch a choice of graph and charge pairs is not unique. However it is easy to see
that a unique choice can be made if we require that the pairs of charges. (k;±. I;±),
are such that no two consecutive edges are labelled by the same pair of charges.
'vVeshall denote this unique labelling by s± so that

with s± defined from s±, Sl± in the manner discussed above. It follows from (3.46)
and (3.69) that (;±(¢±) maps Is±) to a new charge network state. vVe denote the



new (unique) charge network label by s:± so that

Unitary representation of Dirac observables.

Whereas a(±)n (3.23) depend on Y±(x), the basic operators of quantum theory are
the holonomies W(s±). As in LQG, the representation of the holonomy operators
on 7-ikin is not regular enough to allow a definition of y± (x) via a "shrinking of
edges" procedure [34]. For example, let s±(t) be a 1 parameter family of charge
networks such that ,),(s±(t)) has non- vanishing unit charge on only one of its edges.

Let this edge contain x and let its coordinate length be t. Whereas, classically,
Y±(x) = limt~O W(s±i~t))-l, it is easy to check that, as in LQG, the correspond-

ing operators are not weakly continuous in t and the limit cannot be defined on
the charge network basis. This leads to a regularization dependence in the def-
inition of o(±)n [34]. However, as we show below, suitably defined exponential
functions of a(±)n, a(±)n can be promoted to quantum operators in a regulariza-
tion/triangulation independent manner. Let qn, Pn be the real and imaginary parts

of a(±)n so that

q(±)n

P(±)n

fSl Y±(x) cos(nX±(x)),
fSl Y±(x) sin(nX±(x)),

eiaq(±)n

ei(3P(±)n

eiafsl Y±(x)cos(nX±(x»

ei(3 fSl Y±(x) sin(nX± (x))

where 0.. f3 E R. These functions can be promoted to quantum operators as

follows.3

3 As an aside let us note that physically the exponentiatals of mode functions look rather
artificial. However exponential of a Klein-Gordon scalar field on 51 x R has a beautiful geometric
interpretation as a representative of certain differential cohomology classes of a cylinder [18]. Such
cohomologies are known as Cheeger-Simons cohomologies.



Let f (X±) be a smooth periodic real function of X±. Then
0t := ISl Y±(x)f(X±(x)) are functions on the phase space of PFT. Next, restrict
attention to the embedding sector Hilbert space rt1 and consider the operator
valued (on }{~) function on the matter phase space, OJ := ISl Y±(x)f(X±(x)).
Since charge network states are eigen states of the embedding operator, we have
that

n±

OjTs± = (Lf(fik~) 1± Y±(x))Ts±,
t=l ,

where sy := {,(s±), (f(fik±±), ...., f(nk±± ))}. Equation (3.79) implies that we
el en±

can define the operators ex-;iOy corresponding to the functions exp iOt via their
action on the charge network states Ts± ® W(st±) E }{±:

Clearly, this is a manifestly regularization/triangulation independent definition.
foIloreover,since sy is constructed from the embedding part~the charge network,

and since f is periodic, it is straightforward to check that eiOJ commute ~ the

unitary operators corresponding to finite gauge transformations. Hence eiOJ are
Dirac observables in quantum theory. It is also easy to check that

so that the classical reality conditions are implemented.

By setting f to be the appropriate cosine (sine) function times a ((3), we obtain
the operators corresponding to the functions in equation (3.77). Clearly, these
operators (\fa, (3 E R, n > 0) form an over- complete set of Dirac observables.



Regularization dependence also manifests in attempts to promote the generators of
conformal isometries, II±[U±] (see equation (3.26), to operators on Hkin. Choosing
exponentials of these observables only partially alleviates this problem since (unlike
the case of a(±)n) the resulting operator suffers from operator ordering problem
stemming from the fact that {II±(x), U±(X±(x))} =I- O. Therefore, we focus on the
Hamiltonian flows corresponding to finite conformal isometries.

The action of the Hamiltonian flows (corresponding to conformal isometrie ).
a¢"t-, on (X±(x), Y±(x)) has been detailed in section 3.2.4. It remains to specify
their action on the embedding momenta, II± (x). The information in this specifica-
tion can equally well be seeded in the action of am"t- on the Hamiltonian flows Cl'.1j>±

corresponding to fini te gauge transformations by virtue of the facts that (a) the con-
straints (3.10) are linear in the embedding momenta and (b) this linear dependence
is invertible by virtue of the non- degeneracy condition (iv) of section 3.2.3. Thus
a¢"t- are completely specified through equations (3.31),(3.32),(3.33). Accordingly.
we seek a unitary representation of a¢"t- by operators V (¢;) such that V± (<p;) act
trivially on the matter sector, commute with the operators (;+(¢+) and (;-(¢-)
which implement gauge transformations, and transform X±(x) through

while leaying X+ (x) invariant.
\flle define V± (@;) to act trivially on the matter Hilbert spaces HIi' HAi and

on the =f embedding Hilbert space H~. The action of V±(¢;) on H~ is defined
as follows. Let s = { (s) (k±±, ... , k=\)} be a charge network. Define the charge

e1 en

networks <Pt(s+), ¢;;(s-) by

Then the action of V(¢;) on the charge network state Ts± E H~ is defined to be



(¢zt1(s±) = {r(S±), ((¢Z)-l(k~±), ... , (¢Z)-l(ke~))}'
1

From equation (3.84), the invertibility of the functions ¢z (which follows from
)f equation (3.29)) and the inner product (3.40), it follows that
g (V±[¢Z]Ts± \V±[¢Z]Ts'±) = (Ts± ITsl±) Vs±, Sl±, thus showing unitarity. It is also
e straightforward to check, using the quasiperiodicity of the functions rPZ (3.30),
IS that V±[¢Z] commutes with {;(¢±). By definition V±[¢Z] commutes with (;(¢~)
e and with the matter holonomies. Finally, it is easy to check that equation (3.82)

holds when applied on any charge network state. Thus, our definition of V± [rPZ]
), provides a satisfactory definition of conformal isometries in quantum theory.
y Note also that equation (3.84) implies that

so that our definition of V± [¢Z] implies an anomaly free representation (by right
multiplication) of the group of conformal isometries.

3.5 Physical state space by Group Averaging.

Only gauge invariant states are physical so that physical states W must satisfy the
condition (;±(¢±)w = W, V¢±. A formal solution to this condition is to fix some
11/J)E Hkin and set W = L 11/;/) where the sum is over all distinct 11/;/) which are
gauge related to 1/;. A mathematically precise implementation of this idea places
the gauge invariant states in the dual representation (corresponding to a formal
sum over bras rather than kets) and goes by the name of Group Averaging. The
"Group" is that of gauge transformations and the "Averaging" corresponds to the
construction of a gauge invariant state from a kinematical one by giving meaning
to the formal sum over gauge related states. Specifically (for details see Reference
[6]),the physical Hilbert space can be constructed ifthere exists an anti-linear map
TJ from a dense subspace V of the kinematical Hilbert space 7-{kin, to its algebraic
dual V*, subject to certain requirements. The algebraic dual of V is defined to be
the space of linear mappings from V to the complex numbers. The requirements
which TJ needs to satisfy are as follows. Let 1/;1, 1/;2 E V, let A be a Dirac observable
of interest and let ¢± be a gauge transformation with (;±(¢±) being its unitary
implementation on 7-{kin' Let 71(1/;1) E V* denote the image of 1/;1 by 71 and let



r]( 1fJd [1fJ2] denote the complex number obtained by the action of r]( 1fJd on 1fJ2. Then
for all 1fJ1; 1fJ2, A, ¢ we require that
(1) r](1fJl)[1fJ2] = r](1fJl) [U(¢)1fJ2]

(2) r](1fJd[1fJ2] = (r](1fJ2) [1fJl])*' r](1fJd[1fJl] ;::: O.
(3) r](1Ih)[A1fJ2] = r](At1fJl) [1fJ2].

Here, we choose D to be the finite span of charge network states. Clearly due
to the split of '+' and '-' structures, we may consider averaging maps r]± on the
dense sets D± C H~n separately. Here D± is the finite span of states of the form
Is±) (see section 3.3.4 for the notation used here and below). Define the action 01

r]± on Is±) as

r][s±JLS'±E[S±J < st± I

r][s±] L¢±EDif f?± R < s:± I,
[s I

where [s±] = {s'±lst± = s:± for some ¢±}, Dif f[~±JR is a set of gauge transfor·
mations such that for each S'± E [s±] there is precisely one gauge transformation
in the set which maps s± to S'± and r][s±] is a positive real number depending ani]
on the gauge orbit [s±]. The right hand side of equation (3.86) inherits an action
on states in D from that of each of its summands. Due to the inner product (3.40)

(3.64), only a finite number of terms in the sum contribute so that r]±(ls±)) i~

indeed in D*. It is straightforward to see that r]± satisfies the requirements (1).
(2) and that a positive definite inner product <, >phys on the space r]±(D±) can
be defined through

If in addition, (3) is also satisfied by r]±, the group averaging technique guarantees
that the above inner product automatically implements the adjointness conditiom
on the Dirac observables (which act by dual action on D±*) 4 of section 3.4, by
virtue of the fact that these conditions are implemented on Hkin·

In section 3.5.2 we use the requirement (3) to constrain the positive real num
bers r][s±J and thus bring down the enormous ambiguity in the inner product (3.87).

4Given \[t± E D±*, 1j;± E D± and A± such that A~ 1j;± E D±, define A± \[t± through
A±\[t±[1j;±] := \[t±[A~1j;±]. This is the dual action.



While the analysis can be done, in principle, for all of 1']±[D±], we shall, for simplic-
ity, restrict attention to a certain subspace of D± which is left invariant by finite
gauge transformations as well as the Dirac observables of section 3.4. In section
3.5.1 we define this 'superselected' subspace. Finally, in section 3.5.3 we display
a cyclic representation of the operator algebra generated by the Dirac observables

in conjunction with the gauge transformations.

Consider the charge network state Ts± ® Wst±. Let [(s±) have n± edges and let
the embedding charges on these edges be such that:
(a) ±k±± > ±k±± J± = 2, .. , n±.

e[± - e(I±_1)

(b) ±(k± - k± ) < 271".
e± e± - 1i.
n± 1

These conditions are physically motivated. Conditions (a), (b) are the quan-
tum analogs of the classical non-degeneracy condition (iv) of section 3.2.3. when
x E (0, 27f), and when x E {O,27f} respectively.

Henceforth we shall restrict attention to charge network states subject to (a)
and (b). Note that these conditions define a superselection sector of D with respect
to gauge transformations as well as the observables of section 3.4. We will refer to

this subspace as D(a)(b)'

3.5.2 Commutativity of T/± with Dirac observables.

We focus on the '+' case and supress the '+' superscripts wherever possible.
The '-' case follows analogously. We ai~o restrict 1'][5] by subjecting it to

condition (3) above. We choose A := eioj (recall, from section 3.4.1, that

OJ:= IS1 Y+(x)J(X+(x))). Thus we require that V s,

As in equation (3.74) we set Is±) = Ts± ® W(Sf±). The equivalence relation between
charge network labels allows us, without loss of generality, to choose [(s) = (s) =



"(S'). Equations (3.80), (3.65), (3.62) imply that

------ A ilin(s[.s')

(3.89)eiJY+J(x+)ls) = Ws[ls):= e 2 Is(j))

where
W(

s {,,(s), ((kellle1), .. , (ken' leJ)} (3.90),
{,,(s), (tell'" leJ} (3.91) CIS

{,,(s), (j(hke1), .. ,](hkeJ)} (3.92) thlSj

s(j) {,,(s), ((kelllel + ](hke1), .. , (ken' len + ](hken)) (3.93) Prn
InjCX(Sj,s') L ](hkeJ)[leI+l - leJ_J, eo := en' en+1 := e1 (3.94)

[=1

Recall (see section 3.3.4) that s denotes the unique labelling such that no two
consecu ti ve edges of ,,( s) have the same pair of charges. It is straightforward to
see from equation (3.94) that for 1= 1, .. , n - 1,

keJ =I- keJ+1 or/and leJ =I- leJ+l

::::} keJ =I- keI+l or/and leI + ](hkeJ) =l-leJ+l + ](hkeJ+1).

Thus, consistent with the use of bold face notation (see section 3.3.4), s(j) is also
the unique labelling such that no two consecutive edges of its underlying graph
(also chosen to be ,,( s)) have the same pair of charg~

From footnote 4 (3.89), (3.68), the fact that eiJY+ J(X+) commutes with gauge
transformations, and(3.86), it follows that the left hand side of (3.88) is

eiJY+J(X+)77(!S)) = 77[sJe ilin(~!,,/) L < s(j)4>I. (3.96)

4>EDijj[:jR



where Is(J)et» := U(cP)js(J)). Thus we need to impose

17[5) L < s(J)¢1 = 17[5(J)J L < s(J)¢j (3.98)
¢EDif f[~l R ¢EDif f[~(J)J R

Dif f[~R = Dif f[~(J))R.

Claim 3.5.1 Given as = {I'(s), ((kel'leJ, .. , (ken,leJ)}, lets
then Dif f[~R ~ Dif f[~R.

Proof
Injection: Let cPl in Dif f[~R, cPl . s =J s.

We want to show that cPl . s =J S.
As cpj . s =J s, one of the following must be true.

1. <PI' (s) =J I'(s) or,

2.01' (s) = (Ibfs), (tell···,leJ ----t (tell···,leJ and (keI, ... keJ ----t (ke1 +
271J! ..... ken + 271NJ)

3. <PI' I'(s) = I'(S), (tel' ... , leJ ----t (tel' ... , leI_I)' and (kell ... keJ ----t (kef +
271M, .... kef_I + 271(M + 1)).

If s is such that (ken' leJ = (kel + 271, leI) then there is another possibility.

4. 61, I'(s) = I'(S), (tel' ... , leJ ----t (tel' ... , leJ, and (kel' ... keJ ----t (kef +
271M, ... ken + 271M, ke2 + 271(1\11+ 1), ..., kef + 271(M + 1)).

Possibility 1. and 2. clearly imply that cP' s =J s. s will remain invariant under

3. iff:J (kell ... , keJ such that (keI, ... , keJ = (keI + 271M, ... , kef -1 + 271 (JII! + 1)) for
some I and M.



Suppose it were possible. I.e. 3 (kep ... , keJ such that,

ke1 kef + 271M
ke2 kef+1 + 271M

kq + 271(M + 1)
ke2 + 271(111 + 1)

L~l ke, = L~l ke; + (n - I + 1)271M + (I - 1)271(lII + 1)
=} n(271 M) + (I - 1)271 = 0



ke1 keI + 271M
ke2 keI+1 + 271NI

ken-I+l
ken-I+2
ken_I+3

ken + 271111
ke2 + 271(NI + 1)
ke3 + 271U0 + 1)

(n - I - 1)271NI + (I - 2)271(NI + 1) = 0
~ (n + 1)1\1 = 2 - I

The above equation has no solution for I > 1 as n 2: I and 1\1 E Z.
Whence, 9 . S cannot equal s. This in turn proves injection.

Surjection between Dif f[~R and Dif f[~R is obvious as any 0 that changes s
will change s as well.

Now let us go back to (??). As s-f = S, we have,

:\Text, we analyse the consequences of the restriction (3.105). There are 2 cases:
Case 1: [8] is such that there exists some 8 E [8], S = {,(s), ((kel'le)), .. , (ken,leJ)}



Case 2: The complement of Case 1.

\Ve ha,·e analysed both cases. The analysis for Case 2 is quite invoh·ed and. in
the interests of pedagogy, we present it in Appendix A. Here we only focus on case
1. Accordingly, consider s as in Case 1. We define 8 to be the embedding charge
network label which is obtained by dropping the matter charge labels from s so
that ')'(8) = ')'(s) with the edges of ')'(8) carrying the same embedding charges as in
s. Since s, s(J) have the same embedding charges and the same underlying graph,
we could equally well have obtained 8 by dropping the matter charge labels from
s(J). Thus. using the' -, notation, we have that

~ext. note that we can always choose f such that fChke/) = -leI' I = 1. ... n
so that s(J) has vanishing matter charges. Clearly the property that all matter
charges yanish is a gauge invariant statement. This fact together with equation
(3.107) implies that the set [s(J)] (with f chosen as above) is isomorphic to the
set of embedding charge networks which are gauge equivalent to 8. Denoting the

latter set by [8] we have, from equation (3.105) that "7[5J can only depend on the
set [8]. vVe denote this dependence through the notation

An identical analysis holds for the conformal isometry operators V (<Pc). Equa-
tion (3.84) implies that

space
follov
He-re

The im-ertibility of <Pc and its quasi-periodicity imply that <p-;l(S) is the unique and t
labelling such that no 2 consecutive edges have the same pairs of charges. and that ('omn

the condition (3.106) is preserved by the action of V(<Pc). correE



77[s] L < <p~1(8)[[rt(<p) = 77[¢~l(s)1 L < <p~1(8)I[rt(<p).
dJEDiff[PjR ¢EDiffP_1 R

5 l<Pc (5)J

An argument identical to that in (??) implies that Dif f[~R = Dif f[:~l(s)]R so
that

Once again case 2, as defined on the previous page is quite involved and is analyzed
in appendix B. Here we only analyze case 1.
Clearly, given any pair of charge networks 81,82 as in Case 1, with 1'(81) = 1'(82)
and with identical matter charges, there exists some <Pc such that [82) = V(<Pc)181).
This, in conjunction with equations (3.112), (3.108) implies that 77[sJ can only
depend on the set of graphs [')'(8)] which are obtained by the action of gauge

transformations on 1'(8). Specifically,

[')'(8)] {I" s.t. ~<P s.t. 'Y~xt = <P(')'ext)}

I' .- 1'(8),

where we have used the notation defined in section 3.3.1. We denote this depen-

dence of 77[s] through the notation

We focus on the '+' sector of the algebra of operators and the '+' sector of the state
space. As in section 3.5.2 we suppress '+' superscripts. The analysis for the '-' case
follows analogously. Cyclicity is defined with respect to an algebra of operators.
Here the putative generators of the algebra are the Dirac observables of section 3.4
and the finite gauge transformations. As we shall see in section 3.6, neither does the
commutator of two of the observables of section 3.4.1 yield a representation of the
corresponding Poisson brackets nor does their product yield a representation of the



appropriate \Veyl algebra. As shown in section 3.6, the connection with classical
theory is state dependent and only holds for semiclassical states (this is roughly
similar to what happens for area operators in LQG [3]). Given this situation, we
define the operator algebra in terms of the concrete representation on Hkin ( or
Hphys) of the rele\"ant operators rather than in terms of abstract representations
of classical structures.

Since the operators of section 3.4 as well as those for finite gauge transforma-
tions are unitary (and hence bounded), the finite span of their products is well
defined on Hkin so that it is possible to define the algebra of operators generated
by these elementary ones in terms of the action of elements of this algebra on Hkin.

We denote this algebra of operators as A3:c. In a similar manner, consider the
algebra of operators generated by the action of the Dirac observables of section 3.4
on Hphys. Denote this algebra by A~hYS.

Fix a graph T Let s, be the set of charge networks such that "is E s..,..~f(S) =
and s satisfies condition (3.106) on its embedding charges. Let [s,] be the set of
charge networks which are gauge related to elements of s, i.e. "is' E [s,]::3 some
gauge transformation qJ and some s E s, such that s' = s</>.Finally, let Hb] be the
(Cauchy completion of the) finite span Db] (c D(a)(b)) of charge network states
Is'), s' E [s,].

The analysis of the preceding section shows that:

(1) Hbl C Hkin provides a cyclic representation of the algebra A3};. Any charge
network state in Hb] is a cyclic state.

(2) Group averaging of states in Db] yields a cyclic representation of the algebra
Aphys. Aphys. t d 1· 11 'LI 'LI h 'LI . thD I.e. D IS represen e cyc lca y on , Lf,],phys C I ~phys were , Lf,].phys IS e
Cauchy completion (in the physical inner product) of 1](D[,)). The group average
of any charge network state in Db] is a cyclic state. f

Note that both H[,] and Hb],phys are non- seperable.

An exhaustive analysis of semiclassical states is outside the scope of this thesi . RI
Instead, we focus on two issues related to semiclassicality. In section 3.6.1 we show
that semiclassical states must be based on suitably defined 'weaves'. In section



3.6.2 we show that semiclassicality can be exhibited with respect to. at most, a
countable number of the mode function operators of section 3.4.1.

Recall that in LQG, states which exhibit semiclassical behaviour for spatial ge-
ometry operators are based on graphs called weaves [8]. Here the (fiat) space-
time geometry is encoded in the behaviour of the X± (x) operators. Hence we
define the notion of a weave as follows. The embedding charge network s± =
{ (s±), (k±± , .. , k±± )} will be called a weave iff the embedding charges satisfy

e1 eN±

(a).(b) of section 3.5.1 together with k±± - k'\ ;:::;;;±27f and iff N » 1. This
eN e1

is, of course, not a precise definition since k±± - k±± ;:::;;;27f and N > > 1. are
eN e1

not precise statements. Nevertheless this 'working' definition will suffice for our
purposes.

Let 'l/J± E 7-{~n exhibit semiclassicality with respect to the ± sector obsen-ables
of section 3.4.1. Further, let 'l/J± be an eigen state of X± (x) ( we shall relax this

assumption later) so that 'l/J± = Ts± 0 'l/J~[, 'l/J~[ E 7-{~[. The analysis below is for
the + sector and can be trivially extended to the - sector. In what follows we
suppress the + superscript. From equation (3.80) it follows straightforwardly that

N

1s.m := L cos(nmkeJ (sin(nmkeJ+1) - sin(nmkeJ)).
[=1

where keN+1 := ke1. In order to write (3.116) in a more useful form, we define the
following:

6.keJ '- keJ+l - kef' 1= 1, ..,N - 1
27f

6.keN '- kq - keN + ti·
(3.117)

(3.118)



N

fs,m = L sin(JimflkeI)·
1=1

Since 1/J is semiclassical we assume that, for some classical data (qm,Pm),

so that in the Ji ---* 0 (classical) limit, k1 does not vanish (except when keJ = 0)
Hence, we investigate the conditions imposed on s by the requirement

N

127f - Lsin(flk1)1 < E, E« 1.
1=1

flk1 '- kI+1 - k1, 1= 1, .., N - 1

flkN '- k1 - kN + 27f.

( 3.126

( 3.127



N

6.k[ ~ 0, L 6.k[ = 21T.

[=1

Intuitively, since 1 Si:X 1 :'S 1 and = 1 at x = 0, equations (3.125), (3.128) lead us
to expect that 6.kJ, I = 1, .. , N should be small. That this is indeed the case is
shown in Lemmas 1- 3 in the Appendix. Clearly, the fact that 6.k[ ------t 0 as E ------t 0

(see Appendix) implies that s is a weave. Thus, we have shown that any kinematic
semiclassical state which is an eigen state of the embedding operators must be
based on a weave.

ext, consider an arbitrary kinematic state I'¢) = L ailsi > Q91'¢iM) where ai

are complex coefficients, ISi) are an orthonormal set of embedding charge network
states and l'¢iM) E HM· In order that this state satisfies equation (3.121), it turns
out that I'¢) must be peaked around Si such that Si are weaves. This is shown in
Lemma 4 of the Appendix. Finally, consider an arbitrary physical state. Such a
state is a linear combination of averages over embedding eigen states. Lemma 5
shows that such a state is peaked around averages of embedding eigen states vvhich
are based on weaves.

3.6.2 Semiclassicality and mode function operators: a no-

go result.

We show that no states exist which are semiclassical with respect to the uncount----- ----
able set of operators {eiaqm, ei{3Pm, 10 - 00 I < E, 113- Po I < <5} for any fixed m, 00, Po
and any E, <5 > O. First, consider states I'¢) which are embedding eigen states so
that I'¢) = Is) Q91'¢M). Here S is an embedding charge network and I'¢M) E Hl\J

can expanded as I'¢M) = Lr br Is~) where {Is~)} is a countable set of orthonormal
matter charge networks.---- ----

The operators eiaqm, ei{3Pm act by changing the matter charge labels by sines
and cosines of (m times) the embedding charges (see (3.80)). Consider the set L
of all matter charges on Sr Vr and construct the set 6.L of differences between all
pairs of elements of L i.e. 6.L:= {l -l'Vl, l' E L}. Let ke, e C ry(s) be such that
cos mnke =I- O. Then, in any neighbourhood of 00 we can choose uncountably many



a such that a cos mnke tj. 6.£. Clearly for such a we have that (eiaqm) = O. If
cos mhke = 0 we can repeat the same argument with sin mnke and conclude that

~
(ei(3Pm) = 0 for uncountable many f3 near f3o. Clearly, such behaviour is far from
semiclassical. This argument can be suitably generalised for arbitrary states in
Hkin as well as in Hphys' The relevant material is in Lemma 6 and Lemma 7 of
Appendix D.

3.7 Two open issues and their resolution.

Before we conclude this chapter, a couple of points remain which we have not
addressed as yet. First, it still remains to enforce (ii), section 3.2.3 in order to
ensure that the spatial topology is a circle. Second, we need to take care of the
zero modes by imposing equation (3.25) in quantum theory and show that the
results of section 3.6 continue to hold after this is done. We address these points
in sections 3.7.1 and 3.7.2 below.

Ai though the spatial inertial co-ordinate X ranges over (-00,00), we need to
identify X rv X + 27f in accordance with the discussion in section 3.2.3. Conditio]]

(ii), section 3.2.3 states that two embeddings (Xl, TI), (X2, T2) are equivalent il
the following conditions are satisfied: In s

priat
xt(x) = Xi(x) + 2m7f '7 x E [0,27f],

X1(x) = X2(x) - 2m7f '7 x E [0, 27f].

We now show that this equivalence has already been taken care of at the physical
state-space level. Let

to th
rdge

'\±}.

with
we h



The identification (3.130) in the classical theory implies the following equivalence
condition in quantum theory:

Next, note that for any integer m, there exist gauge transformations cbtm) such
that ¢±( )' s± = {i(S±), (k±± ± 2m7f, ... , k±± ± 2m7f), (l±±, ... , l±± )}. Thus Is±) and

m e! eN e! eN

IS~27Tm) are gauge related so that

Equation (3.134) shows that the identification of 27f-shifted embed dings is sub-

sumed by the identification of embeddings related by gauge transformations.

3.7.2 Taking care of the zero mode in quantum theory.

In section 3.7.2.1 we impose the condition p = 0 (see equation (3.25)) by appro-
priate group averaging. In section 3.7.2.2 we show that this does not alter the
conclusions of section 3.6.

The conditions Is! y± = 0 of equation (3.25) are equivalent to the conditions
ei

.\± Is! Y± = 1, 'v'A±.2!:e latter can be imposed by group averaging with respect
to the operators ei.\± Is! Y±. Let s~± be matter charge networks with a single

edge e± = [0, 27f] labelled by the charge A± i.e. s~± = {i( s~±) = [0, 27f], l;± =
V}. Clearly, we have that ei.\±};Y± = W(s~±). Note that T¥(s~±) commutes

with all the gauge transformations as well as observables of section 3.4. Since
we have already averaged over the group of gauge transformations, the map f7±



which implements (3.25) is defined from the space T/±(V~)(b)) to its algebraic dual

T/±(V~)(b))*' Recall that V~)(b) (defined in section 3.5.1) is the finite span of charge

networks subject to the conditions (a), (b) of section 3.5.1. Before defining 17±, note

that,

where s~± is obtained from s± = {,(s)±, (k±±, ... , k±±), (l±±, .... l±±)} by adding ).±
e1 eN e1 eN

to all the matter charges. We now define,

The equivalence class [[s±]]o is defined via following relation.

[s±] rv [s~] iff for any {,(s±),(k±±, ... ,k±±),(l±±, ... ,l±±)} E [s±]'
ej eN ej e'-i

:3 ({ '(S±). (k±± ..... k±±), (l±± + ).±, ... , l±± + ).±)} E [Sl ] for some ).± E R.
e1 eN e1 e T

Once again the ambiguity in the rigging map contained in 17[[5±]]0can be reduced

by demanding that 17± commutes with the observables. It can be checked that for

the super-selected sector of 'Hphys defined in section 3.5.2, we have 17[[5]]0= 7]bl:

where as in section 3.5.2, 3.5.3 we have once again suppressed ± superscripts and

where [,] is defined as in section 3.5.3. Setting 17[,(5)]:= 17[r]T/[rl'we have that the

inner product on 7]±(V:h~S) is given by,

(1](T/(ls))I17(T/(!Sl))) = 17[r(5)JEB ( T/(IS))[!Sl,A)])'
A

Since the zero mode operator MI (s~±) leaves the embedding part of the states in
'Hkin and 'Hphys untouched, it is easy to see that the proofs of section 3.6.1 and

appendix C still apply after the zero mode averaging is done. Thus, semiclassical

states which satisfy the p = 0 constraint are necessarily based on 'Neaves.

It is also straightforward to see that the results of section 3.6.2 apply after zero

mode group averaging. While the line of argument is roughly similar to that in
section 3.6.2 and appendix D, there are some differences. In the interests of brevity, In

we provide only a skeleton of the argument below. As usual we shall suppress the

± superscripts.

The averaging with respect to 17slightly complicates matters because there is



an additional sum over matter charge networks wherein matter charges associated
with charge network states are all incremented by the same amount. As a result,
it is necessary to consider pairs of edges subject to conditions on their embedding
charges. This is in contrast to the role of single edges (with cosines or sines
of (Ji times) their embedding charges being non- vanishing) in the arguments of
section 3.6.1 and appendix D. Specifically, consider a state decomposition defined
in terms of embedding charge networks Sj as in equations (3.151) and (3.164).
Separate the values taken by the index j into a set C1 and its complement, C2,

where j E C1 iff for fixed m, there exist a pair of edges eI(j), ej(n E -Y(Sj) such
that cas mJikeJ(il =I- cas mJikej (j).

Next, with a slight abuse of notation, for each j E C1 fix a pair of edges

eI(j),ej(j) E -Y(Sj) such that cosmnkeJ(j) =I- cosmnkej(j). As in appendix D, define
6,L to be the set of differences of all matter charges which occur in the expansions
(3.151), (3.164), (3.170). Also define 6.2 L to be the set of all differences between
pairs of elements of 6.L. For each j E C1 define 6.2 Lj to be the set of elements

obtained by dividing each element of 6.2 L by cos mJikeJ(j) - cos mnkej(j)' Let
6,2Lc1 := UjECI6.2Lj. The set 6.2Lc1 is countable so that there are uncountably
many ex in any neighbourhood of eto such that et ¢: 6.2 Lcl. It can then be checked

~
that (eia.qm) obtains contributions only from terms labelled by j E C2.

Finally, we show that such terms are of negligible measure. Note that for j E C2

wehave that cosmJikeJ(j) = cosmnkej(j) for any pair of edges eI(j), ej(j) E -Y(Sj)'

It is then straightforward to see that for such j, the function !Sj ,m (defined by
equations (3.157), (3.116)) vanishes identically. Then the arguments of section
3.6.1and appendix C imply that the contribution from j E C2 must be negligible
forsemiclassicality to hold.

Similar arguments can be made for (ei{3Prn) by replacing cosines with sines in
the above argument .

.0 3.8 Discussion of results and open issues.
Lll

In this chapter, we constructed a quantization of PFT similar to that used in LQG.
Quantum states are in correspondence with graphs (i.e. collections of edges) in
the spatial manifold. The edges of these graphs are labelled by a set of real valued



embedding and matter charges. These charge network states are analogs of the
spin network states in LQG. There, however, the labels are integer valued. Such a
labelling is also, in principle, possible here. Had the holonomies of section 3.3 been
based on charge networks with embedding charges which were integer multiples of
2Z for some fixed integer L and matter charges which were also integer multiple
of some appropriate dimensionful unit, such holonomies would still separate point
in phase space by virtue of the fact that they were based on arbitrary graphs
(this is similar to what happens in LQG). Such a choice would lead to states
with integer valued charges. However it is not clear if a large enough subset of the
Dirac observables of section 3.4 preserve the space spanned by these integer-charge
network states. It would be useful to investigate this issue in detail.

The polymer quantization of the embedding variables replaces the classical
(flat) spacetime continuum with a discrete structure consisting of a countable set
of points. This can be seen as follows. The canonical data X±(x) is a map from
51 into the flat spacetime (51 x R, 'r/) and embeds the former into the latter a
a spatial Cauchy slice. Any gauge transformation generated by the constraint
maps this data to new embedding data which, in turn, define a new Cauchy slice
in the flat spacetime. In particular, the action of the one parameter family of
gauge transformations generated by smearing the constraints with some choice 0

"lapse-shift" type functions NA (see section 3.2) generates a foliation of (51 x R, 7)),

Consider the image set in (51 x R, 'r/) of the set of all embeddings which are gauge
related to a given one. From the above discussion it follows that this image se
is exactly the flat spacetime (51 x R, 'r/) itself. Next, consider the correspondin
quantum structures. Any charge network state is an eigen state of X±(x). Consider
a charge network state, 18+) 018-) with 18±) = T ± 0 WS1±' where s± satisfy the
conditions (a). (b) of section 3.5.1. From equation (3.42)- (3.44) it follows tha

the set of eigen values Ax,s± for all x E [0,27f] describes a finite set of points on a

spacelike Cauchy surface in (51 x R, 'r/). These points have light cone coordinates

(X+. X-) = (Ax.s+, Ax.s-). The action of any gauge transformation on such a

charge network state yields another charge network state whose eigen values lie,
once again, on a Cauchy slice in (51 x R, 'r/). From equation (3.46) it follow~
that the set of eigen values for all possible gauge related charge network state'
is countable and defines a corresponding set of points in (51 x R, 'r/)' The gauge
invariant state obtained by group averaging a charge network state is a sum over
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all distinct gauge equivalent states and hence contains the elements of this discrete
structure. This answers the first question raised in the introduction. The discrete
structure is a good approximant of the continuum spacetime (51 x R, Tl) for charge
networks with a large number of embedding charges i.e. for weave states. Thus, it
is not surprising that semiclassicality requires states to be based on weaves as in
section 3.6.1 and appendix A.

In contrast to the embedding. charges, the matter charges do not have a direct
physical interpretation because charge network states are not eigen states of the
matter holonomies. As a tentative, provisional interpretation we choose to think
of them, rather imprecisely, as measuring excitations of the matter. Since, on
the constraint surface, the classical data (X± (x), y± (x)) correspond to free scalar
field data Y±(x) on the slice (X+(x), X-(x)) in fiat spacetime, we interpret a
charge network state Is+) @ Is-) E 1-{kin as specifying excitations of matter on the
discretized "quantum" slice specified by the embedding charges. The action of a
gaugetransformation on a charge network state can then be interpreted as evolving
the matter excitations on the 'initial' quantum slice specified by this state to the
new one· specified by the gauge related charge network state. Since the physical
state obtained as the group average of a charge network state contains all distinct
gauge related states, it follows that such a physical state may be interpreted,
roughly, as a "history". It may be useful to attempt an interpretation of physical
tates in LQG along these lines.

An over- complete set of Dirac observables corresponding to exponential func-
tions of the standard annihilation- creation modes of free scalar field theory are
represented as (unitary) operators in the polymer representation. Note that in con-
trast to the assumption of Reference [6], here the commutator between two such
operators does not close as in the case of Weyl algebras. Indeed, as shown in sec-
tion 3.6.1, the commutator only approximates the corresponding Poisson bracket
forsemiclassical states based on weaves. This underlines the fact that in a general
covariant theory involving spacetime geometry, classical structures are typically
not approximated in the Ii --t 0 limit unless it is possible to coarse grain/smoothen
away the underlying discreteness of the quantum spacetime. evertheless the ac-
tion of the basic Dirac observables is well defined and there is no obstruction to
the quantization procedure.

The results of section 3.6.2 imply that semiclassical analysis requires a choice of



a countable subset of these observables. One possibility is to choose, for each n, a
pair a, {3< < ~ and define the approximants to qn, Pn by e:;;;qn~~--;;;qn , eWn ~~---:;jipn.

However, there is no natural choice of a, {3 and so, while the quantization con-
structed in this paper is free of the "triangularization" choices which occur in the
definition of the quantum dynamics of LQG, an element of choice does appear
when semiclassical issues are confronted. Note, however, that the results of section
3.6.1 indicate that any physical semiclassical state necessarily has an associated
(gauge invariant) structure, namely that of a weave. 6 The "spacing" of the weave
(i.e. nD..kI of section 3.6.1 and the Appendix C) provides a natural scale for a, {3.
Thus, our viewpoint is that since choices of Dirac observables can be tied however
tenuously to structures already present in the semiclassical states, ambiguities, if
present in definitions of the quantum dynamics are more worrying because quan-
tum dynamics is defined for all states, not only semiclassical ones.

While the general covariance of PFT is encoded in the gauge transformations
generated by the constraints, the conformal invariance of the underlying free scalar
field theory is reflected in the canonical transformations which correspond to the
Dirac observables of section 3.2.4.3. The results of sections 3.3 and 3.4.2 show
that the group of gauge transformations as well as that of conformal isometries
are represented in an anomaly free manner. While the anomaly free nature of the
former is necessary for the consistency of the quantum theory, it is possible, in
principle, for the latter to admit anomalies. Indeed this is exactly what happens
in the representation of PFT constructed in Reference [29, 58]. While the algebra
of gauge transformations is anomaly free, the physical Hilbert space representation
is equivalent to the standard free field Fock representation and the algebra of the
generators of conformal isometries displays the standard Virasoro central exten-
sion. Motivated by the results of References [29, 58] and [31], we believe that the
anomaly manifests as result of the Poincare invariance of the Fock representation
i.e. as a result of the existence of the Poincare invariant vacuum. From this point
of view the absence of anomalies in the group of gauge transformations as well
as the group of conformal isometries in the polymer quantization is related to the
absence of a Poincare invariant state (Poincare transformations are a subset of the

6Note that in contract to the weaves of Reference [8] which approximate a spatial geometry,
here it is the (flat) spacetime geometry which is being approximated by virtue of the discussion
in the second paragraph of this section.



conformal isometry group and it is easy to see that no kinematic or physical state
is Poincare invariant). We shall return to the issue of Poincare invariance towards
the end of this section.

Next we turn to the discussion of the efficacy of polymer PFT as a toy model
for LQG. We believe that the quantization provided here is a useful testing ground
for proposed definitions of quantum dynamics in canonical LQG. It would be of in-
terest to construct the quantum dynamics of the model along the lines of Reference
[51] and compare the resulting physical Hilbert space with the one considered here.
Proposals for examining semiclassical issues [43] may also be tested here. One of
the outstanding problems in LQG [61, 11] is the relation between states in LQG
and the Fock states of perturbative gravity. Since PFT admits a Fock quantization
[29, 58] equivalent to the standard fiat spacetime free scalar field Fod: represen-
tation, one may enquire as to how Fock states arise from the polymer Hilbert
space. Since the results of section 3.6.2 suggest that the operators corresponding
to exponentials of mode functions do not possess the recquisite continuity for the
annihilation- creation modes themselves to be defined as operators, it is difficult
to identify Fock states in terms of their properties with respect to the action of
the annihilation- creation operators. However, as a first step, it may be possi-
ble to identify candidate states corresponding to the Fock vacuum by using the
Poincare invariance of the latter. Specifically, since the operators corresponding to
fini te Poincare transformations are available (as a subset of the conformal isometry
operators of section 3.4), one could try and group average with respect to these
operators.

Another open issue pertains to the representation appropriate to the case of
non- compact spatial topology. We analyze this issue in the next two chapters.



Appendix
L¢

A. Reducing the ambiguities in the rigging map or

In this appendix we would like analyze the consequence of case 2 for (3.105) a!
noted in the main text. The constraints on the embedding charges in case 2 ar
as follows.

Case 2 : Let J > I be such that keJ = kef + 21f. Thus ke1 = ... = ke

and keJ = keJ+1 = ... = ken' Also let :::Ja family of tuples (lVII, Nh + 1, ...Jllh -

Ld· (M2 M2+L2), ... , (Mm, ... , lVIm+Lm) such that 1< Ml < Ail +Ll < M2 <
Nh + L2 < < NIm < NIm + Lm < J

and keM1 = ... = keMl+Ll' keAl2 = ... = keML2,···,keAlm = ... = keAlm+Lm'
As f is periodic (f(k + 21f) = f(k)), under leI - leI + f(keJ, the elements i!

each of the following set will change by the same amount.

Ls = {( (lliE(l, ... ,I,J"n),i<jlei -lei+l)' (lliE(Ml, ...,Ml+Llllei -lei+l)' ... ,
(lliE(Mm., ... ,Mm.+Lrn) lei - lei+l)}

• If ken = ke1 + 21f and Ilel - len I = 0 then we exclude this zero from the firs
(sub )set in Ls. Reason for this exclusion will become clear below.

Now we define an equivalence relation on (r-(s), k(s), Ls) as follows.
(r-(s). k(s), Ls) rv (r-(s'),k(s'), LS/) if:::Ja ¢ E Dif f{R such that (r-(s'), k(s'), LS/) =
( (6· s). k(6· s), L¢.s).

Gi\'en a Ls, It is a straightforward exercise to show that (with the exclusion 0

a certain zero specified above) L¢s is one of the following types for any ¢.

Denote the subsets of Ls by A, Al, ...,Ak respectively.

Pro 0

So i

But,
(vVh
the i

']j

the a

In th
with



Proof: <= is obvious as LSf = Ls V f. (By definition)

So it remains to show that 7}[sf] = 7}[s] V f =? 7}[s] = 7}[r,k,Ls]'

But, [s]n(njECO(Sl)[sjD = [sn(njECO(Sl)Sj)] = [,(s),k,Ls]'

(Where the first equality uses the fact that W (s j) is an observable.) This proves
the if-side of the claim.

Thus the condition that the rigging map commutes with W+(s j) has reduced
the ambiguity in the definition of 7}.

B. Making the rigging map commute with Confor-

mal isometries

In this appendix we derive conditions on 7}[sJ such that the Rigging map commutes
with the action of V[¢>c], when S E [s] is such that the embedding charges on s
satisfy the following condition.
:3 1 :s; I < M1 < ]Vh < J :s; n such that kJ - kj = 27f and kM1-1 =F kMI = ... =
kML =F kNh+l'
As before, we only analyze the right-moving sector and supress the +-indices.
We proceed in two steps. First we list all the possible orbits that can be linked
to each other via action of V [¢>c] for some ¢>c' That is, starting with a S =
{[(s), (kel' ... , keJ} (with keJ - kef = 27f, keM1 = ... = keMJ, what are the possible
S/S that can be obtained from S via an action of V[¢>c], (;(¢» on Is).



We then define a Virasoro-invariant set [S1, Ls] which is the data common to all
the orbits mentioned above. This will imply that 7}[s] = 7}[sI,Lsl'

lemma 1: Let s = {" (kq, ..., keJ} such that keJ - keI = 27r.(::::} kq = ... =
kef" keJ = ... = keJ And let keMI = ... = keML, with I < M1 < Nh < J
U(dl)V[4>c]ls) = ISl) for any ¢ and ¢c, is equivalent to Sl = {,(sl,(kl

" ... ,ke',)}
el m

being one of the following type.

1. m = n, 3 1 ::; II < 11::; n such that k~, - k~, = 27r with 11- h = 1- I aHd
.II II

3A12 such that k~, = ...= k~, with M2 - II = 1111 - I.
M2 M2+(ML-MI)

2. m = n, 3 1 ::; II < 11::; n such that k~, - k~, = 27r with (N - 11+ 1) - II =
.II II

Nh - M1 and 3M2 such that k~, = ...= k~, with M2 - h = 1- l'vft,
M2 M2+(N-I+I)+J

3. m = n, 3 M2, M3 such that k~~12 = ...= k~~2+(ML-MI)' k~~[3 = ...= k~~[3+(N_J+I)+I

with 1\113 - (M2 + (ML - Md) = 1- ML, M2 - 1 ::; (NIl - (I - 1)).

4. m = n, 3 M2, 1113such that k~~2 = ...= k~~2+(N_.J+I)+I' k~~3 = ...= k~~[3+(ML-MJi

with M3 - (M2 + (N - 1+ 1) + 1) = M1 - I, M2 - 1 ::; (1- (JI1L + 1)).
5. m = n+1, 31::; II < 11::; n+1 such that k~, -k~, = 27r with 11-11 = 1-1,

.II II

II ::;I and 3M2 such that k~, = ...= k~, with M2 - h = A11 - I.
M2 M2+(ML-MI)

6. m = n + 1, 3 1 ::; II < 11 ::; n + 1 such that k~, - k~, = 27r with
.II II

11- h = 1- I, h ::;(N - 1+ 1) and 3 M2 such that k~, = ...= k~,
M2 M2+(ML-Ml)

with NI2 - II = M1 - I.

7. m = n + 1, 3 h < 11such that k', - k', = 27r with II ::; (ML - NId + 1.
eJj ell

11- h = N - (ML - Md + 1 and 3 M2 such that k', = ...= k', with
eM2 e(N-J+I)+I

Nh - II = 1- ML.

8. m = n + 1, k', + 27r = k', and 3 M2, M3 such that M2el en+1

... = k~, , k~, = ... = k~, and M2 - 1 ::;
M2+(Mf-MI) M3 M3+(N-J+I)+I

M3 - (M2 + \ML - Md) = 1- ML.

9. m = n + 1, k', + 27r = k', and 3 M2, M3 such that M2el en+1

... = k', , k', = ... = ke, and 1112 - 1 <
eM2+(N-J+I)+I eM3 M3+(ML-MI) -

1113 - (Jvh + (N - 1+ 1) + 1) = 1111 - I.

Note Instead of considering § = {,(s), k, Ls} we are only considering the em-
bedding charge networks in this claim. This is because neither U(¢) nor V[dlc] can

change Ls.

proof: We will' first show that given anyone of the above S', it can be "linkedll

to s via action of U(¢) and V[¢c] for some ¢ and ¢c' Consider S' which is of



Se.1;t = {UNEZTNb(S)), ( ... , (k~N, ... , k;nN) , ... , (kell .. , keJ, ... , (k~, ... , k:;') , ... }
(3.140)

where k:; = keI + 21fN.
case-I. I > h. Let ¢ be a diffeo which maps eI!!h+l ---> e~, ... , eI~;l ---> e~. (All

the in between edges should be mapped onto corresponding edges of ,( s'.) The

corresponding charges on ¢-l(Sext) I [O,21r] are given by,

(k-N k-N k-N k-N k-N+l)"'e , ... , /'e , ... , e , ... , e , ... , .AeI-II +1 Ml ML J I-I)

where the charges k;N, ... , k;N are sitting on the edges ¢(e~f ) = e~ etc. Now
M1 ML ) 2

choose a ¢c such that ¢;;l(k;N ) = ke'" ... , ¢;;l(k;N) = ke', , ... , ¢;;l(k;N) = kef, .
1-11+1) Ml M2 J J)

(Such a ¢c always exists). Thus in this case one can map Is) to 1151) using some ¢
and some ¢c'
case-2. I < II' In this case, choose a diffeo which maps

(e~~(jll_(I+l))' ... , e~~Jl-(I+l))-l) onto (e~, ... , e~) and then choose a ¢c which maps
the charges on

( -N+l -N ) t (k' k')en-(h-(J+l))' ... , en-(fl-(f+l))-l 0 ~e~'... , ~e;, .
When s' is of type-2. One has to choose a difI'eo which will map (eiN, ... , ei!i+l)
with NIl ~ i ~ML1 onto (e~, ... , e~) such that ML1 - i = h. Then choose a ¢c
which will map the charges on (e::N, ... , e::!!l+l)onto (k'" ... , k',). (Such a ¢c will

" e1 en
exist due to relations between (1, J, Ml, .!I'h) and (h, Jl, M2, j'Vh2).
The analysis for the remaining cases is similar. It merely involves lot of book-
keeping so we do not reproduce it here.

Now we need to show that, if Ts' = U(¢)V[¢c]Ts then s' has to be one of the
types in the list.

Let ¢ be a diffeo which maps initial vertex of ef (with 1 ~ i ~1) to x=O. Then,

¢-l (sext) I [O,21r] = { (¢-l(ef), ..., ¢-l(e!j), ... , ¢-(e:J), ... , ¢-l(e~il)),
(kei + 2N1f = ke1 + 2N1f, ... , keI + 2N1f = ke) + 2N1f, ... ,

kej + 2N1f = kEj + 4N1f, ... , kei_1 + 4N1f = ke1 + 4N1f)}



Now, applying V[cPc] will change first I-i charges and final n-J+i charges by equal
amount and the intermediate ML - M1 charges by equal amount. It is easy to see
that the resulting charge-network is of type l.
Depending on which vertex or interior point of , is mapped onto x=O under a
diffeo, one will obtain s' which will be in one of the 9 classes listed in the claim.
This finishes the sketch of the proof.

The goal of the above claim is to help us isolate the data that is common to

([s], [cPc(s)]) V cPc in the case when ::J S E [s] such that s = {,(s), (kel' ... , keJ}
(with keJ - kef = 27T, keM1 = ... = ke~J. But before doing that, we will need to
introduce some more notations.
Set-A: Disjoint union of two sets (set-a, set-b) of equal charges such that charges
in set-a differ by charges in set- b by 27T.

e.g. For the s used in claim above, set-a = (kel> ... , keJ, set-b = (keJ, ... , keJ.
Set-B : Set of charges which are equal to each other and are neither equal to, nor
differ by 27T from any other charges. Note that in a given s, there can be more
then one set of this type.
e.g. For the s used in claim above, set-B = (keM1, ... , keMJ.
Definition: Given an embedding set, (ke1, ... , keJ and a pair of subsets, (kei1, ... , ke;

(keh ' ... , kej/), such that i1 < h·· < im < jl < ... < jl, the distance between two
subsets is defined to be (jl - im).

Definition: Given as = {,(s), (kel> ... , keJ}, define

Sf := {,(s), (Distance between set-b and set-a; cardinality of set-B,
Distance betwen set-b and set-B.)}

e.g. For s in Claim.B.l, Sr = {,(s), (J - I, ML - M1, J - ML) }.7

Note: If there is more then one set of type-B, then Sf should contain cardinality
of all such sets, and also contain distance between various sets of this type.



Defining [Sf]
Given a Sf = {I'(S), (J - I, ML - Ml, Ml - 1)} (with II'(s)1 = n), define an

equivalence relation on the set of all s/s as follows.8

(1){6-l(/'(s)), 1¢-l(S)1 = n, (J - I, lVh- NIl,. Ml - In
(2){6-l(/'(s)), I¢-l(/'(S))! = n, (0, (ML - Ml,n - J + 1+ 1), (J - Ah)n
(3){¢-1(/'(S)), I¢-l(/'(S))I = n, (0, (n - J + 1 + I, !Vh - NIl), (NIl - 1))}
(4){¢-1(/'(S)), I¢-l(/'(S))I = n, (n - ML + 1+ Ml, n - J + 1+ I, J - Nhn
(5){¢-1(/'(S)), I¢-l(/'(S))I = n + 1,(J - I, ML - Ml, Ml - In
(6){¢-1(/'(S)), I¢-l(/'(S))I = n + 1, (n, (ML - NIl, n - J + 1 + 1), J - Ahn
(7){¢-1(/'(S)), I¢-l(/'(S))I = n + 1, (n, (n - J + 1 + I, ML - Nh). l\!fl - 1)}
(8){d>~1(/'(S)), I¢-l(/'(S))I = n+ 1, (n - l\!fL + Nh + 1,n - J + 1 + I. J - JVh)}

For the s/s in (2), set-a and set-b are empty. There are two sets of type B
with cardinalities !lIh - iIIIl, n - J + 1+ I respectively. The distance between these
two sets is J - ML. Other classes can be understood in a similar way.

We refer to this equivalence class as [Sf]. This set is Virasoro-im-ariant by
construction.

Note: Here n is not to be understood as set-theoretic intersection, but rather as

a (formal) symbol which indicates the invariants of [8] under action of V[¢c].
proof: From claim.A.1 it can be seen that any s' that is the "image" of sunder
th action of U(¢) and V[¢c] has S'f that is equivalent to Sf. This implies that

8More precisely an equivalence relation should be defined on the pair (Sf, Ls). The equivalence
relation defined below can be combined with relation defined on Ls to define relation on the pair.
However we spare reader of all the gory details.



cPc(keJ ::J kei + 2N 7f for any Nand i

cPc(keJ ::J kei + 2N 7f'll I + 1 :::;j < M1 - 1 for any Nand i
(3.145)

cPc(keAlj) ::J kei + 2N 7f for any Nand i

cPc(ke] ) ::J kei + 2N 7f'll M1 + L1 + 1 :::;j < J for any Nand i

(Obviously such a cPc always exists).
In this case, [s] n [cPc(s)] = [sIlo Which implies [s] n (nq,cE<I>[cPC(S)]) C [SI].

Whence [s] n (nq,cE<I>[cPc(s)]) = [SI].
Thus we finally have (re-inserting Ls),

C. Lemmas concerning Semiclassicality and Weaves. tur

(3.148) He]

une

(3.149) Sj ~

Pn

ImI

This in conjunction with the fact that I Si~X I :::; 1 implies that

NL sin !:1kI :::;L !:1kI + sin !:1kJ :::; 7f.

1=1 I#J

NL sin !:1k1 2: -l.
1=1



The Lemma follows immediately from equations (3.149), (3.150) and the definition

(3.119) of fs,m=l

Lemma 2: If 6.kI ::; 1f, 1= 1, .. , N (see (3.124),(3.126)) then 0::; fs,m=l ::; 21f.

Proof: This follows immediately from the fact that I Si~X I ::; 1 in conjunction with

equations (3.128) and the definition (3.119) of fs,m=l.

Lemma 3: Equation (3.125) implies that as E ----> 0, 6.kI ----> 0, I = 1, .. , Nand
N ----> 00.

Proof: From Lemma 1 and equation (3.125) it follows that for sufficiently small
E, it must be the case that 6.kI ::;1f, 1= 1, .. , N.

Next, let a be the minimum value of the bounded, continuous function Si~ e in
the interval [O'~] (here si~ele=o := 1). Define the function f(x) := X - sinx - ~X3.

It is easy to check that ~~ 2: 0, x E [0,1f] and that f(x = 0) = O. This implies that
x - sinx 2: ~X3, x E [0,1f]. This in conjunction with equations (3.128), (3.125)
implies that L~=1(6.kI)3 < ~ so that 6.kI ----> 0, I = 1, .. , N as E ----> O. This in
turn, together with (3.128), implies that N ----> 00 as E ----> O.

Lemma 4: Any normalised I'lj!) E Jikin admits the expansion:

(siISj)

('lj!jMI'lj!jM)

Llajl2
j

L ajlsj, 'lj!jM), ISj, 'lj!jM) := ISj) 01'lj!jM/,
j

5ij, Sj = {i(Sj), (ke{, .. , ke~)}
J

(3.152)

(3.153)

(3.154)

Here S j are embedding charge labels, ej, I = 1, .. , nj are the edges of the graph
underlying Sj, aj are complex coefficients and l'lj!jM) E JiM.

If I'lj!) is semiclassical then the coefficients aj are such that I'lj!) is peaked around
Sj such that Sj are weaves.
Proof: The proof closely mirrors the arguments of section 3.6.1. Semiclassicality
implies that to leading order in 17"



Using equations (3.151), (3.80), (3.155), we have that

nj

fsj,m = L sin mL'ik~,
1=1

and L'ik~ := kj+1 - k~ for 1 :s; I :s; nj - 1, L'ik~j := ki - khj + 21r and we have set
k~ := 'lik j. From Lemmas 1 and 2 it follows that

e/

Since fsj.m=l is bounded, equation (3.156) implies that to leading order in 'Ii, \ve
have that

L laj/2 fsj,m=l (Sj, 'lj;jMleia;:t:"ij3Pllsj, 'lj;jM )e-iaQI-ij3PI ;::::;271
j

Denote the left handside of equation (3.159) by LHS. Equation (3.159) implies
that

Taking absolute values of both sides of equation (3.159) and using (3.158), (3.154)-----
and the fact that eiaqm +ij3Pm is a bounded operator of norm 1, we have that

21r 2: L lajI2Ifsj,m=11 2: ILHSI·
j

From (3.161), (3.160) we have that 6 > 121r - LHS/ > 21r - ILHSI > 271 -
Lj lajI2/fsJ.m=11, so that

L laj 1
2/fsj.m=11 2: 21r - 6.

j

Let J< be the set of all j such that Ifsj.m=ll :s; 21r - 6~ and let LjEJ< laj 12 = p<.
I IThen (3.158),(3.162) imply that Pd21r-62)+(1-Pd21r 2: 21r-6 so that P< :s; 62.



Thus as 6 ~ 0, almost all j are such that Ifsj,m=ll 2': 27f - E, where we have set
E := 6~. Using (3.158), this, in turn, implies that for small enough E,

This brings us back to equation (3.123) with S = Sj, Tn = 1. The analysis subse-
quent to that equation implies that such Sj must be a weave.
Lemma 5: Let 1?jJ) E 7-iphys be semiclassical. Then !?jJ) is peaked at group averages
of embedding eigen states which are based on weaves.
Proof: Recall that 1?jJ) is in the completion of Tf(V) where V is the finite span of
charge network states. It is then straightforward to see that any such 1?jJ) admits
the expansion:

1?jJ) = L ajTf(lsj) ® l?jJjM)),
j

Here Sj is an embedding charge network label, ¢ is a gauge tranformation and
l?jJjM) E 7-iM· We shall use the notation of Lemma 4 for the edges and charge
labels of Sj' ote that l?jJjM) is such that Tf(lsj) ® l?jJjM)) E 7-iphys as implied by
(3.165). Using (3.87), the normalization < ?jJ1?jJ >phys= 1 implies that

where the '+' sign in the right hand side is due to the fact that operators act on
'H.phys by dual action (see Footnote 4). Using equations (3.80) and (3.166), we have



~ 2 .. ~h -~ laj 1 2z sm(-2-!Sj,m)\'/7(ISj) ® l1PjM)), eiaqm+i(3Pm1](ISj) ® l1PjM) ))phys
j

~ ihaf327fmeiaQ,n+i(3Pm. (3.169)

Here !sj.m is defined as in Lemma 4. 9 This is the analog of equation (3.156)
of Lemma 4. The analysis of Lemma 4 subsequent to that equation applies here
identically thus proving Lemma 5.

D. Lemmas concerning the no go result of section

3.6.2.

Lemma 6: No states 1'0) E ({kin exist which are semiclassical with respect to the- -uncountable set of operators {eiaqm, ei(3Pm, 1a - 0'.0I < c, 1f3 - f30 I < 15} for any fixed
m, 0'.0, f30 and any c, 5 > O.
Proof: As in Lemma 4 of Appendix A, any 11P) E ({kin admits the expansion
(3.151)- (3.154). Additionally we may expand l1PjM) in terms of matter charge
networks so that for any fixed j,

where rj varies over a countable set (as, of course, does j), brj are complex coeffi-
cients and and S~j are matter charge networks.

Let C be the set of all j such that ,(Sj) has at least one edge e(j) with em-
bedding charge ke(j) such that cos mhke(j) =I- O. For every j E C choose an edge

ej c ,(Sj) with embedding charge kej such that

9It is straightforward to check that fsj.m in (3.157) is a gauge invariant function of Sj i.e.
fs],m = fSj.mV'sj such that:J a gauge transformation ¢ such that Isj) = U(o)lsj).



Next, let L be the set of all matter charges which occur in s~/\jj, r. Let 6.L be the
set of differences between all pairs of elements of L i.e. 6.L = {[ - ['V[, [' E L}.
For every je E C, js E S, define the sets 6.Ljc' 6.Ljs whose elements are obtained

by dividing elements of 6.L by Cjc,Sjs (see (3.172),(3.173)) i.e. 6.Ljc:= t;c Vx E

6.L}, 6.Ljs := {/ Vx E 6.L}. Finally, let 6.Le := UjcEeLjc' 6.Ls := UjsEsLjs·
Js

Note that 6.Le, 6.Ls are both countable sets. It follows that in any neighbour-
hood of eta, f3a there exist uncountably many et, f3 such that et ~ 6.Le, f3 ~ 6.Ls·~
Then from (3.80) and the fact that ei{3Pm is an operator of unit norm, it follows

that for such et, f3,
I ('l/Jle-:;;;nI'l/J)I = ~ laj 1

2,

jES

1('l/Jle~I'l/J)1 ::; ~ lajl2 = 1- ~ lajl2.
jEe jES

Semiclassicality requires that both (3.174) and (3.175) be close to unity. Clearly,

this is not possible.

Lemma 7: No states I'l/J) E 7-{phys exist which are semiclassical with respect to the
~ ~

uncountable set of operators {eiaqm, ei{3Pm, let - eta I < c, 1f3 - f3al < 6"}for any fixed

m, eta, f3a and any c, 6"> O.

Proof: As in Lemma 5, Appendix A, any I'l/J) E 7-{phys admits the expanSIOn
(3.164)- (3.166). Further l'l/JjM) can be expanded as in equation (3.170)- (3.171) of
Lemma 6. Note that the antilinearity of TJ implies that we may rewrite equation
(3.164) as

I'l/J) = TJ(~a;lsj) ® l'l/JjM)).
j

Next, let us construct the sets 6.Le, 6.Ls (as defined in Lemma 6) for the state

Lj aj ISj) ® l'l/JjM) E 7-{kin· It follows straightforwardly from the periodicity of the
cosine and sine functions in conjunction with the action of gauge transformations
(3.75) that we may choose the sets 6.Le, 6.Ls in such a way that they are identical
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for any (kinematic) state which is gauge related to the state Lj aj/sj)®I'Ij!jM). Thus
the sets 6.Lc, 6.Ls can be chosen so as to depend only on the physical state /'Ij!), and
it is straightforward to see that, as in Lemma 6, if we choose a tJ. 6.Lc,!3 tJ. 6.Ls,
we obtain equations (3.174), (3.175) with /'Ij!) as in (3.176). This proves the Lemma.

E. Choice of units.

In this appendix we summarize dimensions of various operators and parameters
of the theory. We have set the speed of light c to be unity.

[So] = ML = [!i]
[1] = M!L!, ['iff] = JV!!L-!

[X±] = L, [II±] = M L-1

[q(±)n] = M! L! = [P(±)n]

where [n] = L-1.

The dimensions of the above fields naturally imply the dimensions of the various
charges and parameters involved in the theory.

[ke] = NI-1, [Ie]= M-! L-!
[a] = M-!L-!

where the parameter a occurs in the exponentiated observables defined in (3.77).
Throughout this chapter, we have fixed the units such that length of the T=

constant circle is 2'if . Thus the only arbitrary scale in the theory is the mass scale.



polymer quantization of PFT on R 2 :

CGHS model

In this chapter we turn to the Polymer quantization of the CGHS model [141. Hav-
ing briefly mentioned the model in the introduction, let us first see why it is an
interesting field theory.
In the past two decades, two dimensional theories of gravity have received quite a
bit of attention [21] as toy models to address questions arising in (four dimensional)
quantum gravity. In particular the CGHS model whose action is inspired from the
effective target space action of 2-d non-critical string theory constitutes a highly
desirable choice, due to its various features like classical integrability, existence of
Black-hole space-times in its solution space and the presence of Hawking radiation
and evaporation at I-loop level.

Semi-classical analysis of this model has been carried out by number of authors
([14], [42], [46], [201and ref.therein). By incorporating a large number of conformal
scalar fields, Hawking radiation (arising from trace anomaly) and the back reaction
take place at the I-loop level. However during the final stages of the collapse, the

semi-classical approximation breaks down signaling a need to incorporate higher
order quantum corrections and non-perturbative effects. It is always believed that
a non-perturbative quantum theory is required in order to answer questions re-
garding final fate of singularity, information loss etc. (see however [42]).
In the canonical formulation the non-perturbative quantization of CGHS model has



been carried out in detail in various papers ([33], [10], [15], [39] and ref.therein).

After a rescaling of the metric, the model becomes amenable to Dirac constraint
quantization as well as BRST methods. Although the complete spectrum is known
in the BRST-approch as well as in the Dirac method (in the so called Heisenberg
picture). so far it has not been possible to ask the questions regarding quantum
geometry using this spectrum.

In this paper we begin the analysis of the rescaled-CGHS (KRV) model using the
methods of loop quantum gravity (LQG) ([54], [5]) more generally known as poly-
mer quantization ([7]). More in detail, we derive a quantum theory of dilaton
gravity (starting from classical CGHS model) which can be used to understand
the near-plankian physics of CGHS model. The aim of this work is two-fold. First,
we would eventually like to understand if the methods of loop quantization sheds
new light on the structure of quantum geometry close to singularity of the CGHS
Black holes. Although we do not answer this question in this paper, we setup a
framework where this question can be asked. Secondly as the model ofi'ers a greater
degree of analytic control than its higher-dimensional avatars, we can study in de-
tail various structures which arise in LQG but have so far remained rather formal.
(physical Hilbert space, Dirac observables, relational dynamics)
We begin by reviewing the classical CGHS model and its canonical formulation in
section 4.2. We recast it as a free parametrized scalar field theory on a fiducial fiat
space-time [33]. As we have already seen in the previous chapter, PFTs on fixed
background have a very rich mathematical and conceptual structure and are ideal
arenas to test methods of LQG. In this chapter we aim to show that by combin-
ing the ideas from parametrized field theories and LQG, one obtains a potentially
interesting quantum theory of dilaton gravity.
In section 4.3 we kinematically quantize the phase space (i.e. prior to solving
the constraints). By choosing an appropriate sub-algebra of full Poisson algebra
and performing the so called GNS quantization using a positive linear functional
(analogous to the Ashtekar-Lewandowski functional used in LQG), we obtain a
Hilbert space which carries a unitary representation of the space-time diffeomor-
phism group of the theory. vVe use the group averaging method in section 4.4 to
solve the constraints and obtain the complete spectrum (physical Hilbert space)
of the theory. This section is analogous to section 3 of chapter 3. Howeyer as the
topology of background space-time is trivial, the (unitary) action of space-time



diffeomorphisms of spin-network states in quite different. To make the section
self-contained we present all the relevant details, although reader familiar with
chapter 2 could skim through it.
In section 4.5 we show how to quantize the algebra of Dirac observables on the
physical Hilbert space and show how the physical Hilbert space is not a repre-
sentation space for this algebra (in other words the algebra gets deformed in the
quantum theory).

At this point we could argue that we have a complete non-perturbative quantum
theory of CGHS model. However as there is no true Hamiltonian in the system,
there is no dynamics. Thus we are faced with the so-called problem of time which
as observed in chapter 2 is a generic feature of all parametrized systems ([23],
[24]). We tackle this problem in our model using the idea of certain relational
observables. In principle this gives us a framework for asking dynamical questions
related to the evaporation of Black-holes, fate of the Black-hole singularities in a
non-perturbative framework.

The rest of the chapter is organized as follows.
In section 4.6, using key ideas due to Dittrich and Hajicek ([26], [24], [16]) we

define an elementary set of dynamical observables (referred to as complete observ-
abIes) in the classical theory. These observables are elementary in the sense that
more complicated observables (e.g. the observable corresponding to the dilaton)
can be built from them. Along with the diffeomorphisms of the background space-
time, complete observables are then used to define time evolution in the system.

In the section 4.7 we perform canonical quantization of the complete observables
and also define (non-unitary) time evolution in quantum theory in the Heisenberg
picture. The canonically quantized observables can in turn be used to define the
physical dilaton operator on ltphy' This operator (which turns out to be a dis-
tribution) contains complete information about the quantum geometry and thus
is a crucial ingredient for any future investigations that one might wish to carry
out in this framework. With an eye toward future application (e.g. semi-classical

analysis) we show how to calculate its expectation value in a generic basis-state in

ltphy'

This finishes the basic construction of a non-perturbative dilatonic theory of
gravity quantized via methods used in LQG. There is however a conceptual prob-
lem with the canonically quantized complete observables. nlike their classical



counterparts, they do not admit relational interpretation. Whence in the penulti-
mate section we propose an alternate definition of complete observables directly in
the quantum theory which admit the same interpretation as the classical observ-
abIes. :Vloreover the time evolution of these observables is naturally discrete. This
is interesting as discrete (internal) time evolution has been the feature of other toy
models quantized via LQG methods.

Although the Dirac observables defined in the first part of the chapter are
densely defined on 'Hphy, the complete observables built from them diverge for
certain values of the internal time (the embeddings) and are not densely defined.
In the last section we take a closer look at these divergences and argue that they
can be resolved by changing measure in the Fourier space which is used in the

definition of complete observables.



4.2 Classical theory

In this section we briefly recall the (resealed) action of the CGHS model along with
the solution of the field equations and the structure of the canonical theory.
The original CGHS action1 describing a two dimensional theory of dilatonic grav-
ity is given by,

Here ¢ is the dilaton field, g is the space-time metric (signature (-,+)) and f is
a conformally coupled scalar field.
Resealing the metric gJ.LV = e2

<f; 'YJ.LV one obtains the KRV action [33],

where y = e2<f;.

The field equations obtained by varying Sf( RV can be analyzed in the conformal
gauge. The solution is as follows. 'Ya.{3 is flat. The remaining fields can be described
most elegantly in terms of null-coordinates X± = Z ± T on the flat space-time.
The scalar field f is simply free field propagating on the flat space-time

and the dilaton is
y(X) = ),2 X+ X- -~ JX+ dX+ JX+ dX \)+10+1 - ~ JX- dX- fr dX +0-10-1,

-+ -- =+ =-
where (X ,X ) , (X ,X ) are null-coordinates on Minkowski space.

Thus the solution space of the original CGHS model, namely (gJ.LV, 1) is completely
determined in terms of the matter field f. This space contains black hole space-
times as well. Easiest way to see this is to look at vacuum solutions. Taking

1Vie choose c=G=l. Thus only basic dimension in the theory is Land [M] = L -1 In these
units h becomes a dimensionless number.



1
g/LV = ),2 X+ X- M T/LV-;:

which correspond to black holes of mass M in 2 dimensions. (M=O is the linear
dilaton vacuum). The singularity occurs where y(X) = O. One can obtain more
generic black hole space-times by sending in left-moving matter pulses from past
null infinity. In all these cases locus of singularity is defined by y(X) = 02[19]

The reason for using the rescaled-KRV action rather than the original (and per-
haps more interesting) CGHS action is the following. One can perform a canonical
transformation on the canonical co-ordinates of the KRV phasespace and obtain
a parametrized free field theory on flat background. This will be our starting
point for quantization. The details of this canonical transformation (also known
as Kuchar decomposition [27]) are given in [33], here we only summarize the main
results.3

The KRV spacetime action can be cast into canonical form by using an arbitrary
foliation XQ = XQ(x, t) of space-time by (t=const) space-like hypersurfaces.

2There is an important difference between the CGHS and KRV action at the semi-classical
level. In the path integral quantization, Hawking radiation is encoded in a one loop term obtained
by integrating out the matter field. This term is known as the Polyakov-Liouville term and is
zero if one uses the flat metric 'Y (naturally appearing in the KRV action) to define the measure
for the matter field. It is however non-zero if one uses the physical metric g (which appears in
the CGHS action). Whence it is often claimed that the theory defined by KRV action does not
contain Hawking radiation.[46]

3It is interesting to note that even the phasespace of the CGHS action can be mapped onto
a parametrized scalar field theory on Kruskal spacetime. However the canonical transformation
are singular in a portion of phasespace. [59]



where (y(x), (}(x), f(x)) are the pullback of the dilaton, space-time metric "YJ.l,// and
the scalar field onto the hypersurface :B respectively and 1fy, 1fa, 1ff are their con-
jugate momenta. (N, NI) are the usual lapse and shift functions and H, HI are
Hamiltonian and momentum constraints respectively and are constrained to van-
ish.

At this point it is important to note that by choosing appropriate gauge fixing

conditions (p = 1f¢ = 0), one obtains a reduced phase space co-ordinatized by
(f, 1ff) with a true Hamiltonian given by,

H = 1J dx( 1f1 + (f')2).

One can than quantize this free field theory on a Fock-space and obtain a non-
perturbative quantum theory. However as our primary motivation is to gain in-
sights into structure of LQG, where constraints are solved directly in quantum
theory, we do not solve the constraints classically.

A series of non-local canonical transformations maps the above action into that of
a parametrized free field theory of fiat background [33],

S[X±, IT±, f, 1ff' N, NI
, p, mR] = [ dt J~oo_dx(IT+X+ + IT_X- + 1ff i

-NH - NIHI + J dtp(t)mR(t)) (4.8)

where X±(x) are the embedding variables 4 and correspond to the light-cone coor-

dinates on the Minkowski spacetime, IT± are conjugate momenta and the Hamil-
tonian constraint has been resealed so as to have the same density weight as the
momentum constraint.5 The boundary term J pmR arises due to asymptotic con-
ditions(Note that there are 2 boundaries in the problem, left and right infinity
but only 1 boundary term in the action) on the initial data. mR is the right
mass of spacetime and it is conjugate momentum p is the diflerence between the
parametrized time and proper time at right infinity when the parametrized time at
left infinity is chosen to agree with the proper time.6. This action is the canonical
action for a parametrized massless scalar field theory on fiat spacetime.

4Here X±(x) means a phase-space function evaluated at x.
5Here our notation is j means f is a density of weight l.
6 As the physical metric 9J1.v is asymptotically flat, it has a asymptotic stationary killing field.

proper time is the time measured by clock along the orbit is of this killing field. Parametrized
time is the time defined by asymptotic value of the lapse function. For more details see [32]



The 2 constraints can be combined to form two Virasoro constraints iI±- -
~(iI ± iId· These two Virasoro constraints mutually commute with each other.
Thus the constraint algebra can be written as a direct sum of two Lie algebras
each of which generates Diff(R).

The boundary conditions on various fields are chosen so that the action is func-
tionally differentiable are such that all the fields except the Embedding fields tend
to zero as x ---t ±oo. The boundary conditions on the embedding fields are

4.3 Quantum theory

In this section we quantize the classical theory using the techniques of polymer
quantization. Although the steps involved are quite analogous to the kinematical
quantization of PFT presented in the last chapter; we present all the details here
for the sake of self-containedness. The analysis presented here is also closer in
spirit to the kinematical quantization of LQG as summarized in chapter 2.

Recall that in the last chapter, the embedding variables were quasi-periodic. This
introduced additional subtleties in their quantization which are absent from the
quantization of embedding variables in this model. 7 However the quantization of
mat ter sector is exactly analogous to the one presented in the last chapter (the
only difference being that graphs are embedded in R instead of in [0,27f]) and the
reader familiar with chapter 2 can safely skip the section on matter sector.



The first step toward canonical quantization is a suitable choice of quantum alge-
bra. Let us first describe our choice of quantum algebra for the embedding sector.
Recall that rr± are scalar densities of weight +1 (equivalently I-forms in I-dim.)
and X± are scalars (equivalently densitized vector fields).

Definition 1 : Consider a graph I in the spatial slice E as a collection of finite
number of edges and vertices. (By an edge we mean a closed interval in R.) A
cylindrical function for both the right moving( +) and left-moving( -) embedding
sectors is defined as

Define Abelian *-algebras Cyl± = U/,Ef Cyl~. Let Vec denote the complexi-
fied Lie algebra of vector fields X±(x) which are maps Cyl± ----.Cyl±, (via Poisson
brackets) that satisfy Leibniz rule and annihilate constants.

where (f,j') are in Cyl and (X,X') are vector fields. *-operation is just complex
conjugation. (Conjugation of vector fields is defined by X(x)*j := (X(x)f)*.)
'0/e now define the quantum algebras for the embedding sector. Our derivation
mimics the derivation of quantum algebra for LQG given in [36].
Let us denote the (abstract) pair (}±, X±(x)) by a symbol a±. Consider the *-
algebra of finite linear combinations of finite sequences of the form (at, ..., a;) with
an associative product,



(ka±) - k(a±)
(at + ai) - (at) - (ai)

The resulting algebras (for both ± sectors) are nothing but the free tensor algebras
generated by a±. The algebras ui that we will quantize are defined as the free
tensor algebras defined above modulo the 2-sided ideal generated by elements of
h f ± ± ± ± [± ±] 9t e orm a1 ® a2 - a2 ® a1 - a1, a2 .

So finally the algebra that we choose for quantization is UE = U!i ® Uli·
The group generated by the two Virasoro constraints which is a direct product
of two copies of Diff(R) has a natural representation as a group of outer auto-
morphisms on UE. Abusing the standard nomenclature we refer to this group as
Virasoro group.

The representation of UE should be such that the outer automorphisms of UE

are represented via unitary operators as inner automorphisms. i.e.

The GNS-quantization of the C* sub-algebra generated by CyZ± [36] proceeds via
a positiye linear functional wt which is motivated by the Ashtekar-Lewandowski
positive linear functional of LQG.



The Hilbert spaces H~ are the closure of the finite linear span of the cylindrical
functions f~± w.r.t the inner-product defined by woo
On H~ cylindrical functions act as multiplication operators and one can show that
the embedding variables act as derivations,

(-in) ike fi if x E e
(-in) i(ke~kel) fi(rr±) if x E en el

The Virasoro group acts unitarily on H~ as

(;±( ¢±) fiCrr±) = f(~±)-L/rr±)
(;±(¢±) Ji (;±(¢±) = J(~±)-l'Y

(;±(¢±) X±(x) (;±(¢±) = X±(¢±(x))

The complete embedding Hilbert space is of course given by HE

Now we consider the kinametical quantization of the matter sector. The quanti-
zation given here is unitarily inequivalent to the Bohr quantization of scalar field
but it is the same quantization that is used by Thiemann to quantize the Bosonic
string. For more details we refer the reader to [55].

Once again the choice of quantum algebra will be motivated by the fact that we
want the Virasoro group to act as group of outer automorphisms on this algebra.
Following observations help us make such a choice.

Consider the canonical transformation (7r f,.f) ~ (y±



{ Y±(x) , Y±(x') }
{ Y±(x) , y'f(x') }

=r=( ox,6(x', x) - ox6(x, x') )
o.

IT+X+' + }(7fj + 1')2
IT_X-' }(7fj 1')2

\!\Thence one can see that under the Lie-derivative along the Hamiltonian vector
field of the constraints,

LH±[N±] y±(x)

LH±[N±] Y'f(x)

Thus it is clear that the 2 generators of the Virasoro algebra H± act as generators
of spatial diffeomorphisms on y±. These considerations motivate the following.

Once again let r be the set of all graphs, embedded in 2=consisting of finite
number of edges and vertices. We start by defining momentum network (similar
to spin-network in LQG)sm as a pair (ry, n,) := (lell ... , ZeN)) where Ze are real
numbers. A momentum network operator for both the right and left moving sec-
tors is defined as,

Ml±(S~) := exp(i [ L z; 1y±] )
eEE(,(s;') e

The Weyl relations obeyed by W±(s~J can be easily derived from (4.21) (using

BHe formula [38]),



with a(el,e2) = [K;el]ae2 - [K;e2]ael' Here K;e is the characteristic function of e.
K;e(X) = 1 for x E Int(e), K;e(X) = ~ for x E boundary(e) and 0 otherwise. In
(4.25) notation (Sl + S2) means we decompose all edges el and e2 in their maximal
mutually non-overlapping segments and assign leI + le2 to el n e2, leI to el - ,(S2)
and le2 to e2 - ,(sd respectively.

Now we define the algebra that we will be interested in quantizing. Consider
an associative algebra generated by formal finite linear combinations of formal
sequences of the form (Ws~' ... , Ws:~Jwith associative multiplication given by,

We give this algebra tensor product structure by moding out 2-sided ideals gener-
ated by elements of the form,

(a vV±(s)) - a(W±(s)) a E C
(W±(sd + W±(S2)) - (Hf±(Sl)) + (Hl±(S2))

We refer to this tensor algebra as Cylt. The *-algebra that we will quantize is
Cylt modulo the 2 sided ideal implied by (4.25).We denote this algebra as U~.
Finally the full algebra for both sectors is given by U/VI = ut 0 U"M.

Action of the Virasoro group on this algebra is given by,

where cfi(s) := (cfi-1h) , «,)).
Now just like for the embedding sector we perform a GNS quantization of U/VI
using a Virasoro-invariant positive linear functional,



This functional is clearly motivated by the Ashtekar-Lewandowski functional
used in LQG. It can be easily shown to be virasoro-invariant. The resulting Hilbert
space for both (±) sectors is given by Cauchy completion of u1:t. and the repre-
sentation is,

lIV±(Sl) VV±(S2)(Y±) = W±(sd(Y±)"Vl/±(S2)(Y±) = e'f~[a(sl,s2)]H/±(Sl + S2)(Y±)
(4.31)

As w± is Virasoro invariant, it implies that the Virasoro group acts unitarily
and anomaly-freely on Ht

(;±(¢J±) l¥±(s)(Y±) = W±((¢J±)s)(Y±)
(;±(¢J±) w±(s) (;±-1(¢J±) = VT/±(¢J±s)

The final component of kinematical Hilbert space is the Schroedinger represen-
tation of the boundary data (m , p). As the Virasoro group has trivial action
on the corresponding Heisenberg algebra, we do not need to loop quantize these
asymptotic degrees of freedom. Thus we choose for the boundary Hilbert space
L2(R, dm)ll with,

in w(m) = m w(m)
pw(m) = -ie: w(m)

This finishes the construction of kinematical Hilbert space of the quantum theory.
We rewrite the final Hilbert space as tensor product of 3 Hilbert spaces,

IONote that this Hilbert space is not of the form L2(y±, df.L). It is (the completion of) algebra
itself considered as a vector space with inner product defined by the GNS state.

11More precisely we need to perform quantization on a half-line in order to restrict ourselves
to m 2: 0 configurations. dm is the suitable measure on the half line.



HN/ @ HE @ Hm = (Ht @ HM) @ (Hi; @ HE) @ Hm

(Ht @ Hi;) @ (HM @ HE) @ Hm·

one for the left moving(-) sector (H+), one for the right moving( +) sector (H-) and
one for the asymptotic sector. The Virasoro group acts unitarily on the Hilbert
space as 2 mutually commuting copies of spatial diffeomorphisms.
V-Iedefine the basis for H as follows.
Definition 2 : Consider a graph I with a set of pair of real numbers

((kt, It), ... , (k~, l~)) where in outermost pairs ((kt, It) and (k~, l~))) either ki

or li can be zero but not both. in the interior edges (e2, ... , eN-I) we even allow
both the charges (k,l) to be zero.
We call the pair (r, ((kt, It), ... , (k~, l~))) charge-network (in analogy with spin-
networks in LQG) and denote it by s. The state associated with s will be denoted

by f~.

4.4 Physical Hilbert space

The motivation behind choosing a particular quantum algebra and a peculiar GNS
functional has been the unitary and anomaly-free representation of the Virasoro
group on the Hilbert space. One again vve can use the framework of Refined
algebraic quantization to solve the Virasoro constraints. The ideas behind the
Rigging map were already summarized in section 3.5 of chapter 3. We refer the
reader to that section for details.
Recall that we are seeking for distributions in Wkin which satisfy,

The rigging map is defined as follows. Given a charge network s, define

{[5] = ¢. 51</> E Dif f(R)}.
Then the rigging map (which is tied to the charge-network basis) is given by,



7](fs+ ® 1s--;) := (7]+ ® 7]-)(f/ ® 1s--;) =
7][s]Lq,EDiff[sj(R) < 1/{;+(ep), > ® 7][SI]Lq,IEDiff!Slj(R) < 1S--;{;-(epl) , >

(4.36)
where the sum is over all the diffeomorphisms ep which take a charge-network

s = (ry, (k±, (1)) to a different charge network Sl = (ep-l(ry), (k±, If)) As can

be clearly seen from the definition of rigging map, the solution space is a tensor

product of 2 vector spaces. Inner product on both of them can be defined as,

The physical Hilbert space is thus characterized by diffeomorphism-equivalence

class of charge networks [s] which in 1 dimensions can be classified by the following
data.

1. Number of edges !E(ry) I = N
2.The ordered set ((kt, It), ..., (k~, l~))
Thus we can write a ket in rC;hy as

So far 7][s] are completely arbitrary positive real numbers. As in the previous chap-

ters, by demanding that the Rigging map commute with Quantum observables (to

be defined in the next section), we will derive conditions on these numbers.

Finally as the Virasoro group acts trivially on Hm it remains unchanged under

group averaging, whence complete Hphy = H:hy ® H;hy ® Hm.

At this point we would like to comment on the anomaly-freeness of our repre-

sentation. In the Fock space quantization of the model ([33], [15]), one obtains

a Virasoro anomaly in the constraint algebra due to the Schwinger term in the

commutator of the energy momentum tensor for the matter field. In [33], the

anomaly is removed by modifying the Embedding sector of the theory where as

when one uses BRST methods to quantize the model, anomaly is removed by

adding background charges(enhancing the central charge) and ghost fields(which

define so called bc-eFT). Our choice of Poisson sub-algebra coupled with a unusual

choice of Gl S functional results in a discontinuous(but anomaly free) representa-

tion of the Virasoro group. Here it is important to note that even in Fock space



one can normal order the constraints with respect to so called squeezed vacuum
state [15] such that the central charge is zero. However these states have peculiar
properties like the action of finite gauge transformations is ill-defined on them.12

4.5 Complete set of Dirac observables

By group averaging the Virasoro constraints we have obtained a physical Hilbert

space Hphy = H;hy ® H;hy' Now we encounter (what one always encounters at
some stage in canonical quantization of diffeo-invariant theories) problem of time.
There is apriori no dynamics on the physical Hilbert space. In order to ask the
dynamical questions about for e.g. singularity resulting from the collapse of scalar
field in quantum theory, some notion of dynamics should be defined on Hphy' We
do this by employing ideas due to [16], [25] which goes back to the old idea of
evolving constants of motion by [40].

However first we show how to define a complete set of Dirac observables (Perenni-
als) for our model and how to represent them as well-defined operators on Hphy.
For the classical theory, these perennials have been known for a long time ( [33] ,
[56] ) and are analogous to the DDF observables of bosonic string theory [45].
The basic idea behind constructing Dirac observables in parametrized field the-
ory is fairly simple.(This is a general algorithm for defining Dirac observables in
parametrized field theories and is also known as Kuchar decomposition [27].) Given
the phase-space of the theory co-ordinatized by (X±, rr±, .t, 1ff), one can perform
a canonical transformation to the so-called Heisenberg chart (X±, rr±, f, 1fr) [33]
where rr± are the two Virasoro constraints and (f, 1fr) are the scalar field data on
an initial(fixed) slice. (X±, rr±) and (f, 1fr) form a mutually commuting canoni-
cally conjugate pair whence it is clear that (f, 1ff) are Dirac observables.
Choosing the initial slice as (Xg=(x) = x) we can expand these observables in
terms of an orthonormal set of mode functions eikx,

f( ) 1 100

dk ikx
x = 2ft -00 lkTe ak + c.c.

12contrast this with our representation where infinitesimal gauge transformations are ill-
defined.



It is clear that (ak, atJ are also Dirac 0bservables. It is also clear in the Heisenberg
chart that they form a complete set( describe true degrees of freedom of the the-
ory). \Tow by expressing ak in terms of the original (Schrodinger) canonical chart
we "vill obtain Dirac observables that will be promoted to operators on Hphy'

In order to write ak = ak[X±, rr±, f, 'iT j] one has to appeal to the space-time
picture of a parametrized field theory propagating on fiat background. We just
summarize the main results and refer the reader to [56] for details.
The scalar field f(X) in space-time satisfies,

J dk ik·Xf(X) = TkIe ak + c.c.

ak's can be projected out of the solutions f(X)'s on any hyper-surface using the
Klein-Gordon inner product.

ak = ih h[ e-ik,X(X)nD:Tvaf(x) - f(x)naVae-ik.X(x)] (4.39)

where f(x) = f(X(x)), nQ is a unit normal to the embedding (X+(x). X-(x)), and
in fact vgnaVaf(x) = 1fj(x). Thus given (f(x),'iTj(x)) on a spatial slice, we can
obtain (ak, aZ).

ak = J vg [uZnaVaf - fnavauz]

J[ UZ'iTj - vgf ( -ik- vi~~; + ik+ vi~:; )]
J['iT j + ik- X+' f - ik+ X-' f]

Where we have used n+ = vi~~; ,n- = -vi ~:; and vg
Using k± = ~(k ± Ikl) we can show that,

ak J e-ikX-y- k>O
ak J e-ikX+y+ k<O (4.41)

ao J'iTj



a'k are defined by complex conjugating the ak.
By explicit calculations one can check that these functions are Dirac observables.
Their Poisson algebra is given by,

{ak, ad
{a'k, at}

In this section we show how to promote (ak' a'k) to densely defined operators on
1tphy' This prescription can at best be viewed as an ad-hoc way of trying to pro-
mote regulated expressions from 1tkin to 1tphy' We hope that a better scheme for
doing this emerges in future or that the one given here is more justified.
Given a (strong) Dirac observable (one that strongly commutes with the Virasoro
constraints), ideal way to promote it to an operator on 1tphy is as follows. One first
defines an operator on 1tkin and if this operator is G-equivariant(where G here is
the direct prod uct of 2 copies of diffeomorphisms acting on R), then one can define
an operator on 1tphy simply by dual action. We will show how this procedure fails
here [55]. (This is analogous to a generic problem in LQG of defining connection
dependent operators on 1tdif f')

for k > 0,

In order to represent ak on 1tkin we have to triangulate our spatial slice ~ by
I-simplices (closed intervals). Let T be a triangulation of (J. Given a state Is--=-
for the left moving sector, we choose a triangulation T('y(s-)) adapted to ,(s) i.e.
the triangulation is such that all the vertices of ,(s) are vertices of T('y(s-)) .
Classically we know that,

h6m (y-) - h6:;;/(y-)

16ml



\iVhere Dm E Th(s-)) (It is a closed interval in say Cartesian co-ordinate system),
and (vm.vm+d are beginning and terminating vertices of Dm respectively.
Now we can write ak as the limit of a Riemann sum,

ak.T(-y(s-)) = I:: eikX-(vm)[h6mY- - h6;;,1 (Y-)].
6mET(-y(s-))

ak.T(-y(s)) can be represented on Hkin as follows.

eikX-(Vm) [h6m
6mET(-y(s-))

Similar expression holds for k < 0 with (X-, Y-) replaced by (X+, Y+) and the

resulting operator acting on fs~' Also one can (densely) define at,T(-y(S)) using the
inner product on Hkin.

e-ikX-(Vm) [h6m
6mET(-y(s-))

At finite triangulation (i.e. when number of simplices in T are finite) ak.T(-Y(r)) is
not Virasoro-equivariant,

U(¢-)ak.T(-Y(S-))U-1(¢-) = U(¢-) L6
m

ET(-y(S)) eikX-(Vm) [h6m h6;;:,1] U-1(¢-)

= L6m U(¢-)eikX-(Vm)U-1(¢-) U(¢-)[h6m - h6;;'I]U-1(¢-)

(4.49)

Thus, ak.T(-y(s±)) cannot be promoted to an operator on Hphy simply by dual action.
This problem was also encountered by Thiemann in [55]. As argued by him. if we
try to remove the triangulation by taking the continuum limit then we either get
zero(in weak operator topology) or infinity(in strong operator topology).



There are two ways to get around this problem. First way is due to Thiemann.
There the idea was to use the graph (underlying a state) itself as a triangulation and
define a strongly Virasoro-invariant operator on ]-{kin. Here we propose a different
way.13 Essentially we use a sort of gauge-fixing in the space of (diff) equivalence
class of charge-networks (defined as the triple h, «7), kh))) to define an operator
corresponding to ak on ]-{phy. As will be argued later, Thiemann's proposal can be
considered as a special case of ours.

Given an orbit of diffeomorphism equivalence class of charge-networks, (we supress
the ± indices on charge-networks in rest of this section) [s] = {1;. sl 1; E Dif f'E-}
we fix once and for all a network So ho, «7), kh)) and a triangulation
Tho(so)) adapted to it. Now for any s in the orbit, such that s = 1;. So =
(1;-lho), «7), kh)) we choose the corresponding triangulation Th(s)) such that
aT('y(s)) = U(¢)aTbo(so))U-1(1;). Now let W E ]-{phy. One can show that this family
of operators are cylindrically consistent and define a operator on ]-{kin. The re-
sulting operator on ]-{phy defined by the dual action turns out to be densely defined.

Here as defined earlier 70(so) is the graph which is fixed in the orbit of 7(S), and

Tho(so)) is a fixed triangulation adapted to it. This proposal (of defining akf on
]-{phy) is as we emphasized earlier rather ad-hoc as it involves an arbitrary choice

So and triangulation Tho(so)). It nonetheless results in a "regulated" and densely
defined operator on ]-{phy.

vVe will now argue that Thiemann's proposal of defining a Virasoro-invariant op-
erator directly on ]-{kin ( [55] pg.28 ) can be subsumed by the prescription given
above. (Note that in [55] spatial topology is compact (51), whence we have to
modify the proposal given there accordingly as in our case the spatial manifold is
R.) Let us first note how Thiemann's prescription applies to our perennials.
1. Choose the graph underlying a state itself as a triangulation (by adding fiducial
edges if necessary).

2.Then the operator (in our case ak,'Y(s)) acting on a basis-state fs results in a linear

13The idea of defining regulated operators on Hphy in this way was suggested to us by Madhavan
Varadarajan.



U( ¢) (LeEEh) eikX-(b(e)) [he(Y-) - he-I (Y-)]) is
U(¢) (LeEEh) eik~(k;+k;_l) eina(e,ry)[js' - is"])

'" eiq(k;+k;_l) eina(e,ry)[] I - ] II]~eEEh) ep·s ep·s

'" eik~(k; +k;_l) eina(e,ep-lh)) [] I - ]""Sll]~eEE(ep-lh)) ep·s 'P

where s' = ('y, ((k], l]), ... , (ke, le+l), ... , (kN, IN))) and s" = (r, ((k1, ld, ... , (ke, le-
I), ... , (kN, IN ))). and in the last line we have made use of the fact that (kcp-l(e), lep-l(e))
(k(e),l(e)).
However it is easy to convince oneself that the last line in (4.52) equals,

This shows Virasoro invariance of o'k,ry(s).
The above proof crucially relies on the fact that the triangulation used to regulate
the operator is same as the graph (underlying the state on which the operator
acts) itself. We now show how to achieve this by adding fiducial edges to the
graph (This is where Thiemann's prescription has to be slightly modified as in [55]
spatial topology is that of 51.)

Given any basis-state is we can always write it as a state is E 1ikin such that
1'(5') = eL U ,,(s) U eR, where eL and eR are edges from -00 to initial vertex of
,,( s) and from final vertex of ,,( s) to 00 respectively. (See figure below) In fact we
can define a new basis for 1ikin as follows. Any element of the basis is is defined

to be based on a graph which is of the form 1'(8) = eL U "U eR where" is
a subgraph of 1'(8) such that eL and eR are as defined above. The charge-pairs

(keL/R, leL/R) are allowed to be (0,0) but (kep leI) and (keN' leN) are not allowed
to be (0,0). (Here e] and eN are initial and final edges of" respectively.)14 Thus

14The introduction of new basis is only to show how Thiemann's prescription is consistent with
ours and will not be used in the rest of the paper anywhere.
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the graphs on which the new basis is defined itself becomes triangulation of E and
Thiemann's prescription follows.

How does our definition of 0/ k subsume Thiemann's definition as a special case?
The answer is as follows. Once we choose an So in the orbit of s choose Tho( so)) =
eL U,o U eR (As shown in the figure).

The resulting operator ii~bo(so)) is Virasoro invariant on 'Hkin. Whence 0/ k is the
dual of a linear operator ii~obtained on 'Hkin via cylindrical consistency.

Now we can analyze the conditions under which iiT(-yo(so)) commutes with the rig-
ging map defined above. An analysis similar to the one performed in chapter 3
leads to the following condition on 77[s].

Given any charge network s, we denote by S6m one of the following.

• S6m = {,(S)UDm, (ke1, ... keI_l' kef' ken keI+l' ... , ken)' (lq, ... , lenleI±l, , .. , Ie,,)}
when Dm n eI = Dm with f(eI) = f(Dm)

• S6m = {,(s) UDm, (kq, ... ,kef_l,ker,kenkenkeI+l, .. ·,ken)' (lel, .. ·,le I,lef±
1, len ,." len)} when Dm C Int(eI)

One can show that the Rigging map commutes with iiTbo(so)) iff 77[s] = 77[S6
m

] when
S6m is any of the above. Note that, the exponentiated observables of the previous
chapter only commute with the Rigging map under much stronger conditions on
77[s] and also result in super-selection sectors on 'Hphy' Such sectors do not seem to



Next we study the commutator algebra generated by the Dirac obsen·ables (ak, akJ
in quantum theory. Contrary to the classical Poisson algebra which closes. we show
that in the quantum theory even (ak, al) do not in general commute with each
other. It is plausible that this will have serious implications on causal structure
of the quantum theory and the issue is far from being resolved. Recall that the
physical content of parametrized free field theory (at least classically) is same as
that of ordinary free field theory on fiat space-time. Whence we could have started

wi th the reduced phase space co-ordinatized by (ak, akJ, and its representation on
Fock space will result in a quantum theory in which fields separated by space-like
interval will commute. Also the two point functions will decay exponentially out-
side the light cone. However If the commutator algebra of (ak, akJ gets deformed
in the quantum theory then it is not clear in what sense the causal structure de-
fined by the background space-time is preserved. In fact as we are not aware of a
state (or a class of states) in 'Hphy which correspond to the Fock vacuum. it is not
even known how to define two point functions. (using which we can study causal
relations. )

The commutator

\tVhen k < 0 and l > 0 it is clear that [akl , all] will be trivially zero as ak' acts on
right-moving sector ('H;hy) and al' acts on left-moving sector ('H;hy) whence they
commute.

Let us consider the case when k,l < O. Remaining case ( k,l > 0) can be handled
similarly.

As ak = jY+(x)eikX+(X), we only look at the right-moving(+) sector of'Hphy.

([ak', all]w+ )1;- = ((ak,al' - aklal')W+ )1;-
= (ak,al'w+ )ls+ - (al,ak'w+ )1;-

= (allw+ ) (at,Tho(sollllo) - (ak'w+ )(ar,Tho(so)/s~)



Where it is an arbitrary state in the kinametical Hilbert space of the right moving
sector 7-ctn and as before So is a fixed charge-network in the orbit of s. Let us look
at both the terms separately.

Term 1 - (all w+ ) ( at,Tbo(so)) ita )
Now we employ a specific choice of triangulation Tbo(so)). This choice is moti-
vated by the requirement of simplicity. We will argue shortly that the result(at
least qualitatively) does not depend on this particular choice.

So let us choose Tbo(so)) = 10 U eL U eR- where eL and eR are as shown in the
figure 1.
(Remark: \tVith this choice of the triangulation the continuum limit is approached

only when IEbo)1 tends to 00.)

- h -I]eI

Here v[ = b(e[).

Similarly we choose Tbo(so)) = 10 U eL U eR, which implies,

Second term (aklw+)( a;'Tbo(so)) ita) can be evaluated similarly and we get,

(4.57)
In the above double sum only those edges (e[ eJ) contribute for which ef neJ =1= o.
Consider the following 2 pairs (1= M,J=M+1) and (I+M+1,J=M) for some fixed
M.
The contribution to the commutator coming from the above pairs is,



It is now straight-forward to evaluate the commutators in the (4.58). Whence
given a pair of successive edges which lie within the graph (eI, eI+d (I = 1,...N-l)
their contribution to ([ak' , al']W )(1:) is,

-iW [ t sin(~ni) L~-;.l(heI+eI+l + heI-I+eI+I-1 + heI-1+eI+1 + heI+eI+I-I)
[e-iIX+(VI+Jle-ikj(+(VI) - e-ikX+(vI+Jle-iIX+(VI) Jjs~

= -iw [t sin(~n) Li=-;.l(heI+eI+1 + heI-I+eI+I-1 + heI-1+eI+l + heI+eI+l-1)

[e- ~ilil(keI +kOJ+1)e - ~ilik(kOJ-I +kOJ) _ e - ~ilik(kOJ+keI+l) e - ~ilil(keI -1 +keI )Jj;;

Where we have used X+(vI)f;; = ~n(k~ + k~+Jf::-a and defined keo

Finally there are contributions from the pair (eL, ed and (eN, eR),

(4.60)

o.



([ak' all] '11) (ls+) =

_lw(lsin(ln),\,N [h + +h + +h + +h + ]4 2i 2 01=0 er er+l er-l er+1-l e[-1 er+l er er+1-l

(e -i~lil(ker +ke[+1)e -i~lik(ker -1 +ker) _ e -i~lik(ke[ +keI+l) e-i ~lil(ke[ -I +ke[) ) fs~ )

(4.61)
Thus it is clear that in general the commutator [akl ad (k , 1 < O)does not vanish

on Hphy- The commutator for [akl all] with (k , 1 > 0) is exactly similar with all
operators acting on the left moving sector.
Now we give a heuristic proposal showing existence of (a class of) states on which
the commutator [akl all] vanishes. Ideally one would like to do a semi-classical
analysis of the expectation value of the commutators to see if the non-zero contri-
butions are sub-leading. This is an open question that we have not addressed in
the present paper. In what follows we argue for the existence of states (possibly
in ITP(infinite tensor product extension [43]) of Hphy) on which the commutator
vanishes.
Notice that given aWE Hphy, ([akl al/]W)(I:) is non-zero iff the "embedding-
component" of '11 is group averaged distribution obtained from the "embedding-
component" off:. In other words ifw = 12N+1,2N+2,([-N,ll], ... ,[N,l2N]) >
where the matter-charges (h, ...l2N) are arbitrary but non-zero then ([akl al/]W)(I:)
is non-zero iff IEh)1 = 2N+1 , the embedding charges on the edges of r constitute
the set (-N, ... , ) and the matter charges form a set (l1, ... , If ± 1, lHl ± 1. ... l2N)
for some 1.

([akl al/]W)(I:)

- ~ '11 sin( ~ni) ( L~=o[her+el+l + he[-deI+l-1 + her-1 +er+l + her+er+l-1]

'\'N [ -ili(l+k)n _lili(l-k) _ -ili(l+k)n ~lili(k-l)]f+)0n=-N e e 2 e e 2 So

(4.62)

Now as N -----+ 00 and each eI shrinks to it is vertex VI, and if we assume that to
leading order in -fJ, her -----+ 1 then one gets,



([ak" al']W)U;) =
1 W ( '\' [e-in.(l+k)ne-~in.(l-k) _ e-in.(l+k)ne-~in.(k~l)]1s+o )-4 ~nEZ

= -~W ( <5(l + k)sin(~h(l- k)) 1;:;)

which equals 0 for l,k < O.
Cou pIe of comments are in order :
1. \iVe have not displayed semi-classicality in the sense that we have not shown
that the non-vanishing terms in [ae al'] are sub-leading corrections on a class of
states in 1iphy-

2. The above result does not depend on our choice of triangulation Tho( so)) =

1'0 U eL U eR· Consider any triangulation, T which is adapted to 1'0 in the sense
that the vertex set of 1'0 is a subset of the vertex-set of T. Then it can be shown
that only those edges which intersect the vertices of the graph contribute. Contri-
butions from all other edges cancel out pairwise.
The calculation of [ae an proceeds similarly.

([ak' . al*']W)U;) =

~wsinOhi) (L~~o[heI+eI+1 + heI-I+eI+I-1 + heI-deI+1 + heI+ef+I-I]

(ei~n.l(kel +kef+l) e-i~li.k(keI -I +keJ) _ e-i~n.k(keJ+keI+I) ei~n.l(kel-I +keJ)) 1;:; )

, 1 ni 1
([ae a7 ]w)U:) = 4n sin( 2 )w( <5(l - k)sin("2n(l + k)) 1::-0 )

which is a specific quantum deformation of the classical Poisson bracket.
Our heuristic calculations show that it is plausible that on a specific class of states
with countably infinite edges the commutator algebra generated by (ak', ak*' and
1) closes and is a specific deformation of the Poisson algebra. Such states cannot
lie in 1iphy but in infinite tensor product extension thereof [43].



This suggests: In [55] semi-classical states have been defined by using graphs with
large but finite number of edges. However based on the heuristic calculations dis-
played above we believe that when spatial slice is non-compact, ideal home for
semi-classical states is the ITP extension of ]-{phy'

Vve now turn to the construction of Evolving observables in the polymer quan-
tized CGHS model. But before we begin, let us briefly summarize the analysis
done so far in this chapter. We started with the canonical action of rescaled-
CGHS model defining a parametrized scalar field theory on flat space-time. By
performing a background-independent GNS quantization of a suitable Poisson al-
gebra, we obtained a kinematical Hilbert space ]-{kin which admitted a unitary
representation of the space-time diffeomorphism group. By group averaging the
diffeomorphisms we obtained a physical Hilbert space ]-{phy' Given any solution of
Klein-Gordon equation on flat spacetime, its Fourier coefficients (ak, a*k) on any
arbitrary space-like slice became the Dirac observables of the theory. We defined
corresponding (regulated) operators on ]-{phy and showed that their commutators
are deformed away from their classical Poisson algebra.

Let us very briefly summarize the results obtained in this chapter so far.
Basis JOT ]-{kin'

ConsideT a gmph r with a set of paiT of Teal numbeTs ((kot, lot), ... , (k~, l~))
wheTe in outeTmost paiTs (( kot, lot) and (k~, l~))) either' ki 01' li can be zeTO but
not both. in the inteTioT edges (e2, ... , eN-I) we even allow both the chaTges (k,l) to
be zeTa. We call the paiT (r, ((kot, lot), ... , (k~, l~))) chaTge-netwoTk (in analogy
with spin-netwoTks in LQG) and denote it by s±. The state associated with s is
denoted by f~.
Representation of embedding variables.

(-in) ike f: if x E e
(-in) i(ke~kel) f~(rr±) if x E ene'



ak J e-ikX-y- k>O
ak J e-ikX+y+ k<O

ao J 1[j

aZ are defined by complex conjugating the ak.

Representation of observables on 7-{kin'

ak,T(-Y(S)J!S-=- = L eikX-(vm)[h6m - h6;;:,1] is-=-
6mET(-y(r))

Similar expression holds for k < 0 with (X-, y-) replaced by (X+, y+) and
the resulting operator acting on it.
Also recall that we denoted the physical state obtained by group averaging is~®
is-=- ® ImR) (with s± = {"((s±),k±,l±}) as W = IN,f+,ft-)®IJVf,f-,f-) ®lmR)
is a physical basis state with N(M) being the number of edges, and f±, f± the
embedding and matter charges respectively.

4.6 Classical complete observables

The canonical co-ordinates on the phase-space are (J(x), 7Ij(x), X±(x). IT±(x)).
In "vhat follows, we will treat x E (J as a label set and think of the canonical fields
as functionals on the phase-space labeled by x i.e. i(x) : M ----> R :-Jow choose
the following gauge fixing conditions for the two Virasoro constraints.

where X; : (J ----> NI2 is a prescribed embedding of (J in Minkowski space M2

As {H±(x) , X±(x') } = -X±(xY5(x,x') i- 0, these are good gauge fixing con-
ditions in the sense that they define global gauge slices, i.e. one can draw a gauge
orbi t passing through any point on the constraint surface which intersects this slice
transversally.
Using the functional on phase-space f(x), for a given x, we can no\\' construct a
complete observable i(x)[X:,X;;m] as follows.

Gi\'en a point m = (J, 7Ij. X+, X-) on the constraint surface, and a gauge



orbit 9m passing through it, we ask for the value of f(x) at that point m' on the
gauge orbit which intersect the gauge slice defined by the above gauge fixing con-
ditions. i.e. we define,

j(x)[X:, X;; m] = j(x)[m']

It is immediately clear from the definition that j(x) [X;-, X;; m] is invariant un-

der gauge transformations, and one can show that [16] it has a (weakly) unique
extension off the constraint surface.

A complete observable 7l"f(x)[X;-,X;;m] corresponding to 7l"f can be defined
analogously.
There is an alternate characterization of complete observables (as given in sec-
tion 2.2.4 of chapter 2) in parametrized field theory which immediately yield the
explicit expression for these quantities.15 Given a maximal classical solution to

oj(X) = 0 which lies in the gauge orbit 9 passing through (f, 7l"f, X±), what is
the Cauchy data corresponding to it on the slice given by Xi:: J ----7 1112. The
answer is immediate,

j(x)[X:,X;;m] _1_ J+OO dk [a (m)eik'Xp(x) + a* (m)e-ik.Xp(X)].;2ir -00 Ikl k k

i [ roo dk X-' () ( ) ik·Xp +.;2ir Jo p x ak m e c.c.

- J~oodk X:' (x)ak(m)eik'Xp - c.c.]

Thus given a free scalar field on flat space-time, its Cauchy data on a prescribed
slice gives complete observables of the corresponding parametrized field theory.
As shown in [16], Poisson bracket of two complete observables is a complete ob-
servable. Thus the space of all complete observables form an Poisson *-algebra.

15The complete observables also satisfy a functional differential equation see [16J which in our
case can be explicitly solved to get the same expression for the complete observables that are
given here.



One can define non-trivial gauge transformations aT on the space of observables
which generalizes Rovelli's idea of evolving constant of motion to arbitrary number
of constraints. [[16], [40]] The basic idea is to see how j(x)[X:, X;; m] changes
when one changes the gauge-fixing slices X± = X; under gauge transformations.
In our case these transformations simply amount to changing the parameters
X;(x) additively.

""here T±(X) E [-00,00]. Here T±(X) = N±(x) where N±(x) are linear combina-
tions of Lapse and Shift functions. Whence,

aT{j(x)[X:, X;; m], j(x')[X:, X;; m]} =
{aTj(x)[X:, X;; m]' aTj(x')[X:, X;; m]}

So far it is not clear in what sense these transformations define temporal evo-
lution (dynamics) of the complete observables. The easiest way to see this is by
using an alternate characterization of the above automorphisms [26].

Given a 1 parameter group of time-like difI"eomorphisms e(t) : NI ---+ 1\11 of
the auxiliary Minkowski background, one can associate to it a 1 parameter group
of symplectic diffeomorphisms [[25]] e(t) which are defined as follows.

Given a point m = (¢, '1r</>' X+, X-) in the constraint surface fc define
e(t): fc ---+ fc as, e(t)(¢, '1r</>' X+, X-) = (¢, '1r</>' X+ 0 e(t), X- 0 e(t)). These
symplectomorphisms shift the gauge-fixing slice X = Xp to X 0 e(t) = Xp. This
can also be understood as changing the prescribed embedding Xp to some new
embedding e( -t)Xp 16. Time evolution is the evolution of complete observables

under above change.
Consider for example two parameter family of timelike killing fields V



X+ ----7 X+ + A+t
X- ----7 X- + A-t (4.75)

The corresponding change in the gauge fixing slice X Xp is the same as

that would be obtained by transforming Xi: as,

X+ ----7 X+
P P

X- ----7 X-
P P

As V is timelike, IA+ + A-I < IA+ - A-I. Comparing (4.76) with (4.72)
we can rewrite (4.72) with T+ = A+t and T- = A-t. V is timelike implies,

Thus change in complete observables under (4.72) which satisfy the inequalities
(4.77) define a class of time evolution for the system.

Whence by combining the complete set of Dirac observables obtained in the
previous section with the notion of gauge-fixed slices in constraint surface we have
defined dynamical observables of our theory.

Note that this method of defining time evolution is rather generic in parametrized
field theory, as explained beautifully in ([26],[23],[24]).

4.7 Canonical quantization of complete observables

Now we consider quantization of the complete observables f(x)[X:, X;] and
7Tj(X) [X:' X;] on Hphy' As Xi: (x) are mere c-numbers, the canonical quantization
of these observables follow directly from the quantization of the Dirac observables

(ak, ak*) on Hphy[34],

(f(x)[xt, X;]can \lJ)(f~ ® fs-=-)
'T'( 1 J+OO dk[ ~ ikX (x) ~t -ik.Xp(x)] f+ teA f-)
'±' v'27T -00 Tki ak,T(-y(s))e . p + ak,T(-y(s))e s+ '<Y. S-



where W E 'Hphy'

Thus the action of i(x)[X:,X;]can on W is obtained via its dual action on
a charge-network state is~ ® is-=-o The dual action is in turn defined in terms of
A d At
ak.Th(s)) an ak,Th(s))'

Note that although it is not possible to define an operator corresponding to j(x)
on 'Hkin, we have been able to define an operator for the corresponding complete

observable on 'Hphy. However as we will see in 4.8.2 depending on the value of the

par'ameters (Xi (x)), this operator is not well defined on all charge n~orks.

One can similarly define an operator valued distribution for 1ff(x) [X:. X;; m]can
on 'Hphy.

As before let W be a physical state given above.

Recall that in order to define ak , 0,1 on 'Hphy we have to fix a pair of charge-
networks (st, so) in the orbit of (s+, s-) and a pair of triangulations

(Tho(st)), Tho(so)))'

-( 1ff(x) [X:' X;]can w )U; ® is-=-)

w [_2_
0

(00 dkeikx;; (X;; (x) - X;; (Vm)) a +
2..fi Jo 16m I k.Tho(so ))

i !COO dk -ikX- (X;; (x) - X;; (Vrn)) t-- ~e P ------a
2..fi 0 [6ml k.Tho(s6))

+_2_' (00 dke-ikX: (X:(x) - xt(vrn)) at ]
2..fi Jo [6ml k,Tho(so))

(4.79)

6m is a simplex which begins at Vm and terminates at X. The derivative of
prescribed embedding at x has been replaced by finite differenceY Here we haye

chosen Tho(st)) and Tho(so)) such that 6m is a simplex in both the triangula-

l7It isn't essential to do this here as Xp are classical functions but it will be required when we
define new quantum observables in the next section.



tions and Vm, x are its initial and final vertices respectively.
The Heisenberg dynamics is defined by promoting automorphism of the algebra

of complete observables (4.73) to an automorphism on the algebra of corresponding
operators, but this automorphism is not generated by any unitary operator. Thus
the quantum dynamics is not unitary.
Note: There is a potential problem with the above definitions of complete observ-
abies in quantum theory. In classical theory although X;(x) are just parameters
they are also the value of prescribed embeddings at spatial point x (recall the
gauge fixing conditions X± = X; required to define the complete observables).
However in quantum theory there seems to be no relation between X; (x) and the
embedding charges which label a given state. In view of this, we propose an al------- ------
ternative definition of j(x)[X:,X;J, 1fj(x)[X:,X;J in the next section and show
how it leads to several interesting consequences in the quantum theory.

In this section we continue to work with the canonically quantized observables.

We now apply the formalism we have developed so far to quantize the complete
observable corresponding to the dilaton field on 7-{phy' This operator is the starting
point for the discussions about physical quantum geometry.

Using the above expressions for the complete observables corresponding to the
scalar field and its conjugate momenta, we can obtain an observable corresponding
to the dilaton as follows.
As shown in [33] the canonical transformation relating the dilaton to the embed-
ding chart on the phase space is given by,

y(x) = ,\2X+(x)X-(x) - J~dxIX-' (Xl) J~ldX2IL(X2)

+ J~oodxIX+' (xd J~~ dX2II+(x2) + J~ooX+(x)II+(x) +



y(X) = ).2 X+(X)X-(X) - X-(X) J~ dxlTL(xd + X+(X) J~oodxIIT+(XI) +
J~ dxIX-(xdIT-(Xl) + J~oodxlX+(xdIT+(Xl) +
J~ooX+(X)IT+(X) + ~R.

(4.81)
One can go to the constraint surface by solving for embedding momenta in terms
of the scalar field and its conjugate momenta and by substituting the complete ob-
servable corresponding to the scalar field content, vve obtain the observable corre-
sponding to the dilaton. In the spacetime picture one can think of dilaton y(X), as
a function of the spacetime scalar field, and the complete observable y(x)[X:. X;]
(As mentioned above x E ~ should be thought of as a label set.) corresponds to
the pull back of y(X) on a prescribed spatial slice when the free scalar field f(X) is
pulled back on it.
\iVhence.

y(x)[X:, X;]
xt(x) JX d

- -4- -00 Xl

fX d xt(Xl) Y ( )[X+ X-]2 ffiR+ Joo Xl x+(x) + Xl p' p + T'
pi 1

We would like to promote y(x)[X:, X;] to an operator on 7-{phy' This is the op-
erator which contains the information about physical quantum geometry and thus
is the most important ingredient in asking non-perturbative questions regarding
fate of black-hole singularities, quantum fluctuation of event horizons and even

semi-classical issues like Hawking radiation.
Once again it is important to note that as our previous complete observables.----y(x) [X +. X -] is defined via its dual action on 7-{kin' The derivation is gi\-en in

p P can
appendix A.. Here we quote the final result.18



[ y(x)[xt, X;Jcan 'lJ ] ( 1~® Is----® 1m) ) =

lIt ( [),2X:(X)X;(x) - X;(X) LTxbt) A - X:(x) LTxbo) B

+ L61llETxbt) X:(vm)B + L6mETxbo) X; (vm)A + 1~R ] ( 1~®

(4.83)

where'lJ = IN, N+1, (kiJi), ...,(kt,lt) >+ ®IM, A1+1, (k1,c;),···,(kAT,c;y) >-
®!m > is a physical state and 1~® Is----® 1m) is an arbitrary charge network in

Hkin·

We note the following.

l.Txht) is the sub-complex of Tht) from -00 to x.

2.A and B are defined in 4.106, 4.107 respectively. Their expressions are not very

enlightening however and it suffices to note that their origin lies in various com-

posite operators of the form c£kc£kt.

Thus we have a "regulated" expression y(x) [X:' X; Jean on Hphy. Several ad-

hoc choices are involved, notably fixing a pair of graphs ht, /0) in the orbit of

( +./-) and a pair of triangulations (Tht), Tho)) corresponding to them.

In classical theory the singularities in physical space times usually occur when

y(X) = O. Hence to understand the singularity structure of quantum geome----try, the expectation value of y(x) [Xp+, Xp- J in a given physical state will playacan
central role. The expectation value of the dilaton is also a primary object in ob-

taining the semi-classical geometry from the non-perturbative quantum theoryI39].

Thus in order to ask the physical questions using the framework setup in this pa----per, evaluating the ('lJly(x) [Xp+, Xp-] 1'lJ)phy is of crucial importance. Hence wecan _

now calculate the expectation value of y( x) [Xp+, Xp- J for a generic basis-state 'lJ.can
It is possible( and of course essential) to extend our results to obtain expectation

value in an arbitrary state in Hphy, however the computations are quite compli-

cated and are summarized in appendix-B. The result is:---
For an arbitrary basis-state 'lJ in Hphy, ('lJly(x)[X:, X;Jcanl'lJ)phY equals,



(1lIIy(x)[X:. X; lean I llI)phy =

[
>'2X+( )X-( )+xp(x),\, A X;;(x),\, B

p x p x ~ 0D.rnETx m - ~ 0D.rnETx m

-1~7r LD.rnETx X; (vm)Am - 1~7rLTx X: (vm)Bm + ~R ]

Where Tx is sub-complex from -00 to x and Tx is the sub-complex from x to 00.

Am and Bm are evaluated in appendix-B.

(4.86)

Note that we have obtained a closed-form expression for the expectation value of
the dilaton in any basis-state Ill. Referring to appendix-B one notes that this cal-
culation has been performed for a specific choice of charge-networks (J~, f--) and

So So
a specific choice of triangulation. The final result clearly depends on this choice,
whence this calculation is regularization dependent.
However note that the expectation value will diverge whenever the value of pre-

scribed embedding at any vertex of the triangulation equals the value of embedding
charge at any(not necessarily same) vertex. We will address this issue in detail
below. Here we merely note that although the complete observable corresponding
to dilaton is an operator on the spatial slice, but is not well defined on the entire



Hilbert space. It might seem surprising that the matter charges (ll, ... IN!) don't
figure in these expressions (as they should!), but this is due to the fact that we
have evaluated the expectation value in a basis-state. If W was an arbitrary state-----
(linear combination of basis-states) (wly(x)[X:,X;Jcanlw)PhY will depend on the
matter charges as well.



In this section we define a set of observables in the quantum theory which we
believe to be more appropriate counter-parts of the classical complete observables
than the canonically quantized operators of the previous section.
The basic idea is the following. Recall that the value of j(x)[X:,Xp-] on a gauge
orbit gm passing through point m in the constraint surface is the value of the scalar

field f(x) at m' where the gauge fixed slice X± = X; intersects gm' Roughly
speaking we try to mimic this construction directly at quantum level and obtain
a new class of operators well defined on ({phy'

The gauge fixing condition (at a point x in the spatial slice) translates on ({kin as,

As the quantum counter-part of gauge orbit in the classical theory is the orbit of
charge network states in the quantum theory (represented by a state in ({phy, we-----
define j(x)[X:,X;] as,

j(x)[X:. X;; m] W := j(x)[X:, X;; m]can W
if X:(x) E (ki, ... , kt) and X;(x) E (k1,...,kNI),

where in the above,
W = IN. N + 1, f+, f+)® 1M, M + 1, f-, f-) ®!mR) is a physical basis-state.
This means the following. If the quantum gauge fixing condition (4.87) intersects-----
an orbit of equivalence class of st~s, then the action of j(x)[X:, X;; m] on the
orbit-w equals the action j(x)[X:,X;;m] . And those quantum orbits whichcan _

do not intersect the gauge fixing slice (4.87) are in the kernel of j(x)[X:,X;;m].
Its action can be extended to an arbitrary state in ({phy by linearity.

We would like to emphasize that we are defining a two parameter (X: (x), X; (x))
family of observables in quantum theory which admit the same relational inter-
pretation as j(.T) [X:' X;; m] of classical theory. Eventually one has to do semi-
classical analysis to verify if these operators approximate the classical complete
observables in the appropriate limit. However the main motivation behind defin-



ing these observables has been to tie the prescribed embeddings X:(x), X;(x) to
embedding charges (kt) in some suitable manner.

1. Discrete evolution:
Given a state lIt, let Xi(x) "evolve" from -00 to 00 in accordance with 4.76. Then

!(x)[X:, X;] lIt i= 0 only when X: takes the discrete values ( kt, ..., kt ) and
X; takes the discrete values ( k1,...,kN ). In this sense the underlying dynamics
in the quantum theory is discrete. It is important to note that we do not have a
unitary dynamics so far. Automorphism of the algebra of complete observables is
promoted to a automorphism on the algebra of corresponding operators, but this
automorphism is not generated by any unitary operator.
2. Now consider an arbitrary (possibly non-local in x!) function of two prescribed

embeddings X~, X;, say F(X~(x),X;(x')). This is trivially an observable, and
naively one would think that it should be promoted to multiple of identity op-
erator on Hphy' However a careful look at our formulation of quantum complete
observable implies that this is not quite true. The corresponding quantum observ-
able on Hphy is,

if the 4 parameters (X~'+(x), X;+(x/), X~'-(x), X;-(x/)) lie in the set of the em-
bedding charges of lIt, and

---
(F(X~(x), Xi(x')) 1It)(Js)

otherwise.
Whence consider the classical function sin[k· (X(x) - X(x/))] whose pull-back on
prescribed slice is given by sin[k· (Xp(x) - Xp(x/))]. The corresponding quantum
observable is given by,

---
(sin[k· (Xp(x) - Xp(x/))] 1It)(!-y)



if X±(x) E (kt, ..., k~) and X±(x') E (kt, ..., k~) and zero otherwise.
This observation ensures that if as mentioned earlier, there exist class of semi-
classical states on which the commutator algebra generated by (ak. aD mirrors the
classical Poisson algebra (to leading order in Ii) then on those states one can easily

show that the commutator between j(x)[xt,X;J ,j(x')[xt,X;J vanishes (again
to leading order in Ii) as Xp(x) and Xp(x') are space-like separated.

----
Definition of7fj(x)[X:,X;J

As the classical observable 7fj(x)[Xt,X;;m] in (4.71) involves X;(x) as well as
Xi' (x), the operator valued distribution 7fj(x)[Xt, X;] can be defined as follows.
As before. let '-If be a physical state given above. Then,

----
7f j(x)[X:, X; J W := 7f f(x) [X:' X; JeanW (4.92)

if (xt(x), xt(vm)) E (kj, kj+l) , 1 ::; I::; Nand (X;(x), X;(vm)) E (kJ, kJ+l)' 1 ::;
J ::; lVI.
and,

otherwise.

As in (4.79), we have chosen Tht) and The;) such that D.m is a simplex in both
the triangulations and Vm, x are its initial and final vertices respectively.



---
Using the quantum observables l(x)[X:, X;] , 7fj(X) [X:' X;]~e can define a
new complete observable corresponding to the dilaton ( y(x)[X~X;] ) in the
quantum theory. This operator will obviously differ from y(x)[X:, X;] and___ can

if as argued earlier l(x)[X:, X;] , 7fj(X) [X:' X;] are the appropriate dynamical
observables of the quantum theory then information about quantum geometry will---
be encoded in y(x)[X:, X;]. _

Using defining equations (4.88) , (4.92) for I(~X:,X;] and 7fj(x)[X:,X;] we
can s~w that the formal expression for y(x)[X:, X;] remains same as that for
y (x ) [Xp+ , Xp- ] as given in (4.11 0) .can

[ y(X) [Xp+,Xp-] I w] ( Ii ® I;;® 1m) ) =ca.n 8

W ( [A2 X:(X)X;(X) - X;(X) LTxCYri) A - X:(x) LTxCYo) B

+ L6mETxCYri) X: (vm):B + L6mETxCYo) X;(vm)A + ~ ] ( l::t 0 I:;;) )
(4.94)

iNhere as before, Wis a basis-state in Hphy. W = IN, N+1, (kt, ln, ..., (kt, It) >+
® I JII!. JI/f + 1, (k1JI), ..., (kNJN) >- ®/m > and 18~ 018-- ® 1m) is a charge-
network state in Hkin.

However the action of this operator on physical states will be quite different---
compared to y(X) [Xp+, Xp-] . Let us consider the action of each term in (4.94)can
separately.

1. As argued in the paragraph preceding (4.91) A2X:(X)X;(x) equals a multi-
ple of identity operator on states for which X:(x) E (kt, ..., kt),
X;(x) E (k1, ... , kNJ) and equals zero otherwise.

2(a). Firstly the operator X;(x) LTxCYri) A will have a non-zero action iff X;(x) E

(k1, ... , kNJ)·
2(b). Secondly, in the summation L6

m
only those simplices 6m contribute for



(X:(vm+d, x:(Vm)) E [(kt+l' kj) ]

for some I E (1, ... , N - 1).

(X;(Vm+l), X;(Vm)) E [(kr+1, kJ) ]

for some I E (1, ... , NI - 1).

One immediate consequence of this criterion is that, as we require Xi' (x) i= 0, only
a finite number of simplices will contribute to the outermost summation L6

m
'

3. Similarly X:(x) LTx(-Yo) B will have a non-zero action iff X:(x) E (ki, ..., k~).
Also, Only those simplices in the Riemann sum LTxbo) which satisfy condition
given in 2-b above.

Similar remarks apply to fourth and fifth terms.
Let us summarize.
Action of y(x)[X:, X;] on 7-i.phy can be defined by its dual action as,

[ y(x)[xt, X;]' Iw ) ] ( f~ ® 1s~® 1m) ) =

( wi ( [>,2X:(X)X;(x) - X;(x) LTxbt) A - X:(x) LTxbo) B

+ L6mETxbt) X:(vm)B + L6mETxbo) X; (vm)A + ~R ] ( 1;t ® 1;0) )

(4.95)
1. The first 3 terms in (4.95) are non-zero iff (X:(x) E (ki, ..., k~) and (X;(x) E

(k1,...,kM)·
2. There are various Riemann sums involved in each term involving A, B. In the
summations over Tx in (4.95), only those simplices contribute for which
(X;(vm), Xi(vm+d) lie in a certain finite set as explained above.

Now we address the issue of divergences mentioned in passing above. The expec------
tation value of y(x)[X:,X-,P]can given in (4.114) involve principal values. These



values will diverge when X;(vm) equals the value of the embedding charge at some
vertex of the triangulation.

Let us first try to understand how these divergences arise in the quantum the-
ory.
We consider the action of a (canonically quantized) complete observable corre-

sponding to scalar field momentum Jrj on a charge network i~ @ is-=- E Hkin .

from (4.79) we can show that,

(4.96)

Without doing further computation one can see that the integrals diverge when
± ±

X;(x) - krn_~+krn. These are precisely the divergences that have crept in the

expectation value of the dilaton. A geometric interpretation helps us in locating
these divergences in the background(fiat) spacetime.
Given an orbit ([s+], [s-]), we have associated to it, a pair (st, so) and a (pair

of) triangulations (Th6), Tho))·(Note that these are the ad-hoc inputs in the
quantum theory). Whence a state '±r+@'±r- E Hphy, defines a lattice L in the back-
ground spacetime. This lattice is defined by the value of the embedding charges(
contained in (st, so)) at the vertices of the triangulations. More in detail, let

s~ = (1't, (kt, ..., k~) ). And let, T(6) = Tho) = eL U 1'6 U eR· (This is the
choice of triangulation we have made throughout this paper). Here, as always eL

is a simplex from -00 to the left-most vertex of 1'6 and eR is a simplex from the
right-most vertex of 1'6 to 00. The embedding charges at the vertices of T( 1'6) are
(0 k~ k~+kt- k~_1+k~ k~ 0) Th h d fi I·· 1 b 1· d'2' -2-' ..., 2 '2'· ese c arges e ne a attice m t le ac <groun

. . k± +k±
spacetIme (spanned by the null-Imes X± = 1-12 1 for some 1.)

Whenever the spacetime point governed by the prescribed embeddings
~

(X:(x),X;(x)) "sits" on L, the above operator Jrj(x)[X:,X;J diverges. Tote



+ +k- k-
1 2
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Figure 4.2: A choice of triangulation

Lattice L in M d f d be me y charges at vertices of TCY)

Figure 4.3: Understanding divergence



---that the r~on we are looking at lIj(X) [X;-, X;] (which is a distribution in x) and
not i (x) [X;-, X;] is because the scalar field operators also suffer from infra- red
diYergence as they involve t in the integrand. The divergences showing up in the
dilaton operator are purely due to the UV limit of the k-integral, and so in or-
der to only focus on the UV-divergences we have considered lIj(x) instead Off(X).19

:\ote that the new observables defined in the previous section do not suffer from
these divergences. This is because the triangulation we have chosen is such that
the embedding charges at its vertex are either zero or kf+2kf+1 for some edge

e!. Now if we assume that the embedding charges (k"t, ... , k~) are monotoni-
cally increasing (which is a reasonable restriction on the state-space as classically

k±+k±
X±' > 0.) then kJ =f: [ [+I\;/I,J. Whence 1 ± ± can never di\'erge

2 ± k[ +k[+1
Xp (Vrn)- 2

for X; E (k"t, ... , k~). In fact the requirement that the new observables be well
defined in the quantum theory leads to a unique choice of triangulation. If the
triangulation was any finer (then the one we have chosen in this paper) then con-

tributions from certain simplices will be of the form X!(vrn\ _ kT which will diYerge
eyen for the new observables. However this resolution is far from satisfactory as
the (more conventional) canonically quantized observables still diverge and more
importantly we do not understand the source of this divergence.

The reason why the divergences occur can be understood by the following heuristic

argument. Consider a (spacetime) scalar g(X).(For the sake of simplicity we work
in one dimension. i.e. X co-ordinatizes one dimensional fiat spacetime) (We assume
g(X) to be in the Schwarz space so that its Fourier transform is well defined.)

Let is E 'Hkin such that X is = kois. Then in the quantum theory one has.

g(ko) = J dke-ikko L g(ke)eikke
keE(kl, ...,kN)

19The issue of how to tackle the IR divergence in the observable corresponding to the scalar
field remains open and we do not discuss it in this paper.



Let us understand how we arrived at the above equation. As argued above, a state
is will pick out a lattice(in one dimension this is a set of discrete points) .c in the
spacetime. Integrating with respect to X now means one only picks contributions
from those (discrete) spacetime points X, which belong to this lattice. (i.e. those
X's which belong to the set of embedding charges (k1, ... , kN) of s). Thus the
measure in the X-space now is a pure-point measure. Now if we assume that the
measure in the k-space to be the ordinary Lebesgue measure, then,

Thus it is obvious that the measure m the k-space cannot be the Lebesgue
measure but should be such that21,

Such a measure does exist, and is induced from the Haar measure on the Bohr
compactification of the real line [2]!

JOO . 1 jT .
dke-tk(ko-ke) = lim _ dke-tk(ko-ke)

T~co2T
-00 -T

Somewhat surprisingly this is the measure on the quantum configuration space of
a point particle when one quantizes it via polymer quantization.22

The upshot of this argument is that in the polymer quantized parametrized field
theory, a given state defines a lattice in the background spacetime and any operator
which is defined via some spacetime tensor(i.e. it is a functional of the embedding

2°In two dimensions the integration over k splits into integration over k+ which ranges over
[0,00] and integration oyer k- which ranges over [0,-00] whence the distribution one gets is not
the Dirac-distribution but the principal value distribution.

210r should atleast be such that J dkeiak is a function and not a distribution. In which case
one would get equality between R.B.S. and L.B.S of (4.98) up to certain error terms.

22In our case, the measure will be slightly different. As all the integrals are from ° to ±oo, we
use Jt~o dke-ik(ko-ke) = ±limT-->oo~J:T dke-ik(ko-kc).



variables.) will only "see" this lattice in the quantum theory (when acting on
that state). As a result of this the measure dX, and hence dk are different then
the Lebesgue measures associated with the continuum spacetime. This argument
is heuristic but it leads us to believe that the appropriate measure to use in the
k-space must be difFerent then the measure used in classical theory. (One plausible
candidate is the one defined in (4.101)) ---
Let us see how this measure cures the divergence problem of 1Tf(X) [X:' X;]. Using
(4.96) one gets,

---
One can immediately see that not only is 1Tf(X) [X:' X;]can a well defined op-
erator (valued distribution) but also, only those simplices 6m contribute to the
sum over triangulation for which X;(x) = k;'_~+k~. This is qualitatively similar

to the definition of quantum complete observables defined in the previous section.
Vie believe that this result in itself makes the new measure interesting and the
idea( of changing the measure due to the discrete nature of embeddings) worth in-
vestigating further.
Now let us see what happens when we apply the above idea to the dilaton operator.---
The action of y(x) [Xp+, Xp-] on a physical state \lJ is given by 4.110. For thecan



[ y(x)[xt, X;]can'W ] (f~ 0 fs~ 0 1m) ) =

W ( [>-2 X:(X)X;(X) - X;(X) LTxbo) B - X:(X) LTxbt) A

+ L6mETx(-Yo) X:(vm)A + L6mETxbt) X; (vm)B + ~R ] ( f~ 0 f::O) )
(4.103)

where
W = 1N. N+1. (ki,li), ...,(kt,lt) >+01 lVI, Nf+1. (k1,z-;),····(kN·lN) >-
0!m > is a physical state and f~ 0fs~ 01m) is an arbitrary charge network in Hkin·

The operators B , A which earlier were principal valued distributions on the em-
bedding sector are now Kronecker delta-functions. A straightforward computation
reveals,

B = 1~1r L6mETxbo) (X;(Vm+l) - X;(vm))

[ L6 5 k- +k- [h6JY-) - h6 -1 (Y-)] X
n Xp(Vm). n-; n n

+L65 k- +k-[h6JY-) - h6-1(Y-)] x
n Xp(Vm). n-; n n

L6 5 C +k- [h6{(Y-) - h6-1(Y-)] ]
I Xp (Vm), 1-1

2
I I



which vanishes! One can similarly show that A is identically zero as well. Thus
the simplest choice of k-measure which we were led to, due the discrete nature
of embeddings (and hence the background spacetime), and which removed the
divergence seems to completely remove the matter degrees of freedom from the
quantum theory and reduces the theory to a pure dilaton gravity model. This is
clearly incorrect. We thus conclude that the issue of divergence is far from being

resolved. However we do believe that the resolution should come via a new measure
in the Fourier space. We plan to investigate this further in near future.

The primary aim of this chapter is to obtain a quantum theory of dilaton gravity by
combining the ideas of parametrized field theory and polymer (loop) quantization.
We started with,a parametrized field theory which is canonically equivalent to the
KRV action. By choosing appropriate quantum algebras for the embedding and
matter sectors, we obtained a Hilbert space which carries a unitary (and anomaly-
free) representation of the space-time diffeomorphism group. Using the so called
group averaging method, we were able to get rid of the quantum gauge degrees
of freedom and obtain the physical spectrum of the theory in a rather straightfor-
ward manner. The parametrized field theory framework gave us a complete set of
Dirac observables which we could promote to well defined operators on 7-iphy' This
required rather ad hoc choices of triangulations and the final operators are de-
pendent on choice of triangulation. This ad-hocness permeates all the consequent
constructions and calculations performed later in the chapter. However this is the
construction which is traditionally followed in loop quantized field theories (atleast
at the kinematical level). We have used it here and shown how even at finite tri-
angulation one can promote the kinematical operators to physical observables. We
encourage the reader to contrast quantum observables defined in this chapter to
those defined in chapter 3 and the differing effects they have on underlying graphs
and matter charges.
Unlike the Fock space which by definition is an irreducible representation of the
Poisson algebra of mode oscillators (ak , aiJ, 7-iphy carries a representation of a
deformed algebra. It is a faithful deformation of the classical algebra in the sense



that all the corrections are O(h). It is an interesting open question to hunt for the
full quantum algebra and try to find physical interpretation of its elements which
do not have a well defined classical limit (the commutator [ak, ad defines one such
element) .
Time evolution could be defined in polymer quantized CGHS model by using the
complete (dynamical) observables and seeing how they change under symplecto-
morphisms which arise from certain diffeomorphisms of the background spacetime.
We gaye two inequivalent definitions of complete observables in quantum theory
and the corresponding Heisenberg dynamics. The first definition was through the
canonical quantization of classical observables. However as argued in the chapter.
we believe that canonically quantizing the complete observables does not preserve
its physical interpretation. This led us to the second definition which captures
the relational nature of classical complete observables in a more transparent man-
ner than the canonically quantized counterparts. Adapting the second definition
to define dynamical observables in the quantum theory implies discrete temporal
evolution. Finally using either definition of quantum complete observables, we
defined physical dilaton operator which is well defined without smearing on 7-{phy'

For certain values of the prescribed embeddings the canonically quantized com-
plete observables were ill defined. We argued that the source of the divergence
was in the incorrect measure in the Fourier space. A possible candidate for the
correct measure is induced from the Haar measure on Bohr compactification of the
real line. Although this measure did remove the divergence from the observable
corresponding to the scalar field-momentum, it reduced the dilaton operator to
that of pure gravity without matter. It is however tempting to speculate that a
suitable variant of this measure will cure the divergence problem without killing
all the physical (matter) degrees of freedom.
We also calculated its expectation value on an arbitrary basis-state in 7-{phy (for a
specific choice of triangulation). This, we believe, gives us a framework to address
the semi-classical and non-perturbative issues arising in the CGHS model.



Appendix

A. Definition of the physical dilaton operator

In this appendix we canonically quantize the complete observable corresponding to
the dilaton. We start with an arbitrary basis state II' and derive the (dual) action

~
of y(x)[Xt, X;]can on it. The operator can be extended to an arbitrary physical
state by linearity.

Let II' = IN, N+1, (ki, In, ..., (kt, rt) >+ ® I M, Nf+1, (k1, In, ..., (kN, IN) >-
®Im >. \iVithout loss of generality, let us assume that > M. Also let f~ ® f;- ®

1m > be any state in ({kin' In the orbit of (s+, s-) fix a pair (S6, so), with

the corresponding graphs bt, 10)' Using our scheme of how to define opera-
~

tor corresponding to complete observable in quantum theory y(x)[Xt,X;]' is as
follows.23

~
[y(x)[Xt, Xp]'can II' ](fs~ ® fs-- ® 1m » :=

[
p,2X+(x)X-(x)1 - X; (X) IX dx L(x)[¥,xp]2 xt(x) JX dx Y+(x)[xt,Xp]2

P P 4 00 Xp (x) 4 -00 xt' (x)

+ rx diE X;}x) Y_(x)[X+ X-]2 + rx dx xt(x) y (x)[X+ X-]2 + mR ]w]
Joo x; (x) P' P Joo X; (x) + P' P A

(f~ ® f-- ® 1m >)
So So

(4.105)
''''here the first term is a multiple of identity operator. Note that as x is a fixed
point in the spatial slice, X;(x) are just parameters.

Remaining terms can be calculated using expressions for f(x)[X:, X;L
7fj(x)[X:,X;] on ({kin'



Term 2 ------
Second term in y(x)[X:,X;]' is given by,

w( X;}x) Ie: dE y-(i)t[X:, X;J2 f~ ® fs-- )
= W 1~7f L6rnETxho) (X;(Vm+l) - X; (vm))

[10 dkeikX;(vrn) L6n e-ikX-(Vn)[h6JY-) - h6;:;:1(y-)] x

roo dkeikX;(vrn)" e-ikX-(vtl [h (Y-) - h (Y-)]Jo L.J6l 6l 6[1

- 1000 dke-ikX;(vrn) L6n eikX-(Vn)[h6JY-) - h6;:;:1(Y-)] x

roo dkeikX;(vm)" e-ikX-(VI)[h (Y-) - h (Y-)]Jo L.J61 6l 6[1

- It) dkeikX;(vm) L6n e-ikX-(vn) [h6n (Y-) - h6;:;:1(Y-)] x

1000 dke-ikX;(vm) L6n e-ikX-(vn) [h6n (Y-) - h6;:;:1(Y-)]

+Iooodke-ikX;(Vm) L6neikX-(vn)[h6n(Y-) - h6;:;:1(Y-)]X

10 dke-ikX;(vrn) L6
1

eikX-(VI) [h6l (Y-) - h6[1 (Y-)] ] Ust ® fs~)

(4.106)
where The;) is a fixed triangulation adapted to 'Yo. Here adapted means in the
image of the graph all the vertices of the graph are vertices of triangulation and
"outside" the graph T( 'Yo) is arbitrary( However we will make a more specific choice
of triangulation when calculating expectation value. It is the same choice that we
made when evaluating the commutators between Dirac observables in [34].) As
it should be clear from the classical expression for y(x)[X:, X;], Txho) is the
triangulation of the spatial manifold from x to 00.

In the above expression we will denote everything inside [..] as B.



Term 3

Here we denote the triangulation adapted to ,t T( ,t) and the sub-complex rang-
ing from -00 to x as Tx(,t).

[ X;;}x) J~oo dx Y+(:f)~rXpj2 (x)'1lJ ](J~ 0 Is-- )
P

1~7f W L6mETxbo) (X:(Vm+l) - X:(vm))

[ fo dkeikX;;(vm) """""' e-ikX+(Vn)[h (Y+) - hA,,-1 (Y+)] X
-00 L...-6nETbt) 6n '-"

fo dkeikX;;(vm) """""' + e-ikX+(vil [h (Y+) - h -I (Y+)]
-00 L...-61ETbo ) 61 61

-fO dkeikX;;(vm) """""' + e-ikX+(Vn)[hA (Y+) - h -I (Y+)] X
-00 L...-6nETbo ) '-"n 6n

J~oo dkeikX;;(vm) L6
1

e-ikX+(Vl) [h61 (Y+) - h
6i

l (Y+)]

- J~oo dke-ikX;;(vm) L6n eikX+(vn) [h6,,(Y+) - h6;;:1 (Y+)] x

J~oo dkeikX;;(vm) L6
1

e-ikX+(vil[h6JY+) - h
6i

l (Y+)]

+ J~oo dke-ikX;;(vm) L6n e-ikX+(vn) [h6n (Y+) - h6~1 (Y+)]

J~oo dke-ikX;;(vm) L61 e-ikX+(Vl) [h61 (Y+) - h6-I(Y+)]] 1~ 0 1---
1 So So

(4.107)
We denote everything inside LTxbt) asA.



Term 4
This term can be directly derived from term-2.

W(l (X dx X-(x)Y-(X)t~t,x;F (]+ ]) )
4 Joo p x; (x) s+ ® s~

Term 5
Finally using term-3 we see that,

---
\t\lhence the final expression for the dilaton operator y(x) [X:' X; 1 at a given point

[y(x)[x:, X; l'can 'II] (j~ ® ]s~ ® 1m)) =

'II ( [,\2X:(x)X;(x) - X;(x) LTxho) B

+ L6mE7',;ho) x:(vm)A + L6mETx(6) X; (vm)B + ~R ] ( ]~ ® 1:;0) )
(4.110)
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B. Expectation value of the physical dilaton opera-

tor

Let fs~ ® fs-- ® 1m > be such that r;( f:r ® fs-- ® 1m > ) w.
\iVhence,

------ ------ t
('111 y(x)[Xp+,Xp-r 1'11) = w( y(x)[Xp+,Xp-] f~ ® f-- ).

can So So

We make the following choice for triangulation.

Given an orbit of diffeomorphism-equivalence class of charge-networks (s+ , s-) we

choose (so, so) such that rho) C rht) and over the range rho), the subgraph of

It coincides with 10' (see figure below) We choose the triangulations adapted

to It , 10 as Tht) = Tho) = It U eL U eR where eL and eR are arbitrary

I-simplices from -00 to initial (left-most) vertex of It and from final(right-most)

vertex of It to 00 respectively.

Now let us see how each term simplifies.

Term 2

It is easy to show that with the above choice of ht , (0) , (Tht) , Tho)) term-2





- - t
( '111 Xii(x) JX dxY+(x)[X;ii,X;]2'lw) = ( '11 [Xii(x) JX dxY+(x)[X!,x;]2] (f+ 0 f--)

4 -00 Xii (x) 4 -00 Xii (x) sci So

= ( W[X~~) L6
m
E7\ [(X:(Vm) - X: (Vm)

where we have set k(j = kh+1 = O.
Rest of the terms can be written in a similar fashion and we can write the final
expression for < y(x)[X:, X;] > as follows,

----
(wIY(x)[X:, X;]canIW)Phy =

'11 [ )..2X:(X)X;(x) + X~SX) L6
m

ET
x

Bm - X~~) L6
m

ET
x

Am

'--16
1 L6 ET Xp-(vm)Bm - 161 Lr Xp+(vm)Am + ~R] (f~ 0 f-- 01m »

7f m x 7T x So So

(4.114)
Recall that Tx is sub complex from -00 to x and Tx is the sub complex from x to



One can further simplify this expression as follows. Using,





Conclusions and open issues

In this thesis we presented a case for two dimensional Parametrized field theories
being perfect toy models for studying various aspects of loop quantization. Let us
very briefly summarise the main results and insights obtained in this work.

• To quantize two dimensional PFTs, we constructed the representation of
the analogs of the Holonomy-flux algebra of LQG which moreo,'er admit a
unitary action of the (canonical) Lie group generated by constraints.

• Even though the classical PFTs are defined on a background spacetime, In
the quantum theory this continuum was "replaced II by a discrete structure
consisting of countable number of points. This, we believe provides a glimpse
into how a quantum spacetime "constructed 11 out of a putati,'e physical state

of LQG might be discrete,

• In chapter 3, we showed that although the (countable) set of Dirac obserT-
abIes cannot be quantized in a regularization independent manner, an (un-
countable) set of certain functionals of these observables could be represented
without any ambiguities on the Polymer Hilbert space.

• Out of the uncountable number of Dirac observables at most of a countable
number would admit a classical limit.

• As shovvn in chapter 4, the problem of time can be explicitly soh'ed in two di-
mensional PFTs using beautiful ideas of Rovelli, Hajicek, Dittrich. However



naive quantization of these observables lead to many technical and concep-
tual problems in the quantum theory and we suggested a new definition of
Relational observables in quantum theory which however would reduce to
the classical definitions in the limit of a weave state.

Ironically and interestingly more questions (even in the context of these simple
models) have been raised by our work than those that have been answered.

• The matter charges (denoted by le when associated to an edge e) have no
physical interpretation so far.

• For PFT on R 2, we do not know how to impose the classical asymptotic
conditions for the embedding data in quantum theory. Generically in LQG,
one way to define Hilbert spaces on spatially non-compact slices is via Infinite
tensor product extension. However it is not clear to us, how if at all even
this construction would ensure that the embedding eigenstates which lie in
the ITP would obey the non-trivial asymptotic conditions.

• Apart from certain no-go results obtained in chapter 3, the Issues related
to semi-classical limit of polymer quantized PFTs remain completely open.
More specifically, we havent constructed any semi-classical state with respect
to either the triangulated observables of chapter 4, or the exponentiated ob-
servables of chapter 3. It is also completely unclear how a continuum back-
ground spacetime can emerge from the discrete structure associated to any
state in quantum theory. Note that whereas the classical embedding fields
are smooth, the quantum embedding data are piecewise constant. Whence
it is not clear, how if at all the smooth foliation of classical theory can be
recovered from a discrete foliation.

Temporarily forgetting the open issues mentioned above, what implication does
this work have on quantization of four dimensional canonical gravity? As it is
well known pure canonical gravity' cannot be cast into parametrized form [57].
However constraints of gravity coupled to an incoherent dust [12] can certainly
be written in a form of a Parametrized field theory where the embedding fields



describe an embedding of a three dimensional manifold into what is known as a dust
spacetime. Although the form of the constraints is rather different (most notably,
the Hamiltonian constraint doesnot depend on the embedding variables at all), it
is tempting to hope that some of the qualitative features of the two dimensional
polymer quantized PFTs might carryover into their higher dimensional avatars.
We end on this optimistic note.
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