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Ahbstract

Loop Quantum Gravity(LOG) is an attempt to construct a mathematically rigor-
ous, non-perturbative, background independent formulation of quantum General
LRelativitv, In this thesis we present some studies on the Loop Cluantization of
costological models, We look at the the effect of loop gquantization of FRW cos-
mology in the context of effective equations and WKDB approximation in the Arst
part. of the thesis. In the second part of the thesis we undertake the initial steps
in construeting a Loop quantized theory of a midisuperspace model known as the
Gowdy Maodel on 77,

One of the qualitatively distinet and robust implication of Loop Quantum Grav-
ity is the underlying discrete structure. In the cosmological context elucidated by
Loop Quantum Cosmology (LQC), this is manilested by the Hamiltonian con-
straint equation being a (partial) difference equation. One obtains an effective
Hamiltonian framework by making the continuum approximation followed by a
WHKB approximation. In the large volume regime, these lead to the usual classical
Einstein equation which is independent of both the Barbero-lmmirzi parameier
7 as well as . In this work we present an alternative derivation of the effective
Hamiltonian by-passing the continunm approximation step. As a result, the effoe-
tive Hamiltonian is obtained as a close form expression in 5. These corrections
to the Einstein equation can be thought of as corrections due to the underlying
disvrete (spatial) geometry with 4 controlling the size of these corrections. These
corrections imply a bound on the rate of change of the volume of the isotropic uni-
verse. In most cases these are perturbative in nature but for cosmological constant
dominated isotropic universe, there are signilicant deviations. Subsequent changes
in the formalism of LOC are also discussed.

The vacuum Gowdy models provide much studied, non-trivial midi-superspace
examples. Various technical issues within Loop Quantum Gravity ean be studied
it these models as well as one can hope to understand singularities and their reso-
lution in the loop quantization. The first step in this program is to reformulate the
moilel in real connection variables in a manner that 15 amenable to loop quantiza-
tion. We begin with the unpelarized mode!l and carry out a consistent reduction
to the polarized case. Carrying out complete gauge fixing, the known solutions are
recovered,

Then we introduce the kinematical Hilbert space on which the appropriate
holonomies and fluxes are well represented. The quantization of the volume opera-
tor and the Gauss constraint is straightforward, Imposition of the Gauss constraint
can be done on the kinematical Hilbert space to select subspace of pauge invari-
ant states. We carry out the guantization of the Hamiltonian constraint making
specific cholces. Alternative choices are brieflv discussed. It appears that to get
spatial correlations reflected in the Hamiltonian constraint, one may have to adopt
the so called ‘effective operator viewpoint’.
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Introduction

General Relativity(GR) and Quantum Mechanics are two of the most successfil
thearies of modern physics. While General Relativity has been spectacularly s
cessful in explaining the universe af large scales, Quantum Mechanics has leen
equally successful for physics on small seales. However, one of the biggest unful-
filled challenges in phvsics remains to incorporate the two theories in the same
ramework. Ordinary Quantum Field Theories which have managed to describe
the three other fundamental forees (Electromagnetic, Weak and Strong) have failed
for General Relativity becanse it is not perturbatively renormalizable. In the ab-
sence of experimental evidence a number of candidates for a quantum theory of
gravity have emerged (String Theory and Loop Quantum Gravity(LOG) being the
two most developed ones), each with their relative strengths and weaknesses.

String Theory treats the gravitational field on the same footing as the other
fundamental interactions and tries to ineorporate all four into one fundanental
mnified theory. Gravitational interaction is songht to be understood as exchiange
of gravitons in analogy with other interactions. The spacetime metric is split into
two parts. a background metrie and a fluctuating one, Usually one chooses the
hackground to be a fat Minkowskian metric Tuwe Then gy, = 1, + Ghy,, where
fiye 18 the dynamical variable with Newton's constant G acting as the coupling
constant, The field A, is then quantized on the e background and the per-
turbative machinery of QFT is applied to the Einstein-Hilbert action, Since the
background enters manifestly, the background independence is to he obtained by
summing over all possible backgrounds. Since the notion of gravitons is a pertur-
bative one, this approach is perturbative in nature with non-perturbative offecis
sought subsequently.

String Theory |1, 2, 3, 4] is the only known consistent perturbative approach to
quantum gravity. In this theory the point particles are replaced by one-dimensional
extended objects which sweep out two-dimensional world sheets embedded in a D-
dimensional manifold which represents the spacetime of the physical world. Matter
and the mediators of the various interactions are all thought of as excitation modes
of the strings.

The other approach is a relativist’s approach viewing gravitational interaciions




as manifestations of curvature of a dynamical spacetime. In this view the metric
plavs the dual role of & mathematical object that defines spacetime geometry and
encodes the physical gravitational feld as well. Hence background independence
lies at the heart of this approach. If we are gong to quantize the gravitational lield
e, the metrie itself, it would make sense if the scheme does not explicitly depend
on some background metric. Minkowski metric is not an externally prescribed
eternal background structure but is only one’possible example. 1u this formalism
the ordinary Quantum Field Theory approach is no longer possible because 1t is
defined when the background metrie is fixed and hence it cannot handle variations
of the background metric, New mathematical techniques have to be invented to
go beyvond the framework of perturbative quantum field theories.

LOG is an attempt to construet a mathematically rigorons, non-perturbative,
background independent formulation of quantum General Relativity. General Rel-
ativity 1s reformulated in terms of the Sen-Ashtekar-Barbero-Immirizi connection
variables and its dynamics is treated in a canonical framework. In a canonical
framework, spacetime is viewed as an evolution of a 3 dimensional geometry, The
4 dimensional diffeomorphisms of general relativity are thus manifested as spatial
diffeomorphisms of a 3 dimensional slice together with the Hamiltonian constraint
generating time evolution,

In this thesis we will concentrate LQG and present some results of Loop Quan-
tization in the cosmological context. In the rest of this chapter we will give a very
brief introduction to the kinematic framework of Loop Quantum Gravity and the
reasons for testing it in cosmological settings and then .

1.1 LQG: A Brief Introduction

The review presented in this section is hased on |5, 6].

1.1.1 Classical Framework

The starting point in classical theory i1s the Hamiltonian formulation of GR writ-
ten in terms ol the Ashtekar variables, the densitized triad E7 and the Ashtekar
connection A}, (In this thesis we adopt the notation: @ = 1.2, 3 referring to the
spatial indices while ¢ = 1,2, 3 refer to the internal SU(2)} indices.) At each point
on a spatial hypersurface ¥ introduce a triad ! such that it is related to the spatial
metrie as

lab = €630 (1.1}

The densitized triad is given by:

Fe 1 rifac 3.k =)
v af EiikELE (L }



Let [, be the derivative operator compatible with el . This implies

Dnralf; =0=Tyn= _L”?.- [U”rf.f. S (1.3)

b e ]

where [y is called the spin connection and 1%, is the Christofel symbol associated
with the metric g The spin conneetion can be written as gk = [ €, where
€5 15 the totally antisymmetric tensor. From the definition of the densitized triad
it also clear that J.’J,rE;-‘ = (). Also deline

KL= KayBs (1.4)

where f,, is the extrinsic curvature of . Using this together with the spin con-
nection [ we can define a new connection A} given by

A =Tt 4 qK (1.5)

where + is a nonzero real number called Barbero-Immirizi parameter. [t can be
shown that E¢ and A} form a conjugate pair Le.

{E,”[';L']. E?{H?} = B = {4“1}4&{.';}} (1.6)
(EMx), Alw)} = mdidid(z.y) (1.7)

where & = 87G.
The phase space of GR can he described in terms of these variables. The
advantage of performing the canonical transformations to the Ashtekar variables

is that gravity can now be formulated as a gauge theory.
In terms of these variables the constraints can be written as:

CGanss: Gi:=DE' =0 (1.8)
Diffcomorphism : V1= FipB! — (1 +7°)K,Gi = 0 (1.9)

e EYEY o o R
Hamiltonian : = v"ﬁ el FE —2(1 + 47 KK | =0 (1.10)
cheet s

where F!, is the curvature of the connection AL The Gauss constraint generating
gauge transformations form a subalgebra in the the algebra of constraints anel in
fact forms an ideal of the constraint algebra. As a result the quotient algebra of
connections modulo gauge transformations A /G can be completed to a €7 algebra,

1.1.2 Quantum Framework

In LQG the elementary classical configuration variables are taken to be SU(2)
holonomies of the smooth connections along one dimensional edges while the mo-



mentum variables are obtained by smearing the densitized triad with a su(2) valued
function on a two-surface, These are then promoted to operators in the quan-
tum theory. The elassical configuration space 15 the space of connections modulo
gauge transformations A/G, The quantum configuration space 15 a completion of
it JJ_; The quantum configuration space as well as the kinematic Hilbert space
o e i f-l Q dig) can be construeted in two ways.

I lhr:. first way, we use the fact that the confignration variables give rise 1o an
Abelian € algebra HA called the holonomy algebra whose spectrum is A/G. Then
a diffeomorphism invariant positive linear functional is introdueed and the GNS
construction is used to construct the Hilbert space of states and a representation of
HA on it The electric flux operators are introduced using the standard quantum
mechanical idea that the momentum operator E should be represented by —ihid /64,

The second method is more explicit and we shall explain it in a bit more detail.
(iven a smooth conneetion A and an oriented path e [0, 1] € B — X we deline a
holonomy he[Al € SU(2) as

helAl = Pexp — /,4 (1.11)

where P denotes a path ordered exponential.

A generalized connection A, is an assignment of 4 £ SU(2) to any analytic path
e C Y. A graph s a collection of analytic paths ¢ © ¥ meeting at most at their
endpoints.  We will consider only closed graphs. The point at which two edges
meet is called a verter. Let n be the number of edges in . A function eylindrical
with respect to - is given by:

iCAY = o E A s B (1.12)

where f. is a smooth funection on SU(2)" such that ¢ (A) is gauge invariant. The
set of states cylindrical with respect to v are de:mmd by Cyly. For each v € E
construet Cvl,, The set of of all functions cylindrical with respect to some 4 € ©
is denoted by Cyl and is given by

Cyl=| Jcyl, (1.13)

Given a lunction . (A) € Cyl the measure ug, on Cyvl. known as the Ashtekar-
Lewandowski measure is defined by

/-_rl,ar..,{g.r?[ﬂ]}::/ Hdh Fo(Aeyy o A ) v (A) {1.14)
Jayg Ssuem oo

where dfi is the normalized Haar measure on SU(2).




Using this measure we can define an inner product on Cyl:
W) = (f (Ao e ) ooy (Begsio )
= [ TL R A A (A An) (139
JEU

et Ty

T

where T'.. is dny graph such that 4 C T and " € T

The Hilbert space is the Cauchy completion of Cvl along with the [imit points
of 1 the Ashtekar-Lewandowski norm.

To construet a basis on this Hilbert space we first consider a spin network which
is constructed as follows: given a graph +, each edge e is coloured by a non trivial
irreducible representation m; and to each vertex v associate a contraction matrix
¢, which contracts the matrices 7;, for all edges incident, at the vertex in a gauge
invariant way. This is denoted as T, :=T_ - . where J=1{j.)and &= {e,}. States
evlindrical with respect to spin networks are called spin network states. They
provide an orthogonal basis on Hy,,.

This completes the construetion of the kinematic Hilbert space M., in LOG,
Note that the Gauss constraints generating gauge transformations have already
heen solved. The remaining constraints have to expressed in terms of the hasic
variables om Mp,,,. To do that certain classical identities are used to rewrite them
i a form suitable for Loop quantization. As an explicit example, we will discnss
the Hamiltonian constraint. Let us first define:

s The total volume of £ is given hy

Vi VB = [d”.xvﬁdm[qii (1.16)

JE

o The integrated trace of the densitized extrinsie curvature of X is
K o= d*z/det(g) K g™ = [ ' o8 16 Db {1.17)
o w5

Using these definitions we can invoke two key identities.

I o E'h ¢ 1 . -‘{I. '
u fSﬁ'ﬂI:dF't( ]I} Qrutm ._'J:Eul'.u {_:.‘1'(} fl.lﬂll

Vv det(q) R OE; K
K, = ;E“ = {% h’} (1.18)

In the full theory it 15 convenient to break up the Hamiltonian constraing as

H=H*—-2(1++*H" (1.20)




Using the above identities the Buclidean Hamiltorian consiraint H® can he written
" ERE?
(e
" e T 9 . _
HE = —— (e Fy) = —eteur (Fu{AL, V) (1.21)
videt £ K

while the Lorentzian part H' can be written as:

b= — ul'.lr - ! i kT .
A fdmg(‘rl"‘rﬂ*l) tr ({ AL KHAL KHALVY) (L.

)
]

Note that this allows us to remove the non polynomiality coming from the explicit
factor of 1 /det E in the expression of H, These expressions will havee to be written in
terms of basic variables. These are then to be promoted to quantum operators and
the Poisson brackets {.,.} are replaced by [...]/(ih). general aperators constructed
in this fashion will obviously have operator ordering ambiguities.

The first step in constructing the quantum operator is regularization. \We shall
indicate some of the steps for H¥. The spatial manifold ¥ is triangulated into
clementary tetrahedra A each of whose edges are analytic., Let us denote this
triangulation by T. For each tetrahedron choose one of its vertices and call it
v(A). Let s;(A),i = 1,2,3 be the three edges of A meeting at v(A). Let oy (A) =
si(A)oay o sjl:ﬂ.]l‘l be the loop based at v(A) where ny; is the other edge of A
connecting the other endpoints of s;, 5;,. Then

— 2 N
HEIN] 1= ==Nue u(h,_,_jm,|,r.1]nmm[_4]{ AL VE)  (123)
HEIN Z HE[N] (1.24)

where N, = N(v{A)). This expression tends to the correct classical limit as all the
A shrink to their base points ¢(A) and the number of tetrahedra tend to infinity,
for any choice T Similarly

, § i
BNl =~ M b (Poitar A {5 Ly (AL B } B[] { g 1), 16}
h.ﬁ[;':al.:'i"ql {h's_:{a]ixj'lh ]i--}) {1.2::)]
HE[N] =) HAIN] (1,26)
AT

These can be promoted to well defined quantum operators as there exists op-
erators corresponding to V' oand K densely defined on Hy,,,. Given a cylindrical
function 4. Let V{v) be the set of vertices ofy. Then the action of the volume



operator is given by:

: i, It $ASAYS
Vo, o= _1 s 13 Y elsn s sk)en XpXIXEL v, 8

where z{sy, sy, 85 ) = sgnldet{s;(0), 5,(0), 5,(0)}). Given gy = A, (A}, X; = Xlg
are the right invariant vector fields on SU(2). The operator for & can Le cor
structed from noting that

K={H"().V} (1

where the lapse funetion is set = 1.

This concliudes the main idea of the construction of the Hi;, and the operato
im LOQG. We will not go into details of concrete implementations of these ideasi
the full theory but will state some important results. Concrete implementationd
the case of midisuperspace models will be seen later in this thesis.

s Eigen values of all operators constructed from Huxes of triads {eg. lengt
area, volume) are discrete.

e The gauge orbits of diffeomorphisms are not compact, Hence diffeamorphisy
invariant states are not contained in My, but are distributions on it. Th
belong to the the algebraic dual of Cyl, the space of linear functionals fro
Cvl to C denoted by Cyl®.

e Lot Vo] be the operator representing the action of the diffeomorphism ¢
Dif (X)), Its action on a spin network state is given hy

Vgl Ty = Ts.s (1.2

where g5 1= [r_ﬁl v =g e) (g i3 }.,a_—lfr_;. = ilme :",.)¢_-.|-I:-| = r',-] [

_"'_-!..
i =

This is not weakly continuous and therefore there is no well defined ope
ator on Hy., corresponding to infinitesimal diffeomorphisms. Sinee we s
interested only in diffeo invariant states we can overcome the problem
imposing the requirement

Vilg) w=y (1.3

for physical states 1» € Cyl*.

While the kinematical framework 1s well developed, there are many open issu
which are difficult to handle in the full theory. For example, there are no know
Dirac observables and no explicit realization of semiclassical states or recoverin
solutions of Einsteins equations in the limit where quantum corrections are sm




Also the question of anomaly in the quantum constraint algebra is not answered.
One way of checking the validity of this quantization scheme would be to apply it
to simpler models where explicit ealenlations can be performed.

1.2 Why Mini and Midi Superspace Models

In this thesis we have attempted to look at aspects of cosmological models which
are loop quantized, This amounts to symmetry reduction before quantization
rather than quantization before symmetry reduction. It s well known, these need
not comunnite and the predictions of loop quantization of these svimetry reduced
models may not be same as the results obtained from full LOG when these sym-
metry conditions are imposed.

However owing to the extremely complicated nature of general relativity, study
of any theory of Quantum Gravity is extremely difficult. One approach usually
taken is to apply the formal quantization prescriptions to syinmetry-reduced space-
time geometries.  These serve as good toy models where guestions difficult to
address in the full theory can be explored. Sinee explicit caleulations can be per-
tormed, one can hope for a comparison with known classical results. In this way
one avoids the technical difhiculties of the tll theory while petting a Havour of the
different features of loop quantization as opposed to Schroedinger Quantization of
these models.

Let us emphasise once more that (symmetry) reduction after quantization and
quantization alter reduction may not lead to equivalent quantum theories, While
one wonld like to view the reduced quantum theory as a ‘sector’” of the the [ull
theorv. how to do so is not yet elear. In the absence of such an identilication.
predictions of the reduced model may not necessarily be implications of the full
theory. Nevertheless these toy models can be used as tests of how a particular
guantization scheme works in some specific cases. Lessons learnt from these tov
models can provide hints for tackling some of problems of the full theory,

Minisuperspace models refer to the models where all but a finite number of
degrees of freedom in Einstein’s equations are frozen. What we get is essentially a
quantum mechanical model. In this case the classical observables and solutions are
well known and gquantum theory can be compared with classieal resulis. Standard
FRW cosmology is a good example of that. Its loop quantization (LQC) provides
strikingly different results from standard Wheeler DeWitt quantization. One study
of LOYC in its semiclassical approximation is presented in Chapter 2.

The next level of complication is to study models where alter symmetry reduc-
tion some degrees of freedom are gaunge fixed but a number of field theory degrees
of freedom are present. These correspond to field theories and are known as midis-
uperspace models. This is where complications from the field theoretic aspect of
the theory are expected to show up and questions like the closure of the constraint



algebra can be addressed. In Chapter 3 and 4 we present the initial steps in loop

quantizing one of the simplest midisuperspace models, the polarized Gowdy maodel
3

en 1.




=

Loop Quantum Cosmology-Discreteness
Corrections to the Effective Hamiltonian

In Loop Quantum Cosmology(LOQC), the quantization techniques of LOG are ap-
plied to a simple minisuperspace model, the Friedmann-Robertson-Walker{ FRW)
cosinology.  This is not the cosmological sector of LOQG but the application of
Loop gquantization to a classically symmetry reduced model. As this mode] has
ounly one quantum mechanical degree of freedom we can perform explicit caleula-
tions. Sinee the Gauss and the Diffeomorphism constraints are identically zero,
we can avold a lot of technical diffienlties and explicitly determine the solutions
of the Hamiltonian constraint. We can look for semiclassical states and how they
behave close to singularity, The disereteness corrections coming from loop gquanti-
zation significantly change the quantum behaviour from the traditional Wheeler-
De-Witt(WdW) quantization. All these, however, come with significant caveats
which will be mentioned later in the chapter,

In this chapter we will first give a briel description of the ¢lissical FRW metric in
metrie variables in section (2.1) and then look at the same in connection variables in
section(2.2) in some detail to set the stage for quantization. Then in sections (2.3)
and (2.4) we will give a brief introduetion to the original formulation of LOQC known
as the Ashtekar-Bojowald-Lewandowski{ ABL) quantization. In section (2.5) we
shall derive an effective Hamiltonian for LOOC and look at its equations of motion
in (2.6). In section (2.7) we will look at some explicit examples of solutions of
the modified equations. Subsequent to that work the phyvsical Hilbert space has
been constructed in LOC and new "improved” formulation has been developed by
Ashtekar-Pawlowski-Singh{ APS) which is different from the ABL formulation. We
will briefly review the recent advances made in the section (2.8).

2.1 FRW Cosmology in metric variables

Based on observations on the cosmological scale, we can assume that the universe
15 homogeneous and tsotropic on large scales. A spacetime is said to he spatially

10



homogeneous if there exists a one-parameter family of spacelike hvpersurfaces 5
foliating the spacetime such that for each # and for any points p, g € ¥, there exists
an isometry of the spacetime metric g,y which takes p tog. A spacetime is said to bg
spatially wsotropie at each point if there exists a congruence of timelike curves with

tangent vectors 1" filling the spacetime satislying the [ollowing property: given
any point p € X, and any two unit spatial tangent vectors &7, ¢ perpendicular to
u®, there exists an isometry of the spacetime metric gq, which leaves p and u” at
p hixed but rotates s§ into s§. The metrie for such a spacetime is the FRW metrig
and is given by [7]:
I i 2
da* = —N{H)%dt* + *(t) %Iui + r*dé® + 5 sin® Bd e (2.1

where 1 = (1. 1, —1 corresponds to the flat, 3-sphere and hyperboloid universe re-
spectively, The lapse function N(f) does not play a dynamical role and a known
as the seale factor is the only degree of freedom left after the imposition of ho-
mogeneity and isotropy. Note that the shift vector is zero and we do not have to
worry about the Diffeo constraint.

This is a minisuperspace model with only one gravitational degree of freedoms
The field equations are ordinary differential equations given by (setting lapse N =

1l

3 (G_—J,r'a) = 8mp (Friedmann equation) (2.2)°

1= |

3 (E> = —dwip+ 3F) (Raychaudhuri equation)  (2.3)
u

where the matter stress-energy tensor is taken to be of the perfect Huid form:
Ton = gty = A I:Huh + gty ) ':2-&}

which is the most general form consistent with homogeneity and isotropy. 1t can
be easily seen that universes of this tvpe have an initial singularity at @ = 0 known
as the big bang singularity. In the next section we will look at FRW cosmology in
connection variables,

2.2 FRW Cosmology in connection variables

LOC is the application of loop quantization techniques to the FRW cosmology, The
first step is to express the theory in termns of the Ashtekar variables, In this section
we will review ABL treatment of the classical variables which are subsequently loop
guantized in LQC [8].



For simplicity, in this section we will consider the spatially flat case fe. X s
topologically B, endowed with the action of the Euclidean group. This action
can he nsed to introdoce on X a Aducial fat metrie gy, Let " be the constant
orthonormal triad and " the co-triad compatible with "g,,. We shall fix the local
diffeomorphism and gange freedom. As a result we can choose basis such that the
Ashtekar connection and the densitized triad can be written in the form

A = ¢ ”“'-’j Ty [_r?]

- i (1 \

E = py% "t (2.6)

where & and p earry all the non-trivial information contained in A and / and 7,
are related to the Pauli matrices o by the relation 2 = 7,

Sinee 28 non-compact and the helds are spatially homogeneous, the integrals
defined in the full theory diverge. Hence the spatial homogeneity requires us to
hypass this problem by fixing a ecell V and restrict all integrations to this cell, For
simplicity we shall assume that V is cubical with respect to “gu. Let Vi, be the
volume of V with respect to "gu. Then the symplectic structure is given by

- .
0=""deAdp (2.7)
iy
while the fundamental Poisson bracket is
T K7 . 3
1 = 2.8
(5} = - 28)

Note that there is a freedom of rescaling the fidueial metric by a constant "g. 0

2

= Y., However ¢ p are not invariant under this rescaling. They transform as
¢ k¢ and p — k%5, Since rescaling of the fiducial metrie should not change
the physies it is convenient to use the elementary cell V to eliminate this additional
freedom. We deline new variables

1
e Al p=Vyp (2.9)

wirs

Then the symplectic structure and the Poisson bracket in terms of these new
variables become

3V oy
2 - de Adp and {e.p} = "‘—1' (2.10)

7

8

These variables are independent of the choice of the fiducial metric "y, and the
elementary cell V. These variables describe the classical phase space of LQC,
Since the Gauss and the Diffeomorphism constraint are already satisfied, the only
remaining constraint is the the Hamiltonian constraint. Again setting the lapse as

12



1 and with some matter Hamiltonian H,,., it can be written as:

6 ,
—T:f"'ﬁgllii p| +6Hy, =0 {2.11)

!

2.3 LQC: Kinematics

In identifving the variables to be loop quantized we will follow the procedure used
in the full theory [5, 6], i.e.

o Configuration variables are taken to be SU(2) holonomies of the connection
along straight edges

hj_."j[.i-'l] = Pexp / A =i %ﬂ+ ‘2:;511#:!—;?; (2.12)

L
where p € TR with pV,* is the oriented length of the straight edge with respect
to "guy and 1is a 2 x 2 unit matrix.

o MNMomentum variables are triads smeared with constant test functions ' over
square cross sections S tangential to a fiducial triad "e?. Explicitly

E{LS: fli= [ cane B fidztdal = pVy P Agy {(2.13)

e

where Ag rois the area of § as measured by g, times an orientation factor
which depends on f'. Thus apart from a kinematic factor determined by
the background metrie the momenta are just given by p. In the classical
geometry p is related to the volume of the elementary cell V as

baji=

vV =p| (2.14}
Thus in LQC, N, = %2 and p are taken to be the elementary classical variahles
which are to be promoted to hasic quantum operators |E]

To construet the Hilbert space we will stick as closely as possible to the path
tiaken in full theory, The confipuration variables generate the algebra of almost
pertodie funetions of e, A typical element of this algebra can be written as

L'{f‘) - Z Ejﬂéu;u,ﬁz (2.15)
i

where 7 runs over a finite number of integers labelling edges, ¢, € B and §; € C.
This is a C* algebra. The vector space of the almost cylindrical funetions is the




analog of Cyl in full theory which we shall denote by Cf"]LQ{.‘- The kinematic
Hilbert space H constructed via GNS construction turns out to be L* {]]5150]1],. dpe),
where iBUlH‘ is the Bohr compactification of the real line and dyp is the Haar
measure on it, This representation of the basic variables is inequivalent to the
standard Schroedinger representation.

The inner product is given by

(N

Y g

1.-.11..-“.:} = {r_,_l'.u]r:.-"2|1_____1.l'2-':.a'2} . ')}J-la..u'.- (2.16)
where on the right hand side is a Kronecker delta. The almost periodic functions
are the analogs of spin network functions of the full theory and they form an
orthonormal basis on H.

On this Hilbert space the configuration operator acts by multiplication and the
momentum operator acts by differentiation:

N.(e) = L‘XP%%‘L‘U—‘} 12.17)
B2 1

S = el (2.18)
3 de

where (§ = #h.

It is convenient to use the Dirac bra-ket notation and set ¢'¢/? = (¢|u). In this
notation the eigenstates of p are simply the basis vectors ), 1.e,

Alr.p%
Py = E_"”'!'“} = pulpt) {2.19)
}

Using eqn,(2.14) we can write the action of the operator V representing the volume
of the elementary cell V as

i .I.
(Bl " -
V |,U} - (-"_a_ |l“-l:: = Vil (2.20)
In this notation. general kinematical states |8}, in the triad basis have the form
ls) = Z S |0 (2.21)
pER

where o run over some countable subset of .

We have thus defined the kinematic Hilbert space of LQC and the action of
basic operators, The Hamiltonian constraint has to be classically expressed in
terms ol the basic variables and then gquantized.

14



2.4 LQC: Hamiltonian Constraint

Ihe gange and the local diffeomorphism constraints have been fxed and the o

constraint left in the theory is the Hamiltonian constraint. In the spatial flat ca
it takes the form [8]:

—"._I_? / 'I'i.'l_i'li.'*'t"-Fr'JA. ”b_.'l_,_m'l}'”h flr
of

where ¢ := /| det £| and the integral is restricted to the clementary cell, In t
spatially homogeneous case. the lapse N is constant and will be set to one.

To obtain the quantum operator. we will need to express the above expressi
i terms of the elementary variables and their Poisson brackets. In that we v
follow the steps of the full theory. Consider square loops oy, spanned hy two
the triad vectors “e?, each of length oV, with respect to the fiducial metric 03
Then the ab [!L‘.r[]I]Jml{!nt of the curvature is given by

; | b

_, . . bex;

a=—2 lim Tr J—s
. Ar(engy J—0 |”I'.I1 it

Then using equations (1.23) and (1.24). the constraint can be written as

y Al spnp i) g =1y (o) =1 {fn [po)=T1 v
fﬂrﬂ:n - __[ﬂh}f_sﬂ ZE'-’I‘TI" (a’?,'“"fflf“'”h:””’ 1th_Jf_| 1%. | {h:‘_’ -1 ¢ })
Ky l,l't” ik
(2.24
Hpravw = lim His e

1
}
F‘l—l Jr”" ’ 1

The Hamiltonian constraint now written in terms of basic variables can he prt
maoted to the quantnm operator

aiiay di(sgnp) i = {pa) » (o) = (po)=1 =~ (po)=1 + (o) T.~ {at—1 3
H,f.l_!,#'(z{!.' = W ZF”"TY (."r.,-H ( hy hy 2 T B [hk , 'LJ)
IR Ik
244 (sEnp " LEN o=, e EY & F e
= [—fwm sin”{ e | sin (i) 1 eos (#—I}) — s (“—r) 17 sin ('E e
¥ f]ll”dl 2 2 2 I.‘-r ;
(2]

Note that in the limit g — 0, (2.24) exists and goes over to the classical expressio
of the Hamiltonian constraint. However, since ¢ is not a well defined operator o
H, the quantum operator (2.26) does not exist in the limit ptp — (L That 15 in keeg
ing with the full theory where there is no well defined operator for the enrvatus
F;,- Therefore the dependence on gy cannot be removed and has to be viewed a



a regulator in the reduced theorv. The above treatment can be generalized for = 1.

Remark on ji

The viewpoint taken in LQC is that the failure of the limit to exist 1s a reminder
of the underlying discreteness of the quantuwm geometry coming from the full theory,
Crwing to the discreteness of the underlying space the square loop ayy in equation
(2.23) cannot be shrunk to zero but to a minimum nonzero value. lts value is
motivated as follows. Consider the area operator Ar = | pl. Aeting on a basic state

of edge length g it gives ,
Ar|pg) = i.”ﬂnlﬁf} (2:27)

]
We choose this eigenvalue to be the minimum nonzero eigenvalue of the Area
operator coming from the full theory A = [w.,s@ﬁr'f:f.:lj-'l. Equating these two we get

‘:'rflf-. N 3"‘{ ﬁ. 5, - 3\;'?3
ﬁ FU -_I- 3 .;-“ E

(2.28)

We shall discuss the new interpretation of y1y which has been subsequently proposed
in the last section of this chapter which has major implications in the development
of LQC, Till then in the rest of this chapter we shall treat the dimensionless real
number g as an ambignity parameter of order 1,

With the above comment in mind the action of the quantuin Hamiltonian
Constraint on a general kinematical state (2.21) is given by

B! .
[fu.l Pl ’
E‘Ilﬂ‘vl ".-' = (Sh) (ﬂ" FI‘.I'?;J [V pebian T 1'.1.-—,“9]
( O+ dpen) — (2 + dpgy ) ) 4 e | — dpg) ) (&29)

Notice that the Hamiltonian connects states differing in their labels by +£45,.
This 1= a direct consequence of the necessity of using holonomy operators in the
quantization of the Hamiltonian operator and is responsible for leading to a differ-
ence equation below,

If we consider some matter Hamiltonian, the total constraint is given by

L) Vil . s
Hgtiy + Hogtee)l8) = 0 (2.30)
In terms of §, = e%"s, the Hamiltonian constraint (2.30) translates into a

16



difference equation,

” = ."j]_l-,+.i_|-‘_5r§’-‘+.]_|-4..| {_J -+ _I,Jrll"i-"r""'fjl}lf!.“ 1 + -'Illfﬂ—-lm_.‘:'lu— i
1
. P .
+1fm~,-’;n.-*(g~r-i;’;) Ho(p)5, ., ¥Yp ek (2.31
3 el ) e
A, = |1+ pal® — | — pol® }-irrlril-llmr = Hu ) 1)

H,. (1) 15 a symbolic eigenvalue and we have assumed that the matter couples to the
pravity via the metric compaonent and not through the eurvature component, I[|
particular, H,,(p = (1) = 0. Some characteristics of the solutions of the difference
equation are noteworthy. ‘

J

e Although p takes all possible real values, the cquation connects the &, coeff
cients only in steps of 4 making it a difference equation for the coethicients
By puiting ¢ = v + (4ppn, n € L, v € (0,4up), we have a vonting
ous infinity of independent solutions of the difference equation, labelled by

S” [ 'V} i 1E;_-.|..',Im",

o For each v an infinity of coefficients, S, (#),¥n € Z, are determined hy |
dnitial conditions’ sinee the order of the difference equation in terms of thes
coelficients is 2.

o Coeflicients belonging to different v are mutually decoupled. Denoting an

two (fixed) independent solutions of the difference equation by p, (0] an

{M a general solution of the second order difference equ.;umn for sac

e (1, ~i;mﬁ can be expressed as S,(v) = Splv)en () + Si{v)oy, (1) wher

Q;.t.v'l G (v) are arbitrary complex mumbers. Linearity of the equation implie
that only their ratio is relevant and for ¢ = (), this ratio is fixed.

o A general solution of the fundamental equation (2.31) is given by & sum ¢
the S, () solutions for a countable set of values of v € [0, 4p). Note the
there are infinitely many wavs of selecting the countable subsets of values ¢

v |9].

e Since the coefficients A, and the symbolic eigenvalues H,, (ge), both vanis
for jo = 0, the coefficient 5, decouples from all other coefficients (sq of conrs
oceurs in the v = 0 sector), As the 5, are defined for all ¢ € B, there is o
break down of the dynamiecs at zero volume.

o In ordinary Wheeler-DeWitt quantization, the evolution breaks down
it = [ because the coefficients of the matter Hamiltonian in the differes
tial equation blows up. In LQC, we can see from the difference equation thi
the although the coefficient 3; remains undetermined, its knowledge 15




In

necessary to abtain the evolution as the wave function vanishes at g = 0. As
a result, the evolution can be continned beyvond zero volume in a determinis-
tie manner independent of 35, Tlis is taken as one indication that the LQC
dynamics is singularity free [10].

2.5 Derivation of Effective Hamiltonian

It 15 expected that the domain of validity of the effective Hamiltonian will be the
large volume regime i.e. for large values of p = 4y (n 3 1).
The effective Hamiltonian can be abtained in varions wayvs, One way is:

For large volumes the coefficients A4, in the equation (2.31) become almost
constant (up to a common factor of «/n) and that the matter contribution is
also expected similarly fo be almost constant, One then expects the coeffi-
cients to vary slowly as »n s varied.

This implies that S, () also vary slowly with n.

Then we can interpolate these slowly varving sequences of coefficients by

slowlv varving, sufficiently differentiable, functions of the continuous variable
- bop2

pln) = g7len [11).

Using Taylor expansion of the interpolating function, the difference equation
for S, () then implies a differential equation for the interpolating function.
This is referred to as a continuum approzimation,

The terms up to (and including) second order derivatives, turn ont to be
independent of 4 and the differential equation, truncated to keep onlv these
terms: matches with the usual Wheeler-DeWitt equation of guantum cos-
mology. This is referred to as a pre-classical approzimation |12},

Make a WKB ansatz for solutions of the differential equation. To the leading
order in fi, we obtain a Hamilton-Jacobi equation for the phase from which
the effective Hamiltonian is read-off.

Improvement of the pre-classical approximation can be made by ineluding
higher derivative terms in the differential equation.

[13]. such an effective classical Hamiltonian was obtained from the pre-

classical approximation and it was shown that the classical dvnamics of implied
by the effective Hamiltonian is also singularity free due to a generic ocenrrence of
a bomnee [14].

In this thesis, however, we will follow a different route |15]. We will make
the WIKE ansatz at the level of the difference equation itself. The slowly varving

18



property of the interpolating function will he applied to the amplitnude and |
phase of the interpolating function. It is then very easy to obiain an effect
Hamiltonian with nontrivial dependence on ~ and also the domain of validity
WKE approximation. In the limit ¥ — 0, one will recovers the results of [13]. '

In anticipation of making contact with a classical deseription, we introdice ¢
dimensionful variable p(u) = %jr'r."']i ji as the contimous variable and an interpal
ing funetion ¢ (p) via ¢(p(y)) := 3,. Correspondingly, define Py = 2y whi
provides a convenient scale to demarcate different regimes in P

Defining A(p) = f%qf,ﬂa]%f-‘l,,, q = 4py and replacing 5, by the interpolati
funetion (p), the lundamental equation (2.31) becomes,

0 = Alp+qldip+yq) - (2 + ﬂg-.—;-:,l) Alp)(p) + Alp — @)i(p —q)
[ICE :
+ Y- (p)d(p) (2.3
i

This equation (2.32) can be thought of as a functional equation determining o(p
It has infinitely many solutions, corresponding to {S,(v)}, v € [0, dp). Note th
s0 far there has been no approximation, we have onlv nsed plp) instead of pgoar
vip) instead of &,

; : i) el
CIne can alwavs write the complex function t{p) 1= C-’[p]rf'TI. In the spirit

i continuum deseription, we assume that the amplitude and the phase are Tayl
expandable and write,

Clptyg) = CpdC,=dC) . ®ptq) = Bip) + o, £+ 50 _(2.33
o =
3 )

- N q'.iu CI'_:'H I:P o {JT'IH L1 Irl'.in | 1{[,'.1_] o
Oy, = z {EH}!W v R Z (2n+1)! C(p) (24

n=il n=il
" a o3 q'.tn S &g r!,Er|+] & 5 o8
(1:'.;. = Zi‘_?;ﬁ“gn{p:l N P_ = Znijm 53n+:|||u”:| ( wihil
=] =

We have just separated the even and odd mumber of derivative terms for late



convenience. Substitution of wip+gq) = C(p=£ glet ™9 i (2.32) leads to,

1 6 b I @
B — o DO B (0 e (I L
“ — Jrjm 2.‘1' F:{{:?, {a + € -r.r] “.rij.l - 2.‘[ F.’jnll,-_.-]_-:JI *
B _ S A _
(Bylp,q)dC, (p) + B_(p.q)6C_[p)) (f‘”-"'* "Rl )
i !

y §
—(B_ (s g)dCilp) + Bolp, q)dC_(p)) (Siu d?'_ sl f—?—_)
i i

+i{ B_(p, q)dCL(p) + Boip. q)6C_(p)) (n:u:. r?IT+ sin r}?_ )
I i

Hil By (p.q)0C (p) + B-(p, q)dC. [p)) (-‘“’ih di::i' Cos ﬁqf )]
i
Bilp.q) = Alp+a)EAlp—yq) (2.36)

Thus, one has two equations for the four combinations, dC<, 5P ..

Now we assume that the amplitude and the phase are slowly varving functions
of p over a range ¢ e, when compared over a range +q, succeeding terms of
a Taylor expansion about p are smaller than the preceding terms. For example,
|‘1:-.—r| will, HE.,_{rJ;l % 1 ete. and similarly for the phase.

For such slowly varving solutions of (2.32), we can approximate the equation
by keeping only the first non-trivial derivatives i.e.

i ) {_Il'f-”
[}Ci =1 . ol =—
€
° I
. i
and G- =g | . =
To arrive at a Hamilton-Jacobi equation, we identify ®'(p) := 32 K which implies
0 Lo it - T
that ”?]t—’ = Lj'h*— = e/, where we have used the definitions ¢ = 2ppy and

(7 = wh. This combination of the first derivative of the phase thus has no explicit
dependence on fi.

The terms in the real and imaginary equations can be organised according to
powers of fi. For sine and cosine of 4@, we have to use the power series expansions
and keep only the leading powers of fi. For sine and cosine of d®_ no expansion
is-needed sinee there is no i depeadence. The real and imaginary equations can



then be written as,

1 6 ; 1 0 8_ B_(p, rﬂq( |
) = Hy == 2 endAln) e 1 44 Bt :
2# “-”"F{ ARt o ) H T Bipy) C (. 4) oo

. 5 P, r;} qC" Tt _
— B — -
(s rﬂ{B To.0) + C o sinely
oy s :;91?1}’“[.;11}) iy B_(p.q)qC" n B_(p,q) n q{"" tan [_-*.'_KJ
he K B.(p.q) C Bi{p.q) f el
Cn physical grounds, one expects a classical approximation (£ terms), to
valid only for scales larger than the quantum geometry seale set by g and theref

we limit to the regime p = ¢, In this regime, the coefficients A(p), Bo{p.y) beh
a8

3 a
Alp) = —q.,.,.-’g]—t}[fu_ﬁ}

L]

Bilp.q) = Ew’_—n a)

B_(p,q) = 1;; o 3 4 olp™3 1 (2.
MNoting that g = J;_rff and keeping only the leading powers of {7 {or h). the
and imaginary equations become (WKDE approximation),

0 = H,— 1 [; (2+e*n)A(p) + L% [Bi(p.q)eos{el)] (2
II

rffb”[,uj poq)  gC'\ tan (e ) ]
4 = Lo ¥ kst i AR, s W, el
( el ) + (B.,.[p,g} v O Y f

The real equation, (2.40) is of o(A") and is a Hamilton-Jacobi equation for
phase. The right hand side, viewed as a function of p, K, it is the effective Ha
tonian constraint. The imaginary equation, (2.41) is of o(%) and is a different
equation for the amplitude, given the phase determined by the real equation.
cequations for the phase and the amplitude are decoupled, For self consistency
the WKB approximation, the solutions have to be slowly varying. In general,
sulutions will be slowly varving only over some intervals along the p-axis and s
interval(s) will be the domain of validity of the WKB approximation. One
infer the domain of validity as follows.

£

o Consider the equ. (2.41). By definition of slowly varying phase, the absol
value of the first term must be much smaller than 1.

Tnn{ h]

e Sinece smallest value of 15 1. (the absolute value of ) the bracket in

second term must be amallm tlmu




e Since -rf-f':.» is also small by definition of slowly varying amplitude, we must
B
have |=| < 1.
iy

- v 3 - - "J " [l - -
o This immediately requires p > ¢ = =F and is obviously true in the regime
under consideration,

. 8_ L . .
o For smaller volumes, p 2 g, where 5= is larger, we must have 2Le > ] § ¢
eld = (.

o For larger volumes, p = q, larger values of ¢ K(< §) are permitted.

Thus, the equation (2.41) serves to identify a region of the classical phase spuce
where the effective classical description is valid, The domain of validity of effective
Hamiltonian and its relation to the usual general relativity (GR) Hamiltonian is
discussed further in the remarks below. Alse note that the WKDB approsimation
is expected to break down near the turning points. The predictions from this
approach are not expected to hold very near the regimes where the scale factor
reaches an extremumn.

It is convenient to write the real equation in the form,

11/ 3 q g € ..
0 = - Kﬁ){ﬁ_f?:,q? (5511-13(511)) ~:-2:'1{3='WH

[
+Th- Kr;—g;) {Bi{p.q) - 2.4(;}‘1}] + H.. (c

]
15
I=d
e

The second square bracket in eq.(2.42) is called the guantum geometry potential,
W/ 26, 1t is unaffected by the implicit inclusion of all terms of the Taylor expan-
sion of ¢{p). Since the leading terms in By — 24 vanish, the quantum geometry
potential termois independent of e. But it is also higher order in fi. Since we will be
concentrating on o(h") corrections from now on, this term is suppressed. This term
is also absent if we chioose the symmetric ordering for the Hamiltonian instead of
the ordering chosen in this work. This point is important and is discussed further
later in this chapter. In the limit € — 0, we get back the expression for the effective
Hamiltonian constraint obtained from the pre-classical approximation.

2.6 Equations of Motion

Let us reiterate that as mentioned in the previous section
o We will look at the effective Hamiltonian at the large volume regime.

o We will look only at of i) corrections to the classical Hamiltonian, i.e. look
only at the discrete geometry corrections. The quantum geometry potential
will also be suppressed because it 1s higher order in A

22




e The matter is assumed to couple only through metric components and thi
the matter Hamiltonian has dependence on p but not on K, For the [NOMmER
we will take it to be a function p and matter degrees of freedom svinbolical
denoted by @, p,.

The relevant Hamiltonian constraint then becomes:
3 e Tl e 1 o .
0 = —E\f’p i (2 ﬁ,) + 0| + Hulp, ¢ ps) (2.4

To see what the madified Hamiltonian constraint implies [or cosmological spag
times, we have to obtain and solve the Hamilton's equations. We identify [p| = 8
and choose the synchronous time as the evolution parameter (Lapse = 1), It
straight forward to obtain the Hamilton's equations of motion as:

il T . i

ﬁ = —\’/T sin(feK) = 5 (2
dhA K OH (8 paip 1 d  aire

& E‘i'jrh P) < i [r_-’ sin® (ﬁﬂ) -+ J'.r} (2.48
ﬁ _ Hu(p, o, pe) (2.4
dt g 3
dpg _ _i‘iH,,rI[p. @, Pa) (9.4
it e g

The equation (2.43) is the modification of the Friedmann equation while (2,44
2.45) lead to modified Raychoudhuri equation after eliminating K. p in favour g

the seale factor and its time derivatives, In particular, (2.44) gives @ = —EiEr't '
and leads to cos(e/) = /1 — €242 (e — 0 limit fixes the sign of the square root)
Thus the Hamiltonian constraint can be expressed in terms of . Furthermorg
since the constraint is obviously preserved along the solutions of the Hamilton}
equations, we can obtain K in terms of e

Now it is straightforward to construct left hand sides of the Friedmann and th
Raychoudhuri equation and comparing with usual Einstein equations. read-off tl
effective density and pressure. We get

! o @+ e —3 3¢ fdi : 4
A = = = I e e (R Irg. iy,
g felt - i ( e ) 5 8a " H,., 5 (Hu H, 1 4
_E ) 3 o 'E _ _E = H fme - f -ilH o
1 (ot + 3Fr) .fl” 1 |:8|5,- (H,, —a 5 } 5 | 3 1




For future reference, we note that the effective density and pressure can he ex-
pressed as

el = 8”'_3 -"T:Im
. - aH,,
(peip +3Pg) = Sa(H, —a—) where,
; it
5 3eta 4k -
mo e Hm:_ L _Hm_ (250
H T (Hn ”) (&0t

As e — U (v — 0}, the right hand sides ol the above equations go over to the
equations of [13] and so do the effective density and eHective pressure, with the
guantum geometry potential terms suppressed.

The advantage now is that the Raychoudhuri equation is antomatically satis-
fied once the Hamilton's equations for the matter hold and the Friedmann equation
holds, Thus we have the e-corrected, three coupled (for a single matter degree of
freedom], first order ordinary differential equations which go over to the classi-
cal equations when € — (L [t is now a simple task to compare the selutions
with /without € corrections, for the same initial conditions consistent with small @
and large a. Some solutions are discussed in the next section.

several remarks are in order:

1. It is somewhat surprising that the parameters related to quantum geometry,
i and v (which have to be non-zero), appear in the effective Hamiltonian
which is independent of fi e, in a elassical deseription.,

To trace how this happens, recall that the basic phase space variables in
isotropic LQC (in the connection formulation) are ¢, p and the conjugate
momentum variable K is related to the connection variable ¢ by ¢ = 4
(for spatially flat model for definiteness). In loop quantizing the Hamilto-
nian constraint. the classical constraint is to be expressed in terms ol the
holonomies of the connection. In this process, the parameter gy enters. The
classival constraint so obtained. precisely contains the sin® pge which is the
same as sin® % The parameter € is thus present already at the classical
level (A%). Within a strictly classical context, one can view it as a “regnla-
tor" and remove it at will, by taking € — 0 to recover the classical Einstein
Hamiltonian, Within a strictly WIKB context also one can remove it since
the corrections to WIKEB are positive powers of ﬁ ~ ole}. However, from
the perspective of the exact loop quantization, we cannot take ¢ — 0. While
viewing the WKB solutions as an approximation to the exact LOQC solutions,
we retain the link to the exact solutions by keeping e # (.

2. The classical GR Hamiltonian is the expression obtained from the effective
Hamiltonian in the limit e — 0 in the large volume regime. This could




be achieved by either taking ¢ — 0, K fixed. which is a natural class
GR perspective since the elassical GR has no ¢ or by taking & — (0, ¢ fiy
which is the appropriate quantum perspective m LQC. This opens up
possibility that there could be modifications of ¢lassical GR especially w
the conjugate momentum () pets somewhat larger, As noted already,
simaller volumes, the domain of WKE approximation restricted by pouat
(241}, requires i to be small and the efloctjve Hamiltonian reduces 1o
GR Hamiltonian. For small K, K = —a and corresponds to the extr
curvature (a geometrical quantity). For larger values of K, the rela
between I and the extrinsic curvature is given by equation (2.44),

3. Since lor smaller volumes, the effective Hamiltonian goes over Lo Lhe
Hamiltonian, the effective density and pressure defined in (2.48, 2.49)
over to those defined by the preclassical approximation, Consequently,
genericness of inflation is insensitive to the r parameter. Furthermore. s
the quantum geometry potential is unaffected, the genericness of bonnee af
continues to hold (in this vegime, the quantum geometry potential must
retained in equation (2.42)) [14].

4. The ocenrrence of the trigonometric finction of i immmediately implies tf
bounds. The effective Hamiltonian constraind, (2.43). implies that is tl
the matter Hamiltonian is necessarily bounded: n < o TH,, <y £
ciuivalently, () < Lg-lg < t_—t, Equation (2.44) on the other lat
implies a bound on the expansion rate: la| <€ L.

5. Finally, let us note that @ is the extrinsic curvature of thie symnetry adapee
hypersurface (and is also the rate of change of the physical volume of tf
universe) and is gauge invariant. The modifications to GR due ta the ng
4610 parameter ¢ are manifested in the modified coupling (quadratic in matt
Hamiltonian) between matter and geometry. The GR domain, Containg
within the domain of validity of WKB, can also be given as: |p| = “—I ]

” —
¢ = r—iﬂ translates into o = \’/‘f—rﬁl]} while |eX| < Z translates into 0

1

<y 5 . n <€ 5. The effective Hamiltonian and subsequent analvsis beir

i
a(h"), is insensitive to factor ordering in the Hamiltonian constraint,

In the next sections we will look at some explicit examples of modified dynard
TER

2.7 Modified solutions

Let us cousider a fow solutions of the modified equations. These are not me
to be phenomenologically realistic solutions, but are to he viewed as indieati




modification to GR solutions. In particular we will consider the cases of a mini-
mally coupled homogeneous scalar field, phenomenoclogical matter with a constant
equation of state and positive cosmological constant viewed as a special case of
phenomenological matter.

2.7.1 Minimally coupled massive scalar field

For simplicity, let us take the matter sector consisting of a scalar held, @, minimally
coupled to gravity., Then its usual classical Hamiltonian is given Ly

Honl6,pay p) = p~ " 2p3 + 2972V () (2.51)

[ts quantization involves two parts:
z = ;i)
o (luantization of p~* operator.
e Bolir quantization of the scalar feld itself,

For large volume, the inverse volume operator in the triad representation just
goes over to the classical expression. Its correction terms involve higher powers of
fi (the terms suppressed by inverse powers of p in the coefficients B, (p,q). Alp.q).
likewise involve higher powers of ). Thus, to ofh"), these modifications are irrele-
vant in the large volume regime. The Bohr quantization appears not to introduce +
corrections to the usual classical matter Hamiltonian, In this paper we will assume
that the matter is quantized in the usual Schrodinger quantization.

The solutions are obtained numerically with V(&) := Ym?¢® and with initial
conditions chosen to indicate different types of behaviours. We use peometrized
units (# = 1 and speed of light equal to 1). Introducing an arbitrary length scale
i, various quantities has following dimensions.

0. mere@™l, tret; (2.52)

Hpr~@, pg~a, G

Scaling the quantities by the appropriate power of @ all equations are rendered
dimensionless and integrated numerically. Since we use the usual classical form
of the matter Hamiltonian without the corrections from the inverse volume, the
length scale @ is suitably large (eg a = 1004p).

For the plots shown below in figure(2.1), figure(2.2) and figure(2.3), the di-
mensionless scale factor assumed to be 100 and the dimensionless mass is taken
to be 0.001. Three different values of the discreteness parameter are chosen:
£ = 1.0.0.5.0.7. Three different initial conditions for the scalar field and its mo-
mentum are taken namely (¢, ps) = (1, 10000), (10, 10000), (50,50}, As can he
expected, the initial value of the scalar Reld has stronger effect on the evolution.
For smaller value of the scalar field, the effect of non-zero e is virtually absent
while for larger values one sees the multiple re-collapse/bounce possibilities. For
the plots, spatially flat model is considered (7 = 0). Only the evolution of the scale
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factor is shown in the figures. The scalar field typically increases first and tl
decreases to smaller values. Both the increase and the decrease of the scalar fi
are steeper for larger values of e, The scalar field momentum also shows si i
behaviour, The decrease however is much sharper and occurs at later times |
larger values of e,

° ga=)f] ——
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log(time)

Figure 2.1: The plot is for the initial values o = 1,p, = 10000. The discreten
corrections are very small.

2.7.2 Phenomenological Matter

In the current treatment, the matter is also supposed to be described by a Hamil
nian. However, for the usual ‘dust’ and ‘radiation’ which are supposed Lo repre

non-relativistic and relativistic matter respectively, one does not write a Ha
tonian. The underlying matter dynamics (with time scale shorter than that
expansion of the universe) is supposed to ensure a thermal equilibrium. 5
matter is then thermodynamically described in terms of an energy density, p

pressure, P, with the equilibrium property implying an equation of state, P =4
The first law of thermodvnamics in conjunction with adiabatic expansion imp

the ‘continuity equation’ nﬁﬁ = —3p(1 4+ w) which can be integrated o give,
PO § A da’ i —3{ 14w . E
ola) = pe U = 5 (_) . when w is constant, (2.
a




log(time)

Figure 2.2: This plot is for the initial values ¢ = 10.py = 10000. For late times.
deviations due to non-zero e are clearly visible.

The equilibrium property also implies that the density and pressure are ho-
mogeneous, Such matter in (approximate) equilibrinm is coupled to gravity vin s
stress tensor of the form of the stress tensor of a prefect fAuid (and the matter is
correspondingly referred to as a perfect fluid) which is of course the most general
form of stress tensor in the context of homogeneity and isotropy. This stress tensor
15 conserved by virtue of the continuity equation implied by adiabatic expansion
and the first law of thermodynamics. This way of coupling matier to gravity is
thus consistent with the Einstein equation.

It is conceivable that some of the mechanisms (eg microscopic matter dynam.-
ics) involved in establishing thermal equilibrinm may be modified. especiall y if the
expansion time scale becomes comparable to that of the matter processes respon-
sible for establishing thermal equilibrium. However, for the large volume regime
we are considering, one may justifiably assume that the microscopic matter dy-
namics are unchanged and lead to thermal equilibrium with the usual equations
of states. If this assumption is granted then such sources can be incorporated by
taking H,,(a) := p{u]%, with the scale factor dependence of matter Hamiltonian
explicitly specified via that of the thermodynamical energy density, pla), In view
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Figure 2.3; The initial values here are: ¢ = 50,ps = 50. For late times tl
evolutions show multiple bounces and re-collapses for non-zero e,

of the expressions in (2.50), this is equivalent to putting

i i’ .
m = Pell~—
i H”_‘r

[
i ]

The assumption made above amounts to viewing the eflective eguation of stal
wheii 1= Fogp/ per being determined from the usual equation of state, w. The effecti
density and pressure are thus not ascribed any thermodvnamic oripgin, but 3
viewed as preseribing a modified coupling of the matter to gravity,

The evolution of the scale factor is now obtained by solving just the (modihe
Friedmann equation (2.48) for various choices of w(a). For example, for consta
equation of state, w, and for expanding universe,

: i rr) 1= e [ wpa* (ﬁ‘) 1= e i
= iF T e = i [ 23
) { i 15 ”} 1 { 12 \a. (

Introducing dimensionless quantities, 5
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the Friedmann equation can be written as,

: / gey?
i B S R I = ) O i At T 557
£ 24 Ve ( 5 ) . (flat model) {2.57)

£ = fore-tee l\/l — % (et — 1) (closed model) (2.58)

[t is convenient to paramneterize Lhe equation of state variable as, win) = I:;-f‘;*_-”t—.l
so that
.=

0 corresponds 1o the cosmological constant
o = 2 corresponds to the radiation
s 7 = 3 corresponds to the dust

For the flat models, the substitution £ := (% cosh A)*™!, leads 1o,

2 rr
[”E] (;) }[T-‘Tu:‘ = f{mshﬁ)”;ﬁ)«

= AN Mg (M) (2.39)

. 2r—m
=l

For even integer n, the parenthesis in the » = n/2 term in the summation.
15 to be replaced by A, We have thus obtained the solution of the Friedmann
equation (2.57) in a parametric form, in particular for the cases of interest namely
n=0,2,3:

To recover the ¢ — () solutions, one has only to note that for non-zera w, the
left hand side of (2.59) diverges for 7 > 74 (say). and implies that one must have
Avery large. The leading term on the right hand side is then %fﬁ“". Likewise,
for large A, £ ~ (%*"A}”"l. One can now eliminate ee* to get a(t) x (t — ty) " .
Clearly, these match with the usual (e = 0) solutions, The case of the cosmological
constant (n = 0) is discussed in the next subsection.

For the closed models, again one can obtain parametric form of the solutions
which involves an integration. However the qualitative behavior can be seen easily.
Now a different substitution is convenient. Putting & == (-2

T Veosh A

)=1 one obtains,

1
mn—1

Y . fh=n
ﬂrj -I"{T{f” — TI.':I.]I' e dx lLDEIh A }
J 2o \/1 - (%} (sinh A2

Clearly, A must be bounded to ensure (0 < sinh® A < £ One can also check that
the integrand is integrable at the maximum value of A, Taking 7 = 0 = Ay and

(2.60)
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T = Ty for the upper limit of integration to be Ay, (defined by sinh?®,
one obtains an oscillatory universe with a finite period given by 17 1= 27, fo
the three cases of interest. The ¢ — 0 limit is simpler in this case since ¢
not depend explicitly on e, Also A, diverges and therefore for any Hnite )
can simply take ¢ = 0 in the integrand. For n = 2,3, then one recovers the
{parametric) form of the solutions.

For dust and radiation, the corrections due to non-zero ¢ are extre mr:h SII

This is to be expected since the densities decrease with the scale fac tor.
the a='H? term very small.

1I'|1Jc =

2.7.3 Cosmological Constant

This is obtained by raking

4
H,. = Ap¥2 — A 9
n = Ap 3 [

and as mentioned hefore, mathematically it corresponds to n = (). In the equat
{2.56), we replace 7 by A.

Fm ¢ = U, one has the well known sohitions: a(t) = u(D) exp( v’ﬁ ) forng
and a(t) = +/6/A cosh (VAJG (t—1g) ) forn=1.

Fm ¢ # . the solutions are qualitatively different. For the spatially fHat ¢
7= 1, une has a re-collapsing solution given explicitly as.

b
"o

. o i
alt) = — Hn_"fl o e {2,

f.'l'_l-‘.:l'f.ll{ 'tvfr.l"li.,"'lb {n‘ln — IF:' :|

-
(L
:_'_a-

The scale factor vanishes only for + — +oc and the solution is non- singu
As £ — 0, the maximum value for scale factor div erges and one is either in
expanding or contracting ]Jlmo One can obtain the ¢ = 0 solution by taking
limit € — 0, #y — oc with gV oo held constant.

For the closed model. 5 = 1. the seale factor is bounded from both above

below as 1 < Aa®/6 < (1 + 4/¢?) and the universe keeps oscillating between th
values in finite time, with the period of oscillation given by,

24/6/A

"1"-I'|-|I X

il A , )
= . o S { N ) = 2/¢ (4.
40 W= ‘f—;shlh"}i

As € — 0, the maximum value of £ diverges, the period diverges. The usual
Sitter solution is recovered hy just taking e = () in the inteprand of equation {2,
which gives A ~ g{r — 7y) and eliminating A. In both the cases above, one
check from the Raychoudhuri equation that smaller seale factor is indeed « 1o
minimum while the larger one is a local maximum (as a funetion of £).




For the cosmological constant as the only source, for e = 00, the equation of state,
w = FP/p = —1 remains independent of the scale factor and the Raychoudhur
equation then implies an always accelerating universe, precluding the possibility of
re-collapse. With the e corrections incorporated, the effective density and pressure
1s modified and the modified equation of state acquires a scale [actor dependence
which is such that there is alwavs a decelerating phase before re-collapse.

Had we taken ¢ — (), we would have got the classical GR Hamiltonian leading
to the usual exponentially expanding universe without a re-collapse (n = 0). The
difference equation on the other hand shows that diserete wave function, in any one
sector begins to oscillate over the quantuin geometry scale ~ é;mﬂr("]-’, for large values
of the triad, implving a breakdown of pre-classicality (no small scale variations) of
the exact solutions.

While deviations from pre-classicality are expected in the small volume regime
due to quantum effects, deviations in the very large volume regime have no such
physical reasons and are viewed as an ‘infra-red problem’ [16, 17]. A typical exam-
ple of such large valume deviations is that of cosmological constant (and non-zero
spatial curvature). No quantity which has a local interpretation such as energy
density {(A) 15 ill-behaved and the integrated quantity diverges due to integration
over infinite volume, In such cases, the homogeneous idealization (integrand being
a constant) is thought to become in-applicable beyond a finite volume, Noting
that the wave function has an oscillation length of (Aa) ™!, one can obtain a bound
on the largest scale factor, @, by requiring the oscillation length to be larger than
the scale of slow variation, /§ = \/_._%Elp. This gives, @ = ﬁ{,ﬁi"p_j_i_

In the effective picture, we have a maximum value, a,,,. of the scale factor due
to re-collapse and for y = 0t is given by af, ., = 2% in equation (2.62). Demanding
that tmax < @ gives a bound on the cosmological constant: Aff < e/8. For such
a cosmological constant; the effective picture can be consistent with pre-classical
behaviour of exact solutions. Incidentally, for the currently favoured value of the
cosmological constant, one has AZ ~ 10710,

In the above discussion, we have used the large scale factor expressions for the
equations, mainly because we were interested in seeing the re-collapse possibility.
Secondly we also used the effective classical picture close to the WKDB tnrning
point which may lead to non physical predictions of the values of the variables at
the turning points. The full effective classical equations together with the domain
of validity of the WKB approximation have been given in the previous section.
The main lesson is that the corrections due to discreteness can change some of the
solutions qualitatively while for others these are perturbative in nature,



2.7.4 Criticisms

The work described above is based on the quantization available at the time it w
done, Subsequently LOQC has undergone significant changes based on a differ
ordering of the Hamiltonian and with a different interpretation of the ambig
parameter po. We will mention the recent progress in the next section. We g
this section with some eriticisms to the above approach.

o In the cosmological constant case, there is a recollapse in the classical reg
1.e. in the regime where a is large and @ is small. This is viewed in tle abg
framework as an infrared problem.

e The critical value of the scalar matter density p

erit #f which hounce oce
is very low and physically unrealistic.

To see this consider the spatially flai case ( = ) with a massless sea
matter Hamiltonian H (p.,p) = 33'3-'133}';; in the large volume regime wh
the WKD approximation is supposed to be valid e, p = po. As we ¢
see from (2.44), the turning points oceur at p = p, when sin(e/) = 0. T
implies that the extremum ocenrs for either sin(e A /2) = 0 or cos(e A /2)
If we choose the first option we can see from (2.43), p. o p, and theref;
[rom equation (2.50) we can see pag J.L Henee for large values of p,. g
15 small. Note that, had we taken the symmetric ordering for the Hamil
nian (2.42) this is the only possibility available which leads to the plivsic:
unrealistic possibility of recollapse in the classical regime.

However in the non-symmetrie ordering chosen for this work, there is also

quantum geometry potential (e, the second term of (2.42)) which 15 sm
for large volumes but which become important once the first term 1:|-|ﬂ1tj
small. In that case it turns out that py ”—' and therefore from equati
(2.50) we can see pog o p. [18]. We get a bounce in the classical regime. Hﬂ

stricely speaking, the WKB approximation is not valid near turning poing

|

e All the results are obtained on the kinematiec Hilbert space Hy,,. As we hni

seen in the previous chapter the physical states i.e. solutions of the qu.‘-ml.]ﬂ:

Hamiltonian constraint is not normalizable on Hii,. Therefore a new i!ll‘ﬁ:

product has to be defined to construet the physical Hilbert space H,,, hefo
any the predictions coming from LOQC can be put on a firm footing.

2.8 LQC: Recent Progress

Recently a lot of work has been done in the LQC framework to address sonie of t
problems arising in the formulation described above. The first step 1s to constr
a physical level understanding of the theory by constructing a physical Hill



spate. Inmitially this has been done for the n = 0 case with a massless sealar field
[20] along the following lines:

e Choose a monotonically mnereasing classical variable as internal time and
attempt to interpret the solutions of the Hamiltonian constraint as evolition
with respect to this parameter. In this case the scalar field ¢ provides the
time variable.

e The Hamiltonian is written in the svmmetric ordering to construct a self
adjoint guantum operator. An inner product is introduced on the space
of solutions and the physical Hilbert space Hpy, is constructed via “group
averaging procedure”.

e Dirac observables are chosen which are represented by self-adjoint operators
an Hpay,. In this case they turn out to be the momentum conjugate to the
scalar feld i.e. p, and the value of p at any “instant”™ o Le. pls,.

o These observables are used to construct semi classical states at late times
which are peaked around the classical trajectory.

o These states are evolved and the behiavionr of these states near the classical
singularity is observed

It turns out that the singularity is avoided even on the phyvsical level in the
sense that the wave functions “tunnel” through the classical singularity. However
the problems mentioned in the above section are accentuated. Because a symmetrie
ordered Hamiltonian is chosen there is a possibility of recollapse in the classical
regime.

This has led to further investigation of the theory, In particular e nature of
the regulator g has been reexamined and the theory has been reformulated where
it is not a constant number but a dynamical quantity [19]. The crucial change
is the change in the viewpoint that the size of the smallest loop used in defining
the curvature term (2.23) should be measured by the area operator referring to
physical geometry and not Lo the fidueial metric as before, That 15 if each edge of
the basic cell is of length A, then this is now chosen to be a function g(p). The
gquation (2.28) is therefore replaced by |19]

5 REVE:
Al = A= YE

(2.64)

Thus ji is & non trivial function on phase space.

There is another henristie justification of why g should be a function, coming
from the full theory. As the scale factor grows, the number of vertices in a fixed
fiducial cell should inerease. In full LQG. the Hamiltonian constraint operator has
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to be evaluated at these vertices by considering elementary eubes around them,
Since the number of vertices grow the area of the faces of the elementary cubes
measured by the fducial metric should decrease. Keeping the edge length of the
elementary cubes to he constant amounts to ignoring the creation of the ne
VETTICES,

However mal-;iu[_‘ ji to he a function of phase space means that the action of th
operator exp i(jie/2) on triad eigenstates is complicated. It turns out that volum
eigenstates provide a more convenient basis for writing the action i.e. the basisis
changed from |u) to [¢0) which also constitute an orthonormal basis in the LQGC
Hilbert space. It can be shown that the action of the volume operator on thes
states 13 given by

- (-;.[:) v || . } 2 24/2 0.65)
Fliy = | == ) wihers = Gal
6 3v/34/3
while uxlm;f'il acts by addition.
gk vy = v+ k) (2.66)

The Hamiltonian operator written in symmetric ordering becomes

ngm' = sin(fie)A sinf jie) where (2.67)

A = {m;’;—;;f” (H'm (Ii;) V cos ('f:) — €08 (F_j) Vsin (FE ))

In [h:a new formalism, the difference equation for the 5 = 0 case with massless
s

ﬂ;}{{]h!‘ ]_l ( (v)wle +4.0) + Cvjwlv, o) + O~ (w)u(v — 4, r,-').:')
(2.68)
where
an .8 |
Bl = (g) Kol |6+ 1% - o — 1)
{:'l{il.'] p— 3"'::!\ A . ..'E ||I'.-'+ j-l o :\’.-' +3||
el
fr—[l..} — '+{?.' . -'lj

r_n‘][_.“} — {-I+{i”}—(l_['2|:| [3_“[”




The effective Hamiltonian is now given by

(=

~ Hj_ﬂ! |p|? sin®(fc) + %B{p)p; (2.70)
where B(p) is the eigenvalue of the | 41'_=|::"-'Ju aperator.

This completes a brief overview of the new kinematic framework of LOC: One
crucial change is that the difference equation, in the ) basis, no longer has uniform
step size of 4y but non uniform steps depending on the state. However once the
|t} basis is chosen, the step size is again uniform. The Hamiltonian is self adjoint
and the physical Hilbert space is constructed via group averaging techniques |20].
The Iundamental leatures of singularity avoldance and bounce are recoversd at
the physical level [21]. Similar analysis has been carried out for the n = 1 case
[22, 23], In that model, with the new quantization bounces and re-collapses are
neatly accommodated to get a eyelie evolution.

Work is on to extend the physical Hilbert space construction to cases other than
the massless scalar lield as well as in understanding the nature of the evolution of
the universe across the big bang singularity.
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Loop Quantization of Polarized Gowd;
Model on 7°:Classical Theor

In the previous chapter we looked at studies on loop quantization of a Minisuper.
space model, namely FRW cosmology. In this and the nexi chapter we will try ta
set up a loop quantized theory of a midisuperspace model. We will look at one o
the simplest possible midisuperspace models studied in GR namely the Polarize
Gowdy Model on 7%, This model has one feld degree of freedom and two particle
degrees of freedom. Tt is therefore more complicated than LQC but much less sg
than the full theory. In (3.1) we shall give a brief deseription of what are Gowdy
cosmologies. In section (3.2) we shall briefly state the various properties and cons
structs used in the previous studies of the model. In section (3.3) we shall sketcl
the construction of the unpelarized T% model in Ashtekar variables. In sections
(3.4,3.5)we will discuss the systematic reduction of the unpolarized maodel to the
polarized model in variables which will be convenient for loop quantization. Wa
shall reconstruet the classical spacetime solution from the Hamilton's equiations
of motion in sections (3.6). That will complete the study of the classical model
Loop quantization of this model will be discussed in the next chapter.

3.1 What are Gowdy Models
Gowdy Models [24] refer to the class of 4 dimensional spacetimes which are;

* globally hyperbolic i.e. we can foliate the spacetime M into spatial Cauchy
slices &, paramatrized by a global time function

o spatially compact without boundary
o solutions of vacuum Einstein's equations

e is isometric under the action of an Abelian T2 group which acts on the leaves,
Yo, of the foliation

ar




These conditions restrict the manifold X, to be one of the following: 79, 87,
52 @ 8! (or any manifold covered by one of them). If we further assume that

o the Killing vectors generating the 7% isometry can be chosen to he mutually
orthogonal evervwhere

we get what are known as Polarized Gowdy models. In this chapter we shall
mainly deal with Polarized Gowdy models with the spatial slice taken to be T, Tn
the next few sections we shall briefly review some of the properties of this model.

3.2 Polarised Gowdy 7% Model: A Brief Review

“We shall first discuss the spacetime picture of the model in terms of 4 dimensional
~metric variables. The metric is diagonal and can be written as |25]

ds* = e*(—dT* 4+ d6*) + T(e™Vda? 4 Wiy (3.1)

where 2. y. 6 label points on the 7% with d/8z and /8y being the two Killing
vectors. The two varlables a and W oare functions of T' and periodic functions of
i3

The vacuum Einstein's equations can be organised so that W is obtained from
the second order differential equation:

W A L oW W
ar= -~ er gt

=10 (3.2)

j@ﬂ.given a solution, W/(T,#), the lunction a(7,#) is determined from:

da aw aw
@ - Tar w
da 1 awN?  rawy? o
il —ﬁ”l(w) *(‘eﬁe‘)] e

~ The equation (3.2) encodes the dynamies while the (3.3) encodes the con-
nts. Incidentally, this makes the initial value problem and the problem of
ervation of constraints in numerical relativity trivial for this model, The ini-
_ 1i1Eﬁ of the dwmnucal wanahlt W can be freely Sp(_{.lfl{_.d and f.;wvn a W r]w
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L
W=a+8lnT+ Z [ﬂmf,;{ﬂ.T] sin{né 4+ v, ) + b, Ny(nT") sin(nd + 0

n=1

where a. 3, ¢, by, v, and 8, are real constants and Jy and Ny are regular
irregular Bessel functions of the zeroth order. The special case of fiomogens
model is given by @ = % and @, =0 = b, and corresponds to the flat Kag

solution deseribed as:
) a ) oy o0 -s
ds® = —dT= + de” + Tde” + dy~ (3
It can be shown that the curvature invatant = R opea 8 Blows i alimg

everywhere as I — 0. The solutions are therefare generically singular. Howe
for the special choice,

..

B | e

the curvature invariant remains bounded and all components of 7. Lave fig
limit as T — 0. It can also be shown that these nonsingular solutions are ans
ically extendible |25] but are causally ill-behaved (have closed time-like curves)]
the extended portion. Thus there exists a infinite number of nonsingnlar solutjd
which however form a set of measure zero in the space of solutions, Curvaty
unboundedness is the generic behaviour,

The approach to classical singularity is well studied and is known to follg
a special case of the BKL scenario known as asymptotically velocity term dog
wated near singularity (AVTDS) |27]. At late times, the model is known tol
asymptotically homogeneous [28].

These models have been analysed in the canonical framework in both mel
variables as well as in terms of the complex Ashtekar variables. The first attem
of quantization, were carried out in ADM variables in [29, 30]. Another approag
which has heen more successful was based on an mteresting property of the modg
After a suitable (partial) gauge fixing. these models can be described by (modi
a remaining global constraint) a “point particle” degree of freedom and by a sc
field @ which is subject to the same equations of motion as a massless, rotational
symmetrie, [ree scalar field propagating in a fictitions two dimensional ex pandig
torus. This equivalence was used in the quantization carried out in [31]. Subst
quent analysis has been carried out in a large number of works some of whicl |
listed in |32. 33, 34, 35, 36]. However in these quantizations, the evolution turns
out to be non-unitary and in [37, 38, 39, 40, ~'11| a new parametrization was int
duced which implemented unitary evolution in quantum theory. More recently
hybrid quantization wherein the homogeneous modes are loop quantized while th



inhomogeneous ones are Fock quantized, has been proposed |42, elaiming that loop
quantization of the homogeneous modes suffices to resolve the Gowdy singularity.

In the next section we will briefly look at the construction of unpolarized Gowdy
T maodel in Ashtekar variables.

3.3 Gowdy 7” Model in Ashtekar Variables

Canonical quantization of wnpolarised Gowdy T model in terms of the complex
Ashtekar variables has been given in [43] and [44] which we will briefly sketeh helow
in terms of the real Ashtekar variables.

Recall that owing to global hyperbolicity the spacetime can be decomposed as
M =Z, @R, Let the coordinates of £, be (f, 2, ). Let the two commuting Killing
wvectors he £ = % and £3 = %. This implies that the Lie derivatives along these
two Killing vectors vanish i.e.

EEI ’1L . 0 = EEI E:!

'EEE ‘4:1 = 0 = E{z E:!
The phase space variables are therefore only functions of #. The Gauss and the
Differ constraint reduce to

Gy = hE! +eALE} (3.7)
Vo = (GLADE! — (8eAL) B! + ¢ AL ALE! (3.8)

The combination that generates spatial diffeomorphisms known as the Vector con-
straamt 18 given by

& = ATV,
= AUOpE]) — (0. A} E! + (9y AL E! (3.9)

© We now impose the following Gauge fixing conditions:
B =0 =F¢ ¢ po=g gy =19 (3.10)
The constraints (¢ and €, are then solved by
Ay =0 = A3 (3.11)

Thus only one Gauss constraint (G4 := G.) and one diffeomorphism constraint
along the # direction (Cy = ') remain along with the Hamiltonian constraint,
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These are given by:

R e oo : . _
G —_— h_—_ [fjff E_-: + Fh‘lh .'i :,‘i Ei‘] : F.JJI'L i= r;‘l.-lh
1 P I v TR i
g = hT |I:LJ(;_1|,';} E; < 5 r'_,-'r ,"I;TJE-},I-.’I;: = H';r'."lfj{:rul 3
l 1 : i 4 L T g i
H = o[ 2AJEIATE, + AJESARES — 4 KELALES

2 \/]deLE]

= 26,0 B B — (1++°) (2K ELKCTER 4 K, ESK}Ef, — KB

Since none of the quantities depend on « or y we can integrate over the T2
write the symplectic structure and the total Hamiltonian as-

1772 .
0 = f—' dff (dAj A dE] +dAT A dE?) (3,
(P - |
Hyy = dn° / a0 {N'G+ N'C + NH} (3

Note that this is basically a one dimensional theory, In one dimension. un
orientation preserving coordinate transformations. a tensor densi ty of contravar;
rank p, covariant rank ¢ and weight w, can he thought of as a sealar density
weight = w+g—p. Hence under the 6 coordinate transformation 25 transforms
a scalar. E's transform as scalar densities of weight 1, Aj transforms as a sc
density of weight 1 and ,4:,’5 transform as sealars.

3.4 Choice of New Variables

The results presented in this and the subsequent sections of this chapter are b;
on [45]. We will rewrite the model in terms of variables which turn owt to be m
convenient for loop quantization. Note that for each p, the Al and EY. rot
among themselves under the /(1) gauge transformations generated by the Ga
constraint. These suggest that we can perform canonical transformations to de i
the following variables |46]:

EYf = Efcosfd v ES =FEsinf (3.1
El = —FE'sing : B = E¥cos B (3.1
A, = A cos(a+ ) p AL = A sin(a + 3) (3.1
Al = A sin(a+3) A% = A, cos(@ + ) (3.20

The angles for the connection components are introduced in s particular fash
for later convenience.



The radial coordinates, £, EY, A, A,, are gauge invariant and always strictly
positive (vanishing radial coordinates correspond to trivial symmetry orbit which
is ignored).

In terms of these variables, the symplectic structure (3.15) gets expressed as:
4o

0= el KL [dAf A dES +dX AdE" +dY AdEY +d3 AdP? +d3 A dP7]

L4] (3.21)
)]
X = Agcos(a) v Y= A cos(@) (3.22)
P = —ETA,sin(a) ; P?:=—EYAysin(a) (3.23)

d @ are gauge invariant. From now on we will absorh the 477 and use w' =
Gy

It is convenient to make a further canonical transformation;

£ 3-8 . n=0+73 (3.24)
g _ piA L 3
oo B o PP

7 : 5 (3.25)

In terms of these variables the Gauss and the diffeomorphism constraints can
be written as:

= ﬁiﬂ[ﬁn-ﬂi’-ﬂp”] (3.26)
ot

. I i

C = = [OnX)E" + (DY) E" — (0 B A + (0m) P" + (96 P] (3.27)

amiltonian constraint is complicated but after putting K = {47 — ')/,
tuting the explicit expressions of I, and further simplification, turns ant to
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by

H= -— R [F”{q ET + Y EVdan + (X E* = Y EMile — 2P0, (lu -
2K 1,_.-*_.1_-,

+  2P"dy In Ef + (tan§) :':Jmf]} - E{[r:u.ﬂjﬁj (XE"YE* + (P — (P

-+ l AR e L"'-'JFEI' !-H} i l:blllgf { (XEX4+ VY L-'”]P'r‘ (XE™ — }[:'1']
4 ( d{JE-ijj ]g B (E”!:}yl., (E'{;C].r;“llll Pj.'.l'lll.-' Ex ) ) 2
' cosg {cos &)

1 % ( IJ""T"EII F”i')
e VE [
wlere B = |ESE*E¥(cos )],
Under the action of the diffeomorphism constraint X, ¥, £,y and € transfo
as scalars while 7, E¥, A5, P" and Pf transform as scalar 1!1_11.\111% of weight
This completes the deseription of the unpolarised Gowdy 7% Mode) in the v
ables we have defined, The number of canonical field variables is 10 while th
is a 3-fold infinity of first class constraints. There are therefore 2 field degr
of freedom. We now need to impose two second class constraints such that
number of field degrees of freedom are reduced from two to one (as it should |
the polarized case).

3.5 Reduction to Polarized model

In terms of the variables defined above, the spatial 3-metric is given by,

e E{J E_u R EH El ) -F-{!
= df? + — —_da? + = dy® — 2
E} cosé BT cos € BY ros

T
ds™ = r.r'md;

sin€ dady (3

u"n

For the Killing vectors @/8r and @/dy to be orthogonal to each other, the d:
term in the metric should be zero. This implies that the polarization conditi
is implemented by restricting to £ = () sub-manifold of the phase space of
unpolarized model, For getting a non-degenerate symplectic structure, one ne
to have one more condition. This condition should be chosen consistently in
following sense,

We expect the two conditions to reduce a field degree of freedom. This can
viewed in two equivalent ways. The condition £ = 0 makes the metric diago
and this property should be preserved under evolution (i.e. the extrinsic curvat
should also be diagonal). Alternatively, the unpolarized model is a constraing




system and we want to impose two conditions such that one physical (field) degree
of freedom is reduced, The extra conditions to be imposed should therefore be first
elass with respect to the constraints of the unpolarized model e, should weakly
Poisson-commute with them
The choice £ = 0 also requires E5 > 0 for the spatial metric to Lhave signature
(+, 4+, +). The choice £ = 7 would require £ < 0. From now on £ > 0 will be
~assumed. We shall take £ = () as a constraint and demand its preservation under
the evolution generated by the total Hamiltonian, Since £ = 0 weakly Poisson
commutes with the Gauss and the diffeomorphism constraints, only the Poisson
hracket with the Hamiltonian constraint is needed.

gl =0 , {£(8), / dO' N0V H (6"} = 0 (3.30)
It follows that,
E0)=0 = x(f):=2P+ E}gy(ln EV/E*) =0 (3.31)

The Poisson Bracket of y with the Hamiltonian turns out to be zero on the con-
straint surface ie. v = y = 0. Thus, the reduction to the Polarized model is
abtained by imposing the two polarization constraints

E=0 ; x=0  {&08).x(0)} = 2ky0(6 — ) (3.52)

:1 The fact that the y = 0 condition follows from preservation of g,, = (. cau
ﬁlia seen by noting that for the present case, it implies that g, ~ Ky, = Kiel (=
: 'I’f’} = (). Using the definition K} = 'T"{A‘ — I} and putting in the explicit
h ressions one can check directly that K., =0 x = 0. Note that this is not
quivalent to reguiring orthogonality of components of the connection, ALA, =0
. __Gh would imply & = @ (see equs.  (3.19 and 3.20). This condition is not
preserved under evolution.

It follows from (3.26) that {x.G} =0 And using (3.27), one can see that :

,{'@fﬁ!”f‘u} = N'Ge =0 |, {1 /N”Cﬂ} = BN =0. (3.33)

We can solve the polarization constraints strongly and use Dirac brackets, Sym-

ically,
hor ={ra - 8ol olua - e{ue " oley)

@ denotes appropriate integrations since we have field degrees of freedom.
Since the polarization constraints weakly commute with all the other con-



straints, the constraint algebra in terms of Dirac brackets 15 same as that in’

of the Poisson brackets and thus remains unafected. Furthermore, equati

motions for all the variables other than £, P also remain unaffected. We can
set the polarization constraints strongly equal to zero in all the EXPIESSIONS
continne to use the original Poisson brackets.

The expressions of the constraints stmplify greatly. In particular the Ha
nian constraint simplifies to.

: v 1 (kv ()* —_—" i
H = _QT ‘J{E- [ _E_ 1= (f‘iE -+ YL#}E:{L‘HH

9
5,

e 2{.1{5"'1'-15” = {_\LE? + }'FEF}_EEH;} i {;—{['L}HE?\J'J - (E?L’H llll::E""a."'

L1y JRE (9B — k9G)
Big, VE

where £ = |ES|E¥Ev,
£, has also been eliminated in terms of the Gauss constraint using
2P = (kyG — By EY).
Note that i is translated under a gauge transformation. we can therefore
toany constant and fix the gauge transformation freedom. Explicitly. impasing

0 as a constraint, we can fix the A from preservation of 1

1s gange fixing condit
Once ag:

un we can use Dirac brackets with respect. to the Gauss constraint
the i = 0 constraint and impose these constraints strongly. Then the he first |
terms and the & dependent piece in the last term in the Hamiltonian, drop!
and so do the degrees of freedom 7, Py We are left with six canonical degre
freedom and the two first class constraints. leaving one field degree of freed

Thus our final variables and constraints for the polarized Gowdy model are (w
!
B =)

E=E, | A=#143
Ki=~"1X Ky i=w"1 (33
The Poisson brackets are given by

(K. 0), E"(#)} = né(0—#)

and similarly for (K, EY), (A4, &) pairs.




The explicit expressions of the remaining constraints are

o = [{aﬂﬁ;}ﬁ:*+{a,;ﬁ;,}Ev—{aE5}A] (3.37)

===

g

_.w’ﬁ,‘:{ (BEY: — (Edp(In(EY) EX))) }+dﬂ(‘€j‘§ﬂ (3.38)

H = {ﬁ ET K, E") + (K. E* + K,EY) .A}

The constraint algebra among the C[NY], H[N] is:

H {CIN? oM} = O N'8M* — MP3,N? ] (3.39)
[ CIN| ,HIN|} = H[ N3N | (3.40)
{ HIM] ,H[N]} = C[(M&N—-NMEE™ ] (3.41)

‘Since each term in the Hamiltonian constraint is a scalar density of weight +1 and
each term in the diffeomorphism constraint is of density weight +2. the first two
brackets are easily verified, The last one also follows with a bit longer computa-
tion. We have thus verified the constraint algebra of polarized model showing the
consistency of the reduction procedure.

This completes the construction of the Polarized Gowdy T model in the vari-
~ables which we had defined. Before proceeding with quantization we will first
reconstruct the classical spacetime solutions in the next section.

3.6 Space-time construction

The next task is to find the set of gauge ineguivalent solutions of the Hamilton's
gquations of motion, satisfying the two sets of constraints and obtain the space-time
mterpretation. The total Hamiltonian being a constraint. the Lagrange multipliers
= the lapse function and the shift vector - also enter in the Hamilton's equations of
motion. These need to be either preseribed or deduced via a gange-fixing procedure.
Onee this is done, one can ohtain the solution curves in the phase space with “initial
points” lving on the constrained surface.

3.6.1 Solutions with a Chosen Lapse and Shift
The space-time metric, solving Einstein equation is paramatrized by,
ds* = — Nt 2t )di? + gyt o) (det — NY(E ot )dt) (de? — N2 (o)) (3.42)

ﬁn‘ our case, the metric is diagonal, (', 2%, 2%) « (.1, y), N* — (N, 0.0) and
he metric is independent of the coordinates (x,y). The t+ = constant. hyper-
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surfaces are diffeomorphic to the 3-torus. The metric components are given
gop = EFEVET! = BER g, = EEV/E®, §, = EE?/EY (eq.(3.29)). The G
form of the metric (3.1) is realized if one preseribes N = 0 and N2 = -

Such a preseription is eminently consistent since any metric on a 2 dimensig
manifold {coordinatized by ( t.0)), can always be (locally) chosen to be conform
flat. This however does not fix the coordinates ¢, 0 completely — one can still
the conformal diffeomorphisms: ¢ — ' = ¢ 4 !y, ), 60 — 0" =8+ £(1.0) wit
satistying the conformal Killing equations: 8,6 — 3,68 = 0 = € — hEY.

We will first take the above prescription for the lapse and the shift. ailt
the Hamilton's equations of motion, use the freedom of conformal diffecinorphi
and reduce the equations to those given in section (3.2). Subsequently, we will ;
determine gauge fixing functions to arrive at the same result. This will eompl
the identification of inequivalent solutions of the Einstein equation,

With the choices N? = 0, N = VEE~, the space-time metric (3.42) is

st = EE2 (—dt? +at?) + £ [ Lqn? + 2 g2 &
ass = 5 (.‘ —+ ]+. —ET e —|——€;r.g (3.1

and the time evolution is governed by the Hamiltonian given by,

HIETWE] = L. / clf! [—%{ER}EIH”E"} + (KLE* + Ii',,E-”]EA} (3.4
F
E Losanm s T VE . (E3E
- E{{ﬂaf]" — (Edp(In( BV E*)))* } : Td” (%)
[n anticipation let us define 21V = In(EY/£7) and 20 = In(EFEY/E). Then
E;=£WMH+M}
EH —1 3 ==
I = & {IKJ.E -r.v‘q.tf:]
£ = (IGE" 4+ K,EY)
Therefore
. . Ew (AL BT — K,EY) :
20 = In — = ! (3.4
20,1 & In 7 5 43
7Ty
2ha = O lu Er = ZA (3.4



The Poisson brackets of K, £7, I, EV with the Hamiltonian are given by,

1
{K.E°, HIE"\WVE]} = 5% (Edﬂln )+ G2 (3.47)
i

(K,EY HIETWE]) = —%aﬂ (ga.g In %) +55r;f£ (3.48)

(3.49)

This implies
.. EY

[K E* -~ KBV HEWE]} = & (saumF) (3,30)
{K.E* + K,E¥, HE\WE]|} = 8% (3.51)

From these, we get second order equations for £ . 1 as.
L = ;:FE (3.52)
! 1, S— -
aW = E?g{ EdyW) — (Edzf) i (3.53)
The equation for £ is a simple wave equation and given a solution of this, the
equation for W can be solved determining W or the ratio EY/E*. From the first
order equations. one determines the K, ™+ I, EY as well. The Hamiltonian con-

straint then determines A in terms of known quantities, £, W and the #-derivatives
of a. Using the equation dhe = A, one obtains,

19, & Gk, 1(%E)*  RE

— — —--'— ; .¢r' " 5
Dy A T ﬂf: ([dlﬁ} + () }) ﬂtf.'d 160, + D, (3.54)

One can also obtain, by direct computation and using the diffeomorphism con-
straint,

tha = 2 WgW — —dha

hE £ & 28+
iﬁl‘om these two equations, one can obtain fha, dia in terms of & and W which
#En be integrated. Thus the metric can be completely determined starting from a
solution for £.

 However, all these solutions are not gauge inequivalent corresponding to the
31(:15 that the coordinates can still be subjected to conformal diffeomorphisms.
ﬂhder these coordinate transformations, £ which is the determinant of the metrie
on the symmetry torus, is a scalar. Under conformal diffeomorphisms, the wave
__ratnr gets scaled by a prefactor. Hence, under the transformations generated
v conformal Killing vectors, solutions of the wave equation transform among

EQE
dﬂﬁ :_’] E: f}r g } [3.55}

==
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themselves. In fact the conformal Killing vectors also satisfy the wave cqu_
and on the evlinder (1, #). both £ and &£ satisly the same houndary conditig
Thus. their general solutions are linear combinations of explin(t £ 0)}.n £ 04
a solution of the form A + Bt. The Killing vectors however satisfy first
coupled equations. This remaoves the f-independent. linear in f plece from
general solution. Consequently, one ean nse conformal diffeornorphisms to remg
the f-dependence from the solutions for £ as well as the constant piece. In off
waords, all solutions for £, except £ = #¢ are related to eacl) other by conforg
diffeomorphisms. The gauge inequivalent solutions are thus obtained from §
choice £ = t. Equivalently, one has finally fixed the (£, 8) coordinates complets
The time coordinate so fixed will be denoted bv T

With this choice, £ = T, the constraints also simplify to,

0 = E(QW)*—E (K. E*K,E" + (K.E* + K,E¥) AE) (3
0 = EOK,+ B'&K, (33

one gets AL ET + K EY = 1 and the equations (3.53, 3.54, 3.55) go over to
equations (3.2, 3.3) in section 3.2.

Remark:
Up to the derivation of the equations for £ and W, the constraiuts are not us
The T topology has also not been nsed! Thus these expressions are also valid §
polarized versions of Gowdv models with other topologies. In Gowdy's origig
analysis, the three allowed topologies are cistinguished by different choices of sol
tions of the equation for £ (R, the determinant of the two metric on the T orhif
in Gowdy’s notation). The different topologies get distinguished by the boun
ary conditions on £ and on the conformal Killing vectors. For non-7" topologd
# € [0,7] and £€,£" have to vanish at the end-points. With these taken into s

count, the gange inequivalent solutions are obtained by choosing £ = sin(#) sind
|24).

3.6.2  Solutions via Gauge Fixing on Phase Space

We reproduced the known resnlts by obtaining the solutions of the Hamiltod
equations with chosen lapse and shift, motivated by comparison with the Spacs
time form of Gowdy model, and invoking the ‘residual’ frecdom in the space-tinl
coordinates to obtain the gange inequivalent solutions. Thus we used (he canonic
structure as well as the anticipated form of space-time geometry to arrive at {h
distinet solutions. We would like to see if the same result ean also be derived I
using only the phase space view.

Within a phase space view, the lapse and the shift are to be determined _
doing an explicit gauge fixing. To do this, we will keep the lapse and the shift 4



unspecified and look at the evolution generated by the total Hamiltonian,
.
Hiy [N N| = = / dON? { E* 0y K, + EVay I, — AL}

1 e -
h /'f}fﬂ'"\" f{“" BT R EY) + (R E™ + K E“‘}E.ﬁi}

Lj_{ (hE)* — (Edp(In(EY] E*))) } o (5‘?5)] (3.58)

Denoting by over-dots, the Poisson brackets with the total Hamiltonian, it is
straight forward to see,

’fE: " %{I{UE” +AE) + '51":,::# (3.50)

g B %{K'IE“+A£)+HH—U¥—} (3.60)

g = %{fﬁﬂf + K, EY) + IV0eE (3.61)

(K, E*) = %a { :'% (Eag In E + dgg) } + By(N KL E®) (3.62)
(K, Bv) = éf} { :é ( £y I -gj + aﬂa) } +8(NUK,EYY  (3.63)

i s NE r )
(KB + K, Ev) = {ngs} + 8 {N° (K. E™ + K, E¥)} (3.64)
3 NE s e S i oo
£ = 5 (K E* + K,B¥) + N3, (3.65)
NE EY

(K E* — K, Ev) = a{ EdyIn —

JE o

Ev W e s EY
(111 E) = \—@ [IiJ-E - K .[.#} + N dgln L_ (3.67)

~ The first two equations above show that we can consistently impose K, F* +
I EY = ), a constant, and &€ = 0 as two gange fixing conditions. Preservation
the first leads to N¥ = f(t) while that of the second leads to NE/VE = g(t).
ee hE = ) already requires £ to be a function of § alone, we can al:rvngtlwn
auge fixing condition by specifving £ = t. This determines N = (v EE-

Evidently, we must have a non-zero lapse and therefore € # 0 must he rhnﬁpn.

} + 8y {N? (K, E* — K,E")} (3.66)

a0



The sign of C, will determine if € increases or decreases with ¢ and by conveg
we can take the sign to be positive and without any loss of generality, we
'y = +1 and denote the ¢ by T as hefore,

The shift is however determined to be a funetion of 7" alone. With such i
C[NY| = f(T) [ C generates T-dependent translations of the f-coordinate)
tensor densities on the spatial slice, transform as scalars under these translag
and there is no way to fix the left over constraint | €. by any gauge fixing condi
However, we can always redefine the f-coordinate such that d6— Jlit)dt =: d}
means that solutions inequivalent with respect to translations, can be determ
by effectively choosing shift = (. Incidentally, for other admissible topologies
shift has to vanish at # = 0.7 and Lence flt) = 0is the only admissible soluf
We have thus achieved our goal of determining the seme lapse and shift. by exp
gauge fixing. The inequivalent solutions are then obtained as in seetion 3.2,

One can make the physical degrees of freedom explicit by noting that 2J
In(£Y/E*) and 7y = K, E* — Ky E" are canonically conjugate, Similarly,
—In{E*EV) and 75 1= K, E*+ I, B are also conjugate variables, The aange fif
conditions are: £ =T, 7 = 1 while the gauge-fixed form of constraints beco

& = |TT-||,-'€).5]I'|L -+ f.j'ﬂ{'?]

1 — iy

[__-_ — A+ T(g,W)*

Fl=F | =

(rVE)# =

The Hamiltonian constraint determines A completely in terms of W, 7y
the diffeomorphism constraints determines the @ except for the homogeneons
mdependent) part. The periodicity of @ also requires the [ ayd1l” = () wli
is & constraint on the W, my. The physical degrees of freedom are thus deseril
by 17 mye together with ane constraint and the homogeneous pieces of @, m;.
gauge lixing has fixed the homogeneous part of #; to be 1. These are of course]
well known results [44].

Observe that in the homogeneous limit (all variables independent of #), one g
the Bianchi I model. The Hamiltonian constraint. for each @ looks like a Bian
model with a potential and is highly suggestive of the BKL scenario and has b
explored numerically as well [47].

3.7 Discussion

In this chapter we did two main reformulations of the polarized Gowdy mode
real connection variables.

o I'irst is the choiee of the gauge invariant variables: Az Ay, BT, B o 51
the subsequent canonical transformation to the variables X. V. P Pr T




hias already been done in the case of spherical symmetry and also mentioned
for cylindrical waves in [46]. The main advantages of these variables are
that the volume becomes a functional of the momenta variables alone and
the componenis of the connection along the homogeneous directions are sep-
arated neatly and gauge invariantly, into extrinsic curvature components
(X, Y) and the spin-connection components (I, T',). In the next chapter we
will see that in the quantum theory, both the features allow a simpler choice
of edge and point holonomies, simpler form for the volume operator and also
a more tractable form of the Hamiltonian constraint.

The second aspect, obtains the polarized model from the unpolarized by
a simple systematic reduction (Dirvac procedure} ensuring a consistent re-
duction at the level of physical degrees of freedom. Getting this reduction
consistently is important since the form of the reduced constraints, depend
on the reducing conditions. In contrast to the second polarization condition
mentioned in the literature, namely orthogonality of the connection compo-
nents in analogy with that of the triad components, our v = I condition.
(3.31) is consistent with dynamies. The consistency is seen in three ways:

— [rom a systematic derivation
— verifying the constraint algebra of the reduced constraints
— reproducing the known space-times, obtained by directly solving the

Finstein equations for polarized ansatz.

We are thus confident to use these constraint expressions in the passage 1o
quantization which will be described in the next chapter.
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In this chapter, we specifically focus on the loop quantization of the Gowdy model
The methods and steps used here follow closely those used in LQG and are to i
viewed as first steps towards constructing a backeround independent quantum
theory of the Gowdy model. Analogous steps have been carried out in the Cast)
of spherical symmetry |46, 48]. The work presented in this chapter is based upon
[44].

As seen in the previous chapter, the classically reduced Gowdy model has all
the ingredients of the full general relativity: it is a generally covariant field thes v
on F o ST, its basic fields are O-forms and connection 1-forms, it has the three sets!
of lirst class constraints — Gauss, diffeo and Hamiltonian, 1t is simpler than the full
L -+ 3 dimensional theory in that its graphs will be 1-dimensional., its gange group)
is Abelian (7(1)] and flux or triad representation exist (so the volume operator
is simpler), It differs from the full theory in that certain Hmits available in the
full theory are not available here. For example, in the full theory one gets back
the classical expression of the constraints in the limit of shrinking the tetraledr
to their base points (continuum limit), This also shrinks the loops appearing in
the (edge) holonomies, thereby ensuring that the exponents in the holonomies can
be taken to be small. In the reduced theory, however, we have point holonomies
and the exponents are not necessarily small in the continuum limit., (When the
exponents ere components of extrinsic curvature, they are indeed small in the
classical regime as is the case in the present context.) Nevertheless. the strategies
of background independent quantization continue to be available and are discussed
below in detail.

In section (4.1}, we will introduce the basic notation to be used in this chapter.
In section (4.2), we define the basic states, the flux operators in section (4.3),
Alter defining the basic quantum variables we look at the construction of the
more general operators in section (4.4). In section (4.3) we will carry ont the



regularization of the Hamiltonian constraint. We make specific choices for the
partitions as well as for transeribing the expressions in terms of the basic variables.
Section (4.6) is devoted to the action of the Hamiltonian constraint on hasis states.
Section (4.7) contains a discussion of ambiguities in the transeriptions as well as
in the choices of partitions. These have a bearing on incorporating the spatial
correlations in the classical constraint [spatial derivatives) also in the gquantum
OpeTaton.

4.1 Notation and Preliminary remarks

[n this section we will state the results from the previous chapier rewritten in the
notation to be used for Loop quantization. The basic canonical variables are a

real, SU(2) connection A := Al mde’ and a densitized triad F = 7 E28, with the
Poisson bracket given by {.‘Hl:',(;r},E_%'[y‘,l} = {ETI'G;\;,.W.,,,,]I’Tﬁﬁ:@;ﬁ:’(:n, y). There are

three sets of constraints which can be conveniently presented in matrix notation
as follows. Introduce:

= BrGnewten » T = —i0yf2 |, T o= — (L4050 + (1/2)e,07,
A, = A% . Efi=FEfr | Fyi=0,4,— 0,4, 4 [Ae, 4] L (4.1)
Then,
Glz) = G = %i&ﬂﬁ"‘—i-{ﬂa,ﬁ‘“]] (4.2)
gilg) = H__iﬁl_[(—zm{mﬂgﬂ—,am}] (4.3)
H) = S(detEe))™> [(~Tr)(FulE*, £)

—2(1 +4°) (Tr(E*K,) TY(£°K,) — Tr( B K, Tr( E'K, )| (4:4)
For the polarized Gowdy model, the connection and triad variables get re-

stricted to satisty Ef = EY = Ef = E§ =0, Al = A} = 4} = 437 = 0. These can
then be expressed in the form:

8] = cosB(f) 7 +sinF(8) 7. 7 (0) := —sin 3(#) 7y + cos H{H) 7> (4.5)
AlB) = AB) + {:—Iw}xw} 3 ryqﬂ}ﬁ:[rﬂ} dr + {n,{rm'wj + .3.(9)17'[31} dy

(4.6)
E(f) = m&(0) &y + m(0)E7(0) 9, + ,(0) EY(#) 4, (4.7)

In the above, we have essentially defined ) ._ , Efr® i= E%r. 5, Ef7! =
EVry and demanded that 77 = —(1/4) = 7. It follows that [r.7,] = 7 off
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polarization condition, 37, , E¥E¥ = 0, holds. This allows us to identity B
as the magnitudes of the two dimensional vectors £=. £ and mtroduce an ang
coordinate 3 so that £ 1= E* cos 3, B3 = E*sin 3, EY = —gin 4. EY := Fvo
From these, the definitions of the S—dependent T matrices follows. The mat
E2{f) are now “diagonal” for each 0. This faci together with the propertis
- —:Jq-]u ndent 7 matrices, simplifies the computations. In p-—lITll?[ILlr the co-t

*, the spin connection I and the extrinsic eurvature K = ~ WA—T) are obtai
as,

== % . %T;{fi‘ * %_HT_UJF-. E = E*RY|E| [
I' = 7T3d0 + 7T da + L where,
: ) 1B ca FHR e 1 Ef 1 Ew
rf% = "r-'J{J- Frg: = a j_‘_,: d{.l In (Ll!:ﬁ) o | o= I_J E-‘J’ U]bl I (EH )
T = 7w (A4 &H3) db + (7. X + T.,f:'i —Ta)) do 4+ (7Y + 1, ¥ = Tyl dy

(4

The preservation of the iml,tr;?atmn muf_h!mn m equivalently diagonal form

the extrinsic enrvature K requires, X = I, ':

Thus, the hasic variab Ie P \ Y. A, ni= rmrl L“ FJ £, P" with the | st
brackets of the form {X, F* } = (2G nowion /7 )176(0 — We lmw relabelled 4
1 for eonformity with rhe notation of the previous L]l:LpTPI (modulo a factor of

As before, putting v’ := #/(472), the constraints take the form.

; L v 1o
GI = (-.-'f:i = _.l' [If-ilf.llb = F'I] |:'£-]
T
(__rf_l = = [E‘ri;iﬂ.'f | Er'lf'_f.rg} = Jifj,rgrf e Pr}ﬂﬁ”] [4.1
K’
11 — .
= == 7 { (XNEYYEY + AE(X E™ + YV EY) +EGn( X E* + Y EY))
Ky

) i :2 (1'
—E"'rIE-"l‘yJ 3 ﬂe{ 7 ]}_ =1 (v”f)

It is obvions from these definitions that X, ¥, £, nare sealars while £7, Fv, A,
are scalar densities of weight 1, The Gauss constraint shows that A transforis
a U1} connection while 1 is franslated by the gauge parameter. All other variable
are gauge invariant,




; 4.2 Basic States

: The configuration variable A is a /(1) connection 1-form, so we integrate it along
an edge (an arc along the S*) and by taking its exponential we define the (edge)

’; holonomy variable valued in U(1):

:l e 'IL -

| AV LAY = expliz [ A)keZ (4.14)
The integer label & denotes the representation and the factor of 1/2 is introduced

} jm‘ later convenience. The Hilbert space can be constructed via projective families

labelled by closed, oriented graphs in §'. The graphs are just n arcs with n verticoes.
Associated with each are is an edge holonomy in the ﬂ?:l’i*hﬁﬂl’dtlﬂll k. For a given
graph 7, consider functions ¢ of n group elements b, and define an inner
) ]_:mduct using the Haar measure on U7(1). The pro JE'{THE." methodq then allow one
tu obtain the Hllhr:rl. space as a completion of the projective limits of the graph
) " The cmlﬁgumtmn variables X, Y € B and y € R/Z are scalars and hence no
smearing is needed. For these we define the point holonomies {at points v}

:
AP(X) = exj}h'%ﬁ'{?!]} (4.15)

1 - &

; MUY) = expl(izY(v)) (4.16)
hn) = explidn(v)) (4.17)

were v £ B oand A € E,

Again. the factor of 1/2 is introduced for later convenience. A similar factor
ﬂ not introduced for the n holonomy since 7 is already an angle. The X,V point
onomies are interpreted as unitary representation of the compact, Abelian group
i Which is the Bohr compactification of the additive group of real numbers, [,

- Note

The functions {exp(ipX),pu € R} form a separating set of functions to sepa-
ate points in B. These are also characters of the topological group B, Their
ite linear combinations give almost periodic functions of X. From these one
ructs i commutative C* algebra with unity. The spectrum of this algebra
ppens to be the Bohr compactification, Rpop,, of the topological group B Its
(unitary) irreducible representations are one dimensional and are labelled by real
mbers. The point holonomies are the representatives.  The Haar measure on
1:]113 compact group can be presented as: limg_..o 55 JF'I;._ With this measure,
the Hilbert space of funcnﬂns on the group is defined via the inner produet:

(Fg) = limg_ 3= [T dX f*(X)g(X).
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The representation labels j1, v take values in R, By contrast, 5 is an angle
able. so the corresponding point holonomy is valued in 7(1). The representat
label then takes only integer values, A € Z. The corresponding Hilbert sp
are constrocted again via projective families — now lahelled by finite sets of po
which can be taken to be the vertices of the graphs used in the previous parag

The kinematical Hilbert space for the model is thus a tensor product of
Hilbert spaces constructed for A, X, Y, n variables. A conveniont orthonormal |
for this is provided by the “charge network functions” which are labelled by ad
oriented graph G with n edges ¢ and n vertices v, a U(1) representation &, for e
cdge, a U(1) representation A, € Z for cach vertex and Epy, representations i,
for each vertex:

T:._-_-__,E_“-J;I_;['A..-"ﬁ:.}'.?l,l} S HL:,,_H:"":'] H Pl (X0 ) o, (R (Y)Y A O )
eels

=S |

- Hf-rxp (s%’[ﬁl) H

vely - A

L o -I"r'l' F f
(exp (1’%};) exXp (:?} ) exp i:,"n..'f,lh) {41

where V{G) represents the set of vertices belonging to the graph G. The funct
with any of the labels different, are orthogonal - in particular two graphs m
coincide for non-zero inner product. These basis states provide an orthopon

decomposition for the kinematical Hilbert space when all the representation la
Are Non-gero,

4.3 Flux Operators
The conjugate variahles are ropresented as

1 o JJ‘J.,:’]:IJ\'} £
()~ —iyl2 410
EF(@)~ it gl X

(4.1

where (3 1= «'h.

The flux variables corresponding to £, Y, P" are defined by mtegrating th
densities on an interval T of the circle, o F, o = B Fuz = [, BY & being
scalar, is already a suitable variable, Their actions on the basis functions (4.1



1)

"}"Ef—, |ii'|-:+|:|l}:| -+ 'E:E_l_ﬂ']

S{H}Tﬂ-klﬂ-“-" = 9 2 Tﬂ'.i.‘..[u..:a,). [lz'ﬂ\?
fETTG-k.aw = 2 ¥ wTokumm (4.21)
: T weEViEInT
il V0 ,
E'Toruwy = 5 E Uk (4.22)
vt vEV(ENT
j ﬁ‘rrTG,k,u.u,.a == *ri?',i Z Aud Gk (4.23)
. vEV(ENT

pase, there is an additional factor of § for its contribution to the sum. This follows
because

if Ty € '[ﬂ.., |r.I::I;
if Tp= aoraz = b (4.24)

b
/ ded(z — xy) =
" if oz & [ﬂ,h].

3 el

o take both signs since they involve integrals which depend on the orientation.

This completes the specification of the kinematical Hilbert space together with
the representation of the basic background independent variables. Next we turn
to the construction of composite operators,

rvables) are integrals of expressions in terms of the basic operators. Secondly.
rators of interests also involve products of elementary operators at the same
f (same ) and thus need a “regularization”. As in LQG, the general strategy
efine such operators is

1. replace the integral by a Riemann sum using a “cell-decomposition™ (or par-
tition) of S

2. for each cell, define a regulated expression choosing suitable ordering of the
hasic operators and evaluate the action on hasis states:
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3. check “eylindrical consistency” of this action in (i) so that the (regulated) g
erator can be densely defined on the kineniatical Hilbert, space via projects
limit

4. finally one would like to remove the regulator.

One would like to do this in such a manner that the constructed limiting
erator has the same properties under the diffeomorphism. To achieve this, usul
one has to restrict the cell-decomposition in relation to a graph.

In the present case of one dimensional spatial manifold, both the cell-decan i
and the graphs underlying the basis states are characterised by fnitely many poil
and the arcs connecting the consecutive points. As in LQG [5, 6], the productss
elementary variables are regulated by using a “point splitting” and then EXPressl
the fields in terms of the appropriate Lolonomies and fluxes both of which
at most edges and at each point there are precisely two edges (in the full t
one needs edges as well as close loops and there can be an arbitrary numberf
these). A regulator, for each given graph G, then consists of a family of partitiol
MY, such that for each ¢, the partition is such that each vertex of & is containg
i exactly one cell !, There is also a choice of representation labels &y, pig, vyl
made which can be taken to be the same for all r. The regulat

ed expressions eg
structed depend on ¢ and are such

that one recovers the classical EXPressions i
the imit of removing the regulator (e — 0). There are of course infinitely may
such regulators. A diffeomorphism covariant regulator is one such that if undey
diffeomorphism the graph @ — ', then the corresponding partitions also tram
form similarly. Since each My can also be thought of as being defined by i g
of points such that each vertex is Hanked by two points (between two consecutiy
points, there need not he any vertex), any orientation preserving diffeomorphis
will automatically preserve the order of the vertices and cell boundaries. Every sik
ficiently refined partition then automatically
regulator. This is assumed in the following.
As in LQG, the issue af evlindrical consistency is automatically sorted out L
referring to the orthogonal decomposition of Hy,, i.e. by specifving the actiong
the operators on basis states with all representation labels being non-zero.
With these preliminaries. we proceed to define some specific operators of intes

becomes a diffeomorphism Covariayl

51,

4.4.1 Volume Operator

In the elassical expression [or the Hamiltonian constraint, powers of £ = |£|£*
occeur in the same manner as in the full theory. It is therefore natural to cons

'Note that this is one possible natural choice of a class of partitions adapted to a graph,

vertices of G always lie in the interior of the cells and some cells have no vertives. We disois
this Durther in the last sectian,



the expression for the volume of a region Z x T and construet the corresponding
operator. With the canonical variables chosen, the volume involves ouly the con-
jugate momenta whose quantization is already done. The volume operator written
in terms of the basic operators ;

VI xT? = / /G
IxT

-
lv .
= dx° / riﬁvﬁﬂﬁ"’ﬁ'-"’
it
ts Vi(T) = Z/M /E|E=Ev
of R
LE = - =
d & Zf\/|5{ﬁi]|\/Eﬂ'(ﬂi}\/E-’f[H
Y =
f‘ il
Z e Z \/ﬁv ey e BV
vl 31

i +e

|€1(67)

u

i+
/ Er‘l
o )

o/

The right hand side is expressed in terms of flux variables, so the regulated volume
aperator can be defined as:

=1

5‘-—

1, T .

w@ =Y V| [ 2|y| [ e (4.20)
111 e L I

-[_ ¥ a a 3 "

1t Clearly this is diagonal in the basis states. and its action on a basis state Tak G %

gives the eigenvalue,

. 1 ":r.i%—, filu"'.;.' . )
15.}7.!';.5 = _2 _';2"_ Z |f-"-r.'| |U|.'| |'{‘*c'"t1'] + "r"e."lfL"Jl [lzf}

VETOVIE)
Remarks:

e In the above, 7; denotes the " cell of the partition and #, denotes a point in
that cell - it need not he an end-point of the interval. We have also assumed

v, the “length of the intervals” to be same and equal to e. This corresponds to
i a “eubic” partition and is chosen for convenience only, We will always nuse
| such partitions in all the operators below.

e

o Although we could restrict to g0, > 0, it will be more convenient (eg in



the Hamiltonian constraint below) to allow both signs {corresponding to the!
orientation of the interval). The cigenvalues of the volume operator then
must have explicit absolute values. We have thus used the absolute valued

operators defined from the flux operators.

o Fora given graph, the partition (of T) is so chosen that each vertex is included
in one and only one interval Z,. For those intervals which contain no vertes
of the graph, there is no contribution Lo the summation since fux operators
have this property. Hence, the sum collapses to contributions only from the

vertices, independent of the partition. The action is manifestly independent

of € and even though the number of intervals go to infinity as ¢ — 0, the

action remains finite and well defined.

Because of this property of the fluxes, we can choose the #; point in a cell
to coincide with a vertex of a graph if Z; contains a vertex or an arbitrary
point if Z; does not contain a vertex. Such a choice will be nnderstood in the

following,

e For intervals T # §', a choice of diffea-covariant regulator retains the v
T N V(G and hence the action 18 diffeo-invariant. The cigenvalues are alsty
manifestly independent of “location labels® of the states. For the total volumg

(which is diffeo-invariant], the operator is manifestly diffeo-invariant.

4.4.2 Gauss Constraint

Consider the Gauss constraint (4.11):

G:{ = / EHJI[(.J‘HE T F”r}

L

|
M i1 e
[ (hE + F™ydt
J

Z U‘ P14+ E(0; +¢) — E{HJ} (4.28)
oI

=1 i
8y 5= "y / P4 E(0 +¢) — £(6) (4.2
i=l L°™!

Again, this is easily quantized with its action on @ basis state Tz 207 giving

the eigenvalue.

| [ In.'-- '_-Ji:,-—l: &
ﬁl"f-?r" Z \-}\Tl—i_ Er{”] 5 . T_:I-l

vV L)

e

NG % LI 82
£ i3
i
.
= ) % ""_,‘-}

=
i
e a]
.
=
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Notice that in the limit of infinitely fine partitions, for a given graph, if there is
a vertex v € Ty, then there is no verter in the adjacent cells. As a result, £(0,.,)
gives the k4 (v)/2 and —&(#;) gives —k.-()/2, since #; divides the same edge and
s does #,,.

Onee again, the eigenvalues are manifestly independent of ¢ and the action is
diffeo-invariant. Imposition of Gauss constraint can be done simply by restriction
to basis states with labels satisfying A, = < (ke — Ry )/2, ¥ € V(G). Since
Ay € L, the difference in the & labels at each vertex must be an even integer.
We will assume these restrictions on the representation labels and from now on
deal with gauge invariant basis states. The label X will be suppressed and terms
proportional to the Gauss law constraint in the Hamiltonian constraint will also
be dropped.

Substituting for A, for each of the vertices and rearranging the holonomy fac-
fors. one can write the gange invariant basis states are explicitly given by,

TL:,E_;;,J = H exp {.’%ﬂ [(,4{'9] - f}gir,r'}} H (E:{I} {i%.‘f[i'?} exp {i%?[?f]})

esll pEV (G
(4.31)

We have also used. n(v=(e}) — nlv~(e)) = [ dgn, where ¢=(e) denote the tip and
tail of the edge e.

4.5 Hamiltonian Constraint

The Hamiltonian constraint is a more complicated object. Let us write (4.13) as
a sum of a kinetic term and a potential term,

i

H = ——[Hy+ Hp (1.32)

; 1 !
Hy = l ] AON () —= [XE'Y BY + (A + 8pn) E(X E* + Y EY)] (4.33)
¥ Ja v E
1 B ()2 (BT O,Ev\?

Hp = — IN(0)—= | == (%E)* -

: /Sldmm}ﬁ[ L (00 + (F Eﬂ”

2£ mﬂ,g}] (1.34)

1
— dEN{8)=gy | ——=
/5 )3 “’[ VE

In the above we have used the expressions of [', and I', and suppressed the terms
dependent on the Ganss constraint which will drop out on gauge invariani ba-
sis states. Only Hy depends on the confisuration variables and all terms have
two powers of momenta in the numerator and the +F in the denominator whose
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vinishing is a potential problem,

The kinetic term has a structure similar to the Buclidean term in the Gull th
~ EET /g (but it is not the simplification of the Euclidean term of LOG).
will be treated in a manner similar to the full theory, using appropriate holonon
in the form hh,h; 'h_l Ye{h ', V) The remaining terms are funetions of 1o
alone and the E=Y* s treated using Poisson bracket of the volume with suit
holonomy,

Although the holonomies defined hefore, eg in the basis states (4.18), are
phases (Abelian gange theory), it is convenient to introduce their ST (2) val

analognes using the n dependent + matrices defined in eq. (4.1) and in eq. (4
Thus,

ho(T) = exp (Tg;].ﬂl(ﬂ’] Llf)') = Co8 (1 /.,4) f 273 sin (E / ;‘l)
N 5 ), 2 Jr

he(f)) = exp (moX(0) 7.(0)) = u.].s(‘?,’{mj Lo, (6) H;];(’;—"‘_k'.:ﬁ'|J
fy(0) 1= exp Y (#) n(0) = cu;-;(%ﬂ}'[ﬁ)) 27, (&) Hi]l(?}'r[ﬁ.])

(44

Each of the sin, cos are well defined on the kinematical Hilbert space (this
the reason for the factors of 1/2 in the definitions of the holonomies in the b
states) and therefore so are the above SU(2)-valued holonomies. The interval
will tvpically be a cell of a partition, (6.0, + €). The parameters o, b, are
chosen and lixed representations of R Bane, fo = 1 is the fixed representation of £
L7(1), while ¢ 15 a small parameter which will also play the role of the regulay
parameter. Let us also define, the volume function labelled by an interval T and

point # inside the interval:
j E* ‘/ E‘y‘ {4
+I 1

For brevity of notation we will suppress the label # and denote the above volm
[unction as V{(T).

Consider expression of the form Tr(h;hh; Yt by VEY) for distinet b,
taking values #, 2, y. For small values of X, Ijr A, the holonomies can he g
panded in a power series, Because of the trace, it is enough to expand ea
holonomy up to st order. The surviving terms are quadratic terms arising fror
products of the linear ones and a linear term coming from fi.. If ane mterchang
the ¢ < j holonomies, the linear term retains the sign while the quadratic o
changes the sign. Thus taking the difference of the two traces, leaves us with onl

/
VIZ, 0) = \/ £(6)]




the quadratic terms which are exactly of the form needed in Hy. Explicitly,

Tr [{ Bl @), (OVE () (8) — by (0)ho(0)R T ()R (B) } ha(Z) {5 N (), V(T)}]

x e X(71Y(#)E*(8)EY(d
~ (—? .“ﬂ”u) ©) [,]E'{H]Ini JEY) (4.37)

Tr [{ hy(0)ha()hy (0 + )hg (T) — ha(T)hy (0 + bz (T3 (6) }
he(6){ k7 (8). V(T)}]

o (L) YOO DINEGED)
Tr [{ holT)ha(0 + e)hy  (T)h; ' (0) — ha(0)ho(T)h "[H+F]h‘l[3} }
h(0){h51(6), V{Z)}]
Kl ' BY - ¢ X(EG E™(#

N (_?ﬂm) ¢ (A(8) + dn( g{g EGE(B) a0

In equations (4.38) and (4.39) T is the interval between # and # + e The
derivatives of o arise from the position dependence of the Te. Ty matrices which
satisfy:

Tl e) —Tll) = edym, = edyy 7, (H)
Tyl +e) —m0) = edyry, = — cdyn (0) {4.40)

Ine the above, we have also used:

Ry EB) By IY(H)EW)

=1 ¥ = e =z A——
P (0){ B (0)7, V(T 5 HoTe V(T) 5 HOTe JE®
. T Ky &g [ E* K EX(#)E(h)
h.y{f?’){h-y[ﬁ] 11 1! [I:]} = = 2 —1IT, i I-“'{JIIJ = — ?IJ“TH-——-EW
o N R ETLEY Wy EE(0)EV(6
.Ir!..[,l{hu .I [I:]} = — r} EW = — TtT;; E[{] { '-11
/A = eA(f) /E = BT () , [E” = eEV(1) (4.42)
o T oS0 o L
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In the quantization of the Hp, Hy, we also use the following identities rep
edly (in the form LHS/RHS = 1):

Z(T) = T | ha{b VY ho{by ' VD)) hedhD V(T)) ]
3 £\
= E T gt V()
Zo(Z) = e Tr [ ha{hy ', (VIT))™} hy{ly ", (V(T))2} ho{hD (V@)
=

3
(T) oo a3V (T)) =2
_ [ |:- }Hﬂ' II'£|::IF}

(L% o

)
These are essentially versions of the identity 1 = (ld':‘,%) [50].
Having noted the ingredients common to the quantization of the different i

of the Hamiltonian constraint, we turn to each one in explicit details.

4.5.1 Quantization of Hy

Choosing a partition of S with a sufficiently large number of n poiuts at ¢4
Lieow onfl, =27, =0, — @, we write the integral as a sum.,

Hpe == _Z eN( H}J

1 = l g F :
== —;'"\-iﬂ,)m[ﬁl:f:ﬂ} fFF :|+E[A+E)|'1TIP]E{T1[££. } -+ }{

= %ZHH}{—][\[E]([ ) '(é,}(fzﬁn),{.
(/ A+f]gﬂl) ﬁ}{ (8,) /. EI——Y[EJJ/L EHH_

From the equations {4.37, 4.38, 4.39), one sees immeodiately that [or small x-'zil:
ol the extrinsic curvature components (~ X, Y, classical regime) and snfficient]
refined partition (¢ < 1, continuum limit), the " term in the sum can be writte
in terms of the triaces of the SU7(2) valued holonomies. In other words, the expre
sion in terms of holonomies and Huxes, does go over to the classical expression
the classical regime and can be promoted to an operator by putting hats on t
holonomies and fluxes and replacing Poisson brackets by (ifi) ! times the com i
tators., Here, there are possibilities for choosing the ordering of various factors by
we will make the “standard choice” of putting the holonomies an the left. Thus

jHFﬂELHA+mmﬁXF Y E)| (7,




the regulated quantum operator corresponding to the kinetic piece is (suppressing
the hats on the holonomies and using /3 = x'h),

T - N
o ; a’;n’;mwn z 0, }Tr(
{ahyhs it = hyhoh= 0t} hy(T3) [h.,; M), V()] (4.47)
{huhg{i'}}h & 4 i E) — s LT ]h.#(!'l- +E]|31;1[II]|31;]}F?1. [h;’. f'l{i",}]

+ (T ol B+ g (Tt — hahg(TOWT (8 + )by (T)) b, [h.;u?qz,-;.])

In the above equation, the point holonomies without an explicit argument, are at
&;.
At this point it is convenient to define the following families of operators:

L’?:;(I gy = {CGH (%“n}({ﬁ'}) [:fﬂ(j:] sin (éﬂuX{H}) e

sin (%;AUX{'H]) ff'"[I} i (é;mf‘i’{ﬁ))}

ONT.0) = [*-‘ﬂﬂ (-é;f-u‘ff&i)f”"fI}sm(%,,ﬂV(a))_

sin GMY{&)) V(T) cos (%;m]’[ﬁ})]

A s o 1 I T T o E ] e

O T B) = [Lm, (E,LA) V*(T) sin (2 /IA)
oo f 1 oy ecs [ 1 £
sin (ELA) VL) cos (Z/J;A)} [4.48)

In the above, ¢ is a point in the interval T and o > 0 is the power of the volume

operator, Again for simplicity of notation we will suppress the # labels in the above
Operators,
The operator form of 2,(T) can be obtained as:

Z,T) = f"b'-"Tr(hﬂ[ VD) Ve [ R, V(D) ] he | BT 1?'(3:3"3)
= 12 0(T) OW(T) O%T) (4.49)

Using the expressions for the holonomies in terms of the “triconometric” oper-
5
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ators given in the eq. {4.35), and evaluating the traces ete. one can see that,

#
TEr.

= .4 1 . , S o
&= _IW#IHM] Z 4-"|.T.|’{}1."J [{ H (J“l"l (Hl]) i (”U} f'!?;-;l:] } e Df{l}} T3

{2 5i11 (%f—’n};{r}f + E}') COs (éuf.}"[ﬂ,-}) sin (/ A — &.)} P
3, 2 T
{2 s11 (%;L[]X{I'i[ + E}) COH (%y.nX{ﬁ,j) 51 (-/I. A — ﬂ,) } P H"f;

In the above A;:=n(8;) — n(#; +€) and is outside the integral.

53,

4.5.2 Quantization of Hp

All the three terms of Hp arve functions of the momenta (triad) only. These have
be expressed in terms of fluxes and holonamies alone. Furthermore, the power(s)
momenta in the denominators will make the action on some states 1o be singuly
The first part is easy to take care of thanks to the density weight 1. For the seco
part we use the by now familiar procedure of using the identities (4,43, 4.44). Iy
to the spatial dimension being 1, it is easier to convert triads in terms of Hlug
directly, without explicitly doing any point-splitting (one could of course do tly
if so desired [50).

The terms in the Hp will be manipulated in the following steps:

L. introduce sufficient number, k = 0, of positive powers of
1 = 16(3(x"y) por) ' Z(T)/V(T)
and express Z in terms of Z,,. This introduces further powers of the volumg

2. choose a(k) such that explicit multiplicative factors of the volume becomel
and further choose &

Now the expression can be promoted to an operator. Here are the details.

The first term of Hp :




o " - 3 }r 3
‘[”[‘” ] [_3‘1[3"5}"} ~ 415 gy DE0))

RHS

In the last line we have chosen o 1=

E(#) E(6;)

= lzf‘»’ﬁl) E(+e)—El0) (1)*

= wﬁa—:u;i,} [
(4.50)

1 . AT 8 {\E{§1+F}_E{§t”2 16 L E{Ilj k L
1 i=1 ﬁ EH]J‘I ]'I{I_'} (H{Hr':'.:]:sﬂl}vﬂ) (E'{j—_:i) [hidlj
1 16 s o (00 +6) — €A)° Z.(T) i
1(3(H’*;'J"¢mrfn) ;.‘x () V(T (n-ﬂ-{lf{z,',a}mu-ﬁ)
: (L)ki”“ﬂ{a‘{é-+e}—zfé-})"tz (Z.))
4B o ) = : i ; NS _.

R i L

2

¢ — o which removes the explicit factars of

the valume. The choice of & > 0 is limited by « > 0 (being a power of the volume
appearing in 2, ), Some convenient choices would be k=1 (a=1/3), k=2 (o =
1/2) ete. For all such choices, the above expression can be promoted to a well
defined operator.

The second term of Hp -

To begin with one observes that EY/E* is a scalar, & In(EY/E%) is a scalar
density. This term is then manipulated as:

L (£(0))? (?}HEI f}aEy): 1[ , {E(ﬁ'}]‘"’( (L!))
- N(d - = —— N{o P
4[, D TEG\E T B 1) TEm \* "\

(4.52)
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Now we have the fluxes in the denominator which ean be defined exactly ast

mverse triad operators of LQC [51]. To be explicit, de noting the Huxes as F, 5
Jf E%, ;F'.,,.:—J[ Ev.

Ev
i+ £7

1 ] LR ; iz
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and similarly for 7 7. These can be promoted to a well defined operator. Contig
uing with the equation above,

i o
; L § Eld))* ) %
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1 i |
— MRS L "'I IJ -Lr
4 (ﬂ'h q“l“ul/nri ) Z ”’I ]'[r.,l:rl' ':I (45

{ FyzFaz (:L‘f —F;},-ﬂ.z.ﬂ (2.2, §

where, in the last step. we have manipulated,

L = 1 ( 16 )L (E"I-"’.)R
Vi(Z) v iI] B VI(Z:) \3(k'vPuom ViLy)
16 8 il |
= _— (Za(Z:)) (4.5
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The choice of o would be same as that in the frst term.



The third term of Hp :

LI D&
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(4.57)

At this point we have expressed the Hp in terms of the holonomy-flux variables
and quantization can be carried out simply by replacing the (Z,)F — (—=i/ Ry (Z )k,
This correctly combines with the powers of &' to give (/)% in the denominator.
The (Z,)", will give (/3)** since each factor of volume gives 3a, there are 3 factors
of volume in each Z and there is the overall power of k. Substituting for a one
sees that each of the terms in Hp, Hr has E’l‘,” apart from the £}, supplied by the
factors of momenta/fluxes, thus giving the correct dimensions.

The operators O2 = [cos(-+- )V sin(-+-) — sin(-+- Wocos(--+)], a = z,y,0,
appear in all the terms and is a function of both holonomies and fluxes. To see
that this is actually diagonal in the charge network basis, write the cos and sin
operators as sums and differences of the exponentials (i.e. holonomies). It then
follows that,

i_ |:ﬁ—'r|:"'?1:rE+:{..-_l . E_--f[---Jl'rrr_‘_;.:__. :,]

cos(+++ )W esin(-++) —sin{- - )WV * cos(---)] = 7
(4.58)

It is now obvious that the operators are diagonal and thus commute with all the
i
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flux operators. Thus there are no ordering issues in quantization of Hp npe1'
In the Hy. however, operators of the above type are ordered on the right as in
full theory.

4.6 Action on States

To make explicit the action of the Hamiltonian constraint on the basis states, |
useful to make a couple of ohservations.

o Every gauge-invariant basis state can be thought of as a collection of m—ve
with a quadruple of labels (£, p1,. 1), all non-zero. The k* denoting the f
representations on the two edges meeting at ¢ with + referring to the exif
ecdge and — to the entering edge. A partition may also be viewod as a e
except that at its “vertices” all representation labels are zero.

e The action of the flux operators labelled bv Z, on a basis state is imt‘.Fss_
zero if none of the vertices of the state have an intersection with the la
interval. Note that the operator £(6,), however alwayvs has a non-zero actiy
on a basts state. This is becanse, all graphs are closed and hence themd
always an edge (and non-zero label for a basis state) which overlaps witl)

o ['he volume operator associated with an interval T gives a non-zero contt
bution on a basis state ondy if T contains a vertex of the graph. Reeall th
our partition is sufficiently refined so that each cell containsg af most 0
verter (two vertices at the cell boundaries are counted as a single vertex
the interior).

e The full Hamiltonian Las been written as a sum using a partition of §
Consider the "™ term in each of the Hy. Hp. Each of these contains (3
aperators either separately (as in Hg) or as a produet through the 2, (ast
Hpg). Since these contain the volume operator. it ensures that the action
cach of these terms is necessarily zero unless the T, containg a vertex of ¢
basis state. Evidently the action of the full constraint is finite regardless [
the chosen partition.

 The factors of trigonometric operators multiplying the A% on the left in Hg
can be thought of as “ereating new vertices” at the points @; of the partition
Notice however that at these new vertices one has either an eedge holonorn
or one of the point holonomies only i.e. the volume operator acting at thes
vertices will give zero.

Summarizing, thanks to the O, Z operators acting fivst, onlv those intervals
a partition will contribute which contain at least one vertex of the graph of a bas



state. This immediately implies that in the second term of Hp (eq. 4.53), only one
of the terms in square bracket will contribute, We will return to this later. Let us
denate the factor associated with a vertex v of a basis state by |k, g 000, Here
are the actions of all the 6 terms of the Hamiltoman constraint restricted to the
mterval containing 1

42 gt

i &
ik o ) = Y [x/ln. ] (x/lﬁciﬂ'-r. + 1] = Ik} +k; —ll) x

sin e N | (8, )) sinfegY( (6;) } |L Mgt (4.59)
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In the above, factors of N(#) are suppressed.

Il the first three equations, we have explicitly evaluated only the action of
he diagonal operators and kept the holonomies which “create new vertices” as
iperators acting on [k, iy, 1), In the terms involving a, we have to use q — 2 —

The last square brackets in the last three terms is the action of the EQ{L}‘ after
he dimensional and numerieal factors are collected together in the first square
wacket,

In H5'. the products of inverse finx and fux operators approach 1 only for
arge values of y,. v, while for smaller values, these products vanish.

The above actions have to be summed over all the vertices of the graph: These
reing finite, the action is finite as noted before, There is no explicit appearance
f €. Reference to cells enclosing the vertices (eg 0. 7,), will again transfer only
© the vertices in the limit of infinite refinement. The technical issue of limiting
iperator on Cvl* can be done in the same manner as in the full theory eg as in
i, ).

The above definitions of the quantization of the Hamiltonian eonstraint, consti-
ute a choice and there are many choices possible. There is also the issue related
0 “local degrees of freedom”™, In the next seetion, a preliminary discussion of these
patures is presented.
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4.7 Discussion

Let us quickly recapitulate where we made various ehoices.

e We made a cell decomposition with the understanding of taking the limit
of infinitely many cells. At this stage, no reference to any state or graph is
made.

e In the regularization of the kinetic term we used the ‘inverse voluwe’ and

‘plm[uvilu holonomies”. We could have introduced inverse flux operators and

£ aperators 1o replace 1/ E and also replaced the X,V IIP_ A by siul pg X ) /g

and similarly for the others. Such a replacement would still give the classical

expression back, in the limit of small X, Y, e. The quantum operator however

would be different. This procedure will also deviate from the full theory.
From the point of view of the reduced theory, this is an ambiguity.

e In the transcription of Hp in terms of holonomies and fluxes certain choices
have been made. For example, the second term in the Hp. could have been
manipulated in terms of inverse powers of ' E instead of introducing inverse
flux operators (eg by mplrumg 1/E* = EEY/(VE)?)). This would lead to
E* ['?'_r.i'.--‘l'_anl..q Fygaray ‘I] and lead to a(h) = 2/ ? A/(3%). In the limit
of infinite refinement, each cell will contain af mest one vertex and the eells
adjacent to such a cell will always be empty. Consequently, the second term
of Hp, regulated in the above manner will always give a zero arction.

e Over and above these different transeriptions. we also have the ambignity
mtroduced by the arbitrary positive power & (and o(k)) as well as that
introduced by the arbitrary power [ € (0, 1) in the definition of inverse Hux
Operators.

All these ambiguities refer to the transcription stage.

There are also issues related to the choice of partitions, subsequent ¢ — 0 limit,
and the presence/absence of local degrees of freedom. This is most dramatically
brought out by the second term of Hp. Classically, this is the term which reveals
spatial correlations in a solution space-time through & n( £Y/£7) |45] and reflect
the infinitely many, physical solutions. In the (vacuum) sphericallv symmetric
case, such a term is absent and so are local physical degrees of freedom. We wanld
like to see if there is a quantization of this term which reflects these correlations.
The gquantization chosen above does not correlate u. v labels at different vertices.

In general, given a grapl, a partition may be chosen to have

L. every cell containing af least one vertex

2. every cell containing eractly one vertex
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3. every cell containing at most one vertex.

In this classification, we assume that = VErtex s neve

r a boundary-point of a cell,
which is always possible to choose.

Infinite refinement is possible only for (1)
which we have heen assuming so far. This is the reason that in the
from the I, cell. the terms referring 1o
case by requiring
4. every vertex to be a boundary point of a cell,

Then we would receive contributions from twoe adjacent cells. However, in H ﬁf’

{eq. 4.35), the two terms with labels Zit1, L, both give equal contribution such
that the total is zero! The same

would happen in the alternative expression given

above, It seems that in either of (3) or (4) type partitions, we will either get a zero
or i contribution depending only on a single vertex. Note that these
partitions which allow infinite refinement e — 0}
We can give up on the infinite partitions (and ¢ — 0 limit) and consider instead
case (2} partitions - cach cell contains exactly one vertex (say in the interior). Now
the contributions will explicitly depend upon p, v labels of adjacent vertices and
in this sense, spatial correlations will survive in the constraint operator. An even
more restrictive choice would be to choose the partition defined by the graph itself
- cells defined by the edges and the bonndary points of cells as vertices. In this
case, the new vertices creatoed by Hye wonld be the already present vertices and the
constraint equation would lead to a (partial) difference equation among the labels.
This case has heen considered in the spherical symmetry [48] and corresponds to
‘effective operator viewpoint® discussed by Thiemann in |5]. The € — 0 limit may
then be thought to be relevant when states
large (but finite) number vertiees, heur

contribition
Zi4y drop out. We could introduce a fourth

are the only
in a diffeo-covariant manner.

have support on graphs with very
istically for semiclassical states. Whether
requiring the constraint algebra to be satisfied on diffeomorphism invariant states

(s

chooses /restricts the alternatives and ambiguities remains to be seen.
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Conclusion

In this chapter we will give a brief summary of the work done in this thesis, We
will also discuss a few of the open issues and further directions of rescarch. In
section (5.1) we will look at the work presented in Chapter 2 of this thesis and in
section (5.2) we will consider the work presented in Chapters 3 and 4.

5.1 Effective Dynamics in LQC

In chapter 2, we obtained the effective dynamics of LQC in a route different fram
that available in literature. The perturbative corrections were expressed in terms
of a small parameter € which is praportional to the Barbero-lmmirizi parameter
v and an ambignity parameter jig. These were summed up by making the WKB
approximation at the level of the difference equation itsell and the effective Hamil-
tonian incorporating these corrections was determined. The Hamilton’s equations
of mation of the effective Hamiltonian give the effective evolution equations, which
were of the form of Raychoudhuri equations plus corrections: The modified dy-
namics were mumerically ealenlated for the minimally coupled massive scalar field
and exactly for phenomenological matter (dust and radiation) and cosmological
constant. It was shown that in most cases the corrections are perturbative in na-
ture but significant deviations from the classical picture occur in a cosmological
constant dominated universe. All this was done using the guantization proposed
in |8] which was the one available at that time.

However two eriticisms of the previous work, namely, the low value of critical
density required for bounce at large valumes and the absence of a physical Hilbert
space led to further developments in LQC subsequently. In |19] a different quan-
tization was proposed for the Hamiltonian constraint, where the parameter g is
replaced by a function @ which instead of being a constants is considered to be a
funetion of the triad. This has led to improved dynamies in LOC which retains
the good features of LQC like singularity resolution while avoiding the problems
mentioned above. Also the physical Hilbert space has been constructed for LQC
with a massless scalar field |20, 21

and it has been analysed at the level of physical
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ectation values. These new developments have been commented upon, in the
il section of chapter 2,
In the light of these new developments, there are lot of issues still under dis-
sion. The physical Hilbert space has been constructed explicitly only for FRW
mologies with a massless scalar field. The construction has to be extended to
ssive scalar fields. Also the issue of what happens to the universe after evolution
ough the classical singularity is not fully settled, In particular, it is not clear the
et amount of correlation on either side of the big bang (see 52, 53]). There is
van attempt to mtroduce perturbative inhomogeneities into FRW cosmology to
1% the striet restrictions of homogeneity and generalise the Loop quantization to
omogeneous universes [34]. There is also an effort to derive effective equations
notion based on the framework developed in [55, 56]. In short, the field of LOQC
lot. more open issues both from the context of the reduced model as well as
nection to the full theory,

2 Loop Quantization of Gowdy Models

‘hapters 3 and 4 we have described the preliminary steps in Loop quantizing
Gowdy Model on 79,

In Chapter 3 we carried out a classical analysis to prepare the ground for setting
the quantum theory. We defined the Unpolarized model in terms of variahles
ch will be convenient, for Loop quantization, In particular we make a canoni-
transformation such that the variables have proper transformation properties
er gauge transformations, the volume is a simple funetion of the conjugate mo-
ita and the Hamiltonian constraint is simplified. Unlike in the full theory, the
venient conliguration variables conjugate to the triad components turn out to
onnection components in the inhomogeneous direction and extrinsic eurvature
iponents in the homogeneous directions, A systematic Hamiltonian reduction
hen carried ont to obtain the Polarized Gowdy model from the Unpalarized
' Interestingly, diagonalization of the metric to obtain the polarized model
s not imply diagonalization of the conjugate Ashtekar connection but that of
extrinsic curvature. Validity of the reduction is further verified by reproduc-
the known classical spacetime solutions and by verification of the constraint
hira for the reduced constraints.

[n Chapter 4 the Loop quantization of the model is attempted. In the full theory
elementary variahles are taken to be traces of Ashtekar connections alon g closed
Auxes of the conjugate variables. In the context of this model however. the
iguration variables in the elassical theory are scalar fields and sealar densities of
sht 1. These are therefore quantized as point holonomies and edge holonamies
ectively. A basis for the Hilbert space is obtained by defining the “Charge
work functions”. These are also eigenstates of the momenta operators which
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are just the Huxes of the triad components. The Gauss law constraint 15 casily
solved by restricting to gauge invariant states which involve onlv a restriction in
the lahels of the charge networks, The action of the Volume operator is trivially
obtained since it is just a function of the momentum operators.

Finally the Hamiltonian constraint is addressed. In LOC, the configuration
variables are point holonomies while in (vacuum) LOG, the confignration variables
are edge holonomies. In this model, however, configuration variables consist of
both point and edge holonomies and therefore the transeription of the Hamiltonian
in terms of the basic variables is somewhat different from the full theory, The
Hamiltonian contains three tyvpes of terms: a kinetic’ term, a ‘potential’ and a
total derivative term. The last two involve the triad components, the inverse triad
components and their derivatives. Tools developed in the regularization of the
matter Hamiltonians in the full theory are used to obtain a well defined operator
modulo operator ordering ambignities,

Since these are just the preliminary steps in loop quantization of a midisuper-
space model, which has not been attempted before, a lot of issues are, as expected,
still under investigation. The operator ordering issues as well as the corvect choice
ol partitions to be chosen so as to rellect the local degrees of freedom are not,
clear. One way to clarify these would be by caleulating the quantum commutator
algebra, Determination ol observables and identification of semi classical states
(even at the kinematic level) are other interesting issues. The diffeomorphism con-
straint has to be imposed. Constriction of the physical Hilbert space by means of
group averaging procedure requires the Hamiltonian constraint to be self adjoint.
However, the commutator algebra may determine the ordering of the Hamiltonian
constraint and it will be interesting to determine whether that picks out the syvin-
metric ordered operator as the correct ordering.  Finally, it is hoped that since
the classical solutions are well known, the Hamiltonian coustraint can be solved
and the question of whether the classical singularity is resolved can be addressed.
Moreover, in the light of recent developments in LQC, the labels i, and v, in the
hiomogeneous directions may have to made into phase space functions to reflect
the features of the full theory as discussed in section (2.8). Some ol these issues
are currently under investigation.

5.3 Finally ...

One important issue we have not discussed in this thesis is the issue of embedde-
bility of the reduced theories into the larger theory, It is well known that sym-
metry reduction after quantization and quantization after reduction may not lead
to equivalent quantum theories. In this thesis, we have followed the second path
with the attitude that lessons learnt from these toy models can provide hints far
tackling some of problems of the full theory. While one would like to view the
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reduced quantum theory as a ‘sector’ of the the full theory, how to do so is not vet
clear [57, 38, 59] In the absence of such an dentification. predictions of the reduced
model may not necessarily be implications of the full theory. In the context of this
thesis. the identification of the ‘sectar may be done at two levels:

e viewing LOC and Gowdy maodel as a sector of the fil] theory

* retrieving the homogencous Bianchi 1 model from the Gowdy madel

[t might be easier to attempt the second identification whie
to do the first. Further work is required to clarify these
them will lead to a hetter nnderstanding of Loop Quant

h may provide hints
issues and progress along
um Gravity.,
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