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Abstract

Transport of electrons in molecular junction devices is one of the important prob-
lem in the field of molecular electronics and nanoscale devices. Though in the
past years formalisms have been successfully developed to account for tunneling
associated with energy gap between Fermi-levels and molecular levels, coherent
and incoherent tunnelings and inelastic tunneling spectroscopy. A successful pic-
ture for general understanding of orientational and vibrational effects on molecular
junction devices, typically as encountered in electrochemical environment, is yet
to be fully perceived. Additionally, since in electrochemical environment the bias
and electrochemical potential of the wire can be varied independently, a thorough
understanding of the electron transfer process in such a system can help in pre-
dicting behaviours like current rectification, negative differential resistance etc.
Experimentally this is easily realised by operating in electrolyte and to control the
potential of two electrodes with respect to a reference electrode in the electrolyte.
This is desirable in lieu of downscaling of electronic components since the applied
gate voltage falls across the double layers of the electrode-electrolyte interfaces

which are a few angstroms in extent.

Initially works on electron transfer were aimed at DBA complexes. The situ-
ation of electron transfer between reservoirs connected by a molecular bridge was
investigated by Ratner and co-workers. Formal expressions were obtained by Car-
oli and co-workers which were later re-derived by several others in different context.
In this thesis considerable attention will be paid to the case of a molecular bridge
containing a redox center. The presence of redox complicates the analysis as the
redox couple can interact with the solvent whose fluctuations will have enhanced
effect on the current. This situation is studied in detailed in this thesis. Mod-
elling the bridge wire by a tight-binding hamiltonian and the interaction of the
redox with the solvent polarization modes as linear coupling, an explict expres-
sion for quantum conductance (within the wide-band approximation) is obtained.
The thermal averages over various polarization modes is performed numerically.
Depending upon the strength of interaction between neighbouring atoms, various

intereating current-voltage responses are seen. The considered system is shown to



exhibit certain desirable feature of electronic circuits such as rectification, negative

differential resistance, step behaviour (extended current voltage plateaus) etc.

Though the traditional view of electron transport theories in electrochemical
environment is to consider a transfer between two reservoirs or between DBA com-
plexes wherein the donor and acceptor states are in discrete energies, we present
our result in this thesis for the electron transfer rate from a redox to a reservoir.
This problem demands attention since while the reservoir normally has a contin-
uum of states while the redox which has single energy level but is dependent on
the fluctuation of the solvent, that is, the polarization mode of the solvent. Hence
the total electron transfer rate is determined by the competition between the res-
onance tunneling of the electron and the solvation of the redox. Assuming the
solvent exits in a thermal equilibrium independently, the transfer rate was studied
while varying some of the important parameters like the re-organisation energy,

the relative position between the bridge and the Fermi-level etc.

In actual experiment, the molecular wire is connected to an electrode by means
of a contact group. In general, the contact group is a species different from the
atoms of the molecular bridge and which chemisorbs well with the electrode. In this
thesis, electron transfer through such a chemically modified electrode is presented.
Further, to correspond better with actual experimental setup, the adsorbate is
randomly distributed on the electrode surface and it’s coverage factor is allowed to
vary from zero to 1 this covering all regimes, from lone adsorbate to monolayers.
A modified Newns-Anderson Hamiltonian is employed to model the system and
the current is calculated within the linear response regime. The randomness in
the adsorbate distribution is handled using CPA. The DOS is analysed for differ-
ent regimes of strong and weak coupling as well as lone and monolayer coverage
regimes. The current-potential profiles are similary plotted for various limiting
regimes. We recover the Marcus inverted regime in the low coverage case and also
a direct heterogenous electron transfer in the high coverage regime when the cou-
pling is strong. A saddle point behaviour is observed in the low coverage regime

with weak coupling.
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Chapter 1

Introduction

In 1965, Gordon Moore, proposed his famous 'Moore’s Law’ [2] which states that
there would be a doubling of devices per chip every 24 months and has been seen to
hold good for the past 40 years. Clearly such a scaling of the components is expected
to lead to a region where quantum effects become predominant. This has lead to an
increased interest in the field of nanotechnology both at a formalism level as well as from
a technological point of view. The active research in formalisms is more geared towards
a better understanding of the transport phenomena involved as well as predicting the
behaviour of envisioned devices under given set of conditions. The recent focus at this
front has moved from understanding simple tunneling near Fermi surface and energy
bands to including effects of electronic and vibrational degrees of freedom. While the
engineering aspect is more towards device design, which in turn basically involves around
manipulating materials at atomic length scales. The success in the latter is basically due

to the developments in STM, AFM and in general MJT’s [3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

There has always been a need for high speed computing along with low consumption
of power and compactness of computing devices. Present day computing is dominated
by semiconductors which faces certain setback factors in view of the downsizing for de-
vices. The chief among them are scaling at atomic dimension, gate oxide thickness,
power consumption due to leakage current, quantum tunneling etc[13]. All the above

mentioned factors have made molecules as a potential candidate for future computing



devices. Molecules on the contrary have certain desired features. Molecules within a typ-
ical size of 1 to 100 nm can have a variety of structures. Isomers of the same molecular
family can have different electronic properties, a behaviour highly desired for switching
operations at single molecule level. By suitable choice of composition, it is possible to

vary the transport properties of a molecule extensively.

1.1 Electron Transfer Theories

In Semiconductors and metals the electron transport can be understood from a Ohmic
picture, that is, resistance is proportional to length of wires, for a fixed cross-section
of wire. Such a picture fails for molecular conduction due to the localized electronic
states. A particular interesting case is that of conduction through a DBA-molecule
(Donor-Bridge-Acceptor), which has been well studied in literature both experimentally
as well as theoretically. In DBA molecules, the donor and acceptor sites are part of the
same molecule and correspondingly three different mechanisms are possible for electron
transfer. One is the thermal excitation from donor to acceptor which is incoherent and
diffusive, while the other two mechanism are electron super-exchange (electrons tunnel
from one electrode to the donor then to the acceptor and finally to the other electrode),
and hole exchange (where the electron first leaves the molecular level creating a hole which
is then followed by refilling)[14, 9]. The latter two mechanisms are coherent in nature. It
should be noted that the general observed I-V charactersitics implies a coherent transport
of electrons. The conduction, under certain conditions, can be made to vary with the
sign of applied voltage, thus leading to rectification [15] . The chief factor in determining
the conduction behaviour of DBA molecule is the rate of electron transfer from donor to
acceptor. This prompts one to study conduction properties interms of electron transfer

rate between donor and acceptor species.

The most successful of electron transfer theories is one due to Marcus [16] , where

the transfer rate for non-adiabatic case is calculated.



Ket = 2%|VDA|ZPFCWD (1.1)

where prewp is the Franck-Condon weighted density of states and Vp4 is the
coupling between donor and acceptor electronic states. Further, if Ep, is the
difference in electronic energy between the donor and acceptor and A the solvent
re-organisation energy, it was shown by Marcus that the above rate reduces in
classical limit to an expression which is now the well-known Marcus expression for

electron transfer rate

*(A+EDA)2/4>\]€BT

YV 47T)\kBT

For coherent transport, an approximate expression was derived by A.Nitzan[17] relat-

2T e
Ket = f|VDA|2

(1.2)

ing the electron transfer rate to the conductance. He considered N identical segments in
which only the first (1) and last (N) bridges sites were coupled to the donor and acceptor.
The donor and acceptor species are assumed to be chemisorbed on the electrodes. Let
I'p and I'4 be the imaginary part of their self-energies arising due to their coupling with
electrodes. Under this set of assumptions, for low bias, conductance g was found to have

the form

Re?

TR
w2 5T prowp

g ~ Ret (13)

Though the above formula presents a simple correspondence between the two ob-
servables, namely the electron transfer rate and the conduction, certain factors needs
to be taken into consideration in a general scenario. Thermal activation can dominate
at suitable temperatures leading to dephasing and hence shifting the transport process
from coherent regime to incoherent hopping. The above effect will lead to a length de-
pendency in the transport. Since most molecules are highly sensitive to temperature
changes, junction heating needs to be addressed. This brings the next important as-
pect of electron-phonon coupling which is primarily responsible for junction heating.
Additionally, stochastic switching involves molecules that have their electronic transport
properties strongly dependent on underlying nuclear conformations [18, 19, 20] . This has
been proved in an experiment by M. Berthe and co-workers [21] where electron transport

takes place only when the bridge is vibrational excited.



Traditional treatment in E'T theories heavily relies on Franck-Condon approximation,
where the transport is assumed to be independent of the geometry. Evidently there is
a breakdown Franck-Condon approximation for conductance in such cases as mentioned

above.

1.2 Experimental overview

Conductance measurements serve as a first test for the applicability of the formalisms
developed to fabricated devices. The most simplest is to use a scanning tunneling micro-
scope to study the electron transport through individual molecule adsorbed on the surface
[22, 23, 24, 25]. Differential conductance can be obtained from such an experiment but the
important assumption in such a picture is the applicability of Tersoff-Harmann picture
[26]. In Tersoff-Harmann picture, the conductance is proportional to the local density of
electronic states of the STM tip and the Fermi energy. This is justified since there exist
a large vaccum gap between the molecular end and the STM tip and most of the voltage

drop occuring in the gap.

It is possible to measure the conductance properties in the presence of a gate voltage.
The above measurements discussed were done in the absence of a reference potential.
The application of three terminal junctions has become common from the introduction
of CMOS transistors. In molecular electronics proposals have been made to employ the
three terminal junctions to change the nature of transport from coherent to hopping
transfer [27, 28, 29]. Attempts have been made to incorporate semiconductors in molec-
ular conduction. Most of the experiments on molecular transport employs gold electrode
with thiol anchor for the molecular wire. The primary factor for this combination for the
interface is that the Fermi energy of gold electrode fall within the HUMO-LUMO gap
of most thiol ended molecules. Experiments using semiconductor as the electrode have
been performed [30, 31, 32|. The main advantage of using semiconductor for the junc-
tion is that, a typical metal-molecule junction suffers for geometric changes which can

affect the transport property through the junction, while a in a semiconductor-molecule



junction, such a uncertainty is not present since the is interface formed by two-atoms
sharing electron through a covalent bond. Additionally, the band-gap is expected to
provide negative differential resistance [33, 34]. Some theoretical studies have also been
done for semiconductor-molecule interface[33, 35], most of them focus on the band gap

domination of the transport properties.

The traditionally employed three terminal voltage measurements, which forms the
basis for switching devices, suffers from a serious drawback. The mode of operation
of a switching device is to control to flow of current by a third electrode. Obviously
for molecular electronics, this would imply placing the third electrode at a distance of
a few angstroms from the desired molecule. This method has serious constructional
constraints. Another method would be to employ a large gating voltage to manipulate
the energy levels of the molecule which is again not economical, especially in lieu of heat
dissipation. An alternate viable solution is to use molecules with redox centers and to
control the states of the redox using gating voltage. The presence of third electrode can
be avoided by operating the setup in an electrolyte and the reference electrode in the
electrolyte can be used as the gate electrode. This is advantageous as the applied voltage
falls mainly across the double-layer at the electrode-electrolyte interface. Several groups
have reported successful implementation of the above method to control charge transfer
in serveral diverse situations like nanojunction [36] , polymer films [37], carbon nanotubes
[38, 39], redox molecules [1, 40, 41, 42, 43] etc.

1.3 Preliminary terms and concepts

The transport phenomenon in molecules typically takes place within a few nanometers
of length scale and hence it is advantageous to characterise the conduction by using
concepts developed for mesoscopic conductors. Obviously the first of these are the length
scale which serves to roughly differentiate between the classical and quantum regime [44].
Typically, these length scales are the Fermi wavelength Ap, the momentum relaxation
length L,, and the phase relaxation length Ly. These are throughly discussed by Datta

in his well written book on mesoscopic conduction [45].



1.3.1 Fermi Wavelength

At very low temperatures, it is well known that only electron close to the Fermi surface
contribute to current. The Fermi wavelength scales as the inverse square root of Fermi
energy, A\ = 27/v/2mFEp. Numerically this is of the order of a few nm. If the transport
happens in one dimension, then there exist only one channel, but for two dimensional
transport the number of channels or modes available for propagation is determined by
the ratio of the band-width W of the wire to the Fermi wavelength INT (2Ar/W), where
INT(x) is the largest integer smaller than x. Hence changing the width results in decrease
in the number of channels available for electrons to pass and thus leading to a step like

increase or decrease of the conductance.

1.3.2 Momentum relaxation length

The momentum relaxation length L,, is the average distance traveled by the electron
before losing it’s momentum by collison with impurities, defect etc. Numerically this is
of the order a few microns. In elastic scattering the momentum changes even though
the energy remains conserved and hence elastic scatter contributes to the momentum
relaxation length. Thus both elastic scattering and inelastic scattering (i.e. scattering
with lattice vibrations, core electrons etc) both contribute to momentum relaxation but

electron-electron scattering does not contribute to the above relaxation

1.3.3 Phase relaxation length

This length Ly is defined as the distance traversed before the electron looses informa-

tion about it’s initial phase. Dynamical scatters like phonons, magnetic impurities are



primary factors contributing to phase relaxation. Elastic scattering does not change the
phase of electrons while scattering between two conduction electrons can lead to phase
changes. At low temperature electron-electron scattering is the primary factor in bringing

about phase relaxation.

The above characteristic length scale can be changed by varying certain experimental
parameters or by changing the material properties. For example, the phonon excitations
can be suppressed by lowering the temperature which in term increases L, and L.
Magnetic scattering can be controlled by altering the concentration of the scatters or by
using a suppressing magnetic field. Similarly electron-electron interaction is dependent
on carrier concentration and band structure. So the transport behaviour can be studied

separately by preparing the samples under suitable external control parameters.

Apart from the above mentioned length scale to characterise the transport process,
certain additional notions are needed in order to have a clarity in understanding molecular

transport phenomenon [12].

1.3.4 Molecule-electrode coupling

When molecule is coupled with an electrode, the discrete molecular energy levels mix
with the continuum energy bands of the electrode and thus leading to changes in some
of the properties of the molecule. In the simplest approximation of wide-band approxi-
mation, this only leads to a broadening of the energy level of the molecules. The lifetime
of an electron then is inversely proportional to this broadening and hence determines the
rate at which the electron can escape into the reservoir. In general the mixing of energy
levels will lead to shift and broadening of the molecular energy levels. This is the case
when other forms of self-energies like the Newns semi-elliptical form [46]is used instead
of wide-band approximation. Hence a stronger coupling with electrode implies a higher
current. Of particular importance is coupling of molecule to two different electrode, since
the uneven coupling on both electrode with unequal voltage drop across the electrodes is

predicted as means for obtaining negative differential resistance in molecular conductors.



1.3.5 Relative position of Fermi surface

In a typical scenario, the electrodes and the molecules are so selected that the Fermi
level of the electrode (which is around -5 eV for noble metals) falls between the HOMO-
LUMO of the molecules (approx -9 eV for HOMO). But once the connection is made,
due to charge flow, charge rearrangement and geometric rearrangement, the Fermi level
falls between the HOMO-LUMO gap. The charge flow and the allied process will con-
tinue to happen until the Fermi level falls within the gap. The Fermi level need not
be halfway in between the HOMO-LUMO gap but could be anywhere in between. The
above presented picture is somewhat simplified, in that, it presumes that the mixing
between molecule and electrode is somewhat comparitively weaker than the interactions
between the molecules. This may be true for most molecular-metal junctions but in case
of molecular-semiconductor junctions needs serious rethinking, for these junctions are

formed by strong covalent bonds.

1.3.6 Electrostatic potential profile inside the molecule

It is well known that the application of electric field shifts the electrochemical po-
tential of the reservoirs. For electron transport through conductors , since field inside a
conductor is zero, the voltage drops are assumed to occur at the junction and the voltage
to remain a constant along the length of the conductor, while for semiconductors the volt-
age is expected to drop along the length of the semiconductor. The situation is somewhat
in between for molecular transport. The potential profile inside the molecule depends
on the strength of the coupling between the molecule-metal at the junction. A strong
coupling will result in a ramp kind of potential profile while a weak coupling would result
in majority of the voltage drop across the junction with a possible constant shift in the
middle. The secondary factors which affect the potential profile inside the molecule are
polarizability of the molecule and the charge distribution inside the molecule. In theory,
the electrostatic potential in the absence of charge transport must satisfy poisson equa-
tion. In the presence of molecules, the potential needs to be determined consistently from

the poisson equation with replacing the square of the wavefunction (the solution from



schrodinger eqaution) instead of the charge density. Density functional-NEGF calculation

are employed in literature to carry out the above procedure [47, 48, 49, 50, 9, 51, 52|.

1.3.7 Electronic structure of the molecule

Although conductance in dominated by electrons near the Fermi surface, in molecular
transport, the bottle-neck of the phenomenon appears to be the availability of the number
of channels for electron transfer. Irrespective of the materials involved, generally three
different regions based on the channels available. The single transmission channel region
occurs when the s band electrons dominate the DOS of the molecules. Similarly there
exist 3 and 5 channels corresponding to p and d band electrons contributing the DOS
[53] . The situation is further complicated due to hybridization. It is seen that not all
available channels are used in conducting channels. Generally the dominant channel is a
symmetric combination of orbitals in a hybridized view. This point of view is supported

by certain experimental facts [54, 55, 56, 57, 58].

1.4 Mechanisms of electron transport

Broadly the electron transport is divided into three regimes: ballistic, diffusive and

classical.

1.4.1 Ballistic regime

This type of transport regime is characterised with the sample size (1) much smaller
than the momentum relaxation or phase relaxation length (I « Ly, , « Lg). This is ballistic
since the electron can transport without loosing momentum and phase. The Landauer

formalism holds good in this regime. The conductance is independent of the length of the



molecular wire. The conductance is due to the resistance at the contacts. In other words,
it is scattering of electron at the boundary of reservoirs that determines the current. And
hence the conductance is proportional to the width of the junction and independent of

the length of the wire.

1.4.2 Diffusive regime

This regime is intermediate where Ly >> L;, and the transport is diffusive. Since the
electron retains it’s initial phase , quantum interference effects still needs to be considered.
The McConell [59] expression for rate of electron transfer holds valid in this regime. That
is, G= A exp(—pl) where, 1 is the length of the molecular wire, 3 is the characteristic
decay parameter and A is some constant depending on the junction properties. In practice
it has been found to be a good approximation for certain kind of alkanes up to a certain
length and small voltages. One of the possible reasons for such behaviour is attributed to
large HOMO-LUMO gap and the electron transfer takes place through super-exchange
, a process where the electron hops through virtual orbitals which are energetically well

separated from the electrode Fermi level.

1.4.3 Classical regime

This regime of transport happens when the size of the sample is larger than the
momentum relaxation length and phase relaxation length. Interference effects can be
neglected since the electron entering at one end looses information of it’s initial phase.
Inelastic scattering dominates in this regime and the conduction is that of a regular
macroscopic wire obeying Ohm’s law. In addition to inelastic and incoherent scatters,
the electronic levels in the molecular wire couple to the vibration or other degrees of
freedom present in the system resulting in a conduction dependent on the length of the

sample.
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1.5 Brief overview of theoretical tools

1.5.1 Lippman-Schwinger equation

This method was pursued primarily by Lang and co-workers [60, 61, 62, 63, 64| .
The general mode of solving the problem is as follows: The bare metallic electrodes were
considered in the presence of bias voltage and their single-particle wave-functions and
density distributions were found using density-functional formalism. Next the bridge be-
tween the two electrodes are introduced and a Lippman-Schwinger equation is solved for
each of the single-particle wavefunctions to obtain the wavefunction for the total elec-
trodes plus bridge system. The density distribution is obtained from the wavefunctions

and the solution is found by iterative procedure.

Y(r) =o(r) + /dTldT”GO(T, 7“/)51/(7“/, r”)w(r”) (1.4)

In the above equation G is the Green’s function for the bare electrodes without the
bridge and g the wavefunction which describes the motion of electron in the two elec-
trodes and 0V is the difference in potential between the bare unconnected system and the
one with bridged electrodes. The current is calculated by differentiating the expression
for wavefunction obtained from solving the Lippman-Schwinger equation. Initially, Lang
and co-workers approximated the wavefunction in the bare electrodes as plane waves
[60, 65]. These were further refined by Joachin and Magoga [66, 67] who considered
atomic orbitals instead of plane waves. In addition Joachim and co-workers employed
recursive green’s function methods and were able to obtain the exponential decay with

increase in length of conductance.

1.5.2 Landauer-Buttiker Formalism

11



Landauer viewed current flow as a transmission process with electron entering the
wire through on of the junctions and then calculating the probability for it to reach the

other junction. Landauer employed the wave scattering to arrive at his result.

_262
h

Where T'(e€) is the transmission coefficient and fr, and fr are the Fermi distributions

I deT(€)[fr(€) = fr(e)] (1.5)

function for the two electrodes. The prefactor 2e2/h is known as the universal conduc-
tance and hence the numerical value of resistance is 12.9K 2. The formula works well in
case where the central region is small in comparison with the coherent length of the waves
so that it is treated as purely elastic scattering without energy loss. Hence this formula is
ideally suitable for ballistic thermal transport. The resistance is independent of the length
of the conductor, the origin of which is at the junctions. Blencowe [68] made an estima-
tion of the transmission coefficient using elastic wave models. Mode matching method
[69, 70] is one of the prominently used technique for calculating Transmission coefficient.
Wang and Co-Workers [71] calculated the transmission coefficient using scattering bound-
ary method. Transfer matrix method have also been used to calculate the transmission

coefficients in one dimensional atomic models as well as in continuum models.[72, 73, 74]

1.5.3 Ratner-Mujica Formulations

In 1994, Mujica, Ratner and Kemp [75, 76] developed a formalism to express current
through a system of two electrodes connected by Molecular chains of N-sites. Initially,
Mujica and Ratner considered explicitly the situation where the molecules in connected
to the reservoirs only through the first and the last sites (1 and N). If Ay, and Ap are
the imaginary part of the self-energies contributions arising from the Left and Right

reservoirs, then the expression for current as derived by Mujica and Ratner is

de [Ertev/2
(V) = / AL ARGy PdE (1.6)

mh Ep—eV/2
Some of the implicit assumption in the formalism is the absence of direct electrode-
electrode interaction and imposing the condition that the reservoir and wire have or-

thogonal basis states. Mujica-Ratner employed atomic orbitals for basis functions. The
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salient point to notice is that while the reservoir has basis function which are gener-
ally infinite dimensional, and the molecular wire has a finite dimensional basis function.
But the relation expressing current depends only on the G of the molecule (that is, the
Green’s function of the molecule as modified by the possibly voltage dependent interac-
tion with the reservoir and not the green’s function of the free molecule), which is finite
dimensional. It should also be noted that in the original work of Mujica-Ratner, the final
current was not obtained by integrating over the energy levels between the two reservoirs
modified appropriately by the voltage applies, but rather they assumed that current con-
duction is basically due to electrons near the Fermi surface and hence calculated the
current profile by examining the form of the integrand near the Fermi surface. Yaliraki
and Ratner [77]| generalised the end-only connection assumption in the original work to

arbitrary connections.

1.5.4 NEGF: Caroli’s formula

A precise formula for calculating the current between two electrodes connected by
a wire is given by Caroli and co-workers [78]. The original form of the derivation done
was Caroli and co-workers by imposing certain additional constraints on the system and
hence it was derived in a slightly restricted sense. The more widely accepted form for
the formula is due to Wingreen and co-workers [79, 80, 81, 82|. They were able to obtain
the formula while allowing certain additional interactions for the electrons in the wire.
Both Caroli and Wingreen employed Kheldysh methods to obtain the formula. The same
equation was also obtained by several other others by using Quantum Langevin Equations
[83].

e EF+6V/2
vy =< / Tr[G7 LG TR]dE (1.7)
mh Ep—eV/2

where G"T = G® is the green’s function for the central wire region and I'r =ALR
is the imaginary part of the self-energy arising out of the interaction between the wire
and the electrodes. The problem, when expressed in the above formalism essentially boils

down to evaluating elements of the green’s function of the wire. This proceeds as follows

13



el — HL _VLW 0 GL GLW GLR I 00
_VWL el — HW _VWR X GWL GW GWR = 01 0
0 _VRW el — HR GRL GRW GR 0 01

(1.8)

Where Hy w g refers to the hamiltonian of the left, wire and the right reservoir,
Viw,rw,wr,wr are the hopping terms from reservoir to wire. The quantity of interest
is the green’s function of the wire Gy . It should be noted that in general the Hy r are
infinite dimensional matrices and Hyy is finite dimensional matrix. If the wire is modeled
as N Single sites, then Hy is a matrix of N times N dimension. Solving for the green’s

function of the wire

1

GWZEI—HW—EL—ER

(1.9)

In the above expression for Gy, the self energies ¥ r arising from the electrode
interaction are related to the I'; g in the Caroli’s formulas as ImXy, g, and the ¥, r can
be expressed interms of the green’s function of the electrodes Xy, gy = VI;/(L,R)GLV(LR)W
. Thus even though the green’s function of the molecular wire require an inversion of finite
size matrix, the self-energies involve green’s function of the electrode whose Hamiltonian’s
are infinite dimensional matrix. But this doesn’t pose much of a problem as analytical

solution are available for the form of green’s function of the electrode.

1.5.5 Handling Interactions

The above mentioned theoretical methods generally do not address the question about
the nature of specific interactions and their effect on the current. Of particular inter-
est is the interaction of electron-phonons since these type of interactions are responsible
for junction heating. It is well know that molecules are highly sensitive to temperature
changes this issue needs to be addressed. It has been well-known from electrochemi-
cal literature [84, 85, 86, 87, 88, 89| that the transfer of electron from redox couple to

electrodes has a different behaviour from transfer of electron from a single state to a con-
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tinuum energy band. One possible mechanism is a one-step coherent transport process
in which an electron tunnels via the redox state of the molecule from one electrode to
another quickly so that the molecule has no time to relax to the reduced state, that is
the molecule stays in the initial oxidized or reduced state for the whole duration of the
electron transport. When the Fermi level matches with that of the redox energy level a
large resonant tunneling current will be observed. Another possible proposed mechanism
is a two stage process in which the electron tunnels to the redox and then resides in the
redox until the redox relaxes to reduces state. Neither of the proposed models agrees
well with the experiment and the more realistic assumption seems to imply that the net

transfer process is a combination of both [43] .

1.6 Electron transfer and it’s relevance in electro-

chemical environment

In electrochemistry, Self-Assembled Monolayers (SAM) play a vital role. Suitably
designed SAMs can form organized assemblies with nano-particle arrays, metal-molecule
contacts and structures resembling molecular wires. Two dimensional SAMs assembled
on suitable sustrates are desired candidates for energy storage devices like fuel cells
and in the fabrication of sensors and optoelectronic devices. A thorough knowledge of
electron transfer mechanism in such orgnaized assemblies is neccessary for the successfull
applications. A theoretical approach in addressing the problem of electron transfer in

SAMs will help greatly in identifing ideal molecular assemblies.

1.6.1 Bridge mediated electron transfer

The bridge mediated electron transfer process is known to be a prominent electron
transfer mechanism in many biological structures like redox proteins, photosynthetic

reaction, nucleic acids etc [59, 90, 91, 92, 93, 94, 95| . The electronic coupling through
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a chain linking an electron donor to an acceptor can control the rate of electron transfer
between the groups on the two chain ends. Electrochemical techniques are well suited
for the studies of long range electronic coupling and electron transfer between metal
electrodes and attached redox molecules [96]. Electron transfer can be investigated with
the help of techniques like voltammetry and impedance measurements. Two dimensional
SAMs can be designed to study the distance dependency in long range bridge mediated
electron transfer [97, 98, 99, 100].

It has been well known from the works of A. J. Bard and co-workers [96, 101], that
organized monolayers of alkane thiols on electrodes provide a general route to creat-
ing surface structures in which redox species are linked to electrodes through molecular
bridges whose length and structure can be varied. Furthermore, Dubois and Nuzzo [102]
designed SAMs of alkane thiol molecules on a gold surface which provided a convienent
approach for studying electron transfer reaction between and electroactive group and elec-
trode where the electroactive group is held at fixed distance from the electrode surface.
Typically, distance dependencies of electron transfer is mainly investigated with redox
molecules like ferrocene and ferrocyanide ions. For example, hexacyanoferrate species in
assemblies is a well studied one due to it’s potential application in catalysis and sensors.
It is possible to study electron transfer rate in biological species using methods developed
in electrochemistry. For example, cytochrome C is a biomolecule. It’s electroactivity is
due to it’s porphyrin skeleton. By linking porphyrin / cytochrome as the terminal group
of alkane thiols of different chain length, the distance dependency of electron transfer has

been investigated [103, 104].

1.6.2 Electrochemical coulomb staircase charging

Monolayer Protected Cluster (MPC) has demonstrated an electrochemical analogue
of coulomb staircase charging. Clusters of Au, Ag, Pt etc. are stabilised by protection
by ligand monolayers of alkanethiols, silanes, polymers etc. Due to the combination of

small metal - like core size and hydrocarbon like dielectric coating, the capacitance of
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Figure 1.1: An ideal Self Assembled monolayer based on alkanethiols assembled
on gold electrode. (source: page 240, in Electroanalytical chemicstry: a series of
advances, vol 19. by A. J. Bard and I. Rubinstein)

the MPC is less than an attofarad per MPC. Thus addition or removal of singel electron
from such capacitors produces potential changes so that the solution phase, double layer
capacitance charging of MPCs becomes a quantized [105, 106]. A theoretical modelling
of the above mentioned scenario starts with a simple electrostatic interaction. Theories
have been further extended to account for the microelectrode character of the clusters
[107, 108].

1.6.3 Electrocatalysis

Three dimensional SAMs are expected to be of significant importance in the catalysis
of fuel cells. Preparation of catalyst in the form of nano-particles assemblies increases
the surface area to a large extent and hence the efficiency of catalysis also increases.
This helps in the fabrication of miniaturized fuel cells. Since oxidation of organic fuels is
the primary process in fuel cells, a thorough understanding of electron transfer in such

scenarios help in developing fuel cells with a overall higher performance.

1.7 Organization of Thesis

The thesis is organized as follows.

17



Chapter 2: We present the calculation and results for conductivity of a
molecular wire containing a redox center, and embedded in an electrochem-
ical environment. The effect of solvent modes interactions with the redox
were included and an exact expression for quantum conductance for a chain
of arbitrary length is derived. Thermal averages were handled numerically
and explicit plots for I-V profile are provided for three atoms case. Plots
showing rectification, extended current voltage plateaus, negative differen-

tial resistances are included.

Chapter 3: We discuss the rate of electron transfer from a redox to an
electrode via N-atom bridge. The redox interacts in an electrochemical en-
vironment with solvent modes. A model hamiltonian for such a system is
presented employing which a voltage dependent expression for rate is pro-
vided. The variation of electron transfer rate with various parameters like
coupling strength, re-organisation energies etc. are analysed numerically. In
particular, graphs showing a complete blocking of electron transfer in suitable

voltage range for certain coupling strengths are presented.

Chapter 4: We explain in detail the role of adsorbate coverage on the elec-
tron transfer between a solvated redox and adsorbate-electrode complex. The
inherent randomness involved in the distribution of adsorbates in the sub-
strate surface is handled using Coherent Potential Approximation (CPA).
Current-Overpotential plots are provided for all regimes of coverage factor
and strong and weakly couplied adsorbate-substrate interactions are analysed
specifically. It is shown that in the low coverage regime, adsorbate mediated
electron transfer exhibits the characteristics of homogeneous electron trans-
fer while in high coverage regime the direct heterogeneous electron transfer

behaviour is obtained.

Conclusion: We conclude with an overview of the work, and future direc-

tions of research based on this work.
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Chapter 2

Electron tunneling between two
electrodes mediated by a molecular

wire containing a redox center

2.1 Introduction

Understanding of electron transport through a single molecules received an increased
interest due to the speculation of employing molecular units as fundamental elements of
computer circuits [5, 6]. Additionally, electron transfer in molecular wires at nanoscale
level received further attention, both at the level of formalism as well as ab-initio cal-
culations, due to its possible relevence in understanding and application for a class of
diverse problems like sensors, photonics, solar energy conversion [109]. Controlled charge
movement in a suitably designed molecule can be used as the basis for storing and pro-
cessing of information. Such Quantum-Dot Cellular Automata architecture has been
experimentally realised in a series of experiments for a variety of applicable components
like memory cells, logic gates and clocked memory cells[110, 111, 112]. A practical im-
plementation of QCA architecture consists of a single redox center with an organic or
inorganic bridging group [113]. The efficiency of solar energy conversion process depends
not only on efficient photon capture but also on charge seperation and transport through
very large distances. Since the charges are created by sunlight on the surface of an as-

sembly of molecules or semiconductors, it is resonable to expect molecular wires to act as
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relevant acceptors of the charges. Also the weak solar fluxes imply a very low current and
a need for fast charge transport. Certain classes of polymers and oligomers have been
proposed as ideal candidates for satisfying the above criterion for increasing the yield in

solar energy conversion [114, 115].

The above mentioned are some of the reasons for the recent increased surge in interest
for understanding charge transport along molecular wires. Typical theoretical work in the
field involves obtaining generic expressions for the conductance, current-voltage profiles,
rate constants, transition probabilites etc. Formal works on transport properties along
molecular wires were carried out on Donor-Bridge-Acceptor (DBA complexes) systems,
wherein electrons are transferred between donor and acceptor connected by a molecular
bridge [116, 117, 16, 59|. Further, electron transfer between reservoirs connected by a
molecular bridge has been studied by Ratner and co-workers [75, 76, 118|. The above
works resort to time-dependent quantum mechanics for obtaining expressions relevant
to electron transfer. Expressions for the conductance between two reservoirs connected
by monoatomic sites were well known in mesoscopic physics. The formal expression was
first derived by Caroli and co-workers [78] and was later expanded to a broader class
of problems by Wingreen and co-workers [79, 80, 81]. Recently, the same expressions
were re-derived by various authors [119, 120, 121, 122, 83| by formulating Quantum
Langevin Equations (QLE). Initially, both the molecular wire and mesoscopic conduction
were modelled using tight-binding Hamiltonians, and since at a Hamiltonian level these
problems seem identical, it is expected that the expression obtained for one should be

applicable for the other.

Several authors have pursued other computational methods such as density functional
theory, first principle ab-initio calculations and package simulation of Non-Equilibrium
Green’s Function in studying conduction through molecular wires [52, 123, 124, 125, 126].
Most of these authors differ in their treatment of the electrodes and the interaction of
the metal-molecule coupling. Most of the earlier works were oriented towards a bet-
ter approximation for modelling the interaction and self-energies at the molecule-metal
junctions, while little work has been done in incorporating the effect of additional inter-
actions the electron might experience in the molecular wires. Though numerous works
have been done of the subject of electron-phonon coupling with relevance to quantum
dots [79, 127, 128, 129, 130, 131, 132], including treatments for classical, quantum, equi-
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Figure 2.1: Schematic of a gated molecular transistor in an electrochemical envi-
ronment (see ref.[1] )

libriated and out of equilibrium systems, exact treatment of such a process in specific
for molecular wire has not received much attention. Molecular wires differ from quan-
tum dots in that the observed conductance behaviour of quantum dot is dominated by
Coloumb blockade.

The focus in the present will be on a special electrochemical case: a molecular wire
containing a redox-center connecting two electrodes. The electrochemical case is of special
interest since two potentials can be varied independently: the bias between the two
electrodes, and the potential of one of the electrodes with respect to the solution. The
latter acts like a gate voltage that controls the current in the wire. In addition, the
redox center interacts with the solvent, whose fluctuation will affect the current. The
specialties of the electrochemical situation were first elucidated by theorists [133, 134,
135, 136]. Starting with the pioneering paper of Tao [1], there have been a fair number
of experimental studies of electrochemical systems [137, 138, 139, 43, 36, 140, 141, 142,
143, 144] which in turn have generated more theoretical work (see e.g. [145, 146] and

references therein).

Most of the theoretical work on electrochemical systems has been restricted to special
systems with one or two intervening redox centers. In this study, we will consider a wire
of arbitrary lengths containing one redox center interacting with the solvent. Using a

tight-binding Hamiltonian and Green’s function techniques we will derive an expression
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for the current which is exact for the case where the interaction to the two electrodes
can be treated in the wide-band approximation. These calculations will be illustrated
by model calculations for particularly interesting cases: steps and negative differential

resistance, and spectroscopy of intermediate electronic states.

2.2 Model Hamiltonian, Green’s functions and cur-

rent density

The model system that we consider consists of two metal electrodes, labeled R and L,
connected by a chain of 2n 4+ 1 atoms — an odd number is chosen for convenience only.
The atom in the center is redox-active and interacts with the solvent; thus, we identify
the index n + 1 with the index r of the redox species. We use a tight-binding model, in
which each atom contains one orbital and interacts only with its nearest neighbor. The

corresponding Hamiltonian can be written in the form:

2n+1
H= Z Z €k, iNk,i T €Ny + Z €M
k i=L,R i—1
i#n+1
n—1 2n
+ Z{UichiH + h.c} + Z {Uicjciﬂ + h.c}
i=1 i=n+2
+ Z {@‘CZTC@'H + h.c} + Z{'Uk,chLCl + Uk72n+1C]t7RC2n+1 + h.c}
i=n,n+1(r) k
1
+ 5 ZV: hqu?, + ZV: Tiwy g quny (21)

In this Hamiltonian, n always denotes an occupation number, ¢ a creation ¢ an an-
nihilation operator, ¢ an energy, and v a coupling constant. The first line contains the
diagonal elements, the indices (k, L) and (k, R) labeling the electronic states on the two
electrodes. The second and third lines give hopping elements between adjacent sites, and
the last line the potential energy of the solvent, with coordinates ¢, and frequencies w,,
and its interaction with the redox center r; the g, are the corresponding coupling con-
stants. Equation (2.1) is a natural generalization of the Hamiltonian for redox-mediated

tunneling via one center [136].
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Figure 2.2: Simple schematic of a molecular wire stretched between two electrode
with an redox center interacting with the polarization of the surrounding solvent.

The matrix form of the fermionic part of the above Hamiltonian Hp has the generic

form:

€k, L Vk 0
Hyp = v Hehain - vk
0 Uk €k,R
€1 v
v €9
]
H phin = U € +Aq, O
U
v
% €2n+1

2n+1x2n+1

Working within the nearest neighbour interacting tight-binding model, it is under-
stood that Hr has non-zero entries only in diagonal and sub-diagonal elements. The
general scheme of approach is to calculate the quantum conductance and then obtain
the current by integrating the conductance between appropriate limits. The formula em-

ployed for obtaining the quantum conductance, or tunneling rate, is the same as the one
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used by Datta et al. [147]. This form of the formula was first derived by Caroli et al.
[78] and was subsequently derived in a much wider context by Wingreen and co-workers
[79, 80, 81].

g = TT’[GTFLGGFR] (22)

As before, the subscripts L and R refer to the left and right reservoir. I" denotes the
imaginary part of self-energy (for ease of following the notations, I' = vy (ImGY, )v}). The
quantity of interest is | (1 | G | 2n+1) |?, where G is the Green’s function obtained from
the above Hamiltonian. This can be obtained by separating the Hamiltonian into two
parts: H = Hy+V and considering a Dyson equation , G = G°+G°V G, where the simpli-
fication of the problem results from the choice of V. Letting V = Zi:n,n-l—l @icgciH +h.c,
the Hamiltonian H% contains 3 block matrices. Physically this amounts to cutting the
2n + 1 atom chain at 2 places on either side of the redox couple. The closed form for the
element (1| G | 2n + 1) is obtained as shown:

(1]G\2n+1>:<1\G0]2n+1>+z<1\G”i)(z’]V\jMﬂG!Qn—i—l) (2.3)
=G| n)(n|V|n+1)(n+1|G|2n+1)

n+1]G|2n+1)=n+1|G°|[n+1)n+1|V |n)n|G|2n+1) (2.4)
+n+1]G [ n+Dn+1|V | n+2dn+2|G|2n+1)

n|G2n+1)=n|G |n)n|V|n+1){n+1|G|2n+1) (2.5)

m+2|G|2n+1)=n+2]G%|2n+1) (2.6)
+n+2|G n+2)n+2| V| n+1){n+1|G|2n+1)
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From the above 4 equations , G1 2,41 = (1 | G| 2n + 1) can be solved:

0 5 0 = 0
Gl,nvnﬂ-‘rl Gn+1,n+1vn+17n+2Gn+2,2n+1

G172n+1 = (2.7)

1- G9L+1,n+1[@nﬂ,nGg.n@n,nH + @n+1,n+2G%+2,n+2@n+2,n+1]

Now we require the terms GY ,,, Gg+1,n+1’ Gg+1,n+2’ Gg+272n+1, G9L+2,n+2. These can
be found by using the above reduced Green’s function technique, in addition to exploiting
the recursive relation for the determinant of a matrix consisting only of diagonal and sub-
diagonal entries. Similar calculational methods were employed by Evenson and Karplus
[148].

For simplicity, we assume that the couplings to the two metals at the ends are the
same, and use the wide-band approximation, in which A = 7", | vy, |> (€ — €) is taken
as constant.

If d,, represents the determinant of a n x n matrix with diagonal entries set to € — ¢;

and subdiagonal entries set to some v, then it is possible to express:

n—1
) 2.8
1,n dn B dn[ V2 ] ( )
€—€g
2
dn—l - dn—Q[%]

@, = = (2.9)

dn - dnfl[g_kgk]
e ! (2.10)

n+ln+1 — €— ¢, .

G?H—Z,Qn—l—l = G?,n (211)
G9L+2,n+2 = Gg,n (212)

Invoking the wide band approximation the above expressions reduce to the following

form:
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0 (vt
= 2.1
Cin = 4 T idoA (2.13)

0o _ dnfl + 'L'dnf2A

= 2.14
T+ idy 1 A (2.14)

Thus, the problem has been reduced to calculating the determinants d,,, which will
be thoroughly explained in the next chapter.

The conductance can be obtained from Caroli’s formula and integrated to obtained
the net current. The net current thus obtained has a ¢, dependency which has to be
eliminated by performing a thermal averaging. The final result obtained after thermal
averaging gives the net total current. As noted in the introduction, in electrochemical
systems there are two potential differences to consider: the bias V between the two
electrodes, and the electrode potential, which shifts the levels in the solution. We use the
convention that the potential of the right electrode R is kept constant, and set its Fermi
level to zero. The levels on the wire shift with the electrode potential; this assumes that
the conductivity of the solution is higher than that of the wire. Other scenarios can be
calculated by the same formalism. With this convention, we write the total current in

the form:
I(q) = / TrGT TLGo T {f (e + coV) — £(6)}de (2.15)

where f(€) denotes the Fermi-Dirac distribution. As has been pointed out several times
(see e.g. [149]), in the case of a classical solvent it is sufficient to consider a single
effective solvent coordinate q. Effectively, this means that in the Hamiltonian, we make

the following substitutions:
1
3 Z hwya’ — A, Z hwyguq, — —2)\q (2.16)
1% v
The average over the solvent configurations can then be written as:

I= % / dge PE@D(q)  Z = / dge=PE@ (2.17)

where the energy, as a function of the solvent coordinate ¢, is:

E(q) = A\* + Z/e(c!q) (2.18)
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Thus E(q) is obtained by performing a partial trace over the fermionic part of the
total Hamiltonian. The quantity <c;-rci>, as viewed by Wingreen et al. [79], is the lesser
component of the Keldysh Green’s function, G5. If I, and I'p are the imaginary parts of
the self-energy arising from the interaction with the left and the right reservoirs (which

in the view of wide-band approximations is A), then for the present case
Gz<z = Zf(ﬁ + GOV)[GTFLGG]Z'Z' + if(e)[GrFRGa]ii (2.19)

At this point, a few comments on the appearance for G< are needed. It is well known
that in equilibrium the lesser Green’s function takes the form of a product of spectral
function times the occupation function. (G< = ia(e)f(€)). That is in case of zero bias V/

when both the reservoirs have the same potential, f(e + egV) = f(€), then
G =if(e)[G"(I'L + I'r)G = if(e)2A]G"G"] (2.20)

Now G"(e) — G%(e) = a(e) where a(e) is the spectral function, and the imaginary
part of self-energy can be written as (1/G* —1/G"). In our notation, 2A = Ap, + Ag =
(1/G* —1/G"). Also the diagonal part of G"(e) — G(¢) is proportional to the density of

states, p(e). In equilibrium, we recover the result
G< =if(e)ale) = f(e)(G" — G®). (2.21)

Substituting the above result in the expression (2.18) for E(q), it is seen that at
equilibrium E(q) = A¢*> + [ ef(e)ImTrG(e)de, wherein the second term in the energy
expression is widely employed in a variety of contexts in physics. Thus the expression for

E(q) for the non-equilibrium case can be written compactly as

Blg) = A\ + / ef(e + eoV ) Tr[G7 TG )de + / (€ TX[GT RG] de (2.22)

The trace in the above equation runs over the (2n 4 1) sites numbered by the index
i. Now for better exposition of the computation involved in calculating the E(q), we

consider a generic term which has the form shown below:

0 —eV

where we have replaced the Fermi-Dirac distribution by step function, and taken the
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Fermi level as zero.

We consider the case for the three possible locations of i, (i <n,i > n+2,i =n-+1).
As before the general idea behind the approach to get the matrix elements of G is to
resort to a Dyson expansion. The closed form equation so obtained has to be solved to

get the relevant terms. The choice of V is same as used before.

Gy, = G(l],i + G(l],n@mn-l—lGn-l—l,i (2.24)

Gni1,i = Gg+1,i + G?H—l,n—l—l@n—l—l,n-l—QGn—i—Q,i + G2+17n+1®n+1,nGn7,~ (2.25)
G2, = G2+2,i + G2+2,n+217n+2,n+1Gn+1,z (2.26)

Gri = Gp i + G Onint1 Gt 1 (2.27)

Case I: i <n

0 0 -~ 0
Gl,nvnerl Gn+1,n+lvn+17nGn,i

G, =Gy, + — i ] ]
' Y- [Ggﬂ,nﬂv’”1v"+2G9L+2,n+2Un+2,n+1 + G2+1,n+1Un+1,nG%,nvn,n+1]
‘ (2.28)
0 (—v) " dni
T 4 iAd. 2.29
L+ iAdy (2.29)
—0)" " H(di—1 + idiaA
G?L,z:( U) ( Z.1+Z —2 ) (230)
dn + ’LAdn_l
Case Il: i >n+2
G, = GY 1 Onnt1G) 11 Onr1nt2Gy o (2.31)
L .

7 0 - 0 - 0 - -
1- [GnJrl,n+1vn+17n+2Gn+2,n+2vn+27n+1 + Gn+1,n+1U"+17nG917nvn7n+1]

It is crucial to note at this stage that because of the form of perturbation selected

the unperturbed G° has a symmetric structure with respect to the first and third block

0

matrix and hence G;, 42,

in the above is same as GY ; in case L.
k)

Case IIl: i=n+1

0 5 0
Gl,nvn,n-f-lGn—i—l,n—i—l

Ging1 =

; 0 = 0 = 0 = 0 -

1- [GnJrl,n+1vn+17n+2Gn+2,n+2vn+27n+1 + Gn+1,n+1U"+17nGn,nvn7n+1]
(2.32)

Even though vy, ,,41 = Upt1,n+2 = ¥, we have maintained the subscript indices for

ease of checking the final expressions.
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2.3 Results and discussions

The principle new feature of our work is the dynamic interaction of the redox system with
the adjoining species, which fluctuates with the solvent coordinate q. The main effects
can be demonstrated with a chain of three atoms, and we limit our numerical calculation
to this case.

Even though we have restricted our treatment to the symmetric case, in which the
coupling A to the two leads and the interatomic couplings v are the same on both sides,
the system contains a fair amount of parameters. In the following model calculations, we
have set A = 0.3 eV and the reorganization energy A = 0.3 eV unless otherwise mentioned,
and for the other parameters we have chosen values appropriate to demonstrate special
effects.

The case of a single intervening redox center is well examined. The new feature of
the three-atom chain is the interaction between the levels €; of the two side atoms and
the redox center. Before considering this in detail, it is instructive to investigate the
reference case in which this effect is weak; in this limit, we should obtain similar results

to the case of one atom.

0.10 ; , . , . | . —— bias=0V
R BN ---- bias=0.1V
oer ,'" L bias =-0.1V
0.05F .| | / |
i
> roooz i
q) ”v
: 000 - 08 0 DE ’0‘50 0‘75 1.00 _
(=) q
L
-0.05
-0.10

-0.5

Figure 2.3: Potential energy surfaces in the case of weak coupling and at the
equilibrium potential for the redox system; system parameters: ¢; = 0.8 eV, v =
0.01 eV, ¢, = A = 0.3 eV. The insert shows the occupation (n,.) of the redox center.

The interaction of the side atoms with the center is weak, if €1 lies far from the Fermi

level and the coupling v is small. In this limit, the redox center is at the equilibrium
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potential for €, = A. As expected, in this case the potential energy surfaces E(q) are
similar to the one atom case [150]. At zero bias, they have the same form as for a normal,
outer sphere redox reaction- see Fig. 2.3. In the left well, the occupancy (n,) is zero,
in the right well unity. Application of a bias produces a region with (n,) ~ 1/2, which
extends the barrier in the center. For the three atom case, the tunneling rate, as a

function of the electronic energy e and the solvent coordinate g, is given by:

A2t

t(e,q) = (6 — & 4 220)2 [(e — € + 2Xq) (e — €1 + iA) — 202]?

(2.33)

Aslong as €7 lies so high that it plays no role, this rate has a maximum where e—¢,.+2\q =
0. Tunneling occurs only between the two Fermi levels, in the range —egV < ¢ < 0.
Inspection shows, that the maximum of ¢(e, ¢) is obtained in the region where (n,) ~ 1/2,

which therefore gives the main contribution to the current.
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Figure 2.4: Current-potential curves in the case of weak coupling; system param-
eters: ¢, = 1.2 eV, v =10.01 V.

Continuing with the case of weak coupling, the current-potential curves are symmetric
at the equilibrium condition €, = A. Shifting ¢, by application of an overpotential leads
to asymmetrical curves with rectifying properties. Figure 2.4 shows the case in which the
redox level has been lowered, so that the most favorable energy range now lies below the
Fermi level of the right electrode. Therefore the current is higher at positive bias, where

this energy range lies between the two Fermi levels.
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Really new features occur when the redox level interacts noticeably with the levels
€1. In general, three interacting atomic levels combine to form three molecular orbitals.
Since the redox level changes its energy with the solvent fluctuations, so do the resulting
molecular orbitals. So, for some range of ¢ the redox level will be far from €; and the
interaction will be almost negligible, in another range it will lie close in energy, so that

one observes the typical splitting of the levels.

0.3 -— —— & =02¢eV
-——-g=04¢eV
............... er=0eV

0.2}

tunneling rate / arb. units

0.0 i
=1.00  ~0.60

1 1
020 060 1.00 1.40
energy / eV

1
—0.20

Figure 2.5: Transition probability as a function of the energy e of the tunneling
electron for various values of ¢,; the solvent coordinate ¢ was set to zero. System
parameters: : ¢; = 0.2 eV, v =0.1 eV.

The transition probability ¢(e,q) has local maxima, whenever € is near one of the
molecular orbitals. Since is depends only on the combination €, — 2)\q, it is sufficient to
investigate the dependence on ¢, for ¢ = 0, as is done in Fig. 2.5. The interesting region
lies where €, =~ ¢;. When both are equal, there are three distinct maxima at the three
molecular orbitals. When they are separated, only two maxima occur at the position of
the atomic orbitals, since the splitting is too small to show up — it is hidden beneath the
maxima.

These oscillations in the transition probability give rise to interesting current-potential
curves exhibiting several steps and even regions with a negative differential resistance
(see Fig. 2.6), effects which do not occur with a single electronic intermediate state.
The exact shape of these characteristics is determined by an interplay of three effects:
The change of the potential-energy curves with the bias, the dynamic changes in the

energy of the molecular orbitals as the solvent coordinate g fluctuates, and the resulting
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Figure 2.6: Current-potential curves for various values of €,.. System parameters:
e =0.2¢eV,v=0.1¢eV.

oscillations in the transition rate. These highly nonlinear effects are more pronounced
when the coupling A to the two leads is weaker. Figure 2.7 shows two examples where
the system parameters have been chosen such that the curves either exhibit nice plateaus
or a pronounced negative differential resistance.

As pointed out in the introduction, in electrochemical systems two voltages can be
controlled independently, the bias and the potential between the solution and one elec-
trode. This makes it possible to perform spectroscopy of the electronic states in the
wire, which experience the potential of the solution. We introduce the overpotential 7 of
the redox couple with respect to the right electrode through ¢, = A — egn, and let the
intermediate state shift in the same way: €; = €} — epn. In a real system, because of
the finite conductivity of the solution, 7 may be only a fraction of the externally applied
potential, but this would require only a trivial modification. If we keep the bias constant
at a comparatively small value and scan the overpotential n, we obtain a peak in the
current every time an electronic state lies within the tunneling range of energy between
the two Fermi levels. A few examples are seen in Fig. 2.8. The redox level always gives
a peak near 7 = 0, and for the parameters chosen we see a second peak near 6(1]. When
these two energies lie close, one peak may appear as a shoulder. Note that the curves for
) = +0.5 eV in the figure are not quite symmetric, because the bias breaks the symme-
try. In theory, we could expect to see up to three peaks in these curves corresponding

to the three molecular orbitals formed, but these only occur for a very strong coupling
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Figure 2.7: Current-potential curves for small coupling to the leads. System pa-
rameters: A = 0.1 eV, ¢, = 0.5 eV, v = 0.1 eV, ¢ = —0.2 eV (left curve) and
€1 = 0.3 eV (right curve).

v and small energies of reorganisation. Otherwise the splitting induced by v is hidden

under the peak for €.

2.4 Conclusions

In this work we have presented a model for the conductivity of a molecular wire contain-
ing a redox system, and embedded in an electrochemical environment. We considered
the interaction of the redox system with a classical solvent, whose state was represented
by a solvent coordinate ¢ in the spirit of the Marcus theory. Using the wide-band ap-
proximation, we were able to derive an exact expression for the quantum conductance of
a chain of arbitrary length. The thermal average over the solvent configurations had to
be performed numerically.

Explicit calculations have been performed for a chain of three atoms. When the
electronic levels of the neighboring atoms interact weakly with the redox couple — because
their energies are very different or the coupling is weak — the wire behaves much like a
single intervening atoms. Interesting new features arise when the redox couple interacts

strongly with the neighboring levels. Since the redox level fluctuates with the solvent,
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Figure 2.8: Current at constant bias IV = 0.1 V as a function of the overpotential
n for various values of €7, the value of ¢, for vanishing overpotential; v = 0.1 eV.

this interaction is dynamic and changes with the solvent configuration.

In an electrochemical environment two potential differences, the bias and the electro-

chemical potential of the wire, can be varied independently. This makes it possible to

perform electronic spectroscopy at constant bias by changing the electrochemical poten-

tial. Intermediate states show up as characteristic current peaks.

Our treatment has been limited to a redox couple interacting with a classical solvent.

An extension to the case where quantum modes couple to the electron transfer should be

ossible, using Green’s function techniques that have been applied to the case of a single
p ) g q g

atom [136]. This could give rise to additional structure in current-potential curves.
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Chapter 3

Electron Transfer rate between a

electrode and a bridged redox

3.1 Introduction

Electron transfer at molecular levels and especially, between chemically active species
has been an important and interesting field of active research for a couple of decades
[151, 84, 152, 153]. A typical quantity of interest in chemistry is the rate of transfer
between two chemiactive species, that is, between donor and acceptor, which in general
are solvated. Additionally, with the advent of nanotechnology and molecular electronics,
understanding electron transfer rate in molecular chains became a key theoretical interest.
A general setup in molecular electron transfer is to study, both in theory as well as in
actual experiment, the current-voltage response obtained on passing current between
two molecular mesoscopic junctions connected by a single long molecule or a chain of
repeated molecular or atomic units. The important quantity of interest in the above
scenario is the molecular conduction. The problem of obtaining the conduction of a
such a system is well studied one. Formal expressions and relationships like the landauer
formula [154, 155, 156] and it’s several variants are available to calculate the conductance
of such systems [157, 78, 147, 158]. Since conductance is due to transfer of electrons, the
question of relationship between conductance and electron transfer rate was answered
by A. Nitzan and co-workers [159, 17]. Nitzan derived a relationship between electron

transfer rate (k) and conductance at certain regime.
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The rate expression for electron transfer has been derived by several methods, the
earliest dating back to the super-exchange method proposed initially by McConnell
[59, 148, 160, 161, 162, 163, 164]. Super-exchange treatment is a viable method when the
transfer mechanism is tunneling dominated. Another plausible mechanism for transfer
is sequential hopping. Typical cases of sequential hopping occurs when there are asym-
metries or irregularities in the bridge connecting the acceptor and the donor. Under
those conditions phase loss can lead to sequential hopping. The interplay between the
sequential hopping and tunneling has been addressed by Medvedev and Stuchebrukhov
[165]. They obtained the expression for rate by forming a dynamic correlation function
of the couplings or the hopping parameter. Alternate methods to arrive at the rate ex-
pression include, density matrix formulation of the problem and equation of motion for
the reduced quantum system interacting [166, 167, 168, 169, 170, 171].

Our present work focuses on obtaining an explicit expression for transfer rate in a
system where the redox is solvated and is connected by a molecular chain to a electrode.
More specifically our attention is concentrated towards obtaining the voltage dependency
of the electron transfer rate. As with the previous authors who tackled the problem within
the time-dependent fluctuation framework, we assume that at t=0 the electron is in the
donor and express the rate of the electron arrival at the final continuum states in the
electrode using t-matrix. In this way out treatment of the problem is different from
the previous treatments by other authors, wherein the rate expression was derived by
expressing the rate as a time dependent correlation function and by partial tracing of the
density matrix. It should also be noted that all the earlier works for obtaining transfer
rate were mainly oriented towards a DBA system where both the donor and acceptor
were either solvated or were continuum of states, while in our system considered only the

donor is solvated while the acceptor is an electrode.

3.2 Model and Calculation
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The following Hamiltonian is considered as a model for a system of n-sites (each
having a single energy level ¢;) connecting a reservoir or electrode with energy levels
€, to a redox couple with energy level ¢,.. The electrode and the redox is connected to
the n-site chain through the 1st and nth site respectively. The Hamiltonian is a tight
binding model Hamiltonian with additional interactions arising from the redox with the
polarization modes. This is achieved by treating these polarization modes as classical
oscillator modes. For ease of clarity the Hamiltonian can be split into three parts H,;,
H pgin and Hpp,, where the H,; refers to the electrode part of the Hamiltonian , Hpain
represents the tight-binding Hamiltonian of the chain + redox couple and the Hpy, is the

used for modelling the classical polarization modes.

Hy = Xpepng + Ek[l_)klc;rﬁcl + h.C] (31)

1
Hyp, = Eyihquf (3.2)

Hohain = Z €ni + Z{vic;rczﬂ + h.c}+ (e, + Z hwy Gy Gy )1y + {Tprchcp 4+ hoc} (3.3)
i=1,N [ v

It is clear that the matrix form for the Hepgn is @ n+1 X n+1 tridiagonal matrix
with only non-zero entries along the main diagonal and sub-diagonals. For completeness

we also give below the matrix form of this Hamiltonian

€1 U 0 0
v € U ... 0
Hehain=| ... ... ... w 0 (3.4)
0 U €N Urn
0 ... . Upr &+, hwguqy
H = He; + Henain + Hpn (3.5)

To get the current, the formalism of Ratner et al is employed. Thus the procedure
is to get the rate for the transition from redox (r) to the electrode (k) under the influence

of voltage W and then perform a thermal averaging of the transition rate. The transition
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rate is

2
rate = %zku — fle—eW)] | Tur 2 8(er + Suligugy — €x) (3.6)

Tkr = kalGln’Dnr (37)

(~o)!

Qo — Y
n detHchain

The GY, is calculated based on the following crucial observation. Let d,, denote the
determinant of n x n matrix consisting of € in the diagonal elements and v in the upper

and lower sub-diagonal and the rest of the elements of the matrix being zero.
o\ _ (e ") [ dua (3.9)
dn—l 10 dn—Z

By repeated application of the above recursion relation, and noting that dy = 1 and

dy; = € one arrives at the following result

n+1 n+1
_AM AT

dp = 3.10
Y (3.10)

+ 2 4 2
Ao = # (3.11)

Employing this result in the present Hamiltonian, yields the below given result for

the determinant of H_j4ip

detH pgin = dp, + 1Ad,—1 (3.12)

Where in the above expression d,, is the same as the one defined above . Care should
be taken to note that the € used in the definition of A; 5 is to be replaced with € — ;.

This is done since the quantity of interest is the inverse of el — Hopgin
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In the above expression the Green’s function element obtained was of the isolated
chain Hamiltonian, but the Green’s function element to be employed in the formalism
should correspond to the total Hamiltonian. This can be obtained from the isolated chain
Hamiltonian’s Green’s function by resorting to a Dyson equation with the interaction of

the electrode and redox treated as a perturbation. The resulting expression is as follows:

0
GlN

3.13
1= G952, G0, [ — G0, 52,0 ] (3.13)

Giy =

Where in the above expression the isolated Green’s function elements are given by

dnfl
QY = i (3.14)
dp—1 + 1Ad,—
0 n—1 n—2
=l —ne2 1
Gy i 1A (3.15)
1
G = —— 3.16
kk = — €p 16 ( )
1
Gl = (3.17)

€ — € — Xy hw,gyqy + 10

Alternatively one can arrive at the expression for the Gy, element by considering only
the Hamiltonian for the chain, H.p4;, and replacing the effect of the reservoir and redox
by the corresponding self-energies.Working within the Wide-Band approximation where
the self-energy of the electrode is given by ( —iA ). Both the procedures leads to the
expression for Gy, as

(0!

Gip = (3.18)

. _ [dn_1+iAdn_2}f)2
(dn + ZAdnfl) E,ET,ZVthquZT

Where in the above expression wide-band approximation has been employed for the
2

self-energy of the reservoir and the self-energy of the redox is E_Q"_Ei—hwyquy
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The above expression for Gy, is to be substituted in the rate expression. The delta

function can also be split and hence the rate expression takes the form as shown below

2

’%(67 QV) = 7

/déEk[l — fle—eW)] | Op1 |2 6(& =€) | Ty 2] G1r |? 0(er + Zohguq, — &)
(3.19)

Defining 7 | v |* Xxd(e — ex) = A the above expression reduces to the form below

W(est) = 2A[L= fle = eW)] | Gun 2 oy 2 (3.20)

The € in the above expression refers to the energy at which the electron transfer takes
place and hence to get the net current flow it is required to sum all the contributions from
different energy windows. This summing of different contributions can be performed by
integrating with respect to €. That is a sum over e is replaced with [ dep(es) where p(ey)

is the density of states at the Fermi-surface of the electrode .

) =3 [ depleg)lt = Fle = W) Gun Pl o0 (321)

a0) = 28p(es) [ et = fle= W] | G [ o P (3.22)

It is now required to do thermal averaging which is to integrate the above expression
for current over all the polarization modes ,q,, with a weighing factor of ezp=#F. Alter-
natively the same process can be viewed as summing over all possible initial states of the
redox with respect to polarization modes with a suitable weighing factor depending on

the energy of the polarization modes.

The above expression can be evaluated by employing the single reaction co-ordinated
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@ for the polarization modes ¢,. Resorting to single reaction co-ordinate [149] , which
in effect can be represented as a change of co-ordinates, the crucial observation is that
the introduction of single reaction co-ordinate amounts to replacing ¥, Aw,g,q, by 2Aq
and the quadratic term in the exponential for the thermal average is to be replaced by

Ag? + 2)\g. Thus the expression for net current takes the form as shown below

12 _
K = ZﬁAp(gf)@mﬂ ]2 /de[l — f(e —eW)] /dqe B(A2+2Xq) | Gin(q) ’2‘ (3.23)
(~v)!
Gin(q) = i o (3.24)
(dy +iAdy—1) — [d”*ifff;‘;;] =
7 _ / dge— PO +22a) (3.25)

While the partition function Z is an elementary gaussian integral. The innermost
dq integral can be evaluated by using partial fractions. For brevity defining D,, = d,, +

1Ad,_1, the Gy, takes a form as below.

()" L(e — € +2)q)

Gy, = 3.26
n Dn(e — €&+ 2>‘Q) - l_)an,1 ( )
The innermost integral over dq can be explicitly evaluated
9 (U)2n72 5
/ dge P00 | Gy, 2= LA N g, Q)2
2
B AQu2A/AA (¢ _ ¢ 4 Qg)?] (3.27)
where A = 55— 5 5y and B = E%T(Dn—lzjln)ﬁ 5.5 and Qo are complex
conjugates of each other. Physically this corresponds to the pole in Gy,(q).
D,_
Qo = @,QW,Dn—l —(e—€) (3.28)
n
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D
A= n
2iA(dn—2dn - dn—ldn—l)

(3.29)

B= —Dn
B 2’LA(dandn - dnfldnfl)

(3.30)

n=k /dEQiA( Lo Hem W) p ems@uiantiangz Dictye g (3

dn—an - dn—ldn—l) Dn
2 VB I ) A\
Ki= 2 Y2 Ajp, 2P 5 3.32
L= A o, [P (3.32)

The above expression for current can be written in a simplified form by resorting to

a step function approximation to 1 — f(e —eW) .

too [P, e—BQoH+2N?/4N (52 Dno1y2 _ . .
n:Kl/ [Dr O 75.7) ]de (3.33)
€

=W QZA(dn—an - dn—ldn—l)

3.3 Results and Discussion

Our main focus of attention in this work is oriented towards explaining the dynamic
interaction of the redox with the solvent modes and it’s subsequent effect on the transfer
rate. The chief reason being the redox energy levels varies with the ¢ and hence even
though maxima in the transfer rate is expected when the energy level of the redox is same
as the energy level of the bridge, but due to the coupling of the redox with the solvent
modes, the value of ¢ coupled with the resonant energy level may not be a thermally
favoured one. Thus it’s the competition between the energy difference between the redox
and the bridge and the probability distribution of the initial state of the redox that brings

out certain interesting results which we focus on this part.
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Since there exist a number of parameters as input, unless stated specifically, we set
the Fermi surface to zero ,ey = 0, A = 0.2 and ¥, = v;, for all through the rest of
the discussion. Fig 3.1. shows the variation of the rate with the applied voltage which
could be understood easily from a naive argument as follows: As the applied voltage is
increased, the energy levels available in the electrode for the electrons originating from
the redox decreases. Thus leading to a rate approaching zero as the voltage is increased.
The above is a normally expected behaviour while the interplay between the polarisation
modes and the resonance between the redox and the bridge energy levels is clearly visible
in Fig 3.2. ¢ = —1 corresponds to equilibrium value of the polarization modes when the
electron is in the redox and €, — 2Aq = ¢; is the condition for energy matching between
the redox and the bridge. When ¢; — ¢, = 2\, the combined effect of thermal averaging

and resonant electron transfer is borne out in Fig 3.2.
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Figure 3.3: Plot for Rate Vs. 1/T at zero bias. The Y-axis is plotted on logarithmic
scale. The value of the parameters are used are above.

Fig 3.3 is plotted to show the temperature variation of the rate at zero bias. As
expected, the graph shows a linear behaviour when plotted as a function of (1/T). Taking
logarithm of the rate equation reveals only three terms dependent on 3, apart from
uninteresting constant terms. One of the terms is -0.5 log S while the other two terms
have linear dependency on 3. The contribution from log 5 become dominant only in
the § — 0 limit. Since this corresponds to the high temperature limit , for all practical

purposes the log variation of rate has a linear dependency on (1/T), a fact borne by Fig
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3.3

In order to further investigate the properties of transfer rate at resonance condition,
we plot in Fig 3.4. the response of the rate-Voltage for various values of vy. It is observed
from the plots that for small values of the coupling co-efficients , implying a weak bonding
between the bridge atoms and between the bridge atoms and the redox, drastic variation
from the normal behaviour is not seen. But as the value of v; is varied, the observed
pattern near the resonance point changes. The changes include a constant transfer rate
around a small range of voltage near the voltage value corresponding to the resonance

energy, to the rate dropping to zero in some intermediate voltage regime.
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Figure 3.4: Rate Vs. Voltage for different value of v;

In Fig 3.5. we plot the variation of the rate as a function of the difference in energy
between the bridge and the unsolvated redox energy. In particular we wish to highlight
the behaviour in the regime where the bridge is situated at a higher energy level than
the Fermi level. we first study the variation for a fixed value of A. The crucial fact
to observe is that as long as the bridge is located energetically higher than the Fermi
surface, the location of the maximas varies with the actual location of energy level of the
bridge and not just only upon the energy difference between the redox and the bridge
as one would normally expect. On examining the plots show that the maxima occurs
for a fixed value of €, corresponding to a particular value of \. Thus in effect while the

minima is dependent on the difference between the energy levels, the maxima shows a
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Figure 3.5: Rate Vs. Energy difference between the redox and bridge energies

strong dependency on the solvated energy level of the redox. The effect of A on the rate

profile is shown in Fi
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Figure 3.6: Comparison of Rate Vs. Energy difference between the redox and bridge for
various value value of re-organisation energy

3.4 conclusion
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In this chapter, we have considered a model for electron transfer rate from redox to
an electrode via a bridge of N- atoms. The redox considered is allowed to interact with
an electrochemical system whose effect in terms of polarization modes are modelled as a
bath of classical oscillators with solvent co-ordinates q. We obtained the electron transfer
rate from redox to the electrode and have performed an averaging over all possible initial
states of the redox. A final voltage dependent expression for the rate is obtained as an
integral over all possible energy values available for the incoming electron. This integral

has been performed numerically.

We have shown some of the interesting pattern which are otherwise not expected in
a heuristic analysis. These pattern in the voltage dependency have been attributed to
the competing process namely,resonance tunneling between the redox and the bridge and
the solvation of the redox. Additionally we have also shown that by suitable altering the
voltage range and the coupling co-efficients it’s possible to block the electron transfer in
some intermediate voltage ranges. Moreover, the profile of the transfer rate with respect
to the energy difference between the bridge and the redox exposes a radically different

response due to the effect of intervening solvent modes.
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Chapter 4

Electron Transfer Reaction Through

an Adsorbed Layer

4.1 Introduction

A proper understanding of electron transfer reaction through an adsorbate interme-
diate constitutes the first step towards modelling the charge transfer across a chemically
modified electrode [172, 173, 174], through a molecular wire [175, 176], or the phenomenon
of the molecular electronics [177, 175, 178, 179, 180, 181]. In fact the indirect heteroge-

neous electron transfer is a recurring feature in all these processes.

In this chapter, the kinetics of an adsorbate mediated electron transfer reaction is
considered. The adsorbate is taken to be a metal ion. The reactant is supposed to couple
with the adsorbate orbital alone; the direct coupling between the reactant and Bloch
states in the metal electrode is neglected. The adsorbate coverage factor 6 is allowed
to take any arbitrary value in the range (0,1). Thus starting from a single adsorbate
case, corresponding to § — 0 limit, the formalism remains valid all the way up to
a monolayer regime (# = 1). An important characteristics of metallic adsorbates is
that at low coverage, the adsorbate orbital is spatially localized. But in the monolayer
regime, one obtains extended electron states in the adlayer. These states form a two-
dimensional band [182, 183]. The localized adsorbate state interact strongly with the
solvent polarization modes. On the other hand, the interaction of extended electron

states with the polarization modes are much weaker, and as a first approximation, it can
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be neglected [184] .

A progressive desolvation of adspecies, when the coverage is varied from zero to one,
changes adsorbate orbital energy by a few electron volts and hence must leave very
significant effects on the electrode kinetics. In addition, in the monolayer regime, the
metallic adlayer itself acts as the electrode surface. As a consequence, the adsorbate
mediated electron transfer ought to exhibit the characteristics of a direct heterogeneous

reaction.

Therefore, a study of how the metallization of an adlayer, and the subsequent des-
olvation of the adsorbate bridge influences the indirect heterogeneous electron transfer
poses a challenging problem in the area of electrode kinetics. In the cited references,
the coverage dependent potential energy profile for a bridge mediated electron transfer
reactions is generated [184]. In the present chapter, the current-potential relation for

such processes is provided and analysed.

The adsorbates exhibit different structural arrangements at different coverage. Even
at a fixed coverage, more than one kind of distribution pattern can be observed in the
adlayer [185, 186, 187, 188]. Modelling each configuration separately poses a difficult task.
Therefore we consider a random distribution of the adsorbates in a two dimensional layer.
Subsequently, an ‘effective-medium’ description is used for the adlayer. This procedure

captures the essential features of the adlayer in an average sense [184, 189].

4.2 Model Hamiltonian

An adsorbate has strong electronic coupling with the substrate band states as well
as it has electronic overlap with neighbouring adspecies. The latter coupling leads to a
two-dimensional band formation in the adlayer at higher coverage. The solvent polariza-
tion modes are usually modelled in the harmonic boson approximation and their linear
coupling with the adsorbate and reactant lead to solvation and solvent reorganization
energies. Here the reactant-adsorbate electronic interation is taken to be weak, thus en-

abling us to treat it with in the linear response formalism [190]. The model Hamiltonian
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representing the physical system is characterized by certain key features to be discussed
as follows. Chemisorbed species are distributed randomly on the various adsorption sites
on the electrode substrate . Thes sites are considered to form a two-dimensional lattice
and are commensurate with underlying substrate. The energy levels associated with the
vacant sites are taken to be infinity to ensure that no electron transfer takes place through
a vacant site. The random distribution of the adsorbates leads to a randomness in the
site energies , that is in a sense, they acquire a random characteristics depending on the
occupancy or the vacancy of the site. No randomness is associated with the underly-
ing substrate. Thus the necessary Hamiltonian needed to describe the electron transfer

process is shown below [184]

ez

Z €ExNko t+ Z éio({bu + bl})nw + Z wub:f/bu

H = Y &{b, +0 Dm0+ > [arclytro + he] = > Are(by + b))

k,o 1,0 v
+ Z[vikcjck + h.c] + Z vijcjcj - Z Niew(by + D7) (4.1)
kviva i#jvo- {’i},V

The redox species labelled r is coupled to adsorbate located at site i=a in the ad-
layer. The sites in the adlayer are specified by i, while the electrode states are labelled
by k. n , ¢f, ¢ represents the number, creation and annihilation operators for electrons
while b and b represents the creation and annihilation operators for bosons which model
the polarization oscillator modes. v runs from 1 to 4 labelling the polarization modes
corresponding to orientational, vibrational, electronic solvent polarization and surface
plasmons respectively and w, represents the associated frequencies. v is used to denote
the coupling strength between the electronic states and A signifies the strength of adsor-
bate and redox coupling with the boson modes. The subscripts o and c refers to reactant

and adsorbate core.

& ({by +b}) = € + > A (by +b)) (4.2)

éic = €0y + Y Aav(by + bf) (4.3)

€2 and €) are the energies of redox and adsorbate in gas phase. The expression (4.3)
gives the energy of the adsorbate site i when it is occupied. As mentioned before, in

case where no adsorbate occupies the site i, the following relation ensures that no charge
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transfer takes place through unoccupied sites.

While evaluating the shift in adsorbate orbital energy due to it’s coupling to boson,
the boson mediated interaction between different sites are neglected. Since only a single
species adsorption is considered, a replacement of \;, by Ay, and A, by Ao is followed.
Coherent potential approximation is employed to handle the randomness associated with

the site energy [189].

4.3 Calculation of current

An examination of the model Hamiltonian shows that, the only possible mechanism
for transitions involving redox is provided by the redox-adsorbate coupling terms wvg,.
Treating the magnitude of v, to be small, the current contribution can be obtained
with employing linear response formalism. The microscopic current associated with the
electron transfer reaction depends on the average value of the rate of change of electronic

occupancy of the redox orbital [190].

on,
ot )

I= —¢f (4.5)

=55 [l onvida (4.6

where Vi, = varciwcr. The first term in the commutator leads to anodic current and
the second one gives the cathodic current. The expectation value in the above equation
corresponds to a density matrix defined by H = H — " O(VITT + V7). Employing Frank-

Condon approximation, the anodic current is obtained as

[y= % /_O; dt | Var 2 ({cl(0)e, (1)) (cao (0)cly, (1)) 1) B (4.7)

Here (- - - ) p implies an average over electronic degrees of freedom, keeping the bosonic

variables as fixed parameters and (---)p denotes the thermal average over boson modes
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which are treated in classical approximation. The time correlation function involving

Caos c:gg can be expressed in terms of adsorbate Green’s function.

(Car Ol O = = [ (1= S/ 110G (4.8
(G O))ima = (O] carl— 15 eimachy | O (4.9
(el (0)er () p = %/OO e~ weT/hbar (e — ¢, )de (4.10)

From the expression (4.9) , it is clear that G;; involves a restricted configuration av-
erage denoted by (---)¢i—q. This implies that while obtaining the configuration average,
the site a, which is occupied by an adsorbate and through which the electron transfer
takes place, is excluded from the averaging. The occupancy status of the remaining sites
are still unspecified. Hence for obtaining the deterministic expression for current, coher-
ent potential approximation is employed. From a physical point of view, this formalism
implies that the random adsorbate layer has been replaced by an effective medium and
the net effect is one in which a redox is coupled to an adsorbate occupying the site a,

and this particular adsorbate is embedded in a two dimensional effective medium.

4.3.1 Estimation of Coherent Potential

As mentioned earlier the randomness inherent in the adsorbate occupancy is handled
using coherent potential approximation . Accordingly, the inherent random energy op-
erator €;,n;, in (4.3) is to be replaced by a deterministic operator k,n;,. The coherent
potential k,(€) is same for all the sites, but depends on the energy variable e. k, is
determined self-consistently. The required self-consistent equation can be obtained as

follows.

Gij = G055+ Y GEWa Gy (4.11)
l
ViV
Wi = Vi + Z Ei—ekkl (4.12)
k
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The above equation is obeyed by all GF matrix elements corresponding to sites on
two-dimensional lattice. The use of coherent potential for configuration averaging leads

to the following result for configuration averaged GF

_ 1 1 1
O WK N e h W) (813

u

The coherent potential operator K has an energy dependency and is deterministic,
moreover, it is diagonal in the site basis {i}, that is K(e) =, k(e)c;-rci. N is the number
of sites and the summation is over the first brillouin zone. The self-consistent expression
for K in the more general context when the energy associated with the vacant site is

assumed to be some large €, but not infinite

0 (1-20)
_ __ =0 4.14
(€a — k)~ =G " (€o — k)~ =G (4.14)
which in the limit of €, — 0o becomes
1-6
k= e, — — 4.15
e (4.15)

Substitution of (4.13) in (4.15) leads to the desired form of self-consistent equation

to be used for determining k,(¢).

_ 1 1 1-14
L = 4.1
G N Zu:e—k(,(e)—W €ao — ko (€) (4.16)

The above self-consisten expression for the evaluation of k, is exact but requires
a tedious summations over the brillouin zone and metal states. These can be further
simplified by following the certain assumptions. The assumptions are as follows: (i) The
separability of the metal state energy € in the direction parallel and perpendicular to
the surface. (ii) The substrate density of states in the direction perpendicular to the
surface is taken to be Lorentzian, whereas the same is assumed to be rectangular along
the surface. (iii) The adsorbate occupies the 'on-top’ position on the electrode and is

predominantly coupled to the underlying substrate atom. Consequently (4.16) becomes

~ 1-6
Gi = ————
€ao — ko (€)

e (AR o (B2
— QAH(B—A)M[(A )l <A+AII> (B—-0O)l <B+AH>] (4.17)
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AJB = %[(c + D)+ {(C+ D) —4(CD— %2)}1/2] (4.18)
C:# ;. D=e—iAL 5 pu=00/4 (4.19)

4 is the half-bandwidth of the adsorbate monolayer and 24 is the substrate band-
width at the surface. It should be noted that when the coverage tends to zero the
cocnfigurational averaged GF equals 6 times the adsorbate GF obtained for the "lone
adsorbate" case. Moreover, it can be proven that eventhough u tends to zero when 6
approached zero, the Gj; remains finite in this limit. This can be verified either by suit-
able expansion of adsorbate GF, or by a priori taking u to be zero and reevaluating the
adsorbate Green’s function. The restricted configurational averaged GF (Gj;);—, can be

related to the complete configuration averaged GF as

1

Gii)i—a = 73 . 4.20

(Gs) (Gi) ™t + ko — éao (4:20)
Expressing

Gii'(€,0) + Ko(€,0) = Xi(e,0) +iXa(e, 0) (4.21)

Im(Gii)i=a = —Xale,) (4.22)

[(X1(6,0) = €a)” + (Xa(e,0))7]

In order to evaluate the anodic current 14, a thermal average over boson modes is to
be carried out. Treating them as oscillators in seperate thermal equilibrium, the required

density matrix for this average in this limit is

P = W)/ [ Wia)da, (423)

W(g) = exp[-B8 %(p?, +q) + Ay (4.24)

With the above defined probability function the net expression for anodic current is

shown below

54



o = e(m) | v I ﬁ% [ de [(ttaa) [ ar [aria- seey

exp B Z py + qV + )\VqV] eﬂUp[ (6 — € — Z )\T’VqV ]

v=1,2
expli(X1(e,0) — eq — ZAMV — | Xa(e,0) || 7 |] (4.25)
where
7 — /(Hydqy)e[ﬁzu “(p2+az)+Avay] (4.26)

In the above expressions A\, = Ae + Aoy + Ary as the consideration is towards anodic
current. A similar expression can be obtained for cathodic current following the same
prescription as above. The crucial difference to notice between the anodic and cathodic
current is that for cathodic current the 1 — f(¢) is to be replaced with f(¢) and ), for

cathodic current is equal to Aoy + Aoy + Agu-

4.3.2 Current expression in terms of re-orangisation ener-

gies and overpotentials

Carrying out the various integrations involved in (4.25) the anodic current contribu-

tion within the limit of linear response formalism is obtained

(e o]

I, = 2eblvg, [PV/ah! / sqn(Xa(e,0)) (L = £(€)) p™(e) p2™ (e)de (4.27)

—00

Here e; denotes the electrochemical potential of the system. p3™(e) and and p2%(e)

are the adsorbate and the reactant density of states.

an _ 1
Pa (6) - QWRG(W(Z)) (428)

w(z) = e_ZQBch(—z'z) (4.29)
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(B, B} — (Ey,)?)

P = .
JFE (4.30)
7 = (—Q™ +i|Xa(e,0))/(2VP), (4.31)

A7"l/Xl/
o (e—a+ ) )Eg,
Aav A Wy
an __ 0 av’\v v
QM = Xi(e,0)— € + Zy: - %o (4.32)
in case of anodic current.

ET_ZA?«V. ET—ZA—?‘”- B, =2y Arvder, (4.33)

T_VUJV’ a_wav ar — ~ Wy ’ -

are the reorganization energy for the reactant, adsorbate, and the cross reorganization

pr(€) = \/E exp [—ﬁ%} (4.34)

Alternatively, we can also write

energy, respectively.

AroA
a=->" Z”:Fg—Fg—E:zn—E;" (4.35)
v 14
where . .
PY: AR Aew
F}%:eR—Z%—2Z% (4.36)
v=1 v v=1 v
4 2 4
A2 Aov A
ngeo—zw—i—QZ% (4.37)
v=1 v=1

Fo and Fg denote the free energies of the redox-couple in the oxidized and reduced
states. er — €0 = €2, Apy = Ay — Ao Thus Fr — Fp gives the overpotential 7 for
the electron transfer reaction. Similarly, the fraction of overpotential drop between the
electrode and adsorbate is related to the change in the adsorbate free energy during the
reaction _

e = — Z Awdy _ Ff—F3 —E, =an—E, +E, (4.38)

Wy
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Rewriting the anodic current expression in terms of overpotential, the expression for

Q™ and p" takes the form as shown below.

(e—n+ ED)E,

Qan = X1(€7 0) —an — E(Z + Egr - 2FT (439)
'
3 (e —n+ EL)?

e ==/ Fr P B o . (4.40)

Proceeding along similar lines of argument for the cathodic current, and noting that
A = Aev + Aow + Aau for cathodic current, the expression for @ and pr obtained as shown
below,
o

T = 2e0fvar|2 /A" / sgn(Xs(e,0)) F(€) pale) pr(e)de (4.41)

—00

(E —n— EZ + Egr)Egr

Q" = Xi(e,0) — an + B} - s (1.42)
T
(E_U_ET+ET )2
PO ==\m B €7 [—B YA (4.43)

The coupling constants between adsorbate and various oscillator modes are scaled by
a factor \/(1 — 02) to take into account the disolvation effect as adlayer itself exhibits
metallic properties in the higher coverage regime. Consequently, the solvation and re-
organization energy for the adsorbate get scaled by a factor (1 — #?), and the solvent
induced cross energy terms are scaled as \/m . No such scaling is present for sol-
vation and reorganization energies of the redox-couple. Thus the scaling laws for the

various re-organisation are as follows

Eq.(0) = V(1= 0B, (0) 5 Ey(0) = (1-6*)E;(0) (4.44)

4.4 Numerical Results and Discussions

The basic concern of this chapter is towards current-overpotential characteristics with
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specific emphasis on the variation with the coverage factor (6) and the fraction of overpo-
tential drop (an) across the adsorbate. A first look at the expression for anodic current
eq. 4.27 shows that the current is an overlap integral of three terms corresponding to
the availability of vacant energy level at the electrode (1 — f(e)), the density of states of
the solvated redox couple p™ and the density of states of the adsorbate p%". The redox
density of states has a Gaussian form in terms of €. The self-consistent evaluation of
the coherent potential k() enforces a numerical derivation of the adsorbate density of

states. However in the following limiting cases, k() takes the value

€ — €qg — Wi

éi_r)r(l) ky =€— 7 — wj; (4.45)
and
(%LH} ks = €40 (4.46)
where v ’2
ik
wi; = ; . (4.47)

Consequently, the adsorbate density of states can be analytically obtained in the limits
6 — 0 and 1. Additionally, €/, involved in performing the self-consistent evaluation of the
coherent potential takes the value as an — E,(0) + E,.(0) for anodic current evaluation

and an + E4(0) for cathodic current estimation.

— low coverage DOS
high coverage DOS
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o o o o
N w = ol
T T T T T T

o
e
T

Figure 4.1: Comparison of density of states of the adsorbate for weakly coupled
regime at low (¢ = 0.1) and high coverage factor (§ = 0.9). The values of parameters
(in eV) are as follows: EI = 0.6, E7 (0) =0.2,El = 0.4 and v = 0.5 €V.
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In what follows, we describe the current vs overpotential profile for different sets of
parameters. The adsorbate-electrode interaction is treated both in the weak (v = 0.5¢V)
and strong (v = 2.0eV) coupling limits. When the coverage is low, the adsorbate density
of states has a single peak Fig. 4.1 . An important consequence of the strong coupling
limit is the splitting of the adsorbate level in bonding and anti-bonding states for low
0 Fig.4.2. This feature is recaptured in the present analysis since energy dependence of
A(e) is explicitly treated in the present approach On the other hand, the well known
wide-band approximation for A(e) fails to provide the bonding anti-bonding splitting. In
the monolayer regime, due to the 2-d bond formation by the adsorbate layer, its density
of states acquires a flat profile, irrespective of the strength of the electrode-adsorbate
coupling (Fig 4.1, 4.2) . The table I summarizes the values of parameters used in the

calculations.

Dos of adsorabate in strong coupling limit

T T T T T — T
[ — low coverage
025 high coverage| _|
02
8
8015

01—

qu 10

Figure 4.2: Comparison of density of states of adsorbates for strong coupling regime
at low and high coverage factor. The values of the various parameters employed
(in eV) are as follows: E] = 1.0, E7 (0) = 0.25,E}(0) = 0.75,A) = 1.5,A, =
1.5, u=4.5,v=2.0

Table 4.1: Values of parameters used in calculation in eV
v AH AJ_ M Er Ear (0) Ea (0)
strong 2.0 0.75 1.5 45 1.0 0.25 0.75
weak 0.5 0.75 1.5 45 0.6 0.2 0.4
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Figure 4.3: Plots showing the density of states for redox, adsorbate and the Fermi
distribution for anodic current under zero overpotential. The weakly coupled
regime and low coverage of § = 0.3 is considered here .The values of parame-
ters (in eV) are as follows: EI = 0.6,E..(0) = 0.2,E] = 0.4 and v = 0.5 eV

06—

04—

Figure 4.4: Plots showing the density of states for redox, adsorbate and Fermi
distribution for cathodic current at zero overpotential. The values of parameters
are same as in 4.3
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Ideally, under zero overpotential condition, the anodic and cathodic currents are ex-
pected to be equal in magnitude. This implies that the profile of the product p2™ (€)xp2™ (€)
for anodic current is identical to the product profile p¢(e€) * pc®(e) for the cathodic cur-
rent. This is a consequence of the equal separation between the peak positions of adsor-
bate and reactant density of states for anodic and cathodic processes during equilibrium.
[Fig. 4.3, 4.4]. The corresponding plots for strongly coupled regime is also shown in Fig.

4.5, 4.6

06—

04—

02

Figure 4.5: Plots showing the density of states for redox, adsorbate and the Fermi
distribution for anodic current under zero overpotential. The strongly coupled

regime and low coverage of § = 0.3 is considered here .The values of parameters
(in eV) are as follows: EI = 1.0, E! (0) = 0.25, EZ = 0.75 and v = 2.0 eV .

As noted earlier, the electrochemical potential ¢ has been set as the zero of energy
scale for the direct electron transfer reaction. The presence of additional charge particles
for the bridge assisted electron transfer reaction, namely the adsorbates, changes ¢,
the equilibrium potential of the electrode. This is turn gets reflected as a 8 dependent
variation A¢(#) in e¢(= 0). The fact that the anodic and cathodic currents at equilibrium
potential are identical in magnitude provides a novel method for the determination of
A¢(0). Thus the relation I,(n = 0) = I.(n = 0) with f(e) = (1 + exp(—B(e + Ap(h))) !
(cfeqs. 4.27 and 4.41) enables us to evaluate A¢(f). The variation of A¢ with respect
to 6 is shown in Fig.4.7 in the limit of weak and strong adsorbate-electrode interaction,
with El = 0.6 eV, E] (0) = 0.2 eV, E! (0) = 0.4 eV. The value of A¢(f) depends on

the strength of coupling v; its magnitude increases as the coupling becomes stronger.
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Figure 4.6: Plots showing the density of states for redox, adsorbate and Fermi
distribution for cathodic current at zero overpotential. The values of parameters
are same as in 4.5
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Figure 4.7: Plots showing the variation of A¢ with respect to 6 the coverage factor.
The values of re-organisation energies employed were same in both the curves. E,
= 0.6 eV, E,(0) = 0.4 eV, E,.(0) = 0.2 eV



|A@(0)] is again large for low # values and remains almost constant in this region. Note
that in this regime, the charge on the adsorbate remains localized on the adsorption site.
|A@(8)| starts diminishing sharply for # > 0.6 and it tends to 0 as # — 1. This behaviour
is expected. As 6 — 1, the adsorbate layer becomes metallic and gets incorporated in
the electrode. The electron transfer acquires the characteristics of a direct heterogeneous
reaction, and consequently as noted earlier, the electrochemical potential p again lies at

the zero of the energy scale.

2e-09

1.5e-09— —

1e-09 — -

| /arb.units

5e-10— e AT T T 4

Figure 4.8: anodic current vs 7 for @« = 0.3. The values of the various parameters
employed (in eV) are as follows: E] = 1.0, E] (0) = 0.25, E}(0) = 0.75, A =
1.5,A; =15, u=45v=2.0

We first present the current-overpotential profile in the weak coupling limit (v =
0.5 eV') for a range of § and «. The employed values of various reorganization energies
are E; — 0.6, E/,.(0) = 0.2, £/ (0) = 0.4. The general behaviour can be analysed by
looking at the case of lower coverage and high coverage regimes respectively, and then
by investigating the effect of variation of « in these limits. Fig. 4.8 shows that for a
fixed «, anodic current as well as the current peak height increases with 6 in the small 6
range (0 = 0.1 and 0.3). This feature arises due to a better overlap between the reactant
and adsorbate density of states, whose peak positions are approximately separated by a
distance E] + E7(0) — E7.(0). An increase in 6 reduces E} and E/,. (cf eq. 4.44), and
hence the peak separation diminishes and the overlap gets enhanced. The presence of

anodic current peak at 7, signifies negative differential resistance for n > 7,. This feature
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is absent in the higher coverage limit. For large value of 0, the current at higher 1 exhibits
a saturation effect. This is a consequence of the fact that the maximum in the adsorbate
density of states p2™ is now suppressed. p™ now acquires a plateau profile (Fig 4.1). The
plateau height, and therefore the overlap between the reactant and adsorbate density
of states decreases with the increasing coverage. Therefore a decrease in the saturation

current results as 6 — 1 (curve § = 0.7 and 0.9 in Fig. 4.8).
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Figure 4.9: anodic current vs 7 for # = 0.1 in the weak coupled regime. The values
of parameters (in eV) are as follows: EI = 0.6, E7,.(0) = 0.2, E7 = 0.4 and v = 0.5
ev.

The effect of the o variation on the anodic current is highlighted in Fig. 4.9, 4.10
and 4.11. This effect is more pronounced in the low coverage regime due to the presence
of adsorbate density of states peak. The reactant and adsorbate density of states peak
separation increases with the increasing o. Consequently, the maximum overlap between
the two occurs at larger n. This explains the occurrence of the anodic current peak at
higher n values as « increases . On the other hand, the near constant adsorbate density
of states for large 6 ensures a minimal effect of o variation on the anodic current (Fig.
4.11, 4.12).

Next the strong coupling limit with [v =2.0 eV, El = 1.0 ev, E (0) = 0.25 eV, E] (0)
= 0.75 ev |is considered. Figures 4.13, 4.14, 4.15 and 4.16 shows the current overpotential
response in the strong coupling regime. As in the case of low coverage, the I, vrs n plot

exhibits a negative-differential region (Fig. 4.13, 4.14).
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Figure 4.10: anodic current vs 7 for § = 0.3 in weak coupled regime. The values
of parameters (in eV) are as follows: EI = 0.6, E! (0) = 0.2, E = 0.4 and v = 0.5
ev.
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Figure 4.11: anodic current vs 5 for @ = 0.7. The values of parameters (in eV) are
as follows: E] = 0.6, E (0) =0.2, Er = 0.4 and v = 0.5 eV.
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Figure 4.12: anodic current vs 5 for @ = 0.9. The values of parameters (in eV) are
as follows: E] = 0.6, E£7,.(0) =0.2,E7 = 0.4 and v = 0.5 V.
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Figure 4.13: anodic current vs 1 for # = 0.1. The values of the various parameters
employed (in eV) are as follows: E] = 1.0, E] (0) = 0.25, E}(0) = 0.75, A =
1.5,A; =15, u=4.50v=2.0
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Figure 4.14: anodic current vs ) for 6 = 0.3.The values of the various parameters
employed (in eV) are as follows: E] = 1.0, E] (0) = 0.25, E}(0) = 0.75, A =
1.5,A; =15, p=45v=2.0

1609 . : : . :

— a=0.1
a=0.3|
a=0.5
7.5e-10 — —
5
& 5e10 —
&
25e-10— —

Figure 4.15: anodic current vs 7 for # = 0.7. The values of the various parameters
employed (in eV) are as follows: EI = 1.0,E] (0) = 0.25, E}(0) = 0.75,A) =
1.5,A, = 1.5, u=4.5,0=2.0
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Figure 4.16: anodic current vs 1 for # = 0.9. The values of the various parameters
employed (in eV) are as follows: E] = 1.0, E] (0) = 0.25, E}(0) = 0.75, A =
1.5,A; =15, p=45v=20

More importantly, the presence of two peaks in p?™ when coupling v is large and 6 is
small (Fig. 4.2) leads to a saddle point and a maximum in the I, vrs. n plot. For the set of
parameters currently employed, the I, p74; now occurs at a much larger 7 in comparison
to the weak coupling limit, and may not be accessible experimentally. However, the
saddle point in the current appears in an overpotential range where the anodic current
peak appears in the weak coupling limit. For large coverage, current potential profile are
similar in strong and weak coupling limit. Interestingly, the saturation current is smaller
in the large coupling case due to a decrease in the height of p2™. In fact this lowering
of the current in the strong coupling holds true for any coverage and 7. This is shown
in Fig. 4.17 wherein the variation of equilibrium current I° with respect to coverage is
plotted. The I° is smaller for larger v, and as explained earlier in the context of Fig.
4.8, shows a maximum in the intermediate coverage regime. However it may be noted
%,

that when v — 0, current would be proportional to |v|*, and an increase in v in this very

weak coupling limit will lead to an increase in the current.

The high coverage regime of § — 1 corresponding to a formation of monolayer of a
decrease in the current for higher n when the coverage is low virtually mimics the Marcus
inverted region for a homogeneous electron transfer reaction. On the other hand, the

current getting saturated at higher  when the coverage is large is also true for a direct
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Figure 4.17: Plots showing the equilibrium current at zero overpotential Iy vs 6
for strong and weak coupled regime. The values of re-organisation energies were
selected be the same for both the curves, E,. = 0.6 eV, E,(0) = 0.4 eV, E,.(0) =
0.2 eV

heterogeneous electron transfer reaction. Thus depending on the extent of coverage, an
adsorbate mediated electron transfer at an electrode exhibits the characteristics of both
homogeneous and heterogeneous electron transfer reactions. The localization of adsorbate
electron at low coverage and its delocalization at high coverage is the reason behind this

phenomena.

4.5 Summary and Conclusions

In this chapter, we considered electron transfer in an electrochemical system, from
a solvated redox to an electrode mediate by intervening adsorbate atoms. Further ran-
domness is introduced in the model in terms of the coverage factor which relates to the
number of adsorbate atoms adsorbed on the electrode surface. The theory developed is
valid for a range of regime, lone adsorbate mediate transfer to the monolayer format-
ted direct electron transfer regime. The inherent randomness involved in the adsorbate
distribution on the surface has been tackled by coherent potential approximation (CPA)

and separate expression are derived for anodic and cathodic current.
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Explicit attention was paid to the low coverage and high coverage regime, even though
the formalism is valid for all regime, since at these two regions the theory could be
compared with pre-existing literature. Plots were also provided for intermediate regimes
and additionally, the effect of the adsorbed atoms on the Fermi level of the electrode
were incorporated by means of a shifted equilibrium potential A¢(6), ensuring that the

anodic and cathodic current were equal under zero overpotential condition.

The analysis also provides a novel method for determining the variation in A¢(f)

with changing adsorbate coverage.

The fraction of overpotential drop across the electrode-adsorbate is incorporated and
the collective plots are analysed. We have proved that this fraction of overpotential drop
plays a significant role in determining the response behaviour of current, typically the
location and extent of the maximas in case of lower coverage situations. while in case
of high coverage regime, the effect is not profound and the electron transfer follows the

traditional direct electron transfer as expected from heuristic arguments.

The dependence of anodic current in the weak and strong electrode-adsorbate coupling
is analyzed. In the former case, I, vrs overpotential profile exhibits a peak, where as in
the later case, and in the same overpotential region, the current plot shows a saddle
point behaviour. This fact can be used to distinguish a weakly chemisorbed bridge from
a strongly chemisorbed one. These distinguishing features occur only when the coverage
is low. At high coverage, I, ~ n plots have identical profile for weak and strong coupling

cases

At low coverage, it is possible to recover the Marcus inverted region, which is absent
when the coverage is large. The localized nature of the adsorbate orbital when coverage

is low, and its getting delocalised for high coverages leads to this behaviour.
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Chapter 5
Conclusion

The central aim of the thesis is to develop a formal method for understanding electron
transport along molecular chains with arbitrary number of units containing embedded
redox centers. Thus the whole problem can be studied by concentrating on several sub-
categories, each of which are interesting problem in themselves. As mentioned in the intro-
duction, a typical experiment set-up consist of electrodes, chemisorbed species, bridging
molecules, redox centers embedded in the bridging units and electrolytes or solvents in-
teracting with the redox. Hence, the problems constituting the sub-categories, in keeping
with the various components mentioned above, can be viewed as follows: Obtaining the
effect of the redox center on the conductance of the bridging wire and understanding the
effect of the adsorbate species on the electron transfer. Chapters 2 and 3, address the first
question wherein the conductance of a simple bridging molecular units with a single redox
center is calculated along with the I-V profiles. In chapter 2, the results obtained from the
analysis of a simple system of two electrodes connected by a molecular wire with redox
center was presented. By varying re-organisation energies and coupling strengths, it was
shown that interesting features like current rectification, extended plateaus in I-V profile
and negative differential resistance can be observed. Additionally, the possibility of such
a system to model electronic spectroscopy at constant bias is also mentioned. In chapter
3, the specific case of electron transfer from redox to a single electrode was addressed. An
explict expression for the rate of electron transfer, which is voltage dependent, is derived
and the effect of altering various energies and coupling strengths is analysed. The results
presented shows the effect of competition between resonance dominated tunneling and

the solvation of the redox.
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The specific question of the effect of the chemisorbed species on the electron transfer
is analysed in chapter 4 wherein metallic adsorbates are allowed to settle on the surface
of a electrode with different coverages and the formalism derived remains valid from a
single adsorbate to a mono-layer regime. The results were compared with the standard
results obtained from pre-existing formalism for single adsorbate mediated electron trans-
fer as a limiting case check. As expected heuristically, the low coverage results from the
calculations exhibited behaviour as predicted by earlier formalisms developed for han-
dling lone adsorbates. The high coverage results were commensurate with results from
direct electron transfer due to a metallization of adlayer. Hence, the derived formalism
bridges both the earlier existing formalisms, and is valid for full intermediate regions.
The effect of fractional drop in overpotential across the electrode-adsorbate interface is
also presented. The significance of this drop in determining the overall nature of the

current-voltage profile is also highlighted.

In all the calculations presented so far, the polarisation modes are considered as
classical oscillators. An extension of these calculations to quantum modes, is expected to
give additional structures in the current-voltage profile. One of the possible interactions
which has not been considered is the interaction of molecular electronic junction with
radiation field. The radiation field interaction is a plausible and less-expolored candidate
for controlling the operation. Optical switching and laser control of such devices are
experimentally realised and, even though, the effect of these on conduction properties

were experimentally studied, a full theory is yet to be formalised.

Effects of electron-electron interaction and polarization mode anharmonicity remain
to be analysed in future works. The presence of stereochemical changes, and its effect
on current through molecular junctions, is a potential candidate for further works. This
question cannot be dealt at present, because the experimental information available on
stereochemical changes brought about by applied bias is substantially limited. With
constant advances in experimental capabilities, the above mentioned question will receive
the required attention in near future. On a final note, some of the newest experimental
areas, like utilizing current in molecular junction to effect chemical transformation, bond
breaking and junction heating with associated thermal transport have their theoretical
formalism still at a nascent level. These are some of the suitable candidates that require

further investigation.
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