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Abstract

In this thesis we study the problem of counting dyons in certain supersymmetric string
theory models and the infinite dimensional Lie algebras that underlie the dyonic degen-
eracies. The counting of i—BPS states in N/ = 4 supersymmetric four-dimensional string
theories can be carried out in a mathematically precise and rigorous fashion due to the fact
that the spectrum of these BPS states can be generated by genus-two modular forms|1, 2|.
The same modular form also occurs in the context of Borcherds-Kac-Moody (BKM) Lie
superalgebras|3, 4], in their denominator identities. This surprising mathematical structure
underlying the spectrum of these states is the idea we develop in this thesis.

The starting point in the problem of counting dyonic states in A/ = 4 supersymmetric
four-dimensional string theories are two remarkable papers — one by Dijkgraaf, Verlinde
and Verlinde (DVV)[1] and the other by Strominger and Vafa[5]. Strominger and Vafa
provided a microscopic description of the entropy of supersymmetric black holes, which has
provided enormous impetus to the counting of BPS states in a variety of settings. DVV, in a
remarkable leap of intuition, proposed that the degeneracy of i—BPS states in the heterotic
string compactified on a six torus is generated by a genus-two Siegel modular form of weight
ten, ®19(Z).

Since then, in a series of remarkable and important papers, Sen, Jatkar and David have
advanced DVV’s idea to a family of asymetric orbifolds of the heterotic string compactified
on T° leading to heterotic compactifications that preserve N/ = 4 supersymmetry but with
reduced gauge symmetry known as the CHL compactifications|6|. In particular, they have
explicitly shown the counting of dyonic states in a special class of N' = 4 supersymmetric
theories. They have also studied the dyon spectrum in N' = 4 supersymmetric type II string
theories. Following this there has been enormous progress in studying and understanding
the various modular forms that generate the degeneracies of the %—BPS and i—BPS states in
these models. The modular forms in question have been generated in many different ways
each being related to different aspects of the theory. DVV also observed that the modular
form proposed by them as the generating function for the degeneracy of i—BPS states occurs
as the denominator identity of a BKM Lie superalgebra studied by Gritsenko and Nikulin.
This idea gives a completely new dimension to the counting of dyonic states which could not
have been anticipated at the level of the action of the theory. This idea has been furthered
to the models considered by Jatkar and Sen in [7, 8, 9, 10]. The BKM Lie superalgebras are
related to the structure of the CHL model and it is expected that understanding the origins

of this algebraic structure might provide more insight into the physics of i—BPS states.



The contributions of this author, along with his thesis supervisor, was to construct a new
family of BKM Lie superalgebras corresponding to modular forms, ®;(Z) generating the R?
corrections in the string effective action|7], in addition to constructing the modular forms
generating the degeneracy of %—BPS states and i—BPS states for the case of non-prime N of
the orbifolding group Zy in the CHL strings[9]. Also, the modular forms ®3(Z) and ®3(Z)
as well as the BKM Lie superalgebras corresponding to the modular forms were constructed
and studied. In particular, the relation between the walls of marginal stability of the i—BPS
states and the walls of the Weyl chamber have been found to be in agreement with predictions
in the literature. The connection between multiplicative n-products studied by Dummit, et.
al. and the degeneracy of electrically charged %—BPS states has been found and the same
extends to all orbifolding groups, including product groups such as Z,; x Zx. The author,
along with collaborators has shown that the modular forms generating the degeneracy of the
%—BPS states in the asymmetric orbifolds of the type II strings on 7% appear as n-quotients.
The modular forms that generate the degeneracy of modular forms in the type IT models
can be written in terms of the modular forms that appear in the CHL models. We briefly
discuss the BKM Lie superalgebras in the type II models.

and studied the modular forms generating the degeneracy of the i—BPS states in the

theory [10]. Also proposals for BKM Lie superalgebras in these models have been discussed.
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String Theory

1.1 Introduction

The aim of this chapter is to understand some of the basics of string theory. However, after
a linear start, we will take a slightly different road map and focus on some aspects that are
more natural to understand in the context of the problem that we are going to study in the
following chapters. In keeping with the ‘counting’ theme of the thesis, we will look at how
some of the well-known modular forms occur in connection with counting of states in string
theory. The starting point of our road map is to, axiomatically, introduce a model in which
the fundamental objects are strings instead of point particles. A string is a one-dimensional
object — mathematically a curve. The idea, from a simple minded point of view, is to replace
strings in the place of ordinary point particles and see what physics studying these leads
to. We will take the theory through the same set of steps that one does to the theory of
ordinary point particles we are replacing it with. To consistently do so, we should be able
to recover the quantum field theory description of point particles by taking a suitable limit
corresponding to length scales of everyday life. There will, however, be remnants of the
stringy nature of the original theory and it will be interesting to see what the implications of
these are. The original motivations for considering string theory as a theory of nature are, of
course, more compelling than what is suggested here, and that by itself is a very interesting
and illuminating read and we refer the reader to many of the excellent texts in string theory
for it. Some suggested references are [11, 12, 13](see also [14, 15]).

There can be two fundamental kinds of strings one can consider — the open string, i.e. a
string with free end points and of finite length, and the closed string, i.e. a string whose ends

are joined together to form a loop, topologically equivalent to a circle. The string sweeps



Chapter 1. String Theory

out a two-dimensional surface, known as the world-sheet, as it moves through space-time.
For an open string, the topology of the world-sheet is a two-dimensional sheet, while for the
case of a closed string it is a cylinder.

To make sense of it as a viable theory of nature, we also need to introduce interactions into
the theory and to understand how one can generate the spectrum, containing the various
elementary particles of nature, from it. Even though the basic objects of the theory are
extended, the interactions in the theory need to be local in nature to preserve Lorentz
covariance. Lorentz invariance of the interaction also forbids that any point on the world-
sheet, be singled out as the interaction point. Interactions in string theory arise when strings
overlap at the same point in spacetime. The interaction results purely from the joining and
splitting of strings. Consistency of the interactions force the existence of closed strings in any
theory which has interacting open strings. However, one can have a consistent theory with
only closed strings. The various elementary particles will be generated by the excitations of
the string from its ground state. Just like the different minimal notes of a vibrational string
correspond to different acoustic modes, the different vibrational modes of open and closed
strings will correspond to different elementary particles. This is the model we will study in
some detail below. We will first find an action for the theory, and study it. Then we quantize
the theory in a suitable gauge and find its spectrum.

Let us denote the (D + 1)-dimensional space-time manifold by M(~ R x M) (where
M; is the space manifold) and let g,, be the metric on M. The configuration of an n-
dimensional object is parametrized by (n + 1) parameters. Thus, the two-dimensional world
sheet, 3, swept by the string, would be parametrized by two numbers £* = {0, 7}, where o
(normalized to lie between [0,1]) is a space like coordinate and 7 is timelike. Let 7,5 be the
intrinsic metric on . We assume that > and M are differentiable manifolds. The trajectory
of the string in space-time is given by a set of D + 1 functions X*(o,7) which embed the
world sheet ¥ in the target spacetime M. The X#(o, 1) are continuous maps from ¥ to M.
X*#(a,7) give the position of the point (o, 7) of the string in the space-time manifold. '

Like in any quantum field theory, what we want to compute from the theory are fun-
damental quantities like the transition amplitudes for scattering processes etc. to obtain
physical predictions from the theory. Transition amplitudes in the theory have to be eval-

uated order by order in the loop expansion, which, in the case of a world-sheet, which is

'We use the Greek alphabets «, 3, .. .etc. for the components of the intrinsic metric v which take values
1,2 , and Greek alphabets u,v...etc. to denote space-time components of the metric ¢ which run from
0,...,D.
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a Riemannian surface, would be over varying genera. One assigns a relative weight to a
given configuration and then sums over all possible configurations. In the case of strings, the
configuration space is the world-sheet of the string, and the path integral is over geometries.
One has to sum over all possible topologies (space of configurations) with a suitable weight
to obtain the vacuum to vacuum amplitude.

To each configuration one associates the weight
e—S[X,XLM}’ SeC ’

and the transition amplitude at each genus is obtained by summing over all possible metrics
~ and all possible embeddings X*(o,7). The functional S[X,~, M| is the action for the
string world-sheet (we will skip the reference to the spacetime manifold from now on). The

sum over all topologies is equivalent to the sum over the genera.

(e o]

7 = ZZ@‘S[X,E] — Z(gs>2h—2/'DXnye_S[Xﬁ] — Z Zh(gs)Zh—Q .
- h=0 h=0

Z is given as the sum of the h-loop partition functions Z,. D~ and DX are the measures
constructed out of diffeomorphism invariant L? norms on ¥ and M. We need to compute
them to evaluate the partition function exactly. First, however, we need to construct an
action for the string to describe the motion of the string in the space-time manifold. The
action should be such that all physical quantites we compute from it (like scattering ampli-
tudes, etc.) would depend only on the embedding of the string in the space-time manifold
(that is the functions X*(o,7)) and not on the choice of parametrization, £%, of the world-
sheet. Consequently, the action itself should depend only on the embedding in space-time
and nothing else. It should also be consistent with the symmetries of the world-sheet and
the space-time. In addition we require it to be local on its dependence on X,y and g and be
renormalizable as a QFT.

A suitable candidate is the Nambu-Goto action, which is proportional to the area of
the world-sheet. A reformulation (and more amenable to quantization) of the Nambu-Goto

action is the Polyakov action

S = —/i/ drdo ()P0, X" 05 X" g, (1.1)
>

where k is a proportionality constant called the string tension. For the action to be a

dimensionless quantity the string tension should have dimensions (length)™? = (mass)? in
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natural units. It is taken to be k = (4ma’)~!, where o is the Regge slope.

This, however, is not the most general action that satisfies the above mentioned criteria.
There are other possible terms that one can add, like the anti-symmetric tensor field, or
a dilaton field, or a tachyon field, but in this rather modestly aimed discussion we do not
consider such terms.

The Polyakov action, by construction, has the symmetries of the world-sheet (the area
of the world-sheet is independent of the parametrization of the world-sheet used to measure
it and depends only on the embedding) and the space-time manifold (the tensor indices are
properly contracted to make it Poincaré invariant) built into it. The space-time manifold
is usually a pseudo-Riemannian space, which in our case, we take to be the Minkowski

space-time, whose symmetries are the D-dimensional Poincaré invariance:

XMoo, 1) = A, X" (0,7) + a" |
’7,04/6(07 T) - ’704/6(0-’ T) ) (1'2)

where A € SO(1, D), and a* € RP.

The world-sheet is a two-dimensional manifold, and has in its group of symmetries the
group of diffeomorphisms f : ¥, — %, of ¥. Let £€* — £9(£) be the coordinate expression
for f. The new metric is the pullback of the old one and is given by

] 98 9¢°
Yap — / Yap = W@V«/(S . (1-3)
The embedding transforms as
X" 7)) — f*XF = XH(o,T) . (1.4)

The metric 7,5 is non-dynamical in the action, and hence imposes constraints on the
system. Unless we can gauge away all the independent degress of the metric, we cannot make
a sensible interpretation of the physical theory. The symmetric tensor 7,4 in two dimensions
has 3 independent components. The two-dimensional coordinate reparametrizations depend
on two free functions and we can eliminate two of the components using this. This leaves
us with one independent parameter in the metric tensor to fix. It turns out, that just for
the case of two dimensions, there occurs one more local symmetry — local rescalings of the

metric — that is an invariance of the classical action. It is called the Weyl invariance of the
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metric and is given by
'7;,6(0-’ 7_) = GZW(Ua T)) /7045(07 T) ) (15)

for arbitrary w(o, 7). Under a Weyl rescaling of the metric, the combination \/ﬁvaﬁ is
invariant in two space-time dimensions, and thus, the action remains invariant under it.
One can use this freedom to fix 7,5 (atleast locally) to be proportional to 1,s. This is known
as the conformal gauge. The embedding of the string in M is not affected by this change
as is reflected by the transformation properties of the functions X*(o,7) under the Weyl
transformations

XMoo, 1) = X"(o,7) . (1.6)

The Weyl invariance of the action, in two space-time dimensions, has very interesting and
important consequences for the theory as we will discuss later.

When we quantize the theory, we will require that these symmetries be preserved if the
theory is to be anomaly-free. In the conformal gauge, the action reduces to the free field
action

S = —li/dOdT Nuw 100X 05X . (1.7)

This choice of gauge will have to be treated more carefully when quantizing the theory.
The requirement of the theory to be anomaly free will impose certain consistency conditions
on the dimension of space-time and on the mass of the ground state. For now we work with
the above action. Having the action, we can derive the equations of motion coming from
it and find general solutions to the functions X#(7,0). The Euler-Lagrange equations of

motion coming from this action is just the two-dimensional linear wave equation

0? 0?
OX* = (———)X“:(). 1.8
or?  0o? (18)
This must, of course, be supplemented with the constraint equations. The constraint
equations in this case are éj‘ysﬁ = 0. The variation of the action with respect to the metric

Yab gives the (two-dimensional) energy-momentum tensor
Top(0,7) = —(8) " (=7) 2
olonT) = () )
1
= 0, X"03X,, — 3 Yas o,X'X, . (1.9)

Thus, the constraint equation simply means that the energy-momentum tensor 7,3 = 0.

The diffeomorphism invariance in two-dimensions implies the energy-momentum tensor is
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conserved. The Weyl invariance of the action S, which is just the statement of conformal
invariance of the theory implies that the energy-momentum tensor is traceless. This means
the theory is scale invariant. In two-dimensions, the conformal group is infinite-dimensional.
We will get back to this remark again after we fix the boundary conditions. We will also need
to examine the possibility of an anomaly in the trace of 7,3 when quantizing the theory.

If the world-sheet has a boundary, there is also a surface term in the variation of the

action. If we take the coordinate region to be
—co<T<o00, 0<o<l.

Then, the variation of the action with respect to X* will also have a boundary term given
by

1 co o=l

- dr(—y)25X19° X : 1.10
2ol /_OO (=) *lo=0 (1.10)
We need this term to vanish and there are different ways in which that can happen. For

closed strings, one imposes a periodicity condition on the fields
XH(r,l) = XH(1,0), 0°X!(7,l) =0"X"(7,0), 7ap(7,l) = 7a3(7,0) . (1.11)

For the case of an open string there are two possible ways in which the boundary terms
can vanish. One can require that the component of the momentum normal to the boundary

of the world sheet vanish, that is,
" XH(1,0) = 0° X*(1,1) =0 . (1.12)

These are called the Neumann boundary conditions on the functions X#. The ends of
the string move freely in space-time. This choice of boundary conditions means that no
momentum is flowing through the ends of the string and hence it respects D + 1-dimensional
Poincaré invariance.

Alternatively one can fix the two ends of the string so that ). X* = 0, and

X* X and  X*| =X/, (1.13)

o=0 - o=l

where X{" and X|" are constants and g = 0,..., D. This is known as the Dirichlet boundary

condition. Dirichlet boundary conditions break Poincaré invariance and hence we will not
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consider them here. They, however, play a very important role in string theory in the study
of D-branes. Once we have chosen a boundary condition, we can look for solutions to the
equations of motion.

We will shift to the light-cone coordinates on the world sheet which are defined as follows

oct=71+0. (1.14)

We also define .
0y = 5(& +0,) . (1.15)

With these definitions, the wave equation becomes
0,0_-X"=0, (1.16)
and the constraints involving the energy-momentum tensor become

T++ - a+XMa+XM — O 5 (]_]_7)
T _ =0.X'9 X,=0. (1.18)

These are the Virasoro constraints. The conservation of the energy-momentum tensor be-
comes 0_T,, + 0,1, = 0 with a similar relation for — < +. Now, since 7_, =T, =0

by Weyl invariance, the energy-momentum conservation equation reduces to
67T++ - 0 . (119)

The implications of this statement are very deep. For any function f(X ™) the above equation
implies that the current f7',. is conserved as well, since O_(fT,,) = 0. As [ is arbitrary,
this implies an infinite set of conserved quantities. These conserved quantities correspond
to residual symmetries left over after we choose the covariant gauge. We will discuss more
about this later.

The general solution of the wave equations is

XMoo, 1) = Xp(r—0)+ X} (7 +0) (1.20)
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For a closed string satisfying periodic boundary conditions the general solution is given by

1 1, i 1 —2min(T — o)

Xh = 37+ 5 p(r—o)+ 5! E#O —a, exXp (f) ; (1.21)
1 1, i 1 —2min(T + o)

Xt = 5:}5“ + 5[ P (t+o)+ 5[ éﬁo Eozﬁ exp (f) (1.22)

while for an open string with Neumann boundary conditions the general solution is given by
o0

1 .
Xt =al+Pprr il Y —ake™ 1.23
ot + phr +i —ape cos(no) , (1.23)

n=—00,n#0

where x* is the center-of-mass position and p* is the total string momentum describing the
free motion of the string center of mass and the o/ are Fourier components, which will be
interpreted as harmonic oscillator coordinates. The parameter [ is related to the Regge slope
and hence the string tension & as | = (2a/)/?2 = (1/27k)"/2. The open string boundary
conditions force the left and right moving modes to combine into standing waves. The right
and left moving modes are independent in the closed string. The requirement that X* be
real functions implies that o, (resp. &",)) is the adjoint of o (resp. a*).

We take the Fourier transform of the energy momentum tensor 7,3 = 0 at 7 = 0 to define

the Virasoro operators

1
L, = KJ/ e 2mIT _do |
0

and

!
—2imo
L, = KJ/ e T, do .
0

For open strings H = Ly and for closed strings H = Ly + Lo. Clasically, the vanishing of

the energy-momentum tensor translates into the vanishing of all Fourier coefficients L,,, and

L,,. Imposing this constraint on states leads to the mass shell condition M2 = —pup" gives
M? = i,f:oz_n-ozn (1.24)
a n=1

for the open string, and

M= = (o - o + Gy - ) (1.25)
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for closed strings. These determine the mass of a given string state in the quantum theory.
Before we quantize the theory, there is one more important fact to mention. The Virasoro
generators L,, and L,, satisfy an algebra amongst themselves called the Virasoro algebra

given by
Ly, L) = (m —n) Ly - (1.26)

There will be a central extension to this algebra from the quantum corrections. We will
not pursue this line further right now, but mention in passing that this algebra is part of
a family of algebras known as loop algebras that we will study in some detail when we
learn about infinite-dimensional Lie algebras. We now move on to quantizing the theory
and find its spectrum and see what physical states it gives. We are essentially looking for
representations of the Poincaré group which are unitary. We will work this out in the light-
cone gauge since it is manifestly ghost free and simpler to get to the spectrum. We define

the light-cone coordinates in space-time as follows.

Xt =(X"+£XP)/V2 . (1.27)
The light-cone gauge is obtained by setting

Xt or)=a"+p'r.

In this gauge, X~ is determined by the Virasoro constraints. Thus, the only degrees of
freedom are those given by direction transverse to the light-cone coordinates, X*. The light-
cone gauge explicitly breaks Lorentz covariance as we are singling out two of the (D + 1)
coordinates. It should, however, be Lorentz covariant since the underlying theory it is
obtained by gauge fixing from is Lorentz invariant. The conditions for the theory to preserve
Lorentz invariance turn out to be identical to the constraints (we spoke of earlier) on the
dimension of the space-time and the mass shell condition for the theory to be anomaly-free.

The constraint equations at the classical level require the vanishing of the components
of the energy-momentum tensor. These constraints physically mean the vibrations of the
embedding of the world sheet in the target space-time tangent to the surface, i.e. the
longitudinal degrees of freedom, are eliminated, leaving only the (D—1) transverse directions.
In choosing the light-cone gauge, we are, in effect, eliminating the two longitudinal degrees
of freedom and quantizing the remaining transverse degrees of freedom.

The standard way to quantize the theory is to interpret the X* as quantum operators
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and replace the Poisson brackets by commutators. The equal-time canonical commutation

relations are then given by

[PHo,7), X" (0", 7)] = —id(0 — 0" )
([ XH*(o,7), X" (0!, 7)] = [P*(0,7), P’ (c’,7)] =0 . (1.28)

These give, for the commutation relations of the oscillator modes the following commutation

relations

[adh,, ap] = MmOy
[ag,, ] =0 (1.29)
(&, &) = mbmnn®™

The ground state |0; k), is defined to be annihilated by the lowering operators (is a highest

weight state) and to be an eigenstate of the cernter-of-mass momenta,

P* 10 k) = K" |05 k) |
ak |0;k)y=0 m>0. (1.30)

A general state in the Fock space Fj can be built by acting on |0; k) with the raising

operators.

le; k) = e(k,mq,mq,...,my,) ot ol 05 k), (1.31)
for all possible Lorentz polarization tensors €(k,mq,ma,...,my), n € N and all possible
m; € N.

The center-of-mass momenta are just the degrees of freedom of a point particle, while the
oscillators represent an infinite number of internal degrees of freedom. The above equation
forms the Hilbert space of a single open string. The state |0;0) is the ground state of a
single string with zero momentum, not the zero-string vacuum state. The various operators
appearing above all act within the space of states of a single string.

The open string Fock space is a sum over the Fock spaces over all momenta k. For the
closed string it is a tensor product of the left and right-moving Fock spaces. A very important
point to observe is that this Fock space is not positive definite. The time components have a
minus sign in their commutation relations and therefore the Fock space contains states with

negative norm. The physical Fock space will be a subspace of the full Fock space. We need

10
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to use the Virasoro constraints to fix an invariant subspace from the full Fock space. The
Virasoro constraints in the classical theory amounted to the requirement that the components
of the energy-momentum tensor, 7, , and 7" _, vanish. We need to impose similar conditions
weakly on the quantum Fock space. The Fourier coefficients of the energy-momentum tensor

were given by

1 o0
L =3 _Zamn CQy (1.32)

and a similar expression for L,, in the case of closed strings, which we required annihilate
all the physical states. In the quantum theory the «,, are operators, so one must resolve
the ordering ambiguities. Since «,,_,, commutes with «a,, unless m = 0, we need only worry

about the operator Ly. We define the Ly operator as
Ly = %ag + Za_n Sy, (1.33)
n=1

and define the physical state conditions with respect to Ly and Lo upto an undetermined

constant as follows

) € FPMYif (L, — admo)|¢) =0 meN,
@) € FPMif (Ly — abpo)|¢) =0 meN. (1.34)

The constant a is undetermined for now, and will be fixed using the condition that the
physical Fock space be of positive definite norm. The mass shell condition will also undergo

a modification due to the constant a as follows

o0
M?=-20+2) a_,-o, (1.35)
n=1
for open strings, so that the oscillator ground state has mass squared —2a, and excitations

have mass squared larger than this by any multiple of 2. For closed strings the condition
becomes (with o/ = 1/2)

M? = —8a+8) a_p-0,=-8a+8Y a_,-ay. (1.36)

n=1 n=1

11
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Imposing the condition (Ly — Lg)|¢) = 0 we get

i Oy Oy = idn “Q, . (1.37)
n=1 n=1

This is the only constraint equation that couples the left and right moving modes. Physical
states are found by choosing independently the left-moving and right-moving states of oscil-
lation, subject to the above constraint. The other L,, and L,, correspond to terms of definite
non zero frequency in 7, and 7" _. The physical states are required to be annihilated by

the positive frequency components
Lynlo)y=0 m=1,2,... (1.38)

We define the number operators(or oscillator level) as follows

N=>a,an , N=> a - ay. (1.39)
n=1 n=1

They count the number of operators o, and a_,,n > 1 with weight n, applied to the

ground state |0; k).

Writing in terms of the number operators the Virasoro constraints become

closed (K> 4+ M?)|¢) =0 M?>=8N -8z and N = N|¢) =0
open (k> + M?)|¢) =0 M?*=2N —2a (1.40)

It turns out (using the no-ghost theorem) that the theory is consistent if and only if the
space-time dimension is 26 and the value of the constant @ = 1. We will not prove or
motivate the way this can be shown. However a fairly easy computation to check the norm
of states for low mass levels shows the need for these two conditions. The bosonic string in
D = 26 and a = 1 is called the critical bosonic string. Below we give the spectrum of the
critical bosonic string.

Open String:

(i) For N = 0, corresponding to states of the form |0;k), M? = —2, hence they are

tachyons (particles travelling faster than light), and Lorentz scalars;

(i) For N = 1, corresponding to states of the form e-a_1|0; k), M? = 0. These states have

12
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the degrees of freedom of a massless vector particle.

(iii) For N = 2 the first states with positive (mass)? occur. They are
a’,|0; k) and  of;a”,]05k) (1.41)

with M? = 2. These states have the degrees of freedom of a massive second-rank

tensor.

(iv) For higher values of N there occur various states with M? > 0 which transform under

the various tensor representations of the Lorentz group.

Closed String: For closed strings there are two sets of modes corresponding to the left-

and right-movers and there is the level matching condition relating the two.

(i) States corresponding to |0; k) = |0; k) ® |0; k) g have M? = —2, so they are tachyons,

and Lorentz scalars;

(ii) For N = 1, there occur states of the form €,,a",a",|0; k) have M? = 0 corresponding

to the tensor product of one left-moving and one right-moving massless vector. Cor-
responding to the trace part of € there is a Lorentz scalar, the dilaton, with positive
norm. The symmetric traceless part of € gives the graviton. The antisymmetric part

of € gives a rank two antisymmetric tensor usually denoted by B, .

(iii) For higher values of N there occur various states with M? > 0 which transform under

the various tensor representations of the Lorentz group.

1.2 n-products from counting oscillator excitations

In this thesis, we will have occasion to consider the following trace over the open string (or

left-moving sector of the closed bosonic string) physical Fock space Fj, introduced earlier:
Trr, (¢"7") . (1.42)

In the light-cone gauge, the full Fock space is generated by the action of all combination

of the oscillator modes of the 24 transverse dimensions. Let Pyy(N) denote the number of

13
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oscillator excitations at level N arising from the 24 transverse scalars. Then, one has
rPr]-—k (qL()il) - qE()il Z P24(N) qN ) (143)
N=0

where Ej is the L, eigenvalue of the ground state, |0; k). One can show that

1 o0 1
) =" (=) 1 4
We thus see that modulo the ground state energy, the inverse of the product of Dedekind
eta functions, n(7)** is the generating function of the oscillator degeneracy at various levels.
We will also encounter a variant of the above computation. Let g be an element of
order m of a discrete group that acts on the transverse scalars and hence on their oscillator
modes. The action of g on the transverse scalars can be represented by its cycle shape:

v =1%2%...m® with > ia; = 24. Now consider the twisted trace

Trr (g ¢™7") . (1.45)
A simple computation shows that the twisted trace (ignoring the ground state energy and

related phases) is given by

1 1
[12 n(air) — gy(1)

We see that the cycle shape v completely determines the generating function of degeneracies

Trr, (9 ¢7°") ~

(1.46)

of g-invariant states in the Fock space. Thus, the untwisted result corresponds to the cycle
shape v = 1?4, Tt turns out that precisely such counting problems arise in the counting of

electrically charged %—BPS states in certain models.

1.3 Organization of The Thesis

The organization of this thesis is as follows. After a brief introduction to string theory in
the introduction, in Chapter 2 we briefly review the problem we wish to study in this thesis,
namely, the microscopic counting of degeneracies of BPS states in two families of string
theory — the CHL models and the type II models. We discuss the counting of the %—BPS
and i—BPS states in these theories and review the explicit counting carried out by David

14
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and Sen [16] in a class of N' = 4 supersymmetric string theories. We end the chapter with
a brief review of Sen’s study of the walls of marginal stability of i—BPS states in the CHL
models.

In Chapter 3, is a self-contained review of the subject of Lie algebras. Starting with
finite-dimensional semi-simple Lie algebras, we gradually introduce affine Lie algebras and
finally the theory of BKM Lie superalgebras. We discuss the structure and representation
theory of Lie algebras, in particular ideas like the Cartan subalgebra, root system, Weyl
group, denominator formula, etc. are reviewed. We give a very brief introduction to the
theory of BKM Lie superalgebras necessary to understand the denominator identity of BKM
Lie superalgebras which plays a central role in this thesis. The material is presented keeping
a reader with minimum mathematical background in mind.

In Chapter 4, is a self-contained introduction to the theory of modular forms. Modular
forms are central to the counting problem as the generating functions of the degeneracies
of the 1

2
string effective action are given by modular forms. These modular forms are the connecting

- and i—BPS states are given by modular forms. Also, the R? corrections to the

link between the string models on the one side, and the family of BKM Lie superalgebras
corresponding to them, on the other.

In Chapter 5, we study the construction and properties of all the modular forms that
occur in this thesis. In particular, we show how these modular forms are constructed from
the additive and multiplicative lifts. We also discuss the construction of the product form of
these modular forms as both the sum and product forms of the modular forms are important
in understanding them as the denominator identity of BKM Lie superalgebras. We also
describe the idea of cycle shapes and frame shapes that lead to genus-one modular forms
generating the degeneracy of the electrically charged %—BPS states.

In Chapter 6, we make the connection to BKM Lie superalgebras. Given the modu-
lar forms discussed in Chapter 5, we see how they are related to a family of BKM Lie
superalgebras. We review all the BKM Lie superalgebras occuring in connection with the
supersymmetric string theory models considered in this thesis. We discuss the construction
and properties of each of the algebras. We also discuss the relation between the walls of
marginal stability discussed in Chapter 2 and the walls of the fundamental Weyl chambers
of the BKM Lie superalgebras as found in |17, 8, 9|.

In Chapter 7, a summary of the results obtained by the author of this thesis in work
done along with collaborators is presented.

Chapter 8 concludes the thesis with an overview of the work, and future directions of
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Counting Dyons in String Theory

2.1 Motivation

Our motivation to undertake the microscopic counting of black hole states is an extension
of our interest in understanding classical and quantum black holes in greater detail. It has
been evident for quite some time now that black hole solutions of general relativity are
not only physical, but also very important models in understanding quantum gravity. The
Bekenstein-Hawking entropy of a black hole is one of the important aspects of black holes
that can be understood both macroscopically and microscopically, thus giving us clues to
understand the quantum nature of black holes. As we will see below, the counting of black
hole microstates gives a way to compute the microscopic aspects of the black holes and
compare it with the macroscopic side. First we will sketch the problem of counting black
hole states arising from black hole thermodynamics, and then look at the spectrum from the

string theory side, before finally explicitly counting black hole states in particular models.

2.2 Black Hole Thermodynamics

A black hole in the quantum theory behaves, thermodynamically, like a black body with a
finite temperature, called its Hawking temperature. It was shown by Hawking that such a
black hole would necessarily emit radiation known now as Hawking radiation. The black
hole system, from a thermodynamical point of view, behaves in all respects like a blackbody
with the given Hawking temperature would. In particular, it has an entropy associated to
it known as the Bekenstein-Hawking entropy, Spy. Whenever an object falls into a

black hole, the entropy carried by the object has to show up as the change in entropy of the

17
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black hole, if second law of thermodynamics is to hold. It was shown by Bekenstein that the

entropy of a black hole is proportional to the area A of the event horizon as
Spy = A/(4Gy), (2.1)

where G is the Newton’s constant. From a statistical point of view, however, we can
understand the entropy as the logarithm of the number of microstates associated to a given
macrostate at zero temperature. If @) labels the set of charges carried by a state, and d(Q)
the degeneracy of the states carrying this charge configuration, then the statstical entropy

at zero Hawking temperature is given by

Sstat (@) = In d(Q). (2.2)

To compute Sy, as defined above, would require one to have the black hole at zero Hawking
temperature and also have a microscopic description of the black hole states. Unfortunately,
the microscopic counting cannot be carried out for all black holes. One needs to work in
special class of black holes that admit a description in terms of manageable parameters where
one can exploit the symmetry structure to make the dynamics more tractable. A class of
black holes known as extremal black holes have zero Hawking temperature and a high
degree of tractability and so we will be looking at black hole solutions that are extremal. We
will now motivate such a model. For a general introduction to black hole thermodynamics
see [18, 19|

2.2.1 The Reissner-Nordstrom Black Hole

We start with the following 3 + 1-dimensional action in the Einstein-Maxwell theory with

terms upto two derivatives

S = /d4\/—_g[ R— iFWFW] . (2.3)

167TGN

We look for static solutions having spherical symmetry. For a non-charged black hole this
leads to the Schwarzschild black hole solution. Looking for solutions which have electric and

magnetic charges leads to the Reissner-Nordstrom black hole solution

ds* = —f(p)dr® + [~ (p)dp” + p*dSP*,

18
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de dm .
FpT = sz, F9¢ = ESIHQ, (24)

where d? = df? 4 sin?0d¢? is the metric on the two-sphere, and f(p) is given in terms of
the the ADM mass and the charges (¢, g.) by

_205M | Gy

p Tng? (@2 +q2) - (2.5)

flp)=1

One can recognize the Schwarzschild black hole in the above solution when ¢, = ¢,, = 0.

The solution (2.4) has a singularity at » = 0. The black hole would be stable at the extremal

1

limit corresponding to choosing M? = yrraps (¢*> + ¢2). In the extremal limit, the Hawking

temperature of the black hole is zero, and hence the black hole no longer radiates. If it

1
AnG N

hold and produces a naked singularity. Thus, the black hole solution in the extremal limit

radiated, M? would become less than

(¢*> + ¢2,) and the condition would no longer

characterizes a black hole which is the stable endpoint of Hawking evaporation. The entropy

of the black hole remains finite and is given by

Spu = 3( +42,) - (2.6)
Following Sen [20] we define
t=M/a*, r=X"'(p—a), (2.7)
where,
o= [ ) (2.9

and A is an arbitrary constant, and taking the ‘near horizon’ limit, A — 0, the solution (2.4)
becomes )

ds? = a2< —2de? 4 ‘%) + a?(d6? + sin20ds?),
Z—;, Fyy = Z—Zsin@ . (2.9)
which is a product of two spaces. The space labelled by (6, ¢) is the two-dimensional sphere
S2. The space labelled by (r,t) is the two-dimensional AdS, space-time. The AdS, space-

time is a solution of two-dimensional Einstein gravity with a negative cosmological constant.

Fr,t:

The spherical symmetry of the black hole solution manifests as an SO(3) isometry acting on

the S2. In addition there is also an SO(2, 1) isometry acting on the AdS, that was not present
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in the full black hole solution. All known extremal spherically symmetric black hole solutions
in four-dimensions with non-singular horizon have near horizon geometry AdS, x S? and an
associated SO(2,1) x SO(3) isometry. Now, when we consider the action beyond the two
derivative terms, we will postulate that the higher derivative terms we add in the
action would not destroy the near horizon symmetries|20]. For black holes with large
curvature at the horizon the higher derivative terms are as important as the two derivative
terms we have considered here. Thus, we will assume that in any generally covariant theory
of gravity coupled to matter fields, the near horizon geometry of a spherically symmetric
extremal black hole in four-dimensions has the above mentioned SO(2,1) x SO(3) isometry.
Following Sen|[20]|, we shall take this as the definition of a spherically symmetric extremal

black hole in four-dimensions.

2.3 Black Holes in String Theory

We want to investigate the above ideas in the context of string theory. We look for solutions
which are static and have the SO(2,1) x SO(3) isometry. Even with these symmetry con-
straints the solutions are fairly complicated with the scalar fields depending non-trivially on
the radial direction and we need to find an analogue of the conditions that lead to extremality
to be able to find tractable solutions. The first smooth solutions were constructed compact-
ifying the heterotic string on T°[21, 22, 23]. Charged solutions have the same structure as
the Reissner-Nordstrom solution. Often these black holes are also invariant under certain
number of supersymmetry transformations and in that case they are known as BPS black
holes, and the analogue of the conditions that led to extremality for the Reissner-Nordstrém
solution in this context is the necessity of the saturation of the BPS bound!. The saturation
of the bound implies that the black hole preserves some fraction of the supersymmetry of
the vacuum. We can thus obtain black hole solutions with the two important properties —
stability and symmetry — which make the extremal Reissner-Nordstrom solution tractable.
One can calculate the degeneracy of such states at weak coupling and hence the entropy,
at weak coupling. Supersymmetry ensures that we can continue the result to the strong
coupling regime where the system can be best described as a black hole.

Another reason extremal black holes are particularly suitable to work with is the so

called “attractor mechanism” as a result of which, the entropy is independent of asymptotic

!'While it is not always true that the BPS bound coincides with the extremal limit, it will be true in all
our considerations.
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values of the moduli scalar fields[24, 25, 26]. Thus the entropy of an extremal black hole
does not change as we change the asymptotic values of the string coupling constant from a
sufficiently large value where it has a black hole description to a much smaller value where
the microscopic description is valid.

There are, however, two sides to the symmetry of the system. On the one side the high
degree of symmetry of the theory lets one deduce many features of the theory using symmetry
arguments alone, and hence gives a way of understanding the system. On the other hand,
since our final aim is understanding general systems with no symmetry, studying systems
with such high degree of symmetry can help us only so much. However, as a first step
it is educative to understand extremal solutions to test the validity of the procedure by
computing and comparing quantities of the black hole system that can be computed from
other methods. One such important computation is of the entropy of extremal black holes
which can be computed from macrocsopic parameters as in eq. (2.1) and comparing it with
a microscopic counting of the states of the black hole.

It, however, took a while before such explicit computations could be realized. In 1995,
Strominger and Vafa pioneered the idea of thinking of the black hole as a bound state of
solitons (D-branes) in string theory, and using the stability of the BPS states to continue
the solution to the weak coupling limit[5]. Since then many similar computations have been
carried out for the case of extremal and near-extremal black holes[27, 28, 29]. In the limit
where the size of the black hole is large, the Bekenstein-Hawking entropy Sgy has been

found to be the same as the statistical entropy of the same charge configuration. i.e.

SBH(Q) - Sstat(@)- (2'10)

The above comparisons between Sgy and Sy, were initially carried out in the large charge
limit, where the horizon size is large so that the curvature and other field strengths at the
horizon are small and hence we can ignore them.

Typically string theory compactified to four-dimensions involves many more fields than
appearing in the Einstein-Maxwell action we considered above. Requiring ANV > 2 supersym-
metry in the solutions generically gives theories with abelian gauge fields, massless scalars
and their fermionic partners. We will primarily be interested in studying solutions in four-
dimensional space-time with N/ = 4 supersymmetry. In particular, we will focus on two

classes of four-dimensional compactifications:

(i) Asymmetric orbifolds of the heterotic string on T° — the CHL models,
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(ii) Asymmetric orbifolds of the type ITA string on T° — the type IT models.

Before describing these models in greater detail we will discuss a proposal of Dijkgraaf,
Verlinde, and Verlinde (DVV) of representing the generating function of degeneracies of
dyonic states by automorphic forms and its compatibility with the macroscopic entropy of
dyonic black holes|[1]. This is the genesis of subsequent proposals by David, Jatkar and Sen
for representing dyonic degeneracies in terms of automorphic forms for the two classes of
models[30, 31, 32, 2, 33, 34, 35, 36]|.

2.4 The DVV Proposal

DVYV considered the heterotic string compactified on a six-torus. In this four-dimensional
theory (which is dual to type IT theory on K3 x T?), dyonic states carry 28 electric and
28 magnetic charges, denoted q. and q,,, respectively, living on an even self dual lattice
226, This theory has as its duality group SL(2,Z) x SO(22,6,7Z), where the SL(2,Z) is the
electric-magnetic duality symmetry. The purely electric states, which arise perturbatively
as heterotic string states, can be counted easily since they preserve half of the supercharges
and hence simply correspond to the heterotic string states in the right-moving ground state?.
Hence the number of such states can be computed if one specifies the 28 electric charges along

with their occupation numbers, subject to the level matching condition

L2+ Y N =1, (2.11)

01

where the subscript ¢ denotes the world-sheet oscillator number of the coordinate field z7,
and the scalar product on the lattice I'*26 is defined using the SO(22,6,7Z) invariant inner

product. The number of such states is

d(qe) = fda%, (2.12)

where the contour integral over o is from 0 to 1 and 7(c¢) is the Dedekind n-function.
The magnetic charges do not arise perturbatively but as solitonic states. From the
electric-magnetic duality, there should also exist a solitonic version of the heterotic string

that carries pure magnetic charge q,, € I'**%, and hence a similar formula that counts the

2We choose the right-movers to be supersymmetric for the heterotic string.
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magnetic charges. Thus, we have a generating function for the degeneracies of the %—BPS
states given in terms of the Dedekind eta products.

The generic dyonic states, however, preserve only one-quarter of the supersymmetries and
hence will be a bigger set whose degeneracies will be given by a more general formula. The
formula will be a generalization of (2.12) and should reduce to it when the supersymmetry is
restored back to half. DVV proposed a formula for the degeneracies of the i—BPS states on
the idea that the i—BPS states are a bound state of an electric heterotic string with a dual
magnetic heterotic string. It is actually an index in that it counts the number of bosonic

minus the fermionic BPS-multiplets for a given configuration of electric and magnetic charge.

2.4.1 The Degeneracy Formula

For convenience, we combine the electric and magnetic charge vectors into a single vector as

q - 9
A
7 — (Zl z2> - (p ”) , (2.13)

generalizing the single modulus o in (2.12). DVV proposed that the degeneracy of the 1-BPS

and introduce the matrix

states is then given by
ei7qu~Z~q

64d(qe, qm) = %dZ (@) (2.14)
The integrals over the moduli parameters o, p and v run over the domain from 0 to 1 and
we need to impose the level matching condition as before. The matrix Z is the period
matrix of a genus-two Riemann surface and the function ®14(Z) is genus-two modular form
which is the unique automorphic form of weight 10 of the modular group Sp(2,Z). The
SL(2,Z) duality transformations are identified with the subgroup of Sp(2,Z) that leave
the genus-two modular form ®1¢(Z) invariant. Thus, the degeneracy formula is manifestly
duality symmetric. ®10(Z) also has a representation in terms of the product of genus-2 theta

constants as 3

Byo(Z) = (6i4 f_[ Hm(Z)>2 | (2.15)

3The expression of Siegel modular forms as products of even genus-two theta constants is discussed in
chapter 5.
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Another equivalent representation of ®14(Z) is obtained as an infinite product representation

from the Fourier coefficients of the elliptic genus of K3
Xk3(T,2) = Tr(—1)FL+FR62”i(T(L°’Ti)+ZFL), (2.16)

with ¢ = 6 for K3 and F, and F are the space-time fermion numbers which can be identified
with the zero-modes of the left-moving and right-moving U(1) C SU(2) current algebras.

The automorphic form ®14(Z) is given as an infinite product by

_ 2mi(pt+o+v 2mi(kp+lo+mry
Buo(pyorp) = ot T (1L et

(k,l,m)>0

c(4kl—m?2)
>) , (2.17)

where (k,l,m) > 0 means that k,l > 0 and m € Z, m < 0 for k = [ = 0, and the coefficients
c(n) are defined by the expansion of the K3 elliptic genus as

Xk3(T,2) = Z c(4h — mz) g2rilhr+mz) (2.18)

h>0,me7Z

where, up to normalization, yx3(7, z) is the unique weak Jacobi form of index 1 and weight
0. Note that ¢(n) =0 for n < —1.
We will conclude our study of the DVV proposal with a few remarks on checking its

consistency. We will take the Fourier transform of (2.14) and write it as

64
$1y(Z)

= D(k,t,m)e?mitkettotmy) (2.19)
k,lm

with k, ¢, m € Z. The coefficients D(k, ¢, m) are all integers and are related to the degenera-
cies (2.14) by
d(de, dm) = D(39z, 39 de * Am) - (2:20)

Now, as a first consistency check, we want to see if one can obtain (2.12) as a limit of (2.14).
The parameter v couples to the helicity m of the dyonic states, and thus the integral over
v projects out dyons with helicity equal to zero. However, instead of integrating it out, one
can also put it equal to a fixed value, like v = 0. In the v = 0 limit then, we will obtain the
formula with a helicity trace (—1)™, which will project out the 1-BPS states and will leave

only the $-BPS states whose degeneracy is given by (2.12). Taking the v — 0 limit in (2.19)

24



Chapter 2. Counting Dyons in String Theory

we get
ei7rq-Z-q 1 eiﬂpqg eiﬂaqgn

lim — = e —
v=0 (Z) v on(p)*t n(o)*

The above formula shows that the genus-two surface parametrized by Z factors into two

(2.21)

separate genus-one surfaces with moduli p and o which correspond to the %—BPS moduli.
As another non-trivial check for the degeneracy formula, we can compare the macroscopic
Bekenstein-Hawking entropy of extremal four-dimensional black holes with the asymptotic
behaviour for large charges of (2.14). The degeneracy formula (2.14) matches the macro-
scopic entropy results in the large charge limit.

With this brief introduction into the DVV proposal, we now turn to the two models that
we will study for the rest of this thesis — the CHL and type II models. We will derive a
formula similar to the above one for the degeneracies of the %—BPS and i—BPS states for
the case of CHL strings, and following David, Jatkar and Sen show how the modular form
in question is generated by an explicit counting of the black hole microstates in the model.
We will also look at the modular forms generating the dyonic degeneracies in the type II
models. We first start by describing, briefly, the CHL and type II models below, before
moving on to understanding the explicit counting of the dyonic degeneracies in a D = 4,

N = 4 supersymmetric model.

2.5 The CHL Models

The heterotic string compactified on T° and its asymmetric Zy orbifolds provide us with
four-dimensional compactifications with AV = 4 supersymmetry. Writing 7° as T x St x 1,
consider the Zy orbifold given by the transformation corresponding to a 1/N unit of shift
in 5! and a simultaneous Zy involution of the Narain lattice of signature (4,20) associated
with the heterotic string compactified on T*. This leads to the CHL models that we will
study|2|. Starting from six-dimensional string-string duality, one sees that the heterotic
string compactified on 7% x 51 x S is dual to the type IIA string compactified on K3 x 51 x S.
The (4,20) lattice gets mapped to H*(K3,7Z) in the type IIA theory and the orbifolding Zx
is a Nikulin involution combined with the 1/N shift of S'. There is a third description that
is obtained by T-dualizing the S! to S! and following it by an S-duality — this is used to
carry out the microscopic counting. Figure 2.1 summarizes the chain of dualities.

The low-energy theory consists of the following bosonic fields:

(i) the N' = 4 supergravity multiplet with the graviton, a complex scalar, Sy and six
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Type IIB on Type ITA on Heterotic on
1. 01 S Type IIB on| T dualize 1., Q1| str-stri 4 1 a1
K3xS' xS |—— Lo | | K3xS" xS ——|T* xS xS
dual | K3xS'XS"| 514031 duality
Description 3 Description 1 Description 2

Figure 2.1: The chain of dualities in the CHL model. The above chain is expected to hold
after Zy-orbifolding of K3 x S'. The quantization of charges is specified in Description 2
(asymmetric orbifolds of the heterotic string i.e., CHL strings) while microscopic counting is
carried out in Description 3.

graviphotons; and
(i) m N = 4 vector multiplets each containing a gauge field and six scalars®.

In terms of the variables that appear in the heterotic description, the bosonic part of the

low-energy effective action (up to two derivatives) is[37, 21, 38|

.
OuSn 0" St 1Tr(aMML ML)

5:/d4x\/—_g{R_m 8

1 1 -
—Im(Sk) Fu LML F* + TRe(Sy) FuL FW] . (2.22)

where L is a Lorentzian metric with signature (6, m), M is a (6 +m) x (6 +m) matrix valued
scalar field satisfying MT = M and MTLM = L and F,,, is a (6 + m)-dimensional vector
field strength of the (6 4+ m) abelian gauge fields. The moduli space of the scalars is given
by

. SL(2) S0(6,m)
(T1(N) x SO(6,m; Z))\( U(1) x SO(6) x SO(m))

SO(6,m;7Z) is the T-duality symmetry and I'; (N) C SL(2,Z) is the S-duality symmetry that

is manifest in the equations of motion and is compatible with the charge quantization|39].

(2.23)

The fields that appear at low-energy can be organized into multiplets of these various sym-

metries.

1. The heterotic dilaton combines with the axion (obtained by dualizing the antisymmet-
ric tensor) to form the complex scalar Sy. Under S-duality, Sy — (aSy+0b)/(cSy+d).

2. The (6+m) vector fields transform as a SO(6,m;Z) vector. Thus, the electric charges

q. (resp. magnetic charges q,,) associated with these vector fields are also vectors (resp.

“When N = 1,2,3,5,7, m = ([48/(N +1)] — 2)
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co-vectors) of SO(6,m,Z). Further, the electric and magnetic charges transform as a
doublet under the S-duality group, I'y(N), where ['1 (V) is the sub-group of SL(2,7Z)
matrices (¢ %) with a = d =1 mod N and ¢ = 0 mod N).

One can form three T-duality invariant scalars, q2, q2, and q.-q,, from the charge vectors.

These transform as a triplet of the S-duality group. Equivalently, we can write the triplet

2 —_ .
0= < q; qezqm ) (2.2

—Qe " qm 9,

as a symmetric matrix:

The S-duality transformation now is @ — A- Q- AT with A = (%) € T';(N). The charges
are quantized such that Nq?, q? € 2Z and q. - q,, € Z. There exist many more invariants
due to the discrete nature of the T-duality group|40] for N = 1 and more appear when
N > 1.

2.5.1 BPS Multiplets

Four-dimensional compactifications with N/ = 4 supersymmetry admit two kinds of BPS
states: (i) 3-BPS multiplets that preserve eight supercharges (with 16 states in a multiplet)
and (ii) i—BPS multiplets that preserve four supercharges(with 64 states in a multiplet). The
masses of the i—

formula[21, 41, 38]:

BPS states are determined in terms of their charges by means of the BPS

1
(M) es = 5,5

o V@O Da(h (0 + D) — (@ L+ Dan? | - (2.25)

[(qe + SuAm) (M + L)(qe + S dm)

The square of the mass of a 1-BPS state is max(M?, M?). 1/2-BPS states appear when the
electric and magnetic charges are parallel (or anti-parallel) i.e., q. & q,,. The BPS mass
formula for %—BPS states can be obtained as a specialization of the i—BPS mass formula
given above. When q, x q,,, the terms inside the square root appearing in the i—BPS mass

formula vanish leading to the %—BPS formula

(M%)

T-BPS G _ 5. [(qe +Suan)" (M + L)(ge + Spdm)| - (2.26)
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2.5.2 Counting ;-BPS States

We will now consider the counting of purely electrically charged %—BPS states. Such elec-
trically charged states are in one to one correspondence with the states of the CHL orbifold
of the heterotic string compactified on 7% x S x S[39]. Let d(n) denote the degeneracy
of heterotic string states carrying charge Nq? = 2n — the fractional charges arise from the
twisted sectors in the CHL orbifolding. Every -BPS multiplet /heterotic string state has
degeneracy 16 = 2%/2. Then the generating function of d(n) is[32, 42, 43] (for N = 1,2,3,5,7
and k+2=24/(N + 1))

16

Zd exp(2minT) — TN fOG N (2.27)

where

FEr) = n(NT)H2 (r)"+2 (2.28)

The degeneracy of purely magnetically charged states with charge q,, = 2m is given by a
similar formula with ) (7/N) replaced by f*)(7). These are level-N genus-one modular
forms with weight (k 4 2). For (N, k) = (1,10), f19 (1) = n(7)*

2.5.3 Counting i-BPS States

As we saw earlier, i—BPS states are necessarily dyonic in character with the electric and mag-
netic charge vectors being linearly independent. Jatkar and Sen generalized the DVV pro-
posal to the case of asymmetric Zy-orbifolds of the heterotic string on 7 for N = 2, 3,5, 7[2].
They proposed that the egeneracy of l—BPS dyons is generated by a Siegel modular form of
weight k& = N—+1 — 2 and level N, ®,(Z). They also provided an explicit construction of the
modular form using the additive lift of a weak Jacobi form. The constructed modular form

has the following properties:

(i) Itisinvariant under the S-duality group I'; (V) suitably embedded in the group G;(N) C
Sp(2,7). (See Appendix D for notation)

(ii) In the limit z5 — 0, it has the right factorization property:

lim ®(Z) = (iVN) 2 (212)% F9 (2 /N) f®)(23) (2.29)

29—0

Note that for (N, k) = (1,10), this matches the DVV formula (eq. (2.21)).
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(iii) It reproduces the entropy for large blackholes|2].

(iv) For i-BPS blackholes, the formula leads to a prediction for R? (higher derivative)
corrections to the low-energy effective action given in Eq. (2.22). Such corrections
lead to a non-zero entropy using Wald’s generalization of the BH entropy formula for

Einstein gravity that agrees with the prediction from the modular form|[44, 45].

With this brief introduction, we move on to the other model we will consider in this work
— the type IT compactifications with A/ = 4 supersymmetry. These models are similar to the

CHL models with the K3, appearing in the type IIA/B description, being replaced by T*.

2.6 The Type II Models

Type II string theory compactified on a six-torus has N' = 8 supersymmetry in four-
dimensions. We will consider fixed-point free Zy (N = 1,2,3,4,5) orbifolds of the six-
torus that preserve A/ = 4 supersymmetry. The orbifold procedure involves splitting 76 =
T* x S x S' and choosing the action of Zy such that it has fixed points on T4, but this
action is accompanied by a simultaneous 1/N shift along the circle S'. The total action of
the orbifold is free, i.e., it has no fixed points. It thus suffices to specify the action of T4
As we will be moving between several descriptions of the orbifold related by duality, we
will need to specify the duality frame. Description one corresponds to type ITA string theory

on a six-torus with the following Zy action.

N #5 Let w = exp(2mi/N) and (z1,22) be complex coordinates on T4. The Zy action is

generated by (21, z2) — (wz1,w 129).

N =5 Let w = exp(2mi/5) and T* = R*/T'4,, where I, is the root lattice of Lie algebra A,.
The Zs generator has eigenvalues w” with r = 1,2,3,4 mod5. This corresponds to a

quasi-crystalline compactification.

Our considerations generalize the N = 2,3 orbifolds considered in [31]. Again a chain of
dualities (discussed later in this chapter) relates this to other type ITA /B compactifications.
In particular, the analog of the CHL string turns out to be the type ITA string — see Figure
2.2.

The two-derivative low-energy effective action is constrained by supersymmetry and the

number of vector multiplets and is identical to the one discussed for the CHL model (see eq.
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Type IIB on | Type ITA on | Type IIA on
T4 % Sl % Sl S sze IllB (?vrll T dualize T4 % Sl % Sl str-stri T4 % Sl % Sl
dual | T* xS X S| 514651 duality
Description 3 Description 1 Description 2

Figure 2.2: The chain of dualities in the type IT models. The above chain is expected to
hold after Zy-orbifolding of 7% x S'. The quantization of charges is specified in Description
2 (asymmetric orbifold of the type ITA string) while microscopic counting is carried out in
Description 3.

(2.22)). Similarly, the mass formulae for 1-BPS and $-BPS states given in the CHL model
also hold here with Sy being identified with the dilaton in description 2.

2.6.1 Zpy-Action From the NS5-Brane

Under six-dimensional string-string duality, type ITA string on T* (description 1) is dual to
type IIA string on the T-dual torus 7* (description 2). The dual type ITA string is a soliton
obtained by wrapping the NS5-brane on 7% We are interested in the situation where this
is compactified to four-dimensions and there is a Zy orbifold action as mentioned above.
Vafa and Sen have obtained the corresponding orbifold action (for N = 2,3) in the dual
description[46]. We will obtain their result and its generalization for the N = 4,5 orbifolds
by studying the Zx action in effective 1+ 1-dimensional worldvolume theory of the NS5-brane
on T* (see [47, 48] for a related discussion).

The fields in the worldvolume theory of a single NS5-brane consist of five scalars, a
second-rank antisymmetric tensor (with self-dual field strength) in the bosonic sector and
four chiral fermions. These are the components of a single (2,0) tensor multiplet in 5 + 1-
dimensions. We can dimensionally reduce the fields on 7 to obtain the fields on an effective
1 + 1-dimensional theory. Using string-string duality, this theory will be that of a type ITA
Green-Schwarz string in the light-cone gauge [47, 48|.

Let us organize the fields in terms of SO(4) x SO(4) g where the first SO(4) = SU(2), x
SU(2)p is from the T and the R-symmetry can be taken to be rotations about the four

transverse directions to the NShH-brane.

1. Four scalars, ™, are in the representation (1,4,). These become four non-chiral scalars

on dimensional reduction on the four-torus.

2. The fifth scalar and the two-form antisymmetric gauge field can be combined and

written as Y,5 and Y, 5 where « is a SU(2)r, spin-half index and 3 is a SU(2)x spin-
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half index. On dimensional reduction on the four-torus, the Y,3 become the four
left-moving chiral bosons and the Y, 5 become four right-moving chiral bosons. When
combined with the four non-chiral bosons, they become the Green-Schwarz bosons in

the light-cone gauge of the type ITA string.

3. The fermions are ¢45 and ¢, ;5 where A is a spinor index of SO(4)g. These become
the left- and right-moving fermions in the effective 1 + 1-dimensional theory — these

are the Green-Schwarz fermions in the light-cone gauge of the type ITA string.

In the above set up, the transformations under that the Zy subgroup of SU(2),, is given by

w 0
g.° = (0 w_1> , (2.30)

where w = exp(271i/N) for N = 2,3, 4.
One can see that the only fields that transform under this action are those that carry the

index «.. Thus, we see that the chiral fermions all transform as

Yaa = 9o’ Pap - (2.31)

Thus we see that 4 of the fermions pick up the phase w and the other four pick up the phase
w™!. The field Y, transforms as

Yoz;@ - goz,y goz(S Y'yé . (232)

Thus, two fields are invariant under the Zy and the other two transform with phases w? and
w™2. All other fields are invariant under the Zy.

In the dimensional reduction of the the (2,0) theory on T, the SU(2)y, fields get mapped
to (say) left-movers and the SU(2)g fields get mapped to (say) right-movers. Thus, we see
that the orbifold has a chiral action. In particular, the four bosons that arise from Y,z give
rise to four left-moving chiral bosons and the 14, give rise to four left-moving chiral

fermions.
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2.6.2 Zy Action From the Poincaré Polynomial

Consider the Poincaré polynomial for 7% weighted by the phases under the Zy-action for
N =1,234.

223 2 2
(1—wz)*(1—wt2)? =2 —22%0 — % + 2% (W +w?) + % + 42% — 27w — Ux +1 (2.33)

In the above expansion, we identify even powers of z with bosons in the 1 4+ 1-dimensional
theory and odd powers with fermions. The coefficient multiplying the term gives the orbifold
action. Thus six of the bosons are always periodic and the other two have fractional moding
determined by the phase.

It appears that one can use the Poincaré polynomial to obtain the Zs action on the dual
type IIA string. However, that has to be written as a SO(4) action rather than a SU(2),,
subgroup. When N = 5, the Zs action is best seen by choosing the T* to be given by
R*/T4,. The eigenvalues of the generator of the Zs are given by w”, (r = 1,2,3,4). The

corresponding Poincaré polynomial is

(1—w2)(1—w?x)(1 —wtz)(1l —w )
=1+22% +2* + (WP +w+ 1w+ 1/w?)2?

—z/w— /W — wr — W — W2 —wrd — 2w — 2P/ (2.34)

We now present the details of the orbifold action (on the left-movers) for the Green-

Schwarz type ITA-superstring that we just derived.

[N=2] w = —1 implies that w? = 1. Thus, one has eight periodic bosons and eight anti-

periodic fermions.

[N=3] w = exp(27mi/3) One has six periodic bosons and two bosons which pick up phases w

2

and w?. Four fermions go to w times themselves and the other four go to w™! times

themselves.

[N=4] w = exp(7i/2) One has six periodic bosons and two anti-periodic bosons. Four fermions

go to w times themselves and the other four go to w™! times themselves.

[N=5] w = exp(2mi/5) This is different from the other three examples. One ends up with
four periodic bosons and the other four change by a phase w” (r = 1,2, 3,4). The eight
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fermions break up into two sets of four fermions. Within each set, one fermion picks

up a phase w" (r =1,2,3,4).

Thus, the second description gives rise to an asymmetric orbifold of the type IIA string
on T% and thus is analogous to CHL compactifications of the heterotic string. Recall that
the heterotic string arises as the type ITA NS5-brane wraps K3 in the place of 7% that we

considered.

2.6.3 Type II Dyon Degeneracy From Modular Forms

As mentioned in previous section, computing the dyon spectrum is non-trivial because dyons
do not appear in the perturbative spectrum of string theory. In fact, dyon counting nec-
essarily requires computing the degrees of freedom coming from the solitonic sector of the
theory. The dyon degeneracy formula can be obtained in two different ways, giving rise to
either a additive formula or a multiplicative one.

As shown in [2], for the CHL models, there are two modular forms that one constructs
— one is the generating function of the dyon degeneracies (denoted by <A15k(Z)) and another
(denoted by ®(Z)) is the one related to R*-corrections in the CHL string. Let us call the
corresponding modular forms in the type II models to be W,(Z) and W (Z). The weight k
of the Siegel modular form for the type II models is given by

12

k+2=—
+ N+17

(2.35)

when N + 1|12 i.e., N = 2,3,5. For N =4, one has k = 1.
We will discuss the modular forms \le(Z) and W (Z) of the type II orbifolds in chapter 6
where we discuss the construction of all modular forms appearing in the this work. Now we

turn to the microscopic counting of dyonic states and sketch the computation in the case of
the CHL and type II models as shown by David, Jatkar and Sen[16, 31].

2.7 Counting Dyons in N = 4 Supersymmetric Strings

In the rest of this chapter, we will simultaneously discuss both models: the CHL and type
I1. Consider description 3 where one has type IIB string theory compactified on M x Slx gt
where M is either K3 or T%. We then take an orbifold of this theory by a Zy symmetry.

The action of the symmetry group is generated by a transformation ¢ which involves a
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1/N unit shift along the circle S’ together with an order N transformation g in M. The
transformation ¢ is chosen such that it commutes with the A/ = 4 supersymmetry generators
of the parent theory and hence preserves the N' = 4 supersymmetry. Our discussion here
closely follows the review of Sen|20].

Following the chain of dualities, we have seen that the transformation g gets mapped, in
description 2, to a transformation g that acts only as a shift on the right-moving degrees of
freedom on the world-sheet and as a shift plus rotation on the left-moving degress of freedom.
Description 2 is obtained by taking an asymmetric orbifold of heterotic or type IIA string
theory on T% x § x S by a 1/N unit of shift along S together with the transformation .
All the supersymmetry comes from the right-moving sector of the world-sheet. The field Sy
is the axion-dilaton in the second description and to the complex structure modulus of the
torus S! x S! in the first description.. The matrix valued scalar field M encodes information
about the shape and size of the compactification space M’ x S x S'. and the components
of the NSNS sector 2-form along it°. The gauge fields A, are related to the ones coming
from the dimensional reduction of the ten-dimensional metric, NSNS anti-symmetric tensor
field and gauge fields, without any further electric-magnetic duality transformation. The

elementary string states carry electric charge q., and various solitons carry magnetic charge

qm-

2.7.1 Tracking dyons through dualities

Recall, the i—BPS dyons possess charges which are mutually non-local and therefore they
do not appear in the perturbative spectrum of the theory. The electric charge vector q. and
the magnetic charge vector q,, of a state are defined in the second description. We take the
coordinate radii of S*/Zy and S* to be 1. The radius of S* before orbifolding is taken to
be N and the Zy orbifolding action involves a 27 /N translation along S'. The momentum
along S! is thus quantized in multiples of 1/N.

We consider the following dyonic configuration in description 3: (5 D5-branes wrapped
on M x S, @Q; Dl-branes wrapped on S!, a single Kaluza-Klein monopole associated with
the circle S* with negative magnetic charge, momentum —k/N along S* and momentum J
along St Also, since a D5-brane wrapped on M carries, besides the D5-brane charge, —f3
units of induced D1-brane charge, where (3 is given by the Euler character of M divided by
24, the net D1-brane charge of the system is (Q; — 3Qs). (3 is zero when M = T* and 1

°In both the CHL and type II models, M’ is a four-torus. In the type II models, the four-torus, M’ is
obtained by T-dualizing all circles on M = T* and we will denote it by 7.
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when M = K3.)

Following the duality chain and using the sign conventions used in[20], one sees that
the above configuration in description 3 leads to a different configuration in description 1.
Let us replace a (-1)-charged Kaluza-Klein monopole by a single NS5-brane wrapped on
M’ x S, Q5 NS5-branes by Q5 Kaluza-Klein monopoles along S'; J units of momenta along
St is replaced by —J fundamental strings winding S', where S! is the circle T-dual to S'.
Further, the D1 charge becomes (—Q; + 3Q5) fundamental strings wrapping on S!. The
Zy orbifold action involves Zy orbifold of M’ and simultaneous 1/N unit of shift along S*.
Since the orbifolded circle is not participating in the T-duality transformation, the orbifold
action commutes with the T-duality transformation.

Finally, one carries out a string-string duality to arrive at the second description®. Under
this action, all fundamental strings are replaced by NS5-branes and vice versa. Thus, in the
end we have (); Kaluza-Klein monopoles along §1, (—Q1+3Q5) NS5 wrapping M’ x St
—k/N units of momentum along S, —J NS5 -branes wrapping M’ x §1, ()1 NShH-branes
wrapping M’ x S, and a single fundamental string wrapping S*. The result is summarized

in Figure 2.3.

Qs D5’s wrapping M x S1 Qs KK monopole for S

Q1 D1’s wrapping S* (—Q1+6Q5) NS5 wrapping M’ x S1

momentum —k/N along S* | chain of dualities | momentum —k/N along S"

momentum J along S' —J NS5 wrapping M’ x S!

—1 KK monopole for S* one fund. string wrapping S*
Description 3 Description 2

Figure 2.3: Tracking Dyon configurations. When M = K3, M" = T* and # = 1. When
M =T* then M'=T* and 3 = 0.

The second description exclusively contains description in terms of fundamental strings,
NS5-branes, Kaluza-Klein monopoles and momenta. If we denote momenta along S x S! by
7, fundamental string winding charges along them by « and NS5-brane, and Kaluza-Klein
monopole charges by N and W respectively then the T-duality invariants constructed from

these electric and magnetic charges are

q: =27 -0, q2m:2]\7~W, Qe Qm=7-N+a-W. (2.36)

6We follow the conventions followed in [20]
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It is easy to check that these T-duality invariants take the following values before the orbifold

action,

qg = 2k7 q?n = 2@5(@1 - BQ5> ) de " qm = J (237)

The Zy orbifold action commutes with the entire duality chain and is therefore well defined in
any description (‘duality frame’). It is convenient for us to discuss it in the second description
so that we can easily read out its effect on dyonic charges. The Zy orbifold acts by 1/N
shift along S*, which results in reducing the circle radius by factor of N. Thus fundamental
unit of momentum along S* is N and hence momentum along S! in the orbifolded theory
becomes n/N. To maintain J NS5-branes transverse to S! after the orbifold we need to start
with NV copies of J NS5-branes symmetrically arranged on S* before orbifold. The resulting

configuration has

1 1
5‘13 =2k/N, 501371 =@, Qe Qm =, (2.38)

in the orbifolded theory.

The S-duality symmetry of this theory in the second description is related to the T-
duality symmetry in the original type IIB description. The 1/N shift along S! breaks the
S-duality symmetry of the second description to I'; (V).

2.8 Microscopic Counting of Dyonic States

In this subsection, we will discuss the microscopic counting of dyon degeneracies carried
out by David and Sen[16|. The dyonic configuration corresponds to the BMPV black hole
at the center of Taub-NUT space[49].The main idea used by David-Sen is to use the 4D-
5D correspondence combined with known dualities to map the counting of states in this
configuration to the counting of dyonic degeneracies in the CHL string.

Let d(qe, qm) denote the number of bosonic minus fermionic i—BPS supermultiplets car-
rying a given set of charges (e, q,,) in the configuration described in the previous section.

The dyonic charges of the configuration when ()5 = 1 are given by

@ =2k/N, a4, =2(Q1—0), de - tm =J . (2.39)
The quantum numbers k£ and J can arise from three different sources:

1. The excitations of the Kaluza-Klein monopole carrying momentum —[j/N along S*.
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2. The overall motion of the D1-D5 system in the background of the Kaluza-Klein monopole

carrying momentum —lo/N along S and j, along S'.

3. The motion of the (); D1-branes in the worldvolume of the D5-brane carrying momen-
tum —L/N along S! and J' along S°.

Thus, we have
lb+lo+L=Fk, jo+J =J. (2.40)

So, in the weak coupling limit, one can ignore the interaction between the three different
sets of degrees of freedom and obtain the generating function of dyonic degeneracies of the
whole system as a product of the generating functions of each of the three separate pieces.

Let f(p,0,7) denote the generating function of the whole system:

flpow) = Y dlaa,) @@ (2.41)
k,Q1,J

Then, from the above argument it is given by

1 ; , , ‘ ,
F3.5,7) = o e (ST (<) doy(Qu, L, S ) e N
Q1,L,J’
(D(=1)%denrllo, jo) o250 ) (37 dice(ly) 20, (2.42)
lo.jo A

where dp1(Q1, L, J) is the degeneracy of the @, D1-branes moving in the plane of the D5-
brane, deoyy(lo, jo) is the degeneracy associated with the overall motion of the D1-D5 system
in the background of the Kaluza-Klein monopole(i.e., its motion in Taub-NUT space), and
drk(lj) is the degeneracy associated with the excitations of the Kaluza-Klein monopole.

The factor of 1/64 removes the degeneracy of a single i—BPS supermultiplet. Let us write

f(p,o.v) as

A

F(p.o.v) = [Es-(ksjzn)(p.0.v) X Exx(p.v) x g(p)] - (2.43)
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where

! ! ! mi(o vJ’
[55*(K3/ZN)(Pa o, V)] Z (=) dp1(Q1, L, J) € (0Qu/N+pLtvT')
Ql L,J'

- 2mil p+2mij
[STN o,V = _ E ]odCM lo7 ) e2milopr2mijor

lo ,Jo

2 :dKK l/ 27rzlop )

Justin, Jatkar, and Sen carried out the explicit counting of the above partition functions
and found that the dyonic degeneracies are generated by an automorphic form which for
N = 1is the unique weight 10 automorphic form of the modular group Sp(2,Z) which is the
same one obtained by DVV. For N > 1 of the orbifolding group Zy, however, they found
the dyonic degeneracies are generated by other modular forms. The general form of their
result for the generating function of the degeneracies of 1-BPS states is

O(p,0,v) = exp(2mi(ap+ 70 + 7))

=

1 —1

i~ ~ ~. N-1 ,-2mils/N TS) 2
X H 11 [1 — exp{2mi(Gk + pl + j) }]>s=0 UR=7%) - (2.44)
b= 0 keZ+ %,

lEZ,jE2Z+b
k,1>0,5<0 for k=1=0

T

where the coefficients c,(f’s) are defined through the twisted elliptic genera as we will see

below. We will shortly compute the above equation explicitly by computing each of the
pieces in (2.42).

2.8.1 Counting States of the Kaluza Klein Monopole

We first count the degeneracy of the half-BPS states associated with the excitations of
the Kaluza-Klein monopole carrying momentum —ly/N along S'. Type IIB string theory
compactified on M x St x S'in the presence of a Kaluza-Klein monopole can be described

by type IIB string theory in the background M x T'N x S! where TN denotes Taub-NUT
space described by the metric

ds® = (1 + R—) (dﬁ +r2(de? + sm29d¢2)) + R (1 + %)_1 <2d§ + 0039d¢)2, (2.45)
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where Rq denotes the size of the Taub-NUT space. We take a Zy orbifold of this theory
generated by the transformation g. The Taub-NUT space breaks eight of the sixteen super-
symmetries in type I[IB on K3 and quantization of its fermionic zero modes gives rise to a
multiplicative factor of 16 = 2%/2. Following the chain of dualities, one sees that the Taub-
NUT space gets mapped to the heterotic string wrapped on a Zy-orbifold of the heterotic
string. The degeneracy dix(l() corresponds to the degeneracy of the heterotic string in a
twisted sector. Thus, g(p/N) is the partition function of the heterotic string (in a twisted
sector) with the supersymmetric right-movers in their ground state. Hence, it can also be
identified with the generating function of degeneracies of electrically charged %—BPS states.
The BPS condition requires that the right-Fmoving oscillators are in their ground state for
both M = K3 (the CHL models) and M = T* (the type IT models).

We are looking for the number of ways a total momentum —Iy/N along S! can be par-
titioned into g-invariant modes. Part of this momentum comes from the momentum of the
Kaluza-Klein monopole vacuum without any excitations and this is calculated by mapping
the Kaluza-Klein monopole to a fundamental string state in a dual description of the theory.

To count the g-invariant modes, we have to first determine the spectrum of the massless
fields in the world volume theory of the Kaluza-Klein monopole solution, and the transfor-
mations of the various fields under the action of the orbifold group generator g. From this,
we can determine all the g-invariant modes on the Kaluza-Klein monopole, by noting that a

2mk/N must carry momentum n — k/N(n, k, € Z) along S, so

field that picks up a g phase e
that the phase obtained due to the translation along S! cancels the g phase.

We begin by analyzing the spectrum of the theory. First, we concentrate on the bosonic
fields. There are 8 non-chiral, right-moving masless scalar fields coming as follows: three
come from the oscillations in the three transverse directions of the Kaluza-Klein monopole.
Two come from the reduction of the 2-form field of type IIB string theory along the harmonic
2-form of the Taub-NUT space. Reduction of the self-dual four form field of type IIB string
theory along the tensor product of the harmonic 2-form of the Taub-NUT space and a
harmonic 2-form on M gives rise to a chiral scalar field on the world-volume. The chirality
of the scalar field depends on whether the harmonic 2-form on M is self-dual or anti-self-
dual. Thus, in the case of T we get 3 right moving scalars, and 3 left moving scalars. For
K3, we get three right-moving scalars, and 19 left-moving scalars.

The fermionic fields come from the Goldstino fermions associated wth broken supersym-
metry generators. For the case of M = T* theory, there are 32 unbroken supersymmetry

charges of which 16 are broken in the presence of the Taub-NUT space. Of the 16 remaining
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Goldstino fermions on the world-volume of the Kaluza-Klein monopole, 8 are right-moving
and the remaining 8 are left-moving, since type IIB string theory is non-chiral. For the
case of M = K3 theory, there are 16 unbroken supersymmetries, of which 8 are broken in
the presence of the Taub-NUT space. The remaining 8 Goldstino fermion fields associated
with the broken supersymmetry transformation are right-moving, since according to our
convention the 8 unbroken supersymmetry transformation parameters on S are left-chiral.

Putting it all together we see that the spectrum of the world-volume theory of the Kaluza-
Klein monopole consists of 8 bosonic and 8 fermionic right-moving massless fields. In ad-
dition, for M = T*, it has 8 left-moving bosonic and 8 left-moving fermionic fields, while
for M = K3, the world-volume theory has 24 left-moving massless bosonic fields and no
left-moving fermionic fields.

Next, we have to work out the ¢ transformation properties of the various modes. The
problem of studying the ¢ transformation properties of the left-moving bosonic and fermionic
degrees of freedom, it can be shown, reduces to the problem of studying the action of the
g action on the even and odd harmonic forms of K3. The net action of the g on the 8)
left-handed scalar fields is given by the action of ¢ on the 8 even degree harmonic forms
of M, while its action on the left-moving fermions can be represented by the action of ¢
on the 1- and 3—forms of M. The difference between the number of even and odd degree

harmonic forms, weighted by g, is equal to )y . Thus, the number of left-handed bosons

minus fermions carrying a ¢ quantum number ¢>™/N ig given by
N-1 N-1
mo= SNy = 3T e (o (0) + 267 (2.46)
s=0 s=0

where the last equality comes from the expression for )y s in terms of the coefficients cl(f’s).

We must now determine the spectrum of the BPS excitations of the Kaluza-Klein monopole,
which is obtained by taking the tensor product of the irreducible 16-dimensional super-
multiplet with either fermionic or bosonic excitations involving the left-moving degrees of
freedom on the world-volume of the Kaluza-Klein monopole. Let dx gk denote the degener-
acy of states associated with the left-moving oscillator excitations carrying total momentum
—ly/N, weighted by (—1)%t. To calculate dg(ly) we need to count the number of ways the

total momentum —lg /N can be distributed among the different oscillators, there being n;
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oscillators carying momentum —I/N. This gives

(e o]

Z dicre(ll zmpl0 _ 16e2NCh H(l — eZmely (2.47)

=1

where the factor of 16 comes from the fermionic zero modes. The constant C' represents the
—lé /N quantum number of the vacuum of the Kaluza-Klein monopole when all the oscillators

are in their ground state and is equal to

C =—a/N, (2.48)
where & is given in terms of (), s by
o2mis/N
= @0 — 3y Z Qo (7 — gy (2.49)
Putting it all together, we get
Z dir(— 27”/37 — 1Ge—2ma@p ﬁ(l _ 627”51)— SN e2ms/N () (0) 41" (~1)) (2.50)

=1

2.8.2 Counting States Associated With the Relative Motion of the
D1-D5 System

To compute dp;, which counts the states associated with the motion of the DI1-brane in
the plane of the D5-brane, we start by considering a single D1-brane moving inside a D5-
brane. We analyze the world-volume theory of a single D1-brane inside a D5-brane. In the
weak coupling limit the dynamics of the D1-brane inside a D5-brane is insensitive to the
presence of the Kaluza-Klein monopole, the two-dimensional theory describing this system
has a (4,4) supersymmetry. Consider a D1-brane wrapping along the direction in which
S'/Zy has period 27. Let o denote the coordinate along the length of the D1-brane and w
the winding number of the D1-brane along S'/Zy, then o changes by 27w when we traverse
the whole length of the string, while the physical coordinate of the D1-brane shifts by 27r

along S where r and w are related as

r=w modN . (2.51)
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In the target space M under 0 — o + 27w the location of the D1-brane gets transformed by
g" = ¢". Thus the target space M is subject to the above condition and the states will be
twisted by ¢". Further, since the supersymmetry generators are required to commute with
g, the supercurrents will satisfy periodic boundary condition under ¢ — o 4 27w. Since
the D1-brane has coordinate length 27w, the momentum along S* can be identified as the
(Lo — Lo)/w eigenvalue of this state. And since, the BPS condition forces Ly to vanish, a

total momentum —[/N corresponds to a state with
Ly=Ilw/N, Ly=0. (2.52)

In the presence of the Kaluza-Klein monopole background a transition ¢ along S' must
be accompanied by a rotation 2e in U(1), C SU(2).. Let us denote by F}, and Fp, twice the
U(l)p € SU(2)p and U(1)gr C SU(2) g generators respectively. FJ, is the world-sheet fermion
number associated with the left-moving sector of the (4,4) superconformal field theory, while
Fg is the world-sheet fermion number associated with the right-moving sector. The total
world-sheet fermion number Fj, + Fr can be interpreted as the space-time fermion number
from the point of view of a five-dimensional observer at the center of Taub-NUT space.

The quantum number j is the F, eigenvalue of the state. The four and five-dimensional
statistics differ by a factor of (—1)/ and hence, in counting the total number of bosonic
minus fermionic states weighted by (—1)/ with a given set of charges, we must compute
the number of states weighted by (—1)2™¥=  And, finally we must pick only states which
are Zy-invariant. Since the total momentum along S' is —I/N, the state picks up a phase

—2mil /N

e under a 27 translation. Thus the projection operator onto Zy invariant states is

given by
1 N—
N Z 7T’LSl/N~S (253)
s=0

Putting it all together, we get for the total number of Z, invariant bosonic minus
fermionic states weighted by (—1)7 of the single D1-brane carrying quantum numbers w, [, j

is given by

=

-1

n(w,l,j) = e’2mUNTrRR,S~,T @S(—1)FL+FR<$NLO,M5F”), r =w mod N, (2.54)

i{ngk

1
N

where the T'rpp ;- denotes trace over the RR sector states twisted by ¢g” in the superconformal

o-model with target space K3.
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In terms of the coefficients cl(f’s), n(w,l, j) is given by

=

-1
n(w,1,j) =Y e 7N 41y /N — ), r=wmodN, b=jmod2. (2.55)

S

Il
o

Using this result for a single D1-brane spectrum we need to find the spectrum of multiple
D1-branes moving inside the D5-brane. Let the total D1-brane charge be W, and total
momentum along S' and S! be —L/N and J' respectively. Let us denote by dpi(W, L, J')
the total number of bosonic minus fermionic states of the whole system, weighted by (—1)Jl
which represents the number of ways of distributing the quantum numbers W, L and J' into

individual D1-branes carrying quantum numbers (W, l;, j;) subject to the constraint

W=> w, L=> 1L J=Yji w,iji€Z w>1 1>0. (2.56)

A straightforward combinatoric analysis gives

Z dp (W, L, J/)(_I)J’ezwz(aW/N+5L+aJ’) _ H (1 — e2m(@w/N+p+7i))—n(wl.j)
W,L,J' w,l,jEZw>0,1>0

(2.57)

In terms of the coefficients cl(f’s) this takes the form

Z dpi(W, L, J) (—1)‘]/ 2mUEW/N+PLATJ')

W,L,J'

—_

N—-1

_ H H H (1 _ 2mi(@k +pl+775)

r=0 b= kleZ—l—%,leZ,
jE€2Z4b:k' >0,1>0

_ Zé\f:—l eszsl/Nc(TaS) (4lk,—j2)
) ° ' (2.58)

This is the partition function for states associated with the motion of the D1-branes in the

plane of the D5-brane.
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2.8.3 Counting States Associated With the Overall Motion of the
D1-D5 System

The overall motion of the D1-D5 system has two components — the center of mass motion of
the D1-D5 system along the Taub-NUT space transverse to the plane of the D5-brane, and
the dynamics of the Wilson lines on the D5-brane along M. Of these, the first component
is independent of the choice of M, while the second exists only if M has non-contractible
one cycles, i.e. for M = T*. We analyze each in turn now starting with the center of mass
motion of the D1-D5 motion in Taub-NUT space.

Dynamics of the D1-D5 Motion in Taub-NUT Space

The contribution from this is independent of the the choice of M. When the transverse
space is Taub-NUT, the low energy dynamics of the system can be described by a (1 + 1)-
dimensional supersymmetric field theory. The world-volume theory is a sum of two mutually
non-interacting pieces — a theory of free left-moving fermions and an interacting theory of
scalars and right-moving fermions. From the point of view of a five-dimensional observer
sitting at the center of Taub-NUT space, the D1-D5 system in the Taub-NUT target space
is described by a set of four free left-moving U(1),, invariant fermion fields, together with an
interacting theory of four bosons and four right-moving U(1);, non-invariant fermions. The
two bosons and two of the right-moving fermions carry a j, quantum number 1, while the
other two bosons and right-moving fermions carry a j, quantum number of —1. The unbroken
supersymmetry transformations act only on the scalars and the right-moving fermions. All
the fields carry integral momenta along S*.

To compute the partition function, first consider the free left-moving fermions which

carry only ly quantum numbers but no jp quantum numbers. Their contribution is given by
[ee]

Zfree (ﬁ) = rPrfree left-moving fermions(<_1>F<_1)J062mplo 627”1/]0) =4 H(l - e2man)4’ (259)
n=1

where F'is the total contribution to the space-time fermion number, except from the fermion
zero-modes associated with the broken supersymmetry generators, from the point of view
of an asymptotic four-dimensional observer. The factor of 4 comes from the quantization of
the free fermion zero modes.

Next we compute the partition function for the part that is interacting. There are two

parts to this, the zero mode oscillators and the non-zero modes. By taking the size Ry of
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the Taub-NUT space to be large so that the metric is almost flat, and in a local region of
the Taub-NUT space the world-volume theory of the D1-D5 system is almost free. Then we
can compute the contribution due to the non-zero mode bosonic and fermionic oscillators
by placing the D1-D5 system at the origin of the Taub-NUT space and treating them as
oscillators of free fields. Further, we need to examine only the left-moving bosonic oscillators
carrying momentum —Iy/N along S! and angular momentum jo, since the right-moving
bosonic and fermionic oscillators are in their ground state. The contribution to the partition

function from these oscillators is

Zosc (ﬁu I;) = Troscillators((_DF(_Ujo €2mﬁl0 e27ril~’jo)
1 |
- 1_[1 (1 — e27finNﬁ+27riD)2(1 _ e27rian)727riD)2’

(2.60)

where we use the fact that since these oscillators are bosonic from the five-dimensional point
of view, they have statistics (—1) = (—1) from the four-dimensional point of view.
Finally we have to evaluate the partition function for the zero-mode oscillators of the
interacting part of the theory. Since there are four bosonic and four fermionic fields, we
can think of it as the dynamics of a superparticle, with four bosonic and four fermionic
coordinates, which transform in a pair of spinor representations, moving in the Taub-NUT

space. The partition function for these modes is give by

627”1/

o (2.61)

Zzero(l;) = Trzero modes((_1)F(_l)joezmﬁj0 = - Zjoe%rif/jo - -
jo=1

Putting together all the constituent partition functions, the partition function associates

with the center of mass motion of the D1-D5 system in the Taub-NUT space is given by

Z dtransverse (ZOajO)(_l)éeQWilOﬁ+2ﬂijOD - Zfree(ﬁ)Zosc(ﬁﬁ)Zzero(ﬁ)

lo,jo
_ _4627mnu(1 - e27rw)f2

x H{(l o 627rinNﬁ)4(1 o 62ﬂinNﬁ+2ﬂiﬂ)—2(1 o 627rinNﬁ—27rz‘ﬁ)—2}’ (2.62)
n=1
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2.8.4 The Dynamics of Wilson Lines Along M

We now turn to the contribution to the partition function from the dynamics of the Wilson
lines along M = T*. We can ignore the presence of the Kaluza-Klein monopole and the
D1-branes and consider the dynamics of the D5-brane wrapped on 7% x S'. However, the
Kaluza-Klein monopole will be used in the identification between the angular momentum
carried by the system from the point of view of the five-dimensional observer at the center
of the Taub-NUT space and the momentum along the circle S! from the point of view of
the asymptotic four-dimensional observer. Taking the 7% to have small size we can regard
the world-volume theory of the D5-brane as (1 + 1)-dimensional which contains eight scalars
associated with four Wilson lines and four transverse coordinates and 16 massless fermions
of which eight are left-moving and eight are right-moving. We have to considering only the
supersymmetry generators that commute with g. The ¢ transformation mixes the scalars
associated with the coordinates transverse to the Db-brane with the eight of the sixteen
fermions on the D5-brane world-volume and mixes the scalars associated with the Wilson
lines with the other eight fermions. We hve already counted the contribution to the partition
function from the transverse coordinates and their superpartners in (2.62), hence here need
only consider the world-volume fields consisting of the Wilson lines and their superpartners.
Since the g invariant supersymmetry generators are non-chiral, so are the superpartners of
the Wilson line. There are four left-moving and four right-moving fermionic such fields. Of
these, only the left-moving oscillators contribute, since the right-moving oscillators are in
their ground state when we work in the background of the Kaluza-Klein monopole. Thus,
there are only four bosonic and four fermionic left-moving modes. Invariance under g requires
that two of the four bosonic modes carrying momentum along S* be of the form & + % while
the other two be of the form k — % Neither has any momentum along St Similarly, two

1
-

These modes, however, carry 41 units of momentum along St As before, the statistics of

of the fermionic modes carry momentum £ + % along S! while the other two carry k —

the oscillators are altered by a factor of (—1)} as we come down from four to five-dimensions.

Thus, if dwiison(lo, jo) denotes the number of bosonic minus fermionic states associated with
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these modes carrying a total momentum [y/N along S* and j, along §1, then

0 2milgp+2mijor
E dWllson lOa]O )J p J

lo.Jo
_ H (1 . ezm'lﬁ)—Q H (1 o 627ril;3)—2 H (1 . 62m‘lﬁ+2m‘9)
IENZA+1,0>0 lENZ—1,1>0 lENZ+1,1>0
H (1 _ 627rilﬁ—27rif/) H (1 _ 627rz‘l;3+27ri17) H (1 _ 627rilﬁ—2m‘ﬁ) (2.63)
leENZA+1,1>0 IENZ—-1,1>0 lENZ—1,1>0

The full partition function of the overall dynamics of the D1-D5 system is given by the
product of the partition functions (2.62) and (2.63) of the dynamics of the transverse modes
and (for M = T*) of the Wilson lines along 7. The final result can be written compactly

using the coefficients " (u), and noting that

2 _
Ay ={ N for M= s (2.64)
%(2 _ 627ris/N _ 6727ris/N) for M = T4
The product of (2.62) and (for M = T*) (2.63) can be written as

ZdCM lO;jO )_]0 2milo pA-2mijor _ _46727%17 H(l . e27rilﬁ)2 Zé\’zBl 6—27rils/N050,s)

lo,jo =1

H(l B 627rz‘l;3+2m‘ﬁ)—ZN 1 —2mils/N (0 s) H 62”15_27”17)_25:_01 e—27rils/Ncgovs) (2.65)

I=1 =1

for both M = K3 and M = T*.

2.8.5 The Full Partition Function
Using (2.42), (2.50), (2.58) and (2.65) we put together the full partition function:

1 N-1

f(.50) =@ [ (- @rieram) S e a5 () 66)

b=0 r=0 ke€Z+4:,l€Z,
J€27+b

k>0,
7<0 for k=I=0
The multiplicative factor e 2@+ and the k = 0 term in the expression come from the

terms involving deas(lo, jo) and dig(ly). Comparing with the expression for @ (5,5,7) in
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(2.44) we can rewrite (2.66) as

627rw0

) P — 2.67
Fp.57) = 5o—) (2:67)

The degeneracy d(qe, Q) is given by

A(Qe, Q) = (_1)qe-qm+1% /dﬁdgdgeﬂi(Nﬁq2+5q?n/N+2ﬁqe-qm)~ ~1~ -
c

AT (2.68)

where C is a three real dimensional subspace of the three complex dimensional space labelled

by (p,o,v), given by

p2 =My, 09 =My vy =—Ms,

Here M, My and M3 are large but fixed positive numbers with M3 << M;, Ms. The M;’s are
determined from the requirement that the Fourier expansion is convergent in the region of
integration. Thus, we have computed the degeneracy formula by explicitly counting the black

hole microstate. This completes the discussion on the counting of the black hole microstates.

2.9 Walls of Marginal Stability

We conclude this chapter with a discussion on the walls of marginal stability. For a given set
of charges, the moduli space will be divided into connected domains where the i—BPS states

are stable and the degeneracy formula is valid[33]|. As one moves around in the moduli space,

1
4

In that case the degeneracy formula will not remain valid when we go into a region where

there arises the possibility of some of the $-BPS states to decay into smaller constitutents.
some of the i—BPS states that were present earlier have decayed. The degeneracy formula
will, obviously, change to reflect this change in the number of i—BPS states with the given
charges. The regions in moduli space where the degeneracy formula is valid are bounded by
codimension one subspaces on which the BPS state under consideration becomes marginally
stable and the spectrum changes discontinuously across these subspaces. These codimension
one subspaces in moduli space are called the walls of marginal stability. The jump in
degeneracy occurs through a subtle dependence of the contour on moduli[33].

The walls of marginal stability in the axion-dilaton plane (modelled by the upper-half plane
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with coordinate \) is the real codimension one subspace across which one i—BPS state decays
into a pair of 3-BPS states[33](see also[50, 51]). Consider the following decay of a torsion
one i—BPS dyon into two %—BPS dyons

e d e bd m _b e bd m
Q) (@29 q @ C qe + 0d q ’ (2.69)
qm ca qe — ¢b qpm, —ac qe + ad q,
where the kinematics of the decay imply that the integers a, b, ¢, d are such that|33]
1. ad — bc = 1.

2. The equivalence relation (a,b,c,d) ~ (ac™t, b0, co,do) with o # 0.

3. Exchanging the two decay products implies the equivalence under:

(a,b,c,d) — (¢,d, —a, —Db).
4. Charge quantization requires ad, bd, bc € Z and ac € NZ.

One can show that by suitable use of the equivalences given above, one can always choose

c d
determined by the equation[33, 50|

b
(a ) € I'/(N) for N = 2,3,4. In the upper-half plane, these walls are circular arcs

[Re(A) — adtbe]? 4 [Tm()) + £]° = L& (2.70)

2ac 2ac 4a2¢2

where £ is a real function of all other moduli M. It is easy to see that the arcs intersect the
real \ axis at the points g and % for any £. When £ = 0, the arcs are semi-circles centred
on the real A\-axis with radius %‘w When £ # 0, the center of the circle moves into the
interior of the upper half plane with radius also increasing — all this with the intercepts on
the real axis remaining unchanged. When either a = 0 or ¢ = 0, the circles become straight
lines perpendicular to the real axis for £ = 0 and making a suitable angle for £ # 0. The
sole effect on non-zero &£ is to ‘deform’ the semi-circles into circular arcs, so we restrict the
discussion to the case when £ = 0.

A fundamental domain is constructed by first restricting the value of Re(\) to the interval
[0,1]. The straight lines Re(\) = 0,1 correspond to two walls of marginal stability. Next,
one looks for the largest semi-circle with one end at A = 0 on the real axis that is compatible

with the quantization of charges. This semi-circle intersects the real axis at some point in
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the interval [0, 1] — this turns out to be at 1/N. The procedure is then (recursively) repeated
by looking for another semi-circle with one end at 1/N till one hits the mid-way point 1/2.
A similar procedure is done starting with the largest semi-circle with one end on the point

A =1 on the real axis. One obtains the following set of points for N = 1,2, 3:
tD, Ged. GesdD. (2.71)
A fundamental domain is then given by restricting to the region bounded by these semi-

circles and the two walls connecting A = 0,1 to infinity. The two straight lines may be

included by adding the ‘points’ %1 and %. The fundamental domains are given in Figure 2.4.

N=1

N=2

N=3

0 13 12 23 1

Figure 2.4: Fundamental domains for the N = 1,2,3 CHL models. We will later see that
the same region appears as the Weyl chamber of a BKM Lie superalgebra in each case.

For N > 3, this picture does not terminate — one needs an infinite number of semi-circles
to obtain a closed domain. For N = 4, the following sequence is obtained on (using Sen’s
method)

(0,113 2 2041 _—n 1 ntl 2ntl 3523 1) (2.72)
1742378577 —4dn 7 —2n—17"""7227""" 2n417 4n "7 578737471/ ° :
2n—1 n

Let «,, denote the semi-circle with intercepts (

n+l 2n+1
2n+17 4n

Re(A) = 0,1 respectively. The fundamental domain corresponding to the above sequence is

o +1) and (3, the semi-circle with inter-

) for all n € Z. Note that oy and 3y represent the two straight lines at

cepts (

depicted in Figure 2.5. It may be thought of as a regular polygon with infinite edges with the

infinite-dimensional dihedral group as its symmetry group, Dy, = Z X Zs. DY is generated
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by two generators: a reflection y and a shift v given by:

Yy On — Op , ﬁn - ﬁ—n—l and Vi OQn = Oy, ﬁn - ﬁn—l ) (273)

satisfying the relations 4> = 1 and y-v-y = 7. There is a second Z, generated by J defined

as follows:

d: oy — . (2.74)
The transformations (7, d) generate another dihedral symmetry D,

Weyl chamber for N =4
a, B,
B, a.,
13 12 2/13
0wy e

Figure 2.5: The fundamental domain for N = 4 CHL model is bounded by an infinite number
of semi-circles as the BKM Lie superalgebra has infinite real simple roots. Each of the semi-
circles indicated represent real simple roots that appear with multiplicity one in the sum
side of the denominator formula. Note that the diameter of the semi-circle is reducing as
one gets closer to % The point % is approached as a limit point of the infinite sequence of
semi-circles. We will later see that the same region appears as the Weyl chamber of a BKM

Lie superalgebra that we construct.

This completes our discussion of the walls of marginal stability of the CHL orbifolds.
Later, when we study BKM Lie superalgebras related to the CHL models, we will see that the
walls of marginal stability are related to the walls of the Weyl chamber of the corresponding

BKM Lie superalgebras.

51



Chapter 2. Counting Dyons in String Theory

2.10 Conclusion and Remarks

In this chapter we have looked at the problem of counting dyons in N' = 4 supersymmetric
string theories. The degeneracy of the dyonic states are generated by modular forms. We
will explore the structure of these modular forms in later chapters. We will construct these
modular forms by different methods in chapter 5 and study their algebraic side in chapter 6.
We also studied the walls of marginal stability for the i—BPS states. We will later see how

these are related to the algebraic structure coming from the modular forms.
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BKM Lie Algebras

3.1 Introduction

The starting point, both historically and pedagogically, for this chapter is the theory of finite-
dimensional semi-simple Lie algebras classified by Cartan and Killing. The classification lets
one study Lie algebras generically, rather than on a case by case basis. It also gives an
overview, and hence suggestive directions for generalizations in both the internal structure
of Lie algebras and the theory of finite-dimensional semi-simple Lie algebras in general.
However, in our study of finite-dimensional semi-simple Lie algebras, their classification is
not our primary interest — generalization to infinite-dimensional Lie algebras is.

Our main application, in this thesis is the subject of Borcherds-Kac-Moody (BKM) Lie
superalgebras which occur in the degeneracy formula of i—BPS dyons in the CHL models.
These are obtained via generalizations of finite-dimensional semi-simple Lie algebras to their
infinite-dimensional counterparts. Our aim in this chapter will be to give a quick and modest
introduction to BKM Lie superalgebras, for which we start with a brief exposition of finite-
dimensional semi-simple Lie algebras with a veiw towards understanding the generalizations
that give BKM Lie superalgebras. It is with this skewed perspective that we will choose
and discuss the topics in this chapter. After introducing the theory of finite-dimensional
semi-simple Lie algebras, we treat BKM Lie superalgebras as the generalization of the finite-
dimensional algebras and include affine and Kac-Moody Lie algebras as special cases of
them. We will use examples to bridge the gap in theory and intuition incurred by this leap
in pedagogy.

The chapter is organized as follows. We start with the basic definitions of complex semi-

simple Lie algebras and study their representation theory to introduce the notions of the
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Cartan subalgebra, roots, weights, the Weyl group etc. and understand what role these play
in the structure of the Lie algebras and how one can classify all the finite-dimensional semi-
simple Lie algebras from the knowledge of these notions. The main idea is to get an intuitive
feeling of these ideas in the context of examples which are easier to understand. It will not
be possible to introduce all the constructions needed to rigorously define the same notions in
the infinite-dimensional case, and hence it is simpler to understand them by extending the
intiution built in the context of the simpler finite-dimensional cases. Although we discuss
the representation theory of general semi-simple Lie algebras, we relegate the discussion on
the denominator identities to the end of the chapter since this is the most important idea for
us. The discussion on the denominator identities of all classes of Lie algebras, both finite and
infinite-dimensional, is given in one place so that it is easier to understand each in relation
to the other and also note the important differences amongst them. Next we discuss the
infnite-dimensional Lie algebras building on the ideas introduced in the finite-dimensional
setting.

For the case of BKM Lie superalgebras, given how much generality the class of Lie
algebras encompass, it would take a lot more technical setting to rigorously introduce the
notions mentioned above. We do not make such an attempt here. Most of the definitions
are given as an extension to the intuition developed in the finite-dimensional and affine
settings. Introducing any more structure would be more confusing than illuminating. The
example of the fake monster Lie algebra is discussed to help understand the concepts (like
roots, imaginary simple roots, multiplicities, the denominator identity, etc.) developed in
the context of BKM Lie superalgebras.

It must be mentioned at the very outset, that it is beyond the scope of this work to
give even a semi-complete discussion of BKM Lie superalgebras for the subject is both vast,
and intricate. As mentioned above, there are certain ideas (the denominator identity) that
we need a lot in the problem we address in the next chapters, and it is these ideas that
we will try to motivate and understand. Rather than motivate these ideas precisely and
pedantically, we will try to understand their origins intuitively starting from their analogs in
the finite-dimensional semi-simple Lie algebras and ending with an example of a BKM Lie
superalgebra. This chapter is based mostly on [52, 53, 54, 55, 3, 4, 56|. The reader is also
encouraged to see [57, 58, 59, 60, 61, 62, 63, 64| for BKM Lie superalgebras in relation to
string theory.
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3.2 Definition and Properties

A Lie algebra can be understood in relation to a Lie group, whose algebra it is (as the
algebra of left-invariant smooth vector fields on the group), or just as an algebra over a field
satisfying certain additional axioms. Both the notions ultimately describe the same object,
they only appear motivated from different points of view. From the narrow point of view of
this chapter, to digress into the theory of Lie groups and understand Lie algebras from them

would serve us no purpose, so we just define a Lie algebra as an algebra over a field.

Definition 3.2.1 An algebra is a vector space over a field K (which is C for all our pur-
poses) endowed with a product [.,.] : gxg — g that is distributive over addition and compatible
with scalar multiplication by elements of K. It is a Lie algebra if, in addition, it also has

the following properties
(i) [.,.] is bilinear,

(i) Antisymmetry :
[,2] =0, Vreg (andhence[r,y|=—[y,z], Vr,y€g), (3.1)

(ii) Jacobt identity:
[z,9], 2] + [y, 2], 2] + [[2, 2], 9] = 0, Vz,y,z€9. (3.2)

Examples of Lie algebras in physics should be familiar from the study of the theory of
angular momentum. All the finite-dimensional Lie algebras we will study will be matrix Lie
algebras, that is, they can be understood as a subalgebra of gl(n, C), which is the associative
algebra of all (n x n) matrices over C.

The more interesting Lie algebras, and the ones we will be dealing with, are a sub-class

of the above definition called semi-simple Lie algebras whose definition we next motivate

Definition 3.2.2 A Lie subalgebra a of g is a subspace satisfying [a,a] C a

It is also a Lie algebra. A Lie subalgebra a is called abelian if [a,a] = 0. One such
subalgebra, called the Cartan subalgebra, will play an important role in understanding the

structure of semi-simple Lie algabras.
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Definition 3.2.3 A subspace a of g is called an ideal if it satisfies [a,g] C a.

An ideal, by its definition, is also a Lie subalgebra. If a and b are ideals in a Lie algebra,
then so are a+ b, aN b and [a, b].

Definition 3.2.4 A finite-dimensional Lie algebra g is said to be stmple if it is non-abelian
(i.e. [g,9] # 0) and g has no proper non-zero ideals ( i.e. its only ideals are g and 0). A
finite-dimensional Lie algebra g is said to be sema-simple if g is isomorphic to a direct sum

of simple Lie algebras.

One can also define a semi-simple Lie algebra, equivalently, through its Killing form.
The Killing form is a symmetric bilinear form on g. There is also a third, and equivalent,
definition of semi-simple Lie algebras in terms of the Chevalley-Serre relations. It is via this
definition that it is simplest to pass to the infinite-dimensional case from finite-dimensional
semi-simple Lie algabras. We will introduce the Chevalley generators, and the Chevalley-
Serre relations they satisfy, at the appropriate juncture. Here we give the definition of
semi-simplicity through the Killing form.

For any Lie algebra we can define a linear map ad: g — Endcg, called the adjoint
mapping, given by

ad,(y) = [z, 9] , (3.3)

where Endcg is the space of all C-linear maps from g to g.
We can now define the Kzilling form on g. Given two elements z and y in g, we can

define a linear transformation (ad,ad,) from g to itself. The Killing form of g is given by
B(z,y) = Tr(ad, ad,) . (3.4)
The Killing form is invariant in the sense that

B([z,y], 2) = B(x, [y, 2]) -
We can now define an equivalent definition of a finite-dimensional semi-simple Lie algebra
called Cartan’s criterion for semi-simplicity.

Theorem 3.2.5 A Lie algebra g is semi-simple if and only if the Killing form on g is non-

degenerate.

The reason for the multiple definitions is that when we pass from finite-dimensional

semi-simple Lie algebras to more general Lie algebras, some of the definitions are more
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suitable generalizations than others, and hence it is helpful to understand the definition
from different points of view. We give some examples of Lie algebras, before moving on to

the idea of representations.

3.2.1 Examples

The most familiar example of a group from physics is the three-dimensional rotation group
SO(3). It is the group of all rotations about the origin on the three-dimensional Euclidean
space, R?, with composition as the group operation. It represents the symmetries of a sphere.
As a matrix group, it is the group of 3 x 3 real matrices A such that ATA = I, and detA = 1.
The Lie algebra associated to this is the space of 3 x 3 complex matrices satisfying X T = — X,
denoted by so(3), where the superscript T denotes the transpose of a matrix.

It is a specific example of a more general class of Lie algebra so(n,C), known as the
spectal orthogonal Lie algebra, which is the space of all n x n complex matrices satisfying
XT=-X.

Another familiar example is the special linear Lie algebra, denoted sl(n,C). It is the
space of all n x n complex traceless matrices over C. The algebra si(2,C) is the algebra of
2 x 2 traceless matrices over C. We had earlier mentioned the Virasoro algebra satisfied by
the Fourier modes L,,, of the energy momentum tensor 7,3. We will see in the course of this
chapter that the Virasoro algebra is related to the algebra si(2,C) as its “loop algebra”.

Another example is the symplectic algebra sp(n). It is the space of 2n x 2n complex

0 I, . .
matrices X such that JX'J = X, where J = Ioo ) We will see that the symplectic
group plays a very important role in the theory of Siegel modular forms that occur in the
dyon degeneracy formulae.

All the above matrix algebras are subalgebras of the Lie algebra gi(n,C), known as the
general linear algebra, which is the space of all n X n complex matrices. They are all simple

Lie algebras as well.

3.3 Representations

We will now study representations of Lie algebras. We start by explaining the idea of
representing a group or algebra on a vector space. The simplest example is of the just cited
rotation group SO(3) which acts on the three-dimensional Euclidean space R3. If one wanted

to realize an action of the group on a different space, say a vector space V of dimension d,
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one cannot obviously use the 3 x 3 matrices to act on this space. We need linear operators of
the right dimension to define a sensible action on the space V. We also need their action on
V' to be such that the group action of SO(3) is faithfully captured on V. Thus, what we need
is a map from SO(3) to the space of invertible linear operators that are of the appropriate
dimension to act on the space V' and are such that they represent the action of SO(3) on
V. This is the idea of a representation of a group. Let us now make this idea more precise

starting with a formal definition of the representation of a Lie algebra.

Definition 3.3.1 Let V' be a vector space over a field C, and let g be a Lie algebra. A
finite-dimensional representation of g on V is a continuous homomorphism p of Lie

algebras p : g — EndgV'. p has to be C-linear and has to satisfy

o[, y]) = p(x)p(y) — p(y)p(z)  forallz,ycg . (3.5)

We will (as do most authors) call V' the representation when we mean the representation
p:g— EndgV. A subspace W of V is called tnvariant if p(g)w € W for all w € W and
all g € g. A representation with no non-trivial invariant subspaces is called #rreducible. The
dimension of the representation is defined to be the dimension of the vector space V.

The best way to understand the theory of representations of a group or algebra is by
looking at some examples. We will study the representations of the Lie algebras sl(2,C) and
sl(3,C) in detail shortly, but before that we can cite a few examples which exist for any Lie
algebra.

We have already seen implicitly an example of a representation in eq.(3.3) — that of the

adjoint mapping. Recall that it was defined as the map
ad : g — Endcg . (3.6)

given by the formula
ad(y) = [z,y] - (3.7)

Comparing (3.6) with (3.3), we see that ‘ad’ is a representation where the space V' is taken

to be g. ‘ad’ is a Lie algebra homomorphism and is, therefore a representation of g, called

the adjoint representation. It is the representation of the Lie algebra g acting on itself.
Another representation that exists for all Lie algebras is the trivial representation. If g

is a Lie algebra of n x n matrices over C then the trivial representation p : g — gl(1,C) is
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given by

for all z € g. This is (obviously) an irreducible representation.

3.3.1 The Irreducible Representations

The irreducible representations of sl(2,C), apart from their well known relevance to physics,
are very illuminating in understanding the origins of various ideas that we will study to
understand general semi-simple Lie algebras. It will also help in understanding the idea, of
representing a Lie algebra on an arbitrary vector space, introduced above, in a concrete way.
It is also the simplest non-trivial example of a semi-simple Lie algebra, yet a very important
one. From a physics point of view, sl(2,C) is the complexification of su(2) and every finite-
dimensional complex representation of su(2) extends to a complex linear representation
of sl(2,C). Also since su(2) = so(3), the study of whose representation are of physical
significance, the study of the representations of sl(2,C) also have a physical motivation.

Our purpose in studying the representations of s/(2, C) and sl(3, C) will be, besides giving
examples of representations, to use them to illustrate important aspects of representation
theory of semisimple Lie algebras in general. To that end, we will study the irreducible rep-
resentations of si(2, C) illustrating the explicit construction of linear operators representing
the algebra on an arbitrary vector space, the action of the operators on the representation
space, the idea of raising and lowering operators, and the idea of the highest weight, which
will later develop into the highest weight theorem for general semi-simple Lie algebras. Also,
general complex semi-simple Lie algebras are built out of many copies of si(2,C), and study-
ing sl(2,C) is preliminary to understanding the representations of semi-simple Lie algebras
in general.

In studying the Lie algebra si(3,C) we will concentrate more on learning about root
systems of semi-simple Lie algabras. From this we will also learn about Cartan matrices,
Dynkin diagrams and the classification of finite-dimensional semi-simple Lie algebras. We
will introduce the representation theory of si(3, C) with a view towards using it to generalize
the notions from sl(2,C) to general semi-simple Lie algabras, via si(3,C). We will also use

it to understand the Weyl group, the character and denominator formulae of Lie algebras.
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3.3.2 The Irreducible Representations of si(2,C)

We fix the following basis for si(2, C)

1 0 0 1 0 0
h= (0 —4) 0T <0 0) = <1 0) ' (3:8)

which have the commutation relations'

[h,e] =2e ,[h, f]l==2f ,le,f]=h. (3.9)

Now, if V' is a finite-dimensional complex vector space and A, B and C are operators on V'
satisfying
[A,B] =2B ,[A,C]=-2C ,[B,C]=A, (3.10)

then, because of the skew symmetry and bilinearity of brackets, the linear map p : si(2,C) —
gl(V) satisfying
p(h)=A, ple) =B, p(f)=C

will be a representation of s/(2,C) on V. The operators A, B and C' which are of suitable
dimension to act on the vector space V', represent sl(2,C).

To construct the irreducible representations of si(2, C) consider the (m + 1)-dimensional
vector space V,, of homogeneous polynomials in two complex variables with total degree

m(m > 0). V,, is the space of functions of the form
fz1,20) = ap2™ + 127" P2 + a2 220 4 A a2y, (3.11)

with 21, zo € C and the q;’s arbitrary complex constants.
For any x € g consider the action on V,, given as follows
of

0
pm(2) f = —(21121 + .T12Z2)a—zf — (w2 — 211) 5= (3.12)
1 2

which maps V,,, to V,,,. It is also easy to see that p,,(2)pm(y)f = pm(xy) f, where the product

(xy) is the usual multiplication of matrices. This is a representation of si(2, C) on the vector

IThe Lie bracket becomes the commutator in any representation
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space V,. In terms of the basis (3.8) the above formula becomes

_or af
(pm(h)f)(Z) - Zlazl +2282’2 :
Thus,
0 0

The action of p,,(h) on a basis element 2¥25" "% is p,,(h) 2F20"% = (m—2k)2F25"*. Thus, we
see that 27 20""% is an eigenvector for p,,(h) with eigenvalue (m — 2k). In particular, p,,(h)
is diagonalizable.

Corresponding to the elements z and y we have the following operators

0 0
pm(T) = _228—21 . pmly) = _216—22 )
so that
pm(@)ey ™ = —k AT
) = (k—m) A (3.14)

Notice that, since all the basis vectors 2¥25"~* are eigenvectors of p(h), knowing the action of

p(h) on the basis vectors gives V,, as the direct sum of its weight spaces. The representation
Pm is an irreducible representation of si(2,C) and there is one such for each integer m > 0.
The representation p,, has dimension m + 1. Any two irreducible representations of sl(2,C)
with the same dimension are equivalent.

Given the commutation relations between the elements h,x and y as given above, it is

easy to see that the corresponding operators act on an eigenvector u of p(h) as follows

p(h)p(y)u = (a=2)p(y)u . (3.15)

Since we are working over an algebraically closed field, C, the above equation says that given

an eigenvector u of p(h), either p(z)u = 0 ( resp. p(y)u = 0) or p(x)u (resp. p(y)u) is an
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eigenvector for p(h) with eigenvalue oo + 2 (resp. a — 2). More generally

p(h)p(x)"v = (a+2n)p(z)"u,
p(h)py)'v = (a—2n)p(y)"u . (3.16)

The operators p(z) and p(y) are called the raising and lowering operators respectively,
since they have the effect of, respectively, raising and lowering the eigenvalue of p(h) by 2.
The operator p(x) operating on a finite-dimensional vector space can have only finitely many
distinct eigenvalues, the operation of raising the eigenvalue by applying the p(x) operator
cannot be repeated indefinitely and must terminate after a finite number of operations. Thus

there will exist some integer N > 0 such that

p(x)Nu#0,

but

p(x)N Ty =0 .

Defining ug = p(x)Yu and v = a + 2N, the above equations can be written as

p(huy = v ug,
plx)ug = 0. (3.17)

v is the highest eigenvalue of p(h) in the given representation, and any further operation by
p(x) gives 0. To the vector ug one can apply the operator p(y) to lower its eigenvalue by 2.

Defining uy, = p(y)*ug, for k > 0 we have

p(h)uy, = (v —2k)uy ,
p(x)uy = [kv—Fk(k—1Dug_y . (3.18)

Again, the operation of lowering cannot be repeated indefinitely, and the u;’s cannot all be

non-zero. There must, therefore, exist a non-negative integer m such that

ug, = p(y)Fug # 0,

for all £ < m, but

U1 = p(y)"ug = 0.
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That is, the eigenvalues of p(h) are bounded both from above and below. Now, if w,,,; = 0,

then p(x)um1 = 0. Therefore, we have
0= p(@)tms1 = [(m+ Dv—m(m+ 1)]u,, = (m+1)(v —m)u,, .

Since u,, # 0 and m + 1 # 0, we must have v = m, where m is a non-negative integer.
Thus, any finite-dimensional irreducible representation of sl(2,C) acting on a space V,

will be of the following form

p(h)uy = (m—2k)uy ,

ply)ur = Upir,

pY)um = 0,

plx)uy = [km —k(k—1)ug_1 ,

p(x)ug = 0. (3.19)
and vice versa. The vectors uy, ..., u, will be independent, since they are eigenvectors of

p(h) with distinct eigenvalues.

Any complex-linear representation of sl(2,C) on a finite-dimensional complex vector
space V' is completely reducible in the sense that there exist invariant subspaces Uy, ..., U,
of V such that V =U; @ --- @ U, and such that the restriction of the representation to each
U; is irreducible.

In general the irreducible representations of a Lie algebra g need not be so conspicu-
ously simple. Two representations may be isomorphic, but the isomorphism may not be
immediately apparent. We need to have an invariant property associated to a representation
that can save us the need of explicitly veryfying the equivalence/inequivalence of two given
representations by writing down the explicit description of the representations in terms of
matrices. This leads us to the concept of the character of a representation which we will
study after we look at the representations of si(3, C).

Before we move on and study the Lie algebra sl(3,C) and its representations, and gener-
alize further to any general semi-simple Lie algebra, we will note down some of the important
take-away points which will be important in tracing the origins of the generalizations. We
will label them by roman letters and will refer to them wherever this property is involved

later in the chapter in connection with s/(3,C) or general semi-simple Lie algebras.
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(A) The element h plays a special role, in that representations are labelled by the eigen-
values of p(h), called weights. Every irreducible representation is the direct sum of its

weight spaces.
(B) Every eigenvalue of p(h) is an integer.

(C) The eigenvalues are bounded from above and below and the smallest eigenvalue is the
negative of the largest. For each weight m, there is a corresponding vector with weight

—m.
(D) The multiplicity of an eigenvalue k equals the multiplicity of —k.
(E) The operators p(x) and p(y), respectively, raise and lower the eigenvalues of p(h) by 2.

(F) If there exists a non-zero element w of V' such that p(z)w = 0 and p(h)w = pw, then
there is a non-negative integer m such that ;1 = m and the vectors w, p(y)w, . . ., p(y)"w
are linearly independent and their span is an irreducible invariant subspace of dimen-

sion m + 1.

(G) If pis an (m + 1)-dimensional irreducible representation of s{(2,C), then the highest

eigenvalue m of p is an integer.

(H) Going the other way, for every non-negative integer m there exists an irreducible rep-
resentation of s/(2,C).

(I) Any two irreducible representations of sl(2,C) of dimension (m + 1) are equivalent.

We will see how each of the above ideas contains the germs whose generalizations will give

us important insights into the theory of semi-simple Lie algebras in general.

3.3.3 The Irreducible Representations of si(3,C)

We will study the general representation theory of semi-simple Lie algebras taking the ex-
ample of s/(3,C) and taking each idea to its natural generalization to obtain the analogous
notions for the case of general semi-simple Lie algebras. Since sl(3,C) is a simple example, it
will be easy to see the structure while at the same time not getting bogged down in abstract
general theory. Before going to the representation theory of si(3, C), however, we will study
sl(3,C) (and via generalization any semi-simple Lie algebra) in some detail, getting some

idea of the structure of the Lie algebras.
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We start by choosing a basis for sl(3,C) as follows

1 0 0 00 O
h1: 0 -1 0 ,h2: 01 0 )
0 0 0 00 —1
0 0 0
e1r=10 0 0] ,e2=10 0 1] ,e3=10 0 0] ,
0 0 0 0
0 00 0 00 0
fi=l1 00|, =]000],f=]0 , (3.20)
000 0 0 1

Working out the commutation relations between the various elements, one sees that the
span of {hq, ey, f1} is a subalgebra of sl(3,C) which is isomorphic to sl(2,C) as is the span
of {ha,eq, fo}. We had earlier mentioned, in motivating the study of representations of
sl(2,C), that complex semi-simple Lie algebras are made out of many copies of sl(2,C).
All semi-simple Lie algebras are made up of copies of si(2,C) like the copies of si(2,C) in
sl(3,C) above. This idea holds, with suitable modifications, even for infinite-dimensional Lie
algebras. Also note that the elements hy and hy commute with each other, that is [hq, ho] = 0.

We will get back to the commutation relations between the other elements in a while,
after we introduce the concept of roots and weights. The idea is to get some control over
the structure of the Lie algebra.

The broad idea of the programme is as follows. The Cartan subalgebra, as defined
above, is abelian and the adjoint action of the Cartan subalgebra on the given semisimple
Lie algebra leads to a root-space decomposition of the Lie algebra. The Lie algebras can be
studied and classified through their root systems. Using an ordered basis of simple roots,
one can construct the Cartan matrix or the equivalent Dynkin diagram which encode the
structure of the semi-simple Lie algebra in them. The Weyl group captures the fact that
the Cartan matrix and the Dynkin diagram are independent of the choice and ordering of
simple roots. Every Cartan matrix arises from a reduced abstract root system, and there is a
one-to-one correspondence (upto isomorphism) between the two. This leads to a one-to-one
correspondence (upto isomorphism) between complex semi-simple Lie algebras and reduced
abstract root systems.

We will use the semisimple Lie algebra si(3, C) to study and illustrate, and subsequently
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generalize to general semi-simple Lie algebras, the above notions. We will also study the

representation theory of si(3, C).

3.3.4 Cartan subalgebra, Roots and Weights

Definition 3.3.2 Given a representation (p, V') of sl(3,C), an ordered pair p = (my, ms) €
C? is called a weight for p if there exists a vector v # 0 in V such that

p(hi)v = mu
plha)v = mav . (3.21)

A non-zero vector v satisfying the above equation is called a weight vector corresponding

to the weight p.

The space of all vectors satisfying the above conditions (including the zero vector) is called
the weight space corresponding to the weight p. The dimension of the weight space is called
the multiplicity of the weight. This is generalization of the point (A), from the take-away
notes at the end of the last section, where the weights were defined as the eigenvalues of
p(h). Generalizing the notion to a general semi-simple Lie algebra, one defines a weight
as a collection of simultaneous eigenvalues of the p(h;)’s which are the set of maximally
commuting elements in the Lie algebra. Every representation has atleast one weight, and
equivalent representations have the same weights and multiplicities. We will come back to
the definition of weights for a general semi-simple Lie algebra later in this section. For now,
we continue with s/(3,C).

For sl(3,C), all the weights are of the form p = (mq, my) with my, my being integers. The
weight vectors of the adjoint representation are called root vectors. That is, for a vector z
satisfying

[h, 2] = a1z, [he, 2] = asz

the pair @ = (a1,ay) € C? is called a root and the element z is called the root vector
corresponding to the root a.

The roots (and weights) are defined as the simultaneous eigenvalues of ady,, (p(h;)), where
the h; are the set of maximally commuting elements in the Lie algebra. This set plays a
central role in the study of the structure of semi-simple Lie algebras. It is called the Cartan

subalgebra of the Lie algebra. It is defined as follows
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Definition 3.3.3 The Cartan subalgebra of a complex semi-simple Lie algebra g is the

complex subspace by of g with the following properties

(i) For all hy and hy in b, [hy, ho] =0,

(ii) For allx € g, if [h,z] =0 for all h € b, then z € by,
(iii) For all h € Yy, ady, is diagonalizable .

Condition (i) says that b is a commutative subalgebra of g, and condition (iz) says that it
is mazimally commutative. It is thus, the normalizer Ny(h) = {z € g|[z,h] C h} of h in g.
Condition (i77) says each ad, is diagonalizable, and since all the h € h commute, the ad,’s
also commute, and thus they are also diagonalizable simultaneously. For the case of sl(2,C)
there was only one element, h.

The rank of a complex semi-simple Lie algebra g is defined to be the dimension of its
Cartan subalgebra. With the above general definition of the Cartan subalgebra, the roots

and root spaces can be defined as follows

Definition 3.3.4 A root of a semi-simple Lie algebra g (with respect to the Cartan sub-
algebra by) is a non-zero linear functional o € §* such that there ezists a non-zero element
x € g with

[h, 2] = a(h)z

for all h € 1.

So, a root is just a (non-zero) collection of simultaneous eigenvalues for the ad;,’s. The set of
all roots is denoted L. The root space g, is the space of all = € g for which [h,z] = a(h)z
for all h € h. An element of g, is called a root vector (for the root ).

Going back to the basis elements of si(3,C) and working out the various commutation
relations between the elements, we can now express the same information, using the concept
of root vectors, as follows. The vectors x; and y; are eigenvectors for h; and ho, and the
collection of the eigenvalues are the roots for si(3,C). Giving the various roots is enough to
specify the various commutation relations, which we do below. Here, o denotes the root and

Z the corresponding root vector.
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Q@ Z
(2,-1) T
(—1,2) To
(1,1) T3 (3.22)
(=2,1) Y1
(1,-2) Y2
(-1,-1) Ys -

These six roots form a root system conventionally called As. We will later come to the
various root systems, when we have studied their theory a little more. To carry information
about all the roots is redundant, and it is sufficient to only work with two roots from the

above six, as the others can be writen in terms of these two. We single out the roots

a = (2,-1) (3.23)
Ay = (—1,2),

and express the other four roots in terms of them. The choice of the labels 1 and 2 is
arbitrary, and is equivalent to labelling them the other way. The two roots are called the
positive stmple roots and usually denoted II. The positive simple roots have the property
that all the roots can be expressed as linear combinations of the positive simple roots with
integer coefficients, such that the coefficients are all positive or all negative. More generally,
a semisimple Lie algebra of rank r will have r positive simple roots. The positive simple

roots are such that for any o € L, we have
o = nioq + noaig + -+ Ny, (3.24)

where the n;’s are integers and either all greater than or equal to zero or all less than or
equal to zero (but not all zero simultaneously). Once we fix a set of simple roots, the a’s for
which n; > 0 are called the positive roots (w.r.t the chosen II), denoted L, and the a’s
with n; <0 are called the negative roots, denoted L_. Note that all the elements of IT are
in L, and are thus called the set of positive simple roots.

For the case of sl(3,C) all the roots can be expressed in terms of a; and s as follows
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= al
= a2

= a1+ ay (325)

g —052

)
)
)
) = —a
)
) = —a;—ay.

The choice of picking out «; and as is, of course, arbitrary. Any other pair which satisfies
the above criteria is equally suitable.

Considering the elements of h as those belonging to the root space go, we see that the
adjoint action of the h; € h gives a decomposition of the Lie algebra g as a direct sum of
root spaces(compare with (A)), since all the h; are simultaneously diagonalizable. The Lie

algebra g can be decomposed as a direct sum as follows

i=Po.=P . PP s - (3.26)

acl acl_ acl

This means that every element of g can be written uniquely as a sum of an element of  and
one element from each root space g,. This is the first sign of emergence of some method to
what we have been doing. Now, we begin to see how the decomposition of the Lie algebra
as eigenvectors of the ady’s gives us control over the structure of the Lie algabra. As vector
spaces g = N, @ h @ N_, where N, /N_ are the vector spaces generated by the elements
with positive and negative eigenvalues w.r.t the Cartan subalgebra h respectively.

The set of simple roots II of the Lie algebra has all the information of the Lie algebra in
it, and as we will see, we can reduce the essence of the problem even further when we relate
them to abstract root systems where the whole Lie algebra is captured by a matrix, or an
equivalent diagram. These abstract root systems, not just describe for us the Lie algebra
whose root systems they are isomorphic to, but in fact will allow us to classify all the possible
semisimple Lie algebras into a finite number of classes.

We will look root systems briefly to complete the study we have started with the example
of sl(3,C), after we study the Weyl group and Weyl reflections of the root system. Firstly,

however, we record some of the properties of the roots, without proof, below.
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(i) For any o and 8 in ", [ga 9] C uss -
(i) If « € h* is a root, then so is —a (compare with (C)),
(iii) The roots span h* |

(iv) If v is a root of g, then the only multiples of « that are roots are @ and —« (compare
with (C) and (D)),

(v) If @ and 3 are roots, the quantity 2% is an integer, where the inner product (.,.) is

defined as in (3.27).
(vi) For all roots «, the root spaces g, are one-dimensional ,

(vii) For each root «, we can find non-zero elements z, € go, Yo € g_o and h, € b such

that z,,y_, and h, span a subalgebra of g isomorphic to sl(2,C)

Having studied the roots and their properties, one can go ahead and consider root systems
independent of their origins in semi-simple Lie algebras. This makes sense because, many of
the results about root systems involve only the root systems and not the Lie algebras from
which they come. Therefore, one can study the theory of root systems on their own. We have
already quoted the important results about roots, and digressing into abstract root systems
will not serve us any new purpose to devote space to studying them. However, we mention
abstract root systems because there is a point to take away from the above study. Given
a complex semi-simple Lie algebra, one can associate to it an abstract reduced root system
and vice-versa. Omne can use the classification of the abstract root systems and translate
it to classifying semi-simple Lie algebras. The basis of this association is the choice of the
Cartan subalgebra, whose simultaneous eigenvalues the roots are. Later when we construct
the Cartan matrices for these reduced root systems we will need a particular ordering of
the roots (viz. the labelling of a; and ay mentioned above) and subject to that, there is an
isomorphism between abstract root systems and Cartan matrices. We have already seen this
happen in the example of si(3,C), where we singled out two roots as the simple roots, and
written the other roots in terms of them and said the ordering of the positive simple roots
does not matter. We had also mentioned that the choice of the two roots is arbitrary, and any
other set of simple roots that satisfy the proper criteria are equally good candidates. Also,
any two Cartan subalgebras of g are conjugate to each other. Thus, to make the association

between complex semi-simple Lie algebras and Cartan matrices, via root systems, useful we
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need to examine the independence of the above isomorphisms of the choice of the ordering

of the roots.

3.3.5 The Weyl Group

We will study the idea of the Weyl group of g now, and in doing so, try to use it to address
the above question of the independence of the choice of ordering of simple roots in associating
Cartan matrices to complex semi-simple Lie algebras. Before we motivate the idea of the
Weyl group, we need a hermitian inner product on g which is defined as follows. For matrices

x and y, we define an inner product on g as
(z,y) = Tr(zy") (3.27)

Consider the set of roots L of a semi-simple Lie algebra g and a set, II, of simple roots
that generate L. In the theory of abstract root systems, the set of simple roots is called a
base. Let the vector space generated by II be E. FE is just the r-dimensional Fuclidean
vector space of linear combination of all roots o € L. Note the difference between E and
L. Each element o € L is such that it can be expressed as a linear combination of the
elements of I with integer coefficients and in such a way that the coefficients are either all
non-negative or all non-positive, whereas F is just the vector space generated by II without
any such restrictions.

For any two roots «, 3 € L, consider the following linear transformation of £

(o, a)

known as a reflection, because geometrically, it is one in the space F as we will explain

Wy B=F—2 BcE, (3.28)

below. For now, we note the property that w? =1,V a € L. For all o, 3 € E, the reflected
element w, - (0 is also a root. The set of all such reflections will thus act as a permutation
on the set of roots and taking L to itself. Also, each reflection possesses an inverse (itself),
and the composition or reflections is again a reflection (called a ‘word’). Thus, the subgroup
of the orthogonal group on E generated by all the reflections w, for a € L forms a group
called the Weyl group of L and each reflection is known as a Weyl reflection. Since the
rank r of g is finite, the Weyl group generated as reflections w.r.t the set of positive roots is
a finite group. Note that upto this point there has been no mention of the relation to the

underlying Lie algebra. In the case when the root system originates from a Lie algebra g
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with Cartan subalgebra b, the Weyl group is denoted by W(g, h). We will simply call it W
and the arguments are understood.

Next, we define a quantity known as the Weyl vector p of L as

p:%Za. (3.29)

acLt

The Weyl vector will play a very important role later when we study the character and
denominator formulae of Lie algebras, both finite and infinite-dimensional. Now, looking at
the above equation, we notice that the way the Weyl vector is defined, as a sum over the
set of roots, may not be suitable for generalization to the case of infinite-dimensional Lie
algebras since the root system of infinite-dimensional Lie algebras is not finite. There is an
alternate definition which lends itself to generalization to the infinite case without involving

infinite sums and we define it below.

Definition 3.3.5 The Weyl vector, p, of a root system L is defined to be the vector which
satisfies
(p,a;y =1,  forall a; € 11 (3.30)

Eq. (3.30) defines the Weyl vector even for infinite-dimensional Lie algebras and it is this
definition that we will use from here on.

We can also develop a geometrical picture of the above ideas in the space FE. Let V' be
a hyperplane through the origin in £ such that V' does not contain any root. Consider an
element o which is perpendicular to this hyperplane. Thus, V' will be the set of elements u
in £ such that (o, ) = 0, and either side of V' will be elements that satisfy the inequality
(v, ) > 0 or (a, p) < 0.

Given the root system (L, F), the hyperplane V' partitions the space E into two sides.
For any vector a in the one-dimensional orthogonal complement of V', let us denote the sides
satisfying (o, u) > 0 and (a,pu) < 0 by L, and L_ respectively. Any element a of L, is
called decomposable if there exist 3 and v such that o = 3+ . An element which is not
decomposable is called indecomposable. The set of all indecomposable elements in L, is
a base for L. Now we can make the connection to what we learnt above, if we identify the
base form L with the base II of positive simple roots of the Lie algebra g. Then, the sets L,
and L_, as defined in the space F, are exactly the sets of positive and negative roots of the
root system of g (hence the notation to call them L, and L_).

Geometrically, the reflections, w,, that generate the Weyl group are reflections with
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respect to the hyperplane in E perpendicular to the root a. w,(3) would be the vector
obtained by reflecting the root (3, with respect to the hyperplane perpendicular to «a, in E.
Each positive simple root « will partition F into two halves such that either («, p) < 0 or
(o, u) > 0. Given II, we consider the intersection of the sets (o, H) > 0, where «; are all the
elements of TI. This set is called the open fundamental Weyl chamber in E (relative to
IT). The closed fundamental Weyl chamber in E (relative to IT) is the set of all H € E
such that (a;, H) > 0 for all o; € II. One might wonder what do the elements of the closed
and open Weyl chambers signify for the Lie algebra g? These elements are important in
the representation theory of semi-simple Lie algebras and are called the dominant integral
elements. We will talk about them when we discuss the representation theory of si(3,C).

The Weyl chamber depends on the base II and a different, but equivalent, base will give
a different Weyl chamber. For each open Weyl chamber C', there exists a unique base Il for
L such that C' is the open fundamental Weyl chamber associated to Il and the other way
round. So, there is a one-to-one correspondence between Weyl chambers and bases, or set
of positive simple roots. The Weyl group acts simply and transitively on the set of positive
simple roots and also on the set of Weyl chambers.

We conclude our discussion of the Weyl group with a few properties of W

1. The Weyl group is the set of linear transformations of ~A* that leave the set of weights

of any representation of g invariant.

2. Scalar products are invariant under W.

(wla), w(B)) = (o, B), (3.31)
for any w € W.

3. The Weyl group acts simply and transitively on the set of positive simple roots and
also on the set of Weyl chambers. For any basis II of simple roots, and for any w € W,

the image w(II) is again a basis of simple roots.

4. The set II of simple roots generates the whole root system as its image under the Weyl
group. For any root a;, W(«) spans the whole root space. This point will be useful later

when we reconstruct the BKM Lie superalgebras from their denominator identities.

5. The reflection with respect to a simple root « takes it to its negative, and permutes

the rest of the positive roots.
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6. W not only permutes the roots, but the weights of any other highest weight module.

7. Since the Weyl group is generated by the fundamental reflections with respect to the
simple roots «;, any element w € VW can be written as a ‘word’ in the fundamental
reflections. A given w € W may be expressed by different words, and the minimum
possible such reflections that generate w is called the length I(w) of w. An expression

in the minimum number of reflections is called a reduced expression.
8. The length [ obeys [(w) = I(w™?)

9. From the definition of the Weyl vector as the sum of all the positive roots, the reflection
of p with respect to a simple root «; just takes a; to —q; while permuting all the other
roots among themselves. Thus, reflection with respect to «; just subtracts «; from the

Weyl vector.
Wa,(p) = p— i . (3.32)

10. The Weyl vector p always lies in the open (and hence closed) Weyl chamber.
11. Each orbit of the Weyl group contains exactly one point in the closed Weyl chamber.

12. The Weyl groups are Coxeter groups. One has
2+\aij\2 . .
(Waywa,) =1 when |a;;| =0,1 and i # j . (3.33)

Further, when |a;;| > 2, there are no relations. The elements a;; are constants related

to the roots ; and «;.

This concludes our study of the Weyl group for now. We will get back to using it to
compute the character of highest weight modules of g and its character and denominator
identities. It also plays a very important role in constructing the BKM Lie superalgebras
from their denominator identities. Next, we come to the idea of classification of finite-
dimensional semi-simple Lie algebras and in the process learning about Cartan matrices and

Dynkin diagrams.
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3.3.6 Cartan Matrices, Dynkin Diagrams and Classification of finite-

dimensional semi-simple Lie algebras

Once we have fixed a set, II, of simple roots of g, we can associate to it a matrix, of inner
products of the positive simple roots a € I, called the Cartan matriz. One can classify
the finite-dimensional semi-simple Lie algebras over C using the Cartan matrix associated
to its root system. Enumerating II as I = {ay, s, ..., a,.}, where r is the dimension of F,
and hence, of the underlying semi-simple Lie algebra g, the Cartan matriz A(g) of the

semi-simple Lie algebra g is the r X r matrix with elements

<ai7aj>
(g, o)

a;; =2 (3.34)
The elements a;; are the same ones that appear in the definiton of the Weyl group as a
Coxeter group above. Because the positive simple roots form a basis of the root space, the
Cartan matrix is non-degenerate, and since the quantity 2% is an integer, all the elements
of the Cartan matrix are integers. The Cartan matrix depends on the enumeration of II and
different enumerations lead to different Cartan matrices that are conjugate to one another
by a permutation matrix.

To every semi-simple Lie algebra, we can associate a Cartan matrix as defined above.
Conversely, a finite-dimensional semi-simple Lie algebra can be defined through its Cartan
matrix. Given a real, indecomposable, (r x r) symmetric matrix? A = (a;;), 1,5 € [ =

{1,2,...,r} of rank r satisfying the following conditions:
(i) a;; € Z for all i and j ,
(ii) a; =2 for all i,
(iif) a;; =0 a; =0,
(iv) aij € Z<y for i#j,

(v) det A>0,

2The symmetric condition can be extended to include symmetrizable matrices. A matrix A is said to be
symmetrizable if there exists a non-degenerate diagonal matrix D such that A = DB where B is a symmetric
matrix.
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one defines a Lie algebra g(A) generated by the generators e;, f;, and h;, fori = {1,2,...,r},
satisfying the following conditions for ¢, 5 € I :

[his bl =05 les, fi] = 035y
[hisej] = aijej 5 [hi fi] = —ai f 5
lei,e;] = [fi,f;]=0if A;; =0
(ad ;) "%ie; = (ad f;)'""if; =0 fori#j. (3.35)

The above equations may seem a little strange when presented without the necessary
motivation, so let us consider what each of the equations above says about the Lie algebra

and the roots. (7) says all the entries of the Cartan matrix are integers, which is easy to
a,f)

understand if we note that the quantity 22@’00 is an integer, whose genesis goes back all the
way to (B). (ii) is just the choice of a convenient normalization one chooses for the inner
product which also goes all the way back to the representations of sl(2,C). Condition (i)
reflects the symmetry of the scalar product in root space. For the meaning of condition (iv),
consider the following conditions that one can show on the inner products for any two roots

o and

(Oé,ﬁ)>0 = Oé—ﬁEL
(a, ) <0 = a+peLl. (3.36)

Now, the simple roots were defined as those positive roots which were indecomposable, and
hence the difference of any two simple roots is never a root, and so it follows that («;, ;) <0,
and hence the matrix elements a;; < 0.

The Cartan matrix, A, uniquely defines the Lie algebra which we call g(A). The relations
(3.35) are known as the Chevalley-Serre relations. We had earlier defined general semi-
simple Lie algebras as ones which are obtained as direct sums of simple Lie algebras, and
also through their Killing form. The Chevalley-Serre relations defining a semi-simple Lie
algebra are very useful from the point of view of our final aim of graduating to infinite-
dimensional Lie algebras. It is this condition whose generalization is the simplest way to
move from finite-dimensional complex semi-simple Lie algebras to infinite-dimensional BKM
Lie superalgebras as we will see when we define BKM Lie superalgebras shortly.

Let us look at the entries of the Cartan matrix more closely, and see what we can say

about them. First, by the triangle inequality (a;, ;)? < (a4, a;)(j, ), and using (i) we
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get the inequality a;;, a;; < 4 with equality holding for i = j and a;; € {0,1,2, 3} for i # j.

Now, using (i77) amd (iv) we see the possibilities for a;; to be

a; = aj; =0 or (3.37)
a;; = a;;=—1 or

a;; = —1,a;=-2 or

ai; = —1, a;;,=-3.

The elements «;; give the angle between the positive simple roots of the root system. If all
the elements of a root system are multiplied by a non-zero constant, one gets another root
system that is equivalent to the original root system. The quantity 2% is unchanged if
both a and ( are multiplied by the same non-zero constant. So, the actual lengths of roots
are not important, but only their ratios. The elements «;; encode information about the
angles between the positive simple roots in the root space E as follows. For two roots o and

B3, where « is not a multiple of 3, and (a, o) > (3, ), there are the following possibilities:
(i) (@ B) =0,
(ii) (o, ) = (B, ), and the angle between a and 3 is 60°or 120°,

(iii) (o, a) =2(B,3), and the angle between « and [ is 45°0r 135°,

(iv) () = 3(B, B), (3.38)
and the angle between « and 3 is 30° or 150° .

So, if the two roots are not multiples of each other and are not perpendicular to each other,
then the ratio of their lengths must be either 1,v/2, or /3. If two roots are perpendicular
then there are no constraints on the ratios of their lengths. If the angle between two roots
« and [ is strictly obtuse, then o + (3 is a root, and if the angle between « and [ is strictly
acute, then o — § and § — « are also roots. Compare this with the condition (iii) of (3.3.6).

Now we come to the idea of Dynkin diagrams and classification, upto equivalence, of
semi-simple Lie algebras. One can classify the root systems, and hence the corresponding
semi-simple Lie algebra g, in terms of the Cartan matrices, or an object called the Dynkin
diagram.

To see the motivation, consider the idea of the root space decomposition of the Lie

algebra. We consider the maximal abelian subalgebra of g and this acts semi-simply on
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g giving the Lie algebra as a direct sum of root spaces. The Lie algebra is broken up into
eigenvectors for the elements of the Cartan subalgebra. Thus, classifying Cartan subalgebras
can be extended via the root space decomposition to the classification of Lie algebras. The
information of the Cartan subalgebra, and hence of g, is contained in the set of positive
simple roots II, and hence in the Cartan matrix or Dynkin diagram corresponding to II.
Thus, in classifying the various finite-dimensional semi-simple Lie algebras we are reduced
to studying the various classes of Cartan matrices or Dynkin diagrams. We state this in the
form of a classification theorem (without proof) towards the end of this section where the
various root, systems, their corresponding Dynkin diagrams are listed along with the semi-
simple Lie algebras they describe. Below we give how one constructs the Dynkin diagram
given a root system.

To the set II or simple roots we can also associate a graph, consisting of vertices and lines
connecting them, known as a Dynkin diagram. To each element «; of II we associate a
vertex v;. Two vertices v; and v; are joined by edges depending upon the angle between the
simple roots «; and «;. If two roots o; and «; are orthogonal then we put no edge between
the corresponding vertices v; and v;. We put one edge between v; and v; if a; and «; have
the same length, two edges if the longer of a; and «; is V2 times the shorter, and three
edges if the longer of o; and «; is V/3 times the shorter. In addition, if o; and a; are not
orthogonal or of the same length, we decorate the edge between v; and v; with an arrow
pointing from the vertex associated to the longer root toward the verted associated to the
shorter root. Looking at (3.38) we see that there are only three possible lenght ratios and
three possible angles between the roots.

Two Dynkin diagrams are said to be equivalent if there is a one-to-one, and onto map
of the vertices of one to the vertices of the other that preserves the number of bonds and
the direction of the arrows. Since any two bases II for the same root system are equivalent
because of the action of the Weyl group on them, the equivalence class of Dynkin diagram is
independent of the choice of the base II. Two root systems with equivalent Dynkin diagrams
are equivalent. A root system is #rreducible if its Dynkin diagram is connected. We now

list all the Dynkin diagrams of the classical semi-simple Lie algebras.

1. A, : The root system A, is the root system of the Lie algebra si(n + 1,C). It is of

rank n.

2. B, : The root system B, is the root system of the Lie algebra so(2n + 1,C). It is of

rank n.
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3. C, : The root system C,, is the root system of the Lie algebra sp(n, C). It is of rank n.

4. D, : The root system D, is the root system of the Lie algebra so(2n,C). It is of rank

n.

The Dynkin diagrams associated with the above root systems are given in Fig. (3.1).
We note a few interesting points about the above root systems that happen in low rank.
In rank one, there is only one possble Dynkin diagram, reflecting that there is only one
isomorphism class of complex semi-simple Lie algebras in rank one. The Lie algebra so(2, C)
is not semi-simple, and the remaining three Lie algebras si(2,C), so(3,C) and sp(1,C) are
isomorphic. In rank two, the Dynkin diagram D, is disconnected, reflecting the fact that
so(4,C) = sl(2,C)@sl(2,C). Also, the Dynkin diagrams By and C5 are isomorphic, reflecting
the fact that so(5,C) = sp(2,C). In rank three, the Dynkin diagrams As; and Dj are
isomorphic, reflecting the fact that si(4,C) = so(6,C). In addition to the root systems
associated to the classical Lie algebras, there are five exceptional irreducible root systems,
denoted G, Iy, Fg, F7 and Eg.

Now we state the classification theorem, without proof below.

Theorem 3.3.6 Fvery irreducible root system 1is isomorphic to precisely one root system

from the following list.
1. The classical root systems A,, n > 1.
2. The classical root systems B,,, n > 2
3. The classical root systems C,,, n > 3
4. The classical root systems D,,, n > 4
5. The exceptional root systems G, Fy, Eg, 7 and Eg.

Since every root system can be uniquely decomposed as a direct sum of irreducible roots
sytems, the classification of irreducible root systems leads to the classification of all root
systems. As argued before, classification of root systems leads to the classification of semi-
simple Lie algebras and classification of the irreducible root systems leads to the classification

of the simple Lie algebras which we state in the form of a theorem below.

Theorem 3.3.7 FEvery complex simple Lie algebra is isomorphic to precisely one algebra

from the following list:
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1. slln+1,C), n>1

)

)

2. so(2n+1,C), n>2
3. Sp(”a (C)u n > 3’
4. so(2n,C), n >4,

5. The exceptional Lie algebras Go, Fy, Eg, E7 and Es.

A semi-simple algebra is a direct sum of simple algebras, and is uniquely determined up
to isomorphism by specifying which simple summands occur and how many times each one
occurs in the direct sum.

Thus, we have classified the various semi-simple Lie algebras, and their root systems.
We have also seen that to each root system one can associate a graph called the Dynkin

diagram which pictorially captures all the information about the root system and hence the

Lie algebra it corresponds to.

AnO—0O------ O0—0 E, o—o0 i O—o0
Bn O—O------ O=—r0 i

E, 0—o0 O—0—0
Ch O—O------ O==0 T

E, 0—O O—O0—0—0
D, 0—0------

F, O—0==0—20
G, O==0

Figure 3.1: The Dynkin diagrams for the classical semi-simple Lie algebras

3.3.7 Representation Theory of Semi-Simple Lie Algebras

After studying the general structure of Lie algebras, we now come to the representation
theory of finite-dimensional semi-simple Lie algebras with the example of si(3,C) as the
particular case we work it out explicitly for.

We will still be working with the basis (3.20). Let o = (aq,a2) be a root of si(3,C) and

Z,, the corresponding root vector. We have already seen the construction of a representation
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for si(2,C). We will use some of what we learnt there and see what modifications occur for
Lie algebras of rank r > 1.

The starting point in looking for a structure is to find the generalization of (A). We
have defined roots and weights as the eigenvalues of p(h). The suitable generalization is to
observe that in any finite-dimensional representation the Cartan subalgebra h acts completely
reducibly. The set of operators p(h) for all h € b are simultaneously diagonalizable in every
finite-dimensional representation, and hence, every finite-dimensional representation (p, V') is
the direct sum of its weight spaces. The simultaneous eigenvalues of p(h) are called weights.
For sl(3,C), the weights are of the form p = (my, my), where m; and msy are integers. For
a finite-dimensional representation p of g on a vector space V with Cartan subalgebra b, an

element ;1 € h* is called a wezght for p if there exists a non-zero vector v in V' such that

p) = (. v, (3.39)

for all A € h. A non-zero vector v satisfying the above equation is called a weight vector
for the weight p, and the set of all vectors satisfying (3.39) is called the weight space
with weight . The dimension of the weight space is called the multiplicity of the weight.
For any finite-dimensional representation p of g, the weights of p and their multiplicity are
invariant uinder the action of the Weyl group.

The generalization of (B) is the idea of dominant integral elements. An ordered pair
(mq, mg) with my and msy being non-negative integers is called a dominant integral ele-
ment of sl(3,C). Just like the integers m occured as the highest eigenvalues of the irreducible
representations of si(2, C), we will see that the highest weight of each irreducible representa-
tion of s/(3,C) is a dominant integral element and, conversely, that every dominant integral
element occurs as the highest weight of some irreducible representation. More generally, for

a)

a general semi-simple Lie algebra, an element p € b is called an integral element if 2&—(1)

is
an integer for each positive simple root o and dominant integral if it is non-negative. Each
weight is an integral element. The set of integral elements is invariant under the action of the
Weyl group. It is precisely these elements that are contained in the closed fundamental Weyl
chamber. This is the generalization of (F) and (G) to general semi-simple Lie algebras.
The significance of the roots for the representation theory of semi-simple Lie algebras
lies in the generalization of (E). The operators p(z) and p(y) of si(2,C) raise and lower,
respectively, the eigenvalues of p(h). Let a = (ay, as2) be a root of sl(3,C) and let Z, be a

corresponding root vector. Let p be a representation of sl(3,C), and p(ms, ms) a weight for
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p and v the corresponding weight vector. Then,

p(h)p(za)o = (mi+an)p(Za)o |
plha)p(za)v = (ma+ a2)p(Za)o . (3.40)

Thus, either p(Z,)v = 0 or p(Z,)v is a new weight vector with weight
w4 a=(my+ap,ms+as) . (3.41)

For a general semi-simple Lie algebra, let v be a weight vector with weight 1 and suppose

T, is an element of g,. Then, for all h € F'h we have

p(h)p(za)v = ((u, h) + o, b)) p(xa)v - (3.42)

The above equation says that p(x,)v is either zero or is a weight vector with weight u + «.

For the case of sl(2,C) the weights were integers m and the notion of comparing two
weights was just the comparision of the integers, but for a general semi-simple Lie algebra
the weight is a collection of the simultaneous eigenvalues of all the p(h;) and we need to
clarify what it means to say a weight is higher than another. We will illustrate it for the
case of sl(3,C). Given the two positive simple roots a; and a3 (eq. (3.23)), and two weights
w1 and o, we say that p is higher than py (denoted g = pg) if g — po can be written in
the form

1 — g = aay + bas | (3.43)

with @ > 0 and b > 0. Analogous to the largest eigenvalue in each representation of sl(2,C),
there exists a weight po in each representation of sl(3,C) such that po = pu, for all weights
p. This is called the highest weight of p.

Now we have enough ideas to put together the generalizations of (C), (F)-(I) to si(3,C),
and any general semi-simple Lie algebra, in the form of a theorem below. In the case of
sl(2,C) each irreducible representation p(h) is diagonalizable, and there is a largest eigen-
value of p(h). The essence of (C), (F)-(I) is that any two irreducible representations of
sl(2,C) with the same largest eigenvalue are equivalent. The highest eigenvalue is always
a non-negative integer, and, conversely, for every non-negative integer m, there is an irre-
ducible representation with hightest eigenvalue m. Now we state the theorem of highest

weight for s/(3,C) and generalize it to any finite-dimensional semi-simple Lie algebra.

82



Chapter 3. BKM Lie Algebras

Theorem 3.3.8 1. Fwvery irreducible representation p of sl(3,C) is the direct sum of
its weight spaces; that is, p(hy) and p(he) are simultaneously diagonalizable in every
irreducible representation. More generally, in every finite-dimensional representation

irreducible representation (p, V') is the direct sum of its weight spaces.
2. All the weights, u, are integral elements.

3. Every irreducible representation of sl(3,C) has a unique highest weight i, and two
equivalent irreducible representations have the same highest weight. And any two irre-
ducible reesentations of sl(3,C) with the same highest weight are equivalent. The same

15 true for any general semi-simple Lie algebra.
4. Two wrreducible representations with the same highest weight are equivalent.

5. If ™ is an irreducible representation of sl(3,C), then the highest weight o of ™ is of
the form

Mo = (mh mz)

with my and mo being non-negative integers. The suitable generalization is the state-
ment that the highest weight of every irreducible representation is a dominant integral

element.

6. If my1 and mo are non-negative integers, then there exists an irreducible representa-
tion p of sl(3,C) with highest weight o = (my,ms). For a general semi-simple Lie
algebra, every dominant integral element occurs as the highest weight of an irreducible

representation.

The trivial representation is an irreducible representation with highest weight (0,0). For
sl(2,C) an irreducible representation with highest weight m was of dimension (m + 1). For

sl(3,C), the dimension of the irreducible representation with highest weight (my, ms) is
%(ml -+ 1)(77?,2 —+ 1)(m1 -+ mo + 2) .

We will come back to the representation theory of finite-dimensional Lie algebras briefly
towards the end of the chapter when we discuss the denominator identity of Lie algebras. For
now, we just recapitulate what we have learnt about finite-dimensional Lie algebras, before

we move on to the topic of infinite-dimensional Lie algebras.
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Generalizing (A) we see that there exists a maximal abelian subalgebra, called the
Cartan subalgebra, of g which acts semi-simply on g and every irreducible representa-
tion is given as the direct sum of weight spaces with respect to the Cartan subalgebra.

The eigenvalues are the roots and weights of the Lie algebra.
The multiplicity of every root is one.
Generalizing (B), all the weights are integral elements.

Every irreducible representation of g has a unique highest weight which is a dominant
integral element and two equivalent irreducible representations have the same highest
weight. See point (C), (H), (I)

Every dominant integral element is the highest weight of an irreducible representations.
See (G)

The set of roots can be divided into positive and negative roots with respect to a basis

of positive simple roots. The choice of simple roots is not unique, nor is their ordering.

The Lie algebra splits as a direct sum

1=Do.= DD D e (3.44)

acl acl_ acl
and all the root spaces are one-dimensional.

There is a group of permutations of the set of positive simple roots, which is generated
by reflections with respect to the set of positive roots in the root space, known as the

Weyl group. The set of fundamental refelctions generate the Weyl group.

The Weyl group is finite-dimensional. It breaks up the root space into chambers known

as the Weyl chambers.

There exists a vector p called the Weyl vector which always lies in the closed Weyl

chamber.

The set of positive simple roots capture all the information of the Lie algebra g. The
inner product matrix constructed from the inner products of the various positive simple
roots in the root space is called the Cartan matrix. It contains all the information about

the Lie algebra g.

84



Chapter 3. BKM Lie Algebras

(I) Another equivalent description of the Lie algbra g is through its Dynkin diagram which

contains the same information as the Cartan matrix.

(m) The semi-simple Lie algebra g can be described equivalently through its bilinear form

or through its Chevalley-Serre relations.

(n) There are four classes of classical root systems, namely, A, (n > 1), B,, (n > 2),C, (n >
3), and D,, (n > 4) and five exceptional root systems, namely, Go, F, Eg, F'; and Eg.
Every irreducible root system is isomorphic precisely one root system from the above
list.

(o) Every simple Lie algebra is isomorphic precisely to one algebra from amongst si(n +
1,C), n>1,s02n+1,C), n >2,sp(n,C), n >3, so(2n,C), n >4, and the
exceptional Lie algebras Go, Fy, Fg, E7 and Exg.

(p) There is a one-to-one correspondence between the classes of simple Lie algebras and

root systems.

3.4 Infinite Dimensional Lie Algebras

We start with the theory of infinite-dimensional Lie algebras now. One thing working for us
is we know which directions to look in and what roughly to expect in pursuing them. To
explore the structure, we should start by trying to find a Cartan subalgebra, (or whatever
the generalization of that could be in the infinite-dimensional case) and find simultaneous
eigenvectors and the corresponding eigenvalues of all its elements. This should give us the
root structure, and root space decomposition of the Lie algebra. Then, we find a base of
positive simple roots for the set of roots, and from this construct the Cartan matrix and, if it
exists, the Dynkin diagram corresponding to the Lie algebra. There will be the generalization
of the Weyl group, character and denominator formulae also as we will see.

Before we proceed with the study of BKM Lie superalgebras, we should mention that
although BKM Lie superalgebras are generalizations of finite-dimensional Lie algebras, this
simplistic way of studying them is useful only to overcome the initial bridge in intuition
necessary to appreciate their abstract theory, but one should let go of the crutch at the
earliest to completely appreciate the theory of BKM Lie superalgebras by itself. For one

thing, the various other branches like vertex algebras, vector valued modular forms, etc.
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play a rich role in the theory of BKM Lie superalgebras which gives it a lot of structure than
a mere extrapolation from finite-dimensional Lie algebras would suggest.

Sadly, the scope of the introduction we will give, given the space available to introduce it,
will rely heavily on borrowing intuition from the finite-dimensional case to seek motivation
and justification of the various constructs in BKM Lie superalgebras. We will use examples
to bridge the gaps in intuition.

It is interesting to go back to the origin of finite-dimensional Lie algebras and note that
they were originally constructed to study Lie groups, while for the case of infinite-dimensional
Lie algebras it was the Lie algebras that were constructed first, and for the case of BKM Lie
superalgebras the corresponding group structure is far from being fully understood. As the
degree of generalization increases, the group structure becomes less clear.

Ordering them in an increasing sequence of complexity, one obtains affine Lie algebras
as the simplest generalization of finite-dimensional Lie algebras by central extension of loop
algebras. The center of a finite-dimensional semi-simple Lie algebra is trivial. One can
form a first generalization by constructing what is known as the ‘loop algebra’ of a finite-
dimensional semi-simple Lie algebra. To make it consistent one needs to add a derivation
to its center and this algebra is the corresponding affine Lie algebra. Affine Lie algebras are
a sub-class of the class of infinite-dimensional Lie algebras known as Kac-Moody algebras.
Borcherds-Kac-Moody Lie algebras were constructed by Borcherds as a generalization of

Kac-Moody Lie algebras and are the most general class of Lie algebras.

3.4.1 Loop Algebras and Central Extensions

We start our study of infinite-dimensional Lie algebras with the simplest class of infinite-
dimensional Lie algebras, namely affine Lie algebras. The general construction of affine
Lie algebras is along the lines we will describe for general BKM Lie superalgebras, but here
we study them in a way that illustrates the transition from finite-dimensional Lie algebras
to their infinite-dimensional couterparts. We will construct them as loop algebras of finite-
dimensional Lie algebras.

We will describe here a first example of an infinite-dimensional Lie algebra, that of affine
Lie algebras as central extensions of loop algebras. The advantage of this construction is
that it is realized entirely in terms of an underlying simple finite-dimensional Lie algebra,
known as its derived algebra.

The center of a finite-dimensional semi-simple Lie algebra is trivial. The existence of
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a central element, as we will see, is a feature that we will find in all infinite-dimensional
Lie algebras. Given a finite-dimensional Lie algebra g, we can try and construct an (I-
dimensional) central extension to it by simply adding [ central generators, k;, to the algebra
and imposing

(t* k] =0 for i=1,....,1, a=1,...,r. (3.45)

This will modify the brackets between the original generators to include the central generators

as follows
a 131 . rap af 7.4
L% 7] = [0 U0+ f K (3.46)

where foff are the structure constans of g. The new structure constants faf have to satisfy
the Jacobi identity and thus cannot be completly arbitrary. The number of solutions to
the above equation subject to the Jacobi identity constraint is the number of independent
central extensions one can write down for g. Finding the &° from the above equation shows,
for finite-dimensional Lie algebras, that the trivial solution fo‘§ = 0 is the only possible
solution. Hence, the center of a finite-dimensional semi-simple Lie algebra is trivial. Thus,
to centrally extend the Lie algebra g, we need to alter its structure to allow for the extension.
This leads to the idea of the loop algebra of a finite-dimensional Lie algebra.

Let g be a simple Lie algebra, and consider the space of analytic maps from the circle
St to g. As before, let {t*|a = 1,...,r} be a basis of g, and S! be the unit circle in the
complex plane with coordinate z. Then a basis for the above vector space of analytic maps
from S! to g will be of the form {t%|a = 1,...,r; n € Z}, where t* = {* ® 2". This space

inherits a natural bracket operation from the Lie algebra g as

[t2, 7] = [t* @ 2™, 7 ® 2] = [t*, 1] @ (2™ - 2"), (3.47)
and thus,
(o, t0) = [0 0 @24 = [0 (3.48)

where fai are structure constants of g. With the above bracket this space becomes a Lie
algebra called the loop algebra, denoted g;,.,. Note that the subalgebra of g;.,, generated
by the generators ¢{ is just the subalgebra g. Note that, the algebra g,,, has an tnfinite
number of generators.

Now, we can look for a central extension to g;,., in the same way as we did for g. We
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try the most general ansatz for the bracket of the generators as

2,68 = 2 0 @ 2™+ (f*7)nk’ . (3.49)
We impose the constraints coming from the Jacobi identity and the fact that the algebra g
is a subalgebra of g0, and hence the structure constants (f*Yoo and (f*?),n0 can be put
to zero. Now, for a fixed value of n, the generators & transform just like the generators ¢“
(that is, in the adjoint) and hence the structure constants should from an invariant tensor
of the adjoint representation of g with respect to the indices «, 3. It turns out there is a
unique such tensor for g, and that is the Killing form of g. Thus, the central extension is
only one-dimensional, and is proportional to the Killing form B of g. For convenience, we
can choose a basis such that the Killing form in that basis is equal to §*°. This gives the
following brackets for gisop

[t t9) = 20 1 @ 2 — k68,0,

mrTn

[k, th] = 0. (3.50)

The infinite-dimensional loop algebra, is usually written in the following way. Let £ =

Clz, z7!] be the algebra of Laurent polynomials in z. Then the loop algebra is then given by
Hloop = L RXec g = C[’Z7 Z_l] Xc g. (351)

We need to add one more generator, d, to this centrally extended infinite-dimensional algebra,

known as the derivation which has the following brackets with the other generators |65, 66|
[d,te] = —[t*, d] =mto; [d,k]=0. (3.52)

The above construction is then
§=Clz,2'|®cg. ®Ck @ Cd . (3.53)

The generators ¢ have vanishing brackets with the derivation, and the subalgebra generated
by them is just the Lie algebra g known as the horizontal subalgebra of the affine Lie
algebra g.
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3.4.2 The Root System

We first determine the maximal abelian subalgebra. This will certainly contain the Cartan
subalgebra of the horizontal subalgebra g, generated by h; € H i = 1,...,r. It will also

contain the central element k and d. Thus, the Cartan subalgebra is
H =span{k,d, hi| i=1,...,r} (3.54)
The roots with respect to H can be found by observing the following relations
svel] = (b B)eh. [k €] = 0,[d, e}] = ne), (3.55)

and
[ho, ] = [k, b)) =0, [d,h)] =nhi . (3.56)

Writing the roots & suggestively as a triplet of eigenvalues under the generators (hj, k, d),
the set of roots is
at = (a',0,n), a€ L(g),n€Z, (3.57)

and
a2 = (0,0,n), n e Z\{0}, (3.58)

corresponding to the generators e, and hi, n # 0, respectively. The root o' is a root of the
horizontal subalgebra g. Each of the roots &i of (3.57) has multiplicity one, while the root
a® has multiplicity r, since it does not depend on the label j of the h% generators and is an
eigenvalue of each h% with the eigenvalue 0 and there are r such generators.

Here we can understand the necessity to include the generator d in the Cartan subalgebra.
Without the generator d to distinguish the level n of the root, all the roots are infinitely
degenerate. The generator d thus ‘grades’ the algebra g according to the level n and only then
are the roots @', of (3.57) are non-degenerate. We cannot, however, remove the degeneracy
of the root @Y in (3.58).

The set of roots of g is denoted by Z, and the root system of the horizontal subalgebra
g is just the subset @) = (a',0,0), denoted L as before.

So far the root systems of g and g are very much similar and constructed along the same
lines. The roots are just the collection of simultaneous eigenvalues of the elements of the
Cartan subalgebra. However, the Cartan subalgebra in this case is centrally extended to

include two more generators and the roots also contain the eigenvalues of these generators.
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All the simple roots have multiplicity one as before. There is, however, one major difference
coming from the infinite-dimensional nature of the algebra. It is the appearance of a root
a® with multiplicity 7.

Like with the finite-dimensional semi-simple case, we find a set of simple roots, and
decompose the set of roots into positive and negative roots, with respect to the set of positive

simple roots. We identify the set of positive simple roots as
ah = (a',0,0)=a’ for i=1,...,r (3.59)

and
al = (=p,0,i) =0 —p . (3.60)

Here p is the highest root of g and § = (0,0,1). With this, the degenerate roots (3.58) are
just @ =n-d,n # 0. The root aY is called an #maginary root. It is not a simple root in the
sense that it is decomposable. Later we will see, in the context of BKM Lie superalgebras
imaginary roots that are also simple. However, we include @° in our basis of simple roots.

With this identification of positive simple roots, the set of positive roots is
Ly={a=(a,0,n)€L| n>0 or (n=0,a€ L)}, (3.61)

and the set of negative roots is L= E\E+ Denoting the subalgebras generated by the pos-
itive and negative roots by g, and g_ respectively, we again have a triangular decomposition
of the Lie algebra g as

G=0+OHBG . (3.62)

3.4.3 Weyl Group

In analogy with simple Lie algebras, one defines the Weyl group of reflections of the weight

lattice of an affine Lie algebra. First, we define a reflection as follows.

(.9,

(@, a)

We-B=0—2 (3.63)
Note that all the o above are the real roots, because the denominator of the RHS would
not make sense for an imaginary root. Because of the above form of the reflection, many
properties of the affine Weyl group are analogous to those of the Weyl group of simple

Lie algebras. There are, however, also new features which are relatied to the existence of
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imaginary roots. In particular, note that (a,d) = 0 for any real root «, and hence one has
Wy 3 =0, (3.64)

and hence any Weyl reflection acts as the identity on the set L, = {né| n # 0} of imaginary
roots,
Wa| Lim =idz, . (3.65)

Since any reflection is an automorphism of the root lattice, this also means that the Weyl
group maps the set Er of real roots onto itself.
W is the semidirect product of the Weyl group of g and the group of translations in the
coroot lattice.
W=WxT. (3.66)

The roots, however, now have additional eigenvalues in them and this would show up in
the various computations of the Weyl group, and we will see that now. Let a! = (a*,0,n)
and Bjn = (0,0,m) be two real roots. Then, the reflection wg; - @n is given by

way, - B, = B -

(o', ) 4+0-m+n-0]a’ . (3.67)

(@y,ar,)

The reflection can be expressed, again, as a triplet like the roots @', as (here we consider a

general weight 77 = (7, k,m), and denote the quantity =2~ by a'").

(@n,am)

N . . 1 . o .
Was, * Ty = (waf (W k™) kym o [ ) = (ke ) nko/v)]) . (3.68)

This is the expression for the reflection of a weight i/ with respect to a real root a’,. We
can get a very intuitive picture of the structure of the Weyl group if we carry out one more
computation that allows us to recast the above reflection in a very suggestive form. Defining

for any root (3 € L, the translation T} as

T3 < iy = (s kym) — </ﬂ +kat km o o [ i) — (- kals ) ko/)]) - (3.69)

Using this we can write (3.68) as

Wai = wé o (Taiv)n7 (370)
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where w!, is the ordinary Weyl reflection which acts on the first component of the triplet of
the root p!, and as the identity on the last two components. Thus, we see that any Weyl

reflection of the affine Weyl group can be written of the form
wg; = wh o T} (3.71)

for some (37. Also Tyi =woT,o w~! for all w € W. The abelian group of translations is a
normal subgroup of W with WNT = {id}. Thus, the affine Weyl group W is a semidirect
product of the Weyl group of the horizontal subalgebra and a group of translations 7,

o~

W=WxT. (3.72)

An important property of the translations group is that it is generated by the highest root

appearing in the definition of the zero root in (3.58)as
wag 1= (wp -+ K6 o+ (i 0Y) — k) (3.73)

As a consequence, all possible translations are obtained by reflection with respect to the root
a?, and combinations of this reflection with elements of /. Thus, we see that after recasting
the affine Weyl reflection in the above form the Weyl group of the horizontal subalgebra
generates the reflections, while the imaginary root generates translations. Thus, the affine
Weyl group is generated by

w; = wgi, t=1,...,1. (3.74)

The affine Weyl group is infinite-dimensional as against the finite-dimensional Weyl group W
which is finite-dimensional. The affine Weyl group also permutes transitively and freely the
affine Weyl chambers which are those open subsets of the weight space which are obtained
by removing all the hyperplanes which are left invariant by some Weyl reflection. Similarly,

we also define the dominant affine Weyl chamber
PJ{ > wiwl ot = 0} : (3.75)
i=0

The algebra also admits a Weyl vetor which is defined as follows:
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Definition 3.4.1 A Weyl vector is defined to be a vector p satisfying

(p ) = 5(ai, ), (3.76)

for all real simple roots «;. We will see that the above definition also extends to the more

general infinite-dimensional Lie algebras.

3.4.4 Classification of Affine Lie Algebras

Just like for the case of finite-dimensional semi-simple Lie algebras, one can also classify the
various classes of affine Lie algebras via their root systems and equivalently through their
Dynkin diagrams|67, 68]. There are four infinite classes of root systems called A,, B,, C, and
D,. In addition, there are five exceptional affine Lie algebras called Fg, E7, Eg, Fy and Gs.

Below, we list the Dynkin diagrams for these classes of affine Lie algebras.

Al (6= i

Eeo—o—é—o—o

~

E, o0—o—o0

B, z>o ffffff o—=0
E; o—o—o—i—o—o—o—o

Cn O=—0—O ----- o==0 g

b e & OO

Figure 3.2: The Dynkin diagrams for the affine Lie algebras

>

This concludes our discussion of affine Lie algebras. We will come back to them later
when we discuss the Weyl denominator formula for Lie algebras. We will now give a brief

introduction to the theory of super-algebras before going to discuss BKM Lie superalgebras.
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3.5 A Brief Introduction to BKM Lie superalgebras

3.5.1 Superalgebras

Let us start with the notion of a super vector space. A super vector space is a vector

space over a field that is Zs-graded, i.e. has the decomposition
V=VWwel, 0,1€Z,=7/27, (3.77)
and in general an M-graded vector space has the decomposition

v=_v.. (3.78)

aeM

An element of V,, is said to be homogeneous of degree «. For a vector space V, its
tensor algebra T'(V'), symmetric algebra S(V'), and the exterior algebra A\ V are examples
of graded vector spaces. A superalgebra is a Z,-graded algebra, A = Ay & Ay, for which
AyAz € A,ip. The grading can be more general as above for vector spaces, but we will
mainly be considering Z,-gradings.

A sub-algebra of a superalgebra is also a superalgebra, and a sub-super algebra I of g is
called an ideal if [/, g] C I. A Lie superalgebra is defined similar to a regular Lie algebra,

but now one has to keep in mind the consistency imposed by the grading.

Definition 3.5.1 A Lie superalgebra is a Zs graded algebra g = go & g1 with a Lie bracket
satisfying
[, y] = —(=1) DI [y o] (3.79)

and
[2ly, )] = [z, y]2] + (=)W [z, 2]y] (3.80)

where for any homogeneous element g € g,,n = 0,1, deg(g) = n. The subspaces gy and g;

are called the even and odd parts of g.

A Lie superalgebra is not a Lie algebra the way one understands semi-simple Lie algebras.

go is an ordinary Lie algebra, while g; is a go module. Consider the associative algebra

94



Chapter 3. BKM Lie Algebras

endomorphisms gl(V') of the supervector space V. It has a natural Z, grading as follows

glV)o ={f € gl(V) : f(Va) S Vo, n € Lo},

The Lie bracket is defined as follows

— oy, if e gl(V
[x,y]z{ =y —yz, ifworye gl (3.82)

TY,T, if 2,y € gl(V); .

A good reference for Lie superalgebras is [69, 70|

3.5.2 BKM Lie superalgebras

Due to constraints of space and scope, our introduction of BKM Lie superalgebras will
be top-down (mostly following [55]). The milestone approach by which we studied finite-
dimensional Lie algebras is not possible here and the only way one can actually understand
or apperciate the subject is by undertaking a detailed study of it. Short of that, we use the
ideas already constructed in the context of finite-dimensional semi-simple Lie algebras and
affine Lie algebras to motivate and make the results in this section look plausible.

Our main interest in BKM Lie superalgebras from the point of view of the problem of
counting dyons is in the Weyl-Kac-Borcherds (WKB) denominator formula. Our introduc-
tion of BKM Lie superalgebras is given with the very narrow aim of understanding the WKB
denominator formula. We will learn only so much as will allow us to state and understand
the denominator identity. For more on the subject the reader is refered to the literature on
the subject.

In what follows we will use the following notation. We will use G to denote a BKM
Lie superalgebra. We will use the set I to index the set of generators of the BKM Lie
superalgebra. It will either be the set {1,...,n} or a countably infinite set in which case it
is identified with N. We will use the set S C I to index the odd generators. We continue
using e;, h;, and f; for the generators of the Lie algebra. The Cartan subalgebra of G will be
denoted H.

We will first define BKM Lie superalgebras through their Chevalley-Serre relations. The
advantage of this is that it gives us an understanding of the structure of the BKM Lie su-

peralgebra in terms of the generators right at the very beginning. We will pursue alternate

95



Chapter 3. BKM Lie Algebras

characterizations to augment this point of view later on. We have already seen the develop-
ment and definition of the Chevalley-Serre relations for the finite-dimensional case. The key
to the definition was the root space decomposition of the Lie algebras made possible by the
semi-simple action® of the Cartan subalgebra on the Lie algebra. To be able to carry out
the same procedure for infinite-dimensional Lie algebras, we first need to define the abelian
Lie algebra that will be the Cartan subalgebra which we do now.

Let Hg be a real vector space with a non-degenerate symmetric real valued bilinear form
(.,.) and elements h;,i € I. such that

() (hihy) <0ifi# ],

(i) Tf (s, hi) > 0, then 2=t € Z for all j € 1T,

(ifi) Tf (hs, hi) > 0 and 2 € S, then G248 € Z for all j € 1.

Let H = Hr ®r C. The above definition seems too ad hoc, unmotivated and uncomfortable
to accept, so let us try to convince ourselves that it indeed has the properties we have come
to expect a Cartan sub-algebra to have from our study of finite-dimensional semi-simple Lie
algebras and affine Lie algebras. Comparing (i) above with the definition 3.3.3 we see that
with the addition of the requirement that inner product can be less than 0, (i) essentially is
a generalization of 3.3.3. Comparing (ii) and (iii) above with the conditions on the Cartan
matrix in section 3.3.6 and eq. (3.34) to see where the motivations and generalizations come
from. Having defined the Cartan subalgebra, we can now define a BKM Lie superalgebra via
its action on it. These will be the Chevalley-Serre relations for the BKM Lie superalgebra.

Before looking at the Chevalley-Serre relations for the BKM Lie superalgebra, recall the
relations (3.9) and (3.35). With those in mind we now define the following:

Definition 3.5.2 A Borcherds-Kac-Moody Lie superalgebra G = (A, H, S) associated to the
Cartan matriz A, with the abelian Lie algebra H as its Cartan subalgebra, is the Lie super-
algebra generated by h; € 'H and elements e;, f; with i € I satisfying the following defining

relations:
(Z) [ei7 f]] = 5ijhz‘

(it) [h, e = (h, hi)ei, [h, f5] = = (h, h;) £,

3A linear operator on a finite-dimensional vector space is said to act semi-simply if the complement of
every invariant subspace of the operator is also an invariant subspace. An important result for such a linear
operators on a finite-dimensional vector space over an algebraically closed field is that it is diagonalizable.
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(iii) dege; =0=deg fiif i1 ¢ S, dege; =1 = deg f; ifi €S,

2a;; 2a

(iv) (ad ei)lfa_iilej = (ad fz)lfa_zlzlf] =0 ifay;>0andi#j.
(v) (ad ei)lfﬁej = (ad fl)k# ;=0 ifieSa;>0andi#7j .
(UZ) [ei,ej] =0= [fz;f]] ifaij = 0.

Let us understand the above definition. Looking at (3.35) we can understand the origin
of the relations (i), (¢7), (4v) and (v) above. The condition (iii) is expected of a super Lie
algebra where we will need to distinguish between the even and odd elements of the Lie
algebra (see also (3.81)). As expected, when S = (), we have a Lie algebra and condition
(77i) is redundant. The center of the BKM Lie superalgebra is contained in the Cartan
subalgabra H. Recall that finite-dimensional semi-simple Lie algebras have a trivial center,
while in constructing affine Lie algebras we had to add a central extension and a derivation
to the center to make the algebra consistent and hence the center was not trivial. BKM
Lie superalgebras also have a non-trivial center. The Cartan subalgebra H acts semisimply
on the BKM Lie superalgebra G via the adjoint actions (which was the whole point of
constructing it).

The matrix A, we recognize, is the generalized symmetric Cartan matrix of the Lie
superalgebra G. The subclass of finite-dimensional Lie algebras are those which have S = (),
and a; > 0 for all ¢ € I. The Cartan matrix is positive-definite, i.e. det(A) > 0 for the
finite-dimensional semi-simple Lie algebras. If a; > 0 for all 2 € I, but the Cartan matrix is
positive semi-definite, then it is a Kac Moody Lie superalgebra. For a BKM Lie superalgebra
the Cartan matrix is not restricted to be positive or positive semi-definite.

The span of each triplet of the form {e;, h;, f;}, we saw in the case of finite-dimensional
semi-simple Lie algebras, was isomorphic to an sl(2, C) algebra. Each element h; of the Car-
tan subalgebra, and hence each node in the Dynkin diagram, and each diagonal entry of the
Cartan matrix correspond to one such sub-algebra. We will now give a similar decomposition

for the case of BKM Lie superalgebras.

Proposition 1 (i) Ifi € I S, and a; # 0, then the Lie superalgebra S; = Cf; ® Ch; ® Ce;
of the BKM Lie superalgebra G is isomorphic to sl(2,C).

(ii) If i € S, then the Lie sub-superalgebra S; = C[f;, fi] ® Cf; @ Ch; @ Cle;, e;] ® Ce; is
isomorphic to sl(0,1).

97



Chapter 3. BKM Lie Algebras

(iii) If a; = 0, then the Lie sub-(super) algebra S; = Cf; @ Ch; @ Ce; is isomorphic to the
three-dimensional Heisenberg algebra (resp. superalgebra) if i € I S(respi € S

Hence, the BKM Lie superalgebra is generated, like the finite-dimensional Lie algebras we
studied in the previous section, by copies of the 3-dimensional Lie algebra si(2,C), for each
even simple root, and of the 5-dimensional Lie superalgebra sl(0, 1), for each odd simple
root. As before, the adjoint action of each of these si(2,C) and sl(0,1) on G decomposes
into finite-dimensional represenations. Like before, as a vector space, G breaks up into the
direct sum G = Ny @ H & N_, where N, /N_ are the sub-superalgebras generated by the

elements e;/ f; respectively.

3.5.3 The Root system

The generalized Cartan subalgebra H acts semi-simply on the BKM Lie superalgebra G via
the adjoint action. This will give us an eigenspace decomposition of G. We used this idea to
understand the structure of the finite-dimensional semi-simple Lie algebras. To understand
the structure of G we will look for the eigenvalues and eigenspaces of H. This will give us

the root space decomposition of G, and its root system.

Definition 3.5.3 The formal root lattice (Q is defined to be the free abelian group generated
by the elements o;, i € I with a real valued bilinear form given by (a;, o ) = a;;. The

elements «;,1 € I are called the simple roots.

No surprises there. The set of simple roots are defined in a manner very similar to the finite-
dimensional Lie algebras. Only, though not apparent, in this case the elements a;; € Z, unlike
in the semi-simple case where they were always equal to 2. There is one more important
aspect which makes the root system of a BKM Lie superalgebra very different from that of
the other Lie algebras. This is the notion of imaginary simple roots|71]. Let us understand
this idea carefully.

For the case of finite-dimensional Lie algebrs, the set of positive roots was finite and all
the roots were real (positive definite norm wrt. an inner product defined in the root space).
For infinite-dimensional Lie algebras, we saw that there appear a new kind of roots known
as imaginary roots. However, the simple roots were still all real. For the case of BKM Lie
superalgebras Borcherds found that one needs to have imaginary simple roots. This makes
the root system of a BKM Lie superalgebra markedly different from the other class of Lie
algebras, finite or infinite. We will see how this property alters the denominator identity of

BKM Lie superalgebras.
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@, in the general case, may not be an integral lattice, since in general the indexing set
I is countably infinite in which case the rank of () is not finite. Now we come to the root

spaces defined by the above root vectors.

Definition 3.5.4 For a = Zizl i € Q, the root space G, (resp. G_o) is the subspace of
G generated by the elements [e;,[. .. [e,, e;,]]] (resp. [fi,[. .. [fin, fu]]]). A non-zero element o
of the formal root lattice ) is said to be a root of G if the subspace G, is non-trivial. The

dimension of the root space G, is called the multiplicity of the root c.

To understand this, compare with the last relation in (3.35). All the root spaces for i € T
are given as G,, = Ce; and G_,, = Cf;. In particular, and as before, the root spaces G,, and
G_., for the simple roots are one-dimensional. Also, as before all the roots o € ) can be
expressed as a sum of simple roots. The root space G, is either contained in the even part

Go or the odd part G; of G. There is also the concept of a positive and negative root.

Definition 3.5.5 1. A root = a is said to be a postive (resp. negative) if o (resp. —a)

s a sum of simple roots.

2. A root « is said to be even (resp. odd) if G, < Go (resp. Gi). We then write d(a)) = 0
(resp. d(a) =1).

3. The height of a root o =), « is defined to be Y ki and is written ht(«).
4. The support of v is the set {i € I : k; # 0} and is written supp(a).

5. A base of the set of roots L is a linearly independent subset 11 such that for any o €
L,a= ZﬁeH ksB, where for all 3 € 11, either all the scalars kg € Z or all kg € Z_.

We recognize the above statements in the context of finite-dimensional semi-simple Lie al-
gebras, but keeping in mind that now we also have imaginary simple roots in the algebra.
For any root a € L., mult(a) = mult(—a), and a root « is positive if and only if the root
—a is negative. This gives us a decomposition of the set of roots into positive and negative
ones. The set of roots L decomposes into L = L, U L_. As before, this allows us to realize

the Cartan decompose on the BKM Lie superalgebra G as a direct sum of root spaces as

G = (@aeLJr)ga OH® (EBaeLfga) : (3'83)

Let « € L and h,, € H be such that for all x € G, and h € Mh, [h,z] = (ha, h)x. Then, for
all y € G_a, [7,9] = (z,9)ha-
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Before we discuss the WKB denominator formula for BKM Lie superalgebras we will, for
the sake of completeness give another characterization of BKM Lie superalgebras given by
Borcherds. Tt is usually very hard to apply the Definition 3.5.2 in terms of the generators and
relations to a given Lie algebra to find whether it is a BKM Lie superalgebra or not. Hence it
is useful to have different characterizations of BKM Lie superalgebras. The definition below
is mainly presented for completeness of our discussion of BKM Lie superalgebras and the
need to construct such characterizations may not immediately appear natural. However,
systematically following the development of BKM Lie superalgebras will make the reader
appreciate the need for such a characterization. It would also be incomplete, however brief
a review one constructs, to omit some of the results that helped shape the study of BKM
Lie superalgebras. Below we give a characterization of BKM Lie superalgebras.

For a BKM Lie superalgebra the Cartan subalgebra H is self-centralizing. This property
should not appear very surprising from our construction of the Cartan subalgebra for the
finite-dimensional semi-simple Lie algebras. An additional property for H is the existence of
a regular element. This is an element h in H such that the centralizer* of h in G is H. i.e.
Cg(h) = H. The existence of a regular element can be used to obtain a bound on the norms
of the roots of G. Now, we define a BKM Lie superalgebra in terms of the non-degenerate

symmetric bilinear form as follows|72, 73|:

Definition 3.5.6 Any Lie superalgebra G satisfying the following conditions is a BKM Lie

superalgebra.

1. G has a self centralizing even subalgebra H with the property that G is the direct sum

of eigenspaces of H, and all the eigenspaces are finite-dimensional.
2. There is a non-degenerate invariant supersymmetric bilinear form (.,.) defined on G

3. Ther is an element h € Mh such that Cg(h) = H. If there are only finitely many
indices © € I such that a; > 0, then the norms of the roots of G are bounded from
above. For a given r € R, there exist only finitely many roots o of G with |a(h)|< r.
If a(h) > 0 (resp. a(h) <0), « is called a positive (resp. negative) root.

4. Let o and [ be both positive or both negative roots of non-positive norm. Then («, 5) <
0. Moreover, if (o, ) =0 and if a € H, and [z,Gs] = 0.

4The centralizer of an element a of a group G, denoted Cg(a) is the set of elements of G which commute
with a. Cg(a) = {z € G| xa = az}

100



Chapter 3. BKM Lie Algebras

This completes our discussion on the introduction to BKM Lie superalgebras. We still
have one important idea to discuss, though. We will now discuss the Weyl-Kac-Borcherds
denominator formula for BKM Lie superalgebras. Considering the importance of this idea to
this thesis, we have saved the discussion on the denominator formula till after we have all the
ideas required to construct it. The denominator identity occurs in the representation theory
of Lie algebras as the special case of the Weyl character formula. We start with a discussion

on the character theory of Lie algebras to motivate the character and denominator formulas.

3.6 Denominator Identities

3.6.1 Characters Of Irreducible Representations

We start with the finite-dimensional semi-simple Lie algebras and then graduate to the
infinite dimensional ones to give the reader a better understanding of the various aspects of
the denominator identity and how they get modified as one considers the more non-trivial
class of Lie algebras. We go back to the representations of s/(2,C) and s{(3,C) in that
we studied earler to study the concept characters of representations. One of the offshoots
of this is the denominator identity, which will be very crucial to our problem of counting
BPS states in string theory. The motivation for character theory is as follows. Given two
representations, V and V' (that is, p : g — ¢l(V) and p’' : g — gl(V’)) of a Lie algebra g,
we say that V' is isomorphic or equivalent to V', if there is an isomorphism of vector spaces

T : V — V' which is compatible with the operation of g :

AT(0) = T(py(v)). (3.84)

forallv € V and all g € g.

A given representation usually has a complicated description in terms of matrices, and
it is not always apparently obvious if two given representations are isomorphic to each other
or not. It would be useful to have a way of determining such relationships between repre-
sentations without having to go into the details of the representations. Suppose we could
construct a quantity, say a function, that captures some intrinsic quality of the represen-
tation and is sufficient to determine whether or not two representations are isomorphic to
each other just by comparing the value of the function on the given representation. Speaking

mathematically, we need a class function (A function that is invariant over a conjugacy class,
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which in our case, are the isomorphism classes of irreducible representations) that charac-
terizes isomorphic representations. This leads to the idea of the character of an irreducible

representation of a semi-simple Lie algebra g which we study now.

Definition 3.6.1 The character x,, of a finite-dimensional irreducible representation, with

highest weight p, is defined as the map from h — C given by

Xu(x) : h— xu(h) = Tr exp(p(x)) . (3.85)

The character of a finite-dimensional representation determines the represenation up to

equivalence. The function depends only on the equivalence class of p and satisfies

Xu(929™") = X (3.86)

Here, we have defined the character to be a map from § to C. We could also consider weights,
i, in place of h € b as arguments of x,. From eq (3.39) we see that p(h) - v, = (i, h)v, for

all weight vectors v, € V' and we can rewrite the character x, for a weight p as

xulh) = 3 mult(pe) exp((s, b)) (387)

I

where the sum is over the set of all weights in V.
The operator p(0) is a dy x dy matrix with all entries equal to zero, where dy is the
dimension of the representation V. The character x,(0) evaluated on the zero weight gives

the dimension on the representation

XH(O) =dy .

The character for the direct sum of two representations is equal to the sum of the characters
of the constituent representations. Similarly, the character of a quotient of representations
is obtained by subtracting the character of the submodule which is quotiented out from the
character of the original representation.

We can use the action of the Weyl group on the set of weights to express the character of
a highest weight module (representation) of g. It is called the Weyl character formula.

Let V be an irreducible finite-dimensional representation of the complex semi-simple Lie
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algebra g with highest weight p. Then

Xu(h) =

> wew (=1 ™exp[(w(p + p), ]h>]’ (3.88)

2 wew(—1)!exp[(w(p), h)

where p is the Weyl vector as defined in (3.29) or (3.30), and the sum is over the full Weyl
group. Thus, one can compute the character of an irreducible finite-dimensional representa-
tion from the knowledge of the action of the Weyl group on the elements. Now we discuss

the denominator identity.

3.6.2 The Denominator Identity

Consider the denominator of eq. (3.88)

> () @expl(w(p), b)) = [T [exp(iia, ) — exp(~L(a. h))]

wew acly

= exp((p.h) [T [L—ep(=(ph))] . (3:89)

Q’EL+

This is known as the denominator identity. The Weyl denominator formula is a spe-
cialisation of the Weyl character formula to the trivial representation. Conventionally, the
denominator formula is written as (3.89), but for our purpose of generalizing it to infinite-

dimensional Lie algebras, we recast it into a form better suited for the generalization.

[T @ —exp({a.h))) =) det(w) exp(w((p,h)) = (p.h)) . (3.90)

a€L+ weWw

where w(p) is the image of p under the action of the element w of the Weyl group. The
importance of the above formula, from both the general and the point of view of our problem,
cannot be overstated. It is at the heart of the relation between the spectrum of i—BPS states
and BKM Lie superalgebras. Let us look at eq. (3.89) more closely and see what it contains
that makes it so important. Given the RHS of eq. (3.89), we have knowledge of all the
positive roots of g and their respective multiplicities and given the LHS we have knowledge
of the Weyl group of g and its action on all the roots. Thus, the denominator identity
contains all the essential information about the Lie algebra g and given the denominator
identity, one can construct g completely from it. In the theory of BKM Lie superalgebras it

plays a central role not only because it contains the information of G in it, but also because
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it provides the link with automorphic forms.

Let us start by computing the denominator identity of si(3,C). As discussed before,
sl(3,C) has two simple roots a1 and as. The set of positive roots, L., is given by a, as
and a3 = a1 + ay. The multiplicity of each positive root is one. The Weyl group is given
by the permutation group of three elements, S3. The elements are the reflections r; and ro

, with respect to the two simple roots. The action of the reflections on the roots is given by

We, (O = —Qy,
() (3.91)
we, () = (o +0oy)
The elements of S, generated by w,, and w,, are given by
(17 Wayy Wags Way * Wags Way * Way s Way * Way wal) (392)

The action of the six elements on p is (p, —ay, —an, —p, ay, ). Putting it all together into

eq (3.89) the Weyl denominator formula for si(3,C) is given by

[T a—e=0) =D (=1)™e(w(p) - p). (3.93)

¢)€L+ weW

where p is the Weyl vector, and w is an element of the Weyl group W. Denoting u = e(—ay)

and v = e(—ay), we get
LHS=(1—u)(1 —v)(1 —uwv) = [1—u—v+u2~v+u~v2—u2-v2] (3.94)

Now consider the RHS.
RHS:[1+u2-v+u-v2—u2~v2—u—v} (3.95)

where 1(w) = +1 for w = 1,2, 2% and —1 otherwise. The equality is obvious.

This completes our discussion of the denominator formula for finite-dimensional semi-
simple Lie algebras. We now look at the denominator identity of affine Lie algebras. We
discussed the Weyl group of affine Lie algebras when in Section 3.4.3. As in the finite-
dimensional case, one of the main applications of the Weyl group is the calculation of char-

acters of highest weight modules, and the denominator formula which is an offshoot of the
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Weyl character formula. As before, the characters x,, are defined as
Xp = Z mult(p) e, (3.96)
A

where we have defined the exp()\, h) = ¢* as formal exponenials. The Weyl-Kac character

formula [3|
> GW(_l)l(w)ew(Hp)

>~ D)i@ewl)

where p is the Weyl vector defined as before.

Xu(h) = (3.97)

The denominator identity for the case of affine Lie algebras becomes

D (=1l —er T (1 —e ®)mh@ (3.98)

weW aely

The multiplicities of all the roots in the finite-dimensional case were 1, and the term on the
right hand side, therefore, did not have the multiplicity factor.

An alternate definition is given by Lepowsky and Milne which is tailored to writing the
sum side of the denominator formula. The key observation (due to MacDonald) is that
[w(p) — p] behaves better than either of the terms. Recall that an element of the Weyl
group acts as a permutation of all roots (not necessarily positive). Thus, [w(p) — p] obtains
contribution, only when a positive root gets mapped to a non-positive root. So one defines
the set ®,, for all w € V/\7,

b, =w(l )NL, = {d el. ) w (&) e Z_} . (3.99)
Using this definition, we can see that

p—wlp) =5 D [a—w(@)]~ (®), (3.100)

@€Z+

where @w> is the sum of elements of the set ®,. Note that —L_ = L, which explains the
half disappearing in the RHS of the above formula. Imaginary roots do not appear in the set
CTJW for affine Lie algebras as the imaginary roots turn out to be Weyl invariant and hence
cancel out in the above equation.

The denominator formula that works for affine Kac-Moody algebras, after including the
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imaginary roots in ZJr, is the Weyl-Kac denominator formula

[T @-e®)™ =3 det(w) (3.101)

acly wew

We now consider the example of an affine Lie algebra, sm), given by the root system
(Al(l), [ =n—1). We derive the general expressions for Al(l), then specialize them to the
case ongl) and Agl) for the sake of illustration. The set of simple roots of Al(l) are given by
the simple roots of the horizontal subalgebra, A;, together with the root § — u, where 9 is
the smallest imaginary root, and p is the highest root of A; (see eq (3.60).

The set of roots is given by functionals of the form jo + u, where j € Z and pu € L. The
imaginary roots are given by functionals of the form j§, where j € Z,j # 0. We define the
set of positive roots as the union of the set of positive roots of the horizontal subalgebra Z,
with the set of roots in L which have positive eigenvalues w.r.t d. Thus the set of positive

roots of Al(l) are given by,
E+ = {(8—1)5+dl+dl+k_1,85—(dl+dz+k_1),85 I 1 S k S l,S € Z+—{0}} (3102)

The real roots have multiplicity 1 and the imaginary roots have multiplicity [. The denomi-

nator formula is given by:

TT (1= (=)™ = 3 (=1 @e(w(p) - p) (3.103)
ael weW
Recasting it as eq. (3.101) we have
[I (1= e(=ap™"@ =3 (=1)e(~ (@) (3.104)

é€£+ we/W

where &, = L, N L_ , and (®) is the sum of all clements of ®. We know the simple and
positive roots of the Lie algbra. We now need to evaluate the sets (/Isw and the Weyl group
to compute the denominator formula. To determine the set (/IS, we recall the action of the

elements of the Weyl group on the set of roots.

W(Lg)=Lr W(L;) =Ly, (3.105)
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and
W(L;nly) = (L;NLy) (3.106)
. The set ®,, is the set of all roots {@ € L, | w ' € L_}. Thus, ®,, consists of elements of
the form
{B,5+n.d}, where, g € E+ and m € Z, (3.107)
or
{3 +n.6ywhere, 3 € L_ and n € Z, — {0} . (3.108)

—

3.6.3 Denominator Identity for si(2,C)

For the affine Kac-Moody algebra, Xgl), from the above definition of the set of positive roots,

we have
/EJF = (n(@l + (/)é\()),nal + (n — 1)(/)6\0, (n — 1)(/)4\1 + n&o ’ n = 1, 2, 3, .. ) s (3109)

and the Weyl group is isomorphic to Z, x Z. Putting it all together into the denominator
identity gives

H(l _ efnaoefnoq)(]_ . 6—(n71)aoefna1)(1 _ efnaoef(nfl)al)

n>1

_ Z 6—n(2n—1)a06—n(2n+1)a1 o Z 6—(n+1)(2n+1)a06—n(2n+1)a1 (3110)

nez neL

1

Setting e* = r and e™* = ¢r~", the above identity is equivalent to the Jacobi triple

identity involving the theta function 04 (7, 2):

o0

—idy (1, 2) = ¢/ 12 H (1—-4") (1 — q"_lr) (1 — q"r_l)
n=1
_ Z (_1>n % n—1/2
= q r . (3.111)

nez

—_—

3.6.4 Denominator Formula for s/(3,C).

We apply the above ideas to the case of sl(/3,\(C) (Agl)) as an example and write down the
denominator identity for it[74, 75, 76, 77| .
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The horizontal algebra for sl(/3,TC) is sl(3,C). There are two elements in the Cartan
subalgebra, a;, and ay. The Weyl group of si(3,C) is S3, generated by two elements. It
is generated by the reflections with respect to the two simple roots a;, and ay (call the
reflections wg, and wg, respectively). The simple roots of the affine Lie algebra sl(/3,TC) are
given by the simple roots of the horizontal algebra, together with ag = 0 — (a; + @), where
0 is the smallest positive imaginary root of Agl).

The Weyl group of sl/(3,TC) is the semi direct product of the Weyl group of s/(3,C) and
an abelian group, T, of translations generated by two elements (= Z?).

Let t(m,n) € T be an allowed translation whose action on a; and @y is given by:
tal = 621 -+ m5

tay = Gy + nd (3.112)

It follows that

such that (m+n-+¢q) = 0. The elements of the Weyl group are of the form wsz = w,.t where
wy € Sz and t(m,n) € T. Let W, be the subgroup of W genrated by t(m,n) (written as ¢
for brevity hence forth). Thus,

—

W = WLUU}al 'WLUU}aQ 'WLUU}al *Was, -WLUwaQ *Wa, 'WLUUAJOQI 'IZ}O;Q 'UAJOZI cot WL, (3114)

for wg,,ws, € Sgand t € T'.
Now, to compute the denominator formula, we need to determine the action of the Weyl
group on (EISt) From the definition of EIS, and the action of the elements of the Weyl group

on the set of roots, we have,
O, = {1 +i6, Ga+j0, 0y +0o+kd | 0 < i < (m—1),0< j < (n—1),0 < k < (g—1)}. (3.115)

Thus,

m(m—1)+nn—1)+k(k —1)]
2

(D) = (m+ k)a, + (n + k)a, + 5 (3.116)
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Putting all the above together in the denominator formula, we have:

H(l —ududus)? (1 —ug sy (1 — g s )
s>1
x (1 —uy s ) (1 —udus ) (1 — udusuy ™)

Z ué (r1(r1—2)+73+r3(r3+2)) u F(ri+ra(ra+2)+ra(rs —2))u% (r1(r142)+72(r2—2)+r3)
- 0 1 2

r;=0(mod 3)
%(rl(r1+2)+r§+r3(r372)) é(rl(r172)+r2(r2+2)+r§) %(r%+r2(r272)+r3(r3+2))
r1=1,ro=0,r3=2(mod 3)
%(7"1(7’1+2)+7"2(7"2—2)+r§) %(rl(r1—2)+r%+r3(r3+2)) %(r%+r2(r2+2)+r3(r3—2))
+ g U Uy Us

0
r;=1(mod 3)
%(7"1(7’1—2)+7"2(7"2+2)+r§) %(r%+r2(r2—2)+r3(r3+2)) %(7"1(7’1+2)+7"§+7"3(7"3—2))
- E Ug Uy Uy
r1=0,ro=2,r3=1(mod 3)
+ § : u%(r%-ﬁ-rz(r2+2)+r3(r3—2))u%(r1(7"1+2)+r2(r2—2)+r§)u%(r1(r1—2)+r§+r3(r3+2))
0 1 2
r;=2(mod 3)
%(r%+r2(r2—2)+r3(r3+2)) %(rl(r1+2)+r%+r3(r3—2)) %(7"1(7"1—2)-1—7’2(7’2-‘,-2)—}—7"%)
- E : U Uy Ug )

r1=2,ro=1,r3=0(mod 3)

where 1,79, 73 € Z, and m = %(7’2 —r3);n = %(rl —T9) 5 q = %(Tg —r1) That completes
our study of the denominator identity for affine Lie algebras. We see how the modifications
that occur due to the presence of the imaginary root. We next study the denominator
identity for BKM Lie superalgebras. This was first constructed by Borcherds. We will state
the denominator identity and the super-denominator identity for BKM Lie superalgebras
and explain how it is obtained as a generalization of the denominator identity for affine Lie
algebras. Discussing examples of BKM Lie superalgebras is beyond the scope of this work
and the reader is refered to the literature.

To define the Weyl-Kac-Borcherds denominator formula we first need to define the (even)
Weyl group of a BKM Lie superalgebra. As before, we define the reflection w, along a
hyperplane perpendicular to o when « is an even (resp. odd) root of non-zero norm. For all

weights B e Hr C®z Q

—2Ba)f g =0
wa(®)={ {o eg() =0, (3.117)
B—Toay I deg(a) =1.

Here for the above formula to hold the roots « are also required to satisfy athe additional
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condition that for any = € G,,y € G, there is a non-negative integer n depending on x and
y such that (adx)"y = 0. The Weyl group Wg is defined as follows

Definition 3.6.2 The even Weyl group Wg is defined to be the group generated by the
reflections wy,,1 € I such that a; > 0[3]. The Weyl group W is generated by all the reflections

W, where o;; € Lt and satisfies (3.117) and is of non-zero norm.

For all infinite dimensional BKM Lie superalgebras the groups Wg and W are the same.
The Weyl vector for BKM Lie superalgebras is defined as follows:

Definition 3.6.3 A Weyl vector is defined to be a vector p either in the dual space C ®z Q)

or in H or in its dual H* satisfying
(p, i) = 3(as, ;) for alli € 1 (3.118)

We first need to find and expression for the dimensions of the weight spaces of the super
algebra to be able to differentiate the odd and even weight spaces. We thus, require to find the
character and super-character for the super-algebra. For this, we need to work with formal
exponentials e*. We define the character and supercharacter using formal exponentials as

follows:

Definition 3.6.4 Let € be the commutative associative algebra of formal series
5o

for which there exist finitely many elements \; € H, i = 1,...,m such that the coefficients x)
are non-trivial only if X\ < \; for some 1 < i < m. Multiplication is defined by etet = e+,
The character and super-character of the H-module V =V, @& Vi € O are the elements of

the algebra ¢ defined respectively to be the formal sums:

chV =Y dimVie') and schV =) (dim Vo, — dim V,)e* . (3.119)
AeH AeH

where V(A) € O is a highest weight module of highest weight A, it is assumed that deg(A) = 0.

Now we write the denominator identities that the above character and super-character
formulae lead to. For p = 37, ko, let us call 37, )\ g ki as hto(p), and 3-,; ki as ht(u).
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We define the following

Tr =e(A+p) Z e(pe™ and Ty = eMtP Ze/(u)e*“, (3.120)

where
e(p) = (=" and  €(u) = (=)W (3.121)

In terms of the above definitions, we define the denominator and super-denominator formula

for any BKM Lie superalgebra.

Definition 3.6.5 For any BKM Lie superalgebra G,

(1 = eoymila(a)
L. i ) ;= e’ Z det(w) w(T), (3.122)

—a It1 (o

HaeLf(l +ema)mulnl wew
and N ( o)
1 — e—)mulio(c

- =) ’
=e det(w) w(T") (3.123)

_ p—a\mult (a)

HaeLT(l € ) ! wEW

are respectively the denominator formula and the super-denominator formula.

That completes our definition of the denominator and super-denominator formulae for

the case of BKM Lie superalgebras.

3.6.5 The Fake Monster Lie Algebra

As an example of the above formula in the setting of a BKM Lie superalgebra, we will briefly
discuss the example of the fake monster Lie algabra [61, 57| which is a BKM Lie algebra
describing the physical states of a bosonic string on a torus. Its root lattice is a 26 dimensional
even unimodular Lorentzian lattice® denoted Ily1 =A@ 11 ; where A is the Leech lattice
with elements & = (A\,m,n) (A € A and (m,n) € I1;;) with norm o? = \* — 2mn (it is
the unique positive definite lattice of rank 24 with no norm 2 vectors [78]). and I[;; is the
unique even unimodular Lorentzian lattice of rank 2.

The roots of 1155 are the non-zero vectors a with o < 2. Their multiplicity is given by

paa(1 — a?/2), where poy(n) is the number of partitions of n into parts of 24 colors. Thus,

°An integral lattice L is said to be even if for all v € L, (v,v) =0 (mod2). Else it is said to be odd. The
dimension and signature of L are the dimension and signature, respectively, of the real vector space L @z R
with the bilinear form induced from L. A lattice is called Lorentzian if it has signature (m, 1) or (1,m). A
lattice is a unimodular one if L = L*, where L* is the dual of L.
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the multiplicities of the roots are given by

> pul+n)gt =1/Aq) =q ' [J(1 - ¢") 7 =q " +24 4 324 + 3200 + ... . (3.124)
n n>0
The real simple roots are the norm 2 vectors a in I1y5 1, which are in bijective correspon-

dence with points
ALA —1), AeA (3.125)

in the Leech lattice. They all satisfy (p,«) = 1 for the Weyl vector p = (0,0, —1). The

imaginary simple roots are of the form
(0,0,n), neN (3.126)

and they all have multiplicity pa4(1) = 24. These satisfy (p, ) = 0 for their inner product
with the Weyl vector.
The set of positive roots are given by the set of roots a = (A, m,n) such that m > 0 or

a = (0,0,n). Thus, the positive roots are
a€ Lt ={a€Ily,|(a,p) >0o0ra=(0,0,n)} (3.127)

The Weyl group of the algebra is generated by the real simple roots with norm 2, and
thus the Weyl group of 11755, is isomorphic to the reflection group of the Leech lattice.
Now we can write down the denominator identity of the fake monster Lie algebra from the
above information as follows. Given the set of positive roots (3.127) and the fact that they
all have multiplicity pss(1 — a?/2), we can write down the product side of the denominator
identity as
| O (3.128)

aclt
The Weyl group is known and hence we can form the sum side of the denominator identity

uning the fact that all the imaginary simple roots have norm 0 and are mutually orthogonal.

Z (_1)n1+n2+...€n1p 24 en2p 24 o
ni,mo,... 1 e

— (1—en)M(1—e)* ... (3.129)

The sum side is given by
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Putting the above two equations together gives

e’ H (1 — e @)pal1=0?/2) = Z det(w)w (ep H(l - e”p)24> . (3.130)

aclt we%\/ n>0
ne

For further examples the reader is referred to the mathematical literature[71, 79, 80]. We
will see other examples of BKM Lie superalgebras in Chapter 6 when we construct the BKM

Lie superalgebras corresponding to the modular forms occuring in the CHL strings.

3.7 Conclusion

In this chapter we have studied the theory of Lie algebras covering finite-dimensional semi-
simple Lie algebras, affine Lie algebras, and BKM Lie superalgebras. We have seen how
starting from the finite-dimensional Lie algebras the various constructions are modified and
generalized to finally get BKM Lie superalgebras. The presence of imaginary roots dif-
ferentiates the infinite-dimensional Lie algebras from the finite-dimensional ones, while the
presence of imaginary simple roots is a characterstic of the BKM Lie superalgebras. We will

put these ideas to use later in the problem of counting black hole microstates.
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Modular Forms

4.1 Preliminary Definitions:

1. Holomorphic Function: The concept of a holomorphic function (also known as an
analytic function) extends the concept of real functions of real variables to complex
functions of complex variables. Let zy be a point in C and f a function on C. We say

that f is complex-differentiable at the point zy, if the limit

o) — 1 T2 =0

Z—20 z — ZO

(4.1)

exists. For a complex valued function, this is equivalent to the Cauchy-Riemann con-

ditions on the real and imaginary parts of the complex function.

Now, let U be an open subset of C. A function f : U — C is said to be holomorphic

if f takes values in C, and is complex-differentiable at every point in U.

The sum and product of two holomorphic functions is again a holomorphic function.
The same is true of the quotient of two holomorphic functions whenever the denomi-
nator is non-vanishing. The derivative of a holomorphic function is itself holomorphic.
Thus, holomorphic functions are infinitely differentiable and can be described by their

Taylor series.

Some readers may be be familiar with the definition of holomorphic functions as func-
tions that depend on the variable z alone, and are independent of Z. The functions
defined above, when written in terms of z and z, can be seen to be dependent only on

the variable z and thus represent the same thing.
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2. Meromorphic Function: The quotient of two holomorphic functions, we said, is
again a holomorphic function. Such a function will be holomorphic whenever the
denominator is non vanishing. This leads to the notion of a meromorphic function.
A function f, on an open subset U of the complex plane, is said to be meromorphic
if it is holomorphic on U execpt at a discrete set of points in U which are the poles
of the function. The poles are just the set of points where the denominator vanishes.
The poles of a meromorphic function are isolated. The sum, product and the ratio of

two meromorphic functions is again a meromorphic function.

3. SL(N,F) (Special Linear Group): It is the set of all N x N matrices with entries
in the field F, and determinant 1. It is a simple Lie group. It is a subgroup of the
general linear group over the field IF, which is the group of all n x n invertible matrices,
with entries from F, together with the operation of matrix multiplication. We will
mostly study the Lie group SL(2,7Z), which is over the field of integers, and some of

its discrete subgroups

b

SL(Q,Z)z{(a d):a,b,c,delﬁ'andad—bc:l}. (4.2)
c

4. Upper Half Plane: The upper half plane, § , is the set of complex numbers with

positive imaginary parts. i.e.
H={r+iy|y>0z,y eR}. (4.3)

It is a Riemannian manifold with the isometry group the Lie group SL(2;R). The
study of the action of the isometry group on $) is one of the important ideas we will

understand while studying modular forms.

5. Fundamental Domain: The idea of a fundamental domain, or fundamental region
arises as follows. Given a topological space, and the action of a symmetry group on
it, the fundamental domain is the smallest possible region which can generate the
whole space by the action of the group on it. It has one and only one point from each
orbit of the group action in its interior. We will give a more complete definition of the
fundamental domain of the action of the modular group on the upper half plane, but
what we describe here is the intuitive picture that the notion of a fundamental domain

attempts to capture. For the theory of modular forms, the space we have in mind is
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the upper half plane, $), and the symmetry groups are SL(2,7Z) and its congruence

subgroups.

4.2 Towards Modular Functions

From a mathematical point of view, our problem is one of counting. We are interested in
counting the partitions of a given entity, say an integer or a vector, as a sum of its constituents
taken from some given set S. Restricting at first to just numbers, we ask if a given number
can be expressed as a sum of elements of S and, if so, in how many ways can this be done.
It is this question that we will chiefly be concerned with in the following chapters, and we
will see how the notions we introduce here fit into the idea in a natural way.

Let p(n) denote the number of ways n, an integer, can be written as a sum of elements
of S. We ask for the various properties of p(n), say for example, its asymptotic behaviour
for large n. We will learn more about the above problem in the course of our study of the
Dedekind’s eta function and related ideas. For now, we look for a way to motivate the study
of modular functions. The partition function p(n) and other functions of additive number
theory are intimately related to a class of functions in complex analysis called elliptic modular
functions. So, it is around this idea that we start our study of modular forms. This chapter
is based mostly on [81, 82, 83, 84|

4.2.1 Doubly periodic functions

A function f is said to be an elliptic function if
1. f is doubly periodic.
2. f is meromorphic.

We already know what a meromorphic function is, so we start with the doubly periodic
condition. We will see that doubly periodic functions will lead us to the set of lattices in C,
and the set of lattices in C are very closely related to modular forms, which we will come to
shortly. On the whole, we will find that elliptic functions, lattices in C, and modular forms
are related to each other very closely.

A function f over C is called periodic, with period w, if

fz+w) = [f(2) (4.4)
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whenever z and z + w are in the domain of f. An example of such a function would be the
exponential function e*, z € C with period 2mi.

A function f is called doubly periodic if it has two periods w; and wy such that the ratio
w1 /ws is not real.! Tf w; and wy are periods of f, then so is any combination (mw; + nw,)
for any m,n € Z. The pair (w,ws) is called a fundamental pair. The set of all linear
combinations mw; + nwsy is denoted Q(wq,ws). This is called the lattice generated by w;
and wy. We will see examples of such functions when we consider some of the examples of
modular forms later in this chapter.

Let M denote the set of pairs (w;,ws) of elements of C*, and L be the set of all lattices
of C. The manifold C/L(w;,ws) is obtained by identifying the points z;, 22 € C such that
21 — 29 = wim + won for some m,n € Z. Now, given M, the set of all pairs (wy,ws), we
would like to ask when do two such pairs {w;, ws} and {w], wh} of M correspond to the same
lattice in L7 The necessary and sufficient condition for two elements of M to correspond to
the same lattice in £ turns out that they should be congruent modlulo SL(2,7Z).

The pair (w],wh) is equivalent to the pair (wy,ws) if we can write (w] and w}) as
wy = awy + bwy and w] = cwy + dwy, (4.5)

where a, b, ¢, d € Z such that ad — bc = 1.
Writing it in a slightly different form leads us to the notion of unimodular transformations
and the modular group. Let 7 = £, and T = Z—é Then, the above equation in terms of the

2
7 variables is

, ar+b
= . 4.
g et +d (4.6)
The transformation ;
az +
= 4.7
fle) =220 (47)

is called a Md&bius transformation. In studying modular forms we will concentrate on such
transformations and study functions which are invariant, or have specific transformation

properties, under unimodular transformations.

'If the ratio of the periods is real and rational, it can be shown that both w; and w, are integer multiples
of the same period, and if the ratio is real and irrational, it can be shown that f has arbitrarily small periods
and hence is constant on every open connected set on which it is analytic.
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4.2.2 Mobius Transformations

The set of Mobius transformations, as defined above, will be important to us when we define
the action of the modular group on the upper half plane. So far, we have just defined what
are doubly periodic functions, and how the period of the function in two different directions
generates a parellogram which defines a lattice as functions of the periods. In seeking to
charecterize the distinct pairs of such periods which define the same lattice in C, we came to
consider unimodular transformations which relate equivalent sets of pairs or periods. These
transformations form a group, as we will see now, but before that we need to extend the
domain of definition of the transformations to the extended complex plane C = C U {oo}
(i.e. C together with the point at oo. C is also called the Riemann sphere). To do so, we
have to extend the definition to the points z = —% and z = oo. We define the value of f at

these points as follows

() =c0 and  flso)=", (48)

with the usual convention that z/0 = oo if z #.
A Mobius transformation remains unchanged if we multiply all the coefficients a, b, ¢, d
by the same nonzero constant. Thus, we lose no generality in assuming ad — bc = 1. Now,

let us associate with each Mobius transformation (4.7), a 2 x 2 matrix

A:<ZZ>. (4.9)

Also since we have assumed ad — bc = 1, detA = 1. Then, the composition of two such
transformations, it is easy to verify, is given by the matrix product of the matrices associated

to the transformations, and is also a Mobius transformation. The identity matrix [ =

10
( ) ) corresponds to the identity transformation

0
1z +0
= . 4.1
£e) = oot (4.10)
Inverting (4.7), and solving for z in terms of f(2)

df(z) — b

=7 4.11

T (4.11)
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shows that f maps C to C. Thus, the inverse of f is also a Mobius transformation and the

Al = < _d - ) (4.12)

corresponds to f~'(z). Thus, we see that the set of all M6bius transformations with ad—bc =

inverse matrix

1 forms a group. This is no surprise as the matrices A as defined above are just the subgroup
of SL(2,7) with detA = 1. In studying modular forms we study an important subgroup
of this group, where all the coefficients a, b, c,d are taken to be integers. It is called the

modular group.

4.3 The Modular Group and Fundamental Domain

The set of all Mobius transformations of the form

, _az+b

— i 4.13
- cz+d’ ( )

with a, b, ¢, d integers, and ad — bc = 1, and each matrix A identified with its negative, —A,
is called the modular group, denoted I'(1) (The argument 1 becomes clear later, when we
discuss congruent subgroups). From its definitions we can see that this is just the group
PSL(2,Z) 2. The group gets its name from the fact that the points of the quotient space
['(1) \ $ are moduli for the isomorphism classes of elliptic curves over C. It is the simplest
example of a moduli space.

Let $ be the upper half plane. We understand the action of SL(2,7Z) on C as follows. Let

b - -
g = ¢ g € SL(2,Z) be any element of SL(2,Z) and let z € C be any point in C.
c

Then, the action of g on z is given by

az+b
cz+d

g-z= (4.14)

We are representing the transformation by the matrix associated with it. We note the

2Some books call the group SL(2,Z) the modular group. We are moding out the center of the group,

+ < é (1) ), from it since it acts trivially on $).
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following about the action of SL(2,Z) on C.

Im(z)

Im(g-2) = lcz + d|2’

(4.15)
showing that the imaginary part of g - z is greater than zero, if the imaginary part of z is.
So, g.z € $if z € H. Thus, § is stable under the action of SL(2,7Z). I'(1) is generated by
the two elements S and 7" given by

SE(O _1>; TE<11> (4.16)
1 0 0 1

with the following relations between them:
S? = (ST)? = +1. (4.17)

['(1) is generated as the free product of the cyclic group of order 2 generated by S and the
cyclic group of order 3 generated by ST

The action of the generators on any z € §j is given by

S~z:—%; T -z=z+1. (4.18)
Two points z and 2’ in the upper half plane are said to be equivalent under I'(1) if 2/ = Az
for some A € I'(1). Since I'(1) is a group, this is an equivalence relation. This equivalence
relation divides the upper half plane into disjoint orbits of the group action and it suffices
to consider one point from each orbit to know the action of the whole group on the upper
half plane. This set — the union of the representative points of each orbit — is called the
fundamental set of T'(1). For sets that have a topological structure, it becomes even nicer
to consider the topological properties to study the group generating it. This is the notion
of a fundamental domain. This is in keeping with our earlier definition of the notion
where we said it captures the symmetry structure of the action of a group on a topological
space by homeomorphisms. Typically, the fundamental domain always consists of an open
set together with a set of few addition points (of measure zero).
For an open set to be the fundamental region of a group it has to have the two following

properties

1. No two points of the fundamental domain are equivalent under the group action.
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2. For any z € §) there is a point 2’ in the closure of the fundamental domain such that

2’ is equivalent to z under the group action.

Typically we require it to be connected with some restriction on its boundary. However, it
need not necessarily be connected.

The fundamental domain for the action of the modular group on §, denoted D, is
given by all z € § such that

{|Re(2)| < 3,12] > 1} U{|z| = 1,Re(z) = —%} U{|z] =1, -3 < Re(z) < 0}, (4.19)

where the first part is the open set, and the two other terms are the boundaries one on the
left, and the other an arc at the bottom, respectively. Let us denote by O(z) = {g : g €
['(1), gz = z} the stabilizer of the point z € D in I'(1). That is, the set of elements of I'(1)
whose action leaves a given element of D invariant. For all the points in D, except the above
mentioned three points, the stabilizer is just the identity of I'(1). That is, O(z) = {1} for
all z € D except for the following three points

1. z =14, in which case O(z) is the group of order 2 generated by S;

2mi/3

2. z=e , in which case O(z) is the group of order 3 generated by ST

3. z=¢e™/3, in which case O(z) is the group of order 3 generated by T'S.

With the idea of the modular group, its action on §), and the fundamental domain, we

are now ready to define and study modular functions and modular forms.

4.4 Modular Functions and Modular Forms

Modular functions are meromorphic functions on the upper half plane which are invariant

under the modular group. That would correspond to any of the following equivalent objects
1. A function from I'(1)\$ to C,

2. A function f : § — C satisfying the transformation equation f(yz) = f(z) for all
z €9,

3. A function assigning, to every elliptic curve F over C, a complex number depending

only on the isomorphism type of E, or
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4. A function on lattices in C satisfying F(AL) = F'(L) for all lattices L and all A € C*.

Generally, however, the term “modular function” is used only for meromorphic modular
functions satisfying certain growth properties. For k € Z , a function f is said to be weakly
modular of weight k, if f is a meromorphic function on $ such that for all g € I'(1) and
S

f(2)=(cz+d)*flg-2). (4.20)

From the above definition we see that the constant functions are modular functions of weight
zero. They are invariant under the action of the modular group. The product of two weakly
modular functions of weights k; and k5 is a weakly modular function of weight k1 + k5. There

are no modular functions of odd weight. For even k, the above equation is same as

flg-2)(dlg - =) = f(2)(d=)" . (4.21)

In words, the differential form of weight k, f(z)(dz)¥/?, is invariant under the action of I'(1).
Since we know that I'(1) is generated by S and T', to know the transformation of a weakly
modular function, we just need the transformation properties of the meromorphic function
f under S and T. A meromorphic function f on $) is said to be weakly modular of weight

k if it transforms under S and 7" in the following way:
f(=3) =" f(2) (4.22)

Fz+1) = f(2) . (4.23)

4.4.1 qg-Expansion:

The map z — e*™* defines a holomorphic map from §) to the punctured unit disc D’ (i.e.
open unit disc |¢| < 1 with the origin removed). Thus, we can Fourier expand f(z) as a
function of ¢(z) = e*™* as f(z) = > "y anq™. Then, since f(z+1) = f(z), consider the space
$/T, that is the quotient space of $ modulo translation by integers (a cylinder). ¢ induces
an isomorphism between $/7T and the punctured disc. Thus, a meromorphic function f on
$) which satisfies the condition (4.23) above (invariance under T'), induces a meromorphic
function, f., on the punctured disc such that f.(q(z)) = f(z). If the meromorphicity
(holomorphicity) of f. extends to 0, we say that f is meromorphic (holomorphic) at infinity.

A necessary and sufficient condition that f., is also meromorphic at 0 is that there exists
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some positive integer N such that f..(¢)¢" is bounded near 0. f., then admits a Laurent

expansion in the neighborhood of the origin.
fool@) =) ang™ . (4.24)
-N

The above is called the g¢-expansion of f about oco. The coefficients a, are the Fourier
coefficients of f.

Definition. A weakly modular function of weight k is called a modular function if it
is meromorphic at oo.

If f is holomorphic at oo, we set f(c0) = f(0). This is the value of f at co.

Definition. A modular function which is holomorphic everywhere on $ and at oo is
called a modular form of weight k (and level 1).

If f is a modular form, then there are numbers a,, such that for all z € §, f is given by

a series
o

F(2)=> anq" (4.25)

n=0
which converges for |¢| <1 (i.e. z € ). A modular form of weight k is called a cusp form
of weight k (and level 1) if f(o0) =0, i.e., ap = 0. We will use the following notation for

the action of the modular group on f.

flak = flaz)(cz 4+ d)*(deta)*/? . (4.26)

4.5 Congruence Subgroups

As the name suggests, congruence subgroups, of a matrix group, are subgroups defined by
congruence condition on the entries of the matrix. The matrix group we are interested in is
PSL(2,Z). The congruence subgroups of PSL(2,7Z) arise in the following way. Given the
group PSL(2,7), we can restrict the entries to be in Z/NZ, obtaining the homomorphism

PSL(2,7) — PSL(2;Z/N7) (4.27)

between the two groups. The kernel (i.e. the inverse image of the identity e) of this map is
an example of a congruence subgroup and is called the principal congruence subgroup
of level n,I'(N). It is given by a = d = +1, b = ¢ = 0 (mod N) (Now we see where the
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1 in I'(1) for the full modular group comes from). I'(/V) is, in fact, a normal subgroup of
['(1), as can be easily verified by seeing that A~'BA € T'(1) for any two matrices A € I'(1)
and B € I'(N). The index of I'(N) in I'(1) is the number of equivalence classes of matrices
modulo N. We can take the inverse image of any subgroup (not just the identity e) and that
gives other congruence subgroups. The ones we will be studying in relation to counting of

BPS states are the following subgroups of I'(1)

rl(N)={<ZZ>eSL(2,Z):<ZZ)z((l]’I)(modN)} (4.28)

PO(N):{<Z Z)ESL(Z,Z):(Z Z) <Z :)(modN)}, (4.29)
FO(N):{<Z Z)eSL(Q,Z):(Z Z) (: 2>(mod]\7)}, (4.30)

where * means any element. The number N is called the level of T. We can define modular

functions for the congruence subgroups just as in the case of the full modular group.

4.6 Lattices

We earlier said one of the ways in which the modular group arises is by considering the set
of all lattices in C. Lattices in C are closely related to modular forms defined above. We will
see that, upto certain transformations, the quotient $/T"(1) can be identified with a lattice
of C. Most of the discussion will not be too formal, but we give the formal definitions of
key ideas for the sake of completeness. We first define what we mean by a lattice in the real
vector space V. There are several ways of defining a lattice in a vector space, we give one
that is easiest to understand below.

A lattice in a real vector space V of finite dimension is a discrete subgroup, L, of V
such that V/L is compact. Similarly, one can define a lattice in a complex vector space.
Specifically, consider C. Given two non-vanishing complex numbers w; and ws such that
wy/wy ¢ R, we can associate a lattice, L(wy,ws), to wy and we by L(wi,ws) = {Zw; + Zws }.
We assume Im(wsy/wy) > 0. {wy,wq} is the basis of L. Let M denote the set of pairs (wq,ws)
of elements of C*, and let £ be the set of all lattices of C. The manifold C/L(w;,ws) is
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obtained by identifying the points 21,2, € C such that z; — 29 = wim + wen for some
m,n € 7.

Now, given M, the set of all pairs (wq,ws), we would like to ask when do two such pairs
{w1,ws} and {w},w)} of M correspond to the same lattice in £7 The necessary and sufficient
condition for two elements of M to correspond to the same lattice in £ turns out that they
should be congruent modlulo SL(2,7Z). Thus, we see that we can identify the set £ of lattices
of C with the quotient of M by the action of SL(2,7Z).

Also, since it is only the ratio that determines the lattice, we can act by C* on any

element (wq,wsy) of M (respectively L ) as follows
(w1,wa) — (Awq, Awa), (resp. L+— AL), XeC7 (4.31)

without changing the ratio. Thus, we can identify the quotient M/C* with $ by (wy, ws) —
z = wiy/wq, and thus, this identification transforms the action of SL(2,Z) on M into that
of I'(1) on . We make this idea precice below, where we explain what we said in the
beginning about the identification of a lattice of C with the quotient $/I'(1). The map
(w1,ws) — wy/ws gives a bijection of £L/C* onto I'(1)\$. Thus, we can identify an element
of I'(1)\$ with a lattice of C upto a homothety (dilation).

For k € Z, we say that a complex valued function, F', on L is of weight k if

FO\L)=\"F(L) (4.32)

for all lattices L € £ and all A € C*. Let us denote by F(w;,ws,) the value of F' on the lattice

L(wy,ws). Then the above formula is just
F(wr, Aws) = X FF(wy,wy) . (4.33)

We note in the above formula that the product wy*F(w;, w,) depends only on z = w; /ws.

Thus, we can always find a function, f, on $) such that
F(wi,ws) = wy ™ f(w/ws) (4.34)

Also, since F'(wy,ws) is invariant under an SL(2,Z) action on M, we see that f satisfies the
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following identity:

f(z) = (cz + d)"“f(id) for all ( Z Z ) € SL(2,7) (4.35)

Conversely, if f verifies the above formula, then we can associates it to a function F' on £
which is of weight k. We thus get a correspondence between modular functions of weight k

and lattice functions of weight k.

4.7 Examples of Modular Forms

We are now ready to see some examples of modular forms and all the theory we learnt being
put to use. We will learn such examples that we will have occasion to use later in studying

the main problem of this thesis. We will look at the following examples:

1. Eisenstein series, which will be used in constructing the twisted elliptic genera of the
K3 manifold.

2. Seigel modular forms, which give the degeneracy of the dyons in certain models of

string theory that we will consider, and are at the heart of this thesis.

3. Jacobi forms - the theta functions, and the Fourier coefficients of the Siegel modular

forms considered above.

There are many more important and illustrative examples of modular forms like the J
function, the A function (which occurred as the generating function of the multiplicities of
the roots of the fake monster algebra (3.124) ), Weierstrass @ function, and many more,
but we will not discuss them here. The above three examples are not only very important
examples of modular forms, but they also play a very important role in the construction of
the dyon degeneracy partition function. Of the three, we will spend considerable time on
Siegel modular forms given their importance from the point of view of this work. We start

with the Eisenstein series.
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4.7.1 FEisenstein Series:

Let L be a lattice in C. Consider the series > __; 1/|7|?. This series is convergent for o > 2,

where the >~ runs over the nonzero elements of I'. Thus, the series

Gon(L) =D 1/7* (4.36)

yel’

will be absolutely convergent for any integer £ > 1. It is called the (non-normalized) FEisen-

stein series of index 2k. Writing G, as a function on M we get

!/

1
G2k(w1, Wz) = Z

~ (mw + nws)?*

(4.37)

where the summation is over all pairs of integers (m,n) # (0,0) which we indicate by a
prime in the superscript. From the preceding section, the function on $) corresponding to

Gor (w1, ws) is given by

Cul2) = Y oo (4.35)

mz + n)2k

where again the summation is over pairs of integers m,n such that (m,n) # (0,0). Let us
see how the 7" and S transformations act on the form Gy(z). Under a T transformation,
z +— z + 1, therefore Gop(2) — Gar(z + 1) as follows

/ 1 / 1 / 1
Garlz+1) = ; (m(z+ 1) +n)k - ; (mz+ (n+m))? - ; (mz +n/)%* = G2,
(4.39)

Under an S transformation z — —1, thus Gy(2) — Gap(—2) as follows

2

o o o (4.40)
Thus, we see that Gai(z) (and hence, Gor(L) and Gai(wy,ws)) is a modular form of weight
2k with the value at oo given by Go(00) = 2¢(2k), where ( is the Riemann zeta function.

Often, the Eisenstein series is redefined, so that the constant term is 1, by dividing it by
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2((2k). This is called the normalized FEisenstein sertes

ng(z)
2¢(2k)°

Eo(2) = (4.41)
As before, we can also consider Eisenstein series with respect to a subgroup I'(N) of I'(1),
instead of the whole modular group. This gives Eisenstein series at level N. Below we give

some explicit expansions of some of the Eisenstein series at various levels.

4.7.2 Fourier Expansions of Eisenstein Series:

As a modular form the Eisenstein series will admit a g-expansion as formal power series in

2miT

terms of ¢(z) = e*™7. Here we give the Fourier expansion of the Eisenstein series G(z) in

terms of Bernoulli numbers B,, and the sigma function which we define below.

Definition 4.7.1 Sigma Function: For an integer r > 0 and any positive integer n, the

sigma function is defined as the sum of the r-th powers of the positive divisors of n. i.e.

o.(n) = Z d". (4.42)

1<d|n
We also set og(n) = d(n) for the number of positive divisors of n and o(n) = o1(n).

Definition 4.7.2 Bernoulli Numbers: For n # 0 the Bernoulli numbers, B, are defined by

the following equality of formal power series:

:L,n

T o0
= > B, oL (4.43)
n=0 ’

Using the above two definitions, we can write the Fourier expansion of the normalized Eisen-

stein series Foy as >

Ak
EQk =1- B—Qk ;ng_l(n)qn. (444)

For Eisenstein series of higher level, we have to compute their explicit form using various
relations between the Fs.s. A discussion of Eisenstein series at level N and their expansions

about different cusps is discussed in Appendix B. Below, as an example, we give the Fourier

3Ey as defined below is not a modular forms of weight two due to convergence. A closely related non-
holomorphic form Ej = (E2 — $2-) has weight two (See Appendix B)

Imz
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expansion for Eéz), Eég), E§4) and E§5).

(1) = 1+ 24q+ 24¢* + 96¢> + 24¢" + 144¢° + 96¢° + 192¢" + 24¢° + 312¢° + - - -
E (1) = 1412¢+ 36¢> + 12¢° + 84¢" + 72¢° + 36¢° + 96¢7 + 180¢° + 12¢° + - - -

(1) = 1+48q+24¢° +32¢° + 24¢* +48¢° + - - - (4.45)

(1) = 1+46q+18¢* + 24> + 42¢* + 6¢° + 72¢° + 48¢" + 90¢® + 78¢” + - -~ (4.46)

The Eisenstein series are very important in the theory of automorphic forms and occur in a
number of places. Here we have listed only the very basic facts about them and the interested

reader is refered to any of the references for a more complete discussion.

4.7.3 Jacobi Forms

In this section we study another important example — that of Jacobi forms. We will study
two examples of Jacobi forms - the Theta series in this section, and the Fourier-Jacobi
development of Siegel modular forms when we study Siegel modular forms in the next section.
Jacobi forms are a cross between elliptic functions and modular forms in one variable in that
one of the variable it takes is from C, while the other is restricted to $).

A Jacobi form on SL(2,7) is a holomorphic function
p:HxC—-C (4.47)

satisfying the two transformation equations

az + b T 2mimeT
~Tv — d)ke era 9= 4.48
¢<cz+d’cz+d> (cz+d)Tee=t ( )
Oz, 7+ Az + p) = e N =D G 1y N e 72) (4.49)

These two sets of transformations define the Jacobi group (See Appendix D). ¢(z,7) has a

Fourier expansion of the form
o(z,7) = Z Z c(n, r)e2min=r) (4.50)
n=0 reZr2<dmn

where k, m € N are called the weight and indez of ¢, respectively, and the Fourier coefficients,

c(n,r) = 0, unless n > 0 and 4mn — r?> > 0. Note that the function ¢(z,0) is an ordinary
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modular form of weight 2k. If m = 0, then ¢ is independent of 7 and the definition reduces
to the usual notion of modular forms in one variable.

For weak Jacobi forms, the coefficients ¢(n, r) are non-vanishing only when n > 0 relaxing
the condition involving (4nt — ¢%). Jacobi forms of integer index were considered by Eichler
and Zagier[83] and extended to half-integral indices by Gritsenko [85].

The elliptic genus of Calabi-Yau manifolds are weak Jacobi forms. Examples include:

i191 (Zl, ZQ))2

¢_21(21,22) = 5st><T2(Zl7ZQ):( 73(21)

2
¢0,1(21,2’2) = 5}(3 21722 —82( 21’22) (4-51)

217

We will see the appearance of weight zero Jacobi forms of the group I'o(N)”7 in writing

product representations for the modular form & (Z).

2N

N 1
N+1 aM(7) ¢ 21(7,2) + == Poa(7,2) | (4.52)

N
o (7.2) = N

with o™ (1) = %@ [Inn(r) —Inn(NT)] is the Eisenstein series for I'y(N). The Fourier

expansion for gb((ﬁ) at the cusp at ioo
(2) _ 2 oo 4 2
o1(T,2) = 2rpdd )4 (47 -84 g+ 0 (¢°)
2 2 2
g?{(f,z):(2r+2+;)+(2r —r— =+ )q+0( ) (4.53)
(5) 2 2 9
Go1(T,2) = 27‘+; + 2r—4+; q+0(q°).
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and about the cusp at 0 is

16 8 64
o1 = (—7 +32 - 16r) ¢ + (T—Q -+ 112 6dr + 8r2) q+ 0 (¢"?)
6 18
¢o1— (——+12—67’) ¢\ + (——+36—18r) >
r
6 42
+ (—2 — — + 72— 42r + 67 ) q+0 (¢*?) (4.54)
r

((]5% =4 + (—— +4— 27’) q1/3 4 (__ +12 — 6T) q2/5 + (__ +16 — 87’) q3/5
T r r

14 4 26
+ (——+28—14r) ¢ + (———+44 26r+4r)q+0(q6/5).
r

r2

Theta Functions

The Jacob: theta function is a function of two variable 7 and z, where 7 € $, Im7 > 0
and z 1nC defined by
I(z,7) =Y elrimiriminz) (4.55)
nez
One can look at it as a Fourier series for a function in z which is periodic with respect to

2z +— z + 1 by writing it as

2

Z an (7)™ where a, (1) = ™7 (4.56)

nel

from where the J(z,7) = ¥(z + 1, 7) part is obvious.

4.8 Siegel Modular Forms

In studying Siegel modular forms we will generalize elliptic modular forms on SL(2,Z) to a
more general class of modular forms known as vector valued modular forms. Viewed from
this point of view it becomes easier to motivate intuitively the construction of Siegel modular
forms along the lines of elliptic modular forms by suitably generalizing each notion involved
in the definition. The modular forms we have studied so far are holomorphic maps from
the complex upper half plane $ to C. For more general contexts, we would like to study
modular forms more general than ones with values in C. Vector valued modular forms map

the Siegel upper half plane (a generalization of the complex upper half plane) to a vector
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space V. We define all the relevant ideas as we go along and put together the definition of
Siegel modular forms, but before that we recollect some basic definitions.
The symplectic group plays an important role in the theory of Siegel modular forms and

we start by recalling its definition.

Definition 4.8.1 Symplectic Matriz: A 2g X 29 matriz M is said to be a symplectic matriz

if it satisfies the following condition
MTQM = Q, (4.57)
where MT denotes the transpose of M and Q is the fized nonsingular, skew-symmetric block

0 I,
o-(2 %) »

where 1, 1s the g X g identity matriz.

matriz generally taken to be

The above condition on symplectic matrices can also be expressed equivalently as follows.

Let the 2g x 2g matrix M be a block matrix given by

()
M = (4.59)
C D

where each of A, B, and D are g x g matrices. Then the above condition is equivivalent to
ABT = BAT, D" =DC", and ADT — BCT =1,. (4.60)

There is more than one way of expressing the above relations and any one suffices. {2 has
determinant +1 and its inverse is given by Q' = QT = —Q..

Every symplectic matrix is invertible with the inverse given by
M= 'MTQ. (4.61)

Further, the product of two symplectic matrices is, again, a symplectic matrix. Thus, we see
that the set of all symplectic matrices has the structure of a group. This group is known as

the symplectic group.

Definition 4.8.2 Symplectic group: The symplectic group of degree 2g over a field F, de-
noted Sp(g,F), is the group of 2gx2g matrices with entries in F, and with the group operation
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as matriz multiplication.

More generally, it is the set of linear transformations of a 2¢g-dimensional symplectic vector
space (a vector space with a nondegenerate, skew-symmetric bilinear form known as the
symplectic form) over F. For our purposes, we will only be working with Sp(g,Z). Since
every symplectic matrix has determinant +1, Sp(2,7Z) is a subgroup of SL(2,7Z) and is a
discrete subgroup of Sp(g,R) just as SL(2,Z) is of SL(2,R).

We now start our study of Siegel modular forms. We said they generalize the notion of
ordinary modular forms to vector valued modular forms, so let us understand their construc-
tion by generalizing ordinary modular forms. To define an elliptic modular form we needed
the concept of a holomorphic function on C, the upper half plane ), the group SL(2,Z)
and its action on $) (or rather, of the quotient, the modular group I'(1)) and the factor of
automorphy (cz + d)*. To generalize the definition to vector valued modular forms, we need

to suitably generalize each of the notions in the definition.

4.8.1 The group.

The group SL(2,7Z) is the automorphism group of the Z, lattice with the standard alternating

form* (,) with

((a,b),(c,d)) = ad — be. (4.62)

We consider a more general lattice Zy, ° of rank 2g, g € Z>1, equiped with a symplectic
form (,) acting on the basis vectors e;, ..., ey, f1,..., f, as follows

(ei,€5) =0, (fi, [;) =0, and (e f;) = bij, (4.63)

with d;; is the Kronecker delta. From the definition of a symplectic group above, the auto-
morphism group of this lattice will be the symplectic group Sp(g,Z). In the present context
it is called the Siegel modular group often denoted I';. Thus, the generalization of the

modular group, for ordinary modular forms, is the Siegel modular group.

*An alternating form is a bilinear form B on a vector space V such that for all v € V, B(v,v) = 0. By
this property it is automatically skew-symmetric, as it should be for a symplectic vector space.

Sfor finite-dimensional symplectic vector spaces, the dimension is necessarily even since the determinant
of an odd dimensional skew-symmetric matrix vanishes.
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4.8.2 The Upper Half Space.

Next we have to accordingly generalize the upper half space, on which the modular group
acts, to a suitable space on which the Siegel modular group acts. Modular functions were
linear transformations, with certain prescribed transformation properties, of the complex
upper half plane, which consists of elements in the complex plane with positive definite
imaginary part. Since now we are looking at linear transformations of Z,,, the space we are
looking for will be a space of matrices. The apropriate generalization to the upper half space,
known as the Siegel upper half space is the set of g X g complex symmetric matrices with
a positive definite imaginary part (obtained by taking the imaginary part of every individual

matrix entry).

Definition 4.8.3 The Siegel upper half space, denoted $, is defined as
9, =1{7 € Mc(g,g) : 7 = 7, Im(7) > 0}, (4.64)

where Mc(g, g) is the set of g x g matrices over C.

Justifying the word ‘generalization’, we get back $ as $; when g = 1.

We must now define the action of the Siegel modular group on $),, which is done as

A
follows. The action of v = <

B
€ Sp(2,Z)on T € is given b
C D) ( ) Ny is g y

7 (1) = (AT + B)(Ct + D). (4.65)

This action is well defined, in particular (C'7 + D) is invertible, and v(7) is symmetric. Also
the imaginary part of the transformed matrix, Im(+(7)), is positive definite, as it should be,
and is again in §),,.

Given this action, it is natural, as before, to look for the fundamental domain for the
action of the group on I'y. Siegel constructed a fundamental domain for g > 2 but they are
not as easy to work with as was with the case of ordinary modular forms, and are of limited
help in understanding the group action. We will not have to say much about fundamental

domains in this section.
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4.8.3 The Automorphy Factor

We now need to only generalize the automorphy factor (C7 + D)* to the case of Siegel
modular forms. This can be easily done noting that C' and D are matrices and we know the
modular form takes values in a vector space, say V/, so we need it to be a map from a space
of matrices to a vector space. Thus, we need to consider a representation of GL(g,C) in V.
Consider the representation

p:GL(g,C) — GL(V) (4.66)

where V' is a finite-dimensional vector space over C provided with a hermitian metric.

Now, we are ready to define a Siegel modular form.

Definition 4.8.4 Siegel Modular Form of Weight p A holomorphic map f : H, — V is
called a Siegel modular form of weight p if

f(y(7)) = p(CT + D) f(7) (4.67)

A B
forally = ( oD ) € Sp(2,Z) and all T € §,4. For g = 1, we require that f is holomorphic
at 0.

Modular forms of weight p form a C- vector space M, = M,(I'y), and all the M, are finite
dimensional. If p is a direct sum of two representations p = p; @ po, then Mp is isomorphic
to the direct sum M, © M,, and so we can restrict ourselves to considering M, for only the
irreducible representations of GL(g, C).

We also define scalar-valued Seigel modular forms of weight &, known as classical Seigel

modular forms, below.

Definition 4.8.5 Classical Siegel modular form: A classical Siegel modular form of weight

k and degree g is a holomorphic function f : 4 — C such that

f(y(1)) = det(cr + d)* f(7) (4.68)
for all v = (a,b;¢,d) € Sp(g,Z) (with for g = 1 the usual holomorphicity requirements at
00).

We denote by M, = M, (L',) the vector space of classical Siegel modular forms of weight
k. These spaces form a graded ring M := @M, of M of classical Siegel modular forms.
When ¢g = 1, this simply reduces to the usual modular forms on SL(2,7Z).
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4.8.4 Fourier Expansions

Analogous to the elliptic modular forms on SL(2,7Z), we can expand the vector valued
modular forms in a Fourier series. In fact, the Siegel modular forms can be constructed and
expressed in more than one ways. We will study two of these, using the theta series, and the
Fourier-Jacobi development, since not only are both important ways of constructing Siegel
modular forms in general, but both constructions are important to us particularly for our
study of the Siegel modular forms occuring in counting i—BPS states in string theory. In
constructing the partition function for the degeneracy of i—BPS states in the string models we
are interested in, we will make use of both the approaches. Below we discuss the g-expansion
of Siegel modular forms before studying the above mentioned expansions.

For every symmetric g X g matrix n € GL(g,Q), such that 2n is an integral matrix, we
can define a linear form with integral coefficients in the coordinates 7;; of the Siegel upper

half space $), as follows

g
Tr(nt) = anﬂ—m + 2 Z NijTij - (4.69)
i=1 1<i<j<g
Also, every integral combination of the coordinates is of this form. The matrix n is called
a half-integral matrix. Now, a function f : §, — C that is periodic in the sense that

f(r+s) = f(r) for all symmetrix g X g matrices s admits a Fourier expansion

f(r) = Z a(n)e* o) (4.70)

n half integral

with a(n) € C given by the Fourier transform of f(7) as

a(n) = / N f(r)e 2T gy (4.71)

where dz is the Euclidean volume of the space of z-coordinates and the integral runs over
—3 < xy; < 5. This series is uniformly convergent on compact subsets.

For the case of vector-valued modular forms in in M, we have a similiar Fourier series
where the coefficients a(n) will take values in the vector space instead of C as in the case of

periodic functions defined above and satisfy

a(u"nu) = p(u")a(n) forallu e GL(g,7Z) . (4.72)
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Like before we write ¢" = e?™T"("") and write (4.70) as

f@) = > aln)g". (4.73)

nhalf-integral

A modular form f =" a(n)e*™ ™) € M (T,) is called singular if a(n) # 0 implies that n
is a singular matrix (i.e. det(n) = 0).

With this general introduction on the Fourier expansion of a Siegel modular form, along
the lines of the g = 1 case, we move on to study other developments that exist for ¢ > 1

that provide more information about the Siegel modular forms.

4.8.5 The Fourier-Jacobi development of a Siegel modular form.

For ¢ = 1, we saw there exists a Fourier expansion for the Siegel modular forms. For
g > 1, there are other developments of Siegel modular forms which are more general than
the Fourier expansion. We will examine the Fourier-Jacobi epansion of a Siegel modular
form here. Though the Fourier-Jacobi development is valid and extremely useful for any
general g > 1, we will in keeping with the scope of this work, restrict ourselves to the case
of g = 2.

Consider (4.70), where the function f(7) : $, — C, which is periodic in the parameter
7, is expanded as a Fourier series in terms of the 2™ ("7) with the coefficients a(n) € C.
Here 7 € §,. Now, suppose we wanted to isolate the periodicity of a Siegel modular form
f(7), of weight k on I'Y, under 7’ € $,, as against 7 € §,, and Fourier expand f(7) in terms

of 627rz‘Tr(n7")

. The analog of the coefficients a(n) would now correspond to functions which
take values from §),_;. Specializing to our case of g = 2, we can Fourier expand the Siegel

modular form in terms of one of the variable and obtain what is called the Fourier-Jacobt

€ 9

z1 &
development of the Siegel modular form. Let us write the matrix Z = b
Z9 23
(notation in keeping with the additive lifts of Siegel modular forms to be studied in Chatter

5), then the Fourier expansion can be written as
F(Z) = bmlz, z)e®™m= (4.74)
m=0

where the function ¢,,(z1, z2) is now a Jacobi form of weight £ and index m (recall f(7) was

a Siegel modular form of weight k). This means ¢, satisfies
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1. om((az1 +0)/(cz1 +d), 20/ (cz1 + d)) = (cz1 + d)ke2”m025/(CZ1+d)¢m(z1, 23),
2. (21, 20 + Aoy 4 p) = e 2mmNaiDn) g (o) 20

3. ¢, has a Fourier expansion of the form

O = i Z c(n, r)e2rnaitra) (4.75)

n=0 reZr2<dmn

This gives a relation between Siegel modular forms for genus 2 and Jacobi forms and we will

use this correspondence later in deriving the degeneracy of i—BPS states from the degeneracy
of %—BPS states.

4.8.6 Theta Series

We define the genus-two theta constants as follows|86]:

0 [a] (Z) = Z q2t3) pt) ) g3(+2)? ginllabitiab) (4.76)
b (ll,lg)GZQ

b
where a = <a1>, b = <bl>’ and Z = . Z2> € H,. Further, we have defined ¢ =

az 2 22 Z3
exp(2mizy), r = exp(2mizy) and s = exp(2mizz). The constants (ap,aq, by, be) take values
(0,1). For evena®b, it yields the so called even theta constants. Thus there are sixteen

genus-two theta constants. There are ten such theta constants for which we list the values
of a and b:

(N
w
ot

9

m

) DIOIEOOIOOIOIO0)

We will refer to the above ten theta constants as 6,,(Z) with m = 0,1,...,9 representing

—OOO I

[l el D

OO ~

——0O (0e)

[ev]en]en)en] (@)
oOoO =
OO
—OOM
=

the ten values of a and b as defined in the above table. These are modular forms on a
level 2 congruence subgroup of Sp(g,Z) of weight 1/2. One can construct Siegel modular
forms on Sp(g,7Z) using the even theta constants. For example, for g = 2 the product of the
squares of the ten even theta constants gives a cusp form of weight 10 of Sp(2,Z) which we
will encounter in the degeneracy formula for $-BPS states. We will look at examples of the

above procedure in constructing Siegel modular forms in chapter 5.
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4.9 Conclusion

In this chapter we have learnt preliminary ideas about modular forms. Modular forms will be
very important to us in studying the counting of dyons in supersymmetric string theories as
the degeneracy of the %—BPS and i—BPS states are generated by modular forms. In particular
the degeneracy of i—BPS states are generated by genus-two Siegel modular forms. They also
form the link between the CHL strings and the family of BKM Lie superalgebras related to
the CHL models via the denominator identity of the BKM Lie superalgebras.

Here we have learnt the basic facts and definitions of the theory of modular forms. We
have seen functions with certain restricted transformation properties under the generators
of PSL(2,7Z) and how this leads to the idea of modular forms. We have also studied their
Fourier expansions. We then graduated to more involved modular forms — the Siegel modular
forms which are in a sense generalizations of ordinary modular forms. We studied the Fourier
expansions of Siegel modular forms, besides discussing methods of constructing them. We
will put these ideas to use in chapter 5 in constructing the various modular forms occuring

in the counting of dyonic states.
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5.1 Introduction

In chapter 2, we undertook an explicit counting of BPS dyonic black hole microstates in two
classes of four-dimensional N' = 4 supersymmetric string theories — the CHL models and the
type IT models. Both models are obtained as asymmetric Zy-orbifolds of a parent theory —
the heterotic string compactified on a six-torus (for CHL models) and the type ITA string
compactified on a six-torus. The degeneracy of i—BPS states was shown by David, Jatkar
and Sen to be be generated by a genus-two Siegel modular form generalizing the proposal
of DVV. Their results were restricted to prime values of N. In this chapter, we extend their
proposal to all allowed values of N, not necessarily prime.

Consider a i—BPS dyonic state with electric charges q. and q,,. Quantization of charges
imply that (for the Zy-orbifold)

39 =% 5 39 A =L and jq;, =m

for three integers (n, ¢, m). Let d(n, ¢, m) denote the degeneracy of such dyonic states. Then,
the degeneracy d(n, ¢, m) of dyons in the CHL models with these charges is generated by a
genus-two Siegel modular form, ka(Z), at weight £ and level N. One has

64
©,(Z)

Z d(n, 0, m) ¢"/~rts™ (5.1)

n,l,m

where factor of 64 in the numerator accounts for the degeneracy of a single i—multiplet.

When N is prime and N + 1|24, one has (k + 2) = 24/(N + 1) and these were the modular
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forms constructed by Jatkar and Sen|2]. We list below all the possible values of (N, k) that
appear in the CHL models: For the type II models, one has another Siegel modular form

N|1|[2[3/4]5|6|7|8]|11
k110|614 |3]2]2|1]|1[0

Table 5.1: (N, k) values for the CHL models

which we denote by \Tfk(Z), at weight k£ and level N. The degeneracy of i—BPS dyons in the
type IT models are generated by

64 _
U, (Z)

Z d(n, ¢, m) ¢""Nrtsm (5.2)

n,l,m

where factor of 64 in the numerator accounts for the degeneracy of a single i—multiplet.
When N is prime and N + 1]12, one has (k +2) = 12/(N + 1) and the modular forms were
constructed by David, Jatkar and Sen for N = 2, 3[31]. We list below all the possible values

of (N, k) that appear in the type IT models:

N|1]2|3[|4]5
kl1412(1]11]0

(5.3)

Table 5.2: (N, k) values for the typell models

We show that the type II modular forms Wj(Z) can be written in terms ratios of the
CHL modular forms ;,(Z).
We also construct another closely related modular form from the two aforementioned

modular forms. Let

Du(Z) ~ 27" ®(Z) and
UW(Z) ~ 5* V() (5.4)

with
21:—1/21 s 2222’2/2’1 s 23223—2’%/2’1.
In the CHL models, the genus-two Siegel modular forms ®,(Z) are related to the R? cor-

rections in the string effective action[2]. We thus have two modular forms for each class of

models.
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We will also need to study the ‘square roots’ of the modular forms ®;(Z) and ®(Z),
denoted &k/g(Z) and Ay/9(Z) respectively, in order to understand the algebra structure
underlying the degeneracy of the $-BPS states. We will obtain Kk/Q(Z) and Ay /5(Z), which
themselves are also modular forms, in the form of an infinite sum and an infinite product
along the lines of the construction of the modular forms ®,(Z) and ®4(Z). These modular
forms arise as the denominator formulae of BKM Lie superalgebras as we will study in the
next chapter, and hence, to interpret them as the sum and product side of a denominator

identity, one has to prove their modular properties which we will show in this chapter.

5.2 Modular forms via the additive lift

5.2.1 Additive lift of Jacobi forms with integer index

Now we come to the construction of the modular forms &)k(Z) and ®;(Z) from the weak
Jacobi forms constructed as mentioned in the previous section. Given a Jacobi form of
weight £ and index 1, Maals constructed a Siegel modular form of weight £ leading to an
explicit formula|87] using the coefficients of the Fourier expansion of the Jacobi form. This
procedure is known as the arithmetic or additive lift of the Jacobi form. It is known that
the ring of Siegel modular forms is generated by four modular forms with weights 4, 6, 10
and 12. For instance, the weight 10 modular form, ®4(Z), is generated by the Jacobi form
of weight 10 and index 1

$10,1(21, 22) = 01(21, )2 n(z)"® . (5.5)

More generally, consider a weak Jacobi form of weight k, index 1 and level N as

W (21, 2’2)2

(21, 22) = W gp(21) = Za(n, 0) q"rt (5.6)

n,l

where g,(2) is a genus-one modular form of weight (k + 2) at level N possibly with char-
acter. We will refer to the weak Jacobi form as the additive seed. The Maak construction
(generalized to higher levels and modular forms with character by Jatkar and Sen[2]) leads
to the following formula for weight &£ modular form given by the Fourier coefficients, a(n, ¢),
of the additive seed

O,(Z) = Z Z x(d) d" "t a (L) gtrts™ (5.7)

(n,¢;m)>0 d|(n,t,m)
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where

(n,¢,m) > 0 implies n,m € Z, , £ € Z and (4nm — (*) > 0

and x(d) is a real Dirichlet character[88] modulo N. The weight & and the character y are
determined by the modular form g,(z;).When x(d) is trivial, i.e.,

) (5.8)
1 otherwise ,

X(d):{ 0 if (d,N) #1

we obtain a level N Siegel modular form. When the Jacobi form is one with character, one
sees the appearance of a non-trivial Dirichlet character and the Siegel modular form obtained

from the additive lift is one with character.

5.2.2 Additive lift of Jacobi forms with half-integer index

We have just considered modular forms obtained from the additive lift of Jacobi forms with
integral index. We will now study examples with half-integral index, as they appear in the
denominator formulae for the the BKM Lie superalgebras Gy and éN. that we consider in
the next chapter. The simplest example of a modular form with half-integral index is given
by the Jacobi theta function, v;(z1, 22). It is a holomorphic Jacobi form of weight 1/2 and
index 1/2 with character. This Jacobi form appears as the denominator formula of the affine
Kac-Moody algebra, ?151). Further, we will see that the modular forms Kk/g(Z) and Ay /2(Z)
can also be obtained as the additive lift of a Jacobi cusp form of I'; (V) of weight k/2 and
index 1/2 1)y/21/2(21,22). The Fourier expansion of such a Jacobi form with half-integral

index is of the form:

Ypaplz,m) = Y gn0) ¢ (5.9)

n /=1 mod 2

with ¢ = exp(2miz;) and r = exp(2miz;) and s = exp(2mizz). The modular form Ay /»(Z) is
defined by the additive lift[7, see appendix C]:

k—2
Aip(Z) = Z Z X(d) d'F° g (mm Ly qr2pt2gm/> (5.10)
(n,l,m)>0 d|(n,l,m)

where x(d) is the character associated with the additive seed.

143



Chapter 5. Constructing the Modular Forms

As an example, the Jacobi form of weight 5 and index 1/2

Us1/2(21, 22) = V1(21, 22) n(z1)?, (5.11)

generates the Siegel modular form with character, A;(Z) via the additive lift. The Fourier

expansion of the Jacobi form now involves half-integral exponents. One has

1/15,1/2(21722) = Z g(n, ) qn/Q'f’Z/2 ) (5.12)

nd=1 mod 2

with g(n, ) = 0 unless 4n—¢? > 0. The modular form A5(Z) has the following expansion[89]

As(Zy= > > dh (L) ¢t (5.13)
(n,l,m)>0 d|(n,l,m)

Notice the similarity with the Maaf formula given in Eq. (5.7) with half-integral powers of ¢,
r and s appearing where integral powers appeared. Gritsenko and Nikulin have shown that
this modular form appears as the denominator formula of a BKM Lie superalgebra. As(Z)

is a modular form with character under the full modular group, Sp(2,7Z). It transforms as
As(M -Z) =" (M) (CZ + D)® As(Z) , (5.14)

where v''(M) is the unique non-trivial real linear character of Sp(2,7Z)[90] and M = (4 B) €
Sp(2,Z). An explicit expression for v!'(M) is[89]

0 —I I, B
" =1, (7 = (—1)htbett (5.15)
L 0 0 I

ur o
UF _ (_1)(1+u0+u2)(1+u1+U3)+u0u2 ’ (516)
0 U

where I, is the 2 x 2 identity matrix, B = (bl be) and U = (° 43) is a uni-modular matrix.

5.3 The additive seed for CHL models

In chapter 2, we counted the states of the black hole explicitly to obtain the full partition

function of the i—BPS states. We saw that the counting, and hence the partition function,
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can be split into three independent components — the degeneracy of the excitations of the
Kaluza-Klein monopole, the degeneracy of the excitations of the overall motion of the D1-
D5 system moving in the background of the Kaluza-Klein monopole, and the degeneracy of
the relative motion of the D1-D5 system. The product of these three components gave the
full partition function which was proportional to the modular form (T)k(Z) The product of
two of the contributions, namely the degeneracy of the excitations due to the Kaluza-Klein
monopole and the D1-D5 system combine to give a weak Jacobi form of weight k, index 1
and level N. This Jacobi form serves as the additive seed that generates the modular form
EISk(Z) This can be compared with the discussion on the Fourier-Jacobi development of a
Siegel modular form at the end of chapter 4 where the corresponding Siegel modular form
was broken up into a periodic piece and a Jacobi form. To generate the modular forms from
the corresponding weak Jacobi form, we first need to obtain the generating function of the
degeneracy of electrically charged 1-BPS states which we denoted by g,(z1) in eq. (5.6).

It turns out that the genus-one form g, itself has a very nice structure which can be
understood in terms of ‘cycle shapes’ of products of Dedekind’s eta functions obtained from
the set of symplectic automorphisms of a K3 surface[9]. The allowed cycle shapes satisfy
certain conditions on the form of their exponents that depends on the orbifolding group Zy.
This is a very interesting result that gives beautiful insight into the form of the degeneracy of
the %—BPS states and we spend some time now understanding the degeneracy of the %—BPS
states first before proving this result. It also provides us with the required information to

construct the modular forms for the values of N not considered by Jatkar and Sen|2].

5.3.1 Counting %-BPS states in CHL models

The counting of the degeneracy of %—BPS states of a given electric charge is mapped to the
counting of states of the heterotic string with the right-movers! in the ground state[35, 43, 42].
While this is conceptually easy to compute, for orbifolds, the contributions from the different
sectors to the degeneracy need to be added up. Up to exponentially suppressed terms (for
large charges), the leading contribution arises from the twisted sectors and the asymptotic
expansion takes a simple form (given in Eq. (5.20) below)[35]. This asymptotic expansion
is consistent with a product of n-functions called n-products. Let us, briefly recall the case
of 1-BPS states.

lwe take the convention that right movers are taken to be supersymmetric and left movers are bosonic in
the heterotic string.
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Heterotic string on 7°

(Electric) %—BPS excitations of the heterotic string carrying charge N = %qg are obtained
by choosing the supersymmetric (right-moving) sector to be in the ground state. The level

matching condition becomes

1
where q. € I'?*% and Np, is the oscillator contribution to Ly in the bosonic (left-moving)

sector. Thus, we see that

n = %quzﬁh;—'l.

Let d(n) represent the number of configurations of the heterotic string with electric charge
such that %qg = n. The level matching condition implies that we need to count the number

of states with total oscillator number Ny = (n + 1). The generating function for this is

Z d(n (5.18)

n=-—1

where the factor of 16 accounts for the degeneracy of a %—BPS multiplet — this is the degen-

eracy of the Ramond ground state in the right-moving sector.

The CHL orbifold of the heterotic string on 7°

In the CHL orbifold, the electric charge takes values in a lattice ' C T'?%6 of signature
(22 — 2k,6) = (2k + 2,6) that is not self-dual. Here T'" is the sub-lattice of T?26 that is
invariant under the action of the orbifold group. Let volt be the volume of the unit cell in

I'*. Define the generating function of the degeneracies d(n) of 1-BPS states as follows:

ZI/N Z d(n (5.19)

for the Zy CHL orbifold taking into account that the electric charge is quantized such that
Nq? € 27Z. Setting z; = ip/2m, and in the limit 4 — 0, one has|[35]

1 (k+2)/2
i ey~ 107 () (o (320)
P
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where the ellipsis indicates exponentially suppressed terms. Making an ansatz for g,(z;) in

the form of an n-product

N
9o(21) = [ [ n(rz0)™ = n(z0)“n(221) - n(Nz)™ (5.21)

r=1
we can identify the above n-product with the ‘cycle shape’ p = 11292 ... N*~¥_ The n-product

has to satisfy the following conditions:

1. The asymptotic behaviour of g,(z;) given in Eq. (5.20) requires

(Nay + N2 + -+ ay) =24,
a;+ag+---+ay =2(k+2), (5.22)
(19292 ... No¥) 71 = vol*

The last condition involving the volume of the unit cell is exactly what one expects for
an orbifold action on the basis vectors of the self-dual lattice I'?%* C I'??4 corresponding

to the cycle shape p.

2. Considering Zx as a cyclic permutation, one sees that the only permitted cycles are
of length 7 such that | N. One therefore imposes a,, = 0 unless r|N. Thus, when N is

prime, only a; and ay are non-zero and the condition simplifies considerably.

3. We will see later that the condition for a cycle to be a balanced one implies that
a; = ay among other things. It also implies that the first equation in Eq. (5.22) can
be rewritten as

a; +2ay+ -+ Nay =24 . (5.23)

These conditions uniquely fix the form of g,(z;). When N is prime, one sees that a; = ay =

24
N+1°

5.3.2 Symplectic Automorphisms of K3 and Moy
1

2
consider the dual description of the CHL orbifold as supersymmetric orbifold of type II

To understand the cycle shapes that appear in the 5-BPS state counting better, let us

string theory on K3 x T?. The orbifold group acts on the K3 as a symplectic (Nikulin)

involution — it acts trivially on the nowhere vanishing (2, 0) holomorphic form. It was shown
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by Mukai that any finite group of symplectic automorphisms of a K3 surface is a subgroup
of the Mathieu group, Ms3[91].

To better understand this result, consider a symplectic automorphism of K3, o, of finite
order, n (it is known that n < 8). The number of fixed points, €(n) (which depends only on

the order of o) is given by
24

B an‘n(l + %) '

and happens to match the number of fixed points for a similar element of the Mathieu group,

e(n)

Mss. The Mathieu group M,y can be represented as a permutation group acting on a set
with 24 elements. Then, Ms3 is the subgroup of My, that preserves one element of the set.

Mukai the showed that if G is a finite group of symplectic automorphisms of K3, then
(i) G acts as a permutation on H*(K3,Z) and can be embedded as a subgroup of Mos.

(i) G necessarily has at least five fixed points, one arising from H®%(K3), H*°(K3),
HY'(K3), H**(K3) and H*?(K3). The only non-trivial part is that there is at least
one fixed point in H'(K3).

The embedding of G into Ms3 C My, enables one to use known properties of Mss. In
particular, it was shown by Conway and Norton that any element of My, has a balanced
cycle shape[92]. Recall that any permutation (of order n) may be represented by its cycle
shape:

p=142%2...n% (5.24)

A cycle shape, p, is said to be balanced if there exists a positive integer M such that

(%)al (%)a2 e (%)an is the same as p. Since dim(H*(K3)) = 24, one also has the condition

D iag=24. (5.25)

i

As an example, the cycle shape 14224* is balanced with M = 4 and satisfies the above
condition. Now given a balanced cycle shape, p, consider the function g,(z;) defined by the

following product of n-functions:

pr— gp(zl) =n(z1)"n(221) - - -n(nz)™ . (5.26)

Note that when the condition (5.25) is satisfied, g,(z1) has no fractional exponents in its
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Fourier expansion about the cusp at infinity. One has
gp(z1) = Z apy ¢, with ag =1, (5.27)
m=1

where ¢ = exp(2miz;). One more condition we require of the functions is that of multiplica-
tivity. A function g(z1) = >, a,q" is multiplicative if a,,,, = a,a,, when ged(n,m) = 1. Of
the 1575 partitions of 24 (this is equivalent to all solutions of Eq.(5.25)), Dummit et. al. have
shown there exist a set of thirty multiplicative n-products each associated with a cycle that
is balanced[93, 94]. Concluding the discussion on the degeneracy of %—BPS states, we list in
Table 5.3, the various cycle shapes(restricting to shapes with M < 16), the corresponding
weight of the genus-two modular form generating the degeneracies of the i—BPS states in
the CHL model it corresponds to, and the discrete group G that is an automorphism of K3
which corresponds to the cycle shape p[9]. The groups have been identified by extracting
the cycle shape from the discussion in Chaudhuri and Lowe|95] (see also proposition 5.1 in
[96]). It is interesting to note that all cycle shapes that appear in Table 5.3 arise from the
action of Nikulin involutions on H*(K3) — this includes product groups such as Zs X Zs. In
examples involving product groups, the n-products are actually of level N < M and the true

level N is indicated in a separate column.

5.3.3 Formulae for ®,(Z) and ®,(Z)

We can use the expressions for g,(z1) and character x(d) from Table 5.3 to determine the
additive seed and hence construct the modular form ®,(Z) for N = 1,2,3,4,5,6,7,8,11
using eq. (5.7). For prime N this reproduces the result of Jatkar and Sen|2].

As discussed by Jatkar and Sen|2]|, the generating function of dyonic degeneracies, &)k(Z),

is given by expansion of the modular form, ®,(Z), about another inequivalent cusp. Let
®(Z) = (volY)? 278 ©(Z) | (5.28)
with
21:—1/21 s 2222’2/2’1 s 23223—23/2’1.

We have chosen a normalization for EISk(Z) that differs from the one used in [2] but agrees with
the one used in [30]. Consider 1-BPS dyons with charges q. and q, such that 2n = Nq?,
2m = 2, and { = q. - q,,- Then, the degeneracy d(n,?,m) of dyons with these charges is
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Cycle shape p | (k+2) | x(23) | M | N G
121 12 11
1828 8 2 |2 Zs
1636 6 313 Zs
212 6 412 |2 xZs
142244 5 () |44 Zy
115 4 515 Ls
12223%6° 4 6|6 Zg
2147 4 8 | 4| ZyxZy
3" 4 9 | 3| ZsxZs
1373 3 (=) | 7|7 Zn
12214182 3 (=2) | 8|8 Zs
2%6° 3 (Z2) |12 6 | Zy X Zg
46 3 (55) 16| 4 | Zy X Z4
12117 2 11 11| Zy

Table 5.3: The function g¢,(z1) is a modular form of weight (k + 2), generalized level A/
(true level N and character x). Only non-trivial characters are indicated in column 3. The
N = 11 example is not a symplectic involution of K3.

generated by
64

G, (Z)

= Z d(n, ¢, m) ¢"/Nrtsm . (5.29)

nd,m

A similar additive lift for 5 (Z) is given by the following sced:

Uy (21, 22)2
n(z1)°

We now provide detailed expressions for the genus-two modular forms ®,(Z) for the CHL
Z orbifolds.

Ora(z1, 22) = gp(z1/N) . (5.30)

N=1,2,35

For prime N and N + 1|24, the additive seed is given by (k+2=24/(N + 1)

<Z5k,1(2’17 22) = 791(21, 2’2)277(21)k_4 TI(Nzl)HQ = Za’(n7€> ané . (5-31)

n,l
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The additive lift is (a(n, () is as defined by the above equation)

= XX el ot (552

(n,t,;m)>0 d|(n,l,m)

This result is originally due to Jatkar and Sen|2]

N =4

From Table 5.3, we see that k = 3 for N = 4. The seed for the additive lift is

DGzl o ) = Yl b) g (5:39

Punlins) =2y oy

The additive lift is (a(n, ) is as defined by the above equation)

YooY (dTraCm ) ot (5.34)

(n,€;m)>0 d|(n,l,m)

where the Jacobi symbol ( ) is +1 when d = 1 mod 4; —1 when d = 3 mod 4 and 0

otherwise. This a Siegel modular form with level four and character 14(y) where

0 = () or 1 = (2 g) € Gul#) (5.5

where G(4) is the level four subgroup of Sp(2,7Z)[97].

N =6

From Table 5.3, we see that k = 2 for N = 6. The seed for the additive lift is

D2l o ga)tn(6:? = Saln ) . (5.30)

¢2,1 21,%2) =
( ) n(z1)* it

The additive lift is then (a(n, ) is as defined by the above equation)

Z Z d"1a (Z—T, g) q"rts™ . (5.37)

(n,€,m)>0 d|(n,l,m)
d=1,5 mod 6
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N =8

From Table 5.3, we see that £k =1 for N = 8. The seed for the additive lift is

?91(21, 22)2

b1,1(21,22) = 1(z1)8

n(221)n(421)n(821)* = Za(n, 0) q"rt . (5.38)

n,l

The additive lift is then (a(n, ) is as defined by the above equation)

P (Z) = Z Z (=2) d*1a (2, L) q"rts™ (5.39)

(n,f;m)>0 d|(n,l,m)

where the Jacobi symbol (’—3) is +1 when d = 1,3 mod 8; —1 when d = 5,7 mod 8 and 0
otherwise. This is also a Siegel modular form at level eight and character (%).

5.3.4 Constructing the modular form A; (Z)

The square-root works only for N = 1,2,3,4,5. For other values of N, we find non-integral
Fourier expansions arising from taking the ‘square-root’ of ®(Z). In these cases, the additive

seed for the modular form Ay »(Z) is

01 (21,
Qﬁ/l~c/2,1/2(21,22)=% gp(21) (5.40)

where g,(z1) are the n-products obtained from Table 5.3. This happens to be the square
root, of the Jacobi form that generates ®;(Z). Similarly, the modular form &k/Q(Z) is given
by the lift of the additive seed? :

b 21, 2 :701@1’22) z
QM<u‘/2,1/2( 1, 22) 1(z1)? 9o(21/N) . (5.41)

We have already seen the case of N = 1. For N = 2,5, the character x(d) is the trivial
one (see Eq. (5.8)) and the corresponding modular form is got by taking the appropriate

2The Fourier expansion of the Jacobi form here has powers of ¢!/ Thus one has nN € Z in eq. (5.10).
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values of k and m. For N = 3, we need a non-trivial character x¥(d) = () i.e.,

0 d=0mod3,
Y (d) = 1 d=1mod3, (5.42)
-1 d=2mod3.

Thus, when N = 3, the weight of the modular form is even as k£ = 2. However, the seed
Jacobi form, 51 5(21, 2), transforms with character wYw? thus evading the restriction on &

being odd. Taking into account the additional character, w¥, one obtains:

= > D xVa) ot g (L) ¢t R (5.43)

(ném >0 al(n, £, m)
a>0

with x¥(a) as defined in Eq. (5.42) replacing x(a). For N =1, 2,4, we will see that Ay /5(Z)
as well as ﬁk/g(Z) can be defined as the product of k even genus-two theta constants and

the additive lift is not necessary.

5.3.5 Expressions in terms of genus-two theta constants

In chapter 4 we saw that Siegel modular forms can be expressed in terms of products of even
genus-two theta constants. Some of the Siegel modular forms occuring in our study also
admit such an expression and we give it here. We mentioned earlier that the Siegel modular
form for N = 1, ®19(Z) can be written as the squared product of all the even genus-two

theta constants
Byo(Z (64 H O, ) A5(Z)) . (5.44)

Similarly, for N = 2 one can write the modular form ®¢(Z) as products of even genus-two

theta constans as follows

2(2)= (5 02) [ 0.2) =252 (5.4

m=1 mod 2

while for ®g(Z) the expression is given by

Bo(2) = (15 (2) 05(2) 66(2) 6:(2) 6s(2) 0(2) ) = [Bs(@)] . (5.00)
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Similarly, the Siegel modular forms for the N = 4 example we just considered are also

expressible as products of even genus-two theta functions

P3(Z) = (% 05 (2Z) 6, (2Z) 0 (2Z)) = [A;,,,/Q(Z)}2 . (5.47)
and )
5.(2) = (1 (2) 02(2) 00(2) ) = [Brp(a)] (5.45)

1

571 22
where Z' = | 2 i

V) 223

It is pleasing to note that the formulae for ®(Z) and ®,(Z) are squares of products
of even genus-two theta constants — this provides an independent way to see that their
square-roots are well-defined for N = 1,2,4. We have verified these formulae by comparing
the expansions from the additive lift to the one given in terms of even genus-two theta
constants to a fairly high power. The representation of the modular forms in terms of the

even genus-two modular forms gives us yet another way to obtain the modular forms.

5.4 Product formulae for ®,(Z) and ®,(Z)

Next we come to the product form of the modular forms Zf%(Z) and ®x(Z). The product
formulae for @ (Z) as well as ®(Z) can be given in terms of the coefficients of the Fourier
expansion of the twisted elliptic genera|32]. The twisted elliptic genus for a Zy-orbifold of
K3 is defined as®:

1 _
F™™ (21, 29) = NTIRR’gm ((—)FL+FRg”qL°ch062“ZFL) , 0<mn<(N-1), (5.49)

where g generates Zy and ¢ = exp(2miz1). The twisted elliptic genera are weak Jacobi forms
of weight zero, index one and level N[32].

We will need to compute the F™"(z, z5) by use of their transformation properties under
the modular group. Let v = (2%) € SL(2,Z). Then, one has

F™m (2, 29)| = Fomtembmtdn iy 20) . (5.50)

o

3The origin of these twisted elliptic genera are in threshold corrections in string theory [98, 99, 100, 101,
102]
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In particular, under T': z; — z; + 1 and S : 21 — —1/z, one has
Fo’n(Zl,ZQ) = FO’”(zl,ZQ) R Fo’n(Zl,Zg) S = F”’O(zl,ZQ) . (551)
T

More generally, the F"%(z1, z3) are weak Jacobi forms of weight zero and index one at level
N. Using their transformation properties under the modular group we can study their orbits
under the action of the generators 7" and S of the modular group and these give constraints
on the form of the F""™(zy, z9).

Consider the Fourier expansion

F (21, 29) Z Z (4n — %) ¢"r* | (5.52)

m=0 ¢e€2Z+m,neZ/N

where ¢ = exp(2miz;) and r = exp(2mizy). We will also write ¢®(n, () for the Fourier
coefficient ¢%?(4n — ¢?). David, Jatkar and Sen provide the following product formulae using

the Fourier coefficients, c*®(4n — ¢?) twisted elliptic genera[32]. One has *

N-1
~ N—1_—2rxiln/N (™™ (k1b)
_ [ 1/N kbl Z o€
Op(qr,s) =(¢"Nrs) x [T I (1 —d*"s')25-
m=01,beZ,k€Z+5;
k,1,b>0

N—

N1 amiln/N (M) (k1 p)
% H (1 qk,,,bsl) 5 Ly

m=01,b€Z,k€Z—
k,1,b>0

—_

, (5.53)

and

N—
(I)k(Qﬂ“, S) :(Q’I“S) X H H {1 27rzm/N k bsl}2 c(mn) (kl.b)

m,n=0 (k,l,b)EZ
(k,1,b)>0

N-1
y H H {1- —27rzm/quTbSl} etmm) (kL b) (5.54)

m,n=0 (k,l,b)€Z
(k,1,b)>0

4The product formula for &)k has already been obtained from the microscopic counting considered in
chapter 2.
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5.4.1 Determining the twisted elliptic genera

Rather than carry out an explicit computation, we determine the twisted elliptic genera using
consistency conditions based on their modular properties. When N is prime, these condi-
tions uniquely fix the twisted elliptic genera. For composite N, there remain undetermined
parameters. These parameters are fixed by imposing the condition that the product formula
is compatible with the product form of the seed for the additive lift given in Eq. (5.6).We
will illustrate the procedure for composite N taking the example of ®5(Z) and ®5(Z), and

sketching the idea of the general case from it.

Forming T-orbits

The action of T' on the F"™*(zy, z5) break them up into orbits.

e We have already seen that F%*(z;, 2o are T-invariant i.e., they form orbits of length

one.

e When ged(r, N) = 1, all the F"*(2, z5) form a single orbit of length N (under repeated
action of 7).

e When ged(r, N) = m, then the F™%(z, z9) break up into m distinct orbits of length
N/m.

We will use these results to impose constraints on the form of the F"*(z, 23).

Along with the F™*(zy, z5) obtained from the action of the 7" generator, it suffices to work
out F%*(21,25) and the other F"™*(zy, z5) can be obtained by the action of suitable SL(2,7Z)
operations.

Let us write the most general F**(zy, 25). For a weak Jacobi forms of T'J (N), F%(zy, 25)

can be written as follows|97]:

FO’O(Zl,ZQ) = %A<Zl722) s (555)
F%(21,2) = a A(z1,2) +an(z) Bz, %), s#0, (5.56)

where ay(z1) is a weight-two modular form of I'y(N) and

4

A1, 2) Z( 2’723)2 : B(zl,zg):<%)2. (5.57)

1=
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When N is composite, the dimension of modular forms at weight two is greater than one.
We list the possibilities for N = 4,6, 8.

ag(z1) = by Ex(z1) + by Ey(z1) (5.58)
ag(z1) = by Ea(z1) 4+ by Es(z1) + bs Eg(21) (5.59)
Ozg(Zl) = bl EQ(Zl) -+ b2 E4(Zl) -+ bg Eg(Zl) s (560)

where E(z1) is the Eisenstein series of weight-two and level N:

En(z) = 7r(11v2£1)621 [Inn(z1) —Inn(Nz)] ,

normalized so that its constant coefficient is one (See Appendix B) .
Next we use the S transformation on the ansatz for F%*(21, z3) and follow its transfor-

mation under powers of 7" and make the ansatz for a(z;) compatible with its orbit size.
e When (s,N) = 1, there are no obvious constraints.
e When (s, N) =m > 1, then there will be constraints.

— When N =4 and s = 2, then by = 0 as we need to have an orbit of size two.

— When N =6 and s = 2,4, then b; = b3 = 0 so that it is consistent with an orbit

size of three.

— When N = 6 and s = 3, then b, = b3 = 0 so that it is consistent with an orbit

size of two.

— When N =8 and s = 2,6, then b3 = 0 so that it is consistent with an orbit size

of four.

— When N = 8 and s = 4, then b, = b3 = 0 so that it is consistent with an orbit

size of two.

Further simplification occur from symmetry considerations. F"%(zy, 29) = F~"7%(21, 22). It

implies that we have the equivalence F'%*(21, zp) = FON=%(z, 25).
e For N =4, we need to only work out F%°(zy, 29), F% (21, 25) and F%?(zy, 29).

e For N = 6, we need to only work out F*%(zy, 29), F% (21, 25), F%?(21, 22) and F%3(21, ).
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e For N =8, we need to only work out F%%(zy,20), FO (21, 20), F%?(21, 22), F*(21, 22)

and F%%(z;, zy).

We now need to fix the undetermined constants which is done by looking at the conditions
on the Fourier coefficients, ¢;*(—1) and ¢"*(0) of F%%(2,, 2,). These two sets of numbers are
related to topological objects on K3 and hence can be determined by studying the action of
the group on H*(K3,7Z)[31]. Let Q%% be the number of g*-invariant elements of H*(K3,7Z)
(where g generates Zy). Also

Q" = Ncg®(0) + 2Nc*(—1) . (5.61)

Nc"*(—1) counts the number of ¢* invariant (0,0) and (0,2) forms on K3. For symplectic

involutions, these forms are invariant and hence N¢"*(—1) = 2. We thus obtain the relation
Ne*(0) = Q% —4 . (5.62)

Given the cycle shape one can compute the Q%* as follows:

e For prime N: The cycle shape is 1**2N* 2. When, s = 0, all forms contribute and
hence Q*° = 24. For any s # 0, one has Q% = k + 2. This implies that Ncy(0) = 20
and Ncg®(0) = k — 2 for s # 0

e N = 4: The cycle shape is 1#224*. This implies that Q%! = Q% = 4 and Q"2 = 8. We
thus obtain 4c)*(0) = 0 for s = 1,3 while 4¢)*(0) = 4.

e N = 6: The cycle shape is 12223262, This implies that Q%! = Q"° = 2 and Q"% =
Q"' = 6 and Q" = 8. Thus one has 6¢)°(0) = —2 for s = 1,5, 6¢3°(0) = 4 and
6cg°(0) = 2 for s = 2, 4.

e N = 8 The cycle shape is 12214182, This implies that Q%! = Q%3 = Q%° = Q7 = 2
and Q%2 = Q°% = 4 and Q%* = 8. Thus one has 8¢)°(0) = —2 for s = 1,3,5,7,
8cy*(0) = 0 for s = 2,6 and 8¢y*(0) = 4.

Further, one has
80 =2 En=2 (5.63)

Also, as a consistency check on the c®(0) one has k = 1 """ 1 ¢)*(0). For prime N all the

coefficients are fixed by the above conditions and one finds the F"™*(z, z9) for prime N are
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given by

8
FO’(](Zl, ZQ) = —A<Zl, ZQ)

N
8 2
FO,S<21, 22) = mA(Zl, 22) — mB(Z'l, ZQ)EN(Zl) (564)
8 2 2+ k
Fr,rk(zl’ Zz) = mA(zl, 22) + mB(zl, ZQ)EN( 1N )

For composite N, however, one needs more conditions to compute the F™*(zy, z5). For
N = 4, there is one undetermined parameter in F%!(z;,2,). For N = 6, there are two
undetermined parameters and for N = 8, there are five undetermined parameters. These
will have to be dealt with on a case by case basis. Let us choose the example of N = 4 and
illustrate the procedure for computing the F™*(z1,29) and from them the product form of

the corresponding modular forms ®3(Z) and ®3(Z).

5.4.2 Product form of ®3(Z)

We start by defining
3

F\“(zl,ZQ) = ZFG’b(Zl,ZQ) s (565)

b=0
and let ¢*(n,?) be its Fourier coefficients. The product form rewritten using the above
definition as|32]

222l a1l

O3(Z) = qrs H (1 - q"résm> é0_62>< (1 — (g"r's™) 2>c T (1 - (q”rzsm)4>c (5.66)

(n,l,m)

where we have omitted the argument of ¢* — it is (nm, ¢) in all occurrences above to reduce
the length of the equation.

Specializing the general formulae above to the case of N = 4, we obtain

o

(21, ZQ) = %OA(zl, 22) + (2b + %)EQ(Zl)B(Zl, 22) + (% — 2b)E4(Zl)B(Zl, ZQ)
2A(21, 22) — 2bEs(21)B(21, 22) — (& — b)Ea(21) B(21, 22) (5.67)
(21, ZQ) = 24 21, 22) + %EQ(Zl)B(Zl, 22) — (% — 2b)E4(Zl)B(21, ZQ) s

) T
0
&
I

(
(

[\

where A(z1,22) and B(z1, 29) are as defined in Eq. (5.57). This leads to formulae for the
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first two Fourier coefficients:

Fl-)=3+314+2=2 , P0)=2-1I=6
M- =1-2-b=-b-% . 0=+ (5.68)
F-)=Li+i-24m=2+1 | &20)=1-4

We need ¢!(—1) = ¢*(—1) = 0 else we will have terms of the type (1 —r?) and (1 — 7%) in
the product expansion for ®3(Z). This fixes the unfixed constant b = —1/12. We can now
write out all the terms with m = 0 in the product formulae as we now have determined that
¢'(0) = 4 and ¢*(0) = 6. These give rise to terms of the form

[T =g =g —g*)*.

n=1
This agrees with the (infinite set of) terms that appear from the product expansion of the
additive seed:

_M 2 V(22120 (420 )4
$3,1(21, 20) = 1(21)° n(z1)"n(221)"n(4z1)" .

Since we have fixed the constant b, we can now write exact expressions for the F°(z;, zy).

FO%z1,2) = 2A(z1,22)
FOl(zy, z) = F%(z,2) = LA(z1, 2) + [— LBy () + %E4(zl)]B(z1,22)
F%%(z1,20) = 2A(21,22) + $Fo(21) B(21, 22) (5.69)
Fl’k(zl, 29) = F3’3k(zl, 29) = %A(zl, Z9) + [— iEQ(%) + %EA%)} B(z1, 22)
F2%(2,29) = 2A(21, 22) — éEQ(“?—’Lk)B(zl, 29)

F22350 (2, ) = LA(, ) + |5 Ea(21) — LEi(21)| B(21, 2)

o

(21722) = %OA(ZDZQ) + %EQ(Zl)B(ZhZQ) +E4(21)B(Zla22)
%A(Zl, 22) + %EQ(Zl)B(Zl, 22) - %E4(21)B(Zl, 22) (570)
(z1,22) = 2A(z1,22) + §Ea(21)B(z1, 22) — Ea(21)B(z1, 22)

oy Ty T
) —
o
&
I
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5.4.3 Product Formula for ®3(Z)
The product formula for ®3(Z) is
_ 3
O3(Z) = q1/4TsH H <1 — ¢"rts™

a (meEZ,
nGZJr%

23: w‘bmc(“’b)(élnmfﬁ)
) = (5.71)

2m
3
twisted elliptic genera, F(%%)(z1, z,). One can also prove that all the exponents that appear

where w = exp(%%) is a cube root of unity, ¢ (4nm — (%) are the Fourier coefficients of the
in the product formulae for ®3(Z) and ®5(Z) are all even integers. One can show that the

following expressions
[4A(z1, 20) — B(z1,22)] /12,  [Ea2(z1) — 1]/24 and [Ey(z) — 1]/8

all have integral Fourier coefficients|[8, see appendix A]. A straightforward but tedious com-
putation then shows that all exponents are even integers. This will be important to us when
we construct the product forms of the modular forms AR/Q(Z) and Ay/2(Z) as ‘square roots’
of the modular forms ®5(Z) and ®5(Z) and need the exponents to be even integers for the
operation of taking square roots to be valid.

On the sum side, the integrality of coefficients in the Fourier expansion follows from the

integrality properties of the genus-two theta constants.

5.5 The additive seed for type II models

We will now construct the modular forms, W, (Z) and W, (Z), for the type IT models via the
additive lift. The basic idea is similar to what was done for the CHL models. We first obtain
the generating function for electrically charged %—BPS states — call it g,(21) as before. Then
the additive seed is as in the CHL models (eq. (5.6)). We will see that the multiplicative
n-products that appeared in the CHL model get replaced by n-quotients. This reflects the
fact that electrically charged states in the type II model arise from bosonic left-movers of

the type IIA string (See also the discussion in 2.6.1).
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5.5.1 Counting electrically charged %-BPS states

As mentioned earlier, we will define our charge in the second description. In this case,
electrically charged states appear as excitations of the type IIA string. In particular, the
degeneracy is dominated by the contribution from the twisted sector states. We will compute
the electrically charged states in a twisted sector. %—BPS states arise when the right-movers

are in the ground state and we allow all excitations that are consistent with level matching.

N=1

As a warm-up, consider the left-movers of the type ITA string on 7° In the Ramond
sector and in the light-cone gauge, one has eight periodic bosons and periodic fermions. All
oscillators, bosonic and fermionic, have integer moding and the Witten index is given by the

product of the bosonic (indicated by Wp )and fermionic contributions (indicated by We):

1 s . 8_
WBxWFz(m) x(H(l—q)) =1. (5.72)

n

Note that we have not considered the zero-modes. This is expected as there is a perfect
cancellation of bosonic and fermionic contributions in the Witten index. Of course, the

oscillator partition function is not unity and equals

y B 1 8 " " ; _ n(27)8
Zp X Zp = (711”(1 _qn)) (H(1 +q )) ) (5.73)

Interestingly, this is quotient of n-functions at level 2 (This appears in the construction of
the fake Monster Lie superalgebra [79])
N =2

The eight periodic bosons have integer moding and each contribute a factor of n(7)~! to

the Witten index while the eight anti-periodic fermions each have half-integer moding and
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contribute n(7/2)/n(7). One has

() (o)

a1
W G2

—8216

(5.74)

where the frame shape p =1
Recall that cycle shapes represent conjugacy classes of a permutation. Frame shapes
generalize this notion to conjugacy classes of elements of arbitrary discrete groups. In our

example, the discrete group turns out to be the Conway group Co; [103]| as we discuss later.

N =3

The six periodic bosons have integer moding and each contribute a factor of n(7)~! to the
Witten index. While the two other bosons have moding fractional moding of +1/3. The
fermions each have fractional moding of +1/3 and contribute n(7/2)/n(7). One has

1
[L,(1— ¢")(1 — ¢ 173)(
a3 1

W g /3)

WBXWF:

_ nH1/3\471 _  n—1/3\4
1_qn_1/3)><H(1 g ) (L =q" )

(5.75)

where the frame shape p = 1733

N =4

The six periodic bosons have integer moding and each contribute a factor of n(7)~! to the
Witten index. While the two other bosons are antiperiodic and have moding fractional

half-integral moding. The fermions each have fractional moding of +1/4 and contribute
n(7/2)/n(7). One has

1
[, (1 — g7 — g 172)2
G
(/28 gp(r/d)

WBXWF:

% H(l o qn+1/4)4(1 o qn—1/4)4

n

(5.76)

where the frame shape p = 1742644,
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N =5

Four bosons have integer moding while the other four have fractional moding of r/5 with
r =1,2,3,4. The fermions appear with fractional moding of /5 with r = 1,2, 3,4 occurring

in pairs. One has

4

X = 1 X _n+r/5\\2
W W = i =gy (LI =07

/s 1
WP gp(r/5)

(5.77)

where the frame shape p = 1715,

Multiplicative n-quotients

The counting of %—BPS states is given by n-quotients that are associated with the frame
shapes p given in Table 5.4. This nicely generalizes the corresponding result for CHL strings
where the generating functions were given by 7n-products corresponding to cycle shapes.

The appearance of the n-quotients and frame shapes may be understood as follows. It is
known that the Conway group Co; arise as the group of automorphisms of algebra of chiral
vertex operators in the NS sector of superstring[104]. Any symmetry of finite order of the
chiral superstring must thus be an element of Co;. It is known that the conjugacy classes
of C'oy are given by frame shapes.

Multiplicative n-quotients have been studied by Martin[105] and he has provided a list
of 71 such quotients — almost all appear to be associated to conjugacy classes. Table 5.4
is a subset of this list excluding the ones N = 2. The n-quotients for N = 2 violate the
multiplicative condition of Martin — he requires them to be eigenforms of all Hecke operators.
The one’s for N = 2 are not eigenforms for T as can be easily checked® It appears possible
that the condition imposed by Martin might be too strong and hence we may need to look
for a weaker condition.

The n-quotients for N = 2,3 have been derived in [31] and our results agree with the

expressions given there.

5We thank Martin for useful correspondence which clarified this point.
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k| b p [ x(Ey|N|G

2| 178216 | 1169-8 2 | Z,
— — -3

1| 17337 | 19373 | () | 3| %Zs

1| 1742644 | 142644 =) | 4| Z

0] 17'5° | 1°571 5 | Zs

Table 5.4: n-quotients with N < 5: p is the frame shape, k42 is the weight of the n-quotient.

5.5.2 Product Formulae for the type II models

David, Jatkar and Sen have provided product formulae for the N = 2,3 type II models|31].
As for the CHL models, there are given in terms of the twisted elliptic genus for 7. The
product formulae for W;,(Z) and W,(Z) are identical to those appearing in the CHL models
—eq. (5.53) and (5.54) — the coefficients used are however those from the type II twisted
elliptic genus. For N = 2,3, F"*)(7, 2), David, Jatkar and Sen find

FOYr 2y = 0

1
FOI(r 2) = N6 sin4<

7'('_8) 191(7',24-%)191(7’,—24‘%)
N (%)
for1<s<N-1,

AN (et 5+ ) (=2t +47)

() —
(T,Z) (N_1)2 191(%—’_%7_)2 )
for1<r<N-1,0<s<N-1. (5.78)

The twisted elliptic genera for type II models can be rewritten in terms of the elliptic genera
that appear in the CHL models. For the Z; orbifold of the type II model, F*)(7, z) can be

written as
FpO(r,2) = 2P e (T02) = FN2) e (7, 2), (5.79)

and for the Z3 orbifold of the type I model, they can be written as

7,8 3 8 1 7,8
Fip(1.2) = 5PN onn(7.2) = 5FND e (7, 2). (5.80)

This implies that the type IT modular forms for N = 2,3 can be written in terms of the

Siegel modular forms for the CHL models. In order to see this, we rewrite the n-quotients
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that appear for N = 2 in a suggestive manner as follows

n'(2r) _ n°@27)n'(r)

U R O
_ G0 _a'Bnr )
gs(1) = T T (5.81)

In this form it is evident that the modular form g, is a ratio of two modular forms, with
the numerator corresponding to the square of the cusp form which counts half BPS states
in the Zs CHL model and the denominator is a cusp form which counts half BPS states in
the heterotic string theory. This naturally suggest that the Siegel modular form for type 11

Zy model is a ratio of Siegel modular forms,

P6(Z)?
Uy (Z) = : 5.82
2( ) (I)10(Z) ( )
In the Z3 case, we find that g; is again a ratio, suggesting the relation
Ny (Z)3
Uy (Z2) = —=+ 5.83
1( ) A5(Z) ’ ( )

One can easily see that both these identities follow from the product formulae using the
relation between type II and CHL twisted elliptic genera given in eq. (5.79) and (5.80).

Further, it also follows that a similar relationship holds for the other modular forms.

7 Pg(Z)?
Uy (Z) =
2( ) (I)10(Z)
~ Ay(Z)?
Uy (Z) = .84
We conclude this section with conjectural formulae for the N = 4 type 1T model:
~ N3(Z)Ag)5(Z)? A3(Z)Ag)5(Z)?
Uy (Z) = d¥,(Z2) = : .
1( ) A5(Z) an 1( ) A5(Z) (5 85)

5.6 Conclusion

In this chapter we have studied the various modular forms that appear in the couting of

dyonic states in A/ = 4 string theories that we are studying in this thesis. The degeneracy
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of the electrically charged i—BPS states are generated by a product of n-functions that are
associated with cycle shapes. Their generalization, given by n-quotients that are associated
to the frame shapes give the generating function of the degneracies of the i—BPS states in
the type II models. The n-products give a nice way of relating the degeneracy of the i—BPS
states to the symplectic automorphisms of the K3 surface. Similarly, the n-quotients are
related to the conjugacy classes of C'oy, which are given by frame shapes.

The degeneracy of the i—BPS states are given by genus-two Siegel modular forms &)k(Z)
Also, the string R? corrections are given by another modular form, denoted ®;(Z). In this
chapter we have studied the construction of these modular forms in more than one ways. The
additive lift gives the modular forms as an infinite sum. The construction of the genus-two
Siegel modular forms from an additive lift was discussed as the Fourier-Jacobi development
of Siegel modular forms in chapter 4. The modular forms are constructed from a seed
which is a weak Jacobi form of the same weight and index 1 and level N. The weak Jacobi
form is obtained from the cycle shape p is % grho(z1). The modular forms were also
constructed as an infinite product with exponents related to the twisted elliptic genera of
K3. We have also seen expressions for the modular forms as products of even genus-two
theta constants in some cases.

The same procedure was used to obtain the modular forms Aj(Z) and A,(Z) which are
the ‘square roots’ of the modular forms ®;(Z) and ®(Z) respectively. They were constructed
as the additive lifts of weak Jacobi forms with half-integer indices. The fact that all the
exponents of the product form of ®,(Z) and ®,(Z) are even integers immediately yields
the product form of Ay(Z) and Ax(Z). In addition, some of the modular forms have been
obtained as products of even genus-two theta constants.

It is important to obtain the modular forms in the sum and product forms separately.
This is useful when we relate them to the denominator identity of BKM Lie superalgebras.
We will study this idea in the next chapter where we understand the relation between the
CHL strings and the family of BKM Lie superalgebras that are related to them with the

modular forms being the bridge between the two.
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6.1 Introduction

In this chapter we focus on the algebraic side of the degeneracy of i—BPS states. As men-
tioned previously, there is an algebraic structure underlying the degeneracy of the i—BPS
states, given by a family of BKM Lie superalgebras. These BKM Lie superalgebra are re-
lated to the dyonic degeneracies via the modular forms generating the degeneracies of the
i—BPS states and R? corrections to the string action. These modular forms occur as the
denominator formulae of the various BKM Lie superalgebras. We will explore this idea in
this chapter, studying the BKM Lie superalgebras corresponding to the various CHL models.
The discovery of new BKM Lie superalgebras has been one of the main results of the work

presented in this thesis.

6.2 The Algebra of i—BPS States

There has emerged a promising new direction by studying the algebra satisfied by the de-
generacy of the i—BPS states. The ‘square roots’ of the genus-two modular forms generating
the degeneracies have been found to be related to a general class of infinite-dimensional Lie

algebras known as Borcherds-Kac-Moody (BKM) Lie superalgebras and this endows the de-

1
4

Following this insight, physical ideas of the theory such as the structure of the walls of

generacy of the ;-BPS states with an underlying BKM Lie superalgebra structure[17, 7, 8|.

marginal stability[33] have been understood from an algebraic point of view as the walls of
the fundamental Weyl chamber|17, §].
It was observed by DVV that the Siegel modular form constructed by them, that gen-
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erated the degeneracy of i—BPS states, was also studied by Gritsenko and Nikulin in the
context of an infinite-dimensional BKM Lie superalgebra|86]. More precisely, the modular
form ®,y(Z) is the denominator identity of the BKM Lie superalgebra that Gritsenko and
Nikulin studied. When Sen and Jatkar constructed the modular forms that generate the
degeneracy of i—BPS states in CHL models, it was natural to look for an underlying alge-
braic structure along the lines of the N = 1 models. This was studied in [17, 7, 8, 9]. We

summarize the results below.

6.3 The BKM Lie superalgebra G;

The BKM Lie superalgebra corresponding to the CHL model without any orbifolding with
its denominator identity given by the square root of the modular form ®14(Z) was studied
by Gritsenko and Nikulin[86]. We denote it by Gy, where the subscript denotes the N of the
orbifolding group Zy. The Cartan matrix of G; is given by

2 =2 =2
ALII = —2 2 =2 . (61)
-2 =2 2

It is a rank 3 hyperbolic matrix, as one of the eigenvlaues of the Cartan matrix is negative.
The algebra G; has three real simple roots, call them ¢d;,d, and 03 whose Gram matrix
(matrix of inner products) is Ay ;7. The three real simple roots define the root lattice
My = 701 & Zdy & Zo3 and a fundamental polyhedron, M;;, which is given by the region

bounded by the spaces orthogonal to the real simple roots.
RMyy={zeMpeR]|(x,d) <0,i=1,2,3}. (6.2)

Let us write the roots in terms of a basis (fs, f3, f_2) which are related to the ¢; in the
following way:

01 =2fa—f3, da=1f3, 0O3=2fo—f3. (6.3)

The non-vanishing inner products among the elements f; are:

(fo, [=2) =—1, (fs,f3)=2. (6.4)
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Thus, (f2, f3, f_2) provide a basis for Minkowski space R*!. Consider the time-like region
V={reR>» | (z,2) <0},
in R%!. Let VT denote the future light-cone in the space and

7 =2zfo+ 2fs+2fo, (6.5)

be such that Z € R*! + iV *. This is equivalent to Z € Hy, the Siegel upper-half space[86].
In addition to the three real simple roots, there are three primitive light-like vectors, i.e.
(my,m) = 0: 2fy, 2f 5 and (2f_ o — 2f3 + 2f5) each with multiplicity 9 and two primitive
vectors satisfying (n,n) < 0: (2f_o+2f2) and (2f_5 — f3+ 2f3). These roots are imaginary
since their norm is not positive definite, i.e. (n,17) < 0. The imaginary light-like roots are

generated by the formula

1= “m(tn)g' = [J(1 - ¢")° = VIR (6.6)

3
e ke ()

Negative value of multiplicity implies that the root is fermionic. For instance, one has
m(2ny) = —27. Thus, such roots are fermionic and hence we have a superalgebra. The
imaginary simple roots belong to the space M;; "R M ;. Let us look at the Weyl group of
the BKM Lie superalgebra G;.

6.3.1 The Weyl Group W(A4; ;)

Given the three real simple roots (d1,09,03), whose Gram matrixis given by the matrix
Ay 11, the Weyl group, W(A; 1), is the group generated by the three elementary reflections,
(wy, we, w3), with respect to the three real simple roots. The Weyl group W(A; ;;) can be
written as a normal subgroup of PGL(2,Z). Recall that PGL(2,7Z) is given by the integral
matrices (¢ %) with ad — be = £1. One has|[86] (see also [106, 17])

PGL(2,7) = W(Ay11) x S5, (6.7)

where S3 is the group of permutations of the three real simple roots. Also, the lattice M;;

has a lattice Weyl vector which is an element p € M;; ® Q such that all the real simple roots
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satisfy!
(p’ 51) - 2

One has p = (6; +02+93)/2 i.e., it is one-half of the sum over real simple roots. The positive

= 1. (6.8)

real roots are then given by
e = (W(51,52,53) N M;I) , (6.9)

where W refers to the Weyl group W(A; ;1) and M}, = 7,6, & 7,02 © Z, ;.
Choosing a set of matrices for the basis fs, f3, f_2, we can make the action of the Weyl

group explicit. Consider the following identification:

1 0 01 0 0
f2<—><0 0) 7f3<—><1 0) , fa e <0 1) . (6.10)

With the above identification, the root vectors are given by the matrices

51:<2 1) ,52:<0 _1> ,53:<0 1). (6.11)
10 -1 0 1 2

1/4 1/2
/2 1
see Eq. 5.2]. In terms of the variables ¢, 7, s these real simple roots are =% ¢gr and sr

One also has p¥ = < ) in agreement with the general formula given in ref. [8,

respectively. The norm of a matrix N € M, is then given by —2detN. The Weyl group

has the following action:
N—A-N-A" A€ PGL(2,Z)and N € M . (6.12)

The S5 mentioned in Eq. (6.7) is generated by

0 1 1 1
r_1:<1 O) : T0:<0 _1> : (6.13)

satisfying 72, = 72 = (r_179)®> = 1. The three elementary reflections that generate W(A; ;7)

!The standard convention is to define p through the condition (p,d;) = (&;,6;)/2 for all real simple roots
;. However, we reproduce the notation of Gritsenko and Nikulin [86] (which differs by a sign) here.
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are given by the following PG L(2,Z) matrices:

10 1 0 1 2 6.1
w — w = w = . .
o 2o 1/ \o 1) \o -1

6.3.2 The Weyl Chambers

G, is an elliptic BKM Lie superalgebra. This means that the volume of the fundamental Weyl
chamber is finite. This is an important property and ensures many nice properties for the
BKM Lie superalgebra. Gritsenko and Nikulin have classified rank-three hyperbolic BKM
Lie superalgebra admitting a lattice Weyl vector with finite volume of the fundamental Weyl
chamber|[107|(see also [108, 109]). Recall from the discussion about the Weyl chambers of Lie
algebras in Chapter 3 that the choice of the basis of simple roots determine the fundamental
Weyl chamber. A different, but equivalent, basis of simple roots will give a different Weyl
chamber which is related to the first Weyl chamber through Weyl reflections. The Weyl
group acts simply and transitively on the set of Weyl chambers. Cheng and Verlinde have
studied the walls of the Weyl chamber in relation to the moduli space of the CHL string and
found that the walls of the Weyl chamber of the BKM Lie superalgebra can be identified with
domains in the moduli space, specifically, they coincide with the walls of marginal stability
of the 1-BPS states of the theory [17]. We will now summarize their arguments and give a
correspondence between the walls of the Weyl chambers of the BKM Lie superalgebras and
the walls of marginal stability.

Cheng and Verlinde[17] and Cheng and Dabholkar[8] have shown the for N = 1,2,3
CHL models, the fundamental domains are the Weyl chambers of a family of rank-three
BKM Lie superalgebras. This was extended to the N = 4 case in [9]. Each wall (edge) of
the fundamental domain is identified with a real simple root of the BKM Lie superalgebra.
Recall that we saw in chapter 2 that each wall corresponds to a pair of rational numbers

(2 %) This is related to a real simple root « of the BKM Lie superalgebra as follows:

b 2bd d+b
(2, 4) “ —a= aa +be , (6.15)
e c d ad +bc  2ac

with ac € NZ and ad, be, bd € Z. The norm of the root is[17]

—2det(a) = 2(ad — bc)* = 2 .
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The Cartan matrix, AV), is generated by the matrix of inner products among all real simple
roots. For instance, A% = A, ;; defined in Eq. (7.2).

The ‘square root’ of the modular form &)k(Z) that generates dyon degeneracies, ﬁk/g(Z),
is related to the Weyl-Kac-Borcherds denominator formula via its additive and multiplicative

lifts. Finally, the extended S-duality group is given by?
W(A™)) % Dy | (6.16)

where W(AWM) is the Weyl group generated by Weyl reflections of all the simple real roots®
and Dy is the dihedral group that is the symmetry group of the polygon corresponding to
the Weyl chamber.

6.3.3 The Denominator Formula

Now we come to the most important part of the connection between the CHL strings and
the BKM Lie superalgebras. The connection to the CHL strings of the BKM Lie super-
algebra comes from the denominator formula. Gritsenko and Nikulin have shown that the
denominator formula of the GKM Lie superalgebra G, is related to the modular form A;(Z),
of Sp(2,7Z), that transforms with character[86]. The modular form, ®17(Z), that generates
the degeneracy of 1-BPS states is equal to A5(Z)?. The Weyl-Kac-Borcherds (WKB) de-
nominator formula is a special case of the more general WKB character formula for Lie
algebras which gives the characters of integrable highest weight representations of BKM Lie
superalgebras|[55]. The WKB character formula applied to the trivial representation gives
the WKB denominator formula. Let G be a BKM Lie superalgebra and W its Weyl group.
Let L, denote the set of positive roots of the BKM Lie superalgebra and p the Weyl vector.
Then, the WKB denominator identity for the BKM Lie superalgebra|71]| G is

H (1 —e~o)mult(e) — g=r Z (detw) w(e” Z e(a)e”) (6.17)

acl 4 wew acl 4

where mult(a) is the multiplicity of a root o € L[4, 71, 110, 111]. In the above equation,
det(w) is defined to be +1 depending on whether w is the product of an even or odd number

of reflections and e(«) is defined to be (—1)" if « is the sum of n pairwise independent,

2The extended S-duality group is defined by including a Zs parity operation to the S-duality group I'y (IV).
For N =1, this is the group PGL(2,Z)[17].
3This is equivalent to the Coxeter group generated by the Cartan matrix AMY),
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orthogonal imainary simple roots, and 0 otherwise. In the case of BKM Lie superalgebras
the roots appear with graded multiplicity — fermionic roots appear with negative multiplicity
while bosonic roots appear with positive multiplicity. Following the ideas of Borcherds [4, 71],
Gritsenko and Nikulin constructed a superalgebra, G; by adding imaginary simple roots
— some bosonic and others fermionic. Let us write the Weyl-Kac-Borcherds denominator
formula separating it into two parts one of which involves the imaginary simple roots and

the other which doesn’t, as follows *

efﬂl(Pvz) H (1 _ efwz(a,z))mu“(a)

acl

= Zdet(w) e~ mHw(p)2) _ Z m(n) e"™wetn:2) (6.18)

weWw neEMNRy My

where the element Z = 23 f5 + 25 f3 + 21 f_2 belongs to the subspace R*! 4V ~ H, obtained
upon complexification of the cone V. Of the two terms in the sum side, one arises from the
real simple roots (7 = 0) and the other arising from the imaginary simple roots (1 # 0). The
first term thus arises as the sum side of the Lie algebra with no imaginary simple roots. The
second term is specific to BKM Lie superalgebras due to the presence of imaginary simple
roots with ‘multiplicities’ m(n) € Z. These multiplicities are determined by the connection
with the automorphic form A5(Z) viz. (6.6). One compares the sum side of the denominator
formula to the sum form of the modular form obtained from the additive lift and adds enough
imaginary simple roots such that the automorphic properties are attained.

The LHS of (6.17) is identified with the product formula for As(Z), and this determines
the positive roots L, along with their multiplicities— again fermionic roots appear with
negative multiplicity in the exponent. However, there is a subtle issue in extracting the
multiplicities from the exponent in the product formula — the product formula gives only
the difference between the multiplicities of the bosonic and fermionic generators and hence
is more like a Witten index. 4Comparing with the denominator identity (6.18), the common
factor ¢*/2r'/2s'/2 can be identified with exp(—m(p, 2)) giving us the Weyl vector p.

Given the modular form As(Z), one can systematically construct the BKM Lie super-
algebra G; from it. We will illustrate this procedure for the case of the algebra G; and the

same is used to construct the other algebras that occur in this chapter. Before we summarize

4Written here in the notation of Gritsenko and Nikulin, where in particular, one needs to replace p by
—pin Eq. (6.17) (See also section 6.3.1).
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the procedure to recognize the algebra, given the denominator identity, it will be useful to

list some of the observations that can be made about the expansions of the modular form
A5(Z).

6.3.4 Analyzing the Modular Forms

1. Using the expressions for the real simple roots, (d1, d2, d3) and their inner product with

Z, one sees that

—7i(d1, —7i(62,Z) — ,',,—1 —7i(d3,

e 2 —qr, e and e Z) — sr .
(Recall that ¢ = exp(2miz;), r = exp(2mize) and s = exp(2miz3).) Thus, one has
exp(—mi(p,Z)) = ¢'/?>r'/2s'/2. Further, one has the identification relating the root

aln, £, m] to g"rts™:

n, f_.m —mi(aln,l,m],Z
s = eomilalntm)Z)

where the root a[n, ¢, m] = nd; + (—l+m+n)ds +mdz has norm (2¢2 —8nm). The real

111]

simple roots are (afl, 1,0], a0, —1,0], [0, 1,1]) and the Weyl vector is p = a[3, 5, 3

in this notation.

2. In the expansion for A5(Z), all terms (in the expansion given in the Appendix) that
arise with coefficient +1 arise by the action of all elements of the Weyl group generated
by the three real simple roots. They do not involve the imaginary simple roots of the
BKM Lie superalgebra. For instance, the terms arising from Weyl reflections associated

with the simple real roots of G; are

(q3/2r3/231/2,ql/Qr_l/Qsl/Q,q1/2T3/233/2) _ ql/zrl/Qsl/z(qr, r_l,sr) .

Note that we need to pull out an overall factor of ¢*/?r/2s'/2 in the sum side of the

denominator formula to extract the roots.

3. The BKM Lie superalgebra G; has an outer S3 symmetry which permutes the three
real simple roots. It is easy to see only the §; < J3 (or equivalently the ¢ < s)
symmetry in the As(Z). A formal proof can be given by following Gritsenko and
Nikulin’s argument for G, |86, see Prop. 2.1]. Their proof makes use of the non-trivial

character v' appearing in the modular transform As(Z) (see eq. (5.14).
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4. A practical check of the outer S3 needs us to verify the d; < Jy invariance of A5(Z).

One can show that under this exchange
an,l,m| < a|—l+m+n,—{+2m,m| .

For instance, the light-like root «[0, 0, 1] is mapped to another light-like root a1, 2, 1].
This relates the term ¢'/211/253/2 to ¢3/2r%/253/2 — both have multiplicity —9 in As(Z).

Having identified the two sides of the denominator identity with the sum and product
representations of the modular form, one can identify the BKM Lie superalgebra that corre-
sponding to the particular modular form as follows. Starting with the product representation
of the modular form, and comparing with the above equation, gives us the set of positive
roots « of the BKM Lie superalgebra, together with their multiplicities. All multiplicities in
the product side are integral as the multiplicities in the product formulae are even integers
as discussed earlier. Also, expanding the modular form, we equate the expansion to the sum
side (R.H.S) of the denominator formula where each term is thought as coming from the
Weyl reflection of a positive root with respect to an element of the Weyl group of the BKM
Lie superalgebra. Thus, interpreting the modular form as the denominator formula, we can
extract the positive roots and corresponding multiplicities, the set of simple roots, the Weyl
group, the Weyl vector and from the above information, the Cartan matrix of the BKM Lie
superalgebra.

Before concluding our discussion of Gy, we just emphasize two points: 1)Though it is the
modular form ®,(Z) that generates the degeneracies of the i—BPS states, it is the modular
form As(Z) = (®10(Z))"/? that occurs as the denominator of the BKM Lie superalgebra G,
and 2) One needs both the sum and product representations of the modular forms to compare
it with the denominator identity of a BKM Lie superalgebra and reconstruct the algebra from
the denominator identity. This concludes our discussion for the BKM Lie superalgebra G
coming as the denominator identity of the modular form Aj(Z). Next we look at the case of

the families obtained by taking a Zy-orbifold of the theory giving the various CHL strings.

6.4 The BKM Lie superalgebras Gy and QNN

As mentioned in the previous chapter, only for the case of the unorbifolded theory the
modular form generating the degeneracy of the i—BPS states and that generating the R?

corrections to the effective action are the same. For all the CHL strings generated by taking
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a Zy orbifold, the modular forms ®,(Z) and ®(Z), are related as in eq. (5.4), but different.
We will first look at the BKM Lie superalgebras G corresponding to the modular forms
generating the degeneracy of i—BPS states, i.e. the modular forms EDk(Z), before going
to the BKM Lie superalgebras Gy related to the modular forms ®4(Z). The method for
constructing the BKM Lie superalgebra from the modular forms is along the same lines as
discussed for the case of ®19(Z). We will now discuss each of the BKM Lie superalgebra Gy

and Gy below.

6.4.1 The BKM Lie superalgebra 52

The BKM Lie superalgebra G» was constructed by Gritsenko and Nikulin, Cheng and Dab-
holkar observed that it is the BKM Lie superalgebra corresponding to the modular form
As(Z)[8] which is the square root of the modular form ®g(Z) generating the degeneracies
of the 1-BPS states in the Z, orbifolded theory. As(Z) is also a level 2 modular form with
character. The BKM Lie superalgebra Gs is given by the Cartan matrix

9 2 —6 -2
2 2 —92 —§

A = . 6.19

=g 2 9 _9 (6.19)
9 6 -2 2

As before, the Cartan matrix is hyperbolic with one negative eigenvalue and rank three. It

has four roots which, in the convention introduced above for G;, are given by the following

0 -1 21 2 3 01
01 = , 09 = , 03 = , 04 = ) 6.20

This can be understood as follows: When one takes the orbifold because of the quantization

matrices

of the T-duality invariants, due to the presence of the twisted states, not all the splits of the
charges in (2.69) are allowed. Instead one has to restrict oneself to the congruence subgroup
of PGL(2,7)

C

To(N) = { (a Z) | ad — be = +1,¢ = 0 mod N }/{il} . (6.21)
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Using the relation between the split of charges, the set of positive real roots relevant for the

wall crossing for the Zy orbifolded theory are of the form

2n (
o™ = [ , (a,a)=2,(n,m,f) >0,m modN . (6.22)
¢ 2m
From this, one sees that the two roots agN) = 01 and agN) = 09 occur for all N. In terms

of the variables ¢, 7, s these roots are r—1, qr, qr3s® and s?r. The extended S-duality group is
given by
F1(2) = W(AQJ[) X DQ , (623)

where W(A®)) is the Weyl group generated by Weyl reflections of all the real simple roots
(6.20) and Dy is the dihedral group that is the symmetry group of the polygon corresponding
to the Weyl chamber.

1/2 1/2

The Weyl vector is given b =
y g Y p <1 o1

) and is space-like.

6.4.2 The BKM Lie superalgebra 53

The BKM Lie superalgebra 53 is constructed from the square root of the modular form
®,(Z), denoted A,(Z)[8].The BKM Lie superalgebra Gs is given by the Cartan matrix

9 —92 10 —14 —10 -2
2 2 —2 —10 —14 -10
10 -2 2 -2 —10 —14
Ay 1y = . 6.24
M=y 10 -2 2 —2 —10 (6:24)
10 —14 —-10 -2 2 -2
92 10 —14 -10 -2 2

In addition to the two real simple roots d; and s, it has 4 other real simple roots which are

15 47 2 5 0 1
03 = , 0y = , 05 = , 0 = ) 6.25
’ (5 6) ! (7 12) ] (5 12) 6 (1 6) (6.25)

given by
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In terms of the variables ¢, 7, s the six roots are r~!, qr,¢*r°s%, ¢*r"s% qr°s® and s*r.The

extended S-duality group in this case is given by
F1(3) = W(A&[[) X D3 . (626)

1/3 1/2

The Weyl vector is given b =
y g y p (1 o1

) and is space-like.

6.4.3 The BKM Lie superalgebra 54

The case of the Z, orbifolding is a very interesting one. This is the first example where
the N of the orbifolding group is not prime. As we saw in the previous chapter, when we
constructed the modular forms ®,(Z) and ®,(Z) explicitly, the construction of the modular
forms for prime N is relatively simpler because the balanced cycle shape conditions give
a, = ay = NZ—_A;l and all other a, = 0, leaving no undetermined coefficients. For the case of
non-prime N, however, there remain a, which are not completely fixed by the cycle shape
conditions alone and one needs to use other consistency conditions to fix them. The BKM
Lie superalgebra G, for N = 4 is generated by the modular form (53/2(Z))2 — &4(Z) which
was constructed in Chapter 5. Even the BKM Lie superalgebra for the N = 4 model is very
different in nature to the ones for N = 1,2 and 3. We saw that the BKM Lie superalgebras
for N = 1,2,3 were all of elliptic type with finite volume of the Weyl chambers and had
3,4 and 6 real simple roots respectively. The BKM Lie superalgebra 54 is of parabolic
type with infinite number of real simple roots which is markedly distinct from the N = 1,2
and 3 cases. To write the Cartan matrix of 54, let us order the real simple roots into an

infinite-dimensional vector as

X=( ., T 9,0 1,00, 21, %2,23,...) = (..., a1, 81,00, Bo, -1, B, .. ) -

Equivalently, let

s € 2Z
v, =4 Gz (6.27)
ﬁ(m,l)/g , me22Z+1.

The Cartan matrix is given by the matrix of inner products a,, = (z,, z,,) and is given by

the infinite-dimensional matrix:

A — (au) where aum =2 —4(n—m)? (6.25)
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with m,n € Z. 1t is easy to show that the following family of vectors are eigenvectors of the

Cartan matrix with zero eigenvalue.

(6.29)

with : indicating a semi-infinite sequence of zeros. One can show that A has rank three. As

usual, the Weyl vector p satisfies

(p,xym)=—1, VYm . (6.30)
1/4 1/2 oo .

12 1 and is light-like. Recall that the Weyl vectors

for the N = 1,2 and 3 theories were space-like.

The Weyl vector is given by p =

Let us explicitly write the first eight roots of the infinite number of real simple roots of
G, in terms of PGL(2,Z) matrices

0 -1 2 1 0 1
g = , = , 1= ,
9 7 6 17 6 7
= , D , _ , 6.31
a (7 24) Pz <17 48) o <7 8) (6:31)
5 12 17 20 31
= , g = :
Tl oo >~ \31 48

In terms of the variables ¢, r, s these roots are given by

Pl g rst s PR BTt BT gl (6.32)
These results are compatible with expectations based on the walls of marginal stability for
the Z4-orbifold based on Sen’s arguments, as we will see below. Before that, however, let us

verify that the BKM Lie superalgebra has 83/2(Z) as its denominator formula.
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D-Invariance of Kg/Q(Z)

Let us see if Ag/Q(Z) gives rise to the denominator identity for this BKM Lie superalgebra.
We will first show that it contains all the real simple roots that one expects from the study
of the walls of marginal stability. Using the definition of the even genus-two theta constants,

one can easily prove the following two identities about 83 12(Z).

1. Let Z' = ( . _z2>. Then,

—Z2 Z3

Aspo(Z') = —Ag5(Z) . (6.33)

This implies that the modular form is an odd function under » — r~1.

2. £3/2(Z) is invariant under the exchange z; <> 4z3. This implies that the modular form

is an odd function under the exchange ¢ < s*.

Next, the Dg,)—generators ~ and ¢ act on the roots x,, written as a 2 x 2 matrix as follows:
T
1 -1 1 -1 (6.34)
DLy — STy , .
K 4 -3 4 -3
11 11 '
R a— o . (6.35)
0 1 0 1

The matrix v is denoted by 4™ in [8]. A, /2(Z) is invariant under the symmetry generated
by the embedding of 7 and ¢ into Go(4) € Sp(2,7Z). This implies that under the action of v
and ¢,

Nypa(Z) = + Dygyo(Z) .

One can show that the sign must be +1 by observing that any pair of terms in the Fourier
expansion of £3/2(Z) related by the action of v ( resp.) appear with the same Fourier
coefficient. For instance, the terms associated with the two simple roots «ag and (3, related
by the action of  appear with coefficient 4+1. Similarly, the terms associated with the real
simple roots 3y and 3_; related by a ~-translation also appear with coefficient +1. Thus, we
see that ﬁg/g(Z) is invariant under the full dihedral group D). This provides an all-orders
proof that the infinite real simple roots given by the vector X all appear in the Fourier

expansion of 53/2(Z).
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The ¢ — s* symmetry of the modular form is equivalent to the symmetry generated by
the dihedral generator, y, as defined in Eq. (2.73).

Weyl Transformation of 53/2(Z)

The transformation r — r~! is the Weyl reflection about the root ay and as discussed earlier
(see Eq. (6.33)), the modular form is odd under the Weyl reflection. One has

wa0~Z:<1 0) z.<1 0). (6.36)
0 —1 0 —1

The reflection due to any other elementary Weyl reflection will also have the same sign. We

repeat an argument from the appendix A of [8] to show this. First, the reflection due to

1 0
ay is represented by the matrix wy = 0 ) The action on Z is equivalent to Sp(2,Z)

v ((wgl)T o) |
0 wWo

The minus sign due to the Weyl reflection implies that the character, v(M), associated with

action by the matrix|86]

the modular form Kg/Q(Z) is such that v(M) = —1. Next, any other elementary Weyl
reflection, w, must be conjugate to wy — this is a consequence of dihedral symmetry, DY,
Hence, one has w = s - wg - s~! for some invertible matrix s. It follows that the character
associated with the Weyl reflection w is the same as that for wy. In others, ﬁg/g(Z) is odd

under all elementary reflections. Hence one has
Agjo(w - Z) = det(w) Agjy(Z) . (6.37)
We thus see that the extended S-duality group for N = 4 is given by®
W(AW) % D@ | (6.38)

where W(A®) is the Coxeter group generated by the reflections by all real simple roots x,,
and DS is the infinite-dimensional dihedral group generated by v and 0.
Although the structure of the BKM Lie superalgebra 54 is more complicated as compared

®The generator y is not realized as an element of a level 4 subgroup of PGL(2,7Z) and thus is not an
element of the extended S-duality group. This is similar to what happens for N = 2, 3[8].
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to 51, 52, 53, the correspondence between the walls of the Weyl chambers and the walls of
marginal stability which was present in the N = 1,2, 3 theories continues to hold even for
N =4 and is in accordance with Sen’s expectations.

This concludes our study of the modular forms ®,(Z) and the corresponding BKM Lie
superalgebras Gn. We now study the modular forms ®;(Z) and the BKM Lie superalgebras

Gy corresponding to them.

6.4.4 The Family of BKM Lie superalgebras Gy

The class of BKM Lie superalgebras Gy arise from the modular forms ®(Z). It was first
shown in [7] that the modular forms Ay /5(Z) are indeed given by the denominator formula
for BKM Lie superalgebra Gy, that are closely related to the BKM Lie superalgebra G;
constructed by Gritsenko and Nikulin from the modular form Aj(Z). In particular, it was

shown that

1. All the algebras arise as (different) automorphic corrections to the Lie algebra associ-

ated with the rank three Cartan matrix A, ;;, from which G, is also constructed.

2. The real simple roots (and hence the Cartan matrix A ;7) for the Gy are identical to
the real roots of g(A; ;7). This implies that the Weyl group is identical as well. This
is in contrast to the case for the BKM Lie superalgebras éN where the root system,
Cartan matrix, and hence also the Weyl group was different for different N. However,
this is consistent because for N > 1, this Weyl group is no longer the symmetry group
of the lattice of dyonic charges as it was for N = 1. The reason is that the lattice of
dyonic charges is not generated by 1/®,(Z), but instead by 1/®(Z).

3. The multiplicities of the imaginary simple roots are, however, different. For instance,
imaginary roots of the form try, where 7 is a primitive light-like simple root, have a

multiplicity m(¢ny) given by the formula:

1= m(tn) ¢" = [J(1 - q")%(l - qN")k_;2

teN neN

Note that this formula correctly reproduces the multiplicities of the imaginary roots
for G, as found by Gritsenko and Nikulin|86].

4. There are also other imaginary simple roots which are not light-like whose multiplicities

are determined implicitly by the modular form Ay /»(Z).
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This completes our discussion of the BKM Lie superalgebras associated to the modular

forms ®,(Z) and ®;(Z). We conclude with a few comments.

6.5 Conclusion

We have seen that the square root of the modular forms that generate the dyonic degeneracies
and the R? corrections to the string effective action are related to BKM Lie superalgebras.
This is a very interesting result, for the origin of the underlying BKM Lie superalgebra
structure to the theory is not immediately apparent. That the degeneracy of BPS states
should be given by modular forms, is itself a very remarkable result, for there is no obvious
reason that it should have turned out to be so. In particular, the degeneracy of the i—BPS
states are given by Siegel modular forms and it is very remarkable that the degeneracies
should be such that they add up exactly to be given by a Siegel modular form.

Another important aspect to note is the dependence of the modular properties on the
supersymmetry. The degeneracy of %—BPS states are given by products of n-functions, while
the degeneracies of the i—BPS states are given by more non-trivial modular forms whose
transformation properties are more involved thatn the n functions. Increased amount of
supersymmetry seems to play a crucial role in the kind of modular forms that generate the
degeneracy of states preserving the supersymmetry.

Also, that the modular forms should be related to BKM Lie superalgebras is an equally
non-trivial and remarkable. Again, supersymmetry seems to play an important role in the
kind of algebras that are related to the structure. For example the infinite-dimensional Lie
algebras related to the genus-one modular forms are the affine Kac-Moody Lie algebras.
Requiring N/ = 4 supersymmetry graduates this to BKM Lie superalgebras which have a
far more involved structure than the affine Kac-Moody Lie algebras. The appearance of
the BKM Lie superalgebras appears not merely to be incidental, as can be seen from the
correspondence between the walls of the Weyl chambers of the BKM Lie superalgebras and
the walls of marginal stability of the i—BPS states, and seem to contain information about
the CHL theory they come from. It will be interesting to explore this direction further to
unearth more connections between the family of BKM Lie superalgebras and the CHL strings.
Also, one can ask if such structures exist for other models. These are all new and interesting
directions in which one can look at. Harvey and Moore have considered the algebra of BPS
states [112, 113]. It is of interest to ask whether the BKM Lie superalgebrathat we have
found have any relation to the algebra of BPS states.
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Results of the Thesis

In this chapter we list the set of results in this thesis that are due to the author of the
thesis, obtained as part of work done with collaborators. These results have been presented

in [7, 9, 10]. We list the results along with the context in which they were worked.

e In [7] the existence of a family of BKM Lie superalgebras, Gy, were shown
whose Weyl-Kac-Borcherds denominator formula gives rise to a genus-two
modular form at level N, A, (Z), for (N, k) = (1,10), (2,6), (3,4), (4,2) and
(5,2).

Let us briefly recall, from the previous chapters, the context of the above result. Start-
ing with the work of Dijkgraaf, Verlinde, and Verlinde[1] it was found by Jatkar and
Sen that the generating function of the degeneracies of i—BPS states in a class of N = 4
supersymmetric string theories in four space-time dimensions|6], was given by genus-
two Siegel modular forms, denoted ®(Z)[2]. It was also observed by DVV that the
‘square root’ of the modular form in question appears as the denominator identity of
a BKM Lie superalgebra. In [7] this idea was extended to the family of modular forms
constructed by Jatkar and Sen. A family of BKM Lie superalgebras were constructed,
along the lines of the work by Gritsenko and Nikulin|[86], whose denominator identities
were given by square roots, Ag/2(Z), of the genus-two modular forms ®,(Z) generating
the R2-corrections to the string effective action. All the BKM Lie superalgebras are

given by the Cartan matrix

2 =2 =2
ALII = —2 2 =2 . (7].)
-2 =2 2
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The algebras, denoted Gy, have three real simple roots given by the following PG L(2,7Z)

51=<2 1) ,52:<0 _1> ,53=<0 1). (7.2)
10 -1 0 12

The Weyl group is generated by the three elementary reflections, (wy,ws,ws), with

matrices

respect to the three real simple roots. It is given by|[86] (see also [106, 17])
PGL(2,Z) = W(AL[[) X 53 , (73)

where S5 is the group of permutations of the three real simple roots. The Gy also have

a lattice Weyl vector that satisfies

(9i, )

<p751> = - 2

=1 (7.4)

with all the real simple roots.

The Cartan matrix A; ;7, the set of real simple roots, 01, 02, d3, the Weyl group W(A, i1),
the fundamental Weyl chambers and the lattice Weyl vector p of the BKM Lie super-
algebras Gy do not change with the orbifolding group Zy. All the algebras arise as
(different) automorphic corrections to the Lie algebra associated with the rank three
Cartan matrix A ;; with real simple roots given in (7.2). The BKM Lie superalgebras
Gy also have imaginary roots whose norm, with respect to a given inner product in the
root space, is not positive definite, i.e. the norm (7,7) < 0. The set of imaginary roots
of the BKM Lie superalgebras Gy also do not change with N. Their multiplicities,

however, change with N. We discuss this point next.

It was shown in [7] that the multiplicities of the imaginary simple roots for
the BKM Lie superalgebras Gy are different for different N. The primitive
light-like simple roots ¢1, have a multiplicity m(t¢n,) given by the formula:

L= mltn) ¢" = 9l7)

3
e ()

As mentioned above, the Cartan matrix, Weyl group, and the set of real and imagi-
nary simple roots for the Gy remain the same for all values of N. The modular forms

leading to these algebras, and hence the denominator identities of the algebras, how-
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ever, are different from each other. The difference in the denominator identities is in
the coefficients of the terms occurring in the expansion, whereas the terms themselves
undergo no change. The generating functions of the multiplicity factors of the various
multiples of the form t7, of the light-like simple roots 7, for different values of N are

given in terms of a single formula

01(7, 2) (1 — Zm(tno) qt> = Vps2,1/2(7, 2) (7.5)

teN

From the above we see the pattern in the progression of the m(ny) as the orbifolding
group Zy varies. For example, for N = 1 the formula reproduces the result obtained
by Gritsenko and Nikulin|86]

1= m(tno)g' = [J(1 = )" = VI (7.6)

3
= ke ()

where the multiplicity of the light-like roots is 9, while for N = 2, it gives

L= m(tne) ¢ = [J(1 = ") (1= ¢™)* = VIO (7.7)

3
= ke ()

with the multiplicity of the light-like roots being 4.

This is similar to with the twisted denominator formula of Niemann|80| where the

sub-algebras are obtained by the orbifolding action on the fake Monster Lie algebra.

In [7] the modular properties of the modular forms A;(Z) generating the
BKM Lie superalgebras Gy of the Zy orbifolded CHL strings.

The modular forms &)k(Z) and @4 (Z) generate, respectively, the degeneracy of the 1-

BPS states and the R? corrections to the string effective action in the CHL orbifolds.
As explained in the pervious chapter, its the modular forms A (Z) and ﬁk(Z), that are
the ‘square roots’ of the modular forms ®,(Z) and ®(Z) respectively, that occur as
the denominator identities of BKM Lie superalgebras. The modular form Aj(Z) was
found to be the denominator identity of the BKM Lie superalgebra G; by Gritsenko
and Nikulin. In [7] the modular forms that occur as the denominator identities of the
family of BKM Lie superalgebras Gy were constructed. However, one needs to check

the modular properties of the Ay(Z) before interpreting them as the denominator of
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a BKM Lie superalgebra. In [7| the modular properties of the modular forms Ay (Z)
were shown, and the modular forms constructed from additive lifts of Jacobi forms
with half-integer index. Some of the modular forms Ay (Z) were also given as products

of even genus-two theta constants.

In [9] the procedure to construct the modular forms ®,(Z) and ®,(Z) for
the case of general non-prime N, of the orbifolding group Zy, of the CHL
string was given. In particular, the modular forms 53(Z) generating the
degeneracy of ;-BPS states, and ®;(Z) generating the string R? corrections
in the 7Z, orbifolded CHL theory were explicitly constructed, in the sum

and product forms, and studied.

Jatkar and Sen had constructed the modular forms ®,(Z) and ®,(Z) for the case of
prime N for the orbifolding group Zy|[2|. For the case of composite N, however, only
the general behavior was subsequently studied[30]. In [9] the modular forms ®s(Z)
and ®3(Z) were explicitly constructed in the sum form via the additive lift. Further,
the systematics of the product formulae were worked out and explicitly computed for
the case of N = 4. Also, the general procedure to construct the modular forms &Dk(Z)
and ®y(Z) for the case of general non-prime N was given, thereby completing the
construction of the genus-two Siegel modular forms for all Zy orbifolds of the CHL

strings.
The product form of ®3(Z) is given by|32]

60—62 62—61 61
O3(Z) = qrs H (1 - q"rgsm) X (1 - (q"rgsm)Q) X (1 — (q"rgsm)Zl) . (7.8)
(n,¢,m)
The ¢*(n, () are given as the Fourier coefficients of
R 3
Fa(Zl,ZQ) = ZFG’b(Zl,ZQ) s (79)

b=0

where F(49) (2, z,) are the twisted elliptic genera for a Zy-orbifold of K3 given as:
FT’S<21, Z2> — %T\I‘RR,Q’" <<_)FL+FRgsqLoq—E0€27rzzFL) ’ 0< r,s < (N _ 1) (710)

and g generates Zy and ¢ = exp(2miz1). For N = 4, the various twisted elliptic genera
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are given |9|by

FO’O(Zl,ZQ) = 2A(21,2’2)
FOUz1,20) = F%(21,20) = $A(21, 22) + [— 52 (21) + %E4(Z1)]B(21>2’2)
FO’Q(Zl,ZQ) = —A(Zl,ZQ) + EQ( ) (21,2’2) (7].].)
Fl’k(Zh 22) — 3 3’“(21’ 22) = %A(zl,zz) + [— iEQ(#) + %E4(#)}B(Zl, 22)
F2’2k(2’1,22) = %A(zl,zz %E ( 1+k) 21,22)
F2’2k+1(2’1,22) = % 2172’2 [%E 2’1 - —E4(21)}B(2’1,2’2)
and
FO(z1,20) = Az, 2) + §E2(21)B(21, 22) + Ea(21)B(21, 22)
Fl(z1,20) = 2A(21,20) + LEy(21)B(21,2) — 1Es(21)B(21, 22) (7.12)
ﬁ2<21722> = 2A(21, 22) —+ %E2(21)B(21, 22) — E4(21)B(21, 22) .
The product formula for ®3(Z) is
3 3 —bm .(a,b) _p2
S _ow c (4nm—0*)
Z) :q1/4TSH H ( anﬁsm> b=0 (713)
a {meZ,
nEZ-l—%

where w = exp(28*) is a cube root of unity, and ¢ (4nm — (?) are the Fourier coeffi-

cients of the twisted elliptic genera, F(@Y(z;, z,).

It has also been shown in [9] that the N = 4 modular forms can be written as the

square of the product of three even genus-two theta constants. One has for ®3(Z):

1

0(2) = (§

- 9{%}(%) 9{%}(22) em(m) )25 [Ag0(Z)]° . (7.14)

This is a known modular form with character of weight three at level four. For instance,
see Aoki-Ibukiyamal|97]|, where this is called f3. For the case of EI%,(Z) one has:

6 lﬂ(z’) 9[%]@’) emm) )2 _ [53/2<Z)]2 |

1

1 (7.15)

B4(Z) = (
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1

571 <2
where Z/ = [ 2 i

V) 22’3

We discuss the additive lift for the modular forms ®5(Z) and ®3(Z) in the next point

where the n-products are discussed.

The generating function of %-BPS states is given by multiplicative n-products.
In [9] the n-products for all groups that arise as symplectic involutions of
K3 were given extending results due to Dummit, Kisilevsky and McKay[93]
as well as Mason[94]. In addition, the conjecture for constructing the addi-
tive lift leading to the Siegel modular forms ®,(Z) and ®,(Z) when G = Zy
for all N, in terms of the multiplicative n-products, was proposed and the

modular forms ®3(Z) and ®3(Z) constructed from it.

The generating function for the degeneracies d(n) of %—BPS states for the Zy CHL
orbifold, taking into account that the electric charge is quantized such that Nq? € 27,
is given as:
16 E
— = d(n) ¢V . (7.16)
9p(T/N) n;1

It was shown that an ansatz for g,(7) in the form of an n-product

90(r) = [ n(rm)™ = n(m)"n(2r) - n(NT)*~ . (7.17)

r=1

with balanced cycle shapes satisfying certain additional conditions gives the correct
degeneracy for the %—BPS states in all CHLL models where the cycle shapes arise from
the action of Nikulin involutions on H*(K3) (in the dual description of the CHL orbifold
as asupersymmetric orbifold of type II string theory on K3 x T?), including product

groups such as Zy; X Zy.

The modular form g,(7), of weight (k + 2), satisfies the following conditions:

1. The coefficients a, satisfy

(Nay + N% +---+ay) =24,
ai+as+ - +ay =2(k+2), (7.18)
(1a12a2 . _]\/'az\r)*1 — VOlJ‘ ’
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where vol™ be the volume of the unit cell in T't.

2. The only permitted cycles are of length 7 such that r|N, and hence a, = 0 unless
r|N. Thus, when N is prime, only a; and ay are non-zero which agrees with

known results.

3. The requirement that the cycle be balanced implies that a; = ay among other

things. Tt also implies that the first equation in Eq. (5.22) can be rewritten as
a1+2a2+---+NaN:24 (719)

This connects to the results of Dummit, Kisilevsky and McKay[93| on the multiplicative
balanced cycle shapes of elements of My,[92].

Also, it was conjectured in [9] that the Jacobi form of weight k, index 1 and level N
that is the seed for the additive (Maaf) lift leading to the Siegel modular form &y (Z)

V1 (21,22)2
n(z1)°

forms ®;(Z) as an infinite sum is given as

when G = Zy for all N is given by 9p(21). The additive lift giving the modular

Pr,1(21, 22) = (7)6) gp(z1) = Za(n, 0) q"rt . (7.20)

A similar additive lift for EI;k(Z) is given by the following additive seed:

Uy (21, 22)2
n(z1)°

Pra(21,2) = gp(z1/N) . (7.21)

The BKM Lie superalgebra for Aj/;(Z) is shown to be similar to the ones
appearing in [7]. The Cartan matrix, Weyl vector and Weyl group remain
unchanged by the orbifolding. However, the multiplicities of the imaginary
simple root do depend on the orbifolding.The BKM Lie superalgebra for
£3/2(Z) is of parabolic type with infinite real simple roots (labelled by an

integer) with Cartan matrix
AW = (a,,) where an, =2—4(n—m)?, (6.28)

and a light-like Weyl vector. The walls of marginal stability for the N =4
model get mapped to the walls of the fundamental Weyl chamber of the
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BKM Lie superalgebra.

We looked at the BKM Lie superalgebras underlying the degeneracy of the i—BPS states
in the family of CHL strings in the previous chapters. The BKM Lie superalgebra, G,
for the N = 1 case was constructed by Gritsenko and Nikulin [86] and was extended
to other values of N in [7] and [8]. As mentioned above the BKM Lie superalgebras
Gy corresponding to the modular forms ®,(Z) for N = 2,3 and 5 were constructed in
7], while the BKM Lie superalgebras Gy corresponding to the modular forms ®(Z)
for N = 2,3 were constructed by Gritsenko and Nikulin [108] [109] and their relation
to the degeneracies of i—BPS states of the CHL models for N = 2,3 was pointed out
by Cheng and Dabholkar [8].

It was predicted in [8] that the BKM Lie superalgebra for N > 3 CHL models may
not exist but since the modular forms ®3(Z) and ®5(Z) corresponding to the N = 4
model had not been explicitly constructed before 7] it could not be verified. In [7] the
BKM Lie superalgebra underlying the degeneracy of the i—BPS states in the N = 4
CHL model was shown to exist, and was constructed from the corresponding modular

forms.

The BKM Lie superalgebra G, for N = 4 is generated by the modular form (Ag/g(Z))Q =
2153(Z). The BKM Lie superalgebra algebra G, is of parabolic type with infinite number
of real simple roots. To write the Cartan matrix of 54, let us order the real simple

roots into an infinite-dimensional vector as

X =, T 9,0 1,00, 1, %2,23,...) = (..., a1, 81,00, Bo, -1, B, .. ) -

Equivalently, let

e €27
o =4 e (7.22)
ﬁ(m—l)/? , me2+1.

The Cartan matrix is given by the matrix of inner products a,,, = (x,,z;,) and is

given by the infinite-dimensional matrix:
AW = (a,,,) where ap =2 —4(n—m)?, (7.23)

with m,n € Z. It is easy to show that the following family of vectors are eigenvectors
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of the Cartan matrix with zero eigenvalue.

(7.24)

with : indicating a semi-infinite sequence of zeros. One can show that A has rank three.

As usual, the Weyl vector p satisfies
(p,xm) =—1, Ym . (7.25)

1/4 1/2
/ / and is light-like.
/2 1

The extended S-duality group for N = 4 is given by

The Weyl vector is given by p = (

W(AW) % DO | (7.26)

where W(A®) is the Coxeter group generated by the reflections by all real simple roots
T, and D is the infinite-dimensional dihedral group generated by v and § which act

on the roots x,, written as a 2 x 2 matrix as follows:

Vi Ty — (1 _1> STy - (1 _1>T , (7.27)
4 =3 4 =3
T
d: &y — <_1 1) Ty <_1 1) . (7.28)
0 1 0 1

Also, the walls of the Weyl chamber of the BKM Lie superalgebra G, was studied
and found to be compatible with Sen’s expectations. The fundamental domain/Weyl
chamber for N = 4 is bounded by an infinite number of semi-circles as the BKM Lie
superalgebra has infinite real simple roots. Each of the semi-circles represents a real
simple root. The point % is approached as a limit point of the infinite sequence of

semi-circles.
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Starting from the product expansion for Ag;(Z) the BKM Lie superalgebra, G, cor-
responding to it was also constructed in [9]. The Weyl vector p is the same as for the
algebras Gy for N = 1,2,3,5 for prime N. Also the three real simple roots remain
unchanged as before[7|. The imaginary roots remain unchanged as well, but their mul-
tiplicities are changed by the orbifolding. For Ays(Z) = (®1(Z))"/? for prime N, we
recall that the BKM Lie superalgebras Gy were all given by the same Cartan matrix,
and had the same set of real simple roots, Weyl group, Weyl vector, and imaginary
roots. The orbifolding only changed the multiplicities of the imaginary roots for dif-
ferent values of N. It was seen that the same pattern continues to hold for the BKM

Lie superalgebra even when N is non-prime for Ag /s (Z).

In [10] it has been shown that the counting of %-BPS states is given by
multiplicative n-quotients that are associated with the frame shapes p given
in Table 5.4, generalizing the corresponding result for CHL strings where
the generating functions for the %-BPS states were given by multiplicative

n-products corresponding to cycle shapes.

It was shown in [9] that the degeneracy of the electrically charged -BPS states are
given by multiplicative n-products. The idea was extended to the type II models where
the degeneracy of the electrically charged %—BPS states were shown to be given by mul-
tiplicative n-quotients determined by the frame shapes associated with the conjugacy
classes of C'o;. Using the modular forms generating the degeneracy of the %—BPS states,
the additive lift for the modular forms generating the degeneracy of the i—BPS states

are constructed for N = 2,3 and a conjecture is provided for N = 4.

In [10] the modular forms generating the degeneracy of i-BPS states in the
type II models have been found in terms of the modular forms generating
the degeneracy of i-BPS states in the CHL models. A similar relation has

also been found for the modular forms generating the string R? corrections

David, Jatkar and Sen have provided product formulae for the N = 2 3 type II
models[31] in terms of the twisted elliptic genus for 7. In [10] these modular forms
have been expressed in terms of the various Siegel modular forms occuring in the CHL
models. The modular forms in the CHL models have been well studied and have been
interpreted as the denominator identities of BKM Lie superalgebras. Expressing the
modular forms of the type II models in terms of the ones occuring in the CHL models

should help in studying the underlying BKM Lie superalgebra structure, if any.
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e In [10] a general discussion on the BKM Lie superalgebras corresponding
to the the type II models is presented. Though the BKM Lie superalgebras
for these models have not been constructed in [10], based on the properties
that are expected of these algebras, general directions for finding these

algebras, if they exist, has been discussed.

The CHL models have been found to have an underlying BKM Lie superalgebra struc-
ture to the degeneracy of the i—BPS states. A natural question to consider would be
if such an algebraic structure exists even for the type II models. The modular forms
apearing in the type II models seem to have a complicated structure, which does not
immediately have the interpretation of a BKM Lie superalgebra. However, since these
modular forms can be expressed in terms of the modular forms of the CHL models,
which have a BKM Lie superalgebra interpretation, one can guess the properties that
a BKM Lie superalgebra, if it exits, is expected to have. A discussion on the same is
provided in [10].
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Conclusion and Future Directions

In this thesis we have studied the various aspects of the counting of dyonic states in string
theory. The problem of counting has been of much interest because of the rich mathematical
structure underlying it. The degeneracy of the dyonic states are given by modular forms and
this strongly suggests the presence of a deeper mathematical structure to the theory. In the
words of Barry Mazur, “Modular forms are functions on the complex plane that are inordi-
nately symmetric. They satisfy so many internal symmetries that their mere existence seem
like accidents. But they do exist”. That the degeneracy of dyonic states should be such as to
be given by such special functions that have very restricted transformation properties and
are sensitive to the smallest of perturbations to their structure, seems to be extraordinary.

Equally extrodinary is the appearance of BKM Lie superalgebras related to the modular
forms. BKM Lie superalgebras are infinite-dimensional Lie algebras which are very compli-
cated and rich generalizations of classical semi-simple Lie algebras. That they should appear
as an underlying symmetry of the degeneracy of the dyonic states is very remarkable. Also,
as was mentioned previously, the relation to supersymmetry is another intriguing aspect.
The degeneracy of states preserving higher degree of supersymmetry are given by more com-
plicated modular forms and have more involved infinite-dimensional Lie algebra structure
underlying them. This seems to indicate an important role for supersymmetry in leading to
the modular structure of the generating functions of dyonic degeneracies. A complete un-
derstanding of the whole structure, however, is far from apparent at this point. The origin
of the various mathematical structures, their significance and implication to the theory are
areas that will be very interesting to understand and unearth.

As we have seen, the BKM Lie superalgebra structure undergoes a distinct change in
going from N = 3 to N = 4 in the CHL models. The BKM Lie superalgebra structure for
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the N = 4 case was a parabolic algebra and previously not constructed. It has an infinite
number of real simple roots. The BKM Lie superalgebra structure for CHL models with
N > 4, if they exist, could be much more complicated.

Other areas of future interest are obtaining a better understanding of the BKM Lie
superalgebras related to the type II models, and more generally models which come from
frame shapes rather than cycle shapes. Also understanding the models with product groups
of the form Zy x Z,;, starting from the cycle shapes and generating the modular forms
generating the dyonic degeneracy will go towards completing the construction of degeneracy
formulas for all orbifoldings of the CHL strings (see [114]). Sen et.al. have constructed the
partition functions for torsion > 1 dyons in heterotic string theory on T°. Seeing if a BKM
Lie superalgebra structure exists for these models will extend the construction of |7, 9, 8|.

Also, the idea of understanding the degeneracy of %—BPS states from the symplectic au-
tomorphisms of the K3 surface (for the case of CHL strings) or from the conjugacy classes
of Co; (for the case of type II models) is an interesting result which gives a geometric
understanding to the origin of these degeneracies. Garbagnati and Sarti have studied sym-
plectic (Nikulin) involutions of K3 manifolds[115, 96]. In particular, they have explicitly
constructed elliptic K'3s whose automorphism groups are the Nikulin involutions. Further,
they have provided an explicit description of the invariant lattice and its complementary
lattice. We anticipate that these results might be relevant in improving our physical under-
standing the role of the roots of the BKM Lie superalgebras. The Jatkar-Sen construction
holds for N = 11 as well and it leads to a modular function (i.e., one of weight k = 0) ®((Z)
and it is believed that a CHL string may exist. In the type IIA picture, the Z; is no longer
a symplectic Nikulin involution, it acts non-trivially on H*(K3) and not on H"!(K3) alone.
It is of interest to study aspects of the Zy orbifold both from the physical and mathematical
point of view.

As we have seen, for affine Kac-Moody algebras, the presence of light-like imaginary roots
in L, leads to powers of the Dedekind eta function appearing in the product form of the
Weyl-Kac denominator formula. As is well known, ¢*/?*/n(7) is the generating function of
partitions of n (equivalently, Young diagrams with n boxes). An interesting generalisation
is the generating function of plane partitions (or 3D Young diagrams) has a nice product
representation n3p ~ [],(1—¢")" (due to MacMahon). This function appears in the counting
of DO-branes in the work of Gopakumar-Vafa[116, 117]. Is there an algebraic interpretation
for this? The addition of D2-branes to this enriches this story and leads to interesting
formulae[118|.
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One can also carry out a similar programme for models with A/ = 2 supersymmetry[119,
120, 121]|. As mentioned before, the high degree of supersymmetry makes all the beautiful
mathematical structure highly symmetry specific. Our ultimate aim is to understand the
microscopic description of general black holes. For this it is necessary to understand the
above ideas when the degree of symmetry of the system is reduced. Starting with N = 2

models is a good way to finally graduating to the general case.
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Theta functions

A.1 Genus-one theta functions

The genus-one theta functions are defined by

a _ L2y (14+2) inlb
0 [b} (z1,20) = Zq r e, (A1)
lez
where a.b € (0,1) mod2. One has ¥ (z1,20) = 0[] (21,22), U (21,22) = 0 [(ﬂ (21, 29),

U3 (21,29) =0 [8] (21, 22) and 94 (21, 22) =0 [(1)] (21, 22).
The transformations of ¥ (7, z) under modular transformations is given by

T: DT+ 1,2) = e 9(r,2),
1 mwiz? /T
S h(=1/T,—z/T) = 7 e, (1, 2) (A.2)

with ¢ = exp(2mit) and r = exp(27iz).
The Dedekind eta function 7(7) is defined by

[e.9]

n(r) = -q") . (A.3)

n=1

The transformation of the Dedekind eta function under the modular group is given by

T: n(r+1) = 2 y(r),
S: n(=1/7) = e /4 (7')1/2 n(T) . (A.4)
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Appendix A. Theta functions

The transformation of n(NT) is given by

T: n(NT+N) = "2y(r),
e*ﬁi/4
S —1/7) = Y2 n(r/N) . Ab
n(=1/7) Vi ()% n(r/N) (A.5)
One can see that n(/N7) transforms into n(7/N) under the S transformation. n(NT) gets
mapped to itself only under the subgroup, I'o(N) of SL(2,Z). Following Niemann|80], let

Q/JJ(T)ET](%j—Fj),jIO,l,...,N—lmOdN. (A.6)
Both S and 7" no longer have a diagonal action on the 1;(7). One has

T: gy(r+1) = & yy(n) (A7)
S (—1/r) = IR ()2 (@) poy(r) | (A8)

where j7/ = 1 mod N and the character x(G) has to be calculated on a case by case basis
(see chapter 2 of [80] for details).

The transformations of the eta related functions show us that the functions f*(7) and
its square root can transform with non-trivial character. In particular, one can show that
for N =7, fO(r) and for N = 3, \/f®(7) transform with character. As these two func-
tions enter the weak Jacobi forms that are used to construct the Siegel modular forms
@, (Z) and Ay(Z) respectively, these two Siegel modular forms will transform with non-trivial
character[83|. This is the basis for our claim that Ay(Z) must transform with non-trivial

character and is consistent with the observation of Jatkar-Sen regarding ®,(Z).
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Eisenstein Series at level N

B.1 Prime N

Let E5(7) denote the weight two non-holomorphic modular form of SL(2,7Z). It is given by

Ey(r) =1-24 ;01(71)61 t (B.1)
where oy(n) =32, 4, d*. The combination
1 * * 7
Ex(r) = 5 (NE3(N7) = B3(7)) = 4550, [Inn(r) —mn(N7)]  (B2)

is a weight two holomorphic modular form of T'y(/N) with constant coefficient equal to 1[122,
Theorem 5.8]. Note the cancellation of the non-holomorphic pieces. Thus, at level N > 1,

the Eisenstein series produces a weight two modular form. For example!,
Ey(7) = 1+ 24q + 24¢* + 96¢° + 24¢" + 144¢° + 96¢° + - - - (B.3)
is the weight-two Eisenstein series at level 2. At levels 3 and 5, one has

By(1) = 1412+ 36¢> + 12¢° + 84¢* + 72¢° + 36¢° + - - -
Es(t) = 14 6q+ 18¢> 4+ 24¢> + 42¢* + 6¢° + 72¢° + - - - (B.4)

LAll expansions for the Eisenstein series given here have been obtained using the mathematics software
SAGE[123]. We are grateful to the authors of SAGE for making their software freely available. It was easy
for us to verify Eq. (B.10) using SAGE to the desired order.
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B.2 Composite N

Suppose M|N, then one has I'y(N) C I'y(M). Thus, for composite N, the Eisenstein series at
level M is also a modular form at level N. For instance at level four, one has two Eisenstein

series: Fy(T) and
Ey(7) =1+ 8q +24¢® + 32¢° + 24¢* +48¢° + - -- (B.5)
At level six, one has three Eisenstein series: Fy(7), E3(7) and
E¢(T) = 5/24 4 q+ 3¢ + 4¢° + T¢* + 6¢° + - -- (B.6)
At level eight, one has three Eisenstein series: Ey(7), E4(7) and
Es(t) =7/24 4 q+ 3¢ + 4¢° + T¢* + 6¢° + - -- (B.7)

EN<T) refer to Eisenstein series normalized such that the coefficient of ¢ is 4+1. It is known
that all Eisenstein series in this normalization have integral coefficients except for the con-
stant term|[122].

B.3 Fourier transform about the cusp at 0

The modular transformation, S, under which 7 — —1/7 maps the cusp at 0 to the cusp at
ico. When N is prime, I'g(N) has only these two cusps. One may wish to obtain the Fourier
expansion about the cusp at 0 — this is done by mapping 0 to 200 using the S transform. To

obtain the transform of the Eisenstein series, first consider

E;(NT)}S = (1) 2 E;(NS-7)
1

= (1) E3(=N/7) = (1) (7/N)E5(7/N) = 15 B3 () - (BS)
Using this result, it is easy to see that?
1 T
En(T)|g = —~En (%) - (B.9)

2We caution the reader that the subscript NV denotes the level and not the weight of the Eisenstein series.
All Eisenstein series considered in this appendix are of weight two.
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Note that 7 = 0 in the LHS corresponds to 7 = ioo in the RHS of the above equation. Thus,
given the Fourier expansion at 700, we can obtain the Fourier expansion about 0. Notice the
appearance of fractional powers of ¢, ¢/ to be precise, at this cusp. This is expected as
the width of the cusp at 0 is N. Also, note that the above formula is valid for all NV, not
necessarily prime.

Another useful addition formula for the Eisenstein series is the following:
Ey(1) + Ey(T + %) =2 F5(27) . (B.10)

This formula was experimentally obtained by us and its veracity has been checked to around

twenty orders in the Fourier expansion.

B.4 Fourier transform about other cusps

The same method can be used to obtain the expansion about other cusps. Again we will need
to map the cusp to ico and then track the transformation of the non-holomorphic Eisenstein
series. Let us do a specific example that is of interest in this paper. Let N = 4 and consider

the cusp at 1/2. v = (3 1) maps 1/2 to ico.

1
= =7 CE(3)[ = Ba(D)lg) = (Balr) — Ea(7))  (B.11)

In the penultimate step, we made use of Eq. (B.10) in order to write E4(Z + 1) in terms
of objects with known S-transformations. The final answer is in terms of Eisenstein series
whose Fourier coefficients are known thus giving us the expansion of E,(7) about the cusp
at 1/2.

For the CHL models with N = 6 and N = 8, it appears that there are no standard
methods to determined the Fourier expansion of Fg(7) and Eg(7) about all the cusps — this
is a minor technical hurdle that needs to be surmounted to complete the computation of
the twisted elliptic genus in the corresponding CHL models. It would be helpful if one can

obtain identities similar to the one given in Eq. (B.10).
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Explicit formulae for Ay, /5(Z)

We note that Ay/o(Z) is symmetric under the exchange z; < 23 and is anti-symmetric under

29 — —29 for all values of k.

1 9 93 90 5\ 3 3
a = (o) vave (T vt oo ) i
9
+ (7“‘54—%—9\/;—7}) <q%\/§+\/§s2>
-9 27
+ (—3 +27\f+9r3) (qg\/§+\/asg)
r2 \/_
27 12
+ <—r‘g+—3+——12\/_—27r2+r3> (q%\/g—i-\/as%)
r2 \/;
9 12 90
+ <—5——3+——90\/7~+12r3—9r3> q2\/_-|-\/c_].9%>
r2 re \/7_“
—27 90 135
+ < = ——3——-|—135\/_+907‘2-|— %>< \/_+\/582)
r2 rz T
121 4
+ (7‘_%+—5+$—5—+54\/;—1357“%—127‘3—7‘%) <q§\/§+\/§s§>+
r2 rz T
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Appendix C. Explicit formulae for Ay /,(Z)

+\/F) ff—i—(r 3—33—7+6f+5r2—m) q2s

r2

O T_Tz) (¢ V5 +vas?)
5\/F+r§) (q3\/§+\/§s%>

3
2

|
ﬁ|

Njw
+

!

4 6
r*%——é— (%>——+6\/_+r2+47’2—7’;)< \/_+\/§s2>
r2 VT
\/;_L SV + g8/2 _ 3 P22 4 L s (V32 + 542 /)
NG 372 372
3 1 3
<T5/2 _3\/77+W 5/2) (\/_q7/2+87/2\/§) i (3r3/2 _ m) (\/§q9/2+39/2\/§)
3 1
<— /2 _ 3¢5 4 52 + 7—/2> (\/5913/2 + 813/2\/6)
5 3
<3r7/2+5\/— NG r7/2) (Vs + s /q) + . ..
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V= —> Vav's + (—7’3/2+f— ! +3i/2) (V562 + s*/%/q)

\/’
5 2 1
5/2 3/2 3/2 .3/2
T/ —2’/‘/ +5\/;_W+m_m>q/8/
_r3/2+2\/7_«_i+i (\/g 5/2+55/2\/_)
NCAREE 1 1
5/2 3/2 3 2 1 72 JT/2
r 2r +3\/;—W+m—5—/2 (\/gq + s \/a)
5 3 1
o2 — 3032 15\ — N 5—/2) (Vsq”? + s°2\/q)
5) 5 2
9,5/2 _ 57»3/2+5\/7_~_7+ - 5/2) (fq11/2+311/2\/§)
T T T

9 5) 3 1
. 7/2 5/2 . 3/2 v o
r? 4 3r 5r9/% + 9y/r NG Ry e 7

)(\/§q13/2+813/2\/§)+...

1 3 2 1 1
o /2 = - 3/2 3/2
(v7=35) viva ( ST T )
( r3/2 + \/— ) qs3/2 +fq3/2)
1
+< 3/2+\/—__+_/) qs5/2+fq5/2)
3/2 7/2 7/2
+<T /+2\/;_W+r3/2_r5/2)(\/_8/+fq/)
2 1
+ <7’ 2T3/2 -+ r?’ﬁ — m (\/689/2 + \/gqg/z)
+< 5/2+\/—__ r5/2) (\/6—1811/2+\/§q11/2)
_pT/2 L 9,5/2 _ 3)2 2\/— 2 1 2 1 13/2 \/— 13/2
’ o ’ - W + P32 52 * r7/2 (\/as tVsa )
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where g, = ¢'/*. The expression is symmetric under the exchange ¢ < s* and antisymmetric
q q y ge q

under » — r~1. An all-orders proof follows from the properties of the even genus-two theta
constants.
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The Jacobi and the genus-two modular groups

The group Sp(2,7Z) is the set of 4 x 4 matrices written in terms of four 2 x 2 matrices

A, B, C, D as'
A B
M:
C D

satisfying ABT = BAT, CDT = DC?T and ADT — BCT = I. The congruence subgroup
@O(N) of Sp(2,7Z) is given by the set of matrices such that C' = 0 mod N. This group acts
naturally on the Siegel upper half space, Hs, as

7 = (21 Zz) M -Z=(AZ + B)(CZ + D)\ . (D.1)
Z9 23
The Jacobi group IV = SL(2,Z) x H(Z) is the sub-group of Sp(2,Z) that preserves the

one-dimensional cusp z3 = ico. The SL(2,Z) is generated by the embedding of (¢%) €
SL(2,Z) in Sp(2,7Z)

o 2

gi(a,b;c,d) = (D.2)

S O

o O = O
S QL O o
_ o O O

The above matrix acts on Hs as

az; +b 29 czg
— D.3
(21,22, 28) — (czl—l—d’ e +d’ =3 e +d) (D-3)

!This section is based on the book by Eichler and Zagier[83].
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Appendix D. The Jacobi and the genus-two modular groups

with det(CZ + D) = (cz; + d). The Heisenberg group, H(Z), is generated by Sp(2,Z)

matrices of the form

100 pu
Al
g2\, 1, k) = pon with A\, u, k € Z (D.4)
00 1 —
00 0 1
The above matrix acts on Hs as
(21, Z9, 23) — (21, )\21 + 2o+, 23+ )\221 + 2)\22 + )\,U) , (D5)

with det(CZ + D) = 1. It is easy to see that I'/ preserves the one-dimensional cusp at
Im(z3) = o0.

The full group Sp(2,Z) is generated by adding the exchange element to the group I'”.

g3 = (D.6)

S O = O
o O O =
_ o O O
S = O O

This acts on Hy exchanging z; <= z3. The subgroup (A;O(N) is generated by considering the

same three sets of matrices with the additional condition that (¢ %) € I'y(N) i.e., ¢ = 0 mod N

in Eq. (D.2). Further, we will call the corresponding Jacobi group T'o(N)”.
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