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Abstra
tIn this thesis we study the problem of 
ounting dyons in 
ertain supersymmetri
 stringtheory models and the in�nite dimensional Lie algebras that underlie the dyoni
 degen-era
ies. The 
ounting of 1
4
-BPS states in N = 4 supersymmetri
 four-dimensional stringtheories 
an be 
arried out in a mathemati
ally pre
ise and rigorous fashion due to the fa
tthat the spe
trum of these BPS states 
an be generated by genus-two modular forms[1, 2℄.The same modular form also o

urs in the 
ontext of Bor
herds-Ka
-Moody (BKM) Liesuperalgebras[3, 4℄, in their denominator identities. This surprising mathemati
al stru
tureunderlying the spe
trum of these states is the idea we develop in this thesis.The starting point in the problem of 
ounting dyoni
 states in N = 4 supersymmetri
four-dimensional string theories are two remarkable papers � one by Dijkgraaf, Verlindeand Verlinde (DVV)[1℄ and the other by Strominger and Vafa[5℄. Strominger and Vafaprovided a mi
ros
opi
 des
ription of the entropy of supersymmetri
 bla
k holes, whi
h hasprovided enormous impetus to the 
ounting of BPS states in a variety of settings. DVV, in aremarkable leap of intuition, proposed that the degenera
y of 1

4
-BPS states in the heteroti
string 
ompa
ti�ed on a six torus is generated by a genus-two Siegel modular form of weightten, Φ10(Z).Sin
e then, in a series of remarkable and important papers, Sen, Jatkar and David haveadvan
ed DVV's idea to a family of asymetri
 orbifolds of the heteroti
 string 
ompa
ti�edon T 6 leading to heteroti
 
ompa
ti�
ations that preserve N = 4 supersymmetry but withredu
ed gauge symmetry known as the CHL 
ompa
ti�
ations[6℄. In parti
ular, they haveexpli
itly shown the 
ounting of dyoni
 states in a spe
ial 
lass of N = 4 supersymmetri
theories. They have also studied the dyon spe
trum in N = 4 supersymmetri
 type II stringtheories. Following this there has been enormous progress in studying and understandingthe various modular forms that generate the degenera
ies of the 1
2
-BPS and 1

4
-BPS states inthese models. The modular forms in question have been generated in many di�erent waysea
h being related to di�erent aspe
ts of the theory. DVV also observed that the modularform proposed by them as the generating fun
tion for the degenera
y of 1

4
-BPS states o

ursas the denominator identity of a BKM Lie superalgebra studied by Gritsenko and Nikulin.This idea gives a 
ompletely new dimension to the 
ounting of dyoni
 states whi
h 
ould nothave been anti
ipated at the level of the a
tion of the theory. This idea has been furtheredto the models 
onsidered by Jatkar and Sen in [7, 8, 9, 10℄. The BKM Lie superalgebras arerelated to the stru
ture of the CHL model and it is expe
ted that understanding the originsof this algebrai
 stru
ture might provide more insight into the physi
s of 1
4
-BPS states. 5



The 
ontributions of this author, along with his thesis supervisor, was to 
onstru
t a newfamily of BKM Lie superalgebras 
orresponding to modular forms, Φk(Z) generating the R2
orre
tions in the string e�e
tive a
tion[7℄, in addition to 
onstru
ting the modular formsgenerating the degenera
y of 1
2
-BPS states and 1

4
-BPS states for the 
ase of non-prime N ofthe orbifolding group ZN in the CHL strings[9℄. Also, the modular forms Φ̃3(Z) and Φ3(Z)as well as the BKM Lie superalgebras 
orresponding to the modular forms were 
onstru
tedand studied. In parti
ular, the relation between the walls of marginal stability of the 1

4
-BPSstates and the walls of the Weyl 
hamber have been found to be in agreement with predi
tionsin the literature. The 
onne
tion between multipli
ative η-produ
ts studied by Dummit, et.al. and the degenera
y of ele
tri
ally 
harged 1

2
-BPS states has been found and the sameextends to all orbifolding groups, in
luding produ
t groups su
h as ZM × ZN . The author,along with 
ollaborators has shown that the modular forms generating the degenera
y of the

1
2
-BPS states in the asymmetri
 orbifolds of the type II strings on T 6 appear as η-quotients.The modular forms that generate the degenera
y of modular forms in the type II models
an be written in terms of the modular forms that appear in the CHL models. We brie�ydis
uss the BKM Lie superalgebras in the type II models.and studied the modular forms generating the degenera
y of the 1

4
-BPS states in thetheory [10℄. Also proposals for BKM Lie superalgebras in these models have been dis
ussed.List of publi
ations/preprints1. Suresh Govindarajan and K. Gopala Krishna. �Generalized Ka
-Moody algebras fromCHL dyons,� JHEP 04 (2009) 032 [arXiv:hep-th/0807.4451℄2. Suresh Govindarajan and K. Gopala Krishna, �BKM Lie superalgebras from dyon spe
-tra in ZN CHL orbifolds for 
omposite N , "IITM/PH/TH/2009/3; IMS
/2009/04/06;[arXiv:hep-th/0907.1410℄3. Suresh Govindarajan, Dileep Jatkar and K. Gopala Krishna, �BKM Lie superalgebrasfrom 
ounting dyons inN = 4 supersymmetri
 type II 
ompa
ti�
ations" IITM/PH/TH/2009/4;IMS
/2009/04/07 (work in progress)
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1String Theory
1.1 Introdu
tionThe aim of this 
hapter is to understand some of the basi
s of string theory. However, aftera linear start, we will take a slightly di�erent road map and fo
us on some aspe
ts that aremore natural to understand in the 
ontext of the problem that we are going to study in thefollowing 
hapters. In keeping with the `
ounting' theme of the thesis, we will look at howsome of the well-known modular forms o

ur in 
onne
tion with 
ounting of states in stringtheory. The starting point of our road map is to, axiomati
ally, introdu
e a model in whi
hthe fundamental obje
ts are strings instead of point parti
les. A string is a one-dimensionalobje
t � mathemati
ally a 
urve. The idea, from a simple minded point of view, is to repla
estrings in the pla
e of ordinary point parti
les and see what physi
s studying these leadsto. We will take the theory through the same set of steps that one does to the theory ofordinary point parti
les we are repla
ing it with. To 
onsistently do so, we should be ableto re
over the quantum �eld theory des
ription of point parti
les by taking a suitable limit
orresponding to length s
ales of everyday life. There will, however, be remnants of thestringy nature of the original theory and it will be interesting to see what the impli
ations ofthese are. The original motivations for 
onsidering string theory as a theory of nature are, of
ourse, more 
ompelling than what is suggested here, and that by itself is a very interestingand illuminating read and we refer the reader to many of the ex
ellent texts in string theoryfor it. Some suggested referen
es are [11, 12, 13℄(see also [14, 15℄).There 
an be two fundamental kinds of strings one 
an 
onsider � the open string, i.e. astring with free end points and of �nite length, and the 
losed string, i.e. a string whose endsare joined together to form a loop, topologi
ally equivalent to a 
ir
le. The string sweeps1



Chapter 1. String Theoryout a two-dimensional surfa
e, known as the world-sheet, as it moves through spa
e-time.For an open string, the topology of the world-sheet is a two-dimensional sheet, while for the
ase of a 
losed string it is a 
ylinder.To make sense of it as a viable theory of nature, we also need to introdu
e intera
tions intothe theory and to understand how one 
an generate the spe
trum, 
ontaining the variouselementary parti
les of nature, from it. Even though the basi
 obje
ts of the theory areextended, the intera
tions in the theory need to be lo
al in nature to preserve Lorentz
ovarian
e. Lorentz invarian
e of the intera
tion also forbids that any point on the world-sheet be singled out as the intera
tion point. Intera
tions in string theory arise when stringsoverlap at the same point in spa
etime. The intera
tion results purely from the joining andsplitting of strings. Consisten
y of the intera
tions for
e the existen
e of 
losed strings in anytheory whi
h has intera
ting open strings. However, one 
an have a 
onsistent theory withonly 
losed strings. The various elementary parti
les will be generated by the ex
itations ofthe string from its ground state. Just like the di�erent minimal notes of a vibrational string
orrespond to di�erent a
ousti
 modes, the di�erent vibrational modes of open and 
losedstrings will 
orrespond to di�erent elementary parti
les. This is the model we will study insome detail below. We will �rst �nd an a
tion for the theory, and study it. Then we quantizethe theory in a suitable gauge and �nd its spe
trum.Let us denote the (D + 1)-dimensional spa
e-time manifold by M(∼ R × Ms) (where
Ms is the spa
e manifold) and let gµν be the metri
 on M . The 
on�guration of an n-dimensional obje
t is parametrized by (n+ 1) parameters. Thus, the two-dimensional worldsheet, Σ, swept by the string, would be parametrized by two numbers ξa = {σ, τ}, where σ(normalized to lie between [0, l]) is a spa
e like 
oordinate and τ is timelike. Let γαβ be theintrinsi
 metri
 on Σ. We assume that Σ andM are di�erentiable manifolds. The traje
toryof the string in spa
e-time is given by a set of D + 1 fun
tions Xµ(σ, τ) whi
h embed theworld sheet Σ in the target spa
etime M . The Xµ(σ, τ) are 
ontinuous maps from Σ to M .
Xµ(σ, τ) give the position of the point (σ, τ) of the string in the spa
e-time manifold. 1Like in any quantum �eld theory, what we want to 
ompute from the theory are fun-damental quantities like the transition amplitudes for s
attering pro
esses et
. to obtainphysi
al predi
tions from the theory. Transition amplitudes in the theory have to be eval-uated order by order in the loop expansion, whi
h, in the 
ase of a world-sheet, whi
h is1We use the Greek alphabets α, β, . . .et
. for the 
omponents of the intrinsi
 metri
 γ whi
h take values
1, 2 , and Greek alphabets µ, ν . . .et
. to denote spa
e-time 
omponents of the metri
 g whi
h run from
0, . . . , D. 2



Chapter 1. String Theorya Riemannian surfa
e, would be over varying genera. One assigns a relative weight to agiven 
on�guration and then sums over all possible 
on�gurations. In the 
ase of strings, the
on�guration spa
e is the world-sheet of the string, and the path integral is over geometries.One has to sum over all possible topologies (spa
e of 
on�gurations) with a suitable weightto obtain the va
uum to va
uum amplitude.To ea
h 
on�guration one asso
iates the weight
e−S[X,Σ,M ], S ∈ C ,and the transition amplitude at ea
h genus is obtained by summing over all possible metri
s

γ and all possible embeddings Xµ(σ, τ). The fun
tional S[X, γ,M ] is the a
tion for thestring world-sheet (we will skip the referen
e to the spa
etime manifold from now on). Thesum over all topologies is equivalent to the sum over the genera.
Z =

∑

Σ

∑

X

e−S[X,Σ] =

∞∑

h=0

(gs)
2h−2

∫
DXDγe−S[X,γ] =

∞∑

h=0

Zh(gs)
2h−2 .

Z is given as the sum of the h-loop partition fun
tions Zh. Dγ and DX are the measures
onstru
ted out of di�eomorphism invariant L2 norms on Σ and M . We need to 
omputethem to evaluate the partition fun
tion exa
tly. First, however, we need to 
onstru
t ana
tion for the string to des
ribe the motion of the string in the spa
e-time manifold. Thea
tion should be su
h that all physi
al quantites we 
ompute from it (like s
attering ampli-tudes, et
.) would depend only on the embedding of the string in the spa
e-time manifold(that is the fun
tions Xµ(σ, τ)) and not on the 
hoi
e of parametrization, ξa, of the world-sheet. Consequently, the a
tion itself should depend only on the embedding in spa
e-timeand nothing else. It should also be 
onsistent with the symmetries of the world-sheet andthe spa
e-time. In addition we require it to be lo
al on its dependen
e on X, γ and g and berenormalizable as a QFT.A suitable 
andidate is the Nambu-Goto a
tion, whi
h is proportional to the area ofthe world-sheet. A reformulation (and more amenable to quantization) of the Nambu-Gotoa
tion is the Polyakov a
tion
S = −κ

∫

Σ

dτdσ(−γ)1/2γαβ∂αX
µ∂βX

νgµν , (1.1)where κ is a proportionality 
onstant 
alled the string tension. For the a
tion to be adimensionless quantity the string tension should have dimensions (length)−2 = (mass)2 in3



Chapter 1. String Theorynatural units. It is taken to be κ = (4πα′)−1, where α′ is the Regge slope.This, however, is not the most general a
tion that satis�es the above mentioned 
riteria.There are other possible terms that one 
an add, like the anti-symmetri
 tensor �eld, ora dilaton �eld, or a ta
hyon �eld, but in this rather modestly aimed dis
ussion we do not
onsider su
h terms.The Polyakov a
tion, by 
onstru
tion, has the symmetries of the world-sheet (the areaof the world-sheet is independent of the parametrization of the world-sheet used to measureit and depends only on the embedding) and the spa
e-time manifold (the tensor indi
es areproperly 
ontra
ted to make it Poin
arë invariant) built into it. The spa
e-time manifoldis usually a pseudo-Riemannian spa
e, whi
h in our 
ase, we take to be the Minkowskispa
e-time, whose symmetries are the D-dimensional Poin
aré invarian
e:
X ′µ(σ, τ) = Λµ

ν X
ν(σ, τ) + aµ ,

γ′αβ(σ, τ) = γαβ(σ, τ) , (1.2)where Λ ∈ SO(1, D), and aµ ∈ RD.The world-sheet is a two-dimensional manifold, and has in its group of symmetries thegroup of di�eomorphisms f : Σg → Σg of Σ. Let ξa → ξ
′a(ξ) be the 
oordinate expressionfor f . The new metri
 is the pullba
k of the old one and is given by

γαβ → f ∗γαβ =
∂ξγ

∂ξ′α
∂ξδ

∂ξ′β
γγδ . (1.3)The embedding transforms as

X ′µ(σ′, τ ′)→ f ∗Xµ = Xµ(σ, τ) . (1.4)The metri
 γαβ is non-dynami
al in the a
tion, and hen
e imposes 
onstraints on thesystem. Unless we 
an gauge away all the independent degress of the metri
, we 
annot makea sensible interpretation of the physi
al theory. The symmetri
 tensor γαβ in two dimensionshas 3 independent 
omponents. The two-dimensional 
oordinate reparametrizations dependon two free fun
tions and we 
an eliminate two of the 
omponents using this. This leavesus with one independent parameter in the metri
 tensor to �x. It turns out, that just forthe 
ase of two dimensions, there o

urs one more lo
al symmetry � lo
al res
alings of themetri
 � that is an invarian
e of the 
lassi
al a
tion. It is 
alled the Weyl invarian
e of the4



Chapter 1. String Theorymetri
 and is given by
γ′αβ(σ, τ) = e2ω(σ, τ)) γαβ(σ, τ) , (1.5)for arbitrary ω(σ, τ). Under a Weyl res
aling of the metri
, the 
ombination √γγαβ isinvariant in two spa
e-time dimensions, and thus, the a
tion remains invariant under it.One 
an use this freedom to �x γαβ (atleast lo
ally) to be proportional to ηαβ . This is knownas the 
onformal gauge. The embedding of the string in M is not a�e
ted by this 
hangeas is re�e
ted by the transformation properties of the fun
tions Xµ(σ, τ) under the Weyltransformations

X ′µ(σ, τ) = Xµ(σ, τ) . (1.6)The Weyl invarian
e of the a
tion, in two spa
e-time dimensions, has very interesting andimportant 
onsequen
es for the theory as we will dis
uss later.When we quantize the theory, we will require that these symmetries be preserved if thetheory is to be anomaly-free. In the 
onformal gauge, the a
tion redu
es to the free �elda
tion
S = −κ

∫
dσdτ ηµν η

αβ∂αX
µ∂βX

ν . (1.7)This 
hoi
e of gauge will have to be treated more 
arefully when quantizing the theory.The requirement of the theory to be anomaly free will impose 
ertain 
onsisten
y 
onditionson the dimension of spa
e-time and on the mass of the ground state. For now we work withthe above a
tion. Having the a
tion, we 
an derive the equations of motion 
oming fromit and �nd general solutions to the fun
tions Xµ(τ, σ). The Euler-Lagrange equations ofmotion 
oming from this a
tion is just the two-dimensional linear wave equation
�Xµ ≡

( ∂2

∂τ 2
− ∂2

∂σ2

)
Xµ = 0 . (1.8)This must, of 
ourse, be supplemented with the 
onstraint equations. The 
onstraintequations in this 
ase are δS

δγαβ
= 0. The variation of the a
tion with respe
t to the metri


γab gives the (two-dimensional) energy-momentum tensor
Tαβ(σ, τ) = −(κ)−1(−γ)−1/2 δS

δγαβ
.

= ∂αX
µ∂βXµ −

1

2
γαβ ∂γX

µ∂γXµ . (1.9)Thus, the 
onstraint equation simply means that the energy-momentum tensor Tαβ = 0.The di�eomorphism invarian
e in two-dimensions implies the energy-momentum tensor is5



Chapter 1. String Theory
onserved. The Weyl invarian
e of the a
tion S, whi
h is just the statement of 
onformalinvarian
e of the theory implies that the energy-momentum tensor is tra
eless. This meansthe theory is s
ale invariant. In two-dimensions, the 
onformal group is in�nite-dimensional.We will get ba
k to this remark again after we �x the boundary 
onditions. We will also needto examine the possibility of an anomaly in the tra
e of Tαβ when quantizing the theory.If the world-sheet has a boundary, there is also a surfa
e term in the variation of thea
tion. If we take the 
oordinate region to be
−∞ < τ <∞, 0 ≤ σ < l .Then, the variation of the a
tion with respe
t to Xµ will also have a boundary term givenby

− 1

2πα′

∫ ∞

−∞

dτ(−γ)1/2δXµ∂σXµ

∣∣∣
σ=l

σ=0
. (1.10)We need this term to vanish and there are di�erent ways in whi
h that 
an happen. For
losed strings, one imposes a periodi
ity 
ondition on the �elds

Xµ(τ, l) = Xµ(τ, 0), ∂σXµ(τ, l) = ∂σXµ(τ, 0), γαβ(τ, l) = γαβ(τ, 0) . (1.11)For the 
ase of an open string there are two possible ways in whi
h the boundary terms
an vanish. One 
an require that the 
omponent of the momentum normal to the boundaryof the world sheet vanish, that is,
∂σXµ(τ, 0) = ∂σXµ(τ, l) = 0 . (1.12)These are 
alled the Neumann boundary 
onditions on the fun
tions Xµ. The ends ofthe string move freely in spa
e-time. This 
hoi
e of boundary 
onditions means that nomomentum is �owing through the ends of the string and hen
e it respe
ts D+1-dimensionalPoin
aré invarian
e.Alternatively one 
an �x the two ends of the string so that δXµ = 0, and

Xµ
∣∣
σ=0

= Xµ
0 and Xµ

∣∣
σ=l

= Xµ
l , (1.13)where Xµ

0 and Xµ
l are 
onstants and µ = 0, . . . , D. This is known as the Diri
hlet boundary
ondition. Diri
hlet boundary 
onditions break Poin
aré invarian
e and hen
e we will not6



Chapter 1. String Theory
onsider them here. They, however, play a very important role in string theory in the studyof D-branes. On
e we have 
hosen a boundary 
ondition, we 
an look for solutions to theequations of motion.We will shift to the light-
one 
oordinates on the world sheet whi
h are de�ned as follows
σ± = τ ± σ . (1.14)We also de�ne

∂± =
1

2
(∂τ ± ∂σ) . (1.15)With these de�nitions, the wave equation be
omes

∂+∂−X
µ = 0 , (1.16)and the 
onstraints involving the energy-momentum tensor be
ome

T++ = ∂+X
µ∂+Xµ = 0 , (1.17)

T−− = ∂−X
µ∂−Xµ = 0 . (1.18)These are the Virasoro 
onstraints. The 
onservation of the energy-momentum tensor be-
omes ∂−T++ + ∂+T−+ = 0 with a similar relation for − ↔ +. Now, sin
e T−+ = T+− = 0by Weyl invarian
e, the energy-momentum 
onservation equation redu
es to

∂−T++ = 0 . (1.19)The impli
ations of this statement are very deep. For any fun
tion f(X+) the above equationimplies that the 
urrent fT++ is 
onserved as well, sin
e ∂−(fT++) = 0. As f is arbitrary,this implies an in�nite set of 
onserved quantities. These 
onserved quantities 
orrespondto residual symmetries left over after we 
hoose the 
ovariant gauge. We will dis
uss moreabout this later.The general solution of the wave equations is
Xµ(σ, τ) = Xµ

R(τ − σ) +Xµ
L(τ + σ) (1.20)

7



Chapter 1. String TheoryFor a 
losed string satisfying periodi
 boundary 
onditions the general solution is given by
Xµ
R =

1

2
xµ +

1

2
l2pµ(τ − σ) +

i

2
l
∑

n 6=0

1

n
αµn exp

(−2πin(τ − σ)

ℓ

)
, (1.21)

Xµ
L =

1

2
xµ +

1

2
l2pµ(τ + σ) +

i

2
l
∑

n 6=0

1

n
α̃µn exp

(−2πin(τ + σ)

ℓ

)
. (1.22)while for an open string with Neumann boundary 
onditions the general solution is given by

Xµ = xµ + l2pµτ + il
∞∑

n=−∞,n 6=0

1

n
αµne

−inτ
os(nσ) , (1.23)where xµ is the 
enter-of-mass position and pµ is the total string momentum des
ribing thefree motion of the string 
enter of mass and the αµn are Fourier 
omponents, whi
h will beinterpreted as harmoni
 os
illator 
oordinates. The parameter l is related to the Regge slopeand hen
e the string tension κ as l = (2α′)1/2 = (1/2πκ)1/2. The open string boundary
onditions for
e the left and right moving modes to 
ombine into standing waves. The rightand left moving modes are independent in the 
losed string. The requirement that Xµ bereal fun
tions implies that αµ−n(resp. α̃µ−n) is the adjoint of αµn(resp. α̃µn).We take the Fourier transform of the energy momentum tensor Tαβ = 0 at τ = 0 to de�nethe Virasoro operators
Lm = κ

∫ l

0

e−2imσT−−dσ ,and
L̃m = κ

∫ l

0

e−2imσT++dσ .For open strings H = L0 and for 
losed strings H = L0 + L̃0. Clasi
ally, the vanishing ofthe energy-momentum tensor translates into the vanishing of all Fourier 
oe�
ients Lm and
L̃m. Imposing this 
onstraint on states leads to the mass shell 
ondition M2 = −pµpµ gives

M2 =
1

α′

∞∑

n=1

α−n · αn (1.24)for the open string, and
M2 =

2

α′

∞∑

n=1

(α−n · αn + α̃−n · α̃n) (1.25)8



Chapter 1. String Theoryfor 
losed strings. These determine the mass of a given string state in the quantum theory.Before we quantize the theory, there is one more important fa
t to mention. The Virasorogenerators Lm and L̃m satisfy an algebra amongst themselves 
alled the Virasoro algebragiven by
[Lm, Ln] = (m− n)Lm+n . (1.26)There will be a 
entral extension to this algebra from the quantum 
orre
tions. We willnot pursue this line further right now, but mention in passing that this algebra is part ofa family of algebras known as loop algebras that we will study in some detail when welearn about in�nite-dimensional Lie algebras. We now move on to quantizing the theoryand �nd its spe
trum and see what physi
al states it gives. We are essentially looking forrepresentations of the Poin
aré group whi
h are unitary. We will work this out in the light-
one gauge sin
e it is manifestly ghost free and simpler to get to the spe
trum. We de�nethe light-
one 
oordinates in spa
e-time as follows.
X± = (X0 ±XD)/

√
2 . (1.27)The light-
one gauge is obtained by setting

X+(σ, τ) = x+ + p+τ .In this gauge, X− is determined by the Virasoro 
onstraints. Thus, the only degrees offreedom are those given by dire
tion transverse to the light-
one 
oordinates, X±. The light-
one gauge expli
itly breaks Lorentz 
ovarian
e as we are singling out two of the (D + 1)
oordinates. It should, however, be Lorentz 
ovariant sin
e the underlying theory it isobtained by gauge �xing from is Lorentz invariant. The 
onditions for the theory to preserveLorentz invarian
e turn out to be identi
al to the 
onstraints (we spoke of earlier) on thedimension of the spa
e-time and the mass shell 
ondition for the theory to be anomaly-free.The 
onstraint equations at the 
lassi
al level require the vanishing of the 
omponentsof the energy-momentum tensor. These 
onstraints physi
ally mean the vibrations of theembedding of the world sheet in the target spa
e-time tangent to the surfa
e, i.e. thelongitudinal degrees of freedom, are eliminated, leaving only the (D−1) transverse dire
tions.In 
hoosing the light-
one gauge, we are, in e�e
t, eliminating the two longitudinal degreesof freedom and quantizing the remaining transverse degrees of freedom.The standard way to quantize the theory is to interpret the Xµ as quantum operators9



Chapter 1. String Theoryand repla
e the Poisson bra
kets by 
ommutators. The equal-time 
anoni
al 
ommutationrelations are then given by
[P µ
τ (σ, τ), Xν(σ′, τ)] = −iδ(σ − σ′)ηµν ,

[Xµ(σ, τ), Xν(σ′, τ)] = [P µ
τ (σ, τ), P ν

τ (σ′, τ)] = 0 . (1.28)These give, for the 
ommutation relations of the os
illator modes the following 
ommutationrelations
[αµm, α

ν
n] = mδm+nη

µν

[αµm, α̃
µ
n] = 0 (1.29)

[α̃µm, α̃
ν
n] = mδm+nη

µνThe ground state |0; k〉, is de�ned to be annihilated by the lowering operators (is a highestweight state) and to be an eigenstate of the 
ernter-of-mass momenta,
P µ |0; k〉 = kµ |0; k〉 ,
αµm |0; k〉 = 0 m > 0 . (1.30)A general state in the Fo
k spa
e Fk 
an be built by a
ting on |0; k〉 with the raisingoperators.

|ǫ; k〉 = ǫ(k,m1, m2, . . . , mn) α
µ1
−m1
· · ·αµn

−mn
|0; k〉, (1.31)for all possible Lorentz polarization tensors ǫ(k,m1, m2, . . . , mn), n ∈ N and all possible

mi ∈ N.The 
enter-of-mass momenta are just the degrees of freedom of a point parti
le, while theos
illators represent an in�nite number of internal degrees of freedom. The above equationforms the Hilbert spa
e of a single open string. The state |0; 0〉 is the ground state of asingle string with zero momentum, not the zero-string va
uum state. The various operatorsappearing above all a
t within the spa
e of states of a single string.The open string Fo
k spa
e is a sum over the Fo
k spa
es over all momenta k. For the
losed string it is a tensor produ
t of the left and right-moving Fo
k spa
es. A very importantpoint to observe is that this Fo
k spa
e is not positive de�nite. The time 
omponents have aminus sign in their 
ommutation relations and therefore the Fo
k spa
e 
ontains states withnegative norm. The physi
al Fo
k spa
e will be a subspa
e of the full Fo
k spa
e. We need10



Chapter 1. String Theoryto use the Virasoro 
onstraints to �x an invariant subspa
e from the full Fo
k spa
e. TheVirasoro 
onstraints in the 
lassi
al theory amounted to the requirement that the 
omponentsof the energy-momentum tensor, T++ and T−−, vanish. We need to impose similar 
onditionsweakly on the quantum Fo
k spa
e. The Fourier 
oe�
ients of the energy-momentum tensorwere given by
Lm =

1

2

∞∑

−∞

αm−n · αn , (1.32)and a similar expression for L̃m in the 
ase of 
losed strings, whi
h we required annihilateall the physi
al states. In the quantum theory the αm are operators, so one must resolvethe ordering ambiguities. Sin
e αm−n 
ommutes with αn unless m = 0, we need only worryabout the operator L0. We de�ne the L0 operator as
L0 = 1

2
α2

0 +

∞∑

n=1

α−n · αn , (1.33)and de�ne the physi
al state 
onditions with respe
t to L0 and L̃0 upto an undetermined
onstant as follows
|φ〉 ∈ Fphy if (Lm − aδm,0)|φ〉 = 0 m ∈ N ,

|φ〉 ∈ F̃phy if (L̃m − aδm,0)|φ〉 = 0 m ∈ N . (1.34)The 
onstant a is undetermined for now, and will be �xed using the 
ondition that thephysi
al Fo
k spa
e be of positive de�nite norm. The mass shell 
ondition will also undergoa modi�
ation due to the 
onstant a as follows
M2 = −2a+ 2

∞∑

n=1

α−n · αn , (1.35)for open strings, so that the os
illator ground state has mass squared −2a, and ex
itationshave mass squared larger than this by any multiple of 2. For 
losed strings the 
onditionbe
omes (with α′ = 1/2)
M2 = −8a + 8

∞∑

n=1

α−n · αn = −8a+ 8

∞∑

n=1

α̃−n · α̃n . (1.36)
11



Chapter 1. String TheoryImposing the 
ondition (L0 − L̃0)|φ〉 = 0 we get
∞∑

n=1

α−n · αn =

∞∑

n=1

α̃−n · α̃n . (1.37)This is the only 
onstraint equation that 
ouples the left and right moving modes. Physi
alstates are found by 
hoosing independently the left-moving and right-moving states of os
il-lation, subje
t to the above 
onstraint. The other Lm and L̃m 
orrespond to terms of de�nitenon zero frequen
y in T++ and T−−. The physi
al states are required to be annihilated bythe positive frequen
y 
omponents
Lm|φ〉 = 0 m = 1, 2, . . . (1.38)We de�ne the number operators(or os
illator level) as follows

N ≡
∞∑

n=1

α−n · αn , Ñ ≡
∞∑

n=1

α̃−n · α̃n . (1.39)They 
ount the number of operators α−n and α̃−n, n ≥ 1 with weight n, applied to theground state |0; k〉.Writing in terms of the number operators the Virasoro 
onstraints be
ome
losed (k2 +M2)|φ〉 = 0 M2 = 8N − 8a and N = Ñ |φ〉 = 0open (k2 +M2)|φ〉 = 0 M2 = 2N − 2a (1.40)It turns out (using the no-ghost theorem) that the theory is 
onsistent if and only if thespa
e-time dimension is 26 and the value of the 
onstant a = 1. We will not prove ormotivate the way this 
an be shown. However a fairly easy 
omputation to 
he
k the normof states for low mass levels shows the need for these two 
onditions. The bosoni
 string in
D = 26 and a = 1 is 
alled the 
riti
al bosoni
 string. Below we give the spe
trum of the
riti
al bosoni
 string.Open String:(i) For N = 0, 
orresponding to states of the form |0; k〉, M2 = −2, hen
e they areta
hyons (parti
les travelling faster than light), and Lorentz s
alars;(ii) For N = 1, 
orresponding to states of the form ǫ ·α−1|0; k〉, M2 = 0. These states have12



Chapter 1. String Theorythe degrees of freedom of a massless ve
tor parti
le.(iii) For N = 2 the �rst states with positive (mass)2 o

ur. They are
αµ−2|0; k〉 and αµ−1α

ν
−1|0; k〉 , (1.41)with M2 = 2. These states have the degrees of freedom of a massive se
ond-ranktensor.(iv) For higher values of N there o

ur various states with M2 > 0 whi
h transform underthe various tensor representations of the Lorentz group.Closed String: For 
losed strings there are two sets of modes 
orresponding to the left-and right-movers and there is the level mat
hing 
ondition relating the two.(i) States 
orresponding to |0; k〉 = |0; k〉L ⊗ |0; k〉R have M2 = −2, so they are ta
hyons,and Lorentz s
alars;(ii) For N = 1, there o

ur states of the form ǫµνα

µ
−1α̃

ν
−1|0; k〉 have M2 = 0 
orrespondingto the tensor produ
t of one left-moving and one right-moving massless ve
tor. Cor-responding to the tra
e part of ǫ there is a Lorentz s
alar, the dilaton, with positivenorm. The symmetri
 tra
eless part of ǫ gives the graviton. The antisymmetri
 partof ǫ gives a rank two antisymmetri
 tensor usually denoted by Bµν .(iii) For higher values of N there o

ur various states with M2 > 0 whi
h transform underthe various tensor representations of the Lorentz group.1.2 η-produ
ts from 
ounting os
illator ex
itationsIn this thesis, we will have o

asion to 
onsider the following tra
e over the open string (orleft-moving se
tor of the 
losed bosoni
 string) physi
al Fo
k spa
e Fk introdu
ed earlier:TrFk

(
qL0−1

)
. (1.42)In the light-
one gauge, the full Fo
k spa
e is generated by the a
tion of all 
ombinationof the os
illator modes of the 24 transverse dimensions. Let P24(N) denote the number of13



Chapter 1. String Theoryos
illator ex
itations at level N arising from the 24 transverse s
alars. Then, one hasTrFk

(
qL0−1

)
= qE0−1

∞∑

N=0

P24(N) qN , (1.43)where E0 is the L0 eigenvalue of the ground state, |0; k〉. One 
an show thatTrFk

(
qL0
)

= qE0

(
1∏∞

n=1(1− qn)

)24

= qE
0 1

η(τ)24
. (1.44)We thus see that modulo the ground state energy, the inverse of the produ
t of Dedekindeta fun
tions, η(τ)24 is the generating fun
tion of the os
illator degenera
y at various levels.We will also en
ounter a variant of the above 
omputation. Let g be an element oforder m of a dis
rete group that a
ts on the transverse s
alars and hen
e on their os
illatormodes. The a
tion of g on the transverse s
alars 
an be represented by its 
y
le shape:

γ = 1a12a2 · · ·mam with ∑m
i=1 iai = 24. Now 
onsider the twisted tra
eTrFk

(
g qL0−1

)
. (1.45)A simple 
omputation shows that the twisted tra
e (ignoring the ground state energy andrelated phases) is given byTrFk

(
g qL0−1) ∼ 1∏m

i=1 η(aiτ)
≡ 1

gγ(τ)
. (1.46)We see that the 
y
le shape γ 
ompletely determines the generating fun
tion of degenera
iesof g-invariant states in the Fo
k spa
e. Thus, the untwisted result 
orresponds to the 
y
leshape γ = 124. It turns out that pre
isely su
h 
ounting problems arise in the 
ounting ofele
tri
ally 
harged 1

2
-BPS states in 
ertain models.1.3 Organization of The ThesisThe organization of this thesis is as follows. After a brief introdu
tion to string theory inthe introdu
tion, in Chapter 2 we brie�y review the problem we wish to study in this thesis,namely, the mi
ros
opi
 
ounting of degenera
ies of BPS states in two families of stringtheory � the CHL models and the type II models. We dis
uss the 
ounting of the 1

2
-BPSand 1

4
-BPS states in these theories and review the expli
it 
ounting 
arried out by David14



Chapter 1. String Theoryand Sen [16℄ in a 
lass of N = 4 supersymmetri
 string theories. We end the 
hapter witha brief review of Sen's study of the walls of marginal stability of 1
4
-BPS states in the CHLmodels.In Chapter 3, is a self-
ontained review of the subje
t of Lie algebras. Starting with�nite-dimensional semi-simple Lie algebras, we gradually introdu
e a�ne Lie algebras and�nally the theory of BKM Lie superalgebras. We dis
uss the stru
ture and representationtheory of Lie algebras, in parti
ular ideas like the Cartan subalgebra, root system, Weylgroup, denominator formula, et
. are reviewed. We give a very brief introdu
tion to thetheory of BKM Lie superalgebras ne
essary to understand the denominator identity of BKMLie superalgebras whi
h plays a 
entral role in this thesis. The material is presented keepinga reader with minimum mathemati
al ba
kground in mind.In Chapter 4, is a self-
ontained introdu
tion to the theory of modular forms. Modularforms are 
entral to the 
ounting problem as the generating fun
tions of the degenera
iesof the 1

2
- and 1

4
-BPS states are given by modular forms. Also, the R2 
orre
tions to thestring e�e
tive a
tion are given by modular forms. These modular forms are the 
onne
tinglink between the string models on the one side, and the family of BKM Lie superalgebras
orresponding to them, on the other.In Chapter 5, we study the 
onstru
tion and properties of all the modular forms thato

ur in this thesis. In parti
ular, we show how these modular forms are 
onstru
ted fromthe additive and multipli
ative lifts. We also dis
uss the 
onstru
tion of the produ
t form ofthese modular forms as both the sum and produ
t forms of the modular forms are importantin understanding them as the denominator identity of BKM Lie superalgebras. We alsodes
ribe the idea of 
y
le shapes and frame shapes that lead to genus-one modular formsgenerating the degenera
y of the ele
tri
ally 
harged 1

2
-BPS states.In Chapter 6, we make the 
onne
tion to BKM Lie superalgebras. Given the modu-lar forms dis
ussed in Chapter 5, we see how they are related to a family of BKM Liesuperalgebras. We review all the BKM Lie superalgebras o

uring in 
onne
tion with thesupersymmetri
 string theory models 
onsidered in this thesis. We dis
uss the 
onstru
tionand properties of ea
h of the algebras. We also dis
uss the relation between the walls ofmarginal stability dis
ussed in Chapter 2 and the walls of the fundamental Weyl 
hambersof the BKM Lie superalgebras as found in [17, 8, 9℄.In Chapter 7, a summary of the results obtained by the author of this thesis in workdone along with 
ollaborators is presented.Chapter 8 
on
ludes the thesis with an overview of the work, and future dire
tions of15



Chapter 1. String Theoryresear
h based on it.
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2Counting Dyons in String Theory
2.1 MotivationOur motivation to undertake the mi
ros
opi
 
ounting of bla
k hole states is an extensionof our interest in understanding 
lassi
al and quantum bla
k holes in greater detail. It hasbeen evident for quite some time now that bla
k hole solutions of general relativity arenot only physi
al, but also very important models in understanding quantum gravity. TheBekenstein-Hawking entropy of a bla
k hole is one of the important aspe
ts of bla
k holesthat 
an be understood both ma
ros
opi
ally and mi
ros
opi
ally, thus giving us 
lues tounderstand the quantum nature of bla
k holes. As we will see below, the 
ounting of bla
khole mi
rostates gives a way to 
ompute the mi
ros
opi
 aspe
ts of the bla
k holes and
ompare it with the ma
ros
opi
 side. First we will sket
h the problem of 
ounting bla
khole states arising from bla
k hole thermodynami
s, and then look at the spe
trum from thestring theory side, before �nally expli
itly 
ounting bla
k hole states in parti
ular models.2.2 Bla
k Hole Thermodynami
sA bla
k hole in the quantum theory behaves, thermodynami
ally, like a bla
k body with a�nite temperature, 
alled its Hawking temperature. It was shown by Hawking that su
h abla
k hole would ne
essarily emit radiation known now as Hawking radiation . The bla
khole system, from a thermodynami
al point of view, behaves in all respe
ts like a bla
kbodywith the given Hawking temperature would. In parti
ular, it has an entropy asso
iated toit known as the Bekenstein-Hawking entropy , SBH . Whenever an obje
t falls into abla
k hole, the entropy 
arried by the obje
t has to show up as the 
hange in entropy of the17



Chapter 2. Counting Dyons in String Theorybla
k hole, if se
ond law of thermodynami
s is to hold. It was shown by Bekenstein that theentropy of a bla
k hole is proportional to the area A of the event horizon as
SBH = A/(4GN), (2.1)where GN is the Newton's 
onstant. From a statisti
al point of view, however, we 
anunderstand the entropy as the logarithm of the number of mi
rostates asso
iated to a givenma
rostate at zero temperature. If Q labels the set of 
harges 
arried by a state, and d(Q)the degenera
y of the states 
arrying this 
harge 
on�guration, then the statsti
al entropyat zero Hawking temperature is given by
Sstat(Q) = ln d(Q). (2.2)To 
ompute Sstat, as de�ned above, would require one to have the bla
k hole at zero Hawkingtemperature and also have a mi
ros
opi
 des
ription of the bla
k hole states. Unfortunately,the mi
ros
opi
 
ounting 
annot be 
arried out for all bla
k holes. One needs to work inspe
ial 
lass of bla
k holes that admit a des
ription in terms of manageable parameters whereone 
an exploit the symmetry stru
ture to make the dynami
s more tra
table. A 
lass ofbla
k holes known as extremal bla
k holes have zero Hawking temperature and a highdegree of tra
tability and so we will be looking at bla
k hole solutions that are extremal. Wewill now motivate su
h a model. For a general introdu
tion to bla
k hole thermodynami
ssee [18, 19℄2.2.1 The Reissner-Nordström Bla
k HoleWe start with the following 3 + 1-dimensional a
tion in the Einstein-Maxwell theory withterms upto two derivatives

S =

∫
d4
√−g

[ 1

16πGN
R− 1

4
FµνF

µν
]
. (2.3)We look for stati
 solutions having spheri
al symmetry. For a non-
harged bla
k hole thisleads to the S
hwarzs
hild bla
k hole solution. Looking for solutions whi
h have ele
tri
 andmagneti
 
harges leads to the Reissner-Nordström bla
k hole solution

ds2 = −f(ρ)dτ 2 + f−1(ρ)dρ2 + ρ2dΩ2, 18



Chapter 2. Counting Dyons in String Theory
Fρτ =

qe
4πρ2

, Fθφ =
qm
4π

sinθ, (2.4)where dΩ2 = dθ2 + sin2θdφ2 is the metri
 on the two-sphere, and f(ρ) is given in terms ofthe the ADM mass and the 
harges (qm, qe) by
f(ρ) = 1− 2GNM

ρ
+

GN

4πρ2
(q2
e + q2

m) . (2.5)One 
an re
ognize the S
hwarzs
hild bla
k hole in the above solution when qe = qm = 0.The solution (2.4) has a singularity at r = 0. The bla
k hole would be stable at the extremallimit 
orresponding to 
hoosing M2 = 1
4πGN

(q2
e + q2

m). In the extremal limit, the Hawkingtemperature of the bla
k hole is zero, and hen
e the bla
k hole no longer radiates. If itradiated, M2 would be
ome less than 1
4πGN

(q2
e + q2

m) and the 
ondition would no longerhold and produ
es a naked singularity. Thus, the bla
k hole solution in the extremal limit
hara
terizes a bla
k hole whi
h is the stable endpoint of Hawking evaporation. The entropyof the bla
k hole remains �nite and is given by
SBH = 1

4
(q2
e + q2

m) . (2.6)Following Sen [20℄ we de�ne
t = λτ/a2, r = λ−1(ρ− a), (2.7)where,

a =

√
GN

4π
(q2
e + q2

m) . (2.8)and λ is an arbitrary 
onstant, and taking the `near horizon' limit, λ→ 0, the solution (2.4)be
omes
ds2 = a2

(
− r2dt2 +

dr2

r2

)
+ a2(dθ2 + sin2θdφ2),

Fr,t =
qe
4π
, Fθφ =

qm
4π

sinθ . (2.9)whi
h is a produ
t of two spa
es. The spa
e labelled by (θ, φ) is the two-dimensional sphere
S2. The spa
e labelled by (r, t) is the two-dimensional AdS2 spa
e-time. The AdS2 spa
e-time is a solution of two-dimensional Einstein gravity with a negative 
osmologi
al 
onstant.The spheri
al symmetry of the bla
k hole solution manifests as an SO(3) isometry a
ting onthe S2. In addition there is also an SO(2, 1) isometry a
ting on the AdS2 that was not present19



Chapter 2. Counting Dyons in String Theoryin the full bla
k hole solution. All known extremal spheri
ally symmetri
 bla
k hole solutionsin four-dimensions with non-singular horizon have near horizon geometry AdS2×S2 and anasso
iated SO(2, 1) × SO(3) isometry. Now, when we 
onsider the a
tion beyond the twoderivative terms, we will postulate that the higher derivative terms we add in thea
tion would not destroy the near horizon symmetries[20℄. For bla
k holes with large
urvature at the horizon the higher derivative terms are as important as the two derivativeterms we have 
onsidered here. Thus, we will assume that in any generally 
ovariant theoryof gravity 
oupled to matter �elds, the near horizon geometry of a spheri
ally symmetri
extremal bla
k hole in four-dimensions has the above mentioned SO(2, 1)×SO(3) isometry.Following Sen[20℄, we shall take this as the de�nition of a spheri
ally symmetri
 extremalbla
k hole in four-dimensions.2.3 Bla
k Holes in String TheoryWe want to investigate the above ideas in the 
ontext of string theory. We look for solutionswhi
h are stati
 and have the SO(2, 1)× SO(3) isometry. Even with these symmetry 
on-straints the solutions are fairly 
ompli
ated with the s
alar �elds depending non-trivially onthe radial dire
tion and we need to �nd an analogue of the 
onditions that lead to extremalityto be able to �nd tra
table solutions. The �rst smooth solutions were 
onstru
ted 
ompa
t-ifying the heteroti
 string on T 6[21, 22, 23℄. Charged solutions have the same stru
ture asthe Reissner-Nordström solution. Often these bla
k holes are also invariant under 
ertainnumber of supersymmetry transformations and in that 
ase they are known as BPS bla
kholes, and the analogue of the 
onditions that led to extremality for the Reissner-Nordströmsolution in this 
ontext is the ne
essity of the saturation of the BPS bound1. The saturationof the bound implies that the bla
k hole preserves some fra
tion of the supersymmetry ofthe va
uum. We 
an thus obtain bla
k hole solutions with the two important properties �stability and symmetry � whi
h make the extremal Reissner-Nordström solution tra
table.One 
an 
al
ulate the degenera
y of su
h states at weak 
oupling and hen
e the entropy,at weak 
oupling. Supersymmetry ensures that we 
an 
ontinue the result to the strong
oupling regime where the system 
an be best des
ribed as a bla
k hole.Another reason extremal bla
k holes are parti
ularly suitable to work with is the so
alled �attra
tor me
hanism� as a result of whi
h, the entropy is independent of asymptoti
1While it is not always true that the BPS bound 
oin
ides with the extremal limit, it will be true in allour 
onsiderations. 20



Chapter 2. Counting Dyons in String Theoryvalues of the moduli s
alar �elds[24, 25, 26℄. Thus the entropy of an extremal bla
k holedoes not 
hange as we 
hange the asymptoti
 values of the string 
oupling 
onstant from asu�
iently large value where it has a bla
k hole des
ription to a mu
h smaller value wherethe mi
ros
opi
 des
ription is valid.There are, however, two sides to the symmetry of the system. On the one side the highdegree of symmetry of the theory lets one dedu
e many features of the theory using symmetryarguments alone, and hen
e gives a way of understanding the system. On the other hand,sin
e our �nal aim is understanding general systems with no symmetry, studying systemswith su
h high degree of symmetry 
an help us only so mu
h. However, as a �rst stepit is edu
ative to understand extremal solutions to test the validity of the pro
edure by
omputing and 
omparing quantities of the bla
k hole system that 
an be 
omputed fromother methods. One su
h important 
omputation is of the entropy of extremal bla
k holeswhi
h 
an be 
omputed from ma
ro
sopi
 parameters as in eq. (2.1) and 
omparing it witha mi
ros
opi
 
ounting of the states of the bla
k hole.It, however, took a while before su
h expli
it 
omputations 
ould be realized. In 1995,Strominger and Vafa pioneered the idea of thinking of the bla
k hole as a bound state ofsolitons (D-branes) in string theory, and using the stability of the BPS states to 
ontinuethe solution to the weak 
oupling limit[5℄. Sin
e then many similar 
omputations have been
arried out for the 
ase of extremal and near-extremal bla
k holes[27, 28, 29℄. In the limitwhere the size of the bla
k hole is large, the Bekenstein-Hawking entropy SBH has beenfound to be the same as the statisti
al entropy of the same 
harge 
on�guration. i.e.
SBH(Q) = Sstat(Q). (2.10)The above 
omparisons between SBH and Sstat were initially 
arried out in the large 
hargelimit, where the horizon size is large so that the 
urvature and other �eld strengths at thehorizon are small and hen
e we 
an ignore them.Typi
ally string theory 
ompa
ti�ed to four-dimensions involves many more �elds thanappearing in the Einstein-Maxwell a
tion we 
onsidered above. Requiring N ≥ 2 supersym-metry in the solutions generi
ally gives theories with abelian gauge �elds, massless s
alarsand their fermioni
 partners. We will primarily be interested in studying solutions in four-dimensional spa
e-time with N = 4 supersymmetry. In parti
ular, we will fo
us on two
lasses of four-dimensional 
ompa
ti�
ations:(i) Asymmetri
 orbifolds of the heteroti
 string on T 6 � the CHL models, 21



Chapter 2. Counting Dyons in String Theory(ii) Asymmetri
 orbifolds of the type IIA string on T 6 � the type II models.Before des
ribing these models in greater detail we will dis
uss a proposal of Dijkgraaf,Verlinde, and Verlinde (DVV) of representing the generating fun
tion of degenera
ies ofdyoni
 states by automorphi
 forms and its 
ompatibility with the ma
ros
opi
 entropy ofdyoni
 bla
k holes[1℄. This is the genesis of subsequent proposals by David, Jatkar and Senfor representing dyoni
 degenera
ies in terms of automorphi
 forms for the two 
lasses ofmodels[30, 31, 32, 2, 33, 34, 35, 36℄.2.4 The DVV ProposalDVV 
onsidered the heteroti
 string 
ompa
ti�ed on a six-torus. In this four-dimensionaltheory (whi
h is dual to type II theory on K3 × T 2), dyoni
 states 
arry 28 ele
tri
 and
28 magneti
 
harges, denoted qe and qm, respe
tively, living on an even self dual latti
e
Γ22,6. This theory has as its duality group SL(2,Z)×SO(22, 6,Z), where the SL(2,Z) is theele
tri
-magneti
 duality symmetry. The purely ele
tri
 states, whi
h arise perturbativelyas heteroti
 string states, 
an be 
ounted easily sin
e they preserve half of the super
hargesand hen
e simply 
orrespond to the heteroti
 string states in the right-moving ground state2.Hen
e the number of su
h states 
an be 
omputed if one spe
i�es the 28 ele
tri
 
harges alongwith their o

upation numbers, subje
t to the level mat
hing 
ondition

1
2
q2
e +

∑

ℓ,I

ℓN I
ℓ = 1, (2.11)where the subs
ript ℓ denotes the world-sheet os
illator number of the 
oordinate �eld xI ,and the s
alar produ
t on the latti
e Γ22,6 is de�ned using the SO(22, 6,Z) invariant innerprodu
t. The number of su
h states is

d(qe) =

∮
dσ

eiπσq
2
e

η(σ)24
, (2.12)where the 
ontour integral over σ is from 0 to 1 and η(σ) is the Dedekind η-fun
tion.The magneti
 
harges do not arise perturbatively but as solitoni
 states. From theele
tri
-magneti
 duality, there should also exist a solitoni
 version of the heteroti
 stringthat 
arries pure magneti
 
harge qm ∈ Γ22,6, and hen
e a similar formula that 
ounts the2We 
hoose the right-movers to be supersymmetri
 for the heteroti
 string. 22



Chapter 2. Counting Dyons in String Theorymagneti
 
harges. Thus, we have a generating fun
tion for the degenera
ies of the 1
2
-BPSstates given in terms of the Dedekind eta produ
ts.The generi
 dyoni
 states, however, preserve only one-quarter of the supersymmetries andhen
e will be a bigger set whose degenera
ies will be given by a more general formula. Theformula will be a generalization of (2.12) and should redu
e to it when the supersymmetry isrestored ba
k to half. DVV proposed a formula for the degenera
ies of the 1

4
-BPS states onthe idea that the 1

4
-BPS states are a bound state of an ele
tri
 heteroti
 string with a dualmagneti
 heteroti
 string. It is a
tually an index in that it 
ounts the number of bosoni
minus the fermioni
 BPS-multiplets for a given 
on�guration of ele
tri
 and magneti
 
harge.2.4.1 The Degenera
y FormulaFor 
onvenien
e, we 
ombine the ele
tri
 and magneti
 
harge ve
tors into a single ve
tor as

q =

(
qe

qm

)
,and introdu
e the matrix

Z =

(
z1 z2

z2 z3

)
=

(
ρ ν

ν σ

)
, (2.13)generalizing the single modulus σ in (2.12). DVV proposed that the degenera
y of the 1

4
-BPSstates is then given by

64d(qe,qm) =

∮
dZ

eiπq
T·Z·q

Φ10(Z)
. (2.14)The integrals over the moduli parameters σ, ρ and ν run over the domain from 0 to 1 andwe need to impose the level mat
hing 
ondition as before. The matrix Z is the periodmatrix of a genus-two Riemann surfa
e and the fun
tion Φ10(Z) is genus-two modular formwhi
h is the unique automorphi
 form of weight 10 of the modular group Sp(2,Z). The

SL(2,Z) duality transformations are identi�ed with the subgroup of Sp(2,Z) that leavethe genus-two modular form Φ10(Z) invariant. Thus, the degenera
y formula is manifestlyduality symmetri
. Φ10(Z) also has a representation in terms of the produ
t of genus-2 theta
onstants as 3
Φ10(Z) =

( 1

64

9∏

m=0

θm(Z)
)2

. (2.15)3The expression of Siegel modular forms as produ
ts of even genus-two theta 
onstants is dis
ussed in
hapter 5. 23



Chapter 2. Counting Dyons in String TheoryAnother equivalent representation of Φ10(Z) is obtained as an in�nite produ
t representationfrom the Fourier 
oe�
ients of the ellipti
 genus of K3

χK3(τ, z) = Tr(−1)FL+FRe2πi(τ(L0−
c
24

)+zFL), (2.16)with c = 6 for K3 and FL and FR are the spa
e-time fermion numbers whi
h 
an be identi�edwith the zero-modes of the left-moving and right-moving U(1) ⊂ SU(2) 
urrent algebras.The automorphi
 form Φ10(Z) is given as an in�nite produ
t by
Φ10(ρ, σ, ν) = e2πi(ρ+σ+ν)

∏

(k,l,m)>0

(
1− e2πi(kρ+lσ+mν)

)c(4kl−m2)

, (2.17)where (k, l,m) > 0 means that k, l ≥ 0 and m ∈ Z, m < 0 for k = l = 0, and the 
oe�
ients
c(n) are de�ned by the expansion of the K3 ellipti
 genus as

χK3(τ, z) =
∑

h≥0,m∈Z

c(4h−m2) e2πi(hτ+mz), (2.18)where, up to normalization, χK3(τ, z) is the unique weak Ja
obi form of index 1 and weight
0. Note that c(n) = 0 for n < −1.We will 
on
lude our study of the DVV proposal with a few remarks on 
he
king its
onsisten
y. We will take the Fourier transform of (2.14) and write it as

64

Φ10(Z)
=
∑

k,ℓ,m

D(k, ℓ,m)e−2πi(kρ+ℓσ+mν), (2.19)with k, ℓ,m ∈ Z. The 
oe�
ients D(k, ℓ,m) are all integers and are related to the degenera-
ies (2.14) by
d(qe,qm) = D(1

2
q2
e,

1
2
q2
m,qe · qm) . (2.20)Now, as a �rst 
onsisten
y 
he
k, we want to see if one 
an obtain (2.12) as a limit of (2.14).The parameter ν 
ouples to the heli
ity m of the dyoni
 states, and thus the integral over

ν proje
ts out dyons with heli
ity equal to zero. However, instead of integrating it out, one
an also put it equal to a �xed value, like ν = 0. In the ν = 0 limit then, we will obtain theformula with a heli
ity tra
e (−1)m, whi
h will proje
t out the 1
4
-BPS states and will leaveonly the 1

2
-BPS states whose degenera
y is given by (2.12). Taking the ν → 0 limit in (2.19)24



Chapter 2. Counting Dyons in String Theorywe get
lim
ν→0

eiπq·Z·q

Φ10(Z)
−→ 1

ν2

eiπρq
2
e

η(ρ)24

eiπσq
2
m

η(σ)24
. (2.21)The above formula shows that the genus-two surfa
e parametrized by Z fa
tors into twoseparate genus-one surfa
es with moduli ρ and σ whi
h 
orrespond to the 1

2
-BPS moduli.As another non-trivial 
he
k for the degenera
y formula, we 
an 
ompare the ma
ros
opi
Bekenstein-Hawking entropy of extremal four-dimensional bla
k holes with the asymptoti
behaviour for large 
harges of (2.14). The degenera
y formula (2.14) mat
hes the ma
ro-s
opi
 entropy results in the large 
harge limit.With this brief introdu
tion into the DVV proposal, we now turn to the two models thatwe will study for the rest of this thesis � the CHL and type II models. We will derive aformula similar to the above one for the degenera
ies of the 1

2
-BPS and 1

4
-BPS states forthe 
ase of CHL strings, and following David, Jatkar and Sen show how the modular formin question is generated by an expli
it 
ounting of the bla
k hole mi
rostates in the model.We will also look at the modular forms generating the dyoni
 degenera
ies in the type IImodels. We �rst start by des
ribing, brie�y, the CHL and type II models below, beforemoving on to understanding the expli
it 
ounting of the dyoni
 degenera
ies in a D = 4,

N = 4 supersymmetri
 model.2.5 The CHL ModelsThe heteroti
 string 
ompa
ti�ed on T 6 and its asymmetri
 ZN orbifolds provide us withfour-dimensional 
ompa
ti�
ations with N = 4 supersymmetry. Writing T 6 as T 4× Ŝ1×S1,
onsider the ZN orbifold given by the transformation 
orresponding to a 1/N unit of shiftin Ŝ1 and a simultaneous ZN involution of the Narain latti
e of signature (4, 20) asso
iatedwith the heteroti
 string 
ompa
ti�ed on T 4. This leads to the CHL models that we willstudy[2℄. Starting from six-dimensional string-string duality, one sees that the heteroti
string 
ompa
ti�ed on T 4×S̃1×S1 is dual to the type IIA string 
ompa
ti�ed onK3×S̃1×S1.The (4, 20) latti
e gets mapped to H∗(K3,Z) in the type IIA theory and the orbifolding ZNis a Nikulin involution 
ombined with the 1/N shift of S̃1. There is a third des
ription thatis obtained by T-dualizing the Ŝ1 to S̃1 and following it by an S-duality � this is used to
arry out the mi
ros
opi
 
ounting. Figure 2.1 summarizes the 
hain of dualities.The low-energy theory 
onsists of the following bosoni
 �elds:(i) the N = 4 supergravity multiplet with the graviton, a 
omplex s
alar, SH and six25



Chapter 2. Counting Dyons in String TheoryType IIB on
K3×S1×S̃1Des
ription 3 S−−−→dual Type IIB on

K3×S1×S̃1

T dualize−−−−−→
eS1 to bS1

Type IIA on
K3×S1×Ŝ1Des
ription 1 str-stri−−−−→duality Heteroti
 on

T 4×S1× Ŝ1Des
ription 2Figure 2.1: The 
hain of dualities in the CHL model. The above 
hain is expe
ted to holdafter ZN -orbifolding of K3 × S1. The quantization of 
harges is spe
i�ed in Des
ription 2(asymmetri
 orbifolds of the heteroti
 string i.e., CHL strings) while mi
ros
opi
 
ounting is
arried out in Des
ription 3.graviphotons; and(ii) m N = 4 ve
tor multiplets ea
h 
ontaining a gauge �eld and six s
alars4.In terms of the variables that appear in the heteroti
 des
ription, the bosoni
 part of thelow-energy e�e
tive a
tion (up to two derivatives) is[37, 21, 38℄
S =

∫
d4x
√−g

[
R− ∂µSH ∂µS̄H

2 Im(SH)2
+

1

8
Tr(∂µML ∂µML)

−1

4
Im(SH) FµνLML F µν +

1

4
Re(SH) FµνL F̃ µν

]
, (2.22)where L is a Lorentzian metri
 with signature (6, m),M is a (6+m)× (6+m) matrix valueds
alar �eld satisfying MT = M and MTLM = L and Fµν is a (6 + m)-dimensional ve
tor�eld strength of the (6 + m) abelian gauge �elds. The moduli spa
e of the s
alars is givenby

(
Γ1(N)× SO(6, m; Z)

)∖(SL(2)

U(1)
× SO(6, m)

SO(6)× SO(m)

) (2.23)
SO(6, m; Z) is the T-duality symmetry and Γ1(N) ⊂ SL(2,Z) is the S-duality symmetry thatis manifest in the equations of motion and is 
ompatible with the 
harge quantization[39℄.The �elds that appear at low-energy 
an be organized into multiplets of these various sym-metries.1. The heteroti
 dilaton 
ombines with the axion (obtained by dualizing the antisymmet-ri
 tensor) to form the 
omplex s
alar SH . Under S-duality, SH → (aSH+b)/(cSH+d).2. The (6+m) ve
tor �elds transform as a SO(6, m; Z) ve
tor. Thus, the ele
tri
 
harges

qe (resp. magneti
 
harges qm) asso
iated with these ve
tor �elds are also ve
tors (resp.4When N = 1, 2, 3, 5, 7, m = ([48/(N + 1)]− 2) 26



Chapter 2. Counting Dyons in String Theory
o-ve
tors) of SO(6, m,Z). Further, the ele
tri
 and magneti
 
harges transform as adoublet under the S-duality group, Γ1(N), where Γ1(N) is the sub-group of SL(2,Z)matri
es ( a bc d ) with a = d = 1 modN and c = 0 modN).One 
an form three T-duality invariant s
alars, q2
e, q2

m and qe·qm from the 
harge ve
tors.These transform as a triplet of the S-duality group. Equivalently, we 
an write the tripletas a symmetri
 matrix:
Q ≡

(
q2
e −qe · qm

−qe · qm q2
m

) (2.24)The S-duality transformation now is Q → A · Q · AT with A = ( a bc d ) ∈ Γ1(N). The 
hargesare quantized su
h that Nq2
e, q2

m ∈ 2Z and qe · qm ∈ Z. There exist many more invariantsdue to the dis
rete nature of the T-duality group[40℄ for N = 1 and more appear when
N > 1.2.5.1 BPS MultipletsFour-dimensional 
ompa
ti�
ations with N = 4 supersymmetry admit two kinds of BPSstates: (i) 1

2
-BPS multiplets that preserve eight super
harges (with 16 states in a multiplet)and (ii) 1

4
-BPS multiplets that preserve four super
harges(with 64 states in a multiplet). Themasses of the 1

4
-BPS states are determined in terms of their 
harges by means of the BPSformula[21, 41, 38℄:

(
M2

±

)
1
4
−BPS =

1

SH − S̄H

[
(qe + SHqm)T (M + L)(qe + S̄Hqm)

± 1

2

√
(qTe (M + L)qe)(qTm(M + L)qm)− (qTe (M + L)qm)2

]
. (2.25)The square of the mass of a 1

4
-BPS state is max(M2

+,M
2
−). 1/2-BPS states appear when theele
tri
 and magneti
 
harges are parallel (or anti-parallel) i.e., qe ∝ qm. The BPS massformula for 1

2
-BPS states 
an be obtained as a spe
ialization of the 1

4
-BPS mass formulagiven above. When qe ∝ qm, the terms inside the square root appearing in the 1

4
-BPS massformula vanish leading to the 1

2
-BPS formula

(
M2
)

1
2
−BPS =

1

SH − S̄H

[
(qe + SHqm)T (M + L)(qe + S̄Hqm)

]
. (2.26)

27



Chapter 2. Counting Dyons in String Theory2.5.2 Counting 1
2-BPS StatesWe will now 
onsider the 
ounting of purely ele
tri
ally 
harged 1

2
-BPS states. Su
h ele
-tri
ally 
harged states are in one to one 
orresponden
e with the states of the CHL orbifoldof the heteroti
 string 
ompa
ti�ed on T 4 × S1 × Ŝ1[39℄. Let d(n) denote the degenera
yof heteroti
 string states 
arrying 
harge Nq2

e = 2n � the fra
tional 
harges arise from thetwisted se
tors in the CHL orbifolding. Every 1
2
-BPS multiplet/heteroti
 string state hasdegenera
y 16 = 28/2. Then the generating fun
tion of d(n) is[32, 42, 43℄ (for N = 1, 2, 3, 5, 7and k + 2 = 24/(N + 1))

∞∑

n=0

d(n) exp(2πinτ
N

) =
16

(i
√
N)−k−2 f (k)(τ/N)

, (2.27)where
f (k)(τ) ≡ η(Nτ)k+2 η(τ)k+2 . (2.28)The degenera
y of purely magneti
ally 
harged states with 
harge qm = 2m is given by asimilar formula with f (k)(τ/N) repla
ed by f (k)(τ). These are level-N genus-one modularforms with weight (k + 2). For (N, k) = (1, 10), f (10)(τ) = η(τ)24.2.5.3 Counting 1

4-BPS StatesAs we saw earlier, 1
4
-BPS states are ne
essarily dyoni
 in 
hara
ter with the ele
tri
 and mag-neti
 
harge ve
tors being linearly independent. Jatkar and Sen generalized the DVV pro-posal to the 
ase of asymmetri
 ZN -orbifolds of the heteroti
 string on T 6 for N = 2, 3, 5, 7[2℄.They proposed that the egenera
y of 1

4
-BPS dyons is generated by a Siegel modular form ofweight k = 24

N+1
− 2 and level N , Φ̃k(Z). They also provided an expli
it 
onstru
tion of themodular form using the additive lift of a weak Ja
obi form. The 
onstru
ted modular formhas the following properties:(i) It is invariant under the S-duality group Γ1(N) suitably embedded in the groupG1(N) ⊂

Sp(2,Z). (See Appendix D for notation)(ii) In the limit z2 → 0, it has the right fa
torization property:
lim
z2→0

Φ̃k(Z) = (i
√
N)−k−2 (2πz2)

2 f (k)(z1/N) f (k)(z3) (2.29)Note that for (N, k) = (1, 10), this mat
hes the DVV formula (eq. (2.21)). 28



Chapter 2. Counting Dyons in String Theory(iii) It reprodu
es the entropy for large bla
kholes[2℄.(iv) For 1
2
-BPS bla
kholes, the formula leads to a predi
tion for R2 (higher derivative)
orre
tions to the low-energy e�e
tive a
tion given in Eq. (2.22). Su
h 
orre
tionslead to a non-zero entropy using Wald's generalization of the BH entropy formula forEinstein gravity that agrees with the predi
tion from the modular form[44, 45℄.With this brief introdu
tion, we move on to the other model we will 
onsider in this work� the type II 
ompa
ti�
ations with N = 4 supersymmetry. These models are similar to theCHL models with the K3, appearing in the type IIA/B des
ription, being repla
ed by T 4.2.6 The Type II ModelsType II string theory 
ompa
ti�ed on a six-torus has N = 8 supersymmetry in four-dimensions. We will 
onsider �xed-point free ZN (N = 1, 2, 3, 4, 5) orbifolds of the six-torus that preserve N = 4 supersymmetry. The orbifold pro
edure involves splitting T 6 =

T 4 × S1 × S̃1 and 
hoosing the a
tion of ZN su
h that it has �xed points on T 4, but thisa
tion is a

ompanied by a simultaneous 1/N shift along the 
ir
le S1. The total a
tion ofthe orbifold is free, i.e., it has no �xed points. It thus su�
es to spe
ify the a
tion of T 4.As we will be moving between several des
riptions of the orbifold related by duality, wewill need to spe
ify the duality frame. Des
ription one 
orresponds to type IIA string theoryon a six-torus with the following ZN a
tion.
N 6= 5 Let ω = exp(2πi/N) and (z1, z2) be 
omplex 
oordinates on T 4. The ZN a
tion isgenerated by (z1, z2)→ (ωz1, ω

−1z2).
N = 5 Let ω = exp(2πi/5) and T 4 = R4/ΓA4, where ΓA4 is the root latti
e of Lie algebra A4.The Z5 generator has eigenvalues ωr with r = 1, 2, 3, 4 mod 5. This 
orresponds to aquasi-
rystalline 
ompa
ti�
ation.Our 
onsiderations generalize the N = 2, 3 orbifolds 
onsidered in [31℄. Again a 
hain ofdualities (dis
ussed later in this 
hapter) relates this to other type IIA/B 
ompa
ti�
ations.In parti
ular, the analog of the CHL string turns out to be the type IIA string � see Figure2.2.The two-derivative low-energy e�e
tive a
tion is 
onstrained by supersymmetry and thenumber of ve
tor multiplets and is identi
al to the one dis
ussed for the CHL model (see eq.29



Chapter 2. Counting Dyons in String TheoryType IIB on
T 4×S1× S̃1Des
ription 3 S−−−→dual Type IIB on

T 4×S1× S̃1

T dualize−−−−−→
eS1 to bS1

Type IIA on
T 4×S1× Ŝ1Des
ription 1 str-stri−−−−→duality Type IIA on

T̂ 4×S1× Ŝ1Des
ription 2Figure 2.2: The 
hain of dualities in the type II models. The above 
hain is expe
ted tohold after ZN -orbifolding of T 4×S1. The quantization of 
harges is spe
i�ed in Des
ription2 (asymmetri
 orbifold of the type IIA string) while mi
ros
opi
 
ounting is 
arried out inDes
ription 3.(2.22)). Similarly, the mass formulae for 1
4
-BPS and 1

2
-BPS states given in the CHL modelalso hold here with SH being identi�ed with the dilaton in des
ription 2.2.6.1 ZN-A
tion From the NS5-BraneUnder six-dimensional string-string duality, type IIA string on T 4 (des
ription 1) is dual totype IIA string on the T-dual torus T̂ 4 (des
ription 2). The dual type IIA string is a solitonobtained by wrapping the NS5-brane on T 4. We are interested in the situation where thisis 
ompa
ti�ed to four-dimensions and there is a ZN orbifold a
tion as mentioned above.Vafa and Sen have obtained the 
orresponding orbifold a
tion (for N = 2, 3) in the dualdes
ription[46℄. We will obtain their result and its generalization for the N = 4, 5 orbifoldsby studying the ZN a
tion in e�e
tive 1+1-dimensional worldvolume theory of the NS5-braneon T 4 (see [47, 48℄ for a related dis
ussion).The �elds in the worldvolume theory of a single NS5-brane 
onsist of �ve s
alars, ase
ond-rank antisymmetri
 tensor (with self-dual �eld strength) in the bosoni
 se
tor andfour 
hiral fermions. These are the 
omponents of a single (2, 0) tensor multiplet in 5 + 1-dimensions. We 
an dimensionally redu
e the �elds on T 4 to obtain the �elds on an e�e
tive

1 + 1-dimensional theory. Using string-string duality, this theory will be that of a type IIAGreen-S
hwarz string in the light-
one gauge [47, 48℄.Let us organize the �elds in terms of SO(4)×SO(4)R where the �rst SO(4) = SU(2)L×
SU(2)R is from the T 4 and the R-symmetry 
an be taken to be rotations about the fourtransverse dire
tions to the NS5-brane.1. Four s
alars, xm, are in the representation (1, 4v). These be
ome four non-
hiral s
alarson dimensional redu
tion on the four-torus.2. The �fth s
alar and the two-form antisymmetri
 gauge �eld 
an be 
ombined andwritten as Yαβ and Yα̇β̇ where α is a SU(2)L spin-half index and β̇ is a SU(2)R spin-30



Chapter 2. Counting Dyons in String Theoryhalf index. On dimensional redu
tion on the four-torus, the Yαβ be
ome the fourleft-moving 
hiral bosons and the Yα̇β̇ be
ome four right-moving 
hiral bosons. When
ombined with the four non-
hiral bosons, they be
ome the Green-S
hwarz bosons inthe light-
one gauge of the type IIA string.3. The fermions are ψAβ and ψAβ̇ where A is a spinor index of SO(4)R. These be
omethe left- and right-moving fermions in the e�e
tive 1 + 1-dimensional theory � theseare the Green-S
hwarz fermions in the light-
one gauge of the type IIA string.In the above set up, the transformations under that the ZN subgroup of SU(2)L is given by
gα

β ≡
(
ω 0

0 ω−1

)
, (2.30)where ω = exp(2πi/N) for N = 2, 3, 4.One 
an see that the only �elds that transform under this a
tion are those that 
arry theindex α. Thus, we see that the 
hiral fermions all transform as

ψAα → gα
β ψAβ . (2.31)Thus we see that 4 of the fermions pi
k up the phase ω and the other four pi
k up the phase

ω−1. The �eld Yαβ transforms as
Yαβ → gα

γ gα
δ Yγδ . (2.32)Thus, two �elds are invariant under the ZN and the other two transform with phases ω2 and

ω−2. All other �elds are invariant under the ZN .In the dimensional redu
tion of the the (2, 0) theory on T 4, the SU(2)L �elds get mappedto (say) left-movers and the SU(2)R �elds get mapped to (say) right-movers. Thus, we seethat the orbifold has a 
hiral a
tion. In parti
ular, the four bosons that arise from Yαβ giverise to four left-moving 
hiral bosons and the ψAα give rise to four left-moving 
hiralfermions.
31



Chapter 2. Counting Dyons in String Theory2.6.2 ZN A
tion From the Poin
aré PolynomialConsider the Poin
aré polynomial for T 4 weighted by the phases under the ZN -a
tion for
N = 1, 2, 3, 4.
(1− ωx)2(1− ω−1x)2 = x4− 2x3ω− 2x3

ω
+ x2(ω2 + ω−2) +

x2

ω2
+ 4x2 − 2xω− 2x

ω
+ 1 (2.33)In the above expansion, we identify even powers of x with bosons in the 1 + 1-dimensionaltheory and odd powers with fermions. The 
oe�
ient multiplying the term gives the orbifolda
tion. Thus six of the bosons are always periodi
 and the other two have fra
tional modingdetermined by the phase.It appears that one 
an use the Poin
aré polynomial to obtain the Z5 a
tion on the dualtype IIA string. However, that has to be written as a SO(4) a
tion rather than a SU(2)Lsubgroup. When N = 5, the Z5 a
tion is best seen by 
hoosing the T 4 to be given by

R4/ΓA4 . The eigenvalues of the generator of the Z5 are given by ωr, (r = 1, 2, 3, 4). The
orresponding Poin
aré polynomial is
(1− ωx)(1− ω2x)(1− ω−1x)(1− ω−2x)

= 1 + 2x2 + x4 + (ω3 + ω + 1/ω + 1/ω3)x2

− x/ω − x/ω2 − ωx− ω2x− ω2x3 − ωx3 − x3/ω − x3/ω2 (2.34)We now present the details of the orbifold a
tion (on the left-movers) for the Green-S
hwarz type IIA-superstring that we just derived.[N=2℄ ω = −1 implies that ω2 = 1. Thus, one has eight periodi
 bosons and eight anti-periodi
 fermions.[N=3℄ ω = exp(2πi/3) One has six periodi
 bosons and two bosons whi
h pi
k up phases ωand ω2. Four fermions go to ω times themselves and the other four go to ω−1 timesthemselves.[N=4℄ ω = exp(πi/2) One has six periodi
 bosons and two anti-periodi
 bosons. Four fermionsgo to ω times themselves and the other four go to ω−1 times themselves.[N=5℄ ω = exp(2πi/5) This is di�erent from the other three examples. One ends up withfour periodi
 bosons and the other four 
hange by a phase ωr (r = 1, 2, 3, 4). The eight32



Chapter 2. Counting Dyons in String Theoryfermions break up into two sets of four fermions. Within ea
h set, one fermion pi
ksup a phase ωr (r = 1, 2, 3, 4).Thus, the se
ond des
ription gives rise to an asymmetri
 orbifold of the type IIA stringon T 6 and thus is analogous to CHL 
ompa
ti�
ations of the heteroti
 string. Re
all thatthe heteroti
 string arises as the type IIA NS5-brane wraps K3 in the pla
e of T 4 that we
onsidered.2.6.3 Type II Dyon Degenera
y From Modular FormsAs mentioned in previous se
tion, 
omputing the dyon spe
trum is non-trivial be
ause dyonsdo not appear in the perturbative spe
trum of string theory. In fa
t, dyon 
ounting ne
-essarily requires 
omputing the degrees of freedom 
oming from the solitoni
 se
tor of thetheory. The dyon degenera
y formula 
an be obtained in two di�erent ways, giving rise toeither a additive formula or a multipli
ative one.As shown in [2℄, for the CHL models, there are two modular forms that one 
onstru
ts� one is the generating fun
tion of the dyon degenera
ies (denoted by Φ̃k(Z)) and another(denoted by Φk(Z)) is the one related to R2-
orre
tions in the CHL string. Let us 
all the
orresponding modular forms in the type II models to be Ψ̃k(Z) and Ψk(Z). The weight kof the Siegel modular form for the type II models is given by
k + 2 =

12

N + 1
, (2.35)when N + 1|12 i.e., N = 2, 3, 5. For N = 4, one has k = 1.We will dis
uss the modular forms Ψ̃k(Z) and Ψk(Z) of the type II orbifolds in 
hapter 6where we dis
uss the 
onstru
tion of all modular forms appearing in the this work. Now weturn to the mi
ros
opi
 
ounting of dyoni
 states and sket
h the 
omputation in the 
ase ofthe CHL and type II models as shown by David, Jatkar and Sen[16, 31℄.2.7 Counting Dyons in N = 4 Supersymmetri
 StringsIn the rest of this 
hapter, we will simultaneously dis
uss both models: the CHL and typeII. Consider des
ription 3 where one has type IIB string theory 
ompa
ti�ed onM× S̃1×S1where M is either K3 or T 4. We then take an orbifold of this theory by a ZN symmetry.The a
tion of the symmetry group is generated by a transformation g whi
h involves a33



Chapter 2. Counting Dyons in String Theory
1/N unit shift along the 
ir
le S1 together with an order N transformation g̃ in M. Thetransformation g̃ is 
hosen su
h that it 
ommutes with the N = 4 supersymmetry generatorsof the parent theory and hen
e preserves the N = 4 supersymmetry. Our dis
ussion here
losely follows the review of Sen[20℄.Following the 
hain of dualities, we have seen that the transformation g̃ gets mapped, indes
ription 2, to a transformation ĝ that a
ts only as a shift on the right-moving degrees offreedom on the world-sheet and as a shift plus rotation on the left-moving degress of freedom.Des
ription 2 is obtained by taking an asymmetri
 orbifold of heteroti
 or type IIA stringtheory on T 4 × Ŝ × S1 by a 1/N unit of shift along S1 together with the transformation ĝ.All the supersymmetry 
omes from the right-moving se
tor of the world-sheet. The �eld SHis the axion-dilaton in the se
ond des
ription and to the 
omplex stru
ture modulus of thetorus S̃1×S1 in the �rst des
ription.. The matrix valued s
alar �eldM en
odes informationabout the shape and size of the 
ompa
ti�
ation spa
e M′ × Ŝ × S1. and the 
omponentsof the NSNS se
tor 2-form along it5. The gauge �elds Aµ are related to the ones 
omingfrom the dimensional redu
tion of the ten-dimensional metri
, NSNS anti-symmetri
 tensor�eld and gauge �elds, without any further ele
tri
-magneti
 duality transformation. Theelementary string states 
arry ele
tri
 
harge qe, and various solitons 
arry magneti
 
harge
qm.2.7.1 Tra
king dyons through dualitiesRe
all, the 1

4
-BPS dyons possess 
harges whi
h are mutually non-lo
al and therefore theydo not appear in the perturbative spe
trum of the theory. The ele
tri
 
harge ve
tor qe andthe magneti
 
harge ve
tor qm of a state are de�ned in the se
ond des
ription. We take the
oordinate radii of S1/ZN and S̃1 to be 1. The radius of S1 before orbifolding is taken tobe N and the ZN orbifolding a
tion involves a 2π/N translation along S1. The momentumalong S1 is thus quantized in multiples of 1/N .We 
onsider the following dyoni
 
on�guration in des
ription 3: Q5 D5-branes wrappedonM× S1, Q1 D1-branes wrapped on S1, a single Kaluza-Klein monopole asso
iated withthe 
ir
le S̃1 with negative magneti
 
harge, momentum −k/N along S1 and momentum Jalong S̃1. Also, sin
e a D5-brane wrapped on M 
arries, besides the D5-brane 
harge, −βunits of indu
ed D1-brane 
harge, where β is given by the Euler 
hara
ter ofM divided by

24, the net D1-brane 
harge of the system is (Q1 − βQ5). (β is zero when M = T 4 and 15In both the CHL and type II models, M′ is a four-torus. In the type II models, the four-torus,M′, isobtained by T-dualizing all 
ir
les onM = T 4 and we will denote it by T̂ 4. 34



Chapter 2. Counting Dyons in String TheorywhenM = K3.)Following the duality 
hain and using the sign 
onventions used in[20℄, one sees thatthe above 
on�guration in des
ription 3 leads to a di�erent 
on�guration in des
ription 1.Let us repla
e a (-1)-
harged Kaluza-Klein monopole by a single NS5-brane wrapped on
M′×S1, Q5 NS5-branes by Q5 Kaluza-Klein monopoles along Ŝ1; J units of momenta along
S̃1 is repla
ed by −J fundamental strings winding Ŝ1, where Ŝ1 is the 
ir
le T-dual to S̃1.Further, the D1 
harge be
omes (−Q1 + βQ5) fundamental strings wrapping on S1. The
ZN orbifold a
tion involves ZN orbifold ofM′ and simultaneous 1/N unit of shift along S1.Sin
e the orbifolded 
ir
le is not parti
ipating in the T-duality transformation, the orbifolda
tion 
ommutes with the T-duality transformation.Finally, one 
arries out a string-string duality to arrive at the se
ond des
ription6. Underthis a
tion, all fundamental strings are repla
ed by NS5-branes and vi
e versa. Thus, in theend we have Q1 Kaluza-Klein monopoles along Ŝ1, (−Q1 +βQ5) NS5 wrapping M′ × S1,
−k/N units of momentum along S1, −J NS5 -branes wrapping M′ × Ŝ1, Q1 NS5-braneswrappingM′× S1, and a single fundamental string wrapping S1. The result is summarizedin Figure 2.3.

Q5 D5's wrappingM× S1

Q1 D1's wrapping S1momentum −k/N along S1momentum J along S̃1

−1 KK monopole for S̃1Des
ription 3 
hain of dualities−−−−−−−−−→

Q5 KK monopole for Ŝ1

(−Q1+βQ5) NS5 wrappingM′×S1momentum −k/N along S1

−J NS5 wrappingM′ × Ŝ1one fund. string wrapping S1Des
ription 2Figure 2.3: Tra
king Dyon 
on�gurations. When M = K3, M′ = T 4 and β = 1. When
M = T 4, thenM′ = T̂ 4 and β = 0.The se
ond des
ription ex
lusively 
ontains des
ription in terms of fundamental strings,NS5-branes, Kaluza-Klein monopoles and momenta. If we denote momenta along S1× Ŝ1 by
~n, fundamental string winding 
harges along them by ~w and NS5-brane, and Kaluza-Kleinmonopole 
harges by ~N and ~W respe
tively then the T-duality invariants 
onstru
ted fromthese ele
tri
 and magneti
 
harges are

q2
e = 2~n · ~w , q2

m = 2 ~N · ~W , qe · qm = ~n · ~N + ~w · ~W . (2.36)6We follow the 
onventions followed in [20℄ 35



Chapter 2. Counting Dyons in String TheoryIt is easy to 
he
k that these T-duality invariants take the following values before the orbifolda
tion,
q2
e = 2k , q2

m = 2Q5(Q1 − βQ5) , qe · qm = J . (2.37)The ZN orbifold a
tion 
ommutes with the entire duality 
hain and is therefore well de�ned inany des
ription (`duality frame'). It is 
onvenient for us to dis
uss it in the se
ond des
riptionso that we 
an easily read out its e�e
t on dyoni
 
harges. The ZN orbifold a
ts by 1/Nshift along S1, whi
h results in redu
ing the 
ir
le radius by fa
tor of N . Thus fundamentalunit of momentum along S1 is N and hen
e momentum along S1 in the orbifolded theorybe
omes n/N . To maintain J NS5-branes transverse to S1 after the orbifold we need to startwith N 
opies of J NS5-branes symmetri
ally arranged on S1 before orbifold. The resulting
on�guration has
1

2
q2
e = 2k/N ,

1

2
q2
m = Q1Q5 , qe · qm = J , (2.38)in the orbifolded theory.The S-duality symmetry of this theory in the se
ond des
ription is related to the T-duality symmetry in the original type IIB des
ription. The 1/N shift along S1 breaks theS-duality symmetry of the se
ond des
ription to Γ1(N).2.8 Mi
ros
opi
 Counting of Dyoni
 StatesIn this subse
tion, we will dis
uss the mi
ros
opi
 
ounting of dyon degenera
ies 
arriedout by David and Sen[16℄. The dyoni
 
on�guration 
orresponds to the BMPV bla
k holeat the 
enter of Taub-NUT spa
e[49℄.The main idea used by David-Sen is to use the 4D-5D 
orresponden
e 
ombined with known dualities to map the 
ounting of states in this
on�guration to the 
ounting of dyoni
 degenera
ies in the CHL string.Let d(qe,qm) denote the number of bosoni
 minus fermioni
 1

4
-BPS supermultiplets 
ar-rying a given set of 
harges (qe,qm) in the 
on�guration des
ribed in the previous se
tion.The dyoni
 
harges of the 
on�guration when Q5 = 1 are given by

q2
e = 2k/N , q2

m = 2(Q1 − β) , qe · qm = J . (2.39)The quantum numbers k and J 
an arise from three di�erent sour
es:1. The ex
itations of the Kaluza-Klein monopole 
arrying momentum −l′0/N along S1. 36



Chapter 2. Counting Dyons in String Theory2. The overall motion of the D1-D5 system in the ba
kground of the Kaluza-Kleinmonopole
arrying momentum −l0/N along S1 and j0 along S̃1.3. The motion of the Q1 D1-branes in the worldvolume of the D5-brane 
arrying momen-tum −L/N along S1 and J ′ along S̃1.Thus, we have
l′0 + l0 + L = k , j0 + J ′ = J . (2.40)So, in the weak 
oupling limit, one 
an ignore the intera
tion between the three di�erentsets of degrees of freedom and obtain the generating fun
tion of dyoni
 degenera
ies of thewhole system as a produ
t of the generating fun
tions of ea
h of the three separate pie
es.Let f(ρ̃, σ̃, ν̃) denote the generating fun
tion of the whole system:

f(ρ, σ, ν) =
∑

k,Q1,J

d(qe,qm) e2πi
[
σ(Q1−1)/N+ρk+νJ

]
. (2.41)Then, from the above argument it is given by

f (ρ̃, σ̃, ν̃) =
1

64
e−2πiσ/N

( ∑

Q1,L,J ′

(−1)J
′

dD1(Q1, L, J
′

) e2πi(σQ1/N+ρL+νJ ′)
)

(∑

l0,j0

(−1)j0dCM(l0, j0) e
2πil0ρ+2πij0ν

)(∑

l′0

dKK(l′0) e
2πil′0ρ

)
. (2.42)where dD1(Q1, L, J

′
) is the degenera
y of the Q1 D1-branes moving in the plane of the D5-brane, dCM(l0, j0) is the degenera
y asso
iated with the overall motion of the D1-D5 systemin the ba
kground of the Kaluza-Klein monopole(i.e., its motion in Taub-NUT spa
e), and

dKK(l′0) is the degenera
y asso
iated with the ex
itations of the Kaluza-Klein monopole.The fa
tor of 1/64 removes the degenera
y of a single 1
4
-BPS supermultiplet. Let us write

f(ρ, σ, ν) as
f(ρ, σ, ν) =

[
ÊS∗(K3/ZN )(ρ, σ, ν)× ETN(ρ, ν)× g(ρ)

]−1
. (2.43)

37



Chapter 2. Counting Dyons in String Theorywhere
[
ES∗(K3/ZN )(ρ, σ, ν)

]−1 ≡
∑

Q1,L,J ′

(−1)J
′

dD1(Q1, L, J
′

) e2πi(σQ1/N+ρL+νJ ′) ,

[
ETN(ρ, ν)

]−1 ≡ 1

4

∑

l0,j0

(−1)j0dCM(l0, j0) e
2πil0ρ+2πij0ν ,

[
g(ρ)

]−1 ≡ 1

16

∑

l′0

dKK(l′0) e
2πil′0ρ .Justin, Jatkar, and Sen 
arried out the expli
it 
ounting of the above partition fun
tionsand found that the dyoni
 degenera
ies are generated by an automorphi
 form whi
h for

N = 1 is the unique weight 10 automorphi
 form of the modular group Sp(2,Z) whi
h is thesame one obtained by DVV. For N > 1 of the orbifolding group ZN , however, they foundthe dyoni
 degenera
ies are generated by other modular forms. The general form of theirresult for the generating fun
tion of the degenera
ies of 1
4
-BPS states is

Φ̃(ρ̃, σ̃, ν̃) = exp(2πi(α̃ρ̃+ γ̃σ̃ + ν̃))

×
1∏

b=0

N−1∏

r=0

∏

k∈Z+ r
N
,

l∈Z,j∈2Z+b
k,l≥0,j<0 for k=l=0

[1− exp{2πi(σ̃k + ρ̃l + ν̃j)}]
PN−1

s=0 e−2πils/N c
(r,s)
b (4kl−j2) , (2.44)

where the 
oe�
ients c(r,s)b are de�ned through the twisted ellipti
 genera as we will seebelow. We will shortly 
ompute the above equation expli
itly by 
omputing ea
h of thepie
es in (2.42).2.8.1 Counting States of the Kaluza Klein MonopoleWe �rst 
ount the degenera
y of the half-BPS states asso
iated with the ex
itations ofthe Kaluza-Klein monopole 
arrying momentum −l0/N along S1. Type IIB string theory
ompa
ti�ed onM× S̃1 × S1 in the presen
e of a Kaluza-Klein monopole 
an be des
ribedby type IIB string theory in the ba
kground M× TN × S1 where TN denotes Taub-NUTspa
e des
ribed by the metri

ds2 =

(
1 + R0

r

)(
dr2 + r2(dθ2 + sin2θdφ2)

)
+R2

0

(
1 + R0

r

)−1(
2dξ + cosθdφ

)2

, (2.45)38



Chapter 2. Counting Dyons in String Theorywhere R0 denotes the size of the Taub-NUT spa
e. We take a ZN orbifold of this theorygenerated by the transformation g. The Taub-NUT spa
e breaks eight of the sixteen super-symmetries in type IIB on K3 and quantization of its fermioni
 zero modes gives rise to amultipli
ative fa
tor of 16 = 28/2. Following the 
hain of dualities, one sees that the Taub-NUT spa
e gets mapped to the heteroti
 string wrapped on a ZN -orbifold of the heteroti
string. The degenera
y dKK(l′0) 
orresponds to the degenera
y of the heteroti
 string in atwisted se
tor. Thus, g(ρ/N) is the partition fun
tion of the heteroti
 string (in a twistedse
tor) with the supersymmetri
 right-movers in their ground state. Hen
e, it 
an also beidenti�ed with the generating fun
tion of degenera
ies of ele
tri
ally 
harged 1
2
-BPS states.The BPS 
ondition requires that the right-Fmoving os
illators are in their ground state forbothM = K3 (the CHL models) andM = T 4 (the type II models).We are looking for the number of ways a total momentum −l0/N along S1 
an be par-titioned into g-invariant modes. Part of this momentum 
omes from the momentum of theKaluza-Klein monopole va
uum without any ex
itations and this is 
al
ulated by mappingthe Kaluza-Klein monopole to a fundamental string state in a dual des
ription of the theory.To 
ount the g-invariant modes, we have to �rst determine the spe
trum of the massless�elds in the world volume theory of the Kaluza-Klein monopole solution, and the transfor-mations of the various �elds under the a
tion of the orbifold group generator g̃. From this,we 
an determine all the g-invariant modes on the Kaluza-Klein monopole, by noting that a�eld that pi
ks up a g̃ phase e2πık/N must 
arry momentum n− k/N(n, k,∈ Z) along S1, sothat the phase obtained due to the translation along S1 
an
els the g̃ phase.We begin by analyzing the spe
trum of the theory. First, we 
on
entrate on the bosoni
�elds. There are 8 non-
hiral, right-moving masless s
alar �elds 
oming as follows: three
ome from the os
illations in the three transverse dire
tions of the Kaluza-Klein monopole.Two 
ome from the redu
tion of the 2-form �eld of type IIB string theory along the harmoni


2-form of the Taub-NUT spa
e. Redu
tion of the self-dual four form �eld of type IIB stringtheory along the tensor produ
t of the harmoni
 2-form of the Taub-NUT spa
e and aharmoni
 2-form onM gives rise to a 
hiral s
alar �eld on the world-volume. The 
hiralityof the s
alar �eld depends on whether the harmoni
 2-form on M is self-dual or anti-self-dual. Thus, in the 
ase of T 4 we get 3 right moving s
alars, and 3 left moving s
alars. For
K3, we get three right-moving s
alars, and 19 left-moving s
alars.The fermioni
 �elds 
ome from the Goldstino fermions asso
iated wth broken supersym-metry generators. For the 
ase of M = T 4 theory, there are 32 unbroken supersymmetry
harges of whi
h 16 are broken in the presen
e of the Taub-NUT spa
e. Of the 16 remaining39



Chapter 2. Counting Dyons in String TheoryGoldstino fermions on the world-volume of the Kaluza-Klein monopole, 8 are right-movingand the remaining 8 are left-moving, sin
e type IIB string theory is non-
hiral. For the
ase ofM = K3 theory, there are 16 unbroken supersymmetries, of whi
h 8 are broken inthe presen
e of the Taub-NUT spa
e. The remaining 8 Goldstino fermion �elds asso
iatedwith the broken supersymmetry transformation are right-moving, sin
e a

ording to our
onvention the 8 unbroken supersymmetry transformation parameters on S1 are left-
hiral.Putting it all together we see that the spe
trum of the world-volume theory of the Kaluza-Klein monopole 
onsists of 8 bosoni
 and 8 fermioni
 right-moving massless �elds. In ad-dition, for M = T 4, it has 8 left-moving bosoni
 and 8 left-moving fermioni
 �elds, whilefor M = K3, the world-volume theory has 24 left-moving massless bosoni
 �elds and noleft-moving fermioni
 �elds.Next, we have to work out the g̃ transformation properties of the various modes. Theproblem of studying the g̃ transformation properties of the left-moving bosoni
 and fermioni
degrees of freedom, it 
an be shown, redu
es to the problem of studying the a
tion of the
g̃ a
tion on the even and odd harmoni
 forms of K3. The net a
tion of the g̃ on the 8)left-handed s
alar �elds is given by the a
tion of g̃ on the 8 even degree harmoni
 formsof M, while its a
tion on the left-moving fermions 
an be represented by the a
tion of g̃on the 1- and 3−forms of M. The di�eren
e between the number of even and odd degreeharmoni
 forms, weighted by g̃, is equal to Q0,s. Thus, the number of left-handed bosonsminus fermions 
arrying a g̃ quantum number e2πıls/N is given by

nl = 1
N

N−1∑

s=0

e−2πıls/NQ0,s =
N−1∑

s=0

e−2πıls/N
(
c0,s0 (0) + 2c

(0,s)
1

) (2.46)where the last equality 
omes from the expression for Q0,s in terms of the 
oe�
ients c(r,s)b .We must now determine the spe
trum of the BPS ex
itations of the Kaluza-Kleinmonopole,whi
h is obtained by taking the tensor produ
t of the irredu
ible 16-dimensional super-multiplet with either fermioni
 or bosoni
 ex
itations involving the left-moving degrees offreedom on the world-volume of the Kaluza-Klein monopole. Let dKK denote the degener-a
y of states asso
iated with the left-moving os
illator ex
itations 
arrying total momentum
−l′0/N , weighted by (−1)FL. To 
al
ulate dKK(l

′

0) we need to 
ount the number of ways thetotal momentum −l′0/N 
an be distributed among the di�erent os
illators, there being nl
40



Chapter 2. Counting Dyons in String Theoryos
illators 
arying momentum −l/N . This gives
∑

l
′
0

dKK(l
′

0)e
2πıeρl

′

0 = 16e2πıNCeρ
∞∏

l=1

(1− e2πıeρl)−nl, (2.47)where the fa
tor of 16 
omes from the fermioni
 zero modes. The 
onstant C represents the
−l′0/N quantum number of the va
uum of the Kaluza-Klein monopole when all the os
illatorsare in their ground state and is equal to

C = −α̃/N, (2.48)where α̃ is given in terms of Qr,s by
α̃ =

1

24N
Q0,0 −

1

2N

N−1∑

s=1

Q0,s
e2πıs/N

(1− e2πıs/N )2
. (2.49)Putting it all together, we get

g(ρ̃) ≡
∑

−l
′
0

dKK(−l′0)e2πıeρl
′

0 = 16e−2πıeαeρ
∞∏

l=1

(1− e2πıeρl)−
PN−1

s=0 e2πıls/N (c
(0,s)
0 (0)+c

(0,s)
1 (−1)) (2.50)2.8.2 Counting States Asso
iated With the Relative Motion of theD1-D5 SystemTo 
ompute dD1, whi
h 
ounts the states asso
iated with the motion of the D1-brane inthe plane of the D5-brane, we start by 
onsidering a single D1-brane moving inside a D5-brane. We analyze the world-volume theory of a single D1-brane inside a D5-brane. In theweak 
oupling limit the dynami
s of the D1-brane inside a D5-brane is insensitive to thepresen
e of the Kaluza-Klein monopole, the two-dimensional theory des
ribing this systemhas a (4, 4) supersymmetry. Consider a D1-brane wrapping along the dire
tion in whi
h

S1/ZN has period 2π. Let σ denote the 
oordinate along the length of the D1-brane and wthe winding number of the D1-brane along S1/ZN , then σ 
hanges by 2πw when we traversethe whole length of the string, while the physi
al 
oordinate of the D1-brane shifts by 2πralong S1 where r and w are related as
r = w modN .‘ (2.51)41



Chapter 2. Counting Dyons in String TheoryIn the target spa
eM under σ → σ+2πw the lo
ation of the D1-brane gets transformed by
g̃r = g̃w. Thus the target spa
eM is subje
t to the above 
ondition and the states will betwisted by g̃r. Further, sin
e the supersymmetry generators are required to 
ommute with
g̃, the super
urrents will satisfy periodi
 boundary 
ondition under σ → σ + 2πw. Sin
ethe D1-brane has 
oordinate length 2πw, the momentum along S1 
an be identi�ed as the
(L̄0 − L0)/w eigenvalue of this state. And sin
e, the BPS 
ondition for
es L̄0 to vanish, atotal momentum −l/N 
orresponds to a state with

L0 = lw/N, L̄0 = 0 . (2.52)In the presen
e of the Kaluza-Klein monopole ba
kground a transition ǫ along S1 mustbe a

ompanied by a rotation 2ǫ in U(1)L ⊂ SU(2)L. Let us denote by FL and FR, twi
e the
U(1)L ⊂ SU(2)L and U(1)R ⊂ SU(2)R generators respe
tively. FL is the world-sheet fermionnumber asso
iated with the left-moving se
tor of the (4, 4) super
onformal �eld theory, while
FR is the world-sheet fermion number asso
iated with the right-moving se
tor. The totalworld-sheet fermion number FL + FR 
an be interpreted as the spa
e-time fermion numberfrom the point of view of a �ve-dimensional observer at the 
enter of Taub-NUT spa
e.The quantum number j is the FL eigenvalue of the state. The four and �ve-dimensionalstatisti
s di�er by a fa
tor of (−1)j and hen
e, in 
ounting the total number of bosoni
minus fermioni
 states weighted by (−1)j with a given set of 
harges, we must 
omputethe number of states weighted by (−1)FL+FR. And, �nally we must pi
k only states whi
hare ZN -invariant. Sin
e the total momentum along S1 is −l/N , the state pi
ks up a phase
e−2πil/N under a 2π translation. Thus the proje
tion operator onto ZN invariant states isgiven by

1

N

N−1∑

s=0

e2πısl/N g̃s. (2.53)Putting it all together, we get for the total number of ZN invariant bosoni
 minusfermioni
 states weighted by (−1)j of the single D1-brane 
arrying quantum numbers w, l, jis given by
n(w, l, j) ≡ 1

N

N−1∑

s=0

e−2πısl/NTrRR,egr(g̃s(−1)FL+FRδNL0,lwδFL,j), r = w modN, (2.54)where the TrRR,egr denotes tra
e over the RR se
tor states twisted by g̃r in the super
onformal
σ-model with target spa
e K3. 42



Chapter 2. Counting Dyons in String TheoryIn terms of the 
oe�
ients c(r,s)b , n(w, l, j) is given by
n(w, l, j) =

N−1∑

s=0

e−2πısl/Nc
(r,s)
b (4lw/N − j2), r = w modN, b ≡ j mod2. (2.55)Using this result for a single D1-brane spe
trum we need to �nd the spe
trum of multipleD1-branes moving inside the D5-brane. Let the total D1-brane 
harge be W , and totalmomentum along S1 and S̃1 be −L/N and J ′ respe
tively. Let us denote by dD1(W,L, J

′
)the total number of bosoni
 minus fermioni
 states of the whole system, weighted by (−1)J
′whi
h represents the number of ways of distributing the quantum numbers W,L and J ′ intoindividual D1-branes 
arrying quantum numbers (Wi, li, ji) subje
t to the 
onstraint

W =
∑

i

wi, L =
∑

i

li, J
′

=
∑

i

ji, wi, li, ji ∈ Z, wi ≥ 1, li ≥ 0. (2.56)A straightforward 
ombinatori
 analysis gives
∑

W,L,J ′

dD1(W,L, J
′

)(−1)J
′

e2πı(eσW/N+eρL+eνJ
′
) =

∏

w,l,j∈Z;w>0,l≥0

(1− e2πı(eσw/N+eρl+eνj))−n(w,l,j).(2.57)In terms of the 
oe�
ients c(r,s)b this takes the form
∑

W,L,J ′

dD1(W,L, J
′

)(−1)J
′

e2πı(eσW/N+eρL+eνJ
′
)

=
N−1∏

r=0

N−1∏

b=0

∏

k
′
∈Z+ r

N
,l∈Z,

j∈2Z+b;k
′
>0,l≥0

(
1− e2πı(eσk

′
+eρl+eνj)

)−PN−1
s=0 e2πısl/N c

(r,s)
b (4lk

′
−j2) (2.58)This is the partition fun
tion for states asso
iated with the motion of the D1-branes in theplane of the D5-brane.
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Chapter 2. Counting Dyons in String Theory2.8.3 Counting States Asso
iated With the Overall Motion of theD1-D5 SystemThe overall motion of the D1-D5 system has two 
omponents � the 
enter of mass motion ofthe D1-D5 system along the Taub-NUT spa
e transverse to the plane of the D5-brane, andthe dynami
s of the Wilson lines on the D5-brane alongM. Of these, the �rst 
omponentis independent of the 
hoi
e of M, while the se
ond exists only if M has non-
ontra
tibleone 
y
les, i.e. forM = T 4. We analyze ea
h in turn now starting with the 
enter of massmotion of the D1-D5 motion in Taub-NUT spa
e.Dynami
s of the D1-D5 Motion in Taub-NUT Spa
eThe 
ontribution from this is independent of the the 
hoi
e of M. When the transversespa
e is Taub-NUT, the low energy dynami
s of the system 
an be des
ribed by a (1 + 1)-dimensional supersymmetri
 �eld theory. The world-volume theory is a sum of two mutuallynon-intera
ting pie
es � a theory of free left-moving fermions and an intera
ting theory ofs
alars and right-moving fermions. From the point of view of a �ve-dimensional observersitting at the 
enter of Taub-NUT spa
e, the D1-D5 system in the Taub-NUT target spa
eis des
ribed by a set of four free left-moving U(1)L invariant fermion �elds, together with anintera
ting theory of four bosons and four right-moving U(1)L non-invariant fermions. Thetwo bosons and two of the right-moving fermions 
arry a j0 quantum number 1, while theother two bosons and right-moving fermions 
arry a j0 quantum number of−1. The unbrokensupersymmetry transformations a
t only on the s
alars and the right-moving fermions. Allthe �elds 
arry integral momenta along S1.To 
ompute the partition fun
tion, �rst 
onsider the free left-moving fermions whi
h
arry only l0 quantum numbers but no j0 quantum numbers. Their 
ontribution is given by
Zfree(ρ̃) ≡ Trfree left-moving fermions((−1)F (−1)j0e2πiρ̃l0e2πiν̃j0) = 4

∞∏

n=1

(1− e2πinNρ̃)4, (2.59)where F is the total 
ontribution to the spa
e-time fermion number, ex
ept from the fermionzero-modes asso
iated with the broken supersymmetry generators, from the point of viewof an asymptoti
 four-dimensional observer. The fa
tor of 4 
omes from the quantization ofthe free fermion zero modes.Next we 
ompute the partition fun
tion for the part that is intera
ting. There are twoparts to this, the zero mode os
illators and the non-zero modes. By taking the size R0 of44



Chapter 2. Counting Dyons in String Theorythe Taub-NUT spa
e to be large so that the metri
 is almost �at, and in a lo
al region ofthe Taub-NUT spa
e the world-volume theory of the D1-D5 system is almost free. Then we
an 
ompute the 
ontribution due to the non-zero mode bosoni
 and fermioni
 os
illatorsby pla
ing the D1-D5 system at the origin of the Taub-NUT spa
e and treating them asos
illators of free �elds. Further, we need to examine only the left-moving bosoni
 os
illators
arrying momentum −l0/N along S1 and angular momentum j0, sin
e the right-movingbosoni
 and fermioni
 os
illators are in their ground state. The 
ontribution to the partitionfun
tion from these os
illators is
Zos
(ρ̃, ν̃) ≡ Tros
illators((−1)F (−1)j0e2πiρ̃l0e2πiν̃j0)

=

∞∏

n=1

1

(1− e2πinNρ̃+2πiν̃)2(1− e2πinNρ̃−2πiν̃)2
, (2.60)where we use the fa
t that sin
e these os
illators are bosoni
 from the �ve-dimensional pointof view, they have statisti
s (−1)F = (−1)j0 from the four-dimensional point of view.Finally we have to evaluate the partition fun
tion for the zero-mode os
illators of theintera
ting part of the theory. Sin
e there are four bosoni
 and four fermioni
 �elds, we
an think of it as the dynami
s of a superparti
le, with four bosoni
 and four fermioni

oordinates, whi
h transform in a pair of spinor representations, moving in the Taub-NUTspa
e. The partition fun
tion for these modes is give by

Zzero(ν̃) ≡ Trzero modes((−1)F (−1)j0e2πiν̃j0 = −
∞∑

j0=1

j0e
2πiν̃j0 = − e2πiν̃

(1− e2πiν̃)2
. (2.61)Putting together all the 
onstituent partition fun
tions, the partition fun
tion asso
iateswith the 
enter of mass motion of the D1-D5 system in the Taub-NUT spa
e is given by

∑

l0,j0

dtransverse (l0, j0)(−1)j0e
2πil0ρ̃+2πij0ν̃ = Zfree(ρ̃)Zos
(ρ̃ν̃)Zzero(ν̃)

= −4e2πiñu(1− e2πiν̃)−2

×
∞∏

n=1

{(1− e2πinNρ̃)4(1− e2πinNρ̃+2πiν̃)−2(1− e2πinNρ̃−2πiν̃)−2}, (2.62)
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Chapter 2. Counting Dyons in String Theory2.8.4 The Dynami
s of Wilson Lines Along MWe now turn to the 
ontribution to the partition fun
tion from the dynami
s of the Wilsonlines along M = T 4. We 
an ignore the presen
e of the Kaluza-Klein monopole and theD1-branes and 
onsider the dynami
s of the D5-brane wrapped on T 4 × S1. However, theKaluza-Klein monopole will be used in the identi�
ation between the angular momentum
arried by the system from the point of view of the �ve-dimensional observer at the 
enterof the Taub-NUT spa
e and the momentum along the 
ir
le S1 from the point of view ofthe asymptoti
 four-dimensional observer. Taking the T 4 to have small size we 
an regardthe world-volume theory of the D5-brane as (1+1)-dimensional whi
h 
ontains eight s
alarsasso
iated with four Wilson lines and four transverse 
oordinates and 16 massless fermionsof whi
h eight are left-moving and eight are right-moving. We have to 
onsidering only thesupersymmetry generators that 
ommute with g̃. The g̃ transformation mixes the s
alarsasso
iated with the 
oordinates transverse to the D5-brane with the eight of the sixteenfermions on the D5-brane world-volume and mixes the s
alars asso
iated with the Wilsonlines with the other eight fermions. We hve already 
ounted the 
ontribution to the partitionfun
tion from the transverse 
oordinates and their superpartners in (2.62), hen
e here needonly 
onsider the world-volume �elds 
onsisting of the Wilson lines and their superpartners.Sin
e the g̃ invariant supersymmetry generators are non-
hiral, so are the superpartners ofthe Wilson line. There are four left-moving and four right-moving fermioni
 su
h �elds. Ofthese, only the left-moving os
illators 
ontribute, sin
e the right-moving os
illators are intheir ground state when we work in the ba
kground of the Kaluza-Klein monopole. Thus,there are only four bosoni
 and four fermioni
 left-moving modes. Invarian
e under g̃ requiresthat two of the four bosoni
 modes 
arrying momentum along S1 be of the form k+ 1
N
whilethe other two be of the form k − 1

N
. Neither has any momentum along S̃1. Similarly, twoof the fermioni
 modes 
arry momentum k + 1

N
along S1 while the other two 
arry k − 1

N
.These modes, however, 
arry ±1 units of momentum along S̃1. As before, the statisti
s ofthe os
illators are altered by a fa
tor of (−1)j0 as we 
ome down from four to �ve-dimensions.Thus, if dWilson(l0, j0) denotes the number of bosoni
 minus fermioni
 states asso
iated with
46



Chapter 2. Counting Dyons in String Theorythese modes 
arrying a total momentum l0/N along S1 and j0 along S̃1, then
∑

l0,j0

dWilson(l0, j0)(−1)j0e2πil0ρ̃+2πij0ν̃

=
∏

l∈NZ+1,l>0

(1− e2πilρ̃)−2
∏

l∈NZ−1,l>0

(1− e2πilρ̃)−2
∏

l∈NZ+1,l>0

(1− e2πilρ̃+2πiν̃)

∏

l∈NZ+1,l>0

(1− e2πilρ̃−2πiν̃)
∏

l∈NZ−1,l>0

(1− e2πilρ̃+2πiν̃)
∏

l∈NZ−1,l>0

(1− e2πilρ̃−2πiν̃) .(2.63)The full partition fun
tion of the overall dynami
s of the D1-D5 system is given by theprodu
t of the partition fun
tions (2.62) and (2.63) of the dynami
s of the transverse modesand (forM = T 4) of the Wilson lines along T 4. The �nal result 
an be written 
ompa
tlyusing the 
oe�
ients c(r,s)b (u), and noting that
c
(0,s)
1 (−1) =

{
2
N

forM = K3

1
N

(2− e2πis/N − e−2πis/N) forM = T 4 .
(2.64)The produ
t of (2.62) and (forM = T 4) (2.63) 
an be written as

∑

l0,j0

dCM(l0, j0)(−1)j0e2πil0ρ̃+2πij0ν̃ = −4e−2πiν̃
∞∏

l=1

(1− e2πilρ̃)2
PN−1

s=0 e−2πils/N c
(0,s)
1

∞∏

l=1

(1− e2πilρ̃+2πiν̃)−
PN−1

s=0 e−2πils/N c
(0,s)
1

∞∏

l=1

(1− e2πilρ̃−2πiν̃)−
PN−1

s=0 e−2πils/N c
(0,s)
1 (2.65)for bothM = K3 andM = T 4.2.8.5 The Full Partition Fun
tionUsing (2.42), (2.50), (2.58) and (2.65) we put together the full partition fun
tion:

f (ρ̃, σ̃, ν̃) = e−2πi(eαeρ+eν)

1∏

b=0

N−1∏

r=0

∏

k∈Z+ r
N
,l∈Z,

j∈2Z+b
k,l≥0,

j<0 for k=l=0

(1− e2πi(eσk+eρl+eνj))−
PN−1

s=0 e−2πils/Nc
(r,s)
b (4kl−j2) .(2.66)

The multipli
ative fa
tor e−2πi(eαeρ+eν) and the k = 0 term in the expression 
ome from theterms involving dCM(l0, j0) and dKK(l
′

0). Comparing with the expression for Φ̃ (ρ̃, σ̃, ν̃) in47



Chapter 2. Counting Dyons in String Theory(2.44) we 
an rewrite (2.66) as
f (ρ̃, σ̃, ν̃) =

e2πieγeσ

Φ̃(ρ̃, σ̃, ν̃
) . (2.67)The degenera
y d(qe,qm) is given by

d(qe,qm) = (−1)qe·qm+1 1

N

∫

C

dρ̃dσ̃dν̃e−πi(Neρq2
e+eσq2

m/N+2eνqe·qm) 1

Φ̃ (ρ̃, σ̃, ν̃)
. (2.68)where C is a three real dimensional subspa
e of the three 
omplex dimensional spa
e labelledby (ρ̃, σ̃, ν̃), given by

ρ̃2 = M1, σ̃2 = M2 ν̃2 = −M3,

0 ≤ ρ̃1 ≤ 1, 0 ≤ σ̃1 ≤ N, 0 ≤ ν̃1 ≤ 1 .HereM1,M2 andM3 are large but �xed positive numbers withM3 << M1,M2. TheMi's aredetermined from the requirement that the Fourier expansion is 
onvergent in the region ofintegration. Thus, we have 
omputed the degenera
y formula by expli
itly 
ounting the bla
khole mi
rostate. This 
ompletes the dis
ussion on the 
ounting of the bla
k hole mi
rostates.2.9 Walls of Marginal StabilityWe 
on
lude this 
hapter with a dis
ussion on the walls of marginal stability. For a given setof 
harges, the moduli spa
e will be divided into 
onne
ted domains where the 1
4
-BPS statesare stable and the degenera
y formula is valid[33℄. As one moves around in the moduli spa
e,there arises the possibility of some of the 1

4
-BPS states to de
ay into smaller 
onstitutents.In that 
ase the degenera
y formula will not remain valid when we go into a region wheresome of the 1

4
-BPS states that were present earlier have de
ayed. The degenera
y formulawill, obviously, 
hange to re�e
t this 
hange in the number of 1

4
-BPS states with the given
harges. The regions in moduli spa
e where the degenera
y formula is valid are bounded by
odimension one subspa
es on whi
h the BPS state under 
onsideration be
omes marginallystable and the spe
trum 
hanges dis
ontinuously a
ross these subspa
es. These 
odimensionone subspa
es in moduli spa
e are 
alled the walls of marginal stability . The jump indegenera
y o

urs through a subtle dependen
e of the 
ontour on moduli[33℄.The walls of marginal stability in the axion-dilaton plane (modelled by the upper-half plane48



Chapter 2. Counting Dyons in String Theorywith 
oordinate λ) is the real 
odimension one subspa
e a
ross whi
h one 1
4
-BPS state de
aysinto a pair of 1

2
-BPS states[33℄(see also[50, 51℄). Consider the following de
ay of a torsionone 1

4
-BPS dyon into two 1

2
-BPS dyons

(
qe

qm

)
−→

(
ad qe − bd qm

ca qe − cb qm

)
⊕
(
−bc qe + bd qm

−ac qe + ad qm

)
, (2.69)where the kinemati
s of the de
ay imply that the integers a, b, c, d are su
h that[33℄1. ad− bc = 1.2. The equivalen
e relation (a, b, c, d) ∼ (aσ−1, bσ−1, cσ, dσ) with σ 6= 0.3. Ex
hanging the two de
ay produ
ts implies the equivalen
e under:

(a, b, c, d)→ (c, d,−a,−b).4. Charge quantization requires ad, bd, bc ∈ Z and ac ∈ NZ.One 
an show that by suitable use of the equivalen
es given above, one 
an always 
hoose(
a b

c d

)
∈ Γ1(N) for N = 2, 3, 4. In the upper-half plane, these walls are 
ir
ular ar
sdetermined by the equation[33, 50℄

[Re(λ)− ad+bc
2ac

]2
+
[Im(λ) + E

2ac

]2
= 1+E2

4a2c2
, (2.70)where E is a real fun
tion of all other moduliM . It is easy to see that the ar
s interse
t thereal λ axis at the points b

a
and d

c
for any E . When E = 0, the ar
s are semi-
ir
les 
entredon the real λ-axis with radius 1

2ac
. When E 6= 0, the 
enter of the 
ir
le moves into theinterior of the upper half plane with radius also in
reasing � all this with the inter
epts onthe real axis remaining un
hanged. When either a = 0 or c = 0, the 
ir
les be
ome straightlines perpendi
ular to the real axis for E = 0 and making a suitable angle for E 6= 0. Thesole e�e
t on non-zero E is to `deform' the semi-
ir
les into 
ir
ular ar
s, so we restri
t thedis
ussion to the 
ase when E = 0.A fundamental domain is 
onstru
ted by �rst restri
ting the value of Re(λ) to the interval

[0, 1]. The straight lines Re(λ) = 0, 1 
orrespond to two walls of marginal stability. Next,one looks for the largest semi-
ir
le with one end at λ = 0 on the real axis that is 
ompatiblewith the quantization of 
harges. This semi-
ir
le interse
ts the real axis at some point in49



Chapter 2. Counting Dyons in String Theorythe interval [0, 1] � this turns out to be at 1/N . The pro
edure is then (re
ursively) repeatedby looking for another semi-
ir
le with one end at 1/N till one hits the mid-way point 1/2.A similar pro
edure is done starting with the largest semi-
ir
le with one end on the point
λ = 1 on the real axis. One obtains the following set of points for N = 1, 2, 3:

(0
1
, 1

1
) , (0

1
, 1

2
, 1

1
) , (0

1
, 1

3
, 1

2
, 2

3
, 1

1
) . (2.71)A fundamental domain is then given by restri
ting to the region bounded by these semi-
ir
les and the two walls 
onne
ting λ = 0, 1 to in�nity. The two straight lines may bein
luded by adding the `points' −1

0
and 1

0
. The fundamental domains are given in Figure 2.4.

N=1

0 1/3 1/2 2/3 1

N=2

N=3Figure 2.4: Fundamental domains for the N = 1, 2, 3 CHL models. We will later see thatthe same region appears as the Weyl 
hamber of a BKM Lie superalgebra in ea
h 
ase.For N > 3, this pi
ture does not terminate � one needs an in�nite number of semi-
ir
lesto obtain a 
losed domain. For N = 4, the following sequen
e is obtained on (using Sen'smethod)
(0

1
, 1

4
, 1

3
, 3

8
, 2

5
, . . . , −2n+1

−4n
, −n
−2n−1

, . . . , 1
2
, . . . , n+1

2n+1
, 2n+1

4n
. . . , 3

5
, 5

8
, 2

3
, 3

4
, 1

1
) . (2.72)Let αn denote the semi-
ir
le with inter
epts (2n−1

4n
, n

2n+1

) and βn the semi-
ir
le with inter-
epts ( n+1
2n+1

, 2n+1
4n

) for all n ∈ Z. Note that α0 and β0 represent the two straight lines atRe(λ) = 0, 1 respe
tively. The fundamental domain 
orresponding to the above sequen
e isdepi
ted in Figure 2.5. It may be thought of as a regular polygon with in�nite edges with thein�nite-dimensional dihedral group as its symmetry group, D∞ = Z ⋊ Z2. D(1)
∞ is generated50



Chapter 2. Counting Dyons in String Theoryby two generators: a re�e
tion y and a shift γ given by:
y : αn → α−n , βn → β−n−1 and γ : αn → αn+1 , βn → βn−1 , (2.73)satisfying the relations y2 = 1 and y ·γ ·y = γ−1. There is a se
ond Z2 generated by δ de�nedas follows:

δ : αn ←→ βn . (2.74)The transformations (γ, δ) generate another dihedral symmetry D(2)
∞ .

Weyl chamber for

1 β1

β−1 α −1

β0
α 0

0 1/3 1/2 2/3 11/4 3/4
3/8 5/8

N = 4

αFigure 2.5: The fundamental domain forN = 4 CHL model is bounded by an in�nite numberof semi-
ir
les as the BKM Lie superalgebra has in�nite real simple roots. Ea
h of the semi-
ir
les indi
ated represent real simple roots that appear with multipli
ity one in the sumside of the denominator formula. Note that the diameter of the semi-
ir
le is redu
ing asone gets 
loser to 1
2
. The point 1

2
is approa
hed as a limit point of the in�nite sequen
e ofsemi-
ir
les. We will later see that the same region appears as the Weyl 
hamber of a BKMLie superalgebra that we 
onstru
t.This 
ompletes our dis
ussion of the walls of marginal stability of the CHL orbifolds.Later, when we study BKM Lie superalgebras related to the CHL models, we will see that thewalls of marginal stability are related to the walls of the Weyl 
hamber of the 
orrespondingBKM Lie superalgebras.

51



Chapter 2. Counting Dyons in String Theory2.10 Con
lusion and RemarksIn this 
hapter we have looked at the problem of 
ounting dyons in N = 4 supersymmetri
string theories. The degenera
y of the dyoni
 states are generated by modular forms. Wewill explore the stru
ture of these modular forms in later 
hapters. We will 
onstru
t thesemodular forms by di�erent methods in 
hapter 5 and study their algebrai
 side in 
hapter 6.We also studied the walls of marginal stability for the 1
4
-BPS states. We will later see howthese are related to the algebrai
 stru
ture 
oming from the modular forms.
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3BKM Lie Algebras
3.1 Introdu
tionThe starting point, both histori
ally and pedagogi
ally, for this 
hapter is the theory of �nite-dimensional semi-simple Lie algebras 
lassi�ed by Cartan and Killing. The 
lassi�
ation letsone study Lie algebras generi
ally, rather than on a 
ase by 
ase basis. It also gives anoverview, and hen
e suggestive dire
tions for generalizations in both the internal stru
tureof Lie algebras and the theory of �nite-dimensional semi-simple Lie algebras in general.However, in our study of �nite-dimensional semi-simple Lie algebras, their 
lassi�
ation isnot our primary interest � generalization to in�nite-dimensional Lie algebras is.Our main appli
ation, in this thesis is the subje
t of Bor
herds-Ka
-Moody (BKM) Liesuperalgebras whi
h o

ur in the degenera
y formula of 1

4
-BPS dyons in the CHL models.These are obtained via generalizations of �nite-dimensional semi-simple Lie algebras to theirin�nite-dimensional 
ounterparts. Our aim in this 
hapter will be to give a qui
k and modestintrodu
tion to BKM Lie superalgebras, for whi
h we start with a brief exposition of �nite-dimensional semi-simple Lie algebras with a veiw towards understanding the generalizationsthat give BKM Lie superalgebras. It is with this skewed perspe
tive that we will 
hooseand dis
uss the topi
s in this 
hapter. After introdu
ing the theory of �nite-dimensionalsemi-simple Lie algebras, we treat BKM Lie superalgebras as the generalization of the �nite-dimensional algebras and in
lude a�ne and Ka
-Moody Lie algebras as spe
ial 
ases ofthem. We will use examples to bridge the gap in theory and intuition in
urred by this leapin pedagogy.The 
hapter is organized as follows. We start with the basi
 de�nitions of 
omplex semi-simple Lie algebras and study their representation theory to introdu
e the notions of the53



Chapter 3. BKM Lie AlgebrasCartan subalgebra, roots, weights, the Weyl group et
. and understand what role these playin the stru
ture of the Lie algebras and how one 
an 
lassify all the �nite-dimensional semi-simple Lie algebras from the knowledge of these notions. The main idea is to get an intuitivefeeling of these ideas in the 
ontext of examples whi
h are easier to understand. It will notbe possible to introdu
e all the 
onstru
tions needed to rigorously de�ne the same notions inthe in�nite-dimensional 
ase, and hen
e it is simpler to understand them by extending theintiution built in the 
ontext of the simpler �nite-dimensional 
ases. Although we dis
ussthe representation theory of general semi-simple Lie algebras, we relegate the dis
ussion onthe denominator identities to the end of the 
hapter sin
e this is the most important idea forus. The dis
ussion on the denominator identities of all 
lasses of Lie algebras, both �nite andin�nite-dimensional, is given in one pla
e so that it is easier to understand ea
h in relationto the other and also note the important di�eren
es amongst them. Next we dis
uss theinfnite-dimensional Lie algebras building on the ideas introdu
ed in the �nite-dimensionalsetting.For the 
ase of BKM Lie superalgebras, given how mu
h generality the 
lass of Liealgebras en
ompass, it would take a lot more te
hni
al setting to rigorously introdu
e thenotions mentioned above. We do not make su
h an attempt here. Most of the de�nitionsare given as an extension to the intuition developed in the �nite-dimensional and a�nesettings. Introdu
ing any more stru
ture would be more 
onfusing than illuminating. Theexample of the fake monster Lie algebra is dis
ussed to help understand the 
on
epts (likeroots, imaginary simple roots, multipli
ities, the denominator identity, et
.) developed inthe 
ontext of BKM Lie superalgebras.It must be mentioned at the very outset, that it is beyond the s
ope of this work togive even a semi-
omplete dis
ussion of BKM Lie superalgebras for the subje
t is both vast,and intri
ate. As mentioned above, there are 
ertain ideas (the denominator identity) thatwe need a lot in the problem we address in the next 
hapters, and it is these ideas thatwe will try to motivate and understand. Rather than motivate these ideas pre
isely andpedanti
ally, we will try to understand their origins intuitively starting from their analogs inthe �nite-dimensional semi-simple Lie algebras and ending with an example of a BKM Liesuperalgebra. This 
hapter is based mostly on [52, 53, 54, 55, 3, 4, 56℄. The reader is alsoen
ouraged to see [57, 58, 59, 60, 61, 62, 63, 64℄ for BKM Lie superalgebras in relation tostring theory.
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Chapter 3. BKM Lie Algebras3.2 De�nition and PropertiesA Lie algebra 
an be understood in relation to a Lie group, whose algebra it is (as thealgebra of left-invariant smooth ve
tor �elds on the group), or just as an algebra over a �eldsatisfying 
ertain additional axioms. Both the notions ultimately des
ribe the same obje
t,they only appear motivated from di�erent points of view. From the narrow point of view ofthis 
hapter, to digress into the theory of Lie groups and understand Lie algebras from themwould serve us no purpose, so we just de�ne a Lie algebra as an algebra over a �eld.De�nition 3.2.1 An algebra is a ve
tor spa
e over a �eld K (whi
h is C for all our pur-poses) endowed with a produ
t [., .] : g×g→ g that is distributive over addition and 
ompatiblewith s
alar multipli
ation by elements of K. It is a Lie algebra if, in addition, it also hasthe following properties(i) [., .] is bilinear,(i) Antisymmetry :
[x, x] = 0, ∀x ∈ g ( and hen
e [x, y] = −[y, x], ∀x, y ∈ g), (3.1)(ii) Ja
obi identity :

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0, ∀x, y, z ∈ g . (3.2)Examples of Lie algebras in physi
s should be familiar from the study of the theory ofangular momentum. All the �nite-dimensional Lie algebras we will study will be matrix Liealgebras, that is, they 
an be understood as a subalgebra of gl(n,C), whi
h is the asso
iativealgebra of all (n× n) matri
es over C.The more interesting Lie algebras, and the ones we will be dealing with, are a sub-
lassof the above de�nition 
alled semi-simple Lie algebras whose de�nition we next motivateDe�nition 3.2.2 A Lie subalgebra a of g is a subspa
e satisfying [a, a] ⊆ a.It is also a Lie algebra. A Lie subalgebra a is 
alled abelian if [a, a] = 0. One su
hsubalgebra, 
alled the Cartan subalgebra, will play an important role in understanding thestru
ture of semi-simple Lie algabras. 55



Chapter 3. BKM Lie AlgebrasDe�nition 3.2.3 A subspa
e a of g is 
alled an ideal if it satis�es [a, g] ⊆ a.An ideal, by its de�nition, is also a Lie subalgebra. If a and b are ideals in a Lie algebra,then so are a + b, a ∩ b and [a, b].De�nition 3.2.4 A �nite-dimensional Lie algebra g is said to be simple if it is non-abelian(i.e. [g, g] 6= 0) and g has no proper non-zero ideals ( i.e. its only ideals are g and 0). A�nite-dimensional Lie algebra g is said to be semi-simple if g is isomorphi
 to a dire
t sumof simple Lie algebras.One 
an also de�ne a semi-simple Lie algebra, equivalently, through its Killing form.The Killing form is a symmetri
 bilinear form on g. There is also a third, and equivalent,de�nition of semi-simple Lie algebras in terms of the Chevalley-Serre relations. It is via thisde�nition that it is simplest to pass to the in�nite-dimensional 
ase from �nite-dimensionalsemi-simple Lie algabras. We will introdu
e the Chevalley generators, and the Chevalley-Serre relations they satisfy, at the appropriate jun
ture. Here we give the de�nition ofsemi-simpli
ity through the Killing form.For any Lie algebra we 
an de�ne a linear map ad: g → EndCg, 
alled the adjointmapping, given by adx(y) = [x, y] , (3.3)where EndCg is the spa
e of all C-linear maps from g to g.We 
an now de�ne the Killing form on g. Given two elements x and y in g, we 
ande�ne a linear transformation (adxady) from g to itself. The Killing form of g is given by
B(x, y) = Tr(adx ady) . (3.4)The Killing form is invariant in the sense that
B([x, y], z) = B(x, [y, z]) .We 
an now de�ne an equivalent de�nition of a �nite-dimensional semi-simple Lie algebra
alled Cartan's 
riterion for semi-simpli
ity.Theorem 3.2.5 A Lie algebra g is semi-simple if and only if the Killing form on g is non-degenerate.The reason for the multiple de�nitions is that when we pass from �nite-dimensionalsemi-simple Lie algebras to more general Lie algebras, some of the de�nitions are more56



Chapter 3. BKM Lie Algebrassuitable generalizations than others, and hen
e it is helpful to understand the de�nitionfrom di�erent points of view. We give some examples of Lie algebras, before moving on tothe idea of representations.3.2.1 ExamplesThe most familiar example of a group from physi
s is the three-dimensional rotation group
SO(3). It is the group of all rotations about the origin on the three-dimensional Eu
lideanspa
e, R3, with 
omposition as the group operation. It represents the symmetries of a sphere.As a matrix group, it is the group of 3×3 real matri
es A su
h that ATA = I, and detA = 1.The Lie algebra asso
iated to this is the spa
e of 3×3 
omplex matri
es satisfyingXT = −X,denoted by so(3), where the supers
ript T denotes the transpose of a matrix.It is a spe
i�
 example of a more general 
lass of Lie algebra so(n,C), known as thespe
ial orthogonal Lie algebra, whi
h is the spa
e of all n× n 
omplex matri
es satisfying
XT = −X.Another familiar example is the spe
ial linear Lie algebra, denoted sl(n,C). It is thespa
e of all n× n 
omplex tra
eless matri
es over C. The algebra sl(2,C) is the algebra of
2× 2 tra
eless matri
es over C. We had earlier mentioned the Virasoro algebra satis�ed bythe Fourier modes Lm of the energy momentum tensor Tαβ . We will see in the 
ourse of this
hapter that the Virasoro algebra is related to the algebra sl(2,C) as its �loop algebra�.Another example is the symple
ti
 algebra sp(n). It is the spa
e of 2n × 2n 
omplexmatri
es X su
h that JXTJ = X, where J =

(
0 In

−In 0

). We will see that the symple
ti
group plays a very important role in the theory of Siegel modular forms that o

ur in thedyon degenera
y formulae.All the above matrix algebras are subalgebras of the Lie algebra gl(n,C), known as thegeneral linear algebra, whi
h is the spa
e of all n× n 
omplex matri
es. They are all simpleLie algebras as well.3.3 RepresentationsWe will now study representations of Lie algebras. We start by explaining the idea ofrepresenting a group or algebra on a ve
tor spa
e. The simplest example is of the just 
itedrotation group SO(3) whi
h a
ts on the three-dimensional Eu
lidean spa
e R3. If one wantedto realize an a
tion of the group on a di�erent spa
e, say a ve
tor spa
e V of dimension d,57



Chapter 3. BKM Lie Algebrasone 
annot obviously use the 3×3 matri
es to a
t on this spa
e. We need linear operators ofthe right dimension to de�ne a sensible a
tion on the spa
e V . We also need their a
tion on
V to be su
h that the group a
tion of SO(3) is faithfully 
aptured on V . Thus, what we needis a map from SO(3) to the spa
e of invertible linear operators that are of the appropriatedimension to a
t on the spa
e V and are su
h that they represent the a
tion of SO(3) on
V . This is the idea of a representation of a group. Let us now make this idea more pre
isestarting with a formal de�nition of the representation of a Lie algebra.De�nition 3.3.1 Let V be a ve
tor spa
e over a �eld C, and let g be a Lie algebra. A�nite-dimensional representation of g on V is a 
ontinuous homomorphism ρ of Liealgebras ρ : g→ EndKV . ρ has to be C-linear and has to satisfy

ρ([x, y]) = ρ(x)ρ(y)− ρ(y)ρ(x) for all x, y ∈ g . (3.5)We will (as do most authors) 
all V the representation when we mean the representation
ρ : g → EndKV . A subspa
e W of V is 
alled invariant if ρ(g)w ∈ W for all w ∈ W andall g ∈ g. A representation with no non-trivial invariant subspa
es is 
alled irredu
ible. Thedimension of the representation is de�ned to be the dimension of the ve
tor spa
e V .The best way to understand the theory of representations of a group or algebra is bylooking at some examples. We will study the representations of the Lie algebras sl(2,C) and
sl(3,C) in detail shortly, but before that we 
an 
ite a few examples whi
h exist for any Liealgebra.We have already seen impli
itly an example of a representation in eq.(3.3) � that of theadjoint mapping. Re
all that it was de�ned as the mapad : g→ EndCg . (3.6)given by the formula adx(y) = [x, y] . (3.7)Comparing (3.6) with (3.3), we see that `ad' is a representation where the spa
e V is takento be g. `ad' is a Lie algebra homomorphism and is, therefore a representation of g, 
alledthe adjoint representation . It is the representation of the Lie algebra g a
ting on itself.Another representation that exists for all Lie algebras is the trivial representation. If gis a Lie algebra of n × n matri
es over C then the trivial representation ρ : g → gl(1,C) is58



Chapter 3. BKM Lie Algebrasgiven by
ρ(x) = 0 ,for all x ∈ g. This is (obviously) an irredu
ible representation.3.3.1 The Irredu
ible RepresentationsThe irredu
ible representations of sl(2,C), apart from their well known relevan
e to physi
s,are very illuminating in understanding the origins of various ideas that we will study tounderstand general semi-simple Lie algebras. It will also help in understanding the idea, ofrepresenting a Lie algebra on an arbitrary ve
tor spa
e, introdu
ed above, in a 
on
rete way.It is also the simplest non-trivial example of a semi-simple Lie algebra, yet a very importantone. From a physi
s point of view, sl(2,C) is the 
omplexi�
ation of su(2) and every �nite-dimensional 
omplex representation of su(2) extends to a 
omplex linear representationof sl(2,C). Also sin
e su(2) ∼= so(3), the study of whose representation are of physi
alsigni�
an
e, the study of the representations of sl(2,C) also have a physi
al motivation.Our purpose in studying the representations of sl(2,C) and sl(3,C) will be, besides givingexamples of representations, to use them to illustrate important aspe
ts of representationtheory of semisimple Lie algebras in general. To that end, we will study the irredu
ible rep-resentations of sl(2,C) illustrating the expli
it 
onstru
tion of linear operators representingthe algebra on an arbitrary ve
tor spa
e, the a
tion of the operators on the representationspa
e, the idea of raising and lowering operators, and the idea of the highest weight, whi
hwill later develop into the highest weight theorem for general semi-simple Lie algebras. Also,general 
omplex semi-simple Lie algebras are built out of many 
opies of sl(2,C), and study-ing sl(2,C) is preliminary to understanding the representations of semi-simple Lie algebrasin general.In studying the Lie algebra sl(3,C) we will 
on
entrate more on learning about rootsystems of semi-simple Lie algabras. From this we will also learn about Cartan matri
es,Dynkin diagrams and the 
lassi�
ation of �nite-dimensional semi-simple Lie algebras. Wewill introdu
e the representation theory of sl(3,C) with a view towards using it to generalizethe notions from sl(2,C) to general semi-simple Lie algabras, via sl(3,C). We will also useit to understand the Weyl group, the 
hara
ter and denominator formulae of Lie algebras.
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Chapter 3. BKM Lie Algebras3.3.2 The Irredu
ible Representations of sl(2,C)We �x the following basis for sl(2,C)

h =

(
1 0

0 −1

)
, e =

(
0 1

0 0

)
, f =

(
0 0

1 0

)
. (3.8)whi
h have the 
ommutation relations1

[h, e] = 2e , [h, f ] = −2f , [e, f ] = h . (3.9)Now, if V is a �nite-dimensional 
omplex ve
tor spa
e and A,B and C are operators on Vsatisfying
[A,B] = 2B , [A,C] = −2C , [B,C] = A , (3.10)then, be
ause of the skew symmetry and bilinearity of bra
kets, the linear map ρ : sl(2,C)→

gl(V ) satisfying
ρ(h) = A , ρ(e) = B , ρ(f) = Cwill be a representation of sl(2,C) on V . The operators A,B and C whi
h are of suitabledimension to a
t on the ve
tor spa
e V , represent sl(2,C).To 
onstru
t the irredu
ible representations of sl(2,C) 
onsider the (m+ 1)-dimensionalve
tor spa
e Vm of homogeneous polynomials in two 
omplex variables with total degree

m(m ≥ 0). Vm is the spa
e of fun
tions of the form
f(z1, z2) = a0z

m
1 + a1z

m−1
1 z2 + a2z

m−2
1 z2

2 + . . .+ amz
m
2 , (3.11)with z1, z2 ∈ C and the ai's arbitrary 
omplex 
onstants.For any x ∈ g 
onsider the a
tion on Vm given as follows

ρm(x)f = −(x11z1 + x12z2)
∂f

∂z1
− (x21z1 − x11)

∂f

∂z2
, (3.12)whi
h maps Vm to Vm. It is also easy to see that ρm(x)ρm(y)f = ρm(xy)f , where the produ
t

(xy) is the usual multipli
ation of matri
es. This is a representation of sl(2,C) on the ve
tor1The Lie bra
ket be
omes the 
ommutator in any representation
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Chapter 3. BKM Lie Algebrasspa
e Vm. In terms of the basis (3.8) the above formula be
omes
(ρm(h)f)(z) = −z1

∂f

∂z1
+ z2

∂f

∂z2
.Thus,

ρm(h) = −z1
∂

∂z1
+ z2

∂

∂z2
. (3.13)The a
tion of ρm(h) on a basis element zk1zm−k

2 is ρm(h) zk1z
m−k
2 = (m−2k)zk1 z

m−k
2 . Thus, wesee that zk1zm−k

2 is an eigenve
tor for ρm(h) with eigenvalue (m− 2k). In parti
ular, ρm(h)is diagonalizable.Corresponding to the elements x and y we have the following operators
ρm(x) = −z2

∂

∂z1
, ρm(y) = −z1

∂

∂z2
,so that

ρm(x)zk1z
m−k
2 = −k zk−1

1 zm−k+1
2 ,

ρm(y)zk1z
m−k
2 = (k −m) zk+1

1 zm−k−1
2 . (3.14)Noti
e that, sin
e all the basis ve
tors zk1zm−k

2 are eigenve
tors of ρ(h), knowing the a
tion of
ρ(h) on the basis ve
tors gives Vm as the dire
t sum of its weight spa
es. The representation
ρm is an irredu
ible representation of sl(2,C) and there is one su
h for ea
h integer m ≥ 0.The representation ρm has dimension m+ 1. Any two irredu
ible representations of sl(2,C)with the same dimension are equivalent.Given the 
ommutation relations between the elements h, x and y as given above, it iseasy to see that the 
orresponding operators a
t on an eigenve
tor u of ρ(h) as follows

ρ(h)ρ(x)u = (α + 2)ρ(x)u ,

ρ(h)ρ(y)u = (α− 2)ρ(y)u . (3.15)Sin
e we are working over an algebrai
ally 
losed �eld, C, the above equation says that givenan eigenve
tor u of ρ(h), either ρ(x)u = 0 ( resp. ρ(y)u = 0) or ρ(x)u (resp. ρ(y)u) is an
61



Chapter 3. BKM Lie Algebraseigenve
tor for ρ(h) with eigenvalue α+ 2 (resp. α− 2). More generally
ρ(h)ρ(x)nu = (α + 2n)ρ(x)nu ,

ρ(h)ρ(y)nu = (α− 2n)ρ(y)nu . (3.16)The operators ρ(x) and ρ(y) are 
alled the raising and lowering operators respe
tively,sin
e they have the e�e
t of, respe
tively, raising and lowering the eigenvalue of ρ(h) by 2.The operator ρ(x) operating on a �nite-dimensional ve
tor spa
e 
an have only �nitely manydistin
t eigenvalues, the operation of raising the eigenvalue by applying the ρ(x) operator
annot be repeated inde�nitely and must terminate after a �nite number of operations. Thusthere will exist some integer N ≥ 0 su
h that
ρ(x)Nu 6= 0 ,but
ρ(x)N+1u = 0 .De�ning u0 = ρ(x)Nu and v = α + 2N , the above equations 
an be written as

ρ(h)u0 = v u0 ,

ρ(x)u0 = 0 . (3.17)
v is the highest eigenvalue of ρ(h) in the given representation, and any further operation by
ρ(x) gives 0. To the ve
tor u0 one 
an apply the operator ρ(y) to lower its eigenvalue by 2.De�ning uk = ρ(y)ku0, for k ≥ 0 we have

ρ(h)uk = (v − 2k)uk ,

ρ(x)uk = [kv − k(k − 1)]uk−1 . (3.18)Again, the operation of lowering 
annot be repeated inde�nitely, and the uk's 
annot all benon-zero. There must, therefore, exist a non-negative integer m su
h that
uk = ρ(y)ku0 6= 0 ,for all k ≤ m, but

um+1 = ρ(y)m+1u0 = 0 . 62



Chapter 3. BKM Lie AlgebrasThat is, the eigenvalues of ρ(h) are bounded both from above and below. Now, if um+1 = 0,then ρ(x)um+1 = 0. Therefore, we have
0 = ρ(x)um+1 = [(m+ 1)v −m(m+ 1)]um = (m+ 1)(v −m)um .Sin
e um 6= 0 and m+ 1 6= 0, we must have v = m, where m is a non-negative integer.Thus, any �nite-dimensional irredu
ible representation of sl(2,C) a
ting on a spa
e V ,will be of the following form

ρ(h)uk = (m− 2k)uk ,

ρ(y)uk = uk+1 ,

ρ(y)um = 0 ,

ρ(x)uk = [km− k(k − 1)]uk−1 ,

ρ(x)u0 = 0 . (3.19)and vi
e versa. The ve
tors u0, . . . , um will be independent, sin
e they are eigenve
tors of
ρ(h) with distin
t eigenvalues.Any 
omplex-linear representation of sl(2,C) on a �nite-dimensional 
omplex ve
torspa
e V is 
ompletely redu
ible in the sense that there exist invariant subspa
es U1, . . . , Urof V su
h that V = U1⊕ · · ·⊕Ur and su
h that the restri
tion of the representation to ea
h
Ui is irredu
ible.In general the irredu
ible representations of a Lie algebra g need not be so 
onspi
u-ously simple. Two representations may be isomorphi
, but the isomorphism may not beimmediately apparent. We need to have an invariant property asso
iated to a representationthat 
an save us the need of expli
itly veryfying the equivalen
e/inequivalen
e of two givenrepresentations by writing down the expli
it des
ription of the representations in terms ofmatri
es. This leads us to the 
on
ept of the 
hara
ter of a representation whi
h we willstudy after we look at the representations of sl(3,C).Before we move on and study the Lie algebra sl(3,C) and its representations, and gener-alize further to any general semi-simple Lie algebra, we will note down some of the importanttake-away points whi
h will be important in tra
ing the origins of the generalizations. Wewill label them by roman letters and will refer to them wherever this property is involvedlater in the 
hapter in 
onne
tion with sl(3,C) or general semi-simple Lie algebras. 63



Chapter 3. BKM Lie Algebras(A) The element h plays a spe
ial role, in that representations are labelled by the eigen-values of ρ(h), 
alled weights. Every irredu
ible representation is the dire
t sum of itsweight spa
es.(B) Every eigenvalue of ρ(h) is an integer.(C) The eigenvalues are bounded from above and below and the smallest eigenvalue is thenegative of the largest. For ea
h weight m, there is a 
orresponding ve
tor with weight
−m.(D) The multipli
ity of an eigenvalue k equals the multipli
ity of −k.(E) The operators ρ(x) and ρ(y), respe
tively, raise and lower the eigenvalues of ρ(h) by 2.(F) If there exists a non-zero element w of V su
h that ρ(x)w = 0 and ρ(h)w = µw, thenthere is a non-negative integerm su
h that µ = m and the ve
tors w, ρ(y)w, . . . , ρ(y)mware linearly independent and their span is an irredu
ible invariant subspa
e of dimen-sion m+ 1.(G) If ρ is an (m + 1)-dimensional irredu
ible representation of sl(2,C), then the highesteigenvalue m of ρ is an integer.(H) Going the other way, for every non-negative integer m there exists an irredu
ible rep-resentation of sl(2,C).(I) Any two irredu
ible representations of sl(2,C) of dimension (m+ 1) are equivalent.We will see how ea
h of the above ideas 
ontains the germs whose generalizations will giveus important insights into the theory of semi-simple Lie algebras in general.3.3.3 The Irredu
ible Representations of sl(3,C)We will study the general representation theory of semi-simple Lie algebras taking the ex-ample of sl(3,C) and taking ea
h idea to its natural generalization to obtain the analogousnotions for the 
ase of general semi-simple Lie algebras. Sin
e sl(3,C) is a simple example, itwill be easy to see the stru
ture while at the same time not getting bogged down in abstra
tgeneral theory. Before going to the representation theory of sl(3,C), however, we will study

sl(3,C) (and via generalization any semi-simple Lie algebra) in some detail, getting someidea of the stru
ture of the Lie algebras. 64



Chapter 3. BKM Lie AlgebrasWe start by 
hoosing a basis for sl(3,C) as follows
h1 =




1 0 0

0 −1 0

0 0 0


 , h2 =




0 0 0

0 1 0

0 0 −1


 ,

e1 =




0 1 0

0 0 0

0 0 0


 , e2 =




0 0 0

0 0 1

0 0 0


 , e3 =




0 0 1

0 0 0

0 0 0


 ,

f1 =




0 0 0

1 0 0

0 0 0


 , f2 =




0 0 0

0 0 0

0 1 0


 , f3 =




0 0 0

0 0 0

1 0 0


 , (3.20)Working out the 
ommutation relations between the various elements, one sees that thespan of {h1, e1, f1} is a subalgebra of sl(3,C) whi
h is isomorphi
 to sl(2,C) as is the spanof {h2, e2, f2}. We had earlier mentioned, in motivating the study of representations of

sl(2,C), that 
omplex semi-simple Lie algebras are made out of many 
opies of sl(2,C).All semi-simple Lie algebras are made up of 
opies of sl(2,C) like the 
opies of sl(2,C) in
sl(3,C) above. This idea holds, with suitable modi�
ations, even for in�nite-dimensional Liealgebras. Also note that the elements h1 and h2 
ommute with ea
h other, that is [h1, h2] = 0.We will get ba
k to the 
ommutation relations between the other elements in a while,after we introdu
e the 
on
ept of roots and weights. The idea is to get some 
ontrol overthe stru
ture of the Lie algebra.The broad idea of the programme is as follows. The Cartan subalgebra, as de�nedabove, is abelian and the adjoint a
tion of the Cartan subalgebra on the given semisimpleLie algebra leads to a root-spa
e de
omposition of the Lie algebra. The Lie algebras 
an bestudied and 
lassi�ed through their root systems. Using an ordered basis of simple roots,one 
an 
onstru
t the Cartan matrix or the equivalent Dynkin diagram whi
h en
ode thestru
ture of the semi-simple Lie algebra in them. The Weyl group 
aptures the fa
t thatthe Cartan matrix and the Dynkin diagram are independent of the 
hoi
e and ordering ofsimple roots. Every Cartan matrix arises from a redu
ed abstra
t root system, and there is aone-to-one 
orresponden
e (upto isomorphism) between the two. This leads to a one-to-one
orresponden
e (upto isomorphism) between 
omplex semi-simple Lie algebras and redu
edabstra
t root systems.We will use the semisimple Lie algebra sl(3,C) to study and illustrate, and subsequently65



Chapter 3. BKM Lie Algebrasgeneralize to general semi-simple Lie algebras, the above notions. We will also study therepresentation theory of sl(3,C).3.3.4 Cartan subalgebra, Roots and WeightsDe�nition 3.3.2 Given a representation (ρ, V ) of sl(3,C), an ordered pair µ = (m1, m2) ∈
C2 is 
alled a weight for ρ if there exists a ve
tor v 6= 0 in V su
h that

ρ(h1)v = m1v ,

ρ(h2)v = m2v . (3.21)A non-zero ve
tor v satisfying the above equation is 
alled a weight ve
tor 
orrespondingto the weight µ.The spa
e of all ve
tors satisfying the above 
onditions (in
luding the zero ve
tor) is 
alledthe weight spa
e 
orresponding to the weight µ. The dimension of the weight spa
e is 
alledthe multipli
ity of the weight. This is generalization of the point (A), from the take-awaynotes at the end of the last se
tion, where the weights were de�ned as the eigenvalues of
ρ(h). Generalizing the notion to a general semi-simple Lie algebra, one de�nes a weightas a 
olle
tion of simultaneous eigenvalues of the ρ(hi)'s whi
h are the set of maximally
ommuting elements in the Lie algebra. Every representation has atleast one weight, andequivalent representations have the same weights and multipli
ities. We will 
ome ba
k tothe de�nition of weights for a general semi-simple Lie algebra later in this se
tion. For now,we 
ontinue with sl(3,C).For sl(3,C), all the weights are of the form µ = (m1, m2) with m1, m2 being integers. Theweight ve
tors of the adjoint representation are 
alled root ve
tors. That is, for a ve
tor zsatisfying

[h1, z] = a1z , [h2, z] = a2z ,the pair α ≡ (a1, a2) ∈ C2 is 
alled a root and the element z is 
alled the root ve
tor
orresponding to the root α.The roots (and weights) are de�ned as the simultaneous eigenvalues of adhi
(ρ(hi)), wherethe hi are the set of maximally 
ommuting elements in the Lie algebra. This set plays a
entral role in the study of the stru
ture of semi-simple Lie algebras. It is 
alled the Cartansubalgebra of the Lie algebra. It is de�ned as follows 66



Chapter 3. BKM Lie AlgebrasDe�nition 3.3.3 The Cartan subalgebra of a 
omplex semi-simple Lie algebra g is the
omplex subspa
e h of g with the following properties(i) For all h1 and h2 in h, [h1, h2] = 0 ,(ii) For all x ∈ g, if [h, x] = 0 for all h ∈ h, then x ∈ h ,(iii) For all h ∈ h, adh is diagonalizable .Condition (i) says that h is a 
ommutative subalgebra of g, and 
ondition (ii) says that itis maximally 
ommutative. It is thus, the normalizer Ng(h) = {x ∈ g|[x, h] ⊆ h} of h in g.Condition (iii) says ea
h adh is diagonalizable, and sin
e all the h ∈ h 
ommute, the adh'salso 
ommute, and thus they are also diagonalizable simultaneously. For the 
ase of sl(2,C)there was only one element, h.The rank of a 
omplex semi-simple Lie algebra g is de�ned to be the dimension of itsCartan subalgebra. With the above general de�nition of the Cartan subalgebra, the rootsand root spa
es 
an be de�ned as followsDe�nition 3.3.4 A root of a semi-simple Lie algebra g (with respe
t to the Cartan sub-algebra h) is a non-zero linear fun
tional α ∈ h∗ su
h that there exists a non-zero element
x ∈ g with

[h, x] = α(h)x ,for all h ∈ h.So, a root is just a (non-zero) 
olle
tion of simultaneous eigenvalues for the adh's. The set ofall roots is denoted L. The root spa
e gα is the spa
e of all x ∈ g for whi
h [h, x] = α(h)xfor all h ∈ h. An element of gα is 
alled a root ve
tor (for the root α).Going ba
k to the basis elements of sl(3,C) and working out the various 
ommutationrelations between the elements, we 
an now express the same information, using the 
on
eptof root ve
tors, as follows. The ve
tors xi and yi are eigenve
tors for h1 and h2, and the
olle
tion of the eigenvalues are the roots for sl(3,C). Giving the various roots is enough tospe
ify the various 
ommutation relations, whi
h we do below. Here, α denotes the root and
Z the 
orresponding root ve
tor.
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Chapter 3. BKM Lie Algebras
α Z

(2,−1) x1

(−1, 2) x2

(1, 1) x3 (3.22)
(−2, 1) y1

(1,−2) y2

(−1,−1) y3 .These six roots form a root system 
onventionally 
alled A2. We will later 
ome to thevarious root systems, when we have studied their theory a little more. To 
arry informationabout all the roots is redundant, and it is su�
ient to only work with two roots from theabove six, as the others 
an be writen in terms of these two. We single out the roots
α1 = (2,−1) (3.23)
α2 = (−1, 2) ,and express the other four roots in terms of them. The 
hoi
e of the labels 1 and 2 isarbitrary, and is equivalent to labelling them the other way. The two roots are 
alled thepositive simple roots and usually denoted Π. The positive simple roots have the propertythat all the roots 
an be expressed as linear 
ombinations of the positive simple roots withinteger 
oe�
ients, su
h that the 
oe�
ients are all positive or all negative. More generally,a semisimple Lie algebra of rank r will have r positive simple roots. The positive simpleroots are su
h that for any α ∈ L, we have

α = n1α1 + n2α2 + · · ·+ nrαr , (3.24)where the nj's are integers and either all greater than or equal to zero or all less than orequal to zero (but not all zero simultaneously). On
e we �x a set of simple roots, the α's forwhi
h nj ≥ 0 are 
alled the positive roots (w.r.t the 
hosen Π), denoted L+, and the α'swith nj ≤ 0 are 
alled the negative roots, denoted L−. Note that all the elements of Π arein L+, and are thus 
alled the set of positive simple roots.For the 
ase of sl(3,C) all the roots 
an be expressed in terms of α1 and α2 as follows 68
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(2,−1) = α1

(−1, 2) = α2

(1, 1) = α1 + α2 (3.25)
(−2, 1) = −α1

(1,−2) = −α2

(−1,−1) = −α1 − α2 .The 
hoi
e of pi
king out α1 and α2 is, of 
ourse, arbitrary. Any other pair whi
h satis�esthe above 
riteria is equally suitable.Considering the elements of h as those belonging to the root spa
e g0, we see that theadjoint a
tion of the hi ∈ h gives a de
omposition of the Lie algebra g as a dire
t sum ofroot spa
es(
ompare with (A)), sin
e all the hi are simultaneously diagonalizable. The Liealgebra g 
an be de
omposed as a dire
t sum as follows
g =

⊕

α∈L

gα =
⊕

α∈L−

gα
⊕

h
⊕

α∈L+

gα . (3.26)This means that every element of g 
an be written uniquely as a sum of an element of h andone element from ea
h root spa
e gα. This is the �rst sign of emergen
e of some method towhat we have been doing. Now, we begin to see how the de
omposition of the Lie algebraas eigenve
tors of the adh's gives us 
ontrol over the stru
ture of the Lie algabra. As ve
torspa
es g = N+ ⊕ h ⊕ N−, where N+/N− are the ve
tor spa
es generated by the elementswith positive and negative eigenvalues w.r.t the Cartan subalgebra h respe
tively.The set of simple roots Π of the Lie algebra has all the information of the Lie algebra init, and as we will see, we 
an redu
e the essen
e of the problem even further when we relatethem to abstra
t root systems where the whole Lie algebra is 
aptured by a matrix, or anequivalent diagram. These abstra
t root systems, not just des
ribe for us the Lie algebrawhose root systems they are isomorphi
 to, but in fa
t will allow us to 
lassify all the possiblesemisimple Lie algebras into a �nite number of 
lasses.We will look root systems brie�y to 
omplete the study we have started with the exampleof sl(3,C), after we study the Weyl group and Weyl re�e
tions of the root system. Firstly,however, we re
ord some of the properties of the roots, without proof, below. 69



Chapter 3. BKM Lie Algebras(i) For any α and β in h∗, [gα, gβ] ⊂ gα+β ,(ii) If α ∈ h∗ is a root, then so is −α (
ompare with (C)),(iii) The roots span h∗ ,(iv) If α is a root of g, then the only multiples of α that are roots are α and −α (
omparewith (C) and (D)),(v) If α and β are roots, the quantity 2 〈α,β〉
〈α,α〉

is an integer, where the inner produ
t 〈., .〉 isde�ned as in (3.27).(vi) For all roots α, the root spa
es gα are one-dimensional ,(vii) For ea
h root α, we 
an �nd non-zero elements xα ∈ gα, yα ∈ g−a and hα ∈ h su
hthat xα, y−α and hα span a subalgebra of g isomorphi
 to sl(2,C) .Having studied the roots and their properties, one 
an go ahead and 
onsider root systemsindependent of their origins in semi-simple Lie algebras. This makes sense be
ause, many ofthe results about root systems involve only the root systems and not the Lie algebras fromwhi
h they 
ome. Therefore, one 
an study the theory of root systems on their own. We havealready quoted the important results about roots, and digressing into abstra
t root systemswill not serve us any new purpose to devote spa
e to studying them. However, we mentionabstra
t root systems be
ause there is a point to take away from the above study. Givena 
omplex semi-simple Lie algebra, one 
an asso
iate to it an abstra
t redu
ed root systemand vi
e-versa. One 
an use the 
lassi�
ation of the abstra
t root systems and translateit to 
lassifying semi-simple Lie algebras. The basis of this asso
iation is the 
hoi
e of theCartan subalgebra, whose simultaneous eigenvalues the roots are. Later when we 
onstru
tthe Cartan matri
es for these redu
ed root systems we will need a parti
ular ordering ofthe roots (viz. the labelling of α1 and α2 mentioned above) and subje
t to that, there is anisomorphism between abstra
t root systems and Cartan matri
es. We have already seen thishappen in the example of sl(3,C), where we singled out two roots as the simple roots, andwritten the other roots in terms of them and said the ordering of the positive simple rootsdoes not matter. We had also mentioned that the 
hoi
e of the two roots is arbitrary, and anyother set of simple roots that satisfy the proper 
riteria are equally good 
andidates. Also,any two Cartan subalgebras of g are 
onjugate to ea
h other. Thus, to make the asso
iationbetween 
omplex semi-simple Lie algebras and Cartan matri
es, via root systems, useful we70



Chapter 3. BKM Lie Algebrasneed to examine the independen
e of the above isomorphisms of the 
hoi
e of the orderingof the roots.3.3.5 The Weyl GroupWe will study the idea of the Weyl group of g now, and in doing so, try to use it to addressthe above question of the independen
e of the 
hoi
e of ordering of simple roots in asso
iatingCartan matri
es to 
omplex semi-simple Lie algebras. Before we motivate the idea of theWeyl group, we need a hermitian inner produ
t on g whi
h is de�ned as follows. For matri
es
x and y, we de�ne an inner produ
t on g as

〈x, y〉 = Tr(xy∗) (3.27)Consider the set of roots L of a semi-simple Lie algebra g and a set, Π, of simple rootsthat generate L. In the theory of abstra
t root systems, the set of simple roots is 
alled abase. Let the ve
tor spa
e generated by Π be E. E is just the r-dimensional Eu
lideanve
tor spa
e of linear 
ombination of all roots α ∈ L. Note the di�eren
e between E and
L. Ea
h element α ∈ L is su
h that it 
an be expressed as a linear 
ombination of theelements of Π with integer 
oe�
ients and in su
h a way that the 
oe�
ients are either allnon-negative or all non-positive, whereas E is just the ve
tor spa
e generated by Π withoutany su
h restri
tions.For any two roots α, β ∈ L, 
onsider the following linear transformation of E

wα · β = β − 2
〈α, β〉
〈α, α〉α, β ∈ E , (3.28)known as a re�e
tion, be
ause geometri
ally, it is one in the spa
e E as we will explainbelow. For now, we note the property that w2
α = 1, ∀ α ∈ L. For all α, β ∈ E, the re�e
tedelement wα · β is also a root. The set of all su
h re�e
tions will thus a
t as a permutationon the set of roots and taking L to itself. Also, ea
h re�e
tion possesses an inverse (itself),and the 
omposition or re�e
tions is again a re�e
tion (
alled a `word'). Thus, the subgroupof the orthogonal group on E generated by all the re�e
tions wα for α ∈ L forms a group
alled the Weyl group of L and ea
h re�e
tion is known as a Weyl re�e
tion . Sin
e therank r of g is �nite, the Weyl group generated as re�e
tions w.r.t the set of positive roots isa �nite group. Note that upto this point there has been no mention of the relation to theunderlying Lie algebra. In the 
ase when the root system originates from a Lie algebra g71



Chapter 3. BKM Lie Algebraswith Cartan subalgebra h, the Weyl group is denoted by W(g, h). We will simply 
all it Wand the arguments are understood.Next, we de�ne a quantity known as the Weyl ve
tor ρ of L as
ρ = 1

2

∑

α∈L+

α . (3.29)The Weyl ve
tor will play a very important role later when we study the 
hara
ter anddenominator formulae of Lie algebras, both �nite and in�nite-dimensional. Now, looking atthe above equation, we noti
e that the way the Weyl ve
tor is de�ned, as a sum over theset of roots, may not be suitable for generalization to the 
ase of in�nite-dimensional Liealgebras sin
e the root system of in�nite-dimensional Lie algebras is not �nite. There is analternate de�nition whi
h lends itself to generalization to the in�nite 
ase without involvingin�nite sums and we de�ne it below.De�nition 3.3.5 The Weyl ve
tor , ρ, of a root system L is de�ned to be the ve
tor whi
hsatis�es
〈ρ, αi〉 = 1, for all αi ∈ Π (3.30)Eq. (3.30) de�nes the Weyl ve
tor even for in�nite-dimensional Lie algebras and it is thisde�nition that we will use from here on.We 
an also develop a geometri
al pi
ture of the above ideas in the spa
e E. Let V bea hyperplane through the origin in E su
h that V does not 
ontain any root. Consider anelement α whi
h is perpendi
ular to this hyperplane. Thus, V will be the set of elements µin E su
h that 〈α, µ〉 = 0, and either side of V will be elements that satisfy the inequality

〈α, µ〉 > 0 or 〈α, µ〉 < 0.Given the root system (L,E), the hyperplane V partitions the spa
e E into two sides.For any ve
tor α in the one-dimensional orthogonal 
omplement of V , let us denote the sidessatisfying 〈α, µ〉 > 0 and 〈α, µ〉 < 0 by L+ and L− respe
tively. Any element α of L+ is
alled de
omposable if there exist β and γ su
h that α = β + γ. An element whi
h is notde
omposable is 
alled inde
omposable. The set of all inde
omposable elements in L+ isa base for L. Now we 
an make the 
onne
tion to what we learnt above, if we identify thebase form L with the base Π of positive simple roots of the Lie algebra g. Then, the sets L+and L−, as de�ned in the spa
e E, are exa
tly the sets of positive and negative roots of theroot system of g (hen
e the notation to 
all them L+ and L−).Geometri
ally, the re�e
tions, wα, that generate the Weyl group are re�e
tions with72



Chapter 3. BKM Lie Algebrasrespe
t to the hyperplane in E perpendi
ular to the root α. wα(β) would be the ve
torobtained by re�e
ting the root β, with respe
t to the hyperplane perpendi
ular to α, in E.Ea
h positive simple root α will partition E into two halves su
h that either 〈α, µ〉 < 0 or
〈α, µ〉 > 0. Given Π, we 
onsider the interse
tion of the sets 〈αi, H〉 > 0, where αi are all theelements of Π. This set is 
alled the open fundamental Weyl 
hamber in E (relative to
Π). The 
losed fundamental Weyl 
hamber in E (relative to Π) is the set of all H ∈ Esu
h that 〈αi, H〉 ≥ 0 for all αi ∈ Π. One might wonder what do the elements of the 
losedand open Weyl 
hambers signify for the Lie algebra g? These elements are important inthe representation theory of semi-simple Lie algebras and are 
alled the dominant integralelements. We will talk about them when we dis
uss the representation theory of sl(3,C).The Weyl 
hamber depends on the base Π and a di�erent, but equivalent, base will givea di�erent Weyl 
hamber. For ea
h open Weyl 
hamber C, there exists a unique base ΠC for
L su
h that C is the open fundamental Weyl 
hamber asso
iated to ΠC and the other wayround. So, there is a one-to-one 
orresponden
e between Weyl 
hambers and bases, or setof positive simple roots. The Weyl group a
ts simply and transitively on the set of positivesimple roots and also on the set of Weyl 
hambers.We 
on
lude our dis
ussion of the Weyl group with a few properties of W1. The Weyl group is the set of linear transformations of h∗ that leave the set of weightsof any representation of g invariant.2. S
alar produ
ts are invariant under W.

〈w(α), w(β)〉 = 〈α, β〉, (3.31)for any w ∈ W.3. The Weyl group a
ts simply and transitively on the set of positive simple roots andalso on the set of Weyl 
hambers. For any basis Π of simple roots, and for any w ∈ W,the image w(Π) is again a basis of simple roots.4. The set Π of simple roots generates the whole root system as its image under the Weylgroup. For any root α,W(α) spans the whole root spa
e. This point will be useful laterwhen we re
onstru
t the BKM Lie superalgebras from their denominator identities.5. The re�e
tion with respe
t to a simple root α takes it to its negative, and permutesthe rest of the positive roots. 73



Chapter 3. BKM Lie Algebras6. W not only permutes the roots, but the weights of any other highest weight module.7. Sin
e the Weyl group is generated by the fundamental re�e
tions with respe
t to thesimple roots αi, any element w ∈ W 
an be written as a `word' in the fundamentalre�e
tions. A given w ∈ W may be expressed by di�erent words, and the minimumpossible su
h re�e
tions that generate w is 
alled the length l(w) of w. An expressionin the minimum number of re�e
tions is 
alled a redu
ed expression.8. The length l obeys l(w) = l(w−1)9. From the de�nition of the Weyl ve
tor as the sum of all the positive roots, the re�e
tionof ρ with respe
t to a simple root αi just takes αi to −αi while permuting all the otherroots among themselves. Thus, re�e
tion with respe
t to αi just subtra
ts αi from theWeyl ve
tor.
wαi

(ρ) = ρ− αi . (3.32)10. The Weyl ve
tor ρ always lies in the open (and hen
e 
losed) Weyl 
hamber.11. Ea
h orbit of the Weyl group 
ontains exa
tly one point in the 
losed Weyl 
hamber.12. The Weyl groups are Coxeter groups. One has
(
wαi

wαj

)2+|aij |2 = 1 when |aij | = 0, 1 and i 6= j . (3.33)Further, when |aij | ≥ 2, there are no relations. The elements aij are 
onstants relatedto the roots αi and αj .This 
on
ludes our study of the Weyl group for now. We will get ba
k to using it to
ompute the 
hara
ter of highest weight modules of g and its 
hara
ter and denominatoridentities. It also plays a very important role in 
onstru
ting the BKM Lie superalgebrasfrom their denominator identities. Next, we 
ome to the idea of 
lassi�
ation of �nite-dimensional semi-simple Lie algebras and in the pro
ess learning about Cartan matri
es andDynkin diagrams.
74



Chapter 3. BKM Lie Algebras3.3.6 Cartan Matri
es, Dynkin Diagrams and Classi�
ation of �nite-dimensional semi-simple Lie algebrasOn
e we have �xed a set, Π, of simple roots of g, we 
an asso
iate to it a matrix, of innerprodu
ts of the positive simple roots α ∈ Π, 
alled the Cartan matrix . One 
an 
lassifythe �nite-dimensional semi-simple Lie algebras over C using the Cartan matrix asso
iatedto its root system. Enumerating Π as Π = {α1, α2, . . . , αr}, where r is the dimension of E,and hen
e, of the underlying semi-simple Lie algebra g, the Cartan matrix A(g) of thesemi-simple Lie algebra g is the r × r matrix with elements
aij = 2

〈αi, αj〉
〈αj, αj〉

. (3.34)The elements aij are the same ones that appear in the de�niton of the Weyl group as aCoxeter group above. Be
ause the positive simple roots form a basis of the root spa
e, theCartan matrix is non-degenerate, and sin
e the quantity 2 〈α,β〉
〈α,α〉

is an integer, all the elementsof the Cartan matrix are integers. The Cartan matrix depends on the enumeration of Π anddi�erent enumerations lead to di�erent Cartan matri
es that are 
onjugate to one anotherby a permutation matrix.To every semi-simple Lie algebra, we 
an asso
iate a Cartan matrix as de�ned above.Conversely, a �nite-dimensional semi-simple Lie algebra 
an be de�ned through its Cartanmatrix. Given a real, inde
omposable, (r × r) symmetri
 matrix2 A = (aij), i, j ∈ I =

{1, 2, . . . , r} of rank r satisfying the following 
onditions:(i) aij ∈ Z for all i and j ,(ii) aii = 2 for all i ,(iii) aij = 0⇔ aji = 0 ,(iv) aij ∈ Z≤0 for i 6= j ,(v) det A > 0 ,2The symmetri
 
ondition 
an be extended to in
lude symmetrizable matri
es. A matrix A is said to besymmetrizable if there exists a non-degenerate diagonal matrix D su
h that A = DB where B is a symmetri
matrix.
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Chapter 3. BKM Lie Algebrasone de�nes a Lie algebra g(A) generated by the generators ei, fi, and hi, for i = {1, 2, . . . , r},satisfying the following 
onditions for i, j ∈ I :
[hi, hj ] = 0 ; [ei, fj] = δijhj ;

[hi, ej ] = aijej ; [hi, fj] = −aijfj ;

[ei, ej ] = [fi, fj] = 0 if Aij = 0

(ad ei)1−aijej = (ad fi)1−aijfj = 0 for i 6= j . (3.35)The above equations may seem a little strange when presented without the ne
essarymotivation, so let us 
onsider what ea
h of the equations above says about the Lie algebraand the roots. (i) says all the entries of the Cartan matrix are integers, whi
h is easy tounderstand if we note that the quantity 2 〈α,β〉
〈α,α〉

is an integer, whose genesis goes ba
k all theway to (B). (ii) is just the 
hoi
e of a 
onvenient normalization one 
hooses for the innerprodu
t whi
h also goes all the way ba
k to the representations of sl(2,C). Condition (iii)re�e
ts the symmetry of the s
alar produ
t in root spa
e. For the meaning of 
ondition (iv),
onsider the following 
onditions that one 
an show on the inner produ
ts for any two roots
α and β

(α, β) > 0 ⇒ α− β ∈ L
(α, β) < 0 ⇒ α + β ∈ L . (3.36)Now, the simple roots were de�ned as those positive roots whi
h were inde
omposable, andhen
e the di�eren
e of any two simple roots is never a root, and so it follows that (αi, αj) ≤ 0,and hen
e the matrix elements aij ≤ 0.The Cartan matrix, A, uniquely de�nes the Lie algebra whi
h we 
all g(A). The relations(3.35) are known as the Chevalley-Serre relations. We had earlier de�ned general semi-simple Lie algebras as ones whi
h are obtained as dire
t sums of simple Lie algebras, andalso through their Killing form. The Chevalley-Serre relations de�ning a semi-simple Liealgebra are very useful from the point of view of our �nal aim of graduating to in�nite-dimensional Lie algebras. It is this 
ondition whose generalization is the simplest way tomove from �nite-dimensional 
omplex semi-simple Lie algebras to in�nite-dimensional BKMLie superalgebras as we will see when we de�ne BKM Lie superalgebras shortly.Let us look at the entries of the Cartan matrix more 
losely, and see what we 
an sayabout them. First, by the triangle inequality (αi, αj)

2 ≤ (αi, αi)(αj, αj), and using (ii) we76



Chapter 3. BKM Lie Algebrasget the inequality aij , aji ≤ 4 with equality holding for i = j and aij ∈ {0, 1, 2, 3} for i 6= j.Now, using (iii) amd (iv) we see the possibilities for aij to be
aij = aji = 0 or (3.37)
aij = aji = −1 or
aij = −1, aji = −2 or
aij = −1, aji = −3 .The elements αij give the angle between the positive simple roots of the root system. If allthe elements of a root system are multiplied by a non-zero 
onstant, one gets another rootsystem that is equivalent to the original root system. The quantity 2

〈αi,αj〉

〈αj ,αj〉
is un
hanged ifboth α and β are multiplied by the same non-zero 
onstant. So, the a
tual lengths of rootsare not important, but only their ratios. The elements αij en
ode information about theangles between the positive simple roots in the root spa
e E as follows. For two roots α and

β, where α is not a multiple of β, and 〈α, α〉 ≥ 〈β, β〉, there are the following possibilities:(i) 〈α, β〉 = 0 ,(ii) 〈α, α〉 = 〈β, β〉, and the angle between α and β is 60°or 120°,(iii) 〈α, α〉 = 2〈β, β〉, and the angle between α and β is 45°or 135°,(iv) 〈α, α〉 = 3〈β, β〉, (3.38)and the angle between α and β is 30° or 150° .So, if the two roots are not multiples of ea
h other and are not perpendi
ular to ea
h other,then the ratio of their lengths must be either 1,
√

2, or √3. If two roots are perpendi
ularthen there are no 
onstraints on the ratios of their lengths. If the angle between two roots
α and β is stri
tly obtuse, then α+ β is a root, and if the angle between α and β is stri
tlya
ute, then α− β and β − α are also roots. Compare this with the 
ondition (iii) of (3.3.6).Now we 
ome to the idea of Dynkin diagrams and 
lassi�
ation, upto equivalen
e, ofsemi-simple Lie algebras. One 
an 
lassify the root systems, and hen
e the 
orrespondingsemi-simple Lie algebra g, in terms of the Cartan matri
es, or an obje
t 
alled the Dynkindiagram.To see the motivation, 
onsider the idea of the root spa
e de
omposition of the Liealgebra. We 
onsider the maximal abelian subalgebra of g and this a
ts semi-simply on77



Chapter 3. BKM Lie Algebras
g giving the Lie algebra as a dire
t sum of root spa
es. The Lie algebra is broken up intoeigenve
tors for the elements of the Cartan subalgebra. Thus, 
lassifying Cartan subalgebras
an be extended via the root spa
e de
omposition to the 
lassi�
ation of Lie algebras. Theinformation of the Cartan subalgebra, and hen
e of g, is 
ontained in the set of positivesimple roots Π, and hen
e in the Cartan matrix or Dynkin diagram 
orresponding to Π.Thus, in 
lassifying the various �nite-dimensional semi-simple Lie algebras we are redu
edto studying the various 
lasses of Cartan matri
es or Dynkin diagrams. We state this in theform of a 
lassi�
ation theorem (without proof) towards the end of this se
tion where thevarious root systems, their 
orresponding Dynkin diagrams are listed along with the semi-simple Lie algebras they des
ribe. Below we give how one 
onstru
ts the Dynkin diagramgiven a root system.To the set Π or simple roots we 
an also asso
iate a graph, 
onsisting of verti
es and lines
onne
ting them, known as a Dynkin diagram . To ea
h element αi of Π we asso
iate avertex vi. Two verti
es vi and vj are joined by edges depending upon the angle between thesimple roots αi and αj . If two roots αi and αj are orthogonal then we put no edge betweenthe 
orresponding verti
es vi and vj . We put one edge between vi and vj if αi and αj havethe same length, two edges if the longer of αi and αj is √2 times the shorter, and threeedges if the longer of αi and αj is √3 times the shorter. In addition, if αi and αj are notorthogonal or of the same length, we de
orate the edge between vi and vj with an arrowpointing from the vertex asso
iated to the longer root toward the verted asso
iated to theshorter root. Looking at (3.38) we see that there are only three possible lenght ratios andthree possible angles between the roots.Two Dynkin diagrams are said to be equivalent if there is a one-to-one, and onto mapof the verti
es of one to the verti
es of the other that preserves the number of bonds andthe dire
tion of the arrows. Sin
e any two bases Π for the same root system are equivalentbe
ause of the a
tion of the Weyl group on them, the equivalen
e 
lass of Dynkin diagram isindependent of the 
hoi
e of the base Π. Two root systems with equivalent Dynkin diagramsare equivalent. A root system is irredu
ible if its Dynkin diagram is 
onne
ted. We nowlist all the Dynkin diagrams of the 
lassi
al semi-simple Lie algebras.1. An : The root system An is the root system of the Lie algebra sl(n + 1,C). It is ofrank n.2. Bn : The root system Bn is the root system of the Lie algebra so(2n + 1,C). It is ofrank n. 78



Chapter 3. BKM Lie Algebras3. Cn : The root system Cn is the root system of the Lie algebra sp(n,C). It is of rank n.4. Dn : The root system Dn is the root system of the Lie algebra so(2n,C). It is of rank
n.The Dynkin diagrams asso
iated with the above root systems are given in Fig. (3.1).We note a few interesting points about the above root systems that happen in low rank.In rank one, there is only one possble Dynkin diagram, re�e
ting that there is only oneisomorphism 
lass of 
omplex semi-simple Lie algebras in rank one. The Lie algebra so(2,C)is not semi-simple, and the remaining three Lie algebras sl(2,C), so(3,C) and sp(1,C) areisomorphi
. In rank two, the Dynkin diagram D2 is dis
onne
ted, re�e
ting the fa
t that

so(4,C) ∼= sl(2,C)⊕sl(2,C). Also, the Dynkin diagramsB2 and C2 are isomorphi
, re�e
tingthe fa
t that so(5,C) ∼= sp(2,C). In rank three, the Dynkin diagrams A3 and D3 areisomorphi
, re�e
ting the fa
t that sl(4,C) ∼= so(6,C). In addition to the root systemsasso
iated to the 
lassi
al Lie algebras, there are �ve ex
eptional irredu
ible root systems,denoted G2, F4, E6, E7 and E8.Now we state the 
lassi�
ation theorem, without proof below.Theorem 3.3.6 Every irredu
ible root system is isomorphi
 to pre
isely one root systemfrom the following list.1. The 
lassi
al root systems An, n ≥ 1.2. The 
lassi
al root systems Bn, n ≥ 23. The 
lassi
al root systems Cn, n ≥ 34. The 
lassi
al root systems Dn, n ≥ 45. The ex
eptional root systems G2, F4, E6, E7 and E8.Sin
e every root system 
an be uniquely de
omposed as a dire
t sum of irredu
ible rootssytems, the 
lassi�
ation of irredu
ible root systems leads to the 
lassi�
ation of all rootsystems. As argued before, 
lassi�
ation of root systems leads to the 
lassi�
ation of semi-simple Lie algebras and 
lassi�
ation of the irredu
ible root systems leads to the 
lassi�
ationof the simple Lie algebras whi
h we state in the form of a theorem below.Theorem 3.3.7 Every 
omplex simple Lie algebra is isomorphi
 to pre
isely one algebrafrom the following list: 79



Chapter 3. BKM Lie Algebras1. sl(n+ 1,C), n ≥ 1,2. so(2n+ 1,C), n ≥ 2,3. sp(n,C), n ≥ 3,4. so(2n,C), n ≥ 4,5. The ex
eptional Lie algebras G2, F4, E6, E7 and E8.A semi-simple algebra is a dire
t sum of simple algebras, and is uniquely determined upto isomorphism by spe
ifying whi
h simple summands o

ur and how many times ea
h oneo

urs in the dire
t sum.Thus, we have 
lassi�ed the various semi-simple Lie algebras, and their root systems.We have also seen that to ea
h root system one 
an asso
iate a graph 
alled the Dynkindiagram whi
h pi
torially 
aptures all the information about the root system and hen
e theLie algebra it 
orresponds to.
F4

E7

E8

G2

E6A

Bn

Cn

n

n

D

Figure 3.1: The Dynkin diagrams for the 
lassi
al semi-simple Lie algebras3.3.7 Representation Theory of Semi-Simple Lie AlgebrasAfter studying the general stru
ture of Lie algebras, we now 
ome to the representationtheory of �nite-dimensional semi-simple Lie algebras with the example of sl(3,C) as theparti
ular 
ase we work it out expli
itly for.We will still be working with the basis (3.20). Let α = (a1, a2) be a root of sl(3,C) and
Zα the 
orresponding root ve
tor. We have already seen the 
onstru
tion of a representation80



Chapter 3. BKM Lie Algebrasfor sl(2,C). We will use some of what we learnt there and see what modi�
ations o

ur forLie algebras of rank r > 1.The starting point in looking for a stru
ture is to �nd the generalization of (A). Wehave de�ned roots and weights as the eigenvalues of ρ(h). The suitable generalization is toobserve that in any �nite-dimensional representation the Cartan subalgebra h a
ts 
ompletelyredu
ibly. The set of operators ρ(h) for all h ∈ h are simultaneously diagonalizable in every�nite-dimensional representation, and hen
e, every �nite-dimensional representation (ρ, V ) isthe dire
t sum of its weight spa
es. The simultaneous eigenvalues of ρ(h) are 
alled weights.For sl(3,C), the weights are of the form µ = (m1, m2), where m1 and m2 are integers. Fora �nite-dimensional representation ρ of g on a ve
tor spa
e V with Cartan subalgebra h, anelement µ ∈ h∗ is 
alled a weight for ρ if there exists a non-zero ve
tor v in V su
h that
ρ(h)vµ = 〈µ, h〉vµ , (3.39)for all h ∈ h. A non-zero ve
tor v satisfying the above equation is 
alled a weight ve
torfor the weight µ, and the set of all ve
tors satisfying (3.39) is 
alled the weight spa
ewith weight µ. The dimension of the weight spa
e is 
alled the multipli
ity of the weight.For any �nite-dimensional representation ρ of g, the weights of ρ and their multipli
ity areinvariant uinder the a
tion of the Weyl group.The generalization of (B) is the idea of dominant integral elements. An ordered pair

(m1, m2) with m1 and m2 being non-negative integers is 
alled a dominant integral ele-ment of sl(3,C). Just like the integersm o

ured as the highest eigenvalues of the irredu
iblerepresentations of sl(2,C), we will see that the highest weight of ea
h irredu
ible representa-tion of sl(3,C) is a dominant integral element and, 
onversely, that every dominant integralelement o

urs as the highest weight of some irredu
ible representation. More generally, fora general semi-simple Lie algebra, an element µ ∈ h is 
alled an integral element if 2 〈µ,α〉
〈α,α〉

isan integer for ea
h positive simple root α and dominant integral if it is non-negative. Ea
hweight is an integral element. The set of integral elements is invariant under the a
tion of theWeyl group. It is pre
isely these elements that are 
ontained in the 
losed fundamental Weyl
hamber. This is the generalization of (F) and (G) to general semi-simple Lie algebras.The signi�
an
e of the roots for the representation theory of semi-simple Lie algebraslies in the generalization of (E). The operators ρ(x) and ρ(y) of sl(2,C) raise and lower,respe
tively, the eigenvalues of ρ(h). Let α = (a1, a2) be a root of sl(3,C) and let Zα be a
orresponding root ve
tor. Let ρ be a representation of sl(3,C), and µ(m1, m2) a weight for81



Chapter 3. BKM Lie Algebras
ρ and v the 
orresponding weight ve
tor. Then,

ρ(h1)ρ(zα)v = (m1 + a1)ρ(Zα)v ,

ρ(h2)ρ(zα)v = (m2 + a2)ρ(Zα)v . (3.40)Thus, either ρ(Zα)v = 0 or ρ(Zα)v is a new weight ve
tor with weight
µ+ α = (m1 + a1, m2 + a2) . (3.41)For a general semi-simple Lie algebra, let v be a weight ve
tor with weight µ and suppose

xα is an element of gα. Then, for all h ∈ Fh we have
ρ(h)ρ(xα)v = (〈µ, h〉+ 〈α, h〉)ρ(xα)v . (3.42)The above equation says that ρ(xα)v is either zero or is a weight ve
tor with weight µ+ α.For the 
ase of sl(2,C) the weights were integers m and the notion of 
omparing twoweights was just the 
omparision of the integers, but for a general semi-simple Lie algebrathe weight is a 
olle
tion of the simultaneous eigenvalues of all the ρ(hi) and we need to
larify what it means to say a weight is higher than another. We will illustrate it for the
ase of sl(3,C). Given the two positive simple roots α1 and α2 (eq. (3.23)), and two weights

µ1 and µ2, we say that µ1 is higher than µ2 (denoted µ1 � µ2) if µ1 − µ2 
an be written inthe form
µ1 − µ2 = aα1 + bα2 , (3.43)with a ≥ 0 and b ≥ 0. Analogous to the largest eigenvalue in ea
h representation of sl(2,C),there exists a weight µ0 in ea
h representation of sl(3,C) su
h that µ0 � µ, for all weights

µ. This is 
alled the highest weight of ρ.Now we have enough ideas to put together the generalizations of (C), (F)-(I) to sl(3,C),and any general semi-simple Lie algebra, in the form of a theorem below. In the 
ase of
sl(2,C) ea
h irredu
ible representation ρ(h) is diagonalizable, and there is a largest eigen-value of ρ(h). The essen
e of (C), (F)-(I) is that any two irredu
ible representations of
sl(2,C) with the same largest eigenvalue are equivalent. The highest eigenvalue is alwaysa non-negative integer, and, 
onversely, for every non-negative integer m, there is an irre-du
ible representation with hightest eigenvalue m. Now we state the theorem of highestweight for sl(3,C) and generalize it to any �nite-dimensional semi-simple Lie algebra. 82



Chapter 3. BKM Lie AlgebrasTheorem 3.3.8 1. Every irredu
ible representation ρ of sl(3,C) is the dire
t sum ofits weight spa
es; that is, ρ(h1) and ρ(h2) are simultaneously diagonalizable in everyirredu
ible representation. More generally, in every �nite-dimensional representationirredu
ible representation (ρ, V ) is the dire
t sum of its weight spa
es.2. All the weights, µ, are integral elements.3. Every irredu
ible representation of sl(3,C) has a unique highest weight µ0, and twoequivalent irredu
ible representations have the same highest weight. And any two irre-du
ible reesentations of sl(3,C) with the same highest weight are equivalent. The sameis true for any general semi-simple Lie algebra.4. Two irredu
ible representations with the same highest weight are equivalent.5. If π is an irredu
ible representation of sl(3,C), then the highest weight µ0 of π is ofthe form
µ0 = (m1, m2)with m1 and m2 being non-negative integers. The suitable generalization is the state-ment that the highest weight of every irredu
ible representation is a dominant integralelement.6. If m1 and m2 are non-negative integers, then there exists an irredu
ible representa-tion ρ of sl(3,C) with highest weight µ0 = (m1, m2). For a general semi-simple Liealgebra, every dominant integral element o

urs as the highest weight of an irredu
iblerepresentation.The trivial representation is an irredu
ible representation with highest weight (0, 0). For

sl(2,C) an irredu
ible representation with highest weight m was of dimension (m+ 1). For
sl(3,C), the dimension of the irredu
ible representation with highest weight (m1, m2) is

1
2
(m1 + 1)(m2 + 1)(m1 +m2 + 2) .We will 
ome ba
k to the representation theory of �nite-dimensional Lie algebras brie�ytowards the end of the 
hapter when we dis
uss the denominator identity of Lie algebras. Fornow, we just re
apitulate what we have learnt about �nite-dimensional Lie algebras, beforewe move on to the topi
 of in�nite-dimensional Lie algebras. 83



Chapter 3. BKM Lie Algebras(a) Generalizing (A) we see that there exists a maximal abelian subalgebra, 
alled theCartan subalgebra, of g whi
h a
ts semi-simply on g and every irredu
ible representa-tion is given as the dire
t sum of weight spa
es with respe
t to the Cartan subalgebra.The eigenvalues are the roots and weights of the Lie algebra.(b) The multipli
ity of every root is one.(
) Generalizing (B), all the weights are integral elements.(d) Every irredu
ible representation of g has a unique highest weight whi
h is a dominantintegral element and two equivalent irredu
ible representations have the same highestweight. See point (C), (H), (I)(e) Every dominant integral element is the highest weight of an irredu
ible representations.See (G)(f) The set of roots 
an be divided into positive and negative roots with respe
t to a basisof positive simple roots. The 
hoi
e of simple roots is not unique, nor is their ordering.(g) The Lie algebra splits as a dire
t sum
g =

⊕

α∈L

gα =
⊕

α∈L−

gα
⊕

h
⊕

α∈L+

gα, (3.44)and all the root spa
es are one-dimensional.(h) There is a group of permutations of the set of positive simple roots, whi
h is generatedby re�e
tions with respe
t to the set of positive roots in the root spa
e, known as theWeyl group. The set of fundamental refel
tions generate the Weyl group.(i) The Weyl group is �nite-dimensional. It breaks up the root spa
e into 
hambers knownas the Weyl 
hambers.(j) There exists a ve
tor ρ 
alled the Weyl ve
tor whi
h always lies in the 
losed Weyl
hamber.(k) The set of positive simple roots 
apture all the information of the Lie algebra g. Theinner produ
t matrix 
onstru
ted from the inner produ
ts of the various positive simpleroots in the root spa
e is 
alled the Cartan matrix. It 
ontains all the information aboutthe Lie algebra g. 84



Chapter 3. BKM Lie Algebras(l) Another equivalent des
ription of the Lie algbra g is through its Dynkin diagram whi
h
ontains the same information as the Cartan matrix.(m) The semi-simple Lie algebra g 
an be des
ribed equivalently through its bilinear formor through its Chevalley-Serre relations.(n) There are four 
lasses of 
lassi
al root systems, namely, An (n ≥ 1), Bn (n ≥ 2), Cn (n ≥
3), and Dn (n ≥ 4) and �ve ex
eptional root systems, namely, G2, F4, E6, E7 and E8.Every irredu
ible root system is isomorphi
 pre
isely one root system from the abovelist.(o) Every simple Lie algebra is isomorphi
 pre
isely to one algebra from amongst sl(n +

1,C), n ≥ 1, so(2n + 1,C), n ≥ 2, sp(n,C), n ≥ 3, so(2n,C), n ≥ 4, and theex
eptional Lie algebras G2, F4, E6, E7 and E8.(p) There is a one-to-one 
orresponden
e between the 
lasses of simple Lie algebras androot systems.3.4 In�nite Dimensional Lie AlgebrasWe start with the theory of in�nite-dimensional Lie algebras now. One thing working for usis we know whi
h dire
tions to look in and what roughly to expe
t in pursuing them. Toexplore the stru
ture, we should start by trying to �nd a Cartan subalgebra, (or whateverthe generalization of that 
ould be in the in�nite-dimensional 
ase) and �nd simultaneouseigenve
tors and the 
orresponding eigenvalues of all its elements. This should give us theroot stru
ture, and root spa
e de
omposition of the Lie algebra. Then, we �nd a base ofpositive simple roots for the set of roots, and from this 
onstru
t the Cartan matrix and, if itexists, the Dynkin diagram 
orresponding to the Lie algebra. There will be the generalizationof the Weyl group, 
hara
ter and denominator formulae also as we will see.Before we pro
eed with the study of BKM Lie superalgebras, we should mention thatalthough BKM Lie superalgebras are generalizations of �nite-dimensional Lie algebras, thissimplisti
 way of studying them is useful only to over
ome the initial bridge in intuitionne
essary to appre
iate their abstra
t theory, but one should let go of the 
rut
h at theearliest to 
ompletely appre
iate the theory of BKM Lie superalgebras by itself. For onething, the various other bran
hes like vertex algebras, ve
tor valued modular forms, et
.85



Chapter 3. BKM Lie Algebrasplay a ri
h role in the theory of BKM Lie superalgebras whi
h gives it a lot of stru
ture thana mere extrapolation from �nite-dimensional Lie algebras would suggest.Sadly, the s
ope of the introdu
tion we will give, given the spa
e available to introdu
e it,will rely heavily on borrowing intuition from the �nite-dimensional 
ase to seek motivationand justi�
ation of the various 
onstru
ts in BKM Lie superalgebras. We will use examplesto bridge the gaps in intuition.It is interesting to go ba
k to the origin of �nite-dimensional Lie algebras and note thatthey were originally 
onstru
ted to study Lie groups, while for the 
ase of in�nite-dimensionalLie algebras it was the Lie algebras that were 
onstru
ted �rst, and for the 
ase of BKM Liesuperalgebras the 
orresponding group stru
ture is far from being fully understood. As thedegree of generalization in
reases, the group stru
ture be
omes less 
lear.Ordering them in an in
reasing sequen
e of 
omplexity, one obtains a�ne Lie algebrasas the simplest generalization of �nite-dimensional Lie algebras by 
entral extension of loopalgebras. The 
enter of a �nite-dimensional semi-simple Lie algebra is trivial. One 
anform a �rst generalization by 
onstru
ting what is known as the `loop algebra' of a �nite-dimensional semi-simple Lie algebra. To make it 
onsistent one needs to add a derivationto its 
enter and this algebra is the 
orresponding a�ne Lie algebra. A�ne Lie algebras area sub-
lass of the 
lass of in�nite-dimensional Lie algebras known as Ka
-Moody algebras.Bor
herds-Ka
-Moody Lie algebras were 
onstru
ted by Bor
herds as a generalization ofKa
-Moody Lie algebras and are the most general 
lass of Lie algebras.3.4.1 Loop Algebras and Central ExtensionsWe start our study of in�nite-dimensional Lie algebras with the simplest 
lass of in�nite-dimensional Lie algebras, namely a�ne Lie algebras. The general 
onstru
tion of a�neLie algebras is along the lines we will des
ribe for general BKM Lie superalgebras, but herewe study them in a way that illustrates the transition from �nite-dimensional Lie algebrasto their in�nite-dimensional 
outerparts. We will 
onstru
t them as loop algebras of �nite-dimensional Lie algebras.We will des
ribe here a �rst example of an in�nite-dimensional Lie algebra, that of a�neLie algebras as 
entral extensions of loop algebras. The advantage of this 
onstru
tion isthat it is realized entirely in terms of an underlying simple �nite-dimensional Lie algebra,known as its derived algebra.The 
enter of a �nite-dimensional semi-simple Lie algebra is trivial. The existen
e of86



Chapter 3. BKM Lie Algebrasa 
entral element, as we will see, is a feature that we will �nd in all in�nite-dimensionalLie algebras. Given a �nite-dimensional Lie algebra g, we 
an try and 
onstru
t an (l-dimensional) 
entral extension to it by simply adding l 
entral generators, ki, to the algebraand imposing
[tα, ki] = 0 for i = 1, . . . , l, α = 1, . . . , r . (3.45)This will modify the bra
kets between the original generators to in
lude the 
entral generatorsas follows

[tα, tβ] = fαβγ t
γ + fαβi k

i, (3.46)where fαβγ are the stru
ture 
onstans of g. The new stru
ture 
onstants fαβi have to satisfythe Ja
obi identity and thus 
annot be 
ompletly arbitrary. The number of solutions tothe above equation subje
t to the Ja
obi identity 
onstraint is the number of independent
entral extensions one 
an write down for g. Finding the ki from the above equation shows,for �nite-dimensional Lie algebras, that the trivial solution fαβi = 0 is the only possiblesolution. Hen
e, the 
enter of a �nite-dimensional semi-simple Lie algebra is trivial. Thus,to 
entrally extend the Lie algebra g, we need to alter its stru
ture to allow for the extension.This leads to the idea of the loop algebra of a �nite-dimensional Lie algebra.Let g be a simple Lie algebra, and 
onsider the spa
e of analyti
 maps from the 
ir
le
S1 to g. As before, let {tα|α = 1, . . . , r} be a basis of g, and S1 be the unit 
ir
le in the
omplex plane with 
oordinate z. Then a basis for the above ve
tor spa
e of analyti
 mapsfrom S1 to g will be of the form {tαn|α = 1, . . . , r; n ∈ Z}, where tαn = tα ⊗ zn. This spa
einherits a natural bra
ket operation from the Lie algebra g as

[tαm, t
β
n] ≡ [tα ⊗ zm, tβ ⊗ zn] = [tα, tβ]⊗ (zm · zn), (3.47)and thus,
[tαm, t

β
n] = fαβγ t

γ ⊗ zm+n = fαβγ t
γ
m+n, (3.48)where fαβγ are stru
ture 
onstants of g. With the above bra
ket this spa
e be
omes a Liealgebra 
alled the loop algebra , denoted gloop. Note that the subalgebra of gloop generatedby the generators tα0 is just the subalgebra g. Note that, the algebra gloop has an in�nitenumber of generators.Now, we 
an look for a 
entral extension to gloop in the same way as we did for g. We
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Chapter 3. BKM Lie Algebrastry the most general ansatz for the bra
ket of the generators as
[tαm, t

β
n] = fαβγ t

γ ⊗ zm+n + (fαβi )mnk
i . (3.49)We impose the 
onstraints 
oming from the Ja
obi identity and the fa
t that the algebra gis a subalgebra of gloop, and hen
e the stru
ture 
onstants (fαβi )00 and (fαβi )m0 
an be putto zero. Now, for a �xed value of n, the generators tαn transform just like the generators tα(that is, in the adjoint) and hen
e the stru
ture 
onstants should from an invariant tensorof the adjoint representation of g with respe
t to the indi
es α, β. It turns out there is aunique su
h tensor for g, and that is the Killing form of g. Thus, the 
entral extension isonly one-dimensional, and is proportional to the Killing form B of g. For 
onvenien
e, we
an 
hoose a basis su
h that the Killing form in that basis is equal to δαβ . This gives thefollowing bra
kets for gloop

[tαm, t
β
n] = fαβγ t

γ ⊗ zm+n − mkδαβδm+n,0,

[k, tαn] = 0 . (3.50)The in�nite-dimensional loop algebra, is usually written in the following way. Let L =

C[z, z−1] be the algebra of Laurent polynomials in z. Then the loop algebra is then given by
gloop = L ⊗C g = C[z, z−1]⊗C g. (3.51)We need to add one more generator, d, to this 
entrally extended in�nite-dimensional algebra,known as the derivation whi
h has the following bra
kets with the other generators [65, 66℄

[d, tαm] = −[tα, d] = mtαm; [d, k] = 0 . (3.52)The above 
onstru
tion is then̂
g = C[z, z−1]⊗C g.⊕ Ck ⊕ Cd . (3.53)The generators tα0 have vanishing bra
kets with the derivation, and the subalgebra generatedby them is just the Lie algebra g known as the horizontal subalgebra of the a�ne Liealgebra ĝ.

88



Chapter 3. BKM Lie Algebras3.4.2 The Root SystemWe �rst determine the maximal abelian subalgebra. This will 
ertainly 
ontain the Cartansubalgebra of the horizontal subalgebra g, generated by hi ∈ H i = 1, . . . , r. It will also
ontain the 
entral element k and d. Thus, the Cartan subalgebra is
Ĥ = span{k, d, hi0| i = 1, . . . , r} (3.54)The roots with respe
t to Ĥ 
an be found by observing the following relations

[hi0, e
j
n] = (hi0, h

0
j)e

j
n, [k, ejn] = 0, [d, ejn] = nejn (3.55)and

[hi0, h
j
n] = [k, hjn] = 0, [d, hjn] = nhjn . (3.56)Writing the roots α̂ suggestively as a triplet of eigenvalues under the generators (hi0, k, d),the set of roots is

α̂in = (αi, 0, n), α ∈ L(g), n ∈ Z, (3.57)and
α̂0
n = (0, 0, n), n ∈ Z\{0}, (3.58)
orresponding to the generators ein and hjn, n 6= 0, respe
tively. The root αi is a root of thehorizontal subalgebra g. Ea
h of the roots α̂in of (3.57) has multipli
ity one, while the root

α̂0
n has multipli
ity r, sin
e it does not depend on the label j of the hj0 generators and is aneigenvalue of ea
h hj0 with the eigenvalue 0 and there are r su
h generators.Here we 
an understand the ne
essity to in
lude the generator d in the Cartan subalgebra.Without the generator d to distinguish the level n of the root, all the roots are in�nitelydegenerate. The generator d thus `grades' the algebra ĝ a

ording to the level n and only thenare the roots α̂in of (3.57) are non-degenerate. We 
annot, however, remove the degenera
yof the root α̂0

n in (3.58).The set of roots of ĝ is denoted by L̂, and the root system of the horizontal subalgebra
g is just the subset α̂i0 = (αi, 0, 0), denoted L as before.So far the root systems of g and ĝ are very mu
h similar and 
onstru
ted along the samelines. The roots are just the 
olle
tion of simultaneous eigenvalues of the elements of theCartan subalgebra. However, the Cartan subalgebra in this 
ase is 
entrally extended toin
lude two more generators and the roots also 
ontain the eigenvalues of these generators.89



Chapter 3. BKM Lie AlgebrasAll the simple roots have multipli
ity one as before. There is, however, one major di�eren
e
oming from the in�nite-dimensional nature of the algebra. It is the appearan
e of a root
α̂0
n with multipli
ity r.Like with the �nite-dimensional semi-simple 
ase, we �nd a set of simple roots, andde
ompose the set of roots into positive and negative roots, with respe
t to the set of positivesimple roots. We identify the set of positive simple roots as

α̂i0 = (αi, 0, 0) = αi for i = 1, . . . , r, (3.59)and
α̂0

1 = (−µ, 0, i) = δ − µ . (3.60)Here µ is the highest root of ĝ and δ = (0, 0, 1). With this, the degenerate roots (3.58) arejust α̂0
n = n·δ, n 6= 0. The root α̂0

1 is 
alled an imaginary root. It is not a simple root in thesense that it is de
omposable. Later we will see, in the 
ontext of BKM Lie superalgebrasimaginary roots that are also simple. However, we in
lude α̂0
n in our basis of simple roots.With this identi�
ation of positive simple roots, the set of positive roots is

L̂+ = {α̂ = (α, 0, n) ∈ L̂| n > 0 or (n = 0, α ∈ L)}, (3.61)and the set of negative roots is L̂− = L̂\L̂+. Denoting the subalgebras generated by the pos-itive and negative roots by ĝ+ and ĝ− respe
tively, we again have a triangular de
ompositionof the Lie algebra ĝ as
ĝ = ĝ+ ⊕ Ĥ ⊕ ĝ− . (3.62)3.4.3 Weyl GroupIn analogy with simple Lie algebras, one de�nes the Weyl group of re�e
tions of the weightlatti
e of an a�ne Lie algebra. First, we de�ne a re�e
tion as follows.

wα · β = β − 2
〈α, β〉
〈α, α〉α . (3.63)Note that all the α above are the real roots, be
ause the denominator of the RHS wouldnot make sense for an imaginary root. Be
ause of the above form of the re�e
tion, manyproperties of the a�ne Weyl group are analogous to those of the Weyl group of simpleLie algebras. There are, however, also new features whi
h are relatied to the existen
e of90



Chapter 3. BKM Lie Algebrasimaginary roots. In parti
ular, note that 〈α, δ〉 = 0 for any real root α, and hen
e one has
wα · β = δ, (3.64)and hen
e any Weyl re�e
tion a
ts as the identity on the set L̂im = {nδ| n 6= 0} of imaginaryroots,

wα| L̂im = id
bLim

. (3.65)Sin
e any re�e
tion is an automorphism of the root latti
e, this also means that the Weylgroup maps the set L̂r of real roots onto itself.
Ŵ is the semidire
t produ
t of the Weyl group of g and the group of translations in the
oroot latti
e.

Ŵ =W ⋉ T . (3.66)The roots, however, now have additional eigenvalues in them and this would show up inthe various 
omputations of the Weyl group, and we will see that now. Let α̂in = (αi, 0, n)and β̂im = (βi, 0, m) be two real roots. Then, the re�e
tion w
bαi

n
· β̂im is given by

w
bαi

n
· β̂jm = β̂jm −

2

〈α̂in, α̂in〉
[〈αi, βj〉+ 0 ·m+ n · 0]α̂in . (3.67)The re�e
tion 
an be expressed, again, as a triplet like the roots α̂in as (here we 
onsider ageneral weight µ̂jm = (µj, k,m), and denote the quantity 2

〈bαi
n,bα

i
n〉

by αi∨).
w

bαi
n
· µ̂jm =

(
wαi · (µj + nkαi∨), k,m+

1

2k
[〈µj, µj〉 − 〈µj + nkαi∨, µj + nkαi∨〉]

)
. (3.68)This is the expression for the re�e
tion of a weight µ̂jm with respe
t to a real root α̂in. We
an get a very intuitive pi
ture of the stru
ture of the Weyl group if we 
arry out one more
omputation that allows us to re
ast the above re�e
tion in a very suggestive form. De�ningfor any root βj ∈ L, the translation T iα as

T iα : µ̂jm = (µj, k,m) 7→
(
µj + kαi, k,m+

1

2k
[〈µj, µj〉 − 〈µj + kαi, µj + kαi〉]

)
. (3.69)Using this we 
an write (3.68) as

w
bαi

n
= wiα ◦ (Tαi∨)n, (3.70)91



Chapter 3. BKM Lie Algebraswhere wiα is the ordinary Weyl re�e
tion whi
h a
ts on the �rst 
omponent of the triplet ofthe root µim and as the identity on the last two 
omponents. Thus, we see that any Weylre�e
tion of the a�ne Weyl group 
an be written of the form
w

bαi
n

= wiα ◦ T jβ (3.71)for some βj. Also Twi
α

= w ◦ Twi
α
◦w−1 for all w ∈ Ŵ . The abelian group of translations is anormal subgroup of Ŵ with W ∩ T = {id}. Thus, the a�ne Weyl group Ŵ is a semidire
tprodu
t of the Weyl group of the horizontal subalgebra and a group of translations T ,

Ŵ =W ⋉ T . (3.72)An important property of the translations group is that it is generated by the highest rootappearing in the de�nition of the zero root in (3.58)as
w

bα0
1
· µ = (wθ · µi + kθ∨, k,m+ 〈µi, θ∨〉 − k∨) . (3.73)As a 
onsequen
e, all possible translations are obtained by re�e
tion with respe
t to the root

α0
1, and 
ombinations of this re�e
tion with elements ofW. Thus, we see that after re
astingthe a�ne Weyl re�e
tion in the above form the Weyl group of the horizontal subalgebragenerates the re�e
tions, while the imaginary root generates translations. Thus, the a�neWeyl group is generated by

wi ≡ w
bαi , i = 1, . . . , r . (3.74)The a�ne Weyl group is in�nite-dimensional as against the �nite-dimensional Weyl groupWwhi
h is �nite-dimensional. The a�ne Weyl group also permutes transitively and freely thea�ne Weyl 
hambers whi
h are those open subsets of the weight spa
e whi
h are obtainedby removing all the hyperplanes whi
h are left invariant by some Weyl re�e
tion. Similarly,we also de�ne the dominant a�ne Weyl 
hamber

P+
k

{ r∑

i=0

µiµi| µi ≥ 0
}
. (3.75)The algebra also admits a Weyl vetor whi
h is de�ned as follows:
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Chapter 3. BKM Lie AlgebrasDe�nition 3.4.1 A Weyl ve
tor is de�ned to be a ve
tor ρ satisfying
(ρ, αi) = 1

2
(αi, αi), (3.76)for all real simple roots αi. We will see that the above de�nition also extends to the moregeneral in�nite-dimensional Lie algebras.3.4.4 Classi�
ation of A�ne Lie AlgebrasJust like for the 
ase of �nite-dimensional semi-simple Lie algebras, one 
an also 
lassify thevarious 
lasses of a�ne Lie algebras via their root systems and equivalently through theirDynkin diagrams[67, 68℄. There are four in�nite 
lasses of root systems 
alled Ar, Br, Cr and

Dr. In addition, there are �ve ex
eptional a�ne Lie algebras 
alled E6, E7, E8, F4 and G2.Below, we list the Dynkin diagrams for these 
lasses of a�ne Lie algebras.
E8

F4

G2

E7

E6

C n

D n

Bn

A n

A1

Figure 3.2: The Dynkin diagrams for the a�ne Lie algebrasThis 
on
ludes our dis
ussion of a�ne Lie algebras. We will 
ome ba
k to them laterwhen we dis
uss the Weyl denominator formula for Lie algebras. We will now give a briefintrodu
tion to the theory of super-algebras before going to dis
uss BKM Lie superalgebras.
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Chapter 3. BKM Lie Algebras3.5 A Brief Introdu
tion to BKM Lie superalgebras3.5.1 SuperalgebrasLet us start with the notion of a super ve
tor spa
e. A super ve
tor spa
e is a ve
torspa
e over a �eld that is Z2-graded, i.e. has the de
omposition
V = V0 ⊕ V1, 0, 1 ∈ Z2 = Z/2Z , (3.77)and in general an M-graded ve
tor spa
e has the de
omposition

V =
⊕

α∈M

Vα . (3.78)An element of Vα is said to be homogeneous of degree α. For a ve
tor spa
e V , itstensor algebra T (V ), symmetri
 algebra S(V ), and the exterior algebra ∧V are examplesof graded ve
tor spa
es. A superalgebra is a Z2-graded algebra, A = A0 ⊕ A1, for whi
h
AαAβ ⊆ Aα+β. The grading 
an be more general as above for ve
tor spa
es, but we willmainly be 
onsidering Z2-gradings.A sub-algebra of a superalgebra is also a superalgebra, and a sub-super algebra I of g is
alled an ideal if [I, g] ⊆ I. A Lie superalgebra is de�ned similar to a regular Lie algebra,but now one has to keep in mind the 
onsisten
y imposed by the grading.De�nition 3.5.1 A Lie superalgebra is a Z2 graded algebra g = g0 ⊕ g1 with a Lie bra
ketsatisfying

[x, y] = −(−1)deg(x)deg(y)[y, x] (3.79)and
[x[y, z]] = [[x, y]z] + (−1)d(x)d(y)[[x, z]y] , (3.80)where for any homogeneous element g ∈ gn, n = 0, 1, deg(g) = n. The subspa
es g0 and g1are 
alled the even and odd parts of g.A Lie superalgebra is not a Lie algebra the way one understands semi-simple Lie algebras.

g0 is an ordinary Lie algebra, while g1 is a g0 module. Consider the asso
iative algebra
94



Chapter 3. BKM Lie Algebrasendomorphisms gl(V ) of the superve
tor spa
e V . It has a natural Z2 grading as follows
gl(V )0 = {f ∈ gl(V ) : f(Vn) ⊆ Vn, n ∈ Z2} ,

gl(V )1 = {f ∈ gl(V ) : f(Vn) ⊆ Vn+1, n ∈ Z2} . (3.81)The Lie bra
ket is de�ned as follows
[x, y] =

{
xy − yx, if x or y ∈ gl(V )0 ,

xyyx, if x, y ∈ gl(V )1 .
(3.82)A good referen
e for Lie superalgebras is [69, 70℄3.5.2 BKM Lie superalgebrasDue to 
onstraints of spa
e and s
ope, our introdu
tion of BKM Lie superalgebras willbe top-down (mostly following [55℄). The milestone approa
h by whi
h we studied �nite-dimensional Lie algebras is not possible here and the only way one 
an a
tually understandor apper
iate the subje
t is by undertaking a detailed study of it. Short of that, we use theideas already 
onstru
ted in the 
ontext of �nite-dimensional semi-simple Lie algebras anda�ne Lie algebras to motivate and make the results in this se
tion look plausible.Our main interest in BKM Lie superalgebras from the point of view of the problem of
ounting dyons is in the Weyl-Ka
-Bor
herds (WKB) denominator formula. Our introdu
-tion of BKM Lie superalgebras is given with the very narrow aim of understanding the WKBdenominator formula. We will learn only so mu
h as will allow us to state and understandthe denominator identity. For more on the subje
t the reader is refered to the literature onthe subje
t.In what follows we will use the following notation. We will use G to denote a BKMLie superalgebra. We will use the set I to index the set of generators of the BKM Liesuperalgebra. It will either be the set {1, . . . , n} or a 
ountably in�nite set in whi
h 
ase itis identi�ed with N. We will use the set S ⊆ I to index the odd generators. We 
ontinueusing ei, hi, and fi for the generators of the Lie algebra. The Cartan subalgebra of G will bedenoted H.We will �rst de�ne BKM Lie superalgebras through their Chevalley-Serre relations. Theadvantage of this is that it gives us an understanding of the stru
ture of the BKM Lie su-peralgebra in terms of the generators right at the very beginning. We will pursue alternate95



Chapter 3. BKM Lie Algebras
hara
terizations to augment this point of view later on. We have already seen the develop-ment and de�nition of the Chevalley-Serre relations for the �nite-dimensional 
ase. The keyto the de�nition was the root spa
e de
omposition of the Lie algebras made possible by thesemi-simple a
tion3 of the Cartan subalgebra on the Lie algebra. To be able to 
arry outthe same pro
edure for in�nite-dimensional Lie algebras, we �rst need to de�ne the abelianLie algebra that will be the Cartan subalgebra whi
h we do now.Let HR be a real ve
tor spa
e with a non-degenerate symmetri
 real valued bilinear form
(., .) and elements hi, i ∈ I. su
h that(i) (hi, hj) ≤ 0 if i 6= j ,(ii) If (hi, hi) > 0, then 2(hi,hj)

(hi,hi)
∈ Z for all j ∈ I ,(iii) If (hi, hi) > 0 and ı ∈ S, then (hi,hj)

(hi,hi)
∈ Z for all j ∈ I.Let H = HR ⊗R C. The above de�nition seems too ad ho
, unmotivated and un
omfortableto a

ept, so let us try to 
onvin
e ourselves that it indeed has the properties we have 
ometo expe
t a Cartan sub-algebra to have from our study of �nite-dimensional semi-simple Liealgebras and a�ne Lie algebras. Comparing (i) above with the de�nition 3.3.3 we see thatwith the addition of the requirement that inner produ
t 
an be less than 0, (i) essentially isa generalization of 3.3.3. Comparing (ii) and (iii) above with the 
onditions on the Cartanmatrix in se
tion 3.3.6 and eq. (3.34) to see where the motivations and generalizations 
omefrom. Having de�ned the Cartan subalgebra, we 
an now de�ne a BKM Lie superalgebra viaits a
tion on it. These will be the Chevalley-Serre relations for the BKM Lie superalgebra.Before looking at the Chevalley-Serre relations for the BKM Lie superalgebra, re
all therelations (3.9) and (3.35). With those in mind we now de�ne the following:De�nition 3.5.2 A Bor
herds-Ka
-Moody Lie superalgebra G = (A,H, S) asso
iated to theCartan matrix A, with the abelian Lie algebra H as its Cartan subalgebra, is the Lie super-algebra generated by hi ∈ H and elements ei, fi with i ∈ I satisfying the following de�ningrelations:(i) [ei, fj ] = δijhi(ii) [h, ei] = (h, hi)ei, [h, fj] = −(h, hj)fj,3A linear operator on a �nite-dimensional ve
tor spa
e is said to a
t semi-simply if the 
omplement ofevery invariant subspa
e of the operator is also an invariant subspa
e. An important result for su
h a linearoperators on a �nite-dimensional ve
tor spa
e over an algebrai
ally 
losed �eld is that it is diagonalizable. 96



Chapter 3. BKM Lie Algebras(iii) deg ei = 0 = deg fi if i /∈ S, deg ei = 1 = deg fi if i ∈ S,(iv) (ad ei)1−
2aij
aii ej = (ad fi)1−

2aij
aii fj = 0 if aii > 0 and i 6= j .(v) (ad ei)1−

aij
aii ej = (ad fi)1−

aij
aii fj = 0 if i ∈ S, aii > 0 and i 6= j .(vi) [ei, ej ] = 0 = [fi, fj ] if aij = 0.Let us understand the above de�nition. Looking at (3.35) we 
an understand the originof the relations (i), (ii), (iv) and (v) above. The 
ondition (iii) is expe
ted of a super Liealgebra where we will need to distinguish between the even and odd elements of the Liealgebra (see also (3.81)). As expe
ted, when S = ∅, we have a Lie algebra and 
ondition

(iii) is redundant. The 
enter of the BKM Lie superalgebra is 
ontained in the Cartansubalgabra H. Re
all that �nite-dimensional semi-simple Lie algebras have a trivial 
enter,while in 
onstru
ting a�ne Lie algebras we had to add a 
entral extension and a derivationto the 
enter to make the algebra 
onsistent and hen
e the 
enter was not trivial. BKMLie superalgebras also have a non-trivial 
enter. The Cartan subalgebra H a
ts semisimplyon the BKM Lie superalgebra G via the adjoint a
tions (whi
h was the whole point of
onstru
ting it).The matrix A, we re
ognize, is the generalized symmetri
 Cartan matrix of the Liesuperalgebra G. The sub
lass of �nite-dimensional Lie algebras are those whi
h have S = ∅,and aii > 0 for all i ∈ I. The Cartan matrix is positive-de�nite, i.e. det(A) > 0 for the�nite-dimensional semi-simple Lie algebras. If aii > 0 for all ı ∈ I, but the Cartan matrix ispositive semi-de�nite, then it is a Ka
 Moody Lie superalgebra. For a BKM Lie superalgebrathe Cartan matrix is not restri
ted to be positive or positive semi-de�nite.The span of ea
h triplet of the form {ei, hi, fi}, we saw in the 
ase of �nite-dimensionalsemi-simple Lie algebras, was isomorphi
 to an sl(2,C) algebra. Ea
h element hi of the Car-tan subalgebra, and hen
e ea
h node in the Dynkin diagram, and ea
h diagonal entry of theCartan matrix 
orrespond to one su
h sub-algebra. We will now give a similar de
ompositionfor the 
ase of BKM Lie superalgebras.Proposition 1 (i) If i ∈ I S, and aii 6= 0, then the Lie superalgebra Si = Cfi⊕Chi⊕Ceiof the BKM Lie superalgebra G is isomorphi
 to sl(2,C).(ii) If i ∈ S, then the Lie sub-superalgebra Si = C[fi, fi] ⊕ Cfi ⊕ Chi ⊕ C[ei, ei] ⊕ Cei isisomorphi
 to sl(0, 1). 97



Chapter 3. BKM Lie Algebras(iii) If aii = 0, then the Lie sub-(super) algebra Si = Cfi ⊕ Chi ⊕ Cei is isomorphi
 to thethree-dimensional Heisenberg algebra (resp. superalgebra) if i ∈ I S(resp i ∈ SHen
e, the BKM Lie superalgebra is generated, like the �nite-dimensional Lie algebras westudied in the previous se
tion, by 
opies of the 3-dimensional Lie algebra sl(2,C), for ea
heven simple root, and of the 5-dimensional Lie superalgebra sl(0, 1), for ea
h odd simpleroot. As before, the adjoint a
tion of ea
h of these sl(2,C) and sl(0, 1) on G de
omposesinto �nite-dimensional represenations. Like before, as a ve
tor spa
e, G breaks up into thedire
t sum G = N+ ⊕ H ⊕ N−, where N+/N− are the sub-superalgebras generated by theelements ei/fi respe
tively.3.5.3 The Root systemThe generalized Cartan subalgebra H a
ts semi-simply on the BKM Lie superalgebra G viathe adjoint a
tion. This will give us an eigenspa
e de
omposition of G. We used this idea tounderstand the stru
ture of the �nite-dimensional semi-simple Lie algebras. To understandthe stru
ture of G we will look for the eigenvalues and eigenspa
es of H. This will give usthe root spa
e de
omposition of G, and its root system.De�nition 3.5.3 The formal root latti
e Q is de�ned to be the free abelian group generatedby the elements αi, i ∈ I with a real valued bilinear form given by (αi, αj) = aij. Theelements αi, i ∈ I are 
alled the simple roots.No surprises there. The set of simple roots are de�ned in a manner very similar to the �nite-dimensional Lie algebras. Only, though not apparent, in this 
ase the elements aij ∈ Z, unlikein the semi-simple 
ase where they were always equal to 2. There is one more importantaspe
t whi
h makes the root system of a BKM Lie superalgebra very di�erent from that ofthe other Lie algebras. This is the notion of imaginary simple roots[71℄. Let us understandthis idea 
arefully.For the 
ase of �nite-dimensional Lie algebrs, the set of positive roots was �nite and allthe roots were real (positive de�nite norm wrt. an inner produ
t de�ned in the root spa
e).For in�nite-dimensional Lie algebras, we saw that there appear a new kind of roots knownas imaginary roots. However, the simple roots were still all real. For the 
ase of BKM Liesuperalgebras Bor
herds found that one needs to have imaginary simple roots. This makesthe root system of a BKM Lie superalgebra markedly di�erent from the other 
lass of Liealgebras, �nite or in�nite. We will see how this property alters the denominator identity ofBKM Lie superalgebras. 98



Chapter 3. BKM Lie Algebras
Q, in the general 
ase, may not be an integral latti
e, sin
e in general the indexing set

I is 
ountably in�nite in whi
h 
ase the rank of Q is not �nite. Now we 
ome to the rootspa
es de�ned by the above root ve
tors.De�nition 3.5.4 For α =
∑j

k=1 _ik ∈ Q, the root spa
e Gα (resp. G−α) is the subspa
e of
G generated by the elements [eij [. . . [ei2 , ei1]]] (resp. [fij [. . . [fi2 , fi1]]]). A non-zero element αof the formal root latti
e Q is said to be a root of G if the subspa
e Gα is non-trivial. Thedimension of the root spa
e Gα is 
alled the multipli
ity of the root α.To understand this, 
ompare with the last relation in (3.35). All the root spa
es for i ∈ Iare given as Gαi

= Cei and G−αi
= Cfi. In parti
ular, and as before, the root spa
es Gαi

and
G−αi

for the simple roots are one-dimensional. Also, as before all the roots α ∈ Q 
an beexpressed as a sum of simple roots. The root spa
e Gα is either 
ontained in the even part
G0 or the odd part G1 of G. There is also the 
on
ept of a positive and negative root.De�nition 3.5.5 1. A root = a is said to be a postive (resp. negative) if α (resp. −α)is a sum of simple roots.2. A root α is said to be even (resp. odd) if Gα ≤ G0 (resp. G1). We then write d(α) = 0(resp. d(α) = 1).3. The height of a root α =

∑
ki
αi is de�ned to be ∑ ki and is written ht(α).4. The support of α is the set {i ∈ I : ki 6= 0} and is written supp(α).5. A base of the set of roots L is a linearly independent subset Π su
h that for any α ∈

L, α =
∑

β∈Π kββ, where for all β ∈ Π, either all the s
alars kβ ∈ Z+ or all kβ ∈ Z−.We re
ognize the above statements in the 
ontext of �nite-dimensional semi-simple Lie al-gebras, but keeping in mind that now we also have imaginary simple roots in the algebra.For any root α ∈ L., mult(α) = mult(−α), and a root α is positive if and only if the root
−α is negative. This gives us a de
omposition of the set of roots into positive and negativeones. The set of roots L de
omposes into L = L+ ∪ L−. As before, this allows us to realizethe Cartan de
ompose on the BKM Lie superalgebra G as a dire
t sum of root spa
es as

G = (⊕α∈L+)Gα ⊕H⊕ (⊕α∈L−Gα) . (3.83)Let α ∈ L and hα ∈ H be su
h that for all x ∈ Gα and h ∈ Mh, [h, x] = (hα, h)x. Then, forall y ∈ G−α, [x, y] = (x, y)hα. 99



Chapter 3. BKM Lie AlgebrasBefore we dis
uss the WKB denominator formula for BKM Lie superalgebras we will, forthe sake of 
ompleteness give another 
hara
terization of BKM Lie superalgebras given byBor
herds. It is usually very hard to apply the De�nition 3.5.2 in terms of the generators andrelations to a given Lie algebra to �nd whether it is a BKM Lie superalgebra or not. Hen
e itis useful to have di�erent 
hara
terizations of BKM Lie superalgebras. The de�nition belowis mainly presented for 
ompleteness of our dis
ussion of BKM Lie superalgebras and theneed to 
onstru
t su
h 
hara
terizations may not immediately appear natural. However,systemati
ally following the development of BKM Lie superalgebras will make the readerappre
iate the need for su
h a 
hara
terization. It would also be in
omplete, however briefa review one 
onstru
ts, to omit some of the results that helped shape the study of BKMLie superalgebras. Below we give a 
hara
terization of BKM Lie superalgebras.For a BKM Lie superalgebra the Cartan subalgebra H is self-
entralizing. This propertyshould not appear very surprising from our 
onstru
tion of the Cartan subalgebra for the�nite-dimensional semi-simple Lie algebras. An additional property for H is the existen
e ofa regular element. This is an element h in H su
h that the 
entralizer4 of h in G is H. i.e.
CG(h) = H . The existen
e of a regular element 
an be used to obtain a bound on the normsof the roots of G. Now, we de�ne a BKM Lie superalgebra in terms of the non-degeneratesymmetri
 bilinear form as follows[72, 73℄:De�nition 3.5.6 Any Lie superalgebra G satisfying the following 
onditions is a BKM Liesuperalgebra.1. G has a self 
entralizing even subalgebra H with the property that G is the dire
t sumof eigenspa
es of H, and all the eigenspa
es are �nite-dimensional.2. There is a non-degenerate invariant supersymmetri
 bilinear form (., .) de�ned on G3. Ther is an element h ∈ Mh su
h that CG(h) = H. If there are only �nitely manyindi
es i ∈ I su
h that aii > 0, then the norms of the roots of G are bounded fromabove. For a given r ∈ R, there exist only �nitely many roots α of G with |α(h)|< r.If α(h) > 0 (resp. α(h) < 0), α is 
alled a positive (resp. negative) root.4. Let α and β be both positive or both negative roots of non-positive norm. Then (α, β) ≤

0. Moreover, if (α, β) = 0 and if a ∈ Hα and [x,Gβ] = 0.4The 
entralizer of an element a of a group G, denoted CG(a) is the set of elements of G whi
h 
ommutewith a. CG(a) = {x ∈ G| xa = ax} 100



Chapter 3. BKM Lie AlgebrasThis 
ompletes our dis
ussion on the introdu
tion to BKM Lie superalgebras. We stillhave one important idea to dis
uss, though. We will now dis
uss the Weyl-Ka
-Bor
herdsdenominator formula for BKM Lie superalgebras. Considering the importan
e of this idea tothis thesis, we have saved the dis
ussion on the denominator formula till after we have all theideas required to 
onstru
t it. The denominator identity o

urs in the representation theoryof Lie algebras as the spe
ial 
ase of the Weyl 
hara
ter formula. We start with a dis
ussionon the 
hara
ter theory of Lie algebras to motivate the 
hara
ter and denominator formulas.3.6 Denominator Identities3.6.1 Chara
ters Of Irredu
ible RepresentationsWe start with the �nite-dimensional semi-simple Lie algebras and then graduate to thein�nite dimensional ones to give the reader a better understanding of the various aspe
ts ofthe denominator identity and how they get modi�ed as one 
onsiders the more non-trivial
lass of Lie algebras. We go ba
k to the representations of sl(2,C) and sl(3,C) in thatwe studied earler to study the 
on
ept 
hara
ters of representations. One of the o�shootsof this is the denominator identity, whi
h will be very 
ru
ial to our problem of 
ountingBPS states in string theory. The motivation for 
hara
ter theory is as follows. Given tworepresentations, V and V ′ (that is, ρ : g → gl(V ) and ρ′ : g → gl(V ′)) of a Lie algebra g,we say that V is isomorphi
 or equivalent to V ′, if there is an isomorphism of ve
tor spa
es
T : V → V ′ whi
h is 
ompatible with the operation of g :

ρ′gT (v) = T (ρg(v)), (3.84)for all v ∈ V and all g ∈ g.A given representation usually has a 
ompli
ated des
ription in terms of matri
es, andit is not always apparently obvious if two given representations are isomorphi
 to ea
h otheror not. It would be useful to have a way of determining su
h relationships between repre-sentations without having to go into the details of the representations. Suppose we 
ould
onstru
t a quantity, say a fun
tion, that 
aptures some intrinsi
 quality of the represen-tation and is su�
ient to determine whether or not two representations are isomorphi
 toea
h other just by 
omparing the value of the fun
tion on the given representation. Speakingmathemati
ally, we need a 
lass fun
tion (A fun
tion that is invariant over a 
onjuga
y 
lass,101



Chapter 3. BKM Lie Algebraswhi
h in our 
ase, are the isomorphism 
lasses of irredu
ible representations) that 
hara
-terizes isomorphi
 representations. This leads to the idea of the 
hara
ter of an irredu
iblerepresentation of a semi-simple Lie algebra g whi
h we study now.De�nition 3.6.1 The 
hara
ter χµ of a �nite-dimensional irredu
ible representation, withhighest weight µ, is de�ned as the map from h→ C given by
χµ(x) : h 7→ χµ(h) = Tr exp(ρ(x)) . (3.85)The 
hara
ter of a �nite-dimensional representation determines the represenation up toequivalen
e. The fun
tion depends only on the equivalen
e 
lass of ρ and satis�es

χµ(gxg
−1) = χµ (3.86)Here, we have de�ned the 
hara
ter to be a map from h to C. We 
ould also 
onsider weights,

µ, in pla
e of h ∈ h as arguments of χµ. From eq (3.39) we see that ρ(h) · vµ = 〈µ, h〉vµ forall weight ve
tors vµ ∈ V and we 
an rewrite the 
hara
ter χµ for a weight µ as
χµ(h) =

∑

µ

mult(µ) exp(〈µ, h〉), (3.87)where the sum is over the set of all weights in V .The operator ρ(0) is a dV × dV matrix with all entries equal to zero, where dV is thedimension of the representation V . The 
hara
ter χµ(0) evaluated on the zero weight givesthe dimension on the representation
χµ(0) = dV .The 
hara
ter for the dire
t sum of two representations is equal to the sum of the 
hara
tersof the 
onstituent representations. Similarly, the 
hara
ter of a quotient of representationsis obtained by subtra
ting the 
hara
ter of the submodule whi
h is quotiented out from the
hara
ter of the original representation.We 
an use the a
tion of the Weyl group on the set of weights to express the 
hara
ter ofa highest weight module (representation) of g. It is 
alled the Weyl 
hara
ter formula .Let V be an irredu
ible �nite-dimensional representation of the 
omplex semi-simple Lie

102



Chapter 3. BKM Lie Algebrasalgebra g with highest weight µ. Then
χµ(h) =

∑
w∈W(−1)l(w)exp[〈w(µ+ ρ), h〉]∑
w∈W(−1)l(w)exp[〈w(ρ), h〉] , (3.88)where ρ is the Weyl ve
tor as de�ned in (3.29) or (3.30), and the sum is over the full Weylgroup. Thus, one 
an 
ompute the 
hara
ter of an irredu
ible �nite-dimensional representa-tion from the knowledge of the a
tion of the Weyl group on the elements. Now we dis
ussthe denominator identity.3.6.2 The Denominator IdentityConsider the denominator of eq. (3.88)

∑

w∈W

(−1)l(w)exp[〈w(ρ), h〉] =
∏

α∈L+

[exp(1
2
〈α, h〉)− exp(−1

2
〈α, h〉)

]

= exp(〈ρ, h〉)
∏

α∈L+

[
1− exp(−〈ρ, h〉)

]
. (3.89)This is known as the denominator identity . The Weyl denominator formula is a spe-
ialisation of the Weyl 
hara
ter formula to the trivial representation. Conventionally, thedenominator formula is written as (3.89), but for our purpose of generalizing it to in�nite-dimensional Lie algebras, we re
ast it into a form better suited for the generalization.

∏

α∈L+

(1− exp (−〈α, h〉)) =
∑

w∈W

det(w) exp (w(〈ρ, h〉)− 〈ρ, h〉) , (3.90)where w(ρ) is the image of ρ under the a
tion of the element w of the Weyl group. Theimportan
e of the above formula, from both the general and the point of view of our problem,
annot be overstated. It is at the heart of the relation between the spe
trum of 1
4
-BPS statesand BKM Lie superalgebras. Let us look at eq. (3.89) more 
losely and see what it 
ontainsthat makes it so important. Given the RHS of eq. (3.89), we have knowledge of all thepositive roots of g and their respe
tive multipli
ities and given the LHS we have knowledgeof the Weyl group of g and its a
tion on all the roots. Thus, the denominator identity
ontains all the essential information about the Lie algebra g and given the denominatoridentity, one 
an 
onstru
t g 
ompletely from it. In the theory of BKM Lie superalgebras itplays a 
entral role not only be
ause it 
ontains the information of G in it, but also be
ause103



Chapter 3. BKM Lie Algebrasit provides the link with automorphi
 forms.Let us start by 
omputing the denominator identity of sl(3,C). As dis
ussed before,
sl(3,C) has two simple roots α1 and α2. The set of positive roots, L+, is given by α1, α2and α3 = α1 + α2. The multipli
ity of ea
h positive root is one. The Weyl group is givenby the permutation group of three elements, S3. The elements are the re�e
tions r1 and r2, with respe
t to the two simple roots. The a
tion of the re�e
tions on the roots is given by

wαi
(αi) = −αi ,

wαi
(αj) = (αi + αj)

(3.91)The elements of S3, generated by wα1 and wα2 are given by
(1, wα1 , wα2, wα1 · wα2, wα2 · wα1 , wα1 · wα2 · wα1) (3.92)The a
tion of the six elements on ρ is (ρ,−α1,−α2,−ρ, α1, α2). Putting it all together intoeq (3.89) the Weyl denominator formula for sl(3,C) is given by
∏

φ∈L+

(1− e(−φ)) =
∑

w∈W

(−1)l(w)e(w(ρ)− ρ). (3.93)where ρ is the Weyl ve
tor, and w is an element of the Weyl group W . Denoting u = e(−α1)and v = e(−α2), we getLHS = (1− u)(1− v)(1− uv) =
[
1− u− v + u2 · v + u · v2 − u2 · v2

] (3.94)Now 
onsider the RHS.RHS =
[
1 + u2 · v + u · v2 − u2 · v2 − u− v

] (3.95)where l(w) = +1 for w = 1, x, x2 and −1 otherwise. The equality is obvious.This 
ompletes our dis
ussion of the denominator formula for �nite-dimensional semi-simple Lie algebras. We now look at the denominator identity of a�ne Lie algebras. Wedis
ussed the Weyl group of a�ne Lie algebras when in Se
tion 3.4.3. As in the �nite-dimensional 
ase, one of the main appli
ations of the Weyl group is the 
al
ulation of 
har-a
ters of highest weight modules, and the denominator formula whi
h is an o�shoot of the
104



Chapter 3. BKM Lie AlgebrasWeyl 
hara
ter formula. As before, the 
hara
ters χµ are de�ned as
χµ =

∑

λ

mult(µ) eλ, (3.96)where we have de�ned the exp〈λ, h〉 = eλ as formal exponenials. The Weyl-Ka
 
hara
terformula [3℄
χµ(h) =

∑
w∈cW(−1)l(w)ew(µ+ρ)

∑
w∈cW(−1)l(w)ew(ρ)

, (3.97)where ρ is the Weyl ve
tor de�ned as before.The denominator identity for the 
ase of a�ne Lie algebras be
omes
∑

w∈cW

(−1)l(w)ew(ρ) = eρ ∏
bα∈bL+

(1− e−bα)mult(bα) . (3.98)The multipli
ities of all the roots in the �nite-dimensional 
ase were 1, and the term on theright hand side, therefore, did not have the multipli
ity fa
tor.An alternate de�nition is given by Lepowsky and Milne whi
h is tailored to writing thesum side of the denominator formula. The key observation (due to Ma
Donald) is that
[w(ρ) − ρ] behaves better than either of the terms. Re
all that an element of the Weylgroup a
ts as a permutation of all roots (not ne
essarily positive). Thus, [w(ρ)− ρ] obtains
ontribution, only when a positive root gets mapped to a non-positive root. So one de�nesthe set Φw for all w ∈ Ŵ ,

Φ̂w = w(L̂−) ∩ L̂+ =
{
α̂ ∈ L̂+

∣∣∣ w−1(α̂) ∈ L̂−

}
. (3.99)Using this de�nition, we 
an see that

ρ− w(ρ) =
1

2

∑

α̂∈bL+

[α̂− w(α̂)] ∼ 〈Φ̂w〉 , (3.100)where 〈Φ̂w〉 is the sum of elements of the set Φ̂w. Note that −L̂− = L̂+, whi
h explains thehalf disappearing in the RHS of the above formula. Imaginary roots do not appear in the set
Φ̂w for a�ne Lie algebras as the imaginary roots turn out to be Weyl invariant and hen
e
an
el out in the above equation.The denominator formula that works for a�ne Ka
-Moody algebras, after in
luding the105



Chapter 3. BKM Lie Algebrasimaginary roots in L̂+, is the Weyl-Ka
 denominator formula
∏

α̂∈L+

(
1− e−α̂

)mult(α̂)
=
∑

w∈Ŵ

det(w) e−〈Φ̂w〉 , (3.101)We now 
onsider the example of an a�ne Lie algebra, ̂sl(n,C), given by the root system
(A

(1)
l , l = n − 1). We derive the general expressions for A(1)

l , then spe
ialize them to the
ase ofA(1)
1 and A(1)

2 for the sake of illustration. The set of simple roots of A(1)
l are given bythe simple roots of the horizontal subalgebra, Al, together with the root δ − µ, where δ isthe smallest imaginary root, and µ is the highest root of Al (see eq (3.60).The set of roots is given by fun
tionals of the form jδ + µ, where j ∈ Z and µ ∈ L̂. Theimaginary roots are given by fun
tionals of the form jδ, where j ∈ Z, j 6= 0. We de�ne theset of positive roots as the union of the set of positive roots of the horizontal subalgebra L̂,with the set of roots in L̂ whi
h have positive eigenvalues w.r.t d. Thus the set of positiveroots of A(1)

l are given by,
L̂+ = {(s−1)·δ+α̂i+...α̂i+k−1, s·δ−(α̂i+...α̂i+k−1), s·δ | 1 ≤ k ≤ l; s ∈ Z+−{0}}. (3.102)The real roots have multipli
ity 1 and the imaginary roots have multipli
ity l. The denomi-nator formula is given by:

∏

α̂∈L̂+

(1− e(−α̂))mult(α̂) =
∑

w∈cW

(−1)l(w)e(w(ρ)− ρ) . (3.103)Re
asting it as eq. (3.101) we have
∏

α̂∈L̂+

(1− e(−α̂))mult(α̂) =
∑

w∈cW

(−1)l(w)e(−〈Φ̂w〉) (3.104)where Φ̂w = L̂+ ∩ L̂− , and 〈Φ̂〉 is the sum of all elements of Φ̂. We know the simple andpositive roots of the Lie algbra. We now need to evaluate the sets Φ̂w and the Weyl groupto 
ompute the denominator formula. To determine the set Φ̂, we re
all the a
tion of theelements of the Weyl group on the set of roots.
Ŵ (L̂R) = L̂R Ŵ (L̂I) = L̂I , (3.105)
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Chapter 3. BKM Lie Algebrasand
Ŵ (L̂I ∩ l̂+) = (L̂I ∩ L̂+) (3.106). The set Φ̂w is the set of all roots {α̂ ∈ L̂+ | w−1α ∈ L̂−}. Thus, Φ̂w 
onsists of elements ofthe form

{β, β + n.δ},where, β ∈ L̂+ and m ∈ Z+ (3.107)or
{β + n.δ}where, β ∈ L̂− and n ∈ Z+ − {0} . (3.108)3.6.3 Denominator Identity for ̂sl(2,C)For the a�ne Ka
-Moody algebra, Â(1)

1 , from the above de�nition of the set of positive roots,we havê
L+ =

(
n(α̂1 + α̂0), nα̂1 + (n− 1)α̂0, (n− 1)α̂1 + nα̂0

∣∣∣ n = 1, 2, 3, . . .
)
, (3.109)and the Weyl group is isomorphi
 to Z2 ⋉ Z. Putting it all together into the denominatoridentity gives

∏

n≥1

(1− e−nα0e−nα1)(1− e−(n−1)α0e−nα1)(1− e−nα0e−(n−1)α1)

=
∑

n∈Z

e−n(2n−1)α0e−n(2n+1)α1 −
∑

n∈Z

e−(n+1)(2n+1)α0e−n(2n+1)α1 (3.110)Setting e−α0 = r and e−α1 = qr−1, the above identity is equivalent to the Ja
obi tripleidentity involving the theta fun
tion ϑ1(τ, z):
−iϑ1(τ, z) = q1/8r−1/2

∞∏

n=1

(1− qn)
(
1− qn−1r

) (
1− qnr−1

)

=
∑

n∈Z

(−1)n q
(n−1/2)2

2 rn−1/2 . (3.111)3.6.4 Denominator Formula for ̂sl(3,C).We apply the above ideas to the 
ase of ̂sl(3,C) (A
(1)
2 ) as an example and write down thedenominator identity for it[74, 75, 76, 77℄ . 107



Chapter 3. BKM Lie AlgebrasThe horizontal algebra for ̂sl(3,C) is sl(3,C). There are two elements in the Cartansubalgebra, α̂1, and α̂2. The Weyl group of sl(3,C) is S3, generated by two elements. Itis generated by the re�e
tions with respe
t to the two simple roots α̂1, and α̂2 (
all there�e
tions w
bα1 and wbα2 respe
tively). The simple roots of the a�ne Lie algebra ̂sl(3,C) aregiven by the simple roots of the horizontal algebra, together with α̂0 = δ− (α̂1 + α̂2), where

δ is the smallest positive imaginary root of A(1)
2 .The Weyl group of ̂sl(3,C) is the semi dire
t produ
t of the Weyl group of sl(3,C) andan abelian group, T , of translations generated by two elements (∼= Z2).Let t(m,n) ∈ T be an allowed translation whose a
tion on α̂1 and α̂2 is given by:

tα̂1 = α̂1 +mδ

tα̂2 = α̂2 + nδ (3.112)It follows that
tα̂0 = α̂0 + qδ, (3.113)su
h that (m+n+ q) = 0. The elements of the Weyl group are of the form w

bα = wα.t where
wα ∈ S3 and t(m,n) ∈ T . Let Ŵt be the subgroup of Ŵ genrated by t(m,n) (written as tfor brevity hen
e forth). Thus,
Ŵ = ŴL∪wbα1 ·ŴL∪wbα2 ·ŴL∪wbα1 ·wbα2 ·ŴL∪wbα2 ·wbα1 ·ŴL∪ŵα̂1 ·ŵα̂2 ·ŵα̂1 cot ŴL, (3.114)for w

bα1 , wbα2 ∈ S3 and t ∈ T .Now, to 
ompute the denominator formula, we need to determine the a
tion of the Weylgroup on 〈Φ̂t〉. From the de�nition of Φ̂, and the a
tion of the elements of the Weyl groupon the set of roots, we have,
Φ̂t = {α̂1+iδ, α̂2+jδ, α̂1+α̂2+kδ | 0 ≤ i ≤ (m−1), 0 ≤ j ≤ (n−1), 0 ≤ k ≤ (q−1)} . (3.115)Thus,

〈Φ̂t〉 = (m+ k)α̂1 + (n+ k)α̂2 +
[m(m− 1) + n(n− 1) + k(k − 1)]

2
δ (3.116)
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Chapter 3. BKM Lie AlgebrasPutting all the above together in the denominator formula, we have:
∏

s≥1

(1− us0.us1.us2)2(1− us−1
0 .us1.u

s−1
2 )(1− us−1

0 .us−1
1 .us2)

× (1− us−1
0 .us1.u

s
2)(1− us0.us−1

1 .us2)(1− us0.us1.us−1
2 )

=
∑

rj≡0(mod 3)

u
1
6
(r1(r1−2)+r22+r3(r3+2))

0 u
1
6
(r21+r2(r2+2)+r3(r3−2))

1 u
1
6
(r1(r1+2)+r2(r2−2)+r23)

2

−
∑

r1=1,r2=0,r3=2(mod 3)

u
1
6
(r1(r1+2)+r22+r3(r3−2))

0 u
1
6
(r1(r1−2)+r2(r2+2)+r23)

1 u
1
6
(r21+r2(r2−2)+r3(r3+2))

2

+
∑

rj≡1(mod 3)

u
1
6
(r1(r1+2)+r2(r2−2)+r23)

0 u
1
6
(r1(r1−2)+r22+r3(r3+2))

1 u
1
6
(r21+r2(r2+2)+r3(r3−2))

2

−
∑

r1=0,r2=2,r3=1(mod 3)

u
1
6
(r1(r1−2)+r2(r2+2)+r23)

0 u
1
6
(r21+r2(r2−2)+r3(r3+2))

1 u
1
6
(r1(r1+2)+r22+r3(r3−2))

2

+
∑

rj≡2(mod 3)

u
1
6
(r21+r2(r2+2)+r3(r3−2))

0 u
1
6
(r1(r1+2)+r2(r2−2)+r23)

1 u
1
6
(r1(r1−2)+r22+r3(r3+2))

2

−
∑

r1=2,r2=1,r3=0(mod 3)

u
1
6
(r21+r2(r2−2)+r3(r3+2))

0 u
1
6
(r1(r1+2)+r22+r3(r3−2))

1 u
1
6
(r1(r1−2)+r2(r2+2)+r23)

2 ,where r1, r2, r3 ∈ Z, and m = 1
3
(r2 − r3) ; n = 1

3
(r1 − r2) ; q = 1

3
(r3 − r1) That 
ompletesour study of the denominator identity for a�ne Lie algebras. We see how the modi�
ationsthat o

ur due to the presen
e of the imaginary root. We next study the denominatoridentity for BKM Lie superalgebras. This was �rst 
onstru
ted by Bor
herds. We will statethe denominator identity and the super-denominator identity for BKM Lie superalgebrasand explain how it is obtained as a generalization of the denominator identity for a�ne Liealgebras. Dis
ussing examples of BKM Lie superalgebras is beyond the s
ope of this workand the reader is refered to the literature.To de�ne the Weyl-Ka
-Bor
herds denominator formula we �rst need to de�ne the (even)Weyl group of a BKM Lie superalgebra. As before, we de�ne the re�e
tion wα along ahyperplane perpendi
ular to α when α is an even (resp. odd) root of non-zero norm. For allweights β ∈ H r C⊗Z Q

wα(β) =

{
β − 2(β,α)

(α,α)
if deg(α) = 0 ,

β − 2(β,α)
(α,α)

if deg(α) = 1 .
(3.117)Here for the above formula to hold the roots α are also required to satisfy athe additional109



Chapter 3. BKM Lie Algebras
ondition that for any x ∈ Gα, y ∈ G, there is a non-negative integer n depending on x and
y su
h that (adx)ny = 0. The Weyl group WE is de�ned as followsDe�nition 3.6.2 The even Weyl group WE is de�ned to be the group generated by there�e
tions wαi

, i ∈ I su
h that aii > 0[3℄. The Weyl groupW is generated by all the re�e
tions
wαi

where αi ∈ L+ and satis�es (3.117) and is of non-zero norm.For all in�nite dimensional BKM Lie superalgebras the groups WE and W are the same.The Weyl ve
tor for BKM Lie superalgebras is de�ned as follows:De�nition 3.6.3 A Weyl ve
tor is de�ned to be a ve
tor ρ either in the dual spa
e C⊗Z Qor in H or in its dual H∗ satisfying
(ρ, αi) = 1

2
(αi, αi) for all i ∈ I (3.118)We �rst need to �nd and expression for the dimensions of the weight spa
es of the superalgebra to be able to di�erentiate the odd and even weight spa
es. We thus, require to �nd the
hara
ter and super-
hara
ter for the super-algebra. For this, we need to work with formalexponentials eλ. We de�ne the 
hara
ter and super
hara
ter using formal exponentials asfollows:De�nition 3.6.4 Let ε be the 
ommutative asso
iative algebra of formal series
∑

λ∈H

xλe
λfor whi
h there exist �nitely many elements λi ∈ H, i = 1, . . . , m su
h that the 
oe�
ients xλare non-trivial only if λ ≤ λi for some 1 ≤ i ≤ m. Multipli
ation is de�ned by eλeµ = eλ+µ.The 
hara
ter and super-
hara
ter of the H-module V = V0 ⊕ V1 ∈ O are the elements ofthe algebra ε de�ned respe
tively to be the formal sums:
h V =

∑

λ∈H

dim Vλe
λ) and s
h V =

∑

λ∈H

(dim V0λ
− dim V1λ

)eλ . (3.119)where V (Λ) ∈ O is a highest weight module of highest weight Λ, it is assumed that deg(Λ) = 0.Now we write the denominator identities that the above 
hara
ter and super-
hara
terformulae lead to. For µ =
∑

i∈I kiαi, let us 
all ∑i∈I\S ki as ht0(µ), and ∑i∈I ki as ht(µ).110



Chapter 3. BKM Lie AlgebrasWe de�ne the following
TΛ = e(Λ + ρ)

∑
ǫ(µ)e−µ and T ′

Λ = eΛ+ρ
∑

ǫ′(µ)e−µ, (3.120)where
ǫ(µ) = (−1)ht(µ) and ǫ′(µ) = (−1)ht0(µ) . (3.121)In terms of the above de�nitions, we de�ne the denominator and super-denominator formulafor any BKM Lie superalgebra.De�nition 3.6.5 For any BKM Lie superalgebra G,
∏

α∈L+
0
(1− e−α)mult0(α)

∏
α∈L+

1
(1 + e−α)mult1(α)

= e−ρ
∑

w∈W

det(w) w(T ), (3.122)and ∏
α∈L+

0
(1− e−α)mult0(α)

∏
α∈L+

1
(1− e−α)mult1(α)

= e−ρ
∑

w∈W

det(w) w(T ′) (3.123)are respe
tively the denominator formula and the super-denominator formula.That 
ompletes our de�nition of the denominator and super-denominator formulae forthe 
ase of BKM Lie superalgebras.3.6.5 The Fake Monster Lie AlgebraAs an example of the above formula in the setting of a BKM Lie superalgebra, we will brie�ydis
uss the example of the fake monster Lie algabra [61, 57℄ whi
h is a BKM Lie algebrades
ribing the physi
al states of a bosoni
 string on a torus. Its root latti
e is a 26 dimensionaleven unimodular Lorentzian latti
e5 denoted II25,1 = Λ⊕ II1,1 where Λ is the Lee
h latti
ewith elements α = (λ,m, n) (λ ∈ Λ and (m,n) ∈ II1,1) with norm α2 = λ2 − 2mn (it isthe unique positive de�nite latti
e of rank 24 with no norm 2 ve
tors [78℄). and II1,1 is theunique even unimodular Lorentzian latti
e of rank 2.The roots of II25,1 are the non-zero ve
tors α with α2 ≤ 2. Their multipli
ity is given by
p24(1 − α2/2), where p24(n) is the number of partitions of n into parts of 24 
olors. Thus,5An integral latti
e L is said to be even if for all v ∈ L, (v, v) ≡ 0 (mod2). Else it is said to be odd. Thedimension and signature of L are the dimension and signature, respe
tively, of the real ve
tor spa
e L⊗Z Rwith the bilinear form indu
ed from L. A latti
e is 
alled Lorentzian if it has signature (m, 1) or (1, m). Alatti
e is a unimodular one if L = L∗, where L∗ is the dual of L. 111



Chapter 3. BKM Lie Algebrasthe multipli
ities of the roots are given by
∑

n

p24(1 + n)qn = 1/∆(q) = q−1
∏

n>0

(1− qn)−24 = q−1 + 24 + 324q + 3200q + . . . . (3.124)The real simple roots are the norm 2 ve
tors α in II25,1, whi
h are in bije
tive 
orrespon-den
e with points
(λ, 1, λ

2

2
− 1), λ ∈ Λ (3.125)in the Lee
h latti
e. They all satisfy (ρ, α) = 1 for the Weyl ve
tor ρ = (0, 0,−1). Theimaginary simple roots are of the form

(0, 0, n), n ∈ N (3.126)and they all have multipli
ity p24(1) = 24. These satisfy (ρ, α) = 0 for their inner produ
twith the Weyl ve
tor.The set of positive roots are given by the set of roots α = (λ,m, n) su
h that m > 0 or
α = (0, 0, n). Thus, the positive roots are

α ∈ L+ = {α ∈ II25,1|(α, ρ) > 0 or α = (0, 0, n)} (3.127)The Weyl group of the algebra is generated by the real simple roots with norm 2, andthus the Weyl group of II25,1 is isomorphi
 to the re�e
tion group of the Lee
h latti
e.Now we 
an write down the denominator identity of the fake monster Lie algebra from theabove information as follows. Given the set of positive roots (3.127) and the fa
t that theyall have multipli
ity p24(1− α2/2), we 
an write down the produ
t side of the denominatoridentity as ∏

α∈L+

(1− e−α)p24(1−α2/2) . (3.128)The Weyl group is known and hen
e we 
an form the sum side of the denominator identityuning the fa
t that all the imaginary simple roots have norm 0 and are mutually orthogonal.The sum side is given by
∑

n1,n2,...

(−1)n1+n2+...en1ρ

(
24

n1

)
en2ρ

(
24

n2

)
. . .

= (1− eρ)24(1− e2ρ)24 . . . . (3.129)112



Chapter 3. BKM Lie AlgebrasPutting the above two equations together gives
eρ
∏

α∈L+

(1− e−α)p24(1−α2/2) =
∑

w∈W
n∈Z

det(w)w
(
eρ
∏

n>0

(1− enρ)24
)
. (3.130)For further examples the reader is referred to the mathemati
al literature[71, 79, 80℄. Wewill see other examples of BKM Lie superalgebras in Chapter 6 when we 
onstru
t the BKMLie superalgebras 
orresponding to the modular forms o

uring in the CHL strings.3.7 Con
lusionIn this 
hapter we have studied the theory of Lie algebras 
overing �nite-dimensional semi-simple Lie algebras, a�ne Lie algebras, and BKM Lie superalgebras. We have seen howstarting from the �nite-dimensional Lie algebras the various 
onstru
tions are modi�ed andgeneralized to �nally get BKM Lie superalgebras. The presen
e of imaginary roots dif-ferentiates the in�nite-dimensional Lie algebras from the �nite-dimensional ones, while thepresen
e of imaginary simple roots is a 
hara
tersti
 of the BKM Lie superalgebras. We willput these ideas to use later in the problem of 
ounting bla
k hole mi
rostates.

113



4Modular Forms
4.1 Preliminary De�nitions:1. Holomorphi
 Fun
tion: The 
on
ept of a holomorphi
 fun
tion (also known as ananalyti
 fun
tion) extends the 
on
ept of real fun
tions of real variables to 
omplexfun
tions of 
omplex variables. Let z0 be a point in C and f a fun
tion on C. We saythat f is 
omplex-di�erentiable at the point z0, if the limit

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
(4.1)exists. For a 
omplex valued fun
tion, this is equivalent to the Cau
hy-Riemann 
on-ditions on the real and imaginary parts of the 
omplex fun
tion.Now, let U be an open subset of C. A fun
tion f : U→ C is said to be holomorphi
if f takes values in C, and is 
omplex-di�erentiable at every point in U.The sum and produ
t of two holomorphi
 fun
tions is again a holomorphi
 fun
tion.The same is true of the quotient of two holomorphi
 fun
tions whenever the denomi-nator is non-vanishing. The derivative of a holomorphi
 fun
tion is itself holomorphi
.Thus, holomorphi
 fun
tions are in�nitely di�erentiable and 
an be des
ribed by theirTaylor series.Some readers may be be familiar with the de�nition of holomorphi
 fun
tions as fun
-tions that depend on the variable z alone, and are independent of z̄. The fun
tionsde�ned above, when written in terms of z and z̄, 
an be seen to be dependent only onthe variable z and thus represent the same thing. 114



Chapter 4. Modular Forms2. Meromorphi
 Fun
tion: The quotient of two holomorphi
 fun
tions, we said, isagain a holomorphi
 fun
tion. Su
h a fun
tion will be holomorphi
 whenever thedenominator is non vanishing. This leads to the notion of a meromorphi
 fun
tion.A fun
tion f , on an open subset U of the 
omplex plane, is said to be meromorphi
if it is holomorphi
 on U exe
pt at a dis
rete set of points in U whi
h are the polesof the fun
tion. The poles are just the set of points where the denominator vanishes.The poles of a meromorphi
 fun
tion are isolated. The sum, produ
t and the ratio oftwo meromorphi
 fun
tions is again a meromorphi
 fun
tion.3. SL(N,F) (Spe
ial Linear Group): It is the set of all N × N matri
es with entriesin the �eld F, and determinant 1. It is a simple Lie group. It is a subgroup of thegeneral linear group over the �eld F, whi
h is the group of all n×n invertible matri
es,with entries from F, together with the operation of matrix multipli
ation. We willmostly study the Lie group SL(2,Z), whi
h is over the �eld of integers, and some ofits dis
rete subgroups
SL(2,Z) =

{( a b

c d

)
: a, b, c, d ∈ F and ad− bc = 1

}
. (4.2)4. Upper Half Plane: The upper half plane, H , is the set of 
omplex numbers withpositive imaginary parts. i.e.

H = {x+ iy | y > 0; x, y ∈ R} . (4.3)It is a Riemannian manifold with the isometry group the Lie group SL(2; R). Thestudy of the a
tion of the isometry group on H is one of the important ideas we willunderstand while studying modular forms.5. Fundamental Domain: The idea of a fundamental domain, or fundamental regionarises as follows. Given a topologi
al spa
e, and the a
tion of a symmetry group onit, the fundamental domain is the smallest possible region whi
h 
an generate thewhole spa
e by the a
tion of the group on it. It has one and only one point from ea
horbit of the group a
tion in its interior. We will give a more 
omplete de�nition of thefundamental domain of the a
tion of the modular group on the upper half plane, butwhat we des
ribe here is the intuitive pi
ture that the notion of a fundamental domainattempts to 
apture. For the theory of modular forms, the spa
e we have in mind is115



Chapter 4. Modular Formsthe upper half plane, H, and the symmetry groups are SL(2,Z) and its 
ongruen
esubgroups.4.2 Towards Modular Fun
tionsFrom a mathemati
al point of view, our problem is one of 
ounting. We are interested in
ounting the partitions of a given entity, say an integer or a ve
tor, as a sum of its 
onstituentstaken from some given set S. Restri
ting at �rst to just numbers, we ask if a given number
an be expressed as a sum of elements of S and, if so, in how many ways 
an this be done.It is this question that we will 
hie�y be 
on
erned with in the following 
hapters, and wewill see how the notions we introdu
e here �t into the idea in a natural way.Let p(n) denote the number of ways n, an integer, 
an be written as a sum of elementsof S. We ask for the various properties of p(n), say for example, its asymptoti
 behaviourfor large n. We will learn more about the above problem in the 
ourse of our study of theDedekind's eta fun
tion and related ideas. For now, we look for a way to motivate the studyof modular fun
tions. The partition fun
tion p(n) and other fun
tions of additive numbertheory are intimately related to a 
lass of fun
tions in 
omplex analysis 
alled ellipti
 modularfun
tions. So, it is around this idea that we start our study of modular forms. This 
hapteris based mostly on [81, 82, 83, 84℄4.2.1 Doubly periodi
 fun
tionsA fun
tion f is said to be an ellipti
 fun
tion if1. f is doubly periodi
.2. f is meromorphi
.We already know what a meromorphi
 fun
tion is, so we start with the doubly periodi

ondition. We will see that doubly periodi
 fun
tions will lead us to the set of latti
es in C,and the set of latti
es in C are very 
losely related to modular forms, whi
h we will 
ome toshortly. On the whole, we will �nd that ellipti
 fun
tions, latti
es in C, and modular formsare related to ea
h other very 
losely.A fun
tion f over C is 
alled periodi
, with period ω, if
f(z + ω) = f(z) (4.4)116



Chapter 4. Modular Formswhenever z and z + ω are in the domain of f . An example of su
h a fun
tion would be theexponential fun
tion ez, z ∈ C with period 2πi.A fun
tion f is 
alled doubly periodi
 if it has two periods ω1 and ω2 su
h that the ratio
ω1/ω2 is not real.1 If ω1 and ω2 are periods of f , then so is any 
ombination (mω1 + nω2)for any m,n ∈ Z. The pair (ω1, ω2) is 
alled a fundamental pair. The set of all linear
ombinations mω1 + nω2 is denoted Ω(ω1, ω2). This is 
alled the latti
e generated by ω1and ω2. We will see examples of su
h fun
tions when we 
onsider some of the examples ofmodular forms later in this 
hapter.Let M denote the set of pairs (ω1, ω2) of elements of C∗, and L be the set of all latti
esof C. The manifold C/L(ω1, ω2) is obtained by identifying the points z1, z2 ∈ C su
h that
z1 − z2 = ω1m + ω2n for some m,n ∈ Z. Now, given M , the set of all pairs (ω1, ω2), wewould like to ask when do two su
h pairs {ω1, ω2} and {ω′

1, ω
′
2} ofM 
orrespond to the samelatti
e in L? The ne
essary and su�
ient 
ondition for two elements of M to 
orrespond tothe same latti
e in L turns out that they should be 
ongruent modlulo SL(2,Z).The pair (ω′

1, ω
′
2) is equivalent to the pair (ω1, ω2) if we 
an write (ω′

1 and ω′
2) as

ω′
2 = aω2 + bω1 and ω′

1 = cω2 + dω1, (4.5)where a, b, c, d ∈ Z su
h that ad− bc = 1.Writing it in a slightly di�erent form leads us to the notion of unimodular transformationsand the modular group. Let τ = ω1

ω2
, and τ ′ =

ω′
1

ω′
2
. Then, the above equation in terms of the

τ variables is
τ ′ =

aτ + b

cτ + d
. (4.6)The transformation

f(z) =
az + b

cz + d
(4.7)is 
alled a Möbius transformation. In studying modular forms we will 
on
entrate on su
htransformations and study fun
tions whi
h are invariant, or have spe
i�
 transformationproperties, under unimodular transformations.1If the ratio of the periods is real and rational, it 
an be shown that both ω1 and ω2 are integer multiplesof the same period, and if the ratio is real and irrational, it 
an be shown that f has arbitrarily small periodsand hen
e is 
onstant on every open 
onne
ted set on whi
h it is analyti
.
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Chapter 4. Modular Forms4.2.2 Möbius TransformationsThe set of Möbius transformations, as de�ned above, will be important to us when we de�nethe a
tion of the modular group on the upper half plane. So far, we have just de�ned whatare doubly periodi
 fun
tions, and how the period of the fun
tion in two di�erent dire
tionsgenerates a parellogram whi
h de�nes a latti
e as fun
tions of the periods. In seeking to
hare
terize the distin
t pairs of su
h periods whi
h de�ne the same latti
e in C, we 
ame to
onsider unimodular transformations whi
h relate equivalent sets of pairs or periods. Thesetransformations form a group, as we will see now, but before that we need to extend thedomain of de�nition of the transformations to the extended 
omplex plane C̃ ≡ C ∪ {∞}(i.e. C together with the point at ∞. C̃ is also 
alled the Riemann sphere). To do so, wehave to extend the de�nition to the points z = −d
c
and z =∞. We de�ne the value of f atthese points as follows

f(−d
c

) =∞ and f(∞) =
a

c
, (4.8)with the usual 
onvention that z/0 =∞ if z 6=.A Möbius transformation remains un
hanged if we multiply all the 
oe�
ients a, b, c, dby the same nonzero 
onstant. Thus, we lose no generality in assuming ad − bc = 1. Now,let us asso
iate with ea
h Möbius transformation (4.7), a 2× 2 matrix

A =

(
a b

c d

)
. (4.9)Also sin
e we have assumed ad − bc = 1, detA = 1. Then, the 
omposition of two su
htransformations, it is easy to verify, is given by the matrix produ
t of the matri
es asso
iatedto the transformations, and is also a Möbius transformation. The identity matrix I =(

1 0

0 1

) 
orresponds to the identity transformation
f(z) =

1z + 0

0z + 1
. (4.10)Inverting (4.7), and solving for z in terms of f(z)

z =
df(z)− b
−cf(z) + a

, (4.11)
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Chapter 4. Modular Formsshows that f maps C̃ to C̃. Thus, the inverse of f is also a Möbius transformation and theinverse matrix
A−1 =

(
d −b
−c a

) (4.12)
orresponds to f−1(z). Thus, we see that the set of all Möbius transformations with ad−bc =

1 forms a group. This is no surprise as the matri
es A as de�ned above are just the subgroupof SL(2,Z) with detA = 1. In studying modular forms we study an important subgroupof this group, where all the 
oe�
ients a, b, c, d are taken to be integers. It is 
alled themodular group.4.3 The Modular Group and Fundamental DomainThe set of all Möbius transformations of the form
z′ =

az + b

cz + d
, (4.13)with a, b, c, d integers, and ad− bc = 1, and ea
h matrix A identi�ed with its negative, −A,is 
alled the modular group, denoted Γ(1) (The argument 1 be
omes 
lear later, when wedis
uss 
ongruent subgroups). From its de�nitions we 
an see that this is just the group

PSL(2,Z) 2. The group gets its name from the fa
t that the points of the quotient spa
e
Γ(1) \ H are moduli for the isomorphism 
lasses of ellipti
 
urves over C. It is the simplestexample of a moduli spa
e.Let H be the upper half plane. We understand the a
tion of SL(2,Z) on C̃ as follows. Let
g ≡

(
a b

c d

)
∈ SL(2,Z) be any element of SL(2,Z) and let z ∈ C̃ be any point in C̃.Then, the a
tion of g on z is given by

g · z ≡ az + b

cz + d
. (4.14)We are representing the transformation by the matrix asso
iated with it. We note the2Some books 
all the group SL(2, Z) the modular group. We are moding out the 
enter of the group,

±
(

1 0
0 1

), from it sin
e it a
ts trivially on H.
119



Chapter 4. Modular Formsfollowing about the a
tion of SL(2,Z) on C̃.Im(g · z) =
Im(z)

|cz + d|2 , (4.15)showing that the imaginary part of g · z is greater than zero, if the imaginary part of z is.So, g.z ∈ H if z ∈ H. Thus, H is stable under the a
tion of SL(2,Z). Γ(1) is generated bythe two elements S and T given by
S ≡

(
0 −1

1 0

)
; T ≡

(
1 1

0 1

) (4.16)with the following relations between them:
S2 = (ST )3 = ±1. (4.17)

Γ(1) is generated as the free produ
t of the 
y
li
 group of order 2 generated by S and the
y
li
 group of order 3 generated by ST .The a
tion of the generators on any z ∈ H is given by
S · z = −1

z
; T · z = z + 1. (4.18)Two points z and z′ in the upper half plane are said to be equivalent under Γ(1) if z′ = Azfor some A ∈ Γ(1). Sin
e Γ(1) is a group, this is an equivalen
e relation. This equivalen
erelation divides the upper half plane into disjoint orbits of the group a
tion and it su�
esto 
onsider one point from ea
h orbit to know the a
tion of the whole group on the upperhalf plane. This set � the union of the representative points of ea
h orbit � is 
alled thefundamental set of Γ(1). For sets that have a topologi
al stru
ture, it be
omes even ni
erto 
onsider the topologi
al properties to study the group generating it. This is the notionof a fundamental domain . This is in keeping with our earlier de�nition of the notionwhere we said it 
aptures the symmetry stru
ture of the a
tion of a group on a topologi
alspa
e by homeomorphisms. Typi
ally, the fundamental domain always 
onsists of an openset together with a set of few addition points (of measure zero).For an open set to be the fundamental region of a group it has to have the two followingproperties1. No two points of the fundamental domain are equivalent under the group a
tion. 120



Chapter 4. Modular Forms2. For any z ∈ H there is a point z′ in the 
losure of the fundamental domain su
h that
z′ is equivalent to z under the group a
tion.Typi
ally we require it to be 
onne
ted with some restri
tion on its boundary. However, itneed not ne
essarily be 
onne
ted.The fundamental domain for the a
tion of the modular group on H, denoted D, isgiven by all z ∈ H su
h that
{|Re(z)| < 1

2
, |z| > 1} ∪ {|z| ≥ 1,Re(z) = −1

2
} ∪ {|z| = 1,−1

2
< Re(z) < 0}, (4.19)where the �rst part is the open set, and the two other terms are the boundaries one on theleft, and the other an ar
 at the bottom, respe
tively. Let us denote by O(z) = {g : g ∈

Γ(1), gz = z} the stabilizer of the point z ∈ D in Γ(1). That is, the set of elements of Γ(1)whose a
tion leaves a given element of D invariant. For all the points in D, ex
ept the abovementioned three points, the stabilizer is just the identity of Γ(1). That is, O(z) = {1} forall z ∈ D ex
ept for the following three points1. z = i, in whi
h 
ase O(z) is the group of order 2 generated by S;2. z = e2πi/3, in whi
h 
ase O(z) is the group of order 3 generated by ST3. z = eπi/3, in whi
h 
ase O(z) is the group of order 3 generated by TS.With the idea of the modular group, its a
tion on H, and the fundamental domain, weare now ready to de�ne and study modular fun
tions and modular forms.4.4 Modular Fun
tions and Modular FormsModular fun
tions are meromorphi
 fun
tions on the upper half plane whi
h are invariantunder the modular group. That would 
orrespond to any of the following equivalent obje
ts1. A fun
tion from Γ(1)\H to C,2. A fun
tion f : H → C satisfying the transformation equation f(γz) = f(z) for all
z ∈ H,3. A fun
tion assigning, to every ellipti
 
urve E over C, a 
omplex number dependingonly on the isomorphism type of E, or 121



Chapter 4. Modular Forms4. A fun
tion on latti
es in C satisfying F (λL) = F (L) for all latti
es L and all λ ∈ C∗.Generally, however, the term �modular fun
tion� is used only for meromorphi
 modularfun
tions satisfying 
ertain growth properties. For k ∈ Z , a fun
tion f is said to be weaklymodular of weight k, if f is a meromorphi
 fun
tion on H su
h that for all g ∈ Γ(1) and
z ∈ H

f(z) = (cz + d)−kf(g · z) . (4.20)From the above de�nition we see that the 
onstant fun
tions are modular fun
tions of weightzero. They are invariant under the a
tion of the modular group. The produ
t of two weaklymodular fun
tions of weights k1 and k2 is a weakly modular fun
tion of weight k1+k2. Thereare no modular fun
tions of odd weight. For even k, the above equation is same as
f(g · z)(d(g · z))k/2 = f(z)(dz)k/2 . (4.21)In words, the di�erential form of weight k, f(z)(dz)k/2, is invariant under the a
tion of Γ(1).Sin
e we know that Γ(1) is generated by S and T , to know the transformation of a weaklymodular fun
tion, we just need the transformation properties of the meromorphi
 fun
tion

f under S and T . A meromorphi
 fun
tion f on H is said to be weakly modular of weight
k if it transforms under S and T in the following way:

f(−1
z
) = zk f(z) (4.22)

f(z + 1) = f(z) . (4.23)4.4.1 q-Expansion:The map z 7→ e2πiz de�nes a holomorphi
 map from H to the pun
tured unit dis
 D′ (i.e.open unit dis
 |q| < 1 with the origin removed). Thus, we 
an Fourier expand f(z) as afun
tion of q(z) = e2πiz as f(z) =
∑∞

−N anq
n. Then, sin
e f(z+1) = f(z), 
onsider the spa
e

H/T , that is the quotient spa
e of H modulo translation by integers (a 
ylinder). q indu
esan isomorphism between H/T and the pun
tured dis
. Thus, a meromorphi
 fun
tion f on
H whi
h satis�es the 
ondition (4.23) above (invarian
e under T ), indu
es a meromorphi
fun
tion, f∞, on the pun
tured dis
 su
h that f∞(q(z)) = f(z). If the meromorphi
ity(holomorphi
ity) of f∞ extends to 0, we say that f is meromorphi
 (holomorphi
) at in�nity.A ne
essary and su�
ient 
ondition that f∞ is also meromorphi
 at 0 is that there exists122



Chapter 4. Modular Formssome positive integer N su
h that f∞(q)qN is bounded near 0. f∞ then admits a Laurentexpansion in the neighborhood of the origin.
f∞(q) =

∞∑

−N

anq
n . (4.24)The above is 
alled the q-expansion of f about ∞. The 
oe�
ients an are the Fourier
oe�
ients of f .De�nition. A weakly modular fun
tion of weight k is 
alled a modular fun
tion if itis meromorphi
 at ∞.If f is holomorphi
 at ∞, we set f(∞) = f∞(0). This is the value of f at ∞.De�nition. A modular fun
tion whi
h is holomorphi
 everywhere on H and at ∞ is
alled a modular form of weight k (and level 1).If f is a modular form, then there are numbers an su
h that for all z ∈ H, f is given bya series

f(z) =

∞∑

n=0

anq
n (4.25)whi
h 
onverges for |q| < 1 (i.e. z ∈ H). A modular form of weight k is 
alled a 
usp formof weight k (and level 1) if f(∞) = 0, i.e., a0 = 0. We will use the following notation forthe a
tion of the modular group on f .

f [α]k = f(αz)(cz + d)−k(detα)k/2 . (4.26)4.5 Congruen
e SubgroupsAs the name suggests, 
ongruen
e subgroups, of a matrix group, are subgroups de�ned by
ongruen
e 
ondition on the entries of the matrix. The matrix group we are interested in is
PSL(2,Z). The 
ongruen
e subgroups of PSL(2,Z) arise in the following way. Given thegroup PSL(2,Z), we 
an restri
t the entries to be in Z/NZ, obtaining the homomorphism

PSL(2,Z)→ PSL(2; Z/NZ) (4.27)between the two groups. The kernel (i.e. the inverse image of the identity e) of this map isan example of a 
ongruen
e subgroup and is 
alled the prin
ipal 
ongruen
e subgroupof level n ,Γ(N). It is given by a ≡ d ≡ ±1, b ≡ c ≡ 0 (mod N) (Now we see where the123



Chapter 4. Modular Forms
1 in Γ(1) for the full modular group 
omes from). Γ(N) is, in fa
t, a normal subgroup of
Γ(1), as 
an be easily veri�ed by seeing that A−1BA ∈ Γ(1) for any two matri
es A ∈ Γ(1)and B ∈ Γ(N). The index of Γ(N) in Γ(1) is the number of equivalen
e 
lasses of matri
esmodulo N . We 
an take the inverse image of any subgroup (not just the identity e) and thatgives other 
ongruen
e subgroups. The ones we will be studying in relation to 
ounting ofBPS states are the following subgroups of Γ(1)

Γ1(N) =
{( a b

c d

)
∈ SL(2,Z) :

(
a b

c d

)
≡
(

1 ∗
0 1

)
( mod N)

} (4.28)
Γ0(N) =

{( a b

c d

)
∈ SL(2,Z) :

(
a b

c d

)
≡
(
∗ ∗
0 ∗

)
( mod N)

}
, (4.29)

Γ0(N) =
{( a b

c d

)
∈ SL(2,Z) :

(
a b

c d

)
≡
(
∗ 0

∗ ∗

)
( mod N)

}
, (4.30)where * means any element. The number N is 
alled the level of Γ. We 
an de�ne modularfun
tions for the 
ongruen
e subgroups just as in the 
ase of the full modular group.4.6 Latti
esWe earlier said one of the ways in whi
h the modular group arises is by 
onsidering the setof all latti
es in C. Latti
es in C are 
losely related to modular forms de�ned above. We willsee that, upto 
ertain transformations, the quotient H/Γ(1) 
an be identi�ed with a latti
eof C. Most of the dis
ussion will not be too formal, but we give the formal de�nitions ofkey ideas for the sake of 
ompleteness. We �rst de�ne what we mean by a latti
e in the realve
tor spa
e V. There are several ways of de�ning a latti
e in a ve
tor spa
e, we give onethat is easiest to understand below.A latti
e in a real ve
tor spa
e V of �nite dimension is a dis
rete subgroup, L, of Vsu
h that V/L is 
ompa
t. Similarly, one 
an de�ne a latti
e in a 
omplex ve
tor spa
e.Spe
i�
ally, 
onsider C. Given two non-vanishing 
omplex numbers ω1 and ω2 su
h that

ω1/ω2 /∈ R, we 
an asso
iate a latti
e, L(ω1, ω2), to ω1 and ω2 by L(ω1, ω2) ≡ {Zω1 + Zω2}.We assume Im(ω2/ω1) > 0. {ω1, ω2} is the basis of L. Let M denote the set of pairs (ω1, ω2)of elements of C∗, and let L be the set of all latti
es of C. The manifold C/L(ω1, ω2) is124



Chapter 4. Modular Formsobtained by identifying the points z1, z2 ∈ C su
h that z1 − z2 = ω1m + ω2n for some
m,n ∈ Z.Now, given M , the set of all pairs (ω1, ω2), we would like to ask when do two su
h pairs
{ω1, ω2} and {ω′

1, ω
′
2} ofM 
orrespond to the same latti
e in L? The ne
essary and su�
ient
ondition for two elements of M to 
orrespond to the same latti
e in L turns out that theyshould be 
ongruent modlulo SL(2,Z). Thus, we see that we 
an identify the set L of latti
esof C with the quotient of M by the a
tion of SL(2,Z).Also, sin
e it is only the ratio that determines the latti
e, we 
an a
t by C∗ on anyelement (ω1, ω2) of M (respe
tively L ) as follows
(ω1, ω2) 7→ (λω1, λω2), ( resp. L 7→ λL), λ ∈ C∗, (4.31)without 
hanging the ratio. Thus, we 
an identify the quotient M/C∗ with H by (ω1, ω2) 7→

z = ω1/ω2, and thus, this identi�
ation transforms the a
tion of SL(2,Z) on M into thatof Γ(1) on H. We make this idea pre
i
e below, where we explain what we said in thebeginning about the identi�
ation of a latti
e of C with the quotient H/Γ(1). The map
(ω1, ω2) 7→ ω1/ω2 gives a bije
tion of L/C∗ onto Γ(1)\H. Thus, we 
an identify an elementof Γ(1)\H with a latti
e of C upto a homothety (dilation).For k ∈ Z, we say that a 
omplex valued fun
tion, F , on L is of weight k if

F (λL) = λ−kF (L) (4.32)for all latti
es L ∈ L and all λ ∈ C∗. Let us denote by F (ω1, ω2) the value of F on the latti
e
L(ω1, ω2). Then the above formula is just

F (λω1, λω2) = λ−kF (ω1, ω2) . (4.33)We note in the above formula that the produ
t ω−k
2 F (ω1, ω2) depends only on z = ω1/ω2.Thus, we 
an always �nd a fun
tion, f , on H su
h that

F (ω1, ω2) = ω−k
2 f(ω1/ω2) (4.34)Also, sin
e F (ω1, ω2) is invariant under an SL(2,Z) a
tion on M , we see that f satis�es the
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Chapter 4. Modular Formsfollowing identity:
f(z) = (cz + d)−kf(

az + b

cz + d
) for all ( a b

c d

)
∈ SL(2,Z) (4.35)Conversely, if f veri�es the above formula, then we 
an asso
iates it to a fun
tion F on Lwhi
h is of weight k. We thus get a 
orresponden
e between modular fun
tions of weight kand latti
e fun
tions of weight k.4.7 Examples of Modular FormsWe are now ready to see some examples of modular forms and all the theory we learnt beingput to use. We will learn su
h examples that we will have o

asion to use later in studyingthe main problem of this thesis. We will look at the following examples:1. Eisenstein series, whi
h will be used in 
onstru
ting the twisted ellipti
 genera of the

K3 manifold.2. Seigel modular forms, whi
h give the degenera
y of the dyons in 
ertain models ofstring theory that we will 
onsider, and are at the heart of this thesis.3. Ja
obi forms - the theta fun
tions, and the Fourier 
oe�
ients of the Siegel modularforms 
onsidered above.There are many more important and illustrative examples of modular forms like the Jfun
tion, the ∆ fun
tion (whi
h o

urred as the generating fun
tion of the multipli
ities ofthe roots of the fake monster algebra (3.124) ), Weierstrass ℘ fun
tion, and many more,but we will not dis
uss them here. The above three examples are not only very importantexamples of modular forms, but they also play a very important role in the 
onstru
tion ofthe dyon degenera
y partition fun
tion. Of the three, we will spend 
onsiderable time onSiegel modular forms given their importan
e from the point of view of this work. We startwith the Eisenstein series.
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Chapter 4. Modular Forms4.7.1 Eisenstein Series:Let L be a latti
e in C. Consider the series∑γ∈L 1/|γ|σ. This series is 
onvergent for σ > 2,where the ∑ runs over the nonzero elements of Γ. Thus, the series
G2k(L) =

∑

γ∈Γ

1/γ2k (4.36)will be absolutely 
onvergent for any integer k > 1. It is 
alled the (non-normalized) Eisen-stein series of index 2k. Writing G2k as a fun
tion on M we get
G2k(ω1, ω2) =

′∑

m,n

1

(mω1 + nω2)2k
(4.37)where the summation is over all pairs of integers (m,n) 6= (0, 0) whi
h we indi
ate by aprime in the supers
ript. From the pre
eding se
tion, the fun
tion on H 
orresponding to

G2k(ω1, ω2) is given by
G2k(z) =

∑

m,n

1

(mz + n)2k
(4.38)where again the summation is over pairs of integers m,n su
h that (m,n) 6= (0, 0). Let ussee how the T and S transformations a
t on the form Gk(z). Under a T transformation,

z 7→ z + 1, therefore G2k(z) 7→ G2k(z + 1) as follows
G2k(z + 1) =

′∑

m,n

1

(m(z + 1) + n)2k
=

′∑

m,n

1

(mz + (n+m))2k
=

′∑

m,n

1

(mz + n′)2k
= G2k(z).(4.39)Under an S transformation z 7→ −1

z
, thus G2k(z) 7→ G2k(−1

z
) as follows

G2k(−1
z
) =

∑

m,n

1

(−m/z + n)2k
=
∑

m,n

z2k

(−m+ nz)2k
= z2k

∑

m,n

1

(m′z + n′)2k
= zkG2k(z).(4.40)Thus, we see that G2k(z) (and hen
e, G2k(L) and G2k(ω1, ω2)) is a modular form of weight

2k with the value at ∞ given by G2k(∞) = 2ζ(2k), where ζ is the Riemann zeta fun
tion.Often, the Eisenstein series is rede�ned, so that the 
onstant term is 1, by dividing it by
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Chapter 4. Modular Forms
2ζ(2k). This is 
alled the normalized Eisenstein series

E2k(z) =
G2k(z)

2ζ(2k)
. (4.41)As before, we 
an also 
onsider Eisenstein series with respe
t to a subgroup Γ(N) of Γ(1),instead of the whole modular group. This gives Eisenstein series at level N . Below we givesome expli
it expansions of some of the Eisenstein series at various levels.4.7.2 Fourier Expansions of Eisenstein Series:As a modular form the Eisenstein series will admit a q-expansion as formal power series interms of q(z) = e2πiτ . Here we give the Fourier expansion of the Eisenstein series Gk(z) interms of Bernoulli numbers Bn and the sigma fun
tion whi
h we de�ne below.De�nition 4.7.1 Sigma Fun
tion: For an integer r ≥ 0 and any positive integer n, thesigma fun
tion is de�ned as the sum of the r-th powers of the positive divisors of n. i.e.

σr(n) =
∑

1≤d|n

dr. (4.42)We also set σ0(n) = d(n) for the number of positive divisors of n and σ(n) = σ1(n).De�nition 4.7.2 Bernoulli Numbers: For n 6= 0 the Bernoulli numbers, Bn, are de�ned bythe following equality of formal power series:
x

ex − 1
=

∞∑

n=0

Bn
xn

n!
. (4.43)Using the above two de�nitions, we 
an write the Fourier expansion of the normalized Eisen-stein series E2k as 3

E2k = 1− 4k

B2k

∞∑

n=1

σ2k−1(n)qn. (4.44)For Eisenstein series of higher level, we have to 
ompute their expli
it form using variousrelations between the E2ks. A dis
ussion of Eisenstein series at level N and their expansionsabout di�erent 
usps is dis
ussed in Appendix B. Below, as an example, we give the Fourier3E2 as de�ned below is not a modular forms of weight two due to 
onvergen
e. A 
losely related non-holomorphi
 form E∗

2 =
(
E2 − 3Imz

) has weight two (See Appendix B) 128



Chapter 4. Modular Formsexpansion for E(2)
2 , E

(3)
2 , E

(4)
2 and E(5)

2 .
E

(2)
2 (τ) = 1 + 24q + 24q2 + 96q3 + 24q4 + 144q5 + 96q6 + 192q7 + 24q8 + 312q9 + · · ·

E
(3)
2 (τ) = 1 + 12q + 36q2 + 12q3 + 84q4 + 72q5 + 36q6 + 96q7 + 180q8 + 12q9 + · · ·

E
(4)
2 (τ) = 1 + 8q + 24q2 + 32q3 + 24q4 + 48q5 + · · · (4.45)

E
(5)
2 (τ) = 1 + 6q + 18q2 + 24q3 + 42q4 + 6q5 + 72q6 + 48q7 + 90q8 + 78q9 + · · · (4.46)The Eisenstein series are very important in the theory of automorphi
 forms and o

ur in anumber of pla
es. Here we have listed only the very basi
 fa
ts about them and the interestedreader is refered to any of the referen
es for a more 
omplete dis
ussion.4.7.3 Ja
obi FormsIn this se
tion we study another important example � that of Ja
obi forms. We will studytwo examples of Ja
obi forms - the Theta series in this se
tion, and the Fourier-Ja
obidevelopment of Siegel modular forms when we study Siegel modular forms in the next se
tion.Ja
obi forms are a 
ross between ellipti
 fun
tions and modular forms in one variable in thatone of the variable it takes is from C, while the other is restri
ted to H.A Ja
obi form on SL(2,Z) is a holomorphi
 fun
tion

φ : H×C→ C (4.47)satisfying the two transformation equations
φ
(az + b

cz + d
,

τ

cz + d

)
= (cz + d)2ke

2πimcτ
cz+d

φ(z,τ) (4.48)
φ(z, τ + λz + µ) = e−2πim(λ2z+2λτ)φ(z, τ) λ, µ ∈ Z2) . (4.49)These two sets of transformations de�ne the Ja
obi group (See Appendix D). φ(z, τ) has aFourier expansion of the form

φ(z, τ) =

∞∑

n=0

∑

r∈Z,r2≤4mn

c(n, r)e2πi(nz+rτ) (4.50)where k,m ∈ N are 
alled the weight and index of φ, respe
tively, and the Fourier 
oe�
ients,
c(n, r) = 0, unless n ≥ 0 and 4mn − r2 ≥ 0. Note that the fun
tion φ(z, 0) is an ordinary129



Chapter 4. Modular Formsmodular form of weight 2k. If m = 0, then φ is independent of τ and the de�nition redu
esto the usual notion of modular forms in one variable.For weak Ja
obi forms, the 
oe�
ients c(n, r) are non-vanishing only when n ≥ 0 relaxingthe 
ondition involving (4nt− ℓ2). Ja
obi forms of integer index were 
onsidered by Ei
hlerand Zagier[83℄ and extended to half-integral indi
es by Gritsenko [85℄.The ellipti
 genus of Calabi-Yau manifolds are weak Ja
obi forms. Examples in
lude:
φ−2,1(z1, z2) = Est×T 2(z1, z2) =

(
iϑ1(z1, z2)

η3(z1)

)2

φ0,1(z1, z2) = EK3(z1, z2) = 8

4∑

i=2

(
ϑi(z1, z2)

ϑi(z1, 0)

)2 (4.51)We will see the appearan
e of weight zero Ja
obi forms of the group Γ0(N)J in writingprodu
t representations for the modular form Φk(Z).
φ

(N)
0,1 (τ, z) =

2N

N + 1
α(N)(τ) φ−2,1(τ, z) +

1

N + 1
φ0,1(τ, z) , (4.52)with α(N)(τ) = 12i

π(N−1)
∂τ
[
ln η(τ)− ln η(Nτ)

] is the Eisenstein series for Γ0(N). The Fourierexpansion for φ(N)
0,1 at the 
usp at i∞
φ

(2)
0,1(τ, z) =

(
2r + 4 +

2

r

)
+

(
4r2 − 8 +

4

r2

)
q +O

(
q2
)

φ
(3)
0,1(τ, z) =

(
2r + 2 +

2

r

)
+

(
2r2 − 2r − 2

r
+

2

r2

)
q +O

(
q2
) (4.53)

φ
(5)
0,1(τ, z) =

(
2r +

2

r

)
+

(
2r − 4 +

2

r

)
q +O

(
q2
)
.
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Chapter 4. Modular Formsand about the 
usp at 0 is
φ

(2)
0,1 =8 +

(
−16

r
+ 32− 16r

)
q1/2 +

(
8

r2
− 64

r
+ 112− 64r + 8r2

)
q +O

(
q3/2
)

φ
(3)
0,1 =6 +

(
−6

r
+ 12− 6r

)
q1/3 +

(
−18

r
+ 36− 18r

)
q2/3

+

(
6

r2
− 42

r
+ 72− 42r + 6r2

)
q +O

(
q4/3
) (4.54)

φ
(5)
0,1 =4 +

(
−2

r
+ 4− 2r

)
q1/3 +

(
−6

r
+ 12− 6r

)
q2/5 +

(
−8

r
+ 16− 8r

)
q3/5

+

(
−14

r
+ 28− 14r

)
q4/5 +

(
4

r2
− 26

r
+ 44− 26r + 4r2

)
q +O

(
q6/5
)
.Theta Fun
tionsThe Ja
obi theta fun
tion is a fun
tion of two variable τ and z, where τ ∈ H, Imτ > 0and z inC de�ned by

ϑ(z, τ) =
∑

n∈Z

e(πin
2τ+2πinz) . (4.55)One 
an look at it as a Fourier series for a fun
tion in z whi
h is periodi
 with respe
t to

z 7→ z + 1 by writing it as
ϑ(z, τ) =

∑

n∈Z

an(τ)e
2πinz), where an(τ) = eπin

2τ (4.56)from where the ϑ(z, τ) = ϑ(z + 1, τ) part is obvious.4.8 Siegel Modular FormsIn studying Siegel modular forms we will generalize ellipti
 modular forms on SL(2,Z) to amore general 
lass of modular forms known as ve
tor valued modular forms. Viewed fromthis point of view it be
omes easier to motivate intuitively the 
onstru
tion of Siegel modularforms along the lines of ellipti
 modular forms by suitably generalizing ea
h notion involvedin the de�nition. The modular forms we have studied so far are holomorphi
 maps fromthe 
omplex upper half plane H to C. For more general 
ontexts, we would like to studymodular forms more general than ones with values in C. Ve
tor valued modular forms mapthe Siegel upper half plane (a generalization of the 
omplex upper half plane) to a ve
tor131



Chapter 4. Modular Formsspa
e V . We de�ne all the relevant ideas as we go along and put together the de�nition ofSiegel modular forms, but before that we re
olle
t some basi
 de�nitions.The symple
ti
 group plays an important role in the theory of Siegel modular forms andwe start by re
alling its de�nition.De�nition 4.8.1 Symple
ti
 Matrix: A 2g× 2g matrix M is said to be a symple
ti
 matrixif it satis�es the following 
ondition
MTΩM = Ω, (4.57)where MT denotes the transpose of M and Ω is the �xed nonsingular, skew-symmetri
 blo
kmatrix generally taken to be

Ω =

(
0 In

−In 0

)
, (4.58)where Ig is the g × g identity matrix.The above 
ondition on symple
ti
 matri
es 
an also be expressed equivalently as follows.Let the 2g × 2g matrix M be a blo
k matrix given by

M =

(
A B

C D

) (4.59)where ea
h of A,B,C and D are g× g matri
es. Then the above 
ondition is equivivalent to
ABT = BAT , CDT = DCT , and ADT −BCT = 1g. (4.60)There is more than one way of expressing the above relations and any one su�
es. Ω hasdeterminant +1 and its inverse is given by Ω−1 = ΩT = −Ω..Every symple
ti
 matrix is invertible with the inverse given by

M−1 = Ω−1MTΩ. (4.61)Further, the produ
t of two symple
ti
 matri
es is, again, a symple
ti
 matrix. Thus, we seethat the set of all symple
ti
 matri
es has the stru
ture of a group. This group is known asthe symple
ti
 group.De�nition 4.8.2 Symple
ti
 group: The symple
ti
 group of degree 2g over a �eld F, de-noted Sp(g,F), is the group of 2g×2g matri
es with entries in F, and with the group operation132



Chapter 4. Modular Formsas matrix multipli
ation.More generally, it is the set of linear transformations of a 2g-dimensional symple
ti
 ve
torspa
e (a ve
tor spa
e with a nondegenerate, skew-symmetri
 bilinear form known as thesymple
ti
 form) over F . For our purposes, we will only be working with Sp(g,Z). Sin
eevery symple
ti
 matrix has determinant +1, Sp(2,Z) is a subgroup of SL(2,Z) and is adis
rete subgroup of Sp(g,R) just as SL(2,Z) is of SL(2,R).We now start our study of Siegel modular forms. We said they generalize the notion ofordinary modular forms to ve
tor valued modular forms, so let us understand their 
onstru
-tion by generalizing ordinary modular forms. To de�ne an ellipti
 modular form we neededthe 
on
ept of a holomorphi
 fun
tion on C, the upper half plane H, the group SL(2,Z)and its a
tion on H (or rather, of the quotient, the modular group Γ(1)) and the fa
tor ofautomorphy (cz+ d)k. To generalize the de�nition to ve
tor valued modular forms, we needto suitably generalize ea
h of the notions in the de�nition.4.8.1 The group.The group SL(2,Z) is the automorphism group of the Z2 latti
e with the standard alternatingform4 〈, 〉 with
〈(a, b), (c, d)〉 = ad− bc. (4.62)We 
onsider a more general latti
e Z2g

5 of rank 2g, g ∈ Z≥1, equiped with a symple
ti
form 〈, 〉 a
ting on the basis ve
tors ei, . . . , eg, f1, . . . , fg as follows
〈ei, ej〉 = 0, 〈fi, fj〉 = 0, and 〈ei, fj〉 = δij , (4.63)with δij is the Krone
ker delta. From the de�nition of a symple
ti
 group above, the auto-morphism group of this latti
e will be the symple
ti
 group Sp(g,Z). In the present 
ontextit is 
alled the Siegel modular group often denoted Γg. Thus, the generalization of themodular group, for ordinary modular forms, is the Siegel modular group.4An alternating form is a bilinear form B on a ve
tor spa
e V su
h that for all v ∈ V , B(v, v) = 0. Bythis property it is automati
ally skew-symmetri
, as it should be for a symple
ti
 ve
tor spa
e.5for �nite-dimensional symple
ti
 ve
tor spa
es, the dimension is ne
essarily even sin
e the determinantof an odd dimensional skew-symmetri
 matrix vanishes.
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Chapter 4. Modular Forms4.8.2 The Upper Half Spa
e.Next we have to a

ordingly generalize the upper half spa
e, on whi
h the modular groupa
ts, to a suitable spa
e on whi
h the Siegel modular group a
ts. Modular fun
tions werelinear transformations, with 
ertain pres
ribed transformation properties, of the 
omplexupper half plane, whi
h 
onsists of elements in the 
omplex plane with positive de�niteimaginary part. Sin
e now we are looking at linear transformations of Z2g, the spa
e we arelooking for will be a spa
e of matri
es. The apropriate generalization to the upper half spa
e,known as the Siegel upper half spa
e is the set of g× g 
omplex symmetri
 matri
es witha positive de�nite imaginary part (obtained by taking the imaginary part of every individualmatrix entry).De�nition 4.8.3 The Siegel upper half spa
e, denoted Hg is de�ned as
Hg = {τ ∈MC(g, g) : τ t = τ, Im(τ) > 0}, (4.64)where MC(g, g) is the set of g × g matri
es over C.Justifying the word `generalization', we get ba
k H as H1 when g = 1.We must now de�ne the a
tion of the Siegel modular group on Hg, whi
h is done asfollows. The a
tion of γ =

(
A B

C D

)
∈ Sp(2,Z) on τ ∈ Hg is given by

τ 7→ γ(τ) = (Aτ +B)(Cτ +D)−1. (4.65)This a
tion is well de�ned, in parti
ular (Cτ +D) is invertible, and γ(τ) is symmetri
. Alsothe imaginary part of the transformed matrix, Im(γ(τ)), is positive de�nite, as it should be,and is again in Hg.Given this a
tion, it is natural, as before, to look for the fundamental domain for thea
tion of the group on Γg. Siegel 
onstru
ted a fundamental domain for g ≥ 2 but they arenot as easy to work with as was with the 
ase of ordinary modular forms, and are of limitedhelp in understanding the group a
tion. We will not have to say mu
h about fundamentaldomains in this se
tion.
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Chapter 4. Modular Forms4.8.3 The Automorphy Fa
torWe now need to only generalize the automorphy fa
tor (Cτ + D)k to the 
ase of Siegelmodular forms. This 
an be easily done noting that C and D are matri
es and we know themodular form takes values in a ve
tor spa
e, say V , so we need it to be a map from a spa
eof matri
es to a ve
tor spa
e. Thus, we need to 
onsider a representation of GL(g,C) in V .Consider the representation
ρ : GL(g,C)→ GL(V ) (4.66)where V is a �nite-dimensional ve
tor spa
e over C provided with a hermitian metri
.Now, we are ready to de�ne a Siegel modular form.De�nition 4.8.4 Siegel Modular Form of Weight ρ A holomorphi
 map f : Hg → V is
alled a Siegel modular form of weight ρ if

f(γ(τ)) = ρ(Cτ +D)f(τ) (4.67)for all γ =

(
A B

C D

)
∈ Sp(2,Z) and all τ ∈ Hg. For g = 1, we require that f is holomorphi
at ∞.Modular forms of weight ρ form a C- ve
tor spa
eMρ = Mρ(Γg), and all theMρ are �nitedimensional. If ρ is a dire
t sum of two representations ρ = ρ1 ⊕ ρ2, then Mρ is isomorphi
to the dire
t sum Mρ1 ⊕Mρ2 and so we 
an restri
t ourselves to 
onsidering Mρ for only theirredu
ible representations of GL(g,C).We also de�ne s
alar-valued Seigel modular forms of weight k, known as 
lassi
al Seigelmodular forms, below.De�nition 4.8.5 Classi
al Siegel modular form: A 
lassi
al Siegel modular form of weight

k and degree g is a holomorphi
 fun
tion f : Hg → C su
h that
f(γ(τ)) = det(cτ + d)kf(τ) (4.68)for all γ = (a, b; c, d) ∈ Sp(g,Z) (with for g = 1 the usual holomorphi
ity requirements at

∞).We denote by Mk = Mk(Γg) the ve
tor spa
e of 
lassi
al Siegel modular forms of weight
k. These spa
es form a graded ring M cl := ⊕Mk of M of 
lassi
al Siegel modular forms.When g = 1, this simply redu
es to the usual modular forms on SL(2,Z). 135



Chapter 4. Modular Forms4.8.4 Fourier ExpansionsAnalogous to the ellipti
 modular forms on SL(2,Z), we 
an expand the ve
tor valuedmodular forms in a Fourier series. In fa
t, the Siegel modular forms 
an be 
onstru
ted andexpressed in more than one ways. We will study two of these, using the theta series, and theFourier-Ja
obi development, sin
e not only are both important ways of 
onstru
ting Siegelmodular forms in general, but both 
onstru
tions are important to us parti
ularly for ourstudy of the Siegel modular forms o

uring in 
ounting 1
4
-BPS states in string theory. In
onstru
ting the partition fun
tion for the degenera
y of 1

4
-BPS states in the string models weare interested in, we will make use of both the approa
hes. Below we dis
uss the q-expansionof Siegel modular forms before studying the above mentioned expansions.For every symmetri
 g × g matrix n ∈ GL(g,Q), su
h that 2n is an integral matrix, we
an de�ne a linear form with integral 
oe�
ients in the 
oordinates τij of the Siegel upperhalf spa
e Hg as follows Tr(nτ) =

g∑

i=1

niiτii + 2
∑

1≤i≤j≤g

nijτij . (4.69)Also, every integral 
ombination of the 
oordinates is of this form. The matrix n is 
alleda half-integral matrix. Now, a fun
tion f : Hg → C that is periodi
 in the sense that
f(τ + s) = f(τ) for all symmetrix g × g matri
es s admits a Fourier expansion

f(τ) =
∑

n half integral a(n)e2πiTr(nτ) (4.70)with a(n) ∈ C given by the Fourier transform of f(τ) as
a(n) =

∫

x mod 1

f(τ)e−2πiTr(nτ)dx, (4.71)where dx is the Eu
lidean volume of the spa
e of x-
oordinates and the integral runs over
−1

2
≤ xij ≤ 1

2
. This series is uniformly 
onvergent on 
ompa
t subsets.For the 
ase of ve
tor-valued modular forms in in Mρ we have a similiar Fourier serieswhere the 
oe�
ients a(n) will take values in the ve
tor spa
e instead of C as in the 
ase ofperiodi
 fun
tions de�ned above and satisfy

a(uTnu) = ρ(uT)a(n) for all u ∈ GL(g,Z) . (4.72)136



Chapter 4. Modular FormsLike before we write qn = e2πiTr(nτ) and write (4.70) as
f(τ) =

∑

nhalf-integral a(n)qn . (4.73)A modular form f =
∑

n a(n)e2πiTr(nr) ∈Mk(Γg) is 
alled singular if a(n) 6= 0 implies that nis a singular matrix (i.e. det(n) = 0).With this general introdu
tion on the Fourier expansion of a Siegel modular form, alongthe lines of the g = 1 
ase, we move on to study other developments that exist for g > 1that provide more information about the Siegel modular forms.4.8.5 The Fourier-Ja
obi development of a Siegel modular form.For g = 1, we saw there exists a Fourier expansion for the Siegel modular forms. For
g > 1, there are other developments of Siegel modular forms whi
h are more general thanthe Fourier expansion. We will examine the Fourier-Ja
obi epansion of a Siegel modularform here. Though the Fourier-Ja
obi development is valid and extremely useful for anygeneral g > 1, we will in keeping with the s
ope of this work, restri
t ourselves to the 
aseof g = 2.Consider (4.70), where the fun
tion f(τ) : Hg → C, whi
h is periodi
 in the parameter
τ , is expanded as a Fourier series in terms of the e2πiTr(nτ) with the 
oe�
ients a(n) ∈ C.Here τ ∈ Hg. Now, suppose we wanted to isolate the periodi
ity of a Siegel modular form
f(τ), of weight k on Γg, under τ ′ ∈ H1, as against τ ∈ Hg, and Fourier expand f(τ) in termsof e2πiTr(nτ ′). The analog of the 
oe�
ients a(n) would now 
orrespond to fun
tions whi
htake values from Hg−1. Spe
ializing to our 
ase of g = 2, we 
an Fourier expand the Siegelmodular form in terms of one of the variable and obtain what is 
alled the Fourier-Ja
obidevelopment of the Siegel modular form. Let us write the matrix Z =

(
z1 z2

z2 z3

)
∈ H2(notation in keeping with the additive lifts of Siegel modular forms to be studied in Chatter

5), then the Fourier expansion 
an be written as
f(Z) =

∞∑

m=0

φm(z1, z2)e
2πimz3 . (4.74)where the fun
tion φm(z1, z2) is now a Ja
obi form of weight k and index m (re
all f(τ) wasa Siegel modular form of weight k). This means φm satis�es 137



Chapter 4. Modular Forms1. φm((az1 + b)/(cz1 + d), z2/(cz1 + d)) = (cz1 + d)ke2πimcz
2
2/(cz1+d)φm(z1, z2),2. φm(z1, z2 + λz1 + µ) = e−2πim(λ2z1+2λz2)φm(z1, z2)3. φm has a Fourier expansion of the form

φm =

∞∑

n=0

∑

r∈Z,r2≤4mn

c(n, r)e2π(nz1+rz2) . (4.75)This gives a relation between Siegel modular forms for genus 2 and Ja
obi forms and we willuse this 
orresponden
e later in deriving the degenera
y of 1
4
-BPS states from the degenera
yof 1

2
-BPS states.4.8.6 Theta SeriesWe de�ne the genus-two theta 
onstants as follows[86℄:

θ
[a
b

]
(Z) =

∑

(l1,l2)∈Z2

q
1
2
(l1+

a1
2

)2 r(l1+
a1
2

)(l2+
a2
2

) s
1
2
(l2+

a2
2

)2 eiπ(l1b1+l2b2) , (4.76)where a =

(
a1

a2

), b =

(
b1

b2

), and Z =

(
z1 z2

z2 z3

)
∈ H2. Further, we have de�ned q =

exp(2πiz1), r = exp(2πiz2) and s = exp(2πiz3). The 
onstants (a1, a2, b1, b2) take values
(0, 1). For evenaTb, it yields the so 
alled even theta 
onstants. Thus there are sixteengenus-two theta 
onstants. There are ten su
h theta 
onstants for whi
h we list the valuesof a and b:

m 0 1 2 3 4 5 6 7 8 9(
a

b

) (
0
0
0
0

) (
0
1
0
0

) (
1
0
0
0

) (
1
1
0
0

) (
0
0
0
1

) (
1
0
0
1

) (
0
0
1
0

) (
0
1
1
0

) (
0
0
1
1

) (
1
1
1
1

)We will refer to the above ten theta 
onstants as θm(Z) with m = 0, 1, . . . , 9 representingthe ten values of a and b as de�ned in the above table. These are modular forms on alevel 2 
ongruen
e subgroup of Sp(g,Z) of weight 1/2. One 
an 
onstru
t Siegel modularforms on Sp(g,Z) using the even theta 
onstants. For example, for g = 2 the produ
t of thesquares of the ten even theta 
onstants gives a 
usp form of weight 10 of Sp(2,Z) whi
h wewill en
ounter in the degenera
y formula for 1
4
-BPS states. We will look at examples of theabove pro
edure in 
onstru
ting Siegel modular forms in 
hapter 5. 138



Chapter 4. Modular Forms4.9 Con
lusionIn this 
hapter we have learnt preliminary ideas about modular forms. Modular forms will bevery important to us in studying the 
ounting of dyons in supersymmetri
 string theories asthe degenera
y of the 1
2
-BPS and 1

4
-BPS states are generated by modular forms. In parti
ularthe degenera
y of 1

4
-BPS states are generated by genus-two Siegel modular forms. They alsoform the link between the CHL strings and the family of BKM Lie superalgebras related tothe CHL models via the denominator identity of the BKM Lie superalgebras.Here we have learnt the basi
 fa
ts and de�nitions of the theory of modular forms. Wehave seen fun
tions with 
ertain restri
ted transformation properties under the generatorsof PSL(2,Z) and how this leads to the idea of modular forms. We have also studied theirFourier expansions. We then graduated to more involved modular forms � the Siegel modularforms whi
h are in a sense generalizations of ordinary modular forms. We studied the Fourierexpansions of Siegel modular forms, besides dis
ussing methods of 
onstru
ting them. Wewill put these ideas to use in 
hapter 5 in 
onstru
ting the various modular forms o

uringin the 
ounting of dyoni
 states.

139



5Constru
ting the Modular Forms
5.1 Introdu
tionIn 
hapter 2, we undertook an expli
it 
ounting of BPS dyoni
 bla
k hole mi
rostates in two
lasses of four-dimensional N = 4 supersymmetri
 string theories � the CHL models and thetype II models. Both models are obtained as asymmetri
 ZN -orbifolds of a parent theory �the heteroti
 string 
ompa
ti�ed on a six-torus (for CHL models) and the type IIA string
ompa
ti�ed on a six-torus. The degenera
y of 1

4
-BPS states was shown by David, Jatkarand Sen to be be generated by a genus-two Siegel modular form generalizing the proposalof DVV. Their results were restri
ted to prime values of N . In this 
hapter, we extend theirproposal to all allowed values of N , not ne
essarily prime.Consider a 1

4
-BPS dyoni
 state with ele
tri
 
harges qe and qm. Quantization of 
hargesimply that (for the ZN -orbifold)

1
2
q2
e = n

N
, 1

2
qe · qm = ℓ and 1

2
q2
m = m ,for three integers (n, ℓ,m). Let d(n, ℓ,m) denote the degenera
y of su
h dyoni
 states. Then,the degenera
y d(n, ℓ,m) of dyons in the CHL models with these 
harges is generated by agenus-two Siegel modular form, Φ̃k(Z), at weight k and level N . One has

64

Φ̃k(Z)
=
∑

n,ℓ,m

d(n, ℓ,m) qn/Nrℓsm , (5.1)where fa
tor of 64 in the numerator a

ounts for the degenera
y of a single 1
4
-multiplet.When N is prime and N + 1|24, one has (k + 2) = 24/(N + 1) and these were the modular140



Chapter 5. Constru
ting the Modular Formsforms 
onstru
ted by Jatkar and Sen[2℄. We list below all the possible values of (N, k) thatappear in the CHL models: For the type II models, one has another Siegel modular form
N 1 2 3 4 5 6 7 8 11
k 10 6 4 3 2 2 1 1 0Table 5.1: (N, k) values for the CHL modelswhi
h we denote by Ψ̃k(Z), at weight k and level N . The degenera
y of 1

4
-BPS dyons in thetype II models are generated by

64

Ψ̃k(Z)
=
∑

n,ℓ,m

d(n, ℓ,m) qn/Nrℓsm , (5.2)where fa
tor of 64 in the numerator a

ounts for the degenera
y of a single 1
4
-multiplet.When N is prime and N + 1|12, one has (k + 2) = 12/(N + 1) and the modular forms were
onstru
ted by David, Jatkar and Sen for N = 2, 3[31℄. We list below all the possible valuesof (N, k) that appear in the type II models:

N 1 2 3 4 5
k 4 2 1 1 0

(5.3)Table 5.2: (N, k) values for the typeII modelsWe show that the type II modular forms Ψ̃k(Z) 
an be written in terms ratios of theCHL modular forms Φ̃k(Z).We also 
onstru
t another 
losely related modular form from the two aforementionedmodular forms. Let
Φk(Z) ∼ z−k1 Φ̃k(Z̃) and
Ψk(Z) ∼ z−k1 Ψ̃k(Z̃) , (5.4)with

z̃1 = −1/z1 , z̃2 = z2/z1 , z̃3 = z3 − z2
2/z1 .In the CHL models, the genus-two Siegel modular forms Φk(Z) are related to the R2 
or-re
tions in the string e�e
tive a
tion[2℄. We thus have two modular forms for ea
h 
lass ofmodels. 141



Chapter 5. Constru
ting the Modular FormsWe will also need to study the `square roots' of the modular forms Φ̃k(Z) and Φk(Z),denoted ∆̃k/2(Z) and ∆k/2(Z) respe
tively, in order to understand the algebra stru
tureunderlying the degenera
y of the 1
4
-BPS states. We will obtain ∆̃k/2(Z) and ∆k/2(Z), whi
hthemselves are also modular forms, in the form of an in�nite sum and an in�nite produ
talong the lines of the 
onstru
tion of the modular forms Φ̃k(Z) and Φk(Z). These modularforms arise as the denominator formulae of BKM Lie superalgebras as we will study in thenext 
hapter, and hen
e, to interpret them as the sum and produ
t side of a denominatoridentity, one has to prove their modular properties whi
h we will show in this 
hapter.5.2 Modular forms via the additive lift5.2.1 Additive lift of Ja
obi forms with integer indexNow we 
ome to the 
onstru
tion of the modular forms Φ̃k(Z) and Φk(Z) from the weakJa
obi forms 
onstru
ted as mentioned in the previous se
tion. Given a Ja
obi form ofweight k and index 1, Maaÿ 
onstru
ted a Siegel modular form of weight k leading to anexpli
it formula[87℄ using the 
oe�
ients of the Fourier expansion of the Ja
obi form. Thispro
edure is known as the arithmeti
 or additive lift of the Ja
obi form. It is known thatthe ring of Siegel modular forms is generated by four modular forms with weights 4, 6, 10and 12. For instan
e, the weight 10 modular form, Φ10(Z), is generated by the Ja
obi formof weight 10 and index 1

φ10,1(z1, z2) = θ1(z1, z2)
2 η(z1)

18 . (5.5)More generally, 
onsider a weak Ja
obi form of weight k, index 1 and level N as
φk,1(z1, z2) =

ϑ1(z1, z2)
2

η(z1)6
gρ(z1) =

∑

n,ℓ

a(n, ℓ) qnrℓ , (5.6)where gρ(z1) is a genus-one modular form of weight (k + 2) at level N possibly with 
har-a
ter. We will refer to the weak Ja
obi form as the additive seed. The Maaÿ 
onstru
tion(generalized to higher levels and modular forms with 
hara
ter by Jatkar and Sen[2℄) leadsto the following formula for weight k modular form given by the Fourier 
oe�
ients, a(n, ℓ),of the additive seed
Φk(Z) ≡

∑

(n,ℓ,m)>0

∑

d|(n,ℓ,m)

χ(d) dk−1 a
(
nm
d2
, ℓ
d

)
qnrℓsm , (5.7)142



Chapter 5. Constru
ting the Modular Formswhere
(n, ℓ,m) > 0 implies n,m ∈ Z+ , ℓ ∈ Z and (4nm− ℓ2) > 0and χ(d) is a real Diri
hlet 
hara
ter[88℄ modulo N . The weight k and the 
hara
ter χ aredetermined by the modular form gρ(z1).When χ(d) is trivial, i.e.,

χ(d) =

{
0 if (d,N) 6= 1

1 otherwise , (5.8)we obtain a level N Siegel modular form. When the Ja
obi form is one with 
hara
ter, onesees the appearan
e of a non-trivial Diri
hlet 
hara
ter and the Siegel modular form obtainedfrom the additive lift is one with 
hara
ter.5.2.2 Additive lift of Ja
obi forms with half-integer indexWe have just 
onsidered modular forms obtained from the additive lift of Ja
obi forms withintegral index. We will now study examples with half-integral index, as they appear in thedenominator formulae for the the BKM Lie superalgebras GN and G̃N . that we 
onsider inthe next 
hapter. The simplest example of a modular form with half-integral index is givenby the Ja
obi theta fun
tion, ϑ1(z1, z2). It is a holomorphi
 Ja
obi form of weight 1/2 andindex 1/2 with 
hara
ter. This Ja
obi form appears as the denominator formula of the a�neKa
-Moody algebra, Â(1)
1 . Further, we will see that the modular forms ∆̃k/2(Z) and ∆k/2(Z)
an also be obtained as the additive lift of a Ja
obi 
usp form of Γ1(N) of weight k/2 andindex 1/2 ψk/2,1/2(z1, z2). The Fourier expansion of su
h a Ja
obi form with half-integralindex is of the form:
ψk/2,1/2(z1, z2) =

∑

n,ℓ≡1 mod 2

g(n, ℓ) qn/2rℓ/2 , (5.9)with q = exp(2πiz1) and r = exp(2πiz2) and s = exp(2πiz3). The modular form ∆k/2(Z) isde�ned by the additive lift[7, see appendix C℄:
∆k/2(Z) ≡

∑

(n,ℓ,m)>0

∑

d|(n,ℓ,m)

χ(d) d
k−2
2 g

(
nm
d2
, ℓ
d

)
qn/2rℓ/2sm/2 , (5.10)where χ(d) is the 
hara
ter asso
iated with the additive seed. 143



Chapter 5. Constru
ting the Modular FormsAs an example, the Ja
obi form of weight 5 and index 1/2

ψ5,1/2(z1, z2) = ϑ1(z1, z2) η(z1)
9 , (5.11)generates the Siegel modular form with 
hara
ter, ∆5(Z) via the additive lift. The Fourierexpansion of the Ja
obi form now involves half-integral exponents. One has

ψ5,1/2(z1, z2) =
∑

n,ℓ=1 mod 2

g(n, ℓ) qn/2rℓ/2 , (5.12)with g(n, ℓ) = 0 unless 4n−ℓ2 ≥ 0. The modular form ∆5(Z) has the following expansion[89℄
∆5(Z) =

∑

(n,ℓ,m)>0

∑

d|(n,ℓ,m)

dk−1 g
(
nm
d2
, ℓ
d

)
qn/2rℓ/2sm/2 . (5.13)Noti
e the similarity with the Maaÿ formula given in Eq. (5.7) with half-integral powers of q,

r and s appearing where integral powers appeared. Gritsenko and Nikulin have shown thatthis modular form appears as the denominator formula of a BKM Lie superalgebra. ∆5(Z)is a modular form with 
hara
ter under the full modular group, Sp(2,Z). It transforms as
∆5(M · Z) = vΓ(M) (CZ +D)5 ∆5(Z) , (5.14)where vΓ(M) is the unique non-trivial real linear 
hara
ter of Sp(2,Z)[90℄ andM = ( A B

C D ) ∈
Sp(2,Z). An expli
it expression for vΓ(M) is[89℄

vΓ

(
0 −I2
I2 0

)
= 1 , vΓ

(
I2 B

0 I2

)
= (−1)b1+b2+b , (5.15)

vΓ

(
UT 0

0 U 1

)
= (−1)(1+u0+u2)(1+u1+u3)+u0u2 , (5.16)where I2 is the 2× 2 identity matrix, B =
(
b1 b
b b2

) and U = ( u0 u3
u1 u2 ) is a uni-modular matrix.5.3 The additive seed for CHL modelsIn 
hapter 2, we 
ounted the states of the bla
k hole expli
itly to obtain the full partitionfun
tion of the 1

4
-BPS states. We saw that the 
ounting, and hen
e the partition fun
tion,144



Chapter 5. Constru
ting the Modular Forms
an be split into three independent 
omponents � the degenera
y of the ex
itations of theKaluza-Klein monopole, the degenera
y of the ex
itations of the overall motion of the D1-D5 system moving in the ba
kground of the Kaluza-Klein monopole, and the degenera
y ofthe relative motion of the D1-D5 system. The produ
t of these three 
omponents gave thefull partition fun
tion whi
h was proportional to the modular form Φ̃k(Z). The produ
t oftwo of the 
ontributions, namely the degenera
y of the ex
itations due to the Kaluza-Kleinmonopole and the D1-D5 system 
ombine to give a weak Ja
obi form of weight k, index 1and level N . This Ja
obi form serves as the additive seed that generates the modular form
Φ̃k(Z). This 
an be 
ompared with the dis
ussion on the Fourier-Ja
obi development of aSiegel modular form at the end of 
hapter 4 where the 
orresponding Siegel modular formwas broken up into a periodi
 pie
e and a Ja
obi form. To generate the modular forms fromthe 
orresponding weak Ja
obi form, we �rst need to obtain the generating fun
tion of thedegenera
y of ele
tri
ally 
harged 1

2
-BPS states whi
h we denoted by gρ(z1) in eq. (5.6).It turns out that the genus-one form gρ itself has a very ni
e stru
ture whi
h 
an beunderstood in terms of `
y
le shapes' of produ
ts of Dedekind's eta fun
tions obtained fromthe set of symple
ti
 automorphisms of a K3 surfa
e[9℄. The allowed 
y
le shapes satisfy
ertain 
onditions on the form of their exponents that depends on the orbifolding group ZN .This is a very interesting result that gives beautiful insight into the form of the degenera
y ofthe 1

2
-BPS states and we spend some time now understanding the degenera
y of the 1

2
-BPSstates �rst before proving this result. It also provides us with the required information to
onstru
t the modular forms for the values of N not 
onsidered by Jatkar and Sen[2℄.5.3.1 Counting 1

2
-BPS states in CHL modelsThe 
ounting of the degenera
y of 1

2
-BPS states of a given ele
tri
 
harge is mapped to the
ounting of states of the heteroti
 string with the right-movers1 in the ground state[35, 43, 42℄.While this is 
on
eptually easy to 
ompute, for orbifolds, the 
ontributions from the di�erentse
tors to the degenera
y need to be added up. Up to exponentially suppressed terms (forlarge 
harges), the leading 
ontribution arises from the twisted se
tors and the asymptoti
expansion takes a simple form (given in Eq. (5.20) below)[35℄. This asymptoti
 expansionis 
onsistent with a produ
t of η-fun
tions 
alled η-produ
ts. Let us, brie�y re
all the 
aseof 1

2
-BPS states.1we take the 
onvention that right movers are taken to be supersymmetri
 and left movers are bosoni
 inthe heteroti
 string. 145



Chapter 5. Constru
ting the Modular FormsHeteroti
 string on T 6(Ele
tri
) 1
2
-BPS ex
itations of the heteroti
 string 
arrying 
harge N ≡ 1

2
q2
e are obtainedby 
hoosing the supersymmetri
 (right-moving) se
tor to be in the ground state. The levelmat
hing 
ondition be
omes

−1

2
q2
e +NL = 1 , (5.17)where qe ∈ Γ22,6 and NL is the os
illator 
ontribution to L0 in the bosoni
 (left-moving)se
tor. Thus, we see that

n = 1
2
q2
e = NL − 1 .Let d(n) represent the number of 
on�gurations of the heteroti
 string with ele
tri
 
hargesu
h that 1

2
q2
e = n. The level mat
hing 
ondition implies that we need to 
ount the numberof states with total os
illator number NL = (n+ 1). The generating fun
tion for this is

16

η(z1)24
=

∞∑

n=−1

d(n) qn , (5.18)where the fa
tor of 16 a

ounts for the degenera
y of a 1
2
-BPS multiplet � this is the degen-era
y of the Ramond ground state in the right-moving se
tor.The CHL orbifold of the heteroti
 string on T 6In the CHL orbifold, the ele
tri
 
harge takes values in a latti
e Γ⊥ ⊂ Γ22,6 of signature

(22 − 2k̂, 6) = (2k + 2, 6) that is not self-dual. Here Γ⊥ is the sub-latti
e of Γ22,6 that isinvariant under the a
tion of the orbifold group. Let vol⊥ be the volume of the unit 
ell in
Γ⊥. De�ne the generating fun
tion of the degenera
ies d(n) of 1

2
-BPS states as follows:

16

gρ(z1/N)
≡

∞∑

n=−1

d(n) qn/N , (5.19)for the ZN CHL orbifold taking into a

ount that the ele
tri
 
harge is quantized su
h that
Nq2

e ∈ 2Z. Setting z1 = iµ/2π, and in the limit µ→ 0, one has[35℄
lim
µ→0

1

gρ(iµ/2πN)
= 16 e4π

2/µ
( µ

2π

)(k+2)/2

(vol⊥)1/2 + · · · (5.20)
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Chapter 5. Constru
ting the Modular Formswhere the ellipsis indi
ates exponentially suppressed terms. Making an ansatz for gρ(z1) inthe form of an η-produ
t
gρ(z1) =

N∏

r=1

η(rz1)
ar = η(z1)

a1η(2z1)
a2 · · ·η(Nz1)aN , (5.21)we 
an identify the above η-produ
t with the `
y
le shape' ρ = 1a12a2 · · ·NaN . The η-produ
thas to satisfy the following 
onditions:1. The asymptoti
 behaviour of gρ(z1) given in Eq. (5.20) requires

(
Na1 +N a2

2
+ · · ·+ aN

)
= 24 ,

a1 + a2 + · · ·+ aN = 2(k + 2) , (5.22)
(
1a12a2 · · ·NaN

)−1
= vol⊥ .The last 
ondition involving the volume of the unit 
ell is exa
tly what one expe
ts foran orbifold a
tion on the basis ve
tors of the self-dual latti
e Γ20,4 ⊂ Γ22,4 
orrespondingto the 
y
le shape ρ.2. Considering ZN as a 
y
li
 permutation, one sees that the only permitted 
y
les areof length r su
h that r|N . One therefore imposes ar = 0 unless r|N . Thus, when N isprime, only a1 and aN are non-zero and the 
ondition simpli�es 
onsiderably.3. We will see later that the 
ondition for a 
y
le to be a balan
ed one implies that

a1 = aN among other things. It also implies that the �rst equation in Eq. (5.22) 
anbe rewritten as
a1 + 2a2 + · · ·+NaN = 24 . (5.23)These 
onditions uniquely �x the form of gρ(z1). When N is prime, one sees that a1 = aN =

24
N+1

.5.3.2 Symple
ti
 Automorphisms of K3 and M24To understand the 
y
le shapes that appear in the 1
2
-BPS state 
ounting better, let us
onsider the dual des
ription of the CHL orbifold as supersymmetri
 orbifold of type IIstring theory on K3 × T 2. The orbifold group a
ts on the K3 as a symple
ti
 (Nikulin)involution � it a
ts trivially on the nowhere vanishing (2, 0) holomorphi
 form. It was shown147



Chapter 5. Constru
ting the Modular Formsby Mukai that any �nite group of symple
ti
 automorphisms of a K3 surfa
e is a subgroupof the Mathieu group, M23[91℄.To better understand this result, 
onsider a symple
ti
 automorphism of K3, σ, of �niteorder, n (it is known that n ≤ 8). The number of �xed points, ε(n) (whi
h depends only onthe order of σ) is given by
ε(n) =

24

n
∏

p|n(1 + 1
p
)
,and happens to mat
h the number of �xed points for a similar element of the Mathieu group,

M23. The Mathieu group M24 
an be represented as a permutation group a
ting on a setwith 24 elements. Then, M23 is the subgroup of M24 that preserves one element of the set.Mukai the showed that if G is a �nite group of symple
ti
 automorphisms of K3, then(i) G a
ts as a permutation on H∗(K3,Z) and 
an be embedded as a subgroup of M23.(ii) G ne
essarily has at least �ve �xed points, one arising from H0,0(K3), H2,0(K3),
H1,1(K3), H0,2(K3) and H2,2(K3). The only non-trivial part is that there is at leastone �xed point in H1,1(K3).The embedding of G into M23 ⊂ M24 enables one to use known properties of M23. Inparti
ular, it was shown by Conway and Norton that any element of M24 has a balan
ed
y
le shape[92℄. Re
all that any permutation (of order n) may be represented by its 
y
leshape:

ρ ≡ 1a12a2 · · ·nan . (5.24)A 
y
le shape, ρ, is said to be balan
ed if there exists a positive integer M su
h that(
M
1

)a1(M
2

)a2 · · ·
(
M
n

)an is the same as ρ. Sin
e dim(H∗(K3)) = 24, one also has the 
ondition
∑

i

i ai = 24 . (5.25)As an example, the 
y
le shape 142244 is balan
ed with M = 4 and satis�es the above
ondition. Now given a balan
ed 
y
le shape, ρ, 
onsider the fun
tion gρ(z1) de�ned by thefollowing produ
t of η-fun
tions:
ρ 7−→ gρ(z1) ≡ η(z1)

a1η(2z1)
a2 · · · η(nz1)an . (5.26)Note that when the 
ondition (5.25) is satis�ed, gρ(z1) has no fra
tional exponents in its148



Chapter 5. Constru
ting the Modular FormsFourier expansion about the 
usp at in�nity. One has
gρ(z1) =

∞∑

m=1

am qm , with a1 = 1 , (5.27)where q = exp(2πiz1). One more 
ondition we require of the fun
tions is that of multipli
a-tivity. A fun
tion g(z1) =
∑

n anq
n is multipli
ative if anm = anam when g
d(n,m) = 1. Ofthe 1575 partitions of 24 (this is equivalent to all solutions of Eq.(5.25)), Dummit et. al. haveshown there exist a set of thirty multipli
ative η-produ
ts ea
h asso
iated with a 
y
le thatis balan
ed[93, 94℄. Con
luding the dis
ussion on the degenera
y of 1

2
-BPS states, we list inTable 5.3, the various 
y
le shapes(restri
ting to shapes with M ≤ 16), the 
orrespondingweight of the genus-two modular form generating the degenera
ies of the 1

4
-BPS states inthe CHL model it 
orresponds to, and the dis
rete group G that is an automorphism of K3whi
h 
orresponds to the 
y
le shape ρ[9℄. The groups have been identi�ed by extra
tingthe 
y
le shape from the dis
ussion in Chaudhuri and Lowe[95℄ (see also proposition 5.1 in[96℄). It is interesting to note that all 
y
le shapes that appear in Table 5.3 arise from thea
tion of Nikulin involutions on H∗(K3) � this in
ludes produ
t groups su
h as Z2 × Z2. Inexamples involving produ
t groups, the η-produ
ts are a
tually of level N < M and the truelevel N is indi
ated in a separate 
olumn.5.3.3 Formulae for Φk(Z) and Φ̃k(Z)We 
an use the expressions for gρ(z1) and 
hara
ter χ(d) from Table 5.3 to determine theadditive seed and hen
e 
onstru
t the modular form Φk(Z) for N = 1, 2, 3, 4, 5, 6, 7, 8, 11using eq. (5.7). For prime N this reprodu
es the result of Jatkar and Sen[2℄.As dis
ussed by Jatkar and Sen[2℄, the generating fun
tion of dyoni
 degenera
ies, Φ̃k(Z),is given by expansion of the modular form, Φk(Z), about another inequivalent 
usp. Let

Φ̃k(Z) ≡ (vol⊥)1/2 z−k1 Φk(Z̃) , (5.28)with
z̃1 = −1/z1 , z̃2 = z2/z1 , z̃3 = z3 − z2

2/z1 .We have 
hosen a normalization for Φ̃k(Z) that di�ers from the one used in [2℄ but agrees withthe one used in [30℄. Consider 1
4
-BPS dyons with 
harges qe and qm su
h that 2n = Nq2

e,
2m = q2

m and ℓ = qe · qm. Then, the degenera
y d(n, ℓ,m) of dyons with these 
harges is149



Chapter 5. Constru
ting the Modular FormsCy
le shape ρ (k + 2) χ( a bc d ) M N G

124 12 1 1
1828 8 2 2 Z2

1636 6 3 3 Z3

212 6 4 2 Z2 × Z2

142244 5
(
−1
d

)
4 4 Z4

1454 4 5 5 Z5

12223262 4 6 6 Z6

2444 4 8 4 Z2 × Z4

38 4 9 3 Z3 × Z3

1373 3
(
−7
d

)
7 7 Z7

12214182 3
(
−2
d

)
8 8 Z8

2363 3
(
−3
d

)
12 6 Z2 × Z6

46 3
(
−1
d

)
16 4 Z4 × Z4

12113 2 11 11 Z11Table 5.3: The fun
tion gρ(z1) is a modular form of weight (k + 2), generalized level M(true level N and 
hara
ter χ). Only non-trivial 
hara
ters are indi
ated in 
olumn 3. The
N = 11 example is not a symple
ti
 involution of K3.generated by

64

Φ̃k(Z)
=
∑

n,ℓ,m

d(n, ℓ,m) qn/Nrℓsm . (5.29)A similar additive lift for Φ̃k(Z) is given by the following seed:
φ̃k,1(z1, z2) =

ϑ1(z1, z2)
2

η(z1)6
gρ(z1/N) . (5.30)We now provide detailed expressions for the genus-two modular forms Φk(Z) for the CHL

ZN orbifolds.
N = 1, 2, 3, 5For prime N and N + 1|24, the additive seed is given by (k + 2 = 24/(N + 1)

φk,1(z1, z2) = ϑ1(z1, z2)
2η(z1)

k−4 η(Nz1)
k+2 =

∑

n,ℓ

a(n, ℓ) qnrℓ . (5.31)150



Chapter 5. Constru
ting the Modular FormsThe additive lift is (a(n, ℓ) is as de�ned by the above equation)
Φk(Z) ≡

∑

(n,ℓ,m)>0

∑

d|(n,ℓ,m)

(
−1
d

)
dk−1 a

(
nm
d2
, ℓ
d

)
qnrℓsm . (5.32)This result is originally due to Jatkar and Sen[2℄

N = 4From Table 5.3, we see that k = 3 for N = 4. The seed for the additive lift is
φ3,1(z1, z2) =

ϑ1(z1, z2)
2

η(z1)2
η(2z1)

2η(4z1)
4 =

∑

n,ℓ

a(n, ℓ) qnrℓ . (5.33)The additive lift is (a(n, ℓ) is as de�ned by the above equation)
Φ3(Z) ≡

∑

(n,ℓ,m)>0

∑

d|(n,ℓ,m)

(
−1
d

)
dk−1 a

(
nm
d2
, ℓ
d

)
qnrℓsm , (5.34)where the Ja
obi symbol (−1

d

) is +1 when d = 1 mod 4; −1 when d = 3 mod 4 and 0otherwise. This a Siegel modular form with level four and 
hara
ter ψ4(γ) where
ψ4(γ) =

( −1

detD

) for γ =

(
A B

C D

)
∈ G0(4) , (5.35)where G0(4) is the level four subgroup of Sp(2,Z)[97℄.

N = 6From Table 5.3, we see that k = 2 for N = 6. The seed for the additive lift is
φ2,1(z1, z2) =

ϑ1(z1, z2)
2

η(z1)4
η(2z1)

2η(3z1)
2η(6z1)

2 =
∑

n,ℓ

a(n, ℓ) qnrℓ . (5.36)The additive lift is then (a(n, ℓ) is as de�ned by the above equation)
Φ2(Z) ≡

∑

(n,ℓ,m)>0

∑

d|(n,ℓ,m)
d=1,5 mod 6

dk−1 a
(
nm
d2
, ℓ
d

)
qnrℓsm . (5.37)
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Chapter 5. Constru
ting the Modular Forms
N = 8From Table 5.3, we see that k = 1 for N = 8. The seed for the additive lift is

φ1,1(z1, z2) =
ϑ1(z1, z2)

2

η(z1)4
η(2z1)η(4z1)η(8z1)

2 =
∑

n,ℓ

a(n, ℓ) qnrℓ . (5.38)The additive lift is then (a(n, ℓ) is as de�ned by the above equation)
Φ1(Z) ≡

∑

(n,ℓ,m)>0

∑

d|(n,ℓ,m)

(
−2
d

)
dk−1 a

(
nm
d2
, ℓ
d

)
qnrℓsm , (5.39)where the Ja
obi symbol (−2

d

) is +1 when d = 1, 3 mod 8; −1 when d = 5, 7 mod 8 and 0otherwise. This is also a Siegel modular form at level eight and 
hara
ter ( −2
detD

).5.3.4 Constru
ting the modular form ∆k/2(Z)The square-root works only for N = 1, 2, 3, 4, 5. For other values of N , we �nd non-integralFourier expansions arising from taking the `square-root' of Φk(Z). In these 
ases, the additiveseed for the modular form ∆k/2(Z) is
ψk/2,1/2(z1, z2) =

θ1(z1, z2)

η(z1)3

√
gρ(z1) , (5.40)where gρ(z1) are the η-produ
ts obtained from Table 5.3. This happens to be the squareroot of the Ja
obi form that generates Φk(Z). Similarly, the modular form ∆̃k/2(Z) is givenby the lift of the additive seed2 :

ψ̃k/2,1/2(z1, z2) =
θ1(z1, z2)

η(z1)3

√
gρ(z1/N) . (5.41)We have already seen the 
ase of N = 1. For N = 2, 5, the 
hara
ter χ(d) is the trivialone (see Eq. (5.8)) and the 
orresponding modular form is got by taking the appropriate2The Fourier expansion of the Ja
obi form here has powers of q1/N Thus one has nN ∈ Z in eq. (5.10).
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Chapter 5. Constru
ting the Modular Formsvalues of k and m. For N = 3, we need a non-trivial 
hara
ter χψ(d) =
(
−3
d

) i.e.,
χψ(d) =





0 d = 0 mod 3 ,

1 d = 1 mod 3 ,

−1 d = 2 mod 3 .

(5.42)Thus, when N = 3, the weight of the modular form is even as k = 2. However, the seedJa
obi form, ψ2,1/2(z1, z), transforms with 
hara
ter wγwψ thus evading the restri
tion on kbeing odd. Taking into a

ount the additional 
hara
ter, wψ, one obtains:
∆2(Z) =

∑

(n,ℓ,m)>0

∑

α|(n, ℓ, m)

α > 0

χψ(α) αk−1 g
(
nm
α2 ,

ℓ
α

)
qn/2rℓ/2sm/2 , (5.43)with χψ(α) as de�ned in Eq. (5.42) repla
ing χ(α). For N = 1, 2, 4, we will see that ∆k/2(Z)as well as ∆̃k/2(Z) 
an be de�ned as the produ
t of k even genus-two theta 
onstants andthe additive lift is not ne
essary.5.3.5 Expressions in terms of genus-two theta 
onstantsIn 
hapter 4 we saw that Siegel modular forms 
an be expressed in terms of produ
ts of evengenus-two theta 
onstants. Some of the Siegel modular forms o

uring in our study alsoadmit su
h an expression and we give it here. We mentioned earlier that the Siegel modularform for N = 1, Φ10(Z) 
an be written as the squared produ
t of all the even genus-twotheta 
onstants

Φ10(Z) =
( 1

64

9∏

m=0

θm(Z)
)2

≡ [∆5(Z)]2 . (5.44)Similarly, for N = 2 one 
an write the modular form Φ6(Z) as produ
ts of even genus-twotheta 
onstans as follows
Φ6(Z) =

( 1

64
θ2(Z)

∏

m=1 mod 2

θm(Z)
)2

≡ [∆3(Z)]2 . (5.45)while for Φ̃6(Z) the expression is given by
Φ̃6(Z) =

( 1

16
θ1(Z) θ3(Z) θ6(Z) θ7(Z) θ8(Z) θ9(Z)

)2

≡
[
∆̃3(Z)

]2
, (5.46)153



Chapter 5. Constru
ting the Modular FormsSimilarly, the Siegel modular forms for the N = 4 example we just 
onsidered are alsoexpressible as produ
ts of even genus-two theta fun
tions
Φ3(Z) =

(
1

8
θ5 (2Z) θ7 (2Z) θ9 (2Z)

)2

≡
[
∆3/2(Z)

]2
. (5.47)and

Φ̃3(Z) =

(
1

4
θ8 (Z′) θ3 (Z′) θ9 (Z′)

)2

≡
[
∆̃3/2(Z)

]2
. (5.48)where Z′ =

(
1
2
z1 z2

z2 2z3

).It is pleasing to note that the formulae for Φk(Z) and Φ̃k(Z) are squares of produ
tsof even genus-two theta 
onstants � this provides an independent way to see that theirsquare-roots are well-de�ned for N = 1, 2, 4. We have veri�ed these formulae by 
omparingthe expansions from the additive lift to the one given in terms of even genus-two theta
onstants to a fairly high power. The representation of the modular forms in terms of theeven genus-two modular forms gives us yet another way to obtain the modular forms.5.4 Produ
t formulae for Φk(Z) and Φ̃k(Z)Next we 
ome to the produ
t form of the modular forms Φ̃k(Z) and Φk(Z). The produ
tformulae for Φk(Z) as well as Φ̃k(Z) 
an be given in terms of the 
oe�
ients of the Fourierexpansion of the twisted ellipti
 genera[32℄. The twisted ellipti
 genus for a ZN -orbifold of
K3 is de�ned as3:

Fm,n(z1, z2) =
1

N
TrRR,gm

(
(−)FL+FRgnqL0 q̄L̄0e2πızFL

)
, 0 ≤ m,n ≤ (N − 1) , (5.49)where g generates ZN and q = exp(2πız1). The twisted ellipti
 genera are weak Ja
obi formsof weight zero, index one and level N [32℄.We will need to 
ompute the Fm,n(z1, z2) by use of their transformation properties underthe modular group. Let γ = ( a bc d ) ∈ SL(2,Z). Then, one has

Fm,n(z1, z2)
∣∣∣
γ

= F am+cn,bm+dn(z1, z2) . (5.50)3The origin of these twisted ellipti
 genera are in threshold 
orre
tions in string theory [98, 99, 100, 101,102℄ 154



Chapter 5. Constru
ting the Modular FormsIn parti
ular, under T : z1 → z1 + 1 and S : z1 → −1/z1, one has
F 0,n(z1, z2)

∣∣∣
T

= F 0,n(z1, z2) , F 0,n(z1, z2)
∣∣∣
S

= F n,0(z1, z2) . (5.51)More generally, the F r,s(z1, z2) are weak Ja
obi forms of weight zero and index one at level
N . Using their transformation properties under the modular group we 
an study their orbitsunder the a
tion of the generators T and S of the modular group and these give 
onstraintson the form of the Fm,n(z1, z2).Consider the Fourier expansion

F a,b(z1, z2) =

1∑

m=0

∑

ℓ∈2Z+m,n∈Z/N

ca,bm (4n− ℓ2) qnrℓ , (5.52)where q = exp(2πiz1) and r = exp(2πiz2). We will also write ca,b(n, ℓ) for the Fourier
oe�
ient ca,bm (4n− ℓ2). David, Jatkar and Sen provide the following produ
t formulae usingthe Fourier 
oe�
ients, ca,b(4n− ℓ2) twisted ellipti
 genera[32℄. One has 4
Φ̃k(q, r, s) =(q1/Nrs)×

N−1∏

m=0

∏

l,b∈Z,k∈Z+ r
N

k,l,b>0

(
1− qkrbsl

)1
2

PN−1
n=0 e−2πiln/N c(m,n)(kl,b)

×
N−1∏

m=0

∏

l,b∈Z,k∈Z− r
N

k,l,b>0

(
1− qkrbsl

)1
2

PN−1
n=0 e

2πiln/N c(m,n)(kl,b)

, (5.53)and
Φk(q, r, s) =(qrs)×

N−1∏

m,n=0

∏

(k,l,b)∈Z

(k,l,b)>0

{
1− e2πim/Nqkrbsl

}1
2
c(m,n)(kl,b)

×
N−1∏

m,n=0

∏

(k,l,b)∈Z

(k,l,b)>0

{
1− e−2πim/Nqkrbsl

}1
2
c(m,n)(kl,b)

. (5.54)4The produ
t formula for Φ̃k has already been obtained from the mi
ros
opi
 
ounting 
onsidered in
hapter 2.
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Chapter 5. Constru
ting the Modular Forms5.4.1 Determining the twisted ellipti
 generaRather than 
arry out an expli
it 
omputation, we determine the twisted ellipti
 genera using
onsisten
y 
onditions based on their modular properties. When N is prime, these 
ondi-tions uniquely �x the twisted ellipti
 genera. For 
omposite N , there remain undeterminedparameters. These parameters are �xed by imposing the 
ondition that the produ
t formulais 
ompatible with the produ
t form of the seed for the additive lift given in Eq. (5.6).Wewill illustrate the pro
edure for 
omposite N taking the example of Φ3(Z) and Φ̃3(Z), andsket
hing the idea of the general 
ase from it.Forming T-orbitsThe a
tion of T on the F r,s(z1, z2) break them up into orbits.� We have already seen that F 0,s(z1, z2 are T -invariant i.e., they form orbits of lengthone.� When g
d(r,N) = 1, all the F r,s(z1, z2) form a single orbit of length N (under repeateda
tion of T ).� When g
d(r,N) = m, then the F r,s(z1, z2) break up into m distin
t orbits of length
N/m.We will use these results to impose 
onstraints on the form of the F r,s(z1, z2).Along with the F r,s(z1, z2) obtained from the a
tion of the T generator, it su�
es to workout F 0,s(z1, z2) and the other F r,s(z1, z2) 
an be obtained by the a
tion of suitable SL(2,Z)operations.Let us write the most general F 0,s(z1, z2). For a weak Ja
obi forms of ΓJ0 (N), F 0,s(z1, z2)
an be written as follows[97℄:

F 0,0(z1, z2) = 8
N
A(z1, z2) , (5.55)

F 0,s(z1, z2) = a A(z1, z2) + αN (z1) B(z1, z2) , s 6= 0 , (5.56)where αN(z1) is a weight-two modular form of Γ0(N) and
A(z1, z2) =

4∑

i=2

(
ϑi(z1, z2)

ϑi(z1, 0)

)2

, B(z1, z2) =

(
ϑ1(z1, z2)

η3(z1)

)2

. (5.57)156



Chapter 5. Constru
ting the Modular FormsWhen N is 
omposite, the dimension of modular forms at weight two is greater than one.We list the possibilities for N = 4, 6, 8.
α4(z1) = b1 E2(z1) + b2 E4(z1) , (5.58)
α6(z1) = b1 E2(z1) + b2 E3(z1) + b3 E6(z1) , (5.59)
α8(z1) = b1 E2(z1) + b2 E4(z1) + b3 E8(z1) , (5.60)where EN(z1) is the Eisenstein series of weight-two and level N :
EN (z1) = 12i

π(N−1)
∂z1
[
ln η(z1)− ln η(Nz1)

]
,normalized so that its 
onstant 
oe�
ient is one (See Appendix B) .Next we use the S transformation on the ansatz for F 0,s(z1, z2) and follow its transfor-mation under powers of T and make the ansatz for αN (z1) 
ompatible with its orbit size.� When (s,N) = 1, there are no obvious 
onstraints.� When (s,N) = m > 1, then there will be 
onstraints.� When N = 4 and s = 2, then b2 = 0 as we need to have an orbit of size two.� When N = 6 and s = 2, 4, then b1 = b3 = 0 so that it is 
onsistent with an orbitsize of three.� When N = 6 and s = 3, then b2 = b3 = 0 so that it is 
onsistent with an orbitsize of two.� When N = 8 and s = 2, 6, then b3 = 0 so that it is 
onsistent with an orbit sizeof four.� When N = 8 and s = 4, then b2 = b3 = 0 so that it is 
onsistent with an orbitsize of two.Further simpli�
ation o

ur from symmetry 
onsiderations. F r,s(z1, z2) = F−r,−s(z1, z2). Itimplies that we have the equivalen
e F 0,s(z1, z2) = F 0,N−s(z1, z2).� For N = 4, we need to only work out F 0,0(z1, z2), F 0,1(z1, z2) and F 0,2(z1, z2).� ForN = 6, we need to only work out F 0,0(z1, z2), F 0,1(z1, z2), F 0,2(z1, z2) and F 0,3(z1, z2).157



Chapter 5. Constru
ting the Modular Forms� For N = 8, we need to only work out F 0,0(z1, z2), F 0,1(z1, z2), F 0,2(z1, z2), F 0,3(z1, z2)and F 0,4(z1, z2).We now need to �x the undetermined 
onstants whi
h is done by looking at the 
onditionson the Fourier 
oe�
ients, c0,sb (−1) and c0,sb (0) of F 0,s(z1, z2). These two sets of numbers arerelated to topologi
al obje
ts on K3 and hen
e 
an be determined by studying the a
tion ofthe group on H∗(K3,Z)[31℄. Let Q0,s be the number of gs-invariant elements of H∗(K3,Z)(where g generates ZN ). Also
Q0,s = Nc0,s0 (0) + 2Nc0,s1 (−1) . (5.61)

Nc0,s1 (−1) 
ounts the number of gs invariant (0, 0) and (0, 2) forms on K3. For symple
ti
involutions, these forms are invariant and hen
e Nc0,s1 (−1) = 2. We thus obtain the relation
Nc0,s0 (0) = Q0,s − 4 . (5.62)Given the 
y
le shape one 
an 
ompute the Q0,s as follows:� For prime N : The 
y
le shape is 1k+2Nk+2. When, s = 0, all forms 
ontribute andhen
e Q0,0 = 24. For any s 6= 0, one has Q0,s = k+ 2. This implies that Nc0,00 (0) = 20and Nc0,s0 (0) = k − 2 for s 6= 0� N = 4: The 
y
le shape is 142244. This implies that Q0,1 = Q0,3 = 4 and Q0,2 = 8. Wethus obtain 4c0,s0 (0) = 0 for s = 1, 3 while 4c0,20 (0) = 4.� N = 6: The 
y
le shape is 12223262. This implies that Q0,1 = Q0,5 = 2 and Q0,2 =

Q0,4 = 6 and Q0,3 = 8. Thus one has 6c0,s0 (0) = −2 for s = 1, 5, 6c0,30 (0) = 4 and
6c0,s0 (0) = 2 for s = 2, 4.� N = 8: The 
y
le shape is 12214182. This implies that Q0,1 = Q0,3 = Q0,5 = Q0,7 = 2and Q0,2 = Q0,6 = 4 and Q0,4 = 8. Thus one has 8c0,s0 (0) = −2 for s = 1, 3, 5, 7,
8c0,s0 (0) = 0 for s = 2, 6 and 8c0,40 (0) = 4.Further, one has

c0,00 (0) = 20
N

, c0,s1 (−1) = 2
N

(5.63)Also, as a 
onsisten
y 
he
k on the c0,s0 (0) one has k = 1
2

∑N−1
s=0 c0,s0 (0). For prime N all the
oe�
ients are �xed by the above 
onditions and one �nds the F r,s(z1, z2) for prime N are158



Chapter 5. Constru
ting the Modular Formsgiven by
F 0,0(z1, z2) =

8

N
A(z1, z2)

F 0,s(z1, z2) =
8

N(N + 1)
A(z1, z2)−

2

N + 1
B(z1, z2)EN(z1) (5.64)

F r,rk(z1, z2) =
8

N(N + 1)
A(z1, z2) +

2

N(N + 1)
B(z1, z2)EN (

z1 + k

N
)For 
omposite N , however, one needs more 
onditions to 
ompute the F r,s(z1, z2). For

N = 4, there is one undetermined parameter in F 0,1(z1, z2). For N = 6, there are twoundetermined parameters and for N = 8, there are �ve undetermined parameters. Thesewill have to be dealt with on a 
ase by 
ase basis. Let us 
hoose the example of N = 4 andillustrate the pro
edure for 
omputing the F r,s(z1, z2) and from them the produ
t form ofthe 
orresponding modular forms Φ̃3(Z) and Φ3(Z).5.4.2 Produ
t form of Φ3(Z)We start by de�ning
F̂ a(z1, z2) =

3∑

b=0

F a,b(z1, z2) , (5.65)and let ĉa(n, ℓ) be its Fourier 
oe�
ients. The produ
t form rewritten using the abovede�nition as[32℄
Φ3(Z) = qrs

∏

(n,ℓ,m)

(
1− qnrℓsm

)ĉ0−ĉ2
×
(
1−

(
qnrℓsm

)2)ĉ2−ĉ1×
(
1−

(
qnrℓsm

)4)ĉ1 (5.66)where we have omitted the argument of ĉa � it is (nm, ℓ) in all o

urren
es above to redu
ethe length of the equation.Spe
ializing the general formulae above to the 
ase of N = 4, we obtain
F̂ 0(z1, z2) = 10

3
A(z1, z2) + (2b+ 1

3
)E2(z1)B(z1, z2) + (5

6
− 2b)E4(z1)B(z1, z2)

F̂ 1(z1, z2) = 4
3
A(z1, z2)− 2bE2(z1)B(z1, z2)− ( 5

12
− b)E4(z1)B(z1, z2) (5.67)

F̂ 2(z1, z2) = 2A(z1, z2) + 1
2
E2(z1)B(z1, z2)− (5

6
− 2b)E4(z1)B(z1, z2) ,where A(z1, z2) and B(z1, z2) are as de�ned in Eq. (5.57). This leads to formulae for the159



Chapter 5. Constru
ting the Modular Forms�rst two Fourier 
oe�
ients:
ĉ0(−1) = 5

6
+ 1

3
+ 5

6
= 2 , ĉ0(0) = 25

3
− 7

3
= 6

ĉ1(−1) = 1
3
− 5

12
− b = −b− 1

12
, ĉ1(0) = 25

6
+ 2b (5.68)

ĉ2(−1) = 1
2

+ 1
2
− 5

6
+ 2b = 2b+ 1

6
, ĉ2(0) = 17

3
− 4bWe need ĉ1(−1) = ĉ2(−1) = 0 else we will have terms of the type (1 − r2) and (1 − r4) inthe produ
t expansion for Φ3(Z). This �xes the un�xed 
onstant b = −1/12. We 
an nowwrite out all the terms with m = 0 in the produ
t formulae as we now have determined that

ĉ1(0) = 4 and ĉ2(0) = 6. These give rise to terms of the form
∞∏

n=1

(1− qn)0(1− q2n)2(1− q4n)4 .This agrees with the (in�nite set of) terms that appear from the produ
t expansion of theadditive seed:
φ3,1(z1, z2) =

ϑ2
1(z1, z2)

η(z1)6
η(z1)

4η(2z1)
2η(4z1)

4 .Sin
e we have �xed the 
onstant b, we 
an now write exa
t expressions for the F a,b(z1, z2).
F 0,0(z1, z2) = 2A(z1, z2)

F 0,1(z1, z2) = F 0,3(z1, z2) = 1
3
A(z1, z2) +

[
− 1

12
E2(z1) + 1

2
E4(z1)

]
B(z1, z2)

F 0,2(z1, z2) = 2
3
A(z1, z2) + 1

3
E2(z1)B(z1, z2) (5.69)

F 1,k(z1, z2) = F 3,3k(z1, z2) = 1
3
A(z1, z2) +

[
− 1

24
E2

(
z1+k

2

)
+ 1

8
E4

(
z1+k

4

)]
B(z1, z2)

F 2,2k(z1, z2) = 2
3
A(z1, z2)− 1

6
E2

(
z1+k

2

)
B(z1, z2)

F 2,2k+1(z1, z2) = 1
3
A(z1, z2) +

[
5
12
E2(z1)− 1

2
E4(z1)

]
B(z1, z2)and

F̂ 0(z1, z2) = 10
3
A(z1, z2) + 1

6
E2(z1)B(z1, z2) + E4(z1)B(z1, z2)

F̂ 1(z1, z2) = 4
3
A(z1, z2) + 1

6
E2(z1)B(z1, z2)− 1

2
E4(z1)B(z1, z2) (5.70)

F̂ 2(z1, z2) = 2A(z1, z2) + 1
2
E2(z1)B(z1, z2)− E4(z1)B(z1, z2)
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Chapter 5. Constru
ting the Modular Forms5.4.3 Produ
t Formula for Φ̃3(Z)The produ
t formula for Φ̃3(Z) is
Φ̃3(Z) = q1/4rs

3∏

a

∏

ℓ,m∈Z,

n∈Z+
a
4

(
1− qnrℓsm

)P3
b=0 ω

−bmc(a,b)(4nm−ℓ2) (5.71)where ω = exp(2πı
3

) is a 
ube root of unity, c(a,b)(4nm− ℓ2) are the Fourier 
oe�
ients of thetwisted ellipti
 genera, F (a,b)(z1, z2). One 
an also prove that all the exponents that appearin the produ
t formulae for Φ3(Z) and Φ̃3(Z) are all even integers. One 
an show that thefollowing expressions
[4A(z1, z2)− B(z1, z2)] /12 , [E2(z1)− 1]/24 and [E4(z1)− 1]/8all have integral Fourier 
oe�
ients[8, see appendix A℄. A straightforward but tedious 
om-putation then shows that all exponents are even integers. This will be important to us whenwe 
onstru
t the produ
t forms of the modular forms ∆̃k/2(Z) and ∆k/2(Z) as `square roots'of the modular forms Φ̃k(Z) and Φk(Z) and need the exponents to be even integers for theoperation of taking square roots to be valid.On the sum side, the integrality of 
oe�
ients in the Fourier expansion follows from theintegrality properties of the genus-two theta 
onstants.5.5 The additive seed for type II modelsWe will now 
onstru
t the modular forms, Ψk(Z) and Ψk(Z), for the type II models via theadditive lift. The basi
 idea is similar to what was done for the CHL models. We �rst obtainthe generating fun
tion for ele
tri
ally 
harged 1

2
-BPS states � 
all it gρ(z1) as before. Thenthe additive seed is as in the CHL models (eq. (5.6)). We will see that the multipli
ative

η-produ
ts that appeared in the CHL model get repla
ed by η-quotients. This re�e
ts thefa
t that ele
tri
ally 
harged states in the type II model arise from bosoni
 left-movers ofthe type IIA string (See also the dis
ussion in 2.6.1).
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Chapter 5. Constru
ting the Modular Forms5.5.1 Counting ele
tri
ally 
harged 1
2-BPS statesAs mentioned earlier, we will de�ne our 
harge in the se
ond des
ription. In this 
ase,ele
tri
ally 
harged states appear as ex
itations of the type IIA string. In parti
ular, thedegenera
y is dominated by the 
ontribution from the twisted se
tor states. We will 
omputethe ele
tri
ally 
harged states in a twisted se
tor. 1
2
-BPS states arise when the right-moversare in the ground state and we allow all ex
itations that are 
onsistent with level mat
hing.

N = 1As a warm-up, 
onsider the left-movers of the type IIA string on T 6. In the Ramondse
tor and in the light-
one gauge, one has eight periodi
 bosons and periodi
 fermions. Allos
illators, bosoni
 and fermioni
, have integer moding and the Witten index is given by theprodu
t of the bosoni
 (indi
ated by WB )and fermioni
 
ontributions (indi
ated by WF ):
WB ×WF =

(
1∏

n(1− qn)

)8

×
(∏

n

(1− qn)
)8

= 1 . (5.72)Note that we have not 
onsidered the zero-modes. This is expe
ted as there is a perfe
t
an
ellation of bosoni
 and fermioni
 
ontributions in the Witten index. Of 
ourse, theos
illator partition fun
tion is not unity and equals
ZB ×ZF =

(
1∏

n(1− qn)

)8

×
(∏

n

(1 + qn)

)8

=
η(2τ)8

η(τ)16
. (5.73)Interestingly, this is quotient of η-fun
tions at level 2 (This appears in the 
onstru
tion ofthe fake Monster Lie superalgebra [79℄)

N = 2The eight periodi
 bosons have integer moding and ea
h 
ontribute a fa
tor of η(τ)−1 tothe Witten index while the eight anti-periodi
 fermions ea
h have half-integer moding and
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ting the Modular Forms
ontribute η(τ/2)/η(τ). One has
WB ×WF =

(
1∏

n(1− qn)

)8

×
(∏

n

(1− qn+1/2)

)8

=
η(τ/2)8

η(τ)16
=

1

gρ̃(τ/2)
, (5.74)where the frame shape ρ̃ = 1−8216.Re
all that 
y
le shapes represent 
onjuga
y 
lasses of a permutation. Frame shapesgeneralize this notion to 
onjuga
y 
lasses of elements of arbitrary dis
rete groups. In ourexample, the dis
rete group turns out to be the Conway group Co1 [103℄ as we dis
uss later.

N = 3The six periodi
 bosons have integer moding and ea
h 
ontribute a fa
tor of η(τ)−1 to theWitten index. While the two other bosons have moding fra
tional moding of ±1/3. Thefermions ea
h have fra
tional moding of ±1/3 and 
ontribute η(τ/2)/η(τ). One has
WB ×WF =

1∏
n(1− qn)6(1− qn+1/3)(1− qn−1/3)

×
∏

n

(1− qn+1/3)4(1− qn−1/3)4

=
η(τ/3)3

η(τ)9
=

1

gρ̃(τ/3)
, (5.75)where the frame shape ρ̃ = 1−339.

N = 4The six periodi
 bosons have integer moding and ea
h 
ontribute a fa
tor of η(τ)−1 to theWitten index. While the two other bosons are antiperiodi
 and have moding fra
tionalhalf-integral moding. The fermions ea
h have fra
tional moding of ±1/4 and 
ontribute
η(τ/2)/η(τ). One has

WB ×WF =
1∏

n(1− qn)6(1− qn+1/2)2
×
∏

n

(1− qn+1/4)4(1− qn−1/4)4

=
η(τ/4)4

η(τ)4η(τ/2)6
=

1

gρ̃(τ/4)
, (5.76)where the frame shape ρ̃ = 1−42644. 163
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N = 5Four bosons have integer moding while the other four have fra
tional moding of r/5 with
r = 1, 2, 3, 4. The fermions appear with fra
tional moding of r/5 with r = 1, 2, 3, 4 o

urringin pairs. One has

WB ×WF =
1∏

n(1− qn)4
∏4

r=1(1− qn+r/5)
× (
∏

n

4∏

r=1

(1− qn+r/5))2

=
η(τ/5)

η(τ)5
=

1

gρ̃(τ/5)
, (5.77)where the frame shape ρ̃ = 1−155.Multipli
ative η-quotientsThe 
ounting of 1

2
-BPS states is given by η-quotients that are asso
iated with the frameshapes ρ̃ given in Table 5.4. This ni
ely generalizes the 
orresponding result for CHL stringswhere the generating fun
tions were given by η-produ
ts 
orresponding to 
y
le shapes.The appearan
e of the η-quotients and frame shapes may be understood as follows. It isknown that the Conway group Co1 arise as the group of automorphisms of algebra of 
hiralvertex operators in the NS se
tor of superstring[104℄. Any symmetry of �nite order of the
hiral superstring must thus be an element of Co1. It is known that the 
onjuga
y 
lassesof Co1 are given by frame shapes.Multipli
ative η-quotients have been studied by Martin[105℄ and he has provided a listof 71 su
h quotients � almost all appear to be asso
iated to 
onjuga
y 
lasses. Table 5.4is a subset of this list ex
luding the ones N = 2. The η-quotients for N = 2 violate themultipli
ative 
ondition of Martin � he requires them to be eigenforms of all He
ke operators.The one's for N = 2 are not eigenforms for T2 as 
an be easily 
he
ked5 It appears possiblethat the 
ondition imposed by Martin might be too strong and hen
e we may need to lookfor a weaker 
ondition.The η-quotients for N = 2, 3 have been derived in [31℄ and our results agree with theexpressions given there.5We thank Martin for useful 
orresponden
e whi
h 
lari�ed this point.
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k ρ̃ ρ χ ( a bc d ) N G

2 1−8216 1162−8 2 Z2

1 1−339 193−3
(
−3
d

)
3 Z3

1 1−42644 14264−4
(
−1
d

)
4 Z4

0 1−155 155−1 5 Z5Table 5.4: η-quotients with N ≤ 5: ρ is the frame shape, k+2 is the weight of the η-quotient.5.5.2 Produ
t Formulae for the type II modelsDavid, Jatkar and Sen have provided produ
t formulae for the N = 2, 3 type II models[31℄.As for the CHL models, there are given in terms of the twisted ellipti
 genus for T 4. Theprodu
t formulae for Ψk(Z) and Ψ̃k(Z) are identi
al to those appearing in the CHL models� eq. (5.53) and (5.54) � the 
oe�
ients used are however those from the type II twistedellipti
 genus. For N = 2, 3, F (r,s)(τ, z), David, Jatkar and Sen �nd
F (0,0)(τ, z) = 0

F (0,s)(τ, z) =
16

N
sin4

(πs
N

) ϑ1

(
τ, z + s

N

)
ϑ1

(
τ,−z + s

N

)

ϑ1

(
s
N

)2for 1 ≤ s ≤ N − 1 ,

F (r,s)(τ, z) =
4N

(N − 1)2

ϑ1

(
τ, z + s

N
+ r

N
τ
)
ϑ1

(
τ,−z + s

N
+ r

N
τ
)

ϑ1

(
s
N

+ r
N
τ
)2 ,for 1 ≤ r ≤ N − 1, 0 ≤ s ≤ N − 1 . (5.78)The twisted ellipti
 genera for type II models 
an be rewritten in terms of the ellipti
 generathat appear in the CHL models. For the Z2 orbifold of the type II model, F (r,s)(τ, z) 
an bewritten as

F
(r,s)
II (τ, z) = 2F

(r,s)
N=2 CHL(τ, z)− F

(r,s)
N=1 Het.(τ, z), (5.79)and for the Z3 orbifold of the type II model, they 
an be written as

F
(r,s)
II (τ, z) =

3

2
F

(r,s)
N=3 CHL(τ, z)−

1

2
F

(r,s)
N=1 Het.(τ, z). (5.80)This implies that the type II modular forms for N = 2, 3 
an be written in terms of theSiegel modular forms for the CHL models. In order to see this, we rewrite the η-quotients165



Chapter 5. Constru
ting the Modular Formsthat appear for N = 2 in a suggestive manner as follows
g4(τ) =

η16(2τ)

η8(τ)
=
η16(2τ)η16(τ)

η24(τ)
,

g3(τ) =
η9(3τ)

η3(τ)
=
η9(3τ)η9(τ)

η12(τ)
. (5.81)In this form it is evident that the modular form g4 is a ratio of two modular forms, withthe numerator 
orresponding to the square of the 
usp form whi
h 
ounts half BPS statesin the Z2 CHL model and the denominator is a 
usp form whi
h 
ounts half BPS states inthe heteroti
 string theory. This naturally suggest that the Siegel modular form for type II

Z2 model is a ratio of Siegel modular forms,
Ψ2(Z) =

Φ6(Z)2

Φ10(Z)
. (5.82)In the Z3 
ase, we �nd that g3 is again a ratio, suggesting the relation

Ψ1(Z) =
∆2(Z)3

∆5(Z)
, (5.83)One 
an easily see that both these identities follow from the produ
t formulae using therelation between type II and CHL twisted ellipti
 genera given in eq. (5.79) and (5.80).Further, it also follows that a similar relationship holds for the other modular forms.

Ψ̃2(Z) =
Φ̃6(Z)2

Φ10(Z)

Ψ̃1(Z) =
∆̃2(Z)3

∆5(Z)
(5.84)We 
on
lude this se
tion with 
onje
tural formulae for the N = 4 type II model:

Ψ̃1(Z) =
∆3(Z)∆3/2(Z)2

∆5(Z)
and Ψ1(Z) =

∆̃3(Z)∆̃3/2(Z)2

∆5(Z)
. (5.85)5.6 Con
lusionIn this 
hapter we have studied the various modular forms that appear in the 
outing ofdyoni
 states in N = 4 string theories that we are studying in this thesis. The degenera
y166



Chapter 5. Constru
ting the Modular Formsof the ele
tri
ally 
harged 1
4
-BPS states are generated by a produ
t of η-fun
tions that areasso
iated with 
y
le shapes. Their generalization, given by η-quotients that are asso
iatedto the frame shapes give the generating fun
tion of the degnera
ies of the 1

4
-BPS states inthe type II models. The η-produ
ts give a ni
e way of relating the degenera
y of the 1

4
-BPSstates to the symple
ti
 automorphisms of the K3 surfa
e. Similarly, the η-quotients arerelated to the 
onjuga
y 
lasses of Co1, whi
h are given by frame shapes.The degenera
y of the 1

4
-BPS states are given by genus-two Siegel modular forms Φ̃k(Z).Also, the string R2 
orre
tions are given by another modular form, denoted Φk(Z). In this
hapter we have studied the 
onstru
tion of these modular forms in more than one ways. Theadditive lift gives the modular forms as an in�nite sum. The 
onstru
tion of the genus-twoSiegel modular forms from an additive lift was dis
ussed as the Fourier-Ja
obi developmentof Siegel modular forms in 
hapter 4. The modular forms are 
onstru
ted from a seedwhi
h is a weak Ja
obi form of the same weight and index 1 and level N . The weak Ja
obiform is obtained from the 
y
le shape ρ is ϑ1(z1,z2)2

η(z1)6
grho(z1). The modular forms were also
onstru
ted as an in�nite produ
t with exponents related to the twisted ellipti
 genera of

K3. We have also seen expressions for the modular forms as produ
ts of even genus-twotheta 
onstants in some 
ases.The same pro
edure was used to obtain the modular forms ∆̃k(Z) and ∆k(Z) whi
h arethe `square roots' of the modular forms Φ̃k(Z) and Φk(Z) respe
tively. They were 
onstru
tedas the additive lifts of weak Ja
obi forms with half-integer indi
es. The fa
t that all theexponents of the produ
t form of Φ̃k(Z) and Φk(Z) are even integers immediately yieldsthe produ
t form of ∆̃k(Z) and ∆k(Z). In addition, some of the modular forms have beenobtained as produ
ts of even genus-two theta 
onstants.It is important to obtain the modular forms in the sum and produ
t forms separately.This is useful when we relate them to the denominator identity of BKM Lie superalgebras.We will study this idea in the next 
hapter where we understand the relation between theCHL strings and the family of BKM Lie superalgebras that are related to them with themodular forms being the bridge between the two.
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6BKM Lie superalgebras From Dyon Spe
tra
6.1 Introdu
tionIn this 
hapter we fo
us on the algebrai
 side of the degenera
y of 1

4
-BPS states. As men-tioned previously, there is an algebrai
 stru
ture underlying the degenera
y of the 1

4
-BPSstates, given by a family of BKM Lie superalgebras. These BKM Lie superalgebra are re-lated to the dyoni
 degenera
ies via the modular forms generating the degenera
ies of the

1
4
-BPS states and R2 
orre
tions to the string a
tion. These modular forms o

ur as thedenominator formulae of the various BKM Lie superalgebras. We will explore this idea inthis 
hapter, studying the BKM Lie superalgebras 
orresponding to the various CHL models.The dis
overy of new BKM Lie superalgebras has been one of the main results of the workpresented in this thesis.6.2 The Algebra of 1

4
-BPS StatesThere has emerged a promising new dire
tion by studying the algebra satis�ed by the de-genera
y of the 1

4
-BPS states. The `square roots' of the genus-two modular forms generatingthe degenera
ies have been found to be related to a general 
lass of in�nite-dimensional Liealgebras known as Bor
herds-Ka
-Moody (BKM) Lie superalgebras and this endows the de-genera
y of the 1

4
-BPS states with an underlying BKM Lie superalgebra stru
ture[17, 7, 8℄.Following this insight, physi
al ideas of the theory su
h as the stru
ture of the walls ofmarginal stability[33℄ have been understood from an algebrai
 point of view as the walls ofthe fundamental Weyl 
hamber[17, 8℄.It was observed by DVV that the Siegel modular form 
onstru
ted by them, that gen-168



Chapter 6. BKM Lie superalgebras From Dyon Spe
traerated the degenera
y of 1
4
-BPS states, was also studied by Gritsenko and Nikulin in the
ontext of an in�nite-dimensional BKM Lie superalgebra[86℄. More pre
isely, the modularform Φ10(Z) is the denominator identity of the BKM Lie superalgebra that Gritsenko andNikulin studied. When Sen and Jatkar 
onstru
ted the modular forms that generate thedegenera
y of 1

4
-BPS states in CHL models, it was natural to look for an underlying alge-brai
 stru
ture along the lines of the N = 1 models. This was studied in [17, 7, 8, 9℄. Wesummarize the results below.6.3 The BKM Lie superalgebra G1The BKM Lie superalgebra 
orresponding to the CHL model without any orbifolding withits denominator identity given by the square root of the modular form Φ10(Z) was studiedby Gritsenko and Nikulin[86℄. We denote it by G1, where the subs
ript denotes the N of theorbifolding group ZN . The Cartan matrix of G1 is given by

A1,II ≡




2 −2 −2

−2 2 −2

−2 −2 2


 . (6.1)It is a rank 3 hyperboli
 matrix, as one of the eigenvlaues of the Cartan matrix is negative.The algebra G1 has three real simple roots, 
all them δ1, δ2 and δ3 whose Gram matrix(matrix of inner produ
ts) is A1,II . The three real simple roots de�ne the root latti
e

MII = Zδ1 ⊕ Zδ2 ⊕ Zδ3 and a fundamental polyhedron, MII , whi
h is given by the regionbounded by the spa
es orthogonal to the real simple roots.
R+MII = {x ∈MII ⊗R | (x, δi) ≤ 0, i = 1, 2, 3}. (6.2)Let us write the roots in terms of a basis (f2, f3, f−2) whi
h are related to the δi in thefollowing way:

δ1 = 2f2 − f3, δ2 = f3, δ3 = 2f−2 − f3 . (6.3)The non-vanishing inner produ
ts among the elements fi are:
(f2, f−2) = −1, (f3, f3) = 2 . (6.4)
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Chapter 6. BKM Lie superalgebras From Dyon Spe
traThus, (f2, f3, f−2) provide a basis for Minkowski spa
e R2,1. Consider the time-like region
V = {x ∈ R2,1 | (x, x) < 0} ,in R2,1. Let V + denote the future light-
one in the spa
e and
Z = z3f2 + z2f3 + z1f−2 , (6.5)be su
h that Z ∈ R2,1 + iV +. This is equivalent to Z ∈ H2, the Siegel upper-half spa
e[86℄.In addition to the three real simple roots, there are three primitive light-like ve
tors, i.e.

(η, η) = 0 : 2f2, 2f−2 and (2f−2 − 2f3 + 2f2) ea
h with multipli
ity 9 and two primitiveve
tors satisfying (η, η) < 0 : (2f−2 + 2f2) and (2f−2− f3 + 2f2). These roots are imaginarysin
e their norm is not positive de�nite, i.e. (η, η) ≤ 0. The imaginary light-like roots aregenerated by the formula
1−

∑

t∈N

m(tη0)q
t =

∏

k∈N

(1− qk)9 =

√
f (10)(τ)

η(τ)3
. (6.6)Negative value of multipli
ity implies that the root is fermioni
. For instan
e, one has

m(2η0) = −27. Thus, su
h roots are fermioni
 and hen
e we have a superalgebra. Theimaginary simple roots belong to the spa
e MII ∩R+MII . Let us look at the Weyl group ofthe BKM Lie superalgebra G1.6.3.1 The Weyl Group W(A1,II)Given the three real simple roots (δ1, δ2, δ3), whose Gram matrixis given by the matrix
A1,II , the Weyl group, W(A1,II), is the group generated by the three elementary re�e
tions,
(w1, w2, w3), with respe
t to the three real simple roots. The Weyl group W(A1,II) 
an bewritten as a normal subgroup of PGL(2,Z). Re
all that PGL(2,Z) is given by the integralmatri
es ( a bc d ) with ad− bc = ±1. One has[86℄ (see also [106, 17℄)

PGL(2,Z) =W(A1,II) ⋊ S3 , (6.7)where S3 is the group of permutations of the three real simple roots. Also, the latti
e MIIhas a latti
e Weyl ve
tor whi
h is an element ρ ∈MII ⊗Q su
h that all the real simple roots170
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trasatisfy1
(ρ, δi) = −(δi, δi)

2
= −1 . (6.8)One has ρ = (δ1 +δ2 +δ3)/2 i.e., it is one-half of the sum over real simple roots. The positivereal roots are then given by

Lre
+ =

(
W(δ1, δ2, δ3) ∩M+

II

)
, (6.9)where W refers to the Weyl group W(A1,II) and M+

II = Z+δ1 ⊕ Z+δ2 ⊕ Z+δ3.Choosing a set of matri
es for the basis f2, f3, f−2, we 
an make the a
tion of the Weylgroup expli
it. Consider the following identi�
ation:
f−2 ↔

(
1 0

0 0

)
, f3 ↔

(
0 1

1 0

)
, f2 ↔

(
0 0

0 1

)
. (6.10)With the above identi�
ation, the root ve
tors are given by the matri
es

δ1 =

(
2 1

1 0

)
, δ2 =

(
0 −1

−1 0

)
, δ3 =

(
0 1

1 2

)
. (6.11)One also has ρ(4) =

(
1/4 1/2

1/2 1

) in agreement with the general formula given in ref. [8,see Eq. 5.2℄. In terms of the variables q, r, s these real simple roots are r−1, qr and srrespe
tively. The norm of a matrix N ∈ M1,0 is then given by −2detN . The Weyl grouphas the following a
tion:
N → A ·N · AT , A ∈ PGL(2,Z) and N ∈M1,0 . (6.12)The S3 mentioned in Eq. (6.7) is generated by

r−1 =

(
0 1

1 0

)
, r0 =

(
1 1

0 −1

)
. (6.13)satisfying r2

−1 = r2
0 = (r−1r0)

3 = 1. The three elementary re�e
tions that generate W(A1,II)1The standard 
onvention is to de�ne ρ through the 
ondition (ρ, δi) = (δi, δi)/2 for all real simple roots
δi. However, we reprodu
e the notation of Gritsenko and Nikulin [86℄ (whi
h di�ers by a sign) here. 171
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traare given by the following PGL(2,Z) matri
es:
wδ1 =

(
−1 0

2 1

)
, wδ2 =

(
1 0

0 −1

)
, wδ3 =

(
1 2

0 −1

)
. (6.14)6.3.2 The Weyl Chambers

G1 is an ellipti
 BKM Lie superalgebra. This means that the volume of the fundamental Weyl
hamber is �nite. This is an important property and ensures many ni
e properties for theBKM Lie superalgebra. Gritsenko and Nikulin have 
lassi�ed rank-three hyperboli
 BKMLie superalgebra admitting a latti
e Weyl ve
tor with �nite volume of the fundamental Weyl
hamber[107℄(see also [108, 109℄). Re
all from the dis
ussion about the Weyl 
hambers of Liealgebras in Chapter 3 that the 
hoi
e of the basis of simple roots determine the fundamentalWeyl 
hamber. A di�erent, but equivalent, basis of simple roots will give a di�erent Weyl
hamber whi
h is related to the �rst Weyl 
hamber through Weyl re�e
tions. The Weylgroup a
ts simply and transitively on the set of Weyl 
hambers. Cheng and Verlinde havestudied the walls of the Weyl 
hamber in relation to the moduli spa
e of the CHL string andfound that the walls of the Weyl 
hamber of the BKM Lie superalgebra 
an be identi�ed withdomains in the moduli spa
e, spe
i�
ally, they 
oin
ide with the walls of marginal stabilityof the 1
4
-BPS states of the theory [17℄. We will now summarize their arguments and give a
orresponden
e between the walls of the Weyl 
hambers of the BKM Lie superalgebras andthe walls of marginal stability.Cheng and Verlinde[17℄ and Cheng and Dabholkar[8℄ have shown the for N = 1, 2, 3CHL models, the fundamental domains are the Weyl 
hambers of a family of rank-threeBKM Lie superalgebras. This was extended to the N = 4 
ase in [9℄. Ea
h wall (edge) ofthe fundamental domain is identi�ed with a real simple root of the BKM Lie superalgebra.Re
all that we saw in 
hapter 2 that ea
h wall 
orresponds to a pair of rational numbers

( b
a
, d
c
). This is related to a real simple root α of the BKM Lie superalgebra as follows:

( b
a
, d
c
)↔

(
a b

c d

)
↔ α =

(
2bd ad+ bc

ad+ bc 2ac

)
, (6.15)with ac ∈ NZ and ad, bc, bd ∈ Z. The norm of the root is[17℄

−2det(α) = 2(ad− bc)2 = 2 . 172
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traThe Cartan matrix, A(N), is generated by the matrix of inner produ
ts among all real simpleroots. For instan
e, A(1) = A1,II de�ned in Eq. (7.2).The `square root' of the modular form Φ̃k(Z) that generates dyon degenera
ies, ∆̃k/2(Z),is related to the Weyl-Ka
-Bor
herds denominator formula via its additive and multipli
ativelifts. Finally, the extended S-duality group is given by2
W(A(N)) ⋊DN , (6.16)where W(A(N)) is the Weyl group generated by Weyl re�e
tions of all the simple real roots3and DN is the dihedral group that is the symmetry group of the polygon 
orresponding tothe Weyl 
hamber.6.3.3 The Denominator FormulaNow we 
ome to the most important part of the 
onne
tion between the CHL strings andthe BKM Lie superalgebras. The 
onne
tion to the CHL strings of the BKM Lie super-algebra 
omes from the denominator formula. Gritsenko and Nikulin have shown that thedenominator formula of the GKM Lie superalgebra G1 is related to the modular form ∆5(Z),of Sp(2,Z), that transforms with 
hara
ter[86℄. The modular form, Φ10(Z), that generatesthe degenera
y of 1

4
-BPS states is equal to ∆5(Z)2. The Weyl-Ka
-Bor
herds (WKB) de-nominator formula is a spe
ial 
ase of the more general WKB 
hara
ter formula for Liealgebras whi
h gives the 
hara
ters of integrable highest weight representations of BKM Liesuperalgebras[55℄. The WKB 
hara
ter formula applied to the trivial representation givesthe WKB denominator formula. Let G be a BKM Lie superalgebra and W its Weyl group.Let L+ denote the set of positive roots of the BKM Lie superalgebra and ρ the Weyl ve
tor.Then, the WKB denominator identity for the BKM Lie superalgebra[71℄ G is

∏

α∈L+

(1− e−α)mult(α) = e−ρ
∑

w∈W

(detw) w(eρ
∑

α∈L+

ǫ(α)eα) , (6.17)where mult(α) is the multipli
ity of a root α ∈ L+[4, 71, 110, 111℄. In the above equation,det(w) is de�ned to be ±1 depending on whether w is the produ
t of an even or odd numberof re�e
tions and ǫ(α) is de�ned to be (−1)n if α is the sum of n pairwise independent,2The extended S-duality group is de�ned by in
luding a Z2 parity operation to the S-duality group Γ1(N).For N = 1, this is the group PGL(2, Z)[17℄.3This is equivalent to the Coxeter group generated by the Cartan matrix A(N). 173



Chapter 6. BKM Lie superalgebras From Dyon Spe
traorthogonal imainary simple roots, and 0 otherwise. In the 
ase of BKM Lie superalgebrasthe roots appear with graded multipli
ity � fermioni
 roots appear with negative multipli
itywhile bosoni
 roots appear with positive multipli
ity. Following the ideas of Bor
herds [4, 71℄,Gritsenko and Nikulin 
onstru
ted a superalgebra, G1 by adding imaginary simple roots� some bosoni
 and others fermioni
. Let us write the Weyl-Ka
-Bor
herds denominatorformula separating it into two parts one of whi
h involves the imaginary simple roots andthe other whi
h doesn't, as follows 4
e−πı(ρ,z)

∏

α∈L+

(
1− e−πı(α,z)

)mult(α)

=


∑

w∈W

det(w)



e

−πı(w(ρ),z) −
∑

η∈MII∩R+MII

m(η) e−πı(w(ρ+η),z)






 (6.18)where the element Z = z3f2 +z2f3 +z1f−2 belongs to the subspa
e R2,1 + ıV + ∼ H2 obtainedupon 
omplexi�
ation of the 
one V +. Of the two terms in the sum side, one arises from thereal simple roots (η = 0) and the other arising from the imaginary simple roots (η 6= 0). The�rst term thus arises as the sum side of the Lie algebra with no imaginary simple roots. These
ond term is spe
i�
 to BKM Lie superalgebras due to the presen
e of imaginary simpleroots with `multipli
ities' m(η) ∈ Z. These multipli
ities are determined by the 
onne
tionwith the automorphi
 form ∆5(Z) viz. (6.6). One 
ompares the sum side of the denominatorformula to the sum form of the modular form obtained from the additive lift and adds enoughimaginary simple roots su
h that the automorphi
 properties are attained.The LHS of (6.17) is identi�ed with the produ
t formula for ∆5(Z), and this determinesthe positive roots L+ along with their multipli
ities� again fermioni
 roots appear withnegative multipli
ity in the exponent. However, there is a subtle issue in extra
ting themultipli
ities from the exponent in the produ
t formula � the produ
t formula gives onlythe di�eren
e between the multipli
ities of the bosoni
 and fermioni
 generators and hen
eis more like a Witten index. 4Comparing with the denominator identity (6.18), the 
ommonfa
tor q1/2r1/2s1/2 
an be identi�ed with exp(−πı(ρ, z)) giving us the Weyl ve
tor ρ.Given the modular form ∆5(Z), one 
an systemati
ally 
onstru
t the BKM Lie super-algebra G1 from it. We will illustrate this pro
edure for the 
ase of the algebra G1 and thesame is used to 
onstru
t the other algebras that o

ur in this 
hapter. Before we summarize4Written here in the notation of Gritsenko and Nikulin, where in parti
ular, one needs to repla
e ρ by

−ρ in Eq. (6.17) (See also se
tion 6.3.1). 174



Chapter 6. BKM Lie superalgebras From Dyon Spe
trathe pro
edure to re
ognize the algebra, given the denominator identity, it will be useful tolist some of the observations that 
an be made about the expansions of the modular form
∆5(Z).6.3.4 Analyzing the Modular Forms1. Using the expressions for the real simple roots, (δ1, δ2, δ3) and their inner produ
t with

Z, one sees that
e−πi(δ1,Z) = qr , e−πi(δ2,Z) = r−1 and e−πi(δ3,Z) = sr .(Re
all that q = exp(2πiz1), r = exp(2πiz2) and s = exp(2πiz3).) Thus, one has

exp(−πi(ρ,Z)) = q1/2r1/2s1/2. Further, one has the identi�
ation relating the root
α[n, ℓ,m] to qnrℓsm:

qnrℓsm = e−πi(α[n,ℓ,m],Z) ,where the root α[n, ℓ,m] = nδ1 +(−l+m+n)δ2 +mδ3 has norm (2ℓ2−8nm). The realsimple roots are (α[1, 1, 0], α[0,−1, 0], α[0, 1, 1]) and the Weyl ve
tor is ρ = α[1
2
, 1

2
, 1

2
]in this notation.2. In the expansion for ∆5(Z), all terms (in the expansion given in the Appendix) thatarise with 
oe�
ient ±1 arise by the a
tion of all elements of the Weyl group generatedby the three real simple roots. They do not involve the imaginary simple roots of theBKM Lie superalgebra. For instan
e, the terms arising fromWeyl re�e
tions asso
iatedwith the simple real roots of G1 are

(q3/2r3/2s1/2, q1/2r−1/2s1/2, q1/2r3/2s3/2) = q1/2r1/2s1/2(qr, r−1, sr) .Note that we need to pull out an overall fa
tor of q1/2r1/2s1/2 in the sum side of thedenominator formula to extra
t the roots.3. The BKM Lie superalgebra G1 has an outer S3 symmetry whi
h permutes the threereal simple roots. It is easy to see only the δ1 ↔ δ3 (or equivalently the q ↔ s)symmetry in the ∆5(Z). A formal proof 
an be given by following Gritsenko andNikulin's argument for G1[86, see Prop. 2.1℄. Their proof makes use of the non-trivial
hara
ter vΓ appearing in the modular transform ∆5(Z) (see eq. (5.14). 175
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tra4. A pra
ti
al 
he
k of the outer S3 needs us to verify the δ1 ↔ δ2 invarian
e of ∆5(Z).One 
an show that under this ex
hange
α[n, ℓ,m]↔ α[−ℓ+m+ n,−ℓ+ 2m,m] .For instan
e, the light-like root α[0, 0, 1] is mapped to another light-like root α[1, 2, 1].This relates the term q1/2r1/2s3/2 to q3/2r5/2s3/2 � both have multipli
ity −9 in ∆5(Z).Having identi�ed the two sides of the denominator identity with the sum and produ
trepresentations of the modular form, one 
an identify the BKM Lie superalgebra that 
orre-sponding to the parti
ular modular form as follows. Starting with the produ
t representationof the modular form, and 
omparing with the above equation, gives us the set of positiveroots α of the BKM Lie superalgebra, together with their multipli
ities. All multipli
ities inthe produ
t side are integral as the multipli
ities in the produ
t formulae are even integersas dis
ussed earlier. Also, expanding the modular form, we equate the expansion to the sumside (R.H.S) of the denominator formula where ea
h term is thought as 
oming from theWeyl re�e
tion of a positive root with respe
t to an element of the Weyl group of the BKMLie superalgebra. Thus, interpreting the modular form as the denominator formula, we 
anextra
t the positive roots and 
orresponding multipli
ities, the set of simple roots, the Weylgroup, the Weyl ve
tor and from the above information, the Cartan matrix of the BKM Liesuperalgebra.Before 
on
luding our dis
ussion of G1, we just emphasize two points: 1)Though it is themodular form Φ10(Z) that generates the degenera
ies of the 1

4
-BPS states, it is the modularform ∆5(Z) = (Φ10(Z))1/2 that o

urs as the denominator of the BKM Lie superalgebra G1,and 2) One needs both the sum and produ
t representations of the modular forms to 
ompareit with the denominator identity of a BKM Lie superalgebra and re
onstru
t the algebra fromthe denominator identity. This 
on
ludes our dis
ussion for the BKM Lie superalgebra G1
oming as the denominator identity of the modular form ∆5(Z). Next we look at the 
ase ofthe families obtained by taking a ZN -orbifold of the theory giving the various CHL strings.6.4 The BKM Lie superalgebras GN and G̃NAs mentioned in the previous 
hapter, only for the 
ase of the unorbifolded theory themodular form generating the degenera
y of the 1

4
-BPS states and that generating the R2
orre
tions to the e�e
tive a
tion are the same. For all the CHL strings generated by taking176
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traa ZN orbifold, the modular forms Φ̃k(Z) and Φk(Z), are related as in eq. (5.4), but di�erent.We will �rst look at the BKM Lie superalgebras G̃N 
orresponding to the modular formsgenerating the degenera
y of 1
4
-BPS states, i.e. the modular forms Φ̃k(Z), before goingto the BKM Lie superalgebras GN related to the modular forms Φk(Z). The method for
onstru
ting the BKM Lie superalgebra from the modular forms is along the same lines asdis
ussed for the 
ase of Φ10(Z). We will now dis
uss ea
h of the BKM Lie superalgebra G̃Nand GN below.6.4.1 The BKM Lie superalgebra G̃2The BKM Lie superalgebra G̃2 was 
onstru
ted by Gritsenko and Nikulin, Cheng and Dab-holkar observed that it is the BKM Lie superalgebra 
orresponding to the modular form

∆̃3(Z)[8℄ whi
h is the square root of the modular form Φ̃6(Z) generating the degenera
iesof the 1
4
-BPS states in the Z2 orbifolded theory. ∆̃3(Z) is also a level 2 modular form with
hara
ter. The BKM Lie superalgebra G̃2 is given by the Cartan matrix

A2,II ≡




2 −2 −6 −2

−2 2 −2 −6

−6 −2 2 −2

−2 −6 −2 2




. (6.19)As before, the Cartan matrix is hyperboli
 with one negative eigenvalue and rank three. Ithas four roots whi
h, in the 
onvention introdu
ed above for G1, are given by the followingmatri
es
δ1 ≡

(
0 −1

−1 0

)
, δ2 ≡

(
2 1

1 0

)
, δ3 ≡

(
2 3

3 4

)
, δ4 ≡

(
0 1

1 4

)
. (6.20)This 
an be understood as follows: When one takes the orbifold be
ause of the quantizationof the T-duality invariants, due to the presen
e of the twisted states, not all the splits of the
harges in (2.69) are allowed. Instead one has to restri
t oneself to the 
ongruen
e subgroupof PGL(2,Z)

Γ0(N) =
{(a b

c d

)
| ad− bc = ±1, c = 0 modN

}
/{±1} . (6.21)
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traUsing the relation between the split of 
harges, the set of positive real roots relevant for thewall 
rossing for the ZN orbifolded theory are of the form
α(N) =

(
2n ℓ

ℓ 2m

)
, (α, α) = 2, (n,m, ℓ) > 0, m modN . (6.22)From this, one sees that the two roots α(N)

1 = δ1 and α(N)
2 = δ2 o

ur for all N . In termsof the variables q, r, s these roots are r−1, qr, qr3s2 and s2r. The extended S-duality group isgiven by

Γ1(2) =W(A2,II) ⋊D2 , (6.23)where W(A(2)) is the Weyl group generated by Weyl re�e
tions of all the real simple roots(6.20) and D2 is the dihedral group that is the symmetry group of the polygon 
orrespondingto the Weyl 
hamber.The Weyl ve
tor is given by ρ =

(
1/2 1/2

1/2 1

) and is spa
e-like.6.4.2 The BKM Lie superalgebra G̃3The BKM Lie superalgebra G̃3 is 
onstru
ted from the square root of the modular form
Φ̃4(Z), denoted ∆̃2(Z)[8℄.The BKM Lie superalgebra G̃3 is given by the Cartan matrix

A3,II ≡




2 −2 −10 −14 −10 −2

−2 2 −2 −10 −14 −10

−10 −2 2 −2 −10 −14

−14 −10 −2 2 −2 −10

−10 −14 −10 −2 2 −2

−2 −10 −14 −10 −2 2




. (6.24)
In addition to the two real simple roots δ1 and δ2, it has 4 other real simple roots whi
h aregiven by

δ3 ≡
(

4 5

5 6

)
, δ4 ≡

(
4 7

7 12

)
, δ5 ≡

(
2 5

5 12

)
, δ6 ≡

(
0 1

1 6

)
. (6.25)
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Chapter 6. BKM Lie superalgebras From Dyon Spe
traIn terms of the variables q, r, s the six roots are r−1, qr, q2r5s3, q2r7s6, qr5s6 and s3r.Theextended S-duality group in this 
ase is given by
Γ1(3) =W(A3,II) ⋊D3 . (6.26)The Weyl ve
tor is given by ρ =

(
1/3 1/2

1/2 1

) and is spa
e-like.6.4.3 The BKM Lie superalgebra G̃4The 
ase of the Z4 orbifolding is a very interesting one. This is the �rst example wherethe N of the orbifolding group is not prime. As we saw in the previous 
hapter, when we
onstru
ted the modular forms Φ̃k(Z) and Φk(Z) expli
itly, the 
onstru
tion of the modularforms for prime N is relatively simpler be
ause the balan
ed 
y
le shape 
onditions give
a1 = aN = 24

N+1
and all other ar = 0, leaving no undetermined 
oe�
ients. For the 
ase ofnon-prime N , however, there remain ar whi
h are not 
ompletely �xed by the 
y
le shape
onditions alone and one needs to use other 
onsisten
y 
onditions to �x them. The BKMLie superalgebra G̃4 for N = 4 is generated by the modular form (∆̃3/2(Z))2 = Φ̃3(Z) whi
hwas 
onstru
ted in Chapter 5. Even the BKM Lie superalgebra for the N = 4 model is verydi�erent in nature to the ones for N = 1, 2 and 3. We saw that the BKM Lie superalgebrasfor N = 1, 2, 3 were all of ellipti
 type with �nite volume of the Weyl 
hambers and had

3, 4 and 6 real simple roots respe
tively. The BKM Lie superalgebra G̃4 is of paraboli
type with in�nite number of real simple roots whi
h is markedly distin
t from the N = 1, 2and 3 
ases. To write the Cartan matrix of G̃4, let us order the real simple roots into anin�nite-dimensional ve
tor as
X = (. . . , x−2, x−1, x0, x1, x2, x3, . . .) = (. . . , α1, β−1, α0, β0, α−1, β1, . . .) .Equivalently, let

xm =

{
α−m/2 , m ∈ 2Z

β(m−1)/2 , m ∈ 2Z + 1 .
(6.27)The Cartan matrix is given by the matrix of inner produ
ts amn ≡ 〈xn, xm〉 and is given bythe in�nite-dimensional matrix:

A(4) = (anm) where anm = 2− 4(n−m)2 , (6.28)179
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trawith m,n ∈ Z. It is easy to show that the following family of ve
tors are eigenve
tors of theCartan matrix with zero eigenvalue. 


...
1

−3

3

−1...



(6.29)
with ... indi
ating a semi-in�nite sequen
e of zeros. One 
an show that A has rank three. Asusual, the Weyl ve
tor ρ satis�es

〈ρ, xm〉 = −1 , ∀m . (6.30)The Weyl ve
tor is given by ρ =

(
1/4 1/2

1/2 1

) and is light-like. Re
all that the Weyl ve
torsfor the N = 1, 2 and 3 theories were spa
e-like.Let us expli
itly write the �rst eight roots of the in�nite number of real simple roots of
G̃4 in terms of PGL(2,Z) matri
es

α0 ≡
(

0 −1

−1 0

)
, β0 ≡

(
2 1

1 0

)
, β−1 ≡

(
0 1

1 8

)
,

α1 ≡
(

2 7

7 24

)
, β−2 ≡

(
6 17

17 48

)
, α−1 ≡

(
6 7

7 8

)
, (6.31)

β1 ≡
(

12 17

17 24

)
, α−2 ≡

(
20 31

31 48

)
.In terms of the variables q, r, s these roots are given by

r−1 , qr , rs4 , qr7s12 , q3r17s24 , q3r7s4 , q6r17s12 , q10r31s24 . (6.32)These results are 
ompatible with expe
tations based on the walls of marginal stability forthe Z4-orbifold based on Sen's arguments, as we will see below. Before that, however, let usverify that the BKM Lie superalgebra has ∆̃3/2(Z) as its denominator formula. 180
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tra
D

(2)
∞ -Invarian
e of ∆̃3/2(Z)Let us see if ∆̃3/2(Z) gives rise to the denominator identity for this BKM Lie superalgebra.We will �rst show that it 
ontains all the real simple roots that one expe
ts from the studyof the walls of marginal stability. Using the de�nition of the even genus-two theta 
onstants,one 
an easily prove the following two identities about ∆̃3/2(Z).1. Let Z′ =

(
z1 −z2
−z2 z3

). Then,
∆̃3/2(Z

′) = −∆̃3/2(Z) . (6.33)This implies that the modular form is an odd fun
tion under r → r−1.2. ∆̃3/2(Z) is invariant under the ex
hange z1 ↔ 4z3. This implies that the modular formis an odd fun
tion under the ex
hange q ↔ s4.Next, the D(2)
∞ -generators γ and δ a
t on the roots xm written as a 2×2 matrix as follows:

γ : xm −→
(

1 −1

4 −3

)
· xm ·

(
1 −1

4 −3

)T
, (6.34)

δ : xm −→
(
−1 1

0 1

)
· xm ·

(
−1 1

0 1

)T
. (6.35)The matrix γ is denoted by γ(4) in [8℄. ∆̃3/2(Z) is invariant under the symmetry generatedby the embedding of γ and δ into G0(4) ∈ Sp(2,Z). This implies that under the a
tion of γand δ,

∆̃3/2(Z)→ ± ∆̃3/2(Z) .One 
an show that the sign must be +1 by observing that any pair of terms in the Fourierexpansion of ∆̃3/2(Z) related by the a
tion of γ (δ resp.) appear with the same Fourier
oe�
ient. For instan
e, the terms asso
iated with the two simple roots α0 and β0 relatedby the a
tion of δ appear with 
oe�
ient +1. Similarly, the terms asso
iated with the realsimple roots β0 and β−1 related by a γ-translation also appear with 
oe�
ient +1. Thus, wesee that ∆̃3/2(Z) is invariant under the full dihedral group D(2)
∞ . This provides an all-ordersproof that the in�nite real simple roots given by the ve
tor X all appear in the Fourierexpansion of ∆̃3/2(Z). 181



Chapter 6. BKM Lie superalgebras From Dyon Spe
traThe q → s4 symmetry of the modular form is equivalent to the symmetry generated bythe dihedral generator, y, as de�ned in Eq. (2.73).Weyl Transformation of ∆̃3/2(Z)The transformation r → r−1 is the Weyl re�e
tion about the root α0 and as dis
ussed earlier(see Eq. (6.33)), the modular form is odd under the Weyl re�e
tion. One has
wα0 · Z =

(
1 0

0 −1

)T
· Z ·

(
1 0

0 −1

)
. (6.36)The re�e
tion due to any other elementary Weyl re�e
tion will also have the same sign. Werepeat an argument from the appendix A of [8℄ to show this. First, the re�e
tion due to

α0 is represented by the matrix w0 ≡
(

1 0

0 −1

). The a
tion on Z is equivalent to Sp(2,Z)a
tion by the matrix[86℄
M =

(
(w−1

0 )T 0

0 w0

)
,The minus sign due to the Weyl re�e
tion implies that the 
hara
ter, v(M), asso
iated withthe modular form ∆̃3/2(Z) is su
h that v(M) = −1. Next, any other elementary Weylre�e
tion, w, must be 
onjugate to w0 � this is a 
onsequen
e of dihedral symmetry, D(2)

∞ .Hen
e, one has w = s · w0 · s−1 for some invertible matrix s. It follows that the 
hara
terasso
iated with the Weyl re�e
tion w is the same as that for w0. In others, ∆̃3/2(Z) is oddunder all elementary re�e
tions. Hen
e one has
∆̃3/2(w · Z) = det(w) ∆̃3/2(Z) . (6.37)We thus see that the extended S-duality group for N = 4 is given by5

W(A(4)) ⋊D(2)
∞ , (6.38)where W(A(4)) is the Coxeter group generated by the re�e
tions by all real simple roots xmand D(2)

∞ is the in�nite-dimensional dihedral group generated by γ and δ.Although the stru
ture of the BKM Lie superalgebra G̃4 is more 
ompli
ated as 
ompared5The generator y is not realized as an element of a level 4 subgroup of PGL(2, Z) and thus is not anelement of the extended S-duality group. This is similar to what happens for N = 2, 3[8℄. 182



Chapter 6. BKM Lie superalgebras From Dyon Spe
trato G̃1, G̃2, G̃3, the 
orresponden
e between the walls of the Weyl 
hambers and the walls ofmarginal stability whi
h was present in the N = 1, 2, 3 theories 
ontinues to hold even for
N = 4 and is in a

ordan
e with Sen's expe
tations.This 
on
ludes our study of the modular forms Φ̃k(Z) and the 
orresponding BKM Liesuperalgebras G̃N . We now study the modular forms Φk(Z) and the BKM Lie superalgebras
GN 
orresponding to them.6.4.4 The Family of BKM Lie superalgebras GNThe 
lass of BKM Lie superalgebras GN arise from the modular forms Φk(Z). It was �rstshown in [7℄ that the modular forms ∆k/2(Z) are indeed given by the denominator formulafor BKM Lie superalgebra GN , that are 
losely related to the BKM Lie superalgebra G1
onstru
ted by Gritsenko and Nikulin from the modular form ∆5(Z). In parti
ular, it wasshown that1. All the algebras arise as (di�erent) automorphi
 
orre
tions to the Lie algebra asso
i-ated with the rank three Cartan matrix A1,II , from whi
h G1 is also 
onstru
ted.2. The real simple roots (and hen
e the Cartan matrix A1,II) for the GN are identi
al tothe real roots of g(A1,II). This implies that the Weyl group is identi
al as well. Thisis in 
ontrast to the 
ase for the BKM Lie superalgebras G̃N where the root system,Cartan matrix, and hen
e also the Weyl group was di�erent for di�erent N . However,this is 
onsistent be
ause for N > 1, this Weyl group is no longer the symmetry groupof the latti
e of dyoni
 
harges as it was for N = 1. The reason is that the latti
e ofdyoni
 
harges is not generated by 1/Φk(Z), but instead by 1/Φ̃k(Z).3. The multipli
ities of the imaginary simple roots are, however, di�erent. For instan
e,imaginary roots of the form tη0, where η0 is a primitive light-like simple root, have amultipli
ity m(tη0) given by the formula:

1−
∑

t∈N

m(tη0) q
n =

∏

n∈N

(1− qn)
k−4
2 (1− qNn)

k+2
2Note that this formula 
orre
tly reprodu
es the multipli
ities of the imaginary rootsfor G1 as found by Gritsenko and Nikulin[86℄.4. There are also other imaginary simple roots whi
h are not light-like whose multipli
itiesare determined impli
itly by the modular form ∆k/2(Z). 183



Chapter 6. BKM Lie superalgebras From Dyon Spe
traThis 
ompletes our dis
ussion of the BKM Lie superalgebras asso
iated to the modularforms Φ̃k(Z) and Φk(Z). We 
on
lude with a few 
omments.6.5 Con
lusionWe have seen that the square root of the modular forms that generate the dyoni
 degenera
iesand the R2 
orre
tions to the string e�e
tive a
tion are related to BKM Lie superalgebras.This is a very interesting result, for the origin of the underlying BKM Lie superalgebrastru
ture to the theory is not immediately apparent. That the degenera
y of BPS statesshould be given by modular forms, is itself a very remarkable result, for there is no obviousreason that it should have turned out to be so. In parti
ular, the degenera
y of the 1
4
-BPSstates are given by Siegel modular forms and it is very remarkable that the degenera
iesshould be su
h that they add up exa
tly to be given by a Siegel modular form.Another important aspe
t to note is the dependen
e of the modular properties on thesupersymmetry. The degenera
y of 1

2
-BPS states are given by produ
ts of η-fun
tions, whilethe degenera
ies of the 1

4
-BPS states are given by more non-trivial modular forms whosetransformation properties are more involved thatn the η fun
tions. In
reased amount ofsupersymmetry seems to play a 
ru
ial role in the kind of modular forms that generate thedegenera
y of states preserving the supersymmetry.Also, that the modular forms should be related to BKM Lie superalgebras is an equallynon-trivial and remarkable. Again, supersymmetry seems to play an important role in thekind of algebras that are related to the stru
ture. For example the in�nite-dimensional Liealgebras related to the genus-one modular forms are the a�ne Ka
-Moody Lie algebras.Requiring N = 4 supersymmetry graduates this to BKM Lie superalgebras whi
h have afar more involved stru
ture than the a�ne Ka
-Moody Lie algebras. The appearan
e ofthe BKM Lie superalgebras appears not merely to be in
idental, as 
an be seen from the
orresponden
e between the walls of the Weyl 
hambers of the BKM Lie superalgebras andthe walls of marginal stability of the 1

4
-BPS states, and seem to 
ontain information aboutthe CHL theory they 
ome from. It will be interesting to explore this dire
tion further tounearth more 
onne
tions between the family of BKM Lie superalgebras and the CHL strings.Also, one 
an ask if su
h stru
tures exist for other models. These are all new and interestingdire
tions in whi
h one 
an look at. Harvey and Moore have 
onsidered the algebra of BPSstates [112, 113℄. It is of interest to ask whether the BKM Lie superalgebrathat we havefound have any relation to the algebra of BPS states. 184



7Results of the Thesis
In this 
hapter we list the set of results in this thesis that are due to the author of thethesis, obtained as part of work done with 
ollaborators. These results have been presentedin [7, 9, 10℄. We list the results along with the 
ontext in whi
h they were worked.
• In [7℄ the existen
e of a family of BKM Lie superalgebras, GN , were shownwhose Weyl-Ka
-Bor
herds denominator formula gives rise to a genus-twomodular form at level N , ∆k/2(Z), for (N, k) = (1, 10), (2, 6), (3, 4), (4, 3

2
) and

(5, 2).Let us brie�y re
all, from the previous 
hapters, the 
ontext of the above result. Start-ing with the work of Dijkgraaf, Verlinde, and Verlinde[1℄ it was found by Jatkar andSen that the generating fun
tion of the degenera
ies of 1
4
-BPS states in a 
lass of N = 4supersymmetri
 string theories in four spa
e-time dimensions[6℄, was given by genus-two Siegel modular forms, denoted Φ̃k(Z)[2℄. It was also observed by DVV that the`square root' of the modular form in question appears as the denominator identity ofa BKM Lie superalgebra. In [7℄ this idea was extended to the family of modular forms
onstru
ted by Jatkar and Sen. A family of BKM Lie superalgebras were 
onstru
ted,along the lines of the work by Gritsenko and Nikulin[86℄, whose denominator identitieswere given by square roots, ∆k/2(Z), of the genus-two modular forms Φk(Z) generatingthe R2-
orre
tions to the string e�e
tive a
tion. All the BKM Lie superalgebras aregiven by the Cartan matrix

A1,II ≡




2 −2 −2

−2 2 −2

−2 −2 2


 . (7.1)185



Chapter 7. Results of the ThesisThe algebras, denoted GN , have three real simple roots given by the following PGL(2,Z)matri
es
δ1 =

(
2 1

1 0

)
, δ2 =

(
0 −1

−1 0

)
, δ3 =

(
0 1

1 2

)
. (7.2)The Weyl group is generated by the three elementary re�e
tions, (w1, w2, w3), withrespe
t to the three real simple roots. It is given by[86℄ (see also [106, 17℄)

PGL(2,Z) =W(A1,II) ⋊ S3 , (7.3)where S3 is the group of permutations of the three real simple roots. The GN also havea latti
e Weyl ve
tor that satis�es
(ρ, δi) = −(δi, δi)

2
= −1 (7.4)with all the real simple roots.The Cartan matrixA1,II , the set of real simple roots, δ1, δ2, δ3, the Weyl groupW(A1,II),the fundamental Weyl 
hambers and the latti
e Weyl ve
tor ρ of the BKM Lie super-algebras GN do not 
hange with the orbifolding group ZN . All the algebras arise as(di�erent) automorphi
 
orre
tions to the Lie algebra asso
iated with the rank threeCartan matrix A1,II with real simple roots given in (7.2). The BKM Lie superalgebras

GN also have imaginary roots whose norm, with respe
t to a given inner produ
t in theroot spa
e, is not positive de�nite, i.e. the norm (η, η) ≤ 0. The set of imaginary rootsof the BKM Lie superalgebras GN also do not 
hange with N . Their multipli
ities,however, 
hange with N . We dis
uss this point next.
• It was shown in [7℄ that the multipli
ities of the imaginary simple roots forthe BKM Lie superalgebras GN are di�erent for di�erent N . The primitivelight-like simple roots tη0 have a multipli
ity m(tη0) given by the formula:

1−
∑

t∈N

m(tη0) q
n =

√
gρ(τ)

η(τ)3As mentioned above, the Cartan matrix, Weyl group, and the set of real and imagi-nary simple roots for the GN remain the same for all values of N . The modular formsleading to these algebras, and hen
e the denominator identities of the algebras, how-186



Chapter 7. Results of the Thesisever, are di�erent from ea
h other. The di�eren
e in the denominator identities is inthe 
oe�
ients of the terms o

urring in the expansion, whereas the terms themselvesundergo no 
hange. The generating fun
tions of the multipli
ity fa
tors of the variousmultiples of the form tη, of the light-like simple roots η, for di�erent values of N aregiven in terms of a single formula
θ1(τ, z)

(
1−

∑

t∈N

m(tη0) q
t

)
= ψk/2,1/2(τ, z) . (7.5)From the above we see the pattern in the progression of the m(η0) as the orbifoldinggroup ZN varies. For example, for N = 1 the formula reprodu
es the result obtainedby Gritsenko and Nikulin[86℄

1−
∑

t∈N

m(tη0)q
t =

∏

k∈N

(1− qk)9 =

√
f (10)(τ)

η(τ)3
(7.6)where the multipli
ity of the light-like roots is 9, while for N = 2, it gives

1−
∑

t∈N

m(tη0) q
t =

∏

k∈N

(1− qk)(1− q2k)4 =

√
f (6)(τ)

η(τ)3
(7.7)with the multipli
ity of the light-like roots being 4.This is similar to with the twisted denominator formula of Niemann[80℄ where thesub-algebras are obtained by the orbifolding a
tion on the fake Monster Lie algebra.

• In [7℄ the modular properties of the modular forms ∆k(Z) generating theBKM Lie superalgebras GN of the ZN orbifolded CHL strings.The modular forms Φ̃k(Z) and Φk(Z) generate, respe
tively, the degenera
y of the 1
4
-BPS states and the R2 
orre
tions to the string e�e
tive a
tion in the CHL orbifolds.As explained in the pervious 
hapter, its the modular forms ∆k(Z) and ∆̃k(Z), that arethe `square roots' of the modular forms Φk(Z) and Φ̃k(Z) respe
tively, that o

ur asthe denominator identities of BKM Lie superalgebras. The modular form ∆5(Z) wasfound to be the denominator identity of the BKM Lie superalgebra G1 by Gritsenkoand Nikulin. In [7℄ the modular forms that o

ur as the denominator identities of thefamily of BKM Lie superalgebras GN were 
onstru
ted. However, one needs to 
he
kthe modular properties of the ∆k(Z) before interpreting them as the denominator of187



Chapter 7. Results of the Thesisa BKM Lie superalgebra. In [7℄ the modular properties of the modular forms ∆k(Z)were shown, and the modular forms 
onstru
ted from additive lifts of Ja
obi formswith half-integer index. Some of the modular forms ∆k(Z) were also given as produ
tsof even genus-two theta 
onstants.
• In [9℄ the pro
edure to 
onstru
t the modular forms Φ̃k(Z) and Φk(Z) forthe 
ase of general non-prime N , of the orbifolding group ZN , of the CHLstring was given. In parti
ular, the modular forms Φ̃3(Z) generating thedegenera
y of 1

4
-BPS states, and Φ3(Z) generating the string R2 
orre
tionsin the Z4 orbifolded CHL theory were expli
itly 
onstru
ted, in the sumand produ
t forms, and studied.Jatkar and Sen had 
onstru
ted the modular forms Φ̃k(Z) and Φk(Z) for the 
ase ofprime N for the orbifolding group ZN [2℄. For the 
ase of 
omposite N , however, onlythe general behavior was subsequently studied[30℄. In [9℄ the modular forms Φ̃3(Z)and Φ3(Z) were expli
itly 
onstru
ted in the sum form via the additive lift. Further,the systemati
s of the produ
t formulae were worked out and expli
itly 
omputed forthe 
ase of N = 4. Also, the general pro
edure to 
onstru
t the modular forms Φ̃k(Z)and Φk(Z) for the 
ase of general non-prime N was given, thereby 
ompleting the
onstru
tion of the genus-two Siegel modular forms for all ZN orbifolds of the CHLstrings.The produ
t form of Φ3(Z) is given by[32℄

Φ3(Z) = qrs
∏

(n,ℓ,m)

(
1− qnrℓsm

)ĉ0−ĉ2
×
(
1−

(
qnrℓsm

)2)ĉ2−ĉ1×
(
1−

(
qnrℓsm

)4)ĉ1
. (7.8)The ĉa(n, ℓ) are given as the Fourier 
oe�
ients of

F̂ a(z1, z2) =
3∑

b=0

F a,b(z1, z2) , (7.9)where F (a,b)(z1, z2) are the twisted ellipti
 genera for a ZN -orbifold of K3 given as:
F r,s(z1, z2) = 1

N
TrRR,gr

(
(−)FL+FRgsqL0 q̄L̄0e2πızFL

)
, 0 ≤ r, s ≤ (N − 1) (7.10)and g generates ZN and q = exp(2πız1). For N = 4, the various twisted ellipti
 genera188



Chapter 7. Results of the Thesisare given [9℄by
F 0,0(z1, z2) = 2A(z1, z2)

F 0,1(z1, z2) = F 0,3(z1, z2) = 1
3
A(z1, z2) +

[
− 1

12
E2(z1) + 1

2
E4(z1)

]
B(z1, z2)

F 0,2(z1, z2) = 2
3
A(z1, z2) + 1

3
E2(z1)B(z1, z2) (7.11)

F 1,k(z1, z2) = F 3,3k(z1, z2) = 1
3
A(z1, z2) +

[
− 1

24
E2

(
z1+k

2

)
+ 1

8
E4

(
z1+k

4

)]
B(z1, z2)

F 2,2k(z1, z2) = 2
3
A(z1, z2)− 1

6
E2

(
z1+k

2

)
B(z1, z2)

F 2,2k+1(z1, z2) = 1
3
A(z1, z2) +

[
5
12
E2(z1)− 1

2
E4(z1)

]
B(z1, z2)and

F̂ 0(z1, z2) = 10
3
A(z1, z2) + 1

6
E2(z1)B(z1, z2) + E4(z1)B(z1, z2)

F̂ 1(z1, z2) = 4
3
A(z1, z2) + 1

6
E2(z1)B(z1, z2)− 1

2
E4(z1)B(z1, z2) (7.12)

F̂ 2(z1, z2) = 2A(z1, z2) + 1
2
E2(z1)B(z1, z2)− E4(z1)B(z1, z2) .The produ
t formula for Φ̃3(Z) is

Φ̃3(Z) = q1/4rs

3∏

a

∏

ℓ,m∈Z,

n∈Z+
a
4

(
1− qnrℓsm

)P3
b=0 ω

−bmc(a,b)(4nm−ℓ2) (7.13)where ω = exp(2πı
3

) is a 
ube root of unity, and c(a,b)(4nm− ℓ2) are the Fourier 
oe�-
ients of the twisted ellipti
 genera, F (a,b)(z1, z2).It has also been shown in [9℄ that the N = 4 modular forms 
an be written as thesquare of the produ
t of three even genus-two theta 
onstants. One has for Φ3(Z):
Φ3(Z) =

(
1

8
θ

[
1
0
0
1

]
(2Z) θ

[
0
1
1
0

]
(2Z) θ

[
1
1
1
1

]
(2Z)

)2

≡
[
∆3/2(Z)

]2
. (7.14)This is a known modular form with 
hara
ter of weight three at level four. For instan
e,see Aoki-Ibukiyama[97℄, where this is 
alled f3. For the 
ase of Φ̃3(Z) one has:

Φ̃3(Z) =

(
1

4
θ

[
0
0
1
1

]
(Z′) θ

[
1
1
0
0

]
(Z′) θ

[
1
1
1
1

]
(Z′)

)2

≡
[
∆̃3/2(Z)

]2
. (7.15)
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Chapter 7. Results of the Thesiswhere Z′ =

(
1
2
z1 z2

z2 2z3

).We dis
uss the additive lift for the modular forms Φ̃3(Z) and Φ3(Z) in the next pointwhere the η-produ
ts are dis
ussed.
• The generating fun
tion of 1

2
-BPS states is given by multipli
ative η-produ
ts.In [9℄ the η-produ
ts for all groups that arise as symple
ti
 involutions of

K3 were given extending results due to Dummit, Kisilevsky and M
Kay[93℄as well as Mason[94℄. In addition, the 
onje
ture for 
onstru
ting the addi-tive lift leading to the Siegel modular forms Φk(Z) and Φ̃k(Z) when G = ZNfor all N , in terms of the multipli
ative η-produ
ts, was proposed and themodular forms Φ3(Z) and Φ̃3(Z) 
onstru
ted from it.The generating fun
tion for the degenera
ies d(n) of 1
2
-BPS states for the ZN CHLorbifold, taking into a

ount that the ele
tri
 
harge is quantized su
h that Nq2

e ∈ 2Z,is given as:
16

gρ(τ/N)
≡

∞∑

n=−1

d(n) qn/N . (7.16)It was shown that an ansatz for gρ(τ) in the form of an η-produ
t
gρ(τ) =

N∏

r=1

η(rτ)ar = η(τ)a1η(2τ)a2 · · ·η(Nτ)aN . (7.17)with balan
ed 
y
le shapes satisfying 
ertain additional 
onditions gives the 
orre
tdegenera
y for the 1
2
-BPS states in all CHL models where the 
y
le shapes arise fromthe a
tion of Nikulin involutions onH∗(K3) (in the dual des
ription of the CHL orbifoldas asupersymmetri
 orbifold of type II string theory on K3 × T 2), in
luding produ
tgroups su
h as ZM × ZN .The modular form gρ(τ), of weight (k + 2), satis�es the following 
onditions:1. The 
oe�
ients ar satisfy

(
Na1 +N a2

2
+ · · ·+ aN

)
= 24 ,

a1 + a2 + · · ·+ aN = 2(k + 2) , (7.18)
(
1a12a2 · · ·NaN

)−1
= vol⊥ , 190



Chapter 7. Results of the Thesiswhere vol⊥ be the volume of the unit 
ell in Γ⊥.2. The only permitted 
y
les are of length r su
h that r|N , and hen
e ar = 0 unless
r|N . Thus, when N is prime, only a1 and aN are non-zero whi
h agrees withknown results.3. The requirement that the 
y
le be balan
ed implies that a1 = aN among otherthings. It also implies that the �rst equation in Eq. (5.22) 
an be rewritten as

a1 + 2a2 + · · ·+NaN = 24 (7.19)This 
onne
ts to the results of Dummit, Kisilevsky and M
Kay[93℄ on the multipli
ativebalan
ed 
y
le shapes of elements of M24[92℄.Also, it was 
onje
tured in [9℄ that the Ja
obi form of weight k, index 1 and level Nthat is the seed for the additive (Maaÿ) lift leading to the Siegel modular form Φk(Z)when G = ZN for all N is given by ϑ1(z1,z2)2

η(z1)6
gρ(z1). The additive lift giving the modularforms Φk(Z) as an in�nite sum is given as

φk,1(z1, z2) =
ϑ1(z1, z2)

2

η(z1)6
gρ(z1) =

∑

n,ℓ

a(n, ℓ) qnrℓ . (7.20)A similar additive lift for Φ̃k(Z) is given by the following additive seed:
φ̃k,1(z1, z2) =

ϑ1(z1, z2)
2

η(z1)6
gρ(z1/N) . (7.21)

• The BKM Lie superalgebra for ∆3/2(Z) is shown to be similar to the onesappearing in [7℄. The Cartan matrix, Weyl ve
tor and Weyl group remainun
hanged by the orbifolding. However, the multipli
ities of the imaginarysimple root do depend on the orbifolding.The BKM Lie superalgebra for
∆̃3/2(Z) is of paraboli
 type with in�nite real simple roots (labelled by aninteger) with Cartan matrix

A(4) = (anm) where anm = 2− 4(n−m)2 , (6.28)and a light-like Weyl ve
tor. The walls of marginal stability for the N = 4model get mapped to the walls of the fundamental Weyl 
hamber of the191



Chapter 7. Results of the ThesisBKM Lie superalgebra.We looked at the BKM Lie superalgebras underlying the degenera
y of the 1
4
-BPS statesin the family of CHL strings in the previous 
hapters. The BKM Lie superalgebra, G1,for the N = 1 
ase was 
onstru
ted by Gritsenko and Nikulin [86℄ and was extendedto other values of N in [7℄ and [8℄. As mentioned above the BKM Lie superalgebras

GN 
orresponding to the modular forms Φk(Z) for N = 2, 3 and 5 were 
onstru
ted in[7℄, while the BKM Lie superalgebras G̃N 
orresponding to the modular forms Φ̃k(Z)for N = 2, 3 were 
onstru
ted by Gritsenko and Nikulin [108℄ [109℄ and their relationto the degenera
ies of 1
4
-BPS states of the CHL models for N = 2, 3 was pointed outby Cheng and Dabholkar [8℄.It was predi
ted in [8℄ that the BKM Lie superalgebra for N > 3 CHL models maynot exist but sin
e the modular forms Φ3(Z) and Φ̃3(Z) 
orresponding to the N = 4model had not been expli
itly 
onstru
ted before [7℄ it 
ould not be veri�ed. In [7℄ theBKM Lie superalgebra underlying the degenera
y of the 1

4
-BPS states in the N = 4CHL model was shown to exist, and was 
onstru
ted from the 
orresponding modularforms.The BKM Lie superalgebra G̃4 forN = 4 is generated by the modular form (∆̃3/2(Z))2 =

Φ̃3(Z). The BKM Lie superalgebra algebra G̃4 is of paraboli
 type with in�nite numberof real simple roots. To write the Cartan matrix of G̃4, let us order the real simpleroots into an in�nite-dimensional ve
tor as
X = (. . . , x−2, x−1, x0, x1, x2, x3, . . .) = (. . . , α1, β−1, α0, β0, α−1, β1, . . .) .Equivalently, let

xm =

{
α−m/2 , m ∈ 2Z

β(m−1)/2 , m ∈ 2Z + 1 .
(7.22)The Cartan matrix is given by the matrix of inner produ
ts amn ≡ 〈xn, xm〉 and isgiven by the in�nite-dimensional matrix:

A(4) = (anm) where anm = 2− 4(n−m)2 , (7.23)with m,n ∈ Z. It is easy to show that the following family of ve
tors are eigenve
tors
192



Chapter 7. Results of the Thesisof the Cartan matrix with zero eigenvalue.



...
1

−3

3

−1...



(7.24)
with ... indi
ating a semi-in�nite sequen
e of zeros. One 
an show that A has rank three.As usual, the Weyl ve
tor ρ satis�es

〈ρ, xm〉 = −1 , ∀m . (7.25)The Weyl ve
tor is given by ρ =

(
1/4 1/2

1/2 1

) and is light-like.The extended S-duality group for N = 4 is given by
W(A(4)) ⋊D(2)

∞ , (7.26)whereW(A(4)) is the Coxeter group generated by the re�e
tions by all real simple roots
xm and D(2)

∞ is the in�nite-dimensional dihedral group generated by γ and δ whi
h a
ton the roots xm written as a 2× 2 matrix as follows:
γ : xm −→

(
1 −1

4 −3

)
· xm ·

(
1 −1

4 −3

)T
, (7.27)

δ : xm −→
(
−1 1

0 1

)
· xm ·

(
−1 1

0 1

)T
. (7.28)Also, the walls of the Weyl 
hamber of the BKM Lie superalgebra G̃4 was studiedand found to be 
ompatible with Sen's expe
tations. The fundamental domain/Weyl
hamber for N = 4 is bounded by an in�nite number of semi-
ir
les as the BKM Liesuperalgebra has in�nite real simple roots. Ea
h of the semi-
ir
les represents a realsimple root. The point 1

2
is approa
hed as a limit point of the in�nite sequen
e ofsemi-
ir
les. 193



Chapter 7. Results of the ThesisStarting from the produ
t expansion for ∆3/2(Z) the BKM Lie superalgebra, G4 
or-responding to it was also 
onstru
ted in [9℄. The Weyl ve
tor ρ is the same as for thealgebras GN for N = 1, 2, 3, 5 for prime N . Also the three real simple roots remainun
hanged as before[7℄. The imaginary roots remain un
hanged as well, but their mul-tipli
ities are 
hanged by the orbifolding. For ∆k/2(Z) = (Φk(Z))1/2 for prime N , were
all that the BKM Lie superalgebras GN were all given by the same Cartan matrix,and had the same set of real simple roots, Weyl group, Weyl ve
tor, and imaginaryroots. The orbifolding only 
hanged the multipli
ities of the imaginary roots for dif-ferent values of N . It was seen that the same pattern 
ontinues to hold for the BKMLie superalgebra even when N is non-prime for ∆3/2(Z).
• In [10℄ it has been shown that the 
ounting of 1

2
-BPS states is given bymultipli
ative η-quotients that are asso
iated with the frame shapes ρ̃ givenin Table 5.4, generalizing the 
orresponding result for CHL strings wherethe generating fun
tions for the 1

2
-BPS states were given by multipli
ative

η-produ
ts 
orresponding to 
y
le shapes.It was shown in [9℄ that the degenera
y of the ele
tri
ally 
harged 1
2
-BPS states aregiven by multipli
ative η-produ
ts. The idea was extended to the type II models wherethe degenera
y of the ele
tri
ally 
harged 1

2
-BPS states were shown to be given by mul-tipli
ative η-quotients determined by the frame shapes asso
iated with the 
onjuga
y
lasses of Co1. Using the modular forms generating the degenera
y of the 1

2
-BPS states,the additive lift for the modular forms generating the degenera
y of the 1

4
-BPS statesare 
onstru
ted for N = 2, 3 and a 
onje
ture is provided for N = 4.

• In [10℄ the modular forms generating the degenera
y of 1
4
-BPS states in thetype II models have been found in terms of the modular forms generatingthe degenera
y of 1

4
-BPS states in the CHL models. A similar relation hasalso been found for the modular forms generating the string R2 
orre
tionsDavid, Jatkar and Sen have provided produ
t formulae for the N = 2, 3 type IImodels[31℄ in terms of the twisted ellipti
 genus for T 4. In [10℄ these modular formshave been expressed in terms of the various Siegel modular forms o

uring in the CHLmodels. The modular forms in the CHL models have been well studied and have beeninterpreted as the denominator identities of BKM Lie superalgebras. Expressing themodular forms of the type II models in terms of the ones o

uring in the CHL modelsshould help in studying the underlying BKM Lie superalgebra stru
ture, if any. 194



Chapter 7. Results of the Thesis
• In [10℄ a general dis
ussion on the BKM Lie superalgebras 
orrespondingto the the type II models is presented. Though the BKM Lie superalgebrasfor these models have not been 
onstru
ted in [10℄, based on the propertiesthat are expe
ted of these algebras, general dire
tions for �nding thesealgebras, if they exist, has been dis
ussed.The CHL models have been found to have an underlying BKM Lie superalgebra stru
-ture to the degenera
y of the 1

4
-BPS states. A natural question to 
onsider would beif su
h an algebrai
 stru
ture exists even for the type II models. The modular formsapearing in the type II models seem to have a 
ompli
ated stru
ture, whi
h does notimmediately have the interpretation of a BKM Lie superalgebra. However, sin
e thesemodular forms 
an be expressed in terms of the modular forms of the CHL models,whi
h have a BKM Lie superalgebra interpretation, one 
an guess the properties thata BKM Lie superalgebra, if it exits, is expe
ted to have. A dis
ussion on the same isprovided in [10℄.

195



8Con
lusion and Future Dire
tions
In this thesis we have studied the various aspe
ts of the 
ounting of dyoni
 states in stringtheory. The problem of 
ounting has been of mu
h interest be
ause of the ri
h mathemati
alstru
ture underlying it. The degenera
y of the dyoni
 states are given by modular forms andthis strongly suggests the presen
e of a deeper mathemati
al stru
ture to the theory. In thewords of Barry Mazur, �Modular forms are fun
tions on the 
omplex plane that are inordi-nately symmetri
. They satisfy so many internal symmetries that their mere existen
e seemlike a

idents. But they do exist�. That the degenera
y of dyoni
 states should be su
h as tobe given by su
h spe
ial fun
tions that have very restri
ted transformation properties andare sensitive to the smallest of perturbations to their stru
ture, seems to be extraordinary.Equally extrodinary is the appearan
e of BKM Lie superalgebras related to the modularforms. BKM Lie superalgebras are in�nite-dimensional Lie algebras whi
h are very 
ompli-
ated and ri
h generalizations of 
lassi
al semi-simple Lie algebras. That they should appearas an underlying symmetry of the degenera
y of the dyoni
 states is very remarkable. Also,as was mentioned previously, the relation to supersymmetry is another intriguing aspe
t.The degenera
y of states preserving higher degree of supersymmetry are given by more 
om-pli
ated modular forms and have more involved in�nite-dimensional Lie algebra stru
tureunderlying them. This seems to indi
ate an important role for supersymmetry in leading tothe modular stru
ture of the generating fun
tions of dyoni
 degenera
ies. A 
omplete un-derstanding of the whole stru
ture, however, is far from apparent at this point. The originof the various mathemati
al stru
tures, their signi�
an
e and impli
ation to the theory areareas that will be very interesting to understand and unearth.As we have seen, the BKM Lie superalgebra stru
ture undergoes a distin
t 
hange ingoing from N = 3 to N = 4 in the CHL models. The BKM Lie superalgebra stru
ture for196



Chapter 8. Con
lusion and Future Dire
tionsthe N = 4 
ase was a paraboli
 algebra and previously not 
onstru
ted. It has an in�nitenumber of real simple roots. The BKM Lie superalgebra stru
ture for CHL models with
N > 4, if they exist, 
ould be mu
h more 
ompli
ated.Other areas of future interest are obtaining a better understanding of the BKM Liesuperalgebras related to the type II models, and more generally models whi
h 
ome fromframe shapes rather than 
y
le shapes. Also understanding the models with produ
t groupsof the form ZN × ZM , starting from the 
y
le shapes and generating the modular formsgenerating the dyoni
 degenera
y will go towards 
ompleting the 
onstru
tion of degenera
yformulas for all orbifoldings of the CHL strings (see [114℄). Sen et.al. have 
onstru
ted thepartition fun
tions for torsion > 1 dyons in heteroti
 string theory on T 6. Seeing if a BKMLie superalgebra stru
ture exists for these models will extend the 
onstru
tion of [7, 9, 8℄.Also, the idea of understanding the degenera
y of 1

2
-BPS states from the symple
ti
 au-tomorphisms of the K3 surfa
e (for the 
ase of CHL strings) or from the 
onjuga
y 
lassesof Co1 (for the 
ase of type II models) is an interesting result whi
h gives a geometri
understanding to the origin of these degenera
ies. Garbagnati and Sarti have studied sym-ple
ti
 (Nikulin) involutions of K3 manifolds[115, 96℄. In parti
ular, they have expli
itly
onstru
ted ellipti
 K3s whose automorphism groups are the Nikulin involutions. Further,they have provided an expli
it des
ription of the invariant latti
e and its 
omplementarylatti
e. We anti
ipate that these results might be relevant in improving our physi
al under-standing the role of the roots of the BKM Lie superalgebras. The Jatkar-Sen 
onstru
tionholds for N = 11 as well and it leads to a modular fun
tion (i.e., one of weight k = 0) Φ0(Z)and it is believed that a CHL string may exist. In the type IIA pi
ture, the Z11 is no longera symple
ti
 Nikulin involution, it a
ts non-trivially on H∗(K3) and not on H1,1(K3) alone.It is of interest to study aspe
ts of the ZN orbifold both from the physi
al and mathemati
alpoint of view.As we have seen, for a�ne Ka
-Moody algebras, the presen
e of light-like imaginary rootsin L+ leads to powers of the Dedekind eta fun
tion appearing in the produ
t form of theWeyl-Ka
 denominator formula. As is well known, q1/24/η(τ) is the generating fun
tion ofpartitions of n (equivalently, Young diagrams with n boxes). An interesting generalisationis the generating fun
tion of plane partitions (or 3D Young diagrams) has a ni
e produ
trepresentation η3D ∼

∏
n(1−qn)n (due to Ma
Mahon). This fun
tion appears in the 
ountingof D0-branes in the work of Gopakumar-Vafa[116, 117℄. Is there an algebrai
 interpretationfor this? The addition of D2-branes to this enri
hes this story and leads to interestingformulae[118℄. 197



Chapter 8. Con
lusion and Future Dire
tionsOne 
an also 
arry out a similar programme for models with N = 2 supersymmetry[119,120, 121℄. As mentioned before, the high degree of supersymmetry makes all the beautifulmathemati
al stru
ture highly symmetry spe
i�
. Our ultimate aim is to understand themi
ros
opi
 des
ription of general bla
k holes. For this it is ne
essary to understand theabove ideas when the degree of symmetry of the system is redu
ed. Starting with N = 2models is a good way to �nally graduating to the general 
ase.
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ATheta fun
tions
A.1 Genus-one theta fun
tionsThe genus-one theta fun
tions are de�ned by

θ
[a
b

]
(z1, z2) =

∑

l∈Z

q
1
2
(l+ a

2
)2 r(l+ a

2
) eiπlb , (A.1)where a.b ∈ (0, 1) mod 2. One has ϑ1 (z1, z2) ≡ θ

[
1
1

]
(z1, z2), ϑ2 (z1, z2) ≡ θ

[
1
0

]
(z1, z2),

ϑ3 (z1, z2) ≡ θ
[

0
0

]
(z1, z2) and ϑ4 (z1, z2) ≡ θ

[
0
1

]
(z1, z2).The transformations of ϑ1(τ, z) under modular transformations is given by

T : ϑ1(τ + 1, z) = eiπ/4 ϑ1(τ, z) ,

S : ϑ1(−1/τ,−z/τ) = − 1

q1/2r
eπiz

2/τ ϑ1(τ, z) , (A.2)with q = exp(2πiτ) and r = exp(2πiz).The Dedekind eta fun
tion η(τ) is de�ned by
η(τ) = e2πiτ/24

∞∏

n=1

(1− qn) . (A.3)The transformation of the Dedekind eta fun
tion under the modular group is given by
T : η(τ + 1) = eπi/12 η(τ) ,

S : η(−1/τ) = e−πi/4 (τ)1/2 η(τ) . (A.4)199



Appendix A. Theta fun
tionsThe transformation of η(Nτ) is given by
T : η(Nτ +N) = eNπi/12 η(τ) ,

S : η(−1/τ) =
e−πi/4√
N

(τ)1/2 η(τ/N) . (A.5)One 
an see that η(Nτ) transforms into η(τ/N) under the S transformation. η(Nτ) getsmapped to itself only under the subgroup, Γ0(N) of SL(2,Z). Following Niemann[80℄, let
ψj(τ) ≡ η

(
τ+j
N

+ j
)
, j = 0, 1, . . . , N − 1 modN . (A.6)Both S and T no longer have a diagonal a
tion on the ψj(τ). One has

T : ψj(τ + 1) = eπi/12 ψj+1(τ) (A.7)
S : ψj(−1/τ) = e(j+j

′)πi/12 (τ)1/2 χ(G) ψ−j′(τ) , (A.8)where jj′ = 1 modN and the 
hara
ter χ(G) has to be 
al
ulated on a 
ase by 
ase basis(see 
hapter 2 of [80℄ for details).The transformations of the eta related fun
tions show us that the fun
tions fk(τ) andits square root 
an transform with non-trivial 
hara
ter. In parti
ular, one 
an show thatfor N = 7, f (1)(τ) and for N = 3, √f (4)(τ) transform with 
hara
ter. As these two fun
-tions enter the weak Ja
obi forms that are used to 
onstru
t the Siegel modular forms
Φ1(Z) and ∆2(Z) respe
tively, these two Siegel modular forms will transform with non-trivial
hara
ter[83℄. This is the basis for our 
laim that ∆2(Z) must transform with non-trivial
hara
ter and is 
onsistent with the observation of Jatkar-Sen regarding Φ1(Z).
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BEisenstein Series at level N
B.1 Prime NLet E∗

2(τ) denote the weight two non-holomorphi
 modular form of SL(2,Z). It is given by
E∗

2(τ) = 1− 24
∞∑

n=1

σ1(n) qn +
3

π Imτ , (B.1)where σℓ(n) =
∑

1≤d|n d
ℓ. The 
ombination

EN (τ) =
1

N − 1

(
NE∗

2(Nτ)− E∗
2(τ)

)
= 12i

π(N−1)
∂τ
[
ln η(τ)− ln η(Nτ)

] (B.2)is a weight two holomorphi
 modular form of Γ0(N) with 
onstant 
oe�
ient equal to 1[122,Theorem 5.8℄. Note the 
an
ellation of the non-holomorphi
 pie
es. Thus, at level N > 1,the Eisenstein series produ
es a weight two modular form. For example1,
E2(τ) = 1 + 24q + 24q2 + 96q3 + 24q4 + 144q5 + 96q6 + · · · (B.3)is the weight-two Eisenstein series at level 2. At levels 3 and 5, one has
E3(τ) = 1 + 12q + 36q2 + 12q3 + 84q4 + 72q5 + 36q6 + · · ·
E5(τ) = 1 + 6q + 18q2 + 24q3 + 42q4 + 6q5 + 72q6 + · · · (B.4)1All expansions for the Eisenstein series given here have been obtained using the mathemati
s softwareSAGE[123℄. We are grateful to the authors of SAGE for making their software freely available. It was easyfor us to verify Eq. (B.10) using SAGE to the desired order. 201



Appendix B. Eisenstein Series at level NB.2 Composite NSupposeM |N , then one has Γ0(N) ⊂ Γ0(M). Thus, for 
ompositeN , the Eisenstein series atlevel M is also a modular form at level N . For instan
e at level four, one has two Eisensteinseries: E2(τ) and
E4(τ) = 1 + 8q + 24q2 + 32q3 + 24q4 + 48q5 + · · · (B.5)At level six, one has three Eisenstein series: E2(τ), E3(τ) and
Ê6(τ) = 5/24 + q + 3q2 + 4q3 + 7q4 + 6q5 + · · · (B.6)At level eight, one has three Eisenstein series: E2(τ), E4(τ) and
Ê8(τ) = 7/24 + q + 3q2 + 4q3 + 7q4 + 6q5 + · · · (B.7)

ÊN(τ) refer to Eisenstein series normalized su
h that the 
oe�
ient of q is +1. It is knownthat all Eisenstein series in this normalization have integral 
oe�
ients ex
ept for the 
on-stant term[122℄.B.3 Fourier transform about the 
usp at 0The modular transformation, S, under whi
h τ → −1/τ maps the 
usp at 0 to the 
usp at
i∞. When N is prime, Γ0(N) has only these two 
usps. One may wish to obtain the Fourierexpansion about the 
usp at 0 � this is done by mapping 0 to i∞ using the S transform. Toobtain the transform of the Eisenstein series, �rst 
onsider
E∗

2(Nτ)
∣∣
S

= (τ)−2 E∗
2(NS · τ)

= (τ)−2 E∗
2(−N/τ) = (τ)−2(τ/N)2E∗

2(τ/N) =
1

N2
E∗

2

(
τ
N

)
. (B.8)Using this result, it is easy to see that2

EN(τ)
∣∣
S

= − 1

N
EN
(
τ
N

)
. (B.9)2We 
aution the reader that the subs
ript N denotes the level and not the weight of the Eisenstein series.All Eisenstein series 
onsidered in this appendix are of weight two. 202



Appendix B. Eisenstein Series at level NNote that τ = 0 in the LHS 
orresponds to τ = i∞ in the RHS of the above equation. Thus,given the Fourier expansion at i∞, we 
an obtain the Fourier expansion about 0. Noti
e theappearan
e of fra
tional powers of q, q1/N to be pre
ise, at this 
usp. This is expe
ted asthe width of the 
usp at 0 is N . Also, note that the above formula is valid for all N , notne
essarily prime.Another useful addition formula for the Eisenstein series is the following:
E4(τ) + E4(τ + 1

2
) = 2 E2(2τ) . (B.10)This formula was experimentally obtained by us and its vera
ity has been 
he
ked to aroundtwenty orders in the Fourier expansion.B.4 Fourier transform about other 
uspsThe same method 
an be used to obtain the expansion about other 
usps. Again we will needto map the 
usp to i∞ and then tra
k the transformation of the non-holomorphi
 Eisensteinseries. Let us do a spe
i�
 example that is of interest in this paper. Let N = 4 and 
onsiderthe 
usp at 1/2. γ =

(
1 −1
2 −1

) maps 1/2 to i∞.
E4(τ)

∣∣
ST 2S

= −1

4
E4(

τ
4
)
∣∣
ST 2 = −1

4
E4(

τ
4

+ 1
2
)
∣∣
S

= −1

4

(
2E2(

τ
2
)
∣∣
S
−E4(

τ
4
)
∣∣
S

)
= (E2(τ)−E4(τ)) (B.11)In the penultimate step, we made use of Eq. (B.10) in order to write E4(

τ
4

+ 1
2
) in termsof obje
ts with known S-transformations. The �nal answer is in terms of Eisenstein serieswhose Fourier 
oe�
ients are known thus giving us the expansion of E4(τ) about the 
uspat 1/2.For the CHL models with N = 6 and N = 8, it appears that there are no standardmethods to determined the Fourier expansion of E6(τ) and E8(τ) about all the 
usps � thisis a minor te
hni
al hurdle that needs to be surmounted to 
omplete the 
omputation ofthe twisted ellipti
 genus in the 
orresponding CHL models. It would be helpful if one 
anobtain identities similar to the one given in Eq. (B.10).
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CExpli
it formulae for ∆k/2(Z)

We note that ∆k/2(Z) is symmetri
 under the ex
hange z1 ↔ z3 and is anti-symmetri
 under
z2 → −z2 for all values of k.
∆5 =
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− 1√
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Appendix C. Expli
it formulae for ∆k/2(Z)

∆3 =
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+ . . .

205



Appendix C. Expli
it formulae for ∆k/2(Z)

∆1 =

(√
r − 1√

r

)√
q
√
s+

(
−r3/2 +

√
r − 1√

r
+

1

r3/2

)(√
sq3/2 + s3/2√q
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√
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√
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√
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+ . . . ,where qh ≡ q1/4. The expression is symmetri
 under the ex
hange q ↔ s4 and antisymmetri
under r → r−1. An all-orders proof follows from the properties of the even genus-two theta
onstants.
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DThe Ja
obi and the genus-two modular groups
The group Sp(2,Z) is the set of 4 × 4 matri
es written in terms of four 2 × 2 matri
es
A, B, C, D as1

M =

(
A B

C D

)satisfying ABT = BAT , CDT = DCT and ADT − BCT = I. The 
ongruen
e subgroup
Ĝ0(N) of Sp(2,Z) is given by the set of matri
es su
h that C = 0 modN . This group a
tsnaturally on the Siegel upper half spa
e, H2, as

Z =

(
z1 z2

z2 z3

)
7−→M · Z ≡ (AZ +B)(CZ +D)−1 . (D.1)The Ja
obi group ΓJ = SL(2,Z) ⋉H(Z) is the sub-group of Sp(2,Z) that preserves theone-dimensional 
usp z3 = i∞. The SL(2,Z) is generated by the embedding of ( a bc d ) ∈

SL(2,Z) in Sp(2,Z)

g1(a, b; c, d) ≡




a 0 b 0

0 1 0 0

c 0 d 0

0 0 0 1




. (D.2)The above matrix a
ts on H2 as
(z1, z2, z3) −→

(
az1 + b

cz1 + d
,

z2
cz1 + d

, z3 −
cz2

2

cz1 + d

)
, (D.3)1This se
tion is based on the book by Ei
hler and Zagier[83℄. 208



Appendix D. The Ja
obi and the genus-two modular groupswith det(CZ + D) = (cz1 + d). The Heisenberg group, H(Z), is generated by Sp(2,Z)matri
es of the form
g2(λ, µ, κ) ≡




1 0 0 µ

λ 1 µ κ

0 0 1 −λ
0 0 0 1




with λ, µ, κ ∈ Z (D.4)The above matrix a
ts on H2 as
(z1, z2, z3) −→

(
z1, λz1 + z2 + µ, z3 + λ2z1 + 2λz2 + λµ

)
, (D.5)with det(CZ + D) = 1. It is easy to see that ΓJ preserves the one-dimensional 
usp atIm(z3) =∞.The full group Sp(2,Z) is generated by adding the ex
hange element to the group ΓJ .

g3 ≡




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0




. (D.6)
This a
ts on H2 ex
hanging z1 ↔ z3. The subgroup Ĝ0(N) is generated by 
onsidering thesame three sets of matri
es with the additional 
ondition that ( a bc d ) ∈ Γ0(N) i.e., c = 0 modNin Eq. (D.2). Further, we will 
all the 
orresponding Ja
obi group Γ0(N)J .
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