
CONTROLLED ENTANGLEMENT DYNAMICS IN

OPEN QUANTUM SYSTEMS

By

Sandeep K Goyal

The Institute of Mathematical Sciences, Chennai.

A thesis submitted to the

Board of Studies in Physical Sciences

In partial fulfillment of the requirements

For the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

February 15, 2012



Homi Bhabha National Institute

Recommendations of the Viva Voce Board

As members of the Viva Voce Board, we recommend that the dissertation pre-
pared by Sandeep K Goyal entitled “Controlled entanglement dynamics in open
quantum systems” may be accepted as fulfilling the dissertation requirement for
the Degree of Doctor of Philosophy.

Date :
Chairman : Chair of committe

Date :
Convener : Conv of Committe

Date :
Member : Member 1 of committe

Date :
Member : Member 2 of committe

Final approval and acceptance of this dissertation is contingent upon the can-
didate’s submission of the final copies of the dissertation to HBNI.

I hereby certify that I have read this dissertation prepared under my direction
and recommend that it may be accepted as fulfilling the dissertation requirement.

Date :
Guide : Sibasish Ghosh



DECLARATION

I, hereby declare that the investigation presented in the thesis

has been carried out by me. The work is original and the

work has not been submitted earlier as a whole or in part for

a degree/diploma at this or any other Institution or University.

Sandeep K Goyal



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisor Dr. Sibasish Ghosh for

his inspirational help and guidance through the rigorous but wonderful journey that

has culminated in this thesis. He has been there through thick and thin, guiding me

flawlessly through the rough waters of writing this thesis. I am also deeply indebted

to Prof. Simon, whose masterful teaching simplified the mysteries of the quantum

world and inspired me to take up this field of research. Subtle remarks made

by him along the way have translated into profound and insightful statements.

Profs. Howard Carmichael and Thomas Konrad have taught me invaluable tricks

of the trade, for which I remain ever grateful. I count myself lucky to have had

the opportunity to learn from such excellent teachers. Collaborating with Dr.

Subhashish Banerjee has enriched me as a quantum physicist, for which I thank

him.

Special thanks go to Prof G. Baskaran, Prof. R. Shankar, Dr. Ronojoy Adhikari

and Dr. S.R. Hassan for tips, suggestions, criticisms and analytical remarks. I have

benefitted greatly from these interactions.

Discussions with Dr. Sujit Kumar Choudhary and Dr. Chandrasekhar Madiah

have been extremely fruitful in my research. I have learnt a lot from them. My

collaboration with Dr. Madiah has been particularly enjoyable and stimulating,

and I thank him for his help with both the analytical and numerical aspects of the

problems.

Further discussions with fellow researchers Rajeev Singh, J. Solomon Ivan,

Krishnakumar Sabapathy, Mayukh Nilay Khan, Rajarshi Pal, Umesh Dubey, Ajay

Singh Thakur and Shashank Pandey have been illuminating. Rajeev Singh in

particular has gone through the calculations and numerics with a sieve and has

been a helpful critic and proofreader. Somdeb Ghose has helped in proofreading

parts of this thesis.

My fellow students at The Institute of Mathematical Sciences have made me

feel at home, away from home. Rajeev Singh, Prem Prakash Pandey, Neeldhara

Misra, Somdeb Ghose, Soumyajit Pramanick, Madhushree Basu, A.B. Belliappa,

Anoop Varghese, Rohan Poojary and P.V. Sriluckshmy have all provided enough

moral support and fun to last a lifetime. Last, but definitely not the least, I would



like to thank my family for their love and support through all this.

5



Abstract

The study of entanglement has gained prominence in recent years due to the advent

of fields such as Quantum Optics and Quantum Information Theory — advances

that have harnessed such counter-intuitive quantum phenomena into elements of

everyday life, improving it in the process. Ideal quantum systems, “closed” to the

outside world, remain quantum forever and thus manage to retain entanglement.

Real quantum systems, however, are “open” to the environment and are therefore

susceptible to the phenomenon of decoherence. The resultant loss of entanglement

is a major hindrance to the effectiveness of quantum information tasks. In this

thesis we have studied the evolution of entanglement in various types of open

quantum systems (OQS) coupled in various ways to local baths. We have also

studied existing ways and means of controlling the decay of entanglement and

have proposed a new method of doing so.

We have studied the evolution of entanglement in OQS undergoing Markovian

dynamics by using the Lindblad master equation as well as the method of quantum

trajectories. We have analyzed the onset of the phenomenon of entanglement

sudden death in finite as well as infinite dimensional OQS, connected either locally

to a thermal bath or its squeezed variant, or via a quantum non-demolition-type

(QND-type) interaction to a local thermal bath. We have found that the QND-type

system-bath interaction works best to conserve entanglement in finite dimensional

systems, whereas a squeezed thermal bath causes entanglement sudden death even

at zero temperature.

We have also studied some well-known methods of controlling decoherence in

open systems with respect to their ability of preserving entanglement. Some of

these procedures include coupling the system to a thermal bath of photonic crystals

where the photonic band gap suppresses decoherence, modulation of the system-

bath frequency in an attempt to contain decoherence, using the method of reso-

nance fluorescence where an external field modulates the transition frequency of

the two-qubit systems with each qubit being a two-state atomic system to contain

decoherence, and using high-frequency radio waves to decouple the system and

bath dynamically and thus reducing decoherence. Our study has revealed a rather

startling fact — some of these decoherence control procedures actually result in

an elevated rate of loss and a resultant quicker death of entanglement. This is a
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surprising and extremely counter-intuitive result.

Finally, we have proposed a new method of shielding the entanglement in the

system from dissipative environmental effects. In this procedure, an ancillary sys-

tem in a fixed initial state is allowed to interact with the main system through

exchange interactions. We have, through numerical computation, showed that an

ancilla in the ground state extends the lifespan of entanglement in the main system.

Increasing the size of the ancilla, that is, increasing the value of n in an n-qubit

ancilla slows down entanglement loss for a two-qubit system connected locally to

a thermal bath.
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1
Introduction

Quantum physics often presents us with problems of bewildering complexity, where

multiple systems interact among each other in multifarious ways. Solving such

systems is often impossible, and hence we, as physicists, tend to simplify matter

— both to increase the probability of solvability of relevant problems as well as

to make life easier. One such approach is to look at certain small systems of a

finite number of degrees of freedom, which interact with larger systems of many

more degrees of freedom — ideally reservoirs with essentially an infinite number of

degrees of freedom. These smaller systems are open, as opposed to closed systems

that do not interact with their surroundings, say by exchanging energy in a random

manner. For example, consider an atom in vacuum which is in a superposition of

its ground and excited states, the system being a two-level one. At a random point

of time, the atom releases a photon to its surrounding and collapses to its ground

state. Here the two-level single-atomic system is open, as it has exchanged energy

with its environment – here the vacuum – by emitting a photon.

The evolution of every closed quantum system is governed by a unitary transfor-

mation. If the system is open, then of course its evolution is not unitary. However,

if the definition of the word ‘system’ be extended to mean the system-bath compos-

ite, then these two together evolve in a unitary fashion. System-bath interactions

give rise to correlations between the states of the system and the bath, which re-

sults in the destruction of quantum coherence or of interference in the system. This

is the phenomenon of decoherence, and it is primarily responsible for the decay of

entanglement — one of the most important resources of quantum mechanics and

quantum information theory. Entanglement and its evolution in open quantum
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Chapter 1. Introduction

systems in the presence of decoherence make for fascinating study.

In this chapter, we will discuss the hows and the whys of this study to find out

both the utility of studying such systems and phenomena, and the techniques we

use to do the same.

1.1 Why should one study dynamics of open quan-

tum system?

Quantum systems exhibit exotic phenomena that are far removed from our daily

experiences. Yet they are there and are primarily responsible for the electronics

and information age that we live in. Computers, the backbone of our present

day and age, would not have been possible if quantum mechanics did not work.

We do not directly perceive quantum effects in our daily life, which of course is

perfectly natural — and a matter of great relief, some might say. Interference,

coherence, entanglement: all these are essential quantum phenomena, and they

occur in quantum regimes. An ideal closed quantum system will exhibit these

phenomena forever, but no real system can be perfectly insulated from its sur-

roundings, and are inevitably open. More often than not, it is possible to quietly

ignore these weak interactions and treat the system as closed. However, there are

times when this is not possible — for instance, if the system is too leaky, that is, the

system-surroundings interactions are too strong, then decoherence will start mak-

ing an impact. After a sufficient amount of time, open systems no longer remain

quantum, and thus do not exhibit phenomena like interference or entanglement, to

name a few. Also, the rate at which the transtion from quantum to classical takes

place depends on the size of the system. As a result, macroscopic systems like the

ones we encounter in daily life almost never exhibit quantum phenomena.

The tranfer and processing of information is one of the most significant aspects

of the modern information age, and this has become possible in much efficient

ways due to quantum information processing and communication (QIPC) protocols

[23, 20, 54, 15, 22, 16, 24, 21, 27, 189]. As a result, it is now possible to carry out

teleportation with almost full efficiency [187, 188, 111, 32, 31, 75, 24]. However,

open systems preclude the use of such protocols for indefinite times due to the loss

of coherence. For example, in order to carry out a one hundred percent efficient
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teleportation, one requires a bipartite maximally entangled pure state that serves

as a communication channel between two parties located far apart. However, since

this channel can never be a purely closed one, decoherence will play its part and

reduce the purity of the state by turning the pure state into a mixed state. Such

mixed states result in a drop of efficiency of the channel, and, if decoherence acts

long enough, the channel becomes essentially useless for efficient teleportation.

Entanglement is, of course, one of the most important resources in quantum

mechanics and quantum information theory and is indispensable for a large number

of quantum protocols and information tasks. For example, the efficiency of telepor-

tation and super-dense coding protocols depends on the amount of entanglement

in the channel. In order to ensure the success of such tasks, the preservation of

entanglement in communication channels becomes crucial. As a result, it is im-

perative to not only have knowledge about the evolution of entanglement in open

quantum systems, but also to device new ways and means of controlling the decay

of entanglement in the dissipative presence of decoherence. The next section gives

a short overview of some of the methods used to carry out such a study.

1.2 How one can study the dynamics of open sys-

tems

In general, the final state of a quantum system undergoing dynamical evolution

is related to its initial state through a linear transformation. For closed systems,

this transformation is also unitary and is described by Schrödinger evolution. This

is not possible when the quantum system is open, since the evolution is then

non-unitary. As a result, solving the dynamics of open quantum systems is a

difficult affair. However, one way around this is to consider an open system to

be a part of a larger system-bath combine which is closed to the outside. In such

a scenario, it is possible to extract the dynamics of the (open) system from that

of the combine by averaging out the effects of the bath on the system, using the

method of partial traces. Applying various subsequent approximations, one can

thus derive an equation of motion of the evolution of the system alone. This is the

general quantum master equation and it appears in several forms which include the

Nakajima-Zwanzig equation [33], quantum Langevin equation [71, 70, 19, 77] and
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Lindblad master equation [115, 33]. In this thesis, we shall discuss the Lindblad

master equation and use it to analyse the dynamics of both finite as well as infinite

dimensional quantum systems.

The master equation is an analytical method of studying the dynamics of quan-

tum systems. In addition to this, a number of numerical methods have also been

devised over the years to this effect. The quantum trajectory technique [43, 42],

the Monte Carlo wave function method [61, 62, 78, 46, 123] and the stochastic

Schrödinger equation [30] are some of the well known examples. We will discuss

the quantum trajectory technique in some detail.

1.3 Outline of the thesis

In this thesis, we study the evolution of entanglement in open quantum systems

(OQS) undergoing dissipative interactions with the environment. Our focus will

primarily be on two classes of problems. In the first, we will compare how entan-

glement dynamics is affected by changing either the dimensionality of the system,

or the nature of the dissipative interaction, or both. To this end, we will consider

finite as well as infinite dimensional systems, and thermal, squeezed thermal and

quantum non-demolition baths each of which act locally. In particular, we will

look for a complete loss of entanglement in finite time – a phenomenon known as

entanglement sudden death (ESD) – in these setups. In the second class of prob-

lems, we will explore various schemes of controlling the decay of coherence in OQS

and the effect of those schemes on entanglement dynamics. Some such schemes,

such as resonance fluorescence and dynamical decoupling, are known to suppress

decoherence in OQS but fail in the case of entanglement.

In our analysis, we will restrict ourselves to Markovian dynamics and will con-

sequently use the Lindblad form of the master equation for studying entanglement

dynamics. We will use the factorization law of entanglement decay [107] to charac-

terize the dynamics of arbitrary two-qubit pure states in terms of the dynamics of

two-qubit maximally entangled states. To simplify our analysis, we will make use

of the correspondence between quantum maps and positive operators by invoking

the Choi-Jamiolkowski isomorphism [101, 50], also known as channel-state duality.

We will represent the action of a bath on the system by means of Kraus operators.
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In addition to the master equation analysis we will also study some particular

systems using the quantum trajectory technique. This is a numerical technique

that uses state vectors instead of density operators to analyse the piecewise contin-

uous coherent part and the stochastic quantum jump part of dynamical evolution.

The thesis is organized as follows: in the first part of the thesis we briefly review

the basic concepts and techniques used in the study. In the second chapter of this

part we discuss different measures of entanglement. The third chapter is devoted

to the the quantum dynamical semigroup approach to Lindblad master equation

and give a microscopic derivation of the master equation. In the fourth chapter

we discuss quantum trajectory method – a numerical technique for solving open

system dynamics. The fifth chapter deals with various types of special channels as

well as channel-state duality and the factorization law for entanglement decay. To

give a complete description of the master equation approach to the dynamics of

open quantum systems, we describe briefly some issues on non-Markovian master

equation in chapter six although we will not use it in our future discussions.

The second part of the thesis deals mainly with the application of the concepts

mentioned above. In chapter seven we discuss the entanglement dynamics from the

quantum trajectory point of view. In chapters eight and nine, we discuss entangle-

ment dynamics in the presence of three types of baths – thermal, squeezed thermal

and quantum non-demolition. In chapter eight, we make use of the factorization

law for entanglement decay [107] to fully characterize entanglement dynamics in

finite dimensional systems by observing the action of the bath on maximally en-

tangled states. In chapter nine, we study the evolution of two-mode Gaussian

states for the system consisting of coupled harmonic oscillators in the presence of

local thermal and squeezed thermal baths [87]. Our main goal is to observe the

transition from entanglement to separability in this system. In chapter ten we

discuss the effects of certain control procedures on entanglement dynamics [88],

for example, bath of photonic crystals, frequency modulation, resonance fluores-

cence, dynamical decoupling. Finally, in chapter eleven, we provide a technique of

shielding entanglement from environmental effects [85]. We conclude the thesis in

chapter twelve with a list of further problems that may be investigated in future.
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2
Entanglement

The wonderful counter-intuitive phenomenon of entanglement is what sets quan-

tum mechanics apart from classical physics. Entanglement seemingly manages to

violate jointly the notion of locality and the element of physical reality – an effect

that even the great Albert Einstein called “spooky action at a distance”. Together

with fellow researchers Podolsky and Rosen, Einstein came up with the famous

EPR paradox which challenged the completeness of quantum theory as a descrip-

tion of physical reality [65]. The local hidden-variables theory [28, 29] espoused

by Bohm and others attempted to add elements of reality — the so-called “hid-

den variables” — to quantum mechanics in order to explain entanglement without

invoking action at a distance. However, in 1964, Bell’s theorem [17] put an end

to the possibility of the existence of local hidden variables and showed that the

paradox is a generic feature of the real world. He showed that entanglement is

what makes quantum mechanics such a fascinating subject, and makes it different

from the classical theories.

Physically, entanglement is a manifestation of the superposition principle of

quantum mechanics. Mathematically, it comes about from the tensor product

structure of the Hilbert space for a composite quantum system. The principle of

superposition — which states that superposition of two or more states of a quantum

system is a valid new state — is present in classical optics as well. However, in

general [157] we do not see equivalent of entanglement in classical optics due to

the lack of a tensor product structure.

We start with the basic concept of quantum state vectors and density operators

in the first section. We shall discuss the concept of entanglement in more detail in

9



Chapter 2. Entanglement

the following sections which include definition of entanglement, separability criteria

and the measure of entanglement.

2.1 Quantum states and Density operator

A state in quantum mechanics is represented by a state vector |ψ〉 which is a vector

in a d-dimensional Hilbert space H corresponding to the quantum system S. The

state vector |ψ〉 can be written as linear combination of orthonormal state vectors

{|i〉}di=1 as:

|ψ〉 =
d
∑

i=1

αi|i〉. (2.1)

The coefficients αi, which are complex numbers, represent probability amplitudes,

while their modulus square of each element represent probabilities of finding the

system in state |i〉. Being genuine probability, the moduli square satisfy the nor-

malization consition

∑

i

|αi|2 = 1. (2.2)

A more general way of representing the state of the quantum system is through

density operators. The density operator corresponding to the state |ψ〉 is:

ρ = |ψ〉〈ψ|, (2.3)

=
∑

i,j

αiα
∗
j |i〉〈j|. (2.4)

A density operator ρ is, by definition, a positive semi-definite Hermitian oper-

ator with unit trace:

ρ = ρ†

〈φ|ρ|φ〉 ≥ 0 ∀ |φ〉 ∈ H (2.5)

trρ = 1

A state which is the statistical average (classical mixture) of two or more quan-

10



Chapter 2. Entanglement

tum states (as opposed to superposition) cannot be represented by a state vector,

and necessitates the use of density matrices. Consider system whose state is a

mixture of two states |ψ1〉 and |ψ2〉 with probabilities p1 and p2 = 1 − p1. If we

are suppose to guess a pure state for this system we might choose:

|Ψθ〉 =
√
p1|ψ1〉+ eiθ

√
p2|ψ2〉, (2.6)

where θ is arbitrary. The expectation value of an observable O in this state will

be:

〈O 〉 = 〈Ψθ|O|Ψθ〉, (2.7)

= tr (O|Ψθ〉〈Ψθ|) . (2.8)

The expectation value of the observable O depends on the choice of θ. To get rid

of this θ dependence we take the average of the expectation value over all θ which

results in:

〈O 〉 = p1〈ψ1|O|ψ1〉+ p2〈ψ2|O|ψ2〉. (2.9)

Note that no pure state can give rise to this expectation value. If we define an

operator ρ for this system such that

ρ = p1|ψ1〉〈ψ1|+ p2|ψ2〉〈ψ2| (2.10)

then the expectation value of the observable O can be written as:

〈O 〉 = tr(Oρ). (2.11)

The operator ρ represents the density operator for the system.

Thus, the density operator of the statistical average of a number of states is

the convex sum of the density operators of the individual states. It is easily seen

that the new density operator also satisfies all the conditions (2.5). Though we

have a unique density operator ρ for a given distribution of states, the reverse is

not true. For a fixed ρ we can have infinitely many decompositions representing

different ensembles.

11
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To see that consider the spectral decomposition of ρ:

ρ =
∑

λi|ψi〉〈ψi| (2.12)

where λi ≥ 0,
∑

i λi = 1 and 〈ψi|ψj〉 = δij . Consider a unitary operator W . We

define a new set of non-normalized vectors {|φk〉} related to the set {|ψi〉}:

|φk〉 =
∑

i

Wki

√

λi|ψi〉. (2.13)

We see that ρ can be written as ρ =
∑

k |φk〉〈φk|. Hence each and every unitary

matrix W gives rise to a different decomposition. Thus, there are infinitely many

decompositions.

We end this section by listing a few properties of density operators:

• The set of density operators is a convex set, i.e, the convex sum of two or

more density operators is again a density operator.

• Rank one density operators or one dimensional projectors are called pure

states, other density operators are called mixed states.

• Any density matrix can be written as

ρ =
1

d
(I + Λ) , (2.14)

where d is the dimension of the system, I is the d× d identity operator and

Λ is some traceless Hermitian matrix.

2.2 Definition of entanglement

Let |ψ〉 be a state of system S. |ψ〉 belongs to a Hilbert space HS associated to S.

Should the system S be composed of two subsystems A and B, then this Hilbert

space can be decomposed as: HS = HA ⊗ HB. In such systems we can define

entanglement as:

12



Chapter 2. Entanglement

Definition 1 (Entanglement in pure state:) A pure bipartite (or multipartite)

state |ψ〉AB ∈ HA ⊗HB is called product or separable if

|ψ〉AB = |φ〉A ⊗ |χ〉B (2.15)

and entangled if not. Here |φ〉A ∈ HA and |χ〉B ∈ HB.

To get a better understanding of the definition consider an arbitrary bipartite

state

|ψ〉 =
∑

i,j

αij |i〉A ⊗ |j〉B, (2.16)

where {|i〉A} is a complete orthonormal basis of HA and {|j〉B} is a complete

orthonormal basis of HB and
∑

i,j |αij |2 = 1. If α is the matrix of coefficients such

that α = [αij], then there exist two unitary matrices w and x such that

α = wγxT (2.17)

where γ = diag(γ1, γ2, · · · , γd) is a diagonal matrix with non-negative γj’s. This is

called the singular value decomposition [95]. Substituting Eq.(2.17) into Eq.(2.16)

results in

|ψ〉S =
∑

ij

∑

km

wikγkxjmδkm|i〉A ⊗ |j〉B (2.18)

=
∑

k

γk|χk〉A ⊗ |ηk〉B, (2.19)

where

|χk〉A =
∑

i

wik|i〉A (2.20)

|ηk〉B =
∑

j

xjk|j〉B. (2.21)

Eq.(2.19) is known as the Schmidt decomposition [95, 130]. The Schmidt rank is

given by the number of nonzero γk. Since {|i〉} and {|j〉} form an orthonormal

basis, the states {|χi〉} and {|η〉} also form an orthonormal basis for the subsystem
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A and B respectively. The Schmidt rank is an indicator of whether a state is

separable or not: states having a Schmidt rank greater than unity are not separable.

The maximum value that the rank can take is given by min{dim(HA), dim(HB)}.
If the state |ψ〉 of Eq. (2.16) is separable then the reduced density operator

corresponding to any subsystem must also be a pure state. Consider the reduced

density operator for the subsystem A:

ρ
A
= trB(|ψ〉〈ψ|) (2.22)

ρ
A
=
∑

im

∑

k

αikα
∗
mk|i〉A〈m| (2.23)

=
∑

k

γ2k|χk〉A〈χk|. (2.24)

If the state |ψ〉 is separable then its Schmidt rank is unity, which means ρ
A
=

|χk〉〈χk| for one and only one k. This proves that the reduced density operator

of a subsystem of a pure separable system is itself pure. Conversely, the purity,

or lack thereof, of any such reduced density operator indicates the absence, or

presence of entanglement respectively.

The question of separability in states which are statistical mixtures of pure

states, i.e, mixed states requires deeper understanding of the space of positive

operators acting on the Hilbert space H. We define the entanglement in mixed

states as:

Definition 2 (Entanglement in mixed states) If a mixed bipartite state ρ can

be written as convex combination of product states, i.e,

ρ =
∑

k

pkρ
(A)
k

⊗ ρ(B)
k
, (2.25)

then it is called separable. Otherwise, it is called entangled. Here ρ(A)
k

’s are

density operators of system A while ρ(B)
k

are density operators of system B and
∑

k pk = 1 with pk ≥ 0.

As changing the basis of a subsystem should not change its physical relation to

the rest of the world, entanglement should not change under local unitary trans-
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Figure 2.1: Convex structure of the set of separable density operators embedded
in the convex set of density operators. The pure separable states of the system lie
at the points where the boundaries of the two sets touch.

form, i.e,

E(ρ) = E(ρ′) (2.26)

where ρ′ = (U1 ⊗ U2)ρ(U1 ⊗ U2)
†, U1, U2 being unitary operators.

Note that separable states are closed under convex sum, i.e, if ρ1 and ρ2 are

both separable and q is a positive number between 0 and 1 then ρ is given by

ρ = qρ1 + (1− q)ρ2 (2.27)

is also separable. As we remarked earlier, the full set of density operators is also

a convex set (see Fig. (2.1)). We have already discussed that there exist infinitely

many decompositions for a given density operator. We thus need to exhaust all the

decompositions before establishing that a density operator is entangled. Naturally,

this is an immense task and requires huge resources. Therefore, we need to look

for alternative ways to detect entanglement.

Entanglement in mixed states can be understood better by the concept of

entanglement witness and positive but not completely positive maps [96].
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Entanglement witness, as is obvious from the name, are observables that detect

entanglement in a given state. For every entangled state there exists an entangle-

ment witness and vice versa. The mathematical definition of the entanglement

witness follows from a theorem by Horodecki [99].

Theorem 1 A bipartite density matrix ρ is entangled if and only if there exist a

Hermitian operator W such that

• tr(Wρ) < 0

• tr(Wσ) ≥ 0, ∀ separable σ.

The proof of the above theorem follows from the Hahn-Banach (HB) theorem [64].

Take a compact convex set S and a point T outside this set. The HB theorem then

states that there always exists both a continuous function f and a real number ξ

such that, for all pairs {s(∈ S), T} we have

f(s) > ξ > f(T ). (2.28)

We can choose this function to be tr(W.) and ξ = 0 such that,

tr(ρW ) < 0 (2.29)

for a given entangled state ρ and

tr(σW ) ≥ 0 (2.30)

for all separable state σ. Thus proving the validity of the theorem. This operator

W is the Entanglement witness. Since the expectation value of any positive

operator is always a positive number, the operator W is a non-positive operator.

But it is positive for all separable states.

A linear map is a function that maps a set of operators acting on a certain vector

space to another set of operators acting on a different (or same) vector space.

Positive maps are those that map every positive operator to positive operator.

Thus we can formally give a definition of positive maps.

Definition 3 Consider a linear map L between the space of operators B(H1) acting
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on Hilbert space H1 and the space of operators B(H2) acting on Hilbert space H2

L : B(H1) → B(H2). (2.31)

• Map L is positive if L(A) ≥ 0, ∀A ≥ 0 and A ∈ B(H1), i.e, the map L
maps positive operators in B(H1) to positive operators in B(H2).

• The map L is completely positive (CP) if the map

M = L ⊗ In : B(H1)⊗ B(Hn) → B(H2)⊗ B(Hn)

is positive for all n ∈ N . Here In denotes the identity map on the space

B(Hn) of dimension n. Completely positive maps form a subset of positive

maps.

• The map L is unital if L(I) = I and

• L is trace preserving if trL(A) = trA for all A.

Completely positive maps are mathematical equivalents of physical processes.

Since a physical process is simply a mapping of the system from one state to

another irrespective of any other system interacting with it, all physical processes

can be represented by completely positive maps — there is a one-to-one analogy

between the two. On the other hand, there exist positive maps which are not

completely positive and do not represent physical processes. They are not useless

however, and can be utilized (mathematically) to distinguish entangled states from

separable ones.

Theorem 2 A state ρ
AB

is separable iff for all positive maps L on B(HB), the

operator (IA ⊗ LB)(ρAB
) ≥ 0.

The proof of the above theorem is evident considering the separable decomposition

for ρ
AB

:

ρ
AB

=
∑

k

pkρAk
⊗ ρ

Bk
. (2.32)

17



Chapter 2. Entanglement

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

Trace
Preserving

Unital

CP

Positive Maps

Figure 2.2: Diagrammatic representation of positive maps

A one-sided action of L gives us

(I ⊗ L)(ρ
AB

) =
∑

k

pkρAk
⊗L(ρ

Bk
). (2.33)

Since L(ρ
Bk
)s are positive, the operator on the right hand side is positive. There-

fore, (I ⊗L)(ρ
AB

) ≥ 0 for positive L is a necessary condition for ρ to be separable.

That this condition is also sufficient was shown by Horodecki et al [99].

The transpose operation is one example of a positive map since transposition

does not change the eigenvalues of a matrix. However, it is not a completely

positive map. Any positive map of the type L : B(C2) → B(C2) or of the type

L : B(C2) → B(C3) can be written as

L = CP1 + CP2oT, (2.34)

where CPi are completely positive maps and T is a transposition map. The maps

which can be written in such form are called decomposable maps. Not all positive

maps in higher dimensions are decomposable. Graphical structure of positive maps

can be seen in Fig.(2.2)
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2.3 Separability Criteria

The definition of separability is straightforward [175]. In practice however it is

difficult to find out if there exists a separable decomposition for a given density

operator, given that there are infinitely many possible decompositions for a density

operator. As a result, operational criteria for testing the separability of states were

sought and found (at least for some quantum states) [99, 158]. For pure states

this was achieved by testing whether the Schmidt rank was unity or not — unity

indicating separability — the main advantage of this being the ease of computation

of the Schmidt rank [130].

However, for mixed states, the task of determining separability becomes much

more challenging. Our understanding of positive maps and entanglement witnesses

helps us discuss a few possible separability criteria for the most general density

operator which are discussed in detail in following subsections.

2.3.1 Peres-Horodecki criteria

Consider a bipartite density operator ρ. If ρ is separable we can write it as:

ρ =
∑

k

pkρAk
⊗ ρ

Bk
. (2.35)

Performing transposition operation on a subsystem (say B) results in

ρ̃ =
∑

k

pkρAk
⊗ ρT

Bk
. (2.36)

Since ρ
Bk

and ρT
Bk

are both positive and unit trace operators, ρ̃ represents a valid

density operator. Therefore, performing transposition operation on a subsystem,

i.e, partial transposition, maps the set of separable states to itself. But this is

not true in general for non-separable density operators. For example, consider the

following one parameter family of density operators called Werner states [175]

ρp = (1− p)
I4

4
+ p|ψ−〉〈ψ−|, (2.37)
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where 0 ≤ p ≤ 1 and |ψ−〉 = (|01〉 − |10〉)/
√
2. The matrix form of ρ

p
in

{|00〉, |01〉, |10〉, |11〉} basis is:

ρp =













1−p
4

0 0 0

0 1+p
4

−p
2

0

0 −p
2

1+p
4

0

0 0 0 1−p
4













(2.38)

with eigenvalues (1−p)/4, (1−p)/4, (1−p)/4, (1+3p)/4. The partial transposition

of ρp results in

ρTB
p

=













1−p
4

0 0 −p
2

0 1+p
4

0 0

0 0 1+p
4

0

−p
2

0 0 1−p
4













(2.39)

with eigenvalues (1+p)/4, (1+p)/4, (1+p)/4, (1−3p)/4. We can see that when

1/3 < p ≤ 1, the partial transposition of ρp results in a non-positive operator.

Therefore, we arrive at a necessary condition for separable states given by the

following theorem:

Theorem 3 The partial transposition of a separable state is always positive, i.e, if

a density operator does not remain positive on partial transposition, it is necessarily

an entangled state [137].

Since all the positive maps are decomposable in 2 ⊗ 2 and 2 ⊗ 3 systems,

positivity under partial transposition becomes a sufficiency condition as well.

Theorem 4 A 2 ⊗ 2 and 2 ⊗ 3 dimensional quantum system is separable if and

only if it is positive under partial transposition (PPT) [99].

This is the Peres-Horodecki criteria. For higher dimensional system PPT is just a

necessary condition but not sufficient.

To see the action of PPT diagrammatically consider the four Bell state |Φ±〉
and |Ψ±〉 where

|Φ+〉〈Φ+| = 1

4
(I + σz ⊗ σz + σx ⊗ σx − σy ⊗ σy) ,

20



Chapter 2. Entanglement

|Φ−〉〈Φ−| = 1

4
(I + σz ⊗ σz − σx ⊗ σx + σy ⊗ σy) ,

|Ψ+〉〈Ψ+| = 1

4
(I − σz ⊗ σz − σx ⊗ σx − σy ⊗ σy) ,

|Ψ−〉〈Ψ−| = 1

4
(I − σz ⊗ σz + σx ⊗ σx + σy ⊗ σy) .

We can write

|Φ+〉 = (1,−1, 1),

|Φ−〉 = (−1, 1, 1),

|Ψ+〉 = (−1,−1,−1),

|Ψ−〉 = (1, 1,−1)

by the coefficient of the σi ⊗ σi matrices. So we can represent them as the four

vertices on a cube as shown in Fig. (2.3). These four points forms a tetrahedron.

All the states inside the tetrahedron are mixed states which are convex combination

of the four Bell states.

Note that transposition takes σy to −σy, other two sigma matrices remain

unchanged. In geometric terms it is equivalent to taking reflection about xz plane.

On taking partial transposition the tetrahedron in Fig. (2.3) will flip about xz

plane. The overlap between the old tetrahedron and the new one is an octahedron

which represents the set of PPT states and hence separable states. All other states

which are inside the tetrahedron but outside the octahedron are entangled states.

2.3.2 Reduction Criteria

The reduction criteria [98] makes use of the positive map defined as:

Λ(A) = (trA)I − A. (2.40)

It is easy to see that if A ≥ 0, the operator Λ(A) is also positive. One sided

operation of Λ on a bipartite state ρ gives

ρ
A
⊗ I − ρ ≥ 0 (2.41)

I ⊗ ρ
B
− ρ ≥ 0, (2.42)
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Figure 2.3: A diagrammatic representation for PPT criteria.

where ρ
A,B

= trB,A(ρ). Therefore, we have

Theorem 5 A separable state ρ must satisfy Eq. (2.41) and Eq. (2.42).

This criteria is necessary and sufficient for 2 × 2 and 2 × 3 quantum systems.

However, it is weaker than PPT criteria in higher dimensions.

2.4 Measure of entanglement

After learning whether a given state is entangled or not, one can ask how much

entangled is an entangled state? A number of papers has been written on this

problem [179, 69, 34, 66, 122, 141, 168, 181]. But the problem still remains open for

systems which are bigger than two-qubit systems. We have a number of measures

and we are going to discuss some of these in detail. But before going to these

measures, it is a good idea to discuss general properties of a bona-fide measure of

entanglement.

A measure of entanglement is like a measure for distance between two points.

Just that we are given only one point (a mixed state) and we have to find how

far this point is from the closest separable state. Like the measure of distance,
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entanglement measure must also satisfy a number of properties. But before going

into the details we need to set our grounds. We assume a bipartite system with

Hilbert space H = HA ⊗ HB and dim(HA) = dim(HB) = d. Following are the

properties an ideal entanglement measure must satisfy—

1. An entanglement measure is a function E which assigns to each state ρ ∈
B(H) a non-negative real number E(ρ) where E(ρ) = 0 implies that the state

is separable.

2. (Monotonicity under LOCC) Entanglement is a non-local property of a

quantum system, therefore, E should not increase under any local operation

accompanied by classical communication schemes.

3. (Local unitary invariance) E should be preserved under local unitary

transformation, i.e,

E(ρ) = E
(

(u⊗ v)(ρ)(u† ⊗ v†)
)

, (2.43)

for unitary operators u and v.

4. (Concavity) Convex sum of two entangled density operators can results in

a separable density operator, therefore, the entanglement measure should be

a concave function, i.e,

E(λρ1 + (1− λ)ρ2) ≤ λE(ρ1) + (1− λ)E(ρ2), (2.44)

where 0 ≤ λ ≤ 1.

5. (Continuity) In the limit of vanishing ( by any suitable measure) distance

between two states ρ
1

and ρ
2
, (||ρ

1
− ρ

2
|| → 0) the difference between their

entanglement should tend to zero (E(ρ1)− E(ρ2)) → 0.

6. (Additivity) For two states ρ
1

andρ
2

E(ρ
1
⊗ ρ

2
) = E(ρ

1
) + E(ρ

2
). (2.45)

Any map which maps density operators to scalars can be considered as a measure

of entanglement if it satisfies all the conditions discussed above. In the following
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subsection we will discuss a number of entanglement measures both for pure and

for mixed states.

2.4.1 von-Neumann entropy

Unlike classical statistical system, even if the state of a bipartite quantum system

is pure, the individual subsystem might be in mixed state. The lack of the in-

formation about individual subsystems is caused by a non-local property, namely,

entanglement. Therefore, by measuring the amount of the lack of information

(measure of impurity) in one of the subsystems it is possible to deduce the amount

of entanglement. There are a number of ways to measure the impurity in a quan-

tum system and von-Neumann entropy is one of them. For a density operator ρ,

the von-Neumann entropy is defined as [130]:

S(ρ) = −trρ log ρ = −
∑

k

qk log qk, (2.46)

where qk are the eigenvalues of ρ. von-Neumann entropy satisfies all the properties

listed in previous section, i.e, it is positive, it is monotonic under LOCC, it is

continuous and additive. FIG.(2.4) confirm the concavity property of the entropy.

Therefore, it is a valid entanglement measure for pure states.

2.4.2 Reńyi entropy

Reńyi entropy, generalization of Shannon entropy, is a family of functionals for

quantifying the uncertainty or randomness of a system. In a quantum state it

measures the impurity of the state. The Reńyi entropy of order α can be defined

as [147, 72]:

Hα(ρ) =
1

1− α
log(trρα). (2.47)

where α can take any value between 0 and ∞ except α = 1. In the limit α → 1

the Reńyi entropy converges to von-Neumann entropy —

Hα→1(ρ) = S(ρ). (2.48)
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Figure 2.4: von-Neumann entropy for a set of canonical states (
√
p|00〉 +√

1− p|11〉) for two-qubit system. All pure entangled states of two qubits can
be achieved from these states by local unitary transformation by varying p in
[0, 1].

Like von-Neumann entropy, Reńyi entropy of the reduced density matrix also

satisfies all the conditions for a valid entanglement measure.

2.4.3 Entanglement of formation (EoF)

The entanglement of formation is the minimal convex extension of the von-Neumann

entropy of the reduced density operator to mixed states. This measure gives us the

minimum amount of entanglement required to construct a given bipartite density

operator.

Every state can be decomposed as a convex combination of pure states projec-

tions as:

ρ =
∑

k

pk|ψk〉〈ψk|, (2.49)

where pk ≥ 0 such that
∑

k pk = 1 and |ψk〉 need not be orthogonal. We call

this particular decomposition an ensemble and represent it by {pk, |ψk〉}, then the

definition of EoF is [49, 162]
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Definition 4 EoF is defined as the minimized average von-Neumann entropy of

the reduced density operators of the pure states |ψk〉, minimization is realized over

all possible decompositions of ρ, i.e,

EoF (ρ) = min
{pk,|ψk〉}

∑

k

pkE(|ψk〉〈ψk|), (2.50)

where E(|ψk〉〈ψk|) is the von-Neumann measure of entanglement for pure state

|ψk〉.

Since the definition of EoF involves optimization, it is in general difficult to calcu-

late EoF.

2.4.4 Concurrence

Concurrence is a measure of entanglement in two-qubit systems. This measure

was introduced by Bennett, Divincenzo, Smolin and Wootters in 1996 [25] and

generalized by Wootters, Hill and others later [91, 179, 181, 180]. To understand

this measure, consider a two-qubit pure product state, i.e,

|ψ〉 = |χ〉 ⊗ |η〉, (2.51)

where

|χ〉 = α1|0〉+ β1|1〉 (2.52)

|η〉 = α2|0〉+ β2|1〉. (2.53)

We have

|χ⊥〉 = β1|0〉 − α∗1|1〉 (2.54)

|η⊥〉 = β2|0〉 − α∗2|1〉 (2.55)

which are orthogonal to |χ〉 and |η〉 respectively. The state

|ψ̃〉 = |χ⊥〉 ⊗ |η⊥〉 = (σ2 ⊗ σ2)C|ψ〉 (2.56)
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is orthogonal to |ψ〉 where C is complex conjugation operation in the standard

basis. Now consider a general pure two-qubit state |ϕ〉 =∑ij αij |i〉 ⊗ |j〉. We can

write

|ϕ̃〉 =
∑

ij

α∗ij(σ2 ⊗ σ2)|i〉 ⊗ |j〉. (2.57)

The quantity |〈ϕ̃|ϕ〉| will be zero for a pure product state otherwise it will have

value between zero and one. In that sense this quantity can serve as the measure of

entanglement. To calculate this quantity consider the coefficient matrix α = [αij]

for the state |ϕ〉. Similarly the coefficient matrix for |ϕ̃〉 in the basis of |i〉 and |j〉
can be written as:

α̃ = −σ2α∗σ2 (2.58)

and hence the quantity |〈ϕ̃|ϕ〉| can be written as |tr (−σ2α∗σ2α) |. If we write the

state |ϕ〉 in the “magic basis”, i.e,

|ϕ〉 =
∑

i

γi|ei〉 (2.59)

where

|e1〉 =
1√
2
(|00〉+ |11〉) ,

|e2〉 =
i√
2
(|00〉 − |11〉) ,

|e3〉 =
i√
2
(|01〉+ |10〉) ,

|e4〉 =
1√
2
(|01〉 − |10〉) ,

the quantity |〈ϕ̃|ϕ〉| turns out to be

C(|ϕ〉) =
∣

∣

∣

∣

∣

∑

i

γ2i

∣

∣

∣

∣

∣

(2.60)

which we call concurrence of |ϕ〉.
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The state |ϕ̃〉 represents a kind of spin-flipped state which is compared with

the original state which gives a measure of entanglement. For a two-qubit density

operator ρ the spin-flip operation is given by:

ρ̃ = (σ2 ⊗ σ2)ρ
∗(σ2 ⊗ σ2), (2.61)

where ρ∗ is the complex conjugation in the standard basis. We define a quantity

R2 = ρ̃ρ. The concurrence is then given by

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (2.62)

where the λi are the square root of the eigenvalues of the matrix R2 in descending

order.

For an explicit calculation of the concurrence consider the Werner state ρp. The

operator ρ̃
p
= (σ2 ⊗ σ2)ρ

∗
p
(σ2 ⊗ σ2) can be written as:

ρ̃p =













1−p
4

0 0 0

0 1+p
4

−p
2

0

0 −p
2

1+p
4

0

0 0 0 1−p
4













(2.63)

which is same as ρp . Thus R2 = ρ2
p

and the eigenvalues of R2 will be square of

(1−p)/4, (1−p)/4, (1−p)/4, (1+3p)/4, the eigenvalues of ρp . We can calculate

the concurrence from here as:

C(ρ
p
) = max{0, λ1 − λ2 − λ3 − λ4},

=
3p− 1

2
. (2.64)

2.4.5 G-concurrence

G-concurrence for a pure state is defined as the geometric mean of the Schmidt

coefficient of the pure state [84]. For a bipartite state |ψ〉 it can be written as:

G(|ψ〉) = d(λ1λ2 · · ·λd)1/d (2.65)
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where d is the dimension of each subsystem. The state |ψ〉 can be written as

|ψ〉 =
∑

ij

Aij|ij〉. (2.66)

The G-concurrence in terms of the coefficient matrix A can be written as:

G(|ψ〉) = d[det(AA†)]1/d (2.67)

2.4.6 Logarithmic negativity

The logarithmic negativity is an entanglement measure which relies on the nega-

tivity of an entangled state under partial transposition. This measure is easy to

calculate and as good as any other measure for two-qubit systems. The negativity

for a bipartite state can be defined as [139]

N (ρ) =
||ρΓA||1 − 1

2
, (2.68)

where ΓA stands for partial transposition with respect to subsystem A and ||.||1 is

trace norm of an operator and can be written as

||ξ||1 = tr
(

√

ξ†ξ
)

, (2.69)

i.e, the sum of the singular values of ξ. All those states which have negative

eigenvalues after taking partial transposition will have non-zero negativity.

Logarithmic negativity LN [139] can be defined as

LN(ρ) = log2 (2N (ρ) + 1) . (2.70)

It is easy to see that negativity is first order approximation of logarithmic nega-

tivity.

To see the calculation of negativity and logarithmic negativity explicitly, con-
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sider again the Werner state ρ
p
. For this state

||ρΓA

p
||1 =

∣

∣

∣

∣

1 + p

4

∣

∣

∣

∣

+

∣

∣

∣

∣

1 + p

4

∣

∣

∣

∣

+

∣

∣

∣

∣

1 + p

4

∣

∣

∣

∣

+

∣

∣

∣

∣

1− 3p

4

∣

∣

∣

∣

, (2.71)

= 3

∣

∣

∣

∣

1 + p

4

∣

∣

∣

∣

+

∣

∣

∣

∣

1− 3p

4

∣

∣

∣

∣

. (2.72)

For p > 1/3 the term 1− 3p is negative, therefore,

||ρΓA

p
||1 = 3

1 + p

4
+

3p− 1

4
(2.73)

=
3p+ 1

2
(2.74)

and thus the negativity N (ρp) = (3p − 1)/4 and the logarithmic negativity is

LN(ρ
p
) = log2((3p+ 1)/2).

This measure (i.e, logarithmic negativity) of entanglement is good for two-

qubit systems, since PPT is necessary and sufficient condition for separability in

this case. But for higher dimensional systems, there are states which are entangled

and are PPT. Such states are called bound entangled states or non-distillable en-

tangled states. For such states logarithmic negativity fails as a bona-fide measure

of entanglement.
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3
Quantum operations and Master equation

Quantum operations (QO) or dynamical maps are completely positive linear maps

from a set of density operators to another set of density operators. One example

of a QO is time evolution, which can either be unitary or nonunitary. Evolution

through a noisy channel is another example. Measurement and the projections are

also QO’s. QO’s were first discussed as a general stochastic transformation for a

density matrix by Sudarshan et al. [161]. Since then a lot of work has been done

on this subject. [159, 176, 117, 73, 134].

Any linear map ϕ : B(H1) → B(H2) which preserves the following basic prop-

erties of quantum states is a QO.

1. Hermiticity :

ϕ(A†) = ϕ(A)†, (3.1)

i.e, hermitian operators are mapped to hermitian operators.

2. Positivity:

ϕ(A) ≥ 0 ∀A ≥ 0, (3.2)

i.e, all the positive operators are mapped to positive operators. To represent

physical operation, a map ϕ needs to be completely positive, i.e,

(In ⊗ ϕ)Z ≥ 0 ∀Z ≥ 0, (3.3)
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where In is an identity map acting on n×n operators and Z ∈ B(Hn⊗H1).

3. Trace condition:

trϕ(A) = 1 ∀ trA = 1, (3.4)

Any linear map can be represented is matrix form. Consider a map Λ repre-

sented by the matrix V connecting the initial density operator ρ
S
(0) of a quantum

system S to the density operator ρ
S
(t) at time t. We can write:

ρ
Sij

(t) =
∑

kl

Vij,kl(t)ρSkl
(0), (3.5)

For V to be a valid QO it needs to satisfy conditions ((3.1), (3.2), (3.4)) which,

in this context, are the following:

Hermiticity:

ρ
Sij

(t) = ρ∗
Sji

(t)

⇒
∑

kl

Vij,kl(t)ρSkl
(0) =

∑

kl

V ∗ji,kl(t)ρ
∗
Skl

(0)

=
∑

kl

V ∗ji,kl(t)ρSlk
(0)

⇒ Vij,kl(t) = V ∗ji,lk(t). (3.6)

If we define an operator M such that

Mik,jl = Vij,kl, (3.7)

then Eq.(3.6) is simply

Mij,kl =M∗kl,ij. (3.8)

This implies that for V to represent a Hermitian map, M needs to be a Hermitian

operator.

Positivity:
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Positivity of a density operator is:

∑

ij

x∗iρij
(t)xj ≥ 0 ∀ |x〉 = [x1, x2, · · · , xd]T ∈ H, (3.9)

which is

∑

ijkl

x∗i ρkl
(0)xjMik,jl ≥ 0 ∀ |x〉 ∈ H. (3.10)

If the spectral decomposition of the density operator is

ρ(0) =
∑

m

λm|ψm〉〈ψm|

ρ
kl
(0) =

∑

m

λmψ
m
k ψ
∗m
l , (3.11)

then from Eq. (3.10):

∑

ij,kl,m

λmψ
m
k ψ
∗m
l x∗ixjMik,jl ≥ 0

⇒
∑

m

λm
∑

ij,kl

x∗iψ
m
k Mik,jlψ

∗m
l xj ≥ 0

⇒ 〈xψm∗|M |xψm∗〉 ≥ 0, (3.12)

where
√
λm|xψm∗〉 = |x〉 ⊗ |ψm∗〉. Condition Eq. (3.12) implies that M needs to

be positive on product states. For complete positivity M needs to be a positive

operator.

Trace condition:

Since the trace of a density operator is always unity, there is a further constraint

on the dynamical map. We know that

tr(ρ
S
(t)) =

∑

i

ρ
Sii
(t)

=
∑

kl,i

Vii,klρkl
(0) = 1 (3.13)
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for all density operators ρ
S
(0). This gives us a condition on V

∑

i

Vii,kl = δkl. (3.14)

This constraint ensures that the trace of a density operator is always preserved.

In this fashion we have derived all the constraints on the matrix representation

V of a dynamical map Λ. In the following sections we will discuss operator sum

representation and Kraus operators as alternate way of studying the dynamics of

an open quantum system.

3.1 Operator sum representation (Kraus opera-

tors)

A dynamical map Λ can be represented using the matrix V (see Eq. (3.5)) or alter-

natively, the matrix M (see Eq. (3.7), where M needs to be a positive operator).

The action of a map Λ can be fully characterized by the following theorem:

Theorem 6 Let H1 and H2 be Hilbert spaces of dimension d1 and d2 respectively.

Let Λ be a quantum operation taking the density operators acting on H1 to those

acting on H2. Then there are operators {Ai}1≤i≤d1d2 acting from H1 to H2 such

that

Λ(ρ) =
∑

i

AiρA
†
i , (3.15)

where
∑

iA
†
iAi ≤ I. Conversely, any map Λ of this form is a quantum operation

provided
∑

iA
†
iAi ≤ I the identity operator acting on H1.

The representation in (3.15) is called operator sum representation and the op-

erators {Ai} are called Kraus operators. For a given quantum operation Λ, the set

{Ai} of Kraus operators is not unique. The following theorem states that all such

sets of Kraus operators which represent the same quantum operation are related

by a unitary transformation.
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Theorem 7 Let Λ be a quantum operation from Hilbert space H1 to H2 and let

the sets {Ai}mi=1 and {Bi}ni=1 be two sets of Kraus operators representing the action

of Λ. Then there is an isometery U = [uij ]1≤i≤n, 1≤j≤m such that

Bi =
∑

j

uijAj . (3.16)

For a map Λ (and hence for V and M), it is straightforward to calculate a set of

Kraus operators which represent the action of Λ. To do this consider the spectral

decomposition for M

M =
∑

m

γm|m〉〈m|

=
∑

m

|am〉〈am| (3.17)

where |am〉 = √
γm|m〉. This gives us

Mij,kl =
∑

m

amija
m∗
lk where |am〉 =

∑

ij

amij |ij〉

=
∑

m

(am ⊗ am∗)ik,jl where am = [amij ]
d
i,j=1

= Vik,jl.

We can rewrite the Eq. (3.5) in terms of a’s as:

ρ
Sij
(t) =

∑

kl

Vij,klρSkl
(0)

=
∑

kl,m

amika
m∗
jl ρSkl

(0)

ρ
S
(t) =

∑

m

amρ
S
(0)am†. (3.18)

Hence the matrices am are the Kraus operators. Using this set of Kraus operators

it is trivial to calculate all other sets of Kraus operators. This is done by taking

the unitary mixing of the Kraus operators am. This gives us the Kraus operators
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bk which are obtained using

bk =
∑

m

ukma
m. (3.19)

Here U = [ukm] is a unitary operator (in general U needs to be isometry operator,

i.e, U †U = I whereas UU † 6= I), and {bk}’s are Kraus operators representing the

same evolution as the {am}’s. In this fashion we can calculate the entire set of

Kraus operators for a given evolution.

3.2 Quantum dynamical semigroup

The evolution of an open system is a physical process which is mathematically

analogous to a map from a set of density operators to itself. If ρ(0) be the initial

density operator of the open quantum system (OQS), then the density matrix at

time t, ρ(t), is obtained by

Λ(t)ρ(0) = ρ(t), (3.20)

where Λ is the evolution map. This map Λ maps the set of density operator S(HS)

acting on the Hilbert space HS to itself, i.e,

Λ : S(HS) → S(HS). (3.21)

Such a map which describes the change in the state of the system over time is

called a dynamical map.

The total Hamiltonian of the system and bath can be written as:

H = HS +HB +HI , (3.22)

where HS is free Hamiltonian of the system, HB is the free Hamiltonian of the

bath and HI is the interaction between the system and the bath. The evolution of

the system-bath combine is governed by the unitary operator

U(t) = exp (−iHt) . (3.23)
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For simplicity, let us assume that initially, the system and the bath are uncorre-

lated, therefore the state of the system and bath is taken as:

ρ(0) = ρ
S
(0)⊗ ρ

B
(3.24)

which evolves to

ρ(t) = U(t)(ρ
S
(0)⊗ ρ

B
)U †(t). (3.25)

Since we are interested in the state of the system alone, we can obtain it by tracing

out the bath degree of freedom from ρ(t). We get

ρ
S
(t) = trB

[

U(t)(ρ
S
(0)⊗ ρ

B
)U †(t)

]

, (3.26)

which implies that

ρ
S
(t) = Λ(t)ρ

S
(0) = trB

[

U(t)(ρ
S
(0)⊗ ρ

B
)U †(t)

]

. (3.27)

We wish to get a clearer picture of the dynamical map Λ(t). To this end, we first

write down the spectral decomposition of ρ
B
:

ρ
B
=
∑

m

λm|m〉〈m|, (3.28)

where {λm} are real positive numbers satisfying
∑

m λm = 1. Substituting Eq.(3.28)

into Eq.(3.27) we get.

Λ(t)ρ
S
(0) = trB

[

U(t)(ρ
S
(0)⊗

∑

m

λm|m〉〈m|)U †(t)
]

=
∑

n

〈n|
[

U(t)(ρ
S
(0)⊗

∑

m

λm|m〉〈m|)U †(t)
]

|n〉

=
∑

n

∑

m

λm〈n|U(t)|m〉ρ
S
(0)〈m|U †(t)|n〉. (3.29)
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Eq.(3.29) can be rewritten as

Λ(t)ρ
S
(0) =

∑

n

∑

m

Wnm(t)ρS
(0)W †

nm(t) (3.30)

where Wnm(t) =
√
λm〈n|U(t)|m〉 are the Kraus operators acting on ρ

S
(0). Since

∑

nmW
†
nmWnm = I, tr(Λ(t)ρ

S
(0)) = trρ

S
(t) = 1. This explicitly confirms that Λ(t)

is a trace preserving map. Λ(t) gives rise to a one parameter family of dynamical

maps, since time t appears as a parameter and where Λ(0) is the identity. If there

is no memory effect in the system, i.e, if the bath correlation function decays much

faster than the system response time, then the one parameter family of dynamical

maps will satisfy the dynamical semigroup property, i.e,

Λ(t2)Λ(t1) = Λ(t2 + t1). (3.31)

This loss of memory effect is what gives rise to Markovian characteristics.

The non-unitary nature of the evolution of open quantum systems necessitates

the use of a master equation to describe it. A master equation is simply an equation

of motion of the density operator of the relevant system. Here we shall be primarily

concerned with Markovian master equations [83, 178, 33] which are easier to deal

with, thanks to the quantum dynamical semigroup property [82, 156] they possess.

In the next section we will discuss Lindblad master equation from quantum

dynamical semigroup point of view followed by microscopic derivation for the same.

3.2.1 Master equation: quantum dynamical semigroup ap-

proach

Consider a dynamical map Λ acting on the state of a d-dimensional quantum

system S. The evolution of a state ρ
S
(0) of system S is then given by

ρ
S
(t) = Λ(t)ρ

S
(0). (3.32)

Markovian dynamics implies that Λ(t2)Λ(t1) = Λ(t2+ t1), and this allows us to
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write down the further evolution of the state ρ
S
(t) for an infinitesimal time ǫ:

ρ
S
(t+ ǫ) = Λ(ǫ)ρ

S
(t). (3.33)

The time derivative of ρ
S
(t) can then be written as

d

dt
ρ

S
(t) = lim

ǫ→0

ρ
S
(t + ǫ)− ρ

S
(t)

ǫ

= lim
ǫ→0

Λ(ǫ)− I
ǫ

ρ
S
(t) (3.34)

= Lρ
S
(t)

Thus L is the generator of the semigroup Λ(t). We begin with the action of Λ on

the operator ρ
S
(t).

Λ(ǫ)ρ
S
(t) =

∑

nm

Wnm(ǫ)ρS
(t)W †

nm(ǫ) (3.35)

where Wnm are d× d Kraus operators defined in Sec. 3.2. We can write the Kraus

operators in a complete basis of orthonormal operators {Ai}, i.e,

Wnm(ǫ) =
∑

i

ainm(ǫ)Ai (3.36)

where tr(A†iAj) = δij and ainm(ǫ) = tr[A†Wnm(ǫ)]. We can rewrite Eq.(11.8) as

Λ(ǫ)ρ
S
(t) =

∑

nm

∑

ij

ainm(ǫ)a
j∗
nm(ǫ)AiρS

(0)A†j

=

d2−1
∑

i,j=0

bij(ǫ)AiρS
(t)A†j , (3.37)

where bij(ǫ) =
∑

nm a
i
nm(ǫ)a

j∗
nm(ǫ). We can choose A0 to be I/

√
d without loss of

generality. This will make the other operators {Ai}i 6=0 traceless and allow us to

substitute Eq.(3.37) into Eq.(11.10) to get

d

dt
ρ

S
(t) = c00ρS

(t) +Bρ
S
(t) + ρ

S
(t)B† +

∑

ij 6=0

cijAiρS
(t)A†j (3.38)

39



Chapter 3. Quantum operations and Master equation

where

c00 = lim
ǫ→0

b00 − d

dǫ

cij = lim
ǫ→0

bij
ǫ

B = lim
ǫ→0

1√
dǫ

∑

i

bi0(ǫ)Ai.

Combining the first two terms of Eq.(3.38), gives

d

dt
ρ

S
(t) = −i[H, ρ

S
(t)] + {G, ρ

S
(t)}+

∑

ij

cijAiρS
(t)A†j (3.39)

where

H =
1

2i
[B† −B], (3.40)

G =
1

2

(

c00I +B† +B
)

. (3.41)

Finally, the expression for L is

Lρ
S
(t) = −i[H, ρ

S
(t)] + {G, ρ

S
(t)}+

∑

ij

cijAiρS
(t)A†j . (3.42)

Since dρ
S
(t)/dt should be traceless, the restriction

tr

{

Gρ
S
(t) + ρ

S
(t)G+

∑

ij

cijAiρS
(t)A†j

}

= 0, (3.43)

i.e, tr

{(

2G+
∑

ij

cijA
†
jAi

)

ρ
S
(t)

}

= 0 (3.44)

applies for all ρ
S
(t), which leads to

G = −1

2

∑

ij

cijA
†
jAi (3.45)

The matrix c = [cij ] is a positive operator and hence is diagonalizable through

conjugation with a unitary operator. We can always find a unitary matrix u such
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that

ucu† = γ (3.46)

where γ is diag(γ0, γ1, · · · , γd−1) with non-negative entries. We define new opera-

tors {Fi} such that

Ai =

d2−1
∑

k=1

ukiFk (3.47)

and Eq.(3.42) takes the form

Lρ
S
(t) = −i[H, ρ

S
(t)] +

{

−1

2

∑

i

γiF
†
i Fi, ρS

(t)

}

+
∑

k

γkFkρS
(t)F †k . (3.48)

This is the Lindblad form of the Markovian master equation [115], or to put it

more succinctly the Lindblad master equation. The physical meaning of all the

terms on the right hand side of the equation will be clear in the following section

where we will derive the above equation in the microscopic description. But before

going to that let us have a look at different pictures in quantum mechanics. We

will need them in the microscopic derivation of Master equation.

3.3 Heisenberg and Interaction Picture

The time evolution of a state vector |ψ(t)〉 is given by the Schrödinger equation:

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉 (3.49)

where H is the Hamiltonian. If H is time independent, then the solution of the

Schrödinger equation is:

|ψ(t)〉 = exp

(

−iH(t− t0)

~

)

|ψ(t0)〉 (3.50)
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This allows us to calculate the expectation value of an observable O when the

system is in state |ψ(t)〉:

〈O〉 = 〈ψ(t)|O|ψ(t)〉. (3.51)

However, it is sometimes useful and necessary to use time-dependent bases in quan-

tum mechanics, different choices of which give rise to the Heisenberg, Schrödinger

and Interaction picture. When we choose to make the state vector time-dependent

we get Schrödinger picture. Therefore, the solution the Eq.(3.49) results in the

Schrödinger picture.

The Heisenberg picture is obtained by making every vector in the Hilbert space

move according to the Schrödinger Eq. (3.49) so that none of the vector evolve in

time, i.e,

|ψHP 〉 = U †(t, t0)|ψ(t)〉 (3.52)

where subscript HP represents the Heisenberg picture and U(t, t0) = exp
(

−iH(t−t0)
~

)

.

The expectation value of an observable is a physical quantity and therefore,

should be independent of representation. This implies that

〈OHP 〉 = 〈ψHP |OHP |ψHP 〉 = 〈ψ(t)|O|ψ(t)〉. (3.53)

This equation gives us the relation between an observable in the Heisenberg picture

OHP and an observable in the Schrödinger picture O:

OHP = U †(t, t0)OU(t, t0) (3.54)

where the observables in the Heisenberg picture satisfies the equation:

i~
d

dt
OHP = [OHP , H ]. (3.55)

In systems where H can be written as H0 +H1, where H0 has no explicit time

dependence and H1 is a small time dependent perturbation, the interaction picture

is quite useful. Like in Heisenberg picture, in interaction picture as well we make
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state vector to rotate with a unitary matrix U0 given by:

U0 = exp

(

−iH0(t− t0)

~

)

. (3.56)

The state vector in interaction picture is related to the one in Schrödinger picture

by the relation

|ψI〉 = U †0(t, t0)|ψ(t)〉 (3.57)

and satisfies the equation

i~
d

dt
|ψI〉 = HI |ψI〉 (3.58)

where HI = U †0H1U0. The expectation value of an observable in interaction picture

is:

〈OI〉 = 〈ψI |OI |ψI〉 = 〈ψ(t)|O|ψ(t)〉 (3.59)

and hence OI = U †0OU0 and the observable OI satisfies the equation:

i~
d

dt
OI = [OI , H ]. (3.60)

3.3.1 Microscopic derivation of the Markovian master equa-

tion

Dynamical semigroup approach for the derivation of the Lindblad master equa-

tion [Eq. (3.48)] gives us the formal expression for the equation. But the form

of the operators Fk’s and the expression for γk’s in this equation depends on the

system Hamiltonian, bath Hamiltonian and the way system and bath are interact-

ing. Therefore, it is important to derive the generator of the quantum dynamical

semigroup from the Hamiltonian dynamics of the system. In this section we will

start with the Hamiltonian of the system and the bath and the interaction between

them and derive the Lindblad master equation for the system.

Let the Hamiltonian HS and HB describes the dynamics of the system S –

which can be any finite or infinite dimensional quantum system – and the infinite
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dimensional bath B respectively, whereas the interaction between them is governed

by HI . A two-level quantum system interacting with a bath of an infinite number

of non-interacting harmonic oscillators or a quantum dipole in the presence of

an electromagnetic field are typical examples of such a setup. We assume that

the system-bath combine is in the Schrödinger picture, which means that there

is no explicit time dependence in the system Hamiltonian. In this picture, the

density matrix of the composite system ρtot evolves according to the Liouville-von-

Neumann equation,
d

dt
ρ

tot
= −i [H, ρ

tot
] (3.61)

where H = HS+HB+HI is the Hamiltonian for the entire system. We have taken

~ = 1.

However, it is more convenient to work in the interaction picture for two reasons.

One is that the interaction picture Hamiltonian is simpler since it has lesser number

of terms. The other reason is that in the interaction picture, we treat states

and observables on an equal footing. This means that both the states and the

observables are time dependent, unlike that in the Schrödinger or the Heisenberg

picture. The state ρ (of the entire system) in the interaction picture can be written

as

ρ
I
(t) = exp {i(HS +HB)t} ρtot

(t) exp {−i(HS +HB)t} (3.62)

and the equation of motion for the density operator as,

d

dt
ρ

I
= −i

[

HI
I (t), ρI

(t)
]

(3.63)

where,

HI
I (t) = exp {i(HS +HB)t}HI(t) exp {−i(HS +HB)t} (3.64)

The density operator ρ
S
(t) is used to characterize the system and is given by,

ρ
S
(t) = trB(ρtot

(t)), (3.65)

or,

ρ
S
(t) = trB (exp {−i(HS +HB)t} ρI

(t) exp {i(HS +HB)t}) . (3.66)
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Since [HS, HB] = 0,

ρ
S
(t) = trB (exp(−iHSt) exp(−iHBt)ρI

(t) exp(iHSt) exp(iHBt)) . (3.67)

This can further be reduced to

ρ
S
(t) = exp(−iHSt)trB {exp(iHBt) exp(−iHBt)ρI

(t)} exp(iHSt),

= exp(−iHSt)trB (ρ
I
(t)) exp(iHSt), (3.68)

We need to know ρ
I
(t) to get ρ

S
(t). For this, we need to solve Eq.(3.63) whose

formal solution can be written as a recursive relation:

ρ
I
(t) =ρ

I
(0)− i

∫ t

0

dt′
[

HI(t′), ρ
I
(t′)
]

. (3.69)

ρ
I
(t) =ρ

I
(0)− i

∫ t

0

dt′
[

HI(t′), ρ
I
(0)
]

−
∫ t

0

dt′
∫ t′

0

dt′′
[

HI(t′),
[

HI(t′′), ρ
I
(t′′)
]]

. (3.70)

We terminate this series beyond the second order by assuming that the system-bath

interaction is weak. Using this, we rewrite Eq. (3.63) as

d

dt
ρ

I
(t) = −i

[

HI(t), ρ
I
(0)
]

−
∫ t

0

dt′
[

HI(t),
[

HI(t′), ρ
I
(t′)
]]

. (3.71)

We assume as before, that the system and bath were initially uncorrelated. Thus,

the initial state of the system-bath combine can be written as:

ρ
tot
(0) = ρ

S
(0)⊗ ρ

B
. (3.72)

We also assume that the state of the bath is sufficiently random. If we choose {Ai}
and {Bi} some set of operators acting on the Hilbert spaces HS and HB of the

system and the bath respectively such that the interaction Hamiltonian takes the

form HI =
∑

Ai ⊗ Bi, then sufficient randomness of the state of the bath implies

that the expectation value tr(ρ
B
Bi) of the operators Bi vanish and hence

trB[H
I , ρtot(0)] = tr[HI , ρ

I
(0)] = 0. (3.73)
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This assumption is motivated from the fact that the expectation value of all the

field operators in the case of bath of electromagnetic field (EMF) in the thermal

state, is zero, i.e, 〈 ai 〉 = 〈 a†i 〉 = 0.

Tracing over both sides of Eq. (3.71), and using Eq. (3.73), we get

d

dt
ρ

S
(t) = −trB

∫ t

0

dt′
[

HI(t),
[

HI(t′), ρ(t′)
]]

= −
∫ t

0

dt′trB
[

HI(t),
[

HI(t′), ρ(t′)
]]

. (3.74)

Consider now a quantum system consisting of two subsystems, where the inertia

of one subsystem is much higher than the other. An atom is one such example

– electrons zip around in their orbitals at high frequency around the much more

massive nucleus. In such cases, the Born approximation is applicable and we can

write the total state of the system in product form. Thus Born approximation can

be applied to our system-bath combine because a bath, by definition, has much

more resistance to perturbation, while the system has a small number of degrees

of freedom. This allows us to write the system-bath combine state as

ρtot(t) ≈ ρ
S
(t)⊗ ρ

B
. (3.75)

This simplifies Eq.(3.74) and gives,

d

dt
ρ

S
(t) = −

∫ t

0

dt′trB
[

HI(t),
[

HI(t′), ρ
S
(t′)⊗ ρB

]]

. (3.76)

This can be further simplified using the Markov approximation. This has two

parts – we first replace ρ
S
(t′) on the RHS of Eq. (3.76) with ρ

S
(t) to make it local

in time and hence obtain the Redfield equation [144, 145, 140]. We note that the

Redfield equation is not Markovian as yet – there is still the dependency on the

initial time. To get rid of that, we transfer the initial time back in time to t→ ∞
and thus remove all information pertaining to the initial state of the system. This

entire procedure is the Markov approximation which, when carried out on Eq.

(3.76), ultimately yields

d

dt
ρ(t) = −

∫ ∞

0

dτtrB
[

HI(t),
[

HI(t− τ), ρ(t)⊗ ρB
]]

. (3.77)
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This equation is called Quantum Markovian Master Equation.

3.3.2 Lindblad form of the Master Equation

In general in the Schrödinger picture interaction Hamiltonian can always be written

as

HI =
∑

i

Ai ⊗ Bi (3.78)

where the Ai’s act on the Hilbert space HS corresponding to system S and Bi’s
act on Hilbert space HB corresponding to the bath B. This is analogous to the

form of the interaction Hamiltonian HI in Sec. 3.3.1. We now project Ai’s into

the eigenspace of HS using the projection operators Π(ω) and write them as the

eigenoperators of HS:

Ai(ω) =
∑

ǫ′−ǫ=ω
Π(ǫ)AiΠ(ǫ

′). (3.79)

Here we have assumed that the eigenvalues ǫ of HS form a discrete spectrum and

thus have a fixed energy gap between the energy levels ofHS which we have denoted

by ω = ǫ′ − ǫ.

Eq. (3.79) leads to the commutation relations

[HS,Ai(ω)] = −ωAi(ω) (3.80)
[

HS,A†i(ω)
]

= ωA†i(ω). (3.81)

Converting Ai(ω) into the interaction picture Hamiltonian, we have

AI
i (ω) = exp(iHSt)Ai(ω) exp(−iHSt) (3.82)

Using the Hadamard lemma,

exp(iP )Q exp(−iP ) = Q+ [P,Q] +
1

2!
[P, [P,Q]] + . . . , (3.83)
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we get,

AI
i (ω) = Ai(ω)− ωtAi(ω) +

1

2
ω2t2Ai(ω)− . . .

= exp(−iωt)Ai(ω) (3.84)

and AI†
i (ω) = A†i(ω) + ωtA†i(ω)−

1

2
ω2t2A†i(ω) + . . .

= exp(iωt)A†i(ω). (3.85)

Now, we note that,

[HS,A†i(ω)Aj(ω)] = 0,

A†i = Ai(−ω),
and

∑

ω

Ai(ω) =
∑

ω

A†i(ω) = Ai. (3.86)

Hence we can write the HI as,

HI =
∑

i,ω

Ai(ω)⊗ Bi =
∑

i,ω

A†i(ω)⊗ B†i (3.87)

which in the interaction picture becomes,

HI(t) =
∑

i,ω

exp(−iωt)Ai(ω)⊗ Bi(t) =
∑

i,ω

exp(iω)A†i(ω)⊗ Bi(t)† (3.88)

where,

Bi(t) = exp(iHB)Bi exp(−iHB) (3.89)

We also note that the condition,

trB
[

HI(t), ρ(0)
]

= 0

becomes 〈Bi(t)〉 = trB
{

Bi(t)ρB
}

= 0. (3.90)
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Now, we can write the commutator of Eq.(3.77) as,

[

HI(t),
[

HI(t− τ), ρ(t)⊗ ρB
]]

=
{

HI(t)HI(t− τ)
(

ρ(t)⊗ ρB
)}

−
{

HI(t− τ)
(

ρ(t)⊗ ρB
)

HI(t)
}

+
{(

ρ(t)⊗ ρB
)

HI(t− τ)HI(t)
}

−
{

HI(t) (ρ(t)⊗ ρB)H
I(t− τ)

}

(3.91)

We note that since the LHS of the the master equation Eq.(3.77) is Hermitian, the

RHS also needs to be Hermitian. This implies that

d

dt
ρS(t) =−

∫ ∞

0

dτtrB
{

HI(t)HI(t− τ)
(

ρS(t)⊗ ρB
)

−HI(t− τ)
(

ρS(t)⊗ ρB
)

HI(t) + h.c.
}

(3.92)

where h.c. is the Hermitian conjugate. In terms of the Ai(t)s and Bi(t)s, we then

get,

d

dt
ρS(t) =−

∫ ∞

0

dτ

[

∑

ω,ω′

eı(ω−ω
′)te−iωτ trB

{

Aj(ω)ρ
S(t)A†I(ω′)⊗ Bj(t− τ)ρBB†i (t)

}

−trB

{

A†I(ω′)Aj(ω)ρ
S(t)⊗ B†i (t)Bj(t− τ)ρB + h.c.

}]

. (3.93)

Since the trace is over the bath, we can write

d

dt
ρS(t) =−

∑

ω,ω′

{

Aj(ω)ρ
S(t)A†i(ω′)−A†i(ω′)Aj(ω)ρ

S(t)
}

×
∫ ∞

0

dτe−iωτ trB

{

B†i (t)Bj(t− τ)ρB
}

+ h.c. (3.94)

where we have used the cyclic properties of trace.

Now, trB(B
†
i (t)Bj(τ)ρB) = 〈B†i (t)Bj(τ)〉. We define,

Γij(ω) =

∫ ∞

0

dτe−iωτ 〈B†i (t)Bj(t− τ)〉 (3.95)

At this point we apply the rotating wave approximation and drop all terms in Eq.

(3.94) where ω 6= ω′. This is because they cause fast oscillations and will average
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out to zero. We get:

d

dt
ρS(t) =

∑

i,j

∑

ω

Γij(ω)
[

Aj(ω)ρ
S(t)A†i(ω′)−A†i(ω′)Aj(ω)ρ

S(t)
]

+ h.c. (3.96)

Since Γij is a complex number, we can write,

Γij(ω) =
1

2
γij(ω) + iSij(ω) (3.97)

where, Sij(ω) is an anti-Hermitian matrix and γij(ω) is positive, defined as,

Sij(ω) =
1

2i

(

Γij(ω)− Γ∗ji(ω)
)

(3.98)

γij(ω) =
(

Γij(ω) + Γ∗ji(ω)
)

=

∫ ∞

−∞
dτeiωτ 〈B†i (τ)Bj(0)〉 (3.99)

Using these substitutions,we can write the Lindblad form of the master equation

as,

d

dt
ρS(t) = −i

[

HLS, ρ
S(t)

]

+D[ρS(t)] (3.100)

where

HLS =
∑

ω

∑

ij

Sij(ω)A†i(ω)Aj(ω), so that [HS, HLS] = 0

and D[ρS(t)] =
∑

ω

∑

ij

γij(ω)

[

Aj(ω)ρ
S(t)A†i (ω)−

1

2

{

A†i(ω)Aj(ω), ρ
S(t)

}

]

HLS is called Lamb shift Hamiltonian. It has the same eigenstates as the free

Hamiltonian of the system but the energy levels are shifted. The second term

D[ρS(t)], is the dissipator in Lindblad form. The second term in the dissipator is

responsible for damping in the system. The first term is physically equivalent to

a jump (or collapse) process. For the case of a two-level atom interacting with

electro magnetic field (EMF), Ai is σ− which causes the system to jump from an

excited state to the ground state while A†i is σ+ which does the opposite.

Since the matrix [γij] is a hermitian matrix, it is possible to diagonalize it by
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unitary operator U . Thus

Dγ = UγU †, (3.101)

where Dγ is a diag(γi, γ2, · · · , γd) with non-negative entries and the γ is the matrix

[γij ].

The same unitary transformation will cause the mixing of the Ai operators to

give rise to new operators Aj , i.e,

Aj =
∑

i

UjiAi. (3.102)

Hence we can write the final form of the Lindblad dissipator as

D[ρS(t)] =
∑

j,ω

γj(ω)

[

Aj(ω)ρ
S(t)A†j(ω)−

1

2

{

A†j(ω)Aj(ω), ρ
S(t)

}

]

. (3.103)

Eq. (3.100) together with the dissipation term D[ρS(t)], given in Eq. (3.103),

is the Lindblad form of Markovian Master equation, Derives independently by

Gorini, Kossakowski, Sudarshan [82] and by Lindblad [115]. State of quantum

optical systems, in contact with the environments, often satisfy such type of mas-

ter equation. As mentioned earlier, evolution under this equation guarantees the

complete positivity property.
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4
Quantum trajectories

In the previous chapter we discussed various methods – operator sum representa-

tion and master equation – to study the dynamics of an open quantum system.

In this chapter we discuss a numerical approach to solve the master equation

namely, quantum trajectory approach. This technique was first introduced in

[43, 163, 44, 45, 42].

In this chapter we will discuss the basics of quantum trajectory approach. We

start with the perturbative expansion for the density operator ρ for the system S

interacting with the bath B. This is followed by the section on unravelling the

Lindblad master equation and the Monte Carlo simulations.

4.1 Perturbative expansion for the density opera-

tor

Consider the master equation

ρ̇ = Lρ (4.1)

for the density operator ρ. L is the Liouvillian. In general, the Liouvillian L can

be written as the sum of an unperturbed part L0 and a small perturbation S, such

that

L = L0 + S. (4.2)
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The formal solution of Eq. (4.1) is

ρS(t) = e(L0+S)tρS(0). (4.3)

For the perturbation expansion of ρ(t), consider the operator:

A = exp ((L0 + S)t) (4.4)

and let

B = e−L0tA. (4.5)

From here we get

Ḃ = −L0e
−L0tA+ e−L0t(L0 + S)A

= e−L0t(S)A
= e−L0tSeL0tB. (4.6)

This give rise to a formal solution

B(t) = I +

∫ t

0

Ḃ(s)ds (4.7)

⇒ A = eL0t

(

I +

∫ t

0

e−L0sSeL0sBds
)

. (4.8)

Repeating this process give rise to the identity

A =

∞
∑

m=0

∫ t

0

dtm

∫ tm

0

dtm−1 · · ·
∫ t2

0

dt1

× eL0(t−tm)SeL0(tm−tm−1)S · · ·SeL0t1 (4.9)

and hence we get

e(L0+S)t =
∞
∑

m=0

∫ t

0

dtm

∫ tm

0

dtm−1 · · ·
∫ t2

0

dt1

× eL0(t−tm)SeL0(tm−tm−1)S · · ·SeL0t1 (4.10)
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with {tm} a monotonically increasing sequence.

The integrand in Eq. (4.10) describes a single quantum trajectory for the initial

state ρ(0), The terms exp[L0(tm − tm−1)] represents continuous time-evolution in

the intervals [tm−1, tm), while S represents discontinuous quantum jumps at time

{tm}. Eq (4.10) can be interpreted as a generalized sum over all the possible “jump”

pathways that the system might follow during its evolution from time t = 0 to time

t.

One can choose different L0 and S depending on the experimental setup or

the requirement of the problem. Different choices of L0 and S give rise to differ-

ent trajectories or unravellings. In the next section we will discuss the quantum

trajectory for a specific L0 and S for Lindblad master equation.

4.2 Unravelling the Lindblad master equation

Consider the Lindblad form of master equation (see Eq. (3.48)):

ρ̇(t) = −i[H, ρ] +Dρ
= −i[H, ρ] +

∑

j

2γjFjρF
†
j − γj [F

†
j Fjρ+ ρF †j Fj]. (4.11)

In this equation we choose Fi to be jump operators. The terms F †i Fiρ/2 and

ρF †i Fi/2 describes the loss of population from the current states. The term FiρF
†
i

can be understood as the density matrix after the transition described by Fi; such

transition can be interpreted as “quantum trajectory”.

Now we can write:

L0 = −i[H, ρ] +
∑

j

2γj − γj[F
†
j Fjρ+ ρF †j Fj ] (4.12)

and

S =
∑

i

Si, (4.13)
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where

Siρ = FiρF
†
i . (4.14)

The unperturbed Liouvillian L0 can be written as

L0 = −i[Heffρ− ρHeff ], (4.15)

where

Heff = H − i
∑

j

γj[F
†
j Fj]. (4.16)

This non-hermitian Hamiltonian generates non-unitary time-evolution and we can

write the non-unitary Schrödinger equation

i
d

dt
|ψ(t)〉 = Heff |ψ(t)〉. (4.17)

This confirms that the unperturbed part of the Liouvillian L0 give rise to non-

unitary coherent time-evolution for the initial state ρ(0). This coherent evolution

is interrupted by non-deterministic jumps Si. The probability of the jump in a

particular time interval ∆t can be calculated as:

pc,i(t) = tr(Siρc(t))∆t,

= 2γitr(Fiρc(t)F
†
i )∆t,

= 2γi〈F †i Fi〉∆t, (4.18)

where ρc is the density matrix in a particular trajectory. It is often called con-

ditioned density operator. The probability to find at least one jump in the time

interval [t, t+∆t) due to any of the Si is given by:

pc(t) =
∑

i

pc,i(t). (4.19)
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4.3 Monte Carlo simulation

Monte Carlo simulation provides the most useful implementation of the quantum

trajectory. This section outlines a Monte Carlo algorithm for the generation of

stochastic quantum trajectories based on the unravelling of the Lindblad master

equation developed thus far.

In the simulation, time is discrete with a time-step ∆t. We start with an

arbitrary state |Ψ(0)〉. Let |Ψ(t)〉 be the state at time t. Then we

1. evolve the state |Ψ(tn+1)〉 as:

|Ψ(tn+1)〉 = exp(−iHeff∆t)|Ψ(tn)〉. (4.20)

2. Normalise the state:

|Ψ(tn+1)〉 =
|Ψ(tn+1)〉

√

〈Ψ(tn+1)|Ψ(tn+1)〉
. (4.21)

3. Calculate the probability for the jump:

pc,i(tn) = 〈Ψ(tn)|F †i Fi|Ψ(tn)〉∆t,
Pc(tn) =

∑

i

pc,i(tn). (4.22)

4. Draw a random number rn from a uniform distribution in the interval [0, 1)

and compare it with Pc.

(a) If Pc(tn) ≥ rn, a jump occurs. The new instantaneous state of the

system is |Ψ(tn+1)〉 = Fi|Ψ(tn)〉.
(b) If Pc(tn) < rn, go to step 1
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Channels and states

This chapter is devoted to some special relations between states of a bipartite

system and any channel (or bath) acting on one subsystem of it. In the first

section we will discuss channel-state duality which is known as Choi-Jamiolkowski

[50, 101] isomorphism. This is, as suggested by the name, an isomorphism between

the set of completely positive maps and the set of positive operators. This section

is followed by a section discussing factorization law for entanglement decay [107].

After this we will discuss some special type of channels called entanglement breaking

channels. We conclude the chapter with some examples of single-qubit channels.

5.1 Channel-State Duality

A quantum channel is a channel for the transmission of quantum as well as clas-

sical information, and is essentially a completely positive map between spaces of

operators. Any such physical channel, acting on a d-dimensional quantum state,

can be mapped to a positive operator in d2 dimensions. Similarly, a positive oper-

ator acting on a d2-dimensions Hilbert space can be mapped to a physical channel

acting on d dimensions. Such a two-way mapping between a quantum channel

acting on d-dimensional system and a quantum state in d2-dimensions is called

channel-state duality [50, 101].

Let us consider two d-dimensional Hilbert space H1 and H2. The set of all

bounded linear operators acting on H1 and H2 are B(H1) and B(H2). Let φ be
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the map such that:

φ : B(H1) → B(H2). (5.1)

The matrix representation of φ can be given by looking at the action of φ on a

basis in B(H1). Choose the orthonormal basis {Eij} of B(H1). The ij-th element

of the matrix Eij is 1 and rest all are zero. The action of φ on Eij can be written

as:

φ(Eij) = Fij (5.2)

where Fij ∈ B(H2). Thus, the matrix element ρφij,kl corresponding to φ are:

ρφij,kl = (Fij)kl (5.3)

⇒ ρφ =
∑

ij,kl

Eij ⊗ Fij (5.4)

⇒ ρφ =
∑

ij

Eij ⊗ φ(Eij) (5.5)

⇒ ρφ = (I ⊗ φ)
(

|φ+〉〈φ+|
)

, (5.6)

where |φ+〉 =∑d
i=1 |ii〉/

√
d and I is the identity operator. Note that |φ+〉〈φ+| =

(
∑

ij Eij ⊗ Eij)/d.

If φ is a completely positive map then Choi theorem on completely positive map

[50] says that the operator ρφ is a positive operator. This is quite straightforward

to see that ρφ is a positive operator for completely positive map φ from Eq. (5.6).

The operator |φ+〉〈φ+| ∈ B(H1)⊗ B(H1) is a positive operator and φ is acting on

one side of this operator. Therefore, ρφ is positive. Thus we have established the

duality between the channel (the map φ) and the state ρφ.

Making use of channel-state duality, we will derive the factorization law of

entanglement decay in the next section.

5.2 Factorization law of entanglement decay

One of the focus of this thesis is the dynamics of entanglement. We will be studying

a number of systems and the evolution of entanglement in different environments.
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$ χ
A

B

$ χ
ρ

$
A

B

Figure 5.1: Schematic diagram for channel state duality.

It is interesting to note that the dynamics of entanglement in a two-qubit system

under the influence of local bath can be fully characterized by its action on a

maximally entangled state.

Suppose a bipartite system S = A+B is subjected to a local bath $ acting on

subsystem A. The entanglement in state ρAB(t) = ($ ⊗ I)(ρAB(0)) at time t can

be written as:

C(ρAB(t)) = C(ρAB(0))C(($⊗ I)(|φ+〉〈φ+|)) (5.7)

where $ is a single-qubit channel, ρAB(0) is a pure two-qubit state and C(ρAB)
is the concurrence in ρAB [25, 91, 179, 181, 180]. This is factorization law of

entanglement decay [107].

To prove the above equation consider an entangled pair of qubits in state |χ〉AB

|χ〉AB =
√
ω|00〉+

√
1− ω|11〉 (5.8)

where 0 ≤ ω ≤ 1. The concurrence in the state |χ〉AB is
√

ω(1− ω). The qubit A

is exposed to an arbitrary bath $, as shown in Fig. (5.1).

The action of the bath on the state |χ〉AB〈χ| can be written as

ρAB = ($⊗ I)(|χ〉AB〈χ|). (5.9)

The motive is to calculate entanglement in the state ρAB. To do so let us turn to

the dual picture where two-qubit state |χ〉AB〈χ| acts as a single-qubit channel and
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a single-qubit bath $ acts as two-qubit state, i.e,

|χ〉AB〈χ| = (I ⊗ $χ)(|φ+〉〈φ+|)
ρAB = ($⊗ I)(|χ〉AB〈χ|)

⇒ ρAB = ($⊗ $χ)(|φ+〉〈φ+|)
= (I ⊗ $χ)($⊗ I)(|φ+〉〈φ+|)
= (I ⊗ $χ)(ρ$).

Here $χ is the single-qubit channel corresponding to the two-qubit state |χ〉 and

ρ$ is two-qubit state corresponding to single-qubit channel $.

The matrix representation ρ$χ for $χ is:

ρ$χ =













ω 0 0
√

ω(1− ω)

0 0 0 0

0 0 0 0
√

ω(1− ω) 0 0 1− ω













. (5.10)

The action of this channel on state ρ$ can be seen as:

ρAB = (I ⊗K) ρ$ (I ⊗K) (5.11)

where

K =

( √
ω 0

0
√
1− ω

)

. (5.12)

Setting ρAB in this form simplifies the proof of Eq. (5.7). It is now enough to show

that the entanglement in ρAB is proportional to that in ρ$. Consider the matrix

R = ρABρ̃AB, where ρ̃ = (σ2 ⊗ σ2)ρ
∗(σ2 ⊗ σ2) and σ2 is the Pauli matrix σy. Let

the eigenvalues of R be {ξi}. The eigenvalue equation for R can be written as

det(R− ξI) = 0, (5.13)
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while that for the matrix R$ = ρ$ρ̃$, with eigenvalues {µi} is

det(R$ − µI) = 0. (5.14)

It is interesting to note that

R = ρAB(σ2 ⊗ σ2)ρ
∗
AB(σ2 ⊗ σ2)

= (I ⊗K)ρ$(σ2 ⊗Kσ2K)ρ∗$(σ2 ⊗Kσ2). (5.15)

The matrix K is invertible as long as |χ〉 is entangled, therefore,

(I ⊗K−1)R(I ⊗K) = ρ$(σ2 ⊗Kσ2K)ρ∗$(σ2 ⊗Kσ2K). (5.16)

We have Kσ2K =
√

ω(1− ω)σ2. Substituting this in the previous equation gives

rise to

(I ⊗K−1)R(I ⊗K) = ω(1− ω)R$. (5.17)

Since a similarity transformation does not change the eigenvalues of a matrix,

the eigenvalues of (I ⊗ K−1)R(I ⊗ K) are the same as R and are equal to the

eigenvalues of R$ times ω(1− ω). The entanglement in ρAB can be calculated as

C(ρAB) = max{0,
√

ξ1 −
√

ξ2 −
√

ξ3 −
√

ξ4}
=
√

ω(1− ω)max{0,√µ1 −
√
µ2 −

√
µ3 −

√
µ4}

=
√

ω(1− ω)C(ρ$) (5.18)

This completes the proof for a pure state |χ〉.

5.3 Entanglement breaking channels

For some systems a study of the dynamics of entanglement requires knowledge

of the separability of the output state. This can be estimated using a family of

channels called entanglement breaking channels [97, 124, 108, 94]. These are:

Definition 5 A stochastic map φ is called an entanglement breaking map if (I ⊗
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φ) (ρ) is always separable, i.e, any bipartite entangled density matrix ρ is mapped

to a separable state.

The following is a simple criterion to check whether a given map is of the

entanglement breaking type.

Theorem 8 A map is entanglement breaking if and only if it can be written as

[97, 94, 108, 124]:

φ(σ) =
∑

k

|ψk〉〈ψk|〈φk, σφk〉, (5.19)

where σ is a d dimensional density operator and |ψk〉 and |φk〉 are normalized

states.

The Kraus operators for these kind of maps can be written as:

Ak = |ψk〉〈φk| (5.20)

and ρφ is

ρφ =
∑

k

|ψkφk〉〈ψkφk|, (5.21)

where |ψkφk〉 = |ψk〉 ⊗ |φk〉. Therefore, the ρφ matrix corresponding to an en-

tanglement breaking map is always separable and vice versa, i.e, if ρφ matrix

corresponding to a channel is separable, the corresponding channel is of the entan-

glement breaking type. This result is useful for the study of entanglement sudden

death in open quantum systems.

In the next section we discuss some examples of single-qubit channels and the

Kraus operators corresponding to those channels.

5.4 Example of qubit channels

5.4.1 Depolarizing channels

A depolarizing channel Λdp is a quantum channel in which a density matrix ρ can

either be mapped to a maximally mixed state I/2 with a probability p, or can
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maintain status quo with probability (1− p) [130, 63]. Therefore, for a qubit,

Λdp : ρ→ ρ̃ = p
I
2
+ (1− p)ρ, (5.22)

for 0 ≤ p ≤ 1. This channel can be written in the operator sum representation as:

ρ̃ =

(

1− 3p

4

)

ρ+
p

3
(σxρσx + σyρσy + σzρσz), (5.23)

where σx,y,z are the Pauli matrices and
{

√

1− 3p/4I,
√

p/3σx,y,z

}

are the Kraus

operators corresponding to this channel. And the ρdp for this channel can be

written as:

ρdp =













1− p
2

0 0 1− p

0 p
2

0 0

0 0 p
2

0

1− p 0 0 1− p
2













. (5.24)

Note that the depolarizing channel becomes entanglement breaking channel when

ρdp is separable, i.e, p ≥ 2/3.

5.4.2 Amplitude damping channel

Processes such as spontaneous emission or dissipation are characterized by a QO

known as an amplitude damping channel. The operator sum representation for this

qubit channel can be written as:

ρ̃ = E0 ρE
†
0 + E1 ρE

†
1, (5.25)

where

E0 =

(

1 0

0
√
1− γ

)

,

E1 =

(

0
√
γ

0 0

)

.
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The corresponding ρad for this channel is:

ρad =













1 0 0
√
1− γ

0 γ 0 0

0 0 0 0√
1− γ 0 0 1− γ













. (5.26)

The amplitude damping channel becomes entanglement breaking only at γ = 1.

5.4.3 Phase damping channel

A phase damping channel destroys quantum information without affecting the

energy of the system. This is possible because, in this channel the system hamil-

tonian commutes with the interaction hamiltonian HI . This channel is special in

that it has no classical analog. For the case of a qubit, a phase damping channel

corresponds to the decay of off-diagonal terms. Also, the Kraus operators for this

channels are diagonal operators, and can be written as:

F0 =
√

βI,
F1,2 =

√

1− β(I ± σz)

The ρpd for this channel is:

ρpd =













1 0 0 β

0 0 0 0

0 0 0 0

β 0 0 1













. (5.27)

This channel becomes entanglement breaking only at β = 0.

In this chapter we have discussed the relation between channels and quantum

states. Using that relation we have discussed the factorization law of entanglement

decay in two-qubit systems and we have discussed some special channels for ex-

ample entanglement breaking channels, depolarizing channels, amplitude damping

channels and phase damping channels.
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Non-Markovian Dynamics

We have until now restricted ourselves to a description of Markovian dynamics,

which is characterized by a memoryless bath. The master equation approach dis-

cussed in Chapter (3), and the quantum trajectory approach discussed in chapter

(4), are both examples of Markovian dynamics. However, a Markovian bath is an

approximation rather than a norm in real-world scenarios, and as such, it becomes

necessary to consider non-Markovian dynamics as well.

This chapter will be devoted to giving the readers a flavor of some of the

techniques used when dealing with non-Markovian evolution. We will review two

such techniques : the Nakajima-Zwanzig technique [126, 192] and the time con-

volutionless technique [152, 48, 151], both of which use projection operators and

lead to exact dynamical equations for the system density operator. We will con-

clude the chapter will a brief discussion on the post-Markovian dynamical equation

[150, 120], which describes a dynamical process that falls, in character, between

Markovian and exact dynamics.

6.1 The Nakajima-Zwanzig technique

Define two super-operators P and Q as:

Pρ = trB{ρ} ⊗ ρB ≡ ρS ⊗ ρB, (6.1)

Qρ = ρ−Pρ. (6.2)
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where ρS is the system density operator, ρB is the bath density operator and ρ is

the density operator for system-bath combine.

In the literature, Pρ is called the relevant part of the density operator and

Qρ is considered to be the irrelevant part of the density operator. We note that

P +Q = I, P2 = P and PQ = QP = 0.

The Hamiltonian H of the system-bath combine is written as:

H = H0 + αHI , (6.3)

where H0 is the free Hamiltonian of the system and the bath, HI is the interac-

tion Hamiltonian between the two and α is the strength of the interaction. The

dynamical equation for the density operator ρ(t) for the system-bath combine can

be written in the interaction picture as:

dρ(t)

dt
= −iα[HI(t), ρ(t)] ≡ αL(t)ρ(t), (6.4)

where HI(t) = exp(iH0t)HI exp(−iH0t) is the interaction Hamiltonian in the in-

teraction picture. Our aim is to find the equation of motion of the relevant part

Pρ(t). The following relations are true for both the relevant and irrelevant parts:

P dρ(t)
dt

=
dPρ(t)
dt

= αPL(t)ρ(t), (6.5)

Qdρ(t)
dt

=
dQρ(t)
dt

= αQL(t)ρ(t). (6.6)

Substituting the identity P +Q = I in these equations results in:

dPρ(t)
dt

= αPL(t)Pρ(t) + αPL(t)Qρ(t), (6.7)

dQρ(t)
dt

= αQL(t)Qρ(t) + αQL(t)Pρ(t). (6.8)

We need to eliminate the irrelevant part to get the equation of motion for the

relevant part in decoupled form. We note that the Eq.(6.8) is a non-homogeneous

differential equation of the form:

(

d

dt
−M(t)

)

X(t) = Z(t), (6.9)
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where M(t) = αQL(t), X(t) = Qρ(t) and Z(t) = Pρ(t). We solve this equation

using Green’s function

Qρ(t) = G(t, t0)Qρ(t0) + α

∫ t

s

G(t, s)QL(s)Pρ(s), (6.10)

where

G(t, s) = T← exp

{

α

∫ t

s

ds′QL(s′)
}

. (6.11)

Here T← represents the time ordering. Substituting Eq.(6.10) into Eq.(6.7) results

in

dPρ(t)
dt

= αPL(t)Pρ(t) + αPL(t)G(t, t0)Qρ(t0) + α2

∫ t

s

PL(t)G(t, s)QL(s)Pρ(s).

(6.12)

This is the Nakajima-Zwanzig (NZ) equation and is an exact equation of motion for

the dynamics of the relevant part. The term α2
∫ t

s
PL(t)G(t, s)QL(s)P is called the

convolution or memory kernel and is represented by K(t, s). This equation consists

of a term containing information about the initial state as well as a time-integral

that describes the history of the evolution and as such describes the complete

non-Markovian dynamics. However, NZ equations are often quite difficult to solve

analytically as well as numerically. In the next section we will discuss a different

approach that simplifies the solution of the NZ equation.

6.2 Time convolutionless technique

The time-convolutionless (TCL) technique simplifies the NZ equation (Eq. 6.12)

by removing its dependancy on history and thus making it local in time. Let us

define a backward propagator G(t, s) which maps the state ρ(t) to the state ρ(s)

where s < t. Therefore, we can write

ρ(s) = G(t, s)ρ(t) = G(t, s)P +Qρ(t), (6.13)

where G(t, s) = T→ exp

{

−α
∫ t

s

ds′L(s′)
}

. (6.14)
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Substituting this in Eq.(6.10) results in

Qρ(t) = G(t, t0)Qρ(t0)

+ α

∫ t

s

G(t, s)QL(s)PG(t, s)(P +Q)ρ(t), (6.15)

= G(t, t0)Qρ(t0) + Σ(t)(P +Q)ρ(t), (6.16)

⇒ [1− Σ(t)]Qρ(t) = G(t, t0)Qρ(t0) + Σ(t)Pρ(t). (6.17)

Note that, for small enough α, the operator 1 + Σ(t) is invertible. Thus we can

write:

Qρ(t) = [1− Σ(t)]−1G(t, t0)Qρ(t0) + [1− Σ(t)]−1Σ(t)Pρ(t). (6.18)

Substituting this in Eq.(6.7) gives:

dPρ(t)
dt

= αPL(t)Pρ(t) + αPL(t)[1− Σ(t)]−1G(t, t0)Qρ(t0)

+ αPL(t)[1− Σ(t)]−1Σ(t)Pρ(t), (6.19)

= αPL(t)Pρ(t) + I(t)Qρ(t0) +K(t)Pρ(t), (6.20)

where K(t) = αPL(t)[1−Σ(t)]−1Σ(t)P is the TCL generator and I = αPL(t)[1−
Σ(t)]−1G(t, t0)Q is the inhomogeneity. If the initial state is uncorrelated, that is,

if ρ(t0) = ρS(t0) ⊗ ρB, then Qρ(t0) = 0, and thus the inhomogeneous part of the

NZ equation vanishes.

As an application of this technique we will discuss an exact solution for spon-

taneous decay of two-level atom in the next section.

6.3 Spontaneous decay of two-level atom: Exact

master equation

The spontaneous decay of a two-level atom is one of the rare examples where it

is possible to write down an exact master equation. This was first derived by

Garraway [79]. In this we consider a two-level atom interacting with a bath of
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harmonic oscillators. The Hamiltonian for such a setup is:

H = HS +HB +HI , (6.21)

HS = ωσz, (6.22)

HB =
∑

k

ωka
†
kak, (6.23)

HI = σ+ ⊗B + σ− ⊗ B†, (6.24)

B =
∑

k

gkak. (6.25)

In the Garraway solution, one considers three type of states: a) when both the

system and the bath are in their respective ground states, b) when the system is

in its first excited state and the bath is in its ground state and c) when the system

is in its ground state and the bath is in its first excited state with one photon in

it. Mathematically we can write

|ψ0〉 = |0〉S ⊗ |0〉B, (6.26)

|ψ1〉 = |1〉S ⊗ |0〉B, (6.27)

|ψk〉 = |0〉S ⊗ |k〉B, (6.28)

where |0〉S(|1〉S) is the ground state (excited state) of the system and |k〉B denotes

the state with one photon in k-th mode. The dynamical equation can be written

in interaction picture as:

d

dt
|φ(t)〉 = −iHI(t)|φ(t)〉, (6.29)

where HI(t) = exp(iH0t)HI exp(−iH0t).

Since the number operator N = σ+σ− +
∑

k a
†
kak commutes with the total

Hamiltonian, the subspaces with different number of particles in it will remain

invariant. Thus a state of the form

|φ(0)〉 = c0|ψ0〉+ c1(0)|ψ1〉+
∑

k

ck(0)|ψk〉 (6.30)
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will evolve into

|φ(t)〉 = c0|ψ0〉+ c1(t)|ψ1〉+
∑

k

ck(t)|ψk〉 (6.31)

From Eq.(6.29) and Eq.(6.31) we can write

ċ1(t) = −i
∑

k

gk exp{i(ω − ωk)t}ck(t), (6.32)

ċk(t) = −ig∗k exp{−i(ω − ωk)t}c1(t). (6.33)

If we assume that initially the bath was in ground state, i.e, cK(0) = 0, then the

solution of Eq.(6.33) can be written as:

ck(t) = −ig∗k
∫ t

0

ds exp{−i(ω − ωk)s}c1(s). (6.34)

Substituting this in Eq.(6.32) results in

ċ1(t) = −
∫ t

0

dt
∑

k

g∗kgk exp{i(ω − ωk)(t− s)}c1(s), (6.35)

= −
∫ t

0

dsf(t− s)c1(s), (6.36)

where

f(t− s) =
∑

k

g∗kgk exp{i(ω − ωk)(t− s)} = trB{B(t)B†(s)ρB} exp{iω(t− s)},

(6.37)

B(t) =
∑

k

gkak exp{−iωkt}, (6.38)

ρB = |0〉〈0|. (6.39)

Using Eq.(6.31), we can write the reduced density operator for the system:

ρS(t) = trB{|φ(t)〉〈φ(t)|} =

(

|c1(t)|2 c∗0c1(t)

c0c
∗
1(t) 1− |c1(t)|2

)

. (6.40)
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From here we get the dynamical equation

ρ̇S(t) =

(

d
dt
|c1(t)|2 c∗0ċ1(t)

c0ċ
∗
1(t) − d

dt
|c1(t)|2

)

, (6.41)

= − i

2
S(t)[σ+σ−, ρS(t)]

+ γ(t)

{

σ−ρS(t)σ+ − 1

2
σ+σ−ρS(t)−

1

2
ρS(t)σ+σ−

}

, (6.42)

where S(t) is the time-dependent Lamb shift and γ(t) is the decay rate, and are

given by:

S(t) = −2I
(

ċ1(t)

c1(t)

)

, (6.43)

γ(t) = −2R
(

ċ1(t)

c1(t)

)

. (6.44)

Eq.(6.42) is in the Lindblad form and describes Markovian dynamics as long as

the decay rate is positive. However, it is not altogether impossible in a physical

scenario for the decay rate to become negative, in which case the process deviates

from Markovianity.

We note that Eq.(6.42) is local in time and hence can be written as:

ρ̇S(t) = KS(t)ρS(t), (6.45)

where KS(t) is the TCL generator. This form of the dynamical equation will be

used in the following chapters.

6.4 Post-Markovian processes

Any Markovian master equation, being of Lindblad type, always gives rise to a

completely positive dynamics for the density matrix of the system. Unfortunately

most of the non-Markovian master equations which are potentially solvable, do

not satisfy this criterion, as these equations are generated mostly from some phe-

nomenological aspects. Shabani and Lidar [150] recently derived, from measure-

ment perspective, a non-Markovian master equation which satisfies complete pos-
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itivity as well as it is solvable.

Dynamical evolution in the measurement picture can be described by two con-

trasting viewpoints. In Markovian dynamics, evolution is followed by continuous

measurements on the bath, and this interpretation leads to the quantum jump ap-

proach to the solution of the dynamics (see Chapter (4)). On the other hand, exact

dynamics (given by operator sum representation) involves a single measurement

on the bath in the end of the evolution. Post-Markovian dynamics (as described in

[150]) falls somewhere between these two extremes, in that here the measurement

is carried out at some intermediate time t′ with the probability determined by

the memory kernel k(t′, t). Let us consider the process where the system and the

bath evolve jointly for some time t′ so that the state of the system at this time

is Λ(t′)ρ(0), where Λ is the dynamical map. Let, at this moment, a non-selective

measurement be performed on the bath degree of freedom, after which the system

and the bath resume their evolution till time t, when the final measurement is

applied. The dynamical equation for such a process (under the assumption that

Λ(t′) comes from Lindblad generator L and k(t′, t) ≡ k(t′)) can be written as:

dρ

dt
= L

∫ t

0

dt′k(t′) exp(Lt′)ρ(t− t′), (6.46)

where Λ(t) = exp(Lt) and k(t′) = k(t′, t) is the memory kernel.

Using Laplace transform of both sides of Eq.(6.46) and using thereby the notion

of damping basis [37], one can show that this equation gives rise to a completely

positive trace preserving map Φ(t)(ρ
S
(0)) = ρ

S
(t). Moreover, this equation can

also be cast in the form of NZ equation as well as in the form of time convolutionless

master equation.

Comparing the solution of the post-Markovian master equation Eq.(6.46) for a

two-level atom interacting resonantly with a quantized mode of an empty high-Q

cavity with that of the exact solution given by Garraway [79] and that of a mem-

ory kernel non-Markovian master equation (not completely positive). Maniscalco

and Petruccione [120] have shown that in the weak coupling limit, the solution

of the post-Markovian master equation approximates the exact solution in much

better way compared to the case of strong coupling limit. So, although the post-

Markovian master equation is completely positive, it does not provide, in general,

a good approximation to the exact dynamics.
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7
Entanglement dynamics: quantum

trajectory approach

This chapter is devoted to the entanglement dynamics from quantum trajectory

point of view. As we have already discussed (see Sec. 4), quantum trajectory

technique is a numerical approach to the dynamics of an open quantum system.

In this approach a state of a system evolves in a non-unitary coherent way caused

by non-hermition Hamiltonian Heff . The coherent evolution is interrupted by

non-deterministic jumps Si. The non-deterministic nature of jumps causes a fixed

initial state |ψ〉 to evolve to different final states. This approach mimics the real

physical systems subject to constant supervision. Therefore, the different final

states are the states which we observe in experiments.

Before applying the quantum trajectory approach to study the evolution of the

entanglement, we need to settle down the measure of entanglement. A mixed state

ρ can be decomposed into an ensemble of pure states in an infinitly many ways:

ρ =
∑

i

pi|ψi〉〈ψi|, (7.1)

where pi ≥ 0 and
∑

i pi = 1. For a given ensemble, the entanglement may be

quantified as:

E(ρ) =
∑

i

piE (|ψi〉〈ψi|) . (7.2)

For bipartite pure states the von-Neumann entropy of the reduced density operator
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of one of the subsystem is a good measure of entanglement. Thus we can choose

E (|ψi〉〈ψi|) to be that measure.

The entanglement of formation (EoF) is defined as:

EoF (ρ) = min
{pi,|ψi〉}

∑

i

piE (|ψi〉〈ψi|) , (7.3)

i.e, the ensemble average entanglement minimized over all decomposition. In [129]

the authors took a different approach. Instead of taking the minimal decompo-

sition, i.e, the decomposition that gives rise to the minimum entanglement, they

fixed the decomposition and calculated the ensemble averaged entanglement in

that fixed decomposition. The decomposition is fixed by the particular unravelling

we choose in the quantum trajectory.

In this chapter we will follow the work in [129]. The system under consideration

[129] consists of a harmonic oscillator A coupled to a two-level atom B. The atom

is driven by a resonant external field. Both the systems A and B are exposed to

thermal baths. The total Hamiltonian of the system bath combine is:

H = HAB +HB
ext +Hres (7.4)

where

HAB = HA +HB +HI , (7.5)

with HA = ~ωa†a, (7.6)

HB = ~ωσz (7.7)

and HI = i~g
[

a†σ− − aσ+
]

, (7.8)

is the free Hamiltonian the system S = A +B and

HB
ext = i~Ω

[

σ+e−iωt − σ−eiωt
]

(7.9)

is the interaction Hamiltonian of the atom with the external field and

Hres = HRA
+HRB

+HARA
+HBRB

(7.10)
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Figure 7.1: The contour plot for entanglement dynamics. On x-axis we have ΓA
and time is on y-axis. The amount of entanglement depends on the color of the
contour. It increases from blue to red.

is the Hamiltonian of the two reservoirs attached to the harmonic oscillator and

the atom and their interactions with reservoir. The Lindblad master equation for

the system can be written as:

dρ

dt
= −i

[

H̃AB + H̃B
est, ρ

]

+ (LA + LB)ρ, (7.11)

where H̃AB = i(a†σ− − aσ+), H̃B
ext = i~Ω(σ+ − σ−)/g and LA,B = ΓA,B(2o.o

† −
o†o. − .o†o) where (o = a, σ− for A and B respectively) and ΓA,B determines the

reservoir interaction strength.

For the purpose of studying the entanglement dynamics in this system we

choose the initial state of the system to be |Ω〉|g〉 = |Ω〉 ⊗ |g〉. Here |Ω〉 is the

coherent state of harmonic oscillator with eigenvalue Ω and |g〉 is the ground state

of the atom. This is a product state and happens to be an eigenstate of the
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H̃AB+H̃
B
ext. Since the atom is in ground state, in the case where harmonic oscillator

does not interact with the bath, i.e, ΓA = 0, the state |Ω〉|g〉 will remain unchanged.

Thus, we are interested in the case when ΓA 6= 0.

The dynamics of entanglement for a rage of ΓA can be seen in the contour plot

(7.1). This particular system shows an interesting entanglement dynamics in which

first the amount of entanglement increases with time for fixed parameters (ΓA and

ΓB) and then the entanglement goes to zero asymptotically since the steady state

of the system is a separable one.
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8
Entanglement dynamics in finite

dimensional systems

Entanglement is considered to be one of the most useful resources in Quantum In-

formation Theory [130] and is essential for various quantum information tasks such

as quantum teleportation, superdense coding, communication complexity prob-

lems and one-way computation. Creating an entangled state is a non-trivial task;

however, storing or transmitting entangled states are much more difficult, if not

altogether impossible. This is due to the very fragile nature of quantum systems –

every quantum system has a high probability of interacting with its surround-

ing and thereby getting entangled with it. This gives rise to the phenomenon of

decoherence [191].

In general, the purity of any initial state of the quantum system decreases with

time in the presence of decoherence. The time for the complete loss of coherence

(i.e, decoherence time) depends on the system as well as on the character of the

interaction of the system with its environment. By the monogamy property of

entanglement [52, 131], the initial entanglement (if any) of a bipartite or multipar-

tite quantum system will, in general, decay (to zero) when each individual system

undergoes a decoherence procedure. What can be said about the associated rate

of the above-mentioned decay in entanglement? How does one compare the rate of

decoherence of the individual subsystems and the rate of decay in initial entangle-

ment among the subsystems? In this connection, Yu and Eberly [165] described a

phenomenon called entanglement sudden death (ESD) in which the entanglement

decay rate is shown to be exponentially larger than the rate of decoherence. This
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happens when the individual qubits of a two-qubit system undergo evolution under

local Markovian heat bath action at zero temperature.

The monotonic decay of entanglement is absent in the non-Markovian dynam-

ics. In such dynamics we can see the ESD as well as rebirth of entanglement

[18, 55, 116]. This happens because of the back action of the system on the bath

which is suppressed in the Markovian evolutions.

In this chapter we will study the evolution of finite dimensional quantum sys-

tems which are initially entangled and are under the influence of thermal, squeezed

thermal or quantum non-demolition baths. We shall be focusing on the time at

which the entanglement in the system vanishes and we will show explicit calcula-

tions for the time to ESD [86]. Further we will discuss the entanglement dynamics

in the non-Markovian evolution and study the phenomenon of rebirth of entangle-

ment.

8.1 Master equation for single-qubit system

Let us consider a single-qubit system interacting with a bath of infinitely many

non-interacting harmonic oscillators at temperature T . The Hamiltonian for this

setting can be written as:

H = H0 +HI , (8.1)

where

H0 = ω0σz +
∑

k

ωka
†
kak (8.2)

is the free Hamiltonian for the combined system of qubit and harmonic oscillators

and HI represents the interaction between the qubit and the bath. In dipole

approximation, this interaction Hamiltonian can be taken as:

HI =
∑

k

(

gσ−a†k + g∗σ+ak

)

, (8.3)

which automatically satisfies the rotating wave approximation.

The irreversible time evolution of the state ρ(t) of a single-qubit under the
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Hamiltonian H is described by the Lindblad master equation [115]:

dρ

dt
=
(N + 1)γ

2
[2σ−ρσ+ − σ+σ−ρ− ρσ+σ−]

+
Nγ

2
[2σ+ρσ− − σ−σ+ρ− ρσ−σ+] , (8.4)

where N = 1/(eβω0/kBT − 1) is the mean occupation number of quanta in the

reservoir, γ is the spontaneous decay rate of the qubits, σ+ = |1〉〈0| and σ− = |0〉〈1|
where σz|0〉 = −|0〉 and σz|1〉 = |1〉. Here we have ignored the unitary part of the

evolution which is irrelevant for our purpose [7, 33]. We can rewrite Eq. (8.4) as:

ρ̇ = Lρ⇒ ρ̇ij =
∑

kl

Lij,klρkl (8.5)

where L is the matrix representation for L (called Lindblad operator [115]). L can

be calculated from the Eq. (8.4) as:

L =
(N + 1)γ

2
[2σ− ⊗ σ− − σ+σ− ⊗ I − I ⊗ σ+σ−]

+
Nγ

2
[2σ+ ⊗ σ+ − σ−σ+ ⊗ I − I ⊗ σ−σ+] , (8.6)

=













−(N + 1)γ 0 0 Nγ

0 −γ
2
(2N + 1) 0 0

0 0 −γ
2
(2N + 1) 0

(N + 1)γ 0 0 −Nγ













. (8.7)

The solution for Eq. (8.5) is:

ρij(t) =
∑

kl

Vij,klρkl(0) =
∑

kl

Mik,jlρkl(0). (8.8)

Here V = exp(Lt) [8] represents a completely positive map and M is the positive

operator corresponding to the map V . The matrix representation of V for a one-
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qubit under the action of the thermal bath can be written as:

V =













b 0 0 y2

0 x 0 0

0 0 x 0

y1 0 0 c













(8.9)

where

x = exp

[

−1

2
γ(1 + 2N)t

]

,

b =
N(1 + x2) + x2

2N + 1
,

c =
N(1 + x2) + 1

2N + 1
,

y1 =
(N + 1)(1− x2)

2N + 1
,

y2 =
N(1− x2)

2N + 1
.

The matrix M which corresponds to thermal evolution is:

M(t) =
1

2













b 0 0 x

0 y2 0 0

0 0 y1 0

x 0 0 c













. (8.10)

If a system consists only of qubits, then it is enough to study the evolution of

entanglement in M(t) by use of the factorization law for entanglement decay.

8.2 Evolution of entanglement in two-qubit system

Consider a two-qubit system S = A+B, consisting of the qubits A and B. Let us

assume that one of the qubits (say B) interacts with a thermal bath (represented

by $) and also that the initial state |χ〉 of S is pure and entangled. We want to

study the evolution of entanglement in this system.
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Figure 8.1: In this plot we have plotted the evolution of entanglement for different
initial states.

If |Φ+〉 is the maximally entangled state (|00〉+|11〉)/
√
2, then the factorization

law for entanglement decay gives

E(ρAB(t)) = E(|χ〉〈χ|)E((I ⊗ V )(|φ+〉〈φ+|)) (8.11)

where ρAB(t) = (I ⊗ V )(|χ〉〈χ|), M = (I ⊗ V )(|φ+〉〈φ+|), V is the CP map

corresponding to the action of $ and E(.) denotes the concurrence. Since the

entanglement in the state ρAB at time t is the entanglement in M(t) times the

entanglement in the initial state |χ〉, which is constant, it is enough to study the

evolution of entanglement in M in order to study the entanglement evolution in

|χ〉.

Notice that M(t) represents an entangled state iff the partial transpose of

M(t) is non-positive. This requirement of positivity under partial transpose for
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Figure 8.2: Evolution of entanglement for different bath temperatures. This plot
shows that the time to ESD decreases as we increase the temperature.

separability can be written as

MTB(t) ≥ 0 ⇔ 1

2













b 0 0 0

0 y2 x 0

0 x y1 0

0 0 0 c













≥ 0 (8.12)

where TB represents the transposition on subsystem B. The eigenvalues of ma-

trix MTB(t) are b/2, c/2,
(

y1 + y2 ±
√

(y1 − y2)2 + 4x2
)

/4. Therefore, the only

eigenvalue which can be negative is
(

y1 + y2 −
√

(y1 − y2)2 + 4x2
)

/4. The time t

at which this eigenvalue becomes zero (if initially it starts from a positive value)

is the time at which the entanglement in M(t) goes to zero. Thus the equation for

separability is:

y1 + y2 −
√

(y1 − y2)2 + 4x2

4
= 0 (8.13)
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Figure 8.3: Time for ESD for different values of bath temperature

which gives

sinh

(

γ(1 + 2N)t

2

)

=
1

2

(1 + 2N)
√

N(N + 1)
(8.14)

this implies that ESD occurs at time tc = 2
γ(2N+1)

sinh−1
(

1
2

(1+2N)√
N(N+1)

)

.

At non-zero temperature, tc is finite. In fact, tc → 0 as the temperature T → ∞.

However, when T = 0, tc → ∞. This implies that no pure two-qubit state, when

one of the qubits being exposed to a thermal bath at zero temperature, will show

ESD. However, for T > 0, all such states will show ESD.

Mixed states are convex combination of pure states. At T > 0, they too show

ESD under the same setup. Surprisingly however, it has been found [165] that

certain mixed states do show ESD even at T = 0.

In section 8.4, we will extend this result to the n-qubit case. Before that we will

derive the generalized factorization law for entanglement decay, which is simply

the factorization law for d⊗ d systems.
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8.3 Factorization law for entanglement decay for

d⊗ d systems

The purpose of this section is to extend the factorization law from 2 ⊗ 2 systems

to d⊗ d systems. The law for d⊗ d systems can further be generalized to d1 ⊗ d2

systems. We can use this to show ESD in n-qubit systems by choosing d1 = 2 and

d2 = 2n−1. This will be shown in Sec. 8.4. Further discussion on this topic are

available in [164, 185]. Let us consider the same setup as in Sec. 8.2, except that

the systems A and B are now each d-dimensional. Local action of the bath will

cause the entaglement to decay. Our aim is to calculate the entanglement in this

d⊗ d system at time t.

This can be done by using G-Concurrence ([84], Sec 2.4.5) as the measure of

entanglement. For a bipartite pure state |χ〉 in d⊗d, G-concurrence is the geometric

mean of its d Schmidt coefficients. For a most general |χ〉 = ∑d
i,j=1Aij|i〉|j〉, the

G-concurrence can be written as

Gd(|χ〉〈χ|) = d[det(A†A)]1/d. (8.15)

For a mixed state ρ the G-concurrence can be defined as

Gd(ρ) = inf

{

∑

i

piGd(|ψi〉〈ψi|)
∣

∣

∣
ρ =

∑

pi|ψi〉〈ψi|
}

. (8.16)

The action of the bath $ on the state |χ〉 can be seen as:

ρ(t) = (I ⊗ $)(|χ〉〈χ|)
= (I ⊗ $)($χ ⊗ I)(|φ+〉〈φ+|)
= ($χ ⊗ I)(I ⊗ $)(|φ+〉〈φ+|)
= ($χ ⊗ I)(ρ$) (8.17)

where ρ$ is the result of the action of $ on one side of the maximally entangled

state |φ+〉 = 1/
√
d
∑

i |ii〉 and ($χ ⊗ I)(ρ$) = (K ⊗ I)(ρ$)(K† ⊗ I) with K =
∑d

i,j Aij |i〉〈j|. Note that the map $χ is not trace preserving.

It is to be noted that the G-concurrence for the states |ψ〉 and (K ⊗ I)|ψ〉 are
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related as

Gd(|ψ〉〈ψ|) =
1

| detK|2/dGd((K ⊗ I)(|ψ〉〈ψ|)(K† ⊗ I)). (8.18)

Let us assume that the minimal decomposition for ρ$, i.e, the decomposition for

which the Gd(ρ$) is minimum is:

ρ$ =
∑

i

qi|θi〉〈θi| (8.19)

which gives

Gd(ρ$) =
∑

i

qiGd(|θi〉〈θi|) (8.20)

From here the G-concurrence in (K ⊗ I)(ρ$)(K† ⊗ I) can be calculated as:

Gd((K ⊗ I)(ρ$)(K† ⊗ I)) =
∑

i

qiGd((K ⊗ I)(|θi〉〈θi|)(K† ⊗ I))

= | detK|2/d
∑

i

qiGd(|θi〉〈θi|). (8.21)

Here | detK|2/d is the entanglement in the initial state |χ〉. Finally we get

Gd(ρ(t)) = Gd(|χ〉〈χ|)Gd((I ⊗ $)(|φ+〉〈φ+|)). (8.22)

This is the general d ⊗ d form of Eq. (8.11). The same framework also allows us

to consider any d1 ⊗ d2 system (for different d1 and d2), since the pure states of

such a system can exhibit entanglement in atmost min{d1, d2} levels due to their

Schmidt representation.

8.4 ESD in n-qubit system

We now extend the results of the two-qubit systems to n-qubit systems. We prove

that, for a finite non-zero temperature, every n-qubit state with all qubits con-

nected to a local thermal bath shows ESD. We provide the proof of this statement

for a three-qubit system. The proof for a general n-qubit system is extremely
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cumbersome, but can essentially be carried out using the same method.

Let us consider a three-qubit system with all three qubits being individually

connected to a local thermal bath at T 6= 0. Mathematically the action of a local

thermal bath is analogous to the action of the map V on the state of the system.

Hence, if the initial state of this system be |ψ〉ABC — where A, B and C are the

single qubit subsystems — then the state of the system at time t can be written

as the action of a map V ⊗ V ⊗ V on |ψ〉ABC〈ψ|:

ρ(t) = (V ⊗ V ⊗ V ) (|ψ〉ABC〈ψ|)
= (I ⊗ I ⊗ V )(I ⊗ V ⊗ I)(V ⊗ I ⊗ I) (|ψ〉ABC〈ψ|)
= (I ⊗ I ⊗ V )(I ⊗ V ⊗ I)(ρA:BC)
= (I ⊗ I ⊗ V )(ρA:B:C) (8.23)

where ρA:BC = (V ⊗I⊗I) (|ψ〉ABC〈ψ|) and ρA:B:C = (I ⊗V ⊗I)(ρA:BC). We have

already seen in Sec, 8.2, that under the action of a map V , the maximally entangled

state |Φ+〉 ultimately evolves to a separable state. Using the factorization law for

entanglement decay for a 2 ⊗ d system, we can now say that the state ρA:BC —

which is 2⊗ d state — will be separable in the partition A : BC after some finite

time tc.

This also means that, the time tc is the maximum time any state can take to

lose all its entanglement under the action of a channel V on one of its subsystems.

This implies that the reduced state ρBC = trAρA:BC can take at most time tc to

become separable in the partition B : C. Thus we have shown that the entire

three-qubit system shows ESD at T 6= 0. This result can be generalized to mixed

states in the same fashion as before — pure states showing ESD imply that mixed

states of the same dimensionality and in the same setup also show ESD. This result

can be generalized to any n-qubit case.

8.5 Squeezed thermal bath

So far we have analysed the evolution of entanglement in n-qubit system under the

action of local thermal bath. We have found that at non-zero finite temperature all

pure states of the system show ESD but none of them do so at zero temperature.
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Some mixed states are exception to this rule as discussed earlier. In the remaining

chapter we change the nature of the bath and study its effects on the evolution of

entanglement. We start with squeezed thermal bath. In the next section we will

consider bath with quantum non-demolition (QND) interactions.
Let S = S1+S2+ · · ·+Sn be an n-qubit system where each subsystem interacts

with a squeezed thermal bath locally. The evolution of the reduced density matrix

of the subsystem S1 in the interaction picture is given by the Master equation

[14, 125, 33]:

d

dt
ρs(t) = Lsqρs(t)

= γ0(N + 1)

(

σ−ρ
s(t)σ+ − 1

2
σ+σ−ρ

s(t)− 1

2
ρs(t)σ+σ−

)

+ γ0N

(

σ+ρ
s(t)σ− − 1

2
σ−σ+ρ

s(t)− 1

2
ρs(t)σ−σ+

)

− γ0Mσ+ρ
s(t)σ+ − γ0M

∗σ−ρ
s(t)σ−. (8.24)

Here γ0 is the spontaneous decay rate, σ+ = |1〉〈0| and σ− = |0〉〈1| are the standard

raising and lowering operators respectively. The quantities N and M are given by

2N + 1 = cosh(2r)(2Nth + 1) and M = −1
2
sinh(2r)eiφ(2Nth + 1) where Nth =

(eh̄ω/kBT −1)−1 is the mean occupation number of thermal photons at frequency ω

with T being the temperature of the bath and kB is the Boltzman constant. Also,

r and φ are the squeezing parameters. We have neglected the unitary evolution

part in Eq. (8.24) similar to what we did in Eq. (8.4). Moreover, Eq. (8.24) is in

a Lindblad form and hence corresponds to a completely positive map V [33, 125].

The matrix representation L of the superoperator Lsq is:

Lsq =
(N + 1)γ

2
[2σ− ⊗ σ− − σ+σ− ⊗ I − I ⊗ σ+σ−]

+
Nγ

2
[2σ+ ⊗ σ+ − σ−σ+ ⊗ I − I ⊗ σ−σ+] ,

− γ0Mσ+σ− − γ0M
∗σ−σ+ (8.25)

=













−(N + 1)γ0 0 0 Nγ0

0 −γ0
2
(2N + 1) −γ0M 0

0 −γ0M∗ −γ0
2
(2N + 1) 0

(N + 1)γ0 0 0 −Nγ0













. (8.26)
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Vsq = exp(Lsqt) is:

Vsq =













α 0 0 β

0 y z 0

0 z∗ y 0

µ 0 0 ν













, (8.27)

where

α =
N(1 + x2) + x2

2N + 1
, β =

N(1 − x2)

2N + 1
,

µ =
(N + 1)(1− x2)

2N + 1
, ν =

N(1 + x2) + 1

2N + 1
,

x2 = exp[−γ0(2N + 1)t], y = cosh

(

γ0at

2

)

x,

z = sinh

(

γ0at

2

)

x exp [iΦ] , a = sinh(2r)(2Nth + 1).

The two-qubit state corresponding to the channel Vsq is given by the Choi-

Jamiolkowski isomorphism [101, 50] which is:

(I ⊗ Vsq)(|φ+〉〈φ+|) =Msq

=













α 0 0 ye−iωt

0 β ze−iωt 0

0 z∗eiωt µ 0

yeiωt 0 0 ν













. (8.28)

This matrix Msq is a positive semi-definite matrix and is separable iff the following

conditions hold good simultaneously:

αν − |z|2 ≥ 0, βµ− y2 ≥ 0. (8.29)

These are equivalent to the following:

N(N + 1)

2N + 1
4 cosh2

(

γ0(2N + 1)t

2

)

− sinh2

(

γ0at

2

)

≥ 0, (8.30)

N(N + 1)

2N + 1
4 sinh2

(

γ0(2N + 1)t

2

)

− cosh2

(

γ0at

2

)

≥ 0. (8.31)
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Since cosh2
(

γ0(2N+1)t
2

)

≥ sinh2
(

γ0(2N+1)t
2

)

and sinh2
(

γ0at
2

)

≤ cosh2
(

γ0at
2

)

we can

write

N(N + 1)

2N + 1
4 sinh2

(

γ0(2N + 1)t

2

)

− cosh2

(

γ0at

2

)

≤

N(N + 1)

2N + 1
4 cosh2

(

γ0(2N + 1)t

2

)

− sinh2

(

γ0at

2

)

. (8.32)

This implies that the relation given by Eq. (8.31) is enough for determining the

separability of Msq. At time t = 0, Eq. (8.31) does not hold. However, at very

large t it does hold if 2N + 1 > a, i.e, 2N + 1 > sinh(2r)(2Nth + 1). However,

we know that 2N + 1 = cosh(2Nth + 1) and since cosh(2r) ≥ sinh(2r) is always

true, therefore, Eq. (8.31) is always true at large t. This shows that although

Msq starts off entangled, it loses its entanglement at some finite time tc – this

time being given by the equality condition corresponding to Eq. (8.31). Since

Msq = (I ⊗ Vsq)(|Φ+〉〈Φ+|) by definition, we can use the factorization law for

entanglement decay for entangled state in the d⊗ 2 case as before and show that

the existence of ESD for any single subsystem can be extended to the entire n-qubit

system under the action of a squeezed thermal bath.

The results given above are valid for a finite non-zero T . We have seen earlier at

T = 0, there is no ESD for a pure 2-qubit entangled state where the initial state of

the thermal bath is vacuum and the evolution is governed by Eq. (8.4). However,

this is not true for a squeezed thermal bath, since at T = 0, the mean occupation

number N is not zero and hence, all pure states connected to a squeezed thermal

bath show ESD even at T = 0.

The effect of squeezing on the evolution of entanglement is thus twofold: at

T = 0 it kills off the entanglement faster and is thus a nuisance. However, at finite

temperature, squeezing manages to extend the lifetime of entanglement and is thus

a valuable tool in quantum information tasks.

8.6 Quantum non demolition (QND) interaction

We now study baths that interacts with a n-qubit system under QND interac-

tion. In open quantum systems under QND type interactions, the system Hamil-

tonian commutes with the interaction Hamiltonian. Consider the system Hamil-
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tonian HS = ~ω/2σ3, where σ3 is the Pauli spin matrix for the z-axis, the bath

Hamiltonian HB =
∑

k ωkA
†
kak and the system bath interaction to be of the form

HI = σ3 ⊗
∑

k(gka
†
k + g∗kak). We can see that the interaction Hamiltonian com-

mutes with the system Hamiltonian. The reduced density operator ρS(t) for the

system for such dynamics can be written as [14, 170, 166, 186]:

ρS11(t) = ρS11(0), (8.33)

ρS12(t) = e−iωte−(~ω)
2γ(t)ρS12(0), (8.34)

ρS21(t) = eiωte−(~ω)
2γ(t)ρS21(0), (8.35)

ρS22(t) = ρS22(0). (8.36)

The completely positive map VQND and MQND can be written as:

VQND =













1 0 0 0

0 e−iωte−(~ω)
2γ(t) 0 0

0 0 eiωte−(~ω)
2γ(t) 0

0 0 0 1













, (8.37)

MQND =













1 0 0 e−iωte−(~ω)
2γ(t)

0 0 0 0

0 0 0 0

eiωte−(~ω)
2γ(t) 0 0 1













, (8.38)

where ω is the natural frequency of the system and γ(t) is the time dependent

spontaneous decay parameter (see [14]). We see that the matrix MQND is not

positive under partial transposition and hence, under the one-sided action of VQND,

|φ+〉〈φ+| will never become separable and hence ESD will never be observed under

this map.

8.7 ESD and rebirth of entanglement: non-Markovian

evolution

By definition the entanglement in a bipartite systems can not be increased by local

operations on the subsystems. Therefore, we see only the decay of entanglement
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in the Markovian dynamics as we have seen in earlier sections. However, in the

non-Markovian dynamics we can see some counter intuitive results regarding en-

tanglement dynamics [18, 55, 116]. In non-Markovian processes we do not discard

the back action of the bath on the system. Therefore, as the system loses its entan-

glement the bath becomes entangled and it can impart some of this entanglement

back to the system and hence one can observe the phenomenon called rebirth of

entanglement.

To study the entanglement dynamics in a non-Markovian evolution, let us con-

sider a two-qubit system interacting locally with a bath of Harmonic oscillators.

The Hamiltonian for individual qubits interacting with corresponding (separate)

baths can be written as:

H = HS +HB +HI , (8.39)

HS = ωσz, (8.40)

HB =
∑

k

ωka
†
kak, (8.41)

HI = σ+ ⊗B + σ− ⊗ B†, (8.42)

B =
∑

k

gkak. (8.43)

We consider the exact dynamics of each qubit [79] and we can quote the results

from Sec. (6.3) and write the state ρ(t) of the system at time t as:

ρ(t) =

(

ρ00(0)c(t) ρ01(0)
√

c(t)

ρ10(0)
√

c(t) ρ11(0) + ρ00(0)(1− c(t))

)

, (8.44)

where

c(t) = e−λt
{

cos

(

dt

2

)

+
λ

d
sin

(

dt

2

)}2

, (8.45)

d =
√

2γ0λ− λ2. (8.46)

Here γ0 is the decay rate and the λ is the spectral width of the spectral density
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Figure 8.4: In this plot we have plotted the entanglement evolution for the non-
Markovian dynamics. Here we have concurrence on the y-axis and γ0t on the x-axis.
The parameter λ is set to be 0.1γ0 and the intial state considered is (|01〉+|10〉)/

√
2.

One can clearly see the phenomenon of ESD and rebirth of entanglement.

J(ω) which is defined as:

J(ω) =
1

2π

γ0λ
2

(ω0 − ω)2 + λ2
. (8.47)

In Fig.(8.4) we ave shown the evolution of entanglement of two-qubit system

(prepared in the state (|01〉 + |10〉)/
√
2) when the above said non-Markovian dy-

namics is applied separately on both the qubits. If we increase the strength of the

memory kernel (i.e, if we make λ/γ0 smaller and smaller), there will be more and

more time gap between sudden death of entanglement and the revival (see. for

example, Fig 4 in Bellomo [18]).

In this chapter, we have studied the evolution of entanglement for a n-qubit

states under the action of different thermal baths. We have found that entan-

glement decays at different rates for different baths at different temperatures.

Whereas thermal baths are more useful at T = 0 in that there is no ESD, squeezed

thermal baths should be preferred at T > 0. However, the third type, bath under-

going QND interactions with the systems, appears to be the best overall because
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the system in this setup never show any sudden death of entanglement.
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9
Evolution of entanglement and quantum

correlations in the system of harmonic

oscillators

In this chapter we will study the evolution of entanglement in an infinite-dimensional

system interacting with local baths through various types of interactions. Unlike

previous chapter the Hilbert space of the present system is infinite dimensional, for

example the Hilbert space of a quantum harmonic oscillator. The complexity of

the system increases with dimensions which makes the study of entanglement dy-

namics in harmonic oscillator systems difficult. Fortunately, when the state of the

harmonic oscillator is Gaussian, it can be fully described by its first two moments.

This eases the problem of studying evolution of entanglement in such systems up

to some extent.

In this chapter we consider the system to be in two-mode Gaussian state (for ex-

ample, the ground state of a system of two independent one-dimensional quantum

harmonic oscillators) and the bath to consist of infinitely many non-interacting

harmonic oscillators in thermal equilibrium [87].

The study of the evolution of entanglement as well as that of its sudden death

in continuous variable systems has received increased attention over the past few

years. Dodd et al. [58] dealt with ESD from the point of view of a separable

representation of the joint Wigner function of two-mode Gaussian states. They

stressed that entanglement is destroyed by the same mechanism which destroys

interference. In [56], Diósi has given a bound on the time of ESD by using a
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theorem on entanglement breaking quantum channels (see [155, 93, 149] and also

Sec. 5.3). [121] Marek et al. have addressed a different problem; in this paper

they obtained a class of states which is tolerant against the decoherence at zero

temperature. There have been a number of studies on the decoherence in infinite

dimensional systems interacting with different kinds of bath and with different

system-environment models [177, 143, 146, 167]. Asymptotic nature of the entan-

glement evolution in a bipartite harmonic oscillator system has been addressed in

[76, 100]. In these papers the authors have tried to find the system and bath setups

where the asymptotic entanglement at high temperature is non-zero. For baths

acting on both the systems together, the dynamics of entanglement is not mono-

tonic. In some cases the entanglement can increase from zero and this phenomena

has been called sudden death and rebirth of entanglement [135, 109, 136].

Since classicality subsumes disentanglement, the ESD problem can be embed-

ded into the corresponding quantum-to-classical transition problem. Thus, the

time taken for the system to attain classicality will be an upper bound on the time

for ESD. We use the criterion due to Simon [158, 9] to check the classicality of

Gaussian states in terms of their covariance matrices G and hence characterize the

quantum-to-classical transition. If I be the covariance matrix corresponding to the

vacuum state, then Simon’s criterion implies that Gaussian state with covariance

matrix G attain classicality if and only if the difference (G− I) becomes positive

semi-definite. The relation G − I ≥ 0, is analogous to the relation P (α) ≥ 0,

where P (α) is Sudarshan-Glauber P function [39, 38]. We use this condition to

find out the transition time to classicality (tc) and hence the time to ESD. Diósi et

al. [57] discuss the positivity of Wigner function and P function under Markovian

evolution. We find that the behavior of the Gaussian system, as regards to ESD,

depends on the state and the temperature of the bath it is coupled to. In this

chapter, we have shown that every two-mode Gaussian state coupled to a local

thermal bath shows ESD at finite non-zero temperature, whereas some such states

do not do so when the temperature is lowered to zero. Squeezing the thermal bath

causes every Gaussian state to show ESD even at T = 0 [87].

We begin our analysis by writing down the master equation for a single har-

monic oscillator [Sec. 9.1] in contact with a thermal bath of infinitely many non-

interacting oscillators at some finite non-zero temperature. We express the states

of this system in the Sudarshan-Glauber P -representation and derive the corre-
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sponding quantum analog of the classical linear Fokker-Planck equation [Sec. 9.2].

This enables us to use covariance matrices to characterize the classicality of the

single-mode system in the presence of local thermal baths [Sec. 9.3]. Once we have

this mechanism in place, we use it to determine the action of the thermal bath [Sec.

9.4] and the squeezed thermal bath [Sec. 9.5] on a two-mode Gaussian state. Using

Simon’s criterion, we calculate the time to classicality and consequently determine

the time to ESD. Using the results of the two-mode analysis, and making the im-

portant observation that Simon’s criterion G−I ≥ 0 is independent of the number

of modes of the system, we extend our analysis to any n-mode Gaussian state and

then generalize our earlier statements to n-mode systems [Sec. 9.6].

9.1 Master equation for a single mode system

The irreversible time evolution of the state ρs(t) of a single harmonic oscillator

coupled to a bath is described by the Lindblad master equation (ME) [114],

d

dt
ρ

s
(t) = −iω0[a

†a, ρ
s
(t)]

+ γ0(N + 1)

{

aρ
s
(t)a† − 1

2
a†aρ

s
(t)− 1

2
ρ

s
(t)a†a

}

+ γ0(N)

{

a†ρs(t)a−
1

2
aa†ρs(t)−

1

2
ρs(t)aa

†
}

. (9.1)

The initial state of the system-bath combine is of the form ρs(0)⊗ ρ
th

, where

ρ
s
(0) is the initial state of the system and ρ

th
is the thermal state of bath. The

first term of the ME describes free evolution generated by the system Hamiltonian

H = ω0a
†a while the rest are interaction terms with the bath. The dissipative

coupling is provided through the damping rate γ0. Here N = (eβω0 − 1)−1 is the

mean number of quanta in a mode with frequency ω0. This ME can be used to

describe, for example, the damping of an electromagnetic field inside a cavity where

a and a† denote the creation and annihilation operators of the cavity mode and

the mode outside the cavity plays the role of the environment with a dissipative

coupling rate γ0.
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9.2 Coherent state representation

Coherent states are minimum uncertainty Gaussian states of the quantum har-

monic oscillator. Mathematically, a coherent state |α〉 is defined to be the eigen-

state of the annihilation operator a, i.e,

a|α〉 = α|α〉, (9.2)

where the eigenvalue α is a complex number. In the Fock basis, the coherent state

|α〉 can be written as:

|α〉 = e−
|α|2

2

∞
∑

n=0

αn√
n!
|n〉. (9.3)

We transform the master equation described by Eq. (9.1) into a continuous

diffusion process by representing ρ
S

in terms of Sudarshan-Glauber P representa-

tion:

ρ
s
(t) =

∫

d2αP (α, α∗, t)|α〉〈α|. (9.4)

Here P (α, α∗, t) is the Sudarshan-Glauber P -function [81, 160] and the integration

in Eq. (9.4) is over the entire complex plane. The quasiprobability distribution,

called so because P (α, α∗, t) can take negative values for some α, satisfies the

normalization

trsρs(t) =

∫

d2αP (α, α∗, t) = 1. (9.5)

Substituting Eq. (9.4) into Eq. (9.1) and using the properties

a|α〉〈α| = α|α〉〈α|,

a†|α〉〈α| =
(

∂

∂α
+ α∗

)

|α〉〈α|, (9.6)
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we get the following equation for the evolution of P (α, α∗, t):

∂

∂t
P (α, α∗, t) = −

[

(

−iω0 −
γ0
2

) ∂

∂α
α +

(

iω0 −
γ0
2

) ∂

∂α∗
α∗
]

P (α, α∗, t)

+ γ0N
∂2

∂α∂α∗
P (α, α∗, t). (9.7)

This is structurally similar to the classical linear Fokker-Planck equation [148] and

can be solved by using the Gaussian ansatz [33]

P (α, α∗, t) =
1

πσ2(t)
exp

[

−|α− β(t)|2
σ2(t)

]

, (9.8)

given the initial condition P (α, α∗, 0) = δ2(α−α0), where |α0〉 is the initial coherent

state. Here the mean amplitude is β(t) =
∫

d2ααP (α, α∗, t) = α0e
(−iω0−γ0/2)t and

the variance is σ2(t) = N(1 − e−γ0t). Since we are interested in dissipation, we

choose to ignore the ω0 term which only contributes to free evolution. The linearity

of the evolution map ensures that any density matrix ρ(0) =
∫

P (λ, λ∗, 0)|λ〉〈λ|d2λ
will evolve to ρ(t) =

∫

P (α, α∗, t)|α〉〈α|d2α, where

P (α, α∗, t) =

∫

P (λ, λ∗, 0) exp

(

−|α− β(t)|2
σ2(t)

)

d2β

with β = λe−γ0t/2. Therefore, thermal evolution of the P -distribution manifests as

a convolution of the P and the thermal distribution Pth = exp(−|α|2/σ2(t)).

9.3 Covariance matrix

In classical probability theory, the covariance matrix of a vector of random variables

X = [X1 X2 · · · Xn]
T is defined as C = 〈(X − 〈X〉)(XT − 〈XT 〉)〉. Elementwise,

it can be written as:

Cij = cov(Xi, Xj) =
〈

(Xi − 〈Xi〉)(Xj − 〈Xj〉)
〉

, (9.9)

where angular brackets represent average over the sample space. For the case of a

quantum harmonic oscillator, the covariance matrix G is defined as the matrix of
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quadratures, i.e,

Gij =
〈

{Ri − 〈Ri〉, Rj − 〈Rj〉}
〉

(9.10)

where R is a vector of position and momentum operators, i.e,

R = [r1 p1 r2 p2 · · · rn pn]T . (9.11)

The matrix G is by construction real and symmetric and it satisfies the uncertainty

relation

G+ i~σ ≥ 0 (9.12)

where

σ =
n
⊕

j=1

(

0 1

−1 0

)

(9.13)

Any arbitrary real symmetric matrix Σ represents a covariance matrix of a quantum

state if and only if it satisfies the uncertainty relation.

It turns out [39, 38] that the symmetric characteristic function

χ(α, t) = e−
|α|2

2 F [P (α, α∗, t)] = exp

(

−X
TGX

4

)

, (9.14)

is a function of the elements of the covariance matrixG. Here F denotes the Fourier

transform and the vector XT is (q, p), where q = 1√
2
(α+ α∗) and p = i√

2
(α∗ − α)

are the position and momentum variables. The evolution of χ(α, t) follows from

that of P (α, α∗, t) (Eq. (9.7)) and thus we have, from Eq. (9.14)

χ(α, t)e
|α|2

2 = χ(βe−
γ0
2
t, 0)e−

|α|2e−γ0t

2 e−
|α|2σ2(t)

4 . (9.15)

The covariance matrix G can be written as:

Gij =

∫

(XXT )ijF−1χ(α, t)d2qd2p, (9.16)
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and hence

G(t) = e−γ0tG(0) +

(

N

2
+ 1

)

(1− e−γ0t)I. (9.17)

A Gaussian channel is a completely positive map that takes Gaussian states

to Gaussian states, an example of which is the evolution, given by Eq. (9.1), for a

harmonic oscillator coupled with a thermal bath. The evolution of the covariance

matrix V of the system, under the action of a general Gaussian channel, can be

characterized by two matrices A and B:

Gf = AGAT +B, (9.18)

where B is a positive operator [90]. For a thermal bath, we have from Eq. (9.17),

A = e−γ0t/2I and B =
(

N
2
+ 1
)

(1−e−γ0t)I. We can thus characterize the action of

a thermal bath completely using these two matrices. The characterization, given

by Eq. (9.18), guarantees that G(t) of Eq. (9.17) is a bona fide covariance matrix

for all finite time t.

9.4 ESD of two-mode Gaussian state

Consider a two-mode system coupled to two identical local thermal baths. Let

us assume that the initial two-mode (4 × 4) covariance matrix G0 represents an

entangled state. Its subsequent evolution is given by

G(t) = (A⊕A)G(0)(A⊕ A)T + (B ⊕ B)

= e−γ0tG(0) +

(

N

2
+ 1

)

(1− e−γ0t)I. (9.19)

where A = e−γ0t/2I4 and B =
(

N
2
+ 1
)

(1 − e−γ0t)I4. From quantum optics point

of view, we know [158] that the state ρ =
∫

d2αd2βP (α, β)|α〉〈α|⊗ |β〉〈β|, written

in the P representation, is classical if and only if P (α, β) is non-negative for all

α and β. This interpretaion of classicality can be translated into the language of

the covariance matrix G(t). Thus, a two-mode Gaussian state will be classical at

some time t if and only if G(t) ≥ I [158]. Clearly, being entangled, the initial

covariance matrix satisfies the relation G(0) < I. However, since the evolution
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given by Eq. (9.19) is dissipative, the system will attain classicality after a time

tc so that G(tc) ≥ I. This condition is equivalent to nmin(tc) ≥ 1, where nmin(tc)

is the smallest eigenvalue of G(tc). Using Eq. (9.19), it can be written as the

evolution of nmin(0) which is the smallest eigenvalue of G0. Since G(0) is not

classical, nmin(0) < 1.

nmin(tc) = e−γ0tcnmin(0) +

(

N

2
+ 1

)

(1− e−γ0tc). (9.20)

Here we find that nmin(tc) ≥ 1 always for tc ≥ − 1
γ0
ln
(

N
N+2−2nmin(0)

)

. An ap-

propriate choice of G(0) allows us to make nmin(0) arbitrarily small (which is

the case in EPR states which are maximally entangled initially) and thus we get

an upper bound on the transition time tc. Thus the upper bound is given by

tmax = − 1
γ0
ln
(

N
N+2

)

. For T > 0, we have N > 0 and hence tmax is finite and

non-zero. This proves that there is always ESD at finite non-zero temperatures.

However, when T = 0, i.e. N = 0, we have tmax → ∞ and hence no quantum-to-

classical transition is seen at finite times. This does not, however, rule out ESD

since non-classicality does not necessarily imply that there is entanglement.

For T = 0, let us consider the following particular form of the initial covariance

matrix representing a symmetric two-mode Gaussian state:

G(0) =













n 0 kx 0

0 n 0 −ky
kx 0 n 0

0 −ky 0 n













. (9.21)

Here kx and ky are positive and satisfy n2−(max{kx, ky})2 ≥ 1 (in order that G(0)

be a bona fide covariance matrix). This covariance matrix represents an entangled

state when (n−kx)(n−ky) < 1 [80]. Under evolution given by Eq. (9.19) and taking

kx = ky, we have n(t) = ne−γ0t+ (1− e−γ0t) and kx(t) = kxe
−γ0t. At the quantum-

to-classical transition time tc, the state becomes separable: (n(tc) − kx(tc))
2 ≥ 1.

This condition is, in this case, equivalent to n(tc)− kx(tc) ≥ 1. However, we have

verified that there is no positive finite value of tc that satisfies this condition. Hence

we see that, for the zero-temperature case, there are states given by Eq. (9.21)

that do not show ESD. This can be easily generalized to the case when kx 6= ky.
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This result is similar to the two-qubit case where we see that ESD occurs for all

states at non-zero temperature. For T = 0, there exist states which do not show

ESD [86].

9.5 Squeezed thermal bath

If the initial state of the bath is a squeezed thermal state, then the master equation

(9.1) is replaced by [1]:

d

dt
ρ

s
(t) = −iω0[a

†a, ρ
s
(t)]

+ γ0(N + 1)

{

aρ
s
(t)a† − 1

2
a†aρ

s
(t)− 1

2
ρ

s
(t)a†a

}

+ γ0N

{

a†ρs(t)a−
1

2
aa†ρs(t)−

1

2
ρs(t)aa

†
}

− γ0
2
M∗

{

2aρa− a2ρ− ρa2
}

− γ0
2
M
{

2a†ρa† −
(

a†
)2
ρ− ρ

(

a†
)2
}

, (9.22)

where M = −1
2
sinh(2r)eiφ(2Nth + 1) and 2N + 1 = cosh(2r)(2Nth + 1). The

quantity Nth is the average number of photons in the thermal state while r and φ

are the squeezing parameters. Repeating the same procedure as earlier, we finally

write down the evolution in terms of covariance matrices:

G(t) = e−γ0tG(0) + (1− e−γ0t)G∞, (9.23)

where G∞ is given by

G∞ =

(

N
2
+ 1 +Re{M} Im{M}
Im{M} N

2
+ 1−Re{M}

)

. (9.24)

In this case, for a squeezed thermal bath, A = e−γ0tI and B = (1 − e−γ0t)G∞. If

there is no squeezing (i.e. if we set M = 0 and N = Nth), we get G∞ = (N/2+1)I
and thus recover the unsqueezed result namely, Eq. (9.19).
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The evolution of the two-mode Gaussian state can now be written as

G(t) = e−γ0tG(0) + (1− e−γ0t)(G∞ ⊕G∞). (9.25)

If the smallest eigenvalue of G(0) is n(0) then the classicality condition G(t) ≥ I
can be written as [95]:

n(t) ≥ e−γ0tn(0) + (1− e−γ0t)

(

N

2
+ 1− |M |

)

≥ 1, (9.26)

i.e, t ≥ − 1

γ0
ln

(

N − 2|M |
N + 2− 2|M | − 2n(0)

)

, (9.27)

where in Eq. (9.26), n(t) is the smallest eigenvalue of G(t) and
(

N
2
+ 1− |M |

)

is

the smallest eigenvalue of G∞. Since n(0) < 1, tc is finite and positive. Therefore,

the transition to classicality and thus ESD is ensured for the squeezed thermal

bath for non-zero temperatures. However, unlike the thermal bath case, we see

here that N does not become zero with temperature T and hence a quantum-to-

classical transition always happens at zero temperature for the squeezed thermal

bath. This ensures ESD.

9.6 ESD for n-mode Gaussian states

In this section we generalize the result mentioned previously to n-mode Gaussian

states in the presence of local thermal and squeezed thermal baths. Consider an

initial covariance matrix Gn(0) corresponding to an n-mode Gaussian state. Let

the matrices A and B characterize the single mode Gaussian channel for a given

bath. The evolution of the covariance matrix can be written as [as a generalization

of Eq. (9.19 )],

Gn(t) =(A⊕ A⊕ · · · ⊕ A)Gn(0)(A⊕A⊕ · · · ⊕ A)T

+ (B ⊕ B ⊕ · · · ⊕ B). (9.28)

If n(0) is the smallest eigenvalue of Gn(0), then the classicality condition Gn(t) ≥ I
gives rise to an equation identical to Eq.(9.20) (Eq. (9.26)) representing nmin(t)(n(t))

as the smallest eigenvalue of Vn(t) ( a covariance matrix for n-mode Gaussian state)
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in the case of the thermal (squeezed thermal) bath. Therefore, all n-mode Gaussian

states show quantum-to-classical transitions at finite temperatures.

In this chapter we have shown that at finite temperature all the two-mode

Gaussian states achieve classicality in finite time and hence become separable when

the system is coupled to a local thermal or squeezed thermal bath, though there are

some states which do not achieve classicality when the bath is at zero temperature.

Squeezing can substitute for the temperature and cause the system to achieve

classicality in finite time even at zero temperature.
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10
Effect of control procedures on

entanglement dynamics

Up until now we have discussed ESD in various systems. This chapter is devoted to

the study of control procedures to suppress the entanglement decay and delay ESD.

Given the obvious importance of ESD regarding the success of quantum tasks, it is

thus a worthwhile exercise to investigate ways and means of controlling the rate of

loss of entanglement. Error-correcting codes [40, 41, 154, 106] and error-avoiding

codes [186, 59, 113] ( which are also knows as decoherence-free subspaces) are such

attempts. Open loop decoherence control strategies [170, 10, 60, 171, 172, 169, 3, 5,

6] are another class of widely used strategies used to this effect, where the system

of interest is subjected to external, suitably designed, time-dependent drivings

that are independent of the system dynamics. The aim is to cause an effective

dynamic decoupling of the system from the ambient environment. A comparative

analysis of some of these methods has been made in [67]. Another mechanism

known to slow down the process of decoherence is through manipulation of the

density of states. This has been put to use in photonic band-gap materials, which

is used to address questions related to the phenomenon of localization of light

[102, 182, 103, 183, 104]. In [88] we have studied the effect of control procedures

on the evolution of entanglement. This chapter is based on that study.

In this chapter, we analyze the evolution of entanglement in two-qubit systems

connected to local baths (or reservoirs). A number of studies of entanglement in

open quantum systems have been made [12, 13, 47]. Here we address the need to

have a control on the resulting nonunitary evolution, as motivated by the above
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discussion, and study several methods of doing so. These include manipulation

of the density of states in photonic crystals, modulation of the frequency of the

system-bath coupling and modulation of external driving on two-qubit systems.

A significant part of the chapter is devoted the study of control methods in two-

qubit systems undergoing non-Markovian evolution. The first of these is dynamic

decoupling — which is an open-loop strategy — on a two-qubit system that is

in contact with a harmonic oscillator bath. This system undergoes a quantum

non-demolition interaction, where dephasing occurs without the system getting

damped. The second is a Josephson-junction charge qubit subject to random

telegraph (1/f) noise due to charge impurities.

The surprising aspect of this study is that suppression of decoherence due to

a control procedure need not necessarily mean preservation of entanglement. In

fact, application of resonance fluorescence on a two-level atom exposed to a thermal

bath or dynamical decoupling on the Josephson junction charge qubit, undergo-

ing non-Markovian evolution, results in faster ESD even though decoherence gets

suppressed.

10.1 Evolution of entanglement in the presence of

photonic crystals

Let us consider a system of two level atoms interacting with a periodic dielec-

tric crystal, this particular structure of which gives rise to the photonic band gap

[102, 92, 183]. The effect of this on electromagnetic waves is analogous to the effect

semiconductor crystals have on the propagation of electrons, and leads to inter-

esting phenomena like strong localization of light [103], inhibition of spontaneous

emission [183] and atom-photon bound states [104, 112, 184]. The origin of such

phenomena can ultimately be traced to the photon density of states changing at a

rate comparable to the spontaneous emission rates. The photon density of states

are of course estimated from the local photon mode density which constitutes the

reservoir. It is this photonic band that suppress decoherence [174].

Let us consider a two-qubit system, one qubit of which is locally coupled to a

photonic crystal reservoir kept at zero temperature . In this case, entanglement

dynamics can be obtained by studying any one of the qubits individually. We start

112



Chapter 10. Effect of control procedures on entanglement dynamics

with the following Hamiltonian:

H =
ω0

2
σz +

∑

k

ωka
†
kak +

∑

k

(gka
†
kσ− + g∗kakσ+), (10.1)

where ω0 is the natural frequency of the two level atom, ωk is the energy of the

k-th mode and gk is the frequency dependent coupling between the qubit and the

photonic crystal, the latter acting as the reservoir here. Also, σz and σ± = σx±iσy
are the Pauli matrices, with ak and a†k being the annihilation and creation operators

for k-th mode. If we restrict the total atom-reservoir system to the case of a single

excitation [79], the evolution of a given state of the qubit is then given by [174]:

ρ(t) =

(

ρ11(0)|c(t)|2 ρ01(0)c(t)

ρ10(0)c
∗(t) ρ00(0) + ρ11(0)(1− |c(t)|2)

)

, (10.2)

where

c(t) = ε
(

λ+e
iλ2+t[1 + Φ(λ+e

iπ/4
√
t)]− λ−e

iλ2−t[1 + Φ(λ−e
iπ/4

√
t)]
)

,

Φ(x) =
2√
π

∞
∑

k=0

2kx2k+1

(2k + 1)!!
is the error function ,

ε =
eiδt√
α2 − 4δ

,

λ± =
−α±

√
α2 − 4δ

2
,

α ≈ ω2
0d

2

8ωcǫ0(πA)3/2
.

Here δ = ω0−ωc is the detuning of the atomic frequency and ωc is the upper band-

edge frequency. We have made use of the following photon-dispersion relation near

the band edge: ωk ≈ ωc + A(k − k0)
2, where A ≈ ωc/k

2
0, d is the atomic dipole

moment and ǫ0 is the vacuum dielectric constant.

The density matrix ρ(t) in Eq. (10.2) is related to the initial density matrix
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ρ(0) by a map Λ, given by ρ(t) = Λpc[ρ(0)], whose matrix representation is

Vpc =













|c(t)|2 0 0 0

0 c(t) 0 0

0 0 c∗(t) 0

1− |c(t)|2 0 0 1













. (10.3)

Channel-state duality, explained earlier in Chapter 5, ensures that there exists a

two-qubit density matrix Mpc for every single-qubit channel Vpc. This matrix Mpc

can be written as

Mpc = (I ⊗ Λpc)(|Φ+〉〈Φ+|)

=
1

2













|c(t)|2 0 0 c(t)

0 0 0 0

0 0 1− |c(t)|2 0

c∗(t) 0 0 1













, (10.4)

where |Φ+〉 = 1√
2
(|00〉+ |11〉) is a two-qubit maximally entangled state. The con-

currence of Mpc is |c(t)|2, where c(t) is a complex-valued function of the detuning

parameter δ and time t. Therefore, we need to see the effect of α on entanglement

in Mpc. If we assume that δ = ∆α2, c(t) can then be written in the following

simplified form:

c(t) =
ei∆τ√
1− 4∆

1

2

(

d+e
id2+τ [1 + Φ(d+e

iπ/4
√
τ)]

−d−eid
2
−τ [1 + Φ(d−e

iπ/4
√
τ )]
)

,

where d± = −1±
√
1− 4∆ and τ = α2t. Since the entanglement in Mpc is |c(t)|2, it

is now a function of δ and τ . Invoking the factorization law of entanglement decay,

it is sufficient to study entanglement in Mpc in order to understand the nature of

evolution of entanglement in the two-qubit system.

We show the evolution of entanglement in Mpc for different values of ∆ in Figs.

(10.1(a)), (10.1(b)). The insets of the figures depict the evolution of entanglement

– computed using concurrence (see appendix) – for the usual case of zero band gap,

while the main panels show the evolution of entanglement for increasing influence
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of the band gap. In FIG. (10.1(a)), the system is within a gap in the photonic

spectrum, indicated by the negative value of ∆ and hence also δ, as a result of which

coherence is preserved and the decay of entanglement is arrested. This feature is

further highlighted in FIG. (10.1(b)), which is also for the case of negative ∆ of

higher order of magnitude than that in FIG. (10.1(a)), and as a result there is a

greater persistence of entanglement. Thus we find that with the increase of the

influence of the photonic band gap on the evolution, entanglement is preserved

longer. From Eq. (10.4), it can be seen that, following the arguments of the

previous section, there is no ESD in this case, a feature corroborated by the FIGS.

(10.1).

Apart from these, Fig. (10.1) shows another interesting phenomenon – the tem-

porally damped oscillations in the entanglement. This phenomenon is a signature

of the emergence of non-Markovian characteristics in the evolution and implies

that the action of detuning changes the character of the dynamics itself, turning

it non-Markovian.

10.2 Frequency modulation

Agarwal and coworkers [3, 5, 6] introduced an open-loop control strategy which

involved modulation of the system-bath coupling, with the proviso that the fre-

quency modulation (to be introduced below) should be carried out at a time scale

which is faster than the correlation time scale of the heat bath. The technique of

frequency modulation has been used earlier to demonstrate the existence of popu-

lation trapping states in a two-level system [4]. Raghavan et al. [142] showed the

connection between trapping in a two-level system under the action of frequency-

modulated fields in quantum optics and dynamic localization of charges moving in

a crystal under the action of a time-periodic electric field.

Consider the Hamiltonian given in Eq. (10.1). Frequency modulation essen-

tially involves a modification of the coupling gk — the modulated coupling is

gk exp{−im sin νt}, where m is the amplitude and ν is the frequency of the mod-

ulation. The decay of the excited state population can be significantly arrested

by choosing m such that J0(m) = 0, where J0 are the Bessel functions of order

zero. The resulting master equation in the interaction picture, when applied to
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the evolution of a two-level system, is [3, 5, 6]:

∂ρ

∂t
=− 2(κ− i∆)J2

1 (m)

(κ− i∆)2 + ν2
{

C−+0 (σ+σ−ρ− σ−ρσ+)

+C+−
0 (ρσ−σ+ − σ+ρσ−)

}

+ h.c, ∆ = (ω0 − ω). (10.5)

Here σ± are the Pauli matrices. We have used the Bessel function expansion

e−im sin(νt) =
∑l=∞

l=−∞ Jl(m)e−ilνt w here J1(m) is the Bessel function of order one.

Additionally, the modified bath correlation functions are assumed to have the

forms C−+(t) = C−+0 e−κteiωt and C+−(−t) = C−+0 e−κteiωt, where κ is the bath

correlation frequency. Now, we have

∂ρ

∂t
=Lfm[ρ],

⇒ ρ(t) = exp(Lfmt)ρ(0),
⇒ ρ(t)ij =

∑

kl

{exp(Lfmt)}ij,klρ(0)kl =
∑

kl

{Vfm(t)}ij,klρ(0)kl, (10.6)

where Vfm(t) = exp(Lfmt) and Lfm is the matrix representation of Lfm. We obtain

the matrices Lfm and Vfm using Eq. (10.5).

Lfm =













−2Re(α)C−+0 0 0 2Re(α)C+−
0

0 −α(C−+0 + C+−
0 ) 0 0

0 0 −α∗(C−+0 + C+−
0 ) 0

2Re(α)C−+0 0 0 −2Re(α)C+−
0













,

(10.7)

Vfm = exp(Lfmt) (10.8)

=













1
T

(

C−+0 e−2Re(α)Tt + C+−
0

)

0 0 1
T

(

C+−
0 (1− e−2Re(α)Tt)

)

0 e−αTt 0 0

0 0 e−α
∗Tt 0

1
T

(

C−+0 (1− e−2Re(α)Tt)
)

0 0 1
T

(

C+−
0 e−2Re(α)Tt + C−+0

)













,

(10.9)

where α =
2(κ−i∆)J2

1 (m)

(κ−i∆)2+ν2
and T = C−+0 + C+−

0 . If Mfm = (I ⊗ Vfm)(|φ+〉〈φ+|),
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then we have

Mfm =













M11 0 0 e−αTt

0 M22 0 0

0 0 M33 0

e−α
∗Tt 0 0 M44













, (10.10)

where

M11 =
1

T

(

C−+0 e−2Re(α)Tt + C+−
0

)

,

M22 =
1

T

(

C+−
0 (1− e−2Re(α)Tt)

)

,

M33 =
1

T

(

C−+0 (1− e−2Re(α)Tt)
)

,

M44 =
1

T

(

C+−
0 e−2Re(α)Tt + C−+0

)

.

If Mfm is separable at some time t, the factorization law for entanglement decay

[107] allows us to assert that all states will show ESD. The state Mfm is separable

if only if it is positive under partial transposition, i.e,

1 +X2 − 2X − T 2

C−+0 C−+0

X ≥ 0, (10.11)

where X = exp(−2Re(α)T t). Therefore, Mfm is separable when LHS of Eq.

(10.11) is zero. The roots of the above equation are

X± =
1

2





(

2 +
T 2

C−+0 C−+0

)

±
√

(

2 +
T 2

C−+0 C−+0

)2

− 4



 . (10.12)

The root X− is less than unity, implying that there exists, always, a finite and

positive time tESD at which the system loses all its entanglement. This is given by

tESD = − 1

2Re(α)T
log(X−). (10.13)

The modulation factor ν appears in the numerator of Eq. (10.13) and, therefore, it

can be expected that a higher frequency of modulation should sustain entanglement

longer. This is confirmed in the plot of tESD against ν (FIG. (10.2)). This result is
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not altogether surprising, for a higher degree of modulation is naturally expected to

increase the coherence by filtering out the influence of the bath, which ultimately

results in entanglement sustaining for a longer period of time.

10.3 Resonance fluorescence

In the previous section, we focused on the decrease in the time to ESD by increasing

the degree of frequency modulation of the system-bath coupling. In this section,

we study a system where a two-level atomic transition is driven by an external

coherent single-mode field which is in resonance with the transition itself. We

shall show that, in this situation, an increase in the Rabi frequency — which

plays the role of the modulator — produces the opposite effect by speeding up

ESD. The behavior of such driven systems has been well studied in the literature

and has found many applications. In contrast to the situation here, Lam and

Savage [110] have investigated a two-level atom driven by polychromatic light.

The phenomenon of tunneling in a symmetric double-well potential perturbed by a

monochromatic driving force was analyzed by Grossmann et al., [89], while photon-

assisted tunneling in a strongly driven double-barrier tunneling diode has been

studied by Wagner [173].

The analysis of the said driven system begins with its Hamiltonian which,

when written in the interaction picture, is HSR = −E(t) · D(t). Here E(t) =

εe−iω0t+ε∗eiω0t is the electric field strength of the driving mode (treated classically),

ω0 is the atomic transition frequency and D(t) is the dipole moment operator

in the interaction picture. The driven two-level system is coupled to a thermal

reservoir of radiation modes. If γ0 be the spontaneous rate due to coupling with

the thermal reservoir and N = N(ω0) be the Planck distribution at the atomic

transition frequency ω0, the evolution of this composite system is given by the

following master equation [33]:

d

dt
ρ(t) =

iΩ

2
[σ+ + σ−, ρ(t)]

+
γ0(N + 1)

2
[2σ−ρ(t)σ+ − σ+σ−ρ(t)− ρ(t)σ+σ−]

+
γ0(N)

2
[2σ+ρ(t)σ− − σ−σ+ρ(t)− ρ(t)σ−σ+] , (10.14)
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(a) Entanglement (concurrence) of M as a function of τ = α2t
for detuning parameter ∆ = −0.1. In this plot the behaviour of
entanglement is different from the one in the case for ∆ = 0 (see
inset). Here entanglement is seen to converge to a non-zero value
at large τ .
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(b) Entanglement (concurrence) of M as a function of τ = α2t
for detuning parameter ∆ = −0.25. This plot shows that higher
the magnitude of detuning , larger will be the asymptotic value of
entanglement.

Figure 10.1: Evolution of entanglement in photonic band gap crystals at zero
temperature.
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Figure 10.2: In this plot we have time of ESD, i.e, the time at which a maximally
entangled initial state loses all its entanglement and become separable when ex-
posed to a bath, against the frequency of modulation ν. In this case we have kept
the value of m to be the first zero of the Bessel function J0, i.e, m = 2.4048. Also,
at ν = 0 the value of tESD is 1.4. The value of the other parameters are: κ = 0.1,
∆ = 0.1, C+−

0 = C−+0 = 0.1.
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where Ω = 2ε·d∗ is the Rabi frequency and d is the transition matrix element of the

dipole operator. The term − (Ω/2) [σ++σ−] characterizes the interaction between

the atom and the external driving field in the rotating wave approximation. As

usual, σ± are the atomic raising and lowering operators, respectively.

Let us consider two identical qubits and, as before, assume that one of them

interacts locally with a thermal bath and is subject to monochromatic driving by an

external coherent field. The master equation (Eq. 10.14) yields the corresponding

matrices Vrf and Mrf (where the subscript rf stands for resonance fluorescence):

Vrf =













a1 a2 a∗2 a4

b1 b2 b3 b4

b∗1 b∗3 b∗2 b∗4
d1 −a2 −a∗2 d4













, (10.15)

Mrf =
1

2













a1 a2 b1 b2

a∗2 a4 b3 b4

b∗1 b∗3 d1 −a2
b∗2 b∗4 −a∗2 d4













, (10.16)

where

a1 + a4 = 1 +

(

1−X3

(

cos(µt)− γ

4µ
sin(µt)

))

S3 +
iΩ

µ
X3 sin(µt) (S− + S+) ,

a1 − a4 = X3

[

cos(µt)− γ

4µ
sin(µt)

]

,

a2 =
iΩ

µ
X3 sin(µt),

b1+b4 = −X2(S++S−)−
iΩ

µ
X3 sin(µt)S3+X

3

(

cos(µt) +
γ

4µ
sin(µt)

)

(S−−S+),

b1 − b4 =
iΩ

µ
X3 sin(µt),

b2,3 =
1

2
X2 ±X3

(

cos(µt) +
γ

4µ
sin(µt)

)

,

d1 + d4 = 2− (a1 + a4),
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d1 − d4 = −(a1 − a4),

X = e−
γt
4 ,

S+ = − iΩγ0
γ2 + 2Ω2

,

S− = S∗+,

S3 = − γ0γ

γ2 + 2Ω2
,

γ = γ0(2N + 1),

µ =
√

Ω2 − (γ/4)2.

Using these, we plot, in FIG. (10.3), concurrence vs the time to ESD for different

values of the Rabi frequency Ω and observe that tESD decreases for an increase in

Ω. This is contrary to the result derived in the previous section, where an increase

in the modulation frequency ν delayed the loss of entanglement. The decrease

in tESD does not however continue indefinitely, but rather saturates to a certain

value for large values of the Rabi frequency. Figure (10.4) depicts an increase in the

single-qubit coherence with an increase in the Rabi frequency Ω, bringing out the

fact that here coherence and entanglement behave in a different fashion. This puts

into perspective the fact that coherence, a local property, need not be monotonic

with entanglement, a non-local property of quantum correlations.

Let us now consider the situation where the system, consisting of the excited

two-level atom, is at zero temperature. Let us also consider the evolution of entan-

glement for two cases demarcated by the relation between the Rabi frequency and

the spontaneous rate of coupling with the thermal reservoir. For the underdamped

case when Ω > γ0/4, the quantity µ is real (since N = 0 at T = 0) and hence

both the upper level occupation and coherence exhibit exponentially damped os-

cillations. Conversely, in the overdamped case, Ω < γ0
4
⇒ µ is purely imaginary

and both these quantities decay monotonically to their stationary values. The evo-

lution of entanglement, however, works in an opposite way . Entanglement decays

faster for the underdamped case than for overdamping, where the tESD is higher.

One possible reason for this could be the relative positions of the three Lorentzian

peaks of the inelastic part of the resonance fluorescence spectrum. The central

peak is at ω = ω0 and the rest are at ω = ω0 ± µ [33] for the underdamped case,
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Figure 10.3: Entanglement (concurrence) of Mrf as a function of time for different
values of Rabi frequency Ω, varying from 0 to 0.5: 0 (the last curve on the right
hand side) corresponding to pure damping and 0.5 (first curve on the left hand
side) corresponding to the underdamped case, i.e., it covers both the overdamped
as well as the underdamped cases. In the inset one can see that as we increase the
Ω the tESD seem to converge at t = 17.0. Here γ = 0.1.
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Figure 10.4: The plot for the evolution of coherence for a single qubit when the
initial state of the qubit is |ψ〉 = |0〉 in the presence of thermal bath. We can see
that the coherence increases as the Rabi frequency Ω is increased.

whereas all three peaks are at ω = ω0 for the overdamped case. This indicates that

the decay of entanglement in the underdamped should be closely dependent on the

quantity µ. This in turn depends on both the dissipation parameter γ and the Rabi

frequency, the latter in itself a function of the driving strength of the external field

and the dipole transition matrix elements. Thus, in the underdamped case, there

exists greater avenues for the decay of quantum coherences as well as entangle-

ment than the overdamped case. Phenomenologically, for the underdamped case

(Ω > γ0/4), the two-level atom interacts with the external monochromatic field

multiple times before spontaneously radiating a photon (see, for example, chap-

ter 10 of ref. [125]). Such numerous interactions allows quantum correlations to

develop between the two atomic levels and the quantized levels of the field. The

phenomenon of monogamy of entanglement [131] thus ensures that the amount of

quantum correlation between the two qubits will decrease. Additionally, it can be

seen that at a higher Rabi frequency, Ω dominates the dissipation and thus causes

a saturation of the time to ESD, as shown in FIG. (10.3).
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10.4 Dynamic decoupling and the effect on ESD

As discussed earlier, open-loop control strategies involve the application of suitably

tailored control fields on the system of interest, with the aim of achieving dynamic

decoupling of the system from the environment [170, 171, 169, 3, 5, 6]. Bang-Bang

control is a particular form of such decoupling where the decoupling interactions

are switched on and off at a rate faster than the rate of interaction set by the

environment. The application of suitable radio frequency (RF) pulses, applied

fast enough, averages out unwanted effects of the environment and suppresses

decoherence. In this section, we compare the effect of Bang-Bang decoupling on

the evolution of entanglement, using channel-state duality and factorization law

of entanglement decay, in systems connected to two different types of baths. One

bath type is composed of infinitely many harmonic oscillators at a finite non-zero

temperature T and couples locally to a two-level atom acting as the qubit, while

the other adds random telegraph noise to a Josephson-junction charge qubit. It

should be kept in mind that our result in [86] that every two-qubit state shows

ESD at all non-zero temperature, was based on a particular type of Markovian

master equation. So for the case of telegraphic noise, it may not be wise to extend

our result bluntly.

10.4.1 Bang-Bang decoupling when the bath consists of har-

monic oscillators

Quantum Non-Demolition Interaction

Let us consider the interaction of a qubit with a bath of harmonic oscillators where

the system Hamiltonian commutes with the interaction Hamiltonian so that there

is no exchange of energy between the system and the bath — this is quantum non-

demolition dynamics [11, 14]. The only effect of the bath will be on the coherence

elements of the qubit density operator, which will decay in time at the rate γ. The
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total Hamiltonian for the system-bath combine is:

H0 = Hq +HB +HI ; (10.17)

Hq = ω0σz,

HB =
∑

k

ωkb
†
kbk,

HI =
∑

k

σz(gkb
†
k + g∗kbk).

Here the system Hamiltonian Hq commutes with the interaction Hamiltonian HI

and the evolution of such a system is called pure dephasing. For simplicity we

will work in the interaction picture where the density matrix of the system-bath

combine and the interaction Hamiltonian transform as:

ρ̃(t) = ei(Hq+HB)tρ(t)e−i(Hq+HB)t, (10.18)

H̃(t) = σz
∑

k

(gkb
†
ke
iωkt + g∗kbke

−iωkt). (10.19)

From here we can write the total time evolution operator for the system plus bath

as

Ũ(t0, t) = T exp

{

−i
∫ t

t0

dsH̃(s)

}

= exp

{

σz
2

∑

k

[b†ke
iωkt0ξk(t− t0)− bke

−iωkt0ξ∗k(t− t0)]

}

, (10.20)

where ξk(t) =
2gk
ωk

(1− exp(iωkt)). We are interested in calculating

ρ̃01(t) = 〈0|TrB
{

Ũ(t0, t)ρ̃(t0)Ũ
†(t0, t)

}

|1〉. (10.21)

Assuming that the bath and the qubit were uncorrelated in the beginning and that

the bath is in a thermal state, we have [170]:

ρ̃01(t) = ρ̃01(t0)e
−γ(t0,t), (10.22)
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π π ππ

τ τ τ

Figure 10.5: Sketch of the pulse sequence used in bang-bang decoupling procedure.

where

γ(t0, t) =
∑

k

|ξk(t− t0)|2
2

coth
( ωk
2T

)

. (10.23)

The matrix representation of the evolution operator VQND can be written from

here as:

VQND =













1 0 0 0

0 e−γ(t0,t) 0 0

0 0 e−γ(t0,t) 0

0 0 0 1













. (10.24)

The evolution of the maximally entangled state |Φ+〉 = (|00〉+ |11〉)/
√
2 provided

sufficient information considering the evolution of entanglement. The evolution of

one subsystem in state |φ+〉 gives rise to the density matrix:

MQND =
1

2













1 0 0 e−γ(t0,t)

0 0 0 0

0 0 0 0

e−γ(t0,t) 0 0 1













. (10.25)

The concurrence in the state M is directly proportional to e−γ(t0,t).

Dephasing under Bang-Bang dynamics

The function of Bang-Bang decoupling is to hit the system of interest with a se-

quence of fast radio-frequency pulses with the aim of slowing down decoherence (see

FIG. 10.5). Adding the radio frequency term to the system-plus-bath Hamiltonian
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H0 (Eq. (10.17)), we get

H(t) = H0 +HRF (ω0, t), (10.26)

HRF (t) =

np
∑

n=1

U (n)(t){cos[ω0(t− t(n)p )]σx + sin[ω0(t− t(n)p )]σy}, (10.27)

where t(n)p = t0 + n∆t, n = 1, 2, · · · , np, and

U (n)(t) =

{

U t
(n)
p ≤ t ≤ t

(n)
p + τp

0 elsewhere.
(10.28)

The term HRF acts only on the system of interest which here is the qubit. It

represents a sequence of np identical pulses, each of duration τp, applied at instants

t = t
(n)
p . The separation between the pulses is τ = ∆t. The decay rate for this

pulsed sequence evolution is [170]:

γp(N,∆t) =
∑

k

|ηk(N,∆t)|2
2

coth
(ωk
2T

)

, (10.29)

where

|ηk(N, ωk∆t)|2 = 4(1− cos(ωk∆t))
2

×
(

N +
N−1
∑

n=0

2n cos[2(N − n)ωk∆t]

)

. (10.30)

In [170] it has also been shown that |ηk|2 ≤ |ξk|2 which implies that decoherence

is suppressed. Also, it is evident that a lower value of η implies a lower value of γ.

Consequently, we conclude that Bang-Bang decoupling slows down entanglement

decay.

10.4.2 Josephson Junction qubit

Although solid state nanodevices satisfy the requirements of large scale integra-

bility and flexibility in design, they are subject to various kinds of low-energy

excitations in the environment and suffer from decoherence problems. There have

been a number of proposals in this context about the implementation of quantum
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Figure 10.6: Schematic diagram for Josephson-junction charge qubit

computers using superconducting nanocircuits [118, 68]. Experiments highlighting

the quantum properties of such devices have already been performed [127, 74].

Here the concept of a Josephson-junction qubit comes into prominence. A charge-

Josephson qubit is a superconducting island connected to a circuit via a Josephson

junction and a capacitor. The computational states are associated with charge

Q in the island and are mixed by Josephson tunneling. For temperatures much

lower than the Josephson energy, kBT ≪ Ej [153, 119, 133, 132], we have the

Hamiltonian

HQ =
ǫ

2
σz −

Ej
2
σx, (10.31)

with the charging energy EC dominating the Josephson energy. Here, ǫ ≡ ǫ(V ) =

4EC(1 − C2V/e), C2 is the capacitance of the capacitor connected to the island

and V is the external gate voltage (see Fig. (10.6)).

Fluctuating background charges (BCs) (charge impurities) are an important

source of decoherence in the operation of Josephson charge qubits. These are

believed to originate in random traps for single electrons in dielectric materials

surrounding the superconducting island. These fluctuations cause at low frequen-

cies, the 1/f noise which is also known as random telegraph noise, and is directly

observed in single electron tunneling devices [190, 128]. This has also been studied

in the context of fractional statistics in the Quantum Hall Effect [105]. This noise,
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arising out of decoherence, is modeled [133, 132] by considering each of the BCs

as a localized impurity level connected to a fermionic band, i.e., the quantum im-

purity is described by the Fano Anderson model. This is the quantum analogue of

the classical model of N independent, randomly activated bistable processes. For

a single impurity, the total Hamiltonian is:

H = HQ − v

2
b†bσz +HI , (10.32)

where

HI = ǫcb
†b+

∑

k

[

Tkc
†
kb+ h.c.

]

+
∑

k

ǫkc
†
kck. (10.33)

Here HI describes the BC Hamiltonian, b represents the impurity charge in the

localized level ǫc, ck the electron in the band with energy ǫk, and HQ is as in Eq.

(10.31). The impurity electron may tunnel to the band with amplitude Tk. The

BC produces an extra bias v for the qubit via the coupling term (v/2)b†bσz. An

important scale is the switching rate γ = 2πρ(ǫc)|T |2, where ρ(ǫc) is the density of

states of the band. It is assumed that we are working in the the relaxation regime

of the BC where the tunneling rate to all fermionic bands are approximately same.

The fraction v/γ determines whether the operational regime of the qubit is weak

(v/γ ≪ 1) or strong (v/γ > 1). Studying the single BC case is important, since it

has been shown [133] that the effect of multiple BCs can be trivially extended from

that of a single BC. For multiple strongly coupled BCs producing 1/f noise, the

effect of a large number of slow fluctuators is minimal and pronounced features

of discrete dynamics such as saturation and transient behavior are seen. There

are two special operational points for the qubit related to Eq. (10.31): (a) ǫ = 0,

corresponding to charge degeneracy and (b) Ej = 0, for the case of pure dephasing

[26, 2], where tunneling can be neglected. We will consider this case later in

detail and make a comparison of ESD, for the case of pure dephasing, between the

harmonic oscillator and 1/f baths.

The general procedure for studying the effect of the BC on the dynamics of the

qubit is to calculate the unitary evolution of the entire system-bath combine and

then trace out the bath degree of freedom. Thus, i.e, ρQ(t) = trE{W (t)}, W (t)

being the the full density matrix. In the weak coupling limit a master equation for
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ρQ(t) can be written [53]. The results in the standard weak coupling approach are

obtained at lowest order in the coupling v, but it has been pointed out that higher

orders are important for a 1/f noise [153, 119, 133].

The failure of the standard weak coupling approach is due to the fact that the

1/f environment includes fluctuators which are very slow on the time scale of the

reduced dynamics. To circumvent this problem one considers another approach

in which a part of the bath is treated on the same footing as the system [132].

We study the evolution of this new system and later trace out the extra part

which belongs to the bath, i.e., ρ(t) = Trfb{W (t)}. We then obtain ρQ(t) from

ρ(t) as ρQ(t) = Trb{ρ(t)}, where the subscript fb stands for fermionic band. In

that context we split the Hamiltonian (10.32) into a system Hamiltonian H0 =

HQ − v

2
b†bσz + ǫcb

†b and environment Hamiltonian HE =
∑

k ǫkc
†
kck coupled by

V =
∑

k

[

Tkc
†
kb+ h.c.

]

. The eigenstates of H0 are product states of the form |θ〉|n〉,
e.g,

|a〉 = |θ+〉|0〉,
|b〉 = |θ−〉|0〉,
|c〉 = |θ′+〉|1〉,
|d〉 = |θ′−〉|1〉,

with corresponding energies

−Ω

2
,
Ω

2
, − Ω′

2
+ ǫc,

Ω′

2
+ ǫc.

Here |θ±〉 are the two eigenstates of σn̂, the direction being specified by the po-

lar angle θ and φ = 0. The two level splittings are Ω =
√

ǫ2 + E2
j and Ω′ =

√

(ǫ+ v)2 + E2
j , and cos(θ) = ǫ/Ω, sin(θ) = Ej/Ω, cos(θ′) = (ǫ+v)/Ω′, sin(θ′) =

Ej/Ω
′.

The master equation for the reduced density matrix ρ(t), in the Schrödinger

representation and in the basis of the eigenstates of H0 reads:

dρij(t)

dt
= −iωiρij(t) +

∑

mn

Rij,mnρmn(t), (10.34)
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where ωij is the difference of the energies and Rij,mn are the elements of the Redfield

tensor [53]. These are given by :

Rij,mn =

∫ ∞

0

dτ
{

c>njmi(τ)e
iωmiτ + c<njmi(τ)e

iωjnτ

−δnj
∑

k

c>ikmk(τ)e
iωmkτ − δim

∑

k

c<nkjk(τ)e
iωknτ

}

, (10.35)

where

c≷ijkl(t) = [〈i|b|j〉〈l|b†|k〉+ 〈i|b†|j〉〈l|b|k〉]iG≷(t). (10.36)

Here iG>(ω) = γ/(1 − e−βω) is the Fourier transform of G>(t) and G<(ω) =

G>(−ω), therefore, G<(t) = G>(−t). This problem has a very interesting symme-

try: the diagonal and off diagonal elements do not mix if the initial state of the

charge particle is a diagonal density matrix in the BC. Therefore, we can divide the

Redfield tensor elements in two parts, one corresponding to population (diagonal

elements) and other corresponding to coherence (off diagonal elements).

The Rii,nn elements which affect the population are:

Rii,nn =

∫ ∞

0

{

χiniG
>(τ)eiωniτ + χiniG

<(τ)e−iωniτ
}

= χin [iG
>(ωni))] . (10.37)

Here n 6= i and χin = (|〈n|b|i〉|2 + |〈n|b†|i〉|2), and

Rii,ii = −
∑

k

χik [iG
>(ωik)] . (10.38)

Now we calculate the elements which are responsible for the coherence part. In

the adiabatic regime we have γ ∼ Ω − Ω′ ≪ Ω ∼ Ω′, i.e., where the BCs are not

static and the mixing of ρab and ρcd (10.34), as well as their conjugates, cannot be

neglected. Hence the non-zero elements of R tensor – which affect the coherence
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– are the following:

Rab,ab = −γ
2

[

1− c2δ − s2δ′ + i(c2w + s2w′)
]

,

Rcd,cd = −γ
2

[

1 + c2δ + s2δ′ + i(c2w − s2w′)
]

,

Rab,cd =
c2γ

2
[1 + δ − iw] ,

Rcd,ab =
c2γ

2
[1− δ − iw] .

Here

c = cos[(θ − θ′)/2],

s = sin[(θ − θ′)/2],

δ = tca + tdb,

δ′ = tda + tcb,

w = wca − wcb,

w′ = wda − wcb,

tij =
1

2
tanh

(

βωij
2

)

,

wij = −1

π
R
{

ψ

(

π + iβωij
2π

)}

,

and ψ(z) is the digamma function.
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Now we can construct the explicit form of the matrix R:

R =











































































R1,1 0 0 0 0 R1,2 0 0 0 0 R1,3 0 0 0 0 R1,4

0 z− 0 0 0 0 0 0 0 0 0 y+ 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 z∗− 0 0 0 0 0 0 0 0 0 y∗+ 0

R2,1 0 0 0 0 R2,2 0 0 0 0 R2,3 0 0 0 0 R2,4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R3,1 0 0 0 0 R3,2 0 0 0 0 R3,3 0 0 0 0 R3,4

0 y− 0 0 0 0 0 0 0 0 0 z+ 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 y∗− 0 0 0 0 0 0 0 0 0 z∗+ 0

R4,1 0 0 0 0 R4,2 0 0 0 0 R4,3 0 0 0 0 R4,4











































































,

(10.39)

where

z− = −γ
2

[

1− c2δ − s2δ′ + i(c2w + s2w′)
]

,

z+ = −γ
2

[

1 + c2δ + s2δ′ + i(c2w − s2w′)
]

,

y+ =
c2γ

2
[1 + δ − iw] ,

y− =
c2γ

2
[1− δ − iw] ,

Ri,j = Rii,jj.

Channel-state duality implies that the exponential of the matrix R is the matrix

representation of the evolution channel. Therefore, we have V = exp(Rt) which

gives us the evolution for the qubit plus the charge impurity. This map is in the

basis {|θ±〉|i〉} ⊗ {|θ±〉|j〉}. To make it computationally easier we need to write it
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in the basis {|θ±〉|θ±〉}⊗{|i〉|j〉}, since the matrix representation of the map acting

on the qubit is in the basis {|θ±〉|θ±〉}. To change the basis we need the assistance

of a unitary matrix (in this case permutation matrix) P which is defined as:

P (|a〉|b〉|c〉|d〉) = |a〉|c〉|b〉|d〉; (10.40)

|a〉|b〉|c〉|d〉 =
(

a1

a2

)

⊗
(

b1

b2

)

⊗
(

c1

c2

)

⊗
(

d1

d2

)

, (10.41)

|a〉|c〉|b〉|d〉 =
(

a1

a2

)

⊗
(

c1

c2

)

⊗
(

b1

b2

)

⊗
(

d1

d2

)

. (10.42)

⇒ P = I ⊗ p⊗ I, (10.43)

where

p =













1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1













.

After conjugating the matrix V by P we get:

Ṽ = PV P T . (10.44)

We can write this 16× 16 matrix Ṽ as a 4× 4 matrix, where each of the element

itself is a 4 × 4 matrix Zij where i, j ∈ {1, 2, 3, 4}. Then the map Vs acting

on qubit is simply Vs ij = Tr(Zij). From here we can get the corresponding M

matrix. It is not easy to solve it analytically in the present case. Therefore, we use

numerical methods to calculate the evolution operator and entanglement evolution

for a system of qubits.

The two parameters ǫ and Ej in the Hamiltonian for the charge Josephson qubit

HQ play a crucial role in the decoherence properties of the system. For example, if

Ej = 0, the system Hamiltonian HQ commutes with the interaction Hamiltonian.

This situation, as mentioned earlier, is called non-demolition evolution or pure

dephasing. In this case there is no energy exchange between system and the bath.
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Figure 10.7: Contour of the entanglement after time t = 5 for all values of Ej and
ǫ (Josephson junction Hamiltonian parameters) The temperature in this case is
equal to 0, γ = 1, κ = v/γ = 0.45.
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On the other hand when we have ǫ = 0, the system Hamiltonian does not commute

with the interaction Hamiltonan. Therefore, the two situations are qualitatively

different. We present, in Fig. (10.7), a plot of entanglement in the phase space

of ǫ and Ej by evolving a maximally entangled state of two qubits with the bath

(of charge impurities) acting only on one qubit. The qubit is evolved for a fixed

time t and the entanglement is calculated for different values of ǫ and Ej . Fig.

(10.7) shows that the entanglement in the system increases with an increase in Ej
when ǫ is held fixed, but decreases with an increase in ǫ when Ej is held fixed.

This is counterintuitive because dissipation increases with the increase in the value

of Ej. Fig. (10.8) compares the time-evolution of entanglement for the harmonic

oscillator bath with the charge-impurities bath, both under pure dephasing. While

entanglement decay is exponential for the case of 1/f noise, it is slower for a

bath of harmonic oscillators. We compare, in FIG. (10.9), the time-evolution of

entanglement for various values of Josephson energy (Ej) starting with the pure

dephasing case given by Ej = 0. We see that the entanglement remaining in

the system increases with an increase in the value of Josephson energy. This is

consistent with FIG. (10.7).

Decoherence produced by background charges depends qualitatively on the

ratio κ = v/γ, where κ ≪ 1 denotes the weak-coupling regime and κ > 1 is the

strong coupling regime. The latter gives rise to qualitatively new properties. We

find that (see FIG. (10.10(b))), for κ > 1, the time-evolution of entanglement does

not depend on κ. This is in contrast to the weak coupling regime, where the time-

evolution of entanglement does depend on κ, as seen in FIG. (10.10(a)), where an

increase in κ leads to a decrease in entanglement. Naturally, decoherence due to

the bath forces entanglement to decay with time for both cases.

Evolution operator with Bang-Bang interaction

The Josephson charge qubit in contact with an 1/f bath is now subject to fast

pulses, under the Bang-Bang dynamical decoupling scheme. The Hamiltonian for

this radio frequency pulse is the same as in Eq. (10.27). If the time for which a

pulse is active is π, then the evolution operator for the pulse may be written as
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Figure 10.8: Evolution of entanglement for the pure dephasing case, i.e, Ej = 0.
We can see that whereas entanglement decay is exponential for the 1/f noise, it
slows down for a bath of harmonic oscillator (inset) at zero temperature.
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Figure 10.9: Evolution of entanglement for 1/f (telegraph) noise at zero temper-
ature. Here different curves represent the evolution of entanglement for different
values of Ej (from 0 to 1), with the curve at the bottom corresponding to Ej = 0
and that at the top to Ej = 1, while ǫ is fixed and equal to 1.

139



Chapter 10. Effect of control procedures on entanglement dynamics

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t × 10

E
nt

an
gl

em
en

t

(a) Plot of the entanglement (concurrence) as a function of time
(t) for different values of coupling strength κ = v/γ, in the weak
coupling regime, i.e, κ ≪ 1. Here the range of κ is from 0.05
to 0.5, with 0.05 corresponding to the uppermost curve, and 0.5
to the lowest (bottom) one. We can see that as we increase κ,
entanglement decreases.
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(b) Plot of the entanglement (concurrence) as a function of time
(t) for different values of coupling strength κ = v/γ, in the strong
coupling regime, i.e, κ > 1. Here the range of κ is from 5.05 to
5.5. We can see that in the strong coupling region all the curves
converge.

Figure 10.10: Evolution of entanglement with respect to time, for different coupling
strengths and temperature T = 0, Ej = 1 = ǫ.
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Vp = I ⊗ iσx where 2Uτp = ±π. The total evolution can therefore be written as

Vtotal = (VpVS(τ))
2N (10.45)

where 2Nτ = t. Since the RF pulses act on the system for very short amounts of

time, the evolution of the system can safely be assumed to be governed only by

the dynamical map Vp for the time period during which the pulse is operating. As

can be seen from Figs. (10.11) to (10.13) and FIG. (10.16), the system exhibits

the phenomenon of ESD on the application of bang-bang pulses.

Let us consider the case where Ej = ǫ = 1. Let us also fix the pulse strength

to be U = 50π and ensure that the pulses act for very short times. As defined

earlier, the ratio of the BC bias v and the switching rate γ defines the weak and

strong coupling regimes, the former designated by
v

γ
≪ 1 and the latter by

v

γ
> 1.

In FIG. (10.11), we plot the time-evolution of entanglement, with the coupling

strength as parameter. For weak coupling, we find that tESD initially increases

with coupling strength. This continues till a turning point is reached at
v

γ
= 0.38

when tESD ≃ 880. After this, with increase in coupling strength, tESD starts

to decrease. As a result, a kink appears in the corresponding entanglement vs

time plot, FIGS. (10.11), (10.12). The receding of tESD with increase in coupling

strength continues well into the strong coupling regime, i.e. for 5.05 <
v

γ
< 5.5.

It, however, does not go to zero, but rather chooses to saturate at the threshold

value of tESD ≃ 10, see FIG. (10.13). The “turning” and the “saturation” features

are well captured in FIG. (10.16), where we plot tESD against
v

γ
and keep the

pulse strength and durations fixed. We observe a crossover phenomenon around
v

γ
≃ 0.38, where the value of tESD rises sharply, only to fall back again even

quicker.

The evolution of coherence with respect to time, for the Josephson charge qubit

subjected to 1/f noise, is shown in Figs. (10.14), (10.15), for the weak and strong

coupling regimes, respectively. Both show an improvement in the coherence with

the application of the bang-bang decoupling pulses, in contrast to the correspond-

ing behavior of entanglement, thereby reiterating that coherence is not synonymous

with entanglement.

In FIG. (10.17), we plot the behavior of tESD with Ej and find that, as we
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Figure 10.11: Effect of bang-bang decoupling on entanglement, in the weak cou-
pling regime. If we compare this plot with FIG. (10.10(a)), with the curves cor-
responding to the same values of κ, we see that the bang-bang decoupling causes
entanglement to disappear faster in time for a fixed value of the coupling strength.
Here the parameters are same as in FIG. (10.10(a)) and the pulse strength is
U = 50π with time for which the pulse was activated is τp = 0.01. In the inset we
have the evolution of entanglement for very small range (0.01 to 0.1) of coupling κ.
The thickest curve is the one corresponding to κ = 0.38. This curve is important
in the sense that it has the largest tESD.

increase Ej and thus move away from the pure dephasing situation, the time to

ESD keeps increasing. As discussed earlier, this is a counterintuitive result because

dissipation increases with Ej.

10.5 Summing up

As stated earlier, the aim of most control procedures is to suppress decoherence.

For the case of photonic crystals, the design allows the system to conserve coherence

when it is within the photonic band gap. Modulating the frequency of the system-

bath coupling aims to suppress decoherence by shifting the system out of the

spectral influence of the bath. In both these cases it is found that the suppression
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Figure 10.12: Entanglement evolution for the coupling parameter range 0.3 <
κ < 0.4, with the uppermost curve corresponding to κ = 0.3 and the lowest
(bottom) curve corresponding to 0.4. One can see from this plot the formation
and disappearance of the kink.
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Figure 10.13: Effect of bang-bang decoupling on entanglement in the strong cou-
pling region. Here again we can see the effect of bang-bang decoupling on the
entanglement if we compare this plot with FIG.(10.10(b)). Here the parameters
are same as in FIG. (10.10(b)) and the pulse strength is U = 50π with the pulse
duration τ = 0.01.
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Figure 10.14: Plot for the evolution of coherence in the case of Telegraph noise in
weak coupling region, i.e, κ < 1. Here all the parameters has the value same as in
Fig. (10.12) and (10.11) and κ = 0.38.
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Figure 10.15: Plot for the evolution of coherence in the case of Telegraph noise in
strong coupling region, i.e, κ ≥ 1. Here the value of all the parameters are same
as in Fig. (10.13) and κ = 5.38.

0 20 40 60 80 100
0

200

400

600

800

1000

κ × 100

t E
S

D

Figure 10.16: tESD is plotted as a function of coupling strength κ. Here we can see
that there is a clear distinction between the strong and the weak coupling region.
As we increase κ the tESD tends to freeze and asymptotic value of tESD is around
10. The parameters used are as in the previous plots.
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Figure 10.17: tESD is plotted as a function of Ej . This shows that as we go away
from pure dephasing the tESD increases. The parameters used are same as in the
previous plots.
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of decoherence is accompanied by a corresponding increase in tESD.

However, it will be erroneous to naïvely suppose that this is the norm. Ex-

actly the opposite phenomenon is observed for the case of resonance fluorescence,

where the coupling between the bath and a two-level atomic system forced by an

external resonant field, is modulated. It is seen that an increase in the external

field frequency Ω, the Rabi frequency, results in a faster decay of entanglement

(FIG. (10.3)). A further non-trivial effect observed is the saturation in the time to

ESD: tESD does not go below a threshold value no matter what the Rabi frequency.

In what could point towards a possible explanation of this phenomenon, we ob-

serve that the sudden death time stops being dependent on the Rabi frequency

at Ω =
γ0
4

; strikingly, this happens to be the boundary between the overdamped

Ω <
γ0
4

and underdamped Ω >
γ0
4

regimes.

In dynamic decoupling schemes RF pulses, applied at short time-intervals,

smooth out unwanted effects due to environmental interactions. We discuss two

qualitatively different system-bath models: the first being the usual qubit and har-

monic oscillator bath pair with pure dephasing or QND interaction; and the second

being a bath of charge impurities, simulating 1/f (telegraph) noise, acting on a

Josephson-junction charge qubit. Entanglement decays to zero asymptotically in

both these models. The application of fast RF pulses to the former manages to

speedup the rate of the still-asymptotic loss of entanglement, whereas the same

RF pulse applied to the latter kills off entanglement in finite time and thus shows

ESD. A very interesting phenomenon, observed in the strong coupling regime, is

the decrease in the time to ESD with increasing pulse strengths. This is extremely

counterintuitive, and brings into perspective the fact that in the non-Markovian

strong coupling regime, the dynamics of entanglement can be different than that

of decoherence. This feature gets further highlighted by the behavior of coher-

ence with time, both for the case of resonance fluorescence and Josephson-junction

charge qubit subjected to 1/f noise. Here coherence –which is a local property –

is seen to vary in a non-monotonic fashion with entanglement which happens to

be a non-local property of the system.
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Control Procedure
Decoherence suppres-
sion

Entanglement decay
suppression

Photonic Crystals X X

Frequency Modulation X X

Resonance Fluores-
cence

X ×
DD in EMF bath X X

DD in Telegraph noise X ×

Table 10.1: Summary of the results.
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Assisted suppression of decoherence

In this chapter we will discuss a scheme to suppress the decoherence which is

qualitatively different from the schemes we discussed in the previous chapters.

The scheme presented here involves introduction of an ancilla in the bath close to

the system of interest. The presence of the ancilla causes a shielding effect on the

system and hence suppresses the decoherence. The ancilla and the system do not

interact directly but by exchange interactions through the bath they interact [85].

11.1 Dynamics of the system plus ancilla in the

presence of thermal bath

Consider a bipartite system S1 = A1 + B1 initially in an entangled state. One of

the subsystem (say A1) is exposed to a thermal bath. We have already studied the

evolution of entanglement in such systems in chapter 8. We have seen that in the

case of thermal bath with non-zero temperature the entanglement in the system

S1 dies out in a short span of time. Let us introduce another bipartite system,

namely ancilla, S2 = A2 +B2 where A1 and A2 both interacts with the same bath

(see Fig. (11.1)), i.e, the bath is acting on A1 and A2 together to generate a kind

of bath induced interaction between A1 and A2. The Lindblad master equation for
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the system A1 before we introduce S2 (neglecting the unitary evolution part) is:

dρ
A1

dt
= L1ρA1

(11.1)

=
(N + 1)γ

2

[

2σ−ρA1
σ+ − σ+σ−ρA1

− ρ
A1
σ+σ−

]

+
Nγ

2

[

2σ+ρA1
σ− − σ−σ+ρA1

− ρ
A1
σ−σ+

]

, (11.2)

where N is the mean occupation number of quanta in the reservoir, γ is the spon-

taneous decay rate of the qubits, σ+ = |1〉〈0| and σ− = |0〉〈1|.

Once we introduce S2 the Lindblad master equation for A1 will change. To see

that consider the master equation for A1A2:

dρ

dt
=
(N + 1)γ

2
[2J−ρJ+ − J+J−ρ− ρJ+J−]

+
Nγ

2
[2J+ρJ− − J−J+ρ− ρJ−J+] , (11.3)

where J± = σ1
± + σ2

± = σ± ⊗ I + I ⊗ σ±.

To get the master equation for A1 we need to trace out A2 which will result in

ρ̇A1 = L1ρA1
+ Leff(t)ρA1

, (11.4)

where

LeffρA1
=TrA2

{

(N + 1)γ

2

[

2σ1
−ρσ

2
+ + 2σ2

−ρσ
1
+ − σ1

+σ
2
−ρ− σ2

+σ
1
−ρ− ρσ1

+σ
2
− − ρσ2

+σ
1
−
]

+
Nγ

2

[

2σ1
+ρσ

2
− + 2σ2

+ρσ
1
− − σ1

−σ
2
+ρ− σ2

−σ
1
+ρ− ρσ1

−σ
2
+ − ρσ2

−σ
1
+

]

}

.

(11.5)

The presence of time dependent Leff may change the dynamics of the system S1.

Note that even if the joint dynamics of S1 + S2 is of Markovian type, there is, in

general, no guarantee that the dynamics of S1 (or S2) will be Markovian type (see

for example, J. Piilo et al. [138], H.-P. Breuer et al. [36], H.-P. Breuer et al. [35],

D. Chruścinśki et al. [51]).
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Figure 11.1: Schematic representation of system plus bath plus ancilla.

11.2 Dynamics in terms of Kraus operators

To get a better understanding of the evolution of the system S1 in the presence

of ancilla S2 and the bath, let us consider the four-partite initial density matrix

ρ
A1A2B1B2

. Suppose that {Ak} are the two-qubit Kraus operators, the evolution of

the state ρ
A1A2B1B2

when the bath is acting on the qubits A1 and A2 can be written

as

ρ(t)A1A2B1B2 =
∑

k

(Ak ⊗ IB1B2) ρA1A2B1B2

(

A†k ⊗ IB1B2

)

(11.6)

Let us assume that the single qubit bath be of full rank, i.e, one needs at

least four Kraus operators for this bath. If {am}4m=1 are the single qubit Kraus

operators then the operators {am⊗ an}4m,n=1 will form a basis for operators acting

on two-qubit states. Thus, the two-qubit Kraus operators {Ak}16k=1 can be written

as:

Ak =
∑

mn

αkmnam ⊗ a∗n, (11.7)

where {αkmn} are the expansion coefficients. We can now write

ρ
A1A2B1B2

(t) =
∑

k

∑

mn,m′n′

αkmnα
k∗
m′n′ (am ⊗ a∗n ⊗ IB1B2) ρA1A2B1B2

(

a†m′ ⊗ aTn′ ⊗ IB1B2

)

.

(11.8)
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Let us take the initial density operator ρ
A1A2B1B2

of the entire system to be of the

form

ρ
A1A2B1B2

= ρ
A1B1

⊗ |χ〉A2B2〈χ|, (11.9)

where ρ
A1B1

is an arbitrary state of the two-qubit system A1 +B1 and |χ〉A2B2 is a

fixed state of ancilla. Therefore, we can write the Eq.(11.8) as

trA2B2

(

ρ
A1A2B1B2

(t)
)

=
∑

mm′

Ymm′ (am ⊗ IB1) ρA1B1

(

a†m′ ⊗ IB1

)

, (11.10)

where

Ymm′ = trA2B2

∑

k

∑

mn,m′n′

αkmnα
k∗
m′n′ (a∗n ⊗ I) (|χ〉A2B2〈χ|)

(

aTn′ ⊗ I
)

. (11.11)

Interesting thing to notice is that the matrix Y is positive semi-definite and

hence we can write it as

Ymm′ =
∑

kl

Umkdkl(U
†)lm′ (11.12)

where dkl = dkδkl are the eigenvalues of Y and are non-negative real numbers.

Substituting this in Eq.(11.10) results in

ρ̃A1B1(t) =
∑

k

dk (bk ⊗ IB1) (ρA1B1
)
(

b†k ⊗ IB1

)

, (11.13)

where bk =
∑

m Umkam are new Kraus operators. Absorbing the dk into the new

Kraus operator give rise to b̃k =
√
dkbk. Our main task is to calculate the entan-

glement in the M matrix corresponds to Kraus operators ai and b̃k and compare

the entanglement between these two states.

11.3 Results

Numerically it is straight forward to calculate the evolution of entanglement and

coherence in the system S1 (where the initial state of S1 is chosen to be |φ+〉 =

(|00〉 + |11〉)/
√
2) after introducing the ancilla S2 with different initial states |χ〉
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Figure 11.2: Here we are plotting the coherence (real part of 〈σ+〉) for a single
qubit. The blue curve shows the evolution of coherence in the absence of ancilla
whereas the green curve is in the presence of ancilla. One can see that the green
curve is always above the blue one and hence the presence of ancilla arrest the
decay of coherence. Here the initial state of the system qubit is (|0〉+ |1〉)/

√
2 and

ancilla is in ground state (|0〉).

of S2. In Fig. (11.2) and Fig. (11.3) we have shown the effect of ancilla on the

evolution of the coherence 〈σ+〉 and 〈σz〉 of the system S1. In Fig. (11.4) we can see

the entanglement evolution for S1 for different |χ〉. We see that for |χ〉 = |0〉⊗ |ψ〉
where |ψ〉 can be arbitrary single-qubit state, the entanglement last for much

longer time than for other |χ〉’s and for |χ〉 = |1〉 ⊗ |ψ〉 the entanglement decays

fastest. This shows the ‘shielding effect’ of ancilla on S1. This effect is more

prominent when the number of qubits in ancilla are more. In Fig. (11.5) we show

the evolution of entanglement in S1 for two-qubit, four-qubit and six-qubit ancilla.

The improvement in the ESD time for S1 is eminent.

Because of the exchange interactions, the presence of ancilla in the ground

state may result in reducing the effective temperature of the bath. This might be

a reason for the observed shielding effect.
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Figure 11.3: Here we are plotting the coefficient of σz for a single qubit for the
same setup as in Fig. (11.2). Again the improvement due to the presence of ancilla
is obvious from the plot.
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Figure 11.4: The effect of two-qubit ancilla on the evolution of entanglement when
the initial state of the system A1+B1 is maximally entangled state (|00〉+|11〉)/

√
2.

The state of ancilla is |χ〉 = √
p|00〉+√

1− p|11〉. The average number of photons
in the thermal cavity is N = 0.3.
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Figure 11.5: The effect of the increasing number of qubits in ancilla on the evolution
of entanglement when the initial state of the system A1+B1 is maximally entangled
state (|00〉+ |11〉)/

√
2. All the qubits in ancilla are in the ground state |0〉.
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Conclusion

The study of entanglement in quantum systems has assumed great importance

in recent times. With the advent of quantum information theory (QIT), the cre-

ation, analysis and manipulation of quantum systems has now entered the realm of

everyday possibility. One of the primary resources of this powerful theory is entan-

glement – indispensable for essential quantum information tasks such as quantum

teleportation, super-dense coding, communication complexity problems and one-

way computation, among others.

Most, if not all, quantum systems are fragile by nature. This is because they

are “open” systems and can not be shielded from dissipative interactions with the

surrounding environment which creates entanglement between the system and its

surrounding environment. This entanglement with the surrounding environment

causes a loss of the quantum nature of the system – a phenomenon known as

decoherence – and leads to an inevitable loss in the entanglement in the system.

In this thesis, we have studied the evolution of entanglement in open quan-

tum systems by varying the dimensionality of the system as well as the nature

of the dissipative interaction between the bath and the system. Our focus has

been on the time of the onset of Entanglement Sudden Death — a phenomenon

characterized by the complete loss of entanglement in a finite amount of time.

For finite dimensional systems connected to a local thermal bath, we have found

that ESD does not take place for any pure state at zero temperature, but does

so for all states at non-zero temperatures. Squeezing the bath delays the onset of

ESD for finite non-zero temperatures, but allows ESD to take place even at zero

temperatures. However, best results are obtained by setting the system-bath inter-
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action to be of the quantum non-demolition type, in which case ESD is never seen

at any temperature whatsoever. As regards the evolution of two-mode Gaussian

states of an infinite system of coupled harmonic oscillators, we have looked for the

transition of the system to classicality which ensures that the system has reached

separability. We have found that, when the system interacts with a local thermal

bath at non-zero temperature, every two-mode Gaussian state makes the transi-

tion to classicality within a finite amount of time. This does not always happen at

zero temperatures. For squeezed thermal baths, we have found that classicality is

achieved in finite times even at zero temperatures.

In addition to the study of entanglement dynamics in various settings, we have

also studied and modified existing ways of controlling the loss of entanglement

in open quantum systems, and have also suggested and executed new methods of

doing so. Our analysis of the effectiveness of decoherence control procedures on the

evolution of entanglement has led to counterintuitive and surprising results. We

have found that, while these control procedures are proficient in delaying the loss

of coherence in the system, some of them are counter-productive when it comes

to preservation of entanglement in the system. For the case of a thermal bath of

photonic crystals interacting locally with a two-qubit system, we have found that

the amount of entanglement at the asymptotic limit increases with an increase in

the detuning parameter ∆. Modulation of the system-bath coupling at a frequency

much higher than the correlation time scale of the local thermal bath is another

method of controlling decoherence. We have found that for a two-qubit system in

contact with a local thermal bath, the time to ESD increased with the modulation

frequency of the system-bath coupling. A third control procedure is the technique

of resonance fluorescence, where the atomic transition is driven using an external

coherent single-mode field in resonance with the transition itself, and the only

control parameter is the transition frequency Ω, also called the Rabi frequency.

We have found that, for the same two-qubit system in contact with a local thermal

bath and exposed to such an external field, an increase in Ω decreases decoherence

but at the same time also decreases the time to ESD. Finally, the technique of

dynamical decoupling involves switching the decoupling interactions on and off at

a rate much faster than the one set by the environment. Bang-bang decoupling

is one such technique where fast radio frequency pulses are applied in order to

average out unwanted effects of the environment and thus control decoherence.
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However, as in the previous case, dynamical decoupling also causes a faster loss of

entanglement.

In the final part of the thesis, we have proposed a new method of shielding the

entanglement in the system from dissipative environmental effects. In this scheme,

we install an ancillary system in a fixed initial state and let it interact with the

main system through exchange interactions. The presence of the ancilla modifies

the rate at which the system evolves — mathematically, it changes the form of the

superoperator L which governs the dynamics of the system density operator with

its own time derivative. We have, through numerical computations, shown that

the ancilla, in its ground state, is able to enhance the lifespan of the entanglement

in the system. For the case of a two-qubit system interacting with a local thermal

bath as well as with an n-qubit ancilla, we have further shown that increasing the

size of the ancilla, that is, increasing n improves its performance.

In future work, we hope to find out the exact time to ESD for mixed entangled

states via a generalization of the factorization law of entanglement decay, both

for finite as well as infinite dimensional systems. Following the work of Shabani

and Lidar [150], we plan to study the non-Markovian master equation from the

measurement perspective, putting particular emphasis on understanding the role

of memory in such non-Markovian entanglement dynamics. As to the control of

entanglement, we plan to characterize, in greater detail, the decoherence control

mechanisms currently available according to their effect of ESD. Finally, we would

like to extend our shielding control procedure to non-Markovian dynamics and

compare its effects to Markovian dynamics.
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