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Synopsis

This thesis explores ways in which quantum channels aneledions (of both classical

and quantum types) manifest themselves, and also studiag#nplay between these two
aspects in various physical settings. Quantum channetegept all possible evolutions
of states, including measurements, allowed by quantum améc$, while correlations are

intrinsic (nonlocal) properties of composite systems.

Given a quantum system with Hilbert spakfg, states of this system are operatoithat
satisfyp = p’, p > 0, and Tp = 1. The set of all such operators (density matrices)
constitute the (convex) state spatfHs). Observable® are hermitian operators acting
onHs. Let the spectral resolution @ be O = ¥, 4;P;. WhenO is measured, thg"
outcome corresponding to measurement opefatgprojection) occurs with probability

pj = Tr(p P;). One obtains a more general measurement scheme called R@4itive
operator valued measurement) when the projective measutatement®; are replaced
by positive operatorsl; with 3; IT; = 1L, and the probabilities of outcomes are obtained

in a similar manner p; = Tr(pII;).

If a system is isolated, then its dynamics is governed by tiitary Schrodinger evolution.
A unitary operatoiJ effects the following transformation — p" = U pUT, pandp’ ¢
A(Hs). But if the system is in interaction with its environmentghthe evolutions of the
system of interest resulting from unitary evolutions of tmmposite are more general,
but nevertheless described by linear maps acting on the spaice, directly rather than

throughHs.



Let ® be a linear map that acts on states of the system. An obvimgssary requirement
for @ to be a valid evolution is that it takes states to states. Weagaap that satisfies

this condition as @ositive mapi.e.,

® is positivee O(ps) = ps € A(Hs), i.e., D (A(Hs)) C A(Hs). (1)

It turns out that not all positive maps are physical evohsio For positive maps to be

physical evolutions, there is a further requirement to bé me

Let us consider a composite system in which the system isnaj@okewith an arbitrary
ancilla or reservoiR. The Hilbert space of the composite systentis ® Hg, a tensor
product of the individual subsystem Hilbert spaces. Letersote the state space of this

composite system b (Hs ® Hg).

It is both reasonable and necessary to require that lodaheat® takes states of the joint

system also to states. In other words

(@ ® M)[psd = psre A(Hs ® Hg),

ie., [0® L](A(Hs ® Hr)) C A(Hs ® Hg). 2)

A positive map® that satisfies Eq2), is known as acompletely positivéCP) trace-

preserving (TP) map org@uantum channel

It is known that every CP map can be realised in the following.wairst, the systems
states are elevated to product states on a larger Hilbecesfsgstem+ environment),
with a fixed state of the environmenps — ps ® pr, pr fixed. Then the product states
are evolved by a joint unitary evolution, and finally the eomiment degrees of freedom
are traced out to give the evolved system states. It turnghatithis provides a suitable

framework for the description of open quantum systems.

An intrinsic property of composite systems that is of mucpamance is correlations be-



tween subsystems. One important aspect has been to segitegatassical and quantum
contents of correlations. To this end, various measuresraidods have been proposed.
Entanglement has been the most popular of these corredadwimg to its inherent ad-
vantages in performing quantum computation and commuaitéisks 1] and has been
studied over the last few decades. But there are other cooredahat are motivated from
an information-theoretic or measurement perspectivechvtry to capture this classical-
guantum boundary?]. These include quantum discord, classical correlatioeasare-
ment induced disturbance, quantum deficit, and geometriants of these measures.
Of these, quantum discord and classical correlation haseved enormous attention in

recent years.

Let us now consider a bipartite system with Hilbert spate® Hs, where the two sub-
system Hilbert spaces have been taken to be identical fqulisity. A pure bipartite
state is said to be separable if it can be written as a (tepsoduct of states of the in-
dividual subsystems. Else, the pure state is said to be glsthnWhile, a mixed state
oas € A(Hs ® Hs) is said to separable if it can be written as a convex comioinaif

product states, i.e.,

pas =), pipf®pP. 3
j

A state that cannot be written in this form is called an enlfiechgtate. The set of sep-
arable states form a convex subset of the bipartite statespde qualitative detection
and quantitative estimation of entanglement have provedzketaon-trivial. To this end,
there have been many approaches that include Bell-type atidgs, entanglement wit-
nesses, entropy based measures, distance (geometry)rbaaedres, and criteria based

on positive maps that are not completely positive.

Quantum discord is a ‘beyond-entanglement’ quantum correlation, sincegtbgist sep-
arable states which return a non-zero value of quantumdiséorecent avenue has been

to try and find advantages of these correlations, both inhberetical and experimen-



tal domain, in respect of information precessing tasks. éxample, some interesting
applications of quantum discord in quantum computatioatesinerging, remote state

preparation, and entanglement distillation have beenrtego

We may motivate the definition of quantum discord by first iogkat the classical setting.
Given a probability distributiomp(x, y) in two variables, the mutual informatidix, y) is

defined as

1(x.y) = H(X) = H(Xly), (4)

whereH(:) stands for the Shannon entroplyx) = — >, p(x) Log[p(x)] and H(x]y) is the
conditional entropy. Using Bayes rule we are lead to an etgnv@xpression for mutual

information :

1(x.y) = H(X) + H(y) - H(x.y). (5)

The second expressiob)(for mutual information naturally generalises to the quamt
setting when the bipartite probability distribution is leped by a bipartite stajeag and
the Shannon entropi(-) by the von Neumann entrody(-) of quantum states, and we

have

| (0aB) = S(oa) + S(os) — S(pas). (6)

But the first expressiond] for classical mutual information doe®t possess a straight-
forward generalization to the quantum case. In the quanasa,¢he conditional entropy
is defined with respect to a measurement, where the measurenperformed on one of

the subsystems, say subsystem B. Let us consider a PDWM{H?} WhereHjB >0and



2 H? = 1. Then the conditional entropy post measurement is giyen b
sh=>" piS()), (7)
j
where the probabilities and states post measurement & oy

pj=Tr (H;BpAB),

P = Pyt Tre(IT pas). (8)
Let us denote b/ the minimum ofS* over all measurements or POVM's. Thefdi-
ence between these two classically equivalent expresgomtisnized over all measure-

ments) is called quantum discaf(pag) :

D(pae) = 1 (one) ~ [S(on) — St
= S(pg) — S(pas) + Spin- 9)
The quantityC(oas) = S(pa) — S4., is defined as thelassical correlation Thus, the
mutual information which is supposed to capture the totaletation of a bipartite state
Is broken down into quantum discord, that captures the guanorrelations, and classical

correlationC(pag).

Itis the interplay between correlations of bipartite staed their evolution through quan-
tum channels that is the unifying theme of this thesis. Wdarpsome aspects of this
interplay in the diferent chapters. There are four broad topics that are cowertuls

thesis :

¢ Initial bipartite correlations and induced subsystem dyica : Does initial cor-
relation of the system-bath states provide a generalizatighe folklore product
realization of CP maps?

e A geometric approach to computation of quantum discordviorqubit X-states.
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e Robustness of nonGaussian vs Gaussian entanglement agaisest We demon-
strate simple examples of nonGaussian states whose egragyl survives longer

that Gaussian entanglement under noisy channels

¢ Is nonclassicality breaking the same thing as entanglebreaking? The answer

is shown to be in thefirmative for bosonic Gaussian channels.

In Chapter 1, we provide a basic introduction to the concepts that are insthe thesis. In
addition to setting up the notations, this Chapter helpsrideethe thesis reasonably self-
contained. We describe the properties of bipartite caiicela of interest to us, namely,

classical correlation, quantum discord, and entanglement

We briefly describe the notion of quantum channels. We dstcusome detail the three
well-established representations of CP magjs These are the operator-sum representa-
tion, the unitary representation, and the Choi-Jamiolkeveskmorphism between bipar-

tite states and channels. We indicate how one can go fromepnegentation to another.

We also indicate an operational way to check as to when aiymsitap be can called a
CP map. We list some properties of channels and indicate wibaranel is unital, dual,

extremal, entanglement breaking, bistochastic, and so on.

We then move on to a discussion of states and channels in tii@gous variable setting,
in particular the Gaussian case. Here, we begin by recapitglthe properties of Gaus-
sian states. The phase space picture in terms of quasiplitbdistributions is outlined
and some basic aspects of the symplectic structure is eelcalWe will be mainly con-
cerned with the Wigner distribution and its associated attaristic function. Gaussian
states are completely described in terms of the variancdaeatand means. For these
states, we describe the uncertainty principle, the caabfocm of the variance matrix,
Simon’s criterion for detecting entanglement of two-modmi€sian states, and a descrip-
tion of the more commonly used Gaussian states like the vaaitate, thermal state,

squeezed state, and coherent state.



Then we proceed to a discussion of single-mode Bosonic Gauskiannels. These are
trace-preserving completely positive maps that take irfpatissian states to Gaussian
states at the output. These channels play a fundamentahrobatinuous variable quan-
tum information theory. We discuss their phase space gegurj the CP condition, and

enumeration of their canonical forms.

In the standard classification, Bosonic Gaussian channalpghemselves into five broad
classes. Namely, the attenuator, amplifier, phase comungaingular channels and, fi-
nally, the classical noise channels. We then briefly desdtib operator-sum representa-

tion [4] for all single-mode Gaussian channels.

Of particular importance to us is the analysis of quantumtéd channels. Quantum-
limited channels are channels that saturate the CP condifidnhence do not contain
extra additive classical noise over and above the minimumaaheled by the uncertainty
principle. We emphasise the fact that noisy channels caadierkd as product of a pair

of noiseless or quantum-limited channels. The action irfFthek basis is brought out.

The attenuator channel and the amplifier channel are otpéatiinterest to us, and so we
bring out some of its properties including the semigroupdttire of the amplifier and the
attenuator families of quantum-limited channels. Theyweéssions of these channels can
be easily obtained by composition of a pair of quantum-kahithannels; this is explicitly
shown for all channels and tabulated. In particular, we iobdadiscrete operator-sum
representation for the classical noise channel which magobé&asted with the familiar
one in terms of a continuum of Wey! displacement operatohes€ representations lead
to an interesting application which is pursued in Chapter #is Tntroductory chapter

renders the passage to the main results of the thesis incaudrgechapters smooth.

In Chapter 2 we consider the dynamics of a system that is in interactiah &n environ-

ment, or in other words, the dynamics of an open quantumisyste

Dynamics of open quantum systems is fundamental to the stidgy realistic or prac-



tical application of quantum systems. Hence, there has bheapidly growing interest

in the understanding of various properties related to opsmtym systems like its real-
ization, control, and the role played by the noise in suckip&ive systems, both in the
theoretical and experimental domain. These studies hase toetivated by applications
to quantum computing, laser cooling, quantum reservoiirgaging, managing decoher-

ence, and also to other fields like chemical reactions andygreansfer in molecules.

Here we study the induced dynamics of a system viewed as partasger composite
system, when the system plus environment undergoes aympitatution. Specifically,
we explore the fect of initial system-bath correlations on complete positiof the

reduced dynamics.

Traditional (Folklore) Scheme: In the folklore scheme, initial system stajgsare el-
evated to product states of the composite, féixadfiducial bath statg, through the
assignment maps — ps ® pl9. These uncorrelated system-bath states are evolved under
a joint unitaryUs g(t) to Usg(t) ps ® p{i? Usg(t)" and, finally, the bath degrees of freedom

are traced out to obtain the time-evolved states of the systenterest :

ps — ps(t) = Trg [Uss(t) ps ® pg’ USB(t)T] : (10)

The resulting quantum dynamical process (QQR)— ps(t), parametrized by and

Usg(t), is completely positive by construction.

Currently, however, the issue of system-bath initial catiehs potentially fiecting the

reduced dynamics of the system has been attracting coabidenterest. A specific,
carefully detailed, and precise formulation of the issuaiifal system-bath correlations
possibly influencing the reduced dynamics was presentetbngtago by Shabani and

Lidar (SL) [5].

Shabani-Lidar scheme In sharp contrast to the folklore scheme, there is no assegm

map in the SL scheme. The distinguished bath gtéités replaced by a collectiof® 8 of



(possibly correlated) system-bath initial stabeg(0). The dynamics gets defined through

pse(0) = pse(t) = Use(t) pse(0) Usg(t)’, (11)

for all psg(0) € Q5B With reduced system statpg(0) andps(t) defined through the
imaging or projection maps(0) = Trg pss(0) andps(t) = Trs |Uss(t) pss(0) Uss(t)’|,
this unitary dynamics of the composite induces on the systenQDPps(0) — ps(t).

Whether the SL QDP so described is well-defined and completitive is clearly an
issue answered solely by the nature of the collecS8. It is evident that the folklore
scheme obtains as a special case of the SL scheme. This lgegtefarmulation of QDP
allows SL to transcribe the fundamental issue to this goestiWhat are the necessary
and stificient conditions on the collection of initial states so ttfs induced QDP is

guaranteed to be Cer all joint unitaries?

Motivated by the work of Rodriguez-Rosario et &b)],[SL advance the following resolu-
tion to this issueThe QDP is CP for all joint unitaries if and only if the quantumscbrd
vanishes for all initial system-bath state€)°8, i.e., if and only if the initial system-bath
correlations are purely classicalThe SL theorem has come to be counted among the
more important recent results of quantum information tiieand it is paraded by many
authors as one of the major achievements of quantum disktaanwhile, the very recent
work of Brodutch et al. ], contests the claim of SL and asserts that vanishing quantu

discord is sticient but not necessary condition for complete positivity.

Our entire analysis in Chapter 2 rests on two, almost obvioesessary properties of the
set of initial system-bath stat€¥ B so that the resulting SL QDP would be well defined.
Property 1: No statps(0) can have two (or more) pre-imagesri&.

Property 2: While every system state need not have a pre-iamagally enumerateth
Q58 the set ofps(0)’s having pre-image i®°Bshould be sfiiciently large, such that the

QDP can be extended by linearity to all states of the systemo the full state space of



the system.

Using these two requirements, we prove thath the SL theorem and the assertion of
Brodutch et al. are too strong to be tenabl®Ve labour to point out that rather than
viewing this result as a negative verdict of the SL theoreiis,more constructive to view

our result as demonstrating a kind of robustness of thetioadi scheme.

In Chapter 3 we undertake a comprehensive analysis of the problem of atatipn of
correlations in two-qubit systems, especially the soecifl-states which have come to be
accorded a distinguished status in this regard. Our apbreggloits the very geometric
nature of the problem, and clarifies some issues regardimgpgtation of correlations in
X-states. It may be emphasised that the geometric methodsaese have been the basic
tools of (classical) polarization optics for a very long ¢ijrand involve constructs like

Stokes vectors, Poincaré sphere, and Mueller magijix [

As noted earlier, the expressions for quantum discord aassal correlation are

D(pas) = S(os) — S(pas) + Shins

C(oas) = S(oa) — Shin (12)

It is seen that the only term that requires an optimizatiaimésconditional entropy post
measurement’. . Given a composite statgg, the other entropic quantities are imme-

diately evaluated. Central to the simplicity and comprelvemgss of our analysis is the

recognition that computation &

min

for two-qubit X-states is ane-parameter optimiza-

tion problem much against the impression given by a large section ofitérature.

Our analysis begins by placing in context the use of the Mu&ktokes formalism for

estimatingS/. . Given a two-qubit statgag, it can always be written as

1 3
PAB = Z :E: hﬂab0¥N8(TEa (13)
a,b=0

10



the associated ¥ 4 matrixM being real, o5, o3 are the Pauli matrices and) equals
the unit matrix. Writing a POVM element on the B sidekas= %ZaSaaa, the output
state of A post measurement is obtained as the actidh of the input Stokes vect@"

corresponding to the POVM element. This may be compactlyesged as

S = MS" (14)

and has a form analogous to the input-output relation inrfaifion optics. In view of
this analogy, we may caM the Mueller matrix associated wighng. In generalM need
not correspond to a trace-preserving map, since the condltbutput states need not be
normalized. So they need to be normalised for calculatiegctinditional entropy. The
manifold of these normalized conditional states is an sdlig, a convex subset of the
Poincaré sphere, completely parametrised by the locahuigiinvariant part of theM
matrix and, thereby, the local unitarily invariant partloé bipartite statpag. The bound-
ary of this output ellipsoid corresponds to the images gbadisible rank-one POVM'’s or

light-like S™.

While this geometric picture a two-qubit state being fullpttaed by its Mueller matrix—
or equivalently by this output ellipsoid—applies to evemptqubit state X-states are dis-
tinguished by the fact that the cen@ef the output ellipsoid, the origi® of the Poincaré
sphere and, the image of maximally mixed inp@&™" = (1,0,0,0)" are all collinear and

lie on one and the same principal axis of the ellipsoid.

One realizes that the Mueller matrix of akystate can, by local unitaries, be brought to a
canonical form wherein the only nonvanishindiagonal elements arg,; andmgg, and
thusX-states form, in the canonical form, a five parameter famitipwy 1, My,, Mgz, Mg,
andmys as the canonical parametersog = Tr pag = 1 identically). With this realization
our entire analysis in Chapter 3 is geometric in flavour andertn The principle results

of the Chapter may be summarized as follows :

11



All X-states of vanishing discord are fully enumerated and astad with earlier

results.

Computation of quantum discord &fstates is proved to be an optimization prob-

lem in one real variable.

It is shown that the optimal POVM never requires more thagelglements.

In the manifold ofX-states, the boundary between states requiring three eteme

for optimal POVM and those requiring just two is fully detadl

It may be stressed that our analysis in this Chapter is fromgdiisciples. It is compre-
hensive and geometric in nature. Our approach not only defwes and unifies all known

results in respect of-states, but also brings out entirely new insights.

In Chapter 4 we explore the connection between bipartite entanglenmahtacal action
of noisy channels in the context of continuous variableesyst Quantum entanglementin
continuous variable systems has proved to be a valuablanesm quantum information
processes like teleportation, cloning, dense coding, [guacryptography, and quantum

computation.

These early developments in quantum information techriyalogplving continuous vari-
able (CV) systems largely concentrated on Gaussian stadé€Saunssian operations, mainly
due to their experimental viability within the current agati technology. The symplectic
group of linear canonical transformations is available harady and powerful tool in this
Gaussian scenario, leading to an elegant classificatioprofigsible Gaussian processes

or channels.

However, the fact that states in the nonGaussian sectod offiglr advantage for several
guantum information tasks has resulted more recently irsidenable interest in non-
Gaussian states, both experimental and theoretical. Té®fusonGaussian resources

for teleportation, entanglement distillation, and its useuantum networks have been

12



studied. So there has been interest to explore the esseifittabnces between Gaussian

states and nonGaussian states as resources for perforaantuq information tasks.

Allegra et al. P] have studied the evolution of what they cplloton number entangled

stategPNES),

Wenes= ) | Caln, m), (15)

in a noisyattenuator environment. They conjectured based on nuatewdence that,
for a given energy, Gaussian entanglement is more robustih@Gaussian ones. Earlier

Agarwal et al. 0] had shown that entanglement of the NOON state,

|¢>NOON = %(lna O> + |O’ n>)’ (16)

is more robust than Gaussian entanglement incgih@ntum limitedamplifier environ-
ment. Subsequently, Nha et alL]] showed that nonclassical features, including entan-
glement, of several nonGaussian states survigaantum limitecamplifier environment
much longer than Gaussian entanglement. Since the corgefty9] refers to noisy en-
vironment, while the analysis ofl(, 11] to the noiseless or quantum-limited case, the
conclusions of the latter amount to neither confirmationnefutation of the conjecture
of [9]. In the meantime, Adesso argued?] that the well known extremality 1[3] of

Gaussian states implies ‘proof and rigorous validatiorthef conjecture of 9.

In the work described in Chapter 4 we employ the recently dgesl Kraus representa-
tion of bosonic Gaussian channel {o study analytically the behaviour of nonGaussian
states imoisyattenuator or and amplifier environments. Both NOON statdsaasimple
form of PNES are considered. Our results show conclusivelythe conjecture ofj is

too strong to be maintainable, the ‘proof and rigorous aiah’ of [12] notwithstanding.

An important point that emerges from this study is the faeat tBaussian entanglement

resides entirely ‘in’ the variance matrix or second momeaisl hence disappears when

13



environmental noise raises the variance matrix above tbewa or quantum noise limit.
That our chosen nonGaussian states survive these envinbsisigows that their entan-
glement resides in the higher moments, in turn demonsgratiat their entanglement is
genuine nonGaussian. Indeed, the variance matrix of ourP&lel NOON states for

N = 5 is six times ‘more noisy’ than that of the vacuum state.

We study inChapter 5 an interesting relationship between nonclassicality aridregle-
ment in the context of bosonic Gaussian channels. We metarad resolve the following
issue :which Gaussian channels have the property that their outpguiaranteed to be

classical independent of the input state

We recall that the density operatorrépresenting any state of radiation field asago-

nal’ in the coherent statéasis [ 14], and this happens because of the over-completeness
property of the coherent state basis. An important notia@b #nises from the diagonal
representation is theassicality-nonclassicality divideSince coherent states are the most
elementary of all guantum mechanical states exhibitingsital behaviour, any state that
can be written as a convex sum of these elementary classitabss deemed classical.
Any state which cannot be so written as a convex sum of cohstates is deemed non-

classical.

This classicality-nonclassicality divide leads to thddaling natural definition, inspired
by the notion of entanglement breaking channels : we defim@aarell” to benonclassi-
cality breakingif and only if the output statg., = I'(oin) is classicafor everyinput state
oin, 1.€., if and only if the diagonal ‘weight’ function of eveutput state is a genuine

probability distribution.

We first derive thenonclassicality-basedanonical forms for Gaussian channelsd|[
The available classification by Holevo and collaboratoenanglement-basednd so it
IS not suitable for our purpose, since the notion of nonatatisy breaking has a more
restricted invariance. A nonclassicality breaking Gaarssihannel” preceded by any

Gaussian unitarg{(S) is nonclassicality breaking if and onlyIifitself is nonclassicality
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Canonical form NB EB CP
| (« 1, diag@, b)) @-1Db-1)>«* |ab> (1+«%)? | ab> (1 - «%)?
Il (k o3, diag(@, b)) (@-1Db-1)>«* | ab> (1+«%)? | ab> (1 + «%)?

[l (diag(1,0), Y), a, b>1, a, bbeing ab>1 ab>1
eigenvalues of
(diag(Q 0), diag(@, b)) ab>1 ab>1 ab>1

Table 1: Showing the nonclassicality breaking (NB), entanmgint breaking (EB) and
complete-positivity (CP) conditions for the three canohioams.

breaking. In contradistinction, the nonclassicality weg aspect of” and that of?t/(S) I’

[T followed the Gaussian unitaf/(S)] are not equivalent in general. They are equivalent
if and only if S is in the intersectiors g2n, R) N S Q2n, R) of symplectic phase space
rotations, or passive elements in the quantum optical s€h§e The canonical forms
and the corresponding necessary anffigent conditions for nonclassicality breaking,

entanglement breaking and complete-positivity are ligtethblel.

For all three canonical forms we show that a nonclassichligaking channel is neces-
sarily entanglement breaking. There are channel paramatges wherein the channel
is entanglement breaking but not nonclassicality bregkaug the nonclassicality of the
output state is of a ‘weak’ kind in the following sense : Foegventanglement breaking
channel, there exists a particular value of squeeze-paeame depending only on the
channel parameters and not on the input state, so that thegé@ment breaking channel
followed by unitary squeezing of exterg always results in a nonclassicality breaking
channel. It is in this precise sense that nonclassicaliyaking channels and entangle-

ment breaking channels are essentially one and the same.

Squeezing is not the only form of nonclassicality. Our resat only says that the output
of an entanglement breaking channel could at the most haxegimng-type nonclassical-
ity, it further says that the nonclassicality @ output states can be removed b¥ixed

unitary squeezing transformation.

Finally, in Chapter 6, we briefly summarise the conclusions of each of the chamers

explore possible avenues and prospects for future directbstudy.
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Chapter 1

Introduction

1.1 States, observables, and measurements

1 Let us consider a quantum systémvith Hilbert spaceH, of dimensionda. Pure states

) are equivalence classes of unit vectors (unit rays) in tiilsert space :
W) € Ha, Wiy =1, €ly) ~ ), 0<a <2 (1.1)
A mixed statg, is a statistical ensemble of pure states:
/3A=ij i) il ij=1, pj >0V ] (1.2)
J I

Equivalently, one could view the state of a quantum systér®) @s a linear operator

acting onH, that satisfies the following defining properties :

e Hermiticity : pa = pj.

e Positivity : pp > 0.

1This introduction Chapter has been written by generouslyodeang from Prof. Simon’s lectures
delivered over the course of my doctoral work.
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e Unit trace condition: Tipa] = 1.

For any statg,, there exists a special decomposition calledgpectral decomposition

It states that any mixed state can be written as
r
pa= D Al (1.3)
j=1

where 1; are the eigenvalues (which are all positive) ang are the eigenvectors that

satisfy (ylyw) = dk;. Here,r < da is the rank ofpa. The trace condition implies that

It is clear from the properties of a quantum state that thte stpace or collection of
guantum states of a system form a convex set. We denote teesptEce of syster by
A(H,). The pure states are the extreme points of this convex setaxed states are

nonextremal.

A useful way to capture mixedness is through a quantity knaspurity. Purity is defined

as Tr@3). We see that for pure states
Trpa =Trpa=1, (1.4)
while for mixed states
Trpa < Trpaand so TpA < 1. (1.5)

The least value of purity is assumed by the maximally mixatestand evaluates tgda.
Let us further denote bg(H,) the complex linear space of bounded linear operators on

H,. The state spac(Ha) € B(Hp).
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For illustration we consider the simplest quantum systemulait [1-3]. For a qubit

systemd, = 2 and the states of the system can be represented as
.1
on = E(Jl+ ao), (1.6)

wherea € R%, |a] < 1 ando = (o, oy, 07) are the Pauli matrices. The state space here
is a (solid) sphere of unit radius and is known as the Poingai&och sphere. In this
case, and only in this case, are all boundary points exteen@he can write its spectral

decomposition explicitly as

. 1+a (1 . 1-1a(1 o
pr=— 2(ZI].+ aa)] + > 2(fll aa)] , (1.7)
where the eigenvalues are
1
(1 £al) (1.8)
corresponding to eigenvectors
1 R A
é(fﬂ.i ao), a= %. (1.9)

It is easily seen that the eigenvectoisd are rank-one orthogonal projectors that lie on
the boundary of the Bloch sphere and for a general mixed [glatel. They are unique

except fora = 0 in which case all states are eigenstates.

Returning to the general case, a quantity of interest to useigdn-Neumanmentropy of

a statepp and is given by

S(oa) = —Tr[palog,(0a)]. (1.10)
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From the spectral decomposition®f (L.3), it is easily seen th&(p,) is just theShannon
entropyof the probability distribution comprising the eigenvauef ga, i.e., S(0a) =
— 2 4jl0gy(4)).

Having introduced the notion of states, we next considemtip@rtant concept of observ-

ables of a quantum system.

Observables Observables are physical variables of the system that aasunable. Ob-
servable® of a quantum system A are defined as hermitian operatorsyamtitt{s. Let
the spectral resolution of a nondegenerate obsen@tleO = 3, 1;P;, wherel;’s are
the eigenvalues corresponding to the eigenvedit’q)rsWhené is measured in the state
b, the j" outcome corresponding to measurement operator (one-dioven projection)

P; occurs with probabilityp; = Tr(oa P;).

One obtains a more general measurement scheme called PQé#N\@ operator-valued
measure) when the projective measurement elenfgratie replaced by positive operators

I1; with 33, IT; = 11, and the probabilities of outcomes are obtained in a aimianner :

pj = Tr(pall;).

1.1.1 Composite systems

We next consider the case of composite systems. A compagsterns is one that has
two (bipartite) or more (multipartite) subsystems . For purpose, it sffices to concern

ourselves with bipartite systems.

The Hilbert space of a composite system is given by the temsamtuct of those of the
individual subsystems. In other wordfg = Ha ® Hg. The state space of the composite

system is denoted bi(Hx ® Hp).
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Let {le)}] and{|f;)}T" be respective ONB in Hilbert spaces of subsysténasdB. Then
the collection oimnvectors{le) ® |f;)} forms a basis i{as. A product operatoA® B,

with the matrix elements oA given as

A1 Q2 -+ Qi
dp1 Qg -+ A
A= , (1.12)
| A1 Qn2 ccc Gnn ]
can be written as
allB alzB v alnB
a1 B aB -+ a;yB
AeB=| = L (1.12)
| amB apB -+ anB ]

A generic density operator of the composite system can déwras

Air Ap - Agg
Aoyt Ay - An
pro=| , (1.13)
| A Az o A |

Here each matrix block £;)) is amx m matrix. The density matrix of subsystefnis

obtained through performingartial traceon subsystens, i.e.,

pa = Trg (0ap)

= > (TPl P, (1.14)
j

where| ij>, j=21,2,---,misany ONB inHg. In terms of the matrix entries in EdL.(L3
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we have

Tr A]_]_ Tr A12

Tr A21 Tr A22
A =

Tr Anl Tr An2

If instead the partial trace was performed over subsy#teme have

pB:ZAii-

Tr A]_n
Tr A2n

Tr Ann

(1.15)

(1.16)

Another useful operation is thgartial transposeoperation. Performing the partial trans-

pose on subsyste®on matrixpag in EQ. (1.13), we have

T T
All A12

Ts _
Pag =

A Ay o

ArT11 ArT12 AInA

Al
A

(1.17)

We see that the transpose operation was performed on eatte @ub-blocks of the

composite state. If the transpose operation was performesilibsystenA we have by

Eq. (.13
All A21
Ta Az Az
Pag =
| Aln A2n

A |
Ao

A |

(1.18)

Having introduced the notion of composite systems, we Rridifcuss the connection

36



between POVM'’s, projective measurements and compositerags

POVM : We have seen earlier that a POVM is a measurement scheme wigemea-
surement elements = {I1;} are positive operators rather than projections. We now give
a simple example in which a POVM results from a projective sneament on a larger

system.

Consider a stateag of composite system of the form

PaB = PA ® |Y){Yel. (1.19)

Let P = {P}g} be a collection of (one-dimensional) projection operatmrshe compos-
ite systemAB which is complete:3; P,; = 1L. The probability of the result of thé&

measurement is given by

pi = Tr(oas Phg)
= Tr(0a ® )Yl Ppp)

= Tra(Pa Vsl Pagl¥e)). (1.20)

If we definell* = (yg| Py lis), We can write the above equation in a more suggestive

form

pi = Tra (I pa). (1.21)

The operator$l1#} are all positive and sum to identity oHa. Hence the sell = {I1#}
constitutes a POVM. We thus see how a POVM results from thegiiee measurement

on a larger system.

The following theorem guarantees that there always exstysical mechanism by which

one can realise any given POVM][
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Theorem 1 (Neumark) : One can extend the Hilbert spa@é on which the POVM ele-
mentgIl;} act, in such a way that there exists in the extended spaaeset of orthogonal
projectors{P;} with }’; P; = 1y, and such thall; is the result of projecting Pfrom K to
H.

Having collected some basic ideas relating to bipartiteestave next consider an impor-
tant aspect of these bipartite states that we are intergstedhich is correlation between

the subsystems.

1.2 Correlations

Correlations are intrinsic (nonlocal) properties of comfgsystems. Of the various
guantifiers of correlations, we first consider entangleménbipartite pure stat@y) €

Ha ® Hg is not entangled if and only if it is of the product form
) = Uy ® |v). (1.22)

A useful representation of pure bipartite states is$lisamidt representatiofl]. The

Schmidt form makes use of tlsengular value decompositicheorem 5] :

Theorem 2 An arbitrary complex nx n matrix A of rank k can be written in the form
A = VDW', where Vm and W, are unitary, and D diagonal (with k entries which are
positive and the rest zero). The non-zero diagonal entri€3 are the square roots of the

eigenvalues of AA~ ATA.

Let us write down a general pure state of sys#&Bas

vy =) ciliyel), (1.23)
ij
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wherec;; is a general complex (cfiecient) matrix, wherdli)} and{|j)} are the computa-
tional basis of system& andB respectively. By applying suitable local unitaries, one can
diagonalize any cd&cient matrix (€;;)) to bring it to a diagonal form as guaranteed by

the singular value decomposition. We then have

r
vy = A leHeIff), (1.24)
j=1
where {g;} and {f;} are orthonormal irfH,, Hg respectively, and the cfients{a;}
are positive ang;; /lJ? = 1, as follows from the normalization condition. The numbgr o
terms in the above decomposition is called 8atamidt rankand can utmost take the value
r = min(da, dg). Further, if the Schmidt rankis one, then the pure state is a product state

and therefore separable.rit- 1, then the statl) is entangled.

A closely related and useful conceptparification Purification is an association of a
generic mixed state of a systewith a pure entangled state of a suitable composite
systemAR To this end, lefoa = Zﬁzl/lj i)yl be the spectral decomposition of a
mixed statepa. Let us append this systeAwith a systenR with Hilbert spaceHy of
dimension equal to the ramkof pa. Let {|e)é{}rl be an ONB for systerR. Then starting

from a pure state written as

War= ) VI Wr@le)w (1.25)

J

one obtainga = Trr[|¥){¥|arl, @and)ar is called a purification gb. In other words, it
Is seen that one recoverg By taking partial trace on subsystddof the pure stat@/)r.
The purificationy)ar has a local unitary freedom in systdéin the following sense. Any

other choice of an ONB of system R also returns the samestateder partial tracel].

Having considered separable and entangled pure statesuralnguestion would be to

guantifythe amount of entanglement in a pure state. A simple measutbd quantifi-
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cation of entanglement of bipartite pure statékig given by the entropy of the reduced

state, i.e.

E(l¥)as) = S(0a), (1.26)

wherepp = Tre(l¥)as(¥]) is obtained by partial trace over subsystBmWe see that for
product pure states, the reduced state is a pure state acel hesmzero entanglement. We
note in passing that the entanglement measure inlE2f)(is symmetric with respect to
the two subsystems in the following sense. One could hawentpkrtial trace of system
Ainstead of B in Eq.1.26). SinceS(pa) = S(og), as can be easily seen from the Schmidt

decomposition, the amount of entanglement is the samehiargirocedure.

We now wish to consider mixed states of the bipartite syséddn A separable mixed

state is one which can be written ag [
pas =) PipA® Y, (1.27)
i

i.e., the bipartite density matrix can be written as a cor@rbination of product density

matrices. If such a decomposition does not exist, then #te & said to be entangled.

1.2.1 Entanglement detection

The problem of studying entanglement for mixed stat@lstrns out to be a non-trivial
one. There have been many approaches to detect and quaetiéntanglement9[ 10].
We now briefly review a few of the measures used often in tleeditre, and a few of

these provide an operational method to detect entanglefdéht
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Partial transpose test Given a bipartite stateag Wwhose matrix elements are written as

pas =D pmaliXmi® kX, (1.28)

the partial transpose with respect to subsysBleads to

R = " pimnl (M @ INXK, (1.29)

and that on subsystefgives

Py =D PicmalmXl® kXN, (1.30)

For 2x 2 and 2x 3 systems the lack of positivity of the state resulting froantial trans-
pose provides a necessary anflisient test to detect entanglemeni2[13]. If, say, ﬁTA%

Is positive, then the state is separable; else it is entdnglde test however fails for
higher dimensional systems as positivity under partiaddpmse (PPT) is not a Sicient
condition for separability. In higher dimensions, if a stédils the partial transpose test,
then it is entangled. But PPT is not afscient condition for separability, and there exist

entangled states which are PPT4,[15)].

Positive maps A positive mad is a linear map on the space of bounded linear operators

on a given Hilbert space which takes positive operators $itige operators. i.e.,
I B(Hs) = B(Hs), T(A)=A">0¥A>0. (1.31)

It is immediately seen that the one-sided action of a p@&sithap on a separable state
takes it to a density operator. The necessary afiitgnt condition for a stateag to be
separable is that [& I'](0oag) = O for all positive mapg$™ [13]. It turns out that there is

a very important subset of positive maps known as complgiedtive maps. The notion
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of completely positive maps will be discussed in a later iBactFor detecting entangle-
ment, it is positive maps that are not completely positia tire useful. The transpose
map (used in the partial transpose test) considered abaveagample of a positive map

that is not completely positive.

Entanglement witness A self-adjoint bipartite operatdV which has at least one neg-
ative eigenvalue and has nonnegative expectation on pratlaes is called an entan-
glement witness 13, 16]. A statepag belongs to the set of separable states if it has a

nonnegative mean value for &\, i.e.
Tr(Wpas) =20 V W, (1.32)

whereW is an entanglement witness. For every entangled piatdhere exist an entan-
glement witnes$V such that Tr\WV pag)) < 0. We then say that the entanglemenpgt ~

is witnessed byv.

Reduction criterion : Consider the following map that is known as the reduction map

(LTr@a) — pa) _

Mo = =g (1.33)

The reduction separability criteriorl T, 18] states that a necessary condition for a state to

be separable is that it satisfies

[IL®Is][pas] =0

—  pa® N —pag> 0. (1.34)

The reduction criterion is weaker than the partial tranegest [L7].
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Range criterion: The range criterion 9] states that if a statess is separable then there
exists a set of product vecto{ﬂ&{*) ® |¢i‘3>} such that it spans the rangemifz'and the set
{ly™ ®1(#P)*)} spans that qéAB, where the complex conjugation is done in the same basis

in which the partial transpose operation is performed.

Unextendable product basis An unextendable product basis (UPB)(] is a setS,, of
orthonormal product vectors such that there is no produttbvehat is orthogonal to all

of them. Let us denote b§;: the subspace that is orthogonal to the subspace spanned by
vectors inS,. Therefore, any vector i8; is entangled. By the range criterion, we have
that any mixed state with support on this orthogonal s@cés entangled. Using this

concept of UPB, one can construct entangled states that dre PP

1-Entropic type: There is an entropic way to quantify the statement that raaregled
state gives more information about the total system thantaibe subsystems’. Indeed
it was shown that the entropy of a subsystem can be greateththantropy of the total

system only when the state is entangl@d, 2]. In other words, for a separable state

S(oa) < S(oap), andS(ps) < S(pag). (1.35)

Majorization criterion : A vectorx is said to be majorized by [23], denoted by <y,

both of dimensiomd, if

k
Zy,, for k=1,---,d-1;
j=1

d
=Y (1.36)

=1

LM“- &M*

it being assumed that the components are arranged in dexyeader. The majorization
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criterion states that if a statgg is separable Z4], then

Aag < Aa and)\/_\B < A\g, (137)

where, is the vector of eigenvalues pf,"written in decreasing order. Therefore, we
say that for a separable state the eigenvalues of the hgsidite is majorized by the ones

of either reduced state.

Realignment criterion : The realignment maR is defined as

[R(oa)]iji = Loaslik;ji- (1.38)

The realignment criterion2f] states that if a stateas is separable, thelfR(oag)ll1 < 1.

Bell-type: A Bell-type [26] inequality is one which tries to capture entanglementuyio
probabilities of outcomes of suitably chosen observabkes.example of one such in-

equality in the two-qubit setting is the CHSH inequaliB/]:

ITr(Ochsnias)l < 2,

éCHSH = Al ® (Bl + Bz) + Az ® (Bl - Bz) (139)

Here, A; and A; are respectively,.c anday.o, a;, a, € R3. One similarly constructs
operatorsB;, B, with respect to two directionby, b,. Any statepag that violates this

inequality is an entangled state.
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1.2.2 Entanglement quantification

In the previous Section we summarized a few ways to deteeingfgment. We now
briefly describe some measures of entanglement. We firsh i®glisting reasonable

properties that any entanglement meadtimeould be expected to satisfi2§-31].

E(oas) = O for pag Separable.

E is invariant under local unitary transformations:

E(Ua® UgpasUjL ® UL) = E(pag). (1.40)

E is non-increasing under local operations and classicahwanications (LOCC):

E(r(ﬁ/_\B)) < E(ﬁAB), forT' e LOCC. (141)

E returns the value of von-Neumann entropy of the reducedstahen evaluated

on pure bipartite states, i.e.,

E(was)) = S(Tra(ly)asyl)). (1.42)

E is subadditive over a general product of bipartite entathgtates, i.e.,

E(0as® pa'p’) < E(0as) + E(0a's)- (1.43)

Normalization E(omax) = L0g,d for a maximally entangled statg,ax.

There are in addition some technical requirements thatlsoecansidered :

e E is a convex function on the state space.
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e E is continuous on the state spa&@?]|

It is known that the measures to be considered below do nassadly satisfy all the

above mentioned properties, but are nevertheless useddiagen the context.

Entanglement of formation: The expression for entanglement of formation is given

by [8]
Er(Pae) = min > pj S(Tro(y)aew'D). (1.44)
g J

wherepas = 3 Pj ) yl| is a pure state ensemble, and the optimization is over all

possible convex pure state decompositions of the origiipalrbte mixed stat@ .

This optimization has been solved analytically for very fewamples. These include
two-qubit states 33, 34], symmetric Gaussian state85, general Gaussian state36],
Gaussian entanglement of formatio87], werner states and O-O state3g], isotropic
states B9], some highly symmetric state<l(]], flower states 41], examples in 16< 16
systems 42]; special classes of states using the Koashi-Winter palaitn two-qubit
states 43] and tripartite Gaussian stated4]; special examples using the Matsumoto-

Shimono-Winter relation45].

Entanglement cost The entanglement costi§-48] is defined as the asymptotic or reg-

ularized version of entanglement of formatiofd]. In other words,

E QN
%. (1.45)

Ec(pas) = MQO

The entanglement cost has been evaluated fer33anti-symmetric states5(], lower
bounds for d-dimensional anti-symmetric states were nbthin [1], certain antisym-

metric states with a non-identical bipartite separatisg],[examples of highly symmetric
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states 40], and flower states4[1].

Distillable entanglement. The distillable entanglementc3-56] is a measure of how
much entanglement can be extracted from an entangleggataf€7,58] in an asymptotic

setting, i.e.,
Eo(Pap) = sup{r  lim (irgflll“(ﬁ@‘) _ cbgmnl) - o}, (1.46)

wherel is an LOCC operation, and;, stands for ¢*)3*, ®; being a Bell state. Here,
IAll, stands fory; 1;, whereq;’s are the singular values &. Further, it is known that
Ep(0ar) < Er(0ag) < Ec(oap), i.€., distillable entanglement is a lower bound for entan

glement of formation 0.

Relative entropy of entanglement The relative entropy §9-61] is just the ‘distance’

of a given state g to the closest separable state, i.e.
Er(pag) = ('Qfg S(oasllc), (1.47)
whereo is an element of the set of separable st&tesd
S(alb) = Tr[a(Loga — Logb)], (1.48)

is known as the relative entropy between states

Squashed entanglement The expression for squashed entanglementgfis given

by [62]
. 1
Esd(Pag) = }»?JE S (AL BE), (1.49)
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wherel (A : BIE) = Sae + Sge — SE — Sage, Sx denotes the entropy of the state of system
X and the infimum is taken over all density matrigase such thapag = Tre(dase). Esq
enjoys many interesting properties like additivity ovarder products and superadditiv-
ity in general.Egq is a lower bound of entanglement of formation and an uppentaun

distillable entanglement6p).

Logarithmic negativity : Logarithmic negativity is a straight-forward computablea-
sure of entanglemen6§] often used in the literature. It is defined as the logarittirthe
sum of moduli of the eigenvalues of the partial transpose gif/an bipartite state. The

expression for logarithmic negativity is given by

En(pas) = Log, |IoAgIl | - (1.50)

1.2.3 Quantum discord, classical correlation and mutual information

We now move on to a ffierent set of correlations that are motivated more directynf

a measurement perspective and capturefteréint sort of classical-quantum boundary
as opposed to the separable-entangled boundary. Amorg itiessurement-based cor-
relations, the ones of primary interest to us are three jlaséated quantities namely

classical correlation, quantum discord and mutual infdioma

We may motivate the definition of quantum discord by first iogkat the classical setting
[64]. Given a probability distributiorp(x,y) in two variables, the mutual information

[(x,y) is defined as

1(x.y) = H(X) - H(Xly), (1.51)
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whereH(-) stands for the Shannon entropy

H() = - > p(¥) Log[p(x)] (1.52)

X

and H(xy) is the conditional entropy. Using Bayes rule we are lead t@gunvalent

expression for mutual information :

[(X,y) = H(X) + H(Y) = H(X, y). (1.53)

This second expression ifh.63) for mutual information naturally generalises to the quan-
tum setting when the bipartite probability distributiorréplaced by a bipartite statag
and the Shannon entropy(-) by the von Neumann entro(-) of quantum states, and

we have

| (0aB) = S(0a) + S(oB) — S(PaB)- (1.54)

But the first expressioril(51) for classical mutual information doestpossess a straight-
forward generalization to the quantum case. In the quanasa,¢he conditional entropy
is defined with respect to a measurement, where the measutrenperformed on one of
the subsystems, say subsystem B. Let us consider a PID¥/M {HJ.B} whereHjB >0and

i HJ.B = 1. Then the (average) conditional entropy post measuregiven by
%= piSE. (1.55)
j
where the probabilities and states post measurement ae w

pj = Tras (I} fas).

A7 = Py Tra(IT} fag). (1.56)
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Let us denote by’ the minimum ofS” over all measurements or POVM’s, i.e.,

Shin = Min > i SEY): (1.57)
J

The diference between these two classically equivalent expressgaptimized over all

measurements) is called quantum disc®(@ag) and is given by the expression :

D(Bas) = 1(Bag) — [S(Ba) — S|

= S(s) — S(PaB) + Smin (1.58)

The quantity in the square brackets above is defined as thsicdh correlation and is

denoted by
C(oas) = S(0a) — Sé\]in- (1.59)

It is useful to keep in mind an alternate expression for mutfarmation which is given

by
| (0aB) = S(Paslloa ® PB), (1.60)

whereS(-||-) is the relative entropy. We see that the mutual informaisotefined as the
relative entropy between the given bipartite state and tées6r) product of its reduc-
tions. Thus, the mutual information which is supposed tdwapthe total correlation of
a bipartite state is broken down into quantum discO(@ag), that captures the quantum

correlations, and classical correlatiGfpoag) :

| (0aB) = D(oaB) + C(Par) (1.61)
There are many properties that are satisfied by quantumrdiscal classical correlations
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and we list some of them belové) :

Quantum discord and classical correlation are dependehemubsystem on which
the measurement is performed. Hence, they are not symnoetlier exchange of

the subsystems in general.
Both classical correlation and quantum discord are nontivegguantities.

D(oas), C(oas), andl(oag) are invariant under local unitary transformations. This

turns out to be useful for the computation of these quastitie
C(oag) = 0 only for a product state.

C(pas) = Er(oag) for any pure bipartite stajeag = [¥)y|.

D(oag) = Er(0ag) for any pure bipartite stateag = [¥){(¢|. In other words, both
classical correlation and quantum discord reduce to thengigment on pure bi-

partite states.

A state has vanishing quantum discord when
D(oas) =0 or 1(oas) = C(0as)- (1.62)
Further, any one-way zero discord state can be written as
pas = Z piliXi © B, (1.63)

where{p;}'s form a probability distribution andli)} is an orthonormal basis in the
subsystem where the measurement was performed. In othdsywaone-way zero
discord state is invariant under some von-Neumann measumteon the subsystem.

Such states are also known as classical-quantum states.
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As a simple example, we compute all the three correlationa fao-qubit Bell-state
) = (100 +111))/ V2. (1.64)

For this pure state we hav@y)) = 2Log,2 = 2 bits. WhileC(l¢)) = D(Jy)) = E(ly)) = 1
bit, illustrating |l (|)) = C(l¢)) + D([¥)).

1.3 Positive maps and completely positive maps

Having briefly considered correlations, we now turn to arotispect of central impor-
tance to this thesis which is channels. We wish to know wheaa#ithe allowed physical
evolutions of a given quantum system. If a system is isoldtezh its dynamics is gov-
erned by the unitary Schrédinger evolution. A unitary etioluU effects the following

transformation
pa — pa=UpaUT, paandg, € A(Hp). (1.65)

But if the system is in interaction with its environment, ttiea evolutions of the system
of interest resulting from unitary evolutions of the comip@sire more general, but nev-
ertheless described by linear maps acting on the state sy@ég) directly rather than

through its action orH,.

Let® be a linear map that acts on states of the system@i.e A(Ha) — A(Hp). Writing
this transformation in terms of the matrix elements, we havepping the system label
A:

p—p 1 Dijwepu = pij- (1.66)

An obvious necessary requirement fbrto be a valid evolution is that it takes states to
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states. So we require that the actiordopreserve hermiticity, trace and positivity of the

states. For the hermiticity of the output states we have that

pi,j = (pj,i)*a

8., Dijx = Ojjy,. (1.67)
The trace preserving condition manifests as
Z i = Oke- (1.68)
i
Finally, the positivity condition can be written as
VipiVp >0 Y|V (1.69)
This property can be checked by assuming that|u){u|, a pure state as input. We have

Vi @ijike pie Vi = 0, for every|u),
l.e., Vi Ojj.¢ U, v > 0, for every|uy, [v). (1.70)
It is instructive to write the matrix elements @fin terms of a new matrix we denote,
Dijir = Dicjr- (1.71)
The hermiticity preserving condition in Ed..67) now reads

Digji = Do (1.72)

In other words, for the mag to be hermiticity preserving, we have thato be a hermi-
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tian matrix :

O =0 (1.73)
The trace condition in Eq1(68 reads
Z Diir = Sk (1.74)
Finally, the positivity condition of Eq1(70 is then
Vi Djej UUs Vj > 0,
= (Dly) = 0, ¥ [y) = |u) ® V). (1.75)

We note that the positivity condition states tdais positive over alproductvectors.

To summarize, we call a map that satisfies all the above dondias gositive mapi.e.,

® is positive & O(ps) = ps € A(Hs),

i.e., @ (A(Hs)) € A(Hs). (1.76)

It turns out that not all positive maps are physical evohsio For positive maps to be

physical evolutions, there is a further requirement to be me

Let us consider a composite system which consists of thenatigystem appended with
an arbitrary ancilla or reservdit. The Hilbert space of the composite systeritis® Hkg,
a tensor product of the individual subsystem Hilbert spacesus denote the state space

of this composite system by(Hs ® Hg).

To motivate the dierence between positive and completely positive maps, wegnee

an example of a map that is positive but nevertheless namgosnder local action, the
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transpose map. The density operator for the Bell-g¢gtein Eq. (1.64) is

1
W =5 (L.77)

O O P
o O O O
o O O O
= O O P

If we now apply the transpose map locally on the B system, hy{E#7), we get

1
Iy )yt = 5 (1.78)

o » O O
O O O

o o o Bk
o O +» O

We see that the above operator has negative eigenvaluesefdiieg the local action of
the transpose map does not give a positive operator of tgerlaystem, even though

transpose map by itself is a positive map.

Itis both reasonable and necessary to require that lodahaat® takes states of the joint

system also to states fdrto be a physical evolution. In other words

(@ ® M)[osd = psre A(Hs ® Hg),

i.e., [@® N](A(Hs ® HR)) c A(Hs @ Hg). (1.79)

A positive map® that satisfies Eq1(79), is known as aompletely positivéCP) trace-

preserving (TP) map org@uantum channel

An important class of positive maps from entanglement ptsge is the so callede-

composablenaps [L3]. A positive map®d is said to be decomposable if

D=0, +DyoT, (1.80)
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where®; and®, are both completely positive maps amds the transpose map. One
application of the decomposability notion is that positiwvaps that are decomposable are
‘weaker’ than the transpose map in the detection of entamghe. In other words, one
would like to look for maps that are not decomposable to deietangled states which

are PPT 6.

We have seen above that a completely positive map is positider local action on
the system, appended with a systé&wf any dimension. It turns out that there is an

operational criterion that captures this aspect.

Consider a composite system whose Hilbert space is givefdy Hs, whereHs is the

system Hilbert space. We denote the maximally entangled stahe composite system

by :

1 &
[ )max = —= [iT). 1.81
Vmax = 2 Z (1.81)
Let us denotd |y){¥|max By &, which is explicitly written down as

A

q

DI 1] (1.82)

d
=1

i,

We then have the following theorem regarding completelytpesmaps p7]:
Theorem 3 (Choi) A positive mapb is completely positive if and only[id ® 1L](5) > O.

The matrixDe = [® ® 1L](5) is known as the dynamical matri6§]. We now discuss the

properties and representation of CP maps in some detail iiofloe/ing Section.
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1.4 Representations of CP maps

There are three well-known representations of completesitpe maps. These are the
unitary (Stinespring) dilationg9], the operator sum representation (OSB3, [70], and
the Choi-Jamiolkowski isomohpishm (CJB7, 71].

1.4.1 Unitary representation

It is known that every CP map can be realised in the following.waet us consider a
composite system constructed from the system plus an emagntR with Hilbert space
Hg. First, the systems states are elevated to product statdsedarger Hilbert space

(systemt+ environment), with a fixed state of the environment :

pPs = Pps @ Wr(Yl, lyr) fixed (1.83)

Then the product states are evolved by a joint unitary evolllis r:

ps ® [W)r(W] — Usr(Ps ® )r(Wl) Ul (1.84)

Finally, the environment degrees of freedom are traced mgive the evolved system

states:
O(ps) = ps = Trr |Usr(Bs @ W)r(Wl) ULy - (1.85)

We see that the map : ps — pg is completely specified by the tripletk, Usr [¢/)r).
A schematic diagram for the unitary representation is shioviig. 1.1 It is immediately
clear that this representation is not unique as can be seantfre following example.

Performing a unitary transformation on syst&mand appropriately changing the fixed
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Ps

<I)(Ps)

[0) 0] — ———— Tr

Figure 1.1: Showing the unitary realization of any quantumarmel. The initial state

is appended with a fixed environment state den@@g@| and the composite is evolved
through a joint unitaryUsg Then the environment degrees are ignored to obtain the
evolved system state.

pure state of the environment, we obtain the same CPdnap other words

Usr— Uslls ® Ug), [¥r) — Ullwr), (1.86)

will result in the same map. The mdpis trace-preserving by construction. The unitary

representation can also be written in the following form :

D(ps) = Trr(Vsrps Ve s (1.87)

whereVsgr = Usgy)r is an isometry fromHs — Hs ® Hg. We recall that an isometry
V : Hy — Ha® Hg is a linear operator such thefV = 1, which is satisfied bysr
defined in Eq.1.87).
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1.4.2 Operator sum representation

An alternative and equivalent representation of a quantuamel is known as the oper-

ator sum representation (OSR). Every charimehln be expressed as

O(Hs) = > Acps A, (1.88)
k

where the operatord, are called Kraus operators. The trace-preserving condiéads

Z AAC=1 (1.89)

k

Let us now consider a new set of Kraus operators giveAby VijA;. Let us impose the

trace-preserving condition

~

ZA; k =1,

k

e, D) A ViVigA =1 (1.90)
K]

In other words, we require

ZV:inJ = dijs
k

=>Viv=1 (1.91)

l.e.,V is required to be an isometry by the trace preserving canditi Eq. (L.89.

Let us denote by the channel corresponding to the new set of Kraus opergigysThe
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operator sum representation is then given by
D(ps) = ) Aps Al
k
= Z Z ViiAj ps A V;;
K i
= > > ViV Ay ps A
ij kK
= Z GijA ps A
i
= ZA] ps AL (1.92)
j
We see tha® = @, i.e., there is a isometry freedom in the definition of therape sum
representation. In other words, if two sets of Kraus opesadoe related by an isometry,

then the corresponding channdis @ defined through OSR, will represent one and the

same map.

1.4.3 Choi-Jamiolkowski representation

The third representation is the Choi-Jamiolkowski stateesponding to a given CP map
®. Consider the composite systeWB whose Hilbert space is given (s @ Hs. We
will make use of the maximally entangled pure state given ¢n(E81). The Choi-

Jamiolkowski state is obtained from the one-sided actich®CP mapb. We have
o
Ip=(0® Il)a. (1.93)

The statd’q, associated witld gives a complete description of the CP map.

® is trace-preserving only if iI's) = 1l/d. We note that the dynamical matriX, is
related to the Choi-Jamiolkowski state bip;, = dT'y. The CJ-representation turns out

to be useful in obtaining the operator sum representatiah, @fs will be detailed in the
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next Section.

1.4.4 Connecting the three representations

We will now briefly describe how the three representatiomsiaterconnected, and how

one can go from one representation to the another.

Unitary — OSR:
Let& = {|e§>} be an orthonormal basis for systdn We first begin with the unitary

representation and perform the trace in b&sigVe have

®(ps) = Tre [Usr (ps ® )r(l) ULy,
= > (el [Usr (bs @ lw)riyrl) UL ek
j

= > (€WlUsavIR) fs (RWIUE Jek)) (1.94)
i
Let us now define operatokk : Hs — Hs where

A = (UsHpR). (1.95)

Then the expression fa@b(os) in Eq. (L.94) reduces to

O(ps) = > Acps A (1.96)
]
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which is the operator sum representation. To check the traiedition we evaluate

D AA = > WrlUS del)(ehlUs Ayr)
j ]

= (yrlULq [Z |eg><eg|] Usrlyw)
j

= (WrlUS UsHyr)
= (Yrllls @ UrlYr)

= 1Ls, (1.97)

as expected. Had we instead chosen some other completetdasigluate the partial
trace in the unitary representation, we would have obtaarexther operator sum repre-
sentation for the same map connected to the original one by an isometry as seen earlier

in Eq. (1.92.

OSR — Unitary :
We will describe how to obtain the unitary representati@mtstg from the operator sum

representation. Let us begin with

O(ps) = > Aps A (1.98)
k=1

wherer denotes the number of Kraus operators in the operators sumesentation. Let
us consider a composite system with Hilbert spages Hs, with systemR of dimension

r. Let us arrange the operatofg in a suggestive form to obtain a bipartite operator
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V . Hs - Hr ® Hs defined as

<
I
(]
®
P

=7l (1.99)

and{lk)}] is an ONB for systeni. It is immediate tha¥ is an isometry as can be seen

from the fact that
r
o, s
ViV = Zk<nk> AlA
I8
= Z AJTAk(Sjk
j
= 1. (1.100)

We note thaV is adr x d matrix. We already see that the operator sum representzion

be written as

D(ps) = TrrV ps V'
= TrR[Z |k>®Ak] Ps (Zm ®A}J
k i

= > Tra(k)(jl) ® Acps A
ik

=Y A A (1.101)

The isometryv which isdr x d matrix can be appropriately completed to a unitadry dr

matrix. For convenience, we can make the chaiegil)r = V, where|l)r is the first

63



vector of the computational basis in syst&nThen one recovers operatdras given in

Eq. @.99. In this way, we obtain the unitary representation of the Gip.m

Cl— O:
The action of® on a stateps can be written down from the dynamical matk associ-

ated with®. We have
D(p) = Trr (Do o). (1.102)
This expression can be verified in a straight-forward manner

TR (Do [L@p"]) = > [© @ Te]Trr ()] @ )]l A7)

i

= > (@i ¢iip™n).
i]

= > (@lixillpy)
ij
= ®(p). (1.103)
CJ - OSR:
Here we outline a simple procedure to obtain the operator riggpresentation from the
CJ state or dynamical matrix. Let us first write down a decomntiposof the dynamical

matrix Dy, into pure states, the spectral resolution being a speadehvith orthonormal

vectors:

Do = ) )l (1.104)
i
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Note that the vector§y )} are not normalized. Let us write down the vectiis)} as
Wiy = ) chalm @1n), (1.105)
mn

Wherecﬂ'nn is the codficient matrix for every vectojy;). To each of these vectors we

associate an operatt using the Jamiolkowski isomorphisn7] which is defined as

Ki'=" Ghalmynl. (1.106)

In other words, we flip the second ket of the vector to a bra t@iokthe associated
operator. We see that the isomorphism associates a Vggtar Ha ® Ha to a linear

operatoV : B(Hp) — B(Hp).

Let @ be the map whose Kraus operators areKis. Consider the one-sided action of

the CP mapb :
Dg = [0 @ 1](E) = ) [®e AiXjl® i)l
ij
= > D KA GHKY @ )]
ij k
DTS eyl (k) @l
ij k m
Z (Z Clr(nilmi>) [Z(Cﬁj)*m“]
k nj
k

mi

o<yl = Dy, (1.107)

proving the assertion. By EdL(107, the association from the vector to the operator is

made transparent by the following identity :

D [Kee 2] (ixilelixi) [(KY' e 1] = i, (1.108)

i]
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Unitary

Dilation el
L))
Isomorphism
. .
OSR CJstate

Figure 1.2: Showing a schematic diagram for the various wayghich the three repre-
sentations of CPTP maps, namely, the unitary representatieroperator sum represen-
tation and the Choi-Jamiolkowski representation are relate

A schematic diagram with the connections between the vamepresentations is shown
in Fig.1.2. A few remarks are in order with respect to obtaining the afmrsum repre-
sentation from the CJ state. Note that we first began with themtycal matrix for which
the trace is not unity, and in fact Ti§) = da. This facilitated the obtaining of the Kraus
operators directly. That the resulting CP map is trace-pvesgis a consequence of the

fact that T = 1/d, i.e., TnD, = 1.

We see that the rank of the CJ stBfeor dynamical matriXDg corresponding to a channel
® gives the minimum number of Kraus operators in the operator iIepresentation. We
will call the operator sum representation of a chaimmielimalwhen the number of Kraus
operators is the minimum number possible. Let us denoteattieafl', asr. So we have

that

r<d’ (1.109)
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In other words, the maximum number of Kraus operators in timeémal representation is
d2. One way to obtain this minimal representation is to condide spectral decomposi-
tion of thel's. We have seen earlier that any isometry on the set of operalso gives
rise to equivalent operator sum representations. Theggrecesely the various rank-one
decompositions of . Finally, we see that the unitary representation requireareilla
systenR of dimensiorr < d? to realize any channel acting on a system with Hilbert space

dimensiond.

1.4.5 Properties of CP maps

We now provide a useful guide to the various properties of CRIi@Bs in a suitable rep-

resentation.

Dual : Given a channeb with Kraus operatorgA,}, thedual @’ is defined as the CP map

that has an operator sum representation with Kraus opefaioe Al}, le.,
O’ (ps) = D Acps A (1.110)
k
Since® is trace-preserving, it implies that
D AA= Y AA =1L (1.111)
k k
Unital : A unital CP map is one that takes the identity operator tdfjtse.,
O(1L) = 1. (1.112)

From the operator sum representatioofve have the following condition on the Kraus
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operators:

Z AA =1 (1.113)

k

Therefore, the dual of a quantum channel is a unital CP mapresecseen by Eq1(110.
An alternative way to see this fact is by considering the Claoiiolkoski statd’s,. We

have that a CP mag is unital if and only if

1
=, Trg(Dy) =1L (1.114)

Trg(IT'p) = an

Bistochastic: A channel® that is also unital is called a bistochastic map. So the condi

tions in terms of the Kraus operators are given by:
D AA=TL
k
and > AA =1 (1.115)
k
Alternately, a channeb is bistochastic if and only if

Tra(To) = ]al and Tg () = ]al (1.116)

Random unitary : A random unitary channel7p] is a channel which is a convex combi-
nation of unitary channels. In other words, the operator seepnesentation of a random

unitary channel can be given in the form:

O(ps) = Z P« Ui os Uy (1.117)
K

By definition, a random unitary channel is bistochastic. Bu&wvery bistochastic channel
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is random unitary. Examples of channels which are bistd@hbst not random unitary
were provided in the finite-dimensional setting in3F75] and for continuous variable

systems in T6).

Extremal : The set of quantum channels acting on a given Hilbert spartesf a convex

set, i.e.,
O = p1 @1 + (1 - py) Do, (1.118)

is also a CPTP map wheb,, ®, are channels. An extremal channel is one that cannot
be written as a convex combination of other quantum chanetsmple example of an

extremal map is a unitary channel, i.e.,
D(ps) =UpsUT. (1.119)

By definition, a random unitary channel is not extremal. A teeoby Choi p7] gives a

way to check if a channel is extremal or not.

Theorem 4 (Choi) A CPTP mapd with minimal operator sum representatidf{os) =

> AcPs Al is extremal if and only if the operatofsiy; = AlA;} are linearly independent.

If the number of Kraus operatorsiisthen the number of operatofly;} is r2. Since we
require linear independence fl;} for an extremal channel, we havé < d?. In other
words, the operator sum representation of an extremal eéhaan have utmost Kraus

operators in the minimal representation.

Entanglement-breaking: A channel® : A(Hs) — A(Hs) is said to be entanglement-
breaking [[7] if its one-sided action takes every bipartite stagg € A(Hs ® Hg) to a

separable state for an arbitrary systBmMuch like the CP condition, there is an opera-
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tional way to check whether a channklis entanglement-breaking or not. We have the

following theorem 7] :
Theorem 5 (Horodecki-Shor-Ruskai) A channel is entanglement-breakir i
1 N
Iy = a[(D ® 1] (o). (1.120)

Is separable. Further, every entanglement-breaking ceihas an operator sum repre-

sentation in which every Kraus operator is rank-one.

That there exists an operator sum representation havirigaa@ elements for every
entanglement-breaking channel is a consequence of thehi@icevery separable state

has a decomposition in terms of products of projectors.

Having assembled the basic notions of correlations and@&aof interest to us, we next

consider some preliminaries regarding continuous vagiaptems.

1.5 Single mode of radiation

Let us consider as our quantum system a single-mode of aimadfeeld (a harmonic os-
cillator) [78]. The Hilbert space is the space of all (complex) squareymaigle functions

Y over one real variable, the configuration space, and is ddrimtL?(R) :
W e LYR) «— fdxldz(x)lz < 0. (1.121)

The creation and annihilation operators, denoted,0§ of the quantum system satisfy

the standard bosonic commutation relation :

[ &7 = 1. (1.122)
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In terms of the hermitian position and momentum variablesse ladder operators have

the expression
a= q—'@, a = a-1p (1.123)
and the equivalent commutation relation reads
[0, p] =1, (1.124)

where we have sét= 1. Let us arrange the operata;sp as a column vector :

O

A

=" (1.125)

o

Then the commutation relations, using Efj1@4, can be compactly written as

[&. &1 =B, (1.126)
where
0 1
B= : (1.127)
-1 0

Consider a linear transformation grand p specified by a X% 2 real matrixS :

(1.128)

e
e
Il
wn
e

Since the new variables also need to satisfy the canonioaidation relations ofl( 129,

we have that

SpBS’ =g (1.129)
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In other words S is an element of the symplectic gro&§y(2, R).

An important aspect to note is that these linear transfaomatare induced by unitary
evolutions generated by Hamiltonians that are quadratibermode operators/§]. In
other words anyd = 2ij hij & éj, ((hy;)) being real symmetric, the corresponding unitary

transformatiorl) = e induces

UTéU = S(h) &, S(h) € SH2 R). (1.130)

Passive transformations

A subset of transformations of particular interest to ustheewhat are known as passive
transformations 18]. Passive transformations are those symplectic transfthoms that
are phase-space rotations as well. We only consider théesingde case for simplicity.
We denote the collection of passive transformations onaingpde systems big(1). We

have
K(1)={S|SeSH2,R)NnSA2,R)}. (1.131)

It turns out thaK (1) = SQ2, R) is isomorphic tdJ(1). All the above properties suitably
generalise to the multi-mode case. Passive transfornsationserve photon number and

play an important role in the definition of squeezing]

1.6 Phase space distributions

The study of phase space distributions can be motivatedtfierpossibility of using these
functions as a ‘weight’ functions in an integral represgataof a given operator79,80].
Before we describe the notion of phase space distributioesnaw briefly discuss an

important class of operators known as the Weyl displaceimgertators.
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For each complex number € C, there is an associated operafdfe), which is defined

as
D(a) = expled’ — a*4a]. (1.132)

The operator$D(a)} are known as the displacement operators. From the definiteon
see thatD(a) is unitary andD’(a) = D(-a) = D(a)™t. The operatord(a) are called

displacement operators for the following reason::

D) aD(@) =a+a

D(e)" a" D(a) = &' + o (1.133)
The composition of two displacement operators with indeabharguments gives::
D)D) = exp| 508~ B)| Dla + ). (1.134)
We finally mention the orthogonality property :
Tr[D(a) D1(B)] = 6P (a - p). (1.135)

It may be ‘visually’ seen from the definitiori (132 that D(«) is simply the ‘quantized’
version of the plane wave exgf* — a*Z] over the classical — p phase-space, with
z = (g +ip)/ V2. It should thus come as no surprise that the colledii®(), @ € C}
satisfy a completeness relation corresponding to the cetempéss of the plane waves
(Fourier integral theorem). Consequently, the displacémperatorsD(«) form a basis

for expansion of generic operators actingdin= £2(R) [79].

The displacement operators can be expressed in varioustwaysrespond to various
ordering schemes. Ordering refers to the order in whichdtddr operators are written

in the polynomial expansion of the displacement operatdiso particular choices of
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ordering are the normal ordering and the anti-normal ongeriThe normal ordering of

the displacement operat@¥(«) is given by the expression

D(a) = exp[-lal?/2] expled] exp[-o*a], (1.136)

and the anti-normal ordering by

D(a) = explal’/2] expl-a*a] expled']. (1.137)

The expression in1(132 corresponds to Weyl or symmetric ordering. The s-ordered

displacement operatos,c [—1, 1], denoted byD(«; s) is defined as

D(a; 9) = exp[slal?/2] D(). (1.138)

So normal ordering correspondsda= 1, anti-normal ordering ts = —1, and the sym-

metric or Weyl ordering corresponds to the case0. Thes-ordered monomig(a’)"am}s

is defined as
© S a(—a*)M
D9 =y, @y, T (1.139)
n,m=0
or equivalently we have
o an+mz)(a; S)
ynam —
(@)aMs = oo —m o), o (1.140)

The s-ordered displacement operators facilitate the definibbthe s-ordered charac-
teristic function. Thes-ordered characteristic function associated with a givensdy

operatorp’is defined as

xs(0, @) = T D(a; 8) ). (1.141)
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From the completeness of the displacement operators, wethavollowing representa-
tion or inverse relation for any operator[79):

R d? R

b f L) D@ 9), (1.142)

Thes-ordered quasiprobability associated with a statedefined as the two-dimensional

Fourier transform of the correspondisgrdered characteristic function. We have

R PR
WS(pa f) = 7 e Xs(paa/)' (1143)

We now briefly detail three frequently used quasiprobaésdifrom among the one-parameter

family of quasiprobabilities, namely, the Wigner, t@eand thep distributions B0Q].

Wigner function :
The Wigner functionWy(p.«) associated with a given stgterésults as the symmetric-
ordered § = 0) quasiprobability :

&2

Wp.0) = Wa(pa) = [ S e xo(p.e). (1.144)

The Wigner function (and indeed every s-ordered quasifnitityg is real and normalized

in accordance with the hermiticity and trace condition oeasity operatop .

W(p, a) = W(p, a)",

2
T Wa) = 1. (1.145)
T

The Wigner representation is particularly useful for eatihg expectation values of op-

erators written in the symmetric ordered form:

d%w

Tr[p {(@")"aM] = f? W(p, ) (a")"a™. (1.146)
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We see that the symmetric-ordered operators are just explacthe c-number equivalents

and the density operator is replaced by the associated Wignetion.

A useful property of the Wigner function is the ease with vihgymplectic transforma-
tions reflect in the Wigner description. We had seen ealtiat tinitary transformations
generated by Hamiltonians quadratic in mode operatord,ttea symplectic transforma-

tion of the mode operators. We have in the Wigner picture :

p—p =U)pU(S)
=il =St
= W(p.&) - W', E) = W(E, ST7¢)
= x(p,8) = x(p.€) = x(,S7%)
—=V-sV =SVS, (1.147)

where in the last line of Eq1(147), V stands for the variance matrix associated with ~
We will consider the notion of variance matrix in the next @t We will repeatedly
appeal to the above transformations in phase space as wie# asrresponding transfor-

mations at the level of the variance matrix in the followirecgons.

Husimi function :

The HusimiQ-function is the anti-normal ordered quasiprobability &defined as

R R d’¢ . . .
Q) = Wapa) = [ TEe 6.0, (1.148)

It can be shown that th@-function can alternately be written a8(j :
Q(p, @) = (epla). (1.149)

We see that th@-function is always pointwise positive irrespective of gtatep and its
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numerical value is bounded from above by 1, i@, @) < 1. FurtherQ is normalised:

d’a
jlz_Q@¢@:1. (1.150)

We see that th@-function is a probability distribution over the complexapke. We men-
tion in passing that though evef-function is a probability distribution, the converse
however is not true. Th®-function facilitates the computation of the ensemble ages
of anti-normally ordered operators analogous to how thenéfigunction was useful for

computing ensemble averages of symmetric-ordered opsrato

Diagonal ‘weight’ function :

The third important quasiprobability we shall be interdsteis the normal-ordered distri-
bution corresponding te = 1. The quasiprobability correspondingde= 1 is called the

Sudarshan-Glauber diagonal weight function denotegd b§1,82]. The diagonal weight
#(p, @) associated with a density matgxs defined as

d?¢

0p.0) = Witpo) = [ SE e 6.0 (1151)

Every density matriyp can be expressed in the ‘diagonal’ form in the (over-conalet

coherent state basis as

d2
ﬁ:fjﬁmwme (1.152)

We note that coherent states form a complete non-orthogenaFrom the trace condition

of p, we have that
2
f e @) =1, (1.153)
/s
Unlike the Q-function and the Wigner function which are well-behavedto& complex
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plane, the diagonal weight function can be highly singulgimally, we note that the
diagonal functionp helps to easily evaluate the ensemble averages of normalred

operators which is of much interest from an experimentadpective 83).

1.7 Gaussian states

We now begin with a brief discussion on the notion of a vaamatrix associated with
a statep”[78,84,85]. Consider the % 2 matrix of operatorg £™. The following iden-
tity associated with this operator matrix is obtained byhgghe commutation and anti-

commutation relations of the mode operators:

2EEM)j = 2&i €
= {él’éj} + [gl’gl]
=&, &) +iBi. (1.154)

Taking the expectation value in the statenve have
2AEE ) = Tr(&.&)p) +1Bi. (1.155)

Let us assume without loss of generality that state is on&fach the means are zero.

We now define the variance matihkof a given state as

Vij = Tr(i&, &) p). (1.156)

The matrixV is real, symmetric and positive definite. These propertfeh® variance
matrix would also hold for a classical probability distritmn. However, for the quantum

case there is an additional condition thatas to satisfy for it to be a valid variance
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matrix. This additional constraint is the uncertainty pipie [78]:

V+ip>0. (1.157)

Itis known that every variance matrix can be diagonalised symplectic transformation
[78,86]. For the single mode case, by choosing a suitable sympl&etnsformatiors,

the variance matrix can be diagonalised, i.e.,

VoVea=SVS

= , (1.158)

wherex is called the symplectic eigenvaluedf In this canonical form, the uncertainty

principle of Eq. (.157 reads

k> 1. (1.159)

We now describe a particularly important class of statesnas Gaussian stategg 85,
87,88]. We assume that the state has zero first moments [this cachiievad by a rigid
phase space translation that feeeted by the action of a suitable (unitary) displacement

operator]. A Gaussian state is one whose Wigner functiorGawassian function :

W(p, a) = exp[—%aT V1a], (1.160)

1
2+VDetV

where the complex number = x + iy can also be viewed as the vectary)". Equiva-
lently, Gaussian states are states whose correspondimgn@tyic-ordered) characteristic

function is a Gaussian function. In other words we have

- 1
X(5.€) = expl-5¢"BVB'E], (1.161)
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whereV is the variance matrix associated with the sjateWe wish to emphasis that
a Gaussian state is completely specified by its first (meard)sacond moments (vari-

ances).

Simple examples of pure Gaussian states include the vactatenas the ground state of
the harmonic oscillatoj0), coherent statee) = D(a)|0), squeezed stat®(r)|0), which
is obtained by the action of the squeeze transformadi@y) on the vacuum state. The

thermal state is an example of a mixed Gaussian state.

From the canonical form of the variance matrix in EQl168, we infer that by applying
a suitable symplectic transformation, the variance matfiany pure Gaussian state can
be brought to the identity matrix, while any mixed Gaussittescan be brought to the

form k1., Wherek > 1 is the symplectic eigenvalue.

1.7.1 Two-mode systems

The Hilbert space of the two-mode systemJ4R) ® £L3(R) = L3(R?) and consists of
vectors that are square integrable over a two-plane. A®isitigle mode case, we arrange

the quadrature operatogg, P1, anddy, p, associated with the modes as a column vector

é‘;: (Ql, ﬁla QZ, ﬁZ)T- (1162)

Then the canonical commutation relations read

[&, &1 =i,
where, Q=8 . (1.163)

The mode operatoa,” &, are defined for each mode in the standard way.

A Gaussian state of a two-mode system (with zero mean) is ledehp described by a
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4 x 4 variance matrix which satisfies the uncertainty relation :

V+iQ>0. (1.164)

Of importance to us is the detection of entanglement of tvaslenGaussian states. It
turns out that there is necessary anflisient criteria for detecting entanglement of two-
mode Gaussian state89. For this we require the use of the transpose mapThe
transpose map transcribes on the Wigner function faithfotb a mirror reflection of the

underlying phase space. In other words, we have :

§— & =AE=(G -P). (1.165)

We now state the following necessary andhisient condition for detecting entanglement

of two-mode Gaussian state89.

Theorem 6 (Simon) A two-mode Gaussian state with variance matrix V is separdble i
and only if the local application of the transpose map by oné anly one of the parties

leads to a valid variance matrix. The state is entangled otise.

The mirror reflection corresponding to partial transpasevith the transpose performed
on the second mode, can be written/as= diag(1 1,1, —1). The separability criterion

can then be written as the additional requirement

V +iQ >0, where Q = AQA, (1.166)

over and above the uncertainty principte 164.

81



1.8 Gaussian channels

Having outlined the basic and fundamental properties olsSian states, we now consider
the notion of Gaussian channels. Before we begin with therigtien of Gaussian chan-
nels, we wish to motivate the notion of Gaussian channels fiee analogous classical

setting.

It is well known in classical probability theory that a Gaassprobability distribution

denoted by

_ ; _% TV—l£
Ps(§) = We (1.167)

remains Gaussian under alffiae transformations of the fordd — A£ + b and con-
volutions with Gaussian distributions. Théiae transformatiorf — A&, induces the

following transformation on the characteristic functias,,
xo(z) = xa(Bx), B= (A" (1.168)

So we see that the translation by the vedioeflects as a linear phase factor in the char-
acteristic function, and the homogeneous transformafioeflects as a corresponding
homogeneous transformati@= (A" on ys(z). There are no restrictions ghandb

for a Gaussian probability to be taken to a Gaussian prababiider such a transforma-

tion.

The analogue of Gaussian probability distributions in quanmechanics are Gaussian
Wigner distributions. 1t is true that a Gaussian Wigner tiortis taken to a Gaussian

probability under all &ine transformations. But to remain a valid Wigner distribatio

additional constraints have to be satisfied in the form of uheertainty principle in

Eq. (1.157 which we detail below.

The action of any Gaussian channel on system A may be redhredgh the action of a

82



Gaussianity preserving unitary on a suitably enlargecesyst

pa— pa=Trg [UAB (oA ® pB) UI\B] - (1.169)

Herepg is a Gaussian state of the ancilla B, digk is a linear canonical transformation
on the enlarged composite system consisting of the systémeoést A and the ancilla B.
That all Gaussian channels can indeed be realized in thisendras been shown by the

work of Holevo and coauthor®0-94].

For arbitrary input state with symmetric-ordered chanastie functionyw(¢; p), we have

resulting from (.169

x"(& p) = x°*(E p) = X(XE: p) eXp[—g 2Y g] : (1.170)

whereX andY are real matrices, and being positive definite. The paiX(Y) are com-
pletely specified by the unitary representatibrig9.

So the action of a Gaussian channel thus manifests simplyiagaa transformation on

the variance matri¥/. Under the action of a Gaussian channel describecby)([90] :

V-V =XTVX+Y. (1.171)

Suppose we are instead given a genexXa¥{] which dfect the transformation ii(171).
ForV' to be a valid variance matrix for arbitrary inpuX, (Y) have to satisfy a constraint

that is a consequence of the uncertainty principle, whictdetail below.

Let us consider the one-sided action of a Gaussian map deddy K, Y) on a two-mode

squeezed vacuum state with squeeze parameidre two-mode squeezed vacuum state

83



is represented in the Fock basis as
yr) = sechr > (tanhr)¥(k, k), (1.172)
k=0

and its variance matrix is given by

Cor 0 Sor 0

0 c 0 -s
Voul(r) = “ . (1.173)

Sr 0 Cor 0

0 - Sor 0 Cor

wherec,, = cosh 2, s, = sinh 2.

The result of this one-sided action by the mapY) is a two-mode mixed Gaussian state

specified by variance matrix

H(XTX)+Y (X0
Vout(r)= Zr( ) r( 3) ’ (1.174)

Sor(073X) Cor (1)

o3 being the standard Pauli matrix. It is clear thgt«(r) should obey the mandatory

uncertainty principle

Voulr) +iQ > 0, (1.175)

for all values of squeezing. In fact, this requirement imteiof the uncertainty principle
is both a necessary andfBaient condition onX, Y) to correspond to a Gaussian channel,

and it may be restated in the forra1] 95]

Y+iQ>iXTQX (1.176)
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1.8.1 Canonical forms for quantum-limited and noisy channels

Given a Gaussian channiélwe can construct, ‘quite cheaply’, an entire family of Gaus-
sian channels by simply preceding and followirigvith unitary (symplectic) Gaussian
channeldJ(S,), U(S,) corresponding respectively to symplectic matriSgsS,. There-
fore in classifying Gaussian channels it idfstient to classify these orbits or double
cosets and, further, we may identify each orbit with the [@est’ looking representative

element of that orbit (the canonical form). Since

USITU(S) © x(O) ~ S XS expl-567 ST Y Sl (1.477)

the task actually reduces to enumeration of the orbitsXpY) under the transformation

(X.Y) = (X.Y) = (S XS, STY S)).

We wish to make one important remark regarding Gaussianngtan The injection of
an arbitrary amount of classical (Gaussian) noise into thte $s obviously a Gaussian
channel jy (&) — x(¢) exp[-alé?/2], a> 0. Itis called the classical noise channel. Now,
given a Gaussian channel we may follow it up with a classicédarchannel to obtain
another Gaussian channel. A Gaussian channel will be sdié tuantum-limitedf it
cannot be realized as another Gaussian channel followeddgsaical noise channel.
Conversely, the most general Gaussian channel is a quairhitee Gaussian channel
followed by a classical noise channel, and it follows thaargfum-limited channels are

the primary objects which need to be classified into orbits.

In other words, for a giveX, the minimalY, sayY,, that saturates the inequality ih (79
represents the threshold Gaussian noise that needs to bd g X¢) to make atone-
ment for the failure oK to be a symplectic matrix, and thus rendering the map comilglet
positive; if X happens to be a symplectic matrix, then the correspondingmal Yy = O.

AndY # 0 wheneveiX is not a symplectic matrix.

In the single-mode case whepg ) are 2<2 matricesS;, S, € S {2, R) can be so chosen
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Quantum-limited X Yo Noisy Channel
Channel K, Yp) Y=Yy+al
D(x; 0) —KO3 1+« x>0 D(k; a)
Ci(x; 0) i (1-«)1 0<«k<1 Ci(x; @)
Ca(x; 0) il K- x>1 Ca(k; @)
A1(0) 0 1 A1(d)
A(0) (L +03)/2 1 A(a)
B,(0) 1 0 B(a)
84(0) 1 0 B1(a)

Table 1.1: Showing the quantum-limited bosonic Gaussiamills. The noisy versions
of these channels are obtained by repladipy Y = Yy + all and soy¥ > Y.

that X" equals a multiple of identity, a multiple ofs;, or (1L+ o3)/2 while Y' equals a
multiple of identity or (1.+ 03)/2. Thus the canonical form of a Gaussian chanf#
is fully determined by the rank and determinant ¥fY), and classification ofjuantum-

limited bosonic Gaussian channg®l, 92] is shown in Tablel..1

By following the above listed quantum-limited channels bgation of classical noise of
magnitudea we get respectivel(x; a), C1(x; @), Ca(k; @), A1(a), Az(a), andB,(a); the
last caseB;(a) is special in that it is obtained fro8,(0) by injection of noise intgust

one quadrature y (&) — x(&) exp[-a&T (1 + o3)é/4].

It is clear in the case dD(k; 0) thatX = —ko3 corresponds to (scaled) phase conjugation
or matrix transposition of the density operator. And theggheonjugation is the most
famous among positive maps which are not CB13,89]; it is the injection of additional
classical noise of magnitude (not less thar) &, represented by,, that mends it into a
CP map. It may be noted that the quantum-limited end of botIBthend 5, families is

the trivial identity channel.

The reason for the special emphasis on quantum-limitedn&iain our enumeration of
the Holevo classification is this: every noisy Gaussian obapexceptB;(a)] can be
realized, as we shall see later, as the composite of a pawmafitgm-limited channels.

This fact will be exploited to study an application in Chapter
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Channel Kraus operators OSR
D(K; 0) | Te(k) = Thool VI+ k) ™ D(VL+ k2" I —n)nl | B2 Te®) () Te(w)'
Ci(x; 0) Bi(k) = Yo V™Cr (V1 —«?) kMm)(m+ ¢] Y20 Be(k) () Be(k)"
Cali;0) | A) = k2 Zino VC (VIZ#2) (c)™im+ (M | T2 Adi) () Adw)’
A4(0) Bi = |0)(K] Yk B () B
A(0) Vg = 10/ V2)(q [daVg () Vq
B,(a) D, = (&)™ exp[-laf*/28] D(a) [ d?aD, (-) D;
B1(a) Z, = (na)™* expl-q?/2a] D(a/ V2) [daz,()Z

Table 1.2: Showing the OSR of the quantum-limited bosoniags@an channels and the
classical noise channels.

1.8.2 Operator sum representation

We now briefly touch upon the operator sum representatiomgfesmode bosonic Gaus-
sian channels 76]. The operator sum representation was obtained by comsgldre

unitary representation of Gaussian channels. The systdinsti@ppended with a fixed
Gaussian environment state (vacuum state for example) thigejoint system is evolved
through a two-mode Gaussian unitary transformation, aradlyithe environment mode
is traced out in a suitable basis (Fock states for exampleptain the resulting Kraus

operators.

The Kraus operators thus constructedif][for all the quantum-limited channels and the
classical noise channels is presented in Talile We see that in this representation, the
beamsplitter, amplifier and phase conjugation channels &aliscrete index Kraus repre-

sentation whereas the classical noise channels and thdaicannels have a continuous

index Kraus representation.

Of particular interest to us is the action of the beamspligted amplifier channels on
the Fock basis. We first consider the quantum-limited beéttespchannel. We wish
to consider the action of the channel on the operator basisisting of the Fock opera-

tors{{m)(n|}. From Tablel.1, we see that the action of the quantum-limited beamsplitter
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channel on a general operatom(n| is given by :

mXnl = > By()Im)niB](x)
=0

min{m,n}
= > ACC (1 - kA k™M= £)(n - . (1.178)
=0

We see that the resulting operator is of finite rank. Furtioeran input Fock stat@)(n|,

the output consists of all Fock state projectors up to theesal

A similar analysis of the action of the quantum-limited aifigt channel on the operator

Im){n| leads to:

Ml = D AKIMINIA] ()
=0

= k2~ (MM Z VMC, ™(C, (L - k2) Im+ €Xn + {). (1.179)
=0

In contrast to the quantum-limited beamsplitter case, wedlsat the output operator is of

infinite rank.

1.8.3 Semigroup property

Itis clear from Tablel.1 (action in phase space) that successive actions of two gmant
limited beamsplitter channels with parameter valug, is a quantum-limited beam-
splitter channel whose parameieequals the produat k, of the individual channel pa-

rameters :

Ci(k1) © xwl(&) = x'w(®) = xw(k1 &) exp[-(1 - &2)I€P/2],
Cilka) & x'wé) = x"wl) = x 'wlka &) exp[-(1- k3)I€*/2]

= xwkik2€) exp[-(1 - Ei3)I¢P/2]. (1.180)
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It is instructive to see how this semigroup property ememéke Kraus representation.
Let{B,(x1)} and{By,(x2)} be the Kraus operators of the two channels. The product of two

Kraus operator8, (1), By, (k2), one from each set, is

By, (k1)By, (k) = i \/€1+[2C€1 ( \/1 B K%)"l ( \/1 - Kg)fz
=0

X ™0 2Cp g (kiko)™ KHMYM + £y + 6. (1.181)

The action of the product channel on the input operger + | is

Z B, (k1) B, (k2)Ir X1 + 81By, (k2) " By, (k1)

0,6

= 3 e () (V) e G

{1,0o,mn
t1 {2
X \/€1+€2C51 (\/1 _ K%) (\/1 — K%) \/n+[l+€2C€1+€2 (Kle)anl
3 MM + €1+ EIPXTE + 61N+ £ + &), (1.182)

Denotingt; + ¢, = ¢, the expression on the RHS of Ef.182 becomes

r 4 0o

(=0 ¢£1=0mn=0

X AEMCENCy Oy mae Orvsnee [MYN. (1.183)

The sum ovet; is the binomial expansion of [(2 k3)k3 + (1 — «3)]* = (1 - k2«3)" and, in
addition, we have the constraints+ ¢ = r andn + £ = r + 6. With this the expression

(1.183 reduces to

r
RHS = Z (1 — KEKE)[ ‘/ng r+6C[ (K1K2)2r—2€+(5|r _ f)(l’ Ny 5| (1184)
=0

Comparing Eqs.)(184 and (L.178 we find that the expression it.(L89 is precisely the

action of a quantum-limited attenuator channel with patemex,. In other words, we
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have that
D Ba(k)Br()IrXr + 1B}, (k:)B], (k1) = ) By(kasa)lr )1 + 61B](kass).  (1.185)

01,60=0 ¢=0

An identical result can be similarly obtained for the bebaviof |r + §){r|, and thus we

have proved the semigroup property

Ci(k1) o Ca(k2) = Ca(kak2). (1.186)

We now analyze the composition of two quantum-limited afrgrlichannels, as in the
beamsplitter channel case. It follows from the very defmitof the amplifier channel
that the composition of two quantum-limited amplifier chalsnwith parameters, and

k7 Is also a quantum-limited amplifier channel with parameterk;x, > 1:
CalKz) © Calka) : xw(é) = xwl(é) = xwlkikz &) exp (i — 1)ié?/2]. (1.187)
That s,
Ca(k2) © Ca(k1) = Ca(kik2) = Ca(k1) © Calko). (1.188)

It will be instructive to examine how this fact emerges frame structure of the Kraus
operators. Let the séb, (1)} be the Kraus operators of the first amplifier and A («2)}

be that of the second. Then the product of a pair of Kraus oe;sone from each set, is

[ £
Al k) = (kaka) 342G D \PeCryay (1= 1)
n=0
l2
X (, [1- K52) (k1ka) WG + €1 + £, (1.189)

Thus, under the successive action of these two amplifierreianhe operatdi)(j + J|
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goes to

D Ak A ()l + 81A () Ary (k1)

01,62

= (k1k2) ™2 Z i i €1+[2C51 (1 — KIz)gl (l - ng)gz (K1K2)_(n+m)K12€2

1,62 n=0 m=0

X \/n”l*[ZCflwz MO 2Cr 1IN + €1+ XN + dlm{m+ €1 + €. (1.190)

Denotingt; + ¢, = ¢, the RHS of the expression in E4.190 reduces to

co { 00
(KlKZ)—2 Z Z Z Z [Cgl (1- KIz)Kl (KIZ(l _ KEZ))([—Q) (KlKZ)—(mm)

¢=0 ¢1=0 n=0 m=0

X AMEC, ™Cy Smjss OnjIN+ XN+ 6 + £]. (2.191)

As in the beamsplitter case, the summation over the idgdexa binomial expansion, and

the expression in EqL(19]) reduces to

(kik2) ™2 Z (1 - k7%652) (kakp)"0H1+0) \[IH(C, 1+0+C, | + €)(j + £ + 6. (1.192)
=0

Comparing Eqs.J(.192 and (L.179, we see that the latter is the Kraus representation for

a single quantum-limited amplifier channel. That is,

Z A, (k1) A, (k)] + 81A (Kk2) Ar, (k1) T = Z A1)l ) + SIA(k1k2) T, (1.193)

1,62 4

A similar behaviour holds farj +6){ j| as well. And this is what we set out to demonstrate.

1.8.4 Noisy channels from quantum-limited ones

Our considerations so far have been in respect of quantaiteti channels. We turn our

attention now to the case of noisy channels. It turns outdbeaty noisy channel, except
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B1(a) which corresponds to injection of classical noise in jusé @uadrature, can be
realised (in a non-unique way) as composition of two quandiamied channels, so that

the Kraus operators are products of those of the constitweritum-limited channels.

We have noted already in the previous subsection that th@asition of two quantum-
limited attenuator (or amplifier) channels is again a quanlimited attenuator (or ampli-
fier) channel. This special semigroup property however do¢®btain under composi-
tion for other quantum-limited channels. In general, cosipan of two quantum-limited
channels results in a channel with additional classicaeoWe will now consider pairs
of quantum-limited channels from Tallel and construct the Kraus operators of the re-

sulting noisy channel.

The compositeC,(kz; 0) o C1(k1;0), k2 > 1, k3 < 1

It is clear from the very definition of these channels throtigkir action on the charac-
teristic function that the compositéy(x,; 0) o C1(x1; 0) is a noisy amplifier, a classical
noise channel, or a noisy attenuator depending on the ncaheglue ofx,k; : it equals
Ci(koky; 2(k5 — 1)) for koky < 1, Bo(2(k3 — 1)) for kiko = 1, andCo(kaki; 2¢5(1 — «3)) for

kok1 > 1, as may be readily readfdrom Tablel.3.

The Kraus operators for the composite is given by théAgfx,)Bn(x1)} with (m, n) run-

ning independently over the range<im, n < co. By computing the product,(«2) Bn(x1),
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XY —

D(k1; 0) Ci(k1;0) C2(k1;0) A(0)
l
Ci(koky; 2K§(1 + K%)),
D(ky; 0) for koky < 1. D(kok1; 2/<§(1 - Kf) D(k2k1; 0) 5’{2(2/(%)
Calkok1; 2(1+ £3)),
for kokqg > 1.
Bo(2(1+ K%)),
for Kkoky = 1.
Ci(kok1; 265(k5 — 1)),
Ci(k2; 0) D(kok1; 0) Ca(k2k1; 0) for koky < 1. A,(0)
Co(kok1; 2(1— K%)),
for kokqy > 1.
B2(2(1- «3))
for K2K1 = 1
Ci(kok1; 2(5 — 1)),
Cz(Kz; 0) D(K2K1; 2(K§ — 1)) for Kok1 < 1. C2(K2K1; 0) ﬂz(Z(K% — 1))
Ca(kok1; 265(1 — K2)),
for Koky > 1.
Bo(2(k3 - 1)).
for koxy = 1.
Fo0) | A3 +2-1) | Ao(y2-K-1) Aslr ~ 1) A2~ 1)

Table 1.3: Showing the compositiofio Y of quantum-limited channelX, Y assumed to
be in their respective canonical forms simultaneou$lye composition results, in several
cases, in noisy channels thereby enabling descriptioniey@aussian channels, includ-

ing the classical noise channBh(a), in terms ofdiscrete set®f linearly independent
Kraus operators.
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we have,

Acss(k2)Belka) = D 010l + )il
j=0

Ac(k2)Bres(ka) = D Ga(0)eil )i +
j=0

91(0)¢j = K5+ (k5 k1)1 /1%9C,, 5 1C,

x(\/l—xf)f (\/1—K£2)€+6, for j>¢,

=0, for j< ¢,

9100)¢j = k5" (k5 ke) 10 /1%9C,,51C,

t t+6
x(,/l—x;z)( 1—/<§) ,forj>¢,

=0, forj<¢. (1.194)

The compositeC;(kz; 0) o Ca(k1;0), k2 <1, k3 > 1

Again the composit€;(k»; 0) o C2(k1; 0) is a noisy amplifier, a classical noise channel, or
a noisy attenuator depending on the numerical valueqfand the details may be read
off from Tablel.3. The Kraus operators for the compoditgx,; 0) o C»(k1; 0) are given

by {Bm(k2)An(k1)}, 0 < m n < co. We have

Brro(k2)Ac(kr) = ) 92611 )(j +
j=0

Br(k2)Arss(kt) = ) Ba(0)eil] + 6,
j=0

. t (+6
G2(6)¢) = Kyt \IFHC, 5 179+(C, KI(M)( I1_ KIZ) p ( 1— Kg) ,
. +6 | l
§2(6)¢; = ;L \F9C s 107C, 1) (w/l _ /qz) K7 ( Ji- Kg) . (1.195)
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The compositeD(k;) o D(k1), k2 > 0, k3 > 0

Similar to the earlier two cases, the compodité,; 0) o D(k1; 0) is a noisy amplifier, a
classical noise channel, or a noisy attenuator dependitiggomumerical value of;«,, as
in the earlier two cases, and the details can be réaflam Tablel.3. It may be noted,

again from Tabldl..3 that this case tends to be more noisy than the earlier twescas

The Kraus operators for this composite are giveq by(«2) Tn(k1)}, 0 < mn < co. The

productsT (k2) Th(x1) have the form
Tews(ka) Telk) = ) Ga(6)ei1 + 8l
j=0

To(a) Tevoli) = ) Ba(6)ei] + 0l

j=0

X [\/(1 + k)1 +k5° J_j (\/1 + ng)_é , forj<e,

=0, forj>¢,
<[ e @ (Jied) s fori<e

=0, forj>¢. (1.196)
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The compositeD(ky; 0) o C1(k1;0), kp >0, ky < 1

Kraus operators of this composite, which always corresptmd noisy transpose channel

(see Tablel.3), are{Tm(k2)Bn(k1)}, 0 < m n < 0. We have

Tan(k2)Ba(kt) = ) &hdm— j)(n+ ||

=0

_ -1 -] ~(m-})
= (V1) yemic (Jiesd) | (i)
. n
XKi(Jl—K%) , for j<m;

=0, for j >m. (2.197)

The compositeCi(kz; 0) o D(k1;0), k1 >0, ko < 1

This composite channel corresponds tquantum-limitedranspose channel (see Table
1.3). The Kraus operatorfBn(«2)Tn(k1)}, 0 < mn < o (which as a set should be

equivalent tdT,(kox1)}, 0 < € < 0), are

Br(ko) Talka) = > &ndi = mn = jl,

j=m

] m —(n—j+1)
Enn = \/ijan (\/1—K§) Ky (,/1+K§)
-]
X (,/1+K12) , forn>m;

=0, forn<m (1.198)

The compositeCs(kz; 0) 0 D(k1;0), k2> 1, k3 >0

This composite channel corresponds, fokalk,, to a noisy transpose channel, similar to

the case ofD(«,; 0)oCy(k1; 0) considered earlier. The Kraus operat@g(x2) Tn(x1)}, 0 <
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m, n < co have the form

An(i2) Ta(ka) = > Ehdj +mxn— j,
j=0

. -1 . -

fﬂ“”:’ﬁl(m) J™IC;"C; (\/1—K52) )
~(-) o

X(\/TK%) (\/TKIZ) cforj<m;

=0, forj>n. (2.199)

The compositeD(kz; 0) o Ca(k1;0), k2 >0, kg > 1

This composite is guantum-limitedranspose channel (see Takl8), with Kraus oper-

ators{Tm(k2)An(k1)}, 0 < m,n < co. The product Kraus operators are computed as

Tan(ka)An(ks) = > e = Kk =11,
k=0

&= (Y1 + ) D1+ k59 i,
n
% k7RG, ( Ji- KIZ) (k7N fork > n,

=0, fork <n. (1.200)

Remark: We wish to make a final remark regarding the Kraus operatwrthe compos-
ite channels obtained as the product of the Kraus operatdng @uantum-limited chan-
nels as detailed above. The Kraus operators for the conggsasitEqs.1.1949), (1.195,
(1.199, (1.197, (1.199 were shown to be linearly independent in Ref6][ However,
the Kraus operators i1 (199 and (L.200, are linearly dependent. Nevertheless, they still

give rise to a valid operator sum representation for theesponding composite channels.
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Channel EB region Y

Ci(x; @) a>2 | Y>(@+1)1L

Ca(k; @) a>2 |[Yx2(K+1)1

D(k; @) a>0 Y> (@ +11
AL+ 02)/2;a) | a>0 Y>1

Table 1.4: Showing the EB bosonic Gaussian channels.

1.9 Entanglement-breaking bosonic Gaussian channels

We now consider the important notion of entanglement-bngaliosonic Gaussian chan-
nels. We recall1.120 that a channel" acting on system % entanglement-breaking if
the bipartite output statd' @ 1lg) (0sg) is separable for every input staigg, the ancilla

systemE being arbitrary T7].

A bosonic Gaussian channel is said to be entanglementibgedlits one-sided action
on a two-mode state is separable for all input bipartiteestalt turns out that for single-
mode bosonic Gaussian channels, the entanglement-bgee&indition can be written

down compactly by resorting to Simon'’s criterio@9[.

A single-mode bosonic Gaussian chandels said to EB if and only ifT o @ is also a

channel, wher@ stands for the transpose operation. By HqL76 we have that

AYA+iB2iAX BXA

= Y-ig=iX"gX (1.201)

where, as noted in EqL(169, A transcribes for the transpose map. We add that this
requirement is in addition to the constraint satisfied KyY() for ® to be a channel in
Eq. (1.179. Further, we note that if a given chann&l ) is EB, then adding additional

classical noise will also result in an EB channel.

Using the criterion provided in E4.(20]), we classify the EB Gaussian channe®s][

for each of the canonical forms and tabulate then in TalsleWe see that the quantum-

98



limited phase conjugation channe¥x; 0) and singular channeld,(0) are already en-
tanglement breaking. Hence, these classes of channelmaysantanglement breaking
irrespective of the noise. One other quantum-limited cleétimat is EB is thec = 0 end
of the attenuator channél(x; 0), i.e. C1(0,0). The noisy channelS;(x; @) andCa(k; @)
are EB fora > 2«* and 2 respectively. We will explore more properties of EB &dan

channels in Chapter 5.
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Chapter 2

CP maps and initial correlations

2.1 Introduction

Open quantum systems are systems that are in interactibnta/iénvironment. There-
fore, open quantum systems play a very fundamental roleeirstindy of every realistic
or practical application of quantum systems. There has beapid growth in the under-
standing of various properties related to open quantunesyslike its realization, control,
and the role played by the noise in such dissipative systboth,in the theoretical and

experimental domain.

Recent studies on various aspects of control of open quanysterss has appeared
[97-110. These studies have been motivated by applications totgomaoomputing
[111-113, laser cooling 114 115, quantum reservoir engineering.][6, 117, manag-

ing decoherencelfl8-127, and also to other fields like chemical reactions and energy
transfer in molecules1P3-126. There has also been a study of experimental aspects
of environment induced decoherence in various physicalaggas including atomic sys-

tems [L27-131], spin networks 132, and molecular physics133 134].

A related recent avenue has been to exploit the dissipationthe environment. Here,
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theoretical studies of basic tasks in quantum informatfwoty like state preparation
[135-139, distillation [14(Q, storage 141], cooling [147, and including their experi-
mental aspects1fi3 144, are performed by engineering the system-environment cou
pling. Further, the issue of timing in such dissipative quaminformation processing

was addressed inL{1g.

In this chapter we study the induced dynamics of the systsuitieg from the dynamics
of an open quantum system. In particular, we explore theabtle initial system-bath
states, especially in respect of a possible connectiondatgm discord, as brought out in
recent literature. From the various manifestations of agpeantum systems listed above,

it is pertinent to understand this aspect of realizationnrobpen quantum system.

Every physical system is in interaction with its environmyehe bath to a smaller or
larger degree of strength. Therefore, the joint unitaryasgits or unitary Schrodinger
evolutions of the system and bath induces a dissipativeumitary dynamics for the
system l46. We now briefly recapitulate the folklore scheme or Stimegrdilation
[69,147-150. The Hilbert space${s and#g of the system and the bath are of dimen-
sionsds, dg respectively. Thedi — 1)-dimensional (convex) state spateis a subset of
B(Hs). We also denote the collection of initial-system bathestdityQS B ¢ B(Hs @ Hg),
the convex hull of2S B being denotedSB. The definition of2S Bwill become clear in a

subsequent Section.

2.1.1 Folklore scheme

The folklore scheme (see Fi@.1) for realizing open system dynamics is to first elevate
the system statgss to the (tensor) produciss ® pj9, for afixedfiducial bath statg.?.
Then these composite uncorrelated system-bath states@vwede under a joint unitary

Usg(t), and finally the bath degrees of freedom are traced out tmobte evolved states
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AS ®prid

ps ® pp''? ) Usg(t) psa(1)
>

Assignment Projection

Tr (- As
As rs(-)
QDP
________) _________
ps = ps(l)

Figure 2.1: Showing the folklore scheme. In the folkloreesuole, initial system states

are elevated to product states of the composite, forealfiducial bath statg ¢, through

the assignment maps — ps ® p{?. These uncorrelated system-bath states are evolved
under a joint unitaryJs g(t) to Us g(t) ps®pgd Usg(t)" and, finally, the bath degrees of free-

dom are traced out to obtain the time-evolved statg) = Trg [USB(t)pS ® p USB(t)"']
of the system. The resulting quantum dynamical process {@BPP> ps(t), parametrized
by pl? andUsg(t), is completely positive by construction. Initial systetatss are identi-
fied by the blue region and the final states by the red.

ps(t) of the system :

ps = ps ® pad — Usg(t) (os ® pa?) Usp(t)

— ps(t) = Trg [USB(t) (os ® pi%) USB(t)T] : (2.1)

The resulting quantum dynamical process (QPR)— ps(t), parametrized by and
Usg(t), is provably completely positive (CP$7,68,70,147,149.

Indeed ifpl® = |ye)wgl, and{|ve)} is @ complete basis for systel) then the operator-

105



sum representation for the QDP can be written as

ps(t) = > Adt) ps AL, (2.2)
k

whereA(t) are the sum-operators which are given by

A(t) = (VEIUs s(t)lys)- (2.3)

If instead we have a mixed statd?, then the operator-sum representation will just be a
convex combination of maps resulting from each pure statgay the spectral resolution

of pld.

While every CP map can be thus realized with uncorrelatedlrstates of the compos-
ite, there has been various studies in literature that egpiwre general realizations of
CP maps [51-160. Possible &ects of system-bath initial correlations on the reduced
dynamics for the system has been the subject of severaltrsiteles 161-169. Some

of these works look at the connection between the conceptaftgm discord and the
complete positivity of the reduced dynamicks[, 163 168; these are of much interest to

us.

2.1.2 SL scheme

A specific, carefully detailed, and precise formulationtwé tssue of initial system-bath
correlations possibly influencing the reduced dynamics prasented not long ago by
Shabani and Lidar1[63. In this formulation (see Fi@.2), the distinguished bath state
pid is replaced by a collection of (possibly correlated) systeth initial state€2S® e

B(Hs ® Hg). The dynamics gets defined through a joint unitdgg(t) :

pse(0) = pse(t) = Use(t) pse(0) Usg(t)’,  V pse(0) € Q38 (2.4)
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Qsp

pse(0) Usg(t) @
>

Projection Projection

Ag Trp(-) Trp(-) Ag
QDP
______ }’”.___..-_-
ps(0)- ps(t)

Figure 2.2: Showing the SL scheme. In sharp contrast to ttkéofe scheme, there is
no assignment map in the SL scheme. The distinguished kettpdt is replaced by a
collection Q5B of (possibly correlated) system-bath initial states(0). The dynamics
gets defined throughs g(0) — psg(t) = Usg(t) pse(0) Usg(t) for all psg(0) € Q5B With
reduced system stateg(0) andps(t) defined through the imaging or projection map
ps(0) = Trg pss(0) andps(t) = Trg [Uss(t) pse(0) Uss(t)’], this unitary dynamics of the
composite induces on the system the QRIFD) — ps(t). As before, initial system states
are identified by the blue region and the final states by the red

This composite dynamics induces on the system the QDP

ps(0) = ps(1), (2.5)

with ps(0) andps(t) defined through this natural imaging frof® B to the system state

SpaceAs:

ps(0) = Trg pse(0), ps(t) = Trepsa(t). (2.6)

It is clear the folklore scheme is a particular case of the &eme corresponding to

Q5B={ps®pl|pld = fixed}.
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This generalized formulation of QDP allows SL to transctiteefundamental issue to this
question: What are the necessary anflisient conditions on the collectiof2® B so that
the induced QDRs(0) — ps(t) in Eq. 2.5) is guaranteed to be CBr all joint unitaries
Usg(t)? Motivated by the work of Rodriguez-Rosario et dl6]], and indeed highlighting

it as‘a recent breakthrough’SL advance the following resolution to this issue :

Theorem 7 (Shabani-Lidar) : The QDP in Eq(2.5) is CP for all joint unitaries U g(t)
if and only if the quantum discord vanishes for@llg € Qsg, i.€e., if and only if the initial

system-bath correlations are purely classical.

Whether the Shabani-Lidar QDP so described is well-defineldcampletely positive is

clearly an issue answered solely by the nature of the cale€1S®.

2.2 Properties of SLQSB

In order that the QDP in Eg2(5) be well definedin the first place, the se®S® should
necessarily satisfy the following two properties; since eutire analysis rests critically

on these properties, we begin by motivating them.

2.2.1 Property 1

No stateps(0) can have two (or more) pre-images}i& To see this fact unfold assume,

to the contrary, that

Trg psp(0) = Trg PéB(O), pse(0) # PéB(O)a

for two statepsg(0), psg(0) € Q5B (2.7)

Clearly, the diferencenps g(0) = ps(0)—pg 0) # 0 should necessarily meet the property

2— -, . -
Trgrpsg(0) = 0. Let{/lu}ﬂil1 be a set of orthonormal hermitian traceldgs< ds matrices
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so that together with the unit matriy = Iy, these matrices form a hermitian basis for
B(Hs), the set of allds x ds (complex) matrices. Le{ty\,}sgl, Yo = Mg.xqg, D€ a similar
basis forB(Hsz). The @sdg)? tensor product§l, ® y,} form a basis fo3(Hs ® Hg), and
Apsp(0) can be written in the form

2
d2-1 d2-1

Aps B(O) = Z Z CUV /lu ® 7\/, Cu\/ real (2.8)
u=0 v=0

Now, the property Tg Apsg(0) = O is strictly equivalent to the requirement that the ex-
pansion cofficientCy = O forallu=0, 1, --- d2 — 1. Since the [¢sdg)? — 1]-parameter
unitary groupS U(dsdg) actsirreducibly on the [(sdg)? — 1]-dimensional subspace of
B(Hs @ Hsg) consisting of all tracelesfsdg-dimensional matrices [ this is the adjoint rep-
resentation o5 U(dsdg) ], there exists atJsg(t) € S U(dsdg) which takesapsg(0) # 0
into a matrix whose expansion déeientCy, # 0 for someu. That is, if the initial

rpsp(0) # 0 then one and the same system sta(@) will evolve into two distinct

ps(t) =Trg [USB(t)pSB(O)USB(t)T] ,

p&() =Tre | Uss()psa(0)Uss(®)’| (2.9)

for someUsg(t), rendering the QDP in equatiod.p) one-to-many, and hence ill-defined.

2.2.2 Property 2

While every system staje;(0) need not have a pre-imagetually enumerateth Q58 the
set ofps(0)’s having pre-image should befBaiently large. Indeed, Rodriguez-Rosario et
al. [161] have rightly emphasised that it should ladarge enough set of states such that
the QDP in Eq(2.5) can be extended by linearity to all states of the systéins easy to
see that ifQS B fails this property, then the very issue of CP would make neseffror,

in carrying out verification of CP property, the QDP would bguieed to act, as is well

known [67], on {|j)kK|} for j, k = 1,2, --- ds; i.e., on generic compleds-dimensional
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square matrices, and not just on positive or hermitian iwedralone. Since the basic
issue on hand is to check if the QDP as a maB@Hs) is CP or not, it is essential that it

be well defined (at least by linear extension) on the etraplexinear spaces(Hs).

2.3 Main Result

With the two properties of2S B thus motivated, we proceed to prove our main result. We
‘assume’,for the time beingthat every pure statg) of the system has a pre-image in
QSB This assumption may appear, at first sight, to be a drastic Bat we show later

that it entails indeedo loss of generality

It is evident that, for every pure state), the pre-image 258 has to necessarily assume
the (uncorrelated) product forif){y| ® ps , pg being a state of the bath which could

possibly depend on the system stte

ds

.1 be another orthonormal

Now, Iet{|z//k>}ﬁi1 be an orthonormal basis #Hs and let{|¢, )}
basis related to the former through a complex Hadamardrnymtatrix U. Recall that a
unitary U is Hadamard ilU,,| = 1/ vds, independent df, . For instance, the characters
of the cyclic group of ordeds written out as as x ds matrix is Hadamard. The fact
that the{|y)} basis and th@¢, )} basis are related by a Hadamard means|{i#@lp, )| is
independent of botk anda, and hence equalg 3/ds uniformly. We may refer to such a

pair asrelatively unbiased bases

Let [yi)(¥l ® Ok be the pre-image dfi)(yi| in Q5B and|@,)(¢.| ® O, that of ¢, ){dal,
k,a=12---,ds. Possible dependence of the bath st@gsn |i/) andO, on ¢,y has
not been ruled out as yet. Since the maximally mixed stateeo$ystem can be expressed

in two equivalent ways aﬁgl Dl = dgl >0 l0a){del, uniquenessf its pre-image
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in QSB(Property 1) demands

ds dS
D W @ Oc = ) I¢a) ] ® O, (2.10)
k=1

a=1

Taking projection of both sides d#;)(x|, and using the Hadamard propekty|¢.)I* =

dst, we have

ds
Oj:éZGQa j:1529“'ad59 (211)

a=1

while projection ori¢s)(¢g| leads to
Op==—» O, B=1,2,--,0s. (2.12)

The As constraints of Eqs2(11), (2.12 together imply thaO; = 55 uniformly for all
j» B Thus the pre-image @)yl is i) (Wil ® pg and that ofg, (@l IS Ida) (el ® pg°,
for all k, «, for somefixed fiducial bath statgf?. And, perhaps more importantly, the

pre-image of the maximally mixed stadg' 1L necessarily equatk'L® p/® as well.

Taking another pair of relatively unbiased bas$igs)}, {|¢.)} one similarly concludes
that the pure statelg, )¢, |, 4,)(¢,| t00 have pre-image, )yl ® pg’, 1¢,)(@,] ® p*
respectively, with the same fixed fiducial bath sta{e as before. This is so, since the

maximally mixed state isommorto both sets.

Considering in this manner enough number of pure states geghi@ns|y)(y/| suficient
to span—nby linearity—the entire system state spageand henceé3(Hs), and using the
fact that convex sums goes to corresponding convex sums prelémaging, one readily
concludes thagvery elemenis g0) of QS B (irrespective of whether Eipsg0) is pure or
mixed) necessarilyneeds to be of the product form(0) ® pl9, for somefixedbath state
pld. But this is exactly the folklore realization of non-unitatissipative dynamics, to

surpass which was the primary goal of the SL scheme. We hagetioved our principal
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result:

No initial correlations—even classical onesare permissible in the SL scheme.
That is, quantum discord is no less destructive as far as Cpegyoof QDP is

concerned.

It is true that we have proved this result under an assumptibras we show below, this

assumption entails no loss of generality at all.

As we have noted, if at all a pure statg(0) = |y)(y| has a pre-image i®SB it would
necessarily be of the product forig){y| ® pg, for some (possiblyy)-dependent) bath
statepg. While this is self-evident and is independent of SL, it istinstive to view
it as a consequence of timecessary condition padf SL theorem. Then our principal
conclusion above can be rephrased to say that validity ofn®brem for pure states of
the system readily leads to the folklore product-schembeartly solutionwithin the SL
framework. This interesting aspect comes through in an exae striking manner in our

proof below that our earlier ‘assumption’ is one withoutdas generality.

2.3.1 Assumption entails no loss of generality

Let us focus, to begin with, on the convex h@$ & of QS Brather than the full (complex)
linear span of2°Bto which we are entitled. Let us further allow for the podéipthat the
image ofQSBunder the convexity-preserving linear magx(0) — Trgosg(0) fills not the
entire (convex) state spaces—the @2 — 1)-dimensional generalized Bloch sphere—of
the system, but only a portion thereof, possibly a very speait. Even so, in order that
our QDP in equatiord.5) be well-defined, this portion wouldccupy a non-zero volume

of the @2 — 1)-dimensional state space of the system (Property 2).

Let us consider one set of all mutually commuting elementthefsystem state space

As. If the full state space were available under the imagigg(0) — Trgpsg(0) of
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13) (3] 12) (2]

1) (11

Figure 2.3: Depicting, for the casly = 3 (qutrit), the image of2SB under Tg(") in the
plane spanned by the commuting (diagomaihatrices {3, Ag).

QSB, then the resulting mutually commuting images would havedithe entireds — 1)-
simplex, the classical state space akaevel system, this being respectively the triangle
and the tetrahedron whely = 3,4 [170 171]. Since the full state space is not assumed
to be available, these commuting elements possibly fill @lperhaps very small but
nevertheless of nontrivial measure, proper convex sulislet dds — 1)-simplex, depicted

in Fig.2.3as regiorR for the caseals = 3, (qutrit).

Elements of these simultaneously diagonal density matrafethe system can be ex-
pressed as convex sums of orthogonal pure states or on@slonal projections. For
a generic element in this region, the spectrum is non-degeneand hence the projec-
tions are unique and commuting, being the eigenstates (@), and correspond to the
ds vertices of theds — 1)-simplex. In the case of quitrit, it is pictorially seen iigR2.3
that only the points on the three dotted lines corresponadtibly degenerate density ma-

trices and the centre alone is triply degenerate, rendéramgparent the fact that being
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nondegenerate is a generic attribute of redgfon

Now consider the pre-image; 0) in QSB of such a generic non-degeneratg0) € R.
Application of the SL requirement of vanishing discord (aganly the necessity part of
the SL theorem) to thiss g(0) implies, by definition $4,172), that the pre-image has the

form

ds
psel0) = > pyliXil® psy(0), (2.13)

=1

where the probabilitiep; and the pure statg$)(]j| are uniquely determined (in view of

nondegeneracy) by the spectral resolution

ds
ps(0) = Trapse0) = D piliXil- (2.14)
j=1

And pgj(0)’s are bath states, possibly dependentjp¢j| as indicated by the labglin

pgj(0). These considerations hold for every nondegenerateegieof regiorR of proba-
bilities { p; }. In view of generic nondegeneracy, the requirem2rit3) implies that each
of the ds pure state$j)(j| has pre-image of the form)(j| ® pgj(0) in thelinear span
of the pre-image of R—at least as seen by the QD¥)( That is,pg;(0)'s can have no

dependence on the probabilitieg; }.

Since every pure state of the system constitutes one of ttiee® of someds — 1)-
simplex inAs comprising one set of all mutually commuting density oparsis(0), the
conclusion that a pure statffectively has in the linear span 8°®a pre-image, and one
necessarily of the product forrapplies to every pure stgtehowing that the ‘assumption’

in our earlier analysis indeeghtails no loss of generality
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2.4 Conclusion

To summarize, it is clear that the dynamics described by

pse(0) = psat) = Usg(t) psa(0) Usg(t)', pse(0) € QSBwould ‘see’ only the full (com-
plex) linear span of258 andnot so much the actual enumeratiohQS® as such. But
as indicated by the imaging (projection) meg(0) — ps(0) = Trg pse(0), the only ele-
ments of this linear span which are immediately relevanttierQDP are those which are
hermitian, positive semidefinite, and have unit trace; are® precisely the elements of
QSB, the convex hull of2SB Since no system state can have two or more pre-images (see
Property 1), in order to render the QDP %) well defined these relevant elements are
forced to constitute &aithful linear embeddingin B(Hs ® Hs), of (a nontrivial convex
subset of) the system'’s state space. In the SL scheme ofthhig leaves us with just the
folklore embeddings(0) — psg(0) = ps(0) ® pf¥. This is the primary conclusion that

emerges.

Remark on convexity :

Let us view this from a slightly dierent position. Since there is no conceivable manner
in which a linear mapJsg(t) acting on elements a®°® could be prevented from acting
on convex sums (indeed, on the linear span) of such elemeatsiay assume—without
loss of of generality-Q5Bto be convex and ask, consistent with the SL theorem: What
are the possible choices for the collecti@f®to beconvex and at the same time consist
entirely of states of vanishing quantum discofdne possibility comprises elements of
the formps g(0) = ps(0) ® pl¥ for a fixed bath statp/® and arbitrary system stagg (0).
This case 0f2SB = Ag ® pid is recognized to be simply the folklore case. The second
one consists of elements of the fopms(0) = 3; p;lj){jl ® pgj(0), for afixed (complete)
set of orthonormal pure stat¢lg)(]j|}. This case restricted tmutually commuting density
operatorsof the system seems to be the one studied by Rodriguez-Rosalio[&@61],

but the very notion of CP itself is unlikely to make much semsthis non-quantum case

115



of classical state spac@f dimensionds — 1 rather thardZ — 1), the honorific ‘a recent

breakthrough’ notwithstanding.

The stated goal of SL was to givecamplete characterizatioof possible initial correla-
tions that lead to CP maps. Itis possibly in view of the (erowsg belief that there was a
large class of permissible initial correlations out therthim the SL framework, and that
that class now stands fully characterized by the SL theotteaih a large number of recent
papers tend to list complete characterization of CP maps grttenprincipal achieve-
ments of quantum discordL3-180. Our result implies, with no irreverence whatsoever
to quantum discord, that characterization of CP maps may etdbe rightfully paraded

as one of the principal achievements of quantum discord.

The SL theorem has influenced an enormous number of authwtst i3 inevitable that
those results of these authors which make essential use sifficiency part of the SL

theorem need recalibration in the light of our result.

There are other, potentially much deeper, implications wffinding. Our analysis—
strictly within the SL framework—has shown that this franoelvbrings one exactly back
to the folklore scheme itself, as if it werdfiaed point This is not at all a negative result
for two reasons. First, it shows that quantum discord is heaper’ than entanglement
as far as complete positivity of QDP is concerned. Second,naore importantly, the
fact that the folklore product-scheme survives attack uritis powerful, well-defined,
and fairly general SL framework demonstrates its, perhassigpectediobustness In
view of the fact that this scheme has been at the heart of nppdications of quantum
theory to real situations, virtually in every area of phgsiscience, and even beyond, its
robustness the SL framework has helped to establish iy likgdrove to be of far-reaching

significance.
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Chapter 3

Correlations for two-qubit X-states

3.1 Introduction

The study of correlations in bipartite systems has beemaraied over the last couple
of decades or so. Various measures and approaches to dedregjalassical and quan-
tum contents of correlations have been explored. Entaregietmas continued to be the
most popular of these correlations owing to its inherenepodl advantages in perform-
ing quantum computation and communication task®1]. More recently, however, there
has been a rapidly growing interest in the study of correfetifrom a more direct mea-
surement perspectivés$, 187), and several measures to quantify the same have been con-
sidered. Among these measures, quantum discord and elassicelation have been at-
tracting much attention1B3-188, and have lead to several interesting resuli89192.
There has also been recent studies @kdent aspects of correlations like their evolution
in various systems1P3-19€], including non-markovian environment&d§7~200 and its
role in spin systems201,202. Methods of withessing quantum discord in the theoreti-

cal [203-213 and experimental J14-218 domain have also been explored.

In this Chapter, we undertake a comprehensive analysis girtftdem of computation

of correlations in the two-qubit system, especially thecaltled X-states of two-qubit
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system f3]; this class of states has come to be accorded a distinglistaéus in this
regard. The problem oX-states has already been considered2@9f225 and that of
more general two-qubit states i@46-230. The approach which we present here exploits
the verygeometric natureof the problem, and helps to clarify and correct some issues
regarding computation of correlationsXastates in the literature, and many new insights
emerge. It may be emphasised that the geometric method$asetiave been the basic
tools of (classical) polarization optics for a very long éijrand involve constructs like

Stokes vectors, Poincaré sphere, and Mueller matrig@$-p35.

In Section3.8we compare our analysis and results with those of the welvkn@ork of

Ali, Rau, and Alber £20. We show that their famous theorem that the optimal POVM for
X-states is always a von Neumann projection either along looigahe z direction holds
numerically for the entire manifold oX-states except for a very tiny region. Perhaps
surprisingly, howevertheir symmetry-based proof of that theorem seems to make an a

priori assumption equivalent to the theorem itself

3.2 Mueller-Stokes formalism for two-qubit states

We begin with a brief indication as to why the Mueller-Stokasnalism of classical op-
tics is possibly the most appropriate one for handling quargtates post measurement.
In classical polarization optics the state of a light beame@esented by a 2 2 com-
plex positive matrixp called thepolarization matrix[236. The intensity of the beam is
identified with Trd, and so the matrix (Td)~1® (normalized to unit trace) represents the
actualstateof polarization. The polarization matrik is thus analogous to the density
matrix of a qubit, the only distinction being that the traddh® latter needs to assume
unit value. Even this one little fierence is gone when one deals wetinditional quan-
tum stategpost measurement: the probability of obtaining a cond#tictate becomes

analogous to intensity Tr ®@ of the classical context.
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The Mueller-Stokes formalism itself arises from the foliog/simple fact: any Z 2 ma-

trix @ can be invertibly associated with a four-vec®rcalled the Stokes vector, through

3

O = % Siox, Sk = Tr(o-kd)). (31)
0

k=

This representation is an immediate consequence of thinttiche Pauli tripletry, o, o3

ando = 1., the unit matrix, form a complete orthonormal set of (h&am) matrices.

Clearly, hermiticity of the polarization matrik is equivalentto reality of the associated
four-vectorS and Tr® = S,. Positivity of @ readsSy, > 0, S — S2 - S5 -S3 > 0
corresponding, respectively, to the pairdl> 0, detd > 0. Thus positive X 2 matrices
(or their Stokes vectors) are in one-to-one correspondeiiite points of thepositive
branch of the solid light condJnit trace (intensity) restriction corresponds to theisec
of this cone at unity along the ‘time’ axi§, = 1. The resulting three-dimensional
unit ball 83 € R® is the more familiar Bloch (Poincaré) ball, whose surfaceaurulary
P = S? representing pure states (of unit intensity) is often catlee Bloch (Poincaré)

sphere. The interior points correspond to mixed (partiadiiarized) states.

Optical systems which map Stokes vectiimearly into Stokes vectors have been of par-
ticular interest in polarization optics. Such a linear sysis represented by ax44 real

matrix M, the Mueller matrix 231-235:
M :S" — soUut= MS™", (3.2)

It is evident that a (physical) Mueller matrix should neee8g map the positive solid
light cone into itself.It needs to respect an additional subtle restrictiemen in classical

optics.

Remark: The Mueller-Stokes formulation of classical polarizatioptics traditionally

assumes plane waves. It would appear, within such a frankewoe need not possibly
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place on a Mueller matrix any more demand than the requirethen it map Stokes
vectors to Stokes vectors. However, the very possibiligt the input (classical) light
could have its polarization and spatial degree of freedanestivined in an inseparable
manner, leads to the additional requirement that the Muelldrix acting ‘locally’ on the
polarization indices alone map such an entangled (cldssieam into a physical beam.
Interestingly, it is only recently that such a requiremesd been pointed out284, 235,

leading to a full characterization of Mueller matrices iassgical polarization optica

To see the connection between Mueller matrices and tworgtdiies unfold naturally,
use a single index rather than a pair of indices to label tingpeational basis two-qubit
stateg{| jk)} in the familiar manner: (Q®1, 10, 11) = (0, 1,2, 3). Now note that a two-

gubit density operatqsag can be expressed two distinct ways

3

pas= ) piliXK

j-k=0

1 3
=2 Muoasd, (3.3)

the second expression simply arising from the fact that tkieen hermitian matrices
{oa® o} form a complete orthonormal set of&4 matrices. Hermiticity of operat@ng
is equivalent to reality of the matrikl = ((Mgp)), but the same hermiticity is equivalent

top = ((ojx)) being a hermitian matrix.

Remark: Itis clear from the defining equatio.Q) that the numerical entries of the two
matricesp, M thus associated with a given two-qubit stag be related in an invert-
ible linear manner. This linear relationship has been iningmlarization optics for a
long time 231,233 234 and, for convenience, it is reproduced in explicit form et

Appendix.m

Given a bipartite statpag, the reduced density operatqrg, pg of the subsystems are
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readily computed from the associatelt

3
A “ 1
poa = Tr[pas] = > Z Mao 0a,
a=0
13
o = Tr[pag] = > Z Mob 0, (3.4)
b=0

That is, the leading column and leading row Mf are precisely the Stokes vectors of

reduced statesa, pg respectively.

It is clear that a generic POVM element is of the fofin= 3 Sh_o Skoi. We shall callS
the Stokes vector of the POVM elemdit Occasionally one finds it convenient to write
it in the formS = (S, S)™ with the ‘spatial’ 3-vector part highlighted. The Stokestoe
corresponding to a rank-one element has components tlisflyshe relationS? + S3 +

S2 = S3. Obviously, rank-one elements are light-like and rank-elements are strictly
time-like. One recalls that similar considerations applytte density operator of a qubit

as well.

The (unnormalised) state operator post measurement (ne@asat elemerit;) evaluates

to

ph, = Tra[pasllj]

3
S Sioa (35)

where we used Tof o) = 20k In the last step.

Remark: It may be noted, for clarity, that we use Stokes vectors poagent both mea-
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surement elements and states. For instance, Stokes \®dtoE(. 3.5 stands for a
measurement elemefl; on the B-side, wherea8’ stands for (unnormalised) state of

subsystenA. m

The Stokes vector of the resultant state in Bep)(is thus given byS, = Zﬁzo M xSk,

which may be written in the suggestive form
Sout = MSn. (3.6)

Comparison with .2) prompts one to calM the Mueller matrix associated with two-
qubit statepag. We repeat that the conditional stai;?? need not have unit trace and so
needs to be normalised when computing entropy post measutefio this end, we write

p,’jj = PjPx;, Where

out

. 1 _
pi = — bm = 5L+ (S5 S™0). 3.7)

It is sometimes convenient to write the Mueller matkikassociated with a given state

pag in the block form

1 T
M = ¢ D WX
A Q

Then the input-output relatior3(6) reads
St=sh+¢-S", SM=StA+QS", (3.8)

showing in particular that the probability of the conditabrstateS°“ on the A-side de-

pends on the POVM element precisely throughd - S".

Remark: The linear relationship between two-qubit density opmsap (states) and
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Mueller matrices (single qubit maps) we have developedis$lection can be usefully

viewed as an instance of the Choi-Jamiokowski isomorphmm.

Remark: We have chosen measurement to be on the B qubit. Had we dnsltesen
to compute correlations by performing measurements onystdrs A then, by similar
considerations as detailed abo8e5, we would have found™ playing the role of the

Mueller matrixM. m

3.3 X-states and their Mueller matrices

X-states are states whose density matittas non-vanishing entries only along the diago-
nal and the anti-diagonal. That is, the numerical matridas the ‘shape’ oK. A general

X-state can thus be written, to begin with, as

oo 0 0  pos€?’

0 p1n p€” 0
Px = ) > (39)
0  pu€™  px 0

poze %7 0 0 033

where thep;;’s are all real nonnegative. One can get rid of the phases¢adff-diagonal
elements) by a suitable local unitary transformatign® Ug. This is not only possible,
butalso desirabldecause the quantities of interest, namely mutual infdonaguantum
discord and classical correlation, are all invariant urideal unitary transformations.
Since it is unlikely to be profitable to carry around a baggafgerelevant parameters, we

shall indeed remove,, ¢, by takingpx to its canonical fornp$2". We have

px = p"=Ua® Ugpx Up ® U, (3.10)
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where

poo 0 0 po3

p‘f(anz 0 pu p12 O ;
0 p12 p2 O

poz 0 0 ps3
Ua = diag @102/ géa/4)

Ug = diag(fe‘(2¢1‘¢2)/4, ei¢z/4)_ (3.11)

Remark: We wish to clarify thatX-states thus constitute, in the canonical form, a (real)
5-parameter familydpo + 011 + p22 + p33 = Mg = 1); it can be lifted, using local unitaries
Ua, Ug € SU(2) which have three parameters each, to a 11-parametegtsunlibe 15-
parameter state space (or generalized Bloch sphere) ofimb-sjates : they are all local

unitary equivalent though they may no more have a ‘shxpe’

With this canonical form, it is clear that the Mueller matfor the genericX-statep$®"

has the form

1 0 0 mpys

0O m; O 0
M = , (3.12)

0O O myp O

Mo O 0 g3
where
M1 = 2(po3 + p12), Mp2 = 2(po3 — P12),
Moz = Poo + P22 — (011 + P33),

Ms3 = poo + P33 — (011 + P22),

Mso = poo + P11 — (022 + P33), (3.13)
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as can be readfibfrom the defining equation3(3) or Eq. 3.92 in the Appendix. We
note that the Mueller matrix of aX-state has a ‘sub-X’ form: the only nonvanishing
off-diagonal entries argywz andmgg (M, = 0 = NMypy). In our computation later we will

sometimes need the inverse relations

1

Loo = Z(moo + Moz + Mg + My3),
1

p11= Z(moo — Moz + Mgy — Mga),
1

P22 = Z(moo + Moz — Mg — My3),
1

P33 = Z(moo — Myz — Mg + My3),

1 1
Po3 = Z(mll +Mp), p12= Z(mll — Myy). (3.14)

The positivity properties 0pS2", namelypoopss > pds p11022 > p3, transcribes to the

following conditions on the entries of its Mueller matrix :

(1 + mgg)® — (Mao + Mo3)® > (Myg + Mp)? (3.15)

(1 - mg3)® — (Mgp — Moz)? > (Mg — Mp2)?. (3.16)

Remark: As noted earlier the requirement3.15, (3.16 on classical optical Mueller
matrix (3.12 was noted for the first time in Refs234,235. These correspond to com-
plete positivity ofM considered as a positive map (map which images the solitldmgie

into itself), and turns out to be equivalent to positivitytbe corresponding two-qubit

density operatom

By virtue of the direct-sum block structure ¥tstate density matrix, one can readily write

down its (real) eigenvectors. We choose the following order

o) = Col00) + |11), Y1) = C5[0D) + $/10),

W2) = =$5101) + C5[10), |¥3) = —%,/00) + Co[1D), (3.17)
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wherec,, S, denote respectively casand sinx. And (dropping the superscript ‘can’) we

have the spectral resolution

3
Px = Zﬂjhﬂj)(lﬁjl, (3.18)
=)

1+V1 1+V2
— > 5=

£00 — P33 Mz + Mo3
\/4/003 + (poo — p33)? ‘/(mll + Mp2)? + (Mo + Mo3)?.
P11 — P22 Mzo — Mo3

\/4,012 + (011 — p22)? \/(mll — Mp2)® + (Mgo — mos)2

1 Poo + ,033 \/(pOO - 933)2 + 4p03
Oor3 = 2 +

2
_l+mes V(Mg + M) + (Mgo + Mpg)?
4T 4 ’
1 putp2e \/(Pll — P22)* + 4/012
lor2 = 2 + 2
1-— _ 2 _ 2
_ 4”133 . \/(mll Mp2) 4+ (Mgo — Mo3) . (3.19)

While computation o6/, will have to wait for a detailed consideration of the martfof
conditional states g¥ag, the other entropic quantities can be evaluated right aGasen
a qubit state specified by Stokes vectar)f, it is clear that its von Neumann entropy

equals

1+
2

1+

Sa(r) = - >

{og,

1-r 1-r
_[ 5 ][QQZ[T], (3.20)

wherer is the norm of the three vect& or the distance db from the origin of the Bloch
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ball. Thus from Eq.§.4) we have

S(oa) = Sa(Imeol), S(os) = S2(IMo3),

3
S(pae) = SN = D =108, (1)), (3.21)
j=0
whered;, j = 0,1,2,3 are the eigenvalues of the bipartite statg diven in Eq. 8.19.

The mutual information thus assumes the value

| (0aB) = Sa(IMsol) + Sa(IMoal) — S({4}). (3.22)

3.4 Correlation ellipsoid : Manifold of conditional states

We have seen that the state of subsysterasulting from measurement of any POVM el-
ement on the B-side @fag is the Stokes vector resulting from the action of the assedia
Mueller matrix on the Stokes vector of the POVM element. i¢hse of rank-one mea-
surement elements, the ‘input’ Stokes vectors correspmpdints on the (surfacg? = P
of the) Bloch ball. Denoting the POVM elements®8 = (1,x,y,2)", X* + y> + 22 = 1,
we ask for the collection of corresponding normalized orditional states. By Eq3(6)

we have

1+ mysz 1
_ My X Mix
S =MS" = = s (3.23)
M2y
M2y 1+mp3z
Mgo+M33Z
Mg + Me3Z Trmosz

Itis clear that, foiS!' = 1, S3" # 1 whenevemy # 0 and the input isiotin the x-y plane

of the Poincaré sphere. It can be shown that the spkferey? + 22 = 1 at the ‘input’ is
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mapped to the ellipsoid

2 2 Y
.y (@z-z) _
a & a

1 (3.24)

of normalized states at the output, the parameters of theseid being fully determined

by the entries oM :

My a, = IMp2|
X = ’ - 9
v 1- n%a \/ 1- m(2)3
Mgz — M3 Mo — MozMs3

a, = (3.25)

1- mc2>3 T 1- mc2>3 -
Remark: This ellipsoid of all possible (normalized) conditiongt®s associated with a
two-qubit state is something known as a steering ellips@izB[237-239. It degenerates
into a single point if and only if the state is a product stdtecaptures in a geometric
manner correlations in the two-qubit state under consiaeraand correlation is the ob-
ject of focus of the present work. For those reasons, we iptefeall it the correlation
ellipsoid associated with the given two-qubit state. While measurélementdl; are
mapped to points of the ellipsoid, measurement elemadhisor all a > 0 are mapped to
one and the same point of the correlation ellipsoid. Thuthegeneral case, each point
of the ellipsoid corresponds to a ‘ray’ of measurement el@men the degenerate case,

several rays map to the same pomt.

The x-z section of the correlation ellipsoid is pictoriadlgpicted in Fig3.1 Itis clear that
the geometry of the ellipsoid is determined by the four paansa,, ay, a,, z. andz; could
be assumed nonnegative without loss of generality. Thegddthmetemg, specifying the
z-coordinate of the image | of the maximally mixed state anBhside is not part of this

geometry.

Having thus considered the passage from a two-g¥Hstate to its correlation ellipsoid,

we may raise the converse issue of going from the correlaigrsoid to the associated
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X-state. To do this, however, we need the paramgter mgy as an input in addition to
the ellipsoid itself. Further, change of the signaturengf does not fect the ellipsoid in
any manner, but changes the states and correspondingligtiagige of de¥l. Thus, the
signature of de¥l needs to be recorded as an additional binary parameten beaasily
seen that the nonnegatisg ay, a,, Z. along withz and sgn (de¥!) fully reconstruct thex-
state in its canonical fornB(12. Using local unitary freedom we can rendey;, g3 —
Mp3Mgo and z. nonnegative so that sgnf,;) = sgn (deM); z = mgy can assume either
signature. It turns out to be convenient to denoteCBythe collection of all Mueller
matrices with dé¥l > 0 and byQ~ those with deM < 0. The intersection corresponds
to Mueller matrices for which d&t = 0, a measure zero set. Further, in our analysis to

follow we assume, without loss of generality

ay > a. (3.26)

Remark: Every two-qubit state has associated with it a unique tatiom ellipsoid of
(normalized) conditional states. An ellipsoid centerethatorigin needs six parameters
for its description : three for the sizes of the principal @aad three for the orientation
of the ellipsoid as a rigid body. For a generic state, theregbican be shifted from the
origin to vectorial locatiorr;, thus accounting for three parameters, and | can be located
atr; anywhere inside the ellipsoid, thus accounting for andtirere. The three-parameter
local unitary transformations on the B-side, having nteet whatsoever on the geometry
of the ellipsoid, (but determines which points of the inpoirearé sphere go to which
points on the surface of the ellipsoid), accounts for thel fiheee parameters, adding
to a total of 15. ForX-states the shift o€ from the originneeds to belong one of
the principal directions and | isonstrained to be located on this very principal axis
other words . andr;, become one-dimensional rather than three-dimensionalblas
renderingX-states a 11-parameter subfamily of the 15-parameter spatee. Thus X-

states are distinguished by the fact thatiCand the origin are collinear with one of the
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Figure 3.1: Showing the x-z cross-section of the correfa@tipsoid associated with a
generalX-state. The point | is the image of input state as iden@tyhe center of the
ellipsoid, ancE the image of the equatorial plane of the input Bloch sphere.

principal axes of the ellipsoidThis geometric rendering pays no special respect to the
shapeX, but is manifestly invariant under local unitaries as agetine characterization in
terms of ‘shapeX of the matrixpag in the computation basig.he latter characterization

iS not even invariant under local unitaries

3.5 Optimal measurement

In this Section we take up the central part of the present wdrich is to develop a
provably optimal scheme for computation of the quantumatigdor any X-state of a
two-qubit system. Our treatmenthsth comprehensive and self-contained and, moreover,
it is geometric in flavour We begin by exploiting symmetry to show, without loss of
generality, that the problem itself is one gptimization in just a single variableThe

analysis is entirely based on the output or correlatiopstiid associated with a two-qubit
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statepag, and we continue to assume that measurements are carried the B-side.

The single-variable function under reference will be senoptimization, to divide the
manifold of possible correlation ellipsoids into two suibfies. For one subfamily the
optimal measurement or POVM will be shown to be a von Neumasasurement along
either x or z,independent of the location (inside the ellipsoid)lpthe image of the
maximally mixed input For the other subfamily, the optimal POVM will turn out to
be either a von Neumann measurement along x or a three-eldt@rM, depending
on the actual location of in the ellipsoid There exists nX-state for which the optimal
measurement requires a four-element POVM, neither does ¢xest anX-state for which

the optimal POVM is von Neumann neither along x nor z.

For the special case of the cen@eof the ellipsoid coinciding with the origia = 0 of

the Poincaré sphere,(= 0), it will be shown that the optimal measurement is always a
von Neumann measurement along x argspective of the location of m the ellipsoid
While this result may look analogous to the simple case of Bettures earlier treated
by Luo [219, it should be borne in mind that these centdedtates form a much larger
family than the family of Bell mixtures, for in the Luo scenali coincides with C and
hence with the originbut we place no such restriction of coincidence. Staté@reintly,

in our caseay, ay, 8, andz are independent variables.

As we now turn to the analysis itself it is useful to recordthihe popular result that the
optimal POVM requires no more than four elements playwiori no particular role of
help in our analysis; it is for this reason that we shall haw@ocasion in our analysis to

appeal to this important theorer240, 241].

Proposition: The optimal POVM needs to comprise rank-one elements.
Proof: This fact is nearly obvious, and equally obvious is its froBupposew; is a
rank-two element of an optimal POVM ar,u;f fhe associated conditional state of sub-

systemA. Write w; as a positive sum of rank-one elements, wj; and leto};, p%,
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be the conditional states corresponding respectivelyio wj,. It is then clear that
pi = A + (1 - )pf, for some 0< 1 < 1. Concavity of the entropy function im-
mediately impliesS(5) > AS(57}) + (1 - )S(p), in turn implying through 1.57) that

the POVM under consideration could not have been optima.diear from the nature of

the proof that this fact applies to all Hilbert space dimensj and not jusl = 2. m

Remark: Since a rank-one POVM elemép}(V| is just a pointS on (the surface of) the
Bloch (Poincaré) spher®, a four element rank-one POVM is a quadruple of poiits
on®, with associated probabilitigs;. The POVM condition};; p;|v;){v;| = 1L demands

that we have to solve the pair

P1+ P3s+ P3+ Ps=2,
> psP=o. (3.27)
j

Once four pointsSY on # are chosen, the ‘probabilitie$p;} are not independent To
see this, consider the tetrahedron for wh@h are the vertices. If this tetrahedron does
not contain the origin, thep;; p;SY = 0 has no solution with nonnegatiy@;}. If it
contains the origin, then there exits a solution and thetismius ‘essentially’ unique by

Caratheodory theorem.

The condition}}; p; = 2 comes into play in the following manner. Suppose we have a
solution to}}; p; S¥ = 0. Itis clear thatp; — p; = ap;, j = 1,2,3,4, with no change
in SO’s, will also be a solution for anyj{independentp > 0. It is this freedom in
choosing the scale parametethat gets frozen by the conditidn; p; = 2, rendering the

association between tetrahedra and solutions of the $air)(unique.

We thus arrive at a geometric understanding of the manifolédigrank-one) four-element
POVM's, even though we would need such POVM'’s only when we go d&{siates.

This is precisely the manifold of all tetrahedra with vericen®, and containing the
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centre in the interior ofP. We are not considering four-element POVM'’s wh&@é are
coplanar with the origin of?, because they are of no use as optimal measurements. It
Is clear that three element rank-one POVM’s are similarlgirabterized, again by the
Caratheodory theorem, by triplets of points®rtoplanar with the origin of?, with the
requirement that the triangle generated by the tripletaiostthe originin the interior.
Further, it is trivially seen in this manner that 2-elemearik-one POVM'’s are von Neu-
mann measurements determined by pairs of antip88a on #, i.e., by ‘diameters’ of

P. m

The correlation ellipsoid of aX-state (as a subset of the Poincaré sphere) tasxa,
symmetry generated by reflections respectively about theard y-z planes. We shall
now use the product of these two reflectionsz@tation or inversion about the z-axis—

to simplify, without loss of generality, our problem of apization.

Proposition: All elements of the optimal POVM have to necessarily cquoesl to Stokes
vectors of the fornSy(1, siné, 0, coss)’.

Proof: SupposeN = {wi, wy, - -+, wy} IS an optimal POVM of rank-one elements (we
are placing no restriction on the cardinalikyf A, but rather allow it to unfold naturally
from the analysis to follow). And lefps, o5, -+ . pi} be the corresponding conditional
states, these being points on the boundary of the correlalipsoid. Letw; andﬁf
represent, respectively, the imageswgf ﬁf under z-rotation about the z-axis (of the
input Poincaré sphere and of the correlation ellipsoid)ollows from symmetry that
N = {1, Wy, -+, Wy} toO is an optimal POVM. And so is aIsNU/V, where we have
used the decorated symbigl rather than the set union symbl] to distinguish from
simple union of sets: iBy(1l + o3) happens to be an elemenf of N, thend; = w;
for this element, and in that case this should be ‘included’ iV (J A not once but

twice (equivalently its ‘weight’ needs to be doubled). The samasateration holds iV

includesw; andos wj o3.
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Our supposed to be optimal POVM thus comprises pairs of elesag, ©; related by
inversion about the z-axisw;"= o3 wjos. Let us consider the associated conditional
state:bpf‘, 5? on the (surface of the) correlation ellipsoid. They haventobal z-coordinate
z;. The section of the ellipsoid (parallel to the x-y planej atz; is an ellipse, with major
axis alongx (recall that we have assumed, without loss of generaljty a), andp].“
andﬁf are on opposite ends of a line segment through the ceptrethe ellipse. Let
usassumehat this line segment is not the major axis of the ellipse z;. That is, we

assumef, f)JA are not in the x-z plane.

Now slide (only) this pair along the ellipse smoothly, kegpihem at equal and opposite
distance from the z-axis until both reach opposite endsefrthjor axis of the ellipse, the
x-z plane. Itis clear that during this process of slidpfg[”)’j‘ recede away from the centre
of the ellipse and hence away from the centre of the Poingarérs itself. As a result
S(p}) decreases, thus improving the valueSjf, in (1.57). This would have proved that
the POVMA is not optimal, unless our assumption tbéif)‘f are not in the x-z plane is

false. This completes proof of the propositian.

This preparation immediately leads to the following impott result which forms the

basis for our further analysis.

Theorem 8 : The problem of computing quantum discord for X-states isadblpm of

convex optimization on a plane or optimization over a singlgable.

Proof: We have just proved that elements of the optimal POVM comejew of the
Z, % Z> symmetry ofX-states, in pairSy(1, +sing, 0, cosd)’ of Stokes vectors);, @;
with 0 < # < n. The corresponding conditional states come in ga;h;sf)f =1/2(1+

Xjo1 + Zjo3). The two states of such a pair of conditional states aresaddime distance

(7)) = 2+ & - (3 - 28/ (3.28)

from the origin of the Poincaré sphere, and hence they hawvesdme von Neumann
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entropy

f(z) = Sx(r(z)).

1+ 1+r 1-v 1-7r

Sz(r):—Tfog2 > T % tog, >

(3.29)

Further, continuing to assume without loss of generaljty a,, our convex optimization
Is not over the three-dimensional ellipsoid, btfeetively aplanar problem over the x-
z elliptic section of the correlation ellipsoid, and henke bptimal POVM cannot have
more that three elements. Thus, the (Stokes vectors of gteha POVM elements on

the B-side necessarily have the form,

1% = (2py(6)(1,0,0,1)", 2p.(6)(1, + sinb, 0, — cosh) "},
cosd

Trcoss M=

Po(0) = 0<6<n/2 (3.30)

1
2(1+ cosh)’

The optimization itself is thus over the single variablaa

Remark: It is clear thatd = 0 andd = /2 correspond respectively to von Neumann
measurement along z and x, and no other von Neumann measurgatse included in
Ily. EveryIl, in the open interval < 6§ < n/2 corresponds to genuinethree-element

POVM.

The symmetry considerations above do allow also three-@i¢ePOVM’s of the form
% = {2py(6)(1,0,0,-1)", 2pa(6)(1, + sin6, 0,cos)"}, 0 <6 < /2, (3.31)

but such POVM'’s lead to local maximum rather than a minimunsfy and hence are of

no value to usm
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Figure 3.2: Showing the conditional states correspondrihe 3-element measurement
scheme 0f3.30).

3.6 Computation of S2

min

A schematic diagram of the 3-element PO\H\g” of Eq. 3.30 is shown in Fig3.2 The
Bloch vectors of the corresponding conditional statsp5, o5 at the output are found

to be of the form

(0,0, z+a)",(x(2), 0, 2", (-x(2), 0, 27,

XD = S - -2 (3.32)

For these states denote13 in Fig.3.2the weights should be chosen to realize as con-
vex sum the state | (the image of the maximally mixed inputpséhBloch vector is
(0,0,z)". The von Neumann measurements along the z or x-axis condspspectively

toz =z — a,0rz. Using Egs.8.29, (3.29, the expression fo8”(2) is thus given by
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SN2 = p@ f(z + &) + PA2) (2,

2 -2 +a,-7
M@ =2 p@) == |

I B (3.33)
Ze+a,—2 Zo+a,—2

The minimization ofS*(2) with respect to the single variabieshould giveS2. . It may
be noted in passing that, for a given I®ythe three-element POVM parametrizedzig

of no value in the present context for z.

For clarity of presentation, we begin by considering a dpeexample &, z., z) =
(0.58, 0.4,0.6). The relevant interval for the variabten this case is4, — a,, c+ a,] =
[-0.18,0.98], and we shall examine the situation as we \ayor fixed @z, z,z). The
behaviour ofSA(2) for this example is depicted in Fig.3, wherein each curve in the
(z S”(2) plane corresponds to a chosen valuagfand the value oé, increases as we
go down Fig3.3. For values ofa, < a)(a,, z), for somea)(a;, z) to be detailed later,
SA(2) is seen to be a monotone increasing functiom, @nd so its minimun$. obtains

at the ‘lower’ end poink = z, — a, = —0.18, hence the optimal POVM corresponds to the

vertical projection or von Neumann measurement along tagiz- The curve marked 2

corresponds tay = aY(a,, Z;) [which equals (641441 for our example].

Similarly for values of, > a!(a;, ), S*(2) proves to be a monotone decreasing function
of z, its minimum therefore obtains at the ‘upper’ end point whig z, and notz. + a,
[recall that the three-element POVM makes no sense $og |; hence the optimal POVM
corresponds to horizontal projection or von Neumann measent along x-axis. It will
be shown later that bot/ (a;, z.), a- (a;, z;) do indeed depend only @, z. and not org.
Both are therefore properties of the ellipsoid : all stateth whe and the same ellipsoid

will share the samay(a,, z), a-(a,, z).

Thus, it is the regiom (a,, z.) < ax < a(a,, z) of values ofa, that needs a more careful
analysis, for it is only in this region that the optimal mea&snent could possibly corre-
spond to a three-element POVM. Clearly, this region in thesd correlation ellipsoids

is distinguished by the fact th&"(z) has a minimum at some value= z, in the open
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Figure 3.3: Showind*(2) for various values ofy labelled in increasing order. The
line markedz denotesz = z. A three-element POVM scheme results for values of
ax € (@/(az, z), a(a, z)) [the curves (2) and (4)]. For values af < a"(a,, ) [example

of curve (1)], the von Neumann projection along the z-axihéoptimal and for values
of a, > a'(a,, z) [example of curve (5)], the von Neumann projection along xhaxis

is the optimal. The optimat = 7, is obtained by minimizing*(2) (marked with a dot).
SA(2) for z> z is not meaningful and this region of the curves is shown wétshed lines.

In this example 4, z.) = (0.58,0.4,0.6). Forz, = 0.6, a three-element POVM results for
(red) curves between (2) and (3).
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interval @ — a,, z. + a,). Fora, = aY(a,, z;) this minimum occurs aty = z — a,, moves
with increasing values ad, gradually towards, + a,, and reacheg + a;, itself asay

reaches!! (a;, z).

Not only this qualitative behaviour, but also the exact eadtizy(a,, z., a) is independent
of z, as long az, # 0. Let us evaluatey(a,, Z,, ay) by looking for the zero-crossing of

the derivative functiomlS*(z)/dzdepicted in Fig3.4. We have

dsh2 _ .
Gz - (et a—2)G(a e % 2),
Glee a0 %i2) = o (% + 4~ ez - 2/ - DX(2)]
—[f(z +a) - f(2]),
1 1+r(2
X(2) = T(Z)é’og2 10| (3.34)

and we need to look fary that solves5(a,, ay, Z.; z)) = 0. The reader may note that
does not entethe functionG(a,, ay, Z.; Z) defined in Eq.8.34), showing that, is indeed
independent of, as claimed earlierz, is a property of the correlation ellipsoid; all states

with the same correlation ellipsoid have the same z

Let us focus on the two curves (a,, z), a- (a,, z;) introduced earlier and defined through

ay(a,z) : Ga,ay,z;z—a,) =0,

The curvea)(a,, z;) characterizes, for a givera£ z.), the value ofa, for which the first
derivative of SA(2) vanishes atz = z. — a, (i.e., 2 = z - &,), so that the vertical von
Neumann projection is the optimal POVM for @} < aY(a,, z). Similarly, the curve

all(a,, z.) captures the value @, for which the first derivative 08(2) vanishes at =
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-0.2

Figure 3.4: ShowinglS*(2)/dz for various values o#, labelled in increasing order. A
root exits for values ofy € (a)(a,, z), 8 (a,, z.)) [between curves (2) and (4)]. For values
of a, < a¥(a,, z) anda, > a"(a,, ), there is na, [examples are curves (1) and (5)].
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Z + a,. Solving for the two curves in terms af andz. we obtain, after some algebra,

ay(az z) = \/ Mz —al) ~ Mz v a) a(z. — ay),

2X(|z - &)
H _ (z +a,)
(@ %) = oG v a) - Xz + &)
X [ (2 - a)X(z + &) + 28,Y(z + &) — VW,
1
Y@= ety
W = X(Z + a)[(Z — 3)*X(Ze + &) + 48,2.Y(Z + &7)]. (3.36)

These curves are marked (1) and (2) respectively indg.Two aspects are of particular

importance :

(i) a(as, z) = a/(a, z), the inequality saturating if and only # = 0. In particular
these two curves never meet, the appearance irBEgotwithstanding. It is to
emphasize this fact that an inset has been added to this .figure straight line
ay = a, marked (3) in Fig3.5, shows that(a,, z) > a,, the inequality saturating

if and only if z. = 0.

(ii) Itis only in the ranges)(a,, z) < ay < a(a, z;) that we get a solutiom,

G(azax2z;20) =0, -3, <% <Z+a (3.37)

corresponding to potentialthree-element optimal POVM fmome Xstate correspond-
ing to the ellipsoid under consideration; and, clearly, dpgimal measurement for the

state willactuallycorrespond to a three-element POVM only if

zZ > 2. (3.38)

If z < zy, the optimal measurement corresponds to a von Neumanrcpoojelong the
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Figure 3.5: Showing the various measurement schemes asliee (thea, — a, plane)

of parameter space (of correlation ellipsoids) with= 0.4. We see that only for a tiny
wedge-shaped region markHé?), the region betweea’(a,, z;) (1) anda" (a,, z) (2), one
can expect a 3-element POVM. Region above (2) correspondv@o &leumann mea-
surement along the x-axis and the region below curve (1esponds to a von Neumann
measurement along the z-axis. Curves marked (4) depict tvedaoy of allowed values
for a;, ax. The curve (3) is the lin@, = a,. The inset shows curves (1), (2) and (3) for
ay € [0.2,0.21].
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Figure 3.6: Showing(a,) for decreasing values @ from left to right. The first curve
corresponds ta, = 0.95 and the last curve i = 0.1. We see that size of the ‘wedge’-
shaped region (Fig.5) first increases and then decreases with increaging

x-axis, and never the z-axis.

We also note that the range of valuesagffor a fixed @,, z.) where the potential three-
element POVM can exist increases with increasang Let us define a parametéras
6(as, z) = all(a,, z) — aY(a,, z) which captures the extent of region bounded by curves
(1) and (2) in Fig3.5. This object is shown in Fig.6. We see that the range of values
of a, for which a three-element POVM exists first increases witlieasingz. and then

decreases.

An example We now evaluate quantum discord for a one-parameter favhgyates we
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construct and denote fd). The Mueller matrix associated with{d) is chosen as::

1 0 0 y
0 a(l-y?)L2 0 0
M(a) = S , (3.39)
0 0 059(1 - y?)¥/2 0
05 0 0 058+ 0.4y

wherea € [0.59,0.7] andy = 0.1/0.58. The ellipsoid parameters for our class of states
is given by @y, a,, a,, Z., z) = (a,0.59,0.58,0.4,0.5). The class of statesftir only in the
parametel, which changes as the parameteis varied in the chosen interval. Using
the optimal measurement scheme outlined above and in theregection, we compute

SA

min

and quantum discord. The values are displayed inF=ijin which S%. is denoted
by curve (1) and quantum discord by curve (4). An over-edimneof quantum discord
by restricting to von Neumann measurements along x or zisuglsown in curve (3) for
comparison with the optimal three-element POVM. The poirddaotes the change in
the measurement from z-axis projection to a three-elem@MiMPand point F denotes a

change from the three-element POVM scheme to the x-axis wanmmdnn measurement.

This transition is clearly shown in Fi§.8 We see that had one restricted to only the von
Neumann measurement along the z-axis or the x-axis, onedvadoiéin a ‘kink’ in the
value for quantum discord. Whereas, the optimal three-eléseheme returns a gradual
change in the value of quantum discord as we change the pamean@he curves (3) and
(4) will only merge for the value, = 0 and this aspect will be detailed in a later Section.
This behaviour of quantum discord is generic to any non-zahee of the centez, of the

correlation ellipsoid.

Purification and EoF: The Koashi-Winter theorem or relatio242 shows that the clas-

sical correlation of a given bipartite stagigg’is related to the entanglement of formation
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Figure 3.7: ShowingS/, [curve (1)] and quantum discord [curve (4)] for a one-
parameter family of states(d). The ellipsoid corresponding to(d) has parameters
(ax, ay, 8, %, 2) = (a,0.590.580.4,0.5) wherea € [0.59,0.7]. Point E denotes the
change of the optimal measurement from a von Neumann measnotelong the z-axis
to a three-element POVM, while point F denotes the changdefoptimal measure-
ment from a three-element POVM to a von Neumann measureroeng e x-axis, with
increasing values of the parameter The curve (3) (or (2)) denotes the over(under)-
estimation of quantum discord (&, ) by restricting the measurement scheme to a von

Neumann measurement along the z or x-axis. This aspectadyclarought out in the
following Fig.3.8.

0.404
0.402
0.400

0.398

0'3%6.3640 | | | | 0.(;45 | | | | 0.(;50 | | | | O.(‘355

Figure 3.8: Showing quantum discord [curve (4)] with incieg a, when there is a
transition of the measurement scheme from the von Neumaasunement along the z-
axis to the three-element scheme (E) and finally to the vomideum measurement along
the x-axis (F). The over-estimation of quantum discord gicted in curve (3) where the
measurement scheme is restricted to one of von Neumann ree@suis along the z or
x-axis. We see a gradual change in quantum discord in comtréige sharp change in the
restricted case.
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of the ‘complimentary’ statpca. That is,
C(oaB) = S(oa) — Er(Oca)- (3.40)

Comparing with the definition 2. in Eq. (1.57), we see that

Stin(0a8) = Er(dcn). (3.41)

In other words, the Koashi-Winter relation connects thenimum average) conditional
entropy post measurement of a bipartite stajgtd the entanglement of formation of its

complimentary statpca defined through purification @fag to pure stat@pc.ag).

The purification can be written d¢c.ag) = Z?zo Vaile) ® ), {lej)} being orthonormal
vectors in the Hilbert space of subsystem C. Now, the compliarg statgoca results

when subsysterB is simply discarded :

pca = Tra[léc.aeX{éc:asl]

3
= > VAiAdeXed @ Ty dl. (3.42)

j.k=0

It is easy to see that for the case of the two qubstates, the complimentary state be-
longs to a 2x 4 system. Now tha/. is determined for alX-states by our procedure,
using Eqgs.8.17), (3.18, (3.19 one can immediately write down the expressions for the
entanglement of formation for the complimentary statesesponding to the entire 11-
parameter family ofX-states states using the optimal measurement schemeealitin
Sec3.5. We note in passing that examples of this connection for #réiqular cases

of states such as rank-two two-qubit states and Bell-misthigve been earlier studied

in [243 244
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3.7 Invariance group beyond local unitaries

Recall that a measurement element (on the B side) need notrbelmed. Thus in
constructing the correlation ellipsoid associated withva-tjubit stateoag, we gave as
input to the Mueller matrix associated withg an arbitrary four-vector in the positive
solid light cone (corresponding to an arbitrary 2 positive matrix), and then normalized
the output Stokes vector to obtain the image point on theetaiion ellipsoid. It follows,
on the one hand, that all measurement elements whitdr liom one another by positive
multiplicative factors lead to the same image point on theeatation ellipsoid. On the
other hand it follows that pag has the same correlation ellipsoida@g, for alla > 0. As
one consequence, it is not necessary to normalize a Muedaixmo my, = 1 as far as

construction of the correlation ellipsoid is concerned.

The fact that construction of the correlation ellipsoid ldgp the entire positive solid light
cone of positive operators readily implies thia¢ ellipsoid inherits all the symmetries of
this solid light cone These symmetries are easily enumerated. Denoting, by, the

components of a vect@y) in Bob’s Hilbert spacég, a nonsingular linear transformation

Y1 . A 3 Y1
Y2 v, W

J

(3.43)

on Hpg corresponds on Stokes vectors to the transformédietd| L whereL is an element
of the Lorentz groufs 03, 1), and the factojdet]| corresponds to ‘radial’ scaling of the
light cone. Following the convention of classical polatiaa optics, we may call the
Jones matriof the (non-singular) local filtering2B1, 233 234. When (def))"*2J = L

is polar decomposed, the positive factor corresponds ® lpoosts o5 (3, 1) while the
(local) unitary factor corresponds to the ‘spatial’ ravatisubgroupS Q(3) of SQ3, 1)
[231,233 234. It follows that restriction of attention to the secti®3 = 1 confines the
invariance group fron® (3, 1) to S 3).

147



The positive light cone is mapped onto itself also underrisiom of all ‘spatial’ coor-
dinates: §0,S) — (So,—S). This symmetry corresponds to the Mueller maffix=
diag(1 -1, -1, -1), which is equivalent td, = diag(1 1, -1, 1), and hence corresponds
to the transpose map onX22 matrices. In contradistinction 8©Q(3, 1), Ty acts directly
on the operators and cannot be realized or lifted as filtesmglilbert space vectors; in-
deed, it cannot be realized as any physical process. Evétrremains a symmetry of the

positive light cone and hence of the correlation ellipstself.

The full invariance grougz of a correlation ellipsoid thus comprises two copies of the

Lorentz group and the one-parameter semigroup of radidhgday factora > 0:
G={5031), TSA3,1) ~ SQ3,1)T, a}. (3.44)

All Mueller matricesMMg with Mg € G and fixedM correspond to one and the same
correlation ellipsoid. In what follows we examine brieflyetimanner in which these

invariances could be exploited for our purpose, and we begnS O3, 1).

The Jones matrid = expluos/2] = diagE?, e+/?) corresponds to the Lorentz boost

1 0 0 t,

0 )t 0 0
Mo(u) = G, (3.45)
0 0 @) 'o

t 0 0 1

along the third spatial direction on Stokes vectors. Hgré, stand respectively for cogh
and tantu. To see the fect of this boost on the correlation ellipsoid, consider aeNéx

matrix of the form 8.12) with myz = 0 so thatm; = ay, Mgz = a,, My = +a, andz; = M.
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Absorbing the scale factay, in Eq. 3.49 into the solid light cone, we have

1 0 0 t,
0 my1/C 0 0
M Mo(u) = e . (3.46)
0 0 M2/ C, 0
| Mgo + Mast, 0 0 mMgz+ Mgty |

With the help of 8.26 we immediately verify thaty, a,, a,, and z. associated with
MMg(u) are exactly those associated withwith no change whatsoever, consistent with
the fact that we exped?l and MMy(u) to have the same correlation ellipsoid. Ouajy
the image of identity, changes froms, to mgo + ms3t, : ast, varies over the permitted
open interval £1, 1), the point | varies linearly over the open interval € a,, Z. + &,).
Thus,it is the Lorentz boost on the B side which connects statesigavie and the same

correlation ellipsoid, but dferent values of,z

As an illustration of this connection, we go back to FHd and consider a correlation
ellipsoid in the interior of the wedge region between cur@@®sand (2) of Fig3.5. We
recall that a point in this region is distinguished by the that for states corresponding
to this point the optimal POVM couldotentiallybe a three-element POVM, but whether
a three element POVM or a horizontal projection actuallynsuout to be the optimal
one for a state requires the value Hfas additional information on the state, beyond
the correlation ellipsoid. The behaviour of classical etation, quantum discord, and
mutual information as the Lorentz boost on the B side sweepsross the full interval
(z. — a5, 2. + &,) Is presented in Fig.9. We repeat that the entire Fi§ 9 corresponds to

one fixed point in Fig3.5.

Remark: Any entangled two-qubit pure state can be written as

[)ag = (L® J) [¥max)s (3.47)

149



1.0p

Z

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.9: Showing mutual information (1), quantum disf@) and classical correlation
(3) as a function o for the ellipsoid parametersy, z;, a;) = (0.58,0.4,0.65) andz, =

0.305919. Forz < z, the optimal measurement is a von Neumann measurement along

the x-axis, and fog, > z; the optimal measurement is a three-element POVM.

where the Jones matrixis non-singular andl/max is a Bell state. Since the associated
S 3,1) does not fiect the correlation ellipsoid, the ellipsoid correspogdio |y/)ap IS
the same as that of the Bell state, and thereby it is the fulllBEghere. Hences’,

trivially evaluates to zero. So we see that for all two-qubite state$(oag) = 2C(0ag) =

2D(ppB) = 2E(pap).

Remark: It is useful to make two minor observations before we leegaresent discus-
sion of the role ofS(3,1). First, it is obvious that a bipartite operajoy’is positive if
and only if its image under any (nonsingular) local filterihg positive. This, combined
with the fact that the location of inside the correlation ellipsoid can be freely moved
around using local filtering, implies that the locationzphas no role to play in the char-
acterization of positivity ojpag given in .15, (3.16. Consequently, in forcing these
positivity requirements on the correlation ellipsoid we &ee to move, without loss of

generality, to the simplest case corresponding to z; or myz = 0.
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Secondly, since determinant of &3, 1) matrix is positive, we see that local filtering
does not ffect the signature of dst, and hence it leaves ufiacted the signature of the

correlation ellipsoid itself Q* andQ~ remain separately invariant undef3, 1). m

The case of the spatial inversidn to which we now turn our attention, will prove to be
quite diferent on both counts. It is clear that thigeet of To : M — MT, on anX-
state Mueller matrix is to transformy, to —my,, leaving all other entries d¥ invariant.
Since the only waym,, enters the correlation ellipsoid parameters3r2f is through

ay = [my, it follows that the correlation ellipsoid itself is leftvariant, but its signature
getsreversed : d&T, = —detM. This reversal of signature of the ellipsoid has important

consequences.

As explained earlier during our discussion of the rol€ &3, 1) we may assume, without
loss of generalityz, = z; or, equivalentlymgz = 0. The positivity conditions3.15), (3.16)

then read as the following requirements on the ellipsoidumeters :

(1+a)* - % > (ax+ &)’ (3.48)

(1-a)*-Z > (ax—a)% (3.49)
in the caseM € Q*, and

(1+a)*-Z > (ax—a)% (3.50)

(1-a)*-Z > (ax+ &)’ (3.51)

in the caseM € Q™. But (3.50 is manifestly weaker thar3(51) and hence is of little

consequence. The demand tMiE too correspond to a physical state requires

(1+a)*-Z > (ax—a)% (3.52)

(1-a)*-Z > (ax+ &)’ (3.53)
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in the caseM € Q*, and

(1+a)°-Z > (ax+ &) (3.54)

(1-a)*-Z > (ax—a)% (3.55)

in the case oM € Q™.

Now, in the case oM € Q7, (3.52) is weaker than3.48 and hence is of no consequence,
but (3.53 is stronger than and subsumiesth (3.48 and @3.49. In the caseM € Q-
on the other hand botB(54) and @3.55 are weaker than3(51). These considerations

establish the following:

1. If M e Q7, its positivity requirement is governed by the single cdiodi (3.51) and,

further, MT, certainly corresponds to a physical stat€in

2. If M e Q*, thenMT, € Q is physical if and only if the additional conditio®.63

which is the same ag8(51]) is met.

SinceTy is the same as partial transpose on the B side, we conclutie toarelation el-
lipsoid corresponds to a separable state if and onlg.51) is met, and it may be empha-
sised that this statement is independent of the signatuhe@lipsoid. Stated dierently,
those correlation ellipsoids 2" whose signature reversed version are not preseqt in
correspond to entangled states. In other words, the settahgledX-states constitute

precisely theQ~ complement of2".

Finally, the necessary andffigient condition (1- a,)*> — Z2 > (ax + &,) for separability
can be used to ask for correlation ellipsoid of maximum vauimat corresponds to a
separable state, for a given In the casez, = 0, it is easily seen that the maximum

volume obtains foe, = a, = a, = 1/3, and evaluates to a fractiofZl7 of the volume of
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the Bloch ball. Forz, # 0, this fractional volumé&/(z.) can be shown to be
V(z) = 5i4(2 — 1+ 3221+ 1+ 32), (3.56)

and corresponds to

_ 2 2)11/2 _ 2
o= a = [(2- 1+ 32‘::)))(\1/; v1+ 32)] Ca- 2 ;+ 320. (3.57)

It is a monotone decreasing functionzf ThusQ~ has no ellipsoid of fractional volume

> 1/27.

Remark: Itis clear that anyX-state whose ellipsoid degenerates into an elliptic dise ne
essarily corresponds to a separable state. THisc®nt separability condition may be
contrasted with the case of discord wherein the ellipsogitbaloubly degenerate into a

line segment for nullity of quantum discord to obtain

3.8 Comparison with the work of Ali, Rau, and Alber

In this Section we briefly contrast our approach and restuttstwose of the famous work

of Ali, Rau, and Alber (ARA) P20, whose principal claim comprises two parts:

C1: Among all von Neumann measurements, either the horikontae vertical projec-
tion always yields the optimal classical correlation andrfum discord.

C2: The values thus computed remain optimal even when geR&%M'’s are consid-
ered.

As for the second claim, the main text of ARA simply declareséPRppendix shows how

we may generalize to POVM to get final compact expressiortsatigasimple extensions
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of the more limited von Neumann measurements, theyadging the same valuier the
maximum classical correlation and discord.” The Appentliglf seems not to do enough
towards validating this claim. It begins with “Instead ofrvbleumann projectors, con-
sider more general POVM. For instance, choose three ortf@dgmit vectors mutually at

120,

%12 = [2(-2+ V3%)/2], (3.58)

and corresponding projectors-.” [It is not immediately clear how ‘orthogonal’ is to
be reconciled with ‘mutually as 120]. Subsequent reference to their Eq. (11) possibly
indicates that ARA have in mind two more sets of suictee orthogonal unit vectors
mutually at12@ related t08.58 throughS U(2) rotations. In the absence of concrete
computation aimed at validating the claim, one is left to demif the second claim (C2)

of ARA is more of an assertion than deduction.

We now know, however, that the actual situation in respethefsecond claim is much
more subtle: the optimal three-element POVM is hardly of tttmee orthogonal unit
vectors mutually at2@ type and, further, when a three-element POVM is requireti@s t
optimal one, there seems to be no basis to anticipate thatuldayield ‘the same value

for the maximum classical correlation and discord’.

Admittedly, the present work is not the first to discover tARA is not the last word on
guantum discord oK-states. Several authors have pointed to examplsstates which
fail ARA [221,222 225 227-229,245. But these authors have largely been concerned
with the second claim (C2) of ARA. In contradistinction, oumsaerations below fo-
cuses on the first one (C1). In order that it be clearly undedsts to what the ARA

claim (C1) is not, we begin with the following three statensent

S1: If von Neumann projection proves to be the optimal POMMntthe projection is

either along the x or z direction.
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S2: von Neumann projection along the x or z direction alwaysgs to be the optimal

POVM.

S3: von Neumann projection along either the x or z directi@mves to be the best among

all von Neumann projections.

Our analysis has confirmed that the first statement (S1) iglatlesy correct. We also
know that the second statement (S2) is correct except foryatiey fraction of states

corresponding to the wedge-like region between curvesnd)2) in Fig.3.5.

The first claim (C1) of ARA corresponds, however, to neitherhwse two but to the
third statement (S3). We begin with a counter-example togtbat this claim (S3) is
non-maintainable. The example corresponds to the ellipsarametersa, a,, a,, z;) =
(0.7809360.6165280.771830.122479). These parameters, together with 0.3, fully

specify the state in the canonical form, and the correspaniliueller matrix

1 0 0 023

0 076 0 O
M = . (3.59)
O 0 06 O

03 0 O a8

The parameter values verify the positivity requirementsirttier, it is seen thaMm e
Q* and corresponds to a nonseparable state. The x-z sectibe obtrelation ellipsoid

corresponding to this example is depicted in Bid.Q

Let us denote b/ (6) the average conditional entropy post von Neumann measurem

1, parametrized by angle:

I, = {(1, sing, 0, cosh)’, (1, —sing, 0, — cos@)T}, 0<6<n/2 (3.60)
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Figure 3.10: Showing the x-z cross-section of the ellipssdociated with the Mueller
matrix in (3.59.

It is clear that the output states are at distandé} r'(6) with respective conditional

probabilitiesp(6), p’(6):

V(my sing)? + (Mgg + Mgz COSH)?

r(6) = 11 ;
Moz COSH
: V(mu1 SiNG)2 + (Mg — My COSH)2
r(6) = 1 :
Moz COSH
p(d) = w, p'(6) = w_ (3.61)
ThusS/,(0) evaluates to
SING) = 5 [Sar () + Salr ' (9)
+ Mg COSA (Sa(r (6)) — Sor ' (0)))] (3.62)

The behaviour 0B/, (6) as a function of) is shown in Fig3.11, and it is manifest that

the optimal von Neumann obtaingither atd = 0 nor atz/2, but atd = 0.7792radians
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0.44132¢

Figure 3.11: Showing the conditional entrof, (¢) resulting from von Neumann mea-
surements for the example i8.69).

More strikingly, it is not only that neithet = 0 orz/2 is the best, but both are indeed the
worst in the sense that von Neumann projection along any dilection returns a better

value!

We know from our analysis in Secti@é6 that if the von Neumann measurement indeed
happens to be the optimal POVM, it can not obtain for any aatier tharg = 0 orx/2.
Thus, the fact that the best von Neumann for the present deasopresponds to neither
angle is already a sure signature that a three-element PQ\Neioptimal one for the
state under consideration. Prompted by this signature meed the state under consid-
eration in a one-parameter family with fixea,(a,, z;) = (0.6165280.771830.122479)
andz, anday varying over the range [@803 0.7816]. The results are shown in F&12
Curve (1) and curve (2) correspond respectively to the hot&and vertical von Neu-
mann projections, whereas curve (3) corresponds to thenapthree-element POVM.
We emphasise that curve (3) is not asymptotic to curves (12)rbut joins them aG
andE respectively. Our example of ER.69 embedded in this one-parameter family is

highlighted by point#, B, F. This example is so manufactured &84} computed by the
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Figure 3.12: Showing the entropy variation with respect w@riation of a, in
[0.780320.781553], with &y, a,, ;) fixed at (06165280.771830.122479). Curve (1)
depictsS;}, for von Neumann measurement alahg r/2, the constant line [curve (2)] to
a von Neumann measurement alahg 0, and curve (3) t&/, resulting from the three
element POVM scheme. The example iB8.59) corresponds ta@, = 0.780936. The
inset compared the various schemes of the example. &®9)( D refers to the a measure-
ment restricted only to the von Neumann projection along z-axis, B to the best von

Neumann projection, and F to the optimal three-element oreaent.
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Scheme Elements Optimal value SA
von Neumann oy Or oy equal 0.441344
von Neumann N, 0€[0,n/2] | Gopt=0.779283 | 0.44132

9 )
3-element POVM | T, 0€[0,7/2] | Oop= 102158 | 0.441172

6 El

Table 3.1: Showing a comparison of the von Neumann and tlee#blement POVM
schemes for the example in E§.%9.

horizontal projection equals the value computed by theicadrprojection, and denoted
by pointD. The pointB corresponds t&/), evaluated using the best von Neumann, Bnd
to the one computed by the (three-element) optimal POVMaly tve noted thad andB

are numerically quite close as highlighted by the inset. Aarical comparison of these

values is conveniently presented in Tablé

It is seen from Fig3.12that vertical von Neumann is the optimal POVM upto the point
E (i.e. fora, < 0.780478), from E all the way to G the three-element POM&P is the
optimal one, and beyond Gy > 0.781399) the horizontal von Neumann is the optimal
POVM. The continuous evolution of the parameten Hf) of Eq. 3.30 as one moves
from E to G is shown in Fig3.13 Shown also is the continuous manner in which the
probability pg(0) in Eg. (3.30 continuously varies from.B to zero asy varies over the

range from E to G.

In order to reconcile ARA's first claim (S3 above) with our coemexample we briefly
reexamine their very analysis leading to the claim. As wél slee the decisive stage of
their argument is symmetry-based or group theoreticahartdt is therefore unusual that
they carry around an extra baggage of irrelevant phase je&easn not only in the main
text but also in the reformulation presented in their Appenthe traditional first step in
symmetry-based approach is to transform the problem tonitplest form (often called
the canonical form) without loss of generality. Their as&ybeings with parametrization

of von Neumann measurements as [their Eq. (11)]

B = VILV', i=0,1 (3.63)
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Figure 3.13: Showing the optimél= g,y of I [curve(1)] resulting irSA.  depicted as

curve (3) in Fig3.12 Curve (2) shows the probability (scaled by a faé:ntlgr of By(Zop)
of the conditional state corresponding to input POVM elen#y0, 0, 1).

wherell; = |i)i| is the projector on the computation stéipec {|0),|1)} andV € SU(2).
With the representatio = tlL + iy.&*, t> + y2 + y3 + y3 = 1 they note that three of these
four parametersg yi, Y», y3 areindependentinspired by their Ref. [15] (our Ref.2[L9),
ARA recastt, y1, Y», y3 into four new parameterns, n, k, £ and once again emphasize that
k, m,n are threendependenparameters describing the manifold of von Neumann mea-

surements.

Remark: It is obvious that every von Neumann measurement on a geilfutily spec-
ified by a pure state, and hence the manifold of von Neumansuneaents can be no
larger thanS?, the Bloch sphere. Indeed, this manifold is even ‘smallet’caincides
with the real projective spacRP? = S?/Z, of diameters inS?, since a pure state and
its orthogonal partner defirene and the sameon Neumann measurement. In any case,

it is not immediately clear in what sense could this two-rf@dibe described by three
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‘independent’ parameterm.

Remark : We should hasten to add, for completeness, that ARA intredubsequently,

in an unusually well cite@rratum [246], another identity

me + n? = kim (3.64)

which they claim to be independent Bf+ y7 + y5 + y3 = 1, and hence expect it to
reduce the number of independent variables parametriagganifold of von Neumann
measurements from three to two. To understand the strucfuhgs new identity, define
two complex numbers =t —iys, 8 = y1 + iyo. Thenk = |af?, € = |8>, m = (RexB)?, and

n = (RexB) (Imap) so that the ARA identity Eq3.64) reads

(RenpB)* + (RenB)* (Imap) = |ap*(RenB)?, (3.65)

showing that it is indeed independentiof ¢ = 1 as claimed by ARA. Indeed, it is simply
the Pythagorean theorga? = (Rez)? + (Imz)? valid for any complex numberpuffed up
to the appearance of an eighth degree real homogeneouslfasnnlikely that such an
universalidentity, valid for any four numbers, would ever aid in rethgcthe number of
independent parameters. Not only ARA, but also the large murabworks which cite

this erratum, seem to have missed this aspect of the ARA igi¢Btb4). m

Returning now to the clinching part of the ARA analysis, aftettiag up the expression
for the conditional entropy as a function of their indepeantdeariablesk, m, n they cor-
rectly note that it could be minimized “by setting equal toaziés partial derivatives with
respect tdk, m andn.” Rather than carrying out this step, however, they prefehats
cut in the form of a symmetry argument. ThebServéthat the problem has a symme-
try (this is the symmetry of inversion about the z-axis whied used in SectioB.5 to

simplify the optimization problem), and then use theusual symmetry argumethiat if
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a problem has a symmetry its solutionght to beinvariant under that symmetry. Ob-
viously, one knows in advance that the only von Neumann ptiojes that are invariant
under the symmetry under consideration are the verticalgyogection and the horizon-
tal projection, the latter meaning x or y-projection aceogdasa, > a, or a, > ay. This
version of symmetry argument is unusual, since the fanfidikiore version readsif a
problem has a symmetry, its solution ought to be covariantl (@ot necessarily invari-
ant) under the symmetryin any case, unless the ARA version of symmetry argument
be justified as arising from sonspecial aspecof the problem under consideration, its
deployment would amount to assuming a priori that either x-projection is the best
von Neumann; but then this assumption is precisely the cB8MRA set out to prove as

the very central result of their work.

Remark: The ARA version of symmetry argument would remain justified were the
case that the problem is expected, from other considesttorhave ainiquesolution.
This happens, for instance, in the caseofivex optimizationBut von Neumann mea-
surementslo not form a convex seind hence the ARA problem of optimization over
von Neumann measurement is not one of convex optimizatibns @emanding a unique
solution in their case would again amount to an a priori aggiom equivalent to the

theorem they set out to prove.

3.9 X-states with vanishing discord

Many authors have considered methods to enumerate theizeovdX-states 206,207,
209. Our analysis below is directly based on the very definibbmanishing discord and
hence is elementary; more importantly, it leads toeahaustiveclassification of these

states, correcting an earlier claim. Any generic two-quehdtte of vanishing quantum
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discord can be written a$ ¥

pag = UalOXOU ® piper + UAILLU L ® papee, (3.66)

with p1, p2 > 0, p1 + p2 = 1, the measurements being assumed performed on subsystem

A. We may write

R a by R a by
P1oB1 = > P2pB2 = )
b ¢ b c
@ p
Up = e SU(2). (3.67)
_ﬁ* a*

Clearly, the reduced state of subsystem B,j8s;+ P2ps2, and that ofA equaldJ A (p1/0)<0]+
P2l 1)¢1)) U;. We now combine this nullity condition with the demand thed state under
consideration be aK-state in the canonical forn3(11). From the @f-diagonal blocks of
oag We immediately see thah = a, andc; = C,. Trpag = @3+ C; + & + C; = 1 implies
a; + ¢, = 1/2 = a, + ¢,. Vanishing of the 01 and 23 elementsmag Torces the following

constraints :

by + |81, = O,

la?b, + |B1?by = 0. (3.68)

These imply in turn that eithde| = |8] = 1/ V2 orb, = b, = 0. The first case of

la| = |8 = 1/ \2 forcesb, = —b;, and we end up with a two-parameter family of zero
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discord states

) 11 0 1-a b 0
PA(a,b)=Z
0 b 1+a O
b 0 0O 1-a

1
= Zr[o-o®(70+aao®0'3+ boy ® 01] . (3.69)

Positivity of 5*(a, b) places the constrairf + b> < 1, a disc in the o ® 03,01 ® 071)

plane. The cask = 0 corresponds to the product state

1+a O

1
pB@) = 2111® (3.70)

0 1-a

If instead the measurement was performed orBBebsystem, then it can be easily seen

that similar arguments can be used to arrive at the zeromistates

l1+a O 0 b
R 11 0 1+a b 0
pPab) =g

0 b 1-a O

b 0 0 1-a

:Z[O'0®O'0+3.0'3®0'0+b0'1®0'1]. (371)

Positivity again constrainig b to the disca? + b? < 1 in the (3 ® 0, 01 ® 071) plane.

The intersection between these two comprises the one-péeafamily of X-states
. 1
OAB = Z[a'o®0'0+b0'1®0'1], -1<b<1.

(3.72)

But these areot the onlytwo-way zero discord states, and this fact is significanhen t
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light of [207]. To see this, note that in deriving the canonical fo®r60 we assumed

B # 0. So we now consider the cg8e- 0, so that 8.66) reads
pas = P1[0)0] ® pp1 + P2l1){1] ® ppo. (3.73)

The demand that this be afastate forcep g to be diagonal in the computational basis :

1

pre{Pet) = ) | P [KXK @ [€)(C. (3.74)
k,t=0

It is manifest that alX-states of this three-parameter family, determined by aibdities
{pPxe}s 2. Pre = 1 and worth detrahedronin extent have vanishing quantum discord and,

indeed, vanishing two-way quantum discord.

The intersection 0of3.69 and @3.71) given in 3.72 is not really outside the tetrahedron
(3.79 in the canonical form because it can be diagonalized by @ lagitaryU, ® Ug,

Uy =Up = exp[—i7r0'2/4]:
0o®o0p+bor1®01 > 0g®0 + boz® 0. (3.75)

Stated diferently, the family of strictly one-way zero discoXdstates in the canonical

form is not a disc, but a disc with the diameter removed.

Remark : Strictly speaking, this is just an half disc with diametemoved, as seen from
the fact that in 8.69), (3.71), and @3.72 the two statesg, b), (a, —b) are local unitarily

equivalentunde,®Ug = 03 03. B

We now consider the correlation ellipsoids associated thigise zero discord states. For

the one-way zero discord states $141) the non-zero Mueller matrix entries are
Mgo=a, My =h. (3.76)
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This ellipsoid is actually a symmetric line segment patatethe x-axis, of extent 2,
translated by extend, perpendicular to the line segment (i.e., along Zjx,y,2 =
(x,0,8)] — b < x < b}; it is symmetric under reflection about the z-axis. For measu

ments on the A side we have frord.69
My3=a, My =Dh, (3.77)

and we get the same line segment structure (recall that nowawe to consideM in

place ofM).

For the two-way zero discord stat&s{4 we have

Moz = Poo — Po1 + P1o — P11,
M3o = Poo + Po1 — P1o — P11,

Mz3 = Poo — Po1 — P1o + P11, (3.78)

corresponding to a point in the tetrahedron. We note thaatiseciated correlation el-
lipsoid is a line segment of a diametdrifted along the diameter itselfhat is, the line
segment is radial. While the extent of the line segment anghifeare two parameters,
the third parameter is the image | of the maximally mixed inpdnich does not contribute
to the ‘'shape’ of the ellipsoid, but does contribute to thepsh This three parameter fam-
ily should be contrasted with the claim a2(7] that an X-state is purely classical if and

only if pag has components alongy ® oo, o1 ® 01" implying a one-parameter family.

3.10 States not requiring an optimization

We now exhibit a large class of states for which one can wiaterdanalytic expression
for quantum discord by inspection, without the necessifyaidorm explicit optimization

over all measurements. We begin by first giving a geometritvaioon for this class of
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states. ConsideX-states for which the associated correlation ellipsoickistered at the

origin:

Mgp — Mp3lTh3 _
1- is

i.e., Mgy = MpzMsa. (3.79)

Z = 0,

This implies on the one hand that only two of the three pararmetys, Mgy, M3 are

independent. On the other hand, it implies that the prodiustg msg, Mgz is necessarily
positive and thus, by local unitary, all the three can beragslto be positive without loss
of generality. Let us takenz = sinf > 0, then we havey, = mgz sind. So, we now have

in the canonical form a four-parameter family of Mueller nies

1 0 0 sing
0 1 COSH 0 0
M(y1, 2, 3 60) = : (3.80)
0 0 v2cosf O
RE sing 0 0 Y3 |

and correspondingly a three-parameter family of corretedillipsoids centered at the ori-
gin, with principal axesdy, ay,a,) = (y1,ly2l.¥3), andz = y3 sind. We continue to

assumeys| < y.

Remark: Note that we are not considering the case of Bell-diagoraést which too
correspond to ellipsoids centered at the origin. In the Biggonal case, the point | is
located at the origin and, as an immediate consequ&igeis entirely determined by the

major axis of the ellipsoid. In the present cages y, cosd # 0, andS’, does depend
on z. Indeed, the case of Bell-diagonal states corresponds to=si@, and hence what

we have here is a one-parameter generalizamon.
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The four parameter family of density matrices correspogdinEq. 3.80 takes the form

[(1+73)(1 +sin6) 0 0 (1 + 2) oS |
1 0 (1-vy3)(1-sinf)  (y1—2) cosd 0
ply1, v2, v3; 6) = 2
0 (y1—y2) cosf (1 —y3)(1+sing) 0
| (y1+72) cosd 0 0 (1+y3)(1 - siné)|
(3.81)

The first CP condition3.15 reads

(1+ y3) = SiFO(1 + y3)* > (y1 + ¥2)* cOS 6,

i.e, yi+v>—v3<1, (3.82)

while the second CP conditioB.(L6) reads

(1-y3)? = sSiPO(1 - y3)* > (y1 — y2)? cog 6

i.e., Y1+7Y3—7Y2< 1. (383)

Recalling thaty|, < y1, these two conditions can be combined in&irggle CP condition

yi+lys—vy <1 (3.84)

Having given a full characterization of the centepédtates, we note a special property

of these states in respect of quantum discord.

Remark: As seen from Eq.3.36), the optimal POVM for a centered-state is a von
Neumann measurement since the two cua/§®,, 0) anda’(a,, 0) equala,. Therefore,

the measurement is aloxgor zaccording asy, > a, Or a, > ay.

Circular states: This special case correspondsdp = a,, i.e., settingy; = vy; in

Eqg. 3.80. For this class of states, every von Neumann measuremére iz plane (in-
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deed, every POVM with all the measurement elements lyinhénxtz plane) is equally
optimal. In other wordsl, plays no role in determining the optimal POVM for a centered

X-state.

The four eigenvalues @f(y1, v»; 0) of (3.81) are

1
4
Y= /(1 + €y1)2c02 6 + (y1 + €y2)? Sirf 6, (3.85)

i} =2 {1+eyazy},

€ being a signature.

We can explicitly write down the various quantities of irgstrin respect of the circular
stateso(y1, v2; 0). First, we note that the conditional entropy post measergns simply

the entropy of the output states that are on the circle, andehe

Shin = Sa(Me3) = Sa(y1). (3.86)

By Egs. 8.21) and 3.22, we have

1 (0(y1, ¥2; 0)) = Sa(y1 Sind) + Sy(siné) — S({4;}),
C(y1, v2; 0)) = Sa(y1 sinb) — Sa(y1),

D(o(y1, y2; 0)) = Sa(siné) + Sa(y1) — S{4;}), (3.87)

whered; = j(y1, y2; 6) are given in Eq.3.85. Finally, we note that with the local uni-
tary freedom, this 3-parameter class of states can be lifted9-parameter using local

unitaries.

Spherical states The correlation ellipsoid corresponding to these stat@ssphere with
Z. = 0. They can be obtained as a subset of circular states bgpgetti= |y,|. The ex-

pressions for the correlation are the same as those of airstates as given in EQ.87).
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We note that, the spherical states form a 2-parameter fawhigtates inside the set of
X-states. We can lift this family to a seven parameter fanfilstates, the five parameters
coming from the local unitary transformations. One paramets however lost from the

degeneracyn; = |my,| for spherical states.

Bell mixtures : The next example of a convex combination of the Bell-stat@s eonsid-

ered in R19. We can write the state as= Z‘j‘:l Pildi{e;l, 1.e.,

P1+ P2 0 0 P1— P2
0 + - 0
5= % Ps+Ps P3—Pa (3.88)
0 Ps—Ps P3+ Pa 0
P1— P2 0 0 P1+ P2
The corresponding Mueller matrix is diagonal with
Mgy = Py + P3— (P2 + Pa),
Mp2 = Pr+ Pa— (P2 + P3),
Mgz = P1+ P2 — (Ps + Pa). (3.89)

The correlation ellipsoid hag = 0, and more importantly, = 0. The optimal measure-
ment is then a von Neumann projection along the directiomefiongest axis length of

the ellipsoid.

Linear states: Another example of states for which the quantum discordosaimmedi-
ately written down are states for which x-z cross-sectiothefcorrelation ellipsoid is a

line segment along the x-axis. We denote these states as $itedes and they are obtained
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by settinga, = 0. We have

Mgz = Mo3Mo. (3.90)

As before we see that only two of them can have a negative vdiigh can be dropped by
a local unitary transformation. This gives us a four paramtztmily of states for which

the optimal measurement is the horizontal entropy. We mtaééallowing choice :

1 0 0 sing

0 +vy;cosd 0 0
M(y1, 2,73, 6) = : (3.91)
0 0 2 COSH 0

Y3 0 0 y3Sind

where we assume,| < y;. Then the CP conditions demand thatt |y,| < /1 - yg. So

we havely,| < min (y1, /1 -2 - y).

3.11 Conclusions

We develop an optimal scheme for computation of the quantiscort for anyX-state
of a two-qubit system. Our treatment itself is both compnshes and self-contained
and, moreover, it is geometric in flavour. We exploit symméedr show, without loss of
generality, that the problem itself is one @ftimization over just a single variabl& he

analysis is entirely based on the output or correlatiopsdid.

The optimal measurement is shown to be a three-element PGWikher, it emerges
that the region where the optimal measurement comprises tlements is a tiny wedge
shaped one in a slice of the parameter space. On either siliess e¥edge shaped region

one has a von Neumann measurement along the z or x axis agtitm@lapeasurement.

Not all parameters of a two-qubx-state influence the correlation ellipsoid. The parame-
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ters that influence and those which do not influence play véfgrent roles. The correla-
tion ellipsoid has an invariance group which is much largat the group of local unitary
symmetries and comprises of three components. These syieseaie the Lorentz group,
another copy of the Lorentz group obtained by the action afigpinversion, and finally,

a scale factor. An appreciation of this larger invarianaegwut to be essential to the
simplification of the present analysis. We bring out in a $arent manner how the var-
ious parameters of the ellipsoitfect the optimal measurement scheme and also provide
many examples to demonstrate the same. We also bring oudléhplayed by the partial

transpose test at the level of the correlation ellipsoicespect of entanglement.

Having set up and studied the properties of the optimal nteasent, we clearly underline
the fact that the region where the assertion oféilal. is numerically misplaced is really
tiny. But theX-states in this tiny region hatbe same symmetas those outside, perhaps
implying that if the symmetry argument of Aét al. is misplaced it is likely to be so
everywhere, and not just in this region. We bring out all thewe aspects with a useful

example.

Finally, we provide numerous examples of states for whiehghantum discord can be
computed without an explicit optimization problem. Theselude states with vanishing

discord and states whose correlation ellipsoid is centatréae origin.

Appendix : Matrix elements of p and M

Matrix elements opag in terms of the Mueller matrix elements is given by :

Moo + Moz + Mgo + M3 | Mox + iMo2 + Mgy + iM32 | My — iM2o + Mz — iM23 | Myg + M2 — My + M2

Mo1 — iMp2 + Mgy — iM32 | Moo — Moz + Mgp — Mgz | Myg — iMg2 — iMpp — Mp2 | My — iMpo — M3 + M3

My + iMpo + My3 + iMpg | Mg +iMg2 +iMpg — M2 | Moo + Moz — Mo — M3 | Moy + iMo2 — Mgy — iM32

My — iMy2 +iM2g + M2 | Myg + iM2o — Mz — iM23 | Moz — Moz — Mgy +iMg2 | Mo — Mo3 — Mo + M3
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and that ofM in terms ofpag by :

1

po1+p10+ P23+ P32

=i[(po1 — p10) + (023 + p32)]

(P00 = p11) + (022 = p33)

M = P02 + P20 + P13 + P31

P03+ P30 + P12 + P21

—i[(po3 — p12) + (021 — p20)]

P02 + p20 — (013 + p31)

i[(p02 — p20) + (013 — p31)]

i[(o03 + p12) = (021 + P30)]

P30 + po3 — (p12 + p21)

i[(0o2 — p20) — (013 — p31)]

P00 + p11 = (P22 + p33)

po1+ P10 — (023 + p32)

=i[(po1 = p10) — (P23 — p32)]
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P00 + P33 — (p11 + p22)

(3.92)
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Chapter 4

Robustness of non-Gaussian

entanglement

4.1 Introduction

Early developments in quantum information technology aftcaious variable (CV) sys-
tems largely concentrated on Gaussian states and Gaugseations 47-257. The
Gaussian setting has proved to be a valuable resource imgoos variable quantum
information processes with current optical technolo@p3255. These include tele-
portation P56-25§), cloning [259-263, dense coding 464-266, quantum cryptogra-
phy [267-275, and quantum computatior276-279].

The symplectic group of linear canonical transformation8 779 is available as a handy
and powerful tool in this Gaussian scenario, leading to agagit classification of permis-

sible Gaussian processes or channgi(.

The fact that states in the non-Gaussian sector coflitt advantage for several quan-
tum information tasks has resulted more recently in comalae interest in non-Gaussian

states and operations, both experimeng81{283 and theoretical 284-292. The po-
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tential use of non-Gaussian states for quantum informgirocessing tasks have been
explored P93-299. The use of non-Gaussian resources for teleportat@d0{303,
entanglement distillation3[04-30€], and its use in quantum network8(7] have been
studied. So there has been interest to explore the esseifittabnces between Gaussian
states and non-Gaussian states as resources for perfotimeisg quantum information

tasks.

Since noise is unavoidable in any actual realization ofé¢hefrmation processes8(08-
314, robustness of entanglement and other nonclassttatte against noise becomes
an important consideration. Allegra et. aB1H have thus studied the evolution of
what they calbhoton number entangled statgNES) (i.e., two-mode states of the form
) = 3, c,|n, n)) in anoisyattenuator environment. They conjectured based on numeri-
cal evidence that, for a given energy, Gaussian entanglemssrore robust than the non-
Gaussian ones. Earlier Agarwal et. @1f had shown that entanglement of the NOON
state is more robust than Gaussian entanglement iuthetum limitecamplifier environ-
ment. More recently, Nha et. al317] have shown that nonclassical features, including
entanglement, of several non-Gaussian states surguartum limitecamplifier environ-
ment much longer than Gaussian entanglement. Since theatorg of Ref. 319 refers

to the noisy environment and the analysis in R&fLg 317] to the noiseless or quantum-
limited case, the conclusions of the latter do not necdgsamount to refutation of the
conjecture of Ref. 315. Indeed, Adesso has argued very recentht{ that the well
known extremality $19 320 of Gaussian states implies proof and rigorous validation o

the conjecture of Ref.315.

In this Chapter, we employ the Kraus representation of bagaussian channel3§] to
study analytically the behaviour of non-Gaussian statemisyattenuator and amplifier
environments. Both NOON states and a simple form of PNES areidered. Our results

show conclusively that the conjecture of Re31f is too strong to be maintainable.
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4.2 Noisy attenuator environment

Under evolution through a noisy attenuator chargék, a), « < 1, an input statg'™ with

characteristic function (CR\(¢) goes to statp®™ with CF

XOE) = xin(kg) @ Bt (4.1)

wherek is the attenuation paramete®1] 92]. In this notation, quantum limited chan-
nels B17 correspond ta = 0, and so the parametarstands for theadditional Gaus-
sian noise Thus,p™ is taken under the two-sided symmetric actiorCef, a) to p°!t =

Ci(x,8) ® C1(x, a) (ﬁin) with CF

XOEr £2) = xi(Kér, Kéy) € ZAC+AELHER) (4.2)

To test for separability gh®™ we may implement the partial transpose tespdtiin the

Fock basis or on/"(é1, £2). The choice could depend on the state

Before we begin with the analysis of the action of the noisyncleds on two-mode states,

a few definitions we require are in order:

Definition 1 (Critical or threshold noise) : a(p) is the threshold noise with the prop-
erty that®(x, @)[p] = [Cj(k, @) ® C(k, @)][p] remains entangled far < oo and becomes
separable fora > ag for a givenk; j = 1,2 according as the attenuator or amplifier

channel

Definition 2 (Robustness of entanglement) Entanglement op; is more robust than

that of p, if ag(01) > ao(p2), for a givenx.
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Definition 3 (Critical noise for a set of states): The critical noise for a set of states
A = {p1,p2,- - -} Is defined asyo(A) = max (@o(01), @o(02), - --). In this case, the value

ao(A) renders all the states of the s@tseparable fow > ao(A), for a givenx.

4.2.1 Action on Gaussian states

Consider first the Gaussian case, and in particular the twdersqueezed stake(u)) =
sechu Y7, tant' un, ny with variance matriX/sq(«). Under the two-sided action of noisy
attenuator channelS;(«, a), the output two-mode Gaussian staf(i) = Ci(k,a) ®

C1(x, @) (lw(w))w(u)|) has variance matrix

VU ) = kVsg(w) + (1 - &% + @)1y,
Coy 1, $u0°3
Vsq(ll) = s (43)
Su03 Gyl

wherec,, = cosh2, s, = sinhZ:. Note that our variance matrix féers from that

of some authors by a factor #) particular, the variance matrix of vacuum is the unit
matrix in our notation Partial transpose tes89] shows thap°"{(u) is separablefi a >
k*(1 - e #). The ‘additional noisea required to render®™(.) separable is an increasing
function of the squeeze (entanglement) parametand saturates af. In particular,
lw(u1)), u1 ~ 0.5185 corresponding to one ebit of entanglement is rendexpdrable
whena > k*(1 - e %1). Fora > 2, p°"{(u) is separable, independent of the initial squeeze
parametep. Thus a= «? is the additional noise that renders separable all Gaussian

states.

4.2.2 Action on non-Gaussian states

Behaviour of non-Gaussian entanglement may be handledlglirethe Fock basis using

the recently developed Kraus representation of Gaussianngts [6]. In this basis
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guantum-limited attenuat@r (x; 0), k < 1 and quantum-limited amplifie?,(x; 0), « > 1

are described, respectively, by Kraus operators display@dblel.2:

o0

Bi() = ) V™C(VI=2) k"Imi(m+ .
m=0
1w .1
Ak) = = > ™C(VI-k2) Zim+ oxm, (4.4)
K 0 K
t=0,12---. In either case, the noisy changl«; a), j = 1,2 can be realized in the

form C(k2; 0)o C1(x1; 0), so that the Kraus operators for the noisy case is sinmglytod-
uct set{A, (k2)By(x1)}. Indeed, the composition ru@(k»; 0) o C1(k1; 0) = Cy(kok1; 2(/<§ -
1)) or Ca(koky; 265(1 — «2)) according asok; < 1 orkk; > 1 implies that the noisy at-
tenuatorCy(k; a), k < 1 is realised by the choioe = V1+a/2> 1, k1 = k/ko < k < 1,
and the noisy amplifie€,(k; ), k > 1 byk, = \k2+a/2> k > 1, k1 = /k2 < 1 [76].
Note that one goes from realization©f(«; a), k < 1 to that ofC»(k; &), « > 1 simply by

replacing(1 + a/2) by (k* + a/2); this fact will be exploited later.

Under the action ofj(x; &) = Ca(k2; 0)oCi(k1; 0), | = 1,2, by Eq. (.199, the elementary

operatorgmy(n| go to

Ca(k2; 0) o C1(k1; 0) (Jm)(nl)

-2 SRk m—{+] n—{+]j me~ n 172 -1 \(m+n-2¢)
=i2 Y > [mie e e e (G )
j=0  ¢=0
X(A-) A=) Im=Ct+jXn—£+j. (4.5)

Substitution ofc; = V1 +a/2,«; = k/k» gives realization o€ (x;a),x < 1 while k, =
VK2 +a/2, k1 = k/k> gives that ofC,(k; @), k > 1.
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NOON states

As our first non-Gaussian example we study the NOON stateioMamaspects of the
experimental generation of NOON staté32]-327] and its usefulness in measurements

[328-33( has been well studied.

A NOON statey) = (Jn0) + |0ny) / V2 has density matrix density matrix

.~ 1
p=53 (INXnl ® |00l + [N){0] ® |0)Xn|

+10)Xn[ @ [N)0l + |00l ® In)(n] ) . (4.6)

The output statp®™ = C;(k; @) ® C1(«; a)(p) can be detailed in the Fock basis through use
of Eq. @.5).

To test for inseparability, we projegf™ onto the 2x 2 subspace spanned by the four
bipartite vectorg|00), |On), |n, 0), |n, n)}, and test for entanglement in this subspace; this
simple test proves siicient for our purpose! The matrix elements of interest 618%}607
Phnnn @NAER o = po. Negativity of1(k, 8) = p35og0hnnn — Ponmol” Will prove for 5"

not only NPT entanglement, but also one-copy distillap{lg, 14].

To evaluatepSyy, Ogano @Ndonnnn it suffices to evolve the four single-mode operators
|0%¢0|, |0){n|, [N)¢0|, and|n){n| through the noisy attenuatah(x; a) using Eq. ¢.5), and

then project the output to one of these operators. For oysgser we need only the
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following single mode matrix elements::

X1 = (NIC1(x; @)(In)(nf)In)
=(1+a/2)*" Zn: ["CI? [K*(1 +a/2) 2"
=0

x [(1- K1 +a/2))(1- 1 +a/2) )",
Xz = (0IC1(k; @) (InX(n))[0)

=(1+a/2)7 1 -1 +a/2)", (4.7)

X3 = (0IC1(k; @)(0)0I)|0)
=(1+a/2)",

X4 = (NC1(k; @)(I0)0)In)
=(1+a/2 ' 1-A+a/2) 7",

Xs = (NC1(k; @)(In)<0l)|0)
= K"(L+a/2) ™Y,

= (0ICx(k; @)(10)(nNIn)* (4.8)
One findsodto = X2Xa, Aannn = XaX4, andpfisy = X/2, and therefore
01(k, @) = X1 XoXaXa — (IXs[°/2)7, (4.9)

Leta;(x) be the solution té,(x, a) = 0. This means that entanglement of our NOON state
survives all values of noise< a;(«x). The curve labelledlls in Fig.4.1shows, in thed, «)
spacea («) for the NOON state with = 5 : entanglement of%0)+|05))/ V2 survives all
noisy attenuators belois. The straight line denotegl, corresponds ta = «?: channels
above this line break entanglement of all Gaussian staves, the ones with arbitrarily

large entanglement. The limg denotesa = «*(1— e %4), whereu; = 0.5185 corresponds
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Figure 4.1: Comparison of the robustness of the entangleaienNOON state with that
of two-mode Gaussian states under the two-sided actionnofrgtric noisy attenuator.

to 1 ebit of Gaussian entanglement: Gaussian entangleménebit does not survive
any of the channels above this line. The regid(shaded-region) of channels abaye
but belowNs are distinguished in this senseno Gaussian entanglement survives the

channels in this region, but tHeOON state(|50) + |05))/ V2 does

PNES states

As a second non-Gaussian example we study the PNES
) = (100) + Inn)) / V2 (4.10)
with density matrix

1
p =5 (100 ®[0)0] + [0)n| @ [0)(n|

+[N}OI @ N0l + IN)(n| @ [n)(n] ) . (4.11)
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Figure 4.2: Comparison of the robustness of the entangleaienPNES state with that
of two-mode Gaussian states under the action of two-sidesi®tric noisy attenuator.

The output stat®™ = Ci(x; a) ® Ci(x;a) (0) can be detailed in the Fock basis through
use of Eq.4.5).

Now to test for entanglement pf't, we project agaip® onto the 2«2 subspace spanned
by the vectorg|00), |Ony, |n, 0y, |n, n)}, and see if it is (NPT) entangled in this subspace.
Clearly, it suffices to evaluate the matrix elemengs,., %o, andogg',,, for if 5x(k, @) =

PononPo — 1050nal° is negative thep™'is NPT entangled, and one-copy distillable.

Once again, the matrix elements listed {7 and @.8) prove sifficient to determine

. Aout _ sout t 2
02(k, @)’ Ponno = Prono = (XaXe + XsXa)/2, andogg . = 1Xs|“/2, and so

Sa(k, @) = ((XaXo + XaXa)/2)* — (IXs|*/2)%. (4.12)

Let ay(x) denote the solution t6,(x, a) = 0. That is, entanglement of our PNES survives
all a < ay(«x). This ay(x) is shown as the curve labellde; in Fig.4.2 for the PNES

(I00y + |55))/ V2. The linesy;, andg., have the same meaning as in Figl. The region
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R (shaded-region) abovg,, but belowPs corresponds to channels, § under whose
action all two-mode Gaussian states are rendered sepavéfile entanglement of the

non-Gaussian PNE$0Q) + [55))/ V2 definitely survives.

4.3 Noisy amplifier environment

We turn our attention now to the amplifier environment. Unitier symmetric two-sided
action of a noisy amplifier channéb(x; a), « > 1, the two-mode CR\(£1,£,) is taken

to

XO(Er £2) = xin(én, k&) € 2 1aErHER) (4.13)

4.3.1 Action on Gaussian states

In particular, the two-mode squeezed vacuum gtafe)) with variance matrin/sq(u) is

taken to a Gaussian state with variance matrix
VOU () = kPVig(w) + (kK — 1 + @)1y, (4.14)

The partial transpose tes8q] readily shows that the output state is separable wahen
2-k*(1+e%4): the additional noisarequired to render the output Gaussian state separable
increases with the squeeze or entanglement parapeted saturates a = 2 — x*: for

a > 2 - «? the output state is separable for every Gaussian input. ®ise mequired to
render the two-mode squeezed stgig:;)) with 1 ebit of entanglemenju{ ~ 0.5185)

separable ia = 2 — k(1 + e724).
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Figure 4.3: Comparison of the robustness of the entangleaienlOON state with that
of all two-mode Gaussian states under the action of twodssgenmetric noisy amplifier.

4.3.2 Action on non-Gaussian states

As in the beamsplitter case, we now consider the action afitiey amplifier channel on

our choice of non-Gaussian states.

NOON states

Now we examine the behaviour of the NOON staw@)+ |0n))/ V2 under the symmetric
action of noisy amplifier€,(«; a), k > 1. Proceeding exactly as in the attenuator case,
we know thatp®" is definitely entangled ibs(x, ) = H3os0nmnn — 1Pgnmol” IS Negative.

As remarked earlier the expressions €i«; a), k < 1 in Egs. &.7) and @.8) are valid

for Ca(x; ), k > 1 provided1 + a/2 is replaced by? + a/2. For clarity we denote by

xj' the expressions resulting from whenCi(k; @), k < 1 replaced byCs(k; a), > 1 and

1+ a/2 by «* + a/2. For instancex; = (nCx(k; @)(In)(0])|0) = k"(x* + a/2)" ™Y and
6a(k; @) = XXX, — (X(2/2)2
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Let ag(k) be the solution tasz(x,a) = 0. This is represented in Fig.3 by the curve
markedNs, for the case of NOON stat¢d6) + |50))/ V2. This curve is to be compared
with the linea = 2 — «?, denotedy.,, above which no Gaussian entanglement survives,
and with the linea = 2— x?(1+ e %4), u; = 0.5185, denoted;, above which no Gaussian
entanglemenk 1 ebit survives. In particulathe region R (shaded-region) between g
and N; corresponds to noisy amplifier channels against which eriéangnt of theNOON

state(|05) + |50))/ V2 is robust, whereas no Gaussian entanglement survives

PNES states

Finally, we consider the behaviour of the PNE®Y + [nn))/ V2 in this noisy amplifier
environment. The output, denotp8"; is certainly entangled ifa(x, @) = Hgo050m0 —
|,683}nn|2 is negative. Proceeding as in the case of the attenuatoreamembering the con-
nection between;'s and the corresponding’s, we havess(x, @) = (X%, + X;%,)/2)* -
(Ix51/2).

The curve denoteB;s in Fig.4.4representsy(x) forming solution to

84(x,@) = 0, for the case of the PNEOQ) + |55))/ V2. The linesg,, andg; have the
same meaning as in Fig.3. The regionR (shaded-region) betweejn, and Ps signifies

the robustness of our PNE®r everyx > 1, thePNESIs seen to endure more noise than

Gaussian states with arbitrarily large entanglement.

4.4 Conclusion

We conclude with a pair of remarks. First, our conclusiotofeing

Eq. @.3) and Eq. .14 that entanglement of two-mode squeezed (pure) gt§tg) does
not survive, for any value gf, channelsk, a) which satisfy the inequalitil — «?| +a > 1
applies taall Gaussian states. Indeed, for an arbitrary (pure or mixeoshnwde Gaussian

state with variance matri¥g it is clear from Eqs.4.3), (4.14) that the output Gaussian
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Figure 4.4: Comparison of the robustness of the entangleaienPNES state with that
of all two-mode Gaussian states under the action of twodssgenmetric noisy amplifier.

state has variance matif" = x® Vg + (|11 — k% + @) 1. Thus|1—«?|+a > 1 immediately
implies, in view of nonnegativity oY/, thatV°" > 11,, demonstrating separability of the

output state for arbitrary Gaussian inp@o].

Secondly, Gaussian entanglement resides entirely ‘invén@nce matrix, and hence dis-
appears when environmental noise raises the variancexmabtive the vacuum or quan-
tum noise limit. That our chosen states survive these emviemts shows that their en-
tanglement resides in the higher moments, in turn demdmgjrénat their entanglement
is genuine non-Gaussian. Indeed, the variance matrix oPdliES and NOON states for

N = 5 is six times that of the vacuum state.

Thus our resultis likely to add further impetus to the avalang interest in the relatively
new ‘non-Gaussian-state-engineering’ in the contextaifzation of distributed quantum

communication networks.
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Chapter 5

Nonclassicality breaking channels

5.1 Introduction

Two notions that have been particularly well explored in tomtext of quantum in-
formation of continuous variable states arenclassicality[81, 82] and entanglement
[331, 332. The ‘older notion of entanglement has become one of retewmterest
in recent decades for its central role and applications oteftial as well as demon-
strated) quantum information processés81], 333, while the concept of nonclassicality,
which emerges directly from thdiagonal representatiori81, 82] had already been well
explored in the quantum optical conteX33¢-336], even before the emergence of the
present quantum information era. A fundamental distimcbetween these two notions
may be noted While nonclassicality can be defined even for states of desimgde of
radiation, the very notion of entanglement requires two orenuarties Nevertheless,
it turns out that the two notions are not entirely indepemndgrone another; they are
rather intimately related8P, 337-34(Q. In fact, nonclassicality is a prerequisite for en-
tanglement 338-34(. Since a nonclassical bipartite state whose nonclagigican be
removed by local unitaries could not be entangled, one cegrast least in an intuitive

sense, thagéntanglement is nonlocal nonclassicality
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An important aspect in the study of nonclassicality andmgitament is in regard of their
evolution under the action of a channel. A noisy channehgatin a state can degrade
its nonclassical features341-349. Similarly, entanglement can be degraded by chan-
nels acting locally on the constituent parties or modég 96, 316, 317, 350-356. We
have seen earliet (120, thatentanglement breakinghannels are those that render every

bipartite state separable by action on one of the subsys{@m$6, 357.

In this Chapter, we address the following issughich channels possess the property
of ridding every input state of its nonclassicality@spired by the notion of entangle-
ment breaking channels, we may call such channefgclassicality breaking channels
The close connection between nonclassicality and entarggiealluded to earlier raises
a related second issuevhat is the connection, if any, between entanglement breaking
channels and nonclassicality breaking channelB? appreciate the nontriviality of the
second issue, it sfices to simply note that the very definition of entanglemeaaking
refers to bipartite states whereas the notion of nonclaligidoreaking makes no such
reference. We show that both these issues can be complet®lyeeed in the case of
bosonic Gaussian channels: nonclassicality breakingn&iamare enumerated, and it is
shown that the set of all nonclassicality breaking chanise¢ssentially the same as the

set of all entanglement breaking channels.

We hasten to clarify the caveat ‘essentially’. Suppose amdid' is nonclassicality break-
ing as well as entanglement breaking, and let us follow thi®mof this channel with a
local unitaryZ{. The compositd/ T is clearly entanglement breaking. But local unitaries
can create nonclassicality, and 6I' need not be nonclassicality breaking. We $ay
Is essentially nonclassicality breakinfyjthere exists a fixed unitarg/ dependent o’

but independent of the input state on whiclacts, so that?/ I" is nonclassicality break-
ing. We may stress that this definition is not vacuous, foegia collection of statasis
generically the case that there is no single unitary which waeahder the entire set non-

classical [This is not necessarily a property of the collection : gigenonclassical mixed
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statep, it is possibly not guaranteed that there exists an unitéaisuch thap” = U p U’
is classical.] It is thus reasonable to declare the set ainghément breaking channels to
be the same as the set of nonclassicality breaking charfregisll the two sets indeed

turn out to be the same, modulo this ‘obvious’ caveat or [iowi.

We recall that Gaussian channels are physical processendpasaussian states to Gaus-

sian states and their systematic analysis was present&®,80F93, 95, 280, 358-360.

5.2 Nonclassicality breaking channels

Any density operatop fepresenting some state of a single mode of radiation field ca

always be expanded as

. d?
p= [ S o @axal 51

whereg, (o) = Wi(e; p) is the diagonal ‘weight’ functione) being the coherent state.
Thisdiagonal representatiois made possible because of the over-completeness property
of the coherent state ‘basis81,82]. The diagonal representatidn {) enables the evalu-
ation,in a classical-looking manneof ensemble averages of normal-ordered operators,

and this is important from the experimental point of vie36{].

An important notion that arises from the diagonal represeont is the
classicality-nonclassicality dividelf ¢,(a) associated with density operajolis”point-
wise nonnegative ove?, then the state is a convex sum, or ensemble, of coherees stat
Since coherent states are the most elementary of all guantohanical states exhibiting
classical behaviour, any state that can be written as a gswa of these elementary

classical states is deemed classical. We have,

#,(@) >0 for all @ € C & p is classical (5.2)

191



0, P’ Separable

Figure 5.1: A schematic diagram depicting the notion of egement breaking channels.
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EEE—
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Figure 5.2: Showing the notion of nonclassicality brealkihgnnels.

Any state which cannot be so written is declared to be nosidals Fock statefg)(n|,
whose diagonal weight functiopy., (@) is the i derivative of the delta function, are
examples of nonclassical states. [All the above consigrmgeneralize from one mode

to n-modes in a painless manner, withé € R?" ~ C".]

This classicality-nonclassicality divide leads to thddaling natural definition, inspired

by the notion of entanglement breaking (See bid) :

Definition : A channell" is said to benonclassicality breaking and only if the output
statepout = I'(0in) is classicalfor everyinput statepi,, i.e., if and only if the diagonal

function of every output state is a genuine probabilityridisttion (See Fig5.2).
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5.3 Nonclassicality-based canonical forms for Gaussian

channels

The canonical forms for Gaussian channels have been deddinpHolevo 91,92 and
Werner and Holevod(]. Let S denote an element of the symplectic gré&ip(2n, R) of
linear canonical transformations add(S) the corresponding unitary (metaplectic) op-
erator [78]. One often encounters situations wherein the aspectssolo®king for are
invariant under local unitary operations, entanglemenmtidan example. In such cases a
Gaussian channélis ‘equivalent’ to/(S) I U(S), for arbitrary symplectic group ele-
mentsS, S'. The orbits or double cosets of equivalent channels in #nise are the ones

classified and enumerated by Holevo and collaborat®®s92] and recalled in Tabl&.1

While the classification of Holevo and collaborators is egtament-based, as just noted,
the notion of nonclassicality breaking hasnore restricted invarianceA nonclassical-
ity breaking Gaussian channElpreceded by any Gaussian unit&d#(S) is nonclassi-
cality breaking if and only ifl" itself is nonclassicality breaking. In contradistinction
the nonclassicality breaking aspectloand U(S)T [I” followed the Gaussian unitary
U(S)] are not equivalent in general; they are equivalent if anly d S is in the inter-
sectionS g2n, R) N SAQ2n, R) ~ U(n) of ‘symplectic phase space rotations’ or passive
elements 78,279. In the single-mode case this intersection is just thetiatagroup
SQ?2) c SH2, R) described in Eq.(13]). We thus need to classify single-mode Gaus-
sian channel$ into orbits or double coset®/(R) [ U(S), S € SH2, R), R € SQ2) c

S 2, R). Equivalently, we need to classif)(Y) into orbits (S X R, RT Y R). It turns out
that there are three distinct canonical forms, and the tyfmewhich a given pairX,Y)

belongs is fully determined by dxt

First canonical form : det X > 0.

A real 2x 2 matrix X with detX = «?> > 0 is necessarily of the formSx for some

193



Sx € SH2, R). Indeed we havesy = (detX)"¥?2 X ChooseR € SQ?2) so as to diago-
naliseY > 0: RT YR = diag, b). With such arR, the choiceS = R'S;! € Sp2, R)
takes K, Y) to the canonical form«{Il, diag@, b)), wherex = vdetX > 0, anda, b are

the eigenvalues of.

Second canonical form: det X< 0.

Again chooseR so thatR" YR = diag(@, b). Since deX < 0, X is necessarily of the form
k Sy o3, for someSy € S[2, R): Sx = (detXo3) Y2Xo3. SinceRo3 R = o3 for every
R € SQ12), itis clear that the choic§ = RS;! € S 2, R) takes ¥, Y) to the canonical
form (x o3, diag(a, b)) in this case, withk = v/detXo3, and the parametess b being the

eigenvalues o¥Y.

Third canonical form: detX = 0.

Let k be the singular value oX; chooseR’, R € S(2) such thatr’ XR = diagk, 0).

It is clear that the choic&x = diagk™™,x)R'T € S2, R) along withR € SQ2) takes
(X, Y) to the canonical form (diag(D), Yo = R"T YR). Y, does not, of course, assume
any special form. But iX = 0, thenR € S(Q2) can be chosen so as to diagonal'san

that casery = (a,b), a, b being the eigenvalues of.

5.4 Nonclassicality breaking Gaussian channels

Having obtained the nonclassicality-based canonical $oof(X, Y), we now derive the
necessary and flicient conditions for a single-mode Gaussian channel to Inelassi-

cality breaking. We do it for the three canonical forms intthaer.

First canonical form: (X, Y) = (k1, diag(a,b)).

There are three possibilities:= 1, « < 1, andk > 1. We begin withk = 1; it happens
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that the analysis extends quite easily to the other two casgsindeed, to the other two
canonical forms as well. The action on the normal-orderedtastteristic function in this

case is

XN(EL &3 p) = AW (EwL €25 p)

_ exp[—a% _ ﬁ]xN@a, &:p). (5.3)

[For clarity, we shall write the subscript gfexplicitly asN, W, or A in place of 1, 0, or
-1]. It should be appreciated thedr this class of Gaussian channdls = 1) the above
input-output relationship holds even with the subscNpieplaced by or A uniformly.

Let us assum@, b > 1 sothata = 1+ ¢, b = 1+ & with ¢, &, > 0. The above

input-output relationship can then be written in the form

OUt(fla é‘:zap) exp[_lTé‘:l - 2_621|XW(§19 621:0)

Note that the subscript gf on the right hand side is now and notN.

Defined > 0 throughA? = e /e, and rewrite the input-output relationship in the sug-

gestive form

OUt(/Lfl,/l 62 p) = exp ——(\/6162{,:1 @fg)

X YW(AEL, 172 p). (5.4)

But)( (A€1, A171&5; p) is simply the Weyl-ordered or Wigner characteristic fumctof a
(single-mode-) squeezed versionefor everyp. If U, represents the unitary (metaplec-
tic) operator that £ects this squeezing transformation specified by squeeaeneder,

we have
xwAér, A% p) = Y\wlér. & U p U, (5.5)
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so that the right hand side of the last input-output relatndp,in the special casee, = 1,

reads

X' (A1, 175, p) = XR(ér, Ea3 Unp UL). (5.6)
This special case would transcribe, on Fourier transfaonato

¢* (a1, 17 az; p) = Q"(a1, a2 Uy pUY)

= (U pUJa) >0, ¥ @, V p. (5.7)

That is, the output diagonal weight function evaluatediat (1~ *a,) equals the input
Q-function evaluated abf;, a,), and hence is nonnegative for alke C. Thus the output
state is classical for every input, and hence the channeinslassicality breaking. It is
clear that ife;e; > 1, the further Gaussian convolution corresponding to trditiadal
multiplicative factor ex;{—(@ -1)E+ gg)/z] in the output characteristic function
will only render the output state even more strongly cladsié/e have thus established

this syficient condition
@-1)b-1)=>1, (5.8)
or, equivalently,

(5.9)

Q|
+
Tl
IA
|_\

Having derived a dicient condition for nonclassicality breaking, we deriveez@ssary
condition by looking at the signature of the output diagomeight functionfor a partic-
ular input stateevaluated at particular phase spacpoint at the output. Let the input
be the Fock statd)(1|, the first excited state of the oscillator. Fourier transfog the

input-output relationq.3), one readily computes the output diagonal weight functen
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be

2 20°  2a?
6*(ay, a2,|1><1|)__exp[ 207 &]

Vab b
Alar+a)® 1 1
X(l-f-T—a—B) (510)

An obvious necessary condition for nonclassicality bregks that this function should
be nonnegative everywhere in phase space. Nonnegativhg aingle phase space point
a = 0 gives the necessary conditiopal+ 1/b < 1 which is, perhaps surprisingly, the
same as the $liciency condition established earlier! Thatttse syficient condition §.8)

is also a necessary condition for nonclassicality breakiSgturation of this inequality
corresponds to the boundary wherein the channel is ‘jusitlassicality breakingThe
formal resemblance in this case with the law of distancesspeet of imaging by a thin

convex lenss unlikely to miss the reader’s attention.

The above proof for the particular case of classical noischl ¢ = 1) gets easily
extended to noisy beamsplitter (attenuator) channed () and noisy amplifier channel
(x > 1). The action of the channet, diag(, b)) on the normal-ordered characteristic

function follows from that on the Wigner characteristic ¢tion given in .170 :

Weep) = exp[—%—ﬁ]mxf p).
a = a+«-1 b=b+xK*-1 (5.11)

This may be rewritten in the suggestive form

Rp) = ex [_2_5__5] ) 512)

With this we see that the right hand side 6f12 to be the same as right hand side of
(5.3) with &/«2, b/«? replacinga, b. The caser # 1 thus gets essentially reduced to the

casex = 1, the case of classical noise channel, analysed in detaikaf his leads to the
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following necessary and gficient condition for nonclassicality breaking

T 1 1
a+k2—-1 b+k2-17" &k
o (a-1)b-1)>«*, (5.13)

for all « > 0, thus completing our analysis of the first canonical form.

Second canonical form:(X,Y) = (k o3, diag(a,b)). The noisy phase conjugation
channel with canonical fornkx s, diag(@, b)) acts on the
normal-ordered characteristic function in the followingmner, as may be seen from its

action on the Weyl-ordered characteristic functi@rl{Q :

XNE p) = eXp[—— - —lxN( ko3& p), (5.14)

withd=a+«%-1, b=Db+«%-1again, and 3¢ denoting the pair¢1, -« &). As in

the case of the noisy amplifjattenuator channel, we rewrite it in the form

ag bé

R o, p)—exp{ o - ZKZ]XN@ o), (5.15)

the right hand side of5(15 has the same form a$.@), leading to thenecessary and

syficient nonclassicality breaking condition

1
2

+=<= o (a-1)b-1)=>«* (5.16)

| =
ol =

Remark : We note in passing that in exploiting the ‘similarity’ of £d5.12 and 6.15
with Eq. (6.3), we made use of the following two elementary facts : (1) Areiible linear
change of variablesf[x) — f(AX), detA # 0] on a multivariable functiorf (x) reflects
as a corresponding linear change of variables in its Fotraasform ; (2) A functionf (x)

Is pointwise nonnegative if and only f{A X) is pointwise nonnegative for every invertible
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A. In the case off.12), the linear chang@ corresponds to uniform scaling, and in the

case of §.19 it corresponds to uniform scaling followed or preceded lisranreflection.

Third canonical form: Singular X. Unlike the previous two cases, it proves to be
convenient to begin with the Weyl or symmetric-ordered abtaristic function in this

case of singulakX:

1 .
) = o] - 57 oe e 0. 57)

Since we are dealing with symmetric orderingy(¢1, 0;p) is the Fourier transform of
the marginal distribution of the first quadrature (‘pogsitiguadrature) variable. Let us
assume that the inpuyt i a (single-mode-) squeezed Gaussian pure state, squieezed
the position (or first) quadrature. For arbitrarily largaiegzing, the state approaches
a position eigenstate and the position quadrature margipatoaches the Dirac delta
function. That is¢"(£1, 0; p) approaches a constant. Thus, the Gaussian

exp[—(gT Yo g)/z] is essentially the Weyl-characteristic function of theputtstate, and

hence corresponds to a classical state if and only if
Yo>1, ora b>1, (5.18)

a, b being the eigenvalues of

We have derived this ageecessary condition for nonclassicality breakitaking as input

a highly squeezed state. Itis clear that for any other injaite $he phase space distribution
of the output state will be a convolution of this Gaussiarssieal state with the position
gquadrature marginal of the input state, rendering the datie more strongly classical,
and thus proving that the conditioB.(8 is also a syficient condition for nonclassicality

breaking

In the special case in whick = 0 identically, we have the following input-output relation
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in place of 6.17):

1 .
XW(Ep) = exp[—éfT Yf])({/”v(f = 0;p). (5.19)

Since)({,r\‘,(g = 0;p) = 1 independent gb,"the output is an input-independdixed state
and ex;{—%gT Yg] is its Weyl-characteristic function. But we know that thissiikoutput
Is a classical state if and only ¥f > 11. In other wordsthe condition for nonclassicality

breaking is the same for all singular X, including vanishixg

We conclude our analysis in this Section with the followipgrhaps redundant, remark :
Since our canonical forms are nonclassicality-basederdttan entanglement-based, if
the nonclassicality breaking property applies for one manath an orbit or double coset,

it applies to the entire orbit.

5.5 Nonclassicality breakingvsentanglement breaking

We are now fully equipped to explore the relationship betweenclassicality breaking
Gaussian channels and entanglement breaking channelhe tase of the first canonical
form the nonclassicality breaking condition reads-(1)(b — 1) > «*, the entanglement
breaking condition readab > (1 + «?)2, while the complete positivity condition reads
ab > (1 - «%)?. These conditions are progressively weaker, indicatiag tie family of
channels which meet these conditions are progressivejgiaFor the second canonical
form the first two conditions have the same formal expresagthe first canonical form,
while the complete positivity condition has a more strirtgiemm ab > (1 + «?)2. For
the third and final canonical form, the nonclassicality kne@ condition requires both
andb to be bounded from below by unity, whereas both the entargi¢ioreaking and
complete positivity conditions reab > 1. Table5.1conveniently places these conditions
side-by-side. In the case of first canonical form, (first rdwlable5.1), the complete

positivity condition itself is vacuous for = 1, the classical noise channels.
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Figure 5.3: Showing a pictorial comparison of the nonclzgy breaking condition, the
entanglement breaking condition, and the complete pdgitoondition in the channel
parameter spacey(), for fixed detX. Curves (1), (2), and (3) correspond to saturation
of these conditions in that order. Curve (3) thus correspdodpiantum-limited chan-
nels. Frame (a) refers to the first canonical fokti,(diag(@, b)), frame (c) to the second
canonical form £ o3, diag(@, b)), and frame (d) to the third canonical form, singuXar
Frame (b) refers to the limiting cage= 1, classical noise channel. In all the four frames,
the region to the right of (above) curve (1) corresponds toctassicality breaking chan-
nels; the region to the right of (above) curve (2) correspgaiodentanglement breaking
channels; curve (3) depicts the CP condition, so the regitimetoight of (above) it alone
corresponds to physical channels. The region to the lefibdeurve (3) is unphysical as
channels. In frames (c) and (d), curves (2) and (3) coindid&ame (b), curve (3) of (a)
reduces to tha andb axis shown in bold. In frames (a) and (c), curves (1) and (2tme
at the point (I+ «2, 1 + £?), in frame (b) they meet at (2), and in frame (d) at (11). The
region between (2) and (3) corresponds to the set of chawiéth are not entanglement
breaking. That in frame (c) and (d) the two curves coincias/@s that this set is vacuous
for the second and third canonical forms. That in every fradmeronclassicality breaking
region is properly contained in the entanglement breakéggn proves that a nonclassi-
cality breaking channel is certainly an entanglement brep&hannel. The dotted curve
in each frame indicates the orbit of a generic entanglemesakiing Gaussian channel
under the action of a local unitary squeezing after the chlaaction. That the orbit of
every entanglement breaking channel passes through tlitassitality breaking region,
proves that the nonclassicality in all the output statesnodmtanglement breaking chan-
nel can be removed by a fixed unitary squeezing, thus showatigevery entanglement
breaking channel is ‘essentially’ a nonclassicality breglchannel.
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Canonical form NB EB CP
(x 1, diag(@, b)) (@-Db-1)>«* |ab> (1+«%)? | ab> (1 - «?)?
(k o3, diag(@, b)) @-Db-1)>«* [ab> (1+«%)? | ab> (1 +«%)*

(diag(1,0), Y), a, b>1,a, bbeing ab>1 ab>1
eigenvalues oY
(diag(Q 0), diag(@, b)) ab>1 ab>1 ab>1

Table 5.1: A comparison of the nonclassicality breaking (Bjdition, the entangle-
ment breaking (EB) condition, and the complete positivity YCéndition for the three
canonical classes of channels.

This comparison is rendered pictorial in Fig3, in the channel parameter plare ),
for fixed values of det. Saturation of the nonclassicality breaking conditior ¢émtan-
glement breaking condition, and the complete positivitpdibon are marked (1), (2),
and (3) respectively in all the four frames. Frame (a) dspibe first canonical form
for k = 0.6 (attenuator channel). The case of the amplifier channektakqualitatively
similar form in this pictorial representation. As— 1, from below k¢ < 1) or above
(x > 1), curve (3) approaches the straight limes 0, b = 0 shown as solid lines in Frame
(b) which depicts this limitinge = 1 case (the classical noise channel). Frame (c) corre-
sponds to the second canonical form (phase conjugatiomeldor k = 0.8 and Frame
(d) to the third canonical form. It may be noticed that in Fesnfc) and (d) the curves
(2) and (3) merge, indicating and consistent with that faat thannels of the second and

third canonical forms are aways entanglement breaking.

It is clear that the nonclassicality breaking conditionti®sger than the entanglement
breaking condition. Thus, a honclassicality breaking dehis necessarily entanglement
breaking: But there are channel parameter ranges wherechtmel is entanglement
breaking, though not nonclassicality breaking. The dotted/es in Fig5.3 represent
orbits of a generic entanglement breaking charndixed by the producab (x having
been already fixed), whdnis followed up by a variable local unitary squeezitigr). To
see that the orbit of every entanglement breaking chanmssigsathrough the nonclassi-
cality breaking region, it dtices to note from Table.1 that the nonclassicality breaking

boundary has = 1, b = 1 as asymptotes whereas the entanglement breaking boundary
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Figure 5.4: Showing the relationship between nonclassidaleaking and entanglement
breaking channels established in the present Chapter. Tthata@iate corresponding to
any input to an entanglement breaking channel is rendeessichl by a single squeeze
transformation that depends only on the channel paramatersidependent of the input
states. In other words, an entanglement breaking chanthelvéd by a given squeeze
transformation renders the original channel nonclagsjclaieaking. In contrast, every
nonclassicality breaking channel is also entanglemeratidong.

hasa = 0, b = 0 as the asymptotes. That is, for every entanglement brgakiannel
there exists a particular value of squeeze-paramgtdepending only on the channel pa-
rameters and not on the input state, so that the entangldmeaking channdr followed

by unitary squeezing of extemg always results in a nonclassicality breaking channel
U(ro) T. Itis in this precise sense that nonclassicality breakimgnoels and entangle-

ment breaking channels are essentially one and the same.

Stated somewhat filerently, if at all the output of an entanglement breakingncieh is
nonclassical, the nonclassicality is of a ‘weak’ kind in folowing sense. Squeezing
is not the only form of nonclassicality. Our result not onbys that the output of an
entanglement breaking channel could at the most have azqggegpe nonclassicality,
it further says that the nonclassicalityalf output states can be removed bigx@dunitary

squeezing transformation. This is depicted schematiaaliyg.5.4.
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5.6 Conclusions

We have explored the notion of nonclassicality breakingitscklation to entanglement
breaking. We have shown that the two notions dfeatively equivalent in the context
of bosonic Gaussian channels, even though at the level ofitil@fi the two notions are
quite diferent, the latter requiring reference to a bipartite syst@or analysis shows that
some nonclassicality could survive an entanglement bmgagihannel, but this residual

nonclassicality would be of a particular weaker kind.

The close relationship between entanglement and noncédisgihas been studied by sev-
eral authors in the pasB9, 316,317, 337340, 354-35¢. It would seem that our result

brings this relationship another step closer.

Finally, we have presented details of the analysis only énctise of single-mode bosonic
Gaussian channels. We believe the analysis is likely torgdine to the case af-mode

channels in a reasonably straight forward manner.
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Chapter 6

Conclusions

We now provide an overall summary to the primary results isftifesis.

In Chapter 2, we studied the role played by initial correlagiof bipartite quantum sys-
tems on the subsystem dynamics. Working within the Shabialair framework, the prin-
cipal result that emerges as a result of our analysis isfthratie system dynamics to be a
completely positive map, or in other words, a physical etroty the only allowed initial
system bath states are (tensor) product states. This hrsiggck to the well known Stine-
spring dilation for realization of completely positive nsaur analysis solely rested on
two very reasonable assumptions of the set of initial sydtath states. This demon-
strated robustness of the folklore scheme could be of mugoitance in the study of

open quantum systems.

In Chapter 3, we studied the computation of correlationsvi@-tjubit X-states, namely,
classical correlation, quantum discord, and mutual infdram. We exploit the geomet-
ric flavour of the problem and obtain the optimal measurenseheme for computing
correlations. The optimal measurement turned out to be amization problem over a
single real variable and this gave rise to a three-elemeMMP.QVe studied the region
in the parameter space where the optimal measurementesdbiee elements and the

region where the optimal measurement is a von Neumann nezasut along x or z-axis.
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We further bring out clearly the role played by the largeraiance group (beyond local
unitaries) in respect of the correlation ellipsoid and exghis notion for simplifying the

computation of correlations. We then immediately draw m@aay insights regarding the
problem of computation of correlations and provide numsimncrete examples to detalil

the same.

In Chapter 4, we studied the robustness of non-Gaussiangiataent. The setup in-
volved the evolution of Gaussian and non-Gaussian statgsrigymmetric local noisy
channel action. The noisy channels we are concerned witthareoisy attenuator and
the noisy amplifier channels. This problem has consequdncgsotocols in quantum
networks involving continuous variable systems. In thiggital setting it was recently
conjectured that Gaussian states are more robust than aossfan states with regard to
robustness of entanglement against these noisy envirdeme&his conjecture is along
the lines of other well established extremality properéepyed by Gaussian states. We
demonstrate simple examples of non-Gaussian states witit dfeentanglement which
are more robust than Gaussian states with arbitrary largagiement. Thereby proving
that the conjecture is too strong to be true. The result widl & the growing list of plau-

sible uses of non-Gaussian quantum information alonghiel&aussian-only toolbox.

In Chapter 5, we explore the connection between nonclaggieald entanglement in
continuous variable systems and in particular the Gaussttimg. The nonclassicality
of a state is inferred from its Sudarshan diagonal functigiotivated by the definition
of entanglement breaking channels, we define noncladgitaéaking channels as those
channels which guarantee that the output is classical fprigout state. We classify
Gaussian channels that are nonclassicalitybreaking uhdeestricted double cosetting
appropriate for the situation on hand. We show that all rms®italitybreaking channels
are entanglementbreaking channels. This is a surprissigtra light of the fact that a
nonclassicalitybreaking channel requires only one modereds the very definition of an

entanglementbreaking channel requires two modes. Wesfustiow that the nonclassi-
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cality of the output states of an entanglementbreaking mbleare of a weak type. In the
sense that a suitable squeeze transformation, indepeotidr input state, can take all
these output states to classical states. The study reveslss close connection between

nonclassicality and entanglement.

A natural future direction to explore from this study is tludtthe role played by these
channels as a resource in quantum communication, namelyagpacity problem. The
capacity of a channel is the rate at which information carebally sent across many uses
of the channel. In the quantum setting, there are many vsr@ncapacities depending
on the available resources and the tasks to be accomplishtezbe quantities are well
understood only for a handful of channels and is thus anasterg scope for further

studies in both the finite and the continous variable systems
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