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Synopsis

The appearance of simple or complex ordered patterns isreoptenon of central impor-
tance in dynamical systems as well as in statistical physi¢ar-from-equilibrium sys-
tems. Several examples of the emergence of simple, regat@rps in physical systems
that occur through collective order-disorder transitjoag)., the aligned orientation of
spins in Ising-like systems, are well known. In the contéxtanlinear dynamics, similar
simple ordering behavior can be observed in the synchrborzaf coupled oscillators.
However, more complex patterns have recently been seenctr ot various systems
under diferent conditions, especially in heterogeneous media. inthiesis, we have
investigated how such patterns can arise by considerirgyaemodels of complex sys-
tems comprising large number of components interacting watch other via non-trivial
connection topologies. Such complexity is ubiquitous i tiatural world (especially in
living systems) and their spatio-temporal dynamics caarpoftave functionally critical
consequences for biological organisms. Our work is aimegatributing towards build-
ing a general theory for describing pattern formation artong in “complex” systems.

The models we consider are capable of exhibiting a varienowél complex patterns and
collective order, some of which may in fact have manifestagiin real systems, such as
the mammalian uterus. We present systematic investigatibthe mechanisms resulting
in the generation of such patterns, which is a challengiregaése because of the large
number of interacting components involved and the comiitaature of the coupling.
The emergence of various dynamical regimes have been ¢barad in terms of distinct
non-equilibrium steady state properties for systems thah s range of dierent types
of components (in terms of their intrinsic behavior) andirti@eractions. At the level
of component dynamics, the temporal behavior ranges froeshiold-activated dynam-
ics with either discrete-state transitions (as in “Isifi§& spins) or continuous-state be-
havior (as in excitable elements described by FitzHughuWamlike equations) to those
which display relaxation oscillations or even passive oesg (with any perturbation to
the state decaying exponentially to the resting value). l@nother hand, the nature of
the interactions in the systems we have investigated rangedxchange interactions (as
in a system of spins) to ffusive coupling (e.g., in a system of cells coupled by eleatri
gap junctions describing a piece of biological tissue)feative synapse-like connections
(as between dierent brain areas in the cortex). In the following paragsawk briefly
describe the work reported in the thesis.

In Chapter 1 we begin with a short overview of the physics of pattern faroreand com-
plex ordering. We present a brief review of key results frarlier studies that have used
reaction-difusion models and oscillator arrays to study such phenoméfaconclude
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this chapter with a discussion of the main themes considarég: thesis.

In Chapter 2 we show using a simple model the emergence of collectivehrhgtin
chemical and biological systems as a result of interactetwéen a heterogeneous pop-
ulation of elements or cell types. The results of this chaptalerlines one of the key
lessons of complex systems theory that components whasgsiotbehavior is relatively
simple often exhibit unexpectedly rich properties whenpted together. In particular, we
show that the interaction of an excitable and a passivelweat of which are quiescent in
isolation, can result in (under appropriate condition®rganeously generated sustained
oscillations. As the detailed nature of the coupling cardpoe a variety of dferent
frequencies, when studying this problem for an entire systé coupled excitable and
passive cells it is a challenge to understand what will bepthesible types of dynamics
that such a system is capable of supporting. This is not aiquesf theoretical interest
only but rather has important biological consequenceseddwe have used this model
system to understand how the pregnant uterus, which is cgné$or most of the time,
suddenly starts oscillating close to term generating thent contractions needed for
birth of a child. For this we have considered a two-dimenaidaitice of excitable cells,
each coupled to its nearest neighbors and also to a varyimipeuof passive cells. We
show that increasing the coupling between the cells all@sistem to show a number
of transitions between veryfiierent spatiotemporal dynamical regimes: from quiescence
to a state marked by clusters of cells oscillating #iedent frequencies to finally, global
synchronization of periodic activity and coherence. Osules provide a causal connec-
tion between two previously reported experimental obgerma which were not known
to be related, viz., that there is remarkable increase @rgetlular coupling close to onset
of labor and that activity is initially weak and transientagually increasing in intensity
and duration at the late stage of pregnancy. We also disatise context of our modeling
studies the important role played by multistability offdrent types of attractors in such
biological phenomena.

In the work described above, theffdisive coupling between elements promotes homo-
geneity which results in coherent collective dynamics. Whilch coherent activity is in-
deed functionally important in systems where synchroiondietween dferent elements
IS necessary, e.g., in the brain for information procesaimgjfor insulin secretion in pan-
creatic beta-cell assemblies, it is only one of severaliptesspatiotemporal patterns that
can emerge via éierent types of interactions. To explore the range of posghtterns
that can be generated in complex system<lmapter 3 we have investigated the col-
lective dynamics of a system of relaxation oscillators dratdtectively coupled through
mutual inhibition. Our study has important applicationghe real world, in particular,
for understanding how biochemical oscillators coupledulgh reaction-dfusion mech-
anisms yield a large variety of spatial patterns and tempbyshms. Furthermore, there
have been recent experiments in microfluidic devices whes#latory chemical reactions
occur on beads suspended in oil where the interaction batthedbeads is thought to re-
sult from difusion of an inactivator chemical constituent, thereby enpénting a lateral
inhibition-like mechanism. The results of these experitedrave revealed a rich vari-
ety of collective phenomena including (i) anti-phase syaonlzation and (ii) oscillator
death regimes with spatial patterns resembling Turing&iras seen in various reaction-
diffusion systems. We have explained the formation of theserpatby using a simple



model of coupled relaxation oscillators that allows us talgtically explain the emer-
gence of anti-phase oscillations and the spatially pagtkoscillator death (Turing-like)
regime. In addition our model also exhibits a novel “chimika” dynamical state in
which part of the system is oscillating whereas other regisimow negligible temporal
activity. An even more fascinating pattern consists ofefiang waves of phase defect-like
structures. These defects behave like particles and ha4rin@l interactions with each
other. For example, they can either reflefiteach other or, one or both of them can an-
nihilate upon collision. The manifestation of this pheno@én two dimensions is even
more interesting. For oscillators arranged on a squaiedatte have found a fundamental
defect structure which is self propelling and moves aromaefinitely in a medium with
periodic boundaries. These patterns are reminiscent dgtiters” observed in the well-
known two-dimensional cellular automata “Game of Life”. the asymptotic state, we
observe situations where gliders interact with each otbatigually producing complex
spatio-temporal patterns. We conclude the chapter withed thiscussion of a conjecture
about whether such structures can be used to constructdatgs in the manner similar
to what has been done in the “Game of Life” cellular automatach will make possible
the building of chemical computers.

Although ditusive coupling between elements are capable of generatasgmating va-
riety of spatiotemporal patterns, as has been shown by uUseimalbove chapters, many
complex systems exhibit interactions having a vefyedent nature. For example, neu-
rons in the brain, apart from coupling with each other thioetgectrical gap junctions
that can be fectively modeled as a fiusive coupling, also communicate by chemical
means through synapses. Synaptic coupling is fundamgmiatlinear and can give rise
to phenomena distinct from those observed iffiudively coupled systems. We investi-
gate the role of such nonlinear interactions in giving ris@tvariety of diferent types
of synchronization dynamics i@hapter 4 where we analyze a system of globally cou-
pled Wilson-Cowan oscillators that functions as a mesoscopdel for brain activity.
One of the principal diiculties in making sense of the complex dynamical phenomena
underlying cognition is associated with the wide range ale over which the relevant
processes operate. While molecular approaches to neurosaan explicate the opera-
tion of a single synapse or neuron, it is unclear how to redatd results with cognitive
science that considers the entire human brain (comprisidg'! neurons) as an unit.
However, with the increasing use of brain activity mappiaghihiques such as fMRI,
MEG, multi-electrode EEG and fluorescence imaging usin¢aget-sensitive dyes, it is
important to come up with descriptions of phenomena at sdhkgt span the range be-
tween the two extremes mentioned above. Such a mesosewpicrhodel of the brain
should ideally comprise variables that describe the dgtni brain areas having thou-
sands of neurons. Instead of building the model of a brairhbycomplicated process of
joining together an extremely large number of detailed n®deésingle neurons, it may
be preferable to use phenomenological models that are lmsegperimental observa-
tions of intermediate-scale dynamical phenomena in thie bfdne Wilson-Cowan (WC)
model, that describes the time-evolution of the mean levattvity for a population of
interacting excitatory and inhibitory neurons, providesuith a method of simulating the
dynamics of large assemblies of neurons by using it as the bag for a network model
of brain areas. We investigate the dynamical propertiesgpled Wilson-Cowan oscilla-
tors and find that the system is capable of showing a rangefefelnt types of collective
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behavior as the coupling strength between the oscillatovaiiied. While the observed
patterns include those seen in many other systems such eissyxahronization, anti-

phase synchronization and amplitude death, we also finelsstaarked by the occurrence
of phase and frequency clusters, as well as, homogeneoilistosa@eath. The occur-

rence of clustered synchronization states marked by trstesmde of multiple groups of

elements having a common frequency or phase, in the abséang beterogeneity in the

connection topology (such as modularity) is a surprisirsgiiteand suggests an exciting
interplay between structural and dynamical organizatipniaciples in the brain.

The models discussed above belong to the same general t@s#iouous-state dynam-
ical systems. However, in order to develop a general thebgpatial patterns arising
through interactions between a large number of dynamieahehts, we need to ask how
universal are the features that we observe and whethersiynilch variety of phenom-
ena can be seen in dynamical systems having discrete stétbghis aim, inChapter 5
we have investigated ordering behavior in systems of Igmgsshaving modular organi-
zation in their connection topology of ferromagnetic antdfarromagnetic interactions.
The equilibrium properties of such a system in absence areat magnetic field are
relatively easy to understand with the spins getting didideo two oppositely aligned
clusters with members of each cluster oriented in the sameettin. However, we have
shown that at finite temperatures and in the presence of amexffield this system can
exhibit extremely nontrivial equilibrium behavior with eluster being ordered while the
other is disordered. This state can be called a chimeraistatgalogy with similar phe-
nomena recently seen in systems of coupled oscillators. aAffatlitionally the focus of
research in oscillator systems had centered on globallghsgnized states and traveling
waves, the discovery of complex ordering behavior deseghas chimera has generated
interest in states characterized by broken symmetries eofutiderlying homogeneous
system exhibiting stable coexistence of coherent and erewtt regions. Generalizing
the concept of such “chimera” states to systems at thermalil@eum undergoing order-
disorder transition, we have shown analytically that ssmdomplex ordering can appear
in a system of discrete-state dynamical elements such &g $gins. Using mean-field
theory we show that under certain conditions a chimeradikkering is the equilibrium
state for a system of Ising spins. The identity of the clustat is ordered and the one
which is disordered can switch with a time scale that is eeldb the system size. This
result is connected to the Kramer’s exit problem from a pidémell and we have in-
vestigated this using Monte Carlo simulations. We have alsoarically established the
existence of chimera ordering in 3-dimensional spin systeasembling layered magnetic
materials, suggesting possible experimental observafisach states. The results of our
study can also have significant implications for models a@iaadynamics. While it is
expected that two polarized groups in society respond ogiyp$o a common stimuli, a
chimera state corresponds to the same external event gaarsgngroup to become com-
pletely unanimous in their choice while the other grouptspiito complete confusion. It
is not dificult to identify historical instances of similar phenomgaad it is interesting
to speculate whether similar causal mechanisms are at play.

An important aspect of many complex systems in nature isthi@interactions between
the constituent elements do not remain constant but ratlodvesin response to the dy-
namics of the system. For instance, learning in the conterearonal networks in the



brain is considered to arise from changes in the strengtfoohections between neu-
rons over time, resulting from relative timing of activatiof the corresponding neurons.
This suggests a fascinating interplay between dynamicemt different time-scales in
complex systems: while the relatively fast dynamics of tleenents cause the nature of
interactions to change, the slowly evolving coupling imtaffects the global dynamics
of the system. This is the subject Ghapter 6 where we seek to understand the coevo-
lution of nodal dynamics and the interactions strengthseitworks. In other words, we
observe how the structure of the network topology evolves i@sult of the dynamics in
the nodes, which in turn influences the collective behavidhe nodes. In particular, we
focus on the emergence of structural balance in networksadaptive dynamics, where
a node can be in one of two possible states (i.e., we consiohg-like nodal dynamics).
To understand structural balance we first note that manyorksain nature have signed
weights associated with their links or edges, where the i@gresents the nature of the
interaction. For example, in a social network, “positiveiks indicating &iliative rela-
tions connect friends while “negative” links implying canflconnect enemies. If signs
are assigned at random to the links of a network, it is posdiblarrive at a situation
characterized by conflicting constraints (referred to asstration” in the context of spin
models in statistical physics) where the dynamical stadepi@d by the nodes of the net-
work cannot all be made compatible with the nature of thesliobnnecting them. As an
example, three nodes connected to each other by negatikse(limtagonistic relations)
cannot have any assignment of binary states that simulishesatisfy all mutual rela-
tions. Such situations are considered to be unstable anththee of the interactions can
gradually change in order to resolve the conflict. Thus, @ahove example, any pair of
nodes may change the sign of their interaction to form aaratk against the third, their
common enemy. This allows the system to achieve “structdnce”, characterized
by all cycles in the network having an even number of negdinkes, a classical result
of graph theory due to Harary and Cartwright. Note that, acttirally balanced society
will have all agents segregated into two opposing groupsn€cated agents belonging to
the same camp will be mutual friends and those belongingfferdnt camps will have
antagonistic relations. However, in reality, the friendadiriend may initially be an en-
emy, a “frustration” inducing situation implying the lacksiructural balance. However,
adaptation of the interactions over time may resolve alhsumflicts eventually yielding
a balanced structure. How frustrated systems can evolvetiwie under such link adap-
tation dynamics is an important question and has recenty liee focus of activity for
many physicists working on the theory of complex networks.miost of these studies,
the dynamics of the nodes are not considered when the ewolotithe network is inves-
tigated. In contrast, we propose a simple model for studgfiegransition of a frustrated
network to structural balance where the nodal dynamicgtijrgoverns the evolution of
interactions. The process of link adaptation we considiasisired by the classical theory
of learning in nervous systems due to Hebb, where the lirdngth between two nodes
having the same dynamical state at a given time is positimelemented, while that be-
tween nodes having opposite states is negatively increadent/hile limiting cases of
this model are easy to understand, the overall propertigsoapparently simple model
are quite complex. For suitable parameter values, thesystanages to approach bal-
ance, but the time required for this exhibits non-triviahbeior. We observe that over a
range of adaptation rates and temperatures (which coh&alégree of noise or stochastic



fluctuations in the update dynamics of the node states) ithe tequired to reach struc-
tural balance can become extremely long. The divergendeedire required to achieve
balance poses interesting questions in the context of alengsl-world networks where
similar adaptation may be going on (e.g., food webs or neinogtworks).

In Chapter 7 we conclude with a discussion of how our results may conteitbowards
a general theory of pattern formation in complex systemsiaditate possible future
directions of research.



| ntroduction

Then the Ethiopian put his five fingers close together .. .andsed them all
over the Leopard, and wherever the five fingers touched thefjvietittle black
marks, all close together. You can see them on any Leopakiisysu like
...Sometimes the fingers slipped and the marks got a litiledd; but if you

look closely at any Leopard now you will see that there are abifse spots ...

— Rudyard Kipling, “How the Leopard got his spots”Jast So Storie€l902)

Spatio-temporal patterns are ubiquitous in nature. Theynat only seen in the context
of biological development, e.g., in the segmentation o@h@sophilaembryo [L] and in
the characteristic markings on animal ski@} put also appear as a result of dynamical
processes, such as the appearance of spiral waves of eéexcitation in the heart
during episodes of abnormally rapid cardiac activid} ¢nd aggregation of slime-mold
through chemotaxis4]. Many of the patterns seen in nature, including some of tieso
mentioned above, also have functional significance. To nstaied how such patterns
arise, experimental systems have been developed that $iglpanalyzing the genesis of

these structures under a controlled environment.

A class of experimental systems which has been studied &l dgtmprise nonlinear
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chemical reactions that are capable of excitatory actmitpscillations p]. One of the
reasons why the study of these reactions have been of gteadshis because they can be
considered as simple models for understanding the dynashic®re complex systems,
such as, electrical activity in biological tissue, incluglithe heart. The phenomenon of
chemical oscillation was discovered in the 1950s by Boris 8w [6] but initially was
disbelieved, as it was erroneously thought that this olagienv violated the second law of
thermodynamics. It was only in the sixties, following thésequent experiments of A.
M. Zhabotinksy and others that the phenomenon of chemicallatsons was accepted
to be real and at present the system is known as the Belousaweiihsky (BZ) reac-
tion [3]. The original dramatic periodic changes in color that aaded the occurrence of
chemical oscillations were observed in “well-mixed” chealisystems. In the original
experimental set-up the periodic oscillation was trartsérl the reaction stopped once
the reactants were exhausted. Later experiments were ci@adin continuously stirred
tank reactors where reactants were constantly fed in angribgucts were taken out.
Here, the oscillations would continue indefinitely as losglae supply of reactants was
maintained. In the last few decades, apart from minor végiahthe BZ reaction, several
other oscillating chemical systems have been discoverechvéxhibit a rich variety of

dynamical behaviorg).

Another important development was the investigation ofpted chemical oscillators to
understand how @iusive interaction between these woulteat the collective behavior.
Experiments were done to studyfféerent kinds of synchronization phenomena such as
synchronized oscillations, anti-phase synchronizatioe @scillator deathq]. The BZ

and other nonlinear reactions have also been carried ouspatally extended frame-
work, viz., in gels spread in thin layers on a petri dish. Thpatture from the well-mixed
situation means that heterogeneities in the regftanduct concentrations will appear as
spatial patterns. Depending on various experimental petens) these systems manifest
either excitable or oscillatory properties. A wide variefyspatio-temporal patterns, in-

cluding target waves and spirals, have been observed ie thgmeriments. The use of



photo-sensitive chemicals has allowed a high degree ofaa the patterns that can be
produced by suitably manipulating the light incident on thedium. Recently, chemical
experiments have been designed on microfluidic devicestluat experimental realiza-
tion of a large array of coupled nonlinear oscillators. Alilgh there have been theoretical
studies on such spatially extended systems, these devetdprallow controlled experi-

mental realizations of tens to hundreds of coupled osoitat

Although we have only mentioned chemical systems aboves theve in fact been many
experiments carried out on a range of nonlinear deviceschah@nderstanding pattern
formation and other collective phenomena resulting frommgpatio-temporal dynamics
of such systems. The results of these experiments have lseehta guide theoretical
efforts at uncovering the mechanisms underlying pattern foom&8—15]. This had led
to several models for spatio-temporal dynamics which cacléssified into categories
depending on whether space, time and the dynamical statenodal adopts discrete or
continuous values. One of the most widely used of these atlpdifferential equations
(PDEs) where space, time and state-space are continuoeyg hatie been used for under-
standing patterns in physical systems (such as, in fluidg)etisas in biological systems
(e.g., the propagation of reentrant waves in excitabled)sA widely used type of PDE
for explaining pattern formation in manyftérent situations is the system of reaction-
diffusion equations that we describe in the next section. Anathss of models closely
related to PDEs are lattices of continuous dynamical elésnamere space is discrete but
time and state-space are continuous. Of particular irtter#sin this class are the mod-
els where the dynamical elements are autonomous oscdléiait cycles). The concept
of the spatial lattice can be generalized to a network whegespatial neighborhood is
replaced by an arbitrary connection topology. The studyyofaehical elements coupled
in a general network has gained attention in recent timeausecof the wide variety of
natural systems it can be used to model. As many networkgximttin the real world are
also seen to evolve both in terms of the nature and strengtieafinteractions, several

models have been proposed recently to understand how thections between elements



can coevolve with the dynamics on the nodes of a network. Waramportant class of
models is one where the space, time and state-space aretéjsbe paradigmatic exam-
ple being the well-known Ising model. We briefly discuss &hd#terent categories of

models for understanding spatio-temporal pattern foronati the following sections.

1.1 Reaction Diffusion Systems

As suggested by the name, reactiofftdiion models provide a natural description for the
dynamics of a chemical system: the reagentseaetingwith each other and the reactants
as well as the products being transported thradighsion Over time, these models have
been used to analyze a wide class of spatially extendednsystechemistry, physics,
biology and ecology10,11,14]. Under coarse-graining, these systems are modeled using

PDEs having the form:

0q(x, t)
ot

= DVZq(x,t) + R(q),

where each component g{x,t) represents one of the several variables describing the
state of a system (e.g., concentration of a chemical spectase of chemical reactions),

D is the difusion matrix andR(q) represents the fierent (nonlinear) reaction terms.
Thus, the first term in the equation represents transponeodifferent components while
the second term contains details of all the local dynamicatgsses operating on each of

the components including production, decay, etc.

A commonly used analytical tool for understanding the dyigarof nonlinear PDEs is to
perform linear stability analysis for various solutionsi lnportant example of such anal-
ysis carried out for reaction filusion systems is that of Alan Turindg§]. While trying

to understand the mechanisms responsible for morphogedesing discovered a strik-
ing, counter-intuitive fect of difusion, namely, a homogeneous solution of a reaction-
diffusion system can be destabilized byfasion under certain circumstances. This is

surprising as dfusion usually smooths out any spatial fluctuation in a sysfénis cru-
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cial insight of Turing has provided one of the most well-kmomechanisms of pattern
formation in reaction-dfusion systems and the resulting patterns are named aftegTur
Several models have successfully used this mechanism twilgeshe generation of a

wide variety of patterns, e.g., stripes and spots that aocamimal coat patternslf.

Apart from Turing patternsreaction-difusion systems can exhibit a wide range of other
spatio-temporal dynamical behavior such as travellingesadissipative solitons, spa-
tiotemporal chaos, etc. While some of these can be explameddh an analytical treat-
ment, to study the rest one has to resort to numerical siroakt The first step is the
discretization of the Laplacian orfilision operator for a finite system which turns the
space continuum into a discrete lattice. Thus, this processerts a system of PDEs
into a large number of coupled ordinaryffdrential equations (ODESs). fhusion is now
represented by the coupling of suitable variables at a dattice point with those on its

nearest neighbors.

Traditionally, the space continuum (and hence the systeRD#Ss) is assumed to repre-
sent reality, while the lattice (correspondingly, the eysbf coupled ODES) is considered
to be an approximation. However, with modern technologg passible to investigate
systems where the spatially discrete lattice is the morarate description and the cor-
responding PDE is an approximation. Examples include teegperiments involving
beads containing chemical reactants suspended in a medihim & microfluidic chan-
nel or simulations of a system of cells interacting with eatifer in biological tissue. In
these situations it is natural to model the individual beadsells as a single unit, so that
the system is represented as a lattice of dynamical elemikigsmportant to make this
distinction as these recent experiments report obsenstbphenomena that are natural
for a lattice but are diicult to understand in terms of a spatial continuum, e.gi;[@mse
oscillations and heterogeneous oscillator death, whieldascribed in detall later in this

thesis.
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1.2 Coupled Oscillators

Oscillators (to be precise, self-sustained or limit cydeiltators) are dynamical systems
having periodic solutions which have been used to model & wadiety of physical and
biological systems. Although the physical systems reprteseby these models have
been known for a long time, their distinction with respecbtber types of oscillatory
dynamics was first pointed out by Lord Rayleigh when he distisiged between self-
sustained oscillations and driven oscillations. The cphoéa limit cycle itself is due to

H. Poincaré. A systematic study of these self-sustainettiaiscs was performed by A.
Andronov and collaboratord ] and they discovered a commonly occurring mechanism
that gives rise to these oscillations, namely Arelronov-Hopf bifurcatior{also known

as Hopf bifurcation).

In this thesis, one of the systems we have focused on is ay arm@etwork of coupled
oscillators. One of the most well-known collective phenomassociated with such sys-
tems issynchronizatiorj18]. Possibly the first person to report it was the Dutch scgenti
Christiaan Huygenslp] who observed that a pair of pendulum clocks would startlosci
lating with same frequency if they are hung from a common etpjn this state, the two
pendula always move opposite to one another and if they aterded from this motion
they return to it after some time. The phenomenon that Huydea observed is now
known asanti-phase synchronizatiorOther historically important observations of syn-
chronization phenomenon in various systems include thataustical systems by Lord
Rayleigh PQ], in triode generators by W. H. Eccles and J. H. Vincétit] [and in large
population of fireflies by the Dutch physician Engelbert Kaéen in 1680 pR2]. After
replicating and extending the experimental work of W. H.I[Es@and J. H. Vincent, Ed-
ward Appleton 23] and Balthasar van der PA4] made the first theoretical study aimed
at understanding synchronization. An outcome of this weidnie of the most well-known
nonlinear oscillator models in the dynamical systemsdiiae, viz., thevan der Pol os-

cillator model. The relaxation oscillator model based on the FitzHNggumo systems
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of equations that we use in this thesis is closely relatedisonhodel.

Apart from synchronization, coupled oscillator models als known to exhibit other
types of collective behavior such as oscillator death, @&oge death, chimera states, etc.

that are described in detail later in the thesis.

1.3 Spin Models

Spin models, or rather systems of interacting elementsiwdaa be in any one of a finite
number of states, are examples of discrete dynamical sgstine paradigmatic spin
model is the one proposed by Isingf] to understand spontaneous magnetization early
in the last century. These models have been used extensiv&igtistical mechanics and
condensed matter physics to understand phase transitidnstlaer cooperative phenom-
ena. Their simplicity has also led to the adoption of spin et®do understand ordering
phenomena in domains outside physics, such as, in the ¢aftepinion formation in

social systems and associative recall of patterns in naetalorks.

Traditionally, in the context of condensed matter physgmsns have been arranged in
regulard-dimensional lattices. However, in recent applicationprimblems of social or
biological importance, spin-spin interactions over nekgdhaving arbitrary connection
topology have been considerezb]. This has resulted in the discovery of novel collec-
tive phenomena, e.g., the occurrence of “modular ordereinvorks having community

organization 27].

1.4 Oveview of thethess

The aim of the present thesis is to contribute towards utaligg the general princi-

ples underlying the dynamics of pattern formation in comgigstems. For this we have
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considered dferent types of (a) local dynamics for the system componéntsypes of
interaction between these components and (c) connectumiogy in which these inter-
actions are arranged. A common property of many of the systeeninvestigate here is
the existence of both cooperative (promoting order) andguntistic (disrupting homo-
geneity) interactions between the constituent elemeris.r&sultingcompetitioneads to
different types of non-trivial collective behavior as the fieastrengths of the interactions
are varied. These are manifested as spatio-temporal pgtiecluding several types of
ordering and coherence, which have been described in this thied the processes giving

rise to them analyzed in detail.

A general theme underlying the phenomena described inaeyahe chapters is the oc-
currence okpontaneous symmetry breakiegding to pattern formation. In other words,
under these conditions, the solution of the set of equatiessribing the model dynam-
ics does not possess its full symmetry. Another featurebideal by many of the systems
under consideration here is the phenomenomoltistability, i.e., the existence of many
stable solutions for a given set of system parameter§ei@nt patterns are seen depend-
ing on the initial condition chosen and the fraction of ramiipchosen initial states that
give rise to a specific pattern can be taken as a measure ozéhef §s basin of attraction.
Further, the patterns can appear, disappear or lose staslthe system parameters are
gradually changed via flerent kinds obifurcations We now provide an overview of the

work described in each chapter of the thesis.

In Chapter 2, we consider a heterogeneous system whose individual coemp®are con-
tinuous dynamical systems, in particular, excitable arstpa elements. Local coupling
between these flerent types of elements can result in oscillations and we haxesti-
gated the emergence of collective rhythmic activity in ssigstems. This is motivated by
a puzzling observation in uterine physiology, viz., symetized oscillations that give rise
to labor during childbirth occur in the uterus even thougdhes been shown that none of

the cells in the uterine tissue can oscillate spontaneonssplation. Thus, the periodic
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activity of the uterus is distinct from several other typébiological oscillations, such as
the rhythmic pumping action of the heart, which are coor#iddy specialized elements
known as “pacemakers” (e.g., cells in the sino-atrial nodth® heart). Although in the
uterus we observe a transition from disordered activityrdugestation to synchronized
electrical activity giving rise to coherent contractiomthultimately leads to birth, there
is no experimental evidence for the presence of such spadatoordinating elements in
this organ. We have proposed a novel explanation for thegemee of coherent activity
in this system through increased coupling among heteraysndynamical elements. For
this purpose, we use a lattice model of disordered excidtem (disorder being in the
form of a variable number of passive cells connected to earcitadle cell). On increas-
ing the strength of coupling between the elements compyigie system, we observe
a transition from a quiescent state to coherent activityseeeral non-trivial collective
dynamical states. Our results help in causally connectwmapparently unrelated ex-
perimental observations: (i) coupling between uterinésdetreases remarkably through
the course of pregnancy and (ii) oscillatory activity issrand extremely weak during the

early stages of pregnancy but increases in frequency agryskras one approaches labor.

While cooperative interactions primarily result in synahiaation of activity between
elements, other forms of couplings can result in a richeretsarof collective dynam-
ics. InChapter 3, we have investigated systems where individual elemetdsaiot with
their neighbors through lateral inhibition. In particylame investigate the emergence of
spatio-temporal patterns in an array of relaxation ogoitiawhich are coupled through
diffusion of the inactivating component of the local dynamidsede patterns can poten-
tially arise in systems of coupled biochemical oscillatansl thus, may be of interest to
biologists. The simple model of coupled relaxation ostliawe have used helps explain
different collective phenomena seen recently in chemical arpats such as anti-phase
synchronized oscillations and heterogeneous oscillaathdstates with spatial patterns
resembling Turing structures. The model also exhibits meha dynamical state in which

part of the system is oscillating whereas other regions stegligible temporal activity.
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In addition, we observe traveling waves of phase defeetdikuctures that behave like
particles and have nontrivial interactions with each otfdre complex spatio-temporal
patterns produced by these interactions are reminiscetitose observed in the well-
known cellular automata “Game of Life”. As the latter hasbesbown to be capable
of universal computation, it suggests the possibility frapagating defects in chemical

media may be used for performing complex logical operations

In Chapter 4, we have explored theffect of simultaneous action of excitatory and in-
hibitory coupling in continuous dynamical systems. Spealfy, we have investigated
collective behavior in a system of coupled Wilson-Cowan (WGQ@iltadors, that model
the dynamics of local regions in the brain, connected uskegatory and inhibitory con-
nections arranged in various topologies. As this modelesygtrovides a mesoscopic
description of brain activity, our results may give insglimto the genesis of observed
patterns in large-scale cortical oscillations. We havé &iralyzed the dierent dynami-
cal behavior seen for a pair of coupled WC oscillators, and théended our study to a
globally coupled network of WC oscillators. We show the extiste of novel collective
states, including those characterized by oscillator ehsstwhere each cluster is distin-
guished by its amplitude or frequency. As each oscillatadéntical in terms of both
intrinsic dynamics and connectivity, this indicates the# homogeneous system of WC
oscillators undergoes spontaneous symmetry breaking.|S¥arevestigate thefeect of
removing a small fraction of connections, making the systeanginally sparse. A sur-
prising aspect is that although this densely connecteegsys dfectively identical to
the mean-field description, the dynamical properties adecadly altered in response to

extremely minor deviations from the fully connected siiniat

In the preceding chapters we have considered continuousnagal systems. An im-
portant question we consider next is whether coupled disagnamical systems can
exhibit equally intriguing collective phenomena. Qtapter 5, we investigate spin sys-

tems, where the individual elements can switch betweenta finimber of possible states

16



at discrete time intervals. As the orientation of a spin canrterpreted as one of a
number of mutually exclusive choices, such models have bpphed to understand so-
cial phenomena involving coordination among agents, &g.adoption of innovations
and consensus formation. The simplest case one can coisittet of binary choice
where the spin flips between two states (Ising spins) depgmah the interactions with
its neighbors. The ferromagnetic Ising model having pesispin-spin coupling, such
that each spin tries to align itself with its neighbors, cacdime globally ordered under
suitable conditions. In social context this correspondsaimplete consensus, i.e., each
agent agrees with everyone else. However, in real socizt8ins, there can also be
antagonistic interactions between agents and systemadhaeih types of interactions
can exhibit a variety of complex behavior. In particular, nave investigated the conse-
guences of cooperative coupling operating over short rangeantagonistic coupling at
longer range. In equilibrium, the system is divided into teypositely aligned clusters
with spins within each cluster oriented in the same directithe social analogy would be
two extremely polarized groups holding opposite convitdion various issues. However,
we show analytically that in the presence of an external fidtrivial equilibrium be-
havior can occur, with one of the clusters being orderedenthi¢é other is disordered. We
call this “chimera” state in analogy with similar phenomegreaently seen in systems of
coupled oscillators. We have also numerically establigthedxistence of chimera order
in 3-dimensional spin systems resembling layered magneiterials thereby suggesting

possible experimental observation of such states.

While the results described so far gives an indication of tble variety of collective
behavior in complex systems that emerge from their streabfithe interactions among
their elements, for many many natural systems these initenschemselves evolve over
time in response to the dynamics of the componentsCHapter 6 we investigate the
coevolution of the interaction strengths with the dynanoicghe nodes of a network. As
in the preceding chapter, we consider a discrete dynamysééms on each node, which

can be in one of a finite number of states. In particular, wethisgwo-state Ising spin
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to represent the state of each node, which allows us to shelguolution of structural
balance in the model system. Structural balance, a cornttadtas been introduced in the
context of social systems, is a property of signed netwolksorresponds to complete
absence of conflicting constraints (referred to as frustmah the context of spin models
in statistical physics), which results from incompatiio#ls between the states of the nodes
and the sign of the links connecting them. We have consideségorks, each of whose
links are associated with a sign and a weight, corresportditige nature and strength of
interactions respectively. These links evolve using amptd®n rule, inspired by Hebb’s
principle, i.e., the link weights change in proportion te ttorrelation between activity of
the connected elements. While this dynamics leads to staldialance, in the presence
of stochastic fluctuations in the nodal dynamics, the tingeiired to converge to this state
exhibits extreme variability under suitable conditionsisTdivergence in the relaxation
time scales is characterized by a bimodal distributioncWliis observed for a wide range
of system parameters. As larger fraction of positive irdgoas reduces frustration while
larger fraction of negative interactions increases it, \@gehalso investigated the role
of bias in the sign of the interactions on the nature of themedd state and the time
required to converge to it. Our work suggests the intrigypogsibility that biological

networks may also evolve so as to approach balance.

We conclude with a short discussion of the general impleegtiof the results reported in

this thesis and indicate possible future directions ofaege
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Self-Organized transition to coherent

activity in disordered media

2.1 Introduction

Rhythmic behavior is central to the normal functioning of maiological processe<]
and the periods of such oscillators span a wide range of toakes controlling almost
every aspect of life49-32]. Synchronization of spatially distributed oscillatoss of
crucial importance for many biological systemi$] For example, disruption of coherent
collective activity in the heart can result in life-threaitey arrhythmia 83]. In several
cases, the rhythmic behavior of the entire system is cénweganized by a specialized
group of oscillators (often referred to @acemakens[34] as in the heart, where this
function is performed in the sino-atrial nod&]. However, no such special coordinating
agency has been identified for many biological processesoiiging mechanism for the
self-organized emergence of coherence is through couglimang neighboring elements.
Indeed, local interactions can lead to order without anmiggag center in a broad class

of complex systems3p, 37].

19



In this chapter we consider the self-organized emergencelwdrent activity. This work
is inspired by studies of the pregnant uterus whose prih@p&tion is critically depen-
dent on coherent rhythmic contractions that, unlike thethda not appear to be centrally
coordinated from a localized group of pacemaker c&.[In fact, the uterus remains
guiescent almost throughout pregnancy until at the vesydtdge when large sustained
periodic activity is observed immediately preceding thewsgion of the fetus39]. In the
USA, in more than 10 % of all pregnancies, rhythmic contaaiare initiated signifi-
cantly earlier, causing preterm birth&]], which are responsible for more than a third of
all infant deaths41]. The causes of premature rhythmic activity are not wellarstbod

and at present there is nfiective treatment for preterm labd9).

We investigate here the emergence of coherence using aimgpdelproach that stresses
the role of coupling in a system of heterogeneous entitraportantly, recent studies have
not revealed the presence of pacemaker cells in the utéBlisThe uterine tissue has a
heterogeneous composition, comprising electricallytakde smooth muscle cells (uter-
ine myocytes), as well as electrically passive cells (filasts and interstitial Cajal-like
cells [ICLCs]) [43,44]. Cells are coupled in tissue by gap junctions that serveeasredal
conductors. In the uterine tissue, the gap junctional aogplhave been seen to markedly
increase during late pregnancy and labor, both in termseohthmber of such junctions
and their conductances (by an order of magnitutte46]), which is the most striking of
all electrophysiological changes the cells undergo duthigperiod. The observation that
isolated uterine cells do not spontaneously oscillag whereas the organ rhythmically
contracts when the number of gap junctions increases,gijrsnggests a prominent role
of the coupling. The above observations have motivated aatetfor the onset of spon-
taneous oscillatory activity and its synchronization tigb increased coupling in a mixed
population of excitable and passive elements. While it has lsown earlier that an ex-
citable cell connected to passive cells can oscillate49], we demonstrate that coupling
such oscillators with dierent frequencies (because of varying numbers of passilg} ce

can result in the system having a frequeh@herthan its constituent elements. We have
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also performed a systematic characterization for the firet bf the dynamical transitions
occurring in the heterogeneous medium comprising acticepassive cells as the cou-
pling is increased, revealing a rich variety of synchrodiaetivity in the absence of any
pacemaker. Finally, we show that the system has multiplistieg attractors charac-
terized by distinct mean oscillation periods, with the matof variation of the frequency
with coupling depending on the choice of initial state asdbepling strength is varied.
Our results provide a physical understanding of the treomsitom transient excitations to
sustained rhythmic activity through physiological chasgech as increased gap junction

expressionjq].

2.2 TheModd

The dynamics of excitable myocytes can be described by alrhaging the form

Cm\./e = _Iion(Vea g.)

whereVe(mV) is the potential dference across a cellular membra@g,(= 1 uF cn?)

is the membrane capacitantg, (A cm~2) is the total current density through ion chan-
nels on the cellular membrane agdare the gating variables, describing théetient ion
channels. The specific functional form fog, varies in diferent models. To investigate
the actual biological system we have first considered a lddtaiealistic description of
the uterine myocyte given by Torgj al. [51]. However, during the systematic dynam-
ical characterization of the spatially extended systemgfse of computation we have
used the phenomenological FitzHugh-Nagumo (FHN) sys&3jwhich exhibits behav-
ior qualitatively similar to the uterine myocyte model iretexcitable regime. In the FHN

model, the ionic current is given by

lion = Fe(Ve, 9) = AVe(Ve — a)(1 - Ve) — 0,
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whereg is an dfective membrane conductance evolving with time as

g=e(Ve—0),

a(= 0.2) is the excitation threshold(= 3) specifies the fast activation kinetics a#(&
0.08) characterizes the recovery rate of the medium (the peteamalues are chosen such
that the system is in the excitable regime and small vanatdo not &ect the results
gualitatively). The state of the electrically passive ezlliescribed by the time-evolution

of the single variablé/, [52)]:
Vp = Fp(Vp) = K(VE — V),

where the resting state for the ceng* is set to 1.5 andK(= 0.25) characterizes the time-
scale over which perturbations away frorﬁ decay back to it. We model the interaction

between a myocyte and one or more passive cells by:

Ve = Fe(Ve, g) + np Cr (Vp - Ve), (2.13.)

Vp = Fo(Vp) = Cr(Vp = Vo), (2.1b)

whereny(= 1,2,...) passive elements are coupled to an excitable elementeiactiva-
tion variableV, , with strengthC,. Here, we have assumed for simplicity that all passive
cells are identical having the same paramel@sand K, as well as, starting from the
same initial state. We observe that the coupled system dsimgra realistic model of
uterine myocyte and one or more passive cells exhibitslagoihs (Fig.2.1(a)) qualita-
tively similar to the generic FHN model (Fig-1 (b)), although the individual elements
are incapable of spontaneous periodic activity in bothsaserig.2.1(a-b), the range of

n, and excitable-passive cell couplings for which limit cyolecillations of the coupled
system are observed is indicated with a pseudocolor reesm of the period+). We

also look at how a system obtained byfdsively coupling two such “oscillators" with
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distinct frequencies (by virtue of havingffirentn,) behaves upon increasing the cou-
pling constanD betweenV, (Fig. 2.1(c)). A surprising result here is that the combined

system may oscillati@asterthan the individual oscillators comprising it.

To investigate the onset of spatial organization of ped@diivity in the system we have
considered a 2-dimensional medium of locally coupled akdd cells, where each ex-
citable cell is connected t, passive cells [Fig2.1(d)], np, having a Poisson distribution
with meanf. Thus, f is a measure of the density of passive cells relative to the my
ocytes. Our results reported here are foe 0.7; we have verified for various values
of f > 0.5 that qualitatively similar behavior is seen. The dynanutshe resulting

medium is described by:

oV,
8_te = Fe(Ve, g) + np Cr (Vp - Ve) + DVZVe,

whereD represents the strength of coupling between excitableazlesfpassive cells are
not coupled to each other). Note that, in the limit of laRyéhe behavior of the spatially
extended medium can be reduced by a mean-field approximitiansingle excitable
element coupled td passive cells. A can be non-integen, in the mean-field limit

can take fractional values [as in Fig)1 (a-b)].

We discretize the system on a square spatial grid of Isizel. with the lattice spacing

set to 1. For most results reported hére- 64, although we have usadup to 1024 to

verify that the qualitative nature of the transition to gdbbynchronization with increas-
ing coupling is independent of system size. The dynamicaaggns are solved using a
fourth-order Runge Kutta scheme with time-stip< 0.1 and a standard 5-point stencil
for the spatial coupling between the excitable elementshéve used periodic boundary
conditions in the results reported here and verified thetuoboundary conditions do not
produce qualitatively dierent phenomena. Frequencies of individual elements &re-ca
lated using FFT of time-series for a duratiol? ime units. The behavior of the model

for a specific set of values df, C, andD is analyzed over many-(100) realizations of
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Figure 2.1: Oscillations through interaction between e and passive elements. A
single excitable element described by (a) a detailed iorodehof an uterine myocyte
and (b) a generic FHN model, coupledrippassive elements exhibits oscillatory activity
(inset) with periodr for a specific range of gap junctional conductanGgsin (a) and
coupling strength€&, in (b). The triangles (upright and inverted) enclosing tbgion of
periodic activity in (b) are obtained analytically by limestability analysis of the fixed
point solution of Eq.2.19. (c) Frequency of oscillation for a system of two “oscitlet”

A andB (each comprising an excitable cell angdpassive cells witm} = 1 andng = 2)
coupled with strengtid. Curves corresponding tofterent values o€, show that the
system synchronizes on increasiDghaving a frequency that can begherthan either
of the component oscillators. (d) Uterine tissue model aslariznsional square lattice,
every site occupied by an excitable cell coupled to a vagiabimber of passive cells.
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then, distribution with random initial conditions.

2.3 Reaults

To quantitatively analyze the dynamical transitions asititer-cellular coupling is in-
creased, we focus on thefldirences in the oscillatory behavior of individual elements
the simulation domain. In Fi@.2(a) we see that at lo® elements can haveftirent pe-
riods, indicating the co-existence of multiple oscillativequencies in the medium. This
is explicit from the power spectral density of local actatt different sites [Fig2.2 (b)],
which shows that there are multiple clusters in the domachdeing characterized by
a principal frequencyy [Fig. 2.2 (c)]. As all elements belonging to one cluster have the
same period, we refer to this behaviorasster synchronizatiofCS). Note that quies-
cent regions of non-oscillating elements, indicated intevim Fig. 2.2 (c), coexist with
the clusters. As the coupling is increased the clusters enjéiig. 2.2 (d)], thereby re-
ducing the spread in the distribution of oscillation frencies present in the medium,
P(v), eventually resulting in a single frequency for all osatithg elements (as seen for
D = 0.3). As there are still a few local regions of inactivity, wentethis behavior as
local synchronizatior{LS). Further increasin® results inglobal synchronizatioGS)

characterized bgll elements in the medium oscillating at the same frequency.

We can also interpret the dynamical transitions observexh upcreasing the coupling
between neighboring excitable elements as being coostirat waves traveling over in-
creasingly longer range in the system. Rig3 (first row) shows spatial activity in the
system at dferent values oD after long durations~ 2'° time units) starting from ran-
dom initial conditions. As the couplin® between the excitable elements is increased,
we observe a transition from highly localized, asynchr@excitations to spatially orga-
nized coherent activity that manifests as propagating sia@milar traveling waves of

excitation have indeed been experimentally obsemedtro in myometrial tissue from
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Figure 2.2: Synchronization via cluster merging. (a) Tigegies of fast activation vari-
able u, for two excitable cells in the domain exhibiting distinctcokation frequencies.
(b) Power spectral density of from four different sites [location shown in (c)] in a two-
dimensional simulation domain with= 64 (f = 0.7,C, = 1,D = 0.1). (c) Pseudocolor
plot indicating multiple clusters, each consisting of dators synchronized at a distinct
frequency, i.e. cluster synchronization (white corresfog to absence of oscillation).
(d) Increasind from 0.1 in (c) to Q2 in the left panel results in decreasing the number of
clusters with distinct oscillation frequencies. IncregdD further to Q03 results in local
synchronization where all oscillators have the same frequevith a few patches show-
ing absence of oscillation. Whdh = 0.4, all elements in the domain oscillate with same
frequency (i.e. global synchronization).
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Figure 2.3: Emergence of synchronization via propagatibaabivity waves with in-
creased coupling. Snapshots (first row) of the actiVityn a two-dimensional simulation
domain f = 0.7,C, = 1,L = 64) for increasing values of couplirig (with a given dis-
tribution of np). The corresponding time-averaged spatial correlatioctions C() are
shown in the middle row. The size of the region aroune O (at center) where €J is
high provides a measure of the correlation length scalelwisiseen to increase with.
The last row shows pseudocolor plots indicating the fregiesnof individual oscillators
in the medium (white corresponding to absence of osciltatibncreasing results in de-
creasing the number of clusters with distinct oscillatiagtiencies, eventually leading to
global synchronization characterized by spatially cohgreravelike excitation patterns
where all elements in the domain oscillate with same frequen
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the pregnant uteru$B]. The diferent dynamical regimes observed during the transi-
tion are accompanied by an increase in spatial correlagiogth scale (Fig2.3, middle
row) and can be characterized by the spatial variation @fue@cies of the constituent
elements (Fig2.3, last row). For low couplingd = 0.1), multiple clusters each with a
distinct oscillation frequency coexist in the medium (CS). Note that there are also quies-
cent regions of non-oscillating elements indicated in whitvith increased coupling the
clusters merge, reducing the variance of the distributfarsoillation frequencies eventu-
ally resulting in a single frequency for all oscillating elents (LS, seen fdd = 0.3). On
increasing the coupling to even higher valuBs< 0.4), a single wave traverses the entire
system resulting in GS whesdl elements in the medium are oscillating at the same fre-
quency. Our results thus help in causally connecting twad-kredwn observations about
electrical activity in the pregnant uterus: (a) there israaekable increase in cellular cou-
pling through gap junctions close to onset of labé%|[and (b) excitations are initially
infrequent and irregular, but gradually become sustaimeddcaherent towards the end of

labor [39].

The above observations motivate the following order patarsehat allow us to quanti-
tatively segregate theftierent synchronization regimes in the space of model pamamet
D andC, [Fig. 2.4 (a)]. The CS state is characterized by a finite width of theUezgy
distribution as measured by the standard deviatlgnand the fraction of oscillating el-
ements in the medium, @ f,sc < 1. Both LS and GS states hawe — 0, but difer in
terms offosc (< 1IN LS,~ 1in GS). Fig.2.4(b-c) shows the variation of the two order pa-
rameterso, ) and(f,so with the couplingD, ( ) indicating ensemble average over many
realizations. Varying the excitable cell-passive cellglng C, together withD allows

us to explore the rich variety of spatio-temporal behaviat the system is capable of
[Fig. 2.4 (a)]. In addition to the dferent synchronized states (CS, LS and GS), we also
observe a region where there is no oscillation (NO) charaet by f,sc. — 0, and a state
where all elements oscillate with the same frequency andepWvaich we term coherence

(COH). COH is identified by the condition that the order paramniet= max[ fa(t)] — 1
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Figure 2.4. (a) Diferent dynamical regimes of the uterine tissue model {fo¢ 0.7)
in D — C, parameter plane indicating the regions having (i) compétence of oscilla-
tion (NO), (ii) cluster synchronization (CS), (iii) local sghronization (LS), (iv) global
synchronization (GS) and (v) coherence (COH). (b-c) Variatf (b) width of frequency
distribution (o) and (c) fraction of oscillating celléf,so with coupling strengttD for
C, = 1[i.e., along the broken line shown in (a)]. The regimes af& distinguished by
thresholds applied on order parameters), ( foso and({F), viz., NO: (f,so < 1073, CS:
(o) > 1074, LS: (o,) < 104 and(fos0 < 0.99; GSi(fos0 > 0.99 and COH{F) > 0.995.
Results shown are averaged over many realizations.
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where fa((t) is the fraction of elements that are activg ¢ «) at timet. In practice, the
different states are characterized by thresholds whose spedlifies do not fiect the

qualitative nature of the results.

To further characterize the state of the system, we detedrtine mean frequenayby
averaging over all oscillating cells for any given realiaatof the system. Fig2.5(a) re-
veals that several values of the mean frequency are possiblgiven coupling strength.
When the initial conditions are chosen randomly for eachevalithe coupling (broken
curve in Fig.2.5(a)), the mean frequency decreases with incred3in@n the other hand,

v is observed tincreasewith D when the system is allowed to evolve starting from a ran-
dom initial state at lonD, and then adiabatically increasing the valueDofThe abrupt
jumps correspond to drastic changes in the size of the b&sin attractor at certain val-
ues of the coupling strength, which can be investigated taild@ future studies. This
suggests a multistable attractor landscape of the systeamuigs, with the basins of the
multiple attractors shown in Fig.5(d) [each corresponding to a characteristic spatiotem-
poral pattern of activity shown in Fi@.5 (e)] having difering sizes. They represent one
or more plane waves propagating in the medium and are gaitiectifrom the disordered
patterns of spreading activity (Fig.5(b-c)) seen when random initial conditions are used
at each value ob. We note that the period of recurrent activity in the uterasrdases
with time as it comes closer to terrB(] in conjunction with the increase in number of
gap junctions. This is consistent with our result in EAg(a) when considering a gradual

increase of the couplinD.

As previously mentioned, the above results are for a fixedevaf f, the mean number
of passive cells per excitable cell. To investigate how wayyhe density of passive cells
affects the spatial coherence in activity, we have considesgubaial case of the passive
cell distribution to define another spatially extended jr2ehsional lattice model for the
uterine tissue. Here, an excitable cell, located at eaticdasite, can be connected to

either one or no passive cells (Fig.6, left). This has the simplifying feature that the
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Figure 2.5: (a) Variation of mean oscillation frequencwith coupling strengttD in the
uterine tissue modelf(= 0.7) for 400 diferent initial conditions a€, = 1. Continuous
curves correspond to gradually increasidgstarting from a random initial state at low
D, while broken curves (overlapping) correspond to randatralrconditions chosen at
each value oD. (b-c) Snapshots of activity in the mediumiat= 1.5 for a random initial
condition seen at intervals 6T = 5 time units. (d) Variation of the cumulative fractional
volumesy of the basins for dferent attractors corresponding to activation patterne/sho
in (b-c) and (e), as a function of the coupling strenBth(e) Snapshots of topologically
distinct patterns of activity corresponding to the fiveattors atD = 1.5 [shown by a
broken line in (d)] wherD is increased.
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Figure 2.6: (left) A 2-dimensional square lattice modeldterine tissue where individual
excitable cells (located at each site) can couple to eitherar no passive cell. (right)
Variation of the mean value of the order parametiey, characterizing coherence (COH)
shown as a function of the passive cell density4dnd the coupling strength between
the excitable cells, fo€, = 0.6.
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Figure 2.7: (left) Rate of production of human pregnancgtexl hormones estrogen and
progesterone over the course of pregnancy (adapted fronf3f. (right) Variation of

the mean value of the order parametér), characterizing coherence (COH) shown as a
function of the excitation threshold) and the coupling strengtb between the excitable
cells, forC, = 0.6.
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individual lattice sites either don't oscillate or osciélaat the same frequency in isolation.
In this scenario, the passive cell densitywhich is the same as the fraction of oscillators
in the lattice, varies between 0 and 1. WHher 1, the system corresponds tthamoge-
neousoscillatory medium. As the coupling between the excitaldenents is increased,
we observe that for high value df the system becomes coherent (COH) as in the lat-
tice model used earlier. At low passive cell density, insieg@D results in cessation of
oscillation (NO) [Fig.2.6 (right)]. The transition to coherence can also be obserged a
a function of increasing passive cell density. For lowerptimg, this exhibits a gradual
rise, while at higher coupling there is an abrupt changeemotidler parameter character-
izing coherence. This can be explained as a result of thersydynamics approaching

that expected in the mean-field limit as the couplihg increased.

An important biological factor that is believed to regul#te onset of uterine activity is
the secretion of dierent hormones, such as estrogen and progestetdhe Estrogen
increases the excitability of the myometrium, while pregesne reduces i6f], so that
altering the balance between the two can result in the ubssimg quiescent or undergoing
contractions. As seen from Fig.7 (left), the rate of secretion of both these hormones
increase during the course of pregnancy. However, closerto, tthe progesterone rate
falls slightly while that of estrogen keeps increasing. sTihiesumably results in a large
increase in the myometrium excitability resulting in stiation of uterine contractions.
In our model, the role of such hormones can be incorporategirbgly altering the value
of the threshold of the excitable cells, Increasing ratio of estrogen to progesterone
production rates can be modeled as reduaimghich has the #ect of making the medium
more excitable. Fig2.7 (right) shows that coherence is achieved by either incngasi
excitability (i.e., reducing) or increasing the coupling strendihbetween excitable cells
or both. Thus, we believe that the role of hormones essgnéialplifies quantiatively the

coherence that is achieved in our model through increaseguliog.
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2.4 Discussion and Conclusion

Our results explain several important features known abfmeitemergence of contrac-
tions in uterine tissue. Previous experimental resulte lieamonstrated that the coupling
between cells in the myometrium increases with progressegjrmancy 45]. This sug-
gests that the changes in the system with time amounts tdtameous increase dd
andC,, eventually leading to synchronization as shown in Rig.(a). Such a scenario
is supported by experimental evidence that disruption ptjgactional communication
Is associated with acute inhibition of spontaneous utecorgractions $6]. The mech-
anism of synchronization discussed here is based on a vesrigemodel, suggesting
that our results apply to a broad class of systems comprngled excitable and pas-
sive cells p7,58]. A possible extension will be to investigate thifeet of long-range

connections$9,60].

To conclude, we have shown that coherent periodic actiaty @merge in a system of
heterogeneous cells in a self-organized manner and doe®equite the presence of a
centralized coordinating group of pacemaker cells. A riahiaty of collective behav-
ior is observed in the system undeffdrent conditions; in particular, for intermediate
cellular coupling, groups of cells spontaneously form s that oscillate at fferent
frequencies. With increased coupling, clusters merge sedteally give rise to a glob-
ally synchronized state marked by the genesis of propagataves of excitation in the
medium. Our model predicts that a similar set of changesrdodine uterus during late

stages of pregnancy.
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Spatiotemporal pattern formation in
homogeneous system of relaxation

oscillators

3.1 Introduction

The problem of understanding pattern formation across ietyaof chemical and bio-
logical contexts 10, 61] has stimulated much theoretical and experimental agtsiiice

the early work of Turing 16,62, 63]. Studying the dynamics of coupled biochemical
oscillators interacting through reactionffdision mechanisms constitutes a particularly
promising approach to understanding the genesis of patiematural system${]. Gen-
eralizations of such processes involvingfeliential excitatory and inhibitory interactions
between elements as represented by the coupling terms,beaveused to represent a
variety of complex system$5-67]. They have also been proposed recently as a possible

mechanism for computation in biological and chemical syst{8, 69].

The stationary patterns exhibited by the models mentiohedearepresent only a frac-
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tion of the variety seen in nature, many of which exhibit péit activity. Thus, extending
ideas underlying reaction4tiusion mechanisms to systems of interacting relaxation os-
cillators should permit investigation of spatio-tempopalterns in biological systems,
where oscillations are observed across many spatial angor@mscales, ranging from
the periodic variations of intracellular molecular concations [70, 71] to changes in the
activity levels of diferent brain areag'p]. The coherent dynamics of these oscillators can
produce functionally important collective behavior sustsgnchronization73] yielding
different biological rhythms74]. However, synchronized oscillations constitute only one
of a number of possible collective phenomena that can enfevge such interactions.
For example, a recent set of experiments on coupled cheoscalators in a microfluidic
device [75, 76] have shown that anti-phase synchronization as well asalgatetero-
geneous oscillator death stat&§][can occur in this system underfidirent conditions.
Extending the mechanism of coupling by lateral inhibitieng(, via a rapidly dfusing
inhibitory chemical species) to arrays of relaxation datiks, used for modeling biolog-
ical periodic activity, can be expected to reveal the uryileglmechanism for a variety of

spatio-temporal phenomena seen in natural systems.

In this chapter, we study a generic model of relaxation tzgoils, each comprising ac-
tivator and inactivating components, coupled to neareghbers through lateral inhibi-
tion via diffusion of the inactivating component (in line with the expegnts mentioned
above). Our model is capable of exhibiting a variety of sp&timporal patterns which
may be observed experimentally, while its simplicity altomn analytical understanding
of their genesis. We provide a simple theoretical demonstraf the existence and sta-
bility of an anti-phase synchronized state for coupledxatian oscillators. In addition to
reproducing some patterns reported earlier, we also observel states, such as attrac-
tors corresponding to spatially co-existing dynamicalstidct configurations, which we
term chimera states. Although homogeneous arrays of geredaixation oscillators have
been studied extensively, our observation of these sjyaliaterogeneous attractors for

such systems is new to the best of our knowledge. We chaizetmsins of attraction for
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Figure 3.1: Spatio-temporal evolution of a 1-dimensiorahy of coupled relaxation
oscillators N = 10) with passive elements at the boundaries [model systawrsh
schematically on top]. Pseudocolor plots of the activatrariableu indicate diferent
regimes characterized by (a) synchronized oscillatio®) () anti-phase synchroniza-
tion (APS), (c) spatially patterned oscillation death (¥9@nd (d) chimera state (CS),
l.e., co-occurrence of spatial patches with dynamicakyyinct behavior.
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various patterns seen in the model, also demonstrating expented robustness of the
chimera states. This robustness suggests that the statdssarbe can be reproduced in
suitably designed experiments. We report phase defextdlgcontinuities moving ballis-
tically through the system, producing complex patternsahston with each other. We
observe analogous structures in two-dimensional medtebter a striking resemblance
to persistent configurations in cellular automata (C2(][ which have been linked to the

universal computation capabilities of such syste@is-$3].
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3.2 TheModed

Our model system comprisdé$ relaxation oscillators interacting with each other in a
specific topology. For the dynamics of individual relaxatwscillators we use the phe-
nomenological FitzHugh-Nagumo (FHN) equations, whichageneric model for such
systems. Each oscillator is described by a fast activatwialleu and a slow inactivation
variablev:

u=fuv)y=ul-u(u-a)-v,

(3.1)

v=g(uv)=e(ku-v-h),
wherea = 0.139,k = 0.6 are parameters describing the kinetics, 0.001 characterizes
the recovery rate of the medium abds a measure of the asymmetry of the oscillator
(measured by the ratio of the time spent by the oscillatoigit And low value branches
of u). Parameter values are chosen such that the system is is¢Hatory regime. We
have checked that small variations in the values do fietaour results qualitatively. To
investigate spatial patterns generated by interactiowdst the oscillators, we arrange
them in a 1-dimensional chain [Fi§.1 (top)]. In the chemical experiments, the beads
containing the reactive solution are suspended in a chdlgnicart medium which allows
passage of only the inhibitory chemical speciéS]|[ In our model, the oscillators are
diffusively coupled via the inactivation variable The boundary conditions for the chain
take into account the inert medium by including non-re@cpassive elements at each
end that are diusively coupled to the neighboring oscillators. The inegtimm between
the oscillators is not considered explicitly, its volumargerelatively small compared
to the reservoirs at the boundary. We have verified that snafuof intermediate non-
reactive cells dfusively coupling each pair of oscillators does nfieet the fixed-point

equilibria of the system or their stability, once théfdsion constant is suitably scaled.
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The dynamics of the resulting system is described by

Ui = f(Ui,vi) + Dy (Ui—1 + Uipr — 2 Wp),
Vi = 0(ui, vi) + Dy (Viig + Vier — 2 V), (3.2)

VO = DV (Vl - Vo), VN+1 = DV (VN - VN+1)’

wherei = 1,2, ..., N and the difusion constant®,, D, represent the strength of coupling
between neighboring relaxation oscillators through thetivation and inactivation vari-
ables, respectively. For most results reported here we t@veidered only diusion of
the inactivation variable, i.eD, = 0. For the simulations of the model system we have
mostly used eithelN = 10 or 20, although larger values Nfupto 1000 have been used to
verify that our results are not sensitively dependent otesysize. We have verified that
the boundary conditions do noffect the results significantly by also considering peri-
odic boundaries and observing patterns qualitativelytidahto those reported here. The
dynamical equations are solved using an adaptive RungexKakieme. The behavior of
the system for each set of parameter valnesdD, is analyzed over many (#pinitial
conditions, with each oscillator having a random phase @mdé®m a uniform distribu-

tion.

3.3 Resaults

Fig.3.1(a-d) shows a variety of asymptotic spatio-temporal pasténat we observe in the
model system: (@) synchronized oscillations (SO) with kEheents (except those at the
boundary) having the same phase, (b) anti-phase synchtamnZAPS) with neighboring
elements in opposite phase, (c) Spatially Patterned @gwmilDeath (SPOD) regime where
the oscillators are arrested in various stationary statd4@ Chimera States (CS) where
oscillating regions co-exist with patches showing neglgtemporal variation. However,

these do not exhaust the range of possible spatio-templegalgmena that are observed
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including propagating structures that are discussed Bt#h APS and SPOD states have
been observed experimentally in chemical systert$ [ Although the latter has been
referred to as “Turing patterns” in the literature, we strdgat SPOD is distinct as it is
not obtained through destabilization of a homogeneoudibgqum (Turing instability)
but occurs through a process of oscillator deatAl.[ There is a simple mathematical
reason why the mechanism involved in generating SR@Bnotbe Turing instability:
the Jacobian matrix corresponding to the stable fixed pdith@ FHN model has the

structure

+ j—
from which it immediately follows that the fixed point canrm destabilized by the Tur-

ing mechanism14].

To investigate the robustness of the observed patterngai,dee numerically estimate
the size of their basins of attraction in thHe D,) parameter space (Fi§.2). To identify
distinct pattern regimes irb(D,) space [Fig.3.2 (a)] we introduce the following order
parameters. The number of non-oscillating cells in the bdithe systemN,,, i.e., cells

for which the variance with respect ot time of the activati@miableu, o-?(u;), is zero,

is used to characterize the SPOR,{ = N) and CS regimes (& N,, < N). Both SO
and APS states have all elements in the bulk oscillating. évaw SO is distinguished
by having all oscillators in the same phase as measured byatience of the activation
variablesu, (O'iz(u»t = 0, where( ), represents time average. We can also define the syn-
chronization among the oscillators in two distinct (evesid)ossub-lattices, as measured by
the time-averaged variance of the activation variable, %z, . {(U)) and<a§dd(u)>t. This

pair of order parameters is zero for both SO and APS stateg\es, if (c2(u)) > O, it
signifies the APS regime. In practice flérent regimes are characterized by thresholds
whose specific values do ndff@ct the qualitative nature of the results. B (a) indi-
cates the parameter regions where SO, APS, SPOD and CS statdssarved for more

than 50% of initial conditions (i.e., they have the largestih). As mentioned earlier, the
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system also exhibits other regimes apart from the above atesh occur in regions of

(b, D) parameter space shown in white.

While diffusive coupling in a homogeneous system of oscillators ie&ga to promote
the SO statel[g], a striking observation from this phase diagram is thatARS state has

a very large basin of attraction in certain regions [Ag(b)]. The existence of APS is
somewhat counter-intuitive as forftlisively coupled identical isochronous oscillators the
only stable attractors are synchronized oscillations oillasor death L.8]. To understand
the origin of such anti-phase oscillations we consider gpkgrmodel that captures the
essence of relaxation oscillation phenomena and can bedsekactly. We consider the
relaxation limit € — 0 in FHN system) and extreme asymmetry where the limit cyak h
a slow segment in which the system spends the entire duratitre oscillation period
(the remaining segment of the cycle being traversed extyefast). In this limit, we
obtain the one-dimensional dynamical systers: w(x), wherex parameterizes the slow
part of the limit cycle and can be redefined to belong to theritl (Q 1). Fig.3.3(a)
shows a schematic diagram of the trajectory of the limit eyathere the system spends
almost its entire oscillation period on the solid branctle (teturn fromx = 1 tox = 0,
shown by the broken line, is considered to be instantanedis model can be exactly
solved if w(X) is a constant£ w, say), although the geometrical argument is valid for
any arbitrary positive definite function defined over thesiaéal (Q1). By appropriate
choice of time scale we set the period* = 1. A system of two such fusively coupled

oscillators can be described by

).(1 =1+D (X2 — Xl), 5(2 =1+D (Xl - X2). (33)

Given the values 0%y, X, at some arbitrary initial tim&, the solution of Eqn.3.3) at a
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Figure 3.2: Diferent dynamical regimes of a 1-dimensional array of coupdakation
oscillators N = 10) in theD, — b parameter plane showing regions where the majority
(> 50%) of initial conditions result in synchronized osciltats (SO), anti-phase synchro-
nization (APS), spatially patterned oscillator death (®@nd chimera state (CS). (b)
Variation of the attraction basin size for théfdrent regimes mentioned above (measured
as fraction of initial states reaching the attractor) withigling strengttD for b = 0.064
[i.e., along the broken line shown in (a)]. In practice, tegimes are distinguished by
thresholds applied on the order parameteffu;), (T2(U)), (03ve{W) and (o2, (u)),
which have been taken to be 0.05 for the present figure. Bas#s biave been estimated
using 14 initial conditions.
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Figure 3.3: (a) Schematic diagram of a limit cycle trajegtimr an oscillator in the relax-
ation limit (¢ — 0) and extreme asymmetry (for details see text) such thatsb#ator

is on the solid line (O< x < 1) for almost its entire period. (b) Time-series of two such
coupled oscillators [Eqn3(3) with D = 1] and (c) the Poincare map for the system at dif-
ferent coupling strength® showing stable anti-phase synchronization. (d) Phasgepla
diagram indicating the general mechanism (see text) faolla®r death in a system of
two coupled oscillators (1 and 2).

later timet follows the relations:

X1(1) + Xo(t) = X (1) + xo(t") + 2(t - t),
(3.4)

xa(t) — X2(t) = [xa(t') — X2(t')] exp[-2D(t - t')],
till time t” whenmax(x, Xo) reachesx = 1. After this the larger ofX;, x;) is mapped
back tox = 0 (because of the instantaneous nature of the remainingesggrhthe limit
cycle) andt’ is replaced byt”. Using the above exact solution of the coupled system
(3.3, its Poincare map(x) is constructed in two steps. Firstxf starts at O and; starts

at some point & x < 1, we find the location ok[= f(x)] at some tim& whenx, = 1
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(which is then immediately mapped xg = 0). Now, starting withx, = 0 andx; = f(X),
whenx; = 1 we find the location ok,: X' = f(f(X)) = P(x). Using solution 8.4), with

X1 (") = 0, X%(t') = X, X (t) = f(X) andx,(t) = 1, we get

f(X) = 1+ D1 W[-Dx exp{D(x — 2)}],

whereW is the Lambert W-function. Fig3.3(c) shows the Poincare m&gx) = f(f(x))

for different values of the coupling strendth The map has one stable and one unstable
fixed point, which correspond to the anti-phase synchrah{zd*S) and synchronized
oscillating (SO) states, respectively. Thus, for the md8ed) we find that APS is the
only stable state. Relaxing the extremal conditions undechwthis was derived may
allow a stable SO state to coexist with the stable APS s&fe [This is a fundamental
mechanism for generating APS states in any system fédigively coupled oscillators

exhibiting anti-phase oscillations.

When the couplind, between oscillators in the array is increased to very highes
we observe that the oscillatory regimes (e.g., SO and ARSyeglaced by stationary
spatial patterns such as SPOD (F#2). To understand the genesis of SPOD at strong
coupling, we can again focus on a pair of coupled relaxatgmillators in the relaxation
limit (¢ — 0). The parametdp is chosen such that thenulicline is placed symmetri-
cally between the two branches of thaullcline with the oscillator taking equal time to
traverse each branch [Fig.3 (d)]. When the two oscillators (1 and 2) are in opposite
branches (as shown in the schematic diagram), the two ampdsices acting on each
oscillator, corresponding to the coupling = D,(v. — v1)] and the intrinsic kinetics
(Fn) respectively, can exactly cancel when the coupling isnstneesulting in oscillator
death. Symmetry ensures that the force due to the intrimsetiks for the two oscillators

is identical in magnitude but oppositely directed in theadiestate. The occurrence and
stabilization of thisheterogeneoustationary state is the key to the occurrence of SPOD

at strong coupling.
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At intermediate values of coupling, in large arrays, the competition of the above mech-
anism with the intrinsic oscillatory dynamics dominant @wvlcoupling, may give rise
to chimera states. This CS regime is especially interestintpa@ system exhibits a re-
markable heterogeneous dynamical state in spite of the l®itkg homogeneous. The
occurrence of CS is not dependent on boundary conditionsigsl$o reproduced with
periodic boundaries. The observation of such states ineargeemodel of relaxation oscil-
lators suggests that they should be present in a wide clagst#ms; similar phenomena
have been recently reported in a specific chemical systenehfi@sl. The chimera state
described here comprises regions with dynamically disbebavior, as opposed to its re-

cent usage referring to the co-occurrence of coherent andoberent domaing'g, 79].

Aside from the spatio-temporal patterns in RBgl (a-d) we also observe attractors having
point-like “phase defects” (i.e., with a discontinuity dfigse along the oscillator array
at this point), moving in the background of system-wide kesttons. As seen from a
typical example of such states [Fig1.4 (a)], after initial transients these defects move in
the medium with interactions between two such entitiesltieguin either the two being
deflected in opposite directions, or either both or only oattigg annihilated. This is
unlike the situation of oppositely charged defects in nealtatory media which typically
annihilate on collision§6]. While the boundary for systems with passive elements at the
ends is a source of new defects entering the medium, singlaigtent structures are also
seen in systems with periodic boundary conditions whertharsteady state, a conserved

number of defects can refledf@ach other indefinitely [Fig.4 (b)].

To observe how these propagating defects manifest in higineensional systems, we
consider a 2-dimensional array of coupled oscillators @efion a torus. The system can
have extremely complicated transient phenomena, andrfglisity we discuss only its
asymptotic behavior. For a square lattice, we observelileat s a specific configuration
of four sites that persists indefinitely (reminiscent of tieler configurations in the 2-

dimensional CA “Game of Life"§0]). These structures can move in horizontal or vertical
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Figure 3.4: (a-b) Spatio-temporal evolution of a systemanfpied relaxation oscillators
showing traveling waves of phase defects in (a) a linearyasiith passive elements at
the boundaries and (b) with periodic boundary conditiortsd)(Propagating defects in
two-dimensional media with periodic boundary conditiomwig (c) two horizontally
moving “gliders" and (d) collision of two “gliders". For clegisualization of the motion
of the spatially extended defects, snapshots of the twedsional medium are taken at
intervals which are multiples of the oscillation period fbe mean activity of the system
T.

directions [Fig.3.4 (c)]. The interaction of such “gliders” can produce compdgatio-
temporal patterns, e.g., Fig.4 (d) which shows two “gliders” that on collision movéfo

in directions perpendicular to their incident ones.

So far we have assumed that only the inactivation variabkn difuse as this is the situ-
ation in the experimental system that motivated our stuayvéver, in principle, one can
conceive of a system where both activation and inactivataorables can diuse through
the medium. To investigate théfect of such interactions on the collective dynamics of

the system of coupled oscillators, we have considered thplsst cas®, = D, = D,

46



e

u I : : |
-0.2 0 0.2 0.4 0.6 0.8 1

w

time in arbitrary units ( x 104)
N

Figure 3.5: Spatio-temporal evolution of a 1-dimensiomedyaof coupled relaxation os-
cillators N = 20) with D, = D, and periodic boundary conditions, exhibiting patterns
similar to those seen in systems that allofion of only inactivation variable. Pseudo-
color plots of the activation variableindicate diferent regimes characterized by (a) syn-
chronized oscillations (SO), (b) anti-phase synchroroenafAPS), (c) spatially patterned
oscillation death (SPOD) and (d) chimera state (CS, corredipg to co-occurrence of
spatial patches with dynamically distinct behavior).

l.e., the coupling strengths for both variables are the s&ts®, to avoid the edgefkects
introduced by the passive reservoirs at each end, periadiodary conditions have been
imposed on the system. Figurg$ and3.6show a representative selection of the asymp-
totic spatio-temporal patterns observed &tedlent values ob andD. We observe that the
system exhibits all the patterns (SO, APS, SPOD, CS and patipgglefects) discussed
in detail earlier in the context of flusion in only the inactivation variable. As a conse-
quence of using periodic boundary conditions we also oleseaviants of these patterns
with a spatial gradient. For example, Fi§6 shows SO and APS with such gradients

that we refer to as gradient synchronization (GS) and gradieti-phase synchronization
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Figure 3.6: Spatio-temporal evolution of a 1-dimensiomedyaof coupled relaxation os-
cillators (N = 20) with D, = D, = D and periodic boundary conditions, showing patterns
that have a spatial gradient. Pseudocolor plots of the aiv variableu indicate dif-
ferent regimes characterized by (a) gradient synchranizéGS), (b) gradient anti-phase
synchronization (GAPS), (c) traveling defects and (d)etizng chimera state (region with
SPOD propagating over a background of GS).

(GAPS). The manifestation of spatial gradient in CS resulta propagating region of
SPOD traveling against a background in GS, which we can terateaveling chimera
state. The dferent pattern regimes observed for this system are indi¢atf, D) space

shown in Fig.3.7.

3.4 Discussion and Conclusion

To conclude, we have shown that a simple model of relaxatsoiilators interacting via

lateral inhibition-like coupling yields a variety of stifig spatio-temporal patterns. Our
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Figure 3.7: Diferent dynamical regimes of a 1-dimensional array of coupéakation
oscillators N = 20) in theD — b parameter plane (witb, = D, = D) and periodic
boundary conditions, showing regions where the majoriyp0%) of initial conditions
result in synchronized oscillations (SO), gradient syooiration (GS), anti-phase syn-
chronization (APS), spatially patterned oscillation e@POD) and chimera state (CS).
The region marked “others” exhibit patterns that do not bglto any of the ones men-
tioned above (e.g., gradient anti-phase synchronizatartraveling defects).

model is simple and generic, suggesting that the patternmedict may be observed in a
range of experiments. These include coupled electronoits implementing relaxation
oscillators B7] and Pt wire undergoing CO oxidation where the system is insaiilatory
regime B8] as well as the microfluidic chemical systems mentionedegarlt will also
be of great interest to see whether similar patterns occureiitknown generic models
of chemical oscillators such as the Brussela88].[ Recent theoretical work on trapped
ilons [90] suggest yet another system where such patterns can be é&xpeadimentally.
Our initial exploration of propagating configurations irdBaensional media suggests

that systems of higher dimensions may exhibit yet moreiagjikeatures. The possibil-
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ity of using the propagating defects for computation is angning one, especially as

analogous entities have been used to construct logic gat@A [80].
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Emer gence of complex patternsthrough
spontaneous symmetry breaking in
dense homogeneous networ ks of neural

oscillators

4.1 Introduction

Collective dynamics of coupled oscillators, in particulgynchronization 18], is inte-
gral to many natural phenomen@1] and is especially important for several biological
processesZg, 29, 74], such as brain function7p, 92-95]. While very large-scale syn-
chronization of neuronal activity is considered pathatagjias in epilepsydo], the brain

is capable of exhibiting a variety of complex spatiotemperaitation patterns that may
play a crucial role in information processing7]. Understanding the dynamics of these
patterns at the scale of the entire brain (imaged using tgaba such as fMRI) is of fun-
damental importance, as interaction between widely dégukbrain regions are responsi-

ble for significant behavioral changes, such as loss of ¢ouseess caused by disruption
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of communication betweenftiérent areas of the cerebral cort€g]. As detailed simula-
tion of each individual neuron in the brain is computatibnakpensive $9, 100, when
studying the dynamics of the entire system it is useful tagoan the network of interac-
tions between brain regions. It has also been explicitiywshihat the collective response
of a large number of connected excitatory and inhibitoryraes, which constitute such
regions, can be much simpler than the dynamics of indivicealrons 101]. Indeed,
each region can be described using phenomenological miodelsns of a few aggregate

variables 102].

Using anatomical and physiological data obtained overraédecades, the networks
of brain regions for dterent animals have been reconstructe@3f105, where the in-
dividual nodes correspond to large assemblie$ @QCP) of neurons 106, 107. The
connectivityC (i.e., fraction of realized links) of these networks ¢ 107?) is signifi-
cantly higher than that among neurofs+ 107°) [10§. A schematic representation of a
network of the Macaque brain regions (adapted from Ré&f5]) is shown in Fig4.1(a).
The collective activity of such networks can result in coicgtied nodal dynamics, in-
cluding temporal oscillations at several scales that a@vknto be functionally rele-
vant [72,111,117. Each of these nodes can be described using neural fieldlsnofle
localized neuronal population activity, which can haveyirag mathematical complexity
and biological realism]13-115. In this chapter, we use the well-known and pioneering
model proposed by Wilson and Cowan (WQ@)LE 117] to describe the activity of each
brain region. We also discuss how our model may provide tsigto recent experimen-
tal findings related to the communication between brainsdeang the transition to loss

of consciousnes®B,118 119.

The complex collective dynamics obtained using this modeltfie Macaque network,
shown in Fig.4.1 (b), are reminiscent of experimentally recorded activitybmin re-
gions [72]. The range of behaviors observed in this systemfé&idint connection strengths

[Fig. 4.2 (a)-(b)], can arise from an interplay of several factorsjclvlmakes their anal-
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Figure 4.1: (a) The directed network of connections betwegions of the Macaque
brain, adapted from Refl1p5. The size of each node is proportional to its total de-
gree and the colors distinguish the modules (charactebyesignificantly higher intra-
connection density and obtained using a partitioning dgor[110). The color of each
link corresponds to that of the source node. (b) Time sefidlssoexcitatory component
of a typical node in this network with coupling strength= 500, where each node is
modeled as a Wilson-Cowan oscillator.
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Figure 4.2: (a) Phase space projections of the oscillathrsected to each other using the
connection topology of the Macaque brain network, witfiestent coupling strengths. The
filled circles represent the location of each oscillator @ instant. The panels here are
scaled individually for better visualization. (b) Timerss of the excitatory component
u, for the corresponding values wfused in the panels directly above. The nodase
arranged according to their modules (demarcated by winiés)i
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ysis dificult. A possible approach to understand the genesis of heserns is to focus
on the dynamics of the nodes interacting in the simplifiedirggetof a homogeneous,
globally coupled system, which is an idealization of thes#dy connected network. In
this chapter we show that this simple system exhibits an peeedly rich variety of
complex phenomena, despite lacking the detailed topabégatures of brain networks
[e.g., Fig.4.1(a)], such as heterogeneity in degree (number of connextiennode) and
modular organization. In particular, we show the existesfceovel collective states, in-
cluding those characterized by oscillator clusters, wieaeh cluster is distinguished by
its amplitude or frequency. The occurrence of such clusgessirprising as each node
is identical in terms of both intrinsic dynamics and conityt indicating that the ho-
mogeneous system of oscillators undergg@sntaneous symmetry breaking addition
we observe patterns where the time-series for all osciladoe identical except for a
non-zero phase flerence betweem, groups of exactly synchronized elements which we
refer to as “phase clusters”. On removing a few links from téevork while preserving
the structural symmetry of connections we observe even draraatic situations such as
the appearance of many @) clusters having dierent amplitudes. In addition, oscillator
death, which is seen over a substantial region of parampéeesin the fully connected
system, occurs in a drastically reduced region for such imaltg sparse networks. As
the behavior of a large, densely connected systetiigstavely identical to that of the cor-
responding mean-field model, it is remarkable that the dycalproperties of the system
considered here are radically altered in response to egtyeminor deviations from the

fully connected situation.

4.2 TheMode

The model we consider comprises a networlodscillators, each described by the WC

model whose dynamics results from interactions betweernxeaitegory and an inhibitory
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neuronal subpopulation. The average activity of each m@dev;) evolves as:

7ol = —Uj + (ky — rl;) Su(u),
4.1)
W = -V + (Kv - eri) Sv(Vgn),

where,u}n = cuuui—cuvvi+2’(vv;1j“uj—v\ffjvvj)+lﬁ>“ andv§n = CuUi—CnVi+ Y (wVu —w}’j"vj)+
e represent the total input to the two subpopulations resdgt The time constants
and external stimuli for the subpopulations are indicatgdrl, and IS5} respectively,
while c,, (u,v = u,V) corresponds to the strength of interactions within andvben
the subpopulations of a node. The interaction strengthsegmeesented by the weight
matricesW*” = {w;"} and the summatioR’ is over all network neighbors (for a globally
coupled systen®’ = X j.n ). The functionS,(2) = [1 + expi—a,(z— 0,)}]1 ™t +«, — 1
has a sigmoidal dependence mmvith «, = 1 - [1 + exp@.6,)]~*. The parameter values
have been chosen such that each isolated nae=£ 0) is in the oscillatory regime, viz.,
a,=13,0,=4,a,=2,6,=37,c,,=16,c,y=12¢c,,=15¢c,=3,ry,=1Lr, =11, =
8,7y = 8,18 = 125 andI®* = 0. For the homogeneous systems considered here the
links will have same strength, i.eyj” = w/K (u,v = u,vandi(# j) = 1,...,N; w,” = 0),

wherek is the degree of a node

The dynamical system (Edt.1) is numerically solved using an adaptive-step Runge-
Kutta integration scheme forfiierent system sizedlj and coupling strengthsvj. Linear
stability analysis is used to determine the stability of smhthe patterns and identify the
associated bifurcations. The behavior of the system fdn sat (v, N) is analyzed over
many ¢ 100) randomly chosen initial conditions. We have explciutrified that our

results are robust with respect to small variations in thrampeters.
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4.3 Results

We first examine the collective dynamics of a pair of coupledilators N = 2) as

a function of the interaction strength between them (Bi@). Fig. 4.4 (a)-(b) show
that while exact synchronization (ES) of oscillator dynesnoccurs at weak coupling
(w < 3.2), a state of anti-phase synchronization (APS) is obseavéiyher values ofv
(4.4 < w < 11). For intermediatey, the co-existence of the dominant frequencies corre-
sponding to ES and APS states [FMg5 (a)] indicates that the quasi-periodic (QP) behav-
lor observed in this regime can be interpreted as arisirgutiit competition between the
mechanisms responsible for the above two statesv Atl1, the system undergoes spon-
taneous symmetry-breaking, eventually giving rise to mbgeneous in-phase synchro-
nization (I1S), characterized byftierent phase-space projections and distinct amplitudes
for the time-series of each oscillator [Figj4 (a)-(b), last panel]. The nature of the transi-
tion from APS to IS is made explicit in Figt.5 (b) [top panel], where the fixed points of
one of the oscillators, obtained using numerical root figdare shown over a range \of

At w ~ 10.943, a pair of heterogeneous unstable solutions relatedimyyiation symme-
try, corresponding to an inhomogeneous steady-state,(&®rge from a homogeneous
unstable solution, beyond which all three solutions cdeXisus, spontaneous symmetry
breaking appears to arise in the system through a subtptichafork bifurcation, with the
number of positive eigenvalues corresponding to the homegés solution decreasing by
unity (not shown). The ISS is stable over a very small range964 < w < 11.002, as
seen from their corresponding eigenvalues in Eig(b) [lower panel]. Note that stability
is lost on either end of this interval through supercritidapf bifurcations (Fig4.6). For

w > 700, both oscillators converge to the inactive state v, = 0, Vi, corresponding to

amplitude death (AD, not shown).

To understand how the patterns we observe for a pair of WClatses generalize for
a larger system, we now increase the number of oscillatallseaamine the collective

dynamics (Fig4.7). We observe that while the patterns seen for a pair of coupseil-
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Figure 4.3: Bifurcation diagram for a pair of coupled WC ostdrs with coupling
strengthw as the bifurcation parameter, obtained for a set of 20 ranihittal condi-
tions (i.c.). Red dots represent the maxima of the inhibitmsnponentw for each i.c.,
while blue dots represent the corresponding minima.

lators, namely ES, QP, ISS, IIS, APS and AD persist (first &hown in Fig.4.8 (a)-(b)

for N = 20) !, qualitatively diferent states also emerge. As mentioned earlier, a new class
of patterns characterized by the existence of phase ctuapgears. The most robust of
these, referred to as gradient synchronization (GS),nhas N. Another new pattern
comprises two oscillator clusters, each characterizedyque frequency [Figd.9(a)].

This constitutes a dramatic instance of spontaneous Imgalipermutation symmetry,

as the oscillators are intrinsically indistinguishabletfis completely homogeneous sys-
tem. Thus, the appearance of multiple frequencies in a digametwork need not imply

heterogeneity in connectivity or node properties.

A third new pattern is a homogeneous steady state referrad tscillator death (OD),
in which the individual nodes have the same time-invariant-zero activity. This dy-

namical state appears over a large regiorwnN)-space as seen in the phase diagram,

!Note that APS, which foN > 2 has a very small basin of attraction, is a “phase clustategor which
Ng = 2.
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Figure 4.4: Collective dynamics of a system of two coupled W(llasors. (a) Phase
space projections of the trajectories and (b) time-sedesdch oscillator showing exact
synchronization (ES, for coupling = 2), quasiperiodicity (QRy = 4), anti-phase syn-
chronization (APSw = 7) and inhomogeneous in-phase synchronization (1S, 15).
The filled circles represent the location of each oscillatgghase space at a time instant.
The panels in (a) are scaled individually for better viszegion.
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Figure 4.5: Dynamical bifurcations in a system of two codp¥¢C oscillators. (a) Power-
spectral density (PSD) of the time-series for thmeomponent of each oscillator, revealing
the dominant frequencies as a functionvaf (b) All fixed points of the system (up-
per panel) and the real parts of the eigenvalues correspghalithe heterogeneous fixed
points (lower panel) showing the transitions between AP& & regimes. Solid (bro-
ken) lines represent stable (unstable) solutions. Thebotal broken line (upper panel)
represents the unstable homogeneous solution.
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Figure 4.6: Real parts of the eigenvalues of all the fixed goiat a pair of coupled
W(C oscillators, shown as a function of coupling strengtin the neighborhood of the
transition between APS and IIS regimes. The vertical ddttess indicate the locations
where diferent bifurcations occur in this rangewf Thick lines between the two Hopf
bifurcations represent stable solutions. Three of thediras shown correspond to a pair
of eigenvalues, as indicated in the figure.

61



0.5

0.45

0.4

0.35

0.3

extrema

0.25

\

0.2

0.15

0.1

0.05

10 10 10°
Coupling strength, w

Figure 4.7: Bifurcation diagram fdl = 20 globally coupled WC oscillators with cou-
pling strengthw as the bifurcation parameter, obtained for a set of 20 ranchitmal
conditions (i.c.). Red dots represent the maxima of the itdrjpcomponentsy for each
I.c., while blue dots represent the corresponding minima.

Fig. 4.9 (b). To identify and segregate the regimes in this diagramuse several order
parameters (summarized in Taldld). The mean of the oscillation amplitude, measured
as the varianceof?) with respect to time of one of the WC variables,averaged over
all the nodeso?(v)));, is zero for all the non-oscillating states AD, OD and 1SSedé
are further distinguished by using the mean and variande iegpect to all nodes of the
time-averaged, i.e.,((v;))i (=0 for AD) ando?((v;);) (=0 for OD and AD). To distinguish
between the oscillating patterns, we consider the mearreobe, measured as?(vi»t,
and the total space occupied by all the trajectory projastlg as measured by the num-
ber of non-zero bins of their histogram im ¢)-space. ES is characterized oy (vi)): = 0
and IIS byo?((vi)) > 0. The remaining patterns, GS and QP, are distinguishetl by
for GS. Note that), and(); represent averaging over time and all nodes, respectilrely.
practice, diferent regimes are characterized by thresholds whose spealifies do not

affect the qualitative nature of the results.

62



w=210

&

TJ./

o

|_\
(snun -qre) 10T

N

0.14 0.16 0.18 0.2 0.22 0.24

Figure 4.8: Collective dynamics of globally connected WC oscillators. (a) Phase space
projections of the trajectories and (b) time-seriesNoe 20 globally coupled oscilla-
tors, showing exact synchronization (B8~ 2), quasiperiodicity (QRy = 4), gradient
synchronization (GSy = 120), inhomogeneous steady-state (i8S, 195) and inhomo-

geneous in-phase synchronization (M5 210). The panels in (a) are scaled individually
for better visualization.

Table 4.1: Order parameters used for identifying thiedent dynamical regimes of a
homogeneous network of WC oscillators (as explained in thie beat).

Pattern (o7(vi))i =0 (V)i =0 oZ((vi))=0 (of(w)x=0 A>0

AD v v v v

oD v v v

ISS v

ES v v

QP v
IS

GS v
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Figure 4.9: Dynamical regimes in a systemMfglobally coupled WC oscillators. (a)
Phase space projections of thé&elient oscillators) = 20) forw = 4.5, which form two
clusters with frequencies andv,, indicated by the power-spectral density (PSD, inset).
(b) Phase diagram fod WC oscillators globally coupled with strength indicating areas
where the majority* 50%) of initial conditions resultin ES, QP, GS, IIS, osditladeath
(OD) and amplitude death (AD). Note that tiveaxis is logarithmic.
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Figure 4.10: Hect of marginally sparse connection density on collectiyeaghics of
WC oscillators. (a) As the degrdei.e., the number of links per node, deviates slightly
from the globally coupled cask&.x= N —1) toN -3, the trajectories of the IIS state split
into many & N) distinct projectionsil = 21, w = 110). (b) The OD region in Figt.9(a)
shrinks rapidly with the number of removed links, as seemftbe slope of the upper

boundary of OD (inset).
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As a first step towards extending the results seen for theatijoboupled system to brain
networks of the type shown in Fig.1 (a), we have investigated the consequences of
gradually decreasing the connection density. To ensurethieadegree reduction pre-
serves as many of the existing symmetries as possible, wagathe nodes on a circle
and sequentially remove connections between nodes pladke$t apart. In addition to
preserving degree homogeneity, this ensures that every Imasithe same neighborhood
structure. As we deviate from the global coupling limit, weserve patterns similar to
those shown in Figd.8 (a-b), although the precise form of the attractors maediand

it is now the translational symmetry that is being spontaisgobroken. For example,
as seen in Figd.10(a), a reduction of just 2 links per node causes the trajgctothe

[IS state to split into many more-(N) projections than seen for the fully connected case
(~ 2). Also, while the phase diagram of the system remains igtigkly unchanged when
the degree is decreased fradqmx = N — 1, there is a dramatic quantitative reduction in
the area corresponding to OD [Fi§10(b)] even with the reduction of one link per node.
This is surprising, as one would expect that a marginal dievidrom the global coupling

limit in large systems will not result in a perceptible charigpm the mean-field behavior.

4.4 Discussion and Conclusion

Our result that weakening connections between nodes ofveorietan increase coher-
ence in collective activity (viz., observation of ES at lajvsuggests an intriguing relation
between two recent experimental findings: (i) anaesthietioced loss of consciousness
occurs through the progressive disruption of communicabietween brain aread§
and (ii) functional connectivity networks reconstructedni EEG data become increas-
ingly dense with the development of fatigue in sleep- degatisubjects]18 119. The
latter study finds that the onset of sleep is accompanied byw@aease in the degree
of synchronization between brain areas, while the formsultemplies that the interac-

tion strengths between these areas will concurrently gakere Although it may appear
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counter-intuitive that decreased coupling strength woesallt in increased synchroniza-

tion, our findings illustrate that these results are notingatible.

Another important implication of this study follows from odemonstration that sys-
tems with simple connection topology are capable of exindpivery rich dynamical be-
havior. In particular, many of the patterns seen in our satiohs of the network of
Macaque brain regions (Fig.1) resemble those observed using much simpler connectiv-
ity schemes (Fig4.8). Hence, patterns seen in complex systems that are oftavuédd

to their non-trivial connection structure, may in fact bdependent of the details of the
network architecture. With the availability of high-restbn data and increased compu-
tational power, it is now possible to model brain networksoiporating a high level of
realistic detail 9,100,120. While these studies are extremely important, we need to be
careful while attributing observed dynamical featuresh® structural properties of the
network, as such features might appear even with very singsiaection topologies. Our
findings provide a baseline for future studies on the spefi of the detailed aspects
(degree heterogeneity, modular architecture, etc.) dhbratworks on their collective

dynamics.

To conclude, we have shown that the collective dynamics asradgeneous system of
oscillators, motivated by mesoscopic descriptions ofrbaaitivity, exhibits spontaneous
symmetry breaking that gives rise to several novel pattddespite preserving the struc-
tural symmetry of connections, a marginal increase in tieaork sparsity, corresponding
to an extremely small deviation from the mean-field, uneiguilg changes the robustness
of certain patterns. Our results suggest that some of thelocated activity patterns seen

in the brain can be explained even without complete knovdexfgts wiring diagram.
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Chimeraordering in spin systems

5.1 Introduction

Transition to states characterized by simple or complegradipatterns is a phenomenon
of central importance in equilibrium statistical physiesagell as in dynamical systems far
from equilibrium P1,121]. Examples of simple ordering at thermal equilibrium irdzu
the aligned orientation of spins in Ising-like systems, lehin the context of nonlin-
ear dynamics, this may be observed in the phase synchrmmzztcoupled oscillators.
However, more complex ordering behavior may also occur fioua systems under dif-
ferent conditions, especially in the presence of heteregies. A surprising recent find-
ing is that everhomogeneoudynamical systems can exhibit a robust, partially ordered
state characterized by the coexistence of incoherentpndbsynized domains with coher-
ent, phase locked domainsZ2. Suchchimerastates have initially been observed only
in different types of oscillator populations, including complexzburg-Landau equa-
tions, phase oscillators, relaxation oscillators, ettarayed in various connection topolo-
gies [78,123-131]. Given that “chimera" refers to the co-occurrence of irgaous el-
ements, one can extend the concept of chimera-like staiesltme those characterized

by simultaneous existence of strongly and weakly ordergns in an otherwise homo-
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geneous system. If such a state can occur as the globalrfezgyeminimum of a system
in thermal equilibrium, it may widen the scope of experinadigtobserving chimera-like

order in physical situations.

It is with this aim in mind that we investigate chimera-likelering in systems at thermal
equilibrium. Specifically, we consider spin-models as tasy paradigmatic for éierent
complex systems comprising interacting components whaghoe in any of multiple dis-
crete states. For example, simple Ising-like models ctingi®f binary-state elements
are versatile enough to be used for understanding procepseating in a wide range
of physical (e.g., magnetic materialk32-134)), biological (e.g., neural network4.35])
and social (e.g., opinion formatio2T, 13€]) systems. The nature and connection topol-
ogy of the interactions between the spins decide whethegrnlhiee population reaches a
consensus corresponding to a highly ordered state, or iwaaélly ordered state (includ-
ing the case of complete disorder) that corresponds to #idestoexistence of contrary
orientations. The existence of a chimera state in sucht&hswould imply that even
though every spin is in an identical environmenftfelient regions of the system will ex-

hibit widely different degrees of ordering.

In this chapter we report the novel occurrence of chimeramirdspin systems. This is
characterized for a system of Ising spins by the simultas@agcurrence of strongly and
weakly ordered regions, as measured by the magnitude dfrfftagnetizations. The spe-
cific system we consider in detail is globally coupled and poses two sub-populations
(or module$ with the nature of interactions between spins dependingviogther they
belong to the same or fiierent groups. Our central result is that when subjected to a
uniform magnetic field at a finite temperature, one of the gopulations can become
highly orderedwhile the other remainsieakly ordered This is surprising as both the
interactions as well as the external field for the two modalesdentical Moreover, the
chimera state is not a metastable state, but rather thelgtobemum of free energy for

the system. The critical behavior of the system associatddtiie onset of chimera or-
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—ferromagnetic coupling
— anti-ferromagnetic coupling

Figure 5.1: Schematic diagram of a system Nf@obally coupled Ising spins arranged
into two subpopulations (A,B) oN spins each. Spins belonging to the same module
interact with each other ferromagnetically, while thoséobging to diferent modules
have antiferromagnetic interactions.

dering is established in this chapter by an exact analyitieatment. We also demonstrate
by Monte Carlo (MC) simulations the existence of similar coexpbrdering phenomena
in three-dimensional spin systems with nearest neightierantions. This opens up the
possibility of experimentally observing chimera statetayered magnetic systems, e.g.,
manganites]33 134]. While the dtfect of noise on chimera state in coupled oscillators is
not well-understood, the chimera order in spin systemsrtegdere arise in the presence

of (thermal) noise; thus, it is robust and likely to be seereal physical situations.
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52 TheModed

We consider a system oN2globally coupled Ising spins arranged into two sub-popoutest
(Fig. 5.1), each havingN spins, at a constant temperatdreand subjected to a uniform
external magnetic fielti(> 0). A dynamical system analogous to our model has recently
been analyzed by Abranet al. [126 where two clusters of identical oscillators, each
maintaining a fixed phase fterence with the others, was shown to possess a chimera
state. The interaction between two spins belonging to theesaodule is ferromagnetic,
having strengthl (> 0), while that between spins belonging tdfdrent modules is an-
tiferromagnetic with strengthJ’ (whereJ’ > 0). It is obvious that in the absence of
an external field, the modules will be completely orderedppasite orientations at zero
temperature. As temperature is increased, the magnitutfeeahagnetizations for the
two modules will decrease by the same amount, eventuallgrbey zero at a critical
temperature].. In the presence of an external fiddthat favors spins witkve orienta-
tion, the module having negative magnetization will be satgd to competition between
(i) the field H which attempts to align the spins along thee direction and (ii) the anti-
ferromagnetic interactiod’ which is trying to do the opposite. In the presence of a strong
field H > Hp (whereHg is a threshold field), as the temperature is increased froo ttee
spins in both modules initially remain ordered and are deidin thesamedirection. We
show below that beyond a certain critical temperafiieone module becomes more dis-
ordered relative to the other. As the temperature incrdaseer beyond a second critical
temperaturd .., the two modules again attain the same magnetization, wdecheases
gradually withT [Fig. 5.2(a)]. The phase transitions&t; andT,, are continuous and are
characterized by critical exponentsandg which are derived exactly below. Fbr < Hy,

the spins in the two modules are oriented at O in opposite directions, although having
the same magnitude. At any finite temperature belgywy the module whose spins were
initially oriented opposite to the direction of the field msex to be more disordered than

the other module. The same critical exponents as in the dabe® Hy are observed
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for the transition aff;, beyond which the magnetization of the two modules are same i

magnitude and orientation.

5.3 Reaults

For the system described above, the energy for a given coafign of spins is

E=-J) owojs+J ) oisorjg —H D s, (5.1)
i,s

s ij.ss
i#] st9

whereois = +1 is the Ising spin on theth node {,j = 1,2,--- N) in the sth module
(s, =1,2)andJ, J > 0. Since each spin is connected to every other spin, meah-fiel
treatment is exact for ourflectively infinite-dimensional system. Thus, the total free

energy of the system can be expressed as:
F(my, mp) = —aN(mg + mg) + bNmm, — HN(my + myp) + NkgT [S(my) + S(myp)], (5.2)

where the magnetizations per spin of the two modutes £ ﬁz{ilms) are the order

parameters for the system,
S(m) = %[(1 + m)log(1+ m) + (1 - m)log(1- m)] — log 2

is the entropy term, and = J(N — 1)/2, b = J’'N are system parameterigs(being the

Boltzmann constant).

To find the condition for equilibrium at a temperatdrethe free energy can be minimized

with respect tan, andm, to obtain:

kBT 1+my

-2 bm, — H I =0 5.3

am, + bm t ogl_ml X (5.3)
kgT 1+my

-2 ~H | =0. 4

amp + bmy + > ogl_ 0 (5.4)
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Time (x 104 MC steps)

Figure 5.2: (@) Variation of magnetization per spin of the® twodules i, my) with
temperature foH > Hy. Between the temperaturds; and T,, the magnetizations of
the two modules are flerent, with the smaller value being called and the larger one
m.. The broken line indicates the saddle point of the free gntngction corresponding
tom = mp, = my (see text). The free energy landscape corresponding toecaiorder
atksT/J = 5 (b) shows that there are two free-energy minimanfpr mp, (the curves
are iso-energy contours and darker shades correspond ¢o éwvergy), whereas outside
the range Ta, Tco] there is only one free-energy minimummyg) on themy, = m, line as
is seen forkgT/J = 8 (c). This is seen explicitly in (d) when the free energy pgans
F is observed along the curve of steepest descent frgiffor T, < T < Tcp) or along
the curve of slowest ascent (far < T or T > Tg). All the results shown in (a-d)
are obtained analytically. (e) Time-evolution of the magaions per spin of the two
modules,m; and m,, shown for MC simulations witiN = 100 atkgT/J = 5. In the
chimera ordered state, the system switches due to thernsd between the two free-
energy minima corresponding to the two modules exchandie tmagnetization states
betweerm. andm.. In all casesa= 1 andb = H = 10.
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Egs.5.35.4 may be expressed in the form,, = g(mp,:), where we define the one-
dimensional map,
1 kgT 1+x

g(X): B 2&X+H—T|Ogm .

(5.5)
Solutions ofg?(x) = g(g(x)) = x give the extreman: and m; of the free-energyF
(Eq. 5.2). Numerical solution for the extrema values shows that totable parameter
values andH > Hy, the system has two critical temperatuilgg and T,. For tempera-
tures lower tha;, and abovél ., the only fixed-point of the mag? is the unstable fixed

point,g(x) = x, of Eq. 6.5). Thus, this solution correspondsng = m, = my, where the

free energyF(my, my) has a minimum. The value fon, is obtained from

kBT 1+rn0_

(-2a+b)my—H + > Iogl_rrb =

0. (5.6)

However, in the temperature range, < T < T, there argwo types of fixed points
of the twice-composed mags: (i) a stable fixed pointny, = m, = my [obtained from
Eq. (6.6)] corresponding to a saddle point of the free energy fundsbown by a broken
line in Fig. 5.2 (a)], and (ii) the pair of unstable fixed points, # m, which form a
period-2 orbit of Eq. %.5) corresponding to a minimum of the free enefgyshown by
solid lines in Fig.5.2 (a)]. As one of (n; , m,) is higher and the other low, we obtain
a chimera state where one module is disordenag (elative to the other moduler().
The chimera state occurs through subcritical pitchforkigiftions of the mag? as the
temperature is increased abolg or decreased beloW, . ForH < Ho, the system
exhibits chimera ordering fof > 0 and it has a single critical temperaturelgt above

which the magnetizations of the two modules become same.

By observing the free-energy(my, my) landscape in the range 8 m;,m, < 1, we
obtain a clear physical picture of the transition to chimen@dering [Fig.5.2 (b-c)]. The

homogeneous state; = m, = my is a local extremum (i.egF/dmy, = 0) for the range

LIt is of interest to note that the chimera state in oscillaiways occur via saddle-node bifurcatii|
126,137.
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of parameters considered here. However, its nature chdrmges free-energy minimum
to a saddle point as the temperature is increased beygrahd again changes back to
a minimum when temperature exceélds. This is seen by looking at the matrix of the

second derivatives of free energy per site with respect;ton:

A b
- (5.7)

_ b Al

whereA = -2a + kgTﬁ. The eigenvalues of this matrix ane = A + b along the
m, = mp line andi_ = A—bin the direction perpendicular to it (paralleltg = —m; line).
Below T.; and abovel, both eigenvalues are positive indicating thgtis a minimum
[Fig. 5.2(c)]. The transition to chimera ordering occurs in the raige< T < T, when
the smaller eigenvalugé. becomes negative while the other eigenvalue remains pasiti
indicating thatmy is now a saddle point. This gives us an implicit relation Taras the

temperature wherg_ = 0, which gives
keTc = 2(2a + b)(1 — mp).

Numerical investigation of the landscape indicates thigtttansition is accompanied by
the creation of two minima away from tme, = m, line [Fig. 5.2 (b)]. These minima are
symmetrically placed about the; = m, line [asF(my, m,) = F(m,, my)] and correspond
to the two coexisting chimera stat€s : m; = m.,mp, = m. andC, : my = m.,m, =
m.. The two minima are separated by an energy bawiet F(my, mp) — F(m., m.)
which for a finite system can be crossed by thermal energy §&(d)]. This switching
behavior between the two chimera states has a charaaéinséir ~ exp(A/kgT) which

is indeed observed from MC simulations in small systems.[Fig(e)] > Note that each

2For N = 100, we observe that> 10° MC steps for a range of temperatures. For larger systems, e.g
N = 1000, switching was not observed for the duration of our &tans, which is consistent with the
exponential divergence afas one approaches the thermodynamic limit. This followsftbe exponential
dependence of on the energy barrier height, and the fact that free energyoigortional toN for given
values ofa, b, H andT as can be seen from Ec.D).
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Figure 5.3: (a) Phase diagram in the magnetic fiéldl, ¢emperaturekgT/J) and anti-
ferromagnetic couplingb) parameter space obtained by numerical minimization & fre
energy fora = 1 with the region in which chimera ordering occurs being catied. A
cross-section alongl — T plane forb = 15 is shown in (b). The broken line indicates
H = 16, for which the critical temperatures are shown by dotiteesl

minimum corresponds to a state having a specific arrangeohénth highly ordered and
weakly ordered regions, and hence is unlike the minima sephase-coexistence state of
systems such as metamagnets, where each of the minimapmrdssto a homogeneous

phase (ordered or disordered)

Fig. 5.3shows the region inH — T — b) parameter space where chimera ordering is ob-
served in our system as obtained by numerical minimizatidhefree energy. Temper-
ature induced transitions are always continuous whoserexys are analytically derived
below. To investigate the critical behavior of the systeouadT.; andT,, we shall use

the order parameters:

pr=m—m and p, =2my — (M + ).

3See, e.g., Section 4 of Refl33.
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For Ty < T < Te where the chimera ordering is observed, as mentioned etrke
free-energy minima are at; andm, while my corresponds to a saddle point. The order
parameterg; and p, are non-zero in this region and zero elsewhere. Wbgmp, are
small, we solve for them using Eqgs5.9), (5.4) and 6.6) by expressingn, andm, in

terms ofp,, p», and obtain

procl T-Tc[¥? and | palec T—Tcl. (5.8)

Thus, asT — T, or T — T, the order parameters vanish continuously with exponents
B = 1/2 for pp andB = 1 for p,. Similar calculations for the field induced transition
at finite temperature yield identical critical exponenttd&that at zero temperature the
field induced transition is of first order and its discontinemature can be shown exactly
by analyzing the free energy. The values of the exponentalf@ontinuous transitions

have been confirmed by us numerically.

We have also analyzed the critical behavior of the specitit@e- —T ‘f:TF;’ whereF,is the

equilibrium free energy at a given b, H andT. Although it involves both first and second
order derivatives op; and p,, as the most dominant termddp,/0T?, the divergence at

critical temperature is characterized by exponert3/2 : C | T — Ter 0 | /2.

While the system we have considered so far has the advantageirgf amenable to
exact analytical treatment, we have also numerically amalyspin models which are
closer to real magnetic materials. We have performed MC Isitiom studies of a three-
dimensional Ising spin model with nearest neighbor intéwas having an anisotropic
nature [Fig.5.4 (a)]. The system emulates a layered magnetic system cangprisulti-

ple layers of two-dimensional spin arrays stacked on topaohedther, with interactions
along a plane being ferromagnet) @nd those between planes anti-ferromagnetik)(

One example of such a system is Fe@here the exchange integral between Fe electron
clouds is such that the Fe atoms within the same layer irtéaomagnetically while

those in diferent layers interact antiferromagnetically3p. Fig. 5.4 (b-c) shows chimera
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Figure 5.4: (a) Schematic diagram of the 3-dimensionalrlyespin system with ferro-
magnetic (anti-ferromagnetic) interactions within lager (between layers)’) indicated
by continuous (broken) lines. In the chimera state alterteters show strong and weak
order. (b) The time-evolution in MC steps of the magnetaanf each of the 32 layers
of a 3-dimensional system, with every layer having X828 spins, showing chimera
ordering forkgT/J = 3. (c) The magnetizations offtierent layers of the 128 128x 32
spin system at diierent temperatures. Chimera ordering is manifestedféeseint values
of |m| for alternate layers (e.g., ktT/J = 3). In all cases) = J = 1 andH = 1.8.
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ordering in such a 3-dimensional spin system with periodigrfglary conditions and start-
ing from random initial spin configurations. As seen from.F5g! (b), the chimera state
appears relatively rapidly and persists for the duratiotmefsimulation. Similar behavior
was observed in other systems havingjjeient sizes, parameters and interaction structure,
indicating that chimera ordering is a robust phenomenonghauld be possible to ob-
serve in an experimental magnetic system. Note that in ylsem the chimera ordering
is observed with nearest neighbor interactions, whilesf@tems of coupled oscillators,

chimera states have so far been observed only with spatiatiyilocal coupling.

5.4 Discussion and Conclusion

In summary, we have shown the existence of a novel complesrioglbehavior that we
term chimera order in analogy with the simultaneous ocogeeof coherent and inco-
herent behavior in dynamical systems. For a system of twatels of Ising spins, where
the spins are coupled ferromagnetically (anti-ferroméigably) to all spins in the same
(other) cluster, subjected to a uniform external magnedld fat a given temperature,
chimera ordering is manifested as a much higher magnetizatione cluster compared
to the other. To illustrate the wider implication of our riésue can use the analogy of two
communities of individuals who are deciding between a pagompeting choices. The
interactions of an agent with other members of its own comitypsirongly favor consen-
sus while that with members of afftkrent community are antagonistic. Thus, given that
every individual is exposed to the same information or edkenvironment, we would
expect that unanimity about a particular choice in one comtywvill imply the same for
the contrary choice in the other community. However, theuaence of chimera order
suggests that under certain conditions, when given the sameenal stimulus we may

observe consensus in one community while the other is fratgde

While chimera states (defined in the original context of ¢stwits) have been recently
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observed in experimentd38-140, extension of the concept of chimera state as defined
here suggests an alternative approach to experimentatigrod such states in physical
systems. Our demonstration of chimera order in a three+tBoaal spin system with
nearest neighbor interactions indicate that a possiblerarental example can be lay-
ered magnetic materials (e.g., manganites) havifigréint types of interactions between
and within layers 133 134]. Although in this chapter we look at the case of two com-
peting choices, it is possible to extend the analysig-$tate Potts spin dynamics. Given
the wider applicability of spin models for studying ordeyiim different contexts, one can
consider other connection topologies as well as mesosdéeaiares such as the occur-

rence of multiple modules>(2) and hierarchical organization.
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Extreme variability in convergenceto
structural balancein frustrated

dynamical systems

6.1 Introduction

Many complex systems that arise in biological, social actinelogical contexts can be
represented as a collection of dynamical elements, iniagagia a non-trivial connection
topology [L41,147. A variety of critical behavior has been observed in suctteays,
both in the collective dynamics taking place on the netwaskyvell as in the evolution
of the network architecture itsel2f]. The interplay between changes to the connection
topology (by adding, removing or rewiring links) and nodghdmics has also been inves-
tigated in diferent contexts43-149. While the coevolution of network structure and
nodal activity has mostly been studied in the simple caseaine links are either present
or absent, many naturally occurring networks have link& Wwéterogeneously distributed
properties. Connections in such systems céiedguantitatively by having a distribution

of weights (which may represent the strength of intera¢t[@0-152] andor qualita-
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tively through the nature of their interactions, viz., fivsl (cooperative or activating)
and negative (antagonistic or inhibitory)43. The presence of negative links in signed
networks can introduce frustration through the presendeaainsistent relations within
cycles in the systemlp4, 155. Networks whose positive and negative links are arranged
such that frustration is absent are said tosbrecturally balanced- a concept that was
originally introduced in the context of social interactsi5€q. A classic result in graph
theory is that a balanced network can be always represestedmaprising two subnet-
works, with only positive interactions within each subnetky while links between the
two are exclusively negative §7]. Networks of dynamical elements with such structural

organization can exhibit non-trivial collective phenorage.g., “chimera" order7p).

Recently, the processes through which structural balancebeaachieved in networks
has received attention from scientists and quantitativéetsofor understanding their un-
derlying mechanisms have been proposed. Evolving netwshese the sign of links
are flipped to reduce frustration have been shown to rea@nbaj however, introduc-
tion of constraints can sometimes result in jammed stateshwirevent convergence to
the balanced statel$8 159. Another approach, using coupledffdrential equations
for describing link adaptationlp(, has been analytically demonstrated to result in bal-

ance [L61,162.

While most studies on structural balance have been done inahixt of social net-
works, an important question is whether other kinds of nektgan particular, those that
occur in biology, exhibit balance. The recent observattmat the resting human brain
is organized into two subnetworks that are dynamically-aotrelated (with the activ-
ity within each subnetwork being correlated point to the intriguing possibility that
the underlying network may in fact be balanced. As connastia the brain evolve ac-
cording to long-term potentiation which embodies Hebbiagple [164, 169, i.e., the

link weights change in proportion to the correlation betweetivity of the connected

elements, it suggests a novel process for achieving staldtalance. Thus, signed and
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weighted networks can remove frustration by adjusting tegtts associated with the
links in accordance with the dynamical states of their nodgach a local adaptation
process has an intuitive interpretation in social systenzs, agents that act alike have
their ties strengthened, while those behavingjedently gradually develop antagonistic
relations. In fact, Hebb’s rule may apply more broadly to rgdaclass of systems, for
example, in gene regulation networks where it has been stegjéhat co-expression of

genes can lead to co-regulation over evolutionary timéesda66, 167).

In this chapter, we show that such a link-weight adaptatigmadhics can in fact lead to
structural balance (shown schematically in FdL), using only local information about
the correlation between dynamical states of the nodes. drhpdral behavior of the ap-
proach to balance shows unexpected features. In partiowdaobserve that the system
exhibits a high degree of variability in the time requirectmverge to the balanced state
when stochastic fluctuations are present in the nodal dysganhis relaxation time has a
bimodal distribution for a range of adaptation rates and@setrengths. Finite-size scaling
of the transition from fast to slow relaxation shows thatvhgation of the scaling expo-
nent is related to the qualitative nature of the way the bimhddstribution emerges. As a
larger fraction of positive (negative) interactions reesi¢promotes) frustration, we also
investigate the role of bias in the sign of interactions arthture and rate of convergence

to the balanced state.

6.2 Mode

We consider a system &f globally coupled Ising sping; = =1 (i = 1, ..., N), the energy

for a given configuration of spins being

SZ—ZJijO'iO'j (61)

i#]
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Figure 6.1: Coevolution of coupling strength with the dynesron the node starting from
a disordered state of spin orientations and interactiamngths randomly selected to be
+1. (@) The spin configurations in the initial (left), interdiate (center) and final, i.e.,
after convergence to structural balance (right), statea fystem oN = 6 spins. Solid
(broken) lines represent positive (negative) interactibatween spins. The correspond-
ing coupling matriced are shown in (b) while the schematic energy landscapes pfe re
resented in (c). The two minima in the balanced state coorebfo the pair of degenerate
ground states related by reversal of each spin.
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whereJ;;(= J;) is the symmetric bond, representing interaction strebgtiveen the spin
pair (i, j). Structural balance in real social networks have beemitbcmvestigated us-
ing a similar energy functionlp8 169. The balanced state corresponds to the situation
where the interactions are consistent with the corresponsipin pairs, i.e.J;; andoio;
have the same sign. Starting from a disordered spin configarand random distribu-
tion of interactions, the state of the spins are updatedagically at discrete time-steps
using the Metropolis Monte Carlo (MC) algorithm with temperatT. The interaction
strengths also evolve after every MC step according to thewWmg deterministic adap-
tation dynamics:

Jij(t + 1) = (1 - G)Jij(t) + EO'i(t)O'j(t), (62)

wheree governs the rate of change of the interaction relative tosgiie dynamics. The
Ji; dynamics alters the energy landscape on which the stateecfpim system evolves.
The relaxation timefor the system is defined as the characteristic time scalehichw
the balanced state is reached. Note that the form of &) €nsures that the relaxation
time ~ 1/€ in the absence of any thermal fluctuation (i.e.Tat 0). Also, it restricts
the asymptotic distribution af; to the range-{1, 1], independent of whether the system
converges to a balanced state. In many real systems thetwgigra the link cannot
change, although the magnitude of the link weight can. We la#éso considered a variant
of Eq. (6.2 for which the dynamics is constrained such that the sigrachd;; cannot
change from the initially chosen value. As a result sevefr#éhe interactions can go to

zero when the system relaxes.

In our simulations the initial state of the system for eachlization is constructed by
choosing the sping; to be+1 with equal probability. For most results shown here, each
initial J;; is chosen from a distribution with two equally weightédunction peaks at
+1,i.e,P(zu) = [(1 +w)/2]6(z- 1) + [( — w)/2]6(z + 1) where the meap = 0. We
have verified that the results do not change qualitativethef initial distribution has a

non-zero mean, or has al@rent functional form (e.g., a uniform distribution A1, 1]),
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provided that the system is initially far from balance. Facle set of parameterd (e),

10* different realizations have been used to statistically quathté relaxation behavior

of the system, which is identified using the energy per borg([& 1)] normalized by the
number of connections, i.eE = 8/(';'), as the order parameter. The number of spins has
been chosen to b = 64 for most of the figures shown here, although we have verified
that the results are qualitatively unchanged fbupto 512. Simulating larger systems
is computationally very expensive as the system is glolmlypled and disordered with

time-varying interactions.

6.3 Reaults

In the absence of thermal fluctuations (i.e.,Tat 0), the dynamics of the system can
be understood intuitively. Starting from a random inititdte, the spin dynamics stops
when the system gets trapped in local energy minimum witliewaMC steps £ 1/¢, as
mentioned above). The subsequent evolution of the interastrengths makes this con-
figuration a global minimum. However, at finite temperatuhe, stochastic fluctuations
of the spins may prevent the system from remaining in a nedtéesstate for sticiently
long. This does not allow th&; dynamics to alter the energy landscapéisiently to
make the configuration the global minimum. Thus, an extrgriaig time may be re-
quired to reach structural balance, and the relaxation dimerges due to the stronger

fluctuations on increasing temperature.

Fig. 6.2 (a) shows the time-evolution of the order paramdiefior several typical runs
for different initial conditions and realizations of a system Witk 15,6 = 0.05. The
order parameter of the system initially corresponds to thiae maximally disordered
state & 0) but eventually relaxes to a balanced stde=( —1). The time required for
reaching balance, referred torataxation timer, is estimated by measuring the duration

starting from the initial state after whidhdecreases belowl/2 [Fig.6.2(a)]. For a large
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Figure 6.2: (a) Typical time-evolution of the energy per @& for a system olN spins
starting from diterent initial conditions. The relaxation timendicated in the figure is the
duration after whicle decreases below0.5. (b-e) Time-evolution of the distributions for
the interaction strength); shown for two cases: (b-c) when the system relaxes rapidly an
(d-e) when convergence takes much longer. Snapshots dfjtbestribution at specific
times immediately before, during and immediately after¢bavergence are shown for
the two cases in (c,e) respectively. For all figukes 256 withT = 51, ¢ = 0.05.
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range of parameters, we observe two very distinct types loé\der: in one, the system
relaxes rapidly, while in the other this takes a longer tinmeboth cases, once the order
parameter starts decreasing (i.e., after tip)at reaches a balanced state within a time-
interval ~ 1/e. As this is typically much shorter than the relaxation tiroe the second
case, the transition to the balanced state can appear sattiéenly for the latter. Before
the onset of the convergence to the balanced state, the mademeter fluctuates over a
very narrow range around zero, and there is little indicaéis to when the transition will
happen. Characteristic time-evolution corresponding ¢se¢htwo types of behavior are
shown in Fig.6.2 (b-e). When the system relaxes rapidly, smaller peaks enfiengethe
two peaks of the initialJ;; distribution (located ai1) and eventually cross each other
to reach the opposite ends asymptotically, converging woapeaked distribution again
[Fig. 6.2 (b-c)], indicating that all interactions are now balancétbwever, in the case
where convergence takes significantly longer [Big.(d-e)], the initial distribution is first
completely altered to a form resembling a Gaussian digtabwith zero mean. After a
long time, the system abruptly converges towards a balastede with a corresponding
transformation of theJ; distribution to one having peaks afl. Note that even with
the same initial spin configuration and realizationJgfdistribution, diterent MC runs
generate distinct trajectories that are similar to thosevehin Fig.6.2 (a). This implies
that knowledge of the initial conditions is notfBaient to decide whether the system will

relax rapidly or not.

To quantitatively characterize the distinction betweemntthio types of relaxation behav-
lor, we focus on the statistics af(Fig. 6.3). Fig. 6.3 (a) shows the distribution of the
relaxation time for a given set off (¢) where cases of both fast and slow convergences
are seen. The resulting bimodal nature is clearly obsenictie peak at lower (~ 100

MC steps) corresponding to fast convergence to balances\stale that occurring at a
higher value £ 10" MC steps) arises from the instances of slow relaxation. Tsteid
bution decays exponentially at very high valuesofig. 6.3 (b) shows the temperature

dependence of the distribution of Igér) for two different values oé. For the smallee
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Figure 6.3: (a) The cumulative distribution of relaxatiome = for system ofN = 64
spins withT = 12 ¢ = 0.03 shows a gap implying a bimodal nature for the distribution
The inset showing the corresponding frequency distriloufiofor log,(7) clearly indi-
cates this bimodal nature. (b) Probability distributiofidam,,(7) shown as a function
of temperaturel for e = 0.03 (top) and 0.05 (bottom) indicates the onset of bimodal
behavior at higher values of temperature, e.g.,Tio¢ 10 in (top). Bimodality appears
around the temperature where the standard deviation gf(tocstarts increasing appre-
ciably from an almost constant value (insets). (c) The poditya that relaxation takes
longer than 1® MC steps,P(r > 10°) shown as a function of andT. The point of
transition from fast to slow convergence can be quantifiedipyfe), i.e., the temperature
at whichP(r > 10°)=1/2 for a given value (indicated by boundary between the dark and
light regions). (d) Finite size scaling of the probabilibat relaxation takes longer than
10° MC steps,P(r > 10°), with N*(T — Ty,) for different system size (e = 0.05).
The temperature at whidh(r > 10°) becomes half is representedas,. A scaling ex-
ponent value ofr ~ —0.32 shows reasonable data collapse. The inset shows thegscali
exponents for the best data collapse #edent values of.
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(= 0.03), the second peak is well-separated from the first wirandality first appears,
while for the largere (= 0.05) the second peak appears close to the first one. To esti-
mate the temperature where the second peak appears, waelstandard deviation of
log, () as a function ofT (inset), as bimodality is characterized by an increase eén th
dispersion of relaxation times. To observe how the distiglouis afected by variation

in both T ande, we show in Fig6.3 (c) how the probability that the relaxation takes a
long time (viz.,> 10° MC steps) varies as a function of these two parameters. As we
know that the system relaxes rapidly when the temperatutedseased close to zero, we
expect this probability to be negligible at very low valuéslo On the other hand, when
temperature is increased to very high values, the relaxaikes increasingly longer, so
that the probabilityP(r > 10°) approaches 1. We indeed observe a monotonic increase in
this probability from O to 1 as the temperature is increase@fgiven value ot. We can
define a transition temperatufg ,(¢e) as the value of" at which this probability is equal

to 1/2. We observe thal; ,(€) increases witl, which implies that the relaxation to the
balanced state requires a longer duration as the intenadyisamics becomes slower. For

a givene, we study the variation of the probabiliB(r > 10°) with T for different system
sizes. Finite-size scaling shows data collapse with arsgakponent [Fig. 6.3 (d)] that
varies withe (inset). Depending on the value @fwe observe that there may befdrent
types of bimodal distribution of the relaxation times, eane where the second peak is
clearly separated from the first, and the other where theyoared [Fig.6.3 (b)]. The
variation ofa with e appears to reflect this change from one type of bimodalityhtdteer

(inset).

So far we have assumed that the initigldistribution is unbiased (i.ewx, = 0). However,
having a higher fraction of interactions of a particulamsgan have significant conse-
quences for both the structure of the final balanced statéhartime required to converge
to it. To investigate the role of this initial bias among théeraction strengths, we con-
sider a distribution with two dierently weighted function peaks at1 (i.e.,u # 0).

Fig. 6.4 (a) shows the distribution of the relaxation timesuas varied over the inter-
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Figure 6.4: (a) Probability distribution of lggr) shown as a function of the mean
of the initial distribution forJ; for T = 17, = 0.05. The filled circles represent the
average of logy(r) for different values of:. The distribution does not change much for
small bias fu|); however the lower peak disappearsiaapproached-1 while the the
relaxation behavior occurs faster asapproaches-1. (b) Scaled size flierences =
(C; — C,)/N between the two clusters of aligned spins shown as a funofipn As u
increases from negative values todlincreases from values close to 0 towards 1. (c)
Trajectories representing the time-evolution of the sysf = 256) in the E, U) order
parameter space forfterent values ofi (from top to bottomy increases froma-1to 1 in
steps of Q1). After transients, all trajectories converge to a sirgleve independent of
the time required to converge to the balanced state. A magniiew (inset) compares
the trajectory corresponding to a long relaxation timei¢solirve), which appears to be
trapped in this region, with the one corresponding to a gletakation time (broken curve)
foru =0.
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val [-1, 1] with the parameter$, € chosen such that there is a clear bimodal nature of
the relaxation time distribution for the unbiased case-(0). If all the interactions are
anti-ferromagneticy = —1), the system is extremely frustrated and the relaxatioa to
balanced state may take a long time, whereas in the case wieeneteractions are all
ferromagneticyg = 1), the system is balanced to begin with. Thus, with incregsgj we
expect the relaxation time to decrease, which is indeedreédgin addition, the peak at
higher values of disappears ag approaches 1. On the other hand, wipesppproaches
-1, the peak corresponding to shorter relaxation times isongdr present. The two
clusters that comprise the final balanced state can havedv@eyent size distributions
depending on the bias in the initial distribution &f. For the unbiased case, the two
clusters are approximately of the same size. We observeFign®.4 (b) that this prop-
erty holds for the entire range of negative valuesifolAs u increases from 0, the size
difference between the two clusters start increasing, evénteatling to a single cluster
where all the spins interact with each other ferromagnigfi¢a ~ 1). Note that if the
system initially has a very low degree of frustration [eig> 0.4 in Fig. 6.4 (a,b)], the
system relaxes almost immediately to a balanced state vihetarger cluster comprises
almost the entire system. To visualize the coevolving dyinanm the link weights and
spin orientations as the system approaches balancefferatit values of;, we use an
additional order parametet$8 159 that measures the frustration in a signed network
in terms of the fraction of triads deviating from balance rfad being balanced if the
product of its link weights approached), U = -3, j« Jiijkai/(g). Fig. 6.4 (c) shows
that the trajectories corresponding téfeient values ofi converge to a single curve after
transients, eventually reaching the balanced state at ¢1,U = -1). Foru < O, the
initial trajectory is approximately vertical indicatingdt it is dominated by the adapta-
tion dynamics (Eqg6.2), whereas for > 0, it has strong horizontal component implying
that it is governed primarily by the MC update of the spinesatRealizations in which
the system takes a long time to relax to the balanced statbstireguished by trajectories

that appear to be trapped in a confined region in BéJ() space for a considerable period
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[Fig. 6.4(c), inset].

We can qualitatively understand the appearance of shastatbn times as follows. In the
initial state, when the system has a random assignmentaséiction strengths, the energy
landscape is extremely rugged, resembling that of a spgsdla4]. The system starts out
in a potential well corresponding to one of the many inijiaVailable local minima. As
the state of the system evolves, thedynamics (Eq6.2) lowers the energy of the state by
making the interactions consistent with the spin orieatetiof the system, while the spin
dynamics (updated according to the MC algorithm) can eitbgult in a further lowering
of energy as the state moves towards the bottom of the pateril, or is ejected from the
initial local minima due to thermal fluctuations. The proltigbof escaping from the well
at thet-th iteration, p(t), depends on the potential barrier height with neighbovieds.

If the state cannot escape in the first few iterations fromdhal minimum from which

it starts, successive lowering of the energy of this wellligJ; dynamics results in the
minima becoming deeper, so that the probability of escapetisced further. Eventually,
the system relaxes to the balances state with a time-scaledf when the well becomes
the global minimum of a smooth energy landscape. On the bt if the state escapes
from the initial well within the first few iterations, wheneld;; dynamics has not yet been
able to significantly reduce the energy of a particular wek, barrier heights separating
the diferent local minima are all relatively low. As a result, theteyn can jump from one
well to another with ease, corresponding to frequent switclof the spin orientations.
As J;; moves towardsrioj at any given time (Eg6.2), rapid changes in the sign of the
latter implies that there isfkectively no net movement ol towards+1. In fact, in
this case, we observe that the initial distributionJgf comprising delta-function peaks
at +1, transforms within a few iterations to one resembling a$S&n peaked at zero
[Fig. 6.2 (d-e)]. Once the system reaches such a state, it can onig attmlanced state
through a low-probability event which corresponds to theestemaining in the same
local minimum for several successive time steps. As suclvamtavill only happen after

extremely long time, this will lead to a very large relaxatitime for a range off and
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€. Let us assume for simplicity that when the system is in tlagestorresponding to
frequent spin flips and low interaction strengths, the podlig of escaping from a local
minimum is approximately a constami(f) ~ p). Then the probability that the system
jumps between dierent minima fot steps and gets trapped in thel-th step isp'(1- p).
This results in the distribution of the relaxation timesdanthe simplifying assumption

of constantp) having an exponential tail, which is indeed observed [Bi§(a)].

6.4 Discussion and Conclusion

To conclude, we have shown that a link adaptation dynamiggired by the Hebbian
principle can result in an initially frustrated network amhng structural balance. How-
ever, in the presence of fluctuations, we observe that thersyexhibits a large dispersion
in the time-scale of relaxation to the balanced state, ceriaed by a bimodal distribu-
tion. This extreme variability of the time required to corye to the balanced state is a
novel phenomenon that requires further investigation. r@sult suggests that even when
a system has the potential of attaining structural balahegjme required for this process
to converge may be so large that it will not be observed intprac Although we have
considered a globally connected network of binary statedyoal elements, it is possible
to extend our analysis to sparse networXg 170 and diferent kinds of nodal dynamics
(e.g.,g-state Potts model). As many networks seen in nature hagetdd links, a gen-
eralization of the concept of balance to directed networidanderstanding how it can

arise may provide important insights on the evolution ofrssigstems.
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Conclusions

A complex system is exactly that; there are many things goimgimultane-
ously. If you search carefully, you can find your favorite: tactals, chaos,
self-organized criticality, Lotka-Volterra predator-gy oscillations, etc., in some
corner, in a relatively well developed and isolated way. Bunhdbexpect any

single simple insight to explain it all.

— Rolf Landauer, as quoted in Re§] [

The work described in this thesis form part of a researchnaragaimed at revealing the
general principles underlying the dynamical behavior ahptex systems. We view a
complex system as comprising relatively large number of maments coupled to each
other via various types of connection topologies and naitinrgteractions, such that new
phenomena emerge at the systems level that are absent iryriaenids of individual
elements. While this definition is fficiently broad to cover a large variety of natural,
technological and social systems, our research strategyves systematically varying
the complexity at the level of the dynamics of the individaldments and in the nature
of connections to uncover universal features underlyirgdynamics of apparently very

different complex systems, ranging from spin models to opimométion and from the
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pregnant uterus to microarray of chemical oscillators. hie following subsections, the
important results and conclusions reported in the thegisammarized. We conclude

with a brief discussion of possible future extensions ofresults.

7.1 Summary of main results

Self-organization of coherent activity in heter ogeneous system of cou-

pled excitable and passive cells

Synchronized oscillations are of critical functional innf@amce in many biological sys-
tems. In this thesis we have shown that such oscillationsacge without centralized
coordination in a disordered system of electrically codmecitable and passive cells.
Increasing the coupling strength results in waves that teambherent periodic activity,
exhibiting cluster, local and global synchronization undiéerent conditions. Our results
may explain the self-organized transition in a pregnamustéom transient, localized ac-

tivity initially to system-wide coherent excitations justfore delivery.

Collective phenomenain a homogeneous system of diffusively coupled

relaxation oscillators

A variety of complex spatial patterns relevant to chemical hiological systems can be
generated through reactionfiision mechanisms. In this thesis, we have shown that dif-
fusive coupling through the inactivating component in aeysof relaxation oscillators
extends such complexity to the temporal domain, generaéintarkable spatiotemporal
phenomena. We provide analytic explanations of the angglsginchronization and spa-
tially patterned oscillatory death regimes. We report angra state where patches with

distinct dynamics coexist and also observe propagatingeptafects resembling persis-

98



tent structures in cellular automata that may be used fopcdation.

Pattern formation through spontaneous symmetry-breaking in dense,

homogeneous networ ks of neural oscillators

Recent experiments have highlighted how collective dynanmmetworks of brain re-
gions dfect behavior and cognitive function. In this thesis, we hetvewn that a simple,
homogeneous system of densely connected oscillatorssegneg the aggregate activity
of local brain regions can exhibit a rich variety of dynanhjgatterns emerging via spon-
taneous breaking of permutation or translational symmedyr results connect recent
experimental findings and suggest that a range of compticattvity patterns seen in the

brain can be explained even without a full knowledge of itsivg diagram.

Chimeraorder in spin systems

It has recently been shown that a population of oscillataksrig identical environments
can exhibit a heterogeneous phase topology termed as @hstage. In this thesis, we
have generalized this phenomenon to the broader perspeftrder-disorder transitions
in physical systems with discrete states. By an exact avaiygatment we show that
chimera states can occur in a system of Ising spins in theeoualibrium. We also nu-

merically establish the existence of chimera ordering dhr8ensional models of layered
magnetic materials (such as manganites) suggesting posséans of experimentally

observing it.
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Dynamics of convergence to structural balance in frustrated dynami-

cal systems

In many complex systems, the dynamical evolution of thiedent components can result
in adaptation of the connections between them. In this she# have considered the
problem of how a fully connected network of discrete-stataammical elements which
can interact via positive or negative links, approachasctiral balance by evolving its
links to be consistent with the states of its components. atagptation process, inspired
by Hebb’s principle, involves the interaction strengthslemg in accordance with the
dynamical states of the elements. We observe that in thempresof stochastic fluctua-
tions in the dynamics of the components, the system can ieXaige dispersion in the
time required for converging to the balanced state. Thigldity is characterized by
a bimodal distribution, which points to an intriguing nanagl problem in the study of

evolving energy landscapes.

7.2 Outlook

In this thesis, we have addressed several problems thatacdnbeite to a general un-
derstanding of spatio-temporal pattern formation in a 8rdass of natural systems. A
natural extension of the work presented here would be toldgvbkeoretical techniques
to understand the flerent types of spatio-temporal phenomena that have beenvells

in connection with epidemicd[1]. In particular travelling waves of contagion has been
observed during measles epidemitg7, dengue haemorrhagic fever in Thailarid’§
and infestations of larch budmoutt74], while synchronization between ftkrent re-
gions have been observed in the spread of influetz§ [as well as for measles and
whooping cough176. Traditional compartmental models in epidemiology hatversy
resemblance to the phenomenological models of excitaleoanillatory media that |

have worked with: for instance, the susceptible, infected Becovered compartments
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in an epidemic model directly correspond to the restingjtesicand recovering states
of an excitablgoscillatory element. It is therefore of interest to see Wwhetthe the-
oretical models | have investigated for explaining sp&tioyporal pattern formation in
excitablgoscillatory media can be fruitfully applied to understahé £pidemiological
patterns mentioned above. In particular, the dependentteeaftferent pattern regimes
on the nature of coupling as well as other model parameteris ¢ive us insights about

the conditions under which waves or synchronization of epids will take place.

Investigating the dynamics of contagia propagation ti@ently general to cover a large
range of phenomena including how ideas spread across padie also being of im-
mense practical interest in connection with understantimg epidemics of infectious
diseases occur. In view of the recurrent pandemics which Baerged in the recent past,

it would be fascinating to see ifigcient intervention strategies can be designed based on
complex systems theoretical approaches. The availalofityata on incidence of such

diseases will also provide a crucial reality check on thecaemodels being developed.

Another topic in epidemic modeling which builds on the presesearch is the role of
temporal evolution of the interactions between neighlgpelements on the spreading dy-
namics of contagia. This will be an intriguing applicatidracovel theoretical approach
involving descriptions of continuum media where th&ulion is evolving at a time-scale
slower than that of the local dynamics. The approach can bergkzed to other connec-
tion topologies such as complex networks, where the abaMalgm can be connected to
the phenomenon of learning in networks of the brain (thraughification of the synaptic
strengths) and evolution and development in gene expressitworks (through changes
in the role of specific transcription factors). While a geh#raory explaining how slowly
evolving coupling strength carffact the dynamics of these systems would be a crucial
component for the projected general theory of complex systéhe implications of such
a theory in the context of epidemics may be used to explaisfiteacy of procedures that

isolate diferent regions or subpopulations during an epidemic (dugpugh quarantine).
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Another direction would be to explore the possibility of deping infection spreading
models that take into account factors that have traditlprmadt been considered in de-
tail, such as, changes in the pattern of interactions amgegta as an epidemic propa-
gates 177. This would require developing atomistic models of reactdiffusion sys-
tems in evolving networks and apply them to understand tbeggation of infections
on a network of interactions that are slowly evolving. Ortoeré is some insights about
the emergent properties of such models, we can try to dewailafytical understanding
of these features. These studies would help us figure outfurdtal properties of real
infection spreading and help us develdfeetive intervention strategies. ldeally, using
such models one should be able to compare thieaey of diferent strategies such as

guarantine and mass vaccination.

Another topic that can be studied in future is the modelingarhpeting contagial[7§.
While most epidemiological models tend to study an infedidisease in isolation, in
reality a population is subject to a large variety of pathmgysimultaneously. While in
some cases being infected with one type of disease incréasask of being infected by
another (cooperative interaction between contagia),atss possible that being infected
by one can provide immunity against another (antagonisteraction between contagia).
Exploration of this problem fits naturally into the overatbgram of exploring complex
systems dynamics where the individual entities can intexdtt each other through ei-
ther cooperative or antagonistic interactions. It woulksbabe important to model the
competing infections on an evolving network of interactemthese models would be
better representation of the situation in the real world iasajhts gained from the study

can have practical implications.
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