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Synopsis

Living entities perpetually exist away from equilibrium, a condition necessary for the

proper functioning of crucial biological and biochemical processes. Tools from nonequi-

librium physics are thus ideally suited to the study of such systems. In this thesis, we

study nonequilibrium effects in a variety of model systems. In the first part of the the-

sis, we focus on counterintuitive effects of intrinsic noise as a result of fluctuations in

finite-sized populations. We find that, at the macroscale, intrinsic noise can generate and

sustain oscillations in a model of epidemic spreading. At the microscale, intracellular

biochemical reactions catalyzed by mesoscopic concentrations of enzymes exhibit phe-

nomena that qualitatively differ from those due to a single enzyme or a deterministically

large concentration of the same.

In the second part of the thesis, we study the dynamics of microscopic particles in a vis-

cous fluid that are autonomously motile due to the conversion of chemical energy to me-

chanical motion. Momentum conservation and the lack of inertia at the microscale ensure

that the flows around such chemomechanically active particles are force-free and torque-

free. We present an intuitive analytical method to study such active flows in terms of its

fundamental irreducible components and to reconstruct essential features of flows around

various swimming microorganisms using these “atomic” flows. Filaments constructed

using a collection of such active particles, interacting through local elastic potentials and

nonlocal hydrodynamics, show instabilities that develop into complex flow patterns and

result in complicated translational and rotational motions. Stability analysis reveals that

1



hydrodynamic interactions are crucial for the development of such instabilities. We de-

scribe these in greater detail below.

Stochastics

Oscillations in an epidemic model due to intrinsic noise

Infectious diseases have been one of the primary causes of mortality in human beings

over the course of history, recent examples being worldwide outbreaks of viral pandemics

such as SARS and H1N1. In this light, a mathematical study of the spatiotemporal spread

of epidemics in a macroscopic population of susceptible individuals is a problem of great

relevance. As early as the middle of the eighteenth century, D. Bernoulli used a nonlinear

ordinary differential equation to study the effect of cow-pox inoculation on the spread of

smallpox. The susceptible-infected-recovered (SIR) model, proposed by Kermack and

McKendrick in the first part of the twentieth century , also utilizes ordinary differential

equations and remains one of the classic deterministic models applicable for exceedingly

large population sizes. In reality however, population sizes are finite, and the resultant

fluctuations can give rise to phenomena which cannot be captured by deterministic mean-

field models. This necessitates the use of stochastic models. Bartlett, one of the first to

realize this, implemented a stochastic version of the SIR model to describe the observed

periodic recurrence of measles.

Here we study a well-known variant of the SIR model where the recovered population

have temporary immunity to the endemic disease, and the total population size is finite and

remains constant. We write down a stochastic birth-death master equation for this closed,

homogeneously mixed SIRS model. Simulating it using exact numerics , we find that the

endemic fixed point is unstable to intrinsic noise. This leads to sustained oscillations with

asymptotically decaying phases, which distinguishes such oscillations from those due
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to external periodic forcing and confirms that these endogenous quasicycles arise from

purely intrinsic fluctuations. The regularity of these oscillations varies nonmonotonically

with the size Ω of the population, being most coherent at some intermediate population

value Ωc. This counterintuitive phenomenon, called stochastic coherence or coherence

resonance, has been previously observed in theory and experiment, and could explain the

regularity of biological clocks operating in noisy environs, where the presence of a finite

amount of noise improves the accuracy of the clock.

In addition to numerics, we have also studied the model analytically within the linear noise

approximation . Taking advantage of the conservation of population and the non-zero

fixed point value, we marginalize the master equation and carry out a two-stage lineariza-

tion procedure on our model, reducing it to the standard multivariate Ornstein-Uhlenbeck

form, where the linearized drift and diffusion matrices in the resultant Fokker-Planck

equation represent the deterministic and stochastic parts of the dynamics respectively.

The linear and Gaussian character of the multivariate OU process allows us to predict

stochastic behaviour from the deterministic part of the dynamics, in a spirit similar to the

Onsager regression method of equilibrium statistical mechanics. Our analysis shows that

quasicycles are possible only if the eigenvalues λ of the linearized drift matrix are com-

plex, which is possible only if the system violates the detailed balance condition. This

is ensured by endemicity, and we are thus assured of sustained oscillations. We also find

that quasicycles can only be reliably detected if the ratio |Im(λ)/Re(λ)| ∼ 1. The variation

of this ratio with system size shows a peak at Ωc, thus permitting us to predict stochastic

coherence both qualitatively and quantitatively from a purely deterministic analysis. Fi-

nally, we trace the violation of the detailed balance to the non-normal nature of the system

dynamics, which results in an enhancement of fluctuation amplitudes of the population.

The twin phenomena of noise-induced oscillations and stochastic coherence can generally

be expected in nonequilibrium stochastic birth-death systems that can be subjected to a

similar analysis.
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Nonrenewality and molecular memory of enzyme kinetics due to in-

trinsic noise

Biological processes critical to life rely crucially on the catalytic activity of enzymes.

Thus the mathematical study of the spatiotemporal kinetics of intracellular enzymatic re-

actions is, like the study of epidemics, one of great relevance and importance. Wurtz,

O’Sullivan and Thomson, Brown, Henri, the pioneers in this field, studied this problem

near the end of the nineteenth century and the beginning of the twentieth . Building on

their work , Michaelis and Menten proposed, exactly a hundred years ago, a reaction

mechanism for enzyme catalysis , whereby enzymes bind reversibly with substrates to

form intermediates which then dissociate reversibly to form the desired product. At very

large concentrations of reactants, the rate of formation of products is given by the classic

Michaelis-Menten (MM) equation. The actual intracellular concentrations of such react-

ing molecules are, however, quite small. The inherent stochasticity of a single chemical

reaction and the discrete change in the number of reactant molecules combine to generate

spontaneous, intrinsic fluctuations known as molecular noise. This necessitates a stochas-

tic approach to the problem. Over the past decade, Xie and coworkers have analytically,

numerically and experimentally studied the kinetics of the stochastic problem involving

a single enzyme molecule and numerous substrates . They have found that enzymatic

turnovers generate a renewal point process where the waiting time τ between product for-

mation events is independently and identically distributed, and that the inverse mean time

to the first turnover, 〈T1〉−1, obeys the MM equation.

Here we study the stochastic enzyme kinetics problem for mesoscopic concentrations of

reacting molecules. We formulate a birth-death master equation for the homogeneously

mixed system and solve it using exact numerics. We measure the turnover time Tp to

the formation of the pth product, and thus obtain the waiting time τp = Tp − Tp−1 as the

time between successive reaction events. The first-order distributions of waiting times,

w(τp), though identical for all p when the number of enzyme molecules N = 1, vary
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for different p when N > 1. The second-order joint distributions, w(τp, τp+q) show that

successive distributions are not independent. Taken together, these results mean that en-

zymatic turnovers form a nonrenewal process for multiple enzymes. We also find that the

mean of the turnover time for N enzymes, 〈Tp,N〉, no longer obeys the MM equation, and

is also higher than the expected time to the first reaction for N pooled renewal processes,

Tp,N > (1/N)Tp,1. The latter indicates a slowing down of multienzyme kinetics, a possible

effect of the cooperativity between the various reactants.

In addition, we find that waiting times for multiple enzyme molecules are anticorrelated,

where a short first interval is more likely to be followed by a long second interval and

vice versa. This memory effect shows a systematic variation with enzyme number, being

strong and short-lived for fewer enzymes but weak and long-lived for more enzymes. It

is absent for single enzymes, and is negligible for a very large number of enzymes. The

overall effect of the anticorrelations is to reduce the variance in the product turnovers when

compared with a Poisson process. This may be biologically relevant to ensure a uniform

rate of turnover in the steady state. Remarkably, therefore, this molecular memory of

multiple enzymes acts as a regulatory mechanism for the intrinsic noise.

Hydrodynamics

Irreducible representations of active matter flows

The collective dynamics of microscopic particles that swim in viscous fluids by convert-

ing chemical energy to mechanical work is a topic of current interest in non-equilibrium

statistical mechanics. Biological and biomimetic examples of such “active” particles in-

clude molecular motors, active nanobeads and swimming microorganisms such as bacte-

ria and algae. The force-free and torque-free Stokes flows around such particles decay as

r−2 in the far-field, the dominant contribution coming from the symmetric stress dipole,
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the stresslet. Recent experiments using particle image velocimetry, that resolve the flow

around swimming microorganisms in unprecedented spatial and temporal detail, reveal

near-field features that cannot be captured by a purely stresslet description. For example,

the microscopic alga Chlamydomonas reinhardtii exhibits complex flows that has easily

identifiable qualitative features like stagnation points and strong lateral circulations that

vary periodically with time. Both Chlamydomonas and Volvox carteri rotate about their

axis and thus must generate swirling flows while swimming. The flow around a generic

translating and rotating microswimmer is then time-dependent with both axisymmetric

and swirling components. Existing theories either fail to capture swirling components, or

represent the flow as an expansion in velocity point multipoles that does not account for

the finite size of the particles in a simple fashion.

Here we represent Stokes flow in the bulk as an integral over the boundary S of the

finite-sized active particle, where a single layer density q(r) is convolved with the dyadic

Green’s function G(r). Chemomechanical activity can regulate either the velocity uS or

the stress σS on S , and thus requires Dirichlet or Neumann boundary conditions, respec-

tively. For a spherical particle of radius a, we expand the single layer surface density

in terms of irreducible Cartesian tensors, obtaining a succinct and manifestly rotation

invariant expression for the flow. Resolving the tensorial stress multipoles into their ir-

reducible forms, we decompose active flow into its fundamental, mutually independent

components, which include the familiar stresslet S and the potential dipole d. The new

irreducible multipoles introduced here are the second rank pseudodeviatoric torque dipole

Ψ or the “vortlet”, the third rank septorial stresslet dipole Γ or the “septlet”, and the third

rank pseudoseptorial multipole Λ or the “spinlet”. The flows due to d andΨ decay as r−3,

that due to Λ decays as r−4 and that due to Γ decay as r−5. The vortlet and the spinlet

produce swirling flows which have not been considered before. This expansion in irre-

ducible Cartesian multipoles of the surface stress provides the most general representation

of Stokes flow around a finite-sized spherical microswimmer.
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Using the orthogonality of the irreducible Cartesian tensors, we obtain simple linear re-

lationships between the velocity and stress multipoles and thus identify the multipoles

necessary and sufficient and for translation and rotation. Knowing the rigid body motion

we are thus able to reconstruct, using a minimal set of irreducible multipoles, the com-

plex time-dependent flows observed in experiment. The irreducible representation further

allows us to write down simple expressions for the active power dissipated and swimming

efficiencies in terms of these fundamental multipoles.

We capture the essential features of the flow around a Chlamydomonas using a combi-

nation of a stresslet, a potential dipole and a septlet, parametrized uniaxially with time-

varying strengths. Using a uniaxially parametrized septlet, we are able to capture the

the short-ranged swirling flow field responsible for the self-rotation of microswimmers

such as Chlamydomonas and Volvox. In both the translational and rotational cases, we

compute the power dissipated and the appropriate swimming efficiencies and find good

agreement with experiment.

Furthermore, we exploit the rotational invariance manifest in the Cartesian tensor expan-

sion to derive a general constitutive equation for the stress tensor of an active micropolar

continuum. In particular, our constitutive equation contains antisymmetric states of active

stresses which, to the best of our knowledge, have not been considered previously. Since

angular momentum conservation dictates that such states of stress can exist only when

the medium has an internal “spin” angular momentum over and above the orbital angular

momentum, we use conservation equations to couple linear and spin angular momentum.

This implies that self-rotating particles, through their hydrodynamic interaction, can set

up spontaneous macroscopic flows in suspension.

The simplicity of the various expressions presented here for a single active particle al-

lows this method to be extended, in a straightforward manner, to the many-body case,

where the hydrodynamic interactions among a collection of N active particles can be

easily computed. This provides an exact many-body solution for the collective problem
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which is computationally tractable.

Instabilities in Stokes flow due to hydrodynamic interactions of an ac-

tive filament

The active single-particle analysis has been extended (Jayaraman et al., PhysRevLett,

2012; Laskar et al., SciRep, 2013) to the study of the dynamical behaviour of a semiflex-

ible filament, composed of active point beads coupled by local elastic and self-avoiding

potentials, the activity here restricted to the stresslet. Such active filaments are unstable

to transverse perturbations in the presence of hydrodynamic interactions. These give rise

to complex flows that, depending on whether the filament is free at both ends or clamped

at one, produce either a combination of translational and rotational motion or purely ro-

tational motion, respectively (Jayaraman et al., PhysRevLett, 2012; Laskar et al., SciRep,

2013). Motivated by these results, here we have carried out a continuum spectral anal-

ysis of the active filament under the free-draining approximation for various boundary

conditions. Expressing the equation of motion as a fourth-order partial differential equa-

tion, separating variables and taking Fourier transforms, we obtain a dispersion relation

and thus an expression for the wavefunction for the spatial part. This yields, for vari-

ous combinations of boundary conditions, a characteristic equations and thus instability

conditions in terms of a parameter α representing the relative activity. We find, however,

that the fourth-order differential operator we consider is self-adjoint for any combina-

tion of boundary conditions, whether free, hinged, clamped or sliding, implying that the

spectrum cannot be complex. Thus we conclude that though active filaments can become

unstable in the absence of hydrodynamic interactions, oscillatory modes will not be exhib-

ited. The above result suggests that the stability analysis of an active filament involving

hydrodynamic interactions requires a spectral decomposition of the discrete equation of

motion, which is expected to yield a complex spectrum indicating the presence of oscil-

latory modes.
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We have calculated the linearized Jacobian of an active filament containing stokeslets

and stresslets, and have used it to carry out a stability analysis of a sedimenting passive

filament. We find that such a filament becomes unstable beyond a critical value of the

“sedimentation number”, defined as S = L2 fext/κ, where L is the length of the filament,

fext is the external force and κ is the bending constant. Crucially, such instabilities are not

seen in the absence of hydrodynamic interactions, highlighting their importance for active

as well as passive flows.
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Chapter 1

Introduction

What is Life? This is one of the oldest questions in the universe, or at least as long as

sentient beings like us human beings have been around to marvel at life, the universe, and

everything else that comes along with it. If Douglas Adams were to be believed, a simple,

but at the same time enormously complicated, answer to this question would be “42” [1].

He explains further, in one of his rare philosophical moments, uttering, “Life . . . is like a

grapefruit. It’s orange and squishy, and has a few pips in it, and some folks have half a

one for breakfast.”

It is thus quite plain that this is a question best left to philosophers and poets, people who

are best equipped to extract the meaning of life out of five orange pips. This question

can, however, also be asked in a very different context, resulting in a very different set of

people trying to provide a very different answer. Erwin Schrödinger, otherwise known for

quantum mechanics and confused cats, put forth an excellent series of arguments about

what this strange phenomenon could be. The result was a seminal book, first published in

1943, aptly titled What is Life? [2].

In this book, Schrödinger attempts to answer the question using physics. He characterizes

“living matter” as something that “evades the decay to equilibrium”. Clearly, isolated

physical systems, left to its own devices, will gain entropy and reach equilibrium when
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they have reached their maximum entropy states. Living systems, on the other hand,

actively try to stay away from equilibrium or “death” through constant exchanges with

its environment. Schrödinger introduced the concept of “negative entropy” which living

systems continually gather from their surroundings to counteract the debilitating effects

of positive entropy. As he puts it, “. . . the device by which an organism maintains itself

stationary at a fairly high level of orderliness ( = fairly low level of entropy) really consists

in continually sucking orderliness from its environment.”

Clearly, then, one must look at nonequilibrium physics to provide answers to the questions

of life. The physics of systems in equilibrium has been comprehensively studied, is very

well understood and is a staple in graduate courses (for example, [3]). This is also true for

systems that are only slightly out of equilibrium, where the fluctuation-dissipation theo-

rem holds sway, connecting the response of system near equilibrium to the equilibrium

fluctuations of the relevant dynamic variables. Systems that are quite far from equilibrium

are, however, much less understood, and the basic principles that govern such systems are

beginning to be uncovered. Nonequilibrium phenomena are quite ubiquitous, and can

be observed in systems that span an immense range of spatial and temporal scales. De-

coherence in open quantum systems, photosynthesis in plants, the movement of swarms

of birds or fish, the formation and evolution of swirling storm systems, the clustering of

matter in the universe resulting in various galactic shapes are examples of nonequilibrium

phenomena that span timescales from the nanosecond to billions of years.

In spite of this diversity, there is little doubt that the most fascinating nonequilibrium

systems that the universe has to offer involve life and living organisms. The fundamen-

tal units of all known forms of life are cells. These highly active systems stay far from

equilibrium through the exchange of energy due to metabolic processes as well as due to

molecular motors that transduce chemical energy from ATP molecules into mechanical

motion and are responsible for cell locomotion and intracellular transport of nutrients.

Molecular motors are part of a large class of biomolecules called enzymes, highly selec-
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tive protein catalysts that make metabolism viable by speeding it up greatly and ensuring

specificity of reactions. Enzymes are also involved in the synthesis of DNA as well as

in gene expression within a cell, processes whose nearly faultless execution is fundamen-

tally critical to life. However, the internal environment of the cell is extremely noisy and

is thus not a conducive environment for delicate processes. Apart from extrinsic sources

of noise such as random fluctuations in temperature and pH, intrinsic noise arising out of

the inherent stochasticity and discreteness of chemical reactions among finite number of

molecules also contribute to the hostile intracellular environment. Since the number of

intracellular reacting molecules is finite and often quite small, the level of noise is also

quite high. This is because the central limit theorem states that a system of N elements ex-

hibit statistical fluctuations of the order of
√

N, and thus relative fluctuations 1/
√

N must

increase with decreasing N. Noise introduces stochasticity in gene expression, leading to

mutations that can prevent normal functioning of the living organisms. To counteract this,

several regulatory processes have evolved, including transcription factors that activate or

repress gene expression, or negative feedback loops that function as low-pass filters that

attenuate high-frequency noise and increase stability [4]. We shall encounter an example

of such noise-regulation in a stochastic model of enzyme kinetics in Chapter (3) of this

thesis, where intervals between successive enzyme catalyzed events will be seen to be

anticorrelated, resulting in a possible stabilization of noise-induced variance.

However, the effects of noise on life are not always adverse. It provides a source of

variability that can be exploited for survival needs. Phenomena such as the escape from

metastable states, commonly encountered in enzyme kinetics, would not be possible with-

out noise. Noise also gives rise to phenotypic heterogeneity, a phenomenon where individ-

uals with identical genetic makeup exhibit varied physiological, biophysical, morpholog-

ical and behavioural traits [5]. Phenotypic heterogeneity is responsible for identical twins

having different fingerprints, or for cloned cats to look entirely different from each other

[6]. Scattered pattern of photoreceptors in the developing retina of the fruitfly Drosophila

arise because of the random switching on and off of a certain gene, allowing the fruitfly
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to detect both blue and green light [7]. Bacteria such a E. coli exploit phenotypic het-

erogeneity to survive; if even a small percentage of a population of E. coli is resistant

to a certain antibiotic, then the survivors are free to persist and create a new population

immune to that antibiotic [8]. The bacterium B. subtilis utilizes the activation due to noise

of a positive feedback that increases its survival probability, which drops with decreasing

noise level [9, 10, 11].

Noise can have surprising counterintuitive effects as well. It can induce phenomena that

are qualitatively different from that exhibited by a corresponding deterministic system by

affecting the latter in nontrivial ways. For example, noise is sometimes seen to have con-

structive rather than destructive effects. The phenomena of stochastic resonance [12, 13],

noise-induced spatial pattern formation [14] and noise-induced oscillations [15] are some

examples of this behaviour. In Chapter (4) of this thesis we shall come across a model of

epidemic spreading that, though deterministically stable, exhibits noise-induced oscilla-

tions. Even more surprisingly, we see that the regularity of such oscillations reach a maxi-

mum at an intermediate value of the strength of the intrinsic noise, indicating that order is

actually enhanced by noise. Such phenomena are, unsurprisingly, observed only when the

system is far from equilibrium, thus strongly suggesting that noise, and especially of the

intrinsic variety, might be indispensable for the proper functioning of biological processes

such as cellular clocks. As Schrödinger puts it, “For it is simply a fact of observation that

the guiding principle in each cell is embodied in a single atomic association existing only

in one copy (sometimes two) and a fact of observation that it results in producing events

which are paragons or orderliness [. . . ] the situation is unprecedented, it is unknown

anywhere else except in living matter.”

The continuous conversion of energy through metabolism that keeps the interior of cells

far from equilibrium, and thus alive, also helps themmove. Examples of such autonomous

propulsion are molecular motors (at the subcellular level) and bacteria (at the cellular

level) [16, 17]. Recently, biomimetic elements which convert chemical energy into trans-
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lational [18, 19] or rotational [20, 21] motion have been realized in the laboratory. While

the detailed mechanisms leading to autonomous propulsion in these biological and soft

matter systems show a wonderful variety [22], their collective behaviour tends to be uni-

versal and can be understood by appealing to symmetries and conservation laws [23].

This realization has led to many studies of the collective properties of suspensions of

hydrodynamically interacting autonomously motile particles [24, 25].

There are ample instances in biology, however, where the conversion of chemical to me-

chanical energy is not confined to a particle-like element but is, instead, distributed over

a line-like element. Such a situation arises, for example, in a microtubule with a row of

molecular motors converting energy while walking on it. The mechanical energy thus

obtained not only produces motion of the motors but also generates reaction forces on

the microtubule, which can deform elastically in response. Hydrodynamic interactions

between the motors and between segments of the microtubule must be taken into account

since both are surrounded by a fluid. This combination of elasticity, autonomous motility

through energy conversion and hydrodynamics is found in biomimetic contexts as well.

A recent example is provided by mixtures of motors which crosslink and walk on poly-

mer bundles. A remarkable cilia-like beating phenomenon is observed in these systems

[26, 27]. A polymer in which the monomeric units are autocatalytic nanorods provides

a nonbiological example of energy conversion on linear elastic elements. Though such

elements are yet to be realized in the laboratory, active elements coupled to passive com-

ponents through covalent bonds have been synthesized [19] and may lead to new kinds of

nanomachines [20].

In the continuum, complex active fluids composed of dilute suspensions of motile bac-

teria behave very differently from their passive counterparts. While a passive colloidal

suspension will always have higher viscosity than the pure solvents, adding active bacte-

ria can actually reduce the viscosity [28]. At higher densities, the fluid can become almost

non-viscous [29]. High density bacterial suspensions can exhibit large-scale oriental co-
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herence as well as high degrees of correlations in velocity and vorticity [24]. Spontaneous

chaotic flow, or bacterial turbulence, is another aspect of such active fluids [24]. Active

filaments exhibit dynamic nonequilibrium patterns such as asters or vortices [16] in the

cell cytoskeleton.

We undertake to begin to understand such complex behaviour in living matter that are

far from minimal by first reducing it into minimal but fundamental components. Thus

we begin by studying flows generated due to a single active particle such as unicellular

swimming microorganisms. At this low Reynolds number regime, the Stokes equation

governs the flow. Such flows could be generated in the bulk either by the swimming

motion of flagella or the squirming motion of a ciliary envelope, both of which create

effective surface stresses and velocities. This suggests, naturally, the use of the boundary

integral representation of Stokes flow. The goal of the second “hydrodynamic” part of the

thesis is to solve this boundary integral and obtain the desired flow.

The thesis is organized as follows. In Part [I] of the thesis, we focus on counterintuitive

effects of intrinsic noise as a result of fluctuations in finite-sized populations. In Chapter

(3), we find that, at the microscale, intracellular biochemical reactions catalyzed by meso-

scopic concentrations of enzymes exhibit phenomena that qualitatively differ from those

due to a single enzyme or a deterministically large concentration of the same. We find that

intervals between successive enzyme-catalyzed reaction events are anticorrelated, and the

degree of anticorrelation shows a maximum at some intermediate noise strength. In Chap-

ter (4) we find that, at the macroscale, intrinsic noise can generate and sustain oscillations

in a model of epidemic spreading. The regularity of such quasicyclic oscillations shows a

maximum at some intermediate strength of the noise amplitude, a phenomenon known as

stochastic coherence.

In Part [II] of the thesis, we study the dynamics of microscopic particles in a viscous fluid

that are autonomously motile due to the conversion of chemical energy to mechanical

motion. Momentum conservation and the lack of inertia at the microscale ensure that the
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flows around such chemomechanically active particles are force-free and torque-free. In

Chapter (5), we present an intuitive analytical method to study such active flows in terms

of its fundamental irreducible components and to reconstruct essential features of flows

around various swimming microorganisms using these “atomic” flows. In Chapter (6)

we set up the equations of motion of a filament constructed out of a collection of such

active particles and interacting through local elastic potentials and nonlocal hydrodynam-

ics. Such filaments show instabilities that develop into complex flow patterns and result in

complicated translational and rotational motions. Stability analysis reveals that hydrody-

namic interactions are crucial for the development of oscillatory modes in the autonomous

motion of active filaments, and lead to instabilities in sedimenting passive filaments.
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Chapter 2

Mathematical preliminaries

In this chapter we present, in brief, some of the mathematical tools and techniques used

in this thesis.

2.1 Stochastic preliminaries

Here we present a few mathematical preliminaries that will be useful for the first part of

the thesis which deals with stochastic phenomena.

2.1.1 Counting and point processes

Discrete stochastic processes in continuous time can be analyzed either in the counting

process description or in the point process description. In the former, the number of events

nt that have occurred in a certain time interval t is specified. In the latter, the times Tp of

the occurrence of the events are specified, where Tp is the time taken for the p-th event to

occur starting from the origin. Often the inter-event times or the holding times τp = Tp −
Tp−1 are specified instead of the event times Tp themselves. This implies, of course, that

Tp =
∑p

k=1 τk, where T0 = 0 by convention. The point process is completely defined by the
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joint probability density w(T) = w(T1,T2, . . .Tn), which gives the probability that there

is exactly one event in each of the non-overlapping infinitesimal intervals (T1 , T1 + dT1

), . . . , (Tn , Tn + dTn). This is similar to the Stratonovich distribution functions [30, 31],

and is related to the product densities due to Ramakrishnan and those due to Janossy

[32, 33, 34, 31].

Formally, the p-th event time can be defined as Tp = inf {t > 0 : nt ≥ p} for p = 1, 2, . . .,

where ‘inf’ stands for infimum [35]. Thus we find that nt = 0 iff T1 > t, and that, more

importantly, nt < p iff Tp > t. The converse of the latter relation holds true as well; Tp ≤ t

iff nt ≥ p. As a result, the cumulative distribution of Tp bears the following relation to

that of nt [35]

P(Tp ≤ t) = P(nt ≥ p, t) = 1 − P(nt < p, t) (2.1)

Since nt ∈ Z+, and the states {nt = 1}, {nt = 2}, . . ., {nt = p} are mutually exclusive, we

have P(nt < p, t) = P(nt = 0, t)+P(nt = 1, t)+ . . .+P(nt = p−1, t). Using this we rewrite
Eq. (2.1) as

P(Tp ≤ t) = 1 −
p−1∑
nt=0

P(nt, t) (2.2)

Differentiating both sides with respect to time, we have the relation

w(Tp) = −
p−1∑
nt=0

∂P(nt, t)
∂t

∣∣∣∣∣∣∣
t=Tp

(2.3)

This relation can in principle be extended to multivariate distributions. If the evolution of

a stochastic system in counting description is known, then the point process description

can be obtained using Eq. (2.3).
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2.1.2 Markov processes

Let us change notation slightly and define ni to be the number of events that have occurred

in time ti, and let the set {ti} be an ordered set of successive times, that is, t1 < t2 <

. . . < tN . The counting process is completely described by the N-variate joint distribution

PN(n1, t1; . . . ; nN , tN). The stochastic process is Markovian if the following relation is true

[31],

P1 |N−1(nN , tN | n1, t1; . . . ; nN−1, tN−1) = P1 | 1(nN , tN | nN−1, tN−1), (2.4)

where P1 |N−1 is the probability of the N-th event conditioned on the previous N−1 events,
that is, on the entire stochastic path that the system has followed. In a Markov process,

the entire history of the process does not matter, and a stochastic event depends only on

the previous event. For a Markov process with three events occurring at t1 < t2 < t3 and

completely described by the joint distribution P3(n1, t1; n2, t2; n3, t3) , one can write using

Eq. (2.4) [31]

P3(n1, t1; n2, t2; n3, t3) = P2(n1, t1; n2, t2) P1 | 2(n3, t3 | n1, t1; n2, t2)

= P1(n1, t1) P1 | 1(n2, t2 | n1, t1) P1 | 1(n3, t3 | n2, t2) (2.5)

where we have used Bayes theorem, P2(A, B) = P1(A)P1 | 1(B | A) = P1(B)P1 | 1(A | B).
Marginalizing over n2 and using Bayes theorem once again we obtain the Chapman-

Kolmogorov equation,

P1 | 1(n3, t3 | n1, t1) =
∑

n2

P1 | 1(n3, t3 | n2, t2) P1 | 1(n2, t2 | n1, t1) (2.6)
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If the initial condition P1(n1, t1) and the transition probability P1 | 1(n2, t2 | n1, t1) obey the

Chapman-Kolmogorov equation as well as the marginalization

P1(n2, t2) =
∑

n1

P1 | 1(n2, t2 | n1, t1)P1(n1, t1), (2.7)

then by repeated application of Eq. (2.5) they uniquely define a Markov process.

2.1.3 The master equation

A stationary Markov process is homogeneous in time where the conditional probability

depends only on the time interval, P1 | 1(n2, t2 | n1, t1) = P1 | 1(n2 | n1, τ) where τ = t2−t1. The

differential form of the Chapman-Kolmogorov equation for a stationary Markov process

is called the master equation [31],

∂P1 | 1(n | n0, t)
∂t

=
∑

n′

{
W(n | n′)P1 | 1(n′ | n0, t) − W(n′ | n)P1 | 1(n | n0, t)

}
(2.8)

where the W are the transition probability rates, and n0 is the state of the system at initial

time. The master equation is thus a probability balance equation, and can be thought of

as a discrete version of a continuity equation in configuration space, where the rate of

change in probability of a particular state is equal to the net efflux of probability from that

state. Although the master equation describes the time evolution of a stochastic process,

it itself is a deterministic equation in the probabilities. It is a satisfactory description of

fluctuations and corresponding jump transitions brought about by intrinsic noise.

If the stationary Markov process is defined by continuous variables x(t), then the entire

formalism given here will still hold given that summations are replaced by integrals. For

example, the master equation will be

∂P1 | 1(x | x0, t)
∂t

=

∫ {
W(x | x′)P1 | 1(x′ | x0, t) − W(x′ | x)P1 | 1(x | x0, t)

}
dx′. (2.9)
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An example of such a process is the Ornstein-Uhlenbeck process [36, 31] defined by

P1(x1) =
1√
2π

exp

(
− x21
2

)
(2.10a)

P1 | 1(x2 | x1, τ) = 1√
2π
(
1 − e−2τ

) exp
[
− (x2 − x1e−τ)2

2
(
1 − e−2τ

)
]

(2.10b)

2.1.4 Steady state, detailed balance and cyclic balance

If the net inflow of probability into a state in configuration space equals the net outflow,

that is, if

∑
n′

W(n | n′)P1 | 1(n′ | n0, t) =

⎛⎜⎜⎜⎜⎜⎝
∑

n′
W(n′ | n)

⎞⎟⎟⎟⎟⎟⎠ P1 | 1(n | n0, t) (2.11)

then we have a steady state with ∂tP1 | 1(n | n0, t) = 0. A steady state is said to be in

equilibrium if the transitions between each pair of states n and n′ balance individually,

that is, if

W(n | n′)Peq(n′) = W(n′ | n)Peq(n) (2.12)

where Peq(n) is the equilibrium probability and can be determined from equilibrium statis-

tical mechanics. This is the detailed balance condition, and it follows from microscopic

reversibility. Conversely, a steady state can also be out of equilibrium, where detailed

balance does not hold, and probability currents spanning the entire state space can oc-

cur. In Ch. (4) we shall encounter such a condition of cyclic balance which will make

noise-induced oscillations possible out of equilibrium.
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2.1.5 Solutions of birth-death master equation

The systems we shall study in this thesis have discrete random variables whose values

change by unity for every stochastic event. The master equation for such “birth-death” or

“one-step” processes takes the relatively simpler form

∂P1 | 1(n | n0, t)
∂t

=
∑

n′

{
W(n | n′)P1 | 1(n′ | n0, t) − W(n′ | n)P1 | 1(n | n0, t)

} (
δn′,n+1 + δn′,n−1

)

= W(n | n + 1)P1 | 1(n + 1 | n0, t) +W(n | n − 1)P1 | 1(n − 1 | n0, t)

−
{
W(n + 1 | n) +W(n − 1 | n)

}
P1 | 1(n | n0, t)

= t−(n + 1)P1 | 1(n + 1 | n0, t) + t+(n − 1)P1 | 1(n − 1 | n0, t)

−
{
t+(n) + t−(n)

}
P1 | 1(n | n0, t) (2.13)

where t+(n) is the birth rate and t−(n) is the death rate. The Poisson process is an example

of a pure birth process with constant rate, t−(n) = 0 and t+(n) = λ with λ constant.

Such a birth-death master equation is often called a chemical master equation, indicating

its usefulness in systems where the interactions are either chemical reactions or can be

written as such.

A master equation is called linear if the associated transition probabilities W(n | n′) are
linear. Such a master equation can, in principle, be solved exactly, perhaps by the use

of generating functions. Nonlinear master equations, on the other hand, resist analyti-

cal solutions. Such equations must either be approximated to a Fokker-Planck equation

(FPE) or dealt with numerically. The FPE is a continuous version of the jump process

master equation, describing the evolution of the probability density of the corresponding

diffusion process, and is equivalent to the corresponding Langevin or stochastic differen-

tial equation [31, 37, 38]. The first-order approximate FPE corresponding to the master

equation can be written down by systematically expanding in inverse powers of a large

parameter Ω such as the system size [31], the Ω chosen so that the sizes of individual

jumps are relatively small.

24



Exact solutions of the master equation are also possible using numerical means, of which

the Doob-Gillespie algorithm is the most popular. Joseph Doob [39], building on earlier

work by Kolmogorov [40] and Feller [41], proposed a method of obtaining stochastic

trajectories from the corresponding master equation. It was implemented by Kendall [42]

and Bartlett [43, 44] on the Manchester Mark I computer, and popularized by Gillespie

[45, 46]. The algorithm assumes that collisions between reacting molecules are frequent,

but not all collisions lead to reaction events, and those that do are mostly binary reactions.

The reactants are also assumed to be well-mixed. Given that there are N simultaneous

ongoing reactions indexed by μ, the algorithm proceeds by determining the probability

density P(τ, μ) using a Monte Carlo method, where P(τ, μ)dτ is the probability that given

a certain state of the system at time t, the next reaction will occur in the infinitesimal

time interval (t + τ, t + τ + dτ) and will be of the μ-th channel. The algorithm produces a

stochastic trajectory whose distribution is exactly equal to that of the master equation.

2.2 Hydrodynamic preliminaries

Here we present a few mathematical preliminaries that will be useful for the second part

of the thesis which deals with hydrodynamic phenomena.

2.2.1 Equation of motion of viscous fluid

The Navier-Stokes (N-S) equation describes the motion of viscous fluids. If u(r) be the

velocity of the fluid of density ρ at some point r, then the N-S equation is given by

ρ
Du
Dt
= ∇ · σ, where σ is the stress tensor and

D
Dt
=
∂

∂t
+ u · ∇ is the material derivative.

The constitutive equation for the stress tensor is

σ = −pI + η � ∇u (2.14)
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where p is the pressure, I is the second rank identity matrix and η is the fourth rank vis-

cosity tensor. The symbol � indicates complete contraction, that is, η � ∇u → ηi jαβ∇αuβ
in index notation. Here, and in the rest of the thesis, we shall follow the Einstein sum-

mation convention whereby repeated indices will indicate summation, unless otherwise

stated. Resolving the viscosity tensor into a isotropic bulk component ζ and a symmetric

traceless shear component η,

ηi jαβ = ζδi jδαβ + η

(
δiβδ jα + δ jαδiβ − 2

3
δi jδαβ

)
(2.15)

we have

η � ∇u = ζ (∇ · u) I + η∇u (2.16)

where the stapler symbol denotes the natural form of the corresponding tensor, that is,

∇u → ∇iu j + ∇ jui − 2
3
δi j∇μuμ. Thus the Navier-Stokes equation can be written in the

familiar form [47],

ρ

{
∂u
∂t
+ (u · ∇)u

}
= −∇p + η∇2v +

(
ζ +

1

3
η

)
∇ (∇ · v) (2.17)

The equation simplifies considerably for incompressible fluids where the fluid flow is

divergenceless, that is ∇u = 0. The N-S equation thus becomes

ρ

{
∂u
∂t
+ (u · ∇)u

}
= −∇p + η∇2u (2.18)

The Reynolds number (Re) is a dimensionless number that qualitatively captures the flow

regime. It is generally defined as the ratio of inertial forces to viscous forces and con-

sequently quantifies the relative importance of these two types of forces for given flow

conditions. At low Reynolds numbers, viscous forces dominate in the fluid. In this non-
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inertial regime the Navier-Stokes equation becomes the Stokes equation given by

0 = −∇p + η∇2u (2.19a)

0 = ∇ · u (2.19b)

2.2.2 Boundary integral formulation of Stokes equation

The singularly forced Stokes equation is [48]

0 = −∇p + η∇2u + gδ(r − r′) (2.20)

with ∇ ·u = 0. Here g represents a point force at r′. The flow, pressure and stress are then

given by

u(r) =
1

8πη
G(r − r′) · g (2.21a)

P(r) =
1

8π
p(r − r′) · g (2.21b)

σ(r) =
1

8π
T(r − r′) · g (2.21c)

where G, p and T are the Green’s functions associated with the fluid velocity, the pressure

and the stress. These are related through the equation [48]

Ti jk(r − r′) = −pj(r − r′)δik +

[
∂Gi j

∂rk
(r − r′) +

∂Gk j

∂ri
(r − r′)

]
. (2.22)

and are individually given by [48]

Gi j(r) =
δi j

r
+

rir j

r3
(2.23a)

pi(r) =
2ri

r3
(2.23b)

Ti jk(r) = −6rir jrk

r5
(2.23c)
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where r = |r|.

The reciprocal theorem states that for two flows u and u′ corresponding to stresses σ and

σ′, we have

∇ · (u′ · σ − u · σ′) = 0 (2.24)

Using Eqs. (2.21a) and (2.21c) in Eq. (2.24) we have

∇ · [G(r − r′) · σ(r) − ηT(r − r′) · u(r)
]
= 0 (2.25)

Taking a control volume V with boundary S , and putting the “source point” at r′ outside

it, we perform the volume integral and use the divergence theorem to convert this into a

surface integral with the unit vector n̂ pointing into the flow. We get

∫
S

[
G(r − r′) · σ(r) − ηT(r − r′) · u(r)

] · n̂ dS = 0 (2.26)

If instead we put the point r′ inside the control volume, the flow at r′ is given by

u(r′) = − 1

8πη

∫
S

G(r − r′) · f(r) dS +
1

8π

∫
S

T(r − r′) · u(r) · n̂(r) dS (2.27)

where f = σ · n̂ is the surface traction. If however the point r′ be now placed on the

boundary S , the flow is given by

u(r′) = − 1

4πη

∫
S

G(r − r′) · f(r) dS +
1

4π

∫ PV

S
T(r − r′) · u(r) · n̂ dS (2.28)

where PV denotes the principal value. The first integral is the single layer potential,

while the second integral is the double layer potential [49, 48, 50]. Exchanging r and r′

and using the symmetry relation for the single and double layer Green’s functions [48, 50],
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the boundary integral representation of Stokes flow is

u(r) = − 1

8πη

∫
S

G(r − r′) · f(r′) dS ′ +
1

8π

∫
S

T(r − r′) · u(r′) · n̂′ dS ′ (2.29)

u(r) = − 1

4πη

∫
S

G(r − r′) · f(r′) dS ′ +
1

4π

∫ PV

S
T(r − r′) · u(r′) · n̂′ dS ′ (2.30)

where r ∈ V for Eq. (2.29) and r ∈ S for Eq. (2.30).

We simplify matters by eliminating the double layer potential. We introduce a flow u′ in

the interior of the boundary S that is complementary to u exterior to S , with the boundary

condition u = u′ on S . Then we can write down [48], by combining Eqs. (2.26) and (2.27)

u(r) = − 1

8πη

∫
S

G(r − r′) · q(r′) dS ′ (2.31)

where the modified single layer density q is simply the traction jump across S , q = f− f′.
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Chapter 3

Nonrenewality and molecular memory

in enzyme kinetics due to intrinsic noise

In this chapter, we study the stochastic process of enzymatic turnovers at concentrations

between the extremes of the thermodynamically large and single-enzyme regimes. In the

thermodynamic limit the process reduces to deterministic evolution governed by mass

action kinetics, while in the single-enzyme limit it reduces to a renewal process. In both

these cases, the rate of reactions is governed by the Michaelis-Menten (MM) equation.

Our key findings are that for mesoscopic numbers of enzymes, the turnover process is

of the non-renewal type with waiting times that are neither independent, nor identically

distributed. We write down a chemical master equation and solve it numerically. We

obtain the waiting time distributions and show that their inverse first moments do not

obey the MM equation. Consecutive waiting times are anti-correlated, with short intervals

more likely to be followed by long intervals and vice-versa. The correlations persist

beyond consecutive turnovers and, depending on the number of enzymes, can become

substantially long-ranged. Together, these results imply that the enzymatic turnovers at

the mesoscale cannot be described by mean production rates (as in the thermodynamic

limit) or mean waiting times (as in the single-enzyme limit), but must be described by
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statistical measures which capture fluctuations over multiple time scales.

3.1 Michaelis-Menten enzyme kinetics

Biological processes rely crucially on the catalytic activity of enzymes. In 1913, following

the work of Wurtz and several others [51, 52, 53, 54], Michaelis and Menten proposed

[55] a reaction mechanism for catalysis where enzyme E binds reversibly with substrate

S to form an enzyme-substrate complex ES which then dissociates irreversibly to form

product P, while regenerating the enzyme,

E + S
k1−−⇀↽−−
k−1

ES
k2−→ E + P. (3.1)

For thermodynamically large numbers of reactants, deterministic mass action kinetics

provides the temporal variation of the concentrations of enzyme, complex and product.

The rate of product formation is given by the classic Michaelis-Menten (MM) equation,

provided suitable adiabaticity conditions are satisfied [56, 57].

V =
Vmax[S ]
Km + [S ]

(3.2)

is the MM equation, where V is the reaction rate, Vmax is the (constant) maximum possible

rate, [S ] is the substrate concentration, and Km is the Michaelis constant. Writing this in

terms of reciprocals, we have

1

V
=

Km

Vmax

1

[S ]
+

1

Vmax
(3.3)

Thus plot of the inverse rate of the reaction with the inverse substrate concentration, a

Lineweaver-Burk plot, is expected to be linear in the deterministic case. However, enzyme

and substrate concentrations in biochemical catalysis are not thermodynamically large. In

vivo enzyme concentrations vary from nanomolar to micromolar, while the substrates are
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typically between a ten and ten thousand times more numerous [58]. An important ex-

ception is in glycolysis where enzyme concentrations exceed those of substrates [58]. In

vitro enzyme concentrations vary from picomolar to nanomolar and substrates are typi-

cally a million times more numerous [59, 60]. At these low concentrations, the inherent

stochasticity of a single chemical reaction and the discrete change in the number of reac-

tant molecules combine to generate spontaneous, intrinsic fluctuations known as molecu-

lar noise [61]. The temporal variation of catalysis, then, is also influenced by molecular

noise and is a stochastic process in time. Recent advances in single molecule spectroscopy

have been able to unravel some features of this stochastic process for catalysis involving a

single enzyme and numerous substrates [62, 63]. A striking feature is that the enzymatic

turnovers generate a renewal point process where the waiting time τ between product for-

mation events is independently and identically distributed. Remarkably, the inverse of the

mean waiting time 〈τ〉−1 obeys the MM equation which, in this interpretation, is valid not

only for thermodynamically large systems, but also at the single-enzyme level. Below we

show that these phenomena no longer appear when multiple enzymes are involved.

3.2 Michaelis-Menten stochastic analysis

At the mesoscopic scale, enzymatic reactions governed by Eq. (3.1) form a discrete

stochastic process in continuous time. As discussed in the introduction, Ch. (1), such

a process can be analyzed in either the counting process description or the point process

description. Here we formulate the problem in the former description but analyze it in

the latter. The configuration set n = {nS , nE, nES , nP}, where nS , nE, nES and nP are the

numbers of the various molecular species involved, describes the state of the system at

any time t. The evolution of the system can be expressed as a multivariate Markov count-

ing process governed by a chemical master equation (CME), the solution to which gives

the joint probabilities P(n, t) with the initial condition P(n, 0) = δnE ,N δnS ,S δnES ,0 δnP,0,

where δx,y is the Kronecker delta function. In the counting description, these proba-
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bilities describe the system completely. We assume that the system is reaction-limited,

i.e., diffusion plays no role in the dynamics, and that the system is well-mixed. Since

substrates are more numerous than enzymes, the bimolecular second-order complexation

step E + S
k1−→ ES is replaced by a pseudo-first order complexation step with an effective

rate constant ka = k1S . We justify the validity of this pseudo-first-order approximation

(PFO) later in the chapter. Under the PFO approximation, our reaction system reduces to

E
ka−−⇀↽−−
k−1

ES
k2−→ E + P, where ka = k1S is a constant. Thus, denoting the PFO probability as

P(nE, nES , nP, t), the CME is

∂P(nE, nES , nP, t)
∂t

= ka(nE + 1) P(nE + 1, nES − 1, nP, t)

+ k−1(nES + 1) P(nE − 1, nES + 1, nP, t)

+ k2(nES + 1) P(nE − 1, nES + 1, nP − 1, t)

−
[
kanE + (k−1 + k2)nES

]
P(nE, nES , nP, t) (3.4)

This is a linear master equations, and can, in principle, be solved analytically. An exact

analytical solution was obtained by Saha et al. in [64, 65] using generating functions.

We generate exact numerical trajectories of Eq. (3.4) using the Doob-Gillespie algorithm

[39, 45, 46]. One such trajectory is shown in Fig. (3.1). For the numerical simulations we

non-dimensionalize time in units of k2 and choose rate constants as ka = k2 and k−1 = 1
2
k2.

We describe the trajectories in Fig. (3.1) using the point process description. We define

turnover times as Tp = inf{t > 0 : nP(t) ≥ p} for p = 1, 2, . . ., which implies that

Tp ≤ t if and only if nP(t) ≥ p. This provides the connection between the counting

and point processes and relates the cumulative distribution of Tp to that of nP by P(Tp ≤
t) = P(np ≥ p, t) [35]. Waiting times are defined from the turnover times by τp =

Tp − Tp−1 with the convention that T0 = 0. The point process is fully specified by the

joint probability distributions w of either the Tp or the τp [34, 32, 35]. Here we focus on

the first-order distributions of the time to the p-th turnover w(Tp) and the interval between

the p-th and (p + 1)-th turnovers w(τp). We use second-order distributions w(τp, τp+q) to
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Figure 3.1: A trajectory of Eq. (3.4) for N = 2 enzymes. The p-th product is generated

at time Tp. The waiting time between the p-th and (p + 1)-th product is τp = Tp+1 − Tp.

study correlations between the p-th and (p + q)-th turnovers. We obtain these probability

distributions by generating ensembles of typically 106 trajectories.

3.3 First-order distributions

We benchmark our numerics by plotting the distributions of waiting times for a single

enzyme, w(τp; N = 1), for the first turnover event p = 1, the tenth p = 10 and the

hundredth p = 100. As the inset of Fig. (3.2) shows, these three distributions overlap

each other and with the analytical result [64, 65], implying that the waiting times are

indeed identically distributed for N = 1. In Fig. (3.4), we compare distributions of the

numerically obtained turnover times w(Tp) for multiple enzymes with the corresponding

analytical result [64, 65] and find very good agreement.

In the main panel of Fig. (3.2) we compare w(τp) for p = 1, 10, 100 for N = 1000 en-

zymes. We find that, unlike the single enzyme case, here the τp are no longer identically

distributed. This clearly establishes the non-renewal nature of the turnover process when

more than one enzyme participates in catalysis. We further find, from the w(τ1) curve of
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Figure 3.2: Nonrenewality of multienzyme kinetics. Waiting time distributions for N =
1000 and N = 1 enzymes. Solid lines are analytical results obtained from Eq. (3.5) while

the symbols are simulation data. The waiting times are identically distributed for a single

enzyme (inset), but vary with the turnover number p for multiple enzymes, implying

nonrenewality.
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Figure 3.3: Multiexponentiality of the distribution of the first waiting times. Here we

plot w(τ1) = w(T1) from numerics for N = 1 (blue filled circles), N = 10 (inset, orange

triangles), N = 100 (inset, green diamonds) and N = 1000 (red squares). All curves for

N > 1 have multiexponential tails, as shown by the dotted guide lines. The analytical

curves (solid lines) are obtained from Eq. (3.5). Parameter values are ka/k2 = 1 and

k−1/k2 = 0.5 and all times are in units of 1/k2.

Fig. (3.2) and the curves in Fig. (3.3) that these distributions have nonexponential tails.

Surprisingly, starting with a Markovian master equation where waiting times between

transitions are exponentially distributed, we obtain a waiting time between turnovers that
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Figure 3.4: Comparison between numerics (symbols) and analytics (solid lines) for

turnover times. Here the p = 1 analytical curve is obtained from Eq. (7) while the p = 2

and the p = 5 analytical curves are obtained from Eq. (6). Parameter values are k1/k2 = 1,

k−1/k2 = 0.5 and all times are in units of 1/k2.

is multi-exponential. For this, it is crucial to have more than one enzyme in the system.

The resulting point process for the products alone is then a combination of multiple in-

ternal states for the enzyme-substrate complex and is thus no longer Markovian. The

multi-exponentiality of the waiting times is, therefore, consistent with the non-Markovian

nature of the turnovers. For a single enzyme, though, with only one internal enzyme-

substrate state, there is no multi-exponentiality, but only a mono-exponential rise and fall.

This is in agreement with experimental [66, 63], numerical [62] and analytical [66, 64, 65]

results.

3.4 Moments of first-order distributions

For a single enzyme, the inverse of the mean of the first waiting time follows the MM

equation. For example, from the analytical expression for w(T1) [64, 65],

w(T1) =
k2kaN
(2A)N

[
e(A−B)T1 − e−(A+B)T1

] [
(A + B)e(A−B)T1 + (A − B)e−(B+A)T1

]N−1
(3.5)
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Figure 3.5: Breakdown of Michaelis-Menten kinetics for multiple enzymes. Here we

plot the numerically obtained 〈T1〉 in Lineweaver-Burk fashion against the inverse rate

constant ka for N = 1 (blue circles), N = 10 (red squares) and N = 100 (green triangles).

With more than one enzyme, the MM equation (circles) is obeyed only in the limit of

infinite substrate concentration or equivalently for 1/ka → 0 (see Fig. 3.6). The analytical

curves (solid lines) are first moments of Eq. (3.5).
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Figure 3.6: Convergence of multienzyme kinetics to single enzyme behaviour for large

values of ka = k1S . The plot on the left is 〈T1〉 plotted in Lineweaver-Burk fashion against
1/ka, as in Fig. (3.5), while the plot on the right shows the abscissa is log scale, clearly

demonstrating that the plot for N = 1000 converges to that for N = 1 (the MM equation)

as the effective number of substrate molecules approach deterministic limits.

it follows that 〈T1〉 =
∫ ∞
0

dT1 T1w(T1) = (S + KM)/k2S . This has lead Xie and coworkers

to extend the validity of the MM equation to the single-enzyme level [66, 62, 63]. In Fig.
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Figure 3.7: Breakdown of the MM equation for multienzyme kinetics, demonstrated by

first moments of higher turnover times. Here we plot 〈T4〉 and 〈T8〉, scaled by the number

of enzyme molecules as well as the turnover number p, for N = 1 (blue circles) and

N = 1000 (red squares). While the MM equation holds for very large ka = k1S , it fails to
predict multienzyme kinetics at low ka.

(3.5), we plot 〈T1〉 for N = 1 (blue circles) against 1/ka in Lineweaver-Burk fashion and

find the expected linear dependence.

Multiple enzyme kinetics presents a different picture, however. In Fig. (3.5), we further

plot, in Lineweaver-Burk fashion, N〈T1〉 for N = 10 (red squares) and N = 100 (green

triangles). We find that the curves vary nonlinearly with 1/ka and deviate away from the

MM behaviour. This nonlinearity in 〈T1〉 for N > 1 arises from the multiexponentiality

of w(T1). Thus, a turnover time interpretation of the MM equation is no longer valid for

multiple enzymes. The mean turnover time converges to the MM estimate only in the

limit of infinite substrate concentration or equivalently for 1/ka → 0, as can be clearly

seen in Fig. (3.6). Means 〈Tp〉 show similar behavior, as can be seen in Fig. (3.7).

3.5 Second-order distributions and memory

We compute the joint distributions w(τp, τp+q) of τp and τp+q and their Pearson correlation

coefficient from numerical trajectories. In Fig. (3.8) we plot the correlation coefficient
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Figure 3.8: The Pearson correlation coefficient of τp and τp+q as a function of lag q for

N = 10 (circles), N = 50 (triangles) and N = 100 (squares). The inset shows the joint

distribution w(τp, τp+1) for N = 10.

against lag q, showing the joint distribution of consecutive intervals in the inset. The

waiting times are anti-correlated, where a short first interval is more likely to be followed

by a long second interval and vice-versa. This memory effect shows a systematic variation

with enzyme number, being strong and short-lived for fewer enzymes but weak and long-

lived for more enzymes. With long-lived memory, fluctuation statistics will vary with

the size of the temporal window, and multiple measures will be required to characterize

the turnover process. In future work, we plan to explore this systematically, by studying

higher-order joint distributions. The overall effect of the anti-correlations is to reduce the

variance in the product turnovers when compared with a Poisson process. This may be

biologically relevant to ensure a uniform rate of turnover in the steady state.

3.6 Antibunching of intervals and memory indicators

We note that this anticorrelation in turnovers is similar to the phenomenon of antibunching

in resonance fluorescence experiments, where the number of emitted photons obey sub-

Poissonian statistics [67]. Unlike photons however, it is the intervals between turnovers
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that are anticorrelated, indicated a possible antibunching phenomenon in the point process

description.

(a) k f = 1, kr = 0.5 (b) k f = 1, kr = 5.0

Figure 3.9: Scan of the memory indicators against enzyme number N. Indicators C2

(blue circles) and C4 (green diamonds) are negative whereas C3 (red squares) is positive

throughout, indicating that successive intervals are anticorrelated. The degree of anti-

correlation is maximum for some intermediate N, and this value of N increases with the

reverse parameter kr = k−1/k2. There is no discernible effect on the position of the ex-

tremum of changing the value of the forward rate parameter k f = ka/k2.

A typical problem faced in photon statistics is to quantify the bunching or antibunching of

emitted or detected photons, where bunching indicates sub-Poissonian statistics and anti-

bunching indicates super-Poissonian statistics. The Mandel Q-parameter [67] is an ideal

indicator for quantifying deviations from Poissonian statistics. If there be n(t) photons

emitted/detected in a time interval t, then the the Q-parameter is defined by

Q =
〈〈n(t)〉〉
〈n(t)〉 − 1. (3.6)

Here 〈n(t)〉 is the mean, 〈〈n(t)〉〉 = 〈n(t)2〉 − 〈n(t)〉2 is the variance, and thus Q = F − 1,

where F is the Fano factor and is defined as the ratio of the variance to the mean. Q = 0

is a necessary and sufficient condition for Poissonity. Photons are bunched when Q < 0

and are antibunched when Q > 0.

The Q-parameter corresponds to a counting process and the statistics of events, rather

than that of the intervals between them. The point process counterpart of the Q-parameter
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is defined in the stationary regime in terms of multiple moments of successive waiting

times [68],

M = 〈τpτp+1〉
〈τp〉2 − 1, (3.7)

where M > 0 indicated correlation between intervals, whereas M < 0 indicates anti-

correlation. However, indicators based on multiple cumulants rather than multiple mo-

ments are better at quantifying correlation and thus the effect of molecular memory. We

therefore propose the following three memory indicators in terms of the cumulants of

w(τp, τp+1, . . .).

C2 =
1

〈τp〉2
(
〈τpτp+1〉 − 〈τp〉〈τp+1〉

)
(3.8a)

C3 =
1

〈τp〉3
(
〈τpτp+1τp+2〉 − 3〈τpτp+1〉〈τp〉 + 2〈τp〉〈τp+1〉〈τp+2〉

)
(3.8b)

C4 =
1

〈τp〉4
(
〈τpτp+1τp+2τp+3〉 − 4〈τpτp+1τp+2〉〈τp〉 − 3〈τp+2τp+3〉〈τpτp+1〉

+ 12〈τpτp+1〉〈τp〉〈τp+1〉 − 6〈τp〉〈τp+1〉〈τp+2〉〈τp+3〉
)

(3.8c)

Here C2 is like a multivariate version of the Fano factor. We numerically compute the

values of these indicators in the stationary regime, having averaged over a large number

of values of p. In Fig. (3.9), we plot these against N, and find that the two-point corre-

lator C2 and the four-point correlator C4 are negative throughout, whereas the three-point

correlator C3 is positive throughout. We thus conclude that successive intervals are anti-

correlated, and thus there is an antibunching of intervals. Curiously, the strength of the

correlation reaches a maximum at an intermediate value of the enzyme number N. This

is an interesting result when compared to resonance fluorescence experiments, where the

strength of photon-photon correlation varied inversely as the number of photons [69]. We

shall come across a similar phenomena in Chapter (4) when we study the coherence of

noise-induced oscillations.
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Figure 3.10: Plots of turnover times 〈Tp,N〉 scaled by the number of enzymes. If N
renewal processes were pooled, then the time to the p-th turnover would increase lin-

early with p, as indicated by the black line. The N-enzyme non-renewal process shows

nonlinear variation, as indicated by the symbols. We find that the higher the number of

enzymes involved, the slower the turnover process gets. Parameter values are k1/k2 = 1,

k−1/k2 = 0.5 and all times are in units of 1/k2.

3.7 Slowing down of kinetics

If we were to pool N independent single enzyme trajectories, each a renewal process, the

mean turnover time of the resulting pooled process would be reduced exactly by a factor

of N. However, for a nonrenewal process with N enzymes, Figs. (3.5) and (3.10) show that

the mean time is larger than the pooled estimate, indicating a slowing down of the kinetics.

In other words, we find that 〈Tp,N〉 > Tp, 1

N
. This slowing down phenomenon might

be related to the cooperative behaviour of the enzymes producing the anti-correlations

between subsequent turnovers. However, the precise molecular mechanism by which this

cooperativity is realized is a very interesting question, but cannot be answered within the

mass action kinetics description we have employed here.
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Figure 3.11: Validity of the pseudo-first-order approximation. Here we plot, in log-linear

scale, the distribution of the first waiting time for N = 100 for various values of S . Filled
and unfilled symbols are numerical simulations of pseudo-first order (PFO) and second

order (SO) kinetics, respectively, whereas solid lines are analytical results for the PFO

case [64, 65]. The black dashed line is a guide to the eye to indicate non-exponential

tails. We find little difference between the two simulations, even for the S ∼ N case. The

scaling of the abscissa and the ordinate by (S/N)1/2 and (S/N)−1/2 respectively makes the

distributions collapse at early times. Parameter values are k1/k2 = 0.01, k−1/k2 = 0.5 and

all times are in units of 1/k2.

3.8 Validity of PFO kinetics

To validate our pseudo-first order kinetics approximation, we compared turnover time dis-

tributions for both pseudo-first order kinetics (present work) and for second-order kinetics

(the master equation for which was first presented by Bartholomay [70]). The compar-

ison for 〈T1〉 is shown in Fig. (3.11). There is negligible difference between the two

results, even when S ∼ N. Differences continue to be negligible for early and interme-

diate turnovers. It is only at the very late stages that the difference between pseudo-first

order and second-order kinetics becomes apparent, since the latter has an absorbing state

at S = N, while the former does not. Therefore, from this comparison, the limitation of

the pseudo-first order approximation becomes apparent only at late times. Since the MM

equation is typically applied at early times, this difference at late times is of secondary

importance to our work. In vivo concentrations of substrates and enzymes support this
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treatment. Albe et al. list the substrate-enzyme ratios for about 140 enzymes [58]. In 88%

of the cases, the ratios are one or larger. Of the 17 cases where substrate-enzyme ratios

are smaller than one, 16 occur in glycolysis. This justifies our use of the approximation.

3.9 Conclusion

The non-renewal properties of enzymatic turnovers presented here can be verified by

fluorescence experiments with well-mixed reactants. Fluctuations of intermediate states

which must be summed over lead to multi-exponential waiting time distributions for the

product and to the correlations between waiting times. These non-renewal aspects should

appear in other models of catalysis which involve several types of enzyme-substrate in-

termediates. Fluctuations of intermediate states can also provide a model for dynamic

disorder, which has previously been modelled by fluctuating reaction rates. For second-

order kinetics with substrate fluctuations [70], we numerically compute low order waiting

time distributions and find negligible differences with our results. This justifies our use

of pseudo-first order kinetics, which remains a reliable approximation at early times even

when substrates fluctuate. In conclusion, the main implication of our work is that enzyme

kinetics must be approached as a non-renewal stochastic process in time with fluctuations

at multiple time scales.
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Chapter 4

Oscillations in an epidemic model due

to intrinsic noise

In this chapter we analyze the generation of quasicycles due to internal noise, as well as

the non-trivial variation of the quality of oscillation with respect to population size, in a

closed epidemic model under the homogeneous mixing assumption. The closed system

is relevant in many epidemiological situations, for instance in boarding houses [71], or

island communities, where no inflows or outfluxes occur. Further, the conservation of

population, as implied by a closed system, allows one to deal with a lower-dimensional

problem. We exploit this in a systematic manner and show how the master equation can be

marginalized using the conservation constraint. The existence of an endemic fixed point

allows a two-stage linearization procedure to be carried out on the model. The linear noise

approximation, followed by a further linearization about the endemic fixed point, reduces

the model to the standard multivariate Ornstein-Uhlenbeck (OU) form. Exploiting the

linear and Gaussian character of the multivariate OU process then allows for stochastic

behaviour to be predicted from the deterministic part of the dynamics, in a spirit similar

to the Onsager regression method of equilibrium statistical mechanics.
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4.1 Mathematical modelling of epidemics

Two and a half centuries ago, D. Bernoulli [72] used a nonlinear ordinary differential

equation to study the effect of cow-pox inoculation on the spread of smallpox. This was

one of the earliest examples of the mathematical study of epidemics. This field of study

continues to hold the interest of the scientific community especially in the light of recent

outbreaks of viral pandemics like SARS and H1N1. Kermack and McKendrick in their

seminal paper [73] put forward the classic Susceptible-Infected-Recovered (SIR) model

of the spread of epidemics which, like most early epidemic models, assumes a homo-

geneously mixed population. More recent work focuses on the geotemporal spread of

epidemics, especially on model networks [74, 75]. However, homogeneous mixing mod-

els still prove to be useful [76] and have been used to study various outbreaks of diverse

size, fatality and chronology. Examples range from the study of the plague in the vil-

lage of Eyam in 1665-66 [77] to the Bombay plague of 1905-06 [73] and the influenza

epidemic in an English boarding school [71].

Mathematical models like the SIR model are usually analyzed deterministically and are

only exactly valid when the size of the population under consideration is exceedingly

large. Fluctuations due to finite population sizes or due to external causes can give rise

to phenomena which cannot be captured by deterministic mean-field models and neces-

sitates the use of stochastic models. Bartlett [78, 44] was one of the first to realize that

a stochastic description was necessary to explain the periodic recurrence of measles, a

phenomenon which could not be explained by deterministic models [79, 80]. Bartlett for-

mulated [78] a stochastic version of the SIR model to describe the periodic recurrence of

measles.

The mechanism for the generation of sustained oscillations in population dynamics has

been analyzed within the stochastic framework [81] which concentrates on external fluc-

tuations as the noise source. However, finite-sized populations give rise to fluctuations

whose relative amplitude is of the order of the inverse of the square root of the size of the
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population [2]. The role played by this internal noise, arising out of demographic stochas-

ticity, in the generation of sustained oscillations has been studied in a prey-predator model

using a master equation approach by McKane and Newman [15]. They have used the ex-

pansion method due to van Kampen [31] in their analysis, which provides a systematic

way of deriving the phenomenological equations due to Bartlett [78]. Alonso et al. [82]

used similar techniques in an open model of infectious diseases within the homogeneous

mixing assumption, while Rozhnova and Nunes [83] applied systematic expansion to a

closed epidemic model on networks, using a pair approximation. The oscillations gener-

ated and sustained by internal noise are called endogenous resonant quasicycles and are

qualitatively different from stochastic oscillations forced by external periodicities which

are exogenous [84]. The quality or coherence of these oscillations are intuitively expected

to vary monotonically with the size of the population or equivalently, the relative noise

amplitude. However, it has been observed in various theoretical models including the

Fitz Hugh-Nagumo [85] and gene circuit models [86] that the regularity or coherence of

oscillations is small for low and high noise amplitudes and reaches a maximum for an in-

termediate value. This phenomenon is called stochastic coherence or coherence resonance

and has also been observed in optical laser experiments [87].

4.2 SIRS linear deterministic analysis

The classic SIR model for infectious diseases (S stands for susceptibles, I for infected

and R for recovered) considers the population to be homogeneously mixed and constant

in total number [73]. The SIRS model is a variant of the SIR model where the recovered

section of the population lose their immunity after a delay and become susceptible. The

nonlinear ODE system of the form ṅ = f(n), where n = {S , I,R}, describing the SIRS
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model is constrained by the fixed population size Ω and is hence a closed system.

Ṡ = αR − βS I

İ = βS I − γI (4.1)

Ṙ = γI − αR

The rate of infection is β, the rate of recovery is γ while α is the rate of loss of immunity.

The fixed point (n = n∗) is given by

(S ∗, I∗,R∗) =
[
γ

β
,
α

β

(
βΩ − γ
α + γ

)
,
γ

β

(
βΩ − γ
α + γ

)]
(4.2)

The steady state with zero infected is not of interest in the present study. The fixed point

is endemic with non-zero infected in the steady state (I∗ > 0) when the condition βΩ > γ

is satisfied.

Since there is a constraint in the system, S + I + R = Ω, the 3 × 3 system is effectively a

2 × 2 system with R = Ω − S − I.

Ṡ = α(Ω − S − I) − βS I (4.3)

İ = βS I − γI

The dynamics of small perturbations, δn = {δS , δI}, about the fixed point are described

by the linear ODE system δṅ = A · δn. Here Ai j = ∂ fi/∂nj|n=n∗ is the Jacobian matrix at

the fixed point and is given by

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−α
(
α + βΩ

α + γ

)
−(α + γ)

α

(
βΩ − γ
α + γ

)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4.4)
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Figure 4.1: Underdamped and overdamped decay of perturbations. The top two plots

show underdamped decay with parameter values β = 0.0021, α = 0.1, γ = 1.0 and pop-

ulation size Ω = 1000 (where the Jacobian has complex eigenvalues). The bottom two

plots show overdamped decay with parameter values β = 0.0021, α = 5.0, γ = 1.0 and

population size Ω = 1000 (where the Jacobian has real eigenvalues). The S vs I plot for
underdamped decay shows a spiral while that for overdamped decay does not. The former

is a stable spiral while the latter is a stable node.

Its eigenvalues are

λ± =
1

2

[
−α
(
α + βΩ

α + γ

)
±
√
α2
(
α + βΩ

α + γ

)2
− 4α(βΩ − γ)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (4.5)

the real parts of which are always negative for an endemic steady state since βΩ > γ.

Hence the endemic fixed point is always asymptotically stable. Perturbations about the

fixed point decay monotonically if the eigenvalues are purely real and in an oscillatory

fashion if they are complex. These correspond, respectively, to overdamped and under-

damped decay. In Fig. (4.1), we plot both time traces and phase portraits of S and I

showing the underdamped and overdamped cases. Fig. (4.2) is a state diagram of the

model, showing the ratio |Im(λ)/Re(λ)|. The region of complex eigenvalues, correspond-

ing to underdamped decay, is bounded by the contours labelled by |Im(λ)/Re(λ)| = 0.

55



Figure 4.2: Plot of the absolute value of the ratio of the imaginary and real parts of

the eigenvalues λ of the linearized Jacobian matrix A against the dimensionless parame-

ters β/γ and α/γ and population size Ω = 1000. The outermost white contours, labeled

“|Im(λ)/Re(λ)| = 0”, enclose the region where the eigenvalues are complex, which is a

necessary condition for the existence of quasicycles. The imaginary parts of the eigenval-

ues are zero in the outermost two regions of the plot. The inner white contours, labeled

“∂P11(ω)/∂ω = 0” and “∂P22(ω)/∂ω = 0”, enclose the regions for which the PSD shows

a peak. This is a sufficient condition for the existence of quasicycles. The innermost

black contour, denoting |Im(λ)/Re(λ)| = 1 and marked as such, encloses the region where

the quasicycles are of sufficient strength to be reliably detected. This region is labeled

“|Im(λ)/Re(λ)| > 1”, which is a necessary and sufficient condition for the reliable detec-

tion of quasicycles. Each condition presented above is stricter than the previous, leading

to a nesting of regions of parameter space as regards the existence and detection of quasi-

cycles.
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Figure 4.3: Numerical simulation of susceptibles overlaid on deterministic underdamped

decay. Parameters are β = 0.0021, α = 0.1, γ = 1.0 and population size Ω = 1000.

There are noise-induced oscillations in the stochastic case which are not seen in the de-

terministic analysis. The time period of oscillations is approximately 20 in units of 1/γ
(simulations have been performed after non-dimensionalization). This corresponds well

with the frequency seen (Fig. 4.4) in the PSD analysis for the same set of parameter

values.

4.3 SIRS linear stochastic analysis

Relative fluctuations about the deterministic expected values vary as the inverse of the

square root of the number of interacting entities and thus become important when the

entities are few in number. Often one finds that this is indeed the case in biological sys-

tems [2]. Our present study concerns populations where fluctuations due to demographic

stochasticity cannot be ignored and mean-field deterministic analysis fails to capture its

non-trivial contributions. It then becomes necessary to employ stochastic methods to re-

liably understand the role of fluctuations.

We begin by writing down the birth-death master equation (ME) of the SIRS model. Let

the state of the system at any time t be given by the vector n = (n1, n2, n3) where ni is the

number of individuals in each class (i = 1 for S, i = 2 for I and i = 3 for R). The general
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birth-death ME is then [37]

∂P(n, t)
∂t

=
∑
α

{
t−α(n + rα)P(n + rα, t) − t+α(n)P(n, t)

}

+
∑
α

{
t+α(n − rα)P(n − rα, t) − t−α(n)P(n, t)

}
(4.6)

Here P(n, t) is the conditional probability for the system to be in the state n given some

fixed initial state, t+α and t−α are the birth and death rate terms and rα is the vector denoting

the change in the number of entities in the α-th reaction. For the SIRS model we have

t+1 = βn1n2; t+2 = γn2; t+3 = αn3; t−1 = t−2 = t−3 = 0

r1 = (−1,+1, 0); r2 = (0,−1,+1); r3 = (+1, 0,−1)
(4.7)

The variable N(t) = n1(t) + n2(t) + n3(t) is constrained by the fixed population size Ω.

Incorporating this constraint within the ME allows us to work with a 2 × 2 system. The

partial time derivative of P(N(t), t) vanishes if N(t) = Ω for all t. We marginalize with

respect to one of the variables (here we choose n3) taking the population size as parameter:

P(n1, n2, t |Ω) = ∑n3 δn1+n2+n3,Ω P(n, t). Modifying the birth terms and the state change

vectors appropriately, i.e. replacing n3 by Ω − n1 − n2 and writing the rα as 2 × 1 vectors,

we get the marginalized ME.

∂P(n1, n2, t |Ω)
∂t

= β(n1 + 1)(n2 − 1)P(n1 + 1, n2 − 1, t |Ω) + γ (n2 + 1) P(n1, n2 + 1, t |Ω)

+ α (Ω − n1 − n2 + 1)P(n1 − 1, n2, t |Ω) − {βn1n2 + γn2 + α (Ω − n1 − n2)} P(n1, n2, t |Ω)
(4.8)

The transition probability for the infection step is non-linear and as such the ME is not

solvable analytically. However, it is possible to simulate the ME using the Doob-Gillespie

stochastic simulation algorithm (SSA) [39, 45, 46]. This generates an exact sampled

trajectory of the jump stochastic process described by the ME. We non-dimensionalize

time by working in units of 1/γ. Figure (4.3) shows the numerical simulation of the
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susceptibles using the SSA, compared with a deterministic solution of the ODE system.

The demographic fluctuations induce and sustain approximate cycles in the populations,

a feature absent in the deterministic model.

In the absence of exact solutions, we try to characterize these fluctuations within an ap-

proximation method due to van Kampen [31] which replaces the jump process with a

stationary multivariate Ornstein-Uhlenbeck process. The Gaussian nature of the process

can then be utilized to obtain analytical solutions for the fluctuation properties, while the

linear nature of the process can be utilized to make connections between the deterministic

and fluctuating dynamics.

We expand the variables in the population size Ω (the large parameter of the approxima-

tion method) so that the size of the jumps decreases as the population is increased,

n = Ωn + Ω1/2x (4.9)

where n is the mean value of n and x denotes the fluctuations around the mean. Assuming

the fluctuations obey a diffusion process about the mean yields a Fokker-Planck equation

(FPE) for the fluctuations,

∂tP(x, t) = −∂i [Ai(x)P(x, t)] +
1

2
∂i∂ j

[
Bi j(x)P(x, t)

]
(4.10)

where repeated indices indicate summation, ∂t = ∂/∂t and ∂i = ∂/∂xi. This is the linear

noise approximation. The elements of the drift vector A(x) and the diffusion matrix B(x)

are given, following the prescription in Gardiner [37], as

Ai(x) =
2∑
α=1

ri
αt
+
α(x) Bi j(x) =

2∑
α=1

ri
αr

j
αt
+
α(x) (4.11)

(i, j = 1, 2 being the component indices). Linearizing a second time about the endemic

59



fixed point we get the FPE of a stationary multivariate Ornstein-Uhlenbeck process

∂tP(x, t) = −
∑

i, j

[
Ai j∂i

{
x jP(x, t)

}
− 1

2
Bi j∂i∂ jP(x, t)

]
(4.12)

where Ai j and Bi j are the elements of the linearized drift and diffusion matrices. For the

SIRS model, their values are (from Eq. (4.11) after putting x = x∗)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−α
(
α+βΩ

α+γ

)
−(α + γ)

α
(
βΩ−γ
α+γ

)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4.13)

B =
αγ

β

{
βΩ − γ
α + γ

} ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
2 −1
−1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4.14)

We note that this linearized drift matrix A is identical to the linearized Jacobian ma-

trix (Eq. 4.4) obtained from the deterministic analysis and hence the two matrices share

the same spectrum. This allows us to predict, under the two-stage linearization proce-

dure, the existence of non-trivial stochastic phenomena like noise-induced quasicycles

and stochastic coherence purely from a deterministic analysis of the spectral structure of

the linearized Jacobian. We shall discuss this important point in greater detail in Secs.

4.4 and 4.5. This also allows us to use the terms “linearized drift matrix” and “linearized

Jacobian matrix” interchangeably.

The multivariate Ornstein-Uhlenbeck process has exact solutions for both stationary and

transition probability densities. Both are multivariate Gaussians, fixed by the equal time

covariance matrix Σi j = 〈〈xix j〉〉 and the matrix of time correlations Ci j(τ) = 〈〈xi(t)x j(t +

τ)〉〉, where the double angular brackets denote the cumulant [31]. Σ can be obtained by

solving the steady state Einstein relation [37, 31].

AΣ + ΣAT + B = 0 (4.15)

60



This has the form of a matrix Lyapunov equation, and can be solved using a method first

proposed by Barnett and Storey [88] in the context of linear control systems. We note that

Eq. (4.15) can be written as the sum of a matrix and its transpose S + ST = 0 where S is

the anti-symmetric matrix AΣ + 1
2
B. We can solve for S in terms of A and B using the

relation

AS + SAT =
1

2

(
BAT − AB

)
(4.16)

which is obtained by eliminating Σ from the Einstein relation and using the definition

of S. Since S is anti-symmetric, it is specified by a single parameter when it is of size

2 × 2. This parameter can be obtained directly from Eq. (4.16), since both A and B are

two-dimensional matrices and are known. For higher dimensions, matrix decompositions

are convenient when solving for S.

For the SIRS model (using Eqs. 4.13 and 4.14), we have

S =
{
γ(βΩ − γ)(α2 + 2αγ + 2γ2 + αβΩ)

2β(α + γ)(α + βΩ)

} ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 −1
1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4.17)

Knowing S, A and B we can now write down the covariance matrix

Σ = A−1
(
S − 1

2
B
)

(4.18)

which for the SIRS model is

Σ =
γ

β

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α2 + γ2 + α(βΩ + γ)
α(α + βΩ)

−1

−1 α(α + βΩ)2 + γ(α + γ)(βΩ − γ)
β(α + γ)2(α + βΩ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.19)
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Having obtained the matrix Σ, the matrix of time correlations follows as

C(τ) = 〈〈x(t)x(t + τ)〉〉 = eτAΣ (4.20)

The stochastic SIRS model, in the linear noise approximation, is completely specified by

Σ and C(τ). In the next section we use quantities derived from these to examine the model

for signatures of oscillatory behaviour.

4.4 Noise-induced oscillations: Endogenous Quasicycles

The trace of the variation of the populations with time shown in Fig. (4.3) is strongly

suggestive of sustained oscillations. This can be verified quantitatively by measuring the

power spectral density (PSD) of the population time series. A peak in the PSD indicates

the presence of oscillations. The PSD matrix, in terms of the linearized drift and diffusion

matrices for a multivariate Ornstein-Uhlenbeck process is

P(ω) = (−iωI + A)−1 B (iωI + AT )−1 (4.21)

where I is the identity matrix. The diagonal elements of this matrix give an estimate of

the periodicity in the relevant variables (here S and I). The Pii for the SIRS PSD are

Pii(ω) = 2d
(
Γi + ω

2

ω4 + qω2 + r

)
(4.22)
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where

d = {αγ(βΩ − γ)/β(α + γ)} , (4.23a)

Γ1 = (α + γ)2, (4.23b)

Γ2 = α
2
{
α2 + γ2 + βΩ(βΩ − γ) + α(βΩ + γ)

}
/(α + γ)2, (4.23c)

q = α
{
α2(α + 2γ) − 2γ2(βΩ − γ) + α(βΩ − 2γ)2

}
/(α + γ)2, (4.23d)

r = α2(βΩ − γ)2 (4.23e)

In Fig. (4.4) we plot the PSD for both S and I, comparing numerical simulation with

Eq. (4.22). A peak is clearly visible for parameters corresponding to underdamped dy-

namics. The peak disappears for overdamped dynamics as shown in the inset. The peak

frequency (around ωp = 0.3) corresponds to the period (T = 20) of the numerical time-

trace (Fig. 4.3). The excellent agreement between numerics and analytics provides a post

facto justification of the linear noise approximation for this problem.

The PSD has peaks at real frequencies if and only if the extremum condition ∂Pii(ω)/∂ω =

0 has real roots. The regions of parameter space for which this occurs are bounded by con-

tours labelled “∂P11(ω)/∂ω = 0” and “∂P22(ω)/∂ω = 0” in Fig. (4.2). These are sufficient

conditions for the existence of quasicycles. This approach has been used previously in the

literature to detect quasicycles [15, 82, 83].

While Fourier analysis of a signal is a natural tool for studying oscillatory behaviour, a

corresponding time-domain analysis must yield equivalent results. The time-correlation

function forms the basis of a time-domain analysis, which for the multivariate Ornstein-

Uhlenbeck process is given by Eq. (4.20). The temporal variation of the time correlation

is fixed entirely by the drift A which is the deterministic part of the dynamics, while its

scale is set by Σ which involves the stochastic part of the dynamics through B. Defining

a normalized time correlation c(τ) = C(τ)Σ−1, we find that c(τ) = eτA. This is of the

form c(τ) ∼ exp[Re(λ)τ] sin[Im(λ)τ)]. This observation motivates the use of the ratio
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Figure 4.4: Normalized power spectral density for susceptibles and infected. There is

excellent agreement between the analytically calculated (dashed blue for S, solid red for I)

and numerically computed (blue dots for S, red dots for I) PSDs, thus justifying the linear

noise approximation. The main graph is for parameter values β = 0.0021, α = 0.1, γ = 1.0
at population size Ω = 1000 which falls within the underdamped zone. The PSD peaks

around frequency ω = 0.3, which corresponds approximately to the time period of the

numerical signal as well as that of the ACF for the same set of parameter values (see Figs.

4.3 and 4.5). The inset shows the PSD for the same size of the population at parameter

values β = 0.0012, α = 2.5, γ = 1.0 which falls within the overdamped zone and does not

show any peak.

|Im(λ)/Re(λ)| to reliably detect quasicycles within the linear noise approximation, where

λ = eig(A). If the decay time scale, fixed by Re(λ), is too short compared to the oscil-

latory time scale fixed by Im(λ), the decay will dominate and oscillatory effects will not

be discernible. This will be so even when the extremum condition has real roots. We

thus propose a condition for clearly discernible quasicycles, namely |Im(λ)/Re(λ)| ≥ 1.

In Fig. (4.2) we plot the contour |Im(λ)/Re(λ)| = 1. The region |Im(λ)/Re(λ)| > 1 is

bounded on the right by this contour. As this is more stringent than the extremum condi-

tion ∂Pii(ω)/∂ω = 0, it is entirely contained by the regions where the PSD has a peak. In

Fig. (4.5) we emphasize this point by comparing the autocorrelation function (ACF) when

the PSD has peaks at finite frequencies. When |Im(λ)/Re(λ)| is small the oscillations are

barely discernible, as seen from the rapid decay of the ACF. For |Im(λ)/Re(λ)| of order
unity clear signatures of oscillation are visible in the ACF.
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Figure 4.5: Normalized autocorrelation of susceptibles and infected for parameter values

β = 0.0021, α = 0.1, γ = 1.0 and population size Ω = 1000 which falls within the

|Im(λ)/Re(λ)| > 1 zone. The thick black line is the x-axis. There is clear oscillatory

decay with a period of approximately 20 in units of 1/γ which agrees well with Figs.

(4.3) and (4.4) for the same set of parameter values. The inset plot shows the ACF for

parameter values β = 0.009, α = 1.2, γ = 1.0 and population size Ω = 1000 which

falls within the zone bounded by the contours ∂P11(ω)/∂ω = 0, ∂P22(ω)/∂ω = 0 and

|Im(λ)/Re(λ)| = 0, i.e the region where susceptibles should cycle according to the PSD

analysis. The thick black line is once again the x-axis. There is a single zero-crossing of

the ACF for S , which indicates non-oscillatory decay [84]. This shows the unreliability

of PSD analysis in detecting quasicycles. These analytical plots have also been compared

with numerical data (not shown here) with good agreement.
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4.5 Quality of noise-induced oscillations: Stochastic co-

herence

Noise-induced oscillations, unlike genuine oscillations, are not phase coherent and as

such are called quasicycles. The coherence or regularity of quasicycles can be quantified

by several measures. Here we use the quality factor, which measures the sharpness of the

peak of the PSD, and the coefficient of variation, which measures the regularity of the

zero crossing of the signals.

The quality factor, Q, is a dimensionless parameter that characterizes an oscillator’s band-

width relative to its peak frequency,

Q = ωp/Δω (4.24)

where ωp is the peak frequency and Δω is the bandwidth. A high Q corresponds to

oscillations of greater regularity. We calculate the Q for the diagonal entries of the PSD

matrix. Let ki be half the maximal power ki =
1
2
Pii(ω

i
p) for each i = 1, 2. We calculate the

bandwidth or the full-width at half-maximum (FWHM) using the ki and Eq. (4.22) to get

(Δω)i =

√
(2d/ki − q) − 2

√
r − 2dΓi/ki (4.25)

Using Eq. (4.22), the peak frequencies are given by the positive square roots of the pos-

itive roots of the two quadratic equations z2 + 2Γiz + (Γiq − r) = 0 (for i = 1, 2) where

z = ω2 and Γi, q and r are as defined in the previous section. The peak frequency and

the FWHM together give the Q. Figure 4.6 shows a scan of the quality factor against

population size and against the inverse of population size (inset). As one would expect,

Q is low for high noise amplitudes and starts increasing as the noise decreases, keeping

in mind that the relative noise amplitude varies as the inverse of the square root of the

size of the population. However, the graph then has a maximum and then decreases for
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Figure 4.6: Quality factor for the susceptibles (plotted for 200 runs) against popu-

lation size (Ω) and (inset) against inverse of population size. Parameter values are

β = 0.0021, α = 0.1, γ = 1.0. The peaks for S and I are respectively at Ω = 1040

and Ω = 1000.

high amplitudes of noise. This is stochastic coherence. The coefficient of variation, CV ,

is the ratio of the variance and the mean of the times T between successive zeros of a

temporal signal. A sharp peak in the histogram of the intervals between zero crossings,

then, indicates a strongly coherent signal. CV is a dimensionless measure of this,

CV =

√〈T 2〉 − 〈T 〉2
〈T 〉 (4.26)

A low CV indicates a high degree of coherence in the signal. Similar measures are used in

the literature (for example [85] and [86]). Figure 4.7 shows the CV for the mean crossing

time of the numerical signal of the susceptibles scanned against population size and (inset)

against its inverse . The plot shows a minimum which indicates stochastic coherence and

hence numerically supports the analytical result given by the Q.

Although this non-intuitive variation of the coherence of the quasicycles with the size of

the population has a stochastic origin, it is controlled purely by the deterministic part of

the dynamics. The analysis using the Q and the CV require a knowledge of the diffusion
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Figure 4.7: Coefficient of Variation for the susceptibles (plotted for 200 runs) against

population size (Ω) and (inset) against inverse of population size. The solid line is a fifth-

order polynomial fit. Parameter values are β = 0.002, α = 0.1, γ = 1.0. The CV peak for

S , computed from the minimum of the fifth-order polynomial fit, is at Ω = 985. The CV

plot for the infected (not given here) shows a peak (in the sixth-order fit used there) at

Ω = 1135. This agrees well with the peaks obtained for the plot of the quality factor, Fig.

(4.6).

matrix B. However, after the two-step linearization procedure, the entire non-trivial de-

pendence on the population size is contained only in the spectrum of the linearized drift

matrix, while the diffusion matrix scales linearly with Ω, as given by Eqs. (4.13) and

(4.14). Thus, any non-monotonicities in the fluctuations arise purely from the determinis-

tic part of the dynamics, while the noise merely excites these modes. For a system which

can be reduced to a standard multivariate Ornstein-Uhlenbeck process, the linearized drift

matrix is identical to the linearized Jacobian matrix. This motivates the use of the ratio

|Im(λ)/Re(λ)| in determining the size of the population at which stochastic coherence is

observed. This allows us to study stochastic coherence from the deterministic part of the

dynamics.

We observe that in Fig. (4.8) the ratio |Im(λ)/Re(λ)|, when scanned against the size of the
population (Ω), shows a peak which occurs at Ω = 1000 for parameter values β = 0.0021,

α = 0.1 and γ = 1.0. We see that this value matches well with the peaks in Figs. 4.6 and

4.7, within numerical errors. We have calculated the peak value of the ratio in terms of
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Figure 4.8: Absolute value of the ratio of the imaginary and real parts of the eigenvalues

of the linearized Jacobian matrix plotted against population size (Ω) and (inset) against

inverse of population size. Parameter values are β = 0.0021, α = 0.1, γ = 1.0. There is
a peak at Ω = 1000 corresponding to the stochastic coherence point, which agrees quite

well with the values provided by the quality factor and coefficient of variation plots, Figs.

(4.6) and (4.7).

the model parameters. If Ωp is the population size at stochastic coherence, then

Ωp =
α + 2γ

β
(4.27)

Since the ratio is always positive, there is stochastic coherence for all values of parameters

for which quasicycles exist. We have previously observed a similar curious maximization

of orderliness at intermediate noise amplitudes in Chapter (3).

4.6 Detailed balance violation necessary for quasicycles

Quasicycles and stochastic coherence are not possible unless detailed balance is violated

in the master equation. Typically, variables characterizing biological systems are even

under time-reversal, x(−t) = x(t), and this is true for the variables of the SIRS model. If

the system is in state n0 at time t0 = 0 (say) and is in state n at some later time t, then the
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joint probability of the forward transition (n0(t0) → n(t)) is P(n, t;n0, 0) while that of the

reverse transition (n(t0) → n0(t)) is P(n0, t;n, 0), provided all time-reversal parities are

even. Microscopic reversibility implies that at equilibrium the steady state forward and

reverse joint probabilities must be equal. This is the condition for detailed balance and

for a Markov process can be written as

P(n, t|n0, 0)Ps(n0) = P(n0, t|n, 0)Ps(n) (4.28)

where the subscript ‘s’ denotes steady state. Expressing this condition macroscopically in

terms of the correlation function, expanding in Taylor series, and keeping the first order

terms one obtains [89] the Onsager relations

AΣ = ΣAT (4.29)

which is the macroscopic condition for equilibrium. This condition requires the drift

matrix to be related by a similarity transformation to a symmetric matrix [37] and hence

restricts its spectrum to the real axis. Since it is not possible to have quasicycles without

having complex eigenvalues, the violation of detailed balance is a necessary condition for

the existence of noise-induced oscillations, and has been observed earlier in predator-prey

systems [90].

Recalling that S = AΣ + 1
2
B and using the symmetry properties of Σ and B we can write

down the following expression for S [91]

S =
1

2
(AΣ − ΣAT ) (4.30)

which is a measure of the deviation from detailed balance. The SIRS S matrix (Eq. 4.17)

can never be zero for any choice of parameters under the endemic condition βΩ > γ. Thus

the SIRS model always violates detailed balance and therefore allows for quasicycles for

any choice of parameters.
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The steady state probability current Js(x) for the multivariate OU process obeys ∇ ·Js = 0

and is given by the equation

Js(x) = Ps(x)
(
A +

1

2
BΣ−1

)
= Ps(x)

(
SΣ−1

)
x (4.31)

where Ps(x) is the steady state probability configuration given by Ps(x) = N exp
(
− 1

2
xTΣ−1x

)
,

N being the normalization. Since S � 0 is always true, we have in general Js(x) � 0. This

divergenceless steady state probability current can be expressed as a circulation, and thus

opens up the possibility of having system-wide probability currents that keeps the SIRS

in a state of cyclic balance [91] making quasicycles possible.

4.7 Non-normality increases variance

We have already noted that the violation of detailed balance is necessary for quasicycles.

Here we further note that detailed balance violation has another consequence, that of

enhancement of fluctuation amplitudes. With detailed balance the drift matrix A is similar

to a symmetric matrix, and is therefore normal (AAT = AT A). In the absence of detailed

balance, the drift matrix is no longer symmetric, and in this case is also non-normal.

As has been noted by Ioannou [92], the variance of a non-normal system driven by diago-

nal white noise is larger than its normal counterpart. Consider two stationary multivariate

Ornstein-Uhlenbeck processes with drift and diffusion matrices (A1,B) and (A2,B) where

A1 is non-normal but shares the same eigenvalues as the normal A2. Then, Schur decom-

positions of the two matrices gives A1 = U(D+T)U† and A2 = UDU† where U is unitary,

D is diagonal matrix of eigenvalues and T is strictly upper triangular. Restricting the forc-

ing to be diagonally correlated white noise (B = I), Ioannou shows that Tr(Σ1) ≥ Tr(Σ2),

where Σ1 and Σ2 are the respective covariance matrices and Tr(. . .) denotes the trace of

a matrix. For a general B which is not necessarily diagonal, Σ1 = A−1
1

(
S − 1

2
B
)
and
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Figure 4.9: Enhanced variance of time-traces of susceptibles and infected for parameter

values β = 0.0021, α = 0.1, γ = 1.0 with population size Ω = 1000. The solid black lines

correspond to n ± √
n, where n is the mean.

Σ2 = − 1
2
A−1

2 B. We have calculated the ratio of the traces of Σ1 and Σ2.

Tr(Σ1)

Tr(Σ2)
= 1 +

Tr
(
A−1

1 S + 1
2Δ

UTU†B
)

Tr (Σ2)
(4.32)

where Δ is the determinant of A1. This expression is valid only when the spectrum of A1

is purely real. For the SIRS model, this ratio is greater than unity.

Individual time-traces also show an increase in variance. Figure (4.9) shows time-traces of

S and I where the fluctuations are seen to be higher than the expected standard deviation

values (n ± √
n, where n is the mean) marked by the black lines.

4.8 Conclusion

In this chapter, we have analyzed a closed endemic model for sustained, though asymptot-

ically incoherent, oscillations in the population classes. These oscillations are generated
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through fluctuations brought about by internal demographic stochasticity which destabi-

lize the endemic fixed point. The closed nature of the problem allows one to deal with

a simplified lower-dimensional problem, an aspect we have exploited systematically by

showing how the master equation can be marginalized using the constraint. This model

also lends itself to a two-stage linearization procedure, at the end of which it is reduced

to a multivariate Ornstein-Uhlenbeck form. This results in the identification of the lin-

earized drift matrix with the deterministic Jacobian matrix linearized about the endemic

fixed point and permits the analysis of stochastic behaviour from the deterministic be-

haviour.

Noise-induced oscillations or quasicycles are possible only if the eigenvalues of the lin-

earized Jacobian matrix are complex. These oscillations are distinct from those produced

by external periodic agencies because their phases decorrelate asymptotically. Quasicy-

cles can be reliably detected only if the oscillation time period is at least of the same order

as the decorrelation time scale, as otherwise the decay dominates over the oscillation.

Strong quasicycles are seen when the imaginary parts of the eigenvalues are larger than

the real parts.

Stochastic coherence, or the non-trivial maximization of regularity of the oscillations at

intermediate relative noise amplitudes (or equivalently at intermediate population sizes),

is a striking aspect of the SIRS quasicycles. We have seen this both analytically from

the relative strength of the peak of the power spectral density and numerically by directly

computing the signal-to-noise ratio of the time-traces of each population class. This anal-

ysis requires a knowledge of the intrinsic noise in the system, namely the diffusion matrix

B. However, we find that, for systems which can be reduced to a standard multivariate

Ornstein-Uhlenbeck form by the two-stage linearization procedure mentioned earlier, it

is possible to predict stochastic coherence purely from the deterministic analysis. Any

non-trivial dependence on population size is contained only in the eigenvalues of the lin-

earized drift matrix or equivalently the linearized Jacobian matrix, while the diffusion
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matrix scales linearly with the population size. Thus, any non-monotonicities in fluctua-

tions arise entirely from the deterministic part of the dynamics, i.e. the spectrum of the

drift matrix. The noise merely excites these modes. This motivates the maximization of

the ratio |Im(λ)/Re(λ)| in the investigation of the population size value at which stochastic
coherence is observed. Numerical results support this procedure. Therefore, we conclude

that it is possible to make predictions about non-trivial behaviour of such systems in the

stochastic regime by simply analyzing the linearized deterministic dynamics.

The violation of detailed balance is a necessary condition for the existence of quasicy-

cles. Analysis of the drift, diffusion and S matrices indicates that the population system

described by the SIRS model is always out of equilibrium and allows for quasicycles

about the endemic fixed point for any choice of model parameters. The violation of de-

tailed balance due to the non-normal nature of the system dynamics is manifest in the

enhancement of fluctuation amplitudes of the populations. We have given an expression

for the ratio of the trace of the non-normal covariance matrix over its normal counter-

part, restricted to parameter values where the Jacobian spectrum is purely real. Numerics

indicate that this ratio is greater than unity for the SIRS model.
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Chapter 5

Irreducible representations of active

matter flows

In this chapter, we present the most general representation of Stokes flow around a finite-

sized spherical microswimmer as an expansion in irreducible Cartesian multipoles of the

surface stress. The orthogonality and completeness of the tensorial multipoles results

provides simple relations between the stresses and velocities that allows us to identify the

multipoles necessary and sufficient for translation and rotation. Knowing the rigid body

motion we are thus able to reconstruct, using only a few irreducible multipoles, the com-

plex time-dependent flows observed in experiment. The power dissipation and swimming

efficiency obtained in terms of these multipoles are in good agreement with experiment.

We exploit the rotational invariance manifest in the Cartesian tensor expansion to derive

a general constitutive equation for the stress tensor of an active micropolar continuum. In

particular, our constitutive equation contains antisymmetric stresses not considered pre-

viously. Remarkably, however, these antisymmetric stresses separately conserve orbital

and intrinsic angular momenta.
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5.1 Chemomechanically active flows around swimming

microorganisms

The collective dynamics of microscopic particles that swim in viscous fluids by convert-

ing chemical energy to mechanical work is a topic of current interest in non-equilibrium

statistical mechanics [93, 24, 94, 95, 96, 97, 98, 99]. Biological and biomimetic examples

of such “active” particles include, in increasing order of size, molecular motors [16], ac-

tive nanobeads [18, 19, 21, 20] and swimming microorganisms. Momentum conservation

and the lack of inertia at the microscopic scale implies that the fluid flow around such par-

ticles must be both force-free and torque-free, thus constraining it to decay no slower than

the inverse square of the distance from the particle. Thus, at distances large compared to

the particle size the dominant contribution to the flow is from the dipolar stresslet [100].

Continuum theories, applicable at scales much larger than the particle size, employ the

stresslet flow to obtain the long-wavelength, long-time features of the collective dynamics

of microswimmer suspensions [23, 25].

However, recent experiments, that resolve the flow around swimming microorganisms in

unprecedented spatial and temporal detail, reveal near field features that cannot be cap-

tured by a purely stresslet description [101, 102, 103]. The complex flow around Chlamy-

domonas has easily identifiable qualitative features like stagnation points and strong lat-

eral circulations that vary periodically with time. Both Chlamydomonas and Volvox rotate

about their axis [102, 101] and thus must generate swirling flows while swimming. The

flow around a generic translating and rotating microswimmer is then time-dependent with

both axisymmetric and swirling components.

Lighthill and Blake provided an axisymmetric, time-dependent solution for Stokes flow

around a spherical particle that, however, leaves out swirling components [104, 105].

Lamb’s general solution accounts for these missing components but is formulated as an

expansion in velocity point multipoles [106]. These multipoles do not directly provide a
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simple representation of the flow around a finite-sized particle but must be combined in

non-trivial ways to do so. Both Blake and Lamb present their solution in terms of spherical

harmonics which do not transform as ordinary Cartesian tensors, further complicating

their application to experimental flows. Motivated by these shortcomings, we carry out

the following study.

5.2 Boundary integral representation of Stokes equation

Creeping flow around a particle obeys the Stokes equation,

∇ · σ = −∇p + η∇2u = 0 (5.1a)

∇ · u = 0 (5.1b)

where u is the flow within the volume V , σ is the stress, p is the pressure and η is the

viscosity. Chemomechanical activity can regulate either the velocity uS or the stressσS on

the surface S of the particle, which requires Dirichlet or Neumann boundary conditions,

respectively. In either case, the flow in the bulk can be expressed as an integral over

the boundary S , where a single layer density q(r) is convolved with the dyadic Green’s

function G(r) = (I + r̂ r̂)/|r|2 [49, 48, 50],

∫
S ′

G(r − r′) · q(r′) dS ′ = −8πη

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
u(r), r ∈ V

uS (r), r ∈ S ,
(5.2)

where r is the field point in the bulk V , r′ is the source point on the surface S , and r̂ is the

unit vector. Eq. (5.2), r ∈ V , provides a complete solution for the Neumann problem with

known single layer density. For the Dirichlet problem, Eq. (5.2), r ∈ S , must be solved to

obtain the unknown single layer density in terms of the prescribed boundary velocity uS .
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5.3 Expansion of surface stress in irreducible Cartesian

basis

If surface stresses σS are known, then the Neumann problem can be solved for spheri-

cal boundaries by expanding the single layer density in a spherical harmonic basis. A

manifestly rotational covariant representation of such a basis is provided by irreducible

Cartesian tensors r̂ (p), which obey the orthogonality condition

〈
r̂ (p) r̂ (q)

〉
=

p!
(2p + 1)!!

δp,q Δ
(p,p). (5.3)

The surface average 〈. . .〉 = (1/4πa2)
∫
dS , while the rank 2p tensor Δ(p,p) projects any

p-th rank tensor r̂(p) to its irreducible form r̂ (p) [107, 108]. Expanding q(r) in this basis,

we get

q(r) =
∞∑

p=0

(2p + 1)!!
4πa2

r̂ (p) �Q(p+1), r ∈ S , (5.4)

where the multipole moments Q(p+1)
iα1...αp

, symmetric and traceless in the last p indices, are

given by

Q(p+1) =
1

p!

∫
S

q(r) r̂ (p) dS . (5.5)

In Eq. (5.4), the symbol � represents a p-fold contraction between a p-th rank tensor and

another of higher rank, contracting the last index of the first tensor with the first index of

the latter till p indices are contracted, such that r̂ (p) �Q(p+1) = r̂α1α2...αp−1αp Q(p+1)
αpαp−1...α2α1 i.

We now insert Eq. (5.4) into Eq. (5.2), r ∈ V , and obtain

8πηu(r) = −
∞∑

p=0

(2p + 1)!!
4πa2

∫
S ′

G(r − r′) · Q(p+1) � r̂ (p) dS ′ (5.6)
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Writing this in terms of the Fourier transform of the Green’s function, G(k) = 8π(I −
k̂ k̂)/|k|2, we get

8πηu(r) = −
∞∑

p=0

(2p + 1)!!
4πa2

∫
k

d3k
(2π)3

eik·r G(k) · Q(p+1) �
∫

S ′
dS ′e−ik·r′ r̂ (p) (5.7)

We expand the plane wave in spherical Bessel functions,

eik·r =
∞∑

m=0

(i)m(2m + 1)!!
m!

jm(kr) k̂ (m) � r̂ (m), (5.8)

and thus obtain

8πηu(r) = −
∞∑

p=0

∞∑
m=0

(−i)m(2p + 1)!!(2m + 1)!!
m!

×
∫

d3k
(2π)3

eik·r jm(ka)G(k) · Q(p+1) �
〈

r̂ (p) r̂ (m)
〉
� k̂ (m)

= −
∞∑

p=0

(−i)p(2p + 1)!!
∫

d3k
(2π)3

eik·r jp(ka)G(k) · Q(p+1) � k̂(p). (5.9)

Here Δ(p,p) � k̂ (p) = k̂ (p), and Q(p+1) � k̂ (p) ≡ Q(p+1) � k̂(p) since Q(p+1) is already sym-

metrized and detraced in its trailing p − 1 indices. The spherical Bessel function can be

expanded in polynomials of the wavenumber k and truncated,

jp(ka) =
apkp

(2p + 1)!!

[
1 − a2k2

4p + 6
+ O(k4)

]
=

apkp

(2p + 1)!!

(
1 − a2k2

4p + 6

)
(5.10)

since k4G(k) = 0 from biharmonicity. Substituting this in Eq. (5.9),

8πηu(r) = −
∞∑

p=0

ap Q(p+1) �
∫

d3k
(2π)3

eik·r (−ik)(p) ·
(
1 − a2k2

4p + 6

)
G(k), (5.11)

and taking the inverse transform we get the required flow equation

8πηu(r) = −
∞∑

p=0

ap Q(p+1) � (−∇)(p) ·
(
1 +

a2

4p + 6
∇2

)
G(r) (5.12)
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The flow at any order p, up, has contributions which decay as r−p and r−(p+2). Thus the

stress multipole expansion automatically generates the Faxén corrections a2∇2G(r)/(4p+

6) that must be manually reconstructed when expanding in the velocity multipoles of

Lamb’s general solution [106].

5.4 Fundamental irreducible components of active Stokes

flow

The general solution in Eq. (5.12) can be simplified by decomposing the reducible single

layer moments into irreducible tensors. Any p-th rank tensor Q(p) can be decomposed into

irreducible tensors Q(p)
j,r , of weight j ≤ p with 2 j+1 independent components, subtending

a j dimensional irreducible representation of the rotation group S O(3) [109, 110, 111].

The seniority index r is needed when more than one weight j representation occurs in

the decomposition. The general decomposition is then the direct sum Q(p) = ⊕ j,rQ(p)
j,r

[109, 110, 111]. The tensors corresponding to weights 1, 2 and 3 are known as vectors, de-

viators, and septors respectively and can be further classified by their parity as polar (true)

or axial (psuedo) tensors. The constraints imposed by incompressibility, biharmonicity

and spherical symmetry imply that only the first three irreducible parts contribute. Here

we focus on the minimal set of multipoles required to produce active translations and ro-

tations. This requires us to enumerate all rank 3 irreducible multipoles p ≤ 2 and the rank

4 pseudoseptorial multipole for p = 3 , which, as we shall soon see, is responsible for

particle rotations. The other two rank 4 irreducible multipoles, the deviator and the nonor,

do not contribute any new locomotory mode and is thus not considered in this treatment.
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The decompositions we require are, [109, 110, 111, 112]

Q(1)
i = Fi, (5.13a)

Q(2)
iα =

1

a

[
S iα − 1

2
εiανTν

]
, (5.13b)

Q(3)
iαβ =

1

a2

[
Γiαβ +

2

3

(
εiανΨνβ + εiβνΨνα

)
+
1

10

(
−2diδαβ + 3dαδβi + 3dβδiα

)]
(5.13c)

Q(4; 3)
iαβγ = −

1

4a3

(
εiανΛνβγ + εiβνΛνγα + εiγνΛνβα

)
. (5.13d)

where ε is the rank-3 antisymmetric Levi-Civita tensor. Here Q(4; 3) represents the rank 4,

weight 3 tensor. The force F, the torque T, stresslet S and the potential dipole d are famil-

iar irreducible multipoles. The new irreducible multipoles introduced here are the second

rank pseudodeviatoric torque dipole Ψ or the “vortlet”, the third rank septorial stresslet

dipole Γ or the “septlet”, and the third rank pseudoseptorial multipole Λ or the “spin-

let”. Using these decompositions and Eq. (5.12), force-free torque-free flows decaying no

faster than r−5 are expressed as

8πηua(r) =
(
1 +

a2

10
∇2

)
∇G � S +

1

5
∇2G · d +

4

3
(Ψ · ∇) · (∇ × G)

−
(
1 +

a2

14
∇2

)
∇∇G � Γ − 3

4
(Λ : ∇∇) · (∇ × G) . (5.14)

There are a total of 27 independent coefficients, with individual multipoles contributing

5, 3, 5, 7 and 7 independent coefficients respectively. The stresslet S completely charac-

terizes active flows decaying as r−2. The potential dipole d, the vortlet Ψ and the septlet

Γ together completely characterize flows decaying as r−3. The spinlet Λ produces a flow

decaying as r−4. The vortlet and the spinlet produce swirling flows which have not been

considered before.
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Substituting G(r) = (I + r̂ r̂)/|r|2 into Eq. (5.14), we get

8πηua(r) = − 6

5r2

(
a2

r2

) (
S · r̂

)
− 3

r2

(
1 − a2

r2

) (
S : r̂ r̂

)
r̂ +

2

5r3
[

d − 3(d · r̂) r̂
]

− 8

3r3
(r̂ ×Ψ · r̂) +

3

r3

(
1 − 15a2

7r2

) (
Γ � r̂r̂

)
− 15

r3

(
1 − a2

r2

) (
Γ � r̂ r̂ r̂

)
r̂

− 6

r4
(
r̂ × Λ : r̂ r̂

)
(5.15)

It is straightforward to calculate the vorticity ω = ∇× ua of the flow using Eq. (5.15). All

the fundamental multipoles contribute towards the vorticity except for d which, by defini-

tion, produces potential or irrotational flows. Noting that the Stokes equation guarantees

∇ × ∇2G = 0, we get

8πηω(r) =
2

r3
(
r̂ × S · r̂

)
+

8

3r4

[
6Ψ · r̂ − 5

(
Ψ : r̂r̂

)
r̂
]

+
30

r4
(
r̂ × Γ � r̂ r̂

)
+

6

r4

[
7
(
Λ � r̂r̂r̂

)
r̂ − 3Λ � r̂r̂

]
(5.16)

Comparing the fundamental components of the flow with the vorticity, we find a curious

exchange of tensorial structure between S and Ψ, and also between Γ and Λ.

5.5 Visualization of uniaxially parametrized multipolar

flows

Uniaxial parametrizations are the simplest representations of the stress multipoles and

help visualize the irreducible flows. If p̂ determines the parametrization direction, then
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the uniaxial parametrizations that preserve symmetry and tracelessness conditions are

S = S 0

(
p̂p̂ − 1

3
I

)
(5.17a)

d = d0p̂ (5.17b)

Ψ = Ψ0

(
p̂p̂ − 1

3
I

)
(5.17c)

Γ = Γ0

(
p̂p̂p̂ − 3

5

︷︸︸︷
p̂I

)
(5.17d)

Λ = Λ0

(
p̂p̂p̂ − 3

5

︷︸︸︷
p̂I

)
(5.17e)

where ︷︸︸︷. . . denotes complete symmetrization. The stresslet strength S 0 and the septlet

strength Γ0 are true scalars, while the vortlet strength Ψ0 and the spinlet strength Λ0

are pseudoscalars. Substituting these in Eq. (5.14), we obtain uniaxial flows. Stresslet,

potential dipole and septlet flows are shown in Fig. (5.1), while swirling flows due to the

vortlet and the spinlet are shown in Fig. (5.2).

5.6 Relation between surface stress and velocity multi-

poles

If the velocities on the boundaries are known, then the resulting Dirichlet problem, Eq.

(5.2), r ∈ S , is solved by expanding the prescribed the surface velocity uS (r) in the same

irreducible basis r̂ (p),

uS (r) =
∞∑

p=0

1

p!
r̂ (p) �V(p+1) (5.18)
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(a) Stresslet flow : u(S) (b) Potential dipole flow : u(d)

(c) Septlet flow : u(Γ)

Figure 5.1: Cross-sections of long-range hydrodynamic flows around an active particle

of radius a generated by irreducible moments of the single layer density, Eq. (11) of main

text. Streamlines show the direction of the flow while the background color represents

the natural logarithm of the strength of the flow. The contractile stresslet S, uniaxially
parametrized in êy, generates “puller” flows that neither translate nor rotate the particle,

panel (a), and decay as r−2. The flows due to the potential dipole d, panel (b), and the uni-
axially parametrized septlet Γ, panel (c), generate a net translational effect on the particle

along the parametrization direction êy. These decay as r−3.
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(a) Vortlet flow : u(Ψ)

(b) Spinlet flow : u(Λ)

Figure 5.2: Swirling flows around an active particle of radius a generated by (a) a vortlet

Ψ and (b) a spinlet Λ, Eq. (5.14), both uniaxially parametrized. Streamlines show the

direction of the flow while the background color represents the natural logarithm of the

strength of the flow. The vortlet is a dipole of rotlets and thus produces r−3 flows that

rotate in opposite directions above and below the equatorial plane. Since the net flow

over the surface of the sphere is zero, this multipole does not contribute to particle self-

rotation. The spinlet produces r−4 flows that rotate in the same direction at the particle

surface but switch directions across the isosurface cos2 θ−1/5, where θ is the polar angle.
We predict that this multipole is responsible for self-rotations in active particles, as well

as swirling flows around Volvox.
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where the multipole moments V (p+1)
iα1...αp

, symmetric and traceless in the last p indices, are

given by

V(p+1) = (2p + 1)!!
〈
uS r̂ (p) 〉

. (5.19)

Equating Eq. (5.18) and Eq. (5.9) on S , and expanding the plane wave in spherical Bessel

functions once again, we get

8πη

∞∑
m=0

1

m!
r̂ (m) �V(m+1) = −

∞∑
p=0

∞∑
n=0

1

n!
in−p(2p + 1)!!(2n + 1)!!

×
∫

d3k
(2π)3

jn(ka) jp(ka) k̂ (n) � r̂ (n) G(k) · k̂(p) � Q(p+1) (5.20)

Using the spherical Bessel function identity

∫ ∞

0

dk
2π

jn(ka) jp(ka) =
1

4a(2n + 1)
δn,p (5.21)

and orthogonality, Eq. (5.3), we get

8πη
1

(2p + 1)!!
V(p+1) = − (2p − 1)!!

4πa

∫
k2dΩk

4π
k̂(p) G(k) · k̂(p) � Q(p+1) (5.22)

Since k2G(k) = 8π(I − k̂k̂), we finally get the desired relation

V(p+1) = G(p+1, p+1) � Q(p+1) (5.23)

where the 2(p + 1) rank tensor G is given by [113]

G(p+1, p+1) = − (2p − 1)!!(2p + 1)!!
(4πηa)

∫
dΩ
4π

r̂ (p) (I − r̂r̂) r̂ (p) (5.24)

We now expand both sides of Eq. (5.23) in irreducible multipoles and obtain relations

between irreducible velocity and stress multipoles.
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5.7 Irreducible description of active particle motion

Active translations V and rotations Ω of the particle can be obtained from the linear

relation between the velocity and stress multipoles at the boundary, where uS (r) = V +

aΩ × r̂ + va(r) and va is an activity induced surface velocity. We get, from Eq. (5.23),

F = −6πηa
(
V +

〈
va〉) (5.25a)

T = −8πηa2
(
aΩ − 3

2

〈
va × r̂

〉)
(5.25b)

S = −10πηa2 〈
va r̂ +

(
va r̂

)T 〉
(5.25c)

d = −30πηa3
〈
(va · r̂) r̂ − 1

3
va

〉
(5.25d)

Ψ = 5πηa3
〈
(va × r̂) r̂ +

{
(va × r̂) r̂

}T 〉
(5.25e)

Γ = −35
2
πηa3

〈 ︷︸︸︷
va r̂̂r −2

5
(va · r̂)

︷︸︸︷
r̂ I −1

5

︷︸︸︷
va
I

〉
(5.25f)

Λ = 14πηa4
〈 ︷��������︸︸��������︷(

va × r̂
)

r̂ r̂ −3
5

︷�����︸︸�����︷(
va × r̂

)
I

〉
. (5.25g)

The first two relations above show that a force-free torque-free particle acquires transla-

tion and rotational motion only if the surface averages of the va and va × r̂ are non-zero

[114, 115, 116], that is,

V = −〈
va〉 (5.26a)

Ω = − 3

2a

〈̂
n × va

〉
(5.26b)

The remaining relations appear to be new. The utility of these relations is that, given the

active V and Ω, they determine the minimal external flow ua(r). This ua(r) is the sum

of a potential dipole of strength d = −30πηa3
[
〈 (va · r̂) r̂〉 + 1

3
V

]
and a spinlet of strength

Λ = 14πηa4[〈
︷��������︸︸��������︷(

va × r̂
)

r̂ r̂ 〉 − 2a
5

︷︸︸︷
Ω I ] The stresslet S, the septlet Γ and the vortlet Ψ

modify the external flow without affecting V and Ω. However, they contribute to long

range flows and, thus, influence interparticle hydrodynamic interactions. Eqns. (5.25)

provide a manifestly rotational invariant relationship between the external flow and the
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rigid body motion, V and Ω, and active surface velocity va of the particle. Previous work

only considered the relationship between rigid body motion and surface velocity confined

to purely axisymmetric flows, thus missing the crucial active swirling flow components

considered here.

5.8 Power dissipated into the fluid

The power dissipated into the fluid is given by

Ẇ = −
∫

q · uS dS . (5.27)

Inserting the boundary integral equation for the velocity into the above gives

8πη Ẇ =
∫

q(x) · G(x − x′) · q(x′) dS dS ′. (5.28)

Expanding the single layer density in irreducible tensors, we finally get after some alge-

bra,

Ẇ = − 1

4πηa

∞∑
p=0

(2p − 1)!!(2p + 1)!! Q(p+1) �
{∫

dΩk

4π
k̂(p)

(
I − k̂k̂

)
k̂(p)

}
� Q(p+1).

(5.29)

This can be immediately recast in a more succinct form,

Ẇ =
∞∑

p=0

Q(p+1) �G(p+1, p+1) � Q(p+1) (5.30)
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Resolving into relevant irreducible multipoles, we get

Ẇ = − 3

20πηa3
S � S − 3

10πηa5
d � d − 32

3πηa5
Ψ �Ψ

− 6

7πηa5
Γ � Γ − 675

16πηa7
Λ � Λ. (5.31)

In the next two sections, we use Eqs. (5.14), (5.25) and (5.31) to analyze the time-

dependent oscillatory motion of Chlamydomonas that produces long range approximately

axisymmetric flow and the rotational motion of Volvox that produces a short range swirling

flow.

5.9 Oscillatory flows around Chlamydomonas

The flow around the microorganism Chlamydomonas has recently been measured in detail

to reveal a flow field that is “complex and highly time-dependent” [102]. We are able

to capture the essential features of this flow by superposing flows due to the potential

dipole, stresslet, and septlet with time-varying strengths. Assuming particle motion to

occur along the y-axis the multipoles are parametrized uniaxially as S = S 0(t)(̂ŷy − 1
3
I),

d = d0(t)̂y and Γ = Γ0(t)(̂ŷŷy − 3
5

︷︸︸︷
ŷI ). The data of [102] shows that the translation

speed can be very well parametrized by the first two Fourier modes,

V(t) =
a0

2

[
1 +

2a1

a0

cos(ωt) +
2a2

a0

cos(2ωt) +
2b1

a0

sin(ωt) +
2b2

a0

sin(2ωt)
]

(5.32)

where the values are given by a0 = 247.7μms−1, a1 = −86.81, a2 = −31.9, b1 = 305.6

and b2 = −21.1, all in units of μms−1. We show the values and the corresponding fit in

Fig. (5.4).

Using Eqs. (5.26a) and (5.25d), we extract the strength of the potential dipole using the

minimal representation, d0(t) = −10πηa3
〈
va(t)

〉
. We estimate the stresslet and the septlet
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Figure 5.3: Cross-sections of long-range hydrodynamic flows around a spherical ac-

tive particle of radius a generated by a linear combination of time-dependent stresslet S,
potential dipole d and septlet Γ. Streamlines show the direction of the flow while the

background color represents the natural logarithm of the strength of the flow. The mutual

variation S/a and d/a2 is shown in the inset. The red dot indicates the approximate posi-

tion of the stagnation point. These flow fields are in good agreement with experimentally

measured flow fields around a swimming Chlamydomonas [102]. The inset shows the

variation of the potential dipole and the stresslet; the blue line shows the overall variation,

while the red circle shows the values for that frame.
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Figure 5.4: Estimation of the centre of mass velocity of Chlamydomonas reinhardtii from

flow speeds measured using particle image velocimetry [102]. Red circles are data values,

while the blue line is the Fourier fit, Eq. (5.32), with coefficients as given in the text.

strengths from the position of the stagnation point, and then obtain the total flow from

a linear combination of u(S), u(d) and u(Γ). The result, shown in the video and Fig. (5.3)

effectively captures essential features of the flow around a swimming Chlamydomonas

[102]. Using Eq. (5.31), we write the power dissipated by the Chlamydomonas as

ẆCh(t) =
3

20πηa3
S � S +

3

10πηa5
d � d +

6

7πηa5
Γ � Γ (5.33)

The instantaneous efficiency of translation, defined as ratio of power expended by an

external force to maintain a rigid sphere in uniform motion with speed V to that expended

chemomechanically to maintain the same speed [104], is computed to be

εCh(t) =
6πηaV2

ẆCh(t)
(5.34)

Since d�d = 100π2η2a6V2 for purely tangential surface flows, the maximum translational

efficiency of a Chlamydomonas is 20%.
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The time variation of d0(t) and S 0(t) can be plotted as an orbit in the (d0, S 0) plane, as

shown in panel (a) of Fig. (5.5). The stagnation point is ahead of the particle when when

the orbit is in the second and fourth quadrants, d0S 0 < 0, while it is behind the particle

when the orbit is in the first or third quadrants, d0S 0 > 0. The particle moves forward

(backward) when the orbit is in the left (right) half plane. The instantaneous power dis-

sipation, Eq. (5.33), is plotted in panel (b), Fig. (5.5). On average, a Chlamydomonas of

size 3.5μm swimming at 134μms−1 in water at 20◦C dissipates approximately 6 fW of

power. Both the instantaneous power variation and the average power values are in good

agreement with experimental findings [102]. The instantaneous efficiency of translation,

defined as ratio of power expended by an external force to maintain a rigid sphere in

uniform motion with speed V to that expended chemomechanically to maintain the same

speed [104], ε(t) = 6πηaV2/Ẇ(t), is plotted in panel (c), Fig. (5.5). The efficiency is max-

imum towards the middle and end of the cycle, with the maximum value being close to

the theoretical maximum of 20%. The power dissipation as function of the speed, shown

in panel (d) of Fig. (5.5), shows the expected quadratic dependence.

5.10 Swirling flows

Like most microorganisms, Volvox carteri rotates around its own axis as it swims. Using

the minimal representation for the spinlet strength, Λ0 = −(28/5)πηa5Ω, and parametriz-

ing uniaxially, Λ = Λ0(t)(̂ŷŷy− 3
5

︷︸︸︷
ŷI ), we are able to capture the short-ranged swirling

flow field responsible for self-rotation, Fig. (5.2(b)). Swirling flows due to the vortlet do

not contribute to Volvox rotation since they produce swirling flows that spin in opposite

directions on the particle surface and thus cancel out, Fig. (5.2(a)). Rotation induced by

spinlet swirling flows have a maximum swimming efficiency of 3% in the Lighthill sense

[104]. Representing the volvox by a uniaxial spinlet whose strength has been computed

using its minimal representation, we calculate the rotational power dissipated by a Volvox

of size 200μm rotating at 1rads−1 in water at 20◦C to be approximately 170 fW. Swirling
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Figure 5.5: Power dissipated and swimming efficiency of Chlamydomonas, computed

using a linear combination of a stresslet, a potential dipole and a septlet. Panel (a) shows

the variation of the strength of the potential dipole against the stresslet strength, the for-

mer estimated from particle image velocimetry data of Chlamydomonas swimming [102].

Panel (b) shows the time variation of the dissipated power, while (d) shows the variation

of the power against the translational velocity. Panel (c) shows the relative efficiency

which exhibits maxima near the middle and end of the cycle.
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flows around Volvox, if experimentally measured, can shed light on the swimming mech-

anism that must produce the antisymmetric velocity moments on the particle surface.

5.11 Active stress densities

Continuum hydrodynamic descriptions of active matter with stresses of the form σ =

−pI + η
[
∇v + (∇v)T

]
+ σa were first proposed in [117]. The active stress σa represents

work done on the fluid by the particle. To increase the fluid kinetic energy the solenoidal

part of the divergence of the active stress must be nonzero [117]. Constitutive equations

for the active stress with this property can be derived by by identifying ∇ · σa with the

inhomogeneous force

fp(r) = (−1)p+1ap Q(p+1) � ∇(p)
[
1 + a2∇2/(4p + 6)

]
δ(r) (5.35)

Writing the active stress in terms of symmetric and antisymmetric parts as σa = σs+ ε ·A
we obtain

σs(r) =
(
1 +

a2∇2

10

)
S +

2

5

︷︸︸︷
∇d −

(
1 +

a2∇2

14

)
∇ · Γ (5.36a)

A(r) =
4

3

(
1 +

a2∇2

14

)
∇ ·Ψ − 3

4

(
1 +

a2∇2

18

)
∇∇ : Λ (5.36b)

where tensorial densities are now defined for a suspension of n particles located at rn as

S(r) =
∑

n Snδ(r − rn) and similarly for the remaining multipoles.

Symmetric states of active stress have been considered previously in the literature [23,

118, 28] in the a → 0 limit and for uniaxial stresslets and the potential dipole. Our

derivation shows that stresslet contribution includes a finite size correction and is gen-

erally biaxial. The septlet, not considered previously, contributes at the same order in

gradients as the potential dipole and produces a long range r−3 flow. Thus, it is of equal

importance as the potential dipole for collective hydrodynamics.
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Antisymmetric states of active stress, to the best of our knowledge, have not been consid-

ered in the literature before , though antisymmetric stresses in passive nematics have been

studied [119, 120]. Angular momentum conservation dictates that such states of stress can

exist only when the medium has an internal “spin” angular momentum l over and above

the orbital angular momentum r×v. Antisymmetric stresses couple spin angular momen-

tum to linear momentum through the pair of conservation equations ∂v = σs + ∇ × A,

∂l = ∇ · c − A. This implies that self-rotating particles, through their hydrodynamic in-

teraction, can set up spontaneous macroscopic flows in suspension. This is macroscopic

manifestation of the translational velocity (1 + a2∇2/6)u(Λ) of a passive particle at r in-

duced by a spinlet at the origin.

Further, self-rotating particles with spinlets and/or particles with septlets must be de-

scribed in the continuum by third rank tensorial theories. Thus the new stress terms above

allow us to generalize current second-order tensorial theories of active matter [23, 25]

to higher-order tensorial order theories of active multipolar continua. For swimming mi-

croorganisms like Chlamydomonas generating time-varying flows, the stress multipoles

appearing in Eq. (5.36) are time-dependent, and so is the stress tensor σa. In a collec-

tion of such active particles, the phase of the stress tensor thus depends on the relative

locations of individual particles. Tuned correctly, this can lead to long-range hydrody-

namically synchronized oscillations or rotations in an collection of microswimmers.

5.12 Conclusion

The close agreement of our results for the flow field, power dissipation, and efficiencies

with those of [102, 103] shows the efficacy of our minimal irreducible multipole expan-

sion for studying complex time-dependent flows around active particles. This expansion

forms the basis of a method to obtain many-body hydrodynamic interactions in a suspen-

sion of finite-sized microswimmers. The method can be used to obtain the rheology of
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a microswimmer suspension including hydrodynamic interactions to second order in vol-

ume fraction. We urge the experimental verification of the swirling flows around rotating

microswimmers and the separate conservation of orbital and angular momentum that we

have reported here.
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Chapter 6

Instabilities of active and sedimenting

passive filaments

In this chapter we construct a filament out of individual active spheres by coupling them

with local elastic potentials and write down its equation of motion in the limit a → 0 us-

ing a minimal stresslet description. Numerical simulations of this equation have revealed

[121] that the active filament is hydrodynamically destabilized and displays a complex

combinations of translational and rotational motions that, when constrained by clamp-

ing one end of the filament, evolve into periodic biomimetic oscillations [122]. Here

we demonstrate the necessity of hydrodynamic interactions (HI) for oscillatory filament

motions through a continuum spectral analysis under the free-draining approximation.

We further linearize the discrete equation of motion and use it to study the stability of a

passive filament sedimenting under an external force.

6.1 Stokes flow due an active filament

In Ch. (5) we have studied flows in a viscous fluid generated due to spherical particles

that convert chemical energy into mechanical work. Our formulation has enabled us to
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analyze and reproduce flows due to microorganisms such as Chlamydomonas and Volvox.

There are ample instances in biology, however, where the conversion of chemical to me-

chanical energy is not confined to a particle-like element but is, instead, distributed over

a line-like element. Such a situation arises, for example, in a microtubule with a row of

molecular motors converting energy while walking on it. The mechanical energy thus

obtained not only produces motion of the motors but also generates reaction forces on the

microtubule, which can deform elastically in response. Since both motor and microtubule

are surrounded by a fluid, hydrodynamic interactions between the motors and between

segments of the microtubule destabilize the system, leading to autonomous motility. This

combination of elasticity, autonomous motility through energy conversion and hydrody-

namics is found in biological as well as biomimetic contexts.

Biological examples of such motion include prokaryotic bacteria [123] as well as eukary-

otic sperm cells [124, 125], which employ rhythmic flagellar beating for locomotion in

viscous fluids. Bacterial flagella rotate rigidly in corkscrew fashion [126, 127], while sper-

matic flagella behave more like flexible oars [128] with their beating mostly confined to

a plane [129, 130, 131]. Oscillatory motility in clamped flagella can arise spontaneously

and, with an unlimited supply of energy, can persist indefinitely without any external or

internal regulatory pacemaker mechanism [125, 132]. Recent biomimetic examples are

provided by mixtures of motors which crosslink and walk on polymer bundles. A remark-

able cilia-like beating phenomenon is observed in these systems [26, 27]. A polymer in

which the monomeric units are autocatalytic nanorods provides a nonbiological example

of energy conversion on linear elastic elements. Though such elements are yet to be re-

alized in the laboratory, active elements coupled to passive components through covalent

bonds have been synthesized [19] and may lead to new kinds of nanomachines [20].

Motivated by these biological and biomimetic examples, we have studied a semiflexi-

ble elastic filament immersed in a viscous fluid with active spheres distributed along its

length. Extending our treatment of Ch. (5), we have written an equation of motion for the
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filament that incorporates the effects of nonlinear elastic deformation, active processes

and nonlocal Stokesian hydrodynamic interactions. A thorough numerical study of the

dynamics of such filaments has been carried out in [121] and [122] in the limit of a → 0,

where a is the radius of an individual sphere. It has been shown that an initially straight

filament, either free at both ends or clamped at one end, is hydrodynamically unstable

to transverse perturbations. The autonomous motility of the free filament of the former,

when constrained by a clamp, resulted in biomimetic beating of the type discussed above.

In the following sections we set up the equation of motion for an active filament and

analyze it spectrally, both in the discrete and continuum limits.

6.2 Equation of motion for an active filament

We begin by extending our single-particle flow equation of Ch. (5) to that for N particles.

The total flow at any bulk point r due to N particles is, thanks to the linearity of the

Stokes equation, a simple linear sum of the flows due to each particle. Thus we extend

our boundary integral formalism to write

8πηu(r) = −
N∑

j=1

∫
S j

G(r − r j) · q j dS j (6.1)

where r j are the coordinates of any point on the surface of particle j centred at R j. The

motion of the ith particle can now be obtained by equating r = ri and using the boundary

condition uS (ri) = V + aΩ × r̂i + va(ri),

Vi + 〈va〉i = − 1

6πηa

∫
S j

q j dS j − 1

8πη

〈∑
j�i

∫
S j

G(ri − r j) · q j dS j

〉
S i

(6.2)

where we have averaged over the surface of the ith sphere. Since ∇4u = 0 for Stokes flow,

we use the mean value theorem for biharmonic functions to evaluate the surface mean
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over S i :

Vi + 〈va〉i =
f ext
i

6πηa
− 1

8πη

(
1 +

a2

6
∇2

i

)∑
j�i

∫
S j

G(Ri − r j) · q j dS j

=
f ext
i

6πηa
− 1

8πη

(
1 +

a2

6
∇2

i

)∑
j�i

∞∑
p=0

ap Q(p+1) � ∇(p)
j ·
(
1 +

a2

4p + 6
∇2

j

)
G(Ri − r j)

(6.3)

where we have used Eq. (5.12). Here we have equated the surface integral of the traction

jump with the net external force f ext on the particle. Expanding into irreducible compo-

nents, we obtain

8πη
(
Vi + 〈va〉i

)
=

4f ext
i

3a
−
(
1 +

a2

6
∇2

i

)∑
j�i

[ (
1 +

a2

6
∇2

j

)
G(Ri − R j) · F j

+

(
1 +

a2

10
∇2

j

)
∇ jG(Ri − R j) � S j

+
1

5
∇2

j G(Ri − R j) · d j

−
(
1 +

a2

14
∇2

j

)
∇ j∇ jG(Ri − R j) � Γ j

]
(6.4)

where we have retained only translational multipoles upto long-range order , that is, upto

r−3, and have identified the stokeslet F with the external force f ext. This is the equation of

motion for a collection of N active spheres, each of finite radius a, under some external

force and interacting hydrodynamically.

We simplify the analysis by taking the limit a → 0, which allows us to neglect the Faxén

corrections. We now create a filament out of these active point particles by introducing

local elastic and nonlocal self-avoiding potentials,

U(R1, . . . ,RN) =

N−1∑
j=1

US(b j) +

N−2∑
j=1

UB(b j,b j+1) +
1

2

N∑
j,i=1

ULJ(Ri − R j). (6.5)

The two-body harmonic spring potential US(b j) =
1
2
k(bj − b0)

2 penalizes departures of

bj, the modulus of the bond vector b j = |R j − R j+1|, from its equilibrium value of b0.
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The three-body bending potential UB(b j,b j+1) = κ̄(1 − cos φ j) penalizes departures of

the angle φ j between consecutive bond vectors from its equilibrium value of zero. The

rigidity parameter κ̄ is related to the bending rigidity as κ = b0κ̄. The repulsive Lennard-

Jones potential ULJ vanishes if the distance between beads Ri j = |R j − Ri| exceeds σLJ.

The i-th bead thus experiences a force Fi = −∂U/∂Ri when the filament stretches or

bends from its equilibrium position. With the above choice of potential the connected

beads approximate an inextensible, semiflexible, self-avoiding filament. The equation of

motion for this filament can then be written as

8πη ∂tRi =

N∑
j=1

[
G(Ri − R j) · F j − ∇ jG(Ri − R j) � S j

− 1

5
∇2

j G(Ri − R j) · d j + ∇ j∇ jG(Ri − R j) � Γ j

]
(6.6)

where the stokeslet term arises because of elasticity and self-avoidance, and the rest are

purely active terms. The numerical analysis of [121] and [122] has been carried out using

the stokeslet and stresslet terms of this equation. We shall base our stability analysis on

the same truncated O(r−2) equation.

6.3 Continuum equation of motion in the free-draining

approximation

The equation of motion for the active filament with the stresslet as the lone active multi-

pole is

8πη ∂tRi =

N∑
j=1

[
G(Ri − R j) · F j − ∇ jG(Ri − R j) � S j

]
(6.7)
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In the free-draining approximation, we consider only diagonal contributions from the

stokeslet and the nearest-neighbor contributions from the stresslet. Thus we get

8πη ∂tRi =
4Fi

3a
− ∇iG(Ri − Ri−1) � Si−1 − ∇iG(Ri − Ri+1) � Si+1 (6.8)

where a is the effective bead radius, which we set equal to b0. The flow contribution from

the nearest neighbors are proportional to the local curvature κ and point outwards along

the local unit normal n̂ [121]. Therefore,

8πη ∂tRi =
4Fi

3b0

− 2S 0

b0

κn̂. (6.9)

Here S 0 is the stresslet strength and has been taken such that S 0 > 0 represents an extensile

“pusher” stresslet, and S 0 < 0 represents a contractile “puller” stresslet.

We convert this equation to continuum form by converting the particle index to the ar-

clength parameter, i → s, and then using Ri → R(s, t) and κn → ∂sR to represent a point

on the filament and the local curvature respectively. The Hamiltonian for the elastic term

is

H =
ε

2

∫
ds(∂2sR)2 (6.10)

where ε is the bending constant. Using Hamilton’s principle, the equation of motion is

∂tR(s, t) = − κL
6πηb0

∂4sR − S 0

4b0

∂2sR (6.11)

where L = (N − 1)b0 is the total filament length and κ = εL is the bending rigidity defined

earlier. We nondimensionalize the arclength parameter by the filament length L and time

by κ/6πηL3b0, where Γκ = κ/ηL3b0 is the elastic relaxation rate [121]. We finally obtain

∂tR(s, t) = −
(
∂4s + α∂

2
s

)
R(s, t) (6.12)
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where α = 3LS 0/2κ, a scaled measure of the relative strength of the activity, is the

continuum analogue of the activity number introduced in [121]. Separating variables,

R(s, t) = T (t)u(s), and writing Ṫ (t)u(s) = −T (t) [u′′′′(s) + αu′′(s)] = λ where λ sets the

timescale and primes imply differentiation with respect to s, we immediately obtain the

temporal evolution

T (t) = eλtT (0). (6.13)

The spatial part takes the Rayleigh-like form

u′′′′(s) + αu′′(s) + λu(s) = 0 (6.14)

In the absence of activity, this reduces to the Euler-Bernoulli solution [133] of the bihar-

monic operator.

6.4 Hydrodynamic interactions necessary for active fila-

ment oscillations

It is immediately obvious from the temporal equation, Eq. (6.13), that the filament is lin-

early unstable to small perturbations if Re(λ) > 0. In addition, the λ must be complex to

admit oscillatory modes. Expanding the spatial part in eigenfunctions, u(s) =
∑

n anun(s)

where an are the amplitudes and the mode shapes un(s) are eigenfunctions of the differen-

tial operator L = ∂4s + α∂2s . The trial solution

un(s) =
4∑

j=1

Aj,neik j,n s (6.15)
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gives the dispersion relation k4j,n − αk2j,n + λn = 0 where the wavenumbers k j,n are

k1,n = +

√
1

2

(
α +
√
α2 − 4λn

)
k2,n = +

√
1

2

(
α −
√
α2 − 4λn

)

k3,n = −
√

1

2

(
α +
√
α2 − 4λn

)
k4,n = −

√
1

2

(
α −
√
α2 − 4λn

)
. (6.16)

This gives k3,n = −k1,n and k4,n = −k2,n so that are only two independent wavenumbers per

mode. Also, k21,n + k22,n = α and k21,nk22,n = λ. The mode shapes are therefore

un(s) = C1,n cos(k1,ns) +C2,n sin(k1,ns) +C3,n cos(k2,ns) +C4,n sin(k2,ns) (6.17)

where C1,n = (A1,n +A3,n), C2,n = i(A1,n −A3,n), C3,n = (A2,n +A4,n) and C4,n = i(A2,n −A4,n)

are real. Using this equation, we can obtain the eigenspectrum for any set of boundary

conditions.

The complex motion of the free filament [121] and the oscillatory motion of the clamped

filament [122] are possible only if the spectrum is complex. Such oscillatory modes are

not possible if, for those boundary conditions, the differential operator L is self-adjoint.

This is true if, for all mode numbers n and m, the integral

I =
∫ 1

0

ds
[
um(s)L(un(s)) − un(s)L(um(s))

]
= 0 (6.18)

for the particular boundary condition employed. For the free-draining active filament we

have

I =
∫ 1

0

ds
[
um(s)

{
u′′′′n (s) + αu′′n (s)

} − un(s)
{
u′′′′m (s) + αu′′m(s)

} ]
(6.19)
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Integrating by parts, we get

I =
[
um(s)

{
u′′′n (s) + αu′n(s)

} − un(s)
{
u′′′m (s) + αu′m(s)

} − u′m(s)u
′′
n (s) + u′n(s)u

′′
m(s)
]1
0

(6.20)

Each end of the filament can be free to move, can be clamped or hinged to a support, or

can be allowed to slide along the support. The corresponding boundary conditions are

[133]

Free : u′′n = 0 ; u′′′n + αu′n = 0 (6.21a)

Clamped : un = 0 ; u′n = 0 (6.21b)

Hinged : un = 0 ; u′′n = 0 (6.21c)

Sliding : u′n = 0 ; u′′′n = 0 (6.21d)

Substituting these in Eq. (6.20) we find that I = 0 for any pair of combinations and

that L is always self-adjoint. This remarkable result shows that an active filament cannot

have oscillatory modes under the free-draining approximation, and hence demonstrates

the necessity of hydrodynamic interactions for biomimetic beating.

6.5 Linearized discrete equation of motion of an active

filament

It is not, to the best of our knowledge, possible to write down a continuum equation of

motion for the active filament with complete hydrodynamic interactions (HI). However,

our analysis of the previous section highlights the necessity of HI in filament oscillations.

This requires a spectral analysis of the discrete equation of motion, Eq. (6.7). A numerical

linear stability analysis of this equation, carried out in [122] for a filament clamped at one

end, failed to observe oscillatory instabilities in the absence of HI and thus reiterated the
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result of the previous section. Here we linearize Eq. (6.7) analytically and analyze the

eigenvalues and eigenmodes of the linearized Jacobian matrix.

We redefine notation so that ri now denotes the position of the i-th active bead, Ri denotes

the steady state position and ρi denotes small displacements from the steady state, ri =

Ri + ρi for all i. Taylor expanding about R j to first order in ρ j, we get expression like

G(ri − r j) = G(Ri −R j)+∇ jG(Ri −R j) · ρ j, where ∇ jG(Ri −R j) = ∇ jG(ri − r j) |ρ=0. The

linearized equation of motion becomes

8πη ∂t ρi =

N∑
j=1

[
G(Ri − R j) · ∇F j + ∇G(Ri − R j) ·

(
F j + ∇S j

)
+ ∇∇G(Ri − R j) · S j

]
· ρ j.

(6.22)

The eigenvalues of the linearized Jacobian matrix of the filament, J = G · ∇F + ∇G ·
(F + ∇S) + ∇∇G · S determine the stability of the active filament.

6.6 Spectral analysis of a passive sedimenting filament

Since a numerical analysis of the stability of the active filament has already been carried

out [122], here we employ the linearized Jacobian to study the stability of the equiva-

lent passive filament sedimenting under some external force, for example, gravity. The

corresponding linearized equation of motion is

8πη ∂t ρ = Jpassive · ρ (6.23)

where Jpassive = G·∇
(
Fel + Fext

)
+∇G·

(
Fel + Fext

)
. Here Fel incorporates elastic as well as

Lennard-Jones forces. The stability of the filament depends on the interplay of the elastic

restoring forces and the external forces, as well as the strength of the HI. Estimating the

curvature elastic force as κ/L2, where L = (N−1)b0 is the length of the filament, we obtain

a dimensionless measure of this interplay, the “sedimentation number” S = L2 fext/κ. This
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Figure 6.1: Variation of the first few eigenvalues of the sedimenting filament with sed-

imentation number S, plotted for various values of length L. The colors are somewhat

misleading in this figure, and do not represent the same mode all the way through. In

(a), for example, we have plotted the first and the fourth modes, λ1 and λ4. The former,

initially indicated by blue markers, is always zero, and lies along the x-axis. The latter,

initially indicated by red markers, is initially negative and then rises monotonically with

S, crosses over at Sc ≈ 32.15, and continues on. We have plotted λ1, λ4 and λ5 (initially
green markers) for the other plots. The bending constant is κ = 0.5, the Lennard-Jones

cutoff is rmin = 2 and the equilibrium bond length is b0 = 4. The elastic timescale is

Γκ = κ/ηL4.
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Figure 6.2: Bow-shaped fixed point of the sedimenting elastic filament for various values

of L and S. The bending constant is κ = 0.5, the Lennard-Jones cutoff is rmin = 2 and the

equilibrium bond length is b0 = 4.

L 28 60 92 124 156 188 220

Sc 32.15 14.85 9.82 7.37 5.91 4.95 4.26

Table 6.1: Values of the sedimentation number Sc at which the instability transition takes

place, tabulated for various values of length L. Parameter values are bead radius a = 1,

equilibrium bond length b0 = 4, Lennard-Jones cutoff rmin = 2, spring constant k = 1, and

bending constant κ = 0.5.

is similar to the measure used in [134], and is an analogue of the activity number used in

[121] and [122]. The filament is expected to be stable at low values of S where the elastic

restoring force dominates. At higher values, the external force as well as the effect of HI

becomes more prominent.

We first lay out the filament horizontally with the beads distributed at equal intervals and

Fext acting downwards. We evolved the system until it reached a steady state bow confor-

mation, shown in Fig. (6.2). We use the coordinates of the beads in this conformation to

calculate the spectrum of Jpassive for various values of L and S. We observe an instabil-

ity transition at a critical value Sc when one of the initially negative eigenvalues become

positive, Fig. (6.1). We do not observe such instabilities are not seen if HI is switched off.

The critical values Sc for various L are given in Table (6.1).
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6.7 Conclusion

The elastic filament of active elements with hydrodynamic interactions provides one of

the simplest minimal models of flagella and cilia, and displays extraordinary lifelike au-

tonomous motility when destabilized. Our analysis of the continuum filament in the free-

draining limit shows the importance of hydrodynamic interactions in the realization of

such biomimetic motions. We have computed the Jacobian of the linearized discrete

equation of motion and have used it to estimate the stability of a sedimenting passive

filament. We have found that such a filament, initially laid horizontally in a viscous fluid,

destabilizes beyond a critical value of the sedimentation number, a dimensionless mea-

sure of the interplay between the external force and elastic restoring force. In the future

we intend to study the transition to instability from numerical simulations of Eq. (6.23).

We also intend to carry out a more detailed stability analysis of the active filament for

various boundary conditions using Eq. (6.22).

Numerical simulations of the filament reveals the transition to instability rather beauti-

fully, and shows a rich flow field structure, as can be seen in these videos.
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Chapter 7

Conclusions

In this thesis we have studied various far-from-equilibrium phenomena in living matter

both in the macroscale and in the microscale. In the first part of the thesis we have studied

the effects of intracellular and population fluctuations in models of enzyme kinetics and

epidemics respectively, and have been pleasantly surprised to observe counter-intuitive

and ordered effects of intrinsic noise that are possible only in systems far from equilib-

rium. In particular, we have observed the curious phenomenon of the maximization of

orderliness for intermediate noise amplitudes in two very different models that exist at

very different length and timescales.

In the second part of the thesis we have studied the motion of chemomechanically active

particles that transduce chemical energy into mechanical work. We have solved the Stokes

equation for a single chemomechanically active sphere, and have presented active flows

in terms of fundamental irreducible components, a minimal combination of which can

reproduce essential features of the complex nonequilibrium flow around swimming mi-

croorganisms. We have, through stability analysis, shown that hydrodynamic interactions

are essential for the nontrivial lifelike motions of active filaments as well as to induce

instabilities in sedimenting passive filaments.

In the future, we intend to extend the memory-indicator study of antibunching of intervals
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in enzyme kinetics to second order well-mixed enzyme kinetics, allowing for fluctuations

in the number of substrate molecules. We also intend the use the technique of Chapter

(4) to study the effects of noise in the repressilator [135] model of cellular clocks. We in-

tend to investigate the role of stochastic coherence in the efficiency of such clocks, since

the analysis of this Chapter (4) shows that the phenomenon of noise-induced oscillations

and stochastic coherence can generically be expected in non-equilibrium birth-death jump

Markov processes which can be reduced to the standard multivariate Ornstein-Uhlenbeck

form by a successive application of two linearization procedures: the linear noise approx-

imation followed by a linearization about the fixed point of the system. We intend to

extend these studies into the spatial domain by allowing diffusion to play a role. For the

reaction-diffusion enzyme system we expect to see the formation of patterns. We also

intend to look for a continuous phase transition to an absorbing state, and seek to an-

alytically calculate and numerically compute values of critical exponents, hopefully by

mapping onto a directed percolation problem. We also hope to study the SIRS epidemic

system numerically in linear, planar and cubic geometries, and look for patterns.

In the future we intend to extend the linear relationship between the irreducible multi-

poles of stress and velocity for a single sphere to a collection of identical active spheres,

obtaining the N-body relation V(p+1)
i = G(p+1,p′+1)

i j � Qp′+1
j , where particles are indexed

by i and j. We can thus, by using this irreducible formalism, solve the true many-body

hydrodynamic problem of N interacting active particles. This will give the hydrodynami-

cally induced corrections to the force multipoles. Thus, a particle may not have a certain

stress multipole itself, but, the presence of another particle can induce such a contribution.

This is the essence of the hydrodynamic interaction. For the Dirichlet problem, this will

require a linear system to be solved, which is the basis of the Stokesian dynamics method

in unbounded domains [136] or in periodic boundaries [113]. This work is currently in

progress. This entire exercise can be repeated for 1 or N active particles near a wall using

appropriate image systems [137].
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The inclusion of hydrodynamic interactions immediately allows us to calculate the sus-

pension rheology in the manner of [138, 113, 139] to semi-dilute order. We shall study

the stability of an active suspension where stresslets and vortlets can be biaxially oriented

as well as septlets and spinlets that can be biaxially or even triaxially oriented. Our in-

vestigations will include the possibility of studying pattern formations and fluid mixing

using our minimal irreducible formalism.

Furthermore, it is now clear that stresses in active micropolar continua must have an an-

tisymmetric part due to the coupling between the intrinsic “spin” angular momentum and

the linear momentum, and this can lead to the generation of macroscopic flows in a sus-

pension of spinning active particles. Work aimed at constructing appropriate constitutive

equations for the stress and the couple stress that arise from the chemomechanical activity

of the particles is in progress. We expect to obtain dynamical equations for both the ve-

locity and the intrinsic angular velocity in a generic chemomechanically active fluid and

thus derive dispersion relations for the linear hydrodynamic modes.

The study of the stability of active and sedimenting passive filaments can be extended to N

filaments interacting hydrodynamically. In the continuum limit, the irreducible formalism

can be used for the study of Marangoni effects in active interfaces and active drops.

Finally, tying up the two sub-themes of the thesis together, we intend to study the effects

of fluctuations in active suspensions near or far away from walls, with special empha-

sis on the existence of the Caflisch-Luke paradox of divergent velocity fluctuations in

sedimenting suspensions [140, 141].

We have thus encountered some fascinating and nontrivial phenomena exhibited by living

matter due to its being out of equilibrium. Life, however, is fleeting and evanescent. A

living organism will eventually, and inevitably, come to equilibrium with its surroundings,

and die. Herein lies an interesting parallel between the story of life and that of the universe

itself, which, at one point of time far into the future must yield to the unstoppable tides of

entropy and embrace “heat death”. Sadly, or perhaps happily, there will be no life around
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to witness that. Or will there? [142]
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Appendix A

Useful ingredients

This chapter contains detailed mathematical expressions useful in the study of the hy-

drodynamics of active Stokes flows. It also contains index forms of expressions used in

Ch. (5). Einstein’s convention, whereby repeated indices indicate summation, is used by

default. The index forms not only provide a quick reference for future calculations, but

are also necessary to clarify ambiguities that the tensor notation of the main text might

sometimes present.

A.1 Cartesian to spherical polar unit vector transforma-

tions

We shall frequently encounter surface integrals of vectorial quantities expressed in spheri-

cal polar basis. Since the unit vectors r̂, êθ and êφ are dependent on the point r, integration

is only possible if the vector is expressed in a Cartesian basis. The required transformation
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is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

êr

êθ

êφ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin θ cos φ sin θ sin φ cos θ

cos θ cos φ cos θ sin φ − sin θ

− sin φ cos φ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

êx

êy

êz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.1)

This can be easily recast in terms of direction cosines : nx = x/r = sin θ cos φ, ny = y/r =

sin θ sin φ and nz = z/r = cos θ.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

êr

êθ

êφ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

nx ny nz

∂θnx ∂θny ∂θnz

1
sin θ
∂φnx

1
sin θ
∂φny

1
sin θ
∂φnz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

êx

êy

êz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.2)

which of course reproduces the familiar results êθ = ∂θ̂e.
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A.2 Green’s function and derivatives

The following lists some expressions, in index form, of the derivatives of the Green’s

function, G(r) = (I + r̂r̂)/|r|2 that are extremely useful when computing flows.

Gi j(r) =
1

r

(
δi j +

rir j

r2

)
(A.3a)

∇αGi j(r) =
1

r3
(
−rαδi j + riδ jα + r jδiα

)
− 3rir jrα

r5
(A.3b)

∇α∇βGi j(r) =
1

r3
(
−δi jδαβ + δiβδ jα + δiαδ jβ

)
+
15rir jrαrβ

r7

− 3

r5
(
−rαrβδi j + rirαδ jβ + rirβδ jα + r jrαδiβ + r jrβδiα + rir jδαβ

)
(A.3c)

∇2 Gi j(r) =
2

r3
δi j − 6rir j

r5
(A.3d)

∇α∇2 Gi j = − 6

r5
(
rαδi j + riδ jα + r jδiα

)
+
30rir jrα

r7
(A.3e)

∇α∇β∇2 Gi j(r) = − 6

r5
(
δi jδαβ + δiβδ jα + δiαδ jβ

)
− 210 rir jrαrβ

r9

+
30

r7
(
rαrβδi j + rirαδ jβ + rirβδ jα + r jrαδiβ + r jrβδiα + rir jδαβ

)
(A.3f)

ενα j∇αGi j(r) =
2

r3
ενiμrμ (A.3g)

ενα j∇β∇αGi j(r) =
2

r3
ενiβ − 2

r5
ενiμrμrβ (A.3h)
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A.3 Definitions and embeddings of irreducible stress mul-

tipoles

Here we list the definitions of the irreducible stress multipoles in index form.

Force : Fi = Q(1)
i (A.4a)

Torque : Ti = aεiρσQσρ (A.4b)

Stresslet : S iα =
a
2
(Qiα + Qαi) (A.4c)

Potential Dipole : di = a2 δμνQμiν = a2 δμνQμνi (A.4d)

Vortlet : Diα = −a2

2

(
εiμνQνμα + εαμνQνμi

)
(A.4e)

Septlet : Γiαβ =
a2

3

(
Q(3)

iαβ + Q(3)
αβi + Q(3)

βiα

)
− 2

15

(
diδαβ + dαδiβ + dβδiα

)

(A.4f)

Spinlet : Riαβ =
a3

3

(
εiμνQνμαβ + εαμνQνμβi + εβμνQνμiα

)
(A.4g)
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A.4 Active Stokes flow relations in index notation

Here we provide index forms of some of the important tensorial expressions used in Ch.

(5). We begin with the boundary integral, Eq. (5.2),

∫
S ′

Gi j(r − r′)qj(r′) dS ′ = −8πη

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ui(r), r ∈ V

uS
i (r), r ∈ S ,

(A.5)

The orthogonality of the irreducible Cartesian tensors take the index form

〈
r̂i1i2...ip−1ip r̂ j1 j2... jq−1 jq

〉
=

p!
(2p + 1)!!

δp,q Δi1i2...ip−1ip, j1 j2... jq−1 jq . (A.6)

The general flow equation, Eq. (5.12), becomes

8πη ui(r) = (−1)p+1
∞∑

p=0

apQjα1α2...αp−1αp∇αpαp−1...α2α1

(
1 +

a2

4p + 6
∇2

)
G ji (A.7)

The active flow equation containing contribution from S, d, Υ, Γ and Λ, Eq. (5.14), is

written in index notation as

8πη ua
i (r) =

(
1 +

a2

10
∇2

)
∇αGi jS jα +

1

5
∇2Gi jd j +

4

3

(
Υνβ∇β

) (
ενα j∇αGi j

)

−
(
1 +

a2

14
∇2

)
∇α∇βGi jΓ jαβ − 3

4

(
Λνβγ∇β∇γ

) (
ενα j∇αGi j

)
(A.8)
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The Faxén relations, Eq. (5.25), are

Fi = −6πηa
(
Vi +
〈
vai
〉 )

(A.9a)

Ti = −8πηa2

(
aΩi − 3

2

〈
εiαβ vaα r̂β

〉)
(A.9b)

S i j = −10πηa2
〈
vai r̂ j + vaj r̂i

〉
(A.9c)

di = −30πηa3

〈
vaα r̂α̂ri − 1

3
vai

〉
(A.9d)

Υi j = 5πηa3
〈
εiαβ vaα r̂β r̂ j + ε jαβ vaα r̂β r̂i

〉
(A.9e)

Γi jk = −35πηa
3

2

〈 1
3

(
vai r̂ j r̂k + vaj r̂k r̂i + vak r̂i r̂ j

)
− 2

15
vaα r̂α
(̂
ri δ jk + r̂ j δki + r̂k δi j

)

− 1

15

(
vai δ jk + vaj δki + vak δi j

)〉
(A.9f)

Λi jk = 14πηa4
〈1
3

(
εiαβ vaα r̂β r̂ j r̂k + ε jαβ vaα r̂β r̂k r̂i + εkαβ vaα r̂β r̂i r̂ j

)

+
1

5

(
εiαβ vaα r̂β δ jk + ε jαβ vaα r̂β δki + εkαβ vaα r̂β δi j

)〉
(A.9g)

The power dissipation relation, Eq. (5.30), is

Ẇ = −
∞∑

p=0

Qiα1α2...αp−1αpGαpαp−1...α2α1 i, j β1β2...βp−1βp Q βpβp−1...β2β1 j (A.10)

Finally, the active stress tensor, Eq. (5.36), is

σa
αβ(r) =

(
1 +

a2∇2

10

)
S αβ +

1

5
∇αdβ −

(
1 +

a2∇2

14

)
∇νΓαβν + 4

3

(
1 +

a2∇2

14

)
εαβ ν∇μΥνμ

− 3

4

(
1 +

a2∇2

18

)
εαβ ν∇μ1∇μ2Λνμ1μ2 (A.11)
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