
Attractor Mechanism in Gauged Supergravity

By
Inbasekar Karthik
PHYS10200704001

The Institute of Mathematical Sciences, Chennai

A thesis submitted to the

Board of Studies in Physical Sciences

In partial fulfillment of requirements

For the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

July, 2013

i



Homi Bhabha National Institute
Recommendations of the Viva Voce Board

As members of the Viva Voce Board, we certify that we have read the dissertation pre-
pared by Inbasekar Karthik entitled “Attractor mechanism in gauged supergravity” and
recommend that it maybe accepted as fulfilling the dissertation requirement for the De-
gree of Doctor of Philosophy.

Date:

Chair -

Date:

Guide/Convener -

Date:

Member 1 -

Date:

Member 2 -

Date:

Member 3 -

Final approval and acceptance of this dissertation is contingent upon the candidate’s
submission of the final copies of the dissertation to HBNI.

I hereby certify that I have read this dissertation prepared under my direction and
recommend that it may be accepted as fulfilling the dissertation requirement.

Date:

Place: Guide

ii



STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an advanced

degree at Homi Bhabha National Institute (HBNI) and is deposited in the Library to be

made available to borrowers under rules of the HBNI.

Brief quotations from this dissertation are allowable without special permission, provided

that accurate acknowledgement of source is made. Requests for permission for extended

quotation from or reproduction of this manuscript in whole or in part may be granted by

the Competent Authority of HBNI when in his or her judgement the proposed use of the

material is in the interests of scholarship. In all other instances, however, permission must

be obtained from the author.

Inbasekar Karthik

iii



DECLARATION

I, hereby declare that the investigation presented in the thesis has been carried out by me.

The work is original and has not been submitted earlier as a whole or in part for a degree

/ diploma at this or any other Institution / University.

Inbasekar Karthik

iv



DEDICATIONS

To my parents...

v



ACKNOWLEDGEMENTS

I would like to begin by thanking my supervisor Dr Prasanta Tripathy for his patience,

guidance, encouragement and valuable advice throughout the course of my Ph.D. He

introduced me to the field of attractor mechanism and gauged supergravities. Much of the

thesis has been developed from the discussions that I have had with him. As a beginner, I

had a chaotic and unorganised approach towards solving problems which caused a lot of

trouble during my initial days. I owe it to him for showing me by example, how systematic

approaches simplify problems and how important it is to state problems in ways that

allows a solution. I am still learning and I hope to match up to the high standards he sets

for himself.

Secondly, I would like to thank Dr Suresh Govindarajan for teaching me the subject of

black hole microstate counting in string theory and for helpful collaboration in a related

project. I would like to specifically thank him for helping me through during the initial

stages of the Ph.D. and for teaching me the basics of supersymmetry and string theory.

Thirdly, I would like to thank my co-supervisor Dr T.R.Govindarajan for helping me find

an advisor after my intial “adventures”. I specifically thank him for his valuable guidance

and support in both academic and non-academic matters.

I would like to thank the IMSc string group for their continued support and encourage-

ment. Specifically I would like to thank Dr Nemani Suryanarayana, Dr Bala Sathiapalan,

and Dr Partha Mukhopadhyay for several useful discussions and for teaching the gen-

eral relativity, AdS/CFT and string theory courses respectively. Then I would like to

thank my colleagues in IMSc with whom I have had several enjoyable discussions on

academic and other matters. Specifically I would like to thank Swastik Bhattacharya,

Samrat Bhowmick, Shankhadeep Chakraborty, Ayan Chatterjee, Sudipto Paul Chowd-

vi



hury, Pramod Dominic, Neeraj Kamal, Gopala Krishna, Alok Laddha, Tanumoy Mandal,

Gaurav Narain, Rohan Poojary, Krishnakumar Sabapathy, Sudipta Sarkar and Nilanjan

Sircar.

I would like to thank the professors from Vivekananda College who introduced me to the

exciting world of physics. Specifically Dr Segar for his encouragement and support both

during my college days and after. I would also like to thank the professors from Madras

University for motivating me to take up a research career. I would like to specifically thank

Dr Ranabir Chakrabarti, Dr Raghunathan, Dr Sathya, Dr Seetharaman, Dr Vasan and Dr

Vytheesvaran for teaching me various courses that shaped my knowledge in physics.

I would like to thank my family for their constant support and encouragement, for being

with me during my darkest and brightest hours, and for always putting my needs ahead of

theirs so that I do not feel any pressure from home.

Lastly, I acknowledge the support of IMSc and its administration for the excellent facili-

ties and fellowship throughout the course of this work.

vii



SYNOPSIS

Theme of Thesis: One of the significant successes of string theory as a quantum theory

of gravity is that it can give a statistical description of the thermodynamic black hole en-

tropy via microstate counting and a macroscopic description via the attractor mechanism.

In this thesis we explore both the descriptions. In the microscopic side we study the count-

ing of certain class of BPS states in string theory. In the macroscopic side, we study a

possible generalisation of the attractor mechanism suitable for extremal black brane hori-

zons in gauged supergravity. We construct generalised attractors in gauged supergravity

and investigate their stability.

String theory: [1] Superstring theory is one of the leading candidates for a quantum

theory of gravity. The low energy limit of string theory gives effective theories of gravity

coupled to matter fields called as supergravities. In Chapter 1, we discuss the basics of

string theory and the recent developments.

Black holes microstate counting in string theory: In Chapter 2 of the thesis, we discuss

black hole microstate counting in string theory. String theory has successfully given a

statistical understanding of the thermodynamic Bekenstein-Hawking area law by counting

microscopic degrees of freedom of certain supersymmetric extremal black holes [2]. We

studied microstate counting for a class of states called twisted half-BPS states within the

framework of CHL orbifold models when the twist generating group does not commute

with the orbifold group [3] We find that the leading contribution to the degeneracy comes

from the untwisted sector of the orbifold partition function.

Attractor mechanism in supergravity: In Chapter 3, we study the attractor mechanism

in supergravity. String theory also gives a macroscopic understanding of the Bekenstein-

Hawking entropy in the supergravity regime via the attractor mechanism [4–6]. Super-

gravity theories contain scalar fields known as moduli. In a given black hole background,
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the moduli fields in the theory may take arbitrary values at asymptotically flat spatial in-

finity and vary continuously. Nevertheless, the extremal black hole entropy is still given

by the area law, with the area being a function of black hole charges. The independence

of the Bekenstein-Hawking entropy of extremal black holes from the asymptotic values

of moduli fields is explained by the attractor mechanism.

Black holes in AdS: In Chapter 4, we discuss black holes in AdS space, black brane limits

and the Bianchi classification of five dimensional homogeneous extremal black brane

horizons [7]. Bianchi type geometries have generalised translation symmetries which do

not commute as opposed to usual translation symmetries for branes. The metrics are

written in terms of invariant one forms as a result of which the geometries have constant

anholonomy coefficients.

Gauged supergravity: In Chapter 5, we discuss the background material in gauged

supergravity. Gauged supergravities are supersymmetry preserving deformations of un-

gauged supergravity. The deformations are implemented by promoting some of the global

symmetries of the ungauged theory to local symmetries. Gaugings are usually done by

coupling the symmetry generators to corresponding gauge fields. More recently, Gauged

supergravities are understood as low energy effective theories that describe flux compact-

ifications of string theory [8–10]. In the context of the AdS/CFT correspondence [11],

gauged supergravity generically describes the supergravity regime of the bulk theory. In

this thesis, we focus mainly on five dimensional N = 2 gauged supergravity coupled to

arbitrary vector, tensor and hyper multiplets [12, 13].

Generalised attractors in gauged supergravity: In chapter 6, we discuss the gener-

alised attractors in gauged supergravity and construct explicit examples of Bianchi attrac-

tors from specific models. The generalised attractors are defined as solutions to equations

of motion that reduce to algebraic equations, when all fields and curvature tensor com-

ponents are constants in tangent space. The attractor geometries are characterised by

constant anholonomy coefficients and include planar solutions such as black branes and
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domain walls. A general analysis of attractors with constant anholonomy coefficients in

N = 2 gauged supergravity in four dimensions has been carried out in [14]. Such gauged

supergravity theories are also known to admit Lifshitz [15] as well as Schrodinger [16]

type solutions which belong to Bianchi type I geometry.

In [17] we have studied generalised attractors in N = 2 gauged supergravity theories in

five dimensions coupled to arbitrary number of vector, hyper and tensor multiplets. We

analysed the equations of motion of the theory and showed that the field equations become

algebraic at the attractor points. We obtained an attractor potential from the scalar field

equations and further showed that the attractor potential can be independently constructed

from generalised fermionic shifts. The generalised attractors in five dimensional gauged

supergravity include near horizon geometries of extremal black branes with homogeneity

in spatial directions [7]. We considered a simple gauged supergravity model [18,19] with

one vector multiplet and constructed some explicit examples of such Bianchi attractors. In

particular, we constructed a z = 3 Lifshitz solution, Bianchi type II and Bianchi Type VI

solutions and argued that Bianchi type III and type V geometries do not exist in the model

considered. In the thesis, we also present an additional example of a two charge Bianchi

type I (AdS 2 × R
3) solution not discussed in the paper. In [20], we explore different

gauged supergravity models, including models in the hypermultiplet sector to embed all

the Bianchi type metrics in gauged supergravity.

Stability of generalised attractors in gauged supergravity: In Chapter 7, we discuss

the stability of generalised attractors. We have considered gauge invariant scalar fluctu-

ations about the attractor value and investigated the stability of electrically charged gen-

eralised attractors. We find that the stress energy tensor in gauged supergravity linearly

depends on scalar fluctuations even at the first order perturbation due to the interaction

terms of the theory. Stable attractors in this theory would be those with scalar fluctuations

which die out as one approaches the horizon. In particular, if the fluctuations diverge as

one approaches the horizon the corresponding geometry would suffer infinite backreac-
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tion, thereby signalling an instability. We find that the maximally symmetric black brane

geometry, namely AdS 2 × R
3 is the most stable generalised attractor. The result of the

stability analysis [21] is reported in the thesis.

Conclusion: In Chapter 8, we conclude and discuss future directions. In this thesis,

we focussed on the microscopic state counting in string theory and a generalisation of

the attractor mechanism to gauged supergravity. In the microscopic side, we studied the

counting of a class of twisted BPS states in CHL models. In the macroscopic side we have

provided some evidence that universal features of the attractor mechanism in supergravity

also extend to gauged supergravity.
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Chapter 1

Introduction

It is an exciting time in the particle world. The missing piece in the standard model

of particle physics [22–25], the Higgs boson is almost certainly found [26], nearly fifty

years after its original proposal. With this the standard model describes successfully,

the electromagnetic, strong and weak interactions of the particle world. No wonder the

standard model of particle physics is sometimes called as the theory of almost everything.

There are several phenomena the standard model fails to explain or account for like matter

antimatter asymmetry, neutrino masses, and no explanation for the expanding universe.

Then there are theoretical inconsistencies and expectations. One glaring missive is that the

standard model does not include gravitational interactions. On one hand it is justifiable to

not include gravitational interactions in the standard model, since gravity is much weaker

than the other fundamental forces at the Gev scale. However if one does try to include

gravitational interactions, one finds that the standard model is incompatible with general

relativity(GR)–our best understood theory of classical gravity.

The question is why should one include gravitational interactions in the standard model.

The physical situations where one expects gravitational effects to be dominant over the

other fundamental forces are when one deals with high energies and small distances such

as the origin of the universe or the study of black holes. In these situations the quantum
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effects of gravity are expected to play a major role. Interestingly, gravity in four dimen-

sions by itself cannot be quantised in the framework of quantum field theory since it is

non-renormalisable. This is easy to see as the Newtons coupling constant G is dimen-

sionful unlike the coupling constants of the other fundamental forces. Thus, we need a

new framework compatible with quantum mechanics and general relativity to describe

unified interactions of the fundamental forces. This framework should also necessarily be

a quantum theory of gravity.

1.1 String theory

One of the leading candidates for a quantum theory of gravity is string theory [1, 27–29].

Here the fundamental objects are not point particles but one dimensional strings. There

are two kinds of strings, open and closed. The size of the strings ls is of the order of

Planck length 10−35m. Therefore, strings are not observable at the energy scales at which

the current particle accelerators can operate. Note that this minimum length scale acts as

a UV cutoff, and thus stringy interactions are free from short distance divergences which

plague point particle interactions.

A point particle is zero dimensional and hence its motion in time is described by a one

dimensional world line. While the string is a one dimensional object, and its propagation

in space time is described by a two dimensional surface called as the worldsheet (fig 1.1).

One then writes a worldsheet action for the strings and studies the quantum mechanics in

a Poincáre invariant way. One of the surprising results of the quantisation of the closed

string is that the low energy massless excitation contains a spin two particle, which is

consistent with the properties of a graviton–the force carrier for the gravitational inter-

action. Thus studying the quantum mechanics of a relativistic string has already made a

prediction–Gravity!
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Figure 1.1: World Sheet description

Open strings can end on solitonic objects in string theory known as D-branes (fig 1.2).

The D stands for the Dirichlet boundary conditions one puts on the end points of the

string and brane is a short for membrane like higher dimensional objects.

Figure 1.2: Strings ending on branes. The arrows represent the orientation of the string

The low energy massless excitations of the open strings contain gauge fields. Each string
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starting and ending on the same brane gives rise to one massless U(1) gauge field. All

other string states are massive. Interestingly the masses of the other gauge fields are

proportional to the distance of separation of the branes. For example in figure 1.2, initially

the gauge symmetry is U(1) ×U(1), but when the branes coincide the gauge symmetry is

enhanced to U(2). Similarly, when there are N coincident branes one gets a U(N) gauge

group. Inverting the above argument, starting from N coincident D branes, separating

them makes some of the gauge fields massive reducing the gauge group to U(1)N . This

is a stringy realisation of the Higgs mechanism in particle physics. In addition to the

excitations discussed above, all string theories have infinite tower of massive excitations

which will become relevant at high energies of the order of Planck scale. At low energies,

these excitations are invisible to modern day experiments. All the features that we have

discussed so far are common to bosonic and superstrings, which we will discuss shortly.

However bosonic string exists in 26 space-time dimensions and has a tachyonic particle

in its spectrum. It is not known whether the bosonic string is stable by itself, while

superstrings are free from tachyonic instabilities.

Fermions can be obtained in string theory by adding fermionic coordinates to the world-

sheet theory. These string theories are supersymmetric and are called superstrings. Super-

symmetry, which was also studied independently of string theory relates the bosons and

fermions in a theory. It turns out that there are five consistent superstring theories named

as type I, type IIA, type IIB, heterotic S O(32) and heterotic E8 × E8. All these theories

exist in ten dimensions. To obtain a realistic four dimensional theory, six of the spatial

dimensions are assumed to be compact with size of the order of Planck scale. Of the five

superstring theories: Type I, Type IIB, heterotic S O(32) and heterotic E8 × E8 contain

chiral fermions in the spectrum. They also have different degree of worldsheet supersym-

metry. For example, type I, heterotic S O(32), and heterotic E8 × E8 haveN = (1, 0), type

IIB has N = (2, 0) while type IIA has N = (1, 1) supersymmetry.

At the first sight, all the different superstring theories appear to be very different from
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one another. However, they are related to each other by dualities in string theory. For

example, T-duality [30] (T for target space) relates a theory compactified on a circle of

radius R and a circle of radius l2
s/R. Under this symmetry, the perturbative spectrum of

these two theories become identical and hence they are one and the same. Type IIA and

type IIB theories are T dual to each other, so are the two heterotic theories.

Another more intriguing duality is the S duality (strong-weak duality) [31]. String theo-

ries have a coupling constant gs, defined as the expectation value of the dilaton gs = exp <

φ > . S duality relates a theory at strong coupling gs, to a theory at weak coupling 1/gs.

The well known examples are the strongly coupled Type I theory which is dual to the

weakly coupled heterotic S O(32) theory and the Type IIB theory which is dual to itself.

As one can see this duality is non-perturbative in nature. Type IIA theory and heterotic

theory each at strong coupling gs, grow an extra dimension of size gsls, which suggests

that they are S dual to a mysterious 11 dimensional theory called as M theory (fig 1.3) .

Figure 1.3: The bigger picture
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This theory is non-perturbative, far from well understood and is a subject of active re-

search. The low energy effective theory of M theory is the well studied 11 dimensional

supergravity [32].

1.2 AdS/CFT correspondence

One of the most recent and exciting developments in string theory is the AdS/CFT corre-

spondence [11, 33, 34]. It is a concrete realisation of the holographic principle which is a

property expected of any quantum theory of gravity [35–37]. Holography means that the

information describing a volume of space is encoded in the boundary of the volume. The

AdS/CFT conjecture does this by relating a string theory on anti de-Sitter (AdS ) space

and a conformal field theory (CFT) living on the boundary of AdS . More precisely, the

AdS/CFT conjecture states that the following two theories are equivalent.

• N = 4 Super Yang-Mills (SYM) theory in four dimensions with a S U(N) gauge

group.

• Type IIB string theory on AdS 5 × S 5.

The rank of the U(N) gauge group is related to the integral flux of the five form field

strength in the string theory by N =
∫

S 5 F5. The coupling constant of the SYM theory

g2
Y M is related to the string coupling constant gs through g2

Y M = gs. The curvature R of

the AdS space is related to N by R4 = 4πgsNα′2, where α′ = l2
s . This is an example of a

open-close duality, the fields in the S U(N) SYM theory are massless open string modes,

while the five form field strength is generated by massless closed string modes.

Actually, the above statement is the “strong” form of the conjecture. String theories on

Ramond-Ramond sectors are poorly understood as yet. A more refined and practically

useful form of the conjecture is obtained by taking two further limits. The first one is

the ’t Hooft limit, by keeping λ = g2
Y MN = gsN fixed and taking the large N, N → ∞

6



limit. In this limit, the SYM theory reduces to the planar limit as non-planar diagrams are

suppressed by a factor of 1/Ng, where g is the genus of the surface. In the ’t Hooft limit,

the full string theory reduces to a classical string theory since gs → 0.

In addition to the ’t Hooft limit, a further simplification can be made by taking λ → ∞.

In this limit the SYM becomes strongly coupled and is in the non-perturbative regime,

whereas the string theory reduces to supergravity. This is because the low energy effective

action has terms proportional to α′2 = (1/λ). In the large λ limit, the stringy terms do not

survive and the theory reduces to the massless modes described by the supergravity action.

In this “weak” but practically more useful form, the AdS/CFT conjecture states that:

N = 4, d = 4, S U(N) SYM in the limits N → ∞, λ→ ∞ is dual to Type IIB supergravity

on AdS 5×S 5. This strong-weak version of the duality allows one to map difficult to solve

strongly coupled problems in the field theory side to weakly coupled gravity side where

it may be solved.

1.3 Black holes and String theory

Black holes are regions in space time where the gravitational fields are strong enough to

not let any particle or signal escape the region. The boundary of this region is called an

event horizon. Black holes are very much physical and can be formed from collapse of

stars, galactic collisions or possibly even during the big bang [38].

Theoretically, black holes are interesting objects to study as they are the situations where

one expects quantum effects of gravity to play a dominant role. Due to the existence of an

event horizon, any information pertaining to the interior of the black hole is inaccessible

by an external observer. Only extrinsic quantities such as the total mass M, charge Q

and angular momentum J are observable. Therefore for every specific choice of these

variables there are several possible ways in which the black hole could have formed.

The situation is completely analogous to the thermodynamic (macroscopic) description
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of a physical system with many internal (microscopic) states. Since a black hole hides

information about the various possible microstates behind the horizon, it is natural to

associate an entropy and temperature with the black hole [39] given by (in Planck units),

TBH =
κ

2π
, S BH =

A
4
. (1.3.1)

where κ is the surface gravity of the black hole and A is the area of the event horizon. Since

the only information accessible to an observer is the mass, charge and angular momentum,

the area and surface gravity should be a function of these variables. Both these quantities

are properties of the full black hole, but calculated using quantities defined at the boundary

(event horizon). Thus the information of the various possible ways in which the black

hole could have formed is actually embedded in the boundary of the black hole. This is a

realisation of the holographic principle.

Thus, we have analogous laws of black hole thermodynamics [40]. The zeroth law states

that for stationary black holes κ is constant over the horizon. This is reminiscent of the

similar law in thermodynamics, which states that a system in thermodynamic equilibrium

has uniform temperature. The first law of thermodynamics is a statement of conservation

of energy. The analogous statement, for example in an electrically charged, rotating black

hole is ,

dM =
κ

8π
dA + ΩdJ + ΦdQ , (1.3.2)

where the extrinsic variables are the Area A, charge Q, mass M ,and angular momentum

J. The locally defined quantities κ, angular velocity Ω and electrostatic potential Φ are

constants over the horizon. As can be seen from (1.3.2) the Area A of the event horizon

plays the role of entropy and consequently the analogue of the second law in black hole

thermodynamics is that the area of the black hole is an increasing monotonic function in

time. This is Hawking’s area increase theorem which assumes the weak energy condition

and is valid classically. Quantum mechanically black holes can radiate via pair production

at the horizon [41] ,thereby decreasing both their mass and entropy. The analogue of the
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third law for black holes is not well understood, and it roughly states that a black hole

with vanishing surface gravity cannot be achieved in a finite number of steps.

The black holes with vanishing surface gravity have a special name. They are called

extremal black holes. For a given charge Q and angular momentum J, the extremal black

holes have the smallest possible mass. A general electrically charged, rotating black hole

has the surface gravity and area as a function of the extrinsic variables given by,

κ =
4πµ
A
, A = 4π(2M(M + µ) − Q2) , µ =

√
M2 − Q2 −

( J
M

)2

. (1.3.3)

The parameter µ is called an extremality parameter. For the value µ = 0, we see that

the temperature of the black hole vanishes, but there is still finite non zero entropy! An-

other interesting feature of extremal black holes is the near horizon geometry. In particu-

lar, for four dimensional extremal black holes, the near horizon geometry factorises into

AdS 2 × S 2 [42,43]. As it turns out, extremal black holes play a very important role in the

understanding of black hole entropy in string theory.

One of the significant successes of string theory is the understanding of the Bekenstein-

Hawking area law (1.3.1), for extremal black holes both from a macroscopic and micro-

scopic perspective. The macroscopic perspective helps us understand the thermodynamics

and the microscopic study gives a statistical description, both of which is necessary for a

complete understanding of black hole physics.

The first example of microstate counting in string theory was the calculation of the Beken-

stein - Hawking entropy for five dimensional extremal black hole solutions by counting

the microscopic degeneracy of BPS states [2]. BPS states are short representations of

extended supersymmetry algebras, and it can be shown that the BPS condition implies

extremality µ = 0. The BPS property of the supersymmetric black hole ensures that the

microstates states do not jump discontinuously as one smoothly varies the moduli or cou-

pling constants of the theory [44]. Hence, one can reliably count the microscopic states
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having a fixed charge at weak coupling and analytically continue to the strong coupling

regime, where the same set of states are described by a black hole solution in the theory.

Since the advent of the Strominger-Vafa computation, the microscopic counting has been

carried out in a variety of supersymmetric theories and entropy agrees with the black hole

entropy in the large charge limit [45].

String theory also gives the macroscopic understanding of the Bekenstein Hawking area

law through the attractor mechanism in supergravity [4–6]. The moduli fields in a given

black hole background flow radially to a fixed charge dependent value at the horizon,

regardless of their asymptotic values. As a result, the entropy of the black hole is just

a function of the black hole charges and is independent of the asymptotic value of the

moduli. We saw earlier that the asymptotic observer has access only to the charge, mass

and angular momentum, and hence any quantity associated with the black hole must be

functions of these variables. The attractor mechanism achieves precisely this remarkable

feature.

1.4 Scope of the Thesis

The broad area of study in this thesis is an exploration of both the microscopic and macro-

scopic description of black holes in string theory. In the microscopic side, we study the

counting of certain class of BPS states called twisted BPS states in string theory. In the

macroscopic side, we explore a generalisation of the attractor mechanism in gauged su-

pergravity that may aid the understanding of asymptotically AdS black branes.

In the microscopic side, we have explored the microstate counting of a special class of 1/2

BPS states in N = 4 supersymmetric theories known as CHL models [17]. These special

class of states are called twisted BPS states, where the twist is generated by a group

which does not commute with the orbifolding group. Orbifolding reduces the number of

states due to the group invariant projections and the twist generating group further reduces
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the invariant states. Therefore one would expect the weights of the generating function

for the degeneracy of twisted BPS states to be lesser than the untwisted case. We find

that this is indeed true. This work may be useful in understanding counting of states in

a non-supersymmetric setting as it is possible to break supersymmetry using the twist

generators.

The microscopic and macroscopic understanding of black holes in string theory has been

limited to black holes in asymptotically flat spaces. An interesting extension of this study

would be to pursue the generalisation to curved spaces, in particular AdS space. This

would be very interesting from the AdS/CFT perspective and may shed light on the un-

derstanding of string theory on AdS spaces. Since perturbative string theory on AdS 5×S 5

is still a work in progress, microstate counting of string theories on these background is

quite a challenging task. However, one can still pursue the macroscopic study since su-

pergravities with AdS vacuua have been well understood. The supergravities which sup-

port AdS vaccua are known as gauged supergravities and they describe the supergravity

regime of the AdS/CFT correspondence [11]. Gauged supergravity theories are also of

interest in string theory because of their connection to the low energy effective theory that

describes string compactifications in the presence of fluxes [9, 10].

Black holes in AdS spaces are interesting in their own regard. In the AdS/CFT corre-

spondence, AdS black holes are dual to field theories at finite temperature [11]. In the

application of AdS/CFT to condensed matter theories, charged extremal black branes are

duals to the zero temperature phases of the field theory. These zero temperature states

are very interesting from the field theory perspective as they exhibit phase transitions due

to quantum fluctuations [46]. Typical examples are black holes with Lifshitz like near

horizon geometries and AdS asymptotics that are duals to field theories with a violation

of Lorentz symmetry [47–52].

Recently a classification of such black brane horizons which are homogeneous but not

isotropic has also been carried out in [7, 53]. These near horizon geometries, known as

11



the Bianchi attractors, have a richer structure, exhibit scale invariance and are charac-

terised by constant anholonomy coefficients. Some of these geometries have been shown

to numerically interpolate to AdS 5. In this thesis, our goal is to generalise the attrac-

tor mechanism to gauged supergravity with the end points of the attractor flow being the

Bianchi type geometries.

There are various recent approaches to generalise the attractor mechanism in gauged su-

pergravity [54–60]. A prescription has been given to obtain some generalised attractor

geometries such as the Lifshitz solutions from N = 2, d = 4 gauged supergravity [14]. In

this framework, one sets all the fields and the curvature components to constants in the

tangent space. Following this prescription, we extended the study of generalised attractors

to N = 2, d = 5 gauged supergravities with arbitrary matter content. We also considered

an explicit gauged supergravity model and embedded some of the Bianchi attractors in

five dimensional gauged supergravity [17]. Our approach did not rely on supersymmetry

but rather on extremization of an attractor potential. This method is generic and in prin-

ciple could include non-supersymmetric attractor solutions. Hence, we have investigated

the stability of the generalised attractors under scalar fluctuations about the attractor value

and obtained conditions for stability [21].

Our analysis indicates that there are several possible end points for an attractor flow in

five dimensional gauged supergravity. Our stability criteria points out that a sub class

of Bianchi attractors, whose symmetry groups factorise into a direct product form stable

attractors. One of the most important things which we would have liked to include is

to construct and solve the full flow equation thereby proving the attractor mechanism in

gauged supergravity. However, this requires analytical black brane solutions that interpo-

late between AdS 5 and the Bianchi horizons, which seems to be a much harder task and

is beyond the scope of this thesis. Nevertheless we do find that the generalised attractor

procedure in gauged supergravity captures many important features of the attractor mech-

anism that occurs in ungauged supergravity. The attractor equations are determined by
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extremising an attractor potential. The field equations are algebraic at the attractor points

and the moduli are determined in terms of the charges. The symmetry groups of the sta-

ble attractors split into a direct product form and exhibit scale invariance only along the

radial and time directions. This parallels the situation for near horizon geometries of four

dimensional extremal black holes.

1.5 Organisation of the Thesis

In chapter 2, we present our work on microstate counting of twisted 1/2 BPS states in

N = 4 supersymmetric theory [3].

Chapters 3, 4, 5 are review material on the attractor mechanism in supergravity, black

holes in AdS spaces including the Bianchi attractors and gauged supergravity respectively.

In chapter 6, we present our work on generalised attractors in five dimensional gauged

supergravity [17] and in chapter 7, we present our results on the stability analysis [21].

Finally, we summarise and conclude with some open questions in chapter 8.
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Chapter 2

Black hole microstate counting in string

theory

2.1 Introduction

In this chapter, we give a flavor of microscopic state counting in string theory. In addition

to the prediction of black hole entropy, microscopic counting in four-dimensional string

theories with N = 4 supersymmetry has turned out to have a surprisingly rich struc-

ture [61, 62]. This has provided connections to modular forms, Lie algebras [63, 64] as

well as sporadic groups [65, 66]. Due to the large amount of supersymmetry, these theo-

ries work as “laboratories” for us to test ideas that presumably should continue to work

in situations with fewer supersymmetries. In this chapter, we do a simple counting of

microscopic states called as twisted BPS states in string theory. We set up the counting

problem in theories with N = 4 supersymmetry, where the twist does not commute with

the orbifolding group.

We consider four dimensional CHL Zn-orbifolds with N = 4 supersymmetry [67, 68] .

These models are asymmetric orbifolds [69, 70] constructed by starting with a heterotic
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string compactified on a T 4×S 1×S̃ 1 and then quotienting the theory by a Zn transformation

which involves a 1/n shift along the S̃ 1. The Zn symmetry has a non-trivial action on the

internal conformal field theory coordinates describing the heterotic compactification on

T 4. A large class of such models were constructed in [71, 72] and were shown to be dual

to a type II description compactified on K3 × S 1 × S̃ 1 via string-string duality [73, 74].

By construction, CHL models possess maximal supersymmetry and fewer massless vector

multiplets at generic points in the moduli space. The requirement of maximal supersym-

metry restricts one to consider symplectic automorphisms on K3. Symplectic automor-

phisms leave the holomorphic (2, 0) forms invariant and hence preserve supersymmetry.

The action of these symmetries have fixed points on the K3 surface and is accompanied

by translations on the circle to avoid quotient singularities. So the allowed groups must

faithfully represent translations in R2 which implies that the quotienting group has to be

abelian [75]. The possible abelian groups that act symplectically on K3 were classified

and the action of the group on the K3 cohomology was calculated [76]. Once the ac-

tion on the cohomology is determined one uses string-string duality to map the action to

the Heterotic side. The map is allowed provided the supergravity side is free from fixed

points, i.e the action on K3 must be accompanied by shifts on the torus.

The work of Mukai [77], opened up the possibility that non-abelian groups can act as sym-

plectic automorphisms on the K3 surface. Recently, Garbagnati [78] constructed elliptic

K3 surfaces that admit dihedral group as symplectic automorphisms. These automor-

phisms are constructed by combining automorphisms which act both on the base and the

fiber such that the resulting action is symplectic. In particular , [78] determined the ranks

of the invariant sublattice and the orthogonal complement and identified the orthogonal

complement to the invariant sublattice with the lattices in [79]. However, for compactifi-

cations down to four dimensions one cannot quotient by a non-abelian group since these

groups do not represent translations faithfully. However, one can consider the theory to

be on special points in the moduli space that admit non-abelian symmetries and quotient
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by the commutator subgroup, which is abelian.

We consider the CHL Zn-orbifold models (3 ≤ n ≤ 6) at special points in the moduli

space where they admit dihedral Dn = Zn o Z2 symmetry1.The Zn subgroup is the com-

mutator subgroup of the Dn group and may be quotiented. The special points in moduli

space are specified by the elliptic K3 surfaces that admit Dn, 3 ≤ n ≤ 6 symmetries con-

structed in [78]. Since the action of Zn group is known on the K3 side, we map it to the

heterotic string using the string-string duality. We then construct the CHL Zn orbifold in

the heterotic picture and let the additional Z2 symmetry act as a twist in the partition func-

tion of the orbifolded theory. These twist symmetries are identical to the ones considered

in [71,72] but without shifts. ForN = 4 supersymmetry to be preserved these twists must

commute with all the unbroken supersymmetries of the theory. Such twists have been

considered in the g ∈ Zn twisted partition function [80] for unorbifolded theories, which

counts the index/degeneracy2 of elementary string states when the theory is restricted to

special points in moduli space. The g-twisted helicity index is defined as,

Bg
2m =

1
2m!

Tr[g(−1)2`(2`)2m] , (2.1.1)

where g generates a symmetry of finite order, ` is the third component of angular momen-

tum of a state in the rest frame, and the trace is taken over all states carrying a given set

of charges. States which break less than or equal to 4m g-invariant supersymmetries give

non-vanishing contributions to Bg
2m [80]. For the case of 1/2 BPS states that we consider

in this chapter, the relevant index is Bg
4.

For our case, the choice of the moduli space that has dihedral symmetry is compatible with

the g ∈ Z2 twist. The other requirement that the physical charges have to be g invariant

is met by requiring the charges Q to take values from lattices invariant under Dihedral

symmetry [78, 79]. This choice is also compatible with the orbifold action, since these

1In our notation, Dn is the dihedral group of order 2n, see §2.3.
2Both are identical for the cases considered in this chapter.
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lattices possess invariance under both Z2 and Zn actions. Thus one meets the requirements

for the twist and orbifold action to be well defined.

We count the degeneracy of electrically charged 1/2 BPS elementary string states for a

fixed charge Q in these theories following the method described in [81]. The Z2 twisted

partition function in the Zn orbifold theories receives contribution only from the orbifold

untwisted sector for odd n and additionally from the orbifold sector twisted by the element

hn/2 for even n. From the point of view of the dihedral group, for even n, the element hn/2 is

a nontrivial center of the group and commutes with every element. We derive a generating

function for these degeneracies and find that it has the expected asymptotic limit.

The Chapter is organised as follows. In section §2.2, we discuss the relation between

the twisted index and the black hole entropy for the abelian twists. Subsequently, in

§2.3, we give a pedagogical introduction to non-abelian orbifolds and define the twisted

partition function to indicate the contributing orbifold twisted sectors. We discuss the

construction of CHL Zn orbifolds in the heterotic picture and the derivation of the half-

BPS degeneracies of g ∈ Z2 twisted BPS states in §2.4. We conclude with a summary of

our results in §2.5.

2.2 Twisted index and black hole entropy

In this section, we briefly review the relation between the twisted index and black hole

entropy for abelian twists. We consider type IIB theory compactified on K3 × S 1 × S̃ 1

which gives rise to N = 4 supersymmetric theory in four dimensions. As described in

the introduction of this chapter we go to special points on the moduli space where the

theory has enhanced discrete ZN symmetries such that gN = 1. These symmetries are

assumed to leave the holomorphic (2, 0) form on K3 invariant and hence commute with

the supersymmetries. In other words, these twists preserve the supersymmetry.

We are interested in the counting of dyonic supersymmetric states which preserve 1/4 of
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the N = 4 supersymmetry. The index (2.1.1) captures information of g invariant states

which break 4m supersymmetries. The 1/4 BPS states preserve 4 of the 16 supersymme-

tries in the N = 4 theory and the relevant index is then B6. The index is usually written

as a Fourier transform of the partition function. Remember that we are in the weak cou-

pling regime where the states in question have not formed a black hole yet. In the weakly

coupled type IIB regime, the low energy physics is dominated by [45],

• Excitation modes of the Kaluza-Klein (KK) monopole,

• Center of mass motion of the D1-D5 brane system in the KK background,

• Motion of the D1 branes relative to the D5 brane.

The full partition function of the theory is a direct product of all the above contributions

[80],

Zg(ρ, σ, v) = ZKKZcmZD1D5 =
1

Φ(ρ, σ, v)
, (2.2.1)

where Φ is a Siegel modular form given by,

Φ(ρ, σ, v) = e2πi(ρ+σ+v)
1∏

b=0

N−1∏
r=0

∏
k,l∈Z, j=2Z+b,

k,l≥0, j<0 for k=l=0

(1 − e2πir/Ne2πi(kσ+lρ+ jv))
∑N−1

s=0 e−2πirs/Nc(0,s)
b (4kl− j2) ,

(2.2.2)

where cb are Fourier coefficients, N is the order of the orbifold group. The index is

expressed as a complex integral of the partition function as,

Bg
6(Q, P) = (−1)Q.P

∫
C

dρdσdve−πi(P2ρ+Q2σ+2(Q.P)v)Zg(ρ, σ, v) , (2.2.3)

where Q and P are electric and magnetic charges of the dyonic states. The combinations

(Q2, P2,Q.P) are the only T duality invariants of the theory. This can be seen as follows,

the type IIB string theory on K3 × S 1 × S̃ 1 is dual to E8 × E8 heterotic string theory

on T 6 [75]. The heterotic theory has 28 U(1) gauge fields from the Cartan generators

of the E8 × E8 group, and from the metric and the antisymmetric B field along the six
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compact directions. A generic state in the theory is characterised by a (28, 28) dimensional

charge vector pair ( ~Q, ~P). These charges transform as vectors under the T-duality group

O(22, 6,Z), and are restricted to take integer values such that [82],

gcd(QiP j − Q jPi) = 1 , 1 ≤ i, j ≤ 28 . (2.2.4)

The integral (2.2.3) is over the complex plane and gets leading contributions from poles of

the partition function or equivalently the zeroes of the Siegel modular form (2.2.2) [81],

n2(ρσ − v2) − m1ρ + n1σ + m2 + jv = 0 , (2.2.5)

where,

m1, n1,m2 ∈ Z , n2 ∈ NZ , j ∈ 2Z + 1 , m1n1 + m2n2 +
1
4

j2 =
1
4
. (2.2.6)

The asymptotic behaviour of the index (2.2.3) for large charges is controlled by the zeroes

(2.2.6) of the Siegel modular form for n2 ≥ 0. The smallest of which is given by n2 = N,

for this value the logarithm of the index has the form,

ln |Bg
6(Q, P)| =

π

N

√
Q2P2 − (Q.P)2 =

S BH

N
, (2.2.7)

where S BH is the entropy of a dyonic black hole [81].

2.3 Non-abelian orbifolds

In this section, we describe the standard CFT approach for constructing the twisted par-

tition function in non-abelian orbifold theories. For a general description of orbifolds in

string theory see [83–89]. For some phenomenological model building approaches based

on non-abelian orbifold string theories see [90, 91]. Orbifold CFT’s are generally con-
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structed by considering a modular invariant theory T , whose Hilbert space admits a finite

discrete symmetry G consistent with the allowed interactions of the theory, and construct-

ing a quotiented theory T /G that is also modular invariant. When G is an abelian sym-

metry, the quotient theory can be constructed by modding out the full group. Whereas,

when G is non abelian, the quotient group corresponds to the stabiliser group of G, which

contains only the commuting elements of G. For example, consider Dihedral groups Dn

of order 2n. The quotienting group is the cyclic group Zn of order n.

Before proceeding further, it is useful to define some notations. Let us denote the world-

sheet coordinate as X(τ, σ), with τ and σ being the “space” and “time” directions of the

torus. By,

g
h
≡ TrHh

(
g qH)

, (2.3.1)

we mean the following closed string boundary conditions are applied simultaneously.

X(τ + 2π, σ) = g · X(τ, σ) ,

X(τ, σ + 2π) = h · X(τ, σ) . (2.3.2)

TrHh denotes the trace taken in a Hilbert space sector Hh corresponding to a spatial twist

element h. We also denote |G| as the order of the group G. The module g
h

is not well

defined for gh , hg as we will explain below.

For the CFT to be well defined, the states of the theory must be invariant under the action

of the group. Therefore one projects onto G-invariant states by defining a projection

operator,

P =
1
|G|

∑
g∈G

g . (2.3.3)

The projection is implemented by including g in the trace and then by summing over all

twists in the time direction. The inclusion of g in the trace amounts to twisting the fields

by g along the time direction, i.e g · X(τ, σ) = X(τ + 2π, σ). The contribution to the
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partition function from the spatially untwisted sector of the orbifold CFT is then given by,

ZHe =
1
|G|

∑
g∈G

. (2.3.4)

Modular invariance under S L(2,Z) transformations requires the addition of spatially

twisted sectors e
h

, i.e sectors where fields satisfy h · X(τ, σ) = X(τ, σ + 2π). Each of

these spatially h-twisted sectors corresponds to a distinct Hilbert space Hh and one must

project onto the group invariant states within every Hilbert space. This would mean that

the fields would have simultaneous boundary conditions due to the action of g and h.

X(τ, σ + 2π) = hX(τ, σ) , X(τ + 2π, σ) = gX(τ, σ) ,

gX(τ, σ + 2π) = ghX(τ, σ) , hX(τ + 2π, σ) = gX(τ, σ) ,

gX(τ, σ + 2π) = ghg−1gX(τ, σ) , hX(τ + 2π, σ) = hgh−1hX(τ, σ) ,

X(τ + 2π, σ + 2π) = ghX(τ, σ) , X(τ + 2π, σ + 2π) = hgX(τ, σ) . (2.3.5)

From the above equations, one can see that the action of g takes the string in the Hilbert

spaceHh to the Hilbert spaceHghg−1 . When g and h do not commute these Hilbert spaces

are different. The elements h and h′ = ghg−1 are in the same conjugacy class and hence

the projection operator would mix Hilbert spaces corresponding to elements that belong

to a given conjugacy class. Thus, one is unable to do a full group invariant projection

within the Hilbert spaces in the spatially twisted sectors. In the operator language, the

presence of a time twist g that doesn’t commute with the spatial twist element h would

not allow simultaneous diagonalization of their respective matrix representations. Never-

theless one can choose a basis for g such that it acts on the oscillators and eventually on

the vacuum. As explained above, the vacuum is not left invariant and the vacuum in Hh

taken to the vacuum in Hghg−1 . So the trace would be over an off-diagonal matrix with

diagonal entries zero and hence would vanish. Or equivalently, the path integral vanishes

due to the inconsistent boundary condition (2.3.5). Since the spatially twisted sectors are
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not invariant under the full group, for a given spatially twisted sector Hh one identifies

the little group Nh consisting of elements that commute with h and project onto states

invariant under the little group ,

ZHh =
1
|Nh|

∑
g∈Nh

g
h
. (2.3.6)

The various spatially twisted sectors in a given conjugacy class are treated in equal footing

and hence are labelled by their conjugacy class Ci instead of the group element itself. This

follows from “naive” modular invariance 3,

ZCi =
1
|Ci|

∑
h∈Ci

ZHh =
1
|Ci|

∑
h∈Ci

( 1
|Nh|

∑
g∈Nh

g
h

)
. (2.3.7)

The group invariant states in the theory are formed by taking a linear combination of states

from a sector twisted by a group element g and all other sectors conjugate to it. The full

partition function is then given by summing over all the conjugacy classes,

ZT /G =
∑
Ci

ZCi . (2.3.8)

Since for any group G, the order of the little group Nh is the same for every element

h ∈ Ci
4 , we have |G| = |Nh||Ci| for every conjugacy class Ci. Thus the full CFT partition

function for a general non-abelian orbifold theory can also be written as,

ZT /G ≡
1
|G|

∑
g,h∈G
gh=hg

g
h
. (2.3.9)

We will compute the twisted partition function in CHL Zn orbifold models at special

points in the moduli space that admit dihedral symmetry Dn = Zn o Z2. Hence, we

3modular invariance under PS L(2,Z) transformations, It is naive because the modular transformation
τ→ τ + n can introduce anomalous phases that could spoil modular invariance.

4this is because every element in a conjugacy class has the same order, a group element h is of order n
if hn = 1.
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summarise some properties of Dihedral groups which will be useful later. The dihedral

group denoted as Dn is of order 2n. One has the representation,

Dn � 〈h, g|hn = e, g2 = e, ghg = h−1〉 . (2.3.10)

where h and g generate Zn and Z2 symmetries respectively. The group elements are given

by Dn = {e, h, h2, . . . , hn−1, g, gh, gh2, . . . , ghn−1}. The Z2 generator acts as an inversion

on the axes of reflection, all the elements of the form gh j are of order 2, i.e (gh j)2 = 1.

The properties of dihedral group depend on whether n is even or odd. For odd n, Dn has

bn/2c+ 2 conjugacy classes are given by (the little groups Nci for each element ci in Ci are

indicated beside),

C0 = {e} , Ne = Dn ,

C1 = {g, gh, gh2, . . . , ghn−1} , Nc1 = {e, c1} ,

Ck = {h, hn−1}, {h2, hn−2}, . . . , {hbn/2c, hbn/2c+1} , Nck = Zn . (2.3.11)

For even n ,Dn has n/2 + 3 conjugacy classes which are given by,

C0 = {e} , Ne = Dn ,

C1 = {hn/2} , Nc1 = Dn ,

C2 = {g, gh2, gh4, . . . , ghn−2} , Nc2 = {e, c2, hn/2, c2hn/2} ,

C3 = {gh, gh3, gh5, . . . , ghn−1} , Nc3 = {e, c3, hn/2, c3hn/2} ,

Ck = {h, hn−1}, {h2, hn−2}, . . . , {hn/2−1, hn/2+1} , Nck = Zn . (2.3.12)
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The group invariant projection operator for Dn has the property,

PDn =
1

2n

( n−1∑
j=0

h j +

n−1∑
j=0

gh j
)
,

=
1
2

1∑
k=0

gk
(1
n

n−1∑
j=0

h j
)
,

=PZ2 .PZn , (2.3.13)

which follows from the property of the group elements (2.3.10). Even though the element

g does not commute with elements h ∈ Zn, it commutes with the projector of Zn. Thus if

we take g to be a twist, it commutes with the orbifold projection. The Zn partition function

is given by,

ZT/Zn =
1
n

n−1∑
j=0

n−1∑
k=0

h j

hk

. (2.3.14)

Twisting the partition function by g ∈ Z2 amounts to insertion of g in the trace,

TrHh

(
g qH)

. (2.3.15)

By the arguments given in (2.3.5) only the following terms contribute to the trace,

Zg
T/Zn

=
1
n

[ n−1∑
j=0

gh j

e
+ δ n

2 ,[
n
2 ]

n−1∑
j=0

gh j

hn/2

]
. (2.3.16)

The second sets of terms are there only for even n as can be seen from (2.3.12). We refer

to this partition function as the “twisted” partition function. Since the twist generating

group Z2 does not commute with the orbifold group Zn, we refer to it as a non-commuting

twist. In the following sections, we discuss the orbifold action and then evaluate (2.3.16)

for the CHL Zn-orbifolds.
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2.4 Computing the Twisted Partition Function

We adapt the half-BPS counting method of Sen [81] to compute the twisted partition

function. In the notation Dn = ZnoZ2 = HoG, H is the commutator subgroup of Dn which

is also the orbifolding group. G represents an additional symmetry of the theory that

appears at special points in the moduli spaces. The CHL Zn-orbifold can be described as

an asymmetric orbifold of the heterotic string compactified on T 4 ×T 2. The Zn symmetry

acts as a shift on one of the circles in the T 2 and as a symmetry transformation on the

rest of the CFT involving the T 4 coordinates and the 16 left-moving world-sheet scalars

associated with the E8 × E8 gauge group. The action of a group element h of the orbifold

group H is the combination of a shift ah and a rotation Rh acting on the Narain Lattice

Γ(22,6). The action of the twist g ∈ Z2 on the K3 side is known [71, 76] and has been used

to compute twisted indices in [80]. g leaves 14 of the 22 2-cycles of K3 invariant, in other

words it exchanges the two E8’s. Furthermore g is not accompanied by shifts. The g ∈ Z2

insertion in trace requires the physical charges Q to be g-invariant and the orbifolding

requires it to be compatible with the Zn orbifold projection. Hence, we let Q takes values

in the lattices that are invariant under Dn = Zn o Z2 symmetry [79]. For the rest of the

computation we fix the value of Q. Once this is done the twist g has no further action on

the lattice.

The set of Rh ∀ h ∈ H forms a group that describes the rotational part of H and is repre-

sented as RH. To preserve N = 4 supersymmetry both RH and g must act trivially on the

right movers. In the K3 side this is enforced by requiring the respective automorphisms

to be symplectic. The group H leaves 22 − k of the 22 left moving directions invari-

ant, where k is the number of directions that are not invariant under H. Then, RH can

be characterised by k/2 phases φ j(h) with j = 1, 2, . . . , k/2. The complex coordinates X j

represent the planes of rotation and the effect of the rotation RH is to multiply the complex

oscillators by phases.

The groups also act on the Narain lattice Γ(22,6) and leave a sublattice Λ⊥ invariant. The
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G rank(Λ‖) rank(Λ⊥L)
Z2 8 14

Z3 12 10

Z4 14 8

Z5 16 6

Z6 16 6

Z7 18 4

Z8 18 4

D2 ' Z2 × Z2 12 10

Z2 × Z4 16 6

Z2 × Z6 18 4

Table 2.1: For the abelian groups the ranks of the invariant sublattice and the orthogonal
complement are given in [92].

orthogonal complement to Λ⊥ is denoted as Λ‖. To preserve N = 4 supersymmetry

the right movers take their charge values only from the invariant part of the lattices and

the non-invariant part of the lattice is only due to the k left moving directions that are

not invariant under the action of the group.. Thus rank(Λ⊥L) = 22 − k , rank(Λ‖) = k

and rank(Λ⊥R) = 6.5 The total number of U(1) gauge fields in the theory is given by

rank(Λ⊥) = 22 + 6 − k. For the Zn groups, the values of k can be read off from Table 2.1.

We recollect some lattice definitions from [81] for convenience. Let V be the 22 + 6

dimensional vector space in which the Narain lattice Γ(22,6) is embedded. The action

of a given group element h ∈ Zn on V leaves a subspace V⊥(h) invariant. The planes of

rotation lie along a subspace denoted as V‖(h). It is clear that V‖(h) and V⊥(h) are mutually

orthogonal to each other. The action of the entire group thus separates the vector space V

into an invariant subspace V⊥ and its orthogonal complement V‖ which are defined as6,

V⊥ =
⋂
h∈Zn

V⊥(h) , V‖ =
⋃
h∈Zn

V‖(h) . (2.4.1)

5This corresponds to the six graviphotons that arise from the toroidal compactification.
6The sublattice that is invariant under a group G acting on a lattice, Λ, is usually denoted by ΛG and its

orthogonal complement by ΛG.
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The invariant sublattice Λ⊥ and its orthogonal complement Λ‖ are defined as,

ΛZn := Λ⊥ = Γ
⋂

V⊥ , ΛZn := Λ‖ = Γ
⋂

V‖ . (2.4.2)

and,

Λ⊥(h) = Γ
⋂

V⊥(h) , Λ‖(h) = Γ
⋂

V‖(h) , (2.4.3)

where Λ⊥(h) is the lattice component left invariant by a group element h and Λ‖(h) is the

orthogonal complement. The ranks of these lattices are the dimensions of their respective

vector spaces.

In the following, we describe the heterotic construction of the counting [81] in the un-

twisted sector as the non-commuting twist obtains no contribution from the twisted sec-

tors. The projection is unto states invariant under the orbifold group Zn. For individual

elements, h ∈ Zn there will be a non-trivial shift vector along with the rotation. In order

to obtain expressions for g ∈ Z2 one has to just put the shift vectors ag to zero. For com-

posite elements like gh one has a rotation due to h followed by a reflection on the axes of

rotation by g and there is also a shift on the lattice due to h, this follows from the group

multiplication law. However one does not need such explicit details in the computation as

we will show later.

As is known, the momenta and windings in the compact directions of the theory takes

values in the Narain lattice Γ(22,6). The (left,right) components of the momentum vector

are denoted as ~P = (~PL, ~PR). Let NL, NR be the total level of left moving and right moving

oscillator excitations respectively. For a BPS state, the right movers are kept at the lowest

eigenvalue allowed by GSO projection, i.e NR = 0. The level matching condition in the

untwisted sector is,

NL − 1 +
1
2

(~P2
L −

~P2
R) = 0 . (2.4.4)

Let Q = ( ~QL, ~QR) denote the projection of ~P along V⊥ and P‖ = (~P‖L, 0) the projection of

~P along V‖. In an orbifold theory such as this one, only the components of P along V⊥ can
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act as sources for electric fields. Since N = 4 supersymmetry requires the right-moving

momenta to take values only from the invariant sublattice, ~PR lies entirely along V⊥, we

deduce ~PR = ~QR. It is then clear that ~PL has the projection ~QL along V⊥ and ~P‖L along V‖.

Thus ~PL has a orthogonal decomposition,

~PL = ~QL + ~P‖L . (2.4.5)

Writing N = 1
2 ( ~Q2

R−
~Q2

L) the level matching condition in the untwisted sector (2.4.4) reads,

NL − 1 +
1
2
~P2
‖L = N . (2.4.6)

Note that, the information that the charge vector should take values on some specific lat-

tice has gone into N, and the orbifold projection proceeds in the usual way. The counting

of the number of Zn-invariant BPS states for a given charge Q is then done by implement-

ing the group invariant projection. The contribution to the trace with a group element

h ∈ Zn inserted comes only from those ~P‖L which are invariant under the action of h, i.e

from those ~P‖L which satisfy the condition,

~P‖L ∈ V⊥(h) . (2.4.7)

Furthermore, two vectors P and P′ in Λ which may correspond to the same charge vector

Q would differ by a constant vector. Hence the allowed values of ~P‖L for a given charge

vector ~Q are of the form,

~P‖L = ~K(Q) + ~p , (2.4.8)

where ~p ∈ Λ‖ and ~K(Q) ∈ (Λ∗
‖
/Λ‖) is a constant vector that lies in the unit cell of Λ‖. The

total momentum vector can thus be decomposed as,

~P = ~PL + ~PR = ( ~QL + ~P‖L) + ~QR = ~Q + (~p + ~K(Q)) . (2.4.9)
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When a group element h acts on the vacuum carrying such a momentum ~P it will produce

a phase [69],

h |P〉 = e2πi~ah· ~Qe−2πi~ahL·(~p+~K(Q)) |P〉 , (2.4.10)

where ~ah is the shift vector on the lattice associated with the group element h and ~ahL is

its left moving component. Note that there no phases associated with g since ag = 0.

The negative sign is due to the signature of the lattice. Thus we can now express the

degeneracy of BPS states in the untwisted sector of the orbifold carrying a charge ~Q ∈ Γ⊥

as,

d(Q) =
16
|Zn|

∑
h∈Zn

∞∑
NL=0

dosc(NL, h)e2πi~ah· ~Q

∑
~p∈Λ‖

~p+~K(Q)∈V⊥(h)

e−2πi~ahL·~p δ
NL−1+

1
2 (~p+~K(Q))2,N

, (2.4.11)

where dosc(NL, h) is the number of ways one can construct oscillator level NL from the 24

left-movers weighted by the action of h. The factor of 16 accounts for the degeneracy of

a single BPS multiplet. The ~Q-dependent phase in the above equation prevents us from

directly computing the generating function of the degeneracies. Sen [81] evaluates the

degeneracy treating ~Q and N as independent variables in the right hand side of the above

equation and calling it F(Q, N̂). Of course, setting N̂ = N = 1
2 Q2 in F(Q, N̂), one recovers

d(Q). The symbol N̂ is used to indicate that N is treated as an independent variable.

F(Q, N̂) counts the number of states in the CFT which carry a given charge Q, with right-

movers in the ground state. The CFT has L̄0 − L0 eigenvalue N̂ − 1
2 Q2 which takes integer

values from one-loop modular invariance. The integer condition for level matching is

satisfied only after summing over all the h in the trace. A partition function can be defined

as follows:

F̃(Q, µ) =
∑

N̂

F(Q, N̂)e−µN̂ , (2.4.12)

where N̂ runs over values for which F(Q, N̂) is non-zero.
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F̃(Q, µ) acts as a generating function for the degeneracy of electrically charged 1/2 BPS

states in the theory. Substituting for F(Q, N̂) from equation (2.4.11) one obtains,

F̃(Q, µ) =
16
|Zn|

∑
N̂

[ ∑
h∈Zn

∞∑
NL=0

dosc(NL, h)e2πi~ah. ~Qe−2πi~ahL. ~K(Q)

∑
~p∈Λ‖

~p+~K(Q)∈V⊥(h)

e−2πi~ahL.~p δNL−1+ 1
2 (~p+~K(Q))2,N̂

]
e−µN̂ . (2.4.13)

The sum over N̂ can be carried out and it gets rid of the Kronecker delta function to give,

F̃(Q, µ) =
16
|Zn|

∑
h∈Zn

e2πi~ah. ~Q e−2πi~ahL. ~K(Q) F̃osc(h, µ) F̃ lat(Q, h, µ) . (2.4.14)

where the oscillator and lattice contribution to the partition function as,

F̃osc(h, µ) =

∞∑
NL=0

dosc(NL, h)e−µ(NL−1) ,

F̃ lat(Q, h, µ) =
∑
~p∈Λ‖

~p+~K(Q)∈V⊥(h)

e−2πi~ahL.~pe−
1
2µ(~p+~K(Q))2

. (2.4.15)

Note that F̃osc has no dependence on Q while F̃ lat depends weakly on ~Q only through

~K(Q).

The inverse of the partition function gives the degeneracy,

F(Q, Ñ) =
1

2πi

∫ ε+iπ

ε−iπ
dµ F̃(Q, µ) eµÑ , (2.4.16)

where µ = 2πτ/i and ε is a real positive number. It has been argued in [81] that this

integral receives its dominant contribution from a small region around the origin. Hence,

we will take the µ → 0 limit later. The oscillator contribution is calculated easily by

noting that the upon the action of a group element h the oscillator acquires a phase e2πφ j(h)
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7,

F̃osc(h, µ) = q−1
( ∞∏

n=1

1
1 − qn

)24−k k/2∏
j=1

( ∞∏
n=1

1
1 − e2πiφ j(h)qn

1
1 − e−2πiφ j(h)qn

)
, (2.4.17)

where k is the number of non-invariant directions under Zn. When g is inserted into the

trace, It will act on the oscillators. The phase and number of directions of rotation due to

the elements in F̃osc(h, µ) depends only on the order of the group element. In evaluating

the oscillator contribution for,

g
e

+ gh
e

+ gh2

e
+ . . . + ghn−1

e
. (2.4.18)

One notices that all the elements g, gh, . . . , ghn−1 are of order 2. Hence all of their os-

cillator contributions are identical to g
e

. Since g exchanges the E8 co-ordinates, the

number of directions that are rotated (2.1) k = 8 and non zero phases φ j(g) = 1/2. Upon

simplification, the oscillator contribution becomes,

F̃osc(g, µ) =
1

η(τ)8η(2τ)8 , (2.4.19)

where,

η(τ) = q1/24
∞∏

n=1

(1 − qn) with q = e2πiτ = e−µ . (2.4.20)

To write down the generating function, we need the lattice contribution due a particular

group element h which is given by,

F̃ lat(Q, h, µ) =
∑
~p∈Λ‖

~p+~K(Q)∈V⊥(h)

e−2πi ~ahL.~pe−
1
2µ(~p+~K(Q))2

. (2.4.21)

We have already restricted the charges to take values on the Dn invariant lattices, hence

g insertion has no further action on the lattice. When h is identity the conditions on

7Note that the elements h ∈ Zn are of cyclic type, i.e hn = 1 for some n ∈ Z, so the phases are all of type
p
n for some p ∈ Z
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~P‖L = ~P + ~K(Q) ∈ V⊥(h) is trivially satisfied since V⊥(e) = V . For any other h, since we

have dimV⊥(h) < dim(V), it follows that,

F̃ lat(Q, h, µ) ≤ F̃ lat(Q, e, µ) . (2.4.22)

Therefore the dominant contribution is when h = e,

F̃ lat(Q, e, µ) =
∑
~p∈Λ‖

e−
1
2µ(~p+~K(Q))2

. (2.4.23)

where the phase has disappeared as the identity element doesn’t shift the vectors. As

mentioned earlier, this lattice theta function depends on Q, only through the ~K(Q) ∈

Λ∗
‖
/Λ = Λ∗⊥/Λ⊥ – thus there are only a finite number of lattice sums to consider.

Thus, combining the oscillator and lattice contributions (2.4.19) and (2.4.23) we get the

result,

F̃(Q, µ) ∼
16
|Zn|

F̃ lat(Q, e, µ)
η(τ)8η(2τ)8 , (2.4.24)

with τ = iµ/2π. The nice thing about the right hand side of the above equation is that it

depends only on ~K(Q). Thus, up to exponentially smaller terms corresponding to h , e,

the right hand side is the generating function of g-twisted half-BPS states in the charge

sector ~K(Q). This is the main result of this section.

This g ∈ Z2 twisted partition function counts g-twisted half-BPS states in a Zn orbifold

theory, so naturally we expect these modular forms to have weights smaller than the ones

obtained for the untwisted orbifold theories. We will check that this is indeed the case by

taking the asymptotic limit of (2.4.24). The µ→ 0 limit of Dedekind eta function ,

η(µ) ' e−
π2
6µ

√
2π
µ
, (2.4.25)
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and the lattice contribution (2.4.23) after doing a Poisson resummation is,

F̃ lat(e, µ) '
1

volΛ‖

(
µ

2π

)− kZn
2

, (2.4.26)

up to exponentially suppressed terms. Thus (2.4.24) has µ→ 0 limit,

lim
µ→0

F̃(µ) '
16
|Zn|

1
volΛ‖

e2π2/µ
(
µ

2π

)8−
kZn

2

. (2.4.27)

We compare the weights of the modular forms for the half-BPS states in Zn orbifolds

[65, 81] and the modular forms for g twisted half-BPS states in Zn orbifolds,

Group 12 − kZn
2 8 − kZn

2 kZn =rank(Λ‖)

Z3 6 2 12

Z4 5 1 14

Z5 4 0 16

Z6 4 0 16

One can see from the above table that the weights for the g twisted half-BPS states are

indeed smaller.

The other contribution for even n

For the even n, as noted in the end of §2.3, we will get additional contribution from the

orbifold twisted sector due to the element hn/2.

g
hn/2

+ gh
hn/2

+ gh2

hn/2

+ . . . + ghn−1

hn/2

. (2.4.28)

Here again, the oscillator contribution from each module is identical since the elements

have the same order. The Zn groups, for n even have Z2 as a subgroup which would

commute with the g twist in the partition function to give a Z2×Z2. This case was already
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computed in [93] (see Appendix A) in the context of Z2 × Z2 and the result is,

F̃osc(µ) =
1

η(2τ)12 . (2.4.29)

We need to compute the lattice contribution in this hn/2 sector. Here ~P ∈ ΛZ2 the lattice

invariant under the Z2 generated by hn/2 unlike the untwisted sector where it was in Λ.

The charge vectors Q take value in the projection of ~P along V⊥. Thus, we have the lattice

contribution given by,

F̃ lat(Q, h, µ) =
∑
~p∈ΛZ2

‖

~p+~K(Q)∈V⊥(h)

e−2πi~ahL.~pe−
1
2µ(~p+~K(Q))2

, (2.4.30)

where Λ
Z2
‖

= ΛZ2 ∩ V‖ and ~K(Q) ∈ Λ
Z2∗

‖
/ΛZ2
‖

. Again, the dominant contribution to the

lattice sum occurs when h = e. The weight of the relevant modular form is now 6 − [k/2]

where k is the rank of the lattice Λ
Z2
‖

. We estimate k using the relevant cycle shapes for

the Z4 and Z6 orbifolds to be 6 and 8 respectively. when n = 4, the cycle shape for

the element h is 142244. The invariant lattice has dimension 12 = 4 + 2 + 4 and thus

dimV‖ = 24 − 12 = 12. Elements that belong to Λ
Z2
‖

are those that correspond to an h-

eigenvalue equal to −1. There are precisely six of them, two coming from the two-cycles

and four from the four cycles. A similar analysis for the cycle shape 12223262 for n = 6

shows that each three- and six-cycle contribute 2 elements with h3-eigenvalue equal to

unity but h-eigenvalue not equal to unity and hence k = 8. A simple asymptotic counting

as we did earlier then shows that this contribution is larger than the contribution from the

untwisted sector given in Eq. (2.4.24).
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2.5 Summary

In this chapter, we have computed generating functions for non-commuting Z2 twists for

CHL Zn orbifolds (3 ≤ n ≤ 6). The generating functions turn out be ratios of the theta

functions for the Zn group and eta products associated with the Z2 group. When n = 4

and 6, we find additional contributions also arise. We then verified the consistency of the

computation by considering the asymptotic expansion of the degeneracy and found that it

has the expected limit.

Our computations did make use of the properties of the dihedral group. It would be

interesting to extend this method to other nonabelian groups as well. On another note,

this computation may also be extended to 1/4 BPS states. One can use the symplectic

automorphisms that act on the elliptic K3 directly in the Type IIA theory [80]. It will

also be useful to consider twists that break supersymmetry, which means we would have

to consider non-symplectic automorphisms on K3. Such twists will provide a controlled

way to count BPS states in N = 2 string theories.
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Chapter 3

Attractor mechanism in supergravity

3.1 Introduction

In chapter 2, we studied the counting of microscopic states of bound states of D-Branes

in a string theory. We saw that the BPS nature of the bound state configurations played

an important role in the calculation of the microscopic degeneracy. In this chapter, we

will focus on the macroscopic side. Here the BPS nature of the black hole simplifies

the analysis of the Killing spinor equations which arise from the vanishing of fermionic

supersymmetry transformations. Exact black hole solutions can often be found by solving

the Killing spinor equations rather than the second order Einstein field equations. Once

again, it is the BPS nature of the black hole that allows the comparison of the statistical

entropy calculated at the weak coupling limit of the theory with the Bekenstein-Hawking

entropy of the black hole in the strong coupling limit.

The attractor mechanism explains the macroscopic entropy of extremal black holes in

supergravity [4–6]. The moduli fields for a given extremal black hole, flow radially to a

fixed value at the horizon regardless of their asymptotic values. The corresponding black

hole solution is called an attractor and the mechanism has been named as the attractor

mechanism. Solving the attractor equations relates the fixed values of the moduli in terms
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of the quantised charges of the black hole. As a result the entropy of the black hole is

determined completely in terms of its charges. The attractor mechanism works not mainly

because of supersymmetry but due to extremality of the black hole [94–96] and hence it

can also be extended to the case of non-supersymmetric black holes [95, 97–100]. In the

non-supersymmetric case, one can no longer use the Killing spinor equations to study

the attractor. For single centered, extremal non-supersymmetric black holes the attractor

mechanism is understood in terms of an effective black hole potential. The attractor point

corresponds to an extremum of this black hole potential. Some review articles covering

the subject are [101–103].

The near horizon geometry of an extremal blackhole in spacetime corresponds to the

attractor point in the moduli space. The attractor geometry for black holes preserving su-

persymmetry is always stable. For the non-supersymmetric case, the attractors are stable

when the critical point is an absolute minima of the effective black hole potential. In the

asymptotically flat case this is strictly true [95, 97]. Thus, for the stable attractors, the

matrix of second derivatives of the effective potential should have positive eigenvalues.

The organisation of this chapter is as follows. In §3.2 we review some essential material

in N = 2 supergravity related to special geometry. We then discuss the supersymmetry

conditions that give rise to the attractor behaviour and black hole entropy in §3.3. In the

next section §3.4, we demand regularity of the horizon, and consequent analysis reduces

the scalar field equations to extremization of an effective potential. This leads to the dis-

cussion on non supersymmetric attractors and their stability in §3.5. We then summarise

in §3.6.
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3.2 Preliminaries

The N = 2, d = 4 supergravity coupled to vector and hyper multiplets has the following

field contents. The gravity multiplet consists of,

{ea
µ, ψ

A, A0
µ} , (3.2.1)

where ea
µ is the vielbein with a = 0, 1, 2, 3 , ψA are the gravitinos with A = 1, 2 and A0

µ

is the graviphoton. The chirality conditions are given by γ5ψA = 1 = −γ5ψ
A. The vector

multiplet consists of,

{Ai
µ, λ

iA, zi} , (3.2.2)

where Ai
µ are the gauge bosons with i = 1, 2, . . . nV , the gauginos are denoted by λiA

and the complex scalars are written as zi, where i = 1, 2, . . . nV . The graviphoton and

the gauge bosons Ai
µ coming from the nV vector multiplets are together denoted by AΛ

µ ,

with Λ = 0, 1, . . . nV . The scalars in the vector multiplet, parametrise a special Kähler

manifold.

A Kähler manifold has mutually compatible complex structure, Riemannian structure and

a symplectic structure [104]. The metric on a Kähler manifold is Ricci flat, hermitian and

is derived from a Kähler potential,

gi j∗ = ∂i∂ j∗K . (3.2.3)

A Kähler manifold is special Kähler when there exists local holomorphic sections

(XΛ, FΛ) which can be used to express the the Kähler potential as,

K = − ln(i(X̄ΛFΛ − XΛF̄Λ)) . (3.2.4)

Since the Kähler manifold is also symplectic one can introduce the symplectic sections
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(LΛ(z, z̄),MΛ(z, z̄)), with Λ = 0, 1, . . . nV that satisfy the relation,

i(L̄ΛMΛ − LΛM̄Λ) = 1 . (3.2.5)

The above condition is satisfied by choosing LΛ and MΛ in terms of holomorphic coordi-

nates XΛ and a holomorphic prepotential F,

LΛ = eK/2XΛ , MΛ = eK/2FΛ , FΛ =
dF

dXΛ
. (3.2.6)

Once the sections are specified, all the matter couplings are completely determined in

terms of them. For example, the scalars in the vector multiplet couple to the gauge fields

through a period matrix NΛΣ(z, z̄) defined through the symplectic sections as,

MΛ = NΛΣLΣ . (3.2.7)

For future reference, we also define the Kähler covariant derivatives as,

DiV = (di +
1
2

diK)V , DiV̄ = 0 ,

Di∗V̄ = (di∗ −
1
2

di∗K)V̄ , Di∗V = 0 , (3.2.8)

for any holomorphic V .

The hypermultiplet consists of,

{ζα, qu} , (3.2.9)

where qu are the scalars in the hypermultiplet with u = 1, 2, . . . 4nH and ζα are the hyper-

inos with α = 1, 2, . . . 2nH. The quaternions qu parametrise a quaternionic manifold of

dimension 4nH. The quaternionic manifold is also an example of a Kähler manifold with

mutually compatible Riemannian, complex and a symplectic structures [105, 106]. The
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metric on the quaternion Kähler manifold is defined by,

ds2 = huvdqu ⊗ dqv . (3.2.10)

The manifold is called quaternionic as the three complex structures Jx that exist on the

manifold satisfy a quaternionic identity,

(Jx) w
u (Jy) v

w = −δxy(Id) v
u + ε xyz(Jz) v

u , (3.2.11)

where x = 1, 2, 3. The metric huv is hermitian with respect to Jx,

(Jx) u
v (Jx) t

whut = hvw , (3.2.12)

as expected for a Kähler manifold.

With the preliminaries in hand, the bosonic part of the Lagrangian is given by,

L =
√
−g[R+gi j∗∂

µzi∂µz̄ j∗ +huv∂
µqu∂µqv + i(N̄ΛΣF

−Λ
µν F

−Σ|µν−NΛΣF
+Λ
µν F

+Σ|µν)] , (3.2.13)

where gi j∗ is the metric on the special Kähler manifold, huv is the metric on the quaternion

manifold. The self dual and anti-self dual form field strengths of the gauge fields are

defined as,

F ∓µν =
1
2

(Fµν ∓
i
2
εµνρσF

ρσ) , (3.2.14)

where ε0123 = 1.

3.3 Supersymmetry, attractors and black hole entropy

In this section, we illustrate the emergence of the attractor mechanism from supersymme-

try considerations. The supersymmetry transformations of the fermions in the theory are
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given by,

δψAµ = DµεA + εABT−µνγ
νεB ,

δλiA = iγµ∂µziεA +
1
2
F i−
µν γ

µνεBε
AB ,

δζα = iUBβ
u ∂µquγµεAεABCαβ . (3.3.1)

where DµεA = ∂µεA + 1
4ω

ab
µ γab, UBβ

u are the quaternionic vielbein and Tµν and F i−
µν are

symplectic invariant combinations of the field strength defined by,

T−µν = MΛF
−Λ
µν − LΛN̄ΛΣF

−Σ
µν ,

F −i
µν = gi j∗(D j∗ M̄ΛF

−Λ
µν − D j∗ L̄ΛN̄ΛΣF

−Σ
µν ) . (3.3.2)

We are interested in static, spherically symmetric, charged, supersymmetric black hole

solutions of the type,

ds2 = −e2Udt2 + e−2U(dr2 + r2dΩ2
2) , U ≡ U(r) , (3.3.3)

which asymptote to Minkowski space. In supersymmetric theories, the ADM mass is

given by the central charge of the supersymmetry algebra. In general, the central charge

is a function of the moduli (zi) and the physical charges of the black hole. Extremization

of the central charge relates the moduli to the charges and the black hole entropy is then

given by the value of the central charge at the extremum values [6]. The principle of

extremization of the central charge follows from the requirement that the near horizon

geometry and the asymptotic geometry represent maximally supersymmetric solutions of

(3.3.4).

It is easy to see that the Minkowski space satisfies the conditions,

δψAµ = 0 , δλiA = 0 , δζα = 0 , (3.3.4)
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for arbitrary εA, when there are no vector fields and when all scalars in the theory take

arbitrary constant values,

T−µν = 0 , F −i
µν = 0 , zi = zi

0 , qu = qu
0 . (3.3.5)

The flat space solution thus preserves the full N = 2 supersymmetry of the theory. The

other solution is the the near horizon geometry of the black hole solution when,

e−2U →
M2

r2 as r → 0 . (3.3.6)

where M2 = A
4π is the ADM mass of the black hole. The near horizon metric takes the

form AdS 2 × S 2 1,

ds2 = −
r2

M2 dt2 +
M2

r2 dr2 + M2dΩ2
2 , (3.3.7)

also known as the Bertotti-Robinson universe. This is a solution [6] of the supersymmetry

equations (3.3.4) with,

F −i
µν = 0 , ∂µzi = 0 , ∂µqu = 0 . (3.3.8)

This solves the gaugino and hyperino conditions. The Killing spinor integrability condi-

tion from the gravitino variation (3.3.1) gives terms proportional to γµ, γµν. The coeffi-

cients of each of these terms must identically vanish as these matrices form a complete

basis. This gives,

1
4

R λσ
µν − 2T−λµ T−σν = 0 ,

DνT−µλ = 0 , (3.3.9)

which are the Einstein equations and the condition for a covariantly constant graviphoton

field strength respectively. These conditions are necessary for the solution to exist and to

1We have used Planck units G = 1, ~ = 1, c = 1, kB = 1, k = 1.
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preserve the N = 2 supersymmetry.

The central charge of the supersymmetry algebra is given by [107],

Z = −
1
2

∫
S 2

T− = LΛqΛ − MΛ pΛ ,

Zi = DiZ = −
1
2

∫
S 2
F + j∗gi j∗ . (3.3.10)

The gaugino condition together with F −i
µν = 0 and d

dr zi(r) = 0 implies,

DiZ = 0 , (3.3.11)

which is solved by,

pΛ = i(Z̄LΛ − ZL̄Λ) , qΛ = i(Z̄MΛ − ZM̄Λ) , (3.3.12)

where we have used (3.2.5) and the fact that NΛΣ is Kähler covariant. Then (3.3.12)

determine the sections XΛ completely in terms of the charges up to Kähler gauge trans-

formations, which are fixed by choosing the gauge X0 = 1 in (3.2.6). Defining,

|Zc(q, p)| = |Z|DiZ=0 , (3.3.13)

we see from (3.3.12) that the central charge is purely a function of the charges carried

by the black hole. Since we are looking at BPS solutions, |M| = |Zc(q, p)| and hence the

black hole entropy in Planck units is given by,

S BH =
A
4

= πM2 = π|Zc(q, p)|2 . (3.3.14)

This result is also arrived at by studying the flow equations for the scalar fields in the

background of the full black hole solution. For the magnetically charged black hole, this

was arrived at by requiring the gaugino supersymmetry transformations to vanish resulting
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in a first order equation which relates the moduli in terms of the ratio of the magnetic

charges [4]. 2 This result was further generalised to include electrical and dyonic black

holes in [5].

3.4 Regularity

In this section, we discuss the approach of [94], where the radial equations are obtained

from an effective one dimensional action. Regularity of the metric and moduli fields

on the horizon gives rise to the AdS 2 × S 2 near horizon geometry and an extremization

condition on the effective black hole potential.

A general static, spherically symmetric, non-extremal black hole solution in a Einstein-

Maxwell-Dilaton theory is specified by the ansatz [94],

ds2 = −e2Udt2 + e−2U
( c4dρ2

sinh4 cρ
+

c2

sinh2 cρ
dΩ2

2

)
, (3.4.1)

where c is the extremality parameter defined by c2 = 2S T , with S being the entropy and

T being the temperature of the black hole. The extremal limit corresponds to c → 0 and

we get,

ds2 = −e2Udt2 + e−2U
(dρ2

ρ4 +
1
ρ2 dΩ2

2

)
. (3.4.2)

In order to have a regular area for the horizon we require the condition,

e−2U →
A
4π
ρ2 , (3.4.3)

as ρ→ −∞. In this limit, the metric becomes the direct product form, AdS 2 × S 2 after the

change of variables to r = − 1
ρ
,

ds2 = −
4π
A

r2dt2 +
A
4π

(dr2

r2 + dΩ2
2

)
. (3.4.4)

2The solution for the moduli fields usually occur as ratios of the charges as is evident from (3.3.12).
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Thus we get the Bertotti-Robinson metric which we assumed earlier to be the near horizon

geometry by demanding regularity near the horizon.

Similarly we will determine a condition on the black hole potential by requiring regularity

of the moduli near the horizon. The black hole potential is defined as,

V(p, q, z, z̄) = |Z|2 + |DiZ|2 , (3.4.5)

and the effective one dimensional Lagrangian reads as,

Le f f (z(ρ), z̄(ρ),U(ρ)) =

(dU
dρ

)2

+ gi j∗
dzi

dρ
dz̄ j∗

dρ
+ e2UV(p, q, z, z̄) , (3.4.6)

together with the constraint equation given by,

(dU
dρ

)2

+ gi j∗
dzi

dρ
dz̄ j∗

dρ
− e2UV(p, q, z, z̄) = 0 . (3.4.7)

The second order field equations are,

e−2U d2U
dρ2 = V(p, q, z, z̄) ,

e−2U d
dρ

(
gi j∗

dz̄ j∗

dρ

)
= 2

d
dzi (V(p, q, z, z̄)) , (3.4.8)

where we have used the constraint equation (3.4.7) for simplification. The field equations

(3.4.8) obtained from the effective one dimensional Lagrangian along with the constraints

are equivalent to the Einstein equations. The scalar field equation for zi can be further

simplified using,

∂kgi j∗ = ∂k∂i∂ j∗K = ∂igk j∗ , (3.4.9)

and using the constraint equation (3.4.7) to get,

d2zi

dρ2 = e2U∂ jV . (3.4.10)
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We have already seen that near the horizon regularity requires (3.4.3). The above equation

becomes,
d2zi

dρ2 =
4π
Aρ2∂

jV , (3.4.11)

and is solved by,

zi =
4π
A
∂iV ln

1
ρ

+ zi
c . (3.4.12)

In this coordinate system, the horizon of the black hole is located at ρ = −∞. We see that

the scalars have a regular behaviour near the horizon only if ∂iV = 0. This also implies

that the scalars become constants at the horizon. Thus, demanding regularity near the

horizon reduces the scalar field equations to an extremization condition on the black hole

potential:
∂V(z, z̄, q, p)

∂zi = 0 . (3.4.13)

Solving the above equation relates the moduli in terms of the charges zi = zi
c(q, p). The

equation for U evaluated at the horizon gives the entropy as,

A
4π

= V(q, p, zi
c(q, p), z̄i

c(q, p)) , (3.4.14)

which is the value of the black hole potential evaluated at the critical points. The extrem-

ization of the black hole potential is compatible with the condition (3.3.11) obtained in

the supersymmetric case. To see this we use the identities [107],

D̄ j∗Z = 0 , DiD̄ j∗Z̄ = gi j∗Z̄ , DiD jZ = ici jkgkk∗ D̄k∗Z̄ , (3.4.15)

where ci jk is symmetric in all indices and satisfies D̄l∗ci jk = 0. Using the above it can be

shown that,

∂iV = ∂i(|Z|2 + |DiZ|2) = 2Z̄DiZ + ici jkg jl∗gkk∗ D̄l∗Z̄D̄m∗Z̄ . (3.4.16)

Thus DiZ = 0 = D̄i∗Z̄ implies the condition ∂iV = 0. Note that we have not used any
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supersymmetry in this discussion. Also note that ∂iV = 0 does not always imply DiZ = 0 ,

which is valid only for supersymmetric attractors. This suggests that the procedure of ex-

tremization of an effective potential is generic to capture attractors in non-supersymmetric

theories as well. We explore some aspects of non-supersymmetric attractors and their sta-

bility conditions in the next section.

3.5 Non-supersymmetric attractors and stability

In the previous section, we studied some features of non-supersymmetric attractors in

N = 2 supergravity theory. However, the attractor mechanism is much more general and

all it requires is an extremal black hole with Minkowski asymptotics in any theory of

gravity with generic matter content. In this section, we take cue from the previous discus-

sion on the effective potential approach and review the non-supersymmetric attractors and

their stability conditions [95]. We consider generic four dimensional Einstein-Maxwell-

dilatonic theories with abelian gauge fields given by the Lagrangian,

L = R − 2∂µφ∂µφ − aIJ(φ)F I
µνF

Jµν , (3.5.1)

where I refers to the number of U(1) gauge fields. The function aIJ is similar to the period

matrix NΛΣ and we consider the dilatonic couplings to be aIJ = eβiφδIJ. We consider the

magnetically charged black holes of Reissner-Nordstrom type for this discussion. The

black hole ansatz is of the form,

ds2 = −a(r)2dt2 +
dr2

a(r)2 + b(r)2dΩ2
2 . (3.5.2)

with the magnetic field strength,

F I
θφ = pI sin θ , (3.5.3)
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where pI are the magnetic charges. The independent components of the Einstein field

equations read,

∂2
r (a2b2) − 2 = 0 ,

∂2
r b + b(∂rφ)2 = 0 , (3.5.4)

together with a constraint,

a2b2(∂rφ)2 + Ve f f (φ) = b2(1 − a2(∂rb)2 −
1
2

(∂ra)2(∂rb)2) , (3.5.5)

where Ve f f (φ, p) = aIJ(φ)pI pJ is the effective potential. The scalar field equations are

given by,

2b2∂r(a2b2∂rφ) −
∂Ve f f

∂φ
= 0 . (3.5.6)

As expected from our discussion in the previous section, all the field equations can be

derived from an effective one dimensional Lagrangian,

Le f f = ∂rb∂r(a2b) − a2b2(∂rφ)2 −
Ve f f (φ)

b2 , (3.5.7)

together imposing the constraint (3.5.5). For the double extreme Reissner-Nordstrom

black hole a(r) = (1 − rh
r ) and b(r) = r and we can see that the field equations near the

horizon give,
∂Ve f f

∂φ

∣∣∣∣∣
φc

= 0 , Ve f f (φc, p) = r2
h . (3.5.8)

The entropy of the black hole is then given by,

S =
A
4π

= r2
h = Ve f f (φc, p) , (3.5.9)

which agrees with the discussions in previous sections.

To discuss the stability condition, we consider for simplicity two gauge fields such that
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the effective potential becomes,

Ve f f = eβ1φp2
1 + eβ2φp2

2 , (3.5.10)

The condition ∂Ve f f

∂φ
= 0 determines the critical point φc at the horizon,

φc =
1

β1 − β2
ln

(
−
β2 p2

2

β1 p2
1

)
, (3.5.11)

which makes sense only if one of the βi are negative. Now, consider small perturbations

of the scalar field values δφ = φc + δφ about the critical points. For this discussion, we

will ignore the back reaction of the scalar field on the attractor geometry. The scalar field

equations for the perturbations take the form,

2r2∂r((r − rh)2∂rδφ) −
∂2Ve f f

∂φ2

∣∣∣∣∣
φc

δφ = 0 , (3.5.12)

where we have expanded the effective potential about the critical point. For the simple

model we consider the double derivative evaluated at the critical point is,

∂2Ve f f

∂φ2

∣∣∣∣∣
φc

= −β1β2 . (3.5.13)

Substituting the above, the fluctuation equations become,

(r − rh)2∂2
rδφ + 2(r − rh)∂rδφ +

β1β2

2r2 δφ = 0 , (3.5.14)

The solutions for the fluctuations are easily determined as,

δφ = C±
(r − rh

r

) 1
2 (±
√

1−2β1β2/rh−1)

. (3.5.15)
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We see that there is a regular solution which vanishes as one approaches the horizon,

δφ = C+

(r − rh

r

) 1
2 (
√

1−2β1β2/rh−1)

, (3.5.16)

and becomes constant asymptotically provided β1β2 < 0. Thus the existence of a constant

solution at infinity allows one to vary the scalar values by changing the constant C+. While

at the horizon, the fluctuations vanish and scalar values are attracted to a fixed value φc.

Note that under the requirement β1β2 < 0, the double derivative of the effective potential

(3.5.13) is positive which implies that the attractor geometry corresponds to an absolute

minimum of the effective potential.

Using these conditions [95], have shown by perturbative analysis including backreaction

that the near horizon attractor solution is stable under scalar perturbations about the attrac-

tor values. In chapter 7, we do the scalar perturbation analysis for black brane solutions

in gauged supergravities and determine analogous conditions for stability.

3.6 Summary

In this chapter, we studied the attractor mechanism in supergravity theories. We saw

that requiring maximal supersymmetry near the horizon led to an extremization condition

on the central charge. The moduli values at the horizon are completely determined in

terms of the charges carried by the black hole. The BPS nature of the extremal solution

required the ADM mass of the black hole to be same as the central charge, which then

determined the extremal black hole entropy in terms of black hole charges. Later we

saw that regularity near the horizon is sufficient to determine the moduli in terms of the

charges and that the effective potential approach agrees with the conditions obtained from

supersymmetry. We then discussed a simple magnetically charged extremal black hole

solution in a non-supersymmetric Einstein-Maxwell-Dilaton theory and the conditions

for a stable attractor solution.
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Chapter 4

Black holes in AdS

4.1 Introduction

In the previous chapter, we studied the attractor mechanism for asymptotically flat black

hole solutions in supergravity. We saw that the near horizon geometry played an important

role in determining the attractor behavior. In this chapter, we give a small introduction

to black holes in Anti de-Sitter spaces (AdS ) with particular focus on the near horizon

geometries of extremal black branes. Historically, black holes in AdS spaces gained

attention when the positive energy theorem, which states that the energy of an asymptot-

ically flat space time is non zero, was proven for asymptotically AdS spaces [108, 109].

This result was also extended to supergravities and gauged supergravities where one can

often find AdS vacuum solutions [110, 111].

It is well known that a Schwarzschild black hole in asymptotically flat spacetime has

negative specific heat and is thermodynamically unstable. However, in AdS spacetime

the system undergoes a first order phase transition from a radiation dominated low tem-

perature phase to a black hole dominated high temperature phase. Hence, the AdS

schwarzschild black hole can exist with a positive specific heat and is thermodynami-

cally stable at high temperature. This is the famous Hawking-Page transition [112]. In

53



the context of the AdS/CFT correspondence [11], the Hawking page transition is equiva-

lent to a confinement-deconfinement phase transition in a quark-gluon system in the dual

theory [34].

Charged black branes play an important role in the correspondence as holographic duals

to field theories at finite temperature and chemical potential. Extremal black branes, in

particular, correspond to the zero temperature ground states of the dual field theory. Even

at zero temperature, several systems in condensed matter theory display novel behaviour

such as phase transitions due to quantum fluctuations [46]. Field theories which describe

such systems often show a wide variety of phases while the corresponding dual black

brane solutions are not as many. Also, many of the condensed matter systems have non-

relativistic symmetry groups and it would be interesting to explore extremal black branes

with such symmetries to map the study of quantum phase transitions to the gravity side.

Metrics which display symmetries of non-relativistic condensed matter systems such as

Galilean [113] and Lifshitz [47] symmetries have been constructed, and can sometimes

be embedded in string theory [15, 16, 114]. Interestingly, some charged dilatonic black

branes with Lifshitz-like near horizon geometry and asymptotic AdS can also exhibit

attractor behaviour [115, 116]. More recently, a large class of extremal homogeneous

anisotropic black brane horizons have been extensively studied [7, 53]. These metrics

have generalised translational symmetries which do not commute, as opposed to the usual

translational symmetries along the brane directions. The generators of these symmetries

form an algebra which is isomorphic to the three dimensional real Lie algebras given by

the Bianchi classification. In this chapter, we review the construction of metrics with

the Bianchi type symmetries. This will form a useful background for chapter 6, where

we realise some of the Bianchi type metrics as generalised attractors. The most useful

references for this chapter are [7, 53, 117–120].

The organisation of this chapter is as follows. In §4.2, we discuss the physics of the

AdS schwarzchild black hole and the AdS Reissner Nordstrom black hole , followed by
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description of black brane limits of these configurations and their near horizon geometries

in §4.3. Taking the lead from the study of AdS Reissner-Nordstrom black brane, we

study geometries with constant anholonomy coefficients and explore the connection with

homogeneous spaces on §4.4. We then give a detailed description of five dimensional

homogeneous extremal black brane horizons belonging to the Bianchi classification in

§4.5. Then, we summarise the contents of this chapter in §4.6.

4.2 Schwarzschild and Reissner-Nordstrom black holes

in AdS space

In this section, we will describe the Schwarzschild black hole in four dimensional AdS

space followed by a discussion on the five dimensional AdS Reissner-Nordstrom black

hole. First, we recall the definition of AdS spaces and describe some well known co-

ordinate systems which will be useful later. AdS 4 space is defined as the hyperboloid,

− X2
0 − X2

4 + X2
1 + X2

2 + X2
3 = −R2 , (4.2.1)

embedded in a 4 + 1 dimensional flat space with the metric,

ds2 = −dX2
0 − dX2

4 + dX2
1 + dX2

2 + dX2
3 . (4.2.2)

It has the isometry group S O(2, 3) generated by the 10 Killing vectors,

Jαβ = Xα∂β − Xβ∂α . (4.2.3)
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Using the following global coordinates,

X0 = R cosh ρ cos τ , X4 = R cosh ρ sin τ ,

Xi = R sinh ρΩi , ,

3∑
i=1

Ωi = 1 , (4.2.4)

the metric (4.2.2) can be expressed as,

ds2 = R2(− cosh2 ρdτ2 + dρ2 + sinh2 ρdΩ2) . (4.2.5)

where ρ ≥ 0 and 0 ≤ τ ≤ 2π. This coordinate system is called a global coordinate since

it covers the entire hyperboloid (4.2.1). Another commonly used set of coordinates are

the Poincaré coordinates which cover one half of the hyperboloid. These coordinates are

given by,

X0 =
1
2r

(1 + r2(R2 + ~x2 − t2)) , X4 = Rrt ,

Xi = Rrxi , i = 1, 2 ,

X3 =
1
2r

(1 − r2(R2 − ~x2 + t2)) , (4.2.6)

and the metric takes the form,

ds2 = R2(−r2dt2 +
dr2

r2 + r2d~x2) . (4.2.7)

The AdS metric is a solution to Einstein’s equation with negative cosmological constant.

There also exists another vacuum solution, the AdS Schwarzschild black hole which we

discuss next.
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4.2.1 AdS Schwarzschild Black hole

It is well known that the familiar Schwarzschild black hole in an asymptotically flat space

time is thermodynamically unstable due to negative specific heat. However, black holes in

AdS spaces have positive specific heat at high temperatures and thus thermodynamically

stable [112]. The AdS schwarzschild black hole is a vacuum solution to Einstein’s equa-

tions with a negative cosmological constant. The black hole metric in four dimensions is

given by,

ds2 = −Vdt2 +
dr2

V
+ r2(dθ2 + sin2 θdφ2) ,

V = 1 −
2M

r
+

Λr2

3
, (4.2.8)

where Λ is the cosmological constant 1. We have also set the four dimensional Newtons

constant G4 = 1. For large r the black hole approaches the form,

ds2 = −(1 +
Λr2

3
)dt2 +

dr2

(1 + Λr2

3 )
+ r2(dθ2 + sin2 θdφ2) , (4.2.9)

which is nothing but the AdS 4 metric, which can be obtained from (4.2.5) by the coordi-

nate choice τ = t
√

Λ
3 , sinh ρ = r

√
Λ
3 and setting R =

√
3
Λ

. In the asymptotic limit, the

schwarzchild AdS black hole approaches AdS space. The horizon of the black hole is

located at r = rh, where rh is the largest root of V(r) = 0.

Writing τ = it and expanding the metric (4.2.8) near the horizon we find,

ds2 = (r − rh)V ′(rh)dτ2 +
dr2

(r − rh)V ′(rh)
+ r2

hdΩ2
2 . (4.2.10)

Rewriting r = rh +
V′(rh)

4 ρ2 we get,

ds2 =
V ′(rh)2

4
ρ2dτ2 + dρ2 + r2

hdΩ2
2 . (4.2.11)

1For convenience we have chosen the conventions Λ > 0 for AdS spaces.
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We see that the conical singularity at r = rh is resolved by regarding τ as an angular

coordinate with a period,

β =
4π

V ′(rh)
=

4πrh

(1 + Λr2
h)
. (4.2.12)

The temperature is the inverse of β and has a minimum value,

Tmin =

√
Λ

2π
, (4.2.13)

at r0 = 1/
√

Λ. The mass of the black hole can be expressed in terms of the horizon radius

rh,

M =
rh

2

(
1 +

r2
h

R2

)
. (4.2.14)

As one can see, the temperature no longer decreases with the mass, but attains a minimum

value Tmin below which only radiation exists. For T > Tmin there are two black hole

solutions, one for rh < r0 and other for rh > r0. The former is called a small black hole,

has negative specific heat and is thermodynamically unstable. While the black hole with

rh > r0 has positive specific heat and is thermodynamically stable. The entropy of the

AdS schwarzschild black hole calculated using euclidean path integral methods is given

by,

S BH = πr2
h =

ABH

4
, (4.2.15)

where ABH is the area of the black hole horizon.

4.2.2 AdS Reissner-Nordstrom Black hole

Another well known black hole solution in AdS space is the Reissner-Nordstrom black

hole. This black hole solution is obtained from theories with gravity coupled to massless

gauge fields. For the purpose of future reference, we will consider the five dimensional
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black hole given by [7, 121, 122],

ds2 = −Vdt̃2 +
dr̃2

V
+ r̃2dΩ2

3 ,

V = 1 +
Q2

12r̃4 +
r̃2Λ

12
−

M
r̃2 ,

A = −Q
( 1
2r̃2 −

1
2r̃2

h

)
dt̃ . (4.2.16)

Where Q is the electric charge and M is the mass of the black hole. We have also set the

five dimensional Newtons constant G5 = 1. As before the horizon radius r̃h is determined

by the largest root of V(r̃) = 0. The temperature of the black hole is determined as before

by euclidean rotation. We expand the metric near the horizon and resolve the conical

singularity to get,

T =
V ′(r̃h)

4π
=

12Mr̃2
h + r̃6

hΛ − 2Q2

24πr̃5
h

. (4.2.17)

From the above equation, we can see that the temperature vanishes when,

Q2
c = 2r̃6

hΛ, Mc =
r̃4

hΛ

4
, (4.2.18)

Since for these values both V(r̃h) and V ′(r̃h) vanish, the black hole becomes extremal. To

understand the regime in which the extremal black hole is stable it is convenient to rewrite

(4.2.17) as,

T =
12 + 2r̃2

hΛ − Φ2

24πr̃h
, Φ =

Q
r̃2

h

, (4.2.19)

where we have used V(r̃h) = 0 for simplification. It is clear that Φ plays the role of an

electrostatic potential. In the large r̃h regime, the temperature vanishes when Φ ≥
√

12

and,

r̃2
h =

Φ2 − 12
2Λ

. (4.2.20)

Thus, the extremal black hole is also stable in the large r̃h regime just as the Schwarzschild

AdS black hole. For Φ <
√

12 in the small r̃h → 0 regime the black hole is unstable and

has negative specific heat. The entropy of the black hole can be calculated once again
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using Euclidean path integral methods and we get,

S BH =
2π2r3

h

4
=

A
4
. (4.2.21)

4.3 Black branes and near horizon limits

In this section we will discuss black branes in AdS . First we describe the Schwarzschild

black brane and subsequently the Reissner-Nordstrom black brane in AdS .

4.3.1 AdS Schwarzschild black brane

A black p brane is a generalisation of a black hole with additional translational symmetries

along p spatial directions. In particular, this implies that for these objects the horizon

does not have the spherical topology of black holes in the p brane directions. Instead, the

topology of the horizon is planar. We illustrate this by considering the black brane limit

of the AdS schwarzschild black hole (4.2.8) studied in the previous section. Consider the

following rescaling of the co-ordinates [123],

r =

(2M
R

) 1
3

ρ , t =

(2M
R

)− 1
3

τ . (4.3.1)

The function V(r) takes the form,

V(r) = 1 −
(2M

R

) 2
3
[
ρ2

R2 −
R
ρ

]
, (4.3.2)

and the metric (4.2.8) looks like,

ds2 = −

(2M
R

)− 2
3

V(r)dτ2 +

(2M
R

) 2
3 dρ2

V(r)
+

(2M
R

) 2
3

ρ2dΩ2
2 . (4.3.3)

60



In the limit M → ∞ the radius of the S 2 becomes infinite and the sphere appears locally

as R2. This is the familiar idea that a sphere dΩi =
∑2

i=1(dyi)2, is just a plane with a point

at infinity. By changing the sphere coordinates locally into yi =

(
2M
R

)− 1
3

xi and considering

the large M limit we get,

ds2 = −

[
ρ2

R2 −
R
ρ

]
dτ2 +

dρ2[
ρ2

R2 −
R
ρ

] + ρ2(dxi)2 , (4.3.4)

we see that the (4.2.8) horizon has a planar topology in the black brane limit. The five di-

mensional analogue of the AdS Schwarzschild black brane is realised as the near horizon

geometry of extremal D3 branes in type IIB string theory [124].

4.3.2 Reissner-Nordstrom black brane

The black brane limit of the Reissner-Nordstrom solution (4.2.16) is obtained in the same

way as in the Schwarzschild black brane and is given by,

ds2 = −V(r̃)dt̃2 +
dr̃2

V(r̃)
+ r̃2(dx̃2 + dỹ2 + dz̃2) ,

V(r̃) =
Q2

12r̃4 +
r̃2Λ

12
−

M
r̃2 , (4.3.5)

We saw that in the extremal limit V(r̃h) = 0, V ′(r̃h) = 0 and we get,

M =
r̃4

hΛ

4
, Q =

√
2r̃6Λ . (4.3.6)

The function V(r̃) then takes the form,

V(r̃) =
(r̃ − r̃h)2(r̃ + r̃h)2(r̃2 + 2r̃2

h)Λ
12r̃4 . (4.3.7)
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We expand the metric near the horizon using the coordinates,

r̃ − r̃h

λ
= r, t̃ =

t
λ
, x̃i =

xi

r̃h
, (4.3.8)

to get,

ds2 = − r2Λdt2 +
dr2

Λr2 + (dx2 + dy2 + dz2)

+ λ
[7Λ

3r̃h
r3dt2 +

7
3r̃h

dr2

Λr
+ 2

r
r̃h

(dx2 + dy2 + dz2)
]
. (4.3.9)

The gauge field expands as,

A = −r
√

2Λdt . (4.3.10)

We get a one parameter λ worth of solutions, which looks locally like AdS 2 × R
3,

ds2 = −r2Λdt2 +
dr2

Λr2 + (dx2 + dy2 + dz2) , (4.3.11)

for the special value λ = 0. On first thought, the value λ = 0 appears to be singular. In

the limit r̃ → r̃h and λ → 0 such that r is kept fixed, the “near horizon” geometry of

the full Reissner-Nordstrom black brane approaches a geometry which is isomorphic to

AdS 2 × R
3. It can be checked that the metric (4.3.11) itself is an independent solution of

the Einstein equation with the gauge field (4.3.10) and is valid for any r. It is a feature of

extremal black holes that the “near horizon” geometry independently solves the equations

of motion and is often easier to find than the full black hole solution itself.

We will now explore the symmetries preserved along the spatial directions of the AdS 2 ×

R3 metric. This will lead us into the discussion of homogeneous spaces and Bianchi

classification. For this purpose we introduce the vielbein of the AdS 2 × R
3 metric as 2,

et
0 = rΛ , er

1 =
1

rΛ
, ex

2 = 1 , ey
3 = 1 , ez

4 = 1 . (4.3.12)

2The notations and conventions for tangent space are summarised in Appendix A.
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The corresponding vector fields ẽa ≡ eµa∂µ satisfy the algebra,

[ẽa, ẽb] = c c
ab ẽc , (4.3.13)

with,

c0
10 = Λ = −c0

01 , (4.3.14)

being the only non vanishing anholonomy coefficients. Note that the anholonomy coef-

ficients are constants independent of the spacetime coordinates. We also note that the

sub-algebra generated by,

ẽ2 = ∂x , ẽ3 = ∂y , ẽ4 = ∂z , (4.3.15)

is isomorphic to the three dimensional Lie algebra,

[ẽ2, ẽ3] = 0 , [ẽ2, ẽ4] = 0 , [ẽ3, ẽ4] = 0 , (4.3.16)

which belongs to the Bianchi I class in the classification of real Lie algebras of dimen-

sion three [117–119]. In the next section, we explore the connection between constant

anholonomy and homogeneous spaces.

4.4 Constant Anholonomy and Homogeneity

Towards the end of the previous section, we saw that the AdS 2 × R
3 solution has con-

stant anholonomy coefficients and that the vector fields ẽa along the spatial directions are

generators of a Lie algebra belonging to Bianchi Type I. Since we will be studying the

attractors characterised by constant anholonomy in chapter 6, we would like to emphasise

the relation between constant anholonomy and metrics with homogeneous symmetries.

First, we explain the concept of homogeneous symmetries through a simple example.
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Homogeneous symmetries are those which connect two different points on a manifold by a

continuous transformation. In general, the generators of such symmetries do not commute

which leads to a Lie algebraic structure [118]. For example, consider the following vector

fields on a three dimensional euclidean space [7],

ξ1 = ∂y , ξ2 = ∂z , ξ3 = ∂x + y∂z − z∂y . (4.4.1)

This corresponds to the helical motion of a particle with translation along the x direction

and rotations in the (y, z) plane. The vector fields close to form an algebra,

[ξ1, ξ2] = 0 , [ξ1, ξ3] = ξ2 , [ξ2, ξ3] = −ξ1 . (4.4.2)

Note the Lie algebraic structure and that the structure constants (anholonomy coefficients)

are independent of space time coordinates. We will see later in §4.5 that this is isomorphic

to the Bianchi VII Lie algebra. If there is a d dimensional metric with a subset of three

Killing vectors that generate the above symmetries, the metric has a three dimensional

homogeneous subspace with Bianchi VII symmetry.

We would also like to explain that homogeneity follows from the assumption of con-

stant anholonomy. This will lead to an understanding of why metrics with homogeneous

subspaces arise as generalised attractors characterised by constant anholonomy coeffi-

cients [14]. In this section, we will assume a generic ansatz for the metric belonging to

Bianchi type I, impose constant anholonomy and then determine the restrictions it puts on

the form of the metric. We will focus on five dimensional metrics with three dimensional

homogeneous subspaces as we expect these geometries to be attractors in five dimensional

gauged supergravity.

Let us consider a black brane metric of the form,

ds2 = −a(r̃)2dt̃2 +
dr̃2

b(r̃)2 + c(r̃)2dx̃2 + d(r̃)2dỹ2 + e(r̃)2dz̃2 , (4.4.3)
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where a(r̃), b(r̃), c(r̃), d(r̃) and e(r̃) are all functions of r̃. The fünfbein for the metric are

given by,

e0
t̃ = a(r̃) , e1

r̃ =
1

b(r̃)
, e2

x̃ = c(r̃) , e3
ỹ = d(r̃) , e4

z̃ = e(r̃). (4.4.4)

The only independent non-vanishing anholonomy coefficients (A.0.2) are,

c 0
01 = b(r̃)

a′(r̃)
a(r̃)

, c 2
21 = b(r̃)

c′(r̃)
c(r̃)

, c 3
31 = b(r̃)

d′(r̃)
d(r̃)

, c 4
41 = b(r̃)

e′(r̃)
e(r̃)

, (4.4.5)

where the prime indicates derivative with respect to r̃. Demanding constant anholonomy

coefficients leads to the following equations,

a′(r̃)
a(r̃)

=
C0

b(r̃)
,

c′(r̃)
c(r̃)

=
C2

b(r̃)
,

d′(r̃)
d(r̃)

=
C3

b(r̃)
,

e′(r̃)
e(r̃)

=
C4

b(r̃)
, (4.4.6)

where C0,C2,C3,C4 are the constant values of the anholonomy coefficients. Since we

have assumed all the unknown functions to be pure functions of r̃, we may treat the above

partial differential equations as ordinary differential equations.

Let us consider some specific cases to simplify the problem. The first case, b(r̃) = a(r̃)

leads to the near horizon geometry of the extremal AdS Reissner-Nordstrom black hole.

case i) b(r̃) = a(r̃) : The metric takes the following form,

ds2 = −C2
0r2dt2 +

dr2

C2
0r2

+ r2 C2
C0 dx2 + r2 C3

C0 dy2 + r2 C4
C0 dz2 . (4.4.7)

where r = r̃ + a0
C0

and (x, y, z) = (a2 x̃, a3ỹ, a4z̃). Here all the ai are integration constants.

The metric (4.4.7) is the near horizon geometry of the extremal Reissner-Nordstrom black

brane (4.3.11) with the identifications C0 =
√

Λ,C2 = C3 = C4 = 0.

case ii) b(r̃) = c(r̃) : Solving for the other functions, the metric takes the form,

ds2 = −r2 C0
C2 dt2 +

dr2

C2
2r2

+ r2C2
2dx2 + r2 C3

C2 dy2 + r2 C4
C2 dz2 . (4.4.8)
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where r = r̃ + a2
C2

and (t, x, y, z) = (a0t̃, x̃, a3ỹ, a4z̃) and the ai’s are all integration constants.

The metric (4.4.8) is called the anisotropic Lifshitz metric [125, 126] and can be put in a

familiar form by choosing C0 = u0
L ,C2 = 1

L ,C3 = u1
L ,C4 = u2

L and a0 = 1
Lu0 , a3 = 1

Lu1 , a4 =

1
Lu2 to get,

ds2 = L2
[
− r̂2u0dt̂2 +

dr̂2

r̂2 + r̂2dx̂2 + r̂2u1dŷ2 + r̂2u2dẑ2
]
. (4.4.9)

The isotropic Lifshitz metric [47] can be obtained by choosing C0 = u0
L ,C2 = C3 =

C4 = 1
L and a0 = 1

Lu
0
, a3 = a4 = 1

L , where L is the size of the spacetime. Redefining

t̂ = Lt, (r̂, x̂, ŷ, ẑ) = 1
L (r, x, y, z), one gets the standard Lifshitz metric,

ds2 = L2
[
− r̂2u0dt̂2 +

dr̂2

r̂2 + r̂2(dx̂2 + dŷ2 + dẑ2)
]
. (4.4.10)

Thus, one can see that constant anholonomy requires the extremal black brane metric

(4.4.3) to have a specific form such as (4.4.7) or (4.4.8). We now argue that metrics with

constant holonomy are homogeneous spaces.

The hypersurfaces on which the algebra of vectors ẽi, i = 1, 2, 3 , (see Appendix A)

have constant anholonomy coefficients are called surfaces of transitivity and the vectors

ẽi generate a simply transitive group. It is known that for homogeneous spacetimes with

space-like hypersurfaces of dimension three, there exists Lie groups of symmetries that

act simply transitively on the surfaces [127]. Thus the algebra of the invariant vectors

(A.0.2) can be shown to be isomorphic to the real Lie algebras of dimension three, which

were classified by Bianchi [117]. The three dimensional real Lie algebras are of nine

types labelled Bianchi I-IX. These symmetries are realised in homogeneous spaces where

the Killing vectors generate an isomorphic Lie algebra.

Consider a basis of Killing vectors that generate a simply transitive group of dimension

three. These Killing vectors have the algebra,

[ξµ, ξν] = C̃ λ
µν ξλ . (4.4.11)
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For each of the Bianchi classes, one can go to a suitable basis and construct invariant

vector fields ẽi that commute with the Killing vectors,

[ξµ, ẽi] = 0 . (4.4.12)

Now, the Jacobi identity between (ẽi, ξµ, ξν) implies C̃ λ
µν are constants in spacetime. These

are the structure constants of the three dimensional real Lie algebras given by the Bianchi

classification. The Jacobi identity between (ẽi, ẽ j, ξµ) together with (4.4.12) imply that the

anholonomy coefficients c k
i j are constants on the surface of transitivity.

Alternatively, given that the invariant one form have an algebra (A.0.2) with constant

anholonomy coefficients, [119] have shown that (4.4.12) is satisfied by three independent

Killing vectors, provided the following conditions are satisfied:

c 0
0i = c 0

i j = 0 . (4.4.13)

A quick look at the metric (4.4.3), its vielbeins and non-vanishing anholonomy coeffi-

cients shows that both the conditions hold good for all i, j = 1, 2, 3. This implies (4.4.12)

is satisfied for the spatial directions (x, y, z), which means that these directions are ho-

mogeneous. We have used a simple class belonging to Bianchi type I to illustrate the

connection between constant anholonomy coefficients and homogeneous spaces. This

argument equally applies to all the Bianchi classes. In the next section, we list the vari-

ous Bianchi type algebras, their structure constants, and briefly give an overview of the

construction of metrics with these symmetry groups along the spatial directions [7].

4.5 Bianchi classification

In this section, we illustrate the construction of the five dimensional black brane horizons

with homogeneous symmetries in the spatial directions [7]. To ensure that the metric
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has the required symmetries it is written in terms of invariant one forms ωi dual to the

invariant vectors ẽi. The invariant one forms satisfy the relation,

dωk =
1
2

c k
i j ω

i ∧ ω j . (4.5.1)

The rest of the metric has to be fixed by demanding additional symmetries. Assuming

time translational symmetries requires the metric to be time independent and requiring

scaling symmetries of the form,

r̂ → λr̂ , t̂ → λ−u0 t̂ , ωi → λ−uiωi , (4.5.2)

fixes the metric to be of the form,

ds2 = L2
[
−r̂2u0dt̂2 +

dr̂2

r̂2 + r̂2(ui+u j)ηi jω
i ⊗ ω j

]
, (4.5.3)

where u0, ui are positive in order to have a regular horizon, i = 1, 2, 3 corresponds to the

x̂, ŷ, ẑ directions and ηi j is a constant diagonal metric independent of spacetime coordi-

nates. Note that the scaling symmetries in ωi are determined by scaling (x̂, ŷ, ẑ). The

nature of the one forms will dictate what powers of r̂ that will appear to have the required

scale invariance of the metric. In fact, this can be determined just by looking at the Killing

vectors that generate the homogeneous symmetries and we explain this below.

Bianchi I

We have already discussed this class in the previous section, here we get the general form

of the metric (4.4.7) from symmetry considerations. The symmetry group of the Bianchi

I class is isomorphic to the three dimensional translational group. It is also the symmetry

group of the flat Friedmann-Lemaître-Robertson-Walker (FLRW) universe. The Bianchi

I class is also the most simplest among the Bianchi classes and is generated by the Killing
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vectors ξi which commute with each other. The Killing vectors, invariant vector fields,

invariant one forms and structure constants are,

c k
i j = 0 , dωi = 0 ,

ξ1 = ∂x̂ = ẽ1 , ω1 = dx̂ ,

ξ2 = ∂ŷ = ẽ2 , ω2 = dŷ ,

ξ3 = ∂ẑ = ẽ3 , ω3 = dẑ . (4.5.4)

As one can see from above, demanding scale invariance in the directions is possible with

the weights,

(x̂, ŷ, ẑ)→ (λ−u1 x̂, λ−u2 ŷ, λ−u3 ẑ) , (4.5.5)

and the one forms scale as,

(ω1, ω2, ω3)→ (λ−u1ω1, λ−u2ω2, λ−u3ω3) . (4.5.6)

Hence the most general metric of Bianchi type I with the scale invariance (4.5.2) along

all the directions is given by,

ds2 = L2
[
− r̂2u0dt̂2 +

dr̂2

r̂2 + r̂2u1(ω1)2 + r̂2u2(ω2)2 + r̂2u3(ω3)2
]
. (4.5.7)

We see that symmetries are quite powerful and the most general form of the Bianchi I

type has been determined by requiring homogeneous symmetries and scale invariance.

The AdS metric is a special example of this type, with u0 = u1 = u2 = u3 = 1. We also

saw earlier that the Lifshitz and AdS 2 × R
3 are examples of this class.
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Bianchi II

The Bianchi II group is called the Heisenberg group of symmetries. The Killing vectors,

invariant vector fields, invariant one forms and structure constants are,

c 1
23 = 1 = −c 1

32 ,

ξ1 = ∂ŷ , ẽ1 =∂ŷ , ω1 =dŷ − x̂dẑ, dω1 =ω2 ∧ ω3 ,

ξ2 = ∂ẑ , ẽ2 =x̂∂ŷ + ∂ẑ , ω2 =dẑ , dω2 =0 ,

ξ3 = ∂x̂ + ẑ∂ŷ , ẽ3 =∂x̂ , ω3 =dx̂ , dω3 =0 . (4.5.8)

This time we see that the scale invariance is different. The coordinates scale as,

(x̂, ŷ, ẑ)→ (λ−u1 x̂, λ−(u1+u3)ŷ, λ−u3 ẑ) , (4.5.9)

so that the invariant one forms scale as,

(ω1, ω2, ω3)→ (λ−(u1+u3)ω1, λ−u3ω2, λ−u1ω3) , (4.5.10)

which fixes the form of the metric to be,

ds2 = L2
[
− r̂2u0dt̂2 +

dr̂2

r̂2 + r̂2(u1+u3)(ω1)2 + r̂2u3(ω2)2 + r̂2u1(ω3)2
]
. (4.5.11)

Bianchi VIh, V and III

We discuss the Bianchi VIh group of symmetries in detail, the Bianchi VIh algebra is

labelled by one arbitrary unfixed parameter h , 0, 1, which is constant and independent

of the coordinates. The Bianchi III algebra is recovered when h = 0 and Bianchi V is

recovered when h = 1. The Killing vectors, invariant vector fields, invariant one forms
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and structure constants are,

c 1
13 = 1 , c 2

23 = h ,

ξ1 = ∂ŷ , ẽ1 =ex̂∂ŷ , ω1 =e−x̂dŷ , dω1 =ω1 ∧ ω3 ,

ξ2 = ∂ẑ , ẽ2 =ehx̂∂ẑ , ω2 =e−hx̂dẑ , dω2 =hω2 ∧ ω3 ,

ξ3 = ∂x̂ + ŷ∂ŷ + hẑ∂ẑ , ẽ3 =∂x̂ , ω3 =dx̂ , dω3 =0 . (4.5.12)

As one can see from above, there is no scaling possible in the x direction for all the three

classes. The scaling in the other directions are,

(x̂, ŷ, ẑ)→ (x̂, λ−u2 ŷ, λ−u3 ẑ) , (4.5.13)

and the one forms scale as,

(ω1, ω2, ω3)→ (λ−u2ω1, λ−u3ω2, ω3) , (4.5.14)

which fix the metric to be of the form,

ds2 = L2
[
− r̂2u0dt̂2 +

dr̂2

r̂2 + r̂2u2(ω1)2 + r̂2u3(ω2)2 + (ω3)2
]
. (4.5.15)

The Bianchi III and V classes are recovered by taking h = 0 and h = 1 respectively.

The Bianchi V class has a cosmological significance, it is the symmetry group of an open

FLRW universe.

Bianchi IV

This is yet another class where scale invariance is not present in the x̂ direction. The

structure constants are given by,

c 1
13 = c 1

23 = c 2
23 = 1 . (4.5.16)
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The Killing vectors and the invariant vector fields are,

ξ1 = ∂ŷ , ẽ1 =ex̂∂ŷ ,

ξ2 = ∂ẑ , ẽ2 =x̂ex̂∂ŷ + ex̂∂ẑ ,

ξ3 = ∂x̂ + (ŷ + ẑ)∂ŷ + ẑ∂ẑ , ẽ3 =∂x̂ . (4.5.17)

The invariant one forms are,

ω1 = e−x̂dŷ − x̂e−x̂dẑ , dω1 =ω1 ∧ ω3 + ω2 ∧ ω3 ,

ω2 = e−x̂dẑ , dω2 =ω2 ∧ ω3 ,

ω3 = dx̂ , dω3 =0 . (4.5.18)

The scaling symmetries in the other directions are,

(x̂, ŷ, ẑ)→ (x̂, λ−u2 ŷ, λ−u2 ẑ) , (4.5.19)

and the one forms scale as,

(ω1, ω2, ω3)→ (λ−u2ω1, λ−u2ω2, ω3) , (4.5.20)

which fix the metric to be of the form,

ds2 = L2
[
− r̂2u0dt̂2 +

dr̂2

r̂2 + r̂2u2((ω1)2 + (ω2)2) + (ω3)2
]
. (4.5.21)

Bianchi VII0

This class is a favourite example since its symmetries have a nice physical description.

The algebra of the Bianchi VIIh class has an arbitrary unfixed constant parameter as in the
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previous case. We consider the h = 0 case in this section. The structure constants are,

c 1
32 = c 2

13 = 1 . (4.5.22)

The Killing vectors and invariant vector fields are given by,

ξ1 = ∂ŷ , ẽ1 = cos(x̂)∂ŷ + sin(x̂)∂ẑ ,

ξ2 = ∂ẑ , ẽ2 = − sin(x̂)∂ŷ + cos(x̂)∂ẑ ,

ξ3 = ∂x̂ − ẑ∂ŷ + ŷ∂ẑ , ẽ3 =∂x̂ . (4.5.23)

The invariant one forms are given by,

ω1 = cos(x̂)dŷ + sin(x̂)dẑ , dω1 = − ω2 ∧ ω3 ,

ω2 = − sin(x̂)dŷ + cos(x̂)dẑ , dω2 =ω1 ∧ ω3 ,

ω3 = dx̂ , dω3 =0 . (4.5.24)

We see again that there is no scaling in the x̂ direction and the ŷ, ẑ directions scale uni-

formly as,

(x̂, ŷ, ẑ)→ (x̂, λ−u2 ŷ, λ−u2 ẑ) , (4.5.25)

and the one forms scale as,

(ω1, ω2, ω3)→ (λ−u2ω1, λ−u2ω2, ω3) , (4.5.26)

which fix the metric to be of the form,

ds2 = L2
[
− r̂2u0dt̂2 +

dr̂2

r̂2 + r̂2u2(α(ω1)2 + (ω2)2) + (ω3)2
]
. (4.5.27)

We have put an arbitrary constant parameter α , 0 just to highlight the difference with

the Bianchi type I. As one can see from the invariant one forms (4.5.24), (ω1)2 + (ω2)2 =
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dŷ2 + dẑ2 and when α = 1, this becomes a special case of the Bianchi I types (4.5.7). The

physical description of the symmetry group is as follows. The Killing vector ξ3 generates

translations along x̂ and rotations along the (ŷ, ẑ) plane. One full rotation in the (ŷ, ẑ) plane

corresponds to a translation of 2πL along the x̂ direction giving rise to a helical motion.

In this case, the size of the spacetime L has a physical description as the pitch of the helix.

Bianchi VIII

This is the first class that we deal with which gives rise to a metric with no scaling sym-

metry along all the three spatial directions! The structure constants are,

c 1
32 = c 2

31 = c 3
12 = 1 .

The Killing vectors and the invariant vector fields are given by,

ξ1 =
1
2

e−ẑ∂x̂ +
1
2

(eẑ − ŷ2e−ẑ)∂ŷ − ŷe−ẑ∂ẑ , ẽ1 =
1
2

(1 + x̂2)∂x̂ +
1
2

(1 − 2x̂ŷ)∂ŷ − x̂∂ẑ ,

ξ2 = ∂ẑ , ẽ2 = − x̂∂x̂ + ŷ∂ŷ + ∂ẑ ,

ξ3 =
1
2

e−ẑ∂x̂ −
1
2

(eẑ + ŷ2e−ẑ)∂ŷ − ŷe−ẑ∂ẑ , ẽ3 =
1
2

(1 − x̂2)∂x̂ +
1
2

(−1 + 2x̂ŷ)∂ŷ + x̂∂ẑ .

(4.5.28)

The invariant one forms are given by,

ω1 = dx̂ + (1 + ŷ2)dŷ2 + (x̂ − ŷ − x̂2ŷ)dẑ , dω1 = − ω2 ∧ ω3 ,

ω2 = 2x̂dŷ + (1 − 2x̂ŷ)dẑ , dω2 =ω3 ∧ ω1 ,

ω3 = dx̂ + (−1 + x̂2)dŷ2 + (x̂ + ŷ − x̂2ŷ)dẑ , dω3 =ω1 ∧ ω2 . (4.5.29)

74



This class has no scaling along any of the x̂, ŷ, ẑ directions with homogeneous symmetries.

The metric then takes the form,

ds2 =

[
− r̂2u0dt̂2 +

dr̂2

r̂2 + (ω1)2 + (ω2)2 + (ω3)2
]
. (4.5.30)

The interesting thing about this metric is it factorises as Li f2(u0) × MVIII , where Li f2(u0)

is the two dimensional Lifshitz metric and MVIII is the metric written in terms of invariant

one forms respecting the symmetry group of Bianchi VIII.

Bianchi IX

The symmetry group of this class is isomorphic to the three dimensional rotational group

S O(3,R). The structure constants are,

c 1
23 = c 2

31 = c 3
12 = 1 . (4.5.31)

The Killing vectors and invariant vector fields are given by,

ξ1 = ∂ŷ , ẽ1 = − sin(ẑ)∂x̂ +
cos(ẑ)
sin(x̂)

∂ŷ − cot(x̂) cos(ẑ)∂ẑ,

ξ2 = cos(ŷ)∂x̂ − cot(x̂) sin(ŷ)∂ŷ +
sin(ŷ)
sin(x̂)

∂ẑ , ẽ2 = cos(ẑ)∂x̂ +
sin(ẑ)
sin(x̂)

∂ŷ − sin(ẑ) cot(x̂)∂ẑ ,

ξ3 = − sin(ŷ)∂x̂ − cot x̂ cos(ŷ)∂ŷ +
cos(ŷ)
sin(x̂)

∂ẑ , ẽ3 =∂ẑ . (4.5.32)

The invariant one forms are given by,

ω1 = − sin(ẑ)dx̂ + sin(x̂) cos(ẑ)dŷ, dω1 =ω2 ∧ ω3 ,

ω2 = cos(ẑ)dx̂ + sin(x̂) sin(ẑ)dŷ, dω2 =ω3 ∧ ω1 ,

ω3 = cos(x̂)dŷ + dẑ, dω3 =ω1 ∧ ω2 . (4.5.33)
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This time again there are no scaling symmetries in the (x̂, ŷ, ẑ) directions and the metric

factorises into Li f2(u0) × MIX,

ds2 =

[
− r̂2u0dt̂2 +

dr̂2

r̂2 + (ω1)2 + (ω2)2 + (ω3)2
]
. (4.5.34)

Metrics with Bianchi IX symmetries have the symmetry group S O(3,R). In 3 + 1 dimen-

sions metrics of such type have been extensively studied in cosmology. In fact, the closed

FRW universe has the Bianchi IX symmetry and describes an anisotropic universe with

rotating matter.

So far, we discussed the various symmetry classes in the Bianchi classification and used

simple scaling symmetry requirements to arrive at metrics which respect these symme-

tries. It is well known that the near horizon geometries of black holes independently solve

the field equations. It has been shown in [7] that many of these solutions can be recovered

from simple matter systems like gravity coupled to massive gauge fields. In chapter 6,

we will use this information to construct some of the Bianchi type solutions from gauged

supergravity.

We end this chapter with an observation. If we did not demand scale invariance along the

(x̂, ŷ, ẑ) directions, but keep the scale invariance along (r̂, t̂) directions the metric (4.5.3)

splits into a direct product form as,

ds2 = L2
[
−r̂2u0dt̂2 +

dr̂2

r̂2 + ηi jω
i ⊗ ω j

]
. (4.5.35)

We call this subset of metrics as Li fu0(2) ⊗ M, where Li fu0(2) is the two dimensional Lif-

shitz metric and M corresponds to the spatial part of the metrics that display homogeneous

symmetries labelled as MI ,MII , . . .MIX.
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4.6 Summary

In this chapter, we studied black holes in Anti de-Sitter space. We started by studying the

Schwarzschild and Reissner-Nordstrom black holes in this background. We then studied

the black brane limit of the Schwarzschild black hole and the near horizon geometry of

the extremal Reissner-Nordstrom black brane. We also observed that the near horizon

geometry of the extremal Reissner-Nordstrom black brane takes the form AdS 2 ×R
3, and

in addition has constant anholonomy coefficients.

We then studied some of the properties of the near horizon geometry. Especially we

observed starting with the assumption of constant anholonomy in a simple example and

obtained the most general metric type consistent with scale invariance and the symme-

tries of Bianchi I class. We then explained the relation between constant anholonomy

and homogeneous spaces. We saw that the various Bianchi classes indeed have constant

anholonomy coefficients and discussed the homogeneous extremal black brane horizons

classified by the Bianchi classification in detail.

We saw that a simple requirement demanding scale invariance and homogeneity along

various directions was sufficient to fix the most general form of the metric. We observed

that when we demand scale invariance only along the radial and time directions, the most

general metric consistent with these symmetries split into a direct product form which is

reminiscent of near horizon geometries of extremal black holes.

As an end note, we feel it is important to mention that not all of the Bianchi class metrics

have been realised as near horizon geometries as extremal Black branes. Numerically, so-

lutions interpolating between one of the Bianchi classes and AdS 5 have been found in [7].

An analytic interpolating black hole solution is still lacking except for familiar cases like

AdS 2 × R
3. Such interpolating solutions would be very valuable both for understanding

the attractor mechanism in AdS spaces as well as for studying field theory renormalisation

group flows in the dual gravity side.
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Chapter 5

Gauged supergravity

5.1 Introduction

In chapter 4, we studied five dimensional homogeneous brane geometries classified by

the Bianchi classification. In a recent work, Bianchi I type geometries such as the Lifshitz

solution where embedded in N = 2, d = 4 gauged supergravity using the generalised

attractors procedure [14]. In this approach, one sets the bosonic fields in the theory to

be constants in tangent space, which results in solvable algebraic field equations. We

wish to extend the study to five dimensions and also realise the Bianchi type metrics

as generalised attractor solutions. This requires some background in five dimensional

gauged supergravity which we provide in this chapter.

Gauged supergravities are supersymmetry preserving deformations of ungauged super-

gravity. The deformations are implemented by promoting some of the global symmetries

of the ungauged theory to local symmetries. Gaugings are usually done by coupling the

symmetry generators to corresponding gauge fields. The first example of gauged super-

gravity was obtained by gauging the S O(8)R global symmetry of N = 8 supergravity

[128]. Gauged supergravities with non-compact gaugings were constructed in [129–131]

and generalisation to higher dimensions were constructed in [132–134]. More recently,
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gauged supergravities are understood as low energy effective theories that describe flux

compactifications of string theory. For example, the low energy theory from Type IIB

string theory compactified on a Calabi-Yau manifold in the presence of Ramond-Ramond

and Neveu-Schwarz fluxes for the three form fields is a N = 2, d = 4 gauged supergrav-

ity [8–10].

Ungauged supergravity contains free scalar fields called moduli that take values on a

moduli space. The moduli parametrise a non-linear sigma model that defines a mani-

fold. For example, the non-linear sigma model for the scalars in the vector multiplet of

N = 2, d = 4 supergravity defines a Kähler manifold [135]. While in N = 2, d = 5

supergravity, the corresponding scalar manifold is real and very special [136, 137]. The

scalars in the hypermultiplet parametrise a quaternionic manifold in both cases [138].

When the symmetries of the scalar manifold leave the non-linear sigma model invariant,

they often extend to symmetries of the full Lagrangian. For example, in four dimensions

the symmetries of the scalar manifold always extend to symmetries of the full supersym-

metric Lagrangian, whereas in five dimensions symmetries of the scalar manifold can

sometimes be broken by supergravity interactions [139]. The R-symmetry group, which

is an automorphism of the Poincaré superalgebra is another global symmetry of the the-

ory. Gauged supergravity is obtained by gauging some or all of the global symmetries of

supergravity.

In the context of the AdS/CFT correspondence [11], gauged supergravity generically de-

scribes the supergravity regime of the bulk theory. This is due to the fact that many gauged

supergravities support an AdS vaccum due to the presence of non-trivial potentials for the

scalar fields in the theory. The potential terms are of the order O(g2), where g is the

gauge coupling constant. Supersymmetry requires the presence of the potential term to

compensate for the additional terms that appear in the covariant derivatives of gauged su-

pergravity. When the scalar fields take their extremum, the value of the potential sets the

cosmological constant of the theory. For example, theN = 8, d = 5 S O(6) gauged super-
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gravity [134] describes type IIB supergravity compactified on AdS 5×S 5. According to the

AdS/CFT correspondence [11] this theory is dual to the four dimensional S U(N),N = 4

super Yang-Mills theory as discussed in the introduction of the thesis.

In this chapter, we describe the necessary background in five dimensional gauged super-

gravity. We begin with a discussion on the global symmetries of the ungauged theory in

§5.2. We discuss the global symmetries of the very special, quaternionic manifolds and

the R symmetry. We then follow up with a discussion of gauged supergravity in §5.3. In

particular, we focus on N = 2, d = 5 gauged supergravity coupled to vector, tensor and

hypermultiplets [12, 13,140]. Towards the end of the chapter we discuss a simple gauged

supergravity model with one vector multiplet in §5.4. Useful supplementary material is

provided in §C.

5.2 N = 2, d = 5 supergravity

5.2.1 Field content

The N = 2, d = 5 ungauged supergravity, often called as Maxwell-Einstein supergravity

was constructed in [132, 134, 136]. The field contents of the theory are the following.

• The gravity multiplet contains the graviton ea
µ, two gravitinos ψi

µ and a graviphoton.

• The vector multiplet contains a vector field Aµ, S U(2)R doublet of fermions (gaug-

inos) λi and a real scalar field φ.

• The hyper multiplet contains a doublet of fermions (hyperinos) ζA with A = 1, 2

and four real scalars qX with X = 1, . . . , 4.

The nV vector multiplets together with the graviphoton constitute nV + 1 vectors AI
µ, I =

0, . . . , nV . The vector multiplet contains nV scalars φx, x = 1, 2, . . . , nV and the hyper mul-
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tiplet contains 4nH scalars qX, with X = 1, 2, . . . 4nH. The bosonic part of the Lagrangian

is given by,

ê−1LN=2
Bosonic = −

1
2

R −
1
4

aIJF I
µνF

Jµν −
1
2

gXY∂µqX∂µqY −
1
2

gxy∂µφ
x∂µφy

+
ê−1

6
√

6
CIJKε

µνρστF I
µνF

J
ρσAK

τ , (5.2.1)

where ê =
√
−detgµν , aIJ is the ambient metric used to raise and lower the vector

indices, gxy is the metric on the scalar manifold and gXY is the metric on the quaternionic

manifold. The coefficients CIJK that appear with the Chern-Simons term are constant

symmetric tensors.

5.2.2 Global Symmetries

The scalars in the theory parametrise a manifold that factorises into direct product of a

very special and a quaternionic manifold,

Mscalar = S(nv) ⊗ Q(nH) . (5.2.2)

Some important references for this section are [12, 140–143].

Very special Manifold

The scalars in the vector multiplet are real and parametrise a very special manifold in five

dimensions. A very special manifold S is a real n dimensional manifold defined by the

hypersurface,

N ≡ CIJKhIhJhK = 1 , (5.2.3)
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where the hI ≡ hI(φ) are co-ordinates in Rn+1. The metric on the very special manifold is

given by the pullback of the metric on Rn+1,

ds2
Rn+1 = aIJdhI ⊗ dhJ , (5.2.4)

aIJ = −
1
2
∂

∂hI

∂

∂hJ ln N
∣∣∣∣∣
N=1

.

In a given co-ordinate frame, the metric on the scalar manifold gxy is then defined as,

gxy = hI
xh

J
y aIJ ,

aIJ = hIhJ + hx
I hy

Jgxy , (5.2.5)

where hI
x are defined by,

∂hI

∂φx ≡ hI,x =

√
2
3

hIx,
∂hI

∂φx ≡ hI
,x = −

√
2
3

hI
x . (5.2.6)

In supergravity one often works in the frame language and the following relations are

useful,

f a
x f b

y ηab = gxy ,

f a
[x,y] + Ωab

[y f b
x] = 0 . (5.2.7)

Here f a
x and Ωab

y are the nV-bein and the spin connection on S respectively. The indices

a, b are flat indices and ηab is the flat metric with signature {−,+, . . .}.

The symmetries of the scalar manifold are the transformations that leave (5.2.3) invariant.

These symmetries can be made manifest when the kinetic term of the scalars in the vector

multiplet,

−
1
2

gxy∂µφ
x∂µφy , (5.2.8)

is written in terms of hI . The completeness relations (5.2.5) can be used to rewrite the
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kinetic term as,

−
1
2

aIJhI
xh

J
y∂µφ

x∂µφy = −
3
4

aIJhI
,xh

I
,y∂µφ

x∂µφy = −
3
4

aIJ∂µhI∂µhJ . (5.2.9)

The definition of the ambient metric (5.2.4) can be simplified to obtain aIJ = 3
2CIJKhK ,

using the relations CIJKhJhK = 1
α
hI and CIJKhK = 1

α2 hIhJ, where α = hIhI . Using the

above relations the scalar kinetic term takes the form,

−
1
2

gxy∂µφ
x∂µφy = −

9
8

CIJKhI∂µhJ∂µhK . (5.2.10)

In this form, the scalar kinetic term manifestly exhibits the symmetries of the scalar man-

ifold. Consider a group of linear transformations,

hI → BI
JhJ . (5.2.11)

These are symmetries of the scalar manifold if (5.2.3) is invariant, which requires the CIJK

to transform as,

BM
I BN

J BP
KCMNP = CIJK . (5.2.12)

From (5.2.10) and (5.2.12), it is clear that (5.2.11) are symmetries of the sigma model.

The transformations (5.2.11) extend to the full Lagrangian (5.2.1) provided the gauge

fields transform as,

AI → BI
JAJ . (5.2.13)

This can be seen by using the relation aIJ = 3
2CIJKhK and (5.2.12) in the kinetic term for

the gauge fields. Thus the symmetries of the scalar manifold are global symmetries of

the Lagrangian. Note that so far the CIJK are unspecified and arbitrary. Due to this, for

a fixed number of vector multiplets several target manifolds are possible. In fact, from

(5.2.12) it is evident that the classification of the CIJK (with (5.2.3) satisfied) is equivalent

to classification of the very special manifolds. This approach has been pursued in the
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literature and the classification of symmetric very special manifolds was done in [136,

144, 145]. This was extended to include very special manifolds that are homogeneous

spaces in [141].

As a simple example, consider the symmetric very special manifold which belongs to the

“generic Jordan class” in the classification with a coset structure [136, 137],

M =
S O(n − 1, 1) × S O(1, 1)

S O(n − 1)
, n ≥ 1 . (5.2.14)

The symmetry group of this manifold is given by G = S O(n − 1, 1) × S O(1, 1). This

symmetry group can be made manifest by choosing a suitable parametrisation to satisfy

the constraint (5.2.3). For example, in terms of co-ordinates ξI on Rn+1, (5.2.3) takes the

form [146],

N(ξ) =

(2
3

) 3
2

CIJKξ
IξJξK ,

=
√

2ξ0[(ξ1)2 − (ξ2)2 − (ξ3)2 − . . . − (ξn)2] . (5.2.15)

One can see that the symmetry group G is manifest in this parametrisation. Of course the

parametrisation also has to satisfy N(ξ) = 1, which can be solved in terms of the scalar

fields in the Lagrangian by choosing ξ ≡ ξ(φ) as,

ξ0 =
1

√
2||φ||2

,

ξ1 = φ1 ,

...

ξn = φn , (5.2.16)

where,

||φ||2 = (φ1)2 − (φ2)2 − . . . − (φn)2 , (5.2.17)

85



In any parametrisation, the scalar fields must be restricted to suitable domains such that

the metric on scalar manifold gxy and aIJ are positive definite. This ensures that the kinetic

terms in the Lagrangian (5.2.1) have proper sign. In principle, the above information is

sufficient to determine the metrics aIJ and gxy completely using (5.2.4) and (5.2.5) respec-

tively. We will show this in §5.4, where we consider a simple gauged supergravity model

with one vector multiplet and the very special manifold is an example of the symmetric

spaces discussed above.

Quaternionic Kähler manifold

The hypermultiplet in a N = 2 supergravity theory contains four real scalars which are

locally considered as components of a quaternion qX. For nH hypermultiplets, the qX

parametrise a quaternionic Kähler manifold1 Q endowed with a metric,

ds2 = gXY(q)dqX ⊗ dqY , X,Y = 1, 2, . . . 4nH , (5.2.18)

and three complex structures Jx that satisfy the quaternionic identity,

(Jx) Z
X (Jy) Y

Z = −δxy(Id) Y
X + ε xyz(Jz) Y

X , (5.2.19)

where x = 1, 2, 3. The metric on Q is hermitian with respect to Jx,

(Jx) X
V (Jx) Y

W gXY = gVW . (5.2.20)

The existence of a hermitian metric together with a complex structure defines a natural

two form on the manifold. This can be seen by multiplying the above equation with (Jx) V
Z ,

1Hypermultiplets can appear in rigid supersymmetric Yang-Mills theories as well as supergravity the-
ories. In the former case, the scalar manifold is HyperKähler, while in the latter it is Quaternionic. The
difference in the two cases lies in the curvature of the principal bundle.
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using (5.2.19) and defining Kx
XY = gYZ(Jx) Z

X to get,

Kx
WZ = −Kx

ZW , Kx = Kx
XYdqX ∧ dqY . (5.2.21)

The natural two form Kx on the quaternionic manifold is called a HyperKähler form. It

also implies that the manifold Q has a symplectic structure. Supersymmetry requires the

existence of an S U(2) principal bundle SU → Q and ωx is the connection on such a

bundle. The HyperKähler form is covariantly closed with respect to the connection ωx,

∇K ≡ dKx + ε xyzωy ∧ Kz = 0 . (5.2.22)

The curvature on the S U(2) bundle can then be defined as,

Ωx ≡ dωx +
1
2
ε xyzωy ∧ ωz . (5.2.23)

Hence, for quaternionic manifolds the curvature on the principal bundle is proportional to

the HyperKähler form,

Ωx = λKx , (5.2.24)

where λ is real number related to the scale of the Quaternionic manifold. Since the tangent

space is not flat, the holonomy group of Q is S U(2) ⊗ H with H ⊂ S p(2nH). One can

introduce Quaternionic vielbeins f X
iA (with i ∈ S U(2) and A ∈ S p(2nH)) as follows,

f X
iC f YC

j + f Y
iC f XC

j = gXYεi j ,

gXY f X
iA f Y

jB = εi jCAB ,

f X
iA f Yi

B + f Y
iA f Xi

B =
1

nH
gXYCAB , (5.2.25)

where εi j and CAB are S U(2) and S p(2nH) invariant tensors respectively [13].

As discussed above, the quaternionic manifold is Riemannian, has a complex structure
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and a compatible symplectic structure. Thus the quaternionic manifold is also a Käh-

ler manifold [105, 106]. The classification of homogeneous Quaternionic manifolds first

appeared in the mathematics literature in [147], and is further discussed in [141–143].

We now describe a simple example of a Quaternionic Kähler manifold [54, 105, 106],

S U(2, 1)
S U(2) × U(1)

, (5.2.26)

and illustrate its symmetries. As argued before, the quaternionic manifold is also Kähler

and hence the metric can be derived from a suitable Kähler potential. Following [54], let

us denote the quaternion qX = {V, σ, θ, τ} and define the variables,

S = V + θ2 + τ2 + iσ , C = θ − iτ . (5.2.27)

The Kähler potential has the form,

K = −
1
2

log(S + S̄ − 2CC̄) . (5.2.28)

The metric on Q is defined by,

gza z̄b =
∂2K

∂za∂z̄b
, za = S ,C . (5.2.29)

and simplifies to,

ds2 = e4K
[1
2

dS dS̄ + 2CC̄dCdC̄ − C̄dCdS̄ −CdC̄dS
]

+ e2KdCdC̄ . (5.2.30)

This can be rewritten in terms of the original co-ordinates qX = {V, σ, θ, τ} as,

ds2 =
1

2V2 (dV2 + (dσ + 2θdτ − 2τdθ)2) +
2
V

(dθ2 + dτ2) . (5.2.31)

The symmetries of this metric are the symmetries of the sigma model. The full set of
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Killing vectors kX
α given below generate an S U(2, 1) algebra [54].

k1 =



0

1

0

0


, k2 =



0

2θ

0

1


, k3 =



0

-2τ

1

0


, k4 =



0

0

-τ

θ


, k5 =



V

σ

θ/2

τ/2


,

k6 =



2Vσ

σ2 − (V + θ2 + τ2)2

σθ − τ(V + θ2 + τ2)

στ + θ(V + θ2 + τ2)


, k7 =



−2Vσ

−σθ + Vτ + τ(θ2 + τ2)

(V − θ2 + 3τ2)/2

−2θτ − σ/2


,

k8 =



−2Vτ

−στ − Vθ − θ(θ2 + τ2)

−2θτ + σ/2

(V + 3θ2 − τ2)/2


. (5.2.32)

The Killing vectors (k1, k2, k3) generate translations in the (σ, θ, τ) respectively, k4 gener-

ates rotations in (σ, τ), while k5 corresponds to dilatations and (k6, k7, k8) generate other

isometries of (5.2.31). The manifold (5.2.26) has the symmetry group S U(2)×U(1) , this

can be seen by rewriting the Killing vectors as,

T1 =
1
4

(k2 − 2k8) , T5 =
−i
2

(k1 − k6) ,

T2 =
1
4

(k3 − 2k7) , T6 =
−i
4

(k3 + 2k7) ,

T3 =
1
4

(k1 + k6 − 3k4) , T7 =
−i
4

(k2 + 2k8) ,

T4 = ik5, T8 =

√
3

4
(k1 + k4 + k6) . (5.2.33)
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Here, T1,T2,T3 generate the S U(2) algebra, T8 is the U(1) generator and T4,T5,T6,T7

generate S U(2,1)
U(2) .

R symmetry

The R-symmetry group, which is an automorphism of the Poincaré superalgebra is a

global symmetry of the supergravity theory. In this section, we motivate the S U(2) action

of the R symmetry group by describing the N = 2 superconformal algebra in d = 5

[148, 149]. The spinors in 5d are symplectic majorana and the conventions are described

in the appendix (B). According to Nahm’s classification [150], the bosonic subgroup of

the superconformal group is a direct product of the conformal group and the R symmetry

group. For N = 2, d = 5, the bosonic subgroup is S O(5, 2) × S U(2)R. The S O(5, 2)

conformal group generated by translations Pµ, Lorentz transformations Mµν, dilatations

D and special conformal transformations Kµ is given by,

[Mµν,Mλσ] = ηµ[λMσ]ν − ην[λMσ]µ ,

[Pµ,Mνλ] = ηµ[νPλ], [Kµ,Mνλ] = ηµ[νKλ] ,

[D, Pµ] = Pµ , [D,Kµ] = −Kµ ,

[Pµ,Kν] = 2(ηµνD + 2Mµν) . (5.2.34)

The R symmetry group S U(2)R is generated by,

U j
i = i(U1σ1 + U2σ2 + U3σ3) j

i , U i
i = 0, U j

i = −(U j
i )∗ , (5.2.35)

where Ui are real and σi are the usual Pauli matrices. The S U(2) algebra is given by,

[U j
i ,U

l
k ] = δ l

i U j
k − δ

j
k U l

i . (5.2.36)

90



The fermionic part is generated by the usual supersymmetry Qi and special supersymme-

try S i,

{Qiα,Q jβ} = −
1
2
δ

j
i (γµ) β

α Pµ, {S iα , S jβ} = −
1
2
δ

j
i (γµ) β

α Kµ ,

{Qiα, S jβ} = −
i
2

(δ j
i δ

β
α D + δ

j
i (γµν) β

α Mµ,ν + 3δ β
α U j

i ) . (5.2.37)

The action of the conformal group on the supersymmetries is given by,

[Mµν,Q i
α] = −

1
4

(γµνQi)α , [Mµν, S i
α] = −

1
4

(γµνS i)α ,

[D,Q i
α] =

1
2

Q i
α , [D, S i

α] = −
1
2

S i
α ,

[Kµ,Q i
α] = i(γµS i)α , [Pµ, S i

α] = −i(γµQi)α . (5.2.38)

Finally, The action of the R symmetry group on the fermionic generators is given by,

[U j
i ,Q

k
α ] = δ k

i Q j
α −

1
2
δ

j
i Q k

α ,

[U j
i , S

k
α ] = δ k

i S j
α −

1
2
δ

j
i S k

α , (5.2.39)

which is an S U(2) rotation. Thus in theN = 2 theories the R symmetry acts as an S U(2)

rotation on the fermions of the theory (the gravitino ψµi, gaugino λi and the hyperino ξi ).

So, far we have discussed the global symmetries of five dimensional N = 2 supergravity.

In the next section, we gauge the symmetries and describe gauged supergravity.

5.3 N = 2, d = 5 gauged supergravity

In the previous section, we saw the global symmetries of five dimensional supergravity.

This group of global symmetries is a direct product of the symmetry group of the very

special manifold and the quaternionic manifold. Let us call the isometry group of the
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scalar manifold as G. In addition, we also saw that there is an S U(2)R symmetry group.

The global symmetry group of N = 2, d = 5 supergravity is of the form G × S U(2)R.

In general one has various possibilities for constructing a gauged supergravity from an

ungauged supergravity.

Firstly, one can just gauge a subgroup of the R symmetry group. Note that the gauge fields

are inert under the R symmetry group as the group acts only on the fermions. Theories of

this type are called Maxwell-Einstein supergravity theories and possess a scalar potential

[137]. One can also gauge a subgroup of the symmetries of the scalar manifold K ⊂ G.

A subset of the gauge fields from the ungauged theory has to transform in the adjoint

representation of K so that they can act as Yang-Mills gauge fields. If such a group K

exists, the gauge fields can in general transform under K as,

Gauge f ields→ Ad j(K) + S inglets(K) + Nonsinglets(K) . (5.3.1)

For the singlets the structure constants of K are assumed to be zero and if K is abelian the

presence of singlets do not change anything. If some of the gauge fields are charged under

K, they lead to mass terms and break supersymmetry. This issue is resolved by dualising

the charged vectors to tensor fields satisfying self dual field equations [151]. We have

given some background on the origin of tensor multiplets in Appendix C. Finally, One

can do the most general gauging of the subgroups of S U(2)R and K ⊂ G simultaneously.

This leads to the most general gauged supergravity in five dimensions [13].

In this section, we review the most general gauged supergravity in five dimensions with

nV vector multiplets, nT tensor multiplets and nH hypermultiplets with a generic gauging

of the symmetries of the scalar manifold and gauging of U(1)R ⊂ S U(2)R R symmetry

group. Before proceeding further, we highlight some important differences of the five

dimensional theory as compared with the four dimensional theory. Usually, the gauging

can be described in terms of what is called as the momentum map associated with the

scalar manifold. For the d = 4,N = 2 theories the scalar manifold in the vector multiplet
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is special Kähler and there exists a momentum map for the isometries [140]. Whereas in

the case of d = 5 the scalar manifold in the vector multiplet is very special, real and non-

symplectic. Hence momentum maps do not exist for the isometries. However, the possible

symmetry groups for the very special manifold have been classified for the homogeneous

cases [141–143] and one need to identify the subgroup of these group of symmetries for

gauging. Another significant difference in the N = 2, d = 5 theory is the presence of

tensor multiplets which originate due to the gauging. 2 It is interesting to observe that the

quaternion structure is the same in both d = 4 and d = 5 theories. Consequently there

exist Killing prepotentials (i.e. there exist Killing vectors which are given in terms of

the derivatives of prepotentials) as in the case of four dimensional gauged supergravity.

We now discuss the gauging of global symmetries of the five dimensional supergravity

(5.2.1).

5.3.1 Gauging the symmetries

In the previous section, we studied the global symmetries if five dimensional N = 2 su-

pergravity. The global symmetry group G is a direct product of the group of symmetries

on the very special manifold S, the quaternionic Kähler manifold Q and the S U(2)R sym-

metry group. One then identifies a subgroup of symmetries K for gauging. The gauging

of symmetries on scalar manifolds is done by introducing Killing vectors K x̃
I (φ) and KX

I (q)

that act on S and Q,

φx̃ → φx̃ + ε IK x̃
I (φ) ,

qX → qX + ε IKX
I (q) , (5.3.2)

where ε I are infinitesimal parameters. Then one replaces the ordinary derivatives on scalar

and fermions by the K-covariant derivatives. The bosonic part of the theory then gets the

2See Appendix C for more details.
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following replacements [13, 18]:

∂µφ
x̃ → Dµφ

x̃ ≡ ∂µφ
x̃ + gAI

µK x̃
I (φ) ,

∂µqX → DµqX ≡ ∂µqX + gAI
µKX

I (q) ,

∇µBM
νρ → DµBM

νρ ≡ ∇µBM
νρ + gAI

µΛ
M
IN BN

νρ , (5.3.3)

where g is the gauge coupling and ∇µ is the Lorentz covariant derivative. The ΛM
IN are

constant matrices which are valued in certain representations of K. The derivatives acting

on the fermions are also modified, but they have additional terms due to the gauging of R

symmetry. In this case, the S U(2)R connection is replaced by,

ωi
j → ωi

j + gRAIP i
I j (q) , (5.3.4)

where gR is the S U(2)R gauge coupling and P j
Ii (q) are Killing prepotentials that exist due

to the quaternionic structure on the hypermultiplet sector. The fermions get the replace-

ments,

∇µψµi → ∇µψνi + gRAI
µP j

Ii (q)ψν j ,

∇µλ
ã
i → ∇µλ

ã
i + gRAI

µP j
Ii (q)λã

j + gAI
µLãb̃

I λ
b̃
i ,

∇µζ
A → ∇µζ

A + gAI
µω

A
IB (q)ζB , (5.3.5)

where gR is the gauge coupling constant associated with gauging of R symmetry and,

Lãb̃
I ≡ ∂

b̃K ã
I , ω A

IB (q) ≡ KIX;Y f XA
i f Yi

B . (5.3.6)

We have defined K ã
I = K x̃

I f ã
x̃ using the vielbein on scalar manifold (5.2.7), and the co-

variant derivative on KIX is with respect to the metric gXY on the quaternionic Kähler

manifold.
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5.3.2 Field content

The five dimensional supergravity with a generic gauging of the symmetries of the scalar

manifold and the S U(2) R symmetry was constructed by Ceresole and Dall’Agata [13].

The theory contains gravity coupled to vector, tensor and hyper multiplets. The gravity

multiplet contains the graviton ea
µ, two gravitinos ψi

µ and a graviphoton Aµ. The hyper-

multiplet contains a doublet of spin 1/2 fermions (hyperinos) ζA with A = 1, 2 and four

real scalars qX with X = 1, . . . , 4. The vector multiplet contains a vector field Aµ, S U(2)R

doublet of fermions (gauginos) λi and a real scalar field φ. The tensor multiplet contains

a massive antisymmetric self-dual tensor field Bµν, S U(2)R doublet of fermions λi and a

real scalar field φ.

To summarise, for nV vector, nT tensor and nH hypermultiplets the field content is given

by,

{e a
µ , ψi

µ , A
I
µ , B

M
µν , λ

iã , ζA , φx̃ , qX} . (5.3.7)

The scalars in the vector and tensor multiplets are collectively denoted by φx̃, where x̃ =

1, 2, . . . , nv + nT . The constraint equation (5.2.3) on the scalar fields is now written as ,

C Ĩ J̃K̃hĨhJ̃hK̃ = 1 , hĨ ≡ hĨ(φx̃) , (5.3.8)

where only CIJK and CIMN are non zero as required by supersymmetry. The vector field

index is I = 0, 1, . . . , nV and I = 0 refers to the graviphoton. The index M = 1, 2, . . . , nT

counts the number tensor multiplets. The vector and tensor field strengths are collectively

written asH Ĩ
µν = (F I

µν, B
M
µν) where Ĩ = (I,M).

The gauginos λiã in the vector and tensor multiplets transform as vectors under S O(nV +

nT ) and ã = 1, 2 . . . , nV + nT is a flat index. The quaternions qX, X = 1, 2, . . . 4nH are the

scalars in the nH hypermultiplets. The hyperinos ζA, A = 1, 2, . . . , 2nH form fundamental

representations of US p(2nH) and US p(2) ' S U(2). The conventions on the S U(2) tensor

ε i j are summarised in Appendix B.
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5.3.3 Lagrangian

The bosonic part of the five dimensional N = 2 gauged supergravity is given by,

ê−1LN=2
Bosonic = −

1
2

R −
1
4

aĨ J̃H
Ĩ
µνH

J̃µν −
1
2

gXYDµqXDµqY −
1
2

gx̃ỹDµφ
x̃Dµφỹ

+
ê−1

6
√

6
CIJKε

µνρστF I
µνF

J
ρσAK

τ +
ê−1

4g
εµνρστΩMN BM

µνDρBN
στ

−V(φ, q) , (5.3.9)

where ê =
√
−detgµν and ΩMN is a constant real symplectic matrix that satisfies the

following conditions,

ΩMN = −ΩNM , ΩMNΩNP = δP
M . (5.3.10)

Gauging the supergravity introduces a non-trivial scalar potential which is given by,

V(φ, q) = 2g2W ãW ã − g2
R[2Pi jPi j − Pã

i jP
ãi j] + 2g2NiAN

iA , (5.3.11)

where,

Pi j ≡ hIPIi j ,

Pã
i j ≡ hãIPIi j ,

W ã ≡

√
6

4
hIK x̃

I f ã
x̃ = −

√
6

8
ΩMNhã

MhN ,

N iA ≡

√
6

4
hIKX

I f Ai
X . (5.3.12)

The bosonic part of the supersymmetry transformation rules are:

δεψµi =
√

6∇µεi +
i
4

hĨ(γµνρεi − 4gµνγρεi)HνρĨ + igRγµε
jPi j ,

δελ
ã
i = −

i
2

f ã
x̃ γ

µεiDµφ
x̃ +

1
4

hã
Ĩγ

µνεiH
Ĩ
µν + gRε

jPã
i j + gW ãεi ,

δεζ
A = −

i
2

f A
iXγ

µε iDµqX + gε iNA
i . (5.3.13)
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The terms that are proportional to the gauge coupling constants in the supersymmetry

transformation are called fermionic shifts. These appear due to supersymmetric com-

pletion of the additional terms that appear due to gauging. A supersymmetric ward

identity relates the potential V(φ, q), the gravitino mass matrix Pi j and the fermionic

shifts [12, 54, 152–154]. As one can see from (5.3.13) the scalar potential (5.3.11) can be

written in terms of the squares of the gravitino mass matrix and the fermion shifts in the

supersymmetry transformations that appear due to the gauging.

Each term in (5.3.11) has its origin from different sectors in the theory. The terms propor-

tional to g2 arise due to gauging of the symmetries of the scalar manifold. In particular

the terms W ãW ã arise due to tensor multiplets andNiAN
iA appear due to hypermultiplets.

The terms proportional to g2
R occur due to gauging the R symmetry.

We now discuss the possibilities of AdS vacuum in this theory which occurs whenever,

V(φ, q)′ = 0 , V(φc, qc) < 0 , (5.3.14)

where the derivative is with respect to the scalars and φc, qc are the critical points of the

potential. The metrics gx̃ỹ, gXY are positive definite and the term in the potential which can

contribute to an AdS vacuum is Pi jPi j. For example, consider the case nV = nT = nH = 0

there is only the gravity multiplet with a single graviphoton. Since K I
X are zero, the

prepotentials PIi j are either zero or S U(2) valued constants. If we choose to gauge a

subgroup U(1)R ⊂ S U(2)R, then PIi j = Vδi j. 3 Thus the potential (5.3.11) becomes,

V = −4V2 , (5.3.15)

which acts as a cosmological constant. The corresponding theory is referred in the liter-

ature as Anti de-Sitter supergravity [155]. The important point here is that one definitely

need to gauge some of the R symmetry in the theory to get an AdS vacuum. Of course,

3In general we could choose PIi j = VIδi j. The parameters VI appear in the R symmetry gauging as
Aµ(U(1)R) = VI AI

µ. In this case, we have only one graviphoton and we have chosen VI = V .
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we could simultaneously gauge the other symmetries simultaneously, as the terms W ã and

NiA in (5.3.11) can at the most change the shape of the critical point.

5.4 Gauged supergravity with one vector multiplet

In this section, we describe a simple gauged supergravity model in some detail [18, 19].

We will use this model for constructing generalised attractors in a later chapter. This

gauged supergravity model consists of one vector multiplet (AI , I = 0 corresponds to the

graviphoton.) and two tensor multiplets. The field content is summarised as,

{ea
µ , ψ

i
µ , A

I
µ , B

M
µν , λ

iã , φx̃} . (5.4.1)

We use the same notations as in the previous section. The very special manifold, which

is parametrised by the scalars in the vector and tensor multiplets has the coset structure

given by,

S = S O(1, 1) ×
S O(2, 1)
S O(2)

. (5.4.2)

This model is an example of a symmetric space discussed in the introduction of this

chapter. In this model, the symmetry group of the scalar manifold is G = S O(1, 1) ×

S O(2, 1). The gauging we consider is an S O(2) ⊂ S O(2, 1) subgroup of the S O(2, 1) in

G and the gauging of the U(1)R ⊂ S U(2)R. The symmetries of the scalar manifold can

be made manifest by going to a suitable basis such that the condition (5.2.3) is satisfied.

Note that the index I in (5.2.3) is replaced with Ĩ = (I,M) to collectively label the scalars

in the vector/tensor multiplets. The scalar constraint now reads as,

N ≡ C Ĩ J̃K̃hĨhJ̃hK̃ = 1 . (5.4.3)
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As always, we need to choose a suitable parametrisation to satisfy the above equation.

We choose,

hĨ =

√
2
3
ξ Ĩ

∣∣∣∣∣
N=1

, hĨ =
1
√

6

∂

∂ξ Ĩ
N
∣∣∣∣∣
N=1

, (5.4.4)

such that the constraint takes the form,

N(ξ) =
√

2ξ0[(ξ1)2 − (ξ2)2 − (ξ3)2] = 1 , (5.4.5)

where,

ξ0 =
1

√
2||φ||2

, ξ1 = φ1 , ξ2 = φ2 , ξ3 = φ3 , (5.4.6)

and,

||φ||2 = (φ1)2 − (φ2)2 − (φ3)2 , (5.4.7)

is assumed to be positive so that aĨ J̃ and gx̃ỹ are positive definite. The regions φ1 > 0 and

φ1 < 0 are equivalent in the moduli space due to the above relation. However for our

purposes we will stick to the region φ1 > 0 in the moduli space.

The hĨ are related to the fields φ in the Lagrangian through the following relations,

h0 =
1

√
3||φ||2

, h1 =

√
2
3
φ1 , h2 =

√
2
3
φ2 , h3 =

√
2
3
φ3 . (5.4.8)

h0 =
1
√

3
||φ||2 , h1 =

2
√

6

φ1

||φ||2
, h2 = −

2
√

6

φ2

||φ||2
, h3 = −

2
√

6

φ3

||φ||2
. (5.4.9)

Using the above relations and the scalar constraint (5.2.3) we can read off the non-

vanishing C Ĩ J̃K̃ as,

C011 =

√
3

2
,C022 = C033 = −

√
3

2
. (5.4.10)
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The metric aĨ J̃ computed using the relation (5.2.4), (5.4.8) and (5.4.9) is given by,

aĨ J̃ =



||φ||4 0 0 0

0 2(φ1)2||φ||−4 − ||φ||−2 −2φ1φ2||φ||−4 −2φ1φ3||φ||−4

0 −2φ1φ2||φ||−4 2(φ2)2||φ||−4 + ||φ||−2 2φ2φ3||φ||−4

0 −2φ1φ3||φ||−4 2φ2φ3||φ||−4 2(φ3)2||φ||−4 + ||φ||−2


.

(5.4.11)

The metric on the scalar manifold gx̃ỹ is then computed using the completeness relations

(5.2.5) and is given by,

gx̃ỹ =


4(φ1)2||φ||−4 − ||φ||−2 −4φ1φ2||φ||−4 −4φ1φ3||φ||−4

−4φ1φ2||φ||−4 4(φ2)2||φ||−4 + ||φ||−2 4φ2φ3||φ||−4

−4φ1φ3||φ||−4 4φ2φ3||φ||−4 4(φ3)2||φ||−4 + ||φ||−2

 . (5.4.12)

Recollect that the scalar manifold has the symmetry group G = S O(1, 1) × S O(2, 1). We

consider the gauging of a compact subgroup S O(2) for our purposes. Since it is an abelian

group and has only one generator, the Killing vector which generates this symmetry can

couple to one vector field. In this case, the gauge field is the graviphoton A0
µ. The Killing

vector that generates the S O(2) symmetry is found by solving the Killing vector equation,

∇̃x̃K ỹ
0 + ∇̃ỹK x̃

0 = 0 , (5.4.13)

where the covariant derivative ∇̃ is with respect to the metric gx̃ỹ on the scalar manifold.

It can be checked that the following vector,

K x̃
0 =

{
−

φ1

||φ||2
,
φ2

||φ||2
,
φ3

||φ||2

}
, (5.4.14)

is indeed a solution to the Killing equations. The S O(2) symmetry which rotates the φ2, φ3

directions is manifest in (5.4.14).

The U(1)R gauging is done using a linear combination of gauge fields in the theory given
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by,

Aµ(U(1)R) = VIAI
µ , I = 0, 1, (5.4.15)

where VI are constant parameters. For a general gauging of a non abelian R symmetry the

parameters VI are constrained by the relation,

VI f I
JK = 0 , (5.4.16)

where f I
JK are structure constants of the gauge group. For abelian gauging such as the

one considered here, the parameters VI are free since the structure constants vanish.

Now, we can calculate the scalar potential using (5.3.11) by settingNiA to zero since there

are no hypermultiplets. We also have PIi j = VIδi j for U(1)R gauging, as discussed in the

previous section. Using the relations (5.3.12) the potential (5.3.11) can be expressed as,

V =
3
16

g2ΩMNΩPQhNhQhx̃
Mhỹ

Pgx̃ỹ − g2
R[4hIhJVIVJ − 2gx̃ỹhx̃IhỹJVIVJ] , (5.4.17)

where the hx̃I are as defined in (5.2.9), and the conventions for ΩMN are,

ΩMN =

0 −1

1 0

 . (5.4.18)

After some simplifications using (5.4.8) and (5.4.9) the scalar potential of this model can

be written as,

V(φ) =
g2

8

[ [(φ2)2 + (φ3)2]
||φ||6

]
− 2g2

R

[
2
√

2
φ1

||φ||2
V0V1 + ||φ||2V2

1

]
. (5.4.19)

The critical points of this potential have been investigated in great detail in [19]. We will

consider the case where the AdS vacuum preserves N = 2 supersymmetry. This requires

the condition [13],

W ã|φc = Pã
i j|φc = 0 . (5.4.20)
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We will derive this condition in the next chapter by studying the Killing spinor integra-

bility conditions for generalised attractors. The critical point which satisfies (5.4.20) is

given by,

φ2 = 0 , φ3 = 0 , φ1
c =

(√
2

V0

V1

) 1
3

, (5.4.21)

together with the constraints,

V0V1 > 0 , 32
g2

R

g2 V2
0 ≤ 1 . (5.4.22)

These constraints determine the nature of the critical point. In this case, the critical point

is a saddle point with a maximum in the φ1 direction and minima in φ2, φ3 directions. The

value of the potential (5.4.19) at the critical point (5.4.21),

V(φc) = Λ = −6g2
R(φ1

c)2V2
1 , (5.4.23)

is the value of the AdS cosmological constant of the theory.

5.5 Summary

In this chapter, we have provided some background material in five dimensional N = 2

gauged supergravity. First we studied the global symmetries of ungauged supergravity.

We saw that the scalars in the vector multiplet parametrise a very special manifold and the

scalars in the hypermultiplet parametrise a quaternionic Kähler manifold. We also studied

the N = 2 superconformal algebra and discussed global S U(2)R symmetry group.

We then discussed the gauging of a subgroup of the global symmetries of the ungauged

theory. We saw that the symmetries can be gauged by introducing Killing vectors acting

on the scalar manifold. These Killing vectors generate the group of symmetries which

are to be gauged. The various gauge fields in the theory couple to the Killing vectors and
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the ordinary derivatives get replaced by gauge covariant derivatives. Due to the additional

terms that appear because of the gauging, supersymmetric closure requires the existence

of a potential term in gauged supergravity. We saw that the value of the potential at its

critical point gives the cosmological constant of the theory. In particular, we saw that

a subgroup of the R symmetry group has to be gauged to get a negative cosmological

constant and hence AdS vacuum.

Then, we studied an example of a simple gauged supergravity with one vector multiplet.

We demonstrated that by choosing an explicit parametrisation for the scalar constraint

(5.2.3) the symmetries of the manifold can be made manifest. In particular, we showed

that the metric on the scalar manifold can be written down explicitly and constructed the

Killing vector which generates an abelian symmetry group. We also discussed the gauging

of a U(1) component of the S U(2)R symmetry group and explained that the parameters

involved in the gauging are unconstrained for abelian gauging of the R symmetry group.

We saw that the potential in this model has critical points which gave rise to an AdS

vacuum.
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Chapter 6

Generalised attractors in gauged

supergravity

6.1 Introduction

In chapter 3, we saw that the attractor mechanism explains the macroscopic entropy of

extremal black holes in supergravity [4–6]. The moduli fields in a given black hole back-

ground flow radially to a fixed value at the horizon. The constant values of the scalars

are obtained by solving a set of algebraic equations called the attractor equations and

are given in terms of the quantised charges of the black hole. The entropy of the black

hole is then given in terms of the charges and is independent of the asymptotic values of

the moduli fields. The attractor mechanism works not mainly because of supersymmetry

but due to extremality of the black hole [94] and it also extends to non-supersymmetric

cases [95, 97].

Recently, there is much interest in generalising the attractor mechanism to gauged su-

pergravities [14, 54–60, 156]. The main motivation of these works is to understand the

attractor mechanism for black holes in AdS spaces. Gauged supergravities are ideal
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grounds for this study due to the availability of AdS vacuum. Another motivation from

the AdS/CFT correspondence is that AdS black holes are dual to field theories at finite

temperature [11]. In the application of AdS/CFT to condensed matter theories, charged

extremal black branes are duals to the zero temperature phases of the field theory. Typical

examples are black holes with Lifshitz like near horizon geometries and AdS asymptotics

that are duals to field theories with a violation of Lorentz symmetry [47]. The attractor

behaviour for such solutions has been studied for charged black branes interpolating be-

tween the two geometries in [115, 116]. More recently the classification of homogeneous

anisotropic extremal black brane horizons has been studied in five dimensions and exam-

ples were constructed in Einstein-Maxwell theories with massive gauge fields [7, 53].

We discussed these Bianchi attractors in Chapter 4 and saw that they possess an impor-

tant common property, i.e., they have constant anholonomy coefficients. A prescription

has been given to obtain generalised attractors characterised by constant anholonomy,

from gauged supergravity [14]. In this framework one sets all the fields and the curvature

components to constants in the tangent space. The generalised attractor geometries are

characterised by constant anholonomy coefficients. At the attractor point, the equations of

motion become algebraic and the attractor potential takes a simple form. Moreover, due

to constant anholonomy the components of the Riemann tensor become constants inde-

pendent of spacetime coordinates in tangent space. It follows that the curvature invariants

are constant and hence the attractor geometries characterised by constant anholonomy

coefficients are regular.

In this chapter, we generalise the analysis of [14] to N = 2 gauged supergravity in five

dimensions coupled to arbitrary number of hyper, vector and tensor multiplets and derive

the attractor potential. We then consider a simple gauged supergravity model (see §5.4)

in five dimensions with one vector and two tensor multiplets [19] and show that some

of the Bianchi type solutions considered recently in [7] can be realised as generalised

attractor solutions in this model. We construct explicit solutions of Bianchi I, Bianchi

106



II , Bianchi VI types in this model [17]. In a U(1)R gauged version of this model, we

construct Li fu0 × MI , Li fu0 × MII solutions whose symmetry groups factorise as direct

products [21].

The organisation of this chapter is as follows. In §6.2, we define the generalised attrac-

tor ansatz and show that the gauge field, tensor field, Einstein and scalar field equations

become algebraic at the attractor points. We also derive the attractor potential from the

scalar field equations. In §6.3, we analyse the attractor potential, construct it from gener-

alised fermionic shifts and give the conditions for maximal supersymmetry. Then we use

the generalised attractor procedure to construct explicit examples within a simple gauged

supergravity model in §6.4 and §6.5. We then summarise the results in §6.6.

6.2 Generalised Attractors

In this section, we consider the N = 2, d = 5 gauged supergravity coupled to vector,

tensor and hypermultiplets discussed in chapter 5 and show that the equations of mo-

tion reduce to algebraic equations in the tangent space. For convenience, we recall the

Lagrangian of the five dimensional gauged supergravity (5.3.9) ,

ê−1LN=2
Bosonic = −

1
2

R −
1
4

aĨ J̃H
Ĩ
µνH

J̃µν −
1
2

gXYDµqXDµqY −
1
2

gx̃ỹDµφ
x̃Dµφỹ

+
ê−1

6
√

6
CIJKε

µνρστF I
µνF

J
ρσAK

τ +
ê−1

4g
εµνρστΩMN BM

µνDρBN
στ

−V(φ, q) , (6.2.1)

whereV(φ, q) is the scalar potential.

We consider attractors with the following ansatz for the scalar, vector and tensor fields at

the attractor point,

φz̃ = const , qZ = const , AI
a = const , BM

ab = const , c a
bc = const . (6.2.2)
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Here, in addition to the assumptions considered in [14], we take the tensor fields to be

constant along the tangent space. As we will see, this is necessary in order to reduce the

field equations to attractor equations (which are algebraic equations for all practical pur-

poses). The constancy of c a
bc ensure the regularity of the resultant geometry and together

with constant AI
a, they ensure that the field strengths,

Fab = eµaeνb(∂µec
ν − ∂νe

c
µ)Ac = c c

ab Ac , (6.2.3)

are constant at the attractor points, which is expected for an attractor behaviour.

6.2.1 Equations of Motion

We now analyse the equations of motion of the bosonic fields in N = 2, d = 5 gauged

supergravity. We first derive the gauge field and tensor field equations. Subsequently we

discuss the Einstein’s equations followed by the equation of motion for the scalars and

quarternions which leads to the attractor potential.

Gauge Fields and Tensor fields

The Lagrangian for the N = 2, d = 5 theory contains tensor fields and a Chern Simons

term which contribute to the gauge field equation of motion given by,

∂µ(êaI J̃H
J̃µν) = −

1

2
√

6
CI J̃K̃ε

νµρστH J̃
µρH

K̃
στ

+ gê
[
gXY KX

I D
νqY + gx̃ỹK x̃

ID
νφỹ] . (6.2.4)

We have used the Bianchi identity d(∗F) = 0, the symmetry of C Ĩ J̃K̃
1 and ΩMNΛN

IP =

2
√

6
CPMI [18] for simplification. One can then use the following relations for antisymmet-

1As mentioned earlier in (5.3.8), the only non vanishing components are CIJK and CIMN , which can be
used to write CIJK F J FK + CIMN BM BN = CI J̃K̃H

J̃H K̃ .
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ric tensors,

∂µ(êGµν) = ê∇µGµν , ∂µε
µνρστ = −

∂µê
ê
εµνρστ , (6.2.5)

and change to tangent space. Since the scalars, gauge fields, field strengths and tensor

fields are constant at the attractor points (6.2.2) the derivatives drop out and we get,

∂aFabI = 0, ∂aAbI = 0, ∂aBM
bc = 0, ∂aφ

z̃ = 0, ∂aqZ = 0 . (6.2.6)

In tangent space the gauge field equation can be written as,

ê aI J̃[ω a
a, cH

cbJ̃ + ω b
a, cH

acJ̃] = −
1

2
√

6
CI J̃K̃ε

bacdeH J̃
acH

K̃
de

+ g2ê
[
gXY KX

I KY
J + gx̃ỹK x̃

I K ỹ
J
]
AJb . (6.2.7)

The spin connection is expressed in terms of anholonomy coefficients in the absence of

torsion (A.0.4). Hence, constant anholonomy implies constant spin connection. Thus

(6.2.7) is an algebraic equation at the attractor point.

Similarly the tensor field equation can be worked out as,

1
g
εµνρστΩMPDρBM

µν + êaĨPH
Ĩστ = 0 . (6.2.8)

Note that the Bianchi identity for the B-field, d(BM
µν) , 0 in general [18]. So we will not

be able to use it for simplification. Converting the above to tangent space, we get,

1
g
εabcde[c f

ac BM
f b + gAI

cΛ
M
IN BN

ab
]
ΩMP + êaĨPH

Ĩde = 0 . (6.2.9)

As in the previous case, the equation of motion (6.2.9) reduced to an algebraic equation

at the attractor point.
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Einstein equation

The Einstein equation for the Lagrangian (5.3.9) at the attractor point is given by,

Rab −
1
2

Rηab = T attr
ab . (6.2.10)

At the attractor point, the Riemann tensor is a function of spin connections, which are in

turn expressed in terms of the constant anholonomy coefficients (A.0.3). This also applies

to the Ricci tensor and the scalar curvature. As a consequence, the left hand side of the

Einstein equation is algebraic in c c
ab . The stress energy tensor at the attractor points is

given by,

T attr
ab = Vattr(φ, q)ηab −

[
aĨ J̃H

Ĩ
acH

cJ̃
b + g2[gXY KX

I KY
J + gx̃ỹK x̃

I K ỹ
J]AI

aAJ
b

]
. (6.2.11)

As one can see, the energy momentum tensor is a function of constant scalars, gauge

fields and field strengths at the attractor points and hence the Einstein equation reduces to

an algebraic equation at the attractor points. Note the appearance of the attractor potential

Vattr(φ, q) which is defined in (6.3.2). Later, we show that theVattr(φ, q) follows from the

scalar field equations of motion and can be constructed from generalised fermion shifts

of the supersymmetry transformations.

Scalar and Quaternions

The equation of motion for the scalars φx̃ in the vector and tensor multiplet is given by,

ê−1∂µ
[
ê gz̃ỹD

µφỹ] − 1
2
∂gx̃ỹ

∂φz̃ Dµφ
x̃Dµφỹ − gAI

µgx̃ỹ
∂K x̃

I

∂φz̃ D
µφỹ

−
1
4
∂aĨ J̃

∂φz̃ H
Ĩ
µνH

J̃µν −
∂V(φ, q)
∂φz̃ = 0 . (6.2.12)
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Using the ansatz (6.2.2), it can be shown that the above scalar field equation reduces to

the following form in the tangent space,

∂

∂φz̃

[
V(φ, q) +

1
2

g2 gx̃ỹK x̃
I K ỹ

JAIaAJ
a +

1
4

aĨ J̃H
Ĩ
abH

J̃ab
]

= 0 . (6.2.13)

For the quaternion qZ, the equation of motion reads as,

ê−1∂µ
[
ê gZYD

µqY] − 1
2
∂gXY

∂qZ DµqXDµqY − gAI
µgXY

∂KX
I

∂qZ D
µqY

−
∂V(φ, q)
∂qZ = 0 . (6.2.14)

Using the ansatz (6.2.2), the quaternion equation of motion (6.2.14) in tangent space

reduces to,
∂

∂qZ

[
V(φ, q) +

1
2

g2gXY KX
I KY

J AaIAJ
a

]
= 0 . (6.2.15)

As one can see from (6.2.13) and (6.2.15), the equation of motion for the scalars at the

attractor point reduces to an extremization condition on a potential.

6.3 Attractor Potential

We define our attractor potential to be the one which gives rise to the attractor values of

the scalars and quaternions upon extremization,

∂Vattr(φ, A)
∂φ

= 0 . (6.3.1)

Thus, observing the equations of motion for the scalars (6.2.13) and the quaternions

(6.2.15) the attractor potential for the N = 2, d = 5 gauged supergravity can be con-

structed to have the form,

Vattr(φ, q) =

[
V(φ, q) +

1
2

g2[ gx̃ỹK x̃
I K ỹ

J + gXY KX
I KY

J ]AIaAJ
a +

1
4

aĨ J̃H
Ĩ
abH

J̃ab
]
. (6.3.2)

111



Note the similarity of the attractor potential (6.3.2) with the one obtained in [14] for

N = 2, d = 4 gauged supergravity. This is expected since both the theories have the same

supersymmetries and the quaternionic structure. The difference is in the reality of the

scalar fields and the presence of tensor fields, which contribute to the attractor potential.

Thus (6.3.2) obeys both (6.2.13) and (6.2.15). Note that, this exact form of the attractor

potential (6.3.2) also appears in the Einstein equation. Now, we show that the potential

can be constructed from fermion shifts defined at the attractor points.

In chapter 5, we saw that gauging introduces additional terms in the Lagrangian that de-

pend on the gauge coupling and for supersymmetry to be preserved the supersymmetry

transformations have to be modified accordingly. These additional terms in the super-

symmetry transformations can be incorporated in terms of what are called as the fermion

shifts, which are usually defined as the non-derivative scalar dependent bosonic terms in

the supersymmetry transformations of the fermions in the theory (see for eg [12]).

The notion of fermionic shifts was generalised by [14]. The shifts at the attractor points

and included terms that depend on constant gauge fields and field strengths. It was shown

that the attractor potential can be written as squares of the generalised fermion shifts. In

our case the generalised fermion shifts contain terms that depend on constant tensor fields

as well. We will use a notation similar to that of [12] for defining the generalised fermion

shifts.

The supersymmetry transformations (5.3.13), take the following form at the attractor

points defined by (6.2.2),

δψai =
√

6Daεi + (Σi| j)bc(γabc − 4ηabγc)ε j + γaS i jε
j ,

δλã
i = Σã

i| jε
j + (Σã

i| j)
aγaε

j + (Σã
i| j)

abγabε
j ,

δζA = (ΣA
| j)ε

j + (ΣA
| j)

aγaε
j , (6.3.3)
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where, the gravitino mass matrix and shifts are given by,

Σã
i| j = gRPã

i j − gW ãεi j , (ΣA
| j) = gN A

j , S i j = igRPi j ,

(Σã
i| j)

a =
i
2

g f ã
x̃ K x̃

I AIaεi j , (ΣA
| j)

a = −
i
2

g f A
jXKX

I AaI ,

(Σã
i| j)

ab = −
1
4

hã
ĨH

Ĩabεi j , (Σi| j)bc = −
i
4

hĨH
bcĨεi j , (6.3.4)

Using the relations (5.2.4),(5.2.7), and (5.2.25) the attractor potential (6.3.2) can be writ-

ten in terms of the shifts (6.3.4) and their complex conjugates as follows,

−Vattr
ε l

k

4
= S̄ i

kS
l

i −ε
l j
{[

(ΣA
|k)(ΣA| j) +

1
2

(Σãi
|k)(Σ

ã
i| j)

]
+

[
(ΣA
|k)a(ΣA| j)a +

1
2

(Σãi
|k)a(Σã

i| j)
a]

+
[
(Σi
|k)ab(Σi| j)ab + (Σãi

|k)ab(Σã
i| j)

ab]} . (6.3.5)

This relation for the attractor potential is similar to the one obtained in [14] forN = 2, d =

4 gauged supergravity. In fact, it seems that such a result could be derived for any gauged

supergravity in arbitrary dimension for an attractor ansatz similar to (6.2.2).

The form of the attractor potential also makes evident the condition for the attractor to

respect maximal supersymmetry. For example, the integrability condition from the grav-

itino supersymmetry transformation is given by,

1
4

R cd
ae γcdεi =

1
√

6
(Σi| j) f c[ω b

a, f (Mebc − Mecb) − ω b
e, f (Mabc − Macb)]χ j

+
1
6

{
[(Σi| j)bcMabc + γaS i j][(Σk|l)ghMegh + γeS kl]

−[(Σi| j)bcMebc + γeS i j][(Σk|l)ghMagh + γaS kl]
}
ε jkε l , (6.3.6)

where Mabc = γabc−4ηabγc. We further simplify (6.3.6) by expanding and writing in terms

of the linearly independent matrix basis {I, γa, γab} in five dimensions (see Appendix B).
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We get the constraints from the coefficients of γab terms,

1
4

R cd
ae γcdεi = −

2i
√

6
(Σi| j)

[c
f ω

b] f
[a, εe]bcghγ

ghε j

+
1
6

{
(Σi| j)bc(Σk|l)gh(−36ηe fηgpηhqδ

[ f p
[ab γ

q]
c] + 32ηabηegγch)

+ 16(Σi| j)bcS klηb[aγe]c + 2S i jS klγae

}
ε jkε l , (6.3.7)

and the and γa terms,

−
16
√

6
(Σi| j)

[c
f ω

b] f
[a, ηe]bγcε

j +
1
6

{
16i(Σi| j)bc(Σk|l)ghηg[aεe]hbcpγ

p

+ 4i(Σi| j)bcS klεaebcpγ
p
}
ε jkε l = 0 . (6.3.8)

For maximal supersymmetry each of these independent terms should vanish identically.

This can be easily achieved when all the fermionic shifts (6.3.4) vanish. The above equa-

tions reduce to,
1
4

R cd
ae γcdεi =

1
3

S i jS klγaeε
jkε l . (6.3.9)

Which can be further simplified using δi jδklε
jkε l = −εi as,

(1
4

R cd
ae γcd −

1
3

g2
RhIhJVIVJγae

)
εi = 0 . (6.3.10)

The above is just the vacuum Einstein equation in N = 2, d = 5 gauged supergravity for

arbitrary εi. The bosonic term in the right hand side is the cosmological constant, and the

above equation implies Einstein equation in the absence of matter. There are no algebraic

constraints on the spinors from the supersymmetry transformations of λã
i and ζA when all

the fermionic shifts vanish. In such a scenario, AdS 5 is a unique maximally supersym-

metric ground state of this theory [13, 157]. There could also be solutions such as BPS

domain walls, which preserve maximal supersymmetry. For example, In the absence of

tensor multiplets, one has W ã = 0. In addition, when the vector fields vanish Σã
i| j and ΣA

| j

are the only non-vanishing fermionic shifts in (6.3.4). Maximal supersymmetry requires
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that there should be no algebraic constraints on the spinors, therefore the following terms

must vanish

Pã
i j = hãIPIi j = 0 , N A

j =

√
6

4
hIKX

I f Ai
X = 0 . (6.3.11)

The above equations lead to the attractor conditions derived in [54] for domain wall so-

lutions that interpolate between AdS vacua. Such planar domain wall solutions charac-

terised by constant anholonomy coefficients are non-trivial examples of supersymmetric

generalised attractors.

For non-supersymmetric attractors or attractors that preserve a part of the supersymmetry

there are non-vanishing shifts. Hence there will be constraints on the spinors, as a result of

which one will either have some amount of supersymmetry preserved (which is expected

at least for Lifshitz solutions [15,16]) or none at all. In the cases where one deals only with

vector multiplets, the integrability conditions on the Killing spinors have been worked out

in [158] and the constraints imply that one gets either 1/2 BPS or 1/4 BPS solutions.

6.4 Bianchi Attractors in gauged supergravity with one

vector multiplet

In this section, we show that some of the simple Bianchi type metrics can be realised

from simple d = 5 gauged supergravity models. Our objective here is not to be exhaustive

regarding the possibilities, as this has already been considered in [7]. We will take some of

the explicit examples discussed in chapter 4 and show that they can be obtained from the

gauged supergravity model discussed in chapter 5.4. We are motivated by the observation

that most of the Bianchi attractors constructed in [7] are sourced by massive gauge fields.

In gauged supergravity one does not have explicit massive gauge fields, as these would

break supersymmetry. Nevertheless, expanding the scalar kinetic term (see (5.3.9)) one
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gets terms like ,

g2gx̃ỹK x̃
I K ỹ

JAI
aAJa , (6.4.1)

that are proportional to square of the gauge field. These terms appear due to the presence

of covariant derivatives which appear due to the gauging. Since the scalars are constant

at the attractor point, the coefficients of these terms act like a mass for the gauge field.

Hence, one can expect to realise the Bianchi attractors from specific truncations of gauged

supergravity models. Firstly, the vaccum AdS 5 solution is given by,

ds2 = L2
[
− r̂2dt̂2 +

dr̂2

r̂2 + r̂2(dx̂2 + dŷ2 + dẑ2)
]
,

φ2
c = 0 , φ3

c = 0 , φ1
c =

(√
2

V0

V1

) 1
3

, Λ = −6g2
RV2

1 (φ1
c)2 ,

V0V1 > 0 , 32
g2

R

g2 V2
0 ≤ 1 , L2 = −

6
Λ
, (6.4.2)

where Λ is the cosmological constant. The value of the cosmological constant comes

from the potential of the gauged supergravity model discussed in chapter 5.4.

6.4.1 Bianchi type I: Lifshitz solution

We now look for Lifshitz like solutions within the model described in §5.4. We take the

metric ansatz to be of the form given in (4.4.10),

ds2 = L2
[
− r̂2u0dt̂2 +

dr̂2

r̂2 + r̂2
(
(ω1)2 + (ω2)2 + (ω3)2

)]
, (6.4.3)

where the invariant one forms (4.5.4) are,

ω1 = dx̂ , ω2 = dŷ , ω3 = dẑ . (6.4.4)

We will solve the equations of motion derived in §6.2.1 for the Lifshitz metric in this

model. The Lifshitz solutions considered in the literature are often sourced by massive

116



time like gauge fields [15, 16]. We assume that the S O(2) gauge field 2 has only time like

component given by,

A0t = et̂
0̄A00̄ =

r̂−u0

L
A00̄ . (6.4.5)

We do not make any assumptions on the other gauge field A1. We take it to be of the

general form A1µ = eµaA1a. As a further simplification we also assume that all the tensor

field components vanish. This need not be true for a more general theory with differ-

ent gauging or a different metric ansatz. However, we find that the Lifshitz like ansatz

does not admit any consistent solution with non-vanishing tensor fields within the model

considered. We will explain the reason for this towards the end of the section.

As before, we will work in tangent space. The undetermined parameters are,

A00̄ , A10̄ , A11̄ , A12̄ , A13̄ , A14̄ , u0 , L , (6.4.6)

where u0 is the exponent and L is the size of the spacetime. These are to be determined in

terms of the gauge couplings g, gR and the free parameters V0,V1 which are constrained

by (5.4.22).

The equations (6.2.4) for the gauge fields A0 and A1 evaluated at the critical point (5.4.22)

read as follows:

êA00̄(g2L2 − u0(φ1
c)8) = 0 ,

êA10̄u0 = 0 ,

êA12̄(2 + u0) = 0 ,

êA13̄(2 + u0) = 0 ,

êA14̄(2 + u0) = 0 , (6.4.7)

2We have used he notation AIa earlier with I labelling the vectors and a the tangent space index. In
component form, to avoid confusion we denote the tangent space indices with with an overbar, i.e A00̄
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whereas the off-diagonal components of the Einstein field equations are,

A10̄A12̄u0 = 0 ,

A10̄A13̄u0 = 0 ,

A10̄A14̄u0 = 0 ,

A12̄A13̄ = 0 ,

A12̄A14̄ = 0 ,

A13̄A14̄ = 0 . (6.4.8)

The gauge field equations of motion (6.4.7) imply that A10̄ = 0 for a non-zero u0. The

off-diagonal Einstein equations imply that any two of the three components A12̄, A13̄, A14̄

must vanish. If we take say A13̄ = A14̄ = 0, then the gauge field equation for A12̄ give

u0 = −2 which is inconsistent with the equation for A00̄. Hence, we set all three of them

to zero. Note that this still leaves A11̄ unfixed3. With these simplifications, the diagonal

(t̂t̂, r̂r̂, x̂x̂) components of the Einstein equation are,

12(φ1
c)4 + (A00̄)2(3g2L2 + u0

2(φ1
c)8) − 24L2g2

RV2
0 = 0 , (6.4.9)

−6(1 + u0)(φ1
c)4 + (A00̄)2(3g2L2 − u2

0(φ1
c)8) + 24L2g2

RV2
0 = 0 , (6.4.10)

−2(3 + 2u0 + u2
0)(φ1

c)4 + (A00̄)2(3g2L2 + u2
0(φ1

c)8) + 24L2g2
RV2

0 = 0 . (6.4.11)

The (ŷŷ, ẑẑ) components give the same equations as the x̂x̂ one. Subtracting (6.4.10) and

(6.4.11), A00̄ can be determined as,

A00̄ =

√
u0 − 1

u0

1
(φ1

c)2 , (6.4.12)

where we have chosen the positive sign for A00̄. The values of L and u can be determined

3For all the Bianchi classes the Field strengths do not depend upon A11̄, so this component can enter
only through an A1aA1

a term or the Chern-Simons term. The former does not happen here as A1a is not used
to gauge the symmetries of the scalar manifold. The latter does not occur since topological terms do not
contribute in this case.
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from the gauge field and scalar field equations. Substituting A12̄ = A13̄ = A14̄ = 0, the

gauge field equations (6.4.7) reduce to,

g2L2 − u0(φ1
c)8 = 0 . (6.4.13)

The scalar field equations (6.2.12) evaluated at the attractor point (5.4.22), must vanish

and this gives the relation,

3g2L2 − u2
0(φ1

c)8 = 0 . (6.4.14)

The two equations (6.4.13) and (6.4.14) can be solved to get,

u0 = 3 , L =
√

3
(φ1

c)4

g
. (6.4.15)

Substituting the values of (6.4.15), (6.4.12) in (6.4.9), one gets the following constraint

that relates the free parameters V0,V1 to the ratio of the couplings g and gR.

1
3(φ1

c)4 =
g2

R

g2 V2
0 . (6.4.16)

Let us summarise the solution,

ds2 = L2
[
− r̂2u0dt̂2 +

dr̂2

r̂2 + r̂2(dx̂2 + dŷ2 + dẑ2)
]
,

u0 = 3, L =
√

3
(φ1

c)4

g
, A00̄ =

√
2
3

1
(φ1

c)2 ,

φ1
c =

(√
2

V0

V1

) 1
3

, V0V1 > 0 ,
32

3(φ1
c)4 ≤ 1 . (6.4.17)

The attractor potential for the above solution is given by,

Vattr(φ1
c) = −

[ (A00̄)2

2(φ1
c)4

(
3g2 + u2 (φ1

c)8

L2

)
−VAdS

]
, (6.4.18)

whereVAdS = −6g2
R(φ1

c)2V2
1 is the cosmological constant.
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The attractor potential can be written in terms of the fermionic shifts (6.3.4) defined ear-

lier. The shifts (ΣA
| j)

a,ΣA
| j vanish since there are no hypermultiplets in the theory. The

shift Σã
i| j vanishes due to the choice (5.4.22)4. The remaining shifts are non-vanishing

at the attractor points. Since some of the shifts are non-vanishing, the solution (6.4.17)

preserves only a part of the supersymmetry.

6.4.2 Bianchi II

In this subsection we give the Bianchi type II solution arising (4.5.11) from gauged su-

pergravity. We recollect the metric,

ds2 = L2
[
− r̂2u0dt̂2 +

dr̂2

r̂2 + r̂2(u1+u3)(ω1)2 + r̂2u3(ω2)2 + r̂2u1(ω3)2
]
, (6.4.19)

where the invariant one forms (4.5.8) are,

ω1 = dŷ − x̂dẑ , ω2 = dẑ , ω3 = dx̂ , (6.4.20)

The analysis is entirely parallel to the previous section. As before, we consider only the

time like component for the S O(2) gauge field (6.4.5) to be non-vanishing and set all the

tensor fields to be zero. We also find that the off-diagonal Einstein equations for all cases

imply,

A10̄ = A12̄ = A13̄ = A14̄ = 0 , (6.4.21)

The diagonal components of the Einstein equations (t̂t̂, r̂r̂, x̂x̂, ŷŷ, ẑẑ) are as follows. The

(t̂t̂) component of the Einstein equation is,

(1 + 12u2
3 + 20u3u1 + 12u2

1)(φ1
c)4 + 2(A00̄)2(3g2L2 + u2

0(φ1
c)8) − 48L2g2

RV2
0 = 0 . (6.4.22)

4Pã
i j,W

ã vanish for this choice [19].
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The (r̂r̂) component of the Einstein equation is,

(1 + 4u2
3 + 12u3u1 + 4u2

1 + 8u0u3 + 8u0u1)(φ1
c)4

− (A00̄)2(6g2L2 − 2u2
0(φ1

c)8) − 48L2g2
RV2

0 = 0 , (6.4.23)

The (x̂x̂) component of the Einstein equation is,

(−1 + 12u2
3 + 12u3u1 + 4u2

1 + 8u0u3 + 4u0u1 + 4u2)(φ1
c)4

− 2(A00̄)2(3g2L2 + u2
0(φ1

c)8) − 48L2g2
RV2

0 = 0 , (6.4.24)

The (ŷŷ) component of the Einstein equation is,

(3 + 4u2
3 + 4u2

1 + 4u0u1+4u3u1 + 4u0u3 + 4u2
0)(φ1

c)4

− 2(A00̄)2(3g2L2 + u2
0(φ1

c)8) − 48L2g2
RV2

0 = 0 , (6.4.25)

The (ẑẑ) component of the Einstein equation is,

(−1 + 4u2
3 + 12u2

1 + 8u0u1 + 4u2 + 12u3u1 + 4u0u3)

− 2(A00̄)2(3g2L2 + u2
0(φ1

c)8) − 48L2g2
RV2

0 = 0 , (6.4.26)

The gauge field equation for A00̄ is,

êA00̄(3g2L2 − 2u0(u3 + u1)(φ1
c)8 = 0 . (6.4.27)

The scalar field equation is,

3g2L2 − u2
0(φ1

c)8 = 0 . (6.4.28)
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The x̂x̂ and ẑẑ components of the Einstein equations together with the gauge field and the

scalar field equations give,

u0 =
√

3
gL

(φ1
c)4 , u3 = u1 =

u0

4
. (6.4.29)

Substituting this into the Einstein equations, the (t̂t̂, r̂r̂, x̂x̂, ŷŷ)5 equations are given by,

12(A00̄)2g2L2 +
33g2L2

4(φ1
c)4 + (φ1

c)4 − 48L2g2
RV2

0 = 0 ,

−63g2L2

4(φ1
c)4 − (φ1

c)4 + 48L2g2
RV2

0 = 0 ,

12(A00̄)2g2L2 −
105g2L2

4(φ1
c)4 + (φ1

c)4 + 48L2g2
RV2

0 = 0 ,

12(A00̄)2g2L2 −
81g2L2

4(φ1
c)4 − 3(φ1

c)4 + 48L2g2
RV2

0 = 0 , (6.4.30)

which can be solved to get,

A00̄ =

√
5
8

1
(φ1

c)2 , L =

√
2
3

(φ1
c)4

g
, (6.4.31)

with the constraint,
23

2(φ1
c)4 = 32

g2
R

g2 V2
0 . (6.4.32)

We summarise the Bianchi II solution as,

ds2 = L2
[
− r̂2u0dt̂2 +

dr̂2

r̂2 + r̂2u1dx̂2 + r̂2(u3+u1)dŷ2

− 2x̂r̂2(u3+u1)dŷdẑ + [r̂2(u3+u1) x̂2 + r̂2u3]dẑ2
]
,

u0 =
√

2 , u3 = u1 =
1

2
√

2
, L =

√
2
3

(φ1
c)4

g
, A00̄ =

√
5
8

1
(φ1

c)2 ,

φ1
c =

(√
2

V0

V1

) 1
3

, V0V1 > 0 ,
23

2(φ1
c)4 ≤ 1 , (6.4.33)

5The ẑẑ equation is same as the x̂x̂ equation.
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where we have substituted the invariant one forms (4.5.8) in (4.5.11) and written the

metric explicitly.

6.4.3 Bianchi VI

In this subsection, we give the Bianchi type VI solution (4.5.15) arising from gauged

supergravity. We recollect the metric,

ds2 = L2
[
− r̂2u0dt̂2 +

dr̂2

r̂2 + r̂2u2(ω1)2 + r̂2u3(ω2)2 + (ω3)2
]
. (6.4.34)

where the invariant one forms are,

ω1 = e−x̂dŷ , ω2 = e−hx̂dẑ , ω3 = dx̂ . (6.4.35)

The analysis is again entirely parallel to the previous sections. As before, we consider

only the time like component for the S O(2) gauge field (6.4.5) to be non-vanishing and

set all the tensor fields to be zero. We also find that the off-diagonal Einstein equations

for all cases imply,

A10̄ = A12̄ = A13̄ = A14̄ = 0 , (6.4.36)

For this case, the off-diagonal (r̂ x̂) Einstein equation gives the condition,

u2 = −u3h , (6.4.37)

The rest of the Einstein equations (t̂t̂, r̂r̂, x̂x̂, ŷŷ, ẑẑ) are as follows. The (t̂t̂) component of

the Einstein equation is,

2(1 + h + h2 + u2
3(1 − h + h2))(φ1

c)4 + (A00̄)2(3g2L2 + u2
0(φ1

c)8) − 24L2g2
RV2

0 = 0 .

(6.4.38)
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The (r̂r̂) component of the Einstein equation is,

2(1 + u0u3 + h − u3(u3 + u0)h + h2)(φ1
c)4 − (A00̄)2(3g2L2 − u2

0(φ1
c)8) − 24L2g2

RV2
0 = 0 .

(6.4.39)

The (x̂x̂) component of the Einstein equation is,

2(u2
3 + u0u3 + u2 + h − u3(u3 + u0)h + u2

3h2)(φ1
c)4

− (A00̄)2(3g2L2 + u2
0(φ1

c)8) − 24L2g2
RV2

0 = 0 . (6.4.40)

The (ŷŷ) component of the Einstein equation is,

2(u2
3 + u0u3 + u2 + h2)(φ1

c)4 − (A00̄)2(3g2L2 + u2
0(φ1

c)8) − 24L2g2
RV2

0 = 0 . (6.4.41)

The (ẑẑ) component of the Einstein equation is,

2(1 + u2
0 − u0u3h + u2

3h2)(φ1
c)4 − (A00̄)2(3g2L2 + u2

0(φ1
c)8) − 24L2g2

RV2
0 = 0 . (6.4.42)

The gauge field equation for A00̄ is given by,

3g2L2 + u0u3(−1 + h)(φ1
c)8 = 0 . (6.4.43)

The scalar field equation reduces to,

3g2L2 − u2
0(φ1

c)8 = 0 . (6.4.44)

The two equations obtained above can be solved (assuming h , 1) to get,

u0 =
√

3
gL

(φ1
c)4 , u3 =

u0

1 − h
. (6.4.45)
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The remaining Einstein equations are all not independent and can be solved to get,

L =
(φ1

c)4

√
6g
|h − 1| , A00̄ =

√
−2h

(−1 + h)2

1
(φ1

c)2 . (6.4.46)

The gauge field solution implies that h < 0 for A00̄ to be real. The constraint on the free

parameters is given by,
8(3 − h + h2)
(φ1

c)4(h − 1)2 = 32
g2

R

g2 V2
0 . (6.4.47)

We summarise the solution as,

ds2 = L2
[
− r̂2u0dt̂2 +

dr̂2

r̂2 + dx̂2 + e−2x̂r̂2u2dŷ2 + e−2hx̂r̂2u3dẑ2
]
,

u0 =
1
√

2
(1 − h) , u2 = −

1
√

2
h , u3 =

1
√

2
, L =

(φc
1)4

√
6g

(1 − h) ,

A00̄ =

√
−2h

(−1 + h)2

1
(φ1

c)2 , h < 0 , h , 0, 1 ,

φ1
c =

(√
2

V0

V1

) 1
3

, V0V1 > 0 ,
8(3 − h + 3h2)
(φ1

c)4(−1 + h)2 ≤ 1 , (6.4.48)

where we have substituted the invariant one forms (4.5.12) in (4.5.15) and written it ex-

plicitly.

As one can see from the above equations, we require h < 0 for the gauge field to be real

which agrees with [7]. In deriving this particular solution, we also required in addition

h , 0, 1. These two cases correspond to the Bianchi type III and type V metrics which can

be realised as limiting cases of type VI. The type V metric is obtained in the h → 1 limit

of the type VI metric. In [7] it was found that the solution exists in the massless limit.

In this case the equivalent of a mass less limit would be to take g → 0 as h → 1. Even

though the length of the space time can be kept finite the time component of the gauge

field blows up in this limit. Thus in this model we cannot obtain the type V solution in

this manner. A similar issue occurs for the h→ 0 limit for the type III metric. In this case,

the gauge field vanishes. In both situations one cannot take either V1 or V0 to zero, as this
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would jeopardise the gauging procedure. In summary, the type V and type III metrics do

not seem to be valid attractors of the gauged supergravity considered here. However, they

may still be solutions to some generic supergravity that belongs to the same class. For

example, the type VII metric requires two massive gauge fields to start with, therefore one

has to start from a supergravity model that uses two gauge fields to gauge the symmetries

of the scalar manifold.

The attractor potential for the Bianchi II and Bianchi VI considered here is the same

as (6.4.18) with the values of the parameters and constraints specific to each case. The

solutions are determined by the parameters g,V0 and V1 together with the constraints. In

this section, we have given a general idea of how to get such metrics from a simple gauged

supergravity model via the generalised attractor ansatz (6.2.2). The other Bianchi classes

may be realised in a similar way from more generic gauged supergravities.

6.5 Bianchi attractors in U(1)R gauged supergravity

In this section, we construct a special subclass of the Bianchi metrics whose symmetry

groups factorise into a direct product form given by (4.5.35) [21]. We consider a trun-

cated version of the gauged supergravity model discussed earlier in §5.4 with just U(1)R

gauging. There is no gauging of the symmetries of the scalar manifold and hence there

are no tensors as well. The field content of the reduced model is given by,

{ea
µ , ψ

i
µ , A

I
µ , λ

iã , φ1} , (6.5.1)

with I = 0, 1 and I = 0 corresponds to the graviphoton as before. The field φ1 is the scalar

in the single vector multiplet. The gauge field combination used for the U(1)R gauging

is same as before. The potential of the U(1)R gauged supergravity contains only terms

proportional to g2
R as there is no gauging of the symmetries of scalar manifold and can be
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obtained by setting φ2 = φ3 = 0 in (5.4.19),

V(φ1) = −2g2
R

[2
√

2V0V1

φ1 + (φ1)2V2
1

]
. (6.5.2)

We show the embedding of the Li fu0(2) × MI solution, which has the form,

ds2 = L2
[
− r̂2u0dt̂2 +

dr̂2

r̂2 + dx̂2 + dŷ2 + dẑ2
]
. (6.5.3)

When u0 = 1 we have the familiar AdS 2×R
3 solution. We consider the gauge field ansatz

as before,

AIt̂ = et̂
0̄AI0̄ =

1
Lr̂

AI0̄ . (6.5.4)

For the U(1)R gauged supergravity the field equations at the attractor point for the gauge

field, scalar field and Einstein equation are read off by setting g = 0 in the corresponding

field equations found for the general gauging considered in [17]. The gauge field equation

has the form,

aIJ[ω a
a, cFcbJ + ω b

a, cFacJ] = 0 , (6.5.5)

and is identically satisfied for the gauge field ansatz considered above. The scalar field

equation is given by,

∂

∂φ1

[
Vattr(φ1, A10̄, A00̄)

]
= 0, Vattr(φ1, A10̄, A00̄) = V(φ1) +

1
4

aIJF I
abF Jab . (6.5.6)

At the critical point φ1
c = (

√
2V0

V1
)

1
3 , it relates the parameters V0 and V1 to the charges,

(A10̄)2 − 2(A00̄)2(φ1
c)6 = 0 . (6.5.7)

The Einstein’s equations are,

Rab −
1
2

Rηab = T attr
ab , (6.5.8)
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where,

T attr
ab = Vattr(φ1, A10̄, A00̄)ηab − aIJF I

acF cJ
b . (6.5.9)

At the attractor point, there are only two independent equations in the above set,

3(A00̄)2u2
0(φ1

c)5 − 12
√

2L2g2
RV0V1 = 0 ,

u2
0φ

1
c(−2 + 3(A00̄)2(φ1

c)4) + 12
√

2L2g2
RV0V1 = 0 , (6.5.10)

Where we have used (6.5.7) for simplification. This can be solved to get,

L2 = −
u2

0

2Λ
, Λ = −6g2

RV2
1 (φ1

c)2 ,

A00̄ =
1

√
3(φ1

c)2
, A10̄ =

√
2
3
φ1

c , (6.5.11)

where Λ is the AdS cosmological constant. Note that the Einstein equation does not place

additional constraints on any of the gauged supergravity parameters V0,V1, gR, unlike in

the other Bianchi cases considered here. We summarise the solution,

ds2 = L2
[
− r̂2u0dt̂2 +

dr̂2

r̂2 + dx̂2 + dŷ2 + dẑ2
]
,

A0t̂ =
1
Lr̂

A00̄ , A1t̂ =
1
Lr̂

A10̄ ,
A00̄

A10̄
=

1
2

V1

V0
, L2 = −

u2
0

2Λ
,

Λ = −6g2
RV2

1 (φ1
c)2 , φ1

c =

(√
2

V0

V1

) 1
3

, V0V1 > 0 . (6.5.12)

Note that the solution exists for any u0 > 0 and in particular, when u0 = 1 we get the

familiar AdS 2 × R
3 solution.

The Li fu0(2) × MII metric has the form,

ds2 = L2
[
− r̂2u0dt̂2 +

dr̂2

r̂2 + dx̂2 + dŷ2 − 2x̂dŷdẑ + (x̂2 + 1)dẑ2
]
. (6.5.13)

We consider the same gauge field ansatz as for the previous case (6.5.4). As earlier, the
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gauge field equations are identically satisfied. The attractor equations are again same as

(6.5.7) at the critical point. There are three independent Einstein equations given by,

φ1
c + 6(A00̄)2(φ1

c)5 − 24
√

2L2g2
RV0V1 = 0 ,

φ1
c − 4u2

0φ
1
c + 4(A00̄)2u2

0(φ1
c)5 + 24

√
2L2g2

RV0V1 = 0 ,

−3φ1
c − 4u2

0φ
1
c + 6(A00̄)2u2

0(φ1
c)5 + 24

√
2L2g2

RV0V1 = 0 , (6.5.14)

where we have again used (6.5.7) for simplification. This set of algebraic equations can

be solved to get,

A00̄ =

√
2

u0(φ1
c)2 , A10̄ =

2φ1
c

u0
,

u0 =

√
11
2
, L2 = −

13
4Λ

, (6.5.15)

where Λ is the AdS cosmological constant. We summarise the Li fu0(2) × MII as,

ds2 = L2
[
− r̂2u0dt̂2 +

dr̂2

r̂2 + dx̂2 + dŷ2 − 2x̂dŷdẑ + (x̂2 + 1)dẑ2
]
,

A0t̂ =
1
Lr̂

A00̄ , A1t̂ =
1
Lr̂

A10̄ ,
A00̄

A10̄
=

1
2

V1

V0
, u0 =

√
11
2
,

L2 = −
13
4Λ

, Λ = −6g2
RV2

1 (φ1
c)2 , φ1

c =

(√
2

V0

V1

) 1
3

, V0V1 > 0 . (6.5.16)

6.6 Summary

We studied the generalised attractors in N = 2, d = 5 gauged supergravity defined by

constant anholonomy, constant gauge fields, constant tensor fields and constant scalars

at the attractor points. We showed that all the equations of motion become algebraic at

the attractor points. We constructed the attractor potential from the scalar field equations

and showed that it can be written independently from squares of the bosonic terms in

the fermion supersymmetry transformations. We analysed the Killing spinor integrability
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conditions and determined the conditions for maximal supersymmetry. We showed that

some of the simplest Bianchi attractors sourced by massive gauge fields can be realised

from gauged supergravity models as generalised attractor solutions. In particular, we con-

structed a Lifshitz solution, a Bianchi type II and a Bianchi type VI solution from a simple

gauged supergravity model with gauging of symmetries of scalar manifold and R symme-

try. We also constructed solutions of the type Li fu0 × M in U(1)R gauged supergravity.

We now conclude this section with a few comments. Let us first note that the Chern-

Simons term had no contribution whatsoever for any of these solutions. In particular as

observed in [15], topological terms vanish for the Lifshitz like solution sourced by a time-

like gauge field. Remember that the field strengths are written in terms of the anholonomy

coefficients. For the Lifshitz like solution and in general for any Bianchi type I metric

the non-vanishing anholonomy coefficients are c 0
01 , c

2
21 , c

3
31 , c

4
41 . Due to this the Chern-

Simons term εbacdec f
ba c g

cd A f AgAe vanishes. For similar reasons the structure constants of

the Bianchi classes [118] imply that there can be no support from the Chern-Simons term

for any of the Bianchi type metrics which are sourced by time-like (or space-like) gauge

fields. Note that for metrics with homogeneous directions greater than three, the possible

symmetry groups are given by the classification of real Lie algebras (see, for example,

table I of [120]). In such cases, the topological terms could have an effect on the solution.

Another important point to discuss here is the absence of tensor fields. In the litera-

ture there are known anisotropic Lifshitz solutions sourced by massive two forms [125].

However, it is not possible to realise such solutions within gauged supergravity. Unlike

in [125], the kinetic terms for the tensor fields in gauged supergravity have a toplogical

origin (5.3.9). In fact, the kinetic term for the tensor field comes from the Chern-Simons

term in the original ungauged supergravity. Therefore, we do not expect the tensor fields

in the theory to contribute to Lifshitz like metrics. In the supergravity model under con-

sideration we have verified that the tensor fields do not contribute to the other Bianchi type

metrics. This is in accordance with the results of [7] where such metrics were supported
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only by the gauge fields.

Before concluding, we would like to caution about the usage of the term attractor in this

context. The attractor mechanism originally studied in [4] was in the context of super-

symmetry preserving black hole configurations. As it has been subsequently realised,

the critical points of the black hole effective potential may not be supersymmetric in gen-

eral [94]. A detailed analysis of stability of non-supersymmetric black holes in asymptotic

Minkowski space carried out in [115] suggests that the stable attractors corresponds to the

absolute minima of the effective black hole potential. This condition slightly differs for

black holes in (Anti)-deSitter spaces. We investigate the stability of Bianchi attractors in

gauged supergravity in the next chapter.

131



132



Chapter 7

Stability of Bianchi attractors in gauged

supergravity

7.1 Introduction

In chapter 4, we discussed the classification of homogeneous but anisotropic extremal

black brane horizons known as Bianchi attractors. In chapter 6, we studied generalised

attractors in gauged supergravity and constructed some explicit examples of such Bianchi

attractors. One of the important issues being investigated currently is the stability of

such Lorentz violating geometries [159–164]. Instabilities due to scalar field fluctuations

were found to exist in a class of charged black brane geometries [165, 166]. Presence

of such instabilities in these solutions plays a crucial role because they indicate that the

geometry might get corrected in the deep infrared [161]. Though the stability analysis has

been carried out in a number of examples, a common recipe to figure out whether certain

geometry has any instability is still lacking.

In chapter 3, we discussed the attractor mechanism which has been studied quite ex-

tensively in the context of extremal black holes in Minkowski space with near horizon
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geometry AdS 2 × S 2. The study of a similar mechanism for generalised attractors has not

yet been explored thoroughly for the new class of Lorentz violating geometries arising

as gravity duals of condensed matter systems. Especially, it is not at all obvious which

among these entire class of new attractor geometries are stable and can survive in the

deep infrared. Since a number of such geometries can be embedded in gauged super-

gravity, where the scalar couplings and potential term are determined by symmetry, it is

natural to ask whether these gauged supergravity attractors are stable.

In this chapter, we analyse the stability of electrically charged Bianchi attractors in gauged

supergravity. For attractors which asymptote to Minkowski space the conditions for sta-

bility is well understood [95]. In such cases the attractor values of the scalar fields must

correspond to an absolute minimum of the black hole potential. We discussed this in

chapter 3. In this chapter we derive the analogous condition for the generalised attractors

in gauged supergravity. The main reference for this chapter is [21].

We consider the fluctuations of the scalar fields about their attractor value. We take the

fluctuation to be of the form,

φc + εδφ(r, t) , (7.1.1)

where t denotes the time, r is the radial direction, φc are the attractor values of the scalars

and δφ is the perturbation with ε < 1. We have taken the fluctuation to not depend on the

(x, y, z) directions to respect the Bianchi type symmetries along these directions. Besides,

we are primarily interested in the radial behavior of the fluctuation as one approaches

the horizon. We also assume that the black brane metric can be expanded about the near

horizon geometries as follows,

g̃µν ∼ gµν(r − rh) + ε g1
µν(r − rh) + O(ε2) + . . . , (7.1.2)

where gµν is the near horizon metric given by the Bianchi type geometries. The higher

order terms like g1
µν are due to the back reaction of the scalar field fluctuations on the
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attractor geometry.

We study the stress energy tensor in gauged supergravity and expand it in first order of

scalar fluctuations. We find that the stress energy tensor in gauged supergravity depends

on the scalar fluctuations even at first order perturbation due to non-trivial interaction

terms in the theory. If there is a large backreaction due to scalar fluctuations, the ge-

ometry would significantly differ from the attractor geometry indicating an instability.

Therefore, stable attractor geometries are those where the scalar fluctuations die out as

one approaches the horizon.

We then study the scalar field equations with the fluctuations at first order, determine

the general solution and the conditions under which these fluctuations can exist. These

conditions are such that the generalised attractor geometries must exist at critical points

which are maxima of the attractor potential. We then derive conditions for stability of

the Bianchi attractors in gauged supergravity by studying the near horizon behaviour of

the scalar fluctuations and demanding regularity. In particular, we find that this severely

restricts the general form of these metrics.1 We find that metrics which factorise as

ds2 = L2
[
−r̂2u0dt̂2 +

dr̂2

r̂2 + ηi jω
i ⊗ ω j

]
, (7.1.3)

are stable under scalar fluctuations about the attractor value. The parameter u0 must be

positive in order to have a regular horizon. In particular, when u0 = 1 we get an AdS 2

factor and the symmetry is enhanced to S O(2, 1)×M. This factorisation is reminiscent of

extremal black holes in four dimensions where the near horizon geometries factorise as

AdS 2 × S 2. We briefly mentioned such a class of metrics in chapter 4 (eq (4.5.35)) with

scale invariance only along the r̂, t̂ directions. In the previous chapter, we constructed

explicit examples of such metrics from U(1)R gauged supergravity in §6.5.

The chapter is organised as follows. In §7.2 we expand the stress energy tensor under
1In deriving this result, we make certain technical assumption on the killing vectors used in gauging, as

well as on the nature of the critical points giving rise to the attractor geometry which will be discussed in
due course.
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scalar fluctuations about the attractor value and discuss the backreaction. We then derive

the general solutions for the scalar fluctuations and describe the conditions under which

these fluctuations exist in §7.3. Following this we study the near horizon behaviour of

the fluctuations and derive stability conditions for the Bianchi attractors and discuss the

constraints on the metric in §7.4. We conclude and summarise our results in §7.5.

7.2 Backreaction at first order

In this section, we analyse the stress energy tensor in gauged supergravity under scalar

fluctuations. The stress energy tensor calculated from (5.3.9) takes the form,

Tµν =gµν
[1
4

aIJF I
µνF

Jµν +
1
2

gxyDµφ
xDµφy +V(φ)

]
−

[
aIJF I

µλF J λ
ν + gxyDµφ

xDνφ
y
]
. (7.2.1)

We now expand the stress energy tensor (7.2.1) upto first order in ε under the scalar

perturbations (7.1.1) to get,

Tµν(φc + δφ) =gµν
[1
4

(
aIJ |φc +

∂aIJ

∂φz

∣∣∣∣∣
φc

δφz
)
F I
λσF Jλσ + g

(
gxyKx

I

)∣∣∣∣∣
φc

AI
λ∂

λ(δφy)

+
1
2

g2AI
λAλJ

(
KIJ |φc +

∂KIJ

∂φz

∣∣∣∣∣
φc

δφz
)

+

(
V(φc) +

∂V

∂φz

∣∣∣∣∣
φc

δφz
)]

−

[(
aIJ |φc +

∂aIJ

∂φz

∣∣∣∣∣
φc

δφz
)
F I
µλF J λ

ν + g
(
gxyKx

I

)∣∣∣∣∣
φc

(
AI
µ∂νδφ

y

+ AI
ν∂µδφ

y
)

+

(
KIJ |φc +

∂KIJ

∂φz

∣∣∣∣∣
φc

δφz
)
g2AI

µAJ
ν

]
, (7.2.2)
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where we have defined KIJ = Kx
I Ky

Jgxy. The above equation can be further simplified and

written as,

Tµν(φc + δφ) =T attr
µν |φc + gKyI |φc

(
AλI∂λ(δφy)gµν − AI

µ∂ν(δφ
y) − AI

ν∂µ(δφ
y)
)

+

[
∂aIJ

∂φz

∣∣∣∣∣
φc

(1
4

gµνFλσIF J
λσ − F I

µλF J λ
ν

)
+ g2∂KIJ

∂φz

∣∣∣∣∣
φc

(1
2

gµνAI
λAλJ − AI

µAJ
ν

)
+
∂V

∂φz

∣∣∣∣∣
φc

]
δφz . (7.2.3)

where,

T attr
µν |φc = Vattr(φc)gµν −

[
aIJ |φc F

I
µλF λJ̃

ν + g2KIJ |φc A
I
µAJ

ν

]
. (7.2.4)

The attractor equations (6.3.1) can be used for further simplification to get,

Tµν(φc + δφ) =T attr
µν |φc + gKyI |φc

(
AλI∂λ(δφy)gµν − AI

µ∂ν(δφ
y) − AI

ν∂µ(δφ
y)
)

−

[
∂aIJ

∂φz

∣∣∣∣∣
φc

F I
µλF J λ

ν + g2∂KIJ

∂φz

∣∣∣∣∣
φc

AI
µAJ

ν

]
δφz . (7.2.5)

It is already clear that for general perturbations of the scalar field, there is backreaction

at first order even after using the attractor equations. In particular this requires the fluc-

tuations and their derivatives to be well behaved as one approaches the horizon. Any

divergent fluctuation would cause infinite backreaction and deviation from the attractor

geometry indicating an instability. Taking the trace of (7.2.5) we get,

T µ
µ (φc + δφ) =T attrµ

µ |φc + (d − 2)gKyI |φc A
λI∂λ(δφy)

−

[
∂aIJ

∂φz

∣∣∣∣∣
φc

F I
µνF

Jµν + g2∂KIJ

∂φz

∣∣∣∣∣
φc

AI
µAJµ

]
δφz , (7.2.6)
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where d is the space time dimension. Once again we can use the attractor equations (6.3.1)

to simplify, and the Einstein equations take the form,

R
(2 − d)

2
=T attrµ

µ |φc + (d − 2)gKyI |φc A
λI∂λ(δφy)

+

[
g2∂KIJ

∂φz

∣∣∣∣∣
φc

AI
µAJµ + 4

∂V

∂φz

∣∣∣∣∣
φc

]
δφz . (7.2.7)

Suppose if the critical points of the attractor potential are also simultaneous critical points

of the gauged supergravity scalar potential (as was the case with all the examples dis-

cussed in chapter 6), we see that the terms relevant for the backreaction are proportional

to g:

R
(2 − d)

2
= T attrµ

µ |φc + (d − 2)gKyI |φc A
λI∂λ(δφy) + g2∂KIJ

∂φz

∣∣∣∣∣
φc

AI
µAJµδφz , (7.2.8)

Thus, for gauging of R symmetry, g = 0 and hence the backreaction is absent:

R
(2 − d)

2
= T attrµ

µ |φc . (7.2.9)

(See §6.5 for some examples of generalised attractor in gauged supergravity with just R

symmetry gauging). However, in gauged supergravity with a generic gauging of sym-

metries of the scalar manifold, the equation depends on the first order fluctuations in the

scalar fields. Thus, the generalised attractor geometries in gauged supergravity with a

generic gauging can get backreacted by fluctuations of scalar fields. It then follows that

the relevant boundary conditions to have stable attractors should be such that the fluctua-

tions and derivatives of fluctuations vanish as one approaches the horizon.
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7.3 Scalar fluctuations

In this section, we will analyse the scalar fluctuations in detail using the equation of

motion for the scalar fields. The field equation (6.2.12) can be rewritten as:

ê−1∂µ
[
ê gzyD

µφy] − 1
2
∂gxy

∂φz ∇µφ
x∇µφy − g

∂KIy

∂φz AI
µ∇

µφy −
∂Vattr

∂φz = 0 . (7.3.1)

We will now expand the scalar fields about their attractor values and keep terms of O(ε)

to get:

gzy|φc∇µ∇
µδφy −

∂2Vattr

∂φz∂φy

∣∣∣∣∣
φc

δφy + g
[
∂KIz

∂φy −
∂KIy

∂φz

]∣∣∣∣∣
φc

AµI∇µδφ
y

+ g
[
KIz|φc +

∂KIz

∂φy

∣∣∣∣∣
φc

δφy
]
∇µAµI = 0 . (7.3.2)

Here the covariant derivative ∇µ is taken with respect to the zeroth order metrics which

represent the near horizon Bianchi geometries. Note that the higher order metric terms

which are undetermined are not required at O(ε). We choose the gauge condition ∇µAµI =

0 to eliminate the last term. Finally we get,

∇µ∇
µδφx − gzx∂

2Vattr

∂φz∂φy

∣∣∣∣∣
φc

δφy + 2g (gzx∇̃yKIz)|φc A
µI∇µδφ

y = 0 , (7.3.3)

where ∇̃ is the covariant derivative with respect to the metric on the scalar manifold gxy.

The Laplacian operator can be written as,

∇µ∇
µ = gr̂r̂∂2

r̂ + gt̂t̂∂2
t̂ + (gr̂r̂ ∂r̂ê

ê
+ ∂r̂gr̂r̂)∂r̂ , (7.3.4)

since the scalar fluctuations depend only on the radial and time co-ordinates.

Before substituting the details, we would like to make some comments on the co-ordinate

system used for writing the Bianchi attractor geometries. In [7], the horizon for the

Bianchi metrics was located at r = −∞, where as in chapters 4 and 6 we have chosen
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the co-ordinate r̂ = er such that the horizon lies at r̂ = 0 instead. As can be seen from the

general form of the Bianchi metrics (4.5.3), the constants u0, ui must be positive in order

to have a regular horizon. Thus one can see that the general form of the determinant is,

ê =

√
−detgµν ∼ L5r̂m f (x, y, z) , (7.3.5)

where m = −1 +
∑

l clul , ul are the various exponents and cl is a positive number with

c0 = 1 for all Bianchi attractors. For example, in the Bianchi II case (see (6.4.33)) m =

−1 + u0 + 2(u1 + u3). We can also see that,

gr̂r̂ =
r̂2

L2 , gt̂t̂ = −
1

L2r̂2u0
, (7.3.6)

for all Bianchi attractors. Using the above data, the Laplacian (7.3.4) can be expressed as,

∇µ∇
µ =

1
L2

[
r̂2∂2

r̂ + (m + 2)r̂∂r̂ −
1

r̂2u0
∂2

t̂

]
. (7.3.7)

Substituting (7.3.7) in (7.3.3) and using the ansatz (6.4.5) for AI
µ we get,

[
r̂2∂2

r̂ + (m + 2)r̂∂r̂ −
1

r̂2u0
∂2

t̂

]
δφx − Mx

y |φcδφ
y + N x

y |φc

1
r̂u0
∂t̂δφ

y = 0 , (7.3.8)

where,

Mx
y |φc = L2gzx∂

2Vattr

∂φz∂φy

∣∣∣∣∣
φc

, N x
y |φc = 2gLAI0̄(gzx∇̃yKIz)|φc . (7.3.9)

The metric on the moduli space gxy is chosen to be positive definite and the nature of the

critical point is given by the sign of the double derivative of the attractor potential. We

further assume that Mx
y |φc is diagonal so that,

Mx
y |φcδφ

y = λδφx . (7.3.10)

The term N x
y can be non-zero in general, but vanishes trivially for the gauged supergravity
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model where we found some examples Bianchi attractors (see §(5.4)). There is only one

Killing vector (5.4.14) that generates the S O(2) isometry on the scalar manifold, and the

critical point is such that φ2
c = φ3

c = 0. Therefore one is left with just the ∇̃xKIx component

which vanishes due to the Killing vector equation on the manifold.2

Thus, the scalar fluctuation equation (7.3.3) has the final form,

[
r̂2∂2

r̂ + (m + 2)r̂∂r̂ −
1

r̂2u0
∂2

t̂ − λ
]
δφx = 0 . (7.3.11)

The above equation admits a simple solution when the fluctuations δφx are time indepen-

dent. In this case, we have ,

δφx = C1r
(√

4λ+(1+m)2−(1+m)
)
/2 + C2r

(
−

√
4λ+(1+m)2−(1+m)

)
/2 . (7.3.12)

Thus, one of the modes vanishes as r → 0 provided λ is positive and it is possible to get

stable attractors upon setting C2 = 0. However, all the explicit examples we discussed in

chapter 6, do not admit a critical point with λ > 0. Thus, such fluctuations are unstable.

Now we turn to the case of time dependent fluctuations. Since the equation for δφx is

separable, we try the ansatz δφ(r̂, t̂) = f (r̂)eikt̂ (with k real) to get the Bessel equation:

[
r̂2∂2

r̂ + (m + 2)r̂∂r̂ + (
k2

r̂2u0
− λ)

]
f (r̂) = 0 . (7.3.13)

The general solutions for this equation are given by the standard Bessel functions (see,

for example, [167], page 932):

f (X) =

(X
2

)ν0[
C1Γ(1 − νλ)J−νλ(X) + C2Γ(1 + νλ)Jνλ(X)

]
, (7.3.14)

2Here, the single surviving component of the Killing vector is along the direction of φ1 on the scalar
manifold.
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where,

X =
k

u0r̂u0
, νλ =

√
(1 + m)2 + 4λ

2u0
, ν0 =

(1 + m)
2u0

, (7.3.15)

C1 and C2 are arbitrary constants, and the Bessel functions are,

Jνλ(X) =

(X
2

)νλ ∞∑
j=0

(−1) j

j!Γ( j + νλ + 1)

(X
2

)2 j

,

J−νλ(X) =

(X
2

)−νλ ∞∑
j=0

(−1) j

j!Γ( j − νλ + 1)

(X
2

)2 j

. (7.3.16)

The power series representation is valid in the small X or equivalently, in the large r

regime. We can rewrite the solution in terms of the Hankel functions,

Jνλ(X) =
1
2

(H1
νλ

(X) + H2
νλ

(X)) ,

J−νλ(X) =
1
2

(H1
νλ

(X)eiνλπ + H2
νλ

(X)e−iνλπ) , (7.3.17)

to get,

f (X) =

(X
2

)ν0[
C1H1

νλ
(X)

[
Γ(1 − νλ)eiνλπ + Γ(1 + νλ)

]
+ C2H2

νλ
(X)

[
Γ(1 − νλ)e−iνλπ + Γ(1 + νλ)

]]
. (7.3.18)

As one can see from above equation, there is already a restriction on νλ from the Gamma

function that appears in the general solution. First let us consider the case νλ real, then we

have the condition,

νλ =

√
(1 + m)2 + 4λ

2u0
=

√
(
∑

l clul)2 + 4λ
2u0

≤ 1 , (7.3.19)

for,

−
(
∑

l clul)2

4
≤ λ < 0 . (7.3.20)
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Note that only negative λ can satisfy (7.3.19).3 Since cl > 0 and all the ul have to be

positive for the existence of a regular horizon, we conclude that λ has to be negative.

Remember that the sign of λ is provided by the double derivative of the attractor potential

eqs. (7.3.9,7.3.10). This implies that the critical points correspond to maxima of the

attractor potential. For the case of imaginary νλ we have,

λ < −
(
∑

l clul)2

4
, (7.3.21)

and hence, even in this case the critical points correspond to a maxima of the attractor

potential. Thus we have determined the general solution for the scalar fluctuation (7.3.18)

and and we find that they are well behaved at large distance provided they satisfy the

conditions (7.3.20,7.3.21). This may be useful for the study of attractor flow equations

for black holes in AdS .

7.4 Stable Bianchi attractors

In this section, we will analyse the stability of the Bianchi attractors by studying the

behaviour of the solution in the r → 0 limit. We are interested in the question which

class of the Bianchi attractors can be stable attractor geometries in gauged supergravity.

This can be answered by looking at the near horizon behaviour of the scalar fluctuations

(7.3.18). From our analysis of the stress energy tensor in gauged supergravity (7.2.8),

we find that there is dependence on the fluctuations and their derivatives at first order

perturbation. Hence, we only require that the fluctuations do not blow up near the horizon

as that would backreact strongly and deviate from the geometry. This requirement places

some constraints on the form of the metric itself as we explain in the rest of the section.

Both the solutions in (7.3.18) are given in terms of the Hankel functions, the behaviour

near the horizon can be determined by considering the asymptotic expansions of the Han-

3We do not consider λ = 0 as that would leave the nature of the critical point undetermined.
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kel functions. Remember that the horizon for the Bianchi metrics (4.5.3) is located at

r̂ = 0. The form of the solution (7.3.18) makes it convenient to use the asymptotic ex-

pansions of the Hankel functions, since from (7.3.15) X → ∞ as r̂ → 0. The asymptotic

expansions are given by,

H1
νλ

(X) ∼

√
2
πX

ei(X− π2 (νλ+ 1
2 )) ,

H2
νλ

(X) ∼

√
2
πX

e−i(X− π2 (νλ+ 1
2 )) . (7.4.1)

Substituting (7.4.1) in (7.3.18) we determine the behaviour of the fluctuation near the

horizon as,

f (X) ∼
(X

2

)ν0−
1
2

√
1
π

[
C1ei(X− π2 (νλ+ 1

2 ))[Γ(1 − νλ)eiνλπ + Γ(1 + νλ)
]

+ C2e−i(X− π2 (νλ+ 1
2 ))[Γ(1 − νλ)e−iνλπ + Γ(1 + νλ)

]]
. (7.4.2)

Since X ∼ 1
r̂u0 and u0 > 0, there is a leading divergent term as r̂ → 0 unless,

1 − 2ν0

2
≥ 0 , (7.4.3)

which can be rewritten as,

ν0 =
(1 + m)

2u0
=

∑
l clul

2u0
≤

1
2
. (7.4.4)

Since c0 = 1, this implies, ∑
l,l,0

clul ≤ 0 , (7.4.5)

which can never be satisfied without some of the exponents ul being negative. Since we

require a regular horizon, all the exponents have to be positive. Thus the only possibility

for which eq. (7.4.5) can be satisfied is,

u0 , 0, ul = 0 ∀ l , 0 . (7.4.6)
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The conditions on λ (7.3.20),(7.3.21) for the general solution (7.3.18) to exist can now be

written as,

−
u2

0

4
≤ λ < 0 , (7.4.7)

for real νλ and,

λ < −
u2

0

4
, (7.4.8)

for imaginary νλ. To summarise, Bianchi attractors are stable against scalar fluctuations

about the attractor value for the class of metrics which satisfy the condition (7.4.6).

The condition (7.4.6), is highly restrictive on the form of the Bianchi metrics. In particular

it follows from (7.4.6) that ν0 = 1
2 for any u0 > 0 and the scalar fluctuations (7.4.2) do not

diverge near the horizon.4 In particular this restricts the metrics (4.5.3) to be of the form,

ds2 = L2
[
−r̂2u0dt̂2 +

dr̂2

r̂2 + ηi jω
i ⊗ ω j

]
. (7.4.9)

It is very interesting to note that the symmetry group of this metric form factorises into

a direct product of the (1 + 1) dimensional Lifshitz group and a group in the Bianchi

classification. This is similar to what happens for example in four dimensional extremal

black holes where the near horizon geometry factorises as AdS 2 × S 2.

The simplest non-trivial example of this class is the Li fu0(2) × MI solution,

ds2 = L2
[
− r̂2u0dt̂2 +

dr̂2

r̂2 + (dx̂2 + dŷ2 + dẑ2)
]
, (7.4.10)

one obtains the AdS 2 × R
3 solution when u0 = 1. Another less trivial example is the

Li fu0(2) × MII solution,

ds2 = L2
[
− r̂2u0dt̂2 +

dr̂2

r̂2 + (dx̂2 + dŷ2 − 2x̂dŷdẑ + (x̂2 + 1)dẑ2)
]
. (7.4.11)

4Note that there are still oscillatory terms in the fluctuation.
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Geometry λ u0 ul, l , 0 Stability
Lifshitz −34 3 1 no

Bianchi II −22
3

√
2 u1 = u3 = 1

2
√

2
no

Bianchi VI h < 0 −1 + 14h
3 − h2 1

√
2
(1 − h) u2 = − 1

√
2
h, u3 = 1

√
2

no

Li fu0(2) × MI −
5u2

0
3 any u0 > 0 0 yes

AdS 2 × MI −5
3 1 0 yes

Li fu0(2) × MII −61
6

√
11
2 0 yes

Li fu0(2) × M* λ < 0 any u0 > 0 0 yes

Table 7.1: Bianchi attractor geometries in gauged supergravity, nature of critical points
and stability. The first three entries are for the solutions found in [17] and discussed
in §6.4. The next three entries are generalised attractors in U(1)R gauged supergravity
discussed in §6.5. The last entry with the * is the most general possible Bianchi attractor
geometry (7.4.9) that satisfies our stability criteria.

We have constructed the Li fu0(2)×MI for any u0 > 0 and a Li fu0(2)×MII in a simple U(1)R

gauged supergravity theory with one vector multiplet. These solutions were discussed in

§6.5. It can be seen from Table (7.1), that these solutions satisfy our stability criteria

(7.4.6) and hence are examples of stable Bianchi attractors in gauged supergravity.

The examples we constructed earlier in [17] (discussed in §6.4) all have λ < 0 and exist

at maxima of the attractor potential. Therefore the condition (7.3.19) allows scalar fluctu-

ations about the attractor values. However as one can see from table (7.1) all the metrics

have some ul , 0 for l , 0 and do not satisfy our stability condition(7.4.6). Hence the

radial fluctuation of the scalar field diverges near the horizon for all these metrics. To

complicate matters further, as one can see from (7.2.8) the fluctuations and their deriva-

tives backreact on the geometry strongly. Thus there would be significant deviation of

the geometry even at the first order and we conclude that these geometries are unstable

attractors in the theory. These results are summarised in Table (7.1).
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7.5 Summary

In this chapter , we have studied the stability of Bianchi attractors in gauged supergravity

by considering scalar fluctuations about the attractor value. In general, the stress energy

tensor in a generic gauged supergravity depends on the scalar fluctuations and their deriva-

tives even at first order perturbation. Therefore, it is important that the scalar fluctuations

are well behaved near the horizon. In particular, if there is a large backreaction then the

geometry would deviate from the attractor geometry. Hence the fluctuations must vanish

as one approaches the horizon for the attractor geometry to be stable.

We analysed the scalar fluctuation equations and found that the fluctuations can exist in

general when the attractor geometries in consideration exist at critical points which, in

the present case, correspond to maxima of the attractor potential. By demanding that the

fluctuations vanish as one approaches the horizon we determined the conditions of stabil-

ity for the metric. We found that the Bianchi attractors are stable if the metric factorises

as,

ds2 = L2
(
−r̂2u0dt̂2 +

dr̂2

r̂2

)
+ L2

(
ηi jω

i ⊗ ω j
)
, (7.5.1)

which is a subclass of the Bianchi attractors discussed in chapter 4. We have referred

to this class of metrics as Li fu0(2) × M, where M refers to three dimensional manifolds

invariant under the nine groups given by the Bianchi classification. As stated before,

these solutions exist for critical points which are maxima of the attractor potential and

they satisfy all the conditions of stability. It would be interesting to explore whether

this is a generic feature of attractors in gauged supergravity or an artifact of the gauged

supergravity models considered.
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Chapter 8

Conclusion

In this thesis, we studied the microscopic and macroscopic descriptions of black holes in

string theory. In the microscopic side, we studied the counting of a class of states called

twisted BPS states in a supersymmetric theory. In the macroscopic side, we studied the

attractor mechanism in gauged supergravity. We first summarise the contents of the thesis,

and then highlight the main results and open questions.

In Chapter 2, we studied the microscopic state counting in string theory [3]. We computed

the generating functions for a class of 1/2 BPS states called twisted BPS states in CHL

orbifold theories, when the twists do not commute with the orbifold group. The generat-

ing functions turn out be ratios of the theta functions for the orbifold group and the twist

generating group. The orbifold partition function counts the states which are invariant

under the orbifolding group. The twists count states invariant under the twist generating

group within the states invariant under the orbifolding group. So, it is natural to expect

that the number of twisted states in orbifold theory should be lesser than untwisted states.

We verified this expectation by computing the asymptotic expansion of the degeneracy.

One direction where this work may be extended is to do an analogous computation for

1/4 BPS states. It is also possible that the twists may provide a controlled way to break

supersymmetry and help extend the counting problem to situations with reduced super-
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symmetry.

In the macroscopic side, we studied the attractor mechanism in gauged supergravity. We

covered the necessary back ground materials in attractor mechanism in supergravity in

chapter 3. In chapter 4, we studied AdS black holes and homogeneous extremal black

brane horizons known as Bianchi attractors [7,53]. These metrics are of the general form,

ds2 = L2
[
−r̂2u0dt̂2 +

dr̂2

r̂2 + r̂2(ui+u j)ηi jω
i ⊗ ω j

]
. (8.0.1)

and display homogeneous symmetries. In addition, they also exhibit scale invariance in

all directions. We were interested in embedding these metrics as attractor solutions in

gauged supergravity.

We covered the necessary background material on N = 2, d = 5 gauged supergravity

in chapter 5. We saw that gauging the symmetries of the scalar manifold gives rise to

interesting structure such as a potential for the scalar fields. We also saw that gauging the

R symmetry of the theory leads to terms in the potential which can support AdS vacuum.

We highlighted these features through a simple example of a gauged supergravity theory

with one vector multiplet.

In chapter 6, we discussed the generalised attractors inN = 2, d = 5 gauged supergravity

characterised by constant anholonomy coefficients [17]. The generalised attractor points

are obtained by solving the field equations when all the bosonic fields of the theory be-

come constants in tangent space. The field equations at the attractor points are algebraic,

and the moduli are determined in terms of the charges as expected for attractor solutions.

We constructed the attractor potential from the scalar field equations and showed that it

can be written independently from squares of the bosonic terms in the fermion supersym-

metry transformations. We constructed some explicit examples of homogeneous extremal

black brane horizons studied in chapter 4, as generalised attractor solutions in gauged su-

pergravity.
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The generalised attractor procedure relied on extremization of an attractor potential and

not on supersymmetry. From the discussions in chapter 3, we see that this method is

general and can include non-supersymmetric attractors. In chapter 7 we investigated the

stability of the Bianchi attractors in gauged supergravity. We considered the scalar pertur-

bations about the critical value and performed a fluctuation analysis in the field equations.

Since the stress energy tensor depended on the scalar fluctuations even at first order, we

demanded that the fluctuation be regular. We then analysed the scalar field equations

and solved for the fluctuations. We obtained the conditions under which the fluctuations

are well defined and demanded regularity at the horizon to determine the conditions for

stability.

The main results of the study of attractor mechanism in gauged supergravity are,

• We have extended the study of generalised attractors in N = 2, d = 4 gauged

supergravity [14] to N = 2, d = 5 gauged supergravity in [17].

– The field equations become algebraic at the attractor points. The moduli are

determined as functions of the charges by extremising an attractor potential.

– The attractor potential can be constructed independently from fermionic shifts

in gauged supergravity.

– The homogeneous extremal near horizon geometries known as the Bianchi

attractors [7, 53] are generalised attractor solutions in gauged supergravity.

– We constructed explicit examples of Bianchi I, Bianchi II and Bianchi VI type

solutions as generalised attractors in a simple gauged supergravity theory with

one vector multiplet.

• We have studied the stability of the Bianchi attractor solutions in gauged supergrav-

ity under scalar fluctuations about the critical value [21].

– The stress energy tensor in gauged supergravity (with a generic gauging of the

symmetries of the scalar manifold) depends on scalar fluctuations even at first
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order perturbation.

– Fluctuations which do not have regular behaviour near the horizon will backre-

act strongly leading to significant deviation from the attractor geometry. This

indicates an instability.

– The scalar fluctuations are well defined when the critical point in consideration

is a maxima of the attractor potential.

– Regularity of the fluctuations near the horizon require the near horizon geom-

etry to factorise as Li fu0 × M,

ds2 = L2
(
−r̂2u0dt̂2 +

dr̂2

r̂2

)
+ L2

(
ηi jω

i ⊗ ω j
)
, (8.0.2)

where M = MI ,MII . . . MIX are the homogeneous subspaces invariant under

the Bianchi type symmetries.

We now discuss some of the implications of our results. Our study of generalised at-

tractors indicates that there are several possible end points for an attractor flow in five

dimensional gauged supergravity. Even in the simple example of the gauged supergravity

with one vector multiplet, the Bianchi I, II and VI solutions all exist for the same value

of the critical point. It will be interesting to study this further and see if there is a pre-

ferred end point. We have answered this partially by the stability analysis which indicates

that the Bianchi type metrics which factorise as (8.0.2) represent stable end points. This

factorisation is reminiscent of the fact that near horizon geometry of extremal black holes

in four dimensions factorise as AdS 2 × S 2. It would also be very interesting to see if the

results of the stability analysis are model independent.

We have studied the generalised attractors by extremising an attractor potential. This

method is more generic and describes non-supersymmetric attractor points as well. The

construction of the attractor potential from fermionic shifts in the supersymmetry trans-

formation indicates that supersymmetry may have a very important role to play in this
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construction. We hope to explore this in future.

In the gauged supergravity model we considered, the critical points of the attractor po-

tential coincide with the critical point of the scalar potential in gauged supergravity. This

is very similar to the situation in ungauged supergravity where the critical points of the

effective potential coincide with the critical points of the central charge. It would be in-

teresting to see if the potential of gauged supergravity is related to the central charge of

the theory. This may be related to the issue regarding the fermionic shifts and we hope to

explore this in future.

Another implication from the study of generalised attractors is the similarity in the de-

scription of generalised attractors in the N = 2, d = 4 theory [14] and the N = 2, d = 5

theory. In ungauged supergravity a large class of BPS solutions in four and five dimen-

sions are related to each other [168, 169]. It would be interesting to see if this connection

extends to gauged supergravity.

One of the most interesting problems in the study of attractor mechanism in gauged super-

gravity is the construction of the flow equations. These equations require a full analytical

or numerical black hole solution interpolating between an asymptotic AdS geometry and

a near horizon geometry. To construct the flow equations for generalised attractors, it is

necessary to construct black brane solutions interpolating between the Bianchi type ge-

ometries and the AdS geometry. This will help prove the attractor mechanism for black

branes in gauged supergravity. We hope to address this in future.

There are classes of near horizon geometries which are more general than the ones consid-

ered in the thesis. Typical examples are metrics which are conformal to the Lifshitz met-

ric, which belongs to the Bianchi I class. These family of metrics exhibit different scaling

symmetries, hyperscale violation and occur as gravity duals in studies of doped matter

in AdS/CMT [170–173]. Such solutions have been studied systematically in ungauged

supergravity [174]. It has been shown that hyperscale violating metrics can arise upon di-

mensional reduction of some null deformations of the AdS factors that appear in the near
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horizon geometry of various extremal brane configurations in string theory [175]. More

recently, hyperscale violating metrics conformal to Lifshitz have also been constructed in

gauged supergravity [176]. In [53], examples of Bianchi attractors that exhibit hyperscale

violation have been constructed in Einstein-Maxwell-Dilation theories. It would be inter-

esting to develop a technique similar to the generalised attractor approach to systemati-

cally obtain Bianchi attractors which exhibit hyperscale violation in gauged supergravity.

Our previous attempts to obtain such metrics as generalised attractors point that the as-

sumptions of constant anholonomy and constant fields in tangent space need to be relaxed

suitably. Furthermore, the supersymmetry of such hyperscale violating metrics need to be

studied and perhaps this will shed some light on modification of the generalised attractor

assumptions.

Another important issue is string embedding. In general, the embedding of Bianchi attrac-

tors in gauged supergravity does not imply string embedding. For instance, It appears that

the gauged supergravity models that we have considered [18, 19] are not embeddible in

string theory 1. Perhaps, one way to approach this problem is to look for low dimensional

gauged supergravity models with known string embeddings, construct the Bianchi attrac-

tors in these theories and then attempt a ten dimensional lift. Perhaps, it is also possible

to approach this question top-down from flux compactifications [9]. Gauged supergrav-

ities can arise as low energy effective theories from flux compactifications. The various

flux parameters associated in a given compactification can be grouped in a tensorial form

on which the duality action is manifest. This tensorial form is called an embedding ten-

sor which encodes all the various possible gaugings of the supergravity [10]. This may

help narrow down possible models where one could then look for generalised attractor

solutions.

The stability condition (7.4.6), is similar to the condition for an isotropic universe in the

AdS -Kasner metric. It implies that the near horizon geometries must be free from any

1We would like to thank Prof Marco Zagermann for informing us about this issue and for several helpful
discussions.
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anisotropies with respect to the radial direction. This manifests as a loss of scale invari-

ance in the spatial directions. However, the homogeneous symmetries in the spatial di-

rections and scale invariance along the radial, time directions are preserved. The stability

analysis predicts that the generalised attractors which are stable under scalar fluctuations

about the attractor value, factor into a direct product form, have homogeneous symme-

tries and are isotropic with respect to a radial flow. In this respect, the stability conditions

certainly narrows down the possible IR candidate geometries. However, one should exer-

cise caution as some model dependent information has gone into the final stages of this

calculation.
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Appendix A

Tangent space and constant

anholonomy

In this chapter, we summarise our convention for tangent space and some definitions of

anholonomy coefficients used throughout the thesis. Greek indices µ, ν, . . . denote space

time indices with µ = 0, 1, . . . , 4 and gµν is the space time metric. Latin indices a, b, . . . de-

note tangent space indices with a = 0, 1 . . . , 4. The tangent space metric has the signature

ηab = {−,+,+,+,+}. The vielbeins ea
µ(x) are related to the space time metric by,

gµν = ea
µe

b
νη

ab. (A.0.1)

We define the one form ea ≡ ea
µdxµ and its dual ẽa ≡ eµa∂µ. The anholonomy coefficients

are defined as Lie brackets of the duals ẽa,

[ẽa, ẽb] ≡ c c
ab ẽc; c c

ab = eµaeνb(∂νec
µ − ∂µe

c
ν) (A.0.2)
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The tangent space curvature can be written in terms of the anholonomy coefficients and

the spin connection,

R d
abc = ∂aω

d
bc − ∂bω

d
ac − ω

e
ac ω

d
be + ω e

bc ω
d

ae − c e
abω

d
ec . (A.0.3)

In the absence of torsion the spin connection and anholonomy coefficients are related by,

ωa,bc =
1
2

[cab,c − cac,b − cbc,a], (A.0.4)

where ωa,bc = −ωa,cb and cab,c = −cba,c. The comma is used to indicate the antisymmetric

indices. It follows that when one takes constant c c
ab , the derivatives in (A.0.3) vanish and

the Riemann tensor is a function of the constant anholonomy coefficients. For tangent

space covariant derivatives acting on a spinor χα we use the convention,

Da(ω)χα = ∂aχα −
1
4
ω bc

a γbcχα, (A.0.5)

where α is the spinor index. The action of the covariant derivative on vectors is given by,

Da(ω)Vb = ∂aVb + ω b
a, cV

c. (A.0.6)
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Appendix B

Gamma matrices and Spinors in five

dimension

The Clifford algebra in 5 space-time dimensions is,

{γa, γb} = 2ηab. (B.0.1)

The Dirac matrices in five dimensions are given by [1],

γ0 = −iσ2 ⊗ σ3

γ1 = −σ1 ⊗ σ3

γ2 = I2 ⊗ σ1

γ3 = I2 ⊗ σ2

γ4 = −iγ0γ1γ2γ3 = σ3 ⊗ σ3 (B.0.2)

where σi, i = 1, 2, 3 are the usual Pauli matrices and I2 is the two dimensional unit matrix.

The charge conjugation matrix C has the property Ct = −C = C−1 and,

CγaC−1 = (γa)t, (B.0.3)
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where C = Bγ0, with B = γ3 such that B∗B = −1. The spinor indices which are usually

suppressed in most places are raised and lowered by Cαβ using the NW-SE convention.

Expressions such as ψ̄ψ and ψ̄γaψ are understood as,

ψ̄ψ = ψ̄αψα, ψ̄γaψ = ψ̄α(γa) β
α ψβ. (B.0.4)

In addition, the spinors in the theory carry an S U(2) index which is raised and lowered

using εi j,

X j = ε jiXi, X j = Xiεi j, (B.0.5)

with ε12 = ε12 = 1. With these conventions the mixed ε tensors are antisymmetric

ε jkεki = ε
j
i = −δ

j
i = −ε

j
i . (B.0.6)

Spinors in d = 5 satisfy a symplectic majorana condition. To apply this condition one

needs B∗B = −1, even number of Dirac spinors ψi, i = 1, . . . , 2n and an antisymmetric

real matrix Ωi j with Ω2 = −12n. The symplectic majorana condition on a generic spinor

reads as,

ψ∗i = Ωi jBψ j, (B.0.7)

or equivalently as,

ψ̄i ≡ (ψ∗i )tγ0 = (ψi)tC. (B.0.8)

For N = 2 supersymmetry i = 1, 2, and using Ωi j = εi j (B.0.7) reads as,

ψ∗1 = γ3ψ2. (B.0.9)

Note that this condition does not reduce the degrees of freedom as compared to a single

unconstrained Dirac spinor. This is because one needs at least a pair of Dirac spinors to

apply the symplectic majorana condition (B.0.7). However, the action of the R-symmetry

is manifest with this condition. Let us start with a pair of generic Dirac spinors in five
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dimensions,

ε1 =



ε11R + iε11I

ε12R + iε12I

ε13R + iε13I

ε14R + iε14I


, ε2 =



ε21R + iε21I

ε22R + iε22I

ε23R + iε23I

ε24R + iε24I


, (B.0.10)

where all the components are real valued constants. Using (B.0.7) one finds that,

ε21R = −ε13I , ε21I = −ε13R

ε22R = −ε14I , ε22I = −ε14R

ε23R = ε11I , ε23I = ε11R

ε24R = ε12I , ε24I = ε12R.

(B.0.11)

Therefore,

ε1 =



ε11R + iε11I

ε12R + iε12I

ε13R + iε13I

ε14R + iε14I


, ε2 =



−ε13I − iε13R

−ε14I − iε14R

ε11I + iε11R

ε12I + iε12R


. (B.0.12)

As one can see, there are 8 independent real components, which is same as the number of

degrees of freedom of a single unconstrained Dirac spinor. The minimum supersymmetry

that one can have in five dimensions is then N = 2 and thus the R symmetry group of

the Poincaré superalgebra is US p(2)R ' S U(2)R. The advantage of using the symplectic

majorana condition is that the action of the S U(2)R symmetry is manifest. For example,

rewriting the symplectic majorana spinors in two component notation one sees that,

εi =

 iεi jλ j

λ∗i

 , (B.0.13)

where,

λ1 =

 ε13R − iε13I

ε14R − iε14I

 , λ2 =

 ε11I − iε11R

ε12I − iε12R

 . (B.0.14)
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We do not require the two component notation for our purposes, we will use (B.0.12).

Antisymmetrisation is done with the following convention,

γa1a2...an = γ[a1a2...an] =
1
n!

∑
σ∈Pn

S ign(σ)γaσ(1)γaσ(2) . . . γaσ(n) . (B.0.15)

In d = 5 only I, γa, γab form an independent set, other matrices are related by the general

identity for d = 2k + 3,

γµ1µ2...µs =
−i−k+s(s−1)

(d − s)!
εµ1µ2...µsγµs+1...µd . (B.0.16)

We also list some useful identities involving various dirac matrices [29],

[γa, γb] =2γab,

[γh, γabc] =2γhabc,

[γabc, γegh] =ηe fηgpηhk(2γ
f pk

abc − 36δ [ f p
[ab γ k]

c] ). (B.0.17)
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Appendix C

Origin of tensor multiplets in gauged

supergravity

A novel feature of the gauged supergravity in five dimensions is the entry of tensor mul-

tiplets upon gauging. Once the gauge group K ⊂ G is identified, if one chooses to gauge

the nV + 1 vector fields AI , one is left with nT = dim(G) − nV vector fields AM charged

under K. These nT gauge fields are dualised into antisymmetric tensor fields BM
µν and give

rise to the tensor multiplets in the theory. It is important to note that there is no need for

a tensor multiplet in the ungauged supergravity (5.2.1) since the vectors and tensors are

equivalent by the duality relation [151],

∂[µAν] = ε λρσ
µν ∂λBρσ. (C.0.1)

This is however not true when the tensors carry massive degrees of freedom. The “self-

duality” condition for a massive tensor field in five dimensions is given by,

Bµν =
i

3!m
εµνλρσHλρσ, (C.0.2)
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where H is the three form field strength of B and m is a mass parameter. In fact, the

condition (C.0.2) follows from the generalisation of the Proca Lagrangian for tensor fields,

Lproca = B∗µνBµν −
i

3!m
εµνλρσB∗µνHλρσ. (C.0.3)

One can compare the above Lagrangian with (5.3.9) and see that in the gauged super-

gravity the tensor fields appear exactly as in the Proca Lagrangian, except that there are

covariant derivatives that appear due to the gauging. The presence of the i also implies

that these tensor fields are complex. In this discussion we will consider the tensor fields

to be decomposed of real and imaginary parts and hence the index M is always even.

We now explain briefly how the vectors AM
µ lose the degrees of freedom to tensors BM

µν

via a Higgs type mechanism. Remember that the AM
µ are those vector fields which are

neither adjoint nor singlets under K, hence they cannot describe Yang-Mills gauge fields.

In particular, they describe massive degrees of freedom. The field strength FM
µν is replaced

by the combination,

BM
µν = FM

µν + bM
µν, (C.0.4)

where bM
µν is an antisymmetric tensor invariant under the gauge transformation for a tensor

field,

δbM
µν = ∂[µΛ

M
ν] . (C.0.5)

This immediately implies that the AM
µν transform as,

δAM
µ = −ΛM

µ , (C.0.6)

so that (C.0.4) is gauge invariant. The above form of the gauge transformation also follows

from the closure of the supersymmetry algebra [13]. Using this gauge transformation one

can always choose ΛM = AM and get BM
µν = bM

µν. Thus the massive degrees of freedom

of AM
µ are absorbed by bM

µν by a Higgs mechanism. It follows that the tensor fields BM
µν

describe massive degrees of freedom.
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