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SYNOPSIS

The phenomena of meson decay and meson anti-meson mixingl@m@n excellent labo-
ratory to test the Standard Model (SM) predictions and fdirgct searches of physics beyond
the SM also known as New Physics (NP). Tlkeetive Hamiltonian of meson decay and mix-
ing is described in terms of Wilson cieients and dimension six four quark local operators.
The Wilson coéicients include the short distance QCD correctifie@s to the local operators
and are calculable in perturbation theory. The hadronicirmekements of the four quark local
operators between the initial and the final state meson aaenedrized in terms of form factors.
The form factors are non-perturbative hadronic quantitesl hence are poorly known. New
Physics may contribute virtually to meson decay and mixhrgugh loop diagrams like the
box and the penguin diagrams. Indirect searches for NPuavabmparison of theoretically
calculated observables related to the decay or mixing, prigcision measurements of the ob-
servables in experiments, and the observed discrepameiesfarred to as NP signal. However,
searches of NP are often hindered by hadronic uncertaimti@gldition to the poor knowledge
of form factors, the significant part of hadronic uncertastconstitutes of ‘non-factorizable’
effects. In this thesis using the semi-leptonic deBay> K*¢*¢~ we have shown how NP
signal can be extracted to all ordersagin perturbation theory, including ‘non-factorizable’
corrections at leading order lgcp/mMy in heavy quark expansion. We have also derived rela-
tions between various hadronic form factor ratios and otagdes independent of any Wilson

codficients, which enable us to tests these ratios in experiments

The B —» K*¢*¢~ decay is regarded as a very important mode for new physigslsea
Several diferent experiments Belle, Babar, CDF and LHCb have studisdniode. These
experiments have provided valuable data as a function afiitpton invariant mass squared
o? by studying uni-angular distributions. Each of these foxpegiments have measured the
partial branching fraction in chosep bins by preforming a complete angular integration. By

studying the angular distribution of the direction of thptten in an appropriately chosen frame
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these experiments have also measured the well known fofaokivard asymmetrnjeg and

the longitudinal polarization fractioR, in terms of integrated dilepton invariant mass squared
regions ofg?. The CDF and LHCb collaborations have in addition performedngular study

of the azimuthal angle defined as the angle between the plarmmaed by the leptons and the
decay products oK* i.e. K, . Recently the LHCb has also measured the zero crossing point
of the forward-backward asymmetry which is consistent i standard model expectation.
Future experimental studies by LHC-B and Belle Il will eraltthe study of this mode with
significantly larger statistics making possible the analysth multi-angular distributions and

the measurement of all the observables.

The thesis is based on the two papers mentioned below andidediin six chapters. In
Chapter 1 we have given a very brief introduction to the tbgcal tools needed to study
physics. After a brief introduction of the standard modektd#ctrowek interaction we have
discussed the Yukawa Lagrangian which encodes the entueufiastructure of the standard
model. The typical energy scale Bfdecay is~ 5 GeV where as the standard model contains
significantly higher energy scales like the mass of the t@rkgiand the mass of tiWé bosons.
Therefore the phenomenology Bfdecays are described in affextive field theory approach
called the Operator Product Expansion (OPE). In our worlh#dronic estimates are based on

the heavy quark symmetry which is discussed at the end otthgter.

The theoretical framework d — K*¢*¢~ decay is described in Chapter 2. At the quark
level the decay is given bﬁ — st*¢~ flavour changing neutral current transition and the
effective Hamiltonian is described in terms of three WilsonfiioentsCS", CS" andC,, and
six form factorsV(q?), A.2(d?), T123(g?). The values of these form factors are not accurately
known due to hadronic uncertainties. In the limit of heavadfumassn, — oo and large
recoil of theK* meson all the form factors can be expressed in terms of twd@wh factors
£,(g?) and&(g?) and there arise various symmetry relations between themsd& symmetry
relations however are broken due to radiative correctioms ‘aon-factorizable’ corrections.
Our key observation is that the rativ'$g?)/A.(g9?) and T.(q?)/T1(q?) are free from¢, (o?) and

&(9?) to all orders inas in perturbation theory including the ‘non-factorizablereections and
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at leading ordeAqcp/my in heavy quark expansion . In the low recoil region of Kiemeson

there arise additional symmetries which imM{a?)/A1(0?) = To(q?)/T(P).

In Chapter 3 we have described the angular distributio® ef K*¢*¢~ decay and we have
shown how the multitude of observables can be extracted fr@enangular distribution. In the
semileptonic deca(p) — K*(k)¢*(g1)¢~(gp) decay the light vector mesdf* decays reso-
nantly toK(k;)z(kz). The decay is described by four kinematic variables; leg@ir invariant
mass squared® = (g; + 0p)?, the angle between the decay planes formedKhyand £+¢-
denoted by, the angle), betweery~ and the+z axis in which theK* is moving and the angle
0k thatK makes with therz direction. There are six transversity amplitudes corragpay to

each of three polarization stateskKf meson with two chirality of the leptonic current. These

LR

amplitudes are written af;",

where 0Q||, L are the three polarization statescfandL, R cor-
respond to the left and right chirality of the leptonic cumreln our analysis we have assumed
that the lepton mass is zero and we have also neglected th€Rimiolation. In addition to
the branching fractiol’s, the angular distribution enables a multitude of obseesbd be ex-
tracted; these include the longitudinal helicity fractién, perpendicular helicity fractiok |,
parallel helicity fractiorF, the forward-backward asymmetfyg and angular asymmetriég

andAs. The three helicity fractions are related by+ F, + F; = 1 resulting in six independent

observables in the limit of vanishing lepton mass @Rdviolation.

In Chapter 4 we have developed a model independent framewatkidy new physics ef-
fects. We write the six transversity amplitudﬁ§’R in the most general form, in terms of form
factors¥, andG, asAL" = C_rF, — G., WhereC g = Co ¥ Cyo. Here the Wilson cd-
cientCg" is replaced byC, once the higher order corrections are taken into accoure.fdim
factors¥, andG, are related to the well known form factov§o?), A »(0?) andT1o5(?). At
the leading order ithqcp/m, in the heavy quark expansion the Wilson fimgent CS™ can not
be distinguished from the form fact@ due toas corrections and ‘non-factorizable’ correc-
tions. Hence there are eight theoretical parameters; tbéMilson codficientsCy, C;9 and
six form factors and only six independent observalbled=,, F ., Args, A4, As. Using the six

observables the six theoretical parameters can be exdrestarms of the observables if two
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reliably evaluated theoretical quantities are taken aatgpln Chapter 2 we have identified
the ratiosP, = #, /7 andP] = G./G, that are free fromus corrections to all orders in per-
turbation theory including ‘non-factorizable’ correagt®at leading order iAqcp/my, in heavy
quark expansion. Taking; andP] as theoretically reliable inputs we have expressed the Wil-
son codicientsCy andCg andén in terms ofF, F,, Agg and form factory; which enables
us to measure these theoretical quantities in experimendigecussed in the thesis these solu-
tions have very important implications on the correlatiohdifferent observables. Though the
expressions o€y andC;, are not completely free from hadronic uncertainties duééoptres-
ence of form factofr in the solutions, their rati® = Cq/Cy is free from any form factor and
can be measured experimentally. The r&ic known up to next-to-next-leading-logarithmic
(NNLL) order. If the ratioR is taken as input, then there arise a important constraimidsm
observable#®\-s andF; -3(1- F)T_/4 < Arg < 3(1- F.)T,/4 where, T, ~ 1. The forward
backward asymmetnjeg is expressed in terms of helicity fractiofg, F, and the ratio®;
andP’, enabling measurement 8fg in terms of helicity fractions only. Moreover we have
derived stringent constraint between the helicity frawib, andF, based on the fact thétg

is real.

In the limit of no CP violation all the Wilson cofficients are real. This leads to various
constraints among observables such Bg-4 > (16/9)AZ,. We have derived three such rela-
tions. These relations are solely in terms of observabldsdamot involve any form factors
and Wilson co#ficients. Hence the violation of these relations will be clsamnals of new

physics.

There exist two additional sets of solutions of the Wilsoeffioients involving other observ-
ables and require the introduction of four additional foamtbr ratios as input®, = ¥, /%o,
P, = G./Go, Ps = F./(F; + Fo) andP, = G,/(G, + G). These ratios of form factors
are not theoretically reliably calculated since they depen soft form factorst, (g?) and
&(9?). We have expressed these four ratios in terms theorsticzliably calculated ratios
P, and P} and observables. In addition we have also shown that the factors ratioP,

can be expressed & = —F,/ \/F—” at the zero crossing point of the forward backward
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asymmetryArg. We have presented two more relations that reRgtend P; also in terms
of observables at the zero crossing poitésandAsg + V2As respectively. The three sets of

solutions imply a very important relation between the obaleles; A, = (8AsArs/97F.) +

\/5( \/FLFL — (8/9)AZ \/F”E — (4/9)A.§B)/7rFL. We end the chapter by discussing the low en-
ergy approximation of various relations. We have shownttiede relations can be used to test
the low energy approximation of form factor calculations.

In Chapter 5 we have presented a numerical analysis in cangp@mwith the current ex-
perimental data on thB — K*¢*¢~ mode. We have also compared our approach with the
theoretical approach available in the literature. The ksion is given in Chapter 6.

In this thesis we have presented various relations amorgyedises without involving any
form factors and Wilson cdicients The violation of these relations will be a clean sigiaé
new physics. In addition we have derived various relaticetsvben ratios of form factors and

observables that are free from any WilsonfGioents.
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Chapter 1

| ntroduction

1.1 The Standard Model of Electroweak | nteraction.

The standard model of electroweak interaction®#2)oU (1)y [1, 2, 3, 4] gauge theory which
successfully describes weak and the electromagnecti@otien in a unified framework. The
particle spectrum of the standard model comprises of theeermtions of quarks and leptons

collectively called the fermions. The left handed leptond guarks are arranged inS4J(2)

Ve Vu Vr
(1.1
[ e ) H ]L [ T ]L
u’ c v
. (1.2)

and the right handed quarks and leptons are arranged ireSrg@fSU(2) as,

doublets as,

€ Mr» Tre (V)R (Vu)r (V2R (1.3)

Ug, Cr» th, Ok, Sk DR (1.4)

Such organization of quarks and leptons un8EX2) automatically takes care of the parity

violation in nature §, 6, 7, 8]. The mediators of the electroweak interaction are the four
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massless gauge bosowg, W7, W? and B, which correspond to the four generators of the
SU(2) ® U(1)y group. The gauge bosons acquire masses through the meuhaingponta-
neous symmetry breakin@®,[10, 11, 17] that breaks thesU(2) ® U(1)y symmetry toU(1)q
symmetry. The outcome of the spontaneous symmetry brea&iagneutral scalar particle
called the Higgs. After spontaneous symmetry breaking lineet massive gauge bosons of
weak interaction arg/*, W-, Z and the massless gauge boson of electromagnetic intaragtio
v. They weak-hyperchargéis related to the electric charggby Q = I3+ Y/2, wherels is the
third component of isospin. In (1.2) and (1.4) the primesdat that the quarks are massless.
The quarks and the leptons become massive due their intaraadth the Higgs field. The part
of the Lagrangian that describes this interaction is caledYukawa Lagrangian. In Sec. 1.2

we have discussed the Yukawa Lagrangian for quarks in getatisl

The interaction part of the standard model Lagrangian farkgiand leptons is written as,

Lint = Lee + Lnes

where the subscripfcc describes the charged current interactions 8Rd describes the neu-
tral current interaction of quarks with the gauge bosonse Ihc and Lyc can be written

as,

Lec = ZQ—%(J;WWH;W#‘) (1.5)
Lnc = eF™+ —2 307 (1.6)

wo 2coshy H

where,e s the electric chargey is the SU(2) gauge couplinggy is the Weinberg angle. The

currentsJz, Jo™ andef are written in terms of massless quarks and lepton fields as,

1—/ ’ 1_I 1_’ /
i = SUy(1-y)d + 5Cyu(1-ys)S + Styu(1 - ys)b

2 2 2
1_ 1_ 1_
+ Eve')//t(l - 75)6 + EV,[}/#(]. - '}’5)/1 + EVT')//J(]- - 75)T (17)
Emo= > arfyf, (1.8)
f



3 = fyvi—13ye)f, with (1.9)
f

Vi

I;: — 20 sirt), .

Here f denotes the fermiong; is the charge of the fermion in the units of electric cha&,glé

is the third component of isospin of fermidn

1.2 Flavour Physics.

In the previous section we have introduced six flavours ofkgiand leptons each of which are
arranged in three generations. Flavour physics in genesdribes the interactions between
these diferent generations of quarks and leptons. Within the standadel, the parameters of
the flavour physics are the masses of six quarks and six leptoee quark mixing angles and a
phase and three lepton mixing angles and a phase. It is theenukagrangian that completely
fix the flavour structure of the standard model. We will discasly the Yukawa Lagrangian

for the quarks. In (1.2) and (1.4) the quarks fields are writtethe interaction basis which

means they are massless. The Lagrangian that give mas$esdoarks and leptons is called

the Yukawa Lagrangiafy awa The Yukawa Lagrangian for the quarks is written as,

+ 0

¢ ij (=
0 ]de + m(Ju)(ui’ di)L[

Ly ukawa= mI(Jd)(L_J.', d()L [ ] Ur + hC, (110)

o
Here,i, j = 1,2, 3 correspond to the three generations of quarks. The mam'ﬁé/g are the

coupling of the’'th and j'th quarks of the up or down type. Here we have introduced tigg$1
fields,



The spontaneous symmetry breaking occur whemfraequire a vacuum expectation valie

s 1 0 5 1(v+n
_‘/§v+n’ C_‘/é 0

where,n is the fluctuation around the minimum After the spontaneous symmetry breaking

the Yukawa Lagrangian reads as,
Lywawa= —= (G0 G+ dind dd) + hee (1.11)
Y ukawa = \/z LR Lo YR .C. .
From the above Lagrangian the mass terms of the quarks cantbevas,

Ml v M =

i ij Vo
w = 72%’ @ ~ @h(d) (1.12)

The mass matricelsfléfj) and ME,) are neither symmetric nor Hermitian and also not necegsaril

diagonal. These can be diagonalized using four bi-unitairicesU, r andD_R as,
M = U{MyUr, M = U M@Ur
The mass eigenstates can now be related to the interactjenstates as,

ug = (UiRuly (1.13)

dr = (Dip"d) (1.14)
In terms of the mass eigenstates the charge currents become

i =uVvid (1.15)

where,V = U/D_ is called the Cabbibo—Kobayashi-Maskawa (CKM) matfig,[14, 4]. By

construction the CKM matrix is unitary, since the matriédsg and D, r are unitary. This



imply that,
D ViV = 6
j
The unitarity relation that is particularly important fBrdecays is written as,
VudVup + VeaVep + ViaVyp = 0 (1.16)

In this relation the CKM matrix element4y,, Vo, andVyg are under extensive study at present. It
represents atriangle in the complex plane which has thdes sif magnitudely/ gV, |, [VedVZ,,

ViV, | and three angles, g andy which are defined asif],

VidVi,

= arg( - 1.17

o = ag(-g e (1.17)
VedVe,

= arg( - 1.18

B g ViV, (1.18)
Vudvsb

Y g VeV, (1.19)

The sum of these three anglesiis- 8 + v = 180°. The CKM matrixV can be parametrized in

different ways. The standard parametrization used by the Rdb@ta Group is 16]

C12C13 S12C13 SECRE
V =| —S15C3 — C125351368°°  C12Co3 — S12535136°°  Sp3Ciz | (1.20)

S1253 — C12C23S136°°  —C125p3 — S$12C235136°  Cp3Ci3

Heres; = sing;j, ¢;; = cosd;; ands is theCP violating phase. The ters; ~ 0(1073) ands;, ~
0(1072) andc,3 andc,; are~ 1. Experimentally it is found tha; << S3 << s << 1. Based
on this hierarchy there exist another parametrizationithatten used irB physics known as

Wolfenstein parametrization, which exploits the aforetitared experimental information. The



CKM elements are expanded in small paramater|V,J = 0.22. We can definel[7, 18, 19,

V,
S:L2 — /l — | USl , 323 — A/lz — /l
|Vud|2 + |Vus|2

Vcb

VLIS
AB(o + in) V1 - A224
VI— 21 — A% + i7)]

Vip = Al(p + i) =

(1.21)

Sl3ei6

With the above relations it is ensured that in = —(Vu4V;,,/VeaVy,) is independent of phase
convention. The unitarity relation is valid to all ordersAnf the CKM matrix is written in

terms of 4, A, p andn. Alternatively, the CKM matrix can also be parametrizedems of

A A,p,nas,
1- 3242 A A3(p —in)
V= -1 1-32 AR +0(1 (1.22)
ABL-p—in) -AP? 1

where,p = p(1-12/2+---)andn = (1 - 42/2 + ---). It should be noted that in the above
parametrization, known as Wolfenstein parametrizatierthle real part of the unitarity relation
is restored up to order®, and the imaginary part of the unitarity relation is restou to order

5.

1.3 B physicsin pursuit of New Physics.

Flavour physics has great potential to discover new phymgend the standard model before
new physics particles can be directly produced in collid@tsere are many examples of such
discoveries from the past. The existence of the charm quaskpredicted by observing the
smallness of the ratid(K, — u*u™)/T(K* — u*v) in the K meson decay and the value of
ek led to the prediction of the third generation of quarks. Thessof the charm quark was
predicted from the size of th& —Ks mass diferences\mg = Mg, —Mg, and similarly the mass
difference of the tw@® meson eigenstatesng led to the successful prediction of the top mass.
Flavour physics has thus played significant role in constvoof the standard model. There

are reasons to believe that the standard model is not timeat#itheory of nature and there are
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physics beyond the standard model, referred to as new ghylsi@addition to the well known
gauge hierarchy problem and naturalness prob&mA1, 22, 23] of the standard model, there
are motivations to search for physics beyond the standadem&or examples the amount of
CPviolation needed to explain the observed baryon asymmethe universe is less than what
the CKM framework predicts. It therefore needs extra sauiafeCP violation that can only
come from new physics. The observation of neutrino mass scitlation is not accommodated
in the standard model and needs physics beyond the standal far explanation. At present
there are several examples in flavor physics where the empetal data in various meson decay
and mixing are not consistent with the standard model egpeat New physics models can
be constructed to explain such discrepancies. Recentlp@h€ollaboration observe@{l] the
semileptonic decays @s mesons and measured the like-sign dimuon charge asymafetey
(—0.787+0.172(staf) + +0.093(sys)). The standard model predicaq A = (-0.02859%)9%.
The experimental value deviates from theoretical caloutatby 3.9~ standard deviations. On
the other hand tha®, depends on “wrong charge” asymmetrziaéls(whereq isd or squark). The
recent measurementsaff = (—1.08+0.72+0.17)% by DO P6] andag, = (-0.24+0.54+0.33)%
by LHCDb [27] are in agreement with the standard model expectation. ddnide explained by
physics beyond the standard model. Another example is fhenthharm sector. Based on the
first observations by db°—DP oscillation by BaBar?8], Bell [29], the Heavy Flavor Averaging
Group (HFAG) B(Q] has excluded the null hypothesis of mixing parameters AM/T" and

y = AI'/2T" at 10r and presentss global averages (6.5'15) x 10 andy = (7.4 + 1.2)x 10°2.

In the past mainly th& system was studied to explore the physics of the quark flavour
sector. Thanks to thefferts by Babar at SLAC, Belle at KEK and LHCb at CERN, tBe
mesons are now produced abundantly and is used to exploga&nk flavour sector as well as
new physics. Th€P violation has already been established in thgystem inB§ — J/¥Ks
decay by the Belledl, 32, 33, 34] and Babar 85, 36, 37, 38] experiments. Both at the theo-
retical and the experimental froBt physics is important as it give insight to physics at short
distances. The recent results from B-factories and LHClgheatly improved our knowledge

about the flavour structure of the standard model. Thesétsgmesent a strongly constrained
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picture of the flavour sector with only tiny deviation fronetbtandard model. Recent examples
from the flavour factories constraining the flavour secter @onsistency of isospin asymme-
try in B - K'utu~ [39] with the standard model calculatiod(]], the reduced discrepancy
betweenB — 7v and sin B from Belle results41], agreement of the semileptonic asymmetry
al with the standard model in LHCb measuremeritd fand the absence of a lardgu*u~
[43, 44, 45, 46, 47] which is expected in some beyond standard model extenfi@ng9, 50.
Some new tensions in the flavour sector has also been seenlye€®r example, the isospin
asymmetry irB — Ku*u~ measured by LHCB39] deviates from standard model by &.4and
there are some deviations in the branching rati@ef D™y [51, 57]. PrecisionB physics
study such as th€P violation, rare decays and flavour changing neutral cupentesses will
give access to the flavour physics at the short distancesteéBsen why short distance physics
can be best studied iB decays or mixing is due to the heavy mass oflitguark. Inside the

B meson thd quark is bound to a light quark by strong dynamics which pdsediggest dif-
ficulty to extract short distance information froBhsystems. The reason being that the strong
dynamics can only be fully understood in a non-perturbdti@mework of field theory calcu-
lations which is yet to exist. This thesis partly give somevegrs to untangle new physics
effects from the non-perturbative strong dynamics. Thereexerious theoretical tolls and
techniques to studi system. In the following and subsequent sections we wittuis some

of the techniques that are relevant for the studig ofecay.

1.4 Operator Product Expansion.

The typical energy scale of meson decay and mixing are ofrither @f few GeV. FoB decay
itis ~ 5GeV. On the other hand the standard model contains signiffjdaigher energy scales
like the mass of the top quark and the mass ofthboson. The description for meson decay
and mixing therefore is provided by affective field theory approach known as the Operator
Product Expansiorb3, 54, 55]. In this approach the products of charged current opesatics

expanded in a series of local six dimension four quark opesaand the contributions of each

8



of these operators are weighted Hijeetive coupling known as the Wilson d@eients. Such
expansions in local operators are possible since the tymioanentum transfek to the final
state in weak decays of mesons is much smaller than the méss\Wfbosonsk << M3, Let

us consider the non-local action functional
S= fd4x (‘L:Ein + L\Iz\lln + Lint) (123)

where, £ is the kinetic part of the quarks, and

1 — v VAN~ =)

Ly = ~Z(0W =W )(@W™ - W) + MGWW . (1.24)
02 A

Lo = —Zﬁ(J;WW + I, W) (1.25)

The charged currently andJ; can be written in terms of massive quark fieldls- (u, ¢, t) and

D =(d, s b) as,
Jr =VupUy,(1-ys)D, I, =(3})

In the path-integral formalism, the generating functidioalthe Green function can be written

as

213) ~tﬁﬂwm@wmm+fﬁwwwmmw%wmmw

H g 4 +\A/H - —]
+i—— | d*X(ITTW™* + ITW™* 1.26
>3 (J; W) (1.26)

where the operatdd*”(x, y) is defined as,

D"(%Y) = 6*(X = )| 9unl0” + M) — 3,0,



After doing the Gaussian integral in Eq. (1.26) one can write

Z[J] ~ ex;{ —i fd“x d“y%2 J, () A(x,y) J;(y)

where theW propagaton\*’(x, y) is defined in the unitary gauge as,

d*k 1
(20)* K2 — M2,

A _ y k‘k” —ik.(x=y)
(xy) =- (g _W)e

W
The propagatoa*’(x, y) can be expanded in series in the increasing powerghdf 1so that the
product of two nonlocal charged current interaction cardpaeded in a series of dimension six
four quark local operators denoted Qy For example, in case &f — cud decayQ = cy*(1 -
ys)bd_yﬂ(l—ys)u. This procedure is formally known as the Operator Produgiaision (OPE).

The dfective Hamiltonian corresponding to the first term of theasgon can be written as,

G
L:?;f = _TFZVCKMQ (1.27)

where,Vckm is the CKM matrix.

1.5 Low-Energy Effective Hamiltonian.

The dimension six four quark operatd@sin the dfctive Lagrangian (1.27) receive short dis-
tance quantum choromodynamics(QCD) corrections whicltal®ulable in the perturbation
theory. The radiative corrections are of the ordgfu)In(Mw/u), where theu ~ 5 GeV in
the case ob decay. Then-loop contribution of the radiative correction igs[u)In(Mw/u)]".
Even if theas(u) is calculated at a very higher scalethe termas(u)Iin(Mw/u) is of the order
unity, so that the overal-loop contribution is very high and need to be summed up. Ehis
achieved through the method @hormalization grougRG). The radiative corrections induce
new operators with diierent quark structure and the subsequent RG evolution teadscing

between them. It should be noted that the normalizatioresbgphendence should cancel for
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all physical prediction. Since the operators has scalerdpeeu, the above is achieved by
multiplicative factors called the Wilson cficients. The Wilson cd&cientsC(u) defined at
the scaleu = My, include all of the short distance corrections to the locarafors. These
can be calculated in the perturbation theory up to desirddran the strong coupling constant
as. Using a renormalization group-improved perturbatiorotiyethe Wilson cofficients are
evolved up tqu ~ 5GeV. The end result is that th&&ive Hamiltonian (1.27) is finally written

as,

Hog = G—ﬁ Z VG (1) Q1) (1.28)

An amplitude for initialB meson decay to final stat€scan be written as,

AB— F) = % 3 VeuG) FIQ) B) (1.29)

The amplitude written in this way separates the problem tfutating the amplitude in two
parts. The first part is the calculation of the short distailson codficientsCi(u) and the
second part is the calculations of the long distance hadroatrix elementgF| Q;(«) |B). The
hadronic matrix elements are usually parametrized by factofs. Since form factors carry all
the long distance information these are non-perturbatgdnic quantities and hence are not
reliably calculated. This s referred to as the the hadrantertainties. A significant part of the
hadronic uncertainties also constitutes of “non-factsle” corrections to the matrix elements
of purely hadronic operators. IB meson decay, due to the heavy mass ofiilggiark there
arises various symmetry relations between the form faetbish are referred to as the heavy
guark symmetries. These symmetry relations can be exgltwteancel hadronic uncertainties

in ratios of form factors. In the next section we have disedgbe heavy quark symmetry.

1.6 Heavy Quark Symmetry.

Inside theB meson, the heaVly quark is surrounded by light quarks and gluons bound togethe

by complex strong interaction dynamics. Tinguark mass is grater that,cp ~ 0.2 GeV. On

11



the other hand all the light degrees of freedom interact withheavy quark with soft gluon
exchanges of the order Aqcp. These light degrees of freedom are therefore blind to flavou
and spin of the heavy quark. This is called the heavy quarknsginy. This symmetry can
be understood in the framework of heavy quafikeetive theory. The heavy spin and flavour
symmetry is not manifest in the strong interaction Lagrangn the limit when the quark
mass becomes infinity. Theftective field theory in which the spin and flavour symmetry is
implemented in the limit of infinite quark mass is known as bieavy quark fective field
theory. The starting point of constructing heavy quatkaive theory is to consider a hadron
with a single heavy quarkg traveling with velocityv so that the on-shell momentumps=
mgv. It interacts with the light degrees of freedom with the desi momentum. Hence the
momentum of the fi-shell heavy quark i® = mgv + k [56] where residual momentuin ~

Aqgcp. We start by writing the Dirac Lagrangian as,

£ = QMX(IP - mg)Q(X) (1.30)

whereQ(X) is the heavy quark field and, = d, + igA,. In the limit of heavy quark mass, the

propagator for the quark can be written &3|[

. p+tmg 1+y
Mg rie  2vk+ie (1.31)

The Lagrangian that give rise to the above propagator camh&icted by decomposing the

original quark fieldQ(x) into a velocity dependent fiel@,(x) and a residual field,(x)as,
Qu(x) = gown 2t (X) QUx) = grovx2 Y (X)
Hence the original quark field can be written as,

Q) = &M (QuU(¥) + Qu(X).
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Substituting (1.32) in the Dirac Lagrangian (1.30) we get Birac Lagrangian in terms of

heavy quark fieldQ,(x) as,
£ = Q)(iv.D)Qu(¥). (1.32)

Here we have neglected the part of the Lagrangian @i{ix) which is suppressed by powers
of Aqco/Me. This Lagrangian has spin and flavour symmetry. From thedgi@int of heavy
quark dfective theory, the heavy to light transition matrix elensesute simplified. Inside the
meson the heavy quark travels with velocity The action of the weak current that causes
the heavy to light transition changes the velocity frerno v'. Due to this change the light
degrees of freedom arrange themselves so that the heavynmesotravel with the velocity
V. Because of the heavy flavour symmetry the transition ctwéhbe universal function of/
andv'. These functions are usually denoted4fy.v') which are called the Isgur-Wisé&§, 59|

form factor or the soft form factor.
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Chapter 2

Theoretical Framework of B —» K*¢T ¢~

decay.

In this chapter we describe the theoretical framework toutate the amplitude @ — K*¢* ¢~
decay. ThéB meson is a pseudoscalar meson that constitutes of a bepigrk and a light1 or

d quark. Theb quark decays tgs quark and* £~ pair. Thes quark forms the light vector meson
K* which results in our final state. Since flavour changing reg@uurrent is not present in the
standard model, the — sf*¢~ transition occurs via loop diagrams. The decay is desciibed
terms of a &ective Hamiltonian which is written in terms of Wilson d¢beients and dimension
six local four quark operators. The hadronic matrix elemmeasftthe local operators in the
B — K* transition are evaluated at~ m, and are parametrized in terms of form factors. The
form factors carry the non-perturbative long distancenmiation and therefore their values are
not accurately calculated. In searches for new physicsthiaretical challenge of our poor
knowledge of form factors can be overcome by exploiting yrarsetry relations among the
form factors arising at large recoil (logf) and low recoil (highg?) regions of thek* mesons.
In Sec.2.3 and Sec.2.4 we discuss the parametrization dbtimefactors respectively at large
and low recoil limit. We also discuss the symmetry relatiansong the form factors in these

limits.
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2.1 The Effective Hamiltonian for B — K*¢*¢~ decay.

At the quark level the exclusivB — K*(K)¢*(q.)¢~ decay is governed by — s¢* ¢~ flavour
changing neutral current transition. The lowest order Reymdiagrams are box diagrams and
v andZ penguin diagrams. The lowest order Feynman diagrams awensimoFig. 2.1. The
most general ffective short distanceffective Hamiltonian fol — s£*¢~ transition can be

written as B0, 61, 62,

10

Hor =~V ) [C00 0160 + €l 0160 @)

Ql
e
o]
o]

Figure 2.1: Some lowest order Feynman diagramébfer sI*|- transition.

The primed operators are the one that arise in various newighynodels, but are highly
suppressed in the standard model. The un-primed oper@igysilso vanish in the standard

model. In standard model the three operators that appelae ishiort distance Hamiltonian are,

0; = m)(S_G'WPRb)F“" (2.2)
09 = (Sy,Pb)(Ly"0) (2.3)
O = (SyPLb)(Eyy*0) (2.4)

where,P g = @ andm, = my(u) is the running quark mass evaluated in M8 scheme.
The Wilson coéicients corresponding to these operators are denot€, I3 andC,q respec-
tively. Before we write down the Hamiltonian, few comments im order regarding the Wilson

codficients. As mentioned in the previous chapter, the Wilsofffments are calculated in the
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perturbation theory up to desired order in the strong cogptionstantys(uy) at the matching

scaleuy = my. The perturbation expansion reads as,

Ciluw) = COuw) + 72CPaw) + 16;2C(2)(/lw)+0(01§)- (2.5)

Using the normalization group equation, the ffiegents are evolved to a scale= m, =
4.8GeV. For a leading-logarithmic (LL) result, one has to iretanly the lowest order terms
Cuw), and for next-to-leading-logarithmic result up@3(uw) is to be kept. In this work we
mention next-to- next-to-leading-logarithmic (NNLL) tédts that are calculated in Ref<$J
64, 65, 66, 67]. The NNLL calculations require matching at two-loop. Iretrenormaliza-
tion group, the two-loop accuracy require anomalous dimoensiatrix up to three-loop ac-
curacy p8, 69, 70]. The 10<10 anomalous dimension matrix mixegtdrent operators. For
example, th&dy operator mix withO; . Due to such mixing it is found, that fiierent Wil-
son codicients always appear in certain combinations. The Wils@fliceentsCy g are thus

replaced by ffective Wilson coﬁimentsC‘Eff These are defined below,

4 1 4 20 . 80
C = —C;----C4-=Cs-—C
! as 3 94 37° 97°

cg'

Il
(@)
©
+
-<
—~
o]
N

where the functiory(g?) is given by B0, 71, 72, 73]

Y(@®) = h(d? mc)( C,+C,+6C;3+ 60C5)

4 64
—Eh(qz, rrb)(?C3 + §C4 + 76Cs5 + ?CG)

1 4 64
—Eh(qz, 0)(C3 + §C4 + 16Cs + ECG)

4 64 64
+3C3 + 3(:5 + 2—7C6
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The functionh(g?, my) reads as:

(. my = -g(m#—”‘ﬁ-g-y)-gew)m

1+ J1=
2 |n+—1y_if)
vy 2

o1 - y)(

1
+0(y — 1)arctan—1],

with y defined ay = 4mg/q?, and we have neglected the small weak phase. The standagl mod
values of the Wilson cd&cients used in this work are calculated at the next-to-t@xeading

logarithmic (NNLL) accuracy§3] and are given by,
CS"=-0304 CI"=4211+Y(g®), Cio=-4103

The dfective short distance Hamiltonian for— s¢*¢~ transition is well understood and given

by: [62, 71, 74, 79

G o — . —
Her = T;ivmvg[cs"f (57, PL)EY € + Cro( Sy, PO st
oce _
7 S0 (MPr + moPL)bey“¢), (2.6)

with ¢, = ¢, + O, Whered,, andd,, are momentum of the leptons and is the dilepton

invariant mass squared.

2.2 Parametrization of Hadronic M atrix elements.

The decay under consideration occurs in two steps. Firdtineson decays td* meson and
lepton pairs, and subsequeniy decays tdKx resonantly. The amplitude & — K*(k)(—

K(ky)r(k2))¢*(a1) ¢~ (gp) decay is written as,

Gra _ — — _ — —
M = ﬁvtbvtz{[csﬁ<Kn|sy“PLb|B>(Iyﬂl)+Clo<Kn|sy“PLb|B>(lm5l)
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ocef

- L KnlSio,q PeblB) ()| | (2.7)

Throughout the analysis to follow we will use the followingtations,

q=0h+ G, K=k -k, Q=0h—0p, k=k +ka.

The B to Kz hadronic matrix elements of the local quark bilinear opssasio,,q"m,Prb
and sy, P b are calculated by first calculating the hadronic matrix eleta for theB — K-
transition and then considering the subsequent deckywfKz. TheB — K* hadronic matrix
elements of the local quark bilinear operateygP b and sio,,q'm,Pgb can be parametrized

in terms of sixg?-dependent QCD form factok&(q?), A1 2(0?), T1.23(9?) as,

A= = . .y 2A(TP)
(K (0[$7,(1 - ys)blBP) = —ieu(me + M) Au(e?) + Pule” Q)77 -
2
+ieﬂvpae*yp"k‘r% (2.8)
B K*
(K (K|5owd (L +ys)0B(R)) = i€upre™ PPK™2To(GP) + To(0P)e;(MB — MR.) — 2 (€".9)p,]
% 2 2T3(q2)
—(e".9)q P~y Py » (2.9)

where,q, = p, — k,. We have assumed that the lepton mass is zero. We have drtpped
terms proportional ta|, since the termqﬂf_yﬂyg,f andqﬂfyﬂf do not contribute in the limit of
vanishing lepton mass. TH& — Kx hadronic matrix elements can be calculated from the
B — K* hadronic matrix defined above. TReé — K effective Hamiltoniar?{ can be written

as
H = gk-kn(ks — ko).€

where,gk-k, IS the coupling ofK* to Kz ande* is the polarization of th&*. Since theK*

decays tKn resonantly, we assume narrow-width approximation in tlop@gator. Denoting
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the K* width asl'k:, in the limitmg. >> I'- we can write the propagator as,

1 m
5(k? — g,
(@ mey+ Tz mere o M)

The widthI'k- can be written as,

Ok Kx 3
T = M +
K 481 <P

wheregk-k, IS the coupling oK* to Kz and,
1 1/2
B = m—w[nﬁ* + Ml + i} — 2(ME. g, + M + M. ) |
We can write thdB — K* transition hadronic matrix elements as,

(K'|3,[B) = €7 Ay,

whereA,, contains theB — K* form factors. In terms of,, the B — Kz hadronic matrix

elements can be written as,

(Kn3,B) = - 487 §(K? - mg.)[K” -  ~ mz’ky]Aw (2.10)

ﬁng* k2

The B — K*¢*¢~ decay has been studied by various authors. For example,f&é R€] the
mode have been studied using light-cone hadron distribwtaplitudes 78, 79, 80, 81, 82,
83] combined with QCD sum rules on the light corf&4] 85). In Refs. B6] the mode was
studied using naive factorization and QCD sum rules on gt Icone. In in Refs.q3, 87,
88] it has been studied in the heavy quark limit using QCD fae#airon[89, 90, 91]. Soft-
collinear efective theory 92, 93, 94, 95, 96] that is valid for smallg? (large recoil ofK*) has
been used to study the decay in Ré&f7][ In Ref.[98] the mode has been studied in a model
independent approach in the low recoil using an operatadymioexpansion in /A, where

Q = (M, v/4?). In all these methods of parametrization of the hadronitrimalements, the
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theoretical uncertainties amounts to about 30% of the Ihagaatio.

2.3 Form factorsat Large Recoil Limit of K*.

The six form factorsv/(q?), Av2(g?) andT123(q?) parametrizing thé8 — K* hadronic matrix
are non-perturbative quantities and therefore are nabilicalculated. At present the QCD
sum rule on the light-cone techniqu&]] offers the most precise values of these form factors
and it has been applied to tBe— K* transition in Ref. 6, 77]. Though the lattice calculations
are also very promising, all the six form factors are notwialted as yet. Therefore in this work
we do not rely on the numerical values of the form factors twaex new physics signals. We
observe that the hadronic uncertainties coming from potimase of form factors and non-
factorizable corrections cancel in ratios of form factoriese ratios can be taken as reliable
theoretical inputs in the searches of clean signal of nevsigBy In the lowg? region of the

B — K* transition, the light meson carries a very large endigy The initial B meson carries
the heavy quark and since the momentum transtgrto the lepton in théd — s transition

is small the heavy quark symmetrgq, 59, 99] is applicable in this limit. The heavy quark
symmetry is implemented in the Heavy Quarkdetive Theory (HQET)58, 59 Lagrangian.

In HQET it is assumed that inside tlBemeson the mass of thequarkm, — oo and all the
light degrees of freedom interact with it via soft exchangethe the order\qcp. If the hard
gluon exchanges are neglected then the six form factorseaxressed in terms of only two
universal functions known as Isgur-Wise functiob$,[59], also known as soft form factors
£,.(g?) andg(g?). These two soft form factors correspond to the transvemsel@ngitudinal
polarization states of thK* meson respectively. For our future numerical analysis, ngse

the following parametrization 73] of £, (g?) andé;(g?) at large recoil limit,

2 1 ’
&) = fL(O)(Wz/mé)
1 3
§(0) = fn(o)(Tz/mé)
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where#, (0) = 0.266+0.032 and;(0) = 0.118+0.008 [71]. The expressions of(q?), A1(g?)
andTy,3(g?) in terms of¢, (g%) andé;(g?) lead to various symmetry relations between the form
factors [LO(. Neglecting the corrections to be discussed later, theamgions o¥/(g?), A1 2(?)

andTy23(q?) read as,

A = e (E) (211)

Alf) = e[ (E) ~ 6(Exc) (2.12)

VW):ﬂ%%%EM (2.13)

Ti(oP) = &.(Ex:) (2.14)
, 2E.

T2(q) = e &1(Ex+) (2.15)

Ta(@?) = £.(Ex) - &(Ex), (2.16)

where,Ek- is the energy of th&* meson,

_ Mg+ mi -

Ex-
K 2mg

(2.17)

Large recoil means wheffx- ~ O(m,). Though the form factord,(g?), V(g?) andT1(g?), T-(q?)

dependent on the soft form factors which however cancelariadhowing ratios,

V(o) _ (Mg + Mk )?

AW © 2Ecm 229
2

@ T 219

The form factorsV(g?), A12(g?) and T1,3(g%) receive perturbativelpd corrections in the
powers of strong couplings. In Ref. [LO]] the perturbative corrections were calculated. The
form factor V(g?) do not receive any perturbative corrections and the ctors to A.(q?)
vanishes atrs. Hence the left hand side of the Eq. (2.18) remains unchaaigedding order in

as. The same is true for the rati(0?)/T1(g?). The corrections at orders to the form factors
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T1(9?) andT,(g?) are [LO1],

Ti(e?) = &(1+ - [InF—L])Jr AT
2Ek- aC m§ aC
2 _ K sk b Sk
@) = £(1+ = [ln#2 L|) + AT,
where,
2Ek- 2Ek- AT
L = - A K, and —% = dl:
Mg — ZEK* Mg ATZ ZEK*

Substituting these in to Eq. (2.19) it can be seen that the Tatg?)/T.(¢?) is unchanged at
leading order invs. Itis shown in Refs. 101, 107 that, at leading order inAgcp/My, the form
factor ratios Mg?)/A.(0?) and T(q?)/T1(g?) are independent of perturbative corrections to all
orders inas. For theV(g?)/Aq(g?) ratio, this can be understood more physically by consideri
the helicity amplitudes$i..,

5 (Mo + Mc)” mK*)ZAl) (2.20)

H. \%

In the limitmg — oo, Ex: — o0 andmg — 0, thes-quark is created frorb decay in the-1/2
helicity state. Hence thK* helicity states can only be -1 or O, but net. SoH, = 0 to all
orders in perturbation theory. Henaéleading order inAgcp/my, the Mq?)/A1(g?) ratio is
free from perturbative correction to all orders ins. For theT,(g?)/T1(g?) ratio, in addition
to the perturbative corrections, at leading ordenigtp/m, a significant part of the hadronic
uncertainties come from the “non-factorizabl&3] corrections. The “non-factorizable” cor-
rections do not correspond to the form factors. These coorecarise when virtual photons
are connected to the purely hadronic operatdrso Os and chromomagnetic-dipole operator
Os. These are calculated in Ref.d at leading order imqcp/m, for B — K* transitions, and

can be incorporated by the following transformatiob@d,

CI'T, —7T,,

Cgﬁ — Cg,
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where the Wilson Cd#cients are taken at the next-to-next-to leading order, Aed't are
defined as,
2Ex-

T1=T1, T2= e

T, T3=T.+ ﬂ| (2.21)

The complete expressionsOf | are given in Ref. T3]. The important thing to observe is that
the form factorsv(q?), A.(g?) are undfected by the “non-factorizable” corrections and hence
at leading order i\ gcp/My, the ratio Eq. (2.18) still remains ugf@cted by “non-factorizable”
corrections to all orders invs. Due to “non-factorizable” corrections the tensor formtéas
T1(9?) andT,(g?) are replaced by and7> respectively However their ratio is still free from

perturbative corrections to all ordersdg,

VECHRIETCH ="
ToAP)  ToA®) Mg

In our future discussions on the searches of new physics Weake the ratiosV(g?)/A(qP)

andT1(q?)/T2(0?) as reliable theoretical inputs.

2.4 Form factor at Low Recoil Limit of K*.

In the low recoil limit of theK* meson, the perturbative and the “non-factorizable” cdives

are negligible. A model independent description for theeaatdow recoil energy of th&* in

B — K*¢*¢~ decay was put forward by Grinstein and Pirj8B] in the modified Heavy Quark
Effective Theory framework. In this approachd], “near the zero point? ~ (mg — Mk-)?,

the long distance contributions B— K*¢*¢~ can be computed as short distanffe& using
simultaneous heavy quark and operator product expansi@pQnwith Q ~ {m,, \/@} In

view of this the sub-leadingyk-/mg terms are neglected and non-factorizable corrections are
ignored. An elaborate study of the predictions Bor» K*¢*¢~ was undertaken in Refl1p4]
where the next-to-leading order corrections from the chguark massn. and strong coupling
atOo(m./Q?, as) were included. The result is a relation betweenBhes K ¢*¢~ form factors

that reduces the number of independent hadronic form fattoonly three, i.eV(g?), A(qP)
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andA(g?) can be expressed in terms of the form faci&?), T»(0?), Ts(g?) as:

Ty = «V(@) (2.22)

To(?) = kAUD) (2.23)
2 2 M

T3(q) = KA2(Q)? (2.24)

where, the expression efis given in [L04]. From the above relations we get,

T1(P) _ V()
To(0?)  Au(P)

(2.25)

These relations will be very significant in our future dissioss. Finally we give thg? depen-
dance of the six form factoé(q?), A1 2(0?), T123(9%) [105 106 that can be extrapolated from

their region of validity at large recoil to low recaoill,

r )

AN
Vi) = 1-q?/mg 1 o2/ mé,
APP) = ﬁ
it
N I )
ld) = 1o L AT A
N s ]
() = Ty gy (2.26)
TZ(qz) = 1 _ (;g/rnfz
it
m — Mg~
To(@®) = —2 o (Ta(®) - To(cD)

q

whereT; has same parametrization &s The parametens, r, mﬁ mﬁt for each of the above

form factors have been taken from (5, 106.
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Chapter 3

Angular Distribution and Observables.

The B — K*¢*¢~ decay is regarded as a very important mode for searches ophgsics as

it provides with a multitude of related observables. Sewdifferent experiments Bellel)7],
Babar [L08 109, CDF [110, 111, 117 and LHCDb [L13 have studied this mode. These experi-
ments have provided valuable data as a function of the difejplvariant mass squared and the
various angles describing the distribution. Each of these éxperiments have measured the
partial branching fraction in chosep bins by preforming a complete angular integration. By
studying the angular distribution of the direction of thptten in an appropriately chosen frame,
these experiments have also measured the well known fofaokivard asymmetrnjeg and
the longitudinal polarization fractioR, in terms of integrated dilepton invariant mass squared
regions ofg?. The CDF and LHCb collaborations have in addition performedngular study
of the azimuthal angle defined as the angle between the plammeed by the leptons and the
decay products oK* i.e. K, 7. Recently the LHCb114] has also measured the zero crossing
point of the forward-backward asymmetry which is consisteith the standard model expec-
tation. Future experimental studies by LHCb and Belle Il eilable the study of this mode
with significantly larger statistics making possible thalgsis with multi-angular distributions
and the measurement of all the observables. The decay isléssibed in the rest frame of
B in terms of three angles and the dilepton invariant massredqudn this chapter we have

described the angular distribution Bf - K*¢*¢~ decay and have shown how the multitude
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of observables7l, 74, 115 can be extracted from the angular distribution. In the fiofi

no CP violation and zero lepton mass, the observable extracted the angular analysis can
be expressed in terms of six real transversity amplitudasdbrrespond to the three states of
polarizations ofK* and the left or right chirality of the leptonic current. Theptons are usu-
ally muons which can be detected easily at the LHC. The nibde K'e"e is discussed in

Ref. [116.

3.1 Transversity amplitudes.

To introduce the transversity amplitudesBn— K*¢*¢~ decay, we first consider the decay
B — K*V* where theV* is a resonant vector meson. Denoting the polarization vettis* and
V* ase. ande, the B — K*V* amplitudes can be written a$17, 119,

MEDB = KV = 6% My, el (3.1)

whered, 2’ = +, —, 0 are the three helicity states. If we consider thatBhreeson is at rest and

theK* andV* decays back to back then the polarization states oKthendV* are [L17, 119,

€M = (0,1, +,0)/ V2 (3.2)
e = (K, 0,0, ko)/m- (3.3)
e = (0,1, +i,0)/ V2 (3.4)
e = (~0,0,0,~0o)/ VP (3.5)

where,k* = (Ko, 0,ky), & = (00,0,0,) andk, = —@,. The orthonormality and completeness

relations can be writterl[L7, 119 as,

(s ()=

€ € = Quv (3.6)
Z 6\(/{)*/1 6\(/{,)“9/1/1' g’ (3.7)

v
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€|(</l)*ﬂ Er((/l;z* = —5/1/1/ (38)
* *V v kﬂkv
AR —— (3.9)

FYL M-

Considering the subsequent decayoto ¢*¢~ pair, we can further write the amplitudes as,

MOOB = KV (= ) = "ML, Z o g [yaPLL]

+

(/l)*p MR Z ()= (")*agﬁ/q[f)’aPRf] (3.10)

ﬂ,

where,n = +,—,0. From Eg. (3.10) we can introduce the six helicity ampksidy taking

A= Aas,

HE = —em oyt (3.11)

HY = —e" e MR, (3.12)

The six transversity amplitude can be constructed from &41() and Eq. (3.12) as,

AN = \/_(HLR F HEFR) (3.13)
AR = HGR. (3.14)

Considering 8 meson at rest decaying back-to-back inktcand aZ*¢~ pair, the above formu-

lation can be generalized to write the explicit expressmfrsgx transversity amplitudes as,

V@) | 2m
Mg + M q2

AR = NVZ A g, o) [(C8" = o3 CITy@)]  (3.15)

2
AR = NV - )| [ o] FZROIT@A] (316)

Y
or
Py
|

N
_m( [(Cgff + Cfg ] X [(mZB - mf(* - qz)(mB + mK*)Al(qz)
— A(mi, M., q ) 2(q ) ]+ 2rrbCeff[(mZ + 32, — ) T2(4P)
w”‘m) (3.17)
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where, L, ||, 0 are the helicity oK* andL, R are the chirality of lepton and the normalization

factorN is given
2.2

Gia 12
N = ViyVis [qu \JA(ME, M., qz)] , (3.18)

with A(m3, 2., ¢?) = mg + N, + g* — 2(Mmim2. + mZ.g? + mig?). We note that the helicity

amplitudesA“R

T .0 are functions of?, for simplicity we have suppressed the explicit dependence

ong?. In these expressions we have neglected the lepton masssanitha tinyC P violation

[74] that arise in the standard model. Hence helicity ampliﬂﬂl; are all real.

R
1.0

3.2 Angular Distributions.

TheB — K*¢*¢~ angular analysis is studied in the helicty frame shown in &if). In this frame
the B meson is at rest, and th& and thef*¢~ decay back-to-back. The momentum of e

is taken along the positiveaxis. In its rest frame th&* decays back-to-back intoka and a

n. The angle between the and thez axis is6x where ag), is the angle betweefr and the
+z axis. The decay can be completely described by four indegperidnematic variables: the
lepton pair invariant mass squargd= (o + d,)?, the anglep between the decay planes formed
by the¢*¢~ andKr, and the angleg¢ andé,. In this frame the dferential decay distribution

can be written as/{4],

Figure 3.1: The helicity frame fd8 — K*(k)(— K(ky)n(k2))¢(q.1)¢*(g.) decay.

d*T(B — K*(*¢")
dof d cost, d costy dg

(0, 6r, Ok, ) (3.19)
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where, we can write,

9 . .
E[IfsmzHK + 1S cog bk + (15 sirf 6 + 15 cog 6k) cos D, +

+ l3Sirf 6k Sirf 6, cos 2 + 1, Sin Wi sin 20, cose + |5 Sin Y sinb, cose +

1(9?, 0, Ok B)

+ Igsin2 Ok C0SH, + |7 Sin 2 Siné, Sing + lg Sin 2 sin 29, sing

+ lgsin? sirf 6, sin 2¢]. (3.20)

The angular cao@icients| are function ofg?. For notational simplicity we will suppress the
g? throughout. The explicit expressions Io§ in terms of the transversity amplitudes can be

written as,

3
15 = 21[|&z(i|2+|ﬂ“L|2+(|_—>R)],
5 = [IAGP + (L > R,

1
15 = 21[|&—7(5|2+|ﬂ“L|2+(|_—>R)],

5 = |l + (L - R,

s = S[lAP 1R+ (L - R

ly = %[Re(ﬂéﬂ”*) +(L— R)],

ls = V2[Re(#gA.") - (L > R (3.21)

s = 2Re@j AL - (L - R,

7 = V2[ImAA) - (L - R)
1 L gLl *
s = $[Im(ﬂ0ﬂl)+(L—>R)],

|Im(A;" AL + (L - R).

©
I

In the absence o€P violation, I;g¢ = 0 and the conjugate decay mo&e — K*(k)(—
K(ki)r(k2))¢ (01)¢*(0) has identical distribution as above except for the fact thggo —

—I56.80 Which results from the switch in sign in the amplitugie . Substituting the expressions
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Egs. (3.21) in Eqg. (3.20) we get,

(AP + |ATP + | AL + |ARP)
167 4
+ (AP + | AR cog eK sin2 9[
(AP + |ATP = | AL ~ |ARP)

+ y COS 2 SiIt 6 Sirt 6,

+ Re(@AjAL - ARAT") cost, sinf by

Re(ALAL" — ARARY) o
+ 0 l\/é 0~ L 7 cose sind, sin(H)
Re(AA" + AFAT) _ _
+ »: Cos¢ Sin(29,) sin(X) |. (3.22)

Sln2 @K(l + CO§ 95)

1(0?, 0;, Ok, B)

Integrating over co8, cosd,, and¢ results in the dferential decay rate with respect to the
invariant lepton mass, which is given by the sum of the mosiafjuared of all the transversity

amplitudes at the same invariant lepton mass:

dar
a7 = 2 (AP 1A (3.23)
A=0,|,L

From Eg. (3.22) we see that from a complete study of the angid&ibution will allow us to

measure six observables. Among these are the three hélaitjons which are defined as,

ﬂL2+ ﬂRZ
FL — | 0| | 0| , (324)
I
AR + A
Fi = ———. (3.25)
I'y
L 2+ R|2
Foo- L (3.26)
f

whereI; = 3,(IAY2 + |AY?). The helicity fractions sums up to unity, + F; + F, = 1. The

well known forward-backward asymmetAy¢; is defined as,

[ [ 2D

d’(C + 1)
f dco Segqud cost,

Arg = (3.27)
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It can be expressed in terms of the transversity amplituges a

3RdALAL - ARAR
Are = s er “ L]. (3.28)

The observables can be extracted from a fit to angular disioito. A complete angular analysis
requires much larger data set than is currently analyzed:ehengular distributions in terms of
only one angular variable have been studied. The angulaitdison as a function of? and

cosd, with ¢ and cog)k integrated out is given by:

dZF 3 3
ddcosd, - I Aeg cost, + SL-FO@+ cog6,) + ZFul- cog6,)] . (3.29)

Angular analysis in terms of c@genables the measurement of bBththe longitudinal helicity
fraction and the forward—backward asymmedgg. The other helicity fraction& , or F, can
be measured from the angular distributions as well but ielgelbed that one need to perform
a full angular analysis. It is, however, easy to see that abowation of F,. andF, can be
measured if the angular distribution in termsgois studied. The angular distribution #is
given by:

dr T, 1-F -2F, .
3705 " Z[l— —————c0s2+lgsin 2|. (3.30)

The distribution ing allows us to measure4 F_ — 2F,. If F_ is measured independently one
can obtainF,. The distribution also allows us to measugewhich is immeasurably small in

the standard model L5, and assumed to be zero in our study. Recently the angudysas

in ¢ has been studied.[2, 114 by CDF and LHCb collaborations. In the next section we
will show that 1- F_ — 2F, is also small in the standard model as a consequence of heavy
quark dfective theory. We will conclude in subsequent section thatangular distribution

will be almost constant fog? ~ 0, with small variation in cog at largeg?. There is yet
another technique to measu¥e which involves studying angular distributions in terms ofyo

one angular variable. However, this approach requiregeni@ent analysis in the transversity

frame defined with)iy at rest. In this frame the lepton makes an amgleith the z-axis. The
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expression for the élierential decay rate as a function of @égss given by:

depdcosty L [5(1 —F.)(1+cos ) + 7F . (1 - cos )| (3.31)

Clearly, F, the perpendicular polarization fraction can be measureui & fit to co%, in the
transversity frame. The errors iy andF, measured in this fashion will be correlated and the

correlation will have to be taken care of. Two other angulzsesvable®\, andAs are defined

as,

0.8 -

-0.5

S
~
S
~
~
~
~~
~~ee

Figure 3.2: Using heavy-to-light form factor at large réqsee Sec. (2.3)) the normalized
angular asymmetrie&eg (solid line in red),As (long dashed line in purple) andks + V2As

(short dashed line red) are plotted as a functiog’ofThe higher order corrections to the form
factors are neglected and all the inputs are taken at thetratesalues. This figure is just to

indicate the zero crossing behavior of the angular obsérsab

d¢ [ dcosty [ dcosg,dd=D
. 90 deosi  doosn 257 -

2t 1 1 d4(r+T)
fo dg [ dcosbk [ dcoso, pEE
d4T+T)

f_ll d cost, fDLR dg [ dcostk G
[ 11 d cosd, f02” do | 11 d cosfx ‘(’;({d*;g

(3.33)
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where, || = fol - f_ol andfDLR = fjj’;/z— _’;//22. In terms of the transversity amplitudas andAs

can be written as,

V2 Re(A;A") + Re(AFA™)

- 3.34
- P , (3.34)
Re(AAL - AZAT
_ 3 ReUI — A (3.35)
22 Iy

The importance of the zero crossing pofgg [86] which is sensitive to new physics is very
well known. We notice that the observablesandArs + V2As also has similar zero crossing
behavior. In Fig.3.2 we have plotted the variation®ef, As andAss + V2As as a function of

g°. We have taken heavy to light form factors at large recoil. thé inputs are taken at their

central values and higher order corrections to the fornofacire neglected.
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Chapter 4

Model Independent Extraction of New

Physics

It is well known that the new physics can either be discovdredlirect production of new
particles at high energies or by indirect searches at higtinosity facilities where it can con-
tribute virtually to loop processes. The most well knownrapée of the latter kind is the muon
magnetic moment. Unfortunately, even though muon is a fegtadronic contributions have
to be estimated and turn out to be the limiting factor in thercle for new physics. Indirect
searches for new physics often involve precision measurenfea single quantity as in the
case of muon magnetic moment. The single measurement isstethfp a theoretical estimate
that needs to be accurately calculated. There are howesréajrc decays which involve mea-
surement of several related observables. The most well Rreexample is thd8 — K*¢*¢-
decay. The decay is described in terms of six transversitylindes that enable us to con-
struct multitude of observables to be extracted from theismglistribution. In addition to the
branching fraction§'s, there are six observables mentioned in the previous chaptlongi-
tudinal helicity fractionF, perpendicular helicity fractiok ,, parallel helicity fractiorf, the
forward-backward helicity fractioA:g and angular asymmetridg andAs. The three helicity
fractions are constrained By + F; + F, = 1 resulting in six independent observables. Each

of these observables can be written in terms of the six temsgty amplitudeﬁgjlfr which are
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written in Eq. (3.15) to (3.17) in terms of Wilson d@ieients and hadronic form factors. Due
to poor knowledge of form factors, the transversity amgisiand the observables constructed

therefrom are polluted by hadronic uncertainties.

In the search for new physics, it is therefore crucial fie&ively separate theffect of
new physics from hadronic uncertainties that can contibuthe decay. This has brought into
focus the need for theoretically cleaner observablespbservables that are relatively free from
hadronic uncertainties. Construction of such observdidsedbeen attempted by various authors.
For example the observabié” was constructed in Ref1p3 and A®** was constructed in
Ref.[88, 119. At low-¢?, the observablea!™ ™ [12(] show new physics sensitivity and the
high-g? analog of the same aﬁé%l’z’?”“"g) [104). These observables are constructed in such a
way that the dependance of soft form factors cancel in ratiosvever such cancellations hold
only at leading order in perturbation thearyn the Refs. 121, 127 we have shown that the
multitude of related observables obtained via an angulalyars inB — K*¢*¢~ can provide
many“clean tests” of the new physics to all ordersin. The hallmark of these “tests” is that
several of them are independent of the universal form fagland¢, in heavy quark fective
theory. Indeed, in the large recoil region considered irsRgR1, 127, these relations are even
more interesting as they are ufexted by corrections to all ordersa. We will refer to such
relations that are independent of universal form factord are ungfected by corrections to all
orders inas as “clean relations.” A variety of relations are derived, including relationsveeén
observables and form factors that are independent of Witeefficients. Such relations are
inherently clean and important as they enable verificatibhaalronic estimates. We show
how the form factor ratios can be measured directly from #te@s of helicity amplitudes
measured at the zero crossings of asymmetries without @oyrgions what so ever. Another
achievement is the derivation of a relation between ob&érsaalone, based entirely on the
assumption that the amplitudes have form given by the stdna@del, and is independent
of form factors and Wilson cdkcients. This relation would provide an unambiguous test of
the standard model relying purely on observables. We alssepted a clean expression for

the “efective photon vertex” involving the same operator that alsotributes to the process
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B — K*y. We emphasize that the amplitude Br— Ky involves the universal form factor
& and is inherently not clean. It is hence some what surpritag the same vertex can be
expressed independently of the universal form-factoreavi quark &ective theory in a way
that is valid at order Am, to all orders inas. While Cg andC,q individually depend on form
factors, we find that the expression for the rafigC,q is clean. Based purely on the signs
of the form factors and the fact that the zero crossing of trevdrd backward asymmetry
has been observed, we convincingly concluded that the sigtie Wilson coéicients are in
agreement with Standard Model. We found that there exisetlsets of equivalent solutions
to each of the three Wilson cfieients involving diferent observables. However, only two of
the sets are independent. It was shown that the allowed péeaspace for observables is very

tightly constrained in Standard Model, thereby providitepa signals of New Physics.

4.1 Notataion: Observablesin terms of Form Factors.

As discussed in Chapter 2, the treatment of form factorsrdpkargely on the recoil energy of
theK* meson or equivalentlg?. There are two distinct recoil regions where the form faxtoe
treated diferently. In the large recoil region, the next to leading o@rections including the
factorizable and the non-factorizable corrections ararpatrically included in the transversity
amplitudes by the replacemei@§’ — Co andCS'T; — 77 (see Sec. 2.3 ). Even at the leading
order it is impossible to separate the Wilson fiieéent CS" from the form factorsT; and they
are lumped together in to a single entity. In the low recaiioe, the leading order corrections
to the form factors are the non-perturbatiféeets up to and including terms suppressed by
Aqgcp/Q, whereQ = {my, \/@} and include next-to-leading order corrections from thercha
quark massn. and the strong coupling &(m2/Q?, as). Our motivation therefore is to present
methods to extract new physics signals independently didldeonic uncertainties. The idea is

to write the transversity amplitudes in their most genesatfthat is valid to all orders ias and
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encompasses both factorizable and non-factorizableat@ns to the form factorsip1, 127,

AR = ClrFL-G. (4.1)
AR = CLrFi-G) (4.2)
ﬂ(L,’R = CLr%o - Go (4.3)

Atleading ordeC, g = Cgff:LClO. The form factorsr, and@ can be related to the form factors
V(9?), Av2(g?) andT123(q?) by comparing the Egs. (3.15)— (3.17) with the Egs. (4.1).3)(4
Including higher order QCD corrections and “non-factapizd correctionsF, andéﬂ can be

written as [L21, 127,

G. = Ny2Um. e, q2) Oy () + - (4.4)
—_ N CeITT 2

Go = nki;{mf+aﬁ %c?um%—am@n@aﬁﬁéfggyw~. (4.5)
G = NV - M) PO Ta(c) ¢ - (4.6)

_ V(o)

Fio o= Ny20(mg . ) (4.7)
Fi = wfz(mme*)Al(q) (4.8)
Fo = (16 T G + M)A - AR )| (a.9)

2M- \/_

In the expressions @&, the ellipses indicate the higher order QCD corrections elsas the
non-factorizable corrections. At low recoil, the non-faiczable corrections are small and can

be ignored. We can therefore write the form faciggsat low recoil as:

G, =CYG, (4.10)

So at low recoil, the Wilson cdicient CS™ can be separated from the form factr. Using

Egs. (4.1) to (4.3) the observables, F, F,, Ars, As andAs can be written in terms of the
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Wilson codficients and from factors ag?1, 127,

FU = 2(C2+C2)F2 + 2G2 — 4CsFoGo (4.11)
Fili = 2(C3+Cl)7] +2G] - 4CsFiG) (4.12)
F.I = 2(C2+C2)F2+2G° —4CeF.G. (4.13)
AT ~~ - =
L = G\Go+ (C2 + C2)FoF — Co(FiGo + G F0) (4.14)
242
V2AsT; o
2 = CulFiGo+ G.70) ~ 2CCuFF (4.15)
Al ~ -
3 - Cio(F1GL + F.Gy) — 2CoCroF L (4.16)

These are the the most general expressions of the obsesvalterms of form factors and
Wilson codficients. Our aim is to solve the theoretical parameters mgef the observables
and minimum number of inputs. Naively, we have nine theoa¢parameters, the three Wilson
codficientsC;, Cg andC,o and the six form factorgo, 7, 7., éo, én andéL describing the six
observables;, F, F ., A4, As andArg. However at the large recoil region the Wilson fiozent
CS can not be distinguished from the form factets Hence we have only eight independent
theoretical parameters: the two Wilson fia@entsCy andC;, and six form factorsro, 7, 7.,
Go, G; andg, . It is obvious that with two theoretical inputs in additianthe observables we
should in principle be able to solve for the remaining siotteéical parameters purely in terms

of these two reliable inputs and observables.

There are three sets of solutions in terms dfestent combinations of observables. In our
subsequent discussion we derive the first set of solutiortge dther two solutions can be
derived in the similar way. We simplify the Egs. (4.12), @).&nd (4.16) by introducing new

variables,

- 9, 4.17

N f” 9 (4.17)
G,

L= &g, 4.18

r 7_1 9 ( )



In terms ofr; andr_, we can express Egs. (4.12), (4.13) as,

Fili = 2F,7(rf +Ciy) (4.19)
F.I; = 2F2(r% +C3) (4.20)
Arsli = 3F.FCuolry +rL). (4.21)

To obtain the solutions of the Wilson déieients in terms of observables, we rewrite the above

equations as,

24 C2 ;L%; (4.22)
r2+Ci, = Z;? (4.23)
2Co(ry+ry) = %2?71_:; . (4.24)
With the help of these equations we can write,
FyF.T¢ 2, ~2 2
W = (rro—Cuo)” + Cio(ry + 1)
= (ryr. — Cuo)? + %
hence,
2 It A%,
rro—Ci, = 127:”7_1 FiF. - 3 (4.25)

Now we can expres€%, in terms ofr{ using Eq. (4.22) or in terms of using Eq. (4.23) to

re-express gr, — C%, as,

I:IIE‘ 2 F. I 2
2 -2Ch = 2r - (55 - - (5= 1)
27, 2F ¢
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FyIi FJ_E‘]

— 2_ 71
- [(r” + rJ-) 27:”2 27_~f

Equating Egs. (4.25) and (4.26) we get,

F:  F.I; I; ]1/2

n+r, = + + + Z
I [27—‘”2 272 T 277

+ /1§ 12
= \/27: [PiF” +F, £ P]_Zl]
L

Here we have defined,

16
Z]_ = \/4F||FJ_—§ ZB
i
Pl = >
il

The Egs. (4.22) and (4.23) imply:

> o FHli F.I
r” - rJ_ = 2 - 2 9
277” 2F¢

Using the expression of + r, from Eq.(4.27) we can write

1 [F”D 3 FLFf]
rn+ry ZfC”Z ijf
+ /T PIF, - F.

\/271- [PEF” +F, + P]_Zl]l/z

Nn—r.

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

In addition to the overall sign ambiguity, there is a sign &ulty in front of P, in both the

equations Egs. (4.27) and (4.31). From Eq. (4.21) we note tha is proportional toAsg and

hence it vanishes at the zero crossing poinAgf. At the zero crossing point of the forward-

backward asymmetry we have from Eq. (4.27),

I;
A0 \/\é;(\/a =P VF)) =0

r+r.
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The second equality on the right hand side is written from(E®1). SinceP; is negative and
the expression for, + r, should be valid for all values of the observables, the rigirichside
could go to zero only if positive sign ambiguity is chosentanit of P;. Up to overall sign

ambiguity we can therefore write,

+ /I
r|| +r, = \/z\/; [PiF“ + FJ_ + P]_Zl]l/z (433)
1
+ /T PZF, — F
—r, = i 1 = - (4.34)

\/ETJ_ [PiF” + FJ_ + Plzl] &

If we ignore the non-factorizable corrections to form fastand neglect the higher order cor-
rections then at the leading order the WilsonfieeentCS" can be distinguished from the form
factors@,. Then the conditiom; + r, = O gives us the familiar relation for the zero crossing of

Arg. The definitions of; andr . straight forwardly imply thaf\:g = O at:

_ eff gJ_ gll
G = & (ﬁ ﬁ)’
_ _2& T1(%) ( (Mg — M) To(@?) V(D) )
- C; V(@ (Mg + M) x [1+ (e 1) To(@ AP
_ 4mo Ty () My
= ——C7V( 2)( B+mK)(l—ﬁ)
SLLLLTS (1 _ i) +0(ay) . (4.35)
@ U 2m s '

This is a very well known relation of forward-backward asyetrg zero-crossingdeg]. To
obtain the last two lines we have used Eqns. (2.19) and (28 O(as) dependence arises

from the ratioT,(g?)/V(g?) which also depends ah (g°) [101].

The aforementioned second and the third set of solutiondeasbtained by introducing

two more variables, andr,,

Go
= Z=2_C 4.36
o Fo 9 ( )
G+ Go
= 9tG o 4.37
e @37



The solutions are obtained by introducing the combinatioragables F. + F, + V27A,) and
(Acg + V2As). In terms ofrg andr, we can write the expressionslf, As, (F_ + Fy+ V2rA)
and A + V2As) as,

FLI; = 2F2(r3 +C3y) (4.38)

(FL+Fy+ V2rA)G = 2(Fo+ F)(r7 + Cho) (4.39)
V2AsT; = 37, FoCiolro +r.) (4.40)

(Aee + V2A)T = 3F,(Fo + F1)Cuo(rs +1.) (4.41)

Similar to the Egs. (4.33) and (4.34) we derive the expressadro +r,, ro —r, andr, +r,

r,—r,. We writero+r, as,

Vr 2
fo+r, = PsFL+F, £PZ (4.42)
0 L \/—‘7_1( L 2 2)
where we have defined
Z, = \/4F F. ——A5 (4.43)
F.
p, = % 4.44
2 7 (4.44)

In the equation Eqg. (4.42) the sign ambiguity is removed bgwing the behavior ofg + r
at the zero crossing point of the angular asymmeagyThe Eq. (4.40) imply thaty +r, =0

whenAs = 0. On the other hand from Eq. (4.42) we can write,

r0+rJ_

‘/_ (VFLxP.yFL)=0 (4.45)

w0~ N2

Since bothvF, and VF, are positive andP, is negative the right hand side of the above can

go to zero only if the positive sign ambiguity befdPeg is chosen. Hence after removing the
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sign ambiguity we can write,

o+ L (P3FL+F +PZ)1/2 (4.46)
0 = = L ) .
L \/57_1 2 1 2
+T; P3FL-F
fo—F, = f N (4.47)
\/571_ [P%FL +F, + PzZz]

where the expression of —r , is derived in the same way as Eq. (4.34). Finally we write down

the solutions for, +r, andr, —r,

I; 12
+r, = + \/‘z/; [PA(FL+ Fy + V2rA) + F, + P3Zs] (4.48)
fo—f, = + \/_f P3(FL + FH + \/Eﬂ'A4) - (449)
\/QTJ_ [Pg(FL + F|| + \/ZTA4) + FJ_ + szg]
where we have defined,
16
Zs = \/4(F|_ +F + V2rA)F, - 5 (Aes + V2A5)2. (4.50)
v
P. = 451
R (4.51)

Once again we note that there appear a sign ambiguity bBtonich has been removed by

observing the behavior af + r, at the zero-crossing point &-g + V2As. The form factor

ratio P; defined above can be expressed in terms of previously défpeddP; as,

PiP2 (4.52)
Pl + P2

Ps3

In addition to the form factor ratioB;, P, andP3 we introduce three other form factors ratios

P71, P, andPj which will appear in our future discussions. These are defase

P, = &, (4.53)
gn

p, = 9 (4.54)
Go
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3 - = ~ T p’ ’ )
G+ Go Pl + P,

4.2 Form Factor Ratios.

In the subsequent sections we will derive the expressiolgilsbn codficients and “&ective
photon” vertex in terms of observables. The six form facttiosP,, P,, P3, P7, P, andP% in
the previous section will be used as theoretical inputshikhgection we discuss the theoretical

reliability of these form factor ratios at large and the l@eail regions of th&K* meson.

4.2.1 Form Factor Ratiosat L arge Recoil Region.

At large recoil the seven form factors can be expressed mg@f only two soft form factors
£,(9%) and¢;(g?) (see Chapter 2). At leading order Amcp/m, the form factors receive radia-
tive corrections and “non-factorizable” corrections. Ihapter 2 we have shown that the ratios
V(?)/A(9?) and T1(q?)/T2(g?) are undfected by higher order corrections at the large recoil
region and are theoretically reliably calculated. Using.H@g.18) and (2.22) the form factor

ratiosP, andP} can be written as,

7. N M) yep) _[ ﬂ(mé,rnﬁ*,qz)]

p, = 2% _—_ = 4.56
' Fi (Mg + M) Au(0P) 2Ex-mg ( )
L G M), | W(m%’mﬁ“qz)mj @57
T | ey | ¢

The form factor ratio®, andP’ are therefore negative amtlependent of universal form fac-
tors £,(9?) and £, (g?) to all orders in the strong coupling constamg in perturbation theory
including “non-factorizable” corrections at leading orde Aqcp/m, in the heavy quark ex-
pansion. The ratioB, andP; therefore can used by as reliable theoretical inputs. Therot
form factor ratiosP, 3 andP, ; are not independent of the soft form factors and hence are not
regarded as theoretically clean inputs. In our subsequsctassions we will derive relations

expressind, ; andP;, , in terms ofP; andP; and observables.
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The expressions Eqgs. (4.56) and (4.57) are valid for largeilreegion whereg? is small
and are usually considered extremely accurateffdretween 1 Ge¥and 6 Ge\? [101]. The
regiong? < 1 GeV2 is ignored to eliminate resonance contributions which riggt only intro-
duce uncertainties but also introduce complex contrilmstiwhich we have assumed are absent.
Unless otherwise stated, large recoil region would mead®e\? < ? < 12.86Ge\?. We
stress that once the non-factorizable corrections aratiae account, the Wilson cé&ient
CS" can no longer be separated from the hadronic form factor. Ghend the the hadronic
form factors are lumped together into dfeetive photon verteg,, which as we will show, can
be expressed in terms of observables and the form faktoasdP’. For our future numerical
analysis we compile the values Bf and ¥, at low recoil region in the Table. 4.1. Thg

binning used in Table. 4.1 is the same as the one used by thé eWgeriments]13 114).

GeV* 0.10-2 | 2-4.3 | 4.3-8.68| 10.09-12.86 1-6
P1 -0.8924| -0.9286| -0.9034 -0.8337 -0.9259
P! -0.9189| -0.9561| -0.9302 -0.8585 -0.9533
,(10*%) | -5.7667| -11.330| -17.4311| -25.8917 | -11.8692

Table 4.1: The form factor ratio8,, P, and ¥, averaged over dfierentg? bins at large recoil
region.

4.2.2 Form Factor Ratiosat L ow Recoil Region.

In the low recoll limit the “non-factorizable” correctiomsd higher order corrections are ignor-
able. Hence we can writg, = CS"g, for all 2 = {0,]|, L}. The conditions in Egs. (2.22) to

(2.24) together with Eq. (4.4), on ignorimg-/mg terms, can be recast as,

g G, Go _ . 2mgmy,

- _FE -k ) 4.58

7:|| 7'1 7:O q2 ( )
This implies

P, =Py, P, =Py, P; =P; (4.59)
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(4.60)

and hence

In the low recoil limit the form factor ratioB, andP; are easily derived to be,

/ = AME, M. &) (g2
A (4.61)

P! =
! (Mg + Mk+)?

Py

Note that in this limit the form factors are parametrizedaading to Eq. (2.26). The low-recoll
approximation is expected to work well in region.18GeV? < ? < 19Ge\?. Conventionally

the low-recoil region is meant to imply this rangegsf In the low recoil limit we need to take

special care of the fact thRf = P}. For our future numerical analysis we compile the values of

0.

=
-
-
-~
-
P
-

-0.2

-0.4

-0.6
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10 15 20

_70 5 0
q

-0.8

Figure 4.1: In the panel to the left the form factor rati®s(solid curve),P, (short dashed)
andPj3 (long dashed) are shown as functiongjéfin the panel to the right we have plotte¢

(solid curve) P, (short dashed) anel; (long dashed) against.

P; and# at low recoil region in the Table. 4.2. For comparison wita &éxperimental results

we calculate the values averaged ovefedent dilepton mass squargtibins. Theg? binning
used in Table. 4.2 is the same as the one used by the LHCb el 13 114]. Also shown

in the tables are the numerical values of the form fagiprin Fig. 4.1 we show the variation

of form factor ratios; » 3 andP’ , ; as a function ot®. The parametrization of (o), A1 23(f)
andT1,(g?) are taken from Eq. (2.26). This parametrization is obtifiem light cone sum
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GeV? |14.18-16] 16-19
P, -0.6836 | -0.4719
P, -0.7093 | -0.4952
F,(1071?) | -27.8735| -25.0050

Table 4.2: The form factor ratida,, P; and¥; averaged over flierentg? bins at low recoil.

rules and valid at the low recoil region. Here these are prteded from their region of validity
to large recoil region with physical pole. In the left panétlee figure the variation o4, P,
andP3 are shown respectively in solid, short-dashed and longethines. In the panel to the
right P}, P, andP; are shown respectively in solid, short-dashed and longathbnes. The
purpose of these figures is to show that all the six form faetos are negative in the region

of interest.

4.3 Solution of Wilson coefficientsin terms of observables.

In this section we derive the expressions of WilsonfiioentsCy, Cyo and the “dfective photon
vertex”. As previously mentioned, there are three setsloti®ms. From Egs. (4.24) and (4.33)
we can expres€,g in terms forward-backward asymmetry and helicity fracsié) andF .

as 121,127,
E‘ 2 AFB

) \/Zﬁé[i \/PgF” +FL+PiZ | '

Cio (4.62)

The two theoretical inputs that are required to measure ahee\ofC, in experiments are,
and¥;. The Eq. (4.62) can be used to predict the valueSgfin differentg? bins, using the
values of the observables measured in experiments, anddhtdeoretical input®; and¥. It
should however be noted that due the presence of the foror fagtthe predictions o€, are
not completely free from hadronic uncertainties.

The way the matrix element decomposition is defined in the@hgqaark and large energy
limit at next-to-leading logarithmic ordei7 ], it does not allow us to factor out the Wilson
codticient CS" from the hadronic form factors;. Hence, the solution of¢" is not possible.

However we can solve for the flective photon vertexé”. From the Eqgs. (4.17) and (4.18) we
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get,

G G,
n—=r. = ?::—E
— P -P
= G —1. (4.63)
FL

Using the expression af — r, from Eqg. (4.34) in the above equation we get the expression of

G, in terms of observables as:

—~ I; (P2F, - F.)
G = \\/; Sl . (4.64)
2 [+ (PP \/PfF” +FL+PiZ)]
Using Egs. (4.17) and (4.18) we can write,
Gi
C —(P1+ P —(ry+r)|
o = [FPirP) -+
Using the expression @ from Eq. (4.64) in the above equation we get,
I;  (FPP,—F))-3(P,-P)Z
c VI (FPiP,—F.) = 3(P.—P)Z (4.65)

V271 [ 2 (Pa-P) IR +FL Pz |

The only hadronic inputs that enter in the expression of thiecgve photon vertex are the
theoretically clean form factor ratid®, andP’. In the expression dofy there is a source of

hadronic uncertainty that comes frof).

To derive the three expressions Egs. (4.62), (4.65) andi(4v& have removed the sign
ambiguities in the solution by looking at the behavior of seéutions at thé-g zero crossing
points. All our solutions for the Wilson céiécients depend explicitly on the assumption that
Ars # 0, hence, the Wilson cdigcients and thefective photon verte@” can be determined
at anyg? except at the zero crossing Afs. The denominator c@f” andCy depend orP; — P}
so their behaviors at the poiR, — P’ needs careful examination. Unlike the zeroshgg,

which can be experimentally determined and hence avoitied;rossing point foP, andP7,
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a priori, can only be determined based on calculations andehmay be uncertain. We note
that in this limit we have, —r, = 0, where as in the limifsg = O we had; +r, = 0. Naively,

Co andé” appear to be divergent in the linft; — P/, as can be seen from Eqgs. (4.65) and
(4.64) and indeed Eq. (4.34) cannot be used to determine tlse\todticientsCE™ andC.
However, it is easily seen that the Wilson fo@ents are finite whe®, — P/. Consider the

combinatiorén — 71Co, Which is seen from Egs. (4.64) and (4.65) to be manifestliefin the

— ”—;c F“Pl + lZ]_
Q” - 7‘~”C9 = E 2 . (466)
\/PiF” + FJ_ + Plzl

limit P — Py

We will show that the combinatiog, — %;Cs can be determined and indeedfif is assumed
G, andCq can be individually determined and are finite. So at low it only the Wilson

codficientC, can be solved and one can not solve@grandg, or for that matteCs”.

We now derive the second set of solutions of WilsonfioentsCgy andC,o and the &ective

photon vertexgo. Using Eqs. (4.40) and (4.46) we can obtain the expressi@igds,

I 2 2A
Cio = JIi 2 V2As (4.67)

\/é%s[i \/PEFL+FJ_+PZZZ:|.

The expression o6, is obtained by using the Eqgs. (4.18), (4.36) and (4.47). imseof

observable§, F, andAs it read as,

~ \/E‘ (PgFL - FJ_)
Go = .
V2 [ + (P, — P}) \/PgFL L F, + P2

(4.68)

The expression o, can be obtained by using the Egs. (4.18), (4.36) and (4.68) as

VI (FLP2P, —FL) — 3(P2 — Py)Zs
V2Fo| £ (P, - Py) \P3FL + F. + P,Z,]

(4.69)

It can be noted that the second set of solutions, Eqgs. (4#4.88) and (4.69) can be obtained

from the first set, Egs. (4.62), (4.65) and (4.64) by the fellgy replacementsfF;, — F_,
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Ars — V2As, | = Fo, G| — Go (Which also imply that; — o), P, — P, andP} — P,.
In the third set of solutions we solve f6%o, Co andG, + Go in terms ofF, F, A, andAs.

The expression dE,( can be obtained by using the Egs. (4.41) and (4.48). It re;ds a

Cio= \/Ff % Ar + V2As . (4.70)
V2(Fo + 77) E \/Pg(FL + Fj+ V21A) + F. + PoZg|
Using Egs. (4.18), (4.37) and Eq. (4.49) we can expegss Go as,
_ P2(FL+ F+ V2rAy) - F,
G +Go= i (PSP + Py + V2eA) - F.) 4.71)

V2 [i (Ps - Py) \P2(FL+ Fy + V2rA) + F. + P3zg]

The expression o€y can be obtained by using the expression of Egs. (4.18), X4&6d
Eq. (4.71).

Cq = VIt ((FL +Fy + V21Ay)PsP; — FJ.) —2(Ps - PL)Z;
9 —_
\/2(9 0 + 9 ||) [i \/P%(FL + F” + \/éﬂ'A4) + FJ_ + P3.Z3]

, (4.72)

The expressions Eqs. (4.70), (4.71) and (4.72) can be @utdiom the Eqgs. (4.62), (4.65) and
(4.64) by the replacement$; — F_ + F, + V21A4, Arg — Ars + V2As, 7| = F7 + Fo,

G| — Gy + Go (which also implyr, — r,), P — P3, P, — P,. The consequences of the
solutions Egs. (4.62), (4.64), (4.65), Egs. (4.67), (4.68)69) and Egs. (4.70), (4.71), (4.72)

are discussed in the subsequent sections.

4.4 Prediction of F.

The three sets of expressions of the Wilsonfioents and theféective photon vertices derived
so far have many important consequences as far as the pretast of standard model and the
searches of new physics are concerned. Since the express®in terms of experimentally
measurable observables with minimum theoretical inpb&syilson coéficients and theféec-

tive photon vertices can be measured in the experiments Woilld however require a full
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angular analysis to measure all the observations. If ontther dland th&, or C, are taken as
theoretical inputs then the form fact®j can be measured using Eq. (4.62) and (4.65). As pre-
viously mentioned these two expression of the Wilsorfibtents are not free from hadronic
uncertainties due to the presence of the form fagijprHowever we can define their ratl®

that is free from any hadronic uncertainties,

Co _ 2(FPsP; —F.) — (P —P)Z
Cio 3As(P1 - P})

R (4.73)

The expression above depends only on the forward-backvegrdraetryArg and the helicity
fractionsF; andF . The only theoretical inputs are the form factor ratiagsandP’, which

in the heavy quark féective theory framework is calculated reliably. We notet thiace the
longitudinal helicity fractionF_ has been measured and since sifce- F, + F, = 1, we can
expresd in terms ofF_ andF, . Actually it is possible to express all the expressionsimge

of only two helicity fractionF_ andF .. Eq. (4.73) can be used to experimentally test the ratio
of Cg andCyo. On the other hand if the ratied = Cy/C,g is known very accurately, can be

predicted using Eq. (4.73) in termsBf andArg as [L21, 127:

E ~4RAg(P1 — P1)(1 + P1P}) + 3(1— FL)(P1 + Py)* — (P1 — P VT,
= i (4.74)
6(1+ P3)(1+ Py9)

where,

T, = 9(1-F)?*P; +P1)* - 24RAs(1 - F)(P1 — P})(1 - P1P))

— 16AZ[RE(P; — PY)? + (L + PA)(1+ P}?)] (4.75)

The sign of the term containingT, could either be positive or negative. Of the two possible
solutions forF ., in Eq. (4.74) we have chosen the solution which gives theecovalue of

R obtained from Eqg. (4.73). This solution corresponds to the with the negative ambiguity
as shown in Eq. (4.74). As can be seen from the Eq. (4.74) réins\tersity amplitud€, is

expressed in terms of two observablgsandAgg, and two form factor ratioB, andP;. Since
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P1 andP’ are known precisely, the predictionsfof from Eq. (4.74) are free from any hadronic
uncertainties. Using the measured valueb oandArs from Ref. [L13 and [114 andF, we
have tabulated the predicted valueg=ofin Tables 5.1 and 5.2 respectively. The rd@ie cc_fo

can be also expressed in terms of other observables using46jg) and (4.69) as,

Co  2(F PP, —F,)—(P2-P,)Z,

= _ (4.76)
Cio 2 V2As(P, — PY)
and a similar relation follows from Egs. (4.70) and (4.72),
2((FL + Fy + V2nA;)PsP, — F,) — (P53 — PY)Z
Co  2(FL+Fy As)PsP; — F ) — (Ps — PY) 3 @.77)

Cuo 4(Ars + V2A5)(P3 — PY)

The theoretical inputs required to measure the matimom Eqgs. (4.76) and (4.77) are the form
factor ratiosP,3 and P, ; which are not completely free from theoretical uncertasiti We
therefore do not use these equations to predeicivhich also requires the measurements of the

observable#\, andAs. These equations however will be useful however in futusewssions.

45 TheF| — Agg constraint.

The perpendicular helicity fractiof, predicted in Eq. (4.74) in terms forward-backward asym-
metry Arg and the longitudinal helcity fractioR, consists of the terrt,. In the Eq. (4.75),
T, is expressed in terms &%, F., RandP; andP;. Since the helicity fractions are physical
guantities the ternT, must be positive. The positivity of, imposes constraints on the pos-
sible values foF, and Arg which cannot therefore be arbitrarily chosen. The requénenfior
real solution forF, hence implies a constraint &g in terms ofP,, P;, Rand observablé&

as[l21,127:
-3(1-F\) T <

3(1-F)
Arg < LT
4 =TFB =Ty

N (4.78)

55



where, the expressions of

P, + P;)?
T, = (Ps+Py) (4.79)

\/(1 +P2)(1+P?) \/(pl + P2+ R(P; — P))2 % (1— PyP)) (P, - P})R

It is easy to see thal, ~ 1 whenP; ~ P,” ¥ —1. Given the values o, andP,’ from
Table 4.1, we expedi. ~ 1. The allowed domain foArg is hence almost free froiR as long
asP; ~ P," ~ —1. The allowed~, — Arg region predicted from the above equations is studied

in details in Chapter 5.

46 TheF_ - F, constraint.

The Eq. (4.73) can be inverted to express the forward-backasymmetnAgg in terms of the

ratiosP,, P; andR,;

3(RX- {V(P: — PR+ ) - X7)
AP, - P (1+R?)

AFB = (480)

where,

X
Il

2(FyP.Py - F))

Y = 4F||FJ_.

Note that the Eq. (4.73) is quadraticAgg, and should have resulted in a two-fold ambiguity
in the solution. One easily confirms that only the solutiothwiositive sign in front of the
square root is valid. This is done by substituting the olealesF, F, in terms form-factors
and the Wilson ca@écients in the Eq. (4.80). The forward-backward asymmétry being a
real quantity the right hand side of the Eq. (4.80) has to heatso. Hence the the radical in

the left hand side of the Eq. (4.80) must be positive. Thislynapconstraint on thé&, — F
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parameter space which is derived form the positivity arguroéthe radical {21, 127,

P2+ P,?+ Re(Py — P;)? = (P1 — P}) VR2 + 1/R(P; — P})2 + (P} + P1)?

1+ 2pr 2
2P2P;,
J1-Fo
F.
P2+ P,?+ Re(Py — P;)? + (P1 — P}) VR2 + 1/R(P; — P})2 + (P} + P1)?
1 + (4.81)
2P2P/2
1" 1

Figure 4.2: The constraints df, — F, parameter space arising from Eq. (4.81) is shown.
The values ofP; andP; are averaged over 1 GB\k ¢? < 6 Ge\~. The allowed region for

R = -1 is depicted by the diagonal thick solid (blue) line thatdicesF , to lie in a very narrow
region, well approximated by a line. The shaded region isiften byF, + F, + F, = 1. Thick
dashed (red) line correspond to the solutiofk offrom Eq. (4.80) forArg = 0. This line divides
the allowed domain into two regions fixing the signAg relative toCq/C1g andC?‘f/Clo as
depicted in the figure(see Sec. 4.8).

In Figs. 4.2 and 4.4 the constraint implied by the above egosiare shown in the large and
low recoil region respectively. As mentioned in the figur@taans, the values dP; and P}
are averaged over thgg bins. The Eq. (4.81) implies very strict constraints on fhe- F,
parameter space. The constraint is sensitive to the valtleeaftioR, however the sign oR
is irrelevant. In the standard model the valueRak close to -1. In Figs. 4.2 and 4.4 we have

made two choices dR; R = -1 andR = -10. ForR = -1 the value ofF, predicted by the
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Figure 4.3: The allowed region f&® = —1 is depicted by the diagonal thick solid (blue) line
that predict$-, to lie in a very narrow region, well approximated by a line edilowedF —F
region forR = —10 is constrained between the dashed (blue) lines. Theiadaiturves in the
figure correspond to the constraint Bn— F, arising frome > 0 for different values ofg:
0.05, 0.25, 0.5, 0.7, where all the regions to the left oféhmgves are allowed.

Figure 4.4: The same as in Fig. 4.3 except thaand P’ are averaged over 16 Ge¢ ¢ <

19 Ge\?. The figure to the right is the inset of the figure to the left.this figure the solid
and the dashed diagonal (blue) lines are the same as in the figthe right. The dot-dash
(red) lines labeled by “a,b,c,d” correspondAgs = 0.5, 0.3, 0,-0.3 respectively foR = —10.
The line “c” (for Arg = 0) divides the domain and corresponds to the thick dashdd l{re in
Fig. 4.2. TheAgs, F. andF, must be consistent as shown by the dot-dash linesRFor-1
similar lines exist for dierent value ofArg but overlap with the solid blue line. Hence they are
not depicted in the figure.
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Eq. (4.81) is constrained to a very narrow region which caagoximated by a line. This is
shown Figs. 4.2, 4.3 and 4.4, by the diagonal solid blue linée shaded region to the left of
the dashed blue region is forbidden by the constraint F, + F, = 1 and the thick dashed
line in red corresponds to the solutionef from Eq. (4.80). For a large value = —10 the
constraint is relaxed and the rangeFof predicted by Eq. (4.81) is larger. This is depicted in
Figs. 4.3 and 4.4 by two dashed (blue) lines. As will be diseddater there are additional

constraints that come from the conditiBf> 0 which can be written as,
16
A(1-F - F,)F, - EA.%B >0

The constraints coming from this relation fofférent values ofsg are shown in Figs. 4.3 and
4.4. Similar constraints are obtained in the low recoil oegalso. These constraints are shown
in the Fig. 4.4. The significant change that is noticeablevben large and low recoil is that at
low recoil the predicted values &f, are smaller than that predicted in the large recoil region.
At low recoil the shifts towards lower value &f, is shown in Fig. 4.4. It is interesting to note
that irrespective of the value & in the limitP; — P, one obtains (+ F)/F, = 1+ 1/Pi. In

the limitmg — oo and the energy of thi", Ex. — oo, itis easy to see th&, = P; — -1, and

we find thatF, = F . In this limit Eq. (3.30) will result in a constant distribai in ¢. Since the
values ofP, andP/ differ slightly we expect only a very small dtieient of cosp. The relation
similar to Eg. (4.80) can be derived from Eq. (4.76) where wae write VAs andAsg + VAs

in terms of helicity fractions as,

3(RY— | Ya(P2 — Py(L+ RO - XZ)
4P, - P+ RY

V2As = (4.82)

where,

a
I

2(FLP,P, - F))

Y, aF F,.
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The relation that follows from Eq. (4.77) is,

3(RX — \/Yg(P3 — P,)2(1+R2) — X2)

Acs + V2As =
o+ V2hs 4P, - P+ RY)

(4.83)
where,

Xs = 2((FL+Fy+ V2rA)PsP; — F.)

Y3 AFL+ Fy+ V2rA)F..

Since the form factor ratioB, 3 and P’ are not reliable theoretical inputs we refrain from

deriving constraints o, — F, from these equations.

4.7 Bound on Form Factor Ratios.

As discussed before, even at leading ordeAgep/my, it is impossible to isolate the Wilson
coeﬁicientcs‘f from the form facto@ due to radiative and “non-factorizable” corrections. We
therefore neglect the higher order corrections to formoiact ExtremizingP? in terms of all

the non observables in Eq. (4.62) we get following boundB%n

aFF. - Y 25 2 /4Acp\2
P2 < F29 VF”FL§7( ).

3

(4.84)

For Asg = 0, we have already noted the exact equaty= F, /F. Analytical bound orP is
also possible, but is harder to obtain. Similar straighttod extrimization with respect to all
the non observables in Eq. (4.67) gives the following bowrdthe form factor ratio®,,

o2 < 4F F, - 2AZ 2 A\2A,

VFF. <=
2 = FE LJ—>7( 3

)2 (4.85)
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And straightforward extrimization with respect to all themobservables in Eq (4.70) results

in the following bounds on the form factor ratia,

AFL+Fy + V2rA)F, — 2(Ars + V2A5)?
(FL+ F| + V21A,)2

2,/ 4(Ars + V2As)
7( 3

2
P3>

VvV (FL+F + V2IA)F, < )% (4.86)

4.8 Sign of CSt.

We will now discuss a few important relations that involve tWilson codicientCS". It can

be separated from the form factor only when the higher ordeections including the “non-
factorizable” corrections are neglected. Hence all thelteshat we will discuss now are valid
only at the leading order and the tilde from the form facigfsare removed. At leading order

we can write the Eq. (4.64) as,

w_ VI (PiFy - F.) 4.87)
o= . :
\/zgﬂ [ + (Pl_Pi) \/PiFH + FJ_ + P]_Zl]
Using the above expression and the Eq. (4.62) we can write,
cet P2F, - F
r _3h GR-F) (4.88)

Cw 2G AP -P)

Since both the form factorg, andg, appear in the above equation, the r&#/C;, can not be
determined without theoretical uncertainties. Howeverkly. (4.88) imply certain constraints
on the ratioCS"/Cyo. The sign of the ratioF/G, can be very accurately determined from the

following equation,

Fi_ *A()
G 2(mg — M- )My To(0P)
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where bothA;(g?) andT,(g?) are both are positive. It is easy to conclude that,

eff

C—;AFB >0, onlyif P?<F,/F, when P;-P,>0 (4.89)

Eq. (4.84) together with Eq. (4.88) can be used to obtain meeéul bounds that are purely in

terms of observables alone, albeit they are not compleitisuestive. Eq. (4.84) implies:

Z]_ - F”FJ_ 2 4AFB 2
2
PiFi-Fus = VYFRF.s (=) (4.90)
which in turn implies for PiF, — F,) < O that,
;ﬁAF >0 V¥V FF < 32p (4.91)
C]_O B L 63AFB . .
If, however, P2F, — F.) > 0 we obtain an analogous condition
cer 16
C—ZOAFB <0 Vv FF.> 2—7A§B. (4.92)
The above bounds have nothing to say on the sige¢bfC,, in the region,
32 16
@Aﬁs <FF.< 2_7A|2:B (4.93)

and may not be particularly useful in general. One can nlegbss draw conclusions on the

signs of the Wilson cd&cients by combining Eq. (4.73) together with Eq. (4.88) taevr

(2 Co 4C"

§C—m 1 éc—lo P]_)AFB = (P12F|| + FJ_ + P]_Zl)

> 0, (4.94)

where,P, = (G,/F) (P1 + P;) > 0 since each ofg,/¥;), P, andP; are always negative.

Defining,
E,= _:9AF E,= —_A (4.95)
1= o e 2= C. e .
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for convenience, Eqg. (4.94) reads

2 4
§ P]_El - § P1E2 >0 (496)

In SM, C$"/Cyo > 0 andCy/Cy < 0, hence the sign d; (E;) will be same (opposite) to that
observed forAs. If, for any ¢?, we find Acg > 0, Eq. (4.96) cannot be satisfied unless the
contribution from theE, term exceeds thE; term, or the sign of th&; term is wrong in SM.
In the SM theE, term dominates at large recoil i.e. small hence Az must be positive at
smallg? to be consistent with SM. 1Az < 0 is observed for alt? i.e. no zero crossing of
Agg is seen, one can convincingly conclude t6&t/C,, < 0 in contradiction to SM. However,
if zero crossing ofArg is confirmed withAcg > 0 at smallg?, it is possible to conclude that
the signC&"/C, > 0 andCy/Cyp < O are in conformity with SM, as long as other constraints
like Z2 > 0 hold. In Fig.4.2 we have shown how theg = 0 distinguishes the two regions. In
Ref. [L14] the zero crossing is indeed seen. However, in the ZGeyf < 4.3Ge\? bin, Z2>0
is only marginally satisfied. We emphasize that these ceimhs drawn from Eq. (4.94) are
exact and not altered by any hadronic uncertainties. We cé@ &guations similar to Eq. (4.88)
by using Egs. (4.67), (4.68) and Egs. (4.70), (4.71). Thesations which are valid only at
leading order are written below as,

cer 3Fo (P3FL—F.)

= , 4.97
Cio 2Go V2As(P, - P}) (4.97)

% _ §(TH + ‘7:0) (PS(FL + F” + \/_27TA4) - FJ_) (4 98)
Cio 2 G+ Go (Arp + \/QAS)(PS - P,3) . .

The above two equations are not as important to determin€h€, ratio. But they will be

very useful as shown later. Eqgs. (4.76) and (4.97) can be r@dlto obtain

2CS" 4 Cq _ (PSFL+F L +PZ)

y— 2 =2P,)As

7 p =
(3C10 > 3Cypo \2

(4.99)
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P, = (Go/Fo) (P2 + P,) > 0, sinceGo/Fo, P, and P, are all negative. While this is not
easily seen as in the caseRf we have numerically verified at leading order that this i€ tru
for the entireq? domain. We have shown earlier, by doing a power expansiof-in that
(P3F, + F. + P1Z;) is always positive. It is easy to see that similar argumeatsbe made for
the positivity of P3F, + F, + P,Z,) by considering expansions A&. Hence if the term in the
bracket must be positives must be positive. At large recoil the term in the bracket jgsezted
to be positive. From Eqgs. (4.77) and (4.98) we can obtainiyetieer important relation, which

is of the same kind as we obtained earlier in Eqs. (4.94) al99)4

2C , 4G,

(§C_10 3~ éc—lopg)(ApB + \/§A5) = [(Pg(FL + F” + \/_27TA4) + FJ_ + P3Zg]

> 0 (4.100)

whereP = (Go+G))/(Fo+ F}) (Ps + P3) > 0. This is easily verified to be true at leading order
for the entireg? domain. We have shown earlier by doing a power expansidginandAs

that respectivelyR2F, + F, + P;1Z;) and P5F + F, + P,Z,) are always positive. It is easy to
see that similar arguments can be made for the positivitp i + F +2 V2rnAL)+F | +P3Zs)

by considering expansions Mg + V2As. These equations are equally useful to determine the
sign of C$" as discussed earlier. However, the form factors involvednat completely free

from HQET form factor.

4.9 Form Factor Ratiosin Terms of Observables.

In Sec. 4.1 we have defined several form factor ratios in tefrifs andéﬁ. These ratios enter
as inputs in the solutions of Wilson déieients and #ective photon vertices. Except for the
ratiosP; andP/, the rest of the ratios are polluted by hadronic uncert@sntin this section

we derive many important relations that relate the formdacatios to the observables. From

Eq. (4.32) we see that at the forward-backward zero cros&igg= 0, r;+r, = 0. Atthe
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forward-backward zero crossing point we can write from B¢33),

VIt
*
Aea=0 V2F,

r
= =+ \/\/E; [PiF“ +F, + P12 \/ﬁ]l/z
4

It
= i\/\/é;l[\/F—J_-l-Pl\/E”] =0.

]1/2

rn+ry [P%F” + FJ_ + P]_Z]_

Since bothvF, and \/F—” are positive quantities and the raRg is negative the relation/F, +
P, VF, = 0imply [121, 127,
VEL

Pl = - .
Fii lace=0

(4.101)

This equation enables the measurememR;oh terms of the ratio of helicity fractions. If zero
crossing occurs it would provide an interesting test of omarstanding of form factors. Very
recently LHCb has confirmed.[L4] zero crossing oRrg for the first time. The zero crossing
is observed at? = 4.9:11Ge\?, which is consistent with the predictions of the standardieho
and lies in the large recoil region. Eq. (4.101) can hencedsel io measurP; at the zero
crossing ofArg. A confirmation of the estimate &f; with direct helicity measurements would

leave no doubt of the reliable predictability of HQET in tlaege recoil region.

The ratiosP, andP3; can also be written in terms observables. Using Eq. (4.46%ave

similarly derive the relation,
F
P,= ——~= (4.102)
VFL a0

enabling measurements of form the factor r&jan terms of observables at the zero crossing
of As. We can similarly use Eq. (4.48) to expréxssin terms of the helicity fractions andl, at

the zero crossing point of the observablg + V2As as,

vEL
P3:—
\/FL+FL+ V2rA,

(4.103)

A|:B+ \/§A5:0

Hence, the zero crossing 8§g + V2As enables the measurement of form factor r&ioas
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well, in terms of observables. Next we derive several retetithat express the four form factor
ratios P,, P, andP3, P; in terms of observables arfey andP;. These relations are valid
up to leading order i in perturbation series and leading orderpcp/m, in heavy quark
expansion. Since we have already defined three sef /&, and C$ff /Cyo ratios, equating
Eqg. (4.97) and Eq. (4.98) with Eq. (4.88) we get the expressof P, andP; in terms of
observables and; andP;.
V2A5(F . - FP3)P3P;
P, = (4.104)
AcsTo(P1 — P;) + V2As(F . — FP3)P,P;
(Aes + V2As)(F. - F|P2)P3P;

P, = : (4.105)
AesTs(P1 — P}) + V2As(F, — F P?)P2P;

where,

T, = Py(F.-F.P) (4.106)

T3

P.|F.(1+P2) - P21+ V2rA)|. (4.107)

Similarly equating Eq. (4.76) and Eq. (4.77) with Eq. (4.3@8d using the Egs. (4.104) and
(4.105) we get the following expressionskRyf andPs in terms of observables and form factor

ratiosP, andP;.

P, = Citla (4.108)
V2As(2F . + Z1P;) — ZoP1 Ars
2P, AcgF
P; = e (4.109)

(Ars + V2As)(2F, + Z,Py) — ZsP1Ars

If all the observables are measured from the full angulatyaisathen the form factor ratios
P, and P; can be measured using Egs. (4.108) and (4.109). These wdnebe used in
Egs. (4.104) and (4.105) to measure the value®,@ndPy,.
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4.10 Mode Independent Constraints between Observables.

In this section we discuss a few important relations andtcaimss among observables that have
no dependence on the hadronic form factors and hence aremielaes of new physics. Some
of these relations are derived from the fact that in the steshdhodel the tinyCP violation
[74] in the B —» K'¢*¢~ decay mode can be neglected. Hence all the Wilsortficants
are real. This implies that, in the denominator of Eq. (4.62¢ term under the square root
P2F, + F. + P1Z; must be real. This is only possible as longzsis real i.e, as long as

4FF, > 136 2. which is seen by an (infinite) series expansiog:

P2F +FL+P1Zy = (Pi+JF + VF.)?
ANZ.P; AALP;

QW B 81(F F.)* + O(AIGZB) >0, (4.110)

where every terms is positive sinBe is negative. The condition thZi must be real thus leads

to a relation restricting the observables F, andAgg such that121, 127:

1
UL SR (4.111)

The above relation is purely in terms of observables and doeslepend on any theoretical
parameters and hence is a clean probe of new physics. Tlati@mobf this condition will be a
clear signal of new physics. On the other hand, if the expemisifind a real value that does not
agree with theC, estimates of standard model value, it could either be a bajmew physics
or of the uncertainties in form factor estimations. We have more such relations. These
relations follow from Eq. (4.67) and Eq. (4.70). In Eq. (4.6 term ternPaF_ + F, + P22,
will be positive only ifZ; is real. This can be shown by doing a power expansioirSo the

condition thatZ, is real implies that,

4F F, > %S(VEA;,)Z . (4.112)
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Similarly Z; should also be real in Eq. (4.70) which implies,
16 2
4(F + Fy+ V2rA)F, > 5 (Aes + V2Ag)2. (4.113)

The combination of bounds in Egs. (4.111) and (4.112) resulyet another interesting bound
among observables alone but involving oA, A2 andF,:

41-F)F. > 136(A|2:B +2A0). (4.114)
The violation of any of these relations will be a signal newgbs. With the help of the
observable#-g andF , we can measure the observaBlgusing Eq. (4.114). For a given value
of F, (or 1-F,) the Eqg. (4.114) imply a constraint between the observakigandAs shown
in the Fig. 4.6 by dierent colored lines. In Chapter 5 we have discussed in dethdut the
constraints coming from the Egs.(4.111), (4.112) and @).1h the remainder of this section
we derive a very important relation that involves all theethhelicity fractions and the angular

asymmetrieArg, A4 and As and does not depend on any hadronic quantities. The retation

follows from Eq. (4.52) which can be rewritten as,
P]_Pz = P3P1 + P3P2

Substituting the expressions Bf andP3 interms ofP; and observables from Eq. (4.108) and

Eqg. (4.109) we get,
Zg = Z]_ + Zz.

which can be written in terms of observables only as,

\/4(FL + Fy V2rA) - 1—96(AFB + V2A5)? = \/4F||FL - %BAIZZB + \/A":L':L - %zAg (4.115)
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We use this relation to solve f@y, leading to [L21, 127,

8 A2 4 A2
Ay = SQAE?EB 2 \/FLFL o NF\{F”FL o (4.116)
It should be noted that Eq. (4.115) is a quadratic equatigq.irHence there are two solutions
for A4 out of which only one is correct. The correct solution is @by substituting the ob-
servables in terms of the form factors and Wilsonfiioents. Since~, is already predicted

in Eq. (4.74) in terms of the already measured observableand A-g andP,, P; andR, we

can estimaté\, in terms ofAs. The correlations predicted by Eq. (4.116) should hold ssle
NP contributes. For a given value Af the A, can be completely predicted in termskf and
Arg. This is shown in Fig. 4.5. We have predicted the values ofrom Eq. (4.74) in terms of
FL, Aes, P1, P; andR. The values oP; andP/, are averaged over 1 G&¢ ¢ < 6 Ge\? and the
value of the ratidR = —1. The solid blue line correspond to the predicted values,@fs a func-
tion of F_ andAgg for a given value ofds. The lines are constrained to stay within the shaded
region which results from the conditions,(F, — (8/9)A%) > 0 and €F, — (4/9)AZ;) > 0.

As can be seen from thefti#rent panels of Fig. 4.5, the region shrinks with the inarens
values ofAs. In the Fig. 4.7 we have studied the dependence of the iRput the predicted
values ofA4. It should be noted that the dependenc®&eiters througlr, which is predicted
from EQ. (4.74). Our prediction is shown for three valuedRofThe prediction folR = -1,

R = -10 andR = 10 are shown by solid black, dashed blue and dashed greenréspec-
tively. It can be noticed that the value 8§ is not much sensitive to the values Rf The

Eqg. (4.116) is a relation involving only observables withany assumptions of hadronic form
factors, hence its violation must be an unambiguous sighilFo In addition the constraints
Egs. (4.111), (4.112), (4.113) and Eqg. (4.114) are also Inodependent constraints among
observables. These constraints need to be tested expéalipéefore ruling out the presence

of new physics.
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4.11 Low recoil limit.

So far we have discussed many relations and constraintsgaotuservables for new physics
tests, as well a few relations that can be used to measurerfiadorm factor ratios in exper-
iments. In this section we discuss in detail about the lowitdienit approximation of these
results. These relations will allow us not only to test thiediy of the low recoil approxima-
tion but also the presence of new physics. In the large réoutlwe had six observables: the
decay widthl;, the helicity fractiond=, andF, and the angular asymmetri@gsg, A4 and As.
These six observables are expressed in terms of eight indepetheoretical parameters. The
parameters being the siffective form factorsFy, 7, ., Go, G, andG, and the two Wilson
codficientsCqy andC;o. We can hence solve the theoretical parameters in termsseiadbles

if we take two theoretical inputs which happens to be the &tims of form factors. In the low
recoil due to various simplifications the number of indepridbbservables as well as number
of independent theoretical parameters aféedent. Hence the solutions of theoretical param-
eters in terms of observables and the important resultdalatv therefrom needs to treated

more carefully.

We have discussed in Sec 2.4 that in the low recoil limit thegldistance contributions
to theB — K*¢*¢~ hadronic matrix elements can be computed as the short desefliects
using simultaneous heavy quark and operator product expahgQ with Q = {m,, \/@}. In
this limit the sub-leadingnk-/m, as well as the non-factorizable corrections can be ignaved s
that the Wilson coﬁcientC?‘f is distinguishable from the form fact@. Hence the variables

r,r.,roandr, are now defined as

N = C;’“%':—Cg
r, = cs‘f%—cg
o = cs‘f%—cg
r, = C?%—Cg



Since thei:?‘T is distinguished fror@ﬁ we have removed the tilde. We also derived in Sec 2.4

that the form factorg, andG, satisfy the following relations,

G _ 6. _Go
fi T Fo

=K,

which implies that

M=r.=rog=r,=r.

(4.117)

(4.118)

The above relation imply that the Egs. (4.22)—(4.24) areifreatlas the following equations,

LF, LF,. FL

2 2
rP+C% = — = =—
T 2F2 22 2
2Acal; 4Ace  FT
4I'C10 _ FBLf = FB _f,
3fiFL  3FF. 2
where
- FF.
F = P = E
I 1

Using the above equation and the definitiorPeffrom Eq. (4.29) we can write,

Fi F.

P2 — =
PR

The relation among the form factors Eq. (4.117) imply,

Fi_G:
2 T A2
7:H I
Hence we can write,
YR A

From Egs. (4.119) and (4.120) that we can solve fandCZ,:

FI; Z
2 _ 1
r = T(l +

2
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(4.120)

(4.121)

(4.122)

(4.123)



FI; Z:
c3, = —(1- ——). 4.124
R r”a) (4.124)
The sign ofr /Cyg is fixed such that,
r _§2’\/FJ_F||+Z]_ (4 125)

Co 4 Ars

in order to satisfy the limit derived by appropriate combioa of Eqgs. (4.64) and (4.65). In
the low recoil limit “r” is same not just fof] and_L helicities but for all three helicities. This

requires in analogy with Eq. (4.122) that,

F. 77
B

F. 77
(FL+F)  (F¢+FD)

P2 = py2= (4.126)

P2 = P2= (4.127)

One can hence measure, P, andPs in the low recoil region in terms of the ratio of helicity
fractions. Hence, the valugZ,7 > can be expressed in terms of observables alone. In the
large recoll cas@foﬂz depended of?, andP,. The form factorP; = P/ can be measured,
enabling a possibility of verifying the estimate of presehin Table 4.2. To derive a relation
between observables that is valid at low recoil and testvdhdity of the approximation, we
note Eq. (4.119) leads to the generalized relation

ré+ Cs,
2rC10

.y
=
'_

>
@

NIW NI W
NEL
& |

<
~
H
|
M

+
p

5
e

L

(Ars + V2A5)

L

NI W

(4.128)

The equalities on the left side of the above equation yieldsihteresting relations

VFL
Fy

V2As = A

(4.129)



A4 = g FLF”. (4130)

It is easily seen by direct substitution of Eq. (4.129) in @q116) that it reduces to Eq. (4.130),
hence it is not independent. It is emphasized that a reakowalidity of the low recoil approx-
imation requires largg? and not the exact equality of form factors as derived Eq2@).1Even
though the values of the form factors depicted in Table 4e2hat exactly equal, the low recoil
approximation works well. This is demonstrated in Fig. 4t&we we have plotted the left hand
and right hand of Egs. (4.129) and (4.130). These figures dstraie that the equality of both
sides of Egs. (4.129) and (4.130) holds at the low recoilorgmhe values of observables are
estimated using the form factors given in Sec 2.4. We empbdhat the relation derived in
Egs. (4.129) and (4.130) are extremely important both inngghe validity of the low recoil
approximation and the presence of New Physics. The valég pfedicted by these relations
tests the validity of the low recoil approximation, wheréas value ofA, verifies the validity
of SM. If both the relations are found to be valid it would pedvoth the validity of the low
recoil limit and the absence of New Physics. On the other Iifdath the relations fail we must
conclude that low recoil limit is not valid. The presence @viNPhysics could still be tested
by the validity Eq. (4.116) even in this largé domain. The remaining meaningful possibility
is that Eq. (4.129) holds and (4.130) is violated. This wanigly validity of low recoil limit
but signal the presence of New Physics. It is interestingote that one should expect from

Egs. (4.129) and (4.130) a very tiny product of asymmethieandAs.

AsAs =

AesFL (4.131)
T

since the right hand sidérs andF, have already been measuredle emphasize that even
in the low recoil limit, G/C,o and all the expressions independent of Wilsoryfeoents are

independent of the universal form factgfsandé, .
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Figure 4.5: The blue curves correspond to the valud,ahat is estimated using Eq. (4.116)
for different values of\s as shown in dferent panels. The perpendicular helicity fractlon

is predicted in terms df_ andAgg from Eq. (4.74). The values &f, andP; are averaged over
1 GeV < ¢? < 6 GeV? and we have choséR= —1.
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Figure 4.7: The same as Fig. 4.5 but the sensitiviti oh the predicted values &, is studied.
The small dashed (green) curves are for the ¢ase 10 while the big dashed (blue) curve
correspond td&R = —10. The solid black curves are for standard model value sf-1.
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the right both sides of Eq. (4.130) are plotted. Here alsddftdnand side is depicted by solid

black curve and right hand side by dashed blue curve. Thasefiglemonstrate the domain of
validity in g2 for the low recoil approximation and the region where newgits/can be tested.
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Chapter 5

| mplications of Experimental

M easur ements.

In Chapter 4 we have derived the expression of WilsorffamentC,q in terms of observables.
In this section we use the experimental data and calculatealue ofC,,. We also calculate
the value offF, from Eq (4.74) using experimental data Bp and Arg, assuming that in the
standard modeR = —1. Moreover, we also study in detail the constraintden- Arg arising
from Eq (4.78). We show that the constraints are consistéhttive one presented by LHCb
in Ref. [126. We also show that the constraints Egs. (4.111), (4.118)(4riL13) which are
completely free from any hadronic form factor imply rigosazonstraint on the allowdg, —F |

region.

5.1 Numerical estimatesof Cigand F,.

In Eq. (4.62) the Wilson cdicientC, is expressed in terms of two helicity fractioRgs and

F., the forward-backward asymmetAtg, one form factorf, and the theoretically reliably
calculated form factor rati®;. The helicity fractionF, is predicted in Eq (4.74) in terms
forward-backward asymmetidg, helicity fractionF_, two theoretically reliably calculated

form factor ratiosP, andP; and the ratioR. Assuming that in the standard model= -1
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and using the measured valuesfgg andF, from Ref. [L13, we have calculated the Wilson
codficient|C,o| and the perpendicular helicity fractidgh, (denoted by “(T)”) in Table 5.1 in
different dilepton invariant mass squared bins. The form fg€t@nd the ratio®, andP’ are
calculated using heavy-to-light form factors at large fe@wion (between 0 Ge\? < ¢? <
12.86GeV?) and is averaged over each of tifebins. In the low recoil region these quantities
are calculated using heavy-to-light form factor at low likaad is averaged over each of the
o? bins. The bin 148 GeV? < ¢ < 16GeV is neglected as the the form factors are not
reliably evaluated in this region. There is a unusuallydavglue ofiCy| in the Q10 GeV? <

o? < 2 Ge\? bin. It is unlikely [123 124, 129 that such a largefect can be due to the
contributions from low lying resonances in the experimedtda. It could be due to failure
in estimating#; or perhaps be a signal of new physics. In the first binAhkg approaches
zero in which case our method is no longer valid. Therefoeevilues ofC,q in the first bin
should not be taken too seriously. In the 1 Ge¥ ¢ < 6 GeV? bin the value ofiCy is
3.81+0.58. It may be noted that estimate Bf does not depend on universal form factors

and is clean in the low recoil limit.  Using Eg. 3.30 LHCb hasas@red the observable

?(GeV?) | 0.10-2.00 | 2.00-4.30| 4.30-8.68| 10.09-12.86 16.00-19.0Q 1-6
F,(T) | 0.44+0.01 | 0.14-0.06 | 0.19+0.03| 0.25+0.04 | 0.14+0.016 | 0.21+0.05
IC10l (T) | 14.36:1.68 | 2.81+0.78 | 3.00:0.38| 2.34+0.37 | 3.11+0.39 | 3.81+0.58

Table 5.1: The predictions fét, (Eq. (4.74)) andCio| (Eq. (4.62)) using @7 fo* LHCb [113
data forF_, Asg anddl’/dc?. “(T)” in the first column indicates that the values quoted ar
theoretical estimates. The form fact®] and the ratio®, and P; are averaged over each
¢? bin using heavy-to-light form factor at large recoil (forl0 Ge\? < ? < 12.86GeV)
and heavy-to-light form factor at low recoil (for 16 Ge\k ¢ < 19 Ge\?). The region
14.18 GeV? < (f < 16 GeV is neglected as the form factors can not be calculated hgliab
this region. It should be noted that in the first bin theg approaches zero in which case the
solution of C;g andF, can no longer be derived. Therefore the value€gfin the first bin
should not be taken too seriously.

F. in Ref. [114. The measuredF, are tabulated for each dilepton invariant mass squared
bins in Table 5.2 and denoted by“(E)”. We compare the meadstakies with the theoretically
predicted values (“(T)”) from Eq (4.74). Also tabulated #ne predicted values @, which

are denoted by “(T)”. To tabulate the predicted values weshesed the measured valuedof
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%(GeV?) | 4n?-2.00 | 2.00-4.30] 4.30-8.68 | 10.09-12.86 16.00-19.00  1-6

F.(E) | 03607 | 011799 [031+009| 01572 | 00878 | 02200
F. (T) | 0.31:0.03 | 0.15:0.04| 0.20:0.03 | 0.22:0.03 | 0.12:0.01 | 0.170.03
ICuol (T) | 12.92¢1.07 | 2.60:0.78 | 2.88:0.32 | 2.0+0.25 | 2.55:0.29 | 3.26:0.45

Table 5.2: The same as Table 5.1 but witbtb™* LHCb data [L14. “(E)” in the first column
indicates that the values quoted are experimental estemiate(E) is computed directly from
data using Eq. (3.30) and the value ®f quoted in Ref. 114]. The values ofiCyo seem
to decrease with the larger data set used and are margioalgr than theoretical estimates.
Unfortunately, the cause of discrepancyGy| can not be fixed, it could either be due to failure
in estimating#; or perhaps be a signal new physics. Note that in the Ge\? < ¢? < 2 Ge\?
region|C,q| is still large even with improved statistics. We emphadha the two values df |
are in good agreement almost throughoutdheegion. It should be noted that in the first bin
the Arg approaches zero in which case the solutiofCefl andF, can no longer be derived.
Therefore the values ¢€,q| in the first bin should not be taken too seriously.

andAgg from Ref [114]. The form factory; and the form factor ratioB; andP; are calculated
in the same way as for the Table 5.1. ThelBiGeV* < ¢? < 16Ge\ bin is neglected as the
the form factors are not reliably evaluated in this regiohe Btandard model estimate ©f,

is perturbative calculation. However, our expressiolCgf (see Eq-(4.62)) incorporates both
the perturbative and the nonperturbative physics. Thesgtaur estimate of g is not directly

comparable to the standard model estimate.

52 TheF_ — Agg region.

The observables, andAgz are constrained by Eq (4.78). As shown in Fig. 5.1, the altbwe
values ofF_ and Arg are constrained within the solid blue triangle. The LHCb rexently
performed in Ref. 126, a log-likelihood fit to theArg and F, data in the dferentg? bins.
The fits are shown in Fig. 5.4. We emphasize that the d&i§ |s consistent with the allowed
domain in Fig. 5.1. If the measurdél. and A= in a giveng? bin are outside the triangle
then that is a clear signal of new physics. We note that sinedcr) (4.78) does not involve
any hadronic form factor, the violation of the constrainaislean signal of new physics. The
other details in the Fig. 5.1 correspond to the valueCgj which are shown by the dashed

lines. The values ofC,¢ are calculated from Eq. (4.62) using experimental datd={QrArs
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and branching fractions from Ret]3. Using the same experimental data, the valueb of
are calculated using Eq (4.74) and are plotted by dasheslilmEig.5.2. The dferent panels
correspond to dierent dilepton invariant mass squamgdbins. The form factorF and the
form factor ratiosP; and P; are calculated using heavy-to-light form factor at largeore
(0.10 GeV? < ¢? < 1286GeV?) and is averaged over each bin. In the low recoil region these
guantities are calculated using heavy-to-light form faatdow recoil and is averaged over each
of thecf? bin. The 1418 GeV? < ¢? < 16GeV bin is neglected due to the reasons mentioned
before. In Fig. 5.1 and Fig.5.2 we have assumedfhat-1. The sensitivity of the triangular
region onRis shown in Fig. 5.3 for three choicesBf R = —10, -1, 10. As mentioned in the
caption the dashed blue line correspondR to —10, the solid black line correspondsRe= -1

and theR = 10 case is shown by large-dashed red line. The triangul&rég sensitive to the
value ofRin the largeg? bins and not significantly sensitive in the lg#bins. The lines inside

the triangles correspond to the valued=f

5.3 Model independent bound on F|_ and F.

In Sec. 4.10 we derived relations among observables thatregefrom any hadronic form
factors. The relations are in terms of inequality and aremin Egs. (4.111), (4.112) and
(4.113). Moreover, in Eq. (4.116) the observaBlas expressed in terms of the three helicity
fractions and angular asymmetrids and Arg. One can hence eliminate tiAg observables
from EqQ. (4.113) and obtain constraints involving thredditsi fractions, Arg and As. The
consequences of these constrained relations can be saglwalind on two helicity fractions
FL andF,. In Fig 5.5 we have assumedigirent values oArg andAs and shown the allowed
regions ofF_ andF,. In the first panel of Fig 5.5 we assun#®gg| = 0 and ifAs = 0 then
allowed values of andF, are constrained between the two solid (black) lines. With th
increasing values ofs the allowed region is constrained from the left. This is shdwy

the dot-dashed (red), dashed (purple) and dotted (blueg.lifhese three lines correspond to

80



0.8

0.6

Fo

0.4

0.2

0.8

0.9

Fo

0.4

0.2

0.8

0.6

FL

0.4

0.2

-1.0 -0.5 0.0 0.5 1.0 .—1.0 -0.5 0.0 0.5 1.0
Arp Ars

Figure 5.1: The allowe#_ — Arg region is constrained by Eq (4.78) within the solid bluertria
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Figure 5.3: The same as Fig. 5.2. The sensitivity of the gdar region toR is studied for
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correspond td&R = —10,R = —1 andR = 10 respectively. The lines inside the triangles are the

values ofF ;.
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|As| = 0.15, |As| = 0.30 and|As| = 0.45 respectively. If the value gAgg| is increased then
both the solid (black) lines move towards the left constragrihe region from the right. This

is shown in the second panel of Fig 5.5 f8gg| = 0.15 and in the subsequent panels. These
figures illustrate the fact that the observalifesF ., Arg andAs are correlated with each other
and such correlations are independent of any hadronic tancges, the violation of which is

a clean signal of new physics. As an example we refer to thetfquanel of Fig 5.5. Here
|Arg| = 0.45 and the dotted (blue) line fols| = 0.45 is outside the allowed region (between
the two solid black lines) df_ andF ;. This is a violation of the relations given by Egs. (4.111),

(4.112) and (4.113).

In Fig. 5.6 we have shown thE -F, regions which are similar to Fig 5.5. However, we
have used the values #g| given in eachy? bins from Ref. L14. The solid lines (in blue)
correspond to the central value Afg and the dot-dashed (in red) and dotted (in black) lines
correspond to the experimental errorAgg. SinceAs has not been measured yet we have
assumedAs| = 0. The experimental values &f andF, Ref. [L14] are shown by black cross.
In the first bin (4n2# < ¢? < 2 Ge\?) the measured value & andF, is at the boundary of the
allowed region forAeg = 0.0073350.91. However for a non-zero value @ the boundary line

in the left will be shifted towards right and thkg — F, point will be outside the region. In the
third bin 430 < ¢? < 8.68 Ge\? (see the third panel of Fig. 5.6) tlle — F, point is inside
the allowedF, — F, region and in the rest of the bins thg¢ — F, points are at the boundary.
As noted in all these plots th&; is assumed to be zero. So to see if the Egs. (4.111), (4.112)
and (4.113) are violated or not the observaidehas to be measured. As noted in Sec. 4.6,
the Eq. 4.81 imply constraint df_ — F, in terms ofP4, P7 andR. As shown in Fig.4.2 such
constraints folR = -1 is well approximated by a line. These constraints are agfamvn in
Fig. 5.6 by long dashed lines. In the third bin the measuréabvaf F| — F, is not consistent

with the bound. In the rest of the bins the consistency holtlsimthe measured error band of

F_andF,.
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Figure 5.5: The requirement tha{, Z,, Z; must be real, for any consistent set of independent
observablegg, F|, F, andAs constrains the allowel,_-F, parameter space to lie only within
the solid black linesAy is given by Eq. (4.116). Even within the allow&gd-F, domain only

the region on the right is allowed depending on the valuegggandAs. In the four figures we
have sampled values @& andAs are as depictedlhere is no hadronic assumption made in
obtaining the constraints depicted in these plots.
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Figure 5.6: Same as in Fig. 5.5, but the valuedgf are taken from Ref.1[14]. The values of
As are assumed to be zero and the valueB ,0dndF , as measured in Refl{4] is shown by

black crosses.
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Chapter 6

Summary and Conclusion.

In this thesis we have derived several important new resultiier a brief introduction to
the standard model in Chapter 1, we have discussed the tivabfeamework in Chapter 2,
followed by the diferential decay distribution @& — K*¢*¢~ in Chapter 3. In Chapter 3 we
have introduced the observablesF, F ., Ars, A4 andAs that can be extracted from angular
analysis. While the partial decay rdig can be measured by angular integration, the other
observables require a study of angular distributions. Vdsvekd how uni-angular distributions

in the azimuthal anglé can be used to measure the helicity fracton F, and Arg have
already been measured by studying the uni-angular disiioin 6,. A, and As can only be
measured by a complete angular analysis invol¥ingnd ¢ requiring higher statistics. The
main results of the thesis are derived and discussed in €h4gatnd Chapter 5. In Chapter 4,
after setting up our notation and defining the observablesims of form factors, we expressed
the amplitude in the most general form within the StandaraﬂMas?ljR = CL,Rﬂ—éﬂ, where

A =10, L,]|} is the helicity of theK*, C_ g = Cgff F Cy0 andL, R define the chirality of the.
The form factorsF, andéﬁ are expressed in terms of conventioBab K* form factorsV, A,
andTy,3. To be exacéﬁ = C?ﬁ?gﬁ + - - - with the dots representing the higher order and “non-
factorizable” contributions and only at leading or@gyr's are related td; ,3. It may be noted
that even at leading ord€2" andg, cannot be separated a@€' can only be defined at leading

order on assuming,. The six observables are thus defined in terms eight parasnéte six
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form factors#,, Fg} and two Wilson CofficientsCy ;0. Hence only six theoretical parameters
can be eliminated in terms of observables and a minimum ofredrable theoretical inputs
are needed, to resolve between new physics and hadronitheioins. This is made possible
by the significant advances in our understanding of fornefacthat permit us to make truly
these reliable inputs. One of our achievement are derivatitclean relations” that permit the
verifications of these hadronic inputs.

TheB — K* form factors are estimated using heavy qudf&aive theory and the treatment
varies depending on the recoil energy of Kie At large recoil the ratio of the form factoPs =
F./F) andP; = éL /ng” are reliably evaluated @(Aqcp/my) to be free from universal wave
functions and are unaltered by “non-factorizable” conititns and higher order corrections
in as. In the large recoil limit we therefore chooBg andP’ as the two inputs in addition to
observables. In the low recoil limit, the relatien = P} between the form factors serves as an
additional input.

We summarize briefly a few significant new results derived ia@er 4. The simple ana-
lytic derivation and solutions to the Wilson d&eients in terms of the observables and “clean”
form factors were achieved by defining new variables éﬁ/ﬂ — Cq. These enable solutions

to Cg andC,q in terms of observable®,, P; and the form factos to be

VI (FPiP.—F.) - 3(P.-P)Z

V27, | = (P-P)) \/PiF” +FL+PyZy |
T 2 Acs

V27, 3[ + \/PiF” +F, + Plzl].

Co , (6.1)

(6.2)

whereZ; is expressed in terms of observables in Eq. (4.28). Two aadit solutions folCy and

C1o can be obtained in terms offterent observables. These are obtained by the replacements
o Fy = FL, Arg = V2As, 7 = Fo, Gy — Go, Which also imply that; — rq, Py — P,
andP; — Py,
] F|| - FL+ F|| + \/—27TA4, Arg — A + \/§A5, 7’~|| - 7’~|| + Fo, g“ - Q” + Go, Which also
imply ry — r,, P, = Pz andP} — Px.
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We found that the form factor ratid%, P, andP3 can be directly measured in terms of the
ratio of helicity fractions atj* corresponding to the zero crossings of asymmefkigs As and

Ars + V2As respectively by the relations:

Pl = = FJ' P2 = — FJ_ (63)
Fii lacs=0 VFL =0
F
P; = - A (6.4)
\/FL + FJ_ + \/_ZJTA4 AFB+‘/§A5:O

Since we have neglected the ti@GP violation in the standard model, we find that the ob-
servables must satisfy the following inequalities whica eompletely free from any hadronic

uncertainties and hence clean. These relations are,

W2 R (6.5)

AF\F, > %}(\@%)2- (6.6)

M1l-F,)F, > 1—96(A§B+2A§), (6.7)
AFL+Fy+ V2rA)F, > %(pr V2A)%. (6.8)

In Figs. 5.5 and 5.6 we have plotted the constraints oAF, that depends only on observables.
The condition #F, > 16/9A§B implies that if|Agg| is large,F. must be small so thatF4F,
can be sfficiently large. Our approach is sensitive enough to alredyvsensions in the

data [L14].

The first set of solutions of Wilson cfiientsC,, andCg (see Eqs.(4.65) and (4.62)) are not
“clean”. This set however leads some very important reguitsding the constraints among the
standard model observables. For example, the Gi€,, is obtained as a “clean expression”.
Assuming the theoretical estimate©f/C,, which is reliably evaluated at NNLL in standard

model we have “cleanly” predicteld, in Eq. (4.74). Requiring that the observalle is real
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we showed that the valid domain Afg is constrained in terms &, as follows:

3(1-Fy)

—3(1-F)
— T <A<
4 =TFB="y

T,, (6.9)
whereT. is given in terms oP,, P, andRin Eq. (4.78). The above equation constrains the
values ofF| andAgg within a triangular region shown in Figs. 5.1, 5.2 and 5.3e €kistence

of such a triangular bound is already hinted in R&2€. In Eq. (4.80) we have expressed the
forward backward asymmetig in terms of the two helicity fractions_ andF .. Since the
Arg has to be real there exist a constraint between the two tyelfeictionsF, andF, which

we have derived in Eq. (4.81)). It is interesting to nttet F_ and F, are constrained in the
Standard Model to lie in a very narrow region, well approxt@aby a lineas shown in Fig. 4.2
and 4.4.

TheCy/Cyo andCS™/Cy, ratios in Egs. (4.73) ratio in (4.88) were combined to obtain

(2 Co 4C"

§C—w 1 éc—lo Pl)AFB = (P12F|| + FJ_ + Plz) > 0. (610)

If the Arg zero crossing is confirmed {4 with Arg > 0 at smallg?, then based on the signs
of the from factors it is unambiguously concluded that thgnsiofC;/C,o and Cy/C, are

in agreement with the Standard Model, i.@?ﬁ/Clo > 0 andCy/Cyo > 0 as long as other
constraints likeZ? > 0 hold. In Ref. 14 the zero crossing is indeed seen. However, in the
2GeV < ¢ < 4.3GeV bin Z? > 0 is only marginally satisfied. These conclusions are exact
and not altered by any hadronic uncertainties.

We have obtained three sets@f/Cig andC?‘f /C10 solutions involving diference observ-
ables and form factor ratios. Since, the form factor rafpsndP’ are the ones that are most
reliably estimated in both large recoil and low recoil limitve obtain relations fd?,, P, and
Ps, P; in terms ofP,, P and observables. Equating the relations obtainedCtgC,o and

CST/Cypin EQs. (4.73), (4.88) with those in Egs. (4.76), (4.97) and.K4.77), (4.98) we get:

2P, ArgF
V2As(2F . + Z1P1) — ZoP1 Arg
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V2As(F, - ani)ng'l

"2 AceT2(P1 — P) + V2As(F. — FjP2)PP;
P, = 2P1ArgF . ’

(Ars + V2A5)(2F, + Z4P;) — Z3P1 Ars
P = (Aes + V2As)(F. - F|P2)P2P;

ApT3(P1 - P)) + \/§A5(Fl - Fllpi)ngll,

whereT, = P;(F, — FLP2) andTs = P1[F, (1 + P2) — P2(1 + V2rA,)]. Even thougtP,, P,
andPs, P inherently depend of andé, we have expressed them in terms of “clean relations”
above.Hence, in our approach, all the expressions for observaatesclean,” with only the

Wilson cogicients (;“‘ﬁ Cy and G being expressed in terms of only one form fagpor 7.

We have derived significant constraints between obsersaiée can be used to test for new
physics. The constraint purely in terms of observablegasince?, andP; are expressed in
terms of observables ami while P; itself is related in Eq. (4.52) tB; andP,. We obtain the

interesting constraint (4.116) among observables:

8AsAre \/':L':l - 3A \/F“E - 3%
A, = + V2 )
Ok, nF,

(6.11)

In Fig. 4.5 we plotted®, as function ofF andArz where the values ofs has been assumed.

We have paid special attention to the low recoil limit andwetwo new relations

V2As = AFB\/T (6.12)
I
Ay = %2 FLFy (6.13)

in terms of observables alone. These two relations allove test not only the validity of the
low recoil approximation but also the presence of New Plsysithe value ofAs predicted
by these relations tests the validity of the low recoil appration, whereas the value &,
verifies the validity of SM. If both relations hold we verifiadt the low recoil approximation

is correct and that no new physics can exist. If both relafi@dnve can conclude that the low
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recoil approximation fails bubne can never-the-less still test for new physimsEqg. (4.116),
which is valid in general. IBs is accurately predicted b, does not have the value given by
these two relations one can conclude that there is new phgsid that the low recoll limit is
accurate.

In this thesis we re-examined the new physics discoverynpialef the modeB — K¢+ ¢~.
This mode has an advantage as a multitude of observablesscaredsured via angular anal-
ysis. We showed how the multitude of related observablesindd fromB — K'¢*¢~ can
provide many new clean tests of the Standard Model and digtaite new physics contribu-
tions from hadronic #ects. The hallmark of these tests is that most of them argarient
of the unknown form factorg, andé, in heavy quark ective theory. In the large recoil limit
(at O(Aqcp/My)) these relations are valid to all ordersdg. We derive a relation between
observables that is free of form factors and Wilsonfioents, the violation of which will be
an unambiguous signal of New Physics. We also obtained &fiitst time relations between
observables and form factors that are independent of Widediicients and enable verification
of hadronic estimates. We show how form factor ratios can basured directly from helicity
fractions without any assumptions what so ever. We find tieatlowed parameter space for
observables is very tightly constrained in Standard Maithelreby providing clean signals of
New Physics. We examine in detail both the large-recoil amdrecoil regions of th&* me-
son and probe special features valid in these two limits. tA@onew relation involving only
observables that would verify the validity of the relatidietween form-factors assumed in the
low-recoil region was also derived. The several relatiamd eonstraints derived will provide
unambiguous signals of New Physics if it contributes toglaescaysWe emphasize that in our
approach, G/Cyo and all the expressions independent of Wilsorffiments are “clean” in the
large recoil limit and in the low recoil limit they are relidp calculated as they do not depend

on the universal form facto andé, .
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