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SYNOPSIS

The phenomena of meson decay and meson anti-meson mixing provide an excellent labo-

ratory to test the Standard Model (SM) predictions and for indirect searches of physics beyond

the SM also known as New Physics (NP). The effective Hamiltonian of meson decay and mix-

ing is described in terms of Wilson coefficients and dimension six four quark local operators.

The Wilson coefficients include the short distance QCD correction effects to the local operators

and are calculable in perturbation theory. The hadronic matrix elements of the four quark local

operators between the initial and the final state meson are parametrized in terms of form factors.

The form factors are non-perturbative hadronic quantities, and hence are poorly known. New

Physics may contribute virtually to meson decay and mixing through loop diagrams like the

box and the penguin diagrams. Indirect searches for NP involve comparison of theoretically

calculated observables related to the decay or mixing, withprecision measurements of the ob-

servables in experiments, and the observed discrepancies are referred to as NP signal. However,

searches of NP are often hindered by hadronic uncertainties. In addition to the poor knowledge

of form factors, the significant part of hadronic uncertainties constitutes of ‘non-factorizable’

effects. In this thesis using the semi-leptonic decayB → K∗ℓ+ℓ− we have shown how NP

signal can be extracted to all orders inαs in perturbation theory, including ‘non-factorizable’

corrections at leading order inΛQCD/mb in heavy quark expansion. We have also derived rela-

tions between various hadronic form factor ratios and observables independent of any Wilson

coefficients, which enable us to tests these ratios in experiments.

The B → K∗ℓ+ℓ− decay is regarded as a very important mode for new physics search.

Several different experiments Belle, Babar, CDF and LHCb have studied this mode. These

experiments have provided valuable data as a function of thedilepton invariant mass squared

q2 by studying uni-angular distributions. Each of these four experiments have measured the

partial branching fraction in chosenq2 bins by preforming a complete angular integration. By

studying the angular distribution of the direction of the lepton in an appropriately chosen frame
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these experiments have also measured the well known forward-backward asymmetryAFB and

the longitudinal polarization fractionFL in terms of integrated dilepton invariant mass squared

regions ofq2. The CDF and LHCb collaborations have in addition performedan angular study

of the azimuthal angle defined as the angle between the planesformed by the leptons and the

decay products ofK∗ i.e. K, π. Recently the LHCb has also measured the zero crossing point

of the forward-backward asymmetry which is consistent withthe standard model expectation.

Future experimental studies by LHC-B and Belle II will enable the study of this mode with

significantly larger statistics making possible the analysis with multi-angular distributions and

the measurement of all the observables.

The thesis is based on the two papers mentioned below and is divided in six chapters. In

Chapter 1 we have given a very brief introduction to the theoretical tools needed to studyB

physics. After a brief introduction of the standard model ofelectrowek interaction we have

discussed the Yukawa Lagrangian which encodes the entire flavour structure of the standard

model. The typical energy scale ofB decay is∼ 5 GeV where as the standard model contains

significantly higher energy scales like the mass of the top quarks and the mass of theW bosons.

Therefore the phenomenology ofB decays are described in an effective field theory approach

called the Operator Product Expansion (OPE). In our work thehadronic estimates are based on

the heavy quark symmetry which is discussed at the end of the chapter.

The theoretical framework ofB → K∗ℓ+ℓ− decay is described in Chapter 2. At the quark

level the decay is given bȳb → s̄ℓ+ℓ− flavour changing neutral current transition and the

effective Hamiltonian is described in terms of three Wilson coefficientsCeff
7 , Ceff

9 andC10 and

six form factorsV(q2),A1,2(q2),T1,2,3(q2). The values of these form factors are not accurately

known due to hadronic uncertainties. In the limit of heavy quark massmb → ∞ and large

recoil of theK∗ meson all the form factors can be expressed in terms of two soft form factors

ξ⊥(q2) andξ‖(q2) and there arise various symmetry relations between them. These symmetry

relations however are broken due to radiative corrections and ‘non-factorizable’ corrections.

Our key observation is that the ratiosV(q2)/A1(q2) andT2(q2)/T1(q2) are free fromξ⊥(q2) and

ξ‖(q2) to all orders inαs in perturbation theory including the ‘non-factorizable’ corrections and
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at leading orderΛQCD/mb in heavy quark expansion . In the low recoil region of theK∗ meson

there arise additional symmetries which implyV(q2)/A1(q2) = T2(q2)/T1(q2).

In Chapter 3 we have described the angular distribution ofB→ K∗ℓ+ℓ− decay and we have

shown how the multitude of observables can be extracted fromthe angular distribution. In the

semileptonic decayB(p) → K∗(k)ℓ+(q1)ℓ−(q2) decay the light vector mesonK∗ decays reso-

nantly toK(k1)π(k2). The decay is described by four kinematic variables; lepton pair invariant

mass squaredq2 = (q1 + q2)2, the angle between the decay planes formed byKπ and ℓ+ℓ−

denoted byφ, the angleθl betweenℓ− and the+z axis in which theK∗ is moving and the angle

θK thatK makes with the+z direction. There are six transversity amplitudes corresponding to

each of three polarization states ofK∗ meson with two chirality of the leptonic current. These

amplitudes are written asAL,R
0,‖,⊥ where 0, ‖,⊥ are the three polarization states ofK∗ andL,Rcor-

respond to the left and right chirality of the leptonic current. In our analysis we have assumed

that the lepton mass is zero and we have also neglected the tiny CP violation. In addition to

the branching fractionΓ f , the angular distribution enables a multitude of observables to be ex-

tracted; these include the longitudinal helicity fractionFL, perpendicular helicity fractionF⊥,

parallel helicity fractionF‖, the forward-backward asymmetryAFB and angular asymmetriesA4

andA5. The three helicity fractions are related byFL+F⊥+F‖ = 1 resulting in six independent

observables in the limit of vanishing lepton mass andCP violation.

In Chapter 4 we have developed a model independent frameworkto study new physics ef-

fects. We write the six transversity amplitudesAL,R
λ

in the most general form, in terms of form

factorsFλ and G̃λ asAL,R
λ
= CL,RFλ − G̃λ, whereCL,R = C9 ∓ C10. Here the Wilson coeffi-

cientCeff
9 is replaced byC9 once the higher order corrections are taken into account. The form

factorsFλ andG̃λ are related to the well known form factorsV(q2),A1,2(q2) andT1,2,3(q2). At

the leading order inΛQCD/mb in the heavy quark expansion the Wilson coefficientCeff
7 can not

be distinguished from the form factor̃Gλ due toαs corrections and ‘non-factorizable’ correc-

tions. Hence there are eight theoretical parameters; the two Wilson coefficientsC9, C10 and

six form factors and only six independent observablesΓ f , FL, F⊥,AFB,A4,A5. Using the six

observables the six theoretical parameters can be expressed in terms of the observables if two
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reliably evaluated theoretical quantities are taken as inputs. In Chapter 2 we have identified

the ratiosP1 = F⊥/F‖ andP′1 = G̃⊥/G̃‖ that are free fromαs corrections to all orders in per-

turbation theory including ‘non-factorizable’ corrections at leading order inΛQCD/mb in heavy

quark expansion. TakingP1 andP′1 as theoretically reliable inputs we have expressed the Wil-

son coefficientsC9 andC10 andG̃‖ in terms ofFL, F⊥, AFB and form factorF‖ which enables

us to measure these theoretical quantities in experiment. As discussed in the thesis these solu-

tions have very important implications on the correlationsof different observables. Though the

expressions ofC9 andC10 are not completely free from hadronic uncertainties due to the pres-

ence of form factorF‖ in the solutions, their ratioR= C9/C10 is free from any form factor and

can be measured experimentally. The ratioR is known up to next-to-next-leading-logarithmic

(NNLL) order. If the ratioR is taken as input, then there arise a important constraint between

observablesAFB andFL; −3(1− FL)T−/4 ≤ AFB ≤ 3(1− FL)T+/4 where,T± ≈ 1. The forward

backward asymmetryAFB is expressed in terms of helicity fractionsFL, F⊥ and the ratiosP1

andP′1, enabling measurement ofAFB in terms of helicity fractions only. Moreover we have

derived stringent constraint between the helicity fractionsFL andF⊥ based on the fact thatAFB

is real.

In the limit of no CP violation all the Wilson coefficients are real. This leads to various

constraints among observables such as 4F‖F⊥ ≥ (16/9)A2
FB. We have derived three such rela-

tions. These relations are solely in terms of observables and do not involve any form factors

and Wilson coefficients. Hence the violation of these relations will be cleansignals of new

physics.

There exist two additional sets of solutions of the Wilson coefficients involving other observ-

ables and require the introduction of four additional form factor ratios as inputs;P2 = F⊥/F0,

P′2 = G̃⊥/G̃0, P3 = F⊥/(F‖ + F0) and P′3 = G̃⊥/(G̃‖ + G̃‖). These ratios of form factors

are not theoretically reliably calculated since they depend on soft form factorsξ⊥(q2) and

ξ‖(q2). We have expressed these four ratios in terms theoretically reliably calculated ratios

P1 and P′1 and observables. In addition we have also shown that the formfactors ratioP1

can be expressed asP1 = −
√

F⊥/
√

F‖ at the zero crossing point of the forward backward
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asymmetryAFB. We have presented two more relations that relateP2 and P3 also in terms

of observables at the zero crossing pointsA5 andAFB +
√

2A5 respectively. The three sets of

solutions imply a very important relation between the observables;A4 = (8A5AFB/9πF⊥) +
√

2
(√

FLF⊥ − (8/9)A2
5

√
F‖F⊥ − (4/9)A2

FB

)
/πF⊥. We end the chapter by discussing the low en-

ergy approximation of various relations. We have shown thatthese relations can be used to test

the low energy approximation of form factor calculations.

In Chapter 5 we have presented a numerical analysis in comparing it with the current ex-

perimental data on theB → K∗ℓ+ℓ− mode. We have also compared our approach with the

theoretical approach available in the literature. The conclusion is given in Chapter 6.

In this thesis we have presented various relations among observables without involving any

form factors and Wilson coefficients The violation of these relations will be a clean signals of

new physics. In addition we have derived various relations between ratios of form factors and

observables that are free from any Wilson coefficients.
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Chapter 1

Introduction

1.1 The Standard Model of Electroweak Interaction.

The standard model of electroweak interaction is aSU(2)⊗U(1)Y [1, 2, 3, 4] gauge theory which

successfully describes weak and the electromagnectic interaction in a unified framework. The

particle spectrum of the standard model comprises of three generations of quarks and leptons

collectively called the fermions. The left handed leptons and quarks are arranged in aSU(2)

doublets as, 
νe

e−


L


νµ

µ−


L


ντ

τ−


L

(1.1)


u′

d′


L


c′

s′


L


t′

b′


L

. (1.2)

and the right handed quarks and leptons are arranged in singlets ofSU(2) as,

e−R, µ
−
R, τ

−
R, (ν̄e)R, (ν̄µ)R, (ν̄τ)R (1.3)

u′R, c′R, t′R, d′R, s′R, b′R (1.4)

Such organization of quarks and leptons underSU(2) automatically takes care of the parity

violation in nature [5, 6, 7, 8]. The mediators of the electroweak interaction are the four
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massless gauge bosonsW1
µ ,W

2
µ ,W

3
µ and Bµ which correspond to the four generators of the

SU(2) ⊗ U(1)Y group. The gauge bosons acquire masses through the mechanism of sponta-

neous symmetry breaking [9, 10, 11, 12] that breaks theSU(2) ⊗ U(1)Y symmetry toU(1)Q

symmetry. The outcome of the spontaneous symmetry breakingis a neutral scalar particle

called the Higgs. After spontaneous symmetry breaking the three massive gauge bosons of

weak interaction areW+,W−,Z and the massless gauge boson of electromagnetic interaction is

γ. They weak-hyperchargeY is related to the electric chargeQ by Q = I3+Y/2, whereI3 is the

third component of isospin. In (1.2) and (1.4) the primes indicate that the quarks are massless.

The quarks and the leptons become massive due their interaction with the Higgs field. The part

of the Lagrangian that describes this interaction is calledthe Yukawa Lagrangian. In Sec. 1.2

we have discussed the Yukawa Lagrangian for quarks in great details.

The interaction part of the standard model Lagrangian for quarks and leptons is written as,

Lint = LCC + LNC,

where the subscriptLCC describes the charged current interactions andLNC describes the neu-

tral current interaction of quarks with the gauge bosons. The LCC andLNC can be written

as,

LCC =
g2

2
√

2
(J+µW+µ + J−µW−µ) (1.5)

LNC = eJem
µ +

g2

2 cosθW
J0
µZ

µ (1.6)

where,e is the electric charge,g is theSU(2) gauge coupling,θW is the Weinberg angle. The

currentsJ±µ , Jem
µ andJ0

µ are written in terms of massless quarks and lepton fields as,

J+µ =
1
2

ū′γµ(1− γ5)d
′ +

1
2

c̄′γµ(1− γ5)s
′ +

1
2

t̄′γµ(1− γ5)b
′

+
1
2
ν̄eγµ(1− γ5)e+

1
2
ν̄µγµ(1− γ5)µ +

1
2
ν̄τγµ(1− γ5)τ (1.7)

Jem
µ =

∑

f

qf f̄γµ f , (1.8)
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J0
µ =

∑

f

f̄γµ(vf − I f
3γ5) f , with (1.9)

vf = I f
3 − 2qf sinθW .

Here f denotes the fermions,qf is the charge of the fermion in the units of electric chargee, I f
3

is the third component of isospin of fermionf .

1.2 Flavour Physics.

In the previous section we have introduced six flavours of quarks and leptons each of which are

arranged in three generations. Flavour physics in general describes the interactions between

these different generations of quarks and leptons. Within the standard model, the parameters of

the flavour physics are the masses of six quarks and six leptons, three quark mixing angles and a

phase and three lepton mixing angles and a phase. It is the Yukawa Lagrangian that completely

fix the flavour structure of the standard model. We will discuss only the Yukawa Lagrangian

for the quarks. In (1.2) and (1.4) the quarks fields are written in the interaction basis which

means they are massless. The Lagrangian that give masses to the quarks and leptons is called

the Yukawa LagrangianLYukawa. The Yukawa Lagrangian for the quarks is written as,

LYukawa= mi j
(d)(ū

′
i , d
′
i )L


φ+

φ0

 d jR +mi j
(u)(ū

′
i , d
′
i )L


−φ̄0

φ−

 u jR + h.c, (1.10)

Here, i, j = 1, 2, 3 correspond to the three generations of quarks. The matrices mi j
u/d are the

coupling of thei’th and j’th quarks of the up or down type. Here we have introduced the Higgs

fields,

φ =


φ+

φ0

 , φc =


−φ̄0

φ−


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The spontaneous symmetry breaking occur when theφ0 acquire a vacuum expectation valuev:

φ =
1
√

2


0

v+ η

 , φc = −
1
√

2


v+ η

0



where,η is the fluctuation around the minimumv. After the spontaneous symmetry breaking

the Yukawa Lagrangian reads as,

LYukawa=
v
√

2

(
ū′iLhi j

(u)ū
′ j
R + d̄′iLhi j

(d)d̄
′ j
R

)
+ h.c. (1.11)

From the above Lagrangian the mass terms of the quarks can be written as,

Mi j
(u) =

v
√

2
hi j

(u), Mi j
(d) =

v
√

2
hi j

(d) (1.12)

The mass matricesMi j
(u) andMi j

(d) are neither symmetric nor Hermitian and also not necessarily

diagonal. These can be diagonalized using four bi-unitary matricesUL,R andDL,R as,

M(u) = U+L M(u)UR, M(d) = U+L M(d)UR

The mass eigenstates can now be related to the interaction eigenstates as,

ui
L,R = (U+L,R)i j u′ jL,R (1.13)

di
L,R = (D+L,R)i j d′ jL,R (1.14)

In terms of the mass eigenstates the charge currents become

j+µ = ūi
LVi j d j

L (1.15)

where,V = U+L DL is called the Cabbibo–Kobayashi-Maskawa (CKM) matrix [13, 14, 4]. By

construction the CKM matrix is unitary, since the matricesUL,R and DL,R are unitary. This
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imply that,

∑

j

Vi j V
∗
jk = δik

The unitarity relation that is particularly important forB decays is written as,

VudV
∗
ub+ VcdV

∗
cb + VtdV∗tb = 0 (1.16)

In this relation the CKM matrix elementsVub, Vcb andVtd are under extensive study at present. It

represents a triangle in the complex plane which has three sides of magnitudes|VudV∗ub|, |VcdV∗cb|,

|VtdV∗tb| and three anglesα, β andγ which are defined as [15],

α = arg
(
−

VtdV∗tb
VudV∗ub

)
(1.17)

β = arg
(
−

VcdV∗cb

VtdV∗td

)
(1.18)

γ = arg
(
−

VudV∗ub

VcdV∗cb

)
(1.19)

The sum of these three angles isα + β + γ = 180◦. The CKM matrixV can be parametrized in

different ways. The standard parametrization used by the Particle Data Group is [16]

V =



c12c13 s12c13 s13e−iδ13

−s12c23 − c12s23s13eiδ13 c12c23 − s12s23s13eiδ13 s23c13

s12s23− c12c23s13eiδ13 −c12s23− s12c23s13eiδ13 c23c13


, (1.20)

Heresi j = sinθi j , ci j = cosθi j andδ is theCPviolating phase. The terms13 ∼ O(10−3) ands12 ∼

O(10−2) andc13 andc23 are≈ 1. Experimentally it is found thats13 << s23 << s12 << 1. Based

on this hierarchy there exist another parametrization thatis often used inB physics known as

Wolfenstein parametrization, which exploits the aforementioned experimental information. The
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CKM elements are expanded in small parameterλ = |Vus| = 0.22. We can define [17, 18, 19],

s12 = λ =
|Vus|√

|Vud|2 + |Vus|2
, s23 = Aλ2 = λ

∣∣∣∣
Vcb

Vus

∣∣∣∣

s13e
iδ = V∗ub = Aλ3(ρ + iη) =

Aλ3(ρ̄ + iη̄)
√

1− A2λ4

√
1− λ2[1 − A2λ4(ρ̄ + iη̄)]

(1.21)

With the above relations it is ensured that ¯ρ + iη̄ = −(VudV∗ub/VcdV∗cb) is independent of phase

convention. The unitarity relation is valid to all orders inλ if the CKM matrix is written in

terms ofλ,A, ρ̄ and η̄. Alternatively, the CKM matrix can also be parametrized in terms of

A, λ, ρ, η as,

V =



1− 1
2λ

2 λ Aλ3(ρ − iη)

−λ 1− 1
2λ

2 Aλ2

Aλ3(1− ρ − iη) −Aλ2 1


+ O(λ4) (1.22)

where,ρ̄ = ρ(1 − λ2/2 + · · ·) and η̄ = η(1 − λ2/2 + · · ·). It should be noted that in the above

parametrization, known as Wolfenstein parametrization the the real part of the unitarity relation

is restored up to orderλ3, and the imaginary part of the unitarity relation is restored up to order

λ5.

1.3 B physics in pursuit of New Physics.

Flavour physics has great potential to discover new physicsbeyond the standard model before

new physics particles can be directly produced in colliders. There are many examples of such

discoveries from the past. The existence of the charm quark was predicted by observing the

smallness of the ratioΓ(KL → µ+µ−)/Γ(K+ → µ+ν) in the K meson decay and the value of

ǫK led to the prediction of the third generation of quarks. The mass of the charm quark was

predicted from the size of theKL−KS mass differences∆mK = MKL−MKS and similarly the mass

difference of the twoB meson eigenstates∆mB led to the successful prediction of the top mass.

Flavour physics has thus played significant role in construction of the standard model. There

are reasons to believe that the standard model is not the ultimate theory of nature and there are
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physics beyond the standard model, referred to as new physics. In addition to the well known

gauge hierarchy problem and naturalness problem [20, 21, 22, 23] of the standard model, there

are motivations to search for physics beyond the standard model. For examples the amount of

CPviolation needed to explain the observed baryon asymmetry in the universe is less than what

the CKM framework predicts. It therefore needs extra sources of CP violation that can only

come from new physics. The observation of neutrino mass and oscillation is not accommodated

in the standard model and needs physics beyond the standard model for explanation. At present

there are several examples in flavor physics where the experimental data in various meson decay

and mixing are not consistent with the standard model expectation. New physics models can

be constructed to explain such discrepancies. Recently theD0 Collaboration observed [24] the

semileptonic decays ofBs mesons and measured the like-sign dimuon charge asymmetryAb
sl =

(−0.787±0.172(stat)+±0.093(syst)). The standard model predicts [25] Ab
sl = (−0.028+0.005

−0.006)%.

The experimental value deviates from theoretical calculations by 3.9σ standard deviations. On

the other hand theAb
sl depends on “wrong charge” asymmetriesaq

sl (whereq isd or squark). The

recent measurements ofas
sl = (−1.08±0.72±0.17)% by D0 [26] andas

sl = (−0.24±0.54±0.33)%

by LHCb [27] are in agreement with the standard model expectation. Thiscan be explained by

physics beyond the standard model. Another example is from the charm sector. Based on the

first observations by ofD0−D̄0 oscillation by BaBar [28], Bell [29], the Heavy Flavor Averaging

Group (HFAG) [30] has excluded the null hypothesis of mixing parametersx = ∆M/Γ and

y = ∆Γ/2Γ at 10σ and presentss global averagesx = (6.5+1.8
−1.9)× 10−3 andy = (7.4± 1.2)× 10−3.

In the past mainly theK system was studied to explore the physics of the quark flavour

sector. Thanks to the efforts by Babar at SLAC, Belle at KEK and LHCb at CERN, theB

mesons are now produced abundantly and is used to explore thequark flavour sector as well as

new physics. TheCP violation has already been established in theB system inB0
d → J/ΨKS

decay by the Belle [31, 32, 33, 34] and Babar [35, 36, 37, 38] experiments. Both at the theo-

retical and the experimental frontB physics is important as it give insight to physics at short

distances. The recent results from B-factories and LHCb hasgreatly improved our knowledge

about the flavour structure of the standard model. These results present a strongly constrained
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picture of the flavour sector with only tiny deviation from the standard model. Recent examples

from the flavour factories constraining the flavour sector are: consistency of isospin asymme-

try in B → K∗µ+µ− [39] with the standard model calculation [40], the reduced discrepancy

betweenB→ τν and sin 2β from Belle results [41], agreement of the semileptonic asymmetry

al
s with the standard model in LHCb measurements [42] and the absence of a largeBsµ

+µ−

[43, 44, 45, 46, 47] which is expected in some beyond standard model extensions[48, 49, 50].

Some new tensions in the flavour sector has also been seen recently. For example, the isospin

asymmetry inB→ Kµ+µ− measured by LHCb [39] deviates from standard model by 4.4σ, and

there are some deviations in the branching ratio ofB → D(∗)τν [51, 52]. PrecisionB physics

study such as theCP violation, rare decays and flavour changing neutral currentprocesses will

give access to the flavour physics at the short distances. Thereason why short distance physics

can be best studied inB decays or mixing is due to the heavy mass of theb quark. Inside the

B meson theb quark is bound to a light quark by strong dynamics which posesthe biggest dif-

ficulty to extract short distance information fromB systems. The reason being that the strong

dynamics can only be fully understood in a non-perturbativeframework of field theory calcu-

lations which is yet to exist. This thesis partly give some answers to untangle new physics

effects from the non-perturbative strong dynamics. There exists various theoretical tolls and

techniques to studyB system. In the following and subsequent sections we will discuss some

of the techniques that are relevant for the study ofB decay.

1.4 Operator Product Expansion.

The typical energy scale of meson decay and mixing are of the order of few GeV. ForB decay

it is ∼ 5GeV. On the other hand the standard model contains significantly higher energy scales

like the mass of the top quark and the mass of theW boson. The description for meson decay

and mixing therefore is provided by an effective field theory approach known as the Operator

Product Expansion [53, 54, 55]. In this approach the products of charged current operators are

expanded in a series of local six dimension four quark operators, and the contributions of each
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of these operators are weighted by effective coupling known as the Wilson coefficients. Such

expansions in local operators are possible since the typical momentum transferk to the final

state in weak decays of mesons is much smaller than the mass oftheW bosons,k << M2
W. Let

us consider the non-local action functional

S =
∫

d4x

(
Lq

kin +L
W
kin + Lint

)
(1.23)

where,Lq
kin is the kinetic part of the quarks, and

LW
kin = −

1
4

(
∂µW

+
ν − ∂νW−

µ

)(
∂µW+ν − ∂νW−µ

)
+ M2

WW+
µ W−µ. (1.24)

Lint =
g2

2
√

2

(
J+µW+µ + J−µW−µ

)
(1.25)

The charged currentsJ+µ andJ−µ can be written in terms of massive quark fieldsU = (u, c, t) and

D = (d, s, b) as,

J+µ = VUDUγµ(1− γ5)D, J−µ = (J+µ )†

In the path-integral formalism, the generating functionalfor the Green function can be written

as

Z[J] ∼
∫

[DW+][DW−]exp

[
i
∫

d4x d4y Wµ(x)Dµν(xy)W−
ν (y)

+i
g

2
√

2

∫
d4x(J+µW+µ + J−µW−µ)

]
(1.26)

where the operatorDµν(x, y) is defined as,

Dµν(x, y) = δ4(x− y)
[
gµν(∂

2 + M2
W) − ∂µ∂ν

]
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After doing the Gaussian integral in Eq. (1.26) one can write,

Z[J] ∼ exp

[
− i

∫
d4x d4y

g2

8
J−µ (x) ∆µν(x, y) J+ν (y)

]

where theW propagator∆µν(x, y) is defined in the unitary gauge as,

∆µν(x, y) = −
∫

d4k
(2π)4

1

k2 − M2
W

(gµν − kµkν

M2
W

) e−ik.(x−y)

The propagator∆µν(x, y) can be expanded in series in the increasing powers of 1/M2
W so that the

product of two nonlocal charged current interaction can be expanded in a series of dimension six

four quark local operators denoted byQ. For example, in case ofb→ cūd decayQ = c̄γµ(1−

γ5)bd̄γµ(1− γ5)u. This procedure is formally known as the Operator Product Expansion (OPE).

The effective Hamiltonian corresponding to the first term of the expansion can be written as,

Le f f
int = −

GF√
2

VCKMQ (1.27)

where,VCKM is the CKM matrix.

1.5 Low-Energy Effective Hamiltonian.

The dimension six four quark operatorsQ in the effctive Lagrangian (1.27) receive short dis-

tance quantum choromodynamics(QCD) corrections which arecalculable in the perturbation

theory. The radiative corrections are of the orderαs(µ)ln(MW/µ), where theµ ∼ 5 GeV in

the case ofb decay. Then-loop contribution of the radiative correction is [αs(µ)ln(MW/µ)]n.

Even if theαs(µ) is calculated at a very higher scaleµ, the termαs(µ)ln(MW/µ) is of the order

unity, so that the overalln-loop contribution is very high and need to be summed up. Thisis

achieved through the method ofrenormalization group(RG). The radiative corrections induce

new operators with different quark structure and the subsequent RG evolution leadsto mixing

between them. It should be noted that the normalization scale dependenceµ should cancel for

10



all physical prediction. Since the operators has scale dependenceµ, the above is achieved by

multiplicative factors called the Wilson coefficients. The Wilson coefficientsC(µ) defined at

the scaleµ = MW include all of the short distance corrections to the local operators. These

can be calculated in the perturbation theory up to desired order in the strong coupling constant

αs. Using a renormalization group-improved perturbation theory, the Wilson coefficients are

evolved up toµ ∼ 5GeV. The end result is that the effctive Hamiltonian (1.27) is finally written

as,

He f f =
GF√

2

∑

i

Vi
CKMCi(µ)Qi(µ) (1.28)

An amplitude for initialB meson decay to final statesF can be written as,

A(B→ F) =
GF√

2

∑

i

Vi
CKMCi(µ) 〈F |Qi(µ) |B〉 (1.29)

The amplitude written in this way separates the problem of calculating the amplitude in two

parts. The first part is the calculation of the short distanceWilson coefficientsCi(µ) and the

second part is the calculations of the long distance hadronic matrix elements〈F |Qi(µ) |B〉. The

hadronic matrix elements are usually parametrized by form factors. Since form factors carry all

the long distance information these are non-perturbative hadronic quantities and hence are not

reliably calculated. This is referred to as the the hadronicuncertainties. A significant part of the

hadronic uncertainties also constitutes of “non-factorizable” corrections to the matrix elements

of purely hadronic operators. InB meson decay, due to the heavy mass of theb quark there

arises various symmetry relations between the form factorswhich are referred to as the heavy

quark symmetries. These symmetry relations can be exploited to cancel hadronic uncertainties

in ratios of form factors. In the next section we have discussed the heavy quark symmetry.

1.6 Heavy Quark Symmetry.

Inside theB meson, the heavyb quark is surrounded by light quarks and gluons bound together

by complex strong interaction dynamics. Theb quark mass is grater thanΛQCD ∼ 0.2 GeV. On
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the other hand all the light degrees of freedom interact withthe heavy quark with soft gluon

exchanges of the order∼ ΛQCD. These light degrees of freedom are therefore blind to flavour

and spin of the heavy quark. This is called the heavy quark symmetry. This symmetry can

be understood in the framework of heavy quark effective theory. The heavy spin and flavour

symmetry is not manifest in the strong interaction Lagrangian in the limit when the quark

mass becomes infinity. The effective field theory in which the spin and flavour symmetry is

implemented in the limit of infinite quark mass is known as theheavy quark effective field

theory. The starting point of constructing heavy quark effective theory is to consider a hadron

with a single heavy quarkmQ traveling with velocityv so that the on-shell momentum isp =

mQv. It interacts with the light degrees of freedom with the residual momentum. Hence the

momentum of the off-shell heavy quark isp = mQv + k [56] where residual momentumk ∼

ΛQCD. We start by writing the Dirac Lagrangian as,

L = Q̄(x)(i /D −mQ)Q(x) (1.30)

whereQ(x) is the heavy quark field andDµ = ∂µ + igAµ. In the limit of heavy quark mass, the

propagator for the quark can be written as [57],

i
/p+mQ

p2 −m2
Q + iǫ

=
1+ /v

2v.k+ iǫ
(1.31)

The Lagrangian that give rise to the above propagator can be constructed by decomposing the

original quark fieldQ(x) into a velocity dependent fieldQv(x) and a residual fieldQv(x)as,

Qv(x) = eimQv.x1+ /v
2

Q(x), Qv(x) = eimQv.x1− /v
2

Q(x).

Hence the original quark field can be written as,

Q(x) = e−imQv.x
(
Qv(x) + Qv(x)

)
.
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Substituting (1.32) in the Dirac Lagrangian (1.30) we get the Dirac Lagrangian in terms of

heavy quark fieldQv(x) as,

L = Q̄v(x)
(
iv.D

)
Qv(x). (1.32)

Here we have neglected the part of the Lagrangian withQv(x) which is suppressed by powers

of ΛQCD/mQ. This Lagrangian has spin and flavour symmetry. From the standpoint of heavy

quark effective theory, the heavy to light transition matrix elements are simplified. Inside the

meson the heavy quark travels with velocityv. The action of the weak current that causes

the heavy to light transition changes the velocity fromv to v′. Due to this change the light

degrees of freedom arrange themselves so that the heavy meson now travel with the velocity

v′. Because of the heavy flavour symmetry the transition current will be universal function ofv

andv′. These functions are usually denoted byξ(v.v′) which are called the Isgur-Wise [58, 59]

form factor or the soft form factor.
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Chapter 2

Theoretical Framework of B→ K∗ℓ+ℓ−

decay.

In this chapter we describe the theoretical framework to calculate the amplitude ofB→ K∗ℓ+ℓ−

decay. TheB meson is a pseudoscalar meson that constitutes of a heavyb quark and a lightu or

d quark. Theb quark decays tosquark andℓ+ℓ− pair. Thesquark forms the light vector meson

K∗ which results in our final state. Since flavour changing neutral current is not present in the

standard model, theb→ sℓ+ℓ− transition occurs via loop diagrams. The decay is describedin

terms of a effective Hamiltonian which is written in terms of Wilson coefficients and dimension

six local four quark operators. The hadronic matrix elements of the local operators in the

B→ K∗ transition are evaluated atµ ∼ mb and are parametrized in terms of form factors. The

form factors carry the non-perturbative long distance information and therefore their values are

not accurately calculated. In searches for new physics, thetheoretical challenge of our poor

knowledge of form factors can be overcome by exploiting the symmetry relations among the

form factors arising at large recoil (lowq2) and low recoil (highq2) regions of theK∗ mesons.

In Sec.2.3 and Sec.2.4 we discuss the parametrization of theform factors respectively at large

and low recoil limit. We also discuss the symmetry relationsamong the form factors in these

limits.
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2.1 The Effective Hamiltonian for B→ K∗ℓ+ℓ− decay.

At the quark level the exclusiveB → K∗(k)ℓ+(q1)ℓ− decay is governed byb → sℓ+ℓ− flavour

changing neutral current transition. The lowest order Feynman diagrams are box diagrams and

γ andZ penguin diagrams. The lowest order Feynman diagrams are shown in Fig. 2.1. The

most general effective short distance effective Hamiltonian forb → sℓ+ℓ− transition can be

written as [60, 61, 62],

Heff = −
GF√

2
VtbV

∗
ts

10∑

i=1

[
Ci(µ) Oi(µ) +C′i (µ) O′i (µ)

]
(2.1)

q q

b st,c,u

W −

γ , Z

l +

l −

q q

b st,c,u

W +W − ν

l − l +

Figure 2.1: Some lowest order Feynman diagrams forb→ sl+l− transition.

The primed operators are the one that arise in various new physics models, but are highly

suppressed in the standard model. The un-primed operatorsOi<6 also vanish in the standard

model. In standard model the three operators that appear in the short distance Hamiltonian are,

O7 = mb(s̄σµνPRb)Fµν (2.2)

O9 = (s̄γµPLb)(ℓ̄γµℓ) (2.3)

O10 = (s̄γµPLb)(ℓ̄γµγ5ℓ) (2.4)

where,PL,R =
(1∓γ5)

2 andmb = mb(µ) is the running quark mass evaluated in theMS scheme.

The Wilson coefficients corresponding to these operators are denoted byC7,C9 andC10 respec-

tively. Before we write down the Hamiltonian, few comments are in order regarding the Wilson

coefficients. As mentioned in the previous chapter, the Wilson coefficients are calculated in the
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perturbation theory up to desired order in the strong coupling constantαs(µW) at the matching

scaleµW = mW. The perturbation expansion reads as,

Ci(µW) = C(0)
i (µW) +

αs

4π
C(1)

i (µW) +
α2

s

16π2
C(2)

i (µW) + O(α3
s). (2.5)

Using the normalization group equation, the coefficients are evolved to a scaleµ = mb =

4.8GeV. For a leading-logarithmic (LL) result, one has to retain only the lowest order terms

C(0)
i (µW), and for next-to-leading-logarithmic result up toC(1)

i (µW) is to be kept. In this work we

mention next-to- next-to-leading-logarithmic (NNLL) results that are calculated in Refs. [63,

64, 65, 66, 67]. The NNLL calculations require matching at two-loop. In the renormaliza-

tion group, the two-loop accuracy require anomalous dimension matrix up to three-loop ac-

curacy [68, 69, 70]. The 10×10 anomalous dimension matrix mixes different operators. For

example, theO9 operator mix withO1...6. Due to such mixing it is found, that different Wil-

son coefficients always appear in certain combinations. The Wilson coefficientsC7,9 are thus

replaced by effective Wilson coefficientsCeff
7,9. These are defined below,

Ceff
7 =

4π
αs

C7 −
1
3
− 4

9
C4 −

20
3

C5 −
80
9

C6

Ceff
9 =

4π
αs

C9 + Y(q2),

where the functionY(q2) is given by [60, 71, 72, 73]

Y(q2) = h(q2,mc)

(
4
3

C1 +C2 + 6C3 + 60C5

)

−1
2

h(q2,mb)

(
7C3 +

4
3

C4 + 76C5 +
64
3

C6

)

−1
2

h(q2, 0)

(
C3 +

4
3

C4 + 16C5 +
64
3

C6

)

+
4
3

C3 +
64
9

C5 +
64
27

C6.
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The functionh(q2,mq) reads as:

h(q2,mq) = −
4
9

(
ln

m2
q

µ2
− 2

3
− y

)
− 4

9
(2+ y)

√
|y− 1|

×
[
Θ(1− y)

(
ln

1+
√

1− y
√

y
− i

π

2

)

+Θ(y− 1)arctan
1

√
y− 1

]
,

with y defined asy = 4m2
q/q

2, and we have neglected the small weak phase. The standard model

values of the Wilson coefficients used in this work are calculated at the next-to-next-to-leading

logarithmic (NNLL) accuracy [63] and are given by,

Ceff
7 = −0.304, Ceff

9 = 4.211+ Y(q2), C10 = −4.103.

The effective short distance Hamiltonian forb→ sℓ+ℓ− transition is well understood and given

by: [62, 71, 74, 75]

Heff =
GFα√

2π
VtbV

∗
ts

[
Ceff

9 (s̄γµPLb)ℓ̄γµℓ +C10(s̄γµPLb)ℓ̄γµγ5ℓ

−
2Ceff

7

q2
s̄iσµνq

ν(mbPR +msPL)bℓ̄γµℓ
]
, (2.6)

with qν = q1ν + q2ν, whereq1ν andq2ν are momentum of the leptons andq2 is the dilepton

invariant mass squared.

2.2 Parametrization of Hadronic Matrix elements.

The decay under consideration occurs in two steps. First theB meson decays toK∗ meson and

lepton pairs, and subsequentlyK∗ decays toKπ resonantly. The amplitude ofB → K∗(k)(→

K(k1)π(k2))ℓ+(q1)ℓ−(q2) decay is written as,

M =
GFα√

2π
VtbV

∗
ts

{[
Ceff

9 〈Kπ|s̄γµPLb|B̄〉(l̄γµl) +C10〈Kπ|s̄γµPLb|B̄〉(l̄γµγ5l)
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−
2Ceff

7 mb

q2
〈Kπ|s̄iσµνq

νPRb|B̄〉(l̄γµl)
}]
. (2.7)

Throughout the analysis to follow we will use the following notations,

q = q1 + q2, K = k1 − k2, Q = q1 − q2, k = k1 + k2.

The B to Kπ hadronic matrix elements of the local quark bilinear operators s̄iσµνqνmbPRb

and s̄γµPLb are calculated by first calculating the hadronic matrix elements for theB → K∗

transition and then considering the subsequent decay ofK∗ to Kπ. TheB→ K∗ hadronic matrix

elements of the local quark bilinear operators ¯sγµPLb and s̄iσµνqνmbPRb can be parametrized

in terms of sixq2-dependent QCD form factorsV(q2),A1,2(q2),T1,2,3(q2) as,

〈
K̄∗(k) s̄γµ(1− γ5)b B̄(p)

〉
= −iǫµ(mB +mK∗)A1(q

2) + pµ(ǫ
∗.q)

2A2(q2)
mB +mK∗

+iǫµνρσǫ
∗νpρkσ

2V(q2)
mB +mK∗

(2.8)
〈
K̄∗(k) s̄σµνq

ν(1+ γ5)b B̄(p)
〉
= iǫµνρσǫ

∗νpρkσ2T1(q
2) + T2(q

2)[ǫ∗µ(m
2
B −m2

K∗) − 2 (ǫ∗.q)pµ]

−(ǫ∗.q) q2 2T3(q2)

m2
B −m2

K∗
pµ , (2.9)

where,qν = pν − kν. We have assumed that the lepton mass is zero. We have droppedthe

terms proportional toqµ since the termsqµℓ̄γµγ5ℓ andqµℓ̄γµℓ do not contribute in the limit of

vanishing lepton mass. TheB → Kπ hadronic matrix elements can be calculated from the

B→ K∗ hadronic matrix defined above. TheK∗ → Kπ effective HamiltonianH can be written

as

H = gK∗Kπ(k1 − k2).ǫ
∗

where,gK∗Kπ is the coupling ofK∗ to Kπ andǫ∗ is the polarization of theK∗. Since theK∗

decays toKπ resonantly, we assume narrow-width approximation in the propagator. Denoting
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theK∗ width asΓK∗ , in the limit mK∗ >> ΓK∗ we can write the propagator as,

1

(k2 −mK∗)2 +m2
K∗Γ

2
K∗
−→ π

mK∗ΓK∗
δ(k2 −m2

K∗)

The widthΓK∗ can be written as,

ΓK∗ =
gK∗Kπ

48π
mK∗β

3

wheregK∗Kπ is the coupling ofK∗ to Kπ and,

β =
1

mK∗

[
m4

K∗ +m4
K +m4

π − 2(m2
K∗m

2
K +m2

Km2
π +m2

K∗m
2
π)
]1/2

We can write theB→ K∗ transition hadronic matrix elements as,

〈
K̄∗ Jµ B̄

〉
= ǫ∗νAµν.

whereAµν contains theB → K∗ form factors. In terms ofAµν the B → Kπ hadronic matrix

elements can be written as,

〈
K̄π Jµ B̄

〉
= − 48π2

β3mK∗
δ(k2 −m2

K∗)
[
Kν −

m2
K −m2

π

k2
kν

]
Aµν (2.10)

The B → K∗ℓ+ℓ− decay has been studied by various authors. For example, in Refs. [76] the

mode have been studied using light-cone hadron distribution amplitudes [78, 79, 80, 81, 82,

83] combined with QCD sum rules on the light cone [84, 85]. In Refs. [86] the mode was

studied using naive factorization and QCD sum rules on the light cone. In in Refs. [73, 87,

88] it has been studied in the heavy quark limit using QCD factorization[89, 90, 91]. Soft-

collinear effective theory [92, 93, 94, 95, 96] that is valid for smallq2 (large recoil ofK∗) has

been used to study the decay in Ref. [97]. In Ref.[98] the mode has been studied in a model

independent approach in the low recoil using an operator product expansion in 1/Q, where

Q = (mb,
√

q2). In all these methods of parametrization of the hadronic matrix elements, the

20



theoretical uncertainties amounts to about 30% of the branching ratio.

2.3 Form factors at Large Recoil Limit of K∗.

The six form factorsV(q2), A1,2(q2) andT1,2,3(q2) parametrizing theB → K∗ hadronic matrix

are non-perturbative quantities and therefore are not reliably calculated. At present the QCD

sum rule on the light-cone technique [84] offers the most precise values of these form factors

and it has been applied to theB→ K∗ transition in Ref. [76, 77]. Though the lattice calculations

are also very promising, all the six form factors are not calculated as yet. Therefore in this work

we do not rely on the numerical values of the form factors to extract new physics signals. We

observe that the hadronic uncertainties coming from poor estimate of form factors and non-

factorizable corrections cancel in ratios of form factors.These ratios can be taken as reliable

theoretical inputs in the searches of clean signal of new physics. In the lowq2 region of the

B→ K∗ transition, the light meson carries a very large energyEK∗. The initialB meson carries

the heavy quarkb and since the momentum transferq2 to the lepton in theb → s transition

is small the heavy quark symmetry [58, 59, 99] is applicable in this limit. The heavy quark

symmetry is implemented in the Heavy Quark Effective Theory (HQET) [58, 59] Lagrangian.

In HQET it is assumed that inside theB meson the mass of theb quarkmb → ∞ and all the

light degrees of freedom interact with it via soft exchangesof the the orderΛQCD. If the hard

gluon exchanges are neglected then the six form factors can be expressed in terms of only two

universal functions known as Isgur-Wise functions [58, 59], also known as soft form factors

ξ⊥(q2) andξ‖(q2). These two soft form factors correspond to the transverse and longitudinal

polarization states of theK∗ meson respectively. For our future numerical analysis, we chose

the following parametrization [73] of ξ⊥(q2) andξ‖(q2) at large recoil limit,

ξ⊥(q
2) = ξ⊥(0)

(
1

1− q2/m2
B

)2

ξ‖(q
2) = ξ‖(0)

(
1

1− q2/m2
B

)3
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whereξ⊥(0) = 0.266±0.032 andξ‖(0) = 0.118±0.008 [71]. The expressions ofV(q2), A1,2(q2)

andT1,2,3(q2) in terms ofξ⊥(q2) andξ‖(q2) lead to various symmetry relations between the form

factors [100]. Neglecting the corrections to be discussed later, the expressions ofV(q2), A1,2(q2)

andT1,2,3(q2) read as,

A1(q
2) =

2EK∗

mB +mK∗
ξ⊥(EK∗) (2.11)

A2(q
2) =

mB

mB −mK∗
[ξ⊥(EK∗) − ξ‖(EK∗)] (2.12)

V(q2) =
mB +mK∗

mB
ξ⊥(EK∗) (2.13)

T1(q
2) = ξ⊥(EK∗) (2.14)

T2(q
2) =

2EK∗

mB
ξ⊥(EK∗) (2.15)

T3(q
2) = ξ⊥(EK∗) − ξ‖(EK∗), (2.16)

where,EK∗ is the energy of theK∗ meson,

EK∗ =
m2

B +m2
K∗ − q2

2mB
. (2.17)

Large recoil means whenEK∗ ∼ O(mb). Though the form factorsA1(q2),V(q2) andT1(q2),T2(q2)

dependent on the soft form factors which however cancel in the following ratios,

V(q2)
A1(q2)

=
(mB +mK∗)2

2EK∗mB
, (2.18)

T2(q2)
T1(q2)

=
2EK∗

mB
. (2.19)

The form factorsV(q2), A1,2(q2) and T1,2,3(q2) receive perturbative [100] corrections in the

powers of strong couplingαs. In Ref. [101] the perturbative corrections were calculated. The

form factor V(q2) do not receive any perturbative corrections and the corrections to A1(q2)

vanishes atαs. Hence the left hand side of the Eq. (2.18) remains unchangedat leading order in

αs. The same is true for the ratioT2(q2)/T1(q2). The corrections at orderαs to the form factors
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T1(q2) andT2(q2) are [101],

T1(q
2) = ξ⊥

(
1+

αsCF

4π

[
ln

m2
b

µ2
− L

])
+
αsCF

4π
∆T1

T2(q
2) =

2EK∗

mB
ξ⊥

(
1+

αsCF

4π

[
ln

m2
b

µ2
− L

])
+
αsCF

4π
∆T2

where,

L = − 2EK∗

mB − 2EK∗
ln

2EK∗

mB
, and

∆T1

∆T2
=

mB

2EK∗

Substituting these in to Eq. (2.19) it can be seen that the ratio T2(q2)/T1(q2) is unchanged at

leading order inαs. It is shown in Refs. [101, 102] that,at leading order inΛQCD/mb, the form

factor ratios V(q2)/A1(q2) and T2(q2)/T1(q2) are independent of perturbative corrections to all

orders inαs. For theV(q2)/A1(q2) ratio, this can be understood more physically by considering

the helicity amplitudesH±,

H±1 ∝
(
V ∓ (mB +mK∗)2

2mBEK∗
A1

)
(2.20)

In the limit mB → ∞, EK∗ → ∞ andms→ 0, thes-quark is created fromb decay in the−1/2

helicity state. Hence theK∗ helicity states can only be -1 or 0, but not+1. SoH+ = 0 to all

orders in perturbation theory. Henceat leading order inΛQCD/mb, the V(q2)/A1(q2) ratio is

free from perturbative correction to all orders inαs. For theT2(q2)/T1(q2) ratio, in addition

to the perturbative corrections, at leading order inΛQCD/mb a significant part of the hadronic

uncertainties come from the “non-factorizable” [73] corrections. The “non-factorizable” cor-

rections do not correspond to the form factors. These corrections arise when virtual photons

are connected to the purely hadronic operatorsO1 to O6 and chromomagnetic-dipole operator

O8. These are calculated in Ref. [73] at leading order inΛQCD/mb for B→ K∗ transitions, and

can be incorporated by the following transformations [103],

Ceff
7 Ti → Ti ,

Ceff
9 → C9,
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where the Wilson Coefficients are taken at the next-to-next-to leading order, and theTi are

defined as,

T1 = T⊥, T2 =
2EK∗

mB
T⊥, T3 = T⊥ + T‖ (2.21)

The complete expressions ofT⊥,‖ are given in Ref. [73]. The important thing to observe is that

the form factorsV(q2), A1(q2) are unaffected by the “non-factorizable” corrections and hence

at leading order inΛQCD/mb, the ratio Eq. (2.18) still remains unaffected by “non-factorizable”

corrections to all orders inαs. Due to “non-factorizable” corrections the tensor form factors

T1(q2) andT2(q2) are replaced byT1 andT2 respectively However their ratio is still free from

perturbative corrections to all orders inαs,

T1(q2)
T2(q2)

=
T1(q2)
T2(q2)

=
2EK∗

mB

In our future discussions on the searches of new physics we will take the ratiosV(q2)/A1(q2)

andT1(q2)/T2(q2) as reliable theoretical inputs.

2.4 Form factor at Low Recoil Limit of K∗.

In the low recoil limit of theK∗ meson, the perturbative and the “non-factorizable” corrections

are negligible. A model independent description for the case of low recoil energy of theK∗ in

B→ K∗ℓ+ℓ− decay was put forward by Grinstein and Pirjol [98] in the modified Heavy Quark

Effective Theory framework. In this approach [98], “near the zero pointq2 ≈ (mB − mK∗)2,

the long distance contributions toB→ K∗ℓ+ℓ− can be computed as short distance effect using

simultaneous heavy quark and operator product expansion in1/Q with Q ≈ {mb,
√

q2}.” In

view of this the sub-leadingmK∗/mB terms are neglected and non-factorizable corrections are

ignored. An elaborate study of the predictions forB→ K∗ℓ+ℓ− was undertaken in Ref. [104]

where the next-to-leading order corrections from the charmquark massmc and strong coupling

atO(mc/Q2, αs) were included. The result is a relation between theB→ K∗ℓ+ℓ− form factors

that reduces the number of independent hadronic form factors to only three, i.e.,V(q2),A1(q2)
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andA2(q2) can be expressed in terms of the form factorsT1(q2),T2(q2),T3(q2) as:

T1(q
2) = κV(q2) (2.22)

T2(q
2) = κA1(q

2) (2.23)

T3(q
2) = κA2(q

2)
m2

B

q2
(2.24)

where, the expression ofκ is given in [104]. From the above relations we get,

T1(q2)
T2(q2)

=
V(q2)
A1(q2)

(2.25)

These relations will be very significant in our future discussions. Finally we give theq2 depen-

dance of the six form factorsV(q2),A1,2(q2),T1,2,3(q2) [105, 106] that can be extrapolated from

their region of validity at large recoil to low recoil,

V(q2) =
r1

1− q2/m2
R

+
r2

1− q2/m2
fit

A1(q
2) =

r2

1− q2/m2
fit

A2(q
2) =

r1

1− q2/m2
fit

+
r2

(1− q2/m2
fit)

2

T1(q
2) =

r1

1− q2/m2
R

+
r2

1− q2/m2
fit

(2.26)

T2(q
2) =

r2

1− q2/m2
fit

T3(q
2) =

m2
B −mK∗

q2
(T̃3(q

2) − T2(q
2))

whereT̃3 has same parametrization asA1. The parametersr1, r2,m2
R,m

2
fit for each of the above

form factors have been taken from [105, 106].

25



26



Chapter 3

Angular Distribution and Observables.

The B → K∗ℓ+ℓ− decay is regarded as a very important mode for searches of newphysics as

it provides with a multitude of related observables. Several different experiments Belle [107],

Babar [108, 109], CDF [110, 111, 112] and LHCb [113] have studied this mode. These experi-

ments have provided valuable data as a function of the dilepton invariant mass squared and the

various angles describing the distribution. Each of these four experiments have measured the

partial branching fraction in chosenq2 bins by preforming a complete angular integration. By

studying the angular distribution of the direction of the lepton in an appropriately chosen frame,

these experiments have also measured the well known forward-backward asymmetryAFB and

the longitudinal polarization fractionFL in terms of integrated dilepton invariant mass squared

regions ofq2. The CDF and LHCb collaborations have in addition performedan angular study

of the azimuthal angle defined as the angle between the planesformed by the leptons and the

decay products ofK∗ i.e. K, π. Recently the LHCb [114] has also measured the zero crossing

point of the forward-backward asymmetry which is consistent with the standard model expec-

tation. Future experimental studies by LHCb and Belle II will enable the study of this mode

with significantly larger statistics making possible the analysis with multi-angular distributions

and the measurement of all the observables. The decay is bestdescribed in the rest frame of

B in terms of three angles and the dilepton invariant mass squared. In this chapter we have

described the angular distribution ofB → K∗ℓ+ℓ− decay and have shown how the multitude
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of observables [71, 74, 115] can be extracted from the angular distribution. In the limit of

no CP violation and zero lepton mass, the observable extracted from the angular analysis can

be expressed in terms of six real transversity amplitudes that correspond to the three states of

polarizations ofK∗ and the left or right chirality of the leptonic current. The leptons are usu-

ally muons which can be detected easily at the LHC. The modeB → K∗e+e− is discussed in

Ref. [116].

3.1 Transversity amplitudes.

To introduce the transversity amplitudes inB → K∗ℓ+ℓ− decay, we first consider the decay

B→ K∗V∗ where theV∗ is a resonant vector meson. Denoting the polarization vector of K∗ and

V∗ asǫµK∗ andǫµV theB→ K∗V∗ amplitudes can be written as [117, 118],

M(λ,λ′)(B→ K∗V∗) = ǫ
(λ)∗µ
K∗ Mµν ǫ

(λ′)∗ν
V∗ (3.1)

whereλ, λ′ = +,−, 0 are the three helicity states. If we consider that theB meson is at rest and

theK∗ andV∗ decays back to back then the polarization states of theK∗ andV∗ are [117, 118],

ǫ
(±)∗µ
K∗ = (0, 1,±i, 0)/

√
2 (3.2)

ǫ
(0)∗µ
K∗ = (kz, 0, 0, k0)/mK∗ (3.3)

ǫ
(±)∗µ
V∗ = (0, 1,±i, 0)/

√
2 (3.4)

ǫ
(0)∗µ
V∗ = (−qz, 0, 0,−q0)/

√
q2 (3.5)

where,kµ = (k0, 0, kz), qµ = (q0, 0, qz) andkz = −qz. The orthonormality and completeness

relations can be written [117, 118] as,

ǫ
(λ)∗µ
V∗ ǫ

(λ′)∗
V∗µ = gλλ′ (3.6)

∑

λλ′

ǫ
(λ)∗µ
V∗ ǫ

(λ′)∗ν
V∗ gλλ′ = gµν (3.7)
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ǫ
(λ)∗µ
K∗ ǫ

(λ′)∗
K∗µ = −δλλ′ (3.8)

∑

λλ′

ǫ
(λ)∗µ
K∗ ǫ

(λ′)∗ν
K∗ δλλ′ = −gµν +

kµkν

mK∗
(3.9)

Considering the subsequent decay ofV∗ to ℓ+ℓ− pair, we can further write the amplitudes as,

M(λ,λ′)(B→ K∗V∗(→ ℓ+ℓ−)) = ǫ
(λ)∗µ
K∗ ML

µν

∑

λ′,η

ǫ
(λ′)∗ν
V∗ ǫ

(η)∗α
V∗ gλ′η[ℓ̄γαPLℓ]

+ ǫ
(λ)∗µ
K∗ MR

µν

∑

λ′,η

ǫ
(λ′)∗ν
V∗ ǫ

(η)∗α
V∗ gλ′η[ℓ̄γαPRℓ], (3.10)

where,η = +,−, 0. From Eq. (3.10) we can introduce the six helicity amplitudes by taking

λ′ = λ as,

HL
λ = −ǫ

(λ)∗µ
K∗ ǫ

(λ)∗ν
V∗ ML

µν (3.11)

HR
λ = −ǫ

(λ)∗µ
K∗ ǫ

(λ)∗ν
V∗ MR

µν (3.12)

The six transversity amplitude can be constructed from Eq. (3.11) and Eq. (3.12) as,

AL,R
⊥,‖ =

1
√

2
(HL,R
+ ∓ HL,R

− ) (3.13)

AL,R
0 = HL,R

0 . (3.14)

Considering aB meson at rest decaying back-to-back in toK∗ and aℓ+ℓ− pair, the above formu-

lation can be generalized to write the explicit expressionsof six transversity amplitudes as,

AL,R
⊥ = N

√
2
√
λ(m2

B,m
2
K∗ , q

2)
[ [

(Ceff
9 ∓Ceff

10)
] V(q2)

mB +mK∗
+

2mb

q2
Ceff

7 T1(q
2)
]
, (3.15)

AL,R
‖ = −N

√
2(m2

B −m2
K∗)

[ [
(Ceff

9 ∓Ceff
10)

] A1(q2)
mB −mK∗

+
2mb

q2
Ceff

7 T2(q
2)
]
, (3.16)

AL,R
0 = − N

2mK∗
√

q2

( [
(Ceff

9 ∓Ceff
10)

]
×

[
(m2

B −m2
K∗ − q2)(mB +mK∗)A1(q

2)

− λ(m2
B,m

2
K∗ , q

2)
A2(q2)

mB +mK∗

]
+ 2mbC

eff
7

[
(m2

B + 3m2
K∗ − q2)T2(q

2)

−
λ(m2

B,m
2
K∗ , q

2)

m2
B −m2

K∗
T3(q

2)
])

(3.17)
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where,⊥, ‖, 0 are the helicity ofK∗ andL,R are the chirality of lepton and the normalization

factorN is given

N = VtbV
∗
ts

[
G2

Fα
2

3 · 210π5m3
B

q2
√
λ(m2

B,m
2
K∗ , q

2)

]1/2

, (3.18)

with λ(m2
B,m

2
K∗ , q

2) = m4
B + m4

K∗ + q4 − 2(m2
Bm2

K∗ + m2
K∗q

2 + m2
Bq2). We note that the helicity

amplitudesAL,R
⊥,‖,0 are functions ofq2, for simplicity we have suppressed the explicit dependence

on q2. In these expressions we have neglected the lepton mass and also the tinyCP violation

[74] that arise in the standard model. Hence helicity amplitudesAL,R
⊥,‖,0 are all real.

3.2 Angular Distributions.

TheB→ K∗ℓ+ℓ− angular analysis is studied in the helicty frame shown in Fig. 3.1. In this frame

theB meson is at rest, and theK∗ and theℓ+ℓ− decay back-to-back. The momentum of theK∗

is taken along the positivez-axis. In its rest frame theK∗ decays back-to-back into aK and a

π. The angle between theK and thez axis isθK where asθℓ is the angle betweenℓ− and the

+z axis. The decay can be completely described by four independent kinematic variables: the

lepton pair invariant mass squaredq2 = (q1+q2)2, the angleφ between the decay planes formed

by theℓ+ℓ− andKπ, and the anglesθK andθℓ. In this frame the differential decay distribution

can be written as [74],

ℓ−

ℓ+

K

π

B

K∗ θKθℓ
φ

Figure 3.1: The helicity frame forB→ K∗(k)(→ K(k1)π(k2))ℓ−(q1)ℓ+(q2) decay.

d4Γ(B→ K∗ℓ+ℓ−)
dq2 dcosθℓ dcosθK dφ

= I (q2, θℓ, θK, φ) (3.19)
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where, we can write,

I (q2, θℓ, θK, φ) =
9

32π

[
I s
1 sin2 θK + I c

1 cos2 θK + (I s
2 sin2 θK + I c

2 cos2 θK) cos 2θℓ +

+ I3 sin2 θK sin2 θℓ cos 2φ + I4 sin 2θK sin 2θℓ cosφ + I5 sin 2θK sinθℓ cosφ +

+ I s
6 sin2 θK cosθℓ + I7 sin 2θK sinθℓ sinφ + I8 sin 2θK sin 2θℓ sinφ

+ I9 sin2 θK sin2 θℓ sin 2φ
]
. (3.20)

The angular coefficients I are function ofq2. For notational simplicity we will suppress the

q2 throughout. The explicit expressions ofI ’s in terms of the transversity amplitudes can be

written as,

I s
1 =

3
4

[
|AL
⊥|2 + |AL

‖ |2 + (L→ R)
]
,

I c
1 =

[
|AL

0|2 + (L→ R)
]
,

I s
2 =

1
4

[
|AL
⊥|2 + |AL

‖ |2 + (L→ R)
]
,

I c
2 = −

[
|AL

0 |2 + (L→ R)
]
,

I3 =
1
2

[
|AL
⊥|2 − |AL

‖ |2 + (L→ R)
]
,

I4 =
1
√

2

[
Re(AL

0AL
‖
∗
) + (L→ R)

]
,

I5 =
√

2
[
Re(AL

0AL
⊥
∗
) − (L→ R)

]
(3.21)

I s
6 = 2

[
Re(AL

‖AL
⊥
∗
) − (L→ R)

]
,

I7 =
√

2
[
Im(AL

0AL
‖
∗
) − (L→ R)

]
,

I8 =
1
√

2

[
Im(AL

0AL
⊥
∗
) + (L→ R)

]
,

I9 =
[
Im(AL

‖
∗AL
⊥) + (L→ R)

]
.

In the absence ofCP violation, I7,8,9 = 0 and the conjugate decay modeB → K∗(k)(→

K(k1)π(k2))ℓ−(q1)ℓ+(q2) has identical distribution as above except for the fact that I5,6,8,9 →

−I5,6,8,9 which results from the switch in sign in the amplitudeA⊥. Substituting the expressions
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Eqs. (3.21) in Eq. (3.20) we get,

I (q2, θℓ, θK, φ) =
9

16π

[(|AL
⊥|2 + |AR

⊥|2 + |AL
‖ |2 + |AR

‖ |2)
4

sin2 θK(1+ cos2 θℓ)

+ (|AL
0|2 + |AR

0 |2) cos2 θK sin2 θℓ

+
(|AL

⊥|2 + |AR
⊥|2 − |AL

‖ |2 − |AR
‖ |2)

4
cos 2φ sin2 θK sin2 θℓ

+ Re(AL
‖AL
⊥
∗ −AR

‖AR
⊥
∗
) cosθℓ sin2 θK

+
Re(AL

0AL
⊥
∗ −AR

0AR
⊥
∗)

√
2

cosφ sinθℓ sin(2θK)

+
Re(AL

0AL
‖
∗
+AR

0AR
‖
∗)

2
√

2
cosφ sin(2θℓ) sin(2θK)

]
. (3.22)

Integrating over cosθK, cosθℓ, andφ results in the differential decay rate with respect to the

invariant lepton mass, which is given by the sum of the modulus squared of all the transversity

amplitudes at the same invariant lepton mass:

dΓ
dq2
=

∑

λ=0,‖,⊥
(|AL

λ |2 + |AR
λ |2) (3.23)

From Eq. (3.22) we see that from a complete study of the angular distribution will allow us to

measure six observables. Among these are the three helicityfractions which are defined as,

FL =
|AL

0|2 + |AR
0 |2

Γf
, (3.24)

F‖ =
|AL
‖ |2 + |AR

‖ |2

Γf
, (3.25)

F⊥ =
|AL
⊥|2 + |AR

⊥|2
Γf

, (3.26)

where,Γf ≡
∑
λ(|AL

λ
|2 + |AR

λ
|2). The helicity fractions sums up to unity,FL + F‖ + F⊥ = 1. The

well known forward-backward asymmetryAFB is defined as,

AFB =

[ ∫ 1

0
−

∫ 0

−1

]
dcosθℓ

d2(Γ + Γ̄)
dq2dcosθℓ∫ 1

−1
dcosθℓ

d2(Γ + Γ̄)
dq2dcosθℓ

, (3.27)
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It can be expressed in terms of the transversity amplitudes as,

AFB =
3
2

Re
[
AL
‖AL
⊥ −AR

‖AR
⊥
]

Γf
. (3.28)

The observables can be extracted from a fit to angular distribution. A complete angular analysis

requires much larger data set than is currently analyzed, hence angular distributions in terms of

only one angular variable have been studied. The angular distribution as a function ofq2 and

cosθℓ with φ and cosθK integrated out is given by:

d2Γ

dq2dcosθℓ
= Γ

[
AFB cosθℓ +

3
8

(1− FL) (1+ cos2 θℓ) +
3
4

FL(1− cos2 θℓ)
]
. (3.29)

Angular analysis in terms of cosθℓ enables the measurement of bothFL the longitudinal helicity

fraction and the forward–backward asymmetryAFB. The other helicity fractionsF⊥ or F‖ can

be measured from the angular distributions as well but it is believed that one need to perform

a full angular analysis. It is, however, easy to see that a combination of FL and F⊥ can be

measured if the angular distribution in terms ofφ is studied. The angular distribution inφ is

given by:
d2Γ

dq2dφ
=
Γ

2π

[
1− 1− FL − 2F⊥

2
cos 2φ + I9 sin 2φ

]
. (3.30)

The distribution inφ allows us to measure 1− FL − 2F⊥. If FL is measured independently one

can obtainF⊥. The distribution also allows us to measureI9, which is immeasurably small in

the standard model [115], and assumed to be zero in our study. Recently the angular analysis

in φ has been studied [112, 114] by CDF and LHCb collaborations. In the next section we

will show that 1− FL − 2F⊥ is also small in the standard model as a consequence of heavy

quark effective theory. We will conclude in subsequent section that the angular distribution

will be almost constant forq2 ≈ 0, with small variation in cosφ at largeq2. There is yet

another technique to measureF⊥ which involves studying angular distributions in terms of only

one angular variable. However, this approach requires independent analysis in the transversity

frame defined withJ/ψ at rest. In this frame the lepton makes an angleθtr with thez-axis. The
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expression for the differential decay rate as a function of cosθtr is given by:

dΓ
dq2d cosθtr

= Γ
[3
8

(1− F⊥)(1+ cos2 θtr) +
3
4

F⊥(1− cos2 θtr)
]

(3.31)

Clearly,F⊥ the perpendicular polarization fraction can be measured from a fit to cosθtr in the

transversity frame. The errors inFL andF⊥ measured in this fashion will be correlated and the

correlation will have to be taken care of. Two other angular observablesA4 andA5 are defined

as,

0 1 2 3 4 5 6 7-1.0

-0.5

0.0

0.5

1.0

q2

Figure 3.2: Using heavy-to-light form factor at large recoil (see Sec. (2.3)) the normalized
angular asymmetriesAFB (solid line in red),A5 (long dashed line in purple) andAFB +

√
2A5

(short dashed line red) are plotted as a function ofq2. The higher order corrections to the form
factors are neglected and all the inputs are taken at their central values. This figure is just to
indicate the zero crossing behavior of the angular observables.

A4 =

∫
DLR

dφ
∫

D
dcosθK

∫
D

dcosθℓ
d4(Γ−Γ̄)
dq2d3Ω

∫ 2π

0
dφ

∫ 1

−1
dcosθK

∫ 1

−1
dcosθℓ

d4(Γ+Γ̄)
dq2d3Ω

(3.32)

A5 =

∫ 1

−1
dcosθℓ

∫
DLR

dφ
∫

D
dcosθK

d4(Γ+Γ̄)
dq2d3Ω

∫ 1

−1
dcosθℓ

∫ 2π

0
dφ

∫ 1

−1
dcosθK

d4(Γ+Γ̄)
dq2d3Ω

(3.33)
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where,
∫

D
≡

∫ 1

0
−

∫ 0

−1
and

∫
DLR
≡

∫ 3π/2

π/2
−

∫ π/2

−π/2. In terms of the transversity amplitudesA4 andA5

can be written as,

A4 =

√
2
π

Re(AL
0AL∗
‖ ) + Re(AR

0AR∗
‖ )

Γf
, (3.34)

A5 =
3

2
√

2

Re(AL
0AL
⊥ − AR

0AR
⊥)

Γf
(3.35)

The importance of the zero crossing pointAFB [86] which is sensitive to new physics is very

well known. We notice that the observablesA5 andAFB +
√

2A5 also has similar zero crossing

behavior. In Fig.3.2 we have plotted the variation ofAFB, A5 andAFB +
√

2A5 as a function of

q2. We have taken heavy to light form factors at large recoil. All the inputs are taken at their

central values and higher order corrections to the form factors are neglected.
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Chapter 4

Model Independent Extraction of New

Physics

It is well known that the new physics can either be discoveredby direct production of new

particles at high energies or by indirect searches at high luminosity facilities where it can con-

tribute virtually to loop processes. The most well known example of the latter kind is the muon

magnetic moment. Unfortunately, even though muon is a lepton, hadronic contributions have

to be estimated and turn out to be the limiting factor in the search for new physics. Indirect

searches for new physics often involve precision measurement of a single quantity as in the

case of muon magnetic moment. The single measurement is compared to a theoretical estimate

that needs to be accurately calculated. There are however, certain decays which involve mea-

surement of several related observables. The most well known example is theB → K∗ℓ+ℓ−

decay. The decay is described in terms of six transversity amplitudes that enable us to con-

struct multitude of observables to be extracted from the angular distribution. In addition to the

branching fractionsΓ f , there are six observables mentioned in the previous chapter: the longi-

tudinal helicity fractionFL, perpendicular helicity fractionF⊥, parallel helicity fractionF‖, the

forward-backward helicity fractionAFB and angular asymmetriesA4 andA5. The three helicity

fractions are constrained byFL + F‖ + F⊥ = 1 resulting in six independent observables. Each

of these observables can be written in terms of the six transversity amplitudesAL,R
0,‖,⊥. which are
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written in Eq. (3.15) to (3.17) in terms of Wilson coefficients and hadronic form factors. Due

to poor knowledge of form factors, the transversity amplitudes and the observables constructed

therefrom are polluted by hadronic uncertainties.

In the search for new physics, it is therefore crucial to effectively separate the effect of

new physics from hadronic uncertainties that can contribute to the decay. This has brought into

focus the need for theoretically cleaner observables, i.e.observables that are relatively free from

hadronic uncertainties. Construction of such observableshas been attempted by various authors.

For example the observableA(2)
T was constructed in Ref. [103] and A(3,4,5)

T was constructed in

Ref.[88, 119]. At low-q2, the observablesA(re, im)
T [120] show new physics sensitivity and the

high-q2 analog of the same areH(1,2,3,4,5)
T [104]. These observables are constructed in such a

way that the dependance of soft form factors cancel in ratios. However such cancellations hold

only at leading order in perturbation theory. In the Refs. [121, 122] we have shown that the

multitude of related observables obtained via an angular analysis inB → K∗ℓ+ℓ− can provide

many“clean tests” of the new physics to all orders inαs. The hallmark of these “tests” is that

several of them are independent of the universal form factorsξ‖ andξ⊥ in heavy quark effective

theory. Indeed, in the large recoil region considered in Refs. [121, 122], these relations are even

more interesting as they are unaffected by corrections to all orders inαs. We will refer to such

relations that are independent of universal form factors and are unaffected by corrections to all

orders inαs as “clean relations.”A variety of relations are derived, including relations between

observables and form factors that are independent of Wilsoncoefficients. Such relations are

inherently clean and important as they enable verification of hadronic estimates. We show

how the form factor ratios can be measured directly from the ratios of helicity amplitudes

measured at the zero crossings of asymmetries without any assumptions what so ever. Another

achievement is the derivation of a relation between observables alone, based entirely on the

assumption that the amplitudes have form given by the standard model, and is independent

of form factors and Wilson coefficients. This relation would provide an unambiguous test of

the standard model relying purely on observables. We also presented a clean expression for

the “effective photon vertex” involving the same operator that alsocontributes to the process
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B → K∗γ. We emphasize that the amplitude forB → K∗γ involves the universal form factor

ξ‖ and is inherently not clean. It is hence some what surprisingthat the same vertex can be

expressed independently of the universal form-factors in heavy quark effective theory in a way

that is valid at order 1/mb to all orders inαs. While C9 andC10 individually depend on form

factors, we find that the expression for the ratioC9/C10 is clean. Based purely on the signs

of the form factors and the fact that the zero crossing of the forward backward asymmetry

has been observed, we convincingly concluded that the signsof the Wilson coefficients are in

agreement with Standard Model. We found that there exist three sets of equivalent solutions

to each of the three Wilson coefficients involving different observables. However, only two of

the sets are independent. It was shown that the allowed parameter space for observables is very

tightly constrained in Standard Model, thereby providing clean signals of New Physics.

4.1 Notataion: Observables in terms of Form Factors.

As discussed in Chapter 2, the treatment of form factors depends largely on the recoil energy of

theK∗ meson or equivalentlyq2. There are two distinct recoil regions where the form factors are

treated differently. In the large recoil region, the next to leading order corrections including the

factorizable and the non-factorizable corrections are parametrically included in the transversity

amplitudes by the replacementsCeff
9 → C9 andCeff

7 Ti → Ti (see Sec. 2.3 ). Even at the leading

order it is impossible to separate the Wilson coefficientCeff
7 from the form factorsTi and they

are lumped together in to a single entity. In the low recoil region, the leading order corrections

to the form factors are the non-perturbative effects up to and including terms suppressed by

ΛQCD/Q, whereQ = {mb,
√

q2} and include next-to-leading order corrections from the charm

quark massmc and the strong coupling atO(m2
c/Q

2, αs). Our motivation therefore is to present

methods to extract new physics signals independently of thehadronic uncertainties. The idea is

to write the transversity amplitudes in their most general form that is valid to all orders inαs and
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encompasses both factorizable and non-factorizable corrections to the form factors [121, 122],

AL,R
⊥ = CL,RF⊥ − G̃⊥ (4.1)

AL,R
‖ = CL,RF‖ − G̃‖ (4.2)

AL,R
0 = CL,RF0 − G̃0 (4.3)

At leading orderCL,R = Ceff
9 ∓C10. The form factorsFλ andG̃λ can be related to the form factors

V(q2), A1,2(q2) andT1,2,3(q2) by comparing the Eqs. (3.15)– (3.17) with the Eqs. (4.1) – (4.3).

Including higher order QCD corrections and “non-factorizable” corrections,Fλ andG̃λ can be

written as [121, 122],

G̃⊥ = −N
√

2λ(m2
B,m

2
K∗ , q

2)
2mb

q2
Ceff

7 T1(q
2) + · · · (4.4)

G̃0 =
Nmb

mK∗
√

q2

[
(m2

B + 3m2
K∗ − q2)Ceff

7 T2(q
2) − λ(m2

B,m
2
K∗ , q

2)
Ceff

7 T3(q2)

m2
B −m2

K∗

]
+ · · · . (4.5)

G̃‖ = N
√

2(m2
B −m2

K∗)
2mb

q2
Ceff

7 T2(q
2) + · · · (4.6)

F⊥ = N
√

2λ(m2
B,m

2
K∗ , q

2)
V(q2)

mB +mK∗
(4.7)

F‖ = −N
√

2(mB +mK∗)A1(q
2) (4.8)

F0 =
−N

2mK∗
√

q2

[
(m2

B −m2
K∗ − q2)(mB +mK∗)A1(q

2) − λ(m2
B,m

2
K∗ , q

2)
A2(q2)

mB +mK∗

]
(4.9)

In the expressions of̃Gλ, the ellipses indicate the higher order QCD corrections as well as the

non-factorizable corrections. At low recoil, the non-factorizable corrections are small and can

be ignored. We can therefore write the form factorsGλ at low recoil as:

G̃λ = Ceff
7 Gλ (4.10)

So at low recoil, the Wilson coefficientCeff
7 can be separated from the form factorGλ. Using

Eqs. (4.1) to (4.3) the observablesFL, F‖, F⊥, AFB, A4 andA5 can be written in terms of the
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Wilson coefficients and from factors as [121, 122],

FLΓf = 2(C2
9 +C2

10)F 2
0 + 2G̃2

0 − 4C9F0G̃0 (4.11)

F‖Γf = 2(C2
9 +C2

10)F 2
‖ + 2G̃2

‖ − 4C9F‖G̃‖ (4.12)

F⊥Γf = 2(C2
9 +C2

10)F 2
⊥ + 2G̃2

⊥ − 4C9F⊥G̃⊥ (4.13)

πA4Γf

2
√

2
= G̃‖G̃0 + (C2

9 +C2
10)F0F‖ −C9(F‖G̃0 + G̃‖F0) (4.14)

√
2A5Γf

3
= C10(F⊥G̃0 + G̃⊥F0) − 2C9C10F0F⊥ (4.15)

AFBΓf

3
= C10(F‖G̃⊥ + F⊥G̃‖) − 2C9C10F‖F⊥ (4.16)

These are the the most general expressions of the observables in terms of form factors and

Wilson coefficients. Our aim is to solve the theoretical parameters in terms of the observables

and minimum number of inputs. Naively, we have nine theoretical parameters, the three Wilson

coefficientsC7, C9 andC10 and the six form factorsF0,F‖,F⊥, G̃0, G̃‖ andG̃⊥ describing the six

observablesΓf , FL, F⊥, A4, A5 andAFB. However at the large recoil region the Wilson coefficient

Ceff
7 can not be distinguished from the form factorsG̃λ. Hence we have only eight independent

theoretical parameters: the two Wilson coefficientsC9 andC10 and six form factorsF0, F‖, F⊥,

G̃0, G̃‖ andG̃⊥. It is obvious that with two theoretical inputs in addition to the observables we

should in principle be able to solve for the remaining six theoretical parameters purely in terms

of these two reliable inputs and observables.

There are three sets of solutions in terms of different combinations of observables. In our

subsequent discussion we derive the first set of solutions. The other two solutions can be

derived in the similar way. We simplify the Eqs. (4.12), (4.13) and (4.16) by introducing new

variables,

r‖ =
G̃‖
F‖
−C9, (4.17)

r⊥ =
G̃⊥
F⊥
−C9, (4.18)
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In terms ofr‖ andr⊥, we can express Eqs. (4.12), (4.13) as,

F‖Γf = 2F 2
‖ (r2
‖ +C2

10) (4.19)

F⊥Γf = 2F 2
⊥(r2
⊥ +C2

10) (4.20)

AFBΓf = 3F⊥F‖C10(r‖ + r⊥). (4.21)

To obtain the solutions of the Wilson coefficients in terms of observables, we rewrite the above

equations as,

r2
‖ +C2

10 =
F‖Γf
2F 2
‖

(4.22)

r2
⊥ +C2

10 =
F⊥Γf
2F 2
⊥

(4.23)

2C10(r‖ + r⊥) =
2
3

AFBΓf

F⊥F‖
. (4.24)

With the help of these equations we can write,

F‖F⊥Γ2
f

4F 2
‖ F 2
⊥
= (r‖r⊥ −C10)

2 +C2
10(r‖ + r⊥)2

= (r‖r⊥ −C10)
2 +

A2
FBΓ

2
f

9F 2
‖ F 2
⊥

hence,

r‖r⊥ −C2
10 = ±

Γf

2F‖F⊥

√

F‖F⊥ −
4A2

FB

9
. (4.25)

Now we can expressC2
10 in terms ofr2

‖ using Eq. (4.22) or in terms ofr2
⊥ using Eq. (4.23) to

re-express 2r‖r⊥ −C2
10 as,

2r‖r⊥ − 2C2
10 = 2r‖r⊥ −

(F‖Γf
2F 2
‖
− r2
‖
)
−

(F⊥Γf
2F 2
⊥
− r2
⊥
)
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=
[
(r‖ + r⊥)

2 −
F‖Γf
2F 2
‖
−

F⊥Γf
2F 2
⊥

]
(4.26)

Equating Eqs. (4.25) and (4.26) we get,

r‖ + r⊥ = ±
[
F‖Γf
2F 2
‖
+

F⊥Γf
2F 2
⊥
±
Γf

2F‖F⊥
Z1

]1/2

=
±

√
Γf√

2F⊥

[
P2

1F‖ + F⊥ ± P1Z1

]1/2
(4.27)

Here we have defined,

Z1 =

√
4F‖F⊥ −

16
9

A2
FB (4.28)

P1 =
F⊥
F‖
, (4.29)

The Eqs. (4.22) and (4.23) imply:

r2
‖ − r2

⊥ =
F‖Γf
2F 2
‖
−

F⊥Γf
2F 2
⊥
, (4.30)

Using the expression ofr‖ + r⊥ from Eq.(4.27) we can write

r‖ − r⊥ =
1

r‖ + r⊥

[F‖Γf
2F 2
‖
−

F⊥Γf
2F 2
⊥

]

=
±

√
Γf√

2F⊥
P2

1F‖ − F⊥
[
P2

1F‖ + F⊥ ± P1Z1

]1/2
(4.31)

In addition to the overall sign ambiguity, there is a sign ambiguity in front of P1 in both the

equations Eqs. (4.27) and (4.31). From Eq. (4.21) we note that r‖+r⊥ is proportional toAFB and

hence it vanishes at the zero crossing point ofAFB. At the zero crossing point of the forward-

backward asymmetry we have from Eq. (4.27),

r‖ + r⊥
∣∣∣∣
AFB=0

= ±
√
Γf√

2F⊥

(√
F⊥ ± P1

√
F‖

)
= 0 (4.32)
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The second equality on the right hand side is written from Eq.(4.21). SinceP1 is negative and

the expression forr‖ + r⊥ should be valid for all values of the observables, the right hand side

could go to zero only if positive sign ambiguity is chosen in front of P1. Up to overall sign

ambiguity we can therefore write,

r‖ + r⊥ =
±

√
Γf√

2F⊥

[
P2

1F‖ + F⊥ + P1Z1

]1/2
(4.33)

r‖ − r⊥ =
±

√
Γf√

2F⊥
P2

1F‖ − F⊥
[
P2

1F‖ + F⊥ ± P1Z1

]1/2
(4.34)

If we ignore the non-factorizable corrections to form factors and neglect the higher order cor-

rections then at the leading order the Wilson coefficientCeff
7 can be distinguished from the form

factorsGλ. Then the conditionr‖ + r⊥ = 0 gives us the familiar relation for the zero crossing of

AFB. The definitions ofr‖ andr⊥ straight forwardly imply thatAFB = 0 at:

2C9 = Ceff
7

(
G⊥
F⊥
+
G‖
F‖

)
,

= −2mb

q2
C7

T1(q2)
V(q2)

(mB +mK∗) ×
(
1+

(mB −mK∗)
(mB +mK∗)

T2(q2)
T1(q2)

V(q2)
A1(q2)

)
,

= −4mb

q2
C7

T1(q2)
V(q2)

(mB +mK∗)

(
1−

m2
K∗

2m2
B

)
,

= −4mbmB

q2
C7

(
1−

m2
K∗

2m2
B

)
+ O(αs) . (4.35)

This is a very well known relation of forward-backward asymmetry zero-crossing [86]. To

obtain the last two lines we have used Eqns. (2.19) and (2.18). TheO(αs) dependence arises

from the ratioT1(q2)/V(q2) which also depends onξ⊥(q2) [101].

The aforementioned second and the third set of solutions canbe obtained by introducing

two more variablesr0 andr∧,

r0 =
G̃0

F0
−C9, (4.36)

r∧ =
G̃‖ + G̃0

F‖ + F0
−C9. (4.37)
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The solutions are obtained by introducing the combination of variables (FL + F‖ +
√

2πA4) and

(AFB +
√

2A5). In terms ofr0 andr∧ we can write the expressions ofFL, A5, (FL + F‖ +
√

2πA4)

and (AFB +
√

2A5) as,

FLΓf = 2F 2
0 (r2

0 +C2
10) (4.38)

(FL + F‖ +
√

2πA4)Γf = 2(F0 + F‖)2(r2
∧ +C2

10) (4.39)

√
2A5Γf = 3F⊥F0C10(r0 + r⊥) (4.40)

(AFB +
√

2A5)Γf = 3F⊥(F0 + F‖)C10(r∧ + r⊥) (4.41)

Similar to the Eqs. (4.33) and (4.34) we derive the expressions of r0 + r⊥, r0 − r⊥ andr∧ + r⊥,

r∧ − r⊥. We writer0 + r⊥ as,

r0 + r⊥ = ±
√
Γf√

2F⊥

(
P2

2FL + F⊥ ± P2Z2

)1/2
(4.42)

where we have defined

Z2 =

√
4FLF⊥ −

32
9

A2
5, (4.43)

P2 =
F⊥
F0

(4.44)

In the equation Eq. (4.42) the sign ambiguity is removed by studying the behavior ofr0 + r⊥

at the zero crossing point of the angular asymmetryA5. The Eq. (4.40) imply thatr0 + r⊥ = 0

whenA5 = 0. On the other hand from Eq. (4.42) we can write,

r0 + r⊥
∣∣∣∣
A5=0
= ±

√
Γf√

2F⊥

( √
F⊥ ± P2

√
FL

)
= 0 (4.45)

Since both
√

F⊥ and
√

FL are positive andP2 is negative the right hand side of the above can

go to zero only if the positive sign ambiguity beforeP2 is chosen. Hence after removing the
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sign ambiguity we can write,

r0 + r⊥ = ±
√
Γf√

2F⊥

(
P2

2FL + F⊥ + P2Z2

)1/2
(4.46)

r0 − r⊥ =
±

√
Γf√

2F⊥
P2

2FL − F⊥
[
P2

2FL + F⊥ + P2Z2

]1/2
(4.47)

where the expression ofr0− r⊥ is derived in the same way as Eq. (4.34). Finally we write down

the solutions forr∧ + r⊥ andr∧ − r⊥,

r∧ + r⊥ = ±
√
Γf√

2F⊥

[
P2

3(FL + F‖ +
√

2πA4) + F⊥ + P3Z3

]1/2
(4.48)

r∧ − r⊥ =
±

√
Γf√

2F⊥
P2

3(FL + F‖ +
√

2πA4) − F⊥
[
P2

3(FL + F‖ +
√

2πA4) + F⊥ + P3Z3

]1/2
(4.49)

where we have defined,

Z3 =

√
4(FL + F‖ +

√
2πA4)F⊥ −

16
9

(AFB +
√

2A5)2. (4.50)

P3 =
F⊥
F0 + F‖

(4.51)

Once again we note that there appear a sign ambiguity beforeP3 which has been removed by

observing the behavior ofr∧ + r⊥ at the zero-crossing point ofAFB +
√

2A5. The form factor

ratio P3 defined above can be expressed in terms of previously definedP1 andP2 as,

P3 =
P1P2

P1 + P2
(4.52)

In addition to the form factor ratiosP1, P2 andP3 we introduce three other form factors ratios

P′1, P′2 andP′3 which will appear in our future discussions. These are defined as,

P′1 =
G̃⊥
G̃‖
, (4.53)

P′2 =
G̃⊥
G̃0

, (4.54)
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P′3 =
G̃⊥
G̃‖ + G̃0

=
P′1P′2

P′1 + P′2
. (4.55)

4.2 Form Factor Ratios.

In the subsequent sections we will derive the expressions ofWilson coefficients and “effective

photon” vertex in terms of observables. The six form factor ratiosP1, P2, P3, P′1, P′2 andP′3 in

the previous section will be used as theoretical inputs. In this section we discuss the theoretical

reliability of these form factor ratios at large and the low recoil regions of theK∗ meson.

4.2.1 Form Factor Ratios at Large Recoil Region.

At large recoil the seven form factors can be expressed in terms of only two soft form factors

ξ⊥(q2) andξ‖(q2) (see Chapter 2). At leading order inΛQCD/mb the form factors receive radia-

tive corrections and “non-factorizable” corrections. In Chapter 2 we have shown that the ratios

V(q2)/A1(q2) andT1(q2)/T2(q2) are unaffected by higher order corrections at the large recoil

region and are theoretically reliably calculated. Using Eqs. (2.18) and (2.22) the form factor

ratiosP1 andP′1 can be written as,

P1 =
F⊥
F‖
= −

√
λ(m2

B,m
2
K∗ , q

2)

(mB +mK∗)2

V(q2)
A1(q2)

=

[
−

√
λ(m2

B,m
2
K∗ , q

2)

2EK∗mB

]
, (4.56)

P′1 =
G̃⊥
G̃‖
= −

√
λ(m2

B,m
2
K∗ , q

2)

m2
B −m2

K∗

T1

T2
=

[
−

√
λ(m2

B,m
2
K∗ , q

2) mB

2EK∗(m2
B −m2

K∗)

]
. (4.57)

The form factor ratiosP1 andP′1 are therefore negative andindependent of universal form fac-

tors ξ‖(q2) and ξ⊥(q2) to all orders in the strong coupling constantαs in perturbation theory,

including “non-factorizable” corrections at leading order in ΛQCD/mb in the heavy quark ex-

pansion. The ratiosP1 andP′1 therefore can used by as reliable theoretical inputs. The other

form factor ratiosP2,3 andP′2,3 are not independent of the soft form factors and hence are not

regarded as theoretically clean inputs. In our subsequent discussions we will derive relations

expressingP2,3 andP′2,3 in terms ofP1 andP′1 and observables.

47



The expressions Eqs. (4.56) and (4.57) are valid for large recoil region whereq2 is small

and are usually considered extremely accurate forq2 between 1 GeV2 and 6 GeV2 [101]. The

regionq2 < 1 GeV2 is ignored to eliminate resonance contributions which might not only intro-

duce uncertainties but also introduce complex contributions which we have assumed are absent.

Unless otherwise stated, large recoil region would mean 0.10GeV2 ≤ q2 ≤ 12.86GeV2. We

stress that once the non-factorizable corrections are taken into account, the Wilson coefficient

Ceff
7 can no longer be separated from the hadronic form factor. TheCeff

7 and the the hadronic

form factors are lumped together into an effective photon vertex̃Gλ, which as we will show, can

be expressed in terms of observables and the form factorsP1 andP′1. For our future numerical

analysis we compile the values ofP′1 andF‖ at low recoil region in the Table. 4.1. Theq2

binning used in Table. 4.1 is the same as the one used by the LHCb experiments [113, 114].

GeV2 0.10-2 2-4.3 4.3-8.68 10.09-12.86 1-6
P1 -0.8924 -0.9286 -0.9034 -0.8337 -0.9259
P′1 -0.9189 -0.9561 -0.9302 -0.8585 -0.9533

F‖(10−12) -5.7667 -11.330 -17.4311 -25.8917 -11.8692

Table 4.1: The form factor ratiosP1,P′1 andF‖ averaged over differentq2 bins at large recoil
region.

4.2.2 Form Factor Ratios at Low Recoil Region.

In the low recoil limit the “non-factorizable” correctionsand higher order corrections are ignor-

able. Hence we can writẽGλ = Ceff
7 Gλ for all λ = {0, ‖,⊥}. The conditions in Eqs. (2.22) to

(2.24) together with Eq. (4.4), on ignoringmK∗/mB terms, can be recast as,

G‖
F‖
=
G⊥
F⊥
=
G0

F0
≡ κ̂ = −κ2mBmb

q2
. (4.58)

This implies

P1 = P′1, P2 = P′2, P3 = P′3 (4.59)
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and hence

r‖ = r⊥ = r0 = r∧ ≡ r. (4.60)

In the low recoil limit the form factor ratiosP1 andP′1 are easily derived to be,

P1 = P′1 =
−

√
λ(m2

B,m
2
K∗ , q

2)

(mB +mK∗)2

V(q2)
A1(q2)

. (4.61)

Note that in this limit the form factors are parametrized according to Eq. (2.26). The low-recoil

approximation is expected to work well in region 14.18GeV2 ≤ q2 ≤ 19GeV2. Conventionally

the low-recoil region is meant to imply this range ofq2. In the low recoil limit we need to take

special care of the fact thatP1 = P′1. For our future numerical analysis we compile the values of
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Figure 4.1: In the panel to the left the form factor ratiosP1 (solid curve),P2 (short dashed)
andP3 (long dashed) are shown as functions ofq2. In the panel to the right we have plottedP′1
(solid curve),P′2 (short dashed) andP′3 (long dashed) againstq2.

P′1 andF‖ at low recoil region in the Table. 4.2. For comparison with the experimental results

we calculate the values averaged over different dilepton mass squaredq2 bins. Theq2 binning

used in Table. 4.2 is the same as the one used by the LHCb experiment [113, 114]. Also shown

in the tables are the numerical values of the form factorF‖. In Fig. 4.1 we show the variation

of form factor ratiosP1,2,3 andP′1,2,3 as a function ofq2. The parametrization ofV(q2), A1,2,3(q2)

andT1,2(q2) are taken from Eq. (2.26). This parametrization is obtained from light cone sum
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GeV2 14.18-16 16-19
P1 -0.6836 -0.4719
P′1 -0.7093 -0.4952

F‖(10−12) -27.8735 -25.0050

Table 4.2: The form factor ratiosP1,P′1 andF‖ averaged over differentq2 bins at low recoil.

rules and valid at the low recoil region. Here these are extrapolated from their region of validity

to large recoil region with physical pole. In the left panel of the figure the variation ofP1, P2

andP3 are shown respectively in solid, short-dashed and long-dashed lines. In the panel to the

right P′1, P′2 andP′3 are shown respectively in solid, short-dashed and long-dashed lines. The

purpose of these figures is to show that all the six form factorratios are negative in the region

of interest.

4.3 Solution of Wilson coefficients in terms of observables.

In this section we derive the expressions of Wilson coefficientsC9, C10 and the “effective photon

vertex”. As previously mentioned, there are three sets of solutions. From Eqs. (4.24) and (4.33)

we can expressC10 in terms forward-backward asymmetry and helicity fractions F‖ andF⊥

as [121, 122],

C10 =

√
Γf√

2F‖
2
3

AFB
[
±

√
P2

1F‖ + F⊥ + P1Z1

] . (4.62)

The two theoretical inputs that are required to measure the value ofC10 in experiments areP1

andF‖. The Eq. (4.62) can be used to predict the values ofC10 in differentq2 bins, using the

values of the observables measured in experiments, and the two theoretical inputsP1 andF‖. It

should however be noted that due the presence of the form factorF‖, the predictions ofC10 are

not completely free from hadronic uncertainties.

The way the matrix element decomposition is defined in the heavy quark and large energy

limit at next-to-leading logarithmic order [73], it does not allow us to factor out the Wilson

coefficientCeff
7 from the hadronic form factorsTi. Hence, the solution ofCeff

7 is not possible.

However we can solve for the “effective photon vertex”̃G‖. From the Eqs. (4.17) and (4.18) we
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get,

r‖ − r⊥ =
G̃‖
F‖
− G̃⊥F⊥

= G̃‖
P1 − P′1
F⊥

. (4.63)

Using the expression ofr‖ − r⊥ from Eq. (4.34) in the above equation we get the expression of

G̃‖ in terms of observables as:

G̃‖ =
√
Γf√
2

(P2
1F‖ − F⊥)

[
± (P1−P′1)

√
P2

1F‖ + F⊥ + P1Z1

] . (4.64)

Using Eqs. (4.17) and (4.18) we can write,

C9 =
[ G̃‖
F⊥

(P1 + P′1) − (r‖ + r⊥)
]
.

Using the expression of̃G‖ from Eq. (4.64) in the above equation we get,

C9 =

√
Γf√

2F‖

(F‖P1P′1 − F⊥) − 1
2(P1 − P′1)Z1

[
± (P1−P′1)

√
P2

1F‖ + F⊥ + P1Z1

] . (4.65)

The only hadronic inputs that enter in the expression of the effective photon vertex are the

theoretically clean form factor ratiosP1 andP′1. In the expression ofC9 there is a source of

hadronic uncertainty that comes fromF‖.

To derive the three expressions Eqs. (4.62), (4.65) and (4.64) we have removed the sign

ambiguities in the solution by looking at the behavior of thesolutions at theAFB zero crossing

points. All our solutions for the Wilson coefficients depend explicitly on the assumption that

AFB , 0, hence, the Wilson coefficients and the effective photon vertex̃G‖ can be determined

at anyq2 except at the zero crossing ofAFB. The denominator of̃G‖ andC9 depend onP1 − P′1

so their behaviors at the pointP1 → P′1 needs careful examination. Unlike the zeros ofAFB,

which can be experimentally determined and hence avoided, the crossing point forP1 andP′1,
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a priori, can only be determined based on calculations and hence may be uncertain. We note

that in this limit we haver‖ − r⊥ = 0, where as in the limitAFB = 0 we hadr‖ + r⊥ = 0. Naively,

C9 andG̃‖ appear to be divergent in the limitP1 → P′1, as can be seen from Eqs. (4.65) and

(4.64) and indeed Eq. (4.34) cannot be used to determine the Wilson coefficientsCeff
7 andC9.

However, it is easily seen that the Wilson coefficients are finite whenP1 → P′1. Consider the

combinationG̃‖ −F‖C9, which is seen from Eqs. (4.64) and (4.65) to be manifestly finite in the

limit P′1 → P1:

G̃‖ − F‖C9 =

√
Γf

2

F‖P1 +
1
2Z1√

P2
1F‖ + F⊥ + P1Z1

. (4.66)

We will show that the combinatioñG‖ − F‖C9 can be determined and indeed ifF‖ is assumed

G̃‖ andC9 can be individually determined and are finite. So at low recoil limit only the Wilson

coefficientC10 can be solved and one can not solve forC9 andG̃‖ or for that matterCeff
7 .

We now derive the second set of solutions of Wilson coefficientsC9 andC10 and the effective

photon vertex̃G0. Using Eqs. (4.40) and (4.46) we can obtain the expression ofC10 as,

C10 =

√
Γf√

2F0

2
3

√
2A5

[
±

√
P2

2FL + F⊥ + P2Z2

] . (4.67)

The expression of̃G0 is obtained by using the Eqs. (4.18), (4.36) and (4.47). In terms of

observablesFL, F⊥ andA5 it read as,

G̃0 =

√
Γf√
2

(P2
2FL − F⊥)[

± (P2 − P′2)
√

P2
2FL + F⊥ + P2Z2

] . (4.68)

The expression of̃G0 can be obtained by using the Eqs. (4.18), (4.36) and (4.68) as,

C9 =

√
Γf√

2F0

(FLP2P′2 − F⊥) − 1
2(P2 − P′2)Z2

[
± (P2 − P′2)

√
P2

2FL + F⊥ + P2Z2

] . (4.69)

It can be noted that the second set of solutions, Eqs. (4.67),(4.68) and (4.69) can be obtained

from the first set, Eqs. (4.62), (4.65) and (4.64) by the following replacements:F‖ → FL,
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AFB→
√

2A5, F‖ → F0, G̃‖ → G̃0 (which also imply thatr‖ → r0), P1 → P2 andP′1 → P′2.

In the third set of solutions we solve forC10, C9 andG̃‖ + G̃0 in terms ofFL, F⊥,A4 andA5.

The expression ofC10 can be obtained by using the Eqs. (4.41) and (4.48). It reads as,

C10 =

√
Γf√

2(F0 + F‖)
2
3

AFB +
√

2A5
[
±

√
P2

3(FL + F‖ +
√

2πA4) + F⊥ + P3Z3

] . (4.70)

Using Eqs. (4.18), (4.37) and Eq. (4.49) we can expressG̃‖ + G̃0 as,

G̃‖ + G̃0 =

√
Γf√
2

(
P2

3(FL + F‖ +
√

2πA4) − F⊥
)

[
± (P3 − P′3)

√
P2

3(FL + F‖ +
√

2πA4) + F⊥ + P3Z3

] . (4.71)

The expression ofC9 can be obtained by using the expression of Eqs. (4.18), (4.37) and

Eq. (4.71).

C9 =

√
Γf√

2(F0 + F‖)

(
(FL + F‖ +

√
2πA4)P3P′3 − F⊥

)
− 1

2(P3 − P′3)Z3
[
±

√
P2

3(FL + F‖ +
√

2πA4) + F⊥ + P3.Z3

] , (4.72)

The expressions Eqs. (4.70), (4.71) and (4.72) can be obtained from the Eqs. (4.62), (4.65) and

(4.64) by the replacements:F‖ → FL + F‖ +
√

2πA4, AFB → AFB +
√

2A5, F‖ → F‖ + F0,

G̃‖ → G̃‖ + G̃0 (which also implyr‖ → r∧), P1 → P3, P′1 → P′3. The consequences of the

solutions Eqs. (4.62), (4.64), (4.65), Eqs. (4.67), (4.68), (4.69) and Eqs. (4.70), (4.71), (4.72)

are discussed in the subsequent sections.

4.4 Prediction of F⊥.

The three sets of expressions of the Wilson coefficients and the effective photon vertices derived

so far have many important consequences as far as the precision test of standard model and the

searches of new physics are concerned. Since the expressions are in terms of experimentally

measurable observables with minimum theoretical inputs, the Wilson coefficients and the effec-

tive photon vertices can be measured in the experiments. This would however require a full
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angular analysis to measure all the observations. If on the other hand theC10 or C9 are taken as

theoretical inputs then the form factorF‖ can be measured using Eq. (4.62) and (4.65). As pre-

viously mentioned these two expression of the Wilson coefficients are not free from hadronic

uncertainties due to the presence of the form factorF‖. However we can define their ratioR

that is free from any hadronic uncertainties,

R≡ C9

C10
=

2(F‖P1P′1 − F⊥) − (P1 − P′1)Z1

4
3AFB(P1 − P′1)

. (4.73)

The expression above depends only on the forward-backward asymmetryAFB and the helicity

fractionsF‖ andF⊥. The only theoretical inputs are the form factor ratiosP1 andP′1, which

in the heavy quark effective theory framework is calculated reliably. We note that since the

longitudinal helicity fractionFL has been measured and since sinceFL + F‖ + F⊥ = 1, we can

expressF‖ in terms ofFL andF⊥. Actually it is possible to express all the expressions in terms

of only two helicity fractionFL andF⊥. Eq. (4.73) can be used to experimentally test the ratio

of C9 andC10. On the other hand if the ratioR = C9/C10 is known very accurately,F⊥ can be

predicted using Eq. (4.73) in terms ofFL andAFB as [121, 122]:

F⊥ =
−4RAFB(P1 − P′1)(1+ P1P′1) + 3(1− FL)(P1 + P′1)2 − (P1 − P′1)

√
T⊥

6(1+ P2
1)(1+ P′1

2)
(4.74)

where,

T⊥ = 9(1− FL)2(P′1 + P1)2 − 24RAFB(1− FL)(P1 − P′1)(1− P1P′1)

− 16A2
FB[R2(P1 − P′1)2 + (1+ P2

1)(1+ P′1
2)] (4.75)

The sign of the term containing
√

T⊥ could either be positive or negative. Of the two possible

solutions forF⊥, in Eq. (4.74) we have chosen the solution which gives the correct value of

R obtained from Eq. (4.73). This solution corresponds to the one with the negative ambiguity

as shown in Eq. (4.74). As can be seen from the Eq. (4.74), the transversity amplitudeF⊥ is

expressed in terms of two observablesFL andAFB, and two form factor ratiosP1 andP′1. Since
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P1 andP′1 are known precisely, the predictions ofF⊥ from Eq. (4.74) are free from any hadronic

uncertainties. Using the measured values ofFL andAFB from Ref. [113] and [114] andF⊥ we

have tabulated the predicted values ofF⊥ in Tables 5.1 and 5.2 respectively. The ratioR ≡ C9
C10

can be also expressed in terms of other observables using Eqs. (4.67) and (4.69) as,

C9

C10
=

2(FLP2P′2 − F⊥) − (P2 − P′2)Z2

4
3

√
2A5(P2 − P′2)

, (4.76)

and a similar relation follows from Eqs. (4.70) and (4.72),

C9

C10
=

2((FL + F‖ +
√

2πA4)P3P′3 − F⊥) − (P3 − P′3)Z3

4
3(AFB +

√
2A5)(P3 − P′3)

. (4.77)

The theoretical inputs required to measure the ratioR from Eqs. (4.76) and (4.77) are the form

factor ratiosP2,3 and P′2,3 which are not completely free from theoretical uncertainties. We

therefore do not use these equations to predictF⊥ which also requires the measurements of the

observablesA4 andA5. These equations however will be useful however in future discussions.

4.5 The FL − AFB constraint.

The perpendicular helicity fractionF⊥ predicted in Eq. (4.74) in terms forward-backward asym-

metry AFB and the longitudinal helcity fractionFL consists of the termT⊥. In the Eq. (4.75),

T⊥ is expressed in terms ofAFB, FL, R andP1 andP′1. Since the helicity fractions are physical

quantities the termT⊥ must be positive. The positivity ofT⊥ imposes constraints on the pos-

sible values forFL andAFB which cannot therefore be arbitrarily chosen. The requirement for

real solution forF⊥ hence implies a constraint onAFB in terms ofP1, P′1, R and observableFL

as [121, 122]:
−3(1− FL)

4
T− ≤ AFB ≤

3(1− FL)
4

T+ (4.78)
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where, the expressions ofT±

T± =
(P1 + P′1)2

√
(1+ P2

1)(1+ P′1
2)

√
(P1 + P′1)2 + R2(P1 − P′1)2 ∓ (1− P1P′1) (P1 − P′1) R

(4.79)

It is easy to see thatT± ≈ 1 whenP1 ≈ P1
′ ≈ −1. Given the values ofP1 and P1

′ from

Table 4.1, we expectT± ≈ 1. The allowed domain forAFB is hence almost free fromR as long

asP1 ≈ P1
′ ≈ −1. The allowedFL − AFB region predicted from the above equations is studied

in details in Chapter 5.

4.6 The FL − F⊥ constraint.

The Eq. (4.73) can be inverted to express the forward-backward asymmetryAFB in terms of the

ratiosP1, P′1 andR;

AFB =
3
(
RX−

√
Y(P1 − P′1)2(1+ R2) − X2

)

4(P1 − P′1)
(
1+ R2

) (4.80)

where,

X = 2(F‖P1P′1 − F⊥)

Y = 4F‖F⊥.

Note that the Eq. (4.73) is quadratic inAFB, and should have resulted in a two-fold ambiguity

in the solution. One easily confirms that only the solution with positive sign in front of the

square root is valid. This is done by substituting the observablesF‖, F⊥ in terms form-factors

and the Wilson coefficients in the Eq. (4.80). The forward-backward asymmetryAFB being a

real quantity the right hand side of the Eq. (4.80) has to be real also. Hence the the radical in

the left hand side of the Eq. (4.80) must be positive. This imply a constraint on theFL − F⊥
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parameter space which is derived form the positivity argument of the radical [121, 122],

1 +
P2

1 + P′1
2 + R2(P1 − P′1)2 − (P1 − P′1)

√
R2 + 1

√
R2(P1 − P′1)2 + (P′1 + P1)2

2P2
1P′1

2

≤ 1− FL

F⊥
≤

1 +
P2

1 + P′1
2 + R2(P1 − P′1)2 + (P1 − P′1)

√
R2 + 1

√
R2(P1 − P′1)2 + (P′1 + P1)2

2P2
1P′1

2
(4.81)
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Figure 4.2: The constraints onFL − F⊥ parameter space arising from Eq. (4.81) is shown.
The values ofP1 andP′1 are averaged over 1 GeV2 ≤ q2 ≤ 6 GeV2. The allowed region for
R= −1 is depicted by the diagonal thick solid (blue) line that predictsF⊥ to lie in a very narrow
region, well approximated by a line. The shaded region is forbidden byFL+F⊥+F‖ = 1. Thick
dashed (red) line correspond to the solution ofF⊥ from Eq. (4.80) forAFB = 0. This line divides
the allowed domain into two regions fixing the sign ofAFB relative toC9/C10 andCeff

7 /C10 as
depicted in the figure(see Sec. 4.8).

In Figs. 4.2 and 4.4 the constraint implied by the above equations are shown in the large and

low recoil region respectively. As mentioned in the figure captions, the values ofP1 andP′1

are averaged over theq2 bins. The Eq. (4.81) implies very strict constraints on theFL − F⊥

parameter space. The constraint is sensitive to the value ofthe ratioR, however the sign ofR

is irrelevant. In the standard model the value ofR is close to -1. In Figs. 4.2 and 4.4 we have

made two choices ofR; R = −1 andR = −10. ForR = −1 the value ofF⊥ predicted by the
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Figure 4.3: The allowed region forR = −1 is depicted by the diagonal thick solid (blue) line
that predictsF⊥ to lie in a very narrow region, well approximated by a line. The allowedFL−F⊥
region forR= −10 is constrained between the dashed (blue) lines. The additional curves in the
figure correspond to the constraint onFL − F⊥ arising fromZ2

1 > 0 for different values ofAFB:
0.05, 0.25, 0.5, 0.7, where all the regions to the left of these curves are allowed.

0

0.4

0.7

16£ q2
£19

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

FL

F ¦

0.4

0.7

16£ q2
£19

a
b

c
d

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

FL

F ¦

Figure 4.4: The same as in Fig. 4.3 except thatP1 andP′1 are averaged over 16 GeV2 ≤ q2 ≤
19 GeV2. The figure to the right is the inset of the figure to the left. Inthis figure the solid
and the dashed diagonal (blue) lines are the same as in the figure to the right. The dot-dash
(red) lines labeled by “a,b,c,d” correspond toAFB = 0.5, 0.3, 0,−0.3 respectively forR = −10.
The line “c” (for AFB = 0) divides the domain and corresponds to the thick dashed (red) line in
Fig. 4.2. TheAFB, FL andF⊥ must be consistent as shown by the dot-dash lines. ForR = −1
similar lines exist for different value ofAFB but overlap with the solid blue line. Hence they are
not depicted in the figure.
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Eq. (4.81) is constrained to a very narrow region which can beapproximated by a line. This is

shown Figs. 4.2, 4.3 and 4.4, by the diagonal solid blue lines. The shaded region to the left of

the dashed blue region is forbidden by the constraintFL + F⊥ + F‖ = 1 and the thick dashed

line in red corresponds to the solution ofF⊥ from Eq. (4.80). For a large valueR = −10 the

constraint is relaxed and the range ofF⊥ predicted by Eq. (4.81) is larger. This is depicted in

Figs. 4.3 and 4.4 by two dashed (blue) lines. As will be discussed later there are additional

constraints that come from the conditionZ2
1 > 0 which can be written as,

4(1− FL − F⊥)F⊥ −
16
9

A2
FB > 0

The constraints coming from this relation for different values ofAFB are shown in Figs. 4.3 and

4.4. Similar constraints are obtained in the low recoil region also. These constraints are shown

in the Fig. 4.4. The significant change that is noticeable between large and low recoil is that at

low recoil the predicted values ofF⊥ are smaller than that predicted in the large recoil region.

At low recoil the shifts towards lower value ofF⊥ is shown in Fig. 4.4. It is interesting to note

that irrespective of the value ofR, in the limitP′1 → P1 one obtains (1− FL)/F⊥ = 1+ 1/P2
1. In

the limit mB→∞ and the energy of theK∗, EK∗ → ∞, it is easy to see thatP1 = P′1 → −1, and

we find thatF‖ = F⊥. In this limit Eq. (3.30) will result in a constant distribution inφ. Since the

values ofP1 andP′1 differ slightly we expect only a very small coefficient of cosφ. The relation

similar to Eq. (4.80) can be derived from Eq. (4.76) where we can write
√

A5 andAFB +
√

A5

in terms of helicity fractions as,

√
2A5 =

3(RX2−
√

Y2(P2 − P′2)2(1+ R2) − X2
2 )

4(P2 − P′2)(1+ R2)
(4.82)

where,

X2 = 2(FLP2P′2 − F⊥)

Y2 = 4FLF⊥.
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The relation that follows from Eq. (4.77) is,

AFB +
√

2A5 =

3(RX3 −
√

Y3(P3 − P′3)2(1+ R2) − X2
3 )

4(P3 − P′3)(1+ R2)
(4.83)

where,

X3 = 2((FL + F‖ +
√

2πA4)P3P′3 − F⊥)

Y3 = 4(FL + F‖ +
√

2πA4)F⊥.

Since the form factor ratiosP2,3 andP′2,3 are not reliable theoretical inputs we refrain from

deriving constraints onFL − F⊥ from these equations.

4.7 Bound on Form Factor Ratios.

As discussed before, even at leading order inΛQCD/mb it is impossible to isolate the Wilson

coefficientCeff
7 from the form factor̃Gλ due to radiative and “non-factorizable” corrections. We

therefore neglect the higher order corrections to form factors. ExtremizingP2
1 in terms of all

the non observables in Eq. (4.62) we get following bounds onP2
1,

P2
1 ≶

4F‖F⊥ − 16
9 A2

FB

F2
‖

∀ F‖F⊥ ≶
2
7

(4AFB

3

)2
. (4.84)

For AFB = 0, we have already noted the exact equalityP2
1 = F⊥/F‖. Analytical bound onP′1 is

also possible, but is harder to obtain. Similar straightforward extrimization with respect to all

the non observables in Eq. (4.67) gives the following boundson the form factor ratiosP2,

P2
2 ≶

4FLF⊥ − 32
9 A2

5

F2
L

∀ FLF⊥ ≶
2
7

(
4
√

2A5

3
)2. (4.85)
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And straightforward extrimization with respect to all the non observables in Eq (4.70) results

in the following bounds on the form factor ratioP3,

P2
3 ≶

4(FL + F‖ +
√

2πA4)F⊥ − 16
9 (AFB +

√
2A5)2

(FL + F‖ +
√

2πA4)2

∀ (FL + F‖ +
√

2πA4)F⊥ ≶
2
7

(4(AFB +
√

2A5)
3

)2
. (4.86)

4.8 Sign of Ceff
7 .

We will now discuss a few important relations that involve the Wilson coefficientCeff
7 . It can

be separated from the form factor only when the higher order corrections including the “non-

factorizable” corrections are neglected. Hence all the results that we will discuss now are valid

only at the leading order and the tilde from the form factorsGλ are removed. At leading order

we can write the Eq. (4.64) as,

Ceff
7 =

√
Γf√

2G‖
(P2

1F‖ − F⊥)
[
± (P1−P′1)

√
P2

1F‖ + F⊥ + P1Z1

] . (4.87)

Using the above expression and the Eq. (4.62) we can write,

Ceff
7

C10
=

3
2

F‖
G‖

(P2
1F‖ − F⊥)

AFB(P1 − P′1)
. (4.88)

Since both the form factorsF‖ andG‖ appear in the above equation, the ratioCeff
7 /C10 can not be

determined without theoretical uncertainties. However the Eq. (4.88) imply certain constraints

on the ratioCeff
7 /C10. The sign of the ratioF‖/G‖ can be very accurately determined from the

following equation,

F‖
G‖
= − q2A1(q2)

2(mB −mK∗)mbT2(q2)
.
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where bothA1(q2) andT2(q2) are both are positive. It is easy to conclude that,

Ceff
7

C10
AFB ≷ 0, only if P2

1 ≶ F⊥/F‖, when P1 − P′1 > 0 (4.89)

Eq. (4.84) together with Eq. (4.88) can be used to obtain moreuseful bounds that are purely in

terms of observables alone, albeit they are not completely exhaustive. Eq. (4.84) implies:

P2
1F‖ − F⊥ ≶

Z1 − F‖F⊥
F‖

∀ F‖F⊥ ≶
2
7

(4AFB

3

)2
, (4.90)

which in turn implies for (P2
1F‖ − F⊥) < 0 that,

Ceff
7

C10
AFB > 0 ∀ F‖F⊥ <

32
63

A2
FB . (4.91)

If, however, (P2
1F‖ − F⊥) > 0 we obtain an analogous condition

Ceff
7

C10
AFB < 0 ∀ F‖F⊥ >

16
27

A2
FB . (4.92)

The above bounds have nothing to say on the sign ofCeff
7 /C10 in the region,

32
63

A2
FB ≤ F‖F⊥ ≤

16
27

A2
FB (4.93)

and may not be particularly useful in general. One can nevertheless draw conclusions on the

signs of the Wilson coefficients by combining Eq. (4.73) together with Eq. (4.88) to write:

(2
3

C9

C10
P
′′

1 −
4
3

Ceff
7

C10
P1

)
AFB = (P1

2F‖ + F⊥ + P1Z1)

> 0, (4.94)

where,P
′′

1 = (G‖/F‖) (P1 + P′1) > 0 since each of (G‖/F‖), P1 and P′1 are always negative.

Defining,

E1 ≡
C9

C10
AFB, E2 ≡

Ceff
7

C10
AFB, (4.95)
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for convenience, Eq. (4.94) reads

2
3

P
′′

1E1 −
4
3

P1E2 > 0 (4.96)

In SM, Ceff
7 /C10 > 0 andC9/C10 < 0, hence the sign ofE2 (E1) will be same (opposite) to that

observed forAFB. If, for any q2, we find AFB > 0, Eq. (4.96) cannot be satisfied unless the

contribution from theE2 term exceeds theE1 term, or the sign of theE2 term is wrong in SM.

In the SM theE2 term dominates at large recoil i.e. smallq2, hence,AFB must be positive at

small q2 to be consistent with SM. IfAFB < 0 is observed for allq2 i.e. no zero crossing of

AFB is seen, one can convincingly conclude thatCeff
7 /C10 < 0 in contradiction to SM. However,

if zero crossing ofAFB is confirmed withAFB > 0 at smallq2, it is possible to conclude that

the signsCeff
7 /C10 > 0 andC9/C10 < 0 are in conformity with SM, as long as other constraints

like Z2
1 > 0 hold. In Fig.4.2 we have shown how theAFB = 0 distinguishes the two regions. In

Ref. [114] the zero crossing is indeed seen. However, in the 2GeV2 ≤ q2 ≤ 4.3GeV2 bin,Z2
1 > 0

is only marginally satisfied. We emphasize that these conclusions drawn from Eq. (4.94) are

exact and not altered by any hadronic uncertainties. We can write equations similar to Eq. (4.88)

by using Eqs. (4.67), (4.68) and Eqs. (4.70), (4.71). These equations which are valid only at

leading order are written below as,

Ceff
7

C10
=

3
2
F0

G0

(P2
2FL − F⊥)

√
2A5(P2 − P′2)

, (4.97)

Ceff
7

C10
=

3
2

(F‖ + F 0)

G‖ + G0

(P2
3(FL + F‖ +

√
2πA4) − F⊥)

(AFB +
√

2A5)(P3 − P′3)
. (4.98)

The above two equations are not as important to determine theCeff
7 /C10 ratio. But they will be

very useful as shown later. Eqs. (4.76) and (4.97) can be combined to obtain

(
2
3

Ceff
7

C10
P
′′

2 −
4
3

C9

C10
P2)A5 =

(P2
2FL + F⊥ + P2Z2)√

2
(4.99)

> 0
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P
′′

2 = (G0/F0) (P2 + P′2) > 0, sinceG0/F0, P2 and P′2 are all negative. While this is not

easily seen as in the case ofP
′′

1 we have numerically verified at leading order that this is true

for the entireq2 domain. We have shown earlier, by doing a power expansion inAFB, that

(P2
1F‖ + F⊥ + P1Z1) is always positive. It is easy to see that similar argumentscan be made for

the positivity of (P2
2FL + F⊥ + P2Z2) by considering expansions inA5. Hence if the term in the

bracket must be positiveA5 must be positive. At large recoil the term in the bracket is expected

to be positive. From Eqs. (4.77) and (4.98) we can obtain yet another important relation, which

is of the same kind as we obtained earlier in Eqs. (4.94) and (4.99)

(
2
3

Ceff
7

C10
P
′′

3 −
4
3

C9

C10
P3)(AFB +

√
2A5) =

[
(P2

3(FL + F‖ +
√

2πA4) + F⊥ + P3Z3

]

> 0 (4.100)

whereP
′′

3 = (G0+G‖)/(F0+F‖) (P3 +P′3) > 0. This is easily verified to be true at leading order

for the entireq2 domain. We have shown earlier by doing a power expansion inAFB andA5 ,

that respectively (P2
1F‖ + F⊥ + P1Z1) and (P2

2FL + F⊥ + P2Z2) are always positive. It is easy to

see that similar arguments can be made for the positivity of (P2
3(FL+F‖+2

√
2πA4)+F⊥+P3Z3)

by considering expansions inAFB +
√

2A5. These equations are equally useful to determine the

sign ofCeff
7 as discussed earlier. However, the form factors involved are not completely free

from HQET form factor.

4.9 Form Factor Ratios in Terms of Observables.

In Sec. 4.1 we have defined several form factor ratios in termsof Fλ andG̃λ. These ratios enter

as inputs in the solutions of Wilson coefficients and effective photon vertices. Except for the

ratiosP1 andP′1, the rest of the ratios are polluted by hadronic uncertainties. In this section

we derive many important relations that relate the form factor ratios to the observables. From

Eq. (4.32) we see that at the forward-backward zero crossingAFB = 0, r‖ + r⊥ = 0 . At the
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forward-backward zero crossing point we can write from Eq. (4.33),

r‖ + r⊥
∣∣∣∣
AFB=0

= ±
√
Γ f√

2F⊥

[
P2

1F‖ + F⊥ + P1Z1

]1/2

= ±
√
Γ f√

2F⊥

[
P2

1F‖ + F⊥ + P12
√

F‖F⊥
]1/2

= ±
√
Γ f√

2F⊥

[ √
F⊥ + P1

√
F‖

]
= 0.

Since both
√

F⊥ and
√

F‖ are positive quantities and the ratioP1 is negative the relation
√

F⊥+

P1

√
F‖ = 0 imply [121, 122],

P1 = −
√

F⊥√
F‖

∣∣∣∣∣∣
AFB=0

. (4.101)

This equation enables the measurement ofP1 in terms of the ratio of helicity fractions. If zero

crossing occurs it would provide an interesting test of our understanding of form factors. Very

recently LHCb has confirmed [114] zero crossing ofAFB for the first time. The zero crossing

is observed atq2 = 4.9+1.1
−1.3GeV2, which is consistent with the predictions of the standard model

and lies in the large recoil region. Eq. (4.101) can hence be used to measureP1 at the zero

crossing ofAFB. A confirmation of the estimate ofP1 with direct helicity measurements would

leave no doubt of the reliable predictability of HQET in the large recoil region.

The ratiosP2 andP3 can also be written in terms observables. Using Eq. (4.46) wecan

similarly derive the relation,

P2 = −
√

F⊥√
FL

∣∣∣∣∣∣
A5=0

(4.102)

enabling measurements of form the factor ratioP2 in terms of observables at the zero crossing

of A5. We can similarly use Eq. (4.48) to expressP3 in terms of the helicity fractions andA4 at

the zero crossing point of the observableAFB +
√

2A5 as,

P3 = −
√

F⊥√
FL + F⊥ +

√
2πA4

∣∣∣∣∣∣
AFB+

√
2A5=0

. (4.103)

Hence, the zero crossing ofAFB +
√

2A5 enables the measurement of form factor ratioP3 as
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well, in terms of observables. Next we derive several relations that express the four form factor

ratios P2, P′2 and P3, P′3 in terms of observables andP1 and P′1. These relations are valid

up to leading order inαs in perturbation series and leading order inΛQCD/mb in heavy quark

expansion. Since we have already defined three sets ofC9/C10 andCeff
7 /C10 ratios, equating

Eq. (4.97) and Eq. (4.98) with Eq. (4.88) we get the expressions of P′2 and P′3 in terms of

observables andP1 andP′1.

P′2 =

√
2A5

(
F⊥ − F‖P2

1

)
P2

2P′1

AFBT2(P1 − P′1) +
√

2A5

(
F⊥ − F‖P2

1

)
P2P′1

(4.104)

P′3 =
(AFB +

√
2A5)(F⊥ − F‖P2

1)P2
3P′1

AFBT3(P1 − P′1) +
√

2A5(F⊥ − F‖P2
1)P2

3P′1
, (4.105)

where,

T2 = P1(F⊥ − FLP2
2) (4.106)

T3 = P1

[
F⊥(1+ P2

3) − P2
3(1+

√
2πA4)

]
. (4.107)

Similarly equating Eq. (4.76) and Eq. (4.77) with Eq. (4.73)and using the Eqs. (4.104) and

(4.105) we get the following expressions ofP2 andP3 in terms of observables and form factor

ratiosP1 andP′1.

P2 =
2P1AFBF⊥√

2A5(2F⊥ + Z1P1) − Z2P1AFB

(4.108)

P3 =
2P1AFBF⊥

(AFB +
√

2A5)(2F⊥ + Z1P1) − Z3P1AFB

. (4.109)

If all the observables are measured from the full angular analysis then the form factor ratios

P2 and P3 can be measured using Eqs. (4.108) and (4.109). These valuescan be used in

Eqs. (4.104) and (4.105) to measure the values ofP′2 andP′3.
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4.10 Model Independent Constraints between Observables.

In this section we discuss a few important relations and constraints among observables that have

no dependence on the hadronic form factors and hence are clean probes of new physics. Some

of these relations are derived from the fact that in the standard model the tinyCP violation

[74] in the B → K∗ℓ+ℓ− decay mode can be neglected. Hence all the Wilson coefficients

are real. This implies that, in the denominator of Eq. (4.62), the term under the square root

P2
1F‖ + F⊥ + P1Z1 must be real. This is only possible as long asZ1 is real i.e, as long as

4F‖F⊥ ≥ 16
9 A2

FB which is seen by an (infinite) series expansion inAFB:

P2
1F‖ + F⊥ + P1Z1 = (P1

√
F‖ +

√
F⊥)

2

−
4A2

FBP1

9
√

F‖F⊥
−

4A4
FBP1

81(F‖F⊥)3/2
+ O(A6

FB) ≥ 0, (4.110)

where every terms is positive sinceP1 is negative. The condition thatZ1 must be real thus leads

to a relation restricting the observablesF‖, F⊥ andAFB such that [121, 122]:

4F‖F⊥ ≥
16
9

A2
FB. (4.111)

The above relation is purely in terms of observables and doesnot depend on any theoretical

parameters and hence is a clean probe of new physics. The violation of this condition will be a

clear signal of new physics. On the other hand, if the experiments find a real value that does not

agree with theC10 estimates of standard model value, it could either be a signal of new physics

or of the uncertainties in form factor estimations. We have two more such relations. These

relations follow from Eq. (4.67) and Eq. (4.70). In Eq. (4.67) the term termP2
2FL + F⊥ + P2Z2

will be positive only ifZ2 is real. This can be shown by doing a power expansion inA5. So the

condition thatZ2 is real implies that,

4FLF⊥ ≥
16
9

(
√

2A5)
2 . (4.112)
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Similarly Z3 should also be real in Eq. (4.70) which implies,

4(FL + F‖ +
√

2πA4)F⊥ ≥
16
9

(AFB +
√

2A5)
2. (4.113)

The combination of bounds in Eqs. (4.111) and (4.112) results in yet another interesting bound

among observables alone but involving onlyA2
FB, A2

5 andF⊥:

4(1− F⊥)F⊥ ≥
16
9

(A2
FB + 2A2

5). (4.114)

The violation of any of these relations will be a signal new physics. With the help of the

observablesAFB andF⊥ we can measure the observableA5 using Eq. (4.114). For a given value

of F⊥ (or 1−F⊥) the Eq. (4.114) imply a constraint between the observablesAFB andA5 shown

in the Fig. 4.6 by different colored lines. In Chapter 5 we have discussed in details about the

constraints coming from the Eqs.(4.111), (4.112) and (4.113). In the remainder of this section

we derive a very important relation that involves all the three helicity fractions and the angular

asymmetriesAFB, A4 andA5 and does not depend on any hadronic quantities. The relations

follows from Eq. (4.52) which can be rewritten as,

P1P2 = P3P1 + P3P2

Substituting the expressions ofP2 andP3 interms ofP1 and observables from Eq. (4.108) and

Eq. (4.109) we get,

Z3 = Z1 + Z2.

which can be written in terms of observables only as,

√
4(FL + F‖

√
2πA4) −

16
9

(AFB +
√

2A5)2 =

√
4F‖F⊥ −

16
9

A2
FB +

√
4FLF⊥ −

32
9

A2
5 (4.115)
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We use this relation to solve forA4 leading to [121, 122],

A4 =
8A5AFB

9πF⊥
+
√

2

√
FLF⊥ − 8

9A2
5

√
F‖F⊥ − 4

9A2
FB

πF⊥
. (4.116)

It should be noted that Eq. (4.115) is a quadratic equation inA4. Hence there are two solutions

for A4 out of which only one is correct. The correct solution is chosen by substituting the ob-

servables in terms of the form factors and Wilson coefficients. SinceF⊥ is already predicted

in Eq. (4.74) in terms of the already measured observablesFL andAFB andP1, P′1 andR, we

can estimateA4 in terms ofA5. The correlations predicted by Eq. (4.116) should hold unless

NP contributes. For a given value ofA5 theA4 can be completely predicted in terms ofFL and

AFB. This is shown in Fig. 4.5. We have predicted the values ofF⊥ from Eq. (4.74) in terms of

FL,AFB,P1,P′1 andR. The values ofP1 andP′1 are averaged over 1 GeV2 ≤ q2 ≤ 6 GeV2 and the

value of the ratioR= −1. The solid blue line correspond to the predicted values ofA4 as a func-

tion of FL andAFB for a given value ofA5. The lines are constrained to stay within the shaded

region which results from the conditions (FLF⊥ − (8/9)A2
5) ≥ 0 and (F‖F⊥ − (4/9)A2

FB) ≥ 0.

As can be seen from the different panels of Fig. 4.5, the region shrinks with the increasing

values ofA5. In the Fig. 4.7 we have studied the dependence of the inputR on the predicted

values ofA4. It should be noted that the dependence ofRenters throughF⊥ which is predicted

from Eq. (4.74). Our prediction is shown for three values ofR. The prediction forR = −1,

R = −10 andR = 10 are shown by solid black, dashed blue and dashed green lines respec-

tively. It can be noticed that the value ofA4 is not much sensitive to the values ofR. The

Eq. (4.116) is a relation involving only observables without any assumptions of hadronic form

factors, hence its violation must be an unambiguous signal of NP. In addition the constraints

Eqs. (4.111), (4.112), (4.113) and Eq. (4.114) are also model independent constraints among

observables. These constraints need to be tested experimentally before ruling out the presence

of new physics.
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4.11 Low recoil limit.

So far we have discussed many relations and constraints among observables for new physics

tests, as well a few relations that can be used to measure hadronic form factor ratios in exper-

iments. In this section we discuss in detail about the low recoil limit approximation of these

results. These relations will allow us not only to test the validity of the low recoil approxima-

tion but also the presence of new physics. In the large recoillimit we had six observables: the

decay widthΓf , the helicity fractionsFL andF⊥ and the angular asymmetriesAFB, A4 andA5.

These six observables are expressed in terms of eight independent theoretical parameters. The

parameters being the six effective form factorsF0, F‖, F⊥, G̃0, G̃‖ andG̃⊥ and the two Wilson

coefficientsC9 andC10. We can hence solve the theoretical parameters in terms of observables

if we take two theoretical inputs which happens to be the two ratios of form factors. In the low

recoil due to various simplifications the number of independent observables as well as number

of independent theoretical parameters are different. Hence the solutions of theoretical param-

eters in terms of observables and the important results thatfollow therefrom needs to treated

more carefully.

We have discussed in Sec 2.4 that in the low recoil limit the long distance contributions

to the B → K∗ℓ+ℓ− hadronic matrix elements can be computed as the short distance effects

using simultaneous heavy quark and operator product expansion 1/Q with Q = {mb,
√

q2}. In

this limit the sub-leadingmK∗/mb as well as the non-factorizable corrections can be ignored so

that the Wilson coefficientCeff
7 is distinguishable from the form factor̃Gλ. Hence the variables

r‖, r⊥, r0 andr∧ are now defined as

r‖ = Ceff
7

G‖
F‖
−C9

r⊥ = Ceff
7

G⊥
F⊥
−C9

r0 = Ceff
7

G0

F0
−C9

r∧ = Ceff
7

G∧
F∧
−C9
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Since theCeff
7 is distinguished from̃Gλ we have removed the tilde. We also derived in Sec 2.4

that the form factorsFλ andGλ satisfy the following relations,

G‖
F‖
=
G⊥
F⊥
=
G0

F0
= κ̂, (4.117)

which implies that

r‖ = r⊥ = r0 = r∧ ≡ r. (4.118)

The above relation imply that the Eqs. (4.22)–(4.24) are modified as the following equations,

r2 +C2
10 =

Γf F‖
2F 2
‖
=
Γf F⊥
2F 2
⊥
≡

F̂Γf
2

(4.119)

4rC10 =
2AFBΓf

3F‖F⊥
≡ 4AFB

3
√

F‖F⊥

F̂Γf
2
, (4.120)

where

F̂ ≡ F‖
F 2
‖
=

F⊥
F 2
⊥
. (4.121)

Using the above equation and the definition ofP1 from Eq. (4.29) we can write,

P2
1 =

F 2
⊥
F 2
‖
=

F⊥
F‖

The relation among the form factors Eq. (4.117) imply,

F 2
⊥
F 2
‖
=
G2
⊥
G2
‖

Hence we can write,

P2
1 = P′1

2
=

F⊥
F‖
=
F 2
⊥
F 2
‖
. (4.122)

From Eqs. (4.119) and (4.120) that we can solve forr2 andC2
10:

r2 =
F̂Γf
4

(
1+

Z1

2
√

F‖F⊥

)
(4.123)
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C2
10 =

F̂Γf
4

(
1− Z1

2
√

F‖F⊥

)
. (4.124)

The sign ofr/C10 is fixed such that,

r
C10
=

3
4

2
√

F⊥F‖ + Z1

AFB
, (4.125)

in order to satisfy the limit derived by appropriate combination of Eqs. (4.64) and (4.65). In

the low recoil limit “r” is same not just for‖ and⊥ helicities but for all three helicities. This

requires in analogy with Eq. (4.122) that,

P2
2 = P′2

2
=

F⊥
FL
=
F 2
⊥
F 2

0

, (4.126)

P2
3 = P′3

2
=

F⊥
(FL + F‖)

=
F 2
⊥

(F 2
0 + F 2

‖ )
. (4.127)

One can hence measureP1, P2 andP3 in the low recoil region in terms of the ratio of helicity

fractions. Hence, the valueC2
10F 2

‖ can be expressed in terms of observables alone. In the

large recoil caseC2
10F 2

‖ depended onP1 andP2. The form factorP1 = P′1 can be measured,

enabling a possibility of verifying the estimate of presented in Table 4.2. To derive a relation

between observables that is valid at low recoil and tests thevalidity of the approximation, we

note Eq. (4.119) leads to the generalized relation

r2 +C2
10

2rC10
=

3
2

√
F‖F⊥
AFB

=
3
2

√
FLF⊥√
2A5

=
3
2

√
(1− F⊥ +

√
2πA4)F⊥

(AFB +
√

2A5)
. (4.128)

The equalities on the left side of the above equation yields two interesting relations

√
2A5 = AFB

√
FL√
F‖

(4.129)
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A4 =

√
2
π

√
FLF‖. (4.130)

It is easily seen by direct substitution of Eq. (4.129) in Eq.(4.116) that it reduces to Eq. (4.130),

hence it is not independent. It is emphasized that a reasonable validity of the low recoil approx-

imation requires largeq2 and not the exact equality of form factors as derived Eq. (4.126). Even

though the values of the form factors depicted in Table 4.2 are not exactly equal, the low recoil

approximation works well. This is demonstrated in Fig. 4.8 where we have plotted the left hand

and right hand of Eqs. (4.129) and (4.130). These figures demonstrate that the equality of both

sides of Eqs. (4.129) and (4.130) holds at the low recoil region. The values of observables are

estimated using the form factors given in Sec 2.4. We emphasize that the relation derived in

Eqs. (4.129) and (4.130) are extremely important both in testing the validity of the low recoil

approximation and the presence of New Physics. The value ofA5 predicted by these relations

tests the validity of the low recoil approximation, whereasthe value ofA4 verifies the validity

of SM. If both the relations are found to be valid it would prove both the validity of the low

recoil limit and the absence of New Physics. On the other handif both the relations fail we must

conclude that low recoil limit is not valid. The presence of New Physics could still be tested

by the validity Eq. (4.116) even in this largeq2 domain. The remaining meaningful possibility

is that Eq. (4.129) holds and (4.130) is violated. This wouldimply validity of low recoil limit

but signal the presence of New Physics. It is interesting to note that one should expect from

Eqs. (4.129) and (4.130) a very tiny product of asymmetriesA4 andA5.

A4A5 =
AFBFL

π
(4.131)

since the right hand sideAFB andFL have already been measured.We emphasize that even

in the low recoil limit, C9/C10 and all the expressions independent of Wilson coefficients are

independent of the universal form factorsξ‖ andξ⊥.
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Figure 4.5: The blue curves correspond to the value ofA4 that is estimated using Eq. (4.116)
for different values ofA5 as shown in different panels. The perpendicular helicity fractionF⊥
is predicted in terms ofFL andAFB from Eq. (4.74). The values ofP1 andP′1 are averaged over
1 GeV2 ≤ q2 ≤ 6 GeV2 and we have chosenR= −1.
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Figure 4.6: The Eq. (4.114) implies that the values of|AFB| and |A5| are constrained to stay
within the different colored lines corresponding to the different values ofF⊥.
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Figure 4.7: The same as Fig. 4.5 but the sensitivity ofRon the predicted values ofA4 is studied.
The small dashed (green) curves are for the caseR = 10 while the big dashed (blue) curve
correspond toR= −10. The solid black curves are for standard model value ofR= −1.
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Figure 4.8: In the figure to the left two sides of equation Eq. (4.129) are plotted. The left hand
side is depicted by solid black curve and right hand side by dashed blue curve. In the figure to
the right both sides of Eq. (4.130) are plotted. Here also theleft hand side is depicted by solid
black curve and right hand side by dashed blue curve. These figures demonstrate the domain of
validity in q2 for the low recoil approximation and the region where new physics can be tested.

76



Chapter 5

Implications of Experimental

Measurements.

In Chapter 4 we have derived the expression of Wilson coefficientC10 in terms of observables.

In this section we use the experimental data and calculate the value ofC10. We also calculate

the value ofF⊥ from Eq (4.74) using experimental data onFL andAFB, assuming that in the

standard modelR = −1. Moreover, we also study in detail the constraints onFL − AFB arising

from Eq (4.78). We show that the constraints are consistent with the one presented by LHCb

in Ref. [126]. We also show that the constraints Eqs. (4.111), (4.112) and (4.113) which are

completely free from any hadronic form factor imply rigorous constraint on the allowedFL−F⊥

region.

5.1 Numerical estimates of C10 and F⊥.

In Eq. (4.62) the Wilson coefficientC10 is expressed in terms of two helicity fractionsFL and

F⊥, the forward-backward asymmetryAFB, one form factorF‖ and the theoretically reliably

calculated form factor ratioP1. The helicity fractionF⊥ is predicted in Eq (4.74) in terms

forward-backward asymmetryAFB, helicity fractionFL, two theoretically reliably calculated

form factor ratiosP1 andP′1 and the ratioR. Assuming that in the standard modelR = −1
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and using the measured values ofAFB andFL from Ref. [113], we have calculated the Wilson

coefficient |C10| and the perpendicular helicity fractionF⊥ (denoted by “(T)”) in Table 5.1 in

different dilepton invariant mass squared bins. The form factorF‖ and the ratiosP1 andP′1 are

calculated using heavy-to-light form factors at large recoil region (between 0.10 GeV2 ≤ q2 ≤

12.86GeV2) and is averaged over each of theq2 bins. In the low recoil region these quantities

are calculated using heavy-to-light form factor at low recoil and is averaged over each of the

q2 bins. The bin 14.18 GeV2 ≤ q2 ≤ 16GeV2 is neglected as the the form factors are not

reliably evaluated in this region. There is a unusually large value of|C10| in the 0.10 GeV2 ≤

q2 ≤ 2 GeV2 bin. It is unlikely [123, 124, 125] that such a large effect can be due to the

contributions from low lying resonances in the experimental data. It could be due to failure

in estimatingF‖ or perhaps be a signal of new physics. In the first bin theAFB approaches

zero in which case our method is no longer valid. Therefore the values ofC10 in the first bin

should not be taken too seriously. In the 1 GeV2 ≤ q2 ≤ 6 GeV2 bin the value of|C10| is

3.81±0.58. It may be noted that estimate ofF⊥ does not depend on universal form factors

and is clean in the low recoil limit. Using Eq. 3.30 LHCb has measured the observable

q2(GeV2) 0.10-2.00 2.00-4.30 4.30-8.68 10.09-12.86 16.00-19.00 1-6
F⊥ (T) 0.44±0.01 0.14±0.06 0.19±0.03 0.25±0.04 0.14±0.016 0.21±0.05
|C10| (T) 14.36±1.68 2.81±0.78 3.00±0.38 2.34±0.37 3.11±0.39 3.81±0.58

Table 5.1: The predictions forF⊥ (Eq. (4.74)) and|C10| (Eq. (4.62)) using 0.37 fb−1 LHCb [113]
data forFL, AFB anddΓ/dq2. “(T)” in the first column indicates that the values quoted are
theoretical estimates. The form factorF‖ and the ratiosP1 and P′1 are averaged over each
q2 bin using heavy-to-light form factor at large recoil (for 0.10 GeV2 ≤ q2 ≤ 12.86GeV2)
and heavy-to-light form factor at low recoil (for 16 GeV2 ≤ q2 ≤ 19 GeV2). The region
14.18 GeV2 ≤ q2 ≤ 16 GeV2 is neglected as the form factors can not be calculated reliably in
this region. It should be noted that in the first bin theAFB approaches zero in which case the
solution ofC10 andF⊥ can no longer be derived. Therefore the values ofC10 in the first bin
should not be taken too seriously.

F⊥ in Ref. [114]. The measuredF⊥ are tabulated for each dilepton invariant mass squared

bins in Table 5.2 and denoted by“(E)”. We compare the measured values with the theoretically

predicted values (“(T)”) from Eq (4.74). Also tabulated arethe predicted values ofC10 which

are denoted by “(T)”. To tabulate the predicted values we have used the measured values ofFL
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q2(GeV2) 4m2
µ-2.00 2.00-4.30 4.30-8.68 10.09-12.86 16.00-19.00 1-6

F⊥ (E) 0.36+0.14
−0.11 0.11+0.09

−0.15 0.31± 0.09 0.15+0.12
−0.13 0.08+0.13

−0.14 0.22+0.10
−0.11

F⊥ (T) 0.31±0.03 0.15±0.04 0.20±0.03 0.22±0.03 0.12±0.01 0.17±0.03
|C10| (T) 12.91±1.07 2.60±0.78 2.88±0.32 2.0±0.25 2.55±0.29 3.26±0.45

Table 5.2: The same as Table 5.1 but with 1.0 fb−1 LHCb data [114]. “(E)” in the first column
indicates that the values quoted are experimental estimates. F⊥ (E) is computed directly from
data using Eq. (3.30) and the value ofS3 quoted in Ref. [114]. The values of|C10| seem
to decrease with the larger data set used and are marginally lower than theoretical estimates.
Unfortunately, the cause of discrepancy in|C10| can not be fixed, it could either be due to failure
in estimatingF‖ or perhaps be a signal new physics. Note that in the 0.10 GeV2 ≤ q2 ≤ 2 GeV2

region|C10| is still large even with improved statistics. We emphasize that the two values ofF⊥
are in good agreement almost throughout theq2 region. It should be noted that in the first bin
the AFB approaches zero in which case the solution of|C10| andF⊥ can no longer be derived.
Therefore the values of|C10| in the first bin should not be taken too seriously.

andAFB from Ref [114]. The form factorF‖ and the form factor ratiosP1 andP′1 are calculated

in the same way as for the Table 5.1. The 14.18 GeV2 ≤ q2 ≤ 16GeV2 bin is neglected as the

the form factors are not reliably evaluated in this region. The standard model estimate ofC10

is perturbative calculation. However, our expression ofC10 (see Eq-(4.62)) incorporates both

the perturbative and the nonperturbative physics. Therefore, our estimate ofC10 is not directly

comparable to the standard model estimate.

5.2 The FL − AFB region.

The observablesFL andAFB are constrained by Eq (4.78). As shown in Fig. 5.1, the allowed

values ofFL andAFB are constrained within the solid blue triangle. The LHCb hasrecently

performed in Ref. [126], a log-likelihood fit to theAFB and FL data in the differentq2 bins.

The fits are shown in Fig. 5.4. We emphasize that the data [126] is consistent with the allowed

domain in Fig. 5.1. If the measuredFL and AFB in a givenq2 bin are outside the triangle

then that is a clear signal of new physics. We note that since the Eq (4.78) does not involve

any hadronic form factor, the violation of the constraint isa clean signal of new physics. The

other details in the Fig. 5.1 correspond to the values of|C10| which are shown by the dashed

lines. The values of|C10| are calculated from Eq. (4.62) using experimental data forFL, AFB
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and branching fractions from Ref [113]. Using the same experimental data, the values ofF⊥

are calculated using Eq (4.74) and are plotted by dashed lines in Fig.5.2. The different panels

correspond to different dilepton invariant mass squaredq2 bins. The form factorF‖ and the

form factor ratiosP1 and P′1 are calculated using heavy-to-light form factor at large recoil

(0.10 GeV2 ≤ q2 ≤ 12.86GeV2) and is averaged over each bin. In the low recoil region these

quantities are calculated using heavy-to-light form factor at low recoil and is averaged over each

of theq2 bin. The 14.18 GeV2 ≤ q2 ≤ 16GeV2 bin is neglected due to the reasons mentioned

before. In Fig. 5.1 and Fig.5.2 we have assumed thatR = −1. The sensitivity of the triangular

region onR is shown in Fig. 5.3 for three choices ofR: R = −10,−1, 10. As mentioned in the

caption the dashed blue line corresponds toR= −10, the solid black line corresponds toR= −1

and theR= 10 case is shown by large-dashed red line. The triangular region is sensitive to the

value ofR in the largeq2 bins and not significantly sensitive in the lowq2 bins. The lines inside

the triangles correspond to the values ofF⊥.

5.3 Model independent bound on FL and F‖.

In Sec. 4.10 we derived relations among observables that arefree from any hadronic form

factors. The relations are in terms of inequality and are given in Eqs. (4.111), (4.112) and

(4.113). Moreover, in Eq. (4.116) the observableA4 is expressed in terms of the three helicity

fractions and angular asymmetriesA5 andAFB. One can hence eliminate theA4 observables

from Eq. (4.113) and obtain constraints involving three helicity fractions, AFB and A5. The

consequences of these constrained relations can be studiedas bound on two helicity fractions

FL andF⊥. In Fig 5.5 we have assumed different values ofAFB andA5 and shown the allowed

regions ofFL andF⊥. In the first panel of Fig 5.5 we assume|AFB| = 0 and if A5 = 0 then

allowed values ofFL and F⊥ are constrained between the two solid (black) lines. With the

increasing values ofA5 the allowed region is constrained from the left. This is shown by

the dot-dashed (red), dashed (purple) and dotted (blue) lines. These three lines correspond to
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Figure 5.1: The allowedFL −AFB region is constrained by Eq (4.78) within the solid blue trian-
gle. The ratioR is assumed to be -1. The different panels correspond to the different dilepton
invariant mass squared bins. The values of the form factor ratios P1 andP′1 are appropriately
averaged in differentq2 bins. Inside the triangles, the solid (black dashed) lines correspond to
the values of|C10| calculated from Eq. (4.62). The red cross correspond to the LHCb data [113].
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Figure 5.2: The same as Fig. 5.1 but the black dashed lines correspond to the values ofF⊥
calculated using Eq (4.74).
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Figure 5.3: The same as Fig. 5.2. The sensitivity of the triangular region toR is studied for
three choices ofR. The triangle in blue (small dashed), black (solid) and red (large dashed)
correspond toR = −10,R = −1 andR = 10 respectively. The lines inside the triangles are the
values ofF⊥.
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Figure 5.4: Log-likelihood fit the values ofAFB andFL performed by LHCb [126] indicating
a triangular boundary. We emphasize that these triangular domains are consistent with the
regions shown in Figs. 5.1, 5.2 and 5.3.
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|A5| = 0.15, |A5| = 0.30 and|A5| = 0.45 respectively. If the value of|AFB| is increased then

both the solid (black) lines move towards the left constraining the region from the right. This

is shown in the second panel of Fig 5.5 for|AFB| = 0.15 and in the subsequent panels. These

figures illustrate the fact that the observablesFL, F⊥, AFB andA5 are correlated with each other

and such correlations are independent of any hadronic uncertainties, the violation of which is

a clean signal of new physics. As an example we refer to the fourth panel of Fig 5.5. Here

|AFB| = 0.45 and the dotted (blue) line for|A5| = 0.45 is outside the allowed region (between

the two solid black lines) ofFL andF⊥. This is a violation of the relations given by Eqs. (4.111),

(4.112) and (4.113).

In Fig. 5.6 we have shown theFL-F⊥ regions which are similar to Fig 5.5. However, we

have used the values of|AFB| given in eachq2 bins from Ref. [114]. The solid lines (in blue)

correspond to the central value ofAFB and the dot-dashed (in red) and dotted (in black) lines

correspond to the experimental error inAFB. SinceA5 has not been measured yet we have

assumed|A5| = 0. The experimental values ofFL andF⊥ Ref. [114] are shown by black cross.

In the first bin (4m2
µ ≤ q2 ≤ 2 GeV2) the measured value ofFL andF⊥ is at the boundary of the

allowed region forAFB = 0.00+0.08+0.01
−0.07−0.01. However for a non-zero value ofA5 the boundary line

in the left will be shifted towards right and theFL − F⊥ point will be outside the region. In the

third bin 4.30 ≤ q2 ≤ 8.68 GeV2 (see the third panel of Fig. 5.6) theFL − F⊥ point is inside

the allowedFL − F⊥ region and in the rest of the bins theFL − F⊥ points are at the boundary.

As noted in all these plots theA5 is assumed to be zero. So to see if the Eqs. (4.111), (4.112)

and (4.113) are violated or not the observableA5 has to be measured. As noted in Sec. 4.6,

the Eq. 4.81 imply constraint onFL − F⊥ in terms ofP1, P′1 andR. As shown in Fig.4.2 such

constraints forR = −1 is well approximated by a line. These constraints are againshown in

Fig. 5.6 by long dashed lines. In the third bin the measured value of FL − F⊥ is not consistent

with the bound. In the rest of the bins the consistency holds within the measured error band of

FL andF⊥.
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Figure 5.5: The requirement thatZ1,Z2,Z3 must be real, for any consistent set of independent
observablesAFB, FL, F⊥ andA5 constrains the allowedFL-F⊥ parameter space to lie only within
the solid black lines.A4 is given by Eq. (4.116). Even within the allowedFL-F⊥ domain only
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obtaining the constraints depicted in these plots.
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Figure 5.6: Same as in Fig. 5.5, but the values ofAFB are taken from Ref. [114]. The values of
A5 are assumed to be zero and the values ofFL andF⊥ as measured in Ref. [114] is shown by
black crosses.
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Chapter 6

Summary and Conclusion.

In this thesis we have derived several important new results. After a brief introduction to

the standard model in Chapter 1, we have discussed the theoretical framework in Chapter 2,

followed by the differential decay distribution ofB → K∗ℓ+ℓ− in Chapter 3. In Chapter 3 we

have introduced the observablesΓf , FL, F⊥, AFB, A4 andA5 that can be extracted from angular

analysis. While the partial decay rateΓ f can be measured by angular integration, the other

observables require a study of angular distributions. We showed how uni-angular distributions

in the azimuthal angleφ can be used to measure the helicity fractionF⊥. FL and AFB have

already been measured by studying the uni-angular distribution in θℓ. A4 andA5 can only be

measured by a complete angular analysis involvingθℓ andφ requiring higher statistics. The

main results of the thesis are derived and discussed in Chapter 4 and Chapter 5. In Chapter 4,

after setting up our notation and defining the observables interms of form factors, we expressed

the amplitude in the most general form within the Standard Model asAL,R
λ
= CL,RFλ−G̃λ, where

λ = {0,⊥, ‖} is the helicity of theK∗, CL,R = Ceff
9 ∓ C10 andL,R define the chirality of theℓ−.

The form factorsFλ andG̃λ are expressed in terms of conventionalB→ K∗ form factorsV, A1,2

andT1,2,3. To be exact̃Gλ ≡ Ceff
7 Gλ + · · · with the dots representing the higher order and “non-

factorizable” contributions and only at leading orderGλ’s are related toT1,2,3. It may be noted

that even at leading orderCeff
7 andGλ cannot be separated andCeff

7 can only be defined at leading

order on assumingGλ. The six observables are thus defined in terms eight parameters, the six
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form factorsFλ, G̃λ and two Wilson CoefficientsC9,10. Hence only six theoretical parameters

can be eliminated in terms of observables and a minimum of tworeliable theoretical inputs

are needed, to resolve between new physics and hadronic contributions. This is made possible

by the significant advances in our understanding of form-factors that permit us to make truly

these reliable inputs. One of our achievement are derivation of “clean relations” that permit the

verifications of these hadronic inputs.

TheB→ K∗ form factors are estimated using heavy quark effective theory and the treatment

varies depending on the recoil energy of theK∗. At large recoil the ratio of the form factorsP1 =

F⊥/F‖ andP′1 = G̃⊥/G̃‖ are reliably evaluated atO(ΛQCD/mb) to be free from universal wave

functions and are unaltered by “non-factorizable” contributions and higher order corrections

in αs. In the large recoil limit we therefore chooseP1 andP′1 as the two inputs in addition to

observables. In the low recoil limit, the relationP1 = P′1 between the form factors serves as an

additional input.

We summarize briefly a few significant new results derived in Chapter 4. The simple ana-

lytic derivation and solutions to the Wilson coefficients in terms of the observables and “clean”

form factors were achieved by defining new variablesrλ = G̃λ/Fλ −C9. These enable solutions

to C9 andC10 in terms of observables,P1, P′1 and the form factorF‖ to be

C9 =

√
Γf√

2F‖

(F‖P1P′1 − F⊥) − 1
2(P1 − P′1)Z1

[
± (P1−P′1)

√
P2

1F‖ + F⊥ + P1Z1

] , (6.1)

C10 =

√
Γf√

2F‖
2
3

AFB
[
±

√
P2

1F‖ + F⊥ + P1Z1

] . (6.2)

whereZ1 is expressed in terms of observables in Eq. (4.28). Two additional solutions forC9 and

C10 can be obtained in terms of different observables. These are obtained by the replacements

• F‖ → FL, AFB →
√

2A5, F‖ → F0, G‖ → G0, which also imply thatr‖ → r0, P1 → P2

andP′1 → P′2.

• F‖ → FL + F‖ +
√

2πA4, AFB → AFB +
√

2A5, F‖ → F‖ + F0, G‖ → G‖ + G0, which also

imply r‖ → r∧, P1 → P3 andP′1 → P′3.
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We found that the form factor ratiosP1, P2 andP3 can be directly measured in terms of the

ratio of helicity fractions atq2 corresponding to the zero crossings of asymmetriesAFB, A5 and

AFB +
√

2A5 respectively by the relations:

P1 = −
√

F⊥√
F‖

∣∣∣∣∣∣
AFB=0

P2 = −
√

F⊥√
FL

∣∣∣∣∣∣
A5=0

(6.3)

P3 = −
√

F⊥√
FL + F⊥ +

√
2πA4

∣∣∣∣∣∣
AFB+

√
2A5=0

(6.4)

Since we have neglected the tinyCP violation in the standard model, we find that the ob-

servables must satisfy the following inequalities which are completely free from any hadronic

uncertainties and hence clean. These relations are,

4F‖F⊥ ≥
16
9

A2
FB (6.5)

4FLF⊥ ≥
16
9

(
√

2A5)
2 . (6.6)

4(1− F⊥)F⊥ ≥
16
9

(A2
FB + 2A2

5), (6.7)

4(FL + F‖ +
√

2πA4)F⊥ ≥
16
9

(AFB +
√

2A5)
2. (6.8)

In Figs. 5.5 and 5.6 we have plotted the constraints onFL−F⊥ that depends only on observables.

The condition 4F‖F⊥ ≥ 16/9A2
FB implies that if|AFB| is large,FL must be small so that 4F‖F⊥

can be sufficiently large. Our approach is sensitive enough to already show tensions in the

data [114].

The first set of solutions of Wilson coefficientsC10 andC9 (see Eqs.(4.65) and (4.62)) are not

“clean”. This set however leads some very important resultsincluding the constraints among the

standard model observables. For example, the ratioC9/C10 is obtained as a “clean expression”.

Assuming the theoretical estimate ofC9/C10 which is reliably evaluated at NNLL in standard

model we have “cleanly” predictedF⊥ in Eq. (4.74). Requiring that the observableF⊥ is real

91



we showed that the valid domain ofAFB is constrained in terms ofFL as follows:

−3(1− FL)
4

T− ≤ AFB ≤
3(1− FL)

4
T+, (6.9)

whereT± is given in terms ofP1, P′1 andR in Eq. (4.78). The above equation constrains the

values ofFL andAFB within a triangular region shown in Figs. 5.1, 5.2 and 5.3. The existence

of such a triangular bound is already hinted in Ref. [126]. In Eq. (4.80) we have expressed the

forward backward asymmetryAFB in terms of the two helicity fractionsFL andF⊥. Since the

AFB has to be real there exist a constraint between the two helicity fractionsFL andF⊥ which

we have derived in Eq. (4.81)). It is interesting to notethat FL and F⊥ are constrained in the

Standard Model to lie in a very narrow region, well approximated by a lineas shown in Fig. 4.2

and 4.4.

TheC9/C10 andCeff
7 /C10 ratios in Eqs. (4.73) ratio in (4.88) were combined to obtain

(2
3

C9

C10
P
′′

1 −
4
3

Ceff
7

C10
P1

)
AFB = (P1

2F‖ + F⊥ + P1Z) > 0. (6.10)

If the AFB zero crossing is confirmed [114] with AFB > 0 at smallq2, then based on the signs

of the from factors it is unambiguously concluded that the signs ofC7/C10 andC9/C10 are

in agreement with the Standard Model, i.e.Ceff
7 /C10 > 0 andC9/C10 > 0 as long as other

constraints likeZ2
1 > 0 hold. In Ref. [114] the zero crossing is indeed seen. However, in the

2GeV2 ≤ q2 ≤ 4.3GeV2 bin Z2
1 > 0 is only marginally satisfied. These conclusions are exact

and not altered by any hadronic uncertainties.

We have obtained three sets ofC9/C10 andCeff
7 /C10 solutions involving difference observ-

ables and form factor ratios. Since, the form factor ratiosP1 andP′1 are the ones that are most

reliably estimated in both large recoil and low recoil limits, we obtain relations forP2, P′2 and

P3, P′3 in terms ofP1, P′1 and observables. Equating the relations obtained forC9/C10 and

Ceff
7 /C10 in Eqs. (4.73), (4.88) with those in Eqs. (4.76), (4.97) and Eqs. (4.77), (4.98) we get:

P2 =
2P1AFBF⊥√

2A5(2F⊥ + Z1P1) − Z2P1AFB
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P′2 =

√
2A5

(
F⊥ − F‖P2

1

)
P2

2P′1

AFBT2(P1 − P′1) +
√

2A5

(
F⊥ − F‖P2

1

)
P2P′1

P3 =
2P1AFBF⊥

(AFB +
√

2A5)(2F⊥ + Z1P1) − Z3P1AFB

,

P′3 =
(AFB +

√
2A5)(F⊥ − F‖P2

1)P2
3P′1

AFBT3(P1 − P′1) +
√

2A5(F⊥ − F‖P2
1)P2

3P′1
,

whereT2 = P1(F⊥ − FLP2
2) andT3 = P1[F⊥(1 + P2

3) − P2
3(1 +

√
2πA4)]. Even thoughP2, P′2

andP3, P′3 inherently depend onξ‖ andξ⊥ we have expressed them in terms of “clean relations”

above.Hence, in our approach, all the expressions for observablesare “clean,” with only the

Wilson coefficients Ceff
7 , C9 and C10 being expressed in terms of only one form factorG‖ or F‖.

We have derived significant constraints between observables that can be used to test for new

physics. The constraint purely in terms of observables arises sinceP2 andP3 are expressed in

terms of observables andP1 while P3 itself is related in Eq. (4.52) toP1 andP2. We obtain the

interesting constraint (4.116) among observables:

A4 =
8A5AFB

9πF⊥
+
√

2

√
FLF⊥ − 8

9A2
5

√
F‖F⊥ − 4

9A2
FB

πF⊥
. (6.11)

In Fig. 4.5 we plottedA4 as function ofFL andAFB where the values ofA5 has been assumed.

We have paid special attention to the low recoil limit and derive two new relations

√
2A5 = AFB

√
FL√
F‖

(6.12)

A4 =

√
2
π

√
FLF‖ (6.13)

in terms of observables alone. These two relations allow us to test not only the validity of the

low recoil approximation but also the presence of New Physics. The value ofA5 predicted

by these relations tests the validity of the low recoil approximation, whereas the value ofA4

verifies the validity of SM. If both relations hold we verify that the low recoil approximation

is correct and that no new physics can exist. If both relationfail we can conclude that the low

93



recoil approximation fails butone can never-the-less still test for new physicsby Eq. (4.116),

which is valid in general. IfA5 is accurately predicted butA4 does not have the value given by

these two relations one can conclude that there is new physics and that the low recoil limit is

accurate.

In this thesis we re-examined the new physics discovery potential of the modeB→ K∗ℓ+ℓ−.

This mode has an advantage as a multitude of observables can be measured via angular anal-

ysis. We showed how the multitude of related observables obtained fromB → K∗ℓ+ℓ− can

provide many new clean tests of the Standard Model and discriminate new physics contribu-

tions from hadronic effects. The hallmark of these tests is that most of them are independent

of the unknown form factorsξ‖ andξ⊥ in heavy quark effective theory. In the large recoil limit

(at O(ΛQCD/mb)) these relations are valid to all orders inαs. We derive a relation between

observables that is free of form factors and Wilson coefficients, the violation of which will be

an unambiguous signal of New Physics. We also obtained for the first time relations between

observables and form factors that are independent of Wilsoncoefficients and enable verification

of hadronic estimates. We show how form factor ratios can be measured directly from helicity

fractions without any assumptions what so ever. We find that the allowed parameter space for

observables is very tightly constrained in Standard Model,thereby providing clean signals of

New Physics. We examine in detail both the large-recoil and low-recoil regions of theK∗ me-

son and probe special features valid in these two limits. Another new relation involving only

observables that would verify the validity of the relationsbetween form-factors assumed in the

low-recoil region was also derived. The several relations and constraints derived will provide

unambiguous signals of New Physics if it contributes to these decays.We emphasize that in our

approach, C9/C10 and all the expressions independent of Wilson coefficients are “clean" in the

large recoil limit and in the low recoil limit they are reliably calculated as they do not depend

on the universal form factorsξ‖ andξ⊥.
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