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Synopsis

The advent of high-temperature superconductors almost thirty years back has

led to a profusion of theoretical models for analyzing the phenomenon. The

spin liquid–a phase of matter defined by a pure Mott insulator with no magnetic

order–is one such model. Subsequently, spin liquids have evolved in a path sep-

arate from high-Tc superconductors after the discovery of a number of materials

which demonstrated behaviour that classified them as spin liquids. In modern

hard condensed matter physics, both theoretical and experimental, spin liquids

have carved out a niche of their own. As of now, around 180 different types of

spin liquids have been classified based on symmetry properties[1]. Out of these,

a certain Z2 type spin liquid–called the Kitaev spin liquid[2]–has gained a lot of

interest due to the exact solvability of the ground state. Its stability, however,

has been an issue as perturbations to the Kitaev model destabilize the spin liquid

phase and allow for long-range order to set in[3, 4]. In this thesis, I try to address

some aspects of this question.

Experimental detection of spin liquids presents another set of challenges for the

condensed matter community in recent years. In this thesis, I try and find a phe-

nomenon that can act as a signature of Kitaev spin liquids in materials as well as

in optical lattices. For example, I ask if it might be possible to use a Hubbard

model–the typical model of Mott insulators–to stabilize a Kitaev spin liquid in
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optical lattices, an exercise which necessitates a search for special properties of

said model. The advantage of working with optical lattices–namely, the freedom

to tweak tuning parameters–disappears when we take this question to domain of

actual materials. Since iridates have recently been shown to possess Kitaev-like

correlations using Raman response as an experimental probe, we analyze theo-

retical models of iridates and study Raman responses in depth.

Stable Algebraic Spin Liquid in a Hubbard model

A Hubbard model with spin-dependent hopping on a honeycomb lattice, first pro-

posed by Duan et al [5], was shown to have properties similar to a Kitaev spin

model for large onsite interactions and strong spin-dependant hopping. We call

this the Kitaev-Hubbard (KHUB) model. The KHUB model was at the primary

target of our investigations. When we mapped out its phase diagram using nu-

merical techniques such as the Cluster Perturbation Theory (CPT) and the Varia-

tional Cluster Approximation (VCA) method, we detected three distinct phases;

a Semi-Metallic phase where magnetic order is absent and the charge gap is zero,

an Anti-ferromagnetic Insulator phase with anti-ferromagnetic order and non-

zero charge gap, and a new phase where magnetic order is absent but the charge

gap is non-zero. This new phase is the Spin Liquid phase.

Since spin liquids are generally susceptible to perturbations, their stability needs

to be ensured. In our model, time-reversal symmetry for the Mott phase is suf-

ficient to ensure stability. Using the method of Perturbative Canonical Unitary

Transformations (PCUT), I computed the effective spin model in the large U

limit and found that it contains an even number of spin operators. Based on

this, and using the particle-hole symmetry operator, we proved that the effective
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spin model will be time reversal symmetric upto all orders of perturbation theory.

Then using perturbation theory we also computed the long-wavelength spin-spin

correlations and found that they decay as power law. This established the fact that

the spin liquid phase in the KHUB model is actually an Algebraic Spin Liquid

phase.

We used the Majorana mean field theory of the corresponding fourth order ef-

fective spin Hamiltonian to show that no spontaneous time reversal symmetry

breaking occurs in the KHUB model. Since this proves the absence of a chi-

ral spin liquid phase we established that there is no transition from an ASL to a

possible chiral spin liquid phase, thus ensuring the stability of the ASL phase.

Experimental detection of Kitaev spin liquids using Raman Re-

sponse

At low temperatures, sodium iridates of the form Na2IrO3 exhibit long-range

zig-zag magnetic order, while at high temperatures the same compounds behave

like spin liquids. The low energy states of the Ir4+ ions in these compounds

form pseudo spin-half moments that live on the honeycomb lattice[6]. The high

spin-orbit coupling present in these compounds could lead to Kitaev-like corre-

lations. An exact theoretical model that would fit all its properties has not been

forthcoming. Experimentally, it has been shown that the Raman response of this

compound contains a broad band, an observation which is at odds with how com-

pounds having magnetic order behave.

The Raman response is a two-photon process where the incoming photon gets in-

elastically scattered from the system and the outgoing photon is collected and an-

alyzed. The polarization dependence of Raman scattering experiments provides
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information about the underlying magnetic states in the system. Unfortunately,

the compounds in question seemed to show very weak polarization dependence.

This necessitated a theoretical approach.

Many variants of the Kitaev-Heisenberg model have been utilized to describe the

iridates in question. Using Majorana mean field decoupling of one such model

on a honeycomb lattice, we studied the energetically favourable states at zero

temperature, concentrating our analysis near the spin liquid-zigzag boundary. By

computing the Raman Response for the model at zero temperature in a region

of parameter space where zig-zag magnetic order exists with short range corre-

lations, we found that the Raman response contains a broad band, which is a

signature of the short range correlations of the nearby spin liquid phase. We also

found that the Raman intensity is weakly dependent on the polarization direction.

Thus our theoretical results confirmed the experimental findings qualitatively and

also agreed well, quantitatively.

Alternatively, in sodium iridates of the form Na4Ir3O8, the Ir planes form a

hyper-kagome lattice[7]. Unlike Na2IrO3, this compound is yet to provide any

experimental evidence regarding magnetic ordering. Although a number of the-

oretical models that exhibit quantum spin liquid behaviour have been used to

describe the compound, the dearth of supporting experimental evidence has ren-

dered such exercises nearly useless. Nevertheless, experiments conducted re-

cently have detected a broad Raman band in these class of compounds as well.

Thus, taking a hint from the technique we employed to analyze Na2IrO3 iridates,

we once again turn to the Kitaev-Heisenberg model. The Majorana mean field

decoupling of the hyper-kagome lattice is quite unlike its honeycomb counter-

part, in that the gauge sector is gap-less and the spinon sector has a Fermi surface

instead of a Dirac point. The lack of evidence of ordering led us to focus on the

4



spin-liquid regimes in the Kitaev-Heisenberg parameter space. Our theoretical

Raman response results for Na4Ir3O8, which once again tally well with experi-

ments.
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Chapter 1

Introduction

Two Roads diverged in a wood,

and I took the one less traveled by,

And that has made all the

difference.

Robert Frost

To the famous song by Metallica, “Nothing Else Matters”, I add “..., except

Matter”.

Condensed matter theory, one of the pillars of modern day physics, deals with the

various phases of matter. Using the underlying symmetry of matter, Landau [14]

proposed a theory of phase transition that has been highly successful in explain-

ing the behaviour of many such phases; the classic solid-liquid transition, the

superfluidity of He, superconductivity in metals, and various magnetic orders are

some such examples. Among the various fascinating fields that condensed matter

has to offer, strongly correlated fermionic systems, a hotbed of frenetic activity

on the theoretical and experimental sides of cutting-edge physics research, offers
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up many strange and exotic phenomena that Landau’s formalism fails to explain.

The physics of spin liquids is one such example, and requires an understanding of

topology of the collective excitations. The study of spin liquids is currently in the

spotlight due to its importance in explaining the physics of high-Tc superconduc-

tors. The popularity of spin liquids has gained a further boost very recently with

the advent of various organic and inorganic salts, and is now one of the leading

fields of study in condensed matter physics.

Anderson [15] was the first to look at a spin liquid as a Mott phase lacking local

magnetic order. Its relevance to the physics of high-Tc superconductors[16, 17]

led to the development of a gauge theory of spin liquids [18, 17] analogous to

quantum electrodynamics (QED). Within this framework, spinons are the coun-

terparts of QED electrons, while the emergent excitation particles called visons

are the counterparts of photons. Attempts at understanding the emergence of

fermionic quasi-particles in spin systems in analogy with the anyonic quasi-

particles in fractional quantum Hall systems has led to a general theory of quan-

tum/topological order in spin liquids [1].

Spin liquids are purely quantum phenomena that do not have a classical paral-

lel. Frustration in magnetic interactions and quantum fluctuations tend to prevent

magnetic ordering. Wen [1] has tabulated around 180 different types of spin

liquids using theoretical techniques. His classification is based on the symme-

try properties of these phases. Experimental evidence for a spin liquid ground

state has been seen, for instance, in the quasi-two dimensional organic material

κ-(BEDT-TTF)2Cu2(CN)3 (dmit salts) [19] where hyperfine nuclear magnetic res-

onance (HNMR) studies show no evidence for long range magnetic order down

to 32mK inspite of the large anti-ferromagnetic interactions O(100K) present.

There is a veritable glut of models as well as materials for example :
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• ZnCu3(OH)6Cl2 Herbertsmithite Kagome lattice [20]: Neutron scattering

experiments on single-crystal samples show that the spin excitations form

a continuum which is a signature of fractional quantum numbers.

• Ba3CuS b2O9 triangular compounds [21] : Apart from showing no mag-

netic order down to 0.2K, the magnetic specific heat revealed a linear-T

dependence below 1.4K. This suggests that a Fermi surface forms at finite

temperatures which fits well with the predicted signatures of a spin liquid

ground state.

• BaCu3V2O8(OH)2 Vesignieite Kagome structure [22]: Magnetic Suscepti-

bility shows no long range order nor a spin gap down to 2K. A broad peak

observed at a finite temperature indicates a gapless spin liquid.

• Na4Ir3O8 three-dimensional Hyper-Kagome lattice [10]: Magnetization

and magnetic specific heat Cm showed the absence of long range magnetic

ordering down to 2K. The large Cm is independent of the applied magnetic

field.

that are proposed to show spin liquid behaviour.

Kitaev [23] constructed an exactly solvable anisotropic spin-1/2 model on a hon-

eycomb lattice that exhibits the important properties of a spin liquid. The frustra-

tion arises here from the anisotropic interactions and not the geometry. The Ki-

taev model can be expressed as a model of two gapless Majorana-Dirac fermions

(spinons) interacting with Z2 gauge fields (visons). A remarkable feature of the

model is that the magnetic flux associated with every plaquette is conserved lead-

ing to the visons being static. Consequently, while multi-spin operators that con-

serve flux have algebraic correlations, those which do not–this includes the single
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spin operators—are extremely short ranged [24]. Tikhonov et. al[3] showed that

spin-spin correlations become algebraic when a single-spin operator is added to

the Hamiltonian. The class of perturbations that can induce algebraic spin-spin

correlations were classified by Mandal et. al. [25] who showed that Ising and

Heisenberg perturbations—which have been studied earlier [25, 26, 27]—do not

induce power law correlations.

Algebraic spin liquids (ASL) a special class of spin liquids that can be realized

in perturbed Kitaev models. Spinons in ASLs are gapless and Dirac-like, and

spin-correlations decay as a power law. ASLs have primarily been studied in

frustrated spin-1/2 Heisenberg anti-ferromagnets [28, 29, 30] and have recently

been realized in an interacting fermion model, the Kitaev-Hubbard model [31]. In

addition to demonstrating power law decay for spin correlations, the ASL shows

similar behaviour for a host of other local order parameters as well. This makes it

intrinsically susceptible to any one of them ordering and inducing a spinon gap,

which makes the ASL immediately unstable. Thus, any realization of this phase

must be accompanied by a mechanism for ensuring its stability. The stability

of the ASL in the Kitaev model is due to time reversal (TR) symmetry : the

two Majorana-Dirac fermions combine to form a single Dirac fermion with an

energy spectrum that cannot have a gap without breaking TR-symmetry. Thus

perturbations must preserve this symmetry in order to ensure a stable ASL phase.

In the model due to Tikhonov et al. [3], single-spin perturbations break TR-

symmetry and thus there is a possibility of a spinon gap developing at higher

orders in perturbation theory. An exactly solvable spin-3/2 model with algebraic

spin correlations has also been constructed [32].

The prevalence of ASLs in the Kitaev-Hubbard model is one aspect of the studies

considered in this thesis. The Kitaev-Hubbard is an interacting fermion model
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proposed to realize the Kitaev model in optical lattice systems [5]. A second

aspect is to find real-world systems that can realize the Kitaev model. Of the

various materials that seem to show effects of the spin liquid phases, we shall

concentrate our study on iridates and in particular sodium iridates: Na2IrO3 with

honeycomb planes and Na4Ir3O8 with hyper-kagome structure.

Sodium Iridates were proposed to be avenues where Kitaev like interactions

might be realized because the strong spin-orbit coupling in these 5d-materials

would lead to orbital dependent anisotropic exchanges which could mimic the

Kitaev couplings [33]. It was realized that in addition to the Kitaev-like in-

teractions the real materials would have direct- and super-exchange Heisenberg

like spin couplings as well. Both these compounds have been modelled by the

Kitaev-Heisenberg model. The Na2IrO3 compound shows zigzag magnetic or-

der at low temperatures whereas the Na4Ir3O8 has not shown any magnetic order

till date. Although a recent ultrafast optical study on Na2IrO3 has claimed to see

signatures of a spin liquid state in the confinement-deconfinement transition of

spin and charge excitations across TN [34], smoking gun evidence of the Kitaev

spin-liquid or of dominant Kitaev interactions has been missing. The current ex-

perimentally constrained estimates of various exchange parameters are obtained

either by comparing theoretical results with magnetic measurements of the Curie-

Weiss scale [35], or from a fitting of the available low energy inelastic neutron

scattering data [36]. Ideally inelastic scattering measurements giving the full mo-

mentum and energy resolved magnetic dispersion spectrum are needed to settle

these issues. Carrying out inelastic neutron scattering measurements is problem-

atic because of the strong absorption by iridium. Inelastic Raman scattering can

also give information about magnetic energy scales. Infact the first estimate of

the magnetic exchange interaction for La2CuO4 were obtained from the position
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of the two-magnon peak in Raman scattering [37]. Raman spectroscopy exper-

imental studies show a broad Raman band for both these compounds. We shall

model these compounds using the Kitaev-Heisenberg model, theoretically study

the Raman intensity and compare the theoretical predictions with the experimen-

tal results.

Chapter-wise summary of the thesis:

• The Kitaev spin liquid is one of the cornerstones of this thesis, and we will

get introduced to it in detail in Chapter 2.

• In Chapter 3 we will discuss the Kitaev-Hubbard model, which, as men-

tioned previously, is a realization of the Kitaev model on the optical lattice.

• We will describe the non-interacting limit of the model in detail and dis-

cuss some of its important topological properties like merging-emerging of

Dirac Points and Chern numbers in Chapter 4.

• Having concluded a review of the model in these two chapters, I shall then

turn to my describing the interacting limit of my work on this model. In

Chapter 5, I shall describe the numerical techniques that we have used to

study the phase diagram of the Kitaev-Hubbard model at half-filling and

discuss the results obtained which includes the presence of a spin liquid

phase.

• In Chapter 6 we probe the nature of the spin liquid phase using perturbative

continuous unitary transformations, discuss its stability issues and analyt-

ically compute the spin-spin correlation function thereby showing that the

phase is a stable ASL. Then we eliminate the possibility of spontaneous

time reversal symmetry breaking which destabilizes the ASL phase into

20



other spin liquid phases. With that we conclude the first part of my work.

• Chapter 7 begins the second part of my work. Here I will give a brief

introduction to the Iridate materials.

• In chapter 8, I will describe briefly Raman spectroscopy which I shall cal-

culate using the Kitaev-Heisenberg model for the two iridates separately in

Chapter 9 and 10.

• Finally I will conclude my thesis in Chapter 11.
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Chapter 2

A Brief History of Kitaev Model

jAtF nA p� Co sAD� kF , p� Ĉ

lFEje �yAn̂।

mol̂ kro tlvAr̂ kA pwA rhn̂

do MyAn̂ ॥

Kabir Das

It was Kitaev who first studied a frustrated spin model on the honeycomb lattice

[2]. His objective was to apply such a model to problems in quantum information

theory. The toric code model is a limit of the Kitaev model that is used for fault

tolerance and gate operations. Using the Majorana fermion representation and

the Jordan-Wigner transformation, Kitaev found the ground state of this model.

It happens to be one of the models in 2D whose exact solution is known. The

exact solvability of the model combined with the knowledge of its ground state

makes it a suitable model for us to study. The underlying symmetry is the Z2

symmetry and each of the Z2 components take values ±1 giving us a four-fold

degenerate ground state. It took a few years for the condensed matter community

to realize the importance of this model and label the ground state to be a Z2 spin
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liquid.

We cannot hope to cover all the work and the vast literature on the Kitaev model

in these few pages. However, we will give a brief description of the properties of

the Kitaev model which will come in handy further down the line. We shall begin

with the Majorana representation and then move on to the ground state of the

model in this representation. We shall derive a long wavelength Hamiltonian for

the model and study how time reversal symmetry manifests itself in the spin-spin

correlation of this system.

2.1 Ground State of the Kitaev Model

The spin-1/2 Hamiltonian for the Kitaev model on the honeycomb lattice, as

shown in Fig:(2.1), is given by

H = J
∑
〈i j〉α

S α
i S α

j , (2.1)

where S α = σα (the Pauli matrices), with the basis vectors

e1 =
1
2

x̂ +

√
3

2
ŷ (2.2)

e2 = −
1
2

x̂ +

√
3

2
ŷ. (2.3)

This model is highly frustrated as the spins at each site need to satisfy each of the

spin orientations from its nearest representation and quantum mechanically the

spin operators do not commute. Thus the ground state is one in which the spins

are disordered and hence degeneracy of the ground state is also expected. A suit-

able representation to study such a system is the Majorana fermion representation
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Figure 2.1: The honeycomb lattice and its basis with the two sub-lattices. The
colors represent the three types of links X, Y and Z on it.
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Figure 2.2: The representation of Majorana fermions on the honeycomb lattice.

of the spin operators which is given as

σα
i = icibαi , {ci, c j} = 2δi j {bαi , b

β
j} = 2δαβδi j, {ci, bαj } = 0 (2.4)

See Fig:(2.2) for the representation. Since the Hilbert space is extended due to

such a representation, the physical subspace is defined by the constraint

cibx
i by

i b
z
i |ψ〉phys = |ψ〉phys. (2.5)

Therefore the Kitaev model can now be written as
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H = −iJ
∑
〈i j〉α

ciu〈i j〉αc j, (2.6)

where u〈i j〉α = ibαi bαj . These are conserved quantities of the system since they

commute with the Hamiltonian i.e. [H , u〈i j〉α] = 0. Thus the b fermions are static

and have the property u2
〈i j〉α = 1. Therefore it can take values±1 thereby giving it a

Z2 gauge symmetry. The Hamiltonian, when all of ibαi bαj = 1, reduces to nearest-

neighbour hopping of c fermions on a honeycomb lattice which in momentum

basis given by

ciα =
1
N

∑
k

eik·rckα, (2.7)

with α corresponding to the sub-lattice index and c†kα = c−kα, is

H =
∑

k∈HBZ

(
c†kA, c†kB

)  0 i f

i f ∗ 0


 ckA

ckB

 , (2.8)

where f = J(1 + eik1 + eik2), k1 and k2 point along the X and Y bond respectively

and HBZ is half-Brillouin zone. Eq:(2.8) is similar to real fermions hopping in

Graphene, that is in the tight binding model. Graphene has low-energy Dirac

quasi-particles about two points in the Brillouin zone : K and K′. However, since

the c fermions are Majorana fermions, the excitations exist only over half the

Brillouin zone which forces the low-energy modes to constitute a single Dirac

quasi-particle. The continuum theory about the Dirac point is derived by intro-

ducing slowly varying fields ψl(r) such that

crl =
1
2

(
eiK·rψl(r) + e−iK·rψ†l (r)

)
. (2.9)
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Substituting equation (2.9) in equation and expanding about the Dirac point we

find the following continuum Hamiltonian

H =

√
3J
2

∫
d2x ψ†(x) i (τ · ∇) ψ(x). (2.10)

It can be seen that the low energy continuum theory is that of a single Dirac

fermion. The Green’s function for the above Hamiltonian is a solution to the

equation

i
∂t −

√
3J
2
τ · ∇

G(R, t) = δ(R − R′)δ(t − t′) (2.11)

and thus the Green’s function in operator form can be written as

Glm(r, t) = 〈T
(
ψl(r, t)ψ†m(0, 0)

)
〉. (2.12)

We can thus write

Glm = (τ · r − JptI)lm
J2

p

4π
1

(r2 − J2
pt2)

3
2

(2.13)

where τ = (τx, τy) are the Pauli matrices in the sublattice indices and Jp =

√
3J
2

.

Apart from the single particle propagators calculated above, quantities like the

spin-spin correlation have been calculated and have been found to be extremely

short-ranged thanks to the Z2 gauge fields. The spin-spin correlations exist only

upto nearest neighbours and are zero beyond that. For instance, on the x link only

x − x correlation exists and so on [24].

S ab
i j (t) = 〈S a

i (t)S b
j(0)〉 = g<i j>a(t)δa,b. (2.14)
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But the correlation functions are susceptible to change under perturbations. On

adding a single-spin perturbation which acts like a magnetic field [3] the correla-

tions decay as a power-law.

Hp = HK +
∑

i

hi · Si. (2.15)

This term breaks time-reversal symmetry. This opens up a gap and imparts mass

to the Dirac fermion. In 2+1 dimensions, the breaking of time-reversal symmetry

corresponds to adding a mass term and hence opening up a gap in the system. The

short range nature is unaffected by the addition of an anisotropic Heisenberg term

[4] since it is time-reversal invariant.

Hp = HK +
∑
<i j>

JαSαi Sαi . (2.16)

It is thus apparent from this that preserving time-reversal symmetry while si-

multaneously introducing power-law correlations is tricky business. In the next

chapter we shall discuss the Kitaev-Hubbard model, a model proposed to realize

the Kitaev model in optical lattice systems, in which power-law correlations exist

and time-reversal symmetry is preserved.
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Chapter 3

The Kitaev-Hubbard Model

Nobody owns the world. So feel

free to explore it.

Erghie Cabaltica

In 2003, Duan et al.[5] added an anisotropic spin-dependent hopping term to

the classic Hubbard model that leads to a high degree of frustration in the effec-

tive spin model giving a Kitaev model. We call this modified model the Kitaev-

Hubbard model, and write its Hamiltonian as

H =
∑
〈i j〉α

{
c†i

(
t + t′σα

2

)
c j + H.c

}
+ U

∑
i

ni↑ni↓ (3.1)

where ciσ annihilates a fermion of spin projection σ =↑, ↓ at site i (the spin index

is implicit in the first term), σα (α = x, y, z) are the Pauli matrices, nσ ≡ c†σcσ is

the number of fermions of spin σ at site i, and 〈i j〉α denotes the nearest-neighbor

pairs in the three hopping directions of the lattice (see Fig. 3.1). In general, the

spin-dependent term breaks time reversal symmetry although the complete model

is itself particle-hole symmetric.
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σx

σy

σz

Figure 3.1: The honeycomb lattice with the two sub-lattices marked by white and
black dots. The six-site cluster used in this work is shown as the shaded area.
The σi label the different spin-dependent hopping directions (blue solid lines),
whereas the inter-cluster bonds are shown as dashed lines.

3.1 Analysis of Experimental Realization of KHUB

model

As described earlier, the Kitaev-Hubbard model, which I shall henceforth ab-

breviate as KHUB, is a model on the honeycomb lattice with spin-dependent

hopping. This can be experimentally realized in a number of ways [38]. For ex-

ample, three intersecting laser beams at an angle of 120◦ to each other will form

an optical honeycomb lattice [5, 38]. In this section, we systematically derive the

spin-dependent hopping on the honeycomb lattice using the method suggested by

Duan et. al. [5] which is different from that discussed earlier [39].

Most fermionic optical lattice experiments are performed using 40K atoms [8]. In

the absence of external magnetic field the 2S 1/2 and the 2P1/2 levels of potassium

each split into two hyperfine levels. Two of the hyperfine energy levels of 2S 1/2

are much lower in energy compared to levels of 2P1/2. FIG. (3.2) is a schematic

30



of the three level system formed by the low levels of 2S 1/2 and a level of 2P1/2.

1
ν

2
ν

3

2
1

Energy Levels

∆

Figure 3.2: Schematic of the effective hyperfine energy levels of 40K. The gap ∆

is orders of magnitude larger in energy compared to the lower energy levels [8].

The lower two energy levels 1, 2 are separated from the third 3 by a gap ∆ ≈ 0.3eV

which is orders of magnitude larger[8] than the hopping parameter ≈ 10−13eV

seen in typical optical lattice experiments [39]. Two blue de-tuned laser beams

L1 and L2 excite virtual transitions between the first and the third (1→ 3) and the

second and the third (2 → 3) levels respectively. Since these virtual transitions

are fast compared to the hopping of the atoms, a local microscopic Hamiltonian

can be written as

H =

∫
d2x

2∑
i=1

εiC
†

i (x)Ci(x) + ∆C†3(x)C3(x) +

2∑
i=1

giC
†

3(x)ai(x, τ)Ci(x) + h.c.

(3.2)

Here εi represents the energies of 1 and 2. Ci is the atomic creation operator

for the i-th energy level at x. The last two terms in the above expression arise

due to the interaction of the atom with the laser beams. The wavelengths of the

laser beams is such that it only causes transitions from the energy levels 1 and 2
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to the energy level 3. Here g1 and g2 represent the strength of these transitions

respectively and ai(x, τ) represents the electromagnetic field. The effective two-

level system can be obtained by integrating out the third energy level. The action

S in the path integral formalism for the three level system can be written as

S = −

∫
dτ

 3∑
i=1

C†i (x)∂τCi(x) +H

 . (3.3)

Integrating the third energy level we obtain the effective action of the two-level

system as

S e = −

∫
dτdτ′

∫
d2x

2∑
i, j=1

C†i (x, τ)Gi j(x, τ, τ′)C j(x, τ′) (3.4)

where the matrix G is given as

Gi j(x, τ, τ′) = ∂τδi j + εi(x)δi j + gig ja∗i (x, τ)〈τ|
1

∂τ + ∆
|τ′〉a j(x, τ′) (3.5)

Since the beams are monochromatic, the electromagnetic fields can be written as

ai(x, τ) = eiνiτbi(x), where νi is the frequency of transition from the i-th, i = 1, 2,

energy level to the third energy level. This is clearly seen in FIG.(3.2). Thus the

effective new G matrix is given by

Gi j(x, τ, τ′) = ∂τδi j + εi(x)δi j +
gig j

∆
b∗i (x)b j(x). (3.6)

The two low lying energy levels can be represented by pseudo-spin indices σ and

effective potential seen by the pseudo-spins is given as

Vσσ′

s (x) = gσgσ′b∗σ(x)bσ′(x). (3.7)
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When N laser beams of varying intensities and directed along the wave-vectors

kn are incident on this effective two-level atom, the field can be written as

bσ(x) =
∑

n

anσ sin(kn · x) (3.8)

with the condition 〈a∗nσan′σ′〉 = δnn′〈a∗nσanσ′〉. This implies that the fields aris-

ing due to different laser beams are independent. The effective potential which

depends on the spin becomes

Vσσ′

s (x) = gσgσ′
∑

n

sin2(kn · x)a
′∗
nσa′nσ′ . (3.9)

Thus the spin dependent potential can be varied by tuning the laser beams L1 and

L2.

The spin-dependent potential on the honeycomb lattice can be generated by tun-

ing three lasers with different strengths oriented along the three directions X,

Y and Z, at an angle of 120◦ relative to one another [5, 38], FIG.(2.1). The

L1 laser beam is sufficient to generate a spin dependent coupling on the Z link,

aZ↓ = 0. The lasers L1 and L2 directed along X and Y with a relative phase differ-

ence are required to generate the couplings along these directions. Thus we have

g↑aX↑ = g↓aX↓ and g↑aY↑ = ig↓aY↓ respectively for the X and Y directions. We

now write the potential as a sum of spin-independent and spin-dependent parts,

Vs(x) = V(x)I + B(x) · σ (3.10)

where B(x) is the effective space dependent magnetic field generated by the laser
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beams. Its individual components can be written as

Bx(x) = g2
↑|a
′
x↑|

2 sin2(kX · x) (3.11)

By(x) = g2
↑|a
′
y↑|

2 sin2(kY · x) (3.12)

Bz(x) =
1
2

g2
↑|a
′
z↑|

2 sin2(kZ · x) (3.13)

where kX,Y,Z is the wave-vector along X,Y and Z respectively. The spin indepen-

dent potential V(x) can be written as

V(x) = g2
↑|a
′
x↑|

2 sin2(kX · x) + g2
↑|a
′
y↑|

2 sin2(kY · x) +
1
2

g2
↑|a
′
z↑|

2 sin2(kZ · x). (3.14)

This shows that the spin-independent part V cannot be tuned individually as it

is coupled to B(x). So we add an additional spin-independent potential Vσσ′

h (x)

which can be tuned without affecting the spin-dependent part. Now the wave-

function of the atom in the spin-dependent honeycomb lattice potential follows

the time-independent Schrödinger equation of the form

(
p2

2M
δσσ′ + Vσσ′(x)

)
ψσ′(x) = Eψσ(x) (3.15)

where Vσσ′(x) = Vσσ′

h (x)+Vσσ′

s (x) is the total potential. The wave-function of the

atoms can be expanded in terms of atomic orbitals φα(x − xi) which are localized

in the αth sub-lattice of the i-th triangular Bravais lattice, that is

ψσ′(x) =
∑

iα

dσ
′

iαφ
σ′

α (x − xi). (3.16)
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This allows us to compute the hopping parameter as

tσ
′σ

iα jβ =

∫
d2x φ∗σβ (x − x j)

(
p2

2M
+ Vσσ′(x)

)
φσ

′

α (x − xi). (3.17)

The hopping part of the Hamiltonian Eq.(3.1), is applicable when the nearest

neighbours provide the dominant contributions. Thus we need i = j ± 1 for the

X and Y links and i = j for the Z link with α , β. Once we obtain the spin-

dependent hopping the onsite interactions between the atoms in the optical lattice

systems can be created by Feshbach resonance[38].

3.2 Properties of the KHUB model

Over the past few years, the KHUB model has been studied extensively using

both analytical and numerical means. We discuss a few of the findings.

At t′ = 0, the model reduces to the simple spin- and TR-invariant, nearest-

neighbor Hubbard model[40, 41, 42]. The term proportional to t′ is a spin-

dependent hopping term and breaks TR symmetry, S U(2) spin symmetry and

the three-fold spatial rotation symmetry of the t′ = 0 model. It is however invari-

ant under a spatial rotation of 2π/3 combined with a spin rotation of 2π/3 about

the (111) spin axis. At t′ = t, the one-body part of the Hamiltonian is a combi-

nation of the projection operators 1
2 (1 + σα). Thus, only those electrons that are

spin-polarized in the αth direction can hop along the α bonds. At this value of

t′, the effective low-energy spin model, at half-filling and large U, is the Kitaev

honeycomb model.[43, 44]

At U = 0, the non-interacting limit, the model exhibits nontrivial properties [45,

46] such as topological Lifshitz transitions and non-zero Chern numbers which
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we discuss in detailed in the next chapter.
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Chapter 4

Life without interactions of the

Kitaev-Hubbard model

Solitary trees, if they grow at all,

grow strong.

Winston Churchill

In this chapter we investigate the non-interacting limit of the Kitaev-Hubbard

model[31, 45, 46] (KHUB) presented by the Hamiltonian,

H =
∑
〈i j〉α

{
C†i

(tI + t′σα)
2

C j + h.c.
}

+ U
∑

i

ni↑ni↓ (4.1)

There are topological transitions in this regime corresponding to creation and

merging of Dirac Points (DP) which occur at t′/t = 0, 1/
√

3,
√

3. It has been

shown that these features persist even at non-zero values of U [42]. We study, in

detail, the topology of the phases and the transition between them. We point out

possible experimental signals of the topological features.
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4.1 Discrete symmetries and the Pancharatnam-Berry

(PB) curvature

As mentioned earlier, topological phases of insulators have been classified ac-

cording to the presence or absence of certain discrete symmetries [47, 48, 49],

namely time reversal symmetry (TRS), charge conjugation symmetry (CCS) and

their composition which we call particle-hole symmetry (PHS). In this section,

these symmetries are briefly reviewed and the constraints that are imposed on the

Pancharatnam Berry (PB) curvatures are examined for number-conserving, non-

interacting, 2-dimensional fermionic systems. The Hamiltonian for such systems

can be written as

H =

∫
d2k

(2π)2 C†a(k)hab(k)Cb(k) (4.2)

where k goes over the Brillouin zone of a 2-dimensional Bravais lattice, h = h†

is the single-particle Hamiltonian and a, b = 1, . . . ,NB label the sub-lattice and

spin indices. The single-particle Hamiltonian of KHUB in Eq.(4.1), has NB = 4

corresponding to two sub-lattice and two spin orbitals in every unit cell. Setting

t = 1, it can be written as

hKHUB(k, t′) = α† ⊗ Σ(k, t′) + α ⊗ Σ†(k, t′) (4.3)

where α and Σ are 2 × 2 matrices in the sub-lattice and spin space respectively.

α =

 0 0

1 0

 (4.4)

Σ(k, t′) = Pz + Pxeik1 + Pye−ik2 (4.5)
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where k1 = 1
2kx−

√
3

2 ky, k2 = 1
2kx +

√
3

2 ky, kx = k ·x, ky = k ·y and Pα = 1
2 (I + t′σα).

The single-particle spectrum is completely determined in terms of the spectrum

of the positive semi-definite matrix

Σ†Σ = f ∗ f +
3
4

(t′)2 +
t′

2
B · σ (4.6)

where

f =
1
2

(1 + eik1 + e−ik2)

B1 = 1 − t′ sin k1 + cos k2 + cos k3

B2 = 1 + cos k1 − t′ sin k2 + cos k3

B3 = 1 + cos k1 + cos k2 − t′ sin k3 (4.7)

If φ±(k) are the eigenvectors of B(k) · σ, with eigenvalues ±|B(k)|, then they are

also the eigenvectors of Σ†(k)Σ(k) with eigenvalues,

ε2
±(k) = f ∗ f +

3
4

(t′)2 ±
t′

2
|B(k)| (4.8)

The four-component vectors

Φ±±(k) =
1
√

2

 φ±(k)

±eiχ(k)φ±(−k)

 (4.9)

are then the eigenvectors of the single-particle Hamiltonian defined by Eq. (4.3)

with eigenvalues ±ε±(k). χ(k) is a phase factor which we will discuss later.

Fig:(4.1) shows the band structure at t′ = 1.
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Figure 4.1: The non-interacting bands at t′ = 1 showing the chern number ν of
the individual bands.

If we denote the spectrum as,

h(k)un(k) = εn(k)un(k), n = 1, . . . ,NB. (4.10)

In terms of these single particle eigen-functions, the PB vector potential, An
i (k)

and curvature, Bn(k) are given by

An
i (k) = −i(un(k))†

∂un(k)
∂ki

(4.11)

Bn(k) = εi j∂iA
n
j(k). (4.12)

From the PB curvature, the Chern number

νn =
1

2π

∫
d2k
4π2B

n(k). (4.13)

can be computed. Now we discuss effect of the discrete symmetries on the energy

bands and the PB curvature, one by one.
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Time-reversal symmetry (TRS)

The time-reversal transformation replaces particles (holes) with momentum k by

particles (holes) with momentum −k. It is an anti-unitary transformation in the

many-body Hilbert space which we denote by T ,

T −1Ca(k)T = τabCb(−k), T −1T = I, T −1iT = −i (4.14)

All transition amplitudes are invariant under this transformation if there is a uni-

tary matrix τ with τ2 = ±1 such that,

τ†h∗(−k)τ = h(k) (4.15)

Under the time-reversal transformation, Bn(k) = −Bn(−k). Thus if it is a symme-

try, then the Chern numbers, νn are all 0.

The KHUB satisfies the condition

h∗KHUB(−k, t′) = σyh(k,−t′)σy. (4.16)

Thus for time-reversal symmetry to hold the condition in Eq.(4.15) needs to be

satisfied for finite t′, implying that the matrix σyτ has to anti-commute with all

the three Pauli matrices. Since such a matrix does not exist for any t′, the model

in general is not TRS. But at two special points, t′ = 0 with τ = σy and t′ = ∞

with τ = β⊗σy, where β anti-commutes with α and α† the model preserves TRS.
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Charge conjugation symmetry (CCS)

The charge-conjugation transformation replaces particles with momentum k by

holes with momentum k and vice-versa. It is unitary transformation in the many-

body Hilbert space that we denote by C,

C−1Ca(k)C = γabC
†

b(−k), C†C = I, C†iC = i. (4.17)

All transition amplitudes are invariant under this transformation if there is a uni-

tary matrix γ with γ2 = ±1 such that,

γ†h∗(−k)γ = −h(k). (4.18)

If the system has CCS, then all the single particle energies come in pairs with

ε n̄(k) = −εn(k) and Bn̄(k) = −Bn(−k). n̄ corresponds to the band index with

negative of the energy of n. The positive and negative energy bands have opposite

Chern numbers. From Eq.(4.16) it follows that the KHUB has CCS only at t′ = 0

with γ = β ⊗ σy and at t = 0 with γ = σy.

Particle-hole symmetry (PHS)

The particle-hole transformation which we denote as P is the composition TC. It

replaces particles with momentum k by holes with momentum −k and vice-versa.

Note that the nomenclature is not uniform in the literature. For example Schnyder

et. al. [47] refer to what we call CCS as the particle-hole symmetry and what we

call PHS by “chiral” or “sub-lattice” symmetry.
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The particle hole symmetry is anti-unitary in the many-body Hilbert space

P−1Ca(k)P = τabγbcC†c (k), P−1P = I, P−1iP = −i. (4.19)

All transition amplitudes are invariant under the particle-hole transformation de-

fined above if

γ†τ†h(k)τγ = −h(k). (4.20)

The KHUB has PHS with τγ = β at all values of t′. This symmetry is very

common in condensed matter systems. It occurs in all bipartite lattices where the

fermion hopping is only from one sub-lattice to the other. PHS implies that all the

single particle levels come in pairs with ε n̄(k) = −εn(k) and Bn̄(k) = Bn(k). The

sum of the PB curvature over the positive and negative energy bands are equal to

zero individually as we shall show below. We can write

∑
εn(k)

Bn(k) =
∑
εn(k)<0

Bn(k) +
∑
εn(k)>0

Bn(k) = 0 (4.21)

and using the particle hole symmetry property we get

∑
εn(k)<0

Bn(k) =
∑
εn(k)>0

Bn(k) (4.22)

and thus we have ∑
εn(k)<0

Bn(k) = 0 =
∑
εn(k)>0

Bn(k). (4.23)

Thus the total PB curvature vanishes for insulators with PHS at half-filling. Hat-

sugai [50] has shown that in such systems, namely gaped systems invariant under

an anti-unitary transformation, it is possible to define local topologically pro-

tected quantities.
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4.2 Topology of bands with DP and PHS

In this section, we consider the case when the highest negative energy band and

the lowest positive energy band touch at ND DPs, where ND is an even integer.

We denote the DPs by Kn, n = 1, . . .ND. We will show that for systems with

PHS at half filling the PB curvature is given by,

B(k) =

ND∑
n=1

pnπδ
2(k −Kn) (4.24)

where pn is the PB flux passing through Kn. Consequently, the Zak phases[51,

52, 53], ΦZ defined as

ΦZ =

∫
C
Ai(k)dki (4.25)

are topological invariants. These quantities are independent of the contour C,

provided it does not cross a DP. They are completely determined by the position

and indices of the DPs. DPs lead to non-dispersive edge modes and we will show

that the wave-vectors of these edge modes are determined by the Zak phases of

the loops that wind around the Brillouin zone.

PHS implies that in the basis where β is diagonal, the single-particle Hamiltonian

is of the form,

β =

 I 0

0 −I

 , h(k) =

 0 Σ(k)

Σ†(k) 0

 . (4.26)

In general the two blocks defined above can have different dimensions, say N and

M, for example a bipartite lattice with different number of A and B lattice sites.

However if N , M, there will be |N −M| zero eigenvalues at every k, i.e. |N −M|

flat bands. While this may have interesting effects, we concentrate on the N = M

case so that we have an even number of bands, NB = 2N. It is then convenient to

44



replace the index a = 1, . . . ,NB by a pair (r, σ), r = A, B, σ = 1, . . . ,N.

Using the fact that every matrix admits a singular value decomposition, we ex-

press Σ as,

Σ = UAεU
†

B (4.27)

where UA(B) are unitary matrices and ε is a diagonal matrix, εnm = εnδnm, ε
n ≥

0, n,m = 1, . . . ,N. The eigenvalues of the Hamiltonian are then ±εn, the eigen-

vectors being,

u±n =

 UA|n〉

±UB|n〉

 , h|n〉 = εn|n〉. (4.28)

We can write UA(B) = eiΩA(B)ŨA(B), where ŨA(B) are S U(N) matrices with unit

determinant. The PB vector potential and curvature summed over all the negative

energy bands can be computed to be,

Ai(k) =
1
2
∂i (ΩA(k) −ΩB(k)) , (4.29)

B(k) =
1
2

(∂1∂2 − ∂2∂1) (ΩA(k) −ΩB(k)) . (4.30)

Thus B(k) can be non-zero only at points where Ω(k) = ΩA(k) − ΩB(k) has a

vortex type singularity. From Eq.(4.27), we see that NΩ is the phase of det Σ.

Since the matrix elements of Σ are smooth functions of k, Ω can be multi-valued

only at points where det Σ = 0. These are precisely the DPs. Thus we have proved

Eq.(4.24) showing that the PB curvature for systems with PHS at half filling is

that of a set of vortices at the DPs. We also see that det Σ(k) contains complete

information of the topology of the system. The zeros of the determinant are the

positions, Kn, of the vortices. PB flux passing through Kn is Wnπ/N, where Wn is

the winding number of the phase of detΣ(k) around it. We discuss the topological

properties discussed above in the context of the KHUB in the following sections.
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4.2.1 Topology of KHUB with PBC

We now apply the above developed formalism to the non-interacting Hamiltonian

KHUB which has PHS. It exhibits nontrivial properties [45] such as topological

Lifshitz transitions and non-zero Chern numbers which we discuss in detail here,

with t fixed at unity.

The first and the second band of the four band Hamiltonian overlap in the range

0 ≤ t′ < 0.717 beyond which there is a non-zero gap between the bands at all

k. The model also features multiple DPs whose number changes as a function of

the spin-dependent hopping parameter t′. The transition points are seen at t′ = 0,

1/
√

3 and
√

3 (FIG.(4.2)). The location of the DPs can be determined from the

t

31/38DP 2DP 8DP0

4DP

Figure 4.2: Number of DPs as a function of t′.

energy spectra as the values at which the eigenvalues ε(k) vanishes. At the DPs

the wave-functions of the two sub-lattices decouple and we get

Σ(k, t′)ψB = 0 (4.31)

We look for solutions in the k1 = k2 = q direction, which imposes the condition

on q to be

±t′
√

1 + 2 cos(2q) = 1 + 2 cos q. (4.32)

This condition is satisfied by (q, q) = ±Kg = ±(2π/3, 2π/3) for all t′. At t′ = 0,

the Graphene limit, doubly degenerate DPs are located at Kg and −Kg summing
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up to a total of 4 DPs. With increasing t′, this condition is satisfied by another

value of q ∈ (0, π). Thus for 0 < t′ < 1/
√

3 there are a total of 8 DPs located at

±K given by

K = (2π/3, 2π/3), (q, q), (q, 2π − 2q), (2π − 2q, q) (4.33)

where the last two are related to (q, q) through the underlying honeycomb lattice

symmetry. At t′ = 1/
√

3, six of these DPs merge in pairs at (π, π), (0, π) and

(π, 0), leaving only those at ±Kg. For t′ ∈ (1/
√

3,
√

3), there are only 2DPs.

At t′ =
√

3, six DPs emerge from (0, 0) and move away from each other in the

Brillouin Zone with increasing t′. FIG.(4.3) shows the DPs for various t′ [54].

The merging and emerging of the DPs, previously discussed in other systems in

[55, 56, 57, 58, 59], is a topological Lifshitz transition [55, 56]. Lifshitz transition

refers to the transition where there is a change in the Fermi surface without any

symmetry breaking.

In order to examine the Lifshitz transitions, we employ either the density of states

or the thermodynamic consequences of the Fermi velocity, depending upon the

transition point in question. The density of states does not change behaviour for

the transition at t′ = 0. The Fermi velocity, which varies linearly with t′ for t′ > 0

and is thus expected to vanish at t′ = 0, remains non-zero and finite at that value.

This should reflect in many of the thermodynamic properties of the system, and

thus it can be used as a probe for this Lifshitz transition.

The energy dispersion relation of the system for t′ ∈ [0, 1/
√

3) close to each of

the DP is linear and is given by

ε =

√
a(t′)q2

1 + b(t′)q2
2 (4.34)
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where q1 and q2 are small deviations away from the DP and a(t′) and b(t′) are

constants dependent on t′. The density of states ρ(ω) thus varies linearly with the

energy ω for all t′ except for the values at which the DPs merge and emerge. At

t′ = 1/
√

3, its behaviour changes sharply, with the dominant contribution varying

as the square root of the energy. This is because, the dispersion relation takes the

form

ε =

√
a(t′)q2

1 + b(t′)q4
2 (4.35)

at (π, π), (0, π) and (π, 0) merging points for t′ = 1/
√

3. On the other hand around

the (0, 0) emerging point for t′ =
√

3, the dispersion relation takes the form

ε =

√
a(t′)q4

1 + b(t′)q4
2. (4.36)

thereby giving a constant and a linear contribution to the density of states. Very

close to ω = 0, however the constant term dominates. This sharp change in the

density of states at t′ = 1/
√

3 and t′ =
√

3 as can be seen from Fig:(4.4) which

probes the Lifshitz transitions.

Information about the DPs as well as the PB curvature of the system, as shown

earlier, can be obtained from the phase of det Σ(k1, k2). In FIG.(4.5), we plot this

for various values of t′. For t′ = 0.5, there are eight distinct points around which

the phase changes discontinuously by a value of ±2π corresponding to the DPs.

On the other hand, there are only two such points at t′ = 1.

At the DPs, as shown earlier the PB curvature B is singular. Applying a small

staggered mass term to induce a gap at the DPs we compute the PB curvature

of the second band at two t′ values, shown in FIG.(4.6). The PB curvature of
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the second band shows a peak at the DPs. Using the PB curvature B obtain the

Chern numbers, νn = −1 for n = 1, 4 and νn = 1 for n = 2, 3. At half-filling,

the total Chern number given by ν = ν1 + ν2 vanishes, implying that the Hall

conductance also vanishes [31, 45]. Remarkably, even though the Chern number

for the lowest and the highest bands are both equal to −1, the Bn(k) for these

bands is not negative for all values of k. This surprising result is true for the other

bands as well with the signs flipped appropriately. FIG.(4.7) shows the PB phase

as a function of filling for the lowest band, clearly depicting this behaviour. Thus

the non-interacting KHUB with PBC shows intriguing topological character.

4.2.2 Topology of KHUB with OBC

The properties of the KHUB that were discussed till now are for PBC. We study

the edge states in this model in a cylindrical geometry with zig-zag edges along

ê1 direction. There are zero energy edge states between the second and the third

band and chiral edge states between the bottom two and the upper two bands. The

number and the location of the zero-energy edge states in the quasi-momentum

direction k change as a function of t′ which can be determined using the Zak

phase [51, 52, 53] around a closed contour. There have been proposals to probe

these phases in optical lattices [60].

At the Graphene limit, t′ = 0, there are 2π/3 continuous zero-energy edge states

for each of the two spin species for k ∈ (2π/3, 4π/3), making a total of 4π/3

states. Here the Zak phase is +1 for k ∈ (2π/3, 4π/3), and 0 elsewhere. For values

of 0 < t′ < 1/
√

3 between these two limits the edge states are not continuous,

Fig:(4.8). The doubly-degenerate edge states in k ∈ (2π/3, q) ∪ (2π − q, 4π/3)

shift to k ∈ (2π − 2k, 2π/3) ∪ (4π/3, 2k), respectively, forming unique states and
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thus preserving the total number. On the other hand, for 1/
√

3 < t′ <
√

3, there

are unique continuous edge states for k ∈ (−2π/3, 2π/3). Beyond t′ =
√

3 again

patches of zero-energy edge states occur.

The edge states carry current due to the breaking of time-reversal symmetry in

the model. Using the Heisenberg equation of motion for the density operator and

the density-current continuity equation, we can compute a general expression for

the charge current between two sites on each of the X, Y and Z links. From the

current along the Z link

JZ(i1, i2; i1, i2) = i
∑
µσ

a†i1,i2,σPz
σ,µbi1,i2,µ − h.c., (4.37)

the average charge current for cylindrical geometry can be computed

JZ(i1; i1) =
∑

i2

JZ(i1, i2; i1, i2) (4.38)

= i
∑

k2

∑
µσ

a†i1,k2,σ
Pz
σ,µbi1,k2,µ − h.c. (4.39)

Similarly the average current on the Z link can also be calculated. Using these

expressions, we find that the total average charge current explicitly involves the

time-reversal breaking spin-dependent strength t′. Thus the existence of non-zero

currents at the two edges of the system in FIG.(4.9) can be attributed to a non-zero

t′. At t′ = 0 there is no current at the edges, as expected. As t′ > 0 a non-zero

edge current appears and is initially negative at the left edge and positive at the

right edge. However, by t′ = 1 the signs of the currents on the two edges have

flipped. The sign of the edge current also depends on which states are filled for

t′ > 0.717. Since the chiral edge states have an opposite and larger contribution

than those in the bulk, the edge current flips sign at quarter filling when the former
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begins to fill, as shown in FIG.(4.10).

These rich topological properties of the model motivates the study of realizing

the model and the properties in optical lattice experiments.

4.3 Experimental Realization

We now discuss methods of probing the DPs using Bloch-Zener oscillations. Re-

cently an experimental method to probe the DPs using Bloch-Zener oscillations

[61, 62] was suggested by Tarruell et al. [63], whereas a detailed method of nu-

merically simulating such oscillations was discussed by Uehlinger et al. [64].

Here we probe the DPs in our model using Bloch-Zener oscillations.

At time T = 0, the tight binding Kitaev-Hubbard Hamiltonian with a staggered

potential and in the presence of a harmonic trap is given by

H0 = −
∑
<i j>

C†iµ
(tI + t′σα)µν

2
C jν +

W
2

∑
i∈A

ni

−
W
2

∑
i∈B

ni +
∑

i

(γxx2
i + γyy2

i )ni (4.40)

Here W is the strength of the staggered onsite potential, γx and γy are the strengths

of the harmonic trap in the ê1 and ê2 directions, while xi and yi represent the

spatial coordinates of the ith lattice site which are measured in terms of the lattice

parameter a.

We calculate the n-particle many body ground state |ψ(0)〉 for this Hamiltonian

and evolve it using the total Hamiltonian H = H0 + Hint. Here the interaction

term is that of an external force field of magnitude F (Electric field) along f̂ on
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the lattice, and is given by

Hint = F
∑

i

f̂ · r̂i (4.41)

where r̂ = (x, y) is the position vector of the lattice site. The Schrödinger evolu-

tion is

|ψ(τ)〉 = e−iHτ|ψ(0)〉 (4.42)

where τ is measured in terms of the Bloch oscillation time period TB = 2π/F.

We choose 2 × 1202 lattice sites in order to prevent the cloud from ever hit-

ting the boundary. At every time step we measure the projection of the Fourier-

transformed many-body density matrix on to the density matrix of the single-

particle bands in the presence of the staggered potential,

Pn(k1, k2, τ) = |〈χn|k1, k2〉〈k1, k2|ψ(τ)〉|2. (4.43)

Here |χn〉 is the single-particle eigen-state of the n-th band of the non-interacting

Hamiltonian with staggered mass. It is possible to project the density matrix

because we have assumed that the trap potential varies slowly so that the single-

particle bands do not change in the presence of the trap.

We also compute probability amplitude per particle

Pn(τ) =
1
N

∫
d2k
4π2 Pn(k1, k2, τ) (4.44)

where N is the number of particles in the system. The quasi-momentum distribu-

tion of the particles clearly shows a sudden reduction in the density when a DP is
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encountered which gives us a method of probing them in experiments.

We study the quasi-momentum distribution for t′ = t and t′ = 0.5t. In FIG.(4.11)

the quasi-momentum probability amplitude (in the orthogonal coordinates (kx, ky))

of 187 particles in the second band for various instances during one Bloch os-

cillation is plotted. The parameters are t/h = 589Hz, t′ = t, F/h = 80Hz,

γx,y/h = [0.01, 0.01]Hz, W/h = 2Hz and f̂ = ê1 + ê2. The probability amplitude

Pn(kx, ky, τ = 0) initially localized around the origin, moves along the kx direction

and encounters a DP at location (−4π/3, 0) at time τ = 0.27TB. On further evolu-

tion the DPs at (4π/3, 0) is probed finally returning to the center of the Brillouin

zone after one oscillation. There is a transfer of particles to the higher bands close

to the DPs as seen in FIG.(4.13) where we have plotted Pl(τ) = P1(τ) + P2(τ) and

Pu(τ) = P3(τ) + P4(τ). The two peaks in the figure corresponds to the DPs seen

from the quasi-momentum distribution. The inset shows the probabilities for in-

dividual bands, with transitions occurring between each of the successive bands.

In contrast with the above situation, we show in FIG.(4.12) the Bloch-Zener oscil-

lation of 256 particles at t′ = 0.5t keeping the rest of the parameters unchanged.

At this t′ and in this direction the system has four DPs, all of which are probed

at different times by the cloud. There is a transfer of amplitude when the state

passes through each of the four DPs [54].

In FIG.(4.13) we plot Pl(τ) and Pu(τ) for t′ = 0.5t. The lower band only shows

two peaks even though this system has four DPs. This is because we have been

unable to resolve the transfer at each of the four DPs to high accuracy which is

obtained only when there is a reasonable fraction of the cloud in the second band

at time τ = 0. This requires a large number of particles in the cloud, increasing

its width in momentum space. This decreases the resolution of the DPs, and can
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only be circumvented by increasing the size of the system, which is limited by

currently available computational power to us.

No DPs are encountered when we apply the force field in the ê1 = 1
2 x̂ −

√
3

2 ŷ di-

rection or the ê2 = 1
2 x̂ +

√
3

2 ŷ direction. The quasi-momentum distribution for the

second band corresponds to the second Brillouin zone in the momentum distribu-

tion obtained in optical lattice experiments. Thus from the above discussion, we

see that the DPs can be probed in such experiments.

4.4 Conclusions

To summarize, we have analyzed the non-interacting limit of the Kitaev-Hubbard

model on the honeycomb lattice with spin-dependent hopping that breaks time-

reversal symmetry but preserves the particle-hole (chiral/sub-lattice) symmetry.

The model has DPs and is a semi-metal at half filling. We have shown that the

particle-hole symmetry implies that the total PB curvature vanishes everywhere

on the Brillioun zone at half filling. Consequently, the generalized Zak phases are

topological invariants that are wholly determined by the positions and chiralities

of the DPs. We show that all this information about the topology is contained

in the determinant of a matrix Σ(k) defined in Eq.(4.5). We also numerically

show that the structure of the non-dispersive edge states are determined by these

topological invariants.

Multiple DPs exist in this model and as the strength of the spin-dependent hop-

ping parameter, t′, is varied, topological Lifshitz transitions occur where the DPs

are created and merge. At t′ = 0, the model is same as Graphene and there are 4

DPs. As soon as t′ changes from zero, there is a transition from 4 to 8 DPs. As
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t′ increases the DPs migrate over the Brillioun zone and pairwise merge at (0π),

(π, 0) and (π, π), resulting in a transition 2 DPs at t′ = 1/
√

3. At t′ >
√

3, there

is again a transition to 8 DPs which now emerge from (0, 0). The signal of these

transitions can be seen in the density of states and in the edge state structure. The

effect of broken time reversal symmetry of this model can be seen from the exis-

tence of the charge currents at the edges of the system. We observe that the edge

currents change sign near the transitions.

Finally, we have examined experimental signals of the topological features of the

model realized in cold atom systems. We have shown that Bloch-Zener oscil-

lations in our system probes the location of the DPs and can hence be used to

observe the creation, migration and the merging process.

This concludes my work on the non-interacting KHUB. Next we study the KHUB

with interactions. Later in the thesis, we will show using the Variational Cluster

Approximation (VCA) [65] and Cluster Perturbation Theory (CPT) [66] methods,

both of which I will describe in detail in later chapters, we have delineated a

region on the U − t′ plane where the staggered magnetization vanishes and the

spectral gap is nonzero. As this region includes the t = t′ line above a certain

critical U, we surmise that it constitutes an algebraic spin liquid phase. Such

phases will perform a central role in this thesis, and I shall describe these too in a

later chapter.
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Figure 4.3: Pseudo color plots of the energy of the second band showing the DPs
in the Brillouin zone for various t′.
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Figure 4.4: Density of states around ω = 0 as a function of t′.
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Figure 4.5: The phase of the determinant as a function of (k1, k2) for t′ = 0.5 and
t′ = 1. The phase changes discontinuously at the white dots which represents the
location of the DPs.
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Figure 4.6: PB Curvature as a function of k1 and k2 for two different t′ values for
the second band. The peaks correspond to the location of the DPs. As we change
the t′ the number of DPs in the system changes.
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Figure 4.7: PB phase as a function of filling for t′ = 1. The PB phase is not
negative for all values of the filling. For some values it is positive reflecting that
the PB curvature of the band takes both positive and negative values.
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Figure 4.9: The total average charge current at t′ = 0.5t and t′ = t. The current at
the edges changes sign as a function of t′.
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Figure 4.11: The quasi momentum distribution of the second band for Bloch-
Zener oscillations as a function of (kx, ky) at t′ = t resulting from a force acting
along the ê1 + ê2 = x̂ direction. Total number of particles considered is 187.
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Figure 4.12: The quasi-momentum distribution of the second band for Bloch-
Zener oscillations as a function of (kx, ky) at t′ = 0.5t resulting from a force
acting along the ê1 + ê2 = x̂ direction. Total number of particles considered is
256.
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Figure 4.13: Pl(τ) is plotted in blue and Pu(τ) is plotted in red for the parameters
in FIG.(4.12). In the inset we have the individual amplitudes for all the bands.
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Chapter 5

Numerical Technique - CPT and

VCA

Every Interaction is an opportunity

to learn

Unknown

We have described the Kitaev-Hubbard model in the previous chapter. In this

chapter, we shall try and go deeper into the model. Our investigations will be

aided by two efficient numerical techniques which will enable us to plot out the

phase diagram of the model in good detail.
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5.1 Cluster Perturbation theory and the Variational

Cluster Approximation

Cluster Perturbation Theory (CPT) is an approximation scheme–within Hubbard-

like models–for the one-electron Green’s function G(ω) [66, 67, 68]. In the

scheme, the infinite lattice γ is converted into a finite super-lattice Γ with several

identical clusters, each comprising L sites. Fig:(3.1) illustrates the cluster used

in this work. The lattice is now effectively a collection of clusters, and hopping

terms are now labelled as being intra-cluster and inter-cluster. The lattice Hamil-

tonian H can then be broken up into two parts : Hc, which contains the hopping

terms within clusters, and HT , which contains the hopping terms between clus-

ters. Thus H = Hc + HT . Let T be the matrix of inter-cluster hopping terms and

Gc(ω) the exact Green’s function of the cluster. Because of the periodicity of the

super-lattice, T can be expressed as a function of the reduced wave-vector k̃ and

as a matrix in site indices within the cluster: Tab(k̃). Likewise, Gc is a matrix in

cluster site indices only, since all clusters are identical: Gc
ab(ω). Thus, in what

follows, hopping matrices and Green’s functions will be k̃-dependent matrices

of order L, which, as mentioned previously, is the number of sites within each

cluster. The fundamental result of CPT for the system’s one-electron Green’s

function is

G−1(k̃, ω) = Gc−1(ω) − T(k̃). (5.1)

However, in order for this to be numerically computable, the cluster must be small

enough. Also, in practice, Gc(ω) is calculated numerically using the Lanczos

method.

Breaking up the infinite lattice, that is, tiling it has consequences, the most se-
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rious and immediate being the loss of translational invariance. CPT has a ready

prescription for restoring this, and, according to that, the modified periodization

can be written as

G(k, ω) =
1
L

∑
a,b

e−i(k)·(ra−rb)Gab(k, ω) (5.2)

where k now belongs to the Brillouin zone of the original lattice and the sum is

carried over cluster sites. Remarkably, this formula is exact in both the strong

(t → 0) and the weak (U → 0) coupling limits. This is one of the strengths of

this method.

The computation of the approximate interacting Green’s function directly leads

to the spectral function A(k, ω) = −2 Im G(k, ω) which then allows the density

of states N(ω) to be calculated via numerical integration of A(k, ω) over wave-

vectors. This also makes it possible to assess the possibility of and investigate

the existence of a spectral gap. Numerically, the evaluation of N(ω) is carried

out keeping the frequency complex with a small imaginary part η which serves

to broaden the spectral peaks. By plugging in a few values of η and then extrap-

olating to η→ 0, it is possible to detect if a spectral gap exists at the Fermi level.

This is a powerful tool since it allows us to distinguish between a metal and a

Mott insulator.

On the other hand, this entire extrapolation scheme can be avoided if the value of

wave-vector at which the gap first opens up is known beforehand. This happens

at t′ = 0, at the Dirac points. We can then estimate the gap much more reliably by

simply looking up the Lehmann representation[69] of the CPT Green’s function,

which can be calculated when the cluster Green’s function is computed using the

band Lanczos method.

The Variational Cluster Approximation (VCA) is an extension of CPT in which
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parameters of the cluster Hamiltonian Hc may be treated variationally, accord-

ing to Potthoff’s Self-Energy Functional Theory (SFT) [65, 70]. In particular, it

allows the emergence of spontaneously broken symmetries and provides an ap-

proximate value for the system’s grand potential Ω. For the case at hand, a single

variational parameter is used. This is the strength Mc of a staggered magnetiza-

tion field that is added to the cluster Hamiltonian :

HM = M
∑
α

mαc†αcα (5.3)

where the symbol mα is +1 for spin-up orbitals on the A sub-lattice and spin-down

orbitals on the B sub-lattice, and −1 otherwise.

Technically, VCA proceeds by minimizing the following quantity:

Ω(Mc) = Ωc(Mc) −
∫

dω
π

d2k
(2π)2

∑
k̃

ln det
[
1 − T(k̃)G(k̃, iω)

]
(5.4)

where Ωc(Mc) is the grand potential of the individual cluster and is obtained in

the exact diagonalization process. The integral over frequencies is carried over

the positive imaginary axis. At the optimal value M∗
c , Ω(M∗

c) is the best estimate

of the system’s grand potential. At this value of Mc, the order parameter M is

calculated:

M =

∫
d2k̃

(2π)2

∫
dω
2π

mαGαα(k̃, iω) (5.5)

where Gαα are the diagonal elements of the CPT Green’s function (5.1).

Much like mean-field theory, VCA provides estimates of order parameters. Nev-

ertheless, it boasts of several advantages over mean-field theory. For instance, in

VCA, the Hamiltonian remains fully interacting with no need for factorization of

the interaction. Additionally, spatial correlations are treated exactly within the
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Figure 5.1: The phase diagram of the Kitaev-Hubbard model at half-filling, show-
ing the phases. The transition from the AFI to the ASL phase is discontinuous.
The red squares correspond to the parameter values at which the spectral graphs
have been plotted in Fig. 5.3.

cluster in VCA.

We have used both VCA and CPT in the work presented in this thesis. The former

has been used to delineate the phase boundary of the anti-ferromagnetic phase,

where the latter was used to monitor the closure of the gap, which ultimately led

to the transition between the spin-liquid and semi-metal phases.

5.2 Results using CPT and VCA

CPT and VCA allow us to map the spectral gap of the model on to the t′ − U

plane, and to calculate the extent of the Néel phase. VCA also allows us to find

out whether or not the transitions out of the Néel phase are continuous. However,

the same cannot be done for the Mott transitions to the spin-liquid phases for
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demonstrating the first-order character of the magnetic transition there. Arrows
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which a cluster dynamical mean field technique would be required[42].

The phase diagram of the Kitaev-Hubbard model from t′ = 1 to t′ = 0.5 is

summarized in Fig. 5.1, where we have set t = 1. At low U there is a TR-breaking

semi-metallic phase (SM), characterized by gap-less charged, spin-1/2 fermionic

quasi-particles. This nonmagnetic phase exists in the region 1 > t′ > 0.5 and

U . 2.4. When U ≈ 2.4 and t′ = 1, a spectral gap opens up, signature of a Mott

transition from the SM to the Algebraic Spin Liquid (ASL) phase, which extends

to U → ∞. In the ASL phase there is no magnetic order. Between U & 1.5 and

U . 2.4 and with steadily decreasing t′, the system starts off in the SM phase,

then makes a transition into the ASL phase and finally re-enters the SM phase

until t′ = 0.5. For U > 2.4, decreasing t′ destabilizes the ASL phase and brings

about a transition to the antiferromagnetic (Néel) phase (AFI-antiferromagnetic

insulator) which also has a spectral gap.
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The ASL phase is bounded by the AFI and SM phases and is hence not connected

to the possible short-ranged spin liquid at t′ = 0[40, 41, 42]. The SM and AFI

phases do not have quasi-particles with fractional quantum numbers or statistics.

Thus the ASL is topologically distinct from the SM and the AFI and we expect

the transitions between them to be discontinuous, as illustrated for instance in

Fig. 5.2.

Spectral functions illustrating each of the three phases and computed with CPT

are shown in Fig. 5.3. It is intriguing that the single particle bands of opposite

Chern numbers remain gapped in the same range of t′ as the existence of the ASL.

This seems to indicate that geometric phase effects may play an important role in

this model.

CPT and VCA were only able to detect the fact that there is a Spin-Liquid phase

in the KHUB model. To show that it is truly Algebraic in nature, let us now

proceed to the large-U, analytic treatment of the model on the t′ = 1 line in the

next chapter.
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Chapter 6

Establishing a Stable Algebraic

Spin Liquid

The secret of change is to focus all

your energy not on fighting the old,

but on building the new.

Socrates

In this chapter, our primary goal is to systematically establish the spin liquid

phase found in the previous chapter using CPT and VCA to be an algebraic spin

liquid. To do that we begin by finding an effective Hamiltonian of a Hubbard

model that represents the system at half-filling and in the large onsite interaction,

U, limit. At half-filling, the number of sites in the lattice is the same as the

number of fermions in the system. In this limit, the hopping strengths, t and t′,

behave as perturbation terms, the charge degrees of freedom are gapped out and

the spin degrees of freedom dominate the physics. The effective Hamiltonian can

thus be represented by a spin Hamiltonian. We shall now explain the general
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procedure to obtain an effective Hamiltonian using the Perturbative Continuous

Unitary Transformation (PCUT). Then we move on to talk about the stability

of the spin liquid using time reversal symmetry and finally compute the spin-spin

correlation which decays as power law. This will help us successfully achieve our

goal. We end with the mean field of the spin model to eliminate the possibility of

spontaneous time-reversal symmetry breaking.

6.1 Perturbative Continuous Unitary Transforma-

tion(PCUT)

We shall begin by breaking the Hubbard model into two parts. The first shall

comprise the unperturbed Hamiltonian, the term that survives in the large U limit.

H0 = U
∑

i

ni↑ni↓. (6.1)

The solutions to this are known exactly; the eigenfunctions are the fock states

for fermionic systems. At half-filling, the ground state will have a homogeneous

fermion distribution, with each site getting one fermion to reckon with, and dou-

ble occupancy will necessarily not occur. If N is the number of lattice sites, then

there will be 2N such states, which differ in the spin configurations, having zero

energy. The second part is the perturbation or the kinetic energy partHk, and this

represents the hopping Hamiltonian, where a single fermion hops to neighbour-

ing site on the lattice. This can be further subdivided into three parts T1, T 0 and

T †1 = T−1. The first of these increase the number of doubly occupied sites by 1,

the second one keeps the number of doubly occupied sites fixed while the third
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term decreases the number of doubly occupied sites by 1. We have

T1 =
∑
〈i j〉α

niσ̄c†iσPα
σσ′c jσ′h jσ̄′ (6.2)

T 0 =
∑
〈i j〉α

hiσ̄c†iσPα
σσ′c jσ′h jσ̄′ +

∑
〈i j〉α

niσ̄c†iσPα
σσ′c jσ′n jσ̄′ (6.3)

where ni represents the total number operator at site i and ni + hi = 1. The T op-

erators follow the following commutation relations with the unperturbed Hamil-

tonian

[H0,T 0] = 0 (6.4)

[H0,T1] = UT (6.5)

[H0,T
†

1 ] = −UT †. (6.6)

Thus only the T0 operator commutes with H0. The Hamiltonian can now be

written as

H = H0 + T0 + T1 + T †1 . (6.7)

Following Chernyshev et al.[71], we block-diagonalize the Hamiltonian order-

by-order in t/U. Physically this implies that we allow for virtual hoppings of that

order. The (k + 1)th order Hamiltonian is written as

H (k+1) = eS (k)
eS (k−1)

eS (k−2)
· · ·H · · · e−S (k−2)

e−S (k−1)
e−S (k)

. (6.8)

We shall use Baker-Campbell-Hausdorff formula and retain terms upto a fixed

order in t/U. S (k) is chosen so as to eliminate the off-block diagonal (OBD)

terms of order
(

t
U

)k
that survive in the Hamiltonian after performing the canonical

75



transformation at order k − 1. By construction, S (k) does not contain terms that

preserve the number of doubly occupied sites. S (k) has to satisfy the equation

[S (k),H0] = −H k
OBD (6.9)

where H (k)
OBD is the OBD part of H (k). The effective spin Hamiltonian at half-

filling, H(k), is obtained by projectingH (k) onto the singly occupied subspace.

Let us compute the S operator for a simplest Hubbard model. The off-diagonal

block part of the Hamiltonian,H = T−1 + T0 + T1 +H0 is T−1 + T1 since we have

seen earlier that T0 commutes withH0. We can thus easily compute

S (1) =
1
U

(T1 − T−1). (6.10)

The effective Hamiltonians display the following property : the sum of the in-

dices of the T operators, that is the individual terms, must vanish whereas the S

operator will contain all terms that are non-zero. At the nth order the effective

Hamiltonian will contain n products of T operators. It is thus possible to estimate

which terms for the effective Hamiltonian do not vanish, and this leaves only the

coefficients to be determined.

6.1.1 Analytic calculations of PCUT

Since the half-filling ground state is unreachable in a single virtual hop starting

from itself, the first-order effective Hamiltonian vanishes in the half-filling sub-

space. However, since a fermion can move to a neighbouring site and hop back

to its own site in a pair of virtual hops, thereby creating an intermediate doubly

occupied state. Thus, in perturbation theory, the next leading order in the second
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order effective Hamiltonian can be written as:

H(2) = −
1
U

T †T. (6.11)

It is clear from the fact that we are working on the honeycomb lattice, it would

require an even number of hops to take the system from a ground state to an-

other in the degenerate ground state space, since an odd number of hops would

necessarily result in at least one doubly occupied site. This eliminates the odd

effective Hamiltonians from the half-filling sector. The analytic expression for

the fourth-order effective Hamiltonian is thus

H(4) =
1

U3 (T †TT †T − T †T0T0T −
1
2

T †T †TT ). (6.12)

Analytical study of the model beyond this is a difficult task to pursue. This is

where numerics enters the scene. It is simple to show that

S (k) =
∑
i, j

1
U(i − j)

PiH
(k)P j (6.13)

where Pm represent the projector on the Hilbert subspace containing m doubly

occupied sites. Thus we have P2
m = Pm and

∑∞
m=0 Pm = 1. It is possible to con-

firm whether the effective Hamiltonians calculated above can be obtained from

the Eq:(6.13). The action of the T matrices for many body states on two sites
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connected by a z link is

T z| ↑, ↓〉 =
1
2

(t + tz)|0, ↑↓〉 +
1
2

(t − tz)| ↑↓, 0〉 (6.14)

T z| ↓, ↑〉 = −
1
2

(t − tz)|0, ↑↓〉 −
1
2

(t + tz)| ↑↓, 0〉 (6.15)

T z†|0, ↑↓〉 =
1
2

(t + tz)| ↑, ↓〉 −
1
2

(t − tz)| ↓, ↑〉 (6.16)

T z†| ↑↓, 0〉 =
1
2

(t − tz)| ↑, ↓〉 −
1
2

(t + tz)| ↓, ↑〉 (6.17)

with the action of the T0 operators

T z
0|0, ↑〉 =

1
2

(t + tz)| ↑, 0〉 (6.18)

T z
0| ↑, 0〉 =

1
2

(t + tz)|0, ↑〉 (6.19)

T z
0|0, ↓〉 =

1
2

(t − tz)| ↓, 0〉 (6.20)

T z
0| ↓, 0〉 =

1
2

(t + tz)|0, ↓〉 (6.21)

T z
0| ↑↓, ↑〉 = −

1
2

(t − tz)| ↑, ↑↓〉 (6.22)

T z
0| ↑↓, ↓〉 = −

1
2

(t + tz)| ↓, ↑↓〉 (6.23)

T z
0| ↑, ↑↓〉 = −

1
2

(t − tz)| ↑↓, ↑〉 (6.24)

T z
0| ↓, ↑↓〉 = −

1
2

(t + tz)| ↑↓, ↓〉. (6.25)
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The corresponding operators for the T operators connecting two sites on the x

link is given as

T x| ↑, ↓〉 =
1
2

t{|0, ↑↓〉 + | ↑↓, 0〉} (6.26)

T x| ↓, ↑〉 = −
1
2

t{|0, ↑↓〉 + | ↑↓, 0〉} (6.27)

T x| ↑, ↑〉 =
1
2

tx{|0, ↑↓〉 − | ↑↓, 0〉} (6.28)

T x| ↓, ↓〉 = −
1
2

tx{|0, ↑↓〉 − | ↑↓, 0〉} (6.29)

T x†| ↑↓, 0〉 =
1
2

t{| ↑, ↓〉 − | ↓, ↑〉} +
1
2

tx{| ↑, ↑〉 − | ↓, ↓〉} (6.30)

T x†|0, ↑↓〉 =
1
2

t{| ↑, ↓〉 − | ↓, ↑〉} −
1
2

tx{| ↑, ↑〉 − | ↓, ↓〉} (6.31)

T x
0 | ↑, 0〉 =

1
2

t|0, ↑〉 +
1
2

tx|0, ↓〉 (6.32)

T x
0 |0, ↑〉 =

1
2

t| ↑, 0〉 +
1
2

tx| ↓, 0〉 (6.33)

T x
0 | ↓, 0〉 =

1
2

t|0, ↓〉 +
1
2

tx|0, ↑〉 (6.34)

T x
0 |0, ↓〉 =

1
2

t| ↓, 0〉 +
1
2

tx| ↑, 0〉 (6.35)

T x
0 | ↑, ↑↓〉 = −

1
2

t| ↑↓, ↑〉 +
1
2

tx| ↑↓, ↓〉 (6.36)

T x
0 | ↓, ↑↓〉 =

1
2

tx| ↑↓, ↑〉 −
1
2

t| ↑↓, ↓〉 (6.37)

T x
0 | ↑↓, ↑〉 = −

1
2

t| ↑, ↑↓〉 +
1
2

tx| ↓, ↑↓〉 (6.38)

T x
0 | ↑↓, ↓〉 = −

1
2

t| ↓, ↑↓〉 +
1
2

tx| ↑, ↑↓〉 (6.39)

One can similarly compute the operations for two sites on the y link.
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6.1.2 Results from PCUT

Using the expression that we obtained above, we shall now compute the effective

spin Hamiltonian for the Kitaev-Hubbard model. Thus we can write the operator

form of the Hamiltonian for two sites on the z link as

H(2)
z = −T †z Tz = −

1
2

(t2 + t2
z )| ↑, ↓〉〈↑, ↓ | −

1
2

(t2 + t2
z )| ↓, ↑〉〈↓, ↑ | (6.40)

+
1
2

(t2 − t2
z )| ↑, ↓〉〈↓, ↑ | +

1
2

(t2 − t2
z )| ↓, ↑〉〈↑, ↓ |. (6.41)

Now we convert the above Hamiltonian into spin Hamiltonian using the following

transformations

| ↑〉〈↑ | =
σ0 + σz

2
(6.42)

| ↓〉〈↓ | =
σ0 − σz

2
(6.43)

| ↑〉〈↓ | =
σx + iσy

2
(6.44)

| ↓〉〈↑ | =
σx − iσy

2
. (6.45)

Now substituting we get

H(2)
z = −

1
2

(t2 + t2
z )
σ0

1 + σz
1

2
σ0

2 − σ
z
2

2
−

1
2

(t2 + t2
z )
σ0

1 − σ
z
1

2
σ0

2 + σz
2

2
(6.46)

+
1
2

(t2 − t2
z )
σx

1 + iσy
1

2
σx

2 − iσy
2

2
+

1
2

(t2 − t2
z )
σx

1 − iσy
1

2
σx

2 + iσy
2

2
(6.47)

= −
1
4

(t2 + t2
z )σ0

1σ
0
2 +

1
4

(t2 + t2
z )σz

1σ
z
2 (6.48)

+
1
4

(t2 − t2
z )σx

1σ
x
2 +

1
4

(t2 − t2
z )σy

1σ
y
2 (6.49)

= (t2 + t2
z )S z

1S z
2 + (t2 − t2

z )S x
1S x

2 + (t2 − t2
z )S y

1S y
2 (6.50)

= (t2 − t2
z )S1.S2 + 2t2

z S z
1S z

2. (6.51)
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Computation of the effective Hamiltonian for two sites are sufficient to determine

the expression for the second order effective spin Hamiltonian for the full lattice

which is given as

He f f =
1
U

∑
〈i jα〉

(t2 − t2
α)Si · S j + 2t2

αS α
i S α

j . (6.52)

Some of the expressions needed are given in Appendix (A.1). The above Hamil-

tonian is a form of the Kitaev-Heisenberg model. As discussed in the Kitaev

model preliminaries, this perturbation does not affect the nature of the spin-spin

correlation function. It is imperative that we compute the next leading order

correction—the fourth order effective Hamiltonian—in order to understand the

system better. The above expression for the full lattice is given by

H(4) =
1

U3

∑
〈i j〉α;β,α

[
(t4
α − t4)Si.S j − 2t4

αS α
i S α

j − 2t2tαtβ(S α
i S β

j + S β
i S α

j )
]

(6.53)

+
1

4U3

∑
〈〈i j〉〉αβ;γ,α,β

[
(t2 + t2

α)(t2 − t2
β)S

α
i S α

j + (t2 − t2
α)(t2 + t2

β)S
β
i S β

j (6.54)

+ (t2 − t2
α)(t2 − t2

β)S
γ
i S γ

j + 12t2tαtβS α
i S β

j

]
. (6.55)

We show in the Appendix (A.2) the systematic calculation for a three-site open

chain. Remarkably, like the second order effective Hamiltonian, we find that this

Hamiltonian also preserves time-reversal symmetry, and thus a gap-less Dirac

point still exists upto this order in perturbation theory. The obvious follow-up

question concerns the behaviour of the system for the higher-order terms which

we solve for numerically. Here’s the Algorithm for the code.

1. The first step is to generate the matrices for a fixed number of sites N and

a prescription for the connecting links namely x, y or z.
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2. Since the T matrices are distinguished based on the number of doubly oc-

cupied sites, the many body states are generated in blocks of fixed number

of doubly occupied sites at half filling. We start with the least first which is

no doubly occupied sites: 2N such states.

3. Now we generate the T matrices in the above generated many body sector

in sparse matrix form. T0 will be block diagonal and T will connect a block

with n doubly occupied sites with n + 1 block.

4. The interacting Hamiltonian which is the U term will be diagonal in the

above basis. The diagonal term of each block of n doubly occupied sites

will be nU.

5. Now we present a code snippet.

%----------------------------------

% CODE SNIPPET

%----------------------------------

% dim represents the total number os states at half

% filling

dim = factorial(2*N)/(factorial(N))^2;

% H at the end of the code will represent the M^th order

% effective hamiltonian

H = cell(M+1,1);

H{1} = H0; % zeroth order in tw

H{2} = (T + T0 + T’);% first order in tw

for i = 3:M+1

H{i} = sparse(l,l);

end
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6. Generate projector matrices P{i}, i = 1, 2 · · ·N/2 + 1, representing the pro-

jection onto i − 1 number of doubly occupied sites.

%=========================================================

% Perturbation theory begins ...

for k = 1:M

H = correctedH(H,M,P,N,dim,k+1);

end

%---------------------------------------------------------

% This function will generate the corrected hamiltonian

% given the exact hamiltonian and the effective hamiltonian

% for Mth order and N lattice sites

%---------------------------------------------------------

function Hpp = correctedH(H,M,P,N,dim,m)

Hpp = H;

S = sparse(dim,dim);

for ii = 1:(floor(N/2)+1)

for jj = 1:(floor(N/2)+1)

if ii ~= jj

S = S +(1/(ii-jj))*P{ii}*Hpp{m}*P{jj}’;

end

end

end

Hp = cell(M+1,1);
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for i = 1:M+1

Hp{i} = sparse(dim,dim);

end

for k = 1:M+1

for i = 1:M+1

if i+m-1<M+2

Hp{i+m-1} = Hp{i+m-1}+(1/k)*com(S,H{i});

end

end

H = Hp;

for i = 2:M+1

Hpp{i} = Hpp{i} + Hp{i};

Hp{i} = sparse(dim,dim);

end

Hp{1} = sparse(dim,dim);

end

end

function C = com(A,B)

C = A*B-B*A;

end

%=========================================================

7. Each of the H{i} is now projected onto the 2N states of singly occupied

states and converted to spin Hamiltonian.
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The major task of the code is to write the matrices in sparse form including the

symmetries of the system and projection onto the spin Hamiltonian. In Appendix

(A.3) we have computed the sixth order effective Hamiltonian computed on a six

site plaquette cluster. We find no odd spin terms. We have gone till 14 sites upto

10th order and find no odd spin terms. If all the symmetries of the Hamiltonian

can be used then one can go till 21 sites for triangular lattice for example[72].

Based on this observation we now outline the general proof to show that the

system is time reversal symmetric in the entire Mott phase.

6.2 Time reversal symmetry of the KHUB model

The purpose of this section is to outline the derivation of the effective spin-

Hamiltonian and prove that it is time-reversal (TR) invariant in the Mott phase.

This ensures that the system remains gap-less upto all orders of perturbation the-

ory.

6.2.1 Particle-Hole Symmetry and Time reversal symmetries

The Hamiltonian (3.1) is symmetric under particle-hole (C) transformation:

UC c†iσ U†C = ηiciσ (6.56)

where ηi is +1 on sub-lattice A and −1 on sub-lattice B. The unitary operator UC

can be explicitly written as

UC =
∏

i

eiπS y
i eiπGy

i (6.57)
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where S a
i are the spin operators acting on the singly occupied states and Ga

i are

the pseudo-spin operators acting on the empty and doubly occupied states. These

are defined as

Gz
i =

1
2

(
n↑i + n↓i − 1

)
G+

i = c†
↑
c†
↓

= (G−i )†. (6.58)

Every term in the Hamiltonian,H0 and Ts, is C-invariant:

UCHU†C = H, UCTsU
†

C = Ts. (6.59)

It then follows from equations (6.13) and (6.8) that every term of Hk is C-invariant,

for all k.

The time reversal operator is

UT c†iσ U†T = iσy
σσ′ciσ′ UT =

∏
j

eiπS y
jK (6.60)

where K is the complex conjugation operator. Any state |hf〉 in the singly occu-

pied subspace satisfies the condition Ga
i |hf〉 = 0. It then follows that

UCUT |hf〉 = K|hf〉. (6.61)

6.2.2 Time reversal symmetry of H(k)

We show the TR symmetry of H(k) by explicitly proving the equality of the matrix

elements of H(k) and UT H(k)U†T in a real basis. Specifically, we can choose the
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simultaneous eigenstates of S z
i ,

S z
i |{σi}〉 =

1
2
σi|{σi}〉. (6.62)

We can always choose S z
i to be real and hence we have K|{σi}〉 = |{σi}〉. It then

follows that,

〈{σi}|UT H(k)U†T |{σi}
′〉 = 〈{σi}|U

†

T U†CUCH(k)U†CUCUT |{σi}
′〉

= 〈{σi}|KH(k)K|{σi}
′〉

= 〈{σi}|H(k)|{σi}
′〉. (6.63)

Thus the effective spin Hamiltonian is TR-symmetric. This implies that it does

not contain any odd-spin terms. If this emergent symmetry in the Mott phase is

not spontaneously broken then the spinons remain gapless.

6.3 Spin Spin Correlation

According to Saptarshi et al [25], the condition for the existence of a spin-spin

correlation function which has a power law decay is

[Σα,Hp] , 0 (6.64)

where Hp contains all terms barring the Kitaev term and Σα = Πα
i σ

α
i . We checked

this condition for the new terms and find that the above constraint is satisfied

giving us an indication that at least one of the spin-spin correlations is algebraic

in nature. The exponent of the power law is yet to be determined for which we

now outline the computation of the spin-spin correlation function. We write the
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Hamiltonian as H = H0 +Hp whereH0 = J
∑
〈i j〉α S α

i S α
j and

Hp =
∑
〈i j〉α
α,β

δ1S β
i S β

j + γ1

[
S α

i S β
j + S α

j S
β
i

]

+
∑
〈〈i j〉〉αβ

[
δ2Si.S j + δ3(S α

i S α
j + S β

i S β
j ) + γ2S α

i S β
j

]
(6.65)

with the expression for the coefficients as

J =

(
1 + t

′2

U
−

1 + t
′4

U2

)
γ1 = −

2t
′2

U3 γ2 =
3t
′2

U3 (6.66)

δ1 =
t
′4 − 1
U3 δ2 =

(1 − t
′2)2

4U3 δ3 =
t
′2 − t

′4

2U3 .

The Kitaev Hamiltonian H0 is now the unperturbed Hamiltonian while Hp acts

as a perturbation. We want to compute the correlation function

g(r, t) =
〈
T

(
S α

rl(t)S
β

0m(0)
)〉
. (6.67)

where r = r1e1 + r2e2, e1 and e2 are basis vectors as shown in Fig.((6.1)) and

a1

a2

a3

e2

e1

Figure 6.1: Basis vector used. Green (Blue) represents sub-lattice A (B).

l,m are the sub-lattice indices. To leading order, this is the spin-spin correlation

function of the Kitaev model. The Kitaev model has a 6-spin conserved operator
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associated with every plaquette, Wp which can take values ±1 and can be inter-

preted as a Z2 flux [73]. The ground state is in the flux-free sector (Wp = 1 ∀p) as

shown in Fig:(6.2). The spin operators at site r create a pair of flux tubes in two of

the plaquettes that the site belongs to. Since the time evolution does not change

the flux configuration, the spin-spin correlation (6.67) is zero except when r and

0 are nearest neighbors [25] .

The second-order perturbation term is

g(2) =
(−i)2

2

∫
dτ1

∫
dτ2

〈
T

(
S α

rl(t)Hp(τ1)Hp(τ2)S β
0m(0)

)〉
. (6.68)

+1

+1+1+1

+1

+1+1

Figure 6.2: The honeycomb lattice with the fluxes in each of the plaquette repre-
senting the ground state configuration of the pure Kitaev Model.

The time evolution is governed by H0. This term will be non-zero only if there

are terms inHp such that the product of the four operators in (6.68) do not change

the flux configuration of the ground state [25]. We find that such terms do exist

in Hp. We concentrate on the correlation function 〈S z
r1,r2,A

S z
0,0,A〉. The following

terms combine with S z
r1,r2,A

to produce flux-free configurations when acting on
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the ground state,

γ2S x
r1−1,r2,BS y

r1−1,r2+1,B; γ2S y
r1+1,r2−1,AS x

r1+1,r2,A; γ1S x
r1,r2,AS y

r1−1,r2+1,B

γ1S y
r1,r2,A

S x
r1−1,r2,B; γ1S y

r1,r2,B
S x

r1+1,r2,A; γ1S x
r1,r2,BS y

r1+1,r2−1,A. (6.69)

The action of S z
r1,r2,A

on the ground state is to change the sign of the fluxes in the

plaquettes adjacent to the z bond of site r1, r2 as shown in Fig:(6.3) which is made

flux-free by the application of any one of the 6 terms of Eq:(6.69). For example

the effect of S x
r1−1,r2,B

S y
r1−1,r2+1,B is shown in Fig:(6.4).

1
r +1,r −1,A

2

1
r −1,r ,B

2

r ,r ,A
1 2

1 2
r ,r ,B

1
r −1,r +1,B

2

+1

+1+1+1

+1

−1 −1

1
r +1,r ,A

2

Figure 6.3: The honeycomb lattice with the unconserved fluxes, obtained by the
action of S z

r1,r2,A
on the ground state of the Kitaev model.

Thus the terms in Eq:(6.69) and the terms with (r1, r2) → (0, 0) which combine

with S z
0,0,A give 36 possibly non-zero contributions to g(2).

The problem now is to compute the resulting 6-spin correlation functions in the

Kitaev model. We do this in the Majorana fermion representation as we have

discussed in our introductory chapter. The correlation function in equation (6.68)
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thus factorizes into propagators of the ci operators. Since the spin operators create

two units of flux on adjoining plaquettes, the Majorana fermion propagators are

in the background of an even number of fluxes at a few points.

To compute the asymptotic form or the propagators, we can derive the contin-

uum theory of the low-energy modes in the flux-free background. We can then

compute the correlation function in equation (6.68) to obtain the following ex-

pression:

〈S z
rl(t)S

z
0l(0)〉 = (−0.56 cos(2K · r)γ2

1 + 1.13γ1γ2 + 1.69γ2
2ε) det G

+ (0.28γ2
1 + 0.07γ2

2 + 0.84γ1γ2ε + 0.63γ2
2ε

2 − 0.28γ1γ2 − 0.42γ2
2ε)(TrG)2

+ 0.28γ2
1Tr(τxGτxG) + (0.56γ2

1 − 0.28γ1γ2 + 0.84γ1γ2ε)Tr(GτxG)

(6.70)

where l represents the sub-lattice index (A or B), α represents the three types of

bonds x, y, z and ε is the energy density of the Kitaev model. We can obtain the

〈S x
rl(t)S

x
0l(0)〉 and 〈S y

rl(t)S
y
0l(0)〉 from the above correlation function by using the

following property: a 2π/3 rotation about a sub-lattice A point takes x link to y

link, y link to z and z link to x, in a cycle. The direction is reversed for sub-lattice

B.

Using equation (6.70) and (2.13), we find that the long-wavelength correlation

function falls off as 1/r4. This exponent is the same as the one computed single-

spin perturbations studied in Ref. [3] and can be motivated by simple dimensional

counting. This proves the existence of the ASL in the Kitaev-Hubbard model. Al-

though the pre-factor is extremely small for large U (∼ 1/U6), this is the leading

behavior at long distances. Therefore the effect of the perturbation cannot be ne-

glected for any value of U, however large. Indeed, we can expect the strength
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1
r +1,r −1,A

2 1
r +1,r ,A

2

1
r −1,r ,B

2

r ,r ,A
1 2

1 2
r ,r ,B

1
r −1,r +1,B

2

−1

−1

+1

+1+1+1

+1

−1 −1
−1

−1

Figure 6.4: The honeycomb lattice with the conserved fluxes, obtained by the
action of S z

r1,r2,A
and S x

r1−1,r2,B
S y

r1−1,r2+1,B on the ground state of the Kitaev model.

of these correlations to grow as U decreases. Thus, at large U, the leading or-

der contribution to the spin susceptibility is independent of U as in the Kitaev

model, whereas the next order contribution goes as (t/U)6. The U dependence

of the spin susceptibility will hence be of the form χ = a + b(t/U)6, where a

and b are constants independent of U. Experimental methods for measuring the

spin susceptibility in cold atom systems have recently been developed [74]. The

value of (t/U)6, for the lowest values of (t/U) that the ASL exists ranges from

0.08 − 0.005, depending on t′. Thus susceptibility measurements as a function of

U, with an accuracy of about 1%, can provide evidence for the existence of the

ASL in this model.

6.4 Mean Field Theory of the effective spin model

As we have seen before, the Algebraic Spin Liquid (ASL) phase that we detected

in the Kitaev-Hubbard model is susceptible to the opening up of a spontaneous

spinon gap. Using a Majorana mean field theory we eliminate the possibility of a
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violation of spontaneous time-reversal symmetry.

Consider the fourth order effective spin Hamiltonian given in equation (6.65).

This is of the form,

Heff =
∑
〈i j〉a

Γa
bcσ

b
iσ

c
j +

∑
〈〈i j〉〉ab

∆ab
cdσ

c
iσ

d
j (6.71)

where,

Figure 6.5: Spinon dispersion relation at U = 2 and U = 1.4 respectively.
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Γx =


t2+t

′2

U − t4+t
′4

U3 −2t2t
′2

U3 −2t2t
′2

U3

−2t2t
′2

U3
t2−t

′2

U − t4−t
′4

U3 0

−2t2t
′2

U3 0 t2−t
′2

U − t4−t
′4

U3

 (6.72)

Γy =


t2−t

′2

U − t4−t
′4

U3 −2t2t
′2

U3 0

−2t2t
′2

U3
t2+t

′2

U − t4+t
′4

U3 −2t2t
′2

U3

0 −2t2t
′2

U3
t2−t

′2

U − t4−t
′4

U3

 (6.73)

Γz =


t2−t

′2

U − t4−t
′4

U3 0 −2t2t
′2

U3

0 t2−t
′2

U − t4−t
′4

U3 −2t2t
′2

U3

−2t2t
′2

U3 −2t2t
′2

U3
t2+t

′2

U − t4+t
′4

U3

 (6.74)

∆xy =


t4−t

′4

4U3
3t2t

′2

U3 0

0 t4−t
′4

4U3 0

0 0 (t2−t
′2)2

4U3

 (6.75)

∆yz =


(t2−t

′2)2

4U3 0 0

0 t4−t
′4

4U3
3t2t

′2

U3

0 0 t4−t
′4

4U3

 (6.76)

∆zx =


t4−t

′4

4U3 0 0

0 (t2−t
′2)2

4U3 0

3t2t
′2

U3 0 t4−t
′4

4U3

 (6.77)
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and ∆xy = (∆yx)T , ∆yz = (∆zy)T and ∆zx = (∆xz)T . The Hamiltonian is then,

Heff =
∑
i1,i2

(
Γx

abσ
a
i1,i2,1σ

b
i1−1,i2,2 + Γ

y
abσ

a
i1,i2,1σ

b
i1,i2+1,2 + Γz

abσ
a
i1,i2,1σ

b
i1,i2,2

+∆
xy
abσ

a
i1,i2,1σ

b
i1−1,i2−1,1 + ∆

yx
abσ

a
i1,i2,1σ

b
i1+1,i2+1,1

+∆
xy
abσ

a
i1,i2,2σ

b
i1+1,i2+1,2 + ∆

yx
abσ

a
i1,i2,2σ

b
i1−1,i2−1,2

+∆
yz
abσ

a
i1,i2,1σ

b
i1,i2+1,1 + ∆

zy
abσ

a
i1,i2,1σ

b
i1,i2−1,1

+∆
yz
abσ

a
i1,i2,2σ

b
i1,i2−1,2 + ∆

zy
abσ

a
i1,i2,2σ

b
i1,i2+1,2

+∆zx
abσ

a
i1,i2,1σ

b
i1+1,i2,1 + ∆xz

abσ
a
i1,i2,1σ

b
i1−1,i2,1

+∆zx
abσ

a
i1,i2,2σ

b
i1−1,i2,2 + ∆xz

abσ
a
i1,i2,2σ

b
i1+1,i2,2

)
. (6.78)

To investigate the instability of the ASL, we perform a mean-field treatment of

the Hamiltonian in the Majorana fermionic representation (2.4). The decoupling

of the spinon and gauge field sectors is represented by

σα
i σ

β
j = −icic j ibαi bβj ≈ −icic jB

αβ
i j − iCi jbαi bβj + Ci jB

αβ
i j (6.79)

where we allow for only short range Majorana correlations. Substituting in equa-

tion (6.71), we get the mean field Hamiltonian,

HMF = −
∑
〈i j〉a

(
Γa

bcBbc
i j icic j + Γa

bcCi j ibb
i bc

j

)
−

∑
〈〈i j〉〉ab

(
∆ab

cd Bcd
i j icic j + ∆ab

cdCi j ibc
i b

d
j

)
. (6.80)
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We assume that the ground state is translationally invariant, isotropic and denote,

Ci1,i2,1 i1−1,i2,2 = Ci1,i2,1 i1,i2+1,2 = Ci1,i2,1 i1,i2,2 = ε (6.81)

Bxx
i1,i2,1 i1−1,i2,2 = Byy

i1,i2,1 i1,i2+1,2 = Bzz
i1,i2,1 i1,i2,2

= η (6.82)

Bxy
i1,i2,1 i1−1,i2,2

= Bxxy; Byx
i1,i2,1 i1−1,i2,2

= Bxyx (6.83)

Bxz
i1,i2,1 i1−1,i2,2

= Bxxz; Bzx
i1,i2,1 i1−1,i2,2

= Bxzx (6.84)

Byx
i1,i2,1 i1,i2+1,2 = Byyx; Bxy

i1,i2,1 i1,i2+1,2 = Byxy (6.85)

Byz
i1,i2,1 i1,i2+1,2 = Byyz; Bzy

i1,i2,1 i1,i2+1,2 = Byzy (6.86)

Bxz
i1,i2,1 i1,i2,2

= Bzxz; Bzx
i1,i2,1 i1,i2,2

= Bzzx (6.87)

Byz
i1,i2,1 i1,i2,2

= Bzyz; Bzy
i1,i2,1 i1,i2,2

= Bzzy (6.88)

Ci1,i2,1 i1−1,i2−1,1 = Ci1,i2,1 i1+1,i2,1 = Ci1,i2,1 i1,i2+1,1 = µ1 (6.89)

Ci1,i2,2 i1+1,i2+1,2 = Ci1,i2,2 i1−1,i2,2 = Ci1,i2,2 i1,i2−1,2 = µ2 (6.90)

Bxy
i1,i2,1 i1−1,i2−1,1 = Byz

i1,i2,1 i1+1,i2,1
= Bzx

i1,i2,1 i1,i2+1,1 = b1 (6.91)

Bxy
i1,i2,2 i1+1,i2+1,2 = Byz

i1,i2,2 i1−1,i2,2
= Bzx

i1,i2,2 i1,i2−1,2 = b2. (6.92)

The mean field Hamiltonian at t′ = 1 is

HMF = Hb
MF + Hc

MF (6.93)

Hb
MF =

1
4

∑
k∈HBZ

(
(bαk1)† (bαk2)†

)  iVαβ,1(k) iUαβ(k)

−iU∗αβ(k) iVαβ,2(k)


 bβk1

bβk2

 (6.94)

U(k) = ε


Je−ik1 γ1(e−ik1 + eik2) γ1(e−ik1 + 1)

γ1(e−ik1 + eik2) Jeik2 γ1(eik2 + 1)

γ1(e−ik1 + 1) γ1(eik2 + 1) J

 (6.95)

96



Vαβ,1 = µ1γ2


0 eik3 −e−ik1

−e−ik3 0 eik2

eik1 −e−ik2 0

 Vαβ,2 = µ2γ2


0 −e−ik3 −e−ik1

eik3 0 −e−ik2

eik1 eik2 0


(6.96)

Hc
MF =

1
4

∑
k∈HBZ

(
c†k1 c†k2

)  iv1(k) iu(k)

−iu∗(k) iv2(k)


 ck1

ck2

 (6.97)

u(k) =
∑
α

e−ik·eα

Jη + γ1

∑
β,α

Bαβ
α

 (6.98)

v1(k) = 2ib1γ2

∑
α

sin(k · eα) v2(k) = −2ib2γ2

∑
α

sin(k · eα) (6.99)

where ki = k · ei
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Figure 6.6: Spinon gap, Eg as a function of U.

Both the nearest-neighbour and the next-to-nearest neighbour terms in the Hamil-

tonian (6.65) results in closing the gap in the spinon sector. While the former
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occurs at the Dirac points (see Fig: 6.5), the latter leads to a collapse of the gap at

(0, 0) and (π, π). For large values of U the nearest-neighbour term dominates; for

smaller values of U, on the other hand, the next-nearest neighbour term comes

into play and the Dirac points shift to (0, 0) and (π, π). Numerically we find that

the spinon sector is gapless for U ≥ 1.6 Fig:(6.6). We have checked that this

remains true for 1 < t′ < 0.5. VCA indicates a Mott transition at U = 2.4. This

shows the absence of the CSL phase in the presence of higher order perturbative

terms and indicates that the ASL phase continues till the Mott transition.

6.5 Conclusion

In the conclusion to the first part of the thesis, we have shown that the Kitaev-

Hubbard model which is a Hubbard model, with spin-dependant hopping on the

honeycomb lattice, shows a Mott transition from a semi-metallic phase to an al-

gebraic spin-liquid phase. The former breaks time-reversal symmetry whereas

the latter preserves it. The ASL is stabilized by this TR symmetry. We have

proved the TR invariance in the Mott phase to all orders in t/U using particle-

hole symmetry. At intermediate U the ASL phase occurs for a wide range of

t′ which narrows down as U is increased. The model also features a first order

transition from an ASL phase to an AFI phase. We computed the spin-spin cor-

relation function and find a power law behaviour. Using a Majorana mean field

technique we eliminate the possibility of a spontaneous time reversal symmetry.

Concrete schemes to realize this model have been proposed[43, 75], and experi-

mental methods to probe the semi-metal at low U[76] and the ASL at large U[74]

exist. This demonstration of the existence of the ASL might help better under-

stand the physics of the pseudo-gap phase of the underdoped high temperature
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superconductors [77, 29, 30].
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Chapter 7

Introduction to Iridate Materials

The woods are lovely, dark and

deep,

But I have promises to keep,

And miles to go before I sleep,

And miles to go before I sleep.

Robert Frost

In this chapter we familiarize ourselves with the Iridates. The strong spin orbit

coupling present in these compounds makes them interesting subjects to realize

perturbed Kitaev models.

7.1 The IrO3-type Iridates

The A2IrO3 (A = Na, Li) family of iridates have a structure that is made up of

layers containing only A atoms alternating with AIr2O6 layers stacked along the

c axis as shown in Fig:(7.1)[9]. A Kitaev-Heisenberg (KH) model for A2IrO3 was

101



Figure 7.1: The crystallographic structure of Na2IrO3 compound. (a) The view
perpendicular to the c axis showing the layered structure. (b) One of the NaIr2O6

slabs viewed down the c axis to highlight the honeycomb lattice of Ir atoms
within the layer[9].

studied theoretically and based on the relative strength of the two exchanges three

magnetic ground states were envisaged. A simple Neel anti-ferromagnet in the

Heisenberg limit, a quantum spin-liquid (QSL) in the Kitaev limit, and an unusual

stripy magnetic order where both are present, were predicted [78]. These pre-

dictions have led to a flurry of activity on the honeycomb lattice iridates A2IrO3

(A = Na, Li) [79, 80, 36, 81, 78, 2, 35, 82, 11, 83, 84, 85, 86, 87, 88, 89]. First ex-

periments on single crystals found that Na2IrO3 was indeed a Mott insulator with

strong anti-ferromagnetic interactions (Weiss temperature θcw = −120 K). It also

showed long-ranged magnetic order at a much lower temperature TN = 15 K [35].

This magnetic order however, was found to be of the zig-zag kind [80, 36, 81],

and not one of the predicted phases of the KH model [78]. Subsequently sev-

eral attempts were made to modify the nearest-neighbour (NN) KH model to get
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the experimentally observed zig-zag order. It was found that substantial further

neighbour interactions of the Heisenberg type could stabilize the zig-zag order as

well as explain the inelastic neutron scattering data [36, 82]. In a more drastic

attempt to reconcile experiments with a NN KH model the signs of H- and K-

interactions were reversed from anti-ferromagnetic and ferromagnetic to ferro-

magnetic and anti-ferromagnetic, respectively [11]. This also led to the zig-zag

order being stabilized in some part of parameter space. New quantum chem-

istry calculations have concluded that the Kitaev term is large (≈ 17 meV) and

ferromagnetic and additionally, bond-dependent anisotropic exchanges are also

present[86]. Presence of such anisotropic bond-dependent NN exchanges has

also been found in recent exact diagonalization calculations [87]. Another recent

study has proposed a model with both Heisenberg and Kitaev interactions which

exist beyond nearest-neighbor spins [90]. Thus the minimal model for these ma-

terials and in particular, how close the real materials are to the SL state in the

dominant Kitaev limit is still unclear.

The first direct evidence of dominant bond-dependent magnetic interactions has

been found very recently using diffuse RIXS measurements on Na2IrO3 [91].

Additionally, this study showed that short ranged zig-zag correlations which are

present above TN = 15 K do not change as the temperature is lowered into the

magnetically ordered state suggesting that fluctuating moments survive deep into

the ordered state [91]. This indicates that only that a small fraction of the mag-

netic moment orders while a large fraction is still dynamically fluctuating down

to the lowest temperatures. This study therefore suggests that Na2IrO3 maybe

close to the SL state predicted in the strong Kitaev limit [91].

A novel prediction has recently been made for observing the signatures of the Ki-

taev QSL in Raman scattering on Na2IrO3 in the form of a polarization-independent
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broad band response centred at 6JK (JK is the Kitaev interaction strength) [12]. In

these calculations the Heisenberg interaction (JH) is assumed to be a weak pertur-

bation (JH/JK = 0.1) so the Raman response from the Heisenberg term will be an

order of magnitude smaller with a band maximum at much lower frequency than

the Kitaev part. Predictions of a broad continuous polarization independent Ra-

man band seems to be a generic feature of spin-liquids with similar broad bands

being predicted for the Kagome lattice material Herbertsmithite ZnCu3(OH)6Cl2

[92, 93]. Recently, an experimental Raman study on Herbertsmithite has shown a

quasi-elastic signal at high temperature and a broad maximum ∼ 250 cm−1 at low

temperature. These features have been associated with the excitation of a gap-

less spin liquid ground state [94]. Thus Raman scattering seems to be a new tool

to look for signatures of QSL’s [92, 93, 12]. Recent Raman scattering measure-

ments on the honeycomb lattice Ruthenate α-RuCl3, another material proposed

for realization of KH physics, has also revealed a broad continuum of excitations

which was interpreted as resulting from proximity to the QSL phase in the strong

Kitaev limit [95].

We present here a comprehensive study of Raman scattering from the honeycomb

lattice iridates Na2IrO3. These materials have previously been reported to have

zigzag magnetic long range order for TN ≈ 15 K, 10 K, and 6 K, respectively

[80, 96, 97]. We use a Kitaev-Heisenberg spin Hamiltonian model treated in a

generalized mean field theory that even in the zigzag magnetically long range or-

dered state close to the SL phase boundary, the predicted Raman excitation has a

broad Kitaev SL like spectrum quite similar to what is observed [98]. We believe

that this demonstrates both the applicability of a Kitaev-Heisenberg Hamiltonian

to the honeycomb iridates, and also the survival of Kitaev like spin correlations

in such systems in spite of long range magnetic order. Some implications of this
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discovery are that some of the quantum entanglement and coherence manifest in

Kitaev spin liquid systems could survive recognizably and usefully in real sys-

tems with magnetic long range order with possible applications, and also that

there is hope for finding realistic materials which have Kitaev spin liquid like

ground states whose exact solubility lays bare the nature of low lying excitations

(Majorana fermions) and quantum coherence.

7.2 The Ir3O8-type iridates

Recently, Na4Ir3O8 compound has been proposed as one of the candidates for

hosting Mott insulating spin liquid phase in three-dimension [10, 99, 100, 101,

102, 103, 104, 105, 106, 107]. The structure of the material is shown in Fig:(7.2)

which is derived from those of spinel oxides AB2O4 which can be obtained by

rewriting the chemical formula for the compound as (Na1.5)1(Ir3/4Na1/4)2O4. In

Na4Ir3O8, each tetrahedron in the B sub-lattice of the spinel structure is occu-

pied by three Ir atoms and one Na atom. Therefore, Ir sites form a geomet-

rically frustrated hyper-kagome lattice which is a three-dimensional network of

corner-sharing triangles[10]. Temperature dependent susceptibility, χ, measure-

ment shows that spin 1/2 Ir atoms interact anti-ferromagnetically with a large

Curie-Weiss constant θw ≈ −650K and moment pe f f = 1.96µB [10]. However no

anomaly is present in the magnetic susceptibility down to 2K, indicating no long

range ordering in Na4Ir3O8, which is further supported by NMR Knight shift

measurement [101]. Later on, it was shown that the spin-orbit coupling SOC

that breaks the S U(2) spin-rotation symmetry induces anisotropic exchange in-

teractions. These interactions relieve frustration and may give rise to magnetic

ordering at low temperatures [99]. The magnetic susceptibility saturates to a fi-
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Figure 7.2: The crystallographic structure of Na4Ir3O8 compound. Black and
gray octahedra represent IrO6 and NaO6 respectively. The spheres inside the
octahedra represent Ir and Na atoms and oxygens occupy all the corners [10].

nite value as temperature approaches to zero while heat capacity CV follow linear

temperature dependence with a rather small coefficient γ where γ =
CV

T
. This

gives the Wilson ratio [101], defined by RW =
π2kBχ

3γ
to be 35 at low temperature

which is much higher than other promising quantum spin liquid candidates where

RW is of the order of unity. This anomalously large Wilson ratio is explained by

using extended Hubbard model on hyper-kagome lattice that includes spin-orbit

coupling and multi-orbital interactions [101]. The charge gap of Na4Ir3O8 is

reported to be 500K, which is comparable to Curie-Weiss temperature, suggest-

ing that the compound is near the Mott transition [10]. Application of moderate

hydrostatic pressure or relatively small concentration of dopants turn Na4Ir3O8

in to metallic state from Mott insulator [100]. The influence of electron-phonon

interaction on these electronic properties and phase behaviour has not yet been
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addressed despite its prominent role in 3D transition metal oxides. Recently, Ra-

man studies on this compound (to be published soon) also show a broad Raman

band similar to the Na2IrO3 compound. We use a Kitaev-Heisenberg spin Hamil-

tonian model treated in a generalized mean field theory to show that in the spin

liquid phase, the predicted Raman excitation has a broad spectrum quite similar

to what is observed.
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Chapter 8

A Brief History of Raman

Spectroscopy

Give light, and the darkness will

disappear of itself.

Desiderius Erasmus

A large fraction of light scattered from a target material occurs via elastic scat-

tering. Raman scattering is an example of the rarer inelastic light scattering,

and occurs when light interacts with electric dipoles of the material. As such,

Raman scattering is also a useful tool for probing the polarizability of the ma-

terial. The energy shifts required for Raman scattering do not require a large

transfer of momentum and thus can be generated from any type of excitation.

Optical phonons occurring near the center of the Brillouin zone appear as sharp

peaks in the Raman spectrum. Two-magnon scattering is an excitation typical of

cuprates that produces an exchange between a pair of neighbouring spins on the

anti-ferromagnetically ordered copper sub-lattice. In the context of the topics dis-
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cussed in this thesis, Raman scattering has recently emerged as a powerful tool in

detecting quantum spin liquids [92, 93, 108, 12]. For instance, the Raman cross-

section acquires a characteristic polarization dependence in the broken symmetry

phase, but loses the same in the spin liquid phase, thus revealing the presence—or

absence—of the latter.

Beginning with the Peierls coupling and proceeding along the lines of the Loudon-

Fleury approach [109, 110], it is possible to derive the general expression for the

Raman scattering intensity. We summarize here briefly the method for the deriva-

tion. Shastry et al.[109] start with a one band Hubbard model given by

H = Ht + HU (8.1)

where Ht is the nearest neighbour hopping Hamiltonian, HU is the onsite in-

teraction, to describe the system. This Hamiltonian is now coupled to external

electromagnetic field with vector potential in real space A, done by replacing the

hopping matrix element t → teiA·x. The Hamiltonian can now be written as

H = Ht + HU + Hγ + HC (8.2)

and

HC = −
∑
〈i j〉

tc†i c j

{
ie
~c

A · (xi − x j) −
e2

~2c2

[
A · (xi − x j)

]2
+ · · ·

}
+ h.c. (8.3)

Hγ =
∑

q

ωqaα†q aαq (8.4)

where aαq denotes the annihilation of a photon at momentum q and polarization

α and · · · represents higher order terms of A. HC is treated as a time-dependant

perturbation and the basic Raman scattering cross section is given by the Fermi-
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Golden rule

R = 2π|〈 f |M|i〉|2δ(E f − Ei) (8.5)

where M is the effective scattering operator causing a scattering between the ini-

tial state |i〉 and the final state | f 〉 with the corresponding energies Ei and E f . Let

ωin, kin and εin be the frequency, momentum and polarization of the incoming

photon with in → out representing the corresponding physical quantities for the

outgoing photon. Let A = ginεinakin +goutεouta
†

kout
where gin, gout are laser coupling

constants and we have assumed that the photon momenta is much smaller than

the lattice spacing. Keeping terms of only zeroth order in t/U and assuming that

the system is at half filling and near resonance, M can be expressed in terms of

spin-operators. The final Raman operator for the model can be computed to be

R =
∑
〈i j〉α

(εin.dα)(εout.dα)K1Si · S j. (8.6)

Similar expression can be obtained for the Kitaev-Heisenberg model starting from

say a one band Hubbard model like say the Kitaev-Hubbard model Eq:(3.1) which

is given by [12]

R =
∑
〈i j〉α

(εin.dα)(εout.dα)(KS α
i S α

j + K1Si · S j) (8.7)

where constants K ∝ JK and K1 ∝ JH. The expression for the Raman response is

written in the Heisenberg picture, where εin and εout correspond to the incoming

and outgoing polarization directions of light. The most commonly used experi-

mental configuration with scattering of linearly polarized light (A′1g, B1g, B2g) and

of left circularly polarized light into left or right polarization denoted by LL and
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LR respectively is given below.

εin εout

I A′1g
x+y

2
x+y

2

II B1g
x+y

2
x−y

2

III B2g x y

IV LR x+iy
2

x−iy
2

V LL x+iy
2

x+iy
2

. (8.8)

The Raman intensity is therefore computed as

I(ω) =

∫
dt eiωt iF(t) (8.9)

iF(t) = 〈GS |R(t)R(0)|GS 〉 (8.10)

where |GS 〉 is the ground state of the model.

It is possible to detect, based on the symmetries of the underlying lattice, if a

particular mode is active in the Raman way. The symmetry groups for the square

lattice, honeycomb lattice and hyper-kagome lattice are C4v, C6v and a very

complicated P4332 respectively. The Raman intensity in each of the experimental

configurations can be represented in terms of the linear combinations of the one

dimensional irreducible representations of these groups. For example the square

lattice C4v has four of them : A1, A2, B1,B2. The relations between the Raman

intensity for these and the experimental configurations has been discussed by

Shastry et al.. [109].

The computation of the ground state provides another challenge in the compu-

tation of the Raman intensity of any spin model. As our discussions earlier in

the thesis reveals, while the ground state for the Kitaev model is well known, it
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is imperative that Majorana mean field theory is used for the Kitaev-Heisenberg

model. In the next two chapters we compute the Raman intensity for the Kitaev-

Heisenberg model for honeycomb and hyper-kagome lattices which are, respec-

tively, models for the materials Na2IrO3 and Na4Ir3O8 compounds.
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Chapter 9

Raman Response for Honeycomb

Sodium Iridate

Expectation is the root of all

heartache.

William Shakespeare

It is still unclear what a minimal model for the A2IrO3 materials is and how strong

the Kitaev interactions are in these materials. There are quantum chemical cal-

culations [111, 112] of the actual iridate systems, with a view to finding the ap-

propriate model Hamiltonians and their interaction parameters. Iridium has an

atomic number 77 with the electronic configuration [Xe]4 f 145d76s2 with 7 elec-

trons in the outermost 5d shell. In Iridate compounds, the Ir4+ ions have a hole

which can lie in any one of the t2g orbitals of xy, yz or xz. A local effective Hamil-

tonian for the holes can be written based on the spin-orbit coupling parameter λ

and tetragonal t2g level splitting parameter ∆[33]. This gives us an low energy

effective two level system in which the spin and the orbital degrees of freedom
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are coupled represented by a pseudo-spin 1/2 at each Ir site. An interacting

fermion model for these pseudospins on the honeycomb lattice can be written.

In terms of these degrees of freedom, the tight binding Hamiltonian H can be

formally written as the sum of two terms HKitaev (HK) and HHeisenberg (HH), where

HK couples the spins of the nearest neighbours in the bond direction, and HH is

the conventional Heisenberg spin Hamiltonian. A very attractive two parameter

Hamiltonian is due to Chaloupka et al.[11]

H = A cos φ
∑

Si · S j + 2A sin φ
∑

S a
i S a

j (9.1)

where S a
i is the a component of the spin half operator at site i; i and j are nearest

neighbours. The two parameters are the overall magnitude A of the coupling

as well as the relative weight and sign of the Kitaev (JK = 2A sin φ) as well

as Heisenberg (JH = A cos φ) parts of the Hamiltonian described by the angle

φ. Chaloupka et al.. [11] have shown from exact diagonalization that there is a

zigzag magnetically long range ordered phase for φ > 92.2o. See Fig:(9.1)

Rau et al. [87] on the other hand have worked on a Kitaev-Heisenberg model

with off-diagonal bond direction-type interactions Γ,

H =
∑
〈i j〉a

[
JHSi · S j + JKS a

i S a
j + Γ(S b

i S c
j + S c

i S
b
j)
]

(9.2)

and have found, using exact diagonalization, a spin-liquid–zig-zag transition.

Though most of our discussions pertain to the model of Eq.(9.1), we have also

done calculations with Eq.(9.2).

Knolle et al.[12] considered the spin liquid phase of Eq.(9.1) with JK = −1, JH =

0.1 with φ = −78.7o. Since the phase is still spin liquid, the Heisenberg term can
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Figure 9.1: The phase diagram of the Kitaev Heisenberg model Eq:(9.1) com-
puted using exact diagonalization[11] showing the location of various magnetic
and spin liquid phases.

be considered as a perturbation with the Kitaev as the unperturbed Hamiltonian.

The Raman response is computed numerically upto second order of perturbation

with respect to the Kitaev ground state which contains decoupled contributions

from the Kitaev part and the Heisenberg parts of the Raman response. We discuss

the calculations and results in brief.

The ground state of the Kitaev model, with decoupled matter and conserved

gauge sectors is given as

|GS 〉 = |GS k〉 = |M〉|G〉 (9.3)

with the action of the Kitaev model on the ground state to be

Hk|M〉|G〉 = E0|M〉|G〉. (9.4)
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The Raman response operator given in Eq:(10.24) is now written in interaction

picture where the Heisenberg term is considered as a perturbation turned on at

−∞. Thus we get

iF(t) = 〈GS k|S †(t,−∞)R(t)S (t, 0)R(0)S (0,−∞)|GS k〉 (9.5)

which when expanded to leading order of S (t, t′) which is 1 and rewriting R =

Rk + γRh, γ = J1
Jk

defines the amount of perturbation, we get

iF(t) ≈ 〈GS k|R(t)R(0)|GS k〉 (9.6)

= 〈GS k|(Rk(t) + γRh(t))(Rk(0) + γRh(0))|GS k〉 (9.7)

= 〈GS k|Rk(t)Rk(0)|GS k〉 + γ2〈GS k|Rh(t)Rh(0)|GS k〉. (9.8)

The operators are now in interaction picture. The first term of the above expres-

sion can be calculated easily. For the second term we have

〈GS k|Rh(t)Rh(0))|GS k〉 = 〈M|〈G|Rh(t)Rh(0)|M〉|G〉 (9.9)

= 〈M|〈G|e−iHktRheiHktRh|M〉|G〉. (9.10)

Contribution from each of the Raman operator terms can be computed qualita-

tively as

〈GS k|Rh(t)Rh(0))|GS k〉 ≈ 〈M|〈G|e−iHktcbcbeiHktcbcb|M〉|G〉 (9.11)

= 〈M|〈G|e−iHktccei(Hk+V0)tbbccbb|M〉|G〉 (9.12)

= 〈M|e−iHktccei(Hk+V0)tcc|M〉〈G|bbbb|G〉 (9.13)

≈ 〈M|e−iHktcc
∑
λ

|λ〉〈λ|ei(Hk+V0)tcc|M〉 (9.14)
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such that (Hk + V0)|λ〉 = Eλ thereby giving us

〈GS k|Rh(t)Rh(0))|GS k〉 ≈
∑
λ

e−i(E0−Eλ)t〈M|cc|λ〉〈λ|cc|M〉. (9.15)

Knolle et al.[12] numerically studied the system upto 62x62 unit cells and the

results can be seen in Fig:(9.2).

Figure 9.2: The Raman Intensity I(ω) (black curve) computed for the spin liquid
using Heisenberg perturbation [12].

9.1 Mean Field Theory of the KH model

We use a mean field theory because of its versatility and because of its giving

the observed phases through the actual critical values of the self consistent cou-

pling constants separating the phases. They are different from that obtained in

finite-size exact diagonalization calculations. We write the Kitaev-Heisenberg
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Hamiltonian in terms of the Majorana fermions

H = JK

∑
〈i j〉α

icibαi ic jbαj + JH

∑
〈i j〉

∑
α

icibαi ic jbαj . (9.16)

To solve the model we perform a mean field decoupling of the Majorana fermions

to include the possibility of both spin liquid and magnetic phases, since the ma-

terial actually shows magnetic order at low temperatures, as

σα
i σ

β
j = −icic j ibαi bβj ≈ −icic jB

αβ
i j − iCi jbαi bβj + Ci jB

αβ
i j

+ icibαi Mβ
j + ic jb

β
j M

α
i − Mα

i Mβ
j . (9.17)

The self-consistency equations are

Bαβ

〈i j〉γ ≡ 〈ib
α
i bβjγ〉, C〈i j〉γ ≡ 〈icic jγ〉, Mα

i ≡ 〈icibαi 〉. (9.18)

Here Bi j and Ci j represent nearest neighbour correlations and Mi the magnetic

order parameter. When Mi = 0, the phase is a spin liquid phase where the c and

the b fermion Hamiltonians decouple. The c fermions modify the hopping of the

b fermions and vice-versa. When Mi , 0, the phase is a magnetic phase and the

type of order is determined by its variation throughout the lattice.

In the Hamiltonian Eq.(9.1), we analyze the spin-liquid–zigzag regime of Fig:(9.1).

We see a spin liquid to zigzag transition at φ = 101.4o using Majorana mean field

decoupling discussed above and comparing the free energy of the system. We

show this in Fig:(9.3) where we plot a few of the mean field parameters as a func-

tion of φ. The phase transition is first order due to the underlying symmetry of

the phases. Close to the boundary, Kitaev-like spin correlations exist and beyond

φ = 110o they die. We expect that the Na2IrO3 compound lies in this zigzag
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phase with short range correlations. We proceed now to compute the Raman

Response of the the model and compare with experiments.
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Figure 9.3: The mean field parameters around the spin liquid at φ = π
2 .

For the spin-liquid phase of the KH model some level of analytical treatment

for the mean field decoupling of the gauge and the spinon sector and the Raman

Response can be done. The Hamiltonian for the spinon sector c with η = Bα
αα is

given as

Hc =
−(3J1 + Jk)η

4

∑
k

(
f †k f−k

)  1 + cos k1 + cos k2 −i(sin k1 − sin k2)

i(sin k1 − sin k2) −(1 + cos k1 + cos k2)


 fk

f †
−k


=

∑
k

(
f †k f−k

)  εk −iδk

iδk −εk


 fk

f †
−k


=

∑
k

Ek

(
f †k f−k

)  cos 2θ −i sin 2θ

i sin 2θ − cos 2θ


 fk

f †
−k

 .
The diagonalization of the Hamiltonian can be done using the following expres-
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sions

εk =
−(3J1 + Jk)η

4
(1 + cos k1 + cos k2) δk =

−(3J1 + Jk)η
4

(sin k1 − sin k2)

sin 2θ =
δk

Ek
cos 2θ =

εk

Ek αk

βk

 =

 cos θ −i sin θ

−i sin θ cos θ


 fk

f †
−k

 e2iθk =
−sk

|sk|

Ek =
(3J1 + Jk)η

4
|1 + eik1 + e−ik2 | =

(3J1 + Jk)
4

|sk|

by which we get

Hc =
∑

k

Ek

(
α†k β†k

)  1 0

0 −1


 αk

βk

 . (9.19)

So finally if we put βk = α†
−k

Hc =
∑

k

Ek(α
†

kαk − β
†

kβk) =
∑

k

Ek(2α
†

kαk − 1). (9.20)

Similarly for the gauge sector with Cα = ε′, we have gk =
(
gx†

k , g
x
−k, g

y†
k , g

y
−k, g

z†
k , g

z
−k

)T

Hb =
−ε′

4

∑
k

g†k


Gb

x 0 0

0 Gb
y 0

0 0 Gb
z

 gk (9.21)
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with

Gx
b =

 J1(1 + cos k1 + cos k2) + Jk cos k1 −iJ1(sin k1 − sin k2) − iJk sin k1

iJ1(sin k1 − sin k2) + iJk sin k1 −J1(1 + cos k1 + cos k2) − Jk cos k1


(9.22)

Gy
b =

 J1(1 + cos k1 + cos k2) + Jk cos k2 −iJ1(sin k1 − sin k2) + iJk sin k2

iJ1(sin k1 − sin k2) − iJk sin k2 −J1(1 + cos k1 + cos k2) − Jk cos k2


(9.23)

Gz
b =

 J1(1 + cos k1 + cos k2) + Jk −iJ1(sin k1 − sin k2)

iJ1(sin k1 − sin k2) −J1(1 + cos k1 + cos k2) − Jk

 . (9.24)

Now we can easily diagonalize the above Hamiltonian using

 α
x
k

βx
k

 =

 cos φx −i sin φx

−i sin φx cos φx


 gx

k

gx†
−k


e2iφx

k =
−(J1sk + Jkeik1)

4Ex
k

Ex
k =
|J1sk + Jkeik1 |ε

4 α
y
k

β
y
k

 =

 cos φy −i sin φy

−i sin φy cos φy


 gy

k

gy†
−k


e2iφy

k =
−(J1sk + Jke−ik2)

4Ey
k

Ey
k =
|J1sk + Jke−ik2 |ε

4 α
z
k

βz
k

 =

 cos φz −i sin φz

−i sin φz cos φz


 gz

k

gz†
−k


e2iφz

k =
−(J1sk + Jk)

4Ex
k

Ex
k =
|J1sk + Jk|ε

4
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and hence

H x
b =

∑
k

(
αx†

k βx†
k

)  Ex
k 0

0 −Ex
k


 αx

k

βx†
k

 (9.25)

=
∑

k

Ex
k (2αx†

k α
x
k − 1) (9.26)

H
y
b =

∑
k

(
α

y†
k β

y†
k

)  Ey
k 0

0 −Ey
k


 α

y
k

β
y†
k

 (9.27)

=
∑

k

Ey
k(2αy†

k α
y
k − 1) (9.28)

H z
b =

∑
k

(
αz†

k βz†
k

)  Ez
k 0

0 −Ez
k


 αz

k

βz†
k

 (9.29)

=
∑

k

Ez
k(2α

z†
k α

z
k − 1) (9.30)

with

αa
k(t) = αa

k(0)e−2iEa
k t; αa†

k (t) = αa†
k (0)e2iEa

k t. (9.31)

We digress the Raman operator as

iF(t) = 〈R(t)R(0)〉 (9.32)

=
∑

i,l

ε
′2η2

∑
α,β

mαmβ + η2〈Rc(t)Rc(0)〉 + ε
′2〈Rb(t)Rb(0)〉

+ CxxBxx + CyyByy + CzzBzz. (9.33)

The first term is a constant and we just neglect that. The Raman operator Rc has
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the following contributions

Rc = Rk
c + Rh

c (9.34)

The Kitaev contribution can be written as

Rk
c = −K

∑
i1,i2

imzci1,i2,Aci1,i2,B + imxci1,i2,Aci1+1,i2,B + imyci1,i2,Aci1,i2−1,B (9.35)

= −K
∑

k

(
f †k f−k

)  mz + mx cos k1 + my cos k2 −i(mx sin k1 − my sin k2)

i(mx sin k1 − my sin k2) −(mz + mx cos k1 + my cos k2)


 fk

f †
−k


(9.36)

with mα = (εin · dα)(εout · dα). Defining

m1 = Re
(
mz + mxeik1 + mye−ik2

)
= mz + mx cos k1 + my cos k2 (9.37)

m2 = Im
(
mz + mxeik1 + mye−ik2

)
= (mx sin k1 − my sin k2) (9.38)

and since ma is real, the Raman operator takes the form

Rk
c = −K

∑
k

(
f †k f−k

)  m1 −im2

im2 −m1


 fk

f †
−k

 (9.39)

= −K
∑

k

(
α†k α−k

)  cos θ −i sin θ

−i sin θ cos θ


 m1 −im2

im2 −m1


 cos θ i sin θ

i sin θ cos θ


 αk

α†
−k


(9.40)

= −K
∑

k

(
α†k α−k

)  m1 cos 2θ + m2 sin 2θ i(m1 sin 2θ − m2 cos 2θ)

−i(m1 sin 2θ − m2 cos 2θ) −(m1 cos 2θ + m2 sin 2θ)


 αk

α†
−k


(9.41)
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which gives the full Raman operator to be

Rk
c(0) = −K

∑
q

{
(m1 cos(2θq) + m2 sin(2θq))α†q(0)αq(0) + i(m1 sin(2θq)

−m2 cos(2θq))α†q(0)α†−q(0) − i(m1 sin(2θq) − m2 cos(2θq))α−q(0)αq(0)

−(m1 cos(2θq) + m2 sin(2θq))α−q(0)α†−q(0)
}

(9.42)

Rk
c(t) = −K

∑
q

{
(m1 cos(2θq) + m2 sin(2θq))α†q(t)αq(t) + i(m1 sin(2θq)

−m2 cos(2θq))α†q(t)α†−q(t) − i(m1 sin(2θq) − m2 cos(2θq))α−q(t)αq(t)

−(m1 cos(2θq) + m2 sin(2θq))α−q(t)α†−q(t)
}
. (9.43)

The terms that contribute to the Response function are

〈α−k(t)αk(t)α†q(0)α†−q(0)〉 = e−4iEkt(−δk,−q + δk,q) (9.44)

〈α−k(t)α
†

−k(t)α−q(0)α†−q(0)〉 = 1. (9.45)

The second term gives a contribution that is independent of time and hence we

shall neglect it thereby giving the final expression for the Raman response as

iF(t) = K2
∑
k,q

(mk1 sin(2θk) − mk2 cos(2θk))(mq1 sin(2θq) − mq2 cos(2θq))

〈a−k(t)ak(t)a†q(t)a†−q(t)〉 (9.46)

= K2
∑
k,q

(mk1 sin(2θk) − mk2 cos(2θk))(mq1 sin(2θq) − mq2 cos(2θq))

e−4iEkt(−δk,−q + δk,q) (9.47)

= 2K2
∑

k

(mk1 sin(2θk) − mk2 cos(2θk))2e−4iEkt. (9.48)
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Thus we get an analytical expression

iF(t) = 2
∑

k

Im −∑
α

mαeik.eαe−2iθk

2

e−4iEkt. (9.49)

The intensity contribution due to the above response is given as

I(ω) =

∫
dteiωtiF(t) (9.50)

=

∫
dteiωt2

∑
k

Im −∑
α

mαeik.eαe−2iθk

2

e−4iEkt (9.51)

= 2
∑

k

δ(ω − 4Ek)

Im −∑
α

mαeik.eαe−2iθk

2

. (9.52)

One can compute in the similar fashion, the contribution to the Heisenberg term

and the mixed Kitaev-Heisenberg type of terms as

Ih
c (ω) = 18K2

1

∑
k

δ(ω − 4Ek)

Im −∑
α

mαeik.eαe−2iθk

2

(9.53)

Ikh
c (ω) = 6KK1

∑
k

δ(ω − 4Ek)

Im −∑
α

mαeik.eαe−2iθk

2

(9.54)

Ihk
c (ω) = 6KK1

∑
k

δ(ω − 4Ek)

Im −∑
α

mαeik.eαe−2iθk

2

. (9.55)
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For the gauge sector on the other hand we get the following expressions:

Ik
b(ω) = 2K2

∑
kα

δ(ω − 4Eα
k )

[
Im

(
−mαeik.eαe−2iφαk

)]2
(9.56)

Ih
b(ω) = 2K2

1

∑
kβ

δ(ω − 4Eβ
k )

Im −∑
α

mαeik.eαe−2iφβk

2

(9.57)

Ikh
b (ω) = 2KK1

∑
kβ

δ(ω − 4Eβ
k )Im

−∑
α

mαeik.eαe−2iφβk

 Im
(
−nβeik.eβe−2iφβk

)
(9.58)

Ihk
b (ω) = Ikh

b . (9.59)

Finally we come to the non trivial contributions which lead to three 2D momen-

tum summations.

∑
α

CααBαα =
∑
α

K2m2
α

∑
k,q,p,n

e−2iEkt−2iEqt−2iEα
p t−2iEα

n tδ2(k + q + p + n)

(1 − ei(kα−qα)e−2iθke2iθq)(1 − ei(pα−nα)e−2iφαpe2iφαn )

+ K2
1m2

α

∑
k,q,p,n

δ2(k + q + p + n)(1 − ei(kα−qα)e−2iθke2iθq)

[
e−2iEkt−2iEqt−2iEx

pt−2iEx
nt(1 − ei(pα−nα)e−2iφx

pe2iφx
n)

+e−2iEkt−2iEqt−2iEy
pt−2iEy

nt(1 − ei(pα−nα)e−2iφy
pe2iφy

n)

+e−2iEkt−2iEqt−2iEz
pt−2iEz

nt(1 − ei(pα−nα)e−2iφz
pe2iφz

n)
]

+ KK1m2
α

∑
k,q,p,n

e−2iEkt−2iEqt−2iEpt−2iEntδ2(k + q + p + n)

(1 − ei(kα−qα)e−2iθke2iθq)(1 − ei(pα−mα)e−2iφαpe2iφαn ). (9.60)

There is still a time integration that needs to be done to get the intensity. These

terms are orders of magnitude smaller when compared to the individual spinon

and gauge contributions. Therefore to compute the Raman Intensity for the zigzag
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phase with short range correlations we neglect these and follow the algorithm.

1. Solve the mean field Hamiltonian and generate the parameters self consis-

tently.

2. The dominant contribution to the Raman response comes from decoupled

momentum k terms.

3. The Raman vertex for each k with the appropriate mean field parameters

and the corresponding delta function for the frequency is generated and

summed to obtain the dominant Raman Intensity.

9.2 Raman Response for the pure Kitaev Model

For φ =
π

2
and

3π
2

, that is at the pure Kitaev limit Eq:(9.1) the only term that

contributes is Ik
c (ω). In Fig:(9.4), we plot the Raman intensity for the pure Kitaev

model when the light is polarized along the A1g direction. The broad Raman band

signifies the presence of the spin liquid phase. The Raman intensity also shows a

weak polarization dependence which occurs due to the fact that the ground state

is a spin liquid. These are thus the key points that one must look for to detect the

presence of spin liquids in experiments. The band width of the Raman intensity

is proportional to the band width of the c sector density of states. At low energies

around ω = 0, the Raman intensity shows a linear behaviour which is a signature

of the Dirac point. A dip is found at ω = 4Jk corresponding to the van-hove

singularity point in the density of states of the c fermions.
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Figure 9.4: The Raman Intensity for the the ground state configuration of the pure
Kitaev Model. The broad Raman band is a signature of the spin liquid phase.

9.3 Raman Intensity for the Kitaev-Heisenberg model

For the spin liquid state of Eq:(9.1) we find a broad polarization independent

Raman spectrum qualitatively similar to that found in [12]. See Fig:(9.5). In this

regime since the c and b fermions decouple, the band edge of the Raman intensity

still depends on the c energy spectra. The b fermions are no longer static as in

the case for the pure Kitaev model and the peak around 2Jk occurs due to the gap

in the b spectra. Knolle et al.[12] find a delta function peak using perturbation

theory at ω = 0.46Jk. The width of our peak corresponds to the width of the b

spectra. This peak feature comes from the Heisenberg contribution to the Raman

operator and is hence proportional to K1/K– with no peak at K1 = 0. The van-

hove singularity dip point still persists but is shifted to ω = 3.7Jk.

Fig.9.6 shows the Raman spectrum for A = 1 and φ = 101.5o, values which

give zigzag phase close to spin liquid-zigzag boundary where Kitaev like spin

correlations exist. We note that the broad Raman mode seen for the SL survives

in the magnetic state as well. This explains the observation of the BRB below
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Figure 9.5: The Raman intensity in the spin liquid regime at φ = 101.4◦.

TN in the experiments [98]. It is worth mentioning that the experimental BRB

looks more like the Raman response for the SL state than the Raman response for

the magnetic state which shows some additional structure around 3.75 ω/JK and

9 ω/JK . The peak at 3.75 ω/JK corresponds to the van Hove singularity point.

We have also found that the Raman response does not change much even if an

off-diagonal bond directional term (Γ ≈ 0.01) is added like in Eq.(9.2). Thus the

BRB survives in the magnetic state and in the presence of other small terms apart

from the Kitaev term. An estimate for the strength of the Kitaev coupling can be

found using the band centering of the experiments 2750cm−1, and the peak center

from our theoretical calculations 6.1Jk to be Jk ≈ 57meV . This estimate is much

larger than the values estimated before in literature, Jk = −2meV to Jk = −17meV

[80, 11, 36, 86]. However, it is consistent with the experimentally observed Weiss

temperature.
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Figure 9.6: The Raman intensity in the zigzag phase with short range correlations
close to the spin liquid boundary at φ = 101.5◦.

9.4 Summary and Discussion

Experiments[98] have shown the existence of a broad, polarization independent

Raman band at high energies for single crystals of Na2IrO3. Similar observations

have recently been made on another candidate Kitaev material α-RuCl3. The ob-

servation of the BRB in that material was interpreted as resulting from proximity

to the QSL phase in the strong Kitaev limit [95]. However, the real materials

(both the iridates and the above ruthenate) are all magnetically ordered at low

temperatures. Thus it was unclear whether this broad continuum, predicted for

the SL state, would survive in the magnetically ordered state. We have shown us-

ing mean field calculations that the BRB, predicted for the SL state survives in the

magnetically ordered state at least near the zigzag-SL phase boundary where the

Na2IrO3 material is most likely situated [91]. The BRB predicted for the magnetic

state acquires more structure compared to the BRB in the SL state. Our observed

BRB resembles that predicted for the SL state more than it does for the magnetic

phase. This suggests that Na2IrO3 is close to the QSL state and strong Kitaev
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correlations are present. From the position of the peak of the band, we make a

first direct experimental estimate of the Kitaev interaction strength to be JK = 57

meV. The fact that we observe the BRB well into the magnetically ordered state

is consistent with recent diffuse RIXS observations which indicate that dynami-

cal fluctuations, present above TN , survive almost unchanged into the magnetic

phase [91]. Finally, this suggests that these materials and their doped analog

maybe better avenues to search for further proof for dominant Kitaev physics.

This concludes our work on the honeycomb sodium iridates. We now move on to

the hyper-kagome sodium iridates which presents a different scenario altogether.
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Chapter 10

Raman Response for the

Hyperkagome Sodium Iridate

The moment you are ready to quit

is usually the moment right before

the miracle happens.

Unknown

There have been several attempts to arrive at a minimal spin model that would

best describe Na4Ir3O8 [113, 102, 103, 99, 114]. The search is still on. Hopkin-

son [113] worked on the nearest neighbour Heisenberg model, used large-N mean

field theory and carried out Monte Carlo simulations on the O(N) classical spin

model. Hopkinson predicted a coplanar spin configuration to be the ground state

at low temperatures. Lawler et al.(2008) [102] solved the same model numeri-

cally using large N S p(N) methods. Chen [99] suggested that the the anisotropic

heisenberg model should be used when the iridate shows strong SO coupling

and, alternatively, when the SO coupling is weak, the isotropic heisenberg model
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with DM interactions should be used. In most of these works predominantly

the Heisenberg model on the hyper-kagome lattice has been explored. A recent

study has explored the Kitaev-Heisenberg model on various lattices with edge

shared octahedra including the hyperkagome lattice relevant for Na4Ir3O8 [7].

This work is based on the Kitaev-Heisenberg model that seemed to work well

on the honeycomb lattice Na2IrO3 compound. It is found that while the Kitaev

spin-liquid exact solution doesn’t generalize to the hyper-kagome lattice, a quan-

tum phase with extensive degeneracy is found in both limits of strong Kitaev or

strong Heisenberg, with a 3D stripy order in between [7]. The stripy magnetic

order has clearly not been found in experiments on Na4Ir3O8. However, most

thermodynamic measurements suggest proximity to a spin liquid state. Which

limit (Kitaev or Heisenberg) is more appropriate for the real material is thus still

an open question. Experimentally, this compound has presented a huge chal-

lenge. Various groups have been working on obtaining a crystalline form of this

compound as it quickly destabilizes and forms the more stable Na2IrO3 honey-

comb compound. Therefore there is scope for exploring both the theoretical and

experimental directions for Na4Ir3O8 material.

In this chapter, we start by describing the hyper-kagome lattice. Drawing from the

success of our previous work on the Kitaev-Heisenberg model on the honeycomb

lattice, we study and compare the Kitaev model on the hyper-kagome with the

honeycomb lattices. Finally, we analyse the Kitaev-Heisenberg model on the

hyperkagome lattice, compute the Raman intensity in the spin liquid phase of the

model and compare it with experiments.
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10.1 The hyper-kagome lattice

The hyper-kagome lattice is a lattice in three dimensions which can be generated

from the pyrochlore structure. A pyrochlore lattice is composed of tetrahedrons

with a basis of four sites, and in a cube we have four such distinct tetrahedrons.

Each site is connected to two tetrahedrons giving it a coordination number of six.

One way to generate a hyper-kagome lattice is to keep removing lattice sites from

the pyrochlore lattice. One atom from each of the tetrahedrons is removed in a

consistent fashion so that each atom has four nearest neighbours. The lattice thus

formed has a larger unit cell comprising of 12 sites, and forms corner-sharing

equilateral triangles. This is the desired hyperkagome. Figure:(10.1) compares

the hyperkagome and the pyrochlore lattices. Ai, Bi and Ci, i = 1, 2, 3, 4 represent

the 12 distinct basis for the hyper-kagome lattice and A, B,C,D represent the

basis sites for the pyrochlore lattice. The blue lines represent the connections of

the triangles and the tetrahedrons for the hyper-kagome and pyrochlore lattices

respectively. The red lines, on the other hand represent the connections arising

from repeating the cell structure in all the dimensions.

10.2 Kitaev model on the hyper-kagome lattice

The general Kitaev model on the hyper-kagome lattice [7] is plotted in Fig:(10.2)

with the colours indicating the three types of links x, y and z.

The honeycomb and the hyper-kagome lattices are quite different, and the dif-

ferences manifest itself in areas beyond dimensional considerations. For exam-

ple, the former has only 3 nearest neighbours while the latter has 4. The Kitaev

model is exactly solvable on the honeycomb lattice but is not so on the hyper-
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Figure 10.1: The hyper-kagome and pyrochlore lattices showing the unit cell and
the location of the basis atoms.

kagome. Switching off all but one of the Kitaev links—this amounts to setting

Jx = Jy = 0—the honeycomb becomes a disconnected set of 2 line segments

while the hyper-kagome is such a set of 3 line segments. The electron hopping

spectra for the honeycomb lattice is similar to c fermions hopping but the elec-

tron hopping for the hyper-kagome is rather different from the c fermion hopping

spectra. In particular, electron hopping is not particle hole symmetric, whereas c

fermion hopping is for the hyper-kagome.
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The Kitaev spin Hamiltonian on the hyper-kagome lattice is given as:

H = Jkx

∑
i

[
S x

Ri,A1
S x

Ri+
x+z
4 ,B1

+ S x
Ri+

x+z
4 ,B1

S x
Ri+

x+z
2 ,C2

+ S x
Ri+

x+y
4 ,C1

S x
Ri−1+x+y+

2x+y+3z
4 ,B2

+S x
Ri+

3x+y+2z
4 ,A2

S x
Ri+

2x+y+3z
4 ,B2

+ S x
Ri+

x+2y+3z
4 ,A3

S x
Ri+

2y+2z
4 ,B3

+ S x
Ri+

2y+2z
4 ,B3

S x
Ri−1+y+z+ 3x+2y+z

4 ,C4

+S x
Ri+

3y+3z
4 ,C3

S x
Ri−1+y+z+ 3x+3y+4z

4 ,B4
+ S x

Ri+
2x+3y+z

4 ,A4
S x

Ri+
3x+3y

4 ,B4

]
+ Jky

∑
i

[
S y

Ri,A1
S y

Ri+
x+y
4 ,C1

+ S y
Ri,A1

S y

Ri−1+
3x+3y+4z

4 ,B4
+ S y

Ri+
x+z
4 ,B1

S y

Ri−1+x+z+ 2x+3y+z
4 ,A4

+S y

Ri+
3x+y+2z

4 ,A2
S y

Ri+
2x+2z

4 ,C2
+ S y

Ri+
3x+y+2z

4 ,A2
S y

Ri+
4x+2y+2z

4 ,B3
+ S y

Ri+
2x+y+3z

4 ,B2
S y

Ri+
x+2y+3z

4 ,A3

+S y

Ri+
x+2y+3z

4 ,A3
S y

Ri+
3y+3z

4 ,C3
+ S y

Ri+
2x+3y+z

4 ,A4
S y

Ri+
3x+2y+z

4 ,C4

]
+ Jkz

∑
i

[
S z

Ri,A1
S z

Ri−1+
4x+3y+3z

4 ,C3
+ S z

Ri+
x+z
4 ,B1

S z
Ri+

x+y
4 ,C1

+ S z
Ri+

x+y
4 ,C1

S z
Ri−1+x+y+

x+2y+3z
4 ,A3

+S z
Ri+

3x+y+2z
4 ,A2

S z
Ri+

3x+2y+z
4 ,C4

+ S z
Ri+

2x+y+3z
4 ,B2

S z
Ri+

2x+2z
4 ,C2

+ S z
Ri+

2x+2z
4 ,C2

S z
Ri−1+x+z+ 2x+3y+z

4 ,A4

+S z
Ri+

2y+2z
4 ,B3

S z
Ri+

3y+3z
4 ,C3

+ S z
Ri+

3x+3y
4 ,B4

S z
Ri+

3x+2y+z
4 ,C4

]
.

from which the location of the basis sites can be extracted. With this prescription

0

0.5

1 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

A1A1

A1

C2C2

B1B1B1

A1

A1

C3C3C3

B4B4B4

B4B4

A4A4A4A4

C3C3C3

B3B3B3

C4C4C4C4

A3A3A3A3

B3B3

A2A2A2A2

B2B2B2B2

C1C1

C1C1C1

C2C2C2

B1B1B1

A1A1

A1

Figure 10.2: The Kitaev model on the hyper-kagome lattice
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one can write the Kitaev-Heisenberg model on the hyper-kagome lattice to be

H =
∑
〈i j〉α

JkαS α
i S α

j + J1Si · S j. (10.1)

Even though the Kitaev model is not exactly solvable on the hyper-kagome lat-

tice, we can still resort to the Majorana fermion language discussed earlier in

order to solve the model. At the Kitaev point the ground state is known to have

high quantum degeneracy [7]. The mean field decoupling involves the nearest

neighbour Majorana correlations alone

σα
i σ

β
j = −icic j ibαi bβj ≈ −icic jB

αβ
i j − iCi jbαi bβj + Ci jB

αβ
i j (10.2)

since this compound has not shown any order till date. For the self-consistency

equations we have

Bαβ

〈i j〉γ ≡ 〈ib
α
i bβjγ〉 C〈i j〉γ ≡ 〈icic jγ〉. (10.3)

Fourier transforming the operators we get the effective decoupled Hamiltonian of

the system to be

HMF = Hb
MF + Hc

MF =
1
4

∑
k∈HBZ,γ

bα†kγh
b
kbαkγ + c†kγh

c
kckγ. (10.4)

γ represents the sub-lattice indices. We define sx, sy and sz matrices whose non-

zero elements are:

sx = zeros(12);

sx(1,2) = iexp(i(kx+kz)); sx(2,6) = iexp(i(kx+kz));

sx(3,5) = iexp(i(kx-kz)); sx(4,5) = iexp(i(-kx+kz));
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sx(7,8) = iexp(-i(kx+kz)); sx(8,12) = iexp(-i(kx+kz));

sx(9,11) = iexp(-i(kx-kz)); sx(10,11) = iexp(i(kx-kz));

sy = zeros(12);

sy(1,3) = iexp(i(kx+ky)); sy(1,11) = iexp(-i(kx+ky));

sy(2,10) = iexp(i(kx-ky)); sy(4,6) = iexp(-i(kx+ky));

sy(4,8) = iexp(i(kx+ky)); sy(5,7) = iexp(i(-kx+ky));

sy(7,9) = iexp(i(-kx+ky)); sy(10,12) = iexp(i(kx-ky));

sz = zeros(12);

sz(1,9) = iexp(-i(ky+kz)); sz(2,3) = iexp(i(ky-kz));

sz(3,7) = iexp(i(ky-kz)); sz(4,12) = iexp(i(ky-kz));

sz(5,6) = iexp(-i(ky+kz)); sz(6,10) = iexp(-i(ky+kz));

sz(8,9) = iexp(i(ky+kz)); sz(11,12) = iexp(-i(ky-kz));

with the matrices

hc
k =

∑
γ

BγγJkγ +
∑
δ

BγδJ1

 sγ + h.c. (10.5)

hb
kγ =

(Jkγ + J1)Cγsγ +
∑
γ,δ

J1Cδsδ

 + h.c. (10.6)

ki = k · ei, ei represents x̂, ŷ and ẑ directions.

Consider the limit J1 = 0, Jky = Jkz = 0 and Jkx = 1. At this point we have dis-

connected line segments. One line segment is formed by A1, B1,C2. The matrix
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structure of the c and bx fermionic hamiltonians are the same and are given by

Hc = JkxBxx


0 iei(kx+kz) 0

−ie−i(kx+kz) 0 iei(kx+kz)

0 −ie−i(kx+kz) 0

 (10.7)

Hbx = JkxCx


0 iei(kx+kz) 0

−ie−i(kx+kz) 0 iei(kx+kz)

0 −ie−i(kx+kz) 0

 (10.8)

The eigenvalues are −
√

2JkxBxx, 0,
√

2JkxBxx and −
√

2JkxCx, 0,
√

2JkxCx. The

eigenvectors are actually independent of the mean field parameters and is given

as

V =


−1

2e2i(kx+kz) 1
√

2
e2i(kx+kz) −1

2e2i(kx+kz)

1
√

2
iei(kx+kz) 0 − 1

√
2
iei(kx+kz)

1
2

1
√

2
1
2

 (10.9)

The correlation function Cx = 〈c1c2〉 and Bxx = 〈bx
1bx

2〉 for which we get

Cx = i
∑

j

ei(kx+kz)V†j,1V2, j − e−i(kx+kz)V†j,2V1, j

eβEc
j + 1

(10.10)

For large β = 1
T , i.e. small T , the state with positive energy will not contribute.

The state with zero energy will not contribute as V2,2 = 0. The only contribution
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coming from the negative energy state is

Cx = i
(
ei(kx+kz)V†1,1V2,1 − e−i(kx+kz)V†1,2V1,1

)
(10.11)

= i
(
ei(kx+kz)(−)

1
2

e−2i(kx+kz) 1
√

2
iei(kx+kz) − e−i(kx+kz)(−)

1
√

2
ie−i(kx+kz)(−)

1
2

e2i(kx+kz)
)

(10.12)

= i
(
−

1

2
√

2
i −

1

2
√

2
i
)

=
1
√

2
(10.13)

which is independent of the momentum values. One can follow similar calcu-

lations and obtain the self consistent solutions: Cz = Bzz = ± 1
√

2
with all other

parameters zero. In the honeycomb scenario we get Cz = Bzz = ±1. This fact also

indicates that the gauge sector, b, is not conserved for the hyper-kagome lattice.

Consider the isotropic Kitaev limit, Jkx = 1, Jky = 1, Jkz = 1 with J1 = 0, in which

numerically we get the following mean field parameters

Cα = 0.43, Bα
αα =

1
√

2
. (10.14)

depicting that the c fermions are no longer static and develop a density of states.

The density of states for the c fermions, spinons, on the hyper-kagome lattice is

non-zero at half filling or at ω = 0, meaning it has a fermi-surface compared

to the linear density of states around the ω = 0 due to the existence of Dirac

points in the honeycomb lattice case. The spectra for the b sectors has three

flat bands. In Fig:(10.3) we have plotted the density of states for the c sector

alone. We have also plotted the electron hopping on the hyper-kagome lattice

for comparison. The band width of both the density of states are different too.

For the b sector we know that the density of states will be Dirac-δ peaks at the

energies −
√

2JkxCα, 0,
√

2JkαCα. The Kitaev-Heisenberg model on the hyperk-
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agome lattice can be written as in Eq:(10.1) with an isotropic Kitaev model where

Jk = Jkx = Jky = Jkz = 2A sin φ and J1 = A cos φ. φ represents the ratio of the

strengths of the Kitaev to Heisenberg coupling. In the presence of the Heisenberg

term, the b spectra is no longer flat and gains a dispersion as expected. On the

other hand the c density of states change slightly.
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Figure 10.3: Density of states for nearest neighbour hopping for the electron and
the c fermion on the hyper-kagome lattice (The c fermion corresponds to the pure
Kitaev Model). The curves are not-normalized

The general mean field Hamiltonian written in momentum basis µk and ναk be-

comes

HMF = Hc + Hb +
∑
〈i j〉α

JkCαBαα
α + J1

∑
β

CαBββ
α

 (10.15)

Hc =
∑
〈i j〉α

Jk

[
−icic jBαα

α

]
+ J1

∑
β

[
−icic jBββ

α

] =
∑

k

µ†k hc
k µk (10.16)

Hb =
∑
〈i j〉α

Jk

[
−iCαbαi bαj

]
+ J1

∑
β

[
−iCαbβi bβj

] =
∑
kα

να†k hbα
k ναk (10.17)

Let Mk and Nα
k represent the unitary matrices that diagonalize hc

k and hbα
k respec-
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tively giving the simplified hamiltonians

Hc =
∑

k

µ†k Mk (M†

k hc
kMk) M†

kµk =
∑

k

(
f †k , f−k

)  Ek 0

0 −Ek


 fk

f †
−k

 (10.18)

=
∑

k

Ea
k (2 f a†

k f a
k − 1) (10.19)

Hb =
∑
kα

να†k Nα
k (Nα†

k hbα
k Nα

k ) Nα†
k ναk =

∑
k

(
gα†k , gα−k

)  Eα
k 0

0 −Eα
k


 gαk

gα†
−k


(10.20)

=
∑
kα

Eaα
k (2gaα†

k gaα
k − 1) (10.21)

where a = 1, 2, · · · 6 and α = x, y, z. The diagonal operators fk and gαk and the

eigenvalues Ek, Eα
k can be computed numerically. The single particle density

of states for the spinons as shown in Fig.10.4(a) has a lot of features. On the

other hand, the vison density of states as shown in Fig.10.4(b) has two peaks one

centered around ωp1 = 0 and the other around ωp2 = 1.5Jk. The ground state is

|GS 〉 = Πk,a,b,α f a(k)gbα(k)|0〉. These peaks play an important role in the Raman

response of the system. The operators evolve as

f a
k (t) = f a

k (0)e−2iEa
k t; f a†

k (t) = f a†
k (0)e2iEa

k t (10.22)

gaα
k (t) = gaα

k (0)e−2iEaα
k t; gaα†

k (t) = gaα†
k (0)e2iEaα

k t (10.23)
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(a) (b)
c x

Figure 10.4: Density of states for the Spinon and Visons for the Kitaev model
with small Heisenberg interaction Jk = 1.96, J1 = 0.2 with J1/Jk ∼ 0.1. The
curves have been normalized.

10.3 Raman Intensity calculations

Our focus is to understand the material based on Raman Intensity experiments.

For the mean field ground state, the Raman Intensity is computed [98]

I(ω) =

∫
dt eiωt iF(t) =

∫
dt eiωt 〈GS |R(t)R(0)|GS 〉 (10.24)

where the Raman operator is given by[12]

R =
∑
〈i j〉α

(εin · dα)(εout · dα)(KS α
i S α

j + K1Si · S j) =
∑
〈i j〉α

mα(KS α
i S α

j + K1Si · S j)

(10.25)

K ∝ JK , K1 ∝ JH, εin/out correspond to the incoming and outgoing polarization di-

rections respectively and dα the nearest neighbour bond vectors. The calculation
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for the response is illustrated for the pure Kitaev model as

iF(t) = K2
∑
〈i j〉α

∑
〈kl〉β

mαmβ〈ici(t)c j(t)ibαi (t)bαj (t)ick(0)cl(0)ibβk(0)bβl (0)〉 (10.26)

= K2
∑
〈i j〉α

∑
〈kl〉β

mαmβ〈ici(t)c j(t)ick(0)cl(0)〉〈ibαi (t)bαj (t)ib
β
k(0)bβl (0)〉 (10.27)

In the spinon sector a correlation function can be expanded

〈ici(t)c j(t)ick(0)cl(0)〉 = 〈ici(t)c j(t)〉〈ick(0)cl(0)〉 − 〈ici(t)ck(0)〉〈ic j(t)cl(0)〉

+ 〈ici(t)cl(0)〉〈ic j(t)ck(0)〉 (10.28)

From Eq:(10.3) the first term becomes a constant

〈ici(t)c j(t)〉 = Cγ; 〈ick(0)cl(0)〉 = Cγ′ . (10.29)

Similar expressions for the vison sector can be obtained. Considering only the

dominant time dependant contribution to the Raman intensity, the Raman opera-

tor becomes

iF(t) ≈ K2
∑
〈i j〉α

∑
〈kl〉β

mαmβ〈ici(t)c j(t)ick(0)cl(0)〉Bαα
α Bββ

β

+ K2
∑
〈i j〉α

∑
〈kl〉β

mαmβCαCβ〈ibαi (t)bαj (t)ib
β
k(0)bβl (0)〉 (10.30)

= 〈Rc(t)Rc(0)〉 + 〈Rb(t)Rb(0)〉 (10.31)
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where Rc and Rb are the Raman operators in the spinons and visons alone and

rewritten in the diagonal operators f (k), gα(k) as

Rc = K
∑
〈i j〉α

mαicic jBαα
α =

∑
k

µ†k h̃kµk =
∑

k

µ†k Mk(M†

k h̃kMk)M†

kµk (10.32)

=
∑

k

(
f †k , f−k

)  F1(k) F2(k)

F†2(k) −F1(k)


 fk

f †
−k

 (10.33)

=
∑

k

Fab
1 (k) f a†

k f b
k + Fab

2 (k) f a†
k f b†
−k + h.c. (10.34)

Rb = K
∑
〈i j〉α

mαCαibαi bαj =
∑
kα

να†k h̃αk ν
α
k =

∑
kα

να†k Nα
k (Nα†

k h̃αk Nα
k )Nα†

k ναk (10.35)

=
∑
kα

(
gα†k , gα−k

)  Gα
1 (k) Gα

2 (k)

Gα†
2 (k) −Gα

1 (k)


 gαk

gα†
−k

 (10.36)

=
∑
kα

Gabα
1 (k)gaα†

k gbα
k + Gabα

2 (k)gaα†
k gbα†

−k + h.c. (10.37)

with the time evolution Eq:(10.22),(10.23). Therefore the dominant contribution

to the intensity can be written as

I(ω) ≈ 2π
∑
k,a,b

δ(ω − 2Ea(k) − 2Eb(k)) |Fab
2 (k)|2

+ 2π
∑

k,a,b,α

δ(ω − 2Eaα(k) − 2Ebα(k)) |Gabα
2 (k)|2 (10.38)

= −2Im

∑
k,a,b

1
ω − 2Ea(k) − 2Eb(k) + iε

|Fab
2 (k)|2


− 2Im

 ∑
k,a,b,α

1
ω − 2Eaα(k) − 2Ebα(k) + iε

|Gabα
2 (k)|2

 (10.39)

where ε is the broadening parameter. The calculation can be easily extended to

the Kitaev-Heisenberg model.

The Raman scattering experiments of Na4Ir3O8 compound have been done us-
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ing a powdered sample. It has been a difficult task to obtain a crystalline sample

for this compound which would give information regarding the polarization de-

pendence of the Raman scattering. We have the liberty to probe the polarization

directions in our theoretical calculations, and have found weak polarization de-

pendence. In Fig:(10.5) we plot the Raman Intensity for the pure Kitaev model

with anti-ferromagnetic coupling corresponding to the A1g and B1g polarization

directions for the broadening parameter ε = 0.1Jk. The intensities of few of

the frequency modes have been enhanced/diminished keeping the overall feature

intact. Since the compound has a 3 dimensional structure, we test the true po-

larization independence by changing the planes of the incoming and outgoing

photon from X − Y to X − Z and Y − Z. We find that the results do not change.
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Figure 10.5: Comparison of the Raman Intensity for φ = 90o, the pure Kitaev
model, along the A1g and B1g polarization directions for the broadening parameter
ε = 0.1Jk.

A broad Raman band, a feature of the quantum spin liquid, can be seen similar to

the honeycomb lattice case. It increases as a function of φ. The Raman intensity

is non-zero at ω = 0 corresponding to the Fermi surface that exists in the spinon

spectra of this system. In the honeycomb case, the Raman Intensity close toω = 0

goes linearly in ω due to the Dirac point structure.

149



0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8 (c)

(a)

(b)

JK

 

 

I(
)

J1

(a)

 

 

I(
)

JK

 

 

I(
)

Figure 10.6: Theoretical curves: a) Pure Heisenberg model, b) Pure Kitaev model
and c) Kitaev model with small Heisenberg interaction Jk = 1.96, J1 = 0.2 with
J1/Jk ∼ 0.1. The broadening used in (a) is ε = 0.2J1 while in (b) and (c), it is
ε = 0.1JK .

We have studied both the extreme limits of purely Heisenberg exchange (no Ki-

taev) and purely Kitaev exchange. We have also studied the effect on the Raman

response in these two limits of adding small perturbations of the other kind.

For broadening ε = 0.2J1 for pure Heisenberg , ε = 0.1JK for pure Kitaev and

both Kitaev and Heisenberg, the computed Raman response is given in Fig.10.6.

The wiggles in the Raman response at lower broadening stems from those present

in the spinon density of states shown in Fig.10.4(a). The two sharp peaks in

Fig.10.6(c) occuring around ω = 1.5Jk and ω = 2.7Jk, arises from the peaks in

the vison density of states: around ωp2 and 2ωp2.

Fig:(10.8) shows the experimentally obtained Raman Intensity curve. To match
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(a) (b)

(c)

1

Figure 10.7: (Color online) Theoretical curves: a) Pure Heisenberg model, b)
Pure Kitaev model and c) Kitaev model with small Heisenberg interaction Jk =

1.96, J1 = 0.2 with J1/Jk ∼ 0.1. The broadening used is ε = 0.8.

our theoretical curves better with the experiments, we increase the broadening

parameter. The Raman response obtained from our theoretical calculations for

the broadening parameter ε = 0.8J1 for pure Heisenberg , ε = 0.4JK for pure

Kitaev and both Kitaev and Heisenberg are shown in Fig. 10.7. We have studied

both Heisenberg and Kitaev limits assuming a spin liquid ground state. The cal-

culated Raman response for these two cases are shown in Figs. 10.7 (a) and (b).

The Raman response of the pure (antiferomagnetic) Heisenberg limit shows a two

peak structure arising due to the spinon and gauge sectors, with the lower energy

peak being more intense, very different from the experimentally observed BRB

in Fig. 10.8. On introducing small Kitaev perturbations the curves (not shown)
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do not vary. The calculated Raman response of the pure Kitaev model reveals

a broad band similar to the experiments, but there are additional peaks (M4 and

M5 modes) in the experimental data which need to be explained. On the addition

of a small Heisenberg term (J1/JK ∼ 0.1) as a perturbation to the Kitaev term

we obtain a response shown in Fig. 10.7 (c) which looks a better match to the

experimentally observed BRB. The calculated BRB is broad and has additional

weak features at lower energies. It is thus clear that the Raman response calcu-

lated for the pure Heisenberg limit is inconsistent with our observed BRB while

the strong Kitaev limit with small Heisenberg term gives results consistent with

experiments. Comparing the experimental BRB with the theoretical results of

Fig. 10.7 (c) we make an estimate of the strength of the Kitaev interactions to be

JK ∼ 75 meV. This value is quite large but is consistent with the very large Weiss

temperature of −650 K obtained from magnetic measurements [10, 115]. Taking

JK = 75 meV, the two additional weak features at 1.5JK and 2.7JK in the calcu-

lated BRB correspond to 920 cm−1 and 1650 cm−1 respectively which are close

to the experimentally observed M4 (1395 cm−1) and M5 (1580 cm−1) modes (see

Fig. 10.8).

10.4 Summary and Discussion

Raman response of high quality polycrystalline pellet samples of Na4Ir3O8 were

measured [13] and shown in Fig:(10.8). First order phonons are observed and

a broad band with a maximum at ∼ 3500 cm−1 and a band-width ∼ 1700 cm−1.

The broad band has some additional structure in contrast to the featureless re-

sponse found earlier for Na2IrO3 [98]. To understand these observations and to

try to throw light on whether Heisenberg or Kitaev like interactions are dominant
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Figure 10.8: (a) Raman spectra of Na4Ir3O8 measured at T = 77K (red line) and
300K (blue circles) in the spectral range 100 to 5000 cm−1 using excitation laser
wavelength of 514.5 nm. Inset: Raman spectra of silicon at 300K. The sharp
lines near 520 cm−1 and 1040 cm−1 are first and second order Raman modes of Si
respectively. The magnified Si spectra from 1000 to 5000 cm−1 is shown in the
inset. (b) Raman spectra recorded with two different laser excitation lines 514.5
and 488 nm. The vertical dashed line shows the center of the BRB[13].

in Na4Ir3O8, we have computed the Raman response for the nearest-neighbour

Kitaev-Heisenberg model in both the strong Heisenberg and Kitaev limits. The

Raman response was calculated using the Majorana mean field framework assum-

ing a spin liquid ground state for both limits. For the Heisenberg limit we find two

peaks which do not match the experimentally observed Raman response. Even on

introducing small Kitaev terms as perturbation doesn’t give results which match

experiments. For the pure Kitaev limit we obtain a broad band response. There

are however, additional features in the experiments which suggest the presence of

other terms. Hence we finally added small Heisenberg terms (J1/JK ∼ 0.1) and

find that additional peaks which develop, match the experimental observations.

Although the Kitaev limit is not exactly solvable for the hyperkagome lattice we

find a spin-liquid state for the parameters used to calculate the Raman response

which match the experiments. These results strongly indicate that Na4Ir3O8 is
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a spin liquid driven by strong Kitaev interactions but with Heisenberg coupling

present.

154



Chapter 11

Conclusion

It always seems impossible until

it’s done.

Nelson Mandela

In the first part of the thesis we have mainly concentrated on understanding a

Hubbard model that has spin-dependent hopping on a honeycomb lattice; we call

this the Kitaev-Hubbard model. This model in general does not preserve time-

reversal symmetry, and was initially introduced in order to realize the Kitaev

model in optical lattice systems. The non-interacting limit of the Kitaev-Hubbard

model shows interesting merging and emerging Dirac point physics. This signals

a topological Lifshitz transition due to the change in the Fermi surface topology.

The density of states shows a sharp behavioural change at these transition points.

We carried out numerical simulations for Bloch-Zener oscillations of the model

which probe the Dirac points. We numerically computed properties such as the

Pancharatnam-Berry curvature.

Another highlight of the model is a stable algebraic spin liquid (ASL) phase. We
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established its “algebraic nature” by showing that the spin-spin correlation decays

as a power law. Since spin liquids are generally susceptible to perturbations,

their stability needs to be ensured. In our model, time-reversal symmetry for

the Mott phase is sufficient for stability. Using perturbative canonical unitary

transformations (PCUT) we computed the effective spin model in the large U

limit for 14 site cluster (from 2-14 sites compatible with honeycomb lattice) and

found that it contains an even number of spin operators. Based on this, and using

the charge conjugation operator, we proved that the effective spin model will be

time reversal symmetric for all orders of perturbation theory. We also performed

a Majorana mean field calculation to eliminate the possibility of spontaneous time

reversal symmetry breaking which leads to chiral spin liquid phase.

In the second part of the thesis we have worked on the Kitaev-Heisenberg model

which has been a strong contender for studying the properties of iridate mate-

rials, especially Na2IrO3 and Na4Ir3O8, the former having a honeycomb lattice

and the latter a hyper-kagome lattice. Na2IrO3 compounds are known to be mag-

netically ordered and show residual spin liquid behaviour at high temperatures

whereas no order has been seen yet in Na4Ir3O8. The effectiveness of the Kitaev-

Heisenberg in describing iridates has been questioned in recent times, and evi-

dence has emerged that indicate that the presence of additional bond-directional

terms is essential.

Our work on Majorana mean-field decoupling of the honeycomb lattice Iridate

model has uncovered a transition between a spin liquid phase and a zigzag phase.

In the zigzag phase, a region exists where short-range Majorana correlations exist.

It was in this regime, close to the spin liquid boundary, that we computed the

Raman Response for the model at zero temperature and found a broad band which

is a signature of short range correlations. For the hyper-kagome lattice on the
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other hand, we studied the Raman Response in the spin liquid regime of the

Kitaev-Heisenberg model and find a polarization independent broad band. We

also estimated the strength of the Kitaev term Jk using the Raman response. We

found our results to be in good agreement with the experiments.

11.1 Future Work

Our calculations on the Kitaev-Hubbard model showed that there is a topological

transition from an anti-ferromagnetic insulator to an algebraic spin liquid phase in

this model. The nature of the underlying collective excitations in the spin liquid

phase (spinons) is very different compared to the magnetic phases (magnons). To

understand the nature of the quasi-particles, we would first write down a topolog-

ical field theory for the Kitaev-Hubbard model in the path-integral notation and

compute the saddle point mean-field solution for this system. This would help

us in deriving an effective field theory for the low energy modes of the model

in the large U limit. We would then introduce slowly varying fields close to the

saddle point solution, that is the mean-field solution so that the study of the ef-

fects of quantum fluctuations becomes viable. This formalism would result in the

non-linear σ model for the quantum fluctuations of the Néel anti-ferromagnetic

phase. We would finally compute the theory for the algebraic spin liquid phase

and would expect to see a Hopf term in the non-linear σ model due to the break-

ing of time-reversal symmetry.

We have worked on computing the Raman response for iridate compounds. Two

important aspects we have not probed at all – one is the finite temperature effects

and the second is Li doping effects. We would like to study these and uncover the

true nature of the Raman response and compare them with experimental results.
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We would also like to extend our calculations to include the effect of fluctuations

to achieve results comparable with previous attempts.
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Appendix A

Appendix

A.1 PCUT: Second Order Calculations

Now that we have the definitions let us first compute the second order spin Hamil-

tonian for the z link. We have the following expressions

−T †T | ↑, ↓〉 = −T †
1
2

(t + tz)|0, ↑↓〉 − T †
1
2

(t − tz)| ↑↓, 0〉 (A.1)

= −
1
2

(t + tz)T †|0, ↑↓〉 −
1
2

(t − tz)T †| ↑↓, 0〉 (A.2)

= −
1
2

(t + tz)(
1
2

(t + tz)| ↑, ↓〉 −
1
2

(t − tz)| ↓, ↑〉) (A.3)

−
1
2

(t − tz)(
1
2

(t − tz)| ↑, ↓〉 −
1
2

(t + tz)| ↓, ↑〉) (A.4)

= −
1
4

((t + tz)2 + (t − tz)2)| ↑, ↓〉 +
1
2

(t2 − t2
z )| ↓, ↑〉 (A.5)

= −
1
2

(t2 + t2
z )| ↑, ↓〉 +

1
2

(t2 − t2
z )| ↓, ↑〉 (A.6)
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Similarly we can write

−T †T | ↓, ↑〉 =
1
2

(t2 − t2
z )| ↑, ↓〉 −

1
2

(t2 + t2
z )| ↓, ↑〉 (A.7)

A.2 PCUT: Fourth order

Consider a three site open chain where 1 and 2 are connected by the z link and 2

and 3 by x link. See Fig:(A.1). Three sites of this form and the symmetry of the

Hamiltonian is enough to determine the effective Hamiltonian for the full lattice.

The expression for the fourth order effective Hamiltonian as computed before is

given as

H(4) =
1

U3 (T †TT †T − T †T0T0T −
1
2

T †T †TT ) (A.8)

The last term of the above expression does not contribute to the three site case

Z

X

1

2

3

Figure A.1: Three site cluster for PCUT.

that we have started with. This is because three site half filled case has three

fermions whereas the last term minimally requires four fermions. We need to
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compute the first two expressions part by part so let us start with

T †12T12T †12T12 =

[
−

1
4

(t2 + t2
z )σ0

1σ
0
2 +

1
4

(t2 + t2
z )σz

1σ
z
2 +

1
4

(t2 − t2
z )σx

1σ
x
2 +

1
4

(t2 − t2
z )σy

1σ
y
2

]
[
−

1
4

(t2 + t2
z )σ0

1σ
0
2 +

1
4

(t2 + t2
z )σz

1σ
z
2 +

1
4

(t2 − t2
z )σx

1σ
x
2 +

1
4

(t2 − t2
z )σy

1σ
y
2

]
= −

1
8

((t2 + t2
z )2 + (t2 − t2

z )2)σz
1σ

z
2 −

1
4

(t4 − t4
z )σx

1σ
x
2 −

1
4

(t4 − t4
z )σy

1σ
y
2

= −(t4 + t4
z )S z

1S z
2 − (t4 − t4

z )S x
1S x

2 − (t4 − t4
z )S y

1S y
2

Similarly we get

T †23T23T †23T23 = −(t4 + t4
x)S x

2S x
3 − (t4 − t4

x)S y
2S y

3 − (t4 − t4
x)S z

2S z
3

Now there are two more terms in this type

T †12T12T †23T23 =

[
−

1
4

(t2 + t2
z )σ0

1σ
0
2 +

1
4

(t2 + t2
z )σz

1σ
z
2 +

1
4

(t2 − t2
z )σx

1σ
x
2 +

1
4

(t2 − t2
z )σy

1σ
y
2

]
[
−

1
4

(t2 + t2
x)σ0

2σ
0
3 +

1
4

(t2 + t2
x)σx

2σ
x
3 +

1
4

(t2 − t2
x)σy

2σ
y
3 +

1
4

(t2 − t2
x)σz

2σ
z
3

]
= −

1
16

(t2 + t2
z )(t2 + t2

x)σz
1σ

z
2 −

1
16

(t2 − t2
z )(t2 + t2

x)σx
1σ

x
2 −

1
16

(t2 − t2
z )(t2 + t2

x)σy
1σ

y
2

−
1

16
(t2 + t2

x)(t2 + t2
z )σx

2σ
x
3 −

1
16

(t2 − t2
x)(t2 + t2

z )σy
2σ

y
3 −

1
16

(t2 − t2
x)(t2 + t2

z )σz
2σ

z
3

+
1

16
(t2 − t2

z )(t2 + t2
x)σx

1σ
x
3 +

1
16

(t2 + t2
z )(t2 − t2

x)σz
1σ

z
3 +

1
16

(t2 − t2
z )(t2 − t2

x)σy
1σ

y
3

= −
1
4

(t2 + t2
z )(t2 + t2

x)S z
1S z

2 −
1
4

(t2 − t2
z )(t2 + t2

x)S x
1S x

2 −
1
4

(t2 − t2
z )(t2 + t2

x)S y
1S y

2

−
1
4

(t2 + t2
x)(t2 + t2

z )S x
2S x

3 −
1
4

(t2 − t2
x)(t2 + t2

z )S y
2S y

3 −
1
4

(t2 − t2
x)(t2 + t2

z )S z
2S z

3

+
1
4

(t2 − t2
z )(t2 + t2

x)S x
1S x

3 +
1
4

(t2 + t2
z )(t2 − t2

x)S z
1S z

3 +
1
4

(t2 − t2
z )(t2 − t2

x)S y
1S y

3

In the above expression some three spin terms are generated which get cancelled

when combined with the hermitian partner of the above term T †23T23T †12T12 and

hence we dont write the three spin terms. Now for the hermitian conjugate term
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we have

T †23T23T †12T12 = −
1
4

(t2 + t2
z )(t2 + t2

x)S z
1S z

2 −
1
4

(t2 − t2
z )(t2 + t2

x)S x
1S x

2 −
1
4

(t2 − t2
z )(t2 + t2

x)S y
1S y

2

−
1
4

(t2 + t2
x)(t2 + t2

z )S x
2S x

3 −
1
4

(t2 − t2
x)(t2 + t2

z )S y
2S y

3 −
1
4

(t2 − t2
x)(t2 + t2

z )S z
2S z

3

+
1
4

(t2 − t2
z )(t2 + t2

x)S x
1S x

3 +
1
4

(t2 + t2
z )(t2 − t2

x)S z
1S z

3 +
1
4

(t2 − t2
z )(t2 − t2

x)S y
1S y

3

This completes the calculation of the effective Hamiltonian of the first term. For

the next term the final operation

−T †12T 0
23T 0

23T12| ↑, ↓, ↑〉 = −
(t2 + t2

x)
8

(t2 + t2
z )| ↑, ↓, ↑〉 +

(t2 + t2
x)

8
(t2 − t2

z )| ↓, ↑, ↑〉 +
t2txtz

2
| ↑, ↓, ↓〉

−T †12T 0
23T 0

23T12| ↑, ↓, ↓〉 =
t2txtz

2
| ↑, ↓, ↑〉 −

(t2 + t2
x)

8
(t2 + t2

z )| ↑, ↓, ↓〉 +
(t2 + t2

x)
8

(t2 − t2
z )| ↓, ↑, ↓〉

−T †12T 0
23T 0

23T12| ↓, ↑, ↑〉 = −
1
8

(t2 + t2
x)(t2 + t2

z )| ↓, ↑, ↑〉 −
t2txtz

2
| ↓, ↑, ↓〉 +

1
8

(t2 + t2
x)(t2 − t2

z )| ↑, ↓, ↑〉

−T †12T 0
23T 0

23T12| ↓, ↑, ↓〉 = −
t2tztx

2
| ↓, ↑, ↑〉 +

t2 + t2
x

8
(t2 − t2

z )| ↑, ↓, ↓〉 −
t2 + t2

x

8
(t2 + t2

z )| ↓, ↑, ↓〉

which when converted to spin basis is given as

H(4) = −
(t4 + t4

z )
4

σz
1σ

z
2 −

(t4 + t4
x)

4
σx

2σ
x
3 +

3t2txtz

4
σz

1σ
x
3

−
(t2 − t4

z )
4

(σx
1σ

x
2 + σ

y
1σ

y
2) −

(t2 − t4
x)

4
(σy

2σ
y
3 + σz

2σ
z
3)

−
t2txtz

2
(σz

1σ
x
2 + σz

2σ
x
3) +

(t2 − t2
z )(t2 − t2

x)
16

σ
y
1σ

y
3

+
(t2 − t2

z )(t2 + t2
x)

16
σx

1σ
x
3 +

(t2 + t2
z )(t2 − t2

x)
16

σz
1σ

z
3

which finally gives the effective fourth order spin Hamiltonian.
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A.3 PCUT: Numerical 6th order

For a six site plaquette with periodic boundary as shown in Fig:(A.2) on the

honeycomb lattice we compute the sixth order effective Hamiltonian.

H6 =

(t/U)6
[
− 20.95 + 23.94S x

1S x
2 + 13.19S y

1S x
2 + 11.44S z

1S x
2 + 13.19S x

1S y
2 + 23.94S y

1S y
2

+ 11.44S z
1S y

2 + 11.44S x
1S z

2 + 11.44S y
1S z

2 + 21.31S z
1S z

2 − 12.44S x
1S x

3 − 11.81S y
1S x

3

− 13.56S z
1S x

3 + 21.31S x
2S x

3 + 11.44S y
2S x

3 + 11.44S z
2S x

3 − 13.56S x
1S y

3 − 12.44S y
1S y

3

− 11.81S z
1S y

3 + 11.44S x
2S y

3 + 23.94S y
2S y

3 + 13.19S z
2S y

3 − 11.81S x
1S z

3 − 13.56S y
1S z

3

− 12.44S z
1S z

3 + 11.44S x
2S z

3 + 13.19S y
2S z

3 + 23.94S z
2S z

3 + 21.31S x
1S x

4 + 11.44S y
1S x

4

+ 11.44S z
1S x

4 − 12.44S x
2S x

4 − 11.81S y
2S x

4 − 13.56S z
2S x

4 + 23.94S x
3S x

4 − 39.25S x
1S x

2S x
3S x

4

− 14.25S y
1S x

2S x
3S x

4 − 43.25S z
1S x

2S x
3S x

4 − 14.25S x
1S y

2S x
3S x

4

− 32.25S y
1S y

2S x
3S x

4 − 14.75S z
1S y

2S x
3S x

4 − 43.25S x
1S z

2S x
3S x

4

− 14.75S y
1S z

2S x
3S x

4 − 83.75S z
1S z

2S x
3S x

4 + 11.44S y
3S x

4 − 43.25S x
1S x

2S y
3S x

4 − 9.25S y
1S x

2S y
3S x

4

− 25.75S z
1S x

2S y
3S x

4 − 24.75S x
1S y

2S y
3S x

4 − 36.25S y
1S y

2S y
3S x

4 − 23.25S z
1S y

2S y
3S x

4

− 76.75S x
1S z

2S y
3S x

4 − 21.25S y
1S z

2S y
3S x

4 − 39.75S z
1S z

2S y
3S x

4

+ 13.19S z
3S x

4 − 14.25S x
1S x

2S z
3S x

4 − 31.25S y
1S x

2S z
3S x

4 − 9.25S z
1S x

2S z
3S x

4 + 46.25S x
1S y

2S z
3S x

4

− 19.25S y
1S y

2S z
3S x

4 + 32.75S z
1S y

2S z
3S x

4 − 24.75S x
1S z

2S z
3S x

4 − 38.25S y
1S z

2S z
3S x

4

− 21.25S z
1S z

2S z
3S x

4 + 11.44S x
1S y

4 + 23.94S y
1S y

4 + 13.19S z
1S y

4 − 13.56S x
2S y

4 − 12.44S y
2S y

4

− 11.81S z
2S y

4 + 11.44S x
3S y

4 − 43.25S x
1S x

2S x
3S y

4 − 24.75S y
1S x

2S x
3S y

4 − 76.75S z
1S x

2S x
3S y

4

− 9.25S x
1S y

2S x
3S y

4 − 36.25S y
1S y

2S x
3S y

4 − 21.25S z
1S y

2S x
3S y

4 − 25.75S x
1S z

2S x
3S y

4 − 23.25S y
1S z

2S x
3S y

4

− 39.75S z
1S z

2S x
3S y

4 + 21.31S y
3S y

4 − 83.75S x
1S x

2S y
3S y

4 − 21.25S y
1S x

2S y
3S y

4 − 39.75S z
1S x

2S y
3S y

4

− 21.25S x
1S y

2S y
3S y

4 − 56.75S y
1S y

2S y
3S y

4 − 28.25S z
1S y

2S y
3S y

4 − 39.75S x
1S z

2S y
3S y

4 − 28.25S y
1S z

2S y
3S y

4

− 39.25S z
1S z

2S y
3S y

4 + 11.44S z
3S y

4 − 14.75S x
1S x

2S z
3S y

4 − 38.25S y
1S x

2S z
3S y

4
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+ 23.94S z
1S z

4 − 11.81S x
2S z

4 − 13.56S y
2S z

4 − 12.44S z
2S z

4 + 13.19S x
3S z

4 − 14.25S x
1S x

2S x
3S z

4

+ 46.25S y
1S x

2S x
3S z

4 − 24.75S z
1S x

2S x
3S z

4 − 31.25S x
1S y

2S x
3S z

4 − 19.25S y
1S y

2S x
3S z

4 − 38.25S z
1S y

2S x
3S z

4

− 9.25S x
1S z

2S x
3S z

4 + 32.75S y
1S z

2S x
3S z

4 − 21.25S z
1S z

2S x
3S z

4 + 11.44S y
3S z

4

− 14.75S x
1S x

2S y
3S z

4 + 32.75S y
1S x

2S y
3S z

4 − 23.25S z
1S x

2S y
3S z

4 − 38.25S x
1S y

2S y
3S z

4

− 12.75S y
1S y

2S y
3S z

4 − 41.75S z
1S y

2S y
3S z

4 − 21.25S x
1S z

2S y
3S z

4 + 28.75S y
1S z

2S y
3S z

4 − 28.25S z
1S z

2S y
3S z

4

+ 23.94S z
3S z

4 − 32.25S x
1S x

2S z
3S z

4 − 19.25S y
1S x

2S z
3S z

4 − 36.25S z
1S x

2S z
3S z

4 − 19.25S x
1S y

2S z
3S z

4

− 39.25S y
1S y

2S z
3S z

4 − 12.75S z
1S y

2S z
3S z

4 − 36.25S x
1S z

2S z
3S z

4 − 12.75S y
1S z

2S z
3S z

4 − 13.56S y
1S x

5

− 56.75S z
1S z

2S z
3S z

4 − 12.44S x
1S x

5 − 11.81S z
1S x

5 + 23.94S x
2S x

5 + 11.44S y
2S x

5

+ 13.19S z
2S x

5 − 12.44S x
3S x

5 − 9.25S x
1S x

2S x
3S x

5 + 44.25S y
1S x

2S x
3S x

5 + 7.25S z
1S x

2S x
3S x

5

− 23.25S x
1S y

2S x
3S x

5 + 8.75S y
1S y

2S x
3S x

5 − 10.75S z
1S y

2S x
3S x

5 − 23.25S x
1S z

2S x
3S x

5

+ 15.75S y
1S z

2S x
3S x

5 + 21.25S z
1S z

2S x
3S x

5 − 11.81S y
3S x

5 + 45.75S x
1S x

2S y
3S x

5 + 3.25S y
1S x

2S y
3S x

5

+ 16.25S z
1S x

2S y
3S x

5 + 3.25S x
1S y

2S y
3S x

5 + 45.75S y
1S y

2S y
3S x

5 + 16.25S z
1S y

2S y
3S x

5

− 3.25S x
1S z

2S y
3S x

5 − 3.25S y
1S z

2S y
3S x

5 + 2.25S z
1S z

2S y
3S x

5 − 13.56S z
3S x

5 + 45.75S x
1S x

2S z
3S x

5

+ 45.75S y
1S x

2S z
3S x

5 + 8.75S z
1S x

2S z
3S x

5 − 3.25S x
1S y

2S z
3S x

5 + 45.75S y
1S y

2S z
3S x

5

+ 15.75S z
1S y

2S z
3S x

5 + 3.25S x
1S z

2S z
3S x

5 + 45.75S y
1S z

2S z
3S x

5 + 44.25S z
1S z

2S z
3S x

5 + 23.94S x
4S x

5

− 56.75S x
1S x

2S x
4S x

5 − 12.75S y
1S x

2S x
4S x

5 − 36.25S z
1S x

2S x
4S x

5 − 28.25S x
1S y

2S x
4S x

5

− 41.75S y
1S y

2S x
4S x

5 − 23.25S z
1S y

2S x
4S x

5 − 21.25S x
1S z

2S x
4S x

5 − 38.25S y
1S z

2S x
4S x

5

− 24.75S z
1S z

2S x
4S x

5 − 9.25S x
1S x

3S x
4S x

5 + 45.75S y
1S x

3S x
4S x

5 + 45.75S z
1S x

3S x
4S x

5 − 56.75S x
2S x

3S x
4S x

5

− 36.25S y
2S x

3S x
4S x

5 − 12.75S z
2S x

3S x
4S x

5 + 7.25S x
1S y

3S x
4S x

5 + 8.75S y
1S y

3S x
4S x

5 + 16.25S z
1S y

3S x
4S x

5

− 36.25S x
2S y

3S x
4S x

5 − 32.25S y
2S y

3S x
4S x

5 − 19.25S z
2S y

3S x
4S x

5 + 44.25S x
1S z

3S x
4S x

5

+ 45.75S y
1S z

3S x
4S x

5 + 3.25S z
1S z

3S x
4S x

5 − 12.75S x
2S z

3S x
4S x

5 − 19.25S y
2S z

3S x
4S x

5 − 39.25S z
2S z

3S x
4S x

5

+ 13.19S y
4S x

5 − 12.75S x
1S x

2S y
4S x

5 − 39.25S y
1S x

2S y
4S x

5 − 19.25S z
1S x

2S y
4S x

5

+ 28.75S x
1S y

2S y
4S x

5 − 12.75S y
1S y

2S y
4S x

5 + 32.75S z
1S y

2S y
4S x

5 + 32.75S x
1S z

2S y
4S x

5

− 19.25S y
1S z

2S y
4S x

5 + 46.25S z
1S z

2S y
4S x

5 − 23.25S x
1S x

3S y
4S x

5 + 3.25S y
1S x

3S y
4S x

5 − 3.25S z
1S x

3S y
4S x

5
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+ 15.75S x
1S z

3S y
4S x

5 + 45.75S y
1S z

3S y
4S x

5 − 3.25S z
1S z

3S y
4S x

5 − 38.25S x
2S z

3S y
4S x

5 − 31.25S y
2S z

3S y
4S x

5

− 19.25S z
2S z

3S y
4S x

5 + 11.44S z
4S x

5 − 36.25S x
1S x

2S z
4S x

5 − 19.25S y
1S x

2S z
4S x

5

− 32.25S z
1S x

2S z
4S x

5 − 21.25S x
1S y

2S z
4S x

5 − 38.25S y
1S y

2S z
4S x

5 − 14.75S z
1S y

2S z
4S x

5 − 9.25S x
1S z

2S z
4S x

5

− 31.25S y
1S z

2S z
4S x

5 − 14.25S z
1S z

2S z
4S x

5 − 23.25S x
1S x

3S z
4S x

5 − 3.25S y
1S x

3S z
4S x

5

+ 3.25S z
1S x

3S z
4S x

5 − 28.25S x
2S x

3S z
4S x

5 − 21.25S y
2S x

3S z
4S x

5 + 28.75S z
2S x

3S z
4S x

5 − 10.75S x
1S y

3S z
4S x

5

+ 15.75S y
1S y

3S z
4S x

5 + 16.25S z
1S y

3S z
4S x

5 − 23.25S x
2S y

3S z
4S x

5 − 14.75S y
2S y

3S z
4S x

5

+ 32.75S z
2S y

3S z
4S x

5 + 8.75S x
1S z

3S z
4S x

5 + 45.75S y
1S z

3S z
4S x

5 + 45.75S z
1S z

3S z
4S x

5 − 41.75S x
2S z

3S z
4S x

5

− 38.25S y
2S z

3S z
4S x

5 − 12.75S z
2S z

3S z
4S x

5 − 11.81S x
1S y

5 − 12.44S y
1S y

5

− 13.56S z
1S y

5 + 11.44S x
2S y

5 + 21.31S y
2S y

5 + 11.44S z
2S y

5 − 13.56S x
3S y

5 + 7.25S x
1S x

2S x
3S y

5

+ 21.25S y
1S x

2S x
3S y

5 − 1.75S z
1S x

2S x
3S y

5 + 21.25S x
1S y

2S x
3S y

5 + 7.25S y
1S y

2S x
3S y

5 − 1.75S z
1S y

2S x
3S y

5

− 10.75S x
1S z

2S x
3S y

5 − 10.75S y
1S z

2S x
3S y

5 − 1.75S z
1S z

2S x
3S y

5 − 12.44S y
3S y

5

+ 8.75S x
1S x

2S y
3S y

5 − 23.25S y
1S x

2S y
3S y

5 − 10.75S z
1S x

2S y
3S y

5 + 44.25S x
1S y

2S y
3S y

5 − 9.25S y
1S y

2S y
3S y

5

+ 7.25S z
1S y

2S y
3S y

5 + 15.75S x
1S z

2S y
3S y

5 − 23.25S y
1S z

2S y
3S y

5 + 21.25S z
1S z

2S y
3S y

5

− 11.81S z
3S y

5 + 16.25S x
1S x

2S z
3S y

5 + 15.75S y
1S x

2S z
3S y

5 − 10.75S z
1S x

2S z
3S y

5 + 2.25S x
1S y

2S z
3S y

5

+ 44.25S y
1S y

2S z
3S y

5 + 21.25S z
1S y

2S z
3S y

5 + 16.25S x
1S z

2S z
3S y

5 + 8.75S y
1S z

2S z
3S y

5

+ 7.25S z
1S z

2S z
3S y

5 + 13.19S x
4S y

5 − 28.25S x
1S x

2S x
4S y

5 + 28.75S y
1S x

2S x
4S y

5 − 21.25S z
1S x

2S x
4S y

5

− 39.25S x
1S y

2S x
4S y

5 − 28.25S y
1S y

2S x
4S y

5 − 39.75S z
1S y

2S x
4S y

5 − 39.75S x
1S z

2S x
4S y

5

− 21.25S y
1S z

2S x
4S y

5 − 76.75S z
1S z

2S x
4S y

5 + 44.25S x
1S x

3S x
4S y

5 + 3.25S y
1S x

3S x
4S y

5 + 45.75S z
1S x

3S x
4S y

5

− 21.25S x
2S x

3S x
4S y

5 − 24.75S y
2S x

3S x
4S y

5 − 38.25S z
2S x

3S x
4S y

5 + 21.25S x
1S y

3S x
4S y

5

− 23.25S y
1S y

3S x
4S y

5 + 15.75S z
1S y

3S x
4S y

5 − 9.25S x
2S y

3S x
4S y

5 − 14.25S y
2S y

3S x
4S y

5 − 31.25S z
2S y

3S x
4S y

5

+ 2.25S x
1S z

3S x
4S y

5 − 3.25S y
1S z

3S x
4S y

5 − 3.25S z
1S z

3S x
4S y

5 + 32.75S x
2S z

3S x
4S y

5

+ 46.25S y
2S z

3S x
4S y

5 − 19.25S z
2S z

3S x
4S y

5 + 23.94S y
4S y

5 − 41.75S x
1S x

2S y
4S y

5

− 12.75S y
1S x

2S y
4S y

5 − 38.25S z
1S x

2S y
4S y

5 − 28.25S x
1S y

2S y
4S y

5 − 56.75S y
1S y

2S y
4S y

5

− 21.25S z
1S y

2S y
4S y

5 − 23.25S x
1S z

2S y
4S y

5 − 36.25S y
1S z

2S y
4S y

5 − 24.75S z
1S z

2S y
4S y

5
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− 43.25S y
2S x

3S y
4S y

5 − 14.75S z
2S x

3S y
4S y

5 + 7.25S x
1S y

3S y
4S y

5 − 9.25S y
1S y

3S y
4S y

5 + 44.25S z
1S y

3S y
4S y

5

− 43.25S x
2S y

3S y
4S y

5 − 39.25S y
2S y

3S y
4S y

5 − 14.25S z
2S y

3S y
4S y

5 + 16.25S x
1S z

3S y
4S y

5

+ 45.75S y
1S z

3S y
4S y

5 + 3.25S z
1S z

3S y
4S y

5 − 14.75S x
2S z

3S y
4S y

5 − 14.25S y
2S z

3S y
4S y

5

− 32.25S z
2S z

3S y
4S y

5 + 11.44S z
4S y

5 − 23.25S x
1S x

2S z
4S y

5 + 32.75S y
1S x

2S z
4S y

5

− 14.75S z
1S x

2S z
4S y

5 − 39.75S x
1S y

2S z
4S y

5 − 21.25S y
1S y

2S z
4S y

5 − 83.75S z
1S y

2S z
4S y

5

− 25.75S x
1S z

2S z
4S y

5 − 9.25S y
1S z

2S z
4S y

5 − 43.25S z
1S z

2S z
4S y

5 + 15.75S x
1S x

3S z
4S y

5 − 3.25S y
1S x

3S z
4S y

5

+ 45.75S z
1S x

3S z
4S y

5 − 39.75S x
2S x

3S z
4S y

5 − 76.75S y
2S x

3S z
4S y

5 − 21.25S z
2S x

3S z
4S y

5 − 10.75S x
1S y

3S z
4S y

5

− 23.25S y
1S y

3S z
4S y

5 + 8.75S z
1S y

3S z
4S y

5 − 25.75S x
2S y

3S z
4S y

5 − 43.25S y
2S y

3S z
4S y

5

− 9.25S z
2S y

3S z
4S y

5 + 16.25S x
1S z

3S z
4S y

5 + 3.25S y
1S z

3S z
4S y

5 + 45.75S z
1S z

3S z
4S y

5 − 23.25S x
2S z

3S z
4S y

5

− 24.75S y
2S z

3S z
4S y

5 − 36.25S z
2S z

3S z
4S y

5 − 13.56S x
1S z

5 − 11.81S y
1S z

5

− 12.44S z
1S z

5 + 13.19S x
2S z

5 + 11.44S y
2S z

5 + 23.94S z
2S z

5 − 11.81S x
3S z

5 + 44.25S x
1S x

2S x
3S z

5

+ 2.25S y
1S x

2S x
3S z

5 + 21.25S z
1S x

2S x
3S z

5 + 15.75S x
1S y

2S x
3S z

5 + 16.25S y
1S y

2S x
3S z

5 − 10.75S z
1S y

2S x
3S z

5

+ 8.75S x
1S z

2S x
3S z

5 + 16.25S y
1S z

2S x
3S z

5 + 7.25S z
1S z

2S x
3S z

5 − 13.56S y
3S z

5

+ 45.75S x
1S x

2S y
3S z

5 − 3.25S y
1S x

2S y
3S z

5 + 15.75S z
1S x

2S y
3S z

5 + 45.75S x
1S y

2S y
3S z

5

+ 45.75S y
1S y

2S y
3S z

5 + 8.75S z
1S y

2S y
3S z

5 + 45.75S x
1S z

2S y
3S z

5 + 3.25S y
1S z

2S y
3S z

5 + 44.25S z
1S z

2S y
3S z

5

− 12.44S z
3S z

5 + 3.25S x
1S x

2S z
3S z

5 − 3.25S y
1S x

2S z
3S z

5 − 23.25S z
1S x

2S z
3S z

5 − 3.25S x
1S y

2S z
3S z

5

+ 3.25S y
1S y

2S z
3S z

5 − 23.25S z
1S y

2S z
3S z

5 + 45.75S x
1S z

2S z
3S z

5 + 45.75S y
1S z

2S z
3S z

5

− 9.25S z
1S z

2S z
3S z

5 + 11.44S x
4S z

5 − 21.25S x
1S x

2S x
4S z

5 + 32.75S y
1S x

2S x
4S z

5

− 9.25S z
1S x

2S x
4S z

5 − 39.75S x
1S y

2S x
4S z

5 − 23.25S y
1S y

2S x
4S z

5 − 25.75S z
1S y

2S x
4S z

5 − 83.75S x
1S z

2S x
4S z

5

− 14.75S y
1S z

2S x
4S z

5 − 43.25S z
1S z

2S x
4S z

5 + 7.25S x
1S x

3S x
4S z

5 + 16.25S y
1S x

3S x
4S z

5

+ 8.75S z
1S x

3S x
4S z

5 − 28.25S x
2S x

3S x
4S z

5 − 23.25S y
2S x

3S x
4S z

5 − 41.75S z
2S x

3S x
4S z

5 − 1.75S x
1S y

3S x
4S z

5

− 10.75S y
1S y

3S x
4S z

5 − 10.75S z
1S y

3S x
4S z

5 − 21.25S x
2S y

3S x
4S z

5 − 14.75S y
2S y

3S x
4S z

5

− 38.25S z
2S y

3S x
4S z

5 + 21.25S x
1S z

3S x
4S z

5 + 15.75S y
1S z

3S x
4S z

5 − 23.25S z
1S z

3S x
4S z

5 + 28.75S x
2S z

3S x
4S z

5

+ 32.75S y
2S z

3S x
4S z

5 − 12.75S z
2S z

3S x
4S z

5 + 11.44S y
4S z

5 − 38.25S x
1S x

2S y
4S z

5
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− 14.75S x
1S z

2S y
4S z

5 − 32.25S y
1S z

2S y
4S z

5 − 14.25S z
1S z

2S y
4S z

5 − 10.75S x
1S x

3S y
4S z

5

+ 16.25S y
1S x

3S y
4S z

5 + 15.75S z
1S x

3S y
4S z

5 − 39.75S x
2S x

3S y
4S z

5 − 25.75S y
2S x

3S y
4S z

5 − 23.25S z
2S x

3S y
4S z

5

− 1.75S x
1S y

3S y
4S z

5 + 7.25S y
1S y

3S y
4S z

5 + 21.25S z
1S y

3S y
4S z

5 − 76.75S x
2S y

3S y
4S z

5

− 43.25S y
2S y

3S y
4S z

5 − 24.75S z
2S y

3S y
4S z

5 − 10.75S x
1S z

3S y
4S z

5 + 8.75S y
1S z

3S y
4S z

5 − 23.25S z
1S z

3S y
4S z

5

− 21.25S x
2S z

3S y
4S z

5 − 9.25S y
2S z

3S y
4S z

5 − 36.25S z
2S z

3S y
4S z

5 + 21.31S z
4S z

5

− 24.75S x
1S x

2S z
4S z

5 + 46.25S y
1S x

2S z
4S z

5 − 14.25S z
1S x

2S z
4S z

5 − 76.75S x
1S y

2S z
4S z

5 − 24.75S y
1S y

2S z
4S z

5

− 14.25S y
1S z

2S z
4S z

5 − 39.25S z
1S z

2S z
4S z

5 + 21.25S x
1S x

3S z
4S z

5 + 2.25S y
1S x

3S z
4S z

5

+ 44.25S z
1S x

3S z
4S z

5 − 39.25S x
2S x

3S z
4S z

5 − 39.75S y
2S x

3S z
4S z

5 − 28.25S z
2S x

3S z
4S z

5

− 1.75S x
1S y

3S z
4S z

5 + 21.25S y
1S y

3S z
4S z

5 + 7.25S z
1S y

3S z
4S z

5 − 39.75S x
2S y

3S z
4S z

5 − 83.75S y
2S y

3S z
4S z

5

− 21.25S z
2S y

3S z
4S z

5 + 7.25S x
1S z

3S z
4S z

5 + 44.25S y
1S z

3S z
4S z

5 − 9.25S z
1S z

3S z
4S z

5 − 28.25S x
2S z

3S z
4S z

5

− 21.25S y
2S z

3S z
4S z

5 − 56.75S z
2S z

3S z
4S z

5 + 23.94S x
1S x

6 + 11.44S y
1S x

6

− 11.81S z
2S x

6 + 23.94S x
3S x

6 − 56.75S x
1S x

2S x
3S x

6 − 43.25S z
1S y

2S z
4S z

5 − 43.25S x
1S z

2S z
4S z

5

+ 13.19S z
1S x

6 − 12.44S x
2S x

6 − 13.56S y
2S x

6 − 28.25S y
1S x

2S x
3S x

6 − 21.25S z
1S x

2S x
3S x

6 − 12.75S x
1S y

2S x
3S x

6

− 41.75S y
1S y

2S x
3S x

6 − 38.25S z
1S y

2S x
3S x

6 − 36.25S x
1S z

2S x
3S x

6 − 23.25S y
1S z

2S x
3S x

6

− 24.75S z
1S z

2S x
3S x

6 + 13.19S y
3S x

6 − 12.75S x
1S x

2S y
3S x

6 + 28.75S y
1S x

2S y
3S x

6 + 32.75S z
1S x

2S y
3S x

6

− 39.25S x
1S y

2S y
3S x

6 − 12.75S y
1S y

2S y
3S x

6 − 19.25S z
1S y

2S y
3S x

6 − 19.25S x
1S z

2S y
3S x

6

+ 32.75S y
1S z

2S y
3S x

6 + 46.25S z
1S z

2S y
3S x

6 + 11.44S z
3S x

6 − 36.25S x
1S x

2S z
3S x

6 − 21.25S y
1S x

2S z
3S x

6

− 9.25S z
1S x

2S z
3S x

6 − 19.25S x
1S y

2S z
3S x

6 − 38.25S y
1S y

2S z
3S x

6 − 31.25S z
1S y

2S z
3S x

6

− 32.25S x
1S z

2S z
3S x

6 − 14.75S y
1S z

2S z
3S x

6 − 14.25S z
1S z

2S z
3S x

6 − 12.44S x
4S x

6 − 9.25S x
1S x

2S x
4S x

6

− 23.25S y
1S x

2S x
4S x

6 − 23.25S z
1S x

2S x
4S x

6 + 44.25S x
1S y

2S x
4S x

6 + 8.75S y
1S y

2S x
4S x

6

+ 15.75S z
1S y

2S x
4S x

6 + 7.25S x
1S z

2S x
4S x

6 − 10.75S y
1S z

2S x
4S x

6 + 21.25S z
1S z

2S x
4S x

6 − 56.75S x
1S x

3S x
4S x

6

− 36.25S y
1S x

3S x
4S x

6 − 12.75S z
1S x

3S x
4S x

6 − 9.25S x
2S x

3S x
4S x

6 + 45.75S y
2S x

3S x
4S x

6

+ 45.75S z
2S x

3S x
4S x

6 − 21.25S x
1S y

3S x
4S x

6 − 9.25S y
1S y

3S x
4S x

6 + 32.75S z
1S y

3S x
4S x

6 − 23.25S x
2S y

3S x
4S x

6

+ 3.25S y
2S y

3S x
4S x

6 − 3.25S z
2S y

3S x
4S x

6 − 28.25S x
1S z

3S x
4S x

6 − 21.25S y
1S z

3S x
4S x

6
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+ 45.75S x
1S x

2S y
4S x

6 + 3.25S y
1S x

2S y
4S x

6 − 3.25S z
1S x

2S y
4S x

6 + 3.25S x
1S y

2S y
4S x

6

+ 45.75S y
1S y

2S y
4S x

6 − 3.25S z
1S y

2S y
4S x

6 + 16.25S x
1S z

2S y
4S x

6 + 16.25S y
1S z

2S y
4S x

6 + 2.25S z
1S z

2S y
4S x

6

− 36.25S x
1S x

3S y
4S x

6 − 32.25S y
1S x

3S y
4S x

6 − 19.25S z
1S x

3S y
4S x

6 + 7.25S x
2S x

3S y
4S x

6 + 8.75S y
2S x

3S y
4S x

6

+ 16.25S z
2S x

3S y
4S x

6 − 24.75S x
1S y

3S y
4S x

6 − 14.25S y
1S y

3S y
4S x

6 + 46.25S z
1S y

3S y
4S x

6

+ 21.25S x
2S y

3S y
4S x

6 + 44.25S y
2S y

3S y
4S x

6 + 2.25S z
2S y

3S y
4S x

6 − 23.25S x
1S z

3S y
4S x

6

− 14.75S y
1S z

3S y
4S x

6 + 32.75S z
1S z

3S y
4S x

6 − 10.75S x
2S z

3S y
4S x

6 + 15.75S y
2S z

3S y
4S x

6 + 16.25S z
2S z

3S y
4S x

6

− 13.56S z
4S x

6 + 45.75S x
1S x

2S z
4S x

6 − 3.25S y
1S x

2S z
4S x

6 + 3.25S z
1S x

2S z
4S x

6 + 45.75S x
1S y

2S z
4S x

6

+ 45.75S y
1S y

2S z
4S x

6 + 45.75S z
1S y

2S z
4S x

6 + 8.75S x
1S z

2S z
4S x

6 + 15.75S y
1S z

2S z
4S x

6

+ 44.25S z
1S z

2S z
4S x

6 − 12.75S x
1S x

3S z
4S x

6 − 19.25S y
1S x

3S z
4S x

6 − 39.25S z
1S x

3S z
4S x

6 + 44.25S x
2S x

3S z
4S x

6

+ 45.75S y
2S x

3S z
4S x

6 + 3.25S z
2S x

3S z
4S x

6 − 38.25S x
1S y

3S z
4S x

6 − 31.25S y
1S y

3S z
4S x

6

− 19.25S z
1S y

3S z
4S x

6 + 15.75S x
2S y

3S z
4S x

6 + 45.75S y
2S y

3S z
4S x

6 − 3.25S z
2S y

3S z
4S x

6

− 41.75S x
1S z

3S z
4S x

6 − 38.25S y
1S z

3S z
4S x

6 − 12.75S z
1S z

3S z
4S x

6 + 8.75S x
2S z

3S z
4S x

6 + 45.75S y
2S z

3S z
4S x

6

+ 45.75S z
2S z

3S z
4S x

6 + 21.31S x
5S x

6 − 56.75S x
1S x

2S x
5S x

6 − 21.25S y
1S x

2S x
5S x

6

− 28.25S z
1S x

2S x
5S x

6 − 21.25S x
1S y

2S x
5S x

6 − 83.75S y
1S y

2S x
5S x

6 − 39.75S z
1S y

2S x
5S x

6 − 28.25S x
1S z

2S x
5S x

6

− 39.75S y
1S z

2S x
5S x

6 − 39.25S z
1S z

2S x
5S x

6 − 9.25S x
1S x

3S x
5S x

6 + 7.25S y
1S x

3S x
5S x

6

+ 44.25S z
1S x

3S x
5S x

6 − 39.25S x
2S x

3S x
5S x

6 − 43.25S y
2S x

3S x
5S x

6 − 14.25S z
2S x

3S x
5S x

6 + 44.25S x
1S y

3S x
5S x

6

+ 21.25S y
1S y

3S x
5S x

6 + 2.25S z
1S y

3S x
5S x

6 − 14.25S x
2S y

3S x
5S x

6 − 24.75S y
2S y

3S x
5S x

6

+ 46.25S z
2S y

3S x
5S x

6 + 7.25S x
1S z

3S x
5S x

6 − 1.75S y
1S z

3S x
5S x

6 + 21.25S z
1S z

3S x
5S x

6 − 43.25S x
2S z

3S x
5S x

6

− 76.75S y
2S z

3S x
5S x

6 − 24.75S z
2S z

3S x
5S x

6 − 39.25S x
1S x

4S x
5S x

6 − 43.25S y
1S x

4S x
5S x

6

− 14.25S z
1S x

4S x
5S x

6 − 9.25S x
2S x

4S x
5S x

6 + 7.25S y
2S x

4S x
5S x

6 + 44.25S z
2S x

4S x
5S x

6 − 56.75S x
3S x

4S x
5S x

6

+ 189S x
1S x

2S x
3S x

4S x
5S x

6 + 63S y
1S x

2S x
3S x

4S x
5S x

6 + 63S z
1S x

2S x
3S x

4S x
5S x

6 + 63S x
1S y

2S x
3S x

4S x
5S x

6

+ 189S y
1S y

2S x
3S x

4S x
5S x

6 + 63S z
1S y

2S x
3S x

4S x
5S x

6 + 63S x
1S z

2S x
3S x

4S x
5S x

6 + 63S y
1S z

2S x
3S x

4S x
5S x

6

+ 315S z
1S z

2S x
3S x

4S x
5S x

6 − 28.25S y
3S x

4S x
5S x

6 + 63S x
1S x

2S y
3S x

4S x
5S x

6 − 63S y
1S x

2S y
3S x

4S x
5S x

6

+ 63S z
1S x

2S y
3S x

4S x
5S x

6 + 63S x
1S y

2S y
3S x

4S x
5S x

6 + 63S y
1S y

2S y
3S x

4S x
5S x

6 + 63S z
1S y

2S y
3S x

4S x
5S x

6

171



− 21.25S z
3S x

4S x
5S x

6 + 63S x
1S x

2S z
3S x

4S x
5S x

6 − 63S y
1S x

2S z
3S x

4S x
5S x

6 − 63S z
1S x

2S z
3S x

4S x
5S x

6

+ 63S x
1S y

2S z
3S x

4S x
5S x

6 + 63S y
1S y

2S z
3S x

4S x
5S x

6 − 189S z
1S y

2S z
3S x

4S x
5S x

6 + 63S x
1S z

2S z
3S x

4S x
5S x

6

+ 63S y
1S z

2S z
3S x

4S x
5S x

6 + 63S z
1S z

2S z
3S x

4S x
5S x

6 − 14.25S x
1S y

4S x
5S x

6 − 24.75S y
1S y

4S x
5S x

6 + 46.25S z
1S y

4S x
5S x

6

+ 44.25S x
2S y

4S x
5S x

6 + 21.25S y
2S y

4S x
5S x

6 + 2.25S z
2S y

4S x
5S x

6 − 28.25S x
3S y

4S x
5S x

6

+ 63S x
1S x

2S x
3S y

4S x
5S x

6 + 63S y
1S x

2S x
3S y

4S x
5S x

6 + 63S z
1S x

2S x
3S y

4S x
5S x

6 − 63S x
1S y

2S x
3S y

4S x
5S x

6

+ 63S y
1S y

2S x
3S y

4S x
5S x

6 + 63S z
1S y

2S x
3S y

4S x
5S x

6 + 63S x
1S z

2S x
3S y

4S x
5S x

6

+ 63S y
1S z

2S x
3S y

4S x
5S x

6 + 189S z
1S z

2S x
3S y

4S x
5S x

6 − 39.25S y
3S y

4S x
5S x

6 + 315S x
1S x

2S y
3S y

4S x
5S x

6

+ 63S y
1S x

2S y
3S y

4S x
5S x

6 + 189S z
1S x

2S y
3S y

4S x
5S x

6 + 63S x
1S y

2S y
3S y

4S x
5S x

6 + 315S y
1S y

2S y
3S y

4S x
5S x

6

+ 189S z
1S y

2S y
3S y

4S x
5S x

6 + 189S x
1S z

2S y
3S y

4S x
5S x

6 + 189S y
1S z

2S y
3S y

4S x
5S x

6 + 189S z
1S z

2S y
3S y

4S x
5S x

6

− 39.75S z
3S y

4S x
5S x

6 + 63S x
1S x

2S z
3S y

4S x
5S x

6 + 63S y
1S x

2S z
3S y

4S x
5S x

6 + 63S z
1S x

2S z
3S y

4S x
5S x

6

− 189S x
1S y

2S z
3S y

4S x
5S x

6 + 63S y
1S y

2S z
3S y

4S x
5S x

6 − 63S z
1S y

2S z
3S y

4S x
5S x

6 + 63S x
1S z

2S z
3S y

4S x
5S x

6

+ 315S y
1S z

2S z
3S y

4S x
5S x

6 + 189S z
1S z

2S z
3S y

4S x
5S x

6 − 43.25S x
1S z

4S x
5S x

6 − 76.75S y
1S z

4S x
5S x

6

− 24.75S z
1S z

4S x
5S x

6 + 7.25S x
2S z

4S x
5S x

6 − 1.75S y
2S z

4S x
5S x

6 + 21.25S z
2S z

4S x
5S x

6 − 21.25S x
3S z

4S x
5S x

6

+ 63S x
1S x

2S x
3S z

4S x
5S x

6 + 63S y
1S x

2S x
3S z

4S x
5S x

6 + 63S z
1S x

2S x
3S z

4S x
5S x

6 − 63S x
1S y

2S x
3S z

4S x
5S x

6

+ 63S z
1S y

2S x
3S z

4S x
5S x

6 − 63S x
1S z

2S x
3S z

4S x
5S x

6 − 189S y
1S z

2S x
3S z

4S x
5S x

6 + 63S z
1S z

2S x
3S z

4S x
5S x

6

− 39.75S y
3S z

4S x
5S x

6 + 63S x
1S x

2S y
3S z

4S x
5S x

6 − 189S y
1S x

2S y
3S z

4S x
5S x

6 + 63S y
1S y

2S x
3S z

4S x
5S x

6

+ 63S x
1S y

2S y
3S z

4S x
5S x

6 + 63S y
1S y

2S y
3S z

4S x
5S x

6 + 315S z
1S y

2S y
3S z

4S x
5S x

6 + 63S x
1S z

2S y
3S z

4S x
5S x

6

− 63S y
1S z

2S y
3S z

4S x
5S x

6 + 63S z
1S x

2S y
3S z

4S x
5S x

6 + 189S z
1S z

2S y
3S z

4S x
5S x

6 − 83.75S z
3S z

4S x
5S x

6

+ 189S x
1S x

2S z
3S z

4S x
5S x

6 + 63S y
1S x

2S z
3S z

4S x
5S x

6 + 63S z
1S x

2S z
3S z

4S x
5S x

6 + 63S x
1S y

2S z
3S z

4S x
5S x

6

+ 189S y
1S y

2S z
3S z

4S x
5S x

6 + 63S z
1S y

2S z
3S z

4S x
5S x

6 + 63S x
1S z

2S z
3S z

4S x
5S x

6 + 63S y
1S z

2S z
3S z

4S x
5S x

6

+ 315S z
1S z

2S z
3S z

4S x
5S x

6 + 11.44S y
5S x

6 − 36.25S x
1S x

2S y
5S x

6 − 9.25S y
1S x

2S y
5S x

6 − 21.25S z
1S x

2S y
5S x

6

− 24.75S x
1S y

2S y
5S x

6 − 43.25S y
1S y

2S y
5S x

6 − 76.75S z
1S y

2S y
5S x

6 − 23.25S x
1S z

2S y
5S x

6 − 25.75S y
1S z

2S y
5S x

6

− 39.75S z
1S z

2S y
5S x

6 + 45.75S x
1S x

3S y
5S x

6 + 8.75S y
1S x

3S y
5S x

6 + 45.75S z
1S x

3S y
5S x

6

− 43.25S x
2S x

3S y
5S x

6 − 83.75S y
2S x

3S y
5S x

6 − 14.75S z
2S x

3S y
5S x

6 + 3.25S x
1S y

3S y
5S x

6

172



+ 16.25S x
1S z

3S y
5S x

6 − 10.75S y
1S z

3S y
5S x

6 + 15.75S z
1S z

3S y
5S x

6 − 25.75S x
2S z

3S y
5S x

6 − 39.75S y
2S z

3S y
5S x

6

− 23.25S z
2S z

3S y
5S x

6 − 14.25S x
1S x

4S y
5S x

6 − 9.25S y
1S x

4S y
5S x

6 − 31.25S z
1S x

4S y
5S x

6

− 23.25S x
2S x

4S y
5S x

6 + 21.25S y
2S x

4S y
5S x

6 + 15.75S z
2S x

4S y
5S x

6 − 12.75S x
3S x

4S y
5S x

6

+ 63S x
1S x

2S x
3S x

4S y
5S x

6 − 63S y
1S x

2S x
3S x

4S y
5S x

6 − 63S z
1S x

2S x
3S x

4S y
5S x

6 + 315S x
1S y

2S x
3S x

4S y
5S x

6

+ 63S y
1S y

2S x
3S x

4S y
5S x

6 + 63S z
1S y

2S x
3S x

4S y
5S x

6 + 63S x
1S z

2S x
3S x

4S y
5S x

6 − 63S y
1S z

2S x
3S x

4S y
5S x

6

+ 63S z
1S z

2S x
3S x

4S y
5S x

6 + 28.75S y
3S x

4S y
5S x

6 − 63S x
1S x

2S y
3S x

4S y
5S x

6 + 63S y
1S x

2S y
3S x

4S y
5S x

6

− 63S z
1S x

2S y
3S x

4S y
5S x

6 + 63S x
1S y

2S y
3S x

4S y
5S x

6 − 63S y
1S y

2S y
3S x

4S y
5S x

6 − 189S z
1S y

2S y
3S x

4S y
5S x

6

− 189S x
1S z

2S y
3S x

4S y
5S x

6 − 63S y
1S z

2S y
3S x

4S y
5S x

6 − 63S z
1S z

2S y
3S x

4S y
5S x

6 + 32.75S z
3S x

4S y
5S x

6

+ 63S x
1S x

2S z
3S x

4S y
5S x

6 − 63S y
1S x

2S z
3S x

4S y
5S x

6 − 63S z
1S x

2S z
3S x

4S y
5S x

6 + 189S x
1S y

2S z
3S x

4S y
5S x

6

+ 63S y
1S y

2S z
3S x

4S y
5S x

6 − 63S z
1S y

2S z
3S x

4S y
5S x

6 + 63S x
1S z

2S z
3S x

4S y
5S x

6 − 63S y
1S z

2S z
3S x

4S y
5S x

6

− 189S z
1S z

2S z
3S x

4S y
5S x

6 − 32.25S x
1S y

4S y
5S x

6 − 36.25S y
1S y

4S y
5S x

6 − 19.25S z
1S y

4S y
5S x

6

+ 8.75S x
2S y

4S y
5S x

6 + 7.25S y
2S y

4S y
5S x

6 + 16.25S z
2S y

4S y
5S x

6 − 41.75S x
3S y

4S y
5S x

6

+ 189S x
1S x

2S x
3S y

4S y
5S x

6 + 63S y
1S x

2S x
3S y

4S y
5S x

6 + 63S z
1S x

2S x
3S y

4S y
5S x

6 + 63S x
1S y

2S x
3S y

4S y
5S x

6

+ 189S y
1S y

2S x
3S y

4S y
5S x

6 + 63S z
1S y

2S x
3S y

4S y
5S x

6 + 63S x
1S z

2S x
3S y

4S y
5S x

6 + 63S y
1S z

2S x
3S y

4S y
5S x

6

+ 315S z
1S z

2S x
3S y

4S y
5S x

6 − 28.25S y
3S y

4S y
5S x

6 + 63S x
1S x

2S y
3S y

4S y
5S x

6 − 63S y
1S x

2S y
3S y

4S y
5S x

6

+ 63S z
1S x

2S y
3S y

4S y
5S x

6 + 63S x
1S y

2S y
3S y

4S y
5S x

6 + 63S y
1S y

2S y
3S y

4S y
5S x

6 + 63S z
1S y

2S y
3S y

4S y
5S x

6

+ 63S x
1S z

2S y
3S y

4S y
5S x

6 + 63S y
1S z

2S y
3S y

4S y
5S x

6 + 189S z
1S z

2S y
3S y

4S y
5S x

6 − 23.25S z
3S y

4S y
5S x

6

+ 63S x
1S x

2S z
3S y

4S y
5S x

6 − 63S y
1S x

2S z
3S y

4S y
5S x

6 − 63S z
1S x

2S z
3S y

4S y
5S x

6 + 63S x
1S y

2S z
3S y

4S y
5S x

6

+ 63S y
1S y

2S z
3S y

4S y
5S x

6 − 189S z
1S y

2S z
3S y

4S y
5S x

6 + 63S x
1S z

2S z
3S y

4S y
5S x

6 + 63S y
1S z

2S z
3S y

4S y
5S x

6

+ 63S z
1S z

2S z
3S y

4S y
5S x

6 − 14.75S x
1S z

4S y
5S x

6 − 21.25S y
1S z

4S y
5S x

6 − 38.25S z
1S z

4S y
5S x

6

− 10.75S x
2S z

4S y
5S x

6 − 1.75S y
2S z

4S y
5S x

6 − 10.75S z
2S z

4S y
5S x

6 − 38.25S x
3S z

4S y
5S x

6

+ 63S x
1S x

2S x
3S z

4S y
5S x

6 + 63S y
1S x

2S x
3S z

4S y
5S x

6 + 63S z
1S x

2S x
3S z

4S y
5S x

6 + 63S x
1S y

2S x
3S z

4S y
5S x

6

+ 63S y
1S y

2S x
3S z

4S y
5S x

6 + 189S z
1S y

2S x
3S z

4S y
5S x

6 − 63S x
1S z

2S x
3S z

4S y
5S x

6

173



− 63S y
1S z

2S y
3S z

4S y
5S x

6 + 63S z
1S z

2S y
3S z

4S y
5S x

6 − 14.75S z
3S z

4S y
5S x

6 + 63S x
1S x

2S z
3S z

4S y
5S x

6

− 63S z
1S x

2S z
3S z

4S y
5S x

6 + 315S x
1S y

2S z
3S z

4S y
5S x

6 + 63S y
1S y

2S z
3S z

4S y
5S x

6 + 63S z
1S y

2S z
3S z

4S y
5S x

6

+ 63S x
1S z

2S z
3S z

4S y
5S x

6 − 63S y
1S z

2S z
3S z

4S y
5S x

6 + 63S z
1S z

2S z
3S z

4S y
5S x

6 − 63S y
1S x

2S z
3S z

4S y
5S x

6

+ 11.44S z
5S x

6 − 12.75S x
1S x

2S z
5S x

6 + 32.75S y
1S x

2S z
5S x

6 + 28.75S z
1S x

2S z
5S x

6 − 38.25S x
1S y

2S z
5S x

6

− 14.75S y
1S y

2S z
5S x

6 − 21.25S z
1S y

2S z
5S x

6 − 41.75S x
1S z

2S z
5S x

6 − 23.25S y
1S z

2S z
5S x

6

− 28.25S z
1S z

2S z
5S x

6 + 45.75S x
1S x

3S z
5S x

6 + 16.25S y
1S x

3S z
5S x

6 + 3.25S z
1S x

3S z
5S x

6

− 14.25S x
2S x

3S z
5S x

6 − 14.75S y
2S x

3S z
5S x

6 − 32.25S z
2S x

3S z
5S x

6 + 45.75S x
1S y

3S z
5S x

6 + 15.75S y
1S y

3S z
5S x

6

− 3.25S z
1S y

3S z
5S x

6 − 31.25S x
2S y

3S z
5S x

6 − 38.25S y
2S y

3S z
5S x

6 − 19.25S z
2S y

3S z
5S x

6 + 8.75S x
1S z

3S z
5S x

6

− 10.75S y
1S z

3S z
5S x

6 − 23.25S z
1S z

3S z
5S x

6 − 9.25S x
2S z

3S z
5S x

6 − 21.25S y
2S z

3S z
5S x

6

− 36.25S z
2S z

3S z
5S x

6 − 43.25S x
1S x

4S z
5S x

6 − 25.75S y
1S x

4S z
5S x

6 − 9.25S z
1S x

4S z
5S x

6 − 23.25S x
2S x

4S z
5S x

6

− 10.75S y
2S x

4S z
5S x

6 + 8.75S z
2S x

4S z
5S x

6 − 36.25S x
3S x

4S z
5S x

6 + 63S x
1S x

2S x
3S x

4S z
5S x

6

+ 63S y
1S x

2S x
3S x

4S z
5S x

6 − 63S z
1S x

2S x
3S x

4S z
5S x

6 + 63S x
1S y

2S x
3S x

4S z
5S x

6 + 63S y
1S y

2S x
3S x

4S z
5S x

6

+ 189S x
1S z

2S x
3S x

4S z
5S x

6 + 63S y
1S z

2S x
3S x

4S z
5S x

6 + 63S z
1S z

2S x
3S x

4S z
5S x

6 − 21.25S y
3S x

4S z
5S x

6

− 63S x
1S x

2S y
3S x

4S z
5S x

6 − 63S y
1S x

2S y
3S x

4S z
5S x

6 − 63S z
1S x

2S y
3S x

4S z
5S x

6 − 63S z
1S y

2S x
3S x

4S z
5S x

6

+ 63S x
1S y

2S y
3S x

4S z
5S x

6 − 63S y
1S y

2S y
3S x

4S z
5S x

6 − 63S z
1S y

2S y
3S x

4S z
5S x

6 + 63S x
1S z

2S y
3S x

4S z
5S x

6

− 63S y
1S z

2S y
3S x

4S z
5S x

6 + 63S z
1S z

2S y
3S x

4S z
5S x

6 − 9.25S z
3S x

4S z
5S x

6 − 63S x
1S x

2S z
3S x

4S z
5S x

6

− 63S y
1S x

2S z
3S x

4S z
5S x

6 + 63S z
1S x

2S z
3S x

4S z
5S x

6 + 63S x
1S y

2S z
3S x

4S z
5S x

6 − 63S y
1S y

2S z
3S x

4S z
5S x

6

− 63S z
1S y

2S z
3S x

4S z
5S x

6 + 63S x
1S z

2S z
3S x

4S z
5S x

6 − 63S y
1S z

2S z
3S x

4S z
5S x

6 − 63S z
1S z

2S z
3S x

4S z
5S x

6

− 14.75S x
1S y

4S z
5S x

6 − 23.25S y
1S y

4S z
5S x

6 + 32.75S z
1S y

4S z
5S x

6 + 15.75S x
2S y

4S z
5S x

6 − 10.75S y
2S y

4S z
5S x

6

+ 16.25S z
2S y

4S z
5S x

6 − 23.25S x
3S y

4S z
5S x

6 + 63S x
1S x

2S x
3S y

4S z
5S x

6 + 63S y
1S x

2S x
3S y

4S z
5S x

6

− 63S x
1S y

2S x
3S y

4S z
5S x

6 + 63S y
1S y

2S x
3S y

4S z
5S x

6 − 63S z
1S y

2S x
3S y

4S z
5S x

6 + 63S x
1S z

2S x
3S y

4S z
5S x

6

+ 63S y
1S z

2S x
3S y

4S z
5S x

6 + 63S z
1S z

2S x
3S y

4S z
5S x

6 − 39.75S y
3S y

4S z
5S x

6 + 63S x
1S x

2S y
3S y

4S z
5S x

6

− 63S z
1S x

2S y
3S y

4S z
5S x

6 + 63S x
1S y

2S y
3S y

4S z
5S x

6 + 63S y
1S y

2S y
3S y

4S z
5S x

6 + 63S z
1S y

2S y
3S y

4S z
5S x

6

+ 315S x
1S z

2S y
3S y

4S z
5S x

6 + 63S y
1S z

2S y
3S y

4S z
5S x

6 + 189S z
1S z

2S y
3S y

4S z
5S x

6 − 189S z
1S x

2S x
3S y

4S z
5S x

6

174



− 63S z
1S x

2S z
3S y

4S z
5S x

6 − 63S x
1S y

2S z
3S y

4S z
5S x

6 − 63S y
1S y

2S z
3S y

4S z
5S x

6 − 63S z
1S y

2S z
3S y

4S z
5S x

6

+ 63S x
1S z

2S z
3S y

4S z
5S x

6 + 63S y
1S z

2S z
3S y

4S z
5S x

6 + 63S z
1S z

2S z
3S y

4S z
5S x

6 − 83.75S x
1S z

4S z
5S x

6

− 39.75S y
1S z

4S z
5S x

6 − 21.25S z
1S z

4S z
5S x

6 + 21.25S x
2S z

4S z
5S x

6 − 1.75S y
2S z

4S z
5S x

6

+ 7.25S z
2S z

4S z
5S x

6 − 24.75S x
3S z

4S z
5S x

6 + 315S x
1S x

2S x
3S z

4S z
5S x

6 + 189S y
1S x

2S x
3S z

4S z
5S x

6

+ 63S z
1S x

2S x
3S z

4S z
5S x

6 + 63S x
1S y

2S x
3S z

4S z
5S x

6 + 315S y
1S y

2S x
3S z

4S z
5S x

6 + 63S z
1S y

2S x
3S z

4S z
5S x

6

+ 63S x
1S z

2S x
3S z

4S z
5S x

6 + 63S y
1S z

2S x
3S z

4S z
5S x

6 + 63S z
1S z

2S x
3S z

4S z
5S x

6 − 76.75S y
3S z

4S z
5S x

6

+ 63S x
1S x

2S y
3S z

4S z
5S x

6 − 63S y
1S x

2S y
3S z

4S z
5S x

6 − 189S z
1S x

2S y
3S z

4S z
5S x

6 + 189S x
1S y

2S y
3S z

4S z
5S x

6

+ 63S y
1S y

2S y
3S z

4S z
5S x

6 + 63S z
1S y

2S y
3S z

4S z
5S x

6 + 63S x
1S z

2S y
3S z

4S z
5S x

6 − 189S y
1S z

2S y
3S z

4S z
5S x

6

+ 63S z
1S z

2S y
3S z

4S z
5S x

6 − 43.25S z
3S z

4S z
5S x

6 + 63S x
1S x

2S z
3S z

4S z
5S x

6 + 63S y
1S x

2S z
3S z

4S z
5S x

6

− 63S z
1S x

2S z
3S z

4S z
5S x

6 + 63S x
1S y

2S z
3S z

4S z
5S x

6 + 63S y
1S y

2S z
3S z

4S z
5S x

6 − 63S z
1S y

2S z
3S z

4S z
5S x

6

+ 189S x
1S z

2S z
3S z

4S z
5S x

6 + 63S y
1S z

2S z
3S z

4S z
5S x

6 + 63S z
1S z

2S z
3S z

4S z
5S x

6 + 11.44S x
1S y

6

+ 21.31S y
1S y

6 + 11.44S z
1S y

6 − 11.81S x
2S y

6 − 12.44S y
2S y

6 − 13.56S z
2S y

6 + 13.19S x
3S y

6

− 28.25S x
1S x

2S x
3S y

6 − 39.25S y
1S x

2S x
3S y

6 − 39.75S z
1S x

2S x
3S y

6 + 28.75S x
1S y

2S x
3S y

6

− 28.25S y
1S y

2S x
3S y

6 − 21.25S z
1S y

2S x
3S y

6 − 21.25S x
1S z

2S x
3S y

6 − 39.75S y
1S z

2S x
3S y

6

− 76.75S z
1S z

2S x
3S y

6 + 23.94S y
3S y

6 − 41.75S x
1S x

2S y
3S y

6 − 28.25S y
1S x

2S y
3S y

6 − 23.25S z
1S x

2S y
3S y

6

− 12.75S x
1S y

2S y
3S y

6 − 56.75S y
1S y

2S y
3S y

6 − 36.25S z
1S y

2S y
3S y

6 − 38.25S x
1S z

2S y
3S y

6

− 21.25S y
1S z

2S y
3S y

6 − 24.75S z
1S z

2S y
3S y

6 + 11.44S z
3S y

6 − 23.25S x
1S x

2S z
3S y

6 − 39.75S y
1S x

2S z
3S y

6

− 25.75S z
1S x

2S z
3S y

6 + 32.75S x
1S y

2S z
3S y

6 − 21.25S y
1S y

2S z
3S y

6 − 9.25S z
1S y

2S z
3S y

6 − 14.75S x
1S z

2S z
3S y

6

− 83.75S y
1S z

2S z
3S y

6 − 43.25S z
1S z

2S z
3S y

6 − 13.56S x
4S y

6 + 7.25S x
1S x

2S x
4S y

6

+ 21.25S y
1S x

2S x
4S y

6 − 10.75S z
1S x

2S x
4S y

6 + 21.25S x
1S y

2S x
4S y

6 + 7.25S y
1S y

2S x
4S y

6

− 10.75S z
1S y

2S x
4S y

6 − 1.75S x
1S z

2S x
4S y

6 − 1.75S y
1S z

2S x
4S y

6 − 1.75S z
1S z

2S x
4S y

6 − 21.25S x
1S x

3S x
4S y

6

− 24.75S y
1S x

3S x
4S y

6 − 38.25S z
1S x

3S x
4S y

6 + 44.25S x
2S x

3S x
4S y

6 + 3.25S y
2S x

3S x
4S y

6

+ 45.75S z
2S x

3S x
4S y

6 − 83.75S x
1S y

3S x
4S y

6 − 43.25S y
1S y

3S x
4S y

6 − 14.75S z
1S y

3S x
4S y

6 + 8.75S x
2S y

3S x
4S y

6

+ 45.75S y
2S y

3S x
4S y

6 + 45.75S z
2S y

3S x
4S y

6 − 39.75S x
1S z

3S x
4S y

6 − 76.75S y
1S z

3S x
4S y

6

175



+ 8.75S x
1S x

2S y
4S y

6 + 44.25S y
1S x

2S y
4S y

6 + 15.75S z
1S x

2S y
4S y

6 − 23.25S x
1S y

2S y
4S y

6

− 9.25S y
1S y

2S y
4S y

6 − 23.25S z
1S y

2S y
4S y

6 − 10.75S x
1S z

2S y
4S y

6 + 7.25S y
1S z

2S y
4S y

6 + 21.25S z
1S z

2S y
4S y

6

− 9.25S x
1S x

3S y
4S y

6 − 14.25S y
1S x

3S y
4S y

6 − 31.25S z
1S x

3S y
4S y

6 + 21.25S x
2S x

3S y
4S y

6

− 23.25S y
2S x

3S y
4S y

6 + 15.75S z
2S x

3S y
4S y

6 − 43.25S x
1S y

3S y
4S y

6 − 39.25S y
1S y

3S y
4S y

6

− 14.25S z
1S y

3S y
4S y

6 + 7.25S x
2S y

3S y
4S y

6 − 9.25S y
2S y

3S y
4S y

6 + 44.25S z
2S y

3S y
4S y

6

− 25.75S x
1S z

3S y
4S y

6 − 43.25S y
1S z

3S y
4S y

6 − 9.25S z
1S z

3S y
4S y

6 − 10.75S x
2S z

3S y
4S y

6

− 23.25S y
2S z

3S y
4S y

6 + 8.75S z
2S z

3S y
4S y

6 − 11.81S z
4S y

6 + 16.25S x
1S x

2S z
4S y

6 + 2.25S y
1S x

2S z
4S y

6

+ 16.25S z
1S x

2S z
4S y

6 + 15.75S x
1S y

2S z
4S y

6 + 44.25S y
1S y

2S z
4S y

6 + 8.75S z
1S y

2S z
4S y

6

− 10.75S x
1S z

2S z
4S y

6 + 21.25S y
1S z

2S z
4S y

6 + 7.25S z
1S z

2S z
4S y

6 + 32.75S x
1S x

3S z
4S y

6 + 46.25S y
1S x

3S z
4S y

6

− 3.25S y
2S x

3S z
4S y

6 − 3.25S z
2S x

3S z
4S y

6 − 14.75S x
1S y

3S z
4S y

6 − 14.25S y
1S y

3S z
4S y

6

− 32.25S z
1S y

3S z
4S y

6 + 16.25S x
2S y

3S z
4S y

6 + 45.75S y
2S y

3S z
4S y

6 + 3.25S z
2S y

3S z
4S y

6

− 23.25S x
1S z

3S z
4S y

6 − 24.75S y
1S z

3S z
4S y

6 − 36.25S z
1S z

3S z
4S y

6 + 16.25S x
2S z

3S z
4S y

6 + 3.25S y
2S z

3S z
4S y

6

+ 45.75S z
2S z

3S z
4S y

6 + 11.44S x
5S y

6 − 36.25S x
1S x

2S x
5S y

6 − 19.25S z
1S x

3S z
4S y

6 + 2.25S x
2S x

3S z
4S y

6

− 24.75S y
1S x

2S x
5S y

6 − 23.25S z
1S x

2S x
5S y

6 − 9.25S x
1S y

2S x
5S y

6 − 43.25S y
1S y

2S x
5S y

6

− 25.75S z
1S y

2S x
5S y

6 − 21.25S x
1S z

2S x
5S y

6 − 76.75S y
1S z

2S x
5S y

6 − 39.75S z
1S z

2S x
5S y

6 − 23.25S x
1S x

3S x
5S y

6

+ 21.25S y
1S x

3S x
5S y

6 + 15.75S z
1S x

3S x
5S y

6 − 14.25S x
2S x

3S x
5S y

6 − 9.25S y
2S x

3S x
5S y

6

− 31.25S z
2S x

3S x
5S y

6 + 8.75S x
1S y

3S x
5S y

6 + 7.25S y
1S y

3S x
5S y

6 + 16.25S z
1S y

3S x
5S y

6 − 32.25S x
2S y

3S x
5S y

6

− 36.25S y
2S y

3S x
5S y

6 − 19.25S z
2S y

3S x
5S y

6 − 10.75S x
1S z

3S x
5S y

6 − 1.75S y
1S z

3S x
5S y

6

− 10.75S z
1S z

3S x
5S y

6 − 14.75S x
2S z

3S x
5S y

6 − 21.25S y
2S z

3S x
5S y

6 − 38.25S z
2S z

3S x
5S y

6 − 43.25S x
1S x

4S x
5S y

6

− 83.75S y
1S x

4S x
5S y

6 − 14.75S z
1S x

4S x
5S y

6 + 45.75S x
2S x

4S x
5S y

6 + 8.75S y
2S x

4S x
5S y

6

+ 45.75S z
2S x

4S x
5S y

6 − 12.75S x
3S x

4S x
5S y

6 + 63S x
1S x

2S x
3S x

4S x
5S y

6 + 315S y
1S x

2S x
3S x

4S x
5S y

6

+ 63S z
1S x

2S x
3S x

4S x
5S y

6 − 63S x
1S y

2S x
3S x

4S x
5S y

6 + 63S y
1S y

2S x
3S x

4S x
5S y

6 − 63S z
1S y

2S x
3S x

4S x
5S y

6

− 63S x
1S z

2S x
3S x

4S x
5S y

6 + 63S y
1S z

2S x
3S x

4S x
5S y

6 + 63S z
1S z

2S x
3S x

4S x
5S y

6 − 41.75S y
3S x

4S x
5S y

6

+ 189S x
1S x

2S y
3S x

4S x
5S y

6 + 63S y
1S x

2S y
3S x

4S x
5S y

6 + 63S z
1S x

2S y
3S x

4S x
5S y

6 + 63S x
1S y

2S y
3S x

4S x
5S y

6

176



+ 315S z
1S z

2S y
3S x

4S x
5S y

6 − 38.25S z
3S x

4S x
5S y

6 + 63S x
1S x

2S z
3S x

4S x
5S y

6 + 63S y
1S x

2S z
3S x

4S x
5S y

6

− 63S z
1S x

2S z
3S x

4S x
5S y

6 + 63S x
1S y

2S z
3S x

4S x
5S y

6 + 63S y
1S y

2S z
3S x

4S x
5S y

6 − 63S z
1S y

2S z
3S x

4S x
5S y

6

+ 63S x
1S z

2S z
3S x

4S x
5S y

6 + 189S y
1S z

2S z
3S x

4S x
5S y

6 + 63S z
1S z

2S z
3S x

4S x
5S y

6 − 9.25S x
1S y

4S x
5S y

6

− 21.25S y
1S y

4S x
5S y

6 + 32.75S z
1S y

4S x
5S y

6 + 3.25S x
2S y

4S x
5S y

6 − 23.25S y
2S y

4S x
5S y

6

− 3.25S z
2S y

4S x
5S y

6 + 28.75S x
3S y

4S x
5S y

6 − 63S x
1S x

2S x
3S y

4S x
5S y

6 + 63S y
1S x

2S x
3S y

4S x
5S y

6

− 189S z
1S x

2S x
3S y

4S x
5S y

6 + 63S x
1S y

2S x
3S y

4S x
5S y

6 − 63S y
1S y

2S x
3S y

4S x
5S y

6 − 63S z
1S y

2S x
3S y

4S x
5S y

6

− 63S x
1S z

2S x
3S y

4S x
5S y

6 − 189S y
1S z

2S x
3S y

4S x
5S y

6 − 63S z
1S z

2S x
3S y

4S x
5S y

6 − 28.25S y
3S y

4S x
5S y

6

+ 63S x
1S x

2S y
3S y

4S x
5S y

6 + 63S y
1S x

2S y
3S y

4S x
5S y

6 + 63S z
1S x

2S y
3S y

4S x
5S y

6 − 63S x
1S y

2S y
3S y

4S x
5S y

6

+ 63S y
1S y

2S y
3S y

4S x
5S y

6 + 63S z
1S y

2S y
3S y

4S x
5S y

6 + 63S x
1S z

2S y
3S y

4S x
5S y

6 + 63S y
1S z

2S y
3S y

4S x
5S y

6

− 21.25S z
3S y

4S x
5S y

6 − 63S x
1S x

2S z
3S y

4S x
5S y

6 + 63S y
1S x

2S z
3S y

4S x
5S y

6 − 63S z
1S x

2S z
3S y

4S x
5S y

6

− 63S x
1S y

2S z
3S y

4S x
5S y

6 − 63S y
1S y

2S z
3S y

4S x
5S y

6 − 63S z
1S y

2S z
3S y

4S x
5S y

6 − 63S x
1S z

2S z
3S y

4S x
5S y

6

+ 63S y
1S z

2S z
3S y

4S x
5S y

6 + 63S z
1S z

2S z
3S y

4S x
5S y

6 − 25.75S x
1S z

4S x
5S y

6 + 189S z
1S z

2S y
3S y

4S x
5S y

6

− 39.75S y
1S z

4S x
5S y

6 − 23.25S z
1S z

4S x
5S y

6 + 16.25S x
2S z

4S x
5S y

6 − 10.75S y
2S z

4S x
5S y

6

+ 15.75S z
2S z

4S x
5S y

6 + 32.75S x
3S z

4S x
5S y

6 + 63S x
1S x

2S x
3S z

4S x
5S y

6 + 189S y
1S x

2S x
3S z

4S x
5S y

6

+ 63S z
1S x

2S x
3S z

4S x
5S y

6 − 63S x
1S y

2S x
3S z

4S x
5S y

6 + 63S y
1S y

2S x
3S z

4S x
5S y

6 − 63S z
1S y

2S x
3S z

4S x
5S y

6

− 63S y
1S z

2S x
3S z

4S x
5S y

6 − 189S z
1S z

2S x
3S z

4S x
5S y

6 − 23.25S y
3S z

4S x
5S y

6 + 63S x
1S x

2S y
3S z

4S x
5S y

6

+ 63S y
1S x

2S y
3S z

4S x
5S y

6 + 63S z
1S x

2S y
3S z

4S x
5S y

6 − 63S x
1S y

2S y
3S z

4S x
5S y

6 + 63S y
1S y

2S y
3S z

4S x
5S y

6

+ 63S z
1S y

2S y
3S z

4S x
5S y

6 − 63S x
1S z

2S y
3S z

4S x
5S y

6 − 189S y
1S z

2S y
3S z

4S x
5S y

6 − 63S x
1S z

2S x
3S z

4S x
5S y

6

+ 63S z
1S z

2S y
3S z

4S x
5S y

6 − 14.75S z
3S z

4S x
5S y

6 + 63S x
1S x

2S z
3S z

4S x
5S y

6 + 315S y
1S x

2S z
3S z

4S x
5S y

6

+ 63S z
1S x

2S z
3S z

4S x
5S y

6 − 63S x
1S y

2S z
3S z

4S x
5S y

6 + 63S y
1S y

2S z
3S z

4S x
5S y

6 − 63S z
1S y

2S z
3S z

4S x
5S y

6

− 63S x
1S z

2S z
3S z

4S x
5S y

6 + 63S y
1S z

2S z
3S z

4S x
5S y

6 + 63S z
1S z

2S z
3S z

4S x
5S y

6 + 23.94S y
5S y

6

− 32.25S x
1S x

2S y
5S y

6 − 14.25S y
1S x

2S y
5S y

6 − 14.75S z
1S x

2S y
5S y

6 − 14.25S x
1S y

2S y
5S y

6

− 39.25S y
1S y

2S y
5S y

6 − 43.25S z
1S y

2S y
5S y

6 − 14.75S x
1S z

2S y
5S y

6 − 43.25S y
1S z

2S y
5S y

6 − 83.75S z
1S z

2S y
5S y

6

+ 3.25S x
1S x

3S y
5S y

6 + 44.25S y
1S x

3S y
5S y

6 + 45.75S z
1S x

3S y
5S y

6 − 24.75S x
2S x

3S y
5S y

6

177



+ 16.25S x
1S z

3S y
5S y

6 + 7.25S y
1S z

3S y
5S y

6 + 8.75S z
1S z

3S y
5S y

6 − 23.25S x
2S z

3S y
5S y

6

− 28.25S y
2S z

3S y
5S y

6 − 41.75S z
2S z

3S y
5S y

6 − 24.75S x
1S x

4S y
5S y

6 − 21.25S y
1S x

4S y
5S y

6

− 38.25S z
1S x

4S y
5S y

6 + 3.25S x
2S x

4S y
5S y

6 + 44.25S y
2S x

4S y
5S y

6 + 45.75S z
2S x

4S y
5S y

6

− 39.25S x
3S x

4S y
5S y

6 + 63S x
1S x

2S x
3S x

4S y
5S y

6 + 63S y
1S x

2S x
3S x

4S y
5S y

6 + 63S z
1S x

2S x
3S x

4S y
5S y

6

+ 63S x
1S y

2S x
3S x

4S y
5S y

6 + 63S y
1S y

2S x
3S x

4S y
5S y

6 + 63S z
1S y

2S x
3S x

4S y
5S y

6 + 63S x
1S z

2S x
3S x

4S y
5S y

6

+ 63S y
1S z

2S x
3S x

4S y
5S y

6 + 189S z
1S z

2S x
3S x

4S y
5S y

6 − 12.75S y
3S x

4S y
5S y

6 + 63S x
1S x

2S y
3S x

4S y
5S y

6

− 63S y
1S x

2S y
3S x

4S y
5S y

6 − 63S z
1S x

2S y
3S x

4S y
5S y

6 + 315S x
1S y

2S y
3S x

4S y
5S y

6 + 63S y
1S y

2S y
3S x

4S y
5S y

6

+ 63S z
1S y

2S y
3S x

4S y
5S y

6 + 63S x
1S z

2S y
3S x

4S y
5S y

6 − 63S y
1S z

2S y
3S x

4S y
5S y

6 + 63S z
1S z

2S y
3S x

4S y
5S y

6

− 19.25S z
3S x

4S y
5S y

6 + 63S x
1S x

2S z
3S x

4S y
5S y

6 − 189S y
1S x

2S z
3S x

4S y
5S y

6 − 63S z
1S x

2S z
3S x

4S y
5S y

6

+ 189S x
1S y

2S z
3S x

4S y
5S y

6 + 63S y
1S y

2S z
3S x

4S y
5S y

6 + 63S z
1S y

2S z
3S x

4S y
5S y

6 + 315S x
1S z

2S z
3S x

4S y
5S y

6

+ 63S y
1S z

2S z
3S x

4S y
5S y

6 + 63S z
1S z

2S z
3S x

4S y
5S y

6 − 36.25S x
1S y

4S y
5S y

6 − 56.75S y
1S y

4S y
5S y

6

− 12.75S z
1S y

4S y
5S y

6 + 45.75S x
2S y

4S y
5S y

6 − 9.25S y
2S y

4S y
5S y

6 + 45.75S z
2S y

4S y
5S y

6

− 12.75S x
3S y

4S y
5S y

6 + 63S x
1S x

2S x
3S y

4S y
5S y

6 + 315S y
1S x

2S x
3S y

4S y
5S y

6 + 63S z
1S x

2S x
3S y

4S y
5S y

6

− 63S x
1S y

2S x
3S y

4S y
5S y

6 + 63S y
1S y

2S x
3S y

4S y
5S y

6 − 63S z
1S y

2S x
3S y

4S y
5S y

6 − 63S x
1S z

2S x
3S y

4S y
5S y

6

+ 63S y
1S z

2S x
3S y

4S y
5S y

6 + 63S z
1S z

2S x
3S y

4S y
5S y

6 − 56.75S y
3S y

4S y
5S y

6 + 189S x
1S x

2S y
3S y

4S y
5S y

6

+ 63S y
1S x

2S y
3S y

4S y
5S y

6 + 63S z
1S x

2S y
3S y

4S y
5S y

6 + 63S x
1S y

2S y
3S y

4S y
5S y

6 + 189S y
1S y

2S y
3S y

4S y
5S y

6

+ 63S z
1S y

2S y
3S y

4S y
5S y

6 + 63S x
1S z

2S y
3S y

4S y
5S y

6 + 63S y
1S z

2S y
3S y

4S y
5S y

6 + 315S z
1S z

2S y
3S y

4S y
5S y

6

− 36.25S z
3S y

4S y
5S y

6 + 63S x
1S x

2S z
3S y

4S y
5S y

6 + 63S y
1S x

2S z
3S y

4S y
5S y

6 − 63S z
1S x

2S z
3S y

4S y
5S y

6

+ 63S x
1S y

2S z
3S y

4S y
5S y

6 + 63S y
1S y

2S z
3S y

4S y
5S y

6 − 63S z
1S y

2S z
3S y

4S y
5S y

6 + 63S x
1S z

2S z
3S y

4S y
5S y

6

+ 189S y
1S z

2S z
3S y

4S y
5S y

6 + 63S z
1S z

2S z
3S y

4S y
5S y

6 − 23.25S x
1S z

4S y
5S y

6 − 28.25S y
1S z

4S y
5S y

6

− 41.75S z
1S z

4S y
5S y

6 + 16.25S x
2S z

4S y
5S y

6 + 7.25S y
2S z

4S y
5S y

6 + 8.75S z
2S z

4S y
5S y

6

− 19.25S x
3S z

4S y
5S y

6 + 63S x
1S x

2S x
3S z

4S y
5S y

6 + 189S y
1S x

2S x
3S z

4S y
5S y

6

+ 315S z
1S x

2S x
3S z

4S y
5S y

6 − 189S x
1S y

2S x
3S z

4S y
5S y

6 + 63S y
1S y

2S x
3S z

4S y
5S y

6

+ 63S z
1S y

2S x
3S z

4S y
5S y

6 − 63S x
1S z

2S x
3S z

4S y
5S y

6 + 63S y
1S z

2S x
3S z

4S y
5S y

6

178



+ 63S y
1S y

2S y
3S z

4S y
5S y

6 + 189S z
1S y

2S y
3S z

4S y
5S y

6 − 63S x
1S z

2S y
3S z

4S y
5S y

6

− 63S y
1S z

2S y
3S z

4S y
5S y

6 + 63S z
1S z

2S y
3S z

4S y
5S y

6 − 32.25S z
3S z

4S y
5S y

6

+ 63S x
1S x

2S z
3S z

4S y
5S y

6 + 63S y
1S x

2S z
3S z

4S y
5S y

6 + 63S z
1S x

2S z
3S z

4S y
5S y

6

+ 63S x
1S y

2S z
3S z

4S y
5S y

6 + 63S y
1S y

2S z
3S z

4S y
5S y

6 + 63S z
1S y

2S z
3S z

4S y
5S y

6

+ 63S x
1S z

2S z
3S z

4S y
5S y

6 + 63S y
1S z

2S z
3S z

4S y
5S y

6 + 189S z
1S z

2S z
3S z

4S y
5S y

6

+ 13.19S z
5S y

6 − 19.25S x
1S x

2S z
5S y

6 + 46.25S y
1S x

2S z
5S y

6

+ 32.75S z
1S x

2S z
5S y

6 − 31.25S x
1S y

2S z
5S y

6 − 14.25S y
1S y

2S z
5S y

6

− 9.25S z
1S y

2S z
5S y

6 − 38.25S x
1S z

2S z
5S y

6 − 24.75S y
1S z

2S z
5S y

6

− 21.25S z
1S z

2S z
5S y

6 − 3.25S x
1S x

3S z
5S y

6 + 2.25S y
1S x

3S z
5S y

6

− 3.25S z
1S x

3S z
5S y

6 + 46.25S x
2S x

3S z
5S y

6 + 32.75S y
2S x

3S z
5S y

6

− 19.25S z
2S x

3S z
5S y

6 + 45.75S x
1S y

3S z
5S y

6 + 44.25S y
1S y

3S z
5S y

6

+ 3.25S z
1S y

3S z
5S y

6 − 19.25S x
2S y

3S z
5S y

6 − 12.75S y
2S y

3S z
5S y

6

− 39.25S z
2S y

3S z
5S y

6 + 15.75S x
1S z

3S z
5S y

6 + 21.25S y
1S z

3S z
5S y

6

− 23.25S z
1S z

3S z
5S y

6 + 32.75S x
2S z

3S z
5S y

6 + 28.75S y
2S z

3S z
5S y

6

− 12.75S z
2S z

3S z
5S y

6 − 76.75S x
1S x

4S z
5S y

6 − 39.75S y
1S x

4S z
5S y

6

− 21.25S z
1S x

4S z
5S y

6 − 3.25S x
2S x

4S z
5S y

6 + 15.75S y
2S x

4S z
5S y

6

+ 45.75S z
2S x

4S z
5S y

6 − 19.25S x
3S x

4S z
5S y

6 + 63S x
1S x

2S x
3S x

4S z
5S y

6

+ 189S y
1S x

2S x
3S x

4S z
5S y

6 + 63S z
1S x

2S x
3S x

4S z
5S y

6 − 189S x
1S y

2S x
3S x

4S z
5S y

6

+ 63S y
1S y

2S x
3S x

4S z
5S y

6 − 63S z
1S y

2S x
3S x

4S z
5S y

6 + 63S x
1S z

2S x
3S x

4S z
5S y

6

+ 315S y
1S z

2S x
3S x

4S z
5S y

6 + 63S z
1S z

2S x
3S x

4S z
5S y

6 − 38.25S y
3S x

4S z
5S y

6

+ 63S x
1S x

2S y
3S x

4S z
5S y

6 + 63S y
1S x

2S y
3S x

4S z
5S y

6 − 63S z
1S x

2S y
3S x

4S z
5S y

6

+ 63S x
1S y

2S y
3S x

4S z
5S y

6 + 63S y
1S y

2S y
3S x

4S z
5S y

6 − 63S z
1S y

2S y
3S x

4S z
5S y

6

+ 189S x
1S z

2S y
3S x

4S z
5S y

6 + 63S y
1S z

2S y
3S x

4S z
5S y

6 + 63S z
1S z

2S y
3S x

4S z
5S y

6

− 31.25S z
3S x

4S z
5S y

6 − 189S x
1S x

2S z
3S x

4S z
5S y

6 − 63S y
1S x

2S z
3S x

4S z
5S y

6

179



− 63S z
1S y

2S z
3S x

4S z
5S y

6 + 63S x
1S z

2S z
3S x

4S z
5S y

6 + 63S y
1S z

2S z
3S x

4S z
5S y

6

− 63S z
1S z

2S z
3S x

4S z
5S y

6 − 21.25S x
1S y

4S z
5S y

6 − 28.25S y
1S y

4S z
5S y

6

+ 28.75S z
1S y

4S z
5S y

6 − 3.25S x
2S y

4S z
5S y

6 − 23.25S y
2S y

4S z
5S y

6

+ 3.25S z
2S y

4S z
5S y

6 + 32.75S x
3S y

4S z
5S y

6 + 63S x
1S x

2S x
3S y

4S z
5S y

6

+ 189S y
1S x

2S x
3S y

4S z
5S y

6 − 63S z
1S x

2S x
3S y

4S z
5S y

6 − 63S x
1S y

2S x
3S y

4S z
5S y

6

+ 63S y
1S y

2S x
3S y

4S z
5S y

6 − 63S z
1S y

2S x
3S y

4S z
5S y

6 − 63S x
1S z

2S x
3S y

4S z
5S y

6

+ 63S y
1S z

2S x
3S y

4S z
5S y

6 − 189S z
1S z

2S x
3S y

4S z
5S y

6 − 21.25S y
3S y

4S z
5S y

6

+ 63S x
1S x

2S y
3S y

4S z
5S y

6 + 63S y
1S x

2S y
3S y

4S z
5S y

6 − 189S z
1S x

2S y
3S y

4S z
5S y

6

− 63S x
1S y

2S y
3S y

4S z
5S y

6 + 63S y
1S y

2S y
3S y

4S z
5S y

6 − 63S z
1S y

2S y
3S y

4S z
5S y

6

+ 63S x
1S z

2S y
3S y

4S z
5S y

6 + 63S y
1S z

2S y
3S y

4S z
5S y

6 + 63S z
1S z

2S y
3S y

4S z
5S y

6

− 9.25S z
3S y

4S z
5S y

6 − 63S x
1S x

2S z
3S y

4S z
5S y

6 + 63S y
1S x

2S z
3S y

4S z
5S y

6

− 63S z
1S x

2S z
3S y

4S z
5S y

6 − 63S x
1S y

2S z
3S y

4S z
5S y

6 − 63S y
1S y

2S z
3S y

4S z
5S y

6

+ 63S z
1S y

2S z
3S y

4S z
5S y

6 − 63S x
1S z

2S z
3S y

4S z
5S y

6 + 63S y
1S z

2S z
3S y

4S z
5S y

6

− 63S z
1S z

2S z
3S y

4S z
5S y

6 − 39.75S x
1S z

4S z
5S y

6 − 39.25S y
1S z

4S z
5S y

6

− 28.25S z
1S z

4S z
5S y

6 + 2.25S x
2S z

4S z
5S y

6 + 21.25S y
2S z

4S z
5S y

6

+ 44.25S z
2S z

4S z
5S y

6 + 46.25S x
3S z

4S z
5S y

6 + 189S x
1S x

2S x
3S z

4S z
5S y

6

+ 189S y
1S x

2S x
3S z

4S z
5S y

6 + 189S z
1S x

2S x
3S z

4S z
5S y

6 − 63S x
1S y

2S x
3S z

4S z
5S y

6

+ 189S y
1S y

2S x
3S z

4S z
5S y

6 + 63S z
1S y

2S x
3S z

4S z
5S y

6 + 63S x
1S z

2S x
3S z

4S z
5S y

6

+ 189S y
1S z

2S x
3S z

4S z
5S y

6 + 63S z
1S z

2S x
3S z

4S z
5S y

6 − 24.75S y
3S z

4S z
5S y

6

+ 315S x
1S x

2S y
3S z

4S z
5S y

6 + 189S y
1S x

2S y
3S z

4S z
5S y

6 + 63S z
1S x

2S y
3S z

4S z
5S y

6

+ 63S x
1S y

2S y
3S z

4S z
5S y

6 + 315S y
1S y

2S y
3S z

4S z
5S y

6 + 63S z
1S y

2S y
3S z

4S z
5S y

6

+ 63S x
1S z

2S y
3S z

4S z
5S y

6 + 63S y
1S z

2S y
3S z

4S z
5S y

6 + 63S z
1S z

2S y
3S z

4S z
5S y

6

− 14.25S z
3S z

4S z
5S y

6 + 63S x
1S x

2S z
3S z

4S z
5S y

6 + 189S y
1S x

2S z
3S z

4S z
5S y

6

+ 63S z
1S x

2S z
3S z

4S z
5S y

6 − 189S x
1S y

2S z
3S z

4S z
5S y

6 + 63S y
1S y

2S z
3S z

4S z
5S y

6

180



− 63S z
1S y

2S z
3S z

4S z
5S y

6 + 63S x
1S z

2S z
3S z

4S z
5S y

6 + 315S y
1S z

2S z
3S z

4S z
5S y

6

+ 63S z
1S z

2S z
3S z

4S z
5S y

6 + 13.19S x
1S z

6 + 11.44S y
1S z

6

+ 23.94S z
1S z

6 − 13.56S x
2S z

6 − 11.81S y
2S z

6

− 12.44S z
2S z

6 + 11.44S x
3S z

6 − 21.25S x
1S x

2S x
3S z

6

− 39.75S y
1S x

2S x
3S z

6 − 83.75S z
1S x

2S x
3S z

6 + 32.75S x
1S y

2S x
3S z

6

− 23.25S y
1S y

2S x
3S z

6 − 14.75S z
1S y

2S x
3S z

6 − 9.25S x
1S z

2S x
3S z

6

− 25.75S y
1S z

2S x
3S z

6 − 43.25S z
1S z

2S x
3S z

6 + 11.44S y
3S z

6

− 38.25S x
1S x

2S y
3S z

6 − 21.25S y
1S x

2S y
3S z

6 − 14.75S z
1S x

2S y
3S z

6

− 19.25S x
1S y

2S y
3S z

6 − 36.25S y
1S y

2S y
3S z

6 − 32.25S z
1S y

2S y
3S z

6

− 31.25S x
1S z

2S y
3S z

6 − 9.25S y
1S z

2S y
3S z

6 − 14.25S z
1S z

2S y
3S z

6

+ 21.31S z
3S z

6 − 24.75S x
1S x

2S z
3S z

6 − 76.75S y
1S x

2S z
3S z

6

− 43.25S z
1S x

2S z
3S z

6 + 46.25S x
1S y

2S z
3S z

6 − 24.75S y
1S y

2S z
3S z

6

− 14.25S z
1S y

2S z
3S z

6 − 14.25S x
1S z

2S z
3S z

6 − 43.25S y
1S z

2S z
3S z

6

− 39.25S z
1S z

2S z
3S z

6 − 11.81S x
4S z

6 + 44.25S x
1S x

2S x
4S z

6

+ 15.75S y
1S x

2S x
4S z

6 + 8.75S z
1S x

2S x
4S z

6 + 2.25S x
1S y

2S x
4S z

6

+ 16.25S y
1S y

2S x
4S z

6 + 16.25S z
1S y

2S x
4S z

6 + 21.25S x
1S z

2S x
4S z

6

− 10.75S y
1S z

2S x
4S z

6 + 7.25S z
1S z

2S x
4S z

6 − 28.25S x
1S x

3S x
4S z

6

− 23.25S y
1S x

3S x
4S z

6 − 41.75S z
1S x

3S x
4S z

6 + 7.25S x
2S x

3S x
4S z

6

+ 16.25S y
2S x

3S x
4S z

6 + 8.75S z
2S x

3S x
4S z

6 − 39.75S x
1S y

3S x
4S z

6

− 25.75S y
1S y

3S x
4S z

6 − 23.25S z
1S y

3S x
4S z

6 − 10.75S x
2S y

3S x
4S z

6

+ 16.25S y
2S y

3S x
4S z

6 + 15.75S z
2S y

3S x
4S z

6 − 39.25S x
1S z

3S x
4S z

6

− 39.75S y
1S z

3S x
4S z

6 − 28.25S z
1S z

3S x
4S z

6 + 21.25S x
2S z

3S x
4S z

6

+ 2.25S y
2S z

3S x
4S z

6 + 44.25S z
2S z

3S x
4S z

6 − 13.56S y
4S z

6

+ 45.75S x
1S x

2S y
4S z

6 + 45.75S y
1S x

2S y
4S z

6 + 45.75S z
1S x

2S y
4S z

6
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+ 15.75S x
1S z

2S y
4S z

6 + 8.75S y
1S z

2S y
4S z

6 + 44.25S z
1S z

2S y
4S z

6

− 21.25S x
1S x

3S y
4S z

6 − 14.75S y
1S x

3S y
4S z

6 − 38.25S z
1S x

3S y
4S z

6

− 1.75S x
2S x

3S y
4S z

6 − 10.75S y
2S x

3S y
4S z

6 − 10.75S z
2S x

3S y
4S z

6

− 76.75S x
1S y

3S y
4S z

6 − 43.25S y
1S y

3S y
4S z

6 − 24.75S z
1S y

3S y
4S z

6

− 1.75S x
2S y

3S y
4S z

6 + 7.25S y
2S y

3S y
4S z

6 + 21.25S z
2S y

3S y
4S z

6

− 39.75S x
1S z

3S y
4S z

6 − 83.75S y
1S z

3S y
4S z

6 − 21.25S z
1S z

3S y
4S z

6

− 1.75S x
2S z

3S y
4S z

6 + 21.25S y
2S z

3S y
4S z

6 + 7.25S z
2S z

3S y
4S z

6

− 12.44S z
4S z

6 + 3.25S x
1S x

2S z
4S z

6 − 3.25S y
1S x

2S z
4S z

6

+ 45.75S z
1S x

2S z
4S z

6 − 3.25S x
1S y

2S z
4S z

6 + 3.25S y
1S y

2S z
4S z

6

+ 45.75S z
1S y

2S z
4S z

6 − 23.25S x
1S z

2S z
4S z

6 − 23.25S y
1S z

2S z
4S z

6

− 9.25S z
1S z

2S z
4S z

6 + 28.75S x
1S x

3S z
4S z

6 + 32.75S y
1S x

3S z
4S z

6

− 12.75S z
1S x

3S z
4S z

6 + 21.25S x
2S x

3S z
4S z

6 + 15.75S y
2S x

3S z
4S z

6

− 23.25S z
2S x

3S z
4S z

6 − 21.25S x
1S y

3S z
4S z

6 − 9.25S y
1S y

3S z
4S z

6

− 36.25S z
1S y

3S z
4S z

6 − 10.75S x
2S y

3S z
4S z

6 + 8.75S y
2S y

3S z
4S z

6

− 23.25S z
2S y

3S z
4S z

6 − 28.25S x
1S z

3S z
4S z

6 − 21.25S y
1S z

3S z
4S z

6

− 56.75S z
1S z

3S z
4S z

6 + 7.25S x
2S z

3S z
4S z

6 + 44.25S y
2S z

3S z
4S z

6

− 9.25S z
2S z

3S z
4S z

6 + 11.44S x
5S z

6 − 12.75S x
1S x

2S x
5S z

6

− 38.25S y
1S x

2S x
5S z

6 − 41.75S z
1S x

2S x
5S z

6 + 32.75S x
1S y

2S x
5S z

6

− 14.75S y
1S y

2S x
5S z

6 − 23.25S z
1S y

2S x
5S z

6 + 28.75S x
1S z

2S x
5S z

6

− 21.25S y
1S z

2S x
5S z

6 − 28.25S z
1S z

2S x
5S z

6 − 23.25S x
1S x

3S x
5S z

6

− 10.75S y
1S x

3S x
5S z

6 + 8.75S z
1S x

3S x
5S z

6 − 43.25S x
2S x

3S x
5S z

6

− 25.75S y
2S x

3S x
5S z

6 − 9.25S z
2S x

3S x
5S z

6 + 15.75S x
1S y

3S x
5S z

6

− 10.75S y
1S y

3S x
5S z

6 + 16.25S z
1S y

3S x
5S z

6 − 14.75S x
2S y

3S x
5S z

6

− 23.25S y
2S y

3S x
5S z

6 + 32.75S z
2S y

3S x
5S z

6 + 21.25S x
1S z

3S x
5S z

6
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− 39.75S y
2S z

3S x
5S z

6 − 21.25S z
2S z

3S x
5S z

6 − 14.25S x
1S x

4S x
5S z

6

− 14.75S y
1S x

4S x
5S z

6 − 32.25S z
1S x

4S x
5S z

6 + 45.75S x
2S x

4S x
5S z

6

+ 16.25S y
2S x

4S x
5S z

6 + 3.25S z
2S x

4S x
5S z

6 − 36.25S x
3S x

4S x
5S z

6

+ 63S x
1S x

2S x
3S x

4S x
5S z

6 + 63S y
1S x

2S x
3S x

4S x
5S z

6 + 189S z
1S x

2S x
3S x

4S x
5S z

6

+ 63S x
1S y

2S x
3S x

4S x
5S z

6 + 63S y
1S y

2S x
3S x

4S x
5S z

6 + 63S z
1S y

2S x
3S x

4S x
5S z

6

− 63S x
1S z

2S x
3S x

4S x
5S z

6 − 63S y
1S z

2S x
3S x

4S x
5S z

6 + 63S z
1S z

2S x
3S x

4S x
5S z

6

− 23.25S y
3S x

4S x
5S z

6 + 63S x
1S x

2S y
3S x

4S x
5S z

6 − 63S y
1S x

2S y
3S x

4S x
5S z

6

+ 63S z
1S x

2S y
3S x

4S x
5S z

6 + 63S x
1S y

2S y
3S x

4S x
5S z

6 + 63S y
1S y

2S y
3S x

4S x
5S z

6

+ 63S z
1S y

2S y
3S x

4S x
5S z

6 − 189S x
1S z

2S y
3S x

4S x
5S z

6 − 63S y
1S z

2S y
3S x

4S x
5S z

6

+ 63S z
1S z

2S y
3S x

4S x
5S z

6 − 24.75S z
3S x

4S x
5S z

6 + 315S x
1S x

2S z
3S x

4S x
5S z

6

+ 63S y
1S x

2S z
3S x

4S x
5S z

6 + 63S z
1S x

2S z
3S x

4S x
5S z

6 + 189S x
1S y

2S z
3S x

4S x
5S z

6

+ 315S y
1S y

2S z
3S x

4S x
5S z

6 + 63S z
1S y

2S z
3S x

4S x
5S z

6 + 63S x
1S z

2S z
3S x

4S x
5S z

6

+ 63S y
1S z

2S z
3S x

4S x
5S z

6 + 63S z
1S z

2S z
3S x

4S x
5S z

6 − 31.25S x
1S y

4S x
5S z

6

− 38.25S y
1S y

4S x
5S z

6 − 19.25S z
1S y

4S x
5S z

6 + 45.75S x
2S y

4S x
5S z

6

+ 15.75S y
2S y

4S x
5S z

6 − 3.25S z
2S y

4S x
5S z

6 − 21.25S x
3S y

4S x
5S z

6

− 63S x
1S x

2S x
3S y

4S x
5S z

6 + 63S y
1S x

2S x
3S y

4S x
5S z

6 + 63S z
1S x

2S x
3S y

4S x
5S z

6

− 63S x
1S y

2S x
3S y

4S x
5S z

6 − 63S y
1S y

2S x
3S y

4S x
5S z

6 − 63S z
1S y

2S x
3S y

4S x
5S z

6

− 63S x
1S z

2S x
3S y

4S x
5S z

6 − 63S y
1S z

2S x
3S y

4S x
5S z

6 + 63S z
1S z

2S x
3S y

4S x
5S z

6

− 39.75S y
3S y

4S x
5S z

6 + 63S x
1S x

2S y
3S y

4S x
5S z

6 + 63S y
1S x

2S y
3S y

4S x
5S z

6

+ 315S z
1S x

2S y
3S y

4S x
5S z

6 − 189S x
1S y

2S y
3S y

4S x
5S z

6 + 63S y
1S y

2S y
3S y

4S x
5S z

6

+ 63S z
1S y

2S y
3S y

4S x
5S z

6 − 63S x
1S z

2S y
3S y

4S x
5S z

6 + 63S y
1S z

2S y
3S y

4S x
5S z

6

+ 189S z
1S z

2S y
3S y

4S x
5S z

6 − 76.75S z
3S y

4S x
5S z

6 + 63S x
1S x

2S z
3S y

4S x
5S z

6

+ 189S y
1S x

2S z
3S y

4S x
5S z

6 + 63S z
1S x

2S z
3S y

4S x
5S z

6 − 63S x
1S y

2S z
3S y

4S x
5S z

6

+ 63S y
1S y

2S z
3S y

4S x
5S z

6 − 189S z
1S y

2S z
3S y

4S x
5S z

6 − 189S x
1S z

2S z
3S y

4S x
5S z

6

183



− 21.25S y
1S z

4S x
5S z

6 − 36.25S z
1S z

4S x
5S z

6 + 8.75S x
2S z

4S x
5S z

6

− 10.75S y
2S z

4S x
5S z

6 − 23.25S z
2S z

4S x
5S z

6 − 9.25S x
3S z

4S x
5S z

6

− 63S x
1S x

2S x
3S z

4S x
5S z

6 + 63S y
1S x

2S x
3S z

4S x
5S z

6 + 63S z
1S x

2S x
3S z

4S x
5S z

6

− 63S x
1S y

2S x
3S z

4S x
5S z

6 − 63S y
1S y

2S x
3S z

4S x
5S z

6 − 63S z
1S y

2S x
3S z

4S x
5S z

6

+ 63S x
1S z

2S x
3S z

4S x
5S z

6 − 63S y
1S z

2S x
3S z

4S x
5S z

6 − 63S z
1S z

2S x
3S z

4S x
5S z

6

− 25.75S y
3S z

4S x
5S z

6 − 63S x
1S x

2S y
3S z

4S x
5S z

6 − 63S y
1S x

2S y
3S z

4S x
5S z

6

+ 63S z
1S x

2S y
3S z

4S x
5S z

6 − 63S x
1S y

2S y
3S z

4S x
5S z

6 − 63S y
1S y

2S y
3S z

4S x
5S z

6

+ 63S z
1S y

2S y
3S z

4S x
5S z

6 − 63S x
1S z

2S y
3S z

4S x
5S z

6 − 63S y
1S z

2S y
3S z

4S x
5S z

6

+ 63S z
1S z

2S y
3S z

4S x
5S z

6 − 43.25S z
3S z

4S x
5S z

6 + 63S x
1S x

2S z
3S z

4S x
5S z

6

+ 63S y
1S x

2S z
3S z

4S x
5S z

6 + 189S z
1S x

2S z
3S z

4S x
5S z

6 + 63S x
1S y

2S z
3S z

4S x
5S z

6

+ 63S y
1S y

2S z
3S z

4S x
5S z

6 + 63S z
1S y

2S z
3S z

4S x
5S z

6 − 63S x
1S z

2S z
3S z

4S x
5S z

6

− 63S y
1S z

2S z
3S z

4S x
5S z

6 + 63S z
1S z

2S z
3S z

4S x
5S z

6 + 13.19S y
5S z

6

− 19.25S x
1S x

2S y
5S z

6 − 31.25S y
1S x

2S y
5S z

6 − 38.25S z
1S x

2S y
5S z

6

+ 46.25S x
1S y

2S y
5S z

6 − 14.25S y
1S y

2S y
5S z

6 − 24.75S z
1S y

2S y
5S z

6

+ 32.75S x
1S z

2S y
5S z

6 − 9.25S y
1S z

2S y
5S z

6 − 21.25S z
1S z

2S y
5S z

6

− 3.25S x
1S x

3S y
5S z

6 + 15.75S y
1S x

3S y
5S z

6 + 45.75S z
1S x

3S y
5S z

6

− 76.75S x
2S x

3S y
5S z

6 − 39.75S y
2S x

3S y
5S z

6 − 21.25S z
2S x

3S y
5S z

6

− 3.25S x
1S y

3S y
5S z

6 − 23.25S y
1S y

3S y
5S z

6 + 3.25S z
1S y

3S y
5S z

6

− 21.25S x
2S y

3S y
5S z

6 − 28.25S y
2S y

3S y
5S z

6 + 28.75S z
2S y

3S y
5S z

6

+ 2.25S x
1S z

3S y
5S z

6 + 21.25S y
1S z

3S y
5S z

6 + 44.25S z
1S z

3S y
5S z

6

− 39.75S x
2S z

3S y
5S z

6 − 39.25S y
2S z

3S y
5S z

6 − 28.25S z
2S z

3S y
5S z

6

+ 46.25S x
1S x

4S y
5S z

6 + 32.75S y
1S x

4S y
5S z

6 − 19.25S z
1S x

4S y
5S z

6

− 3.25S x
2S x

4S y
5S z

6 + 2.25S y
2S x

4S y
5S z

6 − 3.25S z
2S x

4S y
5S z

6

− 19.25S x
3S x

4S y
5S z

6 + 63S x
1S x

2S x
3S x

4S y
5S z

6 − 189S y
1S x

2S x
3S x

4S y
5S z

6
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+ 63S z
1S x

2S x
3S x

4S y
5S z

6 + 189S x
1S y

2S x
3S x

4S y
5S z

6 + 63S y
1S y

2S x
3S x

4S y
5S z

6

+ 315S z
1S y

2S x
3S x

4S y
5S z

6 + 63S x
1S z

2S x
3S x

4S y
5S z

6 − 63S y
1S z

2S x
3S x

4S y
5S z

6

+ 63S z
1S z

2S x
3S x

4S y
5S z

6 + 32.75S y
3S x

4S y
5S z

6 + 63S x
1S x

2S y
3S x

4S y
5S z

6

− 63S y
1S x

2S y
3S x

4S y
5S z

6 − 63S z
1S x

2S y
3S x

4S y
5S z

6 + 189S x
1S y

2S y
3S x

4S y
5S z

6

+ 63S y
1S y

2S y
3S x

4S y
5S z

6 + 63S z
1S y

2S y
3S x

4S y
5S z

6 − 63S x
1S z

2S y
3S x

4S y
5S z

6

− 63S y
1S z

2S y
3S x

4S y
5S z

6 − 189S z
1S z

2S y
3S x

4S y
5S z

6 + 46.25S z
3S x

4S y
5S z

6

+ 189S x
1S x

2S z
3S x

4S y
5S z

6 − 63S y
1S x

2S z
3S x

4S y
5S z

6 + 63S z
1S x

2S z
3S x

4S y
5S z

6

+ 189S x
1S y

2S z
3S x

4S y
5S z

6 + 189S y
1S y

2S z
3S x

4S y
5S z

6 + 189S z
1S y

2S z
3S x

4S y
5S z

6

+ 189S x
1S z

2S z
3S x

4S y
5S z

6 + 63S y
1S z

2S z
3S x

4S y
5S z

6 + 63S z
1S z

2S z
3S x

4S y
5S z

6

− 19.25S x
1S y

4S y
5S z

6 − 12.75S y
1S y

4S y
5S z

6 − 39.25S z
1S y

4S y
5S z

6

+ 45.75S x
2S y

4S y
5S z

6 + 44.25S y
2S y

4S y
5S z

6 + 3.25S z
2S y

4S y
5S z

6

− 38.25S x
3S y

4S y
5S z

6 + 63S x
1S x

2S x
3S y

4S y
5S z

6 + 63S y
1S x

2S x
3S y

4S y
5S z

6

+ 189S z
1S x

2S x
3S y

4S y
5S z

6 + 63S x
1S y

2S x
3S y

4S y
5S z

6 + 63S y
1S y

2S x
3S y

4S y
5S z

6

+ 63S z
1S y

2S x
3S y

4S y
5S z

6 − 63S x
1S z

2S x
3S y

4S y
5S z

6 − 63S y
1S z

2S x
3S y

4S y
5S z

6

+ 63S z
1S z

2S x
3S y

4S y
5S z

6 − 21.25S y
3S y

4S y
5S z

6 + 63S x
1S x

2S y
3S y

4S y
5S z

6

− 63S y
1S x

2S y
3S y

4S y
5S z

6 + 63S z
1S x

2S y
3S y

4S y
5S z

6 + 63S x
1S y

2S y
3S y

4S y
5S z

6

+ 63S y
1S y

2S y
3S y

4S y
5S z

6 + 63S z
1S y

2S y
3S y

4S y
5S z

6 − 189S x
1S z

2S y
3S y

4S y
5S z

6

− 63S y
1S z

2S y
3S y

4S y
5S z

6 + 63S z
1S z

2S y
3S y

4S y
5S z

6 − 24.75S z
3S y

4S y
5S z

6

+ 315S x
1S x

2S z
3S y

4S y
5S z

6 + 63S y
1S x

2S z
3S y

4S y
5S z

6 + 63S z
1S x

2S z
3S y

4S y
5S z

6

+ 189S x
1S y

2S z
3S y

4S y
5S z

6 + 315S y
1S y

2S z
3S y

4S y
5S z

6 + 63S z
1S y

2S z
3S y

4S y
5S z

6

+ 63S x
1S z

2S z
3S y

4S y
5S z

6 + 63S y
1S z

2S z
3S y

4S y
5S z

6 + 63S z
1S z

2S z
3S y

4S y
5S z

6

+ 32.75S x
1S z

4S y
5S z

6 + 28.75S y
1S z

4S y
5S z

6 − 12.75S z
1S z

4S y
5S z

6

+ 15.75S x
2S z

4S y
5S z

6 + 21.25S y
2S z

4S y
5S z

6 − 23.25S z
2S z

4S y
5S z

6

− 31.25S x
3S z

4S y
5S z

6 − 189S x
1S x

2S x
3S z

4S y
5S z

6 − 63S y
1S x

2S x
3S z

4S y
5S z

6
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+ 63S z
1S y

2S x
3S z

4S y
5S z

6 − 63S x
1S z

2S x
3S z

4S y
5S z

6 − 63S y
1S z

2S x
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which has no odd spin terms as can be seen.
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Figure A.2: Six site plaquette cluster with pbc for computing the effective Hamil-
tonian using PCUT
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