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Chapter 1: Introduction

1.1 Loop Quantum Gravity and low energy physics

Obtaining a quantum theory of gravity is perhaps the biggest challenge in theoretical

physics today. The methods which work perfectly well for matter fields on fixed back-

grounds fail in the case of gravity. In particular, attempts to perturbatively quantize gravity

leads to a non-renormalizable theory. This failure is not so surprising - there are funda-

mental differences between other field theories and General Relativity. We think of the

other field theories as living on a fixed background. Any algorithm to quantize these the-

ories uses information about the particular background the field lives on. On the other

hand the lesson of General Relativity has been that the background geometry is itself dy-

namical. There is thus no ’fixed background’, the picture is one of dynamical fields living

on other dynamical fields. There is therefore no preferred way of splitting the geometry

into a ’non-dynamical background ’ and an ’excitation propagating on this background’

as one would do in the case of usual perturbative field theory. This suggests that applying

background dependent perturbative approaches to quantization of gravity is fundamen-

tally problematic. In more technical terms, incorporating the diffeomorphism invariance

of General Relativity has been a challenge in obtaining a quantum theory of gravity.

But then how do we go about quantizing this theory? Could it be possible to develop

a background independent, non-perturbative quantization for General Relativity? Loop

Quantum Gravity is an approach to do just that to obtain a quantum theory of gravity (

11



12 CHAPTER 1. INTRODUCTION

See [1, 2, 3] for reviews). Indeed LQG has had considerable success in obtaining a back-

ground independent quantum theory of gravity, although many challenges remain. The

starting point of LQG is a reformulation of General Relativity as a theory of connection

(as opposed to a theory of metric). This allows one to cast General Relativity as a SU(2)

gauge theory. Some of the important successes of Canonical Loop Quantum Gravity have

been

• Obtaining a Kinematical Hilbert Space on which both finite spatial diffeomorphisms

and SU(2) gauge transformations are represented as unitary operators [4, 5, 6, 7, 8].

Thus the theory overcomes the major challenge of incorporating spatial diffeomor-

phisms as a gauge symmetry of the theory.

• The prediction of discrete geometry. One can obtain operators corresponding to

geometrical variables such as area [9, 10] and volume [9, 11] on the Kinematical

Hilbert Space. These operators turn out to have discrete spectra - realizing the old

expectation that the picture of smooth spatial geometry breaks down at the quantum

level. Moreover this discreteness is an essential feature of the theory, the fundamen-

tal excitations in the quantum theory turn out to be a discrete set of one-dimensional

spin networks [12].

• LQG provides an explanation for the black hole microstates and correctly predicts

Bekenstein-Hawking entropy [13, 14, 15].

• Quantizing symmetry reduced models of General Relativity using the techniques

of Loop Quantum Gravity leads one to Loop Quantum Cosmology [16, 17, 18].

LQC produces the striking result that the big bang singularity at the beginning of

the universe is replaced by a ’big bounce’.

• Background independent quantizations for matter fields have also been developed,

allowing us to quantize the combined matter-gravity system [19, 20, 21]. This is
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called ’loop quantization’ in the case of gauge fields and ’polymer quantization’ for

scalar fields.

• More recently, there have been hints that a non-trivial anomaly-free representation

of the Dirac Algebra[22] may be realized in Loop Quantum Gravity [23, 24, 25, 26].

So far it has been realized in several toy models that closely mimic LQG. As Dirac

Algebra encodes the general covariance of a theory, this means that we would be

able to establish LQG as a generally covariant quantum theory

Despite these successes, several open questions remain. One of the important open issues

is connecting LQG with the known low energy physics. In this thesis we take up certain

aspects of this problem.

Why is there a problem connecting Loop Quantum Gravity with low energy physics?

For one, the frameworks of LQG and that of perturbative field theory are widely differ-

ent. LQG describes a picture when fields live on evolving graphs. The gravitational and

gauge fields live on the edges of the 1-dimensional graphs while scalar fields reside on

the vertices. This paints a polymer-like picture of the fundamental structure of spacetime.

In perturbative field theory on the other hand the fields are 3-dimensional functions on

smooth backgrounds. But we do know that semiclassical physics is correctly described

by perturbative field theory on a fixed background. The question then is to how to connect

these two pictures.

In this thesis we explore two different aspects of this question. The first is about the

symmetries of low energy physics. How do we understand these symmetries from the

perspective of LQG and matter theories coupled to it? Can this framework support sym-

metries? How may they arise in the low energy limit? We explore this question in two

different cases. In one case we use a toy model (which we will call polymer Quantum

Mechanics) which was introduced to explore how low energy physics can be extracted

from a LQG-like theory. In another case we consider the case of a scalar field quantized

in a background-independent manner. This is called the polymer quantized scalar field,
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and we study the implementation of rotational symmetries here.

The second question is related to comparing the polymer quantized and Fock quantized

scalar fields. The implementation of background independence in LQG demands that

scalar fields must be polymer quantized. However the semiclassical picture is in terms

of Fock quantized scalar fields. It is therefore essential to be able to compare the two

theories. The Hilbert Space frameworks of the two theories are, however, widely different

[20]. In this thesis we develop a path integral representation for polymer quantized scalar

fields and show that in this representation the two theories look very similar, but with

interesting differences. This provides a first step in further comparison of the two theories,

as well as developing a perturbative framework for the polymer quantized scalar field.

We have mentioned two theories that we will use to explore the low energy limit of LQG in

this thesis - polymer Quantum Mechanics and polymer quantized scalar field theory. The

reason why the term ’polymer’ appears in both the names is because the close resemblance

of the quantization procedure used in both the cases. This procedure is called ’polymer

quantization’. We now turn to introducing polymer quantization.

1.2 Introduction to Polymer Quantization

In this section we elaborate the ideas sketched in the previous section in some more detail.

First we provide a brief semi-technical exposition to the ideas of polymer quantization.

Then we discuss how this quantization resembles the one used for the gravitational field in

Loop Quantum Gravity. Finally we return to the question of what the polymer quantized

theories may teach us.



1.2. INTRODUCTION TO POLYMER QUANTIZATION 15

What is Polymer Quantization?

The name is used for the similar quantization procedures that have been applied to quan-

tize a non-relativistic point particle and a scalar field - procedures which are analogous to

(and inspired by) how the gravitational field is quantized in Loop Quantum Gravity1. That

definition probably raises more questions than it answers. One would ask in what sense

is a quantization of a scalar field or a point particle analogous to a quantization of grav-

ity? Or what would be the motivation for introducing a new quantization for systems like

scalar field theory or point particles, when the old one works perfectly well for all known

physical systems? We’ll address these questions in the next two sections. In this section

we present a short, semi-technical introduction to polymer quantization (a more technical

introduction will be presented in the next section). This will be helpful in understanding

the analogy with Loop Quantum Gravity, which in turn will shed light on our motivations

for introducing this new quantization.

Let us start by asking how this new quantization differs from the old one - the standard

Schrodinger quantization that we are used to. In Schrodinger quantization one starts from

the phase space formulation of the classical theory and elevates the canonically conju-

gate pair of variables to operators in the quantum theory2. In the point particle case, for

example, the position and momentum variables are elevated to operators in the quantum

theory. What distinguishes polymer quantization is that only one of those pair of variables

can be elevated to an operator in the quantum theory. The other basic observable is the

exponentiation of the remaining conjugate variable. In the case of the point particle, this

means that we can’t have both position and momentum as well defined observables. Sup-

pose we choose to have the position operator x̂ well defined. In this case the other basic

operator will be the (family of) translation operator Û(α), α ∈ R. Classically, this is the

1Polymer quantization for scalar field was first introduced in [20]. For non-relativistic point particles it
was introduced in [29, 27, 28].

2It should be kept in mind that this only works when the phase space is R2n. For topologically nontrivial
phase space this naive elevation does not work.
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exponentiation of the momentum variable U(α) = eiαp. However the momentum variable

itself cannot be defined as an operator in the polymer quantized theory. Alternately one

may choose the momentum operator and the family of momentum-translation operators

as the basic variables in a polymer quantized theory. Similarly for the polymer quantized

scalar field [20], either the field variable or the conjugate momentum variable may appear

as an operator in the quantum theory.

It may seem odd that while the translation operators Û(α) can be defined but the momen-

tum operator doesn’t. Surely we could obtain the momentum operator by taking a limit

like limα→0
Û(α)−1

α
. The reason why that doesn’t work is Û(α) turns out to be discontinuous

in α3. We’ll see this explicitly in the next chapter where we describe polymer quantization

in detail.

So it would seem that we are left one operator short, so to speak. For instance, how do

we replicate the harmonic oscillator Hamiltonian in the polymer Hilbert space, if we have

only have well-defined operators for either the position or the momentum? Similarly,

what is the expression for the angular momenta? The only thing that can be done to

replicate these observables is to approximate them. This would require us to introduce a

scale µ. For example, we may define an approximate position operator as:

x̂µ =
Û(µ) − Û(−µ)

2iµ

Then one may define a Hamiltonian or an angular momentum operator on the polymer

Hilbert Space using these approximate operators. But then the natural question to ask is

how does using approximate operators change the physical predictions of the theory? For

instance, do the modified angular momentum operators have the same commutation rela-

tions? If not, how do we understand something like rotational symmetry in the polymer

quantized theory? These are some of the questions this thesis is concerned with.

3This statement holds for the weak topology on the space of bounded operators on a Hilbert Space, as
we’ll see in the next chapter.
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But before we get there, it is useful to take a brief tour through some of the ideas of LQG.

Loop Quantum Gravity and Polymer Quantization

Loop Quantum Gravity is an attempt to canonically quantize the gravitational field. The

classical starting point for this approach is a Hamiltonian formulation of General Rela-

tivity where the basic variables are taken to be a gravitational connection Ai
a (called the

Ashtekar Barbero connection) and the triads Ea
i . As is the case with gauge theories, this

gives us a constrained system in the Hamiltonian formulation. There are seven indepen-

dent constraints per phase space point, corresponding to the seven gauge freedoms that

appear in our theory. Four of these correspond to the three spatial and one temporal dif-

feomorphisms that are the gauge symmetries of the General Relativity4. Our particular

choice of variables in the Hamiltonian formulation - connections and triads - introduces an

additional SU(2) gauge symmetry to General Relativity. The three remaining constraints

are the generators of this gauge transformation.

One then follows the two step Dirac quantization process for quantizing constrained sys-

tems. The idea here is to first construct a Kinematical Hilbert Space on which the gauge

transformations would be represented. Then one would look for states in this Hilbert

Space (or rather in a dual of a subspace of this Hilbert Space) which are invariant un-

der the transformations generated by the constraints. They would eventually form the

physical Hilbert Space for the quantized theory of Gravity, after an appropriate new inner

product has been chosen.

Let us focus on the first step - the construction of the Kinematical Hilbert Space. Usually

in the construction of a quantum theory one elevates the basic variables of the classical

theory to operators. In LQG things turn out not to be the slightly different. We have men-

tioned that the basic variables for us are a connectionAi
a and triad variables Ea

i . The basic

4The oft-repeated statement that these constraints generate the spacetime diffeomorphisms is only true
on-shell. See Chapter 1 Section 4 of [2].
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operators on the Kinematical Hilbert Space are however the holonomies of this connection

along 1-dimensional closed curves and fluxes of the triads across 2-surfaces. The connec-

tion itself fails to be a well defined operator on this Hilbert Space, only the holonomy is

a well-defined operator. Similarly, the constraints that generate spatial diffeomorphisms

fail to be well defined operators, but finite spatial diffeomorphisms can be represented as

Unitary operators. A convenient set of basis states of this space are spin networks. These

can be thought of as basis states of quantum geometry and suggest a polymer-like picture

of quantum geometry where the fundamental excitations are 1-dimensional 5 .

That last paragraph should remind us of our discussion of polymer quantization. There

too, we saw that the position/momentum (in the point particle case) and the field variable/

conjugate momentum (in the scalar field case ) fail to be well defined operators in the

Quantum Theory. Thus we already see some ways in which polymer quantization mimics

LQG. We’ll see more ways in which the two quantizations resemble each other as we go

on. Particularly, the feature of LQG that finite spatial diffeomorphisms can be represented

as operators while infinitesimal generators of the same diffeomorphisms fail to be well

defined operators has a counterpart in polymer quantization that will form one of the

topics of investigation of this thesis.

To summarize, in this section we have presented a brief overview of Loop Quantum Grav-

ity and drawn attention to its similarities with polymer quantized theories. This paves the

way for us to get a better understanding of what polymer quantized theories can teach us.

5Actually these are a basis for the Hilbert space formed by gauge invariant subspace of the Kinematical
Hilbert space. We are being loose in the distinction between these two spaces for the purpose of introduction
here.
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Why Polymer Quantize?

A. Motivations for polymer quantization of scalar field theory

As we have previously mentioned, usual quantum field theories require a background

metric for their definition. When the background itself is quantized, as in LQG, no fixed

metric is available. To co-exist with background independent quantization of gravity, mat-

ter fields should also be quantized in a background independent manner. For scalar fields,

polymer quantization provides just that. Here the Hilbert Space is a space of functionals

on scalar fields equipped with a background independent inner product. This quantiza-

tion is thus background independent. From the perspective of background-independent

quantization therefore, polymer quantization of scalar fields is essential.

In this thesis we will study a polymer quantized scalar field in a fixed background. As

noted above, the construction of the Hilbert Space uses no information about the back-

ground metric. Rather, the metric information enters polymer quantized scalar field theory

through the form of the Hamiltonian. Thus while all diffeomorphisms can be represented

by unitary operators on the polymer Hilbert Space, not all of them will commute with the

Hamiltonian. Only the isometries of the fixed metric may commute with the Hamiltonian.

Let us now understand why it is important study polymer quantization in the presence of

a fixed metric.

According to LQG the fundamental quantum picture of gravity coupled with scalar fields

would be given in terms of states living on graphs. The gravitational excitations live on

the edges of the graph while the scalar field excitations would live on the nodes. There

are now two challenges to reproduce the familiar semiclassical picture of Fock quantized

field theory on a fixed background which we know to be valid at low energies. One is

to reproduce a fixed background. To do this one would need to produce semiclassical

states of the gravitational field that are peaked on some fixed background metric. This is
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still an open problem in LQG6. The second challenge is reproduce the predictions of the

Fock quantized scalar field theory from the polymer quantized scalar field theory. Since

the two field theories are very different in terms of Hilbert Space construction, this is a

serious challenge. To tackle this problem, we may study polymer quantized field theory in

a fixed background and see how to compare its predictions to those coming from a Fock

quantized field theory.

B. Motivations for Polymer Quantum Mechanics

Unlike the case of the polymer quantized scalar fields, there is no motivation for a back-

ground independent quantization in a Quantum Mechanics context. The principle reason

we are interested in polymer Quantum Mechanics is that it serves as a toy model that can

help us develop intuition about the unfamiliar domain of loop quantized theories.

As we have seen, LQG presents a picture of quantized geometry that is essentially dis-

crete. Spin network states provide a convenient basis. The basic operators are holonomies

along 1-d curves and fluxes of triads across 2- surfaces. Thus the fields can be thought to

be living on graphs - the gravity and gauge fields on the edges of the graphs and scalar

fields on the nodes. This is a vastly different picture from the one we know from per-

turbative scalar field theory. There one pictures fields as continuous functions living on

smooth 3-slices. A question then is to understand how these frameworks may be related

to each other. This would be necessary to understand how semiclassical physics should

arise from LQG in some low energy regime.

Furthermore in LQG, the diffeomorphism invariant states do not live in the Kinematical

Hilbert Space but in the dual space Cyl* of a subspace Cyl of the Kinematical Hilbert

Space. If the physical states live on Cyl*, should the semiclassical states not live on this

also? However this space is not naturally equipped with an inner product. So a question

is, what role would Cyl* play in connecting with semiclassical physics?

6See [30, 31] for some approaches to this issue.
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Polymer Quantum Mechanics (also known as the polymer particle representation) was

introduced in [29] as a toy model to explore exactly these issues7. Polymer Quantum

Mechanics reproduces many of the essential features of LQG while being much simpler

and mathematically more tractable. We’ve already seen that it replicates the feature that

a basic variable fails to be well-defined as an operator while its exponentiation is well

defined. As we’ll see explicitly in the next chapter, the related fact that there is a discrete

set of basis states is also reproduced in polymer Quantum Mechanics. Spaces analogous

to Cyl and Cyl* appear here as well. All these features make polymer Quantum Mechan-

ics an excellent toy model for exploring the issue of relating the LQG and perturbative

field theory frameworks. The stand-in for perturbative field theory in this comparison is

ordinary quantum mechanics i.e the Schrodinger representation. The connection between

these two unitarily inequivalent representations is explored to obtain insights for the full

theory.

In this section we discussed the motivations for the two polymer quantized theories we

investigate in this thesis. We saw that polymer quantized scalar field theory has a more

direct physical relevance in the context of gravity while polymer Quantum Mechanics is

an important toy model. We are now ready to present the issues explored in this thesis.

We do so in the next section.

1.3 Aspects of Polymer Quantization

The central concern of this thesis is comparing polymer and Schrodinger quantizations.

We’ve investigated two different aspects of polymer quantization which shed some light

on this issue. We have -

(i) Studied how symmetries may be incorporated in polymer quantized theories. Impor-

tant differences from Schrodinger quantized theories show up here. One also discovers

7The same representation had been earlier introduced in a very different context in [27].
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that if one starts from polymer quantization and demands the incorporation of symme-

tries, there is a sense in which one is led to the Schrodinger quantization.

(ii) Obtained a path integral representation of polymer quantized theories. We have ob-

tained path integral formulations for polymer Quantum Mechanics and polymer quantized

scalar field theory. The path integral language is another avenue for comparing the two

quantizations.

Let us understand these statements above in some more detail.

A. Polymer Quantization and Symmetries

In trying to relate LQG with the known low -energy description in terms of fields on fixed

backgrounds, an important question is - how do we obtain the symmetries of these field

theories (for instance Poincare symmetry for a field theory on Minkowski space) from the

description in terms of discrete quantum geometry? The toy model of polymer Quantum

Mechanics can be used to shed light on this issue. Here one compares the implementation

of symmetries in Schrodinger and polymer Quantum Mechanics. We have already seen

a hint that polymer Quantum Mechanics may run into trouble on this issue. We saw

that the absence of either position or momentum operator meant that angular momentum

would not be well-defined as an operator. As angular momenta are generators of rotation,

a natural question to ask would be how do we then implement rotational symmetries in

polymer Quantum Mechanics? It turns out that one can define unitary operators that

implement finite rotations even though infinitesimal generators fail to be well defined.

This had been first explored by Dah-Wei Chiou in the more general context of Galilean

symmetries in [38], which was the first paper to explore the question of symmetries in

polymer Quantum Mechanics. Chiou then explored the approximated forms of the usual

generators (which do not form a closed algebra) and concluded that the deviations are

small within the domain of validity of the non-relativistic model.
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In this thesis we present further investigations of the subject of polymer quantization and

symmetries. We focus on the particular case of rotational symmetries for both polymer

Quantum Mechanics and polymer quantized scalar field theory. First let us state our find-

ings for polymer Quantum mechanics. As we noted above Rotation groups are unitarily

represented on the polymer Hilbert space, but the corresponding generators cannot be

defined. Such representations of Lie groups are the discontinuous representations - repre-

sentations of a Lie group which do not induce a representation of the corresponding Lie

algebra. Discontinuous representations are rare in physics8 and some of their properties

can be surprising, as we shall see. What is the physical relevance of such a representa-

tion? We show in this thesis that this leads to infinite degeneracies. That is, a rotationally

invariant Hamiltonian will have infinite dimensional eignesubspaces!

This is obviously an undesirable feature for a theory. We show that there are two escape

routes. One is to break the symmetry. This can be done explicitly by introducing a

rotationally non-invariant Hamiltonian. Or we can break the symmetry spontaneously,

by choosing to work in one of the (symmetry breaking) superselection sectors. There is

a different, less obvious escape route as well which we explore in our thesis. This is to

work in the dual space Cyl* of a certain subspace Cyl of the Hilbert Space. We show

that the symmetry generators can be defined as operators on Cyl*. The position operator

can be represented as well. By demanding that these operators are self-adjoint one in

fact uniquely recovers the Schrodinger representation. This leads to a new understanding

of polymer Quantum Mechanics. We can now understand it as an intermediate step in a

multi-step quantization procedure that finally leads to a physical theory. Thus polymer

quantization resembles the construction of Kinematical Hilbert Space in LQG. There the

other steps in quantization are related to the implementation of the constraints, here they

appear to be related to the implementation of the symmetries.

For polymer quantized scalar field theory we see that once again rotational symmetry has

a discontinuous representation on the Hilbert space of the theory. We show that here too
8In fact we do not know any other physical situation where they occurred
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one may recover the symmetry generators by working in a dual space Cyl*.

B. Path Integral Formulation for Polymer Quantization

We have already emphasized the importance of studying polymer Quantum field theories

in fixed backgrounds and comparing the dynamics with that predicted by Schrodinger/Fock

quantization9. Now we know that the field variable is unavailable as an operator for the

polymer theory and one has to work with an approximate field operator. What is the

effect of using approximate operators on the dynamics? In this thesis we take a step to-

wards addressing this issue by developing a path integral representation for a polymer

quantized scalar field theory in a Minkowski background. Here we build on previous

work by Ashtekar et al [32]who obtained a path integral representation for Loop Quan-

tum Cosmology, which is a polymer quantized theory with a single degree of freedom.

We see that while the polymer Quantized and Schrodinger quantized theories differ vastly

in the Hilbert space language, the path integral representations of the two theories can be

made to look very similar. The path integral representation is very convenient to compare

the two quantizations. Despite the similarities, there are some important differences in

the two quantizations. One major difference arises from the use of approximate variables

in the polymer quantized theory. We find that the the use of approximate field variables

indeed modifies the dynamics. In particular, we show that the polymer quantized theory

in the path integral representation is Lorentz non-invariant. We also find that an entirely

new global symmetry appears in the action in the case of polymer quantized theories. We

explore the origins of this symmetry in our thesis.

This concludes our introduction to the investigations presented in this thesis. The chap-

ters of the thesis are organized as follows. After an introductory chapter 1, in chapter 2

we review polymer quantum mechanics and polymer quantized scalar field theory. Our

9In the context of scalar field theory, we will use the terms Schrdinger and Fock quantizations inter-
changeably, as they refer to equivalent representations [33].
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investigation of polymer quantization and symmetry are presented in Chapter 3. Chapter

4 describes our work on the path integral representation of polymer quantized scalar field

theory. In chapter 5 we outline open issues and possible future directions.
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Chapter 2: Polymer Quantization

In the last chapter we introduced the reader to the ideas behind polymer Quantum Me-

chanics and polymer quantized Scalar Field Theory. In this chapter we introduce these

two theories in details. As we have indicated earlier, these two theories closely mimic

the quantization procedure of LQG. For the reader interested in the details of this resem-

blance, we have provided an introduction to construction of the Kinematical Hilbert Space

in LQG in the appendix.

2.1 Polymer Quantum Mechanics

Polymer Quantum Mechanics was first introduced in [27, 28, 29]. The object of study here

is the non-relativistic point particle. We study the general case of a point particle moving

in N dimensions. Classically it is described by the configuration space, RN coordinatized

by ~q↔ qi, i = 1, 2, 3, ...,N.

Both polymer and Schrodinger quantizations are based on Unitary representations of the

Weyl Algebra. We now introduce this algebra.

The Weyl Algebra

The familiar starting point for presentations of quantum mechanics is the Heisenberg

Commutation relations: [q̂, p̂] = i~, where these operators are understood to act on the

27
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space of square integrable functions L2. From a technical point of view, however, this is

not quite the best formulation. For one thing, operators like q̂, p̂ generally take an element

of L2 out of L2. This is easily seen in the one dimensional case from the action of x̂

on the function g(x) = 1
x+i . The function g(x) belongs to L2 but xg(x) does not. This

means that a commutation relation like the one above can only really make sense in the

common domain of operators q̂p̂ and p̂q̂. Furthermore, these operators are unbounded -

||x̂g(x)|| = ∞ from the example above. The powerful techniques of C?-algebras would be

unavailable to us then.

To see how a better formulation can be given we first look at the unitary operators associ-

ated with the ‘exponentiations′ of the position and momentum operators (this is possible-

for self adjoint operators):

Û(~λ) = ei~λ·~̂q and V̂(~µ) = ei ~µ~ ·~̂p

These are called Weyl operators. These operators can be used to generate a C?-algebra.

The product is defined via the Heisenberg commutation relations:

Û( ~λ1)Û( ~λ2) = Û( ~λ1 + ~λ2)

V̂( ~µ1)V̂( ~µ2) = V̂( ~µ1 + ~µ2)

Û(~λ)V̂(~µ) = e−i~λ·~µV̂(~µ)Û(~λ)

The involution relations follow from the self-adjointness relations of the q̂, p̂ operators:

[Û(~λ)]? = Û(−~λ), [V̂(~µ)]? = V̂(−~µ)

The abstract C?-algebra generated by the Weyl operators is called the Weyl Algebra. Now

we are ready to state the more technically satisfactory starting point for quantum mechan-
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ics. A quantum mechanical system is described by a unitary, irreducible representation of

the Weyl Algebra. This formulation has the advantage of avoiding domain problems and

making the tools of C?-algebra available. This is also a more general formulation in the

sense that a representation of Weyl operators can be well-defined even when the position

and/or momentum operator does not exist. We’ll see an example of this in a moment.

The Schrodinger Representation

On any representation of the Weyl Algebra, the position and momentum operators can be

recovered from the Weyl Operators when the criterion of weak continuity is satisfied, that

is, when all matrix elements of Û(~λ), V̂(~µ) are continuous in ~λ and ~µ respectively. The

Heisenberg commutation relations given above then follow from the Weyl algebra.1 This

is the case in the standard Schrodinger representation. Here in our case of a particle in RN

this representation is given by the the Hilbert space L2(RN , dx) of functions on RN which

are square integrable with respect to the standard Lebesgue measure. The action of the

Weyl Operators on this space is given by operators is given by

Û(~λ)ψ(~q) = ei~λ·~q ψ(~q) and V̂(~µ)ψ(~q) = ψ(~q + ~µ)

for all ψ ∈ L2(RN , dx) . As this action is weakly continuous, there exist self-adjoint oper-

ators x̂ and p̂ on the Hilbert Space such that the Weyl operators are the exponentiations of

these operators.

Û(~λ) = ei~λ·~̂q and V̂(~µ) = ei ~µ~ ·~̂p

where ~λ, ~µ take values in RN .

A very powerful statement can be made about weakly continuous representations of the

1For more details on the relation between Weyl and Heisenberg algebras see [34]
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Weyl algebra. This is the Stone- Von Neumann theorem according to which every ir-

reducible unitary representation of the Weyl algebra which satisfies weak continuity is

unitarily equivalent to the standard Schrodinger representation.

The Polymer Representation

Now we come to the polymer representation, a representation which is not equivalent to

the Schrodinger representation defined above. By the Stone-Von Neumann theorem this

means that the weak continuity of Weyl operators must be violated in this representation.

In other words, both position and momentum cannot exist as well-defined operators. Here

we present the polymer representation where momentum is well-defined. We will work

in this representation all through this thesis. To construct Polymer quantization, choose a

countable set, γ, of N-dimensional vectors ~k j and define a set Cylγ of linear combinations

of functions of ~q of the form: Cylγ := {
∑

j f jei~k j·~q, f j ∈ C}
2.

Next, define the set of functions of ~q, Cyl := ∪γCylγ. Clearly, {ei~k·~q /~k ∈ RN} form an

uncountable set and we denote them as the kets |~k〉. An inner product on Cyl is defined by

demanding that the kets |~k〉 form an orthonormal basis:

(ei~k·~q, ei~k′·~q) = δ~k,~k′ . (2.1)

We denote the completion of Cyl w.r.t. this inner product as Hpoly. As the basis set

is uncountable the Hilbert space is non-separable. We also have the natural triple, Cyl

⊂Hpoly ⊂ Cyl∗, where Cyl∗ denote the algebraic dual of Cyl.

It is clear that ~q cannot be represented on the polymer Hilbert space as a multiplicative

operator since qi acting on a basis element does not produce a countable linear combi-

nation of the basis elements (exponentials). The exponentials of the form, eil jq j
however

2Here the coefficients f j must satisfy the regularity conditions (i) The f j do not contain sequences with
accumulation points in RN (ii) There exist constants vγ and ργ such that the number n(I) of points in any
subset I of volume v(I)γvγ is bounded by n(I) ≤ ργv(I) [29].
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do form multiplicative (and unitary) operators. The derivatives too act invariantly on Cyl

and pi := −i~ ∂
∂qi are self-adjoint operators representing the momenta. The exponentials

are the eigenfunctions of the momenta: p̂i|~k〉 = ~ki|~k〉.

That the self-adjoint position operators q̂i do not exist can be seen more formally as

well. Consider a 1-parameter family of unitary operators, defined by Û(α, ~m)|k̂〉 :=

|k̂ + α~m〉 ∀ ~k ∈ RN . For any vector ~̀, 〈~̀|Û(α, ~m)|~̀〉 = 〈~̀|~̀ + α~m〉 = δα~m,~0, as implied

by the orthonormality. Hence, the family of unitary operators is not weakly continuous

at α = 0. If a self-adjoint operator of the form ~m · ~q existed, then we could define a one

parameter family of unitary operators V̂(α, ~m) := eiα~m·~q which is continuous at α = 0 and

precisely matches the Û(α, ~m) family, thus reaching a contradiction. Hence, on the poly-

mer Hilbert space, the momenta and exponentials of positions are well defined operators

but there are no self-adjoint operators representing positions.

We can however define an approximate position operator by choosing some scale (with

the dimension of inverse length). µ0:

q̂ j = (2iµ0)−1(V̂(µ0ê j) − V̂(−µ0ê j))

where ê j is the unit vector in the j direction andV̂ is the generator of translation. Once the

approximate position operator is defined with a particular choice µ0, starting from a given

|~p0〉 and acting on it with V̂(µ0) we’ll generate a set of basis vectors {|~p〉 = | ~p0 + n jµ0ê j~〉}

(Here n j denotes the number of times an operator V̂(µ0) has acted on the state). This gives

a proper subspace of the Hilbert Space and the action of observables built from q̂ j and p̂ j

will leave the subspace invariant.

Thus we have exhibited Hpoly, defined candidate basic operators and identified an invariant

subspace which is separable. This will be useful later.
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2.2 Polymer Quantized Scalar Field Theory

In this section we describe the polymerised scalar field theory. This theory was first

presented in [20], following previous ideas of [35, 36] In this section we’ll set ~ = 1.

We’ll follow the notation of [37]. First define a vertex set V = (~x1, ~x2, . . . , ~xn) of finitely

many, distinct points ∈ R3. The corresponding vector space CylV is generated by basis

vectors:

N
V,~λ(φ) := ei

∑
j λ jφ(~x j)

where λ j are non-zero real numbers and ~λ denotes the set {λ j}. Then define Cyl := ∪V

CylV and on Cyl define the inner product

∫
dµ(φ)N∗V,λ(φ)NV,λ(φ) = δV,V′δλ,λ′ (2.2)

The Cauchy completion of Cyl w.r.t this inner product gives the Hilbert Space Hpoly:

Cyl =: Hpoly. The basic operators here are Û(λ, ~x) and π̂(~x). The former acts as:

If ~x is not in {~x j}

Û(λ, ~x)ei
∑

j λ jφ(~x j) = ei
∑

j λ jφ(~x j)+λφ(~x) (2.3)

If x = ~xi ∈ {~x j} and λ j + λ , 0

Û(λ, ~x)ei
∑

j λ jφ(~x j) = ei
∑

j(λ j+λδ ~x j , ~xi )(φ(~x j)) (2.4)

If x = ~xi ∈ {~x j} and λ j + λ = 0

Û(λ, ~x)ei
∑

j λ jφ(~x j) = ei
∑′

j λ j(φ(~x j) (2.5)

where the sum
∑′

j excludes the vertex ~xi.
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The action of the latter is given by

π̂(~x) =
δ

δφ(~x)
(2.6)

Here we have described the representation where the field operator is not well defined.

We may define an approximate field operator using a scale µ:

φµ(~x) =
Û(µ, ~x) − Û(−µ, ~x)

2µi
(2.7)

Notice that the choice of a µ and a basis vector gives a proper subspace of the Hilbert

space on which the basic operators act invariantly.

Now we’ll introduce a new notation which we believe helps underline the similarities be-

tween polymer and Schrodinger frameworks. This notation was introduced in [43].Henceforth

we will consider space to be discretized into a (not necessarily regular) lattice. Let us con-

sider a state ei
∑

j λ jφ(~x j). We can specify this state by specifying the vertex set V and the

values of λi. But we could alternately specify the state by we defining a field π((~x) for all

~x in our discretized space such that

π(~x j) = λ j if ~x j ∈ V

π(~x j) = 0 otherwise

Equivalently, π(~xi) is non zero at finitely many points, with values λi. Then the same state

may be written as

ei
∑
~y π(~y)φ(~y) =: |{π(~y)}〉 ↔ |π〉

where the sum is over all values of ~y .

We note that the field π has no relation with the conjugate momentum at this stage. How-

ever the states |π〉 are eigenstates of the momentum operator π̂, as we will now show. Now
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the action of the basic operators maybe represented as

Û(λ, ~x)|{π(~y)}〉 = |{π(~y) + λδ~x,~y}〉 where ~y ∈ support(π) (2.8)

and

π̂(~x)|{π(~y)}〉 = π(~x)|{π(~y)}〉 (2.9)

Note that 2.8 now incorporates all the cases 2.3, 2.4, 2.5. Also note that discretizing space

has turned the functional derivative of 2.6 into ordinary partial derivative in 2.9.

In our notation, we can write the inner product as:

〈{π(~y)}|{π′(~y)}〉 =
∏
~y

δπ(~y),π′(~y) (2.10)

To understand that this is the same as δV,V′δλ,λ′ note that this expression equals 1 only if

all the values of π(~xi) and π′(~xi) agree, that is they should (i) both be non zero on the same

points i.e vertex sets V and V’ must coincide and (ii) The values of λ s must agree on this

set. Else it vanishes.

We may write |{π(~x)}〉 =
∏

~x|π(~x)〉 where |π(~x)〉 is shorthand for eiπ(~x)φ(~x).

We notice that we may then write

1 =
∏

~x

∑
π′(~x)
|π′(~x)〉〈π′(~x)| (2.11)

We verify this using 2.10:

(∏
~x

∑
π′(~x)
|π′(~x)〉〈π′(~x)

)
|π〉 =

∏
~x

∑
π′(~x)

δπ(~x),π′(~x)eiπ′(~x)φ(~x) =
∏
~x

eiπ(~x)φ(~x) = |π〉 (2.12)

This notation will prove convenient in Chapter 4. In the next two chapters we discuss

symmetry realization in Hpoly and path integral representation for transition amplitudes in



2.2. POLYMER QUANTIZED SCALAR FIELD THEORY 35

polymer quantized theories.
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Chapter 3: Polymer Quantization and

Rotational Symmetries

In this chapter we present our work on Polymer quantization and Rotational Symmetries,

based on work done with G. Date [37]. This chapter is divided into three sections. In the

first section, we present our investigations on Polymer Quantum Mechanics and rotational

symmetries. We turn to the case of polymer quantized Scalar field theory in the second

section. In the final section we provide a discussion of the results.

3.1 Polymer Quantum Mechanics and Rotational Sym-

metries

In this section we study the interplay between polymer Quantum Mechanics and the ro-

tational symmetry. We’ll see that the representation of the rotation group on the Poly-

mer Hilbert Space is non-continuous. Finite rotations are perfectly well represented but

infinitesimal generators are absent. Approximate generators may however be defined.

These were studied in [38] by Dah Wei Chiou. Working in the more general context of

Galilean symmetries, he established that deviations from usual Quantum predictions are

small within the domain of validity of the non-relativistic model. In our thesis we start by

exploring how far we can go without introducing approximations, that is without breaking

the symmetries. We are asking if there is some sense in which the polymer representation

37
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can support rotational symmetries, even if the generators are absent. And if so, what are

the physical implications of such a realization of rotational symmetry? To answer this,

we first explore the representation of rotational group on the polymer Hilbert Space.

Representation of Rotational Symmetries

We know that any group of symmetries is represented in a quantum theory by unitary

operators1, with the states transforming as |ψ〉 → |ψg〉 := U(g)|ψ〉 and the operators trans-

forming as, A → Ag := U(g)A U†(g) for each group element g ∈ G. The specific unitary

operators representing specific symmetry operation can be determined by stipulating how

the basic observables transform. For example, with qi, pi being the basic observables in

the usual quantization, the unitary operators corresponding to rotations are determined

by:

qi
Λ := U(Λ)qi U(Λ)† = Λi

jq
j , pΛ

i := U(Λ)pi U(Λ)† = Λ
j
i p j , Λi

mΛ j
nδ

mn = δi j (3.1)

For infinitesimal rotations, Λi
j := δi

j + ε i
j , U(1 + ε) := 1 − i

~ε · Ĵ we get,

−
i
~

[ε · Ĵ, qi] = ε i
jq

j , −
i
~

[ε · Ĵ, pi] = ε
j
i p j. (3.2)

With the identifications ε i
j := εkE

ki
j , ε · Ĵ := εk Ĵk, we deduce Ĵk := E nk

m qm pn as the

operators representing the infinitesimal generators.

Alternatively, the operators U(Λ) could also be determined by specifying their action on

wavefunctions - explicit functions on the configuration space (say), eg. ΨΛ(~q) := Ψ(−→Λq).

1We will not be considering time reversal or charge conjugation symmetries, so we will not consider
anti-unitary operators.
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For the polymer quantization, the defining stipulations for the action of rotations are:

(
ei~k·~q

)
Λ

:= U(Λ)
(
ei~k·~q

)
U(Λ)† =

(
eikiΛ

i
jq

j)
, pΛ

i := U(Λ)pi U(Λ)† = Λ
j
i p j (3.3)

Noting that |k̂〉 are eigenstates of p̂i, it follows,

U†(Λ) p̂iU(Λ)|~k〉 = (Λ−1) j
i p̂ j|~k〉 = (Λ−1) j

ik j|~k〉

∴ p̂i

[
U(Λ)|~k〉

]
=

[
(Λ−1) j

ik j

] [
U(Λ)|~k〉

]
∴ U(Λ)|~k〉 = |(Λ−1) j

ik j〉 (3.4)

Evidently, this action of rotation group on the polymer Hilbert space is reducible, with

the orbit through any ~k being spanned by the orthonormal kets {|~k′〉} with ~k′ lying on the

2-sphere through ~k. The subspace spanned by {|~k〉,~k · ~k = constant}, forms an irreducible

representation and is clearly infinite dimensional.

This may come as a surprise as one recalls the theorem that all unitary, irreducible rep-

resentations of the rotation group (indeed any compact group) are finite dimensional.

However it is to be noted that the theorem is proved only for continuous representations

of the group (which arise from and also induce, representations of the corresponding Lie

algebra). It is also a theorem that if G is a locally compact topological group whose every

irreducible representation on a Hilbert space is continuous, then the group itself is dis-

crete [39]. Since the rotation group is locally compact and is not a discrete group, it must

have discontinuous representations as well and these do not have to be finite dimensional.

What we have is an explicit example of just such a representation whose discontinuous

nature is shown below.

This action of the rotation group coupled, with the fact that the kets |~k〉 are orthonor-

malised, implies that U(Λ) also cannot be weakly continuous. Unlike the case of the

momentum-translation operator discussed in the previous chapter where the group action
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necessarily transformed a basis vector to another basis vector, here we have the possibility

that ~k could be along the axis of rotation represented by U(Λ) and hence invariant under

U(Λ). To show discontinuity, consider any one parameter subgroup of rotations. All of

these will leave some particular axis invariant. Choose any ~k, orthogonal to this axis.

Now the subgroup action transforms a basis ket to another distinct basis ket. The lack of

weak continuity for every 1-parameter subgroup follows as before and we cannot write

U(λ) = 1 − i
~ε · Ĵ.

Thus we see here that in the polymer Hilbert Space the representation of rotational group

is non-continuous. Infinitesimal generators of rotation do not exist as operators on this

Hilbert Space, although finite rotations are perfectly well defined. What consequences, if

any, does the discontinuity of the representation of rotational group have on dynamics?

We explore this question in the next section.

Symmetries and Dynamics

For rotations to be a symmetry, their action must also preserve the dynamics. Classically,

we have three ‘elementary’ rotational invariants: ~p ·~p, ~q ·~q and ~p ·~q. Only first of these can

be promoted to operator on the polymer Hilbert space. A Hamiltonian which is a function

of p2 alone will describe only a ‘free’ dynamics. Is this the only possible rotationally

invariant dynamics supported by the polymer Hilbert space? Not quite. As noticed in

the context of the ‘improved quantization’ of LQC, exponentials of arbitrary functions

of momenta, times qi (i.e. functions linear in qi) can also be promoted to well defined

operators. This is because the Hamiltonian vector field Xqi generates translations along

pi and any function of ~p multiplying Xqi generates more general infinitesimal transforma-

tions, also along pi. While Xqi cannot be promoted to an operator, its exponential which

generates finite diffeomorphisms can be! Incorporating rotational invariance, we can thus

have unitary operators of the form e±i f (p2) piqi
. From these, the corresponding sin and cos

self-adjoint operators can be defined. A candidate rotationally invariant Hamiltonian will
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be a function of p2 and the sin, cos operators. There is no corresponding trick to use the

q · q invariant.

To compute the action of finite diffeomorphism, say by unit parameter, consider the inte-

gral curves defined by,

dpi

dλ
= f (p · p) pi ⇒

dp · p
dλ

= 2(p · p) f (p · p)∫ 1

0
dλ =

1
2

∫ p2
final

p2
initial

dp2

p2 f (p2)
(3.5)

This defines the change in the p · p for unit change in the parameter. Notice that the vector

field is radial, and therefore the integral curves are in the radial direction (in ‘p’-space) and

for unit change in the parameter, connect two spheres of radii p2
initial and p2

final := ξ2 p2
initial.

The corresponding unitary operator is then defined by,

̂e−i f (p2)p·q|~k〉 := |~k′ = ξ~k〉 , (3.6)

the scale ξ being determined by eq.(3.5).

Thus, we can have non-trivial rotationally invariant dynamics. However, there is now a

different problem. As noted before, the unitary representation of SO(3) on the polymer

Hilbert space is reducible with irreducible representations carried by Hσ := span{|~k〉 , k ·

k = σ2 > 0}. Each of these is infinite dimensional. Each eigenspace of any invariant

Hamiltonian will carry a representation of SO(3) which has to be infinite dimensional,

being made up of some of the irreducible representations together possibly with the triv-

ial representation (σ = 0). Thus we face the problem of infinite degeneracy which is

physically untenable: the partition function of such a system will be undefined. We are

led to the conclusion that in any physically acceptable model, rotational symmetry must

be broken.
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Breaking Symmetries

We have now two possibilities: (a) rotations cease to be a symmetry (explicit breaking of

symmetry) or (b) spontaneous breaking of rotational symmetry.

To see both possibilities, we first seek an approximate substitute for the position opera-

tors. The operators, ei~k·~q, allow us to define families of self-adjoint operators. For instance,

choosing ~k j := δê j, ê j a unit vector, we can define sinδêj := (2i)−1(eiδêj·~q − e−iδêj·~q) and a cos

operator analogously2. We could choose several triplets of linearly independent unit vec-

tors ê j and also choose many different parameters δ’s (equivalently, finitely many ~k j). If

we collect finitely many of such sets and restrict ourselves to observables which are func-

tions of these (and the momentum) operators, then from any given |~k0〉, we will generate a

collection of basis vectors, {|~k0 +
∑

j n j~k j〉, n j ∈ Z}. The closed subspace generated by this

set will be a proper subspace of the polymer Hilbert space and is clearly separable. If we

also include operators which are exponentials in p · q, discussed above, then the lattice

generated will also involve scaling determined by the choices for f (p2). As long as the

number of such operators is finite, we will continue to have separable sectors. The chosen

set of observables, will act invariantly on each such subspace and will provide superse-

lection sectors. Observe that among the chosen class of observables, we can also have an

invariant Hamiltonian. Action of rotations however mixes different sectors and we have

spontaneous breaking of rotational invariance. If we chose a Hamiltonian involving the

approximated position operators, we have explicit breaking of rotations controlled by the

δ-parameter(s). The example of spherically symmetric harmonic oscillator in three di-

mensions illustrates this. For a economical parametrization of violation, we can choose a

single common δ. For sufficiently small values of this, at a certain level of observational

precision, it is of course possible to have the illusion of rotational invariance.

To summarise, having made a choice of the polymer Hilbert space Hpoly, we can have

2These operators however do not suffice to represent the Lie algebra of rotations [38].
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exact rotational symmetry with a some what restricted form of dynamics (no q · q depen-

dence) but with uncountably infinite degeneracy. To avoid the problem of infinite degen-

eracy, the symmetry must be broken - either explicitly or spontaneously. By introducing

separable sectors we can see both possibilities.

It is however possible to define symmetry operators if we choose to work in Cyl*. Using

the triple, we can try to select a suitable subspace of Cyl* on which infinitesimal gen-

erators can be defined. With a suitable choice of a new inner product, we can obtain a

‘physical’ Hilbert space with a rotationally invariant dynamics. This would imply a view

of polymer quantization as an intermediate step in a multi-step quantization procedure.

We explore this avenue in the next section.

Regaining Symmetries

The possibility of looking to Cyl∗ for a home to a suitable quantum theory is inspired

by analogous steps taken in the context of LQG. In LQG, the step is motivated for a

very different reason. The kinematical quantization is essentially forced upon us by the

demand of SU(2) invariance and diffeomorphism covariance. Since there are constraints

whose kernels are in general distributional, an appropriate diffeo-invariant subspace of

corresponding Cyl∗ is a natural arena. In our case, the polymer quantization itself is not a

compulsion, but is a useful illustration of a multi-step construction of a quantum theory.

Recall that construction of Hpoly naturally gave us the triple Cyl ⊂ Hpoly ⊂ Cyl∗. This

structure provides us with a convenient representation of the elements (Ψ| of Cyl∗ by

complex valued linear functions ψ∗(~k) := (Ψ|~k〉. No smoothness properties are assumed

at this stage for these functions. Furthermore, for every operator A : Cyl→ Cyl, we can

define an operator Ã : Cyl∗ → Cyl∗ by the ‘dual action’, eg.

(ÃΨ|f〉 := (Ψ| † Af〉, ∀ |f〉 ∈ Cyl, ∀ (Ψ| ∈ Cyl∗
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Conversely, given an operator Ã defined on all of Cyl∗, we can define an operator A on

Cyl by the same equation as above (read backwards). In particular this means that we have

the operators Ũ(Λ) defined on Cyl∗. We will use these to define infinitesimal generators

on Cyl∗. We will also define the position operators.

We begin with infinitesimal rotation generators. Let us consider a rotation along the xl

axis.

(Ψ|U(1 + ε) − U(1 − ε)|~k〉 = (Ψ|~k − −→εk〉 − (Ψ|~k +
−→
εk〉

≈ 2εlE
li

jk
j∂ψ

∗

∂ki

∴ lim
εl→0

(Ψ|
U(1 − ε) − U(1 + ε)

2εl
|~k〉 = −Eli

jk
j∂ψ

∗

∂ki

∴ (JlΨ|~k〉 := −i~Eli
j kj ∂ψ

∗

∂ki (3.7)

Notice that these operators are defined only on a subspace of Cyl∗, consisting of those (Ψ|

whose corresponding ψ∗(~k) are differentiable functions. Hence, by dual action we cannot

define the corresponding operators on Cyl.

Next, recall the sinδêj operators defined in the previous section. For each orthonormal

triad, ê j, j = 1, 2, 3, êi · ê j = δi j and a small parameter δ, we have, Uδê j(~q) := eiδê j·~q and

sinδê j := (2i)−1(Uδê j(~q) − U−δê j(~q)) . Now,

(Ψ|sinδêj |
~k〉 = −

(Ψ|~k − δêj〉 − (Ψ|~k + δêj〉

2i

=
ψ∗(~k + δêj) − ψ∗(~k − δêj)

2i

≈
2δê j

2i
∂ψ∗

∂~k

∴ lim
δ→0

(Ψ|
sinδêj

δ
|~k〉 = −iêj · ~∇~kψ

∗ (3.8)

Thus, by restricting to functions ψ∗ which are at least differentiable, we can define a
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position operator on a subspace of Cyl∗ via the dual action,

(êj · ~q Ψ|~k〉 := −iêj · ~∇~kψ
∗ , ∀ (Ψ| ∈ Cyl∗ such that ψ∗(~k) is differentiable . (3.9)

It is easy to see that the position operators defined above and the momentum operators

defined by dual action, also satisfy,

( [êm · ~q , ên · ~p] Ψ|~k〉 = ( {i~êm · ên} Ψ|~k〉 .

So far we have not specified any subspace of Cyl∗ except to say that it should consists

of, at least, differentiable functions. The space of all differentiable functions is too large

a subspace to choose. We are guided in our choice of a subspace by the requirement

that the ‘position’ and the ‘momentum’ operators be self-adjoint with respect to a suit-

able inner-product and satisfy the canonical commutation relation on an invariant, com-

mon dense domain. Representations of the canonical commutation relations are usually

analyzed by going to the bounded, unitary operators (exponentials of the positions and

momenta) , satisfying the Weyl-Heisenberg relations. The Stone-von Neumann theorem

then guarantees a unique continuous representation of the Weyl-Heisenberg relations and

the corresponding canonical commutation relations. This representation corresponds to

the choice of Schwartz space as the subspace of Cyl∗ and the usual inner product with

the Lebesgue measure. The Hilbert space is then obtained by completing Schwartz space

in the L2 norm. Making this choice, we just get back the usual Schrodinger quantization

using functions of “momenta”, ~k instead of functions of “positions”, ~q. The intermediate

polymer quantization has only led us to the Heisenberg (or momentum) representation in-

stead of the Schrodinger (or position) representation. The measure being invariant under

rotations also admits (unitary) representation of infinitesimal rotations. It is interesting

to note that one can also choose a subspace which is larger, eg space of ψ∗(~k) which are

normalizable with respect to a Sobolev norm, and choose the Lorentz invariant measure
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d3k

2
√
~k·~k+m2

, to construct Hilbert space of a free, relativistic particle of mass m[40]. This is

not our primary concern though.

This is obviously a roundabout way of arriving at the usual quantization. But it shows that

(a) not every choice of quantization may be flexible enough for physical modeling and (b)

we can reach a satisfactory quantum theory by modifying the quantization algorithm. In

principle, if the quantum theory constructed from a subspace of Cyl∗ were not satisfactory,

we could repeat the process forming a new triple. This is further discussed in the last

section. In the next section we discuss the case of a scalar field theory.

3.2 Polymer Scalar Field Theory and Symmetries

Can rotational invariance be supported in a ‘polymerised scalar field theory’? Consider

the example of a scalar field φ(~x) defined on R3. The rotations act on the space which in

turn induces a transformation on the field: φ′(~x) = φ(
−−−→
Λ−1x).

Let us recall the polymer quantization of scalar fields as defined in the previous chapter.

Define a vertex set V = (~x1, ~x2, . . . , ~xn), of finitely many, distinct points. For non-zero

real numbers λ j, j = 1, . . . , n, define the functions N
V,~λ(φ) := e〉

∑
| λ|φ(~§|). For each fixed

set V , let CylV denote the set of finite, complex linear combinations of these functions.

Let Cyl := ∪V CylV . Thus every element of Cyl is a function of φ which is a finite linear

combination of functions N
V,~λ for some vertex set V and some choice of ~λ. That is, any

element of Cyl may be written as

ψ(φ) =
∑
V,~λ

CV,~λNV,~λ(φ)
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where CV,~λ ∈ C The inner product had been defined in 2.2. This is given by

〈ψ|ψ′〉 :=
∫

dµ(φ)ψ∗(φ)ψ′(φ) =

∫
dµ(φ)

∑
V,~λ,V′,~λ′

C∗
V,~λ

C′
V′,~λ′

ei
∑

k λ
′
kφ(~x′k)−i

∑
j λ jφ(~x j)(3.10)

Observe that each term in the summand is again of the form NV∪V′,~λ,~λ′ , except that all

vertices in the union V ∪ V ′ are not necessarily distinct. If ~x′k = ~x j, then the exponent

would be (λ′k − λ j)φ(~x j). If the λ′s are equal, then the exponent is identically zero and the

integral contributes to the sum. Otherwise, the integral gives zero. It follows thatNV,~λ and

NV′,~λ′ are orthogonal unless the two sets of vertices coincide and their corresponding λ’s

are equal.

The Hilbert space Hpoly, is obtained as the Cauchy completion of Cyl with respect to

this inner product. The functions NV,~λ(φ), with every λ , 0, form an orthonormal basis

for the polymer Hilbert space. The constant function corresponding to empty vertex set,

N(φ) = 1, is also included in the basis.

Action of rotations on Cyl is defined by [UΛψ](φ) := ψ(Λ−1φ). Evaluating it on the

elementary functions lead to,

NV,~λ(φ) → N ′
V′,~λ′

(φ) := NV,~λ(φ
′) = NV′,~λ(φ) (3.11)

The middle equality is the definition of the action, φ′ = Λ ◦ φ and we have used the scalar

nature of φ, φ′(~x) = φ(−→Λx), in the last equality.

Observe that under the action of rotation Λ, a vertex set V = (~x1, . . . , ~xn) changes to a

new vertex set V ′ := (−−→Λx1, . . . ,
−−→
Λxn). The λ′s are unchanged and the field is evaluated at

the transformed points. Now the inner product among two elementary functions depends

only on their respective λ s. Therefore the inner product among elementary functions is

invariant under the action of the rotations and rotations are represented unitarily on the

Hilbert space.



48 CHAPTER 3. POLYMER QUANTIZATION AND ROTATIONAL SYMMETRIES

That this unitary action is also non-weakly-continuous can be seen easily. For non-trivial

rotation, a diagonal matrix element between basis states is zero while for the identity

rotation, the matrix element is 1. Thus, infinitesimal generators have no representation on

the polymer Hilbert space.

The momenta variables are defined as,

Pg :=
∫

d3xg(~x)πφ(x) = − i~
∫

d3xg(~x)
δ

δφ(~x)
(3.12)

Here g(~x) is a ‘suitably smooth’ function (πφ has density weight 1, though not relevant

here). It is easy to see that,

PgNV,~λ =

~∑
j

λ jg(~x j)

NV,~λ ,
[
P f , Pg

]
= 0 , P†f = P f . (3.13)

Thus the momentum representation exists and the elementary functions NV,~λ are simulta-

neous eigenstates of the momenta variables Pg. Under the action of rotation, U(Λ), the

momentum variables transform as,

UΛPg(π)U†
Λ

:= Pg(Λ ◦ π)

= PΛ−1◦g(π) (from the definition) ⇒ (3.14)

UΛPg(π) = PΛ−1◦g(π)UΛ

This is consistent with (3.11). Let us use the notation |V, ~λ〉 ↔ NV,~λ(φ).

Observe that eiλφ(~x), a ‘point holonomy operator’, clearly acts as a multiplication operator:

eiλφ(~x)|V, ~λ〉 :=


|~x1, . . . , ~xn, ~x ; λ1, . . . , λn, λ〉 if ~x , ~xi for any i

|~x1, . . . , ~xk . . . ~xn ; λ1, . . . , λk + λ, . . . λn〉 if ~x = ~xk , λ + λk , 0

|~x1, . . . , , . . . ~xn ; λ1, . . . , , . . . λn〉 if ~x = ~xk , λ + λk = 0

In the last equation, the ~xk, λk labels are missing on the right hand side.
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What about the scalar field operator itself? It does not exist since the point holonomy

operators are not weakly continuous, exactly as in the point particle case. In the usual

Schrodinger type representation too, a scalar field operator exists only as an operator

valued distribution. This has to do with the presence of Dirac delta in the canonical

commutation relations. In the polymer representation it does not exist even as an operator

valued distribution.

Now consider an element (Ψ| ∈ Cyl∗. Its action on an elementary functionNV,~λ(φ) is given

by,

(Ψ|V, ~λ〉 =: ψ∗(~x1, · · · , ~xn, λ1, · · · , λn) , distinct ~x ′s and non-zero λ′s.

Under the action of rotations, the arguments of the elementary function change: |V, ~λ〉 →

|V ′, ~λ〉. Thus, if we choose the functions ψ∗’s to be differentiable, we can define infinites-

imal rotations as operators on a subspace of Cyl∗, exactly as before. Explicitly,

(Ψ|U(1 + ε) − U(1 − ε)|V, ~λ〉 = (Ψ|V′+, ~λ〉 − (Ψ|V′−, ~λ〉

= ψ∗(~x1 + −−→εx1, · · · , ~xn + −−→εxn, ~λ) −

ψ∗(~x1 −
−−→εx1, · · · , ~xn −

−−→εxn, ~λ)

≈ 2εkE
ki

j

n∑
m=1

xj
m
∂ψ∗

∂xi
m

∴ lim
εk→0

(Ψ|
U(1 + ε) − U(1 − ε)

2εk
|V, ~λ〉 = Eki

j

n∑
m=1

xj
m
∂ψ∗

∂xi
m

∴ (JkΨ|V, ~λ〉 := −i~Eki
j

n∑
m=1

xj
m
∂ψ∗

∂xi
m

(3.15)

Thus, by restricting to a subspace of Cyl∗, corresponding functions ψ∗(V, ~λ) suitably dif-

ferentiable w.r.t x, we can define the generator of the infinitesimal rotations.

Likewise, to define a smeared operator scalar field on Cyl∗, consider,

(Ψ|φδf |V, ~λ〉 :=
∫

d3x f (~x)(Ψ|
eiδφ(~x) − e−iδφ(~x)

2iδ
|V, ~λ〉 (3.16)
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=

∫
d3x

f (~x)
2iδ

(
(Ψ|V, ~x, ~λ, δ〉 − (Ψ|V, ~x, ~λ,−δ〉

)
For a generic ~x, assuming differentiability of ψ∗, we will get a function of the vertices of

V and the corresponding λ′s together with the additional point ~x and the corresponding

‘δ’ = 0. This function cannot come from any element of Cyl∗ acting on |V, ~λ〉. Hence we

should avoid getting a contribution from a generic ~x. If however, ~x coincides with one

of the vertices in V , then the resultant function (derivative) is a function of (V, ~λ) and we

can interpret the right hand side as a new element of Cyl∗ evaluated on the basis element

|V, ~λ〉. This can be made more precise by employing the commonly used procedure of

defining the integral by introducing a cell decomposition adapted to the ‘graph’ (vertices

of V) and demanding that

∂ψ∗

∂λ j
(~x1, . . . , ~xn, λ1, . . . , λ j, . . . , λn)

∣∣∣∣∣∣
λ j=0

= 0 ,∀ j = 1, 2, . . . , n . (3.17)

This condition ensures that there is no contribution from cells that do not contain a vertex

of V and we are led to the definition:

(φ̃ f Ψ|V, ~λ〉 := lim
δ→0

(Ψ|φδf |V, ~λ〉 := − i
∑

j

f (~x j)
∂ψ∗(~x1, . . . , ~xn, λ1, . . . , λn)

∂λ j
. (3.18)

It is now easy to verify that

( ˜[φ f , Pg]Ψ|V, ~λ〉 := (P̃gφ̃ f Ψ|V, ~λ〉 − (φ̃ f P̃gΨ|V, ~λ〉

= −i~

 n∑
j=1

f (~x j)g(~x j)

 (Ψ|V, ~λ〉

= (

+i~

 n∑
j=1

f (~x j)g(~x j)


 Ψ|V, ~λ〉 . (3.19)

We have thus succeeded in defining the smeared versions of the field operators φ f , Pg in

a subspace of Cyl∗.
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We can also verify that the infinitesimal generators Jk induce expected actions on the

smeared fields operators.

( ˜[Jk, φ f ]Ψ|V, ~λ〉 = (φ̃ f J̃kΨ|V, ~λ〉 − (J̃kφ̃ f Ψ|V, ~λ〉

= −i
N∑

m=1

f (~xm)
∂ψ∗Jk

(V, ~λ)

∂λm
− (−i~)Eki

j

N∑
n=1

x j
n

∂ψ∗φ f
(V, ~λ)

∂xi
n

= −~
N∑

m,n=1

f (~xm)Eki
jx

j
n
∂ψ∗(V, ~λ)
∂xi

n

+ ~Eki
j

N∑
m,n=1

x j
n
∂

∂xi
n

 f (~xm)
∂ψ∗(V, ~λ)
∂λm


= i~

−i
N∑

n=1

(
Eki

jx
j
n
∂ f (~xn)
∂xi

n

)
·
∂ψ∗(V, ~λ)
∂λn


= i~ (φ̃Lk f Ψ|V, ~λ〉 , Lk f (~x) := Eki

jx
j ∂ f
∂xi (3.20)

Similar computation can be done for commutator of [Jk, Pg].

We have now identified the minimal conditions, namely differentiability in all arguments

and the condition of equation (3.17), on functions ψ∗(~x1, . . . , ~xn, λ1, . . . , λn) in order that

the smeared field operators and the infinitesimal rotation actions are well defined. Since

such an element of Cyl∗ can be viewed as a sequence of differentiable, complex functions

defined on (R3n − diagonal) × ((R − 0)n) where diagonal is the subset of R3n with two or

more points coinciding, we are restricted to a subspace of Cyl∗.

The next step is to choose a suitable inner product on this subspace, possibly restricted

further with additional conditions. Let us denote such a subspace by Cyl1. Here we

initiate first steps. For notational simplicity, let us denote elements of Cyl∗ generically by

underlined letters such as as Ψ,Φ, [V, ~λ], . . . etc.

Heuristically, we can represent each element of Cyl1 and a yet to be defined inner product
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as,

Ψ :=
∑
V,~λ

ψ∗(V, ~λ)[V, ~λ] , (3.21)

〈Ψ,Φ〉 :=
∑
V,~λ

∑
V′,~λ′

ψ(V, ~λ)φ∗(V ′, ~λ′)〈[V, ~λ], [V ′, ~λ′]〉

:=
∑
V,~λ

∑
V′,~λ′

ψ(V, ~λ)φ∗(V ′, ~λ′)G(V, ~λ; V ′, ~λ′) (3.22)

The coefficients ψ∗(V, ~λ) in the first line, contain the information about the subspace, Cyl1.

The G denotes the inner product between ‘basis’ elements.

For example, Cyl is a subspace of Cyl∗ through the natural embedding |V, ~λ〉 ∈ Cyl →

[V, ~λ] ∈ Cyl∗. If Cyl1 were to be this subspace, then the ψ∗(V, ~λ) in eqn.(3.21) would be

non-zero only for finitely many (V, ~λ) sets and G(V, ~λ; V ′, ~λ′) would equal δV,V′δ~λ,~λ′ . The

double summation would then collapse to a finite sum over (V, ~λ) (compare eqn.(3.10)).

Likewise, if Cyl1 were to echo the Hilbert space of the r-Fock construction [?, 36, 20], the

G(V, ~λ; V ′, ~λ′) would be ∼ exp[−1
4

∑
i j Gi j(~xi, ~x j)λiλ j], where the sum over (i, j) is over the

vertices of V ∪ V ′ and we use the notation of [20]. The double sum will be a finite sum

since ψ∗(V, ~λ) is non-zero for finitely many (V, ~λ) sets.

More generally, we could have uncountably many non-zero ψ∗(V, ~λ) and then each Ψ can

be thought of as a potentially infinite sequence of functions, ψn, on ∼ R4n. If we choose

an inner product so that the ‘basis states’ are orthonormal (G ∝ δV,V′δ~λ,~λ′), then we may

write the inner product as,

〈Ψ,Φ〉 :=
∑
V,~λ

ψ(V, ~λ)φ∗(V ′, ~λ′) (3.23)

:'
∞∑

n=0

∫
R3n

d3nx
∫
Rn

dnλ ψ(~x1, . . . , ~xn, λ1, . . . , λn)φ∗(~x1, . . . , ~xn, λ1, . . . , λn)

The :∼ indicates that the integration measures need to be defined and we need to put

conditions to ensure convergence of the sum.
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Assuming that we can choose suitable weights in the sum and measures in the integra-

tions, what further conditions we need to put on the ψn’s so that our basic operators and

generators are self-adjoint? It is easy to see that we need only the usual fall-off conditions

on these so that surface terms resulting from the partial integrations drop out. Roughly,

we make each member ψn as an element of L2(R4n). This indicates that it is, at least

heuristically, conceivable to choose suitable definitions to construct a new Hilbert space.

3.3 Summary and Discussion

We began by exploring symmetries and their violations in polymer quantized systems.

Specifically, we focused on three dimensional rotations and explored the polymer quan-

tized particle in three dimensions and a scalar field defined on R3. It is certainly possible

to have a unitary representation of SO(3) on the polymer Hilbert space but the represen-

tation is discontinuous and consequently does not admit representation of its Lie algebra.

The non-availability of configuration space operators - position operators - severely re-

stricts the possible invariant Hamiltonians and every one of these has infinitely degenerate

eigenvalues. In effect, physically acceptable dynamics on polymer Hilbert space must

necessarily violate rotational symmetry, either explicitly or spontaneously. In case of ex-

plicit breaking, one can then look for economical parametrization of symmetry violations

and put bounds on the parameters. As noted in the introduction, this route has already

been followed in [29, 38, 41, 42]. We explored another route to see if acceptable quanti-

zation, with infinitesimal symmetries, can be arrived at viewing polymer quantization as

an intermediate step. This was done by looking for suitable subspace(s) of the dual mem-

ber of the Gelfand triple with a hope of defining a new inner product and a new Hilbert

space. For the point particle case we verified that it is possible to construct a new Hilbert

space which carries continuous representations of the rotation group as well as continu-

ous representation of the Heisenberg group. By the Stone-von Neumann theorem, this is

of course the usual Schrodinger representation which supports the usual rotationally in-
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variant non-trivial Hamiltonians. The case of scalar field revealed greater richness. There

can be infinitely many choices of inner products, all of which can support infinitesimal

rotations as well as elementary smeared field.

In principle neither of the two routes is unnatural. It is not certain, that continuous sym-

metries need be realised exactly in nature even if observations support their existence to

excellent approximation, eg Lorentz symmetry. Symmetries help to exercise tighter con-

trol over theoretical frameworks but physical system may not exactly respect the implicit

idealization. The in-built, non-invariant dynamics of a polymer quantized system, sug-

gests a particular parametrization of symmetry violation eg the use of the ‘trigonometric’

operators to build the Hamiltonian. At least in the cases explored, such violations are

viable.

The second alternative is anyway needed in the context of theories with first class con-

straints. It could well be thought of as a multi-step quantization procedure. Just as in a

classical theory, specified by an action, the variables we begin with need not represent the

physical states (eg when there are constraints). However following a systematic procedure

- the Dirac algorithm of constraint analysis - we can arrive at a formulation which is either

a theory with a first class constraint algebra or a theory without any constraints. Likewise,

one could begin with a set of basic functions on the configuration space forming a Cyl0,

choose an inner product 〈|〉0, obtain a Cyl∗0 as well as a Hilbert space H0 forming a triple:

Cyl0 ⊂H0 ⊂ Cyl∗0. If the model is satisfactory, we are done. If not, look for a subspace

Cyl1 ⊂ Cyl∗0, define a new inner product 〈|〉1 and obtain a new triple Cyl1 ⊂H1 ⊂ Cyl∗1.

Hopefully the process would terminate after a finite number of iterations. This procedure

offers a flexibility to refine the class of observables we wish to be supported on the quan-

tum state space. It is constructive and could help keep the focus on physical observables.

This possibility needs to be examined further to see its viability/utility.



Chapter 4: Path Integral Representation

for Polymer Quantization

One of the most important open problems in LQG is to understand how known semi-

classical physics arises from it. One aspect of the problem that pertains to scalar field

theories is understanding how to go from a description of these theories in the polymer

language to a description in the Schrodinger-Fock language. In this thesis, we take a step

towards this by obtaining a path integral representation for a polymer quantized scalar

field theory. The path integral language is in general well-suited for obtaining semiclas-

sical approximations. The path integral representation for polymer quantized field theory

should likewise be useful for that purpose. The work presented in this chapter is based on

[43].

Although the Hilbert Space frameworks of the two theories are very different, we find

that in the continuum limit, the path integral representation of polymer quantized scalar

field theory can be put in a form closely resembling the standard path integral form for

a Schrodinger quantized theory. Thus the path integral framework provides a convenient

language to compare the two quantizations and indicate the points of difference. In this

chapter we will particularly consider the free Klein-Gordon Lagrangian, although the

derivation goes through for any arbitrary polynomial term (in the field or its derivatives)

added to this Lagrangian.

A path integral formulation for a polymer quantized theory was first provided by Ashtekar,

55
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Campigilia and Henderson in [32] for loop quantum cosmology, a theory with a single

degree of freedom. We follow their technique and extend the path integral description

to scalar field theories. For simplicity we’ll derive the path integral formulation for a

1+1 dimensional field theory. The extension to higher dimensions is straightforward.

Our strategy for this derivation will be to start from a scalar field theory defined on a

one dimensional lattice, obtain a path integral formulation for this and finally take the

’continuum limit’ by making the lattice spacing go to zero. This follows the standard

quantum field theory approach [44].

One distinguishing feature of the polymer quantized theory is that both momentum and

the field cannot be well defined operators. We will choose the representation where the

field is not a well-defined operator, only momentum and the exponentiated field (’holon-

omy’) operators are well-defined. This choice will allow us to get a closed form expres-

sion for the configuration space path integral. With the alternate choice one can proceed

up to deriving a phase space path integral. Now to construct a Hamiltonian, an approx-

imate field operator has to be constructed from the holonomy operator by introducing a

scale µ. We will find that in the path integral expression the term corresponding to the

approximate field operator is sin µφ
µ

. We will see that in the end one can simply go from

the Schrodinger to the polymer path integral form by replacing φ by sin µφ
µ

in the poten-

tial term in the action, while leaving the kinetic term unchanged. This means that the φ̇2

term in the action remains unchanged but the (∇φ)2 term becomes cos2(µφ)(∇φ)2. Thus

Lorentz invariance is lost in the polymer formulation (for a different approach to Lorentz

violation in polymer quantized scalar field theory see[45]). Another consequence of the

replacement is that as only powers of sine terms appear in the potential, the action be-

comes periodic in φ with a periodicity of 2π/µ. A further point of difference is that in the

polymer case we would be looking to obtain the correlation functions for the approximate

field operator and these would enter the path integral as sin µφ
µ

. That is, the expressions for
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say a 2 point correlation function would look like:

∫
[Dφ]

sin µφ(x1)
µ

sin µφ(x2)
µ

eiS

We’ll see that the features mentioned above prevent a straightforward derivation of a per-

turbative framework from this path integral representation. We’ll discuss some possible

strategies to overcome this issues in the next chapter.

There are three sections in this chapter. The first section discusses path integral repre-

sentation for polymer Quantum Mechanics. We derive a path integral representation for

the simple harmonic oscillator, following the steps of [43]. In the second section we ex-

tend the path integral to the case of polymer quantized scalar field theory. In the last

section we summarise our findings and discuss some general features of the path integral

representations of polymer quantized theories.

4.1 Path Integral representation for polymer Quantum

Mechanics

In this section we’ll follow the steps of [32] to derive a path integral expression for an one

dimensional polymer quantized simple harmonic oscillator. We’ll consider momentum to

be well-defined while an approximation will be used for the position. This choice helps

get a closed form expression for the configuration space path integral. Also we will make

some choice of µ0. As we discussed in the previous chapter this choice will restrict us to

a separable subspace of the Hilbert Space on which our basic operators act invariantly. In

this derivation we will always work in one such subspace. Thus the completeness relation

will be
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∑
n

|p0 + µ0n~〉〈p0 + µ0n~|

We’ll choose p0 = 0 for convenience.

As is usual for a derivation of the path integral representation, our starting point will be

the transition amplitude 〈p f |e−
i
~ tĤ |pi〉. We divide t into N pieces ε = t/N. So

e−
i
~ Ĥt = ΠN

n=1e−
i
~ Ĥε (4.1)

Inserting complete basis of the form 1 =
∑
|p〉〈p| in between each factor we have

〈p f |e−
i
~ Ĥt|pi〉 =

∑
pN−1,....,p1

〈p f |e−
i
~ Ĥε |pN−1〉.......〈p1|e−

i
~ Ĥε |pi〉 (4.2)

Taking N very large (ε << 1) the nth term of the series is approximated as

〈pn+1|e−
i
~ Ĥε |pn〉 = δpn+1,pn −

i
~
ε〈pn+1|Ĥ|pn〉 + O(ε2) (4.3)

The matrix elements of H are:

〈pn+1|Ĥ|pn〉 =
pn

2

2m
〈pn+1|pn〉 − 〈pn+1|

(
V̂(µ0) − V̂(−µ0)

2µ0i

)2

|pn〉 (4.4)

=
pn

2

2m
δpn+1,pn −

1
4µ0

2 (2δpn+1,pn − δpn+1,pn−2µ0~ − δpn+1,pn+2µ0~) (4.5)

We would have obtained the same expression using the Hamiltonian given in [9]. We’ll

make use of the identity:

δp′,p =
µ0

2π

∫ 2π
µ0

0
dxe−

i
~ x(p′−p) (4.6)
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From 4.6, 4.5 and 4.3 we obtain up to O(ε2) terms:

〈pn+1|e−
i
~ Ĥε |pn〉 =

µ0

2π

∫ 2π
µ0

0
dxn+1e−

i
~ xn+1(pn+1−pn)

[
1 −

iε
~

(
p2

n

2m
+

sin2 (µ0xn+1)
µ0

2

)]
(4.7)

=
µ0

2π

∫ 2π
µ0

0
dxn+1e

− i
~ xn+1(pn+1−pn)− iε

~ ( p2
n

2m +
sin2 (µ0 xn+1)

µ0
2 )

(4.8)

Substituting this in 4.2 we have

〈p f |e−
i
~ Ĥt|pi〉 =

∑
pN−1,....,p1

(
µ0

2π

)N ∫
dxN ...dx1e−

i
~ S N (4.9)

where

S N = ε

N−1∑
n=0

xn+1
(pn+1 − pn)

ε
+

p2
n

2m
+

sin2 (µ0xn+1)
µ0

2 (4.10)

This is the discrete sum version of the path integral. The differences from the usual case

are : (i)Here we have sums over momenta instead of integrals (ii) The integrals over

positions are bounded whereas in the usual case these are unbounded and finally (iii) The

x2
n term that appears in the action in the usual case has been replaced by sin2 (µ0 xn)

µ02 .

The next step is to take theN → ∞ limit. However we cannot interpret (pn+1−pn)
ε

as a

derivative as p takes discrete values. So we use:

ε

N−1∑
n=0

−xn+1
(pn+1 − pn)

ε
= ε

N−1∑
n=0

pn
(xn+1 − xn)

ε
+ (x1 p0 − xN pN) (4.11)

Now the limit N → ∞may be taken. This gives us the path integral expression: K(p f , pi) =∫
[Dpq][Dxq]e

i
~ S ′ where S′ given by

S ′ =

∫ t

0
dτ pẋ −

(
p2

2m
+

sin2 (µ0x)
µ0

2

)
(4.12)

and ∫
[Dpq][Dxq] = lim

N→∞

N∏
n=1

µ0

2π

∑
pn

∫ 2π
µ0

0
dxn (4.13)



60CHAPTER 4. PATH INTEGRAL REPRESENTATION FOR POLYMER QUANTIZATION

The subscript q in the path integral expression is to indicate that this expression is dif-

ferent from the usual path integral expression. Here p takes only discrete values and x is

bounded. However, this can be converted into the familiar form by using the following

identity [46]:

∑
mεZ

∫ 2π

0
dθ f (θ,m)eimθ =

∫ ∞

−∞

dx
∫ ∞

−∞

dθ f (θ, x)eixθ (4.14)

This is true for any continuous function f (θ, x) with a period of 2π in θ. One can see that

integrand in 4.9 has the requisite property. Using this we can now replace

µ0

2π

∑
pn

∫ 2π
µ0

0
→

∫ ∞

−∞

dpn

∫ ∞

−∞

dxn (4.15)

Now we have our result for the phase space path integral:

K(p f , pi) =

∫
[Dp][Dx]e

i
~ S (4.16)

where

S =

∫ t

0
dτpẋ −

(
p2

2m
+

sin2 (µ0x)
µ0

2

)
(4.17)

As the momentum integral is Gaussian one may integrate it out from the phase space

transition amplitude to obtain the configuration space transition amplitude

Z =

∫
[Dx]e

i
~ S (4.18)

with

S =

∫ T

0
dτ

mẋ2

2
−

sin2 (µ0x)
µ0

2 (4.19)

We note that in the path integral formulation, going from Schrodinger to polymer rep-

resentation for any polynomial potential the only change will be a replacement of x by

sin(µ0x)/µ0 in the action. This will be true in the case of polymer field theory as well.
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The appearance of sin(µ0x)/µ0 in the action has the novel consequence that x → x + 2π
µ0

is a symmetry of the action. Where did this periodicity in the action come from? Recall

that originally the position variable took values on a circle. Using 4.14 we extended the

range of x to the entire real line. But the memory of the original configuration space is

contained in the periodicity. Therefore one would expect winding modes to be present as

well in the path integral.

This can be seen more transparently in the path integral formulation of transition am-

plitude between position eigenstates (eigenstates of x̂µ0) in polymer quantum mechanics.

The eigenstates of x̂µ0 are given by

|x〉 =
∑
n∈Z

e−iµ0~xn|p0 + nµ~〉 x ∈ [0, 2π/µ0]

The inner product between them can be seen to be :

〈x|x′〉 = δ(x − x′)

Thus these are non-normalizable states of the Hilbert Space. Now this is the same situ-

ation as a particle on a circle. The transition amplitude in this case can be given a path

integral expression in terms of unbounded paths as well (See 6. 1 of [46] for the detailed

derivation). This expression reads-

〈x f , t f |xi, ti〉 =

∞∑
l=−∞

〈x f + 2πl, t f |xi, ti〉noncyclic

Where

〈x f , t f |xi, ti〉noncyclic =

∫
[Dx]e

i
~

∫ T
0 dτmẋ2

2 −
sin2 (µ0 x)

µ0
2

is the usual path integral between two points where the sum is over non-cyclic paths, ex-

cept with the modified polymer potential. We thus see that the winding modes are present
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in the polymer path integral, given by the different values of l. This is a consequence of

the fact that the effective configuration space for polymer quantum mechanics is a circle.

4.2 Path Integral representation for polymer Quantized

scalar field theory

Having seen how a path integral representation can be obtained for the polymer quantized

simple harmonic oscillator, we are now ready to tackle the more complicated case of the

scalar field. Our derivation will be facilitated by the use of the new notation we introduced

in Chapter 2, which we’ll use throughout this section. We also set ~ = 1. Now we’ll

calculate 〈π f |e−iĤt|πi〉 by discretizing t into N pieces e−iĤt = ΠN
n=1e−iĤεt The Hamiltonian

we consider will be the approximate Klein Gordon Hamiltonian, where the approximate

field variable (defined using some number µ) introduced in the last chapter will be used.

We recall that the choice of a µ and a basis vector gives a proper subspace of the Hilbert

space on which the basic operators act invariantly. We’ll restrict ourselves to one such

subspace i.e a lattice in the ~λ labels. Our strategy will be to do this first for a scalar

field theory which lives on a lattice and finally take the continuum limit. To this end we

discretize space with lattice spacing εx and call the entire lattice L from now on. That is

all vertex sets are now subsets of L. The completeness relation 2.11 will now have x ∈ L

So we have

〈π f |e−iĤt|πi〉 = 〈π f |

N∏
n=1

e−iĤεt |πi〉 (4.20)

Using 2.11 this is rewritten as:

〈π f |e−iĤt|πi〉 =
∏
x1∈L

∑
π1(x1)

.....
∏

xN−1∈L

∑
πN−1(xN−1)

〈π f (xN−1)|e−iĤεt |πN−1(xN−1)〉......〈π1(x1)|e−iĤεt |πi(x1)〉

(4.21)
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Taking N very large (εt << 1) and expanding the nth factor in εt we have

〈πn+1(x)|e−iĤε |πn(x)〉 = 〈πn+1(x)|πn(x)〉 + iεt〈πn+1(x)|Ĥ|πn(x)〉 + O(ε2
t ) (4.22)

Our Hamiltonian will be a discretization of
∫

dx 1
2 (π(x)2 + (∇φ(x))2 + m2φ2(x)) . We’ll

proceed term by term.

(i) The π2 term:

First we consider a Hamiltonian with only the π2 term. This helps demonstrate most

simply the steps in the derivation of the path integral. In this case the discrete Hamiltonian

reads
∑
x∈L
εx

π(x)2

2ε2
x

, π here being the canonical conjugate to the discrete field φ. We’ll suppress

O(ε2
t ) terms in the following. We have, therefore

∏
L

〈πn+1(x)|e−iĤεt |πn(x)〉 =
∏

L

δπn+1(x),πn(x) + εt

∑
L

πn(x)2

2εx

∏
L

δπn+1(x),πn(x) (4.23)

As we have restricted ourselves to a subspace with a choice of µ it follows that the values

of the π fields at any point will differ by an integer multiple of µ, just as the momenta in

quantum mechanics differed by factors of µ0. Using this fact, we may write:

δπ(x),π′(x) =
µ0

2π

∫ 2π
µ0

0
dφ(x)eiφ(x)(π′(x)−π(x)) (4.24)

This can be used to rewrite 4.22 as:

〈πn+1|e−iĤεt |πn〉 =

∏
L

µ0

2π

∫ 2π
µ0

0
dφn+1(x)

 e
i
∑
L

(φ(x)(πn+1(x)−πn(x))+(πn(x))2/2εx)
(4.25)

Then we have

〈π f |e−iĤt|πi〉 =

∏
L

∑
π1,π2,....πN

∫
dφ1(x)...dφn(x)

 e−iS N,L (4.26)
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where

S N,L =
∑

L

εx

εt

N−1∑
n=0

φ(x)(πn+1(x) − πn(x))
εtεx

+
(πn(x))2

2ε2
x

 (4.27)

To take the limit εt going to zero we use, as before:

−εt

N−1∑
n=0

φn+1(x)
(πn+1(x) − πn(x))

εt
= εt

N−1∑
n=0

πn(x)
(φn+1(x) − φn(x))

εt
+(φ1(x)π0(x)−φN(x)πN(x))

(4.28)

And using 4.14 as before we’ll turn the sums over paths into path integrals. We finally

have the following expression for the transition amplitude

〈π f |e−iĤt|πi〉 =

∏
xεL

N∏
k

∫
dφk(x)

∫
dπk(x)

 eiS N,L (4.29)

where

S N,L =
∑

L

εx

−εt

N−1∑
n=0

π(x)n
(φn+1(x) − φn(x))

εt
+(φ1(x)π0(x) − φN(x)πN(x)) −

(πn(x))2

2ε2
x

)
(4.30)

Now we can take the εt → 0 limit. This gives us:

〈π f |e−iĤt|πi〉 =

∏
xεL

∫
dφ(x)

∫
dπk(x)

 eiS L (4.31)

where

S L =
∑

L

εx

−∫
dt

N−1∑
n=0

∫
dtπφ̇ −

π2

2ε2
x

 (4.32)

In the transition amplitude we can integrate out the π field and obtain the expression

Z =
∏
xεL

∫
dφ(x)e

−i
∫

dt
∑
L
εx

φ̇2
2 (4.33)

Finally taking the εx going to zero limit we obtain the configuration space path integral
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expression for the transition amplitude:

Z =

∫
[Dφ]eiS (4.34)

where

S =

∫
dxdt φ̇2/2 (4.35)

and ∫
[Dφ] =

∏
x

dφ(x) (4.36)

This demonstrates how the path integral for a polymer quantized scalar field theory is

obtained. Now we’ll look at the contributions from the (∇φ)2 and m2φ2 terms respectively.

We start with the latter.

(ii) The m2φ2 term:

The discretized expression for this is:

∑
x,z

εxδx,zφ̂µ(x)φ̂µ(z) (4.37)

where

φ̂µ(x) =
Û(µ, x) − Û(−µ, x)

2µi
(4.38)

So we want to calculate

∑
x,z

εxδx,z〈{πn+1}|φ̂µ(x)φ̂µ(z)|πn〉 (4.39)

Using 4.38, 2.8, 2.10 and carrying out the sum over the z index we obtain:

−
εxm2

4µ2

∏
y

δπn+1(y),πn(y)+2µδx,y + δπn+1(y),πn(y)−2µδx,y − 2δπn+1(y),πn(y) (4.40)
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Then using 4.24 we obtain

εxm2
∫ 2π/µ

0
ei

∑
y φn+1(y)(πn+1(y)−πn(y))

∑
x∈L

e2iµφn+1(x) + e−2iµφn+1(x) − 2
(2iµ)2 (4.41)

The continuum limit of the sum

∑
x∈L

εxm2 e2iµφn+1(x) + e−2iµφn+1(x) − 2
(2iµ)2

is
∫

dx(m2 sin2(µφ)
µ2 ). Therefore including 4.37 in the Hamiltonian along with the π2 term

and repeating the same steps as before(4.28-4.34) we obtain the following path integral

expression:

Z =

∫
[Dφ]ei

∫
dxdt 1

2 (φ̇2
−m2(sin2 (µφ)/µ2)) (4.42)

(iii) The (∇φ)2 term:

Finally we come to the (∇φ)2 term. The discretized expression for this is:

∑
x,y

εxδx,y∇̂εxφµ(x)∇̂εxφµ(y) (4.43)

and we’ll be calculating:

〈πn+1|
∑
x,y

εxδx,y∇̂εxφµ(x)∇̂εxφµ(y)|πn〉 (4.44)

where

∇εx f (x) =
f (x + εx) − f (x)

εx
(4.45)
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Let us evaluate

∑
x,y

εxδx,y∇̂εxφµ(x)∇̂εxφµ(y)|πn〉 =
∑
x,yεL

εxδx,y∇̂εxφµ(x)∇̂εxφµ(y)e
i
∑
x j
πn(x j)φ(x j)

(4.46)

Using 2.7, 2.8, 2.10 and carrying out the sum over the y label, this gives:

∑
L

εx

−4εxµ2 e
i
∑
x j
πn(x j)φ(x j)

(e2iµφ(x+εx) − 2eiµ(φ(x+εx)+φ(x)) + e2iµφ(x) + 2eiµ(φ(x+εx)−φ(x))

+2eiµ(−φ(x+εx)+φ(x)) + e−2iµφ(x+εx) − 2e−iµ(φ(x+εx)+φ(x)) + e−2iµφ(x) − 4) (4.47)

Now let us consider a term like e
i
∑
x j
πn(x j)φ(x j)

e2iµφ(x+εx) that appears in the above expression.

We may rewrite this as

e
i
∑
y

(πn(y)+2µδx+εx ,y)φn(y)
= |{πn(y) + 2µδx+εx,y}〉 (4.48)

Using this and acting on 4.47 with 〈πn+1| from left we have:

∑
L

εx

−4ε2
xµ

2

(
〈{πn+1(y)}|{πn(y) + 2µδx+εx,y}〉 + 〈{πn+1(y)}|{ πn(y) + 2µδx,y}〉

+ 〈{πn+1(y)}|{πn(y) − 2µδx+εx,y}〉 + 〈{πn+1(y)}|{πn(y) − 2µδx,y}〉

− 2〈{πn+1(y})|{πn(y) + µδx+εx,y + µδx,y}〉 − 2〈{πn+1(y)}|{πn(y) − µδx+εx,y − µδx,y}〉

− 4〈{πn+1(y)}|{πn(y})〉 + 2〈{πn+1(y)}|{πn(y) + µδx+εx,y − µδx,y}〉

+ 2〈{πn+1(y)}|{πn(y) − µδx+εx,y + µδx,y}〉 + 2〈{πn+1(y)}|{πn(y)

+ 2〈{πn+1(y)}|{πn(y) − µδx+εx,y + µδx,y}〉
)

(4.49)

Using 4.24 this becomes
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∏
y

2µ0

π

∫ π
2µ0

0
dφn+1(y)ei

∑
y φn+1(y)(πn+1(y)−π(y))

∑
x∈L

εx

−4ε2
xµ

2(
e2iµφ(x+εx) − 2eiµ(φ(x+εx)+φ(x)) + e2iµφ(x) + 2eiµ(φ(x+εx)−φ(x))

+2eiµ(−φ(x+εx)+φ(x)) + e−2iµφ(x+εx) − 2e−iµ(φ(x+εx)+φ(x)) + e−2iµφ(x) − 4
)

(4.50)

In the continuum limit( εx, εt → 0) the sum goes to
∫

dx(∇φ)2(cos µφ)2. Therefore includ-

ing this term in the Hamiltonian with the previous two terms and following the same steps

once again (4.28-4.34) one has the path integral expression for the full free Klein Gordon

Hamiltonian:

Z =

∫
[Dφ]eiS (4.51)

where

S =

∫
dxdt

1
2

(φ̇2
− (∇φ)2(cosµφ)2 − m2(sin2 (µφ)/µ2)) (4.52)

We see again that in the path integral formulation one can go from the usual form to the

polymer form by replacing φ by sin (µφ)/µ. In the polymer quantized theory we would

be interested in calculating time ordered n-point correlation functions in the approximate

field operator. From the derivation it is clear that these would be obtained by inserting

sin (µφ)/µ at appropriate times.

There are two interesting features that appear in the polymer path integral. One is that the

action is no longer Lorentz invariant. We’ll discuss the origin of this difference in the last

section. Another new feature is that the action has become periodic in φ with a periodicity

of 2π/µ.
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4.3 Summary and Discussion

In this work we obtained a path integral representation for a polymer quantized Klein

Gordon field. We found that the path integral representation can be put in a form that

closely resembles the Schrodinger form with the only difference being a replacement of

φ by sin (µφ)/µ in the action. This replacement has two immediate consequences - loss of

Lorentz invariance and periodic symmetry in action.

The origin of the Lorentz violation is easy to understand. The Hamiltonian has terms

(∇φ)2 and π2, the latter equaling (φ̇)2 in the classical theory. In the transition to the poly-

mer theory, the latter term remains as it is while a scale µ enters the polymerisation of the

former. This spoils the symmetry between the space and time derivatives that existed in

the classical theory.

The other consequence is the appearance of a discrete global symmetry in the action:

φ → φ + 2nπ
µ
, n ∈ Z. A similar discrete symmetry x → x + 2nπ

µ0
, n ∈ Z appeared in

quantum mechanics as well. The origin of this periodicity can be traced to the fact that

in both cases, we chose a single scale while defining the position/field observable, and

thereafter restricted ourselves to a subspace of the Hilbert Space generated by the action

of the observables. We may recall that originally the position/field variables took values

on a circle and it was through the use of identity 4.14 that the configurations spaces

were extended. The memory of the original configuration space is retained through this

periodicity. In fact was shown in [47] that the classical phase space corresponding to

a polymer quantum mechanical theory with one degree of freedom is a cylinder when

one restricts to observables defined with a single scale, as we do here. This explains the

periodicity in the action that we have here.

This periodicity in the action gives our theory a resemblance with sine Gordon theories

(except of course for the Lorentz invariance). The difference is that in sine Gordon theory

one would look to calculate correlators in the variable φ whereas here we do not have a
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field operator and it is instead correlators in sin (µφ)/µ that we are looking to calculate.

An important open issue here is the construction of a perturbative framework which will

allow us to make predictions. The feature of global symmetry, as well as the fact that we

need to calculate correlators for sin (µφ)/µ instead of φ presents some difficulties in this

regard. We discuss this issue in more detail in the last chapter.



Chapter 5: Outlook

In this chapter we discuss some of the issues in our investigation that remain open. There

are several open issues here which are both interesting and important. We discuss them in

the next two sections.

5.1 Outlook on Polymer Quantization and Symmetries

Our analysis of polymer quantization and symmetries was considerably more extensive

for polymer Quantum mechanics than polymer quantized scalar field theory. In the for-

mer case we showed that non-continuous representations of the rotation group are phys-

ically untenable because they give rise to infinite degenracy. In the case of the polymer

quantized scalar field, we did not investigate if the representation of the rotation group

is infinite dimensional. We know infinite dimensional representations of non-continuous

groups exist [39], but we have not checked if they are realised for the plymer quantized

scalar field theory

Secondly, for polymer Quantum Mechanics we showed how we may regain infinitesimal

generators in Cyl*. We showed that by imposing the demand that the position operator is

self-adjoint on Cyl*, we were led back to the Schrodinger representation on Cyl*. This

was a consequence of the Stone-Von Neumann theorem, which states that all weakly con-

tinuous unitary irreducible representations of the Weyl Algebra are unitarily equivalent

to the standard Schrodinger representation. In the case of the scalar field, however, it is

71
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known that even after invoking the Weyl-Heisenberg relations, there are infinitely many

inequivalent representations of the canonical commutation relations. This means that

there can be infinitely many choices of inner products, all of which can support infinitesi-

mal rotations as well as permit non-trivial dynamics.In the usual case, Poincare invariance

is additionally invoked to uniquely single out the Fock representation [48]. The analysis

of the various possibilities remains an open issue.

We have not considered Fermions or gauge fields in this analysis. We have only consid-

ered scalar field theory where ‘point holonomies’ are the basic functions generating the

commutative C∗ algebra. Fermions are similar to point holonomies as far as the label sets

are concerned. For gauge fields, we will have the Hpoly := Hkin with the basis labeled

by discrete labels. Hence the analogues of (V, ~λ) will now have embedded graphs and

representation labels of the gauge group. One will have to impart a ‘manifold structure’

for these spaces of labels to attempt a definition of infinitesimal generators in the manner

discussed above. This is another avenue to be explored.

We would also like to draw a parallel with recent work on polymer quantization of

parametrized field theory (PFT) [49, 50, 51]. Parametrized field theories are field theories

with a background geometry which however are presented in diffeomorphism covariant

form by promoting the background coordinates to fields. The diffeomorphism covari-

ance introduces constraints and the physical sector of the theory is the old theory with

a background. Let’s consider for definiteness a free field theory on the flat Minkowski

space-time and its parametrized form. In the non-parametrized form, isometries of the

Minkowski metric are the symmetries of the theory. One may choose the usual Fock quan-

tization and see the representations of the infinitesimal symmetries. In the parametrized

form however, the diffeomorphism covariance would suggest polymer quantization, not

just for the embedding variables but also for the scalar field. One can now ask, how the

isometries are represented in such a quantization.

If we insist that Dirac quantization of the PFT should produce a physical sector which
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is same as the quantized non-parametrized theory and it is possible to realise this, then

the quantization of the matter sector chosen in the non-parametrized form will already

determine the symmetry realization, regardless of its parametrized version. However, it is

conceivable that that there is a (different) Dirac quantization of the polymer quantized PFT

such that the physical states carry the usual Fock representation. There is no definitive

statement available on this as yet1. Such a possibility could be quite relevant for LQG, at

least in a ‘semiclassical approximation’. This is one context in which the discussion of

this work, especially the Cyl∗ alternative, could be directly relevant.

Finally, let us note that the constructions can be carried out in any dimension, for any

group - in particular the Lorentz or Poincare groups - with the same qualitative conclu-

sions: unitary, discontinuous representation of the group2, non-existence of infinitesimal

generators, non-existence of an invariant dynamics which is both non-trivial and physi-

cally acceptable and subspaces of Cyl∗ as possible arenas for further searches of accept-

able models.

5.2 Outlook on Path Integral Representation of Polymer

Quantized Scalar Field Theory

The most important open issue for polymer quantized scalar field theory is the construc-

tion of a perturbative framework which will enable us to obtain predictions from polymer

quantized Scalar field theory. We highlight the challenges to this and discuss our efforts

to overcome them in this section.

We saw that the path integral representation for the polymer quantized scalar field theory

1In two dimensional space-time, R × S 1, the work of Laddha and Madhavan [51], obtains the isometry
group being spontaneously broken to its discrete subgroup.

2When we speak of discontinuity of representations of Lorentz or Poincare groups what we mean is that
the rotational subgroup of these groups will be discontinuously represented.
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is given by:

Z =

∫
[Dφ]eiS (5.1)

where

S =

∫
dxdt

1
2

(φ̇2
− (∇φ)2(cosµφ)2 − m2(sin2 (µφ)/µ2)) (5.2)

We would like to obtain a perturbation expansion for this integral, proceeding order by

order in µ. One might think of expanding the sine and cosine terms in a power series ex-

pansion and then assembling the series in orders of µ. One can easily see that this would

give the free Klein Gordon Lagrangian in the zeroth order in µ and an infinite series of ’in-

teraction terms’ in higher powers in µ. One might want to adopt the strategy of truncating

the series at some finite order in µ - this would now look like a standard Schrodinger path

integral for a scalar field with some interaction terms - and follow the standard derivation

to obtain a perturbative series in Feynman diagrams. There are however two problems

with this strategy. First, truncating the series expansion of the Lagrangian at any finite or-

der would mean that the periodic symmetry of the action will disappear. Thus we would

miss out on any physical predictions that would have come as consequences of this sym-

metry encoding the underlying polymer representation. Second, the standard strategy is

convenient for perturbatively calculating, say, a term like
∫

[Dφ]φ(x)φ(y)eiS which comes

〈φ(x)φ(y)〉. In the polymer theory field operators are replaced by approximate field oper-

ators, and for instance a 2 point correlator of approximate field operators would have a

path integral expression
∫

[Dφ] sin (µφ(x))
µ

sin (µφ(y))
µ

eiS .

To get around this issues we could try to to recast the path integral in terms of a new

variable χ:

χ = sin(µφ)/µ = φµ

In terms of χ the path integral reads:

Z =

∫
[Dχ]µeiS (5.3)
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where ∫
[Dχ]µ =

∏
x

∫ 1/µ

−1/µ
dχ(x) (5.4)

and

S =

∫
dxdt(1 − µ2χ2)−1(χ̇)2 − (∇χ)2 − m2χ2 −

1
2

ln(1 + µ2χ2) (5.5)

The log term that appears in the action originates from the change of the integration

measure due to the change in variables. We note that in terms of χ variables, the action

is no longer periodic but the field is now bounded and so the integration now proceeds

from −1/µ to 1/µ instead of −∞ to∞ as in the usual case. Since the periodicity has been

’absorbed’, we can now proceed to expand the Lagrangian in a power series and truncate

to some finite order. We expand the Lagrangian as a power series in µ -

L = L0 + µ2L
(1)
I + µ4L

(2)
I + ... (5.6)

where

L0 = (χ̇)2 − (∇χ)2 − m2χ2 (5.7)

L
(1)
I = χ2χ̇2 − χ2/2 (5.8)

L
(2)
I = χ4χ̇2 + χ4/4 (5.9)

Here one notes that theL0 term is Lorentz invariant and Lorentz violation comes from the

time-derivative terms that appear in the coefficients of higher powers of µ. Next, one takes

the usual step of expanding the exponential in a power series in the ’interaction terms’.

We can then re-order the obtained series in powers of µ:

Z =

∫
[Dχµ] ei

∫
dxdtL0

1 + µ2
∫

dxdtL(1)
I + µ4

(∫
dxdtL(1)

I

)2

+ ...

1 + µ4
∫

dxdtL(2)
I + µ8

(∫
dxdtL(2)

I

)2

+ ...

 ....
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=

∫
[Dχµ]ei

∫
dxdtL0

1 + µ2
∫

dxdtL(1)
I + +µ4

∫ dxdtL(2)
I +

(∫
dxdtL(1)

I

)2 + .....


(5.10)

To proceed with perturbative calculations the standard step is to introduce:

Z[J] =

∫
[Dχµ]ei

∫
L+Jχ

Now an n point correlator in the approximate field operators can be written as:

〈χ(x1)...χ(xn)〉 =
1

Z[0]

(
δ

δJ(x1)

)
...

(
δ

δJ(xn)

)
Z[J]|J=0 (5.11)

One similarly introduces

Z0[J] =

∫
[Dχµ]ei

∫
L0+Jχ =

∫
[Dχµ]ei

∫
(χ̇)2−(∇χ)2−m2χ2+Jχ (5.12)

To carry out a perturbative calculation for any n-point correlation function up to any order

in µ all one needs to be able to do is obtain functional derivatives of Z0[J] with J, because

any term appearing in the perturbative series can always be written in terms of such a

derivative.

In the Schrodinger case, it is easy to evaluate the functional dependence of Z0[J] on J. One

has the term
∫

[Dφ]ei
∫

(φ̇)2−(∇φ)2−m2φ2+Jφ where one can complete the squares and carry out

a Gaussian integral over the field variable to obtain a term whose functional dependence

on J is of the form e−
i
2

∫ ∫
J(x)DF (x−y)J(y) where DF(x − y) is the usual Feynman propagator.

A consequence of this particular form of functional dependence is that the terms in the

perturbation series - which are obtained by taking derivatives of this term with respect to

J and evaluating at J=0 - admit a diagrammatic representation in terms of vertices and

propagators. Here in the polymer case, operations of completing the square and carrying

out the Gaussian integral are not feasible because of the bounded nature of the field χ.
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However it should be possible to calculate functional derivatives on 5.12 and obtain a

perturbative series. One notes that such a series would not have the usual diagrammatic

interpretation in terms of vertices and propagators. Evaluation of this series remains an

important open issue.

To summarise, we saw that while the path integral representation for the polymer quan-

tized field theory has a close formal resemblance with the usual path integral represen-

tation of the Schrodinger quantized theory, there are important differences as well. In

particular, the action that appears in the path integral representation of the polymer scalar

field theory is periodic in the field variable. As a result of this property, the usual deriva-

tion of a perturbative series from the path integral representation does not go through. We

have outlined here an approach to deriving a perturbation series that appears appropriate

for the polymer path integral, but more work remains to be done. We expect that further

investigation of this question will help illuminate the possibly deep differences between

polymer and Schrodinger quantizations.
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Appendix A: The Kinematical Hilbert

Space in Loop Quantum

Gravity

In this section we sketch the construction of the Kinematical Hilbert Space in LQG. We

eschew all proofs and details and focus instead on a schematic presentation. The interested

reader is referred to [1, 2, 3] for the details. We use the notation of [29], whose treatment

we closely follow.

The starting point for LQG is a re-formulation of General Relativity as a theory of con-

nections. The phase space consists of pairs of fields (A, E) on a 3-manifold Σ, whereAi
a

are connection 1-forms which take values and Ea
i are the triad variables. The Ai

a take

values in the Lie Algebra su(2) while the triads take value in its dual. The basic observ-

ables in the quantum theory are however not the connection or the triads. Instead they are

taken to be the holonomies Ae along paths e defined by A (these will take values in the

group SU(2)and fluxes ES of the triads across 2-surfaces. That is to say, one looks for a

representation of the Poisson bracket algebra of the holonomy and flux variables to obtain

a quantum theory.

To obtain the Hilbert Space one first defines a space Cyl of functions of connection. To

define Cyl one first fixes a closed, analytic graph γ on the 3-manifold Σ . Let the graph

have N edges 1,...,N. A given connection Ai
a will associate to each edge e a holonomy
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Ae. Let us consider the N-tuples (A1, . . . ,AN). These will take value in SU(2)N . We call

the space of all such N-tuplesAγ. This space is isomorphic to SU(2)N . Now we construct

a function Ψ on a given connectionA such that

Ψ(A) = ψ(A1, . . . ,AN).

where ψ is a smooth function on SU(2)N . Such functions are called cylindrical functions

(on the graph γ) and the space of all such functions is defined to be Cylγ.

Now one considers all possible graphs γ and defines the space Cyl of all cylindrical func-

tions as

Cyl =
⋃
γ

Cylγ.

To construct a Hilbert Space we must define an inner product on Cyl. There is a natural

definition coming from the fact that Cylγ is isomorphic to the space of smooth functions

on SU(2)N . One may then use the Haar measure on SU(2)N to induce a measure µ(N)
H on

Aγ and define an inner product:

(Ψ1,Ψ2) =

∫
Aγ

ψ̄1 ψ2 dµ(N)
H

where Ψ1,Ψ2 are functions on Cyl. This works for the entire space Cyl because we can

always find a graph big enough to support any two functions.

Cauchy completing Cyl with respect to this inner product leads us to the Kinematical

Hilbert Space HKin. This is a non-separable Hilbert Space since the graphs give an un-

countable basis. We also have the natural Gelfand Triple Cyl ⊂ HKin ⊂ Cyl* where Cyl*

is the algebraic dual Cyl*. It is easy to show that the inner product is invariant under

spatial diffeomorphisms, thus leading to a unitary representation of finite spatial diffeo-
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morphisms. Diffeomorphism invariant states may also be constructed, but they live not in

Cyl, but in the dual Cyl*. This is where the space Cyl* plays an important role in LQG.
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