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Synopsis

Introduction: Nature has many fundamental symmetries and corresponding symmetry

operations; such as translations in spacetime, rotation in space, uniform velocity along a

straight line (or Lorentz transformation), space-inversion (or parity P), time reversal T ,

interchange of identical bosons (or Bose symmetry), interchange of identical fermions (or

Fermi antisymmetry), quantum-mechanical phase, matter-antimatter exchange (or charge

conjugation C), the combined operations of charge conjugation, parity and time-reversal

(CP and CPT ). Symmetries not only help in the formulation of underlying physical laws

but also provide an understanding of their mechanism. Therefore, the concept of symme-

try have occupied the central role in our search for and eventual formulation of various

fundamental laws of physics. It is not only very important to look for new symmetries of

Nature, but it is also important to find out violations of existing symmetries. A quantita-

tive estimate of the violation of a symmetry measures the extent to which the concerned

symmetry operation can be applied.

Motivation: In this thesis we are concerned with violations of some fundamental sym-

metries in the realm of elementary particles, namely, Bose symmetry, the combined op-

erations of charge conjugation and parity (and time-reversal), and the SU(3) flavor sym-

metry. These four symmetries influence various elementary particle processes. So by

studying some specific particle processes one can look for signatures of violations of

these symmetries. In particular, we carefully exploit those particle processes which have

three or more particles (mostly mesons) in their final states. For three-body decays, it

is well know that the phase-space plot or Dalitz plot has a lot of information about the

underlying dynamics [1–4]. Multi-body decays (with more than three final particles) can

be treated as some effective three-body decay by introducing ‘effective’ particles [5]. In

xxi



this case the concept of Dalitz plot can be generalized to a three-dimensional plot which

has a prism-like appearance suggesting that ‘Dalitz prism’ might be an apt name for this

plot [6]. In some specific decay modes, violations of the symmetries under our consid-

eration leave their mark on the Dalitz plot and Dalitz prism, as an observable asymmetry

in the distribution of events. Measuring these asymmetries would, therefore, provide

quantitative estimates of the extent of breaking of the symmetries under consideration.

Additionally, the Dalitz prism would help in gathering a huge amount of data that would

help in a better quantitative estimation of the violation of the symmetry under considera-

tion.

CP violation: The predominance of matter over anti-matter in our observable universe

necessitates that some fundamental law of nature must violate the CP symmetry [7].

It is observed that in the weak decays of K and B mesons [8–15], the CP symmetry

is indeed violated. In the standard model of particle physics (SM), these observed CP

violations can be very well accounted for by the Kobayashi-Maskawa mechanism [5].

It also well known that the CP violation predicted by SM fails to explain the observed

baryon asymmetry in our universe. Thus we must search for new sources ofCP violation.

SM predicts very small CP violation in the D meson sector, and experimental data are

yet inconclusive about their size. New methods for observingCP violation are, therefore,

most welcome. It was shown in Ref. [16,17] that for untagged neutral B meson decays

to certain three-body, self-conjugate, hadronic final states, direct CP violation would

appear as an asymmetry in the Dalitz plot. In Ref. [18] we have shown it explicitly, that

for processes of the type B → D0D̄0X , where X can be π or K and both D0 and D̄0

are reconstructed from flavor insensitive but distinct final states of same CP, any direct

CP violation in the neutral D meson decays would appear as an asymmetry in the Dalitz

plot under D0 and D̄0 exchange. When the two neutral D mesons are reconstructed

from final states of identical CP, they are fully Bose symmetric to one another under

xxii



full CP symmetry. This would require that the Dalitz plot be symmetric under D0 and

D̄0 exchange. Once CP violation is allowed, there is no longer any Bose symmetry, and

hence the Dalitz plot would exhibit asymmetry under D0 and D̄0 exchange. In Ref. [18]

it is shown that the asymmetry in the Dalitz plot is proportional to the difference in the

direct CP violation parameters for the two D decays in the final state. Since the parent

particle has no role here, continuum production of cc̄ can also be taken into consideration.

Including such production processes would help in increasing the statistics of the events

and hence the precision of theCP violation parameters being probed would get enhanced.

CPT violation: CPT symmetry is one of the most fundamental symmetries of nature.

Even though CP is violated in some weak decays, CPT is assumed to be fully conserved

in all interactions. It was shown in Ref. [19,20] that in any interacting field theory, CPT

violation invariably leads to associated breakdown of Lorentz invariance. We shall, how-

ever, not dwell upon the Lorentz violation in our discussion. In Ref. [6], it is shown that

for three-body processes happening via either strong or electromagnetic interactions (in

which CP is conserved) with self-conjugate, hadronic final states and two of the final

particles being CP conjugate of one another, the Dalitz plot must be symmetric under

exchange of the two particles. Any asymmetry in the Dalitz plot under the said exchange

can happen, if CPT is violated (assuming CP is still conserved) or if CP is violated

(assuming CPT holds good) or if both CP and CPT are violated. In Ref. [6], we in-

troduce some CPT violating parameters and show that the asymmetry in the Dalitz plot

is directly proportional to these. Finding an asymmetry in such a Dalitz plot is the best

signature of new physics, since in these decay modes we do not expect any CP violation,

and CPT itself is a very robust symmetry. Since we expect this violation to be extremely

small, the precision required in the measurement would demand a gargantuan amount

of events to be studied. The decay modes which one can use to look for CPT violation

are J/ψ → Nπ+π−, where N can be π0, ω, η, φ, ωπ0, pp̄, nn̄, π0K+K− , ηK+K− etc. For
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multi-body (> 3) decays which can be treated as effective three-body decays, the Dalitz

plot can be generalized to a three dimensional plot which is equivalent to stacking up

one Dalitz plot after another with increasing center-of-momentum energy. Since this plot

resembles a prism we call it as ‘Dalitz prism’. This Dalitz prism can now acquire im-

mense number of events. For the purpose of our analysis, we take the projection of the

full Dalitz prism onto its base and then look for any asymmetry in it under π+ ↔ π−

exchange.

Bose symmetry violation: Bose symmetry is another cornerstone of modern physics.

Bose symmetry tells that a state made up of two identical bosons (particles with integer

spin quantum numbers) remains the same when the two bosons are exchanged [21]. Bose

symmetry is, in general, true for bosons which are stable. Nevertheless, it is used in

particle physics to include unstable mesons also. Therefore, it is only pertinent to look

for violations of Bose symmetry in mesons which are also composite particles. In Ref. [6]

we consider a few three-body decays (all final particles are mesons) in which a minimum

of two final particles are the same but they decay via different decay channels. If the

two mesons were Bose symmetric, the Dalitz plot would remain symmetric under their

exchange. Conversely, any asymmetry in the Dalitz plot under the exchange of the two

particles is a tell-tale signature of Bose symmetry violation. One example of such a decay

mode is B0 → 3K0
S
, in which two of the the K0

S
’s are reconstructed from π+π− and the

remaining K0
S

is reconstructed from π0π0. For this particular case, only half of the Dalitz

plot can be obtained and all the three sextants of the Dalitz plot contained in this half

would have to be symmetric with respect to one another. Any deviation would constitute

a signature of violation of Bose symmetry.

Breaking of SU(3) flavor symmetry: SU(3) flavor symmetry is not an exact symme-

try of nature. From its first proposal to explain light hadronic states in the eightfold
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way [22–26], it has always been considered to be broken in order to account for the mass

differences amongst the hadronic states it relates. Full SU(3) flavor symmetry implies

that the up (u), down (d) and strange (s) quarks are identical. Hence, under full SU(3)

flavor symmetry these quarks can be exchanged with each other without affecting any

physical observable. However, the mass difference between s quark and either of u or d

quarks is substantial, the quarks u and d do not have same electric charge, and thus these

quarks are not fully exchangeable with one another resulting in many observables which

are sensitive to the SU(3) flavor symmetry breaking. Nevertheless, an accurate quantita-

tive estimate of SU(3) flavor breaking has not been accomplished. In Ref. [27] we give

a model independent prescription for quantitative estimation of SU(3) flavor symmetry

breaking using the Dalitz plots for a few specific kind of three-body decays. We know that

the SU(3) flavor symmetry has three non-commuting SU(2) subgroups, namely, isospin,

U-spin and V -spin. We consider only those three-body decays in which the final mesons

are kaons or pions and particles inside two pairs of the final three mesons are connected

to one another by two distinct SU(2) symmetries. Since full SU(3) flavor symmetry im-

plies that all the three SU(2) symmetries are individually and simultaneously valid, the

Dalitz plot for the modes can be shown to have either fully symmetric distribution or fully

anti-symmetric distribution. This implies that the alternate sextants of the Dalitz plot are

identical to one another. Any deviation from this observation would constitute a violation

of full SU(3) flavor symmetry. In Ref. [27] we provide asymmetries which can quantify

this violation.

Conclusion: In Ref. [6,18,27] we have provided new methods to look for violations of

CP, CPT , Bose and SU(3) flavor symmetries by using Dalitz plots and the new method

of Dalitz prisms. These symmetries play some of the very vital roles in particle physics

and any unusual violation of these symmetries would point out various new physics pos-

sibilities. Therefore, it would not be overemphasizing to belabour the point that accurate
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quantitative estimates of these symmetry violations constitute a significant step forward

in our search for new physics.
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0
An Invitation to the Thesis

The immensely familiar but subtle concept of symmetry pervades our deepest understand-

ing of Nature and is central to contemporary mathematics and physics. This thesis looks

at some of the fundamental symmetries of Nature which are revealed in the realm of el-

ementary particles and investigates how violations of these symmetries can be observed

in some specific elementary particle processes.

The thesis is divided into five parts. Part I introduces the relevant background materials in

two chapters. Chapter 1 provides a very concise introduction to the concept of symmetry

as applied to physical laws and also introduces very briefly the symmetries of interest to

this thesis, namely the Bose symmetry, CP and CPT symmetries and the flavor SU(3)

symmetry. Chapter 2 gives a concise description of the concept of Dalitz plot and finally

introduces the kind of Dalitz plot that would be useful in our study of the violations of

the symmetries.

Part II gives in detail all the original findings of this thesis in two chapters. Chapter 3

generalizes the concept of Dalitz plot to a three-dimensional plot, christened as Dalitz

prism, which not only handles resonant three-body decays but also continuum production

of three final particles and multi-body processes which can be treated as “effective” three-

body processes. Thus, it works as a precision tool for looking at minute violations of

1
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symmetry, as it is rich with data by construction. In Chapter 4 we analyze in detail the

signatures of all the symmetry violations under consideration in Dalitz plots and Dalitz

prisms. Here various relevant Dalitz plot asymmetries are provided which would quantify

the extent of breaking of our chosen symmetries.

Part III contains Chapter 5 which succinctly summarizes the research findings of

Part II. This is followed by Part IV which contains the appendices. Appendix A de-

scribes in some detail a few concepts in flavor SU(3) symmetry including introduction of

two new G-parities. Appendix B summarizes the concept of ternary plot which is used

in Chapter 2 to develop the Dalitz plot that would be helpful in Chapter 4. Finally Part V

lists all the references and provides an index.

Nature and Nature’s symmetry

Are as charming as any poetry.

The Physicist loves to ponder

A little over symmetry’s wonder.

“From the farthest stars to the tiniest quarks,

How does symmetry rule over Nature’s works?”

On beings animate to inanimate

Symmetry’s spell is immaculate.

The Physicist finds and thinks

About symmetry’s cracks and kinks.

“From the farthest stars to the tiniest quarks,

How does symmetry break in Nature’s works?”

The Physicist’s tryst with symmetry,

Has facilitated our pleasant entry,

Into the great grand treasury,

Of Nature’s beautiful wizardry.

– An Ode to Symmetry

Dibyakrupa Sahoo



Part I
Introduction

In this part we shall briefly discuss the background materials upon

which the research findings of Part II are based. In Chapter 1 we shall

briefly explore the concept of symmetry in physical laws, its mathemat-

ical implementation and some symmetries that are of immediate inter-

est to this thesis. In Chapter 2 we shall make a tour of the Dalitz plot

technique used in three-body decays with the motive to improve upon

this method and to use them for our study of violations of fundamental

symmetries.

3





1
Symmetry in a nutshell

Symmetry is ubiquitous in Nature. Its obvious simplicity and profound subtlety fasci-

nates the human mind. A spherical ball, a flower, a butterfly, the snowflakes, the five

Platonic solids: tetrahedron, cube, octahedron, dodecahedron, and icosahedron are some

out of the many objects that spring up in our mind when we hear the word symmetry.

Nature has such a vast repertoire of objects with all sorts of geometric symmetries, that it

would be foolish and insane to list them. Moreover, the kind of symmetry we are going

to dwell upon in the next few pages is not a symmetry of objects of Nature, but the sym-

metry in the physical laws that govern some phenomena in the physical world1. Unlike

the geometrical symmetries of material objects, the symmetries in physical laws are not

perceptible by our sensory organs. Hence, the precise notion of such a symmetry needs

to be carefully articulated.

1No physical law is permanent, they are all provisional, i.e. they are approximate statements about
the ways Nature works to a fairly high degree of accuracy and are subject to modification or replacement
whenever some better explanation is discovered. In this sense all the symmetries of physical laws are also
provisional.

5
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1.1 What is symmetry in physical laws?

The German mathematician and physicist Hermann Weyl in the preface of his book Sym-

metry [1] gives the generalized idea of symmetry as

“ . . . that of invariance of a configuration of elements under a group of

automorphic transformations.”

Richard P. Feynman interprets Weyl’s definition of symmetry in the following manner in

his Lectures on Physics [2]:

“. . . a thing is symmetrical if one can subject it to a certain operation and

it appears exactly the same after the operation.”

The same tone resonates when Dave Goldberg writes in the introduction of his book The

Universe in the Rearview Mirror [3]2:

“A thing is symmetrical if there is something you can do to it so that after

you have finished doing it, it looks the same as before.”

It must be noted that there are three vital aspects to symmetry as defined above:

1. An object (‘. . . a configuration of elements . . . ’ or ‘A thing . . . ’) whose symmetry

is the subject of our curiosity. This can be a geometrical object, a living or non-

living entity, or something as abstract as a physical law.

2. An operation (‘. . . a group of automorphic transformations.’ or ‘. . . certain opera-

tion . . . ’ or ‘. . . something you can do . . . ’) which we call as the symmetry opera-

tion or symmetry transformation. This operation can be something like rotation by

any angle in the plane for a circle, or reflection about any median of an equilateral

triangle, or something like changing the physical situation of some physics experi-

ment such as doing the Michelson-Morley experiment at different locations and in

2R.P. Feynman utters almost the same words in his book The Character of Physical Law [4]: “. . . a thing
is symmetrical if there is something that you can do to it so that after you have finished doing it it looks the
same as it did before.”
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several seasons on the earth. Steven Weinberg in his book The Quantum Theory of

Fields, Vol. I Foundations [5] defines symmetry transformation as follows:

“A symmetry transformation is a change in our point of view that does

not change the results of possible experiments.”

3. An observable (‘. . . invariance of . . . ’ or ‘. . . it appears exactly the same . . . ’

or ‘. . . it looks the same as before.’) which we study for quantitative variation

under the symmetry operation. For the geometrical objects such as a circle or a

triangle, the shape or appearance of the object itself is the observable. However,

for a physics experiment it is the observed phenomenon, such as for the Michelson-

Morley experiment the observable is the shift in the observed interference pattern.

Weyl’s statement about symmetry, however, has one hidden but important aspect which

gets manifest in both Feynman’s and Goldberg’s versions: the observer (‘. . . one can . . . ’

or ‘. . . you can . . . ’) which always denotes an unbiased, competent experimenter. Where

possible the human aspect can always be dispensed with quantitative experimental ob-

servations, otherwise known as data. Therefore, drawing inspiration from Weyl, one can

define symmetry in physical laws as follows:

“A physical law is said to have a certain symmetry, if all unbiased, com-

petent observations agree that the experimental observable remains in-

variant under the appropriate symmetry operation.”

The definition of symmetry in physical laws as given above is from an experimenter’s

point of view. The theorist’s point of view has its foundations in the deeper mathematical

aspects of symmetry and it must be in concurrence with that of the experimenter if the

physical law has to describe some natural phenomena. From the theorist’s point of view:

“A physical law is said to have certain symmetry, if the equation describ-

ing the law retains its form (i.e. it is covariant) under the appropriate

symmetry transformation.”
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Or as Steven Weinberg observes in his article “Symmetry: A ‘Key to Nature’s Secrets’ ”

[6]:

“A law of nature can be said to respect a certain symmetry if that law

remains the same when we change the point of view from which we ob-

serve natural phenomena in certain definite ways. The particular set of

ways that we can change our point of view without changing the law

defines the symmetry.”

In order to get a better understanding of the symmetry in physical laws, it is only pertinent

that we analyse the various symmetry operations or transformations (the various “points

of view”) that have been explored by the theoretical physicists over the years. The profit

of having an understanding of the symmetries of physical laws would also be clear from

such analyses.

1.2 Classification of symmetries and symmetry operations

There are many transformations which keep various physical phenomena invariant. These

transformations affect the variables of the equation describing the law in some appropri-

ate manner. If the equation retains its form, then the law is said to have the particular

symmetry under consideration. The various symmetry operations and, therefore, the var-

ious associated symmetries can be classified in many different ways [7]:

• If the symmetry transformation makes continuous (i.e. infinitesimally small) changes

in the variables, it is called a continuous symmetry operation. When the transfor-

mation allows only certain discrete values for the variables, the symmetry operation

is called discrete.

• There are some symmetry transformations which affect the space and time coordi-

nates. These are usually called spacetime or spatio-temporal symmetry operations.
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The non-spacetime symmetry operations (i.e. the ones where the variables are not

spacetime coordinates), are called as the internal symmetry operations.

• If in some symmetry transformation the variables are independent of space and time

coordinates, such transformations are called global symmetry operations. However,

if the variables are dependent on space and time coordinates, the transformation is

called local symmetry operation.

There exists a certain degree of quantitative mismatch in the symmetries proposed by the

theorists and those observed by experimenters in many natural phenomena. This allows

a further classification of symmetries and symmetry operations.

• A certain symmetry and the corresponding symmetry operation can be exact (or

perfect), approximate (or imperfect), or broken, depending on the extent to which

the theoretical ideas are supported by the experimental evidences. An exact or

perfect symmetry applies well in all natural phenomena without any fail. An ap-

proximate or imperfect symmetry has some domain of validity, i.e. it is a symmetry

of Nature manifest only in some specific natural phenomena. The concept of bro-

ken symmetry is more complicated than the other two. A symmetry would be said

to be broken, if it no longer is a symmetry of the specific system in the specific case

under consideration, but which would have been a perfect symmetry of the system

in some completely different situation.

There are a lot other aspects of symmetry operations, which we have not yet considered:

1. Subject of symmetry operation: In case of symmetries in physical laws, the subject

of operation for symmetry transformations can be equations of motion (equiva-

lently Lagrangian or Hamiltonian), boundary conditions of the problem, or the so-

lutions (such as wave functions or states or fields) themselves. It might also include
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everything stated here. It is possible that a symmetry of the equations of motion

would be different from the symmetry of the solutions.

2. Scale of symmetry operation: A system or a natural phenomenon might exhibit

a multitude of nuances in its behaviour when some variable (known as the scale

variable) of the system or phenomenon is varied. The equations describing the sys-

tem or phenomenon must, therefore, evolve appropriately along the scale variable

under consideration. In such cases, symmetry and symmetry operations are clearly

defined at some given scale. The symmetries might also evolve along the variation

of the scale.

3. Nature of symmetry operation: The symmetry operations can be classical or quan-

tum mechanical by nature. Of course, there are some symmetry operations which

are valid in both the classical and the quantum regime.

These aspects of symmetry help in a finer understanding of the broken symmetries and

their further classification. If the Lagrangian or the Hamiltonian of a system or a phe-

nomenon remains invariant under a given symmetry transformation except in the case of

a specific situation, then the symmetry is said to be explicitly broken for the system in

that particular situation. If the Lagrangian or the Hamiltonian of a system is symmetric

under a certain symmetry transformation, but the solutions of the system, i.e. the wave

functions or states or fields, lack that symmetry, then the symmetry under consideration

is said to be spontaneously broken. If a system in its classical description has a symmetry

but not in the corresponding quantum mechanical description, then that symmetry is said

to be anomalously broken.

There is one very important symmetry transformation we have missed in the above

discussion. In quantum field theory a continuous, internal, local symmetry transformation

which keeps the Lagrangian invariant is christened as a gauge symmetry operation and

the corresponding symmetry is called gauge symmetry. In his article on “The role of
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symmetry in fundamental physics” [14] David J. Gross provides the following insight on

gauge symmetries:

“Gauge symmetries are formulated only in terms of the laws of nature; the

application of the symmetry transformation merely changes our descrip-

tion of the same physical situation, does not lead to a different physical

situation.”

This can be easily contrasted with global symmetries which lead to different physical

situations without affecting any observation made on the system. Gauge symmetries

play a very central role in quantum field theory and in our understanding of interactions

amongst the elementary particles.

There is another kind of symmetry one comes across in the study of quantum field

theories, namely conformal symmetry. Conformal symmetry deals with such spacetime

coordinate transformations (aptly called conformal transformations) which result in only

a positive rescaling of the metric (the distance function). There is a whole branch of field

theories named conformal field theories which deal with conformal symmetries.

Some of the widely encountered symmetries in physics are listed in Table 1.1. We

shall now briefly discuss the various properties of symmetry operations and how they

are treated mathematically. This has revolutionized the way we explore any physical

phenomenon.

1.3 Mathematical treatment of symmetry operations

All valid symmetry operations are found to satisfy the following four fundamental prop-

erties [8]:

(S.1) application of two symmetry operations is also another symmetry operation (i.e.

the symmetry operations are said to close),
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Symmetry transformation Category

Translation in space

Continuous symmetry

Translation in time

Rotation in space

Uniform velocity along a certain direction

(Lorentz transformation)

Matter-antimatter exchange (charge conjugation or C)

Discrete symmetrySpace-inversion (parity or P)

Time reversal (T )

Interchange of identical bosons

(Bose-Einstein statistics or Bose symmetry) Permutation symmetry

Interchange of identical fermions (or commutative symmetry)

(Fermi-Dirac statistics or Fermi antisymmetry)

Quantum-mechanical phase (phase symmetry orU(1))

Gauge symmetryCharged lepton-neutrino symmetry (SU(2)L)

Quark color symmetry (SU(3)color)

Quark flavor symmetry (SU(3)flavor) Global symmetry

Table 1.1: Some symmetry operations frequently used in particle physics.
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(S.2) application of the same set of three symmetry operations gives the same result

whether two symmetry operations follow one symmetry operation, or one symme-

try operation follows two symmetry operations, as long as the same sequence is

maintained (i.e. the symmetry operations are said to be associative),

(S.3) there exists a symmetry operation, called identity transformation, which does not

affect anything,

(S.4) for any symmetry operation there exists another symmetry operation, its inverse

transformation, which nullifies (or reverses) its effect.

It is important to note that the sequence of combination of two symmetry operations

is very important, and, in general, the final symmetry operation is different when the

sequences are different.

All the above seemingly innocuous conditions are the foundational basis of an ex-

tremely rich mathematical concept called group theory. A set G = {g1, g2, . . . , gi , . . .} is

said to form a group under a group operation (also known as group composition or group

multiplication), denoted simply by juxtaposition of the group elements, if the following

properties are satisfied:

(G.1) Closure: For any gi , g j ∈ G, there exists a unique gk ∈ G such that gig j = gk .

(G.2) Associativity: For any gi , g j , gk ∈ G the group operation is associative, i.e. gi(g jgk) =

(gig j)gk .

(G.3) Existence of identity element: There exists a unique element 1 ∈ G, the identity

element, such that for any gi ∈ G, 1gi = gi1 = gi .

(G.4) Existence of inverse elements: For any gi ∈ G, there exists a unique element

(gi)−1 ∈ G, the inverse of gi , such that gi(gi)−1 = 1 = (gi)−1gi .
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Furthermore, if the group G satisfies the commutativity property, which states that for

any gi , g j ∈ G, gig j = g jgi , then G is said to be a commutative or an Abelian group,

after the great Norwegian mathematician Niels Henrik Abel. Any group which does not

satisfy commutativity property is called a non-Abelian group. The order of a group is the

total number of distinct elements (or ‘cardinality’) of the group. It can be either finite or

infinite; accordingly the group is said to be either a finite group or an infinite group. An

infinite group with denumerably infinite number of elements is called a discrete group,

and one with non-denumerably infinite number of elements is called a continuous group.

If H is a subset of G (denoted as H ⊆ G) and forms a group under the same group

operation as that of G, then H is called a subgroup of G. The identity element alone and

the whole group itself, are the two ‘trivial’ subgroups of any group. Subgroups play a

very important role in particle physics. Different fundamental particles and the various

interactions amongst them are often related by some fundamental symmetry. However,

the symmetry that manifests in Nature is most often a subgroup of the original symmetry

group. Since subgroups are central to our scheme of things, let us explore them in a little

more detail.

• The subgroup H of group G is said to be a normal subgroup, if Hg = gH , for all

g ∈ G, where Hg = {hg : h ∈ H } and gH = {gh : h ∈ H }, are called cosets,

respectively the right-coset and left-coset of subgroup H with respect to g. Now

Hg = gH implies that for every g ∈ G and h1 ∈ H there exists an element h2 ∈ H

such that h1g = gh2, or gh2g
−1 = h1. In this context, it is useful to introduce

the notion of conjugacy. Two elements gi , g j ∈ G are said to be conjugate to one

another if there exists a gk ∈ G such that g j = gkgig
−1
k

. The set of all elements

of the group G which are conjugate to a given element of G is called a conjugacy

class3. Since for a normal subgroup H we have gHg−1 = H , for any g ∈ G, it

3This is also simply called a class. No two classes of a group have any element in common. Thus we
can decompose a finite group into a finite number of classes. The number of classes possible for a finite
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can be said that all the elements of group G commute with the normal subgroup

H . H is also called an invariant, or self-conjugate subgroup. All subgroups of an

Abelian group are normal subgroups. Once again, the identity element alone and

the whole group G itself are trivial normal subgroups of G. Any subgroup which is

not a normal subgroup is called a non-normal subgroup.

• If G is a finite group and H is a subgroup of G, then the order of H divides the

order of G. (This is known as Lagrange’s theorem.) The set of all distinct right-

cosets Hg (or left-cosets gH) of the subgroup H with respect to an element g ∈ G

is called the right coset space, G/Hr = {Hg : g ∈ G} (or left coset space, G/H l =

{gH : g ∈ G}). When H is an invariant or normal subgroup, the coset space G/H =

G/H l = G/Hr becomes a group and is called as the factor or quotient group of G

by H . The group multiplication of Hg1 and Hg2 for different elements g1, g2 ∈ G,

is given by (Hg1)(Hg2) = H(g1H)g2 = H(Hg1)g2 = (HH)(g1g2) = H(g1g2),

where we have used the fact that H is a normal subgroup.

• The center of a group G, denoted by Z(G), is defined as the set of those elements

of G that commute with all the elements of G: Z(G) = {z ∈ G : ∀g ∈ G, zg = gz}.

The center of group G is always a normal subgroup of G. A centerless group is one

whose center has only the identity element in it.

• Groups that do not have any non-trivial normal subgroups4 are called simple groups.

If G is a simple group and H is a normal subgroup of G, then H is either the

group G itself or it only contains the identity. Simple groups are very fascinat-

ing groups and are considered as the basic building blocks of group theory. One

of the simplest ways to combine groups to produce groups is via the concept

group is a characteristic of the group and is always less than or equal to the order of the group. An Abelian
group of order n has n number of classes.

4Any normal subgroup except the group itself and the identity element alone are called non-trivial
normal subgroups.
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of direct product group. If G and H are two arbitrary groups, then their direct

product group, G × H , has ordered pairs (g, h) as its elements where g ∈ G

and h ∈ H , i.e. G × H = {(g, h) : g ∈ G, h ∈ H }, and the rule for group

multiplication between two elements (g1, h1), (g2, h2) ∈ G × H being given by

(g1, h1)(g2, h2) = (g1g2, h1h2). This can be extended to include many groups. If

G1,G2, . . . ,Gn are a few groups, the direct product group is defined as G1 × G2 ×

. . .Gn = {(g1, g2, . . . , gn) : gi ∈ Gi∀i ∈ {1, 2, . . . , n}}, and the rule for group

multiplication is (g1, g2, . . . , gn)(g′1, g
′
2, . . . , g

′
n) = (g1g

′
1, g2g

′
2, . . . , gng

′
n). In par-

ticle physics, the frequently encountered groups are mostly product groups of some

simple groups.

It is very interesting to find that looking for relationships among various groups is

a very fruitful enterprise. A mapping or function φ from a group G1 to another group

G2, denoted as φ : G1 → G2, is a subset of the direct product group G1 × G2 subject

to the condition that every element g1 ∈ G1 is the first component of one and only one

ordered pair in the subset, i.e. every g1 ∈ G1 is uniquely associated with an element

g2 = φ(g1) ∈ G2. Here G1 is the domain, G2 is the codomain and g2 = φ(g1) is called the

image of g1. Symbolically, the mapping of the element g1 to its image φ(g1) is written

by g1 7→ φ(g1). The set of all elements in the codomain G2 touched by the function

φ : G1 → G2 is called the image of the function φ, denoted as Im(φ) ≡ φ(G1). The

set of elements of domain G1 that get mapped to the identity element of the codomain

G2 is called the kernel of the function, denoted as Ker(φ). It is important to note that a

mapping φ : G1 → G2 can be of the following types:

(i) injective function if ∀g1, g
′
1 ∈ G1, g1 , g′1 =⇒ φ(g1) , φ(g′1),

(ii) surjective function if ∀g2 ∈ G2, ∃g1 ∈ G1, φ(g1) = g2,

(iii) bijective function if φ is both injective and surjective.
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A mapping φ from a group G1 to another group G2 is called a homomorphism if for all

g1, g
′
1 ∈ G1, φ(g1g

′
1) = φ(g1)φ(g′1), i.e. the image of a group multiplication in G1 is

the same as group multiplication of images in G2. The image Im(φ) and kernel Ker(φ)

of a homomorphism φ are subgroups. Moreover, the kernel Ker(φ) is in fact a normal

subgroup. A bijective homomorphism is called an isomorphism. Furthermore, the ho-

momorphism of a group into itself is known as an endomorphism, and the isomorphism

of a group into itself is called an automorphism. An inner automorphism φ of a group

G is the mapping φ : G → G defined as ∀g ∈ G, g 7→ φ(g) = g′g(g′)−1, where g′ is

a fixed element of G. An outer automorphism of a group is one which is not an inner

automorphism. The concept of homomorphism plays a very great role in application of

group theoretic ideas in quantum field theories and hence in elementary particle physics.

This would be clear soon with the introduction of the concept of group representation.

The representation of dimension n of a group G is defined as a homomorphism

T : G → GL(n), where GL(n) is the multiplicative group of non-singular n × n ma-

trices5. If the homomorphism is in fact an isomorphism, the representation is then called

a faithful representation. Every finite group of order n has a faithful representation in

GL(n). However, every finite-dimensional continuous group may not have faithful repre-

sentation in some GL(n). Nevertheless, they do have representations, albeit non-faithful

ones and also locally6, when the global aspects of the group do not concern us. There can

be more than one representation of a given group. Two n-dimensional representations of

a group G, namely T (1) : G → GL(n) and T (2) : G → GL(n), are said to be equivalent

if for all g ∈ G all the matrices T (1)(g) and T (2)(g) are related by the same similarity

transformation: T (1)(g) = ST (2)(g)S−1, where the similar matrix S is independent of g.

There is a way to distinguish between various representations but treat two equivalent

5GL(n) is the general linear group that describes the symmetries of a n-dimensional vector space. If
the vector space is real (or complex), the entries for the GL(n) matrices are all real (or complex) and we
denote the group by GL(n,R) (or GL(n,C)).

6Here locally implies that the elements of the GL(n) matrices are only defined at a given space-time
coordinate and can vary from one space-time point to another.
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representations as the same. This is by the concept of character. The character (χ) of a

n-dimensional representation of a group G, say T : G → GL(n), is the set of traces of

the representation matrices T (g) for all g ∈ G, i.e. χ = {χ(g) = Tr(T (g)) : g ∈ G}. It is

important to note that two equivalent representations have the same character7, and if two

representations have the same character they are definitely equivalent. Now, a represen-

tation of dimension m + n is said to be a reducible representation, if all the matrices of

the representation can be put into the form T (g) =

(
A(g) C(g)

O B(g)

)
,∀g ∈ G, where A(g),

B(g) and C(g) are matrices of dimensions m × m, n × n and m × n respectively, and O is

a null matrix of dimension n × m, for fixed m and n. Here matrices A and B individually

constitute m-dimensional and n-dimensional representations of G respectively. When the

representation is completely reducible or decomposable, C becomes a null matrix giving

T (g) the famous ‘block-diagonal’ form T (g) =

(
A(g) O

O B(g)

)
,∀g ∈ G, and it can be

written as the direct sum of the subrepresentations A(g) and B(g): T (g) = A(g) ⊕ B(g).

A representation is said to be irreducible if it is not reducible. All irreducible represen-

tations of a group can be classified by their characters. A representation is said to be

unitary if all the matrices of the representation are unitary. It is important to note that

every representation of a finite group is not only equivalent to a unitary representation

but also completely reducible. Moreover, the number of irreducible representations of a

finite group is equal to its number of conjugacy classes.

Most of the interesting groups we come across in physics are the Lie groups, named

after the famous Norwegian mathematician Sophus Lie. Lie theory, which deals with Lie

groups and the associated Lie algebras, is the standard formalism for the study of the local

theory of continuous groups. A group G is a Lie group, if every element of G is specified

by a set of real parameters and the parameters of a product element are analytic functions8

of the parameters of the factors. Mathematically, a group G is a Lie group of dimension

7This follows directly from the cyclic property of the trace.
8By analytic parameters we mean that these are differentiable to all orders.
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n (where n is finite), if every element of G is specified by n number of real parameters

(denoted here by αs, βs andγs) in such a way that provided g1 ≡ g1(α1, . . . , αn), and g2 ≡

g2(β1, . . . , βn) are two elements of G and the product g′ = g1g
−1
2 being parametrized as

g′ ≡ g′(γ1, . . . , γn), imply that γi = γi(α1, . . . , αn; β1, . . . , βn) are analytic functions of

the αs and the βs. The parameters are very important, because of the following reasons:

(i) Two elements of the Lie group are same, if and only if their corresponding pa-

rameters are also the same, i.e. g1(α1, . . . , αn) = g2(β1, . . . , βn) if and only if

α1 = β1, . . . , αn = βn,

(ii) The analytic nature of the parameters allows one to study infinitesimal group el-

ements (i.e. elements in the neighbourhood of the identity element) providing the

complete information about the local structure of the group.

If the parameters vary in closed finite intervals, the Lie group is said to be compact.9

The parameters are said to be normal if by putting them to zero, the group element cor-

responds to the identity element, i.e. g(0, . . . , 0) = 1 (1 being the identity element of

the Lie group). The parameters α1, . . . , αn can be thought of as components of a n-

dimensional vector α. Let us consider a representation of the Lie group G, g(α) 7→ T (α)

and T (α)|α=0 = 1 (where 1 is the identity matrix). The elements in the representation

of the n-dimensional Lie group G in the neighbourhood of the identity element can now

be obtained by exponentiation, T (α) = eiαaXa , where Xa ≡ −i
∂
∂αa

T (α)
∣∣∣∣
α=0

is called a

generator of the group and a = 1, . . . , n. The representation thus defined by exponenti-

ation (with the imaginary i included in the exponent) is unitary and the generators of the

group are hermitian and traceless. All the generators of a Lie group form the basis of a

linear vector space. Most importantly, the generators of a Lie group G of dimension n

9The special orthogonal group SO(n) of orthogonal n × n matrices of unit determinant and the special
unitary group SU(n) of unitary n × n matrices of unit determinant are examples of compact Lie groups.
However, the special real linear group SL(n,R), and the special complex linear group SL(n,C) (which are
groups of n × n unimodular (= unit determinant) matrices with real and complex entries respectively) are
non-compact Lie groups.
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are closed under commutation (action of the commutators also known as the Lie brack-

ets), [Xa , Xb] ≡ XaXb − XbXa = i f c
ab
Xc , where we have used the summation convention

(here c is summed from 1 to n) and f c
ab

are real constants called as structure constants

for G. This commutator relation is called the Lie algebra of the group, and is completely

determined by the structure constants. The Lie brackets satisfy the following properties:

(i) [Xa , Xb] = − [Xb , Xa],

(ii) [Xa + Xb , Xc] = [Xa , Xc] + [Xb , Xc], [Xa , Xb + Xc] = [Xa , Xb] + [Xa , Xc],

(iii) [αXa , Xb] = α [Xa , Xb] = [Xa , αXb],

(iv) [Xa , [Xb , Xc]] + [Xb , [Xc , Xa]] + [Xc , [Xa , Xb]] = 0 (Jacobi identity).

The structure constants therefore satisfy the following relationships:

(i) f c
ab

= − f c
ba

,

(ii) f c
ab
f e
cd

+ f c
bd
f eca + f c

da
f e
cb

= 0.

It is important to note that for a simple Lie group G, the structure constants calculated

for the group G are identical to those calculated using any nontrivial representation of

G (i.e. representations in which the generators do not vanish). If all the structure con-

stants are zero, then the group is Abelian, otherwise it is a non-Abelian group. Let us

define some matrices whose elements are the structure constants, [La]bc ≡ −i f cab. These

matrices satisfy the same commutator relation as the one by the generators of the Lie

group: [La , Lb] = i f c
ab
Lc . Thus, the structure constants themselves furnish a represen-

tation of the Lie algebra, which is called the adjoint representation. Since the structure

constants are real, all the generators of the adjoint representation are pure imaginary.

The structure constants also lead to a useful concept, called the Cartan tensor or the

Killing form (or Cartan-Killing form) defined as trace of the product of two generators

gab = Tr (XaXb) = f dac f
c
bd

= gba. In fact, the Cartan-Killing form is proportional to the
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identity matrix: gab = Cδab, where C is a constant which depends on the choice of irre-

ducible representation considered for the Lie algebra. We can now define the structure

constant with all lower indices fabc = f d
ab
δcd = 1

C
f d
ab
f lcm f

m
dl

= − i
C

Tr ([Xa , Xb] Xc), which

explicitly shows that the structure constant is antisymmetric in all three indices. The

constant C here is called the quadratic Casimir operator or Dynkin index. In general, a

Casimir operator is a function F(X) of the group generators Xi that commutes with all

the generators, [F(X), Xi] = 0. A Casimir operator is always proportional to the identity

and the constant of proportionality may depend on the choice of representation.

We have thus far covered most of the group theoretic concepts that are relevant to

understand the symmetries we shall consider in this thesis. Details regarding what has

been discussed above and more information can be found in References [8, 15–25].

Our current understanding of elementary particles is extremely well described by the

so called standard model of particle physics (SM). The foundational basis of SM is a

direct product group of three Lie groups, the gauge group SU(3)c × SU(2)L × U(1)Y ,

where individually SU(3)c describes the strong interaction amongst the various quarks

via exchange of gluons, SU(2)L × U(1)Y describes the electro-weak interaction amongst

the quarks as well as the leptons via exchange of the massive weak gauge bosonsW±, Z0,

and massless photons.

1.4 Symmetry and conservation laws

It is true that symmetry operations act upon the variables of the theory and keep the La-

grangian or Hamiltonian or boundary conditions or the solutions (such as wave functions

or states or fields) invariant. It was proven by the great German mathematician Emmy

Noether in 1918, that if the Lagrangian or Hamiltonian of a system possesses some con-
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tinuous symmetry, then there is an associated conserved quantity10. This is the famous

Noether’s theorem and it essentially provides a conservation law corresponding to the

underlying symmetry. Thus, conservation laws can be directly obtained from symmetry

or invariance principles alone without worrying about the laws of motion. Hence, the

region of applicability of conservation laws is much wider than that of the laws of motion

or the framework of any specific field or theory. Nevertheless, the region of applicability

of conservation laws is as wide as that of the underlying symmetries under considera-

tion. We shall now note down a few well known conservation laws as arising from some

underlying symmetry principles.

(i) That the laws of physics are invariant under translation in space (homogeneity of

space), implies that linear momentum is conserved.

(ii) That the laws of physics are invariant under rotation through a fixed angle in space

(isotropy of space), implies that angular momentum is conserved.

(iii) That the laws of physics are invariant under translation in time (homogeneity of

time), implies that energy is conserved.

(iv) That the laws of physics are invariant under any constant shift of the quantum-

mechanical phase of any wave function or any field implies that some conserved

“charge” (or quantum number) exists.

There is an important aspect in the way conservation laws are to be interpreted. All

conservation laws are formulated as some kind of prohibitory rule and not as a guiding

rule. What this means is that the conservation law prohibits any process or phenomenon

which would change the conserved quantity. In some cases, when one observes that the

experimental data does not allow certain types of processes involving some elementary

10By conserved quantity we mean a quantity which remains unchanged when the system moves or
evolves over time.



1.5. SYMMETRIES THAT ARE OF INTEREST TO THIS THESIS 23

particles, one can, in principle, formulate a conservation law as a law of prohibition

even without knowing anything about the underlying symmetry. Prohibitory nature of

conservation laws is, in deed, reminiscent of the fact that the concept of symmetry always

reduces the number of different possible ways of formulating a theoretical model of the

Nature.

1.5 Symmetries that are of interest to this thesis

In this thesis, we shall look at four specific symmetries: two discrete symmetries, namely,

the combined operations of charge conjugation, parity and time reversal: CP and CPT ;

one permutation or commutative symmetry, namely, the Bose symmetry; and one contin-

uous gauge symmetry, the quark flavor SU(3) symmetry.

1.5.1 Bose symmetry

Bose symmetry [26] states that all measurable quantities of a physical system remain

unchanged when two identical bosons (particles with integer spins) are swapped. Under

Bose symmetry a state made of two identical bosons does not change under exchange

of the two bosons. The bosons follow the Bose-Einstein statistics, which allows more

than one bosons to share the same quantum state. The particles with half-integer spins,

the fermions, follow the Fermi-Dirac statistics [27], which does not allow more than one

fermion to occupy the same quantum state, and moreover the wavefunction for a state

of two fermions picks up a negative sign when the two fermions are swapped. This

goes by the name of Fermi antisymmetry. Both Bose symmetry and Fermi antisymmetry

form one of the cornerstones of modern physics and they are combined into the famous

spin-statistics theorem. Within the conventional Lorentz invariant and local quantum field

theory, even a small violation of this symmetry is quite impossible. There have, therefore,
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been a lot of experimental interest in Bose symmetry violation as a means of testing

the present theoretical framework. Theoretical ideas and experimental investigations for

Bose symmetry violations have looked at the spin-0 nucleus of oxygen 16O [28, 29],

molecules such as 16O2 and CO2 [30–33], photons [34–39], pions [40], Bose symmetry

violating transitions [41–47]. On the theoretical side, a scenario where Bose symmetry

is not exact swings open doors to a plethora of avenues for new physics [48–52]. In

this thesis we shall describe in detail in Chapter 4 how using Dalitz plots (discussed in

Chapter 2) and the new concept of Dalitz prisms (developed in Chapter 3) we can look

for signatures of Bose symmetry violation in some specific three-body processes.

1.5.2 Charge conjugation, parity and time reversal

Charge conjugation (C), parity (P), time reversal (T ) and their combinations CP and

CPT are the most important discrete symmetries in the whole of particle physics. Under

charge conjugation a particle gets exchanged with its corresponding anti-particle (which

has the same mass, spin and lifetime as those of the particle, but opposite sign of electric

charge and magnetic moment). Under parity, or space inversion, all the spatial coordi-

nates get reversed in sign, and under time reversal the time coordinate gets reversed. The

parity operator P when operated twice brings the system back to itself, i.e. P2 = 1, where

1 is the identity operator. Therefore, the eigenvalues of P are ±1. Every elementary par-

ticle has an intrinsic parity, and if it is a composite particle it has extrinsic parity also.

Fermionic particles and their corresponding antiparticles have opposite intrinsic parity.

However bosonic particles and their corresponding antiparticles have the same parity.

Parity is a multiplicative quantum number. So the extrinsic parity of a composite system

in its ground state is the product of the intrinsic parities of its constituents. But when the

composite system is in an excited state with orbital angular momentum l, there is an extra

multiplicative factor of (−1)l . Parity is a good symmetry for electromagnetic and strong
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interactions. But it was pointed out by Tsung Dao Lee and Chen Ning Yang [53] in 1956

and then proven experimentally by Chien-Shiung Wu and her collaborators [54] in 1957

that parity is violated in “the weak” interaction. Similar to parity, the charge conjuga-

tion operator C when operated twice brings the system to itself, i.e. C2 = 1. Hence, the

eigenvalues of C are ±1. However, most particles are not eigenstates of charge conjuga-

tion operator. Only those particles which are antiparticles of themselves, are eigenstates

of charge conjugation. Charge conjugation is also a multiplicative quantum number. A

composite system consisting of a spin-1
2 particle and its antiparticle in a state with total

spin s and orbital angular momentum l is an eigenstate of C with eigenvalue (−1)l+s.

Experimentally charge conjugation is found to be an excellent symmetry for electromag-

netic and strong interactions, but it is not a symmetry for the weak interaction. Neutrinos

which interact only via the weak interaction are observed to be left-handed and all the

anti-neutrinos are found to be right-handed. Since charge-conjugation does not flip the

handedness (but parity does), it is easy to see that the weak interaction does not oblige

charge conjugation symmetry. Moreover, the combined operation of charge conjugation

and parity, i.e. CP is also found to be a good symmetry in electromagnetic and strong in-

teractions, but it is broken in weak interactions. It is well known that one of the Sakharov

conditions [55], so fundamental to the explanation of the observed predominance of mat-

ter over antimatter in our universe, requires that the laws of nature are not invariant under

CP. Indeed CP violation has been well established in the weak decays of K [56] and

B mesons [57–63]. In the standard model of particle physics (SM) CP violation arises

via the Kobayashi-Maskawa mechanism at a level consistent with that observed in the

K mesons and B mesons [13]. However, it is also well known that CP violation in SM

is not enough to account for the observed baryon asymmetry in the universe making it

imperative to search for new sources of CP violation beyond SM. In the SM, CP vio-

lation in the D meson system is expected to be rather small in both mass mixing and in
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direct decays. An observation of sizeable CP violation in D mesons would hence open a

window of opportunity to probe for new sources ofCP violation. This in turn may lead to

a more complete theory of CP violation that furthers our understanding of the observed

baryon asymmetry. It is, however, challenging to observe an unambiguous signal of CP

violation in D mesons. In this thesis we shall develop (in Chapter 4) a new technique

to observe direct CP violation using Bose symmetry and Dalitz plots (or prisms). The

method is completely general and can be applied to study CP violation in D mesons.

Unlike parity and charge conjugation, it is not easy to check time reversal. One of the

methods to check time reversal symmetry is by applying the principle of detailed bal-

ance to forward and backward reactions. But the two reactions are not equally probable

and doing inverse reaction experiments in weak decays is very tough because it is practi-

cally impossible to prepare the system in the precise quantum state needed for the inverse

process. Recently the BaBar collaboration has found an experimental evidence for time

reversal violation [64]. There is a reason to believe that there must be some time reversal

violation because of the CPT theorem. According to the CPT theorem, CPT is an exact

symmetry for any fundamental interaction. The CPT symmetry is very closely related

to the spin-statistics theorem and Lorentz invariance [65–78]. The CPT theorem implies

that a particle and its antiparticle must have the same mass, decay width, lifetime and

other such intrinsic properties. It is important to note that if CP is violated, then partial

rate asymmetries for particle and antiparticle can be different, but their total decay rates

would always be the same if CPT invariance holds good [79]. Similarly, the CPT invari-

ance also implies that the total scattering cross-section of two particles would be equal to

that of their antiparticles, but the partial scattering cross-sections need not be equivalent

if CP is violated [80]. The best test of CPT invariance, to date, has come from the limit

on the mass difference between the neutral kaons (K0 and K0) [81–83] and there is no

indication of any breakdown of CPT invariance. However, if there is even an extremely
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small violation of CPT , it has significant theoretical ramifications in various models of

new physics. In this thesis we propose in Chapter 4 a new way to look for violations of

CPT symmetry in some three-body decays via strong interaction using Dalitz plots and

Dalitz prisms.

1.5.3 Flavor SU(3) symmetry

The light hadronic states can be satisfactorily understood by using the quark flavor SU(3)

symmetry [84–88]. In its true essence the SU(3) flavor symmetry denotes the full ex-

change symmetry amongst the up (u), down (d) and strange (s) quarks (or equivalently

the exchange of the the anti-quarks ū, d̄ and s̄) which are referred to as the three flavors of

light quarks (or anti-quarks). If SU(3) flavor symmetry were an exact symmetry, then the

mesons formed by combining the quarks u, d, s and the antiquarks ū, d̄, s̄ belonging to

the same representation of SU(3) would also be degenerate. Since the three quark masses

differ from one another, the only way to treat the three quarks on the same footing is by

allowing for a breaking of the symmetry. The Gell-Mann-Okubo mass formula relates

the hadron masses by taking the small SU(3) breaking into account but does not depend

on the details of SU(3) breaking effects. Such SU(3) breaking effects cannot be calcu-

lated theoretically and must be estimated using experimental inputs. Usually, the mass

differences between these mesons have been used as a measure of the extent of breaking

of SU(3) flavor symmetry. The masses of these mesons, which are bound states of a pair

of quark and anti-quark, can be computed precisely by lattice QCD. It is not possible

to estimate the binding energy11 of a quark anti-quark pair in a meson from analytical

QCD calculations since these resonances lie in the non-relativistic low energy regime

in which QCD is essentially non-perturbative in nature. Moreover, the electro-magnetic

interactions between the quark and the antiquark in the meson also contribute towards

11Here binding energy is not a very well defined quantity as strong interaction is a confining interaction
implying that there are no free quark states at asymptotically large spatial separations.



28 CHAPTER 1. SYMMETRY IN A NUTSHELL

its binding energy. Thus, by measuring the mass differences amongst the mesons one

does not fully solicit the breaking of SU(3) flavor symmetry.12 Another usual method

to explore the breaking of SU(3) flavor symmetry is to look at specific loop diagrams

where the down and strange quarks contribute. The loop effects affect the amplitude of

the process under consideration and its physical manifestations are then studied for a

quantitative estimation of the breaking of SU(3) flavor symmetry. Since the up quark

has different electric charge than the down and strange, it can not be treated in the same

way in these studies of loop contributions. Therefore, such a method also fails to probe

the full exchange symmetry of these three light quarks. Hence, all estimates of SU(3)

breaking in decay amplitudes are currently empirical. The SU(3) flavor symmetry group

has three non-commuting normal SU(2) subgroups, namely isospin, U-spin and V -spin.

Some details of the SU(3) flavor symmetry are provided in Appendix A. There exist sev-

eral studies in the literature which have used broken SU(3) flavor symmetry (i) in various

decay modes using the methods of amplitudes (usually isospin and U-spin amplitudes)

and various quark diagrams [90–136], and (ii) in determinations of weak phases and CP

violating phases [137–149]. These methods involve comparison of observables in distinct

decay modes that are related by some underlying SU(2) sub-symmetry, such as isospin,

U-spin or V -spin. However, the full exchange symmetry amongst the three light quarks

has not yet been fully exploited, in a single decay mode. Weak decays of hadrons involve

several unknown parameters which can be reduced by using the SU(3) flavor symme-

try. Since SU(3) flavor symmetry is still extensively used to relate the few decay modes

of heavy mesons13, it is important to realize other methods to experimentally measure

the breaking of SU(3) flavor symmetry and understand the complete nature of SU(3)

breaking in a better manner. In this thesis we propose a method in Chapter 4 to achieve

12It is, however, noteworthy that certain meson mass differences do reveal the size of the electromagnetic
contributions via the Dashen’s theorem [89].

13This is because the heavy mesons lie above the QCD confinement scale, thus having smaller SU(3)
flavor symmetry breaking than in the light meson cases.
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precisely this by looking at asymmetries in the Dalitz plot (discussed in Chapter 2) under

exchange of the mesons in the final state. These asymmetries can be measured in both

resonant as well as in the non-resonant regions. A quantitative estimate of the variation

of these asymmetries obtained experimentally would provide valuable understanding of

SU(3) breaking effects.

Here, we have only sketched the outlines of the symmetries under our consideration

in this thesis. Much more details regarding these symmetries can be found in many

References [150–158].

1.6 Summary

In this chapter, we have reviewed the concept of symmetry as applied to physical laws,

classification of various symmetries, and discussed how symmetry can be applied math-

ematically by using the group theory. We have also looked at some salient features of

conservation laws and how they are intimately connected to symmetries in Nature. Fi-

nally, we have briefly discussed all the symmetries under our consideration in this thesis

and given references to the existing methodologies to study these symmetries, wherever

applicable. Since we shall employ three-body processes in this thesis to study symme-

try violations, the next chapter is devoted to a mini discussion on three-body decays and

consequently a mini-review of the relevant concept of Dalitz plot.
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2
Three-body decay and Dalitz

plot

Three-body decays have long been used in various studies in particle physics. After

the two-body decays, the three-body decay is arguably the simplest ‘complicated’ decay

scenario. The higher multi-body decays are usually treated as some “effective” two-

or three-body decays after combining their final particles into two or three ‘effective

particle’ states. The Dalitz plot is a two-dimensional plot which encapsulates the phase-

space for a three-body decay in its entirety and captures the signature of the underlying

dynamics. Traditionally the Dalitz plot has played a very significant role in identification

and characterization of many resonances observed as densely populated bands in the

Dalitz plot. We shall very briefly discuss the general three-body decay and the concept

of the Dalitz plot highlighting some of its salient features.

2.1 A general three-body decay

Let us consider a general three-body decay X → 1 + 2 + 3 (see Fig. 2.1), where the

4-momentum of each particle is given by pi = (Ei , ~pi), where Ei is the energy and ~pi is

31
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X (pX ,mX )

1 (p1,m1)

3 (p3,m3)

2 (p2,m2)

Figure 2.1: Four-momenta and masses of all the particles in the three-body decay X →

1 + 2 + 3.

the 3-momentum of particle i (with i ∈ {X , 1, 2, 3}) and p2
i

= E2
i
−

∣∣∣~pi ∣∣∣2 = m2
i
, mi being

the mass of particle i. Conservation of energy and 3-momentum implies that

EX = E1 + E2 + E3, and ~pX = ~p1 + ~p2 + ~p3. (2.1)

In case of three-body decays, the energy and momentum of the daughter particles are not

completely fixed (unlike two-body decays) by applying the conservation of energy and

momentum. This is because the three-body decay has additional degrees of freedom. In

any three-body decay the orientation of the final particles depends on the relative orbital

angular momentum between them. A complete description of the final state is possible by

knowing the final state 4-momenta: pµ1 , pµ2 and p
µ
3 . So we need to specify 12 parameters

(4 parameters for each of the three 4-momenta). However, conservation of energy and

momenta provide 4 constraint equations: pµ
X

= p
µ
1 +p

µ
2 +p

µ
3 . Each of the three 4-momenta

also satisfy the on-shell condition m2
i

= E2
i
−

∣∣∣~pi ∣∣∣2, giving 3 more constraint equations.

Now if we consider the decay in the rest frame of the decaying particle (particle X), then

all the final particles must lie in one plane and the final state is symmetric about any

rotations about an axis which passes through particle X and is perpendicular to the decay

plane. The orientation of the axis has two degrees of freedom and the rotational symmetry

about the axis constitutes one more degree of freedom (see Fig. 2.2). So together these

constitute 3 extra constraints. Thus in total we have 4 + 3 + 3 = 10 constraints. This

leaves only 2 free parameters out of the initial 12 parameters. So we can describe a

three-body final state with only 2 parameters, and there are many choices for the type of
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variables one can choose. The Dalitz plots, the original one by Dalitz [9, 10] (which was

further explored by E. Fabri [11] and Charles Zemach [12] and explained well in many

books [151–154]) as well as the one used in current studies [13], exploit this feature and

are different from each other in their choice of the two variables.

Orientatio
nof

th
e

ax
is

of
ro

ta
tio

na
l symmetry

X

1

2

3

Rotational symmetry

Decay plane

Figure 2.2: A representative plane of decay for X → 1 + 2 + 3 showing the axis of
rotational symmetry and its two possible orientations in the rest frame of X .

2.2 The Original ternary plot of Dalitz

Let us consider the three-body decay X → 1 + 2 + 3. The 4-momenta of the particles are

given by pi =
(
Ei , ~pi

)
, where Ei and ~pi are the energy and 3-momentum of the particle i

respectively, with i ∈ {X , 1, 2, 3}. Conservation of energy and momentum are enshrined

in Eq. (2.1). Let us denote the mass of the particle i by mi . The Q-value of this decay is

defined as Q = mX − (m1 + m2 + m3). The ‘kinetic energy’ of the particle i is defined as

Ti = Ei − mi . If we consider the parent particle to be at rest, then TX = 0, as EX = mX . It

is easy to see that

3∑
i=1

Ti = (E1 + E2 + E3) − (m1 + m2 + m3) = EX − (m1 + m2 + m3)

= mX − (m1 + m2 + m3) = Q. (2.2)
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Thus we find a scalar linear relationship amongst the kinetic energies of the final particles

and the Q-value of the decay: T1 + T2 + T3 = Q. R. H. Dalitz exploited this to present a

ternary plot1 with Cartesian coordinates (T1,T2,T3) which can also be described by the

following barycentric coordinates:

X =

√
3 (T1 − T2)

Q
, Y =

2T3 − T2 − T1

Q

 . (2.3)

The equilateral triangle for the present case is shown in Fig. 2.3. Any point inside the

T1

T3

T2

X

Y

ϑ
ρ P(ρ, ϑ) ≡ P(X ,Y )

M2

M1

M3

U ≡ (
√

3, −1)

V ≡ (0, 2)

W ≡ (−
√

3, −1)

O

Figure 2.3: The ternary plot using the original parametrization of Dalitz for the three-
body decay X → 1 + 2 + 3. Each side of this triangle is of length 2

√
3 units and the height

of the triangle is 3 units.

equilateral triangle 4UVW is allowed by conservation of energy. Moreover, the distance

of any point, say P(X ,Y ), from the three sides of the triangle are given by

d1 =
∣∣∣PM1

∣∣∣ =
T1

Q/3
, d2 =

∣∣∣PM2
∣∣∣ =

T2

Q/3
, d3 =

∣∣∣PM3
∣∣∣ =

T3

Q/3
, (2.4)

such that d1 + d2 + d3 = 3. The equilateral triangle of Fig. 2.3 can also be described in

terms of polar coordinates (ρ, ϑ) with the pole at the center of the triangle and the polar

axis passing through one of the vertices, here V . In terms of the polar coordinates we

1For details of ternary plot see Appendix B.
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have X = ρ sinϑ and Y = ρ cosϑ, which lead to

T1 =
Q

3

(
1 + ρ cos

(
2π
3
− ϑ

))
=
Q

6

(
2 −
√

3X − Y
)
, (2.5)

T2 =
Q

3

(
1 + ρ cos

(
2π
3

+ ϑ

))
=
Q

6

(
2 +
√

3X − Y
)
, (2.6)

T3 =
Q

3
(1 + ρ cosϑ) =

Q

3
(1 + Y ) . (2.7)

It must be noted that even though the full region inside the equilateral triangle is ener-

getically allowed, the full area is not physical. We have got to find out the boundary of

this physically allowed region inside the triangle on and inside which both energy and

3-momentum are conserved. Outside this boundary, energy (not 3-momentum), is con-

served, and outside the equilateral triangle neither energy nor 3-momentum is conserved.

The conservation of 3-momentum in the rest frame of X implies that ~p1 = −
(
~p2 + ~p3

)
.

Let the angle between ~p2 and ~p3 be Θ. So we have
∣∣∣~p1

∣∣∣2 =
∣∣∣~p2

∣∣∣2 +
∣∣∣~p3

∣∣∣2 + 2
∣∣∣~p2

∣∣∣ ∣∣∣~p3
∣∣∣ cosΘ.

This implies that

cosΘ =

∣∣∣~p1
∣∣∣2 − ∣∣∣~p2

∣∣∣2 − ∣∣∣~p3
∣∣∣2

2
∣∣∣~p2

∣∣∣ ∣∣∣~p3
∣∣∣ (2.8)

Since |cosΘ| 6 1, the boundary of the physical region is determined by cosΘ = ±1,

i.e. when the 3-momenta are collinear. So the equation of the boundary corresponds to

cos2Θ = 1. Expressed in terms of the 3-momentum of the final particle, this directly

leads to the following expression:

(∣∣∣~p1
∣∣∣2 − ∣∣∣~p2

∣∣∣2 − ∣∣∣~p3
∣∣∣2)2

= 4
∣∣∣~p2

∣∣∣2 ∣∣∣~p3
∣∣∣2 =⇒ λ

(∣∣∣~p1
∣∣∣2 , ∣∣∣~p2

∣∣∣2 , ∣∣∣~p3
∣∣∣2) = 0, (2.9)

where λ(a, b, c) = a2 +b2 + c2 − 2(ab+bc + ca), is called the Källén function or triangle

function which has the following properties:

1. It is symmetric under a ↔ b ↔ c.
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2. λ(a, b, c) = λ(−a, −b, −c).

3. λ(α a, α b, α c) = α2 λ(a, b, c).

4. If a � b, c, then λ(a, b, c)→ λ(a, 0, 0) = a2.

5. If b = c, then λ(a, b, b) = a2 − 4ab.

6. If c = 0, then

(a) λ(a, b, 0) = λ(a − b, 0, 0) = (a − b)2,

(b) λ(a + b, b, 0) = λ(a − b, −b, 0) = λ(a, 0, 0) = a2.

7. λ(a + b, b + c , c + a) = −4 (ab + bc + ca).

8. λ(a − b, b − c , c − a) = 4
(
a2 + b2 + c2 − ab − bc − ca

)
.

9. It can be re-expressed as: λ(a, b, c) = 1
4 (λ(a + b, b + c , c + a) + λ(a − b, b − c , c − a)).

10. Another useful property:

λ(a1 + a2, b1 + b2, c1 + c2) = λ(a1, b1, c1) + λ(a2, b2, c2)

− 2 (a1 + b1 + c1) (a2 + b2 + c2) + 4 (a1a2 + b1b2 + c1c2) .

Thus the physically allowed region is described by the region in which λ
(∣∣∣~p1

∣∣∣2 , ∣∣∣~p2
∣∣∣2 , ∣∣∣~p3

∣∣∣2) 6
0. We know that

∣∣∣~pi ∣∣∣2 = E2
i
− m2

i
and Ei = Ti + mi , and thus

∣∣∣~pi ∣∣∣2 = T 2
i

+ 2Timi . Thus the

allowed region is described by

λ
(
T 2

1 + 2T1m1,T
2
2 + 2T2m2,T

2
3 + 2T3m3

)
6 0. (2.10)
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Using the properties of the Källén function we have

λ
(
T 2

1 + 2T1m1,T
2
2 + 2T2m2,T

2
3 + 2T3m3

)
= λ

(
T 2

1 ,T
2
2 ,T

2
3

)
+ 4λ (T1m1,T2m2,T3m3)

− 4
(
T 2

1 + T 2
2 + T 2

3

)
(T1m1 + T2m2 + T3m3)

+ 8
(
T 3

1 m1 + T 3
2 m2 + T 3

3 m3
)
. (2.11)

If we substitute the expressions for the kinetic energies in terms of the barycentric co-

ordinates, then the expression for the boundary of the physically allowed region can be

written as Φ(X ,Y ) = 0, where

Φ(X ,Y ) = C00+C10X+C01Y+C11XY+C20X
2+C02Y

2+C21X
2Y+C12XY

2+C30X
3+C03Y

3,

(2.12)

with Ci j being the coefficient of X iY j , and they are given by

C00 =
1

27
Q2

(
12 λ (m1,m2,m3) − 4QmX + 3Q2

)
, (2.13a)

C10 = −
2

3
√

3
Q2 (m1 − m2) (mX + m1 + m2 − 3m3) , (2.13b)

C01 = −
1
9
Q2 (4λ (m1,m2,m3) + 2Q (m1 + m2 − 2m3)) , (2.13c)

C11 = −
2

3
√

3
Q2 (m1 − m2) (m1 + m2 − mX ) , (2.13d)

C20 =
1
9
Q2

(
3 (m1 + m2)2 + 2Q (2m1 + 2m2 − m3) + Q2

)
, (2.13e)

C02 =
1
9
Q2

(
λ (m1,m2,m3) + 3m3 (2mX − m3) + Q2

)
, (2.13f)

C21 = −
2
9
mXQ

3 = −3C03, (2.13g)

C12 = 0 = C30. (2.13h)
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It is important to note that both C12 and C30 are identically zero. Therefore, the equation

for the boundary is

Φ(X ,Y ) = C00 +C10X +C01Y +C11XY +C20X
2 +C02Y

2 +C21X
2Y +C03Y

3 = 0.

(2.14)

We can also express the boundary in terms of the polar coordinates. This is given by

Φ(ρ, ϑ) = 0, where

Φ(ρ, ϑ) = P00 (ρ) + P10 (ρ) sinϑ + P01 (ρ) cosϑ + P20 (ρ) sin 2ϑ + P02 (ρ) cos 2ϑ

+ P30 (ρ) sin 3ϑ + P03 (ρ) cos 3ϑ, (2.15)

with Pi0 (or P0 j) being the coefficient of sin iϑ (or cos jϑ), and P00 being the term inde-

pendent of ϑ:

P00 (ρ) =
1

27
Q2

(
12λ (m1,m2,m3) − 4mXQ + 3Q2 + 3

(
m2

1 + m2
2 + m2

3 + m2
X

)
ρ2

)
,

(2.16a)

P10 (ρ) =
2

3
√

3
Q2 (m1 − m2) (mX + m1 + m2 − 3m3) ρ, (2.16b)

P01 (ρ) = −
2
9
Q2

(
2λ (m1,m2,m3) + 6m3 (m1 + m2 − m3) + Q (m1 + m2 − 2m3)

)
ρ,

(2.16c)

P20 (ρ) =
1

3
√

3
Q2 (m1 − m2) (m1 + m2 − 2mX ) ρ2, (2.16d)

P02 (ρ) = −
1
9
Q2

(
λ (m1,m2,m3) + 6m1m2 − 3m2

3 + 2Q (m1 + m2 − 2m3)
)
ρ2, (2.16e)

P30 (ρ) = 0, (2.16f)

P03 (ρ) =
2

27
mXQ

3ρ3. (2.16g)
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It is important to notice that the coefficient P30 is identically zero. Thus in polar coordi-

nates the boundary is given by

Φ(ρ, ϑ) = P00 (ρ) + P10 (ρ) sinϑ + P01 (ρ) cosϑ + P20 (ρ) sin 2ϑ + P02 (ρ) cos 2ϑ

+ P03 (ρ) cos 3ϑ = 0. (2.17)

2.2.1 Special case of m1 = m2

When m1 = m2, the coefficients C10, C11, P10 and P20 are identically equal to zero.

Thus in this special case, the boundary is given by Φ(X ,Y ) = C00 + X2 (C20 +C21Y ) +

Y
(
C01 +C02Y +C03Y

2
)

= 0, and Ψ(ρ, ϑ) =

3∑
i=0

P0i(ρ) cos(iϑ) = 0. It is very easy to see

that in this special case, the boundary is symmetric under X ↔ −X (or ϑ ↔ −ϑ), which

is nothing but reflection about the Y -axis (or equivalently the polar axis).

2.2.2 Some more special cases

Whatever we have discussed this far makes no assumptions about the momenta of the

final particles. However, there are two interesting special cases, in which the momenta

involved can be either non-relativistic or relativistic. Below we discuss both these cases.

(a) Non-relativistic case: For the non-relativistic case the kinetic energies of the final

particles are given by Ti =

∣∣∣~pi ∣∣∣2
2mi

, where i ∈ {1, 2, 3}. So the expression for the boundary

is given by

λ(T1m1,T2m2,T3m3) = 0. (2.18)

The equation for the boundary is still a function of the kinetic energies. But what we

really need is the equation for the boundary in terms of X and Y . Substituting the values
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for T1,T2 and T3 in the equation for the boundary we get the following expression:

C′20 X2 +C′11 XY +C′02 Y
2 +C′10 X +C′01 Y +C′00 = 0, (2.19)

which is the equation for a conic section and here

C′20 =
1

12
Q2 (m1 + m2)2 , (2.20a)

C′11 =
1

6
√

3
Q2(m1 − m2)(m1 + m2 + 2m3), (2.20b)

C′02 =
1

36
Q2

(
λ (m1,m2,m3) + 3m3 (2m1 + 2m2 + m3)

)
, (2.20c)

C′10 = −
1

3
√

3
Q2(m1 − m2)(m1 + m2 − m3), (2.20d)

C′01 = −
1
9
Q2

(
λ (m1,m2,m3) + 3m3 (m1 + m2 − m3)

)
, (2.20e)

C′00 =
1
9
Q2λ (m1,m2,m3) . (2.20f)

When m1 = m2, thenC′11 = 0 = C′10 and hence the boundary is symmetric under X ↔ −X

(i.e. reflection about Y -axis). However, in order to ascertain what type of conic section

the boundary is, in general, let us evaluate the discriminant C′211 − 4C′20C
′
02:

C′211 − 4C′20C
′
02 = −

4
27

m1 m2 m3 (m1 + m2 + m3)Q4. (2.21)

So for all values of m2,m3 and m4 the discriminant is negative: C′211 − 4C′20C
′
02 < 0, this

implies that the conic section is an ellipse. One can also arrive at this same conclusion

by arguing that the only conic section which is bounded is, in general, an ellipse. Since

our boundary is inscribed inside a triangle, it has to be bounded; since it is also a conic

section, therefore it must be an ellipse. For the boundary to become a circle the necessary

conditions are C′20 = C′02 and C′11 = 0. Now C′11 = 0 implies that m1 = m2 and C′20 = C′02

implies that m1 = m2 = m3. So if we put m1 = m2 = m3 = m (say), then the equation for
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the boundary becomes X2 +Y2 = 1, which is a circle of unit radius centered at the origin.

The boundary for the special case when all the final state particles are of equal mass, is

shown in Fig. 2.4a. A few representative ellipses are drawn in Fig. 2.4b for the general

case.

Y

X

(0, 2)

(
√

3, −1)(−
√

3, −1)

(a) When the daughter particles have exactly the same
masses: m1 = m2 = m3 = m.

(0, 2)

(
√

3, −1)(−
√

3, −1)

Y

X

(b) When the masses of the daughter particles are not
the same: m1 , m2 , m3.

Figure 2.4: The shaded area corresponds to the physical region allowed by conservation
of both energy and 3-momentum. The boundary is in general an ellipse. Under the
special case of identical particles in the final state, it becomes a circle. The three ellipses
in (b) are shown for illustration only and they roughly correspond to the cases (m2/m1 =

2,m3/m1 = 3), (m1/m3 = 2,m2/m3 = 3) and (m1/m2 = 3,m3/m2 = 2).

The equation of the boundary, in terms of the polar coordinates, is given by

P′20(ρ) sin 2ϑ + P′02(ρ) cos 2ϑ + P′10(ρ) sinϑ + P′01(ρ) cosϑ + P′00(ρ) = 0, (2.22)
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where

P′20 = −
1

12
√

3
(m1 − m2) (m1 + m2 + 2m3)Q2ρ2, (2.23a)

P′02 = −
1

36

(
λ (m1,m2,m3) + 6m1m2 − 3m2

3

)
Q2ρ2, (2.23b)

P′10 =
1

3
√

3
(m1 − m2)(m1 + m2 − m3)Q2ρ, (2.23c)

P′01 = −
1
9

(
λ (m1,m2,m3) + 3m3(m1 + m2 − m3)

)
Q2ρ, (2.23d)

P′00 =
1

18
Q2

(
2λ(m1,m2,m3) +

(
λ(m1,m2,m3) + 3(m1m2 + m2m3 + m3m1)

)
ρ2

)
.

(2.23e)

Here again m1 = m2 implies that P′10 = 0 = P′20 and hence the boundary would be

symmetric under ϑ ↔ −ϑ (i.e. reflection about the polar axis) in this case. For the

special case of m1 = m2 = m3 = m (say), the equation of the boundary becomes ρ2 = 1,

which describes a circle of unit radius centered at the center of the triangle.

(b) Ultra-relativistic case: In the ultra-relativistic case, we can neglect the mass

of the daughter particles in comparison to their energy. So for ultra-relativistic cases

Ti = Ei =
∣∣∣~pi ∣∣∣. The boundary conditions can therefore be restated as follows:

λ
(
T 2

1 ,T
2
2 ,T

2
3

)
= 0 =⇒ (2Y − 1)

(
(Y + 1)2 − 3X2

)
= 0. (2.24)

This expression gives equations for three straight lines Y = 1/2, Y = ±
√

3X − 1. The

region bounded by these straight lines is another equilateral triangle inscribed inside the

bigger equilateral triangle. Fig. 2.3 shows the region and the bounding straight lines. It is

important to note that here we have not considered the final particles to have equal masses.

However, even if the final particles are equally massive, Fig. 2.5 remains unchanged.
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Y

X

(0, 2)

(
√

3, −1)(−
√

3, −1)

Y = 1
2

Y = −
√

3X − 1 Y =
√

3X − 1

Figure 2.5: The shaded region is an equilateral triangle and its interior is the allowed
region for extremely relativistic cases. These ultra-relativistic cases cannot have any
points outside this smaller equilateral triangle.

2.2.3 The general case with particles of equal masses

In general, the physical region lies somewhere in between the two extremes we have just

considered. This is clearly evident from Eq. (2.11), which we rewrite below for clarity:

λ
(
T 2

1 + 2T1m1,T
2
2 + 2T2m2,T

2
3 + 2T3m3

)
= λ

(
T 2

1 ,T
2
2 ,T

2
3

)︸           ︷︷           ︸
ultra-relativistic case

+ 4 λ (T1m1,T2m2,T3m3)︸                     ︷︷                     ︸
non-relativistic case

− 4
(
T 2

1 + T 2
2 + T 2

3

)
(T1m1 + T2m2 + T3m3)

+ 8
(
T 3

1 m1 + T 3
2 m2 + T 3

3 m3
)
. (2.25)

When all the final state particles are equally massive (i.e. m1 = m2 = m3 = m) the

equation for the boundary in terms of the barycentric coordinates X , Y is given by

C′′03Y
3 +C′′21X

2Y +C′′20X
2 +C′′02Y

2 +C′′00 = 0, (2.26)

where the coefficients C′′
i j

are

C′′21 = −3C′′03 = −
2
9
Q3mX , (2.27a)

C′′20 = C′′02 =
1
9
Q2

(
12m2 + 6mQ + Q2

)
, (2.27b)
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C′′00 = −
1
27

Q2 (6m + Q)2 , (2.27c)

with Q = mX − 3m. In terms of the polar coordinates, the boundary for equally massive

final states is

P′′03(ρ) cos 3ϑ + P′′00(ρ) = 0, (2.28)

where P′′03(ρ) = 2
27mX Q

3 ρ3, and P′′00(ρ) = 1
27Q

2
(
3Q2−4mXQ−36m2+3

(
3m2 + m2

X

)
ρ2

)
.

It is easy to invert this equation and solve for ρ2 which gives

ρ2 = (1 + ε )−1
(
1 − ε ρ3 cos 3ϑ

)
, (2.29)

where

ε =
2mXQ

(2mX − Q)2 =
2mX (mX − 3m)

(mX + 3m)2 . (2.30)

The physically allowed region is thus described by ρ 6 R(ϑ), where

R2 = (1 + ε )−1
(
1 − ε R3 cos 3ϑ

)
and graphically it looks like a shield as shown in Fig.2.6.

Y

X

(0, 2)

(
√

3, −1)(−
√

3, −1)

Figure 2.6: The physically allowed region for a three-body decay where all the three
particles are identical.

Thus far we have discussed the kind of ternary plots that Dalitz proposed for study of



2.3. DECAY RATE AND DEFINITION OF DALITZ PLOT 45

three-body decays. In order to understand how important and relevant they are we would

have to make a field theoretic study of the three-body decays.

2.3 Decay rate and definition of Dalitz plot

The differential decay rate for a general three-body decay X(pX )→ 1(p1) + 2(p2) + 3(p3)

is given by

dΓ= S
〈∣∣∣M ∣∣∣2〉

2EX

dPS f , (2.31)

where
〈∣∣∣M ∣∣∣2〉 is the Lorentz invariant square of the decay amplitude M averaged over

initial spins and summed over final spins, dPS f is the phase-space volume element in the

final state:

dPS f =

3∏
i=1

 d3
∣∣∣~pi ∣∣∣

(2π)3 2Ei

 (2π)4 δ(4) (pX − p1 − p2 − p3) , (2.32)

S is the symmetry factor and is given by S =
∏
a

1
na!

where na is the number of particles

of type a in the final state. Therefore, in the rest frame of the parent particle X we have

dΓ=
S

16 (2π)5

〈∣∣∣M ∣∣∣2〉
mX

3∏
i=1

d3
∣∣∣~pi ∣∣∣
Ei

 δ(4) (pX − p1 − p2 − p3) . (2.33)

Taking apart the delta function,

δ(4) (pX − p1 − p2 − p3) = δ (mX − E1 − E2 − E3) δ(3) (
~p1 + ~p2 + ~p3

)
,

and then doing the
∣∣∣~p3

∣∣∣ integral we get

dΓ=
S

16 (2π)5

〈∣∣∣M ∣∣∣2〉
mX

 d3
∣∣∣~p1

∣∣∣ d3
∣∣∣~p2

∣∣∣
E1E2

√∣∣∣~p1 + ~p2
∣∣∣2 + m2

3

 δ

(
mX − E1 − E2 −

√∣∣∣~p1 + ~p2
∣∣∣2 + m2

3

)
.

(2.34)
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Let the angle between ~p1 and ~p2 be α. (See Fig. 2.7.) Thus

∣∣∣~p1 + ~p2
∣∣∣2 =

(
E2

1 + E2
2

)
−

(
m2

1 + m2
2

)
+ 2

√(
E2

1 − m2
1

) (
E2

2 − m2
2

)
cosα. (2.35)

Let us now do the
∣∣∣~p2

∣∣∣ integral. Fixing the polar axis along ~p1, we get d3
∣∣∣~p2

∣∣∣ =

~p2~p1

~p3

α

Figure 2.7: Decay plane of X → 1 + 2 + 3 showing the angle α between the 3-momenta
~p1 and ~p2. All the 3-momenta are in the rest frame of the parent particle X .

∣∣∣~p2
∣∣∣2 d

∣∣∣~p2
∣∣∣ d cosα dφ. The integration over φ gives 2π. For the integration over cosα

let us do a change of variable, by defining u2 =
∣∣∣~p1 + ~p2

∣∣∣2 + m2
3, such that d cosα =

u du√(
E2

1 − m2
1

) (
E2

2 − m2
2

) . Now the limits on u are given by

u± =

√∣∣∣~p1
∣∣∣2 +

∣∣∣~p2
∣∣∣2 ± 2

∣∣∣~p1
∣∣∣ ∣∣∣~p2

∣∣∣ + m2
3 =

√(∣∣∣~p1
∣∣∣ ± ∣∣∣~p2

∣∣∣)2
+ m2

3. (2.36)

Therefore

dΓ=
S

16 (2π)4

〈∣∣∣M ∣∣∣2〉
mX

 1
E1E2

√√
E2

2 − m2
2

E2
1 − m2

1

 d3
∣∣∣~p1

∣∣∣ d ∣∣∣~p2
∣∣∣ ∫ u+

u−

δ (mX − E1 − E2 − u) du.

(2.37)

Finally we have

d3
∣∣∣~p1

∣∣∣ = (4π)
∣∣∣~p1

∣∣∣2 d
∣∣∣~p1

∣∣∣ = (4π)
(
E2

1 − m2
1

)
d
∣∣∣~p1

∣∣∣ . (2.38)
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Thus the differential decay width is given by

dΓ =
S

8 (2π)3

〈∣∣∣M ∣∣∣2〉
mX


√(

E2
1 − m2

1

) (
E2

2 − m2
2

)
E1E2

 d ∣∣∣~p1
∣∣∣ d ∣∣∣~p2

∣∣∣
×

∫ u+

u−

δ (mX − E1 − E2 − u) du. (2.39)

Using
∣∣∣~pi ∣∣∣2 = E2

i
− m2

i
it is easy to show that

√(
E2

1 − m2
1

) (
E2

2 − m2
2

)
E1E2

d
∣∣∣~p1

∣∣∣ d ∣∣∣~p2
∣∣∣ = dE1 dE2. (2.40)

Therefore, the differential decay width is now given by

dΓ=
S

8 (2π)3

∫ u+

u−

〈∣∣∣M ∣∣∣2〉
mX

× δ (mX − E1 − E2 − u) du dE1 dE2. (2.41)

It is also possible to cast the differential decay rate in terms of integrals over the kinetic

energy Ti instead of the energy Ei: Ti = Ei − mi , such that dEi = dTi . Hence

dΓ=
S

8 (2π)3

∫ u+

u−

〈∣∣∣M ∣∣∣2〉
mX

δ (mX + m1 + m2 − T1 − T2 − u) du dT1 dT2, (2.42)

where the limits on u are now given by,

u2
± =

(√
T 2

1 + 2T1m1 ±

√
T 2

2 + 2T2m2

)2
+ m2

3. (2.43)

The delta function here determines a boundary in the T1T2 plane outside which the decay

rate vanishes because the phase-space volume is zero there. It is the same boundary as we

have found before by applying conservation of both energy and 3-momentum. Thus every

decay observed in an experiment corresponds to a point in the physically allowed region

of the equilateral triangle. The accumulation of such points inside the boundary is called
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as the Dalitz plot. It is important to note that the phase-space volume corresponding to a

region in the Dalitz plot is proportional to the area of that region. Thus, phase-space alone

would give a completely uniform distribution of points inside the boundary. If there is any

departure from this uniformity, it must, therefore, arise from the matrix element. Thus

observing the various patterns in the Dalitz plot gives us information about the properties

of the matrix element.

2.4 New Dalitz Plot

So far we have dealt with a Dalitz plot in which we have used the kinetic energies of the

final particles in the analysis [9–12, 151–154]. It is sometimes useful to make a change

of variable to invariant masses of pairs of particles in order to get the Dalitz plot. This

approach is thus different from Dalitz’s original prescription [9, 10].

We define the following invariants m2
i j

=
(
pi + p j

)2
, where i , j ∈ {1, 2, 3}. These

invariant masses are not independent quantities. If we sum these invariant masses we get

m2
12 + m2

23 + m2
31 = (pX − p3)2 + (pX − p1)2 + (pX − p2)2 = m2

X + m2
1 + m2

2 + m2
3 , (2.44)

where we have used the conservation of 4-momentum: pX = p1 + p2 + p3. One can

rewrite the expression relating all the seven masses in the problem as follows:

m2
X = m2

12 + m2
23 + m2

31 − m2
1 − m2

2 − m2
3. (2.45)

We can express the invariant masses as m2
i j

= m2
X

+m2
k
− 2mXEk , where i , j , k ∈ {1, 2, 3}

and i , j , k. Therefore, we have dm2
i j

= −2mX dEk . It is therefore quite possible to

replace dE1 dE2 in terms of dm2
23 dm

2
31:

dm2
23 dm

2
31 = 4m2

X dE1 dE2. (2.46)
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Thus the area on the m2
23 m

2
31 invariant mass plot is proportional to the corresponding area

on the E1E2 (equivalently T1T2) plot. Doing this change of variable we get

dΓ=
S

32 (2π)3 m3
X

∫ u+

u−

〈∣∣∣M ∣∣∣2〉 × δ (mX − E1 − E2 − u) × du dm2
23 dm2

31, (2.47)

where

u2
± =

(√
E2

1 − m2
1 ±

√
E2

2 − m2
2

)2
+ m2

3 , (2.48)

with the energies given by

Ek =
m2

X
+ m2

k
− m2

i j

2mX

. (2.49)

Thus phase-space alone would again give a uniform distribution of points in the m2
23 m

2
31

plot. Any deviation from this uniformity would be completely due to the matrix element.

If we suppose the particles 2 and 3 can come from the decay of a resonance with mass

M , then we expect a concentration of events (points) along the m2
23 = M2 line in the

Dalitz plot. However, due to unstable nature of the resonance the concentration of points

about the m2
23 = M2 line form a band instead of a sharp line. The width of this band

would be proportional to the decay-width of the resonance. In general, this Dalitz plot

is not a ternary plot. One keeps the two variables m2
23 and m2

31 along the X and Y axes

respectively, or vice versa. Now let us find out the allowed range of m2
i j

. Since m2
i j

=

m2
X

+ m2
k
− 2mXEk and Ek > mk , the maximum of m2

i j
is when Ek = mk :

m2
i j ,max = (mX − mk)2. (2.50)

In order to get the minimum of of m2
i j

we need to go to a frame of reference which is the

center-of-momentum frame for the particles i and j. This special frame is also called as
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the ‘Gottfried-Jackson frame’. In this frame

m2
i j = (pi + p j)2 = (Ei + E j)2 > (mi + m j)2 =⇒ m2

i j ,min = (mi + m j)2. (2.51)

Therefore, the allowed range for the invariant mass is

m2
i j ∈

[
(mi + m j)2, (mX − mk)2

]
, (2.52)

where i , j , k ∈ {1, 2, 3} and i , j , k . Thus the region of m2
23 m

2
31 plot available for

our consideration is shown in Fig. 2.8. Please note that this is not the physically allowed

region.

m2
31

m2
23

(m1 + m3)2

(mX − m2)2

(m2 + m3)2 (mX − m1)2

Figure 2.8: Plot showing the allowed region of m2
31 and m2

23. Please note that this is not
the physically allowed region.

For a given value of, say m2
23, the maximum and minimum allowed values for m2

31 (or

m2
12) can be different from the ones shown above. The way to find out the maxima and

minima for any of the three invariant masses, when one of the invariant masses is fixed,

is given below. For this let us go to the Gottfried-Jackson frame of particles 2 and 3. (See

Fig. 2.9.) This frame is defined by ~p′2 = −~p′3. Primes are used to distinguish quantities

in the Gottfried-Jackson frame from those in the rest frame of particle X . Momentum
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~p′
X

~p′1

~p′2

~p′3

θ

Figure 2.9: A general three-body decay in the Gottfried-Jackson frame. It is clear in the
figure that ~p′

X
= ~p′1 and ~p′2 = −~p′3. There is an angle θ between ~p′1 and ~p′2.

conservation, implies that in the Gottfried-Jackson frame ~p′
X

= ~p′1. Then it follows that

the invariant mass of particles 2 and 3 is given by

m2
23 = (p′X − p′1)2 = (E′X − E′1)2

(
∵ ~p′X = ~p′1

)
=

(√
m2

X
+

∣∣∣~p′
X

∣∣∣2 −√
m2

1 +
∣∣∣~p′1∣∣∣2)2

=

(√
m2

X
+

∣∣∣~p′
X

∣∣∣2 −√
m2

1 +
∣∣∣~p′

X

∣∣∣2)2 (
∵

∣∣∣~p′1∣∣∣ =
∣∣∣~p′X ∣∣∣) .

Solving for
∣∣∣~p′

X

∣∣∣2 we get

∣∣∣~p′X ∣∣∣2 =
m4

X
+ m4

1 + m4
23 − 2m2

X
m2

1 − 2m2
X
m2

23 − 2m2
1m

2
23

4m2
23

=
λ(m2

23,m
2
X
,m2

1)

4m2
23

=
∣∣∣~p′1∣∣∣2 .

(2.53)

Similarly using the other expression for m2
23, we get

m2
23 = (p′2 + p′3)2 = (E′2 + E′3)2

(
∵ ~p′2 = −~p′3

)
=

(√
m2

2 +
∣∣∣~p′2∣∣∣2 +

√
m2

3 +
∣∣∣~p′3∣∣∣2)2

=

(√
m2

2 +
∣∣∣~p′2∣∣∣2 +

√
m2

3 +
∣∣∣~p′2∣∣∣2)2 (

∵
∣∣∣~p′2∣∣∣ =

∣∣∣~p′3∣∣∣) .
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Solving for
∣∣∣~p′2∣∣∣2 we get

∣∣∣~p′2∣∣∣2 =
m4

2 + m4
3 + m4

23 − 2m2
2m

2
3 − 2m2

2m
2
23 − 2m2

3m
2
23

4m2
23

=
λ(m2

23,m
2
2 ,m

2
3)

4m2
23

=
∣∣∣~p′3∣∣∣2 .

(2.54)

Now let us consider the invariant m2
31:

m2
31 = (p1 + p3)2 = m2

1 + m2
3 + 2

(
E′1E

′
3 −

∣∣∣~p′1∣∣∣ ∣∣∣~p′3∣∣∣ cos θ
)
, (2.55)

where θ is the angle between ~p′1 and ~p′3, see Fig. 2.9. Since we have
∣∣∣~p′1∣∣∣2 =

λ(m2
23,m

2
X
,m2

1)

4m2
23

and E′1 =

√
m2

1 +
∣∣∣~p′1∣∣∣2,

∣∣∣~p′3∣∣∣2 =
λ(m2

23,m
2
2 ,m

2
3)

4m2
23

and E′3 =

√
m2

3 +
∣∣∣~p′3∣∣∣2 for a given value

of m2
23, we can easily see that m2

31 is only a function of θ. It is also clear from the ex-

pression for m2
31 that it has a maximum value when θ = π and a minimum value when

θ = 0:

m2
31,max = m2

1 + m2
3 + 2

(
E′1E

′
3 +

∣∣∣~p′1∣∣∣ ∣∣∣~p′3∣∣∣) , (2.56)

m2
31,min = m2

1 + m2
3 + 2

(
E′1E

′
3 −

∣∣∣~p′1∣∣∣ ∣∣∣~p′3∣∣∣) . (2.57)

Substituting the values for
∣∣∣~p′1∣∣∣ , ∣∣∣~p′3∣∣∣ we get

E′1 =

∣∣∣m2
23 − m2

X
+ m2

1

∣∣∣
2m23

, and E′3 =

∣∣∣m2
23 − m2

2 + m2
3

∣∣∣
2m23

. The maximum and minimum values for m2
31 are therefore given by

m2
31,max = m2

1 + m2
3 +

1
2m2

23

( ∣∣∣m2
23 − m2

X + m2
1

∣∣∣ ∣∣∣m2
23 − m2

2 + m2
3

∣∣∣
+

√
λ(m2

23,m
2
X
,m2

1)
√
λ(m2

23,m
2
2 ,m

2
3)
)
, (2.58)
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m2
31,min = m2

1 + m2
3 +

1
2m2

23

( ∣∣∣m2
23 − m2

X + m2
1

∣∣∣ ∣∣∣m2
23 − m2

2 + m2
3

∣∣∣
−

√
λ(m2

23,m
2
X
,m2

1)
√
λ(m2

23,m
2
2 ,m

2
3)
)
. (2.59)

The curves defined by Eqs. (2.58) and (2.59) give the boundary of the physically allowed

region in the m2
23 m

2
31 plane. The accumulation of points inside this area constitutes the

Dalitz plot. A hypothetical Dalitz plot is shown in Fig. 2.10. Most of the Dalitz plots that

are currently in use are of this type.

m2
31

m2
23

(m1 + m3)2

(mX − m2)2

(m2 + m3)2 (mX − m1)2

Figure 2.10: A hypothetical Dalitz plot showing the allowed region (shaded) for a three-
body decay.

An aside: It is possible to find out what would be the maximum values of the mo-

menta of the daughter particles, in the rest frame of the parent particle. We know that

maximum momentum corrsponds to maximum energy. We also have m2
i j

= m2
X

+

m2
k
− 2mXEk , where i , j , k ∈ {1, 2, 3} and i , j , k . So when energy Ek is max-

imum, the invariant mass m2
i j

is at its minimum. We have observed that m2
i j ,min =

(mi + m j)2. This corresponds to Ek ,max =
1

2mX

(
m2

X − (mi + m j)2 + m2
k

)
, and

∣∣∣~pk ,max
∣∣∣ =

1
2mX

√
λ

(
m2

X
, (mi + m j)2,m2

k

)
.
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2.5 Another Dalitz Plot

It is also possible to construct a ternary plot out of the three invariant masses of the pairs

of final particles that we have considered, because they satisfy the relation

3∑
i , j=1
i< j

m2
i j = m2

X +

3∑
k=1

m2
k = M2 (say). (2.60)

We shall also work in the Gottfried-Jackson frame as shown in Fig. 2.9. We shall also

use the following Mandelstam-like variables for notational simplicity: s ≡ m2
23, t ≡ m2

13,

u ≡ m2
12. Thus s + t + u = M2. It is easy to show that

∣∣∣~p′X ∣∣∣2 =
∣∣∣~p′1∣∣∣2 =

λ
(
s,m2

X
,m2

1

)
4s

, (2.61a)

∣∣∣~p′2∣∣∣2 =
∣∣∣~p′3∣∣∣2 =

λ
(
s,m2

2 ,m
2
3

)
4s

, (2.61b)

E′X =

∣∣∣∣(m2
X
− m2

1

)
+ s

∣∣∣∣
2
√
s

, (2.61c)

E′1 =

∣∣∣∣(m2
X
− m2

1

)
− s

∣∣∣∣
2
√
s

, (2.61d)

E′2 =

∣∣∣∣s +
(
m2

2 − m2
3

)∣∣∣∣
2
√
s

, (2.61e)

E′3 =

∣∣∣∣s − (
m2

2 − m2
3

)∣∣∣∣
2
√
s

. (2.61f)

Using these one can show that

t = m2
1 + m2

3 +
1
2s

( ∣∣∣∣(m2
X − m2

1

)
− s

∣∣∣∣ ∣∣∣∣s − (
m2

2 − m2
3

)∣∣∣∣
+

√
λ

(
s,m2

X
,m2

1

)√
λ

(
s,m2

2 ,m
2
3

)
cos θ

)
, (2.62)
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u = m2
1 + m2

2 +
1
2s

( ∣∣∣∣(m2
X − m2

1

)
− s

∣∣∣∣ ∣∣∣∣s +
(
m2

2 − m2
3

)∣∣∣∣
−

√
λ

(
s,m2

X
,m2

1

)√
λ

(
s,m2

2 ,m
2
3

)
cos θ

)
. (2.63)

We can now rewrite these expressions as follows

t ≡ at + b cos θ, and u ≡ au − b cos θ, (2.64)

where

at = m2
1 + m2

3 +
1
2s

∣∣∣∣(m2
X − m2

1

)
− s

∣∣∣∣ ∣∣∣∣s − (
m2

2 − m2
3

)∣∣∣∣ , (2.65)

au = m2
1 + m2

2 +
1
2s

∣∣∣∣(m2
X − m2

1

)
− s

∣∣∣∣ ∣∣∣∣s +
(
m2

2 − m2
3

)∣∣∣∣ , (2.66)

b =
1
2s

√
λ

(
s,m2

X
,m2

1

)√
λ

(
s,m2

2 ,m
2
3

)
. (2.67)

When m2 = m3, then at = au. From the fact that s + t + u = M2, it follows that

at + au = M2 − s. Following the original spirit of the Dalitz plot, we can draw a ternary

plot with Cartesian coordinates (t , u, s) which can also be described by the following

barycentric coordinates:

X =

√
3(t − u)
M2 , Y =

2s − t − u

M2

 . (2.68)

The equilateral triangle for the present case is shown in Fig. 2.11. Any point inside the

equilateral triangle 4UVW is allowed by conservation of energy. Moreover, the distance

of any point, say P(X ,Y ), from the three sides of the triangle are given by

dt =
∣∣∣PM1

∣∣∣ =
t

M2/3
, du =

∣∣∣PM2
∣∣∣ =

u

M2/3
, ds =

∣∣∣PM3
∣∣∣ =

s

M2/3
, (2.69)
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t

s

u

X

Y

ϑ
ρ P(ρ, ϑ) ≡ P(X ,Y )

M2

M1

M3

U ≡ (
√

3, −1)

V ≡ (0, 2)

W ≡ (−
√

3, −1)

O

Figure 2.11: The ternary plot obtained by using a parametrization that is inspired from
the original parametrization of Dalitz, but in terms of invariant masses of pair of final
state particles. Each side of this triangle is of length 2

√
3 units. The height of the triangle

is 3 units.

such that dt + du + ds = 3. The equilateral triangle of Fig. 2.11 can also be described in

terms of polar coordinates (ρ, ϑ) with the pole at the center of the triangle and the polar

axis passing through one of the vertices, here V . In terms of the polar coordinates we

have X = ρ sinϑ and Y = ρ cosϑ, which lead to

t =
M2

3

(
1 + ρ cos

(
2π
3
− ϑ

))
=

M2

6

(
2 −
√

3X − Y
)
, (2.70)

u =
M2

3

(
1 + ρ cos

(
2π
3

+ ϑ

))
=

M2

6

(
2 +
√

3X − Y
)
, (2.71)

s =
M2

3
(1 + ρ cosϑ) =

M2

3
(1 + Y ) . (2.72)

As before, the full region of the equilateral triangle is not the physically allowed region.

In order to find out the boundary of the physically allowed region, we would proceed as

follows. From Eqs. (2.64), we get

cos θ =
(t − at) − (u − au)

2b
. (2.73)
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The boundary of the physically allowed region is now given by cos2 θ = 1, or in other

words by

((t − u) − (at − au))2 − 4b2 = 0. (2.74)

Using Eqs. (2.65) and (2.66) we get at − au =
(
m2

3 − m2
2

) (
1 +

1
s

∣∣∣(m2
X − m2

1) − s
∣∣∣) . Since

s < (mX − m1)2, it also true that s < (m2
X
− m2

1), such that

at − au =
1
s

(
m2

3 − m2
2

) (
m2

X − m2
1

)
. (2.75)

Thus the equation for the boundary becomes

(
s(t − u) +

(
m2

2 − m2
3

) (
m2

X − m2
1

))2
= λ

(
s,m2

X ,m
2
1

)
λ

(
s,m2

2 ,m
2
3

)
. (2.76)

Substituting the expressions for s, t and u in terms of the barycentric coordinates we get

Φ̃(X ,Y ) ≡ C̃00 + C̃10X + C̃01Y + C̃11XY + C̃20X
2 + C̃02Y

2 + C̃21X
2Y + C̃12XY

2

+ C̃30X
3 + C̃03Y

3 + C̃31X
3Y + C̃22X

2Y2 + C̃13XY
3 + C̃40X

4 + C̃04Y
4 = 0,

(2.77)

where C̃i j is the coefficient of X iY j in Φ̃(X ,Y ) and they are given by

C̃00 = −
4

81

(
− 8M8 + 9M6m2

X + 9M4λ
(
m2

1 ,m
2
2 ,m

2
3

)
+ 81M4

(
m2

1m
2
2 + m2

2m
2
3 + m2

3m
2
1

)
− 54M2

(
m2

1 + m2
2

) (
m2

2 + m2
3

) (
m2

3 + m2
1

) )
, (2.78a)

C̃10 = C̃11 =
2

3
√

3
M4

(
m2

2 − m2
3

) (
m2

1 − m2
X

)
, (2.78b)
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C̃01 =
2

81

(
7M8 + 9M6

(
3m2

1 − m2
X

)
− 9M4λ

(
m2

1 ,m
2
2 ,m

2
3

)
− 27M4

(
4m2

2m
2
3 + m2

1

(
m2

1 + 6m2
2 + 6m2

3

))
+ 108M2

(
m2

1 + m2
2

) (
m2

2 + m2
3

) (
m2

3 + m2
1

) )
, (2.78c)

C̃02 =
1

27
M4

(
4M4 − 3

(
λ

(
m2

1 ,m
2
2 ,m

2
3

)
+ 6m2

1

(
m2

2 + m2
3

)
+ m2

X

(
4M2 − 3

(
2m2

1 + m2
X

)) ))
, (2.78d)

C̃21 = 2C̃20 = 3C̃03 = 2C̃22 = −6C̃04 = (2/27)M8, (2.78e)

C̃12 = C̃30 = C̃31 = C̃13 = C̃40 = 0. (2.78f)

(2.78g)

Since the coefficients C̃12, C̃30, C̃31, C̃13, C̃40 vanish, the expression for the boundary is

given by

Φ̃(X ,Y ) ≡ C̃00 + C̃10X + C̃01Y + C̃11XY + C̃20X
2 + C̃02Y

2

+ C̃21X
2Y + C̃03Y

3 + C̃22X
2Y2 + C̃04Y

4 = 0. (2.79)

We can also express the boundary in terms of the polar coordinates. This is given by

Φ̃(ρ, ϑ) = P̃00(ρ) + P̃10(ρ) sinϑ + P̃01(ρ) cos θ + P̃20(ρ) sin 2ϑ + P̃02(ρ) cos 2ϑ

+ P̃30(ρ) sin 3ϑ + P̃03(ρ) cos 3ϑ + P̃40(ρ) sin 4ϑ + P̃04(ρ) cos 4ϑ = 0, (2.80)
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where P̃i0 (or P̃0 j) is the coefficient of sin iϑ (or cos jϑ) in Ψ̃(ρ, ϑ) and they are given by

P̃00(ρ) =
1

162
M2

(
432

(
m2

1 + m2
2

) (
m2

2 + m2
3

) (
m2

3 + m2
1

)
− 9M2

(
12

(
m2

2 + m2
3

)2
+ 48m2

2m
2
3 − 6m4

X

+ 12m2
1

(
5m2

2 + 5m2
3 − m2

X

)
+ 3

(
2m2

1

(
m2

2 + m2
3 − m2

X

)
− m4

X

)
ρ2

+
(
2 + ρ2

)
λ

(
m2

1 ,m
2
2 ,m

2
3

) )
+ 36M4

(
3
(
m2

2 + m2
3

)
− m2

X

(
2 + ρ2

))
+ 5M6

(
2 + 3ρ2

) )
, (2.81)

P̃10(ρ) = −
2

3
√

3
M4

(
m2

2 − m2
3

) (
m2

1 − m2
X

)
ρ, (2.82)

P̃01(ρ) =
1

162
M2ρ

(
432

(
m2

1 + m2
2

) (
m2

2 + m2
3

) (
m2

3 + m2
1

)
− 36M2

(
λ

(
m2

1 ,m
2
2 ,m

2
3

)
+ 3m4

1 + 6
(
3m2

1m
2
2 + 3m2

2m
2
3 + 2m2

3m
2
1

) )
+ 36M4

(
3m2

1 − m2
X

)
+ 2M6

(
14 + 3ρ2

) )
, (2.83)

P̃20(ρ) = −
1

3
√

3
M4

(
m2

2 − m2
3

) (
m2

1 − m2
X

)
ρ2, (2.84)

P̃02(ρ) = −
1

162
M4ρ2

(
27

(
2m2

1

(
m2

2 + m2
3 − m2

X

)
− m4

X

)
+ 9λ

(
m2

1 ,m
2
2 ,m

2
3

)
+ 36M2m2

X − M4
(
9 − ρ2

) )
, (2.85)

P̃30(ρ) = P̃40 = 0, (2.86)

P̃03(ρ) = −
1

81
M8ρ3, (2.87)

P̃04(ρ) = −
1

162
M8ρ4. (2.88)

Since P̃30(ρ) and P̃40(ρ) are zero, the boundary is given by

Φ̃(ρ, ϑ) = P̃00(ρ) + P̃10(ρ) sinϑ + P̃01(ρ) cos θ + P̃20(ρ) sin 2ϑ + P̃02(ρ) cos 2ϑ

+ P̃03(ρ) cos 3ϑ + P̃04(ρ) cos 4ϑ = 0. (2.89)
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2.5.1 Special case of m2 = m3

In the special case when particles 2 and 3 have the same mass, we get C̃10 = C̃11 = 0 =

P̃10 = P̃20. In this case, the boundary of the physically allowed region is symmetric under

X ↔ −X or ϑ ↔ −ϑ, and the boundary is given by Φ̃(X ,Y ) = C̃00 + C̃01Y + C̃20X
2 +

C̃02Y
2 + C̃21X

2Y + C̃03Y
3 + C̃22X

2Y2 + C̃04Y
4 = 0, and Ψ̃(ρ, ϑ) =

4∑
i=0

P0i(ρ) cos(iϑ) = 0.

Now X ↔ −X or ϑ ↔ −ϑ exchange implies t ↔ u exchange, which is equivalent to

θ ↔ π − θ.

2.5.2 Relationship between θ and ϑ

We have two theta’s in our calculation, one polar angle in the Dalitz plot (ϑ) and the other

angle is between ~p′1 and ~p′2 (θ). These two angles are related to each other. Below we

derive the relationship between them. Using the expressions for t and u in terms of polar

coordinates we get

t − u =
2
3
M2ρ sin

(
2π
3

)
sinϑ =

√
3M2ρ sinϑ. (2.90)

However, we know that

t − u =
1
s

( (
m2

3 − m2
2

) (
m2

X − m2
1

)
+

√
λ

(
s,m2

X
,m2

1

)√
λ

(
s,m2

2 ,m
2
3

)
cos θ

)
. (2.91)

Therefore

sinϑ =
1

√
3sM2ρ

( (
m2

3 − m2
2

) (
m2

X − m2
1

)
+

√
λ

(
s,m2

X
,m2

1

)√
λ

(
s,m2

2 ,m
2
3

)
cos θ

)
.

(2.92)

When m2 = m3 = m (say), and ϑ ↔ −ϑ, then let us suppose that θ ↔ θ′:

− sinϑ =
1

√
3sM2ρ

√
λ

(
s,m2

X
,m2

1

)√
λ

(
s,m2,m2) cos θ′. (2.93)
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This would be consistent with our definition of θ, if θ′ = π − θ. This can also be clearly

seen from Fig. 2.9, where exchanging particles 2 and 3 amounts to changing the angle θ

to π − θ.

2.5.3 Usage of this new Dalitz plot

The new kind of Dalitz plot discussed in this section, will be applied to study violations

of some of the fundamental symmetries of nature. Such a Dalitz plot is also easy to

construct as invariant masses of pairs of final particles are routinely measured in various

particle physics experiments.

2.6 Summary

In this chapter, we have presented an overview of three-body decays as well as the im-

portant concept of the Dalitz plot. The Dalitz plot, contrary to the popular belief that it

is only a three-body phase-space plot, carries much information about the underlying dy-

namics. If there is any symmetry dictating the dynamics of the process, it would leave its

signature in the distribution of events inside the Dalitz plot. We will exploit such features

for observing some symmetry violations in Chapter 4. But the Dalitz plot is, indeed, a

very versatile tool, and as we shall observe in Chapter 3 it can be generalized to handle

three-body and multi-body processes.
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Part II
The Research Findings

In this part we shall elaborate all the main research findings of this the-

sis. In Chapter 3 we shall explore how the scope of the Dalitz plot can

be enhanced by generalizing it to a three-dimensional plot, the Dalitz

‘prism’. In Chapter 4 we shall show mathematically that the Dalitz

plots and Dalitz prisms can be used to study violations of CP, CPT ,

Bose and SU(3) flavor symmetries.
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3
The concept of Dalitz ‘prism’

As noted in Chapter 2, the phase-space plot for three-body decays, popularly known as

the Dalitz plot, is very useful for deciphering various aspects of the underlying dynamics

of the process. The scope of application of Dalitz plot can be broadened if it could ac-

commodate non-resonant as well as resonant processes with all three final particles. This

demands that the Dalitz plot be suitably modified to include the center-of-momentum

energy or mod-square of the total initial four-momentum, in the new plot. This is easy

to implement by taking an axis perpendicular to the plane of the triangular Dalitz plot,

passing through the center of the equilateral triangle, and then we literally stack up Dalitz

plots with increasing center-of-momentum energy along the new axis. The resulting plot

would then have a prism-like appearance. Hence, we call this new three-dimensional plot

as the Dalitz ‘prism’, as a humble tribute to Richard Henry Dalitz. The Dalitz prism can

also handle multi-body processes as some “effective” three-body processes. In this chap-

ter we shall lay down some details of the Dalitz prism, and in Chapter 4 we shall see how

the Dalitz prism can be applied to observe violations of CP, CPT and Bose symmetries

in some elementary particle processes.
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3.1 Construction of the Dalitz prism

Let us consider a process a + b → 1 + 2 + 3, where a and b are two initial particles

and 1, 2, 3 are the three final particles. The process will (or will not) proceed via some

intermediate resonance X depending on whether the center-of-momentum energy is close

to (or farther from) mX , the mass of the resonance. Pairs of the final particles may them-

selves have some resonant origin also. Let us denote the center-of-momentum energy of

the process by ECM. When a+b → X → 1+2+3, we have, in Natural units, ECM = mX .

Ideally, for every value of ECM we would get a triangular (or ternary) Dalitz plot. Let us

now stack up all these Dalitz plots with increasing ECM. This gives us the Dalitz prism

for the process a + b → 1 + 2 + 3.

The Dalitz prism is constructed in the usual three-dimensional Cartesian coordinate

system (x , y , z) or in the cylindrical coordinate system (r , θ, z). The z axis denotes vari-

ation of ECM (see Fig. 3.1). The x and y coordinates (or equivalently the r and θ coordi-

nates) are obtained by solving the following equations:

s =
M2

3

(
1 + r cos θ

)
=

M2

3

(
1 + y

)
, (3.1)

t =
M2

3

(
1 + r cos

(
2π
3

+ θ

))
=

M2

6

(
2 +
√

3x − y
)
, (3.2)

u =
M2

3

(
1 + r cos

(
2π
3
− θ

))
=

M2

6

(
2 −
√

3x − y
)
, (3.3)

where s, t , u denote the invariant masses of the pairs of particles (2 3), (3 1) and (1 2)

respectively, M2 = m2
X

+ m2
1 + m2

2 + m2
3 with mi being the mass of particle i, and θ is

measured in the anti-clockwise direction from the y-axis which is also the s-axis of the

ternary plot. The allowed values of (x , y) always lie inside the equilateral triangle with

vertices at (0, 2), (
√

3, −1) and (−
√

3, −1). Thus the complete range of s, t , u are covered
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Figure 3.1: Schematic drawing of a Dalitz prism explaining its essential features and
showing its intended usage (which will be discussed in Chapter 4). The six identical
wedges of the prism and the six sextants of the equilateral triangle are numbered analo-
gously. Here s, t , u denote the invariant masses of the pairs of particles (2 3), (3 1) and
(1 2) respectively. Thus, the exchange of variables s ↔ t ↔ u is carried out by an ex-
change of the 4-momenta of the final three particles p1 ↔ p2 ↔ p3, where pi is the
4-momentum of particle i. The blobs with 1, 2 and 3 are mnemonic for showing that the
exchanges s ↔ t ↔ u and 1↔ 2↔ 3 are the same.
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in this ternary plot:

−
√

3 6 x 6
√

3

−1 6 y 6 2

 =⇒ 0 6 s, t , u 6 M2, (3.4)

and only the physically allowed regions of s, t , u make up the Dalitz plot. Our Dalitz plot

is in the (x , y) coordinate system. When we want to record an event in the Dalitz plot, we

evaluate the x and y values corresponding to that event and then register the point (x , y)

inside the equilateral triangle. We show in Fig. 3.1 the s, t and u axes to specify their

directions in this (x , y) coordinate system.

3.2 Salient features of the Dalitz prism

The Dalitz prism has the following salient features.

• The sides of the ternary plot and the three faces of the Dalitz prism that run parallel

to the z-axis, correspond to s = 0, t = 0 and u = 0. Similarly, at the vertices of the

ternary plots and, hence, at the three edges of the Dalitz prism that run parallel to

the z-axis, we have s = M2, t = M2 and u = M2.

• Since the Dalitz prism records events that include both resonant and non-resonant

or continuum production of the three final particles, it is a gargantuan storehouse

of data. In order to look at the Dalitz plot at a given center-of-momentum en-

ergy, we just need to pull out a slice of the Dalitz prism at that energy, as shown

schematically in Fig. 3.1.

• By construction, there is no top ceiling of Dalitz prism, but the experimental reach

does put a limit on the height of the Dalitz prisms, which, in general, varies from

mode to mode.
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• The Dalitz prism can be divided into six identical wedges analogous to the six

sextants of a ternary plot (see Fig. 3.1). If there is any underlying symmetry that

correlates the distribution of events in the six sextants of the Dalitz plot, it would

also get manifest in the Dalitz prism as an analogous correlation amongst the six

wedges.

3.3 Dalitz prism and multi-body processes

When multi-body processes, depending on the context, can be treated as “effective” three-

body processes by considering all but two of the final particles as arising from an “effec-

tive” particle, then one can construct an “effective” Dalitz prism for the process. Since

we are fixing two final particles and keeping one ‘fictitious’ effective third particle in the

final state, many multi-body processes can, in principle, contribute to the effective Dalitz

prism. The Dalitz prism, say for a + b → 1 + 2 + 3 where 3 is an effective particle

(i.e. the fictitious particle 3 may represent many particles in combination) can be con-

structed if we know the 4-momenta of particles 1, 2 and that of the effective particle 3.

The 4-momentum of the effective particle can be known either by precisely measuring the

4-momenta of its constituent particles or by using the conservation law for 4-momentum

with the 4-momenta of the particles a, b, 1, 2 as inputs. The second method is best,

because by measuring 4-momenta of particles a, b, 1 and 2 precisely, we can use conser-

vation of 4-momentum to assign pa + pb − p1 − p2 as the 4-momentum of the “effective”

particle 3; here pi is the 4-momentum of particle i. Thus all initial and final state radia-

tions can be considered as part of the “effective” particle. Therefore, the Dalitz prism is

a very robust method in handling initial state radiation and final state radiation. Since we

are now dealing with multi-body decays, the slices of the Dalitz prism are no longer any

Dalitz plots.
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3.4 Summary

The concept of Dalitz plot can be generalized to a new three-dimensional plot called

Dalitz prism when we consider both resonant and non-resonant production of the final

three particles. The concept of Dalitz prism can also be adopted to study multi-body

processes when they can be treated as “effective” three-body processes. By including the

initial and final state radiations in the definition of the “effective” third final particle the

Dalitz prism becomes capable of handling an amazingly large number of events. This

enables Dalitz prism to be a natural tool of choice in investigating violations of some

fundamental symmetries of nature, as we will discuss in Chapter 4.



4
Study of some symmetry

violations
Study of symmetry violations or breakdowns is an essential part of elementary particle

physics as it helps us in a better understanding of the workings of Nature at its minutest

level. In this chapter we shall look at violations of Bose symmetry, CP, CPT and SU(3)

flavor symmetries. We shall employ the Dalitz plots and the Dalitz prisms (concepts

discussed and developed in Chapters 2 and 3), and analyse the distribution of events in

them to study the above said symmetry violations in some three-body processes.

4.1 Bose symmetry violation

The basic idea here is that if we consider a general three-body decay, say X → 1 +

2 + 3, where all of the final particles are bosons and two of them, say 2 and 3, are

identical bosons (but reconstructed from distinct and unique final states), then the Dalitz

plot distribution must exhibit symmetry under 2 ↔ 3 exchange. Mathematically, the

exchange symmetry between 2 and 3 would manifest as a symmetry across the m2
12 = m2

13

line in the Dalitz plot distribution m2
12 vs. m2

13, where s2
i j

= (pi + p j)2, with pi being the 4-
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momentum of the particle i in the final state. For notational simplicity and mathematical

clarity, we shall introduce the following Mandelstam-like variables: s ≡ m2
23 = (p2 +

p3)2 = (p − p1)2, t ≡ m2
13 = (p1 + p3)2 = (p − p2)2, u ≡ m2

12 = (p1 + p2)2 = (p − p3)2,

where p is the 4-momentum of the parent particle X . So, 2 ↔ 3 exchange symmetry

leads to symmetry in Dalitz plot distribution under t ↔ u exchange. Any asymmetry

observed in these Dalitz plots under t ↔ u exchange would be a measure of the extent to

which the Bose symmetry is violated.

Let us denote the amplitude for the decay X → 1 + 2 + 3 by A(t , u) and the amplitude

with particles 2 and 3 exchanged by A(u, t). If the underlying symmetry allows us to

exchange particles 2 and 3, then A(t , u) = A(u, t). However, if the underlying symmetry

is not perfectly valid in the present context, we can break up the amplitude A(t , u) into a

part which is symmetric under t ↔ u exchange and another part which is nonsymmetric

under the same exchange:

A(t , u) = AS + AN , (4.1)

where

AS ≡
1
2

(
A(t , u) + A(u, t)

)
, and AN ≡

1
2

(
A(t , u) − A(u, t)

)
. (4.2)

It is important to note that if the underlying symmetry were exact, then AN = 0 identi-

cally.1 The differential decay rate for the three-body process X → 1 + 2 + 3 (if X were a

spin-0 particle) is therefore given by

d2Γ

dt du
=

(∣∣∣AS
∣∣∣2 +

∣∣∣AN
∣∣∣2 + 2 Re

(
ASAN∗

))
(2π)3 32M3

X

, (4.3)

where MX is the mass of the parent particle X . Since AN is odd under the exchange

t ↔ u, the interference term will produce an observable asymmetry in the Dalitz plot.

1A misidentification of either particle 2 or 3 can result in a non-zero AN . Here in our discussion we do
assume that the particle 2 and 3 are identified correctly.
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Even if X were not a spin-0 particle, the Dalitz plot distribution is always proportional

to the square of the modulus of amplitude and the phase-space. The phase-space gives a

uniform Dalitz distribution throughout and the interference term ASAN∗ in the square of

the modulus of amplitude would give an observable asymmetry in the Dalitz plot under

t ↔ u exchange. Observation of this asymmetry is crucial to test Bose symmetry. This

observation also points out that this test of symmetry in the Dalitz plot is independent

of what X actually is. Thus we can, indeed, replace the decay by a process, such as

the scattering of two particles a and b giving rise to the same final states 1, 2, 3, i.e.

a + b → 1 + 2 + 3, and the said symmetries would now be applicable to the Dalitz prism

also.

Let us consider the decay η → 3π0, where two out of the three final pions are recon-

structed fromγγ with the remaining one from e+e−γ final states: η → π0(p1)︸ ︷︷ ︸
γγ

π0(p2)︸ ︷︷ ︸
γγ

π0(p3)︸ ︷︷ ︸
e+e−γ

.

The Dalitz plot m2
12 vs. m2

13 should be completely symmetric about the m2
12 = m2

13 line if

the two pions that are reconstructed differently are identical. In this particular case π0(p1)

and π0(p2) are completely indistinguishable from each other. Therefore, only half of the

Dalitz plot of Fig. 4.1 can be reconstructed. However, all the three sextant regions occu-

pying that half of the Dalitz plot must be fully symmetric with respect to each other. Any

observed asymmetry in the Dalitz plot can only be attributed to Bose symmetry violation.

Similarly one can look at the following decays:

(
K+, D+, D+

s

)
→ π+(p1)︸ ︷︷ ︸

µ+νµ

π0(p2)︸ ︷︷ ︸
e+e−γ

π0(p3)︸ ︷︷ ︸
γγ

,
(
K+, D+, D+

s

)
→ π−(p1)︸ ︷︷ ︸

µ−ν̄µ

π+(p2)︸ ︷︷ ︸
e+νe

π+(p3)︸ ︷︷ ︸
µ+νµ

,

and the Dalitz plots should again be symmetric about the m2
12 = m2

13 line. Any asymmetry

in these Dalitz plots can not appear unless the Bose symmetry is violated. Thus the Dalitz

plot asymmetry can be used in these cases to probe the validity of Bose symmetry in the

case of pions. Some more decay modes where the Bose symmetry violations can be
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Figure 4.1: The sextant regions of the Dalitz plot (schematic) for the decay η → 3π0.

searched for are

η′ →


η(p1) π0(p2) π0(p3)

π0(p1) π0(p2) π0(p3)
,

B0 → K0
S (p1) K0

S (p2) K0
S (p3) ,

B+ →


D−s (p1) K+(p2) K+(p3)

D−(p1) π+(p2) π+(p3)
,

D+
s → K−(p1) K+(p2) K+(p3).

It is important to note that the Dalitz prism can be used to study the violation of Bose

symmetries in the above said final states. To apply the Dalitz prism we need to project

the Dalitz prism onto its base, i.e. we integrate over the full ECM under study and analyse

the symmetry properties of the resulting two-dimensional plot, as one would do if it were

a Dalitz plot (see Fig. 3.1).
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4.2 Direct CP violation and CPT violation in mixing

The symmetries CP and CPT are two extremely important symmetries in physics, as

discussed in Chapter 1. Mesons, specifically the K , B and D mesons, are most frequently

probed in CP violation studies as they primarily decay via the weak interaction. In the

analysis below we shall give a general formalism without considering any specific meson.

Let us consider the following decay process

X(pX )→ Y (p1) P0(p2) P̄0(p3)→ Y (p1) f1(p2) f2(p3), (4.4)

where all the particles are spin-0 particles, P0 and P̄0 are both neutral and are antiparticles

of each other. The neutral particles P0 and P̄0 are reconstructed from final states f1 and f2

as denoted above. Neither P0 nor P̄0 are mass eigenstates. They are flavour eigenstates

and the mass eigenstates are defined as linear combinations of the flavor eigenstates. Let

us denote the mass eigenstates by P1 and P2. Allowing for both CP and CPT violations

in the mixing, we can write down the following expressions for the mass eigenstates

∣∣∣P1,2
〉

= N1,2

(
p
√

1 ∓ z
∣∣∣P0

〉
± q
√

1 ± z
∣∣∣P̄0

〉 )
, (4.5)

where p, q are in general complex and are responsible for CP violation in mixing, z is

also complex and is responsible for CPT violation in mixing, and

N1,2 =
1√

|p |2 (1 ∓ z) + |q |2 (1 ± z)
=

1√(
|p |2 + |q |2

)
∓ z

(
|p |2 − |q |2

) , (4.6)

with |p |2 + |q |2 = 1 and N1 = N2 = 1 for z = 0 (noCPT violation); and theCP eigenstates

are

|P±〉 =
1
√

2

( ∣∣∣P0
〉
±

∣∣∣P̄0
〉 )
. (4.7)
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Now we can rewrite the flavour eigenstates in terms of the mass and CP eigenstates as

follows: ∣∣∣P0
〉

=
N2
√

1 − z |P1〉 + N1
√

1 + z |P2〉

2N1N2p
=

1
√

2

(
|P+〉 + |P−〉

)
, (4.8)

and ∣∣∣P̄0
〉

=
N2
√

1 + z |P1〉 − N1
√

1 − z |P2〉

2N1N2q
=

1
√

2

(
|P+〉 − |P−〉

)
, (4.9)

where

N1N2 =
1√(

1 − z2) (
|p |4 + |q |4

)
+

(
1 + z2) (

2 |p |2 |q |2
) . (4.10)

Finally the mass eigenstates can also be written in terms of the CP eigenstates as follows:

∣∣∣P1,2
〉

=
N1,2
√

2

( (
p
√

1 ∓ z ± q
√

1 ± z
)
|P+〉 +

(
p
√

1 ∓ z ∓ q
√

1 ± z
)
|P−〉

)
=

N1,2
√

2

(
U1,2 |P+〉 +V1,2 |P−〉

)
, (4.11)

where

U1,2 = p
√

1 ∓ z ± q
√

1 ± z , and V1,2 = p
√

1 ∓ z ∓ q
√

1 ± z . (4.12)

It is easy to see that

U1,2 +V1,2 = p
√

1 ∓ z , (4.13a)

U1,2 − V1,2 = ±q
√

1 ± z , (4.13b)

U1,2V1,2 = p2(1 ∓ z) − q2(1 ± z) =
(
p2 − q2

)
∓ z

(
p2 + q2

)
, (4.13c)

U2
1,2 =

(
p2 + q2

)
∓ z

(
p2 − q2

)
± 2pq

√
1 − z2 , (4.13d)

V 2
1,2 =

(
p2 + q2

)
∓ z

(
p2 − q2

)
∓ 2pq

√
1 − z2 . (4.13e)

The states
∣∣∣P1,2

〉
have only an exponential time dependence corresponding to their mass

and decay width, and do not depend on time in any other way. This time dependence is
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given by

|Pi(t)〉 = gi(t) |Pi〉 = e−imi t−
1
2Γi t |Pi〉 = e−iµi t |Pi〉 , (4.14)

where µi ≡ mi − Γi/2 with mi and Γi being the mass and the decay width of the mass

eigenstate Pi . Now this implies that the combination of P± on the right hand side of

Eq. (4.11) must also exhibit the same exponential time dependence. We choose to work

in the mass eigenstates as the time evolution is a simple exponential. We also choose

to work in the center-of-momentum frame of P0P̄0 which is also the Gottfried-Jackson

frame (see Fig. 4.2). The ẑ-axis is the direction of flight of the particle X . We define the

X(~pX )
Y (~p1)

P0(~p2)

P̄0(~p3)

ẑ
θ

Figure 4.2: The Gottfried-Jackson frame used for the decay X(pX ) →

Y (p1)P0(p2)P̄0(p3). It is clear in the figure that ~pX = ~p1 and ~p2 = −~p3. There is an
angle θ between ~p1 and ~p2.

invariant mass squares the Mandelstam way:

s = (p2 + p3)2 = (pX − p1)2, (4.15a)

t = (p1 + p3)2 = (pX − p2)2, (4.15b)

u = (p1 + p2)2 = (pX − p3)2. (4.15c)

The two variables t and u can be written as

t = a + b cos θ, and u = a − b cos θ, (4.16)
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where

a =
m2

X
+ m2

Y
+ 2m2

P
− s

2
, and b =

√(
s − 4m2

P

)
λ

(
m2

X
,m2

Y
, s

)
2
√
s

, (4.17)

where mX ,mY are the masses of particles X and Y respectively, mP is the average mass2

of the mass eigenstates P1 and P2. The particles P0 and P̄0 produced in the decay of the

particle X at time t = 0 oscillate amongst each other before finally decaying to final states

f1 and f2 at times t1 and t2 respectively. For our calculation we would consider those final

states that have definiteCP. We denote theCP-even final state by f +
i

and theCP-odd final

state by f −
i

. We can express the final state
∣∣∣Y (p1)P0(p2)P̄0(p3)

〉
and the corresponding

momentum exchanged state
∣∣∣Y (p1)P0(p3)P̄0(p2)

〉
in terms of the mass eigenstates P1,2 as

follows:

∣∣∣Y (p1)P0(p2)P̄0(p3)
〉

=

∣∣∣YP0P̄0
〉

even
−

∣∣∣YP0P̄0
〉

odd

4N2
1 N

2
2 pq

, (4.18)

∣∣∣Y (p1)P0(p3)P̄0(p2)
〉

=

∣∣∣YP0P̄0
〉

even
+

∣∣∣YP0P̄0
〉

odd

4N2
1 N

2
2 pq

, (4.19)

where the subscripts ‘even’ and ‘odd’ denote the behaviour of the concerned state under

the momentum exchange p2 ↔ p3 and these states are given by

∣∣∣YP0P̄0
〉

even
=

√
1 − z2

(
N2

2 |Y P1(p2) P1(p3)〉 − N2
1 |Y P2(p2) P2(p3)〉

)
+ zN1N2

(
|Y P1(p2) P2(p3)〉 + |Y P2(p2) P1(p3)〉

)
, (4.20)∣∣∣YP0P̄0

〉
odd

= N1N2

(
|Y P1(p2) P2(p3)〉 − |Y P2(p2) P1(p3)〉

)
. (4.21)

It is important to notice that the ‘even’ state
∣∣∣YP0P̄0

〉
even

has two bracketed terms, the

2The effect of the mass difference between P1 and P2 is taken into account in the analysis. However, in
t and u the mass that enters is the average mass mP because we assign this mass to the flavor eigenstates
P0 and P̄0 which participate in the decay. The flavor eigenstates are different from mass eigenstates P1 and
P2 which, of course, have different masses and that mass difference is taken care of in our calculation.
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first one of which is completely Bose symmetric under the exchange of particles with

momenta p2 and p3, and the second bracketed term is clearly not Bose symmetric under

the same exchange. Since the exchange p2 ↔ p3 is equivalent to the exchange t ↔ u,

the Bose symmetry is realised as a symmetry under t ↔ u exchange on the Dalitz plot, if

and only if there is no CPT violation (i.e. z = 0) in the decay3.

Let us now define the amplitudes for the decay of P± to a final state f ±
i

of definite CP

as follows,

Amp(P+ → f +
i ) =

〈
f +
i |P+

〉
= A+

i , (4.22a)

Amp(P− → f +
i ) =

〈
f +
i |P−

〉
= ε+

i A
+
i , (4.22b)

Amp(P− → f −i ) =
〈
f −i |P−

〉
= A−i , (4.22c)

Amp(P+ → f −i ) =
〈
f −i |P+

〉
= ε−i A

−
i , (4.22d)

where ε±
i

quantifies the amount of directCP violation in the decays of the neutral particles

P. The amplitudes for the decay of the mass eigenstates P1,2 to f ±
i

can now be written as

Amp(P1,2 → f +
i ) =

N1,2
√

2

(
U1,2 A

+
i +V1,2 ε

+
i A

+
i

)
=

N1,2
√

2

(
U1,2 +V1,2 ε

+
i

)
A+
i , (4.23)

Amp(P1,2 → f −i ) =
N1,2
√

2

(
U1,2 ε

−
i A
−
i +V1,2 A

−
i

)
=

N1,2
√

2

(
U1,2 ε

−
i +V1,2

)
A−i . (4.24)

Thus, the decay amplitude for X → Y (p1) f s1
1 (p2)︸  ︷︷  ︸
Pi (p2)

f
s2
2 (p3)︸  ︷︷  ︸
P j (p3)

where i , j ∈ {1, 2} and s1,2 = ±

is given by

Amp
(
X → Y (p1)

(
f
s1
1 (p2)

)
Pi (p2)

(
f
s2
2 (p3)

)
P j (p3)

)
=

1
4N2

1 N
2
2 pq

(
2ApAmp

((
P0P̄0)

even → f
s1
1 f

s2
2

)
+ 2AmAmp

((
P0P̄0)

odd → f
s1
1 f

s2
2

)
cos θ

)
,

(4.25)

3If CPT were violated, we could not assign the average mass mP to both P0 and P̄0.
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where the
(
P0P̄0)

even and
(
P0P̄0)

odd states can be easily read out from Eqs. (4.20) and

(4.21), and the amplitudes Ap (‘a-plus’) and Am (‘a-minus’) are given by

Ap =
1
2

(
A(t , u) + A(u, t)

)
, Am =

1
2 cos θ

(
A(t , u) − A(u, t)

)
, (4.26)

with the amplitudes A(t , u) and A(u, t) being defined as

A(t , u) = Amp
(
X → Y (p1)P0(p2)P̄0(p3)

)
=

〈
Y (p1)P0(p2)P̄0(p3)|X

〉
, (4.27)

A(u, t) = Amp
(
X → Y (p1)P0(p3)P̄0(p2)

)
=

〈
Y (p1)P0(p3)P̄0(p2)|X

〉
. (4.28)

Now the amplitudes for Pi P j → f
s1
1 f

s2
2 (with i , j ∈ {1, 2} and s1,2 = ±), after taking into

account the time-evolution of the mass eigenstates, are given by

Amp(P1P1 → f +
1 f +

2 ) = e−iµ1(t1+t2) 1
2
N2

1

(
U2

1 +U1V1
(
ε+

1 + ε+
2

)
+V 2

1 ε
+
1 ε

+
2

)
A+

1 A+
2 ,

(4.29a)

Amp(P1P1 → f +
1 f −2 ) = e−iµ1(t1+t2) 1

2
N2

1

(
U2

1 ε
−
2 +V 2

1 ε
+
1 +U1V1

(
1 + ε+

1 ε
−
2

) )
A+

1 A−2 ,

(4.29b)

Amp(P1P1 → f −1 f +
2 ) = e−iµ1(t1+t2) 1

2
N2

1

(
U2

1 ε
−
1 +V 2

1 ε
+
2 +U1V1

(
1 + ε−1 ε

+
2

) )
A−1 A+

2 ,

(4.29c)

Amp(P1P1 → f −1 f −2 ) = e−iµ1(t1+t2) 1
2
N2

1

(
U2

1 ε
−
1 ε
−
2 +U1V1

(
ε−1 + ε−2

)
+V 2

1

)
A−1 A−2 ,

(4.29d)

Amp(P1P2 → f +
1 f +

2 ) = e−iµ1t1e−iµ2t2
1
2
N1N2

(
U1U2 +U2V1ε

+
1 +U1V2ε

+
2

+V1V2ε
+
1 ε

+
2

)
A+

1 A+
2 , (4.29e)

Amp(P1P2 → f +
1 f −2 ) = e−iµ1t1e−iµ2t2

1
2
N1N2

(
U1V2 +U1U2ε

−
2 +V1V2ε

+
1

+U2V1ε
+
1 ε
−
2

)
A+

1 A−2 , (4.29f)
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Amp(P1P2 → f −1 f +
2 ) = e−iµ1t1e−iµ2t2

1
2
N1N2

(
U2V1 +U1U2ε

−
1 +V1V2ε

+
2

+U1V2ε
−
1 ε

+
2

)
A−1 A+

2 , (4.29g)

Amp(P1P2 → f −1 f −2 ) = e−iµ1t1e−iµ2t2
1
2
N1N2

(
V1V2 +U1V2ε

−
1 +U2V1ε

−
2

+U1U2ε
−
1 ε
−
2

)
A−1 A−2 ,

(4.29h)

Amp(P2P1 → f +
1 f +

2 ) = e−iµ2t1e−iµ1t2
1
2
N1N2

(
U1U2 +U1V2ε

+
1 +U2V1ε

+
2

+V1V2ε
+
1 ε

+
2

)
A+

1 A+
2 , (4.29i)

Amp(P2P1 → f +
1 f −2 ) = e−iµ2t1e−iµ1t2

1
2
N1N2

(
U2V1 +U1U2ε

−
2 +V1V2ε

+
1

+U1V2ε
+
1 ε
−
2

)
A+

1 A−2 , (4.29j)

Amp(P2P1 → f −1 f +
2 ) = e−iµ2t1e−iµ1t2

1
2
N1N2

(
U1V2 +U1U2ε

−
1 +V1V2ε

+
2

+U2V1ε
−
1 ε

+
2

)
A−1 A+

2 , (4.29k)

Amp(P2P1 → f −1 f −2 ) = e−iµ2t1e−iµ1t2
1
2
N1N2

(
V1V2 +U2V1ε

−
1 +U1V2ε

−
2

+U1U2ε
−
1 ε
−
2

)
A−1 A−2 , (4.29l)

Amp(P2P2 → f +
1 f +

2 ) = e−iµ2(t1+t2) 1
2
N2

2

(
U2

2 +V 2
2 ε

+
1 ε

+
2 +U2V2

(
ε+

1 + ε+
2

) )
A+

1 A+
2 ,

(4.29m)

Amp(P2P2 → f +
1 f −2 ) = e−iµ2(t1+t2) 1

2
N2

2

(
U2

2 ε
−
2 +V 2

2 ε
+
1 +U2V2

(
1 + ε+

1 ε
−
2

) )
A+

1 A−2 ,

(4.29n)

Amp(P2P2 → f −1 f +
2 ) = e−iµ2(t1+t2) 1

2
N2

2

(
U2

2 ε
−
1 +V 2

2 ε
+
2 +U2V2

(
1 + ε−1 ε

+
2

) )
A−1 A+

2 ,

(4.29o)

Amp(P2P2 → f −1 f −2 ) = e−iµ2(t1+t2) 1
2
N2

2

(
V 2

2 +U2
2 ε
−
1 ε
−
2 +U2V2

(
ε−1 + ε−2

) )
A−1 A−2 .

(4.29p)
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We shall now make the substitutions µ1 = µ + ∆µ, µ2 = µ − ∆µ, where

µ =
m1 + m2

2
−

i

2
Γ1 + Γ2

2
= mP −

i

2
ΓP , (4.30)

∆µ =
m1 − m2

2
−

i

2
Γ1 − Γ2

2
= (x − i y)

ΓP

2
, (4.31)

with mP and ΓP being the average mass and decay width of P1 and P2, and xΓP, 2yΓP

being the differences in masses and decay widths of P1 and P2. Let us also define the

following functions:

H(T ) = e−iµ(t1+t2) cos(∆µT ), and G(T ) = e−iµ(t1+t2) i sin(∆µT ), (4.32)

such that

e−iµ1(t1+t2) = H(t1 + t2) + G(t1 + t2), (4.33a)

e−iµ2(t1+t2) = H(t1 + t2) − G(t1 + t2), (4.33b)

e−i(µ1t1+µ2t2) = H(t1 − t2) + G(t1 − t2), (4.33c)

e−i(µ2t1+µ1t2) = H(t1 − t2) − G(t1 − t2). (4.33d)

Physically it is very plausible that the masses of two particles that mix with each other

would be almost equal. Therefore, we can assume safely that ∆µ → 0, in which case

cos(∆µT ) ≈ 1 and sin(∆µT ) ≈ ∆µT . Thus, we can always approximate H(T ) and G(T )

as H(T ) ≈ e−iµ(t1+t2) and e−iµ(t1+t2)i ∆µT respectively. Thus to first order approximation

in the mass and width difference between P1 and P2, we have

e−iµ1(t1+t2) ≈ e−iµ(t1+t2) (1 + i ∆µ (t1 + t2)) , (4.34a)

e−iµ2(t1+t2) ≈ e−iµ(t1+t2) (1 − i ∆µ (t1 + t2)) , (4.34b)

e−i(µ1t1+µ2t2) ≈ e−iµ(t1+t2) (1 + i ∆µ (t1 − t2)) , (4.34c)
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e−i(µ2t1+µ1t2) ≈ e−iµ(t1+t2) (1 − i ∆µ (t1 − t2)) . (4.34d)

Using these expressions we can rewrite the amplitudes for Pi P j → f
s1
1 f

s2
2 (with

i , j = 1, 2 and s1,2 = ±), as follows (again up to first order approximation in the mass and

width difference between P1 and P2):

Amp(P1P1 → f +
1 f +

2 ) =
1
2
N2

1

(
U2

1 +U1V1
(
ε+

1 + ε+
2

)
+V 2

1 ε
+
1 ε

+
2

)
(
e−iµ(t1+t2) (1 + i ∆µ (t1 + t2))

)
A+

1 A+
2 , (4.35a)

Amp(P2P2 → f +
1 f +

2 ) =
1
2
N2

2

(
U2

2 +V 2
2 ε

+
1 ε

+
2 +U2V2

(
ε+

1 + ε+
2

) )
(
e−iµ(t1+t2) (1 − i ∆µ (t1 + t2))

)
A+

1 A+
2 , (4.35b)

Amp(P1P2 → f +
1 f +

2 ) =
1
2
N1N2

(
U1U2 +U2V1ε

+
1 +U1V2ε

+
2 +V1V2ε

+
1 ε

+
2

)
(
e−iµ(t1+t2) (1 + i ∆µ (t1 − t2))

)
A+

1 A+
2 , (4.35c)

Amp(P2P1 → f +
1 f +

2 ) =
1
2
N1N2

(
U1U2 +U1V2ε

+
1 +U2V1ε

+
2 +V1V2ε

+
1 ε

+
2

)
(
e−iµ(t1+t2) (1 − i ∆µ (t1 − t2))

)
A+

1 A+
2 , (4.35d)

Amp(P1P1 → f +
1 f −2 ) =

1
2
N2

1

(
U2

1 ε
−
2 +V 2

1 ε
+
1 +U1V1

(
1 + ε+

1 ε
−
2

) )
(
e−iµ(t1+t2) (1 + i ∆µ (t1 + t2))

)
A+

1 A−2 , (4.35e)

Amp(P2P2 → f +
1 f −2 ) =

1
2
N2

2

(
U2

2 ε
−
2 +V 2

2 ε
+
1 +U2V2

(
1 + ε+

1 ε
−
2

) )
(
e−iµ(t1+t2) (1 − i ∆µ (t1 + t2))

)
A+

1 A−2 , (4.35f)

Amp(P1P2 → f +
1 f −2 ) =

1
2
N1N2

(
U1V2 +U1U2ε

−
2 +V1V2ε

+
1 +U2V1ε

+
1 ε
−
2

)
(
e−iµ(t1+t2) (1 + i ∆µ (t1 − t2))

)
A+

1 A−2 , (4.35g)

Amp(P2P1 → f +
1 f −2 ) =

1
2
N1N2

(
U2V1 +U1U2ε

−
2 +V1V2ε

+
1 +U1V2ε

+
1 ε
−
2

)
(
e−iµ(t1+t2) (1 − i ∆µ (t1 − t2))

)
A+

1 A−2 , (4.35h)

Amp(P1P1 → f −1 f +
2 ) =

1
2
N2

1

(
U2

1 ε
−
1 +V 2

1 ε
+
2 +U1V1

(
1 + ε−1 ε

+
2

) )
(
e−iµ(t1+t2) (1 + i ∆µ (t1 + t2))

)
A−1 A+

2 , (4.35i)
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Amp(P2P2 → f −1 f +
2 ) =

1
2
N2

2

(
U2

2 ε
−
1 +V 2

2 ε
+
2 +U2V2

(
1 + ε−1 ε

+
2

) )
(
e−iµ(t1+t2) (1 − i ∆µ (t1 + t2))

)
A−1 A+

2 , (4.35j)

Amp(P1P2 → f −1 f +
2 ) =

1
2
N1N2

(
U2V1 +U1U2ε

−
1 +V1V2ε

+
2 +U1V2ε

−
1 ε

+
2

)
(
e−iµ(t1+t2) (1 + i ∆µ (t1 − t2))

)
A−1 A+

2 , (4.35k)

Amp(P2P1 → f −1 f +
2 ) =

1
2
N1N2

(
U1V2 +U1U2ε

−
1 +V1V2ε

+
2 +U2V1ε

−
1 ε

+
2

)
(
e−iµ(t1+t2) (1 − i ∆µ (t1 − t2))

)
A−1 A+

2 , (4.35l)

Amp(P1P1 → f −1 f −2 ) =
1
2
N2

1

(
U2

1 ε
−
1 ε
−
2 +U1V1

(
ε−1 + ε−2

)
+V 2

1

)
(
e−iµ(t1+t2) (1 + i ∆µ (t1 + t2))

)
A−1 A−2 , (4.35m)

Amp(P2P2 → f −1 f −2 ) =
1
2
N2

2

(
V 2

2 +U2
2 ε
−
1 ε
−
2 +U2V2

(
ε−1 + ε−2

) )
(
e−iµ(t1+t2) (1 − i ∆µ (t1 + t2))

)
A−1 A−2 , (4.35n)

Amp(P1P2 → f −1 f −2 ) =
1
2
N1N2

(
V1V2 +U1V2ε

−
1 +U2V1ε

−
2 +U1U2ε

−
1 ε
−
2

)
(
e−iµ(t1+t2) (1 + i ∆µ (t1 − t2))

)
A−1 A−2 , (4.35o)

Amp(P2P1 → f −1 f −2 ) =
1
2
N1N2

(
V1V2 +U2V1ε

−
1 +U1V2ε

−
2 +U1U2ε

−
1 ε
−
2

)
(
e−iµ(t1+t2) (1 − i ∆µ (t1 − t2))

)
A−1 A−2 . (4.35p)

Let us now introduce for brevity of expression the notation for the following two sets of

amplitudes:

Es1s2 ≡ Amp
((
P0P̄0)

even → f
s1
1 f

s2
2

)
, and Os1s2 ≡ Amp

((
P0P̄0)

odd → f
s1
1 f

s2
2

)
,

(4.36)

such that the master equation Eq. (4.25) can now be written as

As1s2 ≡ Amp
(
X → Y (p1)

(
f
s1
1 (p2)

)
Pi (p2)

(
f
s2
2 (p3)

)
P j (p3)

)
=

1
4N2

1 N
2
2 pq

(
2ApEs1s2 + 2AmOs1s2 cos θ

)
. (4.37)
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Therefore

E++ = e−iµ(t1+t2) 1
2
N2

1 N
2
2

(√
1 − z2

( (
U2

1 −U
2
2

)
+ (U1V1 −U2V2)

(
ε+

1 + ε+
2

)
+

(
V 2

1 − V
2
2

)
ε+

1 ε
+
2

+ i∆µ (t1 + t2)
( (
U2

1 +U2
2

)
+ (U1V1 +U2V2)

(
ε+

1 + ε+
2

)
+

(
V 2

1 +V 2
2

)
ε+

1 ε
+
2

))
+ z

(
2U1U2 + (U2V1 +U1V2)

(
ε+

1 + ε+
2

)
+ 2V1V2ε

+
1 ε

+
2

+ i∆µ (t1 − t2) (U2V1 −U1V2)
(
ε+

1 − ε
+
2

) ))
A+

1 A+
2 , (4.38a)

O++ = e−iµ(t1+t2) 1
2
N2

1 N
2
2

(
(U2V1 −U1V2)

(
ε+

1 − ε
+
2

)
+ i∆µ (t1 − t2)

(
2U1U2 + (U2V1 +U1V2)

(
ε+

1 + ε+
2

)
+ 2V1V2ε

+
1 ε

+
2

))
A+

1 A+
2 , (4.38b)

E+− = e−iµ(t1+t2) 1
2
N2

1 N
2
2

(√
1 − z2

( (
U2

1 −U
2
2

)
ε−2 +

(
V 2

1 − V
2
2

)
ε+

1

+ (U1V1 −U2V2)
(
1 + ε+

1 ε
−
2

)
+ i∆µ (t1 + t2)

( (
U2

1 +U2
2

)
ε−2 +

(
V 2

1 +V 2
2

)
ε+

1

+ (U1V1 +U2V2)
(
1 + ε+

1 ε
−
2

) ))
+ z

(
(U1V2 +U2V1) + 2U1U2ε

−
2 + 2V1V2ε

+
1

+ (U2V1 +U1V2) ε+
1 ε
−
2

+ i∆µ (t1 − t2)
(

(U1V2 −U2V1)

+ (U2V1 −U1V2) ε+
1 ε
−
2

)))
A+

1 A−2 ,

(4.38c)
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O+− = e−iµ(t1+t2) 1
2
N2

1 N
2
2

(
(U1V2 −U2V1) + (U2V1 −U1V2) ε+

1 ε
−
2

+ i∆µ(t1 − t2)
(

(U1V2 +U2V1) + 2U1U2ε
−
2 + 2V1V2ε

+
1

+ (U2V1 +U1V2) ε+
1 ε
−
2

))
A+

1 A−2 ,

(4.38d)

E−+ = e−iµ(t1+t2) 1
2
N2

1 N
2
2

(√
1 − z2

( (
U2

1 −U
2
2

)
ε−1 +

(
V 2

1 − V
2
2

)
ε+

2

+ (U1V1 −U2V2)
(
1 + ε−1 ε

+
2

)
+ i∆µ (t1 + t2)

( (
U2

1 +U2
2

)
ε−1 +

(
V 2

1 +V 2
2

)
ε+

2

+ (U1V1 +U2V2)
(
1 + ε−1 ε

+
2

) ))
+ z

(
(U1V2 +U2V1) + 2U1U2ε

−
1 + 2V1V2ε

+
2

+ (U2V1 +U1V2) ε−1 ε
+
2

+ i∆µ (t1 − t2)
(

(U2V1 −U1V2)

+ (U1V2 −U2V1) ε−1 ε
+
2

)))
A−1 A+

2 ,

(4.38e)

O−+ = e−iµ(t1+t2) 1
2
N2

1 N
2
2

(
(U2V1 −U1V2) + (U1V2 −U2V1) ε−1 ε

+
2

+ i∆µ(t1 − t2)
(

(U1V2 +U2V1) + 2U1U2ε
−
1 + 2V1V2ε

+
2

+ (U1V2 +U2V1) ε−1 ε
+
2

))
A−1 A+

2 ,

(4.38f)
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E−− = e−iµ(t1+t2) 1
2
N2

1 N
2
2

(√
1 − z2

( (
V 2

1 − V
2
2

)
+ (U1V1 −U2V2)

(
ε−1 + ε−2

)
+

(
U2

1 −U
2
2

)
ε−1 ε

−
2

+ i∆µ (t1 + t2)
( (
V 2

1 +V 2
2

)
+ (U1V1 +U2V2)

(
ε−1 + ε−2

)
+

(
U2

1 +U2
2

)
ε−1 ε

−
2

))
+ z

(
2V1V2 + (U1V2 +U2V1)

(
ε−1 + ε−2

)
+ 2U1U2ε

−
1 ε
−
2

+ i∆µ (t1 − t2) (U1V2 −U2V1)
(
ε−1 − ε

−
2

) ))
A−1 A−2 , (4.38g)

O−− = e−iµ(t1+t2) 1
2
N2

1 N
2
2

(
(U1V2 −U2V1)

(
ε−1 − ε

−
2

)
+ i∆µ (t1 − t2)

(
2V1V2 + (U1V2 +U2V1)

(
ε−1 + ε−2

)
+ 2U1U2ε

−
1 ε
−
2

))
A−1 A−2 . (4.38h)
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Using these expressions in Eq. (4.37) we get

A++ =
e−iµ(t1+t2)

4pq

((√
1 − z2

(
U2

1 −U
2
2

)
+ z 2U1U2

+
(
ε+

1 + ε+
2

) (√
1 − z2 (U1V1 −U2V2) + z (U2V1 +U1V2)

)
+ ε+

1 ε
+
2

(√
1 − z2

(
V 2

1 − V
2
2

)
+ z 2V1V2

) )
Ap

+
(
ε+

1 − ε
+
2

)
(U2V1 −U1V2) Am cos θ

+ i∆µ (t1 + t2)
√

1 − z2
( (
U2

1 +U2
2

)
+ (U1V1 +U2V2)

(
ε+

1 + ε+
2

)
+

(
V 2

1 +V 2
2

)
ε+

1 ε
+
2

)
Ap

+ i∆µ (t1 − t2)
(
z (U2V1 −U1V2)

(
ε+

1 − ε
+
2

)
Ap

+
(
2U1U2 + (U2V1 +U1V2)

(
ε+

1 + ε+
2

)
+ 2V1V2ε

+
1 ε

+
2
)
Am cos θ

))
A+

1 A+
2 ,

(4.39a)

A+− =
e−iµ(t1+t2)

4pq

(( (√
1 − z2 (U1V1 −U2V2) + z (U1V2 +U2V1)

) (
1 + ε+

1 ε
−
2

)
+

(√
1 − z2

(
U2

1 −U
2
2

)
+ z 2U1U2

)
ε−2

+

(√
1 − z2

(
V 2

1 − V
2
2

)
+ z 2V1V2

)
ε+

1

)
Ap

+ (U1V2 −U2V1)
(
1 − ε+

1 ε
−
2

)
Am cos θ

+ i∆µ (t1 + t2)
√

1 − z2
(

(U1V1 +U2V2)
(
1 + ε+

1 ε
−
2

)
+

(
U2

1 +U2
2

)
ε−2 +

(
V 2

1 +V 2
2

)
ε+

1

)
Ap

+ i∆µ (t1 − t2)
(
z (U1V2 −U2V1)

(
1 − ε+

1 ε
−
2

)
Ap

+
(

(U1V2 +U2V1)
(
1 + ε+

1 ε
−
2

)
+ 2U1U2ε

−
2 + 2V1V2ε

+
1

)
Am cos θ

))
A+

1 A−2 ,

(4.39b)
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A−+ =
e−iµ(t1+t2)

4pq

(( (√
1 − z2 (U1V1 −U2V2) + z (U1V2 +U2V1)

) (
1 + ε−1 ε

+
2

)
+

(√
1 − z2

(
U2

1 −U
2
2

)
+ z 2U1U2

)
ε−1

+

(√
1 − z2

(
V 2

1 − V
2
2

)
+ z 2V1V2

)
ε+

2

)
Ap

+ (U2V1 −U1V2)
(
1 − ε−1 ε

+
2

)
Am cos θ

+ i∆µ (t1 + t2)
√

1 − z2
(

(U1V1 +U2V2)
(
1 + ε−1 ε

+
2

)
+

(
U2

1 +U2
2

)
ε−1 +

(
V 2

1 +V 2
2

)
ε+

2

)
Ap

+ i∆µ (t1 − t2)
(
z (U2V1 −U1V2)

(
1 − ε−1 ε

+
2

)
Ap

+
(

(U1V2 +U2V1)
(
1 + ε−1 ε

+
2

)
+ 2U1U2ε

−
1 + 2V1V2ε

+
2
)
Am cos θ

))
A−1 A+

2 ,

(4.39c)

A−− =
e−iµ(t1+t2)

4pq

((√
1 − z2

(
V 2

1 − V
2
2

)
+ z 2V1V2

+
(
ε−1 + ε−2

) (√
1 − z2 (U1V1 −U2V2) + z (U2V1 +U1V2)

)
+ ε−1 ε

−
2

(√
1 − z2

(
U2

1 −U
2
2

)
+ z 2U1U2

) )
Ap

+
(
ε−1 − ε

−
2

)
(U1V2 −U2V1) Am cos θ

+ i∆µ (t1 + t2)
√

1 − z2 ( (
V 2

1 +V 2
2

)
+ (U1V1 +U2V2)

(
ε−1 + ε−2

)
+

(
U2

1 +U2
2

)
ε−1 ε

−
2
)
Ap

+ i∆µ (t1 − t2)
(
z (U1V2 −U2V1)

(
ε−1 − ε

−
2

)
Ap

+
(
2V1V2 + (U2V1 +U1V2)

(
ε−1 + ε−2

)
+ 2U1U2ε

−
1 ε
−
2
)
Am cos θ

))
A−1 A−2 .

(4.39d)
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From the expressions forU1,2 and V1,2 it is easy to get the following expressions:

U2
1 −U

2
2 = −2z

(
p2 − q2

)
+ 4pq

√
1 − z2, (4.40a)

V 2
1 − V

2
2 = −2z

(
p2 − q2

)
− 4pq

√
1 − z2, (4.40b)

U2
1 +U2

2 = 2
(
p2 + q2

)
= V 2

1 +V 2
2 , (4.40c)

U1U2 =
(
p2 − q2

) √
1 − z2 + 2pqz , (4.40d)

V1V2 =
(
p2 − q2

) √
1 − z2 − 2pqz , (4.40e)

U1U2 − V1V2 = 4pqz , (4.40f)

U1U2 +V1V2 = 2
(
p2 − q2

) √
1 − z2, (4.40g)

U1V1 −U2V2 = −2
(
p2 + q2

)
z , (4.40h)

U1V1 +U2V2 = 2
(
p2 − q2

)
, (4.40i)

U1V2 −U2V1 = 4pq, (4.40j)

U1V2 +U2V1 = 2
(
p2 + q2

) √
1 − z2. (4.40k)
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Substituting these expressions in the amplitudes and simplifying we get

A++ = e−iµ(t1+t2)
(
Ap

(
1 − ε+

1 ε
+
2

)
− Am cos θ

(
ε+

1 − ε
+
2

)
+ i∆µ (t1 + t2)

√
1 − z2 Ap

( (
p2 + q2

2pq

) (
1 + ε+

1 ε
+
2

)
+

(
p2 − q2

2pq

) (
ε+

1 + ε+
2

) )
+ i∆µ (t1 − t2)

(
− Ap z

(
ε+

1 − ε
+
2

)
+ Am cos θ

(
z
(
1 − ε+

1 ε
+
2

)
+

√
1 − z2

( (
p2 − q2

2pq

) (
1 + ε+

1 ε
+
2

)
+

(
p2 + q2

2pq

) (
ε+

1 + ε+
2

) ))))
A+

1 A+
2 ,

(4.41a)

A+− = e−iµ(t1+t2)
(
− Ap

(
ε+

1 − ε
−
2

)
+ Am cos θ

(
1 − ε+

1 ε
−
2

)
+ i∆µ (t1 + t2)

√
1 − z2 Ap

( (
p2 − q2

2pq

) (
1 + ε+

1 ε
−
2

)
+

(
p2 + q2

2pq

) (
ε+

1 + ε−2

) )
+ i∆µ (t1 − t2)

(
Ap z

(
1 − ε+

1 ε
−
2

)
+ Am cos θ

(
− z

(
ε+

1 − ε
−
2

)
+

√
1 − z2

( (
p2 + q2

2pq

) (
1 + ε+

1 ε
−
2

)
+

(
p2 − q2

2pq

) (
ε+

1 + ε−2

) ))))
A+

1 A−2 ,

(4.41b)
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A−+ = e−iµ(t1+t2)
(
Ap

(
ε−1 − ε

+
2

)
− Am cos θ

(
1 − ε−1 ε

+
2

)
+ i∆µ (t1 + t2)

√
1 − z2 Ap

( (
p2 − q2

2pq

) (
1 + ε−1 ε

+
2

)
+

(
p2 + q2

2pq

) (
ε−1 + ε+

2

) )
+ i∆µ (t1 − t2)

(
− Ap z

(
1 − ε−1 ε

+
2

)
+ Am cos θ

(
z

(
ε−1 − ε

+
2

)
+

√
1 − z2

( (
p2 + q2

2pq

) (
1 + ε−1 ε

+
2

)
+

(
p2 − q2

2pq

) (
ε−1 + ε+

2

) ))))
A−1 A+

2 ,

(4.41c)

A−− = e−iµ(t1+t2)
(
− Ap

(
1 − ε−1 ε

−
2

)
+ Am cos θ

(
ε−1 − ε

−
2

)
+ i∆µ (t1 + t2)

√
1 − z2 Ap

( (
p2 + q2

2pq

) (
1 + ε−1 ε

−
2

)
+

(
p2 − q2

2pq

) (
ε−1 + ε−2

) )
+ i∆µ (t1 − t2)

(
Ap z

(
ε−1 − ε

−
2

)
+ Am cos θ

(
− z

(
1 − ε−1 ε

−
2

)
+

√
1 − z2

( (
p2 − q2

2pq

) (
1 + ε−1 ε

−
2

)
+

(
p2 + q2

2pq

) (
ε−1 + ε−2

) ))))
A−1 A−2 .

(4.41d)

Let us now introduce two functions f1(ε1, ε2) and f2(ε1, ε2) defined as follows:

f1(ε1, ε2) =
√

1 − z2

((
p2 + q2

2pq

)
(1 + ε1ε2) +

(
p2 − q2

2pq

)
(ε1 + ε2)

)
, (4.42)
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f2(ε1, ε2) =
√

1 − z2

((
p2 − q2

2pq

)
(1 + ε1ε2) +

(
p2 + q2

2pq

)
(ε1 + ε2)

)
. (4.43)

In terms of these two functions, the amplitudes can now be written as

A++ = e−iµ(t1+t2)
(
Ap

(
1 − ε+

1 ε
+
2

)
− Am cos θ

(
ε+

1 − ε
+
2

)
+ i∆µ (t1 + t2) Ap f1(ε+

1 , ε
+
2 )

+ i∆µ (t1 − t2)
(
− Ap z

(
ε+

1 − ε
+
2

)
+ Am cos θ

(
z
(
1 − ε+

1 ε
+
2

)
+ f2(ε+

1 , ε
+
2 )

)))
A+

1 A+
2 ,

(4.44a)

A+− = e−iµ(t1+t2)
(
− Ap

(
ε+

1 − ε
−
2

)
+ Am cos θ

(
1 − ε+

1 ε
−
2

)
+ i∆µ (t1 + t2) Ap f2(ε+

1 , ε
−
2 )

+ i∆µ (t1 − t2)
(
Ap z

(
1 − ε+

1 ε
−
2

)
+ Am cos θ

(
− z

(
ε+

1 − ε
−
2

)
+ f1(ε+

1 , ε
−
2 )

)))
A+

1 A−2 ,

(4.44b)

A−+ = e−iµ(t1+t2)
(
Ap

(
ε−1 − ε

+
2

)
− Am cos θ

(
1 − ε−1 ε

+
2

)
+ i∆µ (t1 + t2) Ap f2(ε−1 , ε

+
2 )

+ i∆µ (t1 − t2)
(
− Ap z

(
1 − ε−1 ε

+
2

)
+ Am cos θ

(
z

(
ε−1 − ε

+
2

)
+ f1(ε−1 , ε

+
2 )

)))
A−1 A+

2 ,

(4.44c)

A−− = e−iµ(t1+t2)
(
− Ap

(
1 − ε−1 ε

−
2

)
+ Am cos θ

(
ε−1 − ε

−
2

)
+ i∆µ (t1 + t2) Ap f1(ε−1 , ε

−
2 )

+ i∆µ (t1 − t2)
(
Ap z

(
ε−1 − ε

−
2

)
+ Am cos θ

(
− z

(
1 − ε−1 ε

−
2

)
+ f2(ε−1 , ε

−
2 )

)))
A−1 A−2 .

(4.44d)

The time-integrated, squares of the moduli of amplitudes can now be easily obtained.

Here we shall neglect the second and higher order powers of ∆µ, and consider only the

leading order (i.e. first order) contribution of ∆µ. The following integration results would
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be used in the evaluation of time-integrated squares of the moduli of amplitudes:

∫ ∞

0

∫ ∞

0

∣∣∣e−iµ(t1+t2)
∣∣∣2 dt1 dt2 =

1
Γ2 , (4.45a)∫ ∞

0

∫ ∞

0

∣∣∣e−iµ(t1+t2)
∣∣∣2 (t1 + t2) dt1 dt2 =

2
Γ3 , (4.45b)∫ ∞

0

∫ ∞

0

∣∣∣e−iµ(t1+t2)
∣∣∣2 (t1 − t2) dt1 dt2 = 0. (4.45c)

Thus, the time-integrated squares of the moduli of amplitudes are given by:

∣∣∣A++
∣∣∣2 =

∣∣∣A+
1

∣∣∣2 ∣∣∣A+
2

∣∣∣2
Γ2

( ∣∣∣Ap
∣∣∣2 ∣∣∣1 − ε+

1 ε
+
2

∣∣∣2 +
∣∣∣Am

∣∣∣2 ∣∣∣ε+
1 − ε

+
2

∣∣∣2 cos2 θ

− 2Re
((

1 − ε+
1 ε

+
2

) (
ε+∗

1 − ε
+∗
2

)
ApAm∗

)
cos θ

+
4
Γ

Re
(
i∆µ f1(ε+

1 , ε
+
2 )

( ∣∣∣Ap
∣∣∣2 (1 − ε+∗

1 ε+∗
2 )

− ApAm∗(ε+∗
1 − ε

+∗
2 ) cos θ

)))

=

∣∣∣A+
1

∣∣∣2 ∣∣∣A+
2

∣∣∣2
Γ2

( ∣∣∣Ap
∣∣∣2 ( ∣∣∣1 − ε+

1 ε
+
2

∣∣∣2 +
4
Γ

Re
(
i∆µ f1(ε+

1 , ε
+
2 )

(
1 − ε+∗

1 ε+∗
2

) ))
+

∣∣∣Am
∣∣∣2 ∣∣∣ε+

1 − ε
+
2

∣∣∣2 cos2 θ

− 2Re
((

1 − ε+
1 ε

+
2 +

2
Γ
i∆µ f1(ε+

1 , ε
+
2 )

) (
ε+∗

1 − ε
+∗
2

)
ApAm∗

)
cos θ

)
,

(4.46a)

∣∣∣A+−
∣∣∣2 =

∣∣∣A+
1

∣∣∣2 ∣∣∣A−2 ∣∣∣2
Γ2

( ∣∣∣Ap
∣∣∣2 ∣∣∣ε+

1 − ε
−
2

∣∣∣2 +
∣∣∣Am

∣∣∣2 ∣∣∣1 − ε+
1 ε
−
2

∣∣∣2 cos2 θ

− 2Re
(
(1 − ε+∗

1 ε−∗2 )(ε+
1 − ε

−
2 )ApAm∗

)
cos θ

+
4
Γ

Re
(
i∆µ f2(ε+

1 , ε
−
2 )

(
−

∣∣∣Ap
∣∣∣2 (ε+∗

1 − ε
−∗
2 )

+ ApAm∗(1 − ε+∗
1 ε−∗2 ) cos θ

)))
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=

∣∣∣A+
1

∣∣∣2 ∣∣∣A−2 ∣∣∣2
Γ2

( ∣∣∣Ap
∣∣∣2 ( ∣∣∣ε+

1 − ε
−
2

∣∣∣2 − 4
Γ

Re
(
i∆µ f2(ε+

1 , ε
−
2 ) (ε+∗

1 − ε
−∗
2 )

) )
+

∣∣∣Am
∣∣∣2 ∣∣∣1 − ε+

1 ε
−
2

∣∣∣2 cos2 θ

− 2Re
(
(ε+

1 − ε
−
2 −

2
Γ
i∆µ f2(ε+

1 , ε
−
2 ))

(
1 − ε+∗

1 ε−∗2

)
ApAm∗

)
cos θ

)
,

(4.46b)

∣∣∣A−+
∣∣∣2 =

∣∣∣A−1 ∣∣∣2 ∣∣∣A+
2

∣∣∣2
Γ2

( ∣∣∣Ap
∣∣∣2 ∣∣∣ε−1 − ε+

2

∣∣∣2 +
∣∣∣Am

∣∣∣2 ∣∣∣1 − ε−1 ε+
2

∣∣∣2 cos2 θ

− 2Re
(
(1 − ε−∗1 ε+∗

2 )(ε−1 − ε
+
2 )ApAm∗

)
cos θ

+
4
Γ

Re
(
i∆µ f2(ε−1 , ε

+
2 )

(
−

∣∣∣Ap
∣∣∣2 (ε−∗1 − ε

+∗
2 )

+ ApAm∗(1 − ε−∗1 ε+∗
2 ) cos θ

)))

=

∣∣∣A−1 ∣∣∣2 ∣∣∣A+
2

∣∣∣2
Γ2

( ∣∣∣Ap
∣∣∣2 ( ∣∣∣ε−1 − ε+

2

∣∣∣2 − 4
Γ

Re
(
i∆µ f2(ε−1 , ε

+
2 ) (ε−∗1 − ε

+∗
2 )

) )
+

∣∣∣Am
∣∣∣2 ∣∣∣1 − ε−1 ε+

2

∣∣∣2 cos2 θ

− 2Re
(
(ε−1 − ε

+
2 −

2
Γ
i∆µ f2(ε−1 , ε

+
2 ))

(
1 − ε−∗1 ε+∗

2

)
ApAm∗

)
cos θ

)
,

(4.46c)

∣∣∣A−−∣∣∣2 =

∣∣∣A−1 ∣∣∣2 ∣∣∣A−2 ∣∣∣2
Γ2

( ∣∣∣Ap
∣∣∣2 ∣∣∣1 − ε−1 ε−2 ∣∣∣2 +

∣∣∣Am
∣∣∣2 ∣∣∣ε−1 − ε−2 ∣∣∣2 cos2 θ

− 2Re
((

1 − ε−1 ε
−
2

) (
ε−∗1 − ε

−∗
2

)
ApAm∗

)
cos θ

+
4
Γ

Re
(
i∆µ f1(ε−1 , ε

−
2 )

( ∣∣∣Ap
∣∣∣2 (1 − ε−∗1 ε−∗2 )

− ApAm∗(ε−∗1 − ε
−∗
2 ) cos θ

)))

=

∣∣∣A−1 ∣∣∣2 ∣∣∣A−2 ∣∣∣2
Γ2

( ∣∣∣Ap
∣∣∣2 ( ∣∣∣1 − ε−1 ε−2 ∣∣∣2 +

4
Γ

Re
(
i∆µ f1(ε−1 , ε

−
2 )

(
1 − ε−∗1 ε−∗2

) ))
+

∣∣∣Am
∣∣∣2 ∣∣∣ε−1 − ε−2 ∣∣∣2 cos2 θ

− 2Re
( (

1 − ε−1 ε
−
2 +

2
Γ
i∆µ f1(ε−1 , ε

−
2 )

) (
ε−∗1 − ε

−∗
2

)
ApAm∗

)
cos θ

)
.

(4.46d)
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We can now introduce a few more definitions (just in order to make the expressions look

simpler) as follows:

φ1(ε1, ε2) =
4
Γ

Re
(
i∆µ f1(ε1, ε2) (1 − ε∗1ε

∗
2 )

)
, (4.47)

φ2(ε1, ε2) =
4
Γ

Re
(
i∆µ f2(ε1, ε2) (ε∗1 − ε

∗
2 )

)
, (4.48)

ψ1(ε1, ε2) =
2
Γ
i∆µ f1(ε1, ε2), (4.49)

ψ2(ε1, ε2) =
2
Γ
i∆µ f2(ε1, ε2), (4.50)

such that we have

∣∣∣A++
∣∣∣2 =

∣∣∣A+
1

∣∣∣2 ∣∣∣A+
2

∣∣∣2
Γ2

( ∣∣∣Ap
∣∣∣2 ( ∣∣∣1 − ε+

1 ε
+
2

∣∣∣2 + φ1(ε+
1 , ε

+
2 )

)
+

∣∣∣Am
∣∣∣2 ∣∣∣ε+

1 − ε
+
2

∣∣∣2 cos2 θ

− 2Re
( (

1 − ε+
1 ε

+
2 +ψ1(ε+

1 , ε
+
2 )

) (
ε+∗

1 − ε
+∗
2

)
ApAm∗

)
cos θ

)
,

(4.51)

∣∣∣A+−
∣∣∣2 =

∣∣∣A+
1

∣∣∣2 ∣∣∣A−2 ∣∣∣2
Γ2

( ∣∣∣Ap
∣∣∣2 ( ∣∣∣ε+

1 − ε
−
2

∣∣∣2 − φ2(ε+
1 , ε

−
2 )

)
+

∣∣∣Am
∣∣∣2 ∣∣∣1 − ε+

1 ε
−
2

∣∣∣2 cos2 θ

− 2Re
(
(ε+

1 − ε
−
2 −ψ2(ε+

1 , ε
−
2 ))

(
1 − ε+∗

1 ε−∗2

)
ApAm∗

)
cos θ

)
,

(4.52)

∣∣∣A−+
∣∣∣2 =

∣∣∣A−1 ∣∣∣2 ∣∣∣A+
2

∣∣∣2
Γ2

( ∣∣∣Ap
∣∣∣2 ( ∣∣∣ε−1 − ε+

2

∣∣∣2 − φ2(ε−1 , ε
+
2 )

)
+

∣∣∣Am
∣∣∣2 ∣∣∣1 − ε−1 ε+

2

∣∣∣2 cos2 θ

− 2Re
(
(ε−1 − ε

+
2 −ψ2(ε−1 , ε

+
2 ))

(
1 − ε−∗1 ε+∗

2

)
ApAm∗

)
cos θ

)
,

(4.53)

∣∣∣A−−∣∣∣2 =

∣∣∣A−1 ∣∣∣2 ∣∣∣A−2 ∣∣∣2
Γ2

( ∣∣∣Ap
∣∣∣2 ( ∣∣∣1 − ε−1 ε−2 ∣∣∣2 + φ1(ε−1 , ε

−
2 )

)
+

∣∣∣Am
∣∣∣2 ∣∣∣ε−1 − ε−2 ∣∣∣2 cos2 θ

− 2Re
( (

1 − ε−1 ε
−
2 +ψ1(ε−1 , ε

−
2 )

) (
ε−∗1 − ε

−∗
2

)
ApAm∗

)
cos θ

)
.

(4.54)
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We wish to write down everything in terms of branching ratio of P0 → f
si
i

:

Brsi
i
≡ Br(P0 → f

si
i

) ∝

∣∣∣Asi
i

∣∣∣2
Γ

∣∣∣1 + ε si
i

∣∣∣2 , (4.55)

which stem from the fact that

Amp(P0 → f
si
i

) = (1 + ε si
i

)Asi
i
. (4.56)

Since our expressions already include all the phase-space integrations, we can simply

write down the differential decay rates as follows

Ds1s2 ≡
dΓ

(
X → Y

(
f
s1
1

)
P

(
f
s2
2

)
P

)
dt du

=
1

(2π)3

1
32m3

X

∣∣∣∣Amp
(
X → Y

(
f
s1
1

)
P

(
f
s2
2

)
P

)∣∣∣∣2
=

1
(2π)3

1
32m3

X

∣∣∣As1s2
∣∣∣2 , (4.57)

where in the expression for |As1s2 |2 the term

∣∣∣As1
1

∣∣∣2 ∣∣∣As2
2

∣∣∣2
Γ2 is replaced by

Brs1
1∣∣∣1 + ε s1
1

∣∣∣2 Brs2
2∣∣∣1 + ε s2
2

∣∣∣2 .

Thus

D++ =
1

256π3 m3
X

Br+
1∣∣∣1 + ε+
1

∣∣∣2 Br+
2∣∣∣1 + ε+
2

∣∣∣2
×

( ∣∣∣Ap
∣∣∣2 ( ∣∣∣1 − ε+

1 ε
+
2

∣∣∣2 + φ1(ε+
1 , ε

+
2 )

)
+

∣∣∣Am
∣∣∣2 ∣∣∣ε+

1 − ε
+
2

∣∣∣2 cos2 θ

− 2Re
( (

1 − ε+
1 ε

+
2 +ψ1(ε+

1 , ε
+
2 )

) (
ε+∗

1 − ε
+∗
2

)
ApAm∗

)
cos θ

)
, (4.58)

D+− =
1

256π3 m3
X

Br+
1∣∣∣1 + ε+
1

∣∣∣2 Br−2∣∣∣1 + ε−2

∣∣∣2
×

( ∣∣∣Ap
∣∣∣2 ( ∣∣∣ε+

1 − ε
−
2

∣∣∣2 − φ2(ε+
1 , ε

−
2 )

)
+

∣∣∣Am
∣∣∣2 ∣∣∣1 − ε+

1 ε
−
2

∣∣∣2 cos2 θ

− 2Re
(
(ε+

1 − ε
−
2 −ψ2(ε+

1 , ε
−
2 ))

(
1 − ε+∗

1 ε−∗2

)
ApAm∗

)
cos θ

)
, (4.59)
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D−+ =
1

256π3 m3
X

Br−1∣∣∣1 + ε−1

∣∣∣2 Br+
2∣∣∣1 + ε+
2

∣∣∣2
×

( ∣∣∣Ap
∣∣∣2 ( ∣∣∣ε−1 − ε+

2

∣∣∣2 − φ2(ε−1 , ε
+
2 )

)
+

∣∣∣Am
∣∣∣2 ∣∣∣1 − ε−1 ε+

2

∣∣∣2 cos2 θ

− 2Re
(
(ε−1 − ε

+
2 −ψ2(ε−1 , ε

+
2 ))

(
1 − ε−∗1 ε+∗

2

)
ApAm∗

)
cos θ

)
, (4.60)

D−− =
1

256π3 m3
X

Br−1∣∣∣1 + ε−1

∣∣∣2 Br−2∣∣∣1 + ε−2

∣∣∣2
×

( ∣∣∣Ap
∣∣∣2 ( ∣∣∣1 − ε−1 ε−2 ∣∣∣2 + φ1(ε−1 , ε

−
2 )

)
+

∣∣∣Am
∣∣∣2 ∣∣∣ε−1 − ε−2 ∣∣∣2 cos2 θ

− 2Re
( (

1 − ε−1 ε
−
2 +ψ1(ε−1 , ε

−
2 )

) (
ε−∗1 − ε

−∗
2

)
ApAm∗

)
cos θ

)
. (4.61)

The Dalitz plot density corresponding to each of the decays would be given by the appro-

priate Ds1s2 which are defined above. It is important to notice that, if there is any direct

CP violation, i.e. ε si
i
, 0, then there is an asymmetry in the t vs. u Dalitz plot under the

exchange t ↔ u ≡ cos θ ↔ − cos θ.

Special Cases

If we reconstruct the two neutral P particles from identical final states, then f
s1
1 = f

s2
2 ,

which implies that ε s1
1 = ε s2

2 = ε s (say). Therefore in such a case the Dalitz plot asymme-

try for D++ and D−− become identically zero, and we have

D++ =
1

256π3 m3
X

(
Br+

|1 + ε+ |2

)2 ( ∣∣∣1 − (ε+)2
∣∣∣2 + φ1(ε+, ε+)

) ∣∣∣Ap
∣∣∣2 , (4.62)

D−− =
1

256π3 m3
X

(
Br−

|1 + ε− |2

)2 ( ∣∣∣1 − (ε−)2
∣∣∣2 + φ1(ε− , ε−)

) ∣∣∣Ap
∣∣∣2 , (4.63)
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where

φ1(ε s , ε s) =
4
Γ

Re
(
i∆µ f1(ε s , ε s)(1 − (ε s)2)

)
=

4
Γ

Re
(
i∆µ

√
1 − z2

(
1 − (ε s)2

)
×

((
p2 + q2

2pq

) (
1 + (ε s)2

)
+

(
p2 − q2

2pq

) (
2ε s

)) )
. (4.64)

If CPT is conserved, then z = 0, but this hardly affects anything here. In fact, if we

consider both CP and CPT violation, then it is impossible to distinguish them from the

asymmetry of the Dalitz plot. However, if we assume that CPT is conserved in the pro-

cess, then the asymmetry in the Dalitz plot can be attributed to be arising from pure CP

violation only.

It is interesting to note that, even if we were to assume that the two neutral P particles

have identically the same mass and decay width, i.e. ∆µ = 0, then also the asymmetry in

the Dalitz plot survives. Assuming that there is neither any CPT violation, nor any mass

or width difference between the two neutral P particles, we get the following expressions

for the Dalitz distributions:

D++ =
1

256π3 m3
X

Br+
1∣∣∣1 + ε+
1

∣∣∣2 Br+
2∣∣∣1 + ε+
2

∣∣∣2
( ∣∣∣Ap

∣∣∣2 ∣∣∣1 − ε+
1 ε

+
2

∣∣∣2 +
∣∣∣Am

∣∣∣2 ∣∣∣ε+
1 − ε

+
2

∣∣∣2 cos2 θ

− 2Re
( (

1 − ε+
1 ε

+
2

) (
ε+∗

1 − ε
+∗
2

)
ApAm∗

)
cos θ

)
,

(4.65a)

D+− =
1

256π3 m3
X

Br+
1∣∣∣1 + ε+
1

∣∣∣2 Br−2∣∣∣1 + ε−2

∣∣∣2
( ∣∣∣Ap

∣∣∣2 ∣∣∣ε+
1 − ε

−
2

∣∣∣2 +
∣∣∣Am

∣∣∣2 ∣∣∣1 − ε+
1 ε
−
2

∣∣∣2 cos2 θ

− 2Re
(
(ε+

1 − ε
−
2 )

(
1 − ε+∗

1 ε−∗2

)
ApAm∗

)
cos θ

)
,

(4.65b)
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D−+ =
1

256π3 m3
X

Br−1∣∣∣1 + ε−1

∣∣∣2 Br+
2∣∣∣1 + ε+
2

∣∣∣2
( ∣∣∣Ap

∣∣∣2 ∣∣∣ε−1 − ε+
2

∣∣∣2 +
∣∣∣Am

∣∣∣2 ∣∣∣1 − ε−1 ε+
2

∣∣∣2 cos2 θ

− 2Re
(
(ε−1 − ε

+
2 )

(
1 − ε−∗1 ε+∗

2

)
ApAm∗

)
cos θ

)
,

(4.65c)

D−− =
1

256π3 m3
X

Br−1∣∣∣1 + ε−1

∣∣∣2 Br−2∣∣∣1 + ε−2

∣∣∣2
( ∣∣∣Ap

∣∣∣2 ∣∣∣1 − ε−1 ε−2 ∣∣∣2 +
∣∣∣Am

∣∣∣2 ∣∣∣ε−1 − ε−2 ∣∣∣2 cos2 θ

− 2Re
( (

1 − ε−1 ε
−
2

) (
ε−∗1 − ε

−∗
2

)
ApAm∗

)
cos θ

)
.

(4.65d)

Measuring the CP asymmetry

We can neglect the ε si
i

’s with respect to unity and doing so the Dalitz distributions can be

written as

D++ =
Br+

1 Br+
2

256π3 m3
X

( ∣∣∣Ap
∣∣∣2 +

∣∣∣Am
∣∣∣2 ∣∣∣ε+

1 − ε
+
2

∣∣∣2 cos2 θ − 2Re
( (
ε+∗

1 − ε
+∗
2

)
ApAm∗

)
cos θ

)
,

(4.66a)

D+− =
Br+

1 Br−2
256π3 m3

X

( ∣∣∣Ap
∣∣∣2 ∣∣∣ε+

1 − ε
−
2

∣∣∣2 +
∣∣∣Am

∣∣∣2 cos2 θ − 2Re
( (
ε+

1 − ε
−
2

)
ApAm∗

)
cos θ

)
,

(4.66b)

D−+ =
Br−1 Br+

2

256π3 m3
X

( ∣∣∣Ap
∣∣∣2 ∣∣∣ε−1 − ε+

2

∣∣∣2 +
∣∣∣Am

∣∣∣2 cos2 θ − 2Re
( (
ε−1 − ε

+
2

)
ApAm∗

)
cos θ

)
,

(4.66c)

D−− =
Br−1 Br−2

256π3 m3
X

( ∣∣∣Ap
∣∣∣2 +

∣∣∣Am
∣∣∣2 ∣∣∣ε−1 − ε−2 ∣∣∣2 cos2 θ − 2Re

( (
ε−∗1 − ε

−∗
2

)
ApAm∗

)
cos θ

)
.

(4.66d)

We can split each distribution into two parts: ‘even’ E and ‘odd’ O as follows:

Ds1s2 ≡ Es1s2 −Os1s2 . (4.67)
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The special case, when f
s1
1 = f

s2
2 , we denote the branching ratio by Brsym and the distri-

butions is fully ‘even’ and is denoted by Esym:

Esym =
Br2

sym

256π3 m3
X

∣∣∣Ap
∣∣∣2 . (4.68)

Therefore ∣∣∣Ap
∣∣∣ =

√√
256π3 m3

X

 Esym

Br2
sym

 . (4.69)

The ‘even’ terms E+− or E−+ are predominantly proportional to |Am |2:

E+− =
Br+

1 Br−2
256π3 m3

X

(∣∣∣Ap
∣∣∣2 ∣∣∣ε+

1 − ε
−
2

∣∣∣2 +
∣∣∣Am

∣∣∣2 cos2 θ
)
≈

Br+
1 Br−2

256π3 m3
X

∣∣∣Am
∣∣∣2 cos2 θ. (4.70)

This implies that

∣∣∣Am
∣∣∣ cos θ =

√
256π3 m3

X

(
E+−

Br+
1 Br−2

)
=

√
256π3 m3

X

(
E−+

Br−1 Br+
2

)
. (4.71)

Now let us assume that

ε s1
1 − ε

s2
2 =

∣∣∣ε s1
1 − ε

s2
2

∣∣∣ eiδs1s2 (4.72)

and

ApAm∗ =
∣∣∣Ap

∣∣∣ ∣∣∣Am
∣∣∣ eiϕ , (4.73)

where δs1s2 and ϕ are some phases. Therefore we can write the ‘odd’ parts of the differ-

ential decay rates as follows:

O++ =
Br+

1 Br+
2

128π3 m3
X

Re
((
ε+

1 − ε
+
2

)∗
ApAm∗

)
cos θ

=
Br+

1 Br+
2

128π3 m3
X

∣∣∣ε+
1 − ε

+
2

∣∣∣ ∣∣∣Ap
∣∣∣ ∣∣∣Am

∣∣∣ cos(ϕ − δ++) cos θ, (4.74)
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O+− =
Br+

1 Br−2
128π3 m3

X

Re
((
ε+

1 − ε
−
2

)
ApAm∗

)
cos θ

=
Br+

1 Br−2
128π3 m3

X

∣∣∣ε+
1 − ε

−
2

∣∣∣ ∣∣∣Ap
∣∣∣ ∣∣∣Am

∣∣∣ cos(ϕ + δ+−) cos θ, (4.75)

O−+ =
Br−1 Br+

2

128π3 m3
X

Re
((
ε−1 − ε

+
2

)
ApAm∗

)
cos θ

=
Br−1 Br+

2

128π3 m3
X

∣∣∣ε−1 − ε+
2

∣∣∣ ∣∣∣Ap
∣∣∣ ∣∣∣Am

∣∣∣ cos(ϕ + δ−+) cos θ, (4.76)

O−− =
Br−1 Br−2

128π3 m3
X

Re
((
ε−1 − ε

−
2

)∗
ApAm∗

)
cos θ

=
Br−1 Br−2

128π3 m3
X

∣∣∣ε−1 − ε−2 ∣∣∣ ∣∣∣Ap
∣∣∣ ∣∣∣Am

∣∣∣ cos(ϕ − δ−−) cos θ. (4.77)

Now substituting expressions for |Ap | and |Am | cos θ from Eqs. (4.69) and (4.71) respec-

tively, we get

O++ = 2Br+
1 Br+

2

∣∣∣ε+
1 − ε

+
2

∣∣∣√ Esym E±∓

Br2
sym Br±1 Br∓2

cos(ϕ − δ++), (4.78)

O+− = 2Br+
1 Br−2

∣∣∣ε+
1 − ε

−
2

∣∣∣√ Esym E±∓

Br2
sym Br±1 Br∓2

cos(ϕ + δ+−), (4.79)

O−+ = 2Br+
1 Br+

2

∣∣∣ε−1 − ε+
2

∣∣∣√ Esym E±∓

Br2
sym Br±1 Br∓2

cos(ϕ + δ−+), (4.80)

O−− = 2Br+
1 Br+

2

∣∣∣ε−1 − ε−2 ∣∣∣√ Esym E±∓

Br2
sym Br±1 Br∓2

cos(ϕ − δ−−). (4.81)

These equations can be inverted to measure the difference between the CP asymmetries

as follows

∣∣∣ε+
1 − ε

+
2

∣∣∣ =
O++

2Br+
1 Br+

2

Brsym

√
Br±1 Br∓2√

Esym E±∓

1
cos(ϕ − δ++)

, (4.82)

∣∣∣ε+
1 − ε

−
2

∣∣∣ =
O+−

2Br+
1 Br−2

Brsym

√
Br±1 Br∓2√

Esym E±∓

1
cos(ϕ + δ+−)

, (4.83)



4.2. DIRECT CP VIOLATION AND CPT VIOLATION IN MIXING 103

∣∣∣ε−1 − ε+
2

∣∣∣ =
O−+

2Br−1 Br+
2

Brsym

√
Br±1 Br∓2√

Esym E±∓

1
cos(ϕ + δ−+)

, (4.84)

∣∣∣ε−1 − ε−2 ∣∣∣ =
O−−

2Br−1 Br−2

Brsym

√
Br±1 Br∓2√

Esym E±∓

1
cos(ϕ − δ−−)

. (4.85)

These expressions enable us to put the following lower limits which can be experimen-

tally observed

∣∣∣ε+
1 − ε

+
2

∣∣∣ > O++

2Br+
1 Br+

2

Brsym

√
Br±1 Br∓2√

Esym E±∓
, (4.86)

∣∣∣ε+
1 − ε

−
2

∣∣∣ > O+−

2Br+
1 Br−2

Brsym

√
Br±1 Br∓2√

Esym E±∓
, (4.87)

∣∣∣ε−1 − ε+
2

∣∣∣ > O−+

2Br−1 Br+
2

Brsym

√
Br±1 Br∓2√

Esym E±∓
, (4.88)

∣∣∣ε−1 − ε−2 ∣∣∣ > O−−

2Br−1 Br−2

Brsym

√
Br±1 Br∓2√

Esym E±∓
. (4.89)

Physical meaning of the CP asymmetries

It is easy to relate the CP asymmetries we have just obtained to the known CP asymme-

tries, called as ACP. To derive these relations we first note that

Amp(P0 → f +
i ) =

1 + ε+
i

√
2

A+
i , (4.90)

Amp(P0 → f −i ) =
1 + ε−

i
√

2
A−i , (4.91)

Amp(P̄0 → f +
i ) =

1 − ε+
i

√
2

A+
i , (4.92)

Amp(P̄0 → f −i ) = −
1 − ε−

i
√

2
A−i . (4.93)
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The usual CP asymmetry, the ACP is defined as

ACP =

∣∣∣A f

∣∣∣2 − ∣∣∣Ā f

∣∣∣2∣∣∣A f

∣∣∣2 +
∣∣∣Ā f

∣∣∣2 , (4.94)

where A f = Amp(P0 → f ) and Ā f = Amp(P̄0 → f ). In our case we shall denote the

ACP with a superscript ± and subscript i for obvious reasons. Thus we have

A+
CP,i =

2 Re(ε+
i

)

1 +
∣∣∣ε+
i

∣∣∣2 ≈ 2 Re(ε+
i ), (4.95)

A−CP,i =
2 Re(ε−

i
)

1 +
∣∣∣ε−
i

∣∣∣2 ≈ 2 Re(ε−i ). (4.96)

We can now define the difference between the two asymmetries as

∆A
s1s2
CP,12 = A

s1
CP,1 − A

s2
CP,2 ≈ 2 Re

(
ε s1

1 − ε
s2
2

)
6 2

∣∣∣ε s1
1 − ε

s2
2

∣∣∣ . (4.97)

Therefore ∣∣∣ε s1
1 − ε

s2
2

∣∣∣ > 1
2
∆A

s1s2
CP,12. (4.98)

Thus we find that it is possible to look for directCP violation, by analysing the Dalitz

plot. However, theCPT violation in mixing can not be separated fromCP violation from

the Dalitz plot asymmetry. Thus assuming that CPT is conserved, we can associate

the asymmetry in the Dalitz plot with CP violation. The methodology developed here

can be applied to look for CP violation in the D meson sector, by looking at the three-

body processes with D0D0P in the final state, where P can be a pion or a kaon or any

other particle other than D0 and D0. The D0 and D0 are to be reconstructed from final

states of definite CP, such as from CP-even final states like K+K− or π+π− etc., or

from CP-odd final states like K0
S
π0, K0

S
ω, K0

S
φ etc. If we want to measure the ∆ACP =

ACP(K+K−)−ACP(π+π−), then one neutral D meson should be reconstructed from K+K−
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and the other from π+π−. Then the Dalitz plot and the Dalitz prism would explicitly

exhibit an asymmetry under exchange of D0 and D0 and this would lead to a quantitative

estimation of ∆ACP. It is interesting to note that signatures for CP violation in B decays

are known to exist in the Dalitz plots for untagged B decays [159, 160]. However, these

signatures do not rely on Bose symmetry and are unrelated to the approach discussed

here. Yet another unrelated approach [161] has previously used the Dalitz plot of D

decay to observe evidence of CP violation in a B decay (e.g., B+ → DK+, D → Kππ).

The approach as given in this thesis is fundamentally different from these other works.

4.3 Direct CPT violation

In this section we shall discuss the signatures of direct CPT violation in a Dalitz plot and

a Dalitz prism. For this we consider only those three-body processes in which the process

and its CP conjugate process are the same: X → N M M̄ , with X ≡ X̄ and N ≡ N̄ . If H

is the Hamiltonian governing the transition, then the amplitude is given by

A =
〈
N (p1) M(p2) M̄(p3)

∣∣∣H ∣∣∣X(p)
〉
. (4.99)

The amplitude for the CP conjugate process is given by

Ā =
〈
N (p1) M̄(p2) M(p3)

∣∣∣H ∣∣∣X(p)
〉
. (4.100)

In the Dalitz plot the amplitude that contributes is the sum of the above two amplitudes:

A(r , θ) = A(r , θ) + Ā(r , −θ), (4.101)

where r and θ are the polar coordinates of the event point in the Dalitz plot distribution

(as shown in Fig. 4.3). Here M ↔ M̄ implies θ ↔ −θ.
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s

u t

N

MM̄

r
θ

Figure 4.3: (Schematic) Dalitz plot for X → NMM̄ . The angle θ is measured from the
s-axis in anticlockwise direction. The Mandelstam-like variables s, t , u are defined in the
same manner as in Eq. (4.15).

Let us now observe how CP and CPT relate the amplitudes A and Ā. For this, let us

define the CP and CPT operators as Θ and Θ respectively. Now if both CP and CPT are

conserved in the process, the Hamiltonian H commutes with bothΘ andΘ. Considering

CP invariance we have

A(r , θ) =

〈
N (p1)M(p2)M̄(p3)

∣∣∣∣H ∣∣∣∣X(p)
〉

=

〈
N (p1)M(p2)M̄(p3)

∣∣∣∣Θ−1 ΘH Θ−1 Θ
∣∣∣∣X(p)

〉
= ηCP

〈
N̄ (E1, −~p1)M̄(E2, −~p2)M(E3, −~p3)

∣∣∣∣H ∣∣∣∣X̄(E , −~p)
〉

= ηCP

〈
N (E1, −~p1)M̄(E2, −~p2)M(E3, −~p3)

∣∣∣∣H ∣∣∣∣X(E , −~p)
〉 (

∵ X̄ ≡ X , N̄ ≡ N
)

= ηCP Ā(r , −θ),

where ηCP = ±1 is the product ofCP of the initial and final state. WhenCP is conserved,
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ηCP = 1. Considering CPT invariance we get

A(r , θ) =

〈
N (p1)M(p2)M̄(p3)

∣∣∣∣H ∣∣∣∣X(p)
〉

=

〈
N (p1)M(p2)M̄(p3)

∣∣∣∣Θ−1
ΘH Θ−1

Θ

∣∣∣∣X(p)
〉

= ηCP

〈
N̄ (p1)M̄(p2)M(p3)

∣∣∣∣H ∣∣∣∣X̄(p)
〉∗

= ηCP

〈
N (p1)M̄(p2)M(p3)

∣∣∣∣H ∣∣∣∣X(p)
〉∗ (
∵ X̄ ≡ X , N̄ ≡ N

)
= ηCP Ā∗(r , −θ). (4.102)

If, however, CPT is not conserved in the decay, then the Hamiltonian H does not com-

mute with Θ. In such a case, the two amplitudes A and Ā∗ are not related, but Ā∗ is given

by

Ā∗(r , −θ) =

〈
N (p1)M(p2)M̄(p3)

∣∣∣∣H ∣∣∣∣X(p)
〉∗
, (4.103)

where H is the Hamiltonian for theCP conjugate process. Only whenCPT is conserved,

do we have H = H .

4.3.1 Expression for Dalitz distribution (no CPT violation).

The amplitude for the process X → N M M̄ can be Fourier decomposed as

A(r , θ) =

∞∑
n=0

(
sn sin(nθ) + cn cos(nθ)

)
, (4.104)

where sn and cn are complex Fourier coefficients. These Fourier coefficients can be given

in terms of the weak phase (φ) and the strong phases (δsn, δcn) as follows

sn = |sn | e
iφeiδ

s
n , cn = |cn | e

iφeiδ
c
n . (4.105)
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Therefore, the Fourier decomposition of the CP conjugate amplitude (assuming no CPT

violation) is given by

Ā(r , θ) =

∞∑
n=0

(
s̄n sin(nθ) + c̄n cos(nθ)

)
, (4.106)

where

s̄n = |sn | e
−iφeiδ

s
n , c̄n = |cn | e

−iφeiδ
c
n . (4.107)

Note that the weak phase leads to CP violation in the decay mode under consideration.

This will be demonstrated below mathematically.

Since we cannot distinguish the process and its CP conjugate process, the amplitude

that contributes to the Dalitz plot density is given by

A(r , θ) = A(r , θ) + Ā(r , −θ) =

∞∑
n=0

(
(sn − s̄n) sin(nθ) + (cn + c̄n) cos(nθ)

)
= 2

∞∑
n=0

(
i |sn | sinφ sin(nθ) eiδ

s
n + |cn | cosφ cos(nθ)eiδ

c
n

)
= AS(r , θ) +AN (r , θ), (4.108)

where

AS(r , θ) = 2
∞∑
n=0

|cn | cosφ cos(nθ) eiδ
c
n , (4.109)

AN (r , θ) = 2
∞∑
n=0

i |sn | sinφ sin(nθ) eiδ
s
n . (4.110)

It is easy to observe that AS(r , −θ) = AS(r , θ) and AN (r , −θ) = −AN (r , θ). The Dalitz

plot distribution is proportional to |A(r , θ)|2:

|A(r , θ)|2 =
∣∣∣AS(r , θ)

∣∣∣2 +
∣∣∣AN (r , θ)

∣∣∣2 + 2 Re
(
AS(r , θ) · AN∗(r , θ)

)
. (4.111)
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It is only the interference term which can give rise to any asymmetry in the Dalitz plot

under θ ↔ −θ:

2 Re
(
AS(r , θ) · AN∗(r , θ)

)
= 4

∞∑
n=0

∞∑
m=0

|cn | |sm | sin 2φ sin
(
δcn − δ

s
m

)
cos(nθ) sin(mθ)

, 0. (unless φ = 0) (4.112)

It is easy to see that the interference term would vanish if and only if there is no weak

phase or equivalently if there is no CP violation in the process. Therefore, assuming

CPT invariance, any asymmetry in the Dalitz plot under θ ↔ −θ ≡ t ↔ u would be due

to CP violation only.

4.3.2 Expression for Dalitz distribution (with CPT violation).

The CPT violating amplitude for the process X → N M M̄ can be Fourier decomposed

as

A(r , θ) =

∞∑
n=0

(
sn sin(nθ) + cn cos(nθ)

)
, (4.113)

where sn and cn are complex Fourier coefficients given in terms of the weak phase φ and

the strong phase δ as follows

sn =
(
|sn | + ε sn

)
eiφeiδ

s
n , cn =

(
|cn | + εcn

)
eiφeiδ

c
n , (4.114)

where ε sn and εcn are CPT violating terms, i.e. for the case of CPT invariance they vanish

identically. The Fourier decomposition of the CP conjugate amplitude is given by

Ā(r , θ) =

∞∑
n=0

(
s̄n sin(nθ) + c̄n cos(nθ)

)
, (4.115)
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where

s̄n =
(
|sn | − ε

s
n

)
e−iφeiδ

s
n , c̄n =

(
|cn | − ε

c
n

)
e−iφeiδ

c
n . (4.116)

Thus we now have both CP and CPT violating terms in our amplitudes.

Again since we cannot distinguish the process and its CP conjugate process, the am-

plitude that contributes to the Dalitz plot density is given by

A(r , θ) = A(r , θ) + Ā(r , −θ) =

∞∑
n=0

(
(sn − s̄n) sin(nθ) + (cn + c̄n) cos(nθ)

)
= 2

∞∑
n=0

((
i |sn | sinφ + ε sn cosφ

)
sin(nθ)eiδ

s
n

+
(
|cn | cosφ + iεcn sinφ

)
cos(nθ)eiδ

c
n

)
= AS(r , θ) +AN (r , θ), (4.117)

where

AS(r , θ) = 2
∞∑
n=0

(
|cn | cosφ + iεcn sinφ

)
cos(nθ) eiδ

c
n , (4.118)

AN (r , θ) = 2
∞∑
n=0

(
i |sn | sinφ + ε sn cosφ

)
sin(nθ) eiδ

s
n . (4.119)

Now let us look at the interference term which can give rise to any asymmetry in the

Dalitz plot under θ ↔ −θ:

2 Re
(
AS(r , θ) · AN∗(r , θ)

)
= 8

∞∑
n=0

∞∑
m=0

((
|cn | ε

s
m cos2 φ + |sm | ε

c
n sin2 φ

)
cos

(
δcn − δ

s
m

)
+

1
2

(
|cn | |sm | − ε

c
nε

s
m

)
sin 2φ sin

(
δcn − δ

s
m

) )
cos(nθ) sin(mθ)

, 0.
(
when εcn , 0 and ε sn , 0, even if φ = 0

)
(4.120)
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Therefore, if there is no CP violation in the decay mode under consideration, then pres-

ence of CPT violation can lead to an asymmetry in the Dalitz plot under θ ↔ −θ (which

is equivalent to t ↔ u).4

4.3.3 Processes suitable for observing direct CPT violation

The processes that can be used to study direct CPT violation by the methodology sug-

gested here are necessarily those that do not have any CP violation in them. Thus we are

forced to consider processes that occur via electromagnetic or strong interaction, which

are known so far to be CP conserving interactions. One can, for example, look at the

following three-body decays of J/ψ: J/ψ → Nπ+π− , where N can be π0, ω, η or φ. The

violation of CPT symmetry, if it would ever be observed, is expected to be extremely

minuscule5. So observation of CPT violation necessarily demands that the sample of

events to be analysed and studied be extremely large. Here we make one important ob-

servation that the Dalitz plot asymmetry we have discussed so far in this section, does

not depend on whether N is a single particle or a multi-particle state as long as N̄ = N .

Thus, in principle, we could consider decays such as J/ψ → Nπ+π− , with N being

ωπ0, pp̄, nn̄, K+K− , π0K+K− , ηK+K− etc., as well as continuum production of all the

final states mentioned here. Thus we can analyse multi-body decays and treat them as

effective three-body decays and record all such events in a Dalitz prism, which should

also have the corresponding asymmetry if CPT were violated in these decays. It is also

important to notice that the asymmetry under the assumption of CPT invariance implies

that CP is then definitely violated. This itself would also be a clear signature of new

physics if found in processes involving electromagnetic and strong interactions.

4The signature here is similar to the ones noted in Refs. [159, 160, 163] for CP violation studies.
5Recently, values for Re(z) and Im(z) (in which z is the CPT violating parameter, see Eq. (4.5))

have been measured by the BaBar collaboration [162] in the neutral B meson sector to be
Re(z)(ReλCP/ |λCP |) = 0.014±0.035(stat.)±0.034(syst.) and Im(z) = 0.038±0.029(stat.)±0.025(syst.),
with λCP being the traditional variable that characterizes the decays of neutral B mesons into J/ψK0

S
or

J/ψK0
L

.
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4.4 SU(3) flavor symmetry violation

Finally, we shall illustrate how Dalitz plots can be used to study violation of the SU(3)

flavor symmetry in some three-body meson decays of the type P → M1M2M3, where P

can be a B or a D meson and the final particles M1, M2 and M3 are different members

of the lightest pseudo-scalar SU(3) multiplet (shown in Fig. 4.4). Our method described

here relies on the simultaneous application of two of the SU(2) symmetries subsumed in

the SU(3) flavor symmetry (which are isospin or T -spin,U-spin and V -spin), to the three

body decay P → M1M2M3, where M1, M2 and M3 are chosen such that M1 and M2

belong to the triplet of one of the SU(2) subgroups and M2 and M3 belongs to another.

Thus M2 needs to be a part of all the different SU(2) triplets under consideration. To

be definite M2 is always chosen to be the π0 and the modes we consider are listed in

Table 4.1. Under the limit of exact SU(2) all the mesons belonging to the triplet are

identical bosons and must exhibit an overall Bose symmetry under exchange. Thus in

the final states under consideration exchange of M1 and M2, as well as the exchange

of M2 and M3 should be fully symmetric. This implies that if the wave-function were

symmetric under SU(2) exchange, it must also be even under exchange in space; whereas

if it were anti-symmetric in SU(2), it must be odd under exchange in space too. We shall

exploit this exchange symmetry to deduce some simple relations that predict a pattern in

the distribution of events in the concerned Dalitz plot. Any deviation from this predicted

Dalitz plot distribution would, therefore, constitute a test of breaking of SU(3) flavor

symmetry.

Let the 4-momenta of particles P and Mi (where i ∈ {1, 2, 3}) be p and pi and their

masses be m and mi , respectively. A triangular Dalitz plot can now be constructed out of
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π0

η0

π+

K+K0

π−

K− K̄0

+1 Y

−1

0

−1 +1

T3

− 1
2

0 +1
2

Isospin

V -spinU-spin

Figure 4.4: The SU(3) meson octet of light pseudo-scalar mesons. Here the horizontal
axis shows the eigenvalues of isospin (T3) and the vertical axis shows the eigenvalues
of hypercharge (Y = B + S, with B being baryon number and S being the strangeness
number). The dotted lines parallel toU-spin (or isospin) axis signify that in no two-body
decays of B or D meson can the two connected mesons appear together in the final state
as that would violate conservation of electric charge (or strangeness by two units).

Final state Kind of SU(2) exchange

M1 M2 M3 M1 ↔ M2 M2 ↔ M3

K0 π0 π+ U-spin Isospin

K+ π0 π− V -spin Isospin

K+ π0 K0 V -spin U-spin

π+ π0 K0 Isospin U-spin

Table 4.1: The final states M1M2M3 in the decays under our consideration are given here.
The particle M2, which is always π0, being at the center of the pseudoscalar meson octet,
belongs to all the three triplets of the constituent SU(2) symmetries under considera-
tion. The last mode in the table with final state π+π0K0 has another exchange symmetry,
namely exchange of π+ and K0 under V -spin.
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y

x

M1

M3 M2

s

u t

θ

θ′
θ′′

II

IIIIV

V

VI I

Figure 4.5: A hypothetical Dalitz plot for the decay P → M1M2M3. The three medians
divide the interior of the equilateral triangle into six regions or six sextants of equal area
which are denoted by I , I I , I I I , IV ,V and V I . The barycentric rectangular coordinate
system has its origin at the center of the equilateral triangle and the y-axis is along the s-
axis as shown here. The angles θ, θ′ and θ′′ are measured in anticlockwise direction from
s-axis, u-axis and t-axis respectively. The physically allowed region is always inside the
equilateral triangle as shown, schematically, by the shaded region.

the Mandelstam-like variables s, t and u:

s = (p − p1)2 = (p2 + p3)2 ,

t = (p − p2)2 = (p1 + p3)2 ,

u = (p − p3)2 = (p1 + p2)2 .

(4.121)

It is clear that (m2 +m3)2 6 s 6 (m−m1)2, (m1 +m3)2 6 t 6 (m−m2)2, (m1 +m2)2 6 u 6

(m−m3)2, and s+t+u = m2 +m2
1 +m2

2 +m2
3 = M2 (say). Giving equal weight to s, t and u

we shall work with a ternary plot of which s, t , u form the three axes, as shown in Fig. 4.5.

For ultra-relativistic final particles, the entire interior of the equilateral triangle tends to

get occupied. In any case the Dalitz plot under our consideration (schematically shown by

shading in Fig. 4.5) would always lie inside the equilateral triangle. The boundary of the

Dalitz plot for a three-body decay process under consideration would not look symmetric

under the exchanges s ↔ t ↔ u due to the breaking of flavor SU(3) symmetry on account

of masses m1, m2 and m3 being different. Any event inside the Dalitz plot, as illustrated
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in Fig. 4.5, can be specified by its radial distance (r) from the center of the equilateral

triangle and the angle subtended by its position vector with any of the three axes s, t, or

u. The angle subtended by the position vector with s-axis is denoted by θ, the one with

u-axis is denoted by θ′ and the one with t-axis is denoted by θ′′. It is easy to see that

θ = θ′ + 2π/3 and θ = θ′′ + 4π/3 (see Fig. 4.5). An event described by some values of

s, t and u corresponds to some values of r and θ as obtainable from the relations given

below:

s =
M2

3

(
1 + r cos θ

)
, (4.122)

t =
M2

3

(
1 + r cos

(
2π
3

+ θ

))
, (4.123)

u =
M2

3

(
1 + r cos

(
2π
3
− θ

))
. (4.124)

It is straightforward to change the basis from (r , θ) to either (r , θ′) or (r , θ′′).

Before we analyze the specific decay modes, a few points regarding the notation to

be used and the neutral pion are essential to put down.

• The particle states under a particular SU(2) symmetry are labelled with subscripts

for clarity, e.g. the state |I = 1, I3 = 0〉 is denoted as |1, 0〉I , the state |U = 1,U3 = +1〉

is denoted as |1,+1〉U , the state |V = 1,V3 = −1〉 is denoted as |1, −1〉V , etc. This

helps to distinguish the states in different SU(2) bases.

• The neutral pion is a pure isotriplet state |1, 0〉I ≡ 1√
2

(
dd̄ − uū

)
:6

∣∣∣π0
〉

= − |1, 0〉I . (4.125)

UnderU-spin it is a linear combination of theU-spin triplet state |1, 0〉U ≡ 1√
2

(
ss̄ − dd̄

)
6Here we assume perfect isospin symmetry, as otherwise the mixing of π0-η-η′ arising out of isospin

violation must also be taken into account. This effect is however is not going to affect the kind of Dalitz
plot asymmetries we will analyse ahead.
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and theU-spin singlet but SU(3) octet state |0, 0〉U ,8 ≡ 1√
6

(
dd̄ + ss̄ − 2uū

)
:

∣∣∣π0
〉

=
1
2
|1, 0〉U −

√
3

2
|0, 0〉U ,8 . (4.126)

Similarly under V -spin, π0 is given by a linear combination of the V -spin triplet

state |1, 0〉V ≡ 1√
2

(ss̄ − uū) and the V -spin singlet but SU(3) octet state |0, 0〉V ,8 ≡

1√
6

(
uū + ss̄ − 2dd̄

)
:

∣∣∣π0
〉

= −
1
2
|1, 0〉V +

√
3

2
|0, 0〉V ,8 . (4.127)

We have tabulated the expressions for combined states of pairs of final particles in their

relevant SU(2) symmetry bases in Table 4.2.

Final state Expression for the state

M1M2M3 |M1M2〉 |M2M3〉

K0π0π+ 1
2
√

2

(
|2,+1〉U + |1,+1〉U

)
−

√
3

2 |1
′ ,+1〉U − 1√

2

(
|2,+1〉I − |1,+1〉I

)
K+π0π− − 1

2
√

2

(
|2,+1〉V + |1,+1〉V

)
+

√
3

2 |1
′ ,+1〉V 1√

2

(
|2, −1〉I + |1, −1〉I

)
K+π0K0 − 1

2
√

2

(
|2,+1〉V + |1,+1〉V

)
+

√
3

2 |1
′ ,+1〉V 1

2
√

2

(
|2, −1〉U + |1, −1〉U

)
−

√
3

2 |1
′ , −1〉U

π+π0K0 − 1√
2

(
|2,+1〉I + |1,+1〉I

)
− 1

2
√

2

(
|2, −1〉U + |1, −1〉U

)
+

√
3

2 |1
′ , −1〉U

Table 4.2: Expressions for states of pairs of final particles in their respective SU(2) basis.
As discussed in the text, the primed states such as |1′,±1〉 arise from the |0, 0〉 component
of π0 under U-spin and V -spin considerations. For the last mode we have

∣∣∣π+K0
〉

=
1√
2

(|1, 0〉V + |0, 0〉V ) under V -spin.

4.4.1 Decay Mode with final state K0π0π+

Let us consider the decay mode B+ → K0π0π+. In the final state the π0 and π+ are

identical under isospin and hence the final state must be totally symmetric under their

exchange. Under U-spin (see Fig. 4.4) the K0 and π0 behave as identical bosons and
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hence the final state must similarly be totally symmetric under their exchange. It is easy

to notice that in the Dalitz plot:

U-spin exchange ≡ K0 ↔ π0 =⇒ s ↔ t ,

isospin exchange ≡ π0 ↔ π+ =⇒ t ↔ u.

Therefore, consideringU-spin and isospin to be exact symmetries, the final state K0π0π+

has the following two possibilities:

1. K0π0 would exist in either symmetrical or anti-symmetrical state under s ↔ t

exchange, and

2. π0π+ would exist in either symmetrical or anti-symmetrical state under t ↔ u

exchange.

The amplitude for this decay, can thus be described by four independent functions:

(i) ASS(s, t , u) which is symmetric under both s ↔ t and t ↔ u,

(ii) AAA(s, t , u) which is anti-symmetric under both s ↔ t and t ↔ u,

(iii) ASA(s, t , u) which is symmetric under s ↔ t and anti-symmetric under t ↔ u,

(iv) AAS(s, t , u) which is anti-symmetric under s ↔ t and symmetric under t ↔ u.

Let us now analyze the above four amplitude functions in the most general manner.

It is easy to show that ASS(s, t , u), which is a function symmetric under both s ↔ t and

t ↔ u must also be symmetric under s ↔ u:

ASS(s, t , u) s↔t
==== ASS(t , s, u) t↔u

==== ASS(u, s, t) s↔t
==== ASS(u, t , s). (4.128)

Hence,ASS(s, t , u) is a fully symmetric amplitude function. Let us now considerAAA(s, t , u)

which is anti-symmetric under both s ↔ t and t ↔ u. It is easy to show that it is also



118 CHAPTER 4. STUDY OF SOME SYMMETRY VIOLATIONS

anti-symmetric under s ↔ u:

AAA(s, t , u) s↔t
==== −AAA(t , s, u) t↔u

==== +AAA(u, s, t) s↔t
==== −AAA(u, t , s). (4.129)

Hence, AAA(s, t , u) is a fully anti-symmetric amplitude function. Using the same ar-

guments as above it is easy to show that both ASA(s, t , u) and AAS(s, t , u) identically

vanish.

ASA(s, t , u) s↔t
==== ASA(t , s, u) t↔u

==== −ASA(u, s, t) s↔t
==== −ASA(u, t , s)

t↔u
==== +ASA(t , u, s) s↔t

==== +ASA(s, u, t) t↔u
==== −ASA(s, t , u) = 0, (4.130)

AAS(s, t , u) s↔t
==== −AAS(t , s, u) t↔u

==== −AAS(u, s, t) s↔t
==== +AAS(u, t , s)

t↔u
==== +AAS(t , u, s) s↔t

==== −AAS(s, u, t) t↔u
==== −AAS(s, t , u) = 0. (4.131)

This implies that the amplitudes ASA(s, t , u) and AAS(s, t , u) never contribute to the

distribution of events on the Dalitz plot. Thus the amplitude and hence the function

describing the distribution of events in the Dalitz plot which is proportional to the square

of the modulus of the amplitude, have only two parts, one which is fully symmetric under

s ↔ t ↔ u, and another which is fully anti-symmetric under s ↔ t ↔ u.

Let us now examine the decay mode B+ → K0π0π+ by writing down the decay

amplitude in terms of isospin andU-spin amplitudes. The π0π+ combination can exist in

isospin states |2,+1〉I and |1,+1〉I (see Table 4.2). If isospin were an exact symmetry,

the state
∣∣∣π0π+

〉
would stay unchanged under π0 ↔ π+ exchange. Thus the |2,+1〉I state

would be in a space symmetric (even partial wave) state, and the |1,+1〉I state would be

in a space anti-symmetric (odd partial wave) state. The final state
∣∣∣K0π0π+

〉
in isospin

decomposition is given by

∣∣∣K0π0π+
〉

= −
1
√

5

∣∣∣∣∣52 ,+1
2

〉e

I

+

√
3
√

10

∣∣∣∣∣32 ,+1
2

〉e

I

+
1
√

6

∣∣∣∣∣32 ,+1
2

〉o

I

−
1
√

3

∣∣∣∣∣12 ,+1
2

〉o

I

, (4.132)
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where the superscripts e, o denote the even, odd nature of the state under the exchange

π0 ↔ π+. The odd states above change sign under π0 ↔ π+ exchange because the

|1,+1〉I isospin component of the
∣∣∣π0π+

〉
state is odd under this exchange, whereas the

|2,+1〉I state is even under the same exchange. Since B+ has isospin state
∣∣∣1
2 ,+

1
2

〉
I
, and

only ∆I = 0, 1 currents are allowed by the Hamiltonian in the standard model of particle

physics, we would have no contributions from
∣∣∣5
2 ,+

1
2

〉
I

state. The
∣∣∣3
2 ,+

1
2

〉
I

state can arise

from both
∣∣∣1
2 , −

1
2

〉
I
⊗ |2,+1〉I and

∣∣∣1
2 , −

1
2

〉
I
⊗ |1,+1〉I , with the first contribution being

symmetric and the later being anti-symmetric. The state
∣∣∣1
2 ,+

1
2

〉
I

on the other-hand is

purely anti-symmetric. Even though we shall work with the standard model Hamiltonian,

our conclusions are general and are valid even when more general Hamiltonians exist.

The isospin I = 1/2 initial state decays to a final state that can be decomposed into either

I = 1/2 or I = 3/2 states via a Hamiltonian that allows ∆I = 0 or ∆I = 1 transitions.

The transition with ∆I = 1 results in two amplitudes with I = 1/2 or I = 3/2 represented

as T1, 1
2

and T1, 3
2

respectively, whereas ∆I = 0 transition results only in a single amplitude

with final state I = 1/2 labelled as T0, 1
2
. The isospin amplitudes T1, 1

2
, T1, 3

2
and T0, 1

2
are

themselves defined [100] in terms of the Hamiltonian as,

T1, 3
2

=

√
1
3

〈3
2
,±

1
2

∣∣∣∣H∆I=1

∣∣∣∣12 ,±1
2

〉
, (4.133a)

T1, 1
2

= ±

√
2
3

〈1
2
,±

1
2

∣∣∣∣H∆I=1

∣∣∣∣12 ,±1
2

〉
, (4.133b)

T0, 1
2

=

√
2
3

〈1
2
,±

1
2

∣∣∣∣H∆I=0

∣∣∣∣12 ,±1
2

〉
. (4.133c)

The amplitude for the decay B+ → K0π0π+ can then be written in terms of the isospin

amplitudes as

A(B+ → K0π0π+) =
3
√

10
T e

1, 3
2
X −

1
√

2

(
T o

1, 3
2

+ T o
1, 1

2
+ T o

0, 1
2

)
Y sin θ, (4.134)
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where X and Y sin θ take care of the spatial and kinematic contributions as is seen from

the discussion above (see Eqns. (4.123) and (4.124)). The functions X and Y are, in

general, mode dependent arbitrary functions of r and cos θ, and remain the same for

modes related by isospin symmetry. The subscripts ‘e’ and ‘o’ are retained to merely to

track the even or odd isospin state of the two pion in the three-body final state.

Let us now applyU-spin to the same final state. IfU-spin were an exact symmetry, the

state K0π0 would remain unchanged under K0 ↔ π0 exchange. Under U-spin the K0π0

state is a linear combination of |2,+1〉U and |1,+1〉U (see Table 4.2). The state |1,+1〉U

has a contribution from the |0, 0〉U ,8 admixture in π0 which is denoted by |1′,+1〉U . Both

the states |2,+1〉U and |1,+1〉U coming from the |0, 0〉U ,8 contribution of π0, exist in

space symmetric (even partial wave) states, and that part of |1,+1〉U arising out of |1, 0〉U

part of π0 exists in space anti-symmetric (odd partial wave) state. Thus the final state∣∣∣K0π0π+
〉

underU-spin is given by

∣∣∣K0π0π+
〉

= −
1

2
√

5

∣∣∣∣∣52 ,+1
2

〉e

U

−

√
3

2
√

10

∣∣∣∣∣32 ,+1
2

〉e

U

−
1

2
√

6

∣∣∣∣∣32 ,+1
2

〉o

U

−
1

2
√

3

∣∣∣∣∣12 ,+1
2

〉o

U

+
1
2

∣∣∣∣∣3′2 ,+1
2

〉e

U

+
1
√

2

∣∣∣∣∣1′2 ,+1
2

〉e

U

, (4.135)

where the superscripts e, o denote that the state is even, odd under the exchange K0 ↔ π0.

The reason for sign change in the odd terms above can be easily understood from the U-

spin decomposition of the
∣∣∣K0π0

〉
state:

∣∣∣K0π0
〉

=
1

2
√

2

(
|2,+1〉U + |1,+1〉U

)
−

√
3

2

∣∣∣1′,+1
〉
U
, (4.136)

which under the K0 ↔ π0 exchange becomes

∣∣∣π0K0
〉

=
1

2
√

2

(
|2,+1〉U − |1,+1〉U

)
−

√
3

2

∣∣∣1′,+1
〉
U
. (4.137)
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We know that the state |1,+1〉U is odd under K0 ↔ π0 exchange, whereas the states

|2,+1〉U and |1′,+1〉U are even under the same exchange. Again the states
∣∣∣5
2 ,+

1
2

〉
U

and∣∣∣3
2 ,+

1
2

〉
U

do not contribute, since the parent particle B+ is a U-spin singlet, and only the

∆U = 1/2 current contributes to the decay. This unique feature follows from the fact

that the electroweak penguin does not violate U-spin as d and s quarks carry the same

electric charge (see [118, 139]). Hence, only the
∣∣∣1
2 ,

1
2

〉
U

and
∣∣∣1′

2 ,
1
2

〉
U

can contribute to

the decay amplitude and they correspond to anti-symmetric and symmetric contributions

under K0 ↔ π0 respectively. TheU-spin amplitudes

U1
2 ,

1
2

= ±

√
2
3

〈1
2
,±

1
2

∣∣∣∣∣H∆U= 1
2

∣∣∣∣∣0, 0〉 ,
U′1

2 ,
1
2

=

√
1
3

〈1′

2
,±

1
2

∣∣∣∣∣H∆U= 1
2

∣∣∣∣∣0, 0〉. (4.138a)

Using theseU-spin amplitudes the decay amplitude for B+ → K0π0π+ can now be written

as

A(B+ → K0π0π+) =
3
√

10
U′ e1

2 ,
1
2
X′ +Uo

1
2 ,

1
2
Y ′ sin θ′, (4.139)

where X′ and Y ′ are, in general, arbitrary functions of r and cos θ′, and they take care of

spatial and kinematic contributions to the decay amplitude. The subscripts ‘e’ and ‘o’ are

again retained to keep track of the contributions of even or oddU-spin state of K0 and π0

in the three-body final state. As argued before the amplitude for the decay has two parts,

one fully symmetric under the exchanges s ↔ t ↔ u (i.e. ASS(s, t , u)) and another fully

anti-symmetric under the same exchanges (i.e. AAA(s, t , u)). Comparing Eqs. (4.134)

and (4.139) we obtain:

ASS =
3
√

10
T e

1, 3
2
X =

3
√

10
U′ e1

2 ,
1
2
X′ (4.140)

AAA = −
1
√

2

(
T o

1, 3
2

+ T o
1, 1

2
+ T o

0, 1
2

)
Y sin θ = Uo

1
2 ,

1
2
Y ′ sin θ′. (4.141)
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The exchange s ↔ t ↔ u is equivalent to θ ↔ θ′ ↔ θ′′. This implies that the fully

anti-symmetric amplitude AAA(s, t , u) must be proportional to sin 3θ because sin 3θ =

sin 3θ′ = sin 3θ′′ as θ = θ′ + 2π/3 = θ′′ + 4π/3. It is easy to show that sin 3θ =

sin θ
(
4 cos2 θ − 1

)
, where the factor

(
4 cos2 θ − 1

)
is an even function of cos θ and it

must be a part of both Y and Y ′ in Eq. (4.141), i.e. Y = y
(
4 cos2 θ − 1

)
and Y ′ =

y′
(
4 cos2 θ′ − 1

)
for some y and y′ such that

AAA = −
1
√

2

(
T o

1, 3
2

+ T o
1, 1

2
+ T o

0, 1
2

)
y sin 3θ = Uo

1
2 ,

1
2
y′ sin 3θ′. (4.142)
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s ↔ t

t ↔ u

s ↔ u

s ↔ t

t ↔ u

s ↔ u

Figure 4.6: Exchanges that take us from one sextant to another in the Dalitz plot. It must
be noted that the following exchanges are also equivalent: s ↔ t ↔ u ≡ θ ↔ θ′ ↔ θ′′ as
well as t ↔ u ≡ θ ↔ −θ, s ↔ t ≡ θ′ ↔ −θ′ and u ↔ s ≡ θ′′ ↔ −θ′′.

Since the Dalitz plot distribution function is proportional to the square of the modulus

of the amplitude, it would also have a part which is fully symmetric under s ↔ t ↔ u

(denoted by fSS(s, t , u)) and another part which is fully anti-symmetric under the same

exchanges (denoted by fAA(s, t , u)):

fSS(s, t , u) ∝ |ASS(s, t , u)|2 + |AAA(s, t , u)|2 , (4.143)

fAA(s, t , u) ∝ 2 Re
(
ASS(s, t , u) · A∗AA(s, t , u)

)
. (4.144)
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The Dalitz plot gets divided into six sextants by means of the s, t and u axes which

lie along the medians of an equilateral triangle as shown in Figs. 4.5 and 4.6. Let us

denote the function describing distribution of events in any sextant, say in the ith one,

of the Dalitz plot by fi(r , θ), where the coordinates (r , θ) lie in the sextant i. We could

have as well used the other equivalent choices θ′ or θ′′ instead of θ. However, we shall

judiciously choose the angles that would be best to describe the underlying symmetry

being considered (see Fig. 4.6). Henceforth, we shall drop (r , θ) from the distribution

functions, except when necessary, as we implicitly assume the r and θ dependence in

them. The distribution function must have only two parts as observed above, the fully

symmetric and the fully anti-symmetric parts. Let us assume that in sextant I the Dalitz

plot distribution is given by the function

fI = fSS(s, t , u) + fAA(s, t , u). (4.145)

It is then trivial to find that the Dalitz plot distributions in the even numbered sextants are

identical to one another, and the odd numbered sextants are also identically populated,

because

fI = fI I I = fV = fSS(s, t , u) + fAA(s, t , u), (4.146)

fI I = fIV = fV I = fSS(s, t , u) − fAA(s, t , u). (4.147)

This is the signature of exact SU(3) flavor symmetry in the Dalitz plots under our consid-

eration. Any observed deviation from this would constitute an evidence for violation of

the SU(3) flavor symmetry.

Thus far we have used the exchange properties of K0 ↔ π0 under U-spin and π0 ↔

π+ under isospin to obtain the even and odd amplitudes contributing to B+ → K0π0π+.

It is, therefore, only natural to ask what can we say about K0 ↔ π+ exchange. Since
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K0 and π+ belong to different multiplets of V -spin (see Fig. 4.4), in order to consider

the symmetry properties under K0 ↔ π+ exchange one needs to extend the concept of

G-parity to accommodate V -spin, denoted by GV and defined in the Appendix A. Since

charge conjugation is a good symmetry in strong interaction, GV is as good as the V -spin

itself. The state
∣∣∣K0π+

〉
is composed of states which are even and odd under GV -parity:

∣∣∣K0π+
〉

=
1
2

(∣∣∣K0π+
〉

e
+

∣∣∣K0π+
〉

o

)
, (4.148)

where

∣∣∣K0π+
〉

e
=

∣∣∣K0π+
〉
−

∣∣∣π+K0
〉
,

∣∣∣K0π+
〉

o
=

∣∣∣K0π+
〉

+
∣∣∣π+K0

〉
, (4.149)

and

GV

∣∣∣K0π+
〉

e
= +

∣∣∣K0π+
〉

e
, GV

∣∣∣K0π+
〉

o
= −

∣∣∣K0π+
〉

o
. (4.150)

Note that the state even (or odd) under GV is in odd (or even) partial wave state. We

have already proven that the amplitudes for the decay B+ → K0π0π+ has two parts one

even and the other odd under the exchange of any two particles in the final state. Hence,

ASS is odd under GV and AAA is even under GV . Since the two GV -parity amplitudes

do not interfere, the interference between ASS and AAA, i.e. the fAA term becomes zero

(Eq. (4.144)). Therefore if GV is a good symmetry of nature, it is interesting to conclude

that the Dalitz plot is completely symmetric under s ↔ t ↔ u. This implies that

fI = fI I = fI I I = fIV = fV = fV I ≡ fSS(s, t , u). (4.151)

This expression holds only if isospin, U-spin and V -spin are all exact symmetries. How-

ever, when GV is broken but isospin andU-spin are still exact symmetries, the Dalitz plot

distribution would still follow Eqs. (4.146) and (4.147). In the case when GV is exact,
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the exchange properties of the distribution functions fI to fV I imply that if, (a) U-spin

is an exact symmetry, then fI I = fI I I , fI = fIV and fV = fV I irrespective of the exact-

ness of isospin symmetry, (b) isospin is an exact symmetry, then fI I = fV , fI = fV I and

fI I I = fIV irrespective of the exactness ofU-spin symmetry. However, when both GV and

either isospin or U-spin is broken, then the Eqs. (4.146) and (4.147) are no longer valid.

In such a case, we have the following possibilities:

1. Test for isospin symmetry: By isospin symmetry, the Dalitz plot distribution of

sextants I , I I , I I I get mapped to those in sextants V I ,V , IV respectively. We note

that when isospin is not broken, then

fI + fV I = fI I I + fIV = fV + fI I = 2 fSS(s, t , u), (4.152)

fI − fV I = fI I I − fIV = fV − fI I = 2 fAA(s, t , u). (4.153)

However, once isospin is broken, the values of fSS and fAA extracted from sextants

I and V I need not be same with those extracted from either I I and V or I I I and

IV . To quantify the variation of values of fSS and fAA, we introduce two quantities

Σi
j

and ∆i
j

defined as

Σ
i
j(r , θ) = fi + f j , (4.154a)

∆
i
j(r , θ) = fi − f j , (4.154b)

where i and j are two sextants and i , j. For brevity we shall not explicitly write

the (r , θ) dependence of Σi
j

and ∆i
j
, it is implied. In terms of these quantities,

the signature of isospin breaking can be succinctly summarized by the following

inequalities

Σ
I
V I , Σ

I I I
IV , Σ

V
I I , and ∆IV I , ∆

I I I
IV , ∆

V
I I . (4.155)



126 CHAPTER 4. STUDY OF SOME SYMMETRY VIOLATIONS

An asymmetry can now be constructed to measure the isospin breaking as follows:

AIsospin =

∣∣∣∣∣∣∣Σ
I
V I
− ΣI I I

IV

ΣI
V I

+ ΣI I I
IV

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣Σ
I I I
IV
− ΣV

I I

ΣI I I
IV

+ ΣV
I I

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣Σ
V
I I
− ΣI

V I

ΣV
I I

+ ΣI
V I

∣∣∣∣∣∣∣
+
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I
V I
− ∆I I I

IV

∆I
V I

+ ∆I I I
IV

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∆
I I I
IV
− ∆V

I I

∆I I I
IV

+ ∆V
I I

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∆
V
I I
− ∆I

V I

∆V
I I

+ ∆I
V I

∣∣∣∣∣∣∣ . (4.156)

2. Test forU-spin symmetry: ByU-spin symmetry, the sextants V I , I , I I get mapped

to the sextants V , IV , I I I respectively. We note that when U-spin is not broken,

then

Σ
I
IV = ΣI I II I = ΣVV I = 2 fSS(s, t , u), (4.157)

∆
I
IV = ∆I I II I = ∆VV I = 2 fAA(s, t , u). (4.158)

Here it would be profitable to consider the Σ’s and ∆’s being functions of (r , θ′) as

we are considering s ↔ t exchange which is equivalent to θ′ ↔ −θ′. WhenU-spin

is broken

Σ
I
IV , Σ

I I I
I I , Σ

V
V I , and ∆IIV , ∆

I I I
I I , ∆

V
V I . (4.159)

The asymmetry forU-spin breaking is, therefore, given by

AU-spin =

∣∣∣∣∣∣∣Σ
I
IV
− ΣI I I

I I

ΣI
IV

+ ΣI I I
I I
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I I I
I I
− ΣV

V I

ΣI I I
I I

+ ΣV
V I
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+ ΣI
IV
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+
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I
IV
− ∆I I I

I I

∆I
IV

+ ∆I I I
I I

∣∣∣∣∣∣∣ +
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I I I
I I
− ∆V

V I

∆I I I
I I

+ ∆V
V I
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∣∣∣∣∣∣∣∆
V
V I
− ∆I

IV

∆V
V I

+ ∆I
IV

∣∣∣∣∣∣∣ . (4.160)

3. Test for V -spin symmetry: As said before, GV -parity is as badly broken as the V -

spin because charge conjugation is a good symmetry of strong interaction. When

V -spin is broken, then GV is also broken, and the distribution of events in the Dalitz

plot sextants would follow Eqs. (4.146) and (4.147). In addition to that, when
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V -spin is broken, K0 and π+ need not be even under exchange. This leads to

Σ
V
IV , Σ

I I I
V I , Σ

I
I I , (4.161)

∆
V
IV , ∆

I I I
V I , ∆

I
I I . (4.162)

The asymmetry for V -spin breaking is, therefore, given by

AV -spin =
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V
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I I I
V I
− ∆V
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∆I I I
V I

+ ∆V
IV

∣∣∣∣∣∣∣ . (4.163)

Hence, the extent of the breaking of isospin, U-spin and V -spin can easily be mea-

sured from the Dalitz plot distribution. The asymmetries measuring isospin, U-spin and

V -spin are functions of r and 3θ ≡ 3θ′ ≡ 3θ′′ (see the discussion leading to Eq. (4.142)).

These asymmetries are, thus, valid in the full Dalitz plot, i.e. these asymmetries can be

measured both along resonances and in the non-resonant regions. A quantitative esti-

mate of the variation of these asymmetries obtained experimentally would be valuable

for understanding the effects of the breaking of SU(3) flavor symmetry. It would also be

interesting to find regions of the Dalitz plots where SU(3) is a good symmetry.7 The pro-

cedure discussed above can also be applied to other decay modes with the same final state.

In particular one can study the Dalitz plot distribution for the decay D+
s → K0π0π+ in a

similar manner. The relevant SU(2) amplitudes for this mode are tabulated in Table. 4.3.

4.4.2 Decay Mode with final state K+π0π−

Let us now consider the decay B0
d

or B0
s → K+π0π− in which isospin symmetry allows

the exchange of π0 and π−, and V -spin symmetry allows exchange of K+ and π0. This

7It is presumed that the signature of breaking of the SU(3) flavor symmetry would be minimum in
regions in which the final particles have maximal momenta.
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corresponds to the following exchanges in the Dalitz plot:

V -spin ≡ K+ ↔ π0 =⇒ s ↔ t ,

Isospin ≡ π0 ↔ π− =⇒ t ↔ u.

When isospin and V -spin are exact, the final state K+π0π− has the following two possi-

bilities:

1. K+π0 would exist in either symmetrical or anti-symmetrical state under s ↔ t

exchange, and

2. π0π− would exist in either symmetrical or anti-symmetrical state under t ↔ u

exchange.

Following the same steps as enunciated in subsection 4.4.1, the amplitude for the decay

can be shown to have two components, one fully symmetric and the other fully anti-

symmetric under exchange of any pair of final particles. The final state can be expanded

in terms of isospin and V -spin states as follows:

• Isospin

∣∣∣K+π0π−
〉

=
1
√

5

∣∣∣∣∣52 , −1
2

〉e
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+

√
3

10
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2

〉e

I

+
1
√

6

∣∣∣∣∣32 , −1
2

〉o

I

+
1
√

3

∣∣∣∣∣12 , −1
2

〉o

I

,

(4.164)

where the superscripts e, o denote even, odd behaviour of the state under the ex-

change π0 ↔ π−.

• V -spin
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〉

=
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, (4.165)
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where the superscripts e, o denote even, odd behaviour of the state under the ex-

change K+ ↔ π0.

The odd terms in the above expressions for the state
∣∣∣K+π0π−

〉
change sign under ex-

change of the appropriate pair of particles, because of the sign changes in the two particle

states as shown below (also noted in Table 4.1):

• Isospin:

∣∣∣π0π−
〉

=
1
√

2

(
|2, −1〉I + |1, −1〉I

)
, (4.166)∣∣∣π−π0

〉
=

1
√

2

(
|2, −1〉I − |1, −1〉I

)
. (4.167)

• V -spin:

∣∣∣K+π0
〉

= −
1

2
√
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(
|2,+1〉V + |1,+1〉V

)
+

√
3

2
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〉
V
, (4.168)

∣∣∣π0K+
〉

= −
1

2
√

2

(
|2,+1〉V − |1,+1〉V

)
+

√
3

2

∣∣∣1′,+1
〉
V
. (4.169)

If isospin were an exact symmetry, the |2, −1〉I and |1, −1〉I states of
∣∣∣π−π0

〉
would exist

in even and odd partial wave states respectively, as was the case in subsection 4.4.1 also.

On the other hand, if V -spin were an exact symmetry the state
∣∣∣K+π0

〉
must remain un-

changed under K+ ↔ π0 exchange. Under V -spin the
∣∣∣K+π0

〉
state can exist in |2,+1〉V

and |1,+1〉V , out of which |1,+1〉V has a contribution from the |0, 0〉V ,8 admixture in

π0, denoted above by |1′,+1〉V . Both state |2,+1〉V and the state |1′,+1〉V exist in space

symmetric (even partial wave) states, and that part of |1,+1〉V arising from |1, 0〉V part of

π0 exists in space anti-symmetric (odd partial wave) state.

If we consider the initial state to be B0
d

which is an isospin
∣∣∣1
2 ,+

1
2

〉
I

state but a V -spin

singlet |0, 0〉V state, the standard model Hamiltonian allows only ∆I = 0, 1 and ∆V = 1
2 ,

3
2
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transitions. Therefore, in addition to the isospin amplitudes of Eq. 4.133, we can define

the following V -spin amplitudes:

V3
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3
2
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2
,±

1
2

∣∣∣∣∣H∆V= 3
2
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The amplitude for the decay B0
d
→ K+π0π− can, therefore, be written as

A(B0
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where X′′ and Y ′′ are, in general, arbitrary functions of r and cos θ′′, and they take care

of spatial and kinematic contributions to the decay amplitude. As argued before, the part

of the amplitude even (or odd) under isospin must also be even (or odd) under V -spin:
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It is now straightforward to conclude that the Dalitz plot distributions in the even num-

bered sextants would be identical to one another, and those of odd numbered sextants

would also be similar. Any deviation from this would constitute a signature of simulta-

neous violations of isospin and V -spin.
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Since K+ and π− belong to different multiplets of U-spin, in order to consider the

symmetry properties under K+ ↔ π− one needs to define the G-parity analogue of U-

spin, denoted by GU and defined in the Appendix A. Since charge conjugation is a good

symmetry in strong interaction, GU is as good as U-spin itself. The state
∣∣∣K+π−

〉
is

composed of states which are even and odd under GU -parity:

∣∣∣K+π−
〉

=
1
2

( ∣∣∣K+π−
〉

e +
∣∣∣K+π−

〉
o

)
, (4.175)

where

∣∣∣K+π−
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〉
−

∣∣∣π−K+〉 , ∣∣∣K+π−
〉

o =
∣∣∣K+π−

〉
+

∣∣∣π−K+〉 , (4.176)

and

GU
∣∣∣K+π−

〉
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∣∣∣K+π−
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e , GU
∣∣∣K+π−

〉
o = −
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〉

o . (4.177)

Note that the state even (or odd) under GU is in odd (or even) partial wave state. We

have already proven that the amplitudes for the decay B0
d
→ K+π0π− has two parts one

even and the other odd under the exchange of any two particles in the final state. Hence,

ASS is odd under GU and AAA is even under GU . Since two GU -parity amplitudes do not

interfere, the interference betweenASS andAAA, which is the fAA term (see Eq. (4.144)),

vanishes. Therefore, if GU is a good symmetry of nature it is interesting to conclude that

the Dalitz plot is completely symmetric under s ↔ t ↔ u. The Dalitz plot asymmetries

which would be a measure of the extent of breaking of the SU(3) flavor symmetry are,

therefore, given by

AIsospin =

∣∣∣∣∣∣∣Σ
I
V I
− ΣI I I

IV

ΣI
V I

+ ΣI I I
IV

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣Σ
I I I
IV
− ΣV

I I

ΣI I I
IV

+ ΣV
I I

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣Σ
V
I I
− ΣI

V I

ΣV
I I

+ ΣI
V I

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∆
I
V I
− ∆I I I

IV

∆I
V I

+ ∆I I I
IV

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∆
I I I
IV
− ∆V

I I

∆I I I
IV

+ ∆V
I I

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∆
V
I I
− ∆I

V I

∆V
I I

+ ∆I
V I

∣∣∣∣∣∣∣ , (4.178)
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where the Σ’s and ∆’s are defined in Eqs. (4.154a) and (4.154b) respectively. It must again

be noted that these asymmetries are in general functions of r and θ (or θ′ or θ′′), and are

defined throughout the Dalitz plot region, including resonant regions. It would again be

interesting to look for patterns in the variations of these asymmetries inside the Dalitz

plot. Observation of these asymmetries would quantify the extent of breaking of SU(3)

flavor symmetry in the concerned decay mode. One can also look for such asymmetries in

the Dalitz plot for B0
s → K+π0π−. The amplitudes for this process are given in Table 4.4.

4.4.3 Decay Mode with final state K+π0K0

For study of simultaneous violations of both U-spin and V -spin, we consider decays

such as B+ or D+ → K+π0K0 and their conjugate modes. In the final state K+π0K0,

the particles K+, π0 are exchangeable under V -spin and π0, K0 can be exchanged under

U-spin. These correspond to the following exchanges in the Dalitz plot:

V -spin ≡ K+ ↔ π0 =⇒ s ↔ t ,

U-spin ≡ π0 ↔ K0 =⇒ t ↔ u.

Under V -spin, the K+π0 state can exist in |2,+1〉V and |1,+1〉V , out of which the state

|1,+1〉V has a contribution from the |0, 0〉V ,8 admixture in π0. Thus if V -spin were an
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exact symmetry the state |2,+1〉V and that part of the |1,+1〉V state coming from |0, 0〉V ,8

contribution of π0 would be in space symmetric (even partial wave) states. The remaining

part of |1,+1〉V state would be in space anti-symmetric (odd partial wave) state. Similarly,

the π0K0 state would exist in |2, −1〉U and |1, −1〉U , out of which the state |1, −1〉U has

a contribution from the |0, 0〉U ,8 admixture in π0. Thus, if U-spin were assumed to be

an exact symmetry, the states |2, −1〉U and the |1, −1〉U state coming from |0, 0〉U ,8 part

of π0 would exist in space symmetric (even partial wave) states, and the other part of

|1, −1〉U would exist in space anti-symmetric (odd partial wave) state. Therefore, under

exactU-spin and V -spin, the final state K+π0K0 has, the following two possibilities:

1. K+π0 would exist in either symmetrical or anti-symmetrical state under s ↔ t

exchange, and

2. π0K0 would exist in either symmetrical or anti-symmetrical state under t ↔ u

exchange.

Again, following the steps as enunciated in subsection 4.4.1 we can conclude that the

Dalitz plot distribution in the even numbered sextants would be identical to one another,

and those of odd numbered sextants would also be similar, as given in Eqs. (4.146) and

(4.147). Any deviation from this would constitute a signature of simultaneous violations

of U-spin and V -spin. We can once again reaffirm the same logic as given in subsec-

tions 4.4.1 and 4.4.2, by invoking the GI -parity operator (see Appendix A) to connect K+

and K0 belonging to two different isospin doublets. This would lead to a fully symmetric

Dalitz plot which would be broken when GI is broken. The amplitudes for the two decay

modes under consideration are given in Table 4.5. The Dalitz plot asymmetries that can
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be useful in this case are given by
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Once again the asymmetries being, in general, functions of r and θ (or θ′ or θ′′), it would

be very interesting to look for their variation across the Dalitz plot. These would be the

visible signatures of the breaking of SU(3) flavor symmetry.

4.4.4 Decay Mode with final state π+π0K0

Finally, we consider a mode where each pair of the particles in the final state can be

directly related by one of the three SU(2) symmetries, namely isospin,U-spin andV -spin.

Here we do not need GI , GV or GU to relate the final states. We consider, as an example,

decays with final state π+π0K0 such as D+ → π+π0K0 and the conjugate mode. In the

final state considered here, isospin exchange implies π0 ↔ π+, U-spin exchange implies

π0 ↔ K0 and V -spin exchange implies π+ ↔ K0. The SU(2) decompositions of all the

pairs of particles under their respective SU(2) symmetries have already been considered

in subsections 4.4.1, 4.4.2, 4.4.3. Once again, the steps elaborated in subsection 4.4.1

are applicable to this case also. The amplitudes for this decay mode can be easily read
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Table 4.6: Amplitudes for the decay D+ → π+π0K0. The V -spin amplitudes are defined
as follows: V1,1 = 〈1, 0|H∆V=1 |0, 0〉, V ′1,1 = 〈1′, 0|H∆V=1 |0, 0〉, V0,0 = 〈0, 0|H∆V=0 |0, 0〉
and V ′0,0 = 〈0′, 0|H∆V=0 |0, 0〉.
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off from Table 4.6. However, in this mode the even and odd contributions to the decay

amplitude can interfere as they are not eigenstates of G-parity, resulting in even and odd

numbered sextants to have distinctly different density of events as depicted in Eqs. (4.146)

and (4.147). Note that the Dalitz plot distributions for the even (odd) numbered sextants

of the Dalitz plot would still be identical if isospin and U-spin are exact symmetries.

The breakdown of isospin,U-spin and V -spin could be quantitatively measured using the

following asymmetries:
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∣∣∣∣∣∣∣∆
V
IV
− ∆I

I I

∆V
IV

+ ∆I
I I

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∆
I
I I
− ∆I I I

V I

∆I
I I

+ ∆I I I
V I

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∆
I I I
V I
− ∆V

IV

∆I I I
V I

+ ∆V
IV

∣∣∣∣∣∣∣ . (4.186)

Once again these asymmetries being, in general, functions of r and θ (or θ′ or θ′′) it

would be very interesting to look for their variation across the Dalitz plot. These would

constitute the visible signatures of the breaking of SU(3) flavor symmetry.

4.5 Summary

In this chapter we have elucidated a few new model independent methods to look for

breaking of Bose,CP,CPT and SU(3) flavor symmetry. We use the distribution of events

in the Dalitz plot and the Dalitz prism, which carry information about the dynamics of the



140 CHAPTER 4. STUDY OF SOME SYMMETRY VIOLATIONS

process and, hence, that of the underlying symmetry, and look for relevant asymmetries

in them which quantify the extent of symmetry violations in the processes under consid-

eration. The Dalitz prism can substantially help in looking for some of these symmetry

violations which are expected to be extremely small in the decay modes considered.
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5
Summary and Conclusion

Nature has many fundamental symmetries, and the corresponding symmetry operations

help us to formulate the underlying physical laws. Thus the concept of symmetry plays a

pivotal role in discovering new fundamental laws of physics. It is not only necessary to

look for new hitherto unknown symmetries of Nature, but it also is important to search

for places where the already existing symmetries do break down or are violated. This

exercise provides information about the region of applicability of the symmetry and sug-

gests necessary modifications, if any, to the existing laws of physics. In this thesis we

are concerned with investigating violations of a few fundamental symmetries of Nature,

namely the Bose, CP, CPT and quark flavor SU(3) symmetries, by use of Dalitz plots

(which implies that we shall exploit three-body decays) and their unique generalization

the Dalitz prisms (by which processes with more than three particles in the final states

can be easily handled and they do get considered). The basic idea is that the distribution

of events inside a Dalitz plot or a Dalitz prism is a signature of the underlying dynamics.

Symmetries affect the amplitude and hence the distribution of events in Dalitz plots and

Dalitz prisms shows some characteristic signature of the underlying symmetry. If we ob-

serve any distribution of event contrary to the expectation from symmetry arguments, it
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is a clear signature of violation of the concerned symmetry. By means of various asym-

metries, these violations can be quantified [163–165].

The concept of Dalitz prism is a natural extension of the Dalitz plot if we extend

our discussion of a resonant three-body decay to include continuum production of three

final particles as well. Dalitz prism in its purest form can be visualized as a stack of

Dalitz plots which are stacked up with increasing center-of-momentum energy. Once, this

concept is in place, it is fairly straightforward to see that multi-body processes which can

be treated as “effective” three-body processes are also easy to consider and analyse via

the Dalitz prism. The Dalitz prism works well even when initial or final state radiations

are involved. Moreover, being extremely rich with data, it serves as a precision tool with

which we can search for extremely small violations of the fundamental symmetries under

our consideration.

Bose symmetry is an important cornerstone of modern physics, and states that a sys-

tem of two identical bosons does not alter in any way when the two bosons are swapped.

Bose symmetry is true for stable particles, but in reality it is also applied to particles that

have a fleeting existence such as various mesons. Therefore, it is pertinent that we look

for violations of Bose symmetry in mesons which are also composite particles. For this

we consider three-body processes where all final particles are mesons and at least two

mesons are of the same type but they are reconstructed from different final states. Now

we can construct the Dalitz plot for such cases. If the Dalitz plot shows any asymmetry

under exchange of the two identical mesons, it would be a clear signature of violation of

Bose symmetry.

The Dalitz plot distribution also gets affected by the presence of CP violation. Let

us consider a three-body process in which two final particles are two neutral mesons that

mix with one another and have both direct as well as mixing CP violation. When these

two particles are reconstructed from flavor insensitive final states with definite CP, then
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in the CP conserving scenario Bose symmetry would force the Dalitz plot to be com-

pletely symmetric under exchange of the two particles. However, the direct CP asym-

metry would manifest as an asymmetry in the Dalitz plot under the exchange of the two

neutral mesons under consideration. When the CP violation is tiny as in case of the D

mesons, one can consider the Dalitz prism to advantage and look for the small asymmetry

in the Dalitz prism.

The Dalitz plot distribution also gets affected if there is CPT violation. For this

we consider only those three-body processes which are self-conjugate and have no CP

violation in them, in other words the processes must take place via either strong or elec-

tromagnetic interactions only. In the kind of final state which are possible here, there is

always a pair of CP conjugate particle and a particle which is CP conjugate of itself. If

there were no direct CPT violation in this process, then the Dalitz plot or Dalitz prism

would be completely symmetric under exchange of the two CP conjugate particles. Any

asymmetry in the Dalitz plot under the said exchange is possible only if there is any direct

CPT violation in the mode. CPT violation, if at all observable, is always expected to be

extremely tiny. Thus the Dalitz prism with appropriate multi-body processes included

could be helpful in searching for CPT violation. Even a small but visible asymmetry,

can also be interpreted as CP violation in the strong or electromagnetic interaction that

facilitates the process. This in itself would constitute a clear evidence of new physics,

even though we were to still assume CPT invariance.

The SU(3) flavor symmetry is not an exact symmetry of nature. From its inception

to explain light hadronic states via the eightfold way [84–86], it has always been con-

sidered to be broken in order to account for the mass differences amongst the hadronic

states it relates. Full SU(3) flavor symmetry implies that the three flavors of light quarks,

namely the up (u), down (d) and strange (s) quarks, are identical. Hence, under full

SU(3) flavor symmetry these quarks can be exchanged with each other without affecting
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any physical observable. However, the mass difference between s quark and either of u or

d quarks is substantial, the quarks u and d also do not have same electric charge, and thus

these quarks are not fully exchangeable with one another resulting in many observables

which are sensitive to the SU(3) flavor symmetry breaking. Nevertheless, an accurate

quantitative estimate of SU(3) flavor breaking has not yet been accomplished in dynam-

ical processes. We give a model independent prescription for quantitative estimation of

SU(3) flavor symmetry breaking by using the Dalitz plots for a few specific kind of three-

body decays. It is well known that the SU(3) flavor symmetry has three non-commuting

SU(2) subgroups, namely, isospin, U-spin and V -spin. We consider only those three-

body decays in which the final mesons are kaons or pions and particles inside two pairs

of the final three mesons are connected to one another by two distinct SU(2) symmetries.

Since full SU(3) flavor symmetry implies that all the three SU(2) symmetries are indi-

vidually and simultaneously valid, the Dalitz plot for the modes can be shown to have

either fully symmetric distribution or fully anti-symmetric distribution. This implies that

the alternate sextants of the Dalitz plot are identical to one another. Any deviation from

this observation would constitute a violation of full SU(3) flavor symmetry. Appropriate

Dalitz plot asymmetries can be defined that quantify this violation.

We have thus provided new methods to look for violations of Bose, CP, CPT and

SU(3) flavor symmetries by using Dalitz plots and Dalitz prisms. These symmetries

play some of the very vital roles in particle physics and any unusual violation of these

symmetries would point out various new physics possibilities. Therefore, it would not

be over emphasizing to belabour the point that accurate quantitative estimates of these

symmetry violations constitute a significant step forward in our search for new physics.
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A
Some details of the SU(3)

flavor symmetry

A.1 The generators of SU(3) flavor symmetry

The generators Ga of the group SU(3) are related to Gell-Mann matrices λa [84, 85]:

Ga =
λa
2
. (A.1)

The eight traceless and Hermitian Gell-Mann matrices are

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , (A.2a)

λ3 =

1 0 0
0 −1 0
0 0 0

 , λ4 =

0 0 1
0 0 0
1 0 0

 , (A.2b)

λ5 =

0 0 −i

0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 , (A.2c)

λ7 =

0 0 0
0 0 −i

0 i 0

 , λ8 =
1
√

3

1 0 0
0 1 0
0 0 −2

 . (A.2d)

149



150 APPENDIX A. SOME DETAILS OF THE SU(3) FLAVOR SYMMETRY

The Gell-Mann matrices satisfy the following properties:

• Commutation relation:

[λa , λb] = 2i fabcλc , (A.3)

where fabc are the structure constants, and are totally antisymmetric under ex-

change of any pair of indices with the following non-vanishing members

f123 = 1, (A.4a)

f147 = − f156 = f246 = f257 = f345 = − f367 =
1
2
, (A.4b)

f458 = f678 =

√
3

2
, (A.4c)

• Trace orthogonal relation:

Tr (λaλb) = 2δab , (A.5)

where δab denotes the Kronecker delta.

• Anti-commutation relation:

{λa , λb} =
4
3
δab + 2dabcλc , (A.6)

where dabc are totally symmetric under exchange of any pair of indices with non-

vanishing numbers

d118 = d228 = d338 = −d888 =
1
√

3
, (A.7a)

d448 = d558 = d668 = d778 = −
1

2
√

3
, (A.7b)

d146 = d157 = −d247 = d256 = d344 = d355 = −d366 = −d377 =
1
2
. (A.7c)
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Both fabc and dabc can be written in terms of trace of products of Gell-Mann matrices as

follows:

fabc = −
1
4
i Tr (λa [λb , λc]) , (A.8)

dabc =
1
4

Tr (λa {λb , λc }) . (A.9)

The generators, therefore, satisfy the following commutation and anti-commutation rela-

tions:

[Ga ,Gb] = i fabcGc , (A.10a)

{Ga ,Gb} =
1
3
δab + dabcGc . (A.10b)

It is easy to verify that

G2 =

8∑
a=1

GaGa =
1
3

1 0 0
0 1 0
0 0 1

 . (A.11)

There are two Casimir operators which commute with all the generators Ga of SU(3):

C1 =

8∑
a=1

G2
a =

1
3

1 0 0
0 1 0
0 0 1

 , (A.12)

C2 =

8∑
a,b,c=1

dabcGaGbGc =
10
9

1 0 0
0 1 0
0 0 1

 . (A.13)

Since both C1 and C2 are proportional to the 3 × 3 unit matrix, they commute with the

generators of SU(3):

[Ci ,Ga] = [Ga ,Ci] = 0. (A.14)
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A.2 The SU(2) subgroups of SU(3) flavor symmetry

In the set of eight SU(3) generators, one can notice the following three subsets which

generate SU(2) subgroups, and the three SU(2) subgroups do not commute among them.

• Isospin subgroup SU(2)I : Generators of the isospin subgroup SU(2)I are

T1 = F1 =
1
2
λ1, (A.15)

T2 = F2 =
1
2
λ2, (A.16)

T3 = F3 =
1
2
λ3, (A.17)

and the hypercharge operator is defined as

Y =
2
√

3
F8 =

1
√

3
λ8 =

1
3

1 0 0
0 1 0
0 0 −2

 . (A.18)

These satisfy the commutation relations

[Ta ,Tb] = iεabcTc , (A.19)

[T3,Y ] = 0, (A.20)

where εabc is the usual Levi-Civita tensor. So the hypercharge operator is scalar

under isospin, i.e., it has T = 0. We can also define the isospin raising and lowering

operators as

T± = T1 ± iT2. (A.21)

These operators satisfy the SU(2) algebra

[T3,T±] = ±T±, (A.22)

[T+,T−] = 2T3. (A.23)



A.2. THE SU(2) SUBGROUPS OF SU(3) FLAVOR SYMMETRY 153

The Casimir operator for the isospin SU(2) subgroup of SU(3) flavor symmetry is

T2 = T 2
1 + T 2

2 + T 2
3 . (A.24)

A legitimate isospin eigenstate is one which is eigenstate of both T2 and T3, such a

state is denoted by |t , t3〉:

T2 |t , t3〉 = t(t + 1) |t , t3〉 , (A.25)

T3 |t , t3〉 = t3 |t , t3〉 , (A.26)

where t and t3 denote the isospin and 3rd component of isospin of the system. The

Casimir operator T2 commutes with T± and T3:

[
T2,T±

]
= 0 =

[
T2,T3

]
. (A.27)

• U-spin subgroup SU(2)U : Generators of the U-spin subgroup SU(2)U are

U1 = F6 =
1
2
λ6, (A.28)

U2 = F7 =
1
2
λ7, (A.29)

U3 =
1
2

(√
3F8 − F3

)
=

1
4

(√
3λ8 − λ3

)
, (A.30)

and the U-spin scalar operator is the electric charge operator:

Q = F3 +
1
√

3
F8 =

1
2

(
λ3 +

1
√

3
λ8

)
=

1
3

2 0 0
0 −1 0
0 0 −1

 . (A.31)

Since Y = 1√
3
λ8, we have

λ3 = 2Q − Y . (A.32)
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These satisfy the commutation relations

[Ua ,Ub] = iεabcUc , (A.33)

[U3,Q] = 0. (A.34)

We can also define the U-spin raising and lowering operators as

U± = U1 ± iU2. (A.35)

These operators satisfy the SU(2) algebra

[U3,U±] = ±U±, (A.36)

[U+,U−] = 2U3. (A.37)

It is possible to relateU3 to T3 and Y as follows:

U3 =
1
2

(
3
2
Y − T3

)
. (A.38)

The Casimir operator for theU-spin SU(2) subgroup of SU(3) flavor symmetry is

U2 = U2
1 +U2

2 +U2
3 . (A.39)

A legitimate U-spin eigenstate is one which is eigenstate of both U2 and U3, such

a state is denoted by |u, u3〉:

U2 |u, u3〉 = u(u + 1) |u, u3〉 , (A.40)

U3 |u, u3〉 = u3 |u, u3〉 , (A.41)
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where u and u3 denote theU-spin and 3rd component ofU-spin of the system. The

Casimir operator U2 commutes withU± andU3:

[
U2,U±

]
= 0 =

[
U2,U3

]
. (A.42)

• V-spin subgroup SU(2)V : Generators of the V-spin subgroup SU(2)V are

V1 = F4 =
1
2
λ4, (A.43)

V2 = F5 =
1
2
λ5, (A.44)

V3 =
1
2

(√
3F8 + F3

)
=

1
4

(√
3λ8 + λ3

)
, (A.45)

and the V-spin scalar operator is called the ‘Z-charge’ operator:

Z = F3 −
1
√

3
F8 =

1
2

(
λ3 −

1
√

3
λ8

)
=

1
3

1 0 0
0 −2 0
0 0 1

 . (A.46)

In terms of hypercharge Y and electric charge Q this is given by

Z = Q − Y . (A.47)

These satisfy the commutation relations

[Va ,Vb] = iεabcVc , (A.48)

[V3, Z] = 0. (A.49)

We can also define the V-spin raising and lowering operators as

V± = V1 ± iV2. (A.50)
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These operators satisfy the SU(2) algebra

[V3,V±] = ±V±, (A.51)

[V+,V−] = 2V3. (A.52)

It is possible to relate V3 to T3 and Y as follows:

V3 =
1
2

(
3
2
Y + T3

)
. (A.53)

The Casimir operator for the V -spin SU(2) subgroup of SU(3) flavor symmetry is

V2 = V 2
1 +V 2

2 +V 2
3 . (A.54)

A legitimate V -spin eigenstate is one which is eigenstate of both V2 and V3, such a

state is denoted by |v, v3〉:

V2 |v, v3〉 = v(v + 1) |v, v3〉 , (A.55)

V3 |v, v3〉 = v3 |v, v3〉 , (A.56)

where v and v3 denote the V -spin and 3rd component of V -spin of the system. The

Casimir operator V2 commutes with V± and V3:

[
V2,V±

]
= 0 =

[
V2,V3

]
. (A.57)

Note 1. It is important to note that the 3rd components of isospin, U-spin and V -spin

operators commute with each other:

[T3,U3] = [U3,V3] = [T3,V3] = 0. (A.58)



A.2. THE SU(2) SUBGROUPS OF SU(3) FLAVOR SYMMETRY 157

It must also be noted that the Casimir operators for isospin, U-spin and V -spin also

commute with each other:

[
T2,U2

]
=

[
U2,V2

]
=

[
V2,T2

]
= 0. (A.59)

Note 2. It is also important to note that the 3rd components of isospin,U-spin andV -spin

operators commute with any of the scalar operators Y , Q and Z:

[T3,Y ] = [U3,Y ] = [V3,Y ] = 0, (A.60)

[T3,Q] = [U3,Q] = [V3,Q] = 0, (A.61)

[T3, Z] = [U3, Z] = [V3, Z] = 0. (A.62)

Thus, the 3rd components of isospin, U-spin and V -spin, and the quantum numbers

hypercharge, electric charge and Z charge can all be simultaneously measured.

Note 3. Since the 3rd component of isospin T3 and hypercharge Y commute, an element

of a SU(3) multiplet can be denoted by |t3, y〉, where t3 and y are the eigenvalues of T3

and Y operators respectively:

T3 |t3, y〉 = t3 |t3, y〉 , (A.63)

Y |t3, y〉 = y |t3, y〉 . (A.64)

Since T3, U3, V3, Y , Q and Z commute with one another, this state must also be an

eigenstate ofU3, V3, Q and Z:

U3 |t3, y〉 =

(
3y
4
−
t3

2

)
|t3, y〉 , (A.65)

V3 |t3, y〉 =

(
3y
4

+
t3

2

)
|t3, y〉 , (A.66)
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Q |t3, y〉 =

(
t3 +

y

2

)
|t3, y〉 , (A.67)

Z |t3, y〉 =

(
t3 −

y

2

)
|t3, y〉 . (A.68)

Note 4. Just like |t3, y〉 one can also use the state |u3, q〉, where u3 and q are the eigen-

values ofU3 and Q operators respectively, to denote an element of SU(3) multiplet:

U3 |u3, q〉 = u3 |u3, q〉 , (A.69)

Q |u3, q〉 = q |u3, q〉 . (A.70)

Again similar to |t3, y〉 this new state |u3, q〉 would also be an eigenstate of T3, V3, Y and

Z:

T3 |u3, q〉 =

(
3q
4
−
u3

2

)
|u3, q〉 , (A.71)

V3 |u3, q〉 =

(
3q
4

+
u3

2

)
|u3, q〉 , (A.72)

Y |u3, q〉 =

(
q

2
+ u3

)
|u3, q〉 , (A.73)

Z |u3, q〉 =

(
q

2
− u3

)
|u3, q〉 . (A.74)

Note 5. Again similar to both |t3, y〉 and |u3, q〉 we can also use a state |v3, z〉, where v3

and z are eigenvalues of V3 and Z operators respectively, to denote an element of SU(3)

multiplet:

V3 |v3, z〉 = v3 |v3, z〉 , (A.75)

Z |v3, z〉 = z |v3, z〉 (A.76)

To belabour the point once again, this state |v3, z〉 is also an eigenstate of T3, U3, Y and
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Q:

T3 |v3, z〉 =

(
v3

2
+

3z
4

)
|v3, z〉 , (A.77)

U3 |v3, z〉 =

(
v3

2
−

3z
4

)
|v3, z〉 , (A.78)

Y |v3, z〉 =

(
v3 −

z

2

)
|v3, z〉 , (A.79)

Q |v3, z〉 =

(
v3 +

z

2

)
|v3, z〉 . (A.80)

It is, therefore, sufficient to denote an element of SU(3) multiplet by either |t3, y〉, or

|u3, q〉, or |v3, z〉. In fact they are identical to one another,

|t3, y〉 ≡ |u3, q〉 ≡ |v3, z〉 , (A.81)

in the sense that

t3 =
3q
4
−
u3

2
=

v3

2
+

3z
4
, (A.82)

u3 =
3y
4
−
t3

2
=

v3

2
−

3z
4
, (A.83)

v3 =
3y
4

+
t3

2
=

3q
4

+
u3

2
, (A.84)

y =
q

2
+ u3 = v3 −

z

2
, (A.85)

q = t3 +
y

2
= v3 +

z

2
, (A.86)

z = t3 −
y

2
=

q

2
− u3. (A.87)

It is easy to see that these satisfy the identities

t3 + u3 = v3, (A.88)

q − y = z. (A.89)
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A.3 Action of ladder operators on elements of SU(3) mul-

tiplet

The ladder operators, namely the raising operators T+,U+ and V+, as well as the lowering

operators T−, U− and V−, take an element of SU(3) multiplet to another element of the

same multiplet as given below:

T± |t3, y〉 =
√

(t ∓ t3) (t ± t3 + 1) |t3 ± 1, y〉 , (A.90)

U± |t3, y〉 =
√

(u ∓ u3) (u ± u3 + 1)
∣∣∣∣∣t3 ∓ 1

2
, y ± 1

〉
, (A.91)

V± |t3, y〉 =
√

(v ∓ v3) (v ± v3 + 1)
∣∣∣∣∣t3 ± 1

2
, y ± 1

〉
, (A.92)

where u3 = (3y/4) − (t3/2), v3 = (3y/4) + (t3/2), and t , u, v are, respectively, the isospin,

U-spin and V -spin of the element represented by the state |t3, y〉. This can be easily

generalized to cases where one starts with the other ways to write the sate, namely |u3, q〉

and |v3, z〉:

T± |u3, q〉 =
√

(t ∓ t3) (t ± t3 + 1)
∣∣∣∣∣u3 ∓

1
2
, q ± 1

〉
, (A.93)

U± |u3, q〉 =
√

(u ∓ u3) (u ± u3 + 1) |u3 ± 1, q〉 , (A.94)

V± |u3, q〉 =
√

(v ∓ v3) (v ± v3 + 1)
∣∣∣∣∣u3 ±

1
2
, q ± 1

〉
, (A.95)

where t3 = (3q/4)− (u3/2), v3 = (3q/4)+ (u3/2), and t , u, v are, respectively, the isospin,

U-spin and V -spin of the element represented by |u3, q〉, and similarly

T± |v3, z〉 =
√

(t ∓ t3) (t ± t3 + 1)
∣∣∣∣∣v3 ±

1
2
, z ± 1

〉
, (A.96)

U± |v3, z〉 =
√

(u ∓ u3) (u ± u3 + 1)
∣∣∣∣∣v3 ±

1
2
, z ∓ 1

〉
, (A.97)
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V± |v3, z〉 =
√

(v ∓ v3) (v ± v3 + 1) |v3 ± 1, z〉 , (A.98)

where t3 = (v3/2) + (3z/4), u3 = (v3/2)− (3z/4), and t , u, v are, respectively, the isospin,

U-spin and V -spin of the element represented by |v3, z〉. The actions of the ladder opera-

tors is schematically shown in Fig. A.1.
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Figure A.1: Action of the ladder operators on states.

A.4 G-parity and SU(3) triplets of quarks and antiquarks

The isospin, U-spin and V-spin concepts put two quarks (and corresponding anti-quarks

also) in a doublet in a way which is reminiscent of the way the two spin states (spin up
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and spin down) of a spin-half fermion form a doublet under spin.

Note 6. We shall implement the following notation for brevity of expression:

|↑〉T =

∣∣∣∣∣t =
1
2
, t3 = +

1
2

〉
≡

∣∣∣∣∣12 ,+1
2

〉
T

, (A.99)

|↓〉T =

∣∣∣∣∣t =
1
2
, t3 = −

1
2

〉
≡

∣∣∣∣∣12 , −1
2

〉
T

, (A.100)

|↑〉U =

∣∣∣∣∣u =
1
2
, u3 = +

1
2

〉
≡

∣∣∣∣∣12 ,+1
2

〉
U

, (A.101)

|↓〉U =

∣∣∣∣∣u =
1
2
, u3 = −

1
2

〉
≡

∣∣∣∣∣12 , −1
2

〉
U

, (A.102)

|↑〉V =

∣∣∣∣∣v =
1
2
, v3 = +

1
2

〉
≡

∣∣∣∣∣12 ,+1
2

〉
V

, (A.103)

|↓〉V =

∣∣∣∣∣v =
1
2
, v3 = −

1
2

〉
≡

∣∣∣∣∣12 , −1
2

〉
V

. (A.104)

Under isospin, U-spin and V-spin we have the following doublets for quarks:

Isospin:
(
|↑〉T

|↓〉T

)
=

(
u

d

)
, (A.105)

U-spin:
(
|↑〉U

|↓〉U

)
=

(
d

s

)
, (A.106)

V-spin:
(
|↑〉V

|↓〉V

)
=

(
u

s

)
, (A.107)

and for anti-quarks:

Isospin:
(
|↑〉T

|↓〉T

)
=

(
d̄

−ū

)
, (A.108)

U-spin:
(
|↑〉U

|↓〉U

)
=

(
s̄

−d̄

)
, (A.109)

V-spin:
(
|↑〉V

|↓〉V

)
=

(
s̄

−ū

)
. (A.110)

The minus sign and arrangement of antiquarks in the doublets are in accordance with G-
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parity. The G-parity operator (G) is defined as a rotation through π radian (180◦) around

the second axis of isospin/U-spin/V-spin space followed by a charge conjugation (C):

G = Ceiπτ2/2, (A.111)

where τ2 is the second Pauli matrix: τ2 =

(
0 −i

i 0

)
. We shall put a subscript to G to show

in which space it is working. Using the identity: exp
(
iθ
τ2

2

)
= cos

θ

2
+ iτ2 sin

θ

2
, we have

eiπτ2/2 =

(
0 1
−1 0

)
. So the G-parity operator is given by:

G = C

(
0 1
−1 0

)
. (A.112)

Under G-parity the particle doublet and the antiparticle doublet get related as follows:

GI

(
u

d

)
=

(
d̄

−ū

)
, GI

(
d̄

−ū

)
= −

(
u

d

)
, (A.113)

=⇒ G2
I

(
u

d

)
= −

(
u

d

)
, G2

I

(
d̄

−ū

)
= −

(
d̄

−ū

)
, (A.114)

and

GU

(
d

s

)
=

(
s̄

−d̄

)
, GU

(
s̄

−d̄

)
= −

(
d

s

)
, (A.115)

=⇒ G2
U

(
d

s

)
= −

(
d

s

)
, G2

U

(
s̄

−d̄

)
= −

(
s̄

−d̄

)
, (A.116)

and

GV

(
u

s

)
=

(
s̄

−ū

)
, GV

(
s̄

−ū

)
= −

(
u

s

)
, (A.117)

=⇒ G2
V

(
u

s

)
= −

(
u

s

)
, G2

V

(
s̄

−ū

)
= −

(
s̄

−ū

)
. (A.118)

It is easy to notice that s and s̄ are isospin singlets, u and ū are U-spin singlets,
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Figure A.2: SU(3) flavor quark and antiquark triplets.

and d and d̄ are V-spin singlets. The quarks u, d and s jointly form the fundamental

representation of SU(3) flavor, a triplet. The basic quark and antiquark triplets are shown

in Fig. A.2. This figure also shows how isospin, U-spin and V-spin act on the quarks and

antiquarks.

A.5 A study of the SU(3) octet of lightest pseudoscalar

mesons

Mesons, which are quark and antiquark bound states, can thus be assigned isospin, U-

spin and V-spin quantum numbers. Given the isospin-doublet of up and down quarks, we

can write down the following isotriplet and isosinglet of mesons:

isotriplet:



|1,+1〉T = |↑〉T ⊗ |↑〉T = ud̄ ≡ π+,

|1, 0〉T = 1√
2

(|↑〉T ⊗ |↓〉T + |↓〉T ⊗ |↑〉T ) = 1√
2

(
dd̄ − uū

)
≡ −π0,

|1, −1〉T = |↓〉T ⊗ |↓〉T = −dū ≡ −π− ,

(A.119)

isosinglet:
{
|0, 0〉T = 1√

2
(|↑〉T ⊗ |↓〉T − |↓〉T ⊗ |↑〉T ) = − 1√

2

(
dd̄ + uū

)
. (A.120)
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The components of the isotriplet can be easily identified with the three pions. Now com-

bining u, d quarks with s̄, and ū, d̄ with s quark we get the doublets of kaons:

Particle doublet:
(
|↑〉T

|↓〉T

)
=

(
us̄

ds̄

)
≡

(
K+

K0

)
, (A.121)

Antiparticle doublet :
(
|↑〉T

|↓〉T

)
=

(
sd̄

−sū

)
≡

 K0

−K−

 . (A.122)

It is easy to see that the combination ss̄ is also isosinglet. So the physical isosinglet states

must be a combination of uū, dd̄ and ss̄. The isosinglet which is also SU(3) singlet must

contain each quark flavor on the same footing, i.e.

(
Both SU(3) singlet

and isosinglet:

)
|0, 0〉T ,1 =

1
√

3

(
uū + dd̄ + ss̄

)
, (A.123)

where the subscript 1 denotes that this isosinglet state is also SU(3) singlet. This helps

in distinguishing the state from |0, 0〉8 which is a part of SU(3) octet of mesons but is an

isosinglet. The state |0, 0〉T ,8 must, therefore, be orthogonal to both |0, 0〉T ,1 and |1, 0〉T .

It is easy to see that such a state is given by

|0, 0〉T ,8 =
1
√

6

(
uū + dd̄ − 2ss̄

)
.

It is customary to denote the isosinglet of SU(3) octet as η8 and that of the SU(3) singlet

as η1. Therefore, the quark content of the various mesons occupying the ground level

SU(3) octet and singlet are: π+ = ud̄, π0 = 1√
2

(
uū − dd̄

)
, π− = dū, K+ = us̄, K0 = ds̄,

K0 = sd̄, K− = sū, η8 = 1√
6

(
uū + dd̄ − 2ss̄

)
, and η1 = 1√

3

(
uū + dd̄ + ss̄

)
. It is easy to

put the quark-antiquark combinations into an SU(3) octet part and an SU(3) singlet part
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in matrix form as follows:

ud
s

 ⊗ (
ū d̄ s̄

)
=

uū ud̄ us̄

dū dd̄ ds̄

sū sd̄ ss̄


=


1
3

(
2uū − dd̄ − ss̄

)
ud̄ us̄

dū 1
3

(
2dd̄ − uū − ss̄

)
ds̄

sū sd̄ 1
3

(
2ss̄ − uū − dd̄

)


+
uū + dd̄ + ss̄

3

1 0 0
0 1 0
0 0 1


=


1√
2
π0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K0 − 2√
6
η8

︸                                               ︷︷                                               ︸
≡M

+
1
√

3
η1

1 0 0
0 1 0
0 0 1

︸      ︷︷      ︸
≡I

= M︸︷︷︸
octet

+ η1︸︷︷︸
singlet

I
√

3
. (A.124)

The singlet and octet states, η1 and η8 respectively, mix in the following manner to give

the physical states η and η′:

(
η
η′

)
=

(
cos θ − sin θ
sin θ cos θ

) (
η8
η1

)
,

where θ is called the nonet mixing angle. Phenomenologically this angle is in the range

−10◦ to −20◦ [166]. Lattice QCD simulations provide θ = −14.1(2.8)◦ [167].

Till now we have looked at isospin alone. Let us now consider the U-spin case also.

The U-spin doublets are easily given by

Particle doublet:
(
|↑〉U

|↓〉U

)
=

(
us̄

−ud̄

)
≡

(
K+

−π+

)
, (A.125)

Antiparticle doublet:
(
|↑〉U

|↓〉U

)
=

(
dū

sū

)
≡

(
π−

K−

)
. (A.126)
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The U-spin triplet and U-spin singlet states are given by

U-spin
triplet



|1,+1〉U = |↑〉U ⊗ |↑〉U = ds̄ ≡ K0,

|1, 0〉U = 1√
2

(|↑〉U ⊗ |↓〉U + |↓〉U ⊗ |↑〉U ) = 1√
2

(
ss̄ − dd̄

)
≡ 1

2π
0 −

√
3

2 η8,

|1, −1〉U = |↓〉U ⊗ |↓〉U = −sd̄ ≡ −K0,

(A.127)

U-spin
singlet

{
|0, 0〉U = 1√

2
(|↑〉U ⊗ |↓〉U − |↓〉U ⊗ |↑〉U ) = − 1√

2

(
dd̄ + ss̄

)
. (A.128)

We know that the state uū is also U-spin singlet. Therefore, the physical U-spin singlet

|0, 0〉U ,8 which belongs to the meson octet, which must be orthogonal to |1, 0〉U and

|0, 0〉U ,1 =
1
√

3

(
uū + dd̄ + ss̄

)
≡ η1, is given by

|0, 0〉U ,8 =
1
√

6

(
dd̄ + ss̄ − 2uū

)
= −

1
2
η8 −

√
3

2
π0. (A.129)

Now it is easy to write down π0 and η8 in terms of U-spin multiplets as follows:

π0 =
1
2
|1, 0〉U −

√
3

2
|0, 0〉U ,8 ,

η8 = −

√
3

2
|1, 0〉U −

1
2
|0, 0〉U ,8 .

Let us now consider the V-spin case also. The V-spin doublets are easily given by

First doublet:
(
|↑〉V

|↓〉V

)
=

(
ds̄

−dū

)
≡

(
K0

−π−

)
,

Second doublet:
(
|↑〉V

|↓〉V

)
=

(
ud̄

sd̄

)
≡

π+

K0

 .
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The V-spin triplet and V-spin singlet states are given by

V-spin
triplet



|1,+1〉V = |↑〉V ⊗ |↑〉V = us̄ ≡ K+,

|1, 0〉V = 1√
2

(|↑〉V ⊗ |↓〉V + |↓〉V ⊗ |↑〉V ) = 1√
2

(ss̄ − uū) ≡ − 1
2π

0 −
√

3
2 η8,

|1, −1〉V = |↓〉V ⊗ |↓〉V = −sū ≡ −K− ,

V-spin
singlet

{
|0, 0〉V = 1√

2
(|↑〉V ⊗ |↓〉V − |↓〉V ⊗ |↑〉V ) = − 1√

2
(uū + ss̄) .

We know that the state dd̄ is also V-spin singlet. Therefore, the physical V-spin singlet

|0, 0〉V ,8 which belongs to the meson octet, which must be orthogonal to |1, 0〉V and

|0, 0〉V ,1 =
1
√

3

(
uū + dd̄ + ss̄

)
≡ η1, is given by

|0, 0〉V ,8 =
1
√

6

(
uū + ss̄ − 2dd̄

)
= −

1
2
η8 +

√
3

2
π0.

Now it is easy to write down π0 and η8 in terms of V-spin multiplets as follows:

π0 = −
1
2
|1, 0〉V +

√
3

2
|0, 0〉V ,8 ,

η8 = −

√
3

2
|1, 0〉V −

1
2
|0, 0〉V ,8 .

The expressions for the particles in terms of isospin, U-spin and V-spin multiplets is

given in Table A.1.

The SU(3) octet of lightest pseudoscalar mesons is given in Fig. A.3.

The various quantum numbers for the pions and kaons relevant from the SU(3) flavor

symmetry point of view are tabulated in Table A.2. Though in Table A.2 all the quantum

numbers for π0 and η0 ≡ η8 are the same, it is very well known that π0 has isospin t = 1,

but η0 has isospin t = 0.
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Particle Isospin U-spin V-spin

π+ |1,+1〉T −
∣∣∣1
2 , −

1
2

〉
U

∣∣∣1
2 ,+

1
2

〉
V

π0 − |1, 0〉T 1
2 |1, 0〉U −

√
3

2 |0, 0〉U ,8 − 1
2 |1, 0〉V +

√
3

2 |0, 0〉V ,8

π− − |1, −1〉T
∣∣∣1
2 ,+

1
2

〉
U

−
∣∣∣1
2 , −

1
2

〉
V

K+
∣∣∣1
2 ,+

1
2

〉
T

∣∣∣1
2 ,+

1
2

〉
U

|1,+1〉V

K0
∣∣∣1
2 , −

1
2

〉
T

|1,+1〉U
∣∣∣1
2 ,+

1
2

〉
V

K0
∣∣∣1
2 ,+

1
2

〉
T

− |1, −1〉U
∣∣∣1
2 , −

1
2

〉
V

K− −
∣∣∣1
2 , −

1
2

〉
T

∣∣∣1
2 , −

1
2

〉
U

− |1, −1〉V

η8 |0, 0〉T ,8 −
√

3
2 |1, 0〉U −

1
2 |0, 0〉U ,8 −

√
3

2 |1, 0〉V −
1
2 |0, 0〉V ,8

η1 |0, 0〉T ,1 |0, 0〉U ,1 |0, 0〉V ,1

Table A.1: Isospin,U-spin and V -spin representation of pions, kaons and eta mesons.

Quantum Number π+ π0 π− K+ K0 K0 K− η0

t3 +1 0 −1 +1
2 − 1

2 +1
2 − 1

2 0

u3 − 1
2 0 +1

2 +1
2 +1 −1 − 1

2 0

v3 +1
2 0 − 1

2 +1 +1
2 − 1

2 −1 0

y 0 0 0 +1 +1 −1 −1 0

q +1 0 −1 +1 0 0 −1 0

z +1 0 −1 0 −1 +1 0 0

Table A.2: The various quantum number assignments significant from SU(3) flavor sym-
metry point of view for the pseudoscalar mesons of the SU(3) octet.
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Figure A.3: The SU(3) meson octet of pions and kaons.
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Note 7. For two particles to qualify as identical under a given symmetry transformation

they must have some quantum numbers the same.

• When two particles are identical under isospin, they not only have identical isospin

(t) but also identical hypercharge (y), but distinct 3rd components of isospin (t3).

• When two particles are said to be identical under U-spin, they not only have iden-

tical U-spin (u) but also identical electric charge (q), but distinct 3rd components

ofU-spin (u3).

• When two particles are said to be identical underV -spin, they not only have identi-

calV -spin (v) but also identical ‘Z charge’ (z = q−y), but distinct 3rd components

of V -spin (v3).

Note 8. Since the operators T3, U3, V3, Y , Q and Z commute with one another, states

characterized by eigenstates of these operators can be used to study simultaneous appli-

cation of isospin,U-spin and V -spin.

Note 9. G-parity as defined here transforms the various SU(2) multiplets as follows:

GI

π
+

π0

π−

 = −

π
+

π0

π−

 , GI

(
K+

K0

)
=

(
K0

−K−

)
, GI

(
K0

−K−

)
= −

(
K+

K0

)
, (A.130)

GU

K
0

π0

K0

 = −

K
0

π0

K0

 , GU

(
K+

π+

)
=

(
π−

−K−

)
, GU

(
π−

−K−

)
= −

(
K+

π+

)
, (A.131)

GV

K
+

π0

K−

 = −

K
+

π0

K−

 , GV

(
π+

K0

)
=

(
K0

−π−

)
, GV

(
K0

−π−

)
= −

(
π+

K0

)
. (A.132)
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B
Ternary Plot

The ternary plot (also called as triangle plot) is a plot of three variables that sum up to a

constant. The plot resembles an equilateral triangle, and hence the name ternary1. To get

a concrete idea of the ternary plot let us consider three variables, say x1, x2 and x3, which

when added together give a constant, say K :

x1 + x2 + x3 = K . (B.1)

Now this can be geometrically viewed as an equilateral triangle in the plane that cuts the

axes x1, x2 and x3 at K intervals each and has each side of length
√

2K . This is shown

in Fig. B.1a. The triangle, however, does not look as an equilateral triangle due to the

angle of view. Changing the perspective to the one shown in Fig. B.1b we can clearly

identify that the triangle is indeed an equilateral triangle visually. Since all the points that

satisfy Eq. B.1 are now confined to this triangle only, we can as well define a coordinate

system with two independent variables that also describes the triangle. One can choose

such a coordinate system as one wishes. Here we choose the point of intersection of the

medians (called centroid, where the center of mass of the triangle lies) as the origin of

1The word ‘ternary’ is derived from the Latin word ‘ternarius’ which means ‘having three parts’.
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our new coordinate system. Hence this coordinate system goes by the name barycentric

coordinate system (barycenter ≡ center of mass).

x2

x1

x3

(0, K , 0)

(K , 0, 0)

(0, 0, K )

√
2K

√
2K

√
2K

(a) Any point in the triangular region here
satisfies x1 + x2 + x3 = K .

x2

x1

x3

(0, K , 0)

(K , 0, 0)

(0, 0, K )

√
2K

√
2K

√
2K

(b) The same region as before, but viewed from an
isometric perspective.

X

Y

x2

x1

x3
(0, K , 0)

(
1√
2
K , − 1√

6
K

)

(
0,

√
2
3K

)
(K , 0, 0)

(0, 0, K )

(
− 1√

2
K , − 1√

6
K

)

(c) The barycentric coordinate system defined for the equilateral
triangle, and the original Cartesian coordinate system.

Figure B.1: Steps to get the ternary plot.

In order to relate the barycentric coordinates (X ,Y ) with the Cartesian coordinates

(x1, x2, x3) we note the corresponding points on the triangle in Table B.1. Let us assume

that

X = α1x1 + α2x2 + α3x3, (B.2)

Y = β1x1 + β2x2 + β3x3. (B.3)
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Barycentric Coordinates (X ,Y ) Cartesian Coordinates (x1, x2, x3)(
0,

√
2
3K

)
(K , 0, 0)(

1√
2
K , − 1√

6
K

)
(0, K , 0)(

− 1√
2
K , − 1√

6
K

)
(0, 0, K )

(0, 0)
(

1
3K ,

1
3K ,

1
3K

)
Table B.1: Some points on the triangle as shown in Fig. B.1c.

Solving for the coefficients αi and βi (with i ∈ {1, 2, 3}) we get

α1 = 0, α2 = −α3 =
1
√

2
, (B.4)

β1 =

√
2
3
, β2 = β3 = −

1
√

6
, (B.5)

which satisfy α1 + α2 + α3 = 0 and β1 + β2 + β3 = 0. Using these results we find that

X =
1
√

2

(
x2 − x3

)
, (B.6)

Y =
1
√

6

(
2x1 − x2 − x3

)
. (B.7)

Instead of the variables x1, x2, x3 one can always define a new set of variables y1, y2 and

y3 as yi = xi/K such that

y1 + y2 + y3 = 1. (B.8)

In such a case, the new barycentric coordinates (X′,Y ′) for the equilateral triangle (as

shown in Fig. B.2a) are given by

X′ =
1
√

2
(y2 − y3) =

X

K
, (B.9)

Y ′ =
1
√

6
(2y1 − y2 − y3) =

Y

K
. (B.10)
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X′

Y ′

y2

y1

y3
(0, 1, 0)

(
1√
2
, − 1√

6

)

(
0,

√
2
3

)
(1, 0, 0)

(0, 0, 1)

(
− 1√

2
, − 1√

6

)

(a) The ternary plot corresponding to y1 + y2 + y3 = 1.

X′′

Y ′′

z2

z1

z3

(0,
√

6, 0)(√
3, −1

)

(0, 2) (
√

6, 0, 0)

(0, 0,
√

6) (
−
√

3, −1
)

(b) The ternary plot corresponding to z1+z2+z3 =
√

6.

Figure B.2: Ternary plots after scaling of the variables.

It is clear from the relationships between X′ (Y ′) and X (Y ), that the equilateral trian-

gle gets scaled according to the scaling of its barycentric coordinates. Therefore, one can

further scale the coordinates (X′,Y ′) to (X′′,Y ′′) = (
√

6X′,
√

6Y ′), i.e.

X′′ =
√

6X′ =
√

6
X

K
=
√

3 (y2 − y3) =

√
3 (x2 − x3)

K
=

1
√

2
(z2 − z3) , (B.11)

Y ′′ =
√

6Y ′ =
√

6
Y

K
= 2y1 − y2 − y3 =

2x1 − x2 − x3

K
=

1
√

6
(2z1 − z2 − z3) , (B.12)

where zi =
√

6yi =
√

6xi/K , and the corresponding equilateral triangle is shown in

Fig. B.2b.
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X

Y

x2

x1

x3

M3

M1

P
M2

V

U

W
O

Figure B.3: The vertices of the equilateral triangle 4UVW are U ≡

(
0,
√

2
√

3
K

)
, V ≡(

1√
2
K , − 1√

6
K

)
andW ≡

(
− 1√

2
K , − 1√

6
K

)
, andO is the origin of the barycentric coordinate

system. Distances of any point P(X ,Y ) from the three sides of the equilateral triangle are
proportional to the Cartesian coordinates (x1, x2, x3).

So far we have described the region allowed for the three variables. If a point is

given inside the equilateral triangle, then how do we find out what are the corresponding

Cartesian coordinates. For example let us consider a point P with barycentric coordinates

(X ,Y ) in the triangle 4UVW of Fig. B.3. One can drop perpendiculars from the point

P onto the three sides of the triangle. The perpendiculars to sides VW , WU and UV are

denoted by PM1, PM2 and PM3 respectively, and the coordinates of M1, M2 and M3 are

given by

M1 ≡

(
X , −

1
√

6
K

)
, (B.13)

M2 ≡

−√2K + X +
√

3Y
4

,

√
2K + 3X + 3

√
3Y

4
√

3

 , (B.14)

M3 ≡

√2K + X −
√

3Y
4

,

√
2K − 3X + 3

√
3Y

4
√

3

 . (B.15)

It is interesting to note that the lengths of the perpendiculars are proportional to the Carte-
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sian coordinates of the point P(x1, x2, x3):

d1 =
∣∣∣PM1

∣∣∣ =

√
3
√

2
x1, (B.16)

d2 =
∣∣∣PM2

∣∣∣ =

√
3
√

2
x2, (B.17)

d3 =
∣∣∣PM3

∣∣∣ =

√
3
√

2
x3. (B.18)

Therefore

d1 + d2 + d3 =

√
3
2

(x1 + x2 + x3) =

√
3
2
K . (B.19)

Thus for any point on the ternary plot we can determine its Cartesian coordinates by

knowing the normal distances of it from the sides of the triangle. The elementary geo-

metrical relations used in deriving the above relations are summarized in Fig. B.4.

A(x1, y1)

B(x2, y2)

M(x′, y′)

P(x0, y0)

d

Equation for AB: y = mx + c, where
m =

y2 − y1

x2 − x1
and c =

x2y1 − x1y2

x2 − x1
.

The coordinates of M are given by (x′, y′) =(
1

1 + m2
(x0 + my0 − mc) ,

m

1 + m2
(x0 + my0 − mc) + c

)
.

The distance of the point P from the line AB is

d =
∣∣∣PM ∣∣∣ =

|mx0 − y0 + c |
√

1 + m2
.

Figure B.4: Some elementary results dealing with points and line from Euclidean geom-
etry.

Similar relationships can be easily derived for the other two barycentric coordinate
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systems we have considered. The two scenario with (X′,Y ′) and (X′′,Y ′′) coordinates are

depicted in Fig. B.5. The coordinates of the foots of the normals are

M′1 ≡

(
X′, −

1
√

6

)
, (B.20)

M′2 ≡

−√2 + X′ +
√

3Y ′

4
,

√
2 + 3X′ + 3

√
3Y ′

4
√

3

 , (B.21)

M′3 ≡

√2 + X′ −
√

3Y ′

4
,

√
2 − 3X′ + 3

√
3Y ′

4
√

3

 , (B.22)

M′′1 ≡
(
X′′, −1

)
, (B.23)

M′′2 ≡

−2
√

3 + X′′ +
√

3Y ′′

4
,

2 +
√

3X′′ + 3Y ′′

4

 , (B.24)

M′′3 ≡

2
√

3 + X′′ −
√

3Y ′′

4
,

2 −
√

3X′′ + 3Y ′′

4

 . (B.25)

The distances of the points P′ and P′′ from the three sides are

d′1 =
∣∣∣∣PM′1∣∣∣∣ =

√
3
√

2
y1 =

√
3

√
2K

x1, (B.26)

d′2 =
∣∣∣∣PM′2∣∣∣∣ =

√
3
√

2
y2 =

√
3

√
2K

x2, (B.27)

d′3 =
∣∣∣∣PM′3∣∣∣∣ =

√
3
√

2
y3 =

√
3

√
2K

x3, (B.28)

d′′1 =
∣∣∣∣PM′′1 ∣∣∣∣ =

√
3
√

2
z1 =

3
K
x1, (B.29)

d′′2 =
∣∣∣∣PM′′2 ∣∣∣∣ =

√
3
√

2
z2 =

3
K
x2, (B.30)

d′′3 =
∣∣∣∣PM′′3 ∣∣∣∣ =

√
3
√

2
z3 =

3
K
x3. (B.31)

Thus we find that

d′1 + d′2 + d′3 =

√
3
2
, and d′′1 + d′′2 + d′′3 = 3. (B.32)
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X′

Y ′

y2

y1

y3

M′3

M′1

P′
M′2

V ′

U′

W ′
O′

(a) The vertices of the equilateral triangle

4U′V ′W ′ are U′ ≡
(
0,
√

2
√

3

)
, V ′ ≡

(
1√
2
, − 1√

6

)
and W ′ ≡

(
− 1√

2
, − 1√

6

)
, and O′ is the origin

of the barycentric coordinate system of which
P′(X ′ ,Y ′) is a representative point.

X′′

Y ′′

z2

z1

z3

M′′3

M′′1

P′′
M′′2

V ′′

U′′

W ′′
O′′

(b) The vertices of the equilateral triangle
4U′′V ′′W ′′ are U′′ ≡ (0, 2), V ′′ ≡

(√
3, −1

)
and W ′′ ≡

(
−
√

3, −1
)
, and O′′ is the origin

of the barycentric coordinate system of which
P′′(X ′′ ,Y ′′) is a representative point.

Figure B.5: Distances of any representative point from the three sides of the equilateral
triangle are proportional to the Cartesian coordinates.

The barycentric coordinate system that we have used till now is a rectangular one. It

is also possible to describe the ternary plot by polar coordinates also, say (r , θ). The polar

axis can be either of the three medians of the triangle, and the polar angle is measured

in the anti-clockwise direction from the chosen polar axis. Our choice of the polar axis

is along x1 direction, the polar angle is θ, and the origin of the polar coordinate system

coincides with the origin O of the Cartesian coordinate system as shown in Fig. B.6a. We

define

X =
1
√

2
(x2 − x3) ≡ −r sin θ, (B.33)

Y =
1
√

6
(2x1 − x2 − x3) ≡ r cos θ. (B.34)

The Cartesian coordinates of any point inside the triangle are related to the polar
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coordinates by

x1 =
K

3
+

√
2
3
r cos θ, (B.35)

x2 =
K

3
−

√
2
3
r sin

(
π

6
+ θ

)
=

K

3
+

√
2
3
r cos

(
2π
3

+ θ

)
, (B.36)

x3 =
K

3
−

√
2
3
r sin

(
π

6
− θ

)
=

K

3
+

√
2
3
r cos

(
4π
3

+ θ

)
=

K

3
+

√
2
3
r cos

(
2π
3
− θ

)
.

(B.37)

X

Y

x2

x1

x3

θ

r

P(r , θ)

V

U

W
O

(a) Polar coordinates r and θ.

X′

Y ′

y2

y1

y3

θ

r′

P′(r′, θ)

V ′

U′

W ′
O′

(b) Polar coordinates r ′ = r/K and θ.

X′′

Y ′′

z2

z1

z3

θ

r′′

P′′(r′′, θ)

V ′′

U′′

W ′′
O′′

(c) Polar coordinates r ′′ =
√

6r ′ =
√

6r/K and θ.

Figure B.6: The ternary plots described in terms of suitably defined polar coordinates.

The Cartesian coordinates for the scaled ternary plots of Fig. B.6 are related to the
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corresponding polar coordinates as follows:

y1 =
1
3

+

√
2
3
r′ cos θ, (B.38)

y2 =
1
3

+

√
2
3
r′ cos

(
2π
3

+ θ

)
, (B.39)

y3 =
1
3

+

√
2
3
r′ cos

(
4π
3

+ θ

)
, (B.40)

z1 =

√
2
3

(
1 + r′′ cos θ

)
, (B.41)

z2 =

√
2
3

(
1 + r′′ cos

(
2π
3

+ θ

))
, (B.42)

z3 =

√
2
3

(
1 + r′′ cos

(
4π
3

+ θ

))
, (B.43)

where r′ = r/K and r′′ =
√

6r′. It is interesting to note that instead of the scaled coordi-

nates (z1, z2, z3) one can use the unscaled coordinates (x1, x2, x3), and use the barycentric

coordinates defined as

X =

√
3(x2 − x3)

K
= −ρ sinϑ, (B.44)

Y =
2x1 − x2 − x3

K
= ρ cosϑ, (B.45)

to describe the equilateral triangle (see Fig. B.7).

In this case we have

x1 =
K

3
(1 + ρ cosϑ) =

K

3
(1 + Y ) , (B.46)

x2 =
K

3

(
1 + ρ cos

(
2π
3

+ ϑ

))
=

K

6

(
2 +
√

3X − Y
)
, (B.47)

x3 =
K

3

(
1 + ρ cos

(
4π
3

+ ϑ

))
=

K

3

(
1 + ρ cos

(
2π
3
− ϑ

))
=

K

6

(
2 −
√

3X − Y
)
.

(B.48)

The ditances of any point P(X ,Y ) inside this triangle from the sides of the triangle are
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X

Y

x2

x1

x3

ϑ

P(ρ, ϑ)
M3

M2

M1

V

U

W
O

Figure B.7: A different parametrization for ternary plot. The vertices of the triangle
4UVW areU ≡ (0, 2), V ≡

(√
3, −1

)
and W ≡

(
−
√

3, −1
)
.

given by

d1 =
∣∣∣PM1

∣∣∣ =
3
K
x1, (B.49)

d2 =
∣∣∣PM2

∣∣∣ =
3
K
x2, (B.50)

d3 =
∣∣∣PM3

∣∣∣ =
3
K
x3. (B.51)

Thus the distances sum up to

d1 + d2 + d3 = 3. (B.52)

This last kind of ternary plot is the one which was adopted by R. H. Dalitz [9, 10] for

analysing various three-body decays.
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