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SYNOPSIS

Introduction: Two dimensional electron systems in a periodic potential in presence of

magnetic field are characterized by two length scales: the periodicity of the potential and

the magnetic length. Interplay between these two independent length scales leads to a

self similar fractal structure in the energy spectrum vs magnetic flux plot. This structure,

which is one of the first quantum fractal structures to be discovered, is called as the

Hofstadter butterfly [1]. The recent experimental observations of the fractal structure

in graphene superlattices [2-5] and realization of the Hofstadter Hamiltonian in optical

lattice [6,7] have motivated us to study the effect of interactions in this Hofstadter system.

The interactions can induce charge ordering which can break translational symmetry and

lead to various complex phases. Interaction induced translational symmetry breaking

phases have been studied in the honeycomb lattice in the absence of magnetic field [8].

Effects of interactions on the Hofstadter butterfly have been discussed previously [9-12];

these works do not consider translational symmetry breaking.

This thesis provides a detailed discussion on the effect of interactions in the Hofs-

tadter regime of the honeycomb lattice. Our studies reveal various interesting phases as

the strength of the interaction is increased which break the translational and rotational

symmetries of the system. These phase transitions are sometimes accompanied with

topological transitions. Further this thesis discusses the effect of interactions on the frac-

tal nature of the Hofstadter butterfly. The thesis also discusses the method we proposed

to detect the Berry curvature.

Effect of interactions in Hofstadter regime of the honeycomb lattice: The model

we study is spinless fermions on honeycomb lattice with nearest neighbor hopping and

nearest neighbor interactions in presence of magnetic field such that the flux passing
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through each plaquette is 2π/q where q is an integer [13]. There are 2q bands in the

energy spectrum. The energy bands are topologically non-trivial having non-zero Chern

number [14]. In the non-interacting model, the filled energy bands can be divided into

three regimes depending on the change in Hall conductivity, namely, Fermi regime, van

Hove filling and Dirac regime. We introduce nearest neighbor interaction term in the

Hamiltonian and solve this interacting problem using mean field approximation. We find

various complex phases as the ground state as we vary the interaction strength V from

0 ≤ V ≤ 10. The self consistency equations are solved for q = 3 where m = 1 is in

Fermi regime,m = 2 is the van Hove filling andm = 3 is in the Dirac regime. The phases

with broken rotational symmetries are classified according to the charge ordering which

in turn is characterized in terms of dipole moment and quadrupole moment. We denote

the phase with zero dipole moment but non-zero quadrupole moment as the nematic

phase and the phase with both non-zero dipole and quadrupole moment as the ferrielectric

phase. At very small interaction values, the ground state wavefunction is same as that of

the non-interacting case and hence Hall conductivities for different fillings remain same

as the later case. We denote this phase as the symmetric phase.

For filling m = 3 i.e. half filling, there is a second order Landau transition from

symmetric phase to a charge density wave phase on increasing the interaction strength.

In case of van Hove filling, i.e. m = 2, there is a first order Landau phase transition from

symmetric phase to nematic phase at V = 2.744 where the translational and rotational

symmetries of the system are broken but the inversion symmetry is still preserved. This

transition is accompanied with a change in the Hall conductivity from e2/h in symmetric

phase to zero in nematic phase. Hence, there is a first order topological transition. On

further increasing the interaction strength, there is another first order Landau transition

at V = 4.5 from nematic phase to ferrielectric phase. Here along with translational

and rotational symmetries, the inversion symmetry of the system is also broken. The
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Hall conductivity in this phase remains zero. In case of lowest band filled, i.e. m = 1,

there is a first order phase transition from symmetric phase to nematic phase at V =

5.265. This Landau transition is also accompanied with a topological transition from

Hall conductivity −e2/h to zero.

Insight to the mechanism of the topological transitions accompanying the Landau

transitions can be understood from the bond strength distribution for these phases which

indicate that the mean field Hamiltonian resembles that of weakly coupled ribbons, namely

quasi 1D systems and the coupling becomes weaker as the interaction strength is in-

creased. In the limit of completely decoupled ribbons, Chern numbers for all the bands

should be equal to zero. Thus it seems that the anisotropy of the bond order parameters

drives the change of Chern numbers.

We further study the geometry of the ground state and investigate the structure of the

anisotropic phases by studying pair correlations from the point of view of the quantum

geometric approach to insulating states [15]. We give a relation between the pair corre-

lation function and the quantum metric in the momentum space [15], averaged over the

Brillouin zone (BZ). This result relates the momentum space quantum metric of systems

in a periodic potential to the real space metric introduced by Haldane [16] in homoge-

neous quantum Hall systems.

Effect of interactions on the fractal structure of the Hofstadter butterfly: In this

thesis, I also solve the self consistency equations for all fluxes of the form φ/φ0 = p/q

where p, q are coprime integers and p < q for q = 3 to 20 for filled band cases at inter-

action strength V = 4. Comparing the energies of the mean field solutions we find the

ground state. In non-interacting case, the rth gap in the Hofstadter butterfly spectrum is

characterized by two topological invariants (tr, sr) which satisfy a Diophantine equation

r = ptr + qsr [17,18]. The Hall conductivity of the rth gap is given by σH = − e2

h
tr;

Using the same Diophantine equation for the interacting case we find that sr is a fraction
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and hence the Diophantine equation is no more satisfied. In non-interacting case, in the

Landau fan diagram, we can join the points with same Hall conductivity by a straight line

which on extrapolating touches at an integer value of r/q. This value is same as sr. But

for interacting case, we cannot join the points with same Hall conductivity in a straight

line. The points with same Hall conductivities are scattered. Hence, we conclude that the

fractal structure of the Hofstadter butterfly is wiped out in presence of interactions.

Detecting Berry Curvature: We also propose a method to detect the Berry curvature

of occupied energy bands corresponding to a lattice and hence understand the topology

of the bands [19]. We propose to construct the lattice using ultracold atoms in optical

lattice in a harmonic trap. Using time of flight experiment the expansion of the atomic

condensate can be studied when both the harmonic trap and the potential forming the

lattice is switched off. For bands with zero berry curvature, the atomic condensate will

expand and take the shape of the background lattice. On the other hand, incase of bands

with non-trivial topology the atomic condensate starts rotating along with expanding and

taking the shape of the lattice. This is the signal of presence of Berry curvature.

Conclusion: In summary, we show that interactions can induce charge ordering trans-

lational and rotational breaking phases which can sometimes be accompanied with the

change in the Hall conductivity. Thus, we show that the first order Landau transition is

also accompanied with topological transition. We also study the geometry of these states.

Further we look into the effect of interactions on the Hofstadter butterfly and discuss the

wipe out of fractal structure as a result of it. We also propose a method to detect the Berry

curvature in optical lattice system.
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Chapter 1

Introduction

For many years now, the two dimensional electron gas (2DEG) has been an arena of re-

search for condensed matter physicists where many novel and interesting physics have

emanated. This has paved the way to a completely new zone of physics which includes

the quantum Hall effect, the Hofstadter butterfly etc. Two dimensional electron systems,

at very low temperatures, when subjected to a magnetic field show quantized plateaus of

Hall resistance when plotted as a function of the applied magnetic field. This phenomenal

discovery was made in 1980 by Klaus von Klitzing et al. [1] where they observed that

the quantization of Hall resistance depends only on the fundamental constants (Planck’s

constant h and charge of electron e) and is accurate upto one part per billion. This con-

stant is known as the von Klitzing constant and has led to the definition for the standard

of resistance. The energy spectrum of electron in the 2D plane changes from a contin-

uous spectrum to discrete Landau levels in the presence of a magnetic field. The Hall

conductance is proportional to the Landau level filling. For fully filled Landau levels, the

Hall conductance is quantized.

The story becomes even more thrilling when the above system is subjected to a peri-

odic potential. The 2D electron system in the presence of a magnetic field and a periodic

potential displays a fractal structure when the flux passing per unit cell is plotted with
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respect to the single particle energy spectrum. One of the first quantum fractal structures

to be discovered, this is called the Hofstadter butterfly named after Douglas Hofstadter

who was the first person to propose this idea[2]. This butterfly diagram is seen when both

the independent length scales in the problem: the periodicity of the periodic potential and

the magnetic length, are comparable. This regime is called the Hofstadter regime.

1.1 Hofstadter regime

Free electrons in the presence of a magnetic field can be represented by the Hamiltonian

Ĥ =
(p̂− eA)2

2m
(1.1)

where p̂ is the momentum operator, e is the charge of the electron and m is the mass

of the electron. A is the vector potential. On solving the Schrodinger equation for this

Hamiltonian, the energy levels are quantized and are known as Landau levels [3]. The

energy of the nth Landau level is εn = ωc(n + 1/2) where ωc = eB/m is the cyclotron

frequency,B is the applied magnetic field and ~ = h/2π is the reduced Planck’s constant.

The magnetic length lc =
√

~/eB. Each of these Landau levels are highly degenerate.

Electrons in a periodic potential can be represented by the Hamiltonian

Ĥ =
p̂2

2m
+ Û(r) (1.2)

where U(r) = U(r + a) is the periodic potential and a is the periodicity of the potential.

Solving this Hamiltonian, we get Bloch bands with wave functions satisfying Bloch’s

theorem [4–6].

Interesting and fascinating phenomena are seen when both the length scales: the lat-

tice constant a and the magnetic length lc, are comparable. Bloch electrons in the pres-
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ence of a magnetic field can be represented by the Hamiltonian

Ĥ =
(p̂− eA)2

2m
+ Û(r) (1.3)

Each Bloch band divides further into subbands giving rise to a fractal structure when

the energy spectrum is plotted with respect to the magnetic flux passing through the

palquette. This fractal structure, first studied and discovered by Douglas Hofstadter in

1976, [2] known as the Hofstadter butterfly is described in the following section.

1.2 Hofstadter Butterfly

Hofstadter in his paper [2], showed that when Bloch electrons are subjected to magnetic

field, the energy spectrum versus magnetic flux plot shows a self-similar recursive pattern

giving rise to a fractal structure. This feature is observed when the periodicity of the

periodic potential is comparable to the magnetic length. The model he considered was

that of the two dimensional square lattice in the presence of a perpendicular magnetic

field such that magnetic flux passing through each plaquette is φq = φ/φ0 = p/q where

φ is the magnetic flux and φ0 = h/e is the flux quantum.

Hofstadter plotted the flux per unit cell, β, with respect to the energy E as shown in

Fig. 1.1 and listed the following properties of the plot:

• The spectrum for β is identical to that of β +N where N is an integer.

• The spectrum for β is same as that of −β.

• If E belongs to the spectrum of β, then −E must also belong to the spectrum of β.

He considered the portion of the graph between successive integers N and N + 1 as a

unit cell. So, he looked for plot with α = 0 ≤ β ≤ 1 which is shown in Fig. 1.1.
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Figure 1.1: The figure shows the plot for α vs E in a unit cell. Here the x-axis is the
single particle energy, E and y-axis represents the flux passing per unit cell, α.

This is the first fractal structure predicted in quantum systems. Each Bloch band

splits into q bands and the gaps between these bands give a butterfly like pattern and

hence known as Hofstadter butterfly. To understand the self similar recursive structure,

Hofstadter further divided the unit cell into various subcells and showed that the whole

unit cell exists in a compressed form with some rotation inside each of these subcells.

These subcells, hence, can be further divided into subsubcells and again the whole unit

cell structure is present inside these subsubcells and this continues. Thus, it gives rise to

a self similar fractal like pattern.

This fractal structure can be seen in the case of any lattice in the presence of a strong

magnetic field. Physicists later studied the Hofstadter butterfly plot for honeycomb lat-

tice [7] which is shown in Fig. 1.2. Further description of the Hofstadter butterfly for

honeycomb lattice will be done in Chapter 4.

Being the first fractal structure to be discovered in quantum physics, it has intrigued

theorists and experimentalists alike. In the following section, we discuss the obstacles

faced by the experimentalists in realizing this phenomenon in physical systems and the
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Figure 1.2: Hofstadter butterfly in honeycomb lattice. E is the energy eigenvalue and φ
is the flux passing per unit cell.

various attempts to overcome these hurdles.

1.3 Realization of Hofstadter butterfly in physical sys-

tem

The beautiful fractal structure predicted by Hofstadter was just a theoretical concept.

There was no experimental evidence for the same. To realize this fractal structure, the first

place to look is any physical system like say, graphene. To observe the fractal structure,

the flux passing per plaquette should be high, almost equal to flux quantum.

The magnetic flux in a unit cell is φ = BA where B is the magnetic field and A

is the area of the unit cell. In the case of graphene, area A = 3
√

3a2. Here a = 0.3

nm is the nearest neighbor distance in graphene. The maximum magnetic field currently

achievable in laboratory is around 80 T. So, the magnetic flux achievable in graphene is

5



Chapter 1. Introduction

(a) (b)

Figure 1.3: (a) Plot for magnetic field vs a such that flux passing per plaquette is π i.e.
q = 2. (b) Zoomed in plot of (a)

2π/322 or less. Fig. 1.3 shows the plot for B vs a such that flux passing per plaquette

is π. We see that for a = 0.3 nm, the magnetic field required for π flux passing through

the plaquette is 8 × 103 T which is very high and out of reach in the laboratories in the

present situation. Hence, it is impossible at present stage to see Hofstadter butterfly in

any physical system as any atomic lattice has a very small lattice constant and thus the

magnetic flux per plaquette is very small.

As can be seen from Fig. 1.3, to realize the Hofstadter butterfly experimentally, the

lattice constant should be much larger than the atomic lattice system. The solution to this

problem has in artificial lattice systems some of which are:

• Semiconductor superlattice

• Graphene superlattice

• Optical lattice

Many experiments have been done in these systems to realize the Hofstadter butterfly [8–

16]. We will briefly discuss these systems below.
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1.3.1 Semiconductor superlattice

Alternate layers of two different semiconductor materials form a semiconductor superlat-

tice [17]. These two materials have different band gaps leading to formation of quantum

wells. Periodicity of around 100 nm is created in this superlattice structure. Hence the

magnetic field required for π flux is around 0.1 T which is easily achievable in laborato-

ries. The first indication of the Hofstadter spectrum in an artificial semiconductor super-

lattice was given by Schlosser et .al. [8]. The splitting of Landau levels was revealed by

magnetoresistance oscillations. Although the manifestation of the Landau subbands was

observed experimentally, a detailed view of the fractal structure of the Hofstadter butter-

fly became difficult in semiconductor superlattices because of the interplay of magnetic

field dependent screening and the superlattice effects. The effective superlattice potential

and thus the Landau level splitting reduces on increasing the magnetic field for enhanc-

ing the splitting. Hence, the splitting of Landau levels is very fragile and is visible for

a narrow window in the values of the magnetic field. Inhomogeneities can also lead to

Landau level broadening. In order to get a proper view of Hofstadter butterfly, high mo-

bility homogeneous samples are required where the periodicity of the periodic potential

is comparable to the magnetic unit length and creating such samples has been a challenge

to the experimental community. Though more better and high quality samples and Hall

measurements have further resolved the minigaps in the Hofstadter butterfly [9, 10], the

ability to tune the carrier densities being limited and the restriction on reaching the full

quantum Hall regime have been some constraints in observing the full spectrum of the

Hofstadter butterfly.

1.3.2 Graphene superlattice

This is the place where the Hofstadter butterfly structure was actually seen for the first

time. Recent experimental observations [11–14, 18] in moiré pattern in the graphene
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superlattice have revealed the beautiful fractal structure of the Hofstadter butterfly. As

in the semiconductor superlattice, we realize that the heterostructure created from al-

ternating stacking of two different materials in many layers can lead to the modulation

of the periodicity. Here in the case of these experiments in the graphene superlattice,

graphene on hexagonal boron nitride (hBN) leads to a periodic moiré pattern. The moiré

wavelength is proportional to the lattice constant mismatch between these two materials

and the angle of rotation between these two lattices. The maximum moiré wavelength

obtained through this method is approximately 14 nm when there is almost zero angle

mismatch. With this lattice constant, the magnetic field required to have magnetic flux

per plaquette of the order of the flux quantum is approximately 20 T.

The advantage of using hBN as the substrate for the graphene superlattice is that the

lattice mismatch between these two lattices is around 1.8 which is less compared to other

materials and thus the graphene superlattice can have a higher lattice constant. hBN also

acts as an ideal substrate for the high mobility graphene device which is essential for high

resolution quantum Hall measurements.

In these experiments, the magnetotransport measurements are done at high magnetic

fields and they [11, 12] observe the evolution of the longitudinal and the Hall resistance

for magnetic fields upto 31 T. The important insight used here to realize the Hofstadter

butterfly is that each spectral gap in the fractal structure is characterized by two topolog-

ical invariants (tr, sr) which satisfy a simple Diophantine equation

n/n0 = trφ/φ0 + sr. (1.4)

where n is the density of charge carriers and n0 is the number of electron states per unit

area when one band is filled such that n0 = 1/A, here A is the area of the unit cell

of the periodic potential. Hence, n/n0 is the number of particles per unit cell. The Hall

resistance plotted with respect to this normalized density n/n0 and flux φ/φ0 gives rise to
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a fan like diagram known as the Landau fan diagram. In general quantum Hall systems,

the Landau fan diagram exhibits straight lines whose slope gives the Hall conductivity

equal to the Landau level filling fraction. Thus the diagram tracks the plateaus in the

Hall resistance. These lines converge to the origin. But in case of Hofstadter system, the

Landau fan diagram has straight lines whose slope gives the Hall conductivity but this

is not equal to the filling fraction. These straight lines converge at various other values

of n/n0. These intercept values are equal to sr. Hence, in this system the ground states

are characterized in terms of an integer valued intercept sr and an integer valued slope

tr. The fractal structure in the Hofstadter butterfly is reflected in the Landau fan diagram

which was probed experimentally in [11, 12].

Thus, these experiments confirm that the energy spectrum for electrons in the pres-

ence of a magnetic field and periodic potential can be described by the Diophantine equa-

tion involving two integer topological invariants. The ability to tune the periodicity of the

potential and the amount of flux passing through each unit cell by the moiré pattern gen-

erated by graphene on hBN has made the complex physics of the Hofstadter spectrum

experimentally accessible.

1.3.3 Optical lattice

Recent experiments using ultracold atoms in the optical lattice [15, 16] have been suc-

cessful in realizing the Harper Hamiltonian whose spectrum is the Hofstadter butterfly.

The optical lattice system is a very good arena to experimentally study the model Hamil-

tonians in condensed matter system in a clean disorder free and controlled environment.

The charge neutrality of the atoms in the optical lattice was the main hindrance in study-

ing the lattice in a magnetic field using ultracold atoms. Many ways have been devised

to overcome this limitation like Coriolis force in a rotating atomic gas which is equiv-

alent to the Lorentz force but this is equivalent to realizing the limit of weak magnetic
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field. Another way devised out of this problem is using Raman lasers for inducing Berry

phases. Engineering synthetic gauge potentials has been the recent topic of research in

cold atom systems. Recent papers [15, 16] have successfully generated optical lattice

in large tunable artificial magnetic fields achievable by synthetic gauge potentials using

laser assisted tunneling and thus the realization of the Harper Hamiltonian has been made

possible in ultracold systems.

These recent experimental results showing the accessibility of the Hofstadter butterfly

has motivated us to understand the effect of interactions on it. We now give a review of

past theoretical works that has motivated the work in this thesis and other topics related

to the thesis work.

1.4 Brief Summary of past theoretical works

Interaction induced translational symmetry breaking phases have been studied previously

by Castro et. al. [19, 20] in the honeycomb lattice in the absence of a magnetic field. To

understand their model, we first describe the honeycomb lattice.

Honeycomb lattice is a 2D non-Bravais lattice with two basis atoms per lattice site.

We can consider the honeycomb lattice to be made up of two interpenetrating triangular

lattices. Thus, an unit cell of honeycomb lattice has two sublattices denoted as A and B

shown by red and blue spheres respectively in Fig. 1.4. The basis vectors are ê1 and ê2

where,

ê1 = ax̂ ê2 = −a1

2
x̂+ a

√
3

2
ŷ (1.5)

where x̂ and ŷ are the unit vectors of the Cartesian coordinates. a is the lattice constant.

The reciprocal lattice vectors are G1 =
2π√
3a

(
√

3, 1), G2 =
4π√
3a

(0, 1).

There are three nearest neighbor atoms to each basis atom.
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ê1
ê2

Figure 1.4: The figure shows a honeycomb lattice structure. The red balls represent A
sublattice and the blue balls represent the B sublattice. ê1 and ê2 are the basis vectors of
the lattice.

The Hamiltonian for this lattice with nearest neighbor hopping is

H = t

∑
〈ij〉

c†icj + h.c.

 (1.6)

where t is the hopping element, ci and c†i are respectively the annihilation and creation

operators at site i . 〈ij〉 denotes i, j as nearest neighbors.

The key feature in the paper by Castro et. al. [19,20] was considering an enlarged unit

cell consisting of six sites per unit cell (A1, B1, A2, B2, A3, B3), as shown in Fig. 1.5,

relaxing the translational symmetry of the honeycomb lattice. The basis vectors for this

system are a1 = ê2 − ê1 and a2 = 2ê1 + ê2. They considered spinless fermions on the

honeycomb lattice with nearest neighbor hopping and nearest neighbor and next nearest

neighbor interactions. The Hamiltonian for this system is

H = t(
∑
〈ij〉

c†icj + h.c.) + V1
∑
〈ij〉

ninj + V2
∑
〈〈ij〉〉

ninj, (1.7)
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a1 a2

B2

A2

B1

A1

B3

A3

Figure 1.5: The enlarged unit cell considered by Castro et. al. [19, 20] consisting of six
sublattices (A1, B1, A2, B2, A3, B3). a1, a2 are the basis vectors of this enlarged unit
cell.

where V1 and V2 are the nearest neighbor and the next nearest neighbor repulsive in-

teraction strengths respectively. Both these quantities and t are taken to be real. The

number density operator at site i is denoted as ni. 〈〈ij〉〉 denotes i, j to be next near-

est neighbors. This Hamiltonian was solved using mean field approximation where both

bond order and charge order decoupling were allowed. The self consistency equations

are solved for the half filled to the fully filled case with interaction strength varying in the

range 0 ≤ V1, V2 ≤ 8. In the parameter range, the interactions induce various complex

phases like Kekule distortion, Pomeranchuk instabilities and reduced symmetry phases

[20]. Near the van Hove singularity, the interaction induces spontaneous time reversal

breaking phases with non-zero current on the links and charge ordering which sponta-

neously breaks the translational symmetry. The time reversal symmetry breaking results

in non-zero Berry curvature of the bands leading to the anomalous Hall effect [21, 22].

This motivates us to realize the effect of interactions in the presence of a magnetic field

where the time reversal symmetry is already broken by the magnetic field. In the presence

of a magnetic field, due to magnetic translations the unit cell gets enlarged to a magnetic
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unit cell. We would like to know how the charge ordering due to the interactions affect

the symmetries of the lattice in the presence of a strong magnetic field and its effect on

the already present non-trivial topology of the bands.

Interaction induced topological phases and phase transitions have also been studied

in past. Haldane model, a Chern insulator, in presence of onsite interaction, shows phase

transition from topological band insulator to topological antiferromagnetic insulator and

topologically trivial band insulator. Topological transitions from quantum Hall phase

with Chern no. C = 2 to C = 1 has also been observed in the Haldane-Hubbard model.

Further the realization of the fractional quantum Hall state as the ground state in the

interacting Chern insulator has led to the introduction of fractional Chern insulators.

The model we study is that of spinless fermions on the honeycomb lattice with near-

est neighbor hopping and nearest neighbor interactions in the presence a of magnetic

field. In the presence of interactions, charge ordering is induced which breaks the sym-

metries of the system and various complex phases like nematic phase, ferrielectric phase

with Landau phase transitions are seen. Some of these first order Landau transitions are

accompanied with topological transitions. These anisotropic ground states are further

studied from the point of view of the quantum geometric approach.

The following section introduces the quantum geometric tensor, topological transi-

tions and provides a review on the nematic state seen in the quantum Hall systems.

1.4.1 Quantum geometry

There is a growing realization that quantum geometry is a useful way of characterizing

many body ground states of interacting fermions in a periodic potential [23, 24]. The

physical states of any quantum system are the set of rays in a Hilbert space. The inner-

product defines a natural geometry on the space of rays. It defines a distance between

every pair and a geometric phase associated with every triplet of rays in the space[25,26].
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For non-interacting systems, the ground state is specified by the eigenstates ψn(k) of the

single-particle Hamiltonian H(k).

H(k)ψn(k) = En(k)ψn(k) (1.8)

These states can be labeled by the conserved quasi-momenta (k) which take values in

the Brillouin zone (BZ). The geometry on the space of rays of the single-particle Hilbert

space induces a geometry on the BZ. This is characterized by the quantum geometric

tensor (QGT), Qµν(k), which is defined as the overlap between the covariant derivatives

of the wave functions.

Qµν(k) = 〈Dµψ(k)|Dνψ(k)〉 = Gµν(k) + iFµν(k) (1.9)

where the covariant derivative Dµ = ∂µ − iAµ. Aµ = −i〈ψ(k)|∂kψ(k)〉 is the Berry

connection. Qµν(k) is Hermitian and consists of a symmetric part, the quantum metric

Gµν(k) and an anti-symmetric part, the Pancharatnam-Berry curvature (PBC) Fµν(k).

[23, 27–29].

Gµν(k) = Re.(〈∂µψ|∂νψ〉)−AµAν Fµν(k) = ∂µAν − ∂νAµ (1.10)

The QGT characterizes the way in which the constituent particles are organized in the

ground state.

A physical manifestation of the PBC is the anomalous component of the fermion

velocity (perpendicular to the acceleration) resulting in a Hall current [30]. This leads

to the identification of the quantized Hall conductivity with the integral of the PBC over

the BZ, the Chern invariant [31–33] which is a topological invariant. The PBC can occur

even without an external magnetic field if time reversal symmetry is broken. This leads to

topological Fermi liquids and Chern insulators [21, 22]. The Z2 invariant of topological
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insulators can also be described in terms of the PBC of pairs of bands related by time

reversal symmetry [34].

The quantum metric was shown to provide a natural variational parameter for the

anisotropic fractional quantum Hall states [23]. It plays a central role in the geometric

theory of the insulating state [24] since the average of the metric over the BZ has been

identified with the localization tensor [24, 29, 35].

1.4.2 Topological Transitions

The phases of topological orders are identified by universal quantum numbers or topo-

logical invariants which are robust against arbitrary perturbations. The phases with the

same topological invariants can be grouped into a single class and smoothly changed into

one another. The observables corresponding to these topological invariants can take a

discrete set of values for different classes of topological phases. Some other examples of

such observables apart from the Hall conductivity are charges and statistics of the quasi-

particles in the fractional quantum Hall systems with Zn-like quantum numbers as the

topological invariants [36], the spin and statistics of quasi-particles in spin systems with

Z2 as one of the topological invariants and the parity of the number of Dirac cones on

the surface of topological insulators which are described by the Z2 topological invariant

[37].

Topological invariants do not change when the state changes continuously. Hence,

if there is a transition between two topologically different states when the Hamiltonian

parameters (coupling constants) are varied continuously, then either the topology must

become ill defined for some region (which could be a single point) in the parameter-space

or the state should change discontinuously as in a first order quantum phase transition.

Many examples of the former case have been discussed in the literature [21],[38,39].

In the Haldane model[21], the Chern number becomes ill defined when the bands touch
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at Dirac points. This occurs at the transition point when the Chern number changes from

0 to ±1. Examples of the change in topology without the gap closing have been given in

some recent papers [38, 39]. These are the cases of symmetry protected topologies and

involves going through a region where the protecting symmetry is broken and hence the

topology is ill defined.

Though not common, first order topological transitions without closing of the gap

have also been studied recently [40, 41] in the presence of strong electron electron in-

teraction. The phase transition seen in this thesis are also accompanied by first order

topological transition.

The quantum Hall transitions we find are very different from the plateau transitions

of standard integer quantum Hall effect (IQHE) which are driven by the physics of An-

derson localization in the presence of magnetic fields [42] When the filling factor is in the

plateau region, the longitudinal conductivity is zero due to the mobility gap. There is no

energy gap in the system. The mobility gap closes at the transition point causing the lon-

gitudinal conductivity to diverge (at zero temperature). In contrast, the model discussed

in this thesis has no disorder. The transitions are interaction driven. The longitudinal

conductivity is zero due to the energy gap. At the transition point, the energy gap does

not close and hence the longitudinal conductivity remains zero.

1.4.3 Nematic phases in quantum Hall systems

Nematic phases in homogeneous quantum Hall systems have previously been theoreti-

cally studied [43–46] and experimentally observed [47–49] in fractional quantum Hall

systems. 2D electron gas in the presence of a magnetic field occupy quantized degen-

erate Landau levels (LL). For weak magnetic field, the degeneracy of the LLs decreases

and higher LLs are occupied. For partially filled Landau levels, N ≥ 2, the longitu-

dinal resistance exhibits strong anisotropy at low temperatures. Past works have shown
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[43, 50–53] that when the Fermi level lies in the half filled higher Landau levels, the ro-

tational symmetry of the system is broken. These nematic fluids have no quantized Hall

current. But recent works have shown nematic phases with quantized Hall plateaus in

fractional quantum Hall states under the application of a titled magnetic field with non-

zeroB|| [48,49]. Interaction induced spatial symmetry breaking in fractional filled Chern

bands with Chern number C > 1 has been studied by Kumar et. al. They have studied

repulsively interacting fermions near half filling in square lattice models with C = 2 flat

Chern band and a wide band gap. In this case, both the on-site interaction U and nearest

neighbor interaction V are taken into consideration. By exact diagonalization method,

they show that for V >> U , the sublattice symmetry of the system is spontaneously

broken and the ground state has a Hall conductivity of e2/h at T− > 0. This can be

generalized to higher Chern number bands which will lead to the breaking of sublattice/

translational and rotational symmetries of the sytem, thus giving examples of interaction

induced nematic phases.

In this thesis, we show that these nematic phases occur in the Hofstadter regime also.

1.5 Motivation behind the research work in the thesis

These recent experimental results showing accessibility of realizing the Hofstadter but-

terfly have motivated us to understand the effect of interactions in the Hofstadter regime.

The interactions are expected to induce charge ordering in the ground state which may

spontaneously break the translational symmetry of the system. Consequently, one of

the length scales, namely the periodicity, can change. This could change the fractal struc-

ture. Therefore, we investigate translational symmetry breaking in the Hofstadter system.

Interaction induced translational symmetry breaking phases have been studied in the hon-

eycomb lattice in the absence of a magnetic field [19, 20, 54]. Effects of interactions on

the Hofstadter butterfly have been discussed previously [55–61]. However these works
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do not consider translational symmetry breaking.

The following section gives a preview of the thesis.

1.6 A preview of the thesis

This introductory Chapter is followed by 5 Chapters. The second Chapter is the review

of the non-interacting case of the model considered and the topology of the bands. Ad-

dition of interactions in the the non-interacting system, introduces many interesting and

complex phases which are described and discussed in Chapter 3. How the topology and

the geometry of the ground state is affected by the presence of the interactions is also

described in this Chapter. The effect of interactions on the fractal structure of the Hof-

stadter butterfly is elaborated in Chapter 4. Chapter 5 explicitly describes a method we

have proposed to detect the PBC of bands by using ultracold atoms in an optical lattice.

This is followed by the conclusion in Chapter 6.

I lie within me

within I in me

Scale me up, scale me down

I am me, me am I

I replicate, repeat me

When huge, when tiny to see.

——the way fractal introduced itself to the author of

the thesis.
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Chapter 2

Review of the non-interacting model

This Chapter elaborates on the non-interacting physics of our model as mentioned in

Chapter 1. The non-interacting problem of the honeycomb lattice in magnetic field has

been studied earlier [7, 62–64]. In this section, we briefly review some of the features

of this problem that are relevant to this thesis. We discuss the symmetries of the non-

interacting Hamiltonian and present the energy spectrum. The topology of the bands is

also discussed further in this chapter.

2.1 Description of the non-interacting model

The non-interacting case of the model we study is basically a model of spinless fermions

on the honeycomb lattice with nearest neighbor hopping in the presence of magnetic field.

H0 = −t
∑
〈ij〉

(
c†ie

i e~A〈ij〉cj + h.c.
)
, (2.1)

where ci(c
†
i ) is the annihilation (creation) operator for electrons at site i of the honey-

comb lattice, t is the nearest neighbor hopping matrix element. h.c. stands for hermitian

conjugate. A〈ij〉 is the vector potential on the link connecting i, j sites. The magnetic
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field is applied in the z direction i.e. perpendicular to the plane of the lattice. We can

represent the position of the site i as (m,n, a) where m,n are integers and denote the

position of the unit cell along ê1, ê2 directions respectively. a ∈ (A, B) is the sublattice

index in the unit cell. The Hamiltonian can be written as

H0 = −t
∑
m,n

(c†m,n,Acm,n,B + c†m,n,Ae
i e~A(m,n)(m,n+1)cm,n+1,B+

c†m,n,Acm−1,n,B + h.c.) (2.2)

where the gauge fields are on the z links (as shown in Fig. 2.1), denoted as A〈ij〉, such

that the magnetic flux passing through each plaquette is φq = 1
q
h
e

where q is an integer. In

Fig. 2.1, we depict the system with q = 3 and the flux passing per plaquette, φq = h/3e.

A and B are the sublattices of the honeycomb lattice. We denote the two basis vectors

of the underlying triangular Bravais lattice by ê1,2. x, y, z links are the nearest neighbor

links to a sublattice as shown in Fig. 2.1.

2.2 Symmetries of the system

The symmetries under which this Hamiltonian remains invariant are translational, rota-

tional and particle hole symmetries.

2.2.1 Translational symmetry

In the presence of a constant magnetic field, translation symmetry is implemented projec-

tively [65], namely, translation is accompanied by a gauge transformation. These transla-

tional operators are known as magnetic translational operators. We denote the generators

of unit translations in the ê1 and ê2 directions, Fig. 2.1, as τ1 and τ2 and operation of these
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B
A

ê1
ê2

z

xy

tei2π/3 t te−i2π/3

(m,n) (m+1,n)(m-1,n) (m+2,n)

(m,n+1) (m+1,n+1)

Figure 2.1: Honeycomb lattice in magnetic field with flux φq = h
3e

passing through each
plaquette. A and B are the two sublattices. The hopping parameter along the red lines
are tei2π/3, along blue lines are te−i2π/3 and along green and black lines are t. ê1 and ê2
represent the basis vectors of the lattice. x, y, z are the nearest neighbor links.

translational operators on the fermionic operators are:

τ1cm,n,aτ
†
1 = ein

e
h
φqcm+1,n,a, τ2cm,n,aτ

†
2 = cm,n+1,a. (2.3)

τ1c
†
m,n,aτ

†
1 = ein

e
h
φqc†m+1,n,a, τ2c

†
m,n,aτ

†
2 = c†m,n+1,a. (2.4)

where a ∈ A, B. The Hamiltonian is invariant under these magnetic translational opera-

tors and commutes with these operators.

τ1Hτ
†
1 = H, τ2Hτ

†
2 = H. (2.5)
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However, these magnetic translational operators τ1 and τ2 do not commute with each

other and satisfy the relation,

(
τ1τ2τ

−1
1 τ−12

)
cm,n

(
τ2τ1τ

−1
2 τ−11

)
= ei

e
h
2πφqcm,n. (2.6)

rather (τ1)
q and τ2 commute with each other,

[(τ1)
q, τ2] = 0 (2.7)

2.2.2 Rotational Symmetries

The honeycomb lattice has six-fold rotation symmetry about the center of a plaquette

and three-fold rotation symmetry about any lattice site. It also has two-fold rotation

(inversion) symmetry about the center of the links. The transformations of the fermion

operators corresponding to the six fold rotation symmetry about center of any plaquette

is,

R6cm,n,Ae
in(n−1) e~φq/2R†6 = cm−n,m,Be

im(m−1) e~φq/2,

R6c
†
m,n,Ae

in(n−1) e~φq/2R†6 = c†m−n+1,m,Be
im(m−1) e~φq/2. (2.8)

and

[H,R6] = 0 (2.9)

The transformations of the fermion operators corresponding to the three fold rotation

symmetry about any sublattice A is,

R3cm,n,ae
in(n−1) e~φq/2R†3 = cn−m,−m,ae

−im(−m−1) e~φq/2,

R3c
†
m,n,ae

in(n−1) e~φq/2R†3 = c†n−m−1,−m,ae
−im(−m−1) e~φq/2. (2.10)
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where a ∈ [A, B] and

[H,R3] = 0. (2.11)

From here onwards, we address the 3-fold rotational symmetry as the rotational symme-

try. The action of inversion symmetry operators on the fermion operators is,

Icm,n,Ae
in(n−1) e~φq/2I† = c−m,−n,Be

−in(−n−1) e~φq/2,

Ic†m,n,Ae
in(n−1) e

h
φq/2I† = c†−m,−n,Be

−in(−n−1) e~φq/2. (2.12)

and

[H, I] = 0 (2.13)

2.2.3 Particle-hole symmetry

The Hamiltonian is invariant under particle-hole symmetry which is an anti-unitary trans-

formation in the many-particle Hilbert space. The transformation of the fermion operators

under this symmetry is

Pcm,n,AP
−1 = c†m,n,A, P cm,n,BP

−1 = −c†m,n,B, P iP−1 = −i. (2.14)

As particle hole symmetry exists only for half filling, the Hamiltonian given by Eq. (2.2)

is invariant under particle hole transformation for the half filling case.

2.3 Magnetic unit cell

As seen from Eqs. (2.6) and (2.7), τ1 and τ2 do not commute with each other and τ q1 and

τ2 commute with each other. There can be many unit cell choices. We consider here a

new unit cell, the basis vector in the ê1 direction is q times the basis vector in the original

unit cell while the basis vector along ê2 direction is the same as the original unit cell in
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=A

=B

=A2, =A3=A1,

=B1, =B2, =B3

(a) (b)

ê1

ê2

z

xy

φqφqφq φq φq

φqφq φq φqφq

φqφq φq φqφq

φqφq φq φqφq

φqφqφq φq φq

φqφq φq φqφq

φqφq φq φqφq

φqφq φq φqφq

Figure 2.2: Honeycomb lattice in magnetic field with flux φq = h
3e

passing through each
plaquette. A and B are the two sublattices. The hopping along the red lines are tei2π/3,
along blue lines are te−i2π/3 and along green and black lines are t. ê1 and ê2 represent
the basis vectors of the lattice. x, y, z are the nearest neighbor links. (b) Honeycomb
lattice showing magnetic unit cells. Here three original unit cells form a single magnetic
unit cell as shown in the shaded area. A1, B1, A2, B2, A3, B3 are sublattices of this
magnetic unit cell.

absence of magnetic field. This enlarged unit cell is known as the magnetic unit cell.

This magnetic unit cell consists of 2q sublattices. Fig. 2.2 shows the magnetic unit cell

in the honeycomb lattice for flux h/e3. The shaded region shows the magnetic unit cell

consisting of 6 sublattices i.e. (Aα, Bα), α = 1, · · · , 3.

Similarly, the Brillouin zone reduces and the reciprocal lattice vectors are now G1 ∈

(−π/qa, π/qa) and G2 ∈ (−π/a, π/a). This Brillouin zone is called the magnetic Bril-

louin zone or reduced Brillouin zone.

2.4 Energy spectrum

In the magnetic unit cell, we define the fermionic annihilation (creation) operators as

ψIαa ( ψ†Iαa) which represents an electron annihilated (created) at sublattice a ∈ A,B in
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αth position representing the original unit cell in I th magnetic unit cell. As each magnetic

unit cell contains q original unit cells, so, α = 1, · · · , q . The Fourier transform of the

fermion operator in momentum space is defined as, ψk1,k2,αa =
∑

I e
ik·RIψIαa where ,

RI is the position of I th magnetic unit cell and k is a vector in the reduced BZ.

The non-interacting Hamiltonian in the magnetic BZ is given by

H0 =
∑
k1,k2

ψ†kh0(k)ψk, (2.15)

where h0(k) is the single particle 2q × 2q Hamiltonian matrix given by

h0(k) =


0q×q F (k)

F †(k) 0q×q

 , (2.16)

where 0q×q denotes a zero matrix of dimension q × q and Fk is a q × q matrix whose

non-zero elements are

Fα,α(k) = t(1 + ei2πα/qeik2)

,

F1,q(k) = te−iqk1

,

Fα−1,α(k) = t

for α = 2, · · · , q . The eigenvalue equation can be written as

h0(k)Φm
k = εmk Φm

k (2.17)

where m is the band index, εmk ,Φ
m
k are the eigenvalue and eigenfunction respectively.
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(a) (b)

Figure 2.3: Energy spectrum for (a) q = 3 showing 6 bands and (b) q = 22 showing 44
bands.

As the single particle Hamiltonian at every k is a 2q× 2q matrix, we have 2q number

of energy bands. Fig. 2.3 shows the energy spectrum for the values of the flux h/3e and

h/22e.

From the energy spectrum we can infer the following points:

• For the value of flux 2π/q, there are 2q degeneracies in each energy band i.e.

Ek1,k2 = Ek1,k2+2π/q which is the result of the system being invariant under the

magnetic translational symmetry.

• At half filling, these degeneracies are found to be Dirac points as the energy dis-

persion is linear near these points. Hence, for flux 2π/q, there are 2q Dirac points

[66].

• On increasing the value of q i.e. decreasing the flux, the bandwidth of the bands

decreases.

• A consequence of the decreasing bandwidth and the increasing number of degen-

erate points on decreasing the value of flux is that at energy E = 0, we see a flat

band which is doubly degenerate when q is very large i.e. flux is very small.
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• Apart from the E = 0 band, the bands around this E = 0 band are almost doubly

degenerate for small flux passing through the plaquette. These bands are exactly

doubly degenerate when q →∞.

2.5 Topology of the bands

The energy bands for the non-interacting model have non-trivial topology i.e. they have

non-zero Hall conductivity, σH . Past works [31, 32, 67, 68] have shown that the Hall

conductivity, when the Fermi level lies in nth gap, is proportional to a topological number

called the Chern number.

σH =
e2

h
ctot (2.18)

where ctot is the total Chern number of the filled bands which is an integer. Hence, the

Hall conductivity is a topological quantity. This Chern number is calculated from the

Berry potential in the BZ which is equivalent to a vector potential but in the momentum

space [69]. This Berry gauge potential gives rise to Pancharatnam Berry curvature [70,

71] which acts like the magnetic field in the momentum space and is a gauge invariant

quantity.

For the cases where the energy bands are well separated, we have an Abelian Berry

potential which is calculated from the wave function of the Hamiltonian [64, 69] and is

given as

Amk = i〈Φm
k | 5k |Φm

k 〉 (2.19)

where m is the band index. The Pancharatnam Berry curvature is given as

Bmk = 5k ×Amk (2.20)
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and the Berry flux is

φ̃mk =
1

2π

∫
S

Bm.dk1 ∧ dk2 =

∮
Am.dk (2.21)

where the integral is over the filled regions in the BZ. For completely filled bands, this

Berry flux is an integer and is known as the Chern number. The Hall conductivity at mth

gap is the sum of the Chern number of the m filled bands.

When the energy bands are degenerate, the Berry potential is non-Abelian and is a

matrix with the components

Amm′

k = 〈Φm
k | 5k |Φm′k〉 (2.22)

and the Chern number is given as

φ̃mk =
1

2π

∫
TrdA (2.23)

Numerically, the Chern number can be calculated by a lattice gauge theory technique

[64, 72] where the Hamiltonian is diagonalized and the eigenfunction is computed on

a discrete BZ with k = kr ≡ (kj1, kj2) being the discrete points in the BZ such that

kj1 = 2πj1/(qN1) along k1 direction and kj2 = 2πj2/(N2) along the k2 direction and

r = 1, · · ·N1N2, jµ = 0 · · ·Nµ − 1 with Nµ being the number of grid points along the

kµ direction. The periodic boundary condition is imposed on the wave function Φµ
kl

=

Φµ
kl+Nµµ̂

where µ̂ = (2π/qN1, 2π/N2) For the mth filled band where the Fermi level lies

in the mth gap, a U(1) link can be defined as

Uµ(kr) =
det Uµ(kr)

|det Uµ(kr)|
(2.24)

where Umm′
µ = 〈Φm

kl
|Φm′

kl+µ̂
〉. det Uµ(kr) is zero at singular points and hence the link
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variable is well defined at all points except these singular points. These points can be

avoided from the mesh with an infinitesimal shift and the gauge invariant lattice field

strength is

B12(kr) = ln U1(kr)U2(kr + k̂1)U1(kr + k̂2)
−1U2(kr)

−1 (2.25)

The Chern number is

ctot =
1

2πi

∑
r

B12(kr) (2.26)

It has been shown [64] that the non-interacting theory has three regimes of electron

densities. The dilute limit is called the Fermi regime where each filled band has Hall

conductivity, σH = −e2/h. Thus, σH = −me2/h when m bands are filled as is the case

for non-relativistic systems in the continuum. At a certain filling, m∗, there is a band

with a very large Chern number where the Hall conductivity changes sign when this band

is completely filled. This band lies in the energy region of the van Hove singularity of

the system in the absence of a magnetic field (Fig. 2.4). We refer to the m∗ filling as the

van Hove filling. Pairs of bands get degenerate on further filling. The Hall conductivity

changes in steps of 2e2/h when the Fermi level lies in the gap. This regime is called the

Dirac regime. Fig. 2.5 shows the Hall conductivity as a function of Fermi energy EF for

q = 30 which illustrates the aforementioned regimes.
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Figure 2.4: Density of states of electrons on the honeycomb lattice with nearest neighbor
hopping plotted as a function of the energy in absence of magnetic field showing the van
Hove singular points.
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Figure 2.5: Hall conductivity as a function of the Fermi energy EF till half filling for
q = 30. The plot shows the Fermi regime, van Hove filling and the Dirac regime.
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Chapter 3

Effect of interactions in the Hofstadter

regime of the honeycomb lattice

As mentioned in the Chapter 1, the honeycomb lattice in a magnetic field giving rise to

the Hofstadter fractals has gained a lot of attention with recent experimental observations.

Interactions are always present in real systems, hence we would like to study the effects of

interactions on this lattice in the Hofstadter regime. This Chapter describes this model in

the presence of repulsive interactions, the method used to solve this problem and results

we obtain.

3.1 Description of the model

We consider the Hofstadter system for spinless electrons in honeycomb lattice with near-

est neighbor hopping and nearest neighbor interactions in the presence of magnetic field

described by the following Hamiltonian,

H = −t
∑
〈ij〉

(
c†ie

i e~A〈ij〉cj + h.c.
)

+ V
∑
〈ij〉

ninj, (3.1)
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where V is the nearest-neighbor interaction strength. Here onwards we consider t = 1

and write the interaction V in terms of t.

The Hamiltonian given in Eq. (3.1) still preserves the magnetic translational, 6− fold

rotational, 3− fold rotational and inversion symmetries described in Chapter 2.

As discussed in the previous Chapter, in the presence of a magnetic field, we can

consider a new unit cell called the magnetic unit cell. This unit cell choice is not unique

as we can have various choices of the magnetic unit cell whose basis vectors can be

written as a1 = m1ê1 + n1ê2 and a2 = m2ê2 + n2ê2 where m1, n1, m2, n2 are integers.

The magnetic unit cell is chosen such that an integer amount of flux passes through the

whole magnetic unit cell.

This magnetic unit cell can be visualized as a cluster and the lattice can thus be real-

ized in terms of clusters. The Hamiltonian can be divided into intracluster and intercluster

hopping and intracluster and intercluster interactions. Each cluster consists of 2q lattice

sites. Hence we change our notation to include this feature in our Hamiltonian. Now each

site is labeled by I, α, awhere I labels the cluster position, α the original honeycomb unit

cell inside a cluster such that α = 1, · · · , q and a ∈ A,B denotes the sublattices. We

define our fermionic operators in this magnetic unit cell/cluster as ψI,α,a. So, the Hamil-

tonian can be rewritten in the language of clusters as

H = −
∑

〈I,α,a,J,β,b〉

(
ψ†I,α,ae

i e~A〈I,α,a,J,β,b〉ψJ,β,b + h.c.
)

+ V
∑

〈I,α,a,J,β,b〉
nI,α,anJ,β,b, (3.2)

The BZ is the set of wave vectors k = k1G1 + k2G2, where G1,2 are the reciprocal

lattice vectors of the reduced BZ. The Fourier transforms of the fermion operators in the

momentum space are defined as, ψk1,k2,α,a =
∑

I e
ik·RIψI,α,a where , RI is the position

of the I th magnetic unit cell.

We solve this interacting problem using mean field approximation which is described

in the following section.
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3.2 Mean Field Theory

The interaction term is quartic and hence difficult to solve. To solve this problem, we

use mean field approximation where we reduce the quartic term to quadratic terms by

assuming Wick’s decomposition and rewrite the interacting Hamiltonian in terms of the

mean field single particle Hamiltonian.

Performing the mean field decomposition,

ninj ≈
(

(ρ̄+ ∆i)c
†
jcj + (ρ̄+ ∆j)c

†
ici

)
− χ〈ij〉c†icj − χ ∗〈ij〉 c†jci

− 1

V

(
(ρ̄+ ∆i)

2 + (ρ̄+ ∆j)
2 − |χ〈ij〉|2

)
, (3.3)

1

V
χ〈ij〉 = 〈c†jci〉MF ,

1

V
∆i =

∑
j(i)

〈c†jcj〉MF − ρ̄, (3.4)

and hence the mean field Hamiltonian is

HMF =
∑
i(j)

(ρ̄+ ∆i)c
†
ici +

∑
〈ij〉

(
− (c†ie

i e
h

Aijcj + h.c.)− (χ〈ij〉c
†
icj + h.c.)

)
− 1

V

∑
〈ij〉

(
(ρ̄+ ∆i)

2 − |χ〈ij〉|2
)
. (3.5)

with the self consistency equations given as

χ〈ij〉 = V 〈c†jci〉MF , ∆i = V 〈c†jcj〉MF − ρ̄ (3.6)

where ∆i is the charge order parameter at site i and i(j) represents the nearest neighbor

sites of i and ρ̄ is the uniform charge density. χ〈ij〉 are the bond link operators. The self

consistency equations Eq. (3.6) have to be solved keeping the number density fixed.
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3.2.1 Algorithm to solve the self consistency equations

The single particle mean field Hamiltonian in the momentum space is the 2q× 2q matrix

hMF (k) = h0(k)+hF (k,∆, χ) where h0 is the single particle non-interacting part of the

Hamiltonian and hF represents the interaction with the mean field parameters; k takes

values in the reduced (magnetic) BZ. There are 2q real charge density order parameters

represented by ∆(α,a) and 3q complex bond order parameters represented by χ〈(α,a)(β,b)〉

where α, β label the original unit cells in the magnetic unit cell and a, b label the two

sublattices of the honeycomb lattice. Our mean field ansatz allows the breaking of the

translational, rotational and inversion symmetries of the system.

The complex bond order parameters χα,x, χα,y, χα,z and the real charge order parame-

ters ∆α,a are solved by an iterative method using the self consistency equations, Eq. (3.6),

at a given filling and V for a particular value of flux per plaquette. The algorithm used is

summarized here

1. Start the iteration with a random initial guess of χα,x, χα,y, χα,z, and ∆α,a,

2. Diagonalize HMF using χα,x, χα,y, χα,z, and ∆α,a,

3. Calculate the expectation value of the link operators and the number operators on

each site in a magnetic unit cell and using this compute χα,x, χα,y, χα,z and ∆α,a

from Eqs. (3.6).

4. The whole process in steps 2 and 3 is repeated until the difference between the

calculated values of these order parameters for iteration n + 1 and n is below a

given tolerance value.

We repeat this process for various initial guesses and often find different mean field

solutions. Comparing the energies of these solutions, we pick up the lowest energy state

as the ground state of the interacting Hamiltonian. Mean field approximation is a good
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approximation when the Fermi level lies in the energy band gap. In the case of the hon-

eycomb lattice in the Hofstadter regime, the energy spectrum has well separated energy

bands with band gaps for flux φ/φ0 = 1/3 or less and we solve the self-consistency equa-

tions for fully filled bands. Hence, we expect the mean field approximation to be a good

approximation here.

Here in this chapter, we solve the self consistency equations for a value of flux per

plaquette φ/φ0 = 1/3 and in the next chapter, we solve the self consistency equations for

a value of flux per plaquette φ/φ0 = p/q.

3.3 q = 3 case

In this section, we describe the analysis for a value of flux per plaquette φ/φ0 = 1/3

with q = 3 and p = 1 for filling m = 1, 2, 3 and elaborate the various complex phases

we get by solving the self consistency equations in the following section. Here, the

self consistency equations are solved by fixing the number of particles per unit cell,

n = 1
N2

∑
k,m nF [εmk,µ] where N × N is the lattice size, nF [εmk , µ] is the Fermi distri-

bution function with εmk being the single particle mean field energy and µ is the chemical

potential. As we solve the problem for the zero temperature case, numerically the tem-

perature we use in the Fermi distribution function is 10−4. Due to particle hole symmetry,

we get the same phase diagram for filling m = 6, 5, 4 respectively.

In this case, there are 6 real charge order parameters and 9 complex bond order pa-

rameters. These order parameters are solved by using self consistency equations for a

magnetic lattice of 150 × 150. The tolerance value discussed in item 4 in the algorithm

of the mean field approximation is considered to be 10−6 here. We analyze the various

phases and the phase transitions as a function of the interaction strength. We discuss the

topology and the geometry of these phases for further understanding these phases.
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3.3.1 Order Parameters

The phases are characterized by the mean field order parameters ∆ and χ and the quan-

tities derived from these order parameters. The derived quantities we study are:

1. Dipole moment (described below)

2. Quadrupole moment (described below)

3. Magnitude of the bond order parameters.

4. Current on the links given by −t〈ψ†Iαaei
e
~A〈Iαa,Jβb〉ψJβb〉 − h.c.

5. Flux in the plaquette (discussed later).

Non-uniform charge distribution can lead to charge density order on the lattice. If

there is a staggered charge distribution between the A and B sublattices, then we get a

charge density wave. In this case, only the inversion symmetry of the system is broken,

the rotational and translational symmetries remain intact. We can also have charge distri-

bution such that the rotational symmetries of the system are broken. We choose the dipole

moment (P µ) and quadrupole moment (Qµν), of the single particle density, to be the or-

der parameters that characterize the breaking of the rotational and inversion symmetries

of the system. These are defined as,

P µ ≡ 1

N

∑
i

Rµ
i (∆i − ρ̄), (3.7)

Qµν ≡ 1

N

∑
i

(2Rµ
i R

ν
i − δµνRi ·Ri) (∆i − ρ̄) (3.8)

where Rµ
i , µ = 1, 2 are the components of the position vector Ri at the ith site, ρ̄ is the

uniform charge density and N is the total number of original unit cells in the lattice.

Qµν can be non-zero only if the 3-fold rotational symmetry is broken and P µ can be

non-zero only if both, the 3-fold rotational and inversion symmetries are broken A.
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We name the phase with zero dipole moment and non-zero quadrupole moment as

the nematic phase and the phase with non-zero dipole moment and quadrupole moment

as the ferrielectric phase which will be described explicitly in the following Chapter.

Apart from the mean field order parameters, we can also analyze the ground states

from the topological and geometrical points of view which is discussed further in this

chapter. For the q = 3 case i.e. flux 1/3, the Hamiltonian is a 6× 6 matrix and hence we

have six bands. In the non-interacting case, when the lowest band is filled i.e. m = 1, the

Hall conductivity, σH = −e2/h. For m = 2, σH = e2/h and m = 3 i.e. at half-filling

σH = 0. Due to particle-hole symmetry, the upper half bands behave similar to the lower

half bands. As can be seen, them = 1 band is in the Fermi region, m = 2 is the van Hove

filling and m = 3 is the Dirac regime (see Chapter 2). Due to particle-hole symmetry,

m = 4 filling lies in the Dirac regime while m = 5 is van Hove filling and m = 6 band

is in the Fermi regime. We solve the self-consistency equations for m = 1, 2, 3 fillings as

the upper half bands behave in a similar fashion as lower bands.

3.3.2 Unit cell choices

As discussed before in Chapter 2, the Hamiltonian is invariant under magnetic transla-

tions, τ1 and τ2 which are along ê1 and ê2. These magnetic translation operators do not

commute with each other, τ1τ2τ−11 τ−12 = ei
2π
3 . Thus, we need to choose a magnetic unit

cell consisting of three original unit cells to implement Bloch theory. In this case, there

are two ways of doing this:

1. the linear unit cell denoted as unit cell choice I with basis vectors 3ê1, ê2 as shown

by the rectangular region shaded in gray in Fig. 3.1.

2. the hexagonal unit cell denoted as unit cell choice II with basis vectors ê2−ê1, ê2+

2ê1 as shown by the hexagonal region shaded in yellow in Fig. 3.1.
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ê1
ê2
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B1
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B2

A3

B3
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B1

A2

B2

A3

B3

Figure 3.1: Honeycomb lattice in magnetic field with flux φ = h
3e

passing through each
plaquette. A and B are the two sublattices. We consider two possible choices of unit
cell: linear choice (I) shown in gray rectangle and hexagonal choice (I) shown in yellow
hexagon. (A1, B1, A2, B2, A3, B3) are sublattices of these magnetic unit cells. ê1 and ê2
represent the basis vectors of the lattice.

Both these enlarged unit cells contain six sites A1, B1, A2, B2, A3, B3.

In this case there are 9 complex bond order parameters, χ1x, χ1y, χ1z, χ2x, χ2y,

χ2z, χ3x, χ3y, χ3z, and 6 real charge order parameters, ∆1A,∆2A,∆3A,∆1B,∆2B,∆3B.

Unit cell choice II is a rotationally symmetric choice where each sublattice is sur-

rounded with three different sublattices unlike unit cell choice I. For non-interacting

case, the ground states for both the choices are same but for mean field states, these

ground states are different from each other.

3.4 Results and Analysis

In this section, we discuss the results and analyze the phases obtained by solving the self

consistency solutions for m = 1, 2, 3 fillings.

For any value of V , there is always a scaled solution of the self consistency equations

where the magnitude of the bond order parameters χ are of the form λ(V ) and the charge
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density on each sublattice is the same and is equal to the uniform charge density ρ̄. Here

λ is a scaling factor which depends on the interaction strength, V . Thus, the hopping

on the lattice is just scaled and hence, the mean field ground state is the same as that of

the non-interacting ground state and the kinetic energy scales linearly for this mean field

solution. Therefore, the total energy, E in this phase, can be written as

E = E0(t− λ(V )t) +
∑
bonds

λ2(V )t2

V
− V m

3
−
∑
sites

|∆ + ρ̄|2
V

. (3.9)

where m is the number of bands filled. Minimizing the energy with respect to λ(V ), we

get λ(V ) = E0V
18

where E0 is the total energy of the non-interacting system. Similarly,

minimizing the energy with respect to ∆(V ), we get ∆(V ) = −ρ̄ thus showing that there

is no charge ordering. These values of χ and ∆ satisfy the self consistency equations

when checked numerically. This is the only solution for small values of the interaction

strength, V , for all fillings and is the ground state of the system. In this phase all the

symmetries of the system are preserved. We name this phase as the symmetric phase

(S). As the ground state of the system is unchanged, the topology of the bands in the

symmetric phase is the same as that of the non-interacting case.

At larger values of V , other mean field solutions are also present and comparing the

energies of these mean field solutions, we obtain the ground state of the system.

3.4.1 Dirac regime: m = 3

At half filling (m = 3, Dirac regime), for both the choices of unit cells, there is a con-

tinuous transition from the symmetric phase to a charge density wave (CDW) phase at

V = 0.45. This phase preserves all but the inversion symmetry of the system. The charge

distribution in the unit cell is shown in Fig. 3.8. The dipole moment and quadrupole mo-

ment remain zero in this phase. As V is increased, the CDW strengthens but there are no

other transitions for V ≤ 10. The Hall conductivity remains zero and the Chern number
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distribution in the bands remains unaltered and is similar to the S phase.

3.4.2 van Hove filling: m = 2

This filling is the van Hove filling as this band lies near the van Hove singularity of the

energy spectrum in the absence of a magnetic field. The Hall conductivity, σH , for the

non-interacting case for m = 2 filling is e2/h. For the van Hove filling, the energy of

the mean field solution for the unit cell I is always lower in energy than that of II for the

range of V considered here.

Here on varying the interaction strength, we get three different phases with two phase

transitions. These phases are described below:

Symmetric Phase

As described before, for small values of V the system is in the symmetric phase. The

energy band diagram in this phase is shown in Fig. 3.2a. There is no charge ordering or

bond ordering in this phase. As the wave function is the same as the non-interacting case,

so the Hall conductivity is the same as that of the non-interacting case i.e. σH = e2/h.

Nematic Phase

On increasing the interaction strength, there is a first order phase transition at a critical

value V = Vc1 = 2.744 from the S phase to an anisotropic phase which we denote as the

nematic phase which is discussed in the next subsection. At Vc1, both the phases coexist

i.e. the energy of the mean field solutions for both the symmetric and the nematic phases

are the same and the order parameters change discontinuously at the phase transition

point. Hence, it is a first order Landau transition. For V > Vc1 the nematic phase has an

energy lower than that of the symmetric phase as can be seen from Fig. 3.3.

In this phase, the rotational and the translational symmetries of the system are bro-
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(a) (b)

Figure 3.2: Energy band diagram w.r.t k2 for (a) q = 3 in the symmetric phase for m = 2
at V = 2.744, (b) q = 3 in the nematic phase for m = 2 at V = 2.744. The energy
band diagrams are plotted by diagonalizing the mean field Hamiltonian using the order
parameters obtained by solving the self consistency equations for m = 2 and q = 3.

ken but the inversion symmetry of the system is preserved. This anisotropic phase has

zero dipole moment but non-zero quadrupole moment and so the phase is denoted as the

nematic phase (Fig. 3.4). Quadrupole moment is a 2 × 2 traceless matrix. In Fig. 3.4,

we plot the magnitude of the eigenvalue of the quadrupole moment denoted as |r|. The

blue line represents the plot for the magnitude of the dipole moment per original unit cell

varying as a function of V .

The energy spectrum for the nematic phase at the transition point Vc1 = 2.744 is

plotted in Fig 3.2b. Comparing Fig. 3.2a and Fig. 3.2b, we see that in Fig. 3.2a, Ek1,k2 =

Ek1,k2+2π/3 which is the result of the system being invariant under translational symmetry

unlike in the nematic phase where translational symmetry is broken which is reflected in

the energy band diagram, Fig. 3.2b, where Ek1,k2 6= Ek1,k2+2π/3. Hence, in the latter

case, the length scale, the periodicity of the mean field Hamiltonian, is now the same
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Figure 3.3: Energy comparison of the two mean field solutions for symmetric phase and
nematic phase. At V = 2.744 both the energies values are same.

Figure 3.4: The quadrupole and dipole moments as a function of V in the three phases
for m = 2. The blue line represents the polarization (i.e. dipole moment per original
unit cell)and the red line represents the magnitude of the eigenvalue of the quadrupole
moment matrix per original unit cell, |r|.
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as that of the periodicity of the magnetic unit cell. As seen in Fig. 3.2a and Fig. 3.2b,

there is always a band gap between the filled bands and the first excited band (i.e. band

gap between second and third bands). The pictorial representation of the lattice in this

phase is shown in Fig. 3.5. The bond parameters χ with different magnitudes are shown

with different colors. The bonds depicted by thicker line are comparatively more stronger

than the ones shown by thinner lines. Different color spheres represent different charge

density. The size of the sphere depicts the magnitude of the charge density at a site where

the biggest sphere represents the largest charge density in the lattice. From Fig, 3.5 we

Figure 3.5: Pictorial representation of lattice structure in nematic phase showing the
magnitude of bond order parameters and the charge ordering on the lattice.

see that

• The magnitude of the bond parameters, |χ4| = |χ7| (magenta) > |χ1| = |χ2| =

|χ8| = |χ9| (green) > |χ5| = |χ6| (yellow) > |χ3| (lavender). χ3, χ5, χ6 decrease

as V is increased from Vc1 to Vc2. Magnitude of other bond parameters increases

with the increase of V in the nematic phase.

• The charge order parameters ∆A1 = ∆B3 are illustrated by red spheres, ∆A2 =

∆B2 are illustrated by green spheres and ∆A3 = ∆B1 are illustrated by blue

spheres. ∆A1 = ∆B3 are positive and the largest in magnitude. All other charge
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orders are negative with ∆A2 = ∆B2 < ∆A3 = ∆B1.

• The total charge densities over A and B sublattices in a magnetic unit cell sepa-

rately are zero i.e. ∆A1 = −(∆A2 + ∆A3),∆B3 = −(∆B2 + ∆B1). The magnitude

of each of the charge order parameters increases with increase in V .

• There is a preserved inversion symmetry if we consider a plane in y- axis passing

through the link connecting the stars and a plane in x-axis crossing this link in

between the adjacent stars i.e. a 2-fold rotation about the point in the middle of the

bond connecting the two stars.

For example: For V = 4, |χ1| = |χ2| = |χ8| = |χ9| = 1.7288, |χ4| = |χ7| = 2.4314,

|χ5| = |χ6| = 1.3161 and |χ3| = 1.1134. ∆A1 = 1.4258 = ∆B3, ∆A2 = −0.4875 =

∆B2 and ∆A3 = −0.9384 = ∆B1.

This first order Landau transition from the symmetric phase to the nematic phase

is accompanied by a change in the Hall conductivity of the system from e2/h in the

symmetric phase to zero in the nematic phase. Hence, we have a first order topological

transition. Though the Hall conductivity, σH = cF e
2/h = 0 in the nematic phase, but

the individual occupied bands have non-zero Chern number. Here cF is the total Chern

number of the occupied bands. In the symmetric phase, the Chern number of the lowest

band is−1 and of that of the second band is 2. So, cF = 1 and hence σH = e2/h. But, for

nematic phase, the Chern number of the lowest band is −1 and that of the second band

is 1 (Fig. 3.7) and the total Chern number is zero giving rise to zero Hall conductivity.

Hence we denote this nematic phase as the topological nematic phase (TN ).

On further increasing the interaction strength, there is another first order Landau tran-

sition from the topological nematic phase to the ferrielectric phase which is explicitly

described below.
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Ferrielectric Phase

In this phase the translational, rotational and inversion symmetries of the system are

broken. Here both the dipole moment and quadrupole moment are non-zero as shown in

Fig. 3.4. Hence, we name this phase as the ferrielectric phase. The lattice picture of the

system in this phase is shown in Fig. 3.6. From Fig, 3.6 we see that

• The magnitude of the bond parameters, |χ4| (blue) > |χ7| (pink) > |χ8| =

|χ9| (red) > |χ1| = |χ2| (yellow) > |χ5| = |χ6| (green) > |χ3| (lavender)

. χ3 and χ7 decreases as V is increased from Vc2. Magnitude of the other bond

parameters increase with the increase of V in the ferrielectric phase.

• The charge order parameters are all different at different sites of the magnetic unit

cell which are denoted by different colors. ∆B3 (red spheres), ∆B2 (white spheres)

and ∆A1 (magenta spheres) are positive in value. ∆B3 (red spheres) has the largest

magnitude and ∆B2 (white spheres) has the lowest magnitude. All other charge or-

ders are negative with ∆A2 (black spheres), ∆A3 (blue sphere), ∆B1 (green spheres)

being almost the same in magnitude.

• The total charge densities over the A and B sublattices together in a magnetic unit

cell is zero. The magnitude of each of the charge order parameters increases with

an increase in V .

For example: V = 7, |χ4| = 4.25559 > |χ7| = 2.1752 > |χ8| = |χ9| = 1.8914 >

|χ1| = |χ2| = 1.7837 > |χ5| = |χ6| = 1.2959 > |χ3| = 1.0509. ∆A1 = 1.5655,∆B1 =

−2.0202, ∆A2 = −2.0662,∆B2 = 0.4112 and ∆A3 = −2.0844, ∆B3 = 4.1939.

In this phase the Hall conductivity remains zero. For the interaction strength Vc2 ≤

V < 5.41, the Chern number distribution of the occupied bands is the same as that of the

nematic phase. Hence we denote this ferrielectric phase as the topological ferrielectric

phase. At V = 5.41, both the occupied bands touch each other and there is a redistri-
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Figure 3.6: Pictorial representation of lattice structure in ferrielectric phase showing the
absolute value of the bond kinetic energy and site charge order.

bution of the Chern numbers between these bands. Then for V > 5.41, though the Hall

conductivity still remains zero but the Chern number of each of the occupied bands is

now zero. This is clear from Fig. 3.7. Hence, this phase is just called as the ferrielectric

phase.

Vc2 < V < 5.41 V = 5.41 V > 5.41

Figure 3.7: The Chern number distribution of the filled bands for various ranges of
interaction strength for m = 2.
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3.4.3 Fermi regime: m = 1

This filling is in the Fermi regime. Here the Hall conductivity for the non-interacting

case is −e2/h. In the presence of interactions, on solving the self consistency equations

for both the choices of the unit cell, we find that the unit cell choice II has lower energy

compared to that of I. Here, we find a first order transition from the symmetric phase

to a nematic phase (N ) (Fig. 3.8), at V = 5.265. The charge distribution has no dipole

moment but has non-zero quadrupole moment in the nematic phase. The Hall conductiv-

ity changes from σH = −e2/h to zero at this transition. Thus, this is also a first order

Landau transition accompanied by a topological transition.

All the phases at various fillings can be summarized in a diagram shown in Fig. 3.8.

The phases with broken symmetry, their charge ordering and Hall conductivities, dis-

cussed above, are depicted in this figure. Here, the charge distribution is shown in a

magnetic unit cell. In a particular phase, the sites with the same charge are represented

by spheres of the same color. The magnitude of the charge density is indicated by the

size of the spheres. Sphere with bigger size has higher magnitude of charge density. The

Chern number distribution for all the filled bands in each filling is given in the bracket.

The left most number in the bracket represents the Chern number for the lowest band and

next number is for the next filled band. The right most number in the bracket gives the

Chern number of the highest band filled.

3.5 Current on the links and flux per plaquette

The bond order parameters also acquire anisotropic phases which manifest as circulating

currents. There is no current on the links in the symmetric phase and the charge density

wave phase. Fig. 3.9 shows the current on the links on the lattice in the nematic and the

ferri-electric phases. In the nematic phase, currents of equal magnitude flow on the links
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V

m
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(−1,+2,−1)
S CDW

3

Figure 3.8: Phase diagram for m = 1, 2, 3 fillings as V is varied. The charge distribution
in each phase is shown by the unit cell whose repetition gives the full lattice picture of the
ground state. The Chern number distribution of the filled bands is given in bracket. For
example in the m = 2 case, the left number in bracket is for the lowest band and the next
number is for the second band. The green circle is the transition point. The blue circle is
the point where the Chern numbers of the filled bands change without any change in the
Hall conductivity.
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Figure 3.9: Flux in the plaquette and the current flowing on the links on the lattice for
m = 2 in (a) the nematic phase (b) the ferri-electric phase. The flux distribution is shown
after subtracting out the background flux 2π/3. In ferri-electric phase, δφ1 = δφ3 + δφ2.
The bonds with arrows are the links on which there is non-zero current. Links with the
same color represents the same magnitude of current.

A1B1 and A3B3 (links with arrows) but in opposite directions (as shown in Fig. 3.9a)

such that the inversion symmetry (about the A2B2 link) of the system is preserved. There

is no current on the A2B2 links. In the ferri-electric phase, the current flows on the links

A1B1, A2B2 and A3B3 (Fig. 3.9b)) such that the total current on the links in the magnetic

unit cell is zero. The current distribution shows that the inversion symmetry of the system

along with the rotational symmetry is broken.

This figure also gives the distribution of the flux in the plaquettes of the system in

the nematic and the ferri-electric phases. In Fig. 3.9 the flux distribution is shown after

subtracting out the background flux 2π/3. As seen in Fig. 3.9a, the staggered flux in

the nematic phase is distributed in a way that the inversion symmetry of the lattice is

preserved unlike that in the ferri-electric phase where the flux distribution shows inversion

symmetry breaking (Fig. 3.9b). In both the cases the total flux in the magnetic unit cell is

zero.

Comparing these staggered flux patterns in the lattice with the flux pattern discussed

in the paper by Castro et al. [19] for the two phases with broken time reversal symme-
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try: T-I (TRS and inversion symmetry both broken) and T-II (TRS broken but inversion

symmetry preserved) phases, we see that the flux pattern for the nematic phase is similar

to that of the T-II phase in [19] and in both these cases the inversion symmetry of the

system is preserved. The staggered flux pattern in the ferrielectric phase shows inversion

symmetry breaking in the system as is the case for T-I phase in [19]; but in the ferrielec-

tric phase every plaquette has non-zero flux passing through it and the staggered flux in

all the three plaquettes forming the magnetic unit cell have different magnitude unlike

the T-I phase.

There is no current flowing on the link or any staggered flux passing per plaquette for

the nematic phase in m = 1 case.

3.6 Insight to the topological transition

Insight to the mechanism of the topological transitions accompanying the Landau transi-

tions can be achieved by studying the pattern of the anisotropic magnitudes of these bond

order parameters shown in Fig. 3.10. The bond strength distribution for the TN, TF andF

phases indicate that the mean-field Hamiltonian resembles that of weakly coupled ribbons

(Fig. 3.10a), namely a quasi-1d system. The coupling becomes weaker as the interaction

strength is increased. In the limit of completely decoupled ribbons, Chern numbers for

all the bands should be equal to zero and this happens for V > 5.41. Thus it seems that

the anisotropy of the bond order parameters drives the change of Chern numbers. The N

phase at m = 1 is similar except that it tends to a system of weakly coupled clusters as

shown in Fig. 3.10b.

However, while we believe that there is some truth to the argument given above, there

are some caveats. Firstly, the transitions need not happen at a finite value of V but could

happen only at V = ∞. Secondly when the system gets decoupled, the Chern numbers

of the individual bands can get ill-defined due to degeneracies. Both these issues can be
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Figure 3.10: (a) Bond order parameter strengths for m = 2 broken symmetry phases.
The red bonds are the strongest and the dotted violet bonds the weakest. (b) Bond order
parameters for the m = 1 broken symmetry phase. The red bonds are stronger than the
dotted blue bonds.

illustrated in the half-filled case of m = 3. As shown in Fig. 3.8, the Chern numbers in

this case remain unchanged throughout the range, 0 ≤ V ≤ 10. We now show that this

is true for arbitrary V . As mentioned earlier, the single particle mean field Hamiltonian

is of the form, hMF (~k) = h0(~k) + hF (~k, χ,∆) For the half filled case, the system is

isotropic and the bond order parameters simply scales h0(~k) and the charge modulation

is ±∆ for the two sublattices. Since h0(~k) does not couple the two sublattices, we can

write ~hMF (~k) as,

hMF (~k) =


∆ F (~k)

F †(~k) −∆

 (3.10)

It can be proved, as we do in Appendix C, that the Chern numbers of the above Hamilto-

nian are independent of ∆. As V →∞ we also have ∆→∞. In the limit, there are two

degenerate ground state corresponding to all the particles occupying one of the sublat-

tices. However, all the the negative energy single particle states are degenerate and thus

the three lower bands are completely degenerate. Thus the individual Chern numbers are

ill-defined at V =∞. At ∆ = 0 (the symmetric phase), the middle band Chern numbers

are ill-defined due to the Dirac points. However, the system is particle-hole symmetric
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in this phase and the Chern numbers get fixed by demanding that the sum of the Chern

numbers, which is proportional to the Hall conductivity, is zero. Thus the Chern numbers

in the half filled case are unchanged in the range 0 ≤ V <∞.

3.7 Geometry of the ground state

The geometry of the ground state is characterized by the quantum geometric tensor

(QGT) discussed in Chapter 1. Here, we analyze our ground state in terms of the sym-

metric part (quantum metric) and the antisymmetric part (PBC) of the QGT. We study the

pair correlation function and its relation with the quantum metric in order to analyze the

anisotropic phases in the system. [24].

3.7.1 Quantum metric

The structure of incompressible liquids is described by the pair correlation function. For

our system it is defined as,

Γαa,βb (RI −RJ) = 〈c†Iaαc†JbβcJbβcIaα〉 (3.11)

where RI ,RJ represent the position of the I th and J th magnetic unit cell respectively.

The anisotropic state of the system can be understood in terms of this pair correlation

function. The nematic order parameter has been related to the quantum metric [44, 46].

In this section, we would therefore like to study the pair correlation function in the light

of quantum geometry described by the quantum metric. The relationship between the

momentum space quantum metric [24] averaged over the BZ, ḡµν , and the structure factor

has been shown by Resta in his paper [73]. Here, we give an alternate proof of this

relationship in the lattice picture in the appendix B. The structure factor is Sαa,βb(RI −

RJ) = 〈c†IαacIαa〉〈c†JβbcJβb〉 − Γαa,βb (RI −RJ).
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On very general grounds, the average of the momentum space quantum metric over

the BZ for interacting systems has been identified with the localization tensor [24], ḡµν =

〈R̂µR̂ν〉 − 〈R̂µ〉〈R̂ν〉 where R̂µ are the components of the position operator. In our case

we have

R̂µ =
∑
I,α,a

(Rµ −Rµ
0 )Iαac

†
IαacIαa (3.12)

where R0 is the position vector of the center of mass of the lattice which we consider as

the origin and hence R0 = (0, 0). Using the expression in Eq. (3.12) we can write

ḡµν =
1

L2

∑
Iαa,Jβb

(
Rµ
Iαa −Rµ

Jβb

) (
Rν
Iαa −Rν

Jβb

)
Sαa,βb(RI −RJ) , (3.13)

This relation is the lattice version of the relation between localization tensor and the

structure factor shown by Resta [73].

Thus ḡµν is the second moment of the structure factor. It therefore characterizes the

shape of the pair correlation function just as the real space metric introduced by Haldane

[44] for homogeneous quantum Hall systems. To obtain a more precise relation between

the two, we need to examine the weak field (large q) limit which we have not analyzed in

the thesis.

The metric is a second rank symmetric tensor and has three independent components.

These can be taken to be the orientation of the principle axis, θ and the two eigenvalues

g1, g2. Eq. (3.13) shows that the spread of the pair correlation function in the directions

along and normal to the principal axis is given by
√
g1 and

√
g2. Therefore, the areal

extent of the correlations ∼ √g1g2 ≡ l2g , the square root of the determinant of the ḡµν .

The ratio of the two eigenvalues γ = g1/g2 is a measure of its anisotropy. l2g and γ

are plotted as a function of the interaction strength in Fig. 3.12. l2g decreases while the

anisotropic parameter γ increases on increasing V .

The structure function reflects the symmetry (or the lack of it) of the ground state.
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Figure 3.11: l2g =
√
g1g2 and γ vs V for m = 2. The blue line represents lg and the red

line represents γ. The discontinuity in the plot shows the first order nature of the phase
transition.

Fig. 3.12a shows the structure function plotted in the real space for symmetric phase

for m = 2. Rx and Ry give the position of the lattices in the real space in Cartesian

coordinates. We see that, in this plot the pair correlation function is invariant under 2π/3

rotation since the symmetric phase preserves the rotational symmetry of the system. Fig.

3.12b shows the structure function plotted in the real space for the nematic phase for

m = 2. In this plot, the structure function is not invariant under 2π/3 rotation since in

the nematic phase the rotational symmetry is broken.

The average metric is a multiple of identity in the symmetric phase. In the nematic

and the ferri-electric phases it becomes anisotropic, with its principal axis aligned with

one of the basis vectors.
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(a) (b)

Figure 3.12: Pair correlation function on the lattice in (a) the symmetric phase showing
2π/3 rotation preserved, (b) the nematic phase for m = 2 showing 2π/3 rotation broken.

3.7.2 Pancharatnam Berry Curvature

Further, the PBC in the BZ shows the symmetry breaking of the ground state and hence

characterizes the phases. The magnetic translation symmetry implies that PBC,Bµν(k1, k2) =

Bµν(k1, k2 + 2π/q). This feature can be seen in the S phase but is absent in the ne-

matic and the ferrielectric phase, thus reflecting the breaking of the translational sym-

metry in latter cases. The preservation of inversion symmetry implies Bµν(−k1,−k2) =

Bµν(k1, k2). This feature is seen in the symmetric and the nematic phase while is absent

in the ferrielectric phase suggesting breaking of the inversion symmetry in the latter case.

We plot the PBC in the BZ for q = 3 in Fig 3.13, showing the spontaneous breaking of

the translational and rotational symmetries for the nematic and the ferrielectric phases

and the breaking of inversion symmetry in nematic phase.

Hence, the interaction induced charge ordering leads to various complex phases which

break the symmetries of the system. Some of these first order Landau transitions are

accompanied by a change in the Hall conductivity. In the following chapter we will

discuss the effect of interaction on the Hofstadter butterfly.
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Figure 3.13: Plots for B(k1, k2) in the Brillouin zone for (a) V = 2 < Vc1(i.e. S phase)
(b) Vc1 < V = 3 < Vc2(i.e. nematic phase) and (c) V = 7 > Vc2(i.e. ferrielectric phase).
In the symmetric phase, we see Bµν(k1, k2) = Bµν(k1, k2 + 2π/3) thus preserving the
translational symmetry here which is absent in the nematic and the ferrielectric phase.
Bµν(−k1,−k2) = Bµν(k1, k2) for the symmetric phase and nematic phase thus preserving
the inversion symmetry here which is absent in the ferrielectric phase.
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Chapter 4

Fractal nature of the Hofstadter

Butterfly in the presence of interactions

In this Chapter, we discuss the effect of the interactions on the fractal nature of the Hofs-

tadter butterfly [7,62,74,75]. Here we consider all values of flux of the form φ/φ0 = p/q

where p, q are integers and are coprime to each other for q = 3, · · · , 20. As seen from

the previous chapter, for the case where the flux per plaquette is 1/3, interactions can

lead to phases with broken translational symmetry which modify the energy spectrum

and change the bandwidth and the band gap. Some of these transitions are also accom-

panied by the change in the topology of the bands. Here in this chapter, we study the

effect of interactions for the cases with values of flux per plaquette of the form p/q and

analyze whether such transitions are restricted to φ/φ0 = 1/3 or extend to other values of

flux. We also study the effects of the interaction induced transition to symmetry broken

phases on the fractal structure of the Hofstadter butterfly. This chapter also includes the

description of the Landau fan diagram in the presence of interactions and the effect of the

topological transitions on it. These analyses are done in order to attempt to answer the

question of the effects of interaction on the fractal structure of the Hofstadter butterfly.

To solve this interacting problem, we use mean field approximation discussed in
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Chapter 2 and solve the self-consistency equations for a lattice with 30 × 30 magnetic

unit cells by fixing the number of particles. We solve these self consistency equations for

the cases of filled bands only.

In this Chapter, we first elaborate on the non-interacting Hofstadter butterfly and then

illustrate the effect of interactions on it.

4.1 Hofstadter butterfly of the non-interacting Honey-

comb lattice

The fractal structure of the Hofstadter butterfly is a consequence of the combined effect

of both the magnetic field and the periodic potential on a 2D electron system such that the

two independent length scales: the lattice periodicity and the magnetic length, are com-

parable. This phenomenon has already been discussed in Chapter 1. The fractal structure

of the Hofstadter butterfly is seen when the flux per plaquette is plotted with respect to the

single particle energy spectrum of the lattice in the presence of a magnetic field. Fig. 4.1

shows the Hofstadter butterfly for the honeycomb lattice in the absence of interactions.

This Hofstadter butterfly can be considered to have two important aspects: the self simi-

larity of the Hofstadter butterfly diagram and the topology at each of the fractal gaps of

the Hofstadter butterfly satisfying the Diophantine equation. These topological invariants

when plotted with respect to the number of particles per unit cell and magnetic flux per

plaquette give the Landau fan diagram. We explain both the plots explicitly below.

4.1.1 Energy-flux plot

The Hofstadter butterfly can be divided into many regions so as to understand its recursive

self-similar pattern [62, 66] as done by Hofstadter on the square lattice [2]. For the non-

interacting case, the energy spectrum, for any value of flux per plaquette, lies in the range
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Figure 4.1: Hofstadter butterfly for the honeycomb lattice. Here the x-axis represents the
single particle energy E and y-axis is the magnetic flux per plaquette φ of form p/q. In
this plot q ≤ 20.

E ∈ (−3, 3). We consider the plot in Fig. 4.1 as the unit cell.

The unit cell is divided into two regions: the central block denoted C and the side

block labeledD, as shown in Fig. 4.2. The blockD can be further divided into two blocks

M and L. Any portion of the butterfly diagram outside these blocks are the gaps in the

energy spectrum and hence there are no states corresponding to these gaps. In Fig. 4.2,

we show the subcells in the C block, for example: C block has · · · , C−1, C0, C1, · · ·

subcells. We will see that the whole unit cell lies in each of these subcells of the C block.

To explain this skeleton diagram, we consider values of φ of the form 1/q and 1−1/q

for q ≥ 2 as ‘pure cases’ . Here q is an integer. The skeleton of the Hofstadter butterfly,

shown in Fig. 4.2, is constructed by joining the energy spectrum corresponding to these

particular values of flux per plaquette. The description of the skeleton is given below:
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Figure 4.2: The skeleton diagram showing blocks C and D consisting of energy spec-
trum apart from the central portion. The subcells in the central portion are denoted as
· · ·C−1, C0, C1, · · · .

• Connect the outer edges of qth and (q + 1)th band of neighboring pure cases for

q ≤ 2. This forms a huge box. This box is denoted as the C block.

• Connect the right outer edges of q−1th band of neighboring pure cases and the left

outer edges of the lowest band of neighboring pure cases for q ≤ 2. This forms a

huge box. This box is denoted as the D block.

The whole unit cell in a compressed form and with some rotation is present inside each

of the C subcells which can be further divided into subsubcells and again the whole unit

cell structure is present inside these subsubcells and this continues. Thus, it gives rise to

a self similar fractal like pattern.

We can further find the recursive relation describing the recursive pattern in these

subcells. In each of these subcells, there is a local variable defined in terms of the variable
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of the parent cell. This local variable behaves like φ in the unit cell and the energy

spectrum of the unit cell is repeated in these subcells. Therefore, each subcell behaves in

the same way as the unit cell and thus the D and C blocks can be constructed in each of

these subcells.

Let φ be the variable of the parent cell and φ′ be the local variable in a subcell.

Assuming that φ ≤ 1/2 and defining N as N = [1/φ] where [x] stands for the greatest

integer less than or equal to x, the recursive relation between φ and φ′ is given by

• φ =
1

N + φ′
, in C chain for φ ≤ 1/2,

• 1− φ =
1

N + φ′
, in C chain for φ ≥ 1/2,

Thus, even the local variable φ′ has values in [0, 1] like the flux in the unit cell.

4.1.2 Landau fan diagram

As mentioned earlier in Chapter 1, each gap in the Hofstadter butterfly can be charac-

terized by two topological invariants (tr, sr) which are integers. As per Eq. (1.4), these

integers satisfy the Diophantine equation [74, 76]

n/n0 = trφ/φ0 + sr. (4.1)

We can also write the Diophantine equation in terms of the rth gap.

r = trp+ srq. (4.2)

Here r labels the gap and the flux passing per plaquette is φ/φ0 = p/q. Number of

particles per unit cell, n/n0 = r/q (see Chapter 1). tre
2/h = −σH where σH is the

Hall conductivity at the rth gap and sr is the change in the electron density when there

is an adiabatic change in the periodic potential [76]. The plot of the Hall conductivity
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with respect to the number of particles per unit cell and the magnetic flux passing per

plaquette is called the Landau fan diagram. Fig. 4.3 shows the Landau fan diagram for

the non-interacting case.
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Figure 4.3: Landau fan diagram for the non-interacting case. In this figure the colorbar
is restricted to values from −8 to 8 for convenience in plotting. This Landau fan diagram
is for q ≤ 20.

In Fig. 4.3, the points with the same Hall conductivities can be joined to give a straight

line which when extrapolated meets the x-axis at an integer point. This intercept which

is an integer gives the value of sr whereas the slope gives the value of tr. In this figure

the colorbar is restricted to values from −8 to 8 for convenience in plotting though the

maximum value of Chern number can be very high depending on the maximum value of

q.
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4.2 Non-interacting Hofstadter butterfly for

q ≤ 20

We have solved the interacting problem for q ≤ 20. In this section, we will show that

this range of q in the non-interacting case is sufficient enough to have a basic idea of the

fractal structure of the Hofstadter butterfly and see the self similarity in the plot atleast

for one recursion.

4.2.1 Energy-flux diagram
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Figure 4.4: Hofstadter butterfly for the honeycomb lattice where the energy spectrum is
plotted for the flux per plaquette in the range(a) (0, 1) and (b) (1/3, 1/2). Fig. 4.4b is the
plot of the Hofstadter butterfly in C0 subcell.

To further understand the self-similarity of the Hofstadter butterfly, let us consider the

C0 subcell with flux φ in the range (1/3, 1/2). In this subcell, we can construct C block

and the side block D of the energy bands as can be seen in Fig. 4.4b. Fig. 4.4a is the

Hofstadter plot for the flux per plaquette of form p/q and q ≤ 20 showing the C block

and the side block D. Fig. 4.4b shows the Hofstadter plot in the C0 subcell of Fig. 4.4a

with the flux per plaquette in the range (1/3, 1/2) showing the C block and the side block
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D. Here, using the recursive relations discussed for C block, we see that inside the C0

subcell, φ′/φ0 ∈ (0, 1). For example, for φ = 2/5, φ′ = 1/2; φ = 3/7, φ′ = 1/3;

φ = 3/8, φ′ = 2/3 and so on. In Fig. 4.4b, we see that in the C0 subcell, the energy

spectrum has four bands for flux φ′/φ0 = 1/2, six bands for flux φ′/φ0 = 1/3 and so on

for other values of flux φ′/φ0. The band gaps are positioned in a similar fashion as the unit

cell in Fig. 4.4a. Hence, the energy spectrum of the unit cell can be seen to be repeating

in the subcell. To further seeing the recursion inside these subcells and finding the whole

unit cell inside the subcell, we need to plot the Hofstadter butterfly for even lower values

in flux per plaquette with larger value of q. For the limit of flux considered with q ≤ 20,

the Hofstadter butterfly diagram gives the basic idea that the recursive relation is valid

and we get a self-similar fractal structure.

4.2.2 Landau fan diagram

The second aspect of the Hofstadter butterfly i.e. the topological invariants characterizing

the fractal and obeying the Diophantine equation can easily be seen for any value of q.

Fig. 4.3, shows the non-interacting Landau fan diagram for q ≤ 20.

Here as discussed before, the slope of the straight lines give the value of tr. The

intercepts of these lines are integers which give the values of sr. In this figure the colorbar

is restricted to values from −8 to 8 for convenience in plotting though the maximum

value of total Chern number of bands filled is 18. Hence, q ≤ 20 is enough to show

and analyze the Landau fan diagram and realize that these topological invariants indeed

satisfy the Diophantine equation.
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4.3 Hofstadter Butterfly in the presence of interactions

The interacting problem, as mentioned earlier, is solved using mean field approximation

here. As seen in previous Chapter, there are two types of magnetic unit cell choices for

q = 3. On increasing q, the number of magnetic unit cell choices increases and hence is

difficult to consider all the choices and solve the self consistency equations for q ≤ 20.

For the non-interacting case, when the translation symmetry is not broken, the choice of

unit cell is irrelevant. For the interacting case, the choice of unit cell matters. It deter-

mines the pattern of the translation symmetry breaking. With increasing q, the number

of distinct magnetic unit cell choices increase and it is not feasible to solve all the possi-

bilities numerically. Here we assume the unit cell choice to be the linear choice i.e. unit

cell choice I and solve the self consistency equations for this choice for the cases of fully

filled bands. There could be phases with other patterns of translation symmetry breaking

with lower energy and they could appear at lower values of the interaction strength. Our

analysis thus underestimates the effects of the interactions.

4.3.1 Hofstadter butterfly in symmetric phase

As discussed before, there is always a scaling solution satisfying the self consistency

equations and when the energy of this mean field solution is the lowest, we find the sys-

tem in the symmetric phase. Fig. 4.5 shows the Hofstadter butterfly in the symmetric

phase when the energy is restricted to half-filling. Due to particle hole symmetry, the

other half of the energy- flux plot is just the mirror reflection of this plot. In this phase,

the single particle energies just get scaled. But, these scalings are not uniform and de-

pend on the bands filled. However, the band gap never closes and from Fig. 4.5 we see

that the whole fractal structure of the Hofstadter butterfly remains intact. The recursive

relations for the non-interacting case still remain valid for the symmetric phase. The plot

can be divided into subcells in the C and D blocks in the energy spectrum in a similar
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Figure 4.5: Hofstadter butterfly for the honeycomb lattice in the symmetric phase. Here
the energy spectrum is plotted only till half filling.

fashion as discussed in the non-interacting case. The recursive relation in the C block is

φ =
1

N + φ′
for φ ≤ 1/2, and the C block is φ =

1

N + φ′
for φ ≥ 1/2. The energy

spectrum similar to the unit cell in the Hofstadter plot is seen in each of the subcells of

the Hofstadter butterfly for the symmetric phase.

As the ground state of the symmetric phase is same as that of the non-interacting

case, the Hall conductivity at each fractal gap is the same as that of the non-interacting

case. Therefore, the Landau fan diagram remains completely unchanged in the symmetric

phase.

4.3.2 Effect of interactions on the Hofstadter butterfly

Here we have solved the self consistency equations for the interaction strength V = 1, 2

and V = 4 and find the ground state of the system with different values of flux per
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plaquette of the form φ = 2πp/q.

As we solve the self consistency equations only for the cases of filled bands, to under-

stand the effect of the interactions on the Hofstadter butterfly, we must plot the magnetic

flux per plaquette with respect to the maximum energy of the band for the non-interacting

case and if this plot shows the self-similar structure then we can compare it with the inter-

acting case and study the effect of the interactions on the fractal structure of the Hofstadter

butterfly. The self consistency equations are solved only for filled bands upto half filling

since the remaining empty bands in the upper half when filled will give the same solutions

for the self consistency equations as the lower half due to particle hole symmetry.

Fig. 4.6a is the plot for flux per plaquette versus the maximum energy of each band

for the non-interacting case. The plot is restricted to half-filling here. As can be seen
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Figure 4.6: Hofstadter butterfly for the honeycomb lattice in the absence of interaction
plotted by taking the maximum energy as the x-axis instead of the whole energy spectrum
for (a) flux in the range (0, 1) and the maximum energy plotted till half-filling. (b) flux in
the range (1/3, 1/2) and maximum energy in the range [-1,1].

from Fig. 4.6a, the recursive relation for the non-interacting case with the full energy

spectrum is also valid for the Hofstadter butterfly plot with maximum energy. Fig. 4.6b

is the plot of the Hofstadter butterfly in the absence of interaction for the flux in the range

(1/3, 1/2) in the C0 of the C block. We see that the unit cell of the Hofstadter butterfly
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with C and D blocks are reflected here.

Now we study the effect of the interaction on Fig. 4.6a. The plot for flux per plaquette

versus the maximum energy of each band is given by Fig. 4.7a for V = 1, Fig. 4.7c for

V = 2 and Fig. 4.7d for V = 4. As seen from Fig. 4.7a and Fig. 4.7b, for V = 1,

the fractal structure is almost preserved except at the end of the plot. But for V = 4, a

larger portion of the fractal structure has been destroyed compared to V = 1 as seen from

Fig. 4.7d. The fractal nature of the Hofstadter butterfly disintegrates and we don’t find

any self-similar recursive relation in Fig. 4.7. In the presence of interactions, we see that

the recursive relation valid for non-interacting case is no more valid. Hence, the fractal

nature of the Hofstadter butterfly diagram is erased out.

The disintegration of the fractal structure can be understood as a result of the transi-

tion to the phases with broken translational symmetry. The bandgap and the bandwidth

change and hence is reflected in the change in the positions of the fractal gaps in the Hof-

stadter butterfly. As the interaction strength increases more number of phase transitions

are seen and hence larger amount of the fractal structure is erased out. This results in the

non-validity of the recursive relation in Fig. 4.7.

4.3.3 Effect of interaction on the Landau fan diagram

Further, the effect of these phase transitions due to the interaction can be studied from

the Landau fan diagram shown in Fig. 4.8. Fig. 4.8a is the Landau fan diagram in the

presence of interaction of strength V = 1, Fig. 4.8b is the Landau fan diagram in the

presence of interaction of strength V = 2 and Fig. 4.8c is the Landau fan diagram in the

presence of interaction of strength V = 4. In Fig. 4.8a, though most of the points with

the same Hall conductivities can be joined in a straight line but there are some points in

this line which have different Hall conductivities. But in Fig. 4.8c, the points with the

same Hall conductivities cannot be joined to form a straight line as most of the points are
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Figure 4.7: Hofstadter butterfly for the honeycomb lattice in the presence of inter-
action plotted by taking the maximum energy as the x-axis for the flux in the range
(1/20, 19/20) for (a) V = 1, (c) V = 2 and (d) V = 4. (b)Hofstadter butterfly for
the honeycomb lattice in the presence of interaction plotted by taking the maximum en-
ergy as the x-axis for the flux in the range (1/3, 1/2) for V = 1. The maximum energy
is plotted till half-filling

scattered. This is due to the topological transition accompanied with the Landau phase

transitions. Thus, Fig. 4.8 suggests that more number of topological transitions are seen

as the interaction strength is increased. The maximum value of the Hall conductivity

considering all filled bands for all values of flux per plaquette of the form p/q with q ≤

20, decreases with the increase of interaction strength. For example, in the absence of

interactions, the maximum value of the Hall conductivity is 18e2/h, while for case of
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V = 1 it is 15e2/h and for V = 4 the maximum value of the Hall conductivity is 8e2/h.

Here we just plot the Hall conductivities for bands with non-trivial topology i.e. re-

moving the points with zero Hall conductivity. We can see that most of the region near

half filling have a topological transition as shown in Fig. 4.8. From Fig. 4.8, we see that

the portion of the Landau fan diagram with zero Hall conductivity increases with increase

in the interaction strength. Hence, from Fig. 4.8, it is clear that the region of the fractal

structure erased out increases as the interaction strength is increased i.e. more number

of phase transitions to translational and rotational symmetry broken phases is seen as the

interaction strength is increased. These Landau transitions are accompanied by topologi-

cal transitions suggesting the absence of the signal of fractal structure in the Landau fan

diagrams. In addition, on using the same Diophantine equation as for the non-interacting

case, sr no longer remains an integer. For example, for V = 4 and r = 2, t2 = 0, so

s2 = 2/3. Hence, the Diophantine equation used for the non-interacting case is no more

valid in the presence of interactions.

Thus, we see that the phase transition to a translational and rotational symmetry bro-

ken phase is not just restricted to the flux 1/3 rather is present for other rational values

of the flux too. The translational and rotational symmetry breaking leads to variation

in the energy spectrum of the system by changing the band gap and band width. This

change in the energy spectrum is reflected in the Hofstadter butterfly where the recursive

relations are no longer valid and the fractal structure disintegrates gradually as the inter-

action strength is increased. Many of these phase transitions are also accompanied with

the change in topology which is reflected in the Landau fan diagram. Therefore, both the

energy-flux plot and the Landau fan diagram suggest that the fractal structure gets erased

out gradually in the presence of interactions and the amount of the fractal structure erased

increases with the interaction strength.

72



Chapter 4. Fractal nature of the Hofstadter Butterfly in the presence of interactions

−8
−7
−6
−5
−4
−3
−2
−1
1

2

3

4

5

6

7

8

0 0.5 1 1.5 2

r/q

0.1

0.2

0.3

0.4

0.5

φ

(a)

−8
−7
−6
−5
−4
−3
−2
−1
1

2

3

4

5

6

7

8

0 0.5 1 1.5 2

r/q

0.1

0.2

0.3

0.4

0.5

φ

(b)

Figure 4.8: Landau fan diagram in the presence of interaction after removing the points
where the Hall conductivity is zero for interaction strength (a) V = 1, (b) V = 2 and (c)
V = 4.
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Figure 4.8: Landau fan diagram in the presence of interaction after removing the points
where the Hall conductivity is zero for interaction strength (a) V = 1, (b) V = 2 and (c)
V = 4.
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Chapter 5

Signal of Pancharatnam Berry

curvature: Rotating condensates

In this Chapter we propose a method of detecting the Pancharatnam Berry (PB) curva-

ture in optical lattice systems using time of flight experiments. Previous works [77–79]

have suggested various ways to probe the PB curvature but the method suggested here is

different from these works.

The PB curvature characterizes how the phase of the single-particle wave functions

twist over the BZ. The semiclassical Sundaram-Niu equations [22, 30] provide a clear

physical interpretation of PB curvature as a magnetic field in momentum space. In the

presence of an external force, this field induces the so-called anomalous velocity perpen-

dicular to the external force. This leads to a Hall conductance even in the absence of an

external magnetic field, a phenomenon dubbed the anomalous Hall effect [21]. The value

of the Hall conductance is equal to the PB curvature field integrated over the occupied

states.
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5.1 Probing the PB curvature

A model Hamiltonian, H , in an optical lattice experiment is given by Eq. (5.1). At time

T = 0, the model Hamiltonian in the presence of a harmonic trap is given by

H0 = H +
∑
i

(γxx
2
i + γyy

2
i )ni (5.1)

Here γx and γy are the strengths of the harmonic trap in the ê1 and ê2 directions (the basis

vectors of the lattice), while xi and yi represent the spatial coordinates of the ith lattice

site which are measured in terms of the lattice parameter a.

Using time of flight experiments which are the standard methods of imaging in opti-

cal lattice systems, the density profiles of the atomic cloud is studied. Here, all the ex-

ternal potentials are switched off suddenly following which the atomic cloud is allowed

to expand ballistically, the atoms now behaving as free particles. Images of the cloud at

various intervals of time show how the density distribution changes as the cloud expands.

If the system initially had non-zero PB curvature, then the cloud rotates along with ex-

panding thereby providing a mean to probe the PB curvature. To understand the density

profiles we first review the Sundaram-Niu[30] equations (SNE) and then the Thomas-

Fermi approximation [6] for a many-fermion system to address the problem of rotating

condensates.

The Sundaram-Niu equations [30] govern the classical dynamics of a wave packet

restricted to the band with width in momentum space small compared to that of the BZ

and width in real space small compared to the applied external field. These wave packets

therefore have a width in real space that is large compared to the lattice spacing but small

compared to the scale of the variation of the external fields. The equation of motion of
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the Bloch electron for two dimensional systems in the absence of a magnetic field are

ẋi =
1

~
∂ε(k)

∂ki
+ B(k)εij k̇j (5.2)

~k̇i = −∂V (x)

∂xi
(5.3)

where ε(k) is the energy in the absence of external fields, B(k) the PB field, V the ex-

ternal potential and εij is the Levi civita symbol. Thus B(k) induces a force-dependent

anomalous velocity.

The Sundaram-Niu equations describe the wave-packet dynamics for a single par-

ticle. In optical lattice experiments, the many body dynamics of the atoms need to be

considered for which we use the Thomas-Fermi approximation. This approximation as-

sumes that the ground state is described by a phase-space particle density that incorpo-

rates the Pauli exclusion principle. The number of fermions in a phase-space volume

d2xd2p around the point (x, p), ρ̃(x, p), can be written as

ρ̃(x, p) =
1

(2π~)2
Θ(εF − h(x, p)) (5.4)

where εF is the Fermi energy level and h(x, p) is the single particle Hamiltonian given by

h(x, p) = ε(p) + V (x). (5.5)

The initial particle density of the cloud can be calculated from Eq.(5.4). We now allow

the cloud to expand freely and by using time of flight experiments the density at various

times can be computed using Liouville’s theorem.

The Thomas-Fermi approximation can be extended to multiple bands if the bands

are well separated and if the applied external potential varies slowly enough to prevent

interband transitions. Thus, the total phase space density is the sum of the phase space
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densities for first band and second bands. Additionally the Thomas-Fermi approximation

fails when there are Dirac points in the system.

The above formalism can be applied to multi-band model where the bands are well

separated. Here we consider a model Hamiltonian, Kitaev Hubbard model, and the results

are discussed in the following section.

5.2 Kitaev Hubbbard Model

The model Hamiltonian [80, 81] is

H = −
∑
〈ij〉

C†iσ
(tI + t′σα)σσ′

2
Cjσ′ + h.c. (5.6)

describes a system of fermions on the honeycomb lattice. i labels the sites of the hon-

eycomb lattice, σ the spin and α the nearest neighbor link. There is a spin-independent

hopping term with strength t and a time-reversal breaking, spin-dependent hopping with

strength t′. By diagonalizing the single particle Hamiltonian in the momentum space, we

get the energy spectrum shown in Fig. 5.1 for t′ = 0.5t and Fig. 5.2 for t′ = t. These

energy bands have non-trivial topology. For well separated bands, the Hall conductivity,

σH , for the lowest band is −e2/h and at half filling σH = 0. From particle hole symme-

try, the Hall conductivities when three bands are filled is σH = −e2/h and when all the

bands are filled, σH = 0. The second and third bands touch at the Dirac points. To cal-

culate the Hall conductivities at half filling, we break the inversion symmetry by adding

a staggered mass term to open up the gaps at these Dirac points. A scheme to realize

the spin-dependent hopping in cold atom systems was proposed by Duan et al [82] by

considering 40K atoms to form an atomic cloud in the optical lattice.

The formalism described in the previous section to probe the PB curvature is applied

to this model but with broken inversion symmetry to avoid the degeneracy due to Dirac
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Figure 5.1: Plot for energy E(k1, k2) vs k2 for t′ = 0.5t.

Figure 5.2: Plot for energy E(k1, k2) vs k2 for t′ = t.

points. A slowly varying external potential is applied. We use the same parameters as

in [83]. The system is confined by a rotationally invariant external harmonic potential
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V (R), where

V (R) = γxX
2 + γyY

2 (5.7)

and γx,y = mω2
x,yλ

2/6 and X, Y are the dimensionless spatial coordinates of the lattice

sites. Here λ = 1064 nm is the wavelength of the laser beam, ωx = ωy = 40πrad/s is

the trapping frequency of the potential, m is the mass of the 40K atoms and t/h = 580

Hz is the nearest neighbour hopping parameter. A staggered mass term W/h = 0.1 Hz is

added. The Hamiltonian is

H0 = −
∑
<ij>

C†iµ
(tI + t′σα)µν

2
Cjν +

W

2

∑
i∈A

ni

− W

2

∑
i∈B

ni +
∑
i

(γxx
2
i + γyy

2
i )ni (5.8)

The formalism is applied for t′ = 0.5t and t′ = t.

From Eq. 5.4 and Eq. 5.5, we calculate the number density of the cloud with distance

R. Fig. 5.3 shows the variation of the number density of the cloud with distance R for

Figure 5.3: Particle density plot as a function of R for t′ = 0.5t and t′ = t.

both t′ = 0.5t and t′ = t. At R = 0 it reaches a maximum since the trap potential

is zero there. Away from R = 0, the total energy of each of the bands increases by
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V (R), reducing the number of occupied states lying below µ = 0 and thus decreasing the

density. For t′ = t, there is a plateau where the density has a constant value of 1 as seen

in Fig. 5.3. The plateau occurs due to the energy gap between the first and the second

band. The size of the plateau decreases depending on the size of the gap between the

two bands. Below t′ = 0.717, the first and the second bands overlap and hence we see a

continuous change in the density as seen from the plot for t′ = 0.5t.

In Fig. 5.4, we see that the PB phase of the occupied bands is zero at the centerR = 0,

since the Chern number of the contributing bands are equal and opposite. Away from the

center the trap potential reduces the number of occupied states below µ = 0, decreasing

the PB phase as a consequence. A minima is reached when the only contributing band is

the lowest band after which the PB phase increases and reaches a value of zero when all

the bands are empty. For t′ = t, the PB phase also shows a plateau similar to that of the

density whereas for t′ = 0.5t the PB phase changes continuously. For t′ = t, there are

kinks where the PB phase is lesser than −1 and greater than 0. The kink appears because

Figure 5.4: (color online) PB phase as a function of R for t′ = 0.5t and t′ = t.

the PB phase of the band is not entirely positive when the Chern number is +1 and vice-

versa. To illustrate this we plot, in Fig. 5.5, the PB phase of first band as a function of the

filling factor.

From the Thomas Fermi approximation, the velocity of the cloud can be computed
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Figure 5.5: PB phase as a function of filling for t′ = 1. The PB phase is not negative for
all values of the filling. For some values it is positive reflecting that the PB curvature of
the band takes both positive and negative values.

and is shown in Fig. 5.6. The velocity is zero where the PB phase is zero. The direction

of the velocity at the boundary changes due to the change in the sign of the PB phase as

shown in Fig. 5.5. From the velocity, the total angular momentum density per particle L

Figure 5.6: Velocity vector measured in m/s as a function of X and Y for t′ = 0.5t and
t′ = t.

can be computed and is found to be ≈ 12~ for t′ = t and ≈ 6~ for t′ = 0.5t. This value

is large compared to the value obtained in bosonic optical lattice experiments [84], and

thus should be observable in such experiments.
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Figure 5.7: Density profiles as a function of X, Y for t′ = t at different times. Lines are
drawn in the above figures to show the rotation of the cloud as a function of time due to
non-zero PB curvatures.

The evolution of the cloud density after the traps have been switched off can be com-

puted using Liouville’s theorem. At various times the cloud rotates as it expands as seen

in Fig. 5.7. This rotation is a signal of non-zero PB curvature. The cloud also inherits the

hexagonal structure of the underlying honeycomb lattice as it expands [81].
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Chapter 6

Summary and Conclusion

In this thesis, we have studied the effect of interactions in the Hofstadter regime of the

honeycomb lattice. Our results show that interactions induce interesting and complex

phases in the Hofstadter regime of the honeycomb lattice. To summarize our results,

we show that the nearest neighbor repulsive interaction induces a charge ordering, as

we intuitively expect. At strong interactions, translation symmetry broken phases with

anisotropic charge distributions become energetically favorable. The anisotropy in the

particle density can be characterized by quadrupole and dipole moments.

The first order transition, for filling m = 1, 2, from the symmetric to the nematic

phase is accompanied with a change of topology which is reflected in the change in

the Hall conductivity. Though the Hall conductivity is zero in the nematic phase, for

the m = 2 filling, the filled bands individually have non-trivial topology with non-zero

Chern number. Some insight for the mechanism of this transition comes from examining

the magnitudes of the bond order parameters, χ〈αa,βb〉. The 2D lattice looks like a set of

weakly coupled 1D ribbons or clusters. In the extreme limit of decoupled ribbons, the

Chern number is zero and hence will remain so for weak coupling as well. So a Chern

number change accompanies the first order nematic transition when the weakening is

significant.
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The anisotropy and the spatial extent of the pair correlations are characterized by the

quantum metric averaged over the BZ. Nematic phases in homogeneous quantum Hall

systems have previously been theoretically studied [43–46] and experimentally observed

[47–49] in fractional quantum Hall systems. Our results show that they occur in the

Hofstadter regime also. This motivates us to investigate the structure of the anisotropic

phases by studying pair correlations from the point of view of the quantum geometric

approach to insulating states [24]. The shape and the extent of the pair correlations can

be exactly related to the quantum metric in the momentum space [24], averaged over the

Brillouin zone (BZ) [73]. We give an alternate proof of the relation between momentum

space quantum metric and the pair correlation function on the lattice system. This result

relates the momentum space quantum metric of systems in a periodic potential to the real

space metric introduced by Haldane [44] in homogeneous quantum Hall systems.

We have further studied the effect of interactions on the fractal structure of the Hof-

stadter butterfly which is understood as arising from the interplay between the two inde-

pendent length scales, the lattice periodicity and the magnetic length. We have shown

that the interaction induces charge ordering which breaks the translational symmetry and

thus changes the periodicity. The energy-flux plot shows that the fractal structure gets

gradually erased out as the interaction strength is increased. This is further confirmed

from the Landau fan diagram which is the plot of the Hall conductivity with respect to

the flux passing per plaquette and the number of particles per unit cell. In the Landau

fan diagram for the non-interacting case, the Hall conductivities with same values can

be joined by a straight line which converges to an integer. The slopes of these lines give

the topological invariant related to the Hall conductivity and the intercept is the other

topological invariant which together satisfy the Diophantine equation. In the presence of

interactions, it is not possible to join the points with the same Hall conductivities in a

straight line as the Hall conductivities are scattered. Thus, the Landau fan diagram for
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the interacting case also signals that the fractal structure of the Hofstadter butterfly disin-

tegrates. On using the same Diophantine equation as for the non-interacting case, we see

that sr becomes a fraction. Hence, this Diophantine equation used for the non-interacting

case is not valid for the interacting case.

We also propose a method to probe the Berry curvature in the optical lattice system.

The confining trap breaks particle-hole symmetry and makes the PB curvatures of the

bands observable. We have shown that the effect of this is seen in the rotation of the

expanding cloud when the trap is removed. For realistic atomic and trap parameters, we

have shown that this provides a clear signal in time-of-flight experiments.

As we always consider filled bands with Fermi energy lying in a gap, hence mean field

theory is a good approximation. It will be interesting to see whether the complex phases,

we find in presence of interactions, survive if we include mean field fluctuations. Solving

this interacting problem by exact diagonalization will be a next step to this problem.
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Appendix A

Dipole moment and Quadrupole

moment under the rotational and

inversion operators

Under inversion symmetry transformation

Î†P̂ µÎ = −P̂ µ

and

Î†Q̂µν Î = Q̂µν

. In the presence of inversion symmetry, Î|Ψ〉 = |Ψ〉 where |Ψ〉 is the many body ground

state. Hence, 〈Ψ|Î†P̂ µÎ|Ψ〉 = −〈Ψ|P̂ µ|Ψ〉 and thus, the dipole moment is zero in the

presence of inversion symmetry. Similarly, we can see that the quadrupole moment is un-

affected by the inversion symmetry transformation since 〈Ψ|Î†Q̂µν Î|Ψ〉 = 〈Ψ|Q̂µν |Ψ〉.

Under the rotational symmetry transformation

R†3P̂
µR3 = T µν(2π/3)P̂ ν
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and

R†3Q̂
µνR3 = T̂ µµ

′
(2π/3)T νν

′
(2π/3)Qµ′ν′

. where T µν(2π/3) are the components of a rotation matrix,

T (2π/3) =


−1/2

√
3/2

√
3/2 1/2

 .

Under preserved 3-fold rotational symmetry, R3|Ψ〉 = |Ψ〉. Hence, in the presence of

rotational symmetry, 〈Ψ|R†3P̂ µR3|Ψ〉 = T µν(2π/3)〈Ψ|P̂ ν |Ψ〉. So,

〈Ψ|R†3P̂ xR3|Ψ〉 = 〈Ψ|(−1

2
P̂ x +

√
3

2
P y)|Ψ〉 (A.1)

〈Ψ|R†3P̂ yR3|Ψ〉 = 〈Ψ|(1

2
P̂ y +

√
3

2
P x)|Ψ〉 (A.2)

Similarly, 〈Ψ|R†3P̂ µR3|Ψ〉 = T µν(4π/3)〈Ψ|P̂ ν |Ψ〉 and hence,

〈Ψ|R†3P̂ xR3|Ψ〉 = 〈Ψ|(−1

2
P̂ x +

−
√

3

2
P y)|Ψ〉, (A.3)

〈Ψ|R†3P̂ yR3|Ψ〉 = 〈Ψ|(1

2
P̂ y +

−
√

3

2
P y)|Ψ〉. (A.4)

Subtracting Eq. (A.1) and (A.3), we get 〈Ψ|P̂ x|Ψ〉 = 0 and thus from Eq. (A.1) 〈Ψ|P̂ y|Ψ〉 =

0 and thus the dipole moment is zero in the presence of rotational symmetry.
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Similarly, in presence of rotational symmetry,

〈Ψ|R†3Q̂µνR3|Ψ〉 = T µµ
′
(2π/3)T νν

′
(2π/3)〈Ψ|Qµ′ν′ |Ψ〉, (A.5)

〈Ψ|R†3Q̂µνR3|Ψ〉 = T µµ
′
(4π/3)T νν

′
(4π/3)〈Ψ|Qµ′ν′|Ψ〉 (A.6)

and〈Ψ|R†3Q̂µνR3|Ψ〉 = T µµ
′
(4π/3)T νν

′
(4π/3)〈Ψ|Qµ′ν′|Ψ〉. (A.7)

(A.8)

From these equations, we can see that 〈Ψ|Q̂xx|Ψ〉 = 0 = 〈Ψ|Q̂xy|Ψ〉 = 〈Ψ|Q̂yy|Ψ〉.

Hence, Qµν can be non-zero only if the 3-fold rotational symmetry is broken and P µ

can be non-zero only if both, the 3-fold rotational and inversion symmetries are broken.
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Appendix B

Proof of relation between quantum

metric and pair correlation function

Here we prove the connection between the quantum metric and the pair correlation func-

tion given in Eq. (3.13) in previous section.

The quantum metric has been identified with the localization tensor [24, 29, 85] by

studying the ground state properties of a system described by an electronic Hamiltonian

with an infinitesimal twist or flux term. The metric has been defined as

gµν = 〈R̂µR̂ν〉 − 〈R̂µ〉〈R̂ν〉 (B.1)

=
1

L2

∑
I,α,a,J,β,b

[〈Rµ
Iαac

†
IαacIαaR

ν
Jβbc

†
JβbcJβb〉

− 〈Rµ
Iαac

†
IαacIαa〉〈Rν

Jβbc
†
JβbcJβb〉] (B.2)

where R̂µ =
∑

I,α,aR
µ
Iαac

†
IαacIαa. From here onwards, we denote position α, a together

as C and β, b together as D for convenience. Let us define the connected part of the
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density-density correlation function by GCD(RI ,RJ),

GCD(RI ,RJ) ≡ 〈ρICρJD〉 − 〈ρIC〉〈ρJD〉 ≡ 〈c†ICcICc†JDcJD〉 − 〈ρIC〉〈ρJD〉

≡ 〈c†ICcJD〉δCDδ(RI −RJ) + 〈c†ICc†JDcJDcIC〉 − 〈ρIC〉〈ρJD〉

≡ 〈c†ICcJD〉δCDδ(RI −RJ) + ΓCD(RI −RJ)− 〈ρIC〉〈ρJD〉

≡ 〈c†ICcJD〉δCDδ(RI −RJ)− SCD(RI −RJ). (B.3)

The average metric can then be written as

ḡµν =
1

L2

∑
ICJD

Rµ
ICR

ν
JDGCD(RI ,RJ) (B.4)

=
1

L2

∑
ICJD

Rµ
ICR

ν
JD〈c†ICcJD〉δCDδ(RI −RJ)

− 1

L2

∑
ICJD

Rµ
ICR

ν
JDSCD(RI −RJ)

=
1

L2

∑
IC

Rµ
ICR

ν
ICρIC −

1

L2

∑
ICJD

Rµ
ICR

ν
JDSCD(RI −RJ), (B.5)

where ρIC is the single particle density at position RIC . Considering second term in

Eq. (B.5)

∑
ICJD

Rµ
ICR

ν
JDSCD(RI −RJ)

=
−1

2

∑
ICJD

(Rµ
IC −Rµ

JD)(Rν
IC −Rν

JD)SCD(RI −RJ)

+
1

2

∑
ICJD

(Rµ
ICR

ν
IC +Rµ

JDR
ν
JD)SCD(RI −RJ). (B.6)

Interchanging I ←→ J and C ←→ D simultaneously in SCD(RI −RJ).

SDC(RJ −RI) = SCD(RI −RJ) (B.7)

94



Chapter B. Proof of relation between quantum metric and pair correlation function

So we can write the second term in Eq. (B.6) as

1

2

∑
ICJD

(Rµ
ICR

ν
IC +Rµ

JDR
ν
JD)SCD(RI −RJ)

=
∑
ICJD

Rµ
ICR

ν
ICSCD(RI −RJ)

= −
∑
ICJD

Rµ
ICR

ν
IC [〈c†ICc†JDcJDcIC〉 − 〈ρIC〉〈ρJD〉]. (B.8)

∑
JD c

†
JDcJD =

∑
JD ρJD = N̂ and 〈N̂〉 = N where N is the total number of particles

on the lattice. Hence,

∑
JD

〈c†ICc†JDcJDcIC〉 = 〈c†ICN̂cIC〉 = 〈c†IC [N̂ , cIC ]〉+ 〈c†ICcICN̂〉 (B.9)

As [N̂ , cIC ] = −cIC , therefore,

∑
ICJD

〈c†ICc†JDcJDcIC〉 = −
∑
IC

〈c†ICcIC〉+
∑
ICJD

〈ρIC〉〈ρID〉 (B.10)

Using Eq. (B.10) in Eq. (B.8),

∑
ICJD

Rµ
ICR

ν
ICSCD(RI −RJ) =

∑
IC

Rµ
ICR

ν
IC〈c†ICcIC〉

=
∑
IC

Rµ
ICR

ν
IC〈ρIC〉 (B.11)

So, using Eq. (B.11) in Eq. (B.6),

∑
ICJD

Rµ
ICR

ν
JDSCD(RI −RJ)

=
∑
ICJD

−1

2
(Rµ

IC −Rµ
JD)(Rν

IC −Rν
JD)SCD(RI −RJ) +

∑
IC

Rµ
ICR

ν
ICρIC
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and hence Eq. (B.5) is

ḡµν =
1

L2

1

2

∑
ICJD

(Rµ
IC −Rµ

JD)(Rν
IC −Rν

JD)SCD(RI −RJ)

=
1

L2

1

2

∑
Iαaβb

(Rµ
Iαa −Rµ

Jβb)(R
ν
Iαa −Rν

Jβb)Sαa,βb(RI −RJ). (B.12)

This relation is exact and not restricted to mean field approximation. Here L2 gives the

area of the system.
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Chern numbers at half filling

The single particle mean field hamiltonian for the half filled case describing the CDW

state is given in equation (3.10). The eigenvalue equation can be written as,


∆ F (~k)

F †(~k) −∆




ψA(~k)

ψB(~k)

 = E(~k)


ψA(~k)

ψB(~k)

 (C.1)

where ψA(B)(~k) are q-component column vectors. They can be constructed in terms of

the spectrum of the positive, semi-definite, hermitian matrix, F (k)F †(k). We denote,

F (~k)F †(~k)χn(~k) = ε2n(~k)χn(~k) (C.2)

where, n = 1, . . . , q and we choose χn to be ortho-normalised. The above equation

implies that the eigenvalues of F †(~k)F (~k) are the same, since,

F †(~k)F (~k)
(
F †(~k)χn(~k)

)
= ε2n(~k)

(
F †(~k)χn(~k)

)
(C.3)
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Further, the inversion (two fold rotation) transformation relates F (~k) to F †(−~k),

IF (~k)I† = F †(−~k) (C.4)

where,

I =



0 0 1

0 1 0

1 0 0


(C.5)

consequently, we have εn(~k) = εn(−~k) and

F †(~k)F (~k)
(
Iχn(−~k)

)
= ε2n(~k)

(
Iχn(−~k)

)
(C.6)

The eigenvectors of hMF (~k), ψ±n(~k) corresponding to the eigenvalues E±n(~k) =

±
√
ε2n(~k) + ∆2 are given by,

ψ+n(~k) =


cos θn(~k)

2
χn(~k)

sin θn(~k)
2
Iχn(−~k)

 (C.7)

ψ−n(~k) =


− sin θn(~k)

2
χn(~k)

cos θn(~k)
2
Iχn(−~k)

 (C.8)

where,

cos θn(~k) =
∆√

ε2n(~k) + ∆2

, sin θn(~k) =
εn(~k)√

ε2n(~k) + ∆2

(C.9)

98



Chapter C. Chern numbers at half filling

The Pancharatnam-Berry curvatures of the negative energy bands (occupied at half fill-

ing) are given by B−n(~k) = εij∂iψ
−n†(~k)∂jψ

−n(~k). The Chern numbers are given by,

νn =

∫
k

(
εij sin θn∂iθn

(
Ãnj (~k) + Ãnj (−~k)

)
+

εij

(
sin2 θn

2
B̃n(~k) + cos2

θn
2
B̃n(−~k)

))
(C.10)

where the integral is over the reduced Brillioun zone, Ãni (~k) ≡ −iχn†(~k)∂iχ
n(~k) and

B̃n(~k) = εij∂iÃn(~k). Since, Ãni (~k) = −Ãni (−~k), B̃n(~k) = B̃n(−~k) and θn(~k) =

θn(−~k), we get our final result,

νn =

∫
k

B̃n(~k) (C.11)

Thus, since χn(~k) is independent of ∆, so are the Chern numbers.
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