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Synopsis

In this thesis, we develop and apply a formalism applicable to the study of active slender

bodies in the micro-hydrodynamic regime. Considering elasticity of the slender body,

Brownian motion, activity at the fluid-structure interface and many-body hydrodynamic

interaction, we present a general theory of active filaments. Then, we study the spontan-

eous motion of a minimal active filament which is force-free and torque-tree. Thereafter,

the dynamic response of the active filament in an external field is studied in detail. We

further propose a new method of synthesising a motile micromotor by assembling a pass-

ive elastic filament with an active bead. We conclude the thesis with our study on the

emergent behaviour of active rods near a wall.

In Chapter 1, the micro-hydrodynamics of slender bodies that can autonomously pro-

duce motion in a viscous fluid is introduced. We first provide an overview of those

phenomena often found in biology, followed by recent developments of artificial act-

ive slender bodies that mimic their biological counterparts. We then review emergent

collective dynamics of these bodies. Then we move on to provide a survey of theoretical

advances spurred by these experimental studies. We conclude the section highlighting the

need to develop particulate modelling to fill the gap between successful long-wavelength

theories and experiments.

In Chapter 2, we develop a general theory of active slender bodies in a viscous fluid.

Slender bodies capable of spontaneous motion in the absence of external actuation in an

otherwise quiescent fluid are common in biological, physical and technological contexts.

The interplay between the spontaneous fluid flow, Brownian motion, and the elasticity

of the body presents a challenging fluid-structure interaction problem. We model the
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problem by approximating the slender body as an elastic filament that can impose non-

equilibrium velocities or stresses at the fluid-structure interface. We derive an equation

of motion for such an active filament by enforcing momentum conservation in the fluid-

structure interaction and assuming slow viscous flow. The fluid mediated interaction is

obtained through a discretisation which replaces the continuous filament by a series of

connected beads. These beads are active, have thin yet active boundary layers around

them - which in turn - generate spontaneous hydrodynamic flow. The flow can be com-

puted, to any desired degree of accuracy, by solving Stokes equation through boundary

integral method in the presence of active boundary layers on the surfaces. By further ap-

plying the Kirkwood-Risemann superposition approximation to the solution, we obtain a

simplified form of the equation of motion. This equation of motion forms the basis of our

study of the dynamics of the active filaments in later chapters. Our model provides the

foundation to study collective phenomena in momentum-conserving, Brownian, active

filament suspensions, as we illustrate with a series of experimentally motivated applica-

tions.

In Chapter 3, we present a minimal model for an active filament in a viscous fluid

and study the motion and dynamics of it by varying the strength of activity and boundary

conditions. The filament is constituted by a series of apolar yet active beads, connected by

nonlinear springs. The activity of the beads manifests in the production of spontaneous

fluid flow. This flow can destabilise linear conformation of the active filament beyond

a certain threshold and thus, provide a hydrodynamic route to autonomous motion. We

study such motions of active filaments when they are a) free, b) tethered and c) clamped at

one end as a function of a dimensionless ratio, the activity number AS, which is the ratio

of the active and elastic forces acting locally on the filament. By varying this number, we

observe a series of nonlinear steady states, arising from the complex interplay between

the elasticity of the filaments, activity and fluid flow. In particular, we demonstrate a

2



spontaneous beating motion, which closely resembles the dynamics of a microtubule-

motor assembly, observed in a recent experiment. Other steady states are reminiscent of

motions observed in cilia and flagella. A linear stability analysis is performed to identify

the nature of transitions from a linear quiescent state to states of filament motion. The

system is stable, for any amount of activity, if hydrodynamic interactions are neglected.

This observation highlights the crucial importance of hydrodynamic interactions in the

non-linear dynamics of active slender bodies.

In Chapter 4, conformational dynamics and non-linear responses of an active filament

are studied under a uniform external field. The competition between the flexibility of the

slender body, external driving, internal activity and many-body hydrodynamic interaction

yet another challenging fluid-structure interaction problem. External force and internal

activity coupled with hydrodynamic interaction induce instabilities in both the parallel

and the perpendicular direction to the applied field. Consequently, with the variation of

applied external field and internal activity, while maintaining the structural properties of

the filament, a series of steady states appear. Further by recognising two dimensionless

measures, the activity number AS defined above, and sedimentation number S , we de-

marcate regions of different steady states, characterised by their conformational and dy-

namical properties. We provide a qualitative understanding of the progression of steady

states from a comparison of the hydrodynamic forces and torques due to internal activity

and external driving. Our findings can be verified experimentally in the sedimentation of

active biological filaments and chains of active phoretic beads.

In Chapter 5, we show that a passive semi-flexible filament can be actuated and trans-

ported by attaching an active colloid to its terminus. We study the dynamics of this

assembly when it is free, tethered, or clamped . Linear states are destabilized by buck-

ling instabilities to produce stable states of non-zero curvature and writhe. We demarcate

boundaries of these states in the two-dimensional parameter space representing dimen-

3



sionless measures of polar and apolar activity. Our proposed assembly can be used as a

novel component in the design of micro-machines at low Reynolds number.

In Chapter 6, we present the emergent behaviour of active rods in a viscous fluid in

an unbounded domain and near a wall. Active rods in the micro-hydrodynamic regime

produce spontaneous flow and interact with others hydrodynamically. As a consequence,

in unbounded geometry, a pair of extensile rods attract each other when parallel but repel

when perpendicular; the opposite obtains for the contractile case. These fluid mediated

interactions lead to form assemblies, which are in general autonomously motile and dy-

namic in nature. The presence of no-slip wall modifies the properties of the spontaneous

flow, the resultant hydrodynamic interaction and the dynamical behaviours. Though the

dynamics parallel to the wall remains qualitatively the same, the dynamics perpendicular

to it differs significantly due to the breaking of translational symmetry in the concerned

direction. To elucidate the problem in detail, we successively investigate the dynam-

ics of a single rod, a pair and many of them. Furthermore, the collective dynamics in

unbounded and wall-bounded domains are compared with each other. Our theory and

understanding provide the first crucial step to developing a microscopic theory of mo-

mentum conserving active anisotropic fluids near a wall. We conclude the chapter by

comparing our findings with recent experiments on tri-metallic active rods near a wall

and indicate further directions for the experiment.

In the last Chapter 7, we conclude with a brief summary of our study and directions

for further study.
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Chapter 1

Introduction

The study of the flow produced by bodies immersed in a viscous fluid has a long and dis-

tinguished history going back to the invention of the microscope in the sixteenth century

[1]. The study of the irregular movement of microscopic particles, viewable for the first

time with the invention of the microscope, lay at the heart of the development of a new

field of stochastic processes [2, 3, 4, 5, 6, 7, 8]. While the field continues to develop,

expanding its reach to more complex systems and to areas outside of the traditional do-

main of physics [9], a more recent focus has been to study systems that are driven out of

equilibrium by bodies that consume energy to do work on the fluid [10, 11, 12, 13]. The

field of active matter, now a decade or so old, studies this novel class of non-equilibrium

phenomena.

There are many systems that are driven out of equilibrium by local interaction, across

different length scales. Here, in this thesis, we focus on micron-sized active slender bod-

ies in a fluid environment. Examples are common in the context of biology, engineering

and biotechnology. We introduce the topic below.

1.1 Slender bodies at the microscale

1.1.1 Examples from the natural world

Micron-sized slender bodies that can move autonomously or can be actuated by internal

driving in a fluid, form the basis of motility at microscopic world. Prokaryotic bacteria

employ whip-like appendages, known as flagella, to swim in a viscous fluid [14, 13].
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6 Introduction

Structurally these appendages are made of parallel microtubules tracks which are covered

with membrane and attached to the cell body by a hook. The hook is continuously be-

ing rotated by an internal motor [15]. In the process, biological fuel such as adenosine

triphosphate is consumed. The specific mechanisms of swimming vary from microbe

to microbe, depending critically on the structure of the bodies, number of flagella, their

relative positions and the medium they inhabit. Eukaryotic cells also swim by a continu-

ous flapping of their flagella. On the contrary, the structure of eukaryotic flagella, cilia

and spermatozoa are quite complex and the mechanism that initiates the actuation is also

different. The spontaneous motions in those systems are achieved by motors walking

on the microtubule tracks. This mechanism initiates sliding between microtubule tracks

which in competition with inextensible elastic structure produces autonomous actuation

[16, 17, 18, 19, 20, 21]. Such autonomous actuation is also of crucial importance in

the functioning of ciliary layers, which push dust particles along with mucus out of the

trachea and moves the ovum to target. In recent years, there is a fresh interest to develop

autonomously motile bodies, that can perform similar tasks in-vitro and in micro-fluidic

devices [22, 23, 24, 25, 26].

1.1.2 Examples from bio-mimetics

These fascinating autonomous appendages have inspired many experimental studies aimed

at understanding the detailed mechanism and in developing micron-scale slender bodies

that can perform similar work. In the first theme of studies, researchers dissect the ap-

pendages from the bodies, their internal structures and study them in the presence of fluid

enriched with biological-fuel and motors. Few of those remarkable experiments include

spontaneous coordinated wave motion of a headless bovine spermatozoa in a medium

with ATP [27]; planar asymmetrical beating motion in a demembranated flagellar struc-

ture in a calcium-rich solution [28]; more recently, researchers have managed to assemble
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microtubules in a motor-filled solution, which shows a remarkable cilia-like beating [23].

In the second theme of studies, researchers have achieved motility by injecting energy

at the local scale. The common strategy is through the use of external fields such as elec-

tric, magnetic and ultra-sound [29, 30, 31]. Chemists have chosen a different route, they

have patterned the surface of slender structures which can produce a local gradient and

propulsion through local osmotic currents. Most remarkable development is the synthesis

of such bodies that can move in water and in biofluid environment of the human vascular

system [32, 33, 34]. In another noteworthy development, Williams et al [35] have select-

ively attached heart muscle cell on a slender metal body. The periodic contraction of the

heart muscle drives the periodic waveforms on the slender body propelling it through the

fluid. The speed of propulsion is controlled by the point of attachment along the contour

length.

1.1.3 Emergent behaviour

The collective dynamics and emergent behaviour of these active bodies are no less in-

teresting. In a bath of microbes, researchers have discerned spatiotemporally coherent

motion, super-diffusion and density dependent large scale collective motion [36, 37, 38].

The presence of confinements makes these dynamics even more counterintuitive as found

in recent studies [39, 40, 41, 42]. In a motility assay, biological filaments, sperm cells and

microtubules self-organise spontaneously, forms novel patterns such as asters, vortices,

spirals and so on [43, 44]. In microtubule-motor assembly, researchers have even found

spontaneous formation and dissociation of defects [23, 45, 46]. More such observations

include the formation of the 2-d crystal, decreased viscosity, enhanced diffusivity and

phase separation [47, 48, 49, 50, 51]. Many of those emergent properties are yet to be

fully understood in terms of mechanical theory, i.e. in terms of microscopic forces and

torques acting on the constituent objects.
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1.2 Theoretical models of slender bodies

To proceed towards a microscopic understanding and consequent modelling of such phe-

nomena, it is worthwhile to survey the theoretical frameworks that have been used in the

past in modelling passive slender bodies. The first, and earliest, is derived by extending

classical beam theory [52]. The slender body is considered here as a space curve and a

material frame is imagined along the curve. The elastic energy due to the bending and

twisting of the slender body can easily be computed from this model has been exploited

to understand the conformational dynamics and transition in shape for actuated filaments,

growing bacteria and in knot formation [53, 54]. The predecessor of such modelling goes

back to Kirchhoff in his study of elastic beams [52].

Kirchhoff beam

Centre-line dynamics

Zimm model

Kramers model
(1945)

(1956)

Rouse model
(1953)

Resistive-force theory
(Gray, Hancock -1955)

Slender body
(Batchelor - 1970, 

Lighthill, Keller, Rubinow,  
Wu, Johnson -1976)

(1859)

Discrete bead-spring 

No hydrodynamics With hydrodynamics

Figure 1.1: Frameworks for modelling slender bodies

Sometimes, in the absence of torsional modes or when the slenderness ratio of the

body is small, the slender bodies can be modelled as a curve. This curve is chosen to

be the centre-line of the body. Researchers had used it to understand beating motion
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of bacterial flagella. In their study, the tail of the bacteria was modelled as a slender

filament with stresses that arise from the internal activity. This bodies were studied under

external periodic actuation with boundary condition that approximate in vitro situations

[18, 55, 56, 57].

In both the above classes of models, the local stresses from the ambient viscous fluid

have to be modelled. This can be done at varying levels of sophistication. A common

method is resistive force theory, where the effect of the fluid is replaced by anisotropic

viscous forces that act locally [58]. Non-local hydrodynamic interaction is considered in

slender body theory. The details of the theory can be found in [59, 60]. This method has

been adapted in various studies of slender bodies under external driving [61, 62, 63].

In another class of models, developed in the context of macromolecules, slender bod-

ies are modelled as a series of beads connected by non-linear potentials. The predecessor

of such modelling traces back to Kramers [64]. In sequence, Rouse had extended it by

considering a simple form of local friction [65] while Zimm did likewise by consider-

ing non-local hydrodynamic interactions [66]. This bead-spring model is now the most

widely used framework for polymer dynamics [67].

Here we want to note that, the central-line dynamics and bead-spring models are

closely related to each other. Bead-spring models of polymers can be mapped to a cor-

responding centre-line model in the limit where the separation between consecutive beads

decreases to zero keeping the length of the polymer constant. Similarly, when the dynam-

ics governed by center-line dynamics is discretised, for the purpose of numerical solu-

tions, it yields a corresponding bead-spring model. In this sense, there is a one-to-one

mapping between these two parallel developments.

In this thesis, we are interested in developing a mesoscopic theory of generic act-

ive slender bodies in a viscous fluid and applying it study a variety of phenomena of

current experimental interest. It is prudent to choose a simple model which can handle



10 Introduction

hydrodynamic interactions, elasticity, Brownian motion and activity, and one which is

amenable to numerical solutions. Given the enormous amount of effort that has been ex-

pended in studying the first three of the above mentioned phenomena within bead-spring

models and the maturity of the framework [67] we choose, in this thesis, the bead-spring

framework for constructing a microscopic theory of active slender bodies.

Bead-spring models of a single slender body can also be generalized, with little ad-

ditional effort, to study collective dynamics of many such objects in a viscous fluid. The

current understanding of the collective dynamics of active bodies is based upon two class

of theories. They are continuum theories and kinetic approaches [11, 12]. These ap-

proaches predict spontaneous breaking of symmetry at long wavelength limit in these

systems, which lead to spontaneous motions and continuous generation of defects. But

the complementary domain of short wavelength which is concerned with local fluctu-

ations and shape of the body is yet to be fully explored. This domain is relevant in many

experimental systems, where the number of active particles is not thermodynamically

large. Our microscopic theory is able to model phenomena that lie outside the hydro-

dynamic limit, yet, reproduce hydrodynamic phenomena when the number of particles

are large. Thus, we are able to delineate the limits of applicability of the hydrodynamic

and kinetic theories by situating them within our microscopic framework.

1.3 Outline of the thesis

The outline of the thesis is as below. In Chapter 2, we develop a general theory of active

slender bodies considering elasticity, hydrodynamic interactions, Brownian motion and

activity. In Chapter 3, the autonomous motion of an active slender body is studied in

detail. In Chapter 4, the motion of the active body is studied when it is subjected to an

external field. In Chapter 5, we propose a new microscopic actuator combining a passive

filament and an active colloid. In Chapter 6, the collective dynamics of active rods are
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studied in an unbounded and wall-bounded domain. In Chapter 7, we conclude with a

brief summary and possible future directions.
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Chapter 2

Microhydrodynamics of active slender

bodies

A general theory of active slender bodies in a viscous fluid is developed in this chapter.

The interplay between the spontaneous fluid flow, Brownian motion, and the elasticity

of the body presents a challenging fluid-structure interaction problem. We model the

problem by approximating the slender body as an elastic filament that can impose non-

equilibrium velocities or stresses at the fluid-structure interface. Then, an equation of

motion for the active filament is derived by imposing momentum conservation in the

fluid-structure interaction and assuming slow viscous flow. The fluid mediated interaction

is obtained through a discretization which replaces the continuous filament by a series of

connected beads. The activity of the beads is expressed by an “active slip” that gener-

ates spontaneous hydrodynamic flow. The spontaneous flow and resulting hydrodynamic

torque and force can be computed, to any desired degree of accuracy, by solving Stokes

equation using the boundary integral method. Further considering only the leading order

contributions of hydrodynamic interactions, a simplified form of the equation of motion

can be obtained. We use this simplified form to perform numerical investigation about

the dynamics of active and driven filaments in various conditions in later chapters. Our

model provides the foundation to study collective phenomena in momentum-conserving,

Brownian, active filament suspensions resolving the material at the scale of its constitu-

ents.

13
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2.1 Introduction

Slender bodies capable of spontaneous motion in viscous fluids are common in biolo-

gical, chemical, physical and technological contexts. Examples from biology, in increas-

ing degree of molecular complexity, include microtubules driven by molecular motors,

axonemes [28], cilia and flagella [55, 68, 69, 70, 24, 25, 71, 72, 27, 14, 73, 74, 58, 75,

76, 77]. In chemistry and physics, self-assembled bundles of microtubules driven by

kinesin motors yield a model experimental system in which broken symmetry, collective

excitations, and topological defects can be studied out of equilibrium [23, 45, 78]. In

technology, much recent research has been directed towards the synthesis of slender bod-

ies capable of spontaneous motion [79, 80, 81, 34, 82, 83, 84]. Such self-actuated slender

bodies are expected to have many microfluidic and biomimetic applications [35, 85].

Despite the great variety in both the structure of the body and its mechanism of self-

actuation, the examples above have three features in common: the spontaneous motion of

the slender body produces flow in the ambient fluid, the body is of a size sufficiently small

to make Brownian fluctuations important, and the body resists deformation produced by

the spontaneous flow and Brownian fluctuations. Any universal emergent behaviour in

active slender bodies must appear from the interplay between fluid flow, Brownian fluc-

tuations and the elasticity. Such systems present a new class of fluid-structure interaction

problems.

In this chapter, we construct a theory of active slender bodies, by modelling them

as filaments that enforce slip velocities or non-equilibrium stresses at the fluid-structure

boundary. A multitude of microscopic mechanisms can produce such velocities or stresses.

Our theory isolates the specific microscopic details of self-actuation in the boundary con-

ditions, from which universal, macroscopic fluid flow can be generated. Such flow results

from the exchange of momentum between the body and the fluid, and since no external

forces act on the body or the fluid, the sum of their linear momenta is conserved. In the
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absence of external torques, the sum of their angular momenta is similarly conserved.

These two constraints are explicitly taken into account when computing the fluid flow

within our theory.

2.2 Modelling of slender bodies

As we have discussed in the Introductory chapter, there are many ways to model slender

bodies with varying details. Singling out a particular model out of many possibilities

depends on the phenomena or experiment one wants to model. Our approach here is to

choose a model that is generic enough to reproduce the key phenomena seen in active

filaments. These basic requirements of such a model are the elasticity of the filament to

resist deformation of the body, internal activity which may lead to deformation and lastly,

the hydrodynamic interaction between different parts of the body. With these in mind,

we choose our slender body to be a slender filament, which we discretise by a set of finite

sized spherical beads. These beads are connected to each other by nonlinear potential, are

restricted to overlap each other and most importantly are active. The antecedent of such

a bead-spring discretization of a continuous filament traces back to Kramers [64], who

used it to model the dynamics of a polymer. The crucial difference between the model of

Kramers and our adaptation of it is that the beads in our theory are active. The detail of

our modelling of activity is presented in section 2.4.

Such chains of active beads have been used previously to model active filaments. In

the earliest such model [86, 87, 88], the beads produce dipolar stresslet flows but are

individually non-motile and are assumed so large that Brownian effects are negligible.

In subsequent contributions [89, 90], the beads are taken to be motile, Brownian effects

are included in two-dimensions but contributions from non-local hydrodynamic flow are

neglected. In a related model, passive beads are driven by tangential active stresses,

hydrodynamically correlated Brownian motion is included in three-dimensions but the
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active flow is neglected [91, 92, 93]. Later, in another contribution [94], the activity is

modelled through chemically active dimers and the dynamics is studied through multi-

particle collision techniques. Our theory presented here contains all previous models as

special cases.

Let us consider a suspension of N beads in a viscous fluid. There are many forces that

act on the beads in the suspension. In the absence of any external driving, the relevant

forces are internal body forces, Brownian noises and fluid mediated hydrodynamic forces.

There may be additional body forces in the presence of external driving and constraining

forces if the dynamics of the filament is restricted.

The internal body force acts to resist any deformation from its equilibrium conforma-

tion. This force on the n-th bead is Fint
n = −∇nU, where U is a non-linear potential. We

assume the potential U to be a sum of connectivity, elastic, and self-avoidance potentials,

U =
N−1

∑
m=1

UC(Rm, Rm+1) +
N−1

∑
m=2

UE(Rm−1, Rm, Rm+1) + ∑
m<n

US(Rn, Rm). (2.1)

The connectivity potential UC(R, R
′
) = k(b− b0)

2/2, with elasticity parameter k,

penalizes departures of the distance, b = |R − R
′ |, of two consecutive particles from

the equilibrium value of b0. The elastic potential for bending UE = κ̄ (1− cosφ) , with

rigidity parameter κ̄, penalizes departures of the angle φ between consecutive bonds from

their equilibrium value of zero. The rigidity parameter κ̄ connects to bending rigidity κ

as κ̄ = κb0. The self-avoidance potential US restricts the overlap of particles and is taken

here to be a Lennard-Jones potential that vanishes smoothly at a distance σLJ = 2
1
6 σ.

The net body force on the filament vanishes as can be easily verified by summing the

body force on each particle.
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2.3 Force and torque balance

In addition to the internal force, each of the constituent beads is acted upon by external

body forces Fe and surface forces due to both Brownian noise ξT and due to fluid me-

diated hydrodynamic force FH. Similarly, each bead could be driven by external body

torque Te and surface torques due to both Brownian noise ξR and fluid mediated hydro-

dynamic torque TH. Therefore, the force balance and torque balance equations on n-th

bead, given by Newtons law are,

MV̇n = FH
n + Fe

n + Fint
n + ξT

n , (2.2)

IΩ̇n = TH
n + Te

n + Tint
n + ξR

n , (2.3)

where M is the mass of the bead, I is the moment of inertia, Vn is the velocity and Ωn is

the angular velocity of the body.

Now at the micro-hydrodynamic regime, viscosity dominates the dynamics rather

than the usual inertial force, we experience in our surroundings. Therefore, in the analys-

ing motion of micro-scale or in developing theory at micro-scale, one can safely ignore

the inertial effect arising from both particle and the fluid. There are many crucial con-

sequences of viscosity dominated motion. The first of these is instantaneity . The motion

is completely determined by the forces and torques that are exerted on the body at a par-

ticular moment, not from previous time instants. Further, it does not depend on the rate of

exertion. This can be understood in a simple way. Let us assume a passive micron-sized

bead is being driven by an external force and at a particular moment the external force

is turned off. Now, the amount of time it will take and the distance it will cover before

coming to rest is a measure the inertia of the motion. Purcell, in his work on “Life at

low Reynolds number” [95], shows that these estimates are orders of magnitude smaller

than the time scale and length scale of the colloidal motion under external influence. He
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also demonstrates that, as a consequence, no reciprocal motion is possible: no swimmer

with a single degree of freedom is able to move in a viscous fluid. The second con-

sequence is the appearance of non-local many-body forces. The force and torque applied

on any suspending body will affect all the other suspending bodies, as stresses can be

transmitted through the fluid. Third, the Brownian motion of the suspended particles is

now hydrodynamically correlated, a necessary consequence of the fluctuation-dissipation

relation. Consequently, the Langevin description of Brownian motion required correlated

noises whose covariance depends on the configuration of all particles. Considering these,

Newton’s equations in the microscopic domain reduce to a pair of constraints.

FH
n + Fe

n + Fint
n + ξT

n =0, (2.4)

TH
n + Te

n + Tint
n + ξR

n =0. (2.5)

The crucial task left in Eq. (2.4 and 2.5) is to determine the hydrodynamic force

and hydrodynamic torque on each bead in the presence of other beads, all of which have

active boundary layer on them. We dedicate the next section for this task. We will

first argue heuristically about the forms of the hydrodynamic moments and existence of

generalized resistance tensors appealing to the linearity of slow viscous flow and of the

boundary conditions. Though computing these generalized resistance tensors analytically

is possible for simple geometries, it may not be the case for an arbitrary geometry. In the

next subsection, we will elaborate the outline of a boundary integral method to compute

the generalized resistance tensors analytically. Then, by inverting the resistance tensors

we write down the general equation of motion for the active beads in a viscous fluid.

We will conclude the section, by recovering the Kirkwood-Riseman mobility tensors and

their new associates, the propulsion tensors, as a leading order approximation of our

general theory. In the later chapters, we will use these forms to investigate systems of

active slender bodies and demonstrate rich dynamics of these remarkable systems.
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2.4 Force and torque on active beads

In the suspension of active beads, the force and torque that are exerted on a bead, say the

n-th one, is given by,

FH
n =

∫
fdS, (2.6)

TH
n =

∫
ρn × fdS. (2.7)

where, f = n · σ is the surface traction and σ is the fluid stress, first introduced by

Cauchy [96], n is the normal vector, ρn is the radius vector from centre of the body to

its surface S. The fluid stress σ = −pδ + η(∇v +∇vT) has both hydrostatic and vis-

cous contributions and can be determined from conditions of incompressibility and local

momentum conservation, which is Stokes equation in the micro-hydrodynamic domain.

∇ · v = 0; ∇ · σ = 0. (2.8)

where v is the fluid velocity, p is pressure and η is the viscosity.

The solution of this Stokes system provides the stress, from which the contact con-

tribution of the force and torque on the every particle can be determined. In the absence

of inertia and body forces, the conservation of particle momentum requires that the net

contact force and the net contact torque on every particle be zero. The solution of the

Stokes equation is determined by the boundary conditions on the particle surfaces and

the macroscopic boundary, if present.

2.4.1 Active slip

Activity on the surface of the bead, in general, can modulate traction or velocity or both

at the fluid-bead interface and can be expressed in a variety of boundary conditions on
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the fluid through surface velocity and surface stress. We model activity on the surface

of a chemo-mechanically active bead by the appearance of an additional boundary layer.

When the width of the boundary layer, w, in comparison to the radius of the bead a, is thin

(w/a� 1), the dynamics of the boundary layer can be ignored and asymptotic value of

the velocity inside the boundary layer can be treated as modified boundary condition on

the bead surface [97, 98, 99, 100]. We assume this modified condition to be an additional

active slip velocity vA(ρn). This encompasses a wide variety of active phenomena, in-

cluding electrophoresis, diffusiophoresis [100, 101, 102, 98], self-phoresis due to chem-

ical catalysis [103, 104], and even swimming of microorganisms [105, 106, 107, 108].

We chose the fluid to be at rest at infinity. The boundary conditions, therefore, are

v(Rn + ρn) = Vn + Ωn × ρn + vA(Ri + ρn) on Sn (2.9)

|v(r)| → 0, |p(r)| → 0, |r| → ∞. (2.10)

The first two terms in Eq. (2.9) are the usual kinematic contribution from the rigid body

motion while the third term, is of dynamical origin, is the active slip.

Unlike the previous contributions, our choice of this additional velocity is any general

vector field on the spherical surface of the bead [109, 110, 108, 88]. In the recent study

[108], complex time-dependent patterns of swimming Chlamydomonas Reinhardtii and

corresponding complex fluid flow around it has been constructed with high precision

through the active slip model.

2.4.2 Expansion of surface distributions

Choice of spherical active beads allow us to expand the additional active slip vA and

traction f in a global basis. Our choice is tensorial spherical harmonics, Y(l). On n-th



§2.4 Force and torque on active beads 21

bead, whose radial coordinate is ρn, the tensorial spherical harmonics is defined as,

Y(l)
α1α2...αl(ρ̂n) = (−1)l+1ρl+1

n ∇α1 . . .∇αl

(
1
ρn

)
. (2.11)

In this basis, the surface velocity and traction on each particle can be expanded,

vAn
(
Rn + ρn

)
=

∞

∑
l=1

1
(l − 1)!(2l − 3)!!

V(l)
n · Y(l−1)(ρ̂n), (2.12)

f (Rn + ρn) =
∞

∑
l=1

2l − 1
4πa2 F(l)

n · Y(l−1)(ρ̂n), (2.13)

where, respective expansion coefficients for active velocity V(l)
n and for traction F(l)

n , are

tensors of rank l, are symmetric and irreducible in their last l − 1 indices [109, 110].

Further using elementary SO(3) angular momentum algebra, these coefficients can be

expressed as a sum of three irreducible tensors, symmetric(s) with rank l, antisymmet-

ric(a) with rank l − 1 and the trace(t) with rank l − 2. Later, we use σ as a dummy index

for irreducible multipoles of different ranks.

V(l)
n = V(ls)

n + ε ·V(la)
n + δ : V(lt)

n , (2.14)

F(l)
n = F(ls)

n + ε · F(la)
n + δ : F(lt)

n , (2.15)

where, over-bracket represents the irreducible nature of the tensor underneath it.

Rigid body components for active slip can, now, easily be identified. They are linear

velocity VAn = V(1s)
n and angular velocity ΩAn = V(2a)

n /a . In terms of active slip

velocity, they are

4πa2VAn = −
∫

vA(ρn)dSn, (2.16)

4πa2ΩAn = − 3
2a2

∫
ρn × vA(ρn)dSn. (2.17)
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The above two equations have been known in the context of phoresis [100] and swim-

ming by surface distortions [111]. They were later derived by the use of the Lorentz

reciprocal relation [112] and by using boundary integral representation of Stokes flow

[108].

2.4.3 Slip friction tensors

Appealing to the linearity of the governing Stokes equation (2.8) and the boundary con-

dition (2.9), a set of linear relations between the velocity and traction coefficients can be

assumed [110].

F(lσ)
n = − γ(lσ,1s)

nm ·Vm − γ(lσ,2a)
nm ·Ωm − γ(lσ, l′σ′)

nm ·V(l′σ′)
m . (2.18)

In writing the above, we have used the summation convention for repeated particle (n, m)

and mode (l, σ) indices.

The linear relation can then be divided into sub-blocks and some of them can be

recognised as classical friction tensors, which appear in rigid body motions of a passive

colloid. The remaining are new friction tensors, arising due to active slip. The element of

generalised friction tensor γ(lσ, l′σ′)
nm , relates the σth irreducible part of l th rank traction

coefficient to σ′th irreducible part of l′ th rank velocity coefficient.

Here, we note down that, the friction tensors are many body in nature and encode

hydrodynamic interaction between different active spherical beads. These tensors depend

on the relative position of the active beads but do not depend on the orientation of the

bodies. The traction coefficients F(lσ), on the contrary, depend on orientation of the

beads, which is concealed in active slip and its irreducible coefficients V(lσ)[110].

The hydrodynamic force can be identified for the case l = 1 and σ = s and hydro-
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dynamic torque for l = 2 and σ = a. These terms are

FH
n =− γTT

nm ·Vm − γTR
nm ·Ωm − γ(T,lσ)

nm ·V(lσ)
m , (2.19)

TH
n =− γRT

nm ·Vm − γRR
nm ·Ωm − γ(R,lσ)

nm ·V(lσ)
m . (2.20)

Where, γTT
nm = γ

(1s,1s)
nm , γTR

nm = γ
(1s,2a)
nm , γRT

nm = γ
(2a,1s)
nm and γTT

nm = γ
(2a,2a)
nm are classical

friction tensors and γ(T,lσ)
nm and γ(R,lσ)

nm relate the force and torque on the n-th bead to the

lσ mode of the active slip on the m-th bead. Inserting those contact forces and torques in

the force balance equation (2.4) and the torque balance equation (2.5) we get,

−γTT
nm·Vm − γTR

nm·Ωm − γ(T, lσ)
nm ·V(lσ)

m + Fe
n + Fint

n + ξT
n = 0, (2.21)

−γRT
nm·Vm − γRR

nm·Ωm︸ ︷︷ ︸
viscous drag

− γ(R, lσ)
nm ·V(lσ)

m︸ ︷︷ ︸
activity

+Te
n + Tint

n + ξR
n = 0. (2.22)

The noises ξT
m and ξR

m are hydrodynamically correlated and preserve fluctuation-

dissipation theorem in equilibrium. Therefore, 〈ξα
nξ

β
m〉 = 2kBT γαβ

nm. We point here out

that, though activity provides extra degrees of freedom to inject energy, the fluid does not

restore these to the boundary layer through thermal fluctuations. Therefore, we should

not expect a fluctuation-dissipation theorem when the active slip is non-zero.

2.4.4 Boundary integral solution

Though we have argued for the existence of resistance tensors, we did not provide the

explicit computation of stress and traction using complete knowledge of active slip. Here,

we provide an outline of a boundary integral method [113, 114]. to compute resistance

tensors [110]. The first step of the method is to write down the fluid flow solution in

terms of the boundary distributions as
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vi(r) =−
N

∑
m=1

∫
Gij(r, rm) f j(rm)dSm +

N

∑
m=1

∫
Kjik(r, rm)nkvj(rm)dSm. (2.23)

In general, the Green function G, pressure tensor P and stress tensor K are connected

to each other by,

∇iGij = 0, (2.24)

−∇iPj(r, r′) + η∇2Gij = −δ
(
r− r′

)
δij, (2.25)

Kijk(r, r′) = −δikPj + η
(
∇kGij +∇iGjk

)
. (2.26)

Inserting the expanded forms of boundary sources, presented in an earlier section, in

the boundary integral representation leads to a succinct expression for the fluid flow in

terms of the expansion coefficients [109],

v(r) =−
N

∑
m=1

G(l)(r, Rm) · F(l)
m +

N

∑
m=1

K(l)(r, Rm) ·V(l)
m . (2.27)

The boundary integrals G(l) and K(l) can be evaluated explicitly in terms of the

Green’s function G and its derivatives. In this expression, the velocity coefficients is

computed from the boundary condition, but the traction coefficients remain unknown. To

determine the traction coefficients, the boundary condition is first enforced on the bound-

ary of n-th particle, the resulting equation is weighted by the l-th tensorial harmonic and

finally integrated over the n-th boundary. This Galerkin procedure yields an infinite-
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dimensional linear system of equations for the unknown traction coefficients [109],

−G(l,l′)
nm (Rn, Rm) · F(l′)

m + K(l,l′)
nm (Rn, Rm) ·V(l′)

m =



1
2

(
Vn −VAn

)
, lσ = 1s

1
2

(
aΩn − aΩAn

)
, lσ = 2a

1
2 V(l)

n , otherwise,

(2.28)

where the matrix elements G(l,l′)
nm and K(l,l′)

nm can, again, be evaluated analytically in terms

of the Green’s function G and its derivatives. From this Eq. (2.28), one can derive

elements of the friction tensor,

γ
(lσ, l′σ′)
nm = P(lσ) ·

[
G−1

(
−1

2 I+ K
)](l, l′)

nm
· P(lσ). (2.29)

where, P(lσ) is the projection operator that projects V(l) to its irreducible block V(lσ). G

and K are sub-blocks of the matrices G(l,l′)
nm and K(l,l′)

nm . Details can be found in the recent

paper [110].

The γ matrices encode hydrodynamic interactions and are long-ranged in nature. It

is shown earlier that, the matrix element γ(lσ, l′σ′)
nm to leading order is proportional to

∇l−1
n ∇l′−1

m G [110].

For a suspension of finite-sized beads in infinite domain, the Green’s function G takes

the Oseen-Burgers form which decays as ρ−1, with ρ = r − r′, the separation vector

between source point r′ and field point r. Thus in infinite flow, all elements of the γ

tensors can be computed explicitly. One can now easily see that, γTT
nm decay as ρ−1

nm , γTR
nm

and γRT
nm decay as ρ−2

nm , γRR
nm decay as ρ−3

nm , in general, γ(T,lσ)
nm decay as ρ−l

nm while the

γ
(R,lσ)
nm decay more rapidly as ρ

−(l+1)
nm , where ρnm = |Rn − Rm| is the distance between

the centre of the n-th and m-th beads. For n = m, all slip friction matrices other than

γ
(T,1s)
nn = 6πηaδ and γ(R,2a)

nn = 8πηa3δ are zero [110].
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For wall bounded domain, the Green function G takes Lorentz-Blake form [115, 116]

and following similar procedure, elements of the corresponding resistance tensors can be

obtained.

The friction formulation, presented so far, provides a clear understanding of the phys-

ics of the problem but is cumbersome to solve numerically, as the resulting kinematic

equations are implicit. For numerical solutions, it is convenient to construct explicit

equations involving linear and angular velocities given in terms of external force, internal

body force and given coefficients of active velocity slip.

2.4.5 Mobility and propulsion tensors

By rearranging Eq. (2.21) and Eq. (2.22), the linear and angular velocity of the n-th bead

can be obtained in terms of mobility tensors µnm and a new set of propulsion tensors

πnm. Mobility and propulsion tensors now encode hydrodynamic interaction between

the beads and for the efficient numerical purpose, one needs to use approximate forms

for them. While mobility matrices can be computed by inverting the sub-block of the

friction tensor that deals with translation and rotation of the beads, propulsion matrices

can be shown to be [110],

−π(T, lσ)
nm = µTT

nq · γ
(T, lσ)
qm +µTR

nq · γ
(R, lσ)
qm , (2.30)

−π(R, lσ)
nm = µRT

nq · γ
(T, lσ)
qm +µRR

nq · γ
(R, lσ)
qm . (2.31)

Using those tensors, the update equations for an active bead in mobility formalism

are
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Vn =µTT
nm ·

(
Fe

m + Fint
m

)
+µTR

nm ·
(

Te
m + Tint

m

)
︸ ︷︷ ︸

passive

+
√

2kBTµTT
nm · ζT

m +
√

2kBTµTR
nm· ζR

m︸ ︷︷ ︸
Brownian

+π
(T,lσ)
nm ·V(lσ)

m︸ ︷︷ ︸
active

, (2.32)

Ωn =µRT
nm ·

(
Fe

m + Fint
m

)
+µRR

nm ·
(

Te
m + Tint

m

)
︸ ︷︷ ︸

passive

+
√

2kBTµTT
nm · ζT

m +
√

2kBTµTR
nm· ζR

m︸ ︷︷ ︸
Brownian

+π
(R,lσ)
nm ·V(lσ)

m︸ ︷︷ ︸
active

. (2.33)

The positivity of dissipation ensures that mobility matrices are positive-definite and

Onsager symmetry constrains them to be symmetric in both the particle and translation-

rotation indices. These two properties ensure that a mobility matrix can be factorised

into a lower triangular matrix and its transpose, any one of which is a “square-root” of

the mobility matrix. The fluctuations can then be expressed as products of uncorrelated

Wiener processes ζT, ζR and the “square-root” Cholesky factors.

The coupled Langevin equations (2.32) and (2.33), are a generalisation of Einstein-

Smoluchoski description of diffusion of passive suspension to their active counterpart.

For passive suspension, hydrodynamically correlated diffusive motion of N colloidal

particles was completed by several authors using Liouville, kinetic theory, Fokker-Planck

and Langevin approaches [117]. In the absence of activity, they reduce to the equation of

Brownian dynamics with hydrodynamic interactions [118]. When the forces derive from

positional and angular potentials, the form, chosen for the fluctuations ensures that the

Gibbs distribution of the positions and orientations is the stationary distribution. When

activity is included, the balance between fluctuation and dissipation is no longer main-
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tained and stationary states are no longer described by the Gibbs distribution. As we

show in the remainder of the thesis, non-trivial stationary states are obtained when the

beads are chained together into filaments.

By using an iterative method, one can compute the mobility and the propulsion

tensors to any desired accuracy and order [110]. To the leading order in G, mobility

tensors can be shown to be,

µTT
nm =


1

6πηaδ m = n

F 0F 0G(Rn, Rm) m 6= n
(2.34)

µTR
nm =


0 m = n

1
2∇m ×G(Rn, Rm) m 6= n

(2.35)

µRT
nm =


0 m = n

1
2∇n ×G(Rn, Rm) m 6= n

(2.36)

µRR
nm =


1

8πηa3δ m = n

1
4∇n ×∇m ×G(Rn, Rm) m 6= n

(2.37)

The diagonal parts of these matrices are one-body terms while the off-diagonal parts rep-

resent the hydrodynamic interactions. The diagonal parts are the familiar Stokes trans-

lational and rotational mobilities while the off-diagonal parts can be recognised as the

Rotne-Prager-Yamakawa tensors [119, 120] and their generalizations to rotational mo-

tion. The Onsager symmetry of the mobility matrix is manifest in these expressions.

Similarly, the propulsion matrices can also be computed [109], which are
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π
(T, l)
nm =


δ m = n, lσ = 1s

0 m = n, lσ 6= 1s

clF 0F (l−1)∇(l−1)
m G(Rn, Rm) m 6= n

(2.38)

π
(R, l)
nm =



1
aδ m = n, lσ = 2a

0 m = n, lσ 6= 2a

cl
2
∇n ×∇(l−1)

m G(Rn, Rm) m 6= n

(2.39)

where, F l is the operator

F l =

(
1 +

a2

4l + 6
∇2
)

.

that accounts for the finite-size Faxen correction for the flow due to a bead of radius a

and cl is a numerical constant.

The form of mobility and propulsion matrices, we have thus got for beads of radius a

by considering solution after the first iteration, can be computed through alternative way

through the pair-wise superposition approximation, first introduced by Kirkwood and

Riseman [121], in the context of the dynamics of a polymer. This match of our theory

with the popular superposition method not only reiterates the validity of our method but

also underlines the superiority of our method to do more accurate numerical studies with

hydrodynamic interaction. It can easily be done numerically, by increasing the number

of iteration. With this approximation, the mobility matrices reduce to the well-known

Rotne-Prager-Yamakawa tensors while the propulsion matrices are obtained analytically

[109] as gradients of the fundamental solution of the Stokes equation for an unbounded

fluid. For a passive polymer, Yoshizaki and Yamakawa [122] verified that the superpos-
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ition approximation is correct to O((a/b)3), where b is the mean separation between

beads, as N → ∞ . Since the propulsion matrices decay more rapidly with separation

than mobility matrices, the superposition approximation for active filaments is also ac-

curate to O((a/b)3) [109].

Figure 2.1: Streamlines of irreducible modes of slow viscous flow around an active bead. Dis-
played in (a) is F 0G · F, the flow around a bead translating under the action of a force F; in (b)
is F 1∇G · V(2s), the minimal flow around a non-motile active bead; and in (c) is ∇2G · V(3t),
the minimal flow around a motile active bead. In the limit a → 0, the flows in (a) and (b) re-
duce to a Stokeslet and stresslet, respectively, while (c) is a degenerate velocity quadrupole. The
background colour is proportional to the logarithm of the velocity magnitude.

2.5 Flow due to active beads

To understand the dynamics of the active bodies, it is crucial to know the kind of spon-

taneous flow they generate. The flow due to N beads in the fluid can easily be computed

from

v(r) =
N

∑
m=1

G(l)(r, Rm) · F(l)
m −

N

∑
m=1

K(l)(r, Rm) ·V(l)
m . (2.40)

when all the traction and velocity coefficients are known either directly or from the solu-

tion of the Stokes equation. Depending upon the geometry of the domain, the kernels
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will change to satisfy boundary conditions. If we consider the domain to be an infinite

medium the Green function is the Oseen-Burgers tensor. On the other hand, if the domain

is near a no-slip wall, the green function will be the Lorentz-Blake tensor.

Figure 2.2: Distortion of streamlines of irreducible modes of slow viscous flow around an active
bead is shown near a macroscopic wall. Displayed in (first row) are F 0Gw · F, the flow around
a bead translating under the action of a force F in the direction x, z− and z+ respectively; in
(second row) are F 1∇Gw ·V(2s), the minimal flow around a non-motile apolar active bead when
its director is pointed towards z, x and y. The background is pseudo coloured with the logarithm
of the velocity field, normalised with the maximum value of the domain.

In an unbounded domain, these kernels become translation invariant and become

function of only the separation ρ = r − r′, r and r′ are being field point and source

points respectively.

8πηGij =
δij

ρ
+

ρiρj

ρ
. (2.41)

The corresponding fluid flow due to different basic irreducible multipoles is shown in
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the Fig. (2.1). In a) the flow-field around a passive colloid is shown when it subjected to

an external field. In b) the flow-field is due to the leading order apolar active multipole.

In c) the flow is due to the leading order polar active multipole, known as potential dipole

or degenerate quadrupole. The strength of the flowfields due to Stokeslet, Stokes dipole

and degenerate quadrupole decay as ρ−1, ρ−2 and ρ−3 respectively with the increase of

separation. When a particle autonomously spins without any external torque, a particular

multipole, the spinlet is active. This mode decays as ρ−4 and is, therefore, short ranged

in nature [108].

Similarly, the flow near a macroscopic wall with no-slip boundary condition on it can

be computed. This was first recognised by Lorentz [115] and a modern formulation was

given by Blake [116]. The corresponding Green’s function Gw is

Gw
ij = Gij − G∗ij − 2hM∇jG∗i3 + 2h2M∇2G∗ij. (2.42)

where M = (1− 2n̂n̂) is the mirror operator with n̂ is the unit normal vector on the

macroscopic boundary and G∗ represents Green’s function due to virtual source, which

is at the position of the virtual image - r∗ = Mr . In the Fig. (2.2), we present flow

fields around a colloid near a macroscopic wall, when it is driven by an external field

in different directions and around a non-motile active colloid of radius a. In the first

row, the external force is parallel to the wall in (a), towards the wall in (b) and away

from the wall in (c). In the second row, the orientation of the apolar active colloid is

perpendicular to the wall in (a) and parallel to the wall in (b) and (c). In the first case,

the flow has cylindrical symmetry, fluid comes from equatorial regions and goes toward

polar region. While in other two cases, the flow-field does not have cylindrical symmetry.

The fluid flow around those beads looks like the flow-field given in (2.1b), when their

orientations are aligned. Near a wall, the strength of the flowfields due to Stokeslet,
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Stresslet and degenerate quadrupole decay as ρ−2, ρ−3 and ρ−4 respectively with increase

of separation. Clearly the only active term that contributes to long range interaction is

stresslet. Other active terms can contribute by inducing Stokeslet or rotlet by some local

mechanisms.

2.6 Active Kramers model

Over the last few sections, we have presented a method to compute hydrodynamic forces

and torques on an active bead in a suspension. We have also provided the equations of

motion to describe their dynamics (Eq. 2.32 and 2.33). Now, considering internal body

force, described by non-linear elastic potential (Sec. 2.2), we write down the coupled

equation for an active filament. Moreover, the rotational motion of the beads can be

ignored, assuming torsional potentials that prevent such rotations. Therefore, the orient-

ation of the beads is no longer a dynamical degree of freedom to be determined from

the angular velocity, but is prescribed. It is natural to fix the orientation of n-th bead,

pn = α1tn + α2nn + α3bn, in the local Frenet-Serret frame in terms of the of the tan-

gent tn, normal nn and binormal bn, and the direction cosines are αi∈{1,2,3}. Combining

all of the above, we obtain the following equation of motion for active filaments,

Ṙn =
Fb

n
6πηa

+
N

∑
m 6=n
F 0F 0G · Fb

m +
N

∑
m 6=n

(
2kBT
6πηa

δ + 2kBTF 0F 0G
) 1

2

· ζm

+
N

∑
m 6=n

∞

∑
l=2

clF 0F (l−1)∇(l−1)
m G ·V(l)

m + Va
n︸ ︷︷ ︸

Active

. (2.43)

where, Fb
n = Fe

n + Fint
n is net body force on n-th monomer.

These stochastic differential equations describe the Brownian dynamics of an extens-
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ible, semi-flexible, self-avoiding active filament including hydrodynamic interactions that

arise from the exchange of momentum between the filament and its local conservation in

the bulk fluid. The square-root of the mobility matrix in the third term above is to be

interpreted as a Cholesky factor. These equations are the natural extension of Brownian

hydrodynamics of passive filaments to the active case and contain both the Rouse and

Zimm descriptions of equilibrium polymers.

2.7 Conclusion

In this chapter, a general mesoscopic theory of active slender bodies in a viscous fluid

is developed. Our theory considers key mechanisms that are found in a variety of in-

vivo and in-vitro experiments. They are the restoring elasticity of the slender body,

destabilising internal activity, non-local many-body hydrodynamic interaction and cor-

related Brownian motion. We also keep the provision for inclusion of external driving,

force and torque that might arise from various kinds of constraint motions, shear and in-

cident fluid flow in general. Therefore, our general theory of active filaments includes all

the possibilities and all other models [89, 90, 91, 92, 94] can be derived as special cases.

The equations of motion, presented provide the foundation for studying non-equilibrium

statistical mechanics of active filaments. The coupled Langevin equation for the posi-

tions can be recast as Fokker-Planck equations, whose stationary solutions in the absence

of activity are given by the Gibbs distribution. Activity, in the forms envisaged in this

work, introduces an additional drift in the Fokker-Planck equation, destroying the bal-

ance between fluctuation and dissipation. This will lead to non-Gibbsian distributions

in the stationary state, and, likely change well-known equilibrium properties like statics

of the coil-globule transition [123] and the distribution of loop closure times [103]. We

believe that some of these problems can be addressed both experimentally and through

theory and simulations.
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Numerically, our method yields the hydrodynamic interaction between particles without

the need to resolve bulk fluid degrees of freedom. This makes our theory useful for

computing the hydrodynamic interaction of active particles in three dimensions, as the

computational cost of resolving fluid degrees of freedom is greatly reduced [109, 124].

Moreover, due to generality of our theory, it can model many mesoscopic phenom-

ena in the microscopic length scale, may it be the motion of elongated microbes [125],

their appendages such as cilia and flagella, axonemes, or even self-assembled filamentous

structures such as motor-microtubule assembly engineered in [23, 45]. It can also model

slender bodies driven by external field [126, 127, 128, 129] or internal activity [35]. Our

theory includes the dynamics when both internal activity and external driving are present

simultaneously [130, 131, 132].

In recent times, researchers have synthesised microscopic bodies that can self-propel

by momentum conserving complex interaction with the peripheral fluid environment

[133, 81]. Our momentum conserving theory has the ability to describe the individual

as well as the collective motion, resolving motion at the scale of the constituent. In the

rest of the chapters, we study models inspired by recent experiments and demonstrate the

generality of our theory and the power of the numerical method.
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Chapter 3

Dynamics: motion and motility of an

active filament

Autonomous motion and dynamics of an active filament in a viscous fluid is studied as an

archetypical representative of the class of problem on active slender bodies. Considering

only the leading order activity and non-local hydrodynamic interaction between different

segments of the filament, we introduce our minimal model. This filament is envisaged

as a series of apolar active beads, connected by nonlinear springs. The activity of the

beads here is manifested not by self-propulsion but by the production of non-equilibrium

fluid flow. This spontaneous flow, beyond a certain threshold, can destabilise linear con-

formation of the active filament and thus provides a hydrodynamic route to autonomous

motion. To characterise the dynamics of the active filament, we define a dimensionless

number - the activity number - as the ratio between activity and elasticity of the filament.

We further study the motion of the active filament when it is a) free, b) tethered and c)

clamped at one end. We find a series of nonlinear steady states, arising from the complex

interplay between the elasticity of the filaments, activity and fluid flow. In particular,

we demonstrate that our model can reproduce spontaneous beating motion, observed in

a recent experiment of a microtubule-motor assembly. Other steady states observed in

our numerical study also resemble motions often found in cilia and flagella. We charac-

terize those states by measuring the time period and amplitude of the oscillations and by

presenting the spontaneous fluid flow around the dynamical structures. To identify the

nature of the transition from linear conformation to nonlinear dynamical states, we have

37
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also carried out a linear stability analysis. Remarkably, similar analysis neglecting non-

local contributions of spontaneous flow does not produce an instability. This highlights

the crucial role of non-local hydrodynamic interactions in the dynamics of active slender

bodies.

3.1 Introduction

Autonomous motion of micron-sized slender bodies in the absence of any external driving

are quite common in biological contexts and recently in technological contexts. Examples

of such slender structures in biology are cilia, flagella both bacterial and eukaryotic, ax-

onemes and microtubule-motor assembly [28, 23, 14, 27]. Those active machines are cru-

cial for motility at cellular scale, from individual motion, to accomplish important tasks

together such as removing dust particle from lungs, moving ovum to uterus and transport

[24, 70, 134]. Even inside a cell, the microtubule-motor assemblies provide routes for

transporting important ingredients to target parts beating diffusive barrier. Cilia and eu-

karyotic flagella are the slender extensions of cellular matrix, formed by a combination

of 9+2 pairs of microtubular tracks and wrapped around by cellular membrane. When

molecular motors walk on the microtubular tracks by using biochemical fuel ATP, sliding

occurs between nearby micro tubule tracks, leading to bending, which results in spontan-

eous motion [135]. It is also been observed that the internal structure of those organelle in

the absence of cell membrane, known as axoneme, demonstrate spontaneous movements

in vitro [28]. Prokaryotic or bacterial flagella, on the other hand, are not extension of cel-

lular matrix, but separate slender body part which is attached to the cell by a hook. This

kind of flagella is formed from protein flagellin [14]. To achieve motility, the hook is ro-

tated by some internal mechanism using biochemical fuels. Lately, in vitro experiments

from Dogic group demonstrate astonishing phenomena of microtubule-motor assembly in

the presence of ATP. In their contributions [23, 45, 136], cilia-like beating motion, spon-
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taneous transport mechanism and collective streaming motion are observed. All those

in-vivo and in-vitro observations in biology with their qualitatively similar outcome in-

dicate that some universal physical mechanism rather than detail individual mechanism

might be behind them. We will explore this mechanism in this chapter.

3.2 Minimal active filament

In the earlier chapter, we have already presented the most general equation of motion for

active slender bodies considering internal activity, Brownian noise and elasticity of the

body. We have also shown there that chemo-mechanical activity can produce a variety of

nontrivial modes in the absence of any external driving. Those modes decay differently in

the fluid medium and can be classified using symmetry in terms of polar and apolar, chiral

and achiral. Usually, different synthetic or biological machines can easily be modeled

with sufficient accuracy by isolating few selected modes out of all. For instance, The

slowest decaying active mode is stresslet or Stokes dipole, which is apolar and achiral

and decays as ρ−2. When the body is propelling autonomously, it predominantly excites

a particular active mode that is known as degenerate quadrupole or potential dipole. This

mode is polar yet achiral and decays as ρ−3. Similarly, an autonomously spinning body

without translation excites a particular mode, the spinlet, which is an apolar yet chiral and

decays as ρ−4. It is important to note that the last two modes contribute directly to the one

body motion whereas leading order contribution of many body hydrodynamic interaction

comes from Stokes dipole. As a consequence, the motion of any micro-swimmers can be

modelled to the leading order by considering these three basic multipoles.

In our minimal model of the active filament, the beads are non-motile, VAn = 0, and

all active velocity components other than the symmetric part of V(2s)
n are zero. Thus each

individual bead produces stresslet flow shown in Fig. (2.1b). The velocities and tractions
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are, therefore,

v(Rm + ρm) = Ṙm + sm · ρm, (3.1)

4πa2f (Rm + ρm) = −∇mU + 3Sm · ρm, (3.2)

where sm and Sm are, respectively, the symmetric parts of the second-rank velocity and

traction coefficients. The solution of the boundary integral equation, in the diagonal

approximation, relates the unknown traction coefficient to the known value of the velocity

coefficient

Sm = −20πηa3

3
sm. (3.3)

To complete the model, it is necessary to specify the orientation pn of the beads, and

hence the principal axis of the stresslet, in relation to the filament conformation. Mo-

tivated by the experimental observation that molecular motors walking on microtubule

tracks generate tangential stresses, we parametrize sm uniaxially, with its principal axis

always parallel to the local tangent tm of the filament,

sm = s0(tmtm −
1
3
δ). (3.4)

The coefficient s0 is positive for extensile stresses and negative for contractile stresses.

Additionally, we assume that the activity is so large that the Brownian fluctuations make

a negligible contribution to the dynamics. Active flow is balanced entirely by the filament

elasticity. This leads to deterministic equations of motion for an active filament composed

of non-motile beads,

Ṙn =
1

6πηa
Fint

n + ∑
m 6=n
F 0F 0G · Fint

m +
28πηa3

3 ∑
m 6=n
F 0F 1∇G · sm︸ ︷︷ ︸

Active

. (3.5)



§3.2 Minimal active filament 41

These equations, without finite-sized corrections to the hydrodynamic flow, were first

proposed in [86] and subsequently used in to study the dynamics of clamped active fila-

ments [87].

Activity Number

Taking the ratio between the active and passive contribution in the Eq. 3.5, we can define

a dimensionless measure of activity. Here it is the activity numberAS, which can be cast

in terms of rigidity parameter κ and length of the filament L as

AS =
|S0|
|FL| =

LS0

κ
. (3.6)

With more modes of activity, there will be more activity numbers. These activity

numbers can be derived alternatively by taking ratios of rates. For example, in d spatial

dimensions, activity introduces a new rate Γs = S0/ηLd in addition to the rate of elastic

relaxation Γκ = κ/ηLd+1 of the filament bending modes. The ratio of these two time

scales yields, again, the activity number.

The activity numberAS also measures the departure from equilibrium and the amount

of energy that is injected into the fluid by the filament. We vary both the filament length

and the activity number in studying the dynamics of the filament in d = 3 dimensions.

Fluid Flow

The flow produced by the filament is sum of contributions from the potentials and the

activity,

v(r) =
N

∑
n=1
F 0G · Fint

n +
28πηa3

3

N

∑
n=1
F 1∇G · sn︸ ︷︷ ︸

Active

. (3.7)
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3.3 Hydrodynamic instability

Figure 3.1: Streamlines of slow viscous flow around contractile (top row) and extensile (bottom
row) minimally active filaments. Spontaneous flow in the linear conformation tends to compress
contractile filaments and extend extensile filaments (first column). Both symmetric and antisym-
metric transverse perturbations are suppressed in contractile filaments but enhanced in extensile
filaments by the spontaneous flow (second and third columns). The latter leads to a linear in-
stability in extensile filaments, when the elastic restoring force is no longer sufficient to counter
the destabilizing tendency of the spontaneous flow.

The resultant flow is shown for three conformations, for both extensile and contractile

filaments, in Fig (3.1). In the linear conformation, shown in the first column of Fig

(3.1), the flow tends to compress contractile filaments and extend extensile filaments.

The stationary length of the filament is then somewhat shorter in the contractile flow but

somewhat longer in the extensile flow. In a symmetrically curved conformation, shown

in the second column of Fig (3.1), the spontaneous flow tends to suppress curvature in the

contractile filaments but tends to enhance it for extensile filaments. The suppression and

enhancement are seen for anti-symmetrically curved conformations in the third column
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of Fig (3.1). This shows that the interplay of flow and curvature is generally stabilizing

for contractile filaments while it is destabilizing for extensile filaments. On dimensional

grounds, a linear instability is expected when the filament length L > lA ∼ κ/S0. In

the remainder of the chapter, we shall focus only on extensile filaments and study the

non-equilibrium stationary states that appear as a consequence of the linear instability.

3.4 Free and tethered filament

Our results are summarised in Fig. (3.2), which shows the non-equilibrium stationary

states for both free filaments in panels (a) - (f) and for tethered filaments in panels (g)

- (i). With the increase of activity, a linear instability appears in free filaments which

leads to spontaneous symmetric curvature and an emergent autonomous motility, shown

in panel (a). The conformation corresponds, roughly, to the first elastic eigenmode of the

passive filament. With increasing amounts of activity, higher elastic eigenmodes appear

through a series of bifurcations, shown in panels (b) - (f). Whenever the conformation is

asymmetrical about the centre, the filament acquires a rotational component of motion.

The higher elastic eigenmodes appear for smaller values of activity in longer filament,

as is seen by comparing panel (c) with panels (e) and (f). Although the system is three-

dimensional, filament motion is planarly stable in a plane that is determined by the initial

condition. This rich dynamics (online-movie) and non-equilibrium steady states we have

found are remarkably similar to an experiment on an isolated axoneme [28].

Tethering the filament at one end restricts translation and thus the energy transduction

from the activity is fed into rotational and oscillatory states (online-movie). Beyond the

threshold activity of AS1, a tethered filament rotates around the pivot, panel (g), in a

plane that is chosen by the initial condition. Further energy injection leads to flagella like

beating in a plane, shown in panel (h). The highest value of activity studied is shown in

panel (i), where a conformation similar to the panel (d) appears but is now constrained

https://www.dropbox.com/s/v8vuc6tjhj6kyin/Free.mp4?dl=0
https://www.dropbox.com/s/f88up5vyxpkf9y8/Tethered.mp4?dl=0
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by the pivot and forced to rotate while maintaining conformation. With the increase

in filament length and activity, we expect higher elastic eigenmodes to appear, and the

filament either rotates or oscillates under the constraint of the tether.

Figure 3.2: Non-equilibrium stationary states of a free, (a) - (f), and tethered, (g) - (i), minimally
active filament. The figures show the filament conformation and the streamlines of slow viscous
flow produced by the activity, where the background is coloured by the logarithm of the mag-
nitude of the velocity. Free filament steady states are shown for three lengths with increasing
values of activity AS. For short filaments (N = 48) increasing activity produces the three non-
equilibrium steady states in (a) - (c), corresponding to the excitation of the first two elastic eigen-
modes and their linear combinations. As the filament length is increased (N = 80 and N = 128)
higher elastic eigenmodes appear with increasing amounts of activity in (d) - (f).(online-movie)
. Tethered filament steady states are shown for a fixed length (N = 64). Increasing activity pro-
duces a rotating steady state in (g), which bifurcates into an oscillating steady state in (h), with a
return to a distinct rotating steady state in (i). (online-movie)

https://www.dropbox.com/s/v8vuc6tjhj6kyin/Free.mp4?dl=0
https://www.dropbox.com/s/f88up5vyxpkf9y8/Tethered.mp4?dl=0
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The dynamics of the centre of mass follows from summing the equation of motion

over all beads. The contribution from internal spring forces vanishes, and on approx-

imating the active flow by its contribution from the nearest neighbours, an approximate

equation is obtained that relates the centre of mass motion to the filament curvature and

the activity,

VCM ' −
s0

4πηb0
〈κn̂〉 = χ. (3.8)

In Fig. (3.3a), we compare the numerically computed values of the centre of mass

velocity with the curvature vector χ defined above. There is a surprisingly good agree-

ment between the two, indicating that principal effect of the non-local active flow can be

expressed locally as a tendency to promote curvature.

a

b

c

Figure 3.3: Comparison of filament kinematics and curvature dynamics. In (a) the x-component
of the centre of mass velocity is compared with the x-component of the scaled average curvature
vector (see Eq. 3.8) for a free filament. In (b) the x-component of the mean angular velocity
about the centre of mas is compared with the scaled average first moment of the curvature vector
(see Eq. 3.9). In (c) the same comparison is made for a tethered filament, with origin at the point
of pivot. The comparison shows that the filament motion is strongly correlated with dynamics of
activity induced curvature.
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A similar relation holds for the angular velocity about the centre of mass,

ΩCM '−
s0

8πηb0
〈κn̂× (R− RCM)〉 = ω. (3.9)

and the previous comparison is repeated for both free and tethered filaments in Fig (3.3b)

and Fig (3.3c). For tethered filaments, the pivot point, and not the centre of mass, is used

to compute cross products, and the activity-dependent prefactor is two times smaller. This

suggests that effective, local equations of motion may be accurate for describing some

aspects of the dynamics of active filaments.

3.5 Clamped filament

Here, we present results of numerical simulation of an active filament, when it is clamped

at one end. In this boundary condition, it exhibits a variety of spontaneous beating phe-

nomena in a three-dimensional fluid.

Figure 3.4: Biomimetic oscillations of the clamped filament plotted at different times over an
oscillation period T. In (a) we see rigid aplanar corkscrew rotation for AS = 25 while in (b) we
see flexible planar beating for AS = 50. The colour of the beads, as well as the trace of the tip,
correspond to individual instantaneous monomer speeds. The colourbars are normalised by the
maximum speed.

Spontaneous oscillations: A transverse perturbation breaks flow symmetry about the
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central line of the filament resulting in a net flow in the direction of the perturbation.

The destabilising effect of the hydrodynamic flow is countered by the stabilising effect of

linear elasticity for activity numbers A < AS1 but leads to a linear instability for A >

AS1. This instability produces filament deformations which are ultimately contained by

the non-linear elasticity producing autonomously motile conformations [86, 88]. Here,

the additional constraint imposed by the clamp transforms the autonomously motile states

into ones with spontaneous oscillations.

❛ ❜

Figure 3.5: Flow fields of rigid aplanar corkscrew rotation at two different instances of rota-
tion. The colour indicates the signed magnitude of the velocity field perpendicular to the plane
normalised by its maximum.

Numerical simulations of Eq. (3.5) reveal two distinct oscillatory states (Figs. 3.4a,

3.4b). The first of these, seen in the range AS1 < AS < AS2, is a state in which the

filament rotates rigidly in a corkscrew-like motion about the axis of the clamp (online-

movie). This rotational corkscrew motion is reminiscent of prokaryotic flagellar beating

[137, 138]. We show this motion in Fig (3.4a) over one time period of oscillation together

with the projection of the filament on the plane perpendicular to the clamp axis. A section

of the three-dimensional flow in a plane containing the clamp axis is shown in Fig (3.5a

and 3.5b). The net flow points in the direction opposite to the filament curvature and the

entire flow pattern co-rotates with the filament.

https://www.dropbox.com/s/hnpintozsctp38s/aplanar.mp4?dl=0
https://www.dropbox.com/s/hnpintozsctp38s/aplanar.mp4?dl=0
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❛ ❜

Figure 3.6: Flow fields of flexible planar beating at two instants of the oscillation cycle. The
colour indicates the magnitude of the velocity in the plane normalised by its maximum.

In the second state, seen for AS > AS2, the filament beats periodically in a two-

dimensional plane containing the axis of the clamp, with waves propagating from the

clamp to the tip (online-movie). This flexible beating is reminiscent of eukaryotic fla-

gellar motion [58, 17, 27, 135, 139]. We show this motion in (Fig. 3.4b) over one time

period of oscillation together with the projection of the filament on the plane perpendic-

ular to the clamp axis. The projection is now a line, showing that motion is confined to

a plane. A section of the three-dimensional flow in the plane of beating is shown in Fig

(3.6a and 3.6b). Two distinct types of filament conformations of opposite symmetry are

now observed, corresponding to the different parity of the conformation with respect to

the perpendicular bisector of the line joining the two end points. In the even conformation

(Fig 3.6a), the flow points in the direction opposite to the curvature as in the corkscrew

state. However, in the odd conformation (Fig 3.6b), the flow has a centre of vorticity at

the point of inflection of the filament. This centre of vorticity moves up the filament and

is shed at the tip at the end of every half cycle.

Scaling of time period and Amplitude. The physical parameters determining the

time period T of the oscillatory states are the active stresslet S0, the bending modulus

κ, the fluid viscosity η and the filament length L. Remarkably, variations of T in this

https://www.dropbox.com/s/4yhj94y91hc4jx1/planar.mp4?dl=0
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four-dimensional parameter space collapse, when scaled by the active relaxation rate

ΓS = S0/ηL3, to a one-dimensional scaling curve of the form L−α f (A/Lβ). We show

the data collapse at fixed L and varying relative activity S0/κ in Fig (3.7a) while the

scaling with system size is shown in Fig (3.8a). Our best estimates for the exponents,

obtained from Bayesian regression, are α = 1.3 and β = −1.2 (Fig 3.8a). Qualitatively,

at a fixed relative activity, the oscillation frequency decreases with increasing L, while at

a constant L the oscillation frequency increases with increasing relative activity. This is

in agreement with a simple dimensional estimate of the time period T ∼ ηL3/S0. For

active beads with a stresslet of S0 ∼ 6× 10−18Nm in a filament of length L ∼ 100µm,

our estimate of the time period gives a value of 170s, which agrees in order of magnitude

with experiment [45]. The amplitude of oscillation A obeys a similar scaling relation with

α = −1.46, β = −1.2 (Fig. 3.7b, main panel). At fixed relative activity, A increases with

increasing L, while at fixed L, it increases and then saturates at large relative activity. The

mean amplitude in the planar beating state is marginally smaller than in the corkscrew

rotating state (Fig.3.7b, inset).

Figure 3.7: Variation of the scaled timeperiod ΓST of filament beating withAS plotted for various
values of κ and s0 with L = 188, and (b, main panel) variation of the scaled amplitude L−1.46 A
withAS plotted for various lengths L with κ = 1.6. In (a) we show the appearance of spontaneous
oscillations in the filament at AS ∼ 12.5 corresponding to a rigid corkscrew rotation, followed
by a transition at AS ∼ 45 to flexible planar beating. In (b, inset) we show the increase in the
unscaled amplitude with length.
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The transition from aplanar to planar state can be separated out easily by computing

convex hull or writhe of the filament trajectory. In the aplanar state the convex hull is

nonzero but become zero in the planar state. In the first panel of the Fig (3.9), we show

this transition through scaled convex hull with the increase of activity. Transitions for

different lengths of the filament can be fitted into a single master curve using a Bayesian

estimate.

Figure 3.8: Variation of the non-dimensionalised time period ΓST with activity number AS (a)
with and (b) without L scaling, obtained from numerical simulations. The dashed lines in (b)
represents the variation of 2πΓS/Im(λ1) with A for L = 188 and L = 252, data obtained from
LSA. The rescaled plot of ΓST in (a) shows that its variations are well captured by a scaling form
L−α f (AS/Lβ), with α = 1.3 and β = −1.2 estimated using Bayesian regression. The unscaled
results in (b) show that the time period is of the order of the active timescale Γ−1

S . The LSA
estimate of the time period and the simulation result agree very well near the Hopf bifurcation
point, and, predictably, deviates in the nonlinear regime.

Scaling of critical activities. The critical activities scale asAS1 = L−1.2 andAS2 =

L−1.1, obtained from a Bayesian parameter estimation of data shown in Fig (3.9b). The

critical values depend only on the ratio S0/κ, and not on S0 and κ individually, as is

clearly seen in Fig (3.7a).
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Figure 3.9: Variation of the rescaled volume of the convex hull Vch of the filament with AS

showing the transition between aplanar rotations in the regime A < AS2 and planar oscillations
in the regime A > AS2. (b) Variation of the transition points AS1 and AS2 with L exhibiting
a scaling relation AS ∼ Lβ. Using Bayesian regression, we estimate β = −1.2 for AS1 and
β = −1.1 forAS2, the different values responsible for the imperfect data collapse near the second
transition. Symbols represent simulation data while solid lines represent the Bayesian estimate.

3.6 Linear stability analysis

To better understand the linear instability which is expected from the flows shown in

Fig 3.1, we perform a stability analysis of the equations of motion, about the linear

conformation. Taking the equations of motion to represent a dynamical system, Ṙn =

f (R1, R2, · · · , Rn), we compute the Jacobian J = −∇n f
∣∣∣
R0

n
at the stationary state with

linear conformation R0
n. The linearised dynamics, then, is

δṘn = J · δRn. (3.10)

We numerically compute the eigenvalues of this stability matrix as a function of activity

As for both free and tethered filaments. To evaluate the importance of non-local hy-

drodynamic interactions, we also compare the eigenvalues for the dynamics in which all

non-local (that is m 6= n) terms are deleted. The results are shown in Fig (3.10a) and Fig

(3.10b) for free and tethered filaments, respectively.
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Figure 3.10: Variation of the largest non-zero eigenvalues of the stability matrix, J, plotted against
activity number, AS, for a free filament in (a) and a tethered filament in (b). In each case, the ei-
genvalues are computed including full hydrodynamic interactions (HI) (left panels) and neglecting
all non-local hydrodynamic contributions (right panels). The eigenvalues remain negative, for all
values of AS in a large range, when hydrodynamic interactions are neglected. Hydrodynamic in-
teractions, therefore, are essential for the instability of the linear conformation and the bifurcation
to dynamical steady states, signalled by the positive eigenvalues in each of the left panels.

Free and tethered filament. We see that the largest eigenvalue becomes positive at

AS ∼ 12 for free filaments and AS ∼ 5 for tethered filaments. The bifurcation is thus

a simple instability. The first eigenmode instability flows to the symmetrically curved

conformation shown in Fig 3.10(a). Instabilities of the higher eigenmodes leads, the first
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of which is visible in Fig. 3.2a at AS ∼ 40, produces the more complicated states shown

in panels (b) - (g) of Fig 3.2. The presence of the tether decreases the threshold value of

the activity at which the instability occurs to AS ∼ 5, but the sequence of instabilities

remains identical.

Subsequent bifurcations with increasing values of activity are expected to have a more

complicated character, as the stationary states are typically limit cycles. The numer-

ical study of limit cycle instabilities is considerably more involved than that of time-

independent stationary states. We shall explore this aspect of the dynamics of active

filaments in a future study.

Figure 3.11: Variation of the scaled (a) real and (b) imaginary parts of the largest eigenvalues
with AS, plotted for various values of κ and S0 with L = 188. Data is obtained from a linear
stability analysis (LSA) of the filament model. The largest eigenvalue pairs converge at AS ∼ 6
and become complex with negative real parts, signalling the transition from stable node to stable
focus. Re(λ) become positive at AS1 ∼ 12.5 while Im(λ) varies smoothly with AS, indicating a
Hopf bifurcation into a limit cycle.

Clamped filament. In the absence of activity, AS ∼ 0, all eigenvalues of the Jac-

obian are real and negative and the filament has an overdamped relaxation to equilibrium.

With increasingAs, the two largest real eigenvalue pairs approach, converge, and become

complex conjugate pairs (online-movie). This corresponds to a transition from a stable

node to a stable focus where the response changes from being overdamped to under-

https://www.dropbox.com/s/mz4kgoi9tfyn0sa/hopf_N_48_kappa_0.5.avi?dl=0


54 Dynamics: motion and motility of an active filament

damped. The analysis reveals that the balance between hydrodynamic flow and linear

elasticity has a non-monotonic variation. While the general trend is towards the slower

relaxations with increasingAS corresponding to the greater relative strength of the hydro-

dynamic flow, this is reversed in a small window of activity where the increasing activity

produces faster relaxations. This can be clearly seen in Fig. 3.11(a) and Fig. 3.12(a),

where the rate of relaxation is given by the magnitude of the real part of the largest ei-

genvalue. With further increase of AS the complex eigenvalues approach the imaginary

axis monotonically, crossing them at a critical value AS1 (Fig. 3.12a, Figs. 3.11a and

3.11b). Through this supercritical Hopf bifurcation, the stable focus flows into the limit

cycle corresponding to the corkscrew rotation. The value ofAS1 obtained from the linear

stability analysis is in perfect agreement with that obtained from numerical simulation.

As with the time-period and amplitude, the eigenvalue λ of the Jacobian obey scaling

relations λΓ−1
S = L−α f

(
AS
Lβ

)
with α = 1.2 and β = –1.2.

Figure 3.12: Variation of the largest scaled eigenvalues of the stability matrix (a) including HI
and (b) excluding HI. In (a) we see the transition from a stable node to a stable focus followed
by a supercritical Hopf bifurcation from quiescence to a limit cycle. In (b) we see only a stable
quiescent state. In the absence of HI the eigenvalue scaling is completely determined by AS.
Comparing (a) and (b) it is clear that hydrodynamic instabilities due to HI are the main mechanism
for spontaneous oscillations. (a) also shows that the rate of relaxation (given by the magnitude
of the real part of largest eigenvalue) to the steady state before the bifurcation decreases as we
approach the bifurcation from below.
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Importance of HI. Remarkably, there is no instability in the same range of activity,

when hydrodynamic interactions are ignored, as shown in the right panels of Fig (3.10).

We find that all eigenvalues remain real and negative for activity numbers corresponding

to an order of magnitude greater than AS1 , reflecting the stability of the quiescent state

in the absence of HI (Fig. 3.12b, second column of 3.10). Thus, non-local active hydro-

dynamic flow is essential to produce the instabilities and the non-equilibrium stationary

states reported above.

3.7 Discussion and conclusion

Through our work, we demonstrate that our minimal model of active filament can produce

spontaneous motion and oscillations in the absence of any external driving, of the kind

found in complex biological structures such as axoneme [28], eukaryotic spermatozoa

[27] and in the assembly of motors and microtubules [23].

Moreover, we predict similar kind of oscillation can be found in a chain of tri-metallic

catalytic nanorods [140, 141]. We emphasise that an experimental realisation of our sys-

tem requires neither external actuation nor self-propulsion. The only chemo-mechanical

requirement is that the active beads produce dipolar flows in the fluid. This makes them

an attractive candidate for biomedical applications like targeted drug delivery. Our de-

tailed prediction for the spatio-temporal dynamics of the hydrodynamic flows can be

experimentally verified using particle imaging velocity [142].

Further inclusion of additional self-propulsion mode, V(3t) can reproduce motions

and different steady states of a chain of self-propelling active beads for instance of syn-

thetic catalytic nanorods [143, 144, 145, 146].

Previous work on bead-spring models of active filaments have focused on three dis-

tinct mechanisms of activity. In the earliest work of Jayaraman et al [86], activity arises

from the hydrodynamic flow of the active beads. In that work, the equations of motion
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for filament dynamics in three dimensions contained contributions from the leading order

hydrodynamic flow due to stresslets and degenerate quadrupoles. A detailed study and

all results were given for non-motile active beads, thus ignoring the velocity quadrupoles.

In subsequent work, Chellakot et al [89] studied a chain of motile active beads subject

to Brownian motion in two dimensions but ignored all non-local hydrodynamic effects,

both passive and active. In related work, Jiang and Hou [91] studied a chain of passive

beads, subject to forces of non-equilibrium origin, directed along the filament tangent. In

their model, both passive hydrodynamic flow and hydrodynamically correlated Brownian

motion is included in three dimensions, but the active flow is absent. Remarkably, in spite

of these differences between the models, they yield a broadly similar phenomenology :

linear instabilities, spontaneous motion, and oscillatory states.

To understand why this might be, it is best to situate all the previous models within

the equations of motion presented here. The model studied in detail by Jayaraman et al

[86] is obtained when self-propulsion velocities, VAn , are set to zero, only the dipolar

contribution to active flow is retained, and finite-sized corrections to hydrodynamic flow

as well as Brownian motion are neglected. The model of Chellakot et al [89] is obtained

when the self-propulsion velocity is directed along the axis pn, VAn = vspn, and this axis

is itself determined from the balance of a restoring and Brownian torques. This requires

the angular velocity to be retained as a dynamical variable and all off-diagonal contribu-

tions to mobility and propulsion matrices to be ignored. Finally, the model of Jiang and

Hou [91] is obtained by ignoring all active components of flow, vA = 0, but represent-

ing the force on the beads as Fn = −∇nU + αtn, as the sum of contributions from the

potentials and an unspecified non-equilibrium source. The common feature of all these

models is that they produce motion in the direction of the curvature. This arises from the

non-local hydrodynamic flow in the model of Jayaraman et al, and from the local con-

tributions due to self-propulsion and non-equilibrium activity in the models of Chellakot
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et al and Jiang et al respectively. The present work shows that a phenomenology beyond

curvature instabilities remains to be explored. In particular, torsional instabilities, pos-

sible with self-rotating active beads that are unhindered by torsional potentials, are likely

to yield further surprises in the dynamics of active filaments.

We have neglected, here, the active self-propulsion and set VA to zero. The motion of

an active filament chain composed of self-propelling particles will be dominated by the

self-propulsion terms which are all O(1), and the hydrodynamic interactions that have

been studied here in detail will be subdominant. Such a model, especially in the case

where the self-propulsion axis is aligned to the filament tangent, is expected to show the

kinds of transition between translational and rotational states observed in the work of

Jiang and Hou [91].

As a final remark, we draw attention to the similarity between the instabilities reported

here and the convective instability by active stress studied in the pioneering work of

Finlayson and Scriven [147].



58 Dynamics: motion and motility of an active filament



Chapter 4

External fields: sedimentation of an

active filament

The conformational dynamics of an active filament is studied under a uniform external

field. The external field, coupled with the activity and the hydrodynamic interaction,

drives instabilities in directions both the parallel and the perpendicular to it. Introducing

two dimensionless measures, the activity number AS and the sedimentation number S ,

we demarcate regions of stable conformations and the transitions between them. We com-

pare this with the known results for the conformational states of a steadily sedimenting

passive filament. Our findings can be verified in the sedimentation of active biological

filaments and chains of phoretic beads.

4.1 Introduction

A standard way of characterising soft matter is by measuring its response to external

fields. Unlike phases composed of rigid molecules where external fields perturb supra-

molecular organization, in phases of flexible filamentous molecules, both the conforma-

tion of the polymer and supramolecular organization are perturbed by the external field.

It is of interest, therefore, to first understand how a single filament deforms in response

to an external field. This is the task which set ourselves to do in this chapter.

Previous studies incorporating the external field and hydrodynamic interaction show

rich dynamical behaviours and conformational changes in slender bodies [148, 149, 150,

151, 152, 153, 154]. We first reproduce results for the settling of passive filaments

59
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[149, 151, 152, 153, 154] as the zero activity limit of our formalism. We demonstrate

that during the settling of a passive filament the non-local hydrodynamic force varies

over different parts of the filament, which in turn determines the dynamical steady states

as well as metastable states. During the metastable state, the filament takes the conform-

ation that looks like a W. This marginally stable state ends up in a more stable state by a

spontaneous release of elastic stress. We further show that, the lifespan of the metastable

state decreases with the increase of difference between mean power dissipation in these

two states. Other non-linear steady states are also found at high sedimentation number

S , which is a measure of the strength of external field to the elasticity of the filament.

In the presence of internal activity the dynamic balance between fluid mediated force,

external force and restraining elastic forces of the body get modified and consequently,

a series of new steady states appear. These different states can be categorised by their

conformational and dynamical features. Interestingly, similar kind of steady conforma-

tions can arise due to different dynamic balance. We further demarcate different regions

of the steady conformations, in the two-dimensional phase space of activity number AS

and sedimentation number S and compute their dynamic response coefficients.

4.2 Model description

Including an additional body force to our minimal model of active filament, we obtain

the update equation. The origin of this additional body force could be due to gravity,

magnetic field or centrifugal force inside a centrifuge. Here for simplicity, we consider

gravity.

Equation of motion: By considering additional external force to the Eq. (2.2), we
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obtain

Ṙn =
1

6πηa
(Fe

n + Fint
n ) + ∑

m 6=n
F 0F 0G · (Fe

m + Fint
m ) +

28πηa3

3 ∑
m 6=n
F 0F 1∇G · sm︸ ︷︷ ︸

Active

.

(4.1)

where η is the viscosity of the fluid, a is the radius of the individual beads.

Sedimentation number

Along with activity number AS, a dimensionless number can easily be derived by taking

the ratio of internal elastic force and applied external force one. This is the sedimentation

number S . It can also be derived easily from the force balance equation presented in Eq.

2.21, by taking the ratio between external force and internal body force.

S =
|Fe|
|Fint|

=
L2|Fe|

κ
(4.2)

where , κ is the rigidity parameter and L is the length of the filament.

4.2.1 Hydrodynamic forces

Fluid flow: The fluid flow around the active bead, subject to external forcing can eas-

ily be computed by considering relevant modes. In this study, the fluid flow is due to

contribution of external driving, elastic force of the body and internal apolar activity.

Combining these we get,

v(r) =
N

∑
n=1
F 0G · (Fe

n + Fint
n ) +

28πηa3

3

N

∑
n=1
F 1∇G · sn︸ ︷︷ ︸

Active

. (4.3)

The resultant fluid flow around a settling passive bead and active beads are shown
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in the Fig (4.1). In (a) the flow is due to Stokeslet term and in (b) and (c) the flows

are combinations of Stokeslet and apolar activity mode, stresslet due to nonzero V(2s) (b

extensile and c contractile). Clearly, the activity modifies the fluid flow around the bead

and consequent fluid-mediated hydrodynamic forces.

Figure 4.1: Fluid flow around a passive (a) and active (extensile (b) and contractile (c)) beads
under uniform external field. The background is pseudo-coloured with the logarithm of the mag-
nitude of the velocity in the plane normalised by its maximum, showing the variation of strength
of the fluid flow.

The hydrodynamic force on active beads in a suspension can be computed from Eq.

2.19, by computing the resistance tensors γ. These resistance tensors can be computed

with high accuracy by iterative methods [110]. On n-th bead, the hydrodynamic force is

FH
n = −γTT

nm ({Ri}) ·Vm︸ ︷︷ ︸
passive

− γ(T,2s)
nm ({Ri}) ·V

(2s)
m ({pi})︸ ︷︷ ︸

Active

, i ∈ {1, · · · , N}.

(4.4)

The complex coupling between conformation of the filament, external driving and in-

ternal activity is quite apparent in this equation. The expression for the force depends

on the conformation of the filament, defined by the locations of all the beads Ri, which

determine the local tangent pi and which, in turn, determine the principal axes of the
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activity modes V(2s)
m . It is the dynamic balance of the sum of the passive and active

forces above with the internal elastic and external gravitation force that determines the

stationary states of the filaments. Since the external force is conformation-independent

in this case, the above two forces must sum, upto a constant, to the local elastic force.

4.3 Sedimentation of a passive filament

In this section, we study the dynamics of passive filaments from our general formulation

of active slender bodies under external field by setting the active contribution to zero.

We first reproduce the steady states found earlier [149, 151, 152, 153, 154] and discuss

the results from the viewpoint of conformation dependent hydrodynamic force. All the

steady and metastable states and their dynamics can be completely understood from this

point of view. We conclude the section, with a new finding, a spinning aplanar steady

state.

Figure 4.2: Planar steady state conformations of the filament, with increase of sedimentation
number S . The colour on the beads presents the variation of fluid mediated hydrodynamic force.
During sedimentation of passive filament, the end points of the filament always have the minimal
hydrodynamic force, and settle slower than the middle part, giving rise to V, U and horse-shoe
shapes.
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4.3.1 Planar steady states

At very small sedimentation number S , the filament bends slightly in the middle and falls

staying in a conformation that resembles a V. Initially, with the increase of the strength

of the external field, the curvature in the filament increases, to more resemble an U, but

after a certain threshold, the filament first reaches to a metastable steady state resembling

a W which relaxes to the stable state horse-shoe like shape. All these planar steady states

have been reported in earlier studies [149, 153, 152].

In the Fig (4.2), we have shown the steady states in the planar sedimentation, the fluid

flow around its periphery and normalised hydrodynamic forces on different monomers.

The many body force on the beads crucially depends on the shape of the filament. Ap-

proximately, at low sedimentation number, the hydrodynamic force at the middle is more

than the edge, whereas, at moderate and high activity, the hydrodynamic force at the

middle is lower than the ones, situated at the edges. In passive sedimentation, the hydro-

dynamic force on the last beads is always found to be lowest. Clearly, the location where

the hydrodynamic force is least is where the elastic force must be the greatest, since their

sum is the constant gravitational force. This explains why the curvature of the filament

is greatest along the central regions of the filament. This transparent explanation has not

been made explicit in previous studies.

4.3.2 Transient and metastable states

In the above, the stationary state deformation is a single-valued function of the sedi-

mentation number: for any value of S there is one and only one dynamically accessible

long-lived conformation. In contrast, as the sedimentation number is increased, the sta-

tionary state deformation becomes a multi-valued function of S : a series of dynamical

states, with distinct distributions of lifetimes are possible for any given value of the sedi-

mentation number.
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Figure 4.3: At moderately high sedimentation number S , the planar filament initially reaches to
a metastable state which by releasing elastic stress settle to a more stable state. To shed more light
on this dynamical transition, we show the variation of hydrodynamic force on different parts of
the filament, at different stages of transition.

We illustrate this in Fig (4.3), as the filament undergoes a series of transitions from the

initial condition to a metastable state which finally relaxes to a stable state (online-movie).

Initially, at the early stage of sedimentation, two domains of higher hydrodynamic force

are generated about one-quarter away from the edges of the filament. As a result, a

large amount of elastic energy gets accumulated in the middle of the filament and cannot

be released by breaking the symmetry of the filament immediately. After a transient,

the symmetry of the conformation breaks dynamically, one of the protrusions becomes

dominant over the other, the centre of mass of the filament starts moving sideways and

eventually the whole filament reaches a more stable state. The power dissipation in the

metastable state is less than the stable state, which means the metastable conformation

stores more energy than the stable steady conformation. Remarkably, we found that the

https://www.dropbox.com/s/peze89lbrh91crs/Transition.mp4?dl=0
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amount of time the filament spends before releasing the stored elastic energy depends on

the difference of elastic energy stored in metastable and stable conformations (Fig. 4.4).

The more the difference in energy, the lesser is the timespan.

When the difference of elastic energy is small, the transition occurs through a spon-

taneous release of stress stored in the metastable conformation. During such transition,

two protrusions join up releasing the elastic energy dynamically and the conformation

reaches a stable state without any sidewise displacements. At high sedimentation num-

ber, the filament settles to a steady state, where ends of the filament periodically oscillate.

This oscillatory behaviour is reflected in the oscillations of the power dissipation in top-

most curve of Fig. (4.4).

Figure 4.4: The transition from metastable W conformation to more stable horseshoe conforma-
tion can be understood from net power dissipation by the settling filament. In the plot, we show
that, with the increase of sedimentation number S , the difference between power dissipation in-
creases, consequently, the lifespan of the metastable state decreases.

4.3.3 Aplanar steady states

There appear to be a multitude of aplanar steady states, several of which have been iden-

tified by Gompper and co-workers [154]. In the first of these states, (Fig (4.5a), the
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filament forms a symmetric bow like structure, bent out of the plane, sliding sideways

during sedimentation (online-movie) . In the second steady state (Fig (4.5b), the filament

forms a somewhat helical asymmetric conformation and sediments in a helical trajectory.

In addition to these, we find a new steady state at high sedimentation number, when the

filament spontaneously forms a twisted conformation as shown in the Fig (4.5c). While

the whole filament spins about an axis parallel to the external field, the centre of mass

follows a linear trajectory (online-movie). It is possible that there are further steady states

in the dynamics which have not been reported yet. The principal purpose of our study of

the passive problem is, first, to establish that our method can correctly reproduce previous

results when activty is set to zero and, second, to provide a baseline from where we can

attempt to understand the active problem as a perturbation from zero activity.

Figure 4.5: Aplanar steady states during sedimentation of passive filament are displaced. In all
the figures the beads are coloured with normalised hydrodynamic force on them. In the steady
state shown in (a), the filament slides sideways during sedimentation. In the steady state shown
in (b), the filament the sediments in helical trajectory. At high sedimentation number - S - a non-
linear state arises, shown in (c). During this state, the filament spins as it’s centre of mass settles
in a linear trajectory.

4.4 Sedimentation of an active filament

We now study the sedimentation problem of an active filament, guided by the results of

obtained above for zero activity.

https://www.dropbox.com/s/0h89r5rnmbctq50/Nm_13_200_HI_1.mp4?dl=0
https://www.dropbox.com/s/2okst5tp71eurui/Nm_16_1050_HI_1.mp4?dl=0
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4.4.1 Planar steady states

We find the sequence of steady states observed for zero activity as well as additional new

steady states. We recall here, from Chapter 3, that spontaneous fluid flow because of con-

tractile activity suppresses transverse perturbations whereas extensile activity enhances

it. The manifestation of this in planar sedimentation at low activity, is in two ways: first

by reducing (enhancing) the downward speed and by increasing (decreasing) domain of

stability in the case of contractile (extensile) activity. The dynamics at a high extensile

activity is even richer.

Beyond the critical valueAS, where the filament become unstable due to spontaneous

flow, the dynamics are due to a combination of both external field and internal activity. A

series of new steady conformations can arise here due to dynamic balance of the active

passive parts of the dissipative forces. One such mode is presented in the Fig (4.6b),

where the filament forms an asymmetric bow and sediments in a linear trajectory (online-

movie).

4.4.2 Aplanar steady states and transients

The aplanar dynamics of the active filament under sedimentation is rich. Our findings of

different conformations and their trajectories are displayed in the Fig (4.6), their phase

space and various other properties are shown in the Fig (4.7). We categorize this rich

variety of states in the following manner.

Aplanar sliding state: This steady state is found predominantly when a planar con-

formation of a contractile filament goes unstable in the region demarcated by 2 in Fig

(4.7a). During this state (Fig 4.6c), the filament forms a symmetric yet bent conform-

ation which moves sideways as the filament sediments (online-movie). This phase is

similar to what has been reported in passive filament sedimentation [154].

https://www.dropbox.com/s/rmndrvxd82hn69u/g30a5.mp4?dl=0
https://www.dropbox.com/s/rmndrvxd82hn69u/g30a5.mp4?dl=0
https://www.dropbox.com/s/jod5f280s4a1ahf/g100a-5.mp4?dl=0
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Figure 4.6: The inclusion of activity radically modifies the hydrodynamic force on t different
parts of the settling filament. Here we show various steady conformations, found in the sediment-
ation of active filament under a uniform external field. The steady conformations are presented
in the left panel of the sub-figures, whereas the trajectories of the centre of mass of the filament
are presented in the right panel of the sub-figures. We point here out that, in spite of traject-
ory and conformation of the filament is similar at different parameter domain, the distribution of
hydrodynamic force along the filament can be quite different as presented in (d and e).
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Figure 4.7: Here we separate out two-dimensional phase space, made of sedimentation number
and activity number, in domains where different steady states are found, in (a), and their conform-
ational property, mean writhe in (b) and dynamical properties, mean longitudinal and longitudinal
resistances in (c) and (d). In the subfigure (a), 1 represents domain of planar sedimentation ( Fig.
4.6 a), 2 represents domain of sliding sedimentation ( Fig. 4.6 c), 3 represents domain of twisting
sedimentation (Fig. 4.6 g), 4 represents domain of helical sedimentation (Fig. 4.6 d and e), 5
represents activity dominated rotation and sedimentation (Fig. 4.6 h), 6 represents higher modes
forming different kind of loops (Fig. 4.6 f) and 7 represents long unsettled transient zones (Fig.
4.6 i and j).

Aplanar helical states: These states are found in different region of parameter space,

demarcated as 4 in Fig (4.7a), suggesting an appearance of similar conformation due to

different dynamic balance between competing mechanisms (online-movie1 and online-

movie2). In this state (Fig 4.6d and e), the filament forms an asymmetric helical structure

https://www.dropbox.com/s/8fmw72em68ynruv/g275a15.mp4?dl=0
https://www.dropbox.com/s/drcragj5fp0qbm4/g500a-10.mp4?dl=0
https://www.dropbox.com/s/drcragj5fp0qbm4/g500a-10.mp4?dl=0
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that settles following a helical trajectory. The speed of settling and the radius of the tra-

jectory changes as any one of activity, external force and elasticity changes. Again, these

are similar to conformations reported in the sedimentation of passive filaments [154].

Aplanar spinning states: These interesting states are found in predominantly in two

domains, demarcated by 3 and 5 in Fig (4.7a). The region represented by 3, corresponds

to the mode shown in (4.6 g) whereas, the region represented by 5, corresponds to the

mode shown in (4.6 h). In the former region, the beads at the middle of the filament

always stay lower than the beads of other parts and the whole filament spins continuously

while the centre of mass of the filament follows a linear trajectory (online-movie). In the

later case, though the trajectory is similar, the conformation of the filament is not. The

minima of the conformation is not in the middle but close to the edges (online-movie).

Higher order states: At the region of high activity and high sedimentation number

we observe a variety of complex higher order modes (6 in Fig 4.7a). Sometimes, they

form loop-like structures (4.6 f online-movie), at other times they form conformations

with a knot at the head and long tail, sometimes a knot in the middle of the filament

with two asymmetrically extended ends and so on. One of these conformations has been

reported earlier in the study of passive sedimentation in the presence of noise [151].

Transient states are also found in the phase space, where filament does not reach any

of the steady states and sediments in an irregular trajectory. Examples of such conform-

ations are shown in (4.6 i and j) and such regions are marked as 7 in Fig (4.7a).

4.4.3 Phase boundaries and dynamical features

The change of conformation of active slender bodies can be seen as a dynamic response

to an external field. The best way to measure these non-linear responses by computing

effective resistance coefficients in the parallel and perpendicular direction to the applied

field. Similarly, conformational change can be observed by measuring writhe. These

https://www.dropbox.com/s/i4yh5od4nby1bnh/g500a-30.mp4?dl=0
https://www.dropbox.com/s/wo6n94f63850lrc/g50a25.mp4?dl=0
https://www.dropbox.com/s/3kinjn90qdg4e2m/g1600a-5.mp4?dl=0
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quantities, mean writhe and effective friction coefficients are presented in the Fig (4.7).

Writhe is a measure of helicity of a three dimensional curve, defined as

W =
1

4π

∫
C

∫
C

dr1 × dr2 ·
r1 − r2

|r1 − r2|3
. (4.5)

where r1 and r2 are points on the curve. We numerically compute discrete form of this

quantity to characterise the filament conformation. The details are given in the Appendix.

Usually, writhe of the conformation is zero when the filament sediments in a plane and

non-zero otherwise. For some of the transient states, mean writhe is found to diminish.

The response coefficients, effective friction tensors for the filament in their steady

states are presented in Fig (4.7c) and Fig (4.7d). The parallel and perpendicular compon-

ent are defined as,

γ‖ =
|v‖|
|Fe| ; γ⊥ =

|v⊥|
|Fe| , (4.6)

where, v‖ and v⊥ are the steady state velocity of the filament in the direction parallel

and perpendicular to the applied field Fe. These quantities, γ⊥ and γ‖ are function of

sedimentation number S and activity number AS. We note that the parallel component

is maximum for planar cases, and less for others. Similarly, perpendicular component is

least for the planar cases, but more for other aplanar conformations.

4.5 Conclusion

Here, in this chapter we demonstrated the dynamic responses of active and passive fila-

ments to external fields in detail. First at zero limit of activity of our model, we repro-

duced dynamical steady states in passive sedimentation found in earlier studies. We have

discussed the effect of activity on planar as well as aplanar conformations. We concluded

the chapter by computing various response coefficients to indicate non-linear responses
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found in the presence of activity and non-local fluid interaction.

In the passive limit of our theory, we found new states and explained the dynamical

transition from energetics and correlated it to the stability of the metastable state. In the

presence of activity, we showed the appearance of a series of steady states which arise

due to the dynamic balance of various forces out of equilibrium. We characterised those

states and their regions of stability.

Our general modelling of active slender bodies makes it an ideal candidate to ex-

plain dynamical and conformational dynamics of contractile and extensile bio-filaments

in external magnetic or centrifugal field [154, 155]. Moreover, one would expect similar

settling dynamics in the system of a chain of tri-metallic nanorods under external field

[140, 141].

Our theory, developed in this chapter can be thought as a generalisation of the bead-

spring theory of passive filament including internal activity. In those earlier studies

[149, 150, 151, 154], the beads are passive and coupled hydrodynamically through the

Oseen-Burgers tensor. In a parallel development, slender body theory has been used to

study the problem in detail [148, 152, 153]. Our work in this chapter can be thought of

as an extension of these past studies to an active filament. It is well-known that response

of polymeric matter to external perturbations is complex. An interesting direction for

future research is to understand how active polymeric matter responds to external per-

turbations. The response of a single active filament studied in this chapter is a first step

in that direction.
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Chapter 5

Biomimetics: passive filament driven by

an active colloid

Active colloids and externally actuated semi-flexible filaments provide basic building

blocks for designing autonomously motile micro-machines. In this chapter, we show that

a passive semi-flexible filament can be actuated and transported by attaching an active

colloid to its terminus. We study the dynamics of this assembly when it is free, tethered,

or clamped using overdamped equations of motion that explicitly account for active fluid

flow and the forces it mediates. Linear states are destabilized by buckling instabilities

to produce stable states of non-zero curvature and writhe. We demarcate boundaries of

these states in the two-dimensional parameter space representing dimensionless measures

of polar and apolar activity. Our proposed assembly can be used as a novel component in

the design of micro-machines at low Reynolds number.

5.1 Introduction

Autonomously motile micromotors are the basic building blocks for ballistic transport in

cellular and extra-cellular level. Classic examples from biology include cilia and flagella

[14]. The central role of those organelles is to accomplish individual motility, to help

in transporting genetic material, removing unwanted materials, inducing spontaneous

flow to push mucous, biological fluids in a particular direction and enhance transport.

Development of synthetic and controllable micromachines may replace those biological

micromachines to accomplish these jobs [156, 79]. Moreover, they can be used to trans-

75
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port genetic material, therapeutic payloads and functionalised groups to a target and to

enhance fluid mixing in microfluidic chambers by inducing flow.

But developing micromachines synthetically are quite challenging, hindered by the

physical laws [95]. The major challenges are Brownian noise, viscosity dominated mo-

tion and many-body interactions. Combining chemistry, physics and technology, re-

searchers around the world have come up with different interesting ideas. Those ideas

are still evolving, which can be categorized mostly in three basic mechanisms, first, ex-

ternal driving control, second by internal activity, using phoretic mechanism and third

bio-hybrid ones, combining biology and technology. External field used so far to move

slender structures are electric [30, 157, 158], magnetic [159, 29, 129, 160] and recently

by ultrasound [31, 161]. Internal mechanism covers various phoretic motions by pattern-

ing the surface of the solid body with different metals or by specific chemical compounds

[143, 144, 146, 32, 162, 133]. Doing so, these bodies can move in a particular fluid

medium such as H2O2, hydrazine and other chemicals. These micromotors are quite

fast but mostly work in corrosive environment. Recent developments of enzyme based

micro-motors show more applicability inside an organism [81, 33]. The third category

of micromachines is engineered in such a way that it can move using internal and some-

times by external driving [130, 35, 131, 132, 85]. Examples of this category include

selective attachment of heart cell on a slender body and combining metallic structures

with spermatozoa and flagella. Marangoni flow and bubble driven mechanisms are few

of the other noteworthy suggestions [163, 162, 80]. While the motion of a slender body

due to external driving has been explored theoretically in detail, there is no contribution

for autonomous motion in the absence of external forces and torques, which include the

second and third category of experiments we have mentioned.

Here, we demonstrate that spontaneous actuation can be achieved, by combining

elastic filaments and active beads. We propose a novel way to develop synthetic micro-
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actuator which can be used to increase mixing in microfluidic chambers, transport col-

loidal loads, to form an array of synthetic cilia.

In this chapter, we first develop our model in detail. Then, defining two dimensionless

activity numbers, one for apolar activity another for polar activity with respect to the

elasticity of the body, we study the dynamics of the assembly. We found that under

compressive stress generated by the activity, the linear conformation buckles and as a

consequence nonlinear steady states arise. Those aplanar and planar states and their

properties are further characterised and their domain of appearance is demarcated in the

two-dimensional phase space of two activity number. Further performing linear stability

analysis on the linear conformation, we find out the nature of the transition from linear

quiescent state to dynamic modes.

Figure 5.1: Schematic diagram of a passive filament driven by an active colloid suitably attached
to its terminus.

5.2 Model description

Our micro-machine is modelled as an assembly of a passive filament and an active colloid

attached suitably to its terminus. Schematic diagram of the assembly is presented in the

Fig. (5.1). This particular design is motivated by the fact that smaller micro-motors are

more efficient but vulnerable to thermal noise. Therefore, to make efficient yet control-

lable micro-machine, we propose to use the efficiency of the small active colloid along

with passive segment as a bias. This model can also be seen as a subset of co-block
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polymers that are made of passive and active segments.

As always, throughout this thesis, we discretise the filament by a set of total N beads

connected consecutively to form a chain, which is described earlier in Sec. 2.2. These

N beads are consists of N1 active and N2 passive beads distributed accordingly. In this

particular problem, first N− 1 beads are passive and the last bead is active. The boundary

conditions on the beads are then,

v(Rn + ρn) =


Vn + Ωn × ρn, n ∈ passive

Vn + Ωn × ρn + vA(ρn), n ∈ active.

The activity if the beads reveal through self-propulsion, VAN, as well as in the gener-

ation of apolar active flows. Accordingly, we consider both V(2s)
N and V(3t)

N .

vA(ρn) = −VAn + 1
15 V(3t)

n · (ρnρn − 1
3δ)︸ ︷︷ ︸

polar

+V(2s)
n · ρn︸ ︷︷ ︸
apolar

, n ∈ N. (5.1)

This model is sufficiently general to describe the far-field flow of a variety of polar

and apolar active colloids. We assume that the principal axes of the slip coefficients are

parallel to the tangent vector, tN, at the terminus of the filament, so that

V(2s)
N = as0(tNtN − 1

3δ), (5.2)

VAN = −3
5

V(3t)
N = −3a2

5
d0tN. (5.3)

Here we note that, in this parametrisation self-propulsion velocity VAN and V(3t)
N are

related.

Equation of motion : Appealing to these considerations, we write down the effective
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equation of motion for N-th active bead and constituent passive beads

Ṙn =
1

6πηa
Fint

n + ∑
m 6=n
F 0F 0G · Fint

m +
28πηa3

3
F 0F 1∇NG · sN

+
4πηa5

5
∇2

NG · dN, n, m ∈ filament (5.4)

ṘN =
1

6πηa
Fint

N + ∑
m 6=N
F 0F 0G · Fint

m − 3a2

5 dN. active colloid (5.5)

Dimensionless numbers : In the system of a passive slender body driven by an active

colloid, we identify basic length scales. They are the length of the slender body, L and

a is the radius of the cross section. From discretisation of the slender object to series of

connected beads, we get another length scale that is the equilibrium separation between

two consecutive beads, b. Similarly, we identify timescales of the system. For a passive

filament of length L, and of bending rigidity κ, the rate at which any transverse perturba-

tion relaxes is Γκ = κ/ηLd+1 in space dimension d = 3. Two modes of non-equilibrium

surface activity generate compressive stress by hydrodynamic interaction at the terminus

of the passive filament and comparing these with respect to the bending elasticity of the

slender structure leads to two dimensionless numbers A(2s) and A(3t). We study the

dynamics of slender body in the phase-space defined by these two dimensionless groups

A2s =
7πηa4L2s0

κb2 , (5.6)

A3t =
18πηa3L2d0

5κ
. (5.7)

5.3 Dynamics of the assembly

The dynamics of a passive filament driven by an active colloid is presented in this section.

To get a clear understanding, we first investigate the dynamics of an active colloid of both

motile and non-motile nature when weighted by a passive colloid. The spontaneous fluid-
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flow generated through the interaction is presented in the Fig. (5.2). In the panel (a), the

direction of movement of the assembly and fluid flow in its periphery is presented when

the active bead is motile. Identical quantities are presented in (b and c), when the colloids

are symmetric dipoles of extensile and contractile in nature. The white arrow indicates

the direction of the movement of the assembly. The speed and the direction of the motile

assembly depend on the position of the passive bead with respect to active bead, the

orientation of the active bead and the separation between two beads.

Figure 5.2: Fluid flows around an assembly of passive-active colloids with the background,
pseudo-colored with the natural logarithm of the magnitude of the fluid velocity. In (a) the active
colloid is motile (degenerate quadrupole) but in later panels (b and c) active colloids are non-
motile (symmetric dipole) and respectively contractile and extensile in nature. Big white arrows
in all the panels show the direction to which the assembly would move. Interestingly, an assembly
of non-motile active colloid and a passive colloid can become motile by breaking the symmetry
of the flow. The direction and velocity of the assembly critically depend on the parameters of the
configuration, such as the orientation of the active bead, its nature and separation with the passive
bead.

To find out the detailed dynamics of the assembly of passive filament driven by active

colloid, we numerically integrate equations of motion of this system using a variable

coefficient method. The parameters and method used are given in the appendix.

Results from our numerical investigation are presented in the Fig. (5.3) for all three

cases. The steady states and fluid flow arising through the interplay between structure

and the fluid are presented categorically.
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Figure 5.3: Non-equilibrium steady states of a free (a)-(c), of a tethered (d)-(f) and clamped (g)-
(i) slender body with a active colloid attached to its terminus. The figures show various dynamic
and static conformation of the slender body with the increase of activity. The fluid flows at a
plane are shown by streamline with the background is pseudo-coloured with the logarithm of the
magnitude of the fluid flow.

Free Boundary Condition: The steady states of the assembly, when free of any con-

straints, is shown in the first row of the Fig (5.3). When the active colloid produces a

flow that pulls the passive structure, the linear conformation is stable to any transverse

perturbations. But, when the spontaneous flow pushes the whole structure, after a crit-

ical threshold of combined activity, the linear conformation become unstable due to any

transverse perturbation. This transition happens through a Hopf bifurcation. Just after

the instability, the filament reaches a steady state. In this steady state (online-movie),

https://www.dropbox.com/s/2yq1cfydwq4xhoq/hellicalMovie.mp4?dl=0
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the whole assembly forms a three-dimensional helical structure and propel in a helical

trajectory with time (Fig 5.3 middle panel of the first row). The shape of the body in this

state, usually, varies a little during spontaneous motion. With further increase of activity,

strength of the spontaneous fluid flow increase and after a critical value of net activity, the

helical conformation becomes unstable and ends up in an oscillatory state. In this state,

the conformation of the assembly become planar and oscillatory in nature. Autonomous

propulsion happens in this state by complex oscillatory mode (shown in Fig 5.3 last panel

of the first row). During this state, the assembly has distinctively two different parts, al-

most not changing initial part and dynamic active end. The online-movie explains the

dynamics clearly.

Tethered Boundary Condition: The dynamics of the assembly is studied when the

passive end is tethered to a point in an otherwise infinite medium. The outcome of the

study is presented in the second row of the Fig. (5.3). When spontaneous flow pulls the

assembly away from the tethered point, the bond between the passive beads gets stretched

to counterbalance the pull. But when the spontaneous flow pushes the assembly towards

the tethered point, after a certain threshold, the linear assembly undergoes a transition

and a new dynamic state arises. In this state, the whole assembly bends slightly and

start rotating in a plane around the tethered point. This transition happens through simple

instability, unlike the constraint-less case. In this state, the rate of activity which promotes

bending matches with the restoring elasticity. When the strength of the activity increases,

this dynamic balance dissolves away and oscillatory mode arises. For even higher activity

regime, this state becomes unstable and end up in other higher order complex modes.

Clamped Boundary Condition: The dynamics of the assembly, clamped at the passive

end is studied here. The dynamical steady states and spontaneous fluid flow around it is

displayed in the third row of Fig. (5.3). The linear assembly due to spontaneous flow

that pulls the assembly away from the clamped point is quite similar to the tethered case.

https://www.dropbox.com/s/ekhs46rfmquytbt/planar.mp4?dl=0
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This conformation also goes through the transition under compressive flow. But because

of clamping condition, the rotational mode is infeasible. The only possibility remains, is

to go to a three-dimensional helical state. In this state, the assembly with slight helical

conformation does not change its shape with time and undergoes revolution. The con-

formation in shown in the middle panel of the third row of the Fig. (5.3). This transition

occurs through a Hopf bifurcation. The dynamic balance between elasticity and activity

breaks down with further increase of activity and planar beating mode arises. With fur-

ther increase of the activity this mode becomes unstable and higher order complex modes

appear.

Writhe and Curvature : Using properties of the assembly such as mean curvature,

standard deviation, writhe can be used to distinguish various steady states. While curvature

of a structure identifies bending, writhe identify out of plane distortions. Basically writhe

a measure of helicity presented in an earlier section 5.4. During the linear steady states,

both the quantities, mean curvature and writhe are zero but picks up nonzero contribution

when aplanar. In the planar beating state, writhe and time averaged curvature is zero,

but standard deviation of the curvature is nonzero. For the case of planar rotation, found

when the filament is tethered, the mean curvature of the assembly is also nonzero, but

writhe is zero. Thus, using these two quantities of the conformation of the assembly, the

phase space can easily be demarcated into zones of different steady states.

In the Fig. (5.4), we display the dynamics of the writhe to demonstrate the way

initial linear conformation relaxes to different steady states when the filament is free and

clamped varying one of the parameters keeping the other fixed. In the low activity, the

writhe of the filament always stays at zero after initial transients, indicating stability of

linear conformation. In the intermediate values of activity, after the initial transient writhe

saturates at a finite value, indicating aplanar mode. With further increase of activity, the

writhe of the conformation again goes to zero, indicating the appearance of planar steady
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state. Similar phenomena are found again for clamped filament. For the tethered filament,

all the steady states are planar and curvature is enough to identify the states.

Figure 5.4: Writhe of the assembly is plotted when the assembly is free (a-b) and clamped (c-d).
In subfigure (a) and (b), the variation of writhe shown with the increase of one dimensionless
number, while the other number is kept constant. It shows that at a lower value of activity(s)
writhe is zero as the conformation is linear, at the intermediate value it become nonzero as the
conformation is helical and at the higher value it again goes back to zero due to planar mode,
indicating a transition from helical conformation to planar conformation. Similar plot for clamped
assembly is presented in the subfigure (c and d).

Phase boundary : In the two-dimensional phase spaces defined by apolar A(2s) and

polar activity A(3t), regions of different steady states are demarcated in the Fig. (5.5)

for all the three cases, free, tethered and clamped. The simulation points are shown with
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symbols.

Figure 5.5: Phase diagram (colour online) of dynamic steady states for free-free boundary con-
dition in (a), for tethered-free boundary condition in (b) and for clamped-free boundary condition
in (c) in dimensionless parameters A2s and A3t.

5.4 Linear stability analysis

To elucidate the nature of transition, a linear stability analysis (LSA) is performed numer-

ically on the steady linear conformation of the assembly. The procedure of performing

LSA is presented earlier in the Sec. 3.6. The result of our analysis for this system is

presented in the Fig. (5.6) keeping polar activity to zero. The transition from linear con-

formation to oscillatory helical conformations, in the cases of free and clamped, happen

through a Hopf bifurcation. During this kind of transition, two eigenvalue become un-

stable simultaneously. On the contrary, the transition from linear quiescent conformation

to revolution with a slight bent, in the case of tethered boundary condition, occurs through

a simple instability. Only one eigenvalue become positive during this transition.
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Figure 5.6: Linear stability analysis of the linear conformation is presented with the increase
of dimensionless parameter A2s for free (a), tethered (b) and clamped (c) assembly. We show
that, the transitions through which stable linear conformation goes to oscillatory states (a and
c), instabilities occur through Hopf bifurcations, on the contrary when the transition leads linear
conformation to global rotation (b), the instability happens through zero-crossing of the largest
eigenvalue.

5.5 Conclusion

In this chapter, we show that autonomous actuation can be achieved by attaching an active

colloid to the terminus of a elastic passive filament. Furthermore, our detail numerical

study shows, the interplay between elasticity of the passive segment of the filament and

activity that promotes buckling instability in a viscous environment generate actuation.

This spontaneous actuation in the absence of any external forcing can be used as an

engine of a micromachine, micro-actuator and for efficient mixing.

The ideal candidate to check our theory can be developed by attaching a catalytic

nanomotors to an elastic slender structure and keeping the whole assembly in H2O2

solution. Moreover, attaching a large number of these components to a surface, synthetic

yet autonomously actuating ciliary layer can be developed.

Previous studies on biomimetic motion usually modelled by external driving of an

elastic body and corresponding actuation dynamics are studied in details with and without

hydrodynamic interaction [164, 92, 89, 154]. Therefore, force-free torque-free nature of
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active suspension and activity induced hydrodynamic interactions are not considered.
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Chapter 6

Emergence: collective dynamics of

many active rods

Here, we present the emergent behaviour of active rods in a viscous fluid in an unboun-

ded domain and near a wall. Active rods in the micro-hydrodynamic regime can pro-

duce spontaneous flow and interact with others hydrodynamically. As its consequence,

in unbounded geometry, a pair of extensile rods attract each other in parallel and repel

in perpendicular conformation and show the opposite dynamics for the contractile case.

These fluid mediated interactions lead to form assemblies, which are in general autonom-

ously motile and dynamic in nature. The presence of no-slip wall modifies the properties

of the spontaneous flow, resultant hydrodynamic interaction and dynamical behaviours.

Though the dynamics parallel to the wall remains qualitatively the same, the dynamics

perpendicular to it differs significantly due to the breaking of translational symmetry in

the concerned direction. To elucidate the problem in detail, we successively investigate

the dynamics of a single rod, a pair and many of them in detail near a wall. Further-

more, the collective dynamics in unbounded and wall-bounded domains are compared

with each other. Our theory and understanding provide the first crucial step to developing

a general theory of momentum conserving active suspension near a wall. We conclude

the chapter by comparing our findings with recent experiments on tri-metallic active rods

near a wall and possible future direction.

89
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6.1 Introduction

Assembling identical components to a complex yet robust structure is very common in

different contexts in biology, chemistry and physical sciences. Elucidating the mech-

anism behind these processes, not only quench the thirst for theoretical knowledge but

also help in developing methods to synthesise materials with desired property. Such

novel materials have revolutionised the whole technology many times over the last cen-

tury. In recent times, there is a fresh interest to develop smart material, that can modify

their behaviours and conformations dynamically in response to external perturbations

[165, 166, 167, 168, 169]. Though the mechanisms behind these dynamic processes,

near thermal equilibrium, are well-understood by either energy minimisation or entropy

maximisation [170, 171], mechanisms beyond the realm of equilibrium are hardly under-

stood. Therefore, an enormous potential lies in developing novel techniques.

Moreover, those active systems, unlike their passive counterparts, show rich collective

dynamics and emergent phenomena. For example, In recent experiments on chemically

active colloids, microbes and active motor microtubule assemblies display enhanced dif-

fusion, autonomous motion, phase separation, pattern formation and spontaneous gener-

ation and dissociation of defects [37, 36, 172, 23, 45, 42, 49, 34, 47, 48, 46, 173, 43, 44].

In spite of much work over last few year [11], such phenomena are yet to be fully under-

stood. Consequently, full control over these systems is still beyond reach .

So far, the theory developed for these systems are either from continuum analysis or

from kinetic theories [11, 174, 175, 173, 176]. While in continuum approach, the sym-

metries of the problem are used to identify hydrodynamic variables and corresponding

constitutive equations, kinetic theories provide a systematic method to get the probability

functions satisfying specific collision rules. These relevant quantities are then studied in

long wavelength approximations to predict the dynamics of the system. Thus, in those

methods, small wavelength phenomena, the effect of boundaries and microscopic details
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are not included.

In a typical experimental system, these small microscopic details and presence of

macroscopic boundaries are crucial. For example, non-motile active nano-rods in H2O2

solution show rich dynamic behaviours near a wall [141, 140]. They generate specific

conformations in a pair and spontaneous motions. The mechanism behind the motions

is not yet completely understood. Therefore, to elucidate the mechanism behind the

phenomena and to fill up the gap between experiments and theory in this chapter, we

investigate the dynamics of slender active rods in unbounded and wall-bounded geometry.

The conservation of momentum and consequently, the hydrodynamic interaction between

different rods are explicitly considered.

6.2 Model description

Active rods are modelled by a series of beads connected each other by stiff non-linear

elastic potential. The strength of the elasticity is an order of magnitude higher than the

other relevant scales. These beads are active and produce dipolar flow along their prin-

cipal axes. In unbounded domain description of an active body is already presented in

the Sec. 2.6. Near a no-slip wall, the hydrodynamic interaction between the beads and

corresponding hydrodynamic forces and torques are computed by using Lorentz-Blake

tensor [115, 116], presented earlier in Eq. (2.42),

Gw
ij = Gij − G∗ij − 2hM∇jG∗i3 + 2h2M∇2G∗ij. (6.1)

Equation of motion: Thus modifying Green function that encodes correct hydrodynamic

interaction, we get
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Ṙn = µw · Fint
n + ∑

m 6=n
F 0F 0Gw · Fint

m +
28πηa3

3 ∑
m 6=n
F 0F 1∇Gw · sm︸ ︷︷ ︸

Active

. (6.2)

In spite of the similarity with the Eq. 3.5, many crucial differences are hidden behind

those innocuous equations. The first point to note is that, due to the self-interaction with

the image, one body mobility matrix gets modified and no longer isotropic in all direction.

The second point is that an isolated active rod, which is quiescent in an infinite domain,

can have motion produced by complex interaction with its own image.

In the following sections, we first describe the dynamics of the pair of active rods

in an unbounded domain and followed by, the dynamics of them near a wall. We have

considered both the cases when the rods are neutrally buoyant as well as when the rods

are bottom heavy. We conclude the chapter with comparison with dynamics of many

active rods in the infinite domain and near a macroscopic wall.

6.3 Dynamics of two active rods in unbounded flow

Resolving the dynamics of a pair of rods is the cornerstone to elucidate the dynamics of

many active rods. Therefore, we choose various experimentally observed conformations

and study the dynamics of them only due to hydrodynamic interaction. The conform-

ation found in experiments are generally of two kinds, perpendicular and parallel. An

extensile active rod generates a spontaneous flow, that pulls the fluid from all the direc-

tion perpendicular to its major axis and expels out the fluid along its axis. In the case of

a contractile active rod, the spontaneous flow pulls the fluid along the axis and expelled

out to all the direction perpendicular to the principal axis of the rod. Here, we note down

that, an isolated rod can not move by itself in an infinite domain by breaking the flow

symmetry.
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Figure 6.1: Dynamics of a pair of stiff extensile rods in an infinite medium. Hydrodynamic
interaction generates net attraction when the rods are in parallel configuration whereas, generates
repulsion when they are in the perpendicular configuration.

Let’s assume, a pair of extensile rods is suspended in an infinite domain, in parallel

to each other. Due to the geometry, the spontaneous fluid flow generated by one pull the

other and vice-versa. Therefore, there is a net attraction between the parallel extensile

rods due to HI. The dynamics is shown in the first row of the Fig. 6.1 and by a online-

movie. On the other hand, if the extensile rods are in perpendicular conformation (say

in T shape), the flow produced by the first rod (upper one) pulls the second one, but

the flow generated by the second rod pushes the first filament away. The fluid flow due

to the latter is stronger than the former because the spontaneous flow is expelled out

only in one direction pulling the fluid from other two perpendicular directions. As a

https://www.dropbox.com/s/y5qkkqu8tluppbi/extensileParallel.mp4?dl=0
https://www.dropbox.com/s/y5qkkqu8tluppbi/extensileParallel.mp4?dl=0
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result, perpendicular conformation or T configuration is unstable and unlikely to form

spontaneously for extensile rods (shown in the second row of the Fig. 6.1 and in online-

movie).

We found that once two parallel extensile rods form a pair, a misalignment happens

dynamically and the assembly starts rotating (online-movie). The sense of the rotation of

the cluster is found to be clockwise if the end of the rod situated at the right side of the

assembly extended downwards.

Figure 6.2: Dynamics of a pair of stiff active contractile rods in an infinite medium. In contrary
to the extensile case, here, hydrodynamic interaction generates net repulsion when the rods are in
parallel configuration whereas, generates attraction when they are in the perpendicular configura-
tion.

For the case of contractile rods, the spontaneous fluid flow it generates is exactly op-

posite to its extensile counterpart. Therefore, there is net hydrodynamic repulsion if the

https://www.dropbox.com/s/o5fuzv8vtcsnhay/extensilePerp.mp4?dl=0
https://www.dropbox.com/s/o5fuzv8vtcsnhay/extensilePerp.mp4?dl=0
https://www.dropbox.com/s/y5qkkqu8tluppbi/extensileParallel.mp4?dl=0
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rods are in parallel and a net hydrodynamic attraction when the rods are in perpendicular

or in T conformation. The dynamics of the pairs are presented in the Fig. 6.2. The con-

tractile rods can spontaneously form a stable T junction and the whole assembly moves in

the direction towards the leg of the T. For high activity, the contractile assembly deforms

and the whole assembly start a revolution in a big circle (online-movie). Both the assem-

blies parallel extensile conformation and perpendicular contractile conformation move

with a certain time-period and a speed which critically depends on the activity number.

The speed of the assembly, both rotation for extensile case and translation for contractile

case, increase with the increase of the absolute value of activity number.

x/a

y
/
a

Figure 6.3: A pair of contractile rods form a stable T junction and the whole configuration start
rotating in a circle. Configurations of the filaments at different instances of the time period are
plotted in different colours, highlighting the rotation of the whole configuration.

These dynamics were observed earlier in [? ] where the active rods both contractile

and extensile were considered on a fluid film. In that case, the rods are constrained in

a plane because of the geometry and not because of the up-down symmetry of the fluid

domain.

https://www.dropbox.com/s/87dhhttdhbg7jrs/contractilePerpTop.mp4?dl=0
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6.4 Dynamics of active rods near a wall

Presence of macroscopic wall changes the dynamics of rods near a wall. As mentioned

earlier, we model the hydrodynamic interaction near a macroscopic wall by computing

resistance tensors, mobility tensors and propulsion tensors by taking derivatives of the

finite sized Lorentz-Blake tensor which assumes no-slip boundary condition on the mac-

roscopic wall. Modifying the boundary condition on the wall change the properties of

hydrodynamic interaction and resultant dynamics.

6.4.1 Single active rod

Figure 6.4: Instability of a single neutrally buoyant active rod near a wall. Due to hydrodynamic
interaction with the wall, the contractile rod spontaneously reorients itself from parallel to per-
pendicular direction near a wall. On the other hand, an extensile rod prefers to stay in parallel to
the wall.

The dynamics of a neutrally buoyant active rod near a wall is very interesting and the

results are presented in the Fig. 6.4. The first row presents the dynamics of an extensile
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rod while the second row presents the dynamics of a contractile rod. Columns from

right to left present conformation of the rods with increasing time. Detailed dynamics

can be found in online-movie1 and online-movie2. We found that an extensile rod is

hydrodynamically stable in parallel to the wall but a contractile rod is not. In the latter

case, the rod reorients itself to align perpendicular to the wall.

To elucidate the dynamics, we investigate the problem from virtual image point of

view. An extensile rod generates an image which also produces extensile flow. Therefore,

to a leading order, an extensile rod near a wall can be imagined as a pair of extensile rods

(one real and another virtual), in parallel conformation. A pair of extensile rods in an

infinite flow hydrodynamically attract each other. Therefore, the extensile rod near a wall

prefer to align in parallel. On the other hand, the image created by the contractile rod

produces contractile flow. We now recall that there is hydrodynamic repulsion between a

pair of parallel contractile rods and an attraction when the rods are perpendicular to each

other. This mechanism reorients the rod to perpendicular to the wall.

These phenomena we observed here has great implication in the dynamics of mi-

crobes near a wall. In recent studies, it is shown that microbes are neither contractile nor

extensile but their nature oscillates over the swimming cycle [142, 177, 108]. Now from

our study it is clear that there is an additional rate arising from hydrodynamic interac-

tion that depends on the nature of the activity. Therefore, this fluid-mediated interaction

along with other relevant time-scales will be a key factor to determining the escape time

statistics of active particles near a wall [178, 179, 180, 181].

6.4.2 Two active rods

Here in this section the dynamics of a pair of active rods is studied in detail to get an

understanding of emergent collective dynamics of the active rods near a wall. We initiate

our numerical studies, with different possible configurations and investigate the dynamics

https://www.dropbox.com/s/z5uatmjqtfru9hq/extensileNoG.mp4?dl=0
https://www.dropbox.com/s/499zjc4uiu0vfgl/contractileNoG.mp4?dl=0
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in detail. We choose three conformations, a) both the rods are parallel to each other and

to the wall, b) both the rods are perpendicular to each other and parallel to the wall and

lastly, c) both the rods parallel to each other but perpendicular to the wall.

Figure 6.5: Dynamics of a pair of neutrally buoyant extensile rods near a macroscopic wall. In
the first panel, we show that two parallel active rods in perpendicular to the wall, forms a stable
pair and slowly drifts away from the wall. In the Second panel, we show that two parallel active
rods also in parallel to the wall form a pair and goes to a quiescent state, unlike spontaneous
rotation in the case of unbounded flow.

The dynamics for extensile rods are summarised in the Fig. 6.5. Individual extensile

rods in parallel to the wall is hydrodynamically stable; when they are in parallel to each

other, like unbounded domain, they generate a flow, that brings both the rods closer.

Once the rods form an assembly, it rotates a little and become static (the first row of Fig.

6.5 and online-movie1). At high activity, they slide past each other, aligning in parallel

(online-movie2). In similarity with the dynamics in infinite flow, the extensile rods in

perpendicular conformation near a wall produces a repulsive flow that pushes the rods

far from each other. But surprisingly, when the rods are placed in parallel, close to each

https://www.dropbox.com/s/5buwoqvbycy00y4/extensileParaNoG.mp4?dl=0
https://www.dropbox.com/s/aqna25gngkc2ywb/extensilePara.mp4?dl=0
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other and perpendicular to the wall, they do not reorient individually. Instead they form

a pair and start moving away from the wall, due to interaction with the image of the

conformation (the second row of Fig. 6.5 and online-movie).

Figure 6.6: Dynamics of a pair of neutrally buoyant contractile rods near a macroscopic wall
when neutrally buoyant (first three rows) and when denser than the surrounding fluid (last row).
In first three panels, dynamic steady states of the pair of contractile rods are shown near a near
a wall. In the last row, we show that like in an unbounded domain, the rods attract each other in
perpendicular conformation and start translating.

https://www.dropbox.com/s/0i83nwvv5yjpben/extensilePerpPara.mp4?dl=0
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Inclusion of bottom-heaviness of the rods increase the stability of the parallel con-

formation; we always found that the rods reorient themselves to be parallel to the wall

and once it is parallel to the wall, the dynamics are similar to their infinite counterparts

with rates at which they form pair or move away from each other are different.

The dynamics of contractile rods are presented in the Fig. 6.6. We have found that the

dynamics of such rods, when bottom heavy, are qualitatively similar to the dynamics they

produce in an infinite domain. They attract each other in perpendicular conformation (the

last row of Fig. 6.6 and online-movie) and repel in parallel configuration (online-movie).

They also display a new dynamical steady state when two rods aligned in a line (online-

movie). But when these rods are neutrally buoyant they produce a variety of steady states

due to both self-image interaction and pair interaction. If the rods are far away from

each other they behave predominantly like isolated rods, but hydrodynamically repel each

other once they get settled in their individual stable states ie. perpendicular to the wall (the

third row of Fig. 6.5 and online-movie). If they are in proximity, they produces different

steady states which are combinations of T-junctions and individual stable conformation

(last columns of Fig. 6.6), perpendicular to the wall. Their detailed dynamics can be

found in online-movie1 and online-movie2.

6.5 Dynamics of many active rods

Here we present the dynamics of many active rods in an infinite domain and near a wall.

The dynamics observed in our numerical study depends crucially on various paramet-

ers of the system. Though the parameter space is full of interesting dynamics, here we

choose one example each for contractile and extensile rods in unbounded flow and near

a wall. The dynamics of the rods are restricted inside a circular domain by an additional

cylindrical potential.

https://www.dropbox.com/s/hkr86iaaiwq51e3/contractilePerp.mp4?dl=0
https://www.dropbox.com/s/o5037dmbk27mevh/contractilePara.mp4?dl=0
https://www.dropbox.com/s/glhsohu5qw1wys7/contractilePerpPara.mp4?dl=0
https://www.dropbox.com/s/glhsohu5qw1wys7/contractilePerpPara.mp4?dl=0
https://www.dropbox.com/s/7wyy1w0hm7e21s8/contractileParaNoG.mp4?dl=0
https://www.dropbox.com/s/4eyk7z1iggv76w9/contractilePerpNoG.mp4?dl=0
https://www.dropbox.com/s/66de93zanap9p4u/contractilePerpParaNoG.mp4?dl=0
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Figure 6.7: Dynamics of many active rods in infinite flow (a - extensile and b - contractile) and
near a wall (c extensile and d contractile).

Extensile rods in an infinite domain : We initiate our study with an ordered struc-

ture, keeping the rods on a rectangular lattice. The dynamics can be found in the online-

movie. The structure with this particular configuration is not hydrodynamically stable. It

undergoes an instability and a dynamical state arise when some of the rods go to the edge

of the potential while the rest produce a system-wide spontaneous circulation. We recall

that a pair of extensile rods forms a stable state in an infinite flow, but whenever there

are more rods, pairs of rods collide among themselves which leads to the breaking of the

https://www.dropbox.com/s/p5ecc67hap10fum/ext_unbounded.mp4?dl=0
https://www.dropbox.com/s/p5ecc67hap10fum/ext_unbounded.mp4?dl=0
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pairs and emergence of spontaneous circulation. This is reminiscent of spontaneous flow

observed in microtubule-motor assembly [23, 45].

Contractile rods in an infinite domain : We recall from the pair dynamics that the

contractile rods prefer to form T-junctions. In a collection of such type of active rods,

we observe an emergence of gel-like structure where the rods form a big assembly with

dynamic junctions. The dynamics is shown in the online-movie. Similar dynamics is

reported earlier in [? ].

Extensile bottom-heavy rods near wall : In the suspension of extensile rods near

a wall, we observe a dynamic assembly. We recall that in the pair dynamics parallel

filaments hydrodynamically attract each other and later slips past each other. Here, the

interplay between parallel attraction that enhance aggregation and slip that suppresses

aggregation, leads to a oscillatory dynamics. The dynamics is presented in the online-

movie. The dynamics closely resembles experiment presented in [141].

Contractile bottom-heavy rods near wall : The contractile rods in the suspension

near a wall display a spontaneous motion which is combination of formation of T junction

and head to head alignment shown earlier in the pair dynamics. The dynamics of the

collection of them is present in this online-movie.

The instances of the dynamics are presented in the Fig. (6.7).

6.6 Conclusion

Here, in this chapter we have presented the collective dynamics of active rods in an

infinite fluid and near a wall. The dynamics of the active rods near a wall is explained

using the view point of the virtual image and the pair dynamics.

Through our modelling of active rods we have reproduced similar dynamics found

in active rods near wall [141, 140]. But our model fails to produce some of the pair

dynamics presented in the study of [140], as we have not considered the formation of

https://www.dropbox.com/s/q9pmj84orck1f0k/cont_unbounded.mp4?dl=0
https://www.dropbox.com/s/hzu7fmoz2g6asq6/ext_wall.mp4?dl=0
https://www.dropbox.com/s/hzu7fmoz2g6asq6/ext_wall.mp4?dl=0
https://www.dropbox.com/s/z9aglcy4irxjimq/cont_wall.mp4?dl=0
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local bond between neighbour rods. This local bond formation changes the distribution

of active flow which in turn changes the dynamics. We believe that by the inclusion of

this feature in our model, it can reproduce dynamics observed in [140].
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Chapter 7

Conclusion

In this thesis, a formalism to study generic active slender bodies in a viscous medium is

developed considering basic competing factors - elasticity of the body, Brownian motion,

hydrodynamic interactions and activity. We have derived a general equation of motion for

these bodies, using the properties of the viscous flow, a generic form of non-equilibrium

activity occurring on the fluid-structure interface and satisfying momentum conservation.

This equation of motion is an extension of the Zimm model and provides the foundation

to study a suspension of active filaments.

In chapter 3, our model has produced a series of steady states which closely resemble

the dynamics found in microtubule-motor assemblies. This highlights the applicability

of our theory in explaining the complex dynamics of active slender bodies. There are

many important and relevant questions in the systems where these bodies are in a col-

lection. These questions include synchronisation of cilia, anomalous diffusion, enhanced

mixing, spontaneous formation of ordered structure, defect dynamics and so on. It is

very intriguing to explore how the infusion of local energy can modify the behaviour of

hydrodynamic variables, their constitutive equations and relaxation rates.

In chapter 4, we have demonstrated the rich dynamics of an active slender body under

an external field. We found spontaneous formation of complex shapes and dynamics

which are consequences of the dynamic balance between conservative and dissipative

forces, of both active and passive origin. We expect that dissipative hydrodynamic force

will modify the collective behaviour and dynamical properties under external driving. We

intend to explore them in future.

In chapter 5, we have suggested a new method to synthesise a micromachine by as-
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sembling an active colloid and a passive filament. With the invention of catalytic nano-

motors and other synthetic micro-motors, it is very relevant and timely to understand

their individual dynamics to increase efficiency, how they could be used to accomplish

different micro-scale tasks and how their collective behaviour could be controlled better.

Our micromachine design is a contribution in that direction.

In chapter 6, we have demonstrated the remarkable behaviour of active slender rods

near a wall. There are many experimental studies on microtubule-motor assays, sperma-

tozoa, and other bio-filaments which show dynamic pattern formation and surprisingly

counterintuitive motions near a wall. The elasticity of the body, activity and hydro-

dynamic interaction critically affect the outcome of those studies, which remain to be

explored in detail.

Though we have developed a generic theory of slender body considering all the com-

petitive factors, we have not explored the statistical properties of those bodies due to

thermal fluctuations. We wish to explore this avenue in future along with rheological

properties of active polymeric fluids.
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Appendix

A.1 Constraint force on the tethered bead

Tethering the filament generates a conformation dependent constraint force at the tethered

point. We take care of hydrodynamics to satisfy the boundary condition appropriately,

such that net velocity of the respective end vanishes. Then we back-calculate the con-

strained force self-consistently on the course of simulation.

Ṙ1 =− 1
6πηa

(∇1U + Fc)−
N

∑
m=2
F 0F 0G(R1, Rm) ·∇mU

+
28πηa3

3

N

∑
m=2
F 0F 1∇G(R1, Rm) · sm (A.1)

Fc =−∇1U − 6πηa
N

∑
m=2
F 0F 0G(R1, Rm) ·∇mU

+ 56π2η2a4
N

∑
m=2
F 0F 1∇G(R1, Rm) · sm. (A.2)

A.2 Integrals and matrix elements

The expressions for the boundary integrals G(l) and K(l) and the matrix elements G(l,l′)
nm

and K(l,l′)
nm are given as [109],
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G(l+1)(r, Rm) =
2l + 1
4πa2

∫
G(r, Rm + ρm)Y(l)(ρ̂m)dSm (A.3)

= al∆(l)F l∇(l)
m G(r, Rm) (A.4)

K(l+1)(r, Rm) =
1

l!(2l − 1)!!

∫
K(r, Rm + ρm) · nY(l)(ρ̂m)dSm (A.5)

=
4πa al∆(l)

(l − 1)!(2l + 1)!!
F l∇(l−1)

m K(r, Rm) (A.6)

G(l+1,l′+1)
nm (Rn, Rm) =


δll′

2l + 1
2πa

∫
Y(l)(ρ̂) (δ − ρ̂ρ̂)Y(l)(ρ̂) dΩ; m = n;

al+l′F l
nF l′

m∇
(l)
n ∇(l′)

m G(Rn, Rm); m 6= n;

(A.7)

K(l+1,l′+1)
nm (Rn, Rm) =



−δll′4πδ∆(l); m = n;

4πa(l+l′+1)

(l′ − 1)!(2l′ + 1)!!
F l

nF l′
m∇

(l)
n ∇(l′−1)

m K(Rn, Rm); m 6= n;

(A.8)

A.3 Discrete form of the writhe

The discrete form of Writhe is derived in the study of protein folding by Levitt [182].

Later used by Klenin and Langowski [183] to quantify coiled DNA. We used the form

given by the later,
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W =
N

∑
i=1

N

∑
j=1

Ωij

4π
. (A.9)

where
Ωij
4π is equivalent of the double integral over i and j -th line-segments of the fila-

ment. This term vanishes for i = j and i = j + 1 [183].

A.4 Simulation method and parameters

We have taken a general strategy to study the dynamics of filaments and rods. In each

chapter, we first write down the equation of motion considering the competing factors,

then define relevant dimensionless groups. These update equations are further integrated

numerically using a variable coefficient method. We simulate the system for several

hundred relaxation time scales of the relevant factor. The parameter space we used are

given in the table A.1.
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Chapter
Relevant
dimensionless
numbers

Domain and
Green function

Other parameters

Chapter 3 :
Dynamics

AS Unbounded (G)

spring constant k = 1
bondlength b0 = 4a
bending rigidity κ = 0.1
Monomer Nm = 16− 128
stresslet s0 = 0− 0.5

Chapter 4 :
External
fields

AS , S Unbounded (G)
spring constant k = 1
bondlength b0 = 4a
bending rigidity κ = 0.1
Monomer Nm = 4− 128
stresslet s0 = 0− 0.5
Sedimentation number
S = 0− 2000

Chapter 5 :
Bio-
mimetics

A(2s) , A(3t) Unbounded (G)
spring constant k = 1
bondlength b0 = 4a
bending rigidity κ = 0.1
Monomer Nm = 32
stresslet s0 = −0.5− 0.5
quadrupole strength
d0 = −0.005− 0.005

Chapter 6 :
Emergence

AS , φ
Wall-bounded
(Gw)

spring constant k = 1
bondlength b0 = 4a, 3a
bending rigidity κ = 10
Monomer Nm = 3− 11
No of rods Np = 1− 28

stresslet s0 = −0.5− 0.5

Table A.1: Parameter range used for our numerical studies are presented here.
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